本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

改訂番号	改訂 22
提出年月日	平成 28 年 9 月 6 日

重大事故等対策の有効性評価に係る シビアアクシデント解析コードについて

平成28年9月 東北電力株式会社 東京電力ホールディングス株式会社 中部電力株式会社 中国電力株式会社

目次

																										(Re	ev.08)
1.	は	じめ	りに	••	•	•••	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1-1
2.	有	劾性	生評	価に	おり	ナる	物	理	見象	れの	抽	出	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2-1
	2.	1	炉	心損	傷	坊止	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2-7
	2.	2	格	納容	器	波損	防	Ŀ.	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	2-49
	2.	3	運	転停	₹止「	中原	子	炉に	こお	け	る	燃	料	損	傷	防	IF.	•	•	•	•	•	•	•	•	•	•	2-70
3.	抽	出さ	きれ	た牧	り理り	見象	\mathcal{O}	確認	忍•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3-1
	3.	1	BV	VR 🗆	パラン	/トミ	ンス	ティ	らの	階層	蟚樟	青造	分核	折と	と拒	卸出	さ	れる	た物	勿理	眼現	象	\mathcal{O}_{i}^{i}	対ル	芯硝	雀認	. •	3-1
	3.	2	Εl	JRSA	١FE	にお	け	る物	理玛	見象	と	抽片	出さ	れ	た	物	理到	見多	もの	対	応る	確認	忍。	•	•		,	3-2
4.	適	用何	 柔補	とす	-る:	<u> </u>	・ド	に~	⊃V`	って	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4-1
	4.	1	適	用候	[補:	<u> </u>	・ド	の構	既要	į.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4-1
5.	有	劾性	生評	価に	適	用す	る	コ-	- ド	の	選	定	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5-1
	5.	1	炉	心損	傷	坊止	•	•	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5-1
	5.	2	格	納容	器	波損	防	止	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5-5
	5.	3	運	転停	₹止「	中原	子	炉に	こお	け	る	燃	料	損	傷	防	IF.	•	•	•	•	•	•	•	•	•	•	5-6
6.	選	定さ	きれ	たニ	I	ドの	有	劾	生評	価	\sim	\mathcal{O}	適	用	性	に	う	$\langle v \rangle$	て	•	•	•	•	•	•	•	•	6-1
添作	寸資;	料1	1	許認	,可角	解析	÷۲	重フ	と事	故	等	対	策	\mathcal{D}^{i}	有	効	性	評	価	の	比	較	に	つ	い	て		

_			_
ĺ	第1部	SAFER (Rev.12)	Ì
	第2部	CHASTE (Rev.09)	- -
ĺ	第3部	REDY (Rev.13)	ļ
	第4部	SCAT (Rev.13)	į
	第5部	MAAP	-

本文 (Rev.13)

添付1 高圧溶融物放出/格納容器雰囲気直接加熱の防止について (Rev.10)

添付2 溶融炉心と冷却材の相互作用について (Rev.10)

添付3 溶融炉心とコンクリートの相互作用について (Rev.12)

第6部 APEX (Rev.08)

今回ご提出箇所

Rev.12

第1部 SAFER

- SAFER -

1. はじめに	1-1
2. 重要現象の特定	1-2
2.1 事故シーケンスと評価指標	1-2
2.2 ランクの定義	1 - 7
2.3 物理現象に対するランク付け	1-8
3. 解析モデルについて	1-16
3.1 コード概要	1-16
3.2 重要現象に対する解析モデル	1-17
3.3 解析モデル	1-18
3.4 入出力	1-56
4. 妥当性確認	1-58
4.1 重要現象に対する妥当性確認方法	1-58
4.2 TBL実験解析	1-62
4.3 ROSA-Ⅲ実験解析	1-72
4.4 FIST-ABWR実験解析	1-82
4.5 実機解析への適用性	1-91
5. 有効性評価への適用性	1-100
5.1 不確かさの取扱いについて(評価指標の観点)	1-100
5.2 不確かさの取扱いについて(運転操作の観点)	1-102
6. 参考文献	1-106
添付 1 解析コードにおける解析条件	1-109
添付 2 相関式, モデルの適用性	1-113
添付 3 前処理コード	1-141
添付 4 炉心の過熱蒸気の影響評価	1-143
添付 5 代替注水設備による炉心再冠水過程における熱伝達について	1-149
添付 6 原子炉隔離状態における原子炉圧力挙動について	1-156

添付6 原子炉隔離状態における原子炉圧力挙動について

1. はじめに

有効性評価の炉心損傷防止解析において,全交流動力電源喪失及び崩壊熱 除去機能喪失時は,事故直後に主蒸気隔離弁が閉鎖し,原子炉圧力が高圧状 態に維持され,原子炉水位低信号により自動起動した原子炉隔離時冷却系(R CIC)により,原子炉水位の低下を抑制し,炉心を冷却する。

BWRのRCICには、原子炉圧力容器の頂部から注水する方式と給水系 から注水する方式の2種類があり、プラントにより異なる。原子炉圧力容器 の頂部から注水する場合の解析結果は、注水後直ちに原子炉圧力が低下する のに対して、給水系から注水する場合の解析結果は、注水後直ちに原子炉圧 力が低下せず、時間遅れが生じる結果となっている。

いずれの場合も炉心は冠水維持されるため,炉心冷却の観点では問題となるものではないが, RCICの注水と原子炉圧力変化挙動との関係について 説明する。

2. 解析モデル

RCICが給水系から炉心シュラウド外領域に注水される場合で,給水ノ ズルが水中に水没している場合は,未飽和の注入水は炉心シュラウド外領域 の冷却水と混合する。なお,給水ノズルが水面上に露出している場合は上述 のRCICが原子炉圧力容器の頂部から注水される場合と同じ扱いになり, RCICの未飽和水が蒸気中に注水されるため,注入水の未飽和エネルギが 直接,蒸気凝縮に消費され,原子炉圧力が直接的な影響を受ける。

しかし, RCICの未飽和水が炉心シュラウド外領域の水中に注水される 場合は,注入水の未飽和エネルギは炉心シュラウド外領域の冷却水との混合 に消費され,混合水の未飽和度が増加する。ただし,炉心シュラウド外領域 の水面では断熱としているため,混合水の未飽和度が増加しても蒸気凝縮に より原子炉圧力に直接影響することはない。このため,混合水の未飽和度の 増加が原子炉圧力への影響として現れるのは,混合水が炉心下部プレナムを 経由して炉心に達し,炉心の蒸気発生を抑制後,炉心上部プレナムから蒸気 ドーム部に溢れたときとなる。

3. 解析結果の説明

代表BWRの崩壊熱除去機能喪失(取水機能喪失)時の解析結果から,添 付図6に原子炉圧力,RCICの注水流量,各領域のボイド率の推移を示す。 なお,各領域のボイド率については,下記定義にて負のボイド率により各領 域冷却材の未飽和度を表す。

負のボイド率=(各部水の比容積-飽和水比容積) (飽和水比容積-注水比容積)

なお,添付図6のボイド率は,RCIC注入水の炉内流入経路に従い,下から,炉心シュラウド外領域,炉心下部プレナム領域,炉心(軸方向ノード1から12)及び炉心上部プレナム領域の順に示す。

RCICを給水系から注水した場合,炉心シュラウド外領域の冷却水はほ ぼ飽和にある状態から,RCIC注入水と混合して未飽和となり,未飽和度 が徐々に増加する。RCICの注水が継続されることによる未飽和度の増加 に伴い,炉心部での蒸気発生が減少してボイド率がゼロに漸近する過程で逃 がし安全弁の開閉間隔が徐々に広がっていく。さらに未飽和水が炉心上部プ レナム部に到達して炉心上部プレナム部ボイドを潰し,炉心上部プレナム部 から冷却材が蒸気ドーム部に溢れたときに原子炉圧力が大きく低下する。

4. まとめ

以上より, RCICが給水系から注水される場合は, 注入水は炉心シュラ ウド外領域の冷却水との熱交換後, 炉心部の蒸気発生を抑制し, 蒸気発生が なくなり炉心上部プレナム部から冷却材が蒸気ドーム部に溢れたときに原子 炉圧力が大きく低下する。

なお,解析モデルでは,RCIC注水位置の違いにより原子炉圧力挙動解 析結果に差異が生じるが,RCICが自動起動する評価においては原子炉水 位が炉心より十分高い位置で維持されるため,評価項目に対する影響は小さ いものと考える。

添付図6 原子炉圧力, RCIC流量及びボイド率の推移

Rev.13

(第3部 REDY)

目 次

- REDY -

1. はじ	めに・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-1
1.1 角	释析コード ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-2
1.2 🛓	妥当性確認の方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-2
2. 重要	現象の特定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-4
2.1 특	事故シーケンスと評価指標・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-4
2.2	ランクの定義・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-6
2.3 集	か理現象に対するランク付け・・・・・	3-7
3. 解析	モデルについて・・・・・	3-17
3.1 =	ュード概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-17
3.2 🧵	fl要現象に対する解析モデル·····	3-18
3.3 角	释析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-19
3.4 7	い出力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-38
4. 妥当	性確認	3-41
4.1 🗵	重要現象に対する妥当性確認方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-41
4.2 火	戸心(核)における重要現象の妥当性確認・・・・・・・・・・・・・・・・・	3-50
4.3 炊	戸心(熱流動)における重要現象の妥当性確認・・・・・・・・・・・・・	3-53
4.4 原	原子炉圧力容器(逃がし安全弁含む)における重要現象の妥当性確認…	3-61
4.5 柞	各納容器における重要現象の妥当性確認・・・・・・・・・・・・・・・・・・・・・・	3-75
4.6 🗐	ミ機解析への適用性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-77
5. 有効	性評価への適用性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-79
5.1 7	F確かさの取り扱いについて(評価指標の観点)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-79
5.2 7	F確かさの取り扱いについて(運転操作の観点)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-86
6. 参考	文献	3-87
添付1	解析コードにおける解析条件・・・・・	3-1-1
添付2	軸方向出力分布の変化について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-2-1
添付3	軸方向出力分布変化を考慮したボイドマップの影響について	3-3-1
添付4	短時間領域を細分割しての重要現象のランクの検討・・・・・	3-4-1
添付 5	原子炉停止機能喪失事象での反応度係数(REDYコード用)の	
	保守因子について・・・・・	3-5-1
添付 6	ボロン反応度添加率について・・・・・	3-6-1
添付 7	最適評価コードによる解析結果との全体的挙動比較	3-7-1

1. はじめに

本資料は、炉心損傷防止に関する重大事故等対策の有効性評価(以下,「有効性評価」と称す。)に適用するコードのうち、REDYコードについて,

- ・有効性評価において重要となる現象の特定
- ・解析モデル及び入出力に関する説明
- ・妥当性確認
- ・有効性評価への適用性

に関してまとめたものである。

1.1 解析コード

本資料で使用する解析コードは、ABWR用の"REDY Ver.2"と従来型BWR用の "REDY Ver.1(ATWS 用)"の2つであり、これらを以下「REDYコード」と称す。 ただし、従来型BWRに対する実機試験の再現解析では"REDY Ver.1"を使用してい る。一部の評価でREDYコードの計算結果をインプットとする"SCAT Ver.3"(以 下、SCATコードと称す)を併用するが、SCATコードの説明は別資料(第4部 SCAT)にて行う。

なお,本資料で引用している最適評価コードは, "TRACG Ver.5"であり,これを以下「TRAC コード」と称する。

1.2 妥当性確認の方針

重大事故等対策の有効性評価にREDYコードを適用することの妥当性確認の方 針を下記に述べる。

- (1) REDYコードの妥当性確認は,原子力学会標準「統計的安全評価の実施基準: 2008」を参考にした図 1-1 REDYコードにおける検討手順に従う。
- (2) REDYコードは、プラント安定性や運転時の異常な過渡変化を評価する目的 で開発されたコードであり、起動試験などの予測解析や再現解析に使用されて来 た経緯を持つ。このため実機試験結果で妥当性確認が示せる範囲については、こ れを積極的に活用し、モデルの妥当性を示す。
- (3) 本資料は、原子炉停止機能喪失事象に対して抽出された物理現象に対してRE DYコードを用いることの妥当性を示すことが目的である。なお、補足として最 適評価コード(ここではTRACコードが該当)による参考解析結果を必要に応 じて参照する。

3-2

図 1-1 REDYコードにおける検討手順

- 2. 重要現象の特定
- 2.1 事故シーケンスと評価指標
- (1) 解析事象の選定

REDYコードが適用される炉心損傷防止対策における事故シーケンスグループ である原子炉停止機能喪失は,運転時の異常な過渡変化の発生時において原子炉のス クラム失敗を想定する事象であり,事故シーケンスとして主蒸気隔離弁の誤閉止+原 子炉停止機能喪失が選定されている。

(2) 原子炉施設の選定

本事故シーケンスが生じる可能性はBWR型式により相違はないが、ABWRと従 来型BWRとの主な違いである再循環系の違い(インターナルポンプか外部設置の再 循環ポンプか)は、本事故シーケンスでは早期にポンプがトリップすることからシナ リオ上大きな違いはない。このことから、ここでは原子炉施設としてABWRを選定 した。ただし、有意に異なる場合は従来型BWRに関しての説明を併記している。

(3) 事故シーケンス

運転時の異常な過渡変化では,主蒸気隔離弁の誤閉止により,原子炉スクラム信号 が発生し,全制御棒が急速挿入され原子炉は停止する。主蒸気隔離弁の誤閉止は原子 炉からタービンへ流れる主蒸気流量を遮断することになるため,原子炉圧力は上昇す るものの,原子炉がスクラムされていることと,圧力が定められた値を超えた場合は 逃がし安全弁が作動するため,圧力上昇は抑制される。なお,主蒸気隔離弁の誤閉止 により,タービン駆動給水ポンプは停止し,さらに原子炉水位低下を厳しめに評価す る目的で,モータ駆動給水ポンプも不作動を仮定しているが,運転時の異常な過渡変 化の判断基準に照らして,この仮定が影響を与えるものではない。

一方,原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止では,原子炉圧力が上 昇し,炉心内ボイドが減少することに起因した正のボイド反応度が印加され,原子炉 出力が増加する。原子炉圧力が上昇して,原子炉圧力高信号で再循環ポンプ(インタ ーナルポンプ4台)がトリップし,炉心流量を低下させる。このとき,同時にインタ ーロックで作動する代替制御棒挿入は失敗を仮定する。再循環ポンプトリップにより, 原子炉出力は低めに抑制される。原子炉圧力が逃がし安全弁の設定値に到達すると断 続的に弁から蒸気が放出され,原子炉圧力の上昇は抑制される。逃がし安全弁が断続 して開動作するため,原子炉から発生した蒸気は格納容器内のプール水へ放出され, プール水温及び格納容器圧力が上昇する。なお,主蒸気隔離弁の誤閉止により,ター ビン駆動給水ポンプが停止するが,モータ駆動給水ポンプの自動起動は考慮する(従 来型BWRでも原子炉出力が厳しくなるように起動を仮定する)。主蒸気隔離弁の閉 止により,給水加熱器への加熱蒸気がなくなるため,給水温度は低下し,炉心入口サ

ブクーリングが大きくなることから原子炉出力は次第に上昇する。これにより燃料は 沸騰遷移状態となり燃料被覆管温度が上昇する。

一方,制御棒が挿入されないことから,原子炉を未臨界にするために手動操作により,ほう酸水注入系が起動され,負のボロン反応度が徐々に印加されると,原子炉出力は次第に低下する。

格納容器のプール水温上昇率は原子炉出力の低下とともに緩やかとなり,残留熱除 去系起動によるサプレッション・プール冷却効果と相まって,事象は収束に向かうこ とになる。

(4) 注目パラメータの確認

- 原子炉停止機能喪失事象に対して適用される判断基準は、以下のとおりである。
 - a. 燃料被覆管の温度(1200℃以下)
 - b. 燃料被覆管の酸化量(15%以下)
 - c. 原子炉冷却材圧力バウンダリにかかる圧力(最高使用圧力の1.2 倍未満)
 - d. 格納容器圧力バウンダリにかかる圧力(限界圧力未満)
 - e. 格納容器圧力バウンダリにかかる温度(限界温度未満)

原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止では,原子炉設置変更許可申 請解析に記載した解析結果から,判断基準に対し十分な余裕があり評価指標として燃 料被覆管の温度で代表できると考えられる b. を除く, a. c. d. e. を評価指標として 取り上げる。したがって,本事象では燃料被覆管の温度(以下,「燃料被覆管温度」 と称す),原子炉冷却材圧力バウンダリにかかる圧力(以下,「原子炉圧力」と称す), 格納容器圧力バウンダリにかかる圧力及び温度(以下,「格納容器圧力」及び「格納 容器のプール水温度」と称す)が注目パラメータとなる。このうち,燃料被覆管温度 は,REDYコードでの計算結果を使用して,SCATコードで評価される。

3-5

2.2 ランクの定義

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物理現象の うちREDYコードで評価する事象において考慮すべき物理現象を対象に,表 2-1の 定義に従って「H」,「M」,「L」,及び「I」のランクに分類し,「H」及び「M」に 分類された物理現象を重要現象として抽出する。

ランク	ランクの定義	本資料での取り扱い
Н	評価指標及び運転操作に	物理現象に対する不確かさを実験との
	対する影響が大きいと考	比較等により求め,実機評価における評
	えられる現象	価指標及び運転操作への影響を評価す
		る
М	評価指標及び運転操作に	事象推移を模擬する上で一定の役割を
	対する影響が中程度と考	担うが, 影響が「H」に比べて顕著でな
	えられる現象	い物理現象であるため,必ずしも不確か
		さによる実機評価における評価指標及
		び運転操作への影響を評価する必要は
		ないが,本資料では,実機評価への影響
		を感度解析等により評価するか、「H」
		と同様に評価することとする
L	評価指標及び運転操作に	事象推移を模擬するためにモデル化は
	対する影響が小さいと考	必要であるが,評価指標及び運転操作へ
	えられる現象	の影響が明らかに小さい物理現象であ
		るため,検証/妥当性評価は記載しない
Ι	評価指標及び運転操作に	評価指標及び運転操作へ影響を与えな
	対し影響を与えないか,	いか,又は重要でない物理現象であるた
	又は重要でない現象	め,検証/妥当性評価は記載しない

表 2-1 ランクの定義

2.3 物理現象に対するランク付け

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物理現象の うち,2.1節で述べた事象進展を踏まえ,2.2節記載のランクの定義に従い,評価指 標及び運転操作への影響に応じて「H」及び「M」に分類することで物理現象の中か ら重要現象を特定する。この結果を表 2-2 に示す。

本事故シーケンスでは、事故発生初期の約5分以内に原子炉圧力、燃料被覆管温度 の順で注目パラメータがピークを迎える。それ以降は、手動起動したほう酸水注入系 による負のボロン反応度効果によって次第に原子炉出力が抑制され、また残留熱除去 系による除熱が行われることから、数十分後に格納容器圧力及び格納容器のプール水 温度はピークを迎え、最終的には事象は収束する。以上より、炉心内挙動を評価する 短時間領域と、格納容器側挙動を評価する長時間領域の二つに時間領域を分割して考 えるものとした。

原子炉圧力と燃料被覆管温度を支配する物理現象の同定とその重要度評価は、上述 したように一つの短時間領域でまとめている。この理由は燃料被覆管温度が異なる時 間で二度のピークを生じ、かつ一度目の燃料被覆管温度のピークは原子炉圧力のピー ク時間と前後するためである。本資料では、このランク付けの妥当性を裏付けるため、 短時間領域を時間経過に伴って変化するプラント挙動を考慮した3つのサブ時間領 域に細分割し、このサブ時間領域ごとでの重要現象のランク付けを行っている(添付 4参照)。なお、このサブ時間領域は短時間領域における反応度係数の不確かさ評価 にも適用している(添付5)。

上記において、SCATコードで評価する燃料被覆管温度に係わる物理現象のラン クは、SCATコードへのインプット値となる炉心入口流量、出力、炉心圧力、炉心 入口エンタルピに影響を与えるものについて注目して選定している。

以下に、物理現象ごとに考え方を示す。

(1) 核分裂出力「炉心(核)]

原子炉スクラム失敗を仮定した事象では、ボロンによって原子炉が未臨界になる まで臨界状態が継続する。すなわち、事象発生後も継続した核分裂出力が原子炉出 力や発生蒸気量に影響を及ぼすため、核分裂出力はどの評価指標に対しても重要度 が高いと考えられる。

(2) 出力分布変化 [炉心(核)]

再循環ポンプがトリップした後の給水加熱喪失状態では,軸方向出力分布が下方 ピークになることが知られており,注目パラメータに影響を与える可能性がある。 ただし,この場合でも炉心平均ボイド率は増加することになるため,原子炉出力は 低めに推移すると考えられ,燃料被覆管温度(主に,SCATコードのインプット としての炉心流量,原子炉出力),格納容器圧力及び格納容器のプール水温度の評 価指標に与える影響は,結果を厳しくするものではなく重要度は低いと考えられる。

(3) 反応度フィードバック効果 [炉心(核)]

(ボイド反応度(減速材密度反応度)とドップラ反応度)

本事故シーケンスでは、反応度の変化が長時間にわたって原子炉出力や発生蒸気 量に影響を及ぼす。短時間領域では、原子炉スクラム失敗を仮定した事象でも原子 炉圧力の評価指標に対して(ここで選択した原子炉施設では)余裕があり、反応度 フィードバック効果の重要度は低いが、燃料被覆管温度(主に、SCATコードの インプットとしての原子炉出力)の評価指標に対しての重要度は高いと考えられる。 一方、長時間領域では、低出力状態が継続するものの、格納容器圧力及び格納容器 のプール水温度へ与える影響は後述するボロン反応度が支配的な変化要因となり、 重要度は中程度だと考えられる。

(ボロン反応度)

事象収束に必要なほう酸水注入系の起動は、事故発生後約 10 分以降であり、こ れ以降はボロン反応度の印加が出力の抑制に重要な役割を果たす。したがって、長 時間領域の格納容器圧力及び格納容器のプール水温度の評価指標に与える重要度 が高いと考えられる。

(その他)

上述以外に、反応度フィードバック効果として知られている減速材温度反応度は、 起動時のボイド反応度やドップラ反応度の影響がほとんどない状態では考慮する 必要があるが、本事故シーケンスの様な高い出力が継続する事象では評価指標に与 える重要度は低い。なお、遅発中性子生成割合、中性子寿命といったパラメータは

上記の反応度評価に含まれる。

(4)制御棒反応度効果 [炉心(核)]

本事故シーケンスでは,原子炉スクラムに失敗する評価を実施することが目的で あるため,制御棒反応度や制御棒速度の様な制御棒反応度効果は考慮不要である。

(5) 崩壊熱 [炉心(核)]

崩壊熱はプラント停止後の事象進展では主要な熱発生源となるが、本事故シーケ ンスでは高い出力で臨界状態が維持される。このため、崩壊熱が全出力に占める割 合が小さい短時間領域では、評価指標である原子炉圧力や燃料被覆管温度に与える 影響はほとんどない。一方、核分裂出力が急速に低下した後の長時間領域では、変 化の遅い崩壊熱が原子炉全出力に占める割合が大きく、格納容器圧力及び格納容器 のプール水温度の評価指標に与える重要度が中程度になると考えられる。

(6) 三次元効果 [炉心(核)]

本事故シーケンスでは制御棒反応度や制御棒速度のような制御棒反応度効果を 考慮しないため、事象進展において高出力で低炉心流量状態となった場合、沸騰二 相流における密度波不安定現象(熱水力的要因)とボイド反応度フィードバック効 果(核的要因)が結合して中性子束振動(三次元効果)が生じ、評価指標である燃 料被覆管温度に影響を与える(SCATコードで評価)可能性がある。

この中性子束振動現象が生じる際には,給水加熱喪失により原子炉出力が上昇す るが,このときの軸方向出力分布は下方ピークになると,冷却材はより上流側から 沸騰を開始し,炉心平均のボイド率の減少幅を小さめに抑制する。これにより,原 子炉出力の上昇は低めに抑制されることになる。しかしながら,原子炉出力の上昇 と核熱水力不安定事象による中性子束振動が重畳した場合,評価指標である燃料被 覆管温度へ与える影響が大きくなる可能性も考えられる。このため,三次元効果は 燃料被覆管温度変化に対して重要度は中程度になると考えられる。

時間平均では炉心全体の挙動としての中性子束振動が,原子炉圧力や格納容器圧 力及び格納容器のプール水温度の評価指標に与える影響は,逃がし安全弁開閉によ る圧力制御と相まって重要度は低いと考えられる。

なお、REDYコードでは、中性子束振動現象を模擬することが困難であるため、 中性子束振動が局所的な燃料被覆管温度に与える影響に関しては、米国において中 性子束振動の評価実績がある異なる解析コード(TRACコード)による参考解析 結果を参照する(添付7参照)。

(7) 燃料棒内温度変化 [炉心(燃料)]

燃料棒内で発生した熱は、燃料棒表面から熱伝達により冷却材に伝わり蒸気となる。燃料棒内の熱移動は、燃料ペレットや被覆管内での熱伝導度、燃料ギャップでの熱伝達率に影響されるが、燃料棒内の出力分布や物性値はこの事象を通じて大き く変わることがなく、どの評価指標に与える重要度も低いと考えられる。

(8) 燃料棒表面熱伝達 [炉心(燃料)]

燃料で発生した熱は、燃料棒表面から単相壁面熱伝達や二相壁面熱伝達により冷却材に伝わり蒸気となる。この速さは、燃料棒表面の熱伝達率にも影響されるが、 原子炉スクラム失敗を仮定した事象では平均炉心で見れば沸騰状態が継続しており、熱伝達の速さが評価指標へ与える重要度は低いと考えられる。

(9) 沸騰遷移 [炉心(燃料)]

沸騰遷移が生じるのは原子炉出力が高く炉心流量が低い短時間領域である。沸騰 遷移が生じるとドライアウトやリウェット現象が起こるが、これらの現象は高出力 燃料バンドルが対象となる局所的な現象であり、プラント全体の挙動としては、ど の評価指標に対しても主要な現象とはならない。ただし、高出力燃料バンドルにお ける沸騰遷移現象は、SCATコードで評価している。

- (10) 燃料被覆管酸化 [炉心 (燃料)]
- (11) 燃料被覆管変形 [炉心 (燃料)]

主蒸気隔離弁の誤閉止による圧力上昇により原子炉出力が一時的に上昇するが、 早期の再循環ポンプトリップによる出力抑制効果により、プラント全体の平均応答 としてはどの評価指標に対しても影響を与えない。ただし、SCATコードで評価 する燃料被覆管温度に関しては、それぞれ重要度を検討する必要がある。

(12) 沸騰・ボイド率変化 [炉心(熱流動)]

燃料から冷却材に伝えられる熱により、炉心平均ボイド率が増加するが、一方、 炉心入口サブクーリングの増加やECCSの炉心上部への注水等による凝縮が生 じると、炉心平均ボイド率は減少する。炉心平均ボイド率は核熱水力計算に使用さ れるため、どの評価指標に与える重要度も高いと考えられる。なお、本事故シーケ ンスでは、LOCAとは異なり、炉心は冠水が継続されており、炉心部の二相水位 を考慮する必要はない。

3 - 10

1()

- (13) 気液分離(水位変化)·対向流[炉心(熱流動)]
- (14) 気液熱非平衡 [炉心 (熱流動)]

これらの物理現象は、LOCAにおける炉心内水位低下事象を想定したものであ り、原子炉スクラム失敗を仮定する事象では炉内保有水は十分に保たれ、炉心は冠 水が維持されることから、どの評価指標に対しても主要な物理現象とはならない。

(15) 圧力損失 [炉心 (熱流動)]

炉心圧力損失が大きい場合,再循環ポンプトリップ時の炉心流量の低下速度が大 きくなり,出力抑制効果に影響する。また,再循環ポンプトリップ後では,炉心圧 力損失は自然循環流量に影響する。よって,本件に関しては(17)に含まれるものと する。

(16) 三次元効果 [炉心 (熱流動)]

本事故シーケンスでは、制御棒挿入失敗を仮定していることから、高い出力が長 期にわたって継続する。本物理現象は、炉心流量の変化、炉心入口サブクーリング の変化、ECCSによる上部プレナムへの注水等によって、炉内での径方向の燃料 集合体間流量配分が時間を追って変化する現象も指している。しかしながら、プラ ント全体としての原子炉出力は炉心平均ボイド率の変化でほぼ決まることが、これ までの多くのREDYコードによる実機試験結果の再現解析から確認されており、 さらに、本事故シーケンスでは径方向出力分布の変化は小さく、流量配分による冷 却材流量変化への影響は小さいと考えられるため、どの評価指標に与える重要度も 低いと考えられる。

また、本事故シーケンスでは、出力が高く炉心流量が低い運転領域を経過する期 間があり、この期間に中性子束振動現象(6)参照)及び炉心流量の振動現象(高 出力チャンネルでの流量振動現象を含む)が生じる可能性がある。この期間では炉 心流量を支配するのは強制循環力又は自然循環力であり、中性子束振動が炉心流量 の振動現象へ及ぼす影響は小さいと考えられるが、核と熱水力現象は相互に関連す る事象であることを鑑み、評価指標である燃料被覆管温度に与える重要度を三次元 効果[炉心(核)]と同じ中程度とし、三次元効果[炉心(核)]に含めて検討する。

(17) 冷却材流量変化[原子炉圧力容器(逃がし安全弁含む)]

再循環ポンプトリップにより炉心流量を低下させることで原子炉出力を抑制す るが、冷却材流量変化の速さ(コーストダウン特性)は原子炉出力の抑制の速さに 影響する。原子炉圧力は評価指標に対して余裕があるため重要度は低いと考えられ るが、短時間領域での評価指標である燃料被覆管温度(主に、SCATコードのイ ンプットとしての炉心入口流量変化)に与える重要度は高いと考えられる。

本事故シーケンスでは,再循環ポンプトリップ後に自然循環状態で高出力状態が 継続する。このため,自然循環流量が原子炉出力変化に与える影響は無視できない。 自然循環状態時に燃料被覆管温度が厳しくなる従来型BWRプラントの場合(主に, SCATコードのインプットとしての炉心入口流量,原子炉出力),及び長時間領 域で格納容器圧力及び格納容器のプール水温度の評価指標に与える重要度は高い と考えられる。

(18) 冷却材放出(臨界流・差圧流) [原子炉圧力容器(逃がし安全弁含む)]

原子炉圧力が逃がし安全弁の設定値に到達すると逃がし安全弁から蒸気が放出 され,圧力上昇を緩和する。短時間領域では,逃がし安全弁から放出される蒸気流 量は,原子炉圧力最大値を左右するものであり,原子炉圧力の評価指標に与える重 要度は中程度と考えられるが,燃料被覆管温度の評価指標に与える重要度は低いと 考えられる。

一方,長時間領域では,逃がし安全弁から放出される蒸気流量が多いと格納容器 圧力及び格納容器のプール水温度へ与える重要度が高いと考えられるが,これに伴 い原子炉圧力が低下し,早く逃がし安全弁が閉鎖することになることから,総合す ると重要度は低いと考えられる。

(19) 沸騰・凝縮・ボイド率変化 [原子炉圧力容器(逃がし安全弁含む)]

- ここで取り扱うべき沸騰・凝縮・ボイド率変化の物理現象は、シュラウド外の状態である。短時間領域の注目パラメータである原子炉圧力、燃料被覆管温度は炉心内の出力変動に伴うものであり、また長時間領域の注目パラメータである格納容器 圧力及び格納容器のプール水温度は、原子炉から放出される蒸気量に起因したものである。このため本事故シーケンスでは炉心以外の沸騰・凝縮・ボイド率変化は炉心内の状態変化に直接的な影響はないことから評価指標に与える重要度は低いと考えられる。
- (20)気液分離(水位変化)・対向流[原子炉圧力容器(逃がし安全弁含む)]
- (21) 気液熱非平衡 [原子炉圧力容器(逃がし安全弁含む)]

炉心流量変化に影響する要因は, 炉心外領域と炉心内領域におけるマスバランス (圧力バランス)であるため, 炉心外領域での気液分離(水位変化)・対向流, 気 液熱非平衡が, 原子炉出力に与える影響は小さく, どの評価指標に対しても主要な 物理現象とはならない。

3 - 12

(22) 圧力損失 [原子炉圧力容器(逃がし安全弁含む)]

シュラウド外の圧力損失は、(15)の炉心圧力損失と同様に、再循環ポンプトリッ プ時の流量変化速度、トリップ後の自然循環流量に影響する。よって、本件に関し ては、(17)で考慮する。

(23) 構造材との熱伝達 [原子炉圧力容器(逃がし安全弁含む)]

原子炉スクラム失敗を仮定しているため,原子炉出力はほう酸水注入によって抑 制されるまで高い値を維持する。このため,原子炉ドーム部を含むシュラウド外領 域の構造材と冷却材間との熱伝達は,どの評価指標に対しても主要な物理現象とは ならない。

(24) ECCS注水(給水系・代替注水設備含む)[原子炉圧力容器(逃がし安全弁含む)] 本事故シーケンスでは、給水ポンプの停止や予備給水ポンプ等も考慮しており、 これらは炉心入口サブクーリングの変化に起因した炉内ボイドの変化、原子炉水位 の変化に起因した炉心流量の変化となって原子炉出力に影響を及ぼす。また、原子 炉水位低下等によりECCSの起動を想定しているため、ECCSの注水量は原子 炉水位の上昇及び炉心流量の変化に影響する。また、主蒸気隔離弁が誤閉止して給 水加熱器への加熱蒸気が遮断されると、給水温度が低下して原子炉出力上昇につな がる。

短時間領域での原子炉圧力の評価指標への影響はないと考えられるが,燃料被覆 管温度(主に,SCATコードのインプットとしての炉心入口エンタルピ)及び, 長時間領域での格納容器圧力及び格納容器のプール水温度の評価指標に与える重 要度は高いと考えられる。

(25) ほう酸水の拡散 [原子炉圧力容器(逃がし安全弁含む)]

過去のほう酸水の拡散に係わる試験により得られている知見から,上部プレナム 部から注入されるほう酸水は,炉心流量が小さい場合は一度炉心周辺部を下降した 後に炉心に戻るルートを通って拡散する。炉心流量が増加してくると,上記に加え, 上部プレナム部から注入されたほう酸水が炉心に直接入ることなく,一度シュラウ ド外を循環し混合されてから,下方から炉心に入るほう酸水の割合が増えてくる。 炉心流量がさらに増加すると全量が炉心流量と共に一度上昇し,シュラウド外を循 環し混合されてからダウンカマを下降し下方から炉心に入る。なお,ほう酸水が下 部プレナムから注入される従来型BWRプラントの場合は、炉心流量に係らず、常 に下方から炉心に入る。原子炉スクラム失敗を仮定した事象では、長期的な事象収 東にはほう酸水注入系の起動による炉心内のほう酸水拡散,これによるボロン反応 度による出力抑制は重要な現象である。したがって、長時間領域の格納容器圧力及

び格納容器のプール水温度の評価指標に与える重要度は高いと考えられる。

なお, REDYコードでは, 三次元的な炉心挙動は模擬出来ないが, 試験結果を 反映したモデルにしていることで, 物理現象に対応している。

- (26) 三次元効果 [原子炉圧力容器(逃がし安全弁含む)]
 - 本物理現象は、炉心以外の領域における周方向流量配分を意味しているが、シュ ラウド外での周方向流量分布、下部プレナムでの周方向流量分布とも、原子炉内の 構造物の配置や、給水スパージャ等の構造からして、重要な物理現象とはならない。
- (27) 冷却材放出 [原子炉格納容器]

本物理現象自体は,格納容器側から見た逃がし安全弁から放出される蒸気に係わる事象であり,原子炉から見た(18)と同じものである。

(28) 格納容器各領域間の流動[原子炉格納容器]

逃がし安全弁から格納容器のプール水に断続的に蒸気が放出される場合でも,格 納容器内の空間部の温度は,保守的に常にプール水温度と同じになると仮定するこ とで,格納容器各領域間の流動は,長時間領域の評価を行う上で重要現象とはなら ない。

(29) サプレッション・プール冷却 [原子炉格納容器]

本物理現象が短時間領域で評価指標に与える影響はないが,原子炉圧力が逃がし 安全弁の設定値に達すると,逃がし安全弁から格納容器のプール水へ蒸気が放出さ れ,格納容器圧力及び格納容器のプール水温度が上昇することになる。残留熱除去 系(RHR)がこの熱を除去することでこれらの上昇は抑制されるものの,長時間 領域の格納容器圧力及び格納容器のプール水温度の評価指標に与える重要度は高 いと考えられる。

(30) 気液界面の熱伝達 [原子炉格納容器]

逃がし安全弁から格納容器のプール水に断続的に蒸気が放出される場合でも,格 納容器内の空間部の温度は保守的に常にプール水温度と同じになると仮定するこ とで,気液界面の熱伝達は,長時間領域の評価を行う上で重要現象とはならない。

(31)構造材との熱伝達及び内部熱伝導[原子炉格納容器]

長時間領域の評価指標である格納容器圧力及び格納容器のプール水温度を厳し めに評価するためには、これらの物理現象は考慮しない方が保守的である。

(32) スプレイ冷却 [原子炉格納容器]

本事故シーケンスでは,評価指標である格納容器圧力及び格納容器のプール水温 度を厳しめに評価するために,スプレイ冷却は考慮していない。

(33) 放射線水分解等による水素・酸素発生 [原子炉格納容器]

本事故シーケンスでは,原子炉が冠水維持されていることから放射線水分解等に よる水素・酸素発生は重要な物理現象とはならない。

(34) 格納容器ベント [原子炉格納容器]

本事故シーケンスでは、長時間領域の評価指標である格納容器圧力及び格納容器 のプール水温度を厳しめに評価するために、格納容器ベントは考慮していない。

3 - 15

		事故シーケンスグループ	原子炉停止機能喪失							
				短時間領域		長時間領域				
分類		評価指標	原子炉	燃料被裂	憂管温度	格納容	格納容器のプ			
	物理	現象	圧力	REDY	SCAT*3	器圧力	ール水温度			
炉心	1	核分裂出力	Н	Н	$(H)^{*4}$		Н			
(技)	2	出力分布変化	Ι	L	Η		L			
(1)(1)	3	反応度フィードバック効果 【ボイド・ドップラ / ボロン】	L⁄I	H∕I	(H)*4		M∕H			
	4	制御棒反応度効果	Ι	Ι	Ι		Ι			
	5	崩壞熱	Ι	Ι	$(I)^{*4}$		М			
	6	三次元効果	L	M*5	M*5		L			
炉心	7	燃料棒内温度変化	L	L	Н		L			
(除来))	8	燃料棒表面熱伝達	L	L	Н		L			
(死::17)	9	沸騰遷移	Ι	Ι	Н		Ι			
	10	燃料被覆管酸化	Ι	Ι	L		Ι			
	11	燃料被覆管変形	Ι	Ι	Ι		Ι			
炉心	12	沸騰・ボイド率変化	Н	Н	L		Н			
(劫法禹)	13	気液分離(水位変化) ・対向流	Ι	Ι	Ι		Ι			
(熱研動)	14	気液熱非平衡	Ι	Ι	М		Ι			
	15	圧力損失	*1	*1	(L)*4		*1			
	16	三次元効果	L	M^{*5}	M^{*5}		L			
原子炉圧	17	冷却材流量変化	L	Н	$(H)^{*4}$		Н			
力宏界	18	冷却材放出(臨界流・差圧流)	М	L	(L)*4		L			
刀合奋	19	沸騰・凝縮・ボイド率変化	L	L	Ι		L			
(逃がし	20	気液分離(水位変化)·対向流	Ι	Ι	Ι		Ι			
安全弁含	21	気液熱非平衡	Ι	Ι	Ι		Ι			
t 0)	22	圧力損失	*1	*1	Ι		*1			
127	23	構造材との熱伝達	Ι	Ι	Ι		Ι			
	24	ECCS注水(給水系・代替注水設備含む)	Ι	Н	(H)* ⁴		Н			
	25	ほう酸水の拡散	Ι	Ι	Ι		Н			
	26	三次元効果	Ι	Ι	Ι		Ι			
原子炉格	27	冷却材放出	*2	*2	*2		*2			
	28	格納容器各領域間の流動	Ι	Ι	Ι		Ι			
納谷器	29	サプレッション・プール冷却	Ι	Ι	Ι		Н			
	30	気液界面の熱伝達	Ι	Ι	Ι		Ι			
	31	構造材との熱伝達及び内部熱伝導	Ι	Ι	Ι		Ι			
	32	スプレイ冷却	Ι	Ι	Ι		Ι			
	33	放射線水分解等による水素・酸素発生	Ι	Ι	Ι		Ι			
	34	格納容器ベント	Ι	Ι	Ι		Ι			

表 2-2 炉心損傷防止対策の有効性評価における重要現象のランク

*1 No. 17 で評価 *2 No. 18 と同一物理現象 *3 事故シーケンスグループに対して抽出されたものであるが, SCATコードで評価する物理事象であり, ここでは参考記載。

*4 SCATコードで評価する場合に、REDYコードの結果を引き継ぐ。

*5 三次元効果の模擬はREDY/SCATコード体系では困難であるため、米国において中性 子束振動の評価実績のあるTRACコードを使用して参考的に解析して参照する。

3. 解析モデルについて

3.1 コード概要

REDYコードは、制御棒の異常な引き抜きを除く運転時の異常な過渡変化解析及 び冷却材流量の喪失の事故解析を評価するコードである。炉心、原子炉圧力容器、圧 力容器内部構造物、原子炉冷却材再循環系、主蒸気管、タービン系、格納容器等プラ ント全体を模擬している。炉心核特性は6群の遅発中性子を考慮した一点近似動特性 方程式を適用し、中性子エネルギは1群としている。反応度モデルには制御棒、ボイ ド、ドップラ、スクラム、ボロンの各反応度を考慮している。また、燃料棒の熱的動 特性及び冷却材の熱水力的挙動を計算する。制御系としては、圧力制御系、給水制御 系、再循環流量制御系を模擬し、また、安全保護系も模擬している。

本コードの入力は,原子炉出力,炉心流量等の初期条件,原子炉,主蒸気管等のデ ータ,核データ,燃料棒データ,格納容器データ,各種制御系データ等であり,出力 として,原子炉出力,原子炉圧力,炉心流量,原子炉水位,格納容器圧力,格納容器 のプール水温度等の時間変化が求められる。

3 - 17

3.2 重要現象に対する解析モデル

2章において重要現象に分類された物理現象について、その物理現象を評価するために必要となる解析モデルを表 3-1 に示す。

分類	重要現象	必要な解析モデル
炉心	核分裂出力	核特性モデル
(核)	出力分布変化(*1)	核特性モデル
	反応度フィードバック効果	反応度モデル(*2)
	崩壊熱	崩壊熱モデル(*2)
炉心	燃料棒内温度変化(*1)	燃料棒モデル
(燃料)	燃料棒表面熱伝達(*1)	
炉心	沸騰・ボイド率変化	炉心ボイドモデル
(熱流動)	圧力損失(*1)	
原子炉圧力容器	冷却材流量変化	再循環系モデル
(逃がし安全弁含む)	冷却材放出(臨界流・差圧流)	逃がし安全弁モデル
	沸騰・凝縮・ボイド率変化(*1)	再循環系モデル
	圧力損失(*1)	
	ECCS注水	給水系モデル
	(給水系・代替注水設備含む)	
	ほう酸水の拡散	ほう酸水拡散モデル(*3)
原子炉格納容器	冷却材放出	逃がし安全弁モデル
	サプレッション・プール冷却	格納容器モデル(*3)

表 3-1 重要現象に対する解析モデル

- (注1) 重要現象の欄で、(*1)をつけた現象は、2章でどの評価指標に対してもランクL
 とされた現象、又は他の現象に含むとした現象である。ここでは、見易さを考え
 て参考までに再掲している。
- (注2) 必要な解析モデルの欄で、(*2)をつけたモデルは原子炉停止機能喪失事象のため に拡充されたモデル、(*3)をつけたモデルは、現行の設置許可申請解析では特 に必要とされなかったモデルである。

3.3 解析モデル (01) (02) (03)

REDYコードは,3.2節で述べた重要現象を評価するための解析モデルを有して おり,妥当な数値解法をもつことはこれまでの実機プラントの起動試験などでも確認 され,従来の設置許可申請にも適用されている設計解析コードである。

各モデルの説明を以下に示す。なお、ここで説明している解析モデルは、表 3-1 に 示した重要現象に分類された物理現象を評価するための解析モデルと、新適用モデル を中心に記述している。

(1) プラント動特性コード解析モデル(全体)図 3-1 に、プラント動特性コード解析モデルの全体図を示す。

3 - 19

図 3-1 プラント動特性コード解析モデル (ABWR)

(2) 核特性モデル

一点近似動特性モデルを用いて、中性子動特性挙動を評価する。

入力として「(3) 反応度モデル」から得られる各種反応度を用いる。

- a. 中性子エネルギは1群とする。
- b. 中性子束は時間と空間で変数分離可能であり、中性子束の空間分布は一定である。
- c. 反応度フィードバックは、平均出力の代表燃料チャンネルに基づいて計算する。

$$\frac{dn}{dt} = \left(\frac{\delta_{k} - \beta}{\ell^{*}}\right)n + \sum_{i=1}^{6} \lambda_{i}C_{i}$$

$$\frac{dC_{i}}{dt} = \frac{\beta_{i}}{\ell^{*}}n - \lambda_{i}C_{i} \quad (i = 1, 2, \dots 6)$$

$$n : \mu \notin \mathcal{F} \\
\delta_{k} : \nabla \nabla \mathcal{E} \\
\beta : \mathcal{F} \\
\mathcal$$

ここで

とおき,前述の式に代入すると,REDYコードでモデル化している次式が得られる。

$$\tau_0 \frac{\mathrm{dn}}{\mathrm{dt}} = (\bigtriangleup k_N - 1)n + \sum_{i=1}^6 \lambda_i y_i$$
$$\frac{\mathrm{dy}_i}{\mathrm{dt}} = f_i n - \lambda_i y_i \quad (i = 1, 2, \dots 6)$$

 ^て₀ : 即発中性子炉周期
 [∠]k_N : 正味の反応度(反応度総和)

 f_i : 全遅発中性子割合に対する各遅発中性子割合
 y_i : 遅発中性子群

3-21

(3) 反応度モデル

5つの種類の反応度(制御棒反応度,ボイド反応度,ドップラ反応度,スクラム反応度,ボロン反応度)が,「(2)核特性モデル」で示した動特性方程式の入力となる。

制御棒反応度,スクラム反応度は外部入力として与えられる。ボイド反応度は「(6) 炉心ボイドモデル」より得られる炉心平均ボイド率の関数として,ドップラ反応度は 「(5) 燃料棒モデル」より得られる燃料平均温度の関数としてテーブルで与えられる。 ボロン反応度は,「(12) ほう酸水拡散モデル」より得られる。

$$\angle K_{\rm N} = \angle K_{\rm R} - \angle K_{\rm V} - \angle K_{\rm D} - \angle K_{\rm S} - \angle K_{\rm B}$$

3-22

(4) 崩壊熱モデル

原子炉出力の全てが核分裂によって直接生じるわけではない。出力の約 94%は核 分裂から直接生じるが,残りの約 6%は燃料内に生成された放射性分裂生成物の崩壊 によるものである。原子炉の全出力は j 群の崩壊熱を仮定すると次式で表わされる。

$$n_{f} = \left\{ \left(1 - \sum_{i=1}^{j} K_{di} \right) + \sum_{i=1}^{j} \frac{K_{di}}{T_{di}S + 1} \right\} n$$

- n_f : 原子炉全出力
- K_{di} : 崩壞熱生成割合(i群)
- **T**_{di} : 崩壞熱等価時定数(i 群)
- n : 核分裂出力, 中性子個数

図 3-2 に 11 群及び 4 群モデルの時間変化を ANSI/ANS-5. 1-1979 で表した曲線と比較して示す。

図 3-2 崩壊熱特性の比較

3-23

(5) 燃料棒モデル

原子炉内の平均的な燃料棒で代表させ,図 3-3 に示すようにその燃料棒表面を同心 円状に分割し,それぞれのノードに熱伝導方程式を適用して,燃料温度,平均表面熱 流束を計算する。入力としての生成熱(核分裂による即発分と崩壊熱による遅発分を 考慮)は,「(2)核特性モデル」より得られる中性子束と,「(4)崩壊熱モデル」より 得られる崩壊熱により算出している。

- a. 燃料ペレット4ノード, 被覆管1ノード, ギャップ部1ノードとする。
- b. 温度分布の空間依存性は半径方向のみとする。
- c. 燃料の熱伝導度はノードの平均温度の関数とし、ノード内では一定とする。
- d. 燃料の密度及び比熱は温度によらず一定とする。
- e. 各ノードの温度はそのノードについて体積平均したものとする。
- f. 被覆管での熱発生は無視する。

図 3-3 燃料棒モデル

3 - 24

ここで、燃料棒中心R_h(=0)で、径方向の温度Tの変化は、以下の式で与えられ、

$$\left.\frac{\partial T}{\partial r}\right|_{r=R_{h}}=0$$

となる。

燃料棒と被覆管のギャップ間の熱流束 $q_{\rm G}$ は、燃料ギャップ実効面積 $A_{\rm g}$ 、燃料ギャップコンダクタンス $h_{\rm g}$ 、ペレット表面の温度 $T_{\rm f0}$ と被覆管内面の温度 $T_{\rm G}$ の温度から、

$$q_{\rm G} = \mathrm{A_gh_g}(\mathrm{T_{f0}} - \mathrm{T_{Ci}})$$

200

被覆管と冷却材の境界で,燃料棒被覆管熱伝導率 K_{CL} ,燃料表面平均熱伝達率 h_{B} ,燃料棒被覆管外側表面温度 T_{C0} ,炉心の飽和温度 T_{B1} とすると,

$$(-K_{CL}\frac{\partial T}{\partial r})_{r=R_r} = h_B(T_{C0} - T_{B1})$$

となる。

なお、 i 番目のノードにおける熱収支は次のようになる。

$$\rho_{f}V_{i}C_{pf}\frac{\partial T_{i}}{\partial t} = (\hat{\pi}\lambda \pm)_{i} - (\hat{\pi} \pm)_{i} + (\hat{\pi} \pm \pm)_{i}$$

燃料棒内での熱輸送は、熱伝導が支配的であるため、 q/A_r はフーリエの法則で表せる。

$$\frac{q}{A_r} = -K\frac{\partial T}{\partial r} \quad \forall t \quad q = -KA_r \frac{\partial T}{\partial r}$$

r
 : 径方向長さ

 q
 : 単位時間当たりの通過熱量

 K
 : 熱伝導率

 Ar
 : 燃料棒表面積

 T
 : 温度

 V_i
 : 各ノードの体積

$$\rho_{\rm f}$$
 : 燃料棒密度

 C_{pf}
 : 燃料棒比熱

3-25

(6) 炉心ボイドモデル

炉心部はサブクール領域と飽和領域に分けて質量及びエネルギバランスを解き, 炉 心出ロクオリティ, 炉心部圧力の変化を求める。

入力としては「(5) 燃料棒モデル」から得られる熱量,「(9) 再循環系モデル」等 から得られる炉心流量,炉心入口エンタルピを用いる。

- a. 飽和水, 飽和蒸気は熱平衡状態にあるとする。
- b. サブクール領域の流体の圧縮性は無視する。
- c. 炉心バイパス流(チャンネルボックス外を流れる冷却水)は炉心入口でエンタ ルピを保ったまま出口に達するものとする。

図 3-4 炉心部モデル図

上記モデルから得られる炉心出ロクオリティを基に,過渡状態の炉心平均ボイド率 を求める。

a. ボイドモデルは炉心を一点に近似した集中定数モデルとする。

- b. 定常状態の炉心平均ボイド率αを出口クオリティ等の関数として求める。
- c. 過渡変動に伴う炉心平均ボイド率は、炉心流量mの変化を考慮した補正後のボ

イド率(α')として次式で求める。

 $\alpha' = \alpha - (A + Bm + Cm^2)$ (A, B, Cは定数)

さらに、これに二次遅れ伝達関数で模擬しボイド率(α")とする。

d. 炉心圧力変化を考慮する。

3-26

(7) 蒸気ドーム部モデル

ベッセル圧力ノードについてのセパレータ流量,キャリアンダ流量を考慮して質量 及びエネルギバランスを解いてその圧力変化を求め,ドーム部圧力と主蒸気管圧力か ら主蒸気流量を計算する。

入力として「(11)給水系モデル」からの給水流量,また気水分離器モデルからセ パレータ流量,キャリアンダ流量を用いる。

- a. 給水とバルク水の混合には時間遅れはないものとする。
- b. バルク領域の液体は圧力が上昇過程にあり、キャリアンダ質量が零のときを除いて飽和状態にあるものとする。
- c. 気水分離器内の液体は常に飽和状態にあるものとする。

3-27
(8) 主蒸気管モデル

主蒸気管部のベッセル出口から主蒸気隔離弁までと,主蒸気隔離弁から主蒸気加減 弁までの2ノードに分割する。主蒸気管内では蒸発,凝縮のいずれも生じないと仮定 して質量及び体積バランスを解き,各ノードの圧力変化を求める。入力として「(7)蒸 気ドーム部モデル」で得られる主蒸気流量,圧力制御系モデルから得られるタービン バイパス弁開度や主蒸気加減弁開度を用い,また,主蒸気隔離弁が閉止する場合は主 蒸気隔離弁閉止特性を外部入力として与える。

a. 逃がし安全弁(逃がし弁機能)は設定圧に達すると開放し始める。

b. 主蒸気加減弁及びタービンバイパス弁は圧力制御系モデルで制御される。

図 3-5 主蒸気管モデル

ここで,逃がし安全弁が設置されている主蒸気管部の圧力の変化率を表わす式は, 主蒸気管中では凝縮も蒸発も起こらないと仮定したときの質量と体積バランスの式 から得られ,主蒸気隔離弁流量は弁開度変化に伴う時間関数で与えられる。なお,逃 がし安全弁流量は「(10)逃がし安全弁(逃がし弁機能)モデル」から求められる。

・

$$\dot{P}_{RL} = \dot{P}_2 - \frac{1}{V_{LI}} \frac{dP}{d\rho_{gR}} (m_{13} - m_{RV} - m_{ISO})$$

 P_{RL} : 主蒸気管圧力
 P_2 : 原子炉ドーム圧力
 V_{LI} : 主蒸気管体積
 ρ_{gR} : 密度
 m_{13} : 原子炉出口流量
 m_{RV} : 逃がし安全弁(逃がし弁機能)流量
 m_{ISO} : 主蒸気隔離弁流量

3-28

(9) 再循環系モデル

ダウンカマ,下部プレナム,再循環ポンプ,炉心部,セパレータ等原子炉一巡の圧 力損失係数,再循環ポンプ吐出圧力,シュラウド内外のヘッド差及び慣性に従って再 循環流量を計算する。また,ポンプ慣性とトルクよりポンプの運動方程式を解き,ポ ンプ回転速度を計算する。再循環流量とポンプ回転速度は,ポンプ流量に依存する吐 出圧特性及び負荷トルク特性を通じて相互に関連する。また,再循環ポンプの回転速 度は,再循環流量制御系モデルから得られる速度要求信号が本モデルのインプットと なる。

(10) 逃がし安全弁(逃がし弁機能)モデル

逃がし安全弁は圧力容器内の圧力が設定点を超えた時に作動し,炉内圧力が高くなることを防ぐ。その位置は主蒸気隔離弁よりも原子炉側に位置する。逃がし安全弁は, 開く圧力と再び閉じる圧力とは異なる。代表的な逃がし安全弁特性を図 3-6 に示す。

定格の逃がし安全弁容量(逃がし弁機能動作時)の合計 m_{RC}は、初期圧における個々の逃がし安全弁容量から得られる。

$$m_{RC} = \sum_{i} N_{RVi} C_{RV} (P_{RL,0})$$
 (全ての開いている設定圧グループの総和)

弁を流れる蒸気流量は次式で表わされる。

٠

$$\begin{split} m_{RU} &= (m_{RC} - m_{RU}) / \tau_{RV} \\ m_{RV} &= \begin{cases} m_{RU} \left(\frac{P_{RL}}{P_{RL,0}} \right) &: P_{RL} > P_{RSi} \ \text{b}, P_{RL} > P_{RRi} \ \text{b}, O \ \text{c} > P_{RRi} \ \text{b}, O \ \text{c} > P_{RRi} \ \text{b} > O \ \text{c} > P_{RRi} \end{cases}$$

図 3-6 逃がし安全弁開度特性

3-30

m_{RC} : 逃がし安全弁流量

N_{RV} : 逃がし安全弁(逃がし弁機能) 個数

C_{RV} (P_{RL0}) : 圧力 P_{RL0} における個々の逃がし安全弁容量(逃がし弁機能)

- m_{RU}:補正前の逃がし安全弁流量
- *t***_{RV}** : 逃がし安全弁時定数
- m_{RV}: :補正後の逃がし安全弁流量
- **P**_{RL} : 主蒸気管ノード1圧力
- **P**_{RL0} : 主蒸気管ノード1初期圧力
- P_{RSi}: 各逃がし安全弁吹出し圧力
- P_{RRi}: :各逃がし安全弁吹止まり圧力

3-31

(11) 給水系モデル

給水流量は図 3-7 に示すように,給水制御系と給水ポンプを模擬し,原子炉水位, 主蒸気流量及び給水流量の三要素の変化から求める。給水エンタルピは,「(8)主蒸 気管モデル」から得られる主蒸気流量の変化から遅れ要素を考慮して図 3-8 のよう に求める方法と,ヒートバランスによる給復水系各部の給水エンタルピと配管体積 及び給水流量から算出し,一次遅れを考慮して図 3-9 に示す方法のいずれかを選択 できる。主蒸気流量の遮断時には,どちらも給水エンタルピの低下を一次遅れと輸 送遅れで模擬している点では同等であるが,図 3-8 のモデルでは給水加熱器を一つ で模擬し,図 3-9 のモデルでは多段で模擬している点が異なる。

また, ECCSはインターロックに従って設計流量が原子炉に注水され,そのエンタルピは,注入源が復水貯蔵タンクの場合は復水貯蔵タンク水温に基づくエンタルピ,格納容器のプール水の場合は「(13)格納容器モデル」のエンタルピとなる。

図 3-7 給水系モデル

主蒸気流量 VS

図 3-8 給水エンタルピモデル(1)

図 3-9 給水エンタルピモデル(2)

3 - 32

(12) ほう酸水拡散モデル

ABWRでは、ほう酸水は、ほう酸水貯蔵タンクからほう酸水注入系配管とHPC F配管を経由して、HPCFスパージャから炉心上部に注入される。一方、従来型B WRでは、ほう酸水は、ほう酸水貯蔵タンクから配管を経由してスタンドパイプから 炉心下部に注入される。

これらのモデルでは次の仮定を設ける。

- a. 起動判定遅れ時間,配管でのほう酸水の輸送遅れ時間を考慮する。
- b. ボロン反応度は,有効炉心(有効燃料下端から上端まで)の単位体積あたりに 存在するボロンの重量(炉心内ボロン濃度)に比例する。
- c. 炉心に到達するほう酸水は,炉心上部に注入されるABWRでは炉心流量には 依存せず,時間の一次関数で増加するものとする。一方炉心下部に注入される 従来型BWRでは炉心流量依存(ミキシング効率)で変わるものとし,これを 図 3-10 に示す。

ボロンが炉心下部に到達した後の炉心内のボロン反応度は次式で表わされる。

$$\angle \mathbf{K}_{\mathrm{B}}(t) = \frac{\int_{0}^{t} \mathbf{m}_{\mathrm{B}}(t) \boldsymbol{\eta}_{\mathrm{B}} dt}{\mathbf{M}_{0} \mathbf{K}_{\mathrm{mass}}} \times \frac{\boldsymbol{\rho}_{\mathrm{C}}}{\boldsymbol{\rho}_{\mathrm{C}0}} 10^{6} \left(\frac{\angle \mathbf{K}_{\mathrm{B-hot}}}{\mathbf{C}_{\mathrm{B-hot}}}\right)$$

なお、
$$\frac{\int_{0}^{t} \mathbf{m}_{\mathrm{B}}(t) \boldsymbol{\eta}_{\mathrm{B}} dt}{\mathbf{M}_{0} \mathbf{K}_{\mathrm{mass}}} \times \frac{\boldsymbol{\rho}_{\mathrm{C}}}{\boldsymbol{\rho}_{\mathrm{C}0}} \mathbf{10}^{6} \quad \text{が炉心のボロン濃度} \mathbf{C}_{\mathrm{B}} \ \text{である}.$$

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-33

m_B : 下部プレナムに注入されるボロン流量

- $\eta_{\rm B}$:下部プレナムでのボロンミキシング効率
- M₀:初期冷却材合計量
- $ho_{
 m C}$: 炉心内冷却材の平均密度
- ho_{C0} :初期炉心内冷却材の密度

K_{mass}:原子炉水位変化を考慮した冷却材量の変化比 (主蒸気管や逃がし安全弁から蒸気が流出することにより、初期 冷却材合計量M₀が時間を追って変化することを考慮した無次 元ファクタであり、ボロンが濃縮・希釈される影響を表す)

- ∠K_{B-hot} :初期状態から高温停止までに必要なボロン反応度の合計
- C_{B-hot} : 高温停止を達成するために必要なボロン濃度
- C_B : 炉心内ボロン濃度

3-34

(13) 格納容器モデル

図 3-11 に格納容器モデルを示す。ここでは以下のことを仮定する。

ドライウェル (D/W) とウェットウェル (W/W) (サプレッション・プール (S/P) 含む) は、空間的に一体と仮定する。これは、本モデルが原子炉スクラム失敗 を仮定した事象の解析で使用されることを前提としており、原子炉スクラム失敗を仮 定した事象の場合、原子炉の圧力上昇によって開いた逃がし安全弁から、蒸気が S/ Pの水中に放出されW/Wの圧力がD/Wの圧力上昇に先行し、真空破壊装置が早期 に開き、開いたままになるためである。

a. 格納容器からの放熱による熱喪失は保守的に考慮しない。

b. 格納容器内の空間部の温度は、保守的に常にプール水温度と同じとする。

c. 格納容器内の空間部は、保守的に常に水蒸気で飽和しているものとする。

格納容器の質量バランスとエネルギバランスは次の式のようになる。

$$\dot{M}_{sp} = m_{RV} + m_{SV} + m_{RCICG} + m_{HPCIG}$$

$$- \left(m_{RCIC} + m_{HPCS} + m_{HPCI} + m_{HPCF} \right)$$
(1)

$$\dot{E}_{sp} = (m_{RV} + m_{SV})h_{g2} + m_{RCICG}h_{RCICG} + m_{HPCIG}h_{HPCIG}$$
$$- (m_{RCIC} + m_{HPCS} + m_{HPCI} + m_{HPCF})h_{pool} - Q_{ex}(T_{sp} - T_{cool})$$
(2)

3-35

格納容器圧力 P_{cont} は、ガスと蒸気の分圧の合計に等しいので

$$\mathbf{P}_{\rm cont} = \mathbf{P}_{\rm cont, a} + \mathbf{P}_{\rm cont, s} \tag{3}$$

ここでガスの分圧はボイルシャルルの法則から

$$P_{\text{cont, a}} = n_{\text{m}} R \left(T_{\text{sp}} + 273 \right) / V_{\text{cont, v}}$$

$$\tag{4}$$

で計算できる。

P_{cont}」は,

$$T_{sp} = \left(E_{sp} / M_{sp}\right) / C \tag{5}$$

であるので、仮定b.から、P_{cont} は次式のように求まる。

()

$$P_{\text{conts}} = f_1(T_{\text{sp}}) \quad : 蒸気表より \tag{6}$$

よって、(3)、(4)、(6)から、格納容器圧力**P**_{cont}が求まる。

なお,格納容器モデルはREDYコードの一部として組み込んでいる。この理由は 次の通りである。

原子炉スクラム失敗を仮定した本事故シーケンスでは,逃がし安全弁から放出され た蒸気は格納容器のプール水中に放出され,これを受けてプール水のエンタルピは次 第に大きくなる。一方,残留熱除去系によるプール水の除熱はプール水のエンタルピ 上昇を抑制し,ボロンの反応度抑制が支配的になってからはプール水のエンタルピを 低下させる。

本事故シーケンスでは、この格納容器のプール水がECCSにより原子炉に注入され、炉内水の温度低下に寄与することから、この様な炉内保有水と格納容器のプール 水とが連携して巡回する物理現象を解く必要があった。

: S/P保有水量			
: 逃がし弁流量			
:安全弁流量			
:S/Pに排出されるRCICタービン排気流量			
S/Pに排出されるHPCIタービン排気流量			
: RCIC流量			
: HPCS流量			
: H P C I 流量			
: HPCF流量			
:格納容器内の水と蒸気の保有エネルギ			
: 逃がし安全弁から排出される蒸気エンタルピ			
: S/Pに排出されるHPCIタービン排気エンタルピ			
:S/Pに排出されるRCICタービン排気エンタルピ			
: S/P水エンタルピ			
:RHR等の熱除去割合			
: S/P水温度			
:RHR熱交換後の二次側温度			
:格納容器圧力			
:格納容器圧力 空気分圧			
:格納容器圧力 蒸気分圧			
: S/P水の比熱			
:モル数			
: 気体定数			
: 格納容器の空間体積(S/Pの水が占める部分を除く)			

3.4 入出力

REDYコードの主要な入出力パラメータを図 3-12 に示す。REDYコードのインプットデータは以下のとおり構成される。

(1) 前処理コードからREDYコードへのインプット

(核データ)

- ボイド反応度
- ② ドップラ反応度
- ③ ボロン反応度
- ④ その他の動特性パラメータ

(燃料物性データ)

炉心平均ギャップ熱伝達係数

(熱水力データ)

- ① 炉心圧損係数
- ② ボイドマップ
- (2) 前処理コードを用いないインプット

(原子炉幾何形状)

- 原子炉,原子炉内部構造物,主蒸気管等の寸法
- (炉心仕様)
 - ② 燃料棒に関するデータ(外径,内径,熱伝導度,比熱等)
 - ③ 出力分布,蒸気表等の熱水力関係データ
- (機器・設備仕様)
 - ④ 各種の弁の特性
 - ⑤ 再循環ポンプ等のデータ
 - ⑥ ほう酸水注入系に関するデータ
- (制御系仕様)
 - ⑦ 各種の制御系に関するデータ
- (格納容器形状)
- ⑧ S/P水温度,D/W空間容積等の格納容器に関するデータ
- (初期運転条件)
- ⑨ 運転条件データ(原子炉出力,主蒸気流量,炉心流量,原子炉圧力等)(外乱条件)
 - ⑩ 外乱条件(過渡変化起因条件等)

(3) REDYコードのアウトプットその1

プラント動特性解析を実施し、以下のアウトプットデータを得る。

- ① 中性子束
- ② 平均表面熱流束
- ③ 主蒸気流量
- ④ タービン蒸気流量
- ⑤ 給水流量
- ⑥ 炉心流量
- ⑦ 再循環ポンプ流量
- ⑧ 原子炉圧力
- ⑨ 原子炉水位
- ⑩ 逃がし安全弁流量
- ① タービンバイパス弁流量
- 12 炉心入口エンタルピ
- 13 炉心平均ボイド率
- ⑭ 格納容器圧力
- ⑤ 格納容器のプール水温度

(4) REDYコードのアウトプットその2

SCATコードへ以下のデータを渡すことにより,燃料被覆管温度評価を実施する。

- ① 炉心入口流量
- ② 出力
- ③ 炉心圧力
- ④ 炉心入口エンタルピ

図 3-12 REDYコードの主要な入出力

3 - 40

4. 妥当性確認

4.1 重要現象に対する妥当性確認方法

2章で重要現象に分類された物理現象の妥当性確認方法を表 4-1 の評価マトリック スに示す。REDYコードは,運転時の異常な過渡変化におけるプラント全体の挙動 を評価する解析コードであり,実機プラントの起動試験(以下,「実機試験」と称す) の結果との比較によっても妥当性確認が行われているが,本資料ではこれを含めて原 子炉スクラム失敗を仮定した評価に着目して妥当性を確認する。

以下各節で適宜参照する国内ABWRに対する実機試験結果とREDYコード (REDY Ver.2)による解析結果との比較を初めに列挙しておく。ただし、必要に応じ て従来型BWRの実機試験結果とREDYコード(REDY Ver.1)による解析結果との 比較も併用している。

これらの実機試験解析では,初装荷燃料炉心(BOC-1)の核定数やボイドマップ, 実機試験の結果から得られた各種の機器・弁特性(開度特性やポンプ慣性含む),制 御ロジックで使用するデータに実機セット値等を使用している点が,原子炉スクラム 失敗を仮定した主蒸気隔離弁の誤閉止での解析条件とは異なる。しかしながら,これ らの違いがパラメータの変化の大きい原子炉スクラム失敗を仮定した主蒸気隔離弁 の誤閉止解析に与える影響は無視できる。また,主蒸気隔離弁が初期に閉鎖すること から圧力制御系は評価結果に影響を与えず,給水流量制御系の動作も,本評価解析の ように給水ポンプトリップや予備機が起動(その後ランアウト流量制限がかかる)す る場合には期待されない。再循環流量制御系に関しては,実機試験は手動モードであ るが本事象では自動としている。これは,手動モードにすると,出力が高く維持され 放出蒸気が多く原子炉水位低で早期に再循環ポンプがトリップし,結果として出力が 小さく評価されるためである。

- 図 4-1 インターナルポンプ 3 台トリップ時の過渡変化
- 図 4-2 発電機負荷遮断時の過渡変化
- 図 4-3 主蒸気隔離弁全閉時の過渡変化
- 図 4-4 給水ポンプトリップ予備機不起動時の過渡変化
- 図 4-5 再循環流量制御系速度設定点変更試験
- 図 4-6 給水制御系水位設定点変更試験
- 図 4-7 圧力制御系圧力設定点変更試験

分類	重	要現象	計算モデル	妥当性確認 (着目パラメータ)
炉心	核分裂出力		核特性モデル	図 4-1, 図 4-4~図 4-7
(核)	反応度フィードバック		反応度モデル	(中性子束変化)
	効果		(ボイド・ドップラ)	
			反応度モデル	⊠ 4-26~⊠ 4-33
			(ボロン)	
	崩壊熱		崩壊熱モデル	送 4-8
炉心	沸騰・ボイド率変化		炉心ボイドモデル	⊠ 4-1, ⊠ 4-3
(熱流動)				図 4-5~図 4-7
				(中性子束,水位変化)
				図 4-9~図 4-16
原子炉圧力	冷却材	コーストダ	再循環系モデル	⊠ 4-1~⊠ 4-2
容器	流量変	ウン特性		(炉心流量変化)
(逃がし安	化	自然循環流		⊠ 4-2, ⊠ 4-17, ⊠ 4-18
全弁含む)		量		(炉心流量)
	 冷却材放出 (臨界流・差圧流) ECCS注水 (給水系・代替注水設備 含む) ほう酸水の拡散 		逃がし安全弁モデル	図 4-3
				(逃がし安全弁流量)
			給水系モデル	図 4-4, 図 4-6
				(給水流量変化時の中性子束)
				⊠ 4-19~⊠ 4-21
			ほう酸水拡散モデル	図 4-22~図 4-33
原子炉格納	サプレッ	ション・プー	格納容器モデル	基礎的な物理法則を適用し
容器	ル冷却			たモデルであるため式確認
				とした。

表 4-1 重要現象に対する妥当性確認方法(評価マトリックス)

(1) 実機インターナルポンプ3台トリップ試験

図 4-1 インターナルポンプ 3 台トリップ時の過渡変化

a. 実機試験概要

定格出力/定格炉心流量試験点において,常用高圧母線の故障等の発生を模擬し, 常用高圧母線に接続するインターナルポンプを3台同時にトリップさせている。

b. 実機試験結果の挙動

インターナルポンプ3台トリップにより炉心流量が急減し,再循環系が手動モード であることから,流量は回復することなく,約70%で整定する。炉心流量の低下に より中性子束も低下するが,この間プラントはスクラムしないため運転は継続してい る。水位は一時的に約20cm上昇するが,給水制御系により通常水位に制御される。

c. 実機試験結果との比較

REDYコードの解析結果は、炉心流量、中性子束、原子炉圧力、原子炉水位とも 実機挙動の変化傾向とはどの時点でも一致している。なお、原子炉水位は過渡的に実 機との変化幅の差が大きくなっているが、プラント状態が整定しつつある 25 秒付近 ではその差は小さくなってきている。

(2) 実機発電機負荷遮断試験

図 4-2 発電機負荷遮断時の過渡変化

a. 実機試験概要

定格出力/定格炉心流量試験点において,送電系統の故障等により,負荷が急激に 遮断された場合を模擬し,発電機負荷遮断を行っている。

b. 実機試験結果の挙動

発電機負荷遮断信号により,主蒸気加減弁の急閉,タービンバイパス弁の急開が生 じ,原子炉は直ちにスクラムしている。スクラムすることにより中性子束は急激に減 少してほぼゼロとなる。なお、図には示していないが、バイパス弁容量が定格蒸気流 量の33%であるため、圧力が上昇し逃がし安全弁が3弁開放している。

c. 実機試験結果との比較

REDYコードの解析結果は、中性子束、主蒸気流量、原子炉圧力、原子炉水位と も実機試験と同様な変化となっている。原子炉圧力は解析の方がやや高めとなってお り、解析結果が保守的な評価を与えている。なお、本事象においては、給水ポンプに、 トリップ、予備機起動、ランアウト流量制限等が生じており、過渡的に給水制御指令 信号から切り離される。こうした条件下でも実機試験の給水流量挙動を模擬するため、 起動停止の流量変化がある部分では解析で得られる流量に補正をかけて再現してい る。

(3) 実機主蒸気隔離弁全閉試験

図 4-3 主蒸気隔離弁全閉時の過渡変化

a. 実機試験概要

定格出力/定格炉心流量試験点において,原子炉水位,主蒸気流量等の原子炉系の 異常,あるいは運転員の誤操作等により主蒸気隔離弁が全閉することを模擬している。 b. 実機試験結果の挙動

主蒸気隔離弁全閉により直ちに原子炉はスクラムし,主蒸気流量はゼロに,中性子 束もほぼゼロになる。原子炉圧力は約0.51MPa上昇しているが,逃がし安全弁が6弁 開放することにより圧力上昇が抑えられている。

c. 実機試験結果との比較

REDYコードの解析結果は、中性子束、主蒸気流量、原子炉圧力とも実機の増減 方向を良く模擬しており、その変化幅の差も小さい。

なお,本事象においては,事象発生直後から給水ポンプに,トリップ,予備機起動, ランアウト流量制限等が生じ,過渡的に給水制御指令信号から切り離されている。こ うした条件下で実機試験の給水流量挙動を模擬するため,解析における給水流量変化 を入力としている。

3-45

(4) 実機給水ポンプトリップ予備機不起動試験

図 4-4 給水ポンプトリップ予備機不起動時の過渡変化

a. 実機試験概要

定格出力/定格炉心流量試験点において,給復水系ポンプがトリップし,予備機が 自動起動しなかった場合を模擬した。なお,水位低下を抑えるために再循環ポンプを ランバックさせることで出力を低下させ,運転継続が図られている。

b. 実機試験結果の挙動

タービン駆動給水ポンプの1台がトリップし,予備のモータ駆動給水ポンプが起動 しないため,給水流量が低下するが,インターナルポンプを自動ランバックさせ出力 を低下させることで水位低下を抑えている。原子炉水位は約 20cm 低下した後に回復 傾向となり,運転継続している。

c. 実機試験結果との比較

REDYコードの解析結果は、中性子束、主蒸気流量、原子炉圧力とも良く実機と 一致している。原子炉水位は、解析の方の低下が速いが、最低水位及びその後の回復 傾向は良く一致している。なお、解析における給水流量変化は、給水ポンプに、トリ ップ、ランアウト状態が生じ、過渡的に給水制御指令信号から切り離されているため、 実機に合わせた給水流量変化を入力している。

(5) 実機再循環流量制御系速度設定点変更試験

(定格出力:-+10%設定点変更)

a. 実機試験概要

90%出力/90%炉心流量試験点において,再循環流量制御系の再循環ポンプ速度設定を-10%,+10%ステップ状に変化させている。

b. 実機試験結果の挙動

炉心流量の-10%の変化に対して、中性子束は低下して過渡的にアンダーシュートした後、炉心流量の整定に伴い一定となる。原子炉水位、原子炉圧力等のパラメータも過渡的に変化するがその後安定状態となっている。炉心流量+10%も同様である。
 c. 実機試験結果との比較

再循環流量を-+10%変化させた例である。 炉心流量の増減により中性子束は急激 に変化しているが、 炉心流量の整定に伴い安定に整定している。 REDYコードの解 析結果は、 実機試験結果と良く一致している。

(6) 実機給水制御系水位設定点変更試験

図 4-6 給水制御系水位設定点変更試験 (定格出力:-+10cm設定点変更)

a. 実機試験概要

90%出力/90%炉心流量試験点において,給水制御系の水位設定値を-10cm,+ 10cm ステップ状に変化させている。

b. 実機試験結果の挙動

水位設定値の-10cm 変更に対して,給水流量が減少して原子炉水位が低下する。 その後目標水位に達すると各パラメータは一定となる。水位設定値+10cm 変更も同様である。

c. 実機試験結果との比較

原子炉水位を-+10cm 変化させた例であり, REDYコードの解析結果は, 実機 試験結果と良く一致している。

3 - 48

(7) 実機圧力制御系圧力設定点変更試験

図 4-7 圧力制御系圧力設定点変更試験 (定格出力:-+0.069MPa 設定点変更)

a. 実機試験概要

90%出力/90%炉心流量試験点において,圧力制御系の圧力設定値を-0.069MPa,+0.069MPa ステップ状に変化させている。

b. 実機試験結果の挙動

原子炉圧力の-0.069MPa の変化に対して,主蒸気流量,中性子束は過渡的に変化した後,原子炉圧力の整定に伴い一定となる。原子炉圧力+0.069MPa も同様である。

c. 実機試験結果との比較

原子炉圧力を-+0.069MPa 変化させた例であり, REDYコードの解析結果は, 実機試験結果と良く一致している。

4.2 炉心(核)における重要現象の妥当性確認

炉心(核)に対する重要現象は,核分裂出力,反応度フィードバック効果,崩壊熱 であり,REDYコードでは,これらを評価するモデルとして,

- ・核特性モデル(一点近似動特性モデル)
- ・反応度モデル(ボイド,ドップラ及びボロン)
- ・崩壊熱モデル

を採用している。

4.2.1 核特性モデルと反応度モデル(ボイド、ドップラ)の妥当性確認

(1)実機試験結果との比較による妥当性確認

REDYコードの核特性モデルには一点近似動特性モデルを採用しており,方程式 自体は机上又は実験解析で検証されている公知のものである。実機の原子力発電プラ ントに,この一点近似動特性モデルを適用した場合,正しい核定数及び適切な反応度 フィードバックが与えられた条件下において,実機試験の中性子束応答を良く模擬で きることは,これまで国内外での多数の実機試験との比較で確認されている。この妥 当性確認は核特性単独モデルでは出来ず,核特性モデル,反応度モデルに加え他の熱 水力モデル等との総合効果として確認される。

核特性モデルの妥当性を確認することが目的であるため、ここで引用する実機試験 結果は、原子炉がスクラムしない場合の事象が参照対象となる。

図 4-1 インターナルポンプ 3 台トリップ時の過渡変化

図 4-4 給水ポンプトリップ予備機不起動時の過渡変化

- 図 4-5 再循環流量制御系速度設定点変更試験
- 図 4-6 給水制御系水位設定点変更試験
- 図 4-7 圧力制御系圧力設定点変更試験

本事故シーケンスで作動する再循環ポンプトリップ時の炉心流量急減による炉心内 ボイド率増加に伴う出力抑制模擬能力は図 4-1,図 4-5 により,給水流量変化(EC CS注水)から生じる炉心入口サブクーリング変化に伴う炉心内ボイド率増減に伴う 出力変化の模擬能力は図 4-4,図 4-6 から,圧力変更に対する出力変動模擬能力は図 4-7 からその妥当性が確認できる。

(2)反応度モデル(ボイド、ドップラ)の妥当性確認

申請解析におけるREDYコードの反応度フィードバックは,単位燃料集合体核特 性計算コードによる評価から求められた反応度係数に不確かさ等を考慮し,本事故シ ーケンスにおける全ての解析時間を通して同一値の保守因子として動的ボイド係数

1.25,動的ドップラ係数 0.9を掛けて評価している。これは、本事故シーケンスの初 期における現象(圧力上昇によりボイドが減少することによる出力上昇)が支配的で あるためである。しかしながら、本事故シーケンスは、事象進展に伴ってプラント状 態が大きく変化するため、本資料でこの妥当性を確認する。手法としては、炉内の物 理現象が主な評価対象となる短時間領域をプラント挙動に従ってさらに 3 つのサブ 時間領域に細分割し(添付4参照)、それぞれの領域での反応度フィードバック(ボ イド、ドップラ)の不確かさを求め、サブ時間領域ごとの不確かさを事象進展に伴っ て変更可能な機能をREDYコードに追加して行う。

サブ短時間領域ごとの動的ボイド係数,動的ドップラ係数のそれぞれに求めた不確 かさ(下限値・ノミナル値・上限値の組み合わせ)を添付5に示す。

4.2.2 反応度モデル(ボロン)の妥当性確認

実機試験からは確認出来ない反応度フィードバックモデルのうち、ボロン反応度に 関しては、後述する「4.4.6 ほう酸水拡散モデルの妥当性確認」でそのモデルの妥当 性確認を実施している(図4-26~図4-33)。このモデルでは、反応度抑制に寄与する 炉心内のボロン濃度変化を計算し、この濃度にインプット定数としての、高温停止に 必要な「ボロン反応度/ボロン濃度(ボロン反応度添加率)」を乗じてボロン反応度 に換算している。なお、ボロン反応度添加率に関する妥当性確認結果を添付6に示す。

高温停止に必要なボロン反応度は、三次元未臨界性評価を考慮しているため、その 不確かさは、ほう酸水注入系の三次元未臨界性評価における停止余裕基準の1.5%⊿ k⁽¹²⁾⁽¹³⁾とする。なお、本評価は、定格運転時に臨界を保った状態を起点としており、 高温停止に必要なボロン所要量は炉心の違いで大きく変化することはないため、代表 的に平衡炉心で評価しているが、ここでは、炉心変更及び MOX 混在炉心の場合におけ る装荷遅れ等に伴う高温停止に必要なボロン反応度の不確かさについても考慮し、+ 分余裕がある値として停止余裕基準と同等の1.5%∠k とした。

よって,これらの合計から3%∠kを不確かさとした。

4.2.3 崩壊熱モデルの妥当性確認

REDYコードの崩壊熱は、11群又は4群モデルで模擬し、両モデルは同等であることを3.3節で確認している。

以下,11 群モデルについて説明する。11 群モデルは 1979 年に米国の NUREG-1335⁽¹⁴⁾で参照され,Idaho National Engineering Laboratory が採用した 11 群モデ ルとデータを採用している。日本では、1992 年 4 月 28 日の原子力安全委員会、原子 炉安全基準専門部会 原子力崩壊熱評価小委員会での論議により、AESJ推奨値を 用いることも妥当との結論が得られている。本資料の図にREDYコードで使用して いる崩壊熱曲線を重ね合わせたものが図 4-8 である。11 群モデルと現状のデータは

GEモデル(1973) +3 σ ともほぼ同等であり、新ANS(1979) +2 σ やAESJ推 奨値よりは、わずかに高めに評価していることが確認できた。なお、図 4-8 からRE DYコードで使用している崩壊熱計算の不確かさは、1 秒の時点で最大+0.8%、-0.1%である。

図 4-8 REDYコードの崩壊熱曲線と各種推奨値との比較

3-52

4.3 炉心(熱流動)における重要現象の妥当性確認

炉心(熱流動)に対する重要現象は、沸騰・ボイド率変化であり、REDYコードでは、炉心ボイドマップとそのスイープモデルのことである。

炉心ボイドマップは図 4-9 に示すように, 定格炉心流量における炉心出ロクオリティと炉心平均ボイド率との関係を, 炉心入ロサブクーリングをパラメータとしてまとめた関数である。過渡時の状態は, ここから得られる炉心平均ボイド率に, 炉心流量補正, さらにはスイープモデルを適用して模擬している。炉心平均ボイド率へのスイープ効果は炉心入口流量の変化等を考慮した二次遅れモデル近似である。

(1) 炉心ボイドマップの妥当性

炉心ボイドマップは、定格状態において設計軸方向出力分布(平衡炉心に相当する 下方ピーク)を仮定し, 炉心熱水力解析コードを用いて求めている。後述の 4.3.1 で 参照している「炉心ボイドマップ確認試験」においては、実際は軸方向出力分布を下 方分布、均一分布、中央分布として試験を実施している。その結果、軸方向出力分布 の違いによるボイド率に与える影響の明確な差はないと結論付けている。本事故シー ケンスでは、給水加熱喪失の影響を受けている間、より下方ピークとなることが知ら れており,設計軸方向出力分布を仮定していることの妥当性を確認するために,仮に より下方ピークとなった場合のボイドマップを作成して比較した。この結果、より下 方ピークを想定した場合は、同じ炉心入口サブクーリングであれば沸騰開始が早くな り,本事故シーケンス範囲での炉心ボイドマップ全体がボイド率の大きい方に平行移 動する(初期の炉心ボイド率が多少高くなる)ことを確認している。ここで,プラン ト全体の挙動に影響を及ぼすボイド反応度の変化は, 初期運転点でのボイド率の相違 による影響よりも,主にそこからのボイド率の変化幅と変化速度による影響が支配的 である。このことから軸方向出力分布の違いによる影響はボイド率の変化幅や変化速 度に大きく影響するものではないため,結果としてプラント全体への影響に有意な差 を与えることはないと言える。実際,添付3に示したように,本事故シーケンス解析 で初期の軸方向出力分布をより下方ピークに変更した解析を実施した場合でも, 評価 結果に与える影響は小さいことを確認している(*1)。また、本事故シーケンス解析で の高炉心入口サブクーリング側の炉心入口サブクーリング変動範囲は,従来の高温高 圧での実バンドル体系での試験範囲外である。しかしながら、炉心入口サブクーリン グが高まるにつれて、サブクール沸騰及び飽和沸騰開始点が下流側に移動するものの、 サブクール沸騰開始後の下流側の流動状態は通常の炉心入口サブクーリング時と特 に変わるものではないため、 平均ボイド率を対象とした炉心ボイドマップの高炉心入 ロサブクーリングでの不確かさに対する影響は小さいと考えられる。

(2) 炉心流量補正モデルの妥当性

過渡時の炉心平均ボイド率の変化は、上記(1)の炉心ボイドマップから得られた炉 心平均ボイド率に対し、炉心流量補正を加えて求める。後述の図 4-15 の試験解析結

果により軸方向出力分布の影響が小さいこと,図 4-16の試験解析結果により炉心入 ロサブクーリングの影響が小さいことも確認していることから、本事故シーケンス にこのモデルを適用することの妥当性が確認された。

なお、炉心流量補正モデルの妥当性は「4.3.3 実機試験結果との比較による妥当性 確認」でも示している。

(3) ボイドスイープモデルの妥当性

ボイドスイープモデルは、炉心入口流量、沸騰長等をパラメータとした、過渡時の 軸方向の炉心内ボイド伝播変化を考慮したものである。ボイドスイープモデルの妥当 性は、後述の4.3.1 図4-13 で参照している時間領域での試験結果、図4-14 で参照 している周波数特性での試験結果より確認している。さらに前述の4.1 で示した実機 試験結果(ボイドスイープのモデルのパラメータである炉心入口流量等を変えた場合) に対する模擬能力が十分高い事を、計測可能な中性子束変化を通して総合的に確認し ている。

(*1) REDYコードでは模擬できないが、短時間領域では給水加熱喪失により軸方向 出力分布が下方ピークとなると想定される(添付2)。これに伴いボイドマップも 変わるものと推測され、この過渡時のボイドマップを初期炉心状態として作成し、 その影響を参考解析してみると、短時間の評価パラメータは小さめに評価されるこ とが確認できた(添付3)。

図 4-9 ボイドマップの例⁽¹⁵⁾

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4.3.1 炉心ボイドマップ確認試験

図 4-10 及び図 4-11 に日本国内で実施された試験装置系統図,及び試験部を示す。

図 4-10 試験装置系統図

図 4-11 試験部概要図と解説

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-55

図 4-12 に、実機定格流量相当における定常状態のボイド試験結果について、試験 結果で得られた炉心出ロクオリティとボイド率との関係を示す。図中、REDYコー ドにおける設計式の値を実線で示すが、試験結果と良く一致していることが確認され ている。

図 4-12 ボイドマップの確認結果(実機定格流量相当)⁽¹⁵⁾

また,同試験装置で過渡時の スイープモデルの妥当性も確認 しており,この結果を図 4-13 に 示す。

REDYコードのボイドスイ ープモデルによる計算値につい ても同図に示すが,両者の時間 変化挙動は良く一致している。 また,この妥当性は,実機試験 結果との比較でも確認されてい る。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-56

GE社から報告されているボイドスイープモデルの妥当性確認結果では,試験装置 は実機との相似性を考慮した設備とし,電気入力を正弦状に変化させて,出力と平均 ボイド率の周波数伝達関数を求めている。この実験解析をREDYコードの可変二次 遅れスイープモデルと比較した結果を図4-14に示すが,実炉で重要な0.1Hzから1Hz の周波数範囲で実験結果と解析結果とは,良く一致していることが確認されている。

> 図 4-14 過渡時ボイド率の解析結果と実験結果との比較⁽¹⁵⁾ (出力―平均ボイド伝達関数の周波数応答)

4.3.2 炉心平均ボイド率の炉心流量補正モデルに係わる妥当性確認

REDYコードでは定格炉心流量で定めた炉心平均ボイドマップを用いており, 炉 心流量が低下した場合に相対的蒸気ドリフト量が増えて炉心内の平均ボイド率が変 化することを炉心流量の二次関数でマイナス補正している。本事故シーケンスでは, 再循環ポンプトリップ後に低炉心流量や自然循環状態で高出力状態が継続すること からこのモデルの重要度が高い。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 57

図 4-15 は、「4.3.1 炉心ボイドマップ確認試験」の中で報告している日本国内で実施された試験結果を、炉心入口流量の変化に伴うボイド補正率(PU)の関係として整理したものである。試験装置は、8×8 燃料を模擬しており、出力分布が均一の場合(かつ、炉心出ロクオリティ25%)と下方ピーク(かつ、炉心出ロクオリティ20%)の場合の試験結果(それぞれ4点と2点)をプロットしている。これによると、炉心ボイド率の炉心流量補正率は、軸方向出力分布の違いに係らず、REDYモデルの二次関数とほぼ一致しており、その妥当性が確認できた。

図 4-15 炉心ボイドマップの流量依存性(国内試験結果との比較)

上記の試験で模擬した燃料は 8×8 燃料であること,試験点数が必ずしも十分とは いえないことから,炉心ボイド率の炉心流量補正モデルの妥当性確認の方法として, 設計データとの比較手法(炉心熱水力解析コードで多数のボイドマップデータを作成 し,炉心流量の違いによる影響を整理する手法)を用いる。

図 4-16 は、炉心流量を 15%,40%,70%,100%とし、それぞれに対して炉心出口 クオリティを 30%,40%,60%,80%かつ 6 種類の炉心入口サブクーリングを変えた 場合の試験解析を行い、ボイド率補正率(PU)(=定格炉心流量でのボイド率に対する 補正割合)を求めて図に纏めたものである。図では試験点が重なっているが、同じ炉 心流量における試験解析点数は上記より各 24 個存在する。なお、燃料は9×9燃料 (A型)の平衡炉心を想定している。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 58

同図に, REDYコードモデルで使用している二次関数を実線で併記しているが, 炉心出ロクオリティや炉心入ロサブクーリングの違いに係らず,ボイド率補正率(PU) は炉心流量の二次関数でフィッティング出来ることが示されている。なお,約40%流 量付近では,試験解析点よりREDYモデルのデータの方がボイド率を少なめに評価 しており,これは短時間領域での原子炉出力を高めに評価していることを意味する。

本図から,破線で示した様な炉心流量に依存しない場合(補正なし)を不確かさ下限とし,15% 炉心流量での試験解析点も包含する二次関数を不確かさ上限とする。

図 4-16 炉心ボイドマップの流量依存性(試験解析結果との比較)

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 59

4.3.3 実機試験結果との比較による妥当性確認

炉心ボイドの挙動は実機では直接確認することが出来ない。ただし、核分裂出力変 化の妥当性を実機試験結果で確認した 4.2.1 節と同様に、REDYコードのボイドマ ップが実機の過渡変化挙動を模擬出来ないと、

― これによって生じるボイドフィードバック起因の中性子東変化

一 炉心内ボイド率が変化することでのシュラウド外水位変化(検出水位)
 が模擬出来ないことになる。

以上より、これらの中性子束、検出水位を着目パラメータとして実機試験結果とR EDYコードの解析結果を比較した。

図 4-1 インターナルポンプ 3 台トリップ時の過渡変化

- 図 4-3 主蒸気隔離弁全閉時の過渡変化
- 図 4-5 再循環流量制御系速度設定点変更試験
- 図 4-6 給水制御系水位設定点変更試験

図 4-7 圧力制御系圧力設定点変更試験

図 4-1のREDYコードの解析結果は、炉心流量急減に伴う実機の中性子束変化を 良く模擬しており、結果的に本事故シーケンスでの再循環ポンプトリップ時の炉心流 量急減に伴う炉心ボイド率の増加現象が模擬出来ることを意味している。

図 4-3 のREDYコードの解析結果は,実機の原子炉水位変化を良く模擬しており, スクラム失敗を仮定した原子炉隔離に伴う圧力上昇によって(この場合はスクラムも 併用)生じる炉心ボイド率の減少現象を十分模擬できることが確認できたといえる。

図 4-5 の再循環流量の増減変化に対する中性子束の変化は良く実機を模擬できて いるが、これにより、炉心流量の変化に伴うボイドスイープのモデルの妥当性が確認 できる。

図 4-6 は、給水流量を試験で増減させたものであるが、中性子束の変化が良く実機 を模擬できている。この場合、給水流量の変化は炉心入口サブクーリングを増減させ るが、炉心入口サブクーリングをパラメータとしているボイドマップの妥当性が示さ れている。

図 4-7 は原子炉圧力を増減させた試験結果であるが、中性子束の変化は良く実機を 模擬できている。すなわち、ボイドマップの圧力変化に対する模擬モデルの妥当性が 確認できる。

4.4 原子炉圧力容器(逃がし安全弁含む)における重要現象の妥当性確認

原子炉圧力容器(逃がし安全弁含む)に対する重要現象は、冷却材流量変化(強制 循環時)、冷却材流量変化(自然循環時)、冷却材放出(臨界流・差圧流)、ECCS 注水(給水系・代替注水設備含む)、ほう酸水の拡散であり、REDYコードでは、 これらを評価するモデルとして、

- ・再循環系モデル
- ・逃がし安全弁モデル
- ・給水系モデル
- ・ほう酸水拡散モデル

を採用している。

4.4.1 再循環系モデルの実機試験結果との比較による妥当性確認その1 (冷却材流量変化(強制循環時))

重要な物理現象である,冷却材流量変化(強制循環時)の妥当性確認を実機試験結 果との比較によって行う。

再循環ポンプトリップによる炉心流量低下速度は,炉心のボイド挙動,炉心を含む 過渡流れの圧力損失係数,再循環ポンプの慣性定数や初期回転速度といった多くのパ ラメータによって複合的に影響を受ける。

よって、ここでは再循環ポンプトリップ、又はそれ相当の炉心流量変化がどの程度 REDYコードで模擬出来ているのかを実機試験結果で確認する。

図 4-1 インターナルポンプ 3 台トリップ時の過渡変化

図 4-2 発電機負荷遮断時の過渡変化

図 4-1 の実機試験結果は全 10 台のインターナルポンプの内,3 台のポンプがトリ ップした場合であるが,REDYコードは炉心流量急減の変化を良く模擬できている。 また,図4-2の実機試験結果はインターロックにより4台のインターナルポンプトリ ップ(+6台のインターナルポンプランバック)が行われた事象であるが,こちらも REDYコードは炉心流量急減の変化を良く模擬できている。

以上から、本事故シーケンスでの再循環ポンプトリップ時の炉心流量急減に伴う再 循環系モデルの妥当性が確認できた。

なお,再循環ポンプの炉心流量低下率はポンプの時定数が支配的要因となり,時定数の不確かさはポンプの設計仕様から+10%,-10%である。

4.4.2 再循環系モデルの実機試験結果との比較による妥当性確認その2(冷却材流量変化(自然循環時))

重要な物理現象である,冷却材流量変化(自然循環時)の妥当性確認を実機試験結 果との比較によって行う。

再循環ポンプトリップにより,自然循環状態で高出力状態が継続する原子炉スクラム失敗を仮定した事象では,炉心流量の整定値が高い場合に炉心内ボイド率が小さくなり出力が大きくなると想定される。よって,ここでは再循環ポンプトリップ後の自然循環流量がどの程度REDYコードで模擬出来ているのかを実機試験結果で確認する。

図 4-2 発電機負荷遮断時の過渡変化

BWRプラントの起動停止の運転では、最低ポンプ速度状態を経由するも自然循環 流量での運転は行わない運用としている。このため、通常運転時の自然循環状態の実 機データは存在しないが、図 4-2 の過渡事象はこれに近いものとなっている。

図 4-2 に示した実機の発電機負荷遮断試験結果では、インターロックにより4台の インターナルポンプトリップが行われ、残りの6台のポンプが最低ポンプ速度運転と なった炉心流量状態が実現されており、低炉心流量状態を模擬したデータであると見 做すことができる。

この場合は、原子炉がスクラムされていることから炉心のボイド率も次第に低下していく過程にあるが、REDYコードはこの過程を含めて低炉心流量状態を模擬出来ることが示されている。

4.4.3 再循環系モデルの実機試験結果との比較による妥当性確認その3 (冷却材流量変化(自然循環時))

上述したABWRの実機試験結果での妥当性確認結果は,自然循環状態に近いもの として6台のインターナルポンプが最低ポンプ速度となった場合であるが,これを補 足する目的で,従来型BWRでの試験結果との比較結果を示す。なお,解析コードは "REDY Ver.1"を使用しているが,ここで確認している主要なモデルは REDY Ver.1(ATWS 用)"と同等である。

図 4-17 は、460MWe の従来型BWRプラントにおいて、二つあるM/Gセットを手動でトリップさせた試験結果をREDYコードで再現解析したものである。M/Gセットトリップにより、ポンプ回転速度が徐々に低下し、これにつれて炉心流量も低下し、自然循環状態になっている。これによれば、炉心流量、中性子束及び主蒸気流量変化とも 20 秒後の整定値は約 2%以内で一致している。

3-62

図 4-17 再循環ポンプM/Gセット2台トリップ試験⁽¹⁾

図 4-18 は、1100MWe の従来型BWRプラントにおいて、二つある再循環ポンプを 手動でトリップさせた場合の試験結果をREDYコードで再現したものである。この 場合も 20 秒後の自然循環状態に着目すると、原子炉水位変化、原子炉圧力変化、中 性子束変化も整定値で数%以内の差で一致しており、ここで着目したい自然循環流量 の値は精度良く模擬できることが確認できた。

本事故シーケンスでは、原子炉水位が大きく低下し、さらにECCSも注水される ことから、上述の実機試験結果における自然循環流量の状態とは多少異なる。しかし ながら、いずれにせよ自然循環状態は、インターナルポンプまたは再循環ポンプによ る強制循環力がなくなった状態であり、REDYコードが採用している単純な運動量 保存則(*1)において、摩擦圧損等の占める影響力は流量の二乗に比例して小さくなる ことから、シュラウド内外の位置ヘッド差(マスバランス)が支配的な駆動力となる。 なお、炉心摩擦損失係数自体は、炉心熱水力解析コードにより炉心平均ボイド率の関 数として求めているが、本事故シーケンスを通してボイド率の変化が小さいことから、 炉心摩擦損失係数の変化も小さい。以上から、本事故シーケンスにおける自然循環流 量を模擬する場合、一次元の運動量保存則を適用することは妥当であると考える。

(*1) REDYコードでは、一次元流れの運動量保存則により、各圧力評価点間の圧 力差、位置損失(位置ヘッド)、摩擦圧損、局所圧損、加速圧損、ポンプ昇圧(強 制循環力)から過渡時の流量変化を求めている。
図 4-18 再循環ポンプ 2 台トリップ試験 (15)

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-64

4.4.4 逃がし安全弁モデルの実機試験結果との比較による妥当性確認

原子炉圧力の評価にとって重要な物理現象である冷却材放出は,本事故シーケンス では逃がし安全弁からの蒸気放出に該当する。実機ではこれに対応した試験結果が存 在することから,これをREDYコードの流量変化(自然循環時)との比較によって 行う。

図 4-3 主蒸気隔離弁全閉時の過渡変化

図 4-3 の主蒸気隔離弁全閉時の実機試験結果にある主蒸気流量は、原子炉が隔離した後は全て逃がし安全弁から放出される蒸気流量である。ここにおいて、REDYコードの解析結果と実機試験結果の挙動は開閉タイミングを含めてほぼ一致しており、 原子炉スクラム失敗を仮定した事象に対して、逃がし安全弁モデルを使うことの妥当 性が確認された。

なお、モデルにおける吹出し容量は、「日本工業規格 JISB8210 」付属書記載の算 出式により計算された値をインプットデータとして用いており、吹き出し容量の不確 かさは-0%、+16.6%であることが分かっている。

4.4.5 給水系モデルの妥当性確認

(総合的な妥当性確認,主に給水流量)

原子炉への給水流量が変化すると、例えば増加すると、炉心入口サブクーリングが 増加するために炉心のボイドが減少し、正のボイド反応度が印加されることで原子炉 出力が増加する。また、給水の温度が変化すると、例えば低くなった場合には給水流 量が同じでも、前述と同じ理由で出力が増加する。

実機試験結果の中から給水流量変化が主導となる下記の事象にて,REDYコード の妥当性確認を行う。なお,ECCS流量変化に伴う実機データは存在しないが,原 子炉に注水された場合の炉内全体の減圧効果や炉心入口サブクーリングに与える影 響は同等と考え,ここでの妥当性確認に含めるものとする。

図 4-4 給水ポンプトリップ予備機不起動時の過渡変化

図 4-6 給水制御系水位設定点変更試験

図 4-4 の実機試験は給水ポンプトリップにより給水流量が急激に低下した場合の プラント挙動であり,給水流量の減少による炉心入口サブクーリング減少が炉心のボ イド率増加を引き起こし,時間遅れの後に中性子束減少として表れている。実機試験 では再循環ポンプランバックによる炉心流量低下も並行して炉心ボイド率増加を引 き起こしているため,炉心入口サブクーリング減少のみの影響ではないが,総合して どのパラメータの挙動もREDYコードは良く模擬出来ている。

図 4-6 は、給水流量が増減した場合のプラント挙動であり、こちらの実機試験結果

3-65

では給水流量が減少した場合,増加した場合の中性子束の挙動がREDYコードにて 良く模擬されている。

このように、REDYコードの解析結果と実機試験結果の挙動は良く一致しており、 原子炉スクラム失敗を仮定した事象での給水流量変化に対しての模擬能力の妥当性 が確認された。

(給水エンタルピモデルの妥当性確認)

給水エンタルピモデルは 3.3 節の解析モデルに示したように、2 つのモデルから選 択出来る。

図 4-19 は、給水エンタルピモデル(1)のREDYコードで使用している主蒸気 流量と給水エンタルピとの相関テーブルを、実機試験データと比較したものである。 これによると、モデルで使用しているデータの方が給水エンタルピを多少小さめに評 価しており、全般的に良く一致している。ただし、原子炉スクラム失敗を仮定した主 蒸気隔離弁の誤閉止では、早期に主蒸気流量が遮断され零となるが、この点での給水 エンタルピはモデルの方が約 60kJ/kg(約 14℃) 程高めであり、これを主蒸気流量が 零の点での不確かさとする。

図 4-19 給水エンタルピモデル(1)の主蒸気流量と給水エンタルピとの関係

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-66

図 4-20 は、給水エンタルピモデルにおける一次遅れ特性を確認したものである。 REDYコードでは 60 秒の時定数を使用しているが、実機試験結果を良く再現でき るのは 80 秒の時定数である。このことから、本事故シーケンスでは給水エンタルピ の低下を早めに評価していることとなり、モデルの保守性が確認できた。

図 4-20 給水エンタルピモデル(1) における一次遅れ特性

給水エンタルピの低下は,主蒸気隔離弁の誤閉止に伴って生じる給水加熱蒸気喪失 に起因して生じ,エンタルピが低下した給水流量が原子炉圧力容器に到達するのには 時間遅れがある。REDYコードではこの遅れ時間を考慮できるようになっているが, 本事故シーケンスでは厳しめに遅れ時間を0秒として評価している。よって,この遅 れ時間 50秒(給水流量 68%相当で評価)を不確かさ下限とする。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-67

図 4-21 は、給水エンタルピモデル(2)で入力する給水エンタルピ変化の保守性 を確認したものである。有効性評価では、インプットデータとしての輸送遅れ時間算 出の際に給水流量を上限値一定と仮定している。このため解析では、給水流量の変動 を考慮した場合よりも輸送遅れ時間が短くなり、給水エンタルピの低下を速めに模擬 している。

図 4-21 給水エンタルピモデル(2) に入力する給水エンタルピ変化

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-68

(ECCSエンタルピの妥当性確認)

本事故シーケンスで期待しているECCS(HPCFとRCIC)の流量は安全要 求の下限値を使用し,格納容器のプール水又は復水貯蔵槽を水源としている。基本ケ ースでは,それぞれの設計流量(HPCFで182m³/h)を用いているが,流量制御を しているRCICは別として,HPCFの場合にはプラス側の不確かさがあり,制御 棒挿入失敗を仮定した本事象では,炉心を冷却する作用によりどの評価指標に与える 影響も厳しくなる可能性がある。HPCFでは実力値として+137%(250m³/h)の能 力があり,これを不確かさとする。

また,制御棒挿入失敗を仮定した主蒸気隔離弁の誤閉止では,長時間領域での評価 指標である格納容器の圧力と格納容器のプール水温度を高めに評価する目的で,格納 容器のプール水温度は保安規定で定めた上限値 35℃を基本ケースとしている。しか しながら,一方で,ECCSはこの格納容器のプール水も使用しており,より冷たい プール水が結果を厳しくする可能性も考えられる。よって,ここでは設計仕様の常用 温度下限である 10℃を不確かさの下限とする。

4.4.6 ほう酸水拡散モデルの妥当性確認

ほう酸水注入系によって原子炉に注入されたほう酸水は、炉心内冷却材内に拡散さ れることによりボロン反応度効果として作用し、原子炉を停止させる。

ほう酸水が原子炉に到達するまでの遅れ時間は単純な移送計算で求められるが,到 達後の炉内拡散は複雑であり,これを詳細に模擬することは困難である。このため, ほう酸水拡散モデルでは,その入力データを試験結果から得られた結果に基づいて厳 しめに設定又は補正することで安全側の評価となっていることを確認する。

ボロンミキシングの試験設備は1/6 縮尺で模擬した試験設備であり,ほう酸水流量 及び炉心流量をパラメータとして炉内ボロン濃度の時間変化を計測している。

3-69

図 4-22~図 4-24 に米国で実施された 1/6 スケール三次元試験装置(バレシトス試験装置)系統図,及び炉心部測定位置を示す _____。試験は制御棒挿入失敗を仮定した時の炉心流量範囲でのミキシング条件を考慮し下記の試験条件で行っている。

ABWR用には、炉心上部からの注水試験が該当し、自然循環状態では、ボロンは 主に炉心バイパス部を下降し、燃料下部タイプレートのリーク流路から燃料チャンネ ル内に流入している。ボロンは上部プレナムで一様に混合されている。なお、従来型 BWRプラントでは、ボロンは下部プレナムで一様な混合が得られることが確認され ている。

3 - 70

(1) ABWRの場合

炉心上部のHPCFスパージャから注入されるABWRでは,例えば炉心流量がゼ ロの場合は炉内に注入されたボロンは全量が炉心内に下降し,遅れなく反応度に寄与 する。このほう酸水の注入位置によって,ABWRのほう酸水拡散モデルで使用する ボロンのミキシング効率は炉心流量には依存しないものと見なされるので,炉内拡散 遅れを考慮し,ほう酸水の注入速度を保守的な時間遅れでインプットするモデルとし ている。

ABWR向けの試験結果を図 4-26~図 4-29 に示す。また、モデル化の検討図を図 4-30 及び図 4-31 に示す。

最も保守側の結果を包含する値を注入速度として用いることは妥当である。

なお,個々の計測値の一例として,燃料集合体内の混合率の変化を図 4-25 に示す。 試験結果からは時間とともに位置によるバラツキは小さくなっている。

図 4-25 計測点ごとのボロン軸方向測定結果

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-71

図 4-30 SLC流量と目標濃度到達時間の関係

図 4-31 実機ほう酸水流量におけるボロン濃度時間変化のモデル

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-73

(2) 従来型BWRの場合

炉心下部の下部プレナムスタンドパイ プから注入される従来型BWRでは,原子 炉に一定速度で注入されるほう酸水は,炉 心流量が小さい場合にはその一部が下部 プレナムに滞留し反応度に寄与できない ことが考えられる。これを模擬するために ほう酸水拡散モデルでは,注入速度に炉心 流量依存のボロンミキシング効率を掛け ている。このボロンのミキシング効率は図 4-32のようにモデル化されている。

従来型BWR向けの試験結果を図 4-33 に示す。なお、ミキシング効率は「反応度 に寄与する領域の濃度」を「炉内全領域で 十分に混合した時の濃度」で割った無次元 数で定義される。試験の結果から以下がい える。

これにより、従来型BWRにおいて、

図 4-32 従来型BWRのボロンミキシング効率

図 4-33 従来型BWRのボロン混合試験結果

することは妥当である。

以上より,ほう酸水拡散モデルは妥当であることが確認された。なお,拡散モデル におけるボイドの影響を添付6に示す。

原子炉スクラム失敗を仮定した事象が発生し,ほう酸水注入系が作動する時点では, ある程度の変動は有るものの,燃料棒での中性子発生及び中性子吸収,減速材による 中性子減速及び中性子吸収などがバランスしている。この状態でほう酸水注入系が作 動すると,炉心が沸騰状態であっても減速材中にはボロンが含まれ,吸収効果が増加 する。このため,前述の状態よりも反応度は低下する。ボロン濃度が一定であれば, 上記状態よりも出力が低下したところで再びバランスするが,ボロン濃度は増加し続 けるため,沸騰状態においても確実に出力は低下して原子炉停止に至ると考える。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-74

4.5 格納容器における重要現象の妥当性確認

3.3節で示した格納容器モデルは、質量バランスとエネルギバランスに、基礎的な 物理法則を適用したものであり、この妥当性はこれを適用するモデル構築上の仮定確 認と、インプットとしての逃がし安全弁からの蒸気流量及び熱交換係数で決まる。以 下、モデルが保守的で妥当であることを確認する。

原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止では, 圧力上昇によって開い た逃がし安全弁からの蒸気は排気管を経由し, 格納容器のプール水中に放出され冷却 される。この時, 状態によっては一部の蒸気はウェットウェルの空間部に移行する。 つまり, 事故解析のLOCAとは異なり最初に圧力の上昇が始まるのはウェットウェ ルであり, 真空破壊装置が開いて初めてドライウェルの圧力も上昇を開始する。格納 容器を1つの圧力ノードとして評価出来るのは, このように, 本事故シーケンスでは 基本的に真空破壊装置は早期に開き, 開いたままとなるためである。

ここで、格納容器内の空間部の温度は常にプール水温度と同じと仮定しているが、 実際には、格納容器内の気体温度はプール水温度に遅れて、かつ吸熱して変化するた め、気体温度を時間遅れなくプール水温度に追随させることは、格納容器圧力を高く 評価することになり、この仮定は保守的である。また、格納容器内の空間部は常に水 蒸気で飽和しているものとすると仮定しているが、格納容器内の気体空間が水蒸気で 飽和していなければ、蒸気分圧はより低い値となるためこの仮定も保守的である。

以上,モデルは空間的に格納容器を一体とし,単純な計算で保守性を確保しており, 格納容器における重要現象を保守的に評価できるモデルであることが確認された。

以上,確認してきた妥当性確認結果と重要現象に対する不確かさを表 4-2 にまとめる。

=4章関連の参考文献=

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-75

		表 4-2 解析モ	デルの妥当性確認結果	と主重要現象に対する不確かさ	まとめ
分類	重要	厚現象	解析モデル	妥当性確認	不確かさ
炉心(核)	核分裂出力		核特性モデル	ABWR実機試験	反応度フィードバック効果に含める
	反応度フィー	ドバック効果	反応度モデル	ABWR実機試験	旅付 5 の表 2-2 参照
			(ボイド・ドップラ)	設計解析での確認	
		·	反応度モデル	設計値の確認(ほう酸水拡散モ	高温停止に必要なボロン反応度:
			(ボロン)	デル自体は下記)	— 3%∠lk
	崩壞熱		崩壊熱モデル	学会推奨曲線、モデル式確認	1 秒経過で最大+0. 8%/-0. 1%
炉心(熱流動)	沸騰・ボイ ド	率変化	炉心ボイドモデル	試験装置, ABWR実機試験	反応度フィードバック効果に含める
				設計解析での確認	炉心流量補正なし/最大補正二次関数
原子炉圧力容器	冷却材流量	コーストダウ	再循環系モデル	ABWR実機試験,設計値	ポンプの時定数:+10%/-10%
(逃がし安全弁)	変化	ン特性			
含む)		自然循環流量		ABWR実機試験	モデルの仮定に含まれる
	冷却材放出(臨	冨界流・差圧流)	逃がし安全弁モデル	A B W R 実機試験, 設計値	逃がし弁流量:+16.6%
	ECCS注水		給水系モデル	ABWR実機試験,設計値	(1)給水温度(主蒸気流量零で):
	(給水系・代점	特注水設備含む)	(給水エンタルピ)		$-60 \text{ kJ/kg} (-14^{\circ}\text{C})$
					(2) 遅れ時間 +50 秒
			給水系モデル	設計値等の確認	HPCF流量:
			(HPCF流量)		+137%
			給水系モデル	設計値等の確認	格納容器のプール水初期エンタルピ:
			(E C C S エンタルピ)		$-104 \text{ kJ/kg} (-25^{\circ}\text{C})$
	ほう酸水の拡	散	ほう酸水拡散モデル	試験装置	入力値に含まれる
原子炉格納容器	サプレッショ	ン・プール冷却	格納容器モデル	モデル式確認	入力値に含まれる

ŝ
徸
μ
14
∇
2
10
1
TO
÷.
45
Ϋ́́ι.
17
=1/
tHX
4111
黒
H
ШK
ויזם
لتسل
ιшi
11
-0
m1/
ШК
шm
22
63
沃叱
5111
褚
14
±Η
4
上目
12K
1241
\cap
0
\mathbf{i}
7
31
IN
.1.
H
i L
5
<u> </u>

³⁻⁷⁶

4.6 実機解析への適用性

重要現象に対して実施したREDYコードの妥当性確認が,実機解析に適用可能で あることを述べる。

4.6.1 重要現象への適用性

REDYコードを用いた有効性評価における重要現象は,核分裂出力,反応度フィ ードバック効果,沸騰・ボイド率変化,冷却材流量変化(強制循環流量),冷却材流 量変化(自然循環流量),冷却材放出(臨界流・差圧流),ECCS注水(給水系・代 替注水設備含む),ほう酸水の拡散,サプレッション・プール冷却である。

REDYコードは元々実際に起こり得るプラント挙動(プラント安定性や運転時の 異常な過渡変化)を評価する目的で開発されており,4.1節から4.5節で確認したよ うに,重要現象を模擬した各モデルの妥当性は実在する実機試験結果との比較により ほぼ確認可能である。さらに,直接確認できない炉心ボイドモデルについては,実機 を模擬した試験装置での試験によっても確認されており,また,崩壊熱については学 会等で公的に認められた特性を模擬していることが確認できた。なお,ボイドマップ は,炉心熱水力解析コードから得られた炉心出ロクオリティとボイド率との関係から 静的に求めたものであることから,多少各パラメータの変動が大きくなる原子炉スク ラム失敗を仮定した事象の評価においても適用可能であると考える。

実機試験で確認できない,原子炉スクラム失敗を仮定した事象として特有なほう酸 水注入によるボロン反応度変化については,三次元コードから得られた実機を想定し た高温停止に必要なボロン反応度とボロン濃度をデータとし,これに試験によって裏 付けられた炉心内平均ボロン濃度の変化を考慮している。したがって,ほう酸水拡散 モデルも,原子炉スクラム失敗を仮定した実機の適用において問題がない。

格納容器内への逃がし安全弁からの蒸気放出に伴う圧力と温度の評価に関しては, 質量及びエネルギをバランス式から計算し,保守的な結果を与える仮定の下で構築さ れた単純な物理方程式を採用していることを4.5節で説明した。したがって,格納容 器の評価においてこのモデルを実機に適用することに問題はない。

3-77

4.6.2 出力等が異なるプラントへの適用性

出力等が異なるプラントにおいて,原子炉停止機能喪失事象評価に影響する設備の 相違箇所は,以下のとおりである。

• 再循環系

- ・ほう酸水注入箇所
- ECCSの構成

再循環系については、ABWRはインターナルポンプ(内蔵型再循環ポンプ)を採 用しているが、定格原子炉出力がより小さい従来型BWRでは外部ループとジェット ポンプにより構成されている。この相違は、再循環ポンプがトリップして炉心流量が 低下する際の炉心流量の低下速度に影響し、炉心からの冷却材への熱交換に影響する が、それぞれ実機試験結果で確認された異なる再循環系モデルを選択する。

ほう酸水の注入箇所については、ABWRでは炉心上部への注入となるが、定格原 子炉出力がより小さい従来型BWRでは炉心下部へ注入する。この相違に対しては、 それぞれ試験装置により確認された異なるデータを適用できる。

ECCSの構成については,原子炉スクラム失敗を仮定した事象時には原子炉圧力 が高めに推移するため,高圧系のECCSを使用するが,炉型や定格原子炉出力によ らず基本的な構成は相違ない。

以上から、出力等が異なるプラントへも適用可能である。

4.6.3 まとめ

以上より,本章に記載している妥当性確認結果は,出力等が異なるプラントと共通 の確認結果として適用性を有するとともに,実機BWRの有効性評価解析に適用でき ると考える。

3 - 78

5. 有効性評価への適用性

4章に記載した実機比較解析等を踏まえ、重要現象についての不確かさ、及びその 不確かさが評価指標の観点と運転員操作の観点から有効性評価解析へ与える影響に ついて表 5-1 にまとめた。以下にその不確かさについて記述する。

- 5.1 不確かさの取り扱いについて(評価指標の観点)
- 5.1.1 重要現象に対する不確かさが評価指標に与える影響 REDYコードで取り扱う評価指標は、原子炉圧力、燃料被覆管温度、格納容器圧力,格納容器のプール水温度である。このうち燃料被覆管温度については、REDY コードの解析結果をSCATコードに受け渡し評価を実施する。
 - 以下、重要現象の不確かさがこれらの評価指標に与える影響について示す。
- (1) 核分裂出力

核分裂出力は 3.3 節に示す一点近似動特性の核特性モデルを解くことにより求 めている。核分裂出力の不確かさは、核特性モデルで使用する反応度フィードバッ ク効果(ボイド、ドップラ、ボロン)の不確かさに含まれる。核定数の不確かさに 対しては原子炉スクラム失敗を仮定した事象が保守的な結果を与えるような燃焼 度時点の炉心データを組み合わせて使用しており、反応度フィードバック効果につ いては後述の(2)に示す。

(2) 反応度フィードバック効果

ボイド反応度及びドップラ反応度の不確かさについては,運転時の異常な過渡変 化評価と同様に,ボイド反応度に保守ファクタを考慮して計算することにより,加 圧事象時の出力上昇が大きくなるように評価している。しかし,本事故シーケンス は,圧力や炉心入口サブクールが時間経過につれて増減する長期事象であることか ら,運転時の異常な過渡変化のような短時間の事象を評価する場合とは異なり保守 因子が変化するため,ボイド反応度及びドップラ反応度の不確かさ評価で設定した 範囲に対して感度解析にて確認する必要がある。なお,感度解析のための単位燃料 集合体核特性計算コードの不確かさを含めた反応度フィードバック係数の不確か さ評価については,添付5にて説明する。また,感度解析実施のためにサブ時間領 域ごと(添付4参照)に反応度係数を変更可能な機能をREDYコードに追加して 評価を実施する。

ボロン反応度の不確かさについては、その不確かさについて感度解析を行い、評価指標に対する影響を 5.1.2 節で確認する。

(3) 崩壊熱

発生熱源としての崩壊熱が大きい場合は、長時間領域で評価指標に影響が有るものと想定された。崩壊熱の不確かさ幅は時間とその時点までの核分裂出力の変遷で決まるが、不確かさについて感度解析を行い、評価指標に対する影響を5.1.2節で確認する。

(4) 沸騰・ボイド率変化

沸騰・ボイド率変化現象の不確かさは、REDYコードでは3.3節に示した炉心 ボイドモデルとそのデータの不確かさによる。データは炉心熱水力解析コードの解 析結果を元に一点近似用に作成しており、現実的に評価していることから、ボイド マップが評価指標に与える影響は小さい。ただし、ボイドマップの炉心流量補正の 不確かさについては感度解析を行い、評価指標に対する影響を5.1.2節で確認する。

(5) 冷却材流量変化(コーストダウン特性)

再循環ポンプトリップ時,ポンプ速度の低下が遅いほど原子炉出力の抑制も遅く なり,原子炉バウンダリ圧力が高めに評価される。また,炉心流量の低下が速いと, 燃料被覆管温度が高くなる可能性がある。

この冷却材流量低下速度が燃料被覆管温度の評価指標に与える不確かさは感度 解析にて確認する必要がある。

(6) 冷却材流量変化(自然循環流量)

再循環ポンプトリップにより炉心流量が低下し,自然循環状態となるが,その際, 炉心流量が小さいと燃料被覆管温度が高くなる可能性がある。また,炉心流量が大 きいと原子炉出力が高くなり,逃がし弁の開閉により格納容器側に放出される蒸気 流量が多くなることから,格納容器圧力及び格納容器プール水温度が高くなると考 えられる。

自然循環流量は、再循環ポンプの駆動力(ABWRで数台運転中の期間),核特性と、これに起因した炉心内の熱水力学的挙動変化、シュラウド内外挙動やECCS注水(給水系を含む)などに総合的に影響される物理現象である。このためこれを単独で切り出して不確かさを感度解析することは困難である。しかしながら、4.4.3節で説明しているように自然循環状態はシュラウド内外の位置ヘッド差(マスバランス)が支配的であり炉内ボイドによる摩擦圧損等の炉心流量への影響は小さいこと、実機試験での挙動を概ね再現できることを確認していることから、炉心流量の不確かさによる影響は評価指標に対する安全裕度を有意に小さくするものではない。さらに、解析モデルの異なるコード(TRACコード)により参考的に解析評価を行い、REDYコードによる解析結果とプラントの全体挙動が同様であることを参照

3-80

(7)冷却材放出(臨界流·差圧流)(原子炉圧力容器)

短時間領域では,逃がし安全弁から放出される蒸気流量が少ないほど,事象初期 の圧力上昇が緩和されにくく,原子炉バウンダリ圧力が高めに評価されるとともに, 炉心出力及び炉心圧力も高くなり,燃料被覆管温度も高くなると考えられる。解析 で使用している逃がし安全弁容量は安全率を考慮して決定した下限値であるが,こ の吹出し容量の違いが評価指標に与える不確かさは感度解析にて確認する必要が ある。

(8) ECCS注水(給水系・代替注水設備含む)

給水温度の変化やECCSの水源としての格納容器のプール水温度の初期値は, 炉心入口サブクーリングの変化となって原子炉出力を変化させるため,燃料被覆管 温度や長時間領域の格納容器圧力,格納容器のプール水温度の評価指標に影響する 可能性がある。以上より,給水温度の変化や格納容器のプール水温度の初期値の不 確かさについて確認する必要がある。

なお、炉心に注入されるECCS流量が多いほど、原子炉水位が高くなり自然循 環状態における炉心流量が大きくなるため、原子炉出力が高くなる効果があると考 えられる。ただし、RCICについては流量制御しており、不確かさの考慮は不要 である。また、HPCF(HPCS)流量については、安全要求値を下限値として 使用しているが、プラス側の不確かさは感度解析にて確認する必要がある。

(9) ほう酸水の拡散

ほう酸水の拡散に係わる不確かさは、ボロン反応度の不確かさとして原子炉出力 の抑制に影響することから、長時間領域の格納容器圧力や格納容器のプール水温度 の評価指標に影響する。これについては、試験装置で得られたほう酸水の混合特性 を考慮して保守的に設定しており、厳しい評価となっている。

(10) サプレッション・プール冷却

3.3 節にて示したとおり, REDYコードにおける格納容器モデルでは, 放熱に よる熱損失を考慮せず, かつ空間部が飽和状態にある等, 温度及び圧力評価におい て保守的な仮定を置き, 質量バランスとエネルギバランスの式等により格納容器圧 力や格納容器のプール水温度を計算している。これにより, 格納容器圧力や格納容 器のプール水温度を保守的に評価しており, コードの不確かさ要因としては考慮し ないことにする。また, 残留熱除去系の除熱量については, 除熱量が小さい場合は

サプレッション・プールの冷却速度が遅くなり格納容器圧力や格納容器のプール水 温度が高くなる可能性があるが,残留熱除去系の除熱量は最小値を用いていること から,コードの不確かさ要因としては考慮しないことにする。

5.1.2 重要現象の不確かさに対する感度解析

5.1.1節に示した重要現象に対する不確かさについて,評価指標に与える影響が大きい,もしくは影響の大きさの確認が必要であるとした重要現象について,REDY コードを用いた感度解析を実施した。なお,対象とした重要現象は,反応度フィード バック効果(ボイド反応度,ドップラ反応度,ボロン反応度),崩壊熱,沸騰・ボイ ド率変化(炉心流量補正),冷却材流量変化,冷却材放出(臨界流・差圧流)(原子炉 圧力容器)及びECCS注水(給水系・代替注水設備含む)である。

各重要現象に対するREDYコードによる感度解析結果を表 5-2 に示す。対象プラントはABWRとし、主蒸気隔離弁の誤閉止を起因事象とした。また、これらのパラメータを最確値としたケースをベースケースとし、各感度解析における評価指標の値を、ベースケースからの偏差の形で示した。

評価指標の中で,制限値に対する裕度が小さいのは燃料被覆管温度だけである。こ のため,以下はこの燃料被覆管温度に絞っての考察を行う。

表 5-2 に示した感度解析結果をみると,不確かさが燃料被覆管温度にプラス側の感 度(結果を厳しくする感度)を与えることはない。例えば,ボイド係数とドップラ係 数の保守因子に関しては,申請解析条件では代表的にボイド係数 1.25 とドップラ係 数 0.9 (解析時間を通して一定)を使用しているが,事故シーケンスに沿って不確か さを評価し,これをサブ時間領域ごとに変えた感度解析結果によると,全ての組合せ において結果を厳しくすることはなく,加圧事象時の反応度係数の保守因子を申請解 析条件で用いることの代表性が確認された。また,不確かさ幅を特定できないことか ら,表 5-2 に含めずに添付 2 と添付 3 で補足している軸方向出力分布が下方ピークに なる場合を想定した場合は,燃料被覆管温度をより小さく評価される傾向が見られる ことが確認されている。

以上,総合すると,申請解析におけるREDYコードによる解析結果は評価指標で ある燃料被覆管温度を保守的に評価していると考える。

なお,REDYコードでは模擬できない,核熱水力不安定事象に起因した中性子束 振動現象が燃料被覆管温度に与える影響は,参考解析のTRACコードによる解析結 果を参照しても,その影響は小さくかつ判断基準に対しても十分裕度があることを別 途確認している。

3-82

				Ĩ
分類	重要現象	解析モデル	不確かさ	有効性評価解析への影響
炉心(核)	核分裂出力	核特性モデル	考慮しない	反応度フィードバック効果の不確かさに含まれる。
	反応度フィー	-ド 反応度モデル	添付 5 の表 2-2 参照	反応度係数の不確かさが評価指標に影響を及ぼす。
	バック効果	(ボイド・ドップラ)		
		反応度モデル	高温停止に必要なボロン反応度:	ボロン反応度が小さい方が格納容器圧力と格納容器プール
		(ボロン)	—3%∠lk	水温度を厳しく評価する。
	崩壊熱	崩壊熱モデル	崩壞熱:	崩壊熱が大きい方が格納容器圧力と格納容器プール水温度
			1 秒後+0.8%/-0.1%	を厳しく評価する。
何心	沸騰・ボイト	ヾ率 炉心ボイド	炉心流量補正:	補正量が大きい方が、炉心流量が小さくなった場合に炉心が
(熱流動)	変化	モデル	補正なし/最大補正二次関数	イド率を少なめに模擬することから,原子炉出力を高めに算
				出し,燃料被覆管温度を厳しく評価する。
原子炉圧力	冷却材 コー	-ス 再循環系モデル	再循環ポンプ慣性時定数:	冷却材流量変化(強制循環時)速度が小さいと原子炉バウン
容器	流量変トタ	ř ウ	$+10\% \swarrow -10\%$	ダリ圧力が高く評価され,大きいと燃料被覆管温度が高く評
(逃がし安	化ン特	性		価される。
全弁含む)	自然	5.循	モデルの仮定に含まれる	冷却材流量変化(自然循環時)が大きいと燃料被覆管温度が
	騒流	運		高くなる可能性があり、小さいと格納容器圧力及び格納容器
				のプール水温度が高くなる。
	冷却材放出	(臨 逃がし安全弁	逃がし弁流量:	冷却材放出量が小さいと、原子炉圧力及び燃料被覆管温度が
	界流・差圧流	() モデル	+16.6%	高く評価されるが、下限値を使用しているため不確かさにつ
				いては考慮不要。冷却材放出量が大きいと、格納容器圧力及
				び格納容器プール水温度が高く評価される可能性がある。

表 5-1 重要現象の不確かさ(1/2)

3-83

有効性評価解析への影響	事象発生初期の給水温度低下による出力上昇により燃料被	覆管温度が高くなる可能性がある。また、給水流量やECC	S流量が多いと格納容器圧力と格納容器のプール水温度に	影響を与える可能性がある。					ほう酸水の変化を保守的に設定しており、格納容器圧力と格	納容器のプール水温度も保守側の結果となる。	単純な物理式を用いること並びに保守的仮定により、保守的	に評価している。
不確かさ	給水エンタルピ	(1)給水温度(主蒸気流量零で)	-60 kJ/kg (-14°C)	(2) 遅れ時間 +50 秒	HPCF流量:	+137%	格納容器のプール水初期エンタルピ:	$-104 \text{ kJ/kg} (-25^{\circ}\text{C})$	保守的値を使用		保守的モデルに含まれる	
解析モデル	給水系モデル								ほう酸水拡散モ	デル	格納容器モデル	
重要現象	ECCS注水	(給水系・代替注	水設備含む)						ほう酸水の拡散		サプレッショ	ン・プール冷却
分類	原子炉圧力	容器	(逃がし安)	全弁含む)							原子炉格納	容器

表 5-1 重要現象の不確かさ(2/2)

3-84

			ベースケー	-スからの感度	
中田田	下辞や、そ后	原子炉圧力	燃料被覆管	格納容器のプー	格納容器圧力
里安沈冬		(MPa)	温度(°C)	ル水温度 (°C)	(MPa)
		9. 08 (*)	1060 (*)	113 (*)	0. 19 (*)
反応度フィードバック効果	添付 5 の表 2-2 参照	-0. 38/0. 20 ^(*1)	$-10/0^{(*1)}$	(ボロン反応度か あり詳細不確かさ	≤支配的な期間で ≤は評価しない)
	ボロン反応度:−3%⊿k	0.00	0	2+	+0.04
		(評価対象外)	(評価対象外)		
崩摤熱	崩壊熱曲線:初期値で+1%/-2% (1秒後で+0.8%/-0.1%を包含)	0.00⁄0.00	0/0	0⁄0	0. 00⁄0. 00
沸騰・ボイド率変化	炉心流量補正: 補正なし/最大補正二次関数	-0. 18⁄0. 00	-170⁄0	-4⁄2	$-0.02 \swarrow 0.01$
冷却材流量変化(コースト ダウン特性)	再循環ポンプ慣性時定数: +10%/-10%	0.00/-0.01	0⁄0	0⁄0	0. 00⁄0. 00
冷却材放出(臨界流•差圧流)	逃がし弁流量:+16.6%	-0.39	0	0	0.00
ECCS注水 (給水系・代替注水設備含 む)	給水エンタルピ (1)給水温度(主蒸気流量零で) -60 kJ/kg(-14°C) (2)遅れ時間 +50 秒	0.00	-110(*2)	0	0.00
	HPCF流量: +137%	0.00	0	+4	+0.03
	格納容器のプール水初期エンタルピ: -104kJ/kg(-25℃)	0.00	0	-18	-0.06
(*) ベースケースでの評価が	結果 (*1)本評価は, 添付5の(動的ボイド	、係数、動的ドッフ	。ラ係数)の保会	F因子から 5 つの絶	1合せ(ノミナ
ル値,ノミナル値)(下限値,	下限值)(下限值,上限值)(上限值,下限值	値)(上限値,上 随	(値)を実施し,	その結果から最大	値と最小値を

表 5-2 重要現象の不確かさに対するREDY感度解析結果

(*2) 給水温度(+要因)と遅れ時間(-要因)を同時に考慮した感度。仮に遅れ時間は考慮しない(0秒)とした場合は 10℃となる。 記載したものである。

3-85

5.2 不確かさの取り扱いについて(運転操作の観点)

原子炉スクラム失敗を仮定した事象においてREDYコードで取り扱う運転操作は, ほう酸水注入系及び残留熱除去系の手動起動操作,ADS作動阻止操作,ECCSによ る水位低下維持操作である。

これらの運転操作へのコードの不確かさの影響を以下に記載する。

(1) 運転操作の起点への影響

ほう酸水注入系及び残留熱除去系の手動起動操作は,事象発生時点から又は格納容 器のプール水温度高の発信を起点に実施している。プラントの運転操作としては,制 御棒が全挿入されない状態で,格納容器のプール水温度が高くなった場合,ほう酸水 注入系及び残留熱除去系を起動することになるが,状態確認等の運転員操作の余裕時 間を考慮しているため,不確かさの影響は保守的に評価される。

ADSは作動条件成立後時間遅れをもって作動する。手動阻止操作は原子炉水位低下を確認して, ADS作動条件成立前に阻止操作を実施している。運転員は原子炉水位を確認して手動操作を実施するとともに,条件成立後であっても時間遅れがあるため,解析コードの不確かさは運転員操作に影響を与えない。

水位低下維持操作は、ボロン濃度上昇に伴い原子炉出力が低下し原子炉水位が上昇 してくるために、原子炉水位を低めに維持する操作である。運転員は原子炉水位を確 認して手動操作を実施するため、解析コードの不確かさは運転員操作に影響を与えな い。

(2) 運転操作後の影響

ほう酸水注入系及び残留熱除去系の手動起動操作後は,炉心部でのボロン濃度増加 により原子炉出力が低下するため,原子炉水位が回復してくる。原子炉水位が上昇す るとボロン濃度上昇割合が減少する可能性があるが,高温停止に必要なボロン濃度に 至る時間の評価において定常水位を仮定しているため,コードの不確かさは水位低下 維持操作に影響を与えない。

以上より, REDYコードの不確かさの運転操作への影響を考慮すると, 実機運用上 は時間余裕が増える方向又は影響を与えないため, 有効性評価で確認できた運転操作の 妥当性については実機運転においても適用できる。

3-86

6. 参考文献

- (01)「沸騰水型原子力発電所 プラント動特性解析手法について」(株式会社日立製作所,HLR-014訂2,昭和63年3月)
- (02)「沸騰水型原子力発電所 プラント動特性解析手法について」(株式会社東芝, TLR-012 改訂 1, 昭和 63 年 3 月)
- (03) Linford, R.B., "Analytical Methods of Plant Transient Evaluations for the General Electric Boiling Water Reactor", NEDO-10802, February 1973.
- (04)「沸騰水形原子力発電所 2次元単位セル計算手法について」
 (日立 GE ニュークリア・エナジー株式会社, HLR-005 訂 1 平成 20 年 4 月)
- (05)「沸騰水型原子力発電所 燃料集合体核特性計算手法」(株式会社東芝, TLR-006 改訂 1, 平成 20 年 9 月)
- (06)「沸騰水型原子力発電所 燃料の設計手法について」(株式会社日立製作所,HLR-033訂1,平成10年2月)
- (07)「沸騰水型原子力発電所 燃料の設計手法について」(株式会社東芝, TLR-045 改訂 1, 平成 10 年 1 月)
- (08)「沸騰水型原子力発電所 燃料の設計手法について(MOX 燃料への適用)」
 (株式会社日立製作所,HLR-053 訂 2, 平成 11 年 2 月)
- (09)「沸騰水型原子力発電所 燃料の設計手法について(MOX 燃料への適用)」 (株式会社東芝, TLR-045A 改訂 2, 平成 11 年 2 月)
- (10)「沸騰水形原子力発電所 原子炉の熱設計手法について」(株式会社日立製作所, HLR-008, 昭和 52 年 4 月)
- (11)「沸騰水形原子力発電所 熱水力設計計算手法について」(東京芝浦電気株式会社, TLR-008, 昭和51年9月)
- (12)「沸騰水型原子力発電所 ほう酸水注入系における未臨界性評価手法の高度化について」(TGBLA/LOGOS版) (平成 19 年 10 月)
- (13)「沸騰水型原子力発電所 ほう酸水注入系における未臨界性評価手法の高度化について」(HINES/PANACH版) (平成19年10月)
- (14) ANCR-NUREG-1335 "RELAP4/MOD5 A Computer program for transient thermal-hydraulic analysis of nuclear reactors and related systems user's manual", Volume I, September, 1976.
- (15)「BWR プラント過渡解析コード REDY のレビュー結果について」 (昭和 60 年 2 月,通商産業省原子力発電技術顧問会 安全解析コード検討会)

添付1 解析コードにおける解析条件

分類	解析条件
定格出力運転条件パラメータ及び幾何	原子炉熱出力
形状データ	炉心流量
	主蒸気流量
	給水流量
	再循環ポンプ流量
	原子炉圧力
	原子炉水位
	原子炉各部寸法
	各種圧力損失データ
	格納容器容積
炉心データ	ボイド反応度
	ドップラ反応度
	ボロン反応度
	炉心圧力損失
燃料データ	燃料棒本数
	燃料有効長
	被覆管外径
	被覆管物性
	燃料ギャップコンダクタンス
	軸方向出力分布
逃がし安全弁	段数及び個数
	吹き出し圧力
	吹き出し容量
給水系	容量(予備機含む)
	停止条件
	給水温度低下特性
主蒸気隔離弁	閉トリップ設定点
	全閉時間

表1 解析コードにおける主要な解析条件(1/2)

3-1-1

分類	解析条件				
事故収束に重要な機器,操作関連	代替原子炉再循環ポンプトリップ機能				
	(自動作動設定点、作動遅れ時間、台数、再				
	循環ポンプ慣性時定数)				
	高圧注水系				
	(自動起動・停止設定点、作動遅れ時間、台				
	数,容量,原子炉注水特性,冷却水温度,注				
	水量調整手動操作条件)				
	ほう酸水注入系				
	(注水遅れ時間, 注水流量, 高温停止濃度,				
	起動手動操作条件)				
	残留熱除去系				
	(手動起動操作条件,台数,容量)				

表1 解析コードにおける主要な解析条件(2/2)

添付2 軸方向出力分布の変化について

REDYコードの軸方向出力分布のデータは、固定のインプットデータであり、時間変化で変わることの模擬はできない。

一方,図1に示すTRACコードの解析結果(代表チャンネルの軸方向出力分布の変化) によると、事象発生前(初期状態)は上方ピークであった軸方向出力分布は主蒸気隔離弁 の誤閉止後給水加熱喪失状態になると、炉心入口のサブクールが増加し炉心下部を中心に 正の反応度が投入されるため、軸方向出力分布は下方ピークとなっている。ただし、この 下方ピークにシフトしている時間帯は約70秒から約200秒であり、この時期を過ぎると 初期の軸方向出力分布に戻っている。

ここでは、REDYにおける"下方ピークの軸方向出力分布データ"の影響を確認する ために、一貫して下方ピーク出力分布とした場合(異なる炉心を評価するのが目的ではな いことから、核特性やボイドマップ等は変更していない単独効果)の影響を確認する。

3-2-1

図2のように軸方向出力分布を変えた場合の確認結果を図3,表1に示すが、これによると本事象で一時的に生じる下方ピーク状態を仮定しても、REDYコードでは炉心全体に及ぼす影響はほとんどないことが確認された。

解析条件

図3 REDYコード解析結果 (下方ピーク)

評価指標	REDYコード	R E D Y
	(申請解析)	(下方ピーク軸方向出力分布)
原子炉圧力(MPa[gage])	9.08	9. 08
燃料被覆管温度(℃)	1060	1060
格納容器圧力(MPa[gage])	0.19	0. 19
格納容器のプール水温度(℃)	113	113

表1 軸方向出力分布を変えた場合の解析結果

(注) 燃料被覆管温度を求めるSCATコードでは、中央ピークとしている。

添付3 軸方向出力分布変化を考慮したボイドマップの影響について

REDYコードでは、定格炉心流量でのボイドマップデータに基づき、これに過渡状態の変化を加えることで炉心のボイド率を模擬しており、このボイドマップモデルの妥当性は、広い範囲の実機試験などで確認されている。ただし、REDYコードの定格炉心流量でのボイドマップデータ自体は、固定のインプットデータであり、REDYコードの軸方向出力分布変化と同様、時間で変わることの模擬はできない。

原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止解析では、主蒸気隔離弁の誤閉止 に伴う給水加熱喪失により、過渡的に軸方向出力分布が大きく下方ピークとなることがわ かっており、これがREDYコードで用いている定格ボイドマップに与える影響を確認す る。

ここでは、TRACコードによる解析結果から得られる下方ピークとなった時点での軸 方向出力分布を用い、炉心熱水力解析コードを用いて下方ピーク時の軸方向出力分布での ボイドマップを作成し、"下方ピークを想定した場合のボイドマップデータ"の影響を確 認するために、一貫して下方ピークのボイドマップとした場合(異なる炉心を評価するの が目的ではないことから、核や軸方向出力分布は変更していない単独効果)の影響を確認 する。

今回の申請解析で用いたボイドマップ作成用軸方向出力分布を図1に,今回の感度解析 で用いたボイドマップ作成用軸方向出力分布(TRACコードによる代表的な下方ピーク) を図2に示す。

図2 TRACの「原子炉スクラム失敗を仮 定した主蒸気隔離弁の誤閉止」の軸方 向出力分布

3-3-1

今回実施した影響解析の主な条件を以下に示す。

- ・プラント:代表ABWR
- ・評価事象:原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止
- ·初期条件:100%出力/100%炉心流量
- ・炉 心:9×9燃料(A型)単一炉心
- ・ボイドマップ:原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止時の給水加熱
 喪失状態における軸方向出力分布(下方ピーク)を考慮したボイドマ
 ップ

以下に、給水加熱喪失に伴う軸方向出力分布の変化を考慮したボイドマップにより解析 を実施した結果、評価指標に及ぼす影響は比較的小さいことが確認できた。

評価指標	REDYコード	R E D Y = -F		
	(申請解析)	(TRACコードによる代表的な		
	(設計ボイドマップ)	下方ピークに対応したボイドマップ)		
原子炉圧力(MPa[gage])	9.08	8.94		
燃料被覆管温度(℃)	1060	970		
格納容器圧力(MPa[gage])	0.19	0.19		
格納容器のプール水温度(℃)	113	114		

表1 ボイドマップを変えた場合の解析結果

(注)燃料被覆管温度を求めるSCATコードでは、中央ピークとしている。

添付4 短時間領域を細分割しての重要現象のランクの検討

1. 短時間領域の細分割

短時間領域をサブ時間領域1(出力変動期),サブ時間領域2(出力抑制期),サブ時 間領域3(出力再上昇期)の3つのサブ時間領域に細分割した場合の重要現象のランク

を検討する。なお,短時間領域での評価指標は,原 子炉圧力と燃料被覆管温度(PCT)である。

① サブ時間領域1 (0秒から約10秒)

原子炉スクラム失敗を仮定した主蒸気隔離弁の誤 閉止により原子炉圧力が上昇するために、炉心平均 ボイド率が減少し、これにより正のボイド反応度が 印加され中性子束が上昇する。ただし、中性子束上 昇に伴って燃料温度と熱出力も増加するため、負の ドップラ反応度印加,発生熱に伴う炉心内ボイド率 増加による負のボイド反応度印加により中性子束の 過度な上昇は抑制される (BWRの自己制御性)。同 時期に,原子炉圧力高のインターロック信号が2秒で 作動し4台の再循環インターナルポンプ(RIP) トリップが炉心流量を急減させ負のボイド反応度を 印加することにより、中性子束は2秒後に306%のピー クを迎えた後,一時的に定格値以下にまで低下する。 その後は継続する圧力上昇によって中性子束が再度 上昇する。なお、本期間内で給水ポンプはタービン 駆動給水ポンプからモータ駆動給水ポンプに切替わ る。

以上に述べた時間領域は、中性子束が定格値近傍 で増減する領域であり、これをサブ時間領域1(出力変動期)とした。

②サブ時間領域2(約10秒~約60秒)

この時間領域では,再循環流量制御系自動モード により,トリップしていない6台のRIPポンプ速 度が次第に最低速度まで低下し,炉心流量が一定に なるまで,炉心のボイド率が増加する。このため, 徐々に負のボイド反応度が投入され出力は約50%ま で低下する。この時間領域の初期ではまだ出力が高 く,炉心流量減少開始による冷却能力低下により,

3-4-1

燃料被覆管温度が15秒で820℃となり(一次ピーク),原子炉圧力は19秒後に最大値 8.92MPa[gage]となるが、その後はいずれも継続的な炉心流量低下により徐々に抑制さ れる。これをサブ時間領域2(出力抑制期)とした。なお、図示してはいないが、格納 容器圧力高により34秒後にHPCFとRCICが起動し、原子炉水位の異常な低下を抑 制している。

③サブ時間領域3 (約60秒~約200秒)

トリップしなかった6台のRIPは最低速度で運転を継続し、炉心流量はほぼ一定と なる。この間、主蒸気隔離弁が閉鎖することに起因して給水加熱能力が喪失し、給水流 量のエンタルピが次第に低下することにより、炉心入口サブクーリングが増加する。こ のため、炉心平均ボイド率が減少し、出力が次第に上昇し150秒前後に定格出力近傍で 平衡状態となる。この間の原子炉圧力は逃がし安全弁の開閉によりほぼ一定に制御され る。173秒で復水器ホットウェル水位低で給水ポンプトリップ、191秒で原子炉水位低で 運転中の6台のRIPトリップが生じ、再循環流量は自然循環流量状態に移行するとと もに、原子炉出力は低下し、燃料被覆管温度も175秒で1060℃となった(二次ピーク) のち低下する。以上に述べた時間領域は、給水加熱喪失により中性子束が再上昇する領 域であり、これをサブ時間領域3(出力再上昇期)とした。

2. 重要現象のランク付け

原子炉圧力の最大値と燃料被覆管温度(一次ピーク)の最大値はサブ時間領域2で, 燃料被覆管温度(二次ピーク)は給水加熱喪失により中性子束が再上昇するサブ時間領 域3で決まる。短時間領域で重要と考えられる物理現象は,核分裂出力,出力分布変化, 反応度フィードバック効果,三次元効果(核),沸騰・ボイド率変化,三次元効果(熱流 動),冷却材流量変化,冷却材流量放出,ECCS流量(給水系含む)であるが,これ らの物理現象を前述の3つのサブ時間領域ごとに当てはめて,評価指標へのランクと不 確かさを検討した。

(1)核分裂出力

反応度フィードバック効果との総合事象として評価するものであり、プラント挙動に 関わらず、どのサブ時間領域でも評価指標に与える重要度は高いと考える。 (2)出力分布変化

サブ時間領域1とサブ時間領域2では、軸方向出力分布は形状がそれほど変わらずに 一様に変化する。一方、サブ時間領域3では給水加熱喪失により軸方向出力分布が下方 ピークとなることが従来から知られている。

原子炉圧力は冷却材流量放出(逃がし安全弁)により制御され,本物理現象はどのサ ブ時間領域でも評価指標である原子炉圧力を評価する上で重要現象とはならない。燃料 被覆管温度は,サブ時間領域3において軸方向出力分布が下方ピークに変化することか ら,炉心ボイド率の変化を通して評価指標である燃料被覆管温度へ影響を与える。本物

理現象はむしろ燃料被覆管温度を小さくする方向である。この下方ピークへの変化を考慮しない評価は厳しめの結果を与えることになることから,評価指標である燃料被覆管 温度に与える重要度は低い。ただし,これを確認するためにREDYコード説明書の添付2と3にてサブ時間領域3で軸方向出力分布が下方ピークとなることの影響を確認 するための感度解析を実施している。

(3)反応度フィードバック効果(ボイド・ドップラ)

原子炉圧力は冷却材流量放出(逃がし安全弁)により制御され,本物理現象はどのサ ブ時間領域でも評価指標である原子炉圧力に与える重要度は低いと考えられる。

一方、本物理現象が評価指標である燃料被覆管温度に与える重要度は、サブ時間領域 2及びサブ時間領域3で高い。詳細化したサブ時間領域ごとのプラント状態を見てみる と、各サブ時間領域のボイド率変化、燃料温度変化、炉心入口サブクーリング変化はプ ラント挙動に大きく左右され、各サブ時間領域に対して実施した不確かさ評価結果(R EDYコード説明書の添付5参照)を、それぞれのサブ時間領域に別々に適用してその 影響を確認することがより現実的であると考える。以上より、サブ時間領域ごとに反応 度フィードバック効果(ボイド・ドップラ)の不確かさを変えて、燃料被覆管温度に与 える影響を評価する。

(4) 三次元効果(核)

核熱水力不安定事象により中性子束振動が生じる可能性のある期間は,サブ時間領域 3であり,本物理現象が評価指標である燃料被覆管温度に与える重要度は中程度と考え られる。ただし,REDYコードでは中性子束振動(三次元効果)を再現することはモ デル上困難であり,TRACコードを参照している。

(5) 沸騰・ボイド率変化

沸騰・ボイド率変化は反応度フィードバック効果(ボイド反応度)に直接影響を与えることから、評価指標である原子炉圧力に対しては、サブ時間領域1及びサブ時間領域2で重要度が高い。評価指標である燃料被覆管温度に対してはサブ時間領域2及びサブ時間領域3で重要度が高く、サブ時間領域1は出力変動期間ではあるが、ボイド率の炉心流量依存性やその後のサブ時間領域2や3へ与える影響の重要度を考慮すると、重要度は中程度になると考えられる。

この場合,REDYコードで使用しているボイドマップの炉心流量依存性の不確かさ はどのサブ時間領域でも適用でき,REDYコード説明書にて不確かさを評価している。 なお,サブ時間領域3において下方ピークに対応したボイドマップとなることの検討は 前述(2)の出力分布変化に含めて検討・考察している。

(6) 三次元効果(熱流動)

上記,(4)の三次元効果(核)と同様,サブ時間領域3(出力再上昇期)を対象とした核熱水力不安定事象に起因した中性子束振動が,評価指標である燃料被覆管温度に与える重要度は中程度と考える。

(7) 冷却材流量変化

ポンプトリップによるコーストダウン特性は、サブ時間領域1で評価指標である燃料 被覆管温度に与える重要度が高いと考えられ、REDYコード説明書本文にて不確かさ の感度解析を実施している。

(8) 冷却材流量放出

冷却材流量放出(逃がし安全弁流量)は、炉内で発生する熱を原子炉から格納容器へ 放出する上でサブ時間領域1と2において、評価指標である原子炉圧力に与える影響は 中程度と考えられる。一方、本事象が評価指標である燃料被覆管温度に与える重要度は どのサブ時間領域においても小さいと考えられる。

(9) E C C S 流量(給水系含む)

時間遅れを持って炉心に影響を与える給水加熱喪失は,サブ時間領域3において炉心 入口サブクールの減少として出力に影響するため,燃料被覆管温度に対して重要度が高 いと考えられ,REDYコード説明書本文にて感度解析を実施している。

以上,短時間領域におけるプラント挙動を考慮した上で各重要物理現象のランク付け を再検討した結果を表1に示す。ここで,太線で囲んだものが,本文の短時間領域で報 告しているものであり,短時間領域でのランク(3つのサブ時間領域の中で一番高いラ ンク)付けは妥当であることが示されている。

細分割区分	サブ時間領域1 サブ時間領域2		サブ時間領域3		短時間領域			
(全体は短時間領域)	出力変動期 出力抑制期		出力再上昇期		-			
評価指標	原子炉	PCT	原子炉	PCT	原子炉	PCT	原子炉	PCT
物理現象	圧力		圧力		圧力		圧力	
核分裂出力	Н	Η	Н	Н	Н	Н	Н	Η
出力分布変化	Ι	Ι	Ι	Ι	Ι	L	Ι	L
反応度フィードバック効果	L	М	L	Η	L	Н	L	Η
(ボイド・ドップラ)								
三次元効果「炉心(核)」	L	L	L	L	L	М	L	М
沸騰・ボイド率変化	Н	М	Н	Η	L	Н	Н	Η
「炉心(熱流動)」								
三次元効果「炉心(熱流動)」	L	L	L	L	L	М	L	М
冷却材流量変化「原子炉圧力容器」	L	Н	L	L	L	L	L	Н
冷却材流量放出「原子炉圧力容器」	М	L	М	L	L	L	М	L
ECCS注水(給水系含む)	Ι	Ι	Ι	Ι	Ι	Н	Ι	Η

表1 短時間領域を細分割した場合のランク評価結果

3 - 4 - 4

添付5 原子炉停止機能喪失事象での反応度係数(REDYコード用)の保守因子 について

原子炉停止機能喪失事象に対する炉心損傷防止対策の有効性評価において,REDYコ ードに原子炉設置変更許可申請書の添付書類八記載の平衡炉心サイクル末期の反応度係 数に一律の保守因子(減速材ボイド係数は1.25倍,ドップラ係数は0.9倍)を掛けた反 応度係数を用いている。

一方,本事象では,事象の進展に伴い,初期の運転状態から炉心流量,原子炉圧力,炉 心入口エンタルピ,軸方向出力分布等が時間とともに変化し,ボイド係数,ドップラ係数 が影響を受け,保守因子は一定ではない。

そこで有効性評価手法が適切であることを確認するために,前述のとおり5.1.2節の「重 要現象の不確かさに対する感度解析」において本事象を3つのサブ時間領域に細分割した 上で,それぞれに反応度係数に対する保守因子を設定してREDYコードによる評価を行 っている。

ここでは、①、②において 5.1.2 節の「重要現象の不確かさに対する感度解析」で用い る反応度係数に対する保守因子を求め、③において 5.1.2 節の感度解析結果より有効性評 価の一律の保守因子の手法が適用できることを確認した。

- ① 炉心一点近似縮約による反応度係数評価は、圧力変化、流量変化などの摂動による 炉心状態変化及び事象進展に伴う炉心状態変化を扱うことが出来ない。原子炉停止 機能喪失事象では、この炉心状態変化の変化に伴う不確かさが大きくなる可能性が あるため、静的な三次元沸騰水型原子炉模擬計算コードにより、各サブ時間領域に 対するボイド係数、ドップラ係数を評価し、炉心一点近似手法による反応度係数(添 付書類八記載の値)に対する比として各時間領域の反応度係数の保守因子のノミナ ル値を評価した。
- ② ①で求めた保守因子のノミナル値に、静的な三次元沸騰水型原子炉模擬計算コードにより評価したボイド係数、ドップラ係数の不確かさ及び取替炉心設計段階における不確かさ(補足参照)を加えることで、5.1.2節の「重要現象の不確かさに対する感度解析」で用いる反応度係数の保守因子変動幅を求めた。
- ③ ①及び②の検討より、原子炉停止機能喪失事象に対する炉心損傷防止対策の有効性 評価において、事象を通じた一律の保守因子として、ボイド係数は 1.25 及びドッ プラ係数は 0.9 が適用できることを確認した。

3-5-1

1. 原子炉停止機能喪失事象での各時間領域の反応度係数の保守因子のノミナル値

(1)評価方法

原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止発生事象の短時間領域を,以下の 3つのサブ時間領域に細分割し,

・出力変動期(サブ時間領域1)

- ・出力抑制期(サブ時間領域2)
- ・出力再上昇期(サブ時間領域3)

各サブ時間領域の代表的な炉心状態における炉心パラメータを用い,静的な三次元沸騰水型原子炉模擬計算コードにより,ボイド係数,ドップラ係数を評価し,原子炉設置変更許可申請書の添付書類八に記載の反応度係数(保守因子1.0倍に相当)と比較した。

ボイド係数は、各解析点に応じた微小な摂動を与え実効増倍率の変化量を求め、炉心平 均のボイド率の変化量で除することで求めた。各解析点での摂動は、表1-2、表1-3に示す ように、サブ時間領域1では圧力摂動、サブ時間領域2では流量摂動、サブ時間領域3で は入口エンタルピ摂動を与えた。

ドップラ係数は、各解析点における摂動計算により炉心平均値を求めた。

(2) 解析条件

解析は二つの代表プラントを対象として行い、この主な解析条件を以下に示す。

プラント	代表ABWR	代表従来型BWR
評価条件	原子炉スクラム失敗	を仮定した主蒸気隔離弁の誤閉止
初期条件	100%出力/100%炉心流量	100%出力/85%炉心流量
炉心	9×9燃料(A型)単一炉心	9×9(A型)+標準組成 MOX 燃料混在炉心
解析コード	H I N E S / P A N A C H	TGBLA/LOGOS

表 1-1 主な解析条件

(注) HINES, TGBLA: 単位燃料集合体核特性計算コード

PANACH,LOGOS:三次元沸騰水型原子炉模擬計算コード

(3)解析結果

各解析点における,三次元沸騰水型原子炉模擬計算コードによる反応度係数と一点近似 モデルの反応度係数^(*)の比(以下「三次元/炉心一点近似(保守因子1.0)」と称す)を表 1-2と表 1-3に示す。これによると,摂動及び事象進展に伴い軸方向の出力分布及びボイ ド分布が変化するためボイド係数は変化するが,ドップラ係数は主に U-238の共鳴吸収が 支配的であることから変化は小さくなっている。

(*)原子炉設置変更許可申請書の添付書類八に記載の減速材ボイド係数,ドップラ係数
冒頭に述べたように, 炉心一点近似縮約による反応度係数評価は, 圧力変化, 流量変化 などの摂動及び事象進展に伴う炉心状態の変化を扱えないため, 三次元沸騰水型原子炉模 擬計算コードを用いて炉心状態変化を取り込んで評価しているが, ボイド係数において特 にその影響が大きいことが分かる。

このように三次元沸騰水型原子炉模擬計算コードを用いることで、炉心状態変化を取り 込むことができるものの、静的評価であることによる不確かさが含まれると考えられる。 そこで、静的な三次元沸騰水型原子炉模擬計算コードによりボイド係数を評価できること を含めて、サブ時間領域ごとに保守因子の設定について以下のとおり確認した。

サブ時間領域1では、圧力増加による正のボイド反応度印加による中性子束の上昇が支 配的である。圧力摂動においては、軸方向ボイド率分布変化に伴う軸方向出力分布への影 響は、流量摂動、エンタルピ摂動に比較して小さく、また、炉心一体型の摂動であり、特 に軸方向にほぼ時間遅れなく摂動が与えられるため、事象開始時点の炉心状態に対して静 的な三次元沸騰水型原子炉模擬計算コードを用いてボイド係数を評価することは可能で あると考えられる。

サブ時間領域2における支配的要因は流量摂動であり、炉心出力だけでなく、軸方向ボ イド率分布、軸方向出力分布もこの影響を受ける。炉心入口流量が減少すると、この流量 摂動の影響が時間遅れを伴って動的に下方から上方に伝わり、上部のボイド率が変化する 前に下方のボイド率が増加することとなる。このため,静的な三次元沸騰水型原子炉模擬 計算コードによるボイド係数評価では現実の軸方向ボイド率分布、軸方向出力分布と異な った状態を評価していることになる。この流れによる時間遅れがボイド率変化に及ぼす影 響を確認するため、SCATコードにより、サブ時間領域2の流量減少の時間変化を模擬 した場合と定常解析に相当する準静的に流量が減少した場合について、軸方向ボイド率分 布を評価したところ、両者の差はほとんどないことが確認された。以上より、サブ時間領 域2における流量減少は緩やかであり、流れによる時間遅れによる軸方向ボイド率分布へ の影響は小さく、ボイド係数への影響は小さいといえる。なお、5.1.2節の「重要現象の 不確かさに対する感度解析」において本事象を3つのサブ時間領域に細分割した上で、反 応度係数に対する保守因子の上限値,下限値を表1-2に基づき設定してREDYコード/ SCATコードによる評価を行っており、一律の保守因子を用いた有効性評価における燃 料被覆管温度よりも高くならないとの結果を得ている。このようにボイド係数の有効性評 価結果への感度が小さいことから、不確かさを大きめに考慮することで、静的な三次元沸 騰水型原子炉模擬計算コードによりボイド係数を評価することは可能であると考えられ る。

サブ時間領域3においては、給水温度低下に伴うエンタルピ摂動が支配的であるが、逃

3-5-3

がし安全弁開閉に伴う圧力摂動もボイド係数に影響を及ぼす。圧力摂動については軸方向 ボイド率分布変化に伴う軸方向出力分布への影響は小さいが,エンタルピ摂動では影響が 大きく,ボイド係数自体として絶対値が大きくなる。サブ時間領域3において給水温度が 低下し,さらに逃がし安全弁が閉じられた場合は,両者ともボイド率を低下させる方向に 働くため正のボイド反応度が印加されることになる。この場合,ボイド反応度変化量とし ては両者の効果が重畳するものの,ボイド率変化量も両者の効果が重畳するので,単位ボ イド率変化量に対するボイド反応度変化量で定義されるボイド係数は,エンタルピ摂動単 独で変化したボイド係数と圧力摂動単独で変化したボイド係数の中間的な値となる。以上 より,エンタルピ摂動単独で変化したボイド係数を用いた方が出力を高め(保守的)に評 価することにもなるため,エンタルピ摂動によるボイド係数で代表させている。

エンタルピ摂動による影響は、流量摂動と同様に時間遅れをもって炉心軸方向下方から 上方に伝わるが、サブ時間領域2の炉心流量減少に比較して事象進展がゆっくりしている ことから、静的な三次元沸騰水型原子炉模擬計算コードで評価することは可能であると考 えられる。一方、サブ時間領域3は、当該時点までの事象進展に伴う炉心状態変化による 不確かさがより大きくなると考えられるため、保守因子を設定する上で不確かさを大きめ に見る必要がある。この不確かさの定量化は困難であるが、5.1.2節の「重要現象の不確 かさに対する感度解析」より、ボイド係数の有効性評価結果への感度が小さいことから、 静的な三次元沸騰水型原子炉模擬計算コードによりボイド係数を評価することは可能で あると考えられる。

なお、中性子束振動状態での静的反応度係数は定義できないため、本手法の適用対象外 である。中性子束振動が局所的な燃料被覆管温度に与える影響に関しては、米国において 中性子束振動の評価実績がある異なる解析コード(TRACコード)による参考解析結果 を参照する。

細分割区分	摂動の種類	ボイド係数	ドップラ係数
サブ時間領域1	圧力摂動		
サブ時間領域2	流量摂動		
サブ時間領域3 ^(*)	入口エンタルピ摂動		

表 1-2 代表ABWRの原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止事象の 代表点における反応度係数の比(三次元/炉心一点近似(保守因子 1.0))

(*)中性子束振動に対しては適用外

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

表 1-3 代表従来型BWRの原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止事 象の代表点における反応度係数の比(三次元/炉心一点近似(保守因子 1.0))

細分割区分	摂動の種類	ボイド係数	ドップラ係数
サブ時間領域1	圧力摂動		
サブ時間領域2	流量摂動		
サブ時間領域3 (*)	入口エンタルピ摂動		

(*)中性子束振動に対しては適用外

2. 原子炉停止機能喪失事象での反応度係数の保守因子の変動範囲

前節で求めた各サブ時間領域の保守因子のノミナル値と、補足に記載した三次元沸騰水型原子炉模擬計算コードによるボイド係数、ドップラ係数の不確かさ及び取替炉心設計段階における不確かさを用いて、5.1.2節の「重要現象の不確かさに対する感度解析」で用いる反応度係数の保守因子を求めた。

具体的には,表 1-2,表 1-3の値に,以下の表 2-1(補足表-9より転載)の不確かさを 加えて,表 2-2,表 2-3のようになる。

なお,ここでは遅発中性子割合の不確かさも含めて,動的反応度係数としてまとめている。

表 2-1 平衡炉心末期の動的反応度係数の不確かさ(まとめ)

不確かさの要因	動的ボイド係数	動的ドップラ係数
原子炉停止機能喪失事象解析での不確かさ(合計)		

(補足表-9 より転載)

(*) 1. で前述したような静的な三次元沸騰水型原子炉模擬計算コードを用いることによる不確かさ、事象進展に伴う炉心状態変化による不確かさの増加が考えられることから、「その他の要因に対する安全余裕」として、ボイド係数, ドップラ係数の安全余裕を採用している。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

表 2-2 代表ABWRの原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止 事象中の動的反応度係数の保守因子(平衡炉心サイクル末期)

反応度係数	Į	動的ボイド係数		動的ドップラ係数		
細分割区分	下限值	ノミナル	上限值	下限值	ノミナル	上限値
サブ時間領域1						
サブ時間領域2						
サブ時間領域3						

表 2-3 代表従来型BWRの原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止 事象中の動的反応度係数の保守因子(平衡炉心サイクル末期)

反応度係数	Ī	動的ボイド係数		動的ドップラ係数		
細分割区分	下限值	ノミナル	上限值	下限值	ノミナル	上限值
サブ時間領域1						
サブ時間領域2						
サブ時間領域3						

(*)サブ時間領域1は事象進展に伴う炉心状態変化による不確かさの増加は小さいと考えられることから、表 2-2、表 2-3 では「その他の要因に対する安全余裕」を含まず記載している。 ただし、5.1.2 の「重要現象の不確かさに対する感度解析」では、保守側評価として、サブ時間領域1に対してもサブ時間領域2、3と同じボイド係数, ドップラ係数, の安全余裕を採用している。

表 2-3 に示した代表従来型BWRプラントの検討結果は,標準組成 MOX 燃料混在炉心の 場合を想定しているが,ここに初期 Pu 組成変動,および装荷遅れの影響を考慮すれば, 表 2-3 の結果に対して,さらに動的ボイド係数で 倍,動的ドップラ係数で 倍を見込む必要がある。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 5 - 6

3. 原子炉停止機能喪失事象に対する炉心損傷防止対策の有効性評価における反応度係数 の保守因子について

有効性評価において反応度係数に一律の保守因子(減速材ボイド係数は1.25倍,ドップ ラ係数は0.9倍)を用いていることについて,以下に検討した結果をまとめる。

サブ時間領域1は、1.で述べたとおり、圧力摂動が支配的な期間であり、静的な三次 元沸騰水型原子炉模擬計算コードにより保守因子を評価することが可能である。また、ボ イド係数は2.に示した保守因子変動範囲よりも保守的な値(1.25)を有効性評価で用い ている。ドップラ係数は保守因子変動範囲の下限値が有効性評価で用いている値よりも下 回っているものの、サブ時間領域1の出力ピークに起因した燃料被覆管表面温度への影響 は、ドップラ係数がノミナル値と下限値の場合の感度解析の比較でも 程度の影響しか なく、ドップラ係数の感度は小さいことが分かった。

従って,サブ時間領域1において,反応度係数の保守因子は,動的ボイド係数は1.25倍,動的ドップラ係数は0.9倍を適用できると考えられる。

サブ時間領域2は、流量摂動が支配的な期間ではあるが、静的な三次元沸騰水型原子炉 模擬計算コードで評価する保守因子には、流れによる時間遅れが軸方向ボイド率分布、軸 方向出力分布へ及ぼす影響は考慮されていない。しかしながら、流量減少は緩やかであり、 SCATコードによる評価により、流れの時間遅れによる軸方向ボイド率分布への影響は 小さいことが確認されたため、この現象のボイド係数への影響は小さいといえる。不確か さを考慮して設定した保守因子の上限値及び下限値を用いたREDYコード/SCAT コードによる評価結果は、一律の保守因子を用いた有効性評価における燃料被覆管温度よ りも高くならず、サブ時間領域2においても、反応度係数の保守因子は、動的ボイド係数 は1.25倍、動的ドップラ係数は0.9倍を適用できると考えられる。

サブ時間領域3は,給水温度低下に伴うエンタルピ摂動及び逃がし安全弁開閉に伴う圧 力摂動が支配的な期間ではあるが,保守的にエンタルピ摂動が支配的であるとして保守因 子を評価している。サブ時間領域3におけるエンタルピ摂動は事象進展が遅いため,静的 な三次元沸騰水型原子炉模擬計算コードにより保守因子を評価することは可能と考えら れるが,2.に示したように保守因子変動範囲は有効性評価で用いた一律の保守因子より も非保守的なものがある。しかしながら,不確かさを考慮して設定した保守因子の上限値 及び下限値を用いたREDYコード/SCATコードによる評価を行っているが,一律の 保守因子を用いた有効性評価における燃料被覆管温度よりも高くならないとの結果を得 ており,サブ時間領域3においても,反応度係数の保守因子は,動的ボイド係数は1.25倍, 動的ドップラ係数は0.9倍を適用できると考えられる。

以上より、反応度係数の保守因子として、動的ボイド係数は 1.25 倍、動的ドップラ係

本資料のうち,	枠囲みの内容は商業機密に属しますので公開できません。
---------	----------------------------

3-5-7

数は0.9倍を適用できると考える。

(*) 参考文献

- 文献 1: ミクロ炉物理学 I. 連続エネルギーモンテカルロ法によるドップラ反応度の検 証(原子力学会 2000 年春の年会)
- 文献 2: ミクロ炉物理学 1999 年日本原子力学会誌 Vol. 41, No. 11 (1999) p. 37-41
- 文献3:熱中性子散乱カーネルを修正したMCNP5による上方散乱効果の確認

(原子力学会 2012 年春の年会)

文献4:重核種の熱振動を考慮できる共鳴散乱モデルを組み込んだ改良 MCNP5 の妥当性確 認と Monteburns2 への組み込み

(原子力学会 2012 年秋の大会)

- 文献 5:軽水炉燃料の Doppler 反応度計算における評価モデル詳細化の検討 (原子力学会 2015 年秋の大会)
- 文献 6: Effect of Subchannel Void Fraction Distribution on Lattice Physics Parameters for Boiling Water Reactor Fuel Bundles
 - (Journal of NUCLEAR SCIENCE and TECHNOLOGY, vol. 45, No. 12, p. 1237-1251, 2008)

3-5-8

添付5補足 反応度係数評価の不確かさ要因について

反応度係数の評価を以下の4つの段階に分けて、不確かさ要因を抽出し整理した。

[1]~[3]は、反応度係数計算の不確かさと取替設計段階における不確かさであり、[4] は前節で述べた炉心一点近似手法によるREDYコードの反応度係数の不確かさである。

- [1] 燃料集合体計算より上流側で生じる不確かさ
- [2] 燃料集合体計算に由来する不確かさ
- [3] 三次元炉心計算の不確かさ(取替炉心の詳細設計段階の不確かさも含む)
- [4] REDYコードの反応度係数の不確かさ(前節で記載)

以下に,[1]~[3]の反応度係数の主要な不確かさ要因を挙げる。なお,サブ時間領域2 及びサブ時間領域3においては,静的な三次元沸騰水型原子炉模擬計算コードにより反応 度係数を評価するのにあたり有意な不確かさが生じる可能性があり,さらに補足表-2にあ るように,その他の要因も幾つか考えられることから,これらを「その他の要因に対する 安全余裕」として,動的ボイド係数に,変動量の小さい動的ドップラ係数にの安全 余裕を加える。5.1.2 で重要現象の不確かさに対する感度解析を行うのにおいては,保守 側にサブ時間領域1に対しても,同じ安全余裕を加えることとする。

- [1] 燃料集合体計算より上流側で生じる不確かさ
 - 燃料集合体計算より上流側で生じる不確かさ要因としては,核データライブラリ中に 含まれる種々の不確かさに起因した不確かさが挙げられる。

補足表-1 燃料集合体計算より上流側で生じる不確かさ要因

	不確かさ要因	備考
1.1	核データライブラリ中に含ま	臨界試験によりライブラリまで含めて妥当性
	れる種々の不確かさに起因し	確認される。
	た不確かさ	実機の運転により実効増倍率等が確認される

現行の単位燃料集合体核特性計算コードの核データライブラリは ENDF-B4, B5 で,最新 (ENDF-B7) のものではないが,臨界試験 (ボイド反応度: EPICURE, BASALA 試験,ド ップラ反応度: Hellstrand の実験式,実効遅発中性子割合 β : TCA, MISTRAL 試験) と の比較で,核データ断面積ライブラリまで含めた燃料集合体計算コードの不確かさが確 認されている。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 5 - 9

[2] 燃料集合体計算に由来する不確かさ

燃料集合体計算に由来する不確かさ要因を補足表-2に整理する。これらは、試験との 比較により不確かさが確認されている。

なお、ドップラ係数に対しては、ペレット内温度分布の影響は有意だが、重核種の熱振動の影響を無視していることで相殺する方向(両者合計でやや more negative 側の評価、参考文献1~5参照)となっており、現行コードでは考慮されていない。

	不確かさ要因	備考
2.1	概念モデルに由来する不確かさ	
	・実験又は連続群モンテカルロ計算手法との	臨界試験との比較で確認解析
	相違に由来する不確かさ	
2.2	数学的モデルに由来する不確かさ	
	・種々の数学モデル(拡散近似,燃焼チェイ	臨界試験との比較で確認
	ン,共鳴計算等)に由来する不確かさ	ドップラ係数については、重核種の
		熱振動の影響(more negative 側)は
		有意(*)
2.3	入力データ,計算条件等に由来する不確かさ	チャンネル曲り、製造公差の影響は
	・実験体系との妥当性確認時と設計計算時又	炉心全体で平均化され影響は小さい
	は連続群モンテカルロ計算との比較計算	と考えられる(*)
	時とで異なる種々の条件, 設定, 計算体系	集合体内ボイド分布の影響は Gd が存
	のモデル化等に由来する不確かさ	在する領域では有意 ^(参考文献6) だが,
	・減速材の密度及び温度の分布,燃料温度分	平衡炉心では新燃料体数が少なく炉
	布が実機燃料と異なることに由来する不	心全体への影響は小さいと考えられ
	確かさ	る (*)
		ドップラ係数については、燃料棒ペ
		レット内温度分布の影響 (less
		negative 側) は有意(*)
2.4	下流側コードへのデータ受け渡しの方法	影響の大きな要因はないと考えられ
	論・モデルに由来する不確かさ	る (*)
2.5	その他の不確かさ	
	・妥当性確認に用いる実験データの不確かさ	試験の測定誤差が大きい場合(ドッ
		プラ係数)は考慮
() 7		

補足表-2 燃料集合体計算に由来する不確かさ要因

(*)その他の要因として考えられるもの(追加の安全余裕にて考慮)

3-5-10

燃料集合体計算に由来する不確かさ(補足表-2の(*)を除く要因)は,試験データとの 比較により,以下のようになっている。

補足表-3 単位燃料集合体核特性計算コードの不確かさ

	動的ボイド係数	動的ドップラ係数
試験データを基準とした不確かさ		

・動的ボイド係数の不確かさは、ボイド反応度試験(EPICURE, BASALA 試験)の不確か さと β 測定試験(TCA, MISTRAL 試験)の不確かさより 程度としている。

・動的ドップラ係数の不確かさは、現行コードの評価値は Hellstrand の実効共鳴積分 との比較で同等かやや less negative 側の評価となっているが、不確かさとしては、 Hellstrand の実験式の誤差の $\[] に \beta の不確かさ \] を独立事象として加えて [\] としている。$

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 5 - 11

[3] 三次元炉心計算に由来する不確かさ

三次元炉心計算に由来する不確かさ要因を補足表-4 に整理する。これらの要因は,最 終的に,三次元出力分布,三次元燃焼度分布の三次元炉心計算の不確かさに由来した反 応度係数の不確かさと,取替炉心の詳細設計段階において炉心状態が異なることに由来 した反応度係数の不確かさの二つに集約できる。

	不確かさ要因	備考
3.1	概念モデルに由来する不確かさ	
	・無限格子を対象としたマクロ断面積評価法	三次元出力分布等に不確かさが生
	に由来する不確かさ	じるが, γスキャン測定結果照射
		後試験の燃焼度測定により影響を
		把握している
	・設計想定炉心の包絡性に由来する不確かさ	HBB/UBや1ヶ月運転期間変動等,
		包絡的な炉心条件を考慮している
3.2	数学的モデルに由来する不確かさ	これらの数学的モデル、入力デー
	・少数群の粗メッシュ体系における定常固有	タ,計算条件等に由来する不確か
	値計算の解析結果と実機との相違に由来	さが原因で、初期炉心条件である
	する初期炉心条件の不確かさ	三次元出力分布,三次元燃焼度分
	・炉心燃焼計算の不確かさから生じる炉心条	布に不確かさが生じている
	件の不確かさに由来する不確かさ	これらについては, γスキャン測
3.3	入力データ,計算条件等に由来する不確かさ	定結果,照射後試験の燃焼度測定
	・原子炉圧力,入口エンタルピ,炉心流量等	により不確かさを把握し、反応度
	のパラメータの入力データと実機との相	係数への影響を評価している
	違に由来する不確かさ	
3.4	下流側コードへのデータ受渡しの方法論・モ	動的ボイド係数の大きいサイクル
	デルに由来する不確かさ	末期を選定している(*)
	・平衡サイクル早期及び末期等の特定の炉心	HBB/UBや1ヶ月運転期間変動等,
	状態の選定に由来する設計想定炉心の代	包絡的な炉心条件を考慮している
	表性にかかわる不確かさ	
3.5	その他の不確かさ	γスキャン測定,燃焼度測定によ
	・妥当性確認に用いる実験データの不確かさ	る実験データの不確かさは小さい
		ので無視する

補足表-4 三次元炉心計算に由来する不確かさ要因

3 - 5 - 12

(*) 起動時等にキセノンの蓄積が少ない場合は、制御棒が多く挿入され、動的ボイド係数 の絶対値が増加する。サイクル末期の動的ボイド係数の絶対値はサイクル初期より大 きく、サイクル初期の起動時に制御棒が多く挿入された場合の動的ボイド係数の絶対 値を制御棒密度を変えた感度解析により評価すると、サイクル末期の絶対値に包含さ れる程度となる。仮に、サイクル初期の起動時において、サイクル末期の動的ボイド 係数の絶対値の範囲を超えたとしても、その他の不確かさ要因として考慮できる程度 である。

補足表-4の3.2,3.3において、γスキャン測定結果よりノード出力の平均二乗誤差 (RMS)で 程度あり、照射後試験の燃焼度測定との比較で相対偏差(1σ)で 程 度ある。これらの不確かさは大部分ばらつきの成分であるので、炉心平均のボイド係数、 ドップラ係数への影響はノード間の影響が相殺され大きくないと考えられるが、ここで は軸方向の出力分布が 程度ずれた場合と、燃焼度が 一 一 律ずれた場合の反応度係 数の解析結果に基づき、以下の反応度係数の不確かさを考慮する。

補足表-5 三次元出力分布,三次元燃焼度分布に由来した三次元炉心計算の不確かさ

	ボイド係数	ドップラ係数
三次元炉心計算の不確かさ		

一方,補足表-4の3.4に記載のように,取替炉心設計段階における不確かさとして, 運転期間,燃料装荷位置,制御棒挿入位置の変動に由来した不確かさを考慮する必要が ある。

運転期間については、13ヶ月運転の平衡炉心の反応度係数を基準に、±1ヶ月程度変動させた平衡炉心における反応度係数を評価し、変動の影響を評価した。

燃料装荷位置については、炉心の熱的制限値を満足する範囲で、特定のサイクルの燃料 料の装荷位置の集合体燃焼度を、炉心の内側から燃焼度の大きい燃料を配置した平衡炉 心と、炉心の外側から燃焼度の大きい燃料を配置した場合の平衡炉心における反応度係 数を評価し、変動の影響を評価した。

制御棒挿入位置については、サイクルを通じて制御棒を深めに挿入して運転した平衡 炉心と、制御棒を浅めに挿入して運転した平衡炉心における反応度係数を評価し、変動 の影響を評価した。

これらより、以下の反応度係数の不確かさを考慮する。

袖足衣 0 取得が心の中神政市政階におりる不確かで				
		ボイド係数	ドップラ係数	
詳細設計段階の不確かさの景	/響			
	本資料	のうち,枠囲みの内容は商業機	密に属しますので公開できませ	た。
		3-5-13		

補足表-6 取替炉心の詳細設計段階における不確かさ

[4] R E D Y コードの反応度係数の不確かさ

REDYコードのボイド係数の不確かさ、ドップラ係数の不確かさについては、炉心 ー点近似モデルに由来した不確かさが挙げられるが、個々の不確かさ要因に分解するの ではなく、静的な三次元沸騰水型原子炉模擬計算コードによるボイド係数、ドップラ係 数と直接比較することにより、全体の不確かさを一括して評価する。

なお,静的な三次元沸騰水型原子炉模擬計算コードによる反応度係数の評価には,事 象進展に伴う炉心状態変化に起因した不確かさが含まれていると考えられる。

そこで、サブ時間領域1については出力ピークまで圧力摂動の幅を増加させ、サブ時 間領域2及びサブ時間領域3については別の時刻の異なる炉心状態で、ボイド係数を評 価したところ 程度の変化に留まり、表 5-2の感度解析で考慮した の不確かさに対 して問題ないことを確認した。この影響は、「その他の要因に対する安全余裕」の中で 考慮する。

以上をまとめると、平衡炉心末期の動的ボイド係数、動的ドップラ係数の不確かさは、 以下のようになる。

不確かさの主要因	不確かさ
[1] 燃料集合体計算より上流側で生じる不確かさ	
[2] 燃料集合体計算に由来する不確かさ	
[3] 三次元炉心計算に由来する不確かさ	
[3] 取替炉心の詳細設計段階の不確かさ	
その他の要因に対する安全余裕	
合計	

補足表-7 平衡炉心末期の動的ボイド係数の不確かさ

補足表-8 平衡炉心末期の動的ドップラ係数の不確かさ

不確かさの主要因	不確かさ
[1] 燃料集合体計算より上流側で生じる不確かさ	
[2] 燃料集合体計算に由来する不確かさ	
[3] 三次元炉心計算に由来する不確かさ	
[3] 取替炉心の詳細設計段階の不確かさ	
その他の要因に対する安全余裕	
合計	

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

以上より、平衡炉心末期の反応度係数の不確かさは、以下のようになる。

不確かさの要因	動的ボイド係数	動的ドップラ係数
原子炉停止機能喪失事象解析での不確かさ(合計)		

補足表-9 平衡炉心末期の動的反応度係数の不確かさ(まとめ)

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3 - 5 - 15

添付6 ボロン反応度添加率について

1. ほう酸水拡散モデルの妥当性確認において参照した試験について

炉心を一点近似で模擬しているREDYコードでは,下式のようにボロン反応度は有 効炉心内のボロン濃度に比例し,ベッセル内にゆっくりと蓄積され一様に混合すると仮 定している。

制御棒挿入失敗を仮定した本事象では,徐々に注入されるボロンが格納容器の評価指標に与える影響を評価することが目的であり,数十分の長時間解析であることからしても,ボイドが発生する炉心内でもボロンが一様に混合すると仮定し,ボロン濃度の変化からボロン反応度を求めていることは妥当であると考える。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-6-1

一方,実機を考えると,原子炉の発熱によって炉心内でボイド(蒸気)が発生するが, 反応度に寄与するのは,有効炉心内に存在するボロン量である。この観点から,前述の 試験もREDYコードのモデルも「有効炉心内のボロン濃度変化」に着目している。

ただし,前述の試験には核的な検討は含んでいない。このため,前述のボロン反応度 添加率に与えるボイドの核的影響と不確かさについては,次章で説明する。

なお, 高温停止に必要なボロン反応度は, 三次元沸騰水型原子炉模擬計算コード (LOGOS)により,高温待機時の過剰反応度を打ち消すための反応度として求めて いる。高温停止に必要なボロン濃度は,高温停止に必要なボロン反応度を投入するのに 必要なボロン濃度である。前述の仮定をもとに高温停止に必要なボロン濃度とボロン反 応度を使用してREDYコードによる評価を実施している。

2. ボイドがボロン反応度添加率に与える核的影響評価

前節のボロン反応度添加率(*△*K_{B-hot}/C_{B-hot})については、ボイド発生に伴う中性子 スペクトル変化による影響を受ける可能性があるので、以下で検討する。

ここでは、ABWRの9×9(A型)ウラン燃料を対象として、ボイド率を0%、40%、70% と変え、ボロンを注入した場合の無限増倍率を評価し、ボイドがボロン反応度添加率に 与える核的影響を調べた。

燃料集合体核特性評価の評価条件は以下のとおりである。

対象領域: 9×9 (A型) ウラン低G d 燃料の中央部領域
(軸方向 9~15 ノード)
ただし、ノードは、燃料有効長を 24 分割し燃料下端から数え
た値で、燃料集合体と燃料集合体間の水領域を含む領域解析コード: 単位燃料集合体核特性計算コード(TGBLA)炉心状態: 高温待機時
: サイクル末期相当 (9×9 (A型) ウラン燃料 25GWd/st)履歴ボイド率: 40% (BWR 炉心の代表的な値)
: 0, 300, 600ppm (水に含まれるボロン濃度)

評価の結果,対象領域の体積平均のボロン濃度と無限増倍率の関係は図1のようになった。対象領域の体積平均のボロン濃度は,ボイド率0%の場合は0,300,600ppmであり,ボイド率40%,70%の場合は水の量が減少しているので,対象領域の体積平均のボロン濃度が減少している。

3-6-2

図1 無限増倍率のボロン濃度依存性

上図より、ボイド率によらず傾きはほとんど変わらない結果となった。

図1より、ボロン濃度が0と300pm(無限増倍率の2次内挿値)の無限増倍率の差より、ボロン反応度添加率[$\angle k$ /pm]を求めると、表1のようになる。

	0-300ppm の傾き	0-600ppmの傾き
ボイド率[%]		
ボロン反応度添加率[%⊿k/ppm]		

表1 ボロン反応度添加率のボイド率依存性

表1より,0-300ppmのボロン濃度のボロン反応度添加率はボイド率によらずほとんど 変わらないことがわかる。

したがって、ボイドが発生した場合のボロン反応度添加率に、高温待機時のボイド率 0%のボロン反応度添加率を用いるREDYのモデルには問題ないと考える。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

3-6-3

3. ボロン反応度添加率に与える不確かさ

図1と表1は代表領域の燃料集合体計算による評価結果であるが、炉心計算において も、ボロン反応度添加率はボイド率の違いにはほとんど影響されないものと考えられる。

一方,三次元沸騰水型原子炉模擬計算コード(LOGOS)によるボロン反応度添加 率(∠k/ppm)は、高温待機時において、ボロンなしの場合と 600ppm の場合の実効増倍 率の差を 600 で除すことにより求めている。高温停止に必要なボロン濃度は 600ppm よ り小さいので、ボロン反応度添加率は若干保守側の設定となっている。

以上より、ボロン反応度添加率にはボイド率の違いによる影響はほとんど見られず、 LOGOSによるボロン反応度添加率は若干保守側の設定となっていることが確認で きた。

なお,実際の炉心では,炉心流量は炉心上部に移行するに従い,炉心で発生する熱に より水が蒸気に変わり,ボロンが濃縮され,水中のボロン濃度が高くなる効果が考えら れるので,表1の評価値自体も保守性を有している。

4. その他

以上,ボロン反応度添加率について補足説明したが,ボロン反応度の不確かさに関しては,これ以外に下記のことがいえる。

・5.1.2 の感度解析において、高温停止に必要なボロン反応度について 3%⊿kの 不確かさを考慮した場合でも、格納容器圧力へ与える影響は+0.04MPa、格納容 器のプール水温度への影響は高々+7℃であり、影響は小さいことを確認してい る。

なお,ボロン反応度の不確かさに直接係わる事項ではないが,評価指標である格納容 器温度圧力と格納容器プール水の温度に係わる事項として,下記事項についても留意し ておく必要がある。

- ・格納容器の判断基準は、それぞれ 0.62MPa[gage]と200℃であるが、これに対して申請解析による最大値は 0.19MPa[gage]と113℃と小さく、どちらも判断基準に対して十分な裕度がある。
- ・格納容器モデルは 3.3(13)に示したように、「格納容器内の空間部の温度は、保 守的に常にプール水温度と同じとする」などの非常に保守的な仮定を設けてお り、評価結果を厳しくしている。

3-6-4

添付7 最適評価コードによる解析結果との全体的挙動比較

プラントの全体的挙動については、本資料の4章「妥当性確認」で実機試験結果との 比較を実施しているが、原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止では、よ り広い適用範囲(高出力かつ低炉心流量状態、スクラムが生じない給水加熱喪失状態、 ほう酸水の注入による出力抑制事象等)での解析が必要とされる。さらに、原子炉スク ラム失敗を仮定した主蒸気隔離弁の誤閉止では、REDYコードでは模擬されない核熱 水力不安定事象(中性子束振動現象)、高出力バンドルのリウェット現象がプラントに フィードバックされる影響も生じ得る可能性がある。

以上より,他のコードでの解析結果を参照し,プラント挙動に大きな差異がないこと を確認するという目的で,原子炉の熱水力挙動を評価する多次元2流体モデル及び炉心 の中性子動特性を評価する三次元中性子動特性モデルを使用し,米国において運転時の 異常な過渡変化評価や原子炉スクラム失敗事象評価,安定性評価での適用実績がある (各LTR (Licensing Topical Report)に対してNRCの承認が得られている)TR ACコードを用い,本事故シーケンスにおける原子炉スクラム失敗事象でのプラント全 体的挙動をREDYコードのものと比較する。両解析コードによる共通解析条件を表1 に示す。

3-7-1

項目	解析条件
原子炉熱出力	3,926 MW(定格原子炉熱出力の100%)
原子炉圧力	7.07 MPa[gage]
炉心流量	52.2×10 ³ t/h(定格炉心流量の 100%)
主蒸気流量	7.64×10 ³ t/h(定格主蒸気流量の100%)
原子炉水位	通常運転水位
RCIC流量	182 m³/h
HPCF流量	$182 \sim 727 \text{ m}^3/\text{h}$
原子炉水位低(L3)設定点	+62 cm
原子炉水位低(L2)設定点	-58 cm
原子炉水位低(L1.5)設定点	-203 cm
原子炉圧力高設定点	7.48 MPa[gage]
主蒸気隔離弁閉鎖時間	3 秒
主蒸気隔離弁閉鎖特性	100 弁 実 効 流 路 断 面 積 $\binom{9}{0}$ 0 1 1.7 2 3 時間(秒)
逃がし安全弁設定圧力 第1. 第2. 第3. 第4. 第5. 第6.	 逃がし弁機能(公称値)を使用 7.51 MPa[gage]×1 個, 363 t/h/個 7.58 MPa[gage]×1 個, 367 t/h/個 7.65 MPa[gage]×4 個, 370 t/h/個 7.72 MPa[gage]×4 個, 373 t/h/個 7.79 MPa[gage]×4 個, 377 t/h/個 7.86 MPa[gage]×4 個, 380 t/h/個
格納容器限界圧力	0.62MPa[gage]
格納容器限界温度	200°C

表1 REDYコード, TRACコードの共通解析条件 (原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止-ABWRの例)

3-7-2

TRACコードと比較するREDYコードの解析結果は、申請解析に加え、後述する 理由により、"下方ピーク軸方向出力分布炉心"の場合も比較する。これらの違いを表 2に示す。

	申請解析	下方ピーク軸方向出力分布炉心を仮定
REDYの軸方	設計下方ピーク	下方ピーク (*1)
向出力分布		
REDYのボイ	設計ボイドマップ	上記の軸方向出力分布(*1)に対応した
ドマップ		ボイドマップ

表2 REDYコード解析条件の比較

(*1) TRACコードによる原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉 止事象の解析結果で、給水加熱喪失が生じている時の代表的な下方ピーク 軸方向出力分布。

両解析コードによる比較図を図1(短時間領域)と図2(長時間領域)及び評価指標 との比較結果を表3に示す。

(1) 短時間領域での考察

短時間領域では、図1に示す様に、REDYコードによる申請解析結果(左側の図) をTRACコードの解析結果(右側の図)と比較すると、全体的な挙動は良く一致してい る。特に、評価指標の一つである燃料被覆管温度が厳しくなる約 70 秒から約 200 秒で は、炉心流量はほぼ同一となっており、給水加熱喪失に伴って変化する中性子束の増加 傾向、それが高い値で平衡する傾向なども類似の挙動を示している。ただし、平衡時の 値はREDYコードの方が若干高めであり、"炉心の核熱水力モデルの相違"に起因し ているものと推定される。このため、表3に示したように、燃料被覆管温度はTRAC コードでの解析結果 550℃に対し、REDYコードでは 1060℃と高めに評価されている。 また、他の3つの評価パラメータ最大値も同様にREDYコードの方が大きい。

上述に推定した,REDYコード(炉心一点近似)とTRACコード(炉心三次元) の"炉心の核熱水カモデルの相違"について確認するためにREDYコードで"下方 ピーク軸方向出力分布炉心"を仮定した場合の結果を図1に併記した(図2及び表3に も併せて記載)。これによると,評価指標の一つである燃料被覆管温度が厳しくなる約 150秒前後の原子炉出力は,図1(1)の中性子束変化図(中央の図)に示したように申請 解析結果(左側の図)より約10%低くなっており,TRACコードの解析結果(右側の 図)に近くなっている。また,この時の燃料被覆管温度は表3に示したように,970℃ と小さくなる結果が得られている。以上より,"炉心の核熱水カモデル"の差がRED YコードとTRACコードとの結果に与える一要因であることがREDYコードでの 解析結果から確認できる。

3-7-3

なお、TRACコードでは約70秒から約200秒の注目すべき期間で、物理現象のラ ンクをMとした三次元効果(中性子束振動現象)が見られる。これに対し、REDYコ ードの解析では振動現象は見られず、REDYコードの軸方向出力分布のみ下方ピーク を仮定した場合の解析(中央の図)で多少顕著に見られる中性子束振動も、逃がし安全 弁の開閉に起因した中性子束変動である。これは、REDYコードでは、炉心を一点近 似の集中定数系のモデルで模擬していることから、炉心内での局所的挙動を考慮する必 要のあるチャンネル安定性を含んでいる炉心安定性を模擬するのが困難なためである。

しかしながら,TRACコードの解析結果では,中性子束振動により燃料被覆管温度 も振動しているものの,その最大値はむしろREDYコードの解析結果より十分小さく なっている。さらに,前述の逃がし安全弁の開閉に起因する中性子束振動現象と三次元 効果による中性子束振動現象の影響で上昇する燃料被覆管温度分を,SCATコードに よる核沸騰状態における燃料被覆管温度に加算したとしても,判断基準を下回る結果と なっている。

(2) 長時間領域での考察

長時間領域では、図2に示すように、13 分以降の自然循環流量に違いが見られるが、 駆動源の一つである原子炉水位の変化もほぼ合っていることから、この数パーセントの 自然循環流量の差は、炉心の核熱水力モデルの相違に起因しているものと推定される。 しかしながら、REDYコードでは、自然循環流量が大きいことで、中性子束が高めの 値に維持され、評価指標である格納容器の圧力やプール水温度に対する評価結果を厳し くしている。なお、格納容器圧力や格納容器のプール水温度といったパラメータの増加 は類似の挙動を示している。

3-7-4

1³⁻⁷⁻⁹

	表 3 A F	3 W R を例とした角	解析結果の比較	
		$R \to D Y \dashv - \models$	$R \to D Y = - \models$	$T R A C \sqsupset - \trianglerighteq$
評価指標		(申請解析)	(下方ピーク軸方向出力分布	解析結果
			炉心を仮定)	
原子炉压力	10.34MPa[gage]	9.08	8.94	8.53
燃料被覆管温度	1200°C	1060	026	550
格納容器圧力	0.62MPa[gage]	0.19	0.19	0.14
格納容器のプール水温度	200°C	113	114	103

(注) 燃料被覆管温度を求めるSCATコードでは、中央ピークとしている。

添付7 補足 TRACコードによる三次元核熱結合不安定の影響評価に ついて

1. 目的

「原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止」事象における三次 元核熱結合不安定による出力振動の影響を確認するため,TRACコードによ る参考解析を実施している。しかしながら,本参考解析では,給水加熱喪失後 の炉出力解析結果がREDYコードの解析結果より低めに推移している。この ため,TRACコードによる参考解析において,給水加熱喪失後の出力上昇を REDYコードと同程度になるように調整した感度解析を実施し,逃がし安全 弁閉による出力上昇に加え,三次元核熱結合不安定による出力振動(上昇)が 重畳した場合の燃料被覆管温度の上昇幅を検討した。

2. 感度解析条件

TRACコードによる解析において,給水加熱喪失後の出力上昇をREDY コードと同程度になるように解析条件を設定する方法としては以下が考えら れる。

- (1)初期炉心流量を流量制御幅下限より更に低流量側にシフトさせ、再循環ポンプトリップ後の出力を全体的に高めに推移させる。
- (2)ボイド/ドップラ反応度係数を調整し、給水加熱喪失後の正の反応度 投入量を大きくすることにより、出力上昇量を高めにする。
- (3)給水温度低下幅をより大きくし、給水加熱喪失後の炉心入口サブクー リングの増加量を大きくする。これにより、給水加熱喪失後の正の反 応度投入量を大きくし、出力上昇量を高めにする。

上記のうち(2)の場合,整定出力をREDYコードと同程度とするため, ボイド反応度係数の絶対値をノミナルより大きめに設定することになる。この とき,三次元核熱結合不安定による出力振動発生時のボイドフィードバックの 影響が過度に保守側に評価される可能性がある。

また,(3)の場合,給水加熱喪失時の給水温度低下を想定し得る温度より 更に低めに設定することになる。このため,給水加熱喪失後の炉心軸方向出力 分布がノミナルより更に下方ピークとなり,三次元核熱結合不安定及び燃料被 覆管温度の評価に影響する可能性がある。

3-7-10

一方,(1)の場合,炉心反応度係数及び給水温度低下はノミナルのままとし,他の手法と同様に整定出力及び炉心ボイド率はREDYコードと同程度とすることができる。したがって,REDYコードの整定出力に合わせること以外の要素を極力取り除くため,初期炉心流量を流量制御幅下限より更に低流量側にシフトさせた運転点から解析する方法を採用し,感度解析を実施した。

なお、この初期運転点は、あくまでも意図的に整定出力を高めるために設定 した仮の運転点である。

3. 解析結果

表1に解析結果を,下記図に解析結果の比較を示す。

- 図1 REDY/SCATコード(申請解析)
- 図2 TRACコード (ベースケース解析)
- 図3 TRACコード(意図的に整定出力を高めた解析)

ここで、図1と図2の初期運転点は定格出力/定格炉心流量である。

図2と図3のTRACコードによる解析結果では,図1のREDYコードの 解析結果には見られない核熱不安定による出力振動が,逃がし安全弁閉による 出力上昇と重畳して模擬されている。一般に低炉心流量かつ高出力運転点の方 が核熱不安定に対する余裕が小さくなることが知られており,図2のTRAC コードによる解析結果(ベースケース解析)に比べ,図3に示すTRACコー ドによる解析結果(意図的に整定出力を高めた解析)の方が出力の振動幅は大 きくなっている。しかしながら,整定出力レベルをREDYコードの解析結果 に合わせたTRACコードによる解析(図3)においても,燃料被覆管温度の 最大値は620℃程度で,REDY/SCATコードによる燃料被覆管温度の最 大値を下回る結果となっている(表1参照)。

なお,図3において約190秒付近で燃料被覆管温度が近傍のピーク値に比べ 高くなっている。図4に示すように,逃がし安全弁閉による圧力上昇と核熱不 安定による出力上昇のタイミングが比較的一致しているためと考えられるが, この場合においても燃料被覆管温度の更なる上昇は80℃程度に留まる。これ は数百℃の燃料被覆管温度の上昇は,沸騰遷移の発生による燃料被覆管と原子 炉冷却材間の熱伝達の低下によるものであり,逃がし安全弁閉に伴い沸騰遷移 が発生した状態(熱伝達係数が低下した状態)から核熱不安定による出力振動 により再度出力が上昇したとしても,熱伝達状態の変化はなく,熱流束の上昇 も短時間で限定的であるためである。

3-7-11

以上より,参考解析の位置づけではあるがTRACコードを用いて逃がし安 全弁閉による出力上昇と,三次元核熱結合不安定による出力振動が重畳した事 象が発生した場合の影響を検討した結果,逃がし安全弁閉による出力上昇に加 え,三次元核熱結合不安定による出力振動(上昇)が重畳した場合の燃料被覆 管温度の上昇幅は数+℃程度であると推定される。したがって,REDY/S CATコードによる評価において核熱不安定による出力振動の影響を考慮し ても燃料被覆管温度は判断基準を満足すると考えられる。

3 - 7 - 12

項目	R E D Y / S C A T コード(申請解	TRACコード (ベースケース解	T R A C コード(意図的に整定出	判断基準
	析)	析)	力を高めた解析)	
燃料被覆管 _{温度}	約 1060℃	約 550℃	約 620℃	1200°C
1皿 皮				

表1 感度解析結果のサマリ

3-7-13

3-7-14

図4 バンドル出力,原子炉圧力,及び燃料被覆管温度の時間変化(TRAC解析)

3 - 7 - 15

参考に、TRACコードによる解析(意図的に整定出力を高めた解析)において逃がし 安全弁閉のタイミングを調整し、三次元核熱不安定による出力振動に伴う出力上昇のタイ ミングと、逃がし安全弁閉による圧力上昇のタイミングを合わせた解析を実施し(付録図 1参照)、解析結果とREDY解析の中性子束、炉心入口流量を比較し、出力振動が大き くなる時間領域についてTRACコードの挙動(中性子束及びバンドル入口流量)を、初 期運転点を100%出力/90%炉心流量としたREDY解析(低流量解析)に反映してSCAT 解析を実施した。低流量解析をベースにしたのは、低流量の方が三次元核熱結合不安定に 対する余裕が小さくなるためである。なお、TRACコードによる出力振動はREDYコ ードに対して上下しているが、本解析では保守的に出力が上昇する側の変動のみを重ね合 わせた(付録図2参照)。なお、TRACコードによる出力振動は、2~3秒間隔である ことから、0.5秒ごとにタイミングをずらした感度解析も合わせて実施した。

付録表1,2に示すように、出力振動に伴う出力上昇と逃がし安全弁閉による圧力上昇 を重畳させたTRACコードによる解析結果をREDYコードの解析結果に反映して作 成したデータを使用したSCATコードによる解析では、REDY/SCATコードの解 析結果(低流量解析)に比べ最大で70℃程度高い結果となる。

3-7-16

付録図1 中性子束と原子炉圧力の時間変化 (出力振動に伴う出力上昇と逃がし安全弁による圧力上昇のタイミングを 合わせたTRAC解析)

付録図2 REDYコードにTRACコードの出力振動を重畳させた中性子束 (SCAT 感度解析用の入力として使用)

3 - 7 - 17

1月兆4公1 所作11 加木ソキン	付録表1	解析結果サマ	IJ
-------------------	------	--------	----

	R E D Y / S C A T = -F
TT	(出力振動に伴う出力上昇と逃がし安全弁による圧力
坦日	上昇を重畳させたTRAC解析の結果をREDYデ
	ータに反映した解析結果との比較:ベースケース)
燃料被覆管温度の上昇 幅の変化	約 20℃

付録表2 感度解析結果サマリ

	R E D Y / S C A T = -F
項目	(REDYデータに反映させるTRAC解析のタイミ
	ングをずらした感度解析結果)
	約 70℃(0.5 秒ずらした解析)
燃料被覆管温度の上昇幅 の変化	約 30℃(1.0 秒ずらした解析)
	約 30℃(1.5 秒ずらした解析)
	約 <mark>60℃(2.0</mark> 秒ずらした解析)
	約 50℃(2.5 秒ずらした解析)

Rev.13

第4部 SCAT
目 次

S C A T

1. はじめに
2. 重要現象の特定
2.1 事故シーケンスと評価指標 4-2
2.2 ランクの定義 4-2
2.3 物理現象に対するランク付け 4-4
3. 解析モデルについて 4-14
3.1 コード概要 4-14
3.2 重要現象に対する解析モデル 4-15
3.3 解析モデル 4-16
3.4 入出力 4-35
4. 妥当性確認 4-37
4.1 重要現象に対する妥当性確認方法4-37
4.2 ATLAS試験
4.3 NUPEC BWR燃料集合体熱水力試験 4-51
4.4 実機解析への適用性 4-61
5. 有効性評価への適用性 4-62
5.1 不確かさの取り扱いについて(評価指標の観点)
5.2 不確かさの取り扱いについて(運転員操作の観点)
6. 参考文献 4-65
添付1 入力項目リスト 4-1-1
添付2 ボイドモデル,サブクールボイドモデル,圧力損失モデルの適切性 4-2-1
添付3 沸騰遷移後の被覆管表面熱伝達モデルの適用性4-3-1
添付4 リウェットモデルの適用性 4-4-1

- 添付 5 9×9燃料(A型)部分長燃料棒を考慮した評価の適用性...... 4-5-1
- 添付 6 有効性評価における 9×9燃料(A型)の代表性...... 4-6-1

1. はじめに

本資料は、炉心損傷防止に関する重大事故対策の有効性評価(以下,「有効性評価」と称 す。)に適用するコードのうち、SCATコード(SCAT Ver.3)について,

- ・有効性評価において重要となる現象の特定
- ・解析モデル及び入出力に関する説明
- 妥当性確認
- ・有効性評価への適用性
- に関してまとめたものである。

なお、REDYコードの計算結果をインプットとする必要があるが、このREDYコードに対する説明は別資料(第3部REDY)にて行う。

また、本資料で引用している最適評価コードはTRACコード(TRACG Ver.5)である。

2. 重要現象の特定

2.1 事故シーケンスと評価指標

SCATコードが適用される炉心損傷防止対策における事故シーケンスグループである 原子炉停止機能喪失は,運転時の異常な過渡変化の発生時において原子炉のスクラム失敗 を想定する事象であり,事故シーケンスとして主蒸気隔離弁の誤閉止+原子炉停止機能喪 失が選定されている。

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、主蒸気隔離弁閉止時の原子炉 圧力上昇によるボイド減少で炉心に正の反応度が投入されることにより生じる沸騰遷移, 及び給水加熱喪失の状態で出力が増加することにより生じる沸騰遷移によって燃料被覆管 の温度(以下,「燃料被覆管温度」と称す。)が上昇し高温になる。それに伴い燃料被覆管 の酸化量(以下,「燃料被覆管酸化量」と称す。)も増加するが、判断基準(15%以下)に十 分余裕があるため、評価指標は燃料被覆管温度で代表できると考えられる。

従って、燃料被覆管温度が評価指標である。炉心損傷防止対策の有効性を確認するその 他の評価指標についてはREDYコードによる解析で確認する。

2.2 ランクの定義

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された原子炉停止機能喪 失で取り扱う物理現象について,表 2-1 の定義に従い「H」,「M」,「L」及び「I」のラ ンクに分類し,「H」及び「M」に分類された物理現象を重要現象として抽出する。

4 - 2

ランク	ランクの定義	本資料での取り扱い
Н	評価指標及び運転操作に対する	物理現象に対する不確かさを実験との比較
	影響が大きいと考えられる現象	等により求め、実機評価における評価指標及
		び運転操作への影響を評価する。
М	評価指標及び運転操作に対する	事象推移を模擬する上で一定の役割を担う
	影響が中程度と考えられる現象	が、影響が「H」に比べて顕著でない物理現
		象であるため、必ずしも不確かさによる実機
		評価における評価指標及び運転操作への影
		響を評価する必要はないが、本資料では、実
		機評価への影響を感度解析等により評価す
		るか、「H」と同様に評価することとする。
L	評価指標及び運転操作に対する	事象推移を模擬するためにモデル化は必要
	影響が小さいと考えられる現象	であるが、評価指標及び運転操作への影響が
		明らかに小さい物理現象であるため、検証/
		妥当性評価は記載しない。
Ι	評価指標及び運転操作に対し影	評価指標及び運転操作へ影響を与えないか,
	響を与えないか、または重要でな	又は重要でない物理現象であるため、検証/
	い現象	妥当性評価は記載しない。

表 2-1 ランクの定義

2.3 物理現象に対するランク付け

本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物理現象のうち, 2.1節で述べた事象進展を踏まえ,2.2節記載のランクの定義に従い,評価指標及び運転操 作への影響に応じて「H」及び「M」に分類する事で物理現象の中から重要現象を特定す る。この結果を表 2-2 に示す。

なお,本資料の本文「2. 有効性評価における物理現象の抽出」で抽出された物理現象は, 事故シーケンスグループに対して抽出されたものであるため,REDYコードの解析結果 を引き継ぐ物理現象を含んでいる。そのような物理現象は,SCATコードで評価する事 象において考慮すべき物理現象の対象外としてREDYコードの説明資料で示す。

以下に、物理現象ごとに考え方を示す。

(1) 核分裂出力 [炉心(核)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,核分裂出力と崩壊熱の和であ る原子炉出力の変化によって燃料ペレットの発熱挙動及び燃料被覆管温度挙動に影響を与 える。したがって,核分裂出力は燃料被覆管温度変化に対して重要度は高いと考えられる。 なお,原子炉出力変化はREDYコードの解析結果から引き継がれる物理現象である。

(2) 出力分布変化 [炉心(核)]

出力分布には,径方向出力分布及び軸方向出力分布がある。主蒸気隔離弁の誤閉止+原 子炉停止機能喪失の事象では,原子炉スクラム失敗を仮定していることから,径方向出力 分布の変化は小さい。一方,給水温度の変化等から軸方向出力分布は変化する。軸方向出 力分布の変化は,沸騰遷移の生じた位置の局所の出力によって燃料被覆管温度挙動に影響 を与える。したがって,出力分布変化は燃料被覆管温度の変化に対して重要度は高いと考 えられる。

(3) 反応度フィードバック効果 [炉心(核)]

(ボイド反応度(減速材密度反応度)とドップラ反応度)

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,原子炉出力がボイド・ドップ ラ反応度フィードバック効果によって変動し,燃料ペレットの発熱挙動及び燃料被覆管温 度挙動に影響を与える。したがって,ボイド・ドップラ反応度フィードバック効果は燃料 被覆管温度変化に対して重要度は高いと考えられる。なお,反応度フィードバック効果は 原子炉出力変化としてREDYコードの解析結果から引き継がれる物理現象である。

(ボロン反応度)

事象収束に必要なほう酸水注入系の手動起動はボロン反応度の印加が出力の抑制に重要 な役割を果たす。燃料被覆管温度の上昇は事象初期であり,ほう酸水注入系による出力抑

4 - 4

Δ

制の効果が表れる段階より早いため、ボロンの反応度フィードバック効果が燃料被覆管温 度変化に与える影響はないと考えられる。

(その他)

上述以外に,反応度フィードバック効果として知られている減速材温度反応度は,起動 時のボイド反応度やドップラ反応度の影響が殆どない状態では考慮する必要があるが,本 事故シーケンスの様な高い出力が継続する事象では評価指標に与える重要度は低い。なお, 遅発中性子生成割合,中性子寿命と言ったパラメータは上記の反応度評価に含まれる。

(4) 制御棒反応度効果 [炉心(核)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、スクラム失敗及び代替制御棒 挿入機能が作動しないことを仮定しているため、制御棒反応度及び制御棒速度による効果 が燃料被覆管温度変化に与える影響はないと考えられる。

(5) 崩壊熱 [炉心(核)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,核分裂出力と崩壊熱の和であ る原子炉出力の変化による燃料ペレットの発熱挙動及び燃料被覆管温度挙動に影響を与え るが,スクラムが失敗した状態で崩壊熱は核分裂出力に比べて小さい。したがって,崩壊 熱が燃料被覆管温度変化に与える影響は殆どないと考えられる。なお,原子炉出力変化は REDYコードの解析結果から引き継がれる物理現象である。

(6) 三次元効果 [炉心(核)]

中性子束振動(三次元効果)が発生すると、中性子束と冷却材流量の振動によって沸騰 遷移及びリウェットの発生に影響を与えることから、燃料被覆管温度挙動に影響を与える 可能性がある。

流量振動によって沸騰遷移を発生させる試験では,流量振幅が大きくなると数秒の周期 で燃料被覆管温度が鋸歯状的に上昇と降下を繰り返し,温度上昇幅は僅かであることが確 認されている^[1]。これは中性子束の振動周期が数秒であることに対して熱流束の時間変化が 小さいためと考えられる。しかし,スクラム失敗を仮定した原子炉停止機能喪失の事象の ように,原子炉出力の増加に伴い中性子束と熱流束が大きい状態で中性子束振動が発生す ると,燃料被覆管温度の上昇幅が有意に大きくなる可能性も考えられる。したがって,三 次元効果は燃料被覆管温度変化に対して重要度は中程度と考えられる。なお,原子炉出力 変化及び炉心入口流量の変化はREDYコードの解析結果から引き継がれる物理現象であ る。

ここでスクラム失敗を仮定した原子炉停止機能喪失の事象において,原子炉出力の増加 に伴い中性子束と熱流束が大きい状態で中性子束振動が発生しても燃料被覆管温度の上昇

幅が有意に大きくならないことは、米国において中性子束振動の評価実績のあるTRAC コードによる参考解析結果を参照する(第3部REDY添付7参照)。

(7) 燃料棒内温度変化 [炉心(燃料)]

燃料棒内温度変化は、燃料ペレット内発熱により燃料ペレット熱伝導とギャップ部の熱 伝達及び燃料被覆管熱伝導を通して燃料被覆管温度挙動に影響を与える。したがって、燃 料棒内温度変化は燃料被覆管温度変化に対して重要度は高いと考えられる。

(8) 燃料棒表面熱伝達 [炉心(燃料)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,沸騰遷移が生じて燃料被覆管 温度は上昇する。沸騰遷移後,冷却材への熱伝達に関わる燃料棒表面熱伝達は燃料被覆管 温度挙動に影響を与える。特に膜沸騰状態の下では,過熱蒸気により燃料棒表面熱伝達が 変化すること,さらに高温に至る場合には,輻射熱伝達の寄与が次第に大きくなることな どにより燃料被覆管温度挙動に大きな影響を与える。したがって,燃料棒表面熱伝達は燃 料被覆管温度変化に対して重要度は高いと考えられる。

(9) 沸騰遷移 [炉心 (燃料)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、沸騰遷移が生じて核沸騰から 膜沸騰状態に移行し、原子炉出力の低下によってリウェットに至ることで核沸騰状態に移 行する。ドライアウト領域では、燃料被覆管温度は急上昇する。その後リウェットによっ て核沸騰時の温度まで低下する。したがって、沸騰遷移は燃料被覆管温度変化に対して重 要度は高いと考えられる。

(10) 燃料被覆管酸化 [炉心 (燃料)]

燃料被覆管酸化はジルコニウム-水反応によって発熱量が増加するが、出力の高い主蒸 気隔離弁の誤閉止+原子炉停止機能喪失の事象では核反応による発熱量に比べて影響は小 さいと考えられる。したがって、燃料被覆管酸化は燃料被覆管温度変化に対して重要度は 低いと考えられる。

(11) 燃料被覆管変形 [炉心(燃料)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、炉心は冠水状態及び原子炉圧 力が維持されることから燃料被覆管変形は生じないため、燃料被覆管変形が燃料被覆管温 度変化に与える影響はないと考えられる。

(12) 沸騰・ボイド率変化[炉心(熱流動)]沸騰遷移が生じる高クォリティの状態では軸方向ボイド率変化を含むボイド率変化は小

4 - 6

さく,また膜沸騰状態での表面熱伝達の変化は主にクォリティの変化に依存することから, ボイド率変化による表面熱伝達の変化は小さい。また,炉心は冠水状態が維持されて炉心 部に二相水位が形成されないため,水面変動による大きなボイド率変化はない。そのため 燃料被覆管温度挙動への影響は小さいと考えられる。したがって,沸騰・ボイド率変化は 燃料被覆管温度変化に対して重要度は低いと考えられる。

(13) 気液分離(水位変化)·対向流[炉心(熱流動)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、炉心は冠水状態が維持されて 炉心部に二相水位が形成されないため、気液分離(水位変化)・対向流が燃料被覆管温度変 化に与える影響はないと考えられる。

(14) 気液熱非平衡 [炉心(熱流動)]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、炉内保有水は十分に保たれ、 炉心は冠水が維持されている。高出力燃料集合体の一部で高温の過熱蒸気が発生したとし ても、当該蒸気流は炉心出口近傍で他の燃料集合体から流出する二相流との混合により飽 和になると考えられ、炉心外の熱流動挙動への影響は小さいと考えられる。しかし、発生 した過熱蒸気の影響が当該燃料集合体内の隣接する燃料棒に波及する可能性がある。した がって、気液熱非平衡による熱流動の変化は燃料被覆管温度変化に対して重要度は中程度 と考えられる。なお、発生した過熱蒸気による燃料被覆管温度への影響、すなわち燃料被 覆管と冷却材との温度差が低下することの影響は、膜沸騰状態における燃料棒表面熱伝達 係数の物性値等をモデル化することで得られる保守性によって概ね相殺されることで実効 的に取り込まれており、(8)項の燃料棒表面熱伝達[炉心(燃料)]で相応に考慮できると してよいと考えられる。

(15) 圧力損失 [炉心(熱流動)]

チャンネル内の圧力損失は、チャンネルを流れる冷却材流量を介して表面熱伝達の変化 に影響を与える。しかし、沸騰遷移後は冷却材流量の変化による表面熱伝達の変化は小さ く、燃料被覆管温度挙動への影響は小さいと考えられる。したがって、圧力損失は燃料被 覆管温度変化に対して重要度は低いと考えられる。なお、炉心入口流量の変化はREDY コードの解析結果から引き継がれる物理現象である。

(16) 三次元効果 [炉心 (熱流動)]

三次元効果による燃料集合体間の流量配分は,冷却材流量が変化することから,燃料被 覆管温度挙動に影響を与える。しかし,主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事 象では,径方向出力分布の変化は小さく,流量配分による冷却材流量変化への影響は小さ いと考えられる。また,高出力燃料集合体は平均出力燃料集合体に比べてボイド率が高く

流量低下が早くなるが,冷却材流量が減少すれば二相部の圧力損失による流量配分の寄与 が相対的に小さくなるので,高出力燃料集合体の流量低下は緩和されると考えられる。し たがって,三次元効果による燃料集合体間の流量配分は燃料被覆管温度変化に対して重要 度は低いと考えられる。

ただし、中性子束と冷却材流量の振動現象(高出力チャンネルの流量振動現象を含む) は、沸騰遷移及びリウェットの発生に影響を与えることから、燃料被覆管温度挙動に影響 を与える可能性がある。そのため、三次元効果[炉心(熱流動)]は(6)項の三次元効果[炉 心(核)]と同様に燃料被覆管温度変化に対して重要度は中程度とし、三次元効果[炉心(核)] に含めて検討する。

(17) 冷却材流量変化 [原子炉圧力容器]

再循環ポンプトリップにより炉心流量を減少させることで原子炉出力を抑制することか ら,再循環ポンプのコーストダウン特性と流路慣性による冷却材流量変化の速さは原子炉 出力の抑制の速さに影響する。また,事象発生直後に再循環ポンプトリップするため,燃 料被覆管温度上昇時の冷却材流量は自然循環流量相当である。したがって,冷却材流量変 化は燃料被覆管温度に対して重要度は高いと考えられる。なお,炉心入口流量の変化はR EDYコードの解析結果から引き継がれる物理現象である。

(18) 冷却材放出(臨界流·差圧流)[原子炉圧力容器]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,主蒸気隔離弁の誤閉止による 原子炉圧力の上昇によって逃がし安全弁が作動する。逃がし安全弁から放出される蒸気流 量の変化によって原子炉圧力が変化し,ボイドの生成・凝縮に影響するため反応度フィー ドバック効果に影響する。反応度フィードバック効果は(3)項の反応度フィードバック効果 [炉心(核)]で考慮する。したがって,冷却材放出(臨界流・差圧流)は燃料被覆管温度 変化に対して重要度は低いと考えられる。なお,原子炉圧力変化及び原子炉出力変化はR EDYコードの解析結果を引き継がれる物理現象である。

(19) 沸騰・凝縮・ボイド率変化 [原子炉圧力容器]

ここで取り扱う物理現象は、炉心以外での領域の状態である。主蒸気隔離弁の誤閉止+ 原子炉停止機能喪失の事象では、沸騰・凝縮・ボイド率変化(減圧沸騰(フラッシング)、 二相水位、二相流動)が炉心内の領域に与える影響は小さく、燃料被覆管温度挙動への影響はないと考えられる。したがって、沸騰・凝縮・ボイド率変化が燃料被覆管温度変化に 与える影響はないと考えられる。

(20) 気液分離(水位変化)·対向流[原子炉圧力容器]

ここで取り扱う物理現象は、 炉心以外での領域の状態である。 主蒸気隔離弁の誤閉止+

原子炉停止機能喪失の事象では、炉心以外の領域で気液分離(水位変化)・対向流が生じな いため、燃料被覆管温度変化に与える影響はないと考えられる。

(21) 気液熱非平衡 [原子炉圧力容器]

ここで取り扱う物理現象は、炉心以外での領域の状態である。主蒸気隔離弁の誤閉止+ 原子炉停止機能喪失の事象では、炉心以外の領域で気液熱非平衡が生じないため、燃料被 覆管温度変化に与える影響はないと考えられる。

(22) 圧力損失 [原子炉圧力容器]

ここで取り扱う物理現象は、炉心以外での領域の状態である。主蒸気隔離弁の誤閉止+ 原子炉停止機能喪失の事象での燃料被覆管温度を評価する上で、(15)項の圧力損失[炉心 (熱流動)]の物理現象を考慮する。したがって、圧力損失が燃料被覆管温度変化に与える 影響はないと考えられる。

(23)構造材との熱伝達[原子炉圧力容器]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では,原子炉出力はほう酸水注入に よって抑制されるまで高い値を維持する。このため,原子炉ドーム部を含むシュラウド外 領域の構造材と冷却材間との熱伝達は影響を与えないと考えられる。したがって,構造材 との熱伝達が燃料被覆管温度変化に与える影響はないと考えられる。

(24) ECCS注水(給水系・代替注水設備含む)[原子炉圧力容器]

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では, ECCS注水(給水系・代替 注水設備含む)により冷却材を注入し, 炉心入口流量及び炉心入口エンタルピの変化によ って燃料被覆管温度挙動に影響を与える。したがって, ECCS注水(給水系・代替注水 設備含む)は燃料被覆管温度変化に対して重要度は高いと考えられる。なお, 炉心入口流 量変化及び炉心入口エンタルピ変化はREDYコードの解析結果から引き継がれる物理現 象である。

(25) ほう酸水の拡散 [原子炉圧力容器]

事象収束に必要なほう酸水注入系の手動起動はボロン反応度の印加が出力の抑制に重要 な役割を果たす。燃料被覆管温度の上昇は事象初期であり,ほう酸水注入系による出力抑 制の効果が表れる段階より早いため,ほう酸水の拡散が燃料被覆管温度変化に与える影響 はないと考えられる。

(26) 三次元効果[原子炉圧力容器] 燃料被覆管温度の上昇は事象初期であり、ほう酸水注入系による出力抑制の効果が表れ

4 - 9

る段階より早いため、ほう酸水の輸送・拡散における三次元効果が燃料被覆管温度変化に 与える影響はないと考えられる。

(27) 冷却材放出(臨界流·差圧流) [原子炉格納容器]

本物理現象自体は,格納容器側から見た逃がし安全弁から放出される蒸気流に係る事象 であり,原子炉から見た(18)項の冷却材放出(臨界流・差圧流)[原子炉圧力容器]と同じ である。

(28) 格納容器各領域間の流動[原子炉格納容器]

格納容器各領域間の流動は原子炉側への影響はなく,燃料被覆管温度変化に与える影響 はないと考えられる。

(29) サプレッション・プール冷却 [原子炉格納容器]

サプレッション・プール冷却は, ECCSの高圧注水による冷却材の温度が変化するため, 燃料被覆管温度挙動に影響を与える可能性がある。燃料被覆管温度の上昇は事象初期 であり, 残留熱除去系(RHR)によるサプレッション・プール冷却の効果が表れる段階 より早いため, 燃料被覆管温度変化に与える影響はないと考えられる。

(30) 気液界面の熱伝達 [原子炉格納容器]

気液界面の熱伝達は原子炉側への影響はなく、燃料被覆管温度変化に与える影響はないと考えられる。

(31)構造材との熱伝達及び内部熱伝導[原子炉格納容器]

構造材との熱伝達及び内部熱伝導は原子炉側への影響はなく,燃料被覆管温度変化に与 える影響はないと考えられる。

(32) スプレイ冷却 [原子炉格納容器]

スプレイ冷却は、サプレッション・プール水温の低下によってECCSの高圧注水によ る冷却材の温度が変化するため、燃料被覆管温度挙動に影響を与える可能性がある。主蒸 気隔離弁の誤閉止+原子炉停止機能喪失の事象では、スプレイ冷却の実施を仮定していな いため、燃料被覆管温度変化に与える影響はないと考えられる。

(33) 放射線水分解等による水素・酸素発生 [原子炉格納容器]

放射線水分解等による水素・酸素発生は原子炉側への影響はなく,燃料被覆管温度変化 に与える影響はないと考えられる。

4 - 10

(34) 格納容器ベント [原子炉格納容器]

格納容器ベントは、サプレッション・プール水温の低下によってECCSの高圧注水に よる冷却材の温度が変化するため、燃料被覆管温度挙動に影響を与える可能性がある。主 蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、格納容器ベントの実施を仮定して いないため、燃料被覆管温度変化に与える影響はないと考えられる。

		事故シーケンス	主蒸気隔離弁の誤閉止 +原子炉停止機能喪失
分類	物理現創		燃料被覆管温度
炉心(核)	(1)	核分裂出力	(H) *1
	(2)	出力分布変化	<u> </u>
	(3)	反応度フィードバック効果	(H) *1
	(4)	制御棒反応度効果	Ι
	(5)	崩壊熱	(I) *1
	(6)	三次元効果	<u>M</u> *2
炉心(燃料)	(7)	燃料棒内温度変化	<u>H</u>
	(8)	燃料棒表面熱伝達	H
	(9)	沸騰遷移	H
	(10)	燃料被覆管酸化	L
	(11)	燃料被覆管変形	Ι
炉心 (熱流動)) (12) 沸騰・ボイド率変化		L
	(13)	気液分離(水位変化)·対向流	Ι
	(14)	気液熱非平衡	<u>M</u>
	(15)	圧力損失	(L) *1
	(16)	三次元効果	$\underline{\mathbf{M}}^{*2}$
原子炉圧力容器	(17)	冷却材流量変化	(H) *1
(逃がし安全弁	(18)	冷却材放出(臨界流・差圧流)	(L) *1
含む)	(19)	沸騰・凝縮・ボイド率変化	Ι
	(20)	気液分離(水位変化)·対向流	Ι
	(21)	気液熱非平衡	Ι
	(22)	圧力損失	Ι
	(23)	構造材との熱伝達	Ι
	(24)	ECCS 注水(給水系・代替注水設備含む)	(H) *1
	(25)	ほう酸水の拡散	Ι
	(26)	三次元効果	Ι

表 2-2 原子炉停止機能喪失における物理現象のランク(SCATコード)(1/2)

*1 事故シーケンスグループに対して抽出されたものであるため, REDYコードの解析結果を引き継ぐ 物理現象も含んでいる。そのような物理現象は, SCATコードで評価する事象において考慮すべき物 理現象の対象外とする。

*2 三次元効果の模擬はREDY/SCATコード体系では困難であるため、米国において中性子束振動の評価実績のあるTRACコードによる参考解析結果を参照する。

		事故シーケンス	主蒸気隔離弁の誤閉止 +原子炉停止機能喪失
分類	物理現	評価指標 象	燃料被覆管温度
原子炉格納容器	(27)	冷却材放出	(18)と同一物理現象
	(28)	格納容器各領域間の流動	Ι
	(29)	サプレッション・プール冷却	Ι
	(30)	気液界面の熱伝達	Ι
	(31)	構造材との熱伝達及び内部熱伝導	Ι
	(32)	スプレイ冷却	Ι
	(33)	放射線水分解等による水素・酸素発生	Ι
	(34)	格納容器ベント	Ι

表 2-2 原子炉停止機能喪失における物理現象のランク(SCATコード)(2/2)

3. 解析モデルについて

3.1 コード概要

SCATコードは、燃料の熱的余裕及び燃料被覆管温度を解析するコードである。本コ ードは、単一チャンネルを模擬し、これを軸方向一次元に多ノード分割する。各ノードに ついて、燃料棒には半径方向だけの熱伝導方程式を適用して冷却材への熱伝達を計算し、 チャンネル内冷却材には、質量及びエネルギ保存則を適用して冷却材の熱水力挙動を計算 する。

なお、本コードは、従来の原子炉設置変更許可申請書において適用実績のある「運転時 の異常な過渡変化の解析」及び「事故解析」における最小限界出力比(MCPR)の評価 に加え、原子炉停止機能喪失の事象で生じる沸騰遷移後の燃料被覆管温度及び燃料被覆管 表面の酸化量を評価する。そのため、沸騰遷移後の燃料被覆管一冷却材間の熱伝達相関式 とリウェット相関式を適用する。また、燃料被覆管と冷却水又は水蒸気との化学反応(以 下、「ジルコニウムー水反応」と称す。)に「軽水型動力炉の非常用炉心冷却系の性能評価 指針」(以下、「ECCS性能評価指針」と称す。)に示されている Baker-Just の式^[2]を適用 する。

本コードの入力は、燃料集合体の幾何学的形状、軸方向出力分布等の炉心データ、燃料 集合体出力、チャンネル入口流量等の初期条件、REDYコードの出力から得られた燃料 集合体出力、チャンネル入口流量等の過渡変化のデータ等であり、出力として、GEXL 相関式^{[3][4]}に基づく限界出力比(CPR)、各ノードでの冷却材流量、クォリティ、燃料被 覆管温度等の時間変化が求められる。また、燃料被覆管温度から燃料被覆管酸化量の時間 変化が求められる。

3.2 重要現象に対する解析モデル

2章において重要現象に分類された物理現象(表 2-2 で「H」及び「M」に分類された物 理現象)について,その物理現象を評価するために必要となる解析モデルを表 3-1 に示す。

分類	重要現象	必要な解析モデル	
炉心(核)	出力分布変化	燃料モデル	出力分布モデル
炉心(燃料)	燃料棒内温度変化	燃料モデル	熱伝導モデル
			燃料ペレットー被覆管ギャップ
			熱伝達モデル
	燃料棒表面熱伝達	チャンネル内	被覆管表面熱伝達モデル
		熱流動モデル	(サブクール熱伝達,サブクー
			ル沸騰熱伝達, 核沸騰熱伝達,
			膜沸騰熱伝達,輻射熱伝達*)
			リウェットモデル
	沸騰遷移	チャンネル内	沸騰遷移評価モデル
		熱流動モデル	
炉心(熱流動)	気液熱非平衡	チャンネル内	被覆管表面熱伝達モデル
		熱流動モデル	リウェットモデル

表 3-1 重要現象に対する解析モデル

* 燃料被覆管温度を厳しい側に評価する観点から,輻射熱伝達の寄与を解析コード中で取り扱わない。

4 - 15

3.3 解析モデル^{[5][6]}

SCATコードは、REDYコードにより求められた原子炉停止機能喪失時の炉心へ与 えられる外乱を用いて、燃料のMCPR及び燃料被覆管温度を評価する。またREDYコ ードから求まる中性子束、炉心流量、炉心入口エンタルピ、炉心圧力の時間変化を境界条 件とする。重要現象に対するSCATコードの計算モデルを表 3-2 に示す。

	項目	計算モデル
チャンネル内	流動の基本式	気液各相に対して質量保存式とエネ
熱流動モデル	(非平衡ドリフトフラックス	ルギ保存式,及び気液混相の運動量保
	モデル)	存式を適用
	ボイドモデル	を適用した
		Zuber-Findlay の式
	サブクールボイドモデル	
	圧力損失モデル	
	 被覆管表面熱伝達モデル	以下の熱伝達モードを考慮
		・サブクール熱伝達
		Dittus-Boelter の式
		・サブクール沸騰・核沸騰熱伝達
		Jens-Lottes の式
		・膜沸騰熱伝達
		修正 Dougall-Rohsenow 式 ^(注 2)
	沸騰遷移評価モデル	GEXL相関式を適用
	リウェットモデル	リウェットクォリティをモデル化し
		た相関式を適用(注2)
燃料モデル	出力分布モデル	初期値で固定した軸方向出力分布を
		適用
	熱伝導モデル	燃料棒径方向に一次元熱伝導方程式
		を適用
	燃料ペレットー被覆管ギャッ	初期値で固定した軸方向ギャップ熱
	プ熱伝達モデル	伝達係数を適用

表 3-2 SCATコードのモデル一覧

(注1)現行の設置許可申請解析では特に必要とされなかったモデル

(注2) 原子炉停止機能喪失事象のために拡充されたモデル

本資料のうち,枠囲みの内容は商業機密に属しますので公開できません。

3.3.1 チャンネル内熱流動モデル

SCATコードは、燃料棒、ウォータロッド、チャンネルボックスで構成される燃料集 合体の冷却材挙動を評価するモデルである。燃料集合体の冷却材流路は軸方向に複数のノ ードに分割して冷却材の熱水力挙動を計算する。

(1)保存則

冷却材流路の軸方向各ノードについて保存則を適用して熱水力状態を計算する。二相流 モデルには、気液各相の質量保存式とエネルギ保存式、及び気液混相の運動量保存式の5 つの保存式を適用し、ドリフトフラックスモデルに基づく気液各相の速度差を考慮する。

目的のノードの冷却材の沸騰状態(サブクール,サブクール沸騰,核沸騰, 膜沸騰)を 判定し,それに対して与えられる質量保存式とエネルギ保存式を解くことでクォリティ, エンタルピ等を求める。ボイド率を求めるために,ボイド率とクォリティの相関式を用い る。

ノードの熱水力状態が求められると、燃料棒から冷却材に伝わる熱を計算する。 保存式は下式である。

(a) 質量保存式

$$\begin{split} &\frac{\partial}{\partial t}(\alpha\rho_v) + \frac{\partial G_v}{\partial z} = \Gamma_g \\ &\frac{\partial}{\partial t}[(1-\alpha)\rho_l] + \frac{\partial G_l}{\partial z} = -\Gamma_g \end{split}$$

(b) エネルギ保存式

$$\begin{split} &\frac{\partial}{\partial t}(\alpha \rho_{v}h_{v}) + \frac{\partial}{\partial z}(G_{v}h_{v}) = Q_{v} + \alpha \frac{\partial P}{\partial t} + h_{g}\Gamma_{g} \\ &\frac{\partial}{\partial t}[(1-\alpha)\rho_{l}h_{l}] + \frac{\partial}{\partial z}(G_{l}h_{l}) = Q_{l} + (1-\alpha)\frac{\partial P}{\partial t} - h_{f}\Gamma_{g} \end{split}$$

なお,質量保存式及びエネルギ保存式から求められた全ノードの熱水力状態を用いて, 運動量保存式を解くことでチャンネル内の圧力損失を求めることができる。 運動量保存式は下式である。

$$\frac{\partial P}{\partial z} + \frac{\partial}{\partial z} (G_v u_v + G_l u_l) + \frac{\partial G}{\partial t} + \frac{(f/\rho_l)G^2}{2D_H} + \bar{\rho}g = 0$$

4 - 18

$$\begin{split} G &= G_l + G_v \\ \bar{\rho} &= \rho_l (1 - \alpha) + \rho_g \alpha \end{split}$$

記号は以下の通りである。

- α : ボイド率
- ρ : 密度
- G : 質量流束
- u : 相速度
- Γ_g : 蒸気生成率
- h : エンタルピ
- Q : 熱伝達量
- P : 冷却材圧力
- g : 重力加速度
- f : 摩擦抵抗係数
- D_H: 水力等価直径

(添字) v : 蒸気相

l : 液相

- g : 飽和蒸気
- f : 飽和水

(2)構成式

①ボイドモデル,サブクールボイドモデル

②圧力損失モデル

上記①②のモデルが適切に評価できていることを添付2に示す。

③被覆管表面熱伝達モデル

冷却材の沸騰状態(サブクール,サブクール沸騰,核沸騰, 膜沸騰)に基づいた熱伝達 の相関式を適用する。

冷却材の沸騰状態の選択ロジックを図 3-1 に示す。サブクール沸騰開始位置は単相液相 エンタルピを示す曲線と気泡離脱時のエンタルピを示す曲線の交点より求まる。すなわち, 単相液相エンタルピが気泡離脱時のエンタルピ以上となった時にサブクール沸騰が始まる とする。また,核沸騰は液相エンタルピが飽和状態に達した時に始まるとする。核沸騰か ら膜沸騰への移行については,限界クォリティと沸騰長さの関係等に基づき整理されたG

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4-20

EXL相関式を用いて判定する。リウェットによる膜沸騰状態から核沸騰状態への移行については、日本原子力学会標準「BWRにおける過渡的な沸騰遷移後の燃料健全性評価基準:2003」^[8]で推奨される相関式を用いて判定する。GEXL相関式を用いた沸騰遷移判定の詳細は④で、リウェット判定については⑤に示す。

各流動状態に対して設定される熱伝達モデルの一覧を表 3-2 に示す。サブクール領域の 単相流には Dittus-Boelter の式^[9]を、サブクール沸騰及び核沸騰領域には Jens-Lottes の 式^[10]を、膜沸騰領域には修正 Dougall-Rohsenow 式^{[8][11]}を適用する。

なお,過渡的な沸騰遷移後の熱伝達相関式について,日本原子力学会標準「BWRにおける過渡的な沸騰遷移後の燃料健全性評価基準:2003」では,その適用範囲内において修 正 Dougall-Rohsenow 式を使用することが妥当であるとしている。また,燃料被覆管温度が 800℃程度を超える高温範囲では,輻射熱伝達が温度の増加とともに増大して燃料集合体内 の燃料被覆管温度を平坦化するように作用するが,SCATコードにおいては輻射熱伝達 の影響を考慮せず,出力の大きな燃料棒の燃料被覆管温度を高めに評価する方法を採って いる。

相関式は下式である。ただし,飽和核沸騰時及び沸騰遷移後においては,冷却材の温度 を飽和温度として冷却材への熱流束を評価する。

(a) Dittus-Boelter の式^[9]

$$h = 0.023 Re^{0.8} Pr^{0.4} \frac{k}{D_H}$$

(b) Jens-Lottes の式^[10]

$$h = \frac{Q/A}{\Delta T_{JL}}$$
$$\Delta T_{JL} = 60e^{-\frac{P}{900}} \left[\frac{Q/A}{10^6}\right]^{1/4}$$

(c) 修正 Dougall-Rohsenow 式^{[8][11]}

$$h = 0.023 \left\{ \frac{GD_{H}}{\mu_{g,f}} \left[x_{e} + \frac{\rho_{g,s}}{\rho_{l,s}} (1 - x_{e}) \right] \right\}^{0.8} Pr_{g,f}^{0.4} \frac{k_{g,f}}{D_{H}}$$

各物性値に用いる過熱蒸気の温度は,蒸気膜温度(燃料被覆管表面温度と飽和温度 の平均温度)を用いる。

記号は以下の通りである。

- h : 熱伝達率
- Q : 熱伝達量
- ΔT_{JL}:燃料被覆管表面温度と冷却材温度(飽和温度)との差
- xe : 断面平均熱平衡クォリティ
- D_H : 水力等価直径
- G : 冷却材の質量流束
- P : 冷却材圧力
- A : 伝熱面積
- k : 冷却材の熱伝導率
- ρ : 冷却材の密度
- μ : 冷却材の粘性係数
- Re : 冷却材のレイノルズ数
- Pr : 冷却材のプラントル数
- (添字) g,s : 飽和蒸気
 - l,s : 飽和水
 - g,f : 過熱蒸気

沸騰遷移判定:GEXL相関式による沸騰遷移判定 リウェット判定:相関式2によるリウェット判定

図 3-1 流動状態の選択ロジック

4 - 23

④沸騰遷移評価モデル

燃料集合体が沸騰遷移に至る状況はGEXL相関式を用いて計算する。有効性評価解析 における沸騰遷移の判定は、GEXL相関式から得られるMCPRがMCPRに関する燃 料の許容設計限界(SLMCPR)を下回った時点とする。

GEXL相関式は、沸騰遷移の開始を予測する式で、BWR炉心で出現することが予想 される種々の軸方向出力分布を条件とした豊富な試験データに基づいて作成されており、 以下の特徴を有する。

- ・出力分布依存性を考慮する手段として、「限界クォリティ(X_c)対沸騰長さ(L_B)」の関係を導入している。
- ・局所出力分布の関数を取り込んでいる。
- ・実形状の模擬燃料集合体により得られたデータをベストフィットしていることが大きな特徴として挙げられる。
- GEXL相関式は次式で表現される。

$$X_{C} = f (L_{B}, D_{Q}, G, L, P, R)$$

記号は以下の通りである。

X_c: 断面平均の限界クォリティ

- L_B: 沸騰長さ
- D₀: 熱的等価直径
- G : 質量流束
- L : 加熱長さ
- P : 圧力
- R : 局所出力分布に関する係数

以下に、GEXL相関式から得られるMCPRの計算と、沸騰遷移の生じる位置を判定 する計算について述べる。

(a) MCPRの計算方法

GEXL相関式を用いた限界出力(燃料集合体のある点において沸騰遷移を生じさせる 燃料集合体出力)の計算は、次に述べる手法によって行う。

- (i) 注目するバンドルの質量速度, 圧力, 局所出力関数等を求める。
- (ii) (i)の条件下でGEXL相関式を用いて「限界クォリティ(X_c)対沸騰長さ(L_B)」 を計算する。
- (iii)注目するバンドルの出力を上昇させ、(i)の条件下で「運転クォリティ(X)対沸騰 長さ(L_B)」を計算する。
- (iv)(ii)と(iii)で得られた曲線を比較し、(ii)の曲線に(iii)の曲線がある点で接する場合の出力を求める。これが求める限界出力である。
 - もし(ii)(iii)で得られた曲線が接しない場合、出力を変えて(iii)の計算を反復し、接す

る場合のバンドル出力を求める。この関係を図 3-2 に示す。

運転出力に対しGEXL相関式から得られる限界出力の比がMCPRとなる。有効性評価解析では、MCPRがSLMCPRを下回った時点で沸騰遷移が発生したと判断する。 SLMCPRは、GEXL相関式が持つ不確かさなどを考慮して保守的に設定する。

過渡時のMCPRについては、主に限界クォリティと運転クォリティの比に基づく値で 評価する。

(b) 沸騰遷移位置判定の計算方法

沸騰遷移の判定後,沸騰遷移の生じる位置を判定する。有効性評価解析における沸騰遷 移の生じる位置を判定する計算は,次に述べる手法によって行う。

(i) GEXL相関式を用いて限界クォリティ(X_c)を計算する。

- (ii)(i)での限界クォリティを用いてSLMCPRに相当する限界クォリティを求める。
- (iii) 軸方向沸騰遷移位置を表すために,(ii)でのSLMCPRに相当する限界クォリティ を補正する。
- (iv) この補正した限界クォリティと運転クォリティとを比較し,交点の軸方向ノード位置 を沸騰遷移が生じた位置と判定する。

この関係を図 3-3 に示す。

沸騰遷移を判定した位置では,沸騰遷移後の熱伝達相関式によって求めた熱伝達係数を 用いて燃料被覆管温度を計算する。

4 - 25

図 3-2 限界出力の評価手法[3][4]

4-26

相当する限界クォリティ

図 3-3 沸騰遷移位置判定の評価手法

⑤リウェットモデル

沸騰遷移後のリウェット時刻の予測方法について、日本原子力学会標準「BWRにおける過渡的な沸騰遷移後の燃料健全性評価基準:2003」では、相関式1^{[8][12]}と相関式2^{[8][13]}のリウェット相関式のいずれかを使用することが妥当であるとしている。相関式1は単管試験データに基づいて作成した相関式で、相関式2は管群試験データに基づいて現象論的に作成した相関式である。

相関式2は、相関式1よりもドライアウト持続時間を長く評価する傾向があるため、燃料被覆管温度を高めに評価する。そのため、相関式2をリウェット時刻の予測方法に適用 する。

なお,相関式2は,燃料集合体内の軸方向着目位置の流路断面平均クォリティがリウェ ットクォリティを下回ったときにリウェットが発生するという考えに基づいている。実機 の設計及び運転条件を対象とした熱水力試験によれば,準定常状態におけるリウェットク ォリティは沸騰遷移を生じる限界クォリティに一致するが,過渡状態におけるリウェット クォリティは限界クォリティを下回る傾向にある。相関式2は、リウェット時点における 流路断面平均クォリティと限界クォリティの偏差をモデル化したものである。

相関式は下式である^{[8][13]}。

$$\begin{split} \mathbf{x}_{rewet} &= \mathbf{x}_{c} + \Delta \mathbf{x} \\ \Delta \mathbf{x} &= \Bigg\{ 0.0635 \, \frac{D_{w} Fh_{fg}}{u_{lf}^{0}} \Bigg[\frac{G(\mathbf{x} - \mathbf{x}_{c})}{q''} \Bigg]_{t=t_{m}} \frac{G_{0}}{G} \Big(\frac{\Delta T_{w} - \Delta T_{0}}{\Delta T_{0}} \Big) - \Delta t_{0} \Bigg\} \frac{\overline{d\mathbf{x}}}{dt} \end{split}$$

記号は以下の通りである。

- Xrewet: 燃料集合体内の流路で断面平均したリウェットクォリティ
- x_c : 燃料集合体内の流路で断面平均した限界クォリティ
- x : 燃料集合体内の流路で断面平均したクォリティ
- Δx : 過渡時におけるリウェットクォリティの限界クォリティから
 の偏差
- △T_w : 壁面過熱度
- △T₀:液膜先端固気液三相界面の過熱度
- q" : ドライアウト部の熱流束
- F : 断面平均燃料棒出力に対するピーキング係数
- **G** : 冷却材の質量流束
- D_w : 熱的等価直径
- h_{fg} : 蒸発潜熱
- t_m : x-x_cが最大となる時刻
- Δt0 : x-xc が最大となる時刻から x が xc まで復帰するまでの経過時間

4-28

 $\frac{\overline{dx}}{dt}$: x が xc まで復帰した時刻からリウェット時刻までの x の

平均変化率

- G₀ : 質量流束規格化基準値
- ulf : 液膜進展速度規格化基準値

3.3.2 燃料モデル

SCATコードの燃料モデルは、燃料集合体(燃料棒、ウォータロッド等)やチャンネ ルボックスで構成される。燃料棒熱伝達計算は、最大5グループに分けることができ、各々 の燃料棒毎に行うことができる。

実機解析に用いるグルーピング及びノーディングを図 3-4 と図 3-5 に、考え方を表 3-3 に示す。9×9燃料(A型)の場合は、図 3-4 に示すようにホットロッド(標準長)、平均 出力ロッド(標準長)、部分長ロッド、ウォータロッドの4つのグループに分けて模擬している。

(1) 出力分布モデル

燃料の軸方向出力分布の初期状態一定値として入力している。

(2) 熱伝導モデル

燃料棒は、燃料ペレット、ペレットと被覆管の間の空隙部であるギャップ部、被覆管で 構成され、図 3-5 に示すように軸方向に複数のノードに分割し、それぞれのノードに径方 向に熱伝導方程式を適用して、冷却材への熱伝達を計算する。

①燃料ペレットは径方向に複数のノードに分割し、被覆管は通常内側と外側の2つのノードに分割して取り扱う。

②燃料ペレットでは、ペレット中心部よりペレット周辺部が相対的に局所出力が大きくなる傾向があり、この特性を取り込めるように径方向出力分布を考慮することができる。

③ペレットと被覆管のギャップ部の熱の授受には、ギャップ熱伝達係数を用い、一般に軸 方向中央部のギャップ熱伝達係数が大きくなる傾向があり、このため、ギャップ熱伝達 係数は軸方向分布を考慮できる。

ギャップ熱伝達については時間変化をしない一定値とする場合と,出力上昇に伴う燃料ペレットの熱特性の変化を考慮に入れた時間的に変化する場合の取り扱いが可能である。

④熱伝導率,熱容量など燃料ペレット及び被覆管の物性については,関係式もしくはテーブル形式で温度依存を考慮する。

(3)燃料ペレットー被覆管ギャップ熱伝達モデル

燃料ペレットと被覆管の間のギャップ熱伝達係数は,熱放出率を考慮した輻射伝導係数, 燃料ペレットと被覆管相互の接触圧力を考慮した熱伝達係数,熱膨張の影響を考慮した気 相部の熱伝導係数から求められる。

MCPRを計算する解析では、燃料棒機械設計コードPRIME^{[14][15][16][17]}で計算された 結果に基づき、軸方向ギャップ熱伝達係数は一定値を用いている。

4 - 30

燃料棒の温度分布を示す方程式は下式である^{[5][6]}。

(a) 燃料ペレット

$$\frac{1}{r}\frac{\partial}{\partial r}\left[rK_{F}\frac{\partial T}{\partial r}\right] = \rho_{F}C_{F}\frac{\partial T}{\partial t} - Q_{g}$$

(c) 燃料被覆管

$$\frac{1}{r}\frac{\partial}{\partial r}\left[rK_{c}\frac{\partial T}{\partial r}\right] = \rho_{c}C_{c}\frac{\partial T}{\partial t}$$

記号は以下の通りである。

Qg : 燃料ペレットの発熱量

表 3-3 SCATコードのノーディングの考え方(9×9燃料(A型)の例)

領域	考え方		
燃料棒グループ	燃料集合体の燃料棒及びウォータロッドを考慮するため, ホッテ		
	スト出力標準長燃料棒,平均出力標準長燃料棒,部分長燃料棒,		
	ウォータロッドのグループに分ける。		
燃料棒 (軸方向)	燃料集合体内の熱水力挙動を詳細に計算するために,核計算に合		
	わせて燃料部を24ノードに分割している。また燃料上部に燃料		
	プレナム部を設ける。		
燃料棒 (径方向)	燃料ペレット内の熱挙動を詳細に計算するために燃料ペレット		
	部は12ノード,燃料ペレットと被覆管の間のギャップ部を1ノ		
	ード,また,被覆管部を燃料ペレット側と冷却材側に分けた2ノ		
	ードに分割している。		

図 3-4 燃料集合体モデル(9×9燃料(A型)の例)

4 - 33

図 3-5 燃料棒モデル(9×9燃料(A型)の例)

4-34

3.4 入出力

SCATコードはREDYコードにより求められた原子炉停止機能喪失時の炉心へ与えられる外乱を用いて評価する。SCATコードの主要な入出力を図 3-6 に示す。各インプットデータの詳細な入力情報については添付1に示す。

①炉心データ

②燃料データ

なお、SCATコードの入口流量及びバンドル出力の時間変化は、REDYコードによ り求められた規格化した炉心入口流量及び出力の時間変化がインプットとなる。初期値は、 初期MCPRに合わせた入口流量及びバンドル出力を与える。

初期入口流量は、炉心熱水力解析コードISCOR^{[18][19]}を用いて、MCPRの初期値が 通常運転時の制限値(OLMCPR)になるように初期バンドル出力と共に求められる。 具体的には、高出力燃料集合体及び平均出力燃料集合体の入口流量は全燃料集合体の入口 と出口間の圧力差が等しくなるように計算され、また、計算された入口流量を用いて求め られた高出力燃料集合体のMCPRがOLMCPRとなるように、入口流量とバンドル出 力の繰り返し計算が行われることで、初期バンドル出力と初期入口流量が得られる。

OLMCPRに相当する高出力燃料集合体は、平均出力燃料集合体よりも出力が高く、 ボイド率が大きいため、高出力燃料集合体の初期入口流量は炉心平均の初期入口流量より も小さい。

上記をインプットデータとして,単チャンネル熱水力解析を実施し,以下のアウトプッ トデータを得る。

①MCPR
 ②燃料被覆管温度
 ③燃料被覆管酸化量(ジルコニウム-水反応量)
 ④クォリティ

⑤熱伝達係数

図 3-6 SCATコードの入出力

4. 妥当性確認

4.1 重要現象に対する妥当性確認方法

SCATコードの評価マトリックスを表 4-1 に示す。表 4-1 は 2 章で重要現象に分類された物理現象を列挙しており、出力分布変化、燃料棒内温度変化、燃料棒表面熱伝達、沸騰遷移及び気液熱非平衡である。

出力分布変化については、中央ピークに基づく軸方向出力分布を代表として設定する。 主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、再循環ポンプトリップや主蒸気 遮断による給水加熱喪失の状態で軸方向出力分布は下部ピークに変化する。下部ピークで は、沸騰遷移が発生する燃料集合体上部において局所の出力が小さいため燃料被覆管温度 上昇が小さくなる。そのため、軸方向出力分布を中央ピークに設定することで、燃料被覆 管温度は高めに評価される。よって、出力分布変化における解析モデルの妥当性評価は不 要とした。なお、沸騰遷移位置については下記の沸騰遷移の重要現象で取り扱う。

燃料棒内温度変化については,燃料ペレットと燃料被覆管間のギャップ熱伝達係数を高 めに設定する。主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象において,主蒸気隔離 弁閉止によって原子炉出力が急増する状態では,燃料ペレットから冷却材へ伝達される熱 量が大きいほどMCPRが小さくなって,沸騰遷移位置が深く予測される。そのため,燃 料ペレット熱伝導率及びギャップ熱伝達係数によって表面熱流束の過渡応答を速くするこ とで燃料被覆管温度は高めに評価される。また給水加熱喪失によって原子炉出力が準静的 に増加する状態では,表面熱流束の過渡応答の速さの燃料被覆管温度への影響は大きくな いと考えられる。よって,燃料棒内温度変化における解析モデルの妥当性評価は不要とし た。

燃料棒表面熱伝達及び気液熱非平衡については, BWR燃料の沸騰遷移を模擬したNU PEC BWR燃料集合体熱水力試験^{[20][21][22]}の燃料被覆管温度測定値との比較により, 燃 料棒表面熱伝達及び気液熱非平衡の解析モデルの妥当性を確認する。

沸騰遷移については、GEXL相関式がATLAS試験データ^{[3][4]}を基に作成されている ことを確認することに加え、上述のNUPEC BWR燃料集合体熱水力試験においてドラ イアウト持続時間の測定値と比較することにより、沸騰遷移の解析モデルの妥当性を確認 する。

分類	重要現象	解析モデル	ATLAS試験	NUPEC BWR燃料 集合体熱水力試験
炉心	出力分布変化*	出力分布モデル	—	—
(核)				
炉心	燃料棒内温度変化*	熱伝導モデル	—	_
(燃料)		燃料ペレットー被覆管ギャップ熱		
		伝達モデル		
	燃料棒表面熱伝達	被覆管表面熱伝達モデル	—	図 4-15
		リウェットモデル		図 4-16
	沸騰遷移	沸騰遷移評価モデル	図 4-3	図 4-12
			図 4-5	図 4-13
			図 4-6	図 4-14
炉心	気液熱非平衡	被覆管表面熱伝達モデル	_	図 4-15
(熱流動)		リウェットモデル		図 4-16

表 4-1 重要現象に対する妥当性確認方法

*4.1に記載の理由により、妥当性確認が不要である重要現象

4.2 ATLAS試験

(1) ATLAS試験設備の概要^{[3][4]}

米国GE社ATLAS試験設備の仕様を表 4-2 に,系統構成図を図 4-1 に示す。

実験は循環ポンプにより流体を循環させ、混合器で温度差のある水(循環ポンプからの 水と空冷熱交からの水)を混合し、目的のサブクール水を得る。サブクール水の一部は凝 縮器に流されるが,残りは流量制御弁を通り,オリフィス流量計,タービン流量計を経て 試験部に入る。試験部で発生した蒸気は凝縮器で凝縮され、循環ポンプに戻る。蒸気ドラ ムの圧力は、冷水をドラム中にスプレイして蒸気を凝縮させることにより制御される。

試験部容器の模式図を図 4-2 に示す。試験部は高温高圧流水中において実寸大規模燃料 集合体に直接通電し、原子炉内の発熱状態を模擬して沸騰二相流の伝熱流動特性を測定す るためのもので、模擬燃料集合体、圧力容器、接続電極などから構成される。

また、試験条件を表 4-3 に、試験パラメータの範囲を表 4-4 に示す。試験条件はBWR の通常運転時の値に対応し、出力の上昇、流量の減少は沸騰遷移を生ずる範囲までを含ん でいる。

(2) 妥当性確認結果

①定常状態における予測能力

9×9燃料集合体のGEXL相関式で予測した限界出力と測定された限界出力の比較を 図 4-3 に示す。これらの比較によれば90%以上のデータについて、予測値が測定値の± 6%以内に入る。GEXL相関式の予測能力を統計的に評価するため、実験限界出力比(E CPR) なる量を次のように定義する。

ECPR = 予測限界出力(GEXL相関式による) 測定限界出力(ATLAS試験による)

ATLAS試験で得られた9×9燃料のヒストグラムを作ると図 4-4 のようになり、G EXL相関式はBWR運転範囲を含む広範囲の運転条件で優れた一致を示していると考え られる。

②過渡状態における予測能力

過渡状態の沸騰遷移について,沸騰遷移予測時間の比較を図 4-5 に示す。沸騰遷移発生 時間の計算値の多くは、±0.35 秒以内に入っていた。また、この範囲に入らなかったもの については、予測時間は実測より早くなっており、保守的な結果を与えている。

次に7×7燃料における沸騰遷移予測位置の比較を図 4-6 に示す。各位置に対する沸騰 遷移予測時間は実測より早く、また沸騰遷移予測位置は深くなっており、保守的な結果を 与えている。

(3) 入口サブクーリングに対するGEXL相関式の適用性

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析では,給水加熱喪 失の状態が継続するため入口サブクーリングが大きくなる。代表的なABWR及びBWR 5における入口サブクーリングは 320 kJ/kg 以下の範囲で変化し,ATLAS試験の範囲 以上となることから,この範囲の入口サブクーリングに対するGEXL相関式の適用性を 確認する必要がある。

図 4-7 に9×9燃料(A型)における入口サブクーリングとGEXL相関式による限界 出力計算値との関係を示す。限界出力計算値は入口サブクーリングが増加するにつれて直 線的に上昇している。

ATLAS試験4×4格子における入口サブクーリングと限界出力測定値との関係を図 4-8 に、9×9燃料(A型)における関係を図 4-9 に示す。いずれも限界出力測定値は入口 サブクーリングが増加するにつれてほぼ直線的に上昇することが示されている。この傾向 は、環状噴霧流で発生するドライアウトに起因するCHF (Critical heat flux)発生機 構において、入口サブクーリング増加によって下流側に移動する飽和沸騰開始高さとの相 関関係であると考えられる。飽和沸騰開始高さが下流側に移動することで,沸騰遷移を生 じさせるための冷却材への熱伝達量がより多く必要となるため、限界出力値が上昇してい る。7×7燃料を模擬した4×4格子に比べて、9×9燃料(A型)は細径燃料棒を採用 しながら燃料棒本数を増やすことで伝熱面積を増加させ、限界出力を向上させている。さ らに、9×9燃料(A型)の丸セル型スペーサは、4×4格子で採用された格子型スペー サに比べてドライアウトの抑制効果が高いことが知られている。図 4-8, 図 4-9 に示した試 験結果は,飽和沸騰開始高さより下流側に十分な沸騰長さを有することを示しており,燃 料格子形状等が限界出力値に影響を及ぼすものの、燃料有効長に比べて飽和沸騰開始高さ の差は小さく、9×9燃料(A型)では限界出力性能も改善されていることから、9×9 燃料(A型)において4×4格子と同等の入口サブクーリングまで安定した直線傾向とな ることが予測される。GEXL相関式は沸騰長さをパラメータに含み,図 4-7 のように直 線的な上昇傾向は保持されることを示しており、9×9燃料(A型)の試験範囲以上の入 ロサブクーリングにおいても直線性が確保されると考えられる。

なお、直線性が確保されて限界出力値が上昇しても、上流側のサブクール領域において ドライアウト以外の現象が生じるような熱水力的に不安定な状態に至らないと考えられる。 主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析における条件におい て、広い範囲の試験データを整理した甲藤のCHF特性領域線図^[23]ではドライアウト領域 に相当している。さらに、提唱されている気泡充満モデルや蒸気ブランケットモデルが対 象とする現象はいずれも加熱面近傍にボイド率が集中する状況下でのCHF発生機構であ るが、解析上では、4.1節のように中央ピークに基づく軸方向出力分布を設定していること とあいまって、中央ピークから下流側で発生するドライアウトに起因するCHF発生機構 であるため、上流側でドライアウト以外の現象が生じるような熱水力的に不安定な状態に

4 - 40

至る可能性は十分低いと考えられる。

したがって、9×9燃料(A型)のATLAS試験の範囲以上の入口サブクーリングに おいてもGEXL相関式は適用できると考えられる。

以上の検討から,SCATコードを用いて沸騰遷移の状態を評価することは妥当な方法 であるといえる。

(4) GEXL相関式における重要現象(沸騰遷移)の不確かさ

ATLAS試験の測定限界出力とGEXL相関式の予測限界出力とから求められる標準 偏差は 3.6%以下であり、これが沸騰遷移におけるGEXL相関式の不確かさに相当する。 しかし、3.3.1(2)④に記載した通り、MCPRがSLMCPRを下回った時点で沸騰遷移 が発生したと判断するように保守的に設定しているため、不確かさの影響はこの設定に含 まれる。

項目	仕様
試験部最大熱入力	17.2 MW
ループ最大圧力	158 kg/cm²a (15.5 MPa[abs])
ループ最高温度	346 °C
試験部最大流量	3,790 1/min (6.31 \times 10 ⁻² m ³ /s)
試験部容器	BWR 実寸大模擬燃料集合体収納可

表 4-2 ATLAS試験ループの仕様^{[3][4]}

表 4-3 ATLAS試験条件^{[5][6]}

項目	出力上昇事象	流量減少事象
圧力	1,000 psia (6	.9 MPa[abs])
流量	1.0×10^6 lb/h-ft ²	(1,356 kg/m ² -s)
入口温度	510~525 °F	500∼530 °F
	(266∼274 °C)	(260∼277 °C)
出力	$1.34\sim 5.40$ MW	$1.00 \sim 6.65 \text{ MW}$

表 4-4 試験パラメータ範囲^{[3][4]}

項目	範囲	
圧力	800~1,400 psia	
	(5.5∼9.7 MPa[abs])	
質量速度	$0.10 \sim 1.35 \text{ Mlb/ h-ft}^2$	
	(140~1,830 kg/m ² -s)	
入口サブクーリング	0~100 Btu/lb	
	$(0\sim 223 \text{ kJ/kg})$	

図 4-1 ATLASループ系統構成図^{[3][4]}

図 4-2 試験部^{[3][4]}

図 4-3 限界出力計算値と測定値の関係^{[3][4]}

図 4-4 ECPRヒストグラム^{[3][4]}

図 4-6 沸騰遷移位置の時間変化(7×7燃料)^[6]

図 4-7 入口サブクーリングと限界出力計算値の関係例

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 48

図 4-8 入口サブクーリングと限界出力測定値の関係(4×4格子)^{[3][4]}

図 4-9 入口サブクーリングと限界出力測定値の関係(9×9燃料(A型))

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 50

4.3 NUPEC BWR燃料集合体熱水力試験

(1) NUPEC BWR燃料集合体熱水力試験の概要^{[20][21][22]}

(財)原子力発電技術機構(NUPEC)において過渡沸騰遷移試験が実施されている。

試験に用いる試験体は実寸大の9×9燃料(A型)模擬燃料集合体であり,表 4-5 に燃料集合体の仕様を,表 4-6 に試験条件を,図 4-10 に試験体を,図 4-11 に試験体の径方向 出力分布を示す。模擬燃料棒表面温度は,模擬燃料棒被覆管表面に埋め込んだ熱電対によ り測定し,その測定位置はスペーサの直上流である。

検証で用いる被覆管温度測定試験では,流量,出力を変化させて沸騰遷移前後の被覆管 温度を測定している。

(2) 妥当性確認結果

沸騰遷移発生時間について,試験とGEXL相関式による解析結果との比較を図 4-12 に 示す。4.2項のATLAS試験の妥当性確認と同様に,GEXL相関式による沸騰遷移発生 時間の計算値は±0.35 秒以内に入っていて,良好に予測できる。

沸騰遷移位置について,試験とGEXL相関式による解析結果との比較を図4-13及び図4-14 に示す。各位置に対する沸騰遷移予測時間は実測より早く,また沸騰遷移予測位置は 深く予測する傾向となっており,保守的な予測結果を与えている。

また,沸騰遷移後の熱伝達相関式に修正 Dougall-Rohsenow 式,リウェット相関式に相関 式2を用いた場合の結果として,図 4-15 に燃料被覆管温度の最大値の比較を,図 4-16 に ドライアウト持続時間の比較を示す。修正 Dougall-Rohsenow 式及び相関式2の組み合わせ は総じて保守的な解析結果を与えていて,燃料棒表面熱伝達を低く予測して燃料被覆管温 度を高く評価するといえる。

SCATコードは沸騰遷移後の膜沸騰状態で修正 Dougall-Rohsenow 式及び相関式2を適用することにより、燃料被覆管温度を高めに評価する傾向がある。

そのため、重要現象(燃料棒表面熱伝達)の不確かさの影響は修正 Dougall-Rohsenow 式 及び相関式2に含まれる。

(3) 沸騰遷移深さに対するGEXL相関式の保守性

東京電力柏崎刈羽原子力発電所6号及び7号炉(KK-6/7)における主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析(感度解析)では,沸騰遷移が及ぶ最深位置を集合体上部から数えて第4スペーサ位置までと評価している。沸騰遷移深さは,軸方向の熱流東分布と相俟って被覆管表面温度の最大値(PCT)に影響する。ここでは,GEXL相関式による沸騰遷移深さ評価位置の保守性について検討する。

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析では,被覆管温度 を高めに評価するように,中央ピークに基づく軸方向出力分布を設定している。中央ピー クの場合,9×9燃料の沸騰遷移は集合体上部から数えて第1~第3スペーサの直上流位置

4 - 51

で生じることが実験から確認されている。例えば、NUPECのBWR燃料集合体熱水力 試験^{[20][21][22]}では、図 4-10 に示すとおり第 1~第4スペーサの直上流位置(A~D断面)に 熱電対が設置されているが、第4スペーサ位置(D断面)では沸騰遷移は検出されていな い。GEXL相関式は、3.3.1(2)④(b)の沸騰遷移位置判定の計算方法に基づいて、実際よ りも上流側に沸騰遷移位置を予測する。第4スペーサ位置は沸騰遷移が生じる第 1~第3ス ペーサよりも発熱のピークに近く、燃料棒の表面熱流束が大きいため、第4スペーサまで 沸騰遷移が及ぶとするGEXL相関式の判定はPCT評価上、保守側評価と言える。

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象では、再循環ポンプトリップにより 炉心流量を低下させるため、自然循環流量相当の低流量条件となる。このような流量(及 び出力)の減少過渡において生じる沸騰遷移は、環状噴霧流において燃料棒表面を流れる 液膜流のドライアウトに起因すると考えられ、スペーサの直上流位置で生じることが一般 に知られている。スペーサは環状噴霧流中の冷却材流れに種々の影響を及ぼすが、蒸気乱 流の促進作用等により蒸気流中の液滴を液膜流へ付着させる効果があると言われており、 実際にスペーサの下流側で液膜流量が増加することが実験から確認されている。燃料棒の 発熱の影響で液膜流量は下流へゆくほど減少するものの、スペーサの直下流側では増加し て熱的余裕が増す。このようなスペーサ効果によるCHFの軸方向変化を模式的に表すと 図4-17のように描画できる^[26]。スペーサ直上流位置においてCHFの谷が形成されるため、 これらの位置において沸騰遷移が発生することになり、スペーサ間の領域では通常、沸騰 遷移は生じない。他方、流量(及び出力)の減少過渡事象中に沸騰遷移が生じるのは、軸 方向発熱ピーク位置から下流側に限られる。流動沸騰系であるから、下流へゆくほど蒸気 クォリティは増加し、スペーサ直下流を除いて液膜流量は減少するためである。したがっ て、発熱ピーク位置より上流側の第5~第7スペーサでは、沸騰遷移は極めて生じにくい。

以上のことから、発熱のピーク位置に最も近い下流側の第4スペーサまで沸騰遷移が及 ぶと判定したGEXL相関式による評価は、PCT評価上、最も厳しい結果を与える条件 である。スペーサ直上流で沸騰遷移が生じたのち、被覆管温度の急上昇により沸騰遷移領 域が上流側へ拡がる可能性はあるものの、上流側スペーサ下流の液膜増加の効果のため、 沸騰遷移領域が上流側スペーサを超えて進展することはほぼあり得ない。この意味でも、 実際に沸騰遷移が生じる第1~第3スペーサよりさらに一段上流側の第4スペーサに沸騰遷 移が及ぶと判定するGEXL相関式の評価は十分に保守的であると考えられる。

(4)重要現象(気液熱非平衡)の不確かさ

図 4-11 に示す試験体の径方向出力分布から,熱的に最も厳しい燃料棒(以下,ホットピン)に着目すると,ホットピンが3本直線状に配置,3本をL字型に配置されており,ホットピンに隣接して同様なホットピンが2本配置された体系とみなせる。この体系において, 上記のように修正 Dougall-Rohsenow 式及び相関式2の組み合わせは総じて保守的な解析結 果を与えている。3.3.1(2)項のように,修正 Dougall-Rohsenow 式では過熱蒸気の温度を蒸

4 - 52

気膜温度(燃料被覆管表面温度と飽和温度の平均温度)とした物性値を用いている。これ を踏まえると、燃料被覆管温度を高く評価していることは、バルク温度が飽和又は少なく とも飽和温度から有意に上昇しないことを意味することが分かる。これは、沸騰遷移にお いても、隣接燃料棒との間に飽和温度の蒸気が介在することを示すため、ホットピンの影 響が隣接した燃料棒に波及しないことを示唆していると考えられる。

したがって、重要現象(気液熱非平衡)の不確かさの影響は修正 Dougall-Rohsenow 式に 含まれると考えられる。

4 - 53

項目	仕様
燃料タイプ	9×9燃料(A型)
燃料棒本数(ヒータロッド)	74
・標準燃料棒	66
・部分長燃料棒	8
加熱長	
・標準燃料棒	約 3,710mm
燃料棒外径	φ 11. 2mm
ウォータロッド本数	2
燃料棒ピッチ	14.3mm
チャンネルボックス内幅	132.5mm
スペーサ個数	7(丸セル型)
軸方向出力分布	コサイン

表 4-5 模擬燃料集合体の仕様^[8]

表 4-6 試験条件^[8]

項目		出力上昇事象	流量減少事象	
初期条件	圧力	約7.2 MPa[abs]		
	流量	約 40 t/h	約 45 t/h	
	入口サブクール	約 50 kJ/kg		
	出力	約 6~8 MW		

図 4-10 試験体の例[21]

○内の数字は、(ロッド全出力での)相対出力を示す。 ◎は部分長を示す。 Wは模擬ウォータロッドを示す。

試験体(燃焼初期)

試験体 (燃焼の進んだ分布)

図 4-11 試験体の径方向出力分布[21]

図 4-12 沸騰遷移発生時間の比較

図 4-13 沸騰遷移位置の時間変化(出力上昇事象)

図 4-14 沸騰遷移位置の時間変化(流量減少事象)

図 4-15 燃料被覆管温度の最大値の比較[8]

図 4-16 ドライアウト持続時間の比較^[8]

図 4-17 軸方向 CHF へのスペーサの影響^[26]

4.4 実機解析への適用性

4.4.1 重要現象への適用性

原子炉停止機能喪失の重要現象に対して実施したSCATコードの妥当性確認が,実機 解析に適用可能であることを本節で述べる。

燃料棒表面熱伝達については、沸騰遷移後の膜沸騰状態で修正 Dougall-Rohsenow 式及び 相関式2を適用することにより、燃料被覆管温度を高く評価していることを 4.3 節に示す 実寸大の模擬燃料を用いたNUPEC BWR燃料集合体熱水力試験の解析で確認した。

沸騰遷移については、4.2 節に示す実寸大の模擬燃料を用いたATLAS試験の解析と、 4.3 節に示すNUPEC BWR燃料集合体熱水力試験の解析により、沸騰遷移の状態を精 度良く予測することを確認した。

従って、SCATコードは重要現象の燃料棒表面熱伝達及び沸騰遷移評価に適用できる。

4.4.2 有効性評価解析のノーディングの妥当性

実機解析に用いるノーディングは、3.3節で述べた考え方に基づき設定したものである。 燃料棒グループ,燃料棒の軸方向のノード分割は、実寸大の模擬燃料を用いたATLA S試験とNUPEC BWR燃料集合体熱水力試験の解析により、重要現象を適切に評価で き、評価指標である燃料被覆管温度は高めに評価されることを確認した。なお、軸方向 24 ノードの分割は、従来からBWRプラントに幅広く用いられている三次元沸騰水型原子炉 模擬計算コード^{[24][25]}の分割と同じである。

また,主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析における燃料ペレット部の径方向ノード分割数は,約10ノード以上の分割とすれば燃料被覆管温度は ほぼ一定であると考えられる。一例として,主蒸気隔離弁の誤閉止+原子炉停止機能喪失 の事象の有効性評価解析において,2,3ノード変化させても燃料被覆管最高温度の変化は 1℃以内であることから,12ノードの径方向ノード分割数は妥当である。

従って,ノード分割による不確かさは,本章の妥当性確認により得られた不確かさに包 含されているものと考えられる。

4.4.3 まとめ

以上より、本章に記載している妥当性確認結果は、BWRプラントの妥当性確認として 適用性を有するとともに、実機BWRの有効性評価解析に適用できるといえる。

5. 有効性評価への適用性

4章の妥当性確認をふまえ,重要現象についての不確かさ及びその不確かさが評価指標の 視点と運転員操作の視点から有効性評価解析へ与える影響について表 5-1 にまとめた。以 下にその不確かさについて記述する。

5.1 不確かさの取り扱いについて(評価指標の観点)

SCATコードで取り扱う評価指標は燃料被覆管温度である。燃料被覆管温度への重要現象の不確かさの影響について以下に記載する。

(1) 出力分布変化

中央ピークに基づく軸方向出力分布を設定することで,主蒸気隔離弁の誤閉止+原子炉 停止機能喪失の事象で起こる下部ピークの軸方向出力分布よりも燃料被覆管温度上昇が大 きくなる。また,GEXL相関式で計算することにより保守的に沸騰遷移予測時間を早く, 沸騰遷移予測位置を深く予測できる傾向であることを 4.2 節及び 4.3 節で確認している。 そのため,中央ピークに基づく軸方向出力分布及び深く予測する沸騰遷移位置によって, 有効性評価解析では燃料被覆管温度は高めに評価される。

(2) 燃料棒内温度変化

燃料ペレットと燃料被覆管間のギャップ熱伝達係数を高めに設定することで,原子炉出 力が上昇する時の表面熱流束の過渡応答が速くなり上昇量が大きくなる。そのため有効性 評価解析において主蒸気隔離弁閉止によって原子炉出力が急増する状態では,燃料被覆管 温度は高めに評価される。また給水加熱喪失によって原子炉出力が準静的に増加する状態 では,表面熱流束の過渡応答の速さの燃料被覆管温度への影響は大きくないと考えられる。

(3) 燃料棒表面熱伝達

沸騰遷移後の膜沸騰状態では修正 Dougall-Rohsenow 式及び相関式2を適用することにより,保守的に燃料被覆管温度を高めに評価することを 4.3 節で確認しているため,有効性評価解析では燃料被覆管温度は高めに評価される。

なお、有効性評価解析による燃料被覆管温度の解析結果が高温となる範囲での修正 Dougall-Rohsenow 式及び相関式2の適用性について、添付3、添付4及び添付5で述べる。

(4) 沸騰遷移

沸騰遷移に至る状況を 4.2 節の結果から作成したGEXL相関式で計算することにより 沸騰遷移の状態を予測できることを 4.3 節で確認している。4.2 節で不確かさを 3.6%とし ているが, MCPRがSLMCPRを下回った時点で沸騰遷移が発生するように保守的に 設定しているため,不確かさの影響はこの設定に含まれる。

なお一例として, 主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析

4-62

において,沸騰遷移が発生するMCPRの設定をSLMCPRとした解析の燃料被覆管最高温度は,1.0とした解析よりも50℃程度高めに評価される。

(5) 気液熱非平衡

上記(4)項のように、沸騰遷移後の膜沸騰状態において有効性評価解析では燃料被覆管温度は高めに評価される。また、発生した過熱蒸気の影響が隣接する燃料棒に波及しないことを 4.3 節で確認しており、不確かさの影響は修正 Dougall-Rohsenow 式に含まれる。

なお,図 3-6 のようにSCATコードの入力設定に前処理コードを用いているが,燃料 被覆管温度が高めに評価されるように設定しているため,前処理コードの不確かさが与え る影響は小さいと考えられる。

以上から有効性評価解析では燃料被覆管温度は高めに評価される。

5.2 不確かさの取り扱いについて(運転員操作の観点)

SCATコードで取り扱う運転操作はない。また,有効性評価解析で考慮する運転操作 は解析結果となる燃料被覆管温度の影響を受けない。従って,SCATコードの不確かさ が運転操作に影響を与えることはない。

分類	重要現象	解析モデル	不確かさ	有効性評価解析への影響
炉心	出力分布	出力分布モデル	入力値に含ま	燃料被覆管温度を高めに評
(核)	変化		れる	価する。
炉心	燃料棒内温	熱伝導モデル,	入力値に含ま	主蒸気隔離弁閉止によって
(燃料)	度変化	燃料ペレットー	れる	原子炉出力が急増する状態
		被覆管ギャップ		で燃料被覆管温度を高めに
		熱伝達モデル		評価する。給水加熱喪失によ
				って原子炉出力が増加する
				状態で燃料被覆管温度への
				影響は大きくない。
	燃料棒表面	被覆管表面熱伝	相関式に含ま	保守的に評価する相関式を
	熱伝達	達モデル,	れる	適用するため, 燃料被覆管温
		リウェットモデ		度を高めに評価する。
		ル		
	沸騰遷移	沸騰遷移評価モ	3.6%	沸騰遷移をSLMCPRで
		デル		発生するように保守的に設
				定しているため,不確かさの
				影響は含まれる。
炉心	気液熱非平	被覆管表面熱伝	相関式に含ま	保守的に評価する相関式を
(熱流動)	衡	達モデル,	れる	適用するため, 燃料被覆管温
		リウェットモデ		度を高めに評価する。
		ル		

表 5-1 重要現象の不確かさ

4 - 64

6. 参考文献

- [1] 「BWR核熱水力安定性評価の現状と課題」,(社)日本原子力学会,2001年12月
- [2] L. Baker and L. C. Just, "Studies of Metal-Water Reactions at High Temperatures III. Experimental and Theoretical Studies of the Zirconium-Water Reaction", ANL-6548, 1962.
- [3] 「沸騰水形原子力発電所 原子炉の熱特性評価法(GETAB)について」,株式会社 日立製作所,HLR-007訂4,平成9年12月
- [4] 「沸騰水型原子力発電所 GETABの概要」,株式会社東芝,TLR-009 改訂 4, 平成 10 年 1 月
- [5] 「沸騰水型原子力発電所 プラント動特性解析手法について」,株式会社日立製作所, HLR-014訂2,昭和63年3月
- [6] 「沸騰水型原子力発電所 プラント動特性解析手法について」,株式会社東芝,TLR -012 改訂 1,昭和 63 年 3 月
- [7] N. Zuber and J. A. Findlay, "Average Volumetric Concentration in Two-Phase Flow Systems", J. Heat Transfer, November 1965.
- [8] 「BWR における過渡的な沸騰遷移後の燃料健全性評価基準:2003」,(社)日本原子力学会, AESJ-SC-P002:2003, 2003 年 6 月
- [9] Dittus, F. W. and Boelter, L. M. K., "Heat Transfer in Automobile Radiators of the Tubular Type", University of California Publ. Eng. Vol. 2, October 1930.
- [10] Jens, W. H. and Lottes, P. A., "Analysis of Heat Transfer, Burnout, Pressure Drop and Density Data for High-Pressure Water", ANL-4627, May 1951.
- [11] 井口 他,「BWR 定常ポスト CHF 試験結果-限界熱流束及びポスト CHF 熱伝達率-」, JAERI-Research 2001-060, 2002 年 2 月
- [12] Sakae MUTO et al., "An Experimental Study on Rewetting Phenomena in Transient Conditions of BWRs", Nuclear Engineering and Design 120, 311-321 (1990)
- [13] 工藤, 原,「BWR 燃料集合体の現象論的リウェット相関式の開発」,日本原子力学会和 文論文誌, Vol. 2-No. 2, 121-129, 2003 年 6 月
- [14] 「沸騰水形原子力発電所 燃料の設計手法について」,株式会社日立製作所,HLR
 -033 訂 1, 平成 10 年 2 月
- [15] 「沸騰水型原子力発電所 燃料の設計手法について」,株式会社東芝,TLR-045改 訂1,平成10年1月
- [16] 「沸騰水型原子力発電所 燃料の設計手法について(MOX燃料への適用)」,株式会社日立製作所,HLR-053訂2,平成11年2月
- [17] 「沸騰水型原子力発電所 燃料の設計手法について(MOX燃料への適用)」,株式会 社東芝,TLR-045A改訂2,平成11年2月

- [18] 「沸騰水形原子力発電所 原子炉の熱設計手法について」,株式会社日立製作所,H LR-008,昭和52年4月
- [19] 「沸騰水形原子力発電所 熱水力設計計算手法について」,東京芝浦電気株式会社, TLR-008,昭和51年9月
- [20] 「平成8年度 燃料集合体信頼性実証試験に関する報告書(BWR 新型燃料集合体熱水 力試験編)」,(財)原子力発電技術機構,平成9年3月
- [21] 「平成9年度 燃料集合体信頼性実証試験に関する報告書(BWR 新型燃料集合体熱水 力試験編)」,(財)原子力発電技術機構,平成10年3月
- [22] 「平成 10 年度 燃料集合体信頼性実証試験に関する報告書 (BWR 新型燃料集合体熱水 力試験編)」,(財)原子力発電技術機構,平成 11 年 3 月
- [23] 甲藤,「一様加熱垂直円管内の強制流動沸騰の限界熱流束(高圧領域の研究と CHF 特 性領域線図)」,日本機械学会論文集(B 編),47 巻 413 号(昭 56-1),139
- [24] 「沸騰水型原子力発電所 3次元核熱水力計算手法について」,日立 GE ニュークリア・ エナジー株式会社,HLR-006 訂3,平成22年10月
- [25] 「沸騰水形原子力発電所 三次元核熱水力計算コードの概要」,株式会社東芝,TL R-007 改訂 1,平成 20 年 9 月
- [26] D. C. Groeneveld and W. W. Yousef, "Spacing Devices for Nuclear Fuel Bundles: A Survey of Their Effect on CHF, Post-CHF Heat Transfer and Pressure Drop", Proceedings of ANS/ASME/NRC Int. Topical Meeting on Nuclear Reactor Thermal-Hydraulics, 1980.

添付1 入力項目リスト

分類	入力項目
炉心データ*	出力時間変化
	炉心入口流量時間変化
	炉心入口エンタルピ時間変化
	炉心圧力時間変化
燃料データ	バンドル形状データ(標準長/部分長燃料棒本数,流路面積等)
	ウォータロッドデータ(本数,外径等)
	燃料特性データ(ギャップ熱伝達係数、燃料物性等)
	相関式(GEXL相関式、熱伝達相関式、リウェット相関式等)
	初期条件データ(バンドル出力、入口流量、軸方向出力分布等)

*REDYコードにより求められたデータを引き継いで用いる

4-1-1

添付2 ボイドモデル,サブクールボイドモデル,圧力損失モデルの適切性

本添付では、3.3.1項に示したボイドモデル、サブクールボイドモデル及び圧力損失モデルの適切性について述べる。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 2 - 1

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 2 - 2

添付3 沸騰遷移後の被覆管表面熱伝達モデルの適用性

1. はじめに

3.3.1項に示したように、沸騰遷移後の燃料被覆管温度挙動を評価するモデルのうち、沸 騰遷移評価モデルはSLMCPRを下回った時点で沸騰遷移の発生とみなし、また被覆管 表面熱伝達モデルでは燃料被覆管温度を高めに評価する修正 Dougall-Rohsenow 式を適用す ることで、保守的な設定としている。

4.3 節に示したように、燃料被覆管温度 500℃程度までの試験結果を用いて、修正 Dougall-Rohsenow式による燃料被覆管温度の評価の妥当性を確認している。

本添付では、修正 Dougall-Rohsenow 式による燃料被覆管温度の評価において、4.3 節の 妥当性確認に加えて、BWR燃料の沸騰遷移を模擬した5×5高温ポストBT試験の燃料 被覆管温度測定値との比較により、修正 Dougall-Rohsenow 式の妥当性を確認し、原子炉停 止機能喪失事象のような燃料被覆管温度の解析結果が高温となる範囲での適用性について 述べる。

2. 5×5高温ポストBT試験を用いた妥当性確認

(1) 5×5高温ポストBT試験の概要^[1]

(株) グローバル・ニュークリア・フュエル・ジャパンにおいて過渡沸騰遷移試験が実施 されている。

試験に用いる試験体は10×10燃料模擬の5×5部分バンドルであり, 添付表 3-1 に 燃料集合体の仕様を, 添付表 3-2 に試験条件を, 添付図 3-1 に試験体を示す。模擬燃料棒 表面温度は, 高出力ロッド及び低出力ロッドの模擬燃料棒被覆管表面に埋め込んだ熱電対 により測定し, その測定位置はスペーサの直上流とスペーサ中間である。

検証で用いる被覆管温度測定試験では,流量,出力を変化させて沸騰遷移前後の被覆管 温度を測定している。

(2) 妥当性確認結果

試験と解析の比較結果について、沸騰遷移後の熱伝達相関式に修正 Dougal1-Rohsenow 式 を用いた燃料被覆管温度の最大値の比較を添付図 3-2 に示す。

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4-3-1

なお、いずれの比較点についても、燃料被覆管温度が急激に上昇し、測定値は燃料被覆 管温度が低下に転じたのちにリウェットする挙動となっており、解析値は測定値と同様、 または上昇が緩やかになったところでリウェットしていることから、燃料被覆管温度の最 大値の比較結果は修正 Dougall-Rohsenow 式の特性が影響していると考えられる。解析値と 測定値の比較は、上流側で燃料被覆管温度は高く評価されて保守的な解析結果を与えてい ることに対し、クォリティが 90%程度となる下流側ではその保守性は小さくなることを示し ている。

これは、沸騰遷移後において蒸気中の液滴が燃料被覆管表面に付着して蒸発すると伝熱 が良好になるが、修正 Dougall-Rohsenow 式は液滴蒸発の影響を無視しており、燃料被覆管 温度を高めに評価する傾向^{[2][3]}が影響しているものと考えられ、蒸気中の液滴の割合が大き いほど燃料被覆管温度を高めに評価する傾向があると考えられる。

したがって、クォリティが大きくなると修正 Dougall-Rohsenow 式の評価の保守性は小さ くなる傾向であると考えられるが、上流側位置の燃料被覆管温度 700~800℃程度の範囲に おいては、修正 Dougall-Rohsenow 式は保守的な解析結果を与えていて、燃料棒表面熱伝達 を低く予測して燃料被覆管温度を高めに評価すると考えられる。

3. 高温範囲における修正 Dougall-Rohsenow 式の適用性

上記 2. (2)によって,修正 Dougal1-Rohsenow 式はクォリティが大きくなると保守性が小 さくなる傾向であると考えられるが,燃料被覆管温度 700~800℃程度の範囲においても燃 料被覆管温度を高めに評価することを確認した。

また,燃料被覆管温度を高めに評価する保守性は,4.3節に示した燃料被覆管温度 500℃ 程度までの試験と解析の比較結果と大きく変わらないと考えられる。

代表的なABWR及びBWR5において,主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評価解析による燃料被覆管温度の最大値は800℃を上回る。一方,燃料被覆 管温度が最大となる時間帯における高さ位置のクォリティは,上記2.(2)で述べた燃料被覆 管温度の評価の保守性が小さくなったクォリティには至らない。

なお、燃料被覆管温度が800℃を大きく超えると蒸気流の過熱度が増加し、燃料棒表面熱 流束の低下が影響を及ぼすようになると考えられる。修正 Dougall-Rohsenow 式では蒸気膜 温度(燃料被覆管表面温度と飽和温度の平均温度)を用いており、また、伝熱面と蒸気流 の温度差の評価には、蒸気流の温度に過熱蒸気温度ではなく飽和温度を用いているため、 過熱蒸気が発生した場合、同式を用いた熱流束の予測精度が低下する可能性がある。そこ で、過熱蒸気の影響を厳しい側に考慮した蒸気単相状態を想定^(注1)して Dittus-Boelter の 式^[4]と比較した。蒸気単相状態において Dittus-Boelter の式は熱伝達を低く評価する^{[5][6]}。 また、Dittus-Boelter の式はプラントル数が 0.7 以上の単相状態について適用可能とされ ており、圧力 7MPa[abs]及び 800℃の蒸気単相流にも適用可能と考えられる。比較の結果、
燃料被覆管温度が最大となる領域を含む第 3-第 4 スペーサ付近において, 修正 Dougall-Rohsenow式は燃料被覆管温度をDittus-Boelterの式より高めに評価することを確 認した。

したがって、燃料被覆管温度800℃を上回り評価の保守性は小さくなる傾向であると考え られるものの、保守性が小さくなることを確認したクォリティに至っていないこと、並び に1,000℃を超える燃料被覆管温度及び過熱蒸気を考慮した蒸気単相状態の過度に厳しい 条件においてもDittus-Boelterの式より、主蒸気隔離弁の誤閉止+原子炉停止機能喪失の 事象の有効性評価解析における燃料被覆管温度を高めに評価することを確認したことから、 修正Dougall-Rohsenow式は適用できると考えられる。

(注1)

第4スペーサ位置についてはクォリティが比較的低いことから,蒸気相はほぼ飽和と考えられる。ここでの修正 Dougall-Rohsenow 式による評価結果は,燃料被覆管温度1,200℃までのどのような温度条件であっても,蒸気流のみを考慮した Dittus-Boelter の式を適用することで得られる保守的な評価結果よりも小さく,より保守的な評価結果となることを確認した。

第3スペーサ位置以降(上部)について,比較対象となる Dittus-Boelter の式で得られ る熱流束をより厳しい側に評価することを目的として,以下のように過度に厳しい熱水力 条件を設定して評価し,第3スペーサ位置について燃料被覆管温度1,000℃までのどのよう な温度条件であっても修正 Dougall-Rohsenow 式は保守的な評価結果を与えることを確認し た。

- ・第 3-第 4 スペーサ間に厳しいクォリティ,流量,液滴蒸発条件を与え,燃料集合体の 低い位置で蒸気単相となるように想定
- ・高温燃料棒4本に囲まれたサブチャンネル流路を想定し、その燃料被覆管温度には、
 集合体出口までスペーサ毎に有効性評価で評価された燃料被覆管温度を包絡する温度
 (最大1,000℃)を設定して過熱蒸気温度を評価
- ・隣接するサブチャンネルからの蒸気及び液滴の流入を考慮せず,評価対象のサブチャンネルの燃料被覆管からの熱は全て蒸気の加熱に使用

また,SCATコードの特徴として,燃料被覆管温度800℃程度を超える状態で有意となり,1,000℃を超えると重要な熱伝達機構となる輻射熱伝達を無視していることも,保守的評価を与える一因となると考えられる。

4. 高温範囲における隣接燃料棒の影響

3.3.1 項に示したように、修正 Dougall-Rohsenow 式では、物性値に用いる過熱蒸気の温

4 - 3 - 3

度に蒸気膜温度(燃料被覆管表面温度と飽和温度の平均温度)を用いている。そのため, 燃料被覆管温度が高温となり,隣接燃料棒との間に飽和温度の蒸気が介在しない場合,修 正 Dougall-Rohsenow 式による予測精度は悪化する可能性がある。

燃料被覆管温度 700~800℃程度の試験結果である上記 2. 5×5高温ポストBT試験に おいて,添付図 3-1 の試験体の平面模式図から,ホットピンが 2 本直線状に配置されてお り,ホットピンに隣接して同様なホットピンが配置された体系とみなせる。この体系にお いて試験と解析の比較結果とでは,修正 Dougall-Rohsenow 式は保守的な解析結果を与えて おり,隣接燃料棒の影響は修正 Dougall-Rohsenow 式の保守性に含まれると考えられる。こ れは,燃料被覆管温度 700~800℃程度の範囲においても,当該位置における隣接燃料棒と の間には飽和蒸気が介在することによるものと考えられる。また,800℃を上回る範囲にお いても,上記 3.のように修正 Dougall-Rohsenow 式は適用できると考えられ,隣接燃料棒の 影響は修正 Dougall-Rohsenow 式に含まれる傾向と考えられる。そのため,主蒸気隔離弁の 誤閉止+原子炉停止機能喪失の事象の有効性評価解析において,修正 Dougall-Rohsenow 式 は適用できると考えられる。

5. 過熱蒸気の扱いに対する影響

修正 Dougall-Rohsenow 式では,3.3.1 項に示したように,物性値に用いる過熱蒸気の温度に蒸気膜温度(燃料被覆管表面温度と飽和温度の平均温度)を用いており,また,伝熱面と蒸気流の温度差の評価には,蒸気流の温度に過熱蒸気温度ではなく飽和温度を用いていることから,高温範囲における過熱蒸気の影響を確認する必要がある。

過熱蒸気を考慮した熱伝達相関式に Groeneveld 5.9 式^{[3][7]}があり、物性値に用いる過熱 蒸気の温度は燃料被覆管表面温度としている。同式は単管及び二重管の試験データに基づ いて開発され、米国で実績がある。

燃料被覆管温度 500℃以上における両式による熱伝達率の低下幅は,燃料被覆管温度 500℃の熱伝達率に対して Groeneveld 5.9 式の方が 5%以上低く予測する。そのため, Groeneveld 5.9 式の方が燃料被覆管温度を高く評価する。

一方,添付図 3-2 のように、700~800℃程度の試験結果において修正 Dougall-Rohsenow 式は保守的な解析結果を与えている。これは、高温範囲において過熱蒸気の影響は考えら れるものの、修正 Dougall-Rohsenow 式による燃料被覆管温度の評価に及ぼす影響は大きく なく、保守性は維持されて燃料被覆管温度を高く評価する傾向を示していると考えられる。

さらに、1,000℃を超える燃料被覆管温度においても、上記3.で示したように、このよう な温度領域が第3スペーサより上流側から燃料集合体出口まで一様に続く厳しい側の条件 を設定し、その上で過熱蒸気の温度を厳しい側に評価する手法を用いて検討した結果、こ のような温度領域に至った時に重要な熱伝達機構となる輻射熱伝達をSCATコードが無 視していることと相まって、燃料被覆管温度を概ね保守的に評価できることが確認されて

いる。

6. まとめ

燃料被覆管温度 700~800℃程度の範囲において, 試験との比較結果から修正 Dougall-Rohsenow 式は燃料被覆管温度を高く評価することを確認し, また, 主蒸気隔離弁 の誤閉止+原子炉停止機能喪失の事象にて燃料被覆管温度が 800℃を上回る範囲において も適用可能と考えられる。

以上より,修正 Dougall-Rohsenow 式は主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事 象のような燃料被覆管温度の解析結果が高温となる範囲でも適用することは妥当であると 考えられる。

7. 参考文献

- [1] 工藤,秋葉他,「過渡的な沸騰遷移後の燃料被覆管温度挙動の実験的研究(2) -5×5 管群体系における高温時のポストBT特性-」,日本原子力学会 2009年秋の大会予稿集, C36, 2009年
- [2] 井口 他,「BWR 定常ポスト CHF 試験結果-限界熱流束及びポスト CHF 熱伝達率-」, JAERI-Research 2001-060, 2002 年 2 月
- [3]「BWR における過渡的な沸騰遷移後の燃料健全性評価基準:2003」,(社)日本原子力学会, AESJ-SC-P002:2003, 2003 年 6 月
- [4] Dittus, F. W. and Boelter, L. M. K., "Heat Transfer in Automobile Radiators of the Tubular Type", University of California Publ. Eng. Vol. 2, October 1930.
- [5]「沸騰水型原子力発電所 非常用炉心冷却系(ECCS)の新性能評価手法について」, 株式会社日立製作所,HLR-032 訂 3,平成 10 年 5 月
- [6]「沸騰水型原子力発電所 非常用炉心冷却系解析モデル(SAFER)」,株式会社東 芝,TLR-044 改訂 4,平成 10 年 5 月
- [7] D. C. Groeneveld, "Post-Dryout Heat Transfer at Reactor Operating Conditions", Proc. Topl. Mtg. Water-Reactor Safety, CONF-730304, U.S. Atomic Energy Commission (1973)

項目	仕様
燃料タイプ	5×5燃料
燃料棒本数(ヒータロッド)	25
加熱長	約 3710mm
燃料棒外径	
燃料棒ピッチ	
スペーサ個数	8(丸セル型)

添付表 3-1 模擬燃料集合体の仕様

添付表 3-2 試験条件

	項目	流量減少事象
初期条件	圧力	約7 MPa[abs]
	質量流束	約 5 $ imes$ 10 6 kg/m 2 /h
	入口サブクール	約 60 kJ/kg
	出力	約2.5 MW

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

[試験体側面模式図]

[試験体平面模式図]

添付図 3-1 試験体の例

添付図 3-2 燃料被覆管温度の最大値の比較

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

添付4 リウェットモデルの適用性

1. はじめに

3.3.1項に示したように、沸騰遷移後の燃料被覆管温度挙動を評価するモデルのうち、沸 騰遷移評価モデルはSLMCPRを下回った時点で沸騰遷移の発生とみなし、また被覆管 表面熱伝達モデルでは燃料被覆管温度を高めに評価する修正 Dougall-Rohsenow 式を適用す ることで、保守的な設定としている。このような設定も含め、解析手法の保守性によって 燃料被覆管温度を高めに評価している。

一方,4.3 節に示したように,燃料被覆管温度 500℃程度までの試験結果を用いて,相関 式2によるリウェット時刻の予測の妥当性を確認している。

本添付では、相関式2によるリウェット時刻の予測において、4.3節の妥当性確認に加え て原子炉停止機能喪失事象のような燃料被覆管温度の解析結果が高温となる範囲での適用 性について述べる。

2. 相関式2適用性の考え方

相関式2によって予測するリウェット時刻は燃料被覆管温度に依存する。リウェット時 刻を早めに予測すると、温度上昇の過程でリウェットする場合、燃料被覆管温度を低く評 価する可能性がある。

原子炉停止機能喪失の有効性評価解析では、燃料被覆管温度を高めに評価することから、 相関式2はリウェット時刻を遅く予測する傾向となる。そのため、温度上昇の過程でリウ ェット時刻が遅ければ燃料被覆管温度を高めに評価する傾向となる。

したがって,有効性評価の解析手法によって,燃料被覆管温度の解析結果が高温となる 範囲でも相関式2の保守性は維持されると考えられる。

3. リウェット時刻の感度解析

燃料被覆管温度が高温の範囲でも相関式2の保守性は維持されると考えられるが,相関 式2によるリウェット時刻の予測が及ぼす影響を確認しておくことは重要と考えられる。

そこで,主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象における燃料被覆管温度の時間変化について,相関式2を用いた解析例を添付図 4-1 に,リウェット時刻を遅らせた 解析例を添付図 4-2 に示す。

沸騰遷移発生直後,熱伝達係数が低下して燃料被覆管温度が急激に上昇する。その後, 原子炉出力の低下に合わせて燃料被覆管温度の上昇は徐々に緩やかになり,さらに原子炉 出力が低下すると緩やかな上昇から減少に転じる。このように,燃料被覆管温度がいずれ 減少に転じることから,燃料被覆管温度が緩やかな上昇を示した以降の状態において,相

4 - 4 - 1

関式2によるリウェット時刻の予測精度が燃料被覆管温度へ及ぼす影響は大きくないこと を確認できる。

主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象における原子炉出力は,再循環ポン プトリップや,復水器水位低下による給水流量喪失に伴う炉心ボイド率の増加によって低 下する。そのため,燃料被覆管温度の上昇は抑制されていずれ減少に転じる。

4. スペーサ間のノードのリウェット特性について

9×9燃料(A型)燃料などにおいては、主蒸気隔離弁の誤閉止+原子炉停止機能喪失の 事象の時のように、熱流束が高いまま炉心入口流量が定格条件の約30%程度の低流量条件に 至った炉心状態では、軸方向(上下)に隣り合った二つのスペーサ間で液膜の上流側(下 方)への後退及び下流側(上方)への再進展が生じることにより沸騰遷移及びリウェット が発生する。このとき沸騰遷移は、燃料棒を冷却する液膜の流量が最小となる下流側のス ペーサ(以下「スペーサ A」と称す。)の直上流位置(直下)で最初に発生する。流量の低 下及び/又は熱流束の増加により除熱性能が更に低下して出力-冷却間の不整合が拡大す ると、液膜は上流側スペーサ(以下「スペーサ B」と称す。)に向けて後退する。一方、事 象の収束などにより出力-冷却間の不整合が回復すると、液膜の後退が止まり、次いで再 進展してスペーサ A の直上流位置まで戻る。液膜が再進展する過程で液膜の先端部が到達 するとリウェットが生じるため、リウェット部が下流側に進展しスペーサ A の直上流位置 まで戻ることになる。

このように、スペーサA,Bの間で液膜の後退及び再進展が生じることから、ドライアウト持続時間はスペーサAの直上流位置で最も長くなり、最も液膜が後退した位置(以下, この位置までのスペーサAからの距離を「最大液膜後退距離」と称す。)に近づくほど短く なる。

一方,相関式2は、スペーサ直上流位置での最大液膜後退距離及びこの距離からの液膜 再進展速度をモデル化してリウェット時刻を評価することでドライアウト持続時間を予測 するが、本資料の本文「4.3 NUPEC BWR燃料集合体熱水力試験」に示されるように、 試験値を厳しい側に解析することが確認されている。

ただし、スペーサ間の位置(ノード位置)におけるドライアウト持続時間は、スペーサ 直上流位置におけるドライアウト持続時間より短いことが現象論的に明らかであるものの、 必ずしも定量的に十分な実験データが揃っているものではない。このため、スペーサ間の 任意の位置において、あたかもその位置がスペーサ直上流位置であるとして相関式2をそ のまま適用して仮想的な液膜の最大後退距離を評価することで、より長いドライアウト持 続時間が得られるようにした厳しい側の解析を実施している。

したがって、スペーサ間のノード位置における相関式2によるリウェット時刻を用いた ときのドライアウト持続時間予測値は、実際よりも一層保守的なものとなり、その保守性

4-4-2

の度合いはスペーサ A から当該位置までの距離が増加し,最大液膜後退距離に近づくほど 大きくなる。

なお、相関式2を用いた PCT 解析は本資料の「添付3 沸騰遷移後の被覆管表面熱伝達モ デルの適用性」に示されるように 800°C に及ぶ実験に対しても概ね保守的であることが確 認されているが、主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象においては前項「3. リ ウェット時刻の感度解析」における評価に従い、リウェットなしの極端な計算を実施する ことで、相関式2によるドライアウト持続時間の予測の不確かさの影響を排除した評価も 実施しているため、スペーサ直上流位置だけでなく、スペーサ間の位置においても、PCT の 上限値を押さえた評価がなされている。

5. まとめ

解析手法の保守性によって燃料被覆管温度を高めに評価するため,相関式2はリウェッ ト時刻を遅く予測する傾向となる。

また,リウェット時刻を遅らせた感度解析から,燃料被覆管温度が緩やかな上昇を示し た以降の状態において,相関式2によるリウェット時刻の予測精度が及ぼす影響は大きく ないことを確認した。

以上より,相関式2は原子炉停止機能喪失事象のような燃料被覆管温度の解析結果が高 温となる範囲でも適用することは妥当であると考えられる。

4 - 4 - 3

添付図 4-2 リウェット時刻を遅らせた場合の燃料被覆管温度の変化例

4 - 4 - 4

添付5 9×9燃料(A型)部分長燃料棒を考慮した評価の適用性

1. はじめに

3.3.1項に示したように、沸騰遷移後の燃料被覆管温度挙動を評価するモデルのうち、沸 騰遷移評価モデルはSLMCPRを下回った時点で沸騰遷移の発生とみなし、また被覆管 表面熱伝達モデルでは燃料被覆管温度を高めに評価する修正 Dougall-Rohsenow 式を適用す ることで、保守的な設定としている。このような設定も含め、解析手法の保守性によって 燃料被覆管温度を高めに評価している。

一方,4.3節に示したように、9×9燃料(A型)模擬燃料集合体を用いた燃料被覆管温度 500℃程度までの試験結果を用いて、修正 Dougal1-Rohsenow 式による燃料被覆管温度の評価及び相関式2によるリウェット時刻の予測の妥当性を確認している。

また,添付3及び添付4では,原子炉停止機能喪失事象のような燃料被覆管温度の解析 結果が高温となる範囲における沸騰遷移後の被覆管表面熱伝達モデル及びリウェットモデ ルの適用性を示している。

本添付では,修正 Dougall-Rohsenow 式による燃料被覆管温度の評価及び相関式2による リウェット時刻の予測において,9×9燃料(A型)の部分長燃料棒(以下,「PLR」と 称す。)の影響を考慮した試験との比較により,PLRが与える影響を確認し,原子炉停止 機能喪失事象のような燃料被覆管温度の解析結果が高温となる範囲での適用性について述 べる。

2. PLRの影響を考慮したポストBT試験を用いた適用性の確認

(1) 試験の概要と試験結果^[1]

9×9燃料(A型)を模擬した4×4バンドル試験を対象として,PLRの影響を考慮 した沸騰遷移後の特性に関する試験が実施されている。

添付図 5-1 に試験体の概略図と試験結果の例を示す。試験結果の全般的な傾向として, 沸騰遷移開始時刻と沸騰遷移後の燃料被覆管温度の最大値に関しては、PLRからの遠近 の影響は小さいものの、リウェット時刻に関しては影響があることを示唆しており、これ はPLRによる局所的な気相流速の変化が影響しているものと考えられる。

(2) 解析結果

試験と解析の比較結果について,添付図 5-2 に燃料被覆管温度の最大値の比較を,添付 図 5-3 にドライアウト持続時間の比較を示す。修正 Dougall-Rohsenow 式及び相関式2の組 合せは総じて保守的な解析結果を与えていて,PLRからの遠近によらず燃料棒表面熱伝 達を低く予測して燃料被覆管温度を高く評価するといえる。

PLRによる局所的な気相流速の変化は、温度によらず同様に生じると考えられること

4 - 5 - 1

から,高温範囲においても,修正 Dougall-Rohsenow 式及び相関式2を適用することで,燃料被覆管温度は高めに評価されると考えられる。また,PLRの存在により相関式2によるリウェット時刻の予測精度に影響があったとしても,添付4に示すように,燃料被覆管温度が緩やかな上昇を示した以降の状態において,リウェット時刻の予測精度が燃料被覆 管温度に与える影響は大きくない。

3. まとめ

PLRの影響を考慮した試験との比較結果から,修正 Dougall-Rohsenow 式及び相関式2 の組合せは保守的な解析結果を与えることを確認し,また,高温範囲においても適用可能 と考えられる。

以上より,修正 Dougall-Rohsenow 式による燃料被覆管温度の評価及び相関式2によるリウェット時刻の予測は、9×9燃料(A型)のPLR有無に関わらず、主蒸気隔離弁の誤 閉止+原子炉停止機能喪失の事象のような燃料被覆管温度の解析結果が高温となる範囲で も適用することは妥当であると考えられる。

4. 参考文献

[1] 共同研究報告書「高性能9×9燃料(A型)のポストBT特性に関する研究 平成 17 年度報告書(最終報告書)」,東京電力株式会社他,2006年3月

4 - 5 - 2

添付図 5-1 試験体の概略図および試験結果の例^[1]

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 5 - 3

添付図 5-2 燃料被覆管温度の最大値の比較[1]

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 5 - 4

添付図 5-3 ドライアウト持続時間の比較^[1]

本資料のうち、枠囲みの内容は商業機密に属しますので公開できません。

4 - 5 - 5

添付6 有効性評価における9×9燃料(A型)の代表性

1. はじめに

有効性評価は9×9燃料(A型)(以下,「A型燃料」と称す。)を代表燃料として評価し ており,原子炉停止機能喪失事象に対するREDY/SCATコードの適用性は,主とし てA型燃料を対象に確認されている。一方,実炉には9×9燃料(B型)(以下,「B型燃 料」と称す。)も装荷されていることから,REDY/SCATコードにB型燃料が適用で きることを確認することが重要である。本添付では,REDY/SCATコードに入力さ れる燃料データを整理した上で,対応する解析モデルがB型燃料で評価できることを示す。 またB型燃料のデータを入力した解析を行い,その影響を確認することで,A型燃料で代 表できることを示す。

2. 解析手法

対象とする燃料をB型燃料とし、A型燃料で代表した申請解析と同様にREDY/SC ATコードで解析評価を行う。REDYコードに入力する核特性や炉心の燃料データ、またSCATコードに入力する燃料集合体の燃料データ、沸騰遷移相関式等にB型燃料のデ ータを反映し、判断基準パラメータである原子炉冷却材圧力バウンダリ圧力、燃料被覆管 温度、格納容器圧力、サプレッションチェンバプール水温度を評価する。

3. 燃料に関連する解析入力と解析モデルの整理

燃料に関連する解析入力とそれに対応する解析モデルを添付表 6-1 に示す。A型と比べたB型燃料の特徴として、燃料棒の径が小さい、標準長燃料棒のみで構成される、ウォータチャンネルを採用している、スペーサ形状が異なるといった点が挙げられる。しかし、REDY/SCATコードを使用する上でこれらの相違は問題とならず、B型燃料についても解析モデルは適用可能である。以下に各解析入力とモデルに対するB型燃料の適用性を示す。

3.1 核特性

REDYコードへは、ボイド係数やドップラ係数、ボロン反応度、遅発中性子割合等の パラメータを入力する。REDYコードは一点近似モデルを採用していることから、B型 燃料に基づくデータを入力することで適切に評価できる。

3.2 バンドル形状, ウォータロッド/ウォータチャンネル

SCATコードでは、軸方向一次元の流れを断面で平均化し等価直径および流路面積と

4 - 6 - 1

して取り扱っている。したがって、B型燃料の形状データに基づき入力を作成することで 適切に評価できる。水力等価直径は熱伝達係数の相関式に、熱的等価直径は沸騰遷移相関 式やリウェット相関式に用いる。また、沸騰遷移後の熱伝達相関式やリウェット相関式は、 A型とB型燃料の試験結果に基づくものであり、B型燃料にも適用可能である^[1]。

3.3 燃料特性

REDY/SCATコードでは、ペレットおよび被覆管の比熱や密度、ギャップ部の熱 伝達係数を入力し、燃料棒の径方向の熱伝達を計算する。この計算はA型とB型の違いが 無く、B型燃料に基づくデータを入力することで適切に評価できる。

3.4 熱水力特性

REDYコードへは、ボイドマップ(出口クォリティとボイド率の関係)や圧損係数の 形で入力する。これら入力をB型燃料の形状データに基づき作成することで適切に評価で きる。SCATコードにおける、ボイドモデル、サブクールボイドモデル、圧力損失モデ ルについては、A型燃料と同じモデルを適用する。

3.5 沸騰遷移後の熱伝達相関式及びリウェット相関式の予測特性

4.3節と同様に,B型燃料を対象にNUPECにおいて過渡沸騰遷移試験が実施されている^{[2][3]}。沸騰遷移後の熱伝達相関式に修正 Dougall-Rohsenow 式,リウェット相関式に相関 式2を用いた場合の解析値と測定値との比較結果では、ドライアウト持続時間は一部非保 守的な予測結果が見られるが、燃料被覆管温度は総じて保守的な解析結果を与えているこ とが確認されている^[1]。

この相関式2によるリウェット時刻の予測の非保守性は,試験の初期出力が過度に厳し いデータや試験の出力挙動(出力持続時間)が過度に長いデータにおいて確認されており, A型とB型燃料の試験条件の相違が主な原因と考えられる^{[1][4]}。

よって、A型とB型燃料の形状の相違による影響はあると考えられるが、燃料被覆管温度 500℃程度までの試験結果を用いて、修正 Dougall-Rohsenow 式及び相関式2の組合せは 燃料被覆管温度を高めに評価することを確認しており、B型燃料に基づくデータを入力す ることで同様に評価できる。

3.6 燃料被覆管温度の高温範囲におけるB型燃料評価の適用性

原子炉停止機能喪失事象のような燃料被覆管温度の解析結果が高温となる範囲において, 添付3で修正 Dougall-Rohsenow 式の適用性の考えを示しており,1,000℃を超える燃料被 覆管温度及び過熱蒸気を考慮した蒸気単相状態の過度に厳しい条件においても Dittus-Boelter の式より,主蒸気隔離弁の誤閉止+原子炉停止機能喪失の事象の有効性評 価解析における燃料被覆管温度を高めに評価することを確認している。A型とB型燃料の

4 - 6 - 2

相違によって異なる修正 Dougall-Rohsenow 式の変数は、燃料の形状データに関する変数で 水力等価直径であるが、A型とB型燃料の水力等価直径の差はわずかであり、燃料被覆管 温度挙動を評価する上で有意な差異はないと考えられる。そのため、高温となる範囲にお いてB型燃料にも修正 Dougall-Rohsenow 式は適用できると考えられる。

また,添付4 で高温となる範囲における相関式2の適用性の考えを示している。A型と B型燃料の形状の相違によってリウェット時刻の予測に影響を与える可能性が考えられる が,燃料被覆管温度が緩やかな上昇を示した以降の状態において,相関式2によるリウェ ット時刻の予測精度が及ぼす影響は大きくないと考えられる。

以上より,高温となる範囲においてSCATコードはB型燃料に適用できると考えられる。

4. B型燃料による解析評価

4.1 評価内容

対象プラント	: BWR 5 代表炉
対象炉心燃料	:9×9燃料(B型)平衡炉心サイクル末期
事故シーケンス	: 主蒸気隔離弁の誤閉止+原子炉停止機能喪失
解析コード	:REDY Ver.1 (ATWS 用), SCAT Ver.3
解析条件:	

添付表 6-1 で示した核特性,バンドル形状・ウォータチャンネル,燃料棒特性,熱水力 特性にB型燃料のデータを入力する。沸騰遷移相関式にはB型燃料の限界出力特性に基づ きフィッティングした係数を入力する。その他の相関式はA型燃料で代表した有効性評価 の申請解析と同じである。

4.2 解析結果

A型燃料と比較したB型燃料の解析結果を添付表 6-2 に示す。B型燃料においても判断 基準を十分満足することが確認できる。以下に,A型燃料と比較したB型燃料の評価結果 を示す。

(1) 原子炉举動

B型燃料の方が中性子束と原子炉冷却材圧力バウンダリ圧力の最大値が小さくなっている。これは、B型燃料の平衡炉心サイクル末期での動的ボイド係数の値が、A型燃料の値に比べて負の絶対値が小さく、原子炉圧力上昇に伴う正の反応度印加量が小さいためと考えられる。

(2) 燃料挙動

燃料被覆管温度の最大値(PCT)は、主蒸気隔離弁全閉直後の出力上昇時(第1ピーク)で、B型燃料の方が約90℃低くなっている。これは(1)原子炉挙動で示した通り、中性子束

4-6-3

の最大値が小さいためと考えられる。また,給水加熱喪失後の出力上昇時(第2ピーク) についても,B型燃料の方が約40℃低くなっている。これは給水加熱喪失時では自然循環 状態にあり,限界出力の流量依存性の小さいB型燃料の方が相対的に限界出力は高くなり MCPRは大きめに維持される傾向となるためと考えられる。

(3) 格納容器挙動

格納容器圧力及びサプレッションチェンバプール水温度の最大値については, B型燃料の解析結果はA型燃料とほぼ同等である。両燃料のボロン価値に大きな違いがないためと 考えられる。

5. 代表燃料評価の適切性

上記4. B型燃料による解析評価で示すとおり,B型燃料の方が原子炉冷却材圧力バウン ダリ圧力及び燃料被覆管温度の最大値は小さく,また格納容器バウンダリにかかる圧力及 び温度の最大値は同等の結果が得られた。B型燃料の評価結果はA型燃料の場合と同程度 であり,判断基準に対する余裕も十分あることから,A型燃料で代表できると言える。

6. まとめ

REDY/SCATコードにB型燃料が適用できることを確認し,B型燃料で解析評価 を行った。A型燃料とB型燃料の解析結果を比較し,A型燃料で代表できることを確認した。

7. 参考文献

- [1]「BWR における過渡的な沸騰遷移後の燃料健全性評価基準:2003」,(社)日本原子力学会, AESJ-SC-P002:2003, 2003 年 6 月
- [2] 「平成 10 年度 燃料集合体信頼性実証試験に関する報告書 (BWR 新型燃料集合体熱水 力試験編)」,(財)原子力発電技術機構,平成 11 年 3 月
- [3] 「平成 11 年度 燃料集合体信頼性実証試験に関する報告書(BWR 新型燃料集合体熱水 力試験編)」,(財)原子力発電技術機構,平成 12 年 3 月
- [4] 「沸騰遷移後燃料健全性評価報告書」, 基指専第 2-5-1 号, 原子力安全委員会 原子力 安全基準・指針専門部会 沸騰遷移後燃料健全性評価分科会, 平成 18 年 5 月

4 - 6 - 4

添付表 6-1 REDY/SCATコードの燃料に係る入力と解析モデルの対応

解析入力		解析モデル	
炉心 データ	核特性(ボイド,ドップラ,ボ ロン反応度等)	・核特性モデル (REDY) ・反応度モデル (REDY)	
燃料 データ	バンドル形状(標準長/部分長燃 料棒本数,燃料棒径,流路面積 等),ウォータロッド/ウォータ チャンネル(本数,外径等) 燃料特性(ギャップ熱伝達係数, 燃料物性等)	 ・チャンネル内熱流動モデル(流動の基本 式,沸騰遷移評価モデル,被覆管表面熱 伝達モデル,リウェットモデル)(SCAT) ・燃料棒モデル(熱伝導モデル,ギャップ 熱伝達モデル)(REDY/SCAT) 	
	熱水力特性(ボイド率,圧損)	 ・炉心ボイドモデル (REDY) ・チャンネル内熱流動モデル (ボイドモデル,サブクールボイドモデル,圧力損失 モデル) (SCAT) 	

4-6-5

評価項目	B型燃料平衡炉心 の解析結果	A型燃料平衡炉心 の解析結果 (申請解析)	判断基準
中性子束(%)	約 565	約 754	_
原子炉冷却材圧力バウンダ リにかかる圧力(MPa[gage])	約 9.35	約 9.43	10. 34
格納容器圧力(kPa[gage])	約 269	約 274	854
サプレッションチェンバプ ール水温度 (℃)	約 127	約 127	200
燃料被覆管温度 (第1ピーク) (PCT) (℃)	約 914	約 1,004	1 200
燃料被覆管温度 (第2ピーク)(℃)	約 766	約 806	1,200

添付表 6-2 A型燃料とB型燃料の解析結果の比較

4 - 6 - 6