3.2 外部事象PRA

3.2.1 地震 PRA

外部事象地震レベル1PRA(以下,「地震PRA」という。)は,一般社団法人日本原子力学会 発行の「原子力発電所の地震を起因とした確率論的安全評価実施基準:2007」(以下,「地 震PSA学会標準」という。)を参考に評価を実施し,各実施項目については「PRAの説明にお ける参照事項」(原子力規制庁 平成25年9月)の記載事項への適合性を確認した。評価フロ ーを第3.2.1.a-1 図に示す。今回の地震PRAでは,地震単独の影響のみを評価しており,地震 に伴う津波,溢水,火災等の重畳については対象としていない。

## 3.2.1.a. 対象プラントと事故シナリオ

対象とするプラントの説明

(1)サイト・プラント情報の収集・分析

内部事象出力時レベル 1PRA で収集したプラントの基本的な情報(設計情報,運転・ 保守管理情報等)に加え,地震レベル 1PRA を実施するために,プラントの耐震設計や 機器配置といった地震固有に考慮すべき関連情報を追加で収集・分析した。収集した 情報及び主な情報源を第3.2.1.a-1 表に示す。

(2)PRA において考慮する緩和機能(系統)の概要

PRA において考慮する緩和機能(系統)は,3.1 内部事象 PRA 3.1.1 出力運転時 PRA での記載と同様である。

(3) 地震に対する特徴

内部事象 PRA に対する地震 PRA の特徴は以下のとおり。

- ・常用系の耐震クラスが低い給水系,復水系及び PCS は緩和系として期待しない。
- ・また,地震動に対する現実的耐力が極端に小さい給水建屋,純水タンク及びろ過水 タンクについてフラジリティ評価を実施していないため,地震時には使用不可能と 想定する。そのため純水補給水系(MUWP)による復水貯蔵槽(CSP)への補給に期待 しない。
- ・地震時には,機器及び電源の復旧は不可能とし,外部電源喪失時の外部電源復旧に 期待しない。
- ・複数基同時被災の影響を考慮し,隣接号機からの電源融通(高圧電源融通)に期待 しない。
- ・事故シーケンス評価における起因事象に関しては、複数の建屋・構築物、安全機能 や緩和機能を有する機器が複数同時損傷することによる様々な起因事象を合理的に 処理するために、成功基準の観点からグループ化を行った上で、プラントへの影響 が最も厳しい起因事象順に代表させる形で階層イベントツリーを作成している。

(4) プラントウォークダウン

机上検討において十分確認ができないプラント情報を取得すること,及び地震時の 事故シーケンスの妥当性の確認することを目的として,地震 PRA の観点からリスク 上重要な建屋・構築物,機器を対象にプラントウォークダウンを実施し,主に以下の 観点にてフラジリティ評価及びシステム評価において新たに考慮する事項が無いこ との確認を実施している。

- ・耐震安全性の確認
- ・地震による二次的影響の確認

点検項目については、地震PSA学会標準等を参考に更に細分化して設定している。 評価対象機器選定フローを第3.2.1.a-2 図に,評価結果例を第3.2.1.a-3 図に示 す。評価対象機器選定フローにより抽出した機器等に対し,耐震安全性の確認,二次 的影響の確認等を実施したが,フラジリティ評価や事故シーケンス評価において新た に考慮すべき項目が無いことを確認した。

(5)今回実施した地震 PRA の前提条件等について

今回実施した地震 PRA について,主な留意点を以下に示す。

- a. 評価の前提条件について
  - ・評価地震動範囲は120gal~3900gal(解放基盤表面上の加速度)とする。
  - ・津波が建屋,機器及び緩和機能に及ぼす影響は考慮せず,地震の影響のみ評価する。
- b. 地震の影響について
  - ・冗長機器及び設備は、地震の影響により同時に損傷する(完全相関)と仮定する。
     ・余震による炉心損傷への影響は考慮しない。
- c. 地震ハザードについて
  - ・地震PRA評価で使用した地震ハザードは,今回の原子炉設置変更許可申請で使用しているものである。

地震により炉心損傷に至る事故シナリオと分析

地震時の事故シナリオの選定にあたっては,重要な建屋・構築物,機器(例:原子炉 建屋,原子炉圧力容器など)の損傷により炉心損傷に直結する事故シナリオだけでなく, 安全機能への間接的な影響(地震起因の火災,溢水,津波の影響を除いた周辺設備の損 傷による間接的な影響(例:斜面崩壊,クレーン落下など))による事故シナリオも広 範囲に抽出した。

なお,地震 PRA の評価地震動範囲は,原子炉自動停止となる信号の設定点(水平地震動に対するスクラム設定値)を目安に 120gal<sup>1</sup>以上とした。

選定した事故シナリオのうち、安全機能への間接的影響、余震による地震動の安全機

<sup>&</sup>lt;sup>1</sup> 解放基盤表面上の加速度。目安としているスクラム信号の設定点 120gal は,建屋内に設置されている地震加速度計での値のため,保守的な評価となっている。

能への影響,経年変化を考慮した場合の影響を考慮した事故シナリオについてはスクリ ーニングを行い,安全機能を有する建屋・構築物,機器の損傷が直接炉心損傷事故に繋 がる事故シナリオと合わせて事故シナリオの明確化を行った。スクリーニング結果を第 3.2.1.a-2 表に示す。事故シナリオのスクリーニングについては,これまでに決定論的 に評価されている情報,又は運用面での対策・対応に関する情報に基づき判断している。

スクリーニングの結果から、事故シーケンス評価の対象となる起因事象を第3.2.1.a-4 図に示すフローを用いて,以下の通り抽出した。

- ・建屋・構築物の損傷(原子炉建屋(R/B))
- ・建屋・構築物の損傷(原子炉圧力容器・格納容器(RPV・PCV))
- ・格納容器バイパス事象
- ・原子炉冷却材圧力バウンダリ喪失
- ・計測・制御系喪失
- ・直流電源喪失
- ・原子炉補機冷却系喪失
- ・交流電源喪失
- ·外部電源喪失
- ・過渡事象

これらの分析結果に基づき,起因事象の要因となる機器及び起因事象が発生した場合の緩和設備に係る建屋・構築物,機器を抽出し,地震 PRA で対象となる建屋・機器リストを作成した。第3.2.1.a-3 表に建屋・機器リストを示す。

3.2.1.b. 確率論的地震ハザード

設置変更許可申請書の「基準地震動の超過確率参照」で示している確率論的地震ハザード は,以下のとおり評価している。

確率論的地震ハザード評価の方法

地震 PSA 学会標準の方法に基づき評価を行う。

なお,地震動の伝播特性は敷地内で異なることが確認されているため,1~4号機が位置する荒浜側においては最も顕著な増幅が確認される1号機地点を,5~7号機が位置する大湊側においては顕著な相異がないことを確認したうえで5号機地点を代表させ確率論的地震ハザードを評価する。

確率論的地震ハザード評価に当たっての主要な仮定

(1) 震源モデルの設定

震源モデルは,以下に示す特定震源モデルと領域震源モデルを設定した。

a.特定震源モデル

サイトから 30km 程度の範囲内の活断層は、地質調査結果による見解に基づく基準 地震動の策定上の評価に準じてモデル化を行った。サイトから 30km 程度以遠の活断 層については、地震調査研究推進本部(2012)に基づいてモデル化を行った。また、 敷地に影響が大きい活断層については、ロジックツリーにおいて連動を考慮した。

日本海東縁部の特定震源モデルについては,地震調査研究推進本部(2009)に基づいてモデル化を行った。また,津波評価で考慮している地震についても考慮した。

第3.2.1.b-1図~第3.2.1.b-4図に敷地周辺の活断層及び設定したモデルの図を, 第3.2.1.b-1表~第3.2.1.b-3表に震源モデルの諸元を示す

b.領域震源モデル

領域震源モデルについては,垣見・他(2003)の領域区分を参照して,サイトか ら半径150km以内の領域を対象とした。敷地に近い領域については,地震動特性を 踏まえ,海域と陸域で領域分けを行った。さらに,基準地震動策定における地質調 査の内容を考慮して,敷地から半径30km以内の領域を設定する。

各領域の最大マグニチュードは領域内の過去の地震の最大値をもとに設定することを基本とし,ロジックツリーにおいて島崎(2009)の知見を考慮した。

第3.2.1.b-5 図に設定した領域区分の図を示す。

(2) 地震動伝播モデルの設定

地震動伝播モデルとしては Noda et al.(2002)による距離減衰式を用いた。また, ロジックツリーにおいて観測記録に基づく補正の有無を考慮した。 (3) ロジックツリーの作成

ロジックツリーの作成では,震源モデルおよび地震動伝播モデルの設定において, 選定した認識論的不確かさ要因から確率論的地震ハザード評価に大きな影響を及ぼ す要因を選定した。特に敷地に影響を及ぼすと考えられる活断層の連動については, 詳細なロジックツリーに展開し評価した。作成したロジックツリーを第3.2.1.b-6 図 ~ 第3.2.1.b-8 図に,ロジックツリーの分岐及び重み付けの考え方を第3.2.1.b-4 表 に示す。

# 確率論的地震ハザード評価結果

(1)地震ハザード曲線

上記により評価した平均地震ハザード曲線を第3.2.1.b-9 図及び第3.2.1.b-10 図 に,主要活断層ごとのハザード曲線を第3.2.1.b-11 図及び第3.2.1.b-12 図に示す。 また,フラクタイル地震ハザード曲線を第3.2.1.b-13 図及び第3.2.1.b-14 図に示す。

(2) 一様ハザードスペクトル

基準地震動の応答スペクトルと年超過確率毎の一様八ザードスペクトルとの比較 を第3.2.1.b-15 図及び第3.2.1.b-16 図に示す。基準地震動の年超過確率は,水平・ 鉛直方向ともに,10<sup>-4</sup>~10<sup>-5</sup> 程度となっている。また,一様八ザードスペクトルの算 出のもととなる周期ごとの八ザード曲線を第3.2.1.b-17 図及び第3.2.1.b-18 図に示 す。

(3)フラジリティ評価用地震動

フラジリティ評価用地震動は,平均値評価による 10<sup>-4</sup>,10<sup>-5</sup>の一様八ザードスペク トル形状を比較し,相似形になることを確認した上で,それらを包絡するスペクトル を目標スペクトルとして模擬地震波を作成する。経時特性を基準地震動の策定と同様 に Noda et al.(2002)に基づき地震規模 M=8.1,等価震源距離 Xeq=25km として設定 した。模擬波を第3.2.1.b-19 図及び第3.2.1.b-20 図に示す。

- 3.2.1.c-1.建屋のフラジリティ
  - 6,7 号機で評価手法は基本的に同じであるため,7 号機で代表した記載とする。 評価対象と損傷モードの設定
    - (1)評価対象物

建屋のフラジリティ評価の対象は,第3.2.1.a-3 表の建屋・機器リストに記載され たものとし,原子炉建屋,コントロール建屋,タービン建屋,廃棄物処理建屋とした。 原子炉建屋の概略平面図および概略断面図をそれぞれ第3.2.1.c-1-1 図および第 3.2.1.c-1-2 図に示す。コントロール建屋の概略平面図および概略断面図をそれぞれ 第3.2.1.c-1-3 図および第3.2.1.c-1-4 図に示す。タービン建屋の概略平面図および 概略断面図をそれぞれ第3.2.1.c-1-5 図および第3.2.1.c-1-6 図に示す。廃棄物処理 建屋の概略平面図および概略断面図をそれぞれ第3.2.1.c-1-7 図および第 3.2.1.c-1-8 図に示す。

(2)損傷モードおよび部位の設定

建屋の要求機能喪失に繋がる支配的な構造的損傷モードおよび部位として,建屋の 崩壊シーケンスを踏まえ,層崩壊を伴う耐震壁のせん断破壊を選定した。

フラジリティの評価方法の選択

フラジリティ評価方法として、「現実的耐力と現実的応答による方法(応答解析に基づ く方法)」を選択した。評価手法は地震 PSA 学会標準に準拠した手法とする。

フラジリティ評価上の主要な仮定

(1)考慮する不確実さ要因

現実的耐力および現実的応答の偶然的不確実さ(以下, Rという)と認識論的不 確実さ(以下, Uという)については,地震 PSA 学会標準に基づき評価した。考慮 する不確実さ要因の例を第 3.2.1.c-1-1 表に示す。

(2)損傷評価の指標

損傷評価の指標については,耐震壁のせん断破壊の程度を表すことができる指標として,せん断ひずみを選定した。

フラジリティ評価における耐力情報

現実的耐力である損傷限界時のせん断ひずみの平均値と変動係数は地震 PSA 学会標準 に示された実験結果に基づく値を用いることとし,対数正規分布を仮定した。損傷限界 点の現実的な値を第3.2.1.c-1-2表に示す。

フラジリティ評価における応答情報

現実的応答については,現実的な物性値に基づく地震応答解析を入力レベルごとに実施することにより評価を行った。現実的な物性値は地震 PSA 学会標準に基づき算出し,

対数正規分布を仮定した。損傷評価の指標である耐震壁のせん断破壊に対しては水平動 が支配的であることから,水平動による評価を行うこととした。

(1)入力地震動

入力地震動は第3.2.1.b-19,20 図に示す模擬波を入力レベルごとに係数倍したものとした。(最大2000cm/s<sup>2</sup>)

(2)現実的な物性値と応答解析モデル

柏崎刈羽サイトの地盤物性値を第3.2.1.c-1-3表に示す。原子炉建屋,コントロー ル建屋,タービン建屋および廃棄物処理建屋の物性値をそれぞれ第3.2.1.c-1-4表, 第3.2.1.c-1-5表,第3.2.1.c-1-6表および第3.2.1.c-1-7表に示す。応答解析に用 いる現実的な物性値は,地震 PSA 学会標準に示された評価方法に基づき算出した。評 価方法を第3.2.1.c-1-8表に示す。

原子炉建屋の解析モデルおよび解析モデル諸元を第 3.2.1.c-1-9 図および第 3.2.1.c-1-9(1)~(5)表に示す。コントロール建屋の解析モデルおよび解析モデル諸元 を第 3.2.1.c-1-10 図および第 3.2.1.c-1-10(1)~(4)表に示す。タービン建屋の解析 モデルおよび解析モデル諸元を第 3.2.1.c-1-11(1)~(3)図および第 3.2.1.c-1-11(1) ~(8)表に示す。廃棄物処理建屋の解析モデルおよび解析モデル諸元を第 3.2.1.c-1-12(1),(2)図および第 3.2.1.c-1-12(1)~(5)表に示す。

#### (3)現実的応答

現実的応答は地震 PSA 学会標準に準拠して対数正規分布を仮定し,その中央値は物 性値に中央値を与えた応答解析結果により算出した。また,対数標準偏差は,地震 PSA 学会標準に基づき,最大応答せん断ひずみとして0.2を与えた。

# 建屋のフラジリティ評価結果

現実的耐力と現実的応答よりフラジリティ曲線と HCLPF(低い損傷確率(5%損傷確率) であることが高い信頼度(95%信頼度)で推定できる地震加速度)を算出した。フラジリ ティ曲線は,各建屋を構成する全要素のうち,入力レベル 2000cm/s<sup>2</sup>の際に損傷確率が 最大となる要素を対象として算出することとした。ここに損傷確率は現実的応答が現実 的耐力を上回る確率である。選定した要素の各入力レベルでの損傷確率は対数正規累積 分布関数により近似し,信頼度ごとの連続的なフラジリティ曲線を算出した。

原子炉建屋,コントロール建屋およびタービン建屋のフラジリティ曲線を第 3.2.1.c-1-13図,第3.2.1.c-1-14図および第3.2.1.c-1-15図に示す。また,HCLPFに ついて第3.2.1.a-3表の建屋・機器リストに示す。なお,廃棄物処理建屋については, 入力レベル2000cm/s<sup>2</sup>においても損傷確率が極めて小さかったことからフラジリティ曲 線を算出していない。 3.2.1.c-2. 建屋・構築物の損傷に係わる基礎地盤のフラジリティ

評価対象と損傷モードの設定

(1)評価対象物

建屋・構築物の損傷に係わる基礎地盤のフラジリティ評価の対象は,第3.2.1.a-3 表の建屋・機器リストに記載されたものとし,原子炉建屋基礎地盤とした。原子炉建 屋基礎地盤の断面図を第3.2.1.c-2-1図に示す。

(2)損傷モードおよび部位の設定

建屋の要求機能喪失に繋がる支配的な構造的損傷モードおよび部位として,原子炉 建屋基礎地盤のすべり破壊を選定した。

フラジリティの評価方法の選択

フラジリティ評価方法として「現実的耐力と現実的応答による方法(応答解析に基づ く方法)」を選択した。評価手法は地震 PSA 学会標準に準拠した手法とする。

フラジリティ評価上の主要な仮定

(1)考慮する不確実さ要因

現実的耐力および現実的応答の偶然的不確実さ(以下, という)と認識論的不 確実さ(以下, しという)については,地震 PSA 学会標準に基づき評価した。考慮 する不確実さ要因の例を第3.2.1.c-2-1 表に示す。

第3.2.1.c-2-1 表 考慮する不確実さ要因の例

| 地盤モデルおよび地盤応答の評         地盤材料定数         解析モデル           価         動的地盤定数の評価法 | 評価項目                | 偶然的不確実さ | R | 認識論的不確実さ υ                     |
|----------------------------------------------------------------------------|---------------------|---------|---|--------------------------------|
|                                                                            | 地盤モデルおよび地盤応答の評<br>価 | 地盤材料定数  |   | 解析モデル<br>動的地盤定数の評価法<br>解析手法 など |

地震 PSA 学会標準 解説 74 表 2 をベースに作成

(2)損傷評価の指標

地震 PSA 学会標準に従い,建屋基礎地盤のフラジリティ評価では,すべり安全率の 小さなすべり線上の土塊及び不安定な岩塊を選定し,すべり安全率を指標として評価 を行う。ここでは,基準地震動 Ss を対象として実施した基礎地盤安定性評価の結果 (K6/7 申請書 添付六)に基づいて,最小すべり安全率を算定したすべり線を評価対 象として選定している。

フラジリティ評価における耐力情報

現実的耐力に相当する地盤強度は,試験結果に基づき設定した。ばらつきについては, LHS法(Latin Hypercube Sampling, ラテン方格法)によってサンプリングし,任意に組 み合わせたデータセット 30 ケースを用いることで評価した。ばらつきを考慮する地盤物 性を第3.2.1.c-2-2表,主要な地盤物性値を第3.2.1.c-2-3表に示す。

| 地層<br>物性 | 西山層 | F 系<br>断層 | Ⅴ,L 系<br>断層 | 古安田<br>層 | 番神<br>砂層 |
|----------|-----|-----------|-------------|----------|----------|
| せん断剛性    |     |           |             |          |          |
| 強度       |     |           | -           |          |          |

第3.2.1.c-2-2表 ばらつきを考慮する地盤物性

V,L系断層はすべり線上に存在しないため強度物性を必要としない。

:ばらつきを考慮する, -:ばらつきを考慮しない(確定値として扱う)

西山層 F系断層 古安田層 せん断剛 平均値 394-1.63•Z 175 340 性 標準偏 19.6 (17.5) 58.1 7.00  $GO(N/mm^2)$ 差 ピーク 平均値 1.37-0.00504•Z 0.286+0.191 P 0.238+0.407 P せん断強 標準偏 度 0.240 0.0428 0.0563 差  $(N/mm^2)$ 残留 平均値 0.224+0.312•P 0.673-0.00201•Z 0.219+0.251•P せん断強 標準偏 度 0.194 0.0451 0.0337 差  $(N/mm^2)$ 平均値 0.335-0.00157•Z 見込まない 見込まない 引張強度 標準偏  $(N/mm^2)$ 見込まない 見込まない 0.119 差

第 3.2.1.c-2-3 表 主要地盤物性值

注:Zは,標高(m)を示す。

注: Pは,地下水位を考慮した圧密圧力(N/mm<sup>2</sup>)を示す。

フラジリティ評価における応答情報

現実的応答については,地震応答解析を実施することにより評価を行った。地震応答 解析は,等価線形法による有限要素解析手法を用い,水平・鉛直動を同時入力している。 (1)入力地震動

入力地震動は第 3.2.1.b-19, 20 図に示す模擬波を入力レベルごとに係数倍したものとした。

(2)現実的な物性値と応答解析モデル

現実的応答については,試験結果に基づき設定した物性値を用いて,地震応答解析 を実施することにより評価した。地震応答解析は,等価線形法による有限要素解析手 法を用い,水平・鉛直動を同時入力している。

地盤のせん断剛性については,ばらつきを考慮した値を設定し,地震応答解析を実施することにより評価を行った。ばらつきは,LHS法によってサンプリングし,任意に組み合わせたデータセット 30 ケースを用いることで評価する。地盤物性値を第

3.2.1.c-2-2 表に示す。

応答解析モデルは,基礎地盤安定性評価の結果(K6/7 申請書 添付六)に記載の地 盤モデルを用いた。基礎地盤の解析モデルを第3.2.1.c-2-3 図に示す。

基礎地盤のフラジリティ評価結果

フラジリティ評価は,現実的耐力と現実的応答による方法(応答解析に基づく方法) を適用した。

模擬地震波と平均物性値を用いた地震応答解析を実施することで,すべり安全率が1.0 となる限界加速度を算定する。地盤物性値のばらつきを評価するにあたっては,LHS 法 によってサンプリングしたデータセット 30 ケースを設定する。データセット 30 ケース を用いて,限界加速度に相当する模擬地震波を入力条件とした地震応答解析を行い,す べり安全率の算定を行いフラジリティ曲線を算出する。HCLPF は信頼度 95%フラジリテ ィ曲線を基に算出した。

原子炉建屋基礎地盤のフラジリティ曲線を第3.2.1.c-2-4 図に示す。

最終的な HCLPF,中央値については,二次元基礎地盤安定解析では考慮していない奥 行き方向の側面抵抗効果を考慮して,上述の手法により得られた値に対して係数 1.5 を 乗じている。奥行き方向の側面抵抗効果とは,二次元解析では期待していない平面奥行 き方向のすべり面の抵抗を考慮するものであり,7号炉,6号炉,5号炉を対象とした 既往バックチェック<sup>11</sup>において,検討対象とした解析断面に対する効果を確認している。 F2 断層沿いのすべりを想定する安全率 1.6 のケース(第3.2.1.c-2-2 図)に対して,奥 行き方向の側面抵抗を考慮する場合,すべり安全率は 3.3 (約2.1 倍)となる。

信頼度 50%での 50%損傷確率および HCLPF について第 3.2.1.a-3 表の建屋・機器リストに示す(HCLPF:1.33G,中央値:1.83G, <sup>2</sup>:0.043, <sup>1</sup>:0.15)。

なお,原子炉建屋基礎地盤のような平坦な地盤の安定性を検討する場合,地盤の支持 力と変形(沈下)を指標とした評価が一般的であること,地震 PSA 学会標準ではより現 実的な耐力の評価手法として許容すべり量の評価について言及していることなどから, すべり安全率を指標としたフラジリティ評価結果については保守性が含まれており,基 礎地盤についての現実的な耐性が PRA の結果に現れているものではないと考える。(添付 資料 3.2.1.c-1)

\*1:柏崎刈羽原子力発電所7号機「発電用原子炉施設に関する耐震設計審査指針」の改訂に伴う耐震安全 性評価結果報告書(改訂1)(平成21年1月) 3.2.1.c-3.機器のフラジリティ

6,7 号機で評価手法は基本的に同じであるため,7 号機で代表した記載とする。 評価対象と損傷モードの設定

機器のフラジリティ評価対象は,第3.2.1.a-3 表に記載されたものとする。

損傷モードは,評価対象機器の要求機能に応じ,構造損傷と機能損傷に分類し適切に設定する。

機器のフラジリティ評価対象のうち,タンク・熱交換器等の静的機器は,要求機 能の喪失につながる延性破壊や脆性破壊等の構造損傷の観点からフラジリティ評 価を実施する。また,電気盤類およびポンプ・弁等の動的機器は,事故シーケンス 評価上の要求機能に応じて構造損傷,動的機能限界や電気的機能限界等の機能損傷 の観点からフラジリティ評価を実施し,当該機器のフラジリティとして用いること とする。

なお,構造損傷に関する評価では,機器の本体・支持脚・基礎ボルト等の主要部 位について耐震性評価が実施されるが,部位間で裕度(例えば,設計許容値/発生 値)が異なり,また,同一部位でも評価応力の種類(引張応力・曲げ応力・組合せ 応力等)によって裕度が異なる。前述の各部位および各評価応力の種類の中から, 耐震性評価上厳しいものに着目しフラジリティ評価を実施する。

フラジリティ評価方法の選択

フラジリティ評価方法として、「現実的耐力と現実的応答による方法(以下、「応 答解析に基づく方法」という。)」、「現実的耐力と応答係数による方法(以下、「原 研法に基づく方法」という。)」および「耐力係数と応答係数による方法(以下、「安 全係数法」という。)」の中から「安全係数法」を選択した。

「安全係数法」は十分精度のある設計応答を基に,不確実さの要因を既往知見に 基づく係数として積み上げて現実的応答を求める方法であり,不確実さ要因を考慮 した応答解析により現実的応答を直接求める手法と同等の結果が得られると考え られる。

なお,「安全係数法」は米国において,評価手法として提案され(\*1),約 40 プ ラントでの評価実績がある(\*2-4)。

評価手法は地震 PSA 学会標準に準拠した手法とする。

フラジリティ評価上の主要な仮定(不確実さの設定,応答係数等)

機器フラジリティ評価とは,地震動の入力が増大し,評価対象機器が損傷に至る 時点における最大加速度を評価尺度として表示するものである。このとき,最大加 速度Aをフラジリティ加速度と称し,機器フラジリティ解析ではこれを確率量と して扱い,以下の式で表す。

$$A = Am \cdot \varepsilon_R \cdot \varepsilon_U$$

ここで,

- *Am* :機器が損傷に達するときの地震動強さ(フラジリティ加速度) *A* の中央 値
- $\varepsilon_R$ :物理現象固有の偶然的不確実さに起因するばらつきを表す確率密度分布 であり,中央値は1.0,対数標準偏差は $\beta_R$ で表わされる。
- $\varepsilon_{v}$ :認識論的不確実さに起因するばらつきを表す確率密度分布であり,中央 値は1.0,対数標準偏差は $\beta_{v}$ で表わされる。

フラジリティ加速度 A を累積分布関数で示したものが機器フラジリティ曲線で ある。

なお,フラジリティ評価では,直接Am, $\varepsilon_R$ , $\varepsilon_U$ からフラジリティ加速度を算定せず,一般に安全係数の概念を用いて下式の様に算定する。

$$Am = F \cdot A_d \quad \cdot \cdot \cdot 式 (1)$$

ここで,

F : 安全係数(裕度)

A<sub>d</sub>:基準地震動の最大加速度

式(1)の安全係数(裕度)は,式(2)のように基準とする地震動による現実 的な応答に対する機器の現実的な耐力の割合で定義されるが,式(3)のように評 価対象機器の設計応答値に対する現実的な応答の割合(応答に関する係数)と現実 的な耐力に対する設計応答値の割合(耐力に関する係数)に分離して評価する。

ただし,入力地震動に対する機器の応答には,機器自身の応答に加えて建屋の応答が影響することから,応答に関する係数は機器応答係数 FRE と建屋応答係数 FRS に分割して評価する。

 $F = \frac{現実的な耐力}{現実的な応答} \quad \cdots \quad \exists (2)$  $= \frac{設計応答値}{現実的な応答} \times \frac{現実的な耐力}{設計応答値}$  $\frac{K}{K} = F_C \cdot F_{RE} \cdot F_{RS} \quad \cdots \quad \exists (3)$  $= \sum_{r=1}^{r} F_{rr} \cdot F_{rr}$ 

 $F_c$ :耐力係数

F<sub>RE</sub> :機器応答係数

 $F_{RS}$ :建屋応答係数

耐力係数 F<sub>c</sub>,機器応答係数 F<sub>RE</sub> および建屋応答係数 F<sub>RS</sub>は,それぞれ以下に示す 係数に分離して評価する。これらの係数は,フラジリティ評価上に存在する各種の 不確実さ要因を評価したものであり,全て対数正規分布する確率量と仮定する。不 確実さ要因の例を第3.2.1.c-3-1 表に示す。

第3.2.1.c-3-1 表 現実的耐力および現実的応力の不確実さ要因の例

| 評価に   | 方法    | 偶然的不確実さ ( $eta_{\scriptscriptstyle R}$ ) | 認識論的不確実さ( $eta_{\scriptscriptstyle U}$ ) |  |  |
|-------|-------|------------------------------------------|------------------------------------------|--|--|
| 楼哭回答亥 | 現実的耐力 | ・機能試験データの統計的<br>精度                       | ・構造材料定数<br>・機能試験データの統計的<br>精度            |  |  |
|       | 現実的応答 | ・減衰定数<br>・モード合成法                         | ・床応答スペクトル<br>・減衰定数<br>・解析モデルの評価法         |  |  |

$$F_C = F_S \bullet F_\mu$$

ここで,

 $F_s$ : 強度係数

*F*<sub>"</sub>: 塑性エネルギー吸収係数

$$F_{RE} = F_{SA} \bullet F_{D} \bullet F_{M} \bullet F_{MC}$$

 $F_{SA}$ :スペクトル形状係数

*F<sub>D</sub>* : 減衰係数

*F<sub>M</sub>*:モデル化係数

*F<sub>MC</sub>*:モード合成係数

$$F_{RS} = F_1 \bullet F_2 \bullet F_3$$

ここで,

F<sub>1</sub>:解放基盤表面の地震動に関する係数

- F<sub>2</sub>:建屋への入力地震動に関する係数
- *F*<sub>3</sub>:建屋の地震応答に関する係数

建屋の応答係数について,第3.2.1.c-3-2表の値を使用する。

フラジリティ評価における耐力情報

評価部位,損傷モード(評価応力の種類)は,評価対象において耐震性評価上厳

しいものを選定した。耐力値は,評価部位に使用されている部材の,JSME 発電用 原子力設備規格設計・建設規格(2005 年版) (JSME S NC1-2005)に記載されている 許容値等を適用した。確率分布は,中央値に関する不確実さの要素について,加振 試験結果や文献値,工学的判断等によって評価し, $\beta_R \cdot \beta_U$ として定量化して考慮 した。

フラジリティ評価における応答情報

評価部位,損傷モード(評価応力の種類)は,評価対象において耐震性評価上厳 しいものを選定した。応答値は,地震動によってその部位にかかる応力等の地震応 答の計算値を設定した。確率分布については,中央値に関する不確実さの要素につ いて,加振試験結果や文献値,工学的判断等によって評価し, $\beta_R \cdot \beta_U$ として定量 化して考慮した。

機器のフラジリティ評価結果

機器フラジリティ評価結果を第3.2.1.a-3 表に示す。

機器フラジリティの評価対象は,評価対象の特徴を踏まえ,「大型機器」,「静的 機器」,「動的機器」,「電気盤・計装」および「配管」の5グループに分類した。ま た,グループごとに代表機器を抽出し,その評価の具体例を以下に示す。各グルー プの代表機器はFV 重要度を参照し抽出した。

(1)大型機器 (RPV ペデスタル)

評価対象機器の諸元を以下に示す。

・評価対象機器 : RPV ペデスタル

- ·設置位置 :原子炉建屋
- ・耐震クラス :S
- ・固有振動数 : 14.5Hz
- ・基準地震動 Ss に対する発生応力
- ・評価対象部位 : たてリブ
- ・評価応力 :組合せ応力

第 3.2.1.c-3-3 表に, RPV ペデスタルのたてリブの耐震評価結果を示す。第 3.2.1.c-3-3 表を基にフラジリティを算出した。

評価部位材料評価応力発生値<br/>[MPa]評価基準値<br/>[MPa]裕度たてリブSPV490組合せ<br/>応力3734271.14

第3.2.1.c-3-3 表 RPV ペデスタルのたてリブの耐震性評価結果

a. 耐力係数 F<sub>C</sub>の評価

(a)強度係数 Fsの評価

本係数は,設計応力に対する限界強度の持つ裕度を評価するものであり, 次式により評価する。

$$F_{S} = \frac{\sigma_{C} - \sigma_{N}}{\sigma_{T} - \sigma_{N}}$$

ここで,

 $\sigma_c$ :限界応力の中央値

 $\sigma_{T}$ :地震時応力

 $\sigma_N$ :通常運転時応力

たてリブの材質は SPV490 であることから,限界応力として JSME 発電用原 子力設備規格設計・建設規格(2005 年版)(JSME S NC1-2005)第 | 編付録図表 Part5 の設計降伏点 Sy=490 [MPa](評価温度:常温(-30~40))を採用す る。規格値に含まれている余裕(Sy 値の 1.17 倍)を考慮して限界応力の中央 値とする。

 $\sigma_C = 1.17 \times \text{Sy} = 1.17 \times 490 = 573 \text{ [MPa]}$ 

なお,通常運転時応力は,耐震性評価において地震時応力を分離して評価 していないため0 [MPa]とする。

 $\sigma_N = 0$  [MPa]

以上より,強度係数Fsは,以下の通りとなる。

 $F_{S} = \frac{\sigma_{C}}{\sigma_{T}} = \frac{1.17 \times Sy}{\sigma_{T}} = \frac{573}{373} = 1.54$ 

不確実さは,限界応力の中央値1.17×Sy に対して,規格値 Sy が 99%信頼 下限に相当すると考え,全てを認識論的不確実さ β<sub>11</sub> として評価する。

$$\beta_U = \frac{1}{2.33} \ln \left( \frac{1.17 \times Sy}{Sy} \right) = 0.07$$

以上より,本係数および不確実さは以下の値とする。

 $F_{S}$  =1.54 ,  $\beta_{R}$  =0.00 ,  $\beta_{U}$  =0.07

(b)塑性エネルギー吸収係数 F<sub>µ</sub>の評価

本係数は、塑性変形によるエネルギー吸収に関する裕度を評価する。

本評価対象は鋼材の支持構造物であり,支持機能を喪失するまでの塑性変形 を許容できると考える。また強度係数 Fsの評価において,限界応力の中央値 を Sv にて算定しているため,本係数を考慮する。

本係数は、建物・構築物の変形能力による地震エネルギー吸収能力などに応 じた低減係数である構造特性係数 Ds と逆数の関係にあることから,次式によ り評価する。

 $F_{\mu} = \frac{1}{D_{s}}$ 

なお、「鋼板コンクリート構造物耐震設計技術指針 建物・構築物編 (JEAG4618-2005)」を参考に RPV ペデスタルの構造特性係数 Ds=0.45 とした。 不確実さは,地震 PSA 学会標準に示された BWR 型プラント原子炉建屋のフラ ジリティ評価結果を用いた。

以上より,本係数および不確実さは以下の値とする。

$$F_{\mu} = \frac{1}{D_s} = \frac{1}{0.45} = 2.22$$
 ,  $\beta_R = \beta_U = 0.10$ 

b.機器応答係数 FREの評価

(a) スペクトル形状係数 F<sub>SA</sub>の評価

本係数は,設計で用いられる床応答スペクトルの拡幅に含まれる裕度を評価 するものであり,次式により評価する。なお,スペクトル形状係数の概念図を 第3.2.1.c-3-1 図に示す。

拡幅後の床応答スペクトルによる応答加速度  $F_{SA} =$ 

拡幅前の床応答スペクトルによる応答加速度

本評価対象は,時刻歴応答解析により評価しており,床応答スペクトルを用 いないことから、本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{SA}=1.00$  ,  $\beta_R=\beta_U=0.00$ 

(b)減衰係数 F<sub>D</sub>の評価

本係数は、設計で用いられる減衰定数に含まれる裕度を評価するものであ り,次式により評価する。なお,減衰係数の概念図を第3.2.1.c-3-2図に示 す。

 $F_{D} = \frac{$ 設計用減衰定数による応答値 減衰定数の中央値による応答値

ただし,本評価対象の設計用減衰定数および減衰定数の中央値は同一(5.0%)

と考え,本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_D=1.00$  ,  $\beta_R=\beta_U=0.00$ 

(c) モデル化係数 F<sub>M</sub>の評価

本係数は,機器の解析モデル化に含まれる裕度を評価するものであり,次 式により評価する。

, 設計解析モデルによる応答加速度

 $T_M = \overline{$ 現実的解析モデルによる応答加速度

ただし,本評価対象の解析モデル化は妥当であり,解析モデルから得られ る応答は中央値に相当すると考える。

また,本評価対象は柔な機器であり,耐震性評価は多質点系モデルを用いて行われていることから,不確実さはKennedyの研究結果(\*3)を用いた。

以上より,本係数および不確実さは以下の値とする。

 $F_M$  = 1.00 ,  $\beta_R$  = 0.00 ,  $\beta_U$  = 0.15

(d) モード合成係数 F<sub>MC</sub>の評価

本係数は,モーダル解析により地震応答を評価する場合に,モーダル解析 のモード合成に含まれる裕度を評価するものである。

本評価対象は,時刻歴応答解析により評価しており,モード合成を行って いないため,本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{MC} = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

# c. 建屋応答係数 F<sub>RS</sub>の評価

建屋応答に関する各係数は第 3.2.1.c-3-2 表に示す建屋の応答係数を用いる。 (a)解放基盤表面の地震動に関する係数 F1の評価

本係数は,基準とする地震動のスペクトルが持つ裕度を評価するものである。 本評価では,解放基盤表面における地震動のスペクトル形状係数を考慮する。 第3.2.1.c-3-3 図にスペクトル形状係数の概念図を示す。

なお,スペクトル形状係数は,基準とする地震動のスペクトルと一様ハザー ドスペクトルの建屋または機器の固有周期における比を,次式により評価する。

スペクトル形状係数 = <u>基準とする地震動の応答加速度</u> 一様ハザードスペクトルの応答加速度

また,不確実さは地震ハザードにおける距離減衰式等のばらつきに考慮され るため,本係数では考慮しない。

サブ応答係数 F<sub>1</sub>は,本評価対象を含む原子炉圧力容器系連成地震応答解析の 固有周期に対応した値として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_1 = 0.63$  ,  $\beta_R = \beta_U = 0.00$ 

(b)建屋への入力地震動に関する係数 F2の評価

本係数は,地盤モデルに関する設計上の裕度および基礎による入力損失に関 する設計上の裕度を評価するものである。

中央値は,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび基礎の拘束効果による入力損失の影響が小さいことから1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関す る係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評 価する。

以上より,本係数および不確実さは以下の値とする。

 $F_2 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \ge \beta_U \ \text{tr}_3 \ge \pm 3$ )

(c)建屋の地震応答に関する係数 F3の評価

本係数は,建屋振動モデルに関する設計上の裕度,地盤-建屋連成系モデル に関する設計上の裕度および建屋の非線形応答による機器入力に関する裕度 を評価する。

中央値は,柏崎刈羽サイトが軟質岩盤サイトであり,建屋応答に与える地盤の影響が支配的であること,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび一般的に建屋の非線形化により,線形時よりも応答加速度が低減される傾向があることから,1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関する係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_3 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \geq \beta_U$ は F<sub>2</sub> と共通)

## d. 評価結果のまとめ

各係数の評価結果を第3.2.1.c-3-4 表に示す。これらの結果より、RPV ペデス タルのフラジリティ加速度の中央値Am、その不確実さ $\beta_R$ ・ $\beta_U$ および HCLPF は、以下の通りとなる。

また,フラジリティ曲線を第3.2.1.c-3-4 図に示す。

$$Am = 2.65 \quad [G]$$
  

$$\beta_R = 0.22 , \beta_U = 0.24$$
  

$$HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$$
  

$$= 2.65 \times \exp\{-1.65 \times (0.22 + 0.24)\}$$
  

$$= 1.24 \quad [G]$$

 $F_{\mu}$  $F_2$  $F_S$ F<sub>SA</sub>  $F_D$  $F_M$  $F_{MC}$  $\mathbf{F}_1$  $F_3$ Median **HCLPF**  $\beta_{\scriptscriptstyle R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{R}$  $\beta_{\scriptscriptstyle U}$  $\beta_{\scriptscriptstyle U}$  $\beta_{U}$  $\beta_{\scriptscriptstyle U}$  $\beta_U$  $\beta_U$  $\beta_U$  $\beta_{\scriptscriptstyle U}$  $\beta_{\scriptscriptstyle U}$  $\beta_{U}$ 1.54 2.22 1.00 1.00 1.00 1.00 0.63 1.00 2.65 0.22 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.20 1.24 0.07 0.10 0.00 0.00 0.15 0.00 0.00 0.15 0.24

第3.2.1.c-3-4 表 RPV ペデスタル 安全係数評価結果の一覧

なお, RPV ペデスタルは決定論的評価において,実際には交番荷重である地震荷重 を,静的に最大荷重が負荷されている状態を想定して評価していることから,上記 のフラジリティ評価結果も保守性を有しており,現実的な耐性が PRA の結果に現れ ているものではないと考える。(添付資料 3.2.1.c-1)

(2)静的機器(原子炉補機冷却水系熱交換器)

評価対象機器の諸元を以下に示す。

- ·評価対象機器 : 原子炉補機冷却水系熱交換器
- ・設置位置 : タービン建屋 T.M.S.L. 4.9m
- ・耐震クラス :S
- ・固有振動数 : 20Hz 以上
- ・基準地震動 Ss に対する発生応力
- ・評価対象部位 : 耐震強化サポート
- ・評価応力 : 組合せ応力

第 3.2.1.c-3-5 表に,原子炉補機冷却水系熱交換器の耐震強化サポートの耐 震評価結果を示す。第 3.2.1.c-3-5 表を基にフラジリティを算出した。

第3.2.1.c-3-5 表 原子炉補機冷却水系熱交換器の耐震強化サポートの耐震性評価

| 評価部位         | 材料     | 評価応力      | 発生値<br>[MPa] | 評価基準値<br>[MPa] | 裕度   |  |  |  |  |  |  |
|--------------|--------|-----------|--------------|----------------|------|--|--|--|--|--|--|
| 耐震強化<br>サポート | SPV490 | 組合せ<br>応力 | 334          | 420            | 1.25 |  |  |  |  |  |  |

結果

a. 耐力係数 F<sub>C</sub>の評価

(a)強度係数 Fsの評価

本係数は,設計応力に対する限界強度の持つ裕度を評価するものであり, 次式により評価する。

$$F_{S} = \frac{\sigma_{C} - \sigma_{N}}{\sigma_{T} - \sigma_{N}}$$

ここで、

 $\sigma_c$ :限界応力の中央値

 $\sigma_{\tau}$ :地震時応力

 $\sigma_N$ :通常運転時応力

耐震強化サポートの材質は SPV490 であることから,限界応力として JSME 発電用原子力設備規格設計・建設規格(2005 年版)(JSME S NC1-2005)第 I 編付録図表 Part5の設計引張強さ Su=600.5 [MPa](評価温度:50)を採 用する。規格値に含まれている余裕(Su値の1.17倍)を考慮して限界応力 の中央値とする。

 $\sigma_c = 1.17 \times \text{Su} = 1.17 \times 600.5 = 702 \text{ [MPa]}$ 

なお,通常運転時応力は,耐震性評価において地震時応力を分離して評価 していないため0 [MPa]とする。

 $\sigma_N = 0$  [MPa]

以上より,強度係数Fsは,以下の通りとなる。

 $F_{S} = \frac{\sigma_{C}}{\sigma_{T}} = \frac{1.17 \times Su}{\sigma_{T}} = \frac{702}{334} = 2.10$ 

不確実さは,限界応力の中央値 1.17 × Su に対して,規格値 Su が 99%信頼 下限に相当すると考え,全てを認識論的不確実さ β<sub>11</sub> として評価した。

$$\beta_U = \frac{1}{2.33} \ln \left( \frac{1.17 \times Su}{Su} \right) = 0.07$$

以上より,本係数および不確実さは以下の値とする。

 $F_{\scriptscriptstyle S}=2.10$  ,  $\beta_{\scriptscriptstyle R}=0.00$  ,  $\beta_{\scriptscriptstyle U}=0.07$ 

(b) 塑性エネルギー吸収係数 F<sub>u</sub>の評価

本係数は、塑性変形によるエネルギー吸収に関する裕度を評価する。

本評価対象は鋼材の支持構造物であり,支持機能を喪失するまでの塑性変形 を許容できると考えるが, 強度係数 Fs の評価において, 限界応力の中央値を 弾塑性範囲までを一括考慮している Su にて算定しているため,本係数は考慮 しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{\mu}=1.00$  ,  $\beta_{R}=\beta_{U}=0.00$ 

b.機器応答係数 FREの評価

(a) スペクトル形状係数 Fsa の評価

本係数は、設計で用いられる床応答スペクトルの拡幅に含まれる裕度を評価 するものであり,次式により評価する。なお,スペクトル形状係数の概念図を 第3.2.1.c-3-1 図に示す。

ただし、本評価対象は剛であり、床応答スペクトルを用いないことから、本 係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{SA} = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

(b)減衰係数 F<sub>D</sub>の評価

本係数は,設計で用いられる減衰定数に含まれる裕度を評価するものであ り,次式により評価する。なお,減衰係数の概念図を第3.2.1.c-3-2 図に示 す。

ただし,本評価対象は剛であり,本係数は考慮しない。 以上より,本係数および不確実さは以下の値とする。

 $F_D = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

(c) モデル化係数 F<sub>M</sub>の評価

本係数は,機器の解析モデル化に含まれる裕度を評価するものであり,次 式により評価する。

 $F_M = { 設計解析モデルによる応答加速度$ 現実的解析モデルによる応答加速度

ただし、評価対象の解析モデル化は妥当であり、解析モデルから得られる 応答は中央値に相当すると考える。

本評価対象は剛であり,現実的な応答は1次の振動モードが支配的で,解 析モデルから得られる応答の不確実さは小さいと考え ,不確実さは考慮しな 612

以上より、本係数および不確実さは以下の値とする。

 $F_M = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

(d) モード合成係数 F<sub>MC</sub>の評価

本係数は、モーダル解析により地震応答を評価する場合に、モーダル解析 のモード合成に含まれる裕度を評価するものである。

本評価対象は剛であり,モーダル解析による評価では無いことから本係数 は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{MC} = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

#### c. 建屋応答係数 F<sub>RS</sub>の評価

建屋応答に関する各係数は第 3.2.1.c-3-2 表に示す建屋の応答係数を用いる。 (a)解放基盤表面の地震動に関する係数 F1の評価

本係数は,基準とする地震動のスペクトルが持つ裕度を評価するものである。 本評価では,解放基盤表面における地震動のスペクトル形状係数を考慮する。 第3.2.1.c-3-3 図にスペクトル形状係数の概念図を示す。

なお,スペクトル形状係数は,基準とする地震動のスペクトルと一様ハザー ドスペクトルの建屋または機器の固有周期における比を、次式により評価する。

スペクトル形状係数 = <u>基準とする地震動の応答加速度</u> 一様ハザードスペクトルの応答加速度

また,不確実さは地震ハザードにおける距離減衰式等のばらつきに考慮され るため、本係数では考慮しない。

本評価対象は、タービン建屋に設置される剛な機器であることから、サブ応 答係数 F<sub>1</sub>はタービン建屋の一次固有周期に対応した値として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_1 = 0.70$  ,  $\beta_R = \beta_U = 0.00$ 

(b)建屋への入力地震動に関する係数 F2の評価

本係数は,地盤モデルに関する設計上の裕度および基礎による入力損失に関 する設計上の裕度を評価するものである。

中央値は,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび基礎の拘束効果による入力損失の影響が小さいことから1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関す る係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評 価する。

以上より,本係数および不確実さは以下の値とする。

 $F_2 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \ge \beta_U$ はF<sub>3</sub>と共通)

(c)建屋の地震応答に関する係数 F3の評価

本係数は,建屋振動モデルに関する設計上の裕度,地盤-建屋連成系モデル に関する設計上の裕度および建屋の非線形応答による機器入力に関する裕度 を評価する。

中央値は,柏崎刈羽サイトが軟質岩盤サイトであり,建屋応答に与える地盤の影響が支配的であること,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび一般的に建屋の非線形化により,線形時よりも応答加速度が低減される傾向があることから,1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関 する係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として 評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_3 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \ge \beta_U$ はF<sub>2</sub>と共通)

### d. 評価結果のまとめ

各係数の評価結果を第 3.2.1.c-3-6 表に示す。これらの結果より,原子炉補 機冷却水系熱交換器のフラジリティ加速度の中央値 Am,その不確実さ $\beta_R \cdot \beta_U$ および HCLPF は,以下の通りとなる。

また,フラジリティ曲線を第3.2.1.c-3-5 図に示す。

$$Am = 1.81 \quad [G]$$
  

$$\beta_R = 0.20 , \ \beta_U = 0.17$$
  

$$HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$$
  

$$= 1.81 \times \exp\{-1.65 \times (0.20 + 0.17)\}$$
  

$$= 0.98 \quad [G]$$

|       | Median                         | F <sub>3</sub>                 | $F_2$                          | $F_1$                        | F <sub>MC</sub>                | F <sub>M</sub>                 | FD                             | F <sub>SA</sub>                | Γμ                             | Fs                             |
|-------|--------------------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|
| HCLPF | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                    | $\beta_{R}$                    | $\beta_{R}$                  | $\beta_{\scriptscriptstyle R}$ | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                    | $\beta_{R}$                    | $\beta_{R}$                    | $\beta_{R}$                    |
|       | $\beta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ |
|       | 1.81                           | 00                             | 1.0                            | 0.70                         | 1.00                           | 1.00                           | 1.00                           | 1.00                           | 1.00                           | 2.10                           |
| 0.98  | 0.20                           | 20                             | 0.2                            | 0.00                         | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                           |
| ]     | 0.17                           | 15                             | 0.                             | 0.00                         | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.00                           | 0.07                           |

第3.2.1.c-3-6 表 原子炉補機冷却水系熱交換器 安全係数評価結果の一覧

(3)動的機器(残留熱除去系電動弁)

評価対象機器の諸元を以下に示す。

·評価対象機器 :残留熱除去系電動弁

・設置位置 :原子炉建屋 T.M.S.L. 1.2m

・耐震クラス : S

・固有振動数 :4.44Hz(1次)

・基準地震動 Ss に対する応答加速度:

水平方向 6.0G

鉛直方向 3.7G

·機能維持確認済加速度:

水平方向 10.0G<sup>(\*4)</sup>

鉛直方向 10.0G<sup>(\*4)</sup>

水平方向と鉛直方向の応答加速度に対して動的機能維持評価を行うが,ここでは HCLPF が小さい水平方向についての評価を示す。

a. 耐力係数 Fcの評価

(a)強度係数 Fsの評価

本係数は,応答加速度に対する試験加速度の持つ裕度を評価するものであり, 次式により評価する。

 $F_s = \frac{46}{1000}$ 

。- 応答加速度

弁のように,構造強度のみでなく動的機能維持が必要な機器については,試験加速度(機能維持確認済加速度など)に基づきフラジリティ評価を行う。本対象機器においては構造強度評価のフラジリティと比較し,HCLPF が低い動的機能維持評価を代表とする。

フラジリティ評価のベースとする試験加速度レベルでは誤動作・損傷が見られないことから,試験加速度が5%の損傷確率,95%の信頼度の加速度に相当すると考え,地震 PSA 学会標準を参考に試験加速度を1/0.9 倍した値が現実的耐

力の中央値に相当すると考える。

不確実さは損傷加速度中央値と機能維持確認済加速度の関係より求める。損 傷加速度中央値と機能維持確認済加速度の関係は以下の通りである。

損傷加速度中央値 = 機能維持確認済加速度 ×  $\exp(1.65 \times (\beta_R + \beta_U))$ なお,偶然的不確実さ $\beta_{R}$ と認識論的不確実さ $\beta_{U}$ は等しいとして評価する。 以上より,本係数および不確実さは以下の値とする。

$$F_{S} = \frac{\cancel{H}(\cancel{B}) + \cancel{B}(\cancel{D}) + \cancel{B}(\cancel{D})}{\cancel{K} + \cancel{B}(\cancel{D}) + \cancel{B}(\cancel{D})} = \frac{\cancel{H}(\cancel{B}) + \cancel{H}(\cancel{B})}{\cancel{K} + \cancel{B}(\cancel{B}) + \cancel{B}(\cancel{B})} = \frac{\cancel{H}(\cancel{B}) + \cancel{H}(\cancel{B}) + \cancel{H}(\cancel{H}(\cancel{B}) + \cancel{H}(\cancel{H}(\cancel{B}) + \cancel{H}(\cancel{H}(\cancel{B}) + \cancel{H}(\cancel{H}(\cancel{$$

(b)塑性エネルギー吸収係数 Fμの評価

本係数は、塑性変形によるエネルギー吸収に関する裕度を評価する。

動的機器において,弾性範囲内で誤動作が生じることが否定出来ないため, 本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{\mu} = 1.00$  ,  $\beta_{R} = \beta_{U} = 0.00$ 

b.機器応答係数 FREの評価

(a) スペクトル形状係数 Fsa の評価

本係数は、設計で用いられる床応答スペクトルの拡幅に含まれる裕度を評価 するものであり,次式により評価する。なお,スペクトル形状係数の概念図を 第3.2.1.c-3-1 図に示す。

 $F_{SA} = { 拡幅後の床応答スペクトルによる応答加速度$ 拡幅前の床応答スペクトルによる応答加速度

拡幅前後の応答スペクトルの比率(拡幅後/拡幅前)は,サイト・プラント によらず有意な差はないと考えられる為,代表プラントで評価した値を共通値 として用いる。

代表プラントでの応答加速度比は,機器の主要周期帯である0.05~0.1秒に 対して 1.1~1.4 であり、この知見からスペクトル形状係数の中央値を算定す る。

不確実さは,応答スペクトル比率の最小値と最大値がそれぞれ中央値に対し て-95%下限値と+95%上限値に相当するものとみなし算定する。なお,不確実さ

は各機器に対して一般値として適用する為,全てを認識論的不確実さ $\beta_{U}$ とする。

$$F_{SA} = \sqrt{1.1 \times 1.4} = 1.24$$
$$\beta_U = \frac{1}{1.65 \times 2} \ln\left(\frac{1.4}{1.1}\right) = 0.07$$

以上より,本係数および不確実さは以下の値とする。

 $F_{SA} = 1.24$  ,  $\beta_R = 0.00$  ,  $\beta_U = 0.07$ 

(b)減衰係数 F<sub>D</sub>の評価

本係数は,設計で用いられる減衰定数に含まれる裕度を評価するものであり, 次式により評価する。なお,減衰係数の概念図を第3.2.1.c-3-2 図に示す。

- 設計用減衰定数による応答値

評価対象の配管系は"スナッバおよび架構レストレイント支持主体の配管系 で,支持具(スナッバ又は架構レストレイント)の数が4個以上のもの"(配 管区分: )に該当する保温材なしの配管系に接続される弁であり,設計用減 衰定数2.0%,振動試験データから求められる減衰定数の中央値6.1%とから, 次に示す Newmark の応答倍率式<sup>(\*5)</sup>を用いて評価する。

応答值 =  $3.21 - 0.68\ln(h)$ 

ここで,

h : 減衰定数 (%)

不確実さについては,設計用減衰定数が振動試験による減衰データの下限値 として用いられている為,設計用減衰定数による応答値を減衰定数の中央値に よる応答の 99%上限値と考え算定する。また,偶然的不確実さβ<sub>R</sub>と認識論的 不確実さβ<sub>U</sub> が等しいとして評価する。

以上より,本係数および不確実さは以下の値とする。

$$F_D = \frac{3.21 - 0.68 \ln(2.0)}{3.21 - 0.68 \ln(6.1)} = 1.38$$
$$\beta_R = \beta_U = \frac{1}{2.33 \times \sqrt{2}} \ln\left(\frac{3.21 - 0.68 \ln(2.0)}{3.21 - 0.68 \ln(6.1)}\right) = 0.10$$

(c)モデル化係数 F<sub>M</sub>の評価

本係数は,機器の解析モデル化に含まれる裕度を評価するものであり,次式 により評価する。

 $F_M = \frac{設計解析モデルによる応答加速度}{現実的解析モデルによる応答加速度}$ 

ただし,評価対象の解析モデル化は妥当であり,解析モデルから得られる応 答は中央値に相当すると考える。

また,本評価対象は柔な機器であり,耐震性評価は多質点系モデルを用いて 行われていることから,不確実さは Kennedyの研究結果<sup>(\*3)</sup>を用いた。

以上より,本係数および不確実さは以下の値とする。

 $F_M$  = 1.00 ,  $\beta_R$  = 0.00 ,  $\beta_U$  = 0.15

(d) モード合成係数 F<sub>MC</sub>の評価

本係数は,モーダル解析により地震応答を評価する場合に,モーダル解析の モード合成に含まれる裕度を評価するものである。

中央値および不確実さは地震 PSA 学会標準を参考にする。なお,不確実さは 解析手法が本質的に持つものである為,全て偶然的不確実さβ<sub>R</sub>とする。

以上より,本係数および不確実さは以下の値とする。

 $F_{MC}=1.03$  ,  $\beta_R=0.13$  ,  $\beta_U=0.00$ 

c.建屋応答係数 F<sub>RS</sub>の評価

建屋応答に関する各係数は第3.2.1.c-3-2表に示す建屋の応答係数を用いる。

(a)解放基盤表面の地震動に関する係数 F1の評価

本係数は,基準とする地震動のスペクトルが持つ裕度を評価するものである。 本評価では,解放基盤表面における地震動のスペクトル形状係数を考慮する。 第3.2.1.c-3-3 図にスペクトル形状係数の概念図を示す。

なお,スペクトル形状係数は,基準とする地震動のスペクトルと一様ハザー ドスペクトルの建屋または機器の固有周期における比を,次式により評価する。

スペクトル形状係数 = <u>基準とする地震動の応答加速度</u> 一様ハザードスペクトルの応答加速度

また,不確実さは地震ハザードにおける距離減衰式等のばらつきに考慮され るため,本係数では考慮しない。

本評価対象は,原子炉建屋に設置される柔な弁であることから,サブ応答係 数Fiは弁の固有周期が属する周期帯に対応した値として評価する。

以上より、本係数および不確実さは以下の値とする。

 $F_1=0.65$  ,  $eta_R=eta_U=0.00$ 

(b)建屋への入力地震動に関する係数 F2の評価

本係数は,地盤モデルに関する設計上の裕度および基礎による入力損失に関 する設計上の裕度を評価するものである。 中央値は,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび基礎の拘束効果による入力損失の影響が小さいことから1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関す る係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評 価する。

以上より,本係数および不確実さは以下の値とする。

 $F_2 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \succeq \beta_U \ {\rm lt} \ {\rm F}_3 \succeq \pm {\rm J}_{\rm H}$ )

(c)建屋の地震応答に関する係数 F3の評価

本係数は,建屋振動モデルに関する設計上の裕度,地盤-建屋連成系モデル に関する設計上の裕度および建屋の非線形応答による機器入力に関する裕度 を評価する。

中央値は,柏崎刈羽サイトが軟質岩盤サイトであり,建屋応答に与える地盤の影響が支配的であること,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび一般的に建屋の非線形化により,線形時よりも応答加速度が低減される傾向があることから,1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関する係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_3 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \succeq \beta_U$ はF<sub>2</sub>と共通)

d.評価結果のまとめ

各係数の評価結果を第 3.2.1.c-3-7 表に示す。これらの結果より,残留熱除 去系電動弁のフラジリティ加速度の中央値 Am,その不確実さ $\beta_R \cdot \beta_U$  および HCLPF は,以下の通りとなる。

また,フラジリティ曲線を第3.2.1.c-3-6 図に示す。

$$Am = 2.61 \ [G]$$
  

$$\beta_R = 0.26 , \beta_U = 0.25$$
  

$$HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$$
  

$$= 2.61 \times \exp\{-1.65 \times (0.26 + 0.25)\}$$
  

$$= 1.13 \ [G]$$

第3.2.1.c-3-7 表 残留熱除去系電動弁 安全係数評価結果の一覧

| Fs                             | Γμ                             | Fsa                            | FD                             | F <sub>M</sub>                 | F <sub>MC</sub>                | $F_1$                          | F <sub>2</sub>                 | F <sub>3</sub>                 | Median                         |       |
|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|
| $\beta_{R}$                    | $\beta_{R}$                    | $\beta_{\scriptscriptstyle R}$ | HCLPF |
| $\beta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$   |       |
| 1.85                           | 1.00                           | 1.24                           | 1.38                           | 1.00                           | 1.03                           | 0.65                           | 1.                             | 00                             | 2.61                           |       |
| 0.03                           | 0.00                           | 0.00                           | 0.10                           | 0.00                           | 0.13                           | 0.00                           | 0.                             | 20                             | 0.26                           | 1.13  |
| 0.03                           | 0.00                           | 0.07                           | 0.10                           | 0.15                           | 0.00                           | 0.00                           | 0.                             | 15                             | 0.25                           |       |

(4)電気・計装品(直立盤)

評価対象機器の諸元および耐震評価結果を以下に示す。

·評価対象機器:安全保護系盤 区分

・設置位置 : コントロール建屋 T.M.S.L. 17.3m

・耐震クラス :S

・固有振動数 : 20Hz 以上

・基準地震動Ssに対する応答加速度:

水平方向 1.29G

鉛直方向 0.90G

·機能確認済加速度:

水平方向 5.88G<sup>(\*6)</sup> 鉛直方向 G<sup>(\*7)</sup>

水平方向と鉛直方向の入力加速度に対して機能評価を実施しているが,ここで は HCLPF 値が小さい鉛直方向についての評価結果を示す。

a. 耐力係数 Fcの評価

(a) 強度係数 Fs の評価

本係数は,応答加速度に対する試験加速度の持つ裕度を評価するものであ り,次式により評価する。

 $F_s = \frac{4}{1000}$ 

応答加速度

構造強度のみでなく電気的機能維持が必要な電気・計装品については,試 験加速度(機能確認済加速度など)に基づきフラジリティ評価を行う。本評 価対象においては,構造損傷におけるフラジリティ評価結果と機能損傷にお けるフラジリティ評価結果を比較し, HCLPF 値が低い機能損傷におけるフラ

ジリティ評価結果を代表とする。

フラジリティ評価のベースとする試験加速度レベルでは誤動作・損傷が見 られないことから,以下に示す方法(ここでは,「設定法」と呼ぶ。)によ り誤動作・損傷に対する加速度の中央値を推定する。

[ 設定法の概要]

フラジリティ評価において, HCLPF は次式により評価される。

 $HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$ 

ここで, Am:フラジリティ加速度の中央値

上式より,

 $Am = HCLPF \times \exp\{1.65 \times (\beta_R + \beta_U)\}$ 

これと同様に,加振試験における損傷加速度の中央値とHCLPFの関係は次式により表される。

損傷加速度の中央値=損傷加速度の*HCLPF* × exp $\{1.65 \times \beta_R + \beta_U\}$ 

従って, "損傷加速度の HCLPF = 試験加速度"とし,不確実さ Rおよび U を与えることにより,損傷加速度の中央値を推定できる。

なお,既往の電気品の試験結果<sup>(\*8)</sup>より,電気品の誤動作に関する不確実 さは, <sub>R</sub>=0.10, <sub>U</sub>=0.20程度と考えられる。

従って,直立盤の損傷加速度中央値は,設定法に基づき以下の通りとなる。 損傷加速度の中央値=試験加速度×exp $\{1.65 \times \beta_R + \beta_U\}$ 

 $= 2.00 \times \exp\{1.65 \times (0.10 + 0.20)\}$ 

= 3.28*G* 

以上より,本係数および不確実さは以下の値となる。

$$F_s = \frac{損傷加速度中央値}{応答加速度} = \frac{3.28}{0.90} = 3.64$$

$$eta_R=0.10$$
 ,  $eta_U=0.20$ 

(b)塑性エネルギー吸収効果に関する係数 F<sub>µ</sub>

本係数は, 塑性変形によるエネルギー吸収に関する裕度を評価する。

電気・計装品については,弾性範囲内で誤動作が生じることが否定できな

いため,本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

$$F_{\mu} = 1.00$$
 ,  $\beta_R = \beta_U = 0.00$ 

b. 機器の応答係数 F<sub>RF</sub>

(a) スペクトル形状係数 Fsa

本係数は,設計で用いられる床応答スペクトルの拡幅に含まれる裕度を評価 するものであり,次式により評価する。なお,スペクトル形状係数の概念図を 第3.2.1.c-3-1 図に示す。

拡幅後の床応答スペクトルによる応答加速度 拡幅前の床応答スペクトルによる応答加速度

 $F_{SA} =$ 

ただし,本評価対象は剛であり,床応答スペクトルを用いないことから本係 数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{SA} = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

(b)設計用減衰定数に関する減衰係数 FD

本係数は、機器損傷時の減衰定数の中央値に対する設計用減衰定数が持つ裕 度を評価するものであり、次式により評価する。なお、減衰係数の概念図を第 3.2.1.c-3-2 図に示す。

 $F_D = \frac{$ 設計用減衰定数での応答値 減衰定数の中央値での応答値

ただし,本評価対象は剛であるため,本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_D = 1.00$  ,  $\beta_R = \beta_U = 0.00$ 

(c)機器のモデル化に関する係数 F<sub>M</sub>

本係数は,機器の解析モデル化に含まれる裕度を評価するものであり,次式 により評価する。

設計解析モデルによる 応答加速度

 $F_M =$ 現実的解析モデルによる応答加速度

ただし、本評価対象の機能損傷による評価は試験加速度値を採用しており、 解析モデル等を構築した評価では無いことから本係数は考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{M} = 1.00$  ,  $\beta_{R} = \beta_{U} = 0.00$ 

(d) モード合成法に関する係数 Fmc

本係数は,モーダル解析により地震応答を評価する場合に,モーダル解析の

モード合成に含まれる裕度を評価するものである。

本評価対象は剛であり,モーダル解析による評価では無いことから本係数は 考慮しない。

以上より,本係数および不確実さは以下の値とする。

 $F_{MC} = 1.00$  ,  $\beta_{R} = \beta_{U} = 0.00$ 

c. 建屋応答係数 F<sub>№</sub>

建屋応答に関する各係数は第3.2.1.c-3-2表に示す建屋の応答係数を用いる。 (a)解放基盤表面の地震動に関する係数 F1の評価

本係数は,基準とする地震動のスペクトルが持つ裕度を評価するものである。 本評価では,解放基盤表面における地震動のスペクトル形状係数を考慮する。 第3.2.1.c-3-3 図にスペクトル形状係数の概念図を示す。

なお,スペクトル形状係数は,基準とする地震動のスペクトルと一様ハザー ドスペクトルの建屋または機器の固有周期における比を、次式により評価する。

基準とする地震動の応答加速度

スペクトル形状係数=<u>ーまっ こと</u> 一様八ザードスペクトルの応答加速度

また,不確実さは地震ハザードにおける距離減衰式等のばらつきに考慮され るため,本係数では考慮しない。

本評価対象は,コントロール建屋に設置される剛な機器であることから,サ ブ応答係数 F1はコントロール建屋の一次固有周期に対応した値として評価す る。

以上より,本係数および不確実さは以下の値とする。

 $F_1 = 0.84$  ,  $\beta_R = \beta_U = 0.00$ 

(b)建屋への入力地震動に関する係数 F2の評価

本係数は、地盤モデルに関する設計上の裕度および基礎による入力損失に関 する設計上の裕度を評価するものである。

中央値は,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよ び基礎の拘束効果による入力損失の影響が小さいことから1.00とする。

不確実さは, 地震 PSA 学会標準を参考に設定し, 建屋への入力地震動に関す る係数 F2および建屋の地震応答に関する係数 F3を併せてひとつの値として評 価する。

以上より,本係数および不確実さは以下の値とする。

 $F_2 = 1.00$ ,  $\beta_R = 0.10$ ,  $\beta_U = 0.15$  ( $\beta_R \ge \beta_U$ は F<sub>3</sub> と共通)

(c)建屋の地震応答に関する係数 F3の評価

本係数は,建屋振動モデルに関する設計上の裕度,地盤-建屋連成系モデル に関する設計上の裕度および建屋の非線形応答による機器入力に関する裕度 を評価する。

中央値は,柏崎刈羽サイトが軟質岩盤サイトであり,建屋応答に与える地盤 の影響が支配的であること,設計地盤物性と中央値地盤物性ではほとんど相違 がないことおよび鉛直方向の建屋の非線形応答は考慮しないことから,1.00 とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関 する係数 F<sub>2</sub>および建屋の地震応答に関する係数 F<sub>3</sub>を併せてひとつの値として 評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_3 = 1.00$ ,  $\beta_R = 0.10$ ,  $\beta_U = 0.15$  ( $\beta_R \ge \beta_U$ は  $F_2 \ge$  共通)

d. 評価結果のまとめ

各係数の評価結果を下表に示す。これらの結果より,直立盤のフラジリティ 加速度の中央値 Am,その不確実さ $\beta_R \cdot \beta_U$  および HCLPF は,以下の通りとなる。

また,フラジリティ曲線を第3.2.1.c-3-7図に示す。

Am = 3.77[G]  $\beta_R = 0.14 , \beta_U = 0.25$   $HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$   $= 3.77 \times \exp\{-1.65 \times (0.14 + 0.25)\}$ = 1.98[G]

第3.2.1.c-3-8 表 直立盤(鉛直方向)安全係数評価結果の一覧(機能損傷)

|       | Median                         | F <sub>3</sub>               | F <sub>2</sub>                 | F <sub>1</sub>               | F <sub>MC</sub>              | F <sub>M</sub>                 | F <sub>D</sub>               | F <sub>SA</sub>                | Fμ                             | Fs                             |
|-------|--------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|
| HCLPF | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                  | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                  | $\beta_{R}$                  | $\beta_{R}$                    | $\beta_{R}$                  | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                    | $\beta_{R}$                    |
|       | $eta_{\scriptscriptstyle U}$   | $eta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ | $\beta_{\scriptscriptstyle U}$ |
|       | 3.77                           | 00                           | 1.                             | 0.84                         | 1.00                         | 1.00                           | 1.00                         | 1.00                           | 1.00                           | 3.64                           |
| 1.98  | 0.14                           | 10                           | 0.                             | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.00                           | 0.00                           | 0.10                           |
| ]     | 0.25                           | 15                           | 0.                             | 0.00                         | 0.00                         | 0.00                           | 0.00                         | 0.00                           | 0.00                           | 0.20                           |

なお,直立盤のフラジリティ評価に用いている機能確認済加速度は完全に機能喪失 する状態までを検証した結果ではないことから,現実的な直立盤の機能喪失状態が PRAの結果に現れているものではないと考える。(添付資料3.2.1.c-1) (5) 配管(原子炉補機冷却水系配管)

評価対象機器の諸元を以下に示す。

- ·評価対象機器 : 原子炉補機冷却水系配管
- ・設置位置 : タービン建屋および連絡トレンチ T.M.S.L. -3.5m
- ・耐震クラス : S
- ・固有振動数 :5.88Hz(1次)
- ・基準地震動 Ss に対する発生応力
- ·評価対象部位 : 配管本体
- ・評価応力 : 1次応力

第 3.2.1.c-3-9 表に,原子炉補機冷却水系配管の耐震評価結果を示す。第 3.2.1.c-3-9 表を基にフラジリティを算出した。

第3.2.1.c-3-9 表 原子炉補機冷却水系配管の耐震性評価結果

| 評価部位 | 材料     | 評価応力  | 発生値<br>[MPa] | 評価基準値<br>[MPa] | 裕度   |
|------|--------|-------|--------------|----------------|------|
| 配管本体 | SM400C | 1 次応力 | 260          | 344            | 1.32 |

a.耐力係数 Fcの評価

(a) 強度係数 Fs の評価

本係数は,設計応力に対する限界強度の持つ裕度を評価するものであり,次 式により評価する。

$$F_{S} = \frac{\sigma_{C} - \sigma_{N}}{\sigma_{T} - \sigma_{N}}$$

ここで,

 $\sigma_c$ :限界応力の中央値

 $\sigma_{T}$ :地震時応力

 $\sigma_{N}$ :通常運転時応力

本評価対象の材質は SM400C であることから,限界応力として JSME 発電用 原子力設備規格設計・建設規格(2005 年版)(JSME S NC1-2005)第 I 編付録図 表 Part5 の設計引張強さ Su=383 [MPa](評価温度:70)を採用する。規格 値に含まれている余裕(Su値の 1.17 倍)を考慮して限界応力の中央値とする。

 $\sigma_{C} = 1.17 \times Su = 1.17 \times 383 = 448$  [MPa]

なお,通常運転時応力は,耐震性評価において地震時応力を分離して評価していないため0 [MPa]とする。

 $\sigma_N = 0$  [MPa]

以上より, 強度係数 Fsは, 以下の通りとなる。

$$F_{S} = \frac{\sigma_{C}}{\sigma_{T}} = \frac{1.17 \times Su}{\sigma_{T}} = \frac{448}{260} = 1.72$$

不確実さは,限界応力の中央値1.17×Suに対して,規格値Suが99%信頼下 限に相当すると考え,全てを認識論的不確実さ $\beta_{\mu}$ として評価する。

$$\beta_U = \frac{1}{2.33} \ln \left( \frac{1.17 \times Su}{Su} \right) = 0.07$$

以上より,本係数および不確実さは以下の値とする。

 $F_{S}=1.72$  ,  $\beta_{R}=0.00$  ,  $\beta_{U}=0.07$ 

(b) 塑性エネルギー吸収係数 F<sub>µ</sub>の評価

本係数は、塑性変形によるエネルギー吸収に関する裕度を評価する。

本評価対象は鋼材の配管であり、バウンダリ機能を喪失するまでの塑性変形 を許容できると考えるが, 強度係数 Fs の評価において, 限界応力の中央値を 弾塑性範囲までを一括考慮している Su にて算定しているため,本係数は考慮 しない。

以上より,本係数および不確実さは以下の値とする。

$$F_{_{II}} = 1.00$$
 ,  $\beta_{_R} = \beta_{_{II}} = 0.00$ 

b.機器応答係数 FREの評価

(a) スペクトル形状係数 Fsa の評価

本係数は,設計で用いられる床応答スペクトルの拡幅に含まれる裕度を評価 するものであり,次式により評価する。なお,スペクトル形状係数の概念図を 第3.2.1.c-3-1 図に示す。

拡幅後の床応答スペクトルによる応答加速度 拡幅前の床応答スペクトルによる応答加速度  $F_{SA} =$ 

拡幅前後の応答スペクトルの比率(拡幅後/拡幅前)は,サイト・プラント によらず有意な差はないと考えられる為,代表プラントで評価した値を共通値 として用いる。

代表プラントでの応答加速度比は,機器の主要周期帯である0.05~0.1秒に 対して 1.1~1.4 であり , この知見からスペクトル形状係数の中央値を算定す る。

不確実さは、応答スペクトル比率の最小値と最大値がそれぞれ中央値に対し て-95%下限値と+95%上限値に相当するものとみなし算定する。なお,不確実さ は各機器に対して一般値として適用する為,全てを認識論的不確実さ $\beta_{ll}$ とす る。

$$F_{SA} = \sqrt{1.1 \times 1.4} = 1.24$$
$$\beta_U = \frac{1}{1.65 \times 2} \ln\left(\frac{1.4}{1.1}\right) = 0.07$$

以上より,本係数および不確実さは以下の値とする。

 $F_{SA}=1.24$  ,  $\beta_{R}=0.00$  ,  $\beta_{U}=0.07$ 

(b)減衰係数 Fpの評価

本係数は,設計で用いられる減衰定数に含まれる裕度を評価するものであ り,次式により評価する。なお,減衰係数の概念図を第 3.2.1.c-3-2 図に示 す。

 $F_{D} = \frac{$ 設計用減衰定数による応答値 減衰定数の中央値による応答値

評価対象の配管系は"スナッバおよび架構レストレイント支持主体の配管 系で ,支持具( スナッバ又は架構レストレイント )の数が4個以上のもの "( 配 管区分: )に該当する保温材なしの配管系であり,設計用減衰定数 2.0%, 試験データから求められる減衰定数の中央値 6.1%とから,次に示す Newmark の応答倍率式(\*5)を用いて評価する。

応答值 =  $3.21 - 0.68 \ln(h)$ 

ここで,

h : 減衰定数 (%)

不確実さについては、設計用減衰定数が振動試験による減衰データの下限値 として用いられている為,設計用減衰定数による応答値を減衰定数の中央値に よる応答の 99%上限値と考え算定する。また,偶然的不確実さβ,と認識論的不 確実さβ<sub>11</sub> が等しいとして評価する。

以上より,本係数および不確実さは以下の値とする。

$$F_D = \frac{3.21 - 0.68 \ln(2.0)}{3.21 - 0.68 \ln(6.1)} = 1.38$$
$$\beta_R = \beta_U = \frac{1}{2.33 \times \sqrt{2}} \ln\left(\frac{3.21 - 0.68 \ln(2.0)}{3.21 - 0.68 \ln(6.1)}\right) = 0.10$$

## (c) モデル化係数 F<sub>M</sub>の評価

本係数は,機器の解析モデル化に含まれる裕度を評価するものであり,次 式により評価する。

設計解析モデルによる 応答加速度 現実的解析モデルによ る応答加速度

評価対象の解析モデル化は妥当であり,解析モデルから得られる応答は
中央値に相当すると考える。

また,本評価対象は柔な機器であり,耐震性評価は多質点系モデルを用い て行われていることから,不確実さはKennedyの研究結果<sup>(\*3)</sup>を用いた。 以上より、本係数および不確実さは以下の値とする。

 $F_M$  = 1.00 ,  $\beta_R$  = 0.00 ,  $\beta_U$  = 0.15

(d) モード合成係数 F<sub>MC</sub>の評価

本係数は,モーダル解析により地震応答を評価する場合に,モーダル解析 のモード合成に含まれる裕度を評価するものである

中央値および不確実さは地震 PSA 学会標準を参考にする。なお,不確実さ は解析手法が本質的に持つものである為,全て偶然的不確実さ $\beta_{s}$ とする。

以上より,本係数および不確実さは以下の値とする。

 $F_{MC} = 1.03$  ,  $\beta_R = 0.13$  ,  $\beta_U = 0.00$ 

c.建屋応答係数 F<sub>RS</sub>の評価

建屋応答に関する各係数は第3.2.1.c-3-2表に示す建屋の応答係数を用いる。 (a)解放基盤表面の地震動に関する係数 F1の評価

本係数は,基準とする地震動のスペクトルが持つ裕度を評価するものである。 本評価では、解放基盤表面における地震動のスペクトル形状係数を考慮する。 第3.2.1.c-3-3 図にスペクトル形状係数の概念図を示す。

なお,スペクトル形状係数は,基準とする地震動のスペクトルと一様ハザー ドスペクトルの建屋または機器の固有周期における比を次式により評価する。

基準とする地震動の応答加速度

スペクトル形状係数 = \_\_\_\_<del>塗 + ⊆ / > \_\_\_\_\_</del> 一様ハザードスペクトルの応答加速度

また,不確実さは地震ハザードにおける距離減衰式等のばらつきに考慮され るため,本係数では考慮しない。

本評価対象は,タービン建屋および連絡トレンチに設置される柔な配管であ ることから,サブ応答係数 F1 は配管の固有周期が属する周期帯に対応した値 として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_1=0.69$  ,  $eta_R=eta_U=0.00$ 

(b)建屋への入力地震動に関する係数 F2の評価

本係数は,地盤モデルに関する設計上の裕度および基礎による入力損失に関 する設計上の裕度を評価するものである。

中央値は,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび基礎の拘束効果による入力損失の影響が小さいことから1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関す る係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評 価する。

以上より,本係数および不確実さは以下の値とする。

 $F_2 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \succeq \beta_U \ {\rm lt} \ {\rm F}_3 \succeq \pm {\rm J}_{\rm H}$ )

(c)建屋の地震応答に関する係数 F3の評価

本係数は,建屋振動モデルに関する設計上の裕度,地盤-建屋連成系モデル に関する設計上の裕度および建屋の非線形応答による機器入力に関する裕度 を評価する。

中央値は,柏崎刈羽サイトが軟質岩盤サイトであり,建屋応答に与える地盤の影響が支配的であること,設計地盤物性と中央値地盤物性ではほとんど相違がないことおよび一般的に建屋の非線形化により,線形時よりも応答加速度が低減される傾向があることから,1.00とする。

不確実さは,地震 PSA 学会標準を参考に設定し,建屋への入力地震動に関する係数 F2 および建屋の地震応答に関する係数 F3 を併せてひとつの値として評価する。

以上より,本係数および不確実さは以下の値とする。

 $F_3 = 1.00$ ,  $\beta_R = 0.20$ ,  $\beta_U = 0.15$  ( $\beta_R \succeq \beta_U$ はF<sub>2</sub>と共通)

d.評価結果のまとめ

各係数の評価結果を第3.2.1.c-3-10 表に示す。これらの結果より,原子炉補 機冷却水系配管のフラジリティ加速度の中央値Am,その不確実さ $\beta_R \cdot \beta_U$ お よび HCLPF は,以下の通りとなる。

$$Am = 2.58 \quad [G]$$
  

$$\beta_R = 0.26 , \beta_U = 0.25$$
  

$$HCLPF = Am \times \exp\{-1.65 \times (\beta_R + \beta_U)\}$$
  

$$= 2.58 \times \exp\{-1.65 \times (0.26 + 0.25)\}$$
  

$$= 1.11 \quad [G]$$

| Fs                             | Γμ                             | FSA                            | FD                             | F <sub>M</sub>                 | F <sub>MC</sub>                | F <sub>1</sub>                 | $F_2$                          | F <sub>3</sub>                 | Median                         |       |
|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-------|
| $\beta_{\scriptscriptstyle R}$ | $\beta_{\scriptscriptstyle R}$ | $\beta_{R}$                    | $\beta_{\scriptscriptstyle R}$ | HCLPF |
| $\beta_{\scriptscriptstyle U}$ | $eta_{\scriptscriptstyle U}$   | $eta_{\scriptscriptstyle U}$   | $eta_{\scriptscriptstyle U}$   |       |
| 1.72                           | 1.00                           | 1.24                           | 1.38                           | 1.00                           | 1.03                           | 0.69                           | 1.                             | 00                             | 2.58                           |       |
| 0.00                           | 0.00                           | 0.00                           | 0.10                           | 0.00                           | 0.13                           | 0.00                           | 0.                             | 20                             | 0.26                           | 1.11  |
| 0.07                           | 0.00                           | 0.07                           | 0.10                           | 0.15                           | 0.00                           | 0.00                           | 0.                             | 15                             | 0.25                           |       |

第3.2.1.c-3-10 表 原子炉補機冷却水系配管 安全係数評価結果の一覧

- \* 1 : R.P.Kennedy and M.K.Ravindra, "Seismic Fragilities for Nuclear Power Plant Risk Studies", Nuclear Engineering and Design 79(1984)
- \* 2 : R. Kassawara, EPRI Report 1003121, "Methodology for Probabilistic Risk Assessment Applications of Seismic Margin Evaluations", Electric Power Research Institute, December 2001
- \* 3:Westinghouse Electric Company, "AP1000 Design Control Document", December 2011 (年・月は、AP1000 標準設計認証修正版の NRC 認可時期を示す)
- \* 4 : General Electric (GE) Nuclear Energy, "ABWR Design Control Document", March 1997 (年・月は、ABWR 標準設計認証の NRC 認可時期を示す)
- \*5:米国リミトルク社の弁駆動部(電動式)試験結果
- \* 6 : N.M.Newmark and W.J.Hall, "Development of Criteria for Seismic Review of Selected Nuclear Power Plants", NUREG/CR-0098
- \* 7:「原子力発電施設耐震信頼性実証に関する報告書 機器耐力その1(横形ポンプ,電気品)」,平成17 年7月,独立行政法人 原子力安全基盤機構
- \*8:既往の社内試験結果
- \* 9 : G.S.Holman and C.K. Chou, "Components Fragility Research Program, Phase 1 Components Prioritization", NUREG/CR-4899

3.2.1.d.事故シーケンス

起因事象

(1)評価対象とした起因事象のリスト,説明及び発生頻度

3.2.1.a. の地震時特有の要因による分類を踏まえた地震PRA における起因事 象の扱いは以下のとおりである。また,起因事象の発生頻度を第3.2.1.d-1 表に示 す。

a.建屋・構築物の損傷(R/B)

原子炉建屋が損傷すると建屋全体の崩壊の可能性があり,同時に建屋内の格納 容器(RCCV)又は原子炉圧力容器などの機器及び構造物が大規模な損傷を受ける 可能性がある。原子炉建屋損傷が発生した場合に緩和系の機能に期待できる可能 性を厳密に考慮することは困難なため,保守的に全損を仮定し,原子炉停止及び 炉心冷却が不可能になるものとして直接炉心損傷に至る起因事象として整理し た。

b.建屋・構築物の損傷(RPV・PCV)

格納容器が損傷すると,格納容器内の機器又は原子炉圧力容器などの構築物が 大規模な損傷を受けて,原子炉停止及び炉心冷却ができなくなり炉心損傷に至る 事象。格納容器の耐圧機能が劣化することによって格納容器が過圧破損して炉心 損傷に至る事象,あるいは格納容器が損傷することにより長期的にみてサプレッ ションプール水が利用できなくなり炉心損傷に至る事象が考えられる。

また,原子炉圧力容器が損傷すると,原子炉の制御が不可能となり,ECCSによる炉心冷却効果が期待できず,直接炉心損傷に至る事象が考えられる。

これらのことから,格納容器又は原子炉圧力容器の損傷が発生した場合に緩和 系の機能に期待できる可能性を厳密に評価することは難しいため,保守的に直接 炉心損傷に至る起因事象として整理した。

c.格納容器バイパス事象

格納容器バイパス事象は,インターフェイスシステムLOCA(ISLOCA)及びバイ パス破断に細分化される。ISLOCAは,格納容器バウンダリ内外の高圧設計配管と 低圧設計配管のインターフェイスの隔離機能が喪失することによって,格納容器 外の低圧配管,弁などに一次冷却系の高圧負荷がかかり配管,弁などの損傷が生 じ,格納容器外への冷却材流出を引き起こす事象である。

また,バイパス破断は,常時開などの隔離弁に接続している配管の格納容器外での破損と,隔離弁の閉失敗が同時に発生する事象であり,原子炉冷却材が格納 容器外へ流出する事象である。

格納容器バイパス発生時は,破損箇所の隔離に失敗し,高温・高圧の蒸気や溢

水が格納容器外(原子炉建屋)に流出することにより,原子炉建屋内の他の機器 (電気品,計装品等)への悪影響が避けられないため,緩和系には期待せず保守 的に炉心損傷に至る起因事象として整理した。

d.原子炉冷却材圧力バウンダリ喪失

地震動によって格納容器内にある一次系配管又はそのサポート部が損傷し,原 子炉冷却材喪失を引き起こす事象である。

内的事象レベル1PRAでは,原子炉冷却材喪失を大・中・小LOCAに分類している ものの,地震PRAでは,同一の地震動による複数の配管損傷の相関性を考慮する と,事故シナリオを詳細に分析すること(緩和系にどの程度期待できるか判断す ること)が困難なため破断の規模による分類が厳密には難しいこと,相関をもつ 配管を同定し,損傷の相関係数を全ての配管に対して適切に算定することは現状 の評価技術では困難であることから,格納容器内の一次系配管の大規模な破断に よりECCS性能を上回る大規模な原子炉冷却材喪失(Excessive-LOCA)が発生する ものと想定し,直接炉心損傷に至る起因事象として代表させた。格納容器内の一 次系配管に用いるフラジリティは,主蒸気系,給水系,CUW系,SLC系及びECCS 系(RHR,RCIC及びHPCF)の配管の中からHCLPFが最も小さい系の配管のフラジリ ティにより代表した。

e.計測・制御系喪失

計測・制御系が損傷した場合,プラントの監視及び制御が不能に陥る可能性が あること,プラント挙動に対する影響が現在の知見では明確ではないことから, 保守的に直接炉心損傷に至る起因事象として整理した。

f.直流電源喪失

直流電源が損傷した場合,ほぼ全ての安全機能の制御機能が喪失すると考えられるため,直接炉心損傷に至る起因事象として整理した。安全系に関係する直流 電源系は3系統あるが,同種系統間での地震による損傷は完全相関を仮定している。

g.原子炉補機冷却系喪失(全交流電源喪失(RCW・RSW損傷))

原子炉補機冷却系(原子炉補機冷却水系(RCW),原子炉補機冷却海水系(RSW)) が損傷した場合,炉心冷却に必要な緩和系(高圧炉心注水系(HPCF),残留熱除 去系(RHR),非常用ディーゼル発電設備(D/G))の冷却機能が喪失する。さら に地震により外部電源喪失が発生している場合には,全交流電源喪失に至る。 本評価においては,原子炉補機冷却系と外部電源が同時に損傷した場合につい て,起因事象「全交流電源喪失(RCW・RSW損傷)」として整理し,原子炉補機冷 却系のみが損傷,外部電源が健全な場合は,その影響を起因事象「過渡事象」に 対応するイベントツリーで期待している緩和系のサポート系の中でその影響を 考慮することとした。原子炉補機冷却系は3系統あるが,同種系統間での地震に よる損傷は完全相関を仮定している。

h.交流電源喪失(全交流電源喪失(D/G損傷))

本評価においては,交流電源と外部電源が同時に損傷した場合について,起因 事象「全交流電源喪失(D/G損傷)」として整理し,交流電源のみが損傷,外部 電源が健全な場合は,その影響を起因事象「過渡事象」に対応するイベントツリ ーで期待している緩和系のサポート系の中でその影響を考慮することとした。 D/Gは3系統あるが,同種系統間での地震による損傷は完全相関を仮定している。

i.外部電源喪失

外部電源設備が地震動により損傷し,プラントへの外部からの電源供給が途絶 える事象である。プラントへの外乱を発生させる過渡事象であり,地震耐力が小 さく広範囲な緩和系の機能喪失を発生させるため,独立した起因事象とした。

j.過渡事象

内的事象レベル1PRAでは,過渡事象を外部電源喪失,手動停止および給復水系 による除熱機能(PCS)が使用可能か否かで分類している。

これに対し地震PRAでは,外部電源喪失は上述の通り,独立した起因事象として整理した。また,上述a.~i.の起因事象が発生しない場合にも,地震動を検知した原子炉停止信号(地震加速度大)により原子炉停止に至ることから何らかの 過渡事象は発生するものとした。この際,給復水系に関連する設備は耐震クラス が低いため期待せず,過渡事象としては給復水系が使用不可能な過渡事象として ひとまとめで取り扱っている。手動停止については,地震発生とは無関係な起因 事象であるため対象外とした。

g.およびh.で述べたとおり,外部電源が健全であり,原子炉補機冷却系または 非常用交流電源が損傷している場合も過渡事象の中でその影響を考慮している。

(2) 階層イベントツリーとその説明

事故シーケンスの定量化では,第3.2.1.d-1 図の起因事象階層ツリーで,地震に より発生する起因事象の発生確率の和が1.0 を越えないように取り扱う。具体的に は,階層イベントツリーでは,ある起因事象の発生確率を,(上位のヘディングで 設定した起因事象が発生しない確率)×(当該起因事象の発生確率)として算出す る。すなわち,下位のヘディングで設定した起因事象の発生確率は,上位のヘディ ングで設定した起因事象が発生しない条件付きの確率となる。

階層イベントツリーは,起因事象を発生した時の炉心損傷への影響が大きい順に 並べ,これらをヘディングとしており,それらの発生確率は,それぞれ対象とする 建屋・構築物,機器などを設定し,そのフラジリティを評価することで算出する。

成功基準

(1)成功基準の一覧

直接炉心損傷に至るとした起因事象については緩和手段がないため成功基準は 設定していない。本評価では,全交流電源喪失時についても,緩和手段がないた め成功基準を設定していない。これら以外の起因事象(外部電源喪失,過渡事象) については,起因事象の発生原因(内的要因か地震要因か)が成功基準の設定に 直接関係しないと考えられることから,内的事象レベル1PRAをベースに成功基準 を設定した。

使命時間については,内的事象レベル1PRAでは24 時間と設定しているのに対し, 地震PRAでは72時間を設定した。これは,地震PRAでは,設計基準地震動を越える 大規模な地震によって耐震クラスの高い設備の機能喪失が生じる事故シーケンス を対象とするため,機能喪失した設備の修復,及びサイト内,サイト外からの支 援に時間を要することが想定され,これらの修復,支援が可能となるまでの時間, すなわち緩和系が所要の安全機能を果たすために必要な運転時間として設定した ものである。

事故シーケンス

(1)イベントツリー

第3.2.1.d-1 図に示した起因事象の階層イベントツリーと炉心損傷直結事象以 外の起因事象に対して,緩和系の状態を表すイベントツリーを作成した。

イベントツリーの展開方法には小イベントツリー / 大フォールトツリー法を用 い,事故シーケンスの定量化手法にはフォールトツリー結合法を用いた。これに より,サポート系とフロントライン系間などの従属関係がフォールトツリー内で 明示的に表現され,従属関係が適切に取り扱われる。

第3.2.1.d-2図~第3.2.1.d-5図に過渡事象,外部電源喪失,全交流電源喪失 (D/G損傷),全交流電源喪失(RCW・RSW損傷)のイベントツリーを示す。

システム信頼性

(1)評価対象としたシステム

評価対象システムの各系統の情報や依存性については内的事象レベル1PRA と

同等であるが,それぞれについて地震における故障の分析を行い,起因事象に係るフォールトツリー及び緩和系に係るフォールトツリーを作成した。フォールト ツリーのモデル化にあたっては,内的事象レベル1PRAのフォールトツリーをベー スとし,既に考慮されている機器故障,人的過誤などに加えて,地震による動的 機器や電気的機器の損傷を基事象としてフォールトツリーに追加している。さら に地震時特有の建屋・構築物,大型機器の損傷も基事象としてフォールトツリー に追加している。評価対象システムの一覧を第3.2.1.d-2 表に示す。

(2)機器損傷に関する機器間の相関の取扱い

相関性が考えられる全ての構造物,系統,又は機器に対する本評価モデルにお ける相関性の取扱いは,同一系統での同種の機器間において損傷の完全相関(完 全従属)を仮定する方法を採用した。

(3)システム信頼性評価を実施せずに設定した非信頼度とその根拠 本評価では,システム信頼性評価を実施せずに設定した非信頼度はない。

人的過誤

(1)評価対象とした人的過誤

地震発生後の運転員操作に対する人間信頼性解析手法には,内的事象レベル 1PRAで採用しているTHERP手法(NUREG/CR-1278)を採用する。中央制御室 および現場操作に対する人間信頼性解析における仮定は以下のとおり。

(i) 地震発生後の中央制御室操作

地震発生後の混乱に伴う高ストレス状態は,運転員操作の阻害要因となる ことから,地震発生後の比較的短時間(地震発生後数時間以内)での運転員 操作の定量化においては,地震発生後の混乱に伴う高ストレス状態を仮定す る。

具体的には,行動形成因子(PSF)項目の一つである「ストレス要因」に ついて,高ストレス(\_\_\_\_\_\_)を仮定する。対 象となる運転操作の例としては,ECCSの自動起動失敗時の手動起動によるバ ックアップ操作,高圧注水系成功時の炉水位制御操作,及びスクラム失敗時 (ATWS時)の運転員操作等がある。本PRAで考慮している起因事象発生後の 人的過誤確率を第3.2.1.d-3 表に示す。

(ii) 地震発生後の運転員操作(現場操作)

本評価では,AM策で実施した各対策については評価対象外としているため,地震発生後のAM策に係る現場操作は期待していない。

### 3.2.1-44

炉心損傷頻度

(1) 炉心損傷頻度の算出に用いた方法

炉心損傷頻度評価は,炉心損傷に至る各事故シーケンスの発生頻度を合計して 算出した。各事故シーケンスの発生頻度は,地震ハザードから求めた発生頻度に 事故シーケンスの条件付き発生確率を乗じて算出した。計算コードは,内部事象 と同様のコード(Safety Watcher)を用いた。

(2) 炉心損傷頻度結果

a. 7号機

前述のとおりの手順でモデルを定量化した結果,全炉心損傷頻度結果は 1.5×10<sup>5</sup>(/炉年)となった。起因事象別の炉心損傷頻度を第3.2.1.d-4 表,第 3.2.1.d-6 図に示す。

起因事象別の結果では,地震による交流電源喪失(外部電源喪失,全交流電源 喪失(RCW・RSW損傷),全交流電源喪失(D/G損傷))による炉心損傷頻度が全体 の約4割を占めており,特に電源と緩和系のサポート系設備である原子炉補機冷却 系の損傷によって安全機能の喪失に至るシナリオが重要となっている。第 3.2.1.d-5表に炉心損傷頻度の寄与が大きい事故シーケンスを示す。

また、炉心損傷シーケンス別の炉心損傷頻度を第3.2.1.d-6 表、第3.2.1.d-7 図 に示す。崩壊熱除去失敗シーケンス(TW)の寄与が最も大きく、次いで建屋・構築 物(R/B)損傷シーケンス(RBR)、電源喪失シーケンス(TB)が続いているが、 各炉心損傷シーケンスに対する分析結果を第3.2.1.d-7表に示す。

さらに,加速度区分別の炉心損傷頻度を第3.2.1.d-8表,第3.2.1.d-8図に示す。 低加速度領域(~575gal付近)は,地震により起因事象又は緩和系に係る機器等 が損傷しにくいため,炉心損傷頻度は加速度の増加とともに低下している。更に 加速度が大きくなると,炉心損傷頻度は増加し評価代表点1400gal,1450galの付 近で最大となっている。この領域ではRCW・RSWなどの緩和系の損傷による影響が 大きく,これよりも大きな加速度領域では建屋・構築物(R/B)の損傷が支配的な 事故シーケンスとなっている。

なお,建屋・構築物(R/B)の損傷,計測・制御系喪失などの炉心損傷直結事象 については,事象進展の特定,詳細な事故シーケンスの定量化が困難であるため, 保守的に炉心損傷直結事象として整理しているなど,地震に対するプラントの現 実的な耐性がPRAの結果に現れているものではない。これら炉心損傷直結事象の現 実的シナリオ等について考慮した結果を添付資料3.2.1.c-1に示す。 b. 6号機

前述のとおりの手順でモデルを定量化した結果,全炉心損傷頻度結果は 1.2×10<sup>-5</sup>(/炉年)となった。起因事象別の炉心損傷頻度を第3.2.1.d-4 表,第 3.2.1.d-6 図に示す。

起因事象別の結果では,地震による建屋・構築物の損傷(R/B)による炉心損傷 頻度が全体の約3割を占めている。第3.2.1.d-5表に炉心損傷頻度の寄与が大きい 事故シーケンスを示す。

また,炉心損傷シーケンス別の炉心損傷頻度を第3.2.1.d-6 表,第3.2.1.d-7 図 に示す。建屋・構築物(R/B)損傷シーケンス(RBR)の寄与が最も大きく,次い で崩壊熱除去失敗シーケンス(TW),電源喪失シーケンス(TB)が続いているが, 各炉心損傷シーケンスに対する分析結果を第3.2.1.d-7表に示す。

さらに,加速度区分別の炉心損傷頻度を第3.2.1.d-8表,第3.2.1.d-8図に示す。 低加速度領域(~575gal付近)は,地震により起因事象又は緩和系に係る機器等 が損傷しにくいため,炉心損傷頻度は加速度の増加とともに低下している。更に 加速度が大きくなると,炉心損傷頻度は増加し評価代表点1500galの付近で最大と なっている。この領域では炉心損傷に直結する建屋・構築物の損傷(R/B)による 影響が大きく,これよりも大きな加速度領域においても建屋・構築物(R/B)の損 傷が支配的な事故シーケンスとなっている。

6号機と7号機の炉心損傷頻度等の評価結果の差についての分析を添付資料 3.2.1.d-1に示す。

(3)重要度解析,不確実さ解析及び感度解析

a.重要度解析

重要度解析では,炉心損傷頻度に有意な寄与を持つ機器故障,人的過誤等を 対象に,各基事象の全地震動強さにわたる炉心損傷頻度の積分値に対する Fussell-Vesely指標(FV重要度)を算出した。

(参考)Fussell-Vesely指標(FV指標)

FV指標は,頂上事象の発生を仮定したときに,評価対象機器の機能喪失が 寄与している条件付確率を表すもので次式で定義される。

$$FV_{i} = \frac{P_{i}(top)}{P(top)} = 1 - \frac{P(top / A_{i} = 0)}{P(top)}$$

P<sub>i</sub>(top):機器Aiの機能喪失が寄与して発生する頂上事象の発生確率

 $P(top / A_i = 0)$ :機器Aiの機能喪失確率(事象Aiの発生確率)が0の場合の

頂上事象の発生確率

P(top): 頂上事象の発生確率

地震で損傷する建屋・構築物,機器のFussell-Vesely(FV)重要度評価結果 を第3.2.1.d-9 表に示す。FV 重要度は,炉心損傷頻度に寄与する相対的な割 合を表すものである。

7号機では、RCW熱交換器及びRCW配管といった電源や緩和系のサポート機器のFV重要度が高い結果となっているが、これらは炉心損傷頻度への寄与割合が大きい、全交流電源喪失(RCW・RSW)に係る機器である。次に炉心損傷頻度への寄与割合が大きい過渡事象に係る、RHR系統操作失敗、RHR弁等についてもFV重要度が高い結果となっている。また、損傷後の影響緩和が困難である炉心損傷直結事象の内、炉心損傷頻度への寄与度が高い、建屋・構築物の損傷(原子炉建屋)に対する原子炉建屋基礎すべり線についても、FV重要度が高い結果となっている。

6号機では,RHR系統操作失敗及びRCW弁といった操作・機器のFV重要度 が高い結果となっているが,これらは炉心損傷頻度への寄与割合が大きい,過 渡事象や全交流電源喪失(RCW・RSW)に係る機器である。また,損傷後の 影響緩和が困難である炉心損傷直結事象の内,炉心損傷頻度への寄与度が高い, 建屋・構築物の損傷(原子炉建屋)に対する原子炉建屋基礎すべり線について も,FV重要度が高い結果となっている。

b.不確実さ解析

不確実さ解析では,地震ハザード,建屋・構築物,機器のフラジリティ及び ランダム故障に含まれる不確実さ要因を対象として,不確実さの伝播解析を実 施し,全炉心損傷頻度の分布及び分布を表すパラメータ(平均値,5%確率値, 50%確率値(中央値),95%確率値)を評価した。第3.2.1.d-9図に評価結果を 示す。

c.感度解析

(a)評価条件

本評価では,同種の機器間に耐力,応答の完全相関を仮定(以下,ベース ケース)しているが,この解析上の仮定が炉心損傷頻度に与える影響の感度 を確認するため,損傷の完全独立を仮定した場合の感度解析(以下,感度解 析ケース)を実施した。

損傷の完全独立の仮定は,リスク上重要な建屋・構築物,機器を対象にす るものとし,具体的には7号機の地震PRA評価結果からFV重要度値が0.01以上 の機器を対象として選定した。ただし,原子炉建屋基礎地盤すべり線やRPV ペデスタルといったベースケースにおいて損傷の完全相関を仮定していな いものは対象から除外するとともに,格納容器内配管については,以下の理 由から対象から除外した。

格納容器内配管の完全独立を仮定した場合,まず個々の配管の地震による 損傷の程度(ギロチン,き裂など)に応じた冷却材漏えい規模を同定もしく は仮定して,成功基準を設定する必要がある。さらに,同一の地震動によっ て複数の配管が重畳する組み合わせを考慮し,配管損傷の規模に応じて起因 事象を適切に分類する必要がある。これらの工学的判断は,事象が複雑であ り判断基準が不明瞭であるため判断の正当性・妥当性を確認することが技術 的に困難なため,格納容器内配管については対象から除外することとした。

第3.2.1.d-10表に損傷の完全独立を想定する機器を示す。

(b)評価結果

a. 7号機

ベースケースでの炉心損傷頻度1.5×10<sup>-5</sup>(/炉年)に対し,感度解析ケースの炉心損傷頻度は1.2×10<sup>-5</sup>(/炉年)となり,約2割低減する結果となった。 起因事象別の評価結果を第3.2.1.d-10図に,地震加速度別の評価結果を第 3.2.1.d-11 図に示す。

第3.2.1.d-10図からは,原子炉補機冷却系関連設備(RCW熱交換器,RCW 配管,非常用取水路)について同種機器間で損傷の完全独立を仮定したこと により起因事象発生頻度が低減,「全交流電源喪失(RCW・RSW)損傷」の炉 心損傷頻度が低減していることが分かる。

また,第3.2.1.d-11図からは,375gal~1625galの加速度区間で炉心損傷 頻度が低減していることが分かる。これは375gal以下の加速度区間ではラン ダム要因故障が支配的であるため,地震要因損傷の影響が小さいこと, 1625gal以上の加速度区間では「建屋・構築物の損傷(R/B)」シーケンスが 支配的であるため,地震要因損傷の相関の影響が小さいことによる。

b. 6号機

ベースケースでの炉心損傷頻度1.2×10<sup>-5</sup>(/炉年)に対し,感度解析ケースの炉心損傷頻度は1.3×10<sup>-5</sup>(/炉年)となり,約1割増加する結果となった。 起因事象別の評価結果を第3.2.1.d-10図に,地震加速度別の評価結果を第 3.2.1.d-11 図に示す。

第3.2.1.d-10図からは,原子炉補機冷却系関連設備(RCW弁)について同 種機器間で損傷の完全独立を仮定したことにより起因事象発生頻度が低減, 「全交流電源喪失(RCW・RSW損傷)」の炉心損傷頻度が低減していることが 分かる。また,バイパス破断事象関連の隔離弁(原子炉給水ライン隔離弁) を同種機器間で損傷の完全独立を仮定したことで「格納容器バイパス」の起因事象発生頻度及び炉心損傷頻度が低減した。一方,前段のヘディング「全交流電源喪失(RCW・RSW損傷)」の起因事象発生頻度が低減したことで,後段の「全交流電源喪失(D/G)」、「外部電源喪失」の起因事象発生頻度が相対的に増加した。また加えて、「外部電源喪失」ではRCW弁の損傷を和事象としたことでRCW系統単体の機能喪失確率が増加したことにより,炉心損傷頻度が増加した。

また,第3.2.1.d-11図からは,1225gal~1975galの加速度区間で炉心損傷 頻度が増加していることが分かる。これは地震動レベルが大きいほど個別の 機器損傷確率が大きくなり,上記で述べたとおり,直列に構成した機器(RCW 弁)損傷の和事象の発生確率が大きくなる傾向がより顕著に表れるためであ る。

| 評価作業                  | 主な情報源                                                                                                                                                                                                                                             |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| プラントの設計・運転管理に関する情報の把握 | <ul> <li>1)原子炉設置許可申請書</li> <li>2)配管計装線図</li> <li>3)電気系統図(所内単線結線図等)</li> <li>4)プラント機器配置図</li> <li>5)系統設計仕様書</li> <li>6)機器設計仕様書</li> <li>7)各種運転手順書</li> <li>8)内的事象レベル1PRAに関連する報告書</li> <li>9)ストレステストに関する報告書</li> <li>10)耐震バックチェックに関する報告書</li> </ul> |
| 地震ハザード評価              | <ol> <li>1)原子炉設置許可申請書</li> <li>2)気象庁地震カタログ</li> <li>3)文献調査結果(次ページ参照)</li> <li>4)地質調査結果</li> </ol>                                                                                                                                                 |
| 建屋・機器フラジリティ評価         | 1)文献調査結果(次ページ参照)                                                                                                                                                                                                                                  |
| 事故シーケンスの定量化           | 1)上記プラントの設計・運転管理に関する情報1)~10)                                                                                                                                                                                                                      |

第3.2.1.a-1 表 地震 PRA 実施のために収集した情報源(1/2)

|        | 参考文献                                                                                                                                           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 地震ハザード | 1) 地震調査研究推進本部(2012): 今後の地震動ハザード評価に関する検討~2011年・2012年における検討結果~                                                                                   |
| 評価     | 2)地震調査研究推進本部(2009):「全国を概観した地震動予測地図」報告書 2009 年版                                                                                                 |
|        | 3)垣見俊弘,松田時彦,相田勇,衣笠善博 (2003):日本列島と周辺海域の地震地体構造区分,地震,第2輯,第55巻                                                                                     |
|        | 4)宇佐美龍夫,石井寿,今村隆正,武村雅之,松浦律子(2013):日本被害地震総覧 599 - 2012,東京大学出版会                                                                                   |
|        | 5)気象庁:地震年報 2011 年版,地震・火山月報ほか                                                                                                                   |
|        | 6)宇津徳治 (1982):日本付近のM6.0 以上の地震および被害地震の表:1885 年~1980 年,東京大学地震研究所彙報,第 57 巻                                                                        |
|        | 7)宇津徳治 (1985):日本付近のM6.0 以上の地震および被害地震の表:1885 年~1980 年(訂正と追加), 東京大学地震研究所彙報 , 第 60 巻                                                              |
|        | 8) Utsu, T. (1969): Aftershocks and earthquake statistics (), Journal of Faculty of Science, Hokkaido University, Series , Vol.3               |
|        | 9)島崎邦彦(2009): 地震と活断層:その関係を捉え直す,科学, Vol.79, No.2                                                                                                |
|        | 10)Noda, S., K.Yashiro, K.Takahashi, M.Takemura, S.Ohno, M.Todo and T.Watanabe (2002): RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES |
|        | ON ROCK SITES, OECD-NEA Workshop on the Relations between Seismological Data and Seismic Engineering Analysis, Oct, 16-18, Istanbul            |
| 建屋・機器フ | 1)R.P.Kennedy and M.K.Ravindra, "Seismic Fragilities for Nuclear Power Plant Risk Studies", Nuclear Engineering and Design 79(1984)            |
| ラジリティ評 | 2)R. Kassawara, EPRI Report 1003121, "Methodology for Probabilistic Risk Assessment Applications of Seismic Margin Evaluations", Electric      |
| 価      | Power Research Institute, December 2001                                                                                                        |
|        | 3)Westinghouse Electric Company, "AP1000 Design Control Document", December 2011(年・月は、AP1000 標準設計認証修正版の NRC 認可時期を示す)                           |
|        | 4)General Electric (GE) Nuclear Energy, "ABWR Design Control Document", March 1997(年・月は、ABWR 標準設計認証の NRC 認可時期を示す)                              |
|        | 5)米国リミトルク社の弁駆動部(電動式)試験結果                                                                                                                       |
|        | 6)N.M.Newmark and W.J.Hall, "Development of Criteria for Seismic Review of Selected Nuclear Power Plants", NUREG/CR-0098                       |
|        | 7)「原子力発電施設耐震信頼性実証に関する報告書 機器耐力その1(横形ポンプ,電気品 )」, 平成 17 年 7 月,独立行政法人 原子力安全基盤機構                                                                    |
|        | 8)既往の社内試験結果                                                                                                                                    |
|        | 9)G.S.Holman and C.K. Chou, "Components Fragility Research Program, Phase 1 Components Prioritization", NUREG/CR-4899                          |

第3.2.1.a-1 表 地震 PRA 実施のために収集した情報源(2/2)

第3.2.1.a-2表 地震による事故シナリオのスクリーニング (1/5)

| 事故シナリオ           | 分析                                      | スクリーニング          |
|------------------|-----------------------------------------|------------------|
| 地震による安全機能への間接的   | 影響                                      |                  |
| 安全機能を有する建屋・構築物   | ,機器以外の屋内設備損傷による間接的影響                    |                  |
| 天井クレーンの転倒・落下による  | 天井クレーンは,地震時に落下しないよう落下防止装置を有する構          | 工学的判断によりスクリーニングア |
| 原子炉圧力容器、格納容器への影  | 造となっている。また,待機時においては原子炉圧力容器又は格納容         | ウト               |
| 響                | 器の直上に位置させない運用となっており,仮に転倒・落下した場合         |                  |
|                  | にも原子炉の上には落下しないように距離がとられている。             |                  |
|                  | 新潟県中越沖地震時に ,6 号機天井クレーンの車軸部の破損が発生した      |                  |
|                  | が , その際にも落下防止装置は健全であり安全機能に影響はなかった。      |                  |
| 耐震重要度 B,Cクラスの損傷に | S クラスに属するものは,下位の分類に属するものの破損によって         | 工学的判断によりスクリーニングア |
| 伴うSクラス機器の損傷      | 波及的影響が生じないことは設計段階で要求されており , 耐震設計に       | ウト               |
|                  | おいて建屋内又は建屋外における下位クラスの施設の損傷,転倒,落         |                  |
|                  | 下等による耐震重要施設への影響がないことを確認している。また,         |                  |
|                  | プラントウォークダウンにおいて重点的に確認する項目の1つとし,         |                  |
|                  | 問題ないことを確認している。                          |                  |
| 主タービンの軸受けなどの損傷   | タービンミサイルの影響は,原子炉設置許可申請書において評価・          | 工学的判断によりスクリーニングア |
| に伴うタービンミサイルによる   | 審査されており,申請書添付八の「発電用軽水型原子炉施設に関する         | ウト               |
| 隣接原子炉建屋内関連設備への   | 安全設計審査指針への適合性」において,安全上重要な構築物,系統         |                  |
| 影響               | 及び機器がタービンミサイルによって影響を受ける可能性は極めて          |                  |
|                  | 低い(仮想的ミサイルの発生を想定しても,タービン建屋を飛び出さ         |                  |
|                  | ない,または飛び出したとしても原子炉建屋(SFP)に到達する確率        |                  |
|                  | は1×10 <sup>-7</sup> /年以下である)ことが確認されている。 |                  |

第3.2.1.a-2表 地震による事故シナリオのスクリーニング (2/5)

| 事故シナリオ               | 分析                                  | スクリーニング          |
|----------------------|-------------------------------------|------------------|
| 地震による安全機能への間接的       | 影響                                  |                  |
| 安全機能を有する建屋・構築物       | ,機器以外の屋外設備損傷による間接的影響                |                  |
| 排気筒転倒による建屋への影響       | 排気筒は,解放基盤表面で2000gal相当の地震動において損傷しないこ | 工学的判断によりスクリーニング  |
|                      | とを確認しており,各建屋の耐力と比較しても,排気筒の耐力は非常に    | アウト              |
|                      | 大きいことを確認している゛。                      |                  |
| 斜面崩壊による原子炉建屋・周辺      | 安全上重要な施設の近傍には,地震時に想定し得る斜面の崩壊等により    | 工学的判断によりスクリーニング  |
| 構造物への影響              | 施設の安全機能に影響を及ぼすような斜面がないことを確認している。    | アウト              |
|                      |                                     |                  |
| 送電網の鉄塔などの損傷に伴う       | 外部電源のフラジリティは,最も耐力の低いセラミックインシュレータ    | 地震 PRA で考慮       |
| 外部電源への影響             | で代表させており,送電網まわりの影響を包絡していると判断。       |                  |
|                      |                                     |                  |
| 安全上重要な設備の冷却に使用       | 冷却水枯渇影響に対し復水貯蔵槽への補給水源として必要なものとし     | 地震 PRA で考慮       |
| 可能な給水源の停止に伴う冷却       | て,ろ過水タンク,純水タンクを抽出。                  |                  |
| 水枯渇の影響               |                                     |                  |
| *・2000gal 以上の加速度領域にお | いては、原子炉建屋基礎地盤すべり線が炉心損傷要因として支配的であり   | ) かつ条件付炉心損傷確率がほぼ |

\*: 2000gal 以上の加速度領域においては,原子炉建屋基礎地盤すべり線が炉心損傷要因として支配的であり,かつ条件付炉心損傷確率がほぼ1 となっているため,結果への影響が小さい。

| 事故シナリオ                | 分析                                  | スクリーニング       |
|-----------------------|-------------------------------------|---------------|
| 人的過誤による影響             |                                     |               |
| 施設の計画 , 設計 , 材料選定 , 製 | 原子炉施設の安全性,信頼性及び点検保守上の要求を満足するため,設計,  | 工学的判断によりスクリーニ |
| 作,組立,完成検査までのミス        | 製作,据付等の各段階において適切な品質保証活動が実施されている。    | ングアウト         |
|                       | また,万が一,これらのミスがあったとしても,多重性を備えた設備の全て  |               |
|                       | に同様のミスが発生する可能性は小さい。                 |               |
| 地震後の運転員による操作にお        | 地震後の混乱に伴う高ストレス状態は運転員操作の阻害要因となりえる。   | 地震 PRA で考慮    |
| いて,地震による高ストレスを受       |                                     | (地震後の比較的短時間での |
| けた条件下で引き起こされる操        |                                     | 運転員操作に対する人的過誤 |
| 作失敗                   |                                     | 確率の設定にて考慮)    |
| 変圧器等碍子類の損傷による停        | 地震要因による設備の損傷状態は様々であり,地震後の初期段階で機器その  | 損傷機器の復旧や他号機から |
| 電に伴うバックアップ操作支障        | ものの復旧に期待することは現実的ではないと考えられる。         | の電源融通には期待しない。 |
|                       | また,複数基同時被災の影響並びに損傷の相関性を考慮すると,他号機にお  |               |
|                       | いても同様な事象が発生している可能性がある。              |               |
| 地盤液状化等による構内通行支        | 地震発生後,原子力発電所構内の道路に陥没,段差,亀裂等の損傷が発生し, | 工学的判断によりスクリーニ |
| 障                     | 構内通行に支障が出る可能性があるが,本評価では現場操作に期待していな  | ングアウト         |
|                       | いため,構内通行支障による影響はない。                 |               |
| 二次部材損傷による操作員等従        | 施設内の損壊物や地震動による飛来物が操作員等を傷付け,操作を妨げる可  | 工学的判断によりスクリーニ |
| 業員への影響                | 能性があるが,中央制御室付近において,運転員操作を著しく妨げるような  | ングアウト         |
|                       | 物体は基本的にはないものと考えられる。                 |               |

第3.2.1.a-2表 地震による事故シナリオのスクリーニング (3/5)

第3.2.1.a-2表 地震による事故シナリオのスクリーニング (4/5)

| 事故シナリオ         | 分析                                  | スクリーニング        |
|----------------|-------------------------------------|----------------|
| 余震による炉心損傷への影響  |                                     |                |
| 本震直後の余震による炉心損傷 | 原子炉建屋(耐震壁)については,加振試験等において繰り返しの力に    | 今回の評価では評価技術の成  |
| への影響           | 対して復元力が維持されることが確認されている。             | 熟度から余震の影響評価は困難 |
|                | 動的機器については,設計条件を大きく超える加速度を入力した加振試    | であると判断し,余震影響は考 |
|                | 験において1試験体に対して加振レベルを上げながら繰り返し加振し,最   | 慮しないものとする。     |
|                | 終的な機能維持が確認された最大加速度を現実的耐力値として採用して    |                |
|                | いることから ,余震による地震動の繰り返しの影響を含めた耐力評価結果  |                |
|                | となっている。                             |                |
|                | 配管系については ,終局強度試験において基準地震動に対する許容応力   |                |
|                | 度の 10 倍以上の応力強さにおいても塑性崩壊又は疲労による破損は生じ |                |
|                | ないこと等が確認され,破損に対して非常に大きな安全裕度を保有してお   |                |
|                | り,余震による地震動の影響は小さいと考えられる。            |                |
|                | 上記の通り余震の影響は小さいと判断できる建屋・機器はあるが , 評価  |                |
|                | 方法の詳細および評価例などに関する情報が非常に少ないため,余震によ   |                |
|                | る炉心損傷への影響評価方法を系統的に示すには至っていない。       |                |

第3.2.1.a-2表 地震による事故シナリオのスクリーニング (5/5)

| 事故シナリオ         | 分析                                 | スクリーニング        |
|----------------|------------------------------------|----------------|
| 経年変化による炉心損傷への影 | 響                                  |                |
| 経年変化を考慮した場合の炉心 | 建屋については経年変化による強度低下の可能性は小さいと考えられ,   | 左記分析結果を踏まえ,経年  |
| 損傷への影響         | 定期的な点検と保全を計画的に実施していることから経年劣化が構造物   | 変化に係わる事故シナリオはス |
|                | の耐震性に与える影響は小さいものと考えられる。            | クリーニングアウトする。   |
|                | また,機器については維持・管理,リプレースなどの保全によって,耐   |                |
|                | 震上 , 大きな影響が生じないよう管理・対処されていると考えられる。 |                |
|                |                                    |                |

|               | 機器名               | 評価実施部位         | 損傷モード | Am(G)  | r    | u    | HCLPF(G) |
|---------------|-------------------|----------------|-------|--------|------|------|----------|
| 建屋·構築物        | 原子炉建屋(R/B)        | -              | -     | 3.13   | 0.32 | 0.15 | 1.44     |
| (原于炉建屋)       | 原子炉建屋基礎地盤すべり線     | -              | -     | 1.83   | 0.04 | 0.15 | 1.33     |
| 建屋·構築物        | ダイヤフラムフロア         | 工認評価部位 No.4    | 構造損傷  | 6.28   | 0.14 | 0.21 | 3.52     |
| (格納容器・圧力容器)   | 原子炉遮へい壁           | 開口集中部          | 構造損傷  | 3.50   | 0.20 | 0.22 | 1.75     |
|               | RPV本体             | 胴板             | 構造損傷  | 389.74 | 0.22 | 0.24 | 182.45   |
|               | RPV支持スカート         | スカート           | 構造損傷  | 9.62   | 0.22 | 0.24 | 4.50     |
|               | RPVペデスタル          | たてリブ           | 構造損傷  | 2.65   | 0.22 | 0.24 | 1.24     |
|               | 原子炉圧力容器スタビライザ     | ロッド            | 構造損傷  | 3.65   | 0.22 | 0.24 | 1.71     |
|               | ブラケット類            | RPVスタビライザブラケット | 構造損傷  | 18.41  | 0.39 | 0.41 | 4.92     |
|               | 下部鏡板              | 下部鏡版           | 構造損傷  | 31.98  | 0.22 | 0.24 | 14.97    |
|               | 制御棒駆動機構ハウジング貫通孔   | 円筒構造物          | 構造損傷  | 5.76   | 0.20 | 0.22 | 2.88     |
|               | 原子炉冷却材再循環ポンプ貫通孔   | ケーシング付根        | 構造損傷  | 10.26  | 0.39 | 0.41 | 2.74     |
|               | ノズル               | ノズル セ フエンド     | 構造損傷  | 7.06   | 0.25 | 0.25 | 3.09     |
|               | CRDハウジングレストレントビーム | プレ ト           | 構造損傷  | 3.06   | 0.20 | 0.22 | 1.53     |
|               | RIPモータケーシング       | ケーシング          | 構造損傷  | 3.14   | 0.20 | 0.21 | 1.60     |
|               | 蒸気乾燥器             | 耐震ブロック         | 構造損傷  | 6.05   | 0.22 | 0.23 | 2.88     |
| 格納容器バイパス      | 主蒸気隔離弁            | 弁駆動部           | 機能損傷  | 4.91   | 0.26 | 0.25 | 2.12     |
|               | CUW吸込ライン隔離弁       | 弁駆動部           | 機能損傷  | 3.88   | 0.25 | 0.24 | 1.73     |
|               | RCIC配管            | 配管本体           | 構造損傷  | 3.59   | 0.26 | 0.25 | 1.55     |
|               | RCIC蒸気ライン隔離弁      | 弁駆動部           | 機能損傷  | 4.34   | 0.26 | 0.25 | 1.87     |
|               | 原子炉給水ライン隔離弁       | 弁駆動部           | 機能損傷  | 4.81   | 0.25 | 0.24 | 2.14     |
|               | RHR配管             | 配管サポート         | 構造損傷  | 3.35   | 0.33 | 0.32 | 1.15     |
|               | 停止時冷却隔離弁          | 弁駆動部           | 機能損傷  | 2.61   | 0.26 | 0.25 | 1.13     |
| 原子炉冷却材圧力バウンダリ | 主蒸気系配管            | 配管サポート         | 構造損傷  | 2.82   | 0.26 | 0.25 | 1.22     |
|               | CUW系配管            | 配管本体           | 構造損傷  | 3.69   | 0.25 | 0.25 | 1.62     |
|               | 給水系配管             | 配管サポート         | 構造損傷  | 4.24   | 0.32 | 0.31 | 1.50     |
|               | RCIC系配管           | 配管本体           | 構造損傷  | 3.59   | 0.26 | 0.25 | 1.55     |
|               | RHR系配管            | 配管サポ ト         | 構造損傷  | 3.35   | 0.33 | 0.32 | 1.15     |
|               | SLC系配管            | 配管本体           | 構造損傷  | 3.98   | 0.25 | 0.24 | 1.77     |
|               | HPCF系配管           | 配管本体           | 構造損傷  | 3.33   | 0.26 | 0.25 | 1.44     |
| 計測·制御系        | コントロール建屋(C/B)     | -              | -     | 2.87   | 0.18 | 0.15 | 1.67     |
|               | ベンチ盤              | 盤全体            | 機能損傷  | 4.15   | 0.14 | 0.25 | 2.18     |
|               | 直立盤(制御盤·多重伝送盤)    | 盤全体            | 機能損傷  | 3.77   | 0.14 | 0.25 | 1.98     |
|               | 計装ラック             | 盤全体            | 機能損傷  | 5.25   | 0.22 | 0.21 | 2.58     |
|               | バイタル交流電源装置        | 盤全体            | 機能損傷  | 3.91   | 0.14 | 0.25 | 2.05     |
|               | 交流120Vバイタル分電盤     | 盤全体            | 機能損傷  | 3.91   | 0.14 | 0.25 | 2.05     |

<u>第3.2.1.</u>a-3(1) 表 7号機 建屋機器リストとフラジリティ評価(1/4)

|           | 機器名                 | 評価実施部位    | 損傷モード | Am(G) | r    | u    | HCLPF(G) |
|-----------|---------------------|-----------|-------|-------|------|------|----------|
| 直流電源      | 直流125V蓄電池           | 基礎ボルト     | 構造損傷  | 12.01 | 0.20 | 0.17 | 6.52     |
|           | 直流125V充電器盤          | 盤全体       | 機能損傷  | 4.04  | 0.14 | 0.25 | 2.12     |
|           | 直流125V主母線盤          | 盤全体       | 機能損傷  | 4.60  | 0.22 | 0.25 | 2.12     |
|           | ケーブルトレイ             | トレイサポート   | 構造損傷  | 6.00  | 0.24 | 0.24 | 2.72     |
|           | 電線管                 | 電線管サポート   | 構造損傷  | 3.67  | 0.24 | 0.24 | 1.66     |
| 原子炉補機冷却系  | タービン建屋(T/B)         | -         | -     | 2.65  | 0.13 | 0.15 | 1.67     |
|           | 非常用取水路              | 隔壁        | 構造損傷  | 2.20  | 0.07 | 0.24 | 1.33     |
|           | RCWポンプ              | ポンプ       | 機能損傷  | 3.92  | 0.10 | 0.15 | 2.60     |
|           | RCW熱交換器             | 耐震強化サポート  | 構造損傷  | 1.81  | 0.20 | 0.17 | 0.98     |
|           | RCWサージタンク           | 基礎ボルト     | 構造損傷  | 4.87  | 0.20 | 0.17 | 2.64     |
|           | RCW配管               | 配管本体      | 構造損傷  | 2.58  | 0.26 | 0.25 | 1.11     |
|           | RCW弁                | 弁駆動部      | 機能損傷  | 3.62  | 0.26 | 0.25 | 1.56     |
|           | RSWポンプ              | モータ       | 機能損傷  | 2.75  | 0.20 | 0.15 | 1.54     |
|           | RSWストレーナ            | 基礎ボルト     | 構造損傷  | 75.45 | 0.20 | 0.17 | 40.98    |
|           | RSW配管               | 配管サポ ト    | 構造損傷  | 3.34  | 0.26 | 0.25 | 1.44     |
|           | RSW弁                | 弁駆動部      | 機能損傷  | 5.44  | 0.26 | 0.25 | 2.34     |
| 交流電源(D/G) | 6.9kVメタクラ           | 盤全体       | 機能損傷  | 4.18  | 0.22 | 0.25 | 1.92     |
|           | 480Vパワーセンタ用動力変圧器    | 基礎ボルト     | 構造損傷  | 5.86  | 0.20 | 0.17 | 3.18     |
|           | 480Vパワーセンタ          | 盤全体       | 機能損傷  | 5.77  | 0.22 | 0.25 | 2.66     |
|           | 480VMCC             | 盤全体       | 機能損傷  | 4.04  | 0.14 | 0.25 | 2.12     |
|           | 非常用ディーゼル発電設備        | ティ セル機関本体 | 機能損傷  | 4.36  | 0.20 | 0.15 | 2.45     |
|           | 燃料ディタンク             | スカート      | 構造損傷  | 43.96 | 0.20 | 0.16 | 24.27    |
|           | DG空気だめ              | 胴板        | 構造損傷  | 94.76 | 0.20 | 0.17 | 51.46    |
|           | DG非常用送風機            | 電動機       | 機能損傷  | 2.90  | 0.20 | 0.15 | 1.63     |
|           | 燃料移送ポンプ             | ポンプ       | 機能損傷  | 2.70  | 0.10 | 0.15 | 1.79     |
|           | DGFO配管              | 配管サポ ト    | 構造損傷  | 3.00  | 0.25 | 0.25 | 1.31     |
|           | 軽油配管トレンチ(軽油タンク~R/B) | 隔壁および底版   | 構造損傷  | 4.23  | 0.17 | 0.24 | 2.17     |
|           | DGFO弁               | 弁駆動部      | 機能損傷  | 5.13  | 0.25 | 0.24 | 2.29     |
|           | 軽油タンク               | 胴板        | 構造損傷  | 3.45  | 0.23 | 0.27 | 1.51     |

# 第3.2.1.a-3(1) 表 7号機建屋機器リストとフラジリティ評価(2/4)

|             | 機器名           | 評価実施部位                       | 損傷モード         | Am(G) | r    | u    | HCLPF(G) |
|-------------|---------------|------------------------------|---------------|-------|------|------|----------|
| 外部電源        | 外部電源設備全般      | 碍子                           | 構造損傷,<br>機能損傷 | 0.91  | 0.24 | 0.22 | 0.43     |
| スクラム        | 炉心シュラウド       | 下部胴                          | 構造損傷          | 3.96  | 0.22 | 0.23 | 1.88     |
|             | シュラウドサポート     | レグ                           | 構造損傷          | 6.14  | 0.23 | 0.28 | 2.65     |
|             | 炉心支持板         | 支持板P05                       | 構造損傷          | 4.68  | 0.20 | 0.22 | 2.34     |
|             | 上部格子板         | グリッドプレート                     | 構造損傷          | 2.82  | 0.20 | 0.22 | 1.41     |
|             | 制御棒案内管        | ボディ                          | 構造損傷          | 12.62 | 0.25 | 0.35 | 4.69     |
|             | 燃料支持金具        | 周辺燃料支持金具                     | 構造損傷          | 16.41 | 0.20 | 0.22 | 8.21     |
|             | 燃料集合体         | 燃料集合体                        | 機能損傷          | 3.33  | 0.20 | 0.21 | 1.69     |
|             | 水圧制御ユニット      | 部材(フレーム)                     | 構造損傷          | 4.35  | 0.20 | 0.17 | 2.36     |
|             | CRD配管         | 配管サポ ト                       | 構造損傷          | 3.12  | 0.25 | 0.24 | 1.39     |
|             | スクラム弁         | スクラム弁                        | 機能損傷          | 8.11  | 0.20 | 0.15 | 4.55     |
| 反応度制御       | SLC配管         | 配管本体                         | 構造損傷          | 3.98  | 0.25 | 0.24 | 1.77     |
|             | SLCポンプ        | ポンプ                          | 機能損傷          | 3.71  | 0.20 | 0.15 | 2.08     |
|             | SLC貯蔵タンク      | 基礎ボルト                        | 構造損傷          | 1.82  | 0.20 | 0.17 | 0.99     |
|             | SLC弁          | 弁駆動部                         | 機能損傷          | 7.66  | 0.25 | 0.24 | 3.41     |
| SRV開·SRV再閉鎖 | 逃がし安全弁(18弁)   | 弁駆動部                         | 構造損傷          | 3.93  | 0.26 | 0.25 | 1.69     |
| RCIC        | RCIC配管        | 配管本体                         | 構造損傷          | 3.59  | 0.26 | 0.25 | 1.55     |
|             | RCICポンプ       | ポンプ                          | 機能損傷          | 3.98  | 0.10 | 0.15 | 2.63     |
|             | RCIC駆動タービン    | タービン                         | 機能損傷          | 3.98  | 0.10 | 0.15 | 2.63     |
|             | 給水隔離弁         | 弁駆動部                         | 機能損傷          | 4.12  | 0.25 | 0.24 | 1.84     |
|             | RCIC弁         | 弁駆動部                         | 機能損傷          | 4.34  | 0.26 | 0.25 | 1.87     |
|             | CSP           | 損傷確率極小のためスク                  | リーニングアウト      |       |      |      |          |
|             | CSP周り配管       | 配管サポト                        | 構造損傷          | 2.40  | 0.25 | 0.25 | 1.05     |
|             | 廃棄物処理建屋(RW/B) | 建屋(RW/B) 損傷確率極小のためスクリーニングアウト |               |       |      |      |          |

第3.2.1.a-3(1) 表 7号機建屋機器リストとフラジリティ評価(3/4)

|      | 機器名           | 評価実施部位      | 損傷モード    | Am(G) | r    | u    | HCLPF(G) |
|------|---------------|-------------|----------|-------|------|------|----------|
| НРСЕ | HPCF配管        | 配管本体        | 構造損傷     | 3.33  | 0.26 | 0.25 | 1.44     |
|      | HPCFポンプ       | 電動機         | 機能損傷     | 2.00  | 0.10 | 0.15 | 1.32     |
|      | HPCFポンプ室空調機   | ファン         | 機能損傷     | 3.98  | 0.10 | 0.15 | 2.63     |
|      | スパージャ         | ヘッダ         | 構造損傷     | 3.39  | 0.20 | 0.22 | 1.70     |
|      | HPCF弁         | 弁駆動部        | 機能損傷     | 2.44  | 0.18 | 0.24 | 1.22     |
|      | CSP           | 損傷確率極小のためスク | リーニングアウト |       |      |      |          |
|      | CSP周り配管       | 配管サポート      | 構造損傷     | 2.40  | 0.25 | 0.25 | 1.05     |
|      | 廃棄物処理建屋(RW/B) | 損傷確率極小のためスク | リーニングアウト |       |      |      |          |
| 減圧   | 逃がし安全弁(18弁)   | 弁駆動部        | 機能損傷     | 2.39  | 0.26 | 0.25 | 1.03     |
|      | SRV用アキュムレータ   | 胴板          | 構造損傷     | 5.67  | 0.20 | 0.16 | 3.13     |
|      | HPIN配管        | 配管サポ ト      | 構造損傷     | 2.61  | 0.25 | 0.25 | 1.14     |
|      | 窒素ガス供給弁       | 弁駆動部        | 機能損傷     | 10.39 | 0.25 | 0.24 | 4.63     |
| LPFL | RHR配管         | 配管サポ ト      | 構造損傷     | 3.35  | 0.33 | 0.32 | 1.15     |
|      | RHRポンプ        | モータ         | 機能損傷     | 2.00  | 0.10 | 0.15 | 1.32     |
|      | RHR熱交換器       | 胴板          | 構造損傷     | 4.64  | 0.20 | 0.17 | 2.52     |
|      | RHRポンプ室空調機    | ファン         | 機能損傷     | 3.98  | 0.10 | 0.15 | 2.63     |
|      | RHR/LPFL共通弁   | 弁駆動部        | 機能損傷     | 2.61  | 0.26 | 0.25 | 1.13     |
| RHR  | RHR配管         | 配管サポ ト      | 構造損傷     | 3.35  | 0.33 | 0.32 | 1.15     |
|      | RHRポンプ        | モータ         | 機能損傷     | 2.00  | 0.10 | 0.15 | 1.32     |
|      | RHR熱交換器       | 胴板          | 構造損傷     | 4.64  | 0.20 | 0.17 | 2.52     |
|      | RHRポンプ室空調機    | ファン         | 機能損傷     | 3.98  | 0.10 | 0.15 | 2.63     |
|      | RHR/LPFL共通弁   | 弁駆動部        | 機能損傷     | 2.61  | 0.26 | 0.25 | 1.13     |
|      | RHR弁          | 弁駆動部        | 機能損傷     | 2.61  | 0.26 | 0.25 | 1.13     |

# 第3.2.1.a-3(1) 表 7号機建屋機器リストとフラジリティ評価(4/4)

# 第3.2.1.a-3(2) 表 6号機建屋機器リストとフラジリティ評価(1/4)

|                       | 機器名               | 評価実施部位             | 損傷モード | Am(G) | r    | u    | HCLPF(G) |
|-----------------------|-------------------|--------------------|-------|-------|------|------|----------|
| 建屋·構築物                | 原子炉建屋(R/B)        | -                  | -     | 3.75  | 0.33 | 0.15 | 1.70     |
| (凉」を建定)               | 原子炉建屋基礎地盤すべり線     | -                  | -     | 1.83  | 0.04 | 0.15 | 1.33     |
| 建屋·構築物<br>(柊納容器,圧力容器) | ダイヤフラムフロア         | 鉄筋コンクリートスラブ        | 構造損傷  | 3.60  | 0.22 | 0.26 | 1.63     |
|                       | 原子炉遮へい壁           | 開口集中部              | 構造損傷  | 3.49  | 0.20 | 0.22 | 1.75     |
|                       | RPV本体             | 基礎ボルト              | 構造損傷  | 6.21  | 0.22 | 0.24 | 2.91     |
|                       | RPV支持スカート         | スカート               | 構造損傷  | 9.44  | 0.22 | 0.24 | 4.42     |
|                       | RPVペデスタル          | 原子炉本体基礎アンカボルト      | 構造損傷  | 2.82  | 0.22 | 0.29 | 1.22     |
|                       | 原子炉圧力容器スタビライザ     | ロッド                | 構造損傷  | 4.25  | 0.22 | 0.24 | 1.99     |
|                       | ブラケット類            | 原子炉圧力容器スタビライザブラケット | 構造損傷  | 13.97 | 0.22 | 0.24 | 6.54     |
|                       | 下部鏡板              | 球殻部                | 構造損傷  | 13.14 | 0.22 | 0.24 | 6.15     |
|                       | 制御棒駆動機構ハウジング貫通孔   | スタブチューブ            | 構造損傷  | 3.59  | 0.20 | 0.22 | 1.80     |
|                       | 原子炉冷却材再循環ポンプ貫通孔   | ケーシング側付け根R部        | 構造損傷  | 2.76  | 0.20 | 0.22 | 1.38     |
|                       | ノズル               | ノズルセーフエンド          | 構造損傷  | 4.65  | 0.25 | 0.25 | 2.04     |
|                       | CRDハウジングレストレントビーム | プレート               | 構造損傷  | 4.96  | 0.20 | 0.22 | 2.48     |
|                       | RIPモータケーシング       | ケーシング              | 構造損傷  | 3.05  | 0.20 | 0.21 | 1.55     |
|                       | 蒸気乾燥器             | 耐震用ブロックせん断面A       | 構造損傷  | 12.28 | 0.22 | 0.23 | 5.84     |
| 格納容器バイパス              | 主蒸気隔離弁            | 駆動部                | 機能損傷  | 2.97  | 0.19 | 0.25 | 1.44     |
|                       | CUW吸込ライン隔離弁       | 駆動部                | 機能損傷  | 5.81  | 0.25 | 0.24 | 2.59     |
|                       | RCIC配管            | 配管本体               | 構造損傷  | 3.91  | 0.25 | 0.25 | 1.71     |
|                       | RCIC蒸気ライン隔離弁      | 駆動部                | 機能損傷  | 5.47  | 0.25 | 0.24 | 2.44     |
|                       | 原子炉給水ライン隔離弁       | 弁本体                | 機能損傷  | 2.40  | 0.18 | 0.24 | 1.20     |
|                       | RHR配管             | サポート本体(架構レストレイント)  | 構造損傷  | 4.27  | 0.26 | 0.25 | 1.84     |
|                       | 停止時冷却隔離弁          | 駆動部                | 機能損傷  | 3.71  | 0.26 | 0.25 | 1.60     |
| 原子炉冷却材圧力バウンダリ         | 主蒸気系配管            | 配管本体               | 構造損傷  | 4.20  | 0.26 | 0.25 | 1.81     |
|                       | CUW系配管            | スナッバ               | 構造損傷  | 8.38  | 0.32 | 0.31 | 2.96     |
|                       | 給水系配管             | 配管本体               | 構造損傷  | 2.60  | 0.26 | 0.25 | 1.12     |
|                       | RCIC系配管           | 配管本体               | 構造損傷  | 3.91  | 0.25 | 0.25 | 1.71     |
|                       | RHR系配管            | サポート本体(架構レストレイント)  | 構造損傷  | 4.27  | 0.26 | 0.25 | 1.84     |
|                       | SLC系配管            | サポート本体(架構レストレイント)  | 構造損傷  | 4.04  | 0.26 | 0.26 | 1.71     |
|                       | HPCF系配管           | 配管本体               | 構造損傷  | 2.55  | 0.26 | 0.25 | 1.10     |
| 計測·制御系                | コントロール建屋(C/B)     | -                  | -     | 2.87  | 0.18 | 0.15 | 1.67     |
|                       | ベンチ盤              | 盤全体                | 機能損傷  | 3.72  | 0.14 | 0.25 | 1.95     |
|                       | 直立盤(制御盤·多重伝送盤)    | 盤全体                | 機能損傷  | 3.72  | 0.14 | 0.25 | 1.95     |
|                       | 計装ラック             | 盤全体                | 機能損傷  | 5.60  | 0.14 | 0.25 | 2.94     |
|                       | バイタル交流電源装置        | 重心位置               | 機能損傷  | 3.03  | 0.14 | 0.25 | 1.59     |
|                       | 交流120Vバイタル分電盤     | 重心位置               | 機能損傷  | 3.03  | 0.14 | 0.25 | 1.59     |

第3.2.1.a-3(2) 表 6号機建屋機器リストとフラジリティ評価(2/4)

|           | 機器名                 | 評価実施部位           | 損傷モード    | Am(G) | r    | u    | HCLPF(G) |
|-----------|---------------------|------------------|----------|-------|------|------|----------|
| 直流電源      | 直流125V蓄電池           | 取付ボルト            | 構造損傷     | 10.85 | 0.20 | 0.17 | 5.89     |
|           | 直流125V充電器盤          | 重心位置             | 機能損傷     | 4.04  | 0.14 | 0.25 | 2.12     |
|           | 直流125V主母線盤          | (MCC)重心位置        | 機能損傷     | 4.60  | 0.22 | 0.25 | 2.12     |
|           | ケーブルトレイ             | ケーブルトレイサポート定着部   | 構造損傷     | 6.73  | 0.39 | 0.36 | 1.95     |
|           | 電線管                 | 電線管本体 金具(クランプ)   | 構造損傷     | 2.69  | 0.20 | 0.15 | 1.51     |
| 原子炉補機冷却系  | タービン建屋(T/B)         | -                | -        | 2.63  | 0.18 | 0.15 | 1.52     |
|           | 非常用取水路              | 隔壁               | せん断 WCOM | 3.53  | 0.18 | 0.24 | 1.78     |
|           | RCWポンプ              | 軸位置              | 機能損傷     | 3.91  | 0.10 | 0.15 | 2.59     |
|           | RCW熱交換器             | 基礎ボルト            | 構造損傷     | 2.69  | 0.20 | 0.17 | 1.46     |
|           | RCWサージタンク           | 基礎ボルト            | 構造損傷     | 4.70  | 0.20 | 0.17 | 2.55     |
|           | RCW配管               | 配管本体             | 構造損傷     | 5.49  | 0.26 | 0.25 | 2.37     |
|           | RCW弁                | 駆動部              | 機能損傷     | 2.24  | 0.26 | 0.25 | 0.97     |
|           | RSWポンプ              | コラム先端部           | 機能損傷     | 5.68  | 0.25 | 0.24 | 2.53     |
|           | RSWストレーナ            | 基礎ボルト            | 構造損傷     | 21.32 | 0.20 | 0.17 | 11.58    |
|           | RSW配管               | 配管本体             | 構造損傷     | 4.73  | 0.26 | 0.25 | 2.04     |
|           | RSW弁                | 駆動部              | 機能損傷     | 4.20  | 0.19 | 0.25 | 2.03     |
| 交流電源(D/G) | 6.9kVメタクラ           | 重心位置             | 機能損傷     | 4.08  | 0.22 | 0.25 | 1.88     |
|           | 480Vパワーセンタ用動力変圧器    | 取付ボルト            | 構造損傷     | 14.93 | 0.20 | 0.17 | 8.11     |
|           | 480Vパワーセンタ          | 重心位置             | 機能損傷     | 5.65  | 0.22 | 0.25 | 2.60     |
|           | 480VMCC             | 重心位置             | 機能損傷     | 4.04  | 0.14 | 0.25 | 2.12     |
|           | 非常用ディーゼル発電設備        | 機関側軸受台下部ベース取付ボルト | 構造損傷     | 4.22  | 0.20 | 0.17 | 2.29     |
|           | 燃料ディタンク             | 基礎ボルト            | 構造損傷     | 12.82 | 0.20 | 0.17 | 6.96     |
|           | DG空気だめ              | 胴板               | 構造損傷     | 5.70  | 0.20 | 0.17 | 3.10     |
|           | DG非常用送風機            | 軸受部              | 機能損傷     | 2.90  | 0.20 | 0.15 | 1.63     |
|           | 燃料移送ポンプ             | 軸位置              | 機能損傷     | 4.12  | 0.20 | 0.15 | 2.31     |
|           | DGFO配管              | 配管本体             | 構造損傷     | 4.28  | 0.25 | 0.25 | 1.88     |
|           | 軽油配管トレンチ(軽油タンク~R/B) | 隔壁 底版            | せん断 WCOM | 3.14  | 0.12 | 0.24 | 1.74     |
|           | DGFO弁               | 弁本体              | 機能損傷     | 3.23  | 0.25 | 0.24 | 1.44     |
|           | 軽油タンク               | 胴板               | 構造損傷     | 3.67  | 0.23 | 0.27 | 1.61     |

# 第3.2.1.a-3(2) 表 6号機建屋機器リストとフラジリティ評価(3/4)

|               | 機器名         | 評価実施部位              | 損傷モード         | Am(G) | r    | u    | HCLPF(G) |  |
|---------------|-------------|---------------------|---------------|-------|------|------|----------|--|
| 外部電源          | 外部電源設備全般    | 碍子                  | 構造損傷,<br>機能損傷 | 0.91  | 0.24 | 0.22 | 0.43     |  |
| スクラム          | 炉心シュラウド     | 下部胴                 | 構造損傷          | 19.02 | 0.22 | 0.23 | 9.05     |  |
|               | シュラウドサポート   | レグ                  | 構造損傷          | 3.76  | 0.22 | 0.23 | 1.79     |  |
|               | 炉心支持板       | 支持板                 | 構造損傷          | 6.20  | 0.20 | 0.22 | 3.10     |  |
|               | 上部格子板       | グリッドプレート            | 構造損傷          | 10.85 | 0.20 | 0.22 | 5.43     |  |
|               | 制御棒案内管      | 下部溶接部               | 構造損傷          | 46.84 | 0.22 | 0.23 | 22.29    |  |
|               | 燃料支持金具      | 中央燃料支持金具            | 構造損傷          | 8.56  | 0.24 | 0.34 | 3.29     |  |
|               | 燃料集合体       | 制御棒(挿入性)            | 機能損傷          | 5.17  | 0.20 | 0.21 | 2.63     |  |
|               | 水圧制御ユニット    | フレーム                | 構造損傷          | 11.65 | 0.20 | 0.17 | 6.33     |  |
|               | CRD配管       | サポート本体(架構レストレイント)   | 構造損傷          | 5.88  | 0.25 | 0.24 | 2.62     |  |
|               | スクラム弁       | 駆動部                 | 機能損傷          | 8.99  | 0.20 | 0.15 | 5.05     |  |
| 反応度制御         | SLC配管       | サポート本体(架構レストレイント)   | 構造損傷          | 4.04  | 0.26 | 0.26 | 1.71     |  |
|               | SLCポンプ      | 重心位置                | 機能損傷          | 3.71  | 0.20 | 0.15 | 2.08     |  |
|               | SLC貯蔵タンク    | 基礎ボルト               | 構造損傷          | 3.87  | 0.20 | 0.17 | 2.10     |  |
|               | SLC弁        | 弁本体                 | 機能損傷          | 7.00  | 0.26 | 0.25 | 3.02     |  |
| SRV開·SRV再閉鎖   | 逃がし安全弁(18弁) | ボンネットボルト            | 構造損傷          | 3.53  | 0.26 | 0.25 | 1.52     |  |
| RCIC          | RCIC配管      | 配管本体                | 構造損傷          | 3.91  | 0.25 | 0.25 | 1.71     |  |
|               | RCICポンプ     | 基礎ボルト               | 構造損傷          | 3.45  | 0.20 | 0.17 | 1.87     |  |
|               | RCIC駆動タービン  | 基礎ボルト               | 構造損傷          | 4.22  | 0.20 | 0.17 | 2.29     |  |
|               | 給水隔離弁       | 駆動部                 | 機能損傷          | 5.47  | 0.25 | 0.24 | 2.44     |  |
|               | RCIC弁       | 駆動部                 | 機能損傷          | 5.47  | 0.25 | 0.24 | 2.44     |  |
|               | CSP         | 損傷確率極小のためスクリー       | ・ニングアウト       |       |      |      |          |  |
|               | CSP周り配管     | サポート本体(架構レストレイント)   | 構造損傷          | 3.07  | 0.25 | 0.25 | 1.35     |  |
| 廃棄物処理建屋(RW/B) |             | 損傷確率極小のためスクリーニングアウト |               |       |      |      |          |  |

|      | 機器名           | 評価実施部位            | 損傷モード   | Am(G) | r    | u    | HCLPF(G) |
|------|---------------|-------------------|---------|-------|------|------|----------|
| HPCF | HPCF配管        | 配管本体              | 構造損傷    | 2.55  | 0.26 | 0.25 | 1.10     |
|      | HPCFポンプ       | 軸受部               | 機能損傷    | 3.75  | 0.20 | 0.15 | 2.10     |
|      | HPCFポンプ室空調機   | 軸受部               | 機能損傷    | 3.95  | 0.10 | 0.15 | 2.61     |
|      | スパージャ         | ヘッダ               | 構造損傷    | 10.28 | 0.22 | 0.23 | 4.89     |
|      | HPCF弁         | 駆動部               | 機能損傷    | 2.18  | 0.26 | 0.25 | 0.94     |
|      | CSP           | 損傷確率極小のためスクリー     | ・ニングアウト |       |      |      |          |
|      | CSP周り配管       | サポート本体(架構レストレイント) | 構造損傷    | 3.07  | 0.25 | 0.25 | 1.35     |
|      | 廃棄物処理建屋(RW/B) | 損傷確率極小のためスクリー     | ・ニングアウト |       |      |      |          |
| 減圧   | 逃がし安全弁(18弁)   | 駆動部               | 機能損傷    | 2.00  | 0.26 | 0.25 | 0.86     |
|      | SRV用アキュムレータ   | リバンド及びリブ          | 構造損傷    | 5.03  | 0.20 | 0.16 | 2.78     |
|      | HPIN配管        | 配管本体              | 構造損傷    | 3.24  | 0.25 | 0.24 | 1.44     |
|      | 窒素ガス供給弁       | 駆動部               | 機能損傷    | 2.47  | 0.25 | 0.24 | 1.10     |
| LPFL | RHR配管         | サポート本体(架構レストレイント) | 構造損傷    | 4.27  | 0.26 | 0.25 | 1.84     |
|      | RHRポンプ        | 軸受部               | 機能損傷    | 3.75  | 0.20 | 0.15 | 2.10     |
|      | RHR熱交換器       | 胴板                | 構造損傷    | 3.33  | 0.20 | 0.17 | 1.81     |
|      | RHRポンプ室空調機    | 軸受部               | 機能損傷    | 3.95  | 0.10 | 0.15 | 2.61     |
|      | RHR/LPFL共通弁   | 駆動部               | 機能損傷    | 3.71  | 0.26 | 0.25 | 1.60     |
| RHR  | RHR配管         | サポート本体(架構レストレイント) | 構造損傷    | 4.27  | 0.26 | 0.25 | 1.84     |
|      | RHRポンプ        | 軸受部               | 機能損傷    | 3.75  | 0.20 | 0.15 | 2.10     |
|      | RHR熱交換器       | 胴板                | 構造損傷    | 3.33  | 0.20 | 0.17 | 1.81     |
|      | RHRポンプ室空調機    | 軸受部               | 機能損傷    | 3.95  | 0.10 | 0.15 | 2.61     |
|      | RHR/LPFL共通弁   | 駆動部               | 機能損傷    | 3.71  | 0.26 | 0.25 | 1.60     |
|      | RHR弁          | 駆動部               | 機能損傷    | 3.71  | 0.26 | 0.25 | 1.60     |

第3.2.1.a-3(2) 表 6号機建屋機器リストとフラジリティ評価(4/4)

| 特定震源の名称          | 分類    | 地震規模<br>M | 等価震源距離 | Xeq(km)<br>大湊側 | 平均活動間隔<br>(年) | 発生確率モデル |
|------------------|-------|-----------|--------|----------------|---------------|---------|
|                  |       | 6.8       | 55     | 53             | 5500          | ポアソン    |
|                  | -     | 7.0       | 13     | 13             | 1000          | BPT     |
| 佐渡島南方断層          |       | 6.9       | 23     | 22             | 4700          | ポアソン    |
| F-D 断層           | <br>一 | 6.9       | 35     | 36             | 4700          | ポアソン    |
| 高田沖断層            |       | 6.8       | 61     | 63             | 4100          | ポアソン    |
| 親不知海脚西縁断層帯~魚津断層帯 |       | 7.5       | 94     | 96             | 8000          | ポアソン    |
| 角田・弥彦断層          |       | 7.7       | 51     | 49             | 2450          | ポアソン    |
| 気比ノ宮断層           | -     | 7.1       | 21     | 20             | 2450          | ポアソン    |
| 片貝断層             | -     | 6.8       | 14     | 14             | 2450          | ポアソン    |
| 悠久山断層            |       | 6.8       | 27     | 26             | 5800          | ポアソン    |
| 半蔵金付近のリニアメント     |       | 6.8       | 25     | 25             | 2300          | ポアソン    |
| 柏崎平野南東縁のリニアメント   | 陸 攻   | 6.8       | 15     | 16             | 2300          | ポアソン    |
| 山本山断層            | -     | 6.8       | 21     | 21             | 2300          | ポアソン    |
| 水上断層             | -     | 6.8       | 15     | 16             | 2300          | ポアソン    |
| 上米山断層            |       | 6.8       | 17     | 18             | 2300          | ポアソン    |
| 十日町盆地西縁断層        |       | 7.4       | 30     | 32             | 3300          | ポアソン    |

第3.2.1.b-1表 震源モデルの諸元(活断層による地震,調査結果に基づく)

注)海域の断層による地震の M は 2007 年新潟県中越沖地震(M6.8)の知見を踏まえて設定した値を記載。

陸域の断層による地震の M は, 松田 (1975) に基づき設定。ただし, いずれも下限値は 6.8 としている。

| 第 3.2.1.b-2 表 | 震源モデルの諸元( | 〔活断層による地震, | 地震調査研究推進本部( | 2012 | )に基づく | ) |
|---------------|-----------|------------|-------------|------|-------|---|
|               |           |            |             | -    |       |   |

| 特定震源の名称          | 分類                       | 地震規模 | 等価震源距离   | 推Xeq(km)<br>★達個 | 平均活動間隔 | 発生確率モデル |
|------------------|--------------------------|------|----------|-----------------|--------|---------|
|                  |                          | IVI  | <u> </u> | 入演則             | (4)    |         |
| 会津盆地西縁断層帯        |                          | 7.4  | 102      | 101             | 8550   | BPT     |
| 会津盆地東縁断層帯        |                          | 7.7  | 123      | 123             | 7800   | BPT     |
| 櫛形山脈断層帯          |                          | 6.9  | 99       | 97              | 3500   | BPT     |
| 月岡断層帯            |                          | 7.3  | 67       | 66              | 7500   | BPT     |
| 関谷断層             |                          | 7.5  | 113      | 113             | 3350   | BPT     |
| 平井 - 櫛挽断層帯       |                          | 7.1  | 144      | 145             | 7300   | ポアソン    |
| 十日町断層帯東部         |                          | 7.0  | 41       | 42              | 6000   | ポアソン    |
| 糸魚川 - 静岡構造線断層帯   | <b>7</b> ±∔ <del>*</del> | 0.0  | 105      | 100             | 1000   | DDT     |
| (北部・中部)          | 座坝                       | 8.2  | 125      | 126             | 1000   | BP1     |
|                  |                          | 7.3  | 150      | 151             | 4000   | ポアソン    |
| 六日町断層帯 北部 (ケース1) |                          | 7.1  | 32       | 32              | 5400   | ポアソン    |
| 六日町断層帯 北部(ケース2)  |                          | 7.1  | 28       | 28              | 3600   | BPT     |
| 六日町断層帯南部         |                          | 7.3  | 43       | 44              | 6700   | BPT     |
| 高田平野東縁断層帯        |                          | 7.2  | 42       | 44              | 2300   | ポアソン    |
| 高田平野西縁断層帯        |                          | 7.3  | 52       | 53              | 3500   | BPT     |
| 長野盆地西縁断層帯        |                          | 7.8  | 74       | 76              | 1650   | BPT     |

| 特定震源の名称               |                                       | 分類  | 地震規模<br>M | 等価震源距離 | 離Xeq(km)<br>大湊側 | 平均活動間隔<br>(年) | 発生確率モデル |
|-----------------------|---------------------------------------|-----|-----------|--------|-----------------|---------------|---------|
|                       | 東傾斜                                   |     | 7.5       | 258    | 257             | 1000          | ポアソン    |
| 秋田県冲                  | 秋田県冲 西傾斜                              | -   | 7.5       | 259    | 257             | 1000          | ポアソン    |
| 山刑                    | / / / / / / / / / / / / / / / / / / / |     | 7.7       | 169    | 167             | 1000          | BPT     |
| 新潟県                   | <b></b><br>泉北部沖                       | -   | 7.5       | 117    | 116             | 1000          | BPT     |
|                       |                                       | 7.8 | 235       | 233    | 750             | ポアソン          |         |
|                       | 東傾斜                                   |     | 7.8       | 199    | 197             | 750           | ポアソン    |
| 佐油自业专油                |                                       | 海域  | 7.8       | 148    | 147             | 750           | ポアソン    |
| 在波局北刀冲                |                                       |     | 7.8       | 235    | 234             | 750           | ポアソン    |
|                       | 西傾斜                                   |     | 7.8       | 199    | 198             | 750           | ポアソン    |
|                       |                                       |     | 7.8       | 149    | 147             | 750           | ポアソン    |
| 佐渡島北方沖~北海道西方沖<br>(連動) |                                       |     | 8.4       | 280    | 278             | 3900          | ポアソン    |
| 想定 D 断                | 層による地震                                |     | 8.0       | 74     | 75              | 25000         | ポアソン    |

第 3.2.1.b-3 表 震源モデルの諸元(日本海東縁部の地震)

第3.2.1.b-4表 ロジックツリーの分岐及び重み付けの考え方(1/3)

| 項目           | 分岐                                   | 重み                                             | 重み付けの考え方                     |
|--------------|--------------------------------------|------------------------------------------------|------------------------------|
|              | 3 セグメントの連動(各発生<br>パターンの出現確率を考慮)      | 1/3                                            |                              |
| 震源の<br>組み合わせ | 長岡平野西縁断層帯を<br>1 セグメントとして評価<br>(常に連動) | 長岡平野西縁断層帯を<br>レセグメントとして評価 1/3 重みは等配会<br>(常に連動) |                              |
|              | 3 セグメントが単独で活動                        | 1/3                                            |                              |
| 価公名          | 50 °                                 | 1/2                                            | 調査結果と中越沖地震の知見                |
| 间,同时有用       | 35 °                                 | 1/2                                            | に基づき設定した。                    |
|              | 中央                                   | 1/3                                            |                              |
| アスペリティ<br>位置 | 至近                                   | 1/3                                            | │複数の位置を設定し , 重みは等<br>│配分とした。 |
|              |                                      | 1/3                                            |                              |
| 距離減衰式の       | 補正あり                                 | 1/2                                            | 中越沖地震の知見に基づき設                |
| 補正係数         | <br>補正なし                             | 1/2                                            | 定した。                         |

(a)陸域の主要な活断層(長岡平野西縁断層帯)

### 第 3.2.1.b-4 表 ロジックツリーの分岐及び重み付けの考え方(2/3)

| 項目           | 分岐                                               | 重み  | 重み付けの考え方                       |
|--------------|--------------------------------------------------|-----|--------------------------------|
|              | 各セグメントが常に個別に<br>活動                               | 1/9 |                                |
|              | F-D , 高田沖は常に個別 ,<br>F-B + 佐渡島南方は連動               | 1/9 |                                |
|              | F-D + 高田沖は常に連動 ,<br>F-B 断層 , 佐渡島南方断層は常<br>に個別に活動 | 1/9 |                                |
| 電道の          | F-D , 高田沖は常に連動 ,<br>F-B + 佐渡島南方は連動               | 1/9 | 海物の連動パターンた老虐」                  |
| 展線の<br>組み合わせ | F-D + 高田沖は連動 ,<br>その他は常に個別に活動                    | 1/9 | していた。<br>電みは等配分とした。            |
|              | F-D+高田沖は連動,<br>F-B+佐渡島南方は連動                      | 1/9 |                                |
|              | 高田沖 + F-D + F-B は連動 ,<br>佐渡島南方は常に個別に活動           | 1/9 |                                |
|              | 高田沖 + F-D + 佐渡島南方<br>は連動 , F-B は常に個別に活動          | 1/9 |                                |
|              | 高田沖 + F-D + F-B + 佐渡島<br>南方は連動                   | 1/9 |                                |
| 地雪坦塔         | 中越沖地震の知見を考慮                                      | 2/3 | 中越沖地震の知見に基づき設                  |
| 地辰况侠         | 松田式                                              | 1/3 | 定した。                           |
|              | 中央                                               | 1/3 |                                |
| アスペリティ<br>位置 | 至近                                               | 1/3 | 複数の位置を設定し , 重みは等  <br>  配分とした。 |
|              | 遠方                                               | 1/3 |                                |
| 距離減衰式の       | 補正あり                                             | 1/2 | 中越沖地震の知見に基づき設                  |
| 補正係数         | 補正なし                                             | 1/2 | 定した。                           |

(b)海域の主要な活断層

第 3.2.1.b-4 表 ロジックツリーの分岐及び重み付けの考え方(3 / 3)

| 項目             | 分岐       |      | 重み  | 重み付けの考え方                        |  |
|----------------|----------|------|-----|---------------------------------|--|
| 半径 30km        | 区分する     | 区分する |     | 敷地周辺の地質調査範囲に基                   |  |
| の区分            | 区分しない    | ,۱   | 1/2 | づき設定した。                         |  |
| ト店             | b 値 0.9  |      | 1/2 | 過去に発生した地震と地震本                   |  |
|                |          |      | 1/2 | 部(2012)に基づき設定した。                |  |
|                |          | 中央値  | 1/6 |                                 |  |
|                | 歴史地震     | 最小値  | 1/6 |                                 |  |
| 地震規模<br>(最大 M) |          | 最大値  | 1/6 | 歴史地震と, 島崎(2009)に基 <br>  づき設定した。 |  |
|                | 自岐(2000) | M7.1 | 3/8 |                                 |  |
|                |          | M7.4 | 1/8 |                                 |  |

(c)領域震源

| 評価方法      |       | 偶然的不確実さ(βR) | 認識論的不確実さ(βυ) |  |  |
|-----------|-------|-------------|--------------|--|--|
|           | 現実的耐力 | ・構造材料定数     | ・施工精度        |  |  |
|           |       | ・損傷限界時ひずみ   | ・実験データの統計的精度 |  |  |
|           |       |             | ・耐力評価式の誤差    |  |  |
| 建物<br>構築物 | 現実的応答 | ・構造材料定数     | ・モデル形態       |  |  |
|           |       | ・地盤材料定数     | ・剛性評価の仮定     |  |  |
|           |       |             | ・復元力特性のモデル化  |  |  |
|           |       |             | ・耐震要素の評価範囲   |  |  |

第3.2.1.c-1-1表 考慮する不確実さ要因の例

第3.2.1.c-1-2表 損傷限界点の現実的な値(地震 PSA 学会標準)

| 損傷限界点の指標     |       | 平均值                   | 変動係数 |
|--------------|-------|-----------------------|------|
|              | ボックス壁 | $5.36 \times 10^{-3}$ | 0.24 |
| U 70 m 0 9 m | 円筒壁   | $9.77 \times 10^{-3}$ | 0.33 |

| 地層       | 地盤せん断波   | 密度                   |       | せん断         |                               |
|----------|----------|----------------------|-------|-------------|-------------------------------|
|          |          | 1/2                  | ポアソン比 |             | ヤング係数                         |
| T.M.S.L. | 迷度       | ρ                    |       | <b>弾性</b> 係 | $\mathbf{F}$ and $\mathbf{z}$ |
| (m)      | Vs (m/s) | (kN/m <sup>3</sup> ) | V     | $G(N/mm^2)$ | E(N/mm)                       |
| +12.0    | 150      | 16.1                 | 0.347 | 37.3        | 100                           |
| +8.0     | 200      | 16.1                 | 0.308 | 65.7        | 172                           |
| +4.0     | 330      | 17.3                 | 0.462 | 192         | 562                           |
| -6.0     | 490      | 17.0                 | 0.451 | 416         | 1210                          |
| -33.0    | 530      | 16.6                 | 0.446 | 475         | 1370                          |
| -90.0    | 590      | 17.3                 | 0.432 | 613         | 1760                          |
| -136.0   | 650      | 19.3                 | 0.424 | 833         | 2370                          |
| -155.0   | 720      | 19.9                 | 0.416 | 1050        | 2980                          |

第3.2.1.c-1-3表 地盤物性値

| 部位    | 使用材料                                                                           | ヤング係数<br>E (N/mm <sup>2</sup> ) | せん断<br>弾性係数<br>G (N/mm <sup>2</sup> ) | 減衰定数<br>h(%) |
|-------|--------------------------------------------------------------------------------|---------------------------------|---------------------------------------|--------------|
| 建屋部   | コンクリート:<br>Fc=52.6(N/mm <sup>2</sup> )<br>鉄筋:<br>SD35, SD40<br>(SD345,SD390相当) | 3.21×10 <sup>4</sup>            | 1.34×10 <sup>4</sup>                  | 5            |
| 基礎スラブ | コンクリート:<br>Fc=47.9(N/mm <sup>2</sup> )<br>鉄筋:<br>SD35 (SD345相当)                | 2.98×10 <sup>4</sup>            | 1.24×10 <sup>4</sup>                  | 5            |

第 3.2.1.c-1-4 表 物性值 (原子炉建屋)

第3.2.1.c-1-5表物性値(コントロール建屋)

| 部位    | 使用材料                                                           | ヤング係数<br>E(N/mm <sup>2</sup> ) | せん断<br>弾性係数<br>G(N/mm <sup>2</sup> ) | 減衰定数<br>h(%) |
|-------|----------------------------------------------------------------|--------------------------------|--------------------------------------|--------------|
| 建屋部   | コンクリート:<br>Fc=52.6(N/mm <sup>2</sup> )<br>鉄筋:SD35<br>(SD345相当) | 3.21×10 <sup>4</sup>           | 1.34×10 <sup>4</sup>                 | 5            |
| 基礎スラブ | コンクリート:<br>Fc=47.9(N/mm <sup>2</sup> )<br>鉄筋:SD35<br>(SD345相当) | 2.98×10 <sup>4</sup>           | $1.24{\times}10^{4}$                 | 5            |
| 部位    | 使用材料                                                           | ヤング係数<br>E (N/mm <sup>2</sup> ) | せん断<br>弾性係数<br>G (N/mm <sup>2</sup> ) | 減衰定数<br>h (%) |
|-------|----------------------------------------------------------------|---------------------------------|---------------------------------------|---------------|
| 建屋部   | コンクリート:<br>Fc=52.6(N/mm <sup>2</sup> )<br>鉄筋:SD35<br>(SD345相当) | 3.21×10 <sup>4</sup>            | 1.34×10 <sup>4</sup>                  | 5             |
| 基礎スラブ | コンクリート:<br>Fc=47.9(N/mm <sup>2</sup> )<br>鉄筋:SD35<br>(SD345相当) | 2.98×10 <sup>4</sup>            | 1.24×10 <sup>4</sup>                  | 5             |
| 鉄骨部   | 鉄 骨:SS41,SM41A,SM50A<br>(SS400,SM400A,SM490A 相当)               | 2.05×10 <sup>5</sup>            | 7.90×10 <sup>4</sup>                  | 2             |

#### 第3.2.1.c-1-6表物性値(タービン建屋)

第3.2.1.c-1-7表物性值(廃棄物処理建屋)

| 部位    | 使用材料                                                               | ヤング係数<br>E (N/mm <sup>2</sup> ) | せん断<br>弾性係数<br>G (N/mm <sup>2</sup> ) | 減衰定数<br>h(%) |
|-------|--------------------------------------------------------------------|---------------------------------|---------------------------------------|--------------|
| 建屋部   | コンクリート:<br>Fc=52.6 ( N/mm <sup>2</sup> )<br>鉄筋:SD35<br>( SD345相当 ) | 3.21×10 <sup>4</sup>            | 1.34×10 <sup>4</sup>                  | 5            |
| 基礎スラブ | コンクリート:<br>Fc=47.9(N/mm <sup>2</sup> )<br>鉄筋:SD35<br>(SD345相当)     | 2.98×10 <sup>4</sup>            | 1.24×10 <sup>4</sup>                  | 5            |
| 鉄骨部   | 鉄 骨:SS41,SM41A,SM50A<br>(SS400,SM400A,SM490A 相当)                   | 2.05×10 <sup>5</sup>            | 7.90×10 <sup>4</sup>                  | 2            |

| 物性値               |               | 現実的な物性値の評価方法    |
|-------------------|---------------|-----------------|
|                   | コンクリート強度 Fc   | 平均值:1.63×設計基準強度 |
| ## ン牛 +ナ +ン\ 宁 ₩ı |               | 変動係数:0.13       |
| 伸迫的科定奴            | コンクリートの減衰定数 h | 平均值:5%          |
|                   |               | 変動係数:0.25       |
| 地盤材料定数            | 地盤のせん断波速度 Vs  | 平均值:設計值         |
|                   |               | 変動係数:0.10       |

#### 第3.2.1.c-1-8表 現実的な物性値の評価方法

| 部位             | 質点<br>番号 | 高さ<br>T.M.S.L.<br>(m) | 質点重量<br>W(kN) | 回転慣性<br>重量IG<br>(×10 <sup>5</sup> kN・m <sup>2</sup> ) | 部材<br>番号 | せん断<br>断面積<br>A <sub>s</sub> (m <sup>2</sup> ) | 断面2次<br>モーメント<br>I (m <sup>4</sup> ) |
|----------------|----------|-----------------------|---------------|-------------------------------------------------------|----------|------------------------------------------------|--------------------------------------|
|                | 1        | 49.7                  | 39490         | 70.6                                                  | 1        | 41.0                                           | 13700                                |
|                | 2        | 38.2                  | 80520         | 410.9                                                 | 2        | 83.0                                           | 51100                                |
|                | 3        | 31.7                  | 84470         | 473.7                                                 | 3        | 188.0                                          | 70600                                |
|                | 4        | 23.5                  | 84770         | 293.2                                                 | 4        | 132.5                                          | 69000                                |
| 61 日来 立7       | 5        | 18.1                  | 55380         | 198.1                                                 | 5        | 149.4                                          | 84700                                |
| 外壁部            | 6        | 12.3                  | 81140         | 289.3                                                 | 6        | 180.5                                          | 105000                               |
|                | 7        | 4.8                   | 80120         | 296.2                                                 | 7        | 183.2                                          | 112800                               |
|                | 8        | -1.7                  | 81300         | 298.1                                                 | 8        | 223.5                                          | 119000                               |
|                | 9        | -8.2                  | 342450        | 945.4                                                 | 9        | 3373.4                                         | 900600                               |
|                | 10       | -13.7                 | 216040        | 581.5                                                 |          |                                                |                                      |
|                | 11       | 31.7                  | 91400         | 32.4                                                  | 11       | 119.6                                          | 7200                                 |
|                | 12       | 23.5                  | 155040        | 371.7                                                 | 12       | 113.0                                          | 23300                                |
| 原子炉            | 13       | 18.1                  | 102870        | 305.0                                                 | 13       | 137.6                                          | 23500                                |
| 格納谷器<br>(RCCV) | 14       | 12.3                  | 199270        | 408.9                                                 | 14       | 139.2                                          | 23400                                |
|                | 15       | 4.8                   | 124050        | 387.4                                                 | 15       | 132.4                                          | 23600                                |
|                | 16       | -1.7                  | 136800        | 369.7                                                 | 16       | 186.4                                          | 29600                                |

第 3.2.1.c-1-9(1)表 解析モデル諸元(原子炉建屋 水平 NS 方向)

| 部位             | 質点<br>番号 | 高さ<br>T.M.S.L.<br>(m) | 質点重量<br>W(kN) | 回転慣性<br>重量I <sub>G</sub><br>(×10 <sup>5</sup> kN・m <sup>2</sup> ) | 部材<br>番号 | せん断<br>断面積<br>A <sub>s</sub> (m <sup>2</sup> ) | 断面2次<br>モーメント<br>I (m <sup>4</sup> ) |
|----------------|----------|-----------------------|---------------|-------------------------------------------------------------------|----------|------------------------------------------------|--------------------------------------|
|                | 1        | 49.7                  | 39490         | 147.1                                                             | 1        | 54.7                                           | 30000                                |
|                | 2        | 38.2                  | 80520         | 300.1                                                             | 2        | 122.9                                          | 62600                                |
|                | 3        | 31.7                  | 89570         | 299.1                                                             | 3        | 172.7                                          | 87900                                |
|                | 4        | 23.5                  | 67270         | 275.6                                                             | 4        | 131.8                                          | 81900                                |
| 61 日卒 立7       | 5        | 18.1                  | 50210         | 210.8                                                             | 5        | 166.7                                          | 92800                                |
| 外壁部            | 6        | 12.3                  | 78630         | 320.7                                                             | 6        | 179.3                                          | 114600                               |
|                | 7        | 4.8                   | 76690         | 316.8                                                             | 7        | 211.5                                          | 124000                               |
|                | 8        | -1.7                  | 79240         | 324.6                                                             | 8        | 259.5                                          | 131000                               |
|                | 9        | -8.2                  | 342450        | 1039.5                                                            | 9        | 3373.4                                         | 998600                               |
|                | 10       | -13.7                 | 216040        | 644.3                                                             | ******   |                                                |                                      |
|                | 11       | 31.7                  | 86300         | 267.7                                                             | 11       | 219.0                                          | 6700                                 |
|                | 12       | 23.5                  | 172540        | 474.6                                                             | 12       | 222.8                                          | 23300                                |
| 原子炉            | 13       | 18.1                  | 108040        | 340.3                                                             | 13       | 207.4                                          | 23100                                |
| 恰納谷菇<br>(RCCV) | 14       | 12.3                  | 201780        | 453.1                                                             | 14       | 152.1                                          | 23400                                |
|                | 15       | 4.8                   | 127480        | 432.5                                                             | 15       | 180.1                                          | 21200                                |
|                | 16       | -1.7                  | 138860        | 409.9                                                             | 16       | 164.4                                          | 23800                                |

第3.2.1.c-1-9(2)表 解析モデル諸元(原子炉建屋 水平 EW 方向)

第3.2.1.c-1-9(3)表 建屋のばね定数(原子炉建屋 水平 EW 方向)

| 部材<br>番号 | 位置   | 剛性   | 減衰定数<br>(%) |      |
|----------|------|------|-------------|------|
| Κθ       | 9-12 | 回転剛性 | 2.18        | 4.85 |

#### 第3.2.1.c-1-9(4)表 地盤ばね定数と減衰係数

|        | ばね番号 | ばね定数                   | 減衰係数                      |
|--------|------|------------------------|---------------------------|
|        | K1   | $4.63 \times 10^{-5}$  | $2.90 \times$ 10 $^5$     |
| 側面     | K3   | $1.23 \times 10^{-6}$  | $7.70 \times$ 10 $^5$     |
| 水平ばね   | K5   | $6.62 \times 10^{-6}$  | $1.52	imes	ext{ 10}^{-6}$ |
|        | K7   | $3.61 \times 10^{-6}$  | 7.73 $\times$ 10 $^5$     |
|        | K2   | $3.59 \times 10^{-8}$  | $7.11 \times$ 10 $^7$     |
| 側面     | K4   | 9.53 × 10 <sup>8</sup> | $1.89 \times$ 10 $^8$     |
| 回転ばね   | K6   | 5.24 × 10 <sup>9</sup> | $3.37 \times$ 10 $^{8}$   |
|        | K8   | $2.82 \times 10^{-9}$  | $1.70 \times$ 10 $^8$     |
| 底面水平ばね | К9   | $4.71~\times~10^{-7}$  | $2.27 \times 10^{-6}$     |
| 底面回転ばね | K10  | $4.12 \times 10^{-10}$ | $5.01 \times 10^{8}$      |

(原子炉建屋 2000gal 規準化入力 NS 方向)

注: ばね定数の単位は、kN/m(水平)、kN·m/rad(回転)

減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

### 第3.2.1.c-1-9(5)表 地盤ばね定数と減衰係数

(原子炉建屋 2000gal 規準化入力 EW 方向)

|        | ばね番号 | ばね定数                    | 減衰係数                  |
|--------|------|-------------------------|-----------------------|
|        | K1   | $4.63 \times 10^{-5}$   | $2.92 \times$ 10 $^5$ |
| 側面     | К3   | $1.23 \times 10^{-6}$   | $7.73 \times$ 10 $^5$ |
| 水平ばね   | K5   | $6.62 \times 10^{-6}$   | $1.52 \times$ 10 $^6$ |
|        | K7   | $3.61 \times 10^{-6}$   | $7.72 \times$ 10 $^5$ |
|        | K2   | $3.59 \times 10^{-8}$   | $7.13 \times$ 10 $^7$ |
| 側面     | K4   | 9.53 × 10 <sup>8</sup>  | $1.89 \times$ 10 $^8$ |
| 回転ばね   | K6   | 5.24 × 10 <sup>9</sup>  | $3.39 \times 10^{8}$  |
|        | K8   | $2.82 \times 10^{-9}$   | 1.71 $	imes$ 10 $^8$  |
| 底面水平ばね | K9   | 4.69 × 10 <sup>-7</sup> | $2.25 \times 10^{-6}$ |
| 底面回転ばね | K10  | $4.44~\times~10^{-10}$  | $5.82 \times 10^{-8}$ |

注: ばね定数の単位は、kN/m(水平)、kN·m/rad(回転)

減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

| 部位  | 質点<br>番号 | 高さ<br>T.M.S.L.<br>(m) | 質点重量<br>W(kN) | 回転慣性<br>重量I <sub>G</sub><br>(×10 <sup>6</sup> kN·m <sup>2</sup> ) | 部材<br>番号 | せん断<br>断面積<br>A <sub>s</sub> (m <sup>2</sup> ) | 断面2次<br>モーメント<br>I(m <sup>4</sup> ) |
|-----|----------|-----------------------|---------------|-------------------------------------------------------------------|----------|------------------------------------------------|-------------------------------------|
|     | 1        | 24.1                  | 68160         | 10.89                                                             | 1        | 76.7                                           | 24000                               |
|     | 2        | 17.3                  | 92410         | 14.80                                                             | 2        | 112.1                                          | 27400                               |
| 建屋部 | 3        | 12.3                  | 103900        | 18.55                                                             | 3        | 151.7                                          | 41700                               |
|     | 4        | 6.5                   | 120780        | 22.62                                                             | 4        | 156.8                                          | 53200                               |
|     | 5        | 1.0                   | 65170         | 13.89                                                             | 5        | 153.6                                          | 53200                               |
| 基礎  | 6        | -2.7                  | 124330        | 19.88                                                             | 6        | 2478.0                                         | 364300                              |
| スラブ | 7        | -5.5                  | 81650         | 12.01                                                             |          |                                                |                                     |

第3.2.1.c-1-10(1)表 解析モデル諸元(コントロール建屋 水平 NS方向)

第3.2.1.c-1-10(2)表 解析モデル諸元(コントロール建屋 水平 EW 方向)

| 部位  | 質点<br>番号 | 高さ<br>T.M.S.L.<br>(m) | 質点重量<br>W(kN) | 回転慣性<br>重量I <sub>G</sub><br>(×10 <sup>6</sup> kN·m <sup>2</sup> ) | 部材<br>番号 | せん断<br>断面積<br>A <sub>s</sub> (m <sup>2</sup> ) | 断面2次<br>モーメント<br>I(m <sup>4</sup> ) |
|-----|----------|-----------------------|---------------|-------------------------------------------------------------------|----------|------------------------------------------------|-------------------------------------|
|     | 1        | 24.1                  | 68160         | 22.64                                                             | 1        | 68.9                                           | 38100                               |
|     | 2        | 17.3                  | 92410         | 30.06                                                             | 2        | 129.8                                          | 61100                               |
| 建屋部 | 3        | 12.3                  | 103900        | 33.17                                                             | 3        | 151.7                                          | 84100                               |
|     | 4        | 6.5                   | 120780        | 37.43                                                             | 4        | 204.1                                          | 109100                              |
|     | 5        | 1.0                   | 65170         | 24.86                                                             | 5        | 202.3                                          | 107800                              |
| 基礎  | 6        | -2.7                  | 124330        | 38.72                                                             | 6        | 2478.0                                         | 718800                              |
| スラブ | 7        | -5.5                  | 81650         | 23.70                                                             |          |                                                |                                     |

#### 第3.2.1.c-1-10(3)表 地盤ばね定数と減衰係数 (コントロール建屋 2000gal 規準化入力 NS 方向)

|            | ばね番号 | ばね定数                  | 減衰係数                 |
|------------|------|-----------------------|----------------------|
|            | K1   | 9.16×10 <sup>5</sup>  | 5.33×10 <sup>5</sup> |
| 側面<br>水平ばね | К3   | 6.14×10 <sup>5</sup>  | 3.57×10 <sup>5</sup> |
|            | K5   | 2.64×10 <sup>5</sup>  | 1.54×10 <sup>5</sup> |
|            | K2   | 5.22×10 <sup>8</sup>  | 9.11×10 <sup>7</sup> |
| 側面<br>回転ばね | K4   | 3.50×10 <sup>8</sup>  | 6.10×10 <sup>7</sup> |
|            | K6   | 1.51×10 <sup>8</sup>  | 2.63×10 <sup>7</sup> |
| 底面<br>水平ばね | K7   | 4.31×10 <sup>7</sup>  | $1.81 \times 10^{6}$ |
| 底面<br>回転ばね | K8   | 2.37×10 <sup>10</sup> | 2.82×10 <sup>8</sup> |

注: ばね定数の単位は, kN/m(水平), kN·m/rad(回転)

減衰係数の単位は, kN・s/m(水平), kN・s・m/rad(回転)

#### 第3.2.1.c-1-10(4)表 地盤ばね定数と減衰係数 (コントロール建屋 2000gal 規準化入力 EW 方向)

|            | ばね番号 | ばね定数                  | 減衰係数                 |
|------------|------|-----------------------|----------------------|
|            | K1   | 9.16×10 <sup>5</sup>  | 5.37×10 <sup>5</sup> |
| 側面<br>水平ばね | К3   | 6.14×10 <sup>5</sup>  | 3.60×10 <sup>5</sup> |
|            | K5   | 2.64×10 <sup>5</sup>  | 1.55×10 <sup>5</sup> |
|            | K2   | 5.22×10 <sup>8</sup>  | 9.13×10 <sup>7</sup> |
| 側面<br>回転ばね | K4   | 3.50×10 <sup>8</sup>  | 6.12×10 <sup>7</sup> |
|            | K6   | 1.51×10 <sup>8</sup>  | 2.64×10 <sup>7</sup> |
| 底面<br>水平ばね | K7   | 4.18×10 <sup>7</sup>  | 1.70×10 <sup>6</sup> |
| 底面<br>回転ばね | K8   | 3.74×10 <sup>10</sup> | 6.47×10 <sup>8</sup> |

注:ばね定数の単位は, kN/m(水平), kN·m/rad(回転) 減衰係数の単位は, kN·s/m(水平), kN·s·m/rad(回転)

## 第3.2.1.c-1-11(1)表 解析モデル諸元(タービン建屋 水平 NS方向) 質点重量および回転慣性重量

| 標高      |        | Z        | <b></b> | 2      |
|---------|--------|----------|---------|--------|
| 1.M.S.L | 1/6余台  | <u>ج</u> | 圭       | 座      |
|         |        | (1)      | (2)     |        |
| 44 3    |        | 34230    | 20910   | _      |
| 11.5    |        | 24615    | 6678    |        |
|         |        | (3)      | 0070    | _      |
| 38.6    |        | 52320    | -       |        |
| 2010    |        | 11346    | ~~      |        |
|         |        | (4)      | (5)     | (6)    |
| 30.9    |        | 106960   | 41250   | 8290   |
|         |        | 30626    | 75099   | 1373   |
|         |        |          | (7)     | (8)    |
| 25.8    |        |          | 41390   | 23190  |
|         |        |          | 441907  | 247039 |
|         | (19)   | (9)      | (10)    |        |
| 20.4    | 103470 | 186550   | 97680   |        |
|         | -      | 347244   | 391079  |        |
|         | (20)   | (11)     | (12)    |        |
| 12.3    | 70210  | 171270   | 204800  |        |
|         | -      | 603207   | 505631  |        |
|         |        | (13)     | (14)    |        |
| 4.9     |        | 163700   | 206300  |        |
|         |        | 576543   | 741432  |        |
|         |        | (15)     | (16)    |        |
| -1.1    |        | 116250   | 148030  |        |
|         |        | 385264   | 1020902 |        |
|         |        | (17)     |         |        |
| -5.1    |        | 494300   |         |        |
|         |        | 3783700  |         |        |
|         |        | (18)     |         |        |
| -7.9    |        | 264930   |         |        |
|         |        | 1487022  |         |        |

| 質点重量 ( kN )                                  |
|----------------------------------------------|
| 回転慣性重量 (×10 <sup>2</sup> kN·m <sup>2</sup> ) |

|         | -     |        |        |     |
|---------|-------|--------|--------|-----|
| 標高      |       | 7#     |        | -   |
| I.M.S.L | 1/6架台 | 建      |        | 厔   |
| (m)     |       |        | 1      | 1   |
|         |       | (1)    | (2)    | _   |
| 44.3    |       | 4.00   | ļ      |     |
|         |       | -      | 2.70   |     |
|         |       | (3)    |        |     |
| 38.6    |       | 5.80   |        |     |
|         |       | -      | -      |     |
|         |       | (4)    | (5)    | (6) |
| 30.9    |       |        | 95.4   | 1.1 |
|         |       | 204.1  | 64644  | -   |
|         |       |        | (7)    | (8) |
| 25.8    |       |        | 120.5  |     |
|         |       | 84328  | 50284  | 4.5 |
|         | (19)  | (9)    | (10)   |     |
| 20.4    | 13.9  | 168.6  | 146.5  |     |
|         | -     | 82226  | 72329  | -   |
|         | (20)  | (11)   | (12)   |     |
| 12.3    |       | 248.0  | 282.0  |     |
|         |       | 148356 | 108286 |     |
|         |       | (13)   | (14)   |     |
| 4.9     | 10.2  | 251.5  | 393.6  |     |
|         |       | 129870 | 178046 |     |
|         |       | (15)   | (16)   |     |
| -1.1    |       | 273.8  | 392.0  |     |
|         | -     | 145704 | 171477 |     |
|         |       | (17)   |        |     |
| -5.1    |       | 7954   |        |     |
|         |       | -      |        |     |
| -7.9    |       | (18)   |        |     |

# 第3.2.1.c-1-11(2)表 解析モデル諸元(タービン建屋 水平 NS方向) せん断断面積および断面二次モーメント

| せん | 断断面積 ( m <sup>2</sup> )    |
|----|----------------------------|
| 断面 | 二次モーメント ( m <sup>4</sup> ) |

# 第3.2.1.c-1-11(3)表 解析モデル諸元(タービン建屋 水平 EW 方向) 質点重量および回転慣性重量

| 標高      |        |         |       |       |        |        |       | _     |        |          |
|---------|--------|---------|-------|-------|--------|--------|-------|-------|--------|----------|
| T.M.S.L | T/G架台  |         | 建     |       |        |        |       | 厔     |        |          |
| (m)     |        | (1)     |       |       | (2)    |        | (4)   |       | (5)    |          |
| 44.2    |        | (1)     | (2)   |       | (3)    |        | (4)   |       | (5)    |          |
| 44.5    |        | 4430    | 13150 |       | 13130  |        | 15520 |       | 2107   |          |
|         |        | 16/     | 6325  | 1     | 6315   |        | 6404  |       | 318/   | <u> </u> |
| 29.6    |        | (6)     | (/)   | -     | (8)    |        | (9)   | •     | (10)   | -        |
| 38.0    |        | 252     | 12/50 |       | 12490  |        | 5796  |       | 9580   | -        |
|         |        | 353     | 6247  | (10)  | 6119   | (10)   | 5/86  | (17)  | 2824   | (10)     |
|         |        | (11)    | (12)  | (19)  | (13)   | (18)   | (14)  | (17)  | (15)   | (16)     |
| 30.9    |        | 11230   | 15770 | 2170  | 31100  | 19900  | 33180 | 19840 | 18760  | 4550     |
|         |        | 1432    | 7786  | 0     | 9905   | 6051   | 10670 | 6031  | 5943   | 677      |
|         |        | (20)    |       | (21)  | -      | (22)   |       | (23)  |        | (24)     |
| 25.8    |        | 10920   |       | 16720 | -      | 11480  |       | 12390 |        | 13070    |
|         |        | 716     |       | 8110  |        | 794    |       | 932   |        | 3805     |
|         | (42)   | (25)    | (26)  |       | (27)   | (31)   | (28)  | (30)  | (29)   |          |
| 20.4    | 103470 | 15110   | 52710 |       | 47390  | 24990  | 51130 | 25800 | 67100  |          |
|         | -      | 775     | 79287 |       | 24879  | 13818  | 27223 | 15573 | 91614  |          |
|         | (43)   | (32)    |       |       | (33)   | (35)   |       |       | (34)   |          |
| 12.3    | 70210  | 125510  |       |       | 75880  | 83770  |       |       | 90910  |          |
|         | -      | 322609  |       |       | 147835 | 166321 |       |       | 190033 |          |
|         |        | (36)    |       |       |        | (37)   |       |       |        |          |
| 4.9     |        | 289670  |       |       |        | 80330  |       |       |        |          |
|         |        | 1049331 |       |       |        | 163506 |       |       |        |          |
|         |        | (38)    |       |       |        | (39)   |       |       |        |          |
| -1.1    |        | 185020  |       |       |        | 79260  |       |       |        |          |
|         |        | 668411  |       |       |        | 105304 |       |       |        |          |
|         |        | (40)    |       |       |        |        |       |       |        |          |
| -5.1    |        | 494300  |       |       |        |        |       |       |        |          |
|         |        | 5278312 |       |       |        |        |       |       |        |          |
|         |        | (41)    |       |       |        |        |       |       |        |          |
| -7.9    |        | 264930  |       |       |        |        |       |       |        |          |
|         |        | 2079794 |       |       |        |        |       |       |        |          |

| 質点重量(kN | )                                           |
|---------|---------------------------------------------|
| 回転慣性重量  | $(\times 10^2 \text{ kN} \cdot \text{m}^2)$ |

# 第3.2.1.c-1-11(4)表 解析モデル諸元(タービン建屋 水平 EW 方向) せん断断面積および断面二次モーメント

| 標高<br>T.M.S.L<br>(m) | T/G架台 |        | 建     |      |      |       |      | 屋    |       |      |
|----------------------|-------|--------|-------|------|------|-------|------|------|-------|------|
|                      |       | (1)    | (.    | 2)   | (    | 3)    | (4   | 4)   | (     | 5)   |
| 44.3                 |       | 1.30   | 0.72  |      | 0.72 |       | 0.72 |      | 0.72  |      |
|                      |       | -      | -     | 0.06 | -    | 0.09  | -    | 0.09 | -     | 0.09 |
|                      |       | (6)    | (7)   |      | (8)  |       | (9)  |      | (10)  |      |
| 38.6                 |       | 1.90   | 0.91  |      | 0.91 |       | 0.91 |      | 0.91  |      |
|                      |       | -      | -     | -    | -    | -     | -    | -    | -     | -    |
|                      |       | (11)   | (12)  | (19) | (13) | (18)  | (14) | (17) | (15)  | (16) |
| 30.9                 |       | 25.3   |       | 0.3  |      | 29.2  |      | 31.1 |       | 14.9 |
|                      |       | 7074   | 15.0  | -    | 26.8 | 3772  | 26.8 | 3772 | 37.8  | 233  |
|                      |       | (20)   |       | (21) |      | (22)  |      | (23) |       | (24) |
| 25.8                 |       | 42.9   | 222   | 9.6  | 452  | 26.9  | 294  | 28.2 | 1318  | 24.2 |
|                      |       | 25111  |       | 99   |      | 559   |      | 559  |       | 1436 |
|                      | (42)  | (25)   | (2    | 26)  | (27) | (31)  | (28) | (30) | (2    | 29)  |
| 20.4                 | 25.3  | 61.4   | 62.8  |      | 45.9 | 37.6  | 11.9 | 19.3 | 107.4 |      |
|                      | -     | 38110  | 12036 |      | 2247 | 1022  | 157  | 372  | 27633 |      |
|                      | (43)  | (32)   |       |      | (33) | (35)  | (33) | (35) | (34)  |      |
| 12.3                 |       | 175.5  |       |      | 67.3 | 111.4 |      |      | 117.1 |      |
|                      |       | 69335  |       |      | 3640 | 14180 |      |      | 55072 |      |
|                      |       | (36)   |       |      | (36) | (37)  |      |      | (36)  |      |
| 4.9                  | 11.4  | 427.5  |       |      |      | 128.3 |      |      |       |      |
|                      |       | 141670 |       |      |      | 13128 |      |      |       |      |
|                      |       | (38)   |       |      |      | (39)  |      |      |       |      |
| -1.1                 | -     | 495.7  |       |      |      | 154.9 |      |      |       |      |
|                      |       | 147630 |       |      |      | 11394 |      |      |       |      |
|                      |       | (40)   |       |      |      |       |      |      |       |      |
| -5.1                 |       | 7954   |       |      |      |       |      |      |       |      |
|                      |       | -      |       |      |      |       |      |      |       |      |
| -7.9                 |       | (41)   |       |      |      |       |      |      |       |      |

せん断断面積(m<sup>2</sup>) 断面二次モーメント(m<sup>4</sup>) 第3.2.1.c-1-11(5)表 建屋のばね定数(タービン建屋 水平 NS方向)

| 部材<br>番号 | 位置      | 剛性(×10 <sup>4</sup> kN/m) | 減衰定数<br>(%) |
|----------|---------|---------------------------|-------------|
| K1       | 1 - 2   | 45.1                      | 2           |
| K2       | 4 - 5   | 0.0                       | 4.85        |
| K3       | 9 - 10  | 763.7                     | 4.85        |
| K4       | 11 - 12 | 904.0                     | 4.85        |
| K5       | 13 - 14 | 677.4                     | 4.85        |
| K6       | 15 - 16 | 477.3                     | 4.85        |
| K7       | 5 - 6   | 15.7                      | 2           |
| K8       | 7 - 8   | 27.6                      | 4.85        |

#### 第3.2.1.c-1-11(6)表 建屋のばね定数(タービン建屋 水平 EW 方向)

#### 減衰定数 部材 位置 剛性 ( $\times 10^4$ kN/m) 番号 (%) 1 - 2 2 K1 54.9 K2 6 - 7 141.5 4.85 K3 11 - 12 170.2 4.85 K4 25 - 26 1541.2 4.85 K5 11 - 19 0.0 4.85 20 - 21 27.5 2 K6 4.85 K7 36 - 37 156.4 38 - 39 703.9 K8 4.85 2 K9 2 - 3 36.3 K10 7 - 8 200.1 4.85 K11 12 - 13 421.0 4.85 K12 26 - 27 1154.8 4.85 K13 32 - 33 429.0 4.85 K14 18 - 19 0.0 4.85 2 K15 21 - 22 13.7 K16 26 - 31 764.9 4.85 K17 32 - 35 401.4 4.85 3 - 4 2 K18 36.3 K19 158.7 4.85 8 - 9 13 - 14 4.85 K20 618.8 K21 27 - 28 1082.3 4.85 17 - 18 2 K22 173.6 K23 22 - 23 0.0 4.85 K24 30 - 31 276.0 4.85 K25 36 - 37 4.85 174.8 2 K26 4 - 5 38.2 199.0 K27 9 - 10 4.85 K28 14 - 15 473.9 4.85 K29 28 - 29 745.3 4.85 K30 33 - 34 744.2 4.85 K31 4.85 16 - 17 0.0 K32 23 - 24 12.7 2 K33 29 - 30 881.0 4.85 K34 34 - 35 517.6 4.85

#### 第3.2.1.c-1-11(7)表 地盤ばね定数と減衰係数

|        |                 | ばね定数                      | 減衰係数                   |
|--------|-----------------|---------------------------|------------------------|
|        | K <sub>s1</sub> | $1.69$ $	imes$ 10 $^5$    | $1.83$ $	imes$ 10 $^5$ |
|        | K <sub>s2</sub> | $2.27$ $	imes$ 10 $^5$    | $2.46 \times 10^{-5}$  |
| 側面     | K <sub>s3</sub> | $4.03$ $	imes$ 10 $^5$    | $4.36 \times 10^{-5}$  |
| 水平ばね   | K <sub>s4</sub> | $5.41$ $	imes$ 10 $^5$    | $5.86 \times 10^{-5}$  |
|        | K <sub>s5</sub> | $1.15$ $	imes$ 10 $^6$    | $8.12 \times 10^{-5}$  |
|        | K <sub>s6</sub> | $1.84$ $	imes$ 10 $^6$    | $6.14 \times 10^{-5}$  |
|        | K <sub>r1</sub> | $3.10$ $\times$ 10 $^{8}$ | $9.79$ $	imes$ 10 $^7$ |
| 側面     | K <sub>r2</sub> | $4.15$ $	imes$ 10 $^8$    | $1.31 \times 10^{-8}$  |
|        | K <sub>r3</sub> | $7.37$ $	imes$ 10 $^8$    | $2.33 \times 10^{-8}$  |
| 回転ばね   | K <sub>r4</sub> | $9.89$ $	imes$ 10 $^8$    | $3.13 \times 10^{-8}$  |
|        | K <sub>r5</sub> | $2.21$ $	imes$ 10 $^9$    | $4.49 \times 10^{-8}$  |
|        | K <sub>r6</sub> | $3.39 \times 10^{-9}$     | $3.71 \times 10^{-8}$  |
| 底面水平ばね | K <sub>s7</sub> | $7.38 \times 10^{-7}$     | $5.56 \times 10^{-6}$  |
| 底面回転ばね | K <sub>r7</sub> | $1.80 \times 10^{-11}$    | $6.29 \times 10^{-9}$  |

#### (タービン建屋 2000gal 規準化入力 NS 方向)

注:ばね定数の単位は、kN/m(水平)、kN・m/rad(回転)

減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

#### 第3.2.1.c-1-11(8)表 地盤ばね定数と減衰係数

| (      |                 | =0008m2//0110/0/012           |                         |
|--------|-----------------|-------------------------------|-------------------------|
|        |                 | ばね定数                          | 減衰係数                    |
|        | K <sub>s1</sub> | $2.99$ $	imes$ 10 $^5$        | $3.21$ $	imes$ 10 $^5$  |
|        | K <sub>s2</sub> | $9.79$ $	imes$ 10 $^4$        | $1.05$ $	imes$ 10 $^5$  |
| 側面     | K <sub>s3</sub> | 7.11 $\times$ 10 <sup>5</sup> | $7.65$ $\times$ 10 $^5$ |
| 水平ばね   | K <sub>s4</sub> | $2.33 \times 10^{-5}$         | $2.51 \times 10^{-5}$   |
|        | K <sub>s5</sub> | $1.15$ $	imes$ 10 $^6$        | $8.08$ $	imes$ 10 $^5$  |
|        | K <sub>s6</sub> | $1.84$ $	imes$ 10 $^6$        | 6.11 × 10 <sup>5</sup>  |
|        | K <sub>r1</sub> | $5.46$ $	imes$ 10 $^8$        | $1.72 \times 10^{-8}$   |
| 側面     | K <sub>r2</sub> | $1.79 \ 	imes \ 10^{-8}$      | $5.65$ $	imes$ 10 $^7$  |
|        | K <sub>r3</sub> | $1.30 \times 10^{-9}$         | $4.10 \times 10^{-8}$   |
| 回転ばね   | K <sub>r4</sub> | $4.26 \times 10^{-8}$         | $1.35 \times 10^{-8}$   |
|        | K <sub>r5</sub> | $2.21 \times 10^{-9}$         | $4.47 \times 10^{-8}$   |
|        | K <sub>r6</sub> | $3.39 \times 10^{-9}$         | $3.68 \times 10^{-8}$   |
| 底面水平ばね | K <sub>s7</sub> | $7.53 \times 10^{-7}$         | $5.78$ $	imes$ 10 $^6$  |
| 底面回転ばね | K <sub>r7</sub> | $1.40$ $	imes$ 10 $^{11}$     | $4.13 \times 10^{-9}$   |

(タービン建屋 2000gal 規準化入力 EW 方向)

注: ばね定数の単位は、kN/m (水平)、kN・m/rad (回転)

減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

| T.M.S.L.<br>(m) | 建屋     |           |  |  |  |
|-----------------|--------|-----------|--|--|--|
|                 | (10)   | (11)      |  |  |  |
| 44.3            | 24625  | 8404      |  |  |  |
|                 | 3.135  | 1.106     |  |  |  |
|                 | (9)    |           |  |  |  |
| 36.0            | 21947  |           |  |  |  |
|                 | 2.661  |           |  |  |  |
|                 | (7)    |           |  |  |  |
| 30.9            | 33804  |           |  |  |  |
|                 | 4.025  |           |  |  |  |
|                 |        | (8)       |  |  |  |
| 30.4            |        | 19937     |  |  |  |
|                 | 2.318  |           |  |  |  |
|                 | (6)    |           |  |  |  |
| 20.4            | 125574 |           |  |  |  |
|                 | 15.    | 37        |  |  |  |
|                 | (5)    |           |  |  |  |
| 12.3            | 167723 |           |  |  |  |
|                 | 19.33  |           |  |  |  |
|                 | (4)    |           |  |  |  |
| 6.5             | 185669 |           |  |  |  |
|                 | 21.67  |           |  |  |  |
|                 | (3)    |           |  |  |  |
| -1.1            | 209333 |           |  |  |  |
|                 | 23.04  |           |  |  |  |
| <b>C</b> 1      | (1)    | 2)<br>202 |  |  |  |
| -6.1            | 138.   | 303<br>70 |  |  |  |
|                 | 15.    | 12        |  |  |  |
| 9.6             | 720    | 1)        |  |  |  |
| -8.6            | /08    | 004<br>77 |  |  |  |
| 1               | ι δ.Z  | 1.1.      |  |  |  |

|        |   | T.M.S.L.<br>(m) | 建            | 屋                    |
|--------|---|-----------------|--------------|----------------------|
|        |   |                 | (10)         | (11)                 |
| ,<br>, |   | 44.3            | - 0.341      | 0 101                |
|        |   | 36.0            | (9)<br>0.480 | 0.171                |
|        |   |                 | -            |                      |
|        |   |                 | (7)          | _                    |
|        | 3 | 30.9            | 36.49        |                      |
| 1      |   | 30.4            | 4990         | (8)<br>35.78<br>4230 |
|        |   |                 | (6           | 5)                   |
|        |   | 20.4            | 192          |                      |

第 3.2.1.c-1-12(1)表 解析モデル諸元 (廃棄物処理建屋 水平 NS 方向)

| 30.4 | 4990    | 4230 |  |
|------|---------|------|--|
| 20.4 | (6)     |      |  |
| 20.4 | 25540   |      |  |
|      | (:      | 5)   |  |
| 12.3 | 271     | .01  |  |
|      | 44      | 580  |  |
|      | (4)     |      |  |
| 6.5  | 305.20  |      |  |
|      | 49890   |      |  |
|      | (3)     |      |  |
| -1.1 | 300.95  |      |  |
|      | 50620   |      |  |
|      | (2)     |      |  |
| -6.1 | 2613.40 |      |  |
|      | 279100  |      |  |
| -8.6 | (1)     |      |  |

| 重量(kN)                                       |  |
|----------------------------------------------|--|
| 回転慣性重量 (×10 <sup>6</sup> kN・m <sup>2</sup> ) |  |

| せん断断面積(m <sup>2</sup> )    |  |
|----------------------------|--|
| 断面二次モーメント(m <sup>4</sup> ) |  |

# 第 3.2.1.c-1-12(2)表 解析モデル諸元(廃棄物処理建屋 水平 EW 方向)

| T.M.S.L.<br>(m) | 建屋                            |  |  |
|-----------------|-------------------------------|--|--|
| 44.3            | (10)<br>33029                 |  |  |
| 36.0            | (9)<br>21947<br>0.5875        |  |  |
| 30.9            | (7)<br>33804<br>1.322         |  |  |
| 30.4            | (8)<br><u>19937</u><br>0.2318 |  |  |
| 20.4            | (6)<br>125574<br>115.5        |  |  |
| 12.3            | (5)<br>167723<br>67.40        |  |  |
| 6.5             | (4)<br>185669<br>78.20        |  |  |
| -1.1            | (3)<br>209333<br>86.11        |  |  |
| -6.1            | (2)<br>138303<br>66.50        |  |  |
| -8.6            | (1)<br>76884<br>34.16         |  |  |

| T.M.S.L.<br>(m) | 建屋              |              |  |
|-----------------|-----------------|--------------|--|
|                 | (10)            |              |  |
| 44.3            | 0.4329          | 0.0252       |  |
| 36.0            | (9)<br>0.4305   |              |  |
|                 | - (7)           |              |  |
| 30.9            | 47.75           | —            |  |
|                 |                 | (8)          |  |
| 30.4            | 1775            | 24.59<br>541 |  |
|                 | (6)             |              |  |
| 20.4            | 184.81<br>82380 |              |  |
|                 | (5)             |              |  |
| 12.3            | 330.09          |              |  |
|                 | 163990          |              |  |
|                 | (4)             |              |  |
| 6.5             | 381.66          |              |  |
|                 | 214550          |              |  |
|                 | (3)             |              |  |
| -1.1            | 415.42          |              |  |
|                 | 228710          |              |  |
| <i>c</i> 1      | (2)             |              |  |
| -6.1            | 2613.40         |              |  |
|                 | 1160600         |              |  |
| -8.6            | (1)             |              |  |

| 重量(kN)                                       |  |  |
|----------------------------------------------|--|--|
| 回転慣性重量 (×10 <sup>6</sup> kN・m <sup>2</sup> ) |  |  |

| せん断断面積(m <sup>2</sup> )    |  |
|----------------------------|--|
| 断面二次モーメント(m <sup>4</sup> ) |  |

| 部材<br>番号 | 位置      | 剛性(×10 <sup>4</sup> kN/m) | 減衰定数<br>(%) |  |
|----------|---------|---------------------------|-------------|--|
| K1       | 10 - 11 | 29.58                     | 2           |  |

第3.2.1.c-1-12(3)表 建屋のばね定数(廃棄物処理建屋 水平 NS方向)

#### 第3.2.1.c-1-12(4)表 地盤ばね定数と減衰係数

(廃棄物処理建屋 2000gal 規準化入力 NS 方向)

|        |                 | ばね定数                      | 減衰係数                     |  |
|--------|-----------------|---------------------------|--------------------------|--|
| 側面水平ばね | K <sub>s1</sub> | $2.18$ $	imes$ 10 $^6$    | $4.10$ $	imes$ 10 $^5$   |  |
| 側面回転ばね | K <sub>r1</sub> | $1.31$ $	imes$ 10 $^9$    | $7.13$ $	imes$ 10 $^7$   |  |
| 底面水平ばね | K <sub>s2</sub> | $4.57$ $	imes$ 10 $^7$    | $2.04$ $	imes$ 10 $^{6}$ |  |
| 底面回転ばね | K <sub>r2</sub> | $1.96$ $	imes$ 10 $^{10}$ | $1.39 \times 10^{-8}$    |  |

注:ばね定数の単位は、kN/m(水平)、kN・m/rad(回転) 減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

第3.2.1.c-1-12(5)表 地盤ばね定数と減衰係数 (廃棄物処理建屋 2000gal 規準化入力 EW 方向)

|        |                 | ばね定数                      | 減衰係数                   |  |
|--------|-----------------|---------------------------|------------------------|--|
| 側面水平ばね | K <sub>s1</sub> | $2.18$ $	imes$ 10 $^6$    | $4.08$ $	imes$ 10 $^5$ |  |
| 側面回転ばね | K <sub>r1</sub> | $1.31$ $	imes$ 10 $^9$    | $7.45$ $	imes$ 10 $^7$ |  |
| 底面水平ばね | K <sub>s2</sub> | $4.19$ $	imes$ 10 $^7$    | $1.71$ $	imes$ 10 $^6$ |  |
| 底面回転ばね | K <sub>r2</sub> | $5.26$ $	imes$ 10 $^{10}$ | $9.60 \times 10^{-8}$  |  |

注:ばね定数の単位は、kN/m(水平)、kN・m/rad(回転) 減衰係数の単位は、kN・s/m(水平)、kN・s・m/rad(回転)

| 方向 | 係数                 |                              |                         | 中央値  | $\beta_{\scriptscriptstyle R}$ | $eta_{\scriptscriptstyle U}$ |      |
|----|--------------------|------------------------------|-------------------------|------|--------------------------------|------------------------------|------|
|    | $F_1$              | 解放基盤表面の地震動に関す<br>る係数         | スペクトル形状係数               |      |                                | 0.00                         | 0.00 |
|    | Б                  | 建屋への入力地震動に関する                | 地盤モデルに関するサブ応答係数         |      | 1.00                           |                              |      |
|    | F2                 | 係数                           | 基盤による入力損失に関するサブ応答       | 孫数   | 1.00                           |                              |      |
| 水平 |                    |                              | 建屋振動モデルに関するサブ応答係        | 建屋減衰 | 1.00                           | 0.20                         | 0.15 |
|    |                    |                              | 数                       | 建屋剛性 | 1.00                           | 0.20                         | 0.15 |
|    | F <sub>3</sub>     | 建屋の地震応答に関する係数                | 地盤 - 建屋連成系モデルに関するサブ応答係数 |      | 1.00                           |                              |      |
|    |                    |                              | 非線形応答に関するサブ応答係数         |      | 1.00                           |                              |      |
|    |                    |                              | 地震応答解析手法に関するサブ応答係数      |      | 1.00                           | 0.00                         | 0.00 |
|    | F1                 | 解放基盤表面の地震動に関す<br>る係数         | こ関す スペクトル形状係数           |      |                                | 0.00                         | 0.00 |
|    | Б                  | 建屋への入力地震動に関する                | 地盤モデルに関するサブ応答係数         |      | 1.00                           |                              |      |
|    | F2                 | 係数                           | 基盤による入力損失に関するサブ応答       | 係数   | 1.00                           |                              |      |
| 鉛直 |                    | G <sub>3</sub> 建屋の地震応答に関する係数 | 建屋振動モデルに関するサブ応答係        | 建屋減衰 | 1.00                           | 0.10                         | 0.15 |
|    | F3                 |                              | 数 建屋剛性                  |      | 1.00                           | 0.10                         | 0.15 |
|    |                    |                              | 地盤 - 建屋連成系モデルに関するサブ応答係数 |      | 1.00                           |                              |      |
|    |                    |                              | 非線形応答に関するサブ応答係数         |      | 1.00                           |                              |      |
|    | 地震応答解析手法に関するサブ応答係数 |                              | 1.00                    | 0.00 | 0.00                           |                              |      |

第3.2.1.c-3-2 表 建屋の応答係数

建屋のスペクトル形状係数は,対象設備に応じ個別に算定する

#### 第 3.2.1.d-1(1)表 7 号機 起因事象発生頻度

| 起因事象                    | 発生頻度   |
|-------------------------|--------|
|                         | [/年]   |
| 建屋・構築物の損傷(R/B)          | 3.8E-6 |
| 建屋・構築物の損傷(RPV・PCV)      | 8.9E-7 |
| 格納容器バイパス                | 1.2E-7 |
| 原子炉冷却材圧力バウンダリ喪失         | 7.8E-7 |
| 計測・制御系喪失                | 6.9E-8 |
| 直流電源喪失                  | 6.0E-8 |
| 全交流電源喪失<br>(RCW・RSW 損傷) | 3.8E-6 |
| 全交流電源喪失<br>(D/G 損傷)     | 2.7E-7 |
| 外部電源喪失                  | 1.0E-4 |
| 過渡事象                    | 1.5E-2 |

# 第 3.2.1.d-1(2)表 6 号機 起因事象発生頻度

| 起因事象                    | 発生頻度<br>[/年] |
|-------------------------|--------------|
| 建屋・構築物の損傷(R/B)          | 3.6E-6       |
| 建屋・構築物の損傷(RPV・PCV)      | 1.2E-6       |
| 格納容器バイパス                | 9.6E-7       |
| 原子炉冷却材圧力バウンダリ喪失         | 1.0E-6       |
| 計測・制御系喪失                | 1.9E-7       |
| 直流電源喪失                  | 1.3E-7       |
| 全交流電源喪失<br>(RCW・RSW 損傷) | 1.7E-6       |
| 全交流電源喪失<br>(D/G 損傷)     | 2.0E-7       |
| 外部電源喪失                  | 1.0E-4       |
| 過渡事象                    | 1.5E-2       |

第3.2.1.d-2 表 評価対象システム一覧

| 分類   |                      |
|------|----------------------|
| 起因事象 | 建屋・構築物(原子炉建屋)        |
|      | 建屋・構築物(原子炉圧力容器・格納容器) |
|      | 格納容器バイパス             |
|      | 原子炉冷却材圧力バウンダリ        |
|      | 計測・制御系               |
|      | 直流電源                 |
|      | 原子炉補機冷却系             |
|      | 交流電源(D/G)            |
|      | 外部電源                 |
| 緩和系  | スクラム系                |
|      | SLC                  |
|      | S/R 弁開,S/R 再閉鎖       |
|      | HPCF                 |
|      | RCIC                 |
|      | ADS                  |
|      | LPFL                 |
|      | RHR                  |

| お田東色発生後の人的過程                | 務生後の上的過程 ストレスファクタ |    | 全议时期 過誤破滅 |      | 内的事象 |
|-----------------------------|-------------------|----|-----------|------|------|
| 此凶争家先主後の人的迴訣                | 認知                | 操作 | 赤俗时间      | 迴祆唯华 | (参考) |
| 炉水位制御操作失敗                   |                   |    |           |      |      |
| 水源切替操作失敗(初期 <sup>*1</sup> ) |                   |    |           |      |      |
| 水源切替操作失敗(長期)                |                   |    |           |      |      |
| 原子炉減圧起動操作失敗                 | -                 |    |           |      |      |
| 注水不能認知失敗                    | -                 |    |           |      |      |
| 高圧注水系起動操作失敗                 | -                 |    |           |      |      |
| 低圧注水系起動操作失敗                 | -                 |    |           |      |      |
| SLC 関連手動操作失敗                |                   |    |           |      |      |
| RHR 系統操作失敗                  | -                 |    |           |      |      |
| (ATWS 以外)                   |                   |    |           |      |      |
| RHR 系統操作失敗                  |                   |    |           |      |      |
| (ATWS)                      |                   |    |           |      |      |
| (太字は内的事象から変更箇所)             | <b>л</b> )        |    |           |      |      |
| *1 初期水源として S/P に切り替         | える場合              |    |           |      |      |
|                             |                   |    |           |      |      |
|                             |                   |    |           |      |      |

第3.2.1.d-3 表 起因事象発生後の人的過誤確率評価例

# 第3.2.1.d-4(1)表 7号機 起因事象別の炉心損傷頻度

| 起因事象               | 炉心損傷頻度<br>[/炉年] | 寄与割合  |
|--------------------|-----------------|-------|
| 建屋・構築物の損傷(R/B)     | 3.8E-6          | 24.6% |
| 建屋・構築物の損傷(RPV・PCV) | 8.9E-7          | 5.8%  |
| 格納容器バイパス事象         | 1.2E-7          | 0.8%  |
| 原子炉冷却材圧力バウンダリ喪失    | 7.8E-7          | 5.0%  |
| 計測・制御系喪失           | 6.9E-8          | 0.4%  |
| 直流電源喪失             | 6.0E-8          | 0.4%  |
| 全交流電源喪失(RCW・RSW損傷) | 3.8E-6          | 25.0% |
| 全交流電源喪失(D/G 損傷)    | 2.7E-7          | 1.8%  |
| 外部電源喪失             | 1.7E-6          | 11.2% |
| 過渡事象               | 3.9E-6          | 25.0% |
| 合計                 | 1.5E-5          | 100%  |

# 第3.2.1.d-4(2) 表 6号機 起因事象別の炉心損傷頻度

| 起因事象               | 炉心損傷頻度<br>[/炉年] | 寄与割合  |
|--------------------|-----------------|-------|
| 建屋・構築物の損傷(R/B)     | 3.6E-6          | 28.9% |
| 建屋・構築物の損傷(RPV・PCV) | 1.2E-6          | 9.8%  |
| 格納容器バイパス事象         | 9.6E-7          | 7.7%  |
| 原子炉冷却材圧力バウンダリ喪失    | 1.0E-6          | 8.2%  |
| 計測・制御系喪失           | 1.9E-7          | 1.5%  |
| 直流電源喪失             | 1.3E-7          | 1.0%  |
| 全交流電源喪失(RCW・RSW損傷) | 1.7E-6          | 14.0% |
| 全交流電源喪失(D/G損傷)     | 2.0E-7          | 1.6%  |
| 外部電源喪失             | 2.1E-7          | 1.6%  |
| 過渡事象               | 3.2E-6          | 25.6% |
| 合計                 | 1.2E-5          | 100%  |

# 第3.2.1.d-5(1) 表 7号機 起因事象別の炉心損傷頻度への寄与が大きい事故シーケンスの概要

| 起因事象                    | 主要な事故シーケンスの概要                                                                                                                                                                                                                            | 左欄事故シーケンスによる炉心損傷頻度<br>(起因事象別の全炉心損傷頻度) | 主要なカットセット                                              |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------------------------------------|
| 建屋・構築物の損傷<br>(R/B)      | 地震により「原子炉建屋基礎地盤<br>すべり線」又は「原子炉建屋」が損<br>傷すると建屋全体の崩壊の可能性<br>があり,同時に建屋内の格納容器<br>(RCCV)又は原子炉圧力容器など<br>の機器及び構造物が大規模な損傷<br>を受ける可能性がある。<br>発生した場合の緩和系への影響<br>を厳密に判断することが困難であ<br>るため,全損を仮定し,保守的に原<br>子炉停止及び炉心冷却が不可能に<br>なるものと想定し直接炉心損傷に<br>至るケース | 3.8E-06 [/炉年]<br>( 3.8E-06 [/炉年] )    | ・原子炉建屋基礎地盤すべり線の損傷                                      |
| 全交流電源喪失<br>(RCW・RSW 損傷) | 地震により外部電源と D/G のサ<br>ポート系 (RCW・RSW)が機能喪<br>失することで「全交流電源喪失」の<br>起因事象となる。<br>その後,事象初期の原子炉隔離時<br>冷却系 (以下,RCIC)による原子<br>炉注水に成功するものの,RCIC 運<br>転継続に必要な直流電源及び水源<br>を確保できないため注水継続に失<br>敗し炉心損傷に至るケース                                             | 3.3E-06 [/炉年]<br>( 3.8E-06 [/炉年] )    | ・外部電源喪失(地震)+ RCW 熱交換器の構造損傷<br>・外部電源喪失(地震)+ RCW 配管の構造損傷 |

# 第3.2.1.d-5(1) 表 7号機 起因事象別の炉心損傷頻度への寄与が大きい事故シーケンスの概要

| 起因事象                              | 主要な事故シナリオ                                                                                                                                                        | 左欄事故シーケンスによる炉心損傷頻度<br>(起因事象別の全炉心損傷頻度) | 主要なカットセット                                             |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| 過渡事象                              | 地震により「過渡事象」が発生するも<br>のの,外部電源は健全であり,スクラム,<br>S/R 弁による圧力制御,HPCFによる原<br>子炉注水には成功するが,RHR による<br>格納容器除熱失敗により炉心損傷に至<br>るケース                                            | 3.0E-06 [/炉年]<br>( 3.9E-06 [/炉年] )    | ・RHR 系統操作失敗(人的過誤)                                     |
| 外部電源喪失                            | 地震により「外部電源喪失」の起因事<br>象が発生するが非常用交流電源は健全<br>であり電源は確保される。その後のスク<br>ラム, S/R 弁による圧力制御に成功し,<br>HPCF による原子炉注水には成功する<br>が,残留熱除去系(以下,RHR)による<br>格納容器除熱失敗により炉心損傷に至<br>るケース | 1.4E-06 [/炉年]<br>( 1.7E-06 [/炉年] )    | ・外部電源喪失(地震) + RHR 弁の機能損傷<br>・外部電源喪失(地震) + RHR 配管の構造損傷 |
| 建屋・構築物の<br>損 傷 ( 格 納 容<br>器・圧力容器) | 地震により原子炉格納容器又は原子<br>炉圧力容器が損傷した場合の緩和系へ<br>の影響を厳密に判断することが困難で<br>あるため,保守的に原子炉停止及び炉心<br>冷却が不可能になるものと想定し直接<br>炉心損傷に至るケース                                              | 8.9E-07 [/炉年]<br>(8.9E-07 [/炉年])      | ・RPV ペデスタルの損傷                                         |

# 第3.2.1.d-5(2) 表 6号機 起因事象別の炉心損傷頻度への寄与が大きい事故シーケンスの概要

| 起因事象               | 主要な事故シーケンスの概要                                                                                                                                                                                                                            | 左欄事故シーケンスによる炉心損傷頻度<br>(起因事象別の全炉心損傷頻度) | 主要なカットセット         |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|
| 建屋・構築物の損傷<br>(R/B) | 地震により「原子炉建屋基礎地盤<br>すべり線」又は「原子炉建屋」が損<br>傷すると建屋全体の崩壊の可能性<br>があり、同時に建屋内の格納容器<br>(RCCV)又は原子炉圧力容器など<br>の機器及び構造物が大規模な損傷<br>を受ける可能性がある。<br>発生した場合の緩和系への影響<br>を厳密に判断することが困難であ<br>るため、全損を仮定し、保守的に原<br>子炉停止及び炉心冷却が不可能に<br>なるものと想定し直接炉心損傷に<br>至るケース | 3.6E-06 [/炉年]<br>( 3.6E-06 [/炉年] )    | ・原子炉建屋基礎地盤すべり線の損傷 |
| 過渡事象               | 地震により「過渡事象」が発生す<br>るものの,外部電源は健全であり,<br>スクラム,S/R 弁による圧力制御,<br>HPCF による原子炉注水には成功<br>するが,RHR による格納容器除熱<br>失敗により炉心損傷に至るケース                                                                                                                   | 2.6E-06 [/炉年]<br>( 3.2E-06 [/炉年] )    | ・RHR 系統操作失敗(人的過誤) |

# 第3.2.1.d-5(2) 表 6号機 起因事象別の炉心損傷頻度への寄与が大きい事故シーケンスの概要

| 起因事象                         | 主要な事故シナリオ                                                                                                                                                                                  | 左欄事故シーケンスによる炉心損傷頻度<br>(起因事象別の全炉心損傷頻度) | 主要なカットセット              |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------|
| 全交流電源喪失<br>(RCW・RSW 損<br>傷)  | 地震により外部電源と D/G のサポー<br>ト系(RCW・RSW)が機能喪失するこ<br>とで「全交流電源喪失」の起因事象とな<br>る。<br>その後,事象初期の原子炉隔離時冷却<br>系(以下,RCIC)による原子炉注水に<br>成功するものの,RCIC 運転継続に必要<br>な直流電源及び水源を確保できないた<br>め注水継続に失敗し炉心損傷に至るケ<br>ース | 1.7E-06 [/炉年]<br>(1.7E-06 [/炉年])      | ・外部電源喪失(地震)+RCW 弁の機能損傷 |
| 建屋・構築物の<br>損傷(格納容<br>器・圧力容器) | 地震により原子炉格納容器又は原子<br>炉圧力容器が損傷した場合の緩和系へ<br>の影響を厳密に判断することが困難で<br>あるため,保守的に原子炉停止及び炉心<br>冷却が不可能になるものと想定し直接<br>炉心損傷に至るケース                                                                        | 1.2E-06 [/炉年]<br>( 1.2E-06 [/炉年] )    | ・RPV ペデスタルの損傷          |
| 原子炉冷却材圧<br>カバウンダリ喪<br>失      | 地震により原子炉格納容器内にある<br>一次系配管の大規模な破断により<br>E-LOCA が発生し直接炉心損傷に至<br>るケース。                                                                                                                        | 1.0E-06 [/炉年]<br>(1.0E-06 [/炉年])      | ・格納容器内配管               |

#### 第3.2.1.d-6(1)表 7号機 炉心損傷シーケンス別炉心損傷頻度

| 炉心損傷シーケンス                              | 炉心損傷頻度<br>[/炉年] | 寄与割合  |
|----------------------------------------|-----------------|-------|
| 崩壊熱除去失敗シーケンス<br>(TW)                   | 5.3E-6          | 34.7% |
| 建屋・構築物(R/B)の損傷シーケンス<br>(RBR)           | 3.8E-6          | 24.6% |
| 電源喪失シーケンス<br>(TB)                      | 3.5E-6          | 23.0% |
| 建屋・構築物 ( RPV・PCV ) の損傷シーケンス<br>(PCVR ) | 8.9E-7          | 5.8%  |
| 原子炉冷却材圧力バウンダリ喪失シーケンス<br>(LOCA)         | 8.2E-7          | 5.3%  |
| 電源喪失シーケンス<br>(TBU)                     | 3.7E-7          | 2.4%  |
| 未臨界確保失敗シーケンス<br>(TC)                   | 3.6E-7          | 2.3%  |
| 格納容器バイパスシーケンス<br>(BYPASS)              | 1.2E-7          | 0.8%  |
| 計測・制御系喪失シーケンス<br>(CI)                  | 6.9E-8          | 0.4%  |
| 電源喪失シーケンス<br>(TBD)                     | 6.0E-8          | 0.4%  |
| 高圧注水失敗,減圧失敗シーケンス<br>(TQUX)             | 2.3E-8          | 0.2%  |
| 電源喪失シーケンス<br>(TBP)                     | 2.0E-8          | 0.1%  |
| 高圧注水失敗,低圧注水失敗シーケンス<br>(TQUV)           | 1.3E-8          | 0.1%  |
| 全炉心損傷頻度                                | 1.5E-5          | 100%  |

#### 第3.2.1.d-6(2) 表 6号機 炉心損傷シーケンス別炉心損傷頻度

| 炉心損傷シーケンス                         | 炉心損傷頻度<br>[/炉年] | 寄与割合  |
|-----------------------------------|-----------------|-------|
| 建屋・構築物(R/B)の損傷シーケンス<br>(RBR)      | 3.6E-6          | 28.9% |
| 崩壊熱除去失敗シーケンス<br>(TW)              | 3.3E-6          | 26.2% |
| 電源喪失シーケンス<br>(TB)                 | 1.9E-6          | 15.0% |
| 建屋・構築物(RPV・PCV)の損傷シーケンス<br>(PCVR) | 1.2E-6          | 9.8%  |
| 原子炉冷却材圧力バウンダリ喪失シーケンス<br>(LOCA)    | 1.1E-6          | 8.9%  |
| 格納容器バイパスシーケンス<br>(BYPASS)         | 9.6E-7          | 7.7%  |
| 計測・制御系喪失シーケンス<br>(CI)             | 1.9E-7          | 1.5%  |
| 電源喪失シーケンス<br>(TBD)                | 1.3E-7          | 1.0%  |
| 電源喪失シーケンス<br>(TBU)                | 5.4E-8          | 0.4%  |
| 高圧注水失敗,減圧失敗シーケンス<br>(TQUX)        | 3.1E-8          | 0.3%  |
| 未臨界確保失敗シーケンス<br>(TC)              | 1.4E-8          | 0.1%  |
| 電源喪失シーケンス<br>(TBP)                | 1.0E-8          | 0.1%  |
| 高圧注水失敗,低圧注水失敗シーケンス<br>(TQUV)      | 6.4E-9          | 0.1%  |
| 全炉心損傷頻度                           | 1.2E-5          | 100%  |

第3.2.1.d-7(1) 表 7号機 炉心損傷シーケンスに対する分析結果(1/3)

| 炉心損傷シーケンス                               | 主要な事故シーケンス                     | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)         | 主要なカットセット                                                |
|-----------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------------------|
| 崩壊熱除去失敗シーケン<br>ス<br>(TW)                | 過渡事象 + RHR による崩壊熱除<br>去失敗      | 3.0E-06 [ / 炉年]<br>( 5.3E-06 [ / 炉年] ) | ・RHR 系統操作失敗(人的過誤)                                        |
| 建屋・構築物(R/B)の損<br>傷シーケンス<br>(RBR)        | 原子炉建屋の損傷                       | 3.8E-06 [/炉年]<br>( 3.8E-06 [/炉年] )     | ・原子炉建屋基礎すべり線の損傷                                          |
| 電源喪失シーケンス<br>(TB)                       | 外部電源喪失+RCW・RSW 損傷<br>(全交流電源喪失) | 3.3E-06 [/炉年]<br>( 3.5E-06 [/炉年] )     | ・外部電源喪失(地震) + RCW 熱交換器の構造損傷<br>・外部電源喪失(地震) + RCW 配管の構造損傷 |
| 建屋・構築物( RPV・PCV )<br>の損傷シーケンス<br>(PCVR) | RPV 損傷                         | 8.9E-07 [ / 炉年]<br>( 8.9E-07 [ / 炉年] ) | ・RPV ペデスタルの構造損傷                                          |

第3.2.1.d-7(1) 表 7号機 炉心損傷シーケンスに対する分析結果(2/3)

| 炉心損傷シーケンス                          | 主な事故シーケンス                                        | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)         | 主要なカットセット                                                                                                |
|------------------------------------|--------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------|
| 原子炉冷却材圧カバウンダ<br>リ喪失シーケンス<br>(LOCA) | 原子炉冷却材圧力バウン<br>ダリ喪失                              | 7.8E-07 [ / 炉年]<br>(8.2E-07 [ / 炉年] )  | ・格納容器内配管の損傷                                                                                              |
| 電源喪失シーケンス<br>(TBU)                 | 全交流電源喪失(外部電<br>源喪失 + RCW・RSW 損<br>傷) + RCIC 注水失敗 | 3.5E-07 [/炉年]<br>(3.7E-07 [/炉年])       | ・外部電源喪失(地震)+復水貯蔵槽周り配管(RCIC<br>水源)の構造損傷+RCW 熱交換器の構造損傷<br>・外部電源喪失(地震)+復水貯蔵槽周り配管(RCIC<br>水源)の構造損傷+非常用取水路の損傷 |
| 未臨界確保失敗シーケンス<br>(TC)               | 全交流電源喪失(外部電<br>源喪失 + RCW・RSW 損<br>傷) + スクラム失敗    | 1.7E-07 [/炉年]<br>( 3.6E-07 [/炉年] )     | ・外部電源喪失 ( 地震 ) + 上部格子板損傷 + RCW 熱交換<br>器の構造損傷<br>・外部電源喪失 ( 地震 ) + CRD 配管構造損傷 + RCW 熱<br>交換器の構造損傷          |
| 格納容器バイパスシーケン<br>ス<br>(BYPASS)      | 低耐震クラス配管破断 +<br>格納容器隔離弁損傷                        | 1.2E-07 [ / 炉年]<br>( 1.2E-07 [ / 炉年] ) | ・原子炉冷却材浄化系(CUW系)配管の構造損傷 + CUW<br>系隔離弁の機能損傷<br>・停止時冷却隔離弁下流の低圧設計配管の構造損傷 + 停<br>止時冷却隔離弁の機能損傷                |

# 第3.2.1.d-7(1) 表 7号機 炉心損傷シーケンスに対する分析結果(3/3)

| 炉心損傷シーケンス                        | 主な事故シーケンス                                         | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)   | 主要なカットセット                                                                                                         |
|----------------------------------|---------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 計測・制御系喪失シーケンス<br>(CI)            | 計測・制御系の損傷                                         | 6.9E-08 [/炉年]<br>(6.9E-08 [/炉年]) | ・コントロール建屋の損傷<br>・直立盤の機能損傷                                                                                         |
| 電源喪失シーケンス<br>(TBD)               | 直流電源喪失                                            | 6.0E-08 [/炉年]<br>(6.0E-08 [/炉年]) | ・電線管の構造損傷<br>・直流 125V 主母線盤の機能損傷                                                                                   |
| 高圧注水失敗,減圧失敗シー<br>ケンス<br>(TQUX)   | 過渡事象 + 高圧注水失敗<br>+ 減圧失敗                           | 1.8E-08 [/炉年]<br>(2.3E-08 [/炉年]) | <ul> <li>・原子炉減圧起動操作失敗 + 原子炉水位高誤信号(ランダム故障)</li> <li>・原子炉注水自動起動不能の認知失敗 + 原子炉水位高誤信号(ランダム故障)</li> </ul>               |
| 電源喪失シーケンス<br>(TBP)               | 全交流電源喪失(外部電<br>源喪失 + RCW・RSW 損<br>傷) + S/R 弁再閉鎖失敗 | 1.9E-08 [/炉年]<br>(2.0E-08 [/炉年]) | <ul> <li>・外部電源喪失(地震)+RCW 熱交換器の構造損傷+<br/>S/R 弁のランダム故障</li> <li>・外部電源喪失(地震)+RCW 配管の構造損傷+S/R<br/>弁のランダム故障</li> </ul> |
| 高圧注水失敗,低圧注水失敗<br>シーケンス<br>(TQUV) | 過渡事象 + 高圧注水失敗<br>+ 低圧注水失敗                         | 6.4E-09 [/炉年]<br>(1.3E-08 [/炉年]) | ・RCW 熱交換器の構造損傷 + RCIC ランダム故障<br>・RCW 配管の構造損傷 + RCIC ランダム故障                                                        |

3.2.1 - 105

第3.2.1.d-7(2) 表 6号機 炉心損傷シーケンスに対する分析結果(1/3)

| 炉心損傷シーケンス                             | 主要な事故シーケンス                     | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)     | 主要なカットセット                |
|---------------------------------------|--------------------------------|------------------------------------|--------------------------|
| 建屋・構築物(R/B)の損<br>傷シーケンス<br>(RBR)      | 原子炉建屋の損傷                       | 3.6E-06 [/炉年]<br>( 3.6E-06 [/炉年] ) | ・原子炉建屋基礎すべり線の損傷          |
| 崩壊熱除去失敗シーケン<br>ス<br>(TW)              | 過渡事象 + RHR による崩壊熱除<br>去失敗      | 2.6E-06 [/炉年]<br>( 3.3E-06 [/炉年] ) | ・RHR 系統操作失敗(人的過誤)        |
| 電源喪失シーケンス<br>(TB)                     | 外部電源喪失+RCW・RSW 損傷<br>(全交流電源喪失) | 1.7E-06 [/炉年]<br>( 1.9E-06 [/炉年] ) | ・外部電源喪失(地震) + RCW 弁の機能損傷 |
| 建屋・構築物(RPV・PCV)<br>の損傷シーケンス<br>(PCVR) | RPV 損傷                         | 1.2E-06 [/炉年]<br>( 1.2E-06 [/炉年] ) | ・RPV ペデスタルの構造損傷          |

第3.2.1.d-7(2) 表 6号機 炉心損傷シーケンスに対する分析結果(2/3)

| 炉心損傷シーケンス                          | 主な事故シーケンス                 | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)     | 主要なカットセット                                  |
|------------------------------------|---------------------------|------------------------------------|--------------------------------------------|
| 原子炉冷却材圧力バウンダ<br>リ喪失シーケンス<br>(LOCA) | 原子炉冷却材圧力バウン<br>ダリ喪失       | 1.0E-06 [/炉年]<br>(1.1E-06 [/炉年])   | ・格納容器内配管の損傷                                |
| 格納容器バイパスシーケン<br>ス<br>(BYPASS)      | 低耐震クラス配管破断 +<br>格納容器隔離弁損傷 | 9.6E-07 [/炉年]<br>(9.6E-07 [/炉年])   | ・原子炉給水ライン(FDW 系)配管の構造損傷 + FDW<br>系隔離弁の機能損傷 |
| 計測・制御系喪失シーケンス<br>(CI)              | 計測・制御系の損傷                 | 1.9E-07 [/炉年]<br>(1.9E-07 [/炉年])   | ・バイタル交流電源装置の機能損傷<br>・交流 120V バイタル分電盤の損傷    |
| 電源喪失シーケンス<br>(TBD)                 | 直流電源喪失                    | 1.3E-07 [/炉年]<br>( 1.3E-07 [/炉年] ) | ・電線管の構造損傷                                  |

# 第3.2.1.d-7(2) 表 6号機 炉心損傷シーケンスに対する分析結果(3/3)

| 炉心損傷シーケンス                        | 主な事故シーケンス                                         | 炉心損傷頻度<br>(炉心損傷シーケンス別の全炉心損傷頻度)     | 主要なカットセット                                                                                           |
|----------------------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|
| 電源喪失シーケンス<br>(TBU)               | 全交流電源喪失(外部電<br>源喪失 + RCW・RSW 損<br>傷) + RCIC 注水失敗  | 4.6E-08 [/炉年]<br>( 5.4E-08 [/炉年] ) | ・外部電源喪失(地震)+復水貯蔵槽周り配管(RCIC<br>水源)の構造損傷+RCW 弁の機能損傷                                                   |
| 高圧注水失敗,減圧失敗シー<br>ケンス<br>(TQUX)   | 過渡事象 + 高圧注水失敗<br>+ 減圧失敗                           | 1.8E-08 [/炉年]<br>( 3.1E-08 [/炉年] ) | <ul> <li>・原子炉減圧起動操作失敗 + 原子炉水位高誤信号(ランダム故障)</li> <li>・原子炉注水自動起動不能の認知失敗 + 原子炉水位高誤信号(ランダム故障)</li> </ul> |
| 未臨界確保失敗シーケンス<br>(TC)             | 全交流電源喪失(外部電<br>源喪失) + スクラム失敗<br>+ SLC 失敗          | 5.1E-09 [/炉年]<br>( 1.4E-08 [/炉年] ) | ・外部電源喪失( 地震 ) + シュラウドサポート損傷 + SLC<br>操作失敗                                                           |
| 電源喪失シーケンス<br>(TBP)               | 全交流電源喪失(外部電<br>源喪失 + RCW・RSW 損<br>傷) + S/R 弁再閉鎖失敗 | 9.0E-09 [/炉年]<br>(1.0E-08 [/炉年])   | ・外部電源喪失(地震) + RCW 弁の機能損傷 + S/R 弁<br>のランダム故障                                                         |
| 高圧注水失敗,低圧注水失敗<br>シーケンス<br>(TQUV) | 過渡事象 + 高圧注水失敗<br>+ 低圧注水失敗                         | 3.6E-09 [/炉年]<br>(6.4E-09 [/炉年])   | ・RCW 弁の機能損傷 + RCIC ランダム故障                                                                           |
| 加速度区分               | 地震発生頻度<br>[/年] | 炉心損傷頻度<br>[/炉年] | 寄与割合   | 累積寄与割合 |
|---------------------|----------------|-----------------|--------|--------|
| 1 (120 ~ 175gal)    | 8.2E-03        | 1.4E-06         | 9.2%   | 9.2%   |
| 2(175~225gal)       | 3.2E-03        | 5.5E-07         | 3.6%   | 12.7%  |
| 3(225 ~ 275gal)     | 1.6E-03        | 2.8E-07         | 1.8%   | 14.6%  |
| 4(275 ~ 325gal)     | 9.0E-04        | 1.6E-07         | 1.0%   | 15.6%  |
| 5(325 ~ 375gal)     | 5.3E-04        | 9.2E-08         | 0.6%   | 16.2%  |
| 6(375~425gal)       | 3.3E-04        | 5.9E-08         | 0.4%   | 16.5%  |
| 7 (425 ~ 475gal)    | 2.1E-04        | 4.1E-08         | 0.3%   | 16.8%  |
| 8(475 ~ 525gal)     | 1.4E-04        | 3.3E-08         | 0.2%   | 17.0%  |
| 9(525 ~ 575gal)     | 9.9E-05        | 3.2E-08         | 0.2%   | 17.2%  |
| 10(575 ~ 625gal)    | 7.0E-05        | 3.7E-08         | 0.2%   | 17.5%  |
| 11(625~675gal)      | 5.0E-05        | 4.8E-08         | 0.3%   | 17.8%  |
| 12(675 ~ 725gal)    | 3.7E-05        | 6.5E-08         | 0.4%   | 18.2%  |
| 13(725 ~ 775gal)    | 2.8E-05        | 9.1E-08         | 0.6%   | 18.8%  |
| 14(775 ~ 825gal)    | 2.1E-05        | 1.2E-07         | 0.8%   | 19.6%  |
| 15(825~875gal)      | 1.6E-05        | 1.7E-07         | 1.1%   | 20.7%  |
| 16(875 ~ 925gal)    | 1.2E-05        | 2.2E-07         | 1.4%   | 22.1%  |
| 17(925~975gal)      | 9.7E-06        | 2.8E-07         | 1.8%   | 23.9%  |
| 18(975 ~ 1025gal)   | 7.6E-06        | 3.4E-07         | 2.2%   | 26.0%  |
| 19(1025 ~ 1075gal)  | 6.0E-06        | 4.0E-07         | 2.6%   | 28.6%  |
| 20(1075~1125gal)    | 4.8E-06        | 4.6E-07         | 3.0%   | 31.6%  |
| 21 (1125 ~ 1175gal) | 3.8E-06        | 5.2E-07         | 3.3%   | 34.9%  |
| 22(1175~1225gal)    | 3.1E-06        | 5.7E-07         | 3.7%   | 38.6%  |
| 23(1225~1275gal)    | 2.5E-06        | 6.1E-07         | 4.0%   | 42.6%  |
| 24(1275~1325gal)    | 2.1E-06        | 6.5E-07         | 4.2%   | 46.8%  |
| 25(1325~1375gal)    | 1.7E-06        | 6.9E-07         | 4.5%   | 51.3%  |
| 26(1375~1425gal)    | 1.4E-06        | 7.0E-07         | 4.6%   | 55.8%  |
| 27 (1425 ~ 1475gal) | 1.2E-06        | 7.0E-07         | 4.5%   | 60.4%  |
| 28(1475~1525gal)    | 1.0E-06        | 6.8E-07         | 4.4%   | 64.8%  |
| 29(1525~1575gal)    | 8.4E-07        | 6.4E-07         | 4.1%   | 68.9%  |
| 30(1575~1625gal)    | 7.1E-07        | 5.9E-07         | 3.8%   | 72.7%  |
| 31 (1625 ~ 1675gal) | 6.1E-07        | 5.4E-07         | 3.5%   | 76.2%  |
| 32(1675~1725gal)    | 5.2E-07        | 4.8E-07         | 3.1%   | 79.3%  |
| 33(1725 ~ 1775gal)  | 4.4E-07        | 4.2E-07         | 2.7%   | 82.1%  |
| 34(1775~1825gal)    | 3.7E-07        | 3.7E-07         | 2.4%   | 84.5%  |
| 35(1825~1875gal)    | 3.2E-07        | 3.2E-07         | 2.1%   | 86.5%  |
| 36(1875~1925gal)    | 2.7E-07        | 2.7E-07         | 1.8%   | 88.3%  |
| 37 (1925 ~ 1975gal) | 2.3E-07        | 2.3E-07         | 1.5%   | 89.8%  |
| 38(1975 ~ 2100gal)  | 4.6E-07        | 4.6E-07         | 3.0%   | 92.8%  |
| 39(2100 ~ 2300gal)  | 4.8E-07        | 4.8E-07         | 3.1%   | 95.9%  |
| 40(2300 ~ 2500gal)  | 2.7E-07        | 2.7E-07         | 1.8%   | 97.7%  |
| 41 (2500 ~ 2700gal) | 1.6E-07        | 1.6E-07         | 1.0%   | 98.7%  |
| 42(2700 ~ 2900gal)  | 9.2E-08        | 9.2E-08         | 0.6%   | 99.3%  |
| 43(2900 ~ 3100gal)  | 5.3E-08        | 5.3E-08         | 0.3%   | 99.6%  |
| 44(3100 ~ 3300gal)  | 2.9E-08        | 2.9E-08         | 0.2%   | 99.8%  |
| 45(3300 ~ 3500gal)  | 1.8E-08        | 1.8E-08         | 0.1%   | 99.9%  |
| 46(3500 ~ 3700gal)  | 8.1E-09        | 8.1E-09         | 0.1%   | 100.0% |
| 47 (3700 ~ 3900gal) | 2.8E-09        | 2.8E-09         | 0.0%   | 100.0% |
| 全炉心損·               | 傷頻度            | 1.5E-05         | 100.0% |        |

第3.2.1.d-8(1)表 7号機 加速度区分別炉心損傷頻度評価結果

| 加速度区分                               | 地震発生頻度    | 炉心損傷頻度    | 寄与割合    | 累積寄与割合          |
|-------------------------------------|-----------|-----------|---------|-----------------|
|                                     | [/年]      | [/炉牢]     |         |                 |
| 1(120~175gal)                       | 8.2E-03   | 1.4E-06   | 11.4%   | 11.4%           |
| 2(175~225gal)                       | 3.2E-03   | 5.5E-07   | 4.4%    | 15.8%           |
| 3(225 ~ 275gal)                     | 1.6E-03   | 2.8E-07   | 2.2%    | 18.0%           |
| 4(275 ~ 325gal)                     | 9.0E-04   | 1.5E-07   | 1.2%    | 19.3%           |
| 5(325 ~ 375gal)                     | 5.3E-04   | 9.2E-08   | 0.7%    | 20.0%           |
| 6(375~425gal)                       | 3.3E-04   | 5.8E-08   | 0.5%    | 20.5%           |
| 7(425~475gal)                       | 2.1E-04   | 3.9E-08   | 0.3%    | 20.8%           |
| 8(475 ~ 525gal)                     | 1.4E-04   | 2.9E-08   | 0.2%    | 21.0%           |
| 9(525~575gal)                       | 9.9E-05   | 2.6E-08   | 0.2%    | 21.2%           |
| 10(575~625gal)                      | 7.0E-05   | 2.9E-08   | 0.2%    | 21.5%           |
| 11(625~675gal)                      | 5.0E-05   | 3.6E-08   | 0.3%    | 21.8%           |
| 12(675 ~ 725gal)                    | 3.7E-05   | 4.9E-08   | 0.4%    | 22.1%           |
| 13(725 ~ 775gal)                    | 2.8E-05   | 6.6E-08   | 0.5%    | 22.7%           |
| 14(775 ~ 825gal)                    | 2.1E-05   | 8.9E-08   | 0.7%    | 23.4%           |
| 15(825 ~ 875gal)                    | 1.6E-05   | 1.2E-07   | 0.9%    | 24.3%           |
| 16(875 ~ 925gal)                    | 1.2E-05   | 1.5E-07   | 1.2%    | 25.5%           |
| 17 (925 ~ 975gal)                   | 9.7E-06   | 1.8E-07   | 1.4%    | 26.9%           |
| 18(975 ~ 1025gal)                   | 7.6E-06   | 2.1E-07   | 1.7%    | 28.6%           |
| 19(1025 ~ 1075gal)                  | 6.0E-06   | 2.4E-07   | 2.0%    | 30.6%           |
| 20(1075 ~ 1125gal)                  | 4.8E-06   | 2.8E-07   | 2.2%    | 32.8%           |
| 21(1125 ~ 1175gal)                  | 3.8E-06   | 3.1E-07   | 2.5%    | 35.4%           |
| 22(1175 ~ 1225gal)                  | 3.1E-06   | 3.5E-07   | 2.8%    | 38.2%           |
| 23(1225 ~ 1275gal)                  | 2.5E-06   | 3.8E-07   | 3.1%    | 41.2%           |
| 24(1275~1325gal)                    | 2.1E-06   | 4.2E-07   | 3.3%    | 44.6%           |
| 25(1325~1375gal)                    | 1.7E-06   | 4.5E-07   | 3.6%    | 48.2%           |
| 26(1375~1425gal)                    | 1.4E-06   | 4.8E-07   | 3.9%    | 52.1%           |
| 27(1425~1475gal)                    | 1.2E-06   | 5.0E-07   | 4.0%    | 56.1%           |
| 28(1475 ~ 1525gal)                  | 1.0E-06   | 5.0E-07   | 4.0%    | 60.1%           |
| 29(1525~1575gal)                    | 8.4E-07   | 5.0E-07   | 4.0%    | 64.1%           |
| 30(1575~1625gal)                    | 7.1E-07   | 4.8E-07   | 3.9%    | 68.0%           |
| 31(1625~1675gal)                    | 6.1E-07   | 4.6E-07   | 3.7%    | 71.7%           |
| $32(1675 \sim 1725 \text{ gal})$    | 5.2E-07   | 4.2E-07   | 3.4%    | 75.1%           |
| $33(1725 \sim 1775 \text{gal})$     | 4.4E-07   | 3.8E-07   | 3.1%    | 78.2%           |
| $34(1775 \sim 1825 \text{ gal})$    | 3.7E-07   | 3.4E-07   | 2.8%    | 80.9%           |
| $35(1825 \sim 1875 \text{gal})$     | 3 2F - 07 | 3 0F - 07 | 2 4%    | 83.4%           |
| $36(1875 \sim 1925 \text{ gal})$    | 2 7F-07   | 2 7F-07   | 2 1%    | 85.5%           |
| $37(1925 \sim 1975 \text{ gal})$    | 2.3E-07   | 2.3E-07   | 1.9%    | 87.4%           |
| $38(1975 \sim 2100 \text{ gal})$    | 4.6F-07   | 4.6F-07   | 3.7%    | 91.1%           |
| $39(2100 \sim 2300 \text{ gal})$    | 4.8E-07   | 4.8E-07   | 3.8%    | 94.9%           |
| $40(2300 \sim 2500 \text{ gal})$    | 2.7E-07   | 2.7E-07   | 2.2%    | 97.1%           |
| $40(2500 \approx 2500 \text{gal})$  | 1.6E-07   | 1.6E-07   | 1.3%    | 98.4%           |
| $41(2300 \approx 2000 \text{gal})$  | 0.2E_08   | 0.2E_08   | 0.7%    | 00.1%           |
| $42(2700 \times 2900 \text{gal})$   | 5.2E-00   | 5.2E-00   | 0.1%    | 99.1%           |
| $44(3100 \sim 3300 \text{ and})$    |           | 2 QE 00   | 0.4%    | 00.9%           |
| $45(3200 \approx 2500 \text{gal})$  |           |           | 0.2%    | 99.0%           |
| $40(3500 \approx 3500 \text{ gal})$ |           |           | 0.1%    | 33.3%<br>100.0% |
| $40(300 \approx 3700 \text{yal})$   | 0.1E-US   | 0.1E-U9   | 0.1%    | 100.0%          |
| +/(5/00~5900yal)<br>~ hh 心坦         |           | 1 2 - 05  |         |                 |
| Ⅰ ±√√∪1몇〕                           | 1のツ豆/マ    |           | 100.0/0 |                 |

# 第3.2.1.d-8(2) 表 6号機 加速度区分別炉心損傷頻度評価結果

# 第3.2.1.d-9(1)表 7号機 FV 重要度評価結果

| 建屋・機器               | 中央値<br>(G) | HCLPF<br>(G) | FV重要度   | 建屋・機器の損傷が影響を与える主<br>な事故シーケンス |
|---------------------|------------|--------------|---------|------------------------------|
| 1.RCW 熱交換器          | 1.81       | 0.98         | 1.4E-01 | ・TB シーケンス<br>・TBU シーケンス      |
| 2.RHR 系統操作失敗        | -          | -            | 1.4E-01 | ・TW シーケンス                    |
| 3.RCW 配管            | 2.58       | 1.11         | 4.1E-02 | ・TB シーケンス<br>・TBU シーケンス      |
| 4.RHR 弁             | 2.61       | 1.13         | 3.8E-02 | ・TW シーケンス                    |
| 5.RHR/LPFL 共通弁      | 2.61       | 1.13         | 3.8E-02 | ・TW シーケンス                    |
| 6.RHR 配管            | 3.35       | 1.15         | 3.5E-02 | ・TW シーケンス                    |
| 7.格納容器内配管           | 3.35       | 1.15         | 3.5E-02 | ・LOCA シーケンス                  |
| 8.原子炉建屋基礎地盤<br>すべり線 | 1.83       | 1.33         | 2.7E-02 | ・RBR シーケンス                   |
| 9.非常用取水路            | 2.20       | 1.33         | 2.0E-02 | ・TB シーケンス<br>・TBU シーケンス      |
| 10.RPV ペデスタル        | 2.65       | 1.24         | 1.8E-02 | ・PCVR シーケンス                  |

## 第3.2.1.d-9(2)表 6号機 FV 重要度評価結果

| 建屋・機器                     | 中央値<br>(G) | HCLPF<br>(G) | FV重要度   | 建屋・機器の損傷が影響を与える主<br>な事故シーケンス |
|---------------------------|------------|--------------|---------|------------------------------|
| 1.RHR 系統操作失敗              | -          | -            | 1.7E-01 | ・TW シーケンス                    |
| 2.RCW 弁                   | 2.24       | 0.97         | 1.6E-01 | ・TB シーケンス<br>・TBU シーケンス      |
| 3.格納容器内配管                 | 2.55       | 1.10         | 6.7E-02 | ・LOCA シーケンス                  |
| 4.原子炉建屋基礎地盤<br>すべり線       | 1.83       | 1.33         | 5.9E-02 | ・RBR シーケンス                   |
| 5.耐震 B クラス配管( 確<br>率値 1 ) | -          | -            | 4.1E-02 | ・BYPASS シーケンス                |
| 6.原子炉給水ライン隔<br>離弁         | 2.40       | 1.20         | 4.1E-02 | ・BYPASS シーケンス                |
| 7.RPV ペデスタル               | 2.82       | 1.22         | 3.5E-02 | ・PCVR シーケンス                  |
| 8.セラミックインシュ<br>レータ        | 0.91       | 0.43         | 1.7E-02 | ・外部電源喪失                      |
| 9.RSW ポンプ起動失敗<br>CCF      | -          | -            | 1.4E-02 | ・TB シーケンス<br>・TBU シーケンス      |
| 10.原子炉冷却材再循環<br>ポンプ貫通孔    | 2.76       | 1.38         | 1.2E-02 | ・PCVR シーケンス                  |

第3.2.1.d-10表 感度解析対象機器(損傷の完全独立想定機器)

(KK7)

| FV 重要度  | 対象機器         |
|---------|--------------|
| 1.4E-01 | RCW 熱交換器     |
| 4.1E-02 | RCW 配管       |
| 3.8E-02 | RHR 弁        |
| 3.8E-02 | RHR/LPFL 共通弁 |
| 3.5E-02 | RHR 配管       |
| 2.0E-02 | 非常用取水路       |
| 1.4E-02 | RHR ポンプ      |

(KK6)

| FV 重要度  | 対象機器        |
|---------|-------------|
| 1.6E-01 | RCW 弁       |
| 4.1E-02 | 原子炉給水ライン隔離弁 |



第3.2.1.a-1 図 地震 PRA 評価フロー



第3.2.1.a-2 図 プラントウォークダウン調査対象機器 選定フロー

|                                                            |                                                                      | Sheet No.            | 実施E  | 리 직 | <sup>2</sup> 成 26 年 | 2月 2  | 7日                |                         |
|------------------------------------------------------------|----------------------------------------------------------------------|----------------------|------|-----|---------------------|-------|-------------------|-------------------------|
| 相 <sub>畸</sub> )<br>プラ:                                    | 刈羽原士刀先竜所/ 亏機<br>ントウォークダウン・チェックシート                                    | KK7-041              | 実施者  | ž   |                     |       |                   |                         |
| 機器                                                         | RCW 配管(A)<br>名称: (配管サポート名称: AN-                                      | RCW-T504)            | 耐震クラ | ラス: | S                   | 機器 No | 0.:               | 191                     |
| 建屋                                                         | 名:                                                                   |                      |      |     |                     |       |                   |                         |
| 703                                                        | ア:                                                                   |                      | 区画:  | 枝   | 機器配置                | 置図 Sh | .11               |                         |
| [チェック対象項目](下記チェック欄にレ点を記入する)<br>A) 耐震安全性の確認 ☑<br>B) 現場操作の確認 |                                                                      |                      |      |     |                     |       |                   |                         |
| A) 而                                                       | ໄ震安全性の確認( <b>確認結果欄にレ点を記入す</b> ・                                      | 3)                   |      |     |                     |       | I                 |                         |
| No                                                         | 点検項目                                                                 |                      |      | 確   | 認結果                 |       |                   | 備考                      |
| 1                                                          | 対象機器本体の評価                                                            |                      | Y    | N   |                     | N/A   |                   |                         |
|                                                            | a 対象機器の形状が図面(外形図・耐震計<br>上の相違が無い                                      | 算書等)と外見              | L    |     |                     |       |                   |                         |
|                                                            | b 対象機器と支持構造物との接合部に外<br>食・亀裂等)は無い                                     | 見上の異常(腐              | Þ    |     |                     |       |                   |                         |
|                                                            | c 配管接合部と図面に外見上の相違点は無い                                                |                      | V    |     |                     |       |                   |                         |
|                                                            | d 配管接合部に外見上の異常(腐食・亀裂                                                 | 等)は無い                | V    |     |                     |       |                   |                         |
| 2                                                          | アンカーボルト評価                                                            |                      |      |     | $\square$           |       |                   |                         |
|                                                            | a アンカーボルトの形状が図面(外形図・<br>と外見上の相違が無い                                   | 耐震計算書等)              | V    |     |                     |       | -                 |                         |
|                                                            | b アンカーボルトに外見上の異常(腐食・1                                                | 亀裂等)は無い              | V    |     |                     |       |                   |                         |
|                                                            | <ul> <li>c アンカーボルトの締め付け強度は適切に管理されている<br/>(ゆるみ止め対策がされている等)</li> </ul> |                      | V    |     |                     |       |                   |                         |
|                                                            | d アンカーボルト付近のコンクリート部に<br>い                                            | 外見上亀裂がな              | V    |     |                     |       | -                 |                         |
| 3                                                          | 二次的影響について                                                            |                      |      |     |                     |       |                   |                         |
|                                                            | a 周辺の耐震クラスが低い機器,構築物等<br>することで二次的影響を及ぼすことがない                          | が倒壊又は損傷<br>N         | V    |     |                     |       |                   |                         |
|                                                            | b 倒壊により被害を与えうる周辺の機器の<br>い                                            | 耐震性は問題な              | V    |     |                     |       |                   |                         |
|                                                            | c クレーン , 燃料交換機の落下 , 部材のコン<br>プロック壁の倒壊など安全上重要な機器<br>ことがない             | ックリート剥落 ,<br>に影響を及ぼす |      |     |                     | V     | 機器上<br>が設置<br>ことを | 部にクレーン<br>されていない<br>確認。 |
|                                                            | d 機器に接続されるケーブルが柔軟な構造                                                 | をしている                |      |     |                     | レ     | 接続さ<br>がない        | れるケーブル<br>ことを確認         |
|                                                            | e Sクラス以外の周辺機器の損傷時,周辺機器の保有水による影響はない                                   |                      |      |     |                     |       |                   |                         |
|                                                            | f 周囲に仮置きの火災源 <sup>1</sup> はない                                        |                      |      |     | 1                   |       |                   |                         |

# 第3.2.1.a-3図 プラントウォークダウン評価結果例(1/4)

| B) 現場操作の確認(確認結果欄にレ点を記入する)<br>(例 現場での起動が必要な設備,現場での復旧作業において機能回復が見込める設備) |   |    |     |     |       |
|-----------------------------------------------------------------------|---|----|-----|-----|-------|
| 占检百日                                                                  |   | 確認 | 忍結果 | 供老  |       |
|                                                                       | Y | Ν  | U   | N/A | - m - |
| アクセス性                                                                 |   |    |     |     |       |
| a 対象機器の識別が可能である                                                       |   |    |     | V   |       |
| b 周辺設備又は周辺斜面からの被害を受けない                                                |   |    |     | V   |       |
| c 可動部分のある器具 <sup>2</sup> は存在しない                                       |   |    |     | V   |       |
| d 近傍の設備の倒壊によりアクセスルートが塞がれる可能<br>性はない                                   |   |    |     | レ   |       |
| 現場操作性                                                                 |   |    |     |     |       |
| a 現場での操作が可能である                                                        |   |    |     | レ   |       |
| b 操作のための場所が確保できる                                                      |   |    |     | V   |       |
| c 機器の作動状態が確認できる                                                       |   |    |     | V   |       |

### 特記事項

・現場操作は不要であるため,現場操作の確認については N/A とする。

総合評価(モデルへの反映方法,取扱い等も含む)

・地震 PRA で評価している範囲において , 耐震安全性に問題はない。

1 燃え始める可能性がある設備又は仮置きの可燃物

2 固定されていない点検用クレーン,梯子,可動式架台など,アクセス性を阻害する可能性のある器具

第3.2.1.a-3図 プラントウォークダウン評価結果例(2/4)



RCW 配管 外観



RCW 配管 外観

第3.2.1.a-3図 プラントウォークダウン評価結果例(3/4)



RCW 配管サポート 外観



RCW 配管サポート 外観

第3.2.1.a-3図 プラントウォークダウン評価結果例(4/4)



第3.2.1.a-4図 起因事象の抽出フロー

| Č<br>J<br>G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 30km<br>30km<br>30km<br>30km<br>30km<br>2<br>9<br>7<br>13<br>原子力発電所<br>12<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>13<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) |      |
| 20<br>0 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20km |

| 佐渡島棚東縁撓曲  | 親沢断層          |
|-----------|---------------|
| F - B 褶曲群 | 渋海川向斜部のリニアメント |
| 佐渡島南方断層   | 悠久山断層         |
| F - D 褶曲群 | 半蔵金付近のリニアメント  |
| 高田沖褶曲群    | 柏崎平野東縁のリニアメント |
| 角田・弥彦断層   | 山本山断層         |
| 気比ノ宮断層    | 水上断層          |
| 片貝断層      | 上米山断層         |
| 中央丘陵西縁部断層 | 雁海断層          |
| 上富岡断層     | 十日町盆地西縁断層     |

注)背景色つきの断層は連動を考慮する。

第3.2.1.b-1 図 敷地周辺の主な活断層(地質調査結果に基づく)



第3.2.1.b-2 図 敷地周辺の主な活断層(地震調査研究推進本部(2012)に基づく)



第 3.2.1.b-3 図 日本海東縁部の特定震源



第3.2.1.b-4図 津波評価において考慮している特定震源



第 3.2.1.b-5 図 設定した領域区分



第3.2.1.b-6図 ロジックツリーを設定した陸域の主要な活断層



第3.2.1.b-7図 ロジックツリーを設定した海域の主要な活断層



第3.2.1.b-8図 ロジックツリーを設定した敷地周辺の領域震源



第 3.2.1.b-9 図 平均ハザード曲線(周期 0.02 秒,荒浜側)



第 3.2.1.b-10 図 平均ハザード曲線(周期 0.02 秒,大湊側)



第 3.2.1.b-11 図 地震ごとのハザード曲線(荒浜側,水平動)



第3.2.1.b-12 図 地震ごとのハザード曲線(大湊側,水平動)



第 3.2.1.b-13 図 フラクタイル地震ハザード曲線(周期 0.02 秒, 荒浜側)



第 3.2.1.b-14 図 フラクタイル地震ハザード曲線(周期 0.02 秒,大湊側)



第3.2.1.b-15図 一様ハザードスペクトルと基準地震動Ssの応答スペクトルの比較(荒浜側)



第3.2.1.b-16図 一様ハザードスペクトルと基準地震動 Ss の応答スペクトルの比較(大湊側)



第 3.2.1.b-17 図 周期ごとの平均ハザード曲線(荒浜側)



第 3.2.1.b-18 図 周期ごとの平均ハザード曲線(大湊側)



第3.2.1.b-19図 フラジリティ評価に用いる模擬地震波と目標応答スペクトルに対するフィッティング(荒浜側)



第3.2.1.b-20図 フラジリティ評価に用いる模擬地震波と目標応答スペクトルに対するフィッティング(大湊側)





注記 • : 原子炉圧力容器(以下,「RPV」と略す。)

第3.2.1.c-1-1図 原子炉建屋の概略平面図(地下3階)



第3.2.1.c-1-2図 原子炉建屋の概略断面図(NS方向断面)



第3.2.1.c-1-3図 コントロール建屋の概略平面図(地下2階)



第3.2.1.c-1-4 図 コントロール建屋の概略断面図(NS 方向断面)



第3.2.1.c-1-5図 タービン建屋の概略平面図(地下2階)



第3.2.1.c-1-6図 タービン建屋の概略断面図(NS方向断面)



第3.2.1.c-1-7図 廃棄物処理建屋の概略平面図(地下3階)



第3.2.1.c-1-8 図 廃棄物処理建屋の概略断面図(NS 方向断面)


第3.2.1.c-1-9図 解析モデル(原子炉建屋 水平)

T.M.S.L.(m)



第3.2.1.c-1-10図 解析モデル(コントロール建屋 水平)





第3.2.1.c-1-11(1)図 解析モデル(タービン建屋 水平 NS方向)



(T / G)



第3.2.1.c-1-11(2)図 解析モデル(タービン建屋 水平 EW 方向)





第3.2.1.c-1-11(3)図 地盤ばねの記号

## 3.2.1-148



第3.2.1.c-1-12(1)図 解析モデル(廃棄物処理建屋 水平 NS方向)



第3.2.1.c-1-12(2)図 解析モデル(廃棄物処理建屋 水平 EW方向)



第3.2.1.c-1-13図 建屋フラジリティ曲線(原子炉建屋)





第3.2.1.c-1-15図 建屋フラジリティ曲線(タービン建屋)



第3.2.1.c-2-1図 6·7号炉付近の地盤分類図



第3.2.1.c-2-2図 すべり安全率1.6(6・7号炉原子炉建屋基礎地盤, Ss-3)



第3.2.1.c-2-3図 解析用要素分割図(6・7号炉汀線平行断面)



(中央値:1193Gal, R:0.043, U:0.15) 第 3.2.1.c-2-4 図 原子炉建屋基礎地盤フラジリティ曲線



第3.2.1.c-3-1図 機器応答に関するスペクトル形状係数の概念図







第3.2.1.c-3-3図 建屋応答に関するスペクトル形状係数の概念図



第3.2.1.c-3-4 図 原子炉本体基礎のフラジリティ曲線



第3.2.1.c-3-5 図 原子炉補機冷却水系熱交換器のフラジリティ曲線



第3.2.1.c-3-6 図 残留熱除去系電動弁のフラジリティ曲線



第3.2.1.c-3-7図 直立盤のフラジリティ曲線



第3.2.1.c-3-8図 原子炉補機冷却水系配管のフラジリティ曲線

| 地震 | 地震加速度大 | 建屋・構築物<br>(原子炉建屋) | 建屋・構築物<br>(原子炉圧力容器・<br>原子炉格納容器) | 原子炉格納<br>容器パイパス | 原子炉冷却材<br>圧力バウンダリ | 計測·制御系 | 直流電源 | 原子炉補機冷<br>却系 | 交流電源 | 外部電源 | 事故シーケンス分類              | 最終状態     |
|----|--------|-------------------|---------------------------------|-----------------|-------------------|--------|------|--------------|------|------|------------------------|----------|
|    |        |                   |                                 |                 |                   |        |      |              |      |      |                        |          |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | -                      | -        |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 過渡事象                   | TRAN     |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 外部電源喪失                 | LOP      |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 全交流電源喪失<br>(D/G損傷)     | SBO      |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 全交流電源喪失<br>(RCW・RSW損傷) | LUHS SBO |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 直流電源喪失                 | TBD      |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 計測・制御系喪失               | CI       |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 原子炉冷却材圧力<br>バウンダリ喪失    | LOCA     |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 格納容器バイパス               | BYPASS   |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 建屋・構築物の損傷<br>(RPV・PCV) | PCVR     |
|    |        |                   |                                 |                 |                   |        |      |              |      |      | 建屋・構築物の損傷<br>(R/B)     | RBR      |

第3.2.1.d-1 図 地震 PRA 階層イベントツリー



第3.2.1.d-2(1)図 起因事象(過渡事象)イベントツリー

| 過渡事象<br>ATWS | RPT | SRV開    | HPCF    | 反応度制御   | RHR      | 最終状態 |
|--------------|-----|---------|---------|---------|----------|------|
| ATWS1        | R   | PO_ATWS | UH_ATWS | SL_ATWS | RHR_ATWS |      |
|              |     |         |         |         |          |      |
|              |     |         |         |         |          | -    |
|              |     |         |         |         |          | TW   |
|              |     |         |         |         |          | тс   |
|              |     |         |         |         |          | тс   |
|              |     |         |         |         |          |      |
|              |     |         |         |         |          | TC   |
|              |     |         |         |         |          | TC   |
|              |     |         |         |         |          |      |
| 1            |     |         |         |         |          |      |

第3.2.1.d-2(2)図 起因事象(過渡事象ATWS)イベントツリー



第3.2.1.d-3(1)図 起因事象(外部電源喪失)イベントツリー

| 外部電源<br>喪失ATWS | SRV開    | HPCF    | 反応度制御   | RHR      | 最終状態 |
|----------------|---------|---------|---------|----------|------|
| ATWS2          | PO_ATWS | UH_ATWS | SL_ATWS | RHR_ATWS |      |
|                |         |         |         |          |      |
|                |         |         |         |          | -    |
|                |         |         |         |          | TW   |
|                |         |         |         |          |      |
|                |         |         |         |          | TC   |
|                |         |         |         |          | тс   |
|                |         |         |         |          | 10   |
|                |         |         |         |          | тс   |
|                |         |         |         |          |      |

第3.2.1.d-3(2)図 起因事象(外部電源喪失 ATWS)イベントツリー

| 全交流電源<br>喪失 | スクラム | SRV開 | SRV再閉鎖 | RCIC | 最終状態 |
|-------------|------|------|--------|------|------|
| SBO         | С    | PO   | PC     | UR   |      |
|             |      |      |        |      |      |
|             |      |      |        |      | ТВ   |
|             |      |      |        |      | TBU  |
|             |      |      |        |      |      |
|             |      |      |        |      | TBP  |
|             |      |      |        |      | LOCA |
|             |      |      |        |      | тс   |
|             |      |      |        |      | 10   |
|             |      |      |        |      |      |

第3.2.1.d-4 図 起因事象 (全交流電源喪失 (D/G 損傷)) イベントツリー

| 最終ヒートシンク及び<br>全交流電源喪失 | スクラム | SRV開 | SRV再閉鎖 | RCIC | 最終状態 |
|-----------------------|------|------|--------|------|------|
| LUHSSBO               | С    | PO   | PC     | UR   |      |
|                       |      |      |        |      |      |
|                       |      |      | -      |      | TB   |
|                       |      |      |        |      | 10   |
|                       |      |      |        |      | TBU  |
|                       |      |      |        |      |      |
|                       |      |      |        |      | TBP  |
|                       |      |      |        |      |      |
|                       |      |      |        |      | LOCA |
|                       |      |      |        |      |      |
|                       |      |      |        |      | TC   |
|                       |      |      |        |      |      |

第3.2.1.d-5図 起因事象(全交流電源喪失(RCW・RSW損傷))イベントツリー



第3.2.1.d-6(1) 図 7号機 起因事象別炉心損傷頻度寄与割合



第3.2.1.d-6(2) 図 6号機 起因事象別炉心損傷頻度寄与割合



第3.2.1.d-7(1) 図 7号機 炉心損傷シーケンス別炉心損傷頻度寄与割合



第3.2.1.d-7(2)図 6号機 炉心損傷シーケンス別炉心損傷頻度寄与割合











第3.2.1.d-9(1) 図 7号機 不確実さ評価結果



第3.2.1.d-9(2)図 6号機 不確実さ評価結果





第3.2.1.d-11(1)図 7号機 感度解析結果(地震加速度別の炉心損傷頻度比較)





第3.2.1.d-11(2)図 6号機 感度解析結果(地震加速度別の炉心損傷頻度比較)

## 外部事象(地震)に特有の事故シーケンスについて

1.はじめに

外部事象の内,地震PRAを実施した結果,内的事象PRAでは抽出されていない建屋・構築物 (原子炉建屋)の損傷,建屋・構築物(格納容器・圧力容器)の損傷といった事故シーケンスが抽出 されている点,内的事象PRAでは有意な頻度ではなかった原子炉冷却材圧力バウンダリ喪失の全 体に占める寄与割合が大きくなっている点が地震事象の特徴となっている。

また,これら事故シーケンスに加え,計測・制御系喪失,直流電源喪失,格納容器バイパスについては,事象進展の特定,詳細な事故シーケンスの定量化が困難であるため,保守的に炉心損傷 直結事象として整理している点も地震事象評価特有の扱いである。

以下では,これら地震事象に特有の各事故シーケンス(炉心損傷直結事象)について,地震PRA 評価におけるフラジリティ評価や事故シーケンス評価における条件設定の妥当性等について再整 理の上,炉心損傷防止対策の有効性評価の事故シーケンスグループとして取り扱うべきかの検討を 実施した。

2. 炉心損傷直結事象について

炉心損傷直結事象として整理した各事故シーケンスに関連する建屋・構築物,機器のフラジリティ 評価や事故シーケンスの評価条件や想定シナリオ等の詳細についてあらためて確認を行うとともに, 評価の最適化について検討を実施した。

2.1 建屋・構築物(原子炉建屋)の損傷

(1) 想定事故シナリオ

原子炉建屋については、「原子炉建屋」又は「原子炉建屋基礎地盤すべり線」の損傷を 以て原子炉建屋損傷としており、このうち、寄与が大きい要因は「原子炉建屋基礎地盤す べり線」である。

原子炉建屋あるいは,原子炉建屋を支持している基礎地盤が損傷に至ることで,建屋内の原子炉格納容器,原子炉圧力容器等の機器及び構造物が大規模な損傷を受ける可能性があり,影響緩和系に期待できる可能性を厳密に考慮することが困難なため,直接炉心 損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】 3.8×10<sup>-6</sup> / 炉年(点推定值)

・原子炉建屋基礎地盤すべり線:3.5×10<sup>-6</sup>/炉年(点推定値)

・原子炉建屋:7.2×10-7 / 炉年(点推定値)

【全炉心損傷頻度への寄与割合】約28%

(2) フラジリティ評価

a.評価対象機器/評価部位

PSA標準に従えば,建屋基礎地盤,周辺斜面などの地盤のすべり破壊,転動の可能

## 添付資料 3.2.1.c-1-1

性のある岩塊を評価対象として, すべり安全率の小さなすべり線上の土塊及び不安定な 岩塊を選定することが求められる。

原子炉建屋基礎地盤の場合,基準地震動Ssを対象として実施した基礎地盤安定性評価の結果(K6/7申請書添付六)に基づいて,図1に示す最小安全率(基準地震動Ss-3に対して安全率1.6)を算定したすべり線を評価対象として選定している。



図1 すべり安全率 1.6(6·7号炉原子炉建屋基礎地盤, Ss-3)

b.評価方法

フラジリティ評価方法として「現実的耐力と現実的応答による方法(応答解析に基づく 方法)」を選択した。評価手法は地震PSA 学会標準に準拠した手法とする。

現実的耐力に相当する地盤強度は,試験結果に基づき設定した。ばらつきについては,LHS法(Latin Hypercube Sampling,ラテン方格法)によってサンプリングし,任意 に組み合わせたデータセット30ケースを用いることで評価した。

現実的応答については,試験結果に基づき設定した物性値を用いて,地震応答解析 を実施することにより評価した。地震応答解析は,等価線形化法による周波数応答解析 手法を用い,水平・鉛直動を同時入力している。

地盤のせん断剛性については,ばらつきを考慮した値を設定し,地震応答解析を実施 することにより評価を行った。ばらつきは,LHS法によってサンプリングし,任意に組み合 わせたデータセット30ケースを用いることで評価する。



応答解析モデルは,基礎地盤安定性評価(K6/7申請書 添付六)に記載の地盤モデ ルを用いた。基礎地盤の解析モデルを図2に示す。

図2 解析用要素分割図(6·7号炉汀線平行断面)

フラジリティ評価では,まず,模擬地震波と平均物性値を用いた地震応答解析を実施することで,すべり安全率が1.0 となる限界加速度を算定する。地盤物性値のばらつきを評価

添付資料 3.2.1.c-1-2

するため,LHS法によってサンプリングしたデータセット30ケースを設定する。データセット 30ケースを用いて,限界加速度に相当する模擬地震波を入力条件とした地震応答解析, すべり安全率の算定を行い,フラジリティ曲線を算出する。HCLPF は信頼度95%フラジリ ティ曲線を基に算出した。



原子炉建屋基礎地盤のフラジリティ曲線を図3に示す。

(中央値:1193Gal, R:0.043, U:0.15)図3 フラジリティ曲線

なお,最終的なHCLPF,中央値については,二次元基礎地盤安定解析における奥行き 方向の側面抵抗効果を考慮して,上述の手法により得られた値に対して係数1.5を乗じてい る。奥行き方向の側面抵抗効果とは,二次元解析では期待していない平面奥行き方向のす べり面の抵抗を考慮するものであり,7号炉,6号炉,5号炉を対象とした既往バックチェック \*1において,検討対象とした解析断面に対する効果を確認している。F2断層沿いのすべり を想定する安全率1.6のケース(図1)に対して,奥行き方向の側面抵抗を考慮する場合,す べり安全率は3.3(約2.1倍)となる(HCLPF:1.33G,中央値:1.83G, R:0.043, U: 0.15)。

\*1 柏崎刈羽原子力発電所7号機「発電用原子炉施設に関する耐震
設計審査指針」の改訂に伴う耐震安全性評価結果報告書(改訂
1)(平成21年1月)

c.決定論的耐震評価/設計基準地震動に対する裕度

既往バックチェックの中では,7号炉,6号炉,5号炉を対象として,二次元解析において は期待していない平面奥行き方向のすべり面の抵抗を検討している。奥行き方向の側面 抵抗を考慮した結果,すべり安全率の最小値は2.9となる。

基礎地盤に対して,基準地震動を用いた決定論的耐震評価を行う場合,3程度の裕度 がある。 (3) 現実的評価/最適評価(フラジリティ/シナリオ)

a.現行評価手法(すべり安全率)における保守性について

原子炉建屋基礎地盤の安定性は,すべり安全率を指標として評価を行う。しかし,実 現象を考えれば,原子炉建屋の設置されている平坦な敷地に対して,地震動に起因した すべり線に沿った土塊の破壊・変形を想定することは困難である。

基礎地盤の耐震安定性評価にあたって採用されているすべり安全率評価には,以下の保守性が含まれていると考えることができる。

力の釣合条件に基づく評価をしていることによる保守性

土木工学の分野では,斜面の安定性を検討するにあたり,想定したすべり線上の力 の釣合条件に基づいた安全率により評価・設計を行う。斜面の場合,地震動の継続時 間のうち極めてわずかの時間でも,地震に起因する滑動力が地盤の抵抗力を上回り, すべり線が破壊に至れば,安定性を失った斜面土塊が重力の作用により不安定な状 態(崩壊)に至る懸念があり,すべり安全率を指標とした設計が一般的に実施されてい る。

一方で,基礎地盤の安定性について検討する場合,支持力と変形(沈下)を指標と した評価が一般的であり,原子力発電所の基礎地盤に要求されるすべり安全率評価 は一般的ではない。平坦な基礎地盤を考える場合,地震動の継続時間の中で,すべり 線が破壊に至った場合でも,不安定な土塊が形成されることはない。また,地震に起 因する滑動力が地盤の抵抗力を上回る(すべり安全率が1.0を下回り破壊に至る)のは 微小な時間であり,大変形が生じることは考えられない。

基礎地盤のすべり安全率に対する考え方は,斜面設計の考え方と地盤の極限支持 力の考え方を勘案して,保守的に導入されたものと推定される。なお,地盤安定性評 価を実施する上で一般的な指標となる支持力については,申請書に記載した通り,原 位置試験等により得られた極限支持力と建物・構築物の荷重を評価することにより,十 分な安全性を確認している。

地盤モデルにおける断層の扱いにおける保守性

基礎地盤の解析モデルの作成にあたっては,主要な断層が直線的に連続するもの であると仮定している。実際の断層では,走行・傾斜,破砕部形状・性状に変化がある ことから,一様な解析モデル上の断層と比較すれば,大きな抵抗力を有するものと推 定される。

b.基礎地盤に対する現実的評価

既往の審査指針, JEAG等の中では, 基礎地盤の安定性を評価するにあたり, すべり 安全率を指標とした評価を要求しているが, その評価には保守性が含まれると考えられる。 PSA標準では,より現実的な地盤耐力の評価手法として, 許容すべり量の評価について

添付資料 3.2.1.c-1-4

も言及していることから,非線形有限要素解析を適用した検討を行い,変形量について 評価する。

UHS(10-6)相当地震波(2138Gal)を入力した場合,基礎地盤に変形が生じる可能性 は否定できないものの,安全上重要な機器・配管系の安全機能に支障を与えるものでは ないと考えられる。以下,検討結果の概要を示す。

非線形有限要素解析を適用した検討

フラジリティ評価を実施した等価線形解析に替えて,地震後の残留変形量を評価す ることができる非線形有限要素解析により変形量評価を行った。UHS(10-6)相当地震 波を入力し,変形量を評価する。なお,非線形有限要素解析に適用する地盤モデル は,フラジリティ評価に適用したモデルと共通とする。

非線形有限要素解析の結果を図7~9,表2に示す。地震後の残留傾斜は,K6R/B で1/1500,K7R/Bで1/2800と算定された。残留傾斜は1/1000以下であり,安全上重 要な機器・配管系の安全機能に支障を与えるものではない。

以上より,非線形有限要素解析を適用してUHS(10-6)相当地震波(2138Gal)を入力した結果,基礎地盤に変形が生じる可能性は否定できないものの,安全上重要な機器・配管系の安全機能に支障を与えるものではないと考えられる。



図7 非線形有限要素解析 残留变形(UHS(10-6)相当地震波)



図8 6号機原子炉建屋の鉛直相対変位量(UHS(10-6)相当地震波)



図9 7号機原子炉建屋の鉛直相対変位量(UHS(10-6)相当地震波)

|       | 最大鉛直<br>相対変位<br>(cm) | 最大傾斜   | 発生時刻<br>(秒) | 残留鉛直<br>相対変位<br>(cm) | 残留傾斜    |
|-------|----------------------|--------|-------------|----------------------|---------|
| K6R/B | -13.6                | -1/400 | 37.00       | -3.8                 | -1/1500 |
| K7R/B | -14.7                | -1/300 | 13.78       | 2.0                  | 1/2800  |

表2 非線形有限要素解析による原子炉建屋の変位まとめ

(4) 有効性評価における事故シーケンスグループとしての取り扱い

以上の通り,建屋・構築物(原子炉建屋)損傷シーケンスの評価は,現状のフラジリティ評価手法にかなりの保守性を有していると考えられ,このような高い加速度領域における基礎 地盤変形が起きるということは現実的には考えにくい。

仮に基礎地盤変形が起きた場合に考え得るシナリオとしては,原子炉建屋自体の損傷に 伴う建屋内機器の機能喪失ではなく,建屋間に生じる可能性のある相対変位により,建屋 間を貫通している機器等の損傷である。建屋間を貫通している機器としては,配管,電線 管・ケーブルトレイがあるが,電線管・ケーブルトレイについては,損傷に至った場合であっ ても,ケーブルは,ある程度,余長をもった施工がなされていることから,(3)項に示したよう な変位に対して断線に至る可能性は小さい。そのため,想定し得る範囲においては,配管 の損傷となるが,緩和系に関係する配管で損傷が想定されるのは,原子炉建屋とタービン 建屋(熱交換器エリア)を貫通している原子炉補機冷却系配管, 給水系配管,及び消火系 配管,またコントロール建屋と原子炉建屋を貫通している純水補給水系配管などがある。原 子炉補機冷却系配管が破断するシナリオは既存の事故シーケンスグループである,原子 炉補機冷却系喪失として整理されている。また,破断箇所からの溢水により,全ての水が原 子炉建屋内へ流入することは現実的には考えられないものの,その場合の事故シナリオに ついても,高圧・低圧注水機能喪失として整理される。

以上を総合的に勘案した上で,本事象については新たな有効性評価の事故シーケンス グループとしては取り扱わないこととした<sup>1</sup>。

<sup>&</sup>lt;sup>1</sup> 建屋間相対変位による配管の損傷に留まらず,大規模な範囲での損傷を仮定した場合,地震による原子炉建屋の損傷程度や緩和系の健全性を評価の上,事故シーケンスを特定することは困難であり,炉心損傷対策の有効性評価の事故シーケンスグループとしては適切でない。

- 2.2 建屋・構築物(格納容器・圧力容器)の損傷
  - (1) 想定事故シナリオ

格納容器又は圧力容器の損傷は,原子炉格納容器内の構造物や原子炉圧力容器などの損傷に続く事象の進展が複雑であり,影響緩和系による事象収束について厳密に考慮 することは合理的ではないことから,直接炉心損傷に至る事故シナリオとして整理している。 【炉心損傷頻度】 8.9×10-7 / 炉年(点推定値) 【全炉心損傷頻度への寄与割合】約7%

(2) フラジリティ評価

a.評価対象機器/評価部位

建屋・構築物(格納容器・圧力容器)の損傷を起因とする燃料損傷に対して最も大きな 影響をもつ施設は,RPVペデスタルである。RPVペデスタルの概要図を図10に示す。

RPVペデスタル下層は内外にある2枚の円筒鋼板(内筒,外筒)から構成されている。 これらの鋼板はたてリブ鋼板(隔壁)により一体化され,鋼板間にコンクリートを充填した構 造物である。

地震時には、ダイヤフラムフロアを介して、RPVペデスタル頂部に原子炉建屋からせん断力が伝達される。

原子炉圧力容器のスカート状の支持脚が, RPVペデスタルのブラケットに設置され, 120本の基礎ボルトによって固定されており, 地震時に原子炉圧力容器からRPVペデス タルにせん断力・モーメントが伝達される。

RPVペデスタル基部は,リングガーダを介してアンカボルト(内筒側160本,外筒側320本)により原子炉格納容器底部に定着されており,RPVペデスタルに付加された荷重は, この基部に伝達される。

決定論による耐震評価結果において,地震荷重に対して裕度が小さい部位(アンカボ ルト,たてリブ)を,フラジリティの評価部位とした。



図 10 RPV ペデスタルの概要図
b.評価方法

今回のフラジリティ評価では,決定論による耐震評価結果に基づき,耐力係数と応答係 数を用いた簡易的な安全係数法によりフラジリティを評価した。

c.決定論的耐震評価/設計基準地震動に対する裕度

原子炉建屋内の原子炉圧力容器,原子炉格納容器,RPVペデスタル等の大型機器・ 構造物は,支持構造上から建屋との連成が無視できないため,地盤・建屋と連成し,コン クリート,鋼板の剛性を適切に考慮した解析モデルにより,基準地震動Ssによる地震応答 解析を時刻歴解析で実施する(図11)。



図 11 原子炉しゃへい壁, RPV ペデスタル及び原子炉圧力容器 地震応答解析モデル(NS 方向)

RPVペデスタルのたてリブの構造強度評価においては,上記の地震応答解析により 算出した時刻歴荷重データのうち最大荷重を用いて有限要素法による解析を実施してい る(図12)。この時,コンクリートの強度を無視して,最大荷重を静的に扱い評価を行って いる。

RPVペデスタルのアンカボルトの構造強度評価においては,上記の地震応答解析に より算出した時刻歴荷重データのうち最大荷重を静的に扱い,応力のつり合い式の計算 を行っている(図13)。

たてリブおよびアンカボルトにおいては、ともに地震荷重(最大荷重)を交番荷重では

なく,静的に負荷され続けている単調荷重を想定して評価を行っているところに保守性が ある<sup>(\*1)</sup>。さらにたてリブの構造強度評価ではコンクリート強度を無視しているところにも保 守性がある。



図12 RPVペデスタル 解析モデル概要図



図13 決定論による耐震評価のイメージ(アンカボルト)





東芝 電力システム社,三菱重工業,日立 GE ニュークリア・エナジー, "Seismic Design Approach in Japanese NPPs", IAEA International Workshop 19-21 June 2008 Kashiwazaki, Japan

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

現実的な損傷に対して現実的な評価を行うとすれば,鋼板,アンカー部,基礎マットおよ び充填コンクリート全体を詳細にモデル化して応答解析を行う詳細法が考えられるが,今回 の評価としては保守的な決定論的評価に基づいた簡易的な方法により評価しているため, RPVペデスタルの支持性能が実際に失われる地震動の大きさは,耐震評価から求まる地 震動の大きさよりもはるかに大きいと考えられる。また,RPVペデスタルが支持機能を喪失 する地震動の大きさであっても,ダイヤフラムフロアや原子炉格納容器の壁が存在するため, 圧力容器が大きく傾くスペースは存在せず,圧力容器に接続されている一次系配管の一部 破断もしくは破損に留まると考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

以上の通り,建屋・構築物(格納容器・圧力容器)の損傷シーケンスの評価は,現状のフ ラジリティ評価手法にかなりの保守性を有していると考えられ,現実的な耐性がPRAの結果 に現れているものではない。

仮にペデスタルにおける支持機能の喪失が起きた場合に考え得るシナリオとして,(3)項の通り,一次系配管の一部破断もしくは破損が生じるに留まり,想定し得る範囲においては,

これによる冷却材喪失(LOCA)の発生が考えられ,この場合の事象進展は,既存のLOCA シナリオと同様の進展となることが想定される。

以上を総合的に勘案した上で,本事象については新たな有効性評価の事故シーケンス グループとしては取り扱わないこととした。

- 2.3 原子炉冷却材圧力バウンダリ喪失
  - (1) 想定事故シナリオ

原子炉冷却材圧力バウンダリ喪失については,地震によるスクラム後,S/R弁の開放失敗 による原子炉圧力上昇または地震による直接的な荷重により,原子炉格納容器内の一次 冷却材配管が損傷に至るシナリオを想定している。いずれの場合も原子炉冷却材圧力バウ ンダリの損傷の規模や影響緩和系による事象収束可能性の評価が困難なため,保守的に E-LOCA相当とし,炉心損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】8.2×10-7/炉年(点推定值)

【全炉心損傷頻度への寄与割合】約6%

S/R開失敗シナリオ

-(2) フラジリティ評価

a.評価対象機器/評価部位

事故シーケンスとしては,過渡事象や外部電源喪失,全交流電源喪失時の発生時 を想定しているが,いずれのケースにおいても,S/R弁の損傷に起因している。

b.評価方法

S/R弁の構造上,最弱部の決定論的評価結果に基づき,フラジリティ評価を実施している。

-(3) 現実的評価/最適評価(フラジリティ/シナリオ)

S/R弁については合計18台設置されているものの,フラジリティ評価上は,機器の完全 相関を仮定しており,単一機器の評価=全台の評価としている。共通原因故障として単一 機器の機能喪失を全台機能喪失と仮定すること自体は保守的な取り扱いではあるが,実 際には機器配置の差など,応答に差があることを踏まえると,さらに余裕があると言える。

-(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では,S/R開失敗によるLOCAシナリオとして,S/R弁全数破損により原子炉 圧力が過剰に上昇し原子炉一次冷却材バウンダリが広範囲・大規模に破損に至ることを 想定し,影響緩和系に期待できず炉心損傷が回避不可となるケースを考え,炉心損傷直 結としている。

ただし, -(3)の通り,要因となっているS/R弁の現状のフラジリティ評価にかなり保守的 な仮定をおいており,現実的な事故シナリオとしては,合計18台あるS/R弁が同時損傷す る可能性は極めて低いことから,E-LOCAには至ることなく緩和系による事象収束が期待 できる。そのため,炉心損傷に至る確率が十分小さいと判断し,有効性評価の事故シーケ ンスグループとしては取り扱わないこととした2。

### 格納容器内配管損傷シナリオ

- -(2) フラジリティ評価
  - a.評価対象機器/評価部位

配管が格納容器内を通る系統について,配管本体及びその支持構造物のフラジ リティを評価した。

b.評価方法

配管の評価は,各系統で耐震評価上厳しい決定論の結果に基づき,フラジリティ 評価を実施している。

<sup>&</sup>lt;sup>2</sup> E-LOCA を仮定した場合でも, ECCS 系による注水流量では足りないほどの原子炉冷却材の流出が考えられることから, この事故シーケンスは, LOCA 時に ECCS 系による注水機能が喪失した場合と類似の状況となる可能性が高いと考えられ, 「LOCA 時注水機能喪失」の事故シーケンスグループに整理できる。また, E-LOCA 発生時には, 大LOCA+SBO シーケンスと同様に,早い段階で炉心損傷に至ることから, 炉心損傷防止対策を講じることは困難である。そのため,本事故シーケンスについては, 炉心損傷対策の有効性評価の事故シーケンスグループとして定義するのではなく, 格納容器破損防止対策を講じることにより, 格納容器閉じ込め機能を維持できるようにしておくことが重要であると考えられる。

c.決定論的耐震評価/設計基準地震動に対する裕度

地震力をモーダル解析による応答スペクトル法により算出する配管系は,その配 管系の振動性状を考慮したモデルを用い,適切な減衰定数により地震応答解析を 行う。

配管系の地震応答解析に用いる減衰定数,評価基準値等は保守的に設定され ており,裕度を確保している。

配管本体については設計に比べて大きな耐震裕度を有しており,既往研究結果 等からも設計想定レベルを上回る地震力に対して健全性を維持することが確認され ている。「平成15年配管系終局強度試験」においては,配管バウンダリが設計レベ ルの約12倍の耐震裕度を有していることが確認された。

平成18年に実施した電共研における配管系耐震試験では,配管サポート及び定着部を含めて模擬した配管サポート系試験体の実規模加振試験を実施しており,配 管及びサポートについて,設計で許容されるレベルに対して少なくとも9倍の耐震裕 度があることを確認している。

-(3) 現実的評価/最適評価(フラジリティ/シナリオ)

現実的な損傷に対して現実的な評価を行うとすれば,配管および配管サポートを一体 でモデル化した応答解析を行う詳細法が考えられるが,今回の評価としては保守的な決定 論的評価に基づいた簡易的な方法により評価しているため,配管系が損傷に至る地震動 の大きさは,耐震評価から求まる地震動の大きさよりもはるかに大きいと考えられる。

-(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では,格納容器内配管損傷によるLOCAシナリオとして,損傷程度(規模,範囲)を特定することは困難であるものの, -(3)の通り,フラジリティ評価にかなり保守的な 仮定をおいており,現実的な事故シナリオとしては,E-LOCAには至ることなく緩和系によ る事象収束が期待できると考えられるため,炉心損傷に至る確率が十分小さいと判断し, 有効性評価の事故シーケンスグループとしては取り扱わないこととした<sup>3</sup>。

- 2.4 計測·制御系喪失
  - (1) 想定事故シナリオ

計装・制御系が損傷した場合,プラントの監視及び制御が不能に陥る可能性があること,

<sup>&</sup>lt;sup>3</sup> E-LOCA を仮定した場合でも, ECCS 系による注水流量では足りないほどの原子炉冷却材の流出が考 えられることから, この事故シーケンスは, LOCA 時に ECCS 系による注水機能が喪失した場合と類似の状 況となる可能性が高いと考えられ, 「LOCA 時注水機能喪失」の事故シーケンスグループに整理できる。ま た, E-LOCA 発生時には, 大 LOCA + SBO シーケンスと同様に,早い段階で炉心損傷に至ることから, 炉 心損傷防止対策を講じることは困難である。そのため,本事故シーケンスについては,炉心損傷対策の有 効性評価の事故シーケンスグループとして定義するのではなく,格納容器破損防止対策を講じることにより, 格納容器閉じ込め機能を維持できるようにしておくことが重要であると考えられる。

発生時のプラント挙動に対する影響が現在の知見では明確でないことから,保守的に直接 炉心損傷に至る事故シナリオとして整理している。

【炉心損傷頻度】 6.9×10-8 / 炉年(点推定値)

【全炉心損傷頻度への寄与割合】 1%未満

(2) フラジリティ評価

a.評価対象機器/評価部位

計測・制御系喪失において評価対象となる電気計装機器は,制御盤,計装ラック,バイ タル交流電源設備である。

これらの電気計装機器について,基礎ボルトの構造損傷及び,盤または計装ラック全体 における機能損傷について評価している。

b.評価方法

制御盤及びバイタル交流電源設備は,盤の形状が何れも直立盤に分類されることから, 水平方向の耐力評価については,過去に直立盤について機能確認済加速度値を検証し ているJNESの知見を用いて行った。

計装ラックについても水平方向の耐力評価については,」NESによる計装ラック全体を 加振して検証した機能確認済加速度値が検証されていることから,この知見を用いて耐力 評価を実施した。

鉛直方向については,既往の試験結果による機能確認済加速度を適用することとした。

c.決定論的耐震評価/設計基準地震動に対する裕度

今回の耐力評価に使用している機能確認済加速度は,誤動作を起こすまでの結果であ る場合が多く,電気計装機器の機能損傷レベルに対して余裕のある機能確認済加速度値 を採用している。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

今回の直立盤及び計装ラックの評価に適用した機能確認済加速度値は,盤及び内蔵器 具類が再使用困難な状態までを検証した結果でないことから,仮に地震動が機能確認済 加速度値を超過した場合においても一時的な故障にとどまる可能性が高く,地震収束後に 再起動操作等を適切に実施することにより機能回復が可能と考える。

そのため,今回の評価においては炉心損傷直結事象と整理してはいるが,現実的に,直 立盤または計装ラックが倒壊するような復旧困難な損傷でない限りは事象収束措置が図ら れること及び,上記理由により機能回復が見込めることからも,実態として炉心損傷に直結 しないものと考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い 仮に直立盤または計装ラックが倒壊するような機能回復が見込めないような場合であって も,その範囲により事象収束の可能性が残されているものの,損傷の程度や,影響の程度 によって変化する事故シーケンスを個別に特定していくことは困難である。

ただし,(3)の通り,現実的な事故シナリオとしては,一時的な機能喪失にとどまる機器が 多く,地震収束後に再起動操作を適切に実施することで緩和系による事象収束が期待でき るため,炉心損傷に至る確率が十分小さいと判断し,有効性評価の事故シーケンスグルー プとしては取り扱わないこととした。

#### 2.5 直流電源喪失

(1) 想定事故シナリオ

直流電源系が損傷に至ることで,ほぼ全ての安全機能の制御機能が喪失することから直 接炉心損傷に至る事故シナリオとして整理。

【炉心損傷頻度】 6.0×10-8 / 炉年(点推定值)

【全炉心損傷頻度への寄与割合】 1%未満

(2) フラジリティ評価

a.評価対象機器/評価部位

直流電源喪失において評価対象となる電気計装機器は,蓄電池,充電器盤,直流主 母線盤,ケーブルトレイ,電線管,直流MCCである。

これらの電気計装機器について, 蓄電池架台と盤の基礎部の構造損傷, ケーブルトレイ及び電線管のサポート類の構造損傷, 盤における機能損傷について評価している。

#### b.評価方法

蓄電池については蓄電池架台の基礎部についての構造損傷評価を実施し,ケーブル トレイ及び電線管については,ケーブルトレイと電線管の本体及び各サポート類の構造損 傷を評価した。

また,充電器盤及び直流主母線盤は,盤の形状が何れも直立盤に分類されることから, 水平方向の耐力評価については,過去に直立盤について機能確認済加速度値を検証し ているJNESの知見を用いて行った。

直流MCCについても水平方向の耐力評価については,JNESによるMCC全体を加振 して検証した機能確認済加速度値が検証されていることから,この知見を用いて耐力評価 を実施した。

鉛直方向については,既往の試験結果による機能確認済加速度を評価して適用することとした。

c.決定論的耐震評価/設計基準地震動に対する裕度

今回の耐力評価に使用している機能確認済加速度は,誤動作を起こすまでの結果であ る場合が多く,電気計装機器の機能損傷レベルに対して余裕のある機能確認済加速度値 を採用している。

直流電源喪失において,特にHCLPFが低い電線管及びケーブルトレイは,多数のサポ ート類における決定論上の評価結果より,最も裕度の低かった部位(最弱部位)の評価結 果を適用して得られた結果である。よって,部分的に損傷を開始する可能性は考えられる が,多数の電線管等が全て同時に損傷するものではないと考えられる。更に,電線管及び ケーブルトレイの評価部位は,最弱部位(サポート類)に対する評価結果であり,電線管や ケーブルトレイに収納されているケーブルが断線等により直接的に機能喪失に至ることを 評価したものではない。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

今回の直立盤,直流MCCの評価に適用した機能確認済加速度値は,盤及び内蔵器具 類が再使用困難な状態までを検証した結果でないことから,仮に地震動が機能確認済加 速度値を超過した場合においても一時的な故障にとどまる可能性が高く,地震収束後に再 起動操作等を適切に実施することにより機能回復が可能と考える。

また,ケーブルトレイ及び電線管に適用した決定論上の評価結果についても,最弱部位 (サポート類)の内,最も裕度の低い評価結果を適用した結果であることから,全てのサポー トが同時に損傷するものでは無いと考えられること及び,ケーブル断線等の直接的な機能 喪失を評価した結果を適用しているものではないことからも,実際のケーブル断線等の機能 損傷に至るまでには裕度があると考えられる。

今回の評価結果から炉心損傷直結事象と整理されてはいるが,現実的に,直立盤または 直流MCC或いは蓄電池が倒壊するような復旧困難な損傷でない限りは事象収束措置が 図られ機能回復が見込めること及び,電線管等についてもケーブル断線等の機能喪失に 至るまでには裕度を有していることからも,実態として炉心損傷に直結しないものと考えられ る。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

仮に一部の直流MCCや蓄電池が倒壊し復旧困難な場合においては,事象収束措置が 困難となり炉心損傷に至るケースも想定されるものの,損傷の程度や影響の程度によって 変化する事故シーケンスを個別に特定していくことは困難であり,大規模に機器が損傷に 至る場合においては,さらにその困難さや評価の不確実さが増すことから,PRA評価では, 直流電源喪失シナリオは,保守的に炉心損傷直結としている。

ただし,(3)の通り,現実的な事故シナリオとしては,一時的な機能喪失にとどまる機器に 対し,地震収束後に適切に対応することで緩和系による事象収束が期待できるため,炉心 損傷に至る確率が十分小さいと判断し,有効性評価の事故シーケンスグループとしては取 り扱わないこととした。

- 2.6 格納容器バイパス
  - (1) 想定事故シナリオ

格納容器バイパス事象は、インターフェースシステムLOCA(IS-LOCA)と、バイパス破

断に細分化される。IS-LOCAは,格納容器バウンダリ内外の高圧設計配管と低圧設計配 管のインターフェースの隔離機能が喪失することによって,格納容器外の低圧設計配管, 弁などに一次冷却材の高圧負荷がかかり損傷が生じ,格納容器外へ原子炉冷却材流出を 引き起こす事象である。バイパス破断は,常時開などの隔離弁に接続している配管が格納 容器外で破損すると同時に隔離弁が閉失敗することで,原子炉冷却材が流出する事象で ある。

本事故シーケンスにおいて支配的なシナリオは原子炉冷却材浄化系(CUW系)隔離弁 の下流側配管(耐震Bクラス)の地震による損傷と,通常開状態である隔離弁の同時損傷に よる隔離失敗に至ることでバイパス破断が発生するものである。事故シナリオとしては,原子 炉冷却材が格納容器外への流出することで,建屋内の広範な影響緩和系に係る機器(電 気品,計装品等)が機能喪失するとし,直接炉心損傷に至るものと整理している。

【炉心損傷頻度】 1.2×10-7 / 炉年(点推定值)

【全炉心損傷頻度への寄与割合】 1%未満

(2) フラジリティ評価

a.評価対象機器/評価部位

本事故シーケンスで支配的なシナリオである格納容器バイパス破断については, CUW系配管の破損と,CUW系隔離弁の閉失敗に関する機器(隔離弁,電源設備(D/G, 電源盤等))である。

b.評価方法

隔離弁や電源設備については,本事故シーケンス特有の設備ではないため,特段,フ ラジリティ評価に変わりはないが,CUW系配管については,耐震Bクラスということで地震 発生時の損傷確率1.0としている。

(3) 現実的評価/最適評価(フラジリティ/シナリオ)

CUW系配管については,耐震Bクラスということでフラジリティ評価では地震に対する耐力を考慮していないものの,一定程度の耐力は有していると考えられる。また,隔離弁については,2重化されているものの,完全相関を仮定していることから,地震動の大きさによっては,同時破損確率は,現評価よりは低くなることが考えられる。

(4) 有効性評価における事故シーケンスグループとしての取り扱い

PRA評価では,格納容器バイパスシナリオについて,配管損傷の程度やその発生位置 に応じて変化する溢水量や溢水(又は蒸気)の伝播経路の特定,影響緩和措置の実現性 や成立性の確認を含めた詳細な事象進展の特定は不確実さも大きく定量化困難である。

ただし,(3)の通り,現実的な事故シナリオとしては,損傷の程度や位置によっては,建屋 内で影響の及ぶ機器は限定的なものとなり,原子炉へ注水を継続することにより炉心損傷 回避が図られる。また,(2)の通り,地震動の大きさに限らずCUW系配管(耐震クラスB)に

ついて損傷確率1と仮定した評価を実施しているものの,新潟県中越沖地震の際も,建屋 での配管損傷事例は確認されておらず,実際には一定の裕度を有しておりことから,更に 発生頻度は低くなると判断される。

すなわち,損傷の程度によっては既存の有効性評価の事故シーケンスグループに含まれること,加えて本事故シーケンスにより炉心損傷に至る頻度はかなり稀な事象であるといえることから,新たな有効性評価の事故シーケンスグループとしては取り扱わないものとした。

3.まとめ

炉心損傷直結事象として整理した6つの事故シーケンスについては,現実的な耐力や事故シナリオを考慮することにより,新たな有効性評価の事故シーケンスグループとしては取り扱わないものとした4。

本来はPRA評価においても,損傷の程度に応じて緩和系による事象収束可否を詳細に評価する ことが望ましいが,現段階では損傷の規模や範囲の特定は困難かつ不確実さが大きく,これら事故 シーケンスが発生した場合の事象進展,具体的には炉心損傷までの時間余裕,緩和系の健全性や 炉心損傷防止への必要性能有無などについて評価を行うことは現実的ではないことから,保守的に 炉心損傷直結として取り扱っている。

<sup>4</sup> 大規模な地震を想定した場合の,多数の設備の損壊により炉心損傷回避が困難となるケースについても, 炉心損傷防止対策の有効性評価の事故シーケンスグループとして単独で定義する必要はなく,地震による 損傷の程度や事象進展に応じて,さまざまな炉心損傷防止対策を臨機応変に組み合わせて活用可能なよ うに準備しておくことが重要である。また,原子炉建屋全体が損壊し,建屋内部の安全系機器が機能喪失に 至ってしまうような非常に苛酷な状況下においても,屋外の可搬型設備により注水,除熱,電源機能を確保 するとともに,大規模損壊対策として放水砲等の影響緩和措置を講じられるようにしておくことが重要である と考えられる。

柏崎刈羽原子力発電所6号機および7号機の比較

1.はじめに

地震 PRA モデルとして,評価条件,地震ハザード,イベントツリー,フォールト ツリー及びランダム要因失敗確率(機器故障,人的過誤,共通原因故障など)につい ては柏崎刈羽原子力発電所6号機と7号機は共通であり,6号機と7号機の相違点は フラジリティのみである。

そのため 6 号機と 7 号機の炉心損傷頻度等の評価結果の差について, フラジリティの比較の観点から分析を実施した。

2. 炉心損傷頻度の比較

全炉心損傷頻度は,6号機が1.2×10<sup>-5</sup>/炉年(点推定値),7号機が1.5×10<sup>-5</sup>/炉年 (点推定値)であり,概ね同等な結果となっている。ただし,炉心損傷シーケンス別 に炉心損傷頻度を比較すると6号機および7号機間でバラツキが見受けられること から,それら差について要因分析を実施した。(炉心損傷シーケンス別の炉心損傷頻 度 図.1,表.1参照)

各炉心損傷シーケンスの中で,最も炉心損傷頻度の相対的な差が大きいのは格納容器バイパスシーケンスであり,6号機が9.6×10<sup>-7</sup>[/炉年],7号機が1.2×10<sup>-7</sup>[/炉年] である。格納容器バイパスの主要なシナリオは,低耐震クラス配管等と隔離弁の同時 損傷によるものであるが,6号機で炉心損傷頻度への寄与の大きい原子炉給水隔離弁 のHCLPFが1.20[G]なのに対し,7号機で炉心損傷頻度への寄与の大きいCUW吸 込ライン隔離弁では1.73[G]となっており,この耐力の差が炉心損傷頻度の差の要因 となっている。さらに6号機では主蒸気隔離弁の損傷確率が大きい(6号機HCLPF 1.44[G],7号機HCLPF2.12[G])ことも,6号機の炉心損傷頻度評価結果が大きい 要因となっている。

各炉心損傷シーケンスについて,主要な事故シナリオの比較,炉心損傷頻度への寄 与が大きい機器,フラジリティ評価の差異理由等を別添1に示す。

以上



図.1 6号機及び7号機の炉心損傷シーケンス別の炉心損傷頻度(点推定値)

| 均因声色                         | 6 号機         |       | 7 号機         |       |
|------------------------------|--------------|-------|--------------|-------|
| 起囚争家                         | 炉心損傷頻度 [/炉年] | 寄与割合  | 炉心損傷頻度 [/炉年] | 寄与割合  |
| 崩壊熱除去失敗<br>(TW)              | 3.3E-6       | 26.2% | 5.3E-6       | 34.7% |
| 建屋・構築物(R/B)の損傷<br>(RBR)      | 3.6E-6       | 28.9% | 3.8E-6       | 24.6% |
| 電源喪失<br>(TB )                | 1.9E-6       | 15.0% | 3.5E-6       | 23.0% |
| 建屋・構築物(RPC・PCV)の損傷<br>(PCVR) | 1.2E-6       | 9.8%  | 8.9E-7       | 5.8%  |
| 原子炉冷却材圧力バウンダリ喪失<br>(LOCA)    | 1.1E-6       | 8.9%  | 8.2E-7       | 5.3%  |
| 電源喪失<br>(TBU)                | 5.4E-8       | 0.4%  | 3.7E-7       | 2.4%  |
| 未臨界確保失敗<br>(TC)              | 1.4E-8       | 0.1%  | 3.6E-7       | 2.3%  |
| 原子炉格納容器バイパス<br>(BYPASS)      | 9.6E-7       | 7.7%  | 1.2E-7       | 0.8%  |
| 計測・制御系喪失<br>(CI)             | 1.9E-7       | 1.5%  | 6.9E-8       | 0.4%  |
| 電源喪失<br>(TBD)                | 1.3E-7       | 1.0%  | 6.0E-8       | 0.4%  |
| 高圧注水失敗,減圧失敗<br>(TQUX)        | 3.1E-8       | 0.3%  | 2.3E-8       | 0.2%  |
| 電源喪失<br>(TBP)                | 1.0E-8       | 0.1%  | 2.0E-8       | 0.1%  |
| 高圧注水失敗,低圧注水失敗<br>(TQUV)      | 6.4E-9       | 0.1%  | 1.3E-8       | 0.1%  |
| 合計                           | 1.2E-5       | 100%  | 1.5E-5       | 100%  |

表.1 6号機及び7号機の炉心損傷シーケンス別の炉心損傷頻度(点推定値)



図.2 6号機及び7号機の炉心損傷シーケンス別の炉心損傷頻度の比較

【TW シーケンス】

|                 | 6 号機                                    | 7 号機                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 主要な事故シナリオの                                                                           | 炉心損傷頻度への寄与が大きな機器 |      |                                          |                                          |  |
|-----------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------|------|------------------------------------------|------------------------------------------|--|
| 炉 心 損<br>傷頻度    | 3.3×10 <sup>-6</sup> [/炉年]              | 5.3×10 <sup>-6</sup> [/炉年]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 比較分析                                                                                 |                  |      |                                          |                                          |  |
| 主 要 な           | 「過渡事象」時にスク                              | 同左                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 号機の主要な事故シ                                                                          |                  | HCLP | 'F[G]                                    | 供老                                       |  |
| 事故シ             | ラム,圧力制御及び                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ナリオでは ,「RHR 弁」,                                                                      | 機                | 6 号機 | 7 号機                                     | 循行                                       |  |
| ナリオ             | HPCF による炉心注<br>水に成功後,RHR に<br>よる原子炉格納容器 | <ul> <li>炉心注</li> <li>HR に</li> <li>「RHR/LPFL 共通弁」,</li> <li>「RHR 配管」の地震要</li> <li>(因基事象が炉心損傷頻</li> <li>(皮はのる割合が大き)</li> <li>(アレートのる割合が大き)</li> <li>(ロートのる割合が大き)</li> <li>(ロートのる割合が大き)</li> <li>(ロートのの)</li> <li>(ロートの)</li> <li>(ロートの)<td>RHR 弁</td><td>1.60</td><td>1.13</td><td>弁が設置される配管および配<br/>管支持構造物の配置がプラン<br/>ト間で異なる</td></li></ul> | RHR 弁                                                                                | 1.60             | 1.13 | 弁が設置される配管および配<br>管支持構造物の配置がプラン<br>ト間で異なる |                                          |  |
| からの崩壊<br>失敗するシナ | からの崩壊熱除去に<br>失敗するシナリオ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 度に占める割合が大き<br>いが, いずれの HCLPF<br>も6 号機の方が大きい<br>ことが,6号機の炉心損<br>傷頻度が小さくなる要<br>因となっている。 | RHR/LPFL 共通<br>弁 | 1.60 | 1.13                                     | 弁が設置される配管および配<br>管支持構造物の配置がプラン<br>ト間で異なる |  |
|                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                      | RHR 配管           | 1.84 | 1.15                                     | 配管および配管支持構造物の<br>配置がプラント間で異なる            |  |

## 【TQUV シーケンス】

| •                     |                                                                          |                                  |                                                                                                            |              |       |          |                                          |  |  |
|-----------------------|--------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------|--------------|-------|----------|------------------------------------------|--|--|
|                       | 6 号機                                                                     | 7 号機                             | = = 要な事故シナリオの比較分                                                                                           |              |       | <u> </u> |                                          |  |  |
| 炉心損傷<br><sup>頻度</sup> | 6.4×10 <sup>-9</sup> [/炉年]                                               | 1.3 × 10 <sup>-8</sup> [/<br>炉年] | 析                                                                                                          |              | 炉心損傷頻 | うが大きな機器  |                                          |  |  |
| 主要な事                  | 「過渡事象」時に圧                                                                | 同左                               | 6 号機及び 7 号機で炉心損                                                                                            |              | HCLPF | F[G]     | /# <del>*</del> 2                        |  |  |
| 故シナリ                  | 力制御成功又は                                                                  |                                  | 傷頻度への寄与が最も大きい                                                                                              | 機器名称         | 6 号機  | 7 号機     | 備考                                       |  |  |
| オ                     | S/R 弁再閉鎖失敗<br>後,高圧注水機能<br>(圧力制御成功時                                       |                                  | 機器の HCLPF を比較すると<br>7 号機 RCW 熱交換器<br>(HCLPF=0.98[G])より6号                                                   | RCW 熱交換<br>器 | 1.46  | 0.98     | 機器の構造がプラント間で異<br>なる                      |  |  |
|                       | は HPCF 及 び<br>RCIC, S/R 弁再閉<br>鎖失敗時はHPCF)                                |                                  | 機 RCW 弁(HCLPF=0.97[G])<br>の方がわずかに小さいもの<br>の,7 号機は炉心損傷頻度への                                                  | RCW 弁        | 0.97  | 1.56     | 弁が設置される配管および配<br>管支持構造物の配置がプラン<br>ト間で異なる |  |  |
|                       | に失敗し<br>)<br>圧には成功するが<br>低<br>圧<br>注水機能<br>(LPFL)に失敗し<br>炉心損傷に至るシ<br>ナリオ |                                  | 寄 与 が 大 き い 機 器 と し て<br>RCW 配管(HCLPF=1.11[G])<br>があり,カットセット同士の<br>炉心損傷頻度を加算すると7<br>号機の炉心損傷頻度の方が大<br>きくなる。 | RCW 配管       | 2.37  | 1.11     | 配管および配管支持構造物の<br>配置がプラント間で異なる            |  |  |

【TQUX シーケンス】

| 炉 心 損<br>傷頻度 | 6 号機<br>3.1×10 <sup>-8</sup> [/炉年]        | 7 号機<br>2.3 × 10 <sup>-8</sup> [/炉<br>年] | - 主要な事故シナリオの比較<br>分析                         |            | 炉心損傷 | 頃度への寄 | 与が大きな機器                                  |
|--------------|-------------------------------------------|------------------------------------------|----------------------------------------------|------------|------|-------|------------------------------------------|
| 主要な          | 「過渡事象」時に,圧                                | 同左                                       | 6 号機の炉心損傷頻度の方                                | 松空々を       | HCL  | PF[G] | —————————————————————————————————————    |
| 事故シ          | 力制御成功後,高圧注                                |                                          | が大きいのは,高圧注水機能                                | 陇硆石小       | 6 号機 | 7 号機  | 酒ち                                       |
| ナリオ          | 水機能 (HPCF 及び<br>RCIC)に失敗し,更に<br>原子炉減圧に失敗す |                                          | 及び原子炉減圧機能に関連<br>する地震要因基事象の<br>HCLPFが,7号機より6号 | HPCF 弁     | 0.94 | 1.22  | 弁が設置される配管および<br>配管支持構造物の配置がプ<br>ラント間で異なる |
|              | ることで原子炉への<br>注水不能となり炉心<br>損傷に至るシナリオ       |                                          | 機で小さいことによる。                                  | 逃がし安全<br>弁 | 0.86 | 1.03  | 弁が設置される配管および<br>配管支持構造物の配置がプ<br>ラント間で異なる |

# 【TC シーケンス】

|              | 6 号機                                                                                | 7 号機                       | <br> <br>  主要な事故シナリオの比                         |        |      | ur    |                                       |  |  |
|--------------|-------------------------------------------------------------------------------------|----------------------------|------------------------------------------------|--------|------|-------|---------------------------------------|--|--|
| 炉 心 損<br>傷頻度 | 1.4×10 <sup>-8</sup> [/炉年]                                                          | 3.6×10 <sup>-7</sup> [/炉年] | ■ <u>1</u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | 炉心損傷 | 頻度への  | 度への寄与が大きな機器                           |  |  |
| 主要な          | 地震により外部電源                                                                           | 地震により外部電源                  | スクラム系に関連する要                                    |        | HCLF | PF[G] | 供老                                    |  |  |
| 事故シ          | が喪失することで「外部                                                                         | と D/G のサポート系で              | 因で,7 号機の CRD 配                                 | 懱岙石朳   | 6 号機 | 7 号機  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |  |  |
| ナリオ          | 電源喪失」が発生する。                                                                         | ある原子炉補機冷却水                 | 管,上部格子板より6 号機                                  |        |      |       |                                       |  |  |
|              | その後のスクラムに失                                                                          | 系・冷却海水系(RCW・               | のシュラウドサポートの                                    | RCW熱交  | 1.40 | 0.00  | 機器の構造がプラント間で                          |  |  |
|              | 敗して,S/R 弁開放によ                                                                       | RSW)が喪失すること                | HCLPF が大きいため,7                                 | 換器     | 1.40 | 0.98  | 異なる                                   |  |  |
|              | る圧力制御及びHPCF                                                                         | で「全交流電源喪失」が                | 号機の炉心損傷頻度が大                                    |        |      |       |                                       |  |  |
|              | による炉心冷却には成                                                                          | 発生する。その後の人ク                | さくなっている。                                       |        |      |       |                                       |  |  |
|              | J<br>切9<br>るか<br>SLC<br>による反<br>広<br>広<br>も<br>制<br>知<br>に<br>た<br>助<br>し<br>て<br>応 | フム矢敗により木闘券                 | よに,0 万機は/ 万機に                                  | RCW配管  | 2 37 | 1 1 1 | の配置がプラント間で異な                          |  |  |
|              | 心侵的御に大敗してが                                                                          | 唯体に大敗した心損傷                 |                                                |        | 2.01 | 1.11  |                                       |  |  |
|              | 心頂陽に主るノリウオ                                                                          | に主もクリック                    |                                                |        |      |       |                                       |  |  |
|              |                                                                                     |                            | ジリティが強く「全交流雷                                   |        |      |       |                                       |  |  |
|              |                                                                                     |                            | 源喪失 (RCW·RSW 損                                 |        |      |       |                                       |  |  |
|              |                                                                                     |                            | [編]」の起因事象発生頻度                                  | CBD 配管 | 2 62 | 1 30  | 配官のよび配官文持備運物 <br>  の配署がプラント問で異か       |  |  |
|              |                                                                                     |                            | が小さいため,6号機と7                                   |        | 2.02 | 1.55  |                                       |  |  |
|              |                                                                                     |                            | 号機で主要な事故シナリ                                    |        |      |       |                                       |  |  |
|              |                                                                                     |                            | オが異なる。                                         |        |      |       |                                       |  |  |

【TB シーケンス】

|              | 6 号機                                                                          | 7 号機                          | <br> <br>  キ要な事故シナリオの比較分                                                        |               |       |               |                                          |
|--------------|-------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------|---------------|-------|---------------|------------------------------------------|
| 炉 心 損<br>傷頻度 | 1.9×10 <sup>-6</sup> [/炉年]                                                    | 3.5×10 <sup>-6</sup><br>[/炉年] | 析                                                                               |               | 炉心預傷, | <b>浪度への</b> 著 | <b>寄与が大きな機器</b>                          |
| 主要な          | 地震により外部電源と D/G のサポ                                                            | 同左                            | 6号機及び7号機で炉心損傷                                                                   | 继哭夕称          | HCL   | PF[G]         | 借老                                       |
| 事故シ          | ート系である原子炉補機冷却水系・                                                              |                               | 損度への寄与が最も大きい機                                                                   | 1/2 66 1111/1 | 6 号機  | 7 号機          |                                          |
| ナリオ          | 冷却海水系(RCW・RSW)が喪失す<br>ることで「全交流電源喪失」が発生<br>する。<br>その後のスクラム、S/R 弁による圧           |                               | 器のHCLPFを比較すると7号<br>機 RCW 熱 交 換 器<br>(HCLPF=0.98[G])より6号<br>機RCW弁(HCLPF=0.97[G]) | RCW 熱交<br>換器  | 1.46  | 0.98          | 機器の構造がプラント間<br>で異なる                      |
|              | 力制御に成功し、事象初期の RCIC<br>による原子炉注水に成功するもの<br>の、サポート系(非常用交流電源及<br>び原子炉補機冷却水系・冷却海水系 |                               | の方がわすかに小さいものの,<br>7 号機は炉心損傷頻度への寄与<br>が大きい機器として RCW 配管<br>(HCLPF=1.11[G])があり,カ   | RCW 弁         | 0.97  | 1.56          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|              | (RCW・RSW))及び長期水源を確保できないことから継続注水に失敗し炉心損傷に至るシナリオ                                |                               | ットセット向士の炉心損傷頻<br>度を加算すると 7 号機の炉心<br>損傷頻度の方が大きくなる。                               | RCW 配管        | 2.37  | 1.11          | 配管および配管支持構造<br>物の配置がプラント間で<br>異なる        |

## 【TBU シーケンス】

|              | 6 号機                                        | 7 号機                          |                                                                                |              |       |               |                                          |
|--------------|---------------------------------------------|-------------------------------|--------------------------------------------------------------------------------|--------------|-------|---------------|------------------------------------------|
| 炉 心 損<br>傷頻度 | 5.4×10 <sup>-8</sup> [/炉年]                  | 3.7×10 <sup>-7</sup><br>[/炉年] | 主要な事故シナリオの比較分析<br>                                                             |              | 炉心損傷夠 | <b>負度への</b> 寄 | 与が大きな機器                                  |
| 主 要 な        | 地震により外部電源と                                  | 同左                            | 6 号機及び7 号機で炉心損傷頻度への寄                                                           | 松虫公共         | HCLF  | PF[G]         | 供老                                       |
| 事故シ          | D/Gのサポート系である                                |                               | 与が最も大きい機器の HCLPF を比較す                                                          | 懱硆屲仦         | 6 号機  | 7 号機          | 1月17日1月17日1日11日1日11日1日11日1日11日1日11日1日11  |
| ナリオ          | 原子炉補機冷却水系・冷<br>却海水系(RCW・RSW)<br>が喪失することで「全交 |                               | ると7号機 RCW 熱交換器<br>(HCLPF=0.98[G])より6号機RCW弁<br>(HCLPF=0.97[C])の方がわずかに小さ         | RCW 熱<br>交換器 | 1.46  | 0.98          | 機器の構造がプラント間<br>で異なる                      |
|              | 流電源喪失」が発生す<br>る。その後のスクラム及びS/R 会による圧力制御      |                               | (HCLPF=1 11/CL)があり、カットという<br>いものの、7 号機は炉心損傷頻度への寄与<br>が大きい機器として RCW 配管          | RCW 弁        | 0.97  | 1.56          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|              | に成功後,事象初期の<br>RCIC による原子炉注水<br>に失敗し炉心損傷に至   |                               | 同士の炉心損傷頻度を加算すると 7 号機<br>の炉心損傷頻度の方が大きくなる。<br>RCIC に関連する要因では 7 号機の               | RCW 配<br>管   | 2.37  | 1.11          | 配管および配管支持構造<br>物の配置がプラント間で<br>異なる        |
|              | るシナリオ                                       |                               | CSP 周り配管より 6 号機の CSP 周り配管         の HCLPF が大きいため , 6 号機の炉心損         傷頻度が小さくなる。 | CSP 周り<br>配管 | 1.35  | 1.05          | 配管および配管支持構造<br>物の配置がプラント間で<br>異なる        |

添付資料 3.2.1.d-6

【TBP シーケンス】

|              | 6 号機                                                                 | 7 号機                           |                                                                            |             |      |                 |                                          |
|--------------|----------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------|-------------|------|-----------------|------------------------------------------|
| 炉 心 損<br>傷頻度 | 1.0×10 <sup>-8</sup> [/炉年]                                           | 2.0×10 <sup>-8</sup> [/炉<br>年] | 主要な事故シナリオの比較分析<br>                                                         |             | 炉心損傷 | <b>寄与が大きな機器</b> |                                          |
| 主要な          | 地震により外部電源                                                            | 同左                             | 6 号機及び 7 号機で炉心損傷頻                                                          |             | HCL  | PF[G]           | (# <del>*</del>                          |
| 事故シ          | と D/G のサポート系                                                         |                                | 度への寄与が最も大きい機器の                                                             | 懱   古       | 6 号機 | 7 号機            | 1佣~5                                     |
| ナリオ          | である原子炉補機冷却<br>水系・冷却海水系<br>(RCW・RSW)が喪失                               |                                | HCLPFを比較すると7号機 RCW<br>熱交換器(HCLPF=0.98[G])より<br>6号機 RCW 弁(HCLPF=0.97[G])    | RCW熱交<br>換器 | 1.46 | 0.98            | 機器の構造がプラント間で<br>異なる                      |
|              | することで「全交流電<br>源喪失」が発生する。<br>その後のスクラム及び                               |                                | の方がわずかに小さいものの,7号<br>機は炉心損傷頻度への寄与が大き<br>い機器として RCW 配管                       | RCW 弁       | 0.97 | 1.56            | 弁が設置される配管および<br>配管支持構造物の配置がプ<br>ラント間で異なる |
|              | S/R 弁による開放には           成功するが再閉鎖に失           敗し炉心損傷に至るシ           ナリオ |                                | (HCLPF=1.11[G])があり,カッ<br> トセット同士の炉心損傷頻度を加<br> 算すると7号機の炉心損傷頻度の<br> 方が大きくなる。 | RCW配管       | 2.37 | 1.11            | 配管および配管支持構造物<br>の配置がプラント間で異な<br>る        |

【TBD シーケンス】

|                | 6 号機                        | 7 号機                              | <br> <br>  キ要な事故シナリオの         |                         |      |        |                                             |  |  |
|----------------|-----------------------------|-----------------------------------|-------------------------------|-------------------------|------|--------|---------------------------------------------|--|--|
| 炉 心 損<br>傷頻度   | 1.3×10 <sup>-7</sup> [/炉年]  | 6.0 × 10 <sup>- 8</sup> [/<br>炉年] | 比較分析                          | ゲークション 炉心損傷頻度への寄与が大きな機器 |      |        |                                             |  |  |
| 主 要 な<br>事 故 シ | 直流電源系が損傷し ,ほ<br>ぼ全ての安全機能の制御 | 同左                                | 7 号機より6 号機の電<br>線管の HCLPF が小さ | 機器名称                    | HCI  | LPF[G] | 備老                                          |  |  |
| ナリオ            | 機能が喪失することから                 |                                   | いため,6号機の炉心損                   |                         | 6 号機 | 7 号機   |                                             |  |  |
|                | 直接が心頂陽に主るシー<br>ケンス          |                                   |                               | 電線管                     | 1.51 | 1.66   | プラント間で大きな差違なし                               |  |  |
|                |                             |                                   |                               | ケーブルト<br>レイ             | 1.95 | 2.72   | ケーブルトレイおよびケーブ<br>ルトレイ支持構造物の配置が<br>プラント間で異なる |  |  |

【CIシーケンス】

|              | 6 号機                       | 7 号機                              | = = =================================               |                     |      |                   |                                 |  |  |
|--------------|----------------------------|-----------------------------------|-----------------------------------------------------|---------------------|------|-------------------|---------------------------------|--|--|
| 炉 心 損<br>傷頻度 | 1.9×10 <sup>-7</sup> [/炉年] | 6.9 × 10 <sup>- 8</sup> [/<br>炉年] | ゲル損傷 が<br>が                                         |                     |      | 場頻度への奇与か大さな機器<br> |                                 |  |  |
| 主要な<br>事故シ   | 計装・制御系が損傷し,<br>プラントの監視及び制御 | 同左                                | 6,7 号機のコントロール建<br>屋(C/B)より6号機のバイタ                   | 機哭夕称                | HCLI | PF[G]             | 借老                              |  |  |
| ナリオ          | が不能に陥り直接炉心損                |                                   | ル交流電源装置 交流 120Vバ                                    |                     | 6 号機 | 7 号機              |                                 |  |  |
|              | 協に主るシークノス                  |                                   | イタル分電盤の HCLPF が小 -<br>さいため , 6 号機の炉心損傷<br>頻度が大きくなる。 | バイタル交流電<br>源        | 1.59 | 2.05              | 鉛直方向の機能確認<br>済加速値がプラント<br>間で異なる |  |  |
|              |                            |                                   |                                                     | 交流 120V バイタ<br>ル分電盤 | 1.59 | 2.05              | 鉛直方向の機能確認<br>済加速値がプラント<br>間で異なる |  |  |
|              |                            |                                   |                                                     | コントロール建<br>屋(C/B)   | 1.67 | 1.67              |                                 |  |  |

### 【LOCA シーケンス】

|              | 6 号機                                    | 7 号機                           | ==================================== |             |       |       |                   |
|--------------|-----------------------------------------|--------------------------------|--------------------------------------|-------------|-------|-------|-------------------|
| 炉 心 揹<br>傷頻度 | <sup>]</sup> 1.1×10 <sup>-6</sup> [/炉年] | 8.2×10 <sup>-7</sup> [/炉<br>年] | 分析                                   | 炉心          | 損傷頻度^ | の寄与が  | 大きな機器             |
| 主要な          | ( 原子炉格納容器内にあ                            | 同左                             | 7 号機より 6 号機の格納                       | 松兕々わ        | HCLI  | PF[G] | <b>供</b> 老        |
| 事故シ          | 〃 る一次系配管の大規模な                           |                                | 容器内配管の HCLPF が小                      | 機           | 6 号機  | 7 号機  | 1佣 乞              |
| ナリオ          | 破断により E-LOCA が<br>発生し直接炉心損傷に至<br>るシナリオ  |                                | さいため,6号機の炉心損傷<br>頻度が大きくなる。           | 格納容器内配<br>管 | 1.10  | 1.15  | プラント間で大きな<br>差異なし |

【BYPASS シーケンス】

|                | 6 号機                                                                                                                                           | 7 号機                                                                                                   | 主要な事故シナリオ                              |                  |              |               |                                          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|--------------|---------------|------------------------------------------|
| 炉 心 損<br>傷頻度   | 9.6×10 <sup>-7</sup> [/炉年]                                                                                                                     | 1.2×10 <sup>-7</sup> [/炉年]                                                                             | の比較分析                                  | 炉山               | <b>〕損傷頻度</b> | への寄与か         | が大きな機器                                   |
| 主 要 な<br>事 故 シ | 原子炉給水ライン隔<br>離弁の上流側設備(耐                                                                                                                        | CUW 吸込みライン隔<br>離弁の下流側設備(耐                                                                              | 7 号機の CUW 吸<br>込ライン隔離弁より               | 機器名称             | HCL<br>6 号機  | PF[G]<br>7 号機 | 備考                                       |
| ナリオ            | 震 B クラスの配管又は<br>タービン関連設備)が<br>地震により破断し,通                                                                                                       | 震 B クラスの配管)が<br>地震により破断し,通<br>常開状態である隔離弁                                                               | 6 号機の原子炉給水<br>ライン隔離弁及び主<br>蒸気隔離弁の      | CUW 吸込ライン<br>隔離弁 | 2.59         | 1.73          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|                | 常開状態である隔離弁<br>が地震により同時損傷<br>(隔離機能喪失)した                                                                                                         | が地震により同時損傷<br>(隔離機能喪失)した<br>場合にバイパス破断が                                                                 | HCLPF が小さいた<br>め,6号機の炉心損傷<br>頻度が大きくなる。 | 原子炉給水ライン<br>隔離弁  | 1.20         | 2.14          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|                | 場合にハイハス破断か<br>  発生し直接炉心損傷に<br>  至るシナリオ                                                                                                         | 発生し直接炉心損傷に<br>至るシナリオ                                                                                   |                                        | 主蒸気隔離弁           | 1.44         | 2.12          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|                |                                                                                                                                                |                                                                                                        |                                        | RHR 停止時冷却<br>隔離弁 | 1.60         | 1.13          | 弁が設置される配管およ<br>び配管支持構造物の配置<br>がプラント間で異なる |
|                | 主蒸気隔離弁の下流<br>側設備(耐震 B クラス<br>の配管又はタービン関<br>連設備)が地震により<br>破断し,通常開状態で<br>ある隔離弁が地震によ<br>り同時損傷(隔離機能<br>喪失)した場合にパイ<br>パス破断が発生し直接<br>炉心損傷に至るシナリ<br>オ | 通常閉状態である<br>RHR 停止時冷却隔離<br>弁及びその下流側の低<br>圧設計配管が地震によ<br>り同時損傷した場合に<br>ISLOCA が発生し,直<br>接炉心損傷に至るシナ<br>リオ |                                        | RHR 配管           | 1.84         | 1.15          | 配管および配管支持構造<br>物の配置がプラント間で<br>異なる        |

【PCVR シーケンス】

| 炉 心 損<br>傷頻度 | 6 号機<br>1.2 × 10 <sup>-6</sup> [/炉<br>年] | 7 号機<br>8.9 × 10 <sup>-7</sup> [/炉<br>年] | 主要な事故シナリオの<br>比較分析                                                                                                                                       | 炉心損傷頻度への寄与が大きな機器        |          |      |                                                                                                                                                                                                            |  |
|--------------|------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 主要な<br>事故シ   | 原子炉格納容<br>器又は原子炉圧                        | 同左                                       | 7 号機より 6 号機の<br>RPV ペデスタルの<br>HCLPFが小さいため,<br>6 号機の炉心損傷頻度<br>が大きくなる。さらに,<br>6 号機の原子炉冷却材<br>再循環ポンプ貫通孔の<br>HCLPF が小さいこと<br>によっても 6号機の炉<br>心損傷頻度が大きくな<br>る。 | 機哭夕称                    | HCLPF[G] |      | 借老                                                                                                                                                                                                         |  |
| ナリオ          | 力容器が損傷                                   |                                          |                                                                                                                                                          | 176 66 10 10            | 6 号機     | 7 号機 | ح <sup>.</sup> ۳۳                                                                                                                                                                                          |  |
|              | し, 直接が心頂<br>傷に至るシーケ<br>ンス                |                                          |                                                                                                                                                          | 原子炉冷却材<br>再循環ポンプ<br>貫通孔 | 1.38     | 2.74 | <ul> <li>・6 号機では「塑性エネルギー吸収係数」を考慮しなかったため</li> <li>・6 号機で「塑性エネルギー吸収係数」を考慮した場合の参考 HCLPF:</li> <li>3.27[G]</li> <li>・6号機参考 HCLPFと7号機 HCLPFの差異は「解放基盤表面の地震動に関する係数」の違いによるもの</li> <li>6号機:0.83,7号機:0.63</li> </ul> |  |
|              |                                          |                                          |                                                                                                                                                          | RPV ペデスタ<br>ル           | 1.22     | 1.24 | プラント間で大きな差違なし                                                                                                                                                                                              |  |

# 【RBR シーケンス】

|              | 6 号機                                                         | 7号機                      | 主要な事故シナリオの比                                                                                                                                                                   | 炉心損傷頻度への寄与が大きな機器 |          |      |                     |  |
|--------------|--------------------------------------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------|------|---------------------|--|
| 》 心 預<br>傷頻度 | 3.6×10 <sup>-6</sup> [/炉年]                                   | 5.8 × 10 · [/ //<br>  年] | 戦分析                                                                                                                                                                           |                  |          |      |                     |  |
| 主要な<br>事故シ   | 原子炉建屋が損傷                                                     | 同左                       | 炉心損傷頻度への寄与<br>が大きい原子炉建屋基礎<br>地盤すべり線のフラジリ<br>ティは6号機及び7号機<br>で共通なため,6号機及び<br>7号機間の炉心損傷頻度の<br>差が小さい。<br>6号機の炉心損傷頻度の<br>方がわずかに小さいのは,<br>6号機原子炉建屋の<br>HCLPFが7号機より大き<br>いことに起因している。 | 機器名称             | HCLPF[G] |      | <b>供</b> 字          |  |
| ナリオ          | 納容器,原子炉圧力容<br>器等の機器及び構造<br>物が大規模な損傷を<br>受け直接炉心損傷に<br>至るシーケンス |                          |                                                                                                                                                                               |                  | 6 号機     | 7 号機 | Cr ₩1               |  |
|              |                                                              |                          |                                                                                                                                                                               | 原子炉建屋<br>(R/B)   | 1.70     | 1.44 | 建屋の構造がプラント間で<br>異なる |  |

3.2.2 津波PRA

津波PRAは、一般社団法人 日本原子力学会が発行した「原子力発電所に対す る津波を起因とした確率論的リスク評価に関する実施基準:2011(以下「津波 PRA学会標準」という。)を参考に評価を実施し、各実施項目については「PRA の説明における参照事項」(原子力規制庁 平成25年9月)の記載事項への適合 性を確認した。評価フローを第3.2.2-1図に示す。なお、今回の津波PRAでは、 津波単独の影響のみを評価しており、地震随伴に伴う津波(重畳事象)等は対 象としていない。

3.2.2.a. 対象プラントと事故シナリオ

①対象とするプラントの説明

1) PRAにおいて考慮する緩和機能(系統)の概要

主要な機器・系統の配置及び形状・設備容量は3.1内部事象PRAでの記載と同様である。

なお本評価では,AM要請以降に整備したアクシデントマネジメント策 には期待しないことを前提としている。このため、津波に対し有効と考 えられる防潮堤、水密扉や貫通口止水等の止水対策についても考慮して いない。

第3.2.2.a-1図に津波PRAの中で考慮する設備配置を記載したプラント 概要図を示す。また、津波PRAに必要なプラント情報として、次の情報 を収集,整理した。

• 機器配置図

- ✓ 原子炉建屋(R/B)
- ✓ タービン建屋(T/B)
- ✓ コントロール建屋(C/B)
- ✓ 廃棄物処理建屋(Rw/B)

- ・ 建屋内外の開口部(貫通部)情報(以下の開口位置,開口面積)
  - ✓ 扉,機器ハッチ,空調ダクト,ケーブルトレイ,ドレンファンネル,配管,電線管
- ・ 設備の設置情報(設置区画及び設置高さ)
- ・ 津波ハザード評価
- 2) プラントウォークダウン(PWD)の結果
  - a.PWDの実施手順

PWDは机上検討では確認が難しいプラント情報の取得及び検討した シナリオの妥当性確認のために実施する。このPWDにおいて評価対象 とする機器の抽出の考え方や,調査すべき要件をPWD要領書(チェック シート等を含む)にまとめた。この要領書に従ってPWDを実施し,主に 以下の観点について対象箇所の状況を確認した。

- 津波影響
- ・間接的影響の有無
- ・ 津波伝播経路及び建屋開口部(貫通部)

b. プラントウォークダウン対象機器の選定

まず,津波PRA対象となる機器及び建屋開口部(貫通部)を,以下の手順で抽出した。

・機器の抽出

- (a) 内部事象レベル1PRA 評価において、当該系統・機器が機能喪失 することで炉心損傷に至る恐れのある緩和系の系統・設備を抽出 している。津波PRAにおいてもそれら全てを検討対象とした。
- (b) (a)では対象外だったもののうち,津波による損傷によって内部事 象出力運転時レベル1の起因事象が発生するもの(給復水系,屋外変 圧器等)や津波特有の損傷状態に至る設備(電源盤,取水構造物な ど)を機器配置図や構造図等の図面により抽出した。

・建屋開口部(貫通部)の抽出

本評価では,屋外の海水取水口のように開口面積が広い箇所を代 表的な津波浸水口として抽出した。

このようにして抽出した津波PRA対象機器・開口部のうち,事故 シーケンスモデルにおいて評価結果に大きな影響を及ぼすと想定さ れる設備が設置されている溢水区画および当該溢水区画への溢水伝 播経路を調査対象として選定した。

c. プラントウォークダウンの結果

PWD要領書のチェックシートに基づき,対象機器のチェックを行った。溢水伝播経路図,現場写真のサンプル及びチェックシートをそれ ぞれ第3.2.2.a-2図,第3.2.2.a-3図に示す。PWDの結果,抽出した対象 機器及び開口部(貫通部)等について,図面との相違や過不足等が無いこ とを確認した。

②津波により炉心損傷に至る事故シナリオと分析

評価においては、以下を前提条件とした。

- ✓ 地震発生前は出力運転状態とする。
- ✓ 地震によって安全上重要な建屋,系統(システム),機器の機能喪失に つながる損傷はない、即ち、地震によるプラントへの直接的影響は 無いものとする。
- ✓ 地震後に津波が襲来するものとする。
- ✓ 地震発生から津波襲来までは一定の時間があり、その間にプラント を停止できることから、津波襲来時には原子炉が停止しているもの とする。(添付資料3.2.2.a-1)

1) 事故シナリオの分析・選定

津波襲来時における事故シナリオの分析・選定を行った。津波 PRA 学 会標準を参考に津波による影響を,直接的な被災による事故シナリオと 間接的な被災による事故シナリオに区別し分析した。分析した内容を第 3.2.2.a-1 表に示す。

分析した結果,本評価では事故シナリオのうち「浸水による設備の没水,被水」を対象とした。また,引き波の影響については感度解析として評価した。

2) 起因事象の分析結果

第3.2.2.a-4 図に示すフローを用いて津波により誘発される起因事象を 分析し,選定した。起因事象として選定したのは以下の5事象である。

- · 外部電源喪失
- 直流電源喪失
- · 全交流電源喪失
- ・最終ヒートシンク喪失(原子炉補機冷却系機能喪失)
- · 過渡事象(全給水機能喪失等)

3) 建屋・機器リストの作成

本評価では、下記の3つの前提条件を定め、考慮する建屋・機器のリストを作成した。

- a. 地震の影響による安全上重要な機器等の損傷はない。
- b.建屋内の壁・床・扉等の止水対策は考慮しない。したがって,建屋外 郭の開口部(貫通部)から津波が流入した場合には,同一建屋の同一フロ ア全体が同時に浸水する。
- c. 格納容器は密閉構造であることから,格納容器内には津波が流入しない。
  - また、津波による損傷によりプラントに影響を及ぼす機器のリスト(抜

### $3.2.2 \cdot 4$

粋)を第3.2.2.a-2表に示す。

4) 津波シナリオの作成

本評価では「起因事象の誘発又は緩和設備の損傷が生じる高さ」から、 事故シナリオを以下の4区分に分類した。第3.2.2.a-3表,第3.2.2.a-4表に シナリオ区分を示すとともに、以下に各シナリオの特徴を記載する。な お、本評価での「水没」とは、海水が機器の設置高さに到達した時点と する。また、各種ポンプについては海水が電動機下端に到達した時点で 「水没」とする。

a.津波シナリオ区分1(T.M.S.L. +4.2m未満(7号炉), T.M.S.L. +4.4m未満 (6号炉))

本シナリオ区分では、取水口からT/B地下1階に設置されているマン ホール(T.M.S.L. +3.5m)を経由してT/Bに水が浸入する。原子炉補機冷 却海水系B系(RSW(B))ポンプの電源盤がT/B地下1階(T.M.S.L. +3.5m) に設置されているため、当該ポンプが機能喪失する。また、T/B内での 溢水伝播により、T/B設備の機能喪失による過渡事象(T/B地下2階 (T.M.S.L. -4.8m)に設置された常用系の電源盤の機能喪失に伴う全給 水機能喪失等)が発生する。なお、水の浸入口であるT/B地下1階のマン ホール(T.M.S.L. +3.5m)と区分1の津波高さの上限(T.M.S.L. +4.2m(7 号炉)、T.M.S.L. +4.4m未満(6号炉))の差は0.7m(7号炉)、0.9m(6号炉) であり、津波シナリオ区分1の津波高さの上限に達しない程度の津波で あれば、T/B以外の建屋にまで伝播し、当該エリアの機器に影響を及ぼ す程の浸入量にはならないと考え、T/B以外までの浸水には至らないも のとした。

b.津波シナリオ区分2(T.M.S.L. +4.2m以上~T.M.S.L. +4.8m未満(7号炉), T.M.S.L. +4.4m以上~T.M.S.L. +4.8m未満(6号炉))

本シナリオ区分では、T/B地下1階(フロア高さT.M.S.L. +3.5m)の原

子炉補機冷却系A系(RCW(A))ポンプが電動機下端部(T.M.S.L.

+4.2m(7号炉), T.M.S.L. +4.4m(6号炉))への水の到達によって機能喪失 する。また, 階段室を経由して地下2階に溢水伝播し, 当該フロアに設 置されているRCW(C)ポンプが電動機下端部への水の到達によって機 能喪失に至り, 最終ヒートシンク喪失が発生する。

c. 津波シナリオ区分3(T.M.S.L. +4.8m以上~T.M.S.L. +6.5m未満)

本シナリオ区分では、T/B地下1階(T.M.S.L.+3.5m)から浸入した水が T/B地下2階(T.M.S.L.-5.1m)等を経由してR/B地下1F(T.M.S.L. +4.8m) に伝播し、同フロアに設置されている非常用電源盤(メタルクラッドス イッチギア(メタクラ))が水没にすることで全交流電源喪失が発生する。 d.津波シナリオ区分4(T.M.S.L. +6.5m以上)

本シナリオ区分では、T/B地下1階(T.M.S.L.+3.5m)から浸入した水が T/B地下2階(T.M.S.L.-5.1m), Rw/B地下3階(T.M.S.L.-6.1m)等を経由 してC/B地下1階(T.M.S.L.+6.5m)に伝播し、同フロアに設置されてい る直流電源盤が水没することで直流電源喪失が発生する。これにより、 逃がし安全弁による原子炉減圧が不可能となる。

3.2.2.b. 確率論的津波ハザード

①確率論的津波ハザード評価の方法

確率論的津波ハザードの検討にあたっては,地震による津波を検討対象 とし,解析手順については津波PRA学会標準及び「確率論的津波ハザード 解析の方法(土木学会,2011)」に基づき評価した。

認識論的不確かさとして、地震規模、平均発生間隔、波源のモデル化等 を考慮した。偶然的不確かさとして、津波水位のばらつきの分布を対数正 規分布として考慮した。ロジックツリー及び分岐の重みについては、2011 年東北地方太平洋沖地震後の知見を反映して設定した。 評価の全体方針を付録-1に示す。

② 確率論的津波水位評価の概要

津波発生モデルとしては、以下の波源を想定し、検討を実施した。

・敷地周辺海域の活断層による津波

・日本海東縁部の地震による津波

津波伝播の数値シミュレーションは,基準津波の評価と同じ手法を用い て検討を実施した。

評価は平成25年9月27日設置変更許可申請書時のものであり,今後行われ る基準津波の審議結果を踏まえ,必要に応じて見直しを行う。また,地震 以外の要因による津波は,確率論的津波水位評価への影響が小さいと考え られることから,評価に含めていない。

評価の概要を付録・2~12に示す。

③津波ハザード曲線の評価結果

取水口前面,大湊側遡上域,基準津波の策定位置において算出した津波 ハザード曲線の評価結果を付録-13~16に示す。

3.2.2.c. 建屋・機器のフラジリティ

①評価対象と損傷モードの設定

プラント情報の収集・分析で得られた建屋・機器フラジリティ評価関連 情報と事故シナリオの検討において抽出された建屋・機器リストに基づき, 起因事象及び緩和系に着目して評価対象とする建屋・機器を設定する。次 に,第3.2.2.a-1表の通り,対象とする建屋・機器が津波によって機能喪失 に至る影響モードを検討した。その結果,動的・電気的な機器の「被水・ 没水」による損傷を評価対象として抽出した。 ②フラジリティ評価について

動的・電気的な機器に対する「被水・没水」の損傷モードでは、海水が 各機器の設置高さに到達した時点で、当該機器が確率1で損傷すると仮定し た。機器フラジリティを第3.2.2.c-1図に示す。

津波の高さが,建屋の浸水口高さと機器の設置高さのいずれよりも高い場 合に「被水・没水」するとした。

3.2.2.d. 事故シーケンス

(1)起因事象

①評価対象とした起因事象のリスト,説明及び発生頻度

3.2.2.a.②.2)の通り、津波PRAでは以下の起因事象を抽出している。

- ▶ 外部電源喪失(12m≦x)(12m は低起動変圧器の設置高さ)
- ▶ 直流電源喪失(6.5m≤x)
- ▶ 全交流電源喪失(4.8m≤x)
- ▶ 最終ヒートシンク喪失(原子炉補機冷却系機能喪失)(4.2m≦x(7号炉),
   4.4m≦x(6号炉))
- ▶ 過渡事象(全給水機能喪失等)(3.5m≦x)

上記の起因事象を発生させる各機器は,各々の損傷高さまで浸水した時 点で,確率1で機能喪失すると評価していることから,起因事象発生頻度は 各機器の損傷が起因事象となる津波が発生する範囲の年超過頻度と同じと なる。

② 津波高さ別のイベントツリーとその説明

本評価では、津波高さに応じて発生する起因事象が変化することから,

津波高さの順に起因事象を並べたイベントツリーを作成した。第 3.2.2.d-1(a)図,第3.2.2.d-1(b)図に津波PRAにおける起因事象の津波高さ別 のイベントツリーを示す。

(2)成功基準

成功基準の一覧

炉心損傷防止の成功基準は、内部事象PRAと津波PRAでの相違がないため、基本的に内部事象PRAで設定した成功基準(過渡事象・手動停止)を用いる。但し、津波の特徴を勘案し、以下の機能・系統は除外している。

- ・ 津波襲来までに原子炉の停止は達成されているものとしていることか
   ら、停止機能の成否は評価対象としない。
- ・評価結果に支配的な影響を及ぼす津波の浸入経路がT/B地下開口部であることから、津波が浸入する際にはT/Bが浸水することとなる。これを考慮し、給水・復水系には期待しない。
- ・ 津波高さがT.M.S.L. +3.5m以上から+4.2m未満(7号炉), T.M.S.L.
  +3.5m以上から+4.4m未満(6号炉)の場合(津波シナリオ区分1)は, 津波 ハザードの年超過頻度は高くなるが,給水・復水系やRSW(B)と従属性 のある系統(HPCF(B)及びRHR(B))以外の緩和設備に期待できる。この ため,炉心損傷頻度(CDF)は津波ハザードの年超過頻度と使用可能な各 緩和設備の失敗確率との積となる。これにより,津波シナリオ区分1の CDFは,津波ハザードの年超過頻度がそのままCDFとなる津波シナリ オ区分2~4の場合に比べて非常に低い値となる。これを踏まえ,事故 シーケンスの評価対象は7号炉でT.M.S.L. +4.2m以上,6号炉でT.M.S.L.
  +4.4m以上の場合とした。
- ・ 津波高さが7号炉でT.M.S.L. +4.2m以上,6号炉でT.M.S.L. +4.4m以上 では原子炉補機冷却系の喪失に至るため,HPCF(高圧注水機能)及び

3.2.2-9

RHR(低圧注水・除熱機能)も喪失することとなる。このため, HPCF(高 圧注水機能)及びRHR(低圧注水・除熱機能)については,成功基準を設 定しない。

 ・電源については、津波で外部電源を喪失した際の復旧には期待しない他、 複数プラントの被災が想定されることから、高圧電源融通には期待しない。

福島第一及び第二原子力発電所における被災直後の対応も踏まえて、使 命時間は72時間とした。これは、被災直後はプラント周辺のアクセス性が 悪化すること等を考慮し、外部支援等に期待可能となるまでの時間として 設定したものである。但し本評価では、T/Bに津波の浸水があった場合、期 待できる緩和設備がないと仮定としたことから、設定した使命時間を使用 した箇所はない。

- (3)事故シーケンス
  - ①イベントツリー

起因事象の発生要因は津波と内的事象では異なるが,起因事象発生後の 緩和設備は内部事象と同様の設備に期待する。そのため,内部事象のイベ ントツリーを基に,前述の成功基準を考慮してイベントツリーを作成した。 作成したイベントツリーを第3.2.2.d-2(a)~(c)図,第3.2.2.d-3(a)~(c)図に示 す。

(4)システム信頼性

① 評価対象としたシステムとその説明

内部事象PRAに際してまとめた情報や、津波による機器ごとの損傷モー ドとプラントへの影響を整理して作成した建屋・機器リストを用い、評価 対象範囲を明確にした。各系統の情報や依存性は内部事象PRA と同じであ

### $3.2.2 \cdot 10$

る。

②機器損傷に関する機器間の相関の取扱い

機器間の相関について,系統間の従属性の取り扱いは内部事象レベル 1PRAと同様とした。また,津波の影響については,建物内に浸水した場合, フロア全体が一様な深さで浸水し当該フロアの機器は全て機能喪失すると した。

③システム信頼性評価結果

システムの非信頼度は、内部事象レベル1PRAと同様の評価を用いた。 1)主要なミニマルカットセット

本評価では、機器の機能喪失の原因の殆どが「被水・没水」である。 仮にミニマルカットセット(MCS)を抽出しても、各機器の機能喪失の原 因は建屋への浸水経路に依存することとなる。即ち、建屋への浸水経路 に止水等の対策を施すことによって炉心損傷を防止できることが明らか である。このため、MCSは抽出しない。

④ システム信頼性評価を実施せずに設定した非信頼度とその根拠

最終ヒートシンク喪失時の高圧注水(RCIC)については、水没又はタービン排気圧高あるいは、直流電源の枯渇によるRCICタービントリップによって機能喪失に至るものと考え、当該ヘディングの失敗確率を1として評価した。

(5)人的過誤

① 評価対象とした人的過誤及び評価結果

本評価においては、人的過誤の要素を考慮するヘディングが存在しない。

### $3.2.2 \cdot 11$

但し、感度解析として実施した引き波の影響評価では、補機冷却海水系 (RSW)ポンプや循環水ポンプ(CWポンプ)の手動停止操作が必要となる。 これについて人的過誤を考慮した。

(6) 炉心損傷頻度

炉心損傷頻度の算出に用いた方法

計算コードは、内部事象と同様のコード(Safety Watcher)を用いた。

② 炉心損傷頻度評価結果

1)評価結果と事故シナリオ

a.津波シナリオ区分毎の評価結果

津波シナリオ区分毎の評価結果を第3.2.2.d-1(a),(b)表に示す。7号炉 の全CDFは2.1×10<sup>-4</sup>(/炉年)となり,津波シナリオ区分3(津波高さ4.8m 以上~6.5m未満)が大きく占める。津波シナリオ区分毎の評価結果及び 事故シナリオの概要を以下に示す。なお、6号炉の場合、RCWポンプ 用電動機下端高が7号炉よりも高く津波高さによるLUHSの発生頻度 の差からCDFは1.8×10<sup>-4</sup>(/炉年)となる。

(a)津波シナリオ区分1(T.M.S.L. +4.2m未満(7号炉), T.M.S.L. +4.4m未満(6号炉))

津波シナリオ区分1で発生する起因事象には,過渡事象(T/B地下2 階(T.M.S.L. -4.8m)に設置された常用系の電源盤の機能喪失に伴う 全給水機能喪失等)があるが,当該事象発生時は,注水・減圧・除熱 の各緩和機能に期待出来る状況である。このため,全ての緩和機能 の喪失が生じた場合に炉心損傷に至ることとなるが,このCDFは津 波ハザードの年超過頻度と使用可能な各緩和設備の失敗確率との積 となり,緩和系に期待できない津波シナリオ区分2~4に比べて非常 に小さくなる。このことを考慮すると、津波シナリオ区分1は全CDF に対して無視できる。

津波シナリオ区分2以降に影響する機器の機能喪失として,津波高 さ+3.5mでのT/B地下1階への浸水により,同フロアの電源盤が水没 するため,RSW(B)ポンプの機能喪失が発生する。

(b)津波シナリオ区分2(T.M.S.L. +4.2m以上~4.8m未満(7号炉),

T.M.S.L. +4.4m以上~4.8m未満(6号炉))

津波シナリオ区分2のCDFは7号炉では8.8×10<sup>-5</sup>(/炉年),6号炉では 5.4×10<sup>-5</sup>(/炉年)である。本シナリオ区分では,RCW(A)ポンプが電動 機下端部(+4.2m(7号炉),+4.4m(6号炉))への浸水によって機能喪失す る。さらに,階段室を経由したT/B 地下2階への溢水伝播により,当 該フロアのRCW(C)ポンプが電動機下端部への浸水によって機能喪 失し,最終ヒートシンク喪失が発生する。

(c) 津波シナリオ区分3(T.M.S.L. +4.8m以上~6.5m未満)

津波シナリオ区分3のCDFは1.0×10<sup>-4</sup>(/炉年)である。本シナリオ区 分では,T/B地下1階(T.M.S.L.+3.5m)から浸入した水がT/B地下2階 (T.M.S.L.-5.1m)等を経由してR/B地下1階(T.M.S.L.+4.8m)に伝播し, 同フロアの非常用メタクラを水没させることにより,全交流電源喪 失が発生する。同時にシナリオ区分2の通り,最終ヒートシンク喪失 も発生する。

(d)津波シナリオ区分4(T.M.S.L. +6.5m以上)

津波シナリオ区分4のCDFは2.5×10<sup>-5</sup>(/炉年)である。本シナリオ区
分では、T/B地下1階(T.M.S.L.+3.5m)から浸入した水がT/B地下2階
(T.M.S.L.-5.1m)、Rw/B地下3階(T.M.S.L. -6.1m)等を経由してC/B地
下1階(T.M.S.L. +6.5m)に伝播し、同フロアの直流電源盤を水没させ
ることにより、直流電源喪失が発生する。これにより、逃がし安全

### $3.2.2 \cdot 13$

弁による原子炉減圧が不可能となる。同時にシナリオ区分2,3の通り, 最終ヒートシンク喪失及び全交流電源喪失も発生する。

b.津波PRAで抽出された事故シーケンス

「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準 に関する規則の解釈」における必ず評価すべき事故シーケンスグルー プは以下に示す(a)~(g)の7つである。

(a) 高圧·低圧注水機能喪失

(b) 高圧注水·減圧機能喪失

- (c) 全交流動力電源喪失
- (d)崩壞熱除去機能喪失
- (e) 原子炉停止機能喪失
- (f) LOCA時注水機能喪失
- (g) 格納容器バイパス(インターフェイスシステムLOCA)

津波PRAからは以上の7つ以外の事故シーケンスグループは抽出されなかった。なお、(b)、(e)、(g)についても本評価では抽出されなかった。

本評価の事故シナリオでは,LUHSを起因として高圧注水と低圧注 水が同時に機能喪失するとしている。この場合,原子炉減圧の成否は 事故進展に影響せず,いずれにしても炉心損傷すること,また通常は 運転操作上も高圧シーケンスよりも低圧シーケンスを選択するため, 成否いずれの場合も高圧・低圧注水機能喪失と整理し,(b)の高圧注水・ 減圧機能喪失は抽出していない。

(e)の原子炉停止機能喪失については、本評価では津波の襲来前に原 子炉は停止しているものとしているため抽出されない。

(g)の格納容器バイパスについては、津波を起因として生じるもので はないことから抽出していない。 a項で説明した事故シナリオを,上記の基準で整理した結果を第 3.2.2.d-2(a),(b)表,第3.2.2.d-3(a),(b)表に示す。また,事故シーケンス のCDF及び概要を以下に示す。

(a)-1: 最終ヒートシンク喪失+高圧・低圧注水機能喪失

当該事故シーケンスのCDFは、7号炉で8.8×10<sup>-5</sup>(/炉年)、6号炉で 5.4×10<sup>-5</sup>(/炉年)であり、具体的には以下のシーケンスとなる。

- ・津波高さが7号炉で4.2m以上4.8m未満,6号炉で4.4m以上4.8m未満(津波シナリオ区分2)において、原子炉補機冷却系機能喪失に伴う最終ヒートシンクの喪失及び電動の高圧注水系,低圧注水系の喪失が発生し、S/R弁開放には成功するが、蒸気駆動の高圧注水系(RCIC)が機器の浸水等によりその機能を維持出来ず、高圧及び低圧の注水機能喪失によって炉心損傷に至るシーケンス(TQUV)。また、S/R弁開放後のS/R弁再閉鎖に失敗した場合もRCICに期待できないため、TQUVとなる。
- (f)-1:最終ヒートシンク喪失+冷却材喪失

当該事故シーケンスのCDFは、7号炉で8.8×10<sup>-25</sup>(/炉年)、6号炉で 5.4×10<sup>-25</sup>(/炉年)であり、具体的には以下のシーケンスとなる。

・津波高さが7号炉で4.2m以上4.8m未満,6号炉で4.4m以上4.8m未満(津波シナリオ区分2)において、原子炉補機冷却系の機能喪失に伴う最終ヒートシンクの喪失及び電動の高圧注水系,低圧注水系の喪失が発生し、さらにS/R弁開放に失敗することで原子炉圧力容器が過圧され、原子炉圧力バウンダリ機能を喪失し、これに伴い原子炉内の冷却材を喪失することで炉心損傷に至るシーケンス

(LOCA)。しかし,実質的には無視しうるシーケンスである。

(a)-2:最終ヒートシンク喪失+全交流電源喪失+高圧・低圧注水機能喪失 当該事故シーケンスのCDFは1.0×10<sup>-4</sup>(/炉年)であり、具体的には
以下のシーケンスとなる。

- ・津波高さが4.8m以上~6.5m未満(津波シナリオ区分3)において,原 子炉補機冷却系機能喪失に伴う最終ヒートシンクの喪失及び電動 の高圧注水系,低圧注水系の機能喪失が発生,さらに,R/Bへの溢 水伝播による非常用M/Cの水没により全交流電源喪失が発生する。
   S/R弁開放には成功するが,RCICが機器の浸水等によりその機能 を維持出来ず,高圧及び低圧の注水機能喪失によって炉心損傷に 至るシーケンス(TQUV)。また,S/R弁開放後のS/R弁再閉鎖に失敗 した場合もRCICに期待できないため,TQUVとなる。
- (f)-2:最終ヒートシンク喪失+全交流電源喪失+冷却材喪失

当該事故シーケンスのCDFは、1.0×10<sup>-24</sup>(/炉年)であり、具体的に は以下のシーケンスとなる。

- ・津波高さが4.8m以上~6.5m未満(津波シナリオ区分3)において,原 子炉補機冷却系機能喪失に伴う最終ヒートシンクの喪失及び電動 の高圧注水系,低圧注水系の機能喪失が発生,さらに,R/Bへの溢 水伝播による非常用M/Cの水没により全交流電源喪失し,その後
   S/R弁開放に失敗することで原子炉圧力容器が過圧され,原子炉圧 カバウンダリ機能を喪失し,これに伴い原子炉内の冷却材を喪失 することで炉心損傷に至るシーケンス(LOCA)。しかし,実質的に は無視しうるシーケンスである。
- (c):最終ヒートシンク喪失+全交流電源喪失+直流電源喪失
   当該事故シーケンスのCDFは、2.5×10<sup>-5</sup>(/炉年)であり、具体的に
   は以下のシーケンスとなる。
  - ・津波高さが6.5m以上(津波シナリオ区分4)において, (a)-2シーケン スの通り最終ヒートシンク喪失及び全交流電源喪失による全注水 機能の喪失に加え, C/B設置の直流電源盤の水没が発生するため直

流電源喪失が発生する。直流電源喪失によって炉心損傷に至るシ ーケンス(TBD)であり,津波高さ6.5m未満の場合との相違点は原 子炉の減圧もできなくなるために,原子炉圧力容器内が高圧 (7MPa程度)の状態で炉心損傷に至る点である。

以上を整理した事故シーケンスグループ別のCDFを以下に示す(第 3.2.2.d-3(a),(b)表参照)。

(a):高圧・低圧注水機能喪失 1.9×10<sup>-4</sup>(/炉年)(7号炉), 1.6×10<sup>-4</sup>(/炉年)(6号炉)

(事故シーケンスグループ(a)は,前述の(a)-1,2が該当し,上記の値は これらの事故シーケンスを足し合わせたものである。)

津波高さT.M.S.L. +4.8m以上6.5m未満においては,最終ヒートシ ンク喪失に加えて,全交流電源喪失が同時に発生することとなる。 しかしながら,T.M.S.L. +4.2m以上4.8m未満で発生した最終ヒート シンク喪失により,高圧・低圧注水機能を期待できない状態となっ ており,同時に全交流電源喪失が発生したとしても事象進展として は緩和系の状態は同じである。よって,(a)-1,2は同一の事故シーケ ンスとして整理した。

(f):LOCA時注水機能喪失 1.9×10<sup>-24</sup>(/炉年)(7号炉), 1.6×10<sup>-24</sup>(/ 炉年)(6号炉)

(事故シーケンスグループ(f)は,前述の(f)-1~2が該当し,上記の値は これらの事故シーケンスを足し合わせたものである。)

S/R弁開放失敗及び注水機能喪失により炉心損傷に至る事象は LOCA時注水機能喪失として整理した。

(c):全交流動力電源喪失(直流電源喪失) 2.5×10<sup>-5</sup>(/炉年) (事故シーケンスグループ(c)は,前述の(c)が該当する。)

#### $3.2.2 \cdot 17$

直流電源喪失時によって,原子炉圧力容器内が高圧の状態で炉心 損傷に至るシーケンスは全交流動力電源喪失(直流電源喪失)と整 理した。

c. 評価結果の分析

起因事象別及び事故シーケンスグループ別の全CDFへの寄与割合を 示す円グラフを第3.2.2.d-4(a),(b)図,第3.2.2.d-5(a),(b)図に示す。

本津波PRAにおいて,全CDFは7号炉で2.1×10<sup>-4</sup>(/炉年),6号炉で 1.8×10<sup>-4</sup>(/炉年)となった。そのうち,高圧・低圧注水機能喪失の寄与 割合が7号炉で約89%,6号炉で約86%と大きく,次いで全電源喪失と なり,この2つの寄与割合でほぼ100%を占めた。

評価結果から7号炉でT.M.S.L. +4.2m以上,6号炉でT.M.S.L. +4.4m 以上では,取水口から建屋への津波の浸入による原子炉補機冷却系の 機能喪失が発生し,これにより他の高圧・注水機能等の緩和設備の有 無に関わらず炉心損傷に至ることとなる。ただし,T.M.S.L. +6.5m以 上においては,新たに直流電源喪失が発生することから,原子炉減圧 が不可能となり,緩和系の状態が変化することから,炉心損傷シーケ ンスとしては,全交流動力電源喪失(直流電源喪失)とした。

③ 重要度解析,不確実さ解析及び感度解析

1) 重要度解析

本評価で期待した緩和系は津波による被水・没水によってその機能を 喪失する。重要度解析は、各基事象のCDFやシステムの非信頼度への寄 与を評価する手法であるが、上記の通り、緩和系の機能喪失の原因はT/B のマンホールから津波が浸水することによる「被水・没水」であり、有 効な対策はマンホールの止水対策となるため、機器の重要度に関係ない ものとなる。そのため重要度解析は実施しない。 2) 不確定性解析

7号炉で津波高さ4.2m以上,6号炉で津波高さ4.4m以上でのCDFの不確 定性解析結果を第3.2.2.d-6(a)図,第3.2.2.d-6(b)図に示す。本評価では津 波高さが4.2m以上(7号炉)あるいは4.4m以上(6号炉)となった場合, 炉心損傷に至ることから,CDFの不確実さは津波ハザードのみで決まる。 従って,津波ハザードの4.2m(7号炉)あるいは4.4m(6号炉)での平均 値及びEFをCDFの平均値及びEFとした。

3) 感度解析

津波による影響モードの検討で除外している引き波の影響について感 度解析を実施した。その結果,引き波のCDFへの寄与は,押し波の約16% 程度となる。評価の詳細を添付資料3.2.2.d-1に記載する。

| 津波の影響 | 影響の種類                    | 建物・構築物,機器・<br>配管系への影響                      | 本評価における前提                                                                                                                                                                                                                                                                             |
|-------|--------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 浸水による設<br>備の没水, 被水       | 設備の動的機能損<br>傷, 電気設備の発電/<br>送電機能損傷          | 安全上重要な機器が多く設置されている<br>C/B, R/B, T/B, Rw/Bの建屋外からの浸水<br>を考慮した。電動ポンプ, 電動弁等の動的機<br>能損傷, 電気設備の発電/送電機能損傷を考<br>慮した。                                                                                                                                                                          |
| 直接的   | 津波波力,流体<br>力,浮力<br>海底砂移動 | 建物・構築物,機器・<br>配管系の構造的損傷<br>海水取水設備の機能<br>損傷 | 屋外設備については波力や流体力,浮力の影<br>響を受ける以前に,外部取水口から建屋内へ<br>の浸水が主な経路となることから,評価対象<br>から除外した。<br>T/Bからの浸水源となるT/B地下1階マンホ<br>ールについては,ボルトによる耐力を考慮せ<br>ず,津波高さがマンホール高さに到達した時<br>点で浸水すると仮定した。<br>海底砂移動に関して事故シナリオを検討す<br>るためには,取水口が閉塞する津波高さの評<br>価結果が必要となるが,現状では定量的な評<br>価をする手法が整備されていないことから,<br>対象から除外した。 |
|       | 引き波による<br>水位低下           | 海水取水設備の機能<br>損傷                            | 引き波の場合,潮位の低下を検知し,一時的<br>に海水系ポンプを手動停止させることによ<br>り最終ヒートシンクの喪失を防止できる。但<br>し,津波到達までの時間余裕や手動停止操作<br>の人的過誤確率の設定については,不確実な<br>要素が多いため,引き波の影響については感<br>度解析として評価し,全体の評価には含めな<br>いこととした。                                                                                                        |

第 3.2.2.a-1 表 考慮すべき津波による影響モード(1/2)

r.

| 津波の影響 | 影響の種類                              | 建物・構築物, 機器・<br>配管系への影響 | 本評価における前提           |
|-------|------------------------------------|------------------------|---------------------|
|       | 津波によって発電所内                         |                        |                     |
|       | の施設から流出した漂                         |                        |                     |
|       | 流物の発電所施設への                         |                        | 本評価では、大湊側敷地高さ未満の津   |
|       | 衝突や発電所周辺の漁                         | 建物・構築物,機器・             | 波において浸水し, 炉心損傷に至ると  |
|       | 港又は貯木場等から流                         | 配管系の構造的損傷              | いう結果が支配的になるため,漂流物   |
|       | 出した漁船又は木材等                         |                        | の影響については考慮対象外とした。   |
|       | の漂流物の発電所施設                         |                        |                     |
|       | への衝突                               |                        |                     |
|       |                                    |                        | 高ストレスの条件下における操作失    |
|       |                                    |                        | 敗例として以下が挙げられる。      |
|       | 津波による高ストレス<br>の条件下で引き起こさ<br>れる操作失敗 |                        | ・津波襲来後の注水系起動操作など中   |
|       |                                    |                        | 央制御室において津波後比較的短     |
|       |                                    |                        | 時間で求められる運転員操作       |
| 問埣的   |                                    | 運転員操作の失敗               | 本評価においては、イベントツリーに   |
| 间顶女口  |                                    |                        | おいて人的過誤を考慮するヘディン    |
|       |                                    |                        | グが無いため、考慮の対象から除外し   |
|       |                                    |                        | た。但し、感度解析として実施した引   |
|       |                                    |                        | き波の影響評価では, RSW ポンプの |
|       |                                    |                        | 手動停止操作が必要となるため、これ   |
|       |                                    |                        | については人的過誤を考慮した。     |
|       |                                    |                        | 津波がサイト敷地に到達すると瓦礫    |
|       |                                    |                        | による運転員の回復操作の遅延, アク  |
|       | 佐業費倍に係る設備の                         |                        | セス性の阻害が考えられ、時間を要す   |
|       | 下采環境に床る設備の                         | 運転員の回復操作の              | る可能性がある。ただし,本評価では,  |
|       | 文庫、アフレハ圧の阻                         | 遅延                     | 大湊側敷地高さ未満の津波において    |
|       |                                    |                        | 浸水し、炉心損傷に至るという結果が   |
|       |                                    |                        | 支配的になるため、これらの影響につ   |
|       |                                    |                        | いては考慮対象外とした。        |

第 3.2.2.a-1 表 考慮すべき津波による影響モード(2/2)

|                    | 対決設備 幽哭 記法   |                              |                                            |                       |  |
|--------------------|--------------|------------------------------|--------------------------------------------|-----------------------|--|
| 系統・設備名称            | 153 奋" 旋 娴   |                              | 機哭犯器位置                                     | ஜையனை එ<br>  T.P. (m) |  |
| 211 WE BE MAREN 13 | 総称名          | 機器名称                         | (707-)                                     | 1                     |  |
| 影뾩                 | 「緩和機能(フロ)    | トライン系)に関する設備                 |                                            |                       |  |
| wis系               | 弁            | SRV                          | POV TP 15.6                                | 15.6                  |  |
| HPCF(B)系           | ポンプ          | HPCFポンプ(B)                   | R/BB3FH                                    | -7.9                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現堪盤 DIV-II            | R/B B1F-0                                  | 4.8                   |  |
|                    | 空調機          | HPCFポンプ(B)室空調機               | R/BB3FH                                    | -8.0                  |  |
| HPCF(C)系           | ポンプ          | HPCFポンプ(C)                   | R/BB3FH                                    | -7.9                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現場盤 DIV-II            | R/B B1F-0                                  | 4.8                   |  |
|                    | 空調機          | HPCFポンプ(C)室空調機               | R/BB3FH                                    | -8.0                  |  |
| CSP                | タンク          | 復水貯蔵槽(上部ハッチ)                 | RW/B1F                                     |                       |  |
| RCIC系              | ポンプ          | RCICポンプ                      | R/BB3FH                                    | -7.3                  |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | タービン         | RCIC駆動タービン                   | R/BB3FH                                    | -7.3                  |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | 熱交換機         | 潤滑油冷却器 (タービン用)               | R/B B3F                                    | -8.2                  |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | タンク          | 油タンク                         | R/B B3F                                    | -8.2                  |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | コンデンサ        | ROIC バロメトリックコンデンサ            | R/B B3F                                    | -8.2                  |  |
|                    | 制御盤          | RCICタービン制御盤 DIV-I            | R/B B1F-0                                  | 4.8                   |  |
|                    | 多重伝送盤        | 安全系多重伝送現堪盤 DIV-I             | R/B B1F-0                                  | 4.8                   |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | 中離端子箱        | E51-MO-F004中継端子箱             | R/B B1F-0                                  | 4.8                   |  |
|                    |              | :                            | :                                          | :                     |  |
| MS系                | 弁            | SRV(電磁弁含む)                   | POV TP 15.6                                | 15.6                  |  |
|                    | 弁            | SRV(電磁弁含む)                   | POV TP 15.6                                | 15.6                  |  |
|                    | 弁            | 弁                            | POV TP 18.1                                | 18.1                  |  |
|                    | ラック          | 窒素ガ スポンペラック(A)               | R/B4F                                      | 31.7                  |  |
|                    |              | :                            | :                                          | :                     |  |
| RHR(A)系LPFL        | ポンプ          | RHRポンプ(A)                    | R/BB3FH                                    | -7.9                  |  |
| RHR(A)系LPFL        | 熱交換機         | RHR熱交換器(A)                   | R/B B3F                                    | -8.2                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現堪盤 DIV-I             | R/B B1F-0                                  | 4.8                   |  |
|                    | 空調機          | RHRポンプ(A)室空調機                | R/BB3FH                                    | -8.0                  |  |
| RHR(B)系LPFL        | ポンプ          | RHRホンプ(B)                    | R/BB3FH                                    | -7.9                  |  |
|                    | 熱交換機         | RHR <b>她</b> 交 擤器(B)         | R/B B3F                                    | -8.2                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現場盤 DIV-II            | R/B B1F-0                                  | 4.8                   |  |
|                    | 空調機          | RHRポンプ(B)室空調機                | R/B B3FH                                   | -8.0                  |  |
| RHR(C)系LPFL        | ポンプ          | RHRポンプ(C)                    | R/BB3FH                                    | -7.9                  |  |
|                    | 執交換機         | RHR執交換機(C)                   | R/B B3F                                    | -8.2                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現場盤 DIV-II            | R/B B1F-0                                  | 4.8                   |  |
|                    | 空調機          | RHRポンプ(C)室空調機                | R/BB3FH                                    | -8.0                  |  |
| RHR(A)系            | ポンプ          | RHRポンプム)                     | R/BB3FH                                    | -7.9                  |  |
|                    | 熱交換機         | RHR熱交換器                      | R/B B3F                                    | -9.7                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現場盤 DIV-I             | R/B B1F-0                                  | 4.8                   |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | 空調機          | RHRポンプ(A)室空調機                | R/BB3FH                                    | -8.0                  |  |
| RHR(B)系            | ポンプ          | RHRホンプ(B)                    | R/BB3FH                                    | -7.9                  |  |
|                    | 熱交換機         | RHR独交换器                      | R/B B3F                                    | -9.7                  |  |
|                    | 多重伝送盤        | 安全系多重伝送現場盤 DIV-II            | R/B B1 F-0                                 | 4.8                   |  |
|                    |              | :                            | :                                          | :                     |  |
|                    | 空調機          | RHRポンプ(B)室空調機                | R/BB3FH                                    | -8.0                  |  |
| RHR(C)系            | ポンプ          | RHRポンプ(C)                    | R/BB3FH                                    | -7.9                  |  |
|                    | <u>执</u> 交撤器 | RHR执交掏器                      | R/B B3F                                    | -97                   |  |
|                    | 多重 伝送 般      | 安全系多面伝道理提級 DIV-m             | R/B B1E-0                                  | 4.8                   |  |
|                    |              | メエホラ 単位起抗電量 のマーロー・           | · · ·                                      |                       |  |
|                    | 空調機          | -<br>BHRポンプ(C)家空調機           | - ·<br>- · · · · · · · · · · · · · · · · · | -8.0                  |  |
|                    | 22 01 105    | 1.5.3 (f) / / (9/2 2 2 0) Vs | 100001                                     | 0.0                   |  |

## 第 3.2.2.a-2 表 機器リスト(7 号炉抜粋)(1/2)

| 機器・設備              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | 1 設置高さ           |            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------|------------|
| 系統・設備名称<br>C/B     | 総称名                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 機器名称                             | 機器設置位置<br>(フロアー) | T.P. (m)   |
| U/B<br>专家馬渡辺(単)    | 1×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  | -                |            |
| 但流電線設備             | 畫電池                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 追流125V番電池 /A                     | 0/8 81F          | 0.0        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 追流125V番電池 /B                     | 0/8 81F          | 0.0        |
|                    | 大馬型                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |                  |            |
|                    | 70 48 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 直流1230元電器盤 /A<br>支速1050 広義開始 20  |                  | 0.0        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 直流125V光電器整 /B                    | 0/8 81F          | 0.0        |
|                    | 主法主要结构                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  |                  |            |
|                    | 但加生ウ鞣金                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 直流1250王守禄盤 / A<br>古法1050(主要復報 20 |                  | 0.0        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 道流125V主母議盤78                     | U/B BIF          | 0.0        |
| MOO                | 本 本 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ·                                |                  |            |
| MCC<br>C/R         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  | 4.0        |
| 0,0<br>\$4%#2%     | <b>時准ち…</b> 方                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 医乙糖素(工)詳准言…句                     | D/D D1 E-0       | 40         |
| a 1 - 290 77 (     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 原子植成(1)計数クック                     |                  | 4.0        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 原子が完全(1)計数フック                    |                  | 4.0        |
| <b>⊭</b> ।/अस्त रु | 古中期御室期御                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |                  | - 172      |
| m 1 149 77 C       | 中天前御主前御<br>般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 十大連転量税金(                         | 0/82F            | 17.0       |
|                    | and the second s | 무것運和監祝을 같                        | 0/B2F            |            |
|                    | 中中生物学会                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 中市 建磷合体 医乙酰合体 化磷                 |                  |            |
|                    | 〒米利岬至外<br>  店 7.時/点しまり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 于天前哪至外原于泪停止利御                    |                  |            |
| 心动成态品源             | <u> 尿丁ル  伊止制</u><br>  広気  広法温源                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.7万山森漆毒源糖要7人                   | 0/8 815          | 6.5        |
| がれれoc加電源<br>設備     | 近代のこの記名の                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | パイスルシン加電が設置/A                    | 0/8 815          | 6.0        |
| a29. M#            | ±32. V#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ハイダル交流電源装置/6                     | U/B BIF          | 0.0        |
| 非受用的小吃             | l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · ·                              |                  | 40         |
| 카메카지 (小昭<br>T/B    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  | -                | -          |
| DOM(A)%            | ポップ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  | T/D DIE          | 40         |
| NO TO WAY          | a.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  |            |
|                    | 林态揭哭                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  | T/R R1F          | - 40       |
|                    | 500 LXL 396 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1011202000                       |                  |            |
|                    | 5-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -<br><u> +</u>                   | R/R4E-0          | 317        |
|                    | メノノ<br>冬田伝洋般                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | シーンスンス<br>安全系系電伝送現博教 DIV-T       | R/R R1 F-0       | 4.0        |
|                    | · 文里仏廷蜜<br>主                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 安全ボダ重仏起現場盤 DNFI<br>DOW系バルブ       |                  | 4.0        |
|                    | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                  |                  |            |
| ROWIBLE            | R-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | POW#117(P)                       | T/P P1F          | 40         |
|                    | 1.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |                  |            |
|                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PCW她态扬哭(P)                       | T/B B1F          | 40         |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | タンク                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | サージタンク                           | R/B 4F-0         | 31.7       |
|                    | 多重伝送發                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安全系多重伝送現場盤 DIV-II                | R/B B1 F-0       | 4.8        |
|                    | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RCW系 バルブ                         | R/B B1F          | 4.8        |
|                    | [ <sup>**</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | 4.9        |
| RCW(C)系            | ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RCWポンプ(C)                        | T/B B2F          | -4.6       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | 熱交換器                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RCW熱交換器(C)                       | T/B B2F          | -5.1       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | タンク                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | サージタンク                           | R/B 4F-0         | 31.7       |
|                    | 多重伝送盤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安全系多重伝送現場盤 DIV-皿                 | R/B B1 F-0       | 4.8        |
|                    | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RCW系バルブ                          | T/B B2F          | -5.1       |
| RSW(A)7%           | ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSW#27(A)                        | T/B B1F          | 4.9        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | 多重伝送盤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安全系多重伝送現場盤 DIV-I                 | R/B B1 F-0       | 4.8        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RSW系バルブ                          | T/B B1F          | 4.9        |
| RSW(B)系            | ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSWポンプ(B)                        | T/B B1F          | 4.9        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | 多重伝送盤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安全系多重伝送現場盤 DIV- II               | R/B B1 F-0       | 4.8        |
|                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RSW系バルブ                          | T/B B1F          | 4.9        |
| RSW(C)系            | ポンプ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RSWポンプ(C)                        | T/B B1F          | 4.9        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
|                    | 多重伝送盤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 安全系多重伝送現場盤 DIV-皿                 | R/B B1 F-0       | 4.8        |
| м/с                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M/C 7C                           | R/B B1 F-0       | 4.8        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | :                | :          |
| P/C                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 1                           | R/B B1 F-0       | 4.8        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 2                           | T/B1F            | 12.3       |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                |                  | :          |
| мос                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 1 - 1                       | R/B B1 F-0       | 4.8        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70 - 1 - 2                       | R/B B1 F-0       | 4.8        |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                  | + <u>.</u> |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                | -                | · ·        |

### 第3.2.2.a-2表 機器リスト(7号炉抜粋)(2/2)

| シナ<br>リオ<br>区分        | 津波高さ<br>(T.M.S.L. (+m))                   | 津波によって推<br>その設置箇       | 員傷する主要な機器と<br>新所(T.M.S.L.(m))               | 起因事象                                                                                        | 事故シナリオの概要                                                                                                                            |
|-----------------------|-------------------------------------------|------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                       |                                           | 原子炉補機冷却海<br>水ポンプ B 系電源 | T/B B1F +3.5m                               |                                                                                             | ・取水口から当該エリアのマンホール<br>(T.M.S.L. +3.5m)から T/B B1F に浸水。                                                                                 |
| 1                     | $3.5 \le x < 4.2$                         | タービン地下 2F 設<br>置電源     | T/B B2F -4.8m                               | ・過渡事象(全給水機能喪失等)                                                                             | <ul> <li>・T/B B1F に設置されている RSW(B)ポンプ用電源盤が機能喪失し、当該ポンプも機能喪失する。</li> <li>・溢水伝播により、給水・復水系及びタービン建屋設備の機能喪失に伴う過渡事象(全給水機能喪失等)が発生。</li> </ul> |
|                       |                                           | 原子炉補機冷却系<br>ポンプ        | T/B B1F +4.2m(A, B 系)<br>T/B B2F -4.1m(C 系) |                                                                                             | <ul> <li>・津波高さ T.M.S.L.+4.2m で RCW(A)ポンプの電動機下端部が被水し、RCW(A)ポン</li> </ul>                                                              |
| 2 $4.2 \le x \le 4.8$ | タービン補機冷却<br>系ポンプ                          | T/B B2F -4.0m          |                                             | プが機能喪失。<br>・階段室を経由して地                                                                       | プが機能喪失。<br>・階段室を経由して地下2階に溢水伝播し,                                                                                                      |
|                       | $4.2 \le x \le 4.8$                       | 非常用炉心冷却系<br>ポンプ        | R/B B3F -8.2m                               | <ul> <li>・最終ヒートシンク喪失</li> <li>・過渡東角(合給水燃於頭先室)</li> </ul>                                    | 地下 2 階に設置されている RCW(C)ポン<br>プの電動機下端部が被水し, RCW(C)ポン                                                                                    |
|                       | $2 \qquad 4.2 \cong X \smallsetminus 4.0$ | 常用メタクラ                 | C/B B2F -2.7m                               | • 迴侵爭豕(土和小陵肥茂大守)                                                                            | プが機能喪失。                                                                                                                              |
|                       |                                           | 復水補給水系ポン<br>プ          | Rw/B B3F -6.1m                              |                                                                                             | <ul> <li>・補機冷却系の機能<br/>高圧・低圧注水機<br/>失,浸水等により〕</li> <li>炉心損傷に至る。</li> </ul>                                                           |
|                       |                                           | タービン補機冷却<br>海水系ポンプ     | T/B B1F +5.7m                               |                                                                                             |                                                                                                                                      |
| 3                     | 4.8≦x<6.5                                 | 原子炉補機冷却海<br>水系ポンプ      | T/B B1F +5.5m                               | <u>・全交流電源喪失</u><br>・最終ヒートシンク喪失                                                              | ・ 律波高さ I.M.S.L.+4.8m で非常用メタク<br>ラが水没し、全交流電源喪失が発生する。                                                                                  |
|                       |                                           | 原子炉隔離時冷却<br>系制御盤       | R/B B1F +4.8m                               | ・過渡事象(全給水機能喪失等)                                                                             | 喪失によって、炉心損傷に至る。                                                                                                                      |
|                       |                                           | 非常用メタクラ                | R/B B1F +4.8m                               |                                                                                             |                                                                                                                                      |
| 4                     | $6.5 \leq x$                              | 直流電源盤                  | C/B B1F +6.5m                               | <ul> <li>・直流電源喪失</li> <li>・全交流電源喪失</li> <li>・最終ヒートシンク喪失</li> <li>・過渡事象(全給水機能喪失等)</li> </ul> | ・津波高さ T.M.S.L.+6.5m で直流電源盤が<br>水没し直流電源喪失が発生する。これに<br>より逃がし安全弁による原子炉減圧が不<br>可能となる。                                                    |

第3.2.2.a-3表 重要事故シーケンス評価用の津波シナリオ区分(7号炉)

3.2.2-24

| シナ<br>リオ<br>区分      | 津波高さ<br>(T.M.S.L. (+m))    | 津波によって推<br>その設置箇       | 員傷する主要な機器と<br>「所(T.M.S.L.(m))               | 起因事象                                                                                        | 事故シナリオの概要                                                                                                                            |                                                                                     |
|---------------------|----------------------------|------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
|                     |                            | 原子炉補機冷却海<br>水ポンプ B 系電源 | T/B B1F +3.5m                               |                                                                                             | ・ 取水口から当該エリアのマンホール<br>(T.M.S.L. +3.5m)から T/B B1F に浸水。                                                                                |                                                                                     |
| 1                   | $3.5 \le x < 4.4$          | タービン地下 2F 設<br>置電源     | T/B B2F -4.8m                               | <u>・過渡事象(全給水機能喪失等)</u>                                                                      | <ul> <li>・T/B B1F に設置されている RSW(B)ポンプ用電源盤が機能喪失し、当該ポンプも機能喪失する。</li> <li>・溢水伝播により、給水・復水系及びタービン建屋設備の機能喪失に伴う過渡事象(全給水機能喪失等)が発生。</li> </ul> |                                                                                     |
|                     |                            | 原子炉補機冷却系<br>ポンプ        | T/B B1F +4.4m(A, B 系)<br>T/B B2F -4.1m(C 系) |                                                                                             | <ul> <li>・津波高さ T.M.S.L.+4.4m で RCW(A)ポンプの電動機下端部が被水し、RCW(A)ポン</li> </ul>                                                              |                                                                                     |
| 2 $4.4 \le x < 4.8$ | タービン補機冷却<br>系ポンプ           | T/B B2F -3.9m          |                                             | <br>プが機能喪失。<br>・階段室を経由して                                                                    | プが機能喪失。<br>・階段室を経由して地下2階に溢水伝播し,                                                                                                      |                                                                                     |
|                     | $4.4 \le x < 4.8$          | 非常用炉心冷却系<br>ポンプ        | R/B B3F -8.2m                               | <ul> <li>・最終ヒートシンク喪失</li> <li>・漫遊東角(会給水機能頭先等)</li> </ul>                                    | 地下 2 階に設置されている RCW(C)ポン<br>プの電動機下端部が被水し, RCW(C)ポン                                                                                    |                                                                                     |
|                     | $2 \qquad 4.4 \ge X < 4.8$ | 常用メタクラ                 | C/B B2F -2.7m                               | ・ 迴役 争豕(土和小陵北伐大守)                                                                           | プが機能喪失。                                                                                                                              |                                                                                     |
|                     |                            | 復水補給水系ポン<br>プ          | Rw/B B3F -6.1m                              |                                                                                             | <ul> <li>・補機冷却系の機能喪失に</li> <li>高圧・低圧注水機能(HP</li> <li>失,浸水等により RCIC</li> <li>炉心損傷に至る。</li> </ul>                                      | ・補機冷却系の機能喪失により電動駆動の<br>高圧・低圧注水機能(HPCF, LPFL)を喪<br>失,浸水等により RCIC を機能喪失し,<br>炉心損傷に至る。 |
|                     |                            | タービン補機冷却<br>海水系ポンプ     | T/B B1F +5.4m                               |                                                                                             |                                                                                                                                      |                                                                                     |
| 3                   | 4.8≦x<6.5                  | 原子炉補機冷却海<br>水系ポンプ      | T/B B1F +5.6m                               | <u>・全交流電源喪失</u><br>・最終ヒートシンク喪失                                                              | <ul> <li>・津波高さ T.M.S.L.+4.8m で非常用メダク<br/>ラが水没し、全交流電源喪失が発生する。</li> </ul>                                                              |                                                                                     |
|                     |                            | 原子炉隔離時冷却<br>系制御盤       | R/B B1F +4.8m                               | ・過渡事象(全給水機能喪失等)                                                                             | 喪失によって、炉心損傷に至る。                                                                                                                      |                                                                                     |
|                     |                            | 非常用メタクラ                | R/B B1F +4.8m                               |                                                                                             |                                                                                                                                      |                                                                                     |
| 4                   | $6.5 \leq x$               | 直流電源盤                  | C/B B1F +6.5m                               | <ul> <li>・直流電源喪失</li> <li>・全交流電源喪失</li> <li>・最終ヒートシンク喪失</li> <li>・過渡事象(全給水機能喪失等)</li> </ul> | ・津波高さ T.M.S.L.+6.5m で直流電源盤が<br>水没し直流電源喪失が発生する。これに<br>より逃がし安全弁による原子炉減圧が不<br>可能となる。                                                    |                                                                                     |

第3.2.2.a-4表 重要事故シーケンス評価用の津波シナリオ区分(6号炉)

第3.2.2.d-1(a)表 津波シナリオ区分毎の津波発生頻度及び炉心損傷頻度(7 号炉) 津波高さ

| シナリオ区分 | 律波高さ<br>(T.M.S.L.)   | 炉心損傷頻度(/炉年)          | 寄与(%) |
|--------|----------------------|----------------------|-------|
| 1,2    | 4.8m 未満              | $8.8 \times 10^{-5}$ | 41    |
| 3      | $4.8$ m $\sim 6.5$ m | $1.0 \times 10^{-4}$ | 48    |
| 4      | 6.5m 以上              | $2.5 \times 10^{-5}$ | 11    |
| 全炉心    | 損傷頻度                 | 2.1×10 <sup>-4</sup> | 100   |

第3.2.2.d-1(b)表 津波シナリオ区分毎の津波発生頻度及び炉心損傷頻度(6号炉)

| シナリオ区分 | 津波高さ<br>(T.M.S.L.)                   | 炉心損傷頻度(/炉年)          | 寄与(%) |
|--------|--------------------------------------|----------------------|-------|
| 1,2    | 4.8m 未満                              | $5.4 	imes 10^{-5}$  | 30    |
| 3      | $4.8 \mathrm{m} \sim 6.5 \mathrm{m}$ | $1.0 \times 10^{-4}$ | 56    |
| 4      | 6.5m 以上                              | $2.5 	imes 10^{-5}$  | 14    |
| 全炉心    | 損傷頻度                                 | $1.8 \times 10^{-4}$ | 100   |

|             |                           | 事故シーケン                | 起因事                  | 象別   |  |  |
|-------------|---------------------------|-----------------------|----------------------|------|--|--|
| 起因事象        | 事故シーケンス                   | ス別 CDF                | CDF(/                | 戶年)  |  |  |
|             |                           | (炉年)                  |                      | 割合   |  |  |
|             | 最終ヒートシンク喪失                | 0 0v10-5              |                      |      |  |  |
|             | +高圧・低圧注水機能喪失              | 0.0^10 5              |                      |      |  |  |
| 最終ヒートシンク喪失  | 最終ヒートシンク喪失                |                       | $8.8 \times 10^{-5}$ | 41%  |  |  |
|             | +冷却材喪失                    | $8.8 \times 10^{-25}$ |                      |      |  |  |
|             | (S/R 弁開放(圧力制御)失敗に伴う LOCA) |                       |                      |      |  |  |
|             | 最終ヒートシンク喪失                | 1.0×10-4              |                      |      |  |  |
| 早级レートシン/カ市生 | +全交流電源喪失+高圧・低圧注水機能喪失      |                       |                      |      |  |  |
| 取於しートシンク丧大  | 最終ヒートシンク喪失+全交流電源喪失        |                       | $1.0 \times 10^{-4}$ | 48%  |  |  |
| - 主义仉电你衣入   | +冷却材喪失                    | $1.0 \times 10^{-24}$ |                      |      |  |  |
|             | (S/R 弁開放(圧力制御)失敗に伴う LOCA) |                       |                      |      |  |  |
| 最終ヒートシンク喪失  | 最終ヒートシンク喪失                |                       |                      |      |  |  |
| +全交流電源喪失    | +全交流電源喪失                  | $2.5 	imes 10^{-5}$   | $2.5 \times 10^{-5}$ | 11%  |  |  |
| +直流電源喪失     | +直流電源喪失                   |                       |                      |      |  |  |
| 合計          | _                         | _                     | $2.1 \times 10^{-4}$ | 100% |  |  |

第 3.2.2.d-2(a)表 起因事象別の CDF 評価結果(7 号炉)

第 3.2.2.d-2(b)表 起因事象別の CDF 評価結果(6 号炉)

|             |                           | 事故シーケン                | 起因事                  | 象別   |
|-------------|---------------------------|-----------------------|----------------------|------|
| 起因事象        | 事故シーケンス                   | ス別 CDF                | CDF(//               | 戸年)  |
|             |                           | (炉年)                  |                      | 割合   |
|             | 最終ヒートシンク喪失                | 5 4×10-5              |                      |      |
|             | +高圧・低圧注水機能喪失              | 0.4~10 °              |                      |      |
| 最終ヒートシンク喪失  | 最終ヒートシンク喪失                |                       | $5.4 \times 10^{-5}$ | 30%  |
|             | +冷却材喪失                    | $5.4 	imes 10^{-25}$  |                      |      |
|             | (S/R 弁開放(圧力制御)失敗に伴う LOCA) |                       |                      |      |
|             | 最終ヒートシンク喪失                | 1.0×10-4              |                      |      |
| 見ぬと しい/カ 南生 | +全交流電源喪失+高圧・低圧注水機能喪失      | 1.0×10 1              |                      |      |
| 取於してトラフク茂大  | 最終ヒートシンク喪失+全交流電源喪失        |                       | $1.0 \times 10^{-4}$ | 56%  |
| - 主义弧电你衣入   | +冷却材喪失                    | $1.0 \times 10^{-24}$ |                      |      |
|             | (S/R 弁開放(圧力制御)失敗に伴う LOCA) |                       |                      |      |
| 最終ヒートシンク喪失  | 最終ヒートシンク喪失                |                       |                      |      |
| +全交流電源喪失    | +全交流電源喪失                  | $2.5 \times 10^{-5}$  | $2.5 \times 10^{-5}$ | 14%  |
| +直流電源喪失     | +直流電源喪失                   |                       |                      |      |
| 合計          | -                         | _                     | $1.8 \times 10^{-4}$ | 100% |

|       | 事故シーケンス                                                       | 事故シーケンス<br>グループ                                 | シーケン<br>ス別 CDF<br>(炉年) | 事故シーク<br>グルーフ<br>CDF(炉                                                                          | rンス<br>プ別<br>i年)<br>割合 |
|-------|---------------------------------------------------------------|-------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------|------------------------|
| (a)-1 | 最終ヒートシンク喪失<br>+高圧・低圧注水機能喪失                                    | <b>宣正,低压注水抛</b> 纰萌生                             | 8.8×10 <sup>-5</sup>   | 1 0×10-4                                                                                        | 200/                   |
| (a)-2 | 最終ヒートシンク喪失<br>+全交流電源喪失<br>+高圧・低圧注水機能喪失                        | 向上<br>·<br>以<br>上<br>仁<br>小<br>微<br>肥<br>衣<br>大 | $1.0 \times 10^{-4}$   | 事故シーケ<br>グループ<br>CDF(炉4<br>1.9×10 <sup>-4</sup><br>2.5×10 <sup>-5</sup><br>2.1×10 <sup>-4</sup> | 89%                    |
| (f)-1 | 最終ヒートシンク喪失<br>+冷却材喪失(S/R 弁開放<br>(圧力制御)失敗に伴う LOCA)             |                                                 | $8.8 \times 10^{-25}$  |                                                                                                 |                        |
| (f)-2 | 最終ヒートシンク喪失<br>+全交流電源喪失<br>+冷却材喪失(S/R 弁開放<br>(圧力制御)失敗に伴う LOCA) | LOCA 時注水機能喪失                                    | 1.0×10 <sup>-24</sup>  | 1.9×10 <sup>-24</sup>                                                                           | 0%                     |
| (c)   | 最終ヒートシンク喪失<br>+全交流電源喪失<br>+直流電源喪失                             | 全交流動力電源喪失<br>(直流電源喪失)                           | $2.5 \times 10^{-5}$   | $2.5 \times 10^{-5}$                                                                            | 11%                    |
| _     | 合計                                                            | _                                               | _                      | 2.1×10 <sup>-4</sup>                                                                            | 100%                   |

第 3.2.2.d-3(a)表 事故シーケンスグループ別の CDF 評価結果(7 号炉)

|       | 事故シーケンス                                                       | 事故シーケンス<br>グループ       | シーケン<br>ス別 CDF<br>(炉年) | 事故シーク<br>グルーフ<br>CDF(炉 | アンス<br>プ別<br>i年)<br>割合 |
|-------|---------------------------------------------------------------|-----------------------|------------------------|------------------------|------------------------|
| (a)-1 | 最終ヒートシンク喪失<br>+高圧・低圧注水機能喪失                                    | <b>宣正・低</b> 広注水機能調告   | $5.4 \times 10^{-5}$   | 1 6×10-4               | 960/                   |
| (a)-2 | 最終ヒートシンク喪失<br>+全交流電源喪失<br>+高圧・低圧注水機能喪失                        | 向圧・低圧在小機能安大           | 1.0×10 <sup>-4</sup>   | 1.6×10 *               | 80%                    |
| (f)-1 | 最終ヒートシンク喪失<br>+冷却材喪失(S/R 弁開放<br>(圧力制御)失敗に伴う LOCA)             |                       | $5.4 \times 10^{-25}$  |                        |                        |
| (f)-2 | 最終ヒートシンク喪失<br>+全交流電源喪失<br>+冷却材喪失(S/R 弁開放<br>(圧力制御)失敗に伴う LOCA) | LOCA 時注水機能喪失          | 1.0×10 <sup>-24</sup>  | 1.6×10 <sup>-24</sup>  | 0%                     |
| (c)   | 最終ヒートシンク喪失<br>+全交流電源喪失<br>直流電源喪失                              | 全交流動力電源喪失<br>(直流電源喪失) | $2.5 \times 10^{-5}$   | $2.5 \times 10^{-5}$   | 14%                    |
| _     | 合計                                                            | _                     | _                      | 1.8×10 <sup>-4</sup>   | 100%                   |

第 3.2.2.d-3(b)表 事故シーケンスグループ別の CDF 評価結果(6 号炉)



第 3.2.2-1 図 津波レベル 1PRA のフロー

3.2.2 - 30



3.2.2 - 31



第 3.2.2.a-1 図 プラント概要



第 3.2.2.a-2 図 津波 PRA プラントウォークダウン結果(溢水伝播経路の同定)(1/5)

【浸水経路調査(取水口~T/B)】

津波により取水口から進入した津波は, マンホール高さ3.5mにおいて浸水を開 始。同高さ設置の電源盤水没により原子 炉補機冷却系(B)系機能喪失。





7号炉取水設備断面図

# 取水設備からT/Bへの浸水経路

第3.2.2.a-2図 津波 PRA プラントウォークダウン結果(溢水伝播経路の同定)(2/5)

黒枠囲みの内容は機密事項に属しますので公開できません。

第 3.2.2.a-2 図 津波 PRA プラントウォークダウン結果(溢水伝播経路の同定)(3/5)

黒枠囲みの内容は機密事項に属しますので公開できません。

第 3.2.2.a-2 図 津波 PRA プラントウォークダウン結果(溢水伝播経路の同定)(4/5)



3.2.2 - 36

3.2.2.a-2 図 津波 PRA プラントウォークダウン結果(溢水伝播経路の同定)(5/5)

| 担当会社名:                                                          | 5                | 【RCIC 室への貫通口の確認 (2/3)】                                   |
|-----------------------------------------------------------------|------------------|----------------------------------------------------------|
| ント名 柏崎刈羽原子力発電所第7号機 確認日時 2013 3                                  | 単 2月 22日(14:00)  |                                                          |
| 星名                                                              |                  |                                                          |
| コア 部屋                                                           | 名称               | 記 ・オフセットダクト開口有り(R-B3-4(北側通路)側:現場写真D参照)                   |
|                                                                 |                  | 事 ・機器直上に開口部は無いが、機器搬出入用ハッチについては止水対策が必要                    |
|                                                                 |                  | 項・床ドレンファンネルについては、R-B3-5(RHR ボンブ(A)室)側からの独立防御として逆止弁の設置が必要 |
|                                                                 |                  | ・シリコンゴム・ラバーブーツに関してはメーカー推奨の耐用年数が 10 年 (PD-48-0015 床壁貫通部設計 |
| 確認項目                                                            | チェック             | 仕様書)となっていることから、電力殿にて施工時期及び、有効期限を確認願います。                  |
| 対象エリア(床・壁部)の貫通部 止水条件に着目して確認                                     |                  |                                                          |
| ①配管貫通部は止水処理をしているか?                                              | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| ②トレイ貫通部は止水処理をしているか?                                             | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| ③電線管貫通部は止水処理をしているか?                                             | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| ④ダクト貫通部は止水処理をしているか?                                             | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| ⑤ 床ファンネルは止水処理をしているか?                                            | 問題なし ・ 要検討 ・ 適用外 |                                                          |
|                                                                 |                  |                                                          |
| 対象設備の境界部 止水条件に着目して確認                                            |                  |                                                          |
| ⑥浸水防止扉のシール部は健全となっているか?また扉の開口下端の埋は止水対策を考慮しているか?                  | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| ⑦建屋外壁部の止水状態は鍵金となっているか?<br>空調ルーパ等の開口部に関しては想定津波高さの以下は止水対策をとっているか? | 問題なし ・ 墨検討 ・ 適用外 |                                                          |
| ⑧建屋内・外のブロックアウト壁は止水対策を考慮しているか?                                   | 問題なし ・ 要検討 ・ 適用外 | 現                                                        |
| ⑤溢水経路上の建屋内の床ハッチ開口部および堪について止水対策を考<br>慮しているか?                     | 問題なし ・ 腰検討 ・ 適用外 | 場                                                        |
| ⑩溢水経路上の階段・EVは堰について止水対策を考慮しているか?                                 | 問題なし ・ 要検討 ・ 適用外 | *                                                        |
|                                                                 | 問題なし ・ 要検討 ・ 適用外 | <u>д</u><br>ж                                            |
| 操作性等に着目して確認                                                     |                  |                                                          |
| ①緊急時の操作に際し、障害となる事項はないか?                                         | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| 12                                                              | 問題なし ・ 要検討 ・ 適用外 |                                                          |
| 0                                                               | 問題なし ・ 要検討 ・ 適用外 |                                                          |

津波PRA現場調査 チェックシート(溢水伝播、その他)

|                 | 社名 |                |       |
|-----------------|----|----------------|-------|
| 年 2月 22日(14:00) | 時  | 柏崎刈羽原子力発電所第7号機 | ブラント名 |
|                 |    |                | 建屋名   |
| 2名称             |    |                | 787   |

問題なし ・ 要検討 ・ 適用外 問題なし ・ 要検討 ・ 適用外 問題なし ・ 要検討 ・ 適用外 第3.2.2.a-3図 プラントウォークダウンチェックシート



分類

貫通部

扉および建屋構築物

その他

C)



第3.2.2.a-4図 起因事象の抽出フロー

3.2.2 - 38



第 3.2.2.c-1 図 被水・没水に関するフラジリティ曲線

| 津波高さ | 12m | 6.5m | 4.8m | 4.2m | 3.5m | 発生する起因事象            |
|------|-----|------|------|------|------|---------------------|
| 以上↓  | 以下→ |      |      |      |      | 起因となる事象発生無し         |
|      |     |      |      |      |      | 1                   |
|      |     |      |      |      |      | 1+2                 |
|      |     |      |      |      |      | (1)+(2)+(3)         |
|      |     |      |      |      |      | (1)+(2)+(3)+(4)     |
|      |     |      |      |      |      | (1)+(2)+(3)+(4)+(5) |

①過渡事象,②最終ヒートシンク喪失(LUHS),③全交流動力電源喪失(SBO) ④直流電源喪失,⑤外部電源喪失

第 3.2.2.d-1(a)図 津波 PRA における起因事象の津波高さ別イベントツリー(7 号炉)

| 津波高さ | 12m | 6.5m | 4.8m | 4.4m | 3.5m | 発生する起因事象        |
|------|-----|------|------|------|------|-----------------|
| 以上↓  | 以下→ |      |      |      |      | 起因となる事象発生無し     |
|      |     |      |      |      |      | 1               |
|      |     |      |      |      |      | 1+2             |
|      |     |      |      |      |      | (1)+(2)+(3)     |
|      |     |      |      |      |      | (1)+(2)+(3)+(4) |
|      |     |      |      |      |      | (1+2+3+4+5)     |

①過渡事象,②最終ヒートシンク喪失(LUHS),③全交流動力電源喪失(SBO)④直流電源喪失,⑤外部電源喪失

第3.2.2.d-1(b)図 津波 PRA における起因事象の津波高さ別イベントツリー(6号炉)

| 津波高さ<br>4.2m~4.8m<br>(LUHS) | 逃がし<br>安全弁<br>開放 | 逃がし<br>安全弁<br>再閉鎖 | 高圧注水 | 原子炉 <sup>※1</sup><br>減圧 | 低圧注水 | 格納容器<br>除熱 | 最終状態 | 発生頻度 <sup>※2</sup><br>(/炉年) |
|-----------------------------|------------------|-------------------|------|-------------------------|------|------------|------|-----------------------------|
|                             |                  |                   |      |                         |      |            | -    | _                           |
|                             |                  |                   |      |                         |      |            | тw   | -                           |
|                             |                  |                   |      |                         |      |            | -    | -                           |
|                             |                  |                   |      |                         |      |            | тw   | -                           |
|                             |                  |                   |      |                         |      |            | TQUV | 1)**3                       |
|                             |                  |                   |      |                         |      |            | TQUX | -                           |
|                             |                  |                   | 1    |                         |      | 1          | -    | -                           |
|                             |                  |                   |      |                         |      |            | тw   | -                           |
|                             |                  |                   |      | 1                       |      | 1          | -    | -                           |
|                             |                  |                   |      |                         |      |            | тw   | -                           |
|                             |                  |                   |      |                         |      |            | TQUV | ② <sup>**3</sup>            |
|                             |                  |                   |      |                         |      |            | TQUX | _                           |
|                             |                  |                   |      |                         |      |            | LOCA | $8.8 \times 10^{-25}$       |

- ※1 本イベントツリーでは、高圧注水及び低圧注水の失敗確率が 1 であり、これは原子炉減圧 の成否に依らない。このため原子炉減圧の分岐は考慮せず、高圧注水失敗後は高圧・低圧注 水機能喪失に整理している。
- ※2 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生しない。
- ※3 ①+② = 8.8×10<sup>-5</sup> (/炉年)

第 3.2.2.d-2(a)図 最終ヒートシンク喪失(LUHS)のイベントツリー(7 号炉) (津波高さ T.M.S.L. +4.2~4.8m)



- ※1 全交流電源喪失(SBO)が発生するため、一部の最終状態を TB シーケンスとして整理することもできるが、浸水経路の観点から、先に LUHS が発生することを考慮し、第 3.2.2-d-2(a) 図と同様の最終状態として整理した。
- ※2 本イベントツリーでは、高圧注水及び低圧注水の失敗確率が1 であり、これは原子炉減圧の成否に依らない。このため原子炉減圧の分岐は考慮せず、高圧注水失敗後は高圧・低圧注水機能喪失に整理している。
- ※3 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生しない。
- ※4 ①+② = 1.0×10<sup>-4</sup> (/炉年)

第 3.2.2.d-2(b)図 LUHS 及び全交流電源喪失(SBO)のイベントツリー(7 号炉) (津波高さ T.M.S.L. +4.8~6.5m)

### $3.2.2 \cdot 41$

| 津波高さ<br>6.5m以上<br>(LUHS+SBO <sup>※1</sup> ) | 直流電源 | 逃がし<br>安全弁<br>開放 | 逃がし<br>安全弁<br>再閉鎖 | 高圧注水 | 原子炉<br>減圧 | 低圧注水 | 格納容器<br>除熱 | 最終状態 | 発生頻度 <sup>※2</sup><br>(/炉年) |
|---------------------------------------------|------|------------------|-------------------|------|-----------|------|------------|------|-----------------------------|
|                                             |      |                  |                   |      |           |      |            |      | -                           |
|                                             |      |                  |                   |      |           |      |            | тw   | -                           |
|                                             |      |                  |                   |      |           |      |            | -    | -                           |
|                                             |      |                  |                   |      |           |      |            | тw   | -                           |
|                                             |      |                  |                   |      |           |      |            | TQUV | —                           |
|                                             |      |                  |                   |      |           |      |            | TQUX | —                           |
|                                             |      |                  |                   | 1    |           |      |            | -    | -                           |
|                                             |      |                  |                   |      |           |      |            | TW   | -                           |
|                                             |      |                  |                   |      |           |      |            | -    | -                           |
|                                             |      |                  |                   |      |           |      |            | TW   | -                           |
|                                             |      |                  |                   |      |           |      |            | TQUV | _                           |
|                                             |      |                  |                   |      |           |      |            | TQUX | _                           |
|                                             |      |                  |                   |      |           |      |            | LOCA | _                           |
|                                             |      |                  |                   |      |           |      |            | TBD  | $2.5 \times 10^{-5}$        |

- ※1 全交流電源喪失(SBO)が発生するため、一部の最終状態を TB シーケンスとして整理することもできるが、浸水経路の観点から、先に LUHS が発生することを考慮し、第 3.2.2-d-2(a) 図と同様の最終状態として整理した。
- 図と同様の最終状態として整理した。 ※2 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生 しない。

第 3.2.2.d-2(c)図 LUHS, SBO 及び直流電源喪失のイベントツリー(7 号炉) (津波高さ T.M.S.L. +6.5m 以上)

| 津波高さ<br>4.4m~4.8m<br>(LUHS) | 逃がし<br>安全弁<br>開放 | 逃がし<br>安全弁<br>再閉鎖 | 高圧注水 | 原子炉 <sup>※1</sup><br>减圧 | 低圧注水 | 格納容器<br>除熱 | 最終状態 | 発生頻度 <sup>※2</sup><br>(/炉年) |
|-----------------------------|------------------|-------------------|------|-------------------------|------|------------|------|-----------------------------|
|                             |                  |                   |      |                         |      |            | -    | -                           |
|                             |                  |                   |      |                         |      |            | TW   | -                           |
|                             |                  |                   |      |                         |      |            | -    | -                           |
|                             |                  |                   |      |                         |      |            | TW   | -                           |
|                             |                  |                   |      |                         |      |            | TQUV | 1)**3                       |
|                             |                  |                   |      |                         |      |            | TQUX | -                           |
|                             |                  |                   |      |                         |      |            | -    | -                           |
|                             |                  |                   |      |                         |      |            | TW   | -                           |
|                             |                  |                   |      |                         |      |            | -    | -                           |
|                             |                  |                   |      |                         |      |            | TW   | -                           |
|                             |                  |                   |      |                         |      |            | TQUV | (2) <sup>**3</sup>          |
|                             |                  |                   |      |                         |      |            | TQUX | -                           |
|                             |                  |                   |      |                         |      |            | LOCA | $54 \times 10^{-25}$        |

- ※1 本イベントツリーでは、高圧注水及び低圧注水の失敗確率が 1 であり、これは原子炉減圧 の成否に依らない。このため原子炉減圧の分岐は考慮せず、高圧注水失敗後は高圧・低圧注 水機能喪失に整理している。
- ※2 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生しない。
- ※3 ①+② = 5.4×10<sup>-5</sup> (/炉年)

第 3.2.2.d-3(a)図 最終ヒートシンク喪失(LUHS)のイベントツリー(6 号炉) (津波高さ T.M.S.L. +4.4~4.8m)



- ※1 全交流電源喪失(SBO)が発生するため、一部の最終状態を TB シーケンスとして整理することもできるが、浸水経路の観点から、先に LUHS が発生することを考慮し、第 3.2.2-d-3(a) 図と同様の最終状態として整理した。
- ※2 本イベントツリーでは、高圧注水及び低圧注水の失敗確率が1 であり、これは原子炉減圧の成否に依らない。このため原子炉減圧の分岐は考慮せず、高圧注水失敗後は高圧・低圧注水機能喪失に整理している。
- ※3 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生しない。
- ※4 ①+② = 1.0×10<sup>-4</sup> (/炉年)

第 3.2.2.d-3(b)図 LUHS 及び全交流電源喪失(SBO)のイベントツリー(6 号炉) (津波高さ T.M.S.L. +4.8~6.5m)

| 津波高さ<br>6.5m以上<br>(LUHS+SBO <sup>※1</sup> ) | 直流電源 | 逃がし<br>安全弁<br>開放 | 逃がし<br>安全弁<br>再閉鎖 | 高圧注水 | 原子炉<br>減圧 | 低圧注水 | 格納容器<br>除熱 | 最終状態 | 発生頻度 <sup>※2</sup><br>(/炉年) |
|---------------------------------------------|------|------------------|-------------------|------|-----------|------|------------|------|-----------------------------|
|                                             |      |                  |                   |      |           |      |            | -    | -                           |
|                                             |      |                  |                   |      |           |      |            | тw   | -                           |
|                                             |      |                  |                   |      |           | 1    | 1          |      | _                           |
|                                             |      |                  |                   |      |           |      |            | тw   | _                           |
|                                             |      |                  |                   |      |           |      |            | ΤΟυν | _                           |
|                                             |      |                  |                   |      |           |      |            | тоих | _                           |
|                                             |      |                  |                   | -    |           |      |            | _    | _                           |
|                                             |      |                  |                   |      |           |      |            | тw   | _                           |
|                                             |      |                  |                   |      |           |      |            | _    | _                           |
|                                             |      |                  |                   |      |           |      |            | TW   | _                           |
|                                             |      |                  |                   |      |           |      |            | TOUN |                             |
|                                             |      |                  |                   |      |           |      |            |      | -                           |
|                                             |      |                  |                   |      |           |      |            | TQUX | -                           |
|                                             |      |                  |                   |      |           |      |            | LOCA | -                           |
|                                             |      |                  |                   |      |           |      |            | TBD  | $25 \times 10^{-5}$         |

- ※1 全交流電源喪失(SBO)が発生するため、一部の最終状態を TB シーケンスとして整理することもできるが、浸水経路の観点から、先に LUHS が発生することを考慮し、第 3.2.2-d-3(a) 図と同様の最終状態として整理した。
- 図と同様の最終状態として整理した。 ※2 本イベントツリーで発生頻度を"-"としているシーケンスの発生頻度は 0 であり,発生 しない。

第 3.2.2.d-3(c)図 LUHS, SBO 及び直流電源喪失のイベントツリー(6 号炉) (津波高さ T.M.S.L. +6.5m 以上)



第3.2.2.d-4(b)図 起因事象別の炉心損傷頻度寄与割合(6号炉)



第3.2.2.d-5(a)図 事故シーケンスグループ別の炉心損傷頻度寄与割合(7号炉)



第3.2.2.d-5(b)図 事故シーケンスグループ別の炉心損傷頻度寄与割合(6号炉)



第 3.2.2.d-6(a)図 不確実さ解析の結果(7 号炉)



第 3.2.2.d-6(b)図 不確実さ解析の結果(6 号炉)

3.2.2-48

プラント停止の手順について

震源の近い地震によって津波が引き起こされる場合,地震加速度大のインター ロックによりスクラムしプラントは自動停止すると考えられる。震源が遠い地 震などプラントでの地震加速度が小さく,自動スクラムに至らない場合に原子 炉を手動停止する手順について以下に示す。

事故時運転操作手順書(事象ベース)では,津波発生時の手順を次のように定 めている。津波注意報/警報/大津波警報が発令された場合,RSW 取水槽の液 位監視や CW ポンプ,RSW ポンプのパラメータ監視を強化する。RSW 取水槽 の液位が低下,あるいは RSW ポンプの吐出圧力がハンチングした場合には, RSW ポンプの水位確保のため,CWP を1台停止する。停止後も,RSW 取水槽 の液位や RSW ポンプの吐出圧力が回復しない場合,さらに残り2台の CWP を 停止させ,同時に手動スクラム操作を行う。その結果プラントは停止状態とな る。(図1参照)



図1 津波発生時の原子炉手動停止手順

## <u>添付3.2.2.b-1 確率論的津波ハザード評価に関する検討</u>
















|                 | <u>3.日本</u>              | 海東縁部の共                | <u> 也震による</u> 注             | <u>ᢪ波(2)</u>                 |               |
|-----------------|--------------------------|-----------------------|-----------------------------|------------------------------|---------------|
| ■日本海東縁<br>に基づき設 | 部に想定される地類<br>定された , 土木学? | 震の平均発生間隔分<br>会手法を用いる。 | う布の考え方は,均                   | 也震調査研究推進本                    | 部(2003)       |
| 地震調查研究          | <u>究推進本部(2003</u>        | <u>3)による平均発生</u>      | <u>間隔と本検討にお</u>             | ける平均発生間隔                     | <u>分布の考え方</u> |
|                 | 海域                       | 平均発生間隔(推本)            | 根拠                          | 分布の考え方                       |               |
|                 | 北海道北西沖                   | 3900 年程度              | 約2100年前と約6000<br>年前に2個のイベント | 発生間隔データ1個                    |               |
|                 | 北海道西方沖                   | 1400~3900年程<br>度      | (連続性)                       | 一様分布 (1400-<br>3900)         |               |
|                 | 北海道南西沖                   | 500~1400年程度           | 6個のイベントの平均<br>が約1400年       | 一様分布 (500-1400)              |               |
|                 | 青森県西方沖                   | 500 ~ 1400 年程<br>度    | 3個のイベントの平均<br>が約500年        | 一様分布 (500-1400)              |               |
|                 | 秋田県沖                     | 1000年程度以上             | (2列への配分)                    | 一様分布(1000-<br><u>1500</u> )  |               |
|                 | 山形県沖                     | 1000年程度以上             | (2列への配分)                    | 一様分布 (1000-<br><u>1500</u> ) |               |
|                 | 新潟県北部沖                   | 1000年程度以上             | (2列への配 <mark>分</mark> )     | 一様分布 (1000-<br><u>1500</u> ) |               |
|                 | 佐渡島北方沖                   | 500 ~ 1000 年程<br>度    | 中嶋(2003)                    | 一様分布(500-1000)               |               |
|                 |                          |                       |                             | 土木学会(2011                    | )<br>p. 8     |



















## 引き波の津波PRAへの寄与について

(1) 引き波による水位低下の海水系への影響について

引き波による水位低下が発生すると、非常用海水ポンプ(RSWポンプ)が取水継続できない可能性がある。これは、循環水ポンプ(CWポンプ)やRSWポンプを適切に停止することで回避することができる。この場合、水位回復後に各種緩和系に期待できることから、浸水に伴ってほとんどの緩和系が失われる押し波に比べ、引き波のリスクへの寄与は小さいと考え、津波PRAで評価する起因事象からは引き波を除外している。今回、この引き波の影響について感度解析を行った。

(2) 事故シナリオの同定

引き波の水位に応じた事故シナリオの分析及び,誘発される起因事象を表1に整理 した。また,図1,図2に取水路の概要図を示す。

(3) 解析条件

①起因事象については、事故シナリオの分析結果から以下のように設定した。

(a) 津波水位(T.M.S.L. -2.7m~T.M.S.L. -4.1m)

CWポンプ停止操作に成功した場合,RSWポンプは運転可能な水位であり,全てのECCS系は使用可能であることから,隔離事象を想定した。また,CWポンプ停止操作に失敗した場合,RSWポンプが取水継続できなくなると仮定し,起因事象としてLUHSを設定した。

(b) 津波水位(T.M.S.L-4.1m以下)

津波水位T.M.S.L. -4.1m以下では, RSW ポンプ運転限界水位に到達するため,

起因事象としてLUHSを設定した。

②敷地周辺海域の活断層の地震による津波(近地津波)と日本海東縁部に想定される地震による津波(遠地津波)では,想定波源が異なるため津波の到達時間には差があると考えられる。即ち,ポンプ停止操作に対する時間余裕が異なると考えられることから,表2の通り近地津波・遠地津波の発生頻度に分けて評価した。 ③引き波によるポンプの停止操作に対する運転員の人的過誤確率は内的事象 PRAと同様にTHERP手法にて評価した。CWポンプ,RSWポンプの停止操作の人 的過誤確率の算出にあたっては,設置許可の入力津波(図3,図4)に基づき近地 津波では15分,遠地津波では60分の時間余裕を使用した。

④日本海では地理的な特性から,津波が繰返し襲来する可能性がある。津波が連なる場合,停止操作・復旧操作を複数回実施することが考えられるため,2ケースの評価を実施した。ケース1では繰り返しを考慮しない人的過誤確率を設定した評価を,ケース2では10回の繰り返しを考慮しCWポンプ,RSWポンプの停止・復旧操作の人的過誤確率を10倍に設定した評価を実施した。

(4) イベントツリーの作成

イベントツリーを図5及び図6に示す。イベントツリー作成にあたって、安全機能に関 して、冷却水系が機能喪失していない場合にはHPCFやLPFLといった系統に期待で きるものの、引き波では、潮位が回復するまでRCICによる継続的な炉心冷却を考慮し ていることから、保守的にRCICのみに期待するとしている。

(5) 評価結果

引き波による全炉心損傷頻度(CDF)の評価結果を,表3に示す。

津波の繰り返しを考慮しないケース1では、近地津波、遠地津波の合計のCDFは 3.4×10<sup>-5</sup>(/炉年)となり、押し波のCDF(2.1×10<sup>-4</sup>(/炉年))の16%程度である。起因 事象を発生させる-2.7m以下の引き波の発生頻度(5.1×10<sup>-4</sup>(/年))は、4.2m以上 の押し波の発生頻度(2.1×10<sup>-4</sup>(/年))に比べ大きい。しかし,引き波の場合,CW ポンプやRSWポンプの停止操作に成功すれば各種緩和機能に期待でき,CDFは 引き波の発生頻度と使用可能な各緩和設備の失敗確率の積となるが,押し波の場 合ではCDFは押し波の発生頻度と等しくなる。このため,押し波に比べ,引き波の CDFは小さい値となる。

引き波の繰り返しを考慮したケース2では、CDFは6.7×10<sup>-5</sup>(/炉年)であり、ケース1に比べ約2倍となった。ケース1に比べ増加しているが、これは繰り返しを考慮した人的過誤確率をRSWポンプの停止操作や復旧操作に採用しているためである。 押し波に対する割合は32%程度となる。

本評価では,引き波と押し波は独立として評価している。しかし,引き波と押し波 が同一の波源で発生する場合,全体のCDFは各CDFの単純な和とはならないと考 えられ,引き波の寄与は,本評価よりも小さいものとなると考えられる。

次に,引き波と押し波を合わせた炉心損傷クラス毎のCDFを表4に,その寄与割 合を示す円グラフを図7,図8に示す。押し波のみの結果より割合が小さくなるもの の,TQUVの寄与割合がケース1の場合で約78%と大きい結果となる。これに続き, 引き波の主要な炉心損傷クラスであるTWが約12%となる。

| 津波水位                     | 評価ケース                                         | 津波により誘発<br>される起因事象                 | 備考                                                                                                                                              |
|--------------------------|-----------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| T.M.S.L1.7m<br>以上        | _                                             | 起因事象は発生しない                         | 津波による起因事象は発生しないため,評価対象外とする。                                                                                                                     |
| T.M.S.L −1.7m<br>~ −2.7m | _                                             | 隔離事象(水位回復後には<br>復水器による除熱も使用可<br>能) | CW ポンプの運転限界水位であり, 給復水系や PCS は使用できな<br>いものの安全系は使用可能な水位。T.M.S.L2.7m 以下の事故シ<br>ナリオに比べ, 最終ヒートシンク喪失は発生しないことから, プラント<br>への影響は小さいものと考えられるため, 評価対象外とする。 |
| T.M.S.L -2.7m            | CW ポンプ停止<br>成功<br>対応ケース                       | 隔離事象(水位回復後には<br>復水器による除熱も使用可<br>能) | CW ポンプ停止操作に成功した場合, 給復水系や PCS は使用できないものの安全系は使用可能である。T.M.S.L1.7m~ -2.7m の<br>事故シナリオと同様に, 最終ヒートシンク喪失は発生しないことから,<br>プラントへの影響は小さいものと考えられ, 評価対象外とする。  |
| $\sim$ -4.1m             | CW ポンプ停止<br>失敗<br>対応ケース                       |                                    | CW ポンプ停止操作に失敗した場合, 取水路射流の発生により大<br>規模な渦と取水槽の水位低下を引き起こし, RSW ポンプが取水継<br>続できなくなることを仮定する。                                                          |
| T.M.S.L4.1m<br>以下        | CW ポンプ,<br>RSW ポンプ停止<br>成功対応ケース               | 最終ヒートシンク喪失                         | CW ポンプ停止操作及び RSW ポンプ停止操作に成功した場合,<br>RCIC を手動起動し, 潮位が安定した後, 海水系ポンプの復旧操作<br>(再起動)に成功すれば RSW に期待できるものとする。                                          |
|                          | CW ポンプ,<br>RSW ポンプ停止<br>失敗 <mark>対応ケース</mark> |                                    | CW ポンプ停止操作に失敗した場合, RSW 系取水槽水位が回復し<br>ないことを想定し, RSW ポンプ停止操作についても必ず失敗するも<br>のとする。                                                                 |

表1 津波水位と引き波による CDF の評価ケース

添付資料 3.2.2.d-1-4

:評価対象

| 水位                            | 波源モデル            | 発生頻度                 |
|-------------------------------|------------------|----------------------|
| TMSL 27mg TMSL 41m            | 海域活断層<br>(近地津波)  | $2.2 \times 10^{-4}$ |
| 1.M.S.L2./III/ -1.M.S.L4.1III | 日本海東縁部<br>(遠地津波) | $2.1 \times 10^{-4}$ |
|                               | 海域活断層<br>(近地津波)  | $4.5 \times 10^{-5}$ |
| 1.M.S.L4.1m 以下                | 日本海東縁部<br>(遠地津波) | $3.8 \times 10^{-5}$ |

表2 津波水位に対する発生頻度

単位(/年)

表3 引き波による炉心損傷頻度(7号炉)

| ケース          | 近地津波                 | 遠地津波                 | 引き波による              | 引き波/ |
|--------------|----------------------|----------------------|---------------------|------|
|              | CDF                  | CDF                  | CDF                 | 押し波  |
| ケース1(繰り返しなし) | $3.2 \times 10^{-5}$ | $1.6 \times 10^{-6}$ | $3.4 	imes 10^{-5}$ | 16%  |
| ケース2(繰り返しあり) | $6.5 \times 10^{-5}$ | $2.5 \times 10^{-6}$ | $6.7 	imes 10^{-5}$ | 32%  |

単位(/炉年)

| L 7   | TQ                   | UV                   | TW                   | TBD                 | LO                   | СА                   | 人司                   |  |
|-------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|--|
| クース   | 押し波                  | 引き波                  | 引き波                  | 押し波                 | 押し波                  | 引き波                  | 合計                   |  |
| ケース1  | $1.9 \times 10^{-4}$ | $3.2 \times 10^{-6}$ | $3.0 \times 10^{-5}$ | $2.5 	imes 10^{-5}$ | $1.9 	imes 10^{-24}$ | $1.0 	imes 10^{-24}$ | $2.5 \times 10^{-4}$ |  |
| (繰り返し |                      |                      |                      |                     |                      |                      |                      |  |
| なし)   | 77%                  | 1%                   | 12%                  | 10%                 | 0%                   | 0%                   | 100%                 |  |
| ケース2  | $1.9 \times 10^{-4}$ | $3.2 \times 10^{-6}$ | $6.4 \times 10^{-5}$ | $2.5 	imes 10^{-5}$ | $1.9 	imes 10^{-24}$ | $1.0 	imes 10^{-24}$ | $2.8 \times 10^{-4}$ |  |
| (繰り返し |                      |                      |                      |                     |                      |                      |                      |  |
| あり)   | 67%                  | 1%                   | 23%                  | 9%                  | 0%                   | 0%                   | 100%                 |  |

表4 引き波と押し波による炉心損傷クラス毎の炉心損傷頻度(7 号炉)

単位(/炉年)



図2 取水路概要図(非常用系断面図)



図3 入力津波の時刻歴波形(近地津波)



図4 入力津波の時刻歴波形(遠地津波)

| 津波<br>T.M.S.L2.7m<br>~ -4.1m | CWポンプ<br>停止操作 | S/R弁開放 | S/R弁再閉鎖 | RCIC | RHR-A系 | RHR-B系 | RHR-C系 | No. | 最終状態  |
|------------------------------|---------------|--------|---------|------|--------|--------|--------|-----|-------|
|                              |               | -      |         |      | -      |        | -      | 1   | 過渡事象へ |
|                              |               |        |         |      |        |        |        | 2   | -     |
| -                            |               |        |         |      |        |        |        | 3   | -     |
|                              |               |        |         |      |        |        |        | 4   | -     |
|                              |               |        |         |      |        | -      |        | 5   | TW    |
|                              |               |        |         |      |        |        |        | 6   | TQUV  |
|                              |               |        | -       |      |        |        |        | 7   | TQUV  |
|                              |               |        |         |      |        |        |        | 8   | LOCA  |
|                              |               |        |         |      |        |        |        |     |       |

図5 津波水位 T.M.S.L. -2.7m~T.M.S.L. -4.1m のイベントツリー(7 号炉)

| 津波<br>T.M.S.L4.1m<br>以下 | CWポンプ<br>停止操作 | RSWポンプ<br>停止操作 | S/R弁開放 | S/R弁再閉鎖 | RCIC | RSWポンプ<br>復旧操作 | RHR-A系 | RHR-B系 | RHR-C系 | No. | 最終状態 |
|-------------------------|---------------|----------------|--------|---------|------|----------------|--------|--------|--------|-----|------|
|                         |               |                |        |         |      |                | •      |        |        | 1   | -    |
|                         |               |                |        |         |      |                |        |        |        | 2   | -    |
|                         |               |                |        |         |      |                |        |        |        | 3   | -    |
|                         |               |                |        |         |      |                |        |        |        | 4   | TW   |
|                         |               |                |        |         |      |                |        |        |        | 5   |      |
|                         |               |                |        |         |      |                |        |        |        | 6   |      |
|                         |               |                |        |         |      |                |        |        |        | 8   |      |
|                         |               |                |        |         |      |                |        |        |        | 9   | -    |
|                         |               |                |        |         |      |                |        |        |        | 10  | -    |
|                         |               |                |        |         |      |                |        |        |        | 11  | -    |
|                         |               |                |        |         |      |                |        |        |        | 12  | TW   |
|                         |               |                |        |         |      |                |        |        |        | 13  | TW   |
|                         |               |                |        |         |      |                |        |        |        | 14  | TQUV |
|                         |               |                |        |         |      |                |        |        |        | 15  | TQUV |
|                         |               |                |        |         |      |                |        |        |        | 16  | LOCA |
|                         |               |                |        |         |      |                |        |        |        | 1/  | -    |
|                         |               |                |        |         |      |                |        |        |        | 10  | -    |
|                         |               |                |        |         |      |                |        |        |        | 20  | _    |
|                         |               |                |        |         |      |                |        |        |        | 20  | тw   |
|                         |               |                |        |         |      |                |        |        |        | 22  | TW   |
|                         |               |                |        |         |      | •              |        |        |        | 23  | TQUV |
|                         |               |                |        |         |      |                |        |        |        | 24  | TQUV |
|                         |               |                |        |         |      |                |        |        |        | 25  | LOCA |
|                         |               |                |        |         |      |                |        |        |        |     |      |

図6 津波水位 T.M.S.L. -4.1m 以下のイベントツリー(7 号炉)



図 7 炉心損傷クラス毎の炉心損傷頻度寄与割合 (押し波+引き波(ケース1:繰り返しなし))(7 号炉)



(押し波+引き波(ケース2:繰り返しあり))(7 号炉)

添付資料 3.2.2.d-1-10

- 4. レベル 1.5PRA
- 4.1 内部事象 PRA
- 4.1.1 出力運転時 PRA

出力運転時 PRA は、(社)日本原子力学会が発行した「原子力発電所の出力 運転状態を対象とした確率論的安全評価に関する実施基準(レベル 2PSA 編):2008」を参考に評価を実施し、各実施項目については「PRA の説明に おける参照事項」(原子力規制庁 平成 25 年 9 月)の記載事項への適合性を確 認した。評価フローを図 4.1.1-1 に示す。

- 4.1.1.a プラントの構成・特性
  - ① 対象プラントに関する説明
    - (1)機器・系統の配置及び形状・設備容量 主要な機器・系統の配置及び形状・設備容量は3.レベル 1PRA に用いた情報と同じである。また、レベル 1.5PRA では格納容器損傷頻度等を評価することから、格納容器の特性を考慮している。この格納容器の仕様を第4.1.1.a-1表に示す。また、格納容器及び格納容器下部ドライウェル(ペデスタル部)の構造の詳細を第4.1.1.a-1図に示す。また、格納容器の限界 圧力及び限界温度の設定に際しては、福島第一原子力発電所事故において1~3号機の格納容器が閉じ込め機能の喪失に至った事実を考慮し、そ
    - (2) 事故の緩和操作

プラント運転開始時より備えている手段・設備による事故の緩和操作 として以下を考慮する。

の知見の反映について検討した。検討結果を添付資料 4.1.1.a-1 に示す。

- ・原子炉手動減圧及び低圧注水操作
- ・PCV スプレイ手動起動操作
- ·外部電源復旧操作
- ・高圧電源融通操作
- (3) 燃料及びデブリの移動経路

事故時の燃料及びデブリなどの熱源の移動は、IVR、水素発生、溶融炉 心・コンクリート相互作用(MCCI)及び格納容器内の熱水力挙動、FP移行 挙動に影響する。燃料及びデブリの移動経路を第4.1.1.a-2表に示す。

4.1.1.b プラント損傷状態の分類及び発生頻度 内部事象レベル 1PRA(出力運転時)で得られた、炉心損傷に至るすべての事 故シーケンスについて、事象の進展及び緩和操作の類似性からプラント損傷 状態(PDS)を定義し、PDSの分類及び発生頻度を評価する。

- PDS の一覧
  - (1) PDS の考え方、定義

PDS の分類は、炉心損傷に至る事故シーケンスグループを、熱水力挙動の類似性及び事故後の緩和設備・緩和操作の類似性から、以下の 4 項目に着目して実施する。

a. 格納容器破損時期

炉心損傷後に格納容器破損が生じる場合と、格納容器破損後に炉心 損傷が生じる場合とを分類する。この前後関係によって、事故の防止手 段及び緩和手段の種類が大きく異なる。

b. 原子炉圧力容器圧力

原子炉圧力容器破損時の原子炉圧力容器内雰囲気が、高圧状態か低 圧状態かで分類する。この圧力状態の違いにより、原子炉圧力容器破損 時の格納容器雰囲気の圧力上昇の程度、デブリの飛散の程度、デブリと 格納容器バウンダリとの直接接触の可能性など、原子炉圧力容器破損 後の事故進展が異なる。

c. 炉心損傷時期

炉心損傷時期が早期か後期かで分類する。この時期の違いにより、原 子炉圧力容器の破損時期、格納容器雰囲気の圧力及び温度上昇の時期 が大きく変化し、格納容器破損時期が影響を受ける。このため、事故の 緩和操作の時間余裕が大きく異なる。

なお、早期・後期の分類は、事象発生後の原子炉への注水の有無を考慮したものであり、結果として後期には長期 TB と TW を分類している。事象発生後に注水に成功する長期 TB 及び TW、事象発生が即ち格納容器の機能喪失(破損)となる ISLOCA、事象発生後速やかに格納容器 先行破損に至る TC を除き、他のシナリオは全て注水に失敗するシナ リオであり、概ね1時間前後で炉心損傷に至る。

長期 TB では事象発生後、一定時間の RCIC の運転に期待しており、 電源が直流(バッテリー)に限られていることを考慮すると、RCIC の運 転継続時間は 8 時間程度と考えられる。これを考慮し、炉心損傷時期 の早期・後期の1つの目安として、RCIC の運転継続時間を参考に炉心 損傷時期後期を8時間後と整理した。また、TW は注水に期待し続ける ことができるシナリオであり、格納容器先行破損までに十数時間程度 の時間余裕がある。 d. 電源確保

電源が確保されている場合と、電源が喪失している場合で分類する。 電源が喪失している場合には、電源を復旧することで防止手段及び緩 和手段が達成される可能性がある。

第4.1.1.b-1 表に炉心損傷に至る事故シーケンスの概要、第4.1.1.b-1 図 に上記分類を踏まえた PDS 分類の考え方を示す。

- (2) レベル 1PRA の事故シーケンスグループの PDS への分類結果 炉心損傷に至る事故シーケンスグループを、上記(1)の考え方に基づい て PDS として分類した結果を第 4.1.1.b-2 表に示す。BWR プラントでは 炉心損傷に至る事故シーケンスグループを、上記(1)の考え方に基づいて 分類して PDS としているため、炉心損傷に至る事故シーケンスグループ と PDS が一致することとなる。
- PDS ごとの発生頻度

PDS ごとに炉心損傷頻度(CDF)を整理した結果を第4.1.1.b-3 表に示す。 崩壊熱除去機能喪失の PDS が支配的となっているが、これは、全 CDF に 占める崩壊熱除去機能喪失(TW)の CDF の割合が大きいこと及び、TW に は有効な緩和策が無く、TW の CDF がそのまま格納容器破損頻度(CFF)に 反映されるためである。

| ・崩壊熱除去機能喪失    | :TW (寄与 : 約 99.9%)  |
|---------------|---------------------|
| ・LOCA 時注水機能喪失 | :LOCA (寄与 : 約 0.1%) |
| ・上記以外の各 PDS   | (寄与 : 0.1%未満)       |

- 4.1.1.c 格納容器破損モード
  - ① 格納容器破損モードの一覧と各破損モードに関する説明

炉心損傷から格納容器破損に至るまでの事故シーケンスは、次章 4.1.1.d でイベントツリーによって分析するが、このイベントツリーの最終状態と なる格納容器破損モードは、炉心損傷後の格納容器内の物理化学的挙動を 分析することで抽出する。本章では格納容器破損モードを網羅的に抽出し、 本 PRA でイベントツリーの最終状態として設定すべき格納容器破損モード を選定する。

BWR のシビアアクシデントで考えられる事故進展を第4.1.1.c-1 図に示 す。第4.1.1.c-1 図では、炉心損傷後の格納容器内の物理化学的挙動を網羅 的に考慮し、事故進展に応じて想定される、格納容器の健全性に影響を与え る負荷を、発生時期に沿って示している。

格納容器の健全性に影響を与える負荷の抽出結果と、本 PRA で想定する 格納容器破損モードを第4.1.1.c-1表に示す。なお、第4.1.1.c-1表には物理 化学現象に起因する負荷の他に、格納容器バイパス事象(ISLOCA 及び格納 容器隔離失敗事象)も含めて示した。また、格納容器の健全性に影響を与え る負荷としては抽出したものの、本 PRA で想定する格納容器破損モードの 設定からは除外した負荷については、その除外理由を示した。

- 4.1.1.d 事故シーケンス
  - ① 格納容器イベントツリー構築の考え方及びプロセス

一般的なシビアアクシデントでは、事故進展の各フェーズにおいて格納 容器の健全性を脅かす物理化学現象が異なるため、事故進展フェーズ毎に、 重要な物理化学現象、緩和設備の作動状況及び運転員操作の因果関係を分 析して、これらの組合せから事故の進展を樹形図で分類する格納容器イベ ントツリーを構築する。

本評価では格納容器イベントツリー構築にあたって、以下に示す 3 つの 事故進展フェーズを定義している。

T1: 炉心損傷から原子炉圧力容器破損直前

T2:原子炉圧力容器破損直後

T3:原子炉圧力容器破損後長期間経過後

- ② 格納容器イベントツリー
  - (1)格納容器イベントツリー構築に当たって検討した重要な物理化学現象、 対処設備の作動・不作動、運転員操作、ヘディング間の従属性
    - a. 重要な物理化学現象、対処設備の作動・不作動

格納容器イベントツリーの構築に際し、炉心損傷から格納容器破損 に至るまでの事故進展の各フェーズで発生する重要な物理化学現象に ついて、各 PDS を考慮して抽出し、その発生条件及び発生後の事象進 展を検討した。

第4.1.1.d-1 表に示す検討結果に基づき、PDS ごとに事故進展フェーズを考慮して緩和設備の作動状態及び物理化学現象の発生状況を分析し、格納容器イベントツリーのヘディングとその定義を第4.1.1.d-2 表のとおり選定した。

b. 運転員操作

4.1.1.a ① (2)に記載の操作を考慮している。

c. ヘディング間の従属性

第4.1.1.d-2 表で定義したヘディングの状態が発生する確率は、他の 複数のヘディングの状態に従属して決定される場合があるため、ヘデ ィングの順序及び分岐確率の設定に際してヘディング間の従属性を整 理した結果を第4.1.1.d-3 表に示す。

(2) 格納容器イベントツリー

選定したヘディングについてヘディング間の従属性を考慮して順序付けして、格納容器イベントツリーを作成した。作成した格納容器イベント ツリーを添付資料 4.1.1.d-1 に示す。

## 4.1.1.e 事故進展解析

格納容器破損頻度を評価するにあたっての事故進展解析の目的は、以下の2 点である。

- ・ 緩和系の復旧操作等のための時間余裕の評価
- ・ 物理化学現象の発生の有無と格納容器への負荷

このうち、後者の物理化学現象の発生と格納容器への負荷については、現象 の不確定性などを考慮した分岐確率を評価しているため、ここでは緩和系の 復旧操作等のための時間余裕を評価することを目的とする。したがって、緩和 系が機能しない状態で物理化学現象が発生せずに、格納容器が過圧または過 温破損に至る事故シーケンスを評価する。

① 解析対象とした事故シーケンスと対象事故シーケンスの説明

プラントの熱水力的挙動及び炉心損傷、原子炉圧力容器破損などの事象 の発生時期、事象の緩和手段に係る運転員操作の余裕時間、シビアアクシデ ント現象による格納容器負荷を解析すると共に、格納容器イベントツリー のヘディングの分岐確率の計算に必要なデータを得る事を目的として、各 PDS を代表する事故進展解析を実施する。

- (1) 解析対象事故シーケンスの選定
  - a. 解析対象 PDS の選定

解析対象 PDS は、事故進展の類似性の観点及び炉心損傷に至る際に 期待可能な緩和系の類似性を考慮して選定する。

事故進展の類似性の観点として、格納容器破損時期や炉心損傷時の 原子炉圧力容器の圧力等によってプラント損傷状態を分類した結果を 第4.1.1.b-1 図に示す。

第4.1.1.b-1 図の分類結果に対し、期待可能な緩和系の類似性の観点から、一部の解析対象事故シーケンスを整理した。整理した結果を第4.1.1.e-1 図に示す。

TQUX、TBU 及び TBD は、いずれも高圧注水及び減圧ができない まま炉心損傷に至るシーケンスであり、事故進展解析上の相違は見ら れないと考えられることから、解析については TQUX で代表すること とした。

TQUV 及び TBP は、いずれも原子炉は減圧されるものの、高圧及び 低圧注水ができないまま炉心損傷に至るシーケンスであり、事故進展 解析上の相違は見られないと考えられることから、解析については TQUV で代表することとした。

TQUV と LOCA はそれぞれ解析対象とした。これは、炉心損傷後の 電源復旧等を受けて原子炉注水に成功した場合を考えると、LOCA で は冷却水の一部が流出する可能性があること等、影響緩和手段に対す る両者の応答の違いを考慮したためである。

また、AE、S1E、S2EはLOCAとして1つのプラント損傷状態とした。これは、事故進展解析の結果(第 4.1.1.e-4 表参照)、AEと TQUVの RPV 破損までの時間の差が であるため、冷却材の流出口の大きさは、炉心損傷後の事象の進展速度に大きな影響を及ぼすものではないと考えたためである。

格納容器先行破損(レベル 1PRA 評価の範囲)である TC、TW、 ISLOCA については、炉心損傷の前に格納容器が破損しているモード であり、レベル 1.5PRA における緩和手段が存在しないことから、イベ ントツリーの作成対象から除外した。これは、TC、TW 及び ISLOCA については、レベル 1PRA 側で格納容器破損防止対策を講じなければ ならないということを意味している。

以上の検討の結果、以下の事故シーケンスグループを解析対象とし て選定した。

- TQUV
- TQUX
- · LOCA
- ・長期 TB

b. 解析対象事故シーケンスの選定

解析対象事故シーケンスの選定にあたっては、操作余裕時間が厳し くなる観点、発生頻度が大きくなる観点等を考慮する。

LOCA 以外の PDS については、選定する過渡事象の違いによる操作 余裕時間に対する影響はほとんど無いと考えられるため、事故シーケ ンスの発生頻度の観点から、CDF に占める割合が最も大きい起因事象 として隔離事象(MSIV 閉鎖を伴う過渡事象)を選定する。 また、LOCA については、操作余裕時間の観点から事故進展が早い 大 LOCA を選定し、破断想定箇所としては従来設置許可申請の安全解 析で想定している HPCF 配管破断とする。

以上から、解析対象として選定した事故シーケンスを第4.1.1.e-1表 に示す。

(2) 事故進展解析の解析条件

プラント構成・特徴の調査より、全ての事故シーケンスに対し共通する プラント構成・特徴に依存した基本解析条件を第4.1.1.e-2表に示す。 なお、事故進展解析には、事故シーケンスに含まれる物理化学現象、機 器・系統の動作を模擬することができる MAAP コードを使用した。

② 事故シーケンスの解析結果

選定した各事故シーケンスについて、プラントの熱水力挙動の解析を実施した。解析結果を第4.1.1.e-2図に、原子炉圧力容器内および格納容器内の熱水力挙動の事象進展における主要事象の判断基準を第4.1.1.e-3表に、主要事象の発生時刻を第4.1.1.e-4表に示す。

## 4.1.1.f 格納容器破損頻度

- 格納容器破損頻度の評価方法 格納容器イベントツリーの分岐に分岐確率を設定、又はフォールトツリ ーをリンキングし、プラント損傷状態ごとに格納容器破損頻度を算出した。
- ② 格納容器イベントツリーヘディングの分岐確率

ヘディングの分岐確率は、次の通りに設定した。格納容器イベントツリーの分岐確率の設定について第4.1.1.f-1表に示す。

(1) 物理化学現象に関する分岐確率の設定

本評価では、格納容器直接加熱(DCH)、炉外溶融燃料-冷却材相互作用 (炉外 FCI)、溶融炉心・コンクリート相互作用(MCCI)、炉内溶融物保持 (IVR)の4つの物理化学現象について、分岐確率を設定した。

シビアアクシデント現象のヘディングにおいて、不確実さが大きい現 象に対しては、当該現象の支配要因、不確実さ幅及び格納容器の構造健全 性への影響の因果関係を明らかにし、分解イベントツリー(DET)手法等を 用いて、分岐確率を設定した。

なお、今回の評価で設定した物理化学現象のヘディングの分岐確率は、 評価の対象とした物理化学現象が不確実さの大きな現象であることを認

## 4.1.1-7

識しつつも、現状有している知見をもとに、可能な限りの評価を実施して 設定したものであり、今回設定した値には依然大きな不確実さを含んで いるものと認識している。

この内 IVR は、その成立によって事象が緩和される側に寄与する点が 他の物理化学現象と異なるが、今回の評価ではヘディングとして設定し た。これは、格納容器イベントツリーで考慮する物理化学現象の選定にあ たっては、格納容器に与える影響が厳しいか、あるいは緩和されるかとい う観点では無く、考えられる物理化学現象の可能性を排除しないという 観点で選定したためである。

このため、この 4 つの物理化学現象のヘディングの分岐確率のそれぞ れの値の大小は、有効性評価の対象となる評価事故シーケンスを選定す る際には影響しない。

物理化学現象に関する分岐確率の具体的な設定方法については、添付 資料 4.1.1.f-1 に示す。

(2) 事故の緩和手段に関する分岐確率の設定

レベル 1PRA のフォールトツリーを基に、フォールトツリーを作成することにより、緩和手段の非信頼度(分岐確率)をモデル化した。

モデル化にあたっては、緩和手段に対する運転員の操作性及び事故時 の条件を考慮するとともに、4.1.1.eの事故進展解析の結果から機器・系 統の回復操作を含めた運転員の時間余裕を分析した。事故進展解析の結 果から、緩和手段実施までの時間余裕を設定した結果を第4.1.1.f-2表に 示す。なお、時間余裕の設定の考え方を添付資料4.1.1.f-2に示す。

また、格納容器隔離の分岐確率は過去の文献をもとに設定した。詳細を 添付資料 4.1.1.f-3 に示す。

③ 格納容器破損頻度の評価結果

定量化の結果、全格納容器破損頻度(CFF)は 8.7×10<sup>-6</sup> / 炉年、条件付格納 容器破損確率(CCFP)は 1.0 となった。

PDS 別の CDF 及び CFF を第 4.1.1.f-3 表及び第 4.1.1.f-1 図に、PDS 別 の CDF の円グラフを第 4.1.1.f-2 図に、PDS 別の CFF の円グラフを第 4.1.1.f-3 図に示す。割合としては、全 CFF の約 99.9%が格納容器除熱機能 喪失から過圧破損に至るシーケンスとなった。本評価では殆どの AM 策を 考慮していないことから、電源の復旧により ECCS が使用可能となる PDS 及び原子炉減圧の再実施により低圧 ECCS が使用可能となる PDS(TBU、 TBP、長期 TB、TQUX)では格納容器破損を回避できる場合がある(CCFP が 0.58~0.82)が、上記以外 PDS(TQUV、LOCA、TBD、TW、TC、ISLOCA) の CCFP は 1 となり、上述の通り PDS 別の CFF で TW シーケンスが大部 分を占めるため、全体の CCFP は 1.0 となっている。

また、格納容器破損モード別の CFF を第 4.1.1.f-4 表に、格納容器破損モ ード別の CFF の円グラフを第 4.1.1.f-4 図に示す。全 CFF のうち、「水蒸気 (崩壊熱)による過圧破損」の寄与が約 99.9%、「過温破損」の寄与が約 0.1% を占め、以下、「ISLOCA」、「格納容器隔離失敗」の寄与が続くが、「水蒸気 (崩壊熱)による過圧」および「過温破損」以外の格納容器破損モードの寄与 は 0.1%未満であった。

④ 重要度評価について

レベル 1.5PRA として重要度評価は実施していないが、レベル 1PRA で 算出された炉心損傷頻度を PDS として整理して格納容器破損頻度評価の入 力としており、特に重大事故等防止対策等を考慮しない(CCFP が大きい)条 件下では、レベル 1PRA の結果に強く依存する。レベル 1PRA にて実施し た表 3.1.1.h-5 に示す FV 重要度評価では、補機冷却系、残留熱除去系の重 要度が高くなっていることから、レベル 1.5PRA においてもこれらの機能 の重要度が高くなっているものと考えられる。

以下に示す通り、CFF に占める割合が大きい格納容器破損モードは補機 冷却系又は残留熱除去系の機能喪失に関連したものとなっていることが分 かる。

- ・「水蒸気(崩壊熱)による過圧破損」は CFF の約 99.9%が「崩壊熱除去機能 喪失(TW)」のシーケンスである。これは、格納容器先行破損シーケンス であるため、PDS 別 CDF で約 99.9%を占める TW の寄与が大きくなっ ているためである。この格納容器破損モードに対しては、代替原子炉補機 冷却系を用いた残留熱除去系による除熱または格納容器圧力逃がし装置 又は耐圧強化ベント系による除熱により、格納容器破損頻度を低減する ことができると考える。
- 4.1.1.g 不確実さ解析及び感度解析
  - 不確実さ解析

格納容器破損モード別の格納容器破損頻度の不確実さ解析結果を第 4.1.1.g-1 表及び第 4.1.1.g-1 図に示す。

不確実さ解析の結果、格納容器破損モード別の点推定値は不確実さ分布 内にあり、格納容器破損モード別の点推定値と不確実さ解析結果の傾向に 大きな差はなく、「水蒸気(崩壊熱)による過圧破損」が支配的であることが 確認できた。したがって、格納容器破損モード別の格納容器破損頻度の特徴について、不確実さが有意に影響することは考えにくい。

② 感度解析

|            | 仕様                                 |                        |  |
|------------|------------------------------------|------------------------|--|
|            | 圧力抑制型<br>(鉄筋コンクリート製<br>格納容器(RCCV)) |                        |  |
|            | ドライウェル空間部(ベント管とも)                  | 約 7,400 m <sup>3</sup> |  |
| 容積         | サプレッションチェンバ空間部                     | 約 6,000 m <sup>3</sup> |  |
|            | サプレッションチェンバ保有水量(最小)                | 約 3,600 m <sup>3</sup> |  |
| 具有体田広力     | ドライウェル                             | 210 l-D-[]             |  |
| 取同使用圧力     | サプレッションチェンバ                        | 510 Kralgagej          |  |
| 具古法田泪在     | ドライウェル                             | 171 °C                 |  |
| <b>取</b> 尚 | サプレッションチェンバ                        | 104 °C                 |  |
|            | 620 kPa[gage]                      |                        |  |
|            | 200 °C                             |                        |  |

第4.1.1.a-1表 格納容器の主要仕様

第 4.1.1.a-2 表 燃料及びデブリの移動経路

|                   | 放出先                          | 放出先からの移動               |
|-------------------|------------------------------|------------------------|
|                   | 【RPV 破損前】<br>RPV 下鏡          | 移動なし                   |
| 重力による移動           | 【RPV 破損後】<br>原子炉下部<br>ドライウェル | 移動なし                   |
| 1 次系圧力による<br>分散放出 | 【RPV 破損後】<br>原子炉下部<br>ドライウェル | 連通孔を通じて<br>上部ドライウェルに移動 |

第 4.1.1.b-1 表 炉心損傷に至る事故シーケンスの概要

| 事故シーケンス                                                | 概要                                                                                                                                                     |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| TQUV                                                   | 高圧及び低圧の炉心への注水系が故障している事故シーケンスである。原<br>子炉の減圧に成功し、RPVの雰囲気は低圧状態で事故が進展する。炉心<br>損傷は事故後早期に生じる。                                                                |
| TQUX                                                   | 高圧の炉心への注水系が故障していて、さらに原子炉の減圧に失敗している事故シーケンスである。RPVの雰囲気は高圧状態で事故が進展する。<br>炉心損傷は事故後早期に生じる。                                                                  |
| 長期 TB                                                  | 全交流電源が喪失し、RCIC などの作動後、直流電源の枯渇によって、<br>RCIC などが機能喪失し炉心損傷に至る事故シーケンスである。RPV の<br>雰囲気は高圧状態で事故が進展する。直流電源が枯渇するまでには RCIC<br>などによる炉心への注入が可能なため、炉心損傷は事故後後期に生じる。 |
| TBU                                                    | 全交流電源が喪失し、RCICの故障などによって、炉心への注水ができない事故シーケンスである。RPVの雰囲気は高圧状態で事故が進展する。<br>炉心損傷は事故後早期に生じる                                                                  |
| TBP                                                    | 全交流電源が喪失し、S/R 弁が開固着するため、RPV 内が減圧され、RCIC<br>が使用できないなど、原子炉注水ができない事故シーケンスである。RPV<br>の雰囲気は低圧状態で事故が進展する。炉心損傷は事故後早期に生じる。                                     |
| TBD                                                    | 外部電源の喪失後、直流電源の喪失によって、原子炉注水ができない事故<br>シーケンスである。RPV の雰囲気は高圧状態で事故が進展する。炉心損<br>傷は事故後早期に生じる。                                                                |
| LOCA<br>• AE(大 LOCA)<br>• S1E(中 LOCA)<br>• S2E(小 LOCA) | 原子炉冷却材喪失事故(LOCA)後、原子炉注水機能が喪失する事故シーケンスである。大LOCAにおいては事象発生後、RPVの雰囲気は低圧状態で事故が進展する。中小LOCAにおいてはADSにより低圧状態となる。<br>炉心損傷は事故後早期に生じる                              |
| TW                                                     | 事故後、炉心への注水には成功するものの、崩壊熱の除去に失敗する事故<br>シーケンスである。PCV内に蓄積する水蒸気によって、炉心損傷前にPCV<br>が過圧破損する。その後、原子炉注水機能が喪失して炉心損傷に至る。炉<br>心損傷は事故後後期に生じる。                        |
| тс                                                     | 事故後、原子炉の未臨界確保に失敗する事故シーケンスである。TW シー<br>ケンスと同様に、PCV内に蓄積する水蒸気によって、炉心損傷前にPCV<br>が過圧破損する。その後、RPVの雰囲気は高圧状態で事故が進展する。炉<br>心損傷は事故後早期に生じる。                       |
| ISLOCA                                                 | RHR と ECCS を隔離する多重の弁の故障等に伴う LOCA により、冷却<br>水の原子炉建屋への流出が継続し、炉心損傷に至る事故シーケンスであ<br>る。炉心損傷は事故後早期に生じる。                                                       |

| 第 4.1.1.b-2 表 プラント損傷状態の分類結果                         |          |               |        |                      |
|-----------------------------------------------------|----------|---------------|--------|----------------------|
| PDS                                                 | PCV 破損時期 | <b>RPV</b> 圧力 | 炉心損傷時期 | 電源確保                 |
| TQUV                                                | 炉心損傷後    | 低圧            | 早期     | 電源確保                 |
| TQUX                                                | 炉心損傷後    | 高圧            | 早期     | 電源確保                 |
| 長期 TB                                               | 炉心損傷後    | 高圧            | 後期     | DC 電源確保              |
| TBU                                                 | 炉心損傷後    | 高圧            | 早期     | DC 電源確保<br>AC 電源復旧必要 |
| TBP                                                 | 炉心損傷後    | 低圧            | 早期     | 電源復旧必要               |
| TBD                                                 | 炉心損傷後    | 高圧            | 早期     | DC 電源復旧必要            |
| LOCA<br>・AE(大 LOCA)<br>・S1E(中 LOCA)<br>・S2E(小 LOCA) | 炉心損傷後    | 低圧            | 早期     | 電源確保                 |
| TW                                                  | 炉心損傷前    | _             | 後期     | 電源確保                 |
| TC                                                  | 炉心損傷前    | _             | 早期     | 電源確保                 |
| ISLOCA                                              | 炉心損傷前    | _             | 早期     | 電源確保                 |

第 4.1.1.b-2 表 プラント損傷状態の分類結果

-: PDS の分類に際して考慮不要であることを示す。

| プラント損傷状態 | 炉心損傷頻度(/炉年)           | 割合(%) |
|----------|-----------------------|-------|
| TQUX     | 4.2×10 <sup>-9</sup>  | < 0.1 |
| TQUV     | $9.6 \times 10^{-10}$ | < 0.1 |
| 長期 TB    | $4.8 \times 10^{-10}$ | < 0.1 |
| TBU      | $6.0 \times 10^{-10}$ | < 0.1 |
| TBP      | $1.2 \times 10^{-10}$ | < 0.1 |
| TBD      | 8.1×10 <sup>-11</sup> | < 0.1 |
| LOCA     | $4.5 \times 10^{-9}$  | 0.1   |
| TW       | $8.7 \times 10^{-6}$  | 99.9  |
| TC       | $5.1 \times 10^{-12}$ | < 0.1 |
| ISLOCA   | $9.5 	imes 10^{-11}$  | < 0.1 |
| 合計       | 8.7×10 <sup>-6</sup>  | 100   |

第4.1.1.b-3表 プラント損傷状態毎の炉心損傷頻度発生頻度

| 抽出した負荷                        | <br>負荷の概要                                                                                                   | 格納容器破損モード<br>(除外事象の場合は除外理由を示す。)                                                                                                                                          |
|-------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ISLOCA                        | 格納容器バイパス事象であり、発生と同時に格納容器<br>の閉じ込め機能を喪失する。                                                                   | ISLOCA発生後、冷却材の流出が継続して炉心損傷に至り、格納容器をバイパスして放射性物質等が原子炉建屋内に放出されるモードとして分類。                                                                                                     |
| 格納容器隔離失敗                      | 格納容器バイパス事象であり、炉心損傷時点で格納容器の隔離に失敗している状態。                                                                      | 炉心損傷時点で格納容器の隔離に失敗しており、隔離失敗箇所から放<br>射性物質等が原子炉建屋内に放出されるモードとして分類。                                                                                                           |
| 未臨界確保失敗時の<br>水蒸気による過圧         | 原子炉の未臨界確保に失敗した場合に、炉心から生じ<br>続ける多量の蒸気で格納容器圧力が早期に上昇する。                                                        | 左記の事象により、格納容器が過圧破損に至るモードとして分類。                                                                                                                                           |
| 崩壊熱除去に伴って<br>発生する水蒸気による<br>過圧 | 炉心又は格納容器に注入した水が崩壊熱によって蒸発<br>し、発生する蒸気によって格納容器圧力が緩やかに上<br>昇する。                                                | 左記の事象により格納容器が過圧破損に至るモードとして分類。<br>なお、圧力容器破損後の格納容器圧力上昇の要因には、コア・コンク<br>リート反応継続による非凝縮性ガスの蓄積も含まれる。                                                                            |
| 貫通部過温                         | 圧力容器破損後、溶融物が冷却されない場合、溶融物<br>から発生する崩壊熱の輻射や対流により、格納容器内<br>部が加熱される。                                            | 左記の事象により、格納容器貫通部等が熱的に損傷し、格納容器が過<br>温破損に至るモードとして分類。                                                                                                                       |
| 圧力容器内での<br>水蒸気爆発<br>(炉内 FCI)  | 炉心溶融後、溶融物が圧力容器内下部の冷却水中に落<br>下した場合、水蒸気爆発が発生する可能性がある。そ<br>の際のエネルギーによって、圧力容器の蓋が持ち上げ<br>られると、格納容器に衝突する場合が考えられる。 | 【除外事象】<br>圧力容器の蓋の衝突によって格納容器が破損するモードが考えられる<br>が、圧力容器内での水蒸気爆発は、過去の知見から極めて生じにくい<br>と事象と考えられることから、本 PRA で想定する格納容器破損モー<br>ドから除外した。圧力容器内での水蒸気爆発についての詳細は添付資<br>料 4.1.1.c-1 に示す。 |

第4.1.1.c-1 表 格納容器の健全性に影響を与える負荷と本 PRA で設定した格納容器破損モード(1/2)

格納容器破損モード 抽出した負荷 負荷の概要 (除外事象の場合は除外理由を示す。) 高圧状態で圧力容器が破損した場合に、溶融物が格納 格納容器雰囲気 容器雰囲気中を飛散する過程で微粒子化し、雰囲気ガ 左記の急激な圧力上昇により、格納容器が破損に至るモードとして分類。 スとの直接的な熱伝達等によって急激に加熱され、格 直接加熱(DCH) 納容器内圧力が急上昇する場合が考えられる。 圧力容器外での 圧力容器破損後、溶融物が格納容器下部のペデスタル 左記の水蒸気爆発に伴うペデスタル部の損傷や水蒸気による圧力スパイ 部の水中に落下した場合、水蒸気爆発が発生する可能 水蒸気爆発 クによって格納容器損傷に至るモードとして分類。 (炉外 FCI) 性がある。 圧力容器破損後、溶融物が冷却されない場合、下部ドラ|左記の下部ドライウェル側壁の浸食による圧力容器支持機能の喪失又は コア・コンクリート イウェル側壁又は格納容器床面のコンクリートを浸食格納容器床面が浸食により貫通し、格納容器の破損に至るモードとして 反応継続(MCCI) する。 分類。 【除外事象】 ドライウェル壁の一部が浸食され、溶融貫通して破損するモードが考え 圧力容器破損後、溶融物が格納容器下部のペデスタル られるが、本破損モードは Mark-I 型格納容器特有であり、柏崎刈羽原 部へ落下、ペデスタル部の外側のドライウェルの床に 溶融物直接接触 子力発電所 6.7 号機では、格納容器の構造上、ペデスタル部に落下した 流出、高温のデブリがドライウェル壁に接触し、壁面を (シェルアタック) 溶融物が直接ドライウェル壁(格納容器バウンダリ)と接触することは無 浸食する場合が考えられる。 い。このため、本破損モードは本 PRA で想定する格納容器破損モードか ら除外した。除外理由の詳細は添付資料 4.1.1.c-2 に示す。 【除外事象】 燃料棒が露出し、高温となった場合にジルコニウムと 柏崎刈羽原子力発電所 6.7 号機では、運転中、格納容器内を窒素で置換 水蒸気が反応して発生する水素や、MCCI で発生する 水素燃焼 し、酸素濃度を低く管理しているため、酸素が可燃限界に至る可能性が 水素が、格納容器内に大量に蓄積され、燃焼する場合が 十分小さい。このため、本破損モードは本 PRA で想定する格納容器破損 考えられる。 モードから除外した。除外理由の詳細は添付資料 4.1.1.c-2 に示す。

第4.1.1.c-1 表 格納容器の健全性に影響を与える負荷と本 PRA で設定した格納容器破損モード(2/2)

| 格納容器の状態       |              | 破損モード                   | 概要                                                                        |  |
|---------------|--------------|-------------------------|---------------------------------------------------------------------------|--|
| 格納容器健全        |              | 格納容器健全                  | 格納容器が健全に維持されて事故が収束                                                        |  |
| 格納容器バイパス      |              | インターフェイスシス<br>テム LOCA   | インターフェイスシステム LOCA によ<br>る格納容器バイパス                                         |  |
| 格納容器隔離失敗      |              | 格納容器隔離失敗                | 炉心損傷時点で格納容器の隔離に失敗                                                         |  |
| 格納容器<br>物理的破損 | 早期格納<br>容器破損 | 原子炉未臨界確保失敗<br>時の過圧破損    | 水蒸気蓄積による準静的な加圧による格納容器先行破損(原子炉未臨界確保失敗)                                     |  |
|               |              | 格納容器雰囲気直接加<br>熱(DCH)    | 格納容器雰囲気直接加熱による格納容器<br>破損                                                  |  |
|               |              | 水蒸気爆発(FCI)              | 格納容器内での水蒸気爆発又は水蒸気ス<br>パイクで格納容器が破損                                         |  |
|               | 後期格納<br>容器破損 | 過温破損                    | 格納容器貫通部が過温により破損                                                           |  |
|               |              | 水蒸気(崩壊熱)による<br>過圧破損     | 水蒸気・非凝縮性ガス蓄積による準静的<br>な加圧で格納容器が破損                                         |  |
|               |              | コア・コンクリート反<br>応継続(MCCI) | デブリによる下部 D/W 壁のコンクリー<br>ト浸食による原子炉圧力容器支持機能喪<br>失又はベースマットの溶融貫通による格<br>納容器破損 |  |

第 4.1.1.c-2 表 格納容器破損モードの選定
| 物理化学現象   | 発生条件                                                                                     | 発生後の事故進展                   | 防止又は<br>緩和設備  | 防止又は緩和操作                               |
|----------|------------------------------------------------------------------------------------------|----------------------------|---------------|----------------------------------------|
| RPV 破損   | _                                                                                        | _                          | ECCS          | 損傷炉心注水                                 |
| PCV 過圧破損 | ・崩壊熱による水蒸気生成<br>・非凝縮性ガス生成                                                                | 水蒸気(崩壊熱)による過圧によ<br>る格納容器破損 | RHR           | 格納容器スプレイ                               |
| PCV 過温破損 | ・RPV 破損<br>・格納容器内に水なし                                                                    | 貫通部過温による格納容器破損             | ECCS          | 損傷炉心注水(RPV 破損回避)                       |
| 高圧溶融物放出  | ・RPV 高圧で破損                                                                               | 格納容器雰囲気直接加熱による<br>格納容器破損   | S/R 弁<br>ECCS | RPV 減圧(RPV 高圧破損回避)<br>損傷炉心注水(RPV 破損回避) |
| 水蒸気爆発    | ・RPV 破損時にデブリが落下<br>・デブリへの注水                                                              | 水蒸気爆発による格納容器破損             | ECCS          | 損傷炉心注水(RPV 破損回避)                       |
| コンクリート浸食 | <ul> <li>・RPV 破損</li> <li>・格納容器内に水なし(不確実さが<br/>大きいため、水ありの場合でも現<br/>象が進む可能性あり)</li> </ul> | コア・コンクリート反応継続に<br>よる格納容器破損 | ECCS          | 損傷炉心注水(RPV 破損回避)                       |

|--|

| N        | ю  | ヘディング                       | ヘディングの定義                                                                         |  |
|----------|----|-----------------------------|----------------------------------------------------------------------------------|--|
|          | 1  | PCV 隔離                      | 事故後のPCV隔離が正常に実施されなかった場合、<br>失敗とする。                                               |  |
| [前(T1)   | 2  | 原子炉減圧操作                     | RPV が高圧のプラント状態において、RPV の減圧<br>操作が正常に実施されなかった場合、失敗とする。                            |  |
| ▲RPV 破損直 | 3  | 非常用交流電源復旧                   | 電源喪失のプラント状態において、RPV 破損前まで<br>に非常用交流電源が復旧されなかった場合、失敗と<br>する。                      |  |
| 戸心損傷~    | 4  | 減圧後の損傷炉心注水                  | 原子炉減圧操作後の炉心注水が正常に実施されな<br>かった場合、失敗とする。                                           |  |
| <b>於</b> | 5  | RPV 破損                      | 溶融炉心が下部プレナム部へ落下した場合に、溶融<br>炉心の冷却ができず、RPV 内に保持できない場合、<br>失敗とする。                   |  |
| 直後(T2)   | 6  | 水蒸気爆発による破損                  | 水蒸気爆発によって格納容器が破損する場合、有と<br>する。                                                   |  |
| RPV 破損直  | 7  | 格納容器雰囲気直接加熱に<br>よる破損        | 格納容器雰囲気直接加熱によって格納容器が破損<br>する場合、有とする。                                             |  |
|          | 8  | 交流電源復旧                      | 電源喪失のプラント状態において、PCV 破損前まで<br>に非常用交流電源が復旧されなかった場合、失敗と<br>する。                      |  |
| 後長期(TE   | 9  | 下部 D/W 注水(RPV 破断口<br>からの注水) | RPV 破損後の RPV 注水により RPV 破損口からの<br>水の流出が無い場合、失敗とする。                                |  |
| tPV 破損   | 10 | 上部 D/W スプレイ                 | 上部 D/W スプレイが正常に実施されなかった場合、<br>失敗とする。                                             |  |
| R        | 11 | デブリ冷却(コア・コンクリ<br>ート反応継続)    | 下部 D/W 床面および側壁においてコア・コンクリ<br>ート反応が継続し、ベースマットが溶融貫通または<br>側壁が RPV 支持機能喪失する場合、有とする。 |  |

第4.1.1.d-2表 ヘディングの選定および定義

| ^ <u> </u>                           | ィング(影響を<br>与える側)       |        | 炉心損傷                 | ~RPV 破損                                    | 貢直前(T1)    |                 | RPV 破措 | 貢直後(T2)              |                                      | RPV 破損                 | 後長期(T3)              |                 |
|--------------------------------------|------------------------|--------|----------------------|--------------------------------------------|------------|-----------------|--------|----------------------|--------------------------------------|------------------------|----------------------|-----------------|
| ヘディング<br>(影響を受け                      | る側)                    | PCV 隔離 | RPV 減圧               | 電源復旧                                       | 損傷<br>炉心注水 | RPV 破損<br>(IVR) | 炉外 FCI | 格納容器雰囲気直<br>接加熱(DCH) | 電源復旧                                 | 下部 D/W 注水<br>(RPV 破損口) | 上部 D/W スプ<br>レイ(RHR) | デブリ冷却<br>(MCCI) |
| jj(T1)                               | PCV 隔離                 |        |                      |                                            |            |                 |        |                      |                                      |                        |                      |                 |
| [<br>]<br>[<br>]<br>[<br>]<br>[<br>] | <b>RPV</b> 減圧          |        |                      |                                            |            |                 |        |                      |                                      |                        |                      |                 |
| RPV 破                                | 電源復旧                   |        | _                    |                                            |            |                 |        |                      |                                      |                        |                      |                 |
| 損傷~                                  | 損傷<br>炉心注水             |        | 0                    | <ul><li> 電源喪失時、注水 には復旧が必要 </li></ul>       |            |                 |        |                      |                                      |                        |                      |                 |
| 炉心                                   | RPV 破損<br>(IVR)        |        | _                    | _                                          | 0          |                 |        |                      |                                      |                        |                      |                 |
| 破損<br>(T2)                           | 格納容器雰囲気直<br>接加熱(DCH)   | _      | 〇<br>減圧により<br>DCH 防止 | _                                          | _          | _               |        |                      |                                      |                        |                      |                 |
| RPV<br>直後                            | 炉外 FCI                 | _      | _                    | _                                          | 0          | —               | _      |                      |                                      |                        |                      |                 |
| (T3)                                 | 電源復旧                   |        | _                    | <br>(T1 で復旧して<br>いれば不要)                    | _          | _               |        | _                    |                                      |                        |                      |                 |
| 後長期                                  | 下部 D/W 注水<br>(RPV 破損口) |        | _                    | <ul><li>電源喪失時、注水</li><li>には復旧が必要</li></ul> | _          | _               | l      | _                    | <ul><li> 電源喪失時の注水 には復旧が必要 </li></ul> |                        |                      |                 |
| V 破損1                                | 上部 D/W スプ<br>レイ(RHR)   | _      | _                    | 電源喪失時、注水<br>には復旧が必要                        | _          | _               | _      | _                    | 電源喪失時、注水<br>には復旧が必要                  | _                      |                      |                 |
| RPV                                  | デブリ冷却<br>(MCCI)        | _      | _                    | _                                          | _          | _               | _      | _                    | _                                    | 0                      | _                    |                 |

第 4.1.1.d-3 表 ヘディング間の従属性

| PDS   | 選定した事故シーケンス                                                          | 備考                                      |
|-------|----------------------------------------------------------------------|-----------------------------------------|
| TQUV  | MSIV 閉鎖を伴う過渡事象→高圧注水系失敗<br>→ADS 手動起動による減圧→低圧注水系失敗<br>→RPV 低圧破損→PCV 破損 | TBP も同様であるため、本<br>事故シーケンスで代表さ<br>せる。    |
| TQUX  | MSIV 閉鎖を伴う過渡事象→高圧注水系失敗→原<br>子炉減圧失敗→RPV 高圧破損→PCV 破損                   | TBU、TBD も同様である<br>ため本事故シーケンスで<br>代表させる。 |
| 長期 TB | 全交流電源喪失→RCIC 作動→事故後 8h で DC<br>バッテリ枯渇・RCIC 機能喪失→RPV 高圧破損<br>→PCV 破損  | _                                       |
| LOCA  | HPCF 配管破断→高圧注水系失敗→低圧注水系<br>失敗→RPV 低圧破損→PCV 破損                        | 破断口は大 LOCA の破断<br>口で代表させる。              |

第4.1.1.e-1表 事故進展解析の対象とした代表事故シーケンス

第4.1.1.e-2表 解析コードの基本解析条件

| 項目          | 解析条件                                                        |  |  |
|-------------|-------------------------------------------------------------|--|--|
| 原子炉出力       | 3,926 MW                                                    |  |  |
| 原子炉圧力       | $7.07 \mathrm{MPa[gage]}$                                   |  |  |
| 原子炉水位       | 通常水位                                                        |  |  |
| 格納容器空間容積    | D/W : 7,350 m <sup>3</sup><br>W/W : 9,540 m <sup>3</sup>    |  |  |
| 炉心損傷        | 被覆管破損温度:1500 K<br>炉心ノード融点:2500 K                            |  |  |
| 原子炉圧力容器破損   | 下部ヘッド CRD 貫通部の破損                                            |  |  |
| 格納容器破損モード   | 過圧破損条件:2Pd (約 620 kPa[gage])<br>過温破損条件:200 °C(格納容器内壁面温度で判定) |  |  |
| DC バッテリ継続時間 | 8 時間                                                        |  |  |

| 項目       | 判断基準 |
|----------|------|
| 炉心溶融     |      |
| 炉心支持板破損※ |      |
| RPV 破損   |      |
| PCV 破損   |      |

第 4.1.1.e-3 表 事故進展判断基準

※ RPV下部プレナムリロケーションは、RPV下部プレナムへのデブリの移行を意味する。

| PDS   | 炉心溶融 | 炉心支持板破損* | <b>RPV</b> 破損 | PCV 破損 |
|-------|------|----------|---------------|--------|
| TQUV  |      |          |               |        |
| TQUX  |      |          |               |        |
| 長期 TB |      |          |               |        |
| LOCA  |      |          |               |        |

第 4.1.1.e-4 表 事故進展解析結果

| 現象・機能等            | 発生条件              | 分岐確率                 | 分岐確率の考え方                                                   |
|-------------------|-------------------|----------------------|------------------------------------------------------------|
| PCV 隔離            |                   | 5.0×10 <sup>-3</sup> | NUREG/CR-4220(1985)で評価されたアンア<br>ベイラビリティを固定分岐確率として設定す<br>る。 |
| 原子炉減圧             | RPV 高圧シー<br>ケンス   | FT により設定             | レベル 1PRA の FT をベースとして、以下をモ<br>デル化する。                       |
|                   |                   |                      |                                                            |
| 電源復旧<br>(RPV 破損前) | TBU、TBP、長<br>期 TB | FTにより設定              | レベル 1PRAの FT をベースとして、以下をモ<br>デル化する                         |
|                   | /// ID            |                      |                                                            |
| 損傷炉心注水            | ・RPV 低圧シ          | FTにより設定              | レベル 1PRAの FT をベースとして、以下をモ<br>デル化ナス                         |
| (化化化胶慎制)          | ・RPV 高圧シ          |                      | クル169る。                                                    |
|                   | ーケンスに             |                      |                                                            |
|                   | て減圧に成             |                      |                                                            |
|                   | 功する場合             |                      |                                                            |

第4.1.1.f-1 表 格納容器イベントツリー分岐確率の設定(1/3)

| 現象・機能等          | 発生条件                    | 分岐確率    | 分岐確率の考え方 |
|-----------------|-------------------------|---------|----------|
| RPV 破損<br>(IVR) | TQUV+代替注水系<br>相当の注<br>水 |         |          |
| DCHによる          | 早期 RPV 高圧破損             |         |          |
| PCV 破損          | シーケンス                   |         |          |
| (DCH)           | (TQUX)                  |         |          |
|                 | 後期 RPV 高圧破損             |         |          |
|                 | シーケンス                   |         |          |
|                 | (長期 TB)                 |         |          |
| RPV 破損時         | RPV 破損シーケン              |         |          |
| 水蒸気爆発           | ス                       |         |          |
| (FCI)           |                         |         |          |
|                 |                         |         |          |
| AC 電源復旧         | TBU、TBP、長期 TB           | FTにより設定 |          |
| (PCV 破損前)       |                         |         |          |

第4.1.1.f-1 表 格納容器イベントツリー分岐確率の設定(2/3)

| 現象・機能等                  | 発生条件                                                | 分岐確率     | 分岐確率の考え方                            |
|-------------------------|-----------------------------------------------------|----------|-------------------------------------|
| 下部 D/W 注水<br>(RPV 破損口)  | RPV 破損<br>時において<br>LPFL によ<br>る RPV 注<br>水成功の場<br>合 | FT により設定 | レベル 1PRA の FT をベースとして以下をモ<br>デル化する。 |
| 上部 D/W<br>スプレイ<br>(RHR) | RHR が使<br>用可能な場<br>合                                | FT により設定 | レベル 1PRA の FT をベースとして以下をモ<br>デル化する。 |
| デブリ冷却<br>(MCCI)         | RPV 破損<br>シーケンス                                     |          |                                     |

第4.1.1.f-1 表 格納容器イベントツリー分岐確率の設定(3/3)

| ヘディング          | タイミング    | 時間余裕 |
|----------------|----------|------|
| 原子炉減圧          | RPV 破損まで |      |
| 損傷炉心注水         | RPV 破損まで |      |
| 非常用交流 / 直流電源復旧 |          |      |
| 非常用交流 / 直流電源復旧 | PCV 破損まで |      |

第 4.1.1.f-2 表 時間余裕の設定

| PDS    | 炉心損傷頻度                | 割合   | 条件付き格納容器 | 格納容器破損頻度              | 割合   |
|--------|-----------------------|------|----------|-----------------------|------|
| 125    | (/炉年)                 | (%)  | 破損確率()   | (/炉年)                 | (%)  |
| TQUX   | $4.2 \times 10^{-9}$  | 0.1  | 0.58     | $2.4 \times 10^{-9}$  | 0.0  |
| TQUV   | $9.6 \times 10^{-10}$ | 0.0  | 1.00     | $9.6 \times 10^{-10}$ | 0.0  |
| 長期 TB  | 4.8×10 <sup>-10</sup> | 0.0  | 0.82     | $3.9 \times 10^{-10}$ | 0.0  |
| TBU    | $6.0 \times 10^{-10}$ | 0.0  | 0.62     | $3.7 \times 10^{-10}$ | 0.0  |
| TBP    | $1.2 \times 10^{-10}$ | 0.0  | 0.60     | $7.4 \times 10^{-11}$ | 0.0  |
| TBD    | 8.1×10 <sup>-11</sup> | 0.0  | 1.00     | 8.1×10 <sup>-11</sup> | 0.0  |
| LOCA   | $4.5 \times 10^{-9}$  | 0.1  | 1.00     | $4.5 \times 10^{-9}$  | 0.1  |
| TW     | $8.7 \times 10^{-6}$  | 99.9 | 1.00     | $8.7 \times 10^{-6}$  | 99.9 |
| TC     | $5.1 \times 10^{-12}$ | 0.0  | 1.00     | $5.1 	imes 10^{-12}$  | 0.0  |
| ISLOCA | 9.5×10 <sup>-11</sup> | 0.0  | 1.00     | $9.5 \times 10^{-11}$ | 0.0  |
| 合計     | 8.7×10 <sup>-6</sup>  | 100  | 1.00     | 8.7×10 <sup>-6</sup>  | 100  |

第4.1.1.f-3 表 プラント損傷状態別の炉心損傷頻度及び格納容器破損頻度

※ 炉心損傷頻度、格納容器破損頻度への寄与が大きい PDS における代表的な事故シーケン スは以下のとおり。

TW:崩壞熱除去機能喪失

LOCA: LOCA 時注水機能喪失

| 格納容器破損モード       | 格納容器破損頻度(/炉年)         | 割合(%) |
|-----------------|-----------------------|-------|
| 未臨界確保失敗時の過圧破損   | $5.1 \times 10^{-12}$ | 0.0   |
| 水蒸気(崩壊熱)による過圧破損 | $8.7 \times 10^{-6}$  | 99.9  |
| 過温破損            | 8.4×10 <sup>-9</sup>  | 0.1   |
| 格納容器雰囲気直接加熱     | $1.2 \times 10^{-12}$ | 0.0   |
| 水蒸気爆発           | $3.8 	imes 10^{-13}$  | 0.0   |
| コア・コンクリート反応継続   | $1.2 \times 10^{-11}$ | 0.0   |
| 格納容器隔離失敗        | $5.5 	imes 10^{-11}$  | 0.0   |
| ISLOCA          | $9.5 \times 10^{-11}$ | 0.0   |
| 合計              | 8.7×10 <sup>-6</sup>  | 100   |

第4.1.1.f-4 表 格納容器破損モード別の格納容器破損頻度

|                     | 格納容器破損頻度(/炉年)         |                       |                       |                       |                       |  |
|---------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 破損モート               | 5%値                   | 95%値                  | 中央値                   | 平均值                   | 点推定値                  |  |
| 未臨界確保失敗時の<br>過圧破損   | $9.5 \times 10^{-14}$ | 1.2×10 <sup>-11</sup> | 9.6×10 <sup>-13</sup> | $3.3 \times 10^{-12}$ | $5.1 \times 10^{-12}$ |  |
| 水蒸気(崩壊熱)による<br>過圧破損 | 9.8×10 <sup>-7</sup>  | $2.7 \times 10^{-5}$  | $4.2 \times 10^{-6}$  | 9.0×10 <sup>-6</sup>  | 8.7×10 <sup>-6</sup>  |  |
| 過温破損                | 6.4×10 <sup>-10</sup> | $2.3 \times 10^{-8}$  | $3.0 \times 10^{-9}$  | $8.1 \times 10^{-9}$  | 8.4×10 <sup>-9</sup>  |  |
| 格納容器雰囲気<br>直接加熱     | $3.7 \times 10^{-15}$ | $3.0 \times 10^{-12}$ | 1.1×10 <sup>-13</sup> | 9.1×10 <sup>-13</sup> | $1.2 \times 10^{-12}$ |  |
| 水蒸気爆発               | 8.1×10 <sup>-16</sup> | 7.0×10 <sup>-13</sup> | $2.0 \times 10^{-14}$ | $3.1 \times 10^{-13}$ | $3.8 \times 10^{-13}$ |  |
| コア・コンクリート<br>反応継続   | 0                     | 3.7×10 <sup>-11</sup> | $5.8 \times 10^{-13}$ | $1.3 \times 10^{-11}$ | $1.2 \times 10^{-11}$ |  |
| 格納容器隔離失敗            | $1.6 	imes 10^{-12}$  | $1.9 \times 10^{-10}$ | $1.5 	imes 10^{-11}$  | $5.5 	imes 10^{-11}$  | $5.5 	imes 10^{-11}$  |  |
| ISLOCA              | 3.2×10 <sup>-13</sup> | 2.9×10 <sup>-10</sup> | 8.8×10-12             | 7.3×10 <sup>-11</sup> | 9.5×10 <sup>-11</sup> |  |
| 合計                  | $1.0 \times 10^{-6}$  | $2.7 \times 10^{-5}$  | $4.2 \times 10^{-6}$  | 9.0×10 <sup>-6</sup>  | $8.7 \times 10^{-6}$  |  |

第4.1.1.g-1表 格納容器破損モード別格納容器破損頻度不確実さ解析

| 第 4.1.1.g-2 表   | 感度解析                  | 結果   |  |
|-----------------|-----------------------|------|--|
|                 | 格納容器破損頻度(/炉年)         |      |  |
| 格納容器破損モード       | ケース 1<br>(ベースケース)     | ケース2 |  |
| 未臨界確保失敗時の過圧破損   | $5.1 \times 10^{-12}$ |      |  |
| 水蒸気(崩壊熱)による過圧破損 | $8.7 \times 10^{-6}$  |      |  |
| 過温破損            | 8.4×10 <sup>-9</sup>  |      |  |
| 格納容器雰囲気直接加熱     | $1.2 \times 10^{-12}$ |      |  |
| 水蒸気爆発           | $3.8 \times 10^{-13}$ |      |  |
| コア・コンクリート反応継続   | $1.2 \times 10^{-11}$ |      |  |
| 格納容器隔離失敗        | $5.5 \times 10^{-11}$ |      |  |
| ISLOCA          | $9.5 \times 10^{-11}$ |      |  |
| 合計              | $8.7 \times 10^{-6}$  |      |  |



図 4.1.1-1 内部事象運転時レベル 1.5PRA の評価フロー

4.1.1 - 31

第4.1.1.a-1図格納容器及び下部ドライウェル(ペデスタル部)の構造の詳細

| 炉心損傷<br>事故シーケンス                                                                     | PCV破損時期                                                                | RPV圧力                                   | 炉心損傷時期                                 | 電源確保                                                                                         | プラント損傷状態                                               |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                     | <u>炉心損傷前</u><br>TW<br>TC<br>ISLOCA                                     |                                         | 後期<br>TW<br>早期<br>TC<br>ISLOCA         |                                                                                              | TW<br>TC<br>ISLOCA                                     |
| TQUX<br>TQUV<br>AE<br>S1E<br>S2E<br>TBU<br>TBP<br>TBD<br>長期TB<br>TW<br>TC<br>ISLOCA | <u>炉心損傷後</u><br>TQUX<br>TQUV<br>AE<br>S1E<br>S2E<br>TBU<br>TBD<br>EmTD | <u>高圧</u><br>TQUX<br>TBU<br>TBD<br>長期TB | 後期<br>長期TB<br>早期<br>TQUX<br>TBU<br>TBD | <u>電源確保</u><br>TQUX<br>直流電源確保要<br>TBU<br>直流電源復旧要<br>TBD<br>電源確保<br>TBD<br>電源確保<br>S1E<br>S2E | 長期TB<br>TQUX<br>TBU<br>TBD<br>TQUV<br>AE<br>S1E<br>S2E |
|                                                                                     | 長朔1B                                                                   | AE<br>S1E<br>S2E<br>TBP                 |                                        | <u>電源復旧要</u><br>TBP                                                                          | ТВР                                                    |

第 4.1.1.b-1 図 プラント損傷状態の分類



第4.1.1.c-1図 BWR のシビアアクシデントにおいて考えられる事故進展

Ā

| 炉心損傷<br>事故シーケンス                  | PCV<br>破損時期               | RPV圧力                     | 炉心損傷時期                            | 起因事象 | PDSグループ化<br>結果     |
|----------------------------------|---------------------------|---------------------------|-----------------------------------|------|--------------------|
|                                  | 炉心損傷前<br>(TW)             |                           | 後期<br>(TW)                        |      | (TW)               |
|                                  | (IC)<br>(ISLOCA)          |                           | <del>早期</del><br>(TC)<br>(ISLOCA) |      | (ISLOCA)           |
| TQUX<br>TQUV<br>AF S1F S2F       |                           | 高圧<br>TOUX                | _ <u>後期</u><br>長期TB               |      | 長期TB               |
| TBD                              | 炉心損傷後                     | TBU<br>TBD<br>長期TB        | 早期<br>TQUX<br>TBU                 |      | TQUX<br>TBU<br>TBD |
| 支朔18<br>(TC)<br>(TW)<br>(ISLOCA) | TQUV<br>AE、S1E、S2E<br>TBU | 低圧                        | עשו                               | 過渡   | TQUV<br>TBP        |
|                                  | TBP<br>TBD<br>長期TB        | TQUV<br>AE、S1E、S2E<br>TBP |                                   | 事故   | AE、S1E、S2E         |

第4.1.1.e-1図 解析対象とする PDS 分類

第 4.1.1.e-2 図(1/16) TQUV シーケンスの解析結果(炉心最高温度)

第 4.1.1.e-2 図(2/16) TQUV シーケンスの解析結果(原子炉圧力)

第 4.1.1.e<sup>-</sup>2 図(3/16) TQUV シーケンスの解析結果(D/W 圧力)

第 4.1.1.e-2 図(4/16) TQUV シーケンスの解析結果(D/W 内壁面温度)

第 4.1.1.e-2 図(5/16) TQUX シーケンスの解析結果(炉心最高温度)

第 4.1.1.e-2 図(6/16) TQUX シーケンスの解析結果(原子炉圧力)

第 4.1.1.e<sup>-</sup>2 図(7/16) TQUX シーケンスの解析結果(D/W 圧力)

第 4.1.1.e-2 図(8/16) TQUX シーケンスの解析結果(D/W 内壁面温度)

第4.1.1.e-2 図(9/16) 長期 TB(SBO, 蓄電池枯渇により 8 時間で RCIC 停止) シーケンスの解析結果(炉心最高温度)

第4.1.1.e-2 図(10/16) 長期 TB(SBO, 蓄電池枯渇により8時間でRCIC停止) シーケンスの解析結果(原子炉圧力) 第 4.1.1.e<sup>-</sup>2 図(11/16) 長期 TB(SBO, 蓄電池枯渇により 8 時間で RCIC 停止) シーケンスの解析結果(D/W 圧力)

第4.1.1.e-2 図(12/16) 長期 TB(SBO, 蓄電池枯渇により8時間でRCIC停止) シーケンスの解析結果(D/W内壁面温度) 第 4.1.1.e-2 図(13/16) LOCA(大 LOCA+注水失敗)シーケンスの解析結果(炉心最高温度)

第4.1.1.e-2図(14/16)LOCA(大LOCA+注水失敗)シーケンスの解析結果(原子炉圧力)

第 4.1.1.e-2 図(15/16) LOCA(大 LOCA+注水失敗)シーケンスの解析結果(D/W 圧力)

第4.1.1.e-2図(16/16)LOCA(大LOCA+注水失敗)シーケンスの解析結果(D/W内壁面温度)



第4.1.1.f-1図 プラント損傷状態別の炉心損傷頻度及び格納容器破損頻度の比較

4.1.1 - 44





第4.1.1.f-3図 プラント損傷状態別の格納容器破損頻度







4.1.1-46



4.1.1 - 47

内部事象運転時レベル 1.5PRA のシーケンス選定における 福島第一原子力発電所事故の知見の考慮

1. はじめに

平成 23 年 3 月 11 日に発生した東京電力福島第一原子力発電所事故では、格 納容器の閉じ込め機能の喪失に伴い、環境中に放射性物質が放出された。

レベル 1.5PRA では格納容器破損に至るまでの事故シーケンス及び格納容器 破損頻度(CFF)等を評価する。この際、物理化学現象の発生による格納容器破損 の発生確率や過圧・過温破損に至るまでの時間の評価に格納容器が閉じ込め機 能を維持可能な温度及び圧力の限界(限界温度及び限界圧力)を設定する必要が ある。

今回の PRA 実施に際して、これまでの福島第一原子力発電所事故の調査結果から、レベル 1.5PRA への反映が可能な知見の有無について確認した。

2. 格納容器破損に関する福島第一原子力発電所事故の知見

福島第一原子力発電所事故の進展のうち、未解明な点については現在も解明 を進めている<sup>[1-3]</sup>ところである。福島第一原子力発電所 1~3 号機の格納容器は いずれも事故後のどこかのタイミングで破損に至ったと考えられ、その詳細な メカニズムについては、解明に向けた取り組みを進めているところであるが、こ れまでに得られている知見からも以下の可能性が考えられる。

漏えいの経路については、その可能性の1つとして、トップへッドフランジ 等のフランジシール部からの漏えいが考えられる。1~3 号機の中で原子炉建屋 での水素爆発が発生しておらず、オペレーティングフロアの形状が維持されて いる2号機に着目すると、原子炉格納容器の圧力低下が確認された3月15日の 朝方にブローアウトパネルから蒸気の放出が確認されていること(後日の調査に おいてもシールドプラグの隙間から蒸気が放出されていることを確認)及びオペ レーティングフロアにおける雰囲気線量率の調査の結果、シールドプラグの近 傍における線量率が他の測定点に比べて高いことからもその可能性が考えられ る。

格納容器圧力については、格納容器ベントによる格納容器の減圧が実施されたと判断している3号機を除き、1、2号機では設計圧力(Pd)の約1.7倍程度の 測定データが得られている。一方、格納容器温度の炉心損傷後の測定データは得られていない。

格納容器温度に対する現場調査の結果として、1号機では、格納容器内部調査 により格納容器貫通部に設置されていた遮へい用の鉛板が消失していることが 確認され、格納容器壁付近で少なくとも鉛の融点(328°C)以上を経験したものと 考えられる。

2号機では、注水機能喪失後に原子炉圧力容器を1MPa以下に減圧していた。 3月14日の21時頃から3月15日の1時頃にかけて3回の原子炉圧力容器の 圧力上昇及びSRVの開放による圧力低下が確認され、これとほぼ同じタイミン グで格納容器圧力が約0.7 MPa(約1.7Pd)まで上昇している。この3回の圧力上 昇ピークは、炉心での水-ジルコニウム反応に伴う水素の大量発生によるものと 推定されており、この際には大量のエネルギーが発生している。

この大量のエネルギーについては、以下のメカニズム及びその重畳によって 格納容器頂部の温度を上昇させる可能性が考えられる。

- ・ 過熱された気体が SRV を介して格納容器に移行し、格納容器頂部に上昇 して格納容器頂部の温度を上昇させる可能性
- 溶融炉心によって原子炉圧力容器が過熱され、その熱が格納容器内の気体に伝えられ、その対流により格納容器頂部の温度を上昇させる可能性
- 溶融炉心によって過熱された原子炉圧力容器からの熱伝導・輻射によって 格納容器頂部の温度を上昇させる可能性

また、MARK-I 格納容器の上部円筒部は熱の篭り易い構造であることから、 ドライウェルクーラからダクトを介して冷却される設計となっていた。しかし ながら、福島第一原子力発電所の事故時はドライウェルクーラの機能も喪失し ていたため、格納容器上部が冷却されない状態になっており、RCICの運転中か ら高温になっていたと考えられる。

炉心損傷後は原子炉圧力容器内が更に過酷な温度条件となると考えると、格納容器の内側頂部は高い温度になっていたと考えられる。

ドライウェルクーラの停止等により元々高い温度となっていた格納容器の内 側頂部に水-ジルコニウム反応に伴う大量のエネルギーが何らかの形で伝えられ、 格納容器の内側頂部の温度が 200 °C を大幅に超える状態になっていた可能性は 充分にあると考えている。

つまり、従来の知見から福島第一原子力発電所の原子炉格納容器限界温度及 び限界圧力は200 ℃、2Pdとしているが、2号機でも1号機と同様に格納容器 の内側頂部の温度が限界温度である200℃を大幅に超える状態になっていた可 能性があると考えている。

3. KK6/7 の PRA における格納容器の扱い

福島第一原子力発電所事故において、格納容器が過酷な環境にさらされたことも考慮し、KK6/7の格納容器の限界温度及び限界圧力に対する機能維持については事故の知見も踏まえて改めて確認している(添付資料-4.1.1.a-1-1)。KK6/7号機のレベル 1.5PRA では、物理化学現象の発生確率や過圧・過温破損に至るまでの時間を評価するための格納容器の限界温度及び限界圧力には、重大事故

等防止対策の有効性評価の条件と同じ条件(限界温度 200 °C、限界圧力 620 kPa[gage])を用いている。

4. レベル 1.5PRA における考慮の必要性

福島第一原子力発電所事故については、格納容器内の状況等、未だ確認が困難 な点が多く、未解明な問題がある。一方で、これまでの状況からは、現在レベル 1.5PRA で考慮しているモード以外で格納容器が破損に至ったとは考えにくい。 このことから、事故シーケンスの抽出という観点では現在の PRA でも網羅的な 分析となっているものと考える。

今後、格納容器の限界温度及び限界圧力に関する新たな知見が得られた際に は、物理化学現象の発生確率や過圧・過温破損に至るまでの時間が変化すること となり、PRA としては炉心損傷から格納容器破損に至るまでの余裕時間を見直 す必要がある。なお、全 CFF はレベル 1PRA の結果である全炉心損傷頻度(CDF) を上回るものではなく、また、現在の評価の CDF のほぼ 100%が TW(崩壊熱除 去機能喪失に伴う格納容器先行破損)による炉心損傷であり、CFF のほぼ 100% がこの TW による過圧破損であることを考えると、定量的にも大きく影響を及 ぼすものではないと考えられる。

また、物理化学現象の発生確率については、その不確実性が非常に大きく、限 界温度及び限界圧力を見直したとしても、発生確率の精度向上に大きく寄与す るものではない。

5. 結論

福島第一原子力発電所事故のこれまでの調査・検討結果からは、現在のところ KK6/7 号機の PRA に反映可能な知見は得られていないが、今後、新たな知見が 確認された場合には、PRA への反映を検討していく。このため、KK6/7 号機に ついては現在の設計をもとに事象進展解析等を実施し、物理化学現象の発生確 率や過圧・過温破損に至るまでの時間を評価している。

以 上

- [1] 東京電力株式会社「福島第一原子力発電所1~3号機の炉心・格納容器の状態の推定と未 解明問題に関する検討 第1回進捗報告」平成25年12月13日
- [2] 東京電力株式会社「福島第一原子力発電所1~3号機の炉心・格納容器の状態の推定と未 解明問題に関する検討 第2回進捗報告」平成26年8月6日
- [3] 東京電力株式会社「福島第一原子力発電所1~3号機の炉心・格納容器の状態の推定と未 解明問題に関する検討 第3回進捗報告」平成27年5月20日

柏崎刈羽原子力発電所 6/7 号炉の原子炉格納容器限界温度・圧力について

柏崎刈羽原子力発電所 6/7 号炉の設置変更許可申請における重大事故等対策の有効性評価では、原子 炉格納容器限界温度を 200℃、限界圧力を最高使用圧力の 2 倍(2Pd:620kPa)と設定している。 なお、原子炉格納容器限界温度・限界圧力の設定値根拠は以下のとおりである。

(1) 格納容器限界温度・圧力に関する既往研究について

重大事故時条件下の格納容器閉じ込め機能については、過去に電力会社等による共同研究(以下「電 共研」という。)で解析、試験等を実施しており、これをもとに有効性評価の格納容器限界温度・圧力を 設定している。また、当時の(財)原子力発電技術機構(以下「NUPEC」という。)による「重要構造物 安全評価(原子炉格納容器信頼性実証事業)」の研究成果も取り入れて、格納容器閉じ込め機能に関する 新たな知見を踏まえた限界温度・圧力の設定を行っている。図1に、電共研で実施した格納容器閉じ込 め機能に関する「漏洩、破損圧力-温度線図」を示す。

## 図1 漏洩、破損圧力-温度線図(MARK-Ⅱ改型\*)

※RCCVとMARK-Ⅱ改型のトップヘッド・ハッチは同程度の剛性であるため、MARK-Ⅱ改型の線図をもとに評価する

(A)「漏洩、破損圧力-温度線図」について

【線(a)】飽和蒸気圧曲線

本線は飽和蒸気圧曲線を示すことから、線(a)を境にした①の範囲は、重大事故時では発生する可 能性の少ない荷重の範囲である。

添付資料 4.1.1.a-1-1-1

## 【線(b)】格納容器構造部の破損判定解析結果(破損可能性が高い境界)

本線は格納容器全体、トップヘッドフランジ、ハッチフランジ部の構造解析結果から、過圧・過温 状態における格納容器の延性破損クライテリアを示したものである。解析評価の破損判定として、塑 性不安定荷重(引張試験片がネッキングを起こして不安定破壊するような状態の荷重)を用いており、 格納容器延性破損に対する限界の線を引いている。

【線(c)】格納容器構造部の破損判定解析結果(破損すると考えられる境界)

本線は格納容器全体、トップヘッドフランジ、ハッチフランジ部の構造解析結果から、過圧・過温 状態における格納容器の延性破損クライテリアを示したものである。解析評価の破損判定として、線 (b)で用いた荷重よりも小さい崩壊荷重で評価し、格納容器延性破損に対して保守的な境界を引いて いる。

【線(d)】格納容器フランジ部の漏洩判定解析結果

本線はトップヘッドフランジ、ハッチフランジ部の構造解析結果からフランジ部の開口量を評価し、 過圧・過温状態における格納容器の漏洩発生クライテリアを示したものである。解析で示したフラン ジ部の開口量がシール材初期締付量に相当する開き量に達した点を漏洩発生点とし、漏洩判定の境界 線を引いている。

【線(e)】フランジ部からの漏洩の判定カーブ

本線は格納容器フランジ部シール材の小型 モデル試験結果から、過圧・過温状態における シール材の漏洩判定を示したものである。小型 モデル試験では、格納容器シール部形状を模擬 した試験装置で、シール材から漏洩する圧力、 温度に関するデータを取得している。試験は、 シール材に放射線照射するケース、蒸気曝露す るケースも含んでおり、各条件の試験データの ばらつきを考慮して、保守的に漏洩点を設定し て漏洩判定の境界線を引いている。



(参考図) RCCV 型格納容器

(B)既往研究のモデル試験について

(a) トップヘッドフランジのモデル試験

| 電共研でトップヘッドフランジ  | 模擬試験体を用い、 | 常温で水圧により加圧す | ることで漏洩判定と変 |
|-----------------|-----------|-------------|------------|
| 形挙動を示している。その結果、 | まで加圧      | されたところで漏洩した | ことを確認している。 |

(b) ハッチのモデル試験

電共研でハッチ形状を模擬した小型モデルの試験体を用い、常温で水圧により加圧することで漏洩 判定と変形挙動を示している。その結果、 まで加圧されても漏洩しないことを確認している。 また、NUPEC ではハッチ形状を模擬した実機モデルの試験体を用い、常温で水圧により加圧破損試験 を実施しており、約 6. 2Pd まで加圧したところで破損が発生している。

添付資料 4.1.1.a-1-1-2

## (c) 電気配線貫通部のモデル試験

既往研究で電気配線貫通部の過圧・過温状態における耐漏洩性を確認している。電共研では の圧力範囲内で 程度の状態で漏洩しないことを示し、NUPECの評価では、最大 1.0MPa(約 3Pd)、約 260℃までの耐漏洩性を示している。

(2) 福島第一事故を踏まえた確認について

福島第一原子力発電所事故で原子炉格納容器内ガスが漏えいした経路として、原子炉格納容器トッ プヘッドフランジ、機器搬入用ハッチ等のフランジシール部が推定漏えい経路の1つであると考えて いる。原子炉格納容器のフランジシール部は、内圧が低い段階ではボルトの初期締付けにより開口は 抑制されているが、内圧の上昇に伴って開口量が増加することにより、外部への漏えい経路を形成す る。ただし、フランジ部が開口しても、フランジ部の密閉性を担保しているシール材が健全であれば、 シール材が開口に追従するため外部への漏えいを防止することができる。しかしながら、福島第一原 子力発電所事故のような事故環境に晒されると、原子炉格納容器トップヘッドフランジ等のフランジ シール部に使用されているシール材が劣化し、フランジの開口に追従できなくなり格納容器閉じ込め 機能を損なう可能性がでてくる。

そこで、KK6/7 原子炉格納容器フランジシール部に使用されているシール材(シリコンゴム)について、事故時の温度や放射線による劣化特性を試験により確認し、想定される事故シナリオにおけるシール機能を評価した。その結果、原子炉格納容器圧力が 2Pd の状況におけるフランジ部の開口を評価したところ、その開口量はシール材(シリコンゴム)の追従範囲内であることを確認した。また、原子炉格納容器温度が 200℃の状況におけるシール材 (シリコンゴム)の劣化状況を確認したところ、劣化特性を考慮しても格納容器閉じ込め機能の健全性を確認した。

上記の確認により、従来から使用しているシール材によっても、事故環境下における原子炉格納容 器からの漏えいを防止できるものと考えられるが、更なる信頼性向上を達成することが必要であると 考えている。これを踏まえ、柏崎刈羽原子力発電所においては、高温蒸気曝露で劣化が進む特性を持 つシール材(シリコンゴム)を補強し、耐漏えい機能を向上させるために、200℃蒸気曝露条件で耐劣 化性に優れているバックアップシール材を従来のシール材(シリコンゴム)に加えて追加塗布し、限 界温度及び限界圧力に対する格納容器閉じ込め機能の更なる健全性を確認している。

(3) 限界温度・圧力(200℃・2Pd)の設定について

既往研究における格納容器の閉じ込め機能の評価から、格納容器の温度・圧力が図1に示す②の範 囲内であれば、格納容器に漏洩・破損が発生している可能性が少ないと考えられる。これらの結果か ら少なくとも、温度200℃、最高使用圧力の2倍の圧力であれば格納容器閉じ込め機能が確保できる 範囲と考えており、福島第一原子力発電所事故の知見を踏まえても、柏崎刈羽原子力発電所6/7号炉 の格納容器限界温度・圧力(200℃、2Pd)は妥当であると考えている。

以 上
炉内溶融燃料 – 冷却材相互作用(炉内 FCI)に関する知見の整理

1. 現象の概要

原子炉容器内水蒸気爆発による格納容器破損は a モード破損と呼ばれ、 WASH-1400から研究が続けられてきた。この現象は、溶融炉心(コリウム)が原 子炉圧力容器下部ヘッドに溜まっている水中に落下した時に水蒸気爆発が発生 し、それにより水塊がミサイルとなって炉内構造物を破壊し、原子炉圧力容器 上蓋に衝突することで上蓋を固定するボルトを破壊し、上蓋が格納容器に衝突 して格納容器破損に至るという現象である。

炉内での現象は、以下のようなメカニズムであると考えられている。

- 炉内の冷却材が喪失し、炉心が溶融して、その溶融炉心が下部プレナムの残 存水に落下する。水と接触した溶融炉心は、その界面の不安定性により、溶 融炉心の一部もしくは大部分が分裂し、膜沸騰を伴う水との混合状態となる (粗混合)。更に、自発的もしくは外部からの圧力パルスにより、膜沸騰が不 安定化し(トリガリング)、二液が直接接触する。
- ② 下部プレナムにおける二液の直接接触により、急速な熱の移動が発生し、急速な蒸気発生・溶融炉心の微細化によって、更に液体どうしの接触を促進し (伝播)、蒸気発生を促進する。この蒸気発生により、圧力波が発生する。
- ③発生した圧力波が通過した後の高温高圧領域(元々は粗混合領域)の膨張により運動エネルギが発生し、上部ヘッドを破壊する。この結果、上部ヘッドはミサイルとなって格納容器に衝突する。

過去の実験結果の整理<sup>[1]</sup>

FCI について、過去に実施された比較的大規模な実験概要及び結果を以下に示す。

2.1 FARO 実験

FARO 実験は、イタリアのイスプラ研究所において実施された実験で、圧力 容器内での FCI を調べることを主な目的とした試験である。多くの実験は高 圧・飽和水条件で実施されているが、圧力容器外を対象とした低圧・サブクー ル水条件の実験も実施されている。

図 2.1 に試験装置の概要図を示す。試験装置は主にるつぼと保温容器で構成されている。るつぼ内で溶融させたコリウムを一度リリースベッセルに保持し、 その底部にあるフラップを開放することにより溶融コリウムを水プールに落下 させる。溶融物落下速度は、リリースベッセルの圧力を調整することにより調 整可能である。 実験は、酸化物コリウム(80wt% UO<sub>2</sub>+20wt% ZrO<sub>2</sub>)または金属 Zr を含むコリウム(77wt% UO<sub>2</sub>+19wt% ZrO<sub>2</sub>+4wt% Zr)を用いて実施された。

表 2.1 に試験条件及び試験結果を示す。

結果として、いずれの実験においても、水蒸気爆発の発生は確認されなかった。

溶融コリウムの粒子化量について、高圧条件・低サブクール水条件において は水深約1mの場合で溶融コリウムの約半分が粒子化し、残りはジェット状で プール底面に衝突し、パンケーキ状に堆積したとの結果が得られている。また、 低圧条件・サブクール水条件では、全てのコリウムは粒子化した。

さらに、粒子の質量中央径は 3.2 mm~4.8 mm であり、試験パラメータ(初期 圧力、水深、コリウム落下速度、サブクール度)に依存しないことが報告されて いる。

### 2.2 COTELS 実験

COTELS 実験は、(財)原子力発電技術機構により実施された実験であり、圧 力容器底部が溶融破損して溶融コリウムが格納容器床面上の水プールに落下し た場合の水蒸気爆発の発生有無を調べることを目的に実施された。図 2.2 に実験 装置の概要図を示す。実験は、シビアアクシデント時の溶融コリウム成分を模 擬するため、比較的多くの金属成分を含む模擬コリウム(55wt% UO<sub>2</sub>+5wt% ZrO<sub>2</sub>+25wt% Zr+15wt% SUS)が用いられた。また、多くの実験ケースはプール 水深 40 cm、飽和水温度で実施されている

表 2.2 に実験条件及び結果を示す。

結果として、いずれの実験においても、水蒸気爆発の発生は確認されなかった。

プールに落下した溶融コリウムはほとんどが粒子化し、落下速度が大きいケ ースでは、全てのコリウムが粒子化するとの結果が得られている。

また、コリウム落下速度の大きいケースを除いて、粒径分布に大きな差はな く、質量中央径で 6 mm 程度であり、落下速度が大きいケースでは粒子径は小 さくなっている。

### 2.3 KROTOS 実験

KROTOS 実験はイスプラ研究所で実施された実験であり、FARO 実験が高圧 条件を主目的として実施されたのに対して、KROTOS 実験では、低圧・サブク ール水を主として実施が行われている。

図 2.3 に実験装置の概要図を示す。本実験では摸擬コリウムとして UO<sub>2</sub> 混合物(80% UO<sub>2</sub>+20% ZrO<sub>2</sub>)またはアルミナを用いた実験を行っている。また、外部 トリガ装置によりトリガを与えることで、水蒸気爆発を誘発させる実験も実施 されている。

### 添付資料 4.1.1.c-1-2

表 2.3 に実験条件及び結果を示す。

アルミナを用いた実験では、サブクール水(ケース 38, 40, 42, 43, 49)の場合、 外部トリガ無しで水蒸気爆発が発生、低サブクール水(ケース 41, 44, 50, 51)の 場合、外部トリガがある場合(ケース 44)に水蒸気爆発が発生した。一方、UO<sub>2</sub> 混合物を用いた実験では、サブクール度が 4~102 K の場合、外部トリガ無しで は水蒸気爆発が発生せず、外部トリガありの場合でも、溶融物の重量が大きい、 または、水プールのサブクール度が高い場合(ケース 52)に水蒸気爆発が観測さ れている。

これらの差異として、粒子径はアルミナの 8~17 mm に対し UO<sub>2</sub> 混合物は 1 ~1.7 mm であり、UO<sub>2</sub> 混合物の方が小さく、粒子化直後の表面積が大きいため 粗混合時に水プールが高ボイド率となり、トリガの伝播を阻害した可能性があ る。また、アルミナは比重が小さいことから水面近傍でブレークアップし、径 方向に拡がったことによりトリガが伝搬しやすくなったと考えられている。一 方、UO<sub>2</sub> 混合物は、粒子表面と水が接触した直後に表面が固化することにより 蒸気膜が崩壊した際の微粒子化が起こりにくく、これが一つの要因となって水 蒸気爆発の発生を阻害すると考えられる。

2.4 ALPHA 実験

旧原子力研究所(JAERI)で実施された実験であり、シビアアクシデント時の格納容器内の諸現象を明らかにし、格納容器の耐性やアクシデントマネジメント策の有効性を評価することを目的に、1988年から事故時格納容器挙動試験の一環で実施された。

図 2.4 に実験装置の概要図を示す。実験では、溶融ステンレス鋼または酸化ア ルミニウムと鉄からなる溶融物を実験装置の摸擬格納容器内に設置した水プー ルに落下させるもので、摸擬格納容器の寸法は、内径約4 m、高さ約5 m、内 容積約 50 m<sup>3</sup>である。

表 2.4 に実験条件及び結果を示す。

溶融ステンレス鋼の実験ケースでは、水プールのサブクール度が高い場合で も水蒸気爆発の発生は確認されていない。

酸化アルミニウムと鉄の溶融物の実験では、溶融物の重量が 20kg、雰囲気圧 力が 0.1 MPa で、サブクール度が 73~90 K において実施されたケース(ケース 2,3,5,9,17,18)において水蒸気爆発が発生している。溶融物量を半減させたケ ース 1, 10, 13 では、ケース 10 のみ水蒸気爆発が確認された。この 3 ケースの 条件には有意な差が無いことから、この 3 ケースの条件がこの実験体系におけ る水蒸気爆発の発生の有無の境界近傍であること及びこの結果からは、溶融物 の落下量が多い場合に水蒸気爆発が発生し易いことが示されている。水プール を飽和水としたケース 14 では水蒸気爆発は観測されなかった。一方、ケース 8, 12, 15, 25 は雰囲気圧力を 0.5~1.6 MPa の範囲で変化させているが、最も低い 0.5 MPaのケースのみ水蒸気爆発が観測された。

以上の結果から、高雰囲気圧力あるいは低サブクール水の場合に水蒸気爆発 発生が抑制される傾向があることが示されている。

ケース 6, 11, 19, 20, 21 は、溶融物を分散させ複数のジェットを形成させたケ ースであるが、3 ケースで水蒸気爆発が観測されたが、水蒸気爆発の規模は抑制 される場合と増大される場合があり、溶融物と冷却水の粗混合状態が FCI の進 展に大きな影響を及ぼすことを示していると結論付けられている。

3. 知見のまとめ

上記で示した主な実験結果をまとめると以下のとおりとなる。

- ・UO<sub>2</sub> を用いた実験では、水蒸気爆発は確認されていない。(FARO 実験、 COTELS 実験)
- ・高圧力条件、または、低サブクール水条件は、水蒸気爆発を抑制する傾向 がある(ALPHA 試験)
- ・粒子化割合は、サブクール度に依存し、サブクール度が大きいと粒子化割 合は高くなる(FARO 実験)
- ・粒子化割合は、デブリ落下速度に依存し、落下速度が大きいと粒子化が促進される(COTELS 実験)
- ・デブリ落下後の水プールが高ボイド率状態になると、トリガの伝播を阻害 する可能性がある(KROTOS 実験)
- ・溶融物と水の粗混合状態が、FCIの進展に大きな影響を及ぼす(ALPHA 実験)

BWR 体系に対して、上記の実験結果を踏まえた分析結果を表 3.1 に示す。実験結果からは、水蒸気爆発の発生は不確実さが大きいと考えられるものの、BWR 体系では炉内における水蒸気爆発は発生しにくいと考えられることが分かる。

また、BWR において炉内での自発的水蒸気爆発(外部トリガ無しの状態での 水蒸気爆発)が発生しにくい理由として、BWR の炉内の水が低サブクール(飽和 水に近い状態)であり、低サブクールであれば溶融炉心を覆う蒸気膜が凝縮効果 によって崩壊する可能性が低いことから、蒸気膜の安定性が高く、蒸気膜の崩 壊(トリガリング)が生じにくいことが挙げられている。<sup>[1]</sup>

炉内 FCI の発生確率低減に対する炉心下部の構造物の効果として考慮される 事項としては、以下の事項が考えられる。また、溶融炉心の流路を図 3.1 に示す。

水蒸気爆発に寄与する溶融炉心の質量が限られること。

炉心下部の構造物によって、溶融炉心の流路が阻害され、一度に炉水中 に落下する溶融炉心の質量が限定(炉水中に移行する溶融炉心のエネルギが 抑制される。)されることにより、水蒸気爆発を仮定してもそのエネルギが 低く抑えられると考えられる。

添付資料 4.1.1.c-1-4

・溶融炉心の落下速度が抑えられること。

溶融炉心の落下速度が大きい場合、粗混合時の粒径が小さくなることが 報告されている。炉心下部の構造物によって、溶融炉心の落下速度が抑制 されれば、粗混合時の粒径が大きくなり、溶融炉心の表面積が小さくなる ことから、蒸気膜の表面積も小さくなり、トリガリング発生の可能性が小 さくなると考えられる。

4. 専門家会議等の知見[2]

BWR の炉内 FCI の発生確率に関して、専門家の間で議論がなされており、 その結果を表 4.1 に示す。

専門家の間での議論の結果として、BWR 体系では下部プレナムに制御棒案内 管等が密に存在しており、これらはデブリ落下時の粗混合を制限すると考えら れるため、水蒸気爆発の発生確率はプラント全体で見た際に他の要因による格 納容器破損頻度に比べて十分小さく無視出来ると結論付けられている。

5. まとめ

これまでに実施された各種実験結果および専門家による工学的判断の結果から、BWR 体系における炉内 FCI 発生の可能性は十分小さいと考えられる。

したがって、BWR における格納容器破損モードとして、炉内 FCI の考慮は 不要である。

6. 参考文献

- [1] 社団法人日本原子力学会「シビアアクシデント熱流動現象評価」平成12年3月
- [2] 財団法人原子力安全研究協会「シビアアクシデント対策評価のための格納容器イベント ツリーに関する検討」平成13年7月



図 2.1 FARO 試験装置

| No.  | 溶融<br>コリウム<br>※ | 溶融物質量<br>[kg] | 溶融物温度<br>[K] | 溶融物落下<br>粒径[mm] | 雰囲気圧力<br>[MPa] | 水深[m] | サブクール度<br>[K] | FCI発生の<br>有無 |
|------|-----------------|---------------|--------------|-----------------|----------------|-------|---------------|--------------|
| L-06 | Α               | 18            | 2923         | 100             | 5.0            | 0.87  | 0             | 無            |
| L-08 | А               | 44            | 3023         | 100             | 5.8            | 1.00  | 12            | 無            |
| L-11 | В               | 151           | 2823         | 100             | 5.0            | 2.00  | 2             | 無            |
| L-14 | А               | 125           | 3123         | 100             | 5.0            | 2.05  | 0             | 無            |
| L-19 | А               | 157           | 3073         | 100             | 5.0            | 1.10  | 1             | 無            |
| L-20 | А               | 96            | 3173         | 100             | 2.0            | 1.97  | 0             | 無            |
| L-24 | А               | 177           | 3023         | 100             | 0.5            | 2.02  | 0             | 無            |
| L-27 | А               | 129           | 3023         | 100             | 0.5            | 1.47  | 1             | 無            |
| L-28 | А               | 175           | 3052         | 100             | 0.5            | 1.44  | 1             | 無            |
| L-29 | А               | 39            | 3070         | 100             | 0.2            | 1.48  | 97            | 無            |
| L-31 | A               | 92            | 2990         | 100             | 0.2            | 1.45  | 104           | 無            |
| L-33 | A               | 100           | 3070         | 100             | 0.4            | 1.60  | 124           | 無            |

表 2.1 FARO 試験の試験条件及び FCI 発生の有無

※ A:80wt% UO2+20wt% ZrO2

B:77wt% UO2+19wt% ZrO2+4wt% Zr



図 2.2 COTELS 試験装置

| No. | 溶融<br>コリウム<br>※ | 溶融物質量<br>[kg] | 雰囲気圧力<br>[MPa] | 水深[m] | サブクール度<br>[K] | FCI発生の<br>有無 |
|-----|-----------------|---------------|----------------|-------|---------------|--------------|
| A1  | С               | 56.3          | 0.20           | 0.4   | 0             | 無            |
| A4  | С               | 27.0          | 0.30           | 0.4   | 8             | 無            |
| A5  | С               | 55.4          | 0.25           | 0.4   | 12            | 無            |
| A6  | С               | 53.1          | 0.21           | 0.4   | 21            | 無            |
| A8  | С               | 47.7          | 0.45           | 0.4   | 24            | 無            |
| A9  | С               | 57.1          | 0.21           | 0.9   | 0             | 無            |
| A10 | С               | 55.0          | 0.47           | 0.4   | 21            | 無            |
| A11 | С               | 53.0          | 0.27           | 0.8   | 86            | 無            |

表 2.2 COTELS 試験の試験条件及び FCI 発生の有無発生の有無

※ C:55wt% UO2+5wt% ZrO2+25wt% Zr+15wt% SUS



図 2.3 KROTOS 試験装置

| No. | 溶融<br>コリウム | 溶融物質量<br>[kg] | 溶融物温度<br>[K] | 雰囲気圧力<br>[MPa] | 水深[m] | サブクール度<br>[K] | 外部トリガ<br>の有無 | FCI発生の<br>有無 |
|-----|------------|---------------|--------------|----------------|-------|---------------|--------------|--------------|
| 38  | アルミナ       | 1.53          | 2665         | 0.10           | 1.11  | 79            | 無            | 有            |
| 40  | アルミナ       | 1.47          | 3073         | 0.10           | 1.11  | 83            | 無            | 有            |
| 41  | アルミナ       | 1.43          | 3073         | 0.10           | 1.11  | 5             | 無            | 無            |
| 42  | アルミナ       | 1.54          | 2465         | 0.10           | 1.11  | 80            | 無            | 有            |
| 43  | アルミナ       | 1.50          | 2625         | 0.21           | 1.11  | 100           | 無            | 有            |
| 44  | アルミナ       | 1.50          | 2673         | 0.10           | 1.11  | 10            | 有            | 有            |
| 49  | アルミナ       | 1.47          | 2688         | 0.37           | 1.11  | 120           | 無            | 有            |
| 50  | アルミナ       | 1.70          | 2473         | 0.10           | 1.11  | 13            | 無            | 無            |
| 51  | アルミナ       | 1.79          | 2748         | 0.10           | 1.11  | 5             | 無            | 無            |
| 37  | コリウム※      | 3.22          | 3018         | 0.10           | 1.11  | 77            | 有            | 無            |
| 45  | コリウム※      | 3.09          | 3106         | 0.10           | 1.14  | 4             | 有            | 無            |
| 47  | コリウム※      | 5.43          | 3023         | 0.10           | 1.11  | 82            | 有            | 無            |
| 52  | コリウム※      | 2.62          | 3023         | 0.20           | 1.11  | 102           | 有            | 有            |

表 2.3 KROTOS 試験の試験条件及び FCI 発生の有無

※ コリウム: 80% UO2+20% ZrO2





| No. | 溶融<br>コリウム | 溶融物質量<br>[kg] | 溶融物温度<br>[K] | 雰囲気圧力<br>[MPa] | 水深[m] | サブクール度<br>[K] | FCI発生の<br>有無 |
|-----|------------|---------------|--------------|----------------|-------|---------------|--------------|
| 1   | Fe+アルミナ    | 10            | 2723         | 0.1            | 1.0   | 80            | 無            |
| 2   | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 84            | 有            |
| 3   | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 81            | 有            |
| 5   | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 73            | 有            |
| 6   | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 75            | 有            |
| 8   | Fe+アルミナ    | 20            | 2723         | 1.6            | 1.0   | 186           | 無            |
| 9   | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 84            | 有            |
| 10  | Fe+アルミナ    | 10            | 2723         | 0.1            | 1.0   | 80            | 有            |
| 11  | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 83            | 有            |
| 12  | Fe+アルミナ    | 20            | 2723         | 1.6            | 1.0   | 184           | 無            |
| 13  | Fe+アルミナ    | 10            | 2723         | 0.1            | 1.0   | 76            | 無            |
| 14  | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 1             | 無            |
| 15  | Fe+アルミナ    | 20            | 2723         | 1.0            | 1.0   | 171           | 無            |
| 16  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.9   | 78            | 有            |
| 17  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.9   | 87            | 有            |
| 18  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.9   | 90            | 有            |
| 19  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.9   | 92            | 有            |
| 20  | Fe+アルミナ    | 20            | 2723         | 0.1            | 1.0   | 92            | 無            |
| 21  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.9   | 92            | 有            |
| 22  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.8   | 87            | 無            |
| 23  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.3   | 140           | 有            |
| 24  | Fe+アルミナ    | 20            | 2723         | 0.1            | 0.8   | 145           | 有            |
| 25  | Fe+アルミナ    | 20            | 2723         | 0.5            | 0.9   | 145           | 有            |

表 2.4 ALPHA 試験の試験条件及び FCI 発生の有無

| BWR 体系                      | FCI 発生への影響                                                                                                                                                                  | 備考                      |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 下部プレナム残存水はおおよそ飽和温度          | <ul> <li>・飽和温度に近いため粒子化割合が少なくなることから、初期粗混<br/>合が抑制されることが推測され、FCI発生は阻害される可能性が<br/>考えられる。</li> <li>・飽和温度に違いことからデブリ落下のボイド発生が多くなり、ト<br/>リガが発生した場合の伝播が妨げられ、FCI発生は阻害される可</li> </ul> | ・FARO 実験<br>・KROTOS 実験  |
| 下部プレナムに残存する水量は少量            | 能性が考えられる。 <ul> <li>・水量が少ないことから熱容量が小さく、デブリ落下時のボイド発生が多くなり、トリガが発生した場合の伝播が妨げられ、FCI発生は阻害される可能性が考えられる。</li> </ul>                                                                 | ・KROTOS 実験              |
| プール水面衝突時のデブリ落下速度は比<br>較的遅い  | <ul> <li>・落下速度が遅いためデブリの粒子化割合が少なくなり、初期粗混<br/>合が抑制されることが推測され、FCI発生は阻害される可能性が<br/>考えられる。</li> </ul>                                                                            | ・COTELS 実験              |
| デブリ落下は単一ジェットではなく、複<br>数ジェット | <ul> <li>・複数ジェットのため初期のデブリ落下量が多く、ボイド発生が多くなり、トリガが発生した場合の伝播が妨げられ、FCI発生は阻害される可能性が考えられる。</li> <li>・複数ジェットにより粗混合状態が促進される状態となった場合は、FCI発生を促進される可能性が考えられる。</li> </ul>                | ・KROTOS 実験<br>・ALPHA 実験 |

### 表 3.1 BWR 体系を踏まえた炉内 FCI 発生の整理



図 3.1 BWR における溶融炉心の流路<sup>[1]</sup>

| 著者         | 会議/文献         | 議論                          |
|------------|---------------|-----------------------------|
| Okkonen 等  | OECD/CSNI     | BWR の圧力容器下部プレナムは、制御棒案内管で密   |
| (1993)     | FCI 専門家会議     | に占められている。そして、炉心の広い範囲でのコヒー   |
|            | (1993)        | レントなリロケーションは、炉心支持板があるため起こ   |
|            | NUREG/CP-0127 | りにくそうである。これらの特徴は、燃料ー冷却材の粗   |
|            |               | 混合のポテンシャルを制限し、水蒸気爆発に起因する水   |
|            |               | - 溶融物スラグの運動エネルギを消失させる可能性が   |
|            |               | ある。従って、スラグにより破壊された圧力容器ヘッド   |
|            |               | のミサイルに伴う格納容器破損は、PWR を対象とした  |
|            |               | 研究よりも BWR の方が起こりにくいと評価される。  |
| Theofanous | NUREG/CR-5960 | 下部プレナムには、密に詰められた制御棒案内管があ    |
| 等(1994)    |               | るため、BWR は炉内水蒸気爆発問題の対象とならない。 |
| Corradini  | SERG-2 ワークシ   | 物理的なジオメトリは爆発的事象の発生に貢献しな     |
| (1996)     | ョップ(1996)     | いため、BWR のαモード格納容器破損確率は、おそら  |
|            | NUREG-1524    | く PWR より小さい。                |
| Zuchuat 等  | OECD/CSNI     | 下部プレナム構造物の存在は、水蒸気爆発の影響を緩    |
| (1997)     | FCI 専門家会議     | 和する。                        |
|            | (1997)        | 一般に、BWR の現在の知見は、炉内水蒸気爆発は格   |
|            | JAERI-Conf    | 納容器への脅威とならないということである。       |
|            | 97-011        | (NUREG/CR-5960 を参考文献としている)  |

表 4.1 BWR 体系における炉内 FCI 現象の発生確率に関する議論の整理

「水素燃焼」及び「溶融物直接接触(シェルアタック)」を 格納容器破損モードの評価対象から除外する理由

「実用発電用原子炉に係る炉心損傷防止対策及び格納容器(PCV)破損防止対策の有効性評価に関する審査ガイド」(有効性評価ガイド)では、必ず想定する PCV 破損モードの1つとして水素燃焼及び格納容器直接接触(シェルアタック) が挙げられている。

一方、有効性評価ガイドに基づき、格納容器破損モード抽出のための個別プ ラント評価として実施した、KK6/7 号機(ABWR)の内部事象運転時レベル 1.5PRA では、水素燃焼及び格納容器直接接触(シェルアタック)を PCV 破損モ ードの評価対象から除外している。以下に、除外理由の詳細を示す。

○「水素燃焼」の除外理由

有効性評価ガイドにおける、「水素燃焼」の現象の概要は以下の通りである。

原子炉格納容器内に酸素等の反応性のガスが混在していると、水-ジル コニウム反応等によって発生した水素と反応することによって激しい燃 焼が生じ、原子炉格納容器が破損する場合がある。

・ 炉心損傷に伴う PCV 内の気体の組成及び存在割合の変化

KK6/7(ABWR)では、運転中は PCV 内を常時窒素で置換しており、酸素の濃度は 3.5%以下に管理されている。一般に可燃限界とされている濃度は、水素が 4%以上かつ酸素が 5%以上の場合である。

水-ジルコニウム反応の程度や水蒸気等他の気体の存在割合にも依るが、 燃料温度の著しい上昇に伴って水-ジルコニウム反応が生じる状況になれば、 水素濃度は4%をほぼ上回る。

一方酸素は、事象発生前から PCV 内に存在している量の他には水の放射 線分解によって生じるのみである。このため、炉心損傷後の PCV 内での水 素燃焼の発生を考慮する際には、酸素濃度に着目する必要がある。なお、 水の放射線分解による酸素濃度の上昇に対して保守的なシナリオで評価し ても、事象発生から7日以内に酸素濃度が5%を超えることは無い。

・内部事象運転時レベル 1.5PRA の格納容器破損モードから除外する理由

内部事象運転時レベル 1.5PRA において、仮にイベントツリーに水素燃焼に関するヘディングを設けたとしても、上記の通り、7日以内に酸素濃度が5%を超えることは無く、また、7日以上 PCV の機能を維持(破損を防止)

しながら酸素濃度の上昇については何も対応しない状況は考え難いことを 考えると、水素燃焼に関するヘディングの分岐確率は0となる。

内部事象運転時レベル 1.5PRA は、格納容器破損のシーケンスに加えて 格納容器破損頻度(CFF)を求める評価であることから、発生する状況が想定 されない水素燃焼を評価対象とすることは適切でないと考える。

上記の理由により、水素燃焼は内部事象運転時レベル 1.5PRA の対象か ら除外した。但し、有効性評価においては、酸素濃度の観点で最も厳しい シナリオを考慮し、可燃限界に至らないことを示している。

なお、PCV 外部からの空気の流入によって酸素濃度が上昇する場合については、既に PCV の隔離機能が失われている状況であるため、内部事象運転時レベル 1.5PRA の対象外となる。

○「溶融物直接接触(シェルアタック)」の除外理由

有効性評価ガイドにおける、「溶融物直接接触(シェルアタック)」の現象の 概要は以下の通りである。

原子炉圧力容器内の溶融炉心が原子炉格納容器内の床上へ流れ出す時 に、溶融炉心が床面で拡がり原子炉格納容器の壁に接触することによって、 原子炉格納容器が破損する場合がある。

・シェルアタックについて

シェルアタックについては、NUREG/CR-6025<sup>[1]</sup>において、BWR MARK I型 PCV に対する検討が実施されている。BWR MARK I型 PCV における シェルアタックのメカニズムは次の通り。

炉心損傷後、原子炉圧力容器底部から流出した溶融炉心はペデスタル部 に落下する。この時、BWR MARK I 型 PCV はペデスタル部に切れ込み(図 1)があるため、溶融炉心がペデスタル床面に広がった場合、溶融炉心が切れ 込みからペデスタル部の外側に流出して PCV の壁面(金属製のライナー部 分)に接触する可能性(図 2)がある。

この事象は、PCVの構造上、BWR MARK I型 PCV 特有である。

・内部事象運転時レベル 1.5PRA の格納容器破損モードから除外する理由

KK6/7(ABWR)の RCCV 型 PCV のペデスタルの側面は、二重の円筒鋼板 内部にコンクリートを充填した壁で囲まれており、BWR MARK I 型 PCV の様な切れ込みを持たない構造(図 3, 4)であるため、溶融炉心がペデスタル 床面で広がった場合でも、ペデスタル外側へ溶融炉心が流れ出ることは無 い。この様に、ABWR では構造的に発生しない PCV 破損モードであるこ とから、内部事象運転時レベル 1.5PRA の対象から除外した。なお、同様の理由により、有効性評価の対象からも除外している。

以 上

### 参考文献

[1] NUREG/CR-6025, The Provability of Mark-I Containment Failure by Melt-Attack of the Liner, U.S. Nuclear Regulatory Commission (1993)



図1BWR MARK I型 PCV におけるシェルアタックのイメージ(側面図)[1]



図2 BWR MARK I型 PCV における溶融炉心のペデスタル外側への流出のイメージ[1]

図3RCCV型格納容器の構造



柏崎刈羽原子力発電所6号機及び7号機 内的事象出力運転時レベル1.5PRAイベントツリー集 目 次

- 1. TQUX P2  $\sim$  P6
- 2. TQUV P7  $\sim$  P8
- 3. LOCA P9  $\sim$  P10
- 4. TBD P11  $\sim$  P12
- 5. TBU P13  $\sim$  P18
- 6. TBP P19  $\sim$  P23
- 7. 長期 TB P24 ~ P26

o格納容器イベントツリーの最終状態について

各格納容器イベントツリーの最終状態には、以下の格納容器破損モードの IDを割り付けた。なお、格納容器の健全性が維持される事故シーケンス(圧 力容器内で事故収束、格納容器内で事故収束)についても PCV 破損モードの ID を割り付けた。また、一部の ID には、DW、SP という ID が末尾に追加 されているが、これはソースターム評価用に設定しているものであり、レベ ル 1.5 の評価では考慮不要である。

- OKV: RPV 内で事象収束
- OKP: PCV 内で事象収束
- FOP:過圧破損
- FOT:過温破損
- FPE:水蒸気爆発(FCI)
- FCCI:コア・コンクリート反応継続(MCCI)
- FDCH:格納容器雰囲気直接加熱(DCH)
- PBYP:PCV 隔離失敗

ET名称:TQUX.et//TQUX(\*1)

| CCFP                                                         |                         |                        |                        |     |                       |                       |      |      |  |
|--------------------------------------------------------------|-------------------------|------------------------|------------------------|-----|-----------------------|-----------------------|------|------|--|
| 発生頻度<br>( <i>入</i> 炉年)                                       |                         |                        |                        |     |                       |                       |      |      |  |
| 最終状態                                                         |                         | TQUX.et//T3A(*1)(*1) ~ | TQUX.et//T3B(*1)(*1) ~ | FPE | TQUX.et//T3B(*2)(*1)~ | TQUX.et//T3B(*3)(*1)~ | FDCH | РВҮР |  |
| No.                                                          |                         | 6 – 8                  | 9 – 16                 | 17  | 18 – 25               | 26 - 33               | 34   | 35   |  |
| 原子炉減 損傷炉心 RPV破損 下部D/W RPV破損 DCHによ<br>圧 注水 なし(IVR) り 爆発なし 損なし | CX CV IVR CLD1 FCIR DCH |                        |                        |     |                       |                       |      |      |  |
| PCV隔離                                                        | CIS                     |                        |                        |     |                       |                       |      |      |  |
| プラント損<br>傷状態<br>TQUX                                         | TQUX                    |                        |                        |     |                       |                       |      |      |  |

# ET名称:TQUX.et//T3A(\*1)(\*1)

| CCFP                   |         |     |       |       |  |
|------------------------|---------|-----|-------|-------|--|
| 発生頻度<br>( <i>入</i> 炉年) |         |     |       |       |  |
| 最終状態                   |         | ЛХО | FOPDW | FOPSP |  |
| No.                    |         | 9   | 7     | 8     |  |
| 建屋トップ<br>ベント           | TOPVENT |     |       |       |  |
| PCV破損<br>箇所            | HASON   |     |       |       |  |
| PCVベン<br>ト             | CWD     |     |       |       |  |
| 上部D/W<br>スプレイ<br>(RHR) | CUDR    |     |       |       |  |
| T1/T2の<br>後続事象         | T3A     |     |       |       |  |

# ET名称:TQUX.et//T3B(\*1)(\*1)

| CCFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |     |      |     |       |       |      |     |     |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |     |      |     |       |       |      |     |     |  |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | 6   | 10   | 11  | 12    | 13    | 14   | 15  | 16  |  |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOPVENT        |     |      |     |       |       |      |     |     |  |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOSAH          |     |      |     |       |       |      |     |     |  |
| PC<br>く<br>ド                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CWD            |     |      |     |       |       |      |     |     |  |
| デブ<br>却(<br>事)<br>が<br>し<br>し<br>か<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>た<br>し<br>で<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>し<br>た<br>で<br>思<br>に<br>事<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>書<br>に<br>ま<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>の | MCCI1          |     |      |     |       |       |      |     |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FCIP           |     |      |     |       |       |      |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CUDR           |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CLD2R          |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |  |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T3B            |     |      |     |       |       |      |     |     |  |

# ET名称:TQUX.et//T3B(\*2)(\*1)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _              | _   | _    | _   | _     | _     | _    | _   | _   | _ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|---|
| CCFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |     | _    |     |       |       | _    |     |     |   |
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |     |      |     |       |       |      |     |     |   |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |   |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 18  | 19   | 20  | 21    | 22    | 23   | 24  | 25  |   |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOPVENT        |     |      |     |       | Π     |      |     |     |   |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HASON          |     |      |     |       |       |      |     |     |   |
| PCVベン<br>ト                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CWD            |     |      |     |       |       | Π    |     |     |   |
| バブン<br>地(事)<br>水(手)<br>大<br>大<br>の<br>で<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し | MCCI1          |     |      |     |       |       |      |     |     |   |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FCIP           |     |      |     |       |       |      |     |     |   |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUDR           |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |   |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T3B            |     |      |     |       |       |      |     |     |   |

ET名称:TQUX.et//T3B(\*3)(\*1)

| ЭFР                         |                |     |      |     |       |       |      |     |                   |  |
|-----------------------------|----------------|-----|------|-----|-------|-------|------|-----|-------------------|--|
| 00                          |                |     |      |     |       |       |      |     |                   |  |
| 発生頻度<br>( <i>入</i> 炉年)      |                |     |      |     |       |       |      |     |                   |  |
| 最終状態                        |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT               |  |
| No.                         |                | 26  | 27   | 28  | 29    | 30    | 31   | 32  | 33                |  |
| 建屋トップ<br>ベント                | TOPVENT        |     |      |     |       |       |      |     |                   |  |
| PCV破損<br>箇所                 | HASON          |     |      |     |       |       |      |     |                   |  |
| PC<br>く<br>ド                | CWD            |     |      |     |       |       | Π    |     |                   |  |
| デ                           | MCCI1          |     |      |     |       |       |      |     |                   |  |
| PCV注水<br>時水蒸気<br>爆発なし       | FCIP           |     |      |     |       |       |      |     |                   |  |
| 上部D/W<br>スプレイ<br>(RHR)      | CUDR           |     |      |     |       |       |      |     | $\prod_{i=1}^{n}$ |  |
| 下部D/W<br>注水<br>(RPV碌<br>損口) | CLD2R          |     |      |     |       |       |      |     |                   |  |
| 下部D/W<br>注水(代<br>替注水)       | <b>CLD2ALT</b> |     |      |     |       |       |      |     |                   |  |
| T1/T2の<br>後続事象              | T3B            |     |      |     |       |       |      |     |                   |  |

### ET名称:TQUV.et//TQUV(\*1)

| CCFP                                         |      |                        |      |  |
|----------------------------------------------|------|------------------------|------|--|
| 発生頻度<br>( <i>入</i> 炉年)                       |      |                        |      |  |
| 最終状態                                         |      | TQUV.et//T3B(*1)(*1) ← | РВҮР |  |
| No.                                          |      | 9 - 16                 | 17   |  |
| RFV<br>破<br>海<br>米<br>系<br>の<br>し            | FCIR |                        |      |  |
| 下部D/M<br>専門水張                                | CLD1 |                        |      |  |
| PCV隔離                                        | CIS  |                        |      |  |
| プラント<br>し<br>う<br>し<br>し<br>し<br>し<br>し<br>し | TQUV |                        |      |  |

# ET名称:TQUV.et//T3B(\*1)(\*1)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                | _   | _    | _   | _     | _     | _    | _   | _   | _ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|---|
| CCFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |     |      |     |       |       |      |     |     |   |
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |      |     |       |       |      |     |     |   |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |   |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 6   | 10   | 11  | 12    | 13    | 14   | 15  | 16  |   |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOPVENT        |     |      |     |       |       |      |     |     |   |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NOSAH          |     |      |     |       |       |      |     |     |   |
| PCVベン<br>ト                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CWD            |     |      |     |       |       | Π    |     |     |   |
| デブリ<br>地<br>(事)<br>大<br>し<br>(<br>中<br>一<br>で<br>の<br>し<br>、<br>の<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>で<br>し<br>つ<br>た<br>い<br>た<br>い<br>し<br>で<br>し<br>で<br>う<br>い<br>た<br>い<br>た<br>い<br>つ<br>た<br>い<br>や<br>い<br>で<br>う<br>い<br>や<br>い<br>つ<br>た<br>い<br>や<br>い<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い | MCCI1          |     |      |     |       |       |      |     |     |   |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCIP           |     |      |     |       |       |      |     |     |   |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUDR           |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLD2R          |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |   |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T3B            |     |      |     |       |       |      |     |     |   |

### ET名称:LOCA.et//LOCA(\*1)

| ( / 炉年 )   221         |      |                       |     |      |  |
|------------------------|------|-----------------------|-----|------|--|
| 最終状態                   |      | LOCA.et//T3B(*2)(*1)~ | FPE | РВҮР |  |
| No.                    |      | 6 – 13                | 14  | 15   |  |
| KFV 破損<br>時水蒸気<br>爆発なし | FCIR |                       |     |      |  |
| ト部D∕W<br>事前水張<br>り     | CLD1 |                       |     |      |  |
| RPV破損<br>なし(IVR)       | IVR  |                       |     |      |  |
| 御<br>子<br>(<br>代<br>の  | СV   |                       |     |      |  |
| PCV隔離                  | CIS  |                       |     |      |  |
| フラント損<br>傷状態<br>LOCA   | LOCA |                       |     |      |  |

# ET名称:LOCA.et//T3B(\*2)(\*1)

| CFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |      |     |       |       |      |     |     |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|--|
| č                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |      |     |       |       |      |     |     |  |
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |     |      |     |       |       |      |     |     |  |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | 6   | 7    | 8   | 6     | 10    | 11   | 12  | 13  |  |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOPVENT        |     |      |     |       | Π     |      |     |     |  |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HASON          |     |      |     |       |       |      |     |     |  |
| PCVベン<br>ト                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CWD            |     |      |     |       |       |      |     |     |  |
| バブン<br>地(事)<br>水(手)<br>大<br>大<br>の<br>で<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し | MCCI1          |     |      |     |       |       |      |     |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FCIP           |     |      |     |       |       |      |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CUDR           |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |  |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T3B            |     |      |     |       |       |      |     |     |  |

| -            |
|--------------|
| $\sim$       |
| _            |
|              |
| *            |
| $\sim$       |
| $\sim$       |
|              |
| $\sim$       |
| ш            |
|              |
|              |
| Ś. –         |
|              |
| $\sim$       |
|              |
| <b>T</b> .   |
| Ð            |
| -            |
| $\sim$       |
|              |
| $\mathbf{m}$ |
| ш            |
|              |
|              |
|              |
| ••           |
|              |
| 2            |
| <u>32</u>    |
|              |
|              |
| וות          |
| 77           |
| 1.1          |
|              |
| i.c.         |
|              |

| CCFP                    |      |                       |      |      |  |
|-------------------------|------|-----------------------|------|------|--|
| 発生頻度<br>( <i>入</i> 炉年)  |      |                       |      |      |  |
| 最終状態                    |      | TBD.et//T3E(*1)(*1) ✓ | FDCH | РВҮР |  |
| No.                     |      | 3                     | 4    | 5    |  |
| DCHによ<br>るPCV破<br>損なし   | рсн  |                       |      |      |  |
| RPV破損<br>時水蒸気<br>爆発なし   | FCIR |                       |      |      |  |
| 下部D/W<br>事前水張<br>り      | CLD1 |                       |      |      |  |
| RPV破損<br>なし(IVR)        | IVR  |                       |      |      |  |
| 損傷炉心<br>注水              | cV   |                       |      |      |  |
| AC電源復<br>旧(RPV破<br>損前)  | ACRR |                       |      |      |  |
| 原子炉減<br>圧               | сX   |                       |      |      |  |
| DC電源復<br>IE(RPV破<br>損前) | DCRR |                       |      |      |  |
| PCV隔離                   | CIS  |                       |      |      |  |
| プラント損<br>傷状態<br>TBD     | TBD  |                       |      |      |  |

| $\sim$                  |
|-------------------------|
| —                       |
| ×                       |
| Ű                       |
| $\sim$                  |
| -                       |
| ×                       |
| Ű                       |
| ш                       |
| $\overline{\mathbf{a}}$ |
| 11                      |
|                         |
| $\sim$                  |
| <hr/>                   |
| £.                      |
| To a                    |
| ۳.                      |
| $\mathbf{n}$            |
|                         |
| ш                       |
|                         |
| •                       |
| •••                     |
| 10                      |
| 52                      |
|                         |
| NП                      |
| ×+                      |
|                         |
| 1                       |
| ш                       |
|                         |

| CCFP                                                                            |                |     |  |
|---------------------------------------------------------------------------------|----------------|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                          |                |     |  |
| 最終状態                                                                            |                | FOT |  |
| No.                                                                             |                | 3   |  |
| 建屋トップ<br>ベント                                                                    | TOPVENT        |     |  |
| PCV破損<br>箇所                                                                     | NOSAH          |     |  |
| PCVベン<br>ト                                                                      | CWD            |     |  |
| ボブン<br>地 (神)<br>水<br>(神)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世 | MCCI1          |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                           | FCIP           |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                          | CUDR           |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                     | CLD2R          |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                           | <b>CLD2ALT</b> |     |  |
| AC電源<br>復旧<br>(PCV破<br>損前)                                                      | ACRP           |     |  |
| DC電源<br>復旧<br>(PCV破<br>損前)                                                      | DCRP           |     |  |
| T1/T2の<br>後続事象                                                                  | T3E            |     |  |

| CCFP                       |      |                     |                      |     |                       |                      |                     |      |      |   |  |  |
|----------------------------|------|---------------------|----------------------|-----|-----------------------|----------------------|---------------------|------|------|---|--|--|
| 発生頻度<br>( <i>入</i> 炉年)     |      |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| 最終状態                       |      | TBU.et//T3A(*1)(*1) | TBU.et//T3B(*1)(*1)∕ | FPE | TBU.et//T3B(*2)(*1) ✓ | TBU.et//T3D(*1)(*1)∕ | TBU.et//T3D(*2)(*1) | FDCH | РВҮР |   |  |  |
| No.                        |      | 2 – 6               | 10 - 17              | 18  | 19 – 26               | 27 – 35              | 36 - 44             | 45   | 46   |   |  |  |
| DCHIこよ<br>るPCV破<br>損なし     | DCH  |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| RPV破損<br>時水蒸気<br>爆発なし      | FCIR |                     |                      |     |                       |                      |                     |      | -    |   |  |  |
| 下部D/W<br>事前水張<br>り         | CLD1 |                     | Π                    |     |                       |                      |                     |      |      |   |  |  |
| RPV破損<br>なし(IVR)           | IVR  |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| 損<br>御<br>行<br>水           | CΛ   |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| AC電源<br>後旧<br>(RPV破<br>損前) | ACRR |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| 原子炉減圧                      | СХ   |                     |                      |     |                       |                      |                     |      | Π    |   |  |  |
| 是<br>是<br>的<br>人<br>日<br>日 | CIS  |                     |                      |     |                       |                      |                     |      |      |   |  |  |
| プラント損<br>傷状態<br>TBU        | TBU  |                     |                      |     |                       |                      |                     |      |      | _ |  |  |
# ET名称:TBU.et//T3A(\*1)(\*1)

| vプ No. 撮 |
|----------|
| ENT      |
| 7        |
| 8        |
| 6        |
|          |
|          |

### ET名称:TBU.et//T3B(\*1)(\*1)

| CCFP                                                                                  |                |     |      |     |       |       |      |     |     |  |
|---------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                                |                |     |      |     |       |       |      |     |     |  |
| 最終状態                                                                                  |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |  |
| No.                                                                                   |                | 10  | 11   | 12  | 13    | 14    | 15   | 16  | 17  |  |
| 建屋トップ<br>ベント                                                                          | TOPVENT        |     |      |     |       |       |      |     |     |  |
| PCV破損<br>箇所                                                                           | HASON          |     |      |     |       |       |      |     |     |  |
| PCVベン<br>ト                                                                            | CWD            |     |      |     |       |       |      |     |     |  |
| デブン<br>む(神)<br>が<br>(時)<br>(時)<br>(日)<br>(日)<br>(日)<br>(日)<br>(日)<br>(日)<br>(日)<br>(日 | MCCI1          |     |      |     |       |       |      |     |     |  |
| FCV注水<br>時水蒸気<br>爆発なし                                                                 | FCIP           |     |      |     |       |       |      |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                | CUDR           |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                           | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                 | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |  |
| T1/T2の<br>後続事象                                                                        | T3B            |     |      |     |       |       |      |     |     |  |

## ET名称:TBU.et//T3B(\*2)(\*1)

| CCFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |     |      |     |       |       |      |     |     |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |     |      |     |       |       |      |     |     |  |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |  |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | 19  | 20   | 21  | 22    | 23    | 24   | 25  | 26  |  |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TOPVENT        |     |      |     |       |       |      |     |     |  |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOSAH          |     |      |     |       |       |      |     |     |  |
| PC<br>く<br>ド                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CWD            |     |      |     |       |       |      |     |     |  |
| デブン<br>む(<br>神(<br>事)<br>を<br>し<br>し<br>た<br>し<br>か<br>し<br>た<br>し<br>や<br>し<br>た<br>し<br>や<br>し<br>た<br>し<br>や<br>た<br>し<br>や<br>し<br>や<br>し<br>や<br>し<br>や<br>し<br>や<br>た<br>し<br>や<br>し<br>や<br>し<br>や<br>し<br>で<br>か<br>し<br>や<br>し<br>か<br>し<br>や<br>い<br>か<br>し<br>や<br>い<br>か<br>し<br>や<br>い<br>か<br>し<br>や<br>い<br>か<br>し<br>や<br>い<br>か<br>し<br>や<br>い<br>か<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>や<br>い<br>い<br>や<br>い<br>い<br>い<br>や<br>い<br>や<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い<br>い | MCCI1          |     |      |     |       |       |      |     |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FCIP           |     |      |     |       |       |      |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CUDR           |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>CLD2ALT</b> |     |      | _   | _     | _     | _    | _   | _   |  |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T3B            |     |      |     |       |       |      |     |     |  |

| _            |
|--------------|
|              |
| ×            |
| $\approx$    |
| —            |
| . <b>*</b> . |
| ×            |
| ×            |
| Ľ            |
| 1            |
| ~            |
| يد           |
| e.           |
|              |
| ш            |
| F            |
|              |
|              |
| ¥            |
| NΠ           |
| 14           |
|              |
| ш            |
|              |

| ССЕР                                                                                   |                |     |      |     |       |       |      |     |     |     |  |
|----------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|-----|--|
| 発生頻度<br>(ノ炉年)                                                                          |                |     |      |     |       |       |      |     |     |     |  |
| 最終状態                                                                                   |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT | FOT |  |
| No.                                                                                    |                | 77  | 28   | 29  | 30    | 31    | 32   | 33  | 34  | 35  |  |
| 建屋トップ<br>ベント                                                                           | TOPVENT        |     |      |     |       |       |      |     |     |     |  |
| PCV破損<br>箇所                                                                            | HASON          |     |      |     |       |       |      |     |     |     |  |
| PC<br>く<br>、<br>、<br>ト                                                                 | CWD            |     |      |     |       |       |      |     |     |     |  |
| デ<br>「<br>」<br>り<br>り<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し | MCCI1          |     |      |     |       |       |      | Π   |     |     |  |
| PCV洋水<br>時米蒸気<br>線発なし                                                                  | FCIP           |     |      |     |       |       |      |     |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                 | CUDR           |     |      |     |       |       |      |     |     |     |  |
| 「<br>本部D/W<br>(KPV<br>協□)                                                              | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                  | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |     |  |
| AC電源<br>復旧<br>(PCV破<br>損前)                                                             | ACRP           |     |      |     |       |       |      |     |     |     |  |
| T1/T2の<br>後続事象                                                                         | T3D            |     |      |     |       |       |      |     |     |     |  |

| _           |
|-------------|
| $\subseteq$ |
| ÷           |
| ب           |
| ିଲ          |
| ¥           |
| ÿ           |
|             |
| က           |
| Ε.          |
| ~           |
| L.          |
| ē           |
| <u> </u>    |
| 2           |
| щ           |
| F           |
| ••          |
| ڪر          |
| ÷           |
| Ы           |
| 75          |
|             |
| ш           |

| ССЕР                                                                                                                                                                          |         |     |      |     |       |       |      |     |     |     |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|------|-----|-------|-------|------|-----|-----|-----|--|
| 発生頻度<br>(ノ炉年)                                                                                                                                                                 |         |     |      |     |       |       |      |     |     |     |  |
| 最終状態                                                                                                                                                                          |         | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT | FOT |  |
| No.                                                                                                                                                                           |         | 36  | 37   | 38  | 39    | 40    | 41   | 42  | 43  | 44  |  |
| 建屋トップ<br>ベント                                                                                                                                                                  | TOPVENT |     |      |     |       |       |      |     |     |     |  |
| PCV破損<br>箇所                                                                                                                                                                   | HASON   |     |      |     |       |       |      |     |     |     |  |
| ト<br>C<br>く<br>ズ<br>く                                                                                                                                                         | CWD     |     |      |     |       |       |      |     |     |     |  |
| ポブラ<br>地(神)<br>予第の<br>で<br>手<br>で<br>子<br>の<br>子<br>の<br>子<br>の<br>子<br>に<br>の<br>の<br>の<br>の<br>の<br>の<br>の<br>ろ<br>の<br>し<br>ろ<br>の<br>ろ<br>の<br>ろ<br>の<br>ろ<br>の<br>ろ<br>の | MCCI1   |     |      |     |       |       |      |     |     |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                         | FCIP    |     |      |     |       |       |      |     |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                        | CUDR    |     |      |     |       |       |      |     |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                   | CLD2R   |     |      |     |       |       |      |     |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                         | CLD2ALT |     |      |     |       |       |      |     |     |     |  |
| AC電源<br>後旧<br>(PCV破<br>損煎)                                                                                                                                                    | ACRP    |     |      |     |       |       |      |     |     |     |  |
| T1/T2の<br>後続事象                                                                                                                                                                | T3D     |     |      |     |       |       |      |     |     |     |  |

| <sup></sup><br>拒年)<br>CCFP |      |                       |                       |     |                       |                       |      |  |
|----------------------------|------|-----------------------|-----------------------|-----|-----------------------|-----------------------|------|--|
| 最終状態<br>〔✓                 |      | TBP.et//T3A(*1)(*1) ~ | TBP.et//T3B(*1)(*1) ~ | FPE | TBP.et//T3B(*2)(*1) ~ | TBP.et//T3D(*1)(*1) ~ | РВҮР |  |
| No.                        |      | 6 – 8                 | 9 - 16                | 17  | 18 – 25               | 26 – 34               | 35   |  |
| RPV破損<br>時水蒸気<br>爆発なし      | FCIR |                       |                       |     |                       |                       |      |  |
| 下部D/W<br>事前水張<br>り         | CLD1 |                       |                       |     |                       |                       |      |  |
| RPV破損<br>なし(IVR)           | IVR  |                       |                       |     |                       |                       |      |  |
| 損傷炉心<br>注水                 | СV   |                       |                       |     |                       |                       |      |  |
| AC電源<br>復旧<br>(RPV破<br>損前) | ACRR |                       |                       |     |                       |                       |      |  |
| PCV隔離                      | CIS  |                       |                       |     |                       |                       |      |  |
| プラント損<br>傷状態<br>TBP        | ТВР  |                       |                       |     |                       |                       |      |  |

## ET名称:TBP.et//T3A(\*1)(\*1)

| CCFP                   |         |     |       |       |  |
|------------------------|---------|-----|-------|-------|--|
| 発生頻度<br>( <i>入</i> 炉年) |         |     |       |       |  |
| 最終状態                   |         | NNO | FOPDW | FOPSP |  |
| No.                    |         | 9   | 7     | 8     |  |
| 建屋トップ<br>ベント           | TOPVENT |     |       |       |  |
| PCV破損<br>箇所            | HASON   |     |       |       |  |
| PCVベン<br>ト             | CWD     |     |       |       |  |
| 上部D/W<br>スプレイ<br>(RHR) | CUDR    |     |       |       |  |
| T1/T2の<br>後続事象         | T3A     |     |       |       |  |

## ET名称:TBP.et//T3B(\*1)(\*1)

| CCFP                                                                                   |                |     |      |     |       |       |      |     |     |  |
|----------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                                 |                |     |      |     |       |       |      |     |     |  |
| 最終状態                                                                                   |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |  |
| No.                                                                                    |                | 6   | 10   | 11  | 12    | 13    | 14   | 15  | 16  |  |
| 建屋トップ<br>ベント                                                                           | TOPVENT        |     |      |     |       |       |      |     |     |  |
| PCV破損<br>箇所                                                                            | HASON          |     |      |     |       |       |      |     |     |  |
| PCVベン<br>ト                                                                             | CWD            |     |      |     |       |       | Π    |     |     |  |
| デブン<br>地 (神)<br>水<br>(神)<br>(時)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世)<br>(世 | MCCI1          |     |      |     |       |       |      |     |     |  |
| FCV注水<br>時水蒸気<br>爆発なし                                                                  | FCIP           |     |      |     |       |       |      |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                 | CUDR           |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                            | CLD2R          |     |      |     |       |       |      |     |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                  | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |  |
| T1/T2の<br>後続事象                                                                         | T3B            |     |      |     |       |       |      |     |     |  |

### ET名称:TBP.et//T3B(\*2)(\*1)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                |     |      |     |       |       |      |     |     | - |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|---|
| CCFP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |     |      |     |       |       |      |     |     |   |
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |     |      |     |       |       |      |     |     |   |
| 最終状態                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                | ОКР | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT |   |
| No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 18  | 19   | 20  | 21    | 22    | 23   | 24  | 25  |   |
| 建屋トップ<br>ベント                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOPVENT        |     |      |     |       | Π     |      |     |     |   |
| PCV破損<br>箇所                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | HASON          |     |      |     |       |       |      |     |     |   |
| PCVベン<br>ト                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CWD            |     | Π    |     |       |       | Π    |     |     |   |
| バブン<br>地(事)<br>水(手)<br>大<br>大<br>の<br>で<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>、<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し | MCCI1          |     |      |     |       |       |      |     |     |   |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FCIP           |     |      |     |       |       |      |     |     |   |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CUDR           |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLD2R          |     |      |     |       |       |      |     |     |   |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |   |
| T1/T2の<br>後続事象                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T3B            |     |      |     |       |       |      |     |     |   |

| $\sim$       |
|--------------|
| <del>.</del> |
| $\asymp$     |
| ¥            |
| Ř            |
| 31           |
| F            |
| 5            |
| et           |
| ם.           |
| B            |
| F            |
|              |
| 첛            |
| 名            |
| F.           |
| ш            |

| CCFP                                                                                                                                                                                                   |         |     |      |     |       |       |      |     |     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|------|-----|-------|-------|------|-----|-----|-----|
| 発生頻度<br>( <i>入</i> 炉年)                                                                                                                                                                                 |         |     |      |     |       |       |      |     |     |     |
| 最終状態                                                                                                                                                                                                   |         | окр | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT | FOT |
| No.                                                                                                                                                                                                    |         | 26  | 27   | 28  | 29    | 30    | 31   | 32  | 33  | 34  |
| よした<br>パント<br>ベント                                                                                                                                                                                      | TOPVENT |     |      |     |       |       |      |     |     |     |
| PCV破損<br>箇所                                                                                                                                                                                            | HASON   |     |      |     |       |       |      |     |     |     |
| PC<br>ト                                                                                                                                                                                                | CWD     |     |      |     |       |       |      |     |     |     |
| デレン<br>オ(神)<br>予第の<br>で<br>手<br>で<br>子<br>の<br>子<br>の<br>子<br>の<br>子<br>に<br>の<br>で<br>し<br>で<br>し<br>ろ<br>の<br>で<br>ろ<br>の<br>ろ<br>の<br>で<br>ろ<br>の<br>ろ<br>の<br>ろ<br>の<br>の<br>ろ<br>の<br>の<br>の<br>の | MCCI1   |     |      |     |       |       |      |     |     |     |
| PCV注水<br>時水蒸気<br>爆発なし                                                                                                                                                                                  | FCIP    |     |      |     |       |       |      |     |     |     |
| 上部D/W<br>スプレイ<br>(RHR)                                                                                                                                                                                 | CUDR    |     |      |     |       |       |      |     |     |     |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                                                                                                                            | CLD2R   |     |      |     |       |       |      |     |     |     |
| 下部D/W<br>注水(代<br>替注水)                                                                                                                                                                                  | CLD2ALT |     |      |     |       |       |      |     |     |     |
| AC電源<br>後旧<br>(PCV破<br>損前)                                                                                                                                                                             | ACRP    |     |      |     |       |       |      |     |     |     |
| T1/T2の<br>後続事象                                                                                                                                                                                         | T3D     |     |      |     |       |       |      |     |     |     |

|               | No.                                                                                              |
|---------------|--------------------------------------------------------------------------------------------------|
|               | 建屋トップ<br>ベント                                                                                     |
| (*1)          | DCHによ<br>るPCV破                                                                                   |
| 'B.et//TB     | RPV破損<br>時水蒸気                                                                                    |
| <b>丁名称∶</b> ⊺ | ₩<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
| ш             | RPV破損<br>なし(IVR)                                                                                 |
|               | 損傷炉心<br>注水                                                                                       |
|               | AC電源<br>復旧<br>(RPV破                                                                              |
|               | 原子炉減<br>圧                                                                                        |
|               |                                                                                                  |

| CCFP                       |              |                                                                    |
|----------------------------|--------------|--------------------------------------------------------------------|
| 発生頻度<br>(                  |              |                                                                    |
| 最終状態                       |              | TB.et//T3D(*2)(*1)~<br>FDCH<br>TB.et//T3E(*1)(*1)~<br>FDCH<br>PBYP |
| No.                        |              | 8 - 16<br>17<br>18<br>19<br>20                                     |
| 建屋トップ<br>ベント               | TOPVEN<br>T1 |                                                                    |
| DCHIこよ<br>るPCV破<br>損なし     | рсн          |                                                                    |
| RÞV破損<br>時水蒸気<br>爆発なし      | FCIR         | [ [ ] ]                                                            |
| 下部D/W<br>事前水張<br>り         | CLD1         |                                                                    |
| RPV破損<br>なし(IVR)           | IVR          |                                                                    |
| 橫<br>御<br>心<br>い           | сv           |                                                                    |
| AC電源<br>後旧<br>(RPV破<br>損煎) | ACRR         |                                                                    |
| 原子<br>石<br>正               | сх           |                                                                    |
| DC電源<br>後日<br>(RPV破<br>損煎) | DCRR         |                                                                    |
| PCV隔離                      | CIS          |                                                                    |
| プラント損<br>傷状態TB             | TB           |                                                                    |

| CCFP                          |                |     |      |     |       |       |      |     |     |     |  |
|-------------------------------|----------------|-----|------|-----|-------|-------|------|-----|-----|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)        |                |     |      |     |       |       |      |     |     |     |  |
| 最終状態                          |                | окр | FCCI | FPE | FOPDW | FOPSP | FCCI | FPE | FOT | FOT |  |
| No.                           |                | 8   | 6    | 10  | 11    | 12    | 13   | 14  | 15  | 16  |  |
| 建屋トップ<br>ベント                  | TOPVENT        |     |      |     |       |       |      |     |     |     |  |
| PCV破損<br>箇所                   | HASON          |     |      |     |       |       |      |     |     |     |  |
| ト<br>C<br>く<br>ど<br>く         | CWD            |     |      |     |       |       | Π    |     |     |     |  |
| デ                             | MCCI1          |     |      |     | Π     |       |      |     |     |     |  |
| PCV<br>時米<br>様<br>後<br>な<br>て | FCIP           |     |      |     |       |       |      |     |     |     |  |
| 上部D/W<br>スプレイ<br>(RHR)        | CUDR           |     |      |     |       |       |      |     |     |     |  |
| 下部D/W<br>洋大<br>(RPV段<br>満口)   | <b>CLD2R</b>   |     |      |     |       |       |      |     |     |     |  |
| 下部D/W<br>注水(代<br>替注水)         | <b>CLD2ALT</b> |     |      |     |       |       |      |     |     |     |  |
| AC電源<br>確保<br>(PCV敬<br>損前)    | ACRP           |     |      |     |       |       |      |     |     |     |  |
| T1/T2の<br>後続事象                | T3D            |     |      |     |       |       |      |     |     |     |  |

Г

1 1

L

| $\sim$         |
|----------------|
| Σ.             |
| ٣              |
|                |
| *              |
| $\sim$         |
| 8              |
| Ľ.             |
| 5              |
| ~              |
| ř              |
|                |
| m              |
|                |
| ••             |
| ڪر             |
| ₩ <del>R</del> |
| Ы              |
| Ľ              |
| Π.             |
|                |
|                |

| CCFP                                                                                              |                |     |  |
|---------------------------------------------------------------------------------------------------|----------------|-----|--|
| 発生頻度<br>( <i>入</i> 炉年)                                                                            |                |     |  |
| 最終状態                                                                                              |                | FOT |  |
| No.                                                                                               |                | 18  |  |
| 建屋トップ<br>ベント                                                                                      | TOPVENT        |     |  |
| PCV破損<br>箇所                                                                                       | HASON          |     |  |
| PCVベン<br>ト                                                                                        | CWD            |     |  |
| ポブシ<br>地 (神)<br>予<br>第<br>の<br>で<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し<br>し | MCCI1          |     |  |
| PCV注水<br>時水蒸気<br>爆発なし                                                                             | FCIP           |     |  |
| 上部D/W<br>スプレイ<br>(RHR)                                                                            | CUDR           |     |  |
| 下部D/W<br>注水<br>(RPV破<br>損口)                                                                       | CLD2R          |     |  |
| 下部D/W<br>注水(代<br>替注水)                                                                             | <b>CLD2ALT</b> |     |  |
| AC電源<br>復旧<br>(PCV破<br>損前)                                                                        | ACRP           |     |  |
| DC電源<br>復旧<br>(PCV破<br>損前)                                                                        | DCRP           |     |  |
| T1/T2の<br>後続事象                                                                                    | T3E            |     |  |

内部事象運転時レベル 1.5PRA における物理化学現象の考慮

内部事象運転時レベル 1.5PRA では、炉心損傷後に炉内及び格納容器内で発生 する可能性が考えられている以下の物理化学現象を考慮することとし、一定の分 岐確率を設定している。

考慮の対象とした物理化学現象は以下の通り。

- ・格納容器直接加熱(DCH)
- ・炉外溶融燃料-冷却材相互作用(炉外 FCI)
- ・溶融炉心・コンクリート相互作用(MCCI)
- ・炉内溶融物保持(IVR)
- また、分岐確率の算出の流れは以下の通り。
  - ・考慮する物理化学現象を主要過程に分解
  - 分解した中で考慮する物理化学現象に影響が大きいと考えられるパラメータを抽出
  - ・抽出したパラメータの不確かさを考慮した上で各物理化学現象の影響の大 きさの分布を計算
  - ・計算した分布のうち、考慮する物理化学現象による格納容器破損の判定条件 を超える割合(確率)を算出
  - ・上記の割合(確率)を内部事象運転時レベル 1.5PRA の分岐確率に設定

今回の内部事象運転時レベル 1.5PRA で考慮した物理化学現象の分岐確率の設 定の詳細について、物理化学現象毎に次に示す。

この 4 つの物理化学現象の評価モデルは、これまでに得られている知見をもと に構築したものである。一方、今回の評価で設定した物理化学現象のヘディングの 分岐確率は、評価の対象とした物理化学現象が不確実さの大きな現象であること を認識しつつも、現状有している知見をもとに、可能な限りの評価を実施して設定 したものであり、今回設定した値には依然大きな不確実さを含んでいるものと認 識している。

この内 IVR は、その成立によって事象が緩和される側に寄与する点が他の物理 化学現象と異なるが、今回の評価ではヘディングとして設定した。これは、格納容 器イベントツリーで考慮する物理化学現象の選定にあたっては、格納容器に与え る影響が厳しいか、あるいは緩和されるかという観点では無く、考えられる物理化 学現象の可能性を排除しないという観点で選定したためである。

このため、この 4 つの物理化学現象のヘディングの分岐確率のそれぞれの値の 大小は、有効性評価の対象となる評価事故シーケンスを選定する際には影響しない。

- 1. 格納容器直接加熱(DCH)
- (1) 事象の概要

格納容器直接加熱(DCH; Direct Containment Heating)は炉心が損傷、溶融した 後に溶融炉心が原子炉圧力容器(RPV)下部プレナムに落下し、その後 RPV 内が高 圧の状態で RPV 下鏡が破損することで溶融炉心が破損口から噴出し、高速のガス 流によって溶融炉心が微粒子化して原子炉格納容器内に飛散放出され、この飛散 放出された溶融炉心が原子炉格納容器(PCV)内の雰囲気を直接加熱し、原子炉格納 容器圧力及び温度が急上昇する現象である。

(2) 主要過程に関するこれまでの知見

本現象は、シビアアクシデント時に格納容器破損に至る可能性のある現象として、米国原子力規制委員会(NRC)の確率論的安全評価報告書 NUREG-1150<sup>[1-1]</sup>にて新たに考慮されたものである。

DCHの前提となる溶融炉心の飛散放出は、高圧条件下で溶融炉心が原子炉圧力 容器外に噴出される場合に発生する。一方 DCH が生じる圧力には閾値(2 MPa[gage]以下)があり、RPVを減圧することにより、溶融炉心の飛散を抑制ある いは緩和できることが知られている<sup>[1-2]</sup>。

(3) 今回の PRA における扱い

BWR では逃し安全弁を解放することで、DCH が発生する可能性のある圧力(2 MPa[gage])以下まで容易に RPV の圧力を下げることができる。このため、BWR において DCH が発生する可能性は極めて低いものの、原子炉減圧に失敗する場合も考えられるため、今回の内的事象運転時レベル 1.5PRA のイベントツリーでは、DCH についての分岐(ヘディング)を設定している。

分岐確率の算出の考え方(フロー)を図1に示す。算出にあたってはDCHに影響 するパラメータを選定するとともに各パラメータの分布を決定し、これらのパラ メータの組み合わせによる格納容器ピーク圧力を MAAP コードの DCH モデルを 用いて求め、各パラメータを変数とした相関式を作成する。この相関式からパラメ ータの様々な組み合わせにおける格納容器ピーク圧力を求め、ピーク圧力に対す る格納容器破損頻度(格納容器フラジリティ)の関係から格納容器破損確率を求め た。この詳細は次項に示す。

(4) DCH による分岐確率の算出の考え方

①DCH に影響するパラメータの選定

これまでの知見から、DCH は以下の過程に分けられる。

- ・溶融物の放出
- ・液滴の発生
- ・液滴の移行
- ・格納容器雰囲気との相互作用による圧力上昇

これらの各過程に対する現状の知見および DCH に支配的なパラメータについて以下に整理する。

a. 溶融物の放出

DCHにおいてまず重要な過程は、炉心溶融物の圧力容器からの放出である。 炉心溶融の進展により、溶融した炉心は RPV 下部プレナムに移行する。 BWR では炉心下部に制御棒駆動機構ハウジング、ドレンライン等があり、こ れらの貫通配管の破損に伴う溶融物の放出が想定される。また、貫通配管の破 損以外には原子炉圧力容器下鏡のクリープ破断も考えられる。この場合、RPV 下部プレナムの溶融物は、格納容器下部ドライウェル(以下、「ペデスタル」と いう。)の床に堆積すると考えられる。

原子炉圧力容器下部に堆積した溶融炉心の量は、ペデスタルに流出する溶融 炉心の量に影響すると考えられるため、溶融物のペデスタルへの放出挙動は RPV 破損時に<u>下部プレナム内に存在する溶融炉心の量</u>が影響し、その不確か さは大きいと考えられる。

b. 液滴の発生

ペデスタルに放出された炉心溶融物は、ペデスタルの床に落下するものの、 そこに RPV 破損口からの高速蒸気流が吹き付けることによって巻き上げられ、 炉心溶融物の一部が蒸気流中に浮遊して流れる(エントレイン)。その過程でコ リウム液滴が発生し、また、炉心溶融物の一部はペデスタルから上部ドライウ ェル(D/W)に移行する。(図2参照)

c.液滴の移行

液滴状態となった炉心溶融物は蒸気流と共に流動すると考えられるが、その 過程で蒸気流とは異なり、壁面に付着する等の挙動をとる。DCH が発生する ためには、微粒子化した溶融物が壁面に付着することなく上部 D/W に移行す る必要がある。

RCCV 型格納容器のペデスタルの構造から、粒子化したデブリが上部 D/W に移行するには、RPV からペデスタル床方向に流れる蒸気流とは逆方向に流れる必要がある。RCCV 型格納容器では、ベント管を通じた移行が考えられる

がその経路は狭く、エントレインメントされた粒子は移動の過程で運動方向を 変える必要があるため、上部 D/W には移行しにくいと考えられる。

液滴の移行挙動は、RPV からのブローダウンガスの流量およびその継続時間に影響される。RPV からのブローダウンガスの流量およびその継続時間は RPV の破損面積に影響を受けることから、その不確かさは大きいと考えられる。また、上部 D/W への粒子化デブリの移行割合は DCH の程度に直接的に 影響し、その不確かさは大きいと考えられる。

d. 格納容器直接加熱による圧力上昇

上部 D/W に移行した浮遊コリウム粒子は上部 D/W の雰囲気との熱的・化 学的相互作用により、格納容器雰囲気を直接加熱し、非凝縮性ガスの発生や格 納容器圧力の上昇を引き起こす。この加熱の主な原因は、高温の微粒子から雰 囲気ガスへの伝熱によるものである。

DCH 時の格納容器のピーク圧力は、圧力容器破損時の格納容器の圧力と、 熱的・化学的相互作用による圧力上昇、およびサプレッションプールへ(S/P)の ベントクリアリングによる圧力抑制効果により決まる。

**RPV**の破損時点での格納容器圧力および上部 D/W の雰囲気との熱的・化学 的相互作用による圧力上昇は、RPV 破損の時点での炉内のジルコニウム酸化 割合が影響すると考えられる。炉内のジルコニウム酸化割合が高いと、発生し ている水素の量が多く、RPV 破損の時点での D/W 圧力が高くなる。一方、<u>炉</u> 内のジルコニウム酸化割合が低いと、格納容器雰囲気との相互作用により発生 する水素の量が多くなるため、DCH 発生時の圧力上昇幅が大きくなると考え られるが、炉内のジルコニウム酸化割合については不確かさがあると考える。

以上の DCH 現象の主要過程の知見から、DCH 現象に関する不確かさのパラ メータとして次のパラメータ(上記 a, c, d の下線部)を選定し、確率分布を設定す るものとした。

- ・炉内のジルコニウム酸化割合
- ・RPV 破損面積
- ・下部プレナム内溶融炉心割合
- ・上部 D/W への粒子化デブリ移行割合

②各パラメータへの確率分布の設定

各パラメータへの確率分布及びその設定の考え方を表1に示す。

③DCH 分岐確率の評価

以下の流れで評価した。

- ・DCH の現象の評価に影響し、不確かさの大きいパラメータとして選定した 炉内のジルコニウム酸化割合、RPV 破損面積、下部プレナム内溶融炉心割 合(格納容器へ流出する溶融炉心の割合)および粒子化デブリの上部 D/W へ の移行割合を選定し、各パラメータに確率密度関数(pdf:probability density function)を設定する。
- ・パラメータと DCH 時の格納容器圧力のピーク値との関係(CR: Causal Relation)を作成する。(格納容器圧力のピーク圧力は表2及び表3参照)
- ・格納容器圧力と格納容器破損確率の関係(格納容器フラジリティ)を設定する。 (格納容器温度による格納容器破損の可能性については添付資料 4.1.1.f-1 補 足1参照)
- ・確率密度関数を与えたパラメータのモンテカルロサンプリングを実施し、サンプリングに応じた格納容器ピーク圧力を求め、格納容器フラジリティ(図3)を参照することで格納容器破損確率を評価する。

上記のうち、DCH 時の格納容器ピーク圧力を表す相関式は MAAP の DCH 評価モデルを用いて以下のように作成する。

- ・DCH 時の水-金属反応に影響する D/W の雰囲気条件(水蒸気量)を設定する ため、RPV 破損までの D/W の雰囲気条件を MAAP コードにより評価す る。
- ・各パラメータ(炉内 Zr 酸化割合、RPV 破損面積、下部プレナム溶融炉心割 合、D/W への粒子化デブリ移行割合)を変化させて、DCH 評価モデルによ り RPV 破損後の格納容器圧力上昇分を計算する。
- ・RPV 破損前の格納容器圧力に DCH による圧力上昇分を加えて格納容器圧 力のピーク値を求める。

RPV 破損時の D/W 雰囲気条件が異なる、早期に RPV 破損に至るシナリオ (TQUX シーケンス)および後期に RPV 破損に至るシナリオ(長期 TB シーケン ス)ついて作成した DCH 時の格納容器圧力のピーク値を与える相関式は以下の 通り。

**(TQUX)** Ppeak =  $P_0 + \Delta P$  =

【長期 TB】 Ppeak =  $P_0 + \Delta P$  =

ここで、

- P0 : 圧力容器破損前の格納容器圧力
- **ΔP** : **DCH** 時の加圧量
- X : 炉内 Zr 酸化割合(-)
- A : 圧力容器破損面積(m<sup>2</sup>)
- F : 下部プレナム溶融割合に上部 D/W への粒子化デブリ移行割合を
   乗じた割合(-)
- であり、各係数は最小自乗法によって決定した。

D/W 圧力ピーク値と格納容器破損確率の相関である格納容器フラジリティは、 ABWR 標準安全解析書(SSAR)<sup>[1-3]</sup>に使用されているフラジリティ曲線(図 3 参 照)を用い、幾何標準偏差が 0.16 の対数正規分布を仮定して設定した。

以上の評価方法によって求めた DCH による格納容器破損確率(平均値)は、早期 RPV 破損シナリオ(TQUX シーケンス)において 4.1×10<sup>-5</sup>、後期 RPV 破損シ ナリオ(長期 TB シーケンス)において 2.4×10<sup>-3</sup> となった。

以 上

参考文献

- [1-1] USNRC, "Severe Accident Risks: An Assessment for Five US. Nuclear Power Plants", Final Summary Report, NUREG-1150(1990)
- [1-2] (財)原子力安全研究協会、「次世代型軽水炉の原子炉格納容器設計におけるシビアアクシデントの考慮に関するガイドライン」(1999)
- [1-3] ABWR Standard Safety Analysis Report, GE.

| パラメータ             | 確索公布                                   | 設定の考え方                                                                                                    |
|-------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------|
| (選定の考え方)          | 11111111111111111111111111111111111111 | 取足が与え方                                                                                                    |
| 炉内 Zr 酸化割合        | 分布形:三角分布<br>最小值:0.01                   | <ul> <li>・代表的な PRA(NUREG/CR-4551)での複数の専門家評価の平均値をもとに</li> </ul>                                            |
| (RPV 破損時点での PCV 圧 | 最尤值:0.24                               | 設定                                                                                                        |
| 力,D/W 移行粒子中の Zr   | 最大值:0.53                               | ・最小値は DBA LOCA の上限値に設定                                                                                    |
| 量/DCH 時 Zr 酸化に影響) |                                        |                                                                                                           |
| RPV 破損面積          | 分布形:三角分布<br>最小值:0.02 m <sup>2</sup>    | ・最小値は、下部ヘッドに接続されてい<br>る中で最も細い計装配管相当を想定                                                                    |
| (RPV からのブロータウンガ   | 最无值:                                   | ・最尤値は、CRD 貫通部1本の破損                                                                                        |
| ス流量およいその継続時間      | 最大值:2.0 m <sup>2</sup>                 |                                                                                                           |
| に影響               |                                        | ・                                                                                                         |
| ておやいよく中次副にくす      | 八大式,一年八大                               | (2.0 m)を仮足                                                                                                |
| 「前ノレノム的俗醜炉心割」     | 万                                      | ・ 取小値は俗融物格下平期に下部/ ツト<br>が破場したとして 100/ 伝込号を設定                                                              |
|                   | 取小恒.0.1                                | が吸損したとして10%が心里を成た                                                                                         |
| (全伝心に対して PCV ペデ   | 取⊥삩                                    | ・                                                                                                         |
| スタルへ流出すろ溶融炉心      | 取八世,1.0                                | <ul> <li>・最大値は全量の溶融物が落下するとし。</li> </ul>                                                                   |
| 割合であり、D/Wへの粒子     |                                        | て 100% 炉心量を設定                                                                                             |
| 化デブリ移行割合と合わせ      |                                        |                                                                                                           |
| て DCH 現象の程度に影響)   |                                        |                                                                                                           |
| D/W への粒子化デブリ移行    | Fent×Fpd-out×Fno-impact                | ・D/W へ移行するコリウム粒子割合                                                                                        |
| 割合                | により評価                                  | (Ffrag)は、ペデスタル床上の溶融コリ                                                                                     |
|                   |                                        | ウムがガス流によりエントレインされ                                                                                         |
| (PCV ペデスタル内溶融デブ   | $F_{ent} = 1$                          | る割合(F <sub>ent</sub> )、エントレインされた粒                                                                         |
| リの D/W への移行割合は    | Fpd-out:一様分布                           | 子がペデスタルから開口部へ流出する                                                                                         |
| DCH 現象の程度に直接的に    | 最小值:                                   | 割合(F <sub>pd</sub> -out)、ペデスタル開口部で付                                                                       |
| 影響*)              | 最大值:                                   | 着しない割合(Fno-impact)を考慮し、                                                                                   |
|                   | Fno-impact:一様分布                        | $F_{\rm frag} \!=\! F_{\rm ent} \!\!\times\! F_{\rm pd\text{-}out} \!\!\times\! F_{\rm no\text{-}impact}$ |
|                   | 一様分布                                   | より評価した。                                                                                                   |
|                   | 最小值:0.5                                | ・F <sub>pd-out</sub> やF <sub>no-impac</sub> は、気流解析結果を                                                     |
|                   | 最大值:1.0                                | もとに設定                                                                                                     |

表1 DCH 評価の選定パラメータ

※D/W への粒子化デブリの移行割合については、Fentについて保守的な設定としているほか、Fpd-outについては STAR-CD を用いた流動解析結果ではペデスタル開口への移行は確認されなかったものの、保守的に確 率分布を設定している。Fno-impactについては、壁面に高速で衝突した溶融コリウムは壁面に付着する割合が 高いと考えられるが、工学的判断として上記の設定とした。



表 2 DCH 時の D/W ピーク圧力評価結果(TQUX シーケンス)

表 3 DCH 時の D/W ピーク圧力評価結果(長期 TB シーケンス)



図1 DCHによる格納容器破損確率の評価フロー



図 2 RCCV 型格納容器における上部 D/W への粒子化デブリ移行のイメージ

図3 RCCV型格納容器のフラジリティ曲線

2 炉外溶融燃料 - 冷却材相互作用(炉外 FCI)

(1) 事象の概要

原子 炉 圧 力 容 器 外 の 溶 融 燃 料 - 冷 却 材 相 互 作 用 (FCI; Fuel Coolant Interaction)は、溶融炉心と原子炉圧力容器外の冷却水が接触して一時的な圧力の急上昇が生じ、このときに発生するエネルギーが大きい場合に構造物が破壊され、格納容器破損に至る破損モードである。

原子炉圧力容器外の溶融燃料-冷却材相互作用の中の水蒸気爆発事象につい ては、これまでに実ウラン等を用いて種々の実験が行われている。水蒸気爆発は 溶融炉心が水中に落下した際に形成される蒸気膜が何らかの外乱によって崩壊 した際に、瞬時の圧力伝播を生じ、大きなエネルギーを発生させる現象である。

(2) 主要過程に関するこれまでの知見

これまでの研究による知見<sup>[2-1]</sup>から、水蒸気爆発を以下の様な段階的な過程に よって説明するモデル(熱的デトネーションモデル)が提唱されている。(図 1 参 照)

- ① 炉心あるいは原子炉圧力容器から落下する溶融炉心(デブリジェット)が冷却水中に落下する。水と接触した溶融炉心は、その界面の不安定性により細粒化して水中に分散する(エントレイン)。細粒化した溶融炉心(以下、デブリ粒子という。)は、蒸気膜に覆われた状態で膜沸騰を伴う水との混合状態となる(粗混合)。
- ② さらに、自発的もしくは外部からの圧力パルス等の外乱により、膜沸騰が 不安定化し(トリガリング)、デブリ粒子と冷却水が直接接触する。
- ③ デブリ粒子と冷却水の直接接触により、急速な熱の移動が発生し、急速な 蒸気発生・溶融炉心の微細化により、さらにデブリ粒子と冷却水の接触を 促進し(伝播)、蒸気発生を促進する。この急速な蒸気発生により圧力波が発 生する。
- ④ 発生した圧力波が通過した後の高温高圧領域(元々は粗混合領域)の膨張により運動エネルギーが発生し、構造材を破壊する要因となる。水蒸気爆発が発生するためには、トリガリングが生じる必要があり、さらにデブリ粒子と冷却水の接触が瞬時に粗混合領域全体に伝播する必要がある。また、水蒸気爆発に至らない場合でも、急速な蒸気発生による圧力上昇(圧力スパイク)が発生する。
- (3) 今回の PRA における扱い

今回の内部事象出力運転時レベル 1.5PRA のイベントツリーでは、炉外 FCI について分岐(ヘディング)を設定している。この分岐確率の算出の考え方(フロー)を図 2 に示す。算出にあたっては、炉外 FCI に影響する、不確かさを考慮す べきパラメータを選定すると共に、各パラメータの分布を決定し、炉外 FCI に

より発生するエネルギーを評価することによって格納容器破損確率を求めた。 この詳細は次項に示す。

(4) FCI による分岐確率の算出の考え方

①FCI に影響するパラメータの選定

溶融デブリと冷却材の接触から水蒸気発生までの一連の現象を説明するモデルとして提唱されている熱的デトネーションモデル(図1参照)では、FCIを以下の4つの過程に分けている。

- ·初期粗混合状態
- ・自発的あるいは外部トリガ
- ・急速伝熱・細粒化をともなう相互作用の伝播
- ・膨張による機械的エネルギーの放出

これらの各過程に対する現状の知見および FCI に影響するパラメータについて、以下に整理する。

a. 初期粗混合状態

炉外 FCI では、溶融デブリが水中に落下した直後や、落下した溶融デブリ に注水した時点で溶融デブリが微細化するトリガリングが発生すると、溶融 デブリの熱エネルギーが瞬時に放出され、水蒸気爆発に至る。このトリガリ ングに寄与する溶融デブリの量を粗混合量と呼んでおり、水蒸気爆発の規模 を規定するパラメータと考えられている。

これまでの水蒸気爆発に関する研究からは、粗混合量の定量化には至って いないものの、粗混合量には RPV 破損後に放出される溶融デブリの放出挙動 やトリガタイミング等が影響すると考えられている。

この過程に含まれるパラメータとしては、以下が考えられる。

・RPV 破損までに下部プレナムに落下する溶融炉心量

炉心損傷進展挙動に応じて下部プレナムに落下する炉心溶融量が異なる ため、不確かさを有すると考えられる。<u>RPV 破損までに下部プレナムに落</u> 下する溶融炉心量は、<u>FCI に寄与する溶融デブリ落下量</u>に影響するため、 <u>FCI に寄与する溶融デブリ落下量</u>の不確かさに含めて評価する。

・溶融炉心量と粗混合量の相関

溶融デブリの粗混合量は、RPV 底部の破損の程度に応じてその量が変化 添付資料 4.1.1.f-1-13 すると考えられ、相関性があるものと考えられる。

・RPV 破損後に放出される溶融デブリの特性(流量、組成)

溶融デブリの細粒化量に影響し、原子炉圧力容器破損モード(核計装配管 や制御棒案内管の貫通部破損、下部ヘッドのクリープ破損等)や原子炉圧力 容器破損時の原子炉圧力により決まる。本パラメータは、FCI に寄与する 溶融デブリ落下量に影響するため、このパラメータの不確かさに含めて評 価する。

・プール水中における粗混合量

落下した溶融デブリのジェットからの離脱の態様と水中の落下挙動により決まる。ジェットから離脱した場合、熱伝達によって固化することで、粗 混合量は減少する。本パラメータは、FCI に寄与する溶融デブリ落下量に 影響するため、このパラメータの不確かさに含めて評価する。

・FCI に寄与する溶融デブリ落下量

FCI に寄与する溶融デブリ落下量は、トリガリングが発生するタイミン グの違いによって異なることから、不確かさを有すると考えられる。

b. 自発的あるいは外部トリガ

水中に落下し、粗混合状態にある溶融デブリにトリガリングが発生すると 水蒸気爆発が発生する。この過程には、これまでの知見から、以下のパラメ ータについての不確かさが考えられる。

・溶融デブリの過熱度

過熱度が小さい場合、溶融デブリ周りの蒸気膜崩壊時に接触界面温度が 固化温度以下に低下するためトリガリングが生じないと考えられている。 本パラメータは、<u>トリガリング発生の有無</u>に影響するため、このパラメー タの不確かさに含めて評価する。

・プール水温

飽和水の場合には自発的トリガリングが発生しにくいという知見が得ら れている。本パラメータは、<u>トリガリング発生の有無</u>に影響するため、この パラメータの不確かさに含めて評価する。

・ト<u>リガリング発生の有無</u>

トリガリング発生の有無には多数の因子が寄与しており、不確かさを有 すると考えられる。

c. 急速伝熱・細粒化を伴う相互作用の伝播及び膨張による機械的エネルギーの 放出

トリガリング発生後は、冷却材と溶融デブリが直接接触し、高温伝熱・沸騰、高温融体の細粒化が高速に進み(伝播)、系全体に広がる(膨張)することで、 溶融デブリの熱エネルギーが機械的エネルギーに変換される。

溶融デブリの熱エネルギーは、FCI に寄与する溶融デブリ落下量と、溶融 デブリの単位質量あたりの内部エネルギーで決まる。<u>溶融デブリの内部エネ</u> <u>ルギー</u>は、溶融炉心における金属の酸化割合等に依存し、不確かさを有する と考えられる。

炉外 FCI で発生する機械的エネルギーの大きさは、溶融デブリの熱エネル ギーの機械的エネルギーへの変換効率によって決まる。この<u>機械的エネルギ 一変換効率</u>は、これまでの実験等による知見から、トリガリングのタイミン グ、溶融デブリの組成、粗混合領域のボイド率等に依存することが分かって いるが、現象論的な不確かさがある。なお、この変換効率は、アルミナを用 いた試験で保有熱エネルギーの1~3%程度、実機の溶融デブリに近い材料を 用いた実験においては、1%以下となっている(KROTOS 実験<sup>[2-2, 2-3, 2-4]</sup>)。

この過程に含まれるパラメータとしては、以下が考えられる。

トリガリングのタイミング

トリガリングのタイミングが早い場合、粗混合状態を形成して水蒸気爆 発に寄与する溶融デブリの量が少ないために発生エネルギーは小さくなる。 タイミングが遅い場合、細粒化した溶融デブリの固化が進むうえ、冷却材 ボイド率が高まり機械的エネルギーが低下する。トリガリングのタイミン グは、現象論的な不確かさを有すると考えられる。本パラメータは FCI に 寄与する溶融デブリ落下量及び機械的エネルギー変換効率に影響するため、 それらのパラメータの不確かさに含めて評価する。

・ 溶融デブリの内部エネルギー

内部エネルギーが高いほど、発生する機械的エネルギーが増大する。<u>溶</u> <u>融デブリの内部エネルギー</u>は、溶融デブリに含まれる金属の酸化割合等の 性状に依存する。溶融デブリの組成は主に燃料や被覆管、制御棒等の圧力 容器下部ヘッド内構造材の混合物であり、溶融デブリ中金属の酸化割合は、 不確かさを有すると考えられる。

・粗混合領域のボイド率

ボイド率が高いと、水の運動エネルギーが蒸気相に吸収されてしまうた め、エネルギー変換効率が低下する。粗混合領域のボイド率は、反応の過程 に依存すると考えられるが、その過程には不確かさが存在する。本パラメ ータは、<u>機械的エネルギー変換効率</u>に影響するため、このパラメータの不 確かさに含めて評価する。

### ・機械的エネルギー変換効率

炉外 FCI 発生時の機械的エネルギー変換効率には多数の因子が寄与して おり、不確かさを有する。

以上に述べた FCI 現象の主要過程の知見から、FCI に関する支配パラメータ として、次のパラメータ(上記 a, b, c の下線部)を選定し、1), 4) ~ 6)に確率分 布を設定するものとした。なお、3)は1)の確率分布及び2)の相関式から確率分 布を評価している。

1) RPV 破損までに下部プレナムに落下する溶融炉心量

- 2) 溶融炉心量と粗混合量の相関
- 3) FCI に寄与する溶融デブリ落下量
- 4)トリガリング発生有無
- 5) 溶融デブリ内部エネルギー
- 6) 機械エネルギー変換効率

②各パラメータの設定

各パラメータへの確率分布等の設定の考え方を表1に示す。

③FCI分岐確率の評価

以下の流れで評価した。

 ・炉外水蒸気爆発の評価に影響し、不確かさが大きいパラメータとして、
 <u>RPV 破損までに下部プレナムに落下する</u>溶融炉心量、溶融炉心の単位質 量当たりの熱エネルギー(溶融デブリ内部エネルギー)および熱エネルギー から機械的エネルギーへの変換効率を選定し、各パラメータに確率密度関 数(pdf: probability density function)を設定した。



- ・FCI に寄与する溶融デブリ落下量は <u>RPV 破損までに下部プレナムに落下</u> <u>する溶融炉心量</u>の確率密度関数及び溶融炉心量と粗混合量の相関の相関 式から確率密度関数を評価した。
- ・機械的エネルギーとペデスタル破損確率の因果関係(ペデスタルフラジリティ)を設定した。炉外水蒸気爆発による発生エネルギー(機械的エネルギー)に対するペデスタルフラジリティは、AUTODYNコードで評価した結果から作成した。(図3参照、ペデスタルフラジリティの設定の詳細は添付資料4.1.1.f-1 補足2参照)
- ・確率密度関数を与えたパラメータのモンテカルロサンプリングを実施し、
   機械的エネルギーを求め、ペデスタルフラジリティを参照することで、水
   蒸気爆発発生時の条件付きペデスタル破損確率を評価した。トリガリング
   発生確率(水蒸気爆発の発生確率)を 0.1 として、また、ペデスタル破損は
   保守的に格納容器破損と同等と仮定して格納容器破損確率を評価した。

粗混合量の評価式、パラメータの確率分布及びペデスタルフラジリティをも とに、モンテカルロサンプリングを実施して、水蒸気爆発あり(トリガリング有 り)の条件付きペデスタル破損確率を求めた。さらに、UO2混合物を用いた既往 試験(外部トリガー無し)では水蒸気爆発がほとんど確認されていないことから、 トリガリング発生確率(水蒸気爆発の発生確率)を0.1と仮定して、また、ペデス タル破損は保守的に格納容器破損と同等と仮定することにより、炉外 FCI(水蒸 気爆発)による格納容器破損確率を評価した。この結果、算出された炉外 FCI(水 蒸気爆発)による格納容器破損確率(平均値)は4.8×10<sup>-5</sup>となった。

以上

参考文献

- [2-1]「シビアアクシデント対策評価のための格納容器イベントツリーに関する検討」財団法人 原子力安全研究協会 平成 13 年 7 月
- [2-2] I. Huhtiniemi, et al., "Results of recent KROTOS FCI tests: alumina versus corium melts," Nucl. Eng. Des. 189 379-389, 1999.

- [2-3] D. Magallon, "Characteristics of corium debris bed generated in large-scale fuelcoolant interaction experiments," Nucl. Eng. Des. 236 1998-2009, 2006.
- [2-4] H. S. Park, et al., "Vapor Explosions in One-Dimensional Large Scale Geometry with Simulant Melts", NUREG/CR-6623, 1999.

| パラメータ                       | 設定値                                          | 設定の考え方                                                                                                      |
|-----------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| 溶融炉心量(t)                    | 分布:三角分布<br>最小值:24<br>最尤值:67<br>最大值:110       | ・MAAPの解析結果に基づき、下部プレナム落<br>下量を設定。<br>・MAAPの解析結果の最大値を分布の上限と<br>し、最小値を最尤値とし、下限は工学的判断と<br>した。                   |
| 溶融炉心量と粗<br>混合量の相関           |                                              |                                                                                                             |
| 溶融デブリ内部<br>エネルギー<br>(MJ/kg) | 分布:三角分布<br>最小値:1.3<br>最尤値:1.4<br>最大値:1.5     | 溶融物の比熱を考慮し、ジルコニウムの酸化割<br>合が 5,50,95%となるエネルギーとして設定。                                                          |
| 機械的エネルギ<br>ー変換効率            | 分布:三角分布<br>最小値:0.002<br>最尤値:0.01<br>最大値:0.03 | KROTOS 試験 <sup>[2-2, 2-3, 2-4]</sup> の知見(変換効率は、ア<br>ルミナ試験では数%[1~3%]、コリウム試験では<br>極めて小さい([0.02~0.05%]))を参考に設定 |
| トリガリング発<br>生有無              | 発生頻度 0.1                                     | 既往の FCI 試験結果を踏まえて設定。衝撃波の<br>発生が生じにくい低サブクール条件を除外し、<br>高サブクール条件での FCI 発生頻度から 0.1 を<br>設定。                     |

表1 各パラメータ設定の考え方



図1 熱的デトネーションモデルの概念

不確かさ要因



図2 FCIによる格納容器破損確率評価の枠組み

図3 水蒸気爆発によって発生する機械的エネルギーに対するペデスタルのフラジリティ

- 3. 溶融炉心・コンクリート相互作用(MCCI)
- (1) 事象の概要

溶融炉心・コンクリート相互作用(MCCI; Molten Core Concrete Interaction)は、炉心損傷後に溶融炉心が RPV 下部ヘッドを溶融貫通し、PCV のペデスタルの床面に落下した際、高温の溶融炉心からの熱の移行によりペデスタルのコンクリートが熱せられ、分解・侵食される現象である。

コンクリートの分解により発生する水蒸気および二酸化炭素が溶融炉心内 を通過する際、未酸化金属成分と反応して水素や一酸化炭素等の非凝縮性の 可燃性ガスが発生する。これらのガス発生による格納容器内の加圧が格納容 器の閉じ込め機能維持に悪影響を与える可能性がある。

また、コンクリートの侵食が継続し、ペデスタルの床面を溶融貫通した場合、 放射性物質の地中放出が起きる可能性や、側面の著しい侵食により RPV の支 持機能が失われ、格納容器の閉じ込め機能維持に悪影響を与える可能性があ る。

(2) 主要過程に関するこれまでの知見

MCCI に関する過去の実験について表 1 に示す。また、MCCI の主要過程 に関する主な知見を以下に示す。

- ・種々の冷却水無しの場合の MCCI 試験より、コンクリート侵食の速度は 10~20 cm/h 程度である。
- ・注水を伴った MCCI 実験(SWISS 実験<sup>[3-1]</sup>, WETCOR 実験<sup>[3-2]</sup>, MACE 実 験<sup>[3-3, 3-4]</sup>, COTELS 実験<sup>[3-5, 3-6]</sup>)のうち、コンクリートと接触している部分 のコリウムが注水により最終的に固化し、コンクリートの侵食が停止し た試験結果は COTELS 試験のみである。SWISS 試験、WETCOR 試験 やMACE 試験ではコリウム上面のみならず側面にも強固なクラストが形 成されコリウム内への冷却水の侵入を妨げた。
- ・塊状のコリウムの冷却性については、堆積厚さに依存するとともにコリウム上部のハードクラスト形成の有無に起因して伝熱条件に大きな不確かさが存在する。
- 溶融物の拡がりの実験や解析が行われ、水がないドライ状態では水がある場合に比べて溶融物が均一に広がる。
- ・水中に溶融炉心が落下すると大部分が粒子化してデブリベッドを形成する。
- ・粒子化が完全には進まず一部が塊状に堆積した場合でも、コンクリート 床面に密着することなく侵食は起きていない。
- ・水プール中のデブリベッドの高さが不均一な場合でも、ベッド内部での
   沸騰により粒子が吹き上げられて自然と平坦化する。
- ・デブリベッドのドライアウト熱流束は粒子径・ポロシティ・ベッド高さ

が影響する。

(3) 今回の PRA における扱い

今回、KK6/7号機の内部事象運転時レベル1.5PRAのイベントツリーでは、 MCCI 継続についての分岐(ヘディング)を設定している。この分岐確率の算出 の考え方(フロー)を図1に示す。MCCI に影響するパラメータを選定すると共 に、各パラメータの分布を決定し、溶融炉心から水プールへの熱伝達量と除熱 量を比較することで MCCI 継続又は停止を判定し、判定結果を集約すること で MCCI の発生確率を求めた。また、本評価では、ペデスタルへの溶融炉心 落下前の水張りが行われていないことを前提とした。この詳細は次項に示す。

### (4) MCCI による分岐確率の算出の考え方

①MCCI に影響するパラメータの選定

これまでに述べた MCCI の主要過程の知見から、ペデスタルへの溶融炉 心落下前の水張りが行われていない場合の MCCI 継続に影響する不確かさ を有するパラメータとして、次のパラメータを抽出し、確率分布を与えるも のとした。

- ·溶融炉心落下量
- ・溶融炉心広がり面積
- ・クラスト浸水によるドライアウト熱流束

②各パラメータへの確率分布の設定

各パラメータへの確率分布の設定の考え方を表2に示す。

③MCCI 分岐確率の評価

各パラメータに対して分岐確率(確率分布)を与えて各シーケンスの発生 確率を計算、さらに各シーケンスに対して MCCI 継続の有無を評価し、最 終的な MCCI 継続による格納容器破損の分岐確率を評価した。

MCCI 継続の判定条件は、MAAP コードを用いた水プールへの熱流束と MCCI 継続についての感度解析から求めた。この感度解析の結果から、水プ ールへの熱伝達量が溶融炉心の崩壊熱を上回る場合に MCCI が停止するも のとした。

溶融炉心の崩壊熱については、ペデスタルへの落下直後( $Q_1$ )及びコンクリートの侵食が許容限界まで進んだ時点( $Q_2$ )が考えられる。水プールへの熱伝達量が $Q_1$ 以上の場合は MCCI が全く進行せず、 $Q_2$ 以下の場合は MCCI が継続し、格納容器破損に至る。このことから、水プールへの熱伝達量が $Q_1$ 以上の場合は MCCI 継続による格納容器破損の確率を0とし、 $Q_2$ 以下の場合は 1 とした。また、水プールへの熱伝達量が $Q_1$ と $Q_2$ の中間の場合は、
許容範囲内である程度 MCCI が進行した後に MCCI が停止するものと考え られるが、この場合の MCCI 継続による格納容器破損の確率は、Q1 と Q2 の時点での格納容器破損の確率を直線内挿して求めた。(図 2 参照)

この結果、本評価における MCCI 継続による格納容器破損確率(平均値) は 7.3×10<sup>-3</sup>となった。

なお、MCCI継続による格納容器破損確率に影響するパラメータに対し、 格納容器の型式の違いが大きく影響すると考えられる要素としては溶融デ ブリの拡がり面積が挙げられる。溶融炉心の拡がり面積は水プールへの熱 伝達量に影響するため、ペデスタルの床面積が大きい程、熱伝達量は多くな る。この熱伝達量が多い程、溶融デブリからの除熱量が多くなることから、 MCCIが停止し易くなる。(図1参照)

KK6/7のRCCV型格納容器のペデスタル床面積は約88m<sup>2</sup>である。これ を例えばペデスタル床面積が30m<sup>2</sup>程度であるMARK-II型格納容器と比 較した場合、KK6/7のRCCV型格納容器のMCCI継続による格納容器破 損確率は、MARK-II型格納容器の格納容器破損確率に比べて小さく評価さ れる。

以 上

参考文献

- [3-1] R.E.Blose, et al., "SWISS: Sustained Heated Metallic Melt/Concrete Interactions With Overlying Water Pools,"NUREG/CR-4727 (1987).
- [3-2] R.E.Blose, et al., "Core-Concrete Interactions with Overlying Water Pools The WETCOR-1 Test," NUREG/CR-5907 (1993).
- [3-3] B.R.Sehgal, et al., "ACE Project Phase C&D : ACE/MCCI and MACE Tests", NUREG/CR-0119, Vol.2 (1991).
- [3-4] M.T.Farmer, et al., "Status of Large Scale MACE Core Coolability Experiments", Proc. OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe, Germany (1999).
- [3-5] 原子力発電技術機構(NUPEC),「重要構造物安全評価(原子炉格納容器信頼性実証試験) に関する総括報告書」(2003).
- [3-6] H.Nagasaka, et al., "COTELS Project (3): Ex-vessel Debris Cooling Tests,"Proc. of OECD/CSNI Workshop on Ex-Vessel Debris Coolability, Karlsruhe, Germany (1999).

|               | 実 機                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SWISS-2                                                                                          | WETCOR-1                                                                                                                                                                              | MACE MO                                                                                                                                                                                                                                                               | MACE M3b                                                                                                                                                                                                                                                     |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 体 系           | $\begin{array}{c c} \hline & d & 10.6 \text{ fm} \\ \hline & d & 10.6 \text{ fm} \\ \hline & 38 \overline{a} 4 \overline{b} \\ \hline & 42 \text{ cm} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b} \\ \hline & 100 & 38 \overline{a} 4 \overline{b}$ |                                                                                                  | 30cm×30cm<br>12/39-1<br>32/39-1<br>32/39-1                                                                                                                                            | 120cm×120cm<br>141<br>120cm×120cm<br>120cm×120cm                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                              |  |
| 溶融物<br>(初期条件) | (ABWR 1350MWe,100%炉心,<br>全Zr 20%酸化の場合)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 金属                                                                                               | 政化物                                                                                                                                                                                   | PWRコリウム<br>(Zr 70%酸化)                                                                                                                                                                                                                                                 | 100% 酸化物コリウム                                                                                                                                                                                                                                                 |  |
| 質量            | ~310 ton                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 44.2 kg                                                                                          | 34.1 kg                                                                                                                                                                               | 130 kg                                                                                                                                                                                                                                                                | 1800 kg                                                                                                                                                                                                                                                      |  |
| 成分            | UO <sub>2</sub> :55 w/o<br>ZrO <sub>2</sub> : 7 w/o<br>Zr :21 w/o<br>X71-h:17 w/o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ステンレススティール                                                                                       | Al <sub>2</sub> 0 <sub>3</sub> :76.8 w/o<br>Ca0 :16.9 w/o<br>Si0 <sub>2</sub> : 4 w/o<br>others                                                                                       | U0 <sub>2</sub> :56 w/o<br>Zr0 <sub>2</sub> :11 w/o<br>Zr : 4 w/o<br>Si0 <sub>2</sub> : 3 w/o                                                                                                                                                                         | UO <sub>2</sub> :56.9 w/o<br>ZrO <sub>2</sub> :29.1 w/o<br>others                                                                                                                                                                                            |  |
| :Bate         | 2500 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 1000 K                                                                                         | 1850 K                                                                                                                                                                                | Ca0 : 3 w/o<br>Conc:23 w/o                                                                                                                                                                                                                                            | 2500 K                                                                                                                                                                                                                                                       |  |
| 温度            | ~2500 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~1900 K                                                                                          | 1850 K                                                                                                                                                                                | ~2000 K                                                                                                                                                                                                                                                               | 2500 K                                                                                                                                                                                                                                                       |  |
| コンクリート種類      | 玄武岩系                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 石灰岩系(Limestone/Common Sand)                                                                      | 石灰岩系(Limestone/Common Sand)                                                                                                                                                           | 石灰岩系(Limestone/Common Sand)                                                                                                                                                                                                                                           | 石灰岩系(Limestone/Common Sand)                                                                                                                                                                                                                                  |  |
| 形状            | 2次元                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1次元                                                                                              | 1次元                                                                                                                                                                                   | 2次元                                                                                                                                                                                                                                                                   | 1次元                                                                                                                                                                                                                                                          |  |
| 発熱密度          | ・0.23 W/g UO <sub>2</sub><br>(1% 熱出力<br>として) ・1.1 W/cm <sup>3</sup> melt<br>・0.44 WW/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | • 1.5~ 1.7 W/g<br>• 10.2~11.5 W/cm <sup>3</sup><br>• 1.5~ 1.7 MW/m <sup>2</sup>                  | -0.30 W/g<br>-0.61 W/cm <sup>3</sup><br>-0.12 MW/m <sup>2</sup>                                                                                                                       | -0.35 W/g UO <sub>2</sub><br>-1.9 W/cm <sup>3</sup> meit<br>-0.28 MW/m <sup>2</sup>                                                                                                                                                                                   | •0.3 W/gU0 <sub>2</sub><br>•1.1 W/cm <sup>3</sup> melt<br>•0.21 MW/m <sup>2</sup>                                                                                                                                                                            |  |
| 主な知見          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ・デブリ上部に安定クラスト形成<br>・漫食速度:27cm/hr<br>(40分間でおよそ18cm)<br>・水ブールへの熱流束:<br>~0.8 MW/m <sup>2</sup> (平均) | <ul> <li>・デブリ上部に安定クラスト形成</li> <li>浸食速度:6~11 cm/hr<br/>(30分間でおよそ3~6cm)</li> <li>・水プールへの熱流束:</li> <li>0.52 MN/m<sup>2</sup>(溶融時)</li> <li>0.25 or 0.20 MN/m<sup>2</sup>(凝固後)</li> </ul> | <ul> <li>・デブリ上部に安定クラスト形成</li> <li>浸食速度:8~11 cm/hr<br/>(70分間でおよそ11cm)</li> <li>・水ブールへの熱流束:</li> <li>3.5 MW/m<sup>2</sup>(注水初期),</li> <li>0.6 MW/m<sup>2</sup>(~35分まで)から</li> <li>0.15MW/m<sup>2</sup>(試験終了)まで減少</li> <li>周期的なメルトブールスウェル、<br/>クラスト上へのメルト噴出冷却</li> </ul> | <ul> <li>・デブリ上部に安定クラスト形成</li> <li>・浸食速度:6時間でおよそ30cm</li> <li>・水プールへの熱流束:         <ul> <li>4.9 MW/m<sup>2</sup>(注水直後)</li> <li>0.6 MW/m<sup>2</sup>(初期20分間)から</li> <li>0.24MW/m<sup>2</sup>まで急減、その後<br/>~3hrで0.085MM/m<sup>2</sup>まで低下</li> </ul> </li> </ul> |  |
| 参考文献          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NUREG/CR-4727                                                                                    | NUREG/CR-5907                                                                                                                                                                         | 2nd OECD(NEA)CSNI Specialist N1p. on NCCI                                                                                                                                                                                                                             | (日本原子力研究所殿による速報)                                                                                                                                                                                                                                             |  |

# 表1 MCCI時のデブリ冷却性に関する既往の試験及び主な知見

| パラメータ   | 分岐確率                      | 設定の考え方                                    |
|---------|---------------------------|-------------------------------------------|
| 溶融炉心落   | 分布:一様分布                   | MAAP 解析によると全炉心の 90%程度がペデス                 |
| 下割合     | 上限:100 %                  | タルに落下する。IVR を考慮した炉心溶融進展解                  |
|         | 下限: 90%                   | 析より、圧力容器破損時に100%落下する可能性                   |
|         |                           | が高いことを考慮して保守的に設定。                         |
| 溶融炉心拡   | 分布形 三角分布                  | 溶融炉心拡がり実験をもとに設定。拡がり面積が                    |
| がり面積    | 最小値 ペデスタル面積の 50%          | 大きい場合には水プールへの熱伝達量が大きく                     |
|         | 最尤値 ペデスタル面積の 75%          | なる。(KK6/7 のペデスタルの面積は約 88 m <sup>2</sup> ) |
|         | 最大値 ペデスタル面積               |                                           |
| 水プールへ   | 分布形 三角分布                  | クラスト浸水時のドライアウト熱流束は、OECD                   |
| のドライア   | 最小值 0.2 MW/m <sup>2</sup> | 試験のデータを元に設定。ハードクラストによる                    |
| ウト熱流束   | 最尤值 0.3 MW/m <sup>2</sup> | 熱伝導でも 0.15 MW/m <sup>2</sup> 程度の熱流束となるた   |
|         | 最大値 0.5 MW/m <sup>2</sup> | め、浸水により改善されるとして最小値 0.2                    |
|         |                           | MW/m <sup>2</sup> とした。最尤値、最大値は OECD 試験デ   |
|         |                           | ータを参考に設定した。                               |
| 除 熱 量 と | ・Q1(定格熱出力の 1%×0.8 (希ガス減   | デブリの崩壊熱を除去できれば MCCI が停止す                  |
| MCCI 停止 | 衰)×落下割合)以上の除熱量の場          | ると想定。コンクリートの侵食速度(※)から推定                   |
| の因果関係   | 合、MCCI 停止                 | して事故後 3~15 時間相当の崩壊熱とバランス                  |
|         | ・Q2(定格熱出力の 0.66%×0.8×落下   | する除熱を達成することができれば MCCI は停                  |
|         | 割合)以下の除熱量の場合、MCCI         | 止する。                                      |
|         | 継続                        | 崩壊熱は3時間後で定格熱出力の1%、15時間後                   |
|         | ・上記中間の除熱量の場合は除熱量          | で 0.66%であるから、このときの崩壊熱を除熱で                 |
|         | により確率0と1を直線内挿。            | きれば MCCI は停止する。(※KK6/7 の場合、ペ              |
|         |                           | デスタル壁側の厚さは約1.7mであることから、                   |
|         |                           | 浸食深さ 1 m であれば許容されるものとし、こ                  |
|         |                           | の深さに到達する時間が約15時間となることか                    |
|         |                           | ら 15 時間と設定した。)                            |

表2 各パラメータの設定の考え方



図1 MCCI 継続による格納容器破損確率の評価のフロー



図2 水プールへの熱伝達割合と MCCI 継続確率の関係

## 添付資料 4.1.1.f-1-27

- 4. 炉内溶融物保持(IVR)
- (1) 事象の概要

原子炉圧力容器内溶融物保持(IVR: In Vessel Retention)は、炉心損傷後に 溶融炉心が原子炉圧力容器(RPV)底部に落下した際、RPV 底部に残存する冷 却材や注水系の復旧により溶融炉心が RPV 内で冷却され、RPV 内に保持さ れる現象であり、TMI-2 事故において RPV が破損に至らなかったことから特 に注目された事象である。

(2) 主要過程に関するこれまでの知見

IVR の主要な現象及びそれらに関する知見を表1に示す。表1の通り、過去の様々な研究によって主要な現象の影響が分析<sup>[4-1][4-2]</sup>されている。

- また、BWR には以下の特徴によって IVR が生じ易いものと考える。ABWR と TMI-2 の主要諸元の比較を表 2 に示す。
  - ・信頼性の高い原子炉減圧系を有しているため、容易に圧力容器を低圧状態 に移行できる。これにより代替注水系を含む低圧注水系により原子炉圧 力容器内に注水できる可能性が高く、また内圧が低いことによりクリー プ破損しにくい。
  - ・炉心支持板が破損して溶融炉心が下部プレナムに落下する際には下部プレナムには4m以上の水深の水プールが存在する。水中落下時に溶融炉心は分散し粒子化することにより冷却が促進され、下部ヘッド到達時には溶融炉心の温度は低下していると考えられる。これは、溶融炉心が下部ヘッドに堆積した時の下部ヘッドへの熱負荷を低減する方向に作用する。
  - ・プール水があることにより溶融物ジェットが直接下部ヘッド壁に衝突し 溶融破損に至る、所謂ジェット・インピンジメントの発生も防止する。
  - ・BWR は大型の圧力容器を使用しているため、下部ヘッド自体のヒートシ ンク効果が大きく、また CRD ガイドチューブ及びチューブ内の冷却水も 大きなヒートシンク効果があると期待される。また、CRD ガイドチュー ブへの通水の継続は IVR 達成の可能性が高い。<sup>[4-3]</sup>
  - ・下部ヘッドには計装管や CRD 配管の貫通部が多数存在し、これらの貫通 部からの放熱の効果も期待される。
- (3) 今回の PRA における扱い

今回、KK6/7号機の内部事象運転時レベル1.5PRAのイベントツリーでは、 IVR についての分岐(ヘディング)を設定している。この分岐確率の算出の考え 方は、図 1a の①~④の通りである。IVR に影響するパラメータを選定(①)す ると共に各パラメータの分布を決定し、これらのパラメータのイベントツリ ーを作成(②,表3,図1b)、シーケンス毎に評価コードを用いて IVR の成否を 判定(③,図1c)し、判定結果を集約することで IVR の発生確率を求めた(④)。 ①~④の詳細は(4)に示す。

今回の評価において、炉心損傷後の注水に期待するシナリオは TQUX、TBU、 TBP からのシーケンスである。炉心損傷後の電源復旧、減圧に期待し、LPFL (954 m<sup>3</sup>/h)で注水する。但し、今回の評価では保守的に LPFL より注水流量の 少ない代替注水系(MUWC, 110 m<sup>3</sup>/h)の流量を用いて IVR の成否を評価して いる。また、電源復旧、減圧に期待するための時間遅れを考慮し、注水開始は 溶融炉心の落下開始(炉心下部支持板破損)と同時とした。なお、今回の評価で は炉心損傷から溶融炉心落下までの間に注水する場合を考慮していないが、 MAAP の評価結果(L1.5 報告書 第 4.1.1.e<sup>-2</sup> 図)を見ると、炉心損傷から溶融 炉心落下までには 程度の時間余裕がある。この間での注水開始を考 慮に入れると、IVR に成功する可能性が高くなるものと考えられる。

今回、IVR の有無を考慮した理由は、IVR の可能性を排除しないためであり、IVR の発生有無を分析する上での知見が組み込まれ、TMI-2 事故についての再現性も確認された評価コードを用いれば、IVR の発生有無について一定の評価が可能と考えたためである。

一方で、各入力パラメータが不確実さを持つことから、IVR の発生確率についても不確実さが生じる。

(4) IVR による分岐確率の算出の考え方

①IVR に影響するパラメータの選定

これまでの知見(表1参照)より、IVR 現象の主要過程は以下のように分けられる。

- ・下部プレナムへの溶融物移行
- ・水中での落下溶融物の分散および冷却
- ・落下・堆積デブリと貫通部との熱的相互作用
- ・堆積デブリの上面からプール水への熱伝達よる冷却
- ・連続デブリ層表面でのクラスト形成と溶融プール内自然対流熱伝達
- ・連続デブリ層と下鏡との狭隘ギャップ形成およびギャップ沸騰冷却
- RPV 下鏡破損

これらの各過程に対する現状の知見および IVR 現象に支配的なパラメ ータについて、以下に整理する。

a. 下部プレナムへの溶融物移行

下部プレナムに落下するコリウムは下部プレナムの残存水との相互作 用により、粒子状デブリベッドや連続デブリ層となる。この程度は下部プ レナムへのコリウムの流量と落下総量に影響を受けることから、炉心溶 融進展に伴う下部プレナムへのコリウムの流量と落下総量は、下部プレ ナムに堆積するデブリの性状、すなわち粒子状デブリベッドと連続デブ リ層との存在割合に大きく影響を与える。

<u>炉心溶融過程については不確実さが大きいが、事故シナリオ(低圧炉心</u> <u>損傷か高圧炉心損傷か、あるいは RPV 内部注水の条件)によって下部プ</u> レナムへのコリウム落下挙動は異なると考えられる。また、<u>落下コリウム</u> の温度は、下部プレナム残存水との相互作用による冷却水インベントリ 減少速度や下鏡の熱負荷の大きさに影響するが、炉心構成物質(UO<sub>2</sub>、Zr、 ZrO2及び SUS)による不確かさを有すると考えられる。

b. 水中での落下溶融物の分散および冷却

下部プレナムへ炉心溶融物が落下を開始する時点では未だ下部プレナ ムには残存水があり、水中に溶融物が落下する場合には、ジェットブレー クアップにより一部が粒子化することが、実験的に確認されている (FARO 実験、COTELS 実験)。粒子化する割合が大きいほどデブリは冷 却されやすく、IVR 達成の可能性が大きくなると考えられる。一方、粒子 化によってデブリ冷却が促進されるほど、下部プレナム残存水の減少は 早く、注水系の復旧タイミングや注水流量が重要となる。

落下コリウムの粒子化割合は、MAAP4 コードにも組み込まれている Ricou-Spalding の相関式をコリウムのジェットブレークアップに応用す ることによって、評価が可能である。同相関式で評価される粒子化割合は、 初期ジェット直径とプール水深に大きく影響される。ここで、プール水深 (プール水量)は事故シナリオに依存するが、<u>初期ジェット直径については</u> 不確実さが大きいと考えられる。

- c. 落下・堆積デブリと貫通部との熱的相互作用
  - IVR 成立のためには、堆積デブリによって貫通配管部が損傷しないこ とが必要条件である。これまでの実験的知見として、WH 社 PWR の計装 配管を模擬した EPRI/FAI 実験によれば、溶融物(アルミナ)が貫通部に侵 入しても凝固し、圧力バウンダリの破損は生じなかったことが報告され ている。また、CORVIS 実験(スイス PSI)でも同様に、ドライ条件で BWR ドレン配管に溶融物(アルミナ)が侵入しても凝固し、健全性を維持したこ とが報告されている。これらの実験的知見から、落下・堆積デブリとの熱 的相互作用によって、コリウム落下直後に貫通部の早期破損が生じる可 能性は小さいと考えられる。
- d. 堆積デブリの上面からプール水への熱伝達よる冷却

水中での落下溶融物の分散によって生じた粒子が堆積して粒子状デブ リベッドが生じることは、FARO 実験(JRC ISPRA)や COTELS 実験 (NUPEC)において確認されている。粒子状デブリベッドの下部プレナム 残存水による冷却性については、既往研究に基づき Lipinski のドライア ウトヒートフラックスモデルによって除熱量の評価が可能である。本モ デル(相関式)による除熱量は主としてデブリ粒子径に依存している。水中 で分散した粒子径については、幾つかの相関式やTMI-2 事故分析から概 ね1~5mmと考えられており、この粒子径の範囲については、粒子状デ ブリベッドの崩壊熱は十分に除去可能と評価している。また、粒子化せず 連続層として堆積したデブリからの除熱は、平板での Kutateladze タイ プの限界熱流束相関式(最大除熱量)や膜沸騰熱伝達相関式による評価が 可能であり、連続デブリ層の崩壊熱が除去可能か否かは連続デブリ層の 堆積量(厚さ)に依存する。

e. 連続デブリ層表面でのクラスト形成と溶融プール内自然対流熱伝達 連続デブリ層の表面は、下部プレナム残存水や下鏡との接触により凝 固点以下となってクラストを形成し、内部は発熱を伴う自然対流が生じ ると考えられる。内部発熱を伴う自然対流熱伝達については、方位角に依 存した実験相関式により評価が可能である。

RPV 下鏡内に落下した溶融炉心の状態について、下鏡内に注水しない (下部プレナムに溶融プールが継続的に存在する)マネジメントの下では、 溶融炉心が上から酸化物層(UO<sub>2</sub>)、金属層(ウラン合金及び金属等)の順に 層を形成(逆成層化)し、金属層上端の最外周(RPV 下部ヘッド壁の接触部) 及びその近傍において RPV 下部ヘッド壁への熱流束の集中(フォーカシ ング効果)が生じるという報告<sup>[4-4]</sup>がある(図 2a, 図 2b 参照)。今回の IVR 評価モデルではフォーカシング効果を考慮していないが、この報告と今 回の評価の条件を比較すると、今回の評価は下鏡内に注水している点が 上記の報告と異なる。下鏡内に注水した場合のフォーカシング効果につ いての報告は確認されていないが、下鏡内に注水しない場合に比べ、溶融 プール上部から水への熱伝達による除熱があることにより、下部プレナ ムへの熱流束は緩和されるものと考える。また、フォーカシング効果につ いては圧力容器の変形を考慮するとその影響が限界熱流束程度まで低減 されるとの報告<sup>[4-5]</sup>があり、今回の IVR 評価モデルではf.のギャップ沸騰 冷却の観点から圧力容器の変形を考慮している。

フォーカシング効果については不確かさの大きい現象と考えるが、溶 融炉心から下部ヘッドへの熱伝達の不確かさの1つと整理し、下記のf. の不確かさに含めて考慮することとした。

f. 連続デブリ層と下鏡との狭隘ギャップ形成およびギャップ沸騰冷却

下部ヘッドに堆積した連続層デブリは、下鏡を加熱するものの完全に は固着せずにギャップを形成し、下鏡のクリープ変形によるギャップ拡 大によって冷却水が浸入したことが、TMI-2 事故での下部ヘッド急冷メ カニズムと考えられている. ギャップ形成と容器壁の冷却は IVC 実験 (FAI 社)および ALPHA 実験(JAERI)によって確認されている。また、狭 隘ギャップでの沸騰除熱特性については、傾斜角度の効果を考慮した電 共研実験相関式より評価が可能である。ただし、実炉スケールでの堆積デ ブリ量は、炉心全量落下(110 万 kW 級プラント)条件では 200 t 以上にも なり、TMI-2 事故における 20 t に比べて著しく大きい場合も考えられる。 大量の連続デブリ層が堆積した場合にも下部プレナム底部のギャップま で冷却水が浸入するか否かは不確実さが大きいと考えられる。

g. RPV 下鏡破損

RPV 下鏡の破損メカニズムとしては、堆積デブリによって下鏡が加熱 される結果、CRD チューブや計装管を接続する溶接部分の健全性が失わ れてチューブから溶融デブリが逸出するいわゆる "チューブイジェクシ ョン"あるいは"下鏡クリープ破断"が想定される。"チューブイジェク ション"は、溶接部でのせん断応力と温度上昇による強度低下から評価す ることができる.また、"下鏡クリープ破断"については、過渡的な下鏡 応力および下鏡温度を評価することによって判定することができる。

以上に述べた IVR 現象の主要過程の知見から、IVR 冷却達成に関する不確 実パラメータとして、次のパラメータ(上記 a, b, f の下線部)を選定し確率分布 を設定するものとした。

- ・下部プレナムへのコリウム落下量(落下流量と総落下量)
- ・落下コリウム温度
- ・落下コリウムジェット径
- ・ギャップへの冷却水浸入制限の有無

②各パラメータへの確率分布の設定

各パラメータへの確率分布の設定の考え方を表3に示す。

③評価コードによる IVR 解析

IVR の評価コード<sup>[4·1][4·6]</sup>は、これまでの知見を踏まえるとともに、溶融炉 心からの熱伝達をモデル化して構築した。IVR 評価コードの要素モデルを 図 3a に示す。また、評価コードの妥当性は、TMI-2 事故の再現性が確認<sup>[4-7]</sup>されている MAAP4 との比較によって確認した。表 4 の通り、MAAP4 で は TMI-2 の事象を模擬できることが確認されている。本評価で用いた評価 コードについても、考慮している現象はほぼ同等であり、同じ条件で評価す ると、表 5 の通りにやや保守的ではあるが、同様の結果を示すことから、 IVR に関して妥当な評価となっているものと考える。

なお、IVR 評価コードの入力条件、モデルの概要、評価結果に基づく IVR 成否の判定基準は次の通り。

a. 入力条件

○溶融炉心が下部プレナムへ落下する時刻(解析開始時間)とその時点で

の原子炉圧力容器内の条件(圧力、保有水量、注水流量)(MAAP コード によって評価)

○IVR のイベントツリーの各ヘディング(図 1b 参照)の分岐の組合せ b. モデルの概要

IVR 評価コードは図 3a の要素モデルをもとに図 3b の伝熱及び物質移行 モデルを構築したものであり、これによって RPV 下部での現象を定量化し ている。

考慮している現象は水中での溶融コリウム落下挙動からコリウム堆積後のプール水及び RPV 下鏡と RPV の内部構造物との熱的相互作用に係わるものである。各要素モデルとその定量化の対応は次の通り。

○プール水中落下時の溶融物の分散冷却

- ・水中での落下溶融物の分散・冷却モデル
  - 粒子化割合算出に Ricou-Spalding の相関式を応用
  - ・粒子径は Henry らの相関式によるものとした
- ・分散粒子の Zr-水反応モデル
  - 水中での粒子滞留時間を考慮し, Baker-Just の実験データに基づく Zr 酸化割合を入力

○堆積コリウムからの熱移行

- ・粒子状コリウムベッドの冷却モデル
  - Lipinskiのドライアウト熱流束相関式
- ・連続コリウム層表面でのクラスト形成と溶融プール内自然対流熱伝達 モデル
  - ・ 準定常を仮定したクラストエネルギーバランス
  - Jahn-Reineke の発熱を伴う自然対流相関式
- ・連続コリウム層上面での冷却モデル
  - プール沸騰曲線に依存した熱伝達相関式(核沸騰: Rohsenow, 膜沸 騰: Berenson)あるいは限界熱流束相関式
- ・RPV 下鏡との間でのギャップ沸騰冷却モデル
  - · 狭隘ギャップでの最大熱流束相関式を用いる Suh らの評価モデル
- ・CRD 冷却水による冷却モデル
  - ・沸騰曲線に依存したプール沸騰熱伝達相関式
- ○RPV 下鏡の挙動
  - ・RPV 下鏡のクリープ変形モデル
    - ラーソンミラーパラメータ相関式を用い、クリープ破断モデルを適用した Suh らの評価モデル
  - ・RPV 外部冷却モデル
    - 沸騰曲線に依存したプール沸騰熱伝達相関式
- c. 評価結果に基づく IVR 成否の判定基準

IVR 失敗の判断基準は、下鏡貫通配管(CRD チューブ)からの溶融デブリの逸出あるいは下鏡のクリープ破断に至った場合とした。

下鏡貫通配管からの溶融デブリの逸出は、下鏡との溶接部が過温状態と なって健全性が失われ、CRD チューブからの溶融デブリが逸出する状況を 想定したものである。IVR 評価コードでは、溶接部温度を下鏡内壁温度で 代表させ、温度上昇に伴う溶接部限界強度の低下を評価し、溶接部でのせん 断応力がこれを上回った場合に CRD チューブからの溶融デブリの逸出に 至ると判定するものとした。

下鏡クリープ破断は、Larson-Miller Parameter(LMP)を用いたクリープ 破断時間に基づいて評価した。クリープ破断の評価では、応力状態に対する LMPを求め、破断時間を LMP と温度から計算するものとした。

④IVR 分岐確率の評価

各不確実パラメータに対して分岐確率(確率分布)を与えて各シーケンスの発生確率を計算、さらに各シーケンスに対して IVR の成功の有無を評価し、最終的な IVR の分岐確率を評価した。本評価における IVR の分岐確率 は 0.66 となった。

以上

参考文献

- [4-1]「原子炉圧力容器内溶融物冷却特性に関する研究」BWR 電力共同研究 平成13年3月
- [4-2]「シビアアクシデント熱流動現象評価」社団法人 日本原子力学会 平成 12 年 3 月
- [4-3] Main Results of the MASCA1 and 2 Projects, OECD MASCA integrated report, June 2007.
- [4-4]「原子炉施設のアクシデントマネージメントに係る知識ベースの整備に関する報告書 =環境への影響緩和=」独立行政法人 原子力安全基盤機構 平成 22 年 10 月
- [4-5] Chi-Thanh Tran and Pavel Kudinov, "The effective convectivity model for simulation of molten metal layer heat transfer in a boiling water reactor lower head" *Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2013*, 2013
- [4-6]「格納容器イベントツリーの再評価に関する研究(フェーズII)」BWR 電力共同研究 平 成16年3月
- [4-7]「シビアアクシデント評価のための格納容器イベントツリーに関する検討」財団法人 原子力安全研究協会 平成 13 年 7 月

| 個別現象          | 主な知見                                                             |
|---------------|------------------------------------------------------------------|
| 下部プレナムへの溶融    | ・事故シナリオによって溶融物成分が相違する可能性あり。                                      |
| 物移行举動         | "dry core"シナリオ(低圧シーケンスのように完全な炉心露出後の溶融)では metal-rich な溶融物が主       |
|               | "wet core"シナリオ(TMI-2)では ceramic-rich な溶融物が主                      |
|               | ・MP 実験, XR 実験 (米 SNL)より、落下パスについて知見あり。                            |
| 溶融物水中落下時のブ    | ・FARO 実験(UO2 混合物を用いた In-vessel FCI 試験)で、プール水落下時の溶融物の粒子化が確認されている。 |
| レークアップ        | ・粒子化割合はジェット直径とプール水深に大きく影響される。                                    |
|               | ・種々のブレークアップ相関式が提案されている。例えば Rico-Spalding 式を使用する場合にはエントレインメント係数の適 |
|               | 切な設定により実験結果の再現が可能                                                |
|               | ・Rico-Spalding 式について、構造物がある場合(BWR)でも適用可能であることを確認                 |
| デブリ上面からプール    | ・熱伝達量はデブリ上面性状(粒子状 or 連続層, デブリ粒径, 空隙率), コリウム過熱度, 組成等に依存する。        |
| 水への熱伝達        | ・粒子状デブリベッドからの除熱評価はLipinskiドライアウト熱流束モデル等により可能                     |
|               | ・連続層からの除熱は、平板での Kutateladze タイプ限界熱流束相関式(最大除熱量)や膜沸騰熱伝達率による評価が可能   |
| 溶融プールからデブリ    | ・内部発熱を伴う高レイリー数(実機で1016~1017)の自然対流熱伝達について種々の実験相関式(無次元式)が得られてい     |
| クラストへの熱伝達     | る。(ACOPO, RASPLAV 試験等)                                           |
|               | ・角度により熱伝達が異なる。                                                   |
|               | ・下鏡内に注水しない場合、溶融炉心が上から酸化物層(UO2)、金属層(ウラン合金及び金属等)の順に層を形成(逆成層化)      |
|               | し、金属層上端の最外周(RPV 下部ヘッド壁の接触部)及びその近傍において RPV 下部ヘッド壁への熱流束の集中(フォ      |
|               | ーカシング効果)が生じる。(図 2a, 図 2b 参照)                                     |
|               | ・フォーカシング効果は圧力容器の変形を考慮するとその影響が軽減される。                              |
| 下部ヘッドや CRD ガイ | ・CRD チューブの対流熱伝達への影響不明                                            |
| ドチューブへの熱伝達    | ・TMI-2事故の分析から、落下したコリウムは下部ヘッド壁に隙間なく付着した訳ではないことが考えられ、微小なギャップに      |
|               | よる接触熱抵抗が存在することが提案されている。(MAAP4)                                   |

表1 IVR に関する現状の知見(1/2)<sup>[4-1]</sup>

| 個別現象          | 現状の知見                                                           |
|---------------|-----------------------------------------------------------------|
| コリウムと下部ヘッド壁のギ | ・TMI-2事故の分析から、落下したコリウムは下部ヘッド壁に付着せず、微小なギャップによる接触熱抵抗が存在することを      |
| ャップの形成と沸騰熱伝達  | 提案(MAAP4)                                                       |
|               | ・下部ヘッドクリープ変形に伴いギャップの形成が確認されている。(ALPHA 試験, FAI-IVC 試験)           |
|               | ・垂直加熱平板を用いた自然循環条件での狭い間隙の沸騰による最大熱流束相関式がもとめられている。(門出式)            |
|               | ・CCFL 条件下の試験が実施され、門出式より熱流束が小さくなることが示されている。(SONATA, 小泉)          |
|               | ・ギャップの大きさ(0.2-1.0 mm)及び角度(0-90 °)による沸騰挙動及びその影響を確認(電共研)          |
| 下部ヘッド外面,貫通部か  | ・EPRI 実験では、溶融物が貫通部に浸入しても凝固し、圧力容器バウンダリの健全性は維持される可能性が高いと結論        |
| らの放熱          | (WH 社製計装配管の実験で確認)                                               |
|               | ・CORVIS 実験(スイス PSI)では、ドライ条件で BWR ドレン配管に酸化溶融物が浸入しても配管からの放熱等により凝固 |
|               | し、健全性を維持された。                                                    |
| 構造物から水プールへの   | ・構造壁温度に対応して沸騰熱伝達が期待できる。                                         |
| 熱伝達           |                                                                 |
| CRD 冷却水の効果    | ・CRD ガイドチューブ水の冷却効果が期待できる。                                       |
| 下部ヘッドのクリープ変形  | ・In Vessel Cooling Phase-1&2 実験により確認済み                          |
|               | ・ラーソンミラーパラメータを用いたクリープ変形モデルが提案されている。下部ヘッド壁温 1100 ℃ 程度で 1 時間以内に数  |
|               | mm のギャップが形成される。                                                 |
|               | ・SNLのLHF試験等によりクリープ変形破損挙動が実験されている。                               |

表1 IVR に関する現状の知見(2/2)<sup>[4-2]</sup>

表2 IVR に関わる主要諸元の比較

| 項目        | TMI-2   | ABWR         |
|-----------|---------|--------------|
| 下部プレナム水深  | 約 1.5 m | 4 m 以上       |
| 原子炉圧力容器内径 | 4.4 m   | 7.1 m        |
| 下部ヘッド厚さ   | 13 cm   | $25~{ m cm}$ |

表3 各パラメータの設定の考え方(②)

| パラメータ   | 分岐確率          | 設定の考え方                                                                             |
|---------|---------------|------------------------------------------------------------------------------------|
| 注水の有無   | —             | 低圧シーケンス(TQUV)+代替注水系(110 m³/h)(溶融炉心の落下開                                             |
|         |               | 始と同時に注水開始と想定)                                                                      |
| 下部プレナム  | (a) 0.9       | コリウム量は不確実性を考慮し保守的に以下の2ケースの評価結果                                                     |
| への落下コリ  | (b) 0.1       | を基に設定                                                                              |
| ウム量     |               | (a) MAAP で評価した結果をもとに設定(約 70%の落下を想定)                                                |
|         |               | (b) 大量コリウムが落下する場合を想定し、全炉心が落下する設定                                                   |
| 落下コリウム  | 温度, 確率        | ・ 炉心構成物質(UO <sub>2</sub> , Zr, ZrO <sub>2</sub> , SUS)の共晶反応により UO <sub>2</sub> 単体融 |
| 温度      | 2,500 K, 0.5  | 点より低い温度で落下するが、その温度は幅があると考え、2,500                                                   |
|         | 2,800 K, 0.5  | K 及びこれより高めの値 2,800 K を設定                                                           |
|         |               | ・確率は不確実さが大きいと考え、各々0.5を設定                                                           |
| 落下コリウム  | 直径, 確率        | ・直径は溶融コリウムが CR チューブ間(最大 15 cm)を液柱状で落下                                              |
| ジェット直径  | 0.05  m, 0.15 | することを想定し、最大値 0.15 m, 最尤値 0.10 m および最小値                                             |
|         | 0.10 m, 0.50  | 0.05 m と設定                                                                         |
|         | 0.15  m, 0.35 |                                                                                    |
| RPV とコリ | 分布:三角分布       | 実炉スケールの大量デブリ堆積の場合、下鏡底部のギャップまで冷                                                     |
| ウムのギャッ  | 最小:0          | 却水が浸入するか否かは不確実さが大きいと考え、確率 0.5 を最尤                                                  |
| プへの冷却水  | 最尤:0.5        | 値として設定(侵入量はCCFL相関式(小泉らの実験データをKAERI                                                 |
| 侵入の有無   | 最大:1.0        | がフィッティングした相関式)を用いて評価)                                                              |

表 4 TMI-2 事故と MAAP4 再現解析結果の比較[4-7]

|                    | TMI-2 事故 | MAAP4 再現解析  |
|--------------------|----------|-------------|
| ・下部プレナムへのリロケーション時間 | 227 分    | 226 分       |
| ・下部プレナムへのリロケーション量  | 19 t     | $25~{ m t}$ |
| ・下部ヘッド最高温度         | 1100 °C  | 1177 °C     |

表 5 MAAP4と IVR 評価コードの解析結果の比較 (ABWR TQUV シーケンス)

|                     | MAAP4     | IVR 評価コード |
|---------------------|-----------|-----------|
| ・下部プレナムへのリロケーション時間  | 2.3 時間    | 1.5 時間※   |
| ・下部ヘッド破損時間          | 5.9 時間    | 4.5 時間    |
| ・破損モード              | CRD 貫通部逸出 | CRD 貫通部逸出 |
| ・リロケーションから破損までの時間余裕 | 3.6 時間    | 3.6 時間    |

※MAAP3 で評価







図 1b IVR 現象のイベントツリー(②)

|    | ケースNo. | 注水系                  | コリウム<br>落下量 | 落下<br>コリウム温度 | 初期ジェッ<br>ト<br>直径 | ギャップへの<br>水侵入制限 | 下部プレナム<br>ドライアウト<br>時刻 | 下部ヘッド<br>破損時刻(h) | 下部ヘッド<br>破損形態             | 下鏡内壁<br>最高温度(K) |         |
|----|--------|----------------------|-------------|--------------|------------------|-----------------|------------------------|------------------|---------------------------|-----------------|---------|
| 01 |        |                      |             |              | 0.05m            | 無               | no dryout              |                  | -                         | 512             |         |
| 02 |        |                      |             |              |                  | 有               | no dryout              | 1                | <u> </u>                  | 512             |         |
| 03 |        |                      |             | 2500K        | 0.1m             | 無               | no dryout              | -                | 12 ·                      | 1717            | IVR 達成  |
| 04 |        |                      |             |              |                  | 有               | no dryout              | 3.35             | #1 Penetration Ejection!  | 1784            | 1       |
| 05 |        |                      | MAAD I-     |              | 0.15m            | 無               | no dryout              | 1.40             | #1 Penetration Ejection!  | 1783            |         |
| 06 |        |                      |             |              |                  | 有               | no dryout              | 1.35             | #1 Penetration Ejection!  | 1783            |         |
| 07 |        |                      | よる計昇        |              | 0.05m            | 無               | no dryout              |                  |                           | 517             |         |
| 08 |        |                      | (称」70%)     |              |                  | 有               | no dryout              |                  | -                         | 517             |         |
| 09 |        |                      |             | 2800K        | 0.1m             | 無               | no dryout              | 1.73             | #1 Penetration Ejection!  | 1783            |         |
| 10 |        | MUWC                 |             |              |                  | 有               | no dryout              | 1.66             | #1 Penetration Ejection!  | 1783            |         |
| 11 |        | 復旧                   |             |              | 0.15m            | 無               | no dryout              |                  | -                         | 1745            |         |
| 12 | TOUN   | 注水                   |             |              |                  | 有               | no dryout              | 1.58             | #1 Penetration Ejection!  | 1783            |         |
| 13 | IQUV   |                      |             |              | 0.05m            | 無               | no dryout              | 1.47             | #1 Penetration Ejection!  | 1783            |         |
| 14 |        | 110m <sup>3</sup> /h |             |              |                  | 有               | no dryout              | 1.42             | #1 Penetration Ejection!  | 1783            | TVD 生時  |
| 15 |        |                      |             | 2500K        | 0.1m             | 無               | no drvout              | ( <del>_</del> ) | -                         | 1740            |         |
| 16 |        |                      |             |              |                  | 有               | no dryout              | 1.66             | #1 Penetration Ejection!  | 1782            | (CRD ハワ |
| 17 |        |                      |             |              | 0.15m            | 無               | no dryout              |                  |                           | 1/43            | ジング破損)  |
| 18 |        |                      | 全量落下        |              |                  | 有               | no dryout              | 1.49             | #6 Penetration Ejection!  | 1782            |         |
| 19 |        |                      |             |              | 0.05m            | 無               | no dryout              | 1 = 1            | -                         | 1751            |         |
| 20 |        |                      |             | _            |                  | 有               | no dryout              | 1.63             | #5 Penetration Ejection!  | 1783            |         |
| 21 |        |                      |             | 2800K        | 0.1m             | 無               | no dryout              | 0.81             | #11 Penetration Ejection! | 1784            |         |
| 22 | ので設定   | 七一 た パ               | ラメータレ       | マ対する         |                  | 有               | no dryout              | 0.76             | #11 Penetration Ejection! | 1784            |         |
| 23 |        |                      | ファキレー       | ニージョン        | 0.15m            | 無               | no dryout              | 0.67             | #12 Penetration Ejection! | 1783            |         |
| 24 | 合々のと   | ノークシノ                | へに対しく       | 、デノリ         |                  | 有               | no dryout              | 0.65             | #12 Penetration Ejection! | 1784            |         |
|    | 三落 下に作 | 半う 下鏡                | 内温度とノ       | ドウンダ口        |                  |                 |                        |                  |                           |                 |         |

リの限界強度との比較等により IVR が達成できるか否かを評価

図 1c 評価コードによる IVR 成否の解析(③)



(a) 酸化物層



(b) 金属層

図 2a 温度コンター図及び流速ベクトル図(簡易モデル, 圧力容器溶融無し)[4-4]



角度[°] (RPV 最下端が 0°, 60°が酸化物層と金属層の境界に相当)

図 2b 熱流束分布(簡易モデル, 圧力容器溶融無し)[4-4]

#### 添付資料 4.1.1.f-1-40



図 3a 評価コードの要素モデル<sup>[4-1]</sup>



図 3b IVR 評価コードの伝熱および物質移行モデル[4-6]

格納容器雰囲気直接加熱発生時の格納容器への温度負荷

柏崎刈羽 6 号及び 7 号炉の内部事象運転時レベル 1.5PRA では,格納容器雰囲気直接加熱(以下,「DCH」という。)による格納容器内の圧力上昇を原子炉格納容器のフラジリティ曲線に照らして DCH による格納容器破損頻度を評価している。このとき,格納容器への温度負荷は考慮していない。

本評価では原子炉圧力容器が高圧破損し,DCH が発生した場合について,原 子炉圧力容器の破損時の格納容器への温度負荷を確認した。

1. 評価条件

TQUX によって炉心損傷に至り、その後の減圧に失敗する事故シーケンスについて評価した。評価条件を表1に示す。

#### 2. 評価結果

評価結果を図1及び図2に示す。

原子炉格納容器への温度に関する負荷は,原子炉格納容器の壁面温度で確認 することが適切であることから,原子炉格納容器の壁面温度を確認すると,原子 炉圧力容器高圧破損直後であっても気相部温度と比較して温度の上昇は緩やか であり,限界温度(200℃)に対して余裕があることが確認出来る。このことから, 仮に DCH によって更に急激な原子炉格納容器の温度上昇が生じても原子炉格 納容器の壁面温度が短時間で限界温度に到達することはなく,また,DCH によ って格納容器に大きな負荷が生じた場合,格納容器は先に圧力によって破損に 至るものと考えられる。

このため, DCH による格納容器破損頻度の評価においては, 原子炉圧力容器 への圧力負荷に着目して評価することで問題無いと考える。

3. その他の影響

高圧状態の原子炉圧力容器から溶融炉心が噴出された場合,高温の溶融炉心 が壁面に付着し,格納容器を加熱することで格納容器破損に至る可能性も考え られるが,溶融炉心の噴出先は格納容器下部ドライウェルであるため,原子炉格 納容器のバウンダリに接触することはなく,上部ドライウェルへの流路も連通 孔に限定されるため,上部ドライウェルの壁面に付着し,加熱によって格納容器 破損に至る可能性は小さいものと考える。

以 上

| パラメータ                   | 評価条件      | 備考                     |
|-------------------------|-----------|------------------------|
| 対象シーケンス                 | TQUX      | 炉心損傷後の減圧失敗             |
| 炉内ジルコニウム酸化割合            | 24%       | 不確かさ確率分布<br>(三角分布)の最尤値 |
| RPV 破損面積                | $0.3 m^2$ | 不確かさ確率分布<br>(三角分布)の最尤値 |
| 下部プレナムに落下する<br>溶融炉心の割合  | 60%       | 不確かさ確率分布<br>(三角分布)の最尤値 |
| ドライウェルへの粒子化<br>デブリの移行割合 | 5%        | 不確かさ確率分布<br>(一様分布)の最大値 |

表1 DCH 評価条件



図1 ドライウェル圧力



添付資料 4.1.1.f-1 補足 1-2

## 炉外 FCI による格納容器破損確率評価における

ペデスタルフラジリティの設定

炉外 FCI による格納容器破損確率の評価では、格納容器下部ドライウェルへの溶融デブリの落下に伴って生じる水蒸気爆発の機械的エネルギーの分布を、 機械的エネルギーと格納容器下部ドライウェル側壁(ペデスタル)の破損確率の 関係(ペデスタルフラジリティ)に照らして炉外 FCI による格納容器の破損確率 を評価している。

このペデスタルフラジリティは以下の流れで設定している。設定の詳細を 1. 以降に示す。

- ① FCI によって生じる機械的エネルギーとペデスタルの鋼板の塑性ひずみ量の関係を、動的連続体非線形相互作用解析コード「AUTODYN-2D」を用いて評価する。
- ②<br />
  ①で求めた関係をもとに、ペデスタルフラジリティを設定する。

1. AUTODYN-2D によるペデスタルの鋼板の塑性ひずみ量の評価

(1) 評価条件

AUTODYN-2D での解析条件を次に示す。AUTODYN-2D では、格納容器下 部ドライウェルの液相部での水蒸気爆発による圧力波が液相部あるいは気相部 を伝播して構造物に働く荷重及び変形を評価した。

a. 解析モデル

解析モデルを図1に示す。下部ドライウェルにはリターンラインまで水位 があるもの(水深約7m)とした。

FCI による圧力源には GASBAG モデル(水プール中の点に高圧気泡を置き、この気泡の膨張によって所定の仕事をさせるモデル)を使用した。

鋼板材(SPV490)の材料物性として、SPV490の応力-ひずみ曲線を使用した。SPV490の応力-ひずみ曲線を図2に示す。

b. 解析ケース

AUTODYN-2D による解析ケースを表 1 に示す。FCI に寄与するコリウムの量は、破損口径とプール水深(約 7 m)の積とし、FCI によって発生する機械的エネルギーは FCI に寄与するコリウムの内部エネルギーとエネルギー変換効率の積とした。

破断口面積には、破損規模が小規模なケース(CRD1本程度の面積を考慮) 及び破損規模が大規模なケース(大規模クリープ破損を想定)を考慮した。

圧力源の位置は水プールの中心とし、圧力源の形状は球形とした。

- (2) 評価結果(機械的エネルギーとペデスタルの鋼板の塑性ひずみ量の関係) 表1の解析ケース毎に AUTODYN-2D を用いて評価した鋼板の塑性ひず みと、FCI によって生じる機械的エネルギーとの関係を図3に示す。今回の 解析条件の範囲では機械的エネルギーの増大に対して塑性ひずみはほぼ線 形に増加していく結果となった。
- 2. ペデスタルフラジリティの設定

ペデスタルフラジリティは、AUTODYN-2D による評価結果から得られた図 3 の機械的エネルギーとペデスタルの鋼板の塑性ひずみ量の関係を参考に、

を上限とするとして設定した。設定したペデスタルのフラジ リティ曲線を図4に示す。

の上限については、図2からSRV490の最大引張り強さ時の塑性歪 みがであることを読み取り、図3からは塑性歪みに相当する機械的エネルギーが

以 上

| 解析<br>ケース | 破損規模                  | 破損口<br>面積[m <sup>2</sup> ] | プール<br>水深[m] | 機械的<br>エネルギー<br>変換効率[%] | 機械的<br>エネルギー<br>[MJ] |
|-----------|-----------------------|----------------------------|--------------|-------------------------|----------------------|
| 1         | 小規模<br>(CBD1 本程度の     | 0.99                       |              | 2                       | 348                  |
| 2         | (UND1 本住及の)<br>面積を考慮) | 0.28                       |              | 1                       | 174                  |
| 3         | 大規模                   |                            | 6.757        | 2                       | 2739                 |
| 4         | (大規模クリープ<br>破損を想定。)   | プ 2.27                     |              | 1                       | 1369                 |
| 5         |                       |                            |              | 0.5                     | 685                  |

表1 AUTODYN-2D による解析ケース

図1 AUTODYN-2Dによる格納容器下部ドライウェル内の動的荷重評価モデル

図 2 鋼板材(SRV490)の応力-ひずみ曲線

図3 FCIによって生じる機械的エネルギーと鋼板の塑性ひずみの関係

図4 FCI によって生じる機械的エネルギーに対するペデスタルのフラジリティ曲線

## 余裕時間の設定方法

格納容器イベントツリー評価において、分岐確率を設定するにあたって、余裕時間を設定する必要がある。余裕時間の設定が必要となる格納容器イベントツリーのヘディングおよび本ヘディングに示す操作の実施目的を下表に示す。

これらのヘディングの分岐確率を設定するために必要となる、運転操作の余裕時間について、実施目的を考慮して、事故進展解析結果から設定する。

|   | ヘディング              | 実施目的                     |  |  |
|---|--------------------|--------------------------|--|--|
| 1 | 原子炉減圧              |                          |  |  |
| 2 | 損傷炉心注水             | KPV 恢復的止                 |  |  |
| 3 | 下部 D/W 注水(RPV 破損口) | DCN应用时止                  |  |  |
| 4 | 上部 D/W スプレイ(RHR)   | PUV 做預防止                 |  |  |
| 5 | 非常用交流電源復旧(RPV 破損前) | RPV 破損防止 (1,2 のためのサポート系) |  |  |
| 6 | 非常用交流電源復旧(PCV 破損前) | PCV 破損防止 (3,4 のためのサポート系) |  |  |

1. 損傷炉心注水の余裕時間

損傷炉心注水の余裕時間は、RPV 内溶融物保持(IVR)を達成するために許容 される時間と定義され、具体的にはリロケーション開始からの時間によって設 定することが出来る。

ここで、表 4.1.1.f-2-1 に事故進展解析結果を示す。本表からリロケーション 開始までの時間は、炉心損傷時期が早期か後期かで大きく異なる。炉心損傷時 期の早期/後期を、PDS によって分類すると、以下のようになる。

- ・炉心損傷時期早期:長期 TB 以外
- ・炉心損傷時期後期:長期 TB

したがって、損傷炉心注水の余裕時間は、長期 TB と長期 TB 以外に区別して設定を行う。

## ① 長期 TB 以外の PDS に対する損傷炉心注水の余裕時間

#### 添付資料 4.1.1.f-2-1

② 長期 TB に対する損傷炉心注水の余裕時間

2. 残留熱除去系による PCV 除熱の余裕時間

② RPV 破損あり(IVR 失敗時)

残留熱除去系による PCV 除熱の余裕時間を整理した結果を表 4.1.1.f-2-5 に 示す。

3. 交流電源復旧の余裕時間

交流電源復旧の目的は、交流電源喪失時における、損傷炉心注水および PCV 除熱であるため、交流電源復旧は、1.および 2.で設定した余裕時間以内に完了す る必要がある。

したがって、1.および2.の余裕時間設定の考え方を基に以下の通り設定した。 ① 損傷炉心注水のための交流電源復旧の余裕時間

② PCV 破損防止のための交流電源復旧の余裕時間

PCV 破損前までの交流電源復旧の余裕時間を整理した結果を表 4.1.1.f-2-6 に示す。

| PDS                | 炉心溶融 | RPV 下部プレナム<br>リロケーション | RPV 破損 | PCV 破損 |
|--------------------|------|-----------------------|--------|--------|
| TQUV<br>(TBP)      |      |                       |        |        |
| TQUX<br>(TBU, TBD) |      |                       |        |        |
| TQUX<br>(RPV 破損なし) |      |                       |        |        |
| LOCA               |      |                       |        |        |
| 長期 TB              |      |                       |        |        |

表 4.1.1.f-2-1 代表炉心損傷シーケンスの事故進展解析結果

RPV 下部プレナムリロケーションとは、RPV 下部プレナムへのデブリの移行時間を表す。

表 4.1.1.f-2-2 代替注水系相当の流量で注水した場合の注水の遅れ時間と IVR 達成の関係

## 表 4.1.1.f-2-3 損傷炉心注水の余裕時間

## 表 4.1.1.f-2-5 残留熱除去系による PCV 除熱の余裕時間

表 4.1.1.f-2-6 交流電源復旧の余裕時間

格納容器隔離の分岐確率の根拠と格納容器隔離失敗事象への対応

【分岐確率の根拠】

KK6/7 号機の内部事象運転時レベル 1.5PRA では、炉心損傷の時点で原子炉 格納容器(PCV)の隔離に失敗している場合を考慮しており、これを「PCV 隔離」 のヘディング(分岐確率 5.0×10<sup>-3</sup>)として設定している。

この分岐確率は、PCV 隔離システムの信頼性について評価している NUREG/ CR-4220<sup>[1]</sup>をもとに設定している。NUREG/CR-4220 では、米国の LER (Licensee Event Report)(1965 年~1984 年分)を分析し、PCV からの大規模漏 洩が生じた事象 4 件を抽出、これを評価時点での運転炉年(740 炉年)で割ること により、PCV 隔離失敗の発生頻度(5.0×10<sup>-3</sup>/炉年)を算出している。更に、PCV 隔離失敗の継続時間の情報が無いことから、工学的判断として PCV の隔離機能 が確認される間隔を1年とし、上記の発生頻度に1年を掛けることにより、「PCV 隔離」の失敗確率としている。

本評価においても、PCVの隔離機能は少なくとも1年に1回程度は確認されるもの(1サイクルに1回程度)と考え、上記の発生頻度に1年を掛けることにより、「PCV隔離」の失敗確率としている。

なお、NUREG/CR-4220 では、潜在的な漏洩が発生する経路として、ベント 弁等の大型弁の故障や PCV 壁に穴が空く事象等の直接的な破損を考えている。

#### 【JNES による検討事例】

PCVの隔離失敗については、独立行政法人 原子力安全基盤機構(JNES)による評価結果<sup>[2]</sup>が報告されている。国内 BWR-5MARK II 型格納容器プラントを対象に、フォールトツリー(FT)を用いて PCV 隔離の失敗確率を評価しており、 PCV 隔離の失敗確率は平均値で 8.3×10<sup>-4</sup>(EF = 2.4)と示されている。

PCV の貫通部を抽出した上で、貫通部の弁の構成等を考慮し、リークのパタ ーンを FT でモデル化している。また、FT の基事象には国内機器故障率データ を使用している。

【分岐確率の設定について】

NUREG/CR-4220 では米国の運転実績から、JNES による評価では、FT による分析から PCV 隔離失敗の頻度又は確率が評価されている。用いているデータ及び評価方法は異なるものの、いずれも 1.0×10<sup>-3</sup>前後の値である。

本評価において、ヘディング「PCV 隔離」は他のヘディングとの従属関係を 持たない独立のヘディングであることから、プラント損傷(炉心損傷)状態の発生 頻度とヘディング「PCV 隔離」の確率の積がそのまま PCV 破損モード「PCV 隔離失敗」による PCV 破損頻度となる。また、PCV の隔離に成功している確率

#### 添付資料 4.1.1.f-3-1

はほぼ1であることから、ヘディング「PCV隔離」以降のイベントツリーの分析結果(CFF)には殆ど影響しない。これらのことから、参照可能と考える評価結果のうち、大きめの値を示している NUREG/CR-4220の評価結果をもとに、工学的判断によって分岐確率5.0×10<sup>-3</sup>を採用した。

なお、現状の運転管理として PCV 内の圧力を日常的に監視しているほか、格納容器圧力について1日1回記録を採取している。仮に今回想定した様な大規模な漏えいが生じた場合、速やかに検知できる可能性が高いと考える。

【格納容器隔離失敗事象への対応】

格納容器隔離失敗事象には、炉心損傷の時点で PCV の隔離に失敗している場合と、原子炉冷却材浄化系配管等の原子炉圧力容器(RPV)に繋がる高圧配管が格納容器外で破断した後に炉心損傷に至る場合が含まれている。

PRA では、炉心損傷の時点で PCV の隔離に失敗している場合を考慮している。PRA 上、具体的な隔離失敗(漏えい)箇所を設定しているものでは無いが、万一、炉心損傷の時点で PCV の隔離に失敗していた場合には、中央制御室からの隔離失敗(漏えい)箇所の隔離を試みることとなる。

このため、本事象への対応としては、炉心損傷頻度の低減を図ると共に、万一の重大事故発生時に PCV の隔離に失敗していることの無いよう、PCV の漏えいに対する検知性を向上させることが有効であり、これらについては重大事故等対処設備や日常の PCV の圧力監視等で対応している。

原子炉冷却材浄化系配管等、RPV に繋がる配管が格納容器外で破断した後に 炉心損傷に至る場合については、配管破断の発生頻度が十分に低いため、 ISLOCA を除いて PRA 上はモデル化していない。仮に配管破断が生じた場合に は、破断箇所の隔離、RPV の急速減圧、炉水位をバイパス破断が生じた配管の RPV 接続位置の高さ以下に保つ等、ISLOCA の場合と同様の対応をとることと なる。

また、サプレッションプールからの吸込配管等、直接炉心損傷につながるものでは無いが、PCVから外部に敷設されている配管が破断した場合についても、 破断箇所を隔離することで対応する。

以上

参考文献

- NUREG/CR-4220, Reliability Analysis of Containment Isolation Systems., U.S. Nuclear Regulatory Commission (1985)
- [2]「JNES/SAE06-031,06 解部報-0031 格納容器健全性に関する機器の重要度評価(BWR)」 独立行政法人 原子力安全基盤機構 (2006)

付録 2

# 重大事故等対策の有効性評価について (原子炉格納容器の限界温度・圧力)

目

次

頁

| (本文)                                          |      |
|-----------------------------------------------|------|
| 1. 評価の概要                                      |      |
| (1) はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 1    |
| (2) 限界温度・圧力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 2    |
| (3) 健全性確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 2    |
| (4) 結論・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・    | 23   |
| 別添-1 福島第一原子力発電所事故時の格納容器温度・圧力の挙動               |      |
| 別添-2 格納容器限界温度・圧力に関する海外知見について                  |      |
| 別添-3 原子炉格納容器バウンダリにおけるシール材の変更について              |      |
| (添付資料)                                        |      |
| 1. 原子炉格納容器本体(コンクリート部)                         |      |
| 1.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 1-1  |
| 1.2 評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 1-1  |
| 1.3 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 1-3  |
| 2. 原子炉格納容器本体 (ライナ部)                           |      |
| 2.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 2-1  |
| 2.2 評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 2-1  |
| 2.3 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 2-3  |
| 3. トップヘッドフランジ                                 |      |
| 3.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 3-1  |
| 3.2 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 3-4  |
| (1)本体の耐圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 3-4  |
| (2)フランジ固定部の強度・・・・・・・・・・・・・・・・・・・・・・・          | 3-11 |
| (3)ガスケットの健全性・・・・・・・・・・・・・・・・・・・・・・・・・         | 3-13 |
| 3.3 評価まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 3-23 |
| 4. ハッチ類(機器搬入用ハッチ等)                            |      |
| 4.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 4-1  |
| 4.2 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 4-3  |

| (1)本体の耐圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 4-3  |
|-----------------------------------------|------|
| (2)フランジの固定部の強度・・・・・・・・・・・・・・・・・・・・・・・・  | 4-21 |
| (3)ガスケットの健全性・・・・・・・・・・・・・・・・・・・・・・・・・・  | 4-23 |
| 4.3 評価まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 4-33 |

# 5. エアロック

| 5.1 | 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 5 - 1 |
|-----|--------------------------------------------------|-------|
| 5.2 | 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・         | 5-4   |
|     | (1)本体の耐圧・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 5-4   |
|     | (2)ガスケットの健全性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 5-20  |

# 6. 配管貫通部

| 6-1 配管貫通部(貫通配管)                            |      |
|--------------------------------------------|------|
| 6-1.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・  | 6-1  |
| 6-1.2 評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 6-1  |
| 6-1.3 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 6-4  |
| 添付 6−1 原子炉格納容器貫通配管の評価部位の代表性について・・・・・       | 6-11 |

## 6-2 配管貫通部 (スリーブ・端板・閉止板)

| 6-2.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・     | 6-13 |
|----------------------------------------------------|------|
| 6-2.2 評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 6-14 |
| 6-2.2.1 基本板厚計算                                     |      |
| 6-2.2.1.1 スリーブ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 6-14 |
| 6-2.2.1.2 端板・・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 6-15 |
| 6-2.2.1.3 閉止板・・・・・・・・・・・・・・・・・・・・・・・・・・・・          | 6-16 |
| 6-2.2.2 応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・           | 6-17 |
| 6-2.3 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・              | 6-23 |

| 6-3 配管貫通部( | 閉止フランジ) |
|------------|---------|
|------------|---------|

| 6-3.1 | フランジ | 部の  | )構 | 造 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 6-24 |
|-------|------|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|------|
| 6-3.2 | 評価部位 | ••• | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 6-24 |
| 6-3.3 | 評価・・ | ••• | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 6-25 |
| 6-3.4 | 評価結果 | ••• | •  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 6-25 |

## 7. 電気配線貫通部

| 7.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 7- | -] |
|----------------------------------------------|----|----|
|----------------------------------------------|----|----|

| 7.2 評価・・・・・・・・・・・・・・  | ••• | • • | • | • | ••  | • | • | • | •   | ••• | • | • | • | • | • | 7-7  |
|-----------------------|-----|-----|---|---|-----|---|---|---|-----|-----|---|---|---|---|---|------|
| 7.2.1 電気配線貫通部の板厚計算・・  | ••• | ••  | • | • | ••• | • | • | • | •   | ••• | • | • | • | • | • | 7-7  |
| 7.2.2 電気配線貫通部シール材の評価・ | ••• | •   | • | • | ••  | • | • | • | • • | ••• | • | • | • | • | • | 7-16 |

#### 8. 原子炉格納容器隔離弁

| 8.1 はじめに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | 8-1 |
|------------------------------------------------|-----|
| 8.2 不活性ガス系バタフライ弁                               |     |
| 8.2.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 8-2 |
| 8.2.2 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      | 8-2 |
| 8.3 TIP ボール弁及びパージ弁                             |     |
| 8.3.1 評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・        | 8-4 |
| 8.3.2 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 8-5 |
| 添付 8-1 原子炉格納容器隔離弁の抽出について・・・・・・・・・・・・           | 8-7 |
| 添付 8-2 格納容器隔離弁の重大事故環境下における耐性確認試験について・・         | 8-8 |

- 別紙-1 6号炉 原子炉格納容器貫通部リスト
- 別紙-2 7号炉 原子炉格納容器貫通部リスト
- 別紙-3 トップヘッドフランジ等の開口量評価の妥当性について
- 別紙-4 改良EPDMシール材の試験について
- 別紙-5 バックアップシール材の試験について
- 別紙-6 一次+二次応力の評価について
- 別紙-7 ライナの不連続部の評価について
- 別紙-8 格納容器貫通部における楕円変形の影響について
- 別紙-9 モデル化している各部位の耐震性について
- 別紙-10 フランジ開口に対するシール材の復元特性について
- 別紙-11 実機フランジモデル試験の概要について
- 別紙-12 NUPEC 解析モデルの当社プラントへの適用性について
- 別紙-13 SA時の S/C構造評価における水力学的動荷重の影響について
- 別紙-14 限界温度・圧力に対する評価対象部位の裕度について
- 別紙-15 配管貫通部の代表性について
- 別紙-16 バックアップシール材塗布による設計影響について
- 別紙-17 TIPパージ弁(メタルシート)の実機適用性について
# 1.評価の概要

(1) はじめに

柏崎刈羽原子力発電所6、7号炉の重大事故等対策の有効性評価において、原子 炉格納容器の限界温度・圧力をそれぞれ200℃、2Pd(0.62MPa、Pd:最高使用圧力 (0.31MPa))として評価している。以下にその根拠と妥当性を示す。

表-1.1 原子炉格納容器の設計条件と限界温度・圧力の比較

|    | 設計仕様                | 有効性評価で使用する        |  |
|----|---------------------|-------------------|--|
|    | (最高使用温度・圧力)         | 限界温度・圧力           |  |
| 温度 | $171^{\circ}C^{*1}$ | 200°C             |  |
| 正力 | 310kPa (1Pd)        | $620kD_{0}$ (2Dd) |  |
| 圧力 | $\{3.16 kgf/cm^2\}$ | 020KFA (2FU)      |  |

\*1:ドライウェルの最高使用温度を示す。サプレッション・チェンバの最高使用温度は104℃である。



図-1.1 原子炉格納容器全体図

(2) 限界温度・圧力の評価

原子炉格納容器の限界温度・圧力については、重大事故時条件下において、原子 炉格納容器の機能である放射性物質の閉じ込め機能を確保できることを条件とし て設定する。放射性物質の閉じ込め機能を確保するためには、原子炉格納容器バウ ンダリを構成する機器である格納容器本体、ハッチ類、貫通部、隔離弁等が、重大 事故時条件下において著しい損傷が生じることなく、気密性を確保することが必要 である。

重大事故時条件下の格納容器閉じ込め機能については、これまでに実施した電 力会社等による共同研究(以下「電共研」という。)や、当時の(財)原子力発電 技術機構(以下「NUPEC」という。)による「重要構造物安全評価(原子炉格納容 器信頼性実証事業)」の研究成果を踏まえた評価等に加え、福島事故では格納容器 の閉じ込め機能が喪失し、放射性物質の放出につながった可能性が高いことから、 これまでの福島事故の分析、評価によって得られている知見を考慮して、格納容 器バウンダリを構成する機器の機能が健全に維持できることが確認できる条件を 設定する。

これらを踏まえ、有効性評価における重大事故時の原子炉格納容器の限界温度・圧力をそれぞれ200℃、2Pdと設定していることに対し、上記に示す電共研や NUPECの研究成果、解析評価、および、福島事故の知見等により妥当性を確認する ものである。

- (3) 健全性確認
  - a. 評価対象

放射性物質の閉じ込め機能を確保するためには、200℃、2Pd の環境下で原子炉 格納容器本体及び開口部等の構造健全性を確認する必要がある。

さらに、福島第一原子力発電所事故において、格納容器からの漏えい要因の一 つとして推定している原子炉格納容器に設置されるトップヘッドフランジ部、ハ ッチフランジ部、電気配線貫通部等のシール部についても、200℃、2Pd の環境下 での機能維持を確認する必要がある。

このことから原子炉格納容器本体の他に、200℃、2Pdの環境下で原子炉格納容器の変位荷重等の影響により、構造上、リークパスになる可能性がある開口部及び貫通部の構成品、また、ガスケットの劣化及びシート部の変形に伴いリークパスになる可能性があるシール部が評価対象となり、以下の原子炉格納容器バウンダリ構成部を評価する。なお、図-1.2 に原子炉格納容器バウンダリ構成部の概要を示す。

①原子炉格納容器本体(コンクリート部)
②原子炉格納容器本体(ライナ部)
③トップヘッドフランジ
④ハッチ類(機器搬入用ハッチ等)
⑤エアロック
⑥配管貫通部(貫通配管、スリーブ、端板、閉止フランジ、閉止板)
⑦電気配線貫通部
⑧原子炉格納容器隔離弁



- エアロック(1) 上部ドライウェル所員用エアロック
- エアロック(2) 下部ドライウェル所員用エアロック

図-1.2 原子炉格納容器バウンダリ構成部の概要図

b. 機能喪失要因

原子炉格納容器バウンダリを構成する各設備の重大事故時における放射性物 質の閉じ込め機能喪失の要因(以下、「機能喪失要因」という。)として、原子炉 格納容器内の温度、内圧条件や原子炉格納容器本体の変形に伴う、以下の要因が 想定される。

①原子炉格納容器本体(コンクリート部) 曲げせん断破壊 ②原子炉格納容器本体(ライナ部) 延性破壊 ③トップヘッドフランジ 延性破壊、変形、高温劣化(シール部) ④ハッチ類(機器搬入用ハッチ等) 延性破壊、変形、高温劣化(シール部) ⑤エアロック 延性破壊、変形、高温劣化(シール部) ⑥配管貫通部 ·貫通配管 延性破壊 ・スリーブ 延性破壊 ・端板 延性破壊 ·閉止板 延性破壊 ・閉止フランジ 延性破壊、高温劣化(シール部) ⑦電気配線貫通部 延性破壊、高温劣化(シール部) ⑧原子炉格納容器隔離弁

延性破壊、高温劣化(シール部)

c.評価方法

構造健全性及びシール部の機能維持について、各設備に対し放射性物質の閉 じ込め機能を確保できる判断基準を設定し、以下のいずれかの方法により評価 し、200℃、2Pd の環境下での健全性及び機能維持を確認する。

(a) 自社研, 電共研, NUPEC での試験結果等による評価

(b) 設計・建設規格又は既工事計画認可申請書等に準拠した評価

(c)設計・建設規格の準用等による評価

評価方法による評価対象機器の分類を図-1.3及び表-1.2に示す。



図-1.3 評価方法による評価対象機器の分類

表-1.2 評価対象機器の分類及び評価内容

|   | 評価対象部位                        | 想定される<br>機能喪失要因   | 評価手法 | 評価方法の概要                                                                                    | 判定基準                                     |
|---|-------------------------------|-------------------|------|--------------------------------------------------------------------------------------------|------------------------------------------|
| 1 | 原子炉格納容器本体<br>(コンクリート部)        | 曲げせん断破壊           | (a)  | NUPEC で実施された有限要素法を用いた弾塑性解析により、200℃条<br>件下で、コンクリート部の内圧に対する耐圧性状を確認                           | 2Pd を上回ること                               |
| 2 | 原子炉格納容器本体<br>(ライナ部)           | 延性破壊              | (a)  | NUPEC で実施された有限要素法を用いた歪み評価をもとに、ライナ部<br>破損圧力を評価                                              | 2Pd を上回ること                               |
| 3 | トップヘッドフランジ                    | 延性破壊              | (b)  | 設計・建設規格の評価式に準拠し 200℃, 2Pd において応力評価を行い,許容応力を 200℃における 2/3Su として評価                           | 許容応力を下回ること                               |
|   |                               |                   | (a)  | NUPEC で実施された 1/10 スケールモデル試験体を用いた耐圧試験結果に基づき限界圧力を評価                                          | 2Pd を上回ること                               |
|   |                               | 変形・高温劣化<br>(シール部) | (a)  | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                              | シール部が健全であること                             |
| 4 | ハッチ類<br>(機器搬入用ハッチ等)           | 延性破壊              | (b)  | 設計・建設規格の評価式に準拠し 200℃, 2Pd において応力評価を行い,許容応力を 200℃における 2/3Su として評価                           | 許容応力を下回ること                               |
|   |                               |                   | (a)  | NUPEC で実施されたハッチモデル試験体を用いた耐圧試験結果に基<br>づき限界圧力を評価                                             | 2Pd を上回ること                               |
|   |                               | 変形・高温劣化<br>(シール部) | (a)  | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                              | シール部が健全であること                             |
| 5 | エアロック                         | 延性破壊              | (b)  | 設計・建設規格の評価式に準拠し 200℃, 2Pd において応力評価を行い,許容応力を 200℃における 2/3Su として評価                           | 許容応力を下回ること                               |
|   |                               | 変形・高温劣化<br>(シール部) | (a)  | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                              | シール部が健全であること                             |
| 6 | 配管貫通部(貫通配管)                   | 延性破壊              | (b)  | 代表配管について,原子炉格納容器変位に伴う曲げ荷重の作用によ<br>る強度評価を,設計・建設規格 PPC-3530 に準拠し,既工事計画認可<br>申請書で実績ある手法で評価を実施 | PPC-3530 に規定される 1<br>次,2次応力の制限値を満<br>足する |
|   | 配管貫通部(スリーブ,端<br>板,閉止板,閉止フランジ) | 延性破壊              | (b)  | 代表配管について,設計・建設規格 PVE-3410,3610 に準拠し,必要<br>板厚を算定                                            | 設計上の必要板厚を上回<br>ること                       |
|   | 配管貫通部(閉止フラン<br>ジ)             | 変形・高温劣化<br>(シール部) | (a)  | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                              | シール部が健全であること                             |
| 7 | 電気配線貫通部                       | 延性破壊              | (b)  | 代表貫通部について,設計・建設規格 PVE-3230 に準拠し,必要板厚<br>を算定                                                | 設計上の必要板厚を上回<br>ること                       |
|   |                               | 変形・高温劣化<br>(シール部) | (a)  | 電共研, NUPEC で実施された電気配線貫通部のモデル試験体を用いた<br>気密性能確認結果に基づき限界圧力・温度を評価                              | 2Pd, 200℃を上回ること                          |
| 8 | 原子炉格納容器隔離弁                    | 変形・高温劣化<br>(シール部) | (a)  | シール部について試験結果に基づき評価                                                                         | シール部が健全であること                             |

#### d. 評価結果の概要

①原子炉格納容器本体(コンクリート部)

原子炉格納容器は鋼製ライナを内張りした鉄筋コンクリート造であり、原子炉 建屋と一体となっている。原子炉格納容器本体(コンクリート部)の設計時に考 慮される機能喪失要因は内圧上昇に伴う破損であり、コンクリート部の構造健全 性を維持できる限界の内圧を評価することで健全性を確認する。

コンクリート部の構造健全性については、NUPEC 重要構造物安全評価(原子炉 格納容器信頼性実証事業)(平成2年度~平成14年度)において有限要素法を用 いた弾塑性解析により限界の内圧を確認している。この結果から、原子炉格納容 器本体(コンクリート部)の破損は200℃条件下において4.0Pd~4.5Pd で発生す ると考えられるため、限界温度・圧力である200℃、2Pd での構造健全性を確認し た。

②原子炉格納容器本体(ライナ部)

原子炉格納容器本体(ライナ部)の設計時に考慮される機能喪失要因は、脆性 破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件である 200℃、 2Pd の条件を考慮した場合、脆性破壊が生じる温度域でないこと、繰り返し荷重が 作用しないことから脆性破壊、疲労破壊は評価対象外と考えることができる。な お、熱座屈の可能性が考えられるが、座屈後に圧縮ひずみが開放され破損に至ら ないことから座屈は評価対象外と考えることができる。

したがって、原子炉格納容器本体(ライナ部)の機能喪失要因は、高温状態で の内圧による過度な塑性変形に伴う延性破壊が想定される。

一方、NUPEC 重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成2 年度~平成14年度)において、代表プラントの原子炉格納容器を対象に有限要素 法によるひずみ評価が実施されており、これを用いて柏崎刈羽原子力発電所6、 7号炉での原子炉格納容器の局所の健全性を確認する。

この有限要素法による評価では、代表プラントのRCCV 全体モデル解析でライナ ひずみが大きい領域が見られた「下部ドライウェルアクセストンネル開口近傍 (RCCV 脚部含む)」、「上部ドライウェル開口近傍隅角部」を局所評価点として選定 した。このライナ部破損評価にあたり、同様のライナ構造を有する PCCV 試験結果 に基づく、多軸応力場での三軸度 TF(Triaxiality Factor;多軸応力場における 延性低下の影響を示す係数)で修正を行った判断評価基準を適用した結果、重大事 故時のライナ部の破損に対する限界圧力は 2Pd 以上あることを確認した。 ③トップヘッドフランジ

トップヘッドフランジは、原子炉格納容器の上蓋フランジであり、締付ボル トで固定される構造である。また、フランジ間のシールにはガスケットを使用 している。フランジにはシール溝が二重に配置されており、原子炉格納容器内 側・外側のそれぞれのシール溝にガスケットを取り付ける二重シール構造にな っている。

トップヘッドフランジの設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件である 200℃、2Pd を 考慮した場合、脆性破壊が生じる温度域でないこと、繰り返し荷重が作用しな いことから、脆性破壊、疲労破壊は評価対象外と考えることができる。

トップヘッドフランジは原子炉格納容器の貫通口の中で内径が最も大きいこ とから、原子炉格納容器膨張によるトップスラブ部の歪みによる強制変位が大 きく作用する。この変位及び原子炉格納容器内圧による過度な塑性変形に伴う 延性破壊、また、フランジ部の変形及びシール材の高温劣化によるシール機能 の低下が考えられる。なお、熱座屈の可能性が考えられるが、座屈後に圧縮ひ ずみが開放され破損に至らないことから座屈は評価対象外と考えることができ る。

このため、下記のとおり200℃、2Pdの環境下での健全性を確認した。

・本体

トップヘッドフランジにおける構造健全性評価として、ドライウェル上 鏡の部材において内圧による荷重を受け止める部位のうち鏡板、円筒胴に ついて一次一般膜応力評価、貫通部アンカ及びコンクリート部について一 次応力評価等を行い、発生応力が許容応力以下であることを確認した。

ここで、設計建設規格の解説表 PVB-3110-1 において、延性破壊評価は一 次応力の評価を実施することとなっている。

一方、設計・建設規格における一次応力強さの許容値は、材料の種類及 び温度毎に材料試験(引張試験)を実施した結果をもとに国内 Su 値検討会 で設定された設計引張強さ(Su)に割下げ率を考慮して設定されたもので ある(設計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過するトップヘッドフランジ部の限界温度及び許容圧力の妥当性を確認するものであるため、上記割下げ率を Pm(一次一般膜応力強さ)には 1.5、PL+Pb(一次局部膜応力強さ+一次曲げ応力強さ)には 1.0 とした評価を行う。

すなわち、トップヘッドフランジに発生する応力が、Pmが 2/3Su、PL+Pbが Su 以下であれば、延性破壊には至らず、構造は健全で機能要求(放射性物 質の閉じ込め機能)を確保できると考えている。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、 供用状態 D の P<sub>m</sub>, P<sub>L</sub>+P<sub>b</sub>の許容値と同等である。なお、耐圧機能維持の観点か ら、安全評価上の仮定(原子炉冷却材喪失事故を想定)に保証を与える目 的で応力評価を行う設計・建設規格の供用状態 D の許容応力は、鋼材の究 極的な強さを基に、弾性計算により塑性不安定現象の評価を行うことへの 理論的安全裕度を考慮して定めたものであり、P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は 1.5× 2/3Su (=Su)と規定されている。前者は、膜応力であり断面の応力が Su に 到達すると直ちに破損に至るため割下げ率 1.5 を考慮して規定されている が、後者は、断面表面が Su に到達しても断面内部は更なる耐荷能力があり 直ちに破損には至らないため割下げ率は 1.0 としている。

また、ドライウェル上鏡については重要構造物安全評価(原子炉格納容 器信頼性実証事業)(平成2年度~平成14年度)において、代表プラント の鋼製格納容器をモデル化した1/10スケールモデル試験体を用いた耐 圧試験を行い,限界圧力を評価している。この耐圧試験の結果、限界圧力 は約4.6MPaであることが示されており、それ以下では破損が生じないこと を確認している。この1/10スケールモデル試験体はMark-II改良型の上 鏡を想定して試験が行われたものであるが、Mark-II改良型の上鏡とRCCV の上鏡の基本的な構造は同じであり、柏崎刈羽原子力発電所6、7号炉と の上鏡形状の違いを考慮したとしても、限界圧力2Pd環境下で構造健全性 を有していることを確認した。

・シール機能

・フランジ固定部の強度

トップヘッドフランジのシール機能維持については、過去に電共研で ドライウェル上鏡を模擬した上鏡モデル試験を行っており、トップヘッ ドフランジ部の圧力とフランジ開口量の関係を測定している。格納容器 圧力 2Pd の状態でフランジ面間に発生する最大の隙間を弾塑性大変形解 析で評価したところ、上鏡モデル試験結果で漏えいが無いとされる隙間 以下であることを確認した。なお、上鏡モデル試験体は鋼製格納容器 (Mark-II 改良型)を想定して試験が行われたものであるが、RCCVの上鏡 についても基本構造は同じであり、柏崎刈羽原子力発電所6、7号炉と の上鏡形状の違いを考慮したとしても、適用可能であると考えている。 ・シール材

シール材(ガスケット)には、現在はシリコンゴムを使用しているが、 福島第一原子力発電所事故で高温劣化した可能性があることも踏まえ、よ り高温耐性に優れた改良EPDMのシール材に変更する。本評価では、改 良EPDMについて事故時の格納容器内環境でのシール材劣化特性を考慮 してシール機能を評価した。その結果、200℃、2Pd の環境下において、少 なくとも7日間の健全性が確保されることを確認した。なお、更なる安全 性の向上のため、高温蒸気曝露で劣化が進む特性を持つシール材を補強す るために、さらに高温蒸気に耐えられるバックアップシール材を追加塗布 し、フランジシール部の重大事故時における閉じ込め機能の健全性を確保 する。

以上の評価結果から、トップヘッドフランジの耐性は、シール材の耐力が支配 的となる。シール材が高温環境下で劣化することにより、放射性物質の閉じ込め 機能を喪失する可能性については、福島事故の分析からも確認されており(別添 -1参照)、福島事故の経験と分析を踏まえ、高温環境下における耐性を強化した 改良EPDM製シール材を用いることにより、機能を向上させる。上記の評価に おけるシール材の機能確保に関する評価線図を図-1.4に示す。



<圧力-温度線図記載条件> ・トップヘッドフランジに採用する改良 EPDM の高温劣化特性を考慮 ・有効性評価で確認している7日間の劣化を考慮 ・シリコンゴム(参考)については、200℃で 24 時間(1日)の劣化を考慮

図-1.4 シール材の機能確保に関する評価線図(トップヘッドフランジ)

本線図では、温度・圧力が低下するほど、漏えい、破損に対する裕度が増加す ることを示しており、有効性評価に用いている格納容器の限界温度・圧力の条件 である200℃、2Pd(最高使用圧力の2倍:0.62 MPa)は、機器や材料が有する耐力 に対して裕度を確保した設定であると考える。

なお、上記のような構造健全性確保の考え方は、米国の原子力事業者が実施し ている格納容器の健全性評価と同様の手法であり、妥当性を有するものであると 考える(別添-2参照)。

以上のことから、トップヘッドフランジについて、原子炉格納容器の限界温度・ 圧力の200℃、2Pdは、機器や材料が有する耐力に対して裕度を確保した設定であ り、妥当である。

④ハッチ類(機器搬入用ハッチ等)

ハッチ類は、フランジ付きの胴板が原子炉格納容器のコンクリート躯体に固 定され、この胴板のフランジに蓋フランジをボルト固定しており、フランジ間 のシールにはガスケットを使用している。フランジにはシール溝が二重に配置 されており、格納容器内側・外側のそれぞれのシール溝にガスケットを取り付 ける二重シール構造になっている。

ハッチ類の設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈 及び延性破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、 脆性破壊が生じる温度域でないこと、繰り返し荷重が作用しないことから、脆 性破壊、疲労破壊は評価対象外と考えることができる。

ハッチ類は原子炉格納容器の貫通口の中でも口径が大きいことから、原子炉 格納容器膨張によるシェル部の歪みによる強制変位が大きく作用する。この変 位及び原子炉格納容器内圧による過度な塑性変形に伴う延性破壊、また、フラ ンジ部の変形及びシール材の高温劣化によるシール機能の低下が考えられる。 なお、熱座屈の可能性が考えられるが、座屈後の圧縮ひずみが開放され破損に 至らないことから座屈は評価対象外と考えることができる。

このため、下記のとおり200℃、2Pdの環境下での健全性を確認した。

・本体

ハッチ類における構造健全性評価として、上部ドライウェル機器搬入用 ハッチ、下部ドライウェル機器搬入用ハッチ、サプレッション・チェンバ 出入口の部材において内圧による荷重を受け止める部位のうち鏡板、円筒 胴について一次一般膜応力評価、貫通部アンカ及びコンクリート部につい ては一次応力評価等を行い、発生応力が許容応力以下であることを確認し た。 ここで、設計建設規格の解説表 PVB-3110-1 において、延性破壊評価は一 次応力の評価を実施することとなっている。

一方、設計・建設規格における一次応力強さの許容値は、材料の種類及 び温度毎に材料試験(引張試験)を実施した結果をもとに、国内 Su 値検討 会で設定された設計引張強さ(Su)に割下げ率を考慮して設定されたもの である(設計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過す る部位の限界温度及び許容圧力の妥当性を確認するものであるため、上記 割下げ率を P<sub>m</sub>(一次一般膜応力強さ)には 1.5、P<sub>L</sub>+P<sub>b</sub>(一次局部膜応力強さ +一次曲げ応力強さ)には 1.0 とした評価を行う。すなわち、スリーブに 発生する応力が、P<sub>m</sub>が 2/3Su、P<sub>L</sub>+P<sub>b</sub>が Su 以下であれば、延性破壊には至ら ず、構造は健全で機能要求(放射性物質の閉じ込め機能)を確保できると 考えている。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、 供用状態 D の P<sub>m</sub>, P<sub>L</sub>+P<sub>b</sub>の許容値と同等である。なお、耐圧機能維持の観点か ら、安全評価上の仮定(原子炉冷却材喪失事故を想定)に保証を与える目 的で応力評価を行う設計・建設規格の供用状態 D の許容応力は、鋼材の究 極的な強さを基に、弾性計算により塑性不安定現象の評価を行うことへの 理論的安全裕度を考慮して定めたものであり、P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は 1.5× 2/3Su (=Su)と規定されている。前者は、膜応力であり断面の応力が Su に 到達すると直ちに破損に至るため割下げ率 1.5 を考慮して規定されている が、後者は、断面表面が Su に到達しても断面内部は更なる耐荷能力があり 直ちに破損には至らないため割下げ率は 1.0 としている。

また、ハッチ類については重要構造物安全評価(原子炉格納容器信頼性 実証事業)(平成2年度~平成14年度)において、代表プラントの鋼製格 納容器(Mark-II改良型)の機器搬入用ハッチをモデル化した試験体を用い た耐圧試験を行い,限界圧力を評価している。この耐圧試験の結果、限界 圧力は19.5kg/cm<sup>2</sup>(約6.0Pd)であることが示されており、それ以下では破 損が生じないことを確認している。このハッチモデル試験体はMark-II改良 型のハッチを想定して試験が行われたものであるが、Mark-II改良型のハッ チと RCCV のハッチの基本的な構造は同じであり、柏崎刈羽原子力発電所6、 7号炉とのハッチ形状の違いを考慮したとしても、限界圧力2Pd環境下で 構造健全性を有していることを確認した。 ・シール機能

・フランジ固定部

ハッチ類は原子炉格納容器の貫通口の中でも内径が大きいことから、原 子炉格納容器内圧により発生する原子炉格納容器シェル部の歪に伴う強制 変位が顕著に作用する。

ハッチ類のシール機能維持については、過去に NUPEC でハッチ類を模擬 したハッチモデル試験を行っており, ハッチフランジ部の圧力とフランジ 開口量の関係を測定している。この測定結果は常温試験によるものである が、高温環境下(200℃)による剛性の低下を考慮しても、フランジ開口が 許容開口量(ガスケットが健全の場合)に達する圧力は約 2.5Pd であり、 限界圧力 2Pd におけるシール機能の健全性を確認した。なお, ハッチモデ ル試験体は鋼製格納容器(Mark-II改良型)を想定し、シリコンゴムのガス ケットを用いて試験が行われたものであるが、RCCV のハッチについても基 本構造は同じであり、柏崎刈羽原子力発電所6、7号炉との上鏡形状の違 いを考慮したとしても、適用可能であると考えている。

・シール材

シール材(ガスケット)には、現在はシリコンゴムを使用しているが、 福島第一原子力発電所事故で高温劣化した可能性があることも踏まえ、よ り高温耐性に優れた改良EPDMのシール材に変更する。本評価では、改 良EPDMについて事故時の格納容器内環境でのシール材劣化特性を考慮 してシール機能を評価した。その結果、200℃、2Pd の環境下において、少 なくとも7日間の健全性が確保されることを確認した。なお、更なる安全 性の向上のため、高温環境下で劣化が進む特性を持つシール材を補強する ために、さらに高温環境下で耐えられるバックアップシール材を追加塗布 し、フランジシール部の重大事故時における閉じ込め機能の健全性を確保 する。

以上の評価結果から、ハッチ類の耐性は、シール材の耐力が支配的となる。 シール材が高温環境下で劣化することにより、放射性物質の閉じ込め機能を 喪失する可能性については、福島事故の分析からも確認されており(別添-1 参照)、福島事故の経験と分析を踏まえ、高温環境下における耐性を強化し た改良EPDM製シール材を用いることにより、機能を向上させる。上記の 評価におけるシール材の機能確保に関する評価線図を図-1.5に示す。



図-1.5 シール材の機能確保に関する評価線図(機器搬入用ハッチ)

本線図では、温度・圧力が低下するほど、漏えい、破損に対する裕度が増加す ることを示しており、有効性評価に用いている格納容器の限界温度・圧力の条件 である200℃、2Pd(最高使用圧力の2倍:0.62 MPa)は、機器や材料が有する耐力 に対して裕度を確保した設定であると考える。

なお、上記のような構造健全性確保の考え方は、米国の原子力事業者が実施し ている格納容器の健全性評価と同様の手法であり、妥当性を有するものであると 考える(別添-2参照)。

以上のことから、ハッチ類について、原子炉格納容器の限界温度・圧力の200℃、 2Pdは、機器や材料が有する耐力に対して裕度を確保した設定であり、妥当である。

⑤エアロック

エアロックは、円筒胴が原子炉格納容器のコンクリート躯体に固定されてお り、円筒胴の両端に平板(隔壁)を溶接し、人が出入りできる開口部を設けて いる。この開口部に枠板(隔壁)を溶接し、枠板の前面を開閉扉で塞ぐ構造で ある。枠板の前面と扉間のシールにはシリコンゴムのガスケットを使用してい る。なお、トップヘッドフランジやハッチ類と異なり、原子炉格納容器過圧時 はエアロック扉が支持部に押しつけられる構造となっているため、扉板が開く ことはない。

また、扉には均圧弁に繋がる配管や扉開閉ハンドル軸等が貫通しており、均

圧弁及び扉開閉ハンドル貫通部にシール材を使用している。

エアロックの設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座 屈及び延性破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場 合、脆性破壊が生じる温度域でないこと、繰り返し荷重が作用しないこと、有 意な圧縮力がエアロックに生じないことから、脆性破壊、疲労破壊及び座屈は 評価対象外と考えることができ、高温状態で原子炉格納容器内圧を受けること による、過度な塑性変形に伴う延性破壊が機能喪失要因として想定される。そ のため、エアロック本体の塑性変形に伴う延性破壊、また、扉の変形及びシー ル材の高温劣化によるシール機能の低下が考えられる。

このため、下記のとおり200℃、2Pdの環境下での健全性を確認した。

・本体

エアロックにおける構造健全性評価として、上部ドライウェル所員用エア ロック、下部ドライウェル所員用エアロックのうち内圧による荷重を受け止 める部位(扉、隔壁、円筒胴)を評価対象として一次応力評価を行い、発生 応力が許容応力以下であることを確認した。

ここで、設計・建設規格における一次応力強さの許容値は、材料の種類及 び温度毎に材料試験(引張試験)を実施した結果をもとに国内 Su 値検討会で 設定された設計引張強さ(Su)に割り下げ率を考慮して設定されたものであ る(設計・建設規格 解説 GNR-2200)。今回の評価は、設計基準である最高使 用温度及び最高使用圧力を超過する 200℃、2Pd の環境下でのエアロックの構 造健全性を確認するものであるため、上記割下げ率を1.0とした評価を行う。 すなわち、エアロックに発生する応力が、設計引張強さ (Su) 以下であれば、 延性破壊には至らず、構造は健全で機能要求(放射性物質の閉じ込め機能) を確保できると考える。この許容値の考え方は、設計・建設規格 解説図 PVB-3111-5 に示すように、供用状態 D の Pt+Pb(一次局部膜応力強さ+一次曲 げ応力強さ)の許容値と同等である。なお、耐圧機能維持の観点から、安全 評価上の仮定(原子炉冷却材喪失事故を想定)に保証を与える目的で応力評 価を行う設計・建設規格の供用状態 D の許容応力は、鋼材の究極的な強さを 基に、弾性計算により塑性不安定現象の評価を行うことへの理論的安全裕度 を考慮して定めたものであり(設計・建設規格 解説 PVB-3111)、エアロック の限界温度及び限界圧力の状態は、供用状態 D をはるかに超えた事象であり、 許容圧力を算出する際に P<sub>1</sub>+P<sub>b</sub>の許容値として設計引張強さ(但し、限界温度 における設計引張強さ)を適用することは妥当であり、許容値を設計引張強 さ (Su) とする。

さらに、エアロックの構造健全性確認として、限界温度・圧力における上

部ドライウェル所員用エアロック及び下部ドライウェルアクセストンネル (所員用エアロック付)の基本板圧計算を設計・建設規格 PVE-3321 に基づき 実施し、いずれも呼び厚さが計算上の必要厚さを上回ることを確認した。

### ・シール機能

・扉

エアロック扉閉止時は、扉は原子炉格納容器内圧により扉板が支持部に押 付けられる構造であり、圧力により扉板が開くことはない。しかし、内圧が 負荷される面積が大きいことから、てこの原理でガスケット部の微小な開口 が予想されるため、圧力による開口量を理論式に基づき評価した。

扉に用いられているシール材は、現在はシリコンゴムを使用しているが、 福島第一原子力発電所事故で高温劣化した可能性があることも踏まえ、より 高温耐性に優れた改良EPDMのシール材に変更する。本評価では、改良E PDMについて事故時の格納容器内環境でのシール材劣化特性を考慮してシ ール機能を評価した。その結果、200℃、2Pd の環境下において、少なくとも 7日間の健全性が確保されることを確認した。

・シール材

扉のシリコンゴムのガスケット以外にエアロックの扉板貫通部に使用して いるシール材は以下の通りである。

(6 号炉)

①ハンドル軸貫通部Oリング・・・ふっ素ゴム

②均圧弁・・・ふっ素樹脂

(7号炉)

①ハンドル軸貫通部Oリング・・・ふっ素ゴム

②均圧弁・・・ふっ素樹脂

ハンドル軸貫通部Oリングに使われているシール材(ふっ素ゴム)、および、 均圧弁に使われているシール材(ふっ素樹脂)は、重大事故環境下の放射線 による影響で、シール機能が劣化することが考えられる。

このため、ハンドル軸貫通部Oリングを、より耐放射線性に優れた改良E PDMのシール材に変更する。

均圧弁に使われているシール材(ふっ素樹脂)は、重大事故環境下の放射 線による影響で、シール機能が劣化することが考えられるため、耐環境性に 優れたシール材を適用した均圧弁への改良を行うか、エアロック外扉を貫通 する均圧弁接続配管の原子炉建屋側の開放部に、耐環境性に優れたシール材 (改良EPDM)をもつ閉止フランジを取付け、従来品の均圧弁と閉止フラ ンジを合わせることで重大事故環境下における健全性を確保する。

### ⑥配管貫通部

・貫通配管

貫通配管に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延 性破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆 性破壊が生じる温度域でないこと、繰り返し荷重が作用しないこと、圧縮力 が貫通配管に生じないことから、脆性破壊、疲労破壊は評価対象外と考える ことができる。なお、熱座屈の可能性が考えられるが、座屈後の圧縮ひずみ が開放され破損に至らないことから座屈は評価対象外と考えることができる。 一方、200℃、2Pd の環境下では原子炉格納容器が変形すると考えられること から、貫通配管には原子炉格納容器の変位による曲げ荷重が作用する。よっ て、貫通配管の機能喪失要因は、曲げ荷重に伴う延性破壊が想定される。こ こで、貫通配管に加えられる曲げ荷重は二次応力に分類されることから、自 重等の一次応力と併せて、一次+二次応力が制限値を満足することを確認す る。

このため、配管に発生する応力が大きい貫通部を代表として選定し、当該 配管について 3 次元梁モデルを用いた弾性解析を実施し、設計・建設規格の PPC-3530 に規定される一次+二次応力の制限値を満足することを確認した。 なお、前述の一次+二次応力の制限値は既工認でも採用しているものである。

・スリーブ

スリーブ本体及び取付部(以下、スリーブ)の設計時に考慮される機能喪 失要因は、脆性破壊、疲労破壊、座屈及び延性破壊が考えられる。今回の評 価条件である200℃、2Pdの条件を考慮した場合、脆性破壊が生じる温度域で ないこと、繰り返し荷重が作用しないことから、脆性破壊、疲労破壊は評価 対象外と考えることができる。なお、熱座屈の可能性が考えられるが、座屈 後の圧縮ひずみが開放され破損に至らないことから座屈は評価対象外と考え ることができる。

したがって、スリーブ機能喪失要因は、高温状態での内圧による過度な塑 性変形に伴う延性破壊が想定される。

ここで、スリーブに発生する応力が大きいと考えられる最大口径の配管貫 通部を代表として選定し、設計建設規格の解説表 PVB-3110-1 のとおり、延性 破壊評価として一次応力の評価を実施した。 一方、設計・建設規格における一次応力強さの許容値は、材料の種類及び 温度毎に材料試験(引張試験)を実施した結果をもとに国内 Su 値検討会で設 定された設計引張強さ(Su)に割下げ率を考慮して設定されたものである(設 計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過する スリーブの限界温度及び許容圧力の妥当性を確認するものであるため、上記 割下げ率を P<sub>m</sub>(一次一般膜応力強さ)には1.5、P<sub>L</sub>+P<sub>b</sub>(一次局部膜応力強さ+ 一次曲げ応力強さ)には1.0とした評価を行う。すなわち、スリーブに発生 する応力が、P<sub>m</sub>が2/3Su、P<sub>L</sub>+P<sub>b</sub>がSu以下であれば、延性破壊には至らず、構 造は健全で機能要求(放射性物質の閉じ込め機能)を確保できると考えてい る。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、供 用状態 D の P<sub>m</sub>, P<sub>L</sub>+P<sub>b</sub>の許容値と同等である、なお、耐圧機能維持の観点から、 安全評価上の仮定(原子炉冷却材喪失事故を想定)に保証を与える目的で応 力評価を行う設計・建設規格の供用状態 D の許容応力は、鋼材の究極的な強 さを基に、弾性計算により塑性不安定現象の評価を行うことへの理論的安全 裕度を考慮して定めたものであり、P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は 1.5×2/3Su (=Su)と 規定されている。前者は、膜応力であり断面の応力が Su に到達すると直ちに 破損に至るため割下げ率 1.5 を考慮して規定されているが、後者は、断面表 面が Su に到達しても断面内部は更なる耐荷能力があり直ちに破損には至らな いため割下げ率は 1.0 としている。

また、一次一般膜応力強さは、供用状態 D における一次一般膜応力の許容 値である 2/3Su 以下であることも確認した。

以上から、200℃、2Pd の環境下において、スリーブは損傷に至らず、放射 性物質の閉じ込め機能があることを確認した。

端板

今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生じる温度 域でないこと、繰返し荷重が作用しないことから、脆性破壊、疲労破壊は評 価対象外と考えることができる。一方、200℃、2Pd の環境下では原子炉格納 容器が大きく変形することにより貫通配管に原子炉格納容器の変位による曲 げ荷重が作用する。

ここで、端板に発生する応力が大きい貫通部を代表として選定し、設計建 設規格の解説表 PVB-3110-1 のとおり、延性破壊評価として一次応力の評価を 実施した。

一方、設計・建設規格における一次応力強さの許容値は、材料の種類及び

温度毎に材料試験(引張試験)を実施した結果をもとに国内 Su 値検討会で設 定された設計引張強さ(Su)に割下げ率を考慮して設定されたものである(設 計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過する スリーブの限界温度及び許容圧力の妥当性を確認するものであるため、上記 割下げ率を P<sub>m</sub>(一次一般膜応力強さ)には1.5、P<sub>L</sub>+P<sub>b</sub>(一次局部膜応力強さ+ 一次曲げ応力強さ)には1.0とした評価を行う。すなわち、スリーブに発生 する応力が、P<sub>m</sub>が2/3Su、P<sub>L</sub>+P<sub>b</sub>がSu以下であれば、延性破壊には至らず、構 造は健全で機能要求(放射性物質の閉じ込め機能)を確保できると考えてい る。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、供 用状態 D の P<sub>m</sub>, P<sub>L</sub>+P<sub>b</sub>の許容値と同等である、なお、耐圧機能維持の観点から、 安全評価上の仮定(原子炉冷却材喪失事故を想定)に保証を与える目的で応 力評価を行う設計・建設規格の供用状態 D の許容応力は、鋼材の究極的な強 さを基に、弾性計算により塑性不安定現象の評価を行うことへの理論的安全 裕度を考慮して定めたものであり、P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は 1.5×2/3Su (=Su)と 規定されている。前者は、膜応力であり断面の応力が Su に到達すると直ちに 破損に至るため割下げ率 1.5 を考慮して規定されているが、後者は、断面表 面が Su に到達しても断面内部は更なる耐荷能力があり直ちに破損には至らな いため割下げ率は 1.0 としている。

また、一次一般膜応力強さは、供用状態 D における一次一般膜応力の許容 値である 2/3Su 以下であることも確認した。

・閉止フランジ

今回の評価条件である200℃、2Pd を考慮した場合、閉止フランジについて は、耐圧部材の破損、フランジ部の開口の進展による締付ボルトの破損、開 口量増加による漏えいが想定される。閉止フランジについては、設計・建設 規格に基づきフランジを選定していることから、破損については評価上支配 的ではないため、フランジ開口によるシール機能喪失について評価を行い、 200℃、2Pdにおいて健全であることを確認した。

また、閉止フランジに用いているシール材(ガスケット)には、現在はシ リコンゴムを使用しているが、福島第一原子力発電所事故で高温劣化した可 能性があることも踏まえ、より高温耐性に優れた改良EPDMのシール材に 変更する。本評価では、改良EPDMについて事故時の格納容器内環境での シール材劣化特性を考慮してシール機能を評価した。その結果、200℃、2Pd の環境下において、少なくとも7日間の健全性が確保されることを確認した。 ·閉止板

閉止板の設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊及び延 性破壊が考えられる。今回の評価条件である200℃、2Pd を考慮した場合、脆 性破壊が生じる温度域でないこと、繰り返し荷重が作用しないことから、脆 性破壊、疲労破壊は評価対象外と考えることができる。

一方、閉止板には、原子炉格納容器内圧が作用するため、一次応力(曲げ 応力)が生じ、端板の機能喪失要因は延性破壊が想定される。このため、閉 止板に発生する応力が大きい貫通部を代表として選定し、当該閉止板の厚さ が、200℃、2Pd 環境下において、設計・建設規格PVE-3410 に規定される計 算上必要な厚さを上回ることを確認し、閉止板の損傷に至らず、放射性物質 の閉じ込め機能があることを確認した。

⑦電気配線貫通部

·電気配線貫通部本体

電気配線貫通部では、電気配線貫通部のうちスリーブ、アダプタ、ヘッダ 設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延性破 壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破 壊が生じる温度域でないこと、繰り返し荷重が作用しないこと、過度の圧縮 力がスリーブ、アダプタ、ヘッダに生じないことから、脆性破壊、疲労破壊 及び座屈は評価対象外と考えることができる。したがって、スリーブ、アダ プタ、ヘッダの機能喪失要因は、高温状態での内圧による過度な塑性変形に 伴う延性破壊が想定される。スリーブ、アダプタ、ヘッダが 200℃、2Pd の環 境下で外圧・内圧作用による応力が生じた際、最小厚さが JSME の設計・建設 規格 (PVE-3230) に規定される計算上必要な厚さを上回ることを確認した。

・シール材

電気配線貫通部のシール材については、電共研「格納容器電気ペネトレー ションの特性確認試験(昭和 62 年度)」において、実機電気配線貫通部と同 等の試験体を用い、原子炉格納容器内側の電気配線貫通部端子箱部分の環境 条件を 200℃、約 2.6Pd(約 0.8MPa)とした条件下におけるモジュール部シー ル材の耐漏えい性を確認している。

また、NUPEC 重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成2年度~平成14年度)において、実機電気配線貫通部モジュールと同等の モジュール試験体を用い、シール材からの漏えい限界圧力・温度の把握を行っている。この評価では、最大 3.2Pd (1.0MPa)、約 260℃までの耐漏えい性 を確認している。

さらに、過去の電気配線貫通部の環境試験において、格納容器内を 200℃と 模擬した試験において、電気配線貫通部の長期健全性を確認している。

したがって、電気配線貫通部については、有効性確認評価における限界温度・圧力としている 200℃、2Pd 条件下でのシール機能を確認した。

⑧原子炉格納容器隔離弁

原子炉格納容器隔離弁のうちバタフライ弁、移動式炉心内計装(Traverse Incore Prove、以下 TIP)ボール弁及びパージ弁について、事故環境下でのシール材の損 傷(変形)が想定されるため以下の通り健全性を確認する。また、弁の耐圧部に ついては、機能喪失要因として脆性破壊、疲労破壊、座屈及び変形が考えられる が、200℃、2Pd の環境下では脆性破壊が生じる温度域でないこと、繰り返し荷重 が作用しないこと、圧縮力が弁本体に生じないことから、脆性破壊、疲労破壊及 び座屈は評価対象外と考えることができる。したがって、原子炉格納容器隔離弁 のうちバタフライ弁、TIP ボール弁及びパージ弁の耐圧部の機能喪失要因は、高温 状態で内圧を受けることによる過渡な変形(一次応力)が想定されるため、以下 の通り健全性を確認する。

・原子炉格納容器隔離弁(バタフライ弁)

設計・建設規格(弁の圧力温度基準に基づく評価)に基づき、弁箱の耐圧機能の評価を行い、200℃、2Pd での耐圧性能を有することを確認した。

また、隔離機能(気密性保持)については、弁体シート部ガスケットの耐環境 性が支配的であり、今後、バタフライ弁のシート部に改良EPDMを採用するた め、改良EPDMの環境試験結果を確認し、事故環境下における放射性物質の閉 じ込め機能があることを確認した。

・原子炉格納容器隔離弁(TIPボール弁及びパージ弁)

設計・建設規格(弁の圧力温度基準に基づく評価)に基づき、弁箱の耐圧機能の評価を行い、200℃、2Pd での耐圧性能を有することを確認した。

また、TIPボール弁にはフッ素ゴム、フッ素樹脂のシール材が使われている。こ れらは重大事故環境下の放射線によりシール機能が劣化することが考えられるた め、トップヘッドフランジ及び機器搬入用ハッチで採用したものと同様に改良E PDM製シール材に変更する。なお、TIPボール弁の弁座シートについては、均圧 弁の改良と同様に耐環境性に優れた PEEK 材が適用可能な見通しが立ったことから、 PEEK 材に変更することでも問題ない。 また、TIPパージ弁についてはグランドOリング及び弁ふたシールについては改 良EPDM製シール材を採用する。弁座シートについてはメタルシールとし、耐 環境性を強化するため、重大事故環境下におけるシール機能は問題ない。

なお、上記以外の隔離弁については、以下の理由により 200℃、2Pd の環境下で 健全性を有している。

- ・弁箱は各配管ラインの設計圧力に応じて適切なものが選定されており(耐圧 性能が最小のものでも1.03MPa)、耐圧上問題になることはない。
- ・弁のグランド部及びボンネット部のシールには、黒鉛製のパッキン、ガスケットを有しており、耐熱性上問題となることはない。
- ・弁シート部は全て金属製である。

(4)結論

柏崎刈羽原子力発電所6、7 号炉の原子炉格納容器本体並びに原子炉格納容器に 設置されている開口部(トップヘッドフランジ、ハッチ類、エアロック)、原子炉 格納容器貫通部(配管貫通部、電気配線貫通部)及び原子炉格納容器隔離弁の構造 健全性について、有効性評価における限界温度・圧力として設定する200℃、2Pdの 妥当性を評価した。また、開口部、原子炉格納容器貫通部及び原子炉格納容器隔離 弁に使用されているシール部についても、同様に限界圧力、温度に対する妥当性を 評価した。

その結果、構造健全性については、限界温度・圧力環境下において想定される損 傷モードにおける評価では、許容値に対して余裕があることから機器に著しい損傷 が生じることなく、放射性物質の閉じ込め機能を確保できることを確認した。

一方、シール部については、シール材が高温環境下において劣化する特性を有していることを考慮しても、限界温度・圧力環境下において、シール材に耐環境性に優れたEPDM性シール材を用いること(別添-3参照)により、少なくとも7日間の健全性を確保できることを確認した。

以上のことから、柏崎刈羽原子力発電所6,7号炉で設定した原子炉格納容器の 限界温度・圧力の200℃、2Pd(最高使用圧力の2倍:0.62 MPa)は、機器や材料が有 する耐力に対して裕度を確保した設定であり、妥当である。

以 上

## 福島第一原子力発電所事故時の原子炉格納容器温度・圧力の挙動

これまでに実施した当社の福島第一原子力発電所の事故(以下、「1F 事故」という)の分 析では、原子炉格納容器トップヘッドのフランジ部がシール機能を喪失したために、放射 性物質の放出につながった可能性が高いと評価している<sup>[1]</sup>。事故時には、格納容器内部の圧 力が上昇するとフランジ部に開口挙動が生じるが、シール部の気密性が維持されていれば、 格納容器外部への放射性物質の漏えいを防止することが可能であったと考えられる。1F 事 故以前の格納容器限界温度・圧力に関する研究では、実機フランジ部を模擬した試験や高 温高圧蒸気環境を想定したシール材性能試験が実施され、当時想定していた事故条件下で は健全性が確保できることが確認されていた。一方、1F 事故では、シール材が高温高圧条 件の蒸気環境下に、長時間さらされることによって劣化し、格納容器の閉じ込め機能を喪 失したものと考えられる。

本資料では、福島第一原子力発電所 1~3 号機の挙動のうち、事象の進展中での格納容器 の閉じ込め機能喪失のタイミングが比較的明確になっている1号機および2号機に着目し、 格納容器温度・圧力の挙動と格納容器の閉じ込め機能喪失の関係を整理した。1F 事故時の 圧力変化の実績(図1-1、図3-1参照)では、実機で観測された圧力データは、従来の研究 で健全性が確認されていた最高使用圧力の2倍(最高使用圧力0.427 MPa[gage])を下回っ ている。一方、温度データについては、収集された実績データは少ないが、格納容器スプ レイなど事故対策設備が十分に機能せず、温度制御が困難であったことから、格納容器内 の温度は非常に高い状態にあったと推測される。その結果、格納容器内は高温蒸気環境と なり、シリコン製シール材の劣化が時間経過と共に進行したと考えられる。ここで、シー ル材の劣化は、格納容器の閉じ込め機能維持を評価する観点からは、シール部での上下フ ランジの圧縮を解放した際の戻り量の程度(圧縮永久ひずみに相当)で表すことができる。 通常時において、格納容器トップヘッドのフランジ部はボルトにより締め付けられ閉じて いるが、格納容器内部圧力が上昇した場合には、上蓋が持ち上がる方向に圧力が作用する ため、フランジ部は開口する。この開口は、シール材の機能が健全な場合には、シール材 の戻り量(復元力による圧縮の解放)によって開口が埋められるため漏えいは発生しない。 しかし、劣化の進行に伴いシール材の戻り量が低下すると、シール材で開口を埋めること ができなくなるため、開口部からの漏えいが発生する。

1 号機の状況

図1-1、図1-2に1号機の格納容器圧力と温度の変化を示す。D/W圧力は、3月12日 2時30 分頃に0.84 MPa[abs]を計測した後、格納容器のベントに成功するまでの間、0.7 MPa[abs] ~0.8 MPa[abs]程度の範囲の圧力を維持している。事故時に想定される注水による蒸気発 生、格納容器温度の上昇等の事象を考慮すると、格納容器圧力は上昇する傾向となると考 えられるが、格納容器内部の圧力が緩やかな減少傾向で安定していたことから、この期間 において格納容器からの小規模な漏えいが生じていた可能性が考えられる。

格納容器からの過温による漏えいを仮定した3月12日 5時頃の時点では、格納容器温度 は300℃付近に到達している。図2は、実機相当のフランジを用いた、高温蒸気環境下での シリコン製シール材のシール部漏えい試験<sup>[2]</sup>の結果であり、蒸気による加圧に対して漏えい が発生した温度・圧力を示している。温度が200℃を超えると、漏えい発生時の圧力が徐々 に低下し、300℃のような高温条件では、0.5 MPaを下回るレベルの圧力でもシール部が破 損し、漏えいが生じている。1号機は、全ての注水機能を喪失したため事故直後から温度が 上昇しており、漏えいを仮定した時点では、温度は300℃付近、格納容器圧力は0.8 MPaと 高くなっていた。この温度・圧力条件は、前述の試験結果に照らして評価すると、漏えい が発生する条件を超えるものであることから、シール材の高温破損にともなう機能喪失に より漏えいに至った可能性が高いと推測される。

・2 号機の状況

図3-1、図3-2に2号機の格納容器圧力と温度の変化を示す。事故当初は、蒸気駆動のポン プにより原子炉への注水が行われていたため温度圧力ともに低い状態であったが、ポンプ が機能を喪失したと思われる3月13日頃から温度・圧力ともに高い状態が継続した。温度は 150℃から175℃程度と1号機ほど高くはないが、シリコン製シール材にとっては、蒸気環境 では厳しい温度域であり、この間にシール材の劣化が進んでいたと考えられる。加えて、3 月14日 23時25分には、原子炉圧力容器の損傷に伴って、D/W圧力が0.75 MPa[abs]程度ま で上昇している。これらの状況から、2号機は1号機と比較して長い時間をかけてシール材 の劣化が進み、3月15日 7時20分に圧力が急激に低下し、閉じ込め機能を喪失したと考え られるまでの間、高い圧力レベルでもシリコン製シール材のシール機能が維持されていた と推測される。

ここで、3月11日から3月18日にかけての1F正門付近における敷地内空間線量率の推移を図4に示す。空間線量率データは、風向等の気象条件の影響を大きく受けるとともに、 格納容器ベントで放出した放射性物質に起因する変動が生じる場合があるため、格納容器 からの意図しない漏えいによる放出状況のみに依存するものではないが、格納容器の損傷 状況の推定に際して参考情報とすることができると考えられる。空間線量率データは、3月 12日4時頃から線量率の上昇が見られ、1号機の格納容器からの漏えいが始まっていたと 推測される時期と一致している。また、同様に2号機で圧力が急激に低下した3月15日7 時頃にも線量率の上昇が確認できる。空間線量率データの変化は、格納容器からの放射性 物質の漏えい発生時期の傍証とすることができる。 一方、福島第二原子力発電所(2F)では、すべてのプラントで炉心を損傷させることな く冷温停止することができた。2F-1、2、4号機では、津波の影響で全ての海水系ポンプが 使用不能となり、一時的に原子炉除熱機能を喪失した。しかし、原子炉隔離時冷却系の起 動等により原子炉水位を維持しつつ、主蒸気逃がし安全弁で原子炉圧力の制御(減圧操作) を行い、原子炉への注水を原子炉隔離時冷却系から復水補給水系による代替注水に切り替 えて、注水を継続した。事故発生以降、原子炉除熱機能を回復するまでの間、これらプラ ントの格納容器内の圧力、温度は、緩やかに上昇したものの、D/W温度は最大でも125℃程 度までしか上昇しておらず、シリコンゴムの劣化が問題とならない範囲に収まっている。 また、D/W圧力は、最大でも設計上の最高使用圧力(0.31MPa[gage])を下回る250kPa[gage] 程度までしか上昇しておらず、フランジの開口量の観点からも格納容器からの意図しない 漏えいが生じる状況とはならなかったと考えられる。このように、2Fではアクシデントマ ネジメントが有効に機能した結果、事故時の格納容器の閉じ込め機能を維持することがで きた。

これらに示すとおり、1F 事故での格納容器の温度・圧力の推移や格納容器からの漏えい の状況、敷地内空間線量率の推移等から、実機でのシリコン製シール材の劣化と閉じこめ 機能への影響を推測した。1 号機、2 号機の実績からは、格納容器トップヘッドのフランジ 部は、高温蒸気環境下におかれることによりシール材の劣化が進行し、最終的には、閉じ 込め機能の喪失に至ったと考えられる。1F 事故の結果から、格納容器の健全性を維持する ためには、特にトップヘッド等のシール部からの漏えいに注意する必要がある。また、シ ール材は、事故時には時間に依存して劣化する特性が顕著であることから、事故マネジメ ントの組み合わせ等により、温度、圧力を適切に制御することが必要となる。

- [1]福島第一原子力発電所1~3 号機の炉心・格納容器の状態の推定と未解明問題に関する 検討 第2回進捗報告(平成26年8月6日 東京電力株式会社)
- [2] K. Hirao, T. Zama, M. Goto et al., "High-temperature leak characteristics of PCV hatch flange gasket," Nucl. Eng. Des., 145, 375-386 (1993).

以上



図 1-1 1 号機 格納容器圧力挙動



図 1-2 1 号機 格納容器温度挙動



図2 既往研究でのシール材の漏えい限界



図 3-2 2 号機 格納容器温度挙動



図4 福島第一原子力発電所 敷地内空間線量

### 格納容器限界温度・圧力に関する海外知見について

当社では、有効性評価における格納容器の限界温度・圧力について、温度を200℃、圧力 を 0.62 MPa(最高使用圧力の 2 倍)と設定した。この妥当性を評価するため、格納容器の 閉じ込め機能に影響を及ぼす各種の損傷モードを圧力・温度範囲に応じて分類して評価し、 「シール材の機能確保に関する評価線図」を作成した。

格納容器の損傷モードの評価に関する類似の事例が、NRC のオーダー「EA-13-109 シビ アアクシデント条件下で運用可能な信頼性の高い耐圧強化ベントに係る認可を変更する命 令」に対する産業界ガイダンス(NEI-13-02<sup>\*1</sup>)に記載されている。NEI-13-02 では、ベント 設備の設計要件を定めるに当たって、既往研究などから整理した代表的な格納容器の損傷 モード分類を例示している(図1参照)。



図1 格納容器の損傷モードの分類の例 (NEI-13-02\*1)

本図では、既往研究などから格納容器の損傷の可能性として、格納容器トップヘッドフ ランジ部開口からの漏えいや電気貫通部の材料劣化が着目されている。格納容器トップヘ ッドフランジ部開口からの漏えいの損傷モードは、開口部を閉塞するシール材の性能に大 きく依存するが、温度に関しては、過去の材料試験などに基づき、比較的高い温度域まで 耐力があるとしている。一方、圧力に関しては、内圧によるフランジ開口部からの漏えい という損傷の特性上、圧力が高い領域で格納容器の支配的な損傷モードとなることを示し ている。NEI-13-02 では、事業者が格納容器から漏えいが生じる圧力、温度レベルを検討す る際には、図1の例やNRCが実施した漏えい限界に関する検討(SOARCA\*2)等の関連研究な どに基づくものとしている。電気貫通部については、格納容器トップヘッドのような開口 挙動は生じないため、損傷の支配因子は温度による材料劣化となると考えられ、圧力が低 い領域での主たる損傷モードとなることを示している。

当社でも、格納容器の健全性に影響を及ぼす損傷モードを当社プラントの固有の設備の 状況を考慮して評価し、NEI-13-02 と同様の線図を作成している。当社の線図では、格納容 器圧力に対しては、格納容器トップヘッド等のフランジ部からの漏えいが最も支配的とな るとの評価結果が得られており、米国の考え方とも整合している。当社が実施したフラン ジ部の漏えい評価によると、格納容器のフランジ部は、内圧が低い段階ではボルトの初期 締付けにより開口は抑制されており、内圧の上昇に伴って開口量が増加することで、外部 への漏えい経路を形成する。ただし、フランジ部が開口しても、フランジ部の密閉性を担 保しているシール材が健全であれば、シール材が開口に追従するため外部への漏えいを防 止することができる。本評価では、シール材の健全性、つまり、開口への追従性の指標と して、シール材の圧縮永久歪試験データを用いて評価している。この考え方は、NEI-13-02 でも参照されている SOARCA\*2 での格納容器の漏えい挙動評価とも整合する。当社では、こ の方法を用いて、フランジ部での漏えい限界を評価し、当社のシール材の機能確保に関す る評価線図に反映している。なお、本漏えい評価では、シール材の信頼性が重要となるた め、高温環境下における耐性に優れた改良 EPDM について、当社独自で、各種基礎試験や事 故時の格納容器内環境を想定したシール材劣化特性試験を実施し、その材料の特性を確認 している。

以上のとおり、米国のNEI-13-02での格納容器の損傷モード分類を参照し、当社のシール 材の機能確保に関する評価線図と比較を行った。当社では、温度圧力の増加によって格納 容器に生じる損傷モードとしてトップヘッドからの漏えいに着目し、各種試験結果と合わ せて漏えい限界を確認している点で米国の考え方と整合している。

- \*1 NEI13-02[Rev. 0E2] INDUSTRY GUIDANCE FOR COMPLIANCE WITH ORDER EA-13-109
- \*2 NUREG/CR-7110, Vol.1 U.S. NRC State-of-the-Art Reactor Consequence Analyses Project Volume1: Peach Bottom Integrated Analysis

原子炉格納容器バウンダリにおけるシール材の変更について

原子炉格納容器バウンダリに使用しているシール材については、今後、下記に示すとお り耐熱性能に優れたシール材に変更する。

| バウンダリ箇所    |          | 部位        | 変更前部材  | 変更後部材    | 自主的取組  |
|------------|----------|-----------|--------|----------|--------|
| トップヘッドフランジ |          | フランジガスケット | シリコンゴム | 改良 EPDM  | バックアップ |
|            |          |           |        |          | シール材   |
| ハッチ類       | 上部ドライウェル | フランジガスケット | シリコンゴム | 改良 EPDM  | バックアップ |
|            | 機器搬出入口   |           |        |          | シール材   |
|            | 下部ドライウェル | フランジガスケット | シリコンゴム | 改良 EPDM  | バックアップ |
|            | 機器搬出入口   |           |        |          | シール材   |
|            | サプレッション・ | フランジガスケット | シリコンゴム | 改良 EPDM  | バックアップ |
|            | チェンバ出入口  |           |        |          | シール材   |
| I          | 上部ドライウェル | 扉ガスケット    | シリコンゴム | 改良 EPDM  | _      |
| アロ         | 所員用エアロック | ハンドル軸貫通部  | ふっ素ゴム  | 改良 EPDM  | _      |
| ツカ         |          | Oリング      |        |          |        |
|            |          | 均圧弁シート    | ふっ素樹脂  | 均圧弁の改良   | _      |
|            |          |           |        | または      |        |
|            |          |           |        | 閉止板      |        |
|            |          |           |        | +改良 EPDM |        |
|            | 下部ドライウェル | 扉ガスケット    | シリコンゴム | 改良 EPDM  | —      |
|            | 所員用エアロック | ハンドル軸貫通部  | ふっ素ゴム  | 改良 EPDM  | _      |
|            |          | Oリング      |        |          |        |
|            |          | 均圧弁シート    | ふっ素樹脂  | 均圧弁の改良   | _      |
|            |          |           |        | または      |        |
|            |          |           |        | 閉止板      |        |
|            |          |           |        | +改良 EPDM |        |
|            |          | 弁ふたシール    | ふっ素樹脂  | 改良 EPDM  | —      |

| バウンダリ箇所    |          | 部位        | 変更前部材  | 変更後部材                    | 自主的取組 |
|------------|----------|-----------|--------|--------------------------|-------|
| 配管貫通部      | 閉止フランジ   | フランジガスケット | シリコンゴム | 改良 EPDM                  | _     |
| 原子炉格納容器隔離弁 | バタフライ弁   | 弁座シート     | EPゴム   | 改良 EPDM                  | _     |
|            | TIP ボール弁 | 弁座シート     | ふっ素樹脂  | 改良 EPDM<br>または<br>PEEK 材 | _     |
|            |          | グランドOリング  | ふっ素ゴム  | 改良 EPDM                  | _     |
|            |          | 弁ふたシール    | ふっ素樹脂  | 改良 EPDM                  |       |
|            | TIP パージ弁 | 弁座シート     | EPゴム   | メタルシール                   |       |
|            |          | グランドΟリング  | EPゴム   | 改良 EPDM                  | _     |
|            |          | 弁ふたシール    | EPゴム   | 改良 EPDM                  | _     |

1. 原子炉格納容器本体(コンクリート部)

1.1 評価方針

原子炉格納容器は鋼製ライナを内張りした鉄筋コンクリート造であり、原子炉建屋と 一体となっている。原子炉格納容器本体(コンクリート部)の設計時に考慮される機能 喪失要因は内圧上昇に伴う破損であり、コンクリート部の構造健全性を維持できる限界 の内圧を評価することで 200℃、2Pd における健全性を確認する。

1.2 評価

コンクリート部の構造健全性については、NUPEC 重要構造物安全評価(原子炉格納 容器信頼性実証事業)(平成2年度~平成14年度)において有限要素法を用いた弾塑性 解析により、原子炉格納容器本体(コンクリート部)の耐圧性状を求める。評価モデ ルは実炉スケールのモデルとし、200℃条件下での材料物性(規格値;図1-2~図1-4 参 照)に基づき、内圧に対する静的漸増解析で耐圧性状を確認する。RCCV 全体の耐圧性 状の確認のため、解析モデルは図1-1 に示す格納容器本体解析モデルを用いる。



図 1-1 格納容器本体解析モデル



図 1-2 コンクリート物性



図 1-3 ライナ引張/圧縮特性



図 1-4 鉄筋引張特性
1.3 評価結果

解析の結果によると、格納容器の内圧を上昇させていった場合、3.0Pd 程度で格納 容器(コンクリート部)のRCCV 壁の鉄筋が降伏し始め、4.0Pd でほぼ全面で鉄筋が降 伏する。4.0Pd 近傍からアクセストンネル開口部周辺・隅角部周辺のコンクリートの 局所的破損が始まり、4.5Pd では開口部・隅角部全体で変形が大きく進行する。図1-5 に4.0Pd における相当塑性ひずみ分布図を示す。上記結果より、格納容器本体(コン クリート部)の破損は4.0Pd~4.5Pd で発生すると考えられる。

また、200℃、2Pdの条件下におけるコンクリート部とライナ部のひずみを評価した 結果、ひずみは小さく構造健全性が維持されることを確認した(別紙-12参照)。

 Provide contraction = 1.0;

 Pr

これらの評価結果を踏まえ、有効性評価における限界温度、圧力としている200℃、 2Pdを用いることは妥当であると言える。

図1-5 4.0Pdにおける相当塑性ひずみ分布図(上:引張側 下:圧縮側) 出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構)

2. 原子炉格納容器本体 (ライナ部)

2.1 評価方針

原子炉格納容器本体(ライナ部)の設計時に考慮される機能喪失要因は、脆性破壊、 疲労破壊、座屈及び延性破壊が考えられる。今回の評価条件である200℃、2Pdの条件 を考慮した場合、脆性破壊が生じる温度域でないこと、繰り返し荷重が作用しないこ とから、脆性破壊及び疲労破壊は評価対象外と考えることができる。なお、熱座屈の 可能性が考えられるが、座屈後に圧縮ひずみが開放され破損に至らないことから座屈 は評価対象外と考えることができる。

従って、原子炉格納容器本体(ライナ部)の機能喪失要因は、高温状態で内圧を受け、過度な塑性変形に伴う延性破壊が想定される。このため、200℃、2Pd におけるライナ延性破壊に関する評価を行い、構造健全性を確認する。

2.2 評価

NUPEC 重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成2年度~平成 14年度)において、代表プラントの鉄筋コンクリート製格納容器を対象に有限要素法 によるひずみ評価が実施されており、これに基づき柏崎刈羽原子力発電所6、7号炉 での原子炉格納容器の局所の健全性を確認する。

この有限要素法による評価では、代表プラントのRCCV全体モデル解析でライナひず みが大きい領域が見られた「下部ドライウェルアクセストンネル開口近傍(RCCV 脚部 含む)」、「上部ドライウェル開口近傍隅角部」を局所評価点として選定する(図 2-1、 図 2-2 参照)。このライナ部破損評価にあたり、同様のライナ構造を有する PCCV 試験 結果に基づく、多軸応力場での三軸度 TF(Triaxiality Factor;多軸応力場における 延性低下の影響を示す係数)で修正を行った判断評価基準を適用し、ライナ部の破損評 価を行う。



出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構)



図 2-2 上部ドライウェル開口近傍隅角部 部分詳細モデル

出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構) 2.3 評価結果

「下部ドライウェルアクセストンネル周り」及び「トップスラブ隅角部」のライナ 解析結果から、200℃において発生する各部の相当塑性ひずみが高い「トップスラブ隅 角部」の評価結果をもとにライナ部の評価を行った。評価結果として、図2-3にトップ スラブ隅角部における高ひずみ発生部位の相当塑性ひずみと圧力の関係を示す。ライ ナ部の破損評価にあたり、同様のライナ構造を有するPCCV 試験結果に基づく、多軸応 力場での三軸度TF(Triaxiality Factor;多軸応力場における延性低下の影響を示す 係数)で修正を行った破断評価基準を適用する。

図2-3の結果から、200℃環境下では、約3.5Pd においてトップスラブ隅角部ライナ 部の相当塑性ひずみが破断ひずみの評価基準値(溶接部近傍での破断ひずみ)に到達 することが確認された。上記結果により、重大事故時のライナ部の破損による原子炉 格納容器本体のシール機能喪失は約3.5Pd で発生すると考えられる。

また、200℃、2Pdの条件下におけるコンクリート部とライナ部のひずみを評価した 結果、ひずみは小さく構造健全性が維持されることを確認した(別紙-12参照)。

よって、限界温度・圧力(200℃・2Pd)における原子炉格納容器本体(ライナ部)の閉じ込め機能の健全性を確認した。



図 2-3 トップスラブ隅角部の相当塑性ひずみと圧力の関係

出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構)

- 3. トップヘッドフランジ
  - 3.1 評価方針

トップヘッドフランジは、原子炉格納容器の上蓋フランジであり、締付ボルトで固 定される構造である。また、フランジ間のシールにはガスケットを使用している。フ ランジにはシール溝が二重に配置されており、格納容器内側・外側のそれぞれのシー ル溝にガスケットを取り付ける二重シール構造になっている。

トップヘッドフランジの設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、 座屈及び延性破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、 脆性破壊が生じる温度域でないこと、繰り返し荷重が作用しないことから、脆性破壊、 疲労破壊は評価対象外と考えることができる。

トップヘッドフランジは原子炉格納容器の貫通口の中で内径が最も大きいことから、 原子炉格納容器内圧による過度な塑性変形に伴う延性破壊、また、フランジ部の変形 及びシール材の高温劣化によるシール機能の低下が考えられる。

なお、熱座屈の可能性が考えられるが、座屈後に圧縮ひずみが開放され破損に至ら ないことから座屈は評価対象外と考えることができる。

このため、200℃、2Pd での健全性確認には以下の評価が必要である。

・本体の耐圧

・フランジ固定部の強度

・ガスケットの健全性



図 3-1 トップヘッドフランジ図

### (1) 本体の耐圧

①応力評価

トップヘッドフランジにおける構造健全性評価として、原子炉格納容器温度・ 圧力が 200℃、2Pd における強度評価を行う。この評価では、ドライウェル上鏡の 部材において内圧による荷重を受け止める部位のうち鏡板、円筒胴について一次 一般膜応力評価、貫通部アンカ及びコンクリート部について一次応力評価等を行 い、発生応力が許容応力以下であることを確認する。

ここで、設計建設規格の解説表 PVB-3110-1 において、延性破壊評価は一次応力 の評価を実施することとなっている。一方、設計・建設規格における一次応力強 さの許容値は、材料の種類及び温度毎に材料試験(引張試験)を実施した結果を もとに、国内 Su 値検討会で設定された設計引張強さ(Su)に割下げ率を考慮して 設定されたものである(設計・建設規格 解説 GNR-2200)。今回の評価は、設計基 準である最高使用温度及び最高使用圧力を超過するフランジ部の限界温度及び許 容圧力の妥当性を確認するものであるため、上記割下げ率を Pm(一次一般膜応力 強さ)には 1.5、P<sub>1</sub>+P<sub>b</sub>(一次局部膜応力強さ+一次曲げ応力強さ)には 1.0 とした 評価を行う。すなわち、フランジ部に発生する応力が、P<sub>m</sub>が 2/3Su、P<sub>L</sub>+P<sub>b</sub>が Su 以 下であれば、延性破壊には至らず、構造は健全で機能要求(放射性物質の閉じ込 め機能)を確保できると考えている。この許容値の考え方は、設計・建設規格 解 説 PVB-3111 に示すように、供用状態 D の P<sub>m</sub>、P<sub>L</sub>+P<sub>b</sub>の許容値と同等である、なお、 耐圧機能維持の観点から、安全評価上の仮定(原子炉冷却材喪失事故を想定)に 保証を与える目的で応力評価を行う設計・建設規格の供用状態 D の許容応力は、 鋼材の究極的な強さを基に、弾性計算により塑性不安定現象の評価を行うことへ の理論的安全裕度を考慮して定めたものであり、 $P_m$ は 2/3Su、 $P_1+P_h$ は 1.5×2/3Su (=Su)と規定されている。前者は、膜応力であり断面の応力が Su に到達すると 直ちに破損に至るため割下げ率 1.5 を考慮して規定されているが、後者は、断面 表面が Su に到達しても断面内部は更なる耐荷能力があり直ちに破損には至らない ため割下げ率は1.0とする。

②既往研究成果による評価

ドライウェル上鏡については重要構造物安全評価(原子炉格納容器信頼性実証 事業)(平成2年度~平成14年度)において、代表プラントの鋼製格納容器をモ デル化した1/10スケールモデル試験体を用いた耐圧試験を行い、限界圧力を 評価している。この耐圧試験の結果から、格納容器限界温度、圧力を確認する。 (2) フランジ固定部の強度

①締付ボルトの強度評価

トップヘッドフランジの締付ボルトについて、原子炉格納容器限界温度、圧力(200℃、 2Pd)における強度評価を、既工事計画認可申請書の強度計算をベースに評価する。

②フランジの開口評価

原子炉格納容器の重大事故時の過温、過圧時におけるフランジ開口量を評価するために、FEM 解析を用いて ABWR 代表プラントとして 7 号炉のトップヘッドフランジ部における開口量を評価する。

(3) ガスケットの健全性

シール材(ガスケット)はこれまでシリコン製シール材を使用しているが、福島第一 原子力発電所事故で当該シール材が事故環境下に曝されて劣化した可能性があることも 踏まえ、事故環境下における性能特性に優れたシール材である改良EPDM製シール材 に変更する。改良EPDM製シール材による事故時の格納容器閉じ込め機能を確認する ために、圧縮永久歪み試験結果をもとに格納容器限界開口量を評価し、重大事故時にお けるフランジ開口量と比較することで格納容器閉じ込め機能を評価する。

また、格納容器ベント操作実施後の長期シール機能健全性を補強するために、高温蒸 気に耐性があるバックアップシール材を追加塗布する。その有効性を、バックアップシ ール材の試験を元に評価し、格納容器閉じ込め機能の更なる信頼性を確認する。

### 3.2 評価結果

(1)本体の耐圧

①応力評価

トップヘッドフランジの構造健全性について、建設時工認の応力値を用いて原子炉 格納容器限界温度・圧力(200℃、2Pd)における応力評価を実施した結果を示す。評 価部位として、ドライウェル上鏡のうち内圧による荷重を受け止める部位(鏡板、円 筒胴、貫通部アンカ及びコンクリート部)を選択し、発生応力を評価した。評価に用 いた主要仕様を表 3-1 に示す。

表 3-2~3-7 に、トップヘッドフランジの応力評価結果を示す。なお、建設時工認の 応力値を係数倍して応力を算出している。これらの結果から、200℃、2Pd 条件下にお いてトップヘッドフランジの構造健全性を確認した。

| 項目           | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|--------------|---------|---------|
| 最高使用圧力 (MPa) | 0.31    | 0.31    |
| 最高使用温度 (℃)   | 171     | 171     |
| 材料           | SGV480  | SGV480  |
| フランジ内径 (mm)  |         |         |
| 上鏡厚さ (mm)    |         |         |

表 3-1 トップヘッドフランジの主要仕様

【6号炉】トップヘッドフランジの構造健全性評価結果(200℃、2Pd)



図 3-2 柏崎刈羽 6 号炉 トップヘッドフランジ

|           |                         |          | 一次  | 応力               |                |     |
|-----------|-------------------------|----------|-----|------------------|----------------|-----|
| 応力        |                         | I        | Dm  | P <sub>L</sub> + | P <sub>b</sub> |     |
| 評価点<br>番号 | 応力評価点                   | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値            | 応力比 |
| P1        | 上鏡球殻部とナックル部の<br>結合部     |          | _   |                  | 422            |     |
| P2        | 上鏡円筒胴のフランジプレ<br>ートとの結合部 | _        | _   |                  | 422            |     |

表 3-2 鋼製耐圧部の応力評価まとめ

表 3-3 貫通部アンカの応力評価まとめ (単位: MPa)

(単位:MPa)

| 応力 | 広力証価占        | 曲げ | 応力       | せん関 | 所応力      | 応  | 力比  |
|----|--------------|----|----------|-----|----------|----|-----|
| 番号 | 心力評価点        | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P4 | フランジプレート(下側) |    | 312      |     | 156      |    |     |
| P6 | ガセットプレート(下側) | _  | _        |     | 156      |    |     |

| 応力 圧縮応力度 に力が低点 に力は | 𝔅 θ Ι Ξ 𝔅 𝒴 𝒴 Τ 非砂地切削 画 𝔅 Ϲ ·Ͽ |         |        |       |     | • 14/ 111 |
|--------------------|--------------------------------|---------|--------|-------|-----|-----------|
| 証何占 ウカ証何占 マニンパ ウカレ | 応力                             |         | 圧縮応    | 力度    |     |           |
| 計画点 応力計画点 ノブンン 応力丸 | 評価点                            | 応力評価点   | フランジ   |       | 応力比 |           |
| 番号 プレート 許容応力度      | 番号                             |         | プレート   | 許容応力度 |     |           |
| (内側)近傍             |                                |         | (内側)近傍 |       |     |           |
| P7 コンクリート部 27.5    | Ρ7                             | コンクリート部 |        | 27.5  |     |           |

表 3-4 コンクリート部の応力評価まとめ (単位: N/mm<sup>2</sup>)

以上の結果より、柏崎刈羽6号炉のトップヘッドフランジの 2Pd、200℃における 構造健全性を確認した。 【7号炉】トップヘッドフランジの構造健全性評価結果(200℃、2Pd)



図 3-3 柏崎刈羽7号炉 トップヘッドフランジ

|           | (単位:MPa      |          |     |                  |     |     |
|-----------|--------------|----------|-----|------------------|-----|-----|
|           |              |          | 一次  | :応力              |     |     |
| 応力        |              | I        | D   | P <sub>L</sub> + | Pb  |     |
| 評価点<br>番号 | 応力評価点        | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値 | 応力比 |
| P1        | 鏡板           | _        | _   |                  | 422 |     |
| Ρ2        | 鏡板のスリーブとの結合部 | _        | _   |                  | 422 |     |

表 3-6 貫通部アンカの応力評価まとめ

(単位:MPa)

| 応力 | 広力証価占        | 曲げ | 応力       | せん圏 | 所応力      | 応; | 力比  |
|----|--------------|----|----------|-----|----------|----|-----|
| 番号 | 心刀評恤点        | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P4 | フランジプレート(下側) |    | 312      |     | 156      |    |     |
| P6 | ガセットプレート(下側) |    | _        |     | 156      |    |     |

| 𝔄・・・・>>> 「前参加55前面のC+> |         |        |       |     | • 11/ 11 |
|-----------------------|---------|--------|-------|-----|----------|
| 応力                    |         | 圧縮応    | 力度    |     |          |
| 評価点                   | 応力評価点   | フランジ   |       | 応力比 |          |
| 番号                    |         | プレート   | 許容応力度 |     |          |
|                       |         | (内側)近傍 |       |     |          |
| Ρ7                    | コンクリート部 |        | 27.5  |     |          |
|                       |         |        |       |     |          |

表 3-7 コンクリート部の応力評価まとめ (単位: N/mm<sup>2</sup>)

以上の結果より、柏崎刈羽7号炉のトップヘッドフランジの 2Pd、200℃における 構造健全性を確認した。 ②既往研究成果による評価

トップヘッドフランジについては、NUPEC 評価で実施した鋼製格納容器構造挙動試 験の結果に基づき、試験体との構造・寸法の差異の影響を考慮して構造健全性を確認 する。NUPEC 評価において、鋼製格納容器をモデル化した 1/10 スケールモデル試験体 を用いた耐圧試験を行い、限界圧力を評価している。図 3-4 に 1/10 スケールモデル 試験体の構造を示す。耐圧試験の結果、限界圧力は約 4.6MPa であり、それ以下では破 損が生じないことが確認できている。なお、破損部位は上鏡以外の部位であった。当 該試験体の上鏡の耐力は 4.6MPa 以上であるものと想定されるが、本評価においては、 4.6MPa を基準に評価する。これらを用いて、柏崎刈羽原子力発電所 6 号炉及び 7 号炉 のトップヘッドフランジの 2Pd における健全性を確認する。





出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構) 上鏡形状(さら形鏡板)に対する必要板厚は、設計・建設規格により計算式(3.1)で求められる。この式を変形した式(3.2)から弾性限界圧力Pを算出する。

 $t=P \cdot R \cdot W / (2 \cdot Sy \cdot \eta - 0.2P)$  ……(式3.1) P=2 · Sy · \eta · t / (R · W + 0.2 · t) ……(式3.2)

鋼材の200℃における設計降伏点Sy=226MPa、継手効率 η =1 とすると、弾性限界圧力P は 表3-8 となる。

ここで、

- R:内半径
- r: すみ肉の丸み半径
- t:板厚
- ₩:さら形鏡板の形状に応じた係数
- $W = (1/4) \cdot \{3 + \sqrt{(R/r)}\}$

|   | トップヘッドフ<br>ランジ(6/7号炉) | 1/10 スケール<br>試験体 上鏡 | Mark-Ⅱ改<br>上鏡(参考) |
|---|-----------------------|---------------------|-------------------|
| R |                       | 873mm               |                   |
| r |                       | 166.7mm             |                   |
| t |                       | 6mm                 |                   |
| W |                       | 1.3                 |                   |
| Р | 0.895MPa              | 2.387MPa            | 0.955MPa          |

表 3-8 トップヘッドフランジの弾性限界圧力

NUPEC 評価での1/10 スケール試験体の上鏡は、理論式(3.2)で求められる弾性限界圧力 (約2.4MPa)を上回る圧力(約4.6MPa)に対して健全性が確認されている。

1/10 スケール試験体はMark-II改良型のトップヘッドフランジを想定して試験が行われたものであるが、Mark-II改良型のトップヘッドフランジとRCCV のトップヘッドフランジは基本的な構造は同じである。表3-8の弾性限界圧力P からも耐圧強度が同程度であることが確認できる。

以上の結果から、トップヘッドフランジは200℃条件において、理論式(3.2)から求め た弾性限界圧力 0.895MPa(約 2.8Pd)までは、少なくとも健全性を有するものと考えられ る。よって、トップヘッドフランジは 2Pd においても健全性は確保できると考えている。 (2) フランジ固定部の強度

①締付ボルトの強度評価

フランジの締付ボルトについて、原子炉格納容器限界温度、圧力(200℃、2Pd)に おける強度評価を、既工事計画認可申請書の強度計算をベースに評価する。トップへ ッドフランジ締付ボルト基本仕様を表 3-9、評価結果を表 3-10 に示す。いずれも許容 応力以下であることから、締付ボルトは 200℃、2Pd において健全である。

表 3-9 トップヘッドフランジの締付ボルト基本仕様

| 項目     | 6 号炉    | 7 号炉    |
|--------|---------|---------|
| ボルトの材質 | SNCM439 | SNCM439 |
| ボルトの呼び |         |         |
| ボルトの本数 |         |         |

表 3-10 締付ボルトの評価結果(単位:MPa)

| 評価部位       | 6 号炉 | 7 号炉 | 許容値 |
|------------|------|------|-----|
| トップヘッドフランジ |      |      | 576 |

# ②フランジの開口評価

原子炉格納容器の重大事故時の過温、過圧時におけるフランジ開口量を評価するため に、FEM 解析を用いて ABWR 代表プラントとして 7 号炉のトップヘッドフランジ部にお ける開口量を評価した。解析モデルを図 3-5 に、開口量の解析評価結果を図 3-6 に示 す。なお、本 FEM 解析の妥当性については別紙-3 「トップヘッドフランジ等の開口量 評価の妥当性について」で示す。2Pd における開口量は、内側ガスケット部で約 1.3mm、 外側ガスケット部で約 0.9mm となる。



図 3-5 トップヘッドフランジ開口量評価の解析モデル



図3-6 トップヘッドフランジの各ガスケット部の圧力と開口変位の関係

#### (3) ガスケットの健全性

福島第一原子力発電所事故で原子炉格納容器内雰囲気が漏えいした経路として、原子 炉格納容器トップヘッドフランジ、機器搬入用ハッチ等のフランジシール部が推定漏え い経路の1つであると考えている。原子炉格納容器のフランジシール部は、内圧が低い 段階ではボルトの初期締付けにより開口は抑制されているが、内圧の上昇に伴って開口 量が増加することにより、外部への漏えい経路を形成する。ただし、フランジ部が開口 しても、フランジ部の密閉性を担保しているシール材が健全であれば、シール材が開口 に追従するため外部への漏えいを防止することができる。しかしながら、福島第一原子 力発電所事故のような事故環境に晒されると、原子炉格納容器トップヘッドフランジ等 のフランジシール部に使用されているシール材が劣化し、フランジの開口に追従できな くなり格納容器閉じ込め機能を損なう可能性がでてくる。

そこで、柏崎刈羽原子力発電所6、7号炉原子炉格納容器フランジシール部に使用され ているシール材(シリコンゴム)について、事故時環境下の耐性が優れた改良EPDM 製シール材に変更して格納容器閉じ込め機能の強化を図る。従って、改良EPDM製シ ール材について、事故時の温度や放射線による劣化特性を試験により確認し、想定され る事故シナリオにおけるシール機能を評価する。なお、フランジ部のシール材は、プラ ントの定期検査時に開放される場合には取り替えを実施しており、通常運転中における 劣化は極めて軽微であることから、事故条件下での評価を実施する。

①シール材(改良EPDM)の圧縮永久ひずみ試験結果について

改良EPDM製シール材の事故時環境における劣化特性を、高温蒸気曝露の期間を確認するために、JIS K6262「加硫ゴム及び熱加塑性ゴムの常温・高温及び低温における圧縮永久ひずみの求め方」に準じて圧縮永久歪み試験を実施した。その結果を表 3-11 に示す。なお、圧縮永久ひずみ測定とは、所定の圧縮率をかけ変形させた後、開放時の戻り量を評価するものである。完全に元の形状に戻った場合を 0%とし、全く復元せずに完全に圧縮された状態のままである状態を 100%としている。例えば、圧縮永久ひずみが表 3-11で示す「」」の場合は、シール材の初期締付量が「である 7 号炉を例に取ると、「」 戻ることを意味する。この場合、「のフランジ部開口まではシール機能が確保可能と想定できる。

| No | 放射線照射  | ガフ州中 | 泪座    | 圧約  | 縮永久ひずみ試験 | 験    |
|----|--------|------|-------|-----|----------|------|
| NO |        | ント注入 | 価皮    | 24h | 72h      | 168h |
| 1  | 800kGy | 乾熱   | 200°C |     |          |      |
| 2  | 800kGy | 乾熱   | 250°C |     |          |      |
| 3  | 800kGy | 蒸気   | 200°C |     |          |      |
| 4  | 800kGy | 蒸気   | 250°C |     |          |      |

表 3-11 改良 E P D M 製シール材の 圧縮永久ひずみ 試験結果

②-1 実機を模擬した小型フランジ試験

改良EPDM製シール材の性能を確認するために、圧縮永久歪み試験に加え、実機フラ ンジOリング溝を模擬した小型試験装置を用いて、事故環境に曝露した後のシール機能 を確認した。試験装置を図 3-7 に示しており、実機Oリング溝の断面寸法を 1/2 スケー ルとして試験治具を製作し、予めγ線照射したシール材を用いて試験体を作り、高温環 境に曝露した後に気密確認試験を実施した。

試験条件としては、事故条件を模擬するために、放射線照射量はフランジガスケット 部の事故後7日間の累積放射線量の目安である800kGyを用いて実施している。また、高 温曝露は高温空気及び高温蒸気で曝露し、温度については、格納容器限界温度である 200℃と、さらに余裕を見た250℃を設定し、それぞれ7日間(168h)一定温度で高温曝露 している。また、試験治具のOリング溝は内側に1mmの段差があり、その段差の間から シール材が高温空気または蒸気に曝露されるため、事故時の格納容器過圧に伴うフラン ジ開口を考慮した状態で、高温曝露ができる試験体となっている。高温曝露後は、事故 時に発生する水素を模擬するために、Heにより気密確認試験を実施している。気密確認 試験では、格納容器限界圧力2Pd(0.62MPa)以上の気密性を確認するため最大で0.9MPaま で加圧して気密性を確認している。また、格納容器過圧に伴うフランジ開口時のシール 材の気密性を確認するために、高温曝露後の試験体フランジを0.8mm 開口させ、その状 態でもHe気密確認試験を実施し、0.9MPa加圧時に漏えいのないことを確認している。な お、開口量の0.8mmは、2Pdにおける開口量が最も大きな機器搬入用ハッチのフランジ開 口量(約1.4mm)に余裕をもたせた開口量(1.6mm)を1/2スケールにしたものである。

試験の詳細は別紙-4「改良EPDMシール材の試験について」で示しており、本試験 により200℃が168時間継続した場合の改良EPDM製シール材のシール機能の健全性を 確認した。





図 3-7 改良EPDM製シール材の性能確認試験装置

②-2 実機フランジモデル試験

改良EPDM製シール材は前述の小型フランジ試験に加え、より大口径(Oリング 径:約250mm)の実機フランジモデル試験(実機フランジモデル試験)も実施している ところであり、実機条件に近い状態でのシール健全性の確認を進めているところであ る。試験装置は図3-8、図3-9に示しており、試験フランジの溝断面形状は実機と同じ とし、溝径を縮小した試験フランジとする。試験試料の断面形状は実機と同じとし、 径を縮小した試験試料とする。予めγ線照射したシール材を用いて試験体を作り、高 温環境に曝露した後に気密確認試験を実施する。

試験条件としては、事故条件を模擬するために、放射線照射量はフランジガスケット部の事故後7日間の累積放射線量の目安である800kGyを用いて実施している。また、 EPDMの劣化は一般的に酸素により引き起こされるとの知見に基づき、高温曝露は 蒸気ではなく高温空気(乾熱)で曝露し、温度については、格納容器限界温度である 200℃と、さらに余裕を見た250℃、300℃とし、それぞれ定める期間を一定温度で高温 曝露する。また、内圧作用時の実機フランジの開口を模擬するため、フランジ面に調 整シムを挟んで押し込み量を調整できる装置にしている。

本試験装置によりシール材を高温曝露した後、気密確認試験を実施した。気密確認 試験では、格納容器限界圧力 2Pd(0.62MPa)を包絡する圧力で気密性を確認しており、 その試験結果を別紙−11 に示す。本試験結果により 200℃が 168 時間継続した場合の 改良EPDM製シール材のシール機能の健全性を確認した。

図 3-8 実機フランジモデル試験の装置概要



図 3-9 実機フランジモデル試験装置の外観

③フランジ開口量を考慮した漏えい評価

前述①および②を踏まえ、事故時環境下に曝されることによるシール材劣化(シー ル材追従量の低下)と、原子炉格納容器の限界温度・圧力によるフランジ開口量を考 慮し、限界温度・圧力である 200℃、2Pd 条件下におけるシール材の機能確保に関する 評価線図を図-3.10 に示す。



図 3-10 シール材の機能確保に関する評価線図(トップヘッドフランジ)

図中の黒線は、シール部の健全性を確認している範囲を示す線である。この黒線に おいて、温度依存の傾きのある部分は、格納容器のトップヘッドフランジ部の構造解 析結果(図-3.6)とシール材の圧縮永久ひずみ試験結果(表-3.11)から、フランジ部 の開口量にシール材が追従できなくなる境界を示すものである(解析で示したフラン ジ部の開口量が、改良EPDMの圧縮永久ひずみ(乾熱、7日間)に基づき定めたシー ル材の戻り量と等しくなったときに漏えいすると評価)。

一方、黒線において、温度が250℃一定の垂直の部分は、改良EPDMを用いたフラ ンジ部の小型モデル試験結果から、過圧・過温状態におけるシール材の健全性が確認 できている範囲を示すものである(格納容器シール部の形状を模擬した試験装置を用 いて、漏えいが発生する圧力、温度の評価)。なお、250℃で実施した小型モデル試験 では、漏えいは生じていないため、実際の限界温度はさらに高い温度となる。

上記の結果から、シール部については、シール材が高温環境下において劣化する特 性を有していることを考慮しても、限界温度・圧力環境下において、シール材に耐環 境性に優れたEPDM性シール材を用いることにより、少なくとも7日間の健全性を 確保できることを確認した。シール材が高温環境下で劣化することにより、放射性物 質の閉じ込め機能を喪失する可能性については、福島事故の分析からも確認されてお り、福島事故の経験と分析を踏まえ、高温環境下における耐性を強化したシール材を 用いることにより、機能を向上させる。

④バックアップシール材のシール機能について

当社は福島第一原子力発電所の事故知見を踏まえ、格納容器閉じ込め機能の更なる 信頼性向上を目途としてバックアップシール材を開発した。バックアップシール材は 図 3-11 で示すように、現行シール材のシール溝よりも外側のフランジ面全周に塗布で きるシール材である。バックアップシール材は、耐高温性、耐蒸気性、耐放射線性が 確認され、重大事故環境下においてもシール機能を発揮できるものを用いる。バック アップシール材の性能は、図 3-12 で示す試験装置で、事故環境下に曝された後のシー ル機能について評価されている。

## ④-1 バックアップシール材の性能確認試験

試験条件としては、事故条件を模擬するために、放射線照射量はフランジ部の事故 後7日間の累積放射線量の目安である800kGyを用いて実施している。また、高温曝露 は高温蒸気で曝露し、温度については、格納容器限界温度200℃に余裕を見た250℃を 設定し、7日間(168h)一定温度で高温曝露している。高温曝露後は、事故時に発生する 水素を模擬するために、He により気密確認試験を実施している。気密確認試験では、 格納容器限界圧力2Pd(0.62MPa)以上の気密性を確認するため最大で0.9MPaまで加圧し て気密性を確認している。

また、重大事故時には事故後ベント実施までは圧力が 2Pd 近傍と高くなりフランジ 部が開口することから、フランジ開口を経験した後にバックアップシール材に気密性 があるか否かを確認するため、30cm 中型試験体を用いて隙間ゲージで一度変位を経験 させた後に He 気密試験を実施した(開口模擬後気密確認試験)。変位は、格納容器限 界圧力 2Pd 時のバックアップシール材塗布位置を考慮し、機器搬入用ハッチの外側ガ スケットのフランジ開口量をもとに 1mm に設定した。試験の流れとしては、バックア ップシール材を塗布したフランジを乾燥させた後に、隙間ゲージで変位を加え、その 後隙間ゲージを引き抜いて試験フランジの変位を当初位置に戻す。その状態で He 気密 確認試験を実施し、0.9MPa 加圧時に漏えいのないことを確認している。なお、開口模 擬後気密確認試験は試験装置上の理由から、バックアップシール材に高温曝露は経験 させていない。しかしながら、FT-IR分析により 250℃蒸気曝露で構造の変化量は小さ く、顕著な劣化が認められなかったことから、高温曝露有無は事故時開口を模擬した バックアップシール材の性能を確認する試験では、試験結果に大きな影響を与えない と考えている。

試験の詳細は別紙-5「バックアップシール材の試験について」で示しており、バッ クアップシール材は 250℃蒸気曝露が 168h 継続したとしても気密性が確保できること を確認している。また、250℃蒸気曝露が 168h 継続した後のバックアップシール材の 化学構造の変化を確認するために FT-IR 分析を実施し、曝露前後でもバックアップシ ール材の化学構造がほとんど変化していないことを確認している。よって、250℃蒸気 曝露環境下では有意な劣化はほとんど無いことから、格納容器限界温度である 200℃状 態が長期継続したときであっても、バックアップシール材により格納容器閉じ込め機 能の健全性は確保できる。

以上のことから、バックアップシール材について格納容器限界温度 200℃における長 期シール性が確認できた。また、ベント実施までの間に格納容器過圧によるフランジ 開口を経験したとしても、ベント後のフランジ開口量が小さい領域では高温性に優れ たシール機能を発揮することが確認できた。よって、バックアップシール材は、格納 容器ベント操作後の長期シール機能強化に有効である。



図 3-11 バックアップシール材イメージ図



図 3-12 バックアップシール材の気密試験

| 試験条件    | 温度    | 蒸気曝露 | 放射線照射  | 気密試験 |
|---------|-------|------|--------|------|
| 芸/三唱電なり | 350°C | _    | _      | 0    |
| 蒸気曝露なし  | 350°C | _    | 827kGy | 0    |
| 蒸気曝露あり  | 250°C | 168h | 819kGy | 0    |

表 3-11 バックアップシール材の気密性試験結果

○は気密試験時に「漏えいなし」を示す

④-2 バックアップシール材の塗布条件

バックアップシール材のシール機能が確保されるための塗布幅、塗布厚さ、塗布作 業に関する条件は、各種試験の結果から表 3-13 の通り定めている。塗布幅は幅が広い 程シール機能が向上するが、試験でシール機能が確認できた最小の塗布幅を元に設定 している。塗布厚さについては、シール機能が確認できた塗布厚さを元に設定してい る。また、バックアップシール材は塗布後、除々に乾燥して固まるため、塗布後にフ ランジ閉鎖するまでの時間を制約として設けることにしている。この時間についても、 試験によりバックアップシール材の乾燥時間を考慮して、シール機能が確認できた時 間を元に設定している。

| X J 12 / ( ) / ) / / / / | 材の室伸来住 |
|--------------------------|--------|
| 項目                       | 塗布条件   |
| バックアップシール材の塗布幅           |        |
| バックアップシール材の塗布厚さ          |        |
| 塗布後、フランジ閉鎖までの時間          |        |

表 3-12 バックアップシール材の塗布条件

④-3 バックアップシール材の品質確認

バックアップシール材は表 3-12 の条件で塗布することで、シール機能が確保可能で ある。従って、バックアップシール材塗布作業時に「塗布幅」、「塗布厚さ」、「塗布後、 フランジ閉鎖までの時間」を確認することで品質を確認する。「塗布幅」、「塗布厚さ」 については、それら幅、厚さを担保可能な専用治具を用いてバックアップシール材を 塗布作業する等で、品質確認を行う。「塗布後、フランジ閉鎖までの時間」については、 塗布作業時間を管理することで品質確認を行う。 ⑤「改良EPDM製シール材+バックアップシール材」のシール機能について

前述④で示す通り、バックアップシール材は重大事故環境においても優れた耐性を もつことが示されたため、「改良EPDM製シール材+バックアップシール材」を組み 合わせることで、事故環境下における原子炉格納容器閉じ込め機能の更なる信頼性向 上を図る計画を進めている。

改良EPDM製シール材は、事故時の耐環境性に優れていることを確認しているが、 一般的に劣化モードとして酸化劣化があげられるため、長期シール性の信頼性を向上 させるためには、劣化要因である酸素の高温状態曝露を回避することが必要になる。 バックアップシール材は、フランジ外側ガスケット部よりも外周のフランジ面に塗布 することから、改良EPDMシール材への格納容器外側からの酸素供給を遮断する役 割も果たすことができるため、酸化劣化によるシール機能低下を抑えることが可能で ある。

よって、事故発生後の改良EPDM製シール材の長期健全性を補強することができ るため、当社の更なる格納容器閉じ込め機能強化対策として「改良EPDM製シール 材+バックアップシール材」を採用する。その効果については事項で示す。

なお、フランジ部にバックアップシール材を塗布することに関するフランジ設計に 対する影響評価については、別紙-16 において評価している通りであり、フランジへ の悪影響はないものと考えている。 ⑥事故後長期間のシール機能について

重大事故時の格納容器閉じ込め機能の信頼性を強化するために、「改良 EPDM+バッ クアップシール材」を組合せ、事故後 168 時間以降の長期におけるシール機能につい て試験により確認した(試験装置を図 3-13 に示す)。前述の通り、バックアップシー ル材の 200℃状態における長期健全性を確認しており、有意な劣化が見られないことか ら、長期にわたって状態は変化せず、シール機能が確保されるものと考える。また、 改良EPDM製シール材とその外側にバックアップシール材を適用した条件で長期間 高温曝露を実施した後に He 気密確認試験を実施しているが、少なくとも 45 日間の高 温曝露(200℃)を経験しても、気密性に問題ないことが確認できている。試験の詳細 は、別紙-5「バックアップシール材の試験について」の「(4)長時間試験」で示す。

なお、原子炉格納容器閉じ込め機能として最も厳しいシナリオである「大 LOCA+SB0+ECCS機能喪失」について、事故後168時間以降も有効性評価で使用した設備 以外は復旧せず、フィードアンドブリードを続けたとした場合、事故発生から30日後 のドライウェル温度は130℃以下であることが評価で示されている。従って、これより も過酷な200℃状態が30日間継続しても格納容器閉じ込め機能は健全であることが試 験により確認できているため、事故後長期のシール性向上のためには「改良EPDM+バ ックアップシール材」は有効であると考えている。



図3-13 「改良EPDM+バックアップシール材」組合せ試験装置

| ÷ •        |        |     |        |    |        |       |  |
|------------|--------|-----|--------|----|--------|-------|--|
| 計驗休        | 唱電中能   | 曝露  | 改良EPDM | 加圧 | 試験     | 封驗結用  |  |
| 武阙仲        | 曚路扒悲   | 期間  | 放射線曝露  | 媒体 | 圧力     | 武阙柏木  |  |
| 改良EPDM+    | 乾熱200℃ | 30日 | 800kGy | He | 0.9MPa | 漏えいなし |  |
| バックアップシール材 | 乾熱200℃ | 45日 | 800kGy | He | 0.9MPa | 漏えいなし |  |

表3-13 「改良EPDM+バックアップシール材」組合せ試験結果

3.3評価まとめ

トップヘッドフランジの健全性評価結果を表3-14に示す。

| No  | 大項目     | 評価方法          | 評価                       | 結果     |
|-----|---------|---------------|--------------------------|--------|
| (1) | 本体の耐圧   | ①応力評価         | 200℃、2Pdにおける各部の応力評価を実    |        |
|     |         |               | 施                        | 0      |
|     |         | ②既往研究を用いた評価   | 2Pdにおける健全性を、NUPEC実施の1/10 |        |
|     |         |               | スケール試験を用いて評価             | 0      |
| (2) | フランジ固定部 | ①締付ボルト評価      | 200℃、2Pdにおける締付ボルトの応力評    |        |
|     | の強度     |               | 価を実施                     | 0      |
|     |         | ②フランジの開口評価    | 200℃、2Pdにおけるフランジ開口を評価    |        |
|     |         |               | (以下(3)ガスケットの健全性と併せて      | —      |
|     |         |               | 健全性評価を行う)                |        |
| (3) | ガスケットの健 | シール材劣化、PCV開口量 | 「改良EPDM製シール材」で200℃、      |        |
|     | 全性      | 評価、バックアップシール  | 2Pdにおけるシール機能を評価          |        |
|     |         | 材試験結果を用いた評価   | 更なる安全対策向上として「改良EPD       | $\sim$ |
|     |         |               | Mシール材+バックアップシール材」を       | 0      |
|     |         |               | 適用することにより、改良EPDM製シ       |        |
|     |         |               | ール材の長期信頼性を補強する。          |        |

表3-14 トップヘッドフランジの健全性評価結果

4. ハッチ類(機器搬入用ハッチ等)

4.1 評価方針

ハッチ類は、フランジ付きの胴板が原子炉格納容器のコンクリート躯体に固定され、 この胴板のフランジに蓋フランジをボルト固定しており、フランジ間のシールにはガス ケットを使用している。フランジにはシール溝が二重に配置されており、格納容器内側・ 外側のそれぞれのシール溝にガスケットを取り付ける二重シール構造になっている。

ハッチ類の設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延性 破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生じ る温度域でないこと、繰り返し荷重が作用しないことから、脆性破壊、疲労破壊は評価 対象外と考えることができる。なお、熱座屈の可能性が考えられるが、座屈後の圧縮ひ ずみが開放され破損に至らないことから座屈は評価対象外と考えることができる。

ハッチ類は原子炉格納容器の貫通口の中でも口径が大きいことから、原子炉格納容器 膨張によるシェル部の歪みによる強制変位が大きく作用する。この変位及び原子炉格納 容器内圧による過度な塑性変形に伴う延性破壊、また、フランジ部の変形及びシール材 の高温劣化によるシール機能の低下が考えられる。

このため、200℃、2Pd での健全性確認には以下の評価が必要である。

- ・本体の耐圧
- ・フランジ固定部の強度
- ・ガスケットの健全性



図 4-1 機器搬入用ハッチ図

(1)本体の耐圧

①一次応力評価

ハッチ類における構造健全性評価として、上部ドライウェル機器搬入用ハッチ、 下部ドライウェル機器搬入用ハッチ、サプレッション・チェンバ出入口のうち内圧 による荷重を受け止める部位のうち鏡板、円筒胴について一次一般膜応力評価、貫 通部アンカ及びコンクリート部については一次応力評価等を行い、発生応力が許容 応力以下であることを確認する。

ここで、設計建設規格の解説表 PVB-3110-1 において、延性破壊評価は一次応力の 評価を実施することとなっている。一方、設計・建設規格における一次応力強さの 許容値は、材料の種類及び温度毎に材料試験(引張試験)を実施した結果をもとに 国内 Su 値検討会で設定された設計引張強さ(Su)に割下げ率を考慮して設定された ものである(設計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過するハッチ 類の限界温度及び許容圧力の妥当性を確認するものであるため、上記割下げ率を P<sub>m</sub>

(一次一般膜応力強さ)には 1.5、 $P_L+P_b$ (一次局部膜応力強さ+一次曲げ応力強さ) には 1.0 とした評価を行う。すなわち、ハッチ類に発生する応力が、 $P_m$ が 2/3Su、 $P_L+P_b$ が Su 以下であれば、延性破壊には至らず、構造は健全で機能要求(放射性物質の閉 じ込め機能)を確保できると考えている。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、供用状態 DのP<sub>m</sub>、P<sub>L</sub>+P<sub>b</sub>の許容値と同等である、なお、耐圧機能維持の観点から、安全評価上 の仮定(原子炉冷却材喪失事故を想定)に保証を与える目的で応力評価を行う設計・ 建設規格の供用状態 D の許容応力は、鋼材の究極的な強さを基に、弾性計算により 塑性不安定現象の評価を行うことへの理論的安全裕度を考慮して定めたものであり、 P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は  $1.5 \times 2/3$ Su (=Su)と規定されている。前者は、膜応力であり断 面の応力が Su に到達すると直ちに破損に至るため割下げ率 1.5を考慮して規定され ているが、後者は、断面表面が Su に到達しても断面内部は更なる耐荷能力があり直 ちに破損には至らないため割下げ率は 1.0としている。

#### ②既往研究成果による評価

ハッチ類については重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成 2年度~平成14年度)において、代表プラントの鋼製格納容器(Mark-Ⅱ改良型)の 機器搬入用ハッチをモデル化した試験体を用いた耐圧試験を行っており、この結果 を踏まえて限界圧力を評価する。 (2)フランジ固定部の強度

①締付ボルトの強度評価

フランジの締付ボルトについて、原子炉格納容器限界温度、圧力(200℃、2Pd)に おける強度評価を、既工事計画認可申請書の強度計算をベースに評価する。上部ドラ イウェル機器搬入用ハッチ、下部ドライウェル機器搬入用ハッチ、サプレッション・ チェンバ出入口の締付ボルトを評価対象とする。

②フランジの開口評価

原子炉格納容器の重大事故時の過温、過圧時におけるフランジ開口量を評価するために、FEM 解析を用いて ABWR 代表プラントとして 7 号炉の機器搬入用ハッチにおける 開口量を評価する。

(3) ガスケットの健全性

シール材(ガスケット)はこれまでシリコンゴムを使用しているが、福島第一原子力 発電所事故で当該シール材が事故環境下に曝されて劣化した可能性があることも踏まえ、 事故環境下における性能特性に優れたシール材である改良EPDM製シール材に変更す る。改良EPDM製シール材による事故時の格納容器閉じ込め機能を確認するために、 圧縮永久歪み試験結果をもとに格納容器限界開口量を評価し、重大事故時におけるフラ ンジ開口量と比較することで格納容器閉じ込め機能を評価する。

また、格納容器ベント操作実施後の長期シール機能健全性を補強するために、高温蒸 気に耐性があるバックアップシール材を追加塗布する。その有効性を、バックアップシ ール材の試験を元に評価し、格納容器閉じ込め機能の更なる信頼性を確認する。

4.2 評価結果

(1)本体の耐圧

①一次応力評価

ハッチ類の構造健全性について、建設時工認の応力値を用いて原子炉格納容器限界 温度・圧力(200℃、2Pd)における応力評価を実施した結果を示す。評価部位として、 上部ドライウェル機器搬入用ハッチ、下部ドライウェル機器搬入用ハッチ及びサプレ ッション・チェンバ出入口を選定し、各ハッチのうち内圧による荷重を受け止める部 位(鏡板、円筒胴、貫通部アンカ及びコンクリート部)を選択し、発生応力を評価し た。評価に用いた主要仕様を表 4-1~4-3 に示す。

表 4-4~4-23 に、ハッチ類の応力評価結果を示す。なお、建設時工認の応力値を係 数倍して応力を算出している。これらの結果から、200℃、2Pd 条件下においてハッチ 類の構造健全性を確認した。

| 項目           | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|--------------|---------|---------|
| 最高使用圧力 (MPa) | 0.31    | 0.31    |
| 最高使用温度(℃)    | 171     | 171     |
| 材料           | SGV480  | SGV480  |
| フランジ直径(mm)   |         |         |
| フランジ厚さ (mm)  |         |         |
| 鏡板厚さ (mm)    |         |         |

表 4-1 上部ドライウェル機器搬入用ハッチの主要仕様

表 4-2 下部ドライウェルアクセストンネルスリーブ及び 鏡板(機器搬入用ハッチ付)の主要仕様

| 項目          | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|-------------|---------|---------|
| 最高使用圧力(MPa) | 0.31    | 0.31    |
| 最高使用温度(℃)   | 171     | 171     |
| 材料          | SGV480  | SGV480  |
| フランジ直径(mm)  |         |         |
| フランジ厚さ (mm) |         |         |
| 鏡板厚さ(mm)    |         |         |

表 4-3 サプレッション・チェンバ出入口の主要仕様

| 項目           | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|--------------|---------|---------|
| 最高使用圧力 (MPa) | 0.31    | 0.31    |
| 最高使用温度(℃)    | 104     | 104     |
| 材料           | SGV480  | SGV480  |
| フランジ直径(mm)   |         |         |
| フランジ厚さ (mm)  |         |         |
| 鏡板厚さ (mm)    |         |         |

【6号炉】上部ドライウェル機器搬入用ハッチの構造健全性評価結果(200℃、2Pd)



図 4-2 柏崎刈羽 6 号炉 上部ドライウェル機器搬入用ハッチ

| 表 4-4 | 鋼製耐圧部の応力評価のまとめ |
|-------|----------------|
| 1 1   |                |

(単位:MPa)

|           |                                      |          | 一次, | 芯力               |                |     |
|-----------|--------------------------------------|----------|-----|------------------|----------------|-----|
| 応力        |                                      |          | Pm  | P <sub>L</sub> + | P <sub>b</sub> |     |
| 評価点<br>番号 | 応力評価点                                | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値            | 応力比 |
| P1        | 鏡板中央部                                |          | 281 |                  | 422            |     |
| P8        |                                      |          | 281 |                  | 422            |     |
| Р9        | 上部ドライウェル<br>機器搬入用ハッチ円筒胴              |          | 281 |                  | 422            |     |
| P10       | ריותניין ניין ליילי אנווא לאמימוראלי |          | 281 |                  | 422            |     |
| P11       | 上部ドライウェル                             | _        | _   |                  | 422            |     |
| P12       | 機器搬入用ハッチ円筒胴のフ                        | _        | _   |                  | 422            |     |
| P13       | ランジプレートとの結合部                         | _        | _   |                  | 422            |     |

| 応力  | 它力预研片        | 曲げ | 応力       | せん困 | 所応力      | 応; | 力比  |
|-----|--------------|----|----------|-----|----------|----|-----|
| 番号  |              | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P15 | フランジプレート(内側) |    | 312      |     | 156      |    |     |
| P17 | ガセットプレート(内側) | _  | _        |     | 156      |    |     |

表 4-5 貫通部アンカの応力評価まとめ

(単位:MPa)

表 4-6 コンクリート部の応力評価まとめ (単位:N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    |       |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P18 | コンクリート部 |        | 27.5  |     |

【6号炉】下部ドライウェル機器搬入用ハッチの構造健全性評価結果(200℃、2Pd)



図 4-3 下部ドライウェル機器搬入用ハッチ

|  | 表 4-7 | 鋼製耐圧部の応力評価ま | 20 | Ż |
|--|-------|-------------|----|---|
|--|-------|-------------|----|---|

め (単位:MPa)

|           |                      |          | 一次  | 芯力               |                |         |
|-----------|----------------------|----------|-----|------------------|----------------|---------|
| 応力        |                      |          | Pm  | P <sub>L</sub> + | P <sub>b</sub> | 内土      |
| 評価点<br>番号 | 応力評価点                | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値            | 心刀<br>比 |
| P1        | 鏡板中央部                |          | 281 |                  | 422            |         |
| P8        |                      |          | 281 |                  | 422            |         |
| P9        | 下部ドライウェル 機器拠入田ハッチ四箇胴 |          | 281 |                  | 422            |         |
| P10       |                      |          | 281 |                  | 422            |         |
| P11       | 下部ドライウェル             | _        | _   |                  | 422            |         |
| P12       | 機器搬入用ハッチ円筒胴と         | _        | —   |                  | 422            |         |
| P13       | 鏡板との取付部              | _        | —   |                  | 422            |         |

【6 号炉】下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付) の構造健全性評価結果(200℃、2Pd)



図 4-4 下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付)

|     |                               |    | 一次 | 応力                             |     |            |
|-----|-------------------------------|----|----|--------------------------------|-----|------------|
| 応力  |                               | Pm |    | P <sub>L</sub> +P <sub>b</sub> |     | <u>+</u> + |
| 評価点 | 応力評価点                         |    |    |                                |     | ᄣᄭ         |
| 番号  |                               | 応刀 | 計谷 | 応刀                             | 計谷  | FL         |
|     |                               | 強さ | 値  | 強さ                             | 値   |            |
| D1  |                               |    |    |                                | 499 |            |
| FI  | 現加                            |    |    |                                | 422 |            |
| P2  |                               | -  | —  |                                | 422 |            |
| P3  | 鏡板のスリーブとの結合部                  | _  | —  |                                | 422 |            |
| P4  |                               | _  | —  |                                | 422 |            |
| P5  |                               |    | _  |                                | 422 |            |
| P6  | スリーフのファンジブレートと<br> <br>  の結合部 | _  | _  |                                | 422 |            |
| P7  |                               | _  | _  |                                | 422 |            |

表 4-8 鋼製耐圧部の応力評価まとめ

(単位:MPa)

| 応力<br>評価点<br>番号 |                      | 一次応力 |          |       |          | 応力比 |         |
|-----------------|----------------------|------|----------|-------|----------|-----|---------|
|                 | 応力<br>評価点            | 曲げ応力 |          | せん断応力 |          | 一次  |         |
|                 |                      | 応力   | 許容<br>応力 | 応力    | 許容<br>応力 | 曲げ  | せん<br>断 |
| Р9              | フランジ<br>プレート<br>(内側) |      | 440      |       | 220      |     |         |
| P11             | ガセット<br>プレート<br>(内側) | _    | _        |       | 156      |     |         |

表 4-9 貫通部アンカの応力評価まとめ (単位: MPa)

表 4-10 コンクリート部の応力評価まとめ (単位:N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    |       |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P12 | コンクリート部 |        | 27.5  |     |
【6 号炉】サプレッション・チェンバ出入口の構造健全性評価結果(200℃、2Pd)



図 4-5 サプレッション・チェンバ出入口

|     |                        |    | 一次」 | 芯力               |                |      |
|-----|------------------------|----|-----|------------------|----------------|------|
| 応力  |                        |    | Pm  | P <sub>L</sub> + | P <sub>b</sub> | 内土   |
| 評価点 | 応力評価点                  | 44 |     |                  |                | ルロノノ |
| 番号  |                        | 心力 | 計谷  | 心刀               | 計谷             | 16   |
|     |                        | 強さ | 値   | 強さ               | 値              |      |
| P1  | 鏡板中央部                  |    | 281 |                  | 422            |      |
| P8  |                        |    | 281 |                  | 422            |      |
| P9  | サブレッション・チェンバ<br>出入口田管胴 |    | 281 |                  | 422            |      |
| P10 |                        |    | 281 |                  | 422            |      |
| P11 | サプレッション・チェンバ           | _  | _   |                  | 422            |      |
| P12 | 出入口円筒胴のフランジ            | -  | —   |                  | 422            |      |
| P13 | プレートとの結合部              | —  | _   |                  | 422            |      |

表 4-11 鋼製耐圧部の応力評価まとめ (単位: MPa)

| 応力  | 它力颤蛋片            | 曲げ | 応力       | せん歯 | 所応力      | 応  | 力比  |
|-----|------------------|----|----------|-----|----------|----|-----|
| 番号  | אייניישן דעריכאי | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P15 | フランジプレート(内側)     |    | 312      |     | 156      |    |     |
| P17 | ガセットプレート(内側)     | —  | _        |     | 156      |    |     |

表 4-12 貫通部アンカの応力評価まとめ (単位: MPa)

表 4-13 コンクリート部の応力評価まとめ (単位:N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    | 力度    |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P18 | コンクリート部 |        | 27.5  |     |

4-11

【7号炉】上部ドライウェル機器搬入用ハッチの構造健全性評価結果(200℃、2Pd)



図 4-6 柏崎刈羽7号炉 上部ドライウェル機器搬入用ハッチ

|           | <u> </u>                      |          |     |                  |     | Т   |
|-----------|-------------------------------|----------|-----|------------------|-----|-----|
|           |                               |          | 一次「 |                  |     |     |
| 応力        |                               |          | Pm  | P <sub>L</sub> + | Pb  |     |
| 評価点<br>番号 | 応力評価点                         | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値 | 応力比 |
| P1        | 鏡板中央部                         |          | 281 |                  | 422 |     |
| P8        | 機器搬入用ハッチ円筒胴                   |          | 281 |                  | 422 |     |
| Р9        | 機器搬入用ハッチ円筒胴のフ<br>ランジプレートとの結合部 | _        | _   |                  | 422 |     |

表 4-14 鋼製耐圧部の応力評価のまとめ

(単位:MPa)

| 応力  | 亡力颠価占                 | 曲げ | 応力       | せん聞 | 所応力      | 応  | 力比  |
|-----|-----------------------|----|----------|-----|----------|----|-----|
| 番号  | אין שערעטע איזייערעטע | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P11 | フランジプレート(内側)          |    | 312      |     | 156      |    |     |
| P13 | ガセットプレート (内側)         | _  | _        |     | 156      |    |     |

## 表 4-15 貫通部アンカの応力評価まとめ (単位: MPa)

表 4-16 コンクリート部の応力評価まとめ (単位: N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    | 力度    |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P14 | コンクリート部 |        | 27.5  |     |

【7号炉】下部ドライウェル機器搬入用ハッチの構造健全性評価結果(200℃、2Pd)



図 4-7 下部ドライウェル機器搬入用ハッチ

|  | 表 4-17 | 鋼製耐圧部の応力評価まと | 6 |
|--|--------|--------------|---|
|--|--------|--------------|---|

め (単位:MPa)

|           |                         |          | 一次  | 芯力               |                |    |
|-----------|-------------------------|----------|-----|------------------|----------------|----|
| 応力        |                         |          | Pm  | P <sub>L</sub> + | P <sub>b</sub> | 亡士 |
| 評価点<br>番号 | 応力評価点                   | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値            | 応力 |
| P1        | 鏡板中央部                   |          | 281 |                  | 422            |    |
| P6        | 機器搬入用ハッチ円筒胴             |          | 281 |                  | 422            |    |
| P7        | 機器搬入用ハッチ円筒胴と<br>鏡板との取付部 | —        | _   |                  | 422            |    |

【7号炉】下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付) の構造健全性評価結果(200℃、2Pd)



図 4-8 下部ドライウェルアクセストンネルスリーブ及び鏡板(機器搬入用ハッチ付)

| -   |                |    |        |                  |     |    |
|-----|----------------|----|--------|------------------|-----|----|
|     |                |    | 一次     | 応力               |     |    |
| 応力  |                | I  | D<br>m | P <sub>L</sub> + | Pb  | L  |
| 評価点 | 応力評価点          |    |        |                  |     | 心刀 |
| 番号  |                | 応力 | 許容     | 応力               | 許容  | 比  |
| шч  |                | 強さ | 値      | 強さ               | 値   |    |
|     |                |    |        |                  |     |    |
| P1  | 鏡板             | —  | —      |                  | 422 |    |
| P2  | 鏡板のスリーブとの結合部   | _  | —      |                  | 422 |    |
| Р3  | スリーブのフランジとの結合部 | _  | —      |                  | 422 |    |
|     |                |    |        |                  | _   |    |

(単位:MPa)

表 4-18 鋼製耐圧部の応力評価まとめ

|           |      |    | 一次  | 応力  |     | 応力 |    |  |  |
|-----------|------|----|-----|-----|-----|----|----|--|--|
| 応力<br>評価点 | 応力   | 曲げ | 応力  | せん困 | 所応力 |    |    |  |  |
| 番号        | 評価点  | 応力 | 許容  | 応力  | 許容  | 曲げ | せん |  |  |
|           |      |    | 応力  |     | 応力  |    | 断  |  |  |
|           | フランジ |    |     |     |     |    |    |  |  |
| P5        | プレート |    | 439 |     | 219 |    |    |  |  |
|           | (内側) |    |     |     |     |    |    |  |  |
|           | ガセット |    |     |     |     |    |    |  |  |
| P7        | プレート | _  | —   |     | 156 |    |    |  |  |
|           | (内側) |    |     |     |     |    |    |  |  |

表 4-19 貫通部アンカの応力評価まとめ (単位: MPa)

表 4-20 コンクリート部の応力評価まとめ (単位: N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    |       |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P8  | コンクリート部 |        | 27.5  |     |

【7号炉】サプレッション・チェンバ出入口の構造健全性評価結果(200℃、2Pd)



図 4-9 サプレッション・チェンバ出入口

|           |                                          |          | 一次  | 芯力               |                |     |
|-----------|------------------------------------------|----------|-----|------------------|----------------|-----|
| 応力        |                                          |          | Pm  | P <sub>L</sub> + | P <sub>b</sub> |     |
| 評価点<br>番号 | 応力評価点                                    | 応力<br>強さ | 許容値 | 応力<br>強さ         | 許容値            | 応力比 |
| P1        | 鏡板中央部                                    |          | 281 |                  | 422            |     |
| P6        | サプレッション・チェンバ<br>出入口円筒胴                   |          | 281 |                  | 422            |     |
| Р7        | サプレッション・チェンバ<br>出入口円筒胴のフランジ<br>プレートとの結合部 | _        | _   |                  | 422            |     |

表 4-21 鋼製耐圧部の応力評価まとめ (単位:MPa)

| 応力  | 它力颤研片        | 曲げ | 忘力       | せん困 | 所応力  | 応  | 力比  |
|-----|--------------|----|----------|-----|------|----|-----|
| 番号  | 1977日1日25    | 応力 | 許容<br>応力 | 応力  | 許容応力 | 曲げ | せん断 |
| Р9  | フランジプレート(内側) |    | 312      |     | 156  |    |     |
| P11 | ガセットプレート(内側) | _  | _        |     | 156  |    |     |

表 4-22 貫通部アンカの応力評価まとめ (単位: MPa)

表 4-23 コンクリート部の応力評価まとめ (単位:N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    | 力度    |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P12 | コンクリート部 |        | 27.5  |     |

②既往研究成果による評価

ハッチ類については重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成2 年度~平成14年度)において、代表プラントの鋼製格納容器(Mark-II改良型)の機 器搬入用ハッチをモデル化した試験体を用いた耐圧試験を行い、限界圧力を評価して いる。この耐圧試験の結果、限界圧力は19.5kg/cm<sup>2</sup>(約6.0Pd)であることが示されて おり、それ以下では破損が生じないことを確認している。このハッチモデル試験体は Mark-II改良型のハッチを想定して試験が行われたものであるが、Mark-II改良型のハ ッチと RCCV のハッチの基本的な構造は同じであるため、これらを用いて、柏崎刈羽原 子力発電所6、7号炉のハッチ類の2Pdにおける健全性を確認する。



図 4-10 ハッチモデル試験

機器搬入用ハッチ形状(球形胴)に対する必要板厚は、設計・建設規格により計 算式(4.1)から求められる。この式を変形し、板厚t と降伏応力Sy から弾性限界圧 力Pを算出する。

t=P·Di/ (4·Sy· $\eta$ -0.4P) ……(式4.1) P=2·Sy· $\eta$ ・t/ (R+0.2・t) ……(式4.2)

鋼材の200℃における設計降伏点Sy=226MPa、継手効率 η =1 とすると、弾性限界 圧力P は表4-24 の通り算出される。

|           | 柏崎刈羽<br>機器搬入 | 6/7 号炉<br>用ハッチ | ハッチモデル<br>試験体 |
|-----------|--------------|----------------|---------------|
|           | 上部           | 下部             |               |
| R(内半径)    |              |                | 3500mm        |
| t (板厚)    |              |                | 30mm          |
| P(弾性限界圧力) | 3.47MPa      | 3.76MPa        | 3.87MPa       |

表4-24 機器搬入用ハッチの弾性限界圧力

表4-24に示すように機器搬入用ハッチは、ハッチモデル試験体と同程度の耐圧強 度を有していることから、少なくともハッチモデル試験体の限界圧力6.0Pd と同程 度の圧力まで健全性を有するものと判断できる。

したがって、機器搬入用ハッチは200℃条件において、6.0Pd 程度までは健全であると考えられる。よって、ハッチ類は2Pdにおいても健全性は確保できると考えている。

(2)フランジ固定部の強度

①締付ボルトの強度評価

フランジの締付ボルトについて、原子炉格納容器限界温度、圧力(200℃、2Pd)に おける強度評価を、既工事計画認可申請書の強度計算をベースに評価する。各ハッチ 類の締付ボルト基本仕様を表 4-25~27、評価結果を表 4-28 に示す。いずれも許容応力 以下であることから、締付ボルトは 200℃、2Pd において健全である。

表 4-25 上部ドライウェル機器搬入用ハッチの締付ボルト基本仕様

| 項目     | 6 号炉    | 7 号炉    |
|--------|---------|---------|
| ボルトの材質 | SNCM439 | SNCM439 |
| ボルトの呼び |         |         |
| ボルトの本数 |         |         |

表4-26 下部ドライウェル機器搬入用ハッチの締付ボルト基本仕様

| 項目     | 6 号炉    | 7 号炉    |
|--------|---------|---------|
| ボルトの材質 | SNCM439 | SNCM439 |
| ボルトの呼び |         |         |
| ボルトの本数 |         |         |

表4-27 サプレッション・チェンバ出入口の締付ボルト基本仕様

|        | 6 号炉    | 7 号炉    |
|--------|---------|---------|
| ボルトの材質 | SNCM439 | SNCM439 |
| ボルトの呼び |         |         |
| ボルトの本数 |         |         |

表4-28 締付ボルトの評価結果(単位:MPa)

| 評価部位             | 6 号炉 | 7 号炉 | 許容値 |
|------------------|------|------|-----|
| 上部ドライウェル機器搬入用ハッチ |      |      | 576 |
| 下部ドライウェル機器搬入用ハッチ |      |      | 576 |
| サプレッション・チェンバ出入口  |      |      | 576 |

②フランジの開口評価

原子炉格納容器の重大事故時の過温、過圧時におけるフランジ開口量を評価するために、FEM 解析を用いて ABWR 代表プラントモデルとして 7 号炉の機器搬入用ハッチ部 における開口量を評価した。解析モデルは図 4-11 に、開口量の解析評価結果を図 4-12 に示す。なお、本 FEM 解析の妥当性については別紙-3「トップヘッドフランジ等の開口量評価の妥当性について」で示す。2Pd における開口量は、内側ガスケット部で約 1.4mm、外側ガスケット部で約 1mm となる。



図 4-11 機器搬入用ハッチ開口量評価の解析モデル



図 4-12 機器搬入用ハッチの各ガスケット部の圧力と開口変位の関係

(3) ガスケットの健全性

福島第一原子力発電所事故で原子炉格納容器内雰囲気が漏えいした経路として、原子 炉格納容器トップヘッドフランジ、機器搬入用ハッチ等のフランジシール部が推定漏え い経路の1つであると考えている。原子炉格納容器のフランジシール部は、内圧が低い 段階ではボルトの初期締付けにより開口は抑制されているが、内圧の上昇に伴って開口 量が増加することにより、外部への漏えい経路を形成する。ただし、フランジ部が開口 しても、フランジ部の密閉性を担保しているシール材が健全であれば、シール材が開口 に追従するため外部への漏えいを防止することができる。しかしながら、福島第一原子 力発電所事故のような事故環境に晒されると、原子炉格納容器トップヘッドフランジ等 のフランジシール部に使用されているシール材が劣化し、フランジの開口に追従できな くなり格納容器閉じ込め機能を損なう可能性がでてくる。

そこで、柏崎刈羽原子力発電所6、7号炉原子炉格納容器フランジシール部に使用され ているシール材(シリコンゴム)について、事故時環境下の耐性が優れた改良EPDM 製シール材に変更して格納容器閉じ込め機能の強化を図る。従って、改良EPDM製シ ール材について、事故時の温度や放射線による劣化特性を試験により確認し、想定され る事故シナリオにおけるシール機能を評価する。なお、フランジ部のシール材は、プラ ントの定期検査時に開放される場合には取り替えを実施しており、通常運転中における 劣化は極めて軽微であることから、事故条件下での評価を実施する。

①シール材(改良EPDM)の圧縮永久ひずみ試験結果について

改良EPDM製シール材の事故時環境における劣化特性を、高温蒸気曝露の期間を確 認するために、JIS K6262「加硫ゴム及び熱加塑性ゴムの常温・高温及び低温における圧 縮永久ひずみの求め方」に準じて圧縮永久歪み試験を実施した。その結果を表 4-29 に示 す。なお、圧縮永久ひずみ測定とは、所定の圧縮率をかけ変形させた後、開放時の戻り 量を評価するものである。完全に元の形状に戻った場合を 0%とし、全く復元せずに完全 に圧縮された状態のままである状態を 100%としている。例えば、圧縮永久ひずみが表 4-29 で示す「」」の場合は、シール材の初期締付量が」である 7 号炉を例に取ると、 戻ることを意味する。この場合、のフランジ部開口まではシール機能が確保可能 と想定できる。

| No | 七年自一公司      | ガフ州中       | 泪座    | 圧約  | 縮永久ひずみ試験 | 験    |
|----|-------------|------------|-------|-----|----------|------|
| NO | 加入为176水出只为1 | カ へ 1 王 4人 | 温度    | 24h | 72h      | 168h |
| 1  | 800kGy      | 乾熱         | 200°C |     |          |      |
| 2  | 800kGy      | 乾熱         | 250°C |     |          |      |
| 3  | 800kGy      | 蒸気         | 200°C |     |          |      |
| 4  | 800kGy      | 蒸気         | 250°C |     |          |      |

表 4-29 改良 E P D M 製シール材の 圧縮永久 ひずみ 試験結果

②改良EPDM製シール材の性能確認試験

②-1 実機を模擬した小型フランジ試験

改良EPDM製シール材の性能を確認するために、圧縮永久歪み試験に加え、実機フ ランジOリング溝を模擬した小型試験装置を用いて、事故環境に曝露した後のシール機 能を確認した。試験装置を図 4-13 に示しており、実機Oリング溝の断面寸法を 1/2 スケ ールとして試験治具を製作し、予めγ線照射したシール材を用いて試験体を作り、高温 環境に曝露した後に気密確認試験を実施した。

試験条件としては、事故条件を模擬するために、放射線照射量はフランジガスケット 部の事故後7日間の累積放射線量の目安である800kGyを用いて実施している。また、高 温曝露は高温空気及び高温蒸気で曝露し、温度については、格納容器限界温度である 200℃と、さらに余裕を見た250℃を設定し、それぞれ7日間(168h)一定温度で高温曝露 している。また、試験治具のOリング溝は内側に1mmの段差があり、その段差の間から シール材が高温空気または蒸気に曝露されるため、事故時の格納容器過圧に伴うフラン ジ開口を考慮した状態で、高温曝露ができる試験体となっている。高温曝露後は、事故 時に発生する水素を模擬するために、Heにより気密確認試験を実施している。気密確認 試験では、格納容器限界圧力2Pd(0.62MPa)以上の気密性を確認するため最大で0.9MPaま で加圧して気密性を確認している。また、格納容器過圧に伴うフランジ開口時のシール 材の気密性を確認するために、高温曝露後の試験体フランジを0.8mm 開口させ、その状 態でもHe気密確認試験を実施し、0.9MPa加圧時に漏えいのないことを確認している。な お、開口量の0.8mmは、2Pdにおける開口量が最も大きな機器搬入用ハッチのフランジ開 口量(約1.4mm)に余裕をもたせた開口量(1.6mm)を1/2スケールにしたものである。

試験の詳細は別紙-4「改良EPDMシール材の試験について」で示しており、本試験 により200℃が168時間継続した場合の改良EPDM製シール材のシール機能の健全性を 確認した。





図 4-13 改良EPDM製シール材の性能確認試験装置

②-2 実機フランジモデル試験

改良EPDM製シール材は前述の小型フランジ試験に加え、より大口径(Oリング 径:約250mm)の実機フランジモデル試験(実機フランジモデル試験)も実施している ところであり、実機条件に近い状態でのシール健全性の確認を進めているところであ る。試験装置は図4-14、図4-15に示しており、試験フランジの溝断面形状は実機と同 じとし、溝径を縮小した試験フランジとする。試験試料の断面形状は実機と同じとし、 径を縮小した試験試料とする。予めγ線照射したシール材を用いて試験体を作り、高 温環境に曝露した後に気密確認試験を実施する。

試験条件としては、事故条件を模擬するために、放射線照射量はフランジガスケット部の事故後7日間の累積放射線量の目安である800kGyを用いて実施している。また、 EPDMの劣化は一般的に酸素により引き起こされるとの知見に基づき、高温曝露は 蒸気ではなく高温空気(乾熱)で曝露し、温度については、格納容器限界温度である 200℃と、さらに余裕を見た250℃、300℃とし、それぞれ定める期間を一定温度で高温 曝露する。また、内圧作用時の実機フランジの開口を模擬するため、フランジ面に調 整シムを挟んで押し込み量を調整できる装置にしている。

本試験装置によりシール材を高温曝露した後、気密確認試験を実施した。気密確認 試験では、格納容器限界圧力 2Pd(0.62MPa)を包絡する圧力で気密性を確認しており、 その試験結果を別紙−11 に示す。本試験結果により 200℃が 168 時間継続した場合の 改良EPDM製シール材のシール機能の健全性を確認した。



図 4-14 実機フランジモデル試験の装置概要





③フランジ開口量を考慮した漏えい評価

前述①および②を踏まえ、事故時環境下に曝されることによるシール材劣化(シール材追従量の低下)と、原子炉格納容器の限界温度・圧力によるフランジ開口量を考慮し、限界温度・圧力である 200℃、2Pd 条件下におけるシール材の機能確保に関する評価線図を図-4.16 に示す。



図 4-16 シール材の機能確保に関する評価線図(機器ハッチ)

図中の青線は、シール部の健全性を確認している範囲を示す線である。この青線に おいて、温度依存の傾きのある部分は、格納容器の機器ハッチフランジ部の構造解析 結果(図-4.12)とシール材の圧縮永久ひずみ試験結果(表-4.29)から、フランジ部 の開口量にシール材が追従できなくなる境界を示すものである(解析で示したフラン ジ部の開口量が、改良EPDMの圧縮永久ひずみ(乾熱、7日間)に基づき定めたシー ル材の戻り量と等しくなったときに漏えいすると評価)。

一方、青線において、温度が250℃一定の垂直の部分は、改良EPDMを用いたフラ ンジ部の小型モデル試験結果から、過圧・過温状態におけるシール材の健全性が確認 できている範囲を示すものである(格納容器シール部の形状を模擬した試験装置を用 いて、漏えいが発生する圧力、温度の評価)。なお、250℃で実施した小型モデル試験 では、漏えいは生じていないため、実際の限界温度はさらに高い温度となる。

上記の結果から、シール部については、シール材が高温環境下において劣化する特

性を有していることを考慮しても、限界温度・圧力環境下において、シール材に耐環 境性に優れたEPDM性シール材を用いることにより、少なくとも7日間の健全性を 確保できることを確認した。シール材が高温環境下で劣化することにより、放射性物 質の閉じ込め機能を喪失する可能性については、福島事故の分析からも確認されてお り、福島事故の経験と分析を踏まえ、高温環境下における耐性を強化したシール材を 用いることにより、機能を向上させる。

④バックアップシール材のシール機能について

当社は福島第一原子力発電所の事故知見を踏まえ、格納容器閉じ込め機能強化の更 なる信頼性向上を目途としてバックアップシール材を開発した。バックアップシール 材は図 4-17 で示すように、現行シール材のシール溝よりも外側のフランジ面全周に塗 布できるシール材である。バックアップシール材は、耐高温性、耐蒸気性、耐放射線 性が確認され、重大事故環境下においてもシール機能を発揮できるものを用いる。バ ックアップシール材の性能は、図 4-18 で示す試験装置で、事故環境下に曝された後の シール機能について評価されている。

④-1 バックアップシール材の性能確認試験

試験条件としては、事故条件を模擬するために、放射線照射量はフランジ部の事故 後7日間の累積放射線量の目安である800kGyを用いて実施している。また、高温曝露 は高温蒸気で曝露し、温度については、格納容器限界温度200℃に余裕を見た250℃を 設定し、7日間(168h)一定温度で高温曝露している。高温曝露後は、事故時に発生する 水素を模擬するために、He により気密確認試験を実施している。気密確認試験では、 格納容器限界圧力2Pd(0.62MPa)以上の気密性を確認するため最大で0.9MPaまで加圧し て気密性を確認している。

また、重大事故時には事故後ベント実施までは圧力が 2Pd 近傍と高くなりフランジ 部が開口することから、フランジ開口を経験した後にバックアップシール材に気密性 があるか否かを確認するため、30cm 中型試験体を用いて隙間ゲージで一度変位を経験 させた後に He 気密試験を実施した(開口模擬後気密確認試験)。変位は、格納容器限 界圧力 2Pd 時のバックアップシール材塗布位置を考慮し、機器搬入用ハッチの外側ガ スケットのフランジ開口量をもとに 1mm に設定した。試験の流れとしては、バックア ップシール材を塗布したフランジを乾燥させた後に、隙間ゲージで変位を加え、その 後隙間ゲージを引き抜いて試験フランジの変位を当初位置に戻す。その状態で He 気密 確認試験を実施し、0.9MPa 加圧時に漏えいのないことを確認している。なお、開口模 擬後気密確認試験は試験装置上の理由から、バックアップシール材に高温曝露は経験 させていない。しかしながら、FT-IR 分析により 250℃蒸気曝露で構造の変化量は小さ く、顕著な劣化が認められなかったことから、高温曝露有無は事故時開口を模擬した バックアップシール材の性能を確認する試験では、試験結果に大きな影響を与えない と考えている。

試験の詳細は別紙-5「バックアップシール材の試験について」で示しており、バッ クアップシール材は 250℃蒸気曝露が 168h 継続したとしても気密性が確保できること を確認している。また、250℃蒸気曝露が 168h 継続した後のバックアップシール材の 化学構造の変化を確認するために FT-IR 分析を実施し、曝露前後でもバックアップシ ール材の化学構造がほとんど変化していないことを確認している。よって、250℃蒸気 曝露環境下では有意な劣化はほとんど無いことから、格納容器限界温度である 200℃状 態が長期継続したときであっても、バックアップシール材により格納容器閉じ込め機 能の健全性は確保できる。

以上のことから、バックアップシール材について格納容器限界温度 200℃における長 期シール性が確認できた。また、ベント実施までの間に格納容器過圧によるフランジ 開口を経験したとしても、ベント後のフランジ開口量が小さい領域では高温性に優れ たシール機能を発揮することが確認できた。よって、バックアップシール材は、格納 容器ベント操作後の長期シール機能強化に有効である。



図 4-17 バックアップシール材イメージ図



図 4-18 バックアップシール材の気密試験

| 試験条件   | 温度    | 蒸気曝露 | 放射線照射  | 気密試験 |
|--------|-------|------|--------|------|
| 蒸気曝露なし | 350°C | _    | _      | 0    |
|        | 350°C | -    | 827kGy | 0    |
| 蒸気曝露あり | 250°C | 168h | 819kGy | 0    |

表 4-30 バックアップシール材の気密性試験結果

○は気密試験時に「漏えいなし」を示す

④-2 バックアップシール材の塗布条件

バックアップシール材のシール機能が確保されるための塗布幅、塗布厚さ、塗布作 業に関する条件は、各種試験の結果から表 4-31 の通り定めている。塗布幅は幅が広い 程シール機能が向上するが、試験でシール機能が確認できた最小の塗布幅を元に設定 している。塗布厚さについては、シール機能が確認できた塗布厚さを元に設定してい る。また、バックアップシール材は塗布後、除々に乾燥して固まるため、塗布後にフ ランジ閉鎖するまでの時間を制約として設けることにしている。この時間についても、 試験によりバックアップシール材の乾燥時間を考慮して、シール機能が確認できた時 間を元に設定している。

表 4-31 バックアップシール材の塗布条件

| 項目              | 塗布条件 |
|-----------------|------|
| バックアップシール材の塗布幅  |      |
| バックアップシール材の塗布厚さ |      |
| 塗布後、フランジ閉鎖までの時間 |      |

④-3 バックアップシール材の品質確認

バックアップシール材は表 4-31 の条件で塗布することで、シール機能が確保可能で ある。従って、バックアップシール材塗布作業時に「塗布幅」、「塗布厚さ」、「塗布後、 フランジ閉鎖までの時間」を確認することで品質を確認する。「塗布幅」、「塗布厚さ」 については、それら幅、厚さを担保可能な専用治具を用いてバックアップシール材を 塗布作業する等で、品質確認を行う。「塗布後、フランジ閉鎖までの時間」については、 塗布作業時間を管理することで品質確認を行う。 ⑤「改良EPDM製シール材+バックアップシール材」のシール機能について

前述④で示す通り、バックアップシール材は重大事故環境においても優れた耐性を もつことが示されたため、「改良EPDM製シール材+バックアップシール材」を組み 合わせることで、事故環境下における原子炉格納容器閉じ込め機能の更なる信頼性向 上を図る計画を進めている。

改良EPDM製シール材は、事故時の耐環境性に優れていることを確認しているが、 一般的に劣化モードとして酸化劣化があげられるため、長期シール性の信頼性を向上 させるためには、劣化要因である酸素の高温状態曝露を回避することが必要になる。 バックアップシール材は、フランジ外側ガスケット部よりも外周のフランジ面に塗布 することから、改良EPDMシール材への格納容器外側からの酸素供給を遮断する役 割も果たすことができるため、酸化劣化によるシール機能低下を抑えることが可能で ある。

よって、事故発生後の改良EPDM製シール材の長期健全性を補強することができ るため、当社の更なる格納容器閉じ込め機能強化対策として「改良EPDM製シール 材+バックアップシール材」を採用する。その効果については事項で示す。

なお、フランジ部にバックアップシール材を塗布することに関するフランジ設計に 対する影響評価については、別紙-16 において評価している通りであり、フランジへ の悪影響はないものと考えている。 ⑥事故後長期間のシール機能について

重大事故時の格納容器閉じ込め機能の信頼性を強化するために、「改良 EPDM+バッ クアップシール材」を組合せ、事故後 168 時間以降の長期におけるシール機能につい て試験により確認した(試験装置を図 4-19 に示す)。前述の通り、バックアップシー ル材の 200℃状態における長期健全性を確認しており、有意な劣化が見られないことか ら、長期にわたって状態は変化せず、シール機能が確保されるものと考える。また、 改良EPDM製シール材とその外側にバックアップシール材を適用した条件で長期間 高温曝露を実施した後に He 気密確認試験を実施しているが、少なくとも 45 日間の高 温曝露(200℃)を経験しても、気密性に問題ないことが確認できている。試験の詳細 は、別紙-5「バックアップシール材の試験について」の「(4)長時間試験」で示す。

なお、原子炉格納容器閉じ込め機能として最も厳しいシナリオである「大 LOCA+SB0+ECCS機能喪失」について、事故後168時間以降も有効性評価で使用した設備 以外は復旧せず、フィードアンドブリードを続けたとした場合、事故発生から30日後 のドライウェル温度は130℃以下であることが評価で示されている。従って、これより も過酷な200℃状態が30日間継続しても格納容器閉じ込め機能は健全であることが試 験により確認できているため、事故後長期のシール性向上のためには「改良EPDM+バ ックアップシール材」は有効であると考えている。



図4-19 「改良EPDM+バックアップシール材」組合せ試験装置

|            |                     | -   |        |    |        |       |
|------------|---------------------|-----|--------|----|--------|-------|
| 計驗休        | 唱電中能                | 曝露  | 改良EPDM | 加圧 | 試験     | 計驗結用  |
| 1月20月14日   | 嗽路\\/\ <sup>腔</sup> | 期間  | 放射線曝露  | 媒体 | 圧力     | 叫吸加不  |
| 改良EPDM+    | 乾熱200℃              | 30日 | 800kGy | He | 0.9MPa | 漏えいなし |
| バックアップシール材 | 乾熱200℃              | 45日 | 800kGy | He | 0.9MPa | 漏えいなし |

表4-32 「改良EPDM+バックアップシール材」組合せ試験結果

4.3 評価まとめ

機器搬入用ハッチの健全性評価結果を表4-33に示す。

| No  | 大項目     | 評価方法          | 評価                     | 結果     |
|-----|---------|---------------|------------------------|--------|
| (1) | 本体の耐圧   | ①応力評価         | 200℃、2Pdにおける各部の応力評価を実  |        |
|     |         |               | 施                      | 0      |
|     |         | ②既往研究を用いた評価   | 2Pdにおける健全性を、NUPEC実施のハッ |        |
|     |         |               | チモデル試験を用いて評価           | 0      |
| (2) | フランジ固定部 | ①締付ボルト評価      | 200℃、2Pdにおける締付ボルトの応力評  |        |
|     | の強度     |               | 価を実施                   | 0      |
|     |         | ②フランジの開口評価    | 200℃、2Pdにおけるフランジ開口を評価  |        |
|     |         |               | (以下(3)ガスケットの健全性と併せて    | —      |
|     |         |               | 健全性評価を行う)              |        |
| (3) | ガスケットの健 | シール材劣化、PCV開口量 | 「改良EPDM製シール材」で200℃、    |        |
|     | 全性      | 評価、バックアップシール  | 2Pdにおけるシール機能を評価        |        |
|     |         | 材試験結果を用いた評価   | 更なる安全対策向上として「改良EPD     | $\sim$ |
|     |         |               | Mシール材+バックアップシール材」を     | 0      |
|     |         |               | 適用することにより、改良EPDM製シ     |        |
|     |         |               | ール材の長期信頼性を補強する。        |        |

表4-33 機器搬入用ハッチの健全性評価結果

5. エアロック

5.1 評価方針

エアロックは、円筒胴が原子炉格納容器のコンクリート躯体に溶接固定されており、 円筒胴の両端に人が出入りする開口部を設けた平板(隔壁)を溶接している。この開口 部に枠板(隔壁)を溶接し、枠板の前面を開閉扉で塞ぐ構造である。枠板の前面と扉間 のシールにはシリコンゴムのガスケットを使用している。なお、トップヘッドフランジ やハッチ類と異なり、原子炉格納容器過圧時はエアロック扉が支持部に押しつけられる 構造となっているため、扉板が開くことはない。

また、扉には均圧弁に繋がる配管や扉開閉ハンドル軸が貫通しており、均圧弁及び扉 開閉ハンドル軸貫通部にシール材を使用している。

エアロックの設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延 性破壊が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生 じる温度域でないこと、繰り返し荷重が作用しないこと、有意な圧縮力がエアロックに 生じないことから、脆性破壊、疲労破壊及び座屈は評価対象外と考えることができ、高 温状態で原子炉格納容器内圧を受けるため、過渡な塑性変形に伴う延性破壊が機能喪失 要因として想定される。そのため、エアロック本体の塑性変形に伴う延性破壊、また、 扉の変形及びシール材の高温劣化によるシール機能の低下が考えられ、200℃、2Pd での 健全性の確認には、以下の評価が必要である。

- ・本体の耐圧
- ・シール部の健全性



図 5-1 所員用エアロック

(1)本体の耐圧

①一次応力評価

エアロックにおける構造健全性評価として、上部ドライウェル所員用エアロック、 下部ドライウェル所員用エアロックのうち内圧による荷重を受け止める部位のうち、 扉、隔壁、円筒胴について一次一般膜応力評価、貫通部アンカ及びコンクリート部 については一次応力評価等を行い、発生応力が許容応力以下であることを確認する。

ここで、設計建設規格の解説表 PVB-3110-1 において、延性破壊評価は一次応力の 評価を実施することとなっている。一方、設計・建設規格における一次応力強さの 許容値は、材料の種類及び温度毎に材料試験(引張試験)を実施した結果をもとに 国内 Su 値検討会で設定された設計引張強さ(Su)に割下げ率を考慮して設定された ものである(設計・建設規格 解説 GNR-2200)。

今回の評価は、設計基準である最高使用温度及び最高使用圧力を超過するスリー ブの限界温度及び許容圧力の妥当性を確認するものであるため、上記割下げ率を Pm (一次一般膜応力強さ)には 1.5、PL+Pb (一次局部膜応力強さ+一次曲げ応力強さ) には 1.0 とした評価を行う。すなわち、スリーブに発生する応力が、Pmが 2/3Su、PL+Pb が Su 以下であれば、延性破壊には至らず、構造は健全で機能要求(放射性物質の閉 じ込め機能)を確保できると考えている。

この許容値の考え方は、設計・建設規格 解説 PVB-3111 に示すように、許容状態 DのP<sub>m</sub>、P<sub>L</sub>+P<sub>b</sub>の許容値と同等である、なお、耐圧機能維持の観点から、安全評価上 の仮定(原子炉冷却材喪失事故を想定)に保証を与える目的で応力評価を行う設計・ 建設規格の供用状態 D の許容応力は、鋼材の究極的な強さを基に、弾性計算により 塑性不安定現象の評価を行うことへの理論的安全裕度を考慮して定めたものであり、 P<sub>m</sub>は 2/3Su、P<sub>L</sub>+P<sub>b</sub>は  $1.5 \times 2/3$ Su (=Su)と規定されている。前者は、膜応力であり断 面の応力が Su に到達すると直ちに破損に至るため割下げ率 1.5を考慮して規定され ているが、後者は、断面表面が Su に到達しても断面内部は更なる耐荷能力があり直 ちに破損には至らないため割下げ率は 1.0としている。

(2) ガスケットの健全性

①扉のシール材

エアロックの扉のシール材には、これまでシリコンガスケットを使用しているが、 事故時の耐環境性に優れた改良EPDM製シール材に変更する。エアロック扉閉止時 は、扉は原子炉格納容器内圧により扉板が支持部に押付けられる構造であり、圧力に より扉板が開くことはない。しかし、内圧が負荷される面積が大きいことから、てこ の原理でガスケット部の微小な開口が予想されるため、圧力による開口量を理論式に 基づき評価する。このシール部に発生する最大隙間がエアロックと材質・シール方式 が同一のトップヘッドフランジ及び機器搬入口のガスケットの試験結果で漏えいが無 いとされる隙間以下であることを確認する。なお、シール材の高温劣化については、 事故時の扉が押し付けられる方向にあること、及び、扉が2重に設けられることから、 トップヘッドフランジ・ハッチ類と比べて原子炉格納容器閉じ込め機能への影響度は 小さいと考えているため、本章では評価対象外とする。なお、エアロックのシール材 は、プラントの定期検査時に開放される場合には取り替えを実施しており、通常運転 中における劣化は極めて軽微であることから、事故条件下での評価を実施する。 ②扉以外のシール材

エアロックには、扉のシリコンガスケット以外に格納容器閉じ込め機能を確保する ための隔壁貫通部にシール材が使用されているが、今後、事故時の耐環境性に優れた 表 5-1~5-2 に示すシール材に変更する。

ハンドル軸貫通部Oリングに使うシール材は従来、ふっ素ゴムを用いていたが、事 故時環境の耐性に優れた改良EPDM製シール材に変更することとし、基本特性試験 結果により重大事故環境下における健全性を確認する。

均圧弁に使われているシール材(ふっ素樹脂)は、重大事故環境下の放射線による 影響で、シール機能が劣化することが考えるため、耐環境性に優れたシール材を適用 した均圧弁への改良を行うか、エアロック外扉を貫通する均圧弁接続配管の原子炉建 屋側の開放部に、耐環境性に優れたシール材(改良EPDM)をもつ閉止フランジを 取付け、従来品の均圧弁と閉止フランジを組み合わせることで重大事故環境下におけ る健全性を確認する。なお、これらのシール材は、通常運転中における劣化は極めて 軽微であることから、事故条件下での評価を実施する。

| 対象部位         | シール材          |
|--------------|---------------|
| ハンドル軸貫通部Oリング | 改良EPDM        |
|              | 均圧弁の改良        |
| 均圧弁          | または           |
|              | 閉止フランジ+改良EPDM |

表 5-1 6 号炉 エアロック (扉以外) のシール材

表 5-2 7号炉 エアロック(扉以外)のシール材

| 対象部位         | シール材          |
|--------------|---------------|
| ハンドル軸貫通部Oリング | 改良EPDM        |
|              | 均圧弁の改良        |
| 均圧弁          | または           |
|              | 閉止フランジ+改良EPDM |



図 5-2 均圧弁及びハンドル軸貫通部

これらシール材について、単体劣化試験結果を元に、原子炉格納容器 200℃、2Pd の環 境における健全性を評価する。

5.2 評価結果

(1)本体の耐圧

①一次応力評価

エアロックの構造健全性について、建設時工認の応力値を用いて原子炉格納容器限 界温度・圧力(200℃、2Pd)における応力評価を実施した結果を示す。評価部位とし て、上部ドライウェル所員用エアロック及び下部ドライウェル所員用エアロックを選 定し、各エアロックのうち内圧による荷重を受け止める部位(扉、隔壁、円筒胴、貫 通部アンカ及びコンクリート部)を選択し、発生応力を評価した。評価結果のまとめ を表 5-5~5-22 に示す。これらの結果から、200℃、2Pd 条件下においてエアロックの 構造健全性を確認した。

| 項目           | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|--------------|---------|---------|
| 最高使用圧力 (MPa) | 0.31    | 0.31    |
| 最高使用温度 (℃)   | 171     | 171     |
| 材料           | SGV480  | SGV480  |
| スリーブ直径 (mm)  |         |         |
| スリーブ厚さ (mm)  |         |         |
| 内側隔壁厚さ (mm)  |         |         |
| 外側隔壁厚さ (mm)  |         |         |
| 内側扉厚さ (mm)   |         |         |
| 外側扉厚さ (mm)   |         |         |

表 5-3 上部ドライウェル所員用エアロックの主要仕様

表 5-4 下部ドライウェルアクセストンネルスリーブ及び

| 鏡板 | (所員用エア | ロック付) | の主要仕様 |
|----|--------|-------|-------|
|----|--------|-------|-------|

| 項目          | 柏崎刈羽6号炉 | 柏崎刈羽7号炉 |
|-------------|---------|---------|
| 最高使用圧力(MPa) | 0.31    | 0.31    |
| 最高使用温度 (℃)  | 171     | 171     |
| 材料          | SGV480  | SGV480  |
| スリーブ直径 (mm) |         |         |
| スリーブ厚さ (mm) |         |         |
| 鏡板厚さ(mm)    |         |         |

【6号炉】上部ドライウェル所員用エアロックの構造健全性評価結果(200℃、2Pd)





図 5-3 上部ドライウェル所員用エアロック

| 応力  |            | 一次応力              |     |     |
|-----|------------|-------------------|-----|-----|
| 評価占 | 応力評価点      | P <sub>L</sub> +I | ь   | 広力比 |
| 番号  |            | 応力強さ              | 許容値 |     |
| P1  | 内外扉垂直部材    |                   | 422 |     |
| P2  | 内外扉水平部材    |                   | 422 |     |
| P3  | 内外扉板       |                   | 422 |     |
| P4  | 内外隔壁外側水平部材 |                   | 422 |     |
| Р5  | 内外隔壁内側垂直部材 |                   | 393 |     |
| P6  | 内外隔壁内側水平部材 |                   | 381 |     |
| Ρ7  | 内外隔壁板      |                   | 422 |     |

## 表 5-5 扉及び隔壁の応力評価まとめ (単位:MPa)

| 表 5-6 錚 | 岡製耐圧部の応力評価まとめ | (単位:MPa) |
|---------|---------------|----------|
|---------|---------------|----------|

|           |                     |    | 一次応力 |    |                 |            |
|-----------|---------------------|----|------|----|-----------------|------------|
| 応力        |                     |    | Pm   | PL | +P <sub>b</sub> | <u></u> ++ |
| 評価点<br>悉号 | 応力評価点               | 応力 | 許容   | 応力 | 許容              | 比          |
| ШŅ        |                     | 強さ | 値    | 強さ | 値               |            |
| P8        | 上部ドライウェル所員          |    | 281  |    | 422             |            |
| Р9        | 用                   |    | 281  |    | 422             |            |
| P10       | エアロック内側円筒胴          |    | 281  |    | 422             |            |
| P11       | 上部ドライウェル所員          |    | _    |    | 422             |            |
| P12       | 用エアロック内側円筒          |    | _    |    | 422             |            |
| P13       | 胴のフランジプレート<br>との結合部 |    | _    |    | 422             |            |
| P14       | 上部ドライウェル所員          |    | 281  |    | 422             |            |
| P15       | 用                   |    | 281  |    | 422             |            |
| P16       | エアロック外側円筒胴          |    | 281  |    | 422             |            |
| P17       | 上部ドライウェル所員          |    | _    |    | 422             |            |
| P18       | 用エアロック外側円筒          |    | _    |    | 422             |            |
| P19       | 胴のフランジプレート<br>との結合部 |    | _    |    | 422             |            |

| 表 5-7 貫通部アンカの応力評価まとめ |              |    |          | (単位 | :MPa)    |     |     |
|----------------------|--------------|----|----------|-----|----------|-----|-----|
| 応力                   | 芯力           |    | 『応力 せん断応 |     | 新応力      | 応力比 |     |
| 番号                   | ۳۳۳ عال دی   | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ  | せん断 |
| P21                  | フランジプレート(内側) |    | 312      |     | 156      |     |     |
| P23                  | ガセットプレート(内側) |    | _        |     | 156      |     |     |

表 5-8 コンクリート部の応力評価 (単位: N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    |       |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P24 | コンクリート部 |        | 27.5  |     |

【6号炉】下部ドライウェル所員用エアロックの構造健全性評価結果(200℃、2Pd)



図 5-4 下部ドライウェル所員用エアロック

| ☆ 5-9 | 衣 5-9 扉及い隔壁の応力評価よどの (車 |                   |     | <u>V</u> .: MPa) |
|-------|------------------------|-------------------|-----|------------------|
| 広力    |                        | 一次応力              |     |                  |
| 亚価占   | 広力評価占                  | P <sub>L</sub> +I | Pb  | 広力比              |
| 番号    | <i>и</i> шуунт шилж    | 応力強さ              | 許容値 | μ <u>ιν</u>      |
| P1    | 内外扉垂直部材                |                   | 422 |                  |
| P2    | 内外扉水平部材                |                   | 422 |                  |
| P3    | 内外扉板                   |                   | 422 |                  |
| P4    | 内外隔壁外側水平部材             |                   | 422 |                  |
| P5    | 内外隔壁内側垂直部材             |                   | 393 |                  |
| P6    | 内外隔壁内側水平部材             |                   | 381 |                  |
| Ρ7    | 内外隔壁板                  |                   | 422 |                  |
|       |                        |                   |     |                  |

## 表 5-9 扉及び隔壁の応力評価まとめ (単位: MPa)

| 表 5-10 | 鋼製耐圧部の応力評価まとめ | (単位:MPa) |
|--------|---------------|----------|
|--------|---------------|----------|

|           | 応力評価点                   |          |     |           |     |            |
|-----------|-------------------------|----------|-----|-----------|-----|------------|
| 応力        |                         | Pm       |     | $P_L+P_b$ |     | <b>₹</b> + |
| 評価点<br>番号 |                         | 応力<br>強さ | 許容  | 応力<br>強さ  | 許容値 | 比          |
| P8        |                         |          | 281 |           | 422 |            |
| Р9        | 下部ドライウェル所員用<br>エアロック円筒胴 |          | 281 |           | 422 |            |
| P10       |                         |          | 281 |           | 422 |            |
| P11       | 下部ドライウェル所員用             | _        | —   |           | 422 |            |
| P12       | エアロック円筒胴と鏡板             | _        | —   |           | 422 |            |
| P13       | との結合部                   | _        | _   |           | 422 |            |

【6 号炉】下部ドライウェルアクセストンネルスリーブ及び鏡板(所員用エアロック付)の 構造健全性評価結果(200℃、2Pd)



図 5-5 下部ドライウェルアクセストンネルスリーブ及び鏡板(所員用エアロック付)

|     |                        | 一次応力 |    |             |     |    |  |
|-----|------------------------|------|----|-------------|-----|----|--|
| 応力  |                        | Pm   |    | $P_L + P_b$ |     |    |  |
| 評価点 | 応力評価点                  |      |    |             |     | 心刀 |  |
| 悉号  |                        | 応力   | 許容 | 応力          | 許容  | 比  |  |
| ШŊ  |                        | 強さ   | 値  | 強さ          | 値   |    |  |
|     |                        |      |    |             |     |    |  |
| P1  | 鏡板                     | —    | —  |             | 422 |    |  |
| P2  |                        | -    | —  |             | 422 |    |  |
| P3  | 鏡板のスリーブとの結合部           | _    | _  |             | 422 |    |  |
| P4  |                        |      | _  |             | 422 |    |  |
| P5  | スリーブのフランジプレートと<br>の結合部 | _    | _  |             | 422 |    |  |
| P6  |                        | _    | —  |             | 422 |    |  |
| P7  |                        | _    | —  |             | 422 |    |  |

表 5-11 鋼製耐圧部の応力評価まとめ (単位: MPa)

| -               | •         | 27.02 FIF / . |          | / L / J F I |          |     | (   |  |
|-----------------|-----------|---------------|----------|-------------|----------|-----|-----|--|
|                 |           |               | 一次応力     |             |          |     | 応力比 |  |
| 応力<br>評価点<br>番号 | 応力<br>評価点 | 曲げ応力          |          | せん断応力       |          |     |     |  |
|                 |           | 応力            | 許容<br>応力 | 応力          | 許容<br>応力 | 曲げ  | せん断 |  |
|                 |           | フランジ          |          |             |          |     |     |  |
|                 | Р9        | プレート          |          | 440         |          | 220 |     |  |
|                 |           | (内側)          |          |             |          |     |     |  |
|                 |           | ガセット          |          |             |          |     |     |  |
|                 | P11       | プレート          |          | —           |          | 156 |     |  |
|                 |           | (内側)          |          |             |          |     |     |  |

表 5-12 貫通部アンカの応力評価まとめ (単位: MPa)

| 表 5-13 | コンクリー | ト部の応力評価まとめ | (単位:N/mm <sup>2</sup> ) |
|--------|-------|------------|-------------------------|
|--------|-------|------------|-------------------------|

| 応力  |         | 圧縮応    |       |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P12 | コンクリート部 |        | 27.5  |     |




|                    | .,,        |                   |        |     |
|--------------------|------------|-------------------|--------|-----|
| с <del>і</del> — А |            | 一次,               |        |     |
|                    |            | P <sub>L</sub> +I | D<br>b |     |
| 評1曲 尽              | 心力評価点      |                   |        | 応力比 |
| 番号                 |            | 応力強さ              | 許容値    |     |
| P1                 | 内側扉        |                   | 422    |     |
| P2                 | 外側扉        |                   | 422    |     |
| P3                 | 内側隔壁板      |                   | 422    |     |
| P4                 | 内外隔壁垂直部材   |                   | 422    |     |
| P5                 | 内外隔壁上部水平部材 |                   | 422    |     |
| P6                 | 内外隔壁下部水平部材 |                   | 422    |     |
| P7                 | 外側隔壁板      |                   | 422    |     |
| P8                 | 外側隔壁垂直部材   |                   | 422    |     |
| Р9                 | 外側隔壁上部水平部材 |                   | 422    |     |
| P10                | 外側隔壁下部水平部材 |                   | 422    |     |
|                    |            |                   |        |     |

# 表 5-14 扉及び隔壁の応力評価まとめ (単位: MPa)

|           | 一次応力                                |          |     | 、応力      |                 |    |
|-----------|-------------------------------------|----------|-----|----------|-----------------|----|
| 応力        |                                     |          | Pm  | PL       | +P <sub>b</sub> | 亡士 |
| 評価点<br>番号 | 応力評価点                               | 応力<br>強さ | 許容値 | 応力<br>強さ | 許容値             | 比  |
| P11       | 所員用エアロック内側<br>円筒胴                   |          | 281 |          | 422             |    |
| P12       | 所員用エアロック内側<br>円筒胴のフランジプレ<br>ートとの結合部 |          | _   |          | 422             |    |
| P13       | 所員用エアロック外側<br>円筒胴                   |          | 281 |          | 422             |    |
| P14       | 所員用エアロック外側<br>円筒胴のフランジプレ<br>ートとの結合部 |          | -   |          | 422             |    |

表 5-15 鋼製耐圧部の応力評価まとめ (単位:MPa)

| 応力  | 広力評価占        | 曲げ | 応力       | せん圏 | 所応力      | 応  | 力比  |
|-----|--------------|----|----------|-----|----------|----|-----|
| 番号  | 応力評価点        | 応力 | 許容<br>応力 | 応力  | 許容<br>応力 | 曲げ | せん断 |
| P16 | フランジプレート(内側) |    | 312      |     | 156      |    |     |
| P18 | ガセットプレート(内側) |    | —        |     | 156      |    |     |

表 5-16 貫通部アンカの応力評価まとめ (単位: MPa)

表 5-17 コンクリート部の応力評価 (単位: N/mm<sup>2</sup>)

| 応力  |         | 圧縮応    | 力度    |     |
|-----|---------|--------|-------|-----|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |
| 番号  |         | プレート   | 許容応力度 |     |
|     |         | (内側)近傍 |       |     |
| P19 | コンクリート部 |        | 27.5  |     |

【7 号炉】下部ドライウェル所員用エアロックの構造健全性評価結果(200℃、2Pd)



| 10 10 | 5 扉及0 隔至 9 加7 距 | 「Щみこの     | (牛  | 4 <u>17</u> . mra) |
|-------|-----------------|-----------|-----|--------------------|
| 応力    |                 | ——次//<br> |     |                    |
| 評価点   | 応力評価点           | I L I     | D   | 応力比                |
| 番号    |                 | 応力強さ      | 許容値 |                    |
| P1    | 内側扉             |           | 422 |                    |
| P2    | 外側扉             |           | 422 |                    |
| P3    | 内側隔壁板           |           | 422 |                    |
| P4    | 内外隔壁垂直部材        |           | 422 |                    |
| P5    | 内外隔壁上部水平部材      |           | 422 |                    |
| P6    | 内外隔壁下部水平部材      |           | 422 |                    |
| Ρ7    | 外側隔壁板           |           | 422 |                    |
| P8    | 外側隔壁垂直部材        |           | 422 |                    |
| Р9    | 外側隔壁上部水平部材      |           | 422 |                    |
| P10   | 外側隔壁下部水平部材      |           | 422 |                    |

表 5-18 扉及び隔壁の応力評価まとめ (単位:MPa)

| • •       |                           |          |     |          |                 |         |
|-----------|---------------------------|----------|-----|----------|-----------------|---------|
|           |                           |          | 一次  | 、応力      |                 |         |
| 応力        |                           |          | Pm  | PL       | +P <sub>b</sub> |         |
| 評価点<br>番号 | 応力評価点                     | 応力<br>強さ | 許容値 | 応力<br>強さ | 許容値             | 心刀<br>比 |
| P11       | 所員用エアロック内側円<br>筒胴         |          | 281 |          | 422             |         |
| P12       | 所員用エアロック内側円<br>筒胴の鏡板との結合部 |          | _   |          | 422             |         |

表 5-19 鋼製耐圧部の応力評価まとめ (単位:MPa)





| 表   | 5-20 鋼製耐圧部の応力評価まとめ |    |    | (単位:MPa) |             |    |
|-----|--------------------|----|----|----------|-------------|----|
|     |                    |    | 一次 | 応力       |             |    |
| 応力  | _                  |    | Pm |          | $P_L + P_b$ |    |
| 評価点 | 応力評価点              |    |    |          |             | 心刀 |
| 番号  |                    | 応力 | 許容 | 応力       | 許容          | 比  |
|     |                    | 強さ | 値  | 強さ       | 値           |    |
|     |                    |    |    |          |             |    |
| P1  | 鏡板                 | _  | —  |          | 422         |    |
| P2  | 鏡板のスリーブとの結合部       | _  | —  |          | 422         |    |
| P3  | スリーブのフランジとの結合部     | _  | _  |          | 422         |    |

| 1 | 0 21      | 其四时/、                | 2 みの応力計画よどの |          |      | (単位 . Mra) |    |     |
|---|-----------|----------------------|-------------|----------|------|------------|----|-----|
|   |           |                      |             | 一次       | 一次応力 |            |    |     |
|   | 応力<br>評価点 | 応力                   | 曲げ          | 応力       | せん   | 所応力        | 応  | 力比  |
|   | 番号        | 評価点                  | 応力          | 許容<br>応力 | 応力   | 許容<br>応力   | 曲げ | せん断 |
|   | Ρ5        | フランジ<br>プレート<br>(内側) |             | 439      |      | 219        |    |     |
|   | P7        | ガセット<br>プレート<br>(内側) |             | _        |      | 156        |    |     |

表 5-21 貫通部アンカの応力評価まとめ (単位: MPa)

| 表 5-22 | コンクリー | ト部の応力評価まとめ | (単位:N/mm <sup>2</sup> ) |
|--------|-------|------------|-------------------------|
|--------|-------|------------|-------------------------|

| 応力  |         | 圧縮応    | 圧縮応力度 |     |  |
|-----|---------|--------|-------|-----|--|
| 評価点 | 応力評価点   | フランジ   |       | 応力比 |  |
| 番号  |         | プレート   | 許容応力度 |     |  |
|     |         | (内側)近傍 |       |     |  |
| P8  | コンクリート部 |        | 27.5  |     |  |

(2) ガスケットの健全性

①扉のシール材(改良EPDM)

所員用エアロックの扉板は、内圧を受けた場合に扉板が支持部に押付けられる構造であり、圧力により扉板が開くことはない。しかし、内圧が負荷される面積が大きいことから、てこの原理でガスケット部の微小な開口が予想されるため、圧力による開口量を理論式に基づき評価し、この開口が生じた場合でも、ガスケット部のシール機能が維持されることを確認する。6号炉と7号炉でエアロック扉構造が大きく異なるので、本件については6号炉と7号炉を別けて評価する。

①-1 6号炉のエアロック扉開口量評価

圧力による扉板の変形を図5-9に示すはりでモデル化する。このとき、ガスケット 部の変位量δは、次式で求められる。

$$\delta = \frac{w \cdot L1}{24EI} \left( 3L1^3 + 6L1^3 \times L2 - L2^3 \right) = -0.25(mm)$$

ここで、評価に使用した各数値を表5-23 に示す。







図5-9 所員用エアロック 開口量評価モデル(6号炉)

| 記号 | 内容                 | 値          |
|----|--------------------|------------|
| W  | 扉に加わる荷重<br>(=2Pd×幅 |            |
| L1 | 長さ                 |            |
| L2 | 長さ                 |            |
| Е  | 縦弾性係数(200℃)        | 191000 MPa |
| Ι  | 断面二次モーメント          |            |
| δ  | 変位量                | -0.25 mm   |

表5-23 所員用エアロックのシール機能維持(6号炉)

初期押込み量は であり、ガスケット部の変位量δは となる。これは、 格納容器限界温度 200℃が 7 日間継続した際の改良EPDMの圧縮永久歪み試験結果 ()から算出されるシール材追従量 に十分余裕をもった値であることから、 有効性確認評価における限界温度、圧力としている 200℃、2Pd 条件下においてもシー ル機能は維持される。

①-2 7号炉のエアロック扉開口量評価

圧力による扉板の変形を図5-10に示すはりでモデル化する。このとき、ガスケット部の変位量δは、次式で求められる。

$$\delta = \frac{\mathbf{w} \cdot \mathbf{L1}}{24\mathrm{EI}} \left( 3\mathrm{L1}^{3} + 6\mathrm{L1}^{2} \times \mathrm{L2} - \mathrm{L2}^{3} \right) = -1.12 \,(\mathrm{mm})$$

ここで、評価に使用した各数値を表5-24 に示す。





図5-10 所員用エアロック 開口量評価モデル (7号炉)

| 記号 | 内容                 | 値          |
|----|--------------------|------------|
| W  | 扉に加わる荷重<br>(=2Pd×幅 |            |
| L1 | 長さ                 |            |
| L2 | 長さ                 |            |
| Е  | 縦弾性係数(200℃)        | 191000 MPa |
| Ι  | 断面二次モーメント          |            |
| δ  | 変位量                | -1.12 mm   |

表5-24 所員用エアロックのシール機能維持(7号炉)

初期押込み量は であり、ガスケット部の変位量δは となる。これは、 格納容器限界温度 200℃が 7 日間継続した際の改良EPDMの圧縮永久歪み試験結果 ()から算出されるシール材追従量 に十分余裕をもった値であることから、 有効性確認評価における限界温度、圧力としている 200℃、2Pd 条件下においてもシー ル機能は維持される。

②扉以外のシール材

エアロックには、扉のガスケット以外に格納容器閉じ込め機能を確保するための 隔壁貫通部にシール材が表5-1~5-2の通り使用されている。

ハンドル軸貫通部Oリングに使われているシール材(改良EPDM)については、 事故環境を模擬した雰囲気に曝した後の圧縮歪み試験結果が表 5-25 の通りであり、 重大事故環境下における健全性を確認した。

| N - | 北中的四中  | おった下 | 泪座    | 圧縮永久ひずみ試験 |  |  |  |
|-----|--------|------|-------|-----------|--|--|--|
| NO  |        | 24h  | 72h   | 168h      |  |  |  |
| 1   | 800kGy | 乾熱   | 200°C |           |  |  |  |
| 2   | 800kGy | 乾熱   | 250°C |           |  |  |  |
| 3   | 800kGy | 蒸気   | 200°C |           |  |  |  |
| 4   | 800kGy | 蒸気   | 250°C |           |  |  |  |

表 5-25 改良 EPDM シール材の圧縮永久歪み試験結果

均圧弁に使われているシール材(ふっ素樹脂)は、重大事故環境下の放射線による 影響で、シール機能が劣化することが考えられるため、耐環境性に優れたシール材を 適用した均圧弁への改良を行うか、エアロック外扉を貫通する均圧弁接続配管の原子 炉建屋側の開放部に、耐環境性に優れたシール材(改良EPDM)をもつ閉止フラン ジを取付け、従来品の均圧弁と閉止フランジを合わせることで重大事故環境下におけ る健全性を確保する。

<均圧弁シートの材質について>

均圧弁シートについて、耐環境性に優れたシール材に改善する検討を進めており、 PEEK 材(PEEK:ポリエーテルエーテルケトン)を用いた弁シートにすることで実機適 用性を確認することができた。以下に、実機適用を確認した概要を示す。 PEEK 材の一般的な仕様を以下に示す。従来品に使用されている均圧弁のシール材で あるふっ素樹脂に対し、優れた耐放射線性を有している。

| シール材      | PEEK 材                  |  |  |
|-----------|-------------------------|--|--|
| 耐熱使用温度    | $250^\circ\!\mathrm{C}$ |  |  |
| 融点        | $334^\circ\!\mathrm{C}$ |  |  |
| 線量限度 (γ線) | 約 10MGy                 |  |  |

表 5-26 PEEK 材の一般物性

また、均圧弁に相当する弁を使用して、SA 時の格納容器内環境を模擬した以下試験条件 で暴露し、その後、2Pd を超える 0.9MPa で漏えい試験を行い、気密性が確保できること を確認した。よって、本均圧弁は格納容器限界温度・圧力(200℃、2Pd)において健全性 に問題ないことを確認した。

| X 0 1 |             |
|-------|-------------|
| 放射線照射 | 800kGy      |
| 熱劣化   | 200℃ 168 時間 |

表 5-27 均圧弁の耐環境試験条件



図5-11 均圧弁(追加フランジ付)及びハンドル軸貫通部

6. 配管貫通部

6-1 配管貫通部(貫通配管)

6-1.1 評価方針

原子炉格納容器が200℃、2Pdとなった場合に貫通部で生じる変位に対し、貫通配管及 びその接続配管が健全であることを確認する。

貫通配管に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延性破壊が考 えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生じる温度域 でないこと、繰り返し荷重が作用しないこと、有意な圧縮力が配管貫通部に生じないこ とから脆性破壊、疲労破壊、座屈は評価対象外と考えることができる。一方、200℃、2Pd の環境下では原子炉格納容器は変形することから、貫通配管には原子炉格納容器の変位 による曲げ荷重が作用する。よって、貫通配管の機能喪失要因は、過度な曲げ荷重に伴 う延性破壊が想定される。ここで、貫通配管に加えられる曲げ荷重は二次応力に分類さ れることから、自重等の一次応力と併せて、一次+二次応力が制限値を満足することを 確認する。

6-1.2 評価

原子炉格納容器の変位による曲げ荷重に対し、配管に発生する応力が大きい貫通部と して、原子炉格納容器変位が大きく、格納容器貫通配管の配管支持スパンが短い且つ、 配管口径が大きい箇所を代表として選定する。その結果、6号炉、7号炉ともに不活性ガ ス系ラインの配管貫通部(X-81)を代表配管として選定する。

6-1.2.1 解析条件

解析条件を表 6-1-1 及び表 6-1-2 に示す。また、荷重条件となる原子炉格納容器の変 位を表 6-1-3 に示す。

| 名称     | 単位                        | 貫通部配管             | 接続配管              |
|--------|---------------------------|-------------------|-------------------|
| 呼径     | —                         |                   |                   |
| 材質     | —                         |                   |                   |
| 外径     | mm                        |                   |                   |
| 厚さ     | mm                        |                   |                   |
| 縦弾性係数  | $	imes 10^5 \mathrm{MPa}$ | $1.91^{(\pm 1)}$  | $1.91^{(\pm 1)}$  |
| 熱膨張係数  | $	imes 10^{-5}$ mm/mm°C   | $1.209^{(\pm 1)}$ | $1.209^{(\pm 1)}$ |
| 熱計算温度  | °C                        | 200               | 200               |
| 最高使用圧力 | kPa                       | 620               | 620               |

表 6-1-1 6 号炉配管仕様 (X-81)

(注1) 熱計算温度 200℃における値

| 名称     | 単位                        | 貫通部配管             | 接続配管                  |
|--------|---------------------------|-------------------|-----------------------|
| 呼径     | _                         |                   |                       |
| 材質     | —                         |                   |                       |
| 外径     | mm                        |                   |                       |
| 厚さ     | mm                        |                   |                       |
| 縦弾性係数  | $	imes 10^5 \mathrm{MPa}$ | $1.91^{(\pm 1)}$  | 1.91 <sup>(注 1)</sup> |
| 熱膨張係数  | $	imes 10^{-5}$ mm/mm°C   | $1.209^{(\pm 1)}$ | 1.209 (注 1)           |
| 熱計算温度  | °C                        | 200               | 200                   |
| 最高使用圧力 | kPa                       | 620               | 620                   |

表 6-1-2 7 号炉配管仕様 (X-81)

(注 1) 熱計算温度 200℃における値

# 表 6-1-3 荷重条件

| 貫通部   | 泪庄(℃) | 柏崎刈羽原子力発電所6号炉及び7号炉の貫通部変位(mm) |      |      |  |  |
|-------|-------|------------------------------|------|------|--|--|
| 番号    | 価度(し) | X 方向                         | Y 方向 | Z 方向 |  |  |
| X-81  | 200   |                              |      |      |  |  |
| X-241 | 200   |                              |      |      |  |  |

6-1.2.2 評価方法

6-1.2.2.1 PPC-3530の規定に基づく評価

### (1) 強度計算に使用する記号の定義

管の応力計算に用いる記号について以下に説明する。

| 表 | 6 - 1 - 4 | 確度計算に使用する<br> | い記号の定義 |
|---|-----------|---------------|--------|
| 1 |           |               |        |

| $\searrow$ | 記号                          | 単位              | 説明                              |
|------------|-----------------------------|-----------------|---------------------------------|
|            | $D_0$                       | mm              | 管の外径                            |
|            | М                           | Namm            | 管の機械的荷重(自重その他の長期的荷重に限           |
|            | Ma                          |                 | る)により生じるモーメント                   |
|            | М                           | N               | 管の熱による支持点の変位及び熱膨張により            |
|            | Mc                          | IN • mm         | 生じるモーメント                        |
|            | Р                           | MPa             | 最高使用圧力                          |
| 応          | Sa                          | MPa             | 許容応力                            |
| 力計         |                             | MD -            | 室温における JSME S NC1 付録材料図表 Part 5 |
| 算に         | Sc                          | мга             | 表5に規定する材料の許容引張応力                |
| 使。         |                             | MDo             | 使用温度における JSME S NC1 付録材料図表      |
| 用する        | $\mathfrak{S}_{\mathrm{h}}$ | MFa             | Part 5 表5に規定する材料の許容引張応力         |
| るも         | $S_n$                       | MPa             | 一次応力と二次応力を加えて求めた応力              |
| の          | Z                           | $\mathrm{mm}^3$ | 管の断面係数                          |
|            | £                           |                 | JSME S NC1 PPC-3530 に規定する許容応力低減 |
|            | I                           | _               | 係数                              |
|            | i1,                         |                 | JSME S NC1 PPC-3530 に規定する応力係数   |
|            | $i_2$                       |                 |                                 |
|            | t                           | mm              | 管の厚さ                            |

(2) 材料の許容応力[JSME S NC1 PPC-3530]

ここでは、JSME S NC1 PPC-3530 に規定される要求事項への適合性を確認する。 なお、応力計算に使用する管の外径及び厚さは、公称値を用いる。

(a) 一次+二次応力(S<sub>n</sub>)[JSME S NC1 PPC-3530 (1)a.]

$$\mathrm{Sn} = \frac{\mathrm{P} \cdot \mathrm{D}_{\mathrm{0}}}{4 \cdot \mathrm{t}} + \frac{0.75 \cdot \mathrm{i}_{\mathrm{1}} \cdot \mathrm{M}_{\mathrm{a}} + \mathrm{i}_{\mathrm{2}} \cdot \mathrm{M}_{\mathrm{c}}}{Z}$$

一次+二次応力の許容応力は、JSME S NC1 PPC-3530 (1)c. に基づき、次式により 算出する。

 $S_a = 1.25 \cdot f \cdot S_c + (1 + 0.25 \cdot f) \cdot S_h$ 

6-1.3 評価結果

評価対象となる解析モデルを図 6-1-5 及び図 6-1-6 に示す。また、評価結果を表 6-1-5 及び表 6-1-6 に示す。

#### 表 6-1-5 PPC-3530の規定に基づく評価結果(6号炉)

(単位:MPa)

| 鳥瞰図    | 節点番号 | 圧力に<br>よる応力 | 外荷重<br>(自重)<br>による応力 | 二次応力 | 合計応力 | 許容値<br>Sa |
|--------|------|-------------|----------------------|------|------|-----------|
| AC-R-1 | 14   |             |                      |      |      | 667       |

注1:評価点は各解析箇所での評価のうち最も厳しい節点である。

注2:許容値は解説 PPC-3530 の考えに基づきf値(温度変化サイクル数を10とする)を定めて算定

## 表 6-1-6 PPC-3530の規定に基づく評価結果(7 号炉)

(単位:MPa)

| 鳥瞰図    | 節点番号 | 圧力に<br>よる応力 | 外荷重<br>(自重)<br>による応力 | 二次応力 | 合計応力 | 許容値<br>Sa |
|--------|------|-------------|----------------------|------|------|-----------|
| AC-R-1 | 91   |             |                      |      |      | 687       |

注1:評価点は各解析箇所での評価のうち最も厳しい節点である。

注2:許容値は解説 PPC-3530 の考えに基づきf値(温度変化サイクル数を10とする)を定めて算定

図 6-1-1 解析モデル図① (6 号炉)

図 6-1-2 解析モデル図②(6号炉)

図 6-1-3 解析モデル図③(6号炉)

図 6-1-4 解析モデル図① (7 号炉)

図 6-1-5 解析モデル図②(7 号炉)

図 6-1-6 解析モデル図③ (7 号炉)

#### 1. はじめに

今回評価を実施した評価部位の代表性を示したものである。

2. 原子炉格納容器貫通部の代表選定の考え方

原子炉格納容器貫通部周りの配管に発生する応力は、原子炉格納容器貫通部の変位と、 配管系の拘束から影響を受ける。まず、変位について原子炉格納容器が 2Pd、200℃時にお ける変位を算定した結果を図 6-1-7 に示す。変位の評価モデルは「0°-180°」と「90° -270°」の2ケースの分割モデルで実施している。図 6-1-8 及び図 6-1-9 で評価モデルの イメージを示す。この評価結果から T.M.S.L 15m 以上の変位が最も高くなっていることを 確認した。したがって 15m 以上にある配管貫通部から、拘束条件が厳しいものを選定する こととした。なお、小口径配管については、二次応力が小さい傾向にあるため、選定にあ たっては対象外とする。拘束条件の厳しさを表す参考の値として、貫通配管の第一拘束点 までの距離(L)と配管口径(D)の比(L/D)を用いる。L/D が最も小さいものが拘束条件が厳 しく、配管応力を受けやすいと考えられることから、15m 以上の配管貫通部からL/D が最も 小さいものを選定した結果、不活性ガス系の配管貫通部(X-81)を選定した(別紙-15 参照)。 なお、X-81 のペネ取付高さは T.M.S.L 19m であり、L/D は約 6.4 である。表 6-1-7 に 6 号 炉の T.M.S.L 15m 以上の配管貫通部を纏める。



図 6-1-7 格納容器(200℃、2Pd 時)の変位

図 6-1-8 格納容器「0°-180°」、「90°-270°」について(7 号炉の例)



表 6-1-7 配管貫通部と口径比(T.M.S.L 15m 以上)

|       | ペタ雨は |     | フ            | 。ロセス管        |     | DCV かくの答1 みぞ | 口汉世        |  |
|-------|------|-----|--------------|--------------|-----|--------------|------------|--|
| ペネ番号  | 高さ   | 系統  | 外径 D<br>[mm] | 肉厚 t<br>[mm] | D/t | ト距離L [mm]    | 口住比<br>L/D |  |
| X-82  |      | FCS |              |              |     |              |            |  |
| X-81  |      | AC  |              |              |     |              |            |  |
| X-10A |      | MS  |              |              |     |              |            |  |
| X-10B |      | MS  |              |              |     |              |            |  |
| X-10C |      | MS  |              |              |     |              |            |  |
| X-10D |      | MS  |              |              |     |              |            |  |

※「PCV からの第1サポート距離」は、原子炉建屋側の配管ラインについて示す

※「-」は、小口径の配管であるため調査対象外であることを意味する

6-2 配管貫通部(スリーブ・端板・閉止板)

6-2.1 評価方針

配管貫通部の設計時に考慮される機能喪失要因は、脆性破壊、疲労破壊及び延性破壊 が考えられる。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生じる温 度域でないこと、繰り返し荷重が作用しないことから、脆性破壊、疲労破壊は評価対象 外と考えることができる。

一方、配管貫通部には、原子炉格納容器内圧が作用するため、一次応力が生じ、配管 貫通部の機能喪失要因は延性破壊が想定される。

このため、柏崎刈羽原子力発電所第6号炉を代表として配管貫通部の鋼製耐圧部の板 厚が、200℃、2Pdの環境下で、設計・建設規格に想定される必要厚さを上回ることを確 認する。また、鋼製耐圧部及びアンカ部について反力に対する一次応力評価を行う。

ここで、評価対象とする配管貫通部は、内圧による発生応力が大きくなる最大径の配 管貫通部とし(X-10)を代表として評価する。閉止板については、内圧による発生 応力が大きくなる最大径の閉止板として(X-90)を代表として評価する。



図 6-2-1 配管貫通部

6-2.2 評価

6-2.2.1 基本板厚計算

6-2.2.1.1 スリーブ

スリーブの内圧に対する計算上必要な厚さは、設計・建設規格 PVE-3610 に基づき、次の式により求める。

評価式

$$t = \frac{PD_o}{2S\eta + 0.8P}$$

ここで、

- P : 格納容器内圧力(MPa)
- D<sub>o</sub> :スリーブの外径(mm)
- S : 許容引張応力(MPa) (=「2/3Su」値を適用)
- η :継手効率
- t<sub>n</sub> :呼び厚さ(mm)
- t :計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 6-2-1 に示す。表 6-2-1 に示すように、スリーブの呼び厚さは必要厚さt (\_\_\_\_)を上回る。

| 項目              | 記号    | 仕様及び値      |
|-----------------|-------|------------|
| 材質              | —     | SGV480     |
| 格納容器内圧力         | Р     | 0.62 (MPa) |
| スリーブの外径         | Do    |            |
| 許容引張応力          | S     | 281 (MPa)  |
| 継手効率            | η     | 1.00       |
| 呼び厚さ            | $t_n$ |            |
| 必要厚さ (PVE-3611) | $t_1$ |            |
| 必要厚さ (PVE-3613) | $t_2$ |            |
| t1、 t2の大きい値     | t     |            |

表 6-2-1 必要厚さの評価結果 (スリーブ)



図 6-2-2 スリーブの形状

6-2.2.1.2 端板

端板の内圧に対する計算上必要な厚さは、設計・建設規格 PVE-3410 に基づき、次の式により求める。

評価式

$$t = d \sqrt{\frac{KP}{S}}$$



## ここで、

P : 格納容器内圧力(MPa)

図 6-2-3 端版の形

K : 平板の取付方法による係数

S : 許容引張応力(MPa)(=「2/3Su」値を適用)

- t<sub>n</sub> :呼び厚さ(mm)
- t :計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 6-2 に示す。表 6-2-2 に示すように、端板の呼び厚 さは必要厚さ t (\_\_\_\_\_) を上回る。

| 項目           | 記号 | 仕様及び値      |
|--------------|----|------------|
| 材質           | —  | SFVC2B     |
| 最高使用圧力       | Р  | 0.62 (MPa) |
| 最小内のり        | d  |            |
| 許容引張応力       | S  | 292 (MPa)  |
| 平板の取付方法による係数 | К  | 0.50       |
| 呼び厚さ         | to |            |
| 必要厚さ         | t  |            |

表 6-2-2 必要厚さの評価結果(端板)

6-2.2.1.3 閉止板

閉止板の内圧に対する計算上必要な厚さは、設計・建設規格 PVE-3410 に基づき、次の式に より求める。

評価式

$$t = d \sqrt{\frac{KP}{S}}$$

- P : 格納容器内圧力(MPa)
- S : 許容引張応力(MPa)(=「2/3Su」値を適用)
- K : 平板の取付方法による係数
- t<sub>n</sub> :呼び厚さ(mm)
- t :計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 6-2-3 に示す。表 6-2-3 に示すように、閉止板の呼 び厚さは必要厚さ t (\_\_\_\_\_) を上回る。

| 項目           | 記号 | 仕様及び値      |
|--------------|----|------------|
| 材質           | _  | SGV480     |
| 最高使用圧力       | Р  | 0.62 (MPa) |
| 最小内のり        | d  |            |
| 許容引張応力       | S  | 281 (MPa)  |
| 平板の取付方法による係数 | К  | 0. 33      |
| 呼び厚さ         | to |            |
| 必要厚さ         | t  |            |

表 6-2-3 必要厚さの評価結果(閉止板)

6-2.2.2 応力評価

(1) 諸言

本計算書は原子炉格納容器配管貫通部の強度計算書である。

(2) 記号の説明

| D           | :直径             | (mm)            |
|-------------|-----------------|-----------------|
| F           | : 垂直力、許容応力の基準値  | (kg, MPa)       |
| $F_{\rm c}$ | : コンクリートの設計基準強度 | (MPa)           |
| $f_{\rm b}$ | :許容曲げ応力度        | (MPa)           |
| $f_{\rm c}$ | :許容圧縮応力度        | (MPa)           |
| $f_{\rm s}$ | :許容せん断応力度       | (MPa)           |
| 1           | :長さ             | (mm)            |
| М           | :モーメント          | $(kg \cdot mm)$ |
| n           | : ガセットプレートの枚数   | (—)             |
| $P_{\rm b}$ | : 一次曲げ応力        | (MPa)           |
| $P_{L}$     | :一次局部膜応力        | (MPa)           |
| $P_{m}$     | :一次一般膜応力        | (MPa)           |
| t           | :厚さ             | (mm)            |

(3) 形状及び主要寸法

原子炉格納容器配管貫通部の形状及び主要寸法を図 6-2-4 及び表 6-2-4~6-2-5 に示す。



図 6-2-4 原子炉格納容器配管貫通部の形状及び主要寸法(X-10)

表 6-2-4 配管貫通部 (スリーブ・端板)の仕様(X-10)

|        | スリー   | 端板    |         |        |       |
|--------|-------|-------|---------|--------|-------|
| 材質     | 外径    | 厚さ    | 距離      | 材質     | 厚さ    |
|        | $D_1$ | $t_1$ | $1_{1}$ |        | $t_2$ |
|        | (mm)  | (mm)  | (mm)    |        | (mm)  |
| SGV480 |       |       |         | SFVC2B |       |

表 6-2-5 配管貫通部 (フランジプレート・ガセットプレート) (X-10)

| フラ     | ンジプレー  | $ \vdash $ | オ      | ブセットフ   | *レート  |     |
|--------|--------|------------|--------|---------|-------|-----|
| 材      | 質      | 厚さ         | 材質     | サイズ     | 厚さ    | 枚数* |
| 内側     | 外側     | $t_3$      |        | $1_{2}$ | $t_4$ | n   |
|        |        | (mm)       |        | (mm)    | (mm)  |     |
| SGV480 | SGV480 |            | SGV480 |         |       |     |

注記 \*: ガセットプレートの枚数は、原子炉格納容器壁の内側又は、外側のみの枚数を示す。

- (4) 評価条件
- (4).1 評価荷重
- (4).1.1 格納容器内圧力及び温度
- 内圧 0.62 MPa
- 温度 200 ℃ (ドライウェル、サプレッション・チェンバ共)

(4).1.2 配管荷重

貫通部に作用する配管荷重の作用方向を図 6-5 に示し、各荷重の設定値を表 6-6 に示す。



図 6-2-5 貫通部の荷重作用方向

| 表 | 6-2-     | 6 | 貫通部の調 | 设計荷重 |
|---|----------|---|-------|------|
|   | <b>u</b> | ~ |       |      |

| 配管荷重 |                            |             |                                                 |                |
|------|----------------------------|-------------|-------------------------------------------------|----------------|
| 成分   | 垂直力                        |             | モーメント                                           |                |
|      | $(\times 10^3 \text{ kg})$ |             | $(	imes 10^6 ~ { m kg} ~ { m \cdot} ~ { m mm})$ | )              |
|      | F <sub>x</sub>             | $F_{\rm v}$ | M <sub>B</sub>                                  | M <sub>X</sub> |
| 一次荷重 |                            |             |                                                 |                |

(4).2 材料及び許容応力
(4).2.1 使用材料
スリーブ SGV480
端板 SFVC2B
フランジプレート(外側) SGV480
フランジプレート(内側) SGV480
ガセットプレート SGV480
コンクリート部 コンクリート(Fc = 330 kg/cm<sup>2</sup> = 32.36 MPa)

(4).2.2 荷重の組合せ及び許容応力

貫通部に対する荷重の組合せは「原子炉格納容器内圧力+配管荷重」とし、原子炉格納容器 200℃、2Pd における許容応力を表 6-2-7~表 6-2-10 に示す。

| 表 6-2-7 | スリーブの許容応力 | (単位: |
|---------|-----------|------|
|         |           |      |

MPa)

| 材料             | 許容応力強さ(一次応力) |             |
|----------------|--------------|-------------|
|                | Pm           | $P_L + P_b$ |
| SGV480 (200°C) |              |             |

表 6-2-8 端板の許容応力 (単位: MPa)

| 材料             | 許容応力強さ(一次応力) |
|----------------|--------------|
|                | $P_L + P_b$  |
| SFVC2B (200°C) |              |

表 6-2-9 フランジプレート及びガセットプレートの許容応力度 (単位: MPa)

| 材料             | F | 一次応力度             |        |
|----------------|---|-------------------|--------|
|                |   | 曲げ f <sub>b</sub> | せん断 fs |
| SGV480 (200°C) |   |                   |        |

表 6-2-10 コンクリート部の許容応力度 (単位: MPa)

| 材料     | 設計基準強度         | 許容圧縮応力度 |
|--------|----------------|---------|
|        | F <sub>c</sub> | $f_c$   |
| コンクリート |                | 27.5    |

(5) 応力計算

(5).1 応力評価点

原子炉格納容器配管貫通部の形状及び応力レベルを考慮して、表 6-2-11 及び図 6-2-6 に示 す応力評価点を設定する。

| 応力評価点番号 | 応力評価点              |
|---------|--------------------|
| P1      | スリーブ               |
| P2      | スリーブのフランジプレートとの結合部 |
| Р3      | 端板                 |
| P4      | フランジプレート (外側)      |
| Р5      | フランジプレート (内側)      |
| Р6      | ガセットプレート           |
| P7      | コンクリート部            |

表 6-11 応力評価点



図 6-2-6 原子炉格納容器配管貫通部の応力評価点

(6) 応力評価

各応力評価点の応力評価表を以下に示す。尚、本表の応力強さ及び応力に記載の数値は、 既工事認可申請書の各荷重に対する発生応力(MKS単位)を比例倍して適切に組合せた 後にSI単位化したものである。

表 6-2-12 スリーブの応力評価のまとめ(応力評価点 P1)

(単位:MPa)

| 一次応力 |     |             |     |  |
|------|-----|-------------|-----|--|
| Pm   |     | $P_L + P_b$ |     |  |
| 応力強さ | 許容値 | 応力強さ        | 許容値 |  |
|      | 281 |             | 422 |  |

表 6-2-13 スリーブのフランジプレートとの結合部の応力評価のまとめ(応力評価点 P2) (単位:MPa)

| 一次応力           |     |             |     |  |
|----------------|-----|-------------|-----|--|
| P <sub>m</sub> |     | $P_L + P_b$ |     |  |
| 応力強さ           | 許容値 | 応力強さ        | 許容値 |  |
|                |     |             | 422 |  |

表 6-2-14 端板の応力評価のまとめ(応力評価点 P3)

(単位:MPa)

| 一次応力           |   |             |     |  |
|----------------|---|-------------|-----|--|
| P <sub>m</sub> |   | $P_L + P_b$ |     |  |
| 応力強さ 許容値       |   | 応力強さ        | 許容値 |  |
| _              | _ |             | 438 |  |

表 6-2-15 フランジプレート(外側)の応力評価のまとめ(応力評価点 P4) (単位:MPa)

-

| 一次応力    |     |       |      |  |
|---------|-----|-------|------|--|
| 曲げ応力    |     | せん断応力 |      |  |
| 応力 許容応力 |     | 応力    | 許容応力 |  |
|         | 312 |       | 156  |  |

表 6-2-16 フランジプレート(内側)の応力評価のまとめ(応力評価点 P5)

(単位:MPa)

| 一次応力 |      |       |      |  |
|------|------|-------|------|--|
| 曲げ応力 |      | せん断応力 |      |  |
| 応力   | 許容応力 | 応力    | 許容応力 |  |
|      | 312  |       | 156  |  |

表 6-2-17 ガセットプレートの応力評価のまとめ(応力評価点 P6)

(単位:MPa)

| 一次応力 |      |       |      |  |
|------|------|-------|------|--|
| 曲げ応力 |      | せん断応力 |      |  |
| 応力   | 許容応力 | 応力    | 許容応力 |  |
|      | 312  |       | 156  |  |

表 6-2-18 コンクリート部の応力評価のまとめ(応力評価点 P7)

(単位:MPa)

| 圧縮応力度   |         |         |       |  |
|---------|---------|---------|-------|--|
| 内側フランジプ | 外側フランジプ | ガセットプレー | 許容応力度 |  |
| レート近傍   | レート近傍   | ト近傍     |       |  |
|         |         |         | 27.5  |  |

(7) 結論

原子炉格納容器限界温度・圧力(200℃・2Pd)において原子炉格納容器配管貫通部に生じる 応力は、すべて許容応力以下であり、健全性が確保されることを確認した。

6-2.3 評価結果

配管貫通部の板厚は、スリーブの計算上必要な厚さ以上である。また、配管貫通部に生 じる応力は許容値を満足しており、200℃、2Pd の環境下での放射性物質の閉じ込め機能を 期待できる。 6-3 配管貫通部(閉止フランジ)

6-3.1 フランジ部の構造

配管貫通部フランジ部は、原子炉格納容器の貫通部に溶接固定されたフランジと閉止フ ランジ(蓋)をボルトで固定しており、フランジと閉止フランジ間には、これまではシリ コンゴム製のガスケットを挟み込みシールしていた。今後は、格納容器閉じ込め機能強化 のために、事故時耐性に優れた改良EPDM製シール材に変更する。



図 6-3-1 閉止フランジ

6-3.2 評価部位

200℃、2Pd の環境下における、フランジ部の放射性物質の閉じ込め機能喪失の要因は、 高温で内圧を受ける過渡な塑性変形に伴う耐圧部材の破損、フランジ部の開口の進展によ る締付ボルトの破損、シール部のフランジ開口量増加による漏えいが想定される。フラン ジの延性破壊、締付ボルトの破損については設計・建設規格に基づきフランジを選定して いるため評価上支配的ではないと考え、最も厳しい部位であるシール部について評価する。 なお、評価は原子炉格納容器貫通部フランジ部で最大口径の ISI 用ハッチ(X-3)を代表とす る。なお、フランジ部のシール材は、プラントの定期検査時に開放される場合には取り替 えを実施しており、通常運転中における劣化は極めて軽微であることから、事故条件下で の評価を実施する。
6-3.3 評価

ISI用ハッチ(X-3)のシール部分の開口量を図6-3-2に示すようにモデル化して評価する。 なお、評価を簡略化するため、圧力qはボルト部まで加わるものとする。また、保守的に、 はりの最大変位量をガスケット部の変位量とみなす。



図 6-3-2 閉止フランジの評価モデル

6-3.4 評価結果

評価結果を表 6-3-1 に示す。閉止フランジは 200℃、2Pd において耐圧部材及びシール材 の機能は維持され、放射性物質の閉じ込め機能を確保できる。6 号炉、7 号炉ともに初期押 し込み量 に対してシール部の変位量は 0.026mm である。これは、表 6-3-2 で示す格 納容器限界温度 200°が7日間継続した際の改良EPDMの圧縮永久歪み試験結果()か ら算出されるシール材追従量 に十分余裕があることから、有効性評価における 限界温度、圧力としている 200°、2Pd 条件下においてもシール機能は維持される。

| 記号      | 内容                                  | 6 号炉                              | 7 号炉                              |
|---------|-------------------------------------|-----------------------------------|-----------------------------------|
| а       | ボルトピッチ円半径                           |                                   |                                   |
| b       | 内半径                                 |                                   |                                   |
| D1      | = $E \times t 1^3 / 12 (1 - \nu 2)$ |                                   |                                   |
| D2      | = $E \times t2^3/12(1-\nu 2)$       |                                   |                                   |
| Е       | 縦弾性係数                               | 191000MPa                         | 191000MPa                         |
| Kyb     | b/a から定まる係数                         |                                   |                                   |
| q       | 2Pd                                 | $620 \times 10^{-3} \mathrm{MPa}$ | $620 \times 10^{-3} \mathrm{MPa}$ |
| t1      | 閉止板板厚                               |                                   |                                   |
| t2      | フランジ部板厚                             |                                   |                                   |
| ν       | ポアソン比                               | 0.3                               | 0.3                               |
| δ1      | = $q \times a^4 / (64 \times D1)$   | 0.023mm                           | 0.024mm                           |
| δ2      | = $-Kyb \times q \times a^4/D2$     | 0. 003mm                          | 0.002                             |
| δ 1+δ 2 | 変位量合計                               | 0. 026mm                          | 0.026mm                           |

表 6-3-1 閉止フランジの評価結果(ISI 用ハッチ)

表 6-3-2 改良 EPDM シール材の圧縮永久歪み試験結果

|    | ガフ州山               | 泪库              | 圧縮永久ひずみ試験 |     |      |  |
|----|--------------------|-----------------|-----------|-----|------|--|
| NO | <b>万义分】形</b> 水只只分1 | 御照射 □ ルク性状 温度 □ | 24h       | 72h | 168h |  |
| 1  | 800kGy             | 乾熱              | 200°C     |     |      |  |
| 2  | 800kGy             | 乾熱              | 250°C     |     |      |  |
| 3  | 800kGy             | 蒸気              | 200°C     |     |      |  |
| 4  | 800kGy             | 蒸気              | 250°C     |     |      |  |

配管貫通部の評価について、「6-1 貫通配管」及び「6-2 配管貫通部(スリーブ・端 板・閉止板・閉止フランジ)」の原子炉格納容器限界温度・圧力(200℃、2Pd)におけ る健全性評価結果を下表にまとめる。

| No        | 評価項目    | 評価方法                    | 評価                 | 結果         |  |  |
|-----------|---------|-------------------------|--------------------|------------|--|--|
|           |         |                         | 不活性ガス処理系の X-81 を代  |            |  |  |
|           | 書话副篇    | 亡力亚伍                    | 表とし、200℃・2Pd 時の原子炉 | $\bigcirc$ |  |  |
| Û         | 貝迪印官    | ルロノノロナイ山                | 格納容器変位を踏まえた貫通      | 0          |  |  |
|           |         |                         | 配管の応力評価を実施         |            |  |  |
| 0         | フリーブ    |                         | 内圧の影響を最も受ける大口      | 0          |  |  |
| 2         |         |                         | 径の配管貫通部(X-10)を代表   |            |  |  |
| 3         | 端板      | 基本板厚計算                  | に基本板厚計算を実施し、       | 0          |  |  |
|           |         |                         | 200℃・2Pd 時の必要最小板厚を |            |  |  |
| 4         | 閉止板     |                         | 満足することを確認          | 0          |  |  |
| Ē         | 明山フランパ  | フランジ胆口鼻                 | ISI ハッチを代表とし、シール   |            |  |  |
| 0         | 闭正ノノンン  | 月止ノランシ フランシ開口重<br>材の開口1 |                    | 0          |  |  |
|           |         |                         | 内圧の影響を最も受ける大口      |            |  |  |
|           |         |                         | 径の配管貫通部(X-10)を代表   |            |  |  |
| ⑤ 配管貫通部全般 | 配管貫通部全般 | 応力評価                    | に応力評価を実施し、200℃・    | 0          |  |  |
|           |         |                         | 2Pd で発生する各部の応力が許   |            |  |  |
|           |         |                         | 容応力以下であることを確認      |            |  |  |
|           |         |                         |                    |            |  |  |

表 6-3-3 配管貫通部の評価結果まとめ

7. 電気配線貫通部

7.1 評価方針

①電気配線貫通部

電気配線貫通部では、電気配線貫通部のうちスリーブ、アダプタ、ヘッダ設計時 に考慮される機能喪失要因は、脆性破壊、疲労破壊、座屈及び延性破壊が考えられ る。今回の評価条件である 200℃、2Pd を考慮した場合、脆性破壊が生じる温度域で ないこと、繰り返し荷重が作用しないこと、過渡の圧縮力がスリーブ・アダプタ・ ヘッダに生じないことから、脆性破壊、疲労破壊及び座屈は評価対象外と考えるこ とができる。従って、スリーブ、アダプタ、ヘッダの機能喪失要因は、高温状態で 内圧を受け、過渡な塑性変形に伴う延性破壊が想定される。スリーブ、アダプタ、 ヘッダが 200℃、2Pd の環境下で外圧・内圧作用による応力が生じた際、最小厚さが JSME の設計建設規格 (PVE-3230) に規定される計算上必要な厚さを上回ることを確 認する。

②シール材

電気配線貫通部のシール材については、既往の電共研において、実機電気配線貫 通部と同等の試験体を用い、原子炉格納容器内側の電気配線貫通部端子箱部分の環 境条件を 200℃、約 2.6Pd(約 0.8MPa)とした条件下におけるモジュール部シール材 の耐漏えい性が確認されている。

また、NUPEC 重要構造物安全評価(原子炉格納容器信頼性実証事業)(平成2年度 ~平成14年度)において、実機電気配線貫通部モジュールと同等のモジュール試験 体を用い、シール材からの漏えい限界圧力・温度の把握を行っている。この評価で は、最大3.2Pd(1.0MPa)、約260℃までの耐漏えい性が確認されている。

これらの既往共研に加え、過去に実施したモジュール型電気配線貫通部の試験結 果、並びに、200℃、2Pd 時おける電気配線貫通部シール部の温度評価結果を用い、 シール部の健全性を確認する。

7-1

③電気配線貫通部の基本仕様について

モジュール型電気配線貫通部には低電圧用と高電圧用の二種類があり、電気配線 貫通部本体のヘッダに低電圧用または高電圧用のモジュールが設置されている。概 略仕様を表 7-1、概略構造を図 7-1~7-4 に示す。

6号炉については、低電圧用の電気配線貫通部は、低電圧用モジュール内に封入さ れたエポキシ樹脂、及びモジュール固定部のメタルOリングにより気密性を維持す る構造である。高電圧用の電気配線貫通部は、高電圧用モジュール内に封入された EP ゴム及びモジュール固定部のメタルOリングにより気密性を維持する構造である。

7 号炉については、低電圧用の電気配線貫通部は、低電圧用モジュール内に封入さ れたエポキシ樹脂、及びモジュール固定部のOリング(EP ゴム)により気密性を維 持する構造である。高電圧用の電気配線貫通部は、高電圧用モジュール内に封入さ れた EP ゴムにより気密性を維持する構造である。高電圧用モジュールはヘッダに溶 接されている。

| 種類   | 型式     | 構成               | 外径<br>(mm) | 呼び<br>厚さ<br>(mm) | 材料        | 貫通部<br>番号           |
|------|--------|------------------|------------|------------------|-----------|---------------------|
|      |        | スリーブ             |            |                  | STS410    |                     |
|      |        | アダプタ             |            |                  | STS410    | $V_{-101} \sim 105$ |
| 低電圧用 | モジュール型 | ヘッダ              |            |                  | SUS304    | X-101, 0100,        |
|      |        | モジュール            |            |                  | SUS304TP、 | A 300               |
|      |        | (ボディ、プラグ)        |            |                  | SUS304    |                     |
|      |        | スリーブ             |            |                  | STS410    |                     |
|      |        | アダプタ             |            |                  | STS410    |                     |
| 高電圧用 | モジュール型 | ヘッダ              |            |                  | SUS304    | X-100               |
|      |        | モジュール<br>(ハウジング) |            |                  | SUS304TP  |                     |

表 7-1 電気配線貫通部の仕様



図 7-1 電気配線貫通部(低電圧用:6号炉)



図 7-2 低電圧用モジュール詳細 (6 号炉)



図 7-3 電気配線貫通部(低電圧用:7号炉)



図 7-4 低電圧用モジュール詳細(7号炉)



図 7-5 電気配線貫通部 (高電圧用:6号炉)



図 7-6 高電圧用モジュール詳細 (6 号炉)



図 7-7 電気配線貫通部 (高電圧用:7号炉)



図 7-8 高電圧用モジュール詳細(7号炉)

7.2 評価

7.2.1 電気配線貫通部の板厚計算

電気配線貫通部について、JSME の設計・建設規格 (PVE-3230) に基づく評価より、 200℃、2Pd に対するスリーブ・アダプタ・ヘッダの健全性を評価する。評価する電 気配線貫通部は表 7-1 の通りとし、代表プラントとして 7 号炉を選定して板厚計算 を実施する。

- 7.2.1.1 電気配線貫通部(貫通部番号: X-100)
  - (1) スリーブ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)



$$t = \frac{PDo}{2S\eta + 0.8P}$$

ここで,

P:最高使用圧力(MPa)Do:スリーブの外径(mm)

- S :許容引張応力 (MPa)
  - (=「2/3Su」値を適用)
- η :継手効率
- tso : 呼び厚さ (mm)
- t : 計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 7-2 に示す。表 7-2 に示すように、スリ ーブの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

Do

| 項目       | 記号     | 仕様及び値        |
|----------|--------|--------------|
| 材質       |        | STS410       |
| 最高使用圧力   | Р      | 0.62MPa(2Pd) |
| スリープの外径  | Do     |              |
| 許容引張応力   | S      | 269MPa       |
| 継手効率     | $\eta$ | 1.00         |
| 呼び厚さ     | tso    |              |
| 計算上必要な厚さ | t      |              |

表 7-2 必要厚さの評価結果(電気配線貫通部のスリーブ)

<sup>(</sup>注)計算上必要な厚さは、上記「評価式」による算出値、または、 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい 方の値以上とする。

(2) アダプタ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)

評価式

$$t = \frac{PDo}{2S\eta + 0.8P}$$

ここで,

- P : 最高使用圧力 (MPa)
- Do : アダプタの外径 (mm)
- S : 許容引張応力 (MPa)
  - (=「2/3Su」値を適用)
- η : 継手効率
- tso :呼び厚さ (mm)
- t :計算上必要な厚さ (mm)

上式を用いた必要厚さの算出結果を表 7-3 に示す。表 7-3 に示すように、アダ プタの呼び厚さは計算上の必要厚さ t(\_\_\_\_)を上回る。

#### 表 7-3 必要厚さの評価結果(電気配線貫通部のアダプタ)

| 項目       | 記号   | 仕様及び値        |
|----------|------|--------------|
| 材質       | 1.27 | STS410       |
| 最高使用圧力   | Р    | 0.62MPa(2Pd) |
| アダプタの外径  | Do   |              |
| 許容引張応力   | S    | 269MPa       |
| 継手効率     | η    | 1.00         |
| 呼び厚さ     | tso  |              |
| 計算上必要な厚さ | t    |              |

(注)計算上必要な厚さは、上記「評価式」による算出値、または、 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい 方の値以上とする。 (3) ヘッダ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3410)

評価式

$$t = d\sqrt{\frac{KP}{S}}$$

ここで、
 P :最高使用圧力(MPa)
 d : 平板の径又は最小内のり(mm)
 S :許容引張応力(MPa)

 (=「2/3Su」値を適用)
 K : 平板の取付方法による係数
 (設計・建設規格 表 PVE-3410-1の取付け方法(g))

 tso : 呼び厚さ(mm)
 t :計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 7-4 に示す。表 7-4 に示すように、ヘッ ダの呼び厚さは計算上の必要厚さ t ( )を上回る。

表 7-4 必要厚さの評価結果(電気配線貫通部のヘッダ)

| 項目           | 記号                | 仕様及び値        |
|--------------|-------------------|--------------|
| 材質           | 3 <del>-1</del> 8 | SUS304       |
| 最高使用圧力       | Р                 | 0.62MPa(2Pd) |
| 平板の径又は最小内のり  | d                 |              |
| 許容引張応力       | S                 | 268MPa       |
| 平板の取付方法による係数 | K                 | 0.33         |
| 呼び厚さ         | tso               |              |
| 計算上必要な厚さ     | t                 |              |

7.2.1.2 電気配線貫通部(貫通部番号:X-101、X-102、X-103、X-104、X-105)

(1) スリーブ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)

評価式

$$t = \frac{PDo}{2S\eta + 0.8P}$$

ここで,

- P :最高使用圧力 (MPa)
- Do : スリーブの外径 (mm)
- S :許容引張応力 (MPa) (=「2/3Su」値を適用)
- η : 継手効率
- tso : 呼び厚さ (mm)
- t : 計算上必要な厚さ (mm)



上式を用いた必要厚さの算出結果を表 7-5 に示す。表 7-5 に示すように、スリ ーブの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

表 7-5 必要厚さの評価結果(電気配線貫通部のスリーブ)

| 項目       | 記号  | 仕様及び値        |
|----------|-----|--------------|
| 材質       |     | STS410       |
| 最高使用圧力   | Р   | 0.62MPa(2Pd) |
| スリーブの外径  | Do  |              |
| 許容引張応力   | S   | 269MPa       |
| 継手効率     | η   | 1.00         |
| 呼び厚さ     | tso |              |
| 計算上必要な厚さ | t   |              |

(注)計算上必要な厚さは、上記「評価式」による算出値、または、 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい 方の値以上とする。 (2) アダプタ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)

評価式

$$t = \frac{PDo}{2S\eta + 0.8P}$$

ここで,

- P :最高使用圧力 (MPa)
- Do : アダプタの外径 (mm)
- S :許容引張応力 (MPa)
   (=「2/3Su」値を適用)
- η :継手効率
- tso : 呼び厚さ (mm)
- t : 計算上必要な厚さ (mm)

上式を用いた必要厚さの算出結果を表 7-6 に示す。表 7-6 に示すように、アダ プタの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

表 7-6 必要厚さの評価結果(電気配線貫通部のアダプタ)

| 項目       | 記号  | 仕様及び値        |
|----------|-----|--------------|
| 材質       |     | STS410       |
| 最高使用圧力   | Р   | 0.62MPa(2Pd) |
| アダプタの外径  | Do  |              |
| 許容引張応力   | S   | 269MPa       |
| 継手効率     | η   | 1.00         |
| 呼び厚さ     | tso |              |
| 計算上必要な厚さ | t   |              |

(注)計算上必要な厚さは、上記「評価式」による算出値、または、
 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい
 方の値以上とする。

(3) ヘッダ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3410)

評価式

$$t = d \sqrt{\frac{KP}{S}}$$

ここで,

P :最高使用圧力 (MPa)

d : 平板の径又は最小内のり (mm)

S : 許容引張応力 (MPa)

(=「2/3Su」値を適用)

- K : 平板の取付方法による係数
   (設計・建設規格 表 PVE-3410-1の取付け方法(g))
- tso : 呼び厚さ (mm)
- t :計算上必要な厚さ(mm)

上式を用いた必要厚さの算出結果を表 7-7 に示す。表 7-7 に示すように、ヘッ ダの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

項目 記号 仕様及び値 材質 SUS304 ----P 最高使用圧力 0.62MPa(2Pd) d 平板の径又は最小内のり 許容引張応力 S 268MPa 平板の取付方法による係数 0.33 K 呼び厚さ tso 計算上必要な厚さ t

表 7-7 必要厚さの評価結果(電気配線貫通部のヘッダ)

7.2.1.3 電気配線貫通部(貫通部番号:X-300)

(1) スリープ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)

評価式

$$t = \frac{PDo}{2Sn + 0.8P}$$

ここで,

- P : 最高使用圧力 (MPa)
- Do : スリープの外径 (mm)
- S : 許容引張応力 (MPa)

(=「2/3Su」値を適用)

- η :継手効率
- tso :呼び厚さ (mm)
- t :計算上必要な厚さ (mm)



上式を用いた必要厚さの算出結果を表 7-8 に示す。表 7-8 に示すように、スリ ーブの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

## 表 7-8 必要厚さの評価結果(電気配線貫通部のスリーブ)

| 記号   | 仕様及び値                                   |
|------|-----------------------------------------|
| -    | STS410                                  |
| Р    | 0.62MPa(2Pd)                            |
| Do   |                                         |
| S    | 269MPa                                  |
| η    | 1.00                                    |
| tso. |                                         |
| t    |                                         |
|      | 記号<br><br>P<br>Do<br>S<br>り<br>tso<br>t |

(注)計算上必要な厚さは、上記「評価式」による算出値、または、
 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい
 方の値以上とする。

# (2) アダプタ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3611)

評価式

$$t = \frac{PDo}{2S\eta + 0.8P}$$

ここで,

P :最高使用圧力 (MPa)
 Do :アダプタの外径 (mm)
 S :許容引張応力 (MPa)

 (=「2/3Su」値を適用)
 η :継手効率
 tso :呼び厚さ (mm)

t :計算上必要な厚さ (mm)

上式を用いた必要厚さの算出結果を表 7-9 に示す。表 7-9 に示すように、アダ プタの呼び厚さは計算上の必要厚さ t (\_\_\_\_\_)を上回る。

#### 表 7-9 必要厚さの評価結果(電気配線貫通部のアダプタ)

| 項目       | 記号  | 仕様及び値        |
|----------|-----|--------------|
| 材質       | -   | STS410       |
| 最高使用圧力   | Р   | 0.62MPa(2Pd) |
| アダプタの外径  | Do  |              |
| 許容引張応力   | S   | 269MPa       |
| 継手効率     | η   | 1.00         |
| 呼び厚さ     | tso |              |
| 計算上必要な厚さ | t   |              |

(注)計算上必要な厚さは、上記「評価式」による算出値、または、 「設計・建設規格 PVE-3613」の値(t=3.8mm)のいずれか大きい 方の値以上とする。 (3) ヘッダ

①内圧に対する必要厚さの検討(設計・建設規格 PVE-3410)

評価式

$$t = d \sqrt{\frac{KP}{S}}$$

ここで,

- P :最高使用圧力 (MPa)
- d : 平板の径又は最小内のり (mm)
- S :許容引張応力 (MPa)
   (=「2/3Su」値を適用)
- K : 平板の取付方法による係数
   (設計・建設規格 表 PVE-3410-1の取付け方法(g))
- tso : 呼び厚さ (mm)
- t :計算上必要な厚さ (mm)

上式を用いた必要厚さの算出結果を表 7-10 に示す。表 7-10 に示すように、ヘ ッダの呼び厚さは計算上の必要厚さ t ( ) を上回る。

表 7-10 必要厚さの評価結果(電気配線貫通部のヘッダ)

| 項目           | 記号   | 仕様及び値        |
|--------------|------|--------------|
| 材質           | 1.00 | SUS304       |
| 最高使用圧力       | Р    | 0.62MPa(2Pd) |
| 平板の径又は最小内のり  | d    |              |
| 許容引張応力       | S    | 268MPa       |
| 平板の取付方法による係数 | K    | 0.33         |
| 呼び厚さ         | tso  |              |
| 計算上必要な厚さ     | t    |              |

7.2.2 電気配線貫通部シール材の評価

柏崎刈羽原子力発電所6、7号炉に設置されているモジュール型電気配線貫通部は、モ ジュール部のシール材により気密性を維持しており、過去の検証試験にて気密性が確保 されていることを確認している。6号炉及び7号炉について、図7-1~8に示す通り電気 配線貫通部の構造に違いがあるが、低電圧用についてはOリング部にEPゴムが使われて いる7号炉を代表とし、高電圧用については一次シール部が原子炉格納容器内部に近い7 号炉を代表として評価を行うこととする。すなわち、電気配線貫通部のシール材評価に ついては7号炉の型式を代表として評価を行う。

#### ①電共研による研究結果

昭和 62 年度に行われた電共研「格納容器電気ペネトレーションの特性確認試験」で は、電気配線貫通部を対象として、原子炉格納容器内側の電気配線貫通部端子箱部分 の環境条件を 200℃とした場合における電気配線貫通部モジュールの気密性能につい て試験を実施している。本研究における試験結果を表 7-11 に示す。

試験結果から、原子炉格納容器が200℃を模擬した試験においては一次シール部及び 二次シール部温度はシール材の一般特性としての熱分解開始温度(400℃程度)よりも 十分に下回っており、一次シール部及び二次シール部それぞれについて漏えいは無く、 また、圧力についても約2.6Pd(約0.8MPa)時に漏えいが無いことが確認できている。

| 括粘       | 原子炉格納容器<br>内側端子箱部分の環境条件 |                    | 一次シール部    | 二次シール部 | 混さい左毎 |                              |  |
|----------|-------------------------|--------------------|-----------|--------|-------|------------------------------|--|
| 作里为只     | 温度<br>(℃)               | 圧力<br>(MPa)        | 時間<br>(h) | 温度(℃)  | 温度(℃) | 個人で有無                        |  |
| 低電圧モジュール | 200<br>(230)            | $(0.60 \sim 0.81)$ | 62.0      | 137    | 68    | ー次シール部:漏えい無し<br>二次シール部:漏えい無し |  |
| 高電圧モジュール | 200<br>(220)            | (0.61∼<br>0.79)    | 62.0      | 195    | 44    | ー次シール部:漏えい無し<br>二次シール部:漏えい無し |  |

表 7-11 電力共同研究の試験結果

注:()は、記録グラフからの読取り値



図 7-9 試験装置概要「電共研 格納容器電気ペネトレーションの特性確認試験」 (7 号炉高電圧モジュール試験体の例)



- ( )内の温度は 188模擬スリーブの表面温度を示す。
- 図 7-10 低圧用モジュール試験体 温度分布図



図 7-11 高圧用モジュール試験体 温度分布図

②過去の環境試験における評価

過去の電気配線貫通部の環境試験では、電気配線貫通部(低電圧用)及び電気配線 貫通部(高電圧用)を対象として、冷却材喪失事故模擬試験が実施されており健全性 が確認されている。電気配線貫通部(低電圧用)及び電気配線貫通部(高電圧用)の 二次シール部の温度、環境試験温度を図 7-12 に示している。

図 7-10~11 に示すとおり、原子炉格納容器内を 200℃と模擬した試験において、二 次シール部は低電圧用で 68℃、高電圧用で 44℃となっている。図 7-12 は、図 7-10~ 7-11 で示す二次シール部の温度と同等以上であり、試験により 13 日間の健全性が確認 された結果からも、格納容器が 200℃の状況において格納容器閉じ込め機能が確保でき ると考えている。

図 7-12 モジュール型電気配線貫通部の既往環境試験と簡易的な温度評価結果

なお、図 7-12 で示した試験については、経年劣化を踏まえた冷却材喪失事故模擬試験であり、劣化を考慮して表 7-12 に示す試験を実施している。

| No | 試験項目       | 試験方法                               |
|----|------------|------------------------------------|
| 1  | サーマルサイクル試験 | ペネトレーションを冷熱装置内に設置し、60 サイクルのサーマルサイ  |
|    |            | クルを放射線照射試験の前後2回実施。1サイクルは           |
|    |            | を「時間で変化させている。                      |
| 2  | 放射線照射試験    | ペネトレーションが 40 年間の運転期間及び冷却材喪失事故時に受ける |
|    |            | 放射線を考慮し照射線量 800kGy として試験を実施。       |
| 3  | 熱劣化試験      | 加熱促進により、40年間に相当する加速熱劣化として を        |
|    |            | 加える。                               |

表 7-12 劣化を考慮した試験方法

また、重大事故環境下における耐放射線性についても健全性を確認するために、電気配線貫通部突き出しの一番短い(線量影響の大きい)X-101B 電気配線貫通部を選定して、電気配線貫通部シール部における事象発生から7 日間積算の線量解析を実施した。その結果、7日間の原子炉格納容器内積算線量が1000kGy程度と仮定した場合でも、電気配線貫通部シール部はコンクリート等による遮蔽効果により積算線量は約 1.8kGyとなる。

過去に実施した健全性が確認されている電気配線貫通部の積算照射量は800kGyであることから、重大事故環境下における電気配線貫通部シール部のシール健全性が確保されていることが確認できている。

③NUPEC による評価結果

平成2年度から平成14年度に行われたNUPEC 重要構造物安全評価(原子炉格納 容器信頼性実証事業)では、電気配線貫通部のモジュールを対象として、200℃、2.6Pd (0.8MPa)における電気配線貫通部モジュールの気密性の確認と、漏えいが発生する温度・圧力条件の確認試験を行っている。本評価における結果を表 7-13 に示す。

|          | AM 環境下の |       |     |    | 漏えい発生条件        |         |  |
|----------|---------|-------|-----|----|----------------|---------|--|
| 话拓       | 健全性確認試験 |       |     |    | 確認試験           |         |  |
| 性积       | 温度      | 圧力    | 時間  | 漏洩 | 破損温度           | 圧力      |  |
|          | (°C)    | (MPa) | (h) | 有無 | (°C)           | (MPa)   |  |
| 低電圧モジュール | 200     | 0.8   | 20  | 無し | $266 \sim 303$ | 0.8~1.0 |  |
| 高電圧モジュール | 200     | 0.8   | 20  | 無し | 400*           | 0.8     |  |

表 7-13 NUPEC 研究の試験結果

\*:400℃まで漏えい無し。400℃まで昇温後、室温降下時に微小漏えい

試験結果から、200℃、2.6Pd における漏えいは無く、約 260℃、最大 3.2Pd (1.0MPa) までの耐漏えい性が確認された。



図 7-13 試験装置概要

出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構)

①~③より、原子炉格納容器の重大事故環境下において、限界温度・圧力 200℃、2Pd における電気配線貫通部の健全性は確保可能である。

#### 8. 原子炉格納容器隔離弁

8.1 はじめに

原子炉格納容器の貫通配管には原子炉格納容器隔離弁が設置されており、このうち不 活性ガス系バタフライ弁、移動式炉心内計装(TIP)ボール弁及びパージ弁について、200℃、 2Pd の環境下でゴム系シール材の損傷(劣化)が想定されるため、8.2 項以降に示すとお り健全性を確認する。また、弁の耐圧部については、機能喪失要因として脆性破壊、疲 労破壊、座屈及び変形が考えられるが、200℃、2Pd の環境下では、脆性破壊が生じる温 度域でないこと、繰り返し荷重が作用しないこと、圧縮力が弁本体に生じないことから、 脆性破壊、疲労破壊及び座屈は評価対象外と考えることができる。従って、原子炉格納 容器隔離弁のうち不活性ガス系バタフライ弁、TIP ボール弁及びパージ弁の耐圧部の機能 喪失要因は、高温状態で内圧を受け、過渡な変形(一次応力)が想定されるため、8.2 項 以降に示すとおり健全性を確認する。

これら以外の隔離弁については、以下の理由により 200℃、2Pd の環境下で健全性を有 している。

- ・ 弁の呼び圧力は各配管ラインの設計圧力に応じて適切なものが選定されており(耐圧 性能が最小のものでも 1.03MPa)、耐圧上問題となることはない。
- 弁のグランド部及びボンネット部のシールには、黒鉛製パッキン、ガスケット等の耐熱性に優れたものを使用しており、耐熱性上問題となることはない。
- ・ 弁シート部は金属製である。

- 8.2 不活性ガス系バタフライ弁
  - 8.2.1 評価方針
    - (1)耐圧機能
      - ・弁箱の耐圧機能の評価を行う。
    - (2)隔離機能
      - ・隔離機能(気密性保持)は、弁座にある EP ゴムの耐環境性が支配的である。 これまで EP ゴムを使用していたが、事故時耐性に優れた改良 E P D M 製シー ル材に変更する。従って、改良 E P D M 製シール材を用いた不活性ガス系バ タフライ弁について、原子炉格納容器内が 200℃、2Pd の環境下におけるシー ル部への影響を検討する。



図 8-1 不活性ガス系バタフライ弁

### 8.2.2 評価結果

(1)耐圧機能

当該弁の圧力クラスは 1.03MPa (150LB) であり、200℃・2Pd の環境条件は、 図 8-2 で示すとおり設計建設規格 別表 1-1 に示す弁の許容圧力を下回る。 このため、改良EPDM製シール材を除く耐圧部は強度上問題ない。



図 8-2 不活性ガス系バタフライ弁 1.03MPa(150LB)級の確認結果 (出典:JSME 設計・建設規格 2005 年版/2007 追補版)

(2)隔離機能

以下の理由より、200℃、2Pd の環境条件下において、放射性物質の閉じ込め 機能を有すると考える。

- ・不活性ガス系バタフライ弁の弁座シール材(改良EPDM)が200℃・2Pd 環境に晒されたときの影響を確認するために、圧縮永久歪み試験を実施し た。その結果を表 8-1 に示しており、圧縮永久歪み試験に有意な劣化が認 められないことから、重大事故環境下におけるシール機能は問題ない。
- ・添付 8-2 で示す「格納容器隔離弁の重大事故環境下における耐性確認試験」
   で、実機モデルのバタフライ弁蒸気通気試験を実施しており、200℃、2Pd
   環境でシール性が確保できていることが確認できたため、重大事故環境下
   におけるシール機能は問題ない。

| No  | 北白い山田山      | ガフ州小 | 泊库    | 圧縮永久ひずみ試験 |     |      |  |
|-----|-------------|------|-------|-----------|-----|------|--|
| INO | No 放射線照射 ガン | ルベ性状 | 価皮    | 24h       | 72h | 168h |  |
| 1   | 800kGy      | 乾熱   | 200°C |           |     |      |  |
| 2   | 800kGy      | 乾熱   | 250°C |           |     |      |  |
| 3   | 800kGy      | 蒸気   | 200°C |           |     |      |  |
| 4   | 800kGy      | 蒸気   | 250°C |           |     |      |  |

表 8-1 改良 E P D M 製シール材の 圧縮永久 歪み試験結果

- 8.3 TIP ボール弁及びパージ弁
- 8.3.1 評価方針
  - (1)耐圧機能

・弁箱の耐圧機能の評価を行う。

- (2)隔離機能
  - ・隔離機能(気密性保持)は、弁に用いられているシール材の耐環境性が支配 的であるため、原子炉格納容器内が200℃、2Pdの環境下におけるシール部へ の影響を検討する。



図 8-3 TIP ボール弁



図 8-4 TIP パージ弁

8.3.2 評価結果

(1)耐圧機能

TIP ボール弁及びパージ弁の圧力クラスは 1.03MPa であり、200℃・2Pd の環 境条件は、図 8-5 で示すとおり、設計建設規格 別表 1-1 に示す弁の許容圧 力を下回る。このため、シール材を除く耐圧部は強度上問題ない。



図 8-5 TIP ボール弁・パージ弁 1.03MPa (150LB) 級の確認結果 (出典: JSME 設計・建設規格 2005 年版/2007 追補版)

(2)隔離機能

TIP 系統を図 8-6 に示しているが、TIP ボール弁は通常運転時に全閉状態で あり、隔離機能を維持している。TIP ボール弁が開状態となるのは、通常運転 時の局部出力領域モニタの校正のため TIP 検出器を炉心内に挿入・引抜する 期間である。TIP 検出器を炉心内に挿入している間に格納容器隔離信号が入っ た場合には、TIP 検出器が自動引抜され、TIP ボール弁が自動閉止する。また、 TIP 検出器を炉心内に挿入している間に格納容器隔離信号が入り、且つ TIP ボ ール弁が正常に閉止しない場合、TIP 爆発弁にて閉止を行う運用としている。

TIPボール弁にはフッ素ゴム、フッ素樹脂のシール材が使われている。これ らは重大事故環境下の放射線によりシール機能が劣化することが考えられる ため、トップヘッドフランジ及び機器搬入用ハッチで採用したものと同様に 改良EPDM製シール材に変更する。なお、TIPボール弁の弁座シートについ ては、均圧弁の改良と同様に耐環境性に優れた PEEK 材が適用可能な見通しが 立ったことから、PEEK 材に変更することでも問題ない。

また、TIPパージ弁についてはグランドOリング及び弁ふたシールについて は改良EPDM製シール材を採用する。弁座シートについてはメタルシール とし、耐環境性を強化する(別紙-17参照)。改良EPDM製シール材の事故 時耐性については、表 8-2 で示す通り圧縮永久歪み試験に有意な劣化認めら れないことから、重大事故環境下におけるシール機能は問題ない。

なお、TIPボール弁及びTIPパージ弁については、200℃蒸気が7日間以上 暴露され、且つ、その際の重大事故時における放射線量が照射されたとして もシール機能が健全であることを確認し使用する。また、今後の検討におい て、上記以外のシール材を適用する場合については、同様に 200℃蒸気が7 日間以上暴露され、且つ、その際の重大事故時における放射線量が照射され たとしてもシール機能が健全であることを確認して適用する。



図 8-6 TIP 系統図

| No  | 七年自一公司日辺自一 | ガフ州中 | 泪座         | 圧縮永久ひずみ試験 |     |      |  |
|-----|------------|------|------------|-----------|-----|------|--|
| INO | 加入为了形状界只为了 | ント注入 | ガス性状    温度 | 24h       | 72h | 168h |  |
| 1   | 800kGy     | 乾熱   | 200°C      |           |     |      |  |
| 2   | 800kGy     | 乾熱   | 250°C      |           |     |      |  |
| 3   | 800kGy     | 蒸気   | 200°C      |           |     |      |  |
| 4   | 800kGy     | 蒸気   | 250°C      |           |     |      |  |

表 8-2 改良E P D M 製シール材の圧縮永久歪み試験結果

添付 8-1

#### 原子炉格納容器隔離弁の抽出について

原子炉格納容器隔離弁について、原子炉格納容器限界温度、圧力(200℃、2Pd)の健全 性を確認するため、図 8-7 に従ったフローで弁を抽出した。弁設計圧力が 2Pd 以下のもの は無かったため、200℃で最も影響を受けると考えられるシート部及びシール部に着目して、 ゴム材が使われている弁を抽出し、「不活性ガス系バタフライ弁」と「TIP ボール弁及びパ ージ弁」が抽出された。



図 8-7 原子炉格納容器隔離弁の評価対象弁の抽出フロー

格納容器隔離弁の重大事故環境下における耐性確認試験について

原子炉格納容器隔離弁のうち、バタフライ弁の弁座ゴムシートに対し、重大事故環境に おける耐性向上のため、より耐熱性、耐放射線性に優れたシール材である改良EPDM材 を選定し、耐性確認試験を実施した。試験の概要を以下に示す。

1. 試験内容

試験フロー及び試験内容を表 8-3 に示す。また、図 8-8 に蒸気通気試験装置の概要図、 図 8-9 に常温弁座漏えい試験の概要図を示す。600A バラフライ弁を供試弁とし、弁座シ ール材に改良 E P D M 材を適用して、初期性能確認、劣化処理を行った後、200℃におけ る飽和蒸気環境下(BWRの原子炉格納容器の設計圧力の2倍(2Pd)以上)で168 時間蒸気 通気試験を実施する。さらに常温復帰後、窒素を媒体とした常温弁座漏えい試験を実施 する。重大事故環境における格納容器の閉じ込め機能を確認する観点から、供試弁は閉 弁状態で実施する。重大事故環境における放射線による劣化と熱による劣化は、逐次法 (放射線→熱)により付与する。一般に有機材料の放射線劣化挙動には、酸素が影響を及 ぼすことが知られているが、環境に酸素が存在しない場合においては放射線と熱の同時 法と逐次法の劣化はほぼ等しいことが知られている。バタフライ弁のシール材は格納容 器内雰囲気をシールするものではないことから、放射線と熱の同時暴露のシール機能への 影響は十分小さいものと考える。

| 試験フロー                 | 試験内容                                     |
|-----------------------|------------------------------------------|
| 熱<br>・放射線同時劣化処理<br>●  | 通常運転中に負荷される温度、線量を供試体に加える。                |
| 初期機能試験                | 初期状態における閉じ込め機能等を確認する。                    |
| 機械的劣化処理(弁開閉)          | 負荷試験機を用いて、弁の開閉操作を実施する。                   |
| 放射線照射劣化<br>(重大事故環境条件) | 重大事故環境で想定される放射線量(0.3MGy)を供試体に照射する。       |
| 蒸気通気試験                | 図 8-8 に示す試験装置で 200℃、0.854MPa 以上の蒸気環境下(飽和 |
|                       | 蒸気)における閉じ込め機能を確認する。蒸気は168時間通気し、          |
| Ļ                     | 24 時間おきに二次側の漏えい検出弁で漏えいの有無を確認する。          |
| 常温弁座漏えい試験             | 図 8-9 に示す試験装置で供試弁一次側を 0.854MPa の窒素加圧環境   |
|                       | 下とし、二次側からの漏えいがないことを確認する。                 |

表 8-3 試験フロー及び試験内容







図 8-9 常温弁座漏えい試験概要図

#### 2. 試験結果

蒸気通気試験の試験結果を表 8-4 に、常温弁座漏えい試験の試験結果を表 8-5 に示す。 蒸気通気試験の温度、圧力チャートを図 8-10 に示す。蒸気通気試験中に漏えいは確認さ れず、また常温復帰後の常温弁座漏えい試験においても閉じ込め機能を維持できること を確認した。

| シート材      | 圧力          | 温度    | 加圧媒体 | 継続時間   | 照射量    | 漏えい |  |  |  |
|-----------|-------------|-------|------|--------|--------|-----|--|--|--|
| 改良 EPDM 材 | 0.854MPa 以上 | 200°C | 蒸気   | 168 時間 | 0.3MGy | 無   |  |  |  |

表 8-4 蒸気通気試験の試験結果

表 8-5 常温弁座漏えい試験の試験結果

| シート材      | 圧力       | 温度 | 加圧媒体 | 漏えい |
|-----------|----------|----|------|-----|
| 改良 EPDM 材 | 0.854MPa | 常温 | 窒素   | 無   |



<sup>※</sup>日本原子力学会 2015 年秋の大会「改良 E P D M 材料の格納容器バタフライ弁への適用性 (1)実機バタフライ弁模擬試験の実施」に投稿

| 公  | 田洤    | スリーブ       |  | 取り付け位置 |    |    |
|----|-------|------------|--|--------|----|----|
| 刀預 | 貝迪叩钳丂 |            |  | 厚さ     | 高さ | 角度 |
|    | X-1   | 上部D/Wハッチ   |  |        |    |    |
|    | X-2   | 上部D/Wエアロック |  |        |    |    |
| μ  | X-3   | ISIハッチ     |  |        |    |    |
| Ĩ, | X-4   | S/Cハッチ     |  |        |    |    |
|    | X-5   | 下部D/Wエアロック |  |        |    |    |
|    | X-6   | 下部D/Wハッチ   |  |        |    |    |

| 八祐                                                                 | 雪汤如来只 | 田次         | スリ | ーブ | 取り付<br>高さ | け位置 |
|--------------------------------------------------------------------|-------|------------|----|----|-----------|-----|
| 刀預                                                                 | 貝迪叩笛万 | 用述         | 口径 | 厚さ | 高さ        | 角度  |
|                                                                    | X-10A | 主蒸気        |    |    |           |     |
|                                                                    | X-10B | 主蒸気        |    |    |           |     |
|                                                                    | X-10C | 主蒸気        |    |    |           |     |
|                                                                    | X-10D | 主蒸気        |    |    |           |     |
|                                                                    | X-11  | 主蒸気ドレン     |    |    |           |     |
|                                                                    | X-12A | 給水         |    |    |           |     |
|                                                                    | X-12B | 給水         |    |    |           |     |
|                                                                    | X-22  | ほう酸水注入     |    |    |           |     |
|                                                                    | X-30B | PCVスプレイ    |    |    |           |     |
| (11)                                                               | X-30C | PCVスプレイ    |    |    |           |     |
| Υ<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | X-31B | RHR(B)低圧注水 |    |    |           |     |
| Ĭ,<br>Ŭ                                                            | X-31C | RHR(C)低圧注水 |    |    |           |     |
| 년) (년                                                              | X-33A | RHR(A)SHC  |    |    |           |     |
| 貫                                                                  | X-33B | RHR(B)SHC  |    |    |           |     |
| 問節                                                                 | X-33C | RHR(C)SHC  |    |    |           |     |
| ドイ                                                                 | X-35B | HPCF(B)    |    |    |           |     |
| ц<br>Ц                                                             | X-35C | HPCF(C)    |    |    |           |     |
| -                                                                  | X-37  | RCIC蒸気     |    |    |           |     |
|                                                                    | X-38  | RPVヘッドスプレイ |    |    |           |     |
|                                                                    | X-50  | CUWポンプ給水   |    |    |           |     |
|                                                                    | X-60  | MUWP給水     |    |    |           |     |
|                                                                    | X-61  | RCW(A)給水   |    |    |           |     |
|                                                                    | X-62  | RCW(A)戻り   |    |    |           |     |
|                                                                    | X-63  | RCW(B)給水   |    |    |           |     |
|                                                                    | X-64  | RCW(B)戻り   |    |    |           |     |
|                                                                    | X-65  | HNCW(給水)   |    |    |           |     |

| 八粘                     | 雪汤如来口 | 田冷       | スリ | ーブ | 取り付 | 取り付け位置 |  |
|------------------------|-------|----------|----|----|-----|--------|--|
| 万預                     | 貝迪茚番亏 | 用述       | 口径 | 厚さ | 高さ  | 角度     |  |
|                        | X-66  | HNCW(戻り) |    |    |     |        |  |
|                        | X-69  | SA       |    |    |     |        |  |
| $\widehat{\mathbf{A}}$ | X-70  | IA       |    |    |     |        |  |
| l τ d                  | X-71A | ADS(A)   |    |    |     |        |  |
| 7.7                    | X-71B | ADS(B)   |    |    |     |        |  |
| 3 (F <sup>2</sup> -    | X-72  | SRV      |    |    |     |        |  |
| 一一里                    | X-80  | D/W給気    |    |    |     |        |  |
| 御                      | X-81  | D/W排気    |    |    |     |        |  |
| て思                     | X-82  | FCS      |    |    |     |        |  |
| ц<br>Ч                 | X-90  | 予備       |    |    |     |        |  |
| ل                      | X-91  | 予備       |    |    |     |        |  |
|                        | X-92  | 予備       |    |    |     |        |  |
|                        | X-93  | 予備       |    |    |     |        |  |

| 分類              | 貫通部番号  | 用途    | スリーブ |    | 取り付け位置 |    |
|-----------------|--------|-------|------|----|--------|----|
|                 |        |       | 口径   | 厚さ | 高さ     | 角度 |
| 電気配線貫通部(ドライウェル) | X-100A | RIP動力 |      |    |        |    |
|                 | X-100B | RIP動力 |      |    |        |    |
|                 | X-100C | RIP動力 |      |    |        |    |
|                 | X-100D | RIP動力 |      |    |        |    |
|                 | X-100E | RIP動力 |      |    |        |    |
|                 | X-101A | 低圧動力  |      |    |        |    |
|                 | X-101B | 低圧動力  |      |    |        |    |
|                 | X-101C | 低圧動力  |      |    |        |    |
|                 | X-101D | 低圧動力  |      |    |        |    |
|                 | X-101E | 低圧動力  |      |    |        |    |
|                 | X-101F | 低圧動力  |      |    |        |    |
|                 | X-101G | 低圧動力  |      |    |        |    |
|                 | X-101H | 低圧動力  |      |    |        |    |
|                 | X-102A | 制御    |      |    |        |    |
|                 | X-102B | 制御    |      |    |        |    |
|                 | X-102C | 制御    |      |    |        |    |
|                 | X-102D | 制御    |      |    |        |    |
|                 | X-102E | 制御    |      |    |        |    |

| 分類             | <br>貫通部番号 | 用途        | スリーブ |    | 取り付け位置 |    |
|----------------|-----------|-----------|------|----|--------|----|
|                |           |           | 口径   | 厚さ | 高さ     | 角度 |
|                | X-102F    | 制御        |      |    |        |    |
|                | X-102G    | 制御        |      |    |        |    |
|                | X-103A    | 計装        |      |    |        |    |
|                | X-103B    | 計装        |      |    |        |    |
|                | X-103C    | 計装        |      |    |        |    |
|                | X-103D    | 計装        |      |    |        |    |
|                | X-103E    | 計装        |      |    |        |    |
|                | X-104A    | FMCRD位置表示 |      |    |        |    |
| ) н Ć          | X-104B    | FMCRD位置表示 |      |    |        |    |
| 17             | X-104C    | FMCRD位置表示 |      |    |        |    |
| 貦<br>魭酘線貫通部(┝⁺ | X-104D    | FMCRD位置表示 |      |    |        |    |
|                | X-104E    | FMCRD位置表示 |      |    |        |    |
|                | X-104F    | FMCRD位置表示 |      |    |        |    |
|                | X-104G    | FMCRD位置表示 |      |    |        |    |
| 臣              | X-104H    | FMCRD位置表示 |      |    |        |    |
|                | X-105A    | 中性子計装     |      |    |        |    |
|                | X-105B    | 中性子計装     |      |    |        |    |
|                | X-105C    | 中性子計装     |      |    |        |    |
|                | X-105D    | 中性子計装     |      |    |        |    |
|                | X-110     | 予備        |      |    |        |    |
|                | X-111     | 予備        |      |    |        |    |
|                | X-112     | 予備        |      |    |        |    |

6号炉 原子炉格納容器貫通部リスト(3/8)

| 分類             | 貫通部番号  | 用途       | スリーブ |    | 取り付け位置 |    |
|----------------|--------|----------|------|----|--------|----|
|                |        |          | 口径   | 厚さ | 高さ     | 角度 |
| 計装用貫通部(ドライウェル) | X-130A | 主蒸気流量    |      |    |        |    |
|                | X-130B | 主蒸気流量    |      |    |        |    |
|                | X-130C | 主蒸気流量    |      |    |        |    |
|                | X-130D | 主蒸気流量    |      |    |        |    |
|                | X-140A | CUW流量    |      |    |        |    |
|                | X-140B | CUW流量    |      |    |        |    |
|                | X-141A | RCIC破断   |      |    |        |    |
|                | X-141B | RCIC破断   |      |    |        |    |
|                | X-142A | 原子炉水位·圧力 |      |    |        |    |
| 八粘     | 雪汤如来只  | 田冷       | スリ | ーブ | 取り付け位置 |    |
|--------|--------|----------|----|----|--------|----|
| 万預     | 貝迪即留方  | 用述       | 口径 | 厚さ | 高さ     | 角度 |
|        | X-142B | 原子炉水位·圧力 |    |    |        |    |
|        | X-142C | 原子炉水位·圧力 |    |    |        |    |
|        | X-142D | 原子炉水位·圧力 |    |    |        |    |
|        | X-143A | 原子炉水位    |    |    |        |    |
|        | X-143B | 原子炉水位    |    |    |        |    |
|        | X-143C | 原子炉水位    |    |    |        |    |
|        | X-143D | 原子炉水位    |    |    |        |    |
|        | X-144A | 原子炉水位    |    |    |        |    |
|        | X-144B | 原子炉水位    |    |    |        |    |
| ゴイエ    | X-144C | 原子炉水位    |    |    |        |    |
| ルト     | X-144D | 原子炉水位    |    |    |        |    |
| Ц<br>П | X-146A | D/W圧力    |    |    |        |    |
| 通部     | X-146B | D/W圧力    |    |    |        |    |
| 曹      | X-146C | D/W圧力    |    |    |        |    |
| 栽      | X-146D | D/W圧力    |    |    |        |    |
| ıliı¤  | X-147  | 原子炉水位    |    |    |        |    |
|        | X-160  | FPモニタ    |    |    |        |    |
|        | X-161A | CAMS     |    |    |        |    |
|        | X-161B | CAMS     |    |    |        |    |
|        | X-162A | CAMS     |    |    |        |    |
|        | X-162B | CAMS     |    |    |        |    |
|        | X-170  | 炉水サンプリング |    |    |        |    |
|        | X-171  | ガスサンプリング |    |    |        |    |
|        | X-177  | PCV漏えい試験 |    |    |        |    |

6号炉 原子炉格納容器貫通部リスト(4/8)

| 八海                 | 电话空音   | 田本          | スリ | ーブ | 取り付け位置 |    |
|--------------------|--------|-------------|----|----|--------|----|
| 万匁                 | 貝迪即留方  | 用述          | 口径 | 厚さ | 高さ     | 角度 |
|                    | X-200B | PCVスプレイ     |    |    |        |    |
|                    | X-200C | PCVスプレイ     |    |    |        |    |
|                    | X-201  | RHR(A)給水    |    |    |        |    |
|                    | X-202  | RHR(B)給水    |    |    |        |    |
|                    | X-203  | RHR(C)給水    |    |    |        |    |
|                    | X-204  | RHR(A)テスト   |    |    |        |    |
|                    | X-205  | RHR(B)テスト   |    |    |        |    |
| <b>ジョン・チェン・</b> () | X-206  | RHR(C)テスト   |    |    |        |    |
|                    | X-210B | HPCF(B)給水   |    |    |        |    |
|                    | X-210C | HPCF(C)給水   |    |    |        |    |
|                    | X-213  | RCIC排気      |    |    |        |    |
| رگ                 | X-214  | RCICポンプ給水   |    |    |        |    |
| Т<br>Т<br>Т        | X-215  | RCIC真空ポンプ排気 |    |    |        |    |
| <b></b><br>通部(     | X-220  | MSIVリークオフ   |    |    |        |    |
| 貫                  | X-221  | SPCUポンプ給水   |    |    |        |    |
| 見                  | X-222  | SPCU戻り      |    |    |        |    |
| セン                 | X-240  | S/C換気(給気)   |    |    |        |    |
| プ                  | X-241  | S/C換気(排気)   |    |    |        |    |
|                    | X-242  | FCS戻り       |    |    |        |    |
|                    | X-250  | 予備          |    |    |        |    |
|                    | X-251  | 予備          |    |    |        |    |
|                    | X-252  | 予備          |    |    |        |    |
|                    | X-253  | 予備          |    |    |        |    |
|                    | X-254  | 予備          |    |    |        |    |
|                    | X-255  | 予備          |    |    |        |    |

6号炉 原子炉格納容器貫通部リスト(5/8)

| 分類               | 貫通部番号  | 用途 | スリーブ |    | 取り付け位置 |    |
|------------------|--------|----|------|----|--------|----|
|                  |        |    | 口径   | 厚さ | 高さ     | 角度 |
| [気<br>\$∕C<br>≰) | X-300A | 制御 |      |    |        |    |
| ₩.0.×            | X-300B | 制御 |      |    |        |    |

<sup>※</sup>サプレッション・チェンバ

| 分類                 | 雪温如来只  | 用途        | スリーブ |    | 取り付け位置 |    |
|--------------------|--------|-----------|------|----|--------|----|
| 刀預                 | 貝迪叩笛万  |           | 口径   | 厚さ | 高さ     | 角度 |
|                    | X-320  | IA        |      |    |        |    |
|                    | X-321A | S/C圧力     |      |    |        |    |
|                    | X-321B | S/C圧力     |      |    |        |    |
|                    | X-322A | S/C水位     |      |    |        |    |
|                    | X-322B | S/C水位     |      |    |        |    |
| $\hat{\mathbf{v}}$ | X-322C | S/C水位     |      |    |        |    |
|                    | X-322D | S/C水位     |      |    |        |    |
| Ŧ                  | X-322E | S/C水位     |      |    |        |    |
|                    | X-322F | S/C水位     |      |    |        |    |
| 、ふし                | X-323A | S/C水位     |      |    |        |    |
| μ<br>Γ             | X-323B | S/C水位     |      |    |        |    |
| -) 明               | X-323C | S/C水位     |      |    |        |    |
| 画通                 | X-323D | S/C水位     |      |    |        |    |
| 装用                 | X-323E | S/C水位     |      |    |        |    |
|                    | X-323F | S/C水位     |      |    |        |    |
|                    | X-331A | CAMS      |      |    |        |    |
|                    | X-331B | CAMS      |      |    |        |    |
|                    | X-332A | CAMS      |      |    |        |    |
|                    | X-332B | CAMS      |      |    |        |    |
|                    | X-342  | 事故後サンプリング |      |    |        |    |

6号炉 原子炉格納容器貫通部リスト(6/8)

| 分類 貫通部          | 雪温如来只 | 『番号 用途 | スリーブ |    | 取り付け位置 |    |
|-----------------|-------|--------|------|----|--------|----|
|                 | 貝迪印笛与 |        | 口径   | 厚さ | 高さ     | 角度 |
| 미七ス<br>(*:0:*:) | X-610 | CRD    |      |    |        |    |
|                 | X-620 | LCW    |      |    |        |    |
| ₽₹              | X-621 | HCW    |      |    |        |    |

※アクセストンネル 0° 側

| 分類「貫通部番号    | 雪汤如来只  | 祁番号 用途 · | スリーブ |    | 取り付け位置 |    |
|-------------|--------|----------|------|----|--------|----|
| 刀預          | 貝迪叩笛丂  |          | 口径   | 厚さ | 高さ     | 角度 |
|             | X-650A | 炉心差圧     |      |    |        |    |
|             | X-650B | 炉心差圧     |      |    |        |    |
| Ē           | X-650C | 炉心差圧     |      |    |        |    |
| )。(         | X-650D | 炉心差圧     |      |    |        |    |
| トンネルロ       | X-651A | RIP差圧    |      |    |        |    |
|             | X-651B | RIP差圧    |      |    |        |    |
| ちち          | X-651C | RIP差圧    |      |    |        |    |
| 77          | X-651D | RIP差圧    |      |    |        |    |
| <b>5</b> 部( | X-660A | TIP案内管   |      |    |        |    |
| 貫           | X-660B | TIP案内管   |      |    |        |    |
| 装田          | X-660C | TIP案内管   |      |    |        |    |
| 1           | X-660D | TIPパージ   |      |    |        |    |
|             | X-680A | 予備       |      |    |        |    |
|             | X-680B | 予備       |      |    |        |    |

6号炉 原子炉格納容器貫通部リスト(7/8)

| 分類          | 貫通邨悉号  | 用途      | スリーブ |    | 取り付け位置 |    |
|-------------|--------|---------|------|----|--------|----|
| 刀預          | 貝迪叩笛丂  |         | 口径   | 厚さ | 高さ     | 角度 |
|             | X-700A | RIPパージ水 |      |    |        |    |
|             | X-700B | RIPパージ水 |      |    |        |    |
| ×           | X-700C | RIPパージ水 |      |    |        |    |
| (A/T:180    | X-700D | RIPパージ水 |      |    |        |    |
|             | X-700E | RIPパージ水 |      |    |        |    |
| <b>重</b> 部( | X-700F | RIPパージ水 |      |    |        |    |
| 貫           | X-700G | RIPパージ水 |      |    |        |    |
| 高           | X-700H | RIPパージ水 |      |    |        |    |
| セン          | X-700J | RIPパージ水 |      |    |        |    |
| プ           | X-700K | RIPパージ水 |      |    |        |    |
|             | X-710  | CRD     |      |    |        |    |
|             | X-740  | 下部D/W注水 |      |    |        |    |

※アクセストンネル180<sup>°</sup>側

| 分類                                            | 雪涌或釆旦  | 用途    | スリーブ |    | 取り付け位置 |    |
|-----------------------------------------------|--------|-------|------|----|--------|----|
| 刀規                                            | 貝迪即钳丂  |       | 口径   | 厚さ | 高さ     | 角度 |
| T:180 <b>%</b> )                              | X-750A | 炉心差圧  |      |    |        |    |
|                                               | X-750B | 炉心差圧  |      |    |        |    |
|                                               | X-750C | 炉心差圧  |      |    |        |    |
|                                               | X-750D | 炉心差圧  |      |    |        |    |
| β(A∕                                          | X-751A | RIP差圧 |      |    |        |    |
| 通剖                                            | X-751B | RIP差圧 |      |    |        |    |
| 用貫                                            | X-751C | RIP差圧 |      |    |        |    |
| 1.<br>[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] | X-751D | RIP差圧 |      |    |        |    |
|                                               | X-780A | 予備    |      |    |        |    |
|                                               | X-780B | 予備    |      |    |        |    |

6号炉 原子炉格納容器貫通部リスト(8/8)

※アクセストンネル180<sup>°</sup>側

| 分類 | 雪汤如来旦 | 用途         | スリーブ |    | 取り付け位置 |    |
|----|-------|------------|------|----|--------|----|
|    | 貝迪印宙与 |            | 口径   | 厚さ | 高さ     | 角度 |
|    | X-1   | 上部D/Wハッチ   |      |    |        |    |
|    | X-2   | 上部D/Wエアロック |      |    |        |    |
| μ  | X-3   | ISIハッチ     |      |    |        |    |
| Ĩ. | X-4   | S/Cハッチ     |      |    |        |    |
| -  | X-5   | 下部D/Wエアロック |      |    |        |    |
|    | X-6   | 下部D/Wハッチ   |      |    |        |    |

7号炉 原子炉格納容器貫通部リスト(1/8)

| 八粘                    | 电话动来口 | 田凃         | スリーブ |    | 取り付け位置 |    |
|-----------------------|-------|------------|------|----|--------|----|
| 刀饵                    | 貝迪即留方 | 用述         | 口径   | 厚さ | 高さ     | 角度 |
|                       | X-10A | 主蒸気        |      |    |        |    |
|                       | X-10B | 主蒸気        |      |    |        |    |
|                       | X-10C | 主蒸気        |      |    |        |    |
|                       | X-10D | 主蒸気        |      |    |        |    |
|                       | X-11  | 主蒸気ドレン     |      |    |        |    |
|                       | X-12A | 給水         |      |    |        |    |
|                       | X-12B | 給水         |      |    |        |    |
|                       | X-22  | ほう酸水注入     |      |    |        |    |
|                       | X-30B | PCVスプレイ    |      |    |        |    |
| (11)                  | X-30C | PCVスプレイ    |      |    |        |    |
| τ<br>-<br>τ<br>-<br>τ | X-31B | RHR(B)低圧注水 |      |    |        |    |
| Ĩ                     | X-31C | RHR(C)低圧注水 |      |    |        |    |
| <b>间部</b> (           | X-33A | RHR(A)SHC  |      |    |        |    |
| 重通                    | X-33B | RHR(B)SHC  |      |    |        |    |
| 問節                    | X-33C | RHR(C)SHC  |      |    |        |    |
| ドイ                    | X-35B | HPCF(B)    |      |    |        |    |
| ц<br>П                | X-35C | HPCF(C)    |      |    |        |    |
|                       | X-37  | RCIC蒸気     |      |    |        |    |
|                       | X-38  | RPVヘッドスプレイ |      |    |        |    |
|                       | X-50  | CUWポンプ給水   |      |    |        |    |
|                       | X-60  | MUWP給水     |      |    |        |    |
|                       | X-61  | RCW(A)給水   |      |    |        |    |
|                       | X-62  | RCW(A)戻り   |      |    |        |    |
|                       | X-63  | RCW(B)給水   |      |    |        |    |
|                       | X-64  | RCW(B)戻り   |      |    |        |    |
|                       | X-65  | HNCW(給水)   |      |    |        |    |

| 八粘           | 雪汤如来口 | 田冷       | スリ | ーブ | 取り付け位置 |    |
|--------------|-------|----------|----|----|--------|----|
| 万預           |       | 用述       | 口径 | 厚さ | 高さ     | 角度 |
|              | X-66  | HNCW(戻り) |    |    |        |    |
|              | X-69  | SA       |    |    |        |    |
| $\widehat{}$ | X-70  | IA       |    |    |        |    |
| ll ± ζ       | X-71A | ADS(A)   |    |    |        |    |
| して           | X-71B | ADS(B)   |    |    |        |    |
| 3(1)=        | X-72  | SRV      |    |    |        |    |
| 明明           | X-80  | D/W給気    |    |    |        |    |
| 御            | X-81  | D/W排気    |    |    |        |    |
| て配           | X-82  | FCS      |    |    |        |    |
| 4            | X-90  | 予備       |    |    |        |    |
| μ            | X-91  | 予備       |    |    |        |    |
|              | X-92  | 予備       |    |    |        |    |
|              | X-93  | 予備       |    |    |        |    |

7号炉 原子炉格納容器貫通部リスト(2/8)

| 分類     | 貫通部番号  | 用途    | スリーブ |    | 取り付け位置 |    |
|--------|--------|-------|------|----|--------|----|
| 刀积     |        |       | 口径   | 厚さ | 高さ     | 角度 |
|        | X-100A | RIP動力 |      |    |        |    |
|        | X-100B | RIP動力 |      |    |        |    |
| ライウェル) | X-100C | RIP動力 |      |    |        |    |
|        | X-100D | RIP動力 |      |    |        |    |
|        | X-100E | RIP動力 |      |    |        |    |
|        | X-101A | 低圧動力  |      |    |        |    |
|        | X-101B | 低圧動力  |      |    |        |    |
|        | X-101C | 低圧動力  |      |    |        |    |
| 3 (F   | X-101D | 低圧動力  |      |    |        |    |
| 更      | X-101E | 低圧動力  |      |    |        |    |
| 線賃     | X-101F | 低圧動力  |      |    |        |    |
| 急      | X-101G | 低圧動力  |      |    |        |    |
| 悟      | X-102A | 制御    |      |    |        |    |
|        | X-102B | 制御    |      |    |        |    |
|        | X-102C | 制御    |      |    |        |    |
|        | X-102D | 制御    |      |    |        |    |
| >      | X-102E | 制御    |      |    |        |    |
|        | X-102F | 制御    |      |    |        |    |

| 八粘        | <b>要汤如来</b> 日 |           | スリ | ーブ | 取り付け位置 |    |
|-----------|---------------|-----------|----|----|--------|----|
| 万知 貝迪部    | 貝迪即留方         | 用述        | 口径 | 厚さ | 高さ     | 角度 |
|           | X-102G        | 制御        |    |    |        |    |
|           | X-103A        | 計装        |    |    |        |    |
|           | X-103B        | 計装        |    |    |        |    |
|           | X-103C        | 計装        |    |    |        |    |
|           | X-103D        | 計装        |    |    |        |    |
|           | X-103E        | 計装        |    |    |        |    |
|           | X-104A        | FMCRD位置表示 |    |    |        |    |
| (ルエク      | X-104B        | FMCRD位置表示 |    |    |        |    |
|           | X-104C        | FMCRD位置表示 |    |    |        |    |
| 7         | X-104D        | FMCRD位置表示 |    |    |        |    |
| ۲) ک<br>۲ | X-104E        | FMCRD位置表示 |    |    |        |    |
| 通告        | X-104F        | FMCRD位置表示 |    |    |        |    |
| 線賃        | X-104G        | FMCRD位置表示 |    |    |        |    |
| 急問        | X-104H        | FMCRD位置表示 |    |    |        |    |
| ₩Ð        | X-105A        | 中性子計装     |    |    |        |    |
|           | X-105B        | 中性子計装     |    |    |        |    |
|           | X-105C        | 中性子計装     |    |    |        |    |
|           | X-105D        | 中性子計装     |    |    |        |    |
|           | X-110         | 予備        |    |    |        |    |
|           | X-111         | 予備        |    |    |        |    |
|           | X-112         | 予備        |    |    |        |    |
|           | X-113         | 予備        |    |    |        |    |

7号炉 原子炉格納容器貫通部リスト(3/8)

| 分類          | ·類 貫通部番号 | ヨー 田冷    | スリ | ーブ | 取り付 | け位置 |
|-------------|----------|----------|----|----|-----|-----|
| 刀預          |          | 用逐       | 口径 | 厚さ | 高さ  | 角度  |
|             | X-130A   | 主蒸気流量    |    |    |     |     |
| ()<br>1     | X-130B   | 主蒸気流量    |    |    |     |     |
| <b>ライウェ</b> | X-130C   | 主蒸気流量    |    |    |     |     |
|             | X-130D   | 主蒸気流量    |    |    |     |     |
| 部(ト         | X-140A   | CUW流量    |    |    |     |     |
| 運           | X-140B   | CUW流量    |    |    |     |     |
| 長用          | X-141A   | RCIC破断   |    |    |     |     |
| *           | X-141B   | RCIC破断   |    |    |     |     |
|             | X-142A   | 原子炉水位·圧力 |    |    |     |     |

| 八粘                    | 雪汤如来日             | 田冷       | スリ | ーブ | 取り付け位置 |    |
|-----------------------|-------------------|----------|----|----|--------|----|
| 万短                    | 分類   頁通部番号 用途<br> |          | 口径 | 厚さ | 高さ     | 角度 |
|                       | X-142B            | 原子炉水位·圧力 |    |    |        |    |
|                       | X-142C            | 原子炉水位·圧力 |    |    |        |    |
|                       | X-142D            | 原子炉水位·圧力 |    |    |        |    |
|                       | X-143A            | 原子炉水位    |    |    |        |    |
|                       | X-143B            | 原子炉水位    |    |    |        |    |
|                       | X-143C            | 原子炉水位    |    |    |        |    |
|                       | X-143D            | 原子炉水位    |    |    |        |    |
|                       | X-144A            | 原子炉水位    |    |    |        |    |
|                       | X-144B            | 原子炉水位    |    |    |        |    |
| エノ                    | X-144C            | 原子炉水位    |    |    |        |    |
| イ<br>-<br>-<br>-<br>- | X-144D            | 原子炉水位    |    |    |        |    |
| Ц<br>П                | X-146A            | D/W圧力    |    |    |        |    |
| 通部                    | X-146B            | D/W圧力    |    |    |        |    |
| 曹                     | X-146C            | D/W圧力    |    |    |        |    |
| 挨                     | X-146D            | D/W圧力    |    |    |        |    |
| μiα                   | X-147             | 原子炉水位    |    |    |        |    |
|                       | X-160             | FPモニタ    |    |    |        |    |
|                       | X-161A            | CAMS     |    |    |        |    |
|                       | X-161B            | CAMS     |    |    |        |    |
|                       | X-162A            | CAMS     |    |    |        |    |
|                       | X-162B            | CAMS     |    |    |        |    |
|                       | X-170             | 炉水サンプリング |    |    |        |    |
|                       | X-171             | ガスサンプリング |    |    |        |    |
|                       | X-177             | PCV漏えい試験 |    |    |        |    |

7号炉 原子炉格納容器貫通部リスト(4/8)

| 八粘               | 电话动来口  | 田法          | スリーブ |    | 取り付け位置 |    |
|------------------|--------|-------------|------|----|--------|----|
| 刀預               | 貝迪叩钳丂  |             |      | 厚さ | 高さ     | 角度 |
|                  | X-200B | PCVスプレイ     |      |    |        |    |
|                  | X-200C | PCVスプレイ     |      |    |        |    |
|                  | X-201  | RHR(A)給水    |      |    |        |    |
|                  | X-202  | RHR(B)給水    |      |    |        |    |
|                  | X-203  | RHR(C)給水    |      |    |        |    |
|                  | X-204  | RHR(A)テスト   |      |    |        |    |
|                  | X-205  | RHR(B)テスト   |      |    |        |    |
| (×,              | X-206  | RHR(C)テスト   |      |    |        |    |
| H<br>  ソ         | X-210B | HPCF(B)給水   |      |    |        |    |
| ・<br>・<br>・<br>・ | X-210C | HPCF(C)給水   |      |    |        |    |
| う                | X-213  | RCIC排気      |      |    |        |    |
| رت<br>ارت        | X-214  | RCICポンプ給水   |      |    |        |    |
| ۲                | X-215  | RCIC真空ポンプ排気 |      |    |        |    |
| 通部               | X-220  | MSIVリークオフ   |      |    |        |    |
| 實                | X-221  | SPCUポンプ給水   |      |    |        |    |
| 副領               | X-222  | SPCU戻り      |      |    |        |    |
| ト<br>4           | X-240  | S/C換気(給気)   |      |    |        |    |
| ц<br>П           | X-241  | S/C換気(排気)   |      |    |        |    |
|                  | X-242  | FCS戻り       |      |    |        |    |
|                  | X-250  | 予備          |      |    |        |    |
|                  | X-251  | 予備          |      |    |        |    |
|                  | X-252  | 予備          |      |    |        |    |
|                  | X-253  | 予備          |      |    |        |    |
|                  | X-254  | 予備          |      |    |        |    |
|                  | X-255  | 予備          |      |    |        |    |

| 分粘        | 雪湢竌釆只            | 部番号 用途 | スリーブ |    | 取り付け位置 |    |
|-----------|------------------|--------|------|----|--------|----|
| 刀戎        | <u>フ</u> 焼 頁通叩留ち |        | 口径   | 厚さ | 高さ     | 角度 |
| [気<br>C※) | X-300A           | 制御     |      |    |        |    |
| ∎<br>(S/  | X-300B           | 制御     |      |    |        |    |
|           | -                |        |      |    |        |    |

※サプレッション・チェンバ

| 八新二里语如乎日           |          | 田冷        | スリ | ーブ | 取り付け位置 |    |
|--------------------|----------|-----------|----|----|--------|----|
| 万預                 | 万短 貝迪印俄方 | 用述        | 口径 | 厚さ | 高さ     | 角度 |
|                    | X-320    | IA        |    |    |        |    |
|                    | X-321A   | S/C圧力     |    |    |        |    |
|                    | X-321B   | S/C圧力     |    |    |        |    |
|                    | X-322A   | S/C水位     |    |    |        |    |
|                    | X-322B   | S/C水位     |    |    |        |    |
| $\hat{\mathbf{x}}$ | X-322C   | S/C水位     |    |    |        |    |
| Г<br>Л             | X-322D   | S/C水位     |    |    |        |    |
| Ť.                 | X-322E   | S/C水位     |    |    |        |    |
| い<br>1000<br>1000  | X-322F   | S/C水位     |    |    |        |    |
| 5                  | X-323A   | S/C水位     |    |    |        |    |
| μ<br>μ             | X-323B   | S/C水位     |    |    |        |    |
| ·) 追               | X-323C   | S/C水位     |    |    |        |    |
| 重通                 | X-323D   | S/C水位     |    |    |        |    |
| 装用                 | X-323E   | S/C水位     |    |    |        |    |
|                    | X-323F   | S/C水位     |    |    |        |    |
|                    | X-331A   | CAMS      |    |    |        |    |
|                    | X-331B   | CAMS      |    |    |        |    |
|                    | X-332A   | CAMS      |    |    |        |    |
|                    | X-332B   | CAMS      |    |    |        |    |
|                    | X-342    | 事故後サンプリング |    |    |        |    |

7号炉 原子炉格納容器貫通部リスト(6/8)

| 分粒             | 雪湢如釆旦              | 通部番号    用途 | スリーブ |    | 取り付け位置 |    |
|----------------|--------------------|------------|------|----|--------|----|
| 刀积             | <sup>按</sup> 月通叩笛万 |            | 口径   | 厚さ | 高さ     | 角度 |
| кŵ             | X-610              | CRD        |      |    |        |    |
| 10<br>10<br>10 | X-620              | LCW        |      |    |        |    |
| ₽₹             | X-621              | HCW        |      |    |        |    |

※アクセストンネル0°側

| 八粘          | 雪汤如来日  | 田冷     | スリ | ーブ | 取り付 | け位置 |
|-------------|--------|--------|----|----|-----|-----|
| 刀預          | 貝迪叩笛丂  |        | 口径 | 厚さ | 高さ  | 角度  |
|             | X-650A | 炉心差圧   |    |    |     |     |
|             | X-650B | 炉心差圧   |    |    |     |     |
|             | X-650C | 炉心差圧   |    |    |     |     |
| 。<br>(      | X-650D | 炉心差圧   |    |    |     |     |
| 2710        | X-651A | RIP差圧  |    |    |     |     |
| トン          | X-651B | RIP差圧  |    |    |     |     |
| トオ          | X-651C | RIP差圧  |    |    |     |     |
| 75.         | X-651D | RIP差圧  |    |    |     |     |
| <b>〕</b> 部( | X-660A | TIP案内管 |    |    |     |     |
| 重選          | X-660B | TIP案内管 |    |    |     |     |
| 装用          | X-660C | TIP案内管 |    |    |     |     |
|             | X-660D | TIPパージ |    |    |     |     |
|             | X-680A | 予備     |    |    |     |     |
|             | X-680B | 予備     |    |    |     |     |

7号炉 原子炉格納容器貫通部リスト(7/8)

| 公粘          | 貫通部番号    用途 | スリ      | ーブ | 取り付 | け位置 |    |
|-------------|-------------|---------|----|-----|-----|----|
| 刀預          | 貝迪印笛与       |         | 口径 | 厚さ  | 高さ  | 角度 |
| 0°側)        | X-700A      | RIPパージ水 |    |     |     |    |
|             | X-700B      | RIPパージ水 |    |     |     |    |
| 18(         | X-700C      | RIPパージ水 |    |     |     |    |
| パトンネル       | X-700D      | RIPパージ水 |    |     |     |    |
|             | X-700E      | RIPパージ水 |    |     |     |    |
| 47          | X-700F      | RIPパージ水 |    |     |     |    |
| Ξ.          | X-700G      | RIPパージ水 |    |     |     |    |
| 通部          | X-700H      | RIPパージ水 |    |     |     |    |
| 中町、<br>Sinn | X-700J      | RIPパージ水 |    |     |     |    |
| く配う         | X-700K      | RIPパージ水 |    |     |     |    |
| 41          | X-710       | CRD     |    |     |     |    |
| ľ           | X-740       | 下部D/W注水 |    |     |     |    |

| 分類「貫通部番号」         | 田凎          | スリ    | ーブ | 取り付 | け位置 |    |
|-------------------|-------------|-------|----|-----|-----|----|
| 刀預                | 夏 夏 迪 叩 雷 与 | 貝迪印爾方 | 口径 | 厚さ  | 高さ  | 角度 |
|                   | X-750A      | 炉心差圧  |    |     |     |    |
| (T:180 <b>≪</b> ) | X-750B      | 炉心差圧  |    |     |     |    |
|                   | X-750C      | 炉心差圧  |    |     |     |    |
|                   | X-750D      | 炉心差圧  |    |     |     |    |
| 3 (A/             | X-751A      | RIP差圧 |    |     |     |    |
| 通                 | X-751B      | RIP差圧 |    |     |     |    |
| 用貫                | X-751C      | RIP差圧 |    |     |     |    |
| 计拨月               | X-751D      | RIP差圧 |    |     |     |    |
| 144               | X-780A      | 予備    |    |     |     |    |
|                   | X-780B      | 予備    |    |     |     |    |

7号炉 原子炉格納容器貫通部リスト(8/8)

※アクセストンネル180<sup>°</sup>側

トップヘッドフランジ等の開口量評価の妥当性について

本文では、有効性評価での限界温度、圧力の設定の妥当性の確認のため、有限要素法 (FEM) 解析を用いてトップヘッドおよび機器ハッチのフランジ部の開口量を評価している。本資 料は、トップヘッドフランジ等の開口評価の妥当性について示すものである。 今回、当社が実施したトップヘッドおよび機器ハッチのフランジ部の開口量評価では、FEM 解析を用いている。今回の評価では、開口量に影響を及ぼす可能性のあるボルト等の構造 は、実機の寸法等を模擬して解析モデルに反映している。また、フランジ部の開口の挙動 への影響が大きいと考えられる上下フランジ面同士の接触の影響も考慮し、三次元ソリッ ド要素を用いて弾塑性大変形解析を実施した。その評価モデルを図1に示す。以上のよう な解析手法を用いることにより、高い精度で開口量の評価が可能である。図2は、NUPEC で 実施された機器搬入用ハッチフランジの圧力と開口量の関係である。この開口量は、図3 に示すハッチモデル試験体のフランジ部にひずみゲージを取り付けて、漏えいが生じるま で内圧を加えて計測されたものである。この試験結果に対して、当社解析と同様に精度を 向上させた解析手法を適用し、同等のメッシュ分割を用いて評価を行っている(図4参照)。 図2の試験結果と解析結果の比較に示すように、解析結果は、圧力の上昇に伴って増加す るフランジ部の開口量を精度よく評価できていることがわかる。なお、これらの評価手法 は、JSME シビアアクシデント時の構造健全性評価ガイドライン(BWR 鋼製格納容器編)等 にも反映された手法である。

フランジ部の開口評価では、フランジ部だけではなくトップヘッドの全体をモデル化し ている。そのため、内圧の増加により、ボルト部にモーメントが生じて、フランジ部の開 ロが発生する。フランジ部に生じるモーメントが増加すると、同時にトップヘッド全体の 幾何学形状も変化するため、ボルトへの荷重のかかり方が逐次的に変化し、結果として、 内圧の増加に対する開口挙動が曲線的に変化する。また、図5に当社トップヘッドフラン ジ開口量評価における 2Pd 時の相当塑性ひずみ分布を示す。材料の降伏点の低いワッシャ ーとナットについて、内圧の増加に伴って局所的に塑性領域に入ることも、開口挙動の曲 線的な変化に寄与するものと考えられる。ただし、2Pd 時にワッシャーとナットで生じる塑 性ひずみは概ね0.3%~0.6%程度と小さく、発生箇所も局所的であるため、内圧変動時の開 口評価に及ぼす影響は小さい。フランジやボルトについては、材料の降伏点が高く、内圧 が 2Pd まで増加しても、弾性変形の範囲内にあり、塑性ひずみは発生していない。同様の 評価結果が、原子力安全・保安院による評価<sup>[1]</sup>でも示されているように、フランジ部の開口 評価において、2Pd までの圧力範囲ではフランジやボルトの塑性変形は生じないことから、 内圧が変動しても開口挙動に影響を及ぼすような顕著な構造の変形は生じないと考えられ る。

以上より、FEM解析を用いて実施したトップヘッドおよび機器ハッチのフランジ部の開口 量評価により、実機の挙動を適切に評価することが可能である。

[1] 原子力安全・保安院 東京電力株式会社福島第一原子力発電所事故の技術的知見について (平成 24 年 3 月)



図1 当社トップヘッドフランジ開口量評価の解析モデル



図2 NUPEC 機器搬入用ハッチフランジの圧力-開口量関係



図3 NUPEC ハッチモデル試験体



図4 NUPEC ハッチモデル試験解析モデル



図5 当社トップヘッドフランジ開口量評価での相当塑性ひずみ分布(2Pd時)

改良 EPDM シール材の試験について

改良 EPDM シール材について、耐高温性、耐蒸気性を確認するために、800kGyのγ線照 射を行った材料を用いて、高温暴露または蒸気暴露を行った後、気密確認試験を実施して 漏えいの有無を確認した。また、試験後の外観観察、FT-IR 分析及び硬さ測定を行い、暴露 後のシール材の状況を確認した。本試験に使用した試験治具寸法を図1、外観を図2に示す。 シール材の断面寸法は実機の1/2とし、内側の段差 1mm に加えて外側からも高温空気また は蒸気に暴露されるため、実機条件と比較して保守的な条件となると想定される。試験の 詳細と結果を以下に記載する。

① 高温暴露

熱処理炉を使用して 200℃、168h の高温暴露を実施した。

② 蒸気暴露

東京電力技術開発センター第二研究棟の蒸気用オートクレーブを使用して、1MPa、 250℃の蒸気環境下で168時間暴露を実施した。蒸気用オートクレーブの系統図を図3 に、試験体設置状況を図4に示す。

③ He 気密確認試験

高温暴露及び蒸気暴露後の試験体について、He を用いて気密試験を実施した。負荷 圧力は 0.3MPa、0.65MPa、0.9MPa とし、スヌープでのリーク確認と、0.3MPa は保持 時間 10 分、0.65MPa 及び 0.9MPa は保持時間 30 分で圧力降下の有無を確認した。ま た、0.8mmの隙間ゲージを用いて開口変位を模擬した気密確認試験も実施した(実機 1.6mm 相当の変位)。試験状況を図 5、 6 に、試験結果を表 1 に示す。いずれの条件 下でもリーク及び圧力降下は認められなかった。

④ 試験後外観観察

デジタルマイクロスコープを用いてHe気密確認試験後のシール材表面を観察した。 観察結果を図7に示す。シール材表面に割れ等の顕著な劣化は認められなかった。



図2 試験治具及びシール材外観



図3 蒸気用オートクレーブ系統図



図4 蒸気暴露試験体設置状況



図 5 He 気密確認試験状況



図 6 He 気密試験時開口模擬 (隙間ゲージ使用)

| No. | 暴露条件          | γ線照射量    | 変位    | 0.3MPa | 0.65MPa | 0.9MPa |  |
|-----|---------------|----------|-------|--------|---------|--------|--|
| 1   | 去劫 200℃ 1691  | 9001-C-1 | 無し    | 0      | 0       | 0      |  |
| 1   | 1             | 0.8mm    | 0     | 0      | 0       |        |  |
| 2   | 蒸気1MPa、 250℃、 | 9001/Cy  | 無し    | 0      | 0       | 0      |  |
| 2   | 168h          | 800KGy   | 0.8mm | 0      | 0       | 0      |  |
| 2   | 蒸気1MPa、 250℃、 | 9001-C-1 | 無し    | 0      | 0       | 0      |  |
| 3   | 3 168h 800kGy |          | 0.8mm | 0      | 0       | 0      |  |

表1 He 気密確認試験状況

○:リーク及び圧力降下なし



図 7 試験後外観観察結果 (a: 乾熱 200℃、 168h、b、 c: 蒸気 250℃、 168h)

⑤ FT-IR 分析

試験後のシール材の FT-IR 分析結果を図 8、9に示す。FT-IR は赤外線が分子結合の振動や回転運動のエネルギーとして吸収されることを利用して、試料に赤外線を照 射して透過または反射した光量を測定することにより分子構造や官能基の情報を取 得可能である。高温暴露中に空気が直接接触する位置(暴露面)では、ベースポリマ ーの骨格に対応するピークが消失していたが、その他の分析位置、暴露条件では顕著 な劣化は認められなかった。





④ 硬さ測定

試験後のシール材の硬さ測定結果を図 10 に示す。暴露面、シート面、裏面、断面 の硬さを測定した。暴露面において、乾熱 200℃、 168h 条件では酸化劣化によって 硬さが顕著に上昇していた。その他の部位、条件では、蒸気 250℃、 168h 条件の暴 露面で若干の軟化が確認された以外、硬さは初期値近傍であり、顕著な劣化は確認さ れなかった。



図10 硬さ測定結果

以上の試験結果から、200℃、 2Pd、 168h の条件下では、改良 EPDM シール材を使用 した場合は、圧力上昇時のフランジ部の開口を勘案しても原子炉格納容器フランジ部の気 密性は保たれると考えられる。

以 上

バックアップシール材の試験について

バックアップシール材(一液硬化型耐火シーラント)に関して、耐高温性、施工性等を 確認するために、以下の試験を実施した。

(1) 高温暴露及び蒸気暴露後気密確認試験

- (2) 開口模擬後気密確認試験
- (3) 実機適用性試験
- (4)長時間試験(改良 EPDM との組み合わせ)

各々の試験の詳細を以下に示す。

(1)蒸気暴露試験(250℃×168時間)後気密確認試験

フランジ部に塗布するバックアップシール材に塗布するバックアップシール材に関し て、小型試験体(図1参照)を用いてγ線照射、及び、蒸気暴露後にHe気密確認試験を 実施し漏洩の有無を確認するとともに、試験後にFT-IR分析を実施して化学構造の変化状 況を確認した。各々の詳細条件を以下に記載する。

γ線照射

線源 <sup>60</sup>Co、照射時間 100 時間、目標 800kGy にて γ 線照射を実施した。照射実績は、 雰囲気線量 8.19kGy/h、 8.27kGy/h、累積照射量 819kGy、 827kGy であった。

② 高温暴露

熱処理炉を使用して 300℃、 73h 及び 350℃、 73h の高温暴露を実施した。

③ 蒸気暴露

東京電力技術開発センター第二研究棟の蒸気用オートクレーブを使用して、試験体(3個)を1MPa、250℃の蒸気環境下で168時間暴露を実施した。蒸気用オートクレ ーブの系統図を図2に、試験体設置状況を図3に示す。

④ He 気密確認試験

蒸気暴露後の試験体について、He を用いて気密試験を実施した。高温暴露条件では 負荷圧力 0.2、 0.3、 0.4、 0.5、 0.62 MPa、蒸気暴露条件では負荷圧力は 0.3、 0.65、 0.9MPa とし、スヌープでのリーク確認と 0.65MPa 及び 0.9MPa は保持時間 30 分、そ の他の圧力では保持時間 10 分で圧力降下の有無を確認した。試験状況を図 4 に、試 験結果を表 1、2 に示す。いずれの試験体もリーク及び圧力降下は認められなかった。

⑤ FT-IR 分析

He 気密確認試験後に FT-IR 分析を実施した。FT-IR は赤外線が分子結合の振動や回転運動のエネルギーとして吸収されることを利用して、試料に赤外線を照射して透過 または反射した光量を測定することにより分子構造や官能基の情報を取得可能であ る。分析結果を図5に示す。本試験条件では350℃高温暴露条件を除いてシロキサン 構造の変化量は小さく、顕著な劣化は認められなかった。

# 図1 小型試験治具寸法



## 図2 蒸気用オートクレーブ系統図



図3 蒸気暴露 試験片設置状況





図4 気密確認試験状況

| No. | 高温暴露条件     | 0.2MPa | 0.3Mpa | 0.4MPa | 0.5MPa | 0.62MPa | γ線照射量  |
|-----|------------|--------|--------|--------|--------|---------|--------|
| 1   | 300°C、 73h | 0      | 0      | 0      | 0      | 0       | 827kGy |
| 2   | 350°C、73h  | 0      | 0      | 0      | 0      | 0       | 827kGy |

表1He 気密確認試験結果(高温暴露後)

○:リーク及び圧力降下なし

表 2 He 気密確認試験結果(蒸気暴露後)

| No. | 蒸気暴露条件            | 0.3MPa | 0.65MPa | 0.9MPa | γ線照射量  |
|-----|-------------------|--------|---------|--------|--------|
| 1   | 1MPa、 250°C、 168h | 0      | 0       | 0      | 819kGy |
| 2   | 1MPa、 250°C、 168h | 0      | 0       | 0      | 819kGy |
| 3   | 1MPa、 250°C、 168h | 0      | 0       | 0      | 819kGy |

○:リーク及び圧力降下なし



図5 FT-IR 分析結果

#### (2) 開口模擬後気密確認試験

シビアアクシデント時には、事故後ベント実施までは圧力が 2Pd 近傍と高くなりフラン ジ部が開口することから、フランジ開口を経験した後にバックアップシール材に気密性が あるか否かを確認するため、30cm 中型試験体を用いて隙間ゲージで一度変位を経験させ た後に He 気密確認試験を実施して漏えいの有無を確認した。試験状況を図 6、 7、試験 条件及び結果を表 3 に示す。1.9mm までの変位を経験した後も He 気密確認においてリー ク及び圧力降下は認められなかった。なお、He 気密確認試験は(1)の蒸気暴露試験(250℃ ×168 時間)後気密確認試験と同様に、負荷圧力は 0.3MPa、0.65MPa、0.9MPa とし、ス ヌープでのリーク確認と 0.3MPa は保持時間 10 分、0.65MPa 及び 0.9MPa は保持時間 30 分で圧力降下の有無を確認した。



図 6 バックアップシール材塗布状況 (1.5mm 厚さ)



図7 変位付与状況 隙間ゲージを用いて所定の変位を加えた後、 隙間ゲージを抜いて再締め付け

| No.     | 塗布厚さ     | 変位    | 0.3MPa | 0.65MPa | 0.9MPa | 備考 |
|---------|----------|-------|--------|---------|--------|----|
| 4 1.5mm | 変位付与前    | 0     | 0      | 0       |        |    |
|         | 1.311111 | 1.0mm | 0      | 0       | 0      |    |
| 5 5     | 5.0000   | 変位付与前 | 0      | 0       | 0      |    |
|         | 3.0mm    | 1.0mm | 0      | 0       | 0      |    |
| 6       | 1.5      | 変位付与前 | 0      | 0       | 0      |    |
|         | 1.311111 | 1.9mm | 0      | 0       | 0      |    |

表 3 開口模擬後 He 気密確認試験結果

○:リーク及び圧力降下なし

(3) 実機適用性試験

実機フランジは直径が大きく塗布長さが長いため、実際にバックアップシール材を適用 した場合に問題なく気密性が担保出来るか否か、また、既存のシール材との干渉の有無を 確認するため、柏崎刈羽原子力発電所4号機 SRV ハッチを使用してバックアップシール 材を塗布と局所漏えい試験を実施した。

バックアップシール材塗布条件は、図8に示す内外シール材にPCV外側にバックアップシール材を塗布して既存シール材とバックアップシール材との干渉の有無を確認する

条件、図9に示す内シール材とPCV外側にバックアップシール材塗布のバックアップシ ール材単体でシール機能を持つことを確認する条件の2通り実施した。いずれも局所漏え い試験結果は良好であった。なお、バックアップシール材の塗布時には、塗布厚さが1~ 1.5mm程度となる様に治具を用いて作業を実施した(図10参照)。



図8 内外シール材+PCV 外側バックアップシール材塗布条件



図9 内シール材+PCV 外側バックアップシール材塗布条件



(a) バックアップシール材塗布作業状況

(b) ハッチ閉鎖時

図 10 柏崎刈羽原子力発電所 4 号機 SRV ハッチ試験状況

(4) 長時間試験

シビアアクシデントにおいては、復旧までに相応の日数が必要と考えられることから、 30 日、または、それ以上の期間暴露したシール材の気密性を確認することを目的に、改 良 EPDM シール材(γ線照射量 800kGy)とその外側にバックアップシール材を適用した 条件で、長期間高温暴露を実施した後に He 気密確認試験を行い漏えいの有無を確認した。 各々の詳細条件を以下に示す。また、試験体の状況(改良 EPDM+バックアップシール材 塗布)を図 11 に示す。

① 高温暴露

熱処理炉を用いて、乾熱 200℃条件下にて高温暴露を実施した。なお、試験体は、所 定の日数暴露した後に取り出して下記の He 気密確認試験を実施し、He 気密確認試験後 には、再度、熱処理炉に戻して乾熱 200℃条件にて追加日数の高温暴露を行う条件で試 験を継続実施している。

② He 気密確認試験

高温暴露後の試験体について、Heを用いて気密試験を実施した。負荷圧力は0.3MPa、0.65MPa、0.9MPaとし、スヌープでのリーク確認と0.3MPaは保持時間10分、0.65MPa 及び0.9MPaは保持時間30分で圧力降下の有無を確認した。試験状況を図12に、試験結果を表4に示す。いずれの試験体、試験条件においてもリーク及び圧力降下は認められなかった。



図 11 試験体の状況 (改良 EPDM+バックアップシール材)



図 12 He 気密確認試験状況

| No. | 暴露条件    | 暴露日数 | 暴露時間(h) | 0.3MPa | 0.65MPa | 0.9MPa |
|-----|---------|------|---------|--------|---------|--------|
| 7   | 乾熱 200℃ | 30   | 720     | 0      | 0       | 0      |
| 7   | 乾熱 200℃ | 45   | 1、080   | 0      | 0       | 0      |
| 7   | 乾熱 200℃ | 60   | 1、440   | 0      | 0       | 0      |
| 7   | 乾熱 200℃ | 75   | 1、800   | 0      | 0       | 0      |
| 7   | 乾熱 200℃ | 90   | 2、160   | 0      | 0       | 0      |
| 7   | 乾熱 200℃ | 105  | 2、520   | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 30   | 720     | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 45   | 1、080   | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 60   | 1、440   | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 75   | 1、800   | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 90   | 2、160   | 0      | 0       | 0      |
| 8   | 乾熱 200℃ | 105  | 2、520   | 0      | 0       | 0      |

表 4 He 気密確認試験結果

○:リーク及び圧力降下なし

補足:他構造部材への影響について

バックアップシール材は、取り外し時には、スクレーパー等にて除去可能である。また、 塗布時を含めて、油等の薬品を使用する必要がないことから、他構造部材への影響を考慮 する必要は無いと考えられる。

以 上

一次+二次応力の評価について

1. 一次+二次応力評価

添付資料 3~6 に示す格納容器の健全性評価において、トップヘッドフランジ、ハッ チ類、エアロック、配管貫通部の一次応力評価を記載している。これは、重大事故時の 応力評価について、JSME 設計・建設規格の運転状態IVにおける荷重の組合せに準じて一 次応力評価を実施したものである。一方、格納容器の温度上昇に伴う構造健全性への影 響についても確認する必要があるため、一次+二次応力の評価についても実施している。 本資料では、その評価結果を示す。

2. 評価結果

トップヘッドフランジ、ハッチ類、エアロック、配管貫通部の一次+二次応力評価を 評価基準値を 2Sy として実施した。その結果、2Sy を超過し、塑性域に達すると見込ま れる部位が確認された。これらの評価結果について、材料別で一次+二次応力が最大に なる箇所、及びそのときの弾塑性ひずみを表1、2 に示す。弾塑性ひずみが最大となる 材料は SUS304LTP であり、弾塑性ひずみ値は約 12%となるが、JIS G 3459 配管用ステン レス鋼管で示す機械的性質によると、SUS304LTP の伸びは 22%以上であるため、今回の 評価結果から破断に至ものではない。よって、200℃、2Pd 環境下における原子炉格納容 器の閉じ込め機能は確保可能と考えている。

| 材質        | σ <sub>n</sub><br>[MPa] | 2Sy<br>[MPa] | E<br>[MPa] | ε <sub>p</sub><br>[-] | ε <sub>ер</sub><br>[-] | 機器名                     |
|-----------|-------------------------|--------------|------------|-----------------------|------------------------|-------------------------|
| SFVC2B    |                         |              |            |                       |                        | 配管貫通部 X-220(P3)         |
| SCV480    |                         |              |            |                       |                        | 下部 D/W アクセストンネルスリーブ及び鏡板 |
| 507400    |                         |              |            |                       |                        | (所員用エアロック付)(P5)         |
| STS480    |                         |              |            |                       |                        | 配管貫通部 X-200B、C(P2)      |
| SUS304L   |                         |              |            |                       |                        | 配管貫通部 X-204~206、222(P5) |
| CDV400    |                         |              |            |                       |                        | 下部 D/W アクセストンネルスリーブ及び鏡板 |
| SPV490    |                         |              |            |                       |                        | (所員用エアロック付)(P9)         |
| SUSF316   |                         |              |            |                       |                        | 配管貫通部 X-215(P3)         |
| SUS304LTP |                         |              |            |                       |                        | 配管貫通部 X-210B、C(P2)      |

表1 残留ひずみ評価のまとめ(6号炉)

σn :一次+二次応力(それぞれの材質ごとに最大の応力となる点を評価した)

εp :塑性ひずみ

ε ep : 弾塑性ひずみ

表2 残留ひずみ評価のまとめ(7号炉)

| 材質        | σ <sub>n</sub><br>[MPa] | 2Sy<br>[MPa] | E<br>[MPa] | ер<br>[-] | ε <sub>ер</sub><br>[-] |       | 機器名               |
|-----------|-------------------------|--------------|------------|-----------|------------------------|-------|-------------------|
| SFVC2B    |                         |              |            |           |                        | 配管貫通部 | X-220(P3)         |
| SFVC2B*   |                         |              |            |           |                        | 配管貫通部 | X-31C(P3)         |
| SGV480    |                         |              |            |           |                        | 配管貫通部 | X-31C(P2)         |
| STS480    |                         |              |            |           |                        | 配管貫通部 | X-200B、C(P2)      |
| SUS304    |                         |              |            |           |                        | 配管貫通部 | X-70、71A/B、72(P3) |
| SUS304L   |                         |              |            |           |                        | 配管貫通部 | X-204(P5)         |
| SUS304LTP |                         |              |            |           |                        | 配管貫通部 | X-204(P2)         |

σn : 一次+二次応力(それぞれの材質ごとに最大の応力となる点を評価した)

ε p : 塑性ひずみ

ε ep : 弾塑性ひずみ

※ : 302℃ (その他は 200℃)

<参考例> 7 号炉 SUS304LTP の弾塑性ひずみの算出

|     | 項目                           |                 | 単位  | 値 | 備考                                       |
|-----|------------------------------|-----------------|-----|---|------------------------------------------|
| 評   | 一次+二次応力強さ                    | σ <sub>n</sub>  | MPa |   | 200℃、2Pd における評<br>価点の応力強さ                |
| 価条  | 縦弾性係数<br>(SUS304LTP at 200℃) | Е               | MPa |   | 設計・建設規格 付録<br>材料図表より                     |
| 14- | 降伏応力<br>(SUS304LTP at 200℃)  | Sy              | MPa |   | 設計・建設規格 付録<br>材料図表より                     |
|     | 最大応力に対する弾性<br>ひずみ            | ε <sub>e</sub>  | _   |   | $= \sigma_n / E$                         |
| 評価  | 弾塑性ひずみ                       | ε <sub>ep</sub> | -   |   | $= (\sigma_n \cdot \epsilon_e)/S_y$      |
| 結果  | 降伏応力での弾性ひずみ                  | εy              | _   |   | $= S_y / E$                              |
|     | 塑性ひずみ                        | ε <sub>p</sub>  | _   |   | $= \epsilon_{\rm ep} - \epsilon_{\rm y}$ |

表3 配管貫通部(X-204)スリーブ取付部の塑性ひずみ

別紙-7

#### ライナの不連続部の評価について

ライナの不連続部の評価として、ライナ部と貫通部アンカに分けて評価を行う。

1. ライナ部の不連続部の評価

ライナ部の不連続部の代表例としてライナ部と上部ドライウェル機器搬入用ハッチの 接続部を図 1-1 に示す。ライナ部と上部ドライウェル機器搬入用ハッチのフランジプレー トの不連続部はA部拡大図に示す破線部である。

図 1-2 に示すように NUPEC 重要構造物安全評価(原子炉格納容器信頼性実証事業)(平 成 2 年度~平成 14 年度)において、ABWR代表プラントの原子炉格納容器を対象に有 限要素法によるひずみ評価を実施している。この有限要素法による評価では、ABWRプ ラントのRCCV全体モデル解析でライナ部のひずみが大きくなる「上部ドライウェル開 口近傍隅角部」を局部評価点として選定し、部分詳細モデルの評価範囲の中に前述の不連 続部を含めている。この評価結果は、「2. 原子炉格納容器本体(ライナ部)」に示すように 200℃、2Pd の条件下におけるライナ部(不連続部を含む)のひずみは小さく、構造健全 性が維持されることを確認した。



A部拡大図

図 1-1 ライナと上部ドライウェル機器搬入用ハッチの接続部



図 1-2 上部ドライウェル開口近傍隅角部 評価モデル

### 2. 貫通部アンカの不連続部の評価

貫通部アンカの評価の代表例として上部ドライウェル機器搬入用ハッチを用いる。従 来の鉄筋コンクリート製原子炉格納容器の建設時工事計画認可申請書添付書類「上部ドラ イウェル機器搬入用ハッチの強度計算書」と同じ評価手法を用い,貫通部アンカの不連続 部の中で最大応力が加わると考えているフランジプレートとスリーブの不連続部、ガセッ トプレートとスリーブの不連続部に生じる応力を評価した。この時、内圧により生じる荷 重は保守的にフランジプレート及びガセットプレートで全て受けていると仮定する。応力 の評価結果は表 2-1 に示す通り,200℃、2Pd の条件下における各応力評価点の応力は許 容値以下であり、構造健全性が維持されることを確認した。計算の詳細を次頁以降に示す。

| 応力        | 応力                   |     | J度(MPa)   | せん断応 | 力度(MPa)   | 応力比(-) |     |
|-----------|----------------------|-----|-----------|------|-----------|--------|-----|
| 評価点<br>番号 | 応力評価点                | 応力度 | 許容<br>応力度 | 応力度  | 許容<br>応力度 | 曲げ     | せん断 |
| P 1 1     | フランジ<br>プレート<br>(内側) |     | 312       |      | 156       |        |     |
| P 1 3     | ガセット<br>プレート<br>(内側) | -   | -         |      | 156       |        |     |

表 2-1 フランジプレート及びガゼットプレートの応力評価まとめ

※評価条件: 圧力 2Pd(0.62MPa)、温度 200℃

- 3. 上部ドライウェル機器搬入用ハッチ 貫通部アンカの評価
- 3.1 フランジプレート(内側) (応力評価点 P11)
  - 3.1.1 形状及び寸法

フランジプレート(内側)の形状及び寸法を図 3-1 に示す。



図3-1 フランジプレート(内側)の形状及び寸法(単位:mm)

3.1.2 最高使用圧力(内圧)による応力度

最高使用圧力(内圧)により、フランジプレート(内側)に生じる応力度は、図 3-2 に示すようにフランジプレート(内側)を等分布荷重を受ける3辺固定1辺自由の 矩形板にモデル化し、参考文献(1)の式に基づき計算する。



م,

図3-2 計算モデル

(1) 曲げ応力度



(2) せん断応力度



3.1.3 上部ドライウェル機器搬入用ハッチに作用する荷重による応力

上部ドライウェル機器搬入用ハッチに作用する荷重として死荷重による鉛直方 向荷重を考慮する。ここで、荷重の作用位置はすべての場合に対して安全側に上部 ドライウェル機器搬入用ハッチの外側端(フランジ面)とする。



(1) 曲げ応力度



- 3.2 ガセットプレート (内側) (応力評価点 P13)
  - 3.2.1 形状及び寸法

ガセットプレートの形状及び寸法を図 4-1 に示す。



図4-1 ガセットプレートの形状及び寸法(単位:mm)
3.2.2 最高使用圧力(内圧)による応力度

最高使用圧力(内圧)によるせん断応力度は、図4-2に示すガセットプレート(内側)1枚当たりの分担面積に等分布荷重を受けるものとして次のように計算される。



図4-2 ガセットプレート1枚当たりの分担面積



3.2.3 上部ドライウェル機器搬入用ハッチに作用する荷重による応力度3.1.3項で計算した荷重がガセットプレートに作用する。



## 3.3 応力評価

フランジプレート(内側)(応力評価点 P11)及びガセットプレート(内側)(応 力評価点 P13)に対する応力評価を表 5-1 に示す。

表 5-1 に示すように、各応力評価点の応力は、許容値以下である。

# 表 5-1 各荷重によりフランジプレート及びガセットプレートに生じる応力まとめ

単位:MPa

|                    | -++            | P    | P 1 3 |       |  |
|--------------------|----------------|------|-------|-------|--|
| 何重畨号               | 何重             | 曲げ応力 | せん断応力 | せん断応力 |  |
| (1)                | 最高使用圧力<br>(内圧) |      |       |       |  |
| (6)                | 鉛直荷重<br>(通常)   |      |       |       |  |
| $(1) \times 2+(6)$ | 評価用応力          |      |       |       |  |
| 許名                 | 客応力            | 312  | 156   | 156   |  |

## 4. 参考文献

(1) WARREN C. YOUNG "ROARK'S FORMULAS for Stress and Strain"  $7^{\rm th}$  Edition

#### 格納容器貫通部における楕円変形の影響について

原子炉格納容器の貫通部は、事故条件下において、圧力上昇や温度上昇により貫通部が楕 円変形する可能性がある。この影響について、下記のとおり検討を行った。

柏崎刈羽6/7号機の原子炉格納容器の貫通部は、躯体のコンクリートに開口が設けられ、この開口部に貫通部が設置されている。このため、貫通部の胴板の周囲がコンクリートで覆われており、コンクリートの変形以上に貫通部胴板が変形することはなく、また、コンクリート躯体厚さが2m程度あるため、圧力の変動等によっても、貫通部胴板が大変形することはない(図-1参照)。

また、ハッチ等の貫通部の蓋は、フランジボルトにより貫通部に固定され、フランジボル ト以外に拘束力を作用させるものが存在しないため、フランジ面が内圧以外の要因で開口 することはない。

このため、貫通部が変形することにより開口が生じることはないものと考える。



図-1 原子炉格納容器貫通部(機器ハッチの例)

以上

#### モデル化している各部位の耐震性について

格納容器バウンダリの構成機器について、各機器(ドライウェルトップヘッド、機器搬入 用ハッチ、サプレッションチェンバ出入口、所員用エアロック、原子炉格納容器配管貫通部 及び原子炉格納容器電気配線貫通部)について、基準地震動 Ss に対する耐震性を示すため、 地震時の発生応力を算出し、供用状態 Dsの評価基準値と比較した。その結果、表-1 に示す とおり、全ての評価部位において評価基準値を満足しており、評価対象部位は地震に対して 健全性を有していると考える。

なお、フランジ部については、フランジ面がボルトにより固定されており、地震時にはフ ランジ接合された部位同士が一体として加振されるため、地震によってフランジ部応力は 発生しないと評価している。

| 評価対象                 | 一次応力        |           |                                        |  |  |  |
|----------------------|-------------|-----------|----------------------------------------|--|--|--|
| 設備名                  | 応力分類        | 発生応力(MPa) | 供用状態 D <sub>S</sub> における<br>評価基準値(MPa) |  |  |  |
| ドライウェル<br>トップヘッド     | $P_L + P_b$ | 111       | 380                                    |  |  |  |
| 上部ドライウェル<br>機器搬入用ハッチ | せん断応力       | 55        | 158                                    |  |  |  |
| 下部ドライウェル<br>機器搬入用ハッチ | $P_L + P_b$ | 40        | 380                                    |  |  |  |
| サプレッション・<br>チェンバ出入口  | せん断応力       | 30        | 164                                    |  |  |  |
| 上部ドライウェル<br>所員用エアロック | せん断応力       | 57        | 158                                    |  |  |  |
| 下部ドライウェル<br>所員用エアロック | $P_L + P_b$ | 46        | 380                                    |  |  |  |
| 原子炉格納容器<br>配管貫通部     | Pm          | 245       | 269                                    |  |  |  |
| 原子炉格納容器<br>電気配線貫通部   | 曲げ応力        | 256       | 317                                    |  |  |  |

表-1 地震時の原子炉格納容器における発生応力及び評価基準値(7号機)

以上

#### フランジの開口に対するシール材の復元特性について

1. はじめに

フランジ等のシール部に用いるシール材は、フランジ等の開口量に合わせて形状が変化 することによりシール性能を確保しているが、フランジ等の開口量の変化する速度にシー ル材の形状の変化が追従できない場合には、漏えいが生じる可能性がある。

このため、シール材の形状が変化するために必要な時間(復元速度)を確認し、フランジ 部の開口量の変化速度との比較を行った。

2. シール材の形状変化速度

フランジ部においてシール材に採用する改良 EPDM シール材について、復元速度を評価するため、JIS-K 6254 に基づく試験を行った。

当社が評価している有効性評価に関する事故シナリオにおいて、フランジ開口量の変化 速度が最も早くなるのは、溶融炉心がペデスタルに落下した際の圧力上昇時(FCI評価)で ある。この場合における開口量の変化速度は 0.15mm/s 程度であることがわかっているため、 これを参照して、0.15mm/s を上回る 300mm/min (5mm/s) 及び 500mm/min(8.33mm/s)を試験 速度とした。

試験では、常温下で所定距離(3.75mm)まで一定速度(300mm/min または500mm/min)で圧縮 後、初期位置まで一定速度(300mm/min または500mm/min)で荷重を開放し、この際に改良 EPDM 材に加わる圧縮応力を測定する試験を実施した(図1参照)。本試験装置では、シール 材の荷重を開放するとき、シール材の復元速度が試験装置の開放速度より大きい場合には 圧縮応力が計測されることから、これにより、復元速度を測定することができる。



[復元速度測定装置]

図1 復元速度測定試験の概要

#### 3. 試験結果

試験結果を図2に示す。この図に示すように、荷重開放時の各計測点において圧縮応力が 測定されたことから、改良 EPDM シール材の復元速度は 500mm/min (8.33mm/s) 以上である ことを確認した。前述の通り、フランジ開口量の変化速度が最も早くなるのは、溶融炉心が ペデスタルに落下した際の圧力上昇時 (FCI 評価) であるが、その時のフランジ開口変化速 度は 0.15mm/s 程度であり、以下の通りシール材復元速度は十分な追従性を有しているも のであり、急速な開口に対してもシール機能を維持できるものと考えている。

シール材復元速度 500mm/min (8.33mm/s) 以上>フランジ開口変化速度 (0.15mm/s)

# 図 2 一定復元速度下で測定した改良 EPDM シール材の圧縮応力 (左図: 300mm/min、 右図: 500mm/min)

なお、本試験は、劣化していない材料に対して実施したものであるが、表 2-1-1 で示す とおり、劣化後の圧縮永久歪み、硬さ、質量変化率からは、有意な性状変化は見られてい ない。また、さらに詳細に劣化による影響を確認するために、劣化後の材料の FT-IR やシ ート面の硬さに関する検討を行った。その結果、シール材の性状に大きな変化は確認され なかった。

これらに示す試験結果から、劣化を考慮した場合でもシール材の復元特性に大きな変化 はなく、また、復元速度はフランジ開口速度に対して十分な余裕があることから、開口に 対する追従性に問題はないものと考える。 <追従性判断に使用できる理由>

800kGyの放射線照射を行い、乾熱 200℃を 168 時間暴露した改良 EPDM シール材および、800kGyの放射線照射を行い、乾熱 250℃を 168 時間暴露した改良 EPDM シール材について、劣化後のシート面の FT—IR スペクトルを図 3 に、硬さ測定の測定値を図 4 に示す。その結果、放射線照射+蒸気暴露後の試験片と初期試験片に顕著な差異はないことが確認できるため、復元特性が同様であると類推される。



図3 FT-IR 測定結果(シート面)



また、上記試験に加え、劣化した試験体を用いた復元速度測定も実施している。試験条件 を表 1、試験結果を図 5、6 に示しているが、劣化後においても復元速度は 500mm/min 以 上であり、十分な復元速度を有していることが確認できた。

| ケース | 材料      | 照射量  | 暴露媒体 | 暴露温度                      | 試験体数 |  |  |  |  |
|-----|---------|------|------|---------------------------|------|--|--|--|--|
| 1   | 改良 EPDM | 1MGy | 蒸気   | 200℃(168 時間)              | 3個   |  |  |  |  |
| 2   | 改良 EPDM | 1MGy | 蒸気   | 200℃(168 時間)+150℃(168 時間) | 3個   |  |  |  |  |

表1 劣化試験体を用いた復元速度測定試験の試験条件



図 5 復元速度測定試験(試験数:各3) (劣化条件<ケース1>:放射線 1MGy、 熱 200℃、168h) (左:300mm/min、 右:500mm/min) 図 6 復元速度測定試験(試験数:各3) (劣化条件<ケース2>:放射線 1MGy、 熱(蒸気)200℃、168h⇒150℃、168h) (左:300mm/min、 右:500mm/min)

本試験で得られた結果から、劣化を考慮した場合の改良 EPDM 製シール材の復元速度 は 500mm/min (=8.33mm/s) 以上あることが確認できる。これは、有効性評価で考慮し ている最もフランジ開口の変化速度早い事象(0.15mm/s) と比較しても、十分な裕度を有 しており、試験データにもばらつきが小さいことから、事故時に必要なシール性能を維持 できるものと評価できる。

#### 実機フランジモデル試験の概要について

改良EPDM材のシール機能の性能確認として、実機フランジモデルを用いて、実機条件に近い状態でのシール健全性の確認を行った。試験フローを図1 に示し、試験の概要を以下に示す。



図1 実機フランジモデル試験フロー

#### 1. 試験装置

実機フランジ模擬試験の試験装置は図2に示すようにフランジユニット、ガ ス供給ユニット、リークガス計測ユニットから構成される。フランジユニット は、直径250mmのガスケット試験体を組み込んで内部を加圧可能な試験フラ ンジと、試験フランジを所定の試験条件に加熱制御するためのフランジ加熱ヒ ータから構成される。試験フランジのガスケット試験体を組み込む溝断面形状 (フランジ型式)は実機フランジで採用されているタング&グルーブ型(T&G型)、 甲丸型の2種類を模擬している。フランジ断面形状は実機と同形状であり、中 心径のみを縮小した試験装置としているため、試験で得られたリーク量は、ガ スケット径比で補正することで実機フランジのリーク量に適用できる(図3参 照)。また、内圧上昇後の格納容器フランジの開口を模擬するため、ガスケット 試験体の押込み量をフランジ間に設置する調整シムにより設定する。ガス供給 ユニットは、高圧空気ボンベと圧力調整器から構成され、所定の圧力に調整さ れた加圧ガスを空気加熱器により所定の温度に加熱制御する。リーク量はリー クガス計測ユニットのマスフローメータにて計測される。試験装置外観写真を 図4に示す。







図2 試験装置概要図

 T&G型

 図3
 フランジ型式による溝断面形状の違い



試験装置外観(フランジ開放時)



試験装置外観(フランジ密閉時)

図4 試験装置外観写真

2. 試験条件

試験条件を表1に示す。事故条件を模擬するために、放射線照射量は、フラ ンジガスケット部の事故後7日間の累積放射線量の目安である800kGyを予め 照射したシール材を用いる。放射線による劣化と熱による劣化は、逐次法(放射 線→熱)により付与した。

一般に有機材料の放射線劣化挙動には、酸素が影響を及ぼすことが知られて いるが、環境に酸素が存在しない場合においては放射線と熱の同時法と逐次法 (放射線→熱)の劣化はほぼ等しいことが知られている。格納容器内は、通常時は 窒素環境下、事故時は蒸気環境下であり、酸素が常に供給される環境では無い ことから、放射線と熱の同時曝露の影響は十分小さいものと考えられることか ら、逐次法による劣化の付与は妥当であると考えられる。 また、改良EPDM材の劣化は、一般的に酸素により引き起こされるとの知 見に基づき、加圧雰囲気は蒸気ではなく高温空気(乾熱)を用いる。また、温 度については、格納容器限界温度である 200℃、さらに余裕を見た 250℃、300℃ とし、加圧圧力は格納容器限界圧力 2Pd (0.620MPa)を包絡する圧力で気密確 認を実施する。また、内圧上昇後の実機フランジの開口を模擬するため、フラ ンジによるガスケット試験体の押込量を最小限(0mm)で設定する。ガスケット の押込量は、設計押込量に対し、予備試験によりリークしない最小の押込量に 設定する。なお、予備試験の結果、何れの試験ケースともリークしない最小押 込量は 0mm であった。

3. 試験結果

試験結果を表1に示す。フランジによるガスケット試験体の押込量が最小限 (0mm)であっても有意な漏えいは発生せず、200℃・168hr、250℃・96hrの耐 性が確認された。300℃のケースにおいては試験途中にリークが発生したケース があったものの、概ね24hr程度の耐性を有することが確認された。図5に 200℃・168hrの試験ケースにおける試験体の外観を示す。図5より、フランジ とガスケット試験体との接触面を境界として劣化(表面のひび割れ)は内周側で 留まり、外周側に有意な劣化が見られないことから、フランジ接触面でシール 機能を維持できていることが確認された。また、断面形状より、劣化(表面のひ び割れ)はガスケット試験体の表面層のみで留まっているため、有意な劣化が進 行していないことが確認された。

| No. | フランジ型式 | 試験体        | 温度    | 継続時間  | 押込量 | 漏えい              |
|-----|--------|------------|-------|-------|-----|------------------|
| 1   | T&G 型  | 改良 EPDM(A) | 200°C | 168hr | Omm | 無                |
| 2   | 甲丸型    | 改良 EPDM(A) | 200°C | 168hr | Omm | 無                |
| 3   | T&G 型  | 改良 EPDM(A) | 250°C | 96hr  | Omm | 無                |
| 4   | 甲丸型    | 改良 EPDM(A) | 250°C | 96hr  | Omm | 無                |
| 5   | T&G 型  | 改良 EPDM(B) | 250°C | 96hr  | Omm | 無                |
| 6   | 甲丸型    | 改良 EPDM(B) | 250°C | 96hr  | Omm | 無                |
| 7   | T&G 型  | 改良 EPDM(A) | 300°C | 24hr  | Omm | 無                |
| 8   | 甲丸型    | 改良 EPDM(A) | 300°C | 24hr  | Omm | 有 <sup>**2</sup> |
| 9   | T&G 型  | 改良 EPDM(B) | 300°C | 24hr  | Omm | 無                |
| 10  | 甲丸型    | 改良 EPDM(B) | 200°C | 168hr | Omm | 無                |

表1 SA 条件での試験結果<sup>\*1</sup>

※1:下記条件は全ケース共通である。

試験圧力:2Pd以上,照射量:800kGy,加圧媒体:乾熱(空気) ※2:継続時間22hr時点で漏えいが発生した



図5 200°C・168hr 試験後の試験体外観(左:T&G型、右:甲丸型)

(\*)日本原子力学会 2015 年秋の大会投稿

### NUPEC 解析モデルの当社プラントへの適用性について

NUPEC 評価の ABWR 代表プラントにおける解析モデルは、構造不連続部に生じる局部的な ひずみを評価できるよう、高ひずみが発生する破損想定部を対象に、ライナとそれに付帯す るライナアンカやフラットバーも3次元形状で模擬している。破損想定部の対象は RCCV 全 体モデル解析でライナひずみが大きい領域が見られた下部ドライウェルアクセストンネル 開口近傍と上部ドライウェル開口近傍隅角部の鋼製部とした。柏崎刈羽原子力発電所6号 炉・7号炉と代表プラントに関する原子炉格納容器ライナの仕様は表1 に示すように同等 であり、柏崎刈羽原子力発電所6号炉及び7号炉に対し本結果は適用可能である。

また、コンクリート部については NUPEC 評価に加え、最新知見を踏まえて自社での評価も 実施している。詳細は、次頁以降に示す。

|             | 1         | 柏崎刈羽原子              | 少まプランパ              |                     |
|-------------|-----------|---------------------|---------------------|---------------------|
| 坦日          |           | 6 号炉                | 7 号炉                | 代表フラント              |
| 最高使用圧力(MPa) |           | 0.31                | 0.31                | 0.31                |
|             | 厚さ(mm)    | 2000                | 2000                | 2000                |
| 鉄筋コンクリート    | コンクリート    | $33 \text{ N/mm}^2$ | $33 \text{ N/mm}^2$ | $33 \text{ N/mm}^2$ |
| 政府 ユンクリート   |           | 設計基準強度              | 設計基準強度              | 設計基準強度              |
|             | 鉄筋        | SD390               | SD390               | SD390               |
|             | 内径(mm)    |                     |                     |                     |
| 田竺如三ノナ      | 高さ(mm)    |                     |                     |                     |
| 円同部フィリ      | 板厚(mm)    |                     |                     |                     |
|             | アンカ寸法(mm) |                     |                     |                     |
| トップスラブ      | 板厚(mm)    |                     |                     |                     |
| ライナ         | アンカ寸法(mm) |                     |                     |                     |
| 下部ドライウェル    | 内径(mm)    |                     |                     |                     |
| アクセストンネル    | 板厚(mm)    |                     |                     |                     |
| 開口周りスリーブ    |           |                     |                     |                     |
| 下部ドライウェル    | 板厚(mm)    |                     |                     |                     |
| アクセストンネル    | ガセットプレー   |                     |                     |                     |
| 開口周り厚板部     | ト寸法(mm)   |                     |                     |                     |
|             | ライナプレート   |                     |                     |                     |
| 材質          |           |                     |                     |                     |
|             | ライナアンカ    |                     |                     |                     |

表1 原子炉格納容器コンクリート・ライナの仕様

1. 原子炉格納容器本体(コンクリート部)

1.1 評価方針

原子炉格納容器は鋼製ライナを内張りした鉄筋コンクリート造であり、原子炉建屋と 一体となっている。原子炉格納容器本体(コンクリート部)の設計時に考慮される機能喪 失要因は内圧上昇に伴う破損であり、コンクリート部の構造健全性を維持できる限界の 内圧を評価することで 200℃、2Pd における健全性を確認する。

1.2 評価

(1)標準ケース(NUPEC 条件)

コンクリート部の構造健全性については、NUPEC 重要構造物安全評価(原子炉格納 容器信頼性実証事業)(平成2年度~平成14年度)において有限要素法を用いた弾塑性 解析により、原子炉格納容器本体(コンクリート部)の耐圧性状を求める。評価モデ ルは実炉スケールのモデルとし、200℃条件下での材料物性(規格値;図2~図4 参 照)に基づき、内圧に対する静的漸増解析で耐圧性状を確認する。RCCV 全体の耐圧 性状の確認のため、解析モデルは図1 に示す格納容器本体解析モデルを用いる。



図1 格納容器本体解析モデル



図2 コンクリート物性



図3 ライナ引張/圧縮特性



別紙 12-3

(2) KK6/7 における追加解析(KK6/7 条件)

KK6/7を対象にしたパラメータスタディとして、(1)の標準解析から10年程度経過 していることなどを考慮して、解析条件の一部を変更して、当社独自の追加解析を実施 している。(1)に示すNUPEC条件から変更した箇所を表2に示す。本検討での解析モ デルは、図5に示すように、NUPEC条件解析実施当時に比べて計算機能力が向上してい るため、より現実的な360度モデルを用いることとした。このことにより、必ずしも配 置が対称形になっていなかった一部の開口部について、解析では実機の位置と異なっ ていた点などを解消することが可能となり、より正確な解析が可能となった。また、常 温時のコンクリート物性は、設計基準強度に基づく設計剛性からサイト固有の現実的 な条件を反映して実剛性を用いることとし、さらに高温時のコンクリート物性は、 NUPEC条件解析実施当時の最新知見ではなく、現時点で最も標準的に用いられることの 多い国際的標準規格である欧州規格(Eurocodes)に基づき評価することとした。参考 までに、200℃におけるコンクリート物性の比較を図6に示す。それ以外の鉄筋及びラ イナの構造や物性、並びに、境界条件を含む解析条件に関しては NUPEC条件と同様とし ている。

| 項目       |      | NUPEC 条件      | KK6/7 条件 |  |
|----------|------|---------------|----------|--|
| 解析モデ     | シル   | 180 度モデル      | 360 度モデル |  |
| コンクリート物料 | 常温条件 | 設計剛性          | 実剛性      |  |
| コングリート物性 | 高温条件 | 当時の最新知見 1)、2) | 欧州規格     |  |

表2 解析条件の変更点



図5 格納容器本体解析モデル(KK6/7 相当ケース)



図6 200℃におけるコンクリート物性の比較

【参考文献】

- Y. Sugawara et al, "Nonlinear Analysis of Reinforced Concrete Structures Subjected to High temperature and external load", SMiRT12
- 2) Y. Sugawara et al," Ultimate Strength of Reinforced Concrete Members Subjected to Transient High temperature Distribution", SMiRT12

1.3 評価結果

(1)標準ケース (NUPEC 条件)

解析の結果によると、格納容器の内圧を上昇させていった場合、3.0Pd 程度で格納 容器(コンクリート部)のRCCV 壁の鉄筋が降伏し始め、4.0Pd でほぼ全面で鉄筋が 降伏する。4.0Pd 近傍からアクセストンネル開口部周辺・隅角部周辺のコンクリート の局所的破損が始まり、4.5Pd では開口部・隅角部全体で変形が大きく進行する。図 7 に4.0Pd における相当塑性ひずみ分布図を示す。上記結果より、格納容器本体(コ ンクリート部)の破損は4.0Pd~4.5Pd で発生すると考えられる。したがって、有効 性評価における限界温度、圧力としている200℃、2Pdを用いることは妥当であると言 える。



図7 4.0Pdにおける相当塑性ひずみ分布図(上:引張側 下:圧縮側) 出典:平成14年度 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 (平成15年3月 財団法人原子力発電技術機構)

(2) KK6/7 における追加解析(KK6/7 条件)

4.0Pd における相当塑性ひずみ分布図を図8に示す。コンクリートの構造特性を変 更した影響が大きいと考えられるが、標準ケース(NUPEC条件)と比べて、シェル部 の損傷範囲は広がっているものの、発生ひずみの最大値は小さくなっており、格納容 器本体(コンクリート部)の耐圧限界は標準ケース(NUPEC条件)と同等以上である と考えられる(標準ケースの4.0Pd~4.5Pdよりもやや大きく5.0Pd以上と評価してい る)。

また、参考として、200℃、2Pd時点でのシェル部及びトップスラブ部の一般部にお けるコンクリートの最小主ひずみ分布、ライナのひずみ分布及び鉄筋のひずみ分布を 図9~図10に示す。これより格納容器本体(コンクリート部)の鉄筋は、大部分は降 伏ひずみに達しておらず、一部の要素で局所的に降伏ひずみに達している程度であ り、破断までには十分な余裕があり、格納容器本体(コンクリート部)のコンクリー トは、ひび割れは発生しているものの、圧縮ひずみは2000 μ よりも小さく、破壊まで には十分な余裕があり、格納容器本体(ライナ部)のライナは、圧縮ひずみが0.005 よりも小さく、破断までに十分な余裕があることが評価できる。このように当社にお ける追加解析の結果を加えることにより、標準ケース(NUPEC条件)の評価結果に信 頼性を加えることができたと考えており、有効性評価における限界温度、圧力として いる200℃、2Pdを用いることは妥当であると評価している。



(KK6/7相当ケース、上:引張側 下: 圧縮側)



図9 シェル部の一般部におけるコンクリート及び鉄筋のひずみ分布



図10 トップスラブ部の一般部におけるコンクリート及び鉄筋のひずみ分布

【参考資料】

- 2) 齋藤 英明 他、"鉄筋コンクリート製格納容器(RCCV)の開発(その5) トッ プスラブ実験(1/10 模型) ---実験結果とまとめ---"、日本建築学会大会学術講演梗概 集、昭和63年10月

## 鉄筋コンクリート製格納容器(RCCV)の開発

| (その4 | ) ŀ | ップスラ | ブ実 | 験(1/10模型) | - | 実験計 | 画一           |   |    |      |
|------|-----|------|----|-----------|---|-----|--------------|---|----|------|
| 正会員  | 齋藤  | 英明*1 | 同  | 菊地利喜郎*1   |   | 古川  | <b>秀康*</b> 2 |   | 村松 | 豐*4  |
| 正会員( | )三浦 | 俄夫*4 | Ē  | 長谷川歳恭*4   | a | 平川  | 啓司*5         | đ | 大森 | 信次** |

参考資料 2)

# 鉄筋コンクリート製格納容器(RCCV)の開発

| (その5) | トッ | プスラブ | 実験 | (1/10) | 模型)- | 実験 | 結果と | まとめー |   |    |                  |
|-------|----|------|----|--------|------|----|-----|------|---|----|------------------|
| 正会員   | 齋藤 | 英明•1 | 同  | 菊地利    | 喜郎・) |    | 村松  | 豐*2  |   | 古川 | 秀康•3             |
| 正会員(  | 田中 | 伸幸*4 | 同  | 三浦     | 俊夫** | 同  | 岡本  | 晴彦*" | 同 | 高橋 | 敏夫 <sup>••</sup> |

-1239-

別紙 12-- 14 -

別紙-13

SA時のS/C構造評価における水力学的動荷重の影響について

本章では、SA時のS/C水位上昇を踏まえた水力学的動荷重の影響について説明する。SA時のS/C水位上昇する時間帯でS/Cに作用する可能性がある水力学的動荷重は、以下に示す通り、ベント管からの吹き出しによる荷重(蒸気凝縮振動荷重、チャギング荷重)及び主蒸気逃がし安全弁作動時におけるクエンチャからの吹き出しによる荷重(逃がし安全弁作動時荷重)が考えられる。これ以外の水力学的動荷重については、図1で示す通り事故後初期に起きる事象であり、S/C水位が上昇する時間帯に考慮する必要はないと考えている。

- (1) ドライウェルと S/C を繋ぐベント管からの蒸気吹き出しによる荷重
  - ·蒸気凝縮振動荷重
  - ・チャギング荷重
- (2) 主蒸気逃し安全弁(SRV)作動時にプール水中のSRV排気管端部に設置された クエンチャからの気泡吹き出しによる荷重



・逃がし安全弁作動時気泡振動荷重

図1 冷却材喪失事故時荷重の時間履歴(既工認図書 抜粋)

以上のことから、蒸気凝縮振動荷重・チャギング荷重・逃がし安全弁動作時気泡振動荷重について、SA時のS/C水位上昇時における影響を後述するが、いずれも建設時に考慮している動荷重で設計していれば影響を与えないレベルであることを確認した。

(1)ドライウェルと S/C を繋ぐベント管からの吹き出しによる荷重

## · 蒸気凝縮振動荷重

#### ・チャギング荷重

SA時 S/C 水位が高い状況に考慮すべき動荷重について検討を行った。蒸気凝縮に伴う動荷重には、高蒸気流量域で生じる蒸気凝縮振動(Condensation Oscillation)と、蒸気流量が小さい領域で生じるチャギング(Chugging)があり、前者は水温が高くなると荷重が増大し、後者は逆に水温が高くなると荷重は小さくなることが知られている。これらの関係を整理したものを図2に示す。



藤井他「気液二相流の動的配管計画」日刊工業新聞社(1999)をもとに作成 図2 蒸気凝縮の態様

ここで、SA 時の S/C 水位が高い状況における格納容器ベント時の蒸気凝縮振動、チャギ ングについて考えるため、大 LOCA(ベント)シナリオの図 3 格納容器内圧力、図 4 サプ レッション・チェンバ水位、図 5 サプレッション・プール水温を参照する。

格納容器ベント時のベント管における蒸気流量は、格納容器圧力が 0.62MPa[gage]にお ける最大排出流量 31.6kg/s からベント管流路面積 11.3m<sup>2</sup>を踏まえて算出すると約 2.8kg/m<sup>2</sup>s であり、LOCA 発生直後の蒸気流量約 100kg/m<sup>2</sup>s に比べて十分に小さいため、 蒸気凝縮振動は発生しないものと考えている。また、チャギングについても、チャギングが 発生すると思われる蒸気流量よりも十分低いこと(安定なバブリング領域)、かつ、仮に発 生したとしても S/C 水温が 100℃以上と高く、チャギング荷重が小さくなる領域であるこ とから、その影響は設計上考慮している荷重に比べ十分小さいものと考えている。



図3 格納容器圧力の推移(大LOCA)







| (2) | 主蒸気逃し安全弁(SRV)作動時にプール水中のSRV排気管端部に設置された |
|-----|---------------------------------------|
|     | クエンチャからの気泡吹き出しによる荷重                   |
|     | ・逃がし安全弁作動時気泡振動荷重                      |

SA時 S/C 水位が高い状況に考慮すべき動荷重について検討を行った。逃がし安全弁作 動時荷重を考慮すべき状況は、SBO 時のように、原子炉が高圧状態での隔離が長時間継 続し、かつ外部水源からの注水を行う場合であり、その場合は S/C 水位が上昇した状態 で逃がし安全弁作動時荷重が生じ得る。SBO 時の原子炉圧力、蒸気流量、サプレッショ ン・チェンバ水位、サプレッション・チェンバ水温を図 6~9 に示すが、この場合の S/C 水位は真空破壊弁高さよりも十分に低い。

また、LOCA 時やその他のシーケンス時には、原子炉は短時間で減圧されるため、その 後 S/C 水位が上昇した時点では、原子炉又は SRV 排気管からの大流量の蒸気放出はな く、逃がし安全弁作動時荷重を考慮する必要はないと考えている。



図6 原子炉圧力の推移 (SBO)



図7 逃がし安全弁からの蒸気流出流量の推移 (SB0)



図8 サプレッション・チェンバ水位の推移 (SBO)



図9 サプレッション・チェンバ水温の推移 (SBO)

以上のことから、SA時 S/C水位上昇時のベント管による蒸気凝縮荷重及びチャギング荷 重、逃がし安全弁作動時における逃がし安全弁作動時荷重については考慮する必要はない と考えており、建設時に設計考慮した動荷重で評価していることで十分と考えている。

ただし、保守的な考えとして、S/C 水位上昇時においてチャギング荷重が発生した場合の評価を、7 号炉を代表として以下に示す。なお、本評価は概略評価であり、参考値の位置づけで示す。

<評価モデル>

S/C に加わる水力学的動荷重について、最も強度評価に影響を与える部位はアクセストンネルである。よって、S/C 水位上昇時のチャギング荷重を評価するために、7 号炉アクセストンネルの強度評価を図 10 の FEM モデルを用いて評価した。応力評価点については図 11 に示す。



図10 アクセストンネル FEM モデル

図 11 応力評価点

<評価条件>

評価条件は表1に示す。S/C水位上昇によるチャギング荷重の影響を評価するために、S/C 水位はW/Wベントライン下端高さ(S/C床面より17.15m)の条件とし、その水位に応じたチ ャギング荷重値を用いて評価する。なお、評価条件としてD/W-W/W想定差圧、平均温度は建 設時と同じ条件とする。

| 項目     | 建設時評価          | 今回評価             |  |
|--------|----------------|------------------|--|
| CH 荷重値 | 最大正圧 : +32kPa  | 建設時と同じ           |  |
|        | 最大負圧 : -19kPa  |                  |  |
| S/C 水位 | HWL            | ベントライン下端高さ       |  |
|        | (S/C床面より 7.1m) | (S/C床面より 17.15m) |  |
| 想定差圧   | 144kPa         | 建設時と同じ           |  |
| 平均温度   | 137. 5°C       | 建設時と同じ           |  |

表1 アクセストンネル評価の条件



図12 チャギング荷重分布

<評価結果>

水位上昇時の運転状態IVの応力評価のまとめを表 2 に示す。表 2 に示す通り、各応力評価 は許容応力以下である。また、建設時との比も最大で約 1%程度であり、チャギング荷重の 影響は、水位上昇を考慮してもほとんど影響しないことが確認できた。なお、シビアアクシ デント時を想定すると S/C 水位上昇時は S/C 水温が高く、チャギング荷重の影響がほとん どみられない領域と考えられるが、本評価においてはチャギング荷重が厳しめに加わる想 定で評価を実施している。このことからも、S/C 水位上昇によるチャギング荷重の影響はほ とんどないものと考えている。

| 荷重の組合せ番号 | 7 (CH)   |             |      |  |  |  |
|----------|----------|-------------|------|--|--|--|
|          | 建設時      | 水位上昇時       |      |  |  |  |
| 評価点番号    | (HWL)    | (HWL+10.05) | 比    |  |  |  |
|          | $N/mm^2$ | $N/mm^2$    |      |  |  |  |
| P1-A     | 360      | 357         | 0.99 |  |  |  |
| P1-B     | 350      | 347         | 0.99 |  |  |  |
| Р1-С     | 208      | 209         | 1.00 |  |  |  |
| P2-A     | 293      | 296         | 1.01 |  |  |  |
| P2-B     | 147      | 138         | 0.94 |  |  |  |
| P2-C     | 211      | 200         | 0.95 |  |  |  |
| РЗ-А     | 29       | 24          | 0.83 |  |  |  |
| РЗ-В     | 32       | 22          | 0.69 |  |  |  |
| РЗ-С     | 27       | 28          | 1.04 |  |  |  |
| P4-A     | 116      | 119         | 1.03 |  |  |  |
| P4-B     | 268      | 260         | 0.97 |  |  |  |
| P4-C     | 222      | 211         | 0.95 |  |  |  |
| P5-A     | 270      | 267         | 0.99 |  |  |  |
| Р5-В     | 271      | 270         | 1.00 |  |  |  |
| Р5-С     | 356      | 350         | 0.98 |  |  |  |
| 最大       | 360      | 357         | 0.99 |  |  |  |
| 許容値      | 427      | 427         | -    |  |  |  |

表2 水位上昇時の運転状態IVの応力評価
原子炉格納容器バウンダリを構成する各設備に関して、重大事故時に放射性物質の閉じ 込め機能を喪失する要因として、原子炉格納容器内の温度・圧力条件や原子炉格納容器本体 の変形に伴い、構造健全性が失われる場合と、シール部の耐漏えい機能が失われる場合が想 定される。

- ①原子炉格納容器本体(コンクリート部)
  - 曲げせん断破壊
- ②原子炉格納容器本体(ライナ部)

延性破壊

- ③トップヘッドフランジ
  - 延性破壊、変形、高温劣化(シール部)
- ④ハッチ類(機器搬入用ハッチ等)
  - 延性破壊、変形、高温劣化(シール部)
- ⑤エアロック
- 延性破壊、変形、高温劣化(シール部) ⑥配管貫通部
  - 貫通配管
    - 延性破壊
  - ・スリーブ
    - 延性破壊
  - ・端板
    - 延性破壊
  - ・閉止板
    - 延性破壊
  - ・閉止フランジ
    - 延性破壊、高温劣化(シール部)
- ⑦電気配線貫通部
  - 延性破壊、高温劣化(シール部)
- ⑧原子炉格納容器隔離弁
  - 延性破壊、高温劣化(シール部)

これら機能確保のために評価を行う必要のある機器について、構造健全性及びシール部の機能維持について、各設備に対し放射性物質の閉じ込め機能を確保できる判断基準を設定して評価を行ったが、判断基準に対する各機器の裕度について、表 18-1 に示す。

裕度の考え方は部位ごとに異なっており、破損限界を評価することができるものについては、200℃・2Pdにおける状態と破損限界との比較を行っている。一方、破損限界が確認できていないものについては、200℃・2Pdの状態における健全性を確認した際の判定基準に対する裕度を評価した。

その結果、構造部材について裕度が最小となるものは、ハッチ類、エアロック、配管貫 通部の応力比較であり、裕度は約1.1であった。ただし、これらの評価においては、評価 基準として、規格等に定められている許容値を用いて評価しているものであり、許容値が 保守的に設定されているものであることから、実際の構造部材としての実力ではさらに裕 度を有しているものと考える。

一方、シール部については、シール材が事故条件下において時間的に劣化していくこと が確認されている。このため、構造部材と異なり、現在の評価において健全性が確認され ている7日間の期間を超えて200℃・2Pdの状態が長時間継続した場合には、シール材が機 能を喪失し漏えいが生じる可能性がある。また、シール部のうちでも、トップヘッドフラ ンジや機器ハッチ等、フランジ構造になっている箇所については、圧力の上昇にともない 開口量が増加するため、その影響により、他のシール部に比べて漏えいが生じるリスクが 高いものと考えられる。

これらの検討結果から、構造部材については、200℃・2Pdの状態が維持された場合にお いても漏えいが生じることはなく、また、構造部材が有する実力での強度を考慮した場合 には、十分な裕度が確保されているものと評価できる。一方、フランジ構造のシール部に ついては、200℃・2Pdの状態が維持された場合であっても、その状態が7日間を超えて長 期間継続した場合には漏えいが生じる可能性がある。このため、実際の事故時における漏 えいに対する裕度は、フランジ構造のシール部である、トップヘッドフランジ、機器ハッ チ、エアロックが最も少ないと考える。

以上

|   | 評価対象部位                                    | 想定される<br>機能喪失要因 | 裕度の考え方                                                                        | 2Pdに対する裕度(評価結果)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---|-------------------------------------------|-----------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 原子炉格納容器本体<br>(コンクリート部)                    | 曲げせん断破壊         | NUPECで実施された弾塑性解析により、200℃条件下で、コンクリ<br>一ト部の内圧に対する耐圧性状を確認                        | 約 2.0 (4.0Pd 近傍からコンクリートの<br>局所的破損開始)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3 | 原子炉格納容器本体<br>(ライナ部)                       | 延性破壞            | NUPEC で実施された歪み評価をもとに、200℃条件下で、ライナ部<br>破損圧力を評価                                 | 約 1.8 (約 3.5Pd でライナ部の相当塑性<br>ひずみが破断ひずみに到達)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                           |                 | 設計・建設規格の評価式に準拠し 200℃、2Pd において応力評価を行い、許容応力と比較                                  | 約 1.5 (締め付けボルトの発生応力と許<br>容値との比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                           | 処性破壊            | NUPECで実施された1/10スケールモデル試験体を用いた耐圧試験                                             | 約 1.4 (試験結果から弾性限界圧力(約                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0 | トップヘッドフランジ                                |                 | 結果に基づき限界圧力を評価                                                                 | 2. 8Pd) を算出)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                           | 変形・高温劣化         |                                                                               | - (圧力の上昇により開口量が増加する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                           | (シーン部)          | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                 | ことに加え、シール材が経時的に劣化す<br>るため、裕度の評価は困難)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                           |                 | 設計・建設規格の評価式に準拠し 200℃, 2Pd において応力評価を                                           | 約1.1 (ガセットプレートのせん断力と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                           | 新性品種            | 行い、許容応力と比較                                                                    | 許容値との比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | ベッチ類                                      | 渔压收敛            | NUPEC で実施されたハッチモデル試験体を用いた耐圧試験結果に                                              | 約3.0 (ハッチモデル試験体の限界圧力                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 | (接出着1日、…4年)                               |                 | 基づき限界圧力を評価                                                                    | (6.0Pd) との比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | (液晶版入用ハンク)寺)                              | 亦形、宣泪少儿         |                                                                               | - (圧力の上昇により開口量が増加する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                           | 冬川・同価約10        | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                 | ことに加え、シール材が経時的に劣化す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                           | (ノーノノ目)         |                                                                               | るため、裕度の評価は困難)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                           | 延性破痍            | 設計・建設規格の評価式に準拠し 200℃, 2Pd において応力評価を                                           | 約1.1 (ガセットプレートのせん断力と                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   |                                           | X6X1713/        | 行い、許容応力と比較                                                                    | 許容値との比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6 | エアロック                                     | 亦形、宣泪少小         |                                                                               | - (圧力の上昇により開口量が増加する                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                           | 冬/12・同価が10      | シール部の隙間評価結果及びガスケットの試験結果に基づき評価                                                 | ことに加え、シール材が経時的に劣化す                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                           | (シーノ目)          |                                                                               | るため、裕度の評価は困難)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |                                           |                 | 代表配管について、原子炉格納容器変位に伴う曲げ荷重の作用に                                                 | 約11(副様に生じろ広力と許珍値との                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | 配管貫通部(貫通配管)                               | 延性破壞            | よる強度評価を, 設計・建設規格 BPC-3530 に準拠し, 既工事計画<br>************************************ | ち tri verent o o o o o o o o o o o o o o o o o o o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ( | and her and the first of the first of the |                 | 診り中記書に未練のつナばて計画を未施<br>は、たった。                                                  | the second second in the second s |
| 9 | 配管真通部(スリープ、端                              | 延性破壞            | 代表配管について,設計・建設規格 FNE-3410,3610 に準拠し,必<br>亜汗言 / ポナ・ドニール パッカナ パポかけ・ポー           | 約 1.8 (配管真通部の部材 (コンクリー・コン) (コンクリー・コン) (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5 (1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | 极, 閉止极, 閉止フフンン)                           |                 | 要极岸(現在の破岸で生じる応刀が許容値を満たすこと)を昇正                                                 | ト部) (こ生じる心力と計谷値との比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | 即停 書 通 部 (開 正 フランジ)                       | 変形・高温劣化         | シール部の時間評価結果及びガスケットの試験結果に基づき評価                                                 | - (開口は生じないが、シール材が経時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   |                                           | (シーン部)          |                                                                               | 的に劣化するため、裕度の評価は困難)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |                                           | 型中世界 12         | 代表貫通部について,設計・建設規格 PVE-3230 に準拠し,必要板                                           | 約1.7 (呼び厚さと計算上必要な厚さと                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| E | 赤后割箔串运动                                   | ) 一下110 ( 110 ) | 厚を算定                                                                          | の比較)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Э | 电入出你只进口                                   | 変形・高温劣化         | 電共研, NUPEC で実施された電気配線貫通部のモデル試験体を用                                             | 約1.3 (NUPEC での試験において、約2.6Pd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   |                                           | (シート部)          | いた気密性能確認結果に基づき限界圧力・温度を評価                                                      | で漏えいが発生)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ø | 百子后枚纳尔哭隔離金                                | 変形·高温劣化         | ジーで建行して 子評審 は 曲 に म で か 開 使                                                   | - (開口は生じないが、シール材が経時                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ) | 1 C TRACKER ARE LEVE AV FILL - W F YEAR   | (シーク部)          |                                                                               | 的に劣化するため、裕度の評価は困難)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

表18-1 評価対象機器が有する限界温度・圧力に対する裕度

## 配管貫通部の代表性について

- 1. 原子炉格納容器貫通部の代表選定の考え方
  - 原子炉格納容器配管貫通部における評価は、格納容器配管貫通部全数から本章で示 す考えに基づき代表配管を選定する。
  - ② 原子炉格納容器貫通部周りの配管に発生する応力は、原子炉格納容器貫通部の変位 と、配管系の拘束から影響を受ける。まず、変位について原子炉格納容器が 2Pd、 200℃時における変位を算定した結果を図2に示す。変位の評価モデルは「0°-180°」 と「90°-270°」の2ケースの分割モデルで実施している。図3及び図4で評価モ デルのイメージを示す。この評価結果から T. M. S. L 15m 以上の変位が最も高くなっ ていることを確認した。したがって 15m 以上にある配管貫通部から、拘束条件が厳 しいものを選定することとした。
  - ③ なお、小口径配管については、二次応力が小さい傾向にあるため、選定にあたって は対象外とする。
  - ④ ここまでで抽出された配管貫通部を表1に纏めているが、本評価は格納容器限界温度・圧力(200℃、2Pd)における評価であることから、従来設計が200℃以上のものは評価不要と考えているため、最高使用温度が200℃以上の配管については対象外とする。
  - ⑤ 上記の考えで抽出された配管貫通部は X-81 (AC 系)、X-82 (FCS 系)であり、これらについて、原子炉格納容器限界温度・圧力(200℃・2Pd)時の格納容器変位による配管損傷要因として考えられる二次応力の影響を評価するため、二次応力が厳しくなる配管拘束条件に着目して代表配管を選定することとした。拘束条件の厳しさを表す参考の値として、貫通配管の第一拘束点までの距離(L)と配管口径(D)の比(L/D)を用いる。一般的にLが小さい程拘束が厳しく、Dが大きい程配管応力を受けやすいことから、L/D が最も小さいものが拘束条件が厳しく、配管応力を受けやすいと考えられる。
- 2. 代表配管の選定結果

上記の考え方から、L/D が最も小さいものを選定した結果、表1で示す通り不活性 ガス系の配管貫通部(X-81)を選定した。なお、X-81のペネ取付高さはT.M.S.L 19000 であり、L/D は約 6.4 である。これらの代表配管抽出フローについては、図1で示し ている。



図1 代表配管抽出フロー



図2 格納容器(200℃、2Pd 時)の変位

図3 格納容器「0°-180°」、「90°-270°」について(7 号炉の例)



図4変位の評価モデルイメージ(0°-180°)

表1 配管貫通部と口径比(T.M.S.L 15m以上)

| 貫通部<br>番号 | 貫通部<br>取付<br><sup>高 *</sup> | 系統  | 外径 D | プロ<br>肉厚 t | セス管<br>D/t | 最高使用  | PCV からの第 1<br>サポート距離 L | 口径比<br>L/D |
|-----------|-----------------------------|-----|------|------------|------------|-------|------------------------|------------|
| X-82      | 同ぐ                          | FCS |      |            |            | 価度しし」 |                        |            |
| X-81      |                             | AC  |      |            |            |       |                        |            |
| X-10A     |                             | MS  |      |            |            |       |                        |            |
| X-10B     |                             | MS  |      |            |            |       |                        |            |
| X-10C     |                             | MS  |      |            |            |       |                        |            |
| X-10D     |                             | MS  |      |            |            |       |                        |            |

※「PCV からの第1サポート距離」は、原子炉建屋側の配管ラインについて示す ※貫通部取付高さは T.M.S.L を示す。

<参考> 貫通部反力(モーメント)の比較

図2の代表選定フローで抽出された AC 系と FCS 系の貫通配管について、L/D の比較によ り代表配管を決定しているが、L/D で代表を選定することが妥当であることを確認するため に、配管貫通部の貫通部反力(モーメント)についても比較を実施した。貫通部反力(モー メント)の評価概要は図2に示す通りである。

第一サポートまでのサポート距離(支持スパン)は、各貫通部から第1拘束点までの距離 とし、それぞれ放射方向L1、鉛直方向L2として貫通部反力(モーメント)の指標を算出し て、代表配管の選定を評価した。評価結果を表2に示しており、L/Dの評価と同様に、反力 (モーメント)の評価についてもAC系が厳しい結果であり、AC系を選定することが適切で あることが本結果からも確認できた。



鉛直方向変位の第1サポートまで の距離

半径方向変位の第1サポートまで の距離

図5貫通部反力(モーメント)評価におけるサポート支持スパンの考え方

|      |            | 呼 | 貫通部 | サポー     | ト距離    | 貫通普     | 祁反力    |          |
|------|------------|---|-----|---------|--------|---------|--------|----------|
| 貫通部  | 貫通部        |   | 取付  | (支持スパン) |        | (モーメン   | ト)の指標  | <u> </u> |
| 番号   | <b>糸</b> 統 | 径 | 高さ  | L1(放射)  | L2(鉛直) | M1 (放射) | M2(鉛直) | L/D      |
|      |            | А | mm  | mm      | mm     | N•mm    | N•mm   | _        |
| X-82 | FCS        |   |     |         |        |         |        |          |
| X-81 | AC         |   |     |         |        |         |        |          |

表2貫通部反力(モーメント)の評価結果

※貫通部取付高さは T.M.S.L を示す。

表2の貫通部反力(モーメント)の評価結果からも、L/Dと同様にAC系の方が厳しい値 となっている。以下に貫通部反力(モーメント)の指標算出式を示しているが、式①は式④ で表すことができ、反力(モーメント)は変位δが大きい程高く、L/Dが小さい程高くなる 傾向であることが言える。今回の代表選定フローについては、変位δが高いと思われる15m 以上において、最終的にはL/Dの小さい方を代表として選定しているが、この式④からも、 その考えが妥当であることが言える。

## <貫通部反力(モーメント)の指標算出式>

| $M = \frac{3EI\delta}{ZL^2}$                           | (式①)       |
|--------------------------------------------------------|------------|
| Z:断面係数<br>I:断面二次モーメン<br>E:弾性係数<br>δ:変位の指標<br>L:サポートスパン | <b>F</b>   |
| 上記①式に以下のす                                              | t②、③を代入する。 |
| $I = \frac{\pi (D^4 - d^4)}{64}$                       | (式②)       |
| $Z = \frac{\pi (D^4 - d^4)}{32D}$                      | (式③)       |
| D:配管外径<br>d:配管内径                                       |            |

$$M = \frac{3E\frac{\pi(D^4 - d^4)}{64}\delta}{\frac{\pi(D^4 - d^4)}{32D}L^2} = \frac{\frac{3}{2}E\delta}{\frac{L^2}{D}} \qquad (\texttt{x})$$

なお、貫通部反力(モーメント)Mの指標算出式から、MはL/DではなくL<sup>2</sup>/Dが小さくな るにつれて大きくなることを示しているが、Mは単位面積あたりのモーメントを示す指標で あり、実際の反力は、Mと断面係数Zの積で表される。断面係数Zは、一般的に配管口径D が大きくなるにつれて大きくなる傾向にあるので、実際の反力は、L<sup>2</sup>/Dが小さい、且つ、D が大きい程大きくなる傾向にある。図1で示す代表配管選定フローにおいて既に大口径配 管、すなわちDが大きい配管を③で選出しており、さらに貫通部反力が大きくなる条件とし てはL<sup>2</sup>/Dが小さいことになる。これを簡易的に表現するとL/Dが小さくなるにつれて貫通 部反力が大きくなる傾向であると言えるため、反力の大きい配管貫通部の代表性を示すた めの参考になる指標と考えている。

ここで、表3に高さ15m以上にある配管貫通部のうち計装用配管貫通部を除く配管貫通 部についてL/D及びL<sup>2</sup>/Dを整理した。配管が小口径であるものは、二次応力が小さい傾向 にあり、大口径の配管貫通部と比較して貫通部反力も低くなると考えられるが、表3で示す 通り小口径についてはL/Dも高いため、L/Dは貫通部反力の傾向を示せているものと考え る。

よって、図1で示す代表配管選定フローにおいて、最終的に選出された配管のうち、配管 拘束条件が厳しいものを選ぶための参考値として L/D を用いることについては妥当と考え ている。なお、最終的には AC 系、FCS 系から AC 系を代表に抽出しているが、L/D だけでは なく、貫通部反力(モーメント)の指標も算出し、AC 系の方が拘束条件が厳しいことを示 した上で抽出している。

| 貫通部<br>番号 | 貫通部<br>取付<br>高さ | 系統   | プロイ<br>外径 D<br>「mm] | マス管<br>肉厚 t<br>「mm] | PCV からの第<br>1 サポート距<br>離 L 「mm] | 口径比<br>L/D | (参考)<br>L <sup>2</sup> /D |
|-----------|-----------------|------|---------------------|---------------------|---------------------------------|------------|---------------------------|
| X-82      | 1.4 C           | FCS  | []                  | []                  | 14ba — E3                       |            |                           |
| X-142A    |                 | MS   |                     |                     |                                 |            |                           |
| X-142B    |                 | MS   |                     |                     |                                 |            |                           |
| X-142C    |                 | MS   |                     |                     |                                 |            |                           |
| X-142D    |                 | MS   |                     |                     |                                 |            |                           |
| X-147     |                 | MS   |                     |                     |                                 |            |                           |
| X-69      |                 | SA   |                     |                     |                                 |            |                           |
| X-70      |                 | IA   |                     |                     |                                 |            |                           |
| X-71A     |                 | HPIN |                     |                     |                                 |            |                           |
| X-71B     |                 | HPIN |                     |                     |                                 |            |                           |
| X-72      |                 | HPIN |                     |                     |                                 |            |                           |
| X-81      |                 | AC   |                     |                     |                                 |            |                           |
| X-10A     |                 | MS   |                     |                     |                                 |            |                           |
| X-10B     |                 | MS   |                     |                     |                                 |            |                           |
| X-10C     |                 | MS   |                     |                     |                                 |            |                           |
| X-10D     |                 | MS   |                     |                     |                                 |            |                           |
| X-22      |                 | SLC  |                     |                     |                                 |            |                           |

表3 L/D 及び L<sup>2</sup>/D の整理

※貫通部取付高さは T.M.S.L を示す。

別紙-16

バックアップシール材塗布による設計影響について

(1) バックアップシール材塗布によるフランジ設計への影響懸念

フランジ設計として、漏えい発生を防止するために0リング溝にシール材(改良 EPDM) がセットされているが、シール機能を確保するために以下が設計上考慮されている。

① シール材について、開口を考慮した適切な押込み量を確保すること

② 内圧及びシール材反力について、適切なフランジ強度を有すること

③ シール材が、化学的影響を受ける等により、反応や劣化等の影響を受けないこと

④ フランジ締付作業の施工性が確保できること

バックアップシール材をフランジ面に塗布することで、上記①~④について悪影響を 与えないことを確認するため、バックアップシール材が塗布されることにより「フランジ 開口量評価でシール材(改良 EPDM)追従性に悪影響を与えないこと」、「フランジ応力評 価に悪影響を与えないこと」、「シール材(改良 EPDM)に化学反応等の悪影響を与えない こと」、「フランジ締付作業・開放作業に悪影響を与えないこと」を確認した。

(2) バックアップシール材厚さの影響について

図1の試験体(直径30cm)を使用して、バックアップシール材を塗布せず試験体を組み 上げた後(バックアップシール材無し)とバックアップシール材を塗布して試験体を組み上 げた後(バックアップシール材有り)の試験体の厚さを測定した。その結果を表7に示す。 バックアップシール材の有無による試験体の厚さの変化はほとんど無く、約0.01mm 程度 の差であった。

実プラントでのシール材の押し込み深さは約 である。一方、今回測定結果から、 バックアップシール材適用による押し込み量の変化は 0.01mm 程度と想定され、バックア ップシール材適用による押し込み深さの変化量やフランジ開口量への影響は無視できる程 度で悪影響はないと考えられる。

| 測定 | バックアップ     | バックアップ     |
|----|------------|------------|
| 位置 | シール材無し(mm) | シール材有り(mm) |
| 1  | 40.01      | 40.02      |
| 2  | 40.02      | 40.02      |
| 3  | 40.00      | 40.03      |
| 4  | 40.00      | 40.02      |
| 5  | 40.00      | 40.01      |
| 6  | 40.01      | 40.01      |
| 7  | 40.01      | 40.01      |
| 8  | 40.01      | 40.02      |
| 9  | 40.01      | 40.03      |
| 10 | 40.01      | 40.03      |
| 11 | 40.01      | 40.03      |
| 12 | 40.00      | 40.03      |
| 平均 | 40.01      | 40.02      |

表7 試験体の厚さ測定結果



図7 試験体厚さ測定位置

(3) バックアップシール材塗布に伴うフランジへの影響について

バックアップシール材を塗布した場合の影響評価として、①開口量評価及び②フランジ応力評価を実施した。前述(1)からバックアップシール材塗布時の厚さは0.01mm程度であるが、保守的な仮定としてバックアップシール材厚みが0.5mmとし、開口量評価、フランジ応力評価に悪影響がないことを確認した。

① 開口量評価

構造上バックアップシール材の厚さ分、突起によるEPDM ガスケットの締付量は低 減する。このため、最も評価結果が厳しくなるドライウェル機器搬入用ハッチにて 2Pd 時の締付量と必要締付量を比較し、シール性能を維持できることを確認した(図 7、表7参照)。なお、ここで用いたEPDM の必要締付量は実機を模擬した試験を実施 し、締付量0mm でもシール性能を維持できることを確認している。



図7 バックアップシール材を保守的に0.5mm厚さとした初期締付状態図

表7 2Pd時のバックアップシール材を用いたフランジシール部開口量と締付量

| 設備名     | バックアップシ | 開口量  | 締付量 | 必要締付量 |
|---------|---------|------|-----|-------|
|         | ール材厚さ   |      |     |       |
| ドライウェル機 | 0 5     | 1 5  |     |       |
| 器搬入用ハッチ | 0.5     | 1. 5 |     | 0以上   |
|         |         |      |     |       |

(単位:mm)

② フランジ部応力評価

バックアップシール材を用いた際、2Pd 時にフランジに加わる荷重を表3に示す。 表3 よりバックアップシール材の荷重は内圧による荷重と比較して2 桁以上小さくな る。このため、フランジ部へ発生する応力の影響は内圧が支配的であり、バックアッ プシール材の有無によりフランジ部へ加わる発生応力は殆ど変化しないと考えられ る。

表3 2Pd時のバックアップシール材を用いたフランジに加わる荷重(単位:kN)

| 内圧による荷重              | ガスケット反力による荷重         | バックアップシール材反力による       |
|----------------------|----------------------|-----------------------|
|                      |                      | 荷重                    |
| 5. $166 \times 10^4$ | 5. $108 \times 10^2$ | $1.431 \times 10^{2}$ |

参考として、バックアップシール材の有無によるフランジ部発生応力を比較したものを 表4に示す。このように実際に上記の結果を反映したものとなっており、バックアップシ ール材を考慮しても、フランジ部に発生する応力は、弾性域であることを示す共用状態Cs における評価基準値に対して十分に余裕があるといえる。

| 応力評価点                       | バックアップ<br>シール材 |     | 供用状態 Cs<br>における<br>評価基準値 |
|-----------------------------|----------------|-----|--------------------------|
|                             | 無し             | 有り  | (MPa)                    |
| ハブの軸方向応力                    | 27             | 27  | 339                      |
| ボルト穴の中心円におけるフランジの<br>半径方向応力 | 156            | 156 | 226                      |
| フランジの半径方向応力                 | 2              | 2   | 226                      |
| フランジの周方向応力                  | 2              | 2   | 226                      |
| 如今比広力                       | 15             | 15  | 226                      |
| 和古でかり                       | 15             | 15  | 226                      |
| ボルトの応力                      | 322            | 323 | 432                      |

## 表4 2Pd時のバックアップシール材を用いたフランジ部発生応力 (単位:MPa)

(4) 改良EPDMに対する悪影響、フランジ締付・開放作業への影響について

現場作業等への影響について、フランジ締付時の締付ボルト管理トルク値の変更は必要ないこと、フランジ開放時(点検時)の手入れの際にバックアップシール材は容易に除去可能であることを確認している。また、バックアップシール材は改良 EPDM シール材と化学反応は生じないことから悪影響はないと考えられる。

以上のことは、施工時の影響確認として柏崎刈羽原子力発電所の実機の格納容器ハッ チで実施したモックアップ試験時に、実際にバックアップシール材を塗布して確認して おり、フランジ締付・開放作業に有意な影響を与えないことを確認している。また、化学 影響については、長期熱劣化影響確認試験で改良 EPDM とバックアップシール材を組み 合わせたフランジで劣化後の気密性が確認できていることからも、悪影響がないと考え ている。

(5) まとめ

上記(1)~(4)より、バックアップシール材塗布におけるフランジ締込量への影響は0.01mm程度と僅かであり、かつ、仮に保守的に締込量に0.5mmの影響があると想定した場合でも、開口量評価及びフランジ部応力評価に大きな影響を与えないことを確認した。また、改良EPDMシール材に対して化学反応の影響がないこと、フランジ締付作業性も確保できることから、バックアップシール材塗布によるフランジ設計上の影響はない。

TIP パージ弁(メタルシート)の実機適用性について

TIP パージ弁は、表 1 の通り弁座シートをメタルシールに変更し、グランドOリング 及び弁ふたシールを改良 EPDM に変更したものを適用する。実機適用にあたっては、重 大事故時環境を模擬した条件である 200℃蒸気が 7 日間以上暴露され、且つ、その弁配置 での重大事故時における放射線量が照射されたとしても、シール機能が健全であること を評価した上で実機適用を行う。

なお、現時点では TIP パージ弁(メタルシート)の実機適用性を確認している段階に あるが、表 2 で示す試験体を用いた試験により 2Pd における弁(メタルシート)のシー ル性が確認できており、温度及び放射線の影響についても表 3 に示す通り重大事故環境 下における健全性に見通しが立っている。これらを踏まえ、実機適用性の検証を更に進め、 200℃蒸気が7日間以上暴露され、且つ、その際の重大事故時における放射線量が照射さ れたとしてもシール機能が健全であることを確認して実機に適用する。

| バウンダリ箇所  | 部位       | シール部材   |
|----------|----------|---------|
| TIP パージ弁 | 弁座シート    | メタルシール  |
|          | グランドOリング | 改良 EPDM |
|          | 弁ふたシール   | 改良 EPDM |

表1 TIP パージ弁シール部材について

表 2 TIP パージ弁(メタルシート)試験弁の弁座漏えい試験

| 計驗項目    |      | (注目)    |      |    |
|---------|------|---------|------|----|
| 武       | 試験流体 | 試験圧力    | 保持時間 | 和本 |
| 弁座漏えい試験 | 空気   | 1.08MPa | 3分   | 合格 |

| 部位       | シール部材   | 温度及び放射性の影響について               |
|----------|---------|------------------------------|
| 弁座シート    | メタルシール  | メタルシールであることから、放射線及び温度により劣化   |
|          |         | するものではない                     |
| グランドOリング | 改良 EPDM | 放射線、温度による劣化が懸念されるが、試験により     |
|          |         | 200℃蒸気が7日間暴露され、その際の重大事故時におけ  |
|          |         | る放射線量(800kGy)が照射されても健全であることを |
|          |         | 確認している。                      |
| 弁ふたシール   | 改良 EPDM | 放射線、温度による劣化が懸念されるが、試験により     |
|          |         | 200℃蒸気が7日間暴露され、その際の重大事故時におけ  |
|          |         | る放射線量(800kGy)が照射されても健全であることを |
|          |         | 確認している。                      |

表3 TIPパージ弁(メタルシート)の温度及び放射線の影響について