| 柏崎刈羽原子力発電所6.7号炉 | ヒアリング資料 |
|-----------------|---------|
|-----------------|---------|

資料番号 KK67-地0096-3-1

本資料のうち、枠囲みの内容は機密事項に属しますので、公開できません。

## 柏崎刈羽原子力発電所6号炉及び7号炉

## 原子炉建屋等の基礎地盤及び周辺斜面の安定性について

# 平成28年 12月 19日

# 東京電力ホールディングス株式会社



## 全体概要(1)評価概要

- 原子炉建屋等の耐震重要施設<sup>※1</sup>及び常設重大事故等対処施設<sup>※2</sup>の基礎地盤及び周辺斜面の安定性評価について、審査ガイドに準拠し以下に示す事項を確認する。
- 設置許可基準規則第3条,38条に基づき評価対象施設を抽出した。評価対象断面は、各施設の配置、規模、地質等を考慮して、原子炉建屋の評価断面を代表断面として選定した。



評価対象施設と代表断面

# 全体概要(2)評価断面(解析用要素分割図)



### 全体概要(3)評価結果

- 基礎地盤のすべりは、すべてのケースですべり安全率が評価基準値1.5を上回り、地震力に対して施設の安全機能が重大な影響を受けない ことを確認した。なお、強度のばらつき(平均値-1ヶ強度)を考慮した評価を実施したケースに対して、奥行き方向の地質・地質構造 の変化等を考慮できる二次元重合せ解析に基づく評価を実施し、すべり安全率が1.5を上回ることを確認した。
- 基礎の支持力は、すべてのケースで地震時最大接地圧が支持力を下回り、地震力に対して施設の安全機能が重大な影響を受けないことを 確認した。
- 基礎底面の地震時傾斜及び地殻変動による傾斜は、基本設計段階の日安値を若干超えることから、耐震設計方針において、基礎の傾斜に 対する建屋、機器、設備等の安全機能への影響について評価の方針を示すとともに、詳細設計段階において詳細に評価を行う。



基礎地盤のすべり評価

- 地震発生に伴う周辺地盤の変状による不等沈下、液状化、揺すり込み沈下等に より、施設の安全機能が重大な影響を受けないことを確認した。
- 周辺斜面の安定性は、いずれの施設も斜面法尻から十分な離隔距離を確保して おり、地震力に対して周辺斜面が崩壊し、施設の安全機能が重大な影響を受け ないことを確認した。

|                          | 基礎            | の支持力                                 | 基礎            | 底面の傾斜                | 地殻変動                        |  |  |  |  |
|--------------------------|---------------|--------------------------------------|---------------|----------------------|-----------------------------|--|--|--|--|
| 評価対象                     | 地震動           | 地震時<br>最大接地圧<br>[N/mm <sup>2</sup> ] | 地震動           | 地震時<br>最大傾斜          | 地殻変動<br>+地震時<br>最大傾斜        |  |  |  |  |
| 6号炉<br>原子炉建屋             | Ss-1<br>(正,逆) | 1.79<br>〈6.0〉                        | Ss-8<br>(正,正) | 1/1,600<br>《1/2,000》 | 1/2,200<br>《1/2,000》        |  |  |  |  |
| 7号炉<br>原子炉建屋             | Ss−1<br>(逆,逆) | 3.23<br>〈6.2〉                        | Ss-8<br>(正,正) | 1/1,700<br>《1/2,000》 | <b>1/1,900</b><br>《1/2,000》 |  |  |  |  |
| 5号炉<br>原子炉建屋<br>(緊急時対策所) | Ss−1<br>(逆,逆) | 2.05<br>⟨5.5⟩                        | Ss-8<br>(逆,正) | 1/2,700<br>《1/2,000》 | 1/2,600<br>《1/2,000》        |  |  |  |  |

※基準地震動Ssの(正,逆),(逆,逆)は 位相反転を示す。※〈〉内の数値は、基礎の支持力を示す。 ※《》内の数値は、基本設計段階の月安値を示す。

※ 基準地震動Ssの(逆,正),(正,逆)は位相反転を示す。 ⟨〉内の数値は、平均−1 σ 強度時の二次元重合せ解析に基づくすべり安全率 を示し、《》内の数値は、さらに奥行き方向の地表面に抜けるすべり面の抵抗 を考慮しない場合のすべり安全率を示す。

**I - 2**C

**TEPCO** 

| 1.評価  | 概要           |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
|-------|--------------|----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1.1   | 評価概要         | •  | • | • | ٠ | ٠ | • | • | • | ٠ | • | • | ٠ | ٠ | ٠ | • | • | 7  |
| 1.2   | 評価対象施設       | ٠  | • | • | ٠ | ٠ | • | • | • | ٠ | • | • | • | • | • | • | • | 9  |
| 2. 基礎 | 地盤の安定性評価     |    |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1  | 評価方針         | •  | • | • | ٠ | ٠ | ٠ | • | • | ٠ | ٠ | ٠ | • | • | • | • | • | 11 |
| 2. 2  | 解析用物性值       | •  | ٠ | • | ٠ | • | • | • | • | ٠ | ٠ | ٠ | • | • | • | • | • | 16 |
| 2. 3  | 評価方法         | ٠  | • | ٠ | ٠ | ٠ | ٠ | • | • | ٠ | ٠ | ٠ | • | • | • | • | • | 23 |
| 2.4   | 入力地震動        | •  | • | ٠ | ٠ | ٠ | • | • | • | ٠ | ٠ | ٠ | • | • | • | ٠ | • | 30 |
| 2.5   | 評価結果         | •  | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | • | 40 |
| 3. 周辺 | 地盤の変状及び地殻変動に | よ  | る | 影 | 響 | 評 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3.1   | 周辺地盤の変状による重  | 要  | 施 | 設 |   | の | 影 | 響 |   |   | ٠ | ٠ | • | • | • | • | • | 71 |
| 3. 2  | 地殻変動による基礎地盤  | iの | 変 | 形 | の | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. 周辺 | 斜面の安定性評価     | •  | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. まと | め            | ٠  | • | • | • | • | • | • | • | • | • | • | • | • | • | • | ٠ | 84 |

【別冊】補足説明資料

※安田層下部層のMIS10~MIS7とMIS6の境界付近の堆積物については、本資料では『古安田層』と仮称する。

| 1 | • | 評価概要 |
|---|---|------|
|---|---|------|

|    | Ι. | 1  | 評価概要        | • | • | • | •        | • | • | • | • | • | ٠ | • | • | • | ٠ | • | • | 7  |
|----|----|----|-------------|---|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|
|    | •  | 2  | 評価対象施設      | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. | 基  | 礎地 | 盤の安定性評価     |   |   |   |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2  | 2. | 1  | 評価方針        | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2  | 2. | 2  | 解析用物性值      | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2  | 2. | 3  | 評価方法        | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2  | 2. | 4  | 入力地震動       | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2  | 2. | 5  | 評価結果        | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. | 周  | 辺地 | 盤の変状及び地殻変動に | よ | 3 | 影 | 響        | 評 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3  | 3. | 1  | 周辺地盤の変状による重 | 要 | 施 | 記 | $\wedge$ | ற | 影 | 郷 |   |   | • | • | • | • | • | • | • | 71 |
| 3  | 3. | 2  | 地殻変動による基礎地盤 | ற | 変 | 形 | ற        | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. | 周  | 辺彩 | 面の安定性評価     | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. | ま  | とな | )           | • | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

評価概要

原子炉建屋等の耐震重要施設\*1及び常設重大事故等対処施設\*2の基礎地盤及び周辺斜面の安定性評価について、審査ガイドに準拠し、以下に示す事項を確認する。

#### <u>基礎地盤</u>

1. 将来活動する可能性のある断層等の有無

原子炉建屋等が設置される地盤に、将来活動する可能性のある断層等が露頭していないことを確認する。

2. 地震力に対する基礎地盤の安定性評価

以下の事項を確認することにより、地震力に対して施設の安全機能が重大な影響を受けないことを確認する。

- 1) 基礎地盤のすべり 2) 基礎の支持力 3) 基礎底面の傾斜
- 3. 周辺地盤の変状による重要施設への影響評価

地震発生に伴う周辺地盤の変状による建物・構築物間の不等沈下,液状化,揺すり込み沈下等により,施設の 安全機能が重大な影響を受けないことを確認する。

4. 地殻変動による基礎地盤の変形の影響評価

地震発生に伴う地殻変動による基礎地盤の傾斜及び撓みにより、施設が重大な影響を受けないことを確認する。

周辺斜面

1. 地震力に対する周辺斜面の安定性評価

地震力に対して周辺斜面が崩壊し、施設の安全機能が重大な影響を受けないことを確認する。

※1:耐震重要度分類Sクラスの機器・系統及びそれらを支持する建物・構築物

※2:常設耐震重要重大事故防止設備及び常設重大事故緩和設備が設置される重大事故等対処施設

| 1. 評価相 | 既要           |    |   |   |        |   |   |   |   |   |   |   |   |   |   |   |   |    |
|--------|--------------|----|---|---|--------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1. 1   | 評価概要         | •  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
| 1.2    | 評価対象施設       | •  | ٠ | ٠ | ٠      | ٠ | ٠ | • | ٠ | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | • | 9  |
| 2. 基礎均 | 也盤の安定性評価     |    |   |   |        |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1   | 評価方針         | •  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2. 2   | 解析用物性值       | ٠  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2. 3   | 評価方法         | ٠  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.4    | 入力地震動        | •  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2. 5   | 評価結果         | •  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. 周辺均 | 地盤の変状及び地殻変動は | 25 | 3 | 影 | 響      | 評 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3. 1   | 周辺地盤の変状による重  | 重要 | 施 |   | $\sim$ | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 3. 2   | 地殻変動による基礎地震  | 協の | 変 | 形 | の<br>の | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. 周辺統 | 斜面の安定性評価     | ٠  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. まと  | Ø            | •  | • | • | •      | • | • | • | • | • | • | • | • | • | • | • | • | 84 |
|        |              |    |   |   |        |   |   |   |   |   |   |   |   |   |   |   |   |    |

【別冊】補足説明資料

### 評価対象施設

- 設置許可基準規則第3条に基づき,設計基準対象施設のうち,耐震重要施設を抽出した。
- 設置許可基準規則第38条に基づき、重大事故等対処施設のうち、常設耐震重要重大事故防止設備及び常設 重大事故緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設を除く)を抽出した。

| 1. 耐震重要施設           |            | 2. 重大事故等対処施設           |                 |
|---------------------|------------|------------------------|-----------------|
| 1-1. 原子炉建屋 (主排気筒含む) | 1-4. 軽油タンク | 2-1. 廃棄物処理建屋           | 2-4. 常設代替交流電源設備 |
| 1-2. タービン建屋         | 1-5. 貯留堰   | 2-2.5号炉原子炉建屋(緊急時対策所含む) | 2-5. 取水路        |
| 1-3. コントロール建屋       |            | 2-3.格納容器圧力逃がし装置        |                 |

|  | 1. | 評价 | 而概 | 要 |
|--|----|----|----|---|
|--|----|----|----|---|

| 1.   | 1  | 評価概要     | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
|------|----|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1.   | 2  | 評価対象施設   | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 基 | 磁地 | 地盤の安定性評価 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2.   | 1  | 評価方針     | • | • | ٠ | ٠ | ٠ | ٠ | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | • | 11 |
| 2.   | 2  | 解析用物性值   | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2.   | З  | 評価方法     | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.   | 4  | 入力地震動    | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2.   | 5  | 評価結果     | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 40 |

3. 周辺地盤の変状及び地殻変動による影響評価

| 3  | 3. | 1  | 周辺地盤の変状による重 | 要  | 施 | 記 | $\wedge$ | $\mathcal{O}$ | 影 | 郷 |   |   | • | • | • | • | • | • | • | 71 |
|----|----|----|-------------|----|---|---|----------|---------------|---|---|---|---|---|---|---|---|---|---|---|----|
| 3  | 3. | 2  | 地殻変動による基礎地盤 | kの | 変 | 形 | ກ        | 影             | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. | 周  | 辺余 | 南の安定性評価     | •  | • | • | •        | •             | • | • | • | • | • | • | • | • | • | • | ٠ | 82 |
| 5. | ま  | 28 |             | •  | • | • | •        | •             | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

### 基礎地盤評価対象断面の選定

### ■ 各施設の配置,規模,地質等を考慮して,原子炉建屋の評価断面を代表断面として選定した。

| 施設                         | 支持<br>地盤 | 評価方針                                         |
|----------------------------|----------|----------------------------------------------|
| 1-1.<br>原子炉建屋 (主排気筒含む)     |          |                                              |
| 1-2.<br>タービン建屋             |          | 。百乙に使民近席に認罢さ                                 |
| 1-3.<br>コントロール建屋           |          | れており、原子炉建屋評価<br>断面に含まれているとみな                 |
| 1-4.<br>軽油タンク              | 五山屋      | せること <ul> <li>・原子炉建屋と比較して,</li> </ul>        |
| 2−1.<br>廃棄物処理建屋            | 四田居      | 規模、重量等が小さいこと                                 |
| 2-2.<br>5号炉原子炉建屋(緊急時対策所含む) |          | 以上より、原子炉建屋の汀<br>線直交断面、汀線平行断面<br>ちばま断面として溜定した |
| 2-3.<br>格納容器圧力逃がし装置        |          | 211次団国として 選足した。                              |
| 2-4.<br>常設代替交流電源設備         |          |                                              |
| 1-5.<br>貯留堰                | 古安田      | ・貯留堰及び取水路は、支持                                |
| 2-5.<br>取水路                | 層        | 地盤でのる白女田層の支持 性能について評価する。                     |

### 地震力に対する基礎地盤の安定性評価における評価項目と評価内容

- 1) 基礎地盤のすべり
  - 動的解析の結果に基づき、基礎地盤の内部及び基礎底面を通るすべり面を仮定する。
  - 動的解析における時刻歴のすべり安全率が1.5 以上であることを確認する。

### 2) 基礎の支持力

- 原位置試験の結果等に基づき、基礎の支持力の評価基準値を設定する。
- 動的解析に基づいて求められた基礎の接地圧が評価基準値を超えていないことを確認する。
- 3) 基礎底面の傾斜
  - 基本設計段階の目安値を、一般建築物の構造的な障害が発生する限界値を参考に1/2,000に 設定する。
  - 動的解析の結果に基づいて求められた基礎の最大不等沈下量及び残留不等沈下量による傾斜
     を許容値の目安と比較する。

解析用要素分割図(1)

#### 5, 6, 7号炉原子炉建屋 汀線平行断面 A-A' 5号炉 7号炉 6号炉 原子炉建屋 原子炉建屋 原子炉建屋 標高(m) コントロール建屋 -22 14 -0 --50 E3 F2 -100 V2 Vc V3 $\sqrt{1}$ Vb <u>\_</u>V4 Va ===158 1005m







解放基盤表面(大湊側)

| 施設  | 標高<br>T.M.S.L.(m) |
|-----|-------------------|
| 5号炉 | -134m             |
| 6号炉 | -155m             |
| 7号炉 | -155m             |

※解析モデルでは、5号・6号・7号を 包含するようにT.M.S.L-155mで設定

### 7号炉原子炉建屋 汀線直交断面 C-C'

5号炉原子炉建屋 汀線直交断面 D-D'



(緊急時対策所含む)





#### 解放基盤表面(大湊側)

| 施設  | 標高<br>T.M.S.L.(m) |
|-----|-------------------|
| 5号炉 | -134m             |
| 6号炉 | -155m             |
| 7号炉 | -155m             |

#### ※解析モデルでは、5号・6号・7号を 包含するようにT.M.S.L-155mで設定



| 1 |   | 11111111111111111111111111111111111111 |
|---|---|----------------------------------------|
|   | • | すしいえ                                   |

|    | 1. | 1  | 評価概要        | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
|----|----|----|-------------|---|---|---|-----------------|---|---|---|---|---|---|---|---|---|---|---|---|----|
|    | 1. | 2  | 評価対象施設      | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. | 基  | 礎地 | 盤の安定性評価     |   |   |   |                 |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 6  | 2. | 1  | 評価方針        | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 4  | 2. | 2  | 解析用物性值      | ٠ | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 4  | 2. | З  | 評価方法        | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 4  | 2. | 4  | 入力地震動       | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 4  | 2. | 5  | 評価結果        | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| З. | 周  | 辺地 | 盤の変状及び地殻変動に | よ | 3 | 影 | 響               | 評 | 価 |   |   |   |   |   |   |   |   |   |   |    |
|    | 3. | 1  | 周辺地盤の変状による重 | 要 | 施 | 武 | $\overline{\ }$ | D | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 4  | 3. | 2  | 地殻変動による基礎地盤 | の | 変 | 形 | ற               | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. | 周  | 辺彩 | 面の安定性評価     | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. | ま  | 28 | )           | • | • | • | •               | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

#### ■ 解析用物性値は、下表に示す試験・調査結果に基づき設定した。

| 物性値      | kt            | 也層区分                                                                                                                                   | 西山層                         | 椎谷層                                                                                    | 古安田層      | 番神砂層<br>新期砂層・沖積層<br>埋戻土     | 断層部  | マンメイドロック |  |  |  |  |  |
|----------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|-----------|-----------------------------|------|----------|--|--|--|--|--|
| 物理<br>特性 | 密             | 度                                                                                                                                      |                             | 密度試                                                                                    | 験結果(土質工学会 | 編「土質試験法」に                   | 準拠)  |          |  |  |  |  |  |
| 静的       | 静弾性           | 主係数                                                                                                                                    |                             | 三軸圧縮                                                                                   | 試驗結果(土質工学 | 会編「土質試験法」                   | に準拠) |          |  |  |  |  |  |
| 特性       | 静ポア           | ソン比                                                                                                                                    | 三軸圧縮試験結果                    |                                                                                        |           |                             |      |          |  |  |  |  |  |
|          | 初期動<br>弾性     | 明動せん断<br>単性係数         PS検層によるS波速度<br>(土質工学会編「土質調査法」に準拠),<br>密度により算定         弾性波速度測定試験によるS波速度<br>(物理探鉱技術協会編「岩石試料の速度測定要編<br>に準拠),密度により算定 |                             |                                                                                        |           |                             |      |          |  |  |  |  |  |
| 動的       | 動せん断弾<br>ひずみ( | 単性係数の<br>肉存特性                                                                                                                          |                             |                                                                                        | 動的単純せん    | し断試験結果                      |      |          |  |  |  |  |  |
| 変形<br>特性 | 動ポア           | ソン比                                                                                                                                    | PS椅<br>S波速度(土質工学会)          | PS検層によるP波速度,<br>S波速度(土質工学会編「土質調査法」に準拠)により算定<br>(物理探鉱技術協会編「岩石試料の速度測定要綱」<br>に準拠),密度により算定 |           |                             |      |          |  |  |  |  |  |
|          | 減衰気<br>ひずみ(   | 官数の<br>肉存特性                                                                                                                            |                             |                                                                                        | 動的単純せ/    | 」<br>断試験結果                  |      |          |  |  |  |  |  |
|          | ピーク           | $C_{ m u}$                                                                                                                             |                             | 三軸圧縮                                                                                   | 試験結果(土質工学 | 会編「土質試験法」                   | に準拠) |          |  |  |  |  |  |
| 強度<br>特性 | 強度            | σt                                                                                                                                     | 圧裂引張強度試験<br>(JIS M 0303に準拠) | _                                                                                      | _         | 圧裂引張強度試験<br>(JIS M 0303に準拠) |      |          |  |  |  |  |  |
|          | 残留            | 強度                                                                                                                                     |                             | 三軸圧縮                                                                                   | 試驗結果(土質工学 | 会編「土質試験法」                   | に準拠) |          |  |  |  |  |  |

| 物性個         |                        | 地層区分                                                  | 西山層                        | 椎谷層                                         | 古安田層                       |
|-------------|------------------------|-------------------------------------------------------|----------------------------|---------------------------------------------|----------------------------|
|             | 物理特性                   | $ ho_{ m t}$ $(g/cm^3)$                               | 1.69 $-$ 0.00048 $\cdot$ Z | 1.94 $-$ 0.00044 $\cdot$ Z                  | 1.76                       |
|             | 静的                     | $E_{0}$ (N/mm <sup>2</sup> )                          | 502-2.29·Z                 | 251-3.88·Z                                  | $126 + 232 \cdot P$        |
|             | 変形特性                   | ν                                                     | 0.48+0.00024 $\cdot Z$     | 0.46                                        | 0. 49                      |
| 変形特性        |                        | $G_0$ $(N/mm^2)$                                      | $394 - 1.63 \cdot Z$       | $-133 - 7.35 \cdot Z$                       | 175                        |
|             | 動的                     | v <sub>d</sub>                                        | 0.45+0.00015 $\cdot Z$     | 0. 47 + 0. 00031 $\cdot Z$                  | 0.45                       |
|             | 変形特性                   | 形特性<br>$G/G_0 \sim \gamma$ $1/(1+4.10 \gamma^{1.37})$ |                            | $1/(1+5.76 \gamma^{0.69})$                  | $1/(1+5.39 \gamma^{0.77})$ |
|             |                        | $\begin{array}{c} h \sim \gamma \\ (\%) \end{array}$  | 25.0 $\gamma^{0.94}$ + 0.7 | $\gamma$ / (0. 065 $\gamma$ + 0. 004) +0. 7 | 24.8 $\gamma^{0.56}$       |
|             |                        | $C_{\rm u}$ (N/mm <sup>2</sup> )                      | 1.37-0.00504 $\cdot Z$     | 0.721-0.00773 $\cdot Z$                     | $0.238 \pm 0.407 \cdot P$  |
| 強<br>度      | ピーク強度                  | φ <sub>u</sub><br>(°)                                 | 0                          | 0                                           | 0                          |
| 度<br>特<br>性 |                        | $\frac{\sigma_{\rm t}}{(\rm N/mm^2)}$                 | $0.335 - 0.00157 \cdot Z$  | _                                           | _                          |
|             | 残留強度                   | $C_{\rm ur}$ $(N/mm^2)$                               | $0.673 - 0.00201 \cdot Z$  | 0.799 $-$ 0.00607 $\cdot Z$                 | $0.224 \pm 0.312 \cdot P$  |
|             | 注: <i>Z</i> は、T.M.S.L. | (m)を示す。                                               | 注:西山層のσ+(引張強度)は,平均強度       | を用いたすべり安全率評価では、                             |                            |

注:西山層の G<sub>t</sub>(引張強度)は、平均強度を用いたすべり安全率評価では、 保守的に強度を考慮しない。

注: Pは, 平均有効拘束圧(N/mm<sup>2</sup>)を示す。

注:γは, せん断歪み(%)を示す。

| 物性          | 上值         | 地層区分                                  | 番神砂層                                    | 新期砂層・沖積層                              | 埋戻土                                     |
|-------------|------------|---------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|
|             | 物理特性       | $ ho_{\rm t}$ (g/cm <sup>3</sup> )    | 1.84                                    | 1.64                                  | 1.89                                    |
|             | 静的         | $E_0$ (N/mm <sup>2</sup> )            | 23. $5 + 572 \cdot P$                   | 19. $3 + 187 \cdot P$                 | 58.8                                    |
| 変形特性        | 変形特性       | ν                                     | 0.47                                    | 0.33                                  | 0.33                                    |
|             |            | $G_0$ $(N/mm^2)$                      | 184                                     | 25.3                                  | 27.0                                    |
|             | 動的<br>変形特性 | ${m  u}_{ m d}$                       | 0. 43                                   | 0.36                                  | 0. 41                                   |
|             |            | $G  /  G_{0} \sim \gamma$             | $1/(1+9.48 \gamma^{0.74})$              | $1/(1+10.95 \gamma^{0.81})$           | $1/(1+9.01 \gamma^{0.77})$              |
|             |            | $h \sim \gamma$ (%)                   | $\gamma / (0.041 \gamma + 0.005) + 1.0$ | $\gamma$ / (0. 031 $\gamma$ + 0. 002) | $\gamma / (0.034 \gamma + 0.003) + 0.1$ |
|             |            | $C_{\rm u}$ (N/mm <sup>2</sup> )      | $0.322 + 0.412 \cdot P$                 | _                                     | _                                       |
| 強<br>度      | ピーク強度      | φ <sub>u</sub><br>(°)                 | 0                                       | _                                     | _                                       |
| 皮<br>特<br>性 |            | $\sigma_{\rm t}$ (N/mm <sup>2</sup> ) | _                                       | _                                     | _                                       |
|             | 残留強度       | $C_{ m ur}$ $( m N/mm^2)$             | $0.321 + 0.375 \cdot P$                 | _                                     | _                                       |

注:Zは, T.M.S.L.(m)を示す。

注: Pは, 平均有効拘束圧(N/mm<sup>2</sup>)を示す。

注:γは,せん断歪み(%)を示す。

# 解析用物性值〔断層〕

|                |            |                                                      | 断層部                                       |                                                               |                                    |                            |  |  |  |  |
|----------------|------------|------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------------|----------------------------|--|--|--|--|
| 物性             | +値         | 地層区分                                                 | F系                                        | 断層                                                            | V 조 账 屋                            | Ⅰ≤栗園                       |  |  |  |  |
| _1 <b>v</b> ×1 |            |                                                      | 粘土部                                       | 破砕部                                                           | ▼ 术 例 増                            | しお例眉                       |  |  |  |  |
|                | 物理特性       | ρ <sub>t</sub>                                       | 1.92                                      | 1.73                                                          | 1 78                               | 1.82                       |  |  |  |  |
|                |            | $(g/cm^3)$                                           | 層厚の重み付                                    | ・き平均=1.75                                                     | 1.10                               | 1.02                       |  |  |  |  |
|                | 静的         | $E_{0}$ (N/mm <sup>2</sup> )                         | 62. $4 + 80. 5 \cdot P$                   | 低圧部:48.8+923・ <i>P</i><br>高圧部:224+131・ <i>P</i>               | 低圧部:141+389・P<br>高圧部:296+78.0・P    | $165 + 148 \cdot P$        |  |  |  |  |
|                | 変形特性       | ν                                                    | 0.46                                      | 0.46                                                          | 0.46                               | 0.46                       |  |  |  |  |
| 亦              |            | G <sub>0</sub>                                       | 337                                       | 340                                                           | 22.1                               | 222                        |  |  |  |  |
| 変<br>形         |            | $(N/mm^2)$                                           | 層厚の重み作                                    | †き平均=340                                                      | 394                                | 230                        |  |  |  |  |
| 特性             |            |                                                      | 0.47                                      | 0.42                                                          |                                    |                            |  |  |  |  |
|                | 動的<br>変形特性 | νd                                                   | 層厚の重み付                                    | き平均=0.43                                                      | 0.44                               | 0.47                       |  |  |  |  |
|                |            | $G / G_0 \sim \gamma$                                | 1/(1+7.45γ <sup>1.14</sup> )<br>層厚の重み付き平均 | $\frac{1/(1+9.79 \gamma^{1.03})}{5=1/(1+9.69 \gamma^{1.04})}$ | $1/(1+4.75 \gamma^{0.68})$         | $1/(1+4.86 \gamma^{0.73})$ |  |  |  |  |
|                |            | $\begin{array}{c} h \sim \gamma \\ (\%) \end{array}$ | 41.0 y <sup>0.62</sup><br>層厚の重み付き         | 35.0 y <sup>0.42</sup><br>平均=36.0 y <sup>0.44</sup>           | 18.0 $\gamma$ <sup>0.28</sup> +0.1 | 17.0 $\gamma^{0.31}$       |  |  |  |  |
|                |            | $C_{\rm u}$ $({ m N/mm}^2)$                          | 0.286+0.191・P<br>粘土部と破砕部の強度               | 0.279+0.242・P<br>度の低い方を用いる。                                   | $0.504 + 0.359 \cdot P$            | $0.486 \pm 0.481 \cdot P$  |  |  |  |  |
| 強度特性           | ピーク強度      | φ <sub>u</sub><br>(°)                                | 0                                         | 0                                                             | 0                                  | 0                          |  |  |  |  |
|                |            | $\sigma_{t}$ (N/mm <sup>2</sup> )                    | _                                         | _                                                             | _                                  | _                          |  |  |  |  |
|                | 残留始度       | $C_{ m ur}$                                          | $0.219 + 0.251 \cdot P$                   | $0.278 + 0.181 \cdot P$                                       | $0 485 \pm 0 293 \cdot P$          | $0 497 \pm 0 353 \cdot P$  |  |  |  |  |
|                | 残留強度       | $(N/mm^2)$                                           | 粘土部と破砕部の強度                                | 0.100+0.200 1                                                 | 0.101   0.000 1                    |                            |  |  |  |  |

注: Pは, 平均有効拘束圧(N/mm<sup>2</sup>)を示す。

注:γは,せん断歪み(%)を示す。

# 解析用物性値〔マンメイドロック〕

|        |            | 地層区分                                                 | マンメイ                             | ドロック                             |
|--------|------------|------------------------------------------------------|----------------------------------|----------------------------------|
| 物性     | 上值         |                                                      | 原子炉建屋下                           | コントロール建屋下                        |
|        | 物理特性       | $ ho_{ m t}$ $(g/ m cm^3)$                           | 1.75                             | 1.75                             |
|        | 静的         | $E_0$ (N/mm <sup>2</sup> )                           | 1160                             | 1020                             |
| 変形特性   | 変形特性       | ν                                                    | 0.44                             | 0.45                             |
|        |            | $G_0$ $(N/mm^2)$                                     | 2110                             | 1990                             |
|        | 動的<br>変形特性 | ${ m v}_{ m d}$                                      | 0.36                             | 0.36                             |
|        |            | $G \ / \ G \ _0 \sim \gamma$                         | $1/(1+4.\ 30\ \gamma^{-1.\ 00})$ | $1/(1+4.\ 30\ \gamma^{-1.\ 00})$ |
|        |            | $\begin{array}{c} h \sim \gamma \\ (\%) \end{array}$ | 19.0 $\gamma$ <sup>0.60</sup>    | 19.0 $\gamma$ <sup>0.60</sup>    |
|        |            | $C_{\rm u}$ $({ m N/mm}^2)$                          | 1.84 (1.38)                      | 1.84 (1.38)                      |
| 強<br>度 | ピーク強度      | φ <sub>u</sub><br>(°)                                | 0                                | 0                                |
| 特<br>性 |            | $\sigma_{t}$ $(N/mm^{2})$                            | 0.666 (0.330)                    | 0.666 (0.330)                    |
|        | 残留強度       | $C_{ m ur}$ $( m N/mm^2)$                            | 1.38 (1.04)                      | 1.38 (1.04)                      |

注:γは, せん断歪み(%)を示す。

注:強度特性の括弧内の数値は、打継部の強度を示す。

- 解析用物性値は、各種地盤調査・試験結果における平均値を代表値として設定した。
- ただし、調査及び試験の結果に含まれる不確かさなどを考慮し、すべり安全率に対する影響として支配的な 強度特性について、ばらつき(平均−1 σ 強度)を考慮した評価を実施した。

#### 原子力発電所耐震設計技術指針 JEAG4601-2008(日本電気協会)

すべり安全率に対する地盤物性値のばらつきの影響については、一般に強度特性が支配的であり、変形特性の影響は小さい。したがって、一般に強度特性のばらつきのみ考慮しておけばよい。

#### 原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料>(土木学会, 2009)

地盤物性値のばらつき評価法について確率論的な検討を行い、以下の結論が得られている。

- ・ 地盤物性値を±10%して算定したすべり安全率の差を算定した結果、すべり安全率に関しては、せん断強 度等の抵抗力に関係する地盤物性値の影響が非常に強く、剛性等の影響は比較的小さいことを確認した。
- 「代表値±係数×標準偏差」を用いた確率論的手法による地盤物性値のばらつき評価の結果,確率論的手法によって評価したすべり安全率が,確定論的に地盤物性値を「代表値-1.0×標準偏差」に設定して評価したすべり安全率を下回る確率は小さいことを明らかにした。

| • •  | L IM .h       | M-52         |            |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
|------|---------------|--------------|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1.   | 1             | 評価概要         | ٠          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
| 1.   | 2             | 評価対象施設       | •          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 星 | 2. 基礎地盤の安定性評価 |              |            |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2.   | 1             | 評価方針         | ٠          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2.   | 2             | 解析用物性值       | •          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 18 |
| 2.   | З             | 評価方法         | ٠          | ٠ | ٠ | ٠ | ٠ | ٠ | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | ٠ | • | 23 |
| 2.   | 4             | 入力地震動        | •          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2.   | 5             | 評価結果         | ٠          | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. 周 | 辺均            | 也盤の変状及び地殻変動に | : <b>t</b> | 3 | 影 | 響 | 鄆 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3.   | 1             | 周辺地盤の変状による重  | 要          | 施 | 記 |   | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 3.   | 2             | 地殻変動による基礎地盤  | έD         | 変 | 形 | Ð | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
|      |               |              |            |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |

4. 周辺斜面の安定性評価
5. まとめ
6. まとめ
7. まとめ
7. まとめ
82
82
84

【別冊】補足説明資料

1

### 評価方法:周波数応答解析手法

- 5, 6, 7号炉原子炉建屋の基礎地盤の安定性は,二次元有限要素法に基づく地震応答解析(周波数応 答解析)により評価を実施した。
- 地震応答解析は、水平および鉛直地震動を同時に入力した。
- 地盤は、等価線形化法により動せん断弾性係数及び減衰定数のひずみ依存性を必要に応じて考慮した。



安定性評価フロー

#### 地盤要素のモデル化

■ 地盤は、平面ひずみ要素でモデル化し、要素の最大高さ(H<sub>max</sub>)は、応力の変化をなめらかに表現でき、 地震波の伝播を十分に考慮できるよう下式により算定した。

$$H_{\max} = \frac{1}{m} \cdot \lambda_s = \frac{1}{m} \cdot \frac{V_s}{f_{\max}}$$
  
 $\lambda_s: せん断波の波長 (m)$   
 $V_s: せん断波の速度 (m/s)$   
 $f_{\max}: 考慮する地震動の最大周波数(20Hz)$   
 $m: 分割係数(=5とした)$ 

#### 断層のモデル化

1-20

■ 断層は、ジョイント要素でモデル化し、せん断ばね定数ks及び垂直ばね定数knを下式により設定した。

$$k_{s} = \frac{G}{t}$$
$$k_{n} = \frac{2(1 - \nu_{d})}{(1 - 2\nu_{d})} \cdot \frac{G}{t}$$

- G:動せん断弾性係数
- *t* : 断層の層厚
- $v_d$ :ポアソン比

- 建屋と地盤の相互作用の影響を考慮し、規模の大きい原子炉建屋、タービン建屋、コントロール建屋 をモデル化した。
- モデル化にあたっては、水平及び鉛直地震動の同時入力に対応したモデル化を実施した。
- モデル化にあたっては、多質点系建屋モデルから建屋各層の水平剛性KH,鉛直剛性KV及び曲げ剛性 Koを用いて、せん断剛性、変形係数及びポアソン比を求め、等価な有限要素モデルを作成した。



- ■静的解析時の境界条件は、底面を固定境界、側方を鉛直ローラ境界として設定した。
- 地震応答解析時の境界条件は、底面を粘性境界、側方をエネルギー伝達境界とし、エネルギー逸散を 考慮した。



## 解析条件:地下水位の設定(1)

■ 地下水位は、地表面あるいは建屋基礎上端に設定した。

### 5,6,7号炉原子炉建屋 汀線平行断面





## 解析条件:地下水位の設定(2)

■ 地下水位は、地表面あるいは建屋基礎上端に設定した。

#### 7号炉原子炉建屋 汀線直交断面



#### 5号炉原子炉建屋 汀線直交断面(緊急時対策所含む)



| 1. 1          | 評価概要          | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
|---------------|---------------|----|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1. 2          | 2 評価対象施設      | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 基礎地盤の安定性評価 |               |    |   |   |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1          | 評価方針          | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2. 2          | 2 解析用物性值      | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2. 3          | 3 評価方法        | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2. 4          | 入力地震動         | ٠  | ٠ | ٠ | •        | • | • | • | • | • | ٠ | • | • | • | • | ٠ | • | 30 |
| 2. 5          | 5 評価結果        | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. 周辺         | 」地盤の変状及び地殻変動に | :t | 3 | 影 | 響        | 鄆 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3. 1          | 周辺地盤の変状による重   | 要  | 施 | 武 | $\wedge$ | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 3. 2          | 2 地殻変動による基礎地盤 | ĸの | 変 | 形 | D        | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. 周辺         | 2斜面の安定性評価     | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. まと         | 50            | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

1. 評価概要

■ 基礎地盤安定性評価では,解放基盤表面までモデル化し,モデル下端から基準地震動Ssを水平方向及び鉛直方向に同時に入力した。



# 2. 基礎地盤の安定性評価 2. 4 入力地震動

# 入力地震動(基準地震動Ss)概要

|           |                    |                      | 最大加速度値(Gal)       |      |      |      |  |  |  |  |  |
|-----------|--------------------|----------------------|-------------------|------|------|------|--|--|--|--|--|
| 基準<br>地震動 |                    | 検討用地震                |                   |      | 大湊側  |      |  |  |  |  |  |
|           |                    |                      |                   | NS方向 | EW方向 | UD方向 |  |  |  |  |  |
| Ss—1      | F一B断層              | 応答ス<br>基づく           | ペクトルに<br>〔地震動評価   | 10   | 50   | 650  |  |  |  |  |  |
| Ss-2      | による地震              | 断層モデ <i>,</i><br>による | ルを用いた手法<br>5地震動評価 | 848  | 1209 | 466  |  |  |  |  |  |
| Ss—3      |                    | 応答スペクトルに基<br>づく地震動評価 | 60                | 00   | 400  |      |  |  |  |  |  |
| Ss—4      |                    |                      | 応力降下量1.5倍         | 428  | 826  | 332  |  |  |  |  |  |
| Ss—5      | 長岡平野西縁断<br>層帯による地震 | 断層モデルを用いた            | 断層傾斜角35°          | 426  | 664  | 346  |  |  |  |  |  |
| Ss—6      |                    | ナ   」<br>            | 連動十<br>応力降下量1.5倍  | 434  | 864  | 361  |  |  |  |  |  |
| Ss-7      |                    |                      | 連動十<br>断層傾斜角35°   | 389  | 780  | 349  |  |  |  |  |  |
| Ss-8      | 2004               | 年留萌支庁南部地震を           | 65                | 50   | 330  |      |  |  |  |  |  |



### 大湊側 入力地震動(基準地震動Ss)の擬似速度応答スペクトル



### 大湊側 入力地震動(基準地震動Ss)の擬似速度応答スペクトル

2004年留萌支庁南部地 震を考慮した地震動










## 大湊側入力地震動(基準地震動Ss)時刻歴波形(4)



## TEPCO

# 各施設の評価における入力地震動の選定

- 各施設の評価に用いる基準地震動は、敷地内の地震波増幅特性を考慮し、以下のとおりとする。
  - 5,6,7号炉原子炉建屋の基礎地盤安定性評価は、大湊側の基準地震動を用いる領域に位置することから、大湊側基準地震動を入力地震動に選定した。



#### 1. 評価概要

| 1. 1   | 評価概要         |                   | • • • | 7    |                  |                  |             |    |
|--------|--------------|-------------------|-------|------|------------------|------------------|-------------|----|
| 1. 2   | 評価対象施設       |                   | • • • | 9    |                  |                  |             |    |
| 2. 基礎地 | 也盤の安定性評価     |                   |       |      |                  |                  |             |    |
| 2. 1   | 評価方針         |                   | • • • | 11   |                  |                  |             |    |
| 2. 2   | 解析用物性值       |                   | • • • | 16   | -<br>N           | 甘本地般のすべい(証本古社)   |             | 40 |
| 2.3    | 評価方法         |                   | • • • | 23   |                  | 基礎地盤の9八り 「評価/」町」 | ••••        | 40 |
| 2.4    | 入力地震動        |                   | • • • | 30   | $\triangleright$ | 大湊側 基礎地盤のすべり     |             |    |
| 2.5    | 評価結果         | • • • • • • • • • | • • • | 40 < |                  | ● 平均強度に基づく評価     | • • • • 4   | 42 |
| 3. 周辺地 | 也盤の変状及び地殻変動に | による影響評価           |       |      |                  | ● 強度のばらつきを考慮した   | 評価・・ 4      | 46 |
| 3. 1   | 周辺地盤の変状による   | 重要施設への影響          |       | 71   | $\geqslant$      | 基礎の支持力           | • • • • • ( | 61 |
| 3. 2   | 地殻変動による基礎地震  | 盤の変形の影響           | • • • | 76   | $\geqslant$      | 基礎底面の傾斜          | • • • • • ( | 66 |
| 4. 周辺領 | 斜面の安定性評価     |                   | • • • | 82   |                  |                  |             |    |
| 5. まとぬ | <i>b</i>     |                   |       | 84   |                  |                  |             |    |

【別冊】補足説明資料

**TEPCO** 

## 基礎地盤のすべり〔評価方針〕

■ 基礎地盤のすべり評価は、下図の流れに従い実施する。



# 基礎地盤のすべり〔評価方針〕

■ 動的解析の結果に基づき、適切なすべり面を仮定して、すべり安全率が1.5以上であることを確認する。



## TEPCO

# 基礎地盤のすべり〔5,6,7号炉原子炉建屋 汀線平行断面〕

#### ■ すべり安全率は、評価基準値1.5以上であることを確認した。

| すべり線形状のパターン                              | Ss-1                                | Ss-2                  | Ss-3                                                           | Ss-4                  | Ss-5                  | Ss-6                  | Ss-7                  | Ss-8                                 |
|------------------------------------------|-------------------------------------|-----------------------|----------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------------------------|
|                                          | 2.8<br>(5.67)                       | <b>4.7</b> (21.75)    | 4.1<br><sup>〔24.90〕</sup><br>3.8(正,逆)                          | <b>7.4</b><br>〔51.64〕 | <b>7.1</b><br>(47.71) | <b>6.3</b><br>〔51.96〕 | <b>6.7</b><br>(46.54) | 4.3<br><sup>〔8.04〕</sup><br>3.1(逆,正) |
| <u><br/></u>                             | 3.0<br>〔6.13〕<br>3.0(正,逆)<br>〔6.13〕 | <b>4.9</b><br>〔22.88〕 | 〔35.73〕<br><b>3.4</b><br>〔17.63〕<br><b>3.4(逆,逆)</b><br>〔17.63〕 | <b>8.1</b><br>〔51.64〕 | <b>7.5</b><br>〔46.50〕 | <b>7.7</b><br>〔51.62〕 | <b>7.8</b><br>〔66.33〕 | (8.02)<br>4.6<br>(7.96)<br>—         |
|                                          | <b>4.2</b> (5.70)                   | 6.1                   | <b>4.2</b> (37.16)                                             | 8.5                   | 8.8                   | 8.2                   | 9.1                   | <b>4.7</b><br>(7.98)                 |
| 0_50_100(m) 建屋底面のすべり                     | <b>4.0(逆,正)</b><br>〔5.70〕           | L22.89J               | <b>4.0(正,逆)</b><br>〔17.66〕                                     | L51.63J               | L46.52J               | է51.63∫               | L66.40J               | <b>4.5(逆,正)</b><br><sup>〔7.97〕</sup> |
|                                          | <b>3.2</b> (5.67)                   | 5.0                   | <b>3.9</b><br>〔17.64〕                                          | 7.5                   | 7.5                   | 6.8                   | 7.7                   | <b>4.2</b><br>(7.97)                 |
| 0_50_100 <sup>(m)</sup> 建屋底面のすべり         | —                                   | 〔22.89〕               | <b>3.6(逆,逆)</b><br>〔17.65〕                                     | 〔51.63〕               | 〔46.52〕               | 〔51.63〕               | 〔46.55〕               | <b>4.0(逆,正)</b><br><sub>〔7.97〕</sub> |
|                                          | 1.9<br>〔5.67〕                       | 2.6                   | <b>1.7</b><br>〔17.63〕                                          | 3.6                   | 3.5                   | 3.1                   | 3.4                   | 1.9<br>〔8.00〕                        |
| <sup>00</sup> F <sub>3</sub> 断層+V系断層のすべり | 1.7(逆,正)<br><sup>〔6.86〕</sup>       | (21.22)               | <b>1.6(</b> 正,逆)<br><sub>〔17.64〕</sub>                         | 〔51.62〕               | 〔46.50〕               | 〔51.62〕               | 〔46.52〕               | _                                    |
|                                          | <b>1.8</b><br>〔6.47〕                | 2.9                   | <b>1.6</b><br>〔37.36〕                                          | 3.2                   | 3.6                   | 3.1                   | 3.3                   | <b>1.9</b><br>〔8.05〕                 |
| 0_50_100m F <sub>2</sub> 断層のすべり          | —                                   | 〔20.90〕               | <u>1.5(</u> 正,逆)<br><sub>〔17.62〕</sub>                         | 〔51.58〕               | 〔46.52〕               | 〔51.59〕               | 〔66.37〕               | <b>1.8(逆,正)</b><br><sup>〔8.05〕</sup> |
|                                          | <b>2.2</b><br>(6.47)                | 4.2                   | <b>2.1</b> (17.59)                                             | 4.4                   | 4.9                   | 4.4                   | 4.2                   | 2.6<br>(8.02)                        |
| <sup>0</sup> F <sub>2</sub> 断層+V系断層のすべり  | _                                   | 〔20.87〕               | 2.0(正,逆)<br><sup>〔17.60〕</sup>                                 | 〔51.57〕               | 〔64.67〕               | 〔51.58〕               | 〔66.34〕               | _                                    |

※ 下線は、最小すべり安全率を示す。 ※ Ss-1, 3, 8の上段に、位相反転なしの場合のすべり安全率を記載。

※Ss-1,3,8の下段に、位相反転ありの場合のすべり安全率が位相反転なしの場合のすべり安全率を下回った場合の最小すべり安全率を記載。

※ Ss-1,3,8の下段に記載の、(逆,正)は水平反転、(正,逆)は鉛直反転、(逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は、発生時刻(秒)を示す。

2. 基礎地盤の安定性評価

2.5 評価結果

## 基礎地盤のすべり〔6号炉原子炉建屋 汀線直交断面〕

■ すべり安全率は,評価基準値1.5以上であることを確認した。

| すべり線形状のパターン               | Ss-1                                  | Ss-2             | Ss-3                                   | Ss-4    | Ss-5    | Ss-6    | Ss-7                                                                                           | Ss-8                                  |
|---------------------------|---------------------------------------|------------------|----------------------------------------|---------|---------|---------|------------------------------------------------------------------------------------------------|---------------------------------------|
|                           | <b>2.8</b> (5.66)                     | 2.8<br>5.66〕 3.2 | <b>4.4</b> (24.90)                     | 5.7     | 5.4     | 4.6     | 4.0                                                                                            | <b>4.0</b><br>(7.96)                  |
| 0 50 100 (m)     建屋底面のすべり | _                                     | 〔22.46〕          | <b>3.8</b> (正,逆)<br><sup>〔17.66〕</sup> | 〔54.53〕 | 〔46.87〕 | 〔54.54〕 | 〔46.88〕                                                                                        | <b>3.7</b> (逆,正)<br><sup>〔7.96〕</sup> |
|                           | <b>2.3</b> (5.67)                     | 2.5              | <b>2.7</b> (37.14)                     | 3.6     | 3.0     | 2.7     | 2.6                                                                                            | <b>2.2</b><br>(7.97)                  |
| 0 F <sub>3</sub> 断層のすべり   | <u>2.1</u> (逆,正)<br><sup>〔5.68〕</sup> | 〔22.47〕          | <b>2.4</b> (正,逆)<br><sup>〔17.65〕</sup> | 〔54.53〕 | 〔57.31〕 | 〔54.54〕 | Ss-7<br>4.0<br>(46.88)<br>2.6<br>(46.89)<br>3.6<br>(57.33)<br>3.1<br>(57.33)<br>3.0<br>(40.00) | _                                     |
|                           | 3.5<br>(5.67)                         | 3.8              | 2.6<br>(37.29)                         | 4.8     | 4.0     | 3.9     | 3.6                                                                                            | <b>3.4</b><br>(7.98)                  |
| 0 50 100 m F₂断層のすべり       | <b>3.4</b> (逆,正)<br><sup>〔5.68〕</sup> | 〔22.46〕          | <b>2.4</b> (正,逆)<br><sup>〔17.64〕</sup> | 〔54.00〕 | 〔57.29〕 | 〔54.55〕 | 〔57.33〕                                                                                        | <b>3.2</b> (逆,正)<br><sup>〔7.98〕</sup> |
|                           | <b>2.9</b> (6.47)                     | 3.6              | <b>2.8</b> (37.28)                     | 4.2     | 3.3     | 3.2     | 3.1                                                                                            | <b>2.9</b> (8.00)                     |
| 0 50 100 (〒2 断層+V系断層のすべり) | <b>2.8</b> (逆,正)<br><sup>〔5.68〕</sup> | 〔22.45〕          | <b>2.7</b> (正,逆)<br><sup>〔17.59〕</sup> | 〔54.02〕 | 〔57.29〕 | 〔54.56〕 | 〔57.33〕                                                                                        | _                                     |
|                           | 2.5<br>(5.66)                         | 2.9              | <b>2.7</b> (19.25)                     | 3.7     | 3.3     | 3.3     | 3.0                                                                                            | <b>3.0</b> (7.98)                     |
| 0 貯留堰を含むすべり               | _                                     | 〔22.45〕          | <b>2.6</b> (逆,逆)<br><sup>〔37.31〕</sup> | (54.52) | 〔55.16〕 | 〔56.18〕 | 〔46.86〕                                                                                        | <b>2.7</b> (逆,正)<br><sup>〔7.97〕</sup> |

※ <u>下線</u>は,最小すべり安全率を示す。 ※ Ss-1,3,8の上段に,位相反転なしの場合のすべり安全率を記載。

※ Ss-1,3,8の下段に,位相反転ありの場合のすべり安全率が位相反転なしの場合のすべり安全率を下回った場合の最小すべり安全率を記載。

※ Ss-1, 3, 8の下段に記載の, (逆,正)は水平反転, (正,逆)は鉛直反転, (逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は,発生時刻(秒)を示す。



2. 基礎地盤の安定性評価
 2. 5 評価結果

## 基礎地盤のすべり〔7号炉原子炉建屋 汀線直交断面〕

2. 基礎地盤の安定性評価 2.5 評価結果

#### ■ すべり安全率は、評価基準値1.5以上であることを確認した。

| すべり線形状のパターン                                   | Ss-1                                  | Ss-2    | Ss-3                                   | Ss-4    | Ss-5    | Ss-6    | Ss-7    | Ss-8                      |
|-----------------------------------------------|---------------------------------------|---------|----------------------------------------|---------|---------|---------|---------|---------------------------|
|                                               | <b>2.7</b><br>〔5.66〕                  | 3.2     | <b>3.9</b><br>〔37.14〕                  | 4.5     | 4.2     | 3.8     | 4.2     | <b>3.3</b><br>〔7.96〕      |
| 0_50_100 <sup>(m)</sup> 建屋底面のすべり              | <b>2.4(逆,正)</b><br><sup>〔5.66〕</sup>  | 〔22.46〕 | <b>3.7(</b> 正,逆)<br><sub>〔17.65〕</sub> | 〔52.56〕 | 〔46.48〕 | 〔54.54〕 | 〔46.88〕 |                           |
|                                               | 1.9<br>(4.72)                         | 2.6     | <b>2.2</b><br>〔17.63〕                  | 2.9     | 2.6     | 2.4     | 2.7     | <b>2.2</b><br>(7.97)      |
| º॒ <sup>50_100(m)</sup> F <sub>3</sub> 断層のすべり | <u>1.6</u> (逆,正)<br><sup>〔5.67〕</sup> | 〔21.83〕 | <b>2.0(</b> 正,逆)<br><sub>〔17.63〕</sub> | 〔52.55〕 | 〔57.31〕 | 〔54.54〕 | 〔46.87〕 |                           |
|                                               | <b>2.4</b><br>〔4.72〕                  | 3.2     | <b>2.5</b><br>〔17.61〕                  | 3.4     | 2.9     | 2.8     | 3.1     | <b>2.6</b><br>〔7.97〕      |
| <sup>00</sup> F <sub>3</sub> 断層+V系断層のすべり      | <b>2.0(逆,正)</b><br>〔5.67〕             | 〔21.83〕 | <b>2.2(正,逆)</b><br>〔17.61〕             | 〔52.53〕 | 〔57.31〕 | 〔54.54〕 | 〔59.94〕 | _                         |
|                                               | <b>3.8</b><br>〔10.30〕                 | 4.5     | <b>3.3</b><br>〔37.29〕                  | 4.7     | 3.9     | 3.9     | 3.9     | <b>3.7</b><br>〔8.01〕      |
| 0 F2断層のすべり                                    | <b>3.6(逆,正)</b><br>〔5.68〕             | 〔19.30〕 | <b>3.1(</b> 正,逆)<br>〔17.57〕            | 〔56.17〕 | 〔57.29〕 | 〔54.56〕 | 〔57.32〕 |                           |
|                                               | <b>3.7</b><br>〔6.42〕                  | 4.7     | <b>3.2</b><br>〔37.29〕                  | 5.1     | 4.0     | 4.1     | 3.8     | <b>4.1</b><br>〔8.01〕      |
| <sup>00</sup> F₂断層+V系断層のすべり                   |                                       | 〔19.30〕 | <b>3.0(正,逆)</b><br>〔17.57〕             | 〔56.15〕 | 〔57.28〕 | 〔54.57〕 | 〔59.93〕 |                           |
|                                               | <b>2.7</b> (5.66)                     | 2.9     | <b>2.5</b> (19.27)                     | 3.7     | 3.1     | 3.1     | 2.8     | <b>2.8</b> (7.99)         |
| 0 <u>50 100</u> (m) 貯留堰を含むすべり                 | <b>2.7(逆,正)</b><br>〔10.31〕            | 〔22.46〕 | <b>2.4(逆,正)</b><br>〔17.61〕             | 〔54.54〕 | 〔55.16〕 | 〔54.56〕 | 〔57.32〕 | <b>2.8(逆,正)</b><br>〔8.00〕 |

※ 下線は、 取小9 ハリ女王 単を示9。 ※ SS-1, 3, 8の上段に、世相反転なしの場合の9へり女王率を記載。

※ Ss-1, 3, 8の下段に、位相反転ありの場合のすべり安全率が位相反転なしの場合のすべり安全率を下回った場合の最小すべり安全率を記載。

※ Ss-1,3,8の下段に記載の、(逆,正)は水平反転、(正,逆)は鉛直反転、(逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は、発生時刻(秒)を示す。



## 基礎地盤のすべり [5号炉原子炉建屋 汀線直交断面]

2. 基礎地盤の安定性評価
 2. 5 評価結果

#### ■ すべり安全率は,評価基準値1.5以上であることを確認した。

| すべり線形状のパターン                                 | Ss-1                                 | Ss-2    | Ss-3                                   | Ss-4    | Ss-5    | Ss-6                  | Ss-7                  | Ss-8                                  |
|---------------------------------------------|--------------------------------------|---------|----------------------------------------|---------|---------|-----------------------|-----------------------|---------------------------------------|
|                                             | <b>4.3</b> (9.14)                    | 5.0     | <b>5.2</b> (17.45)                     | 7.0     | 7.0     | 6.5                   | 6.8                   | <b>4.7</b> (7.97)                     |
| 0 50 100 m 建屋底面のすべり                         | _                                    | 〔20.78〕 | <b>4.9</b> (正,逆)<br>〔17.47〕            | 〔56.22〕 | 〔46.49〕 | 〔51.65〕               | 〔59.45〕               | _                                     |
|                                             | <b>3.2</b> (5.66)                    | 3.8     | <b>4.0</b> (24.88)                     | 5.1     | 5.0     | 4.3                   | 3.7                   | <b>3.8</b><br>(7.96)                  |
| 0_50_100(m) 建屋底面のすべり                        | _                                    | 〔22.45〕 | <b>3.8(逆,逆)</b><br>〔17.65〕             | 〔54.53〕 | 〔55.14〕 | j.14) (54.54) (46.87) | 〔46.87〕               | <b>3.8</b> (逆,正)<br><sup>〔7.95〕</sup> |
|                                             | <b>3.1</b> (5.67)                    | 3.7     | <b>4.0</b><br>(36.51)                  | 4.7     | 4.8     | 3.9                   | <b>3.6</b><br>(46.86) | <b>3.4</b> (7.97)                     |
| <sup>0_50_100</sup> ™ F <sub>3</sub> 断層のすべり | —                                    | (22.45) | <b>3.7(</b> 逆,逆)<br>〔17.65〕            | (54.54) | (55.17) | 〔54.55〕               |                       | _                                     |
|                                             | <b>3.4</b> (6.78)                    | 3.7     | <b>3.1</b><br>(37.28)                  | 4.4     | 4.4 3.4 | 3.1                   | 3.2                   | <u>2.6</u><br>(8.00)                  |
| <sup>00</sup> <sup></sup> F₂断層のすべり          | <b>2.9(逆,逆)</b><br><sup>〔9.17〕</sup> | 〔20.77〕 | <b>2.7</b> (正,逆)<br><sup>〔17.56〕</sup> | 〔54.01〕 | 〔57.30〕 | 〔54.57〕               | 〔57.33〕               | _                                     |
|                                             | <b>3.6</b> (9.16)                    | 3.8     | <b>3.8</b> (17.46)                     | 5.2     | 5.5     | 4.7                   | 5.3                   | <b>3.2</b> (7.99)                     |
| <sup>0 50 100 (m)</sup> F₂断層+V系断層のすべり       | <b>3.3(</b> 逆,正)<br>〔6.84〕           | (20.79) | <b>3.5(</b> 正,逆)<br>〔17.48〕            | 〔56.22〕 | (46.50) | 〔51.66〕               | 〔59.48〕               | _                                     |

※ <u>下線</u>は,最小すべり安全率を示す。 ※ Ss-1,3,8の上段に,位相反転なしの場合のすべり安全率を記載。

※ Ss-1,3,8の下段に、位相反転ありの場合のすべり安全率が位相反転なしの場合のすべり安全率を下回った場合の最小すべり安全率を記載。

※ Ss-1, 3, 8の下段に記載の, (逆,正)は水平反転, (正,逆)は鉛直反転, (逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は,発生時刻(秒)を示す。

## 基礎地盤のすべり〔強度のばらつき評価〕

- ■物性のばらつきのうち,評価に最も影響を及ぼす強度のばらつきについて検討を実施した。
- ■物性のばらつきとして、強度を「平均-1σ強度」に設定した。
- すべての評価ケースの中で,最もすべり安全率が最小(1.5)となったケースを対象に検討を実施した。 対象ケース:5,6,7号炉汀線平行断面,基準地震動Ss-3(正,逆),F<sub>2</sub>断層のすべり

主な地層および断層の解析用物性値(強度)

上段:平均強度 下段:平均 $-1\sigma$ 強度

|                                                     | 西山層                                                      | F系断層(粘土部)                                                          | F系断層(破砕部)                                                          |
|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| ピーク強度 <i>C</i> u<br>(N/mm²)                         | 1.37—0.00504 <i>·Z</i><br><u>1.13—0.00504<i>·Z</i></u>   | 0.286+0.191 <i>·P</i><br><u>0.243+0.191<i>·P</i></u><br>粘土部と破砕部の強) | 0.279+0.242・ <i>P</i><br><u>0.215+0.242・<i>P</i></u><br>度の低い方を用いる。 |
| 引張強度 $\sigma_{ m t}$<br>(N/mm <sup>2</sup> )        | 0.335—0.00157 <i>·Z</i><br><u>0.216—0.00157<i>·Z</i></u> |                                                                    | _                                                                  |
| 残留強度 <i>C</i> <sub>ur</sub><br>(N/mm <sup>2</sup> ) | 0.673—0.00201· <i>Z</i><br><u>0.479—0.00201·<i>Z</i></u> | 0.219+0.251 <i>·P</i><br><u>0.174+0.251<i>·P</i></u><br>粘土部と破砕部の強J | 0.278+0.181・ <i>P</i><br><u>0.212+0.181・<i>P</i></u><br>度の低い方を用いる。 |

注1: Zは, T.M.S.L.(m)を示す。 注2: Pは, 平均有効拘束圧(N/mm<sup>2</sup>)を示す。

## 基礎地盤のすべり〔強度のばらつき評価〕

- 平均強度において、すべり安全率が最小(1.5)となったケースについて、強度のばらつき(平均-1 σ 強度)を 考慮した評価を行った結果、すべり安全率は1.3であり、1.5を下回るものの1.0を上回ることを確認した。
- 評価に用いている二次元解析は、代表する1断面から単位奥行き幅の二次元断面を作成し、平面ひずみ条件で解析しているため、奥行き方向に無限に連続、かつ変化しないすべり面を評価していることから、奥行き方向の地質・ 地質構造の変化や建屋形状等を考慮できる複数の二次元解析を重ね合わせた二次元重合せ解析※を実施した。

| 評価対象断面                              | すべり線形状のパターン                                  | すべり安全率                | すべり安全率                |
|-------------------------------------|----------------------------------------------|-----------------------|-----------------------|
| 及び地震動                               |                                              | 〔平均強度〕                | 〔平均-1σ強度〕             |
| 6,7号炉原子炉建屋<br>汀線平行断面<br>【Ss-3(正,逆)】 | <u>0 50 100</u> (m)<br>F <sub>2</sub> 断層のすべり | <b>1.5</b><br>〔17.62〕 | <b>1.3</b><br>(19.28) |

※基準地震動Ss-3の(正,逆)は、鉛直反転を示す。 ※〔〕は、発生時刻(秒)を示す。

- ※ 大島ほか;側方効果を考慮した擬似三次元モデルによる地盤安定性評価法\*, 地盤エ学ジャーナル, Vol. 10, No. 2, 225-234, 2015.6.
  - \* 擬似三次元モデルによる地盤安定性評価法: 奥行き方向の地質・地質構造の変化や建屋形状等を考慮できるよう,複数の二次元断面 を作成して解析を行い,それらを重ね合わせてすべり土塊の力の釣り合いを評価する方

## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(1)〕

#### <u>検討概要</u>

■ 大湊側の基礎地盤のすべり評価は、下図の流れで実施している。なお、すべり安全率が最小となったケースについて、強度のばらつき(平均−1 σ 強度)を考慮した評価を行った結果、すべり安全率は1.3であり、1.5を下回ることから、下図の流れに従って二次元重合せ解析を実施した。



### 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(2)〕



検討対象の選定

- ■検討は、強度のばらつき(平均−1 σ 強度)を考慮したケース(すべり安全率1.3)に対して、二次元重合せ 解析に基づく評価を実施した。
- 二次元重合せ解析では、複数の二次元断面を作成し、解析用地盤物性値や境界条件等の解析条件は、二次元 解析に準じて設定した。各断面で解析を実施して地震時応力を算定し、すべり安全率を算定した。



## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(3)〕



2. 基礎地盤の安定性評価
 2. 5 評価結果

## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(4)〕



各二次元断面の分担幅図

### 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(5)〕





#### 奥行き方向のすべり範囲の検討

- 建屋等の構築物が設置される以前の断層のある
   地盤の安定性については、地質・地質構造の評価(断層の活動性評価)により確認している。
- 基礎地盤の地震時安定性は、建屋等の構築物が 設置されたことによる地盤の応力状態の変化に 対して、解析的な検討により基礎地盤の安定性 を評価するものであることから、以下の観点で 奥行き方向のすべり範囲の検討を実施した。
  - A) 建屋がある場合とない場合の動的解析を行い
     ,両者の応力変動を比較することにより、建
     屋の影響を受ける範囲を検討する。※
  - B) 設定した範囲について、敷地内及び敷地近傍 における過去の地すべり規模と比較する。
  - ※ 土木学会原子力土木委員会:原子力発電所の基礎地盤及び 周辺斜面の安定性評価技術<技術資料>,2009年2月



基礎地盤の安定性評価における 安定性評価範囲の設定に関する基本的な流れ

## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(6)〕



## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(7)〕



## 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(8)〕

基礎地盤の安定性評価
 2.5 評価結果

#### 奥行き方向のすべり面拡大の検討

奥行き方向のすべり範囲の不確かさを考慮し、設定したすべり範囲に対して、さらにすべり面を拡大した検討を実施する。

奥行き方向のすべり面が汀線平行断面のF2断層を通るすべりの規模と同程度となるよう、海側、山側にそれぞれ100m拡大し、約650mとした。



奥行き方向のすべり面拡大範囲図

検討対象の選定

評価範囲の設定

断面負担幅

の設定

すべり範囲

の設定

すべり面の設定

(パラメータ設定)

すべり安全率の評価

### 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(9)〕



### 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(10)〕

基礎地盤の安定性評価
 2.5 評価結果



すべり安全率の評価

TEPCO

評価結果(1)

- パラメータスタディの結果、最小すべり安全率は2.7であり、1.5を上回ることを確認した。また、奥行き方向のすべり面を拡大したケース5の安全率は3.3であり、最小すべり安全率を上回ることを確認した。
- パラメータスタディの結果、本評価では、立上げ角度の 影響は小さく、立上げ位置が建屋から離れるほど、すべ り安全率が小さくなる傾向が認められる。ただし、立上 げ角度67.5度の場合、建屋の影響範囲(450m)を超 え、海側のF2断層がさらに深くなるケース5については、 すべり安全率が上昇に転じており、その他の立上げ角度 でもケース4では上昇に転ずる傾向が認められる。
- これは、F2断層が海側に向かってやや傾斜を急にしなが ら深部に向かっているため、西山層を通るすべり面の面 積増加や強度増加により抵抗力が増加したためと考えら れる。

|                     | 5                     | Ss-3(正,逆                            | i), 強度:平均             | $9-1\sigma$ 強度        |                          |  |  |  |  |
|---------------------|-----------------------|-------------------------------------|-----------------------|-----------------------|--------------------------|--|--|--|--|
| 立上位置<br>側面の<br>立上角度 | 5-21                  | <b>ケース②</b><br>(ケース❷`)              | ५-२ <b>⊗</b>          | ケース4                  | ५−२ <b>७</b>             |  |  |  |  |
| 67.5度               | <b>3.3</b><br>[19.26] | <b>2.9</b><br>〔19.25〕               | <b>2.8</b><br>[19.24] | <b>2.7</b><br>[19.24] | 3.3<br>[36.54]           |  |  |  |  |
| 45度                 | <b>3.1</b><br>[19.26] | 3.0<br>[19.25]<br>(2.7)<br>[ 19.25] | <b>2.8</b><br>[19.24] | <b>2.8</b><br>[19.24] | 建屋影響                     |  |  |  |  |
| 33度                 | <b>3.3</b><br>[19.26] | <b>3.1</b><br>〔19.25〕               | <b>2.9</b><br>[19.24] | <b>3.0</b><br>[19.24] | ー の<br>範囲外               |  |  |  |  |
|                     |                       |                                     | ×()                   | は、発生時刻                | <ul><li>(秒)を示す</li></ul> |  |  |  |  |



奥行き方向のすべり面図



すべり安全率が最小となるケースのすべり面 (立上げ角度:67.5度,立上げ位置:ケース4)

### 基礎地盤のすべり 〔強度のばらつき評価:奥行きを考慮した評価(11)〕



2. 基礎地盤の安定性評価
 2. 5 評価結果

<u>まとめ</u>

- 大湊側の基礎地盤のすべり評価については、二次元地震応答解析に基づく平均強度を用いたすべり安全率は、 基準地震動に対してすべての評価対象断面で1.5を上回ることを確認している。さらに、すべり安全率が最小 となるケースについて強度のばらつきを考慮した評価を実施した結果、すべり安全率が1.5を下回ることから 、奥行き方向の地質・地質構造の変化や建屋形状等を考慮できる二次元重合せ解析に基づく基礎地盤のすべり 評価を実施した。
  - 奥行き方向のすべり範囲について、建屋設置による地盤への影響検討や近傍の地すべり規模との比較を行う とともに、すべり面を拡大した検討を行い、設定したすべり範囲の妥当性を確認した。
  - 地表面に抜けるすべり面の立上げ角度や立上げ位置を変えてすべり面を設定し、パラメータスタディを実施した結果、二次元重合せ解析に基づくすべり安全率の最小値は2.7であり、1.5を上回ることを確認した。
  - あわせて、奥行き方向の地表面に抜けるすべり面の抵抗を考慮しない場合についても評価を実施した結果、 すべり安全率の最小値は1.6であり、すべり安全率が1.5を上回ることを確認した。

#### 1. 評価概要

| 1. 1  | 1 評価概要        | • • • • • • • • | • • • • | 7    |       |             |           |    |
|-------|---------------|-----------------|---------|------|-------|-------------|-----------|----|
| 1. 2  | 2 評価対象施設      |                 | • • • • | 9    |       |             |           |    |
| 2. 基础 | 楚地盤の安定性評価     |                 |         |      |       |             |           |    |
| 2. 1  | 1 評価方針        | • • • • • • • • | • • • • | 11   |       |             |           |    |
| 2. 2  | 2 解析用物性值      | • • • • • • • • | • • • • | 16   |       | やるすべい「司再士をし |           | 10 |
| 2. 3  | 3 評価方法        | • • • • • • • • | • • • • | 23   | ▶ 左碇儿 |             |           | 40 |
| 2. 4  | 4 入力地震動       |                 | • • • • | 30   | > 大湊俱 | 」 基礎地盤のすべり  |           |    |
| 2. 5  | 5 評価結果        | • • • • • • • • | • • • • | 40 < | • 平   | 均強度に基づく評価   | • • • •   | 42 |
| 3. 周辺 | の地盤の変状及び地殻変動に | こよる影響評価         |         |      | ●強    | 度のばらつきを考慮した | 評価••      | 46 |
| 3.    | 1 周辺地盤の変状による重 | 重要施設への影響        |         | 71   | ▶ 基礎の | )支持力        | • • • • • | 61 |
| 3. 2  | 2 地殻変動による基礎地震 | 盤の変形の影響         | • • •   | 76   | > 基礎底 | 画の傾斜        | • • • • • | 66 |
| 4. 周边 | 四斜面の安定性評価     |                 | • • • • | 82   |       |             |           |    |
| 5. まと | とめ            |                 | • • • • | 84   |       |             |           |    |

【別冊】補足説明資料

**TEPCO** 

## 基礎の支持力〔評価方針〕

原位置試験の結果等に基づき、基礎地盤支持力の評価基準値を設定し、二次元有限要素法に基づく地震応答解析(周波数応答解析)により求められる基礎の接地圧(鉛直応力)が評価基準値を超えていないことを確認する。



岩盤試験(支持力)

# 基礎の支持力〔5,6,7号炉原子炉建屋〕

#### ■ 5, 6, 7号炉原子炉建屋の地震時最大接地圧は, 西山層支持力の評価基準値を超えていないことを確認した。

|                    | 評価                                    |                                                                     |                                | 地震                                                            | 時最大接地                  | 也圧(N/mm                | <sup>2</sup> )         |                        |                                                             |
|--------------------|---------------------------------------|---------------------------------------------------------------------|--------------------------------|---------------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------------|
| 評価刈家               | 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一 | Ss-1                                                                | Ss-2                           | Ss-3                                                          | Ss-4                   | Ss-5                   | Ss-6                   | Ss-7                   | Ss-8                                                        |
| 6号炉原子炉建屋<br>汀線平行断面 | 6.0                                   | 1.64<br><sup>〔6.76〕</sup><br><u>1.79</u> (正,逆)<br><sub>〔5.73〕</sub> | <b>1.44</b><br>[23.57]         | 1.54<br><sup>〔35.66〕</sup><br>1.63(逆,正)<br><sub>〔17.53〕</sub> | <b>1.17</b><br>〔45.80〕 | <b>1.25</b><br>〔51.40〕 | <b>1.42</b> (51.86)    | <b>1.18</b><br>〔46.46〕 | 1.65<br>[8.02]                                              |
| 6号炉原子炉建屋<br>汀線直交断面 | 0.0                                   | 1.39<br><sup>〔6.16〕</sup><br>1.46(逆,逆)<br><sup>〔5.70〕</sup>         | <b>1.36</b><br>(21.91)         | 1.30<br><sup>〔37.45〕</sup><br>1.33(逆,逆)<br><sup>〔17.25〕</sup> | <b>1.18</b><br>〔46.23〕 | <b>1.22</b><br>〔57.38〕 | <b>1.15</b> (59.08)    | <b>1.16</b><br>(54.37) | <b>1.24</b><br>〔8.01〕<br><b>1.24</b> (逆,正)<br>〔7.78〕        |
| 7号炉原子炉建屋<br>汀線平行断面 |                                       | 2.72<br>(6.10)                                                      | <b>2.06</b> <sup>[20.95]</sup> | 2.35<br>(17.52)<br>—                                          | <b>1.79</b><br>〔51.81〕 | <b>1.58</b><br>〔46.55〕 | <b>1.73</b><br>〔51.68〕 | <b>1.64</b><br>〔66.21〕 | 2.38<br>(8.09)                                              |
| 7号炉原子炉建屋<br>汀線直交断面 | 6.2                                   | 2.94<br><sup>[6.55]</sup><br><u>3.23</u> (逆,逆)<br><sup>[5.69]</sup> | <b>2.80</b><br>(22.31)         | 2.71<br><sup>〔37.46〕</sup><br>2.77(逆,逆)<br><sup>〔24.90〕</sup> | <b>2.66</b><br>(46.24] | <b>2.91</b><br>〔46.90〕 | <b>2.51</b><br>(59.08) | <b>2.60</b><br>(46.92) | 2.47<br><sup>[8.01]</sup><br>2.70(逆,正)<br><sup>[7.77]</sup> |
| 5号炉原子炉建屋<br>汀線平行断面 | 5.5                                   | 1.94<br><sup>〔6.77〕</sup><br><u>2.05</u> (逆,逆)<br><sup>〔5.70〕</sup> | <b>1.67</b><br>(22.19)         | <b>1.79</b><br>(37.46)                                        | <b>1.60</b><br>(45.79) | <b>1.66</b><br>(46.43) | <b>1.59</b><br>(51.83) | <b>1.56</b><br>(46.45) | 1.70<br>(8.00)<br>1.86<br>(8.02)                            |
| 5号炉原子炉建屋<br>汀線直交断面 | 0.0                                   | 1.51<br><sup>〔6.56〕</sup><br>1.76(逆,逆)<br><sup>〔5.70〕</sup>         | <b>1.52</b><br>(21.90)         | 1.48<br><sup>〔17.68〕</sup><br>1.51(逆,逆)<br><sub>〔17.23〕</sub> | <b>1.35</b> (51.90)    | <b>1.48</b><br>(57.37) | <b>1.38</b><br>(59.08) | <b>1.41</b><br>(55.22) | 1.44<br><sup>(8.03)</sup><br>1.46(逆,正)<br><sup>(7.77)</sup> |

※ <u>下線</u>は, 各号炉における地震時最大接地圧の最大値を示す。 ※ Ss-1, 3, 8の上段に, 位相反転なしの場合の最大接地圧を記載。

※ Ss-1, 3, 8の下段に, 位相反転ありの場合の最大接地圧が位相反転なしの場合の最大接地圧を上回った場合の最大接地圧を記載。

※ Ss-1, 3, 8の下段に記載の, (逆,正)は水平反転, (正,逆)は鉛直反転, (逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は,発生時刻(秒)を示す。



2. 基礎地盤の安定性評価
 2. 5 評価結果

# 基礎の支持力〔取水路〕

#### ■ 取水路の最大鉛直力に対して、古安田層は十分な支持性能を有していることを確認した。

※1:極限支持力(③), ※2:最大鉛直力(②)

| ≕/#⇒+        | ъ                                                   | 評価結果                       |                            |                            |                            |                            |                            |                            |                           |  |  |
|--------------|-----------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|--|--|
| 評価刈家         | 坦日                                                  | Ss-1                       | Ss-2                       | Ss-3                       | Ss-4                       | Ss-5                       | Ss-6                       | Ss-7                       | Ss-8                      |  |  |
|              | 評価基準値 <sup>※1</sup> (kN)                            | 38,100                     | 40,300                     | 32,500                     | 40,500                     | 36,100                     | 39,200                     | 36,400                     | 29,500                    |  |  |
| 取水路<br>(一般部) | 照查用応答値 <sup>※2</sup> (kN)<br>(応答値/基準値)<br>〔発生時刻(秒)〕 | 9,290<br>(0.24)<br>〔15.97〕 | 7,510<br>(0.19)<br>〔21.95〕 | 8,150<br>(0.25)<br>〔39.57〕 | 6,950<br>(0.17)<br>〔45.79〕 | 6,660<br>(0.18)<br>〔46.41〕 | 6,930<br>(0.18)<br>〔45.77〕 | 6,620<br>(0.18)<br>〔46.43〕 | 5,650<br>(0.19)<br>〔9.33〕 |  |  |



# 基礎の支持力〔貯留堰〕

FLU

■ 貯留堰の最大鉛直力に対して、古安田層は十分な支持性能を有していることを確認した。

※1:極限支持力(③), ※2:最大鉛直力(①+②)

| 評価対象                       | 評価<br>基準値 <sup>※1</sup>                            | (上                                    | 段:応答値,                         | 中段( )                       | 照査用応答<br>:応答値/                         | 答値 <sup>※2</sup> (kN)<br>基準値,下即     | 段〔〕:爭                                | 発生時刻(利                      | )))                          |
|----------------------------|----------------------------------------------------|---------------------------------------|--------------------------------|-----------------------------|----------------------------------------|-------------------------------------|--------------------------------------|-----------------------------|------------------------------|
|                            | (KN)                                               | Ss-1                                  | Ss-2                           | Ss-3                        | Ss-4                                   | Ss-5                                | Ss-6                                 | Ss-7                        | Ss-8                         |
| 貯留堰                        | 1,579                                              | 43.0<br>(0.03)<br>(16.21)             | 39.5<br>(0.03)<br>(20.63]      | 39.6<br>(0.03)<br>(38.86]   | 38.2<br>(0.02)<br>[46.34]              | 38.1<br>(0.02)<br>〔52.11〕           | 38.1<br>(0.02)<br>〔45.75〕            | 38.0<br>(0.02)<br>(53.70)   | 37.5<br>(0.02)<br>(7.69]     |
| ①;<br>②;<br>地源<br>形作<br>(出 | 常時荷重(自<br>地震荷重の評(<br>電応答解析(二<br>解析)を実施し<br>最大鉛直力)を | 重)の評価<br>西<br>次元動的有限<br>, 貯留堰の材<br>算出 | 表要素法:等低<br>該頭に係る慣れ   ②地震   ①杭の | 西線<br>生力<br>受時荷<br>重<br>D自重 | ③支持力<br>『道路橋<br>((社) E<br>式より極限<br>評価) | の評価<br>示方書(I共語<br>日本道路協会<br>見支持力を算) | 通編・Ⅳ下部<br>, 平成14年3<br>定(群杭とし<br>の支持力 | 3構造編)・同<br>月)』に示す<br>て周面摩擦の | <b></b><br>引解説<br>きれる<br>りみを |
| TERCO                      |                                                    | <b></b>                               | 十分なす<br>長大鉛直力(                 | を持性能を有<br>(①+②) <           | することを<br>< 極限支持                        | 確認<br>;力(③)                         |                                      |                             |                              |

#### 1. 評価概要

| 1.1 評価概要       | • • • • • • • • • • • 7   |                                            |              |
|----------------|---------------------------|--------------------------------------------|--------------|
| 1.2 評価対象施設     | • • • • • • • • • • • • 9 |                                            |              |
| 2. 基礎地盤の安定性評価  |                           |                                            |              |
| 2.1 評価方針       | • • • • • • • • • • • 11  |                                            |              |
| 2.2 解析用物性值     | • • • • • • • • • • • 16  |                                            |              |
| 2.3 評価方法       | • • • • • • • • • • • 23  | ▶ 基礎地盤の9へりし                                |              |
| 2.4 入力地震動      | • • • • • • • • • • • 30  | ▶ 大湊側 基礎地盤の                                | すべり          |
| 2.5 評価結果       | •••••••••• 40             | <ul><li>&lt; <p>✓ ● 平均強度に基づく</p></li></ul> | 、評価 •••• 42  |
| 3. 周辺地盤の変状及び地殻 | 設変動による影響評価                | • 強度のばらつきを                                 | き慮した評価・・ 46  |
| 3.1 周辺地盤の変状に   | こよる重要施設への影響・・・・ 71        | ▶ 基礎の支持力                                   | • • • • • 61 |
| 3.2 地殻変動による基   | 基礎地盤の変形の影響 ••• 76         | ▶ 基礎底面の傾斜                                  | •••• 66      |
| 4.周辺斜面の安定性評価   | • • • • • • • • • • • 82  |                                            |              |
| 5. まとめ         |                           |                                            |              |

【別冊】補足説明資料

**TEPCO** 

TEPCO

二次元有限要素法に基づく地震応答解析(周波数応答解析)による鉛直変位量から求められる基礎の 最大不等沈下量及び残留不等沈下量による傾斜について、基本設計段階の目安値(1/2,000)との比 較を行う。

| 対象施設       | 最大傾斜の<br>基本設計段階の目安値 | 備考                                     |
|------------|---------------------|----------------------------------------|
| 6•7号炉原子炉建屋 | 1/2.000             | 審査ガイドの目安値(基本設計段階の目安値):                 |
| 5号炉原子炉建屋   | 172,000             | 一般建築物の構造的な障害が発生する限界(電裂の発生率、発生区間等により判断) |



## 基礎の傾斜〔5,6,7号炉原子炉建屋〕

#### ■ 6,7号炉原子炉建屋の地震時の基礎の傾斜は,基本設計段階の目安値である1/2,000を若干上回る。

| 题供动名                   | 上段:最大相対変位(cm),下段:最大傾斜 |                                   |                       |                       |                                                 |                       |                       |                       |                                                  |                      |                                          |  |  |  |
|------------------------|-----------------------|-----------------------------------|-----------------------|-----------------------|-------------------------------------------------|-----------------------|-----------------------|-----------------------|--------------------------------------------------|----------------------|------------------------------------------|--|--|--|
| 評価刈家                   | Ss                    | :-1                               | Ss-2                  | Ss                    | -3                                              | Ss-4                  | Ss-5                  | Ss-6                  | Ss-7                                             | Ss                   | -8                                       |  |  |  |
| 6号炉<br>原子炉建屋           | <b>2.8</b><br>〔6.79〕  | 3.0<br>(正,逆)<br><sup>〔6.78〕</sup> | <b>2.2</b><br>〔23.56〕 | <b>2.4</b><br>〔35.69〕 | _                                               | <b>1.3</b><br>〔51.87〕 | <b>1.4</b><br>〔51.88〕 | <b>1.4</b><br>〔51.87〕 | 1.2         3.5           (51.43)         (8.01) |                      | _                                        |  |  |  |
| ンJ線平行断面<br>1           | 1/2,000               | 1/1,800                           | 1/2,500               | 1/2,300               | _                                               | 1/4,200               | 1/4,100               | 1/4,000               | 1/4,700                                          | <u>1/1,600</u>       | _                                        |  |  |  |
| 6号炉<br>原子炉建屋<br>江始南东巡索 | 1.5<br>〔5.76〕         | _                                 | <b>1.4</b><br>〔22.52〕 | <b>1.2</b><br>〔25.00〕 | 1.5<br>(正,逆)<br><sup>〔17.49〕</sup>              | <b>1.2</b><br>〔51.96〕 | <b>1.1</b><br>〔46.56〕 | <b>1.2</b><br>〔54.60〕 | <b>1.4</b><br>〔46.97〕                            | 1.7<br>(8.02)        | 1.7<br>(逆,正)<br><sup>〔8.01〕</sup>        |  |  |  |
| <u></u>                | 1/3,900               | —                                 | 1/4,300               | 1/4,900               | 1/4,000                                         | 1/5,000               | 1/5,100               | 1/5,000               | 1/4,200                                          | 1/3,500              | 1/3,400                                  |  |  |  |
| 7号炉<br>原子炉建屋           | <b>3.3</b><br>(5.77)  | _                                 | <b>1.9</b><br>〔21.54〕 | <b>2.8</b><br>〔19.15〕 | _                                               | <b>1.2</b><br>〔51.91〕 | <b>1.4</b><br>〔46.56〕 | <b>1.6</b><br>〔51.92〕 | <b>1.2</b><br>〔46.58〕                            | <u>3.3</u><br>(8.07) | _                                        |  |  |  |
| <u></u>                | 1/1,700               | _                                 | 1/2,900               | 1/2,000               | _                                               | 1/4,500               | 1/4,100               | 1/3,600               | 1/4,600                                          | 1/1,700              | _                                        |  |  |  |
| 7号炉<br>原子炉建屋           | <b>2.4</b><br>(5.74)  | _                                 | <b>2.2</b><br>〔20.83〕 | <b>1.9</b><br>(19.12) | 2.1<br>(正,逆)<br><sup>〔17.50〕</sup>              | 1.8<br>〔52.57〕        | <b>1.7</b><br>〔46.54〕 | <b>2.0</b><br>〔51.94〕 | <b>1.9</b><br>〔46.95〕                            | 2.5<br>(8.03)        | _                                        |  |  |  |
| <u> </u>               | 1/2,500               | _                                 | 1/2,700               | 1/3,000               | 1/2,800                                         | 1/3,200               | 1/3,500               | 1/2,900               | 1/3,000                                          | 1/2,400              | _                                        |  |  |  |
| 5号炉<br>原子炉建屋           | <b>2.5</b><br>〔18.79〕 | _                                 | <b>1.9</b><br>〔23.54〕 | <b>2.1</b><br>〔36.55〕 | <mark>2.1</mark><br>(正,逆)<br><sup>〔19.61〕</sup> | <b>1.3</b><br>(51.87) | <b>1.4</b><br>〔46.49〕 | <b>1.1</b><br>〔51.88〕 | <b>1.0</b><br>〔46.49〕                            | <b>3.0</b><br>(8.00) | <u>3.1</u><br>(逆,正)<br><sub>〔7.99〕</sub> |  |  |  |
| ンJ 稼平行断囬               | 1/3,200               | _                                 | 1/4,400               | 1/3,900               | 1/3,900                                         | 1/6,300               | 1/5,900               | 1/7,500               | 1/8,200                                          | 1/2,700              | <u>1/2,700</u>                           |  |  |  |
| 5号炉<br>原子炉建屋           | <b>2.3</b><br>(9.18)  | _                                 | <b>2.1</b><br>〔22.53〕 | <b>1.6</b><br>(37.21) | <b>1.8</b><br>(17.51)                           | <b>1.6</b><br>〔51.96〕 | <b>1.9</b><br>〔46.56〕 | <b>1.5</b><br>〔51.96〕 | <b>1.6</b><br>〔46.96〕                            | <b>2.3</b><br>(8.03) | _                                        |  |  |  |
| ン称巨父断囲                 | 1/3,600               | _                                 | 1/4,000               | 1/5,200               | 1/4,500                                         | 1/5,200               | 1/4,400               | 1/5,600               | 1/5,300                                          | 1/3,600              | _                                        |  |  |  |

※ <u>下線</u>は、各号炉における最大相対変位及び最大傾斜の最大値を示す。 ※ Ss-1、3、8の左側に、位相反転なしの場合の最大相対変位及び最大傾斜を記載。

※ Ss-1,3,8の右側に,位相反転ありの場合の最大相対変位及び最大傾斜が位相反転なしの場合の最大相対変位及び最大傾斜を上回った場合の最大相対変位及び最大傾斜を記載。

※ Ss-1, 3, 8の右側に記載の, (逆,正)は水平反転, (正,逆)は鉛直反転, (逆,逆)は水平反転かつ鉛直反転を示す。 ※〔〕は,発生時刻(秒)を示す。

2.5 評価結果

## 基礎の傾斜〔地震時の傾斜に対する建屋への影響について〕

2. 基礎地盤の安定性評価
 2. 5 評価結果

- 地震時の傾斜が最大1/1,600であることから、建屋応答に最も影響する基礎において、建屋が傾斜することにより 生じる転倒モーメントを算定し、建屋の安定性・健全性に及ぼす影響を検討した。
- ■保守的に建屋の傾斜が1/1,000程度の場合に発生する転倒モーメントを評価した結果,設計時に想定した曲げモーメントの0.2%程度と非常に小さいことから、建屋の安定性・健全性には影響はないと判断できる。
- なお、耐震設計方針において、基礎の傾斜に対する建屋、機器、設備等の安全機能への影響について評価の方針を 示すとともに、詳細設計段階において詳細に評価を行う。



■ 建屋の地震時の基礎の傾斜の経時変化からは、許容値の目安である1/2,000を若干上回る時間は非常に短く、1回のみである。



| 1. 1   | 評価概要     | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
|--------|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1. 2   | 評価対象施設   | ٠ | • | • | • | ٠ | ٠ | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 基礎: | 地盤の安定性評価 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1   | 評価方針     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2. 2   | 解析用物性值   | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2. 3   | 評価方法     | ٠ | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.4    | 入力地震動    | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2. 5   | 評価結果     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
|        |          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |

## 3. 周辺地盤の変状及び地殻変動による影響評価

| З  | 8. | 1  | 周辺地盤の変状による重 | 要  | 施 | 設 |              | の | 影 | 響 |   |   | • | • | • | ٠ | ٠ | ٠ | • | 71 |
|----|----|----|-------------|----|---|---|--------------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 3  |    | 2  | 地殻変動による基礎地盤 | れの | 変 | 形 | <del>ර</del> | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. | 周  | 辺彩 | 面の安定性評価     | •  | • | • | •            | • | • | • | • | • | • | • | • | • | • | • | ٠ | 82 |
| 5. | ŧ  | 28 | )           | •  | • | • | •            | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

1

### 周辺地盤変状による重要施設への影響

■ 地震発生に伴う周辺地盤の液状化, 揺すり込み沈下を起因とする施設間の不等沈下等は生じないと評価した。

| <ul> <li>1-1.<br/>原子炉建屋 (主排気筒含む)</li> <li>1-2.<br/>タービン建屋</li> <li>1-3.<br/>コントロール建屋</li> <li>1-4.<br/>軽油タンク</li> <li>2-1.<br/>廃棄物処理建屋</li> <li>2-2.<br/>5号炉原子炉建屋 (緊急時対策所含む)</li> <li>2-3.<br/>格納容器圧力逃がし装置</li> <li>2-4.<br/>常設代替交流電源設備</li> </ul> | 直接基礎もしくは杭基礎により岩盤(西<br>山層)に支持されており,液状化や揺す<br>り込み沈下等を起因とする施設間の不等<br>沈下等は生じないと評価した。 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 1-5.<br>貯留堰                                                                                                                                                                                                                                        | シルト主体の古安田層に支持されており、<br>液状化や揺すり込み沈下等を起因とする                                        |
| 2-5.<br>取水路                                                                                                                                                                                                                                        | 施設間の不等沈下等は生じないと評価した。                                                             |

3.1 周辺地盤の変状による重要施設への影響

#### (1-1)6,7号炉原子炉建屋,(1-3)コントロール建屋,(2-2)5号炉原子炉建屋(緊急時対策所含む)



#### <u>(1-2)6,7号炉タービン建屋,(2-1)廃棄物処理建屋</u>




# 周辺地盤変状による重要施設への影響

3.1 周辺地盤の変状による重要施設への影響





西山層

(2-4) 常設代替交流電源設備※

# (2-3)格納容器圧力逃がし装置(7号炉)





# 周辺地盤変状による重要施設への影響

3. 周辺地盤の変状及び地殻変動による影響評価

3.1 周辺地盤の変状による重要施設への影響

### <u>(1-5)6,7号炉貯留堰</u>

#### \_\_\_\_ H. W. L. T. M. S. L. +1. Om



TEPCO

| • • U I |    |          |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
|---------|----|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1.      | 1  | 評価概要     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
| 1.      | 2  | 評価対象施設   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 基    | 陸地 | し盤の安定性評価 |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2.      | 1  | 評価方針     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2.      | 2  | 解析用物性值   | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2.      | 3  | 評価方法     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.      | 4  | 入力地震動    | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2.      | 5  | 評価結果     | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 40 |

# 3. 周辺地盤の変状及び地殻変動による影響評価

| Э  | 3. | 1  | 周辺地盤の変状による重 | 要  | 施 | 設 | $\wedge$ | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
|----|----|----|-------------|----|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| Э  | 3. | 2  | 地殻変動による基礎地盤 | もの | 変 | 形 | の        | 影 | 響 |   |   |   | • | ٠ | • | • | • | • | • | 76 |
| 4. | 甩  | 辺翁 | 面の安定性評価     | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 82 |
| 5. | ŧ  | 28 |             | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

1

- 敷地内及び敷地近傍には活断層が確認されていないことから、地震発生に伴う地殻変動により施設が 重大な影響を受けることはないと考えられるものの、敷地周辺で確認されている活断層による影響に ついて評価を行う。
- 評価は、敷地に比較的近く、基準地震動Ssを定義する「F-B断層」、「長岡平野西縁断層帯」及び 「長岡平野西縁断層帯〜山本山断層〜十日町断層帯西部の連動」に対して行うこととし、基準地震動 策定に用いた断層モデルを用いる。
- 基礎地盤の傾斜は、くいちがいの弾性論(Wang et al.(2003))に基づく解析から求まる地盤の変形より算出する。
- ■評価対象施設は、施設の規模等を考慮し、「5,6,7号炉原子炉建屋」とする。
- 基本設計段階の目安値は、地震時と同様に1/2,000とする。



■ 解析に用いる断層パラメータは、基準地震動作成に用いた断層モデルに基づき設定した。

|                                        |            |                         | 解析条          | 件(断層モ        | デル)       |                                                           |
|----------------------------------------|------------|-------------------------|--------------|--------------|-----------|-----------------------------------------------------------|
| 断層                                     | 長さ<br>(km) | 傾斜角<br>( <sup>°</sup> ) | 上端深さ<br>(km) | 下端深さ<br>(km) | 幅<br>(km) | すべり量<br>(m)                                               |
| F-B断層                                  | 36         | 35                      | 6            | 17           | 20        | アスペリティ1:2.49<br>アスベリティ2:2.30<br>アスペリティ3:1.95<br>背景領域:0.38 |
| 長岡平野西縁断層帯<br>(傾斜角50度)                  | 91         | 50                      | 6            | 17           | 15        | アスペリティ:4.87<br>背景領域:1.52                                  |
| 長岡平野西縁断層帯<br>(傾斜角35度)                  | 91         | 35                      | 6            | 17           | 20        | アスペリティ:6.49<br>背景領域:2.17                                  |
| 長岡平野西縁断層〜山本山断層〜十日<br>町断層帯西部の連動(傾斜角50度) | 132        | 50                      | 6            | 17           | 15        | アスペリティ:6.41<br>背景領域:2.09                                  |
| 長岡平野西縁断層〜山本山断層〜十日<br>町断層帯西部の連動(傾斜角35度) | 132        | 35                      | 6            | 17           | 20        | アスペリティ:6.41<br>背景領域:1.94                                  |

# 評価結果〔地殻変動分布〕



# <u>長岡平野西縁断層〜山本山断層〜十日町</u> 断層帯西部の連動(傾斜角35度)



○:柏崎刈羽原子力発電所



○: 柏崎刈羽原子力発電所

評価の結果,地震に伴う地殻変動による基礎の傾斜は、基本設計段階の目安値である1/2,000を下回ることを確認した。

| 断層           | F-B断層<br>〔Ss-2〕 | 長岡平野西縁断層帯<br>(傾斜角50度)<br>〔Ss-4〕 | 長岡平野西縁断層帯<br>(傾斜角35度)<br>〔Ss-5〕 | 長岡平野西縁断層〜山<br>本山断層〜十日町断層<br>帯西部の連動<br>(傾斜角50度)<br>〔Ss-6〕 | 長岡平野西縁断層〜山<br>本山断層〜十日町断層<br>帯西部の連動<br>(傾斜角35度)<br>〔Ss-7〕 |
|--------------|-----------------|---------------------------------|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| 6号炉<br>原子炉建屋 | 1/19,900        | 1/13,200                        | 1/6,100                         | 1/9,100                                                  | 1/5,000                                                  |
| 7号炉<br>原子炉建屋 | 1/20,000        | 1/13,300                        | 1/6,000                         | 1/9,200                                                  | <u>1/4,900</u>                                           |
| 5号炉<br>原子炉建屋 | 1/19,800        | 1/13,200                        | 1/6,100                         | 1/9,400                                                  | 1/5,100                                                  |

# 評価結果〔地殻変動と地震時傾斜の重ね合わせ〕

1=200

永久変形である地殻変動による傾斜と地震時の最大傾斜について、保守的に重ね合わせた評価を実施した結果、基礎の傾斜は基本設計段階の目安値である1/2,000を若干上回る。ただし、保守的に建屋の傾斜が1/1,000程度の場合に発生する転倒モーメントを評価した結果、設計時に想定した曲げモーメントの0.2%程度と非常に小さいことから、建屋の安定性・健全性には影響はないと判断できる(P.68参照)。なお、耐震設計方針において、基礎の傾斜に対する建屋、機器、設備等の安全機能への影響について評価の方針を示すとともに、詳細設計段階において詳細に評価を行う。

|              | 断層                                         | F-B断層<br>〔Ss-2〕 | 長岡平野西縁断層帯<br>(傾斜角50度)<br>〔Ss-4〕 | 長岡平野西縁断層帯<br>(傾斜角35度)<br>〔Ss-5〕 | 長岡平野西縁断層~<br>山本山断層~十日町<br>断層帯西部の連動<br>(傾斜角50度)<br>〔Ss-6〕 | 長岡平野西縁断層~<br>山本山断層~十日町<br>断層帯西部の連動<br>(傾斜角35度)<br>〔Ss-7〕 |
|--------------|--------------------------------------------|-----------------|---------------------------------|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|
|              | <ol> <li>①地殻変動による</li> <li>最大傾斜</li> </ol> | 1/19,900        | 1/13,200                        | 1/6,100                         | 1/9,100                                                  | 1/5,000                                                  |
| 6号炉<br>原子炉建屋 | ②地震動による<br>最大傾斜                            | 1/2,500         | 1/4,200                         | 1/4,100                         | 1/4,000                                                  | 1/4,200                                                  |
|              | ①+② 最大傾斜                                   | <u>1/2,200</u>  | 1/3,200                         | 1/2,500                         | 1/2,800                                                  | 1/2,300                                                  |
|              | <ol> <li>①地殻変動による</li> <li>最大傾斜</li> </ol> | 1/20,000        | 1/13,300                        | 1/6,000                         | 1/9,200                                                  | 1/4,900                                                  |
| 7号炉<br>原子炉建屋 | ②地震動による<br>最大傾斜                            | 1/2,700         | 1/3,200                         | 1/3,500                         | 1/2,900                                                  | 1/3,000                                                  |
|              | ①+② 最大傾斜                                   | 1/2,400         | 1/2,600                         | 1/2,200                         | 1/2,200                                                  | <u>1/1,900</u>                                           |
|              | <ol> <li>①地殻変動による</li> <li>最大傾斜</li> </ol> | 1/19,800        | 1/13,200                        | 1/6,100                         | 1/9,400                                                  | 1/5,100                                                  |
| 5号炉<br>原子炉建屋 | ②地震動による<br>最大傾斜                            | 1/4,000         | 1/5,200                         | 1/4,400                         | 1/5,600                                                  | 1/5,300                                                  |
|              | ①+② 最大傾斜                                   | 1/3,300         | 1/3,700                         | <u>1/2,600</u>                  | 1/3,500                                                  | 1/2,600                                                  |

| 1. 評価相 | 现要           |    |   |   |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
|--------|--------------|----|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1. 1   | 評価概要         | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
| 1. 2   | 評価対象施設       | ٠  | • | • | •        | • | • | ٠ | • | • | ٠ | • | • | • | • | • | • | 9  |
| 2. 基礎地 | 也盤の安定性評価     |    |   |   |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1   | 評価方針         | ٠  | • | • | •        | • | • | • | • | • | ٠ | • | • | • | • | • | • | 11 |
| 2. 2   | 解析用物性值       | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2. 3   | 評価方法         | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.4    | 入力地震動        | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2.5    | 評価結果         | •  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. 周辺如 | 也盤の変状及び地殻変動に | :よ | 3 | 影 | 響        | 鄆 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3. 1   | 周辺地盤の変状による重  | 要  | 施 | 設 | $\wedge$ | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 3. 2   | 地殻変動による基礎地盤  | もの | 変 | 形 | ற        | 影 | 響 |   |   |   | • | • | • | • | • | • | • | 76 |
| 4. 周辺統 | 斜面の安定性評価     | •  | ٠ | ٠ | •        | • | • | • | • | • | • | • | ٠ | ٠ | ٠ | ٠ | ٠ | 82 |
| 5. まと  | 5            | ٠  | • | • | •        | • | • | • | • | • | • | • | • | • | • | • | • | 84 |

【別冊】補足説明資料

# 周辺斜面評価対象断面の選定

- ■評価対象施設に対して影響を及ぼす可能性のある周辺斜面として、斜面までの距離が比較的近い2箇所を抽出した。
- いずれの施設も斜面法尻から十分な離隔距離※を確保しており、斜面崩壊が生じたとしても施設に影響を及ぼさないと評価した。

6,7号炉軽油タンク周辺斜面



| 1. 評価相 | 现要           |    |   |     |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
|--------|--------------|----|---|-----|----------|---|---|---|---|---|---|---|---|---|---|---|---|----|
| 1. 1   | 評価概要         | •  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 7  |
| 1. 2   | 評価対象施設       | ٠  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 9  |
| 2. 基礎均 | 也盤の安定性評価     |    |   |     |          |   |   |   |   |   |   |   |   |   |   |   |   |    |
| 2. 1   | 評価方針         | •  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 11 |
| 2. 2   | 解析用物性值       | •  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 16 |
| 2. 3   | 評価方法         | •  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 23 |
| 2.4    | 入力地震動        | ٠  | • | •   | ٠        | • | • | • | • | • | • | • | • | • | • | • | • | 30 |
| 2. 5   | 評価結果         | •  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 40 |
| 3. 周辺地 | 也盤の変状及び地殻変動に | .t | 3 | 影   | 響        | 鄆 | 価 |   |   |   |   |   |   |   |   |   |   |    |
| 3. 1   | 周辺地盤の変状による重  | 要  | 施 | うって | $\wedge$ | ற | 影 | 響 |   |   | • | • | • | • | • | • | • | 71 |
| 3. 2   | 地殻変動による基礎地盤  | おの | 変 | 形   | の        | 影 | 響 |   |   |   | • | • | • | • | • | • | ٠ | 76 |
| 4. 周辺領 | 斜面の安定性評価     | ٠  | • | •   | •        | • | • | • | • | • | • | • | • | • | • | • | • | 82 |

- 5. まとめ ・・・・・・・・・・・・・・・ 84
- 【別冊】補足説明資料

# <u>基礎地盤</u>

### 1. 将来活動する可能性のある断層等の有無

原子炉建屋等が設置される地盤に、将来も活動する可能性のある断層等が露頭していないことを確認した。

#### 2. 地震力に対する基礎地盤の安定性評価

以下の事項のうち、1)基礎地盤、2)基礎の支持力について、地震力に対して施設の安全機能が重大な影響を 受けないことを確認した。なお、3)基礎底面の傾斜については、耐震設計方針において、基礎の傾斜に対する 建屋、機器、設備等の安全機能への影響について評価の方針を示すとともに、詳細設計段階において詳細に評価 を行う。

1) 基礎地盤のすべり 2) 基礎の支持力 3) 基礎底面の傾斜

#### 3. 周辺地盤の変状による重要施設への影響評価

地震発生に伴う周辺地盤の変状による建物・構築物間の不等沈下,液状化,揺すり込み沈下等により,施設の安 全機能が重大な影響を受けないことを確認した。

#### 4. 地殻変動による基礎地盤の変形の影響評価

地震発生に伴う地殻変動による基礎地盤の傾斜及び撓みによる施設への影響については、地殻変動に伴う基礎底 面の傾斜が基本設計段階の目安値を超えることから、耐震設計方針において、基礎の傾斜に対する建屋、機器、 設備等の安全機能への影響について評価の方針を示すとともに、詳細設計段階において詳細に評価を行う。

# <u>周辺斜面</u>

1. 地震力に対する周辺斜面の安定性評価

地震力に対して周辺斜面が崩壊し、施設の安全機能が重大な影響を受けないことを確認した。

TEPCO

参考文献

- · 原子力発電所耐震設計技術指針JEAG4601-2008, 一般社団法人日本電気協会原子力規格委員会, 2008.
- ・ 原子力発電所の基礎地盤及び周辺斜面の安定性評価技術<技術資料>, 土木学会 原子力土木委員会, 2009.
- ・ 宅地防災マニュアルの解説〔第二次改訂版〕[I],〔編集〕宅地防災研究会,2007.
- ・ 大島 快仁, 宇高 竹和, 酒井 俊朗, 谷 智之, 兵頭 順一; 側方効果を考慮した擬似三次元モデルによる地盤安定性評価法, 地盤 工学ジャーナル, Vol.10, No.2, 225-234, 2015.6.