2017/9/12修正

本資料のうち、枠囲みの内容は機密事項に属しますので公開できません。

	柏崎刈羽原子力発電所6号及び7号炉審査資料								
ſ	資料番号	KK67-0090 改21							
	提出年月日	平成29年9月12日							

柏崎刈羽原子力発電所 6号及び7号炉

設計基準対象施設について

平成29年9月 東京電力ホールディングス株式会社

- 4条 地震による損傷の防止
- 5条 津波による損傷の防止
- 6条 外部からの衝撃による損傷の防止
- 7条 発電用原子炉施設への人の不法な侵入等の防止
- 8条 火災による損傷の防止
- 9条 溢水による損傷の防止等
- 10条 誤操作の防止
- 11条 安全避難通路等
- 12条 安全施設
- 14条 全交流動力電源喪失対策設備
- 16条 燃料体等の取扱施設及び貯蔵施設
- 17条 原子炉冷却材圧力バウンダリ
- 23 条 計測制御系統施設(第16条に含む)
- 24条 安全保護回路
- 26条 原子炉制御室等
- 31条 監視設備
- 33条 保安電源設備
- 34条 緊急時対策所
- 35条 通信連絡設備

〈目 次〉

第1部

- 1. 基本方針
 - 1.1 要求事項の整理
 - 1.2 追加要求事項に対する適合性
 - (1) 位置,構造及び設備
 - (2) 安全設計方針
 - (3) 適合性説明
 - 1.3 気象等
 - 1.4 設備等
 - 1.5 手順等

第2部

- 1. 耐震設計の基本方針
 - 1.1 基本方針
 - 1.2 適用規格
- 2. 耐震設計上の重要度分類
 - 2.1 重要度分類の基本方針
 - 2.2 耐震重要度分類
- 3. 設計用地震力
 - 3.1 地震力の算定法
 - 3.2 設計用地震力
- 4. 荷重の組合せと許容限界
 - 4.1 基本方針
- 5. 地震応答解析の方針
 - 5.1 建物·構築物
 - 5.2 機器·配管系
 - 5.3 屋外重要土木構造物
 - 5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物
- 6. 設計用減衰定数
- 7. 耐震重要施設の安全機能への下位クラス施設の波及的影響
- 8. 水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
- 9. 構造計画と配置計画

(別添)

- 別添一1 設計用地震力
- 別添-2 動的機能維持の評価
- 別添-3 弾性設計用地震動 Sd・静的地震力による評価
- 別添-4 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討 について
- 別添-5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
- 別添-6 屋外重要土木構造物の耐震評価における断面選定の考え方
- 別添-7 主要建屋の構造概要及び解析モデルについて
- 別添-8 入力地震動について

(別紙)

- 別紙-1 建屋及び原子炉の地震応答解析モデルの詳細化について
- 別紙-2 原子炉格納容器コンクリート部の応力解析における弾塑性解析の 採用について
- 別紙-3 土木構造物の解析手法および解析モデルの精緻化について
- 別紙-4 使用済燃料貯蔵ラックの減衰定数について
- 別紙-5 原子炉建屋屋根トラス及び主排気筒の評価モデルについて
- 別紙-6 機器・配管系設備に関するその他手法の相違点について
- 別紙-7 機器・配管系の設備の既工認からの構造変更について
- 別紙-8 下位クラス施設の波及的影響の検討について
- 別紙-9 水平2方向及び鉛直方向の適切な組合せに関する検討について
- 別紙-10 基礎地盤傾斜が 1/2,000 を超えることに対する耐震設計方針について
- 別紙-11 液状化影響の検討方針について
- 別紙-12 屋外重要土木構造物の耐震評価における断面選定について

<概 要>

第1部において,設計基準対象施設の設置許可基準規則,技術基準規則の追加要求事項を明確化するとともに,それら要求に対する柏崎刈羽原子力発電所 6号及び7号炉における適合性を示す。

第2部において,設計基準対象施設について,追加要求事項に適合するため に必要となる機能を達成するための設備又は運用等について説明する。 第1部

1. 基本方針

<u>1.1 要求事項の整理</u>

地震による損傷の防止について,設置許可基準規則第4条並びに技術基準 規則第5条において,追加要求事項を明確化する(表1)。

	希豐	「日本」	追加要求	事項																
条並びに技術基準規則第5条 要求事項	技術基準規則	第5条(地震による損傷の防止)	設計基準対象施設は、これに作用する地震力(設置	許可基準規則第四条第二項の規定により算定する地	震力をいう。) による損壊により公衆に放射線障害	を及ぼさないように施設しなければならない。		2 耐震重要施設(設置許可基準規則第三条第一項	に規定する耐震重要施設をいう。以下同じ。)は、	基準地震動による地震力(設置許可基準規則第四条	第三項に規定する基準地震動による地震力をいう。	以下同じ。) に対してその安全性が損なわれるおそ	れがないように施設しなければならない。		3 耐震重要施設が設置許可基準規則第四条第三項	の地震により生ずる斜面の崩壊によりその安全性が	損なわれるおそれがないよう、防護措置その他の適	切な措置を講じなければならない。		
表1 設置許可基準規則第4	設置許可基準規則	第4条 (地震による損傷の防止)	設計基準対象施設は、地震力に十分に耐えることが	できるものでなければならない。		2 前項の地震力は、地震の発生によって生ずるおそ	れがある設計基準対象施設の安全機能の喪失に起因	する放射線による公衆への影響の程度に応じて算定	しなければならない。		3 耐震重要施設は、その供用中に当該耐震重要施設	に大きな影響を及ぼすおそれがある地震による加速	度によって作用する地震力(以下「基準地震動によ	る地震力」という。)に対して安全機能が損なわれ	るおそれがないものでなければならない。		4 耐震重要施設は、前項の地震の発生によって生ず	るおそれがある斜面の崩壊に対して安全機能が損な	われるおそれがないものでなければならない。	

1.2 追加要求事項に対する適合性

- (1) 位置,構造及び設備
- ロ 発電用原子炉施設の一般構造
- (1) 耐震構造

本発電用原子炉施設は、次の方針に基づき耐震設計を行い、設置許可基準規則に適合するように設計する。

- (i) 設計基準対象施設の耐震設計
 設計基準対象施設については、耐震重要度分類に応じて、適用する地震
 力に対して、以下の項目に従って耐震設計を行う。
 - a. 耐震重要施設は,基準地震動による地震力に対して,安全機能が損なわれるおそれがないように設計する。
 - b. 設計基準対象施設は、地震により発生するおそれがある安全機能の喪失 及びそれに続く放射線による公衆への影響を防止する観点から、各施設の 安全機能が喪失した場合の影響の相対的な程度に応じて、耐震重要度分類 を以下のとおり、Sクラス、Bクラス又はCクラスに分類し、それぞれに 応じた地震力に十分耐えられるように設計する。
 - S クラス:地震により発生するおそれがある事象に対して,原子炉を停止し,炉心を冷却するために必要な機能を持つ施設,自ら放射性物質を内蔵している施設,当該施設に直接関係しておりその機能喪失により放射性物質を外部に拡散する可能性のある施設,これらの施設の機能喪失により事故に至った場合の影響を緩和し,放射線による公衆への影響を軽減するために必要な機能を持つ施設及びこれらの重要な安全機能を支援するために必要となる施設、並びに地震に伴って発生するおそれがある津波による安全機能の喪失を防止するために必要となる施設であって,その影響が大きいもの
 - B クラス:安全機能を有する施設のうち,機能喪失した場合の影響が S クラス施設と比べ小さい施設
 - C クラス: S クラスに属する施設及び B クラスに属する施設以外の一般 産業施設又は公共施設と同等の安全性が要求される施設

【説明資料(1.1(2): P4 条-79)(2.1: P4 条-83)】

c. S クラスの施設(e. に記載のもののうち, 津波防護機能を有する設備(以下「津波防護施設」という。), 浸水防止機能を有する設備(以下「浸水防止設備」という。)及び敷地における津波監視機能を有する施設(以下「津

波監視設備」という。)を除く。), B クラス及び C クラスの施設は, 建物・ 構築物については, 地震層せん断力係数 Ci に, それぞれ 3.0, 1.5 及び 1.0 を乗じて求められる水平地震力, 機器・配管系については, それぞれ 3.6, 1.8 及び 1.2 を乗じた水平震度から求められる水平地震力に十分に 耐えられるように設計する。建物・構築物及び機器・配管系ともに, おお むね弾性状態に留まる範囲で耐えられるように設計する。

ここで、地震層せん断力係数 Ci は、標準せん断力係数 C₀を 0.2 以上 とし、建物・構築物の振動特性及び地盤の種類等を考慮して求められる値 とする。

ただし, 土木構造物の静的地震力は, C クラスに適用される静的地震力 を適用する。

Sクラスの施設(e.に記載のもののうち,津波防護施設,浸水防止設備 及び津波監視設備を除く。)については,水平地震力と鉛直地震力が同時 に不利な方向の組合せで作用するものとする。鉛直地震力は,建物・構築 物については,震度0.3以上を基準とし,建物・構築物の振動特性及び 地盤の種類等を考慮して求められる鉛直震度,機器・配管系については, これを1.2倍した鉛直震度より算定する。ただし,鉛直震度は高さ方向に 一定とする。

d. Sクラスの施設(e.に記載のもののうち,津波防護施設,浸水防止設備 及び津波監視設備を除く。)は、基準地震動による地震力に対して安全機 能が保持できるように設計する。建物・構築物については、構造物全体と しての変形能力(終局耐力時の変形)について十分な余裕を有し、建物・ 構築物の終局耐力に対し妥当な安全余裕を有するように設計する。機器・ 配管系については、その施設に要求される機能を保持するように設計し、 塑性ひずみが生じる場合であっても、その量が小さなレベルに留まって 破断延性限界に十分な余裕を有し、その施設に要求される機能に影響を 及ぼさないように、また、動的機器等については、基準地震動による応答 に対して、その設備に要求される機能を保持するように設計する。

また,弾性設計用地震動による地震力又は静的地震力のいずれか大き い方の地震力に対しておおむね弾性状態に留まる範囲で耐えられるよう に設計する。建物・構築物については,発生する応力に対して,建築基準 法等の安全上適切と認められる規格及び基準による許容応力度を許容限 界とする。機器・配管系については,応答が全体的におおむね弾性状態に 留まるように設計する。 なお,基準地震動及び弾性設計用地震動による地震力は,水平2方向及 び鉛直方向について適切に組み合わせて算定するものとする。

基準地震動は,敷地ごとに震源を特定して策定する地震動及び震源を 特定せず策定する地震動について,敷地の解放基盤表面における水平方 向及び鉛直方向の地震動としてそれぞれ策定する。

第1図に示す敷地における地震波の伝播特性を踏まえ、1号炉~4号炉が 位置する荒浜側、5号炉~7号炉が位置する大湊側のそれぞれについて策 定した基準地震動の応答スペクトルを第2図及び第3図に、時刻歴波形を 第4図~第17図に示す。

基準地震動の策定においては,S波速度が700m/s以上で著しい高低差 がなく拡がりを持って分布している硬質地盤に解放基盤表面を設定する こととし,大湊側では,第5-1表に示す標高-134mの位置とする。なお, 入力地震動の評価においては,解放基盤表面以浅の影響を適切に考慮す る。

また,荒浜側では,標高-284mの位置に解放基盤表面を設定し,基準地 震動を策定する。

また,弾性設計用地震動は,基準地震動との応答スペクトルの比率が目 安として 0.5 を下回らないような値として,「発電用原子炉施設に関する 耐震設計審査指針(昭和 56 年 7 月 20 日原子力安全委員会決定,平成 13 年 3 月 29 日一部改訂)」における基準地震動 S₁を踏まえ,工学的判断か ら基準地震動に係数 0.5 を乗じて設定する。

【説明資料(3.1(2): P4条-85)】

なお, Bクラスの施設のうち, 共振のおそれのある施設については, 弾 性設計用地震動に 2 分の 1 を乗じた地震動によりその影響についての検 討を行う。建物・構築物及び機器・配管系ともに, おおむね弾性状態に留 まる範囲で耐えられるように設計する。

【説明資料(3.1(2): P4条-85)】

e. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物は,基準地震動による地震力に対して,それぞれの施設及び設備に要求される機能が保持できるように設計する。

【説明資料 (1.1(6): P4 条-80) (4.1(3): P4 条-88) (4.1(4): P4 条-89)】

f. 耐震重要施設は、耐震重要度分類の下位のクラスに属する施設の波及的 影響によって、その安全機能を損なわないように設計する。波及的影響の 評価に当たっては,敷地全体を俯瞰した調査・検討を行い,事象選定及び 影響評価を行う。なお,影響評価においては,耐震重要施設の設計に用い る地震動又は地震力を適用する。

【説明資料(1.1(9): P4条-81)(7: P4条-97)】

※なお、どちらの基準地震動を用いるか、判断にあたり十分なデータが得られていない領域については、周辺の地盤調査結果や地震観測記録等を参照し、 必要に応じて地震観測を実施するなど検討したうえで、適切な基準地震動を用いる。

第1図 水平アレイ地震観測記録に基づく敷地地盤の増幅特性の領域区分

(敷地南西側から到来する地震動の増幅特性)

第4図 基準地震動 Ss-1の加速度時刻歴波形(荒浜側)

第5図 基準地震動 Ss-1の加速度時刻歴波形(大湊側)

(b) Ss - 2EW

第6図 基準地震動 Ss-2の加速度時刻歴波形(荒浜側)

(b) Ss - 2EW

第7図 基準地震動 Ss-2の加速度時刻歴波形(大湊側)

第8図 基準地震動 Ss-3の加速度時刻歴波形 (荒浜側と大湊側で共通)

第9図 基準地震動 Ss-4の加速度時刻歴波形(荒浜側)

第10図 基準地震動 Ss-4の加速度時刻歴波形(大湊側)

(b) Ss - 5EW

(c) Ss - 5UD

第11図 基準地震動 Ss-5の加速度時刻歴波形(荒浜側)

(c) Ss - 5UD

第12図 基準地震動 Ss-5の加速度時刻歴波形(大湊側)

(b) Ss-6EW

第13図 基準地震動 Ss-6の加速度時刻歴波形(荒浜側)

時間(秒)

(b) Ss-6EW

第14図 基準地震動 Ss-6の加速度時刻歴波形(大湊側)

(b) Ss - 7EW

第15図 基準地震動 Ss-7の加速度時刻歴波形(荒浜側)

(a) $S_S - 7NS$

(b) $S_s - 7EW$

第16図 基準地震動 Ss-7の加速度時刻歴波形(大湊側)

(a) Ss-8H

第17図 基準地震動 Ss-8の加速度時刻歴波形(大湊側)

第5-1表 設定した解放基盤表面の位置

位置	標高 T.M.S.L. ^{**} (m)	整地面からの深さ(m)
1 号炉 鉛直アレイ	-284	289
5 号炉 鉛直アレイ	-134	146

※T.M.S.L.:東京湾平均海面。Tokyo bay Mean Sea Levelの略で、 東京湾での検潮に基づき設定された陸地の高さの基準 <u>(2) 安全設計方針</u>

1.4 耐震設計

発電用原子炉施設の耐震設計は、「設置許可基準規則」に適合するように、 「1.4.1 設計基準対象施設の耐震設計」、「1.4.2 重大事故等対処施設の耐震 設計」、「1.4.3 主要施設の耐震構造」及び「1.4.4 地震検知による耐震安全 性の確保」に従って行う。

- 1.4.1 設計基準対象施設の耐震設計
- 1.4.1.1 設計基準対象施設の耐震設計の基本方針 設計基準対象施設の耐震設計は、以下の項目に従って行う。
 - (1) 地震により生ずるおそれがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きいもの(以下「耐震重要施設」という。)は、その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地震による加速度によって作用する地震力に対して、その安全機能が損なわれるおそれがないように設計する。
 - (2) 設計基準対象施設は、地震により発生するおそれがある安全機能の喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度(以下「耐震重要度」という。)に応じて、耐震重要度分類をSクラス、Bクラス又はCクラスに分類し、それぞれに応じた地震力に十分耐えられるように設計する。
 - (3) 建物・構築物については,耐震重要度分類の各クラスに応じて算定す る地震力が作用した場合においても,接地圧に対する十分な支持力を 有する地盤に設置する。

なお,建物・構築物とは,建物,構築物及び土木構造物(屋外重要土 木構造物及びその他の土木構造物)の総称とする。

また,屋外重要土木構造物とは,耐震安全上重要な機器・配管系の間 接支持機能,若しくは非常時における海水の通水機能を求められる土 木構造物をいう。

(4) Sクラスの施設((6)に記載のもののうち,津波防護機能を有する設備(以下「津波防護施設」という。),浸水防止機能を有する設備(以下「浸水防止設備」という。)及び敷地における津波監視機能を有する施設(以下「津波監視設備」という。)を除く。)は、基準地震動による地震力に対して、その安全機能が保持できるように設計する。

また、弾性設計用地震動による地震力又は静的地震力のいずれか大

きい方の地震力に対しておおむね弾性状態に留まる範囲で耐えられる 設計とする。

(5) Sクラスの施設((6)に記載のもののうち,津波防護施設,浸水防止 設備及び津波監視設備を除く。)については,静的地震力は,水平地震 力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 また,基準地震動及び弾性設計用地震動による地震力は,水平2方 向及び鉛直方向について適切に組み合わせて算定するものとする。な お,水平2方向及び鉛直方向の地震力が同時に作用し,影響が考えられ

る施設,設備については許容限界の範囲内に留まることを確認する。

(6) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備 並びに浸水防止設備が設置された建物・構築物は,基準地震動による地 震力に対して,構造全体として変形能力(終局耐力時の変形)について 十分な余裕を有するとともに,それぞれの施設及び設備に要求される 機能が保持できるように設計する。なお,基準地震動の水平2方向及び 鉛直方向の地震力の組合せについては、上記(5)と同様とする。

また,重大事故等対処施設を津波から防護するための津波防護施設, 浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物についても同様の設計方針とする。

(7) Bクラスの施設は,静的地震力に対しておおむね弾性状態に留まる範 囲で耐えられるように設計する。

また,共振のおそれのある施設については,その影響についての検討 を行う。その場合,検討に用いる地震動は,弾性設計用地震動に2分の 1を乗じたものとする。なお,当該地震動による地震力は,水平2方向 及び鉛直方向について適切に組み合わせて算定するものとし,Sクラス 施設と同様に許容限界の範囲内に留まることを確認する。

- (8) Cクラスの施設は,静的地震力に対しておおむね弾性状態に留まる範 囲で耐えられるように設計する。
- (9) 耐震重要施設は,耐震重要度分類の下位のクラスに属するものの波及 的影響によって,その安全機能を損なわないように設計する。
- (10) 設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が 低減されるように考慮する。
- (11) S クラスの施設及びその間接支持構造物等は、地震動及び地殻変動による基礎地盤の傾斜が基本設計段階の目安値である 1/2,000 を上回る場合、傾斜に対する影響を地震力に考慮する。

【説明資料(1.1: P4条-79)】

1.4.1.2 耐震重要度分類

設計基準対象施設の耐震重要度を、次のように分類する。

Sクラスの施設

地震により発生するおそれがある事象に対して,原子炉を停止し,炉 心を冷却するために必要な機能を持つ施設,自ら放射性物質を内蔵して いる施設,当該施設に直接関係しておりその機能喪失により放射性物質 を外部に拡散する可能性のある施設,これらの施設の機能喪失により事 故に至った場合の影響を緩和し,放射線による公衆への影響を軽減する ために必要な機能を持つ施設及びこれらの重要な安全機能を支援する ために必要となる施設,並びに地震に伴って発生するおそれがある津波 による安全機能の喪失を防止するために必要となる施設であって,その 影響が大きいものであり,次の施設を含む。

- ・原子炉冷却材圧力バウンダリを構成する機器・配管系
- ・使用済燃料を貯蔵するための施設
- ・原子炉の緊急停止のために急激に負の反応度を付加するための施 設,及び原子炉の停止状態を維持するための施設
- ・原子炉停止後、炉心から崩壊熱を除去するための施設
- ・原子炉冷却材圧カバウンダリ破損事故後,炉心から崩壊熱を除去す るための施設
- ・原子炉冷却材圧カバウンダリ破損事故の際に,圧力障壁となり放射 性物質の放散を直接防ぐための施設
- ・放射性物質の放出を伴うような事故の際に、その外部放散を抑制するための施設であり、上記の「放射性物質の放散を直接防ぐための施設」以外の施設
- ・津波防護施設及び浸水防止設備
- ・津波監視設備

【説明資料(2.1(1): P4条-83)】

(2) Bクラスの施設

安全機能を有する施設のうち,機能喪失した場合の影響が S クラ スの施設と比べ小さい施設であり,次の施設を含む。

- ・原子炉冷却材圧力バウンダリに直接接続されていて、1次冷却材 を内蔵しているか又は内蔵し得る施設
- ・放射性廃棄物を内蔵している施設(ただし,内蔵量が少ない又は 貯蔵方式により、その破損により公衆に与える放射線の影響が 「実用発電用原子炉の設置、運転等に関する規則(昭和53年通 商産業省令第77号)」第2条第2項第6号に規定する「周辺監

視区域」外における年間の線量限度に比べ十分小さいものは除 く。)

- ・放射性廃棄物以外の放射性物質に関連した施設で、その破損により、公衆及び従事者に過大な放射線被ばくを与える可能性のある施設
- ・使用済燃料を冷却するための施設
- ・放射性物質の放出を伴うような場合に、その外部放散を抑制する ための施設で、Sクラスに属さない施設

【説明資料(2.1(2): P4条-83)】

(3) C クラスの施設

S クラスに属する施設及び B クラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設である。

上記に基づくクラス別施設を第1.4.1-1表に示す。

なお,同表には当該施設を支持する構造物の支持機能が維持される ことを確認する地震動及び波及的影響を考慮すべき施設に適用する地 震動についても併記する。

【説明資料(2.1(3): P4条-83)】

1.4.1.3 地震力の算定方法

設計基準対象施設の耐震設計に用いる地震力の算定は以下の方法に よる。

(1) 静的地震力

静的地震力は、Sクラスの施設(津波防護施設,浸水防止設備及び津 波監視設備を除く。), Bクラス及び Cクラスの施設に適用することと し、それぞれ耐震重要度分類に応じて次の地震層せん断力係数 Ci及び 震度に基づき算定する。

a. 建物•構築物

水平地震力は,地震層せん断力係数 Ci に,次に示す施設の耐震重 要度分類に応じた係数を乗じ,さらに当該層以上の重量を乗じて算 定するものとする。

Sクラス 3.0

- Bクラス 1.5
- Cクラス 1.0

ここで、地震層せん断力係数 Ci は、標準せん断力係数 C₀を 0.2 以上とし、建物・構築物の振動特性及び地盤の種類等を考慮して求めら

れる値とする。

また,必要保有水平耐力の算定においては,地震層せん断力係数 Ci に乗じる施設の耐震重要度分類に応じた係数は,S クラス,B クラス 及び C クラスともに 1.0 とし,その際に用いる標準せん断力係数 C₀ は 1.0 以上とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利 な方向の組合せで作用するものとする。鉛直地震力は、震度 0.3 以上 を基準とし、建物・構築物の振動特性及び地盤の種類等を考慮し、高 さ方向に一定として求めた鉛直震度より算定するものとする。

ただし、土木構造物の静的地震力は、安全上適切と認められる規格 及び基準を参考に、Cクラスに適用される静的地震力を適用する。

b. 機器・配管系

静的地震力は,上記 a. に示す地震層せん断力係数 Ci に施設の耐震 重要度分類に応じた係数を乗じたものを水平震度として,当該水平 震度及び上記 a. の鉛直震度をそれぞれ 20%増しとした震度より求め るものとする。

なお,Sクラスの施設については,水平地震力と鉛直地震力は同時 に不利な方向の組合せで作用するものとする。ただし,鉛直震度は高 さ方向に一定とする。

上記 a.及び b.の標準せん断力係数 C₀等の割増係数の適用について は、耐震性向上の観点から、一般産業施設及び公共施設等の耐震基準 との関係を考慮して設定する。

【説明資料(3.1(1): P4条-84)】

(2) 動的地震力

動的地震力は、S クラスの施設,屋外重要土木構造物及び B クラス の施設のうち共振のおそれのあるものに適用することとし,基準地震 動及び弾性設計用地震動から定める入力地震動を入力として,動的解 析により水平 2 方向及び鉛直方向について適切に組み合わせて算定す る。なお,地震力の組合せについては水平 2 方向及び鉛直方向の地震 力が同時に作用するものとし,影響が考えられる施設,設備に対して 許容限界の範囲内に留まることを確認する。

Bクラスの施設のうち共振のおそれのあるものについては,弾性設計 用地震動から定める入力地震動の振幅を2分の1にしたものによる地 震力を適用する。

屋外重要土木構造物、津波防護施設、浸水防止設備及び津波監視設

備並びに浸水防止設備が設置された建物・構築物については、基準地 震動による地震力を適用する。

添付書類六の「5. 地震」に示す基準地震動は、「敷地ごとに震源を 特定して策定する地震動」及び「震源を特定せず策定する地震動」につ いて、解放基盤表面における水平方向及び鉛直方向の地震動としてそ れぞれ策定し、「敷地ごとに震源を特定して策定する地震動」に基づき 策定した基準地震動 Ss-1~Ss-7 の年超過確率は 10⁻⁴~10⁻⁵程度であ り、「震源を特定せず策定する地震動」に基づき設定した基準地震動 Ss -8 の年超過確率は 10⁻³~10⁻⁵程度である。

また、弾性設計用地震動は、基準地震動との応答スペクトルの比率 が目安として 0.5 を下回らないよう基準地震動に係数 0.5 を乗じて設 定する。ここで、係数 0.5 は工学的判断として、原子炉施設の安全機 能限界と弾性限界に対する入力荷重の比率が 0.5 程度であるという知 見(*)を踏まえ、さらに「発電用原子炉施設に関する耐震設計審査指 針(昭和 56 年 7 月 20 日原子力安全委員会決定、平成 13 年 3 月 29 日 一部改訂)」における基準地震動 S₁の応答スペクトルをおおむね下回ら ないよう配慮した値とする。また、建物・構築物及び機器・配管系とも に 0.5 を採用することで、弾性設計用地震動に対する設計に一貫性を とる。なお、弾性設計用地震動の年超過確率は、10⁻³~10⁻⁴程度である。 弾性設計用地震動の応答スペクトルを第 1.4-1 図及び第 1.4-2 図に、 弾性設計用地震動の時刻歴波形を第 1.4-3 図~第 1.4-16 図に、弾性 設計用地震動と基準地震動 S₁の応答スペクトルの比較を第 1.4-17 図 に、弾性設計用地震動と解放基盤表面における地震動の一様ハザード スペクトルの比較を第 1.4-18 図及び第 1.4-19 図に示す。

【説明資料 (3.1(2): P4 条-84)】

a. 入力地震動

入力地震動の評価においては,解放基盤表面以浅の影響を適切に考慮するため,5号炉~7号炉の解放基盤表面はそれぞれ第1.4.1-2表に示す位置とする。

建物・構築物の地震応答解析における入力地震動は,解放基盤表面 で定義される基準地震動及び弾性設計用地震動を基に,対象建物・構 築物の地盤条件を適切に考慮した上で,必要に応じ2次元 FEM 解析又 は1次元波動論により,地震応答解析モデルの入力位置で評価した入 力地震動を設定する。地盤条件を考慮する場合には,地震動評価で考 慮した敷地全体の地下構造との関係にも留意し,地盤の非線形応答に 関する動的変形特性を考慮する。また,必要に応じ敷地における観測 記録による検証や最新の科学的・技術的知見を踏まえ設定する。

- b. 地震応答解析
 - (a) 動的解析法
 - i. 建物·構築物

動的解析による地震力の算定に当たっては,地震応答解析手法 の適用性及び適用限界等を考慮のうえ,適切な解析法を選定する とともに,建物・構築物に応じた適切な解析条件を設定する。動 的解析は,時刻歴応答解析法による。

建物・構築物の動的解析に当たっては,建物・構築物の剛性は それらの形状,構造特性等を十分考慮して評価し,集中質点系等 に置換した解析モデルを設定する。なお,建物の補助壁を耐震壁 として考慮するに当たっては,耐震壁としての適用性を確認した 上で,適切な解析モデルを設定する。

動的解析には,建物・構築物と地盤との相互作用を考慮するも のとし,解析モデルの地盤のばねは,基礎版の平面形状,地盤の 剛性等を考慮して定める。設計用地盤定数は,原則として,弾性 波試験によるものを用いる。

地盤-建物・構築物連成系の減衰定数は,振動エネルギの地下 逸散及び地震応答における各部のひずみレベルを考慮して定め る。

基準地震動及び弾性設計用地震動に対する応答解析において, 主要構造要素がある程度以上弾性範囲を超える場合には,実験等 の結果に基づき,該当する建物部分の構造特性に応じて,その弾 塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行 う。

また,Sクラスの施設を支持する建物・構築物の支持機能を検 討するための動的解析において,施設を支持する建物・構築物の 主要構造要素がある程度以上弾性範囲を超える場合には,その弾 塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行 う。

応答解析に用いる材料定数については,地盤の諸定数も含めて 材料のばらつきによる変動幅を適切に考慮する。なお,コンクリ ートの実強度を考慮して鉄筋コンクリート造耐震壁の剛性を設 定する場合は,建物・構築物ごとの建設時の試験データ等の代表 性,保守性を確認した上で適用する。また,必要に応じて建物・ 構築物及び機器・配管系の設計用地震力に及ぼす影響を検討す
る。

ii.

液状化及びサイクリックモビリティ等を示す土層については, 敷地の中で当該土層の分布範囲等を踏まえた上で,ばらつき及び 不確実性を考慮して液状化強度特性を設定する。

原子炉建屋及びタービン建屋については、3次元 FEM 解析等から、建物・構築物の3次元応答性状及び機器・配管系への影響を 評価する。

屋外重要土木構造物の動的解析は,構造物と地盤の相互作用を 考慮できる連成系の地震応答解析手法とし,地盤及び構造物の地 震時における非線形挙動の有無や程度に応じて,線形,等価線形 又は非線形解析のいずれかにて行う。

なお,地震力については,水平2方向及び鉛直方向について適 切に組み合わせて算定する。

【説明資料(5.1: P4条-93)(5.3: P4条-95)】 機器・配管系

動的解析による地震力の算定に当たっては、地震応答解析手法 の適用性及び適用限界等を考慮のうえ、適切な解析法を選定する とともに、解析条件として考慮すべき減衰定数、剛性等の各種物 性値は、適切な規格及び基準又は試験等の結果に基づき設定す る。ここで、原子炉本体基礎については、鋼板とコンクリートの 複合構造物として、より現実に近い適正な地震応答解析を実施す る観点から、コンクリートの剛性変化を適切に考慮した復元力特 性を設定する。復元力特性の設定に当たっては、既往の知見や実 物の原子炉本体基礎を模擬した試験体による加力試験結果を踏 まえて、妥当性、適用性を確認するとともに、設定における不確 実性や保守性を考慮し、機器・配管系の設計用地震力を設定する。 なお、原子炉本体基礎の構造強度は、鋼板のみで地震力に耐える 設計とする。

機器の解析に当たっては,形状,構造特性等を考慮して,代表 的な振動モードを適切に表現できるよう質点系モデル,有限要素 モデル等に置換し,設計用床応答曲線を用いたスペクトルモーダ ル解析法又は時刻歴応答解析法により応答を求める。配管系につ いては,適切なモデルを作成し,設計用床応答曲線を用いたスペ クトルモーダル解析法等により応答を求める。スペクトルモーダ ル解析法及び時刻歴応答解析法の選択に当たっては,衝突・すべ り等の非線形現象を模擬する観点又は既往研究の知見を取り入

れ実機の挙動を模擬する観点で,建物・構築物の剛性及び地盤物 性等の不確かさへの配慮をしつつ時刻歴応答解析法を用いる等, 解析対象とする現象,対象設備の振動特性・構造特性等を考慮し 適切に選定する。

また,設備の3次元的な広がりを踏まえ,適切に応答を評価で きるモデルを用い,水平2方向及び鉛直方向の応答成分について 適切に組み合わせるものとする。

なお、剛性の高い機器は、その機器の設置床面の最大応答加速 度の1.2 倍の加速度を震度として作用させて地震力を算定する。

【説明資料(5.2: P4条-94)】

(3) 設計用減衰定数

応答解析に用いる減衰定数は,安全上適切と認められる規格及び 基準,既往の振動実験,地震観測の調査結果等を考慮して適切な値 を定める。

なお,建物・構築物の応答解析に用いる鉄筋コンクリートの減衰 定数の設定については,既往の知見に加え,既設施設の地震観測記 録等により,その妥当性を検討する。

また,地盤と屋外重要土木構造物の連成系地震応答解析モデルの 減衰定数については,地中構造物としての特徴,同モデルの振動特 性を考慮して適切に設定する。

【説明資料(6:P4条-97)】

1.4.1.4 荷重の組合せと許容限界

設計基準対象施設の耐震設計における荷重の組合せと許容限界は以下による。

(1) 耐震設計上考慮する状態

地震以外に設計上考慮する状態を次に示す。

- a. 建物・構築物
 - (a) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の自然条件下におかれ ている状態

ただし,運転状態には通常運転時,運転時の異常な過渡変化時を 含むものとする。

(b) 設計基準事故時の状態

発電用原子炉施設が設計基準事故時にある状態

(c) 設計用自然条件設計上基本的に考慮しなければならない自然条件(風,積雪等)

- b. 機器 · 配管系
 - (a) 通常運転時の状態

発電用原子炉の起動,停止,出力運転,高温待機及び燃料取替等 が計画的又は頻繁に行われた場合であって運転条件が所定の制限 値以内にある運転状態

(b) 運転時の異常な過渡変化時の状態

通常運転時に予想される機械又は器具の単一の故障若しくはそ の誤作動又は運転員の単一の誤操作及びこれらと類似の頻度で発 生すると予想される外乱によって発生する異常な状態であって,当 該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリ の著しい損傷が生ずるおそれがあるものとして安全設計上想定す べき事象が発生した状態

(c) 設計基準事故時の状態

発生頻度が運転時の異常な過渡変化より低い異常な状態であっ て,当該状態が発生した場合には発電用原子炉施設から多量の放射 性物質が放出するおそれがあるものとして安全設計上想定すべき 事象が発生した状態

- (d) 設計用自然条件
 設計上基本的に考慮しなければならない自然条件(風,積雪等)
 【説明資料(4.1(1): P4 条-86)】
- (2) 荷重の種類
 - a. 建物·構築物
 - (a) 発電用原子炉のおかれている状態にかかわらず常時作用してい る荷重,すなわち固定荷重,積載荷重,土圧,水圧及び通常の気 象条件による荷重
 - (b) 運転時の状態で施設に作用する荷重
 - (c) 設計基準事故時の状態で施設に作用する荷重
 - (d) 地震力,風荷重,積雪荷重等
 ただし,運転時の状態及び設計基準事故時の状態での荷重には,
 機器・配管系から作用する荷重が含まれるものとし,地震力には,
 地震時土圧,機器・配管系からの反力,スロッシング等による荷重
 が含まれるものとする。
 - b. 機器・配管系
 - (a) 通常運転時の状態で施設に作用する荷重
 - (b) 運転時の異常な過渡変化時の状態で施設に作用する荷重
 - (c) 設計基準事故時の状態で施設に作用する荷重

(d) 地震力, 風荷重, 積雪荷重等

【説明資料(4.1(2): P4条-87)】

(3) 荷重の組合せ

地震力と他の荷重との組合せは次による。

- a. 建物・構築物(c.に記載のものを除く。)
 - (a) Sクラスの建物・構築物については、常時作用している荷重及び 運転時(通常運転時又は運転時の異常な過渡変化時)の状態で施設 に作用する荷重と地震力とを組み合わせる。
 - (b) Sクラスの建物・構築物については、常時作用している荷重及び 設計基準事故時の状態で施設に作用する荷重のうち長時間その作 用が続く荷重と弾性設計用地震動による地震力又は静的地震力と を組み合わせる。
 - (c) Bクラス及びCクラスの建物・構築物については、常時作用して いる荷重及び運転時の状態で施設に作用する荷重と動的地震力又 は静的地震力とを組み合わせる。
- b. 機器・配管系(c.に記載のものを除く。)
 - (a) Sクラスの機器・配管系については、通常運転時の状態で施設に 作用する荷重と地震力とを組み合わせる。
 - (b) Sクラスの機器・配管系については,運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのある事象によって施設に作用する荷重と地震力とを組み合わせる。
 - (c) Sクラスの機器・配管系については、運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのない事象であっても、いったん事故が発生した場合、長時間継続する事象による荷重は、その事故事象の発生確率、継続時間及び地震動の年超過確率の関係を踏まえ、適切な地震力と組み合わせる。
 - (d) Bクラス及びCクラスの機器・配管系については、通常運転時の 状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態 で施設に作用する荷重と、動的地震力又は静的地震力とを組み合 わせる。
- c. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備 が設置された建物・構築物
 - (a) 津波防護施設及び浸水防止設備が設置された建物・構築物については,常時作用している荷重及び運転時の状態で施設に作用する

荷重と基準地震動による地震力とを組み合わせる。

(b) 浸水防止設備及び津波監視設備については,常時作用している荷 重及び運転時の状態で施設に作用する荷重等と基準地震動による 地震力とを組み合わせる。

なお、上記 c. (a), (b) については、地震と津波が同時に作用する 可能性について検討し、必要に応じて基準地震動による地震力と津波 による荷重の組合せを考慮する。また、津波以外による荷重について は、「(2) 荷重の種類」に準じるものとする。

- d. 荷重の組合せ上の留意事項
 - (a) S クラスの施設に作用する地震力のうち動的地震力については, 水平 2 方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。
- (b) ある荷重の組合せ状態での評価が明らかに厳しいことが判明し ている場合には、その他の荷重の組合せ状態での評価は行わない ことがある。
- (c) 複数の荷重が同時に作用する場合,それらの荷重による応力の各 ピークの生起時刻に明らかなずれがあることが判明しているなら ば,必ずしもそれぞれの応力のピーク値を重ねなくてもよいもの とする。
- (d) 上位の耐震重要度分類の施設を支持する建物・構築物の当該部分の支持機能を確認する場合においては、支持される施設の耐震重要度分類に応じた地震力と常時作用している荷重、運転時の状態で施設に作用する荷重及びその他必要な荷重とを組み合わせる。

なお,第1.4.1-1表に対象となる建物・構築物及びその支持機 能が維持されていることを検討すべき地震動等について記載す る。

【説明資料(4.1(3): P4条-88)】

(4) 許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限 界は次のとおりとし,安全上適切と認められる規格及び基準又は試 験等で妥当性が確認されている許容応力等を用いる。

- a. 建物・構築物(c.に記載のものを除く。)
 - (a) S クラスの建物・構築物
 - i. 弾性設計用地震動による地震力又は静的地震力との組合せに対 する許容限界

建築基準法等の安全上適切と認められる規格及び基準による 許容応力度を許容限界とする。

ただし、冷却材喪失事故時に作用する荷重との組合せ(原子炉 格納容器バウンダリにおける長期的荷重との組合せを除く。)に 対しては、下記 ii. に示す許容限界を適用する。

ii. 基準地震動による地震力との組合せに対する許容限界

構造物全体としての変形能力(終局耐力時の変形)について十 分な余裕を有し,建物・構築物の終局耐力に対し妥当な安全余裕 を持たせることとする(評価項目はせん断ひずみ,応力等)。

なお,終局耐力は,建物・構築物に対する荷重又は応力を漸次 増大していくとき,その変形又はひずみが著しく増加するに至 る限界の最大耐力とし,既往の実験式等に基づき適切に定める ものとする。

 (b) Bクラス及びCクラスの建物・構築物((e)及び(f)に記載の ものを除く。)

上記(a) i. による許容応力度を許容限界とする。

(c) 耐震重要度分類の異なる施設を支持する建物・構築物((e)及び(f) に記載のものを除く。)

上記(a) ii. を適用するほか,耐震重要度分類の異なる施設を 支持する建物・構築物が,変形等に対してその支持機能を損なわな いものとする。

なお、当該施設を支持する建物・構築物の支持機能が損なわれな いことを確認する際の地震動は、支持される施設に適用される地 震動とする。

(d) 建物・構築物の保有水平耐力((e)及び(f)に記載のものを除 く。)

建物・構築物については、当該建物・構築物の保有水平耐力が必 要保有水平耐力に対して耐震重要度分類に応じた安全余裕を有し ていることを確認する。

- (e) 屋外重要土木構造物
 - i. 静的地震力との組合せに対する許容限界

安全上適切と認められる規格及び基準による許容応力度を許 容限界とする。

 ii. 基準地震動による地震力との組合せに対する許容限界 構造部材のうち、鉄筋コンクリートの曲げについては、限界層 間変形角、曲げ耐力又は圧縮縁コンクリート限界ひずみに対して +分な安全余裕を持たせることとし、せん断については、せん断 耐力に対して妥当な安全余裕を持たせることを基本とする。構造 部材のうち、鋼管の曲げについては、終局曲率に対して十分な安 全余裕を持たせることとし、せん断については、終局せん断強度 に対して妥当な安全余裕を持たせることを基本とする。ただし、 構造部材の曲げ、せん断に対する上記の許容限界に代わり、許容 応力度を適用することで、安全余裕を考慮する場合もある。なお、 それぞれの安全余裕については、各施設の機能要求等を踏まえ設 定する。

(f) その他の土木構造物

安全上適切と認められる規格及び基準による許容応力度を許容 限界とする。

- b. 機器・配管系(c.に記載のものを除く。)
 - (a) Sクラスの機器・配管系
 - i. 弾性設計用地震動による地震力又は静的地震力との組合せに 対する許容限界

応答が全体的におおむね弾性状態に留まることとする(評価 項目は応力等)。

ただし,冷却材喪失事故時に作用する荷重との組合せ(原子 炉格納容器バウンダリ及び非常用炉心冷却設備等における長 期的荷重との組合せを除く。)に対しては,下記 ii. に示す許容 限界を適用する。

ii. 基準地震動による地震力との組合せに対する許容限界

塑性ひずみが生じる場合であっても、その量が小さなレベル に留まって破断延性限界に十分な余裕を有し、その施設に要求 される機能に影響を及ぼさないように応力、荷重等を制限する 値を許容限界とする。

また,地震時又は地震後に動的機能が要求される機器等については,基準地震動による応答に対して,実証試験等により確認されている機能確認済加速度等を許容限界とする。

(b) Bクラス及びCクラスの機器・配管系

応答が全体的におおむね弾性状態に留まることとする(評価項 目は応力等)。

(c) チャンネル・ボックス
 地震時に作用する荷重に対して,燃料集合体の冷却材流路を維持
 できること及び過大な変形や破損を生ずることにより制御棒の挿

入が阻害されることがないことを確認する。

c. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備 が設置された建物・構築物

津波防護施設及び浸水防止設備が設置された建物・構築物につい ては、当該施設及び建物・構築物が構造物全体としての変形能力(終 局耐力時の変形)について十分な余裕を有するとともに、その施設に 要求される機能(津波防護機能及び浸水防止機能)が保持できること を確認する(評価項目はせん断ひずみ、応力等)。

浸水防止設備及び津波監視設備については,その設備に要求され る機能(浸水防止機能及び津波監視機能)が保持できることを確認す る。

- d. 基礎地盤の支持性能
- (a) Sクラスの建物・構築物及びSクラスの機器・配管系((b)に記載のもののうち,津波防護施設,浸水防止設備及び津波監視設備を除く。)の基礎地盤
 - i. 基準地震動による地震力との組合せに対する許容限界 接地圧が、安全上適切と認められる規格及び基準等による地盤 の極限支持力度に対して妥当な余裕を有することを確認する。
 - ii. 弾性設計用地震動による地震力又は静的地震力との組合せに対す る許容限界

接地圧に対して,安全上適切と認められる規格及び基準等によ る地盤の短期許容支持力度を許容限界とする。

- (b) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物の基礎地盤
 - i. 基準地震動による地震力との組合せに対する許容限界 接地圧が、安全上適切と認められる規格及び基準等による地盤 の極限支持力度に対して妥当な余裕を有することを確認する。
- (c) Bクラス及びCクラスの建物・構築物, Bクラス及びCクラスの機 器・配管系並びにその他の土木構造物の基礎地盤

上記(a) ii. による許容支持力度を許容限界とする。

【説明資料(4.1(4): P4 条-89)】

1.4.1.5 設計における留意事項

耐震重要施設は,耐震重要度分類の下位のクラスに属する施設の波及 的影響によって,その安全機能を損なわないように設計する。

波及的影響については、耐震重要施設の設計に用いる地震動又は地震

カを適用して評価を行う。なお、地震動又は地震力の選定に当たっては、 施設の配置状況、使用時間等を踏まえて適切に設定する。また、波及的 影響においては水平2方向及び鉛直方向の地震力が同時に作用する場合 に影響を及ぼす可能性のある施設、設備を選定し評価する。

波及的影響の評価に当たっては、以下(1)~(4)をもとに、敷地全体を俯瞰した調査・検討を行い、耐震重要施設の安全機能への影響がないことを確認する。

なお,原子力発電所の地震被害情報をもとに,以下(1)~(4)以外 に検討すべき事項がないかを確認し,新たな検討事項が抽出された場合 には,その観点を追加する。

- (1) 設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位に よる影響
 - a. 不等沈下

耐震重要施設の設計に用いる地震動又は地震力に対して不等沈下により, 耐震重要施設の安全機能へ影響がないことを確認する。

b. 相対変位

耐震重要施設の設計に用いる地震動又は地震力による耐震重要度分類の 下位のクラスに属する施設と耐震重要施設の相対変位により,耐震重要施 設の安全機能へ影響がないことを確認する。

(2) 耐震重要施設と耐震重要度分類の下位のクラスに属する施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に対して、耐震重要施設 に接続する耐震重要度分類の下位のクラスに属する施設の損傷により、耐

震重要施設の安全機能へ影響がないことを確認する。

- (3) 建屋内における耐震重要度分類の下位のクラスに属する施設の損傷,転倒及び落下等による耐震重要施設への影響 耐震重要施設の設計に用いる地震動又は地震力に対して,建屋内の耐震 重要度分類の下位のクラスに属する施設の損傷,転倒及び落下等により,耐 震重要施設の安全機能へ影響がないことを確認する。
- (4) 建屋外における耐震重要度分類の下位のクラスに属する施設の損傷, 転倒 及び落下等による耐震重要施設への影響
 - a. 耐震重要施設の設計に用いる地震動又は地震力に対して、建屋外の耐震重要度分類の下位のクラスに属する施設の損傷、転倒及び落下等により、耐震重要施設の安全機能へ影響がないことを確認する。
 - b. 耐震重要施設の設計に用いる地震動又は地震力に対して,耐震重要施 設の周辺斜面が崩壊しないことを確認する。

なお、上記(1)~(4)の検討に当たっては、溢水、火災の観点からも波及 的影響がないことを確認する。(火災については「柏崎刈羽原子力発電所 6号及び7号炉 設計基準対象施設について」のうち「第8条 火災によ る損傷の防止」に、溢水については「柏崎刈羽原子力発電所6号及び7号 炉 設計基準対象施設について」のうち「第9条 溢水による損傷の防止 等」に記載)

上記の観点で検討した耐震重要施設に対して,波及的影響を考慮する施設を,第1.4.1-1表中に「波及的影響を考慮すべき施設」として記載する。

【説明資料(7:P4条-97)】

1.4.1.6 構造計画と配置計画

設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が 低減されるように考慮する。

建物・構築物は,原則として剛構造とし,重要な建物・構築物は,地 震力に対し十分な支持性能を有する地盤に支持させる。剛構造としない 建物・構築物は,剛構造と同等又はそれを上回る耐震安全性を確保する。

機器・配管系は、応答性状を適切に評価し、適用する地震力に対して 構造強度を有する設計とする。配置に自由度のあるものは、耐震上の観 点からできる限り重心位置を低くし、かつ、安定性のよい据付け状態に なるよう配置する。

また,建物・構築物の建屋間相対変位を考慮しても,建物・構築物及 び機器・配管系の耐震安全性を確保する設計とする。

耐震重要度分類の下位のクラスに属する施設は原則,耐震重要施設に 対して離隔をとり配置する若しくは,基準地震動に対し構造強度を保つ ようにし,耐震重要施設の安全機能を損なわない設計とする。

【説明資料 (9:P4 条-100)】

1.4.1.7 手順等

建物の補助壁を耐震壁として考慮する場合,耐震性能を維持するため ,補助壁は,耐震壁と同等の維持管理を行う運用とする。

- 1.4.3 主要施設の耐震構造
- 1.4.3.1 原子炉建屋

原子炉建屋は,地上4階,地下3階建で,平面が約57m(南北方向)× 約60m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造 及び鉄骨造)の建物である。 最下階床面からの高さは約58mで地上高さは約38mである。

建物中央部には鉄筋コンクリート製原子炉格納容器があり,鉄筋コンク リート造の基礎版上に設置し原子炉建屋と一体構造としている。その外 側に外壁である原子炉建屋側壁がある。

これらは、原子炉建屋の主要な耐震壁を構成している。また、それぞれ 壁の間は強固な床版で一体に連結し、全体として剛な構造としている。

1.4.3.2 タービン建屋

タービン建屋は、地上2階(一部3階)、地下2階建で平面が約97m(南 北方向)×約82m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コン クリート造及び鉄骨造)の建物である。

建物の内部は,多くの遮蔽壁をもち,剛性が高い。したがって十分な耐 震性を有する構造となっている。

1.4.3.3 原子炉格納容器

原子炉格納容器は、鋼製ライナを内張りした鉄筋コンクリート造であ り、原子炉圧力容器を取り囲む円筒型ドライウェル、円筒型サプレッショ ン・チェンバ及び基礎版等で構成され、容器の主要寸法は、円筒部直径が 約 29m、全高が約 36m である。

内部にはドライウェルとサプレッション・チェンバを仕切る鉄筋コン クリート造のダイヤフラム・フロアがある。

原子炉格納容器は,原子炉建屋床版,使用済燃料プール,キャスク・ピット,蒸気乾燥器・気水分離器ピット等と一体にしているので,原子炉圧 力容器から原子炉格納容器に伝えられる地震力及び原子炉格納容器にか かる地震力を,原子炉建屋耐震壁とともに負担する構造である。

1.4.3.4 原子炉圧力容器

原子炉圧力容器は,内径約7.1m,内高約21m,重量は原子炉圧力容器内 部構造物,原子炉冷却材及び燃料集合体を含めて約1,900tである。

この容器は, 胴下部の鋼製スカートで支持し, スカートは鋼製円筒形基礎にアンカ・ボルトで接続されている。原子炉圧力容器は上部を, その外周の円筒状原子炉遮蔽壁頂部でスタビライザによって水平方向に支持する。スタビライザはプリコンプレッションによって原子炉圧力容器を締めつけており地震力に対し原子炉圧力容器の上部を横方向に支持している。なお, 原子炉圧力容器の熱膨張によってこのプリコンプレッションが 弛緩して零にならないようにする。

1.4.3.5 原子炉圧力容器内部構造物

炉心に作用する水平力は,ステンレス鋼製の炉心シュラウドで支持す る。

炉心シュラウドは円筒形をした構造でシュラウド支持脚を介して原子 炉圧力容器の下部に溶接する。燃料集合体に作用する水平力は,上部格子 板及び炉心支持板を通して炉心シュラウドに伝える。燃料集合体は,ジル カロイ製の細長いチャンネル・ボックスに納める。燃料棒は,過度の変形 を生ずることがないように,燃料集合体頂部及び底部のタイ・プレートで 押さえ,中間部もスペーサによって押さえる。

気水分離器は、シュラウド・ヘッドに取り付けられたスタンド・パイプ に溶接する。蒸気乾燥器は、原子炉圧力容器に付けたブラケットで支持す る。

10 台の原子炉冷却材再循環ポンプは、炉心シュラウドの外周下端に配置する。

原子炉冷却材再循環ポンプ・モータケーシングは,原子炉圧力容器と一 体構造とする。原子炉冷却材再循環ポンプは,ケーシングにより原子炉圧 力容器下鏡部で支持する。

制御棒駆動機構ハウジングは、上部は原子炉圧力容器底部のスタブ・チ ューブに溶接し、下部は地震力に対しハウジング・サポートで支持し、地 震力に対しても十分な強度を持つように設計する。

1.4.3.6 その他

その他の機器・配管については,運転荷重,地震荷重,熱膨脹による荷 重を考慮して,必要に応じてスナバ,リジットハンガ,その他の支持装置 を使用して耐震的にも熱的にも安全な設計とする。

- 1.4.4 地震検知による耐震安全性の確保
 - (1) 地震感知器

安全保護系の一つとして地震感知器を設け、ある程度以上の地震が起 こった場合に原子炉を自動的に停止させる。スクラム設定値は弾性設計 用地震動の加速度レベルに余裕を持たせた値とする。安全保護系は、フェ イル・セーフ設備とするが、地震以外のショックによって原子炉をスクラ ムさせないよう配慮する。

地震感知器は,基盤の地震動をできるだけ直接的に検出するため建屋 基礎版の位置,また主要な機器が配置されている代表的な床面に設置す る。なお,設置に当たっては試験及び保守が可能な原子炉建屋の適切な場 所に設置する。

(2) 地震観測等による耐震性の確認

発電用原子炉施設のうち安全上特に重要なものに対しては,地震観測 網を適切に設置し,地震観測等により振動性状の把握を行い,それらの測 定結果に基づく解析等により施設の機能に支障のないことを確認してい くものとする。

地震観測を継続して実施するために,地震観測網の適切な維持管理を 行う。

- 1.4.5 参考文献
 - (1) 「静的地震力の見直し(建築編)に関する調査報告書(概要)」
 (社)日本電気協会 電気技術調査委員会 原子力発電耐震設計特別調査委員会 建築部会 平成6年3月

第 1.4.1-1 表 クラス別施設

型電車車車		主要設備	注1)	補助設備	注2)	直接支持構造物	注3)	間接支持構造物	注4)	波及的影響を 考慮すべき施設	计口
分類	機能別分類	適用範囲	耐震 クラス	適用範囲	耐震 クラス	適用範囲	耐震 クラス	適用範囲	検討用 地震動 注 6)	適用範囲	在 5) 検討用 地震動 注 6)
S クラス	 (I) 原子炉冷却材圧 カバウンダリを構 成する機器・配管系 	・原子炉圧力容器 ・原子炉冷却材圧力バウ ンダリに属する容器・ 配管・ポンプ・弁	S S	 ・隔離弁を閉とするに必要な電気及び計装設備 	S	 ・原子炉圧力容器支持ス カート ・機器・配管,電気計装 設備等の支持構造物 	S S	・原子炉圧力容器基礎 ・原子炉建屋 ・コントロール建屋	Ss Ss Ss	・原子炉遮蔽壁 ・サービス建屋 ・その他	Ss Ss Ss
	 (Ⅱ)使用済燃料を貯 蔵するための施設 	・使用済燃料プール ・使用済燃料貯蔵ラック	S S	・燃料ブール水補給設備 (残留熱除去系(燃料 プール水の補給に必要な設備)) ・非常用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む)	S	 ・機器・配管,電気計装 設備等の支持構造物 	S	 ・原子炉建屋 ・コントロール建屋 ・軽油タンクの基礎 ・非常用電源の燃料油系 を支持する構造物 	Ss Ss Ss Ss	 ・原子炉建屋クレーン ・燃料取扱設備 ・サービス建屋 ・その他 	Ss Ss Ss Ss
	 (Ⅲ) 原子炉の緊急停止のために急激に 負の反応度を付加するための施設,及び原子炉の停止状態を維持するための施設 	 ・制御棒,制御棒駆動機 構及び制御棒駆動水 圧系(スクラム機能に 関する部分) 	S	 ・炉心支持構造物 ・電気計装設備 ・チャンネル・ボックス 	S S S	 ・機器・配管,電気計装 設備等の支持構造物 	S	 ・原子炉建屋 ・下部ドライウェルアク セストンネル 	Ss Ss	・その他	Ss
	 (IV)原子炉停止後,炉 心から崩壊熱を除 去するための施設 	 ・原子炉隔離時冷却系 ・高圧炉心注水系 ・残留熱除去系(停止時 冷却モード運転に必 要な設備) ・冷却水源としてのサプ レッション・チェンバ 	S S S	 ・当該施設の冷却系(原 子炉補機冷却系) ・炉心支持構造物 ・非常用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む) ・当該施設の機能維持に 必要な空調設備 	S S S	 ・機器・配管,電気計装 設備等の支持構造物 	S	 ・原子炉建屋 ・当該設備に係る屋外コンクリートダクト ・コントロール建屋 ・タービン建屋 (Sクラスの機器・配管を支持する部分) ・軽油タンクの基礎 ・非常用電源の燃料油系を支持する構造物 	Ss Ss Ss Ss Ss Ss	・サービス建屋 ・その他	Ss Ss

(==_)											
耐震重要度		主要設備	注1)	補助設備	注2)	直接支持構造物	注3)	間接支持構造物	注4)	波及的影響を 考慮すべき施設	: 注 5)
分類	機能別分類	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	検討用 地震動 注 6)	適用範囲	検討用 地震動 注 6)
S クラス	 (V) 原子炉冷却材圧 カバウンダリ破損 事故後,炉心から崩 壊熟を除去するための施設 (VI) 原子炉冷却材圧 	 ・非常用炉心冷却系 1) 高圧炉心注水系 2) 原子炉隔離時冷却系 3) 残留熱除去系(低 圧注水モード運転に必要な設備) 4) 自動減圧系 ・冷却水源としてのサプレッション・チェンバ ・原子炉格納容器 	S S S	 ・当該施設の冷却系(原 子炉補機冷却系) ・非常用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む) ・中央制御室の遮蔽及び 空調設備 ・当該施設の機能維持に 必要な空調設備 ・隔離弁を閉とするに必 	S S S S	 ・機器・配管,電気計装 設備等の支持構造物 ・機器・配管,電気計装 	S	 ・原子炉建屋 ・タービン建屋 (Sクラスの機器・配管を支持する部分) ・当該施設に係る屋外コンクリートダクト ・コントロール建屋 ・軽油タンクの基礎 ・非常用電源の燃料油系を支持する構造物 ・原子炉建屋 	Ss Ss Ss Ss Ss Ss Ss	 ・サービス建屋 ・その他 ・原子炉ウェル遮蔽プラ 	Ss Ss Ss
	カバウンダリ破損 事故の際に,圧力障 壁となり放射性物 質の放散を直接防 ぐための施設	・格納容器バウンダリに 属する配管・弁	S	要な電気及び計装設 備		設備等の支持構造物		・コントロール建屋	Ss	グ ・サービス建屋 ・その他	Ss Ss
	(Ⅶ) 放射性物質の放 出を伴うような事 故の際に,その外部 放散を抑制するた めの施設であり,S クラス(Ⅵ)以外の 施設	 ・残留熱除去系(格納容器スプレイ冷却モードの運転に必要な設備) ・可燃性ガス濃度制御系・原子炉建屋原子炉区域 ・非常用ガス処理系及び排気口 ・原子炉格納容器圧力抑制装置(ダイヤフラムフロア,ベント管) ・冷却水源としてのサプレッション・チェンバ 	S S S S S	 ・当該施設の冷却系(原 子炉補機冷却系) ・非常用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む) ・当該施設の機能維持に 必要な空調設備 	S S S	 ・機器・配管,電気計装 設備等の支持構造物 	S	 ・原子炉建屋 ・主排気筒(非常用ガス 処理系の排気口を支 持する場合) ・タービン建屋 (Sクラスの機器・配 管を支持する部分) ・当該施設に係る屋外コ ンクリートダクト ・コントロール建屋 ・軽油タンクの基礎 ・非常用電源の燃料油系 を支持する構造物 	Ss Ss Ss Ss Ss Ss Ss Ss	・サービス建屋 ・その他	Ss Ss

(つづき)

()	う	き)
()	-	C	/

ī	耐震重要度	楼台印入为五	主要設備	注1)	補助設備 注 2)		直接支持構造物) 注3)	間接支持構造物	注4)	波及的影響を 考慮すべき施設 注 5)	
1	分類	们这自己力引力方共	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	検討用 地震動 注 6)	適用範囲	検討用 地震動 注 6)
	S クラス	 (WD) 津波防護機能を 有する設備及び浸 水防止機能を有す る設備 	 海水貯留堰 取水槽閉止板 水密扉 止水ハッチ 浸水防止ダクト(7号 炉) ダクト閉止板(6号炉) 床ドレンライン浸水防 止治具 貫通部止水処置 	S S S S S S	_	_	・機器・配管等の支持構 造物	S	 タービン建屋(浸水防 止設備を支持する部 分) 	Ss	・その他	Ss
		 (IX) 敷地における津 波監視機能を有す る施設 (X) この他 	 ・津波監視カメラ ・取水槽水位計 	S S	・非常用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む)	S	 ・電気計装設備等の支持 構造物 ・地理・町第一番与まれ 	S	 ・7 号炉主排気筒 ・タービン建屋(津波監 視設備を支持する部 分) ・軽油タンクの基礎 ・非常用電源の燃料油系 を支持する構造物 	Ss Ss Ss Ss	・その他	Ss
		(X) ての他	 はり酸水注入糸 注 7) ・圧力容器内部構造物 注 8) 	S	・非吊用電源及び計装設 備(ディーゼル発電機 及びその冷却系・補助 施設を含む)	5	 ・機器・配官,電気計装 設備等の支持構造物 ・原子炉圧力容器 	S	・原ナ炉建屋 ・コントロール建屋 ・原子炉圧力容器基礎	Ss Ss Ss	・サービス運産 ・その他	Ss Ss

耐雲重更度		主要設備	注1)	補助設備	注2)	直接支持構造物	注3)	間接支持構造物	注4)
分類	機能別分類	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	検討用 地震動 注 6)
Bクラス	(I)原子炉冷却材圧 カバウンダリに直 接接続されていて、 一次冷却材を内蔵 しているか又は内 蔵し得る施設	 ・主蒸気系(原子炉格納 容器外側主蒸気隔離 弁からタービン主蒸 気止め弁まで) ・逃がし安全弁排気管 	B 注9) B 注10)	_	_	・機器・配管等の支持構 造物	B 注9)	 ・原子炉建屋 ・タービン建屋 (原子炉格納容器外 側主蒸気隔離弁より タービン主蒸気止め 弁までの配管・弁を支 持する部分) 	Sd Sd
		 ・主蒸気系及び給水系 ・原子炉冷却材浄化系 	B B	_	_	・機器・配管等の支持構 造物	В	・原子炉建屋 ・タービン建屋	S _B S _B
	 (Ⅱ) 放射性廃棄物を 内蔵している施設 (ただし,内蔵量が 少ない又は貯蔵方 式により,その破損 により公衆に与え る放射線の影響が 「周辺監視区域」外 における年間の線 量限度に比べ十分 小さいものは除く) 	 ・放射性廃棄物廃棄施設 ただし、Cクラスに属 するものは除く 	В			・機器・配管等の支持構 造物	В	 ・原子炉建屋 ・タービン建屋 ・廃棄物処理建屋 ・焼却炉建屋 	$egin{array}{c} S_B \ $
	 (Ⅲ) 放射性廃棄物以 外の放射性物質に 関連した施設で,そ の破損により,公衆 及び従事者に過大 な放射線被ばくを 与える可能性のあ る施設 	 ・蒸気タービン,湿分分 離加熱器,復水器,給 水加熱器及びその主 要配管 ・復水浄化系 ・復水浄化系 ・復水行一ル冷却浄化-ハ ・サプレッションプール 浄化系 ・放射線低減効果の大き ・放射線低減効果の大き ・脚御棒駆動水圧系(放 射性流体を内蔵する 部分,ただし,スクラ ム機能に関するもの を除く) ・原子炉建屋クレーン ・燃料取扱設備 ・制御棒貯蔵ラック 	B B B B B B B B B B B B B B		_	・機器・配管等の支持構 造物	В	 ・原子炉建屋 ・タービン建屋 ・タービン・ペデスタル ・廃棄物処理建屋 	$egin{array}{c} S_B \ S_B \ S_B \ S_B \ S_B \ \end{array}$

		主要設備		補助設備		直接支持構造物		間接支持構造物)
耐雲重更度			注1)		注2)		注3)		注4)
分 類	機能別分類	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	耐 震 クラス	適用範囲	検討用 地震動 注 6)
Bクラス	(Ⅳ) 使用済燃料を冷	・燃料プール冷却浄化系	В	・原子炉補機冷却系	В	・機器・配管, 電気計装	В	・原子炉建屋	SB
	却するための施設			・電気計装設備	В	設備等の支持構造物		・タービン建屋	SB
								・コントロール建屋	SB
	 (V) 放射性物質の放 出を伴うような場 合に、その外部放散 を抑制するための 施設で、S クラスに 属さない施設 	_	_	_		_	_	_	_

(つづき)

(;	汪4)	検討用 地震動 注 6)	Sc	Sc	Sc			Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc		
間接支持構造物		適用範囲	ョ和山子道・	・コントロール建屋	・廃棄物処理建屋			・原子炉建屋	・タービン建屋	· 焼却炉建屋	・ランドリ建屋	·廃棄物処理建屋	・コントロール建屋	・サービス建屋	・使用済燃料輸送容器保	管建屋	注 11)
(0 ±	(王3)	<mark>討 濃</mark> クラス	I					C									
直接支持構造物		適用範囲	I					・機器・配管、電気計装	設備等の支持構造物								
ि <u>र</u> े	狂 2)	県 クラス	1					-									
補助設備		適用範囲	-					Ι									
(+ 4 2	(王1)	見 濃 クラス	С		С			С	С	С	С	С		С	С		С
主要設備		適用範囲	·冷却材再循環流量制御	놿置	・制御棒駆動系 (S クラ	ス及びBクラスに属さ	ない部分)	·試料採取系	・シャワ・ドレン系	·洗濯廃液系	・固体廃棄物貯蔵施設	・雑固体系 (雑固体廃棄	物処理設備を除く)	 新燃料貯蔵庫 	・使用済燃料輸送容器保	管施設	・その他
		機能別分類	(I) 原子炉の反応度	を制御するための	肥設で201人及い B クラスに属よたい	施設		(II) 放射性物質を内	蔵しているか、又は	にれた 関連した 開始に クルス RfkB	カラスに属さない	施設					
	耐霉看更使		Cクラス														

(しづみ)

	注4)	検討用 地震動 注6)	Sc	Sc	Sc	Sc	Sc	Sc	Sc	Sc						
間接支持構造物		適用範囲	・原子炉建屋	・タービン建屋	・補助ボイラ建屋	・当該施設の支持構造物	・コントロール建屋	・サービス建屋	·廃棄物処理建屋	·5号炉原子炉建屋						
The:	注3)	耐 タラス	С													
直接支持構造物	R. C.	適用範囲	・機器・配管,電気計装	設備等の支持構造物												
	注2)	耐 慶 クラス	С													
補助設備		適用範囲	・5 号炉原子炉建屋内緊	急時対策所計装設備·	通信連絡設備											
	注1)	耐 凄 クラス	С	С	C	С	С		С			С	C	С		С
主要設備		適用範囲	・循環水系	・タービン補機冷却系	・所内ボイラ	・消火系	・開閉所, 発電機, 変圧	器	·换気空調系	(S クラスの換気空調	系以外のもの)	・タービン建屋クレーン	・ 圧縮空気系	•5 号炉原子炉建屋内緊	急時対策所	・その他
		機能別分類	(皿) 放射線安全に関	係しない施設等												
	如害者用	90.00 基本(A	Cクラス													

(しいせ)

- (注1) 主要設備とは、当該機能に直接的に関連する設備をいう。
- (注 2) 補助設備とは、当該機能に間接的に関連し、主要設備の補助的役割を持つ設備をいう。
- (注3) 直接支持構造物とは,主要設備,補助設備に直接取り付け られる支持構造物,若しくはこれらの設備の荷重を直接的 に受ける構造物をいう。
- (注4) 間接支持構造物とは、直接支持構造物から伝達される荷重を受ける構造物(建物・構築物)をいう。
- (注5) 波及的影響を考慮すべき施設とは、下位の耐震クラスに属 するものの破損等によって上位の分類に属するものに波及 的影響を及ぼすおそれのある施設をいう。
- (注 6) Ss:基準地震動により定まる地震力。
 Sd:弾性設計用地震動により定まる地震力。
 S_B:耐震 B クラス施設に適用される地震力。
 S_c:耐震 C クラス施設に適用される静的地震力。
- (注7) ほう酸水注入系は、安全機能の重要度を考慮して、Sクラス に準ずる。
- (注8) 圧力容器内部構造物は、炉内にあることの重要性からSク ラスに準ずる。
- (注9) Bクラスではあるが,弾性設計用地震動に対し破損しない ことの検討を行うものとする。
- (注10) 地震により逃がし安全弁排気管が破損したとしても、ドラ イウェル内に放出された蒸気はベント管を通してサプレッ ション・チェンバのプール水中に導かれて凝縮するため、 格納容器内圧が有意に上昇することはないと考えられる が、基準地震動に対し破損しないことを確認する。
- (注 11) 使用済燃料輸送容器保管建屋の破損によって使用済燃料輸送容器に波及的破損を与えないよう設計するものとする。

第1.4.1-2表 入力地震動の評価における解放基盤表面の位置

号炉	標高 T.M.S.L. ^{**} (m)	整地面からの深さ(m)
5 号炉	-134	146
6 号炉	-155	167
7 号炉	-155	167

※T.M.S.L.:東京湾平均海面。Tokyo bay Mean Sea Levelの略で、 東京湾での検潮に基づき設定された陸地の高さの基準

第 1.4-1 図 弾性設計用地震動 Sd-1~Sd-7 の応答スペクトル(荒浜側)

第 1.4-2 図 弾性設計用地震動 Sd-1~Sd-8 の応答スペクトル (大湊側)

第1.4-3図弾性設計用地震動Sd-1の加速度時刻歴波形(荒浜側)

(5) 54 11

第1.4-4図弾性設計用地震動Sd-1の加速度時刻歴波形(大湊側)

時間(秒)

(c) Sd-2UD

第1.4-5図弾性設計用地震動Sd-2の加速度時刻歴波形(荒浜側)

第1.4-6図弾性設計用地震動Sd-2の加速度時刻歴波形(大湊側)

第1.4-7 図 弾性設計用地震動 Sd-3の加速度時刻歴波形 (荒浜側と大湊側で共通)

第1.4-8図弾性設計用地震動Sd-4の加速度時刻歴波形(荒浜側)

第1.4-9図弾性設計用地震動Sd-4の加速度時刻歴波形(大湊側)

第1.4-10図弾性設計用地震動Sd-5の加速度時刻歴波形(荒浜側)

第1.4-11図弾性設計用地震動Sd-5の加速度時刻歴波形(大湊側)

第1.4-12図弾性設計用地震動Sd-6の加速度時刻歴波形(荒浜側)

第1.4-13図弾性設計用地震動Sd-6の加速度時刻歴波形(大湊側)

第1.4-14図弾性設計用地震動Sd-7の加速度時刻歴波形(荒浜側)

第1.4-15図弾性設計用地震動Sd-7の加速度時刻歴波形(大湊側)

4条-69

第1.4-16図弾性設計用地震動Sd-8の加速度時刻歴波形(大湊側)

第1.4-17図弾性設計用地震動Sdと基準地震動S1の応答スペクトルの比較(水平方向)

第1.4-18 図 弾性設計用地震動の応答スペクトル及び解放基盤表面における地震動の一様ハザードスペクトル (荒浜側)

第1.4-19 図 弾性設計用地震動の応答スペクトル及び解放基盤表面における地震動の一様ハザードスペクトル (大湊側)

4 条-73

<u>(3) 適合性説明</u>

(地震による損傷の防止)

第四条 設計基準対象施設は、地震力に十分に耐えることができるものでなけれ ばならない。

- 2 前項の地震力は、地震の発生によって生ずるおそれがある設計基準対象施設の安全機能の喪失に起因する放射線による公衆への影響の程度に応じて算定しなければならない。
- 3 耐震重要施設は、その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地震による加速度によって作用する地震力(以下「基準地震動による地震力」という。)に対して安全機能が損なわれるおそれがないものでなければならない。
- 4 耐震重要施設は、前項の地震の発生によって生ずるおそれがある斜面の崩壊 に対して安全機能が損なわれるおそれがないものでなければならない。

適合のための設計方針

1 について

設計基準対象施設は,耐震重要度分類をSクラス,Bクラス又はCクラスに 分類し,それぞれに応じて設定した地震力に対しておおむね弾性範囲の設計 を行う。

なお,耐震重要度分類及び地震力については,「2 について」に示すとおり である。

【説明資料(1.1(2): P4 条-79)】

2 について

設計基準対象施設は、地震により発生するおそれがある安全機能の喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度に応じて、以下のとおり、耐震重要度分類をSクラス、Bクラス又はCクラスに分類し、それぞれに応じた地震力を算定する。

【説明資料(1.1(1): P4条-79)(1.1(2): P4条-79)】

- (1) 耐震重要度分類
 - Sクラス:地震により発生するおそれがある事象に対して,原子炉を停止し,炉心を冷却するために必要な機能を持つ施設,自ら放射性物質を内蔵している施設,当該施設に直接関係しており その機能喪失により放射性物質を外部に拡散する可能性の

ある施設,これらの施設の機能喪失により事故に至った場合 の影響を緩和し,放射線による公衆への影響を軽減するため に必要な機能を持つ施設及びこれらの重要な安全機能を支 援するために必要となる施設,並びに地震に伴って発生する おそれがある津波による安全機能の喪失を防止するために 必要となる施設であって,その影響が大きいもの

【説明資料(2.1(1): P4条-83)】

Bクラス:安全機能を有する施設のうち,機能喪失した場合の影響がS クラス施設と比べ小さい施設

【説明資料(2.1(2): P4 条-83)】

Cクラス:Sクラスに属する施設及びBクラスに属する施設以外の一般 産業施設又は公共施設と同等の安全性が要求される施設

【説明資料(2.1(3): P4条-83)】

(2) 地震力

上記(1)のSクラスの施設(津波防護施設,浸水防止設備及び津波監視 設備を除く。),Bクラス及びCクラスの施設に適用する地震力は以下のとお り算定する。

なお,Sクラスの施設については,弾性設計用地震動による地震力又は静 的地震力のいずれか大きい方の地震力を適用する。

a. 静的地震力

静的地震力は、Sクラス、Bクラス及びCクラスの施設に適用することとし、それぞれ耐震重要度分類に応じて次の地震層せん断力係数Ci及び 震度に基づき算定する。

(a) 建物・構築物

水平地震力は、地震層せん断力係数 Ci に、次に示す施設の耐震重要度 分類に応じた係数を乗じ、さらに当該層以上の重量を乗じて算定するも のとする。

- Sクラス 3.0
- Bクラス 1.5
- Cクラス 1.0

ここで、地震層せん断力係数 Ci は、標準せん断力係数 C₀を 0.2 以上とし、建物・構築物の振動特性及び地盤の種類等を考慮して求められる値とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。鉛直地震力は、震度 0.3 以上を基準とし、建物・構築物の振動特性及び地盤の種類等を考慮して求めた鉛直震度

より算定するものとする。ただし、鉛直震度は高さ方向に一定とする。

(b) 機器・配管系

耐震重要度分類の各クラスの地震力は、上記(a)に示す地震層せん断 カ係数 Ci に施設の耐震重要度分類に応じた係数を乗じたものを水平震度 とし、当該水平震度及び上記(a)の鉛直震度をそれぞれ 20%増しとした 震度より求めるものとする。

なお,Sクラスの施設については,水平地震力と鉛直地震力は同時に不 利な方向の組合せで作用するものとする。ただし,鉛直震度は高さ方向に 一定とする。

【説明資料 (3.1(1): P4 条-84)】

b. 弾性設計用地震動による地震力

弾性設計用地震動による地震力は、Sクラスの施設に適用する。

弾性設計用地震動は、添付書類六の「5. 地震」に示す基準地震動に工学 的判断から求められる係数 0.5 を乗じて設定する。

また,弾性設計用地震動による地震力は,水平2方向及び鉛直方向について適切に組み合わせたものとして算定する。

なお, B クラスの施設のうち, 共振のおそれのある施設については, 弾性 設計用地震動に 2 分の 1 を乗じた地震動によりその影響についての検討を 行う。当該地震動による地震力は, 水平 2 方向及び鉛直方向について適切 に組み合わせて算定するものとする。

【説明資料 (3.1(2): P4 条-85)】

3 について

耐震重要施設(津波防護施設,浸水防止設備及び津波監視設備を除く。) については,最新の科学的・技術的知見を踏まえ,敷地及び敷地周辺の地質・ 地質構造,地盤構造並びに地震活動性等の地震学及び地震工学的見地から 想定することが適切な地震動,すなわち添付書類六の「5.地震」に示す基準 地震動による地震力に対して,安全機能が損なわれるおそれがないように 設計する。

【説明資料(1.1(5): P4条-79)】

また,屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設 備並びに浸水防止設備が設置された建物・構築物については,基準地震動に よる地震力に対して,それぞれの施設及び設備に要求される機能が保持で きるように設計する。

【説明資料(1.1(6): P4 条-80)】 基準地震動による地震力は、基準地震動を用いて、水平 2 方向及び鉛直方 向について適切に組み合わせたものとして算定する。

【説明資料(1.1(5): P4条-79)(1.1(6): P4条-80)】

なお,耐震重要施設が,耐震重要度分類の下位のクラスに属する施設の波 及的影響によって,その安全機能を損なわないように設計する。

【説明資料(1.1(9): P4条-80)】

4 について

耐震重要施設については,基準地震動による地震力によって生じるおそ れがある周辺の斜面の崩壊に対して,その安全機能が損なわれるおそれが ない場所に設置する。

【説明資料(7.(4): P4条-98)】

1.3 気象等

該当なし

- 1.4 設備等 該当なし
- 1.5 手順等

建物の補助壁を耐震壁として考慮する場合,耐震性能を維持するため,補助 壁は,耐震壁と同等の維持管理を行う運用とする。

〈目 次〉

第2部

- 1. 耐震設計の基本方針
 - 1.1 基本方針
 - 1.2 適用規格
- 2. 耐震設計上の重要度分類
 - 2.1 重要度分類の基本方針
 - 2.2 耐震重要度分類
- 3. 設計用地震力
 - 3.1 地震力の算定法
 - 3.2 設計用地震力
- 4. 荷重の組合せと許容限界
 - 4.1 基本方針
- 5. 地震応答解析の方針
 - 5.1 建物·構築物
 - 5.2 機器·配管系
 - 5.3 屋外重要土木構造物
 - 5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物
- 6. 設計用減衰定数
- 7. 耐震重要施設の安全機能への下位クラス施設の波及的影響
- 8. 水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
- 9. 構造計画と配置計画

(別添)

- 別添-1 設計用地震力
- 別添-2 動的機能維持の評価
- 別添-3 弾性設計用地震動 Sd・静的地震力による評価
- 別添-4 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討 について
- 別添-5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
- 別添-6 屋外重要土木構造物の耐震評価における断面選定の考え方
- 別添-7 主要建屋の構造概要及び解析モデルについて
- 別添-8 入力地震動について

4条-78

第2部

1. 耐震設計の基本方針

柏崎刈羽原子力発電所6号及び7号炉の設計基準対象施設の耐震設計方針に ついて説明する。なお、資料中で「6号炉」「7号炉」の区別を特に記載しない 場合は6号及び7号炉共通の記載である。

1.1 基本方針

発電用原子炉施設の耐震設計は,「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(平成25年6月28日原子力規制委員会規則第5号)」及び「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6月28日原子力規制委員会規則第6号)」に適合するよう以下の項目に従って行う。

- (1) 地震により生ずるおそれがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きいもの(以下「耐震重要施設」という。) は、その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地 震による加速度によって作用する地震力に対して、その安全機能が損なわれるおそれがない設計とする。
- (2) 地震により発生するおそれがある安全機能の喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度(以下「耐震重要度」という。)に応じて、耐震重要度分類をSクラス、Bクラス又はCクラスに分類し、それぞれに応じた地震力に十分耐えられる設計とする。
- (3) 建物・構築物及び土木構造物(屋外重要土木構造物及びその他の土木構造物)については,耐震重要度分類の各クラスに応じて算定する地震力が作用した場合においても,接地圧に対する十分な支持力を有する地盤に設置する。
- (4) Sクラスの施設((6)に記載のもののうち,津波防護機能を有する設備(以下「津波防護施設」という。),浸水防止機能を有する設備(以下「浸水防止設備」という。)及び敷地における津波監視機能を有する施設(以下「津波監視設備」という。)を除く。)について,静的地震力は,水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。
- (5) S クラスの施設((6)に記載のもののうち,津波防護施設,浸水防止設備及 び津波監視設備を除く。)は、基準地震動 Ss による地震力に対してその安 全機能が保持できる設計とする。建物・構築物については、構造物全体とし ての変形能力(終局耐力時の変形)に対して十分な余裕を有するように、機 器・配管系については、塑性ひずみが生じる場合であっても、その量が小さ

なレベルに留まって破断延性限界に十分な余裕を有し、その施設の機能を 保持できるように設計する。

また,弾性設計用地震動 Sd による地震力又は静的地震力のいずれか大き い方の地震力に対しておおむね弾性状態に留まる範囲で耐えられる設計と する。

(6) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並び に浸水防止設備又は津波監視設備が設置された建物・構築物は,基準地震動 Ss による地震力に対して,構造全体として変形能力(終局耐力時の変形) について十分な余裕を有するとともに,それぞれの施設に要求される機能 が保持できる設計とする。

屋外重要土木構造物は,構造部材のうち,鉄筋コンクリートの曲げについ ては,限界層間変形角,曲げ耐力又は圧縮縁コンクリート限界ひずみに対し て十分な安全余裕を持たせることとし,せん断については,せん断耐力に対 して妥当な安全余裕を持たせることを基本とする。構造部材のうち,鋼管の 曲げについては,終局曲率に対して十分な安全余裕を持たせることとし,せ ん断については,終局せん断強度に対して妥当な安全余裕を持たせること を基本とする。ただし,構造部材の曲げ,せん断に対する上記の許容限界に 代わり,許容応力度を適用することで,安全余裕を考慮する場合もある。な お,それぞれの安全余裕については,各施設の機能要求等を踏まえ設定す る。

津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物については,(5)に示す基準地震動 Ss に対する設計方針を適用する。基準地震動 Ss による地震力は,水平2方 向及び鉛直方向について適切に組み合わせて算定するものとする。

また,重大事故等対処施設を津波から防護するための津波防護施設,浸水 防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置さ れた建物・構築物についても同様の設計方針とする。

(7) B クラスの施設は,静的地震力に対しておおむね弾性状態に留まる範囲で耐 えられる設計とする。

また, 共振のおそれのあるものについては, その影響についての検討を行 う。その場合, 検討に用いる地震動は, 弾性設計用地震動 Sd に 2 分の 1 を 乗じたものとする。当該地震動による地震力は, 水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとし, S クラス施設と同様に許容 限界の範囲内に留まることを確認する。

(8) C クラスの施設は,静的地震力に対しておおむね弾性状態に留まる範囲で耐 えられる設計とする。

4条-80

- (9) 耐震重要施設は,耐震重要度分類の下位のクラスに属するもの(資機材等含む)の波及的影響によって,その安全機能を損なわない設計とする。
- (10) 設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が低減 されるように考慮する。
- (11) S クラスの施設及びその間接支持構造物等は、地震動及び地殻変動による 基礎地盤の傾斜が基本設計段階の目安値である 1/2,000 を上回る場合、傾 斜に対する影響を地震力に考慮する。
- 1.2 適用規格

適用する規格としては、既往工認で適用実績がある規格のほか、最新の規 格基準についても技術的妥当性及び適用性を示したうえで適用可能とする。

- 既往工認で実績のある適用規格を以下に示す。
- ・「原子力発電所耐震設計技術指針 JEAG4601 1987」(社)日本電気協会
- ・「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 -1984」(社)日本電気協会
- ・「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」(社)日本電気 協会
- (以降,「JEAG4601」と記載しているものは上記3指針を指す。)
- ・建築基準法・同施行令
- ・鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会,1999 改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005 制定)
- ・鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005改定)
- ・鉄骨鉄筋コンクリート構造設計規準・同解説 -許容応力度設計と保有水 平耐力-((社)日本建築学会,2001改定)
- ・塔状鋼構造設計指針・同解説((社)日本建築学会,1980制定)
- ・煙突構造設計指針((社)日本建築学会,2007 制定)
- ·鋼構造座屈設計指針((社)日本建築学会,1996改定)
- ・建築耐震設計における保有耐力と変形性能((社)日本建築学会,1990改 定)
- ·建築基礎構造設計指針((社)日本建築学会,2001改定)
- ・各種合成構造設計指針・同解説((社)日本建築学会,2010)
- ・発電用原子力設備規格 コンクリート製原子炉格納容器規格(社)日本機 械学会, 2003)
- ・コンクリート標準示方書 [構造性能照査編] ((社) 土木学会, 2002 年制

定)

- ・道路橋示方書(I 共通編・IV 下部構造編)・同解説((社)日本道路協会, 平成14年3月)
- ・道路橋示方書(V 耐震設計編)・同解説((社)日本道路協会,平成14年3月)
- ·水道施設耐震工法指針·解説((社)日本水道協会,1997年版)
- ・地盤工学会基準(JGS1521-2003)地盤の平板載荷試験方法
- ・地盤工学会基準(JGS3521-2004) 剛体載荷板による岩盤の平板載荷試験
 方法

ただし, JEAG4601 に記載されている As クラスを含む A クラスの施設を S クラスの施設とした上で,基準地震動 S₂, S₁をそれぞれ基準地震動 Ss, 弾性設計用地震動 Sd と読み替える。

また,「発電用原子力設備に関する構造等の技術基準」(昭和55年通商 産業省告示第501号,最終改正平成15年7月29日経済産業省告示第277 号)に関する内容については,「発電用原子力設備規格 設計・建設規格 (2005年版(2007年追補版を含む))(第I編 軽水炉規格)JSME S NC1-2005/2007」(日本機械学会)に従うものとする。

- 2. 耐震設計上の重要度分類
- 2.1 重要度分類の基本方針

設計基準対象施設の耐震設計上の重要度を次のように分類する。

Sクラスの施設

地震により発生するおそれがある事象に対して,原子炉を停止し,炉心を冷 却するために必要な機能を持つ施設,自ら放射性物質を内蔵している施設,当 該施設に直接関係しておりその機能喪失により放射性物質を外部に拡散する 可能性のある施設,これらの施設の機能喪失により事故に至った場合の影響 を緩和し,放射線による公衆への影響を軽減するために必要な機能を持つ施 設及びこれらの重要な安全機能を支援するために必要となる施設,並びに地 震に伴って発生するおそれがある津波による安全機能の喪失を防止するため に必要となる施設であって,その影響が大きい施設

(2) B クラスの施設

安全機能を有する施設のうち,機能喪失した場合の影響が S クラスの施設 と比べ小さい施設

(3) C クラスの施設

S クラスに属する施設及び B クラスに属する施設以外の一般産業施設又は 公共施設と同等の安全性が要求される施設

2.2 耐震重要度分類

耐震重要度分類について第1部第1.4.1-1表に示す。なお、同表には当該 施設を支持する構造物の支持機能が維持されることを確認する地震動及び波 及的影響を考慮すべき施設に適用する地震動についても併記する。 3. 設計用地震力

3.1 地震力の算定法

耐震設計に用いる地震力の算定は以下の方法による。

(1) 静的地震力

静的地震力は、S クラスの施設(津波防護施設,浸水防止設備及び津波監視 設備を除く。), B クラス及び C クラスの施設に適用することとし、それぞれ 耐震重要度分類に応じて、以下の地震層せん断力係数 Ci 及び震度に基づき算 定するものとする。

a. 建物·構築物

水平地震力は、地震層せん断力係数 Ci に、次に示す施設の耐震重要度 分類に応じた係数を乗じ、さらに当該層以上の重量を乗じて算定するも のとする。

Sクラス 3.0

Bクラス 1.5

Cクラス 1.0

ここで、地震層せん断力係数 Ci は、標準せん断力係数 C₀を 0.2 以上とし、建物・構築物の振動特性及び地盤の種類等を考慮して求められる値とする。

また、必要保有水平耐力の算定においては、地震層せん断力係数 Ci に 乗じる施設の耐震重要度分類に応じた係数は、S クラス、B クラス及び C クラスともに 1.0 とし、その際に用いる標準せん断力係数 C₀は 1.0 以上 とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。鉛直地震力は、震度 0.3以上を基準とし、建物・構築物の振動特性及び地盤の種類等を考慮し、高さ方向に一定として求めた鉛直震度より算定するものとする。

b. 機器・配管系

静的地震力は,上記 a. に示す地震層せん断力係数 Ci に施設の耐震重要 度分類に応じた係数を乗じたものを水平震度として,当該水平震度及び 上記 a. の鉛直震度をそれぞれ 20%増しとした震度より求めるものとす る。

Sクラスの施設については,水平地震力と鉛直地震力は同時に不利な方 向の組合せで作用するものとする。ただし,鉛直震度は高さ方向に一定と する。

c. 土木構造物(屋外重要土木構造物及びその他の土木構造物)

土木構造物の静的地震力は、JEAG4601 の規定を参考に、C クラスの建

物・構築物に適用される静的地震力を考慮する。

上記 a. 及び b. 並びに c. の標準せん断力係数 C₀等の割増係数の適用については,耐震性向上の観点から,一般産業施設及び公共施設等の耐震基準との関係を考慮して設定する。

(2) 動的地震力

動的地震力は、S クラスの施設, 屋外重要土木構造物及び B クラスの施設の うち共振のおそれのあるものに適用する。S クラスの施設(津波防護施設, 浸 水防止設備及び津波監視設備を除く。)については, 基準地震動 Ss 及び弾性 設計用地震動 Sd から定める入力地震動を適用する。

B クラスの施設のうち共振のおそれのあるものについては,弾性設計用地 震動 Sd から定める入力地震動の振幅を2分の1にしたものによる地震力を適 用する。

屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並び に浸水防止設備又は津波監視設備が設置された建物・構築物については,基 準地震動 Ss による地震力を適用する。

動的解析においては、地盤の諸定数も含めて材料のばらつきによる変動幅 を適切に考慮する。

3.2 設計用地震力

設計用地震力については別添-1に示す。

- 4. 荷重の組合せと許容限界
- 4.1 基本方針

耐震設計における荷重の組合せと許容限界は以下による。

- (1) 耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。
 - a. 建物・構築物

以下の(a)~(c)の状態を考慮する。

(a) 運転時の状態 発電用原子炉施設が運転状態にあり,通常の自然条件下におかれてい る状態

ただし,運転状態には通常運転時,運転時の異常な過渡変化時を含むも のとする。

- (b) 設計基準事故時の状態発電用原子炉施設が設計基準事故時にある状態
- (c) 設計用自然条件 設計上基本的に考慮しなければならない自然条件(風,積雪等)
- b. 機器・配管系

以下の(a)~(d)の状態を考慮する。

- (a)通常運転時の状態 発電用原子炉の起動,停止,出力運転,高温待機及び燃料取替等が計画 的又は頻繁に行われた場合であって,運転条件が所定の制限値以内にあ る運転状態
- (b) 運転時の異常な過渡変化時の状態

通常運転時に予想される機械又は器具の単一の故障若しくはその誤作 動又は運転員の単一の誤操作及びこれらと類似の頻度で発生すると予想 される外乱によって発生する異常な状態であって、当該状態が継続した 場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生ずるお それがあるものとして安全設計上想定すべき事象が発生した状態

(c) 設計基準事故時の状態

発生頻度が運転時の異常な過渡変化より低い異常な状態であって,当 該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放 出するおそれがあるものとして安全設計上想定すべき事象が発生した状 態

(d) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)

c. 土木構造物

以下の(a)~(c)の状態を考慮する。

(a) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の自然条件下におかれてい る状態

ただし,運転状態には通常運転時,運転時の異常な過渡変化時を含むも のとする。

- (b) 設計基準事故時の状態発電用原子炉施設が設計基準事故時にある状態
- (c) 設計用自然条件 設計上基本的に考慮しなければならない自然条件(風,積雪等)
- (2) 荷重の種類
 - a. 建物・構築物

以下の(a)~(d)の荷重とする。

- (a) 発電用原子炉のおかれている状態にかかわらず常時作用している荷 重, すなわち固定荷重, 積載荷重, 土圧, 水圧, 及び通常の気象条件に よる荷重
- (b) 運転時の状態で施設に作用する荷重
- (c) 設計基準事故時の状態で施設に作用する荷重
- (d) 地震力, 風荷重, 積雪荷重等

ただし,運転時の状態及び設計基準事故時の状態での荷重には,機器・ 配管系から作用する荷重が含まれるものとし,地震力には地震時の土圧, 機器・配管系からの反力,スロッシング等による荷重が含まれるものとす る。

b. 機器・配管系

以下の(a)~(d)の荷重とする。

- (a) 通常運転時の状態で施設に作用する荷重
- (b) 運転時の異常な過渡変化時の状態で施設に作用する荷重
- (c) 設計基準事故時の状態で施設に作用する荷重
- (d) 地震力, 風荷重, 積雪荷重等
- c. 土木構造物

以下の(a)~(d)の荷重とする。

- (a) 発電用原子炉のおかれている状態にかかわらず常時作用している荷 重, すなわち固定荷重, 積載荷重, 土圧, 水圧及び通常の気象条件によ る荷重
- (b) 運転時の状態で施設に作用する荷重
- (c) 設計基準事故時の状態で施設に作用する荷重

- (d) 地震力, 風荷重, 積雪荷重等
- ただし,運転時の状態及び設計基準事故時の状態での荷重には,機器・ 配管系から作用する荷重が含まれるものとし,地震力には,地震時土圧, 機器・配管系からの反力,スロッシング等による荷重が含まれるものとす る。
- (3) 荷重の組合せ
 - (2)に定めた地震力とほかの荷重との組合せは以下による。
 - a. 建物・構築物(d. に記載のもののうち, 津波防護施設, 浸水防止設備及 び津波監視設備を除く。)
 - (a) S クラスの建物・構築物については,常時作用している荷重及び運転時 (通常運転時又は運転時の異常な過渡変化時)に施設に作用する荷重と 地震力とを組み合わせる。
 - (b) S クラスの建物・構築物については、常時作用している荷重及び設計基 準事故時の状態で施設に作用する荷重のうち長時間その作用が続く荷 重と弾性設計用地震動 Sd による地震力又は静的地震力とを組み合わせ る。
 - (c) B クラス及び C クラスの建物・構築物については、常時作用している荷 重及び運転時の状態で施設に作用する荷重と、動的地震力又は静的地 震力とを組み合わせる。
 - b. 機器・配管系(d. に記載のものを除く。)
 - (a) S クラスの機器・配管系については,通常運転時の状態で施設に作用す る荷重と地震力とを組み合わせる。
 - (b) S クラスの機器・配管系については、運転時の異常な過渡変化時の状態 及び設計基準事故時の状態のうち地震によって引き起こされるおそれ のある事象によって作用する荷重と地震力とを組み合わせる。
 - (c) Sクラスの機器・配管系については、運転時の異常な過渡変化時の状態 及び設計基準事故時の状態のうち地震によって引き起こされるおそれ のない事象であっても、いったん事故が発生した場合、長時間継続する 事象による荷重は、その事故事象の発生確率、継続時間及び地震動の年 超過確率の関係を踏まえ、適切な地震力と組み合わせる。
 - (d) B クラス及び C クラスの機器・配管系については,通常運転時の状態で 施設に作用する荷重及び運転時の異常な過渡変化時の状態で作用する 荷重と,動的地震力又は静的地震力を組み合わせる。
 - c. 土木構造物
 - (a) 屋外重要土木構造物については,常時作用している荷重及び運転時(通 常運転時又は運転時の異常な過渡変化時)の状態で施設に作用する荷

重と地震力とを組み合わせる。

- (b) その他の土木構造物については、常時作用している荷重及び運転時の 状態で施設に作用する荷重と静的地震力とを組み合わせる。
- d. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物
- (a) 津波防護施設及び浸水防止設備又は津波監視設備が設置された建物・ 構築物については、常時作用している荷重及び運転時の状態で施設に作 用する荷重と基準地震動 Ss による地震力とを組み合わせる。
- (b) 浸水防止設備及び津波監視設備については、常時作用している荷重及 び運転時の状態で施設に作用する荷重等と基準地震動 Ss による地震力を 組み合わせる。

なお、上記 d. (a), (b)については、地震と津波が同時に作用する可能性 について検討し、必要に応じて基準地震動 Ss による地震力と津波による荷 重の組合せを考慮する。また、津波以外による荷重については、「(2)荷 重の種類」に準じるものとする。

- e. 荷重の組合せ上の留意事項
- (a) 動的地震力については,水平2方向と鉛直方向の地震力とを適切に組 み合わせて算定するものとする。
- (b) ある荷重の組合せ状態での評価が明らかに厳しい場合には、その妥当 性を示した上で、その他の荷重の組合せ状態での評価は行わないものと する。
- (c) 複数の荷重が同時に作用し、それらの荷重による応力の各ピークの生 起時刻に明らかなずれがある場合には、その妥当性を示した上で、必ずし もそれぞれの応力のピーク値を重ねなくてもよいものとする。
- (d) 上位の耐震クラスの施設を支持する建物・構築物の当該部分の支持機能を確認する場合においては、支持される施設の耐震重要度分類に応じた地震力と、常時作用している荷重、運転時の状態で施設に作用する荷重及びその他必要な荷重とを組み合わせる。

第1部第1.4.1-1表に対象となる建物・構築物及びその支持性能が維持されていることを検討すべき地震動等について記載する。

(4) 許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は以下のとおりとし, JEAG4601 等の安全上適切と認められる規格及び基準又は 試験等で妥当性が確認されている値を用いる。

a. 建物・構築物(d. に記載のもののうち,津波防護施設,浸水防止設備及 び津波監視設備を除く。)

- (a) S クラスの建物・構築物
 - イ.弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対す る許容限界

建築基準法等の安全上適切と認められる規格及び基準による許容 応力度を許容限界とする。

ただし、冷却材喪失事故時に作用する荷重との組合せ(原子炉格納 容器における長期的荷重との組合せを除く。)に対しては、下記ロ.に 示す許容限界を適用する。

- ロ. 基準地震動 Ss による地震力との組合せに対する許容限界
 - 建物・構築物が構造物全体としての変形能力(終局耐力時の変形) に対して十分な余裕を有し,終局耐力に対し妥当な安全余裕を持た せることとする(評価項目はせん断ひずみ,応力等)。なお,終局耐 力は,建物・構築物に対する荷重又は応力を漸次増大していくとき, その変形又はひずみが著しく増加するに至る限界の最大耐力とし, 既往の実験式等に基づき適切に定めるものとする。
- (b) Bクラス及びCクラスの建物・構築物
 上記(a)イ.による許容応力度を許容限界とする。
- (c) 耐震重要度の異なる施設を支持する建物・構築物
- 上記(a) ロ.の項を適用するほか,耐震重要度の異なる施設がそれを支持する建物・構築物が,変形等に対して,その支持機能が損なわないものとする。なお,当該施設を支持する建物・構造物の支持機能が維持されることを確認する際の地震動は,支持される施設に適用される地震動とする。
- (d) 建物・構築物の保有水平耐力

建物・構築物については、当該建物・構築物の保有水平耐力が必要保有 水平耐力に対して耐震重要度分類に応じた安全余裕を有していることを 確認する。

- b. 機器・配管系(d. に記載のものを除く。)
- (a) S クラスの機器・配管系
 - イ.弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対す る許容限界

応答が全体的におおむね弾性状態に留まるものとする(評価項目 は応力等)。

ただし、冷却材喪失事故時に作用する荷重との組合せ(原子炉格納 容器バウンダリ及び非常用炉心冷却設備等における長期的荷重との 組合せを除く。)に対しては、下記(a)ロ.に示す許容限界を適用する。 ロ. 基準地震動 Ss による地震力との組合せに対する許容限界

塑性ひずみが生じる場合であっても、その量が小さなレベルに留 まって破断延性限界に十分な余裕を有し、その施設に要求される機 能に影響を及ぼすことがないように応力、荷重等を制限する。

また,地震時又は地震後に動的機能が要求される機器等については,基準地震動 Ss による応答に対して,実証試験等により確認されている機能確認済加速度等を許容限界とする。動的機能維持の評価については別添-2に示す。

- (b) Bクラス及びCクラスの機器・配管系 応答が全体的におおむね弾性状態に留まることとする(評価項目は 応力等)。
- (c) チャンネル・ボックス

地震時に作用する荷重に対して,燃料集合体の冷却材流路を維持で きること及び過大な変形や破損を生ずることにより制御棒の挿入が阻 害されることがないこととする。

- c. 土木構造物
- (a) 屋外重要土木構造物
 - イ.静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限 界とする。
 - ロ. 基準地震動 Ss による地震力との組合せに対する許容限界
 - 構造部材のうち,鉄筋コンクリートの曲げについては,限界層間変 形角,曲げ耐力又は圧縮縁コンクリート限界ひずみに対して十分な 安全余裕を持たせることとし,せん断については,せん断耐力に対し て妥当な安全余裕を持たせることを基本とする。構造部材のうち,鋼 管の曲げについては,終局曲率に対して十分な安全余裕を持たせる こととし,せん断については,終局せん断強度に対して妥当な安全余 裕を持たせることを基本とする。ただし,構造部材の曲げ,せん断に 対する上記の許容限界に代わり,許容応力度を適用することで,安全 余裕を考慮する場合もある。なお,それぞれの安全余裕については, 各施設の機能要求等を踏まえ設定する。
- (b) その他の土木構造物

安全上適切と認められる規格及び基準による許容応力度を許容限界 とする。

d. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物 津波防護施設及び浸水防止設備又は津波監視設備が設置された建物・ 構築物については、当該施設及び建物・構築物が構造全体として変形能力 (終局耐力時の変形)及び安定性について十分な余裕を有するとともに、 その施設に要求される機能(津波防護機能,浸水防止機能及び津波監視機 能)が保持できるものとする(評価項目はせん断ひずみ,応力等)。

浸水防止設備及び津波監視設備については、その施設に要求される機 能(浸水防止機能及び津波監視機能)が保持できるものとする。

- e. 基礎地盤の支持性能
 - (a) Sクラスの建物・構築物及びSクラスの機器・配管系((b)に記載の もののうち,津波防護施設,浸水防止設備及び津波監視設備を除く。) の基礎地盤
 - イ.基準地震動 Ss による地震力との組合せに対する許容限界 接地圧が、安全上適切と認められる規格及び基準等による地盤の 極限支持力度に対して妥当な余裕を有することを確認する。
 - ロ.弾性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界
 接地圧に対して、安全上適切と認められる規格及び基準等による

接地圧に対して、安全上週切と認められる規格及び基準等による地盤の短期許容支持力度を許容限界とする。

- (b) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備 並びに浸水防止設備又は津波監視設備が設置された建物・構築物の 基礎地盤
- イ. 基準地震動 Ss による地震力との組合せに対する許容限界 接地圧が、安全上適切と認められる規格及び基準等による地盤の 極限支持力度に対して妥当な余裕を有することを確認する。
- (c) Bクラス及びCクラスの建物・構築物, Bクラス及びCクラスの機器・ 配管系及びその他の土木構造物の基礎地盤

上記(a) ロ. による許容支持力度を許容限界とする。

5. 地震応答解析の方針

5.1 建物·構築物

(1) 入力地震動

入力地震動の評価においては,解放基盤表面以浅の影響を適切に考慮する ため、5~7号炉の解放基盤表面はそれぞれ第1表に示す位置とする。

为13人 八月地展到27日 画(237) 分开放圣渔农田29 区直				
号炉	標高 T.M.S.L. [※] (m)	整地面からの深さ(m)		
5号炉	-134	146		
6 号炉	-155	167		
7 号炉	-155	167		

第1表 入力地震動の評価における解放基盤表面の位置

※T.M.S.L.:東京湾平均海面。Tokyo bay Mean Sea Levelの略で、 東京湾での検潮に基づき設定された陸地の高さの基準

建物・構築物の地震応答解析における入力地震動は,解放基盤表面で定義 される基準地震動 Ss 及び弾性設計用地震動 Sd を基に,対象建物・構築物の 地盤条件を適切に考慮した上で,必要に応じ2次元 FEM 解析又は1次元波動 論により,地震応答解析モデルの入力位置で評価した入力地震動を設定する。 地盤条件を考慮する場合には,地震動評価で考慮した敷地全体の地下構造と の関係や対象建物・構築物位置と炉心位置での地質・速度構造の違いにも留 意し,地盤の非線形応答に関する動的変形特性を考慮する。また,必要に応 じ敷地における観測記録による検証や最新の科学的・技術的知見を踏まえ設 定する。弾性設計用地震動 Sd・静的地震力による評価については別添-3に 示す。

また,耐震 B クラスの建物・構築物のうち共振のおそれがあり,動的解析 が必要なものに対しては,弾性設計用地震動 Sd を 2 分の 1 倍したものを用い る。

入力地震動の考え方については別添-8に示す。 (2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては,地震応答解析手法の適用性及 び適用限界等を考慮のうえ,適切な解析法を選定するとともに,建物・構築 物に応じた適切な解析条件を設定する。また,原則として,建物・構築物の地 震応答解析及び床応答曲線の策定は,線形解析及び非線形解析に適用可能な 時刻歴応答解析法による。 建物・構築物の地震応答解析に当たっては,建物・構築物の剛性はそれらの 形状,構造特性等を十分考慮して評価し,集中質点系等に置換した解析モデ ルを設定する。なお,建物の補助壁を耐震壁として考慮するに当たっては, 耐震壁としての適用性を確認した上で,適切な解析モデルを設定する。

動的解析には,建物・構築物と地盤との相互作用を考慮するものとし,解析 モデルの地盤のばね定数は,基礎版の平面形状,基礎側面と地盤の接触状況 及び地盤の剛性等を考慮して定める。各入力地震動が接地率に与える影響を 踏まえて,地盤ばねには,基礎浮上りによる非線形性又は誘発上下動を考慮 できる浮上り非線形性を考慮するものとする。設計用地盤定数は,原則とし て,弾性波試験によるものを用いる。

地震応答解析に用いる材料定数については,地盤の諸定数も含めて材料の ばらつきによる変動幅を適切に考慮する。コンクリートの実強度を考慮して 鉄筋コンクリート造耐震壁の剛性を設定する場合は,建物・構築物ごとの建 設時の試験データ等の代表性,保守性を確認した上で適用する。また,材料 のばらつきによる変動のうち建物・構築物の振動性状や応答性状に及ぼす影 響として考慮すべき要因を選定した上で,選定された要因を考慮した動的解 析により設計用地震力を設定する。

建物・構築物の3次元応答性状及び機器・配管系への影響については,建物・構築物の3次元 FEM モデルによる解析に基づき,施設の重要性,建屋規模,構造特性を考慮して評価する。3次元応答性状等の評価は,時刻歴応答解析法による。

5.2 機器·配管系

(1) 入力地震動又は入力地震力

機器・配管系の地震応答解析における入力地震動又は入力地震力は,基準 地震動 Ss 及び弾性設計用地震動 Sd,又は当該機器・配管系の設置床における 設計用床応答曲線又は時刻歴応答波とする。弾性設計用地震動 Sd による評価 については別添-3に示す。

また,耐震 B クラスの機器・配管系のうち共振のおそれがあり,動的解析 が必要なものに対しては,弾性設計用地震動 Sd を基に作成した設計用床応答 曲線の応答加速度を2分の1倍したものを用いる。

(2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては,地震応答解析手法の適用性及 び適用限界等を考慮のうえ,適切な解析法を選定するとともに解析条件とし て考慮すべき減衰定数,剛性等の各物性値は適切な規格・基準,あるいは実 験等の結果に基づき設定する。 また,評価にあたっては建物・構築物の剛性及び地盤物性等の不確かさを 適切に考慮する。原子炉本体基礎については,鋼板とコンクリートの複合構 造物として,より現実に近い適正な地震応答解析を実施する観点から,コン クリートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の 設定に当たっては,既往の知見や実物の原子炉本体基礎を模擬した試験体に よる加力試験結果を踏まえて,妥当性,適用性を確認するとともに,設定に おける不確実性や保守性を考慮し,機器・配管系の設計用地震力を設定する。 なお,原子炉本体基礎の構造強度は,鋼板のみで地震力に耐える設計とする。

機器の解析に当たっては,形状,構造特性等を考慮して,代表的な振動モードを適切に表現できるよう1質点系モデル,多質点系モデル等に置換し,設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。

配管系については,適切なモデルを作成し,設計用床応答曲線を用いたスペクトルモーダル解析法等により応答を求める。

スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たっては,衝 突・すべり等の非線形現象を模擬する場合等には時刻歴応答解析法を用いる 等,解析対象とする現象,対象設備の振動特性・構造特性等を考慮し適切に 選定する。

また、応答解析モデルは設備の3次元的な広がり及び当該設備の対称性を踏まえ、応答を適切に評価できる場合は1次元モデルや2次元モデルを用い、3次元的な応答性状を把握する必要がある場合は3次元的な配置をモデル化する等、その応答を適切に評価できるモデルを用いることとし、水平2方向及び鉛直方向の応答成分について適切に組み合わせるものとする。

なお、剛性の高い機器は、その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。

5.3 屋外重要土木構造物

(1) 入力地震動

屋外重要土木構造物の地震応答解析における入力地震動は,解放基盤表面 で定義される基準地震動Ssを基に,対象構造物の地盤条件を適切に考慮した 上で,必要に応じ2次元FEM解析又は1次元波動論により,地震応答解析モ デルの入力位置で評価した入力地震動を設定する。地盤条件を考慮する場合 には,地震動評価で考慮した敷地全体の地下構造との関係にも留意し,地盤 の非線形応答に関する動的変形特性を考慮する。また,必要に応じ敷地にお ける観測記録による検証や最新の科学的・技術的知見を踏まえ設定する。静 的地震力による評価については別添一3に示す。 入力地震動の考え方については別添-8に示す。

(2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては,地震応答解析手法の適用性及 び適用限界等を考慮のうえ,適切な解析法を選定するとともに,各構造物に 応じた適切な解析条件を設定する。地震応答解析は,構造物と地盤の相互作 用を考慮できる連成系の地震応答解析手法とし,地盤及び構造物の地震時に おける非線形挙動の有無や程度に応じて,線形,等価線形又は非線形解析の いずれかにて行う。液状化及びサイクリックモビリティ等を示す土層につい ては,敷地の中で当該土層の分布範囲等を踏まえた上で,ばらつき及び不確 実性を考慮して液状化強度特性を設定する。

なお、地震応答解析では、水平地震動と鉛直地震動の同時加振を基本とす るが、構造物の応答特性により水平2方向の同時性を考慮する必要がある場 合は、水平2方向の組合せについて適切に評価する。

(3) 評価対象断面

屋外重要土木構造物の評価対象断面については,構造物の形状・配置等により,耐震上の弱軸,強軸が明確である場合,構造の安定性に支配的である弱軸 方向を対象とする。

また,評価対象断面位置については,構造物の配置や荷重条件等を考慮し, 耐震評価上最も厳しくなると考えられる位置を評価対象とする。

屋外重要土木構造物の耐震評価における評価断面選定の考え方を別添-6 に示す。

- 5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津 波監視設備が設置された建物・構築物
- (1) 入力地震動

津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津 波監視設備が設置された建物・構築物の地震応答解析における入力地震動は, 解放基盤表面で定義される基準地震動 Ss を基に,構造物の基礎地盤条件等を 考慮し設定する。なお,敷地内の詳細な地盤条件を考慮する場合には,地震動 評価で考慮した敷地全体の地下構造との関係にも留意する。

(2) 構造解析方法及び解析モデル

動的解析による地震力の算定については、5.1 (2)、5.2 (2)及び5.3(2)に よるものとする。 6. 設計用減衰定数

応答解析に用いる減衰定数は, JEAG4601 に記載されている減衰定数を設備の 種類,構造等により適切に選定するとともに,試験等で妥当性が確認された値 も用いる。

なお,建屋・構築物の応答解析に用いる鉄筋コンクリートの減衰定数の設定 については,既往の知見に加え,既設施設の地震観測記録等より,その妥当性 について検討する。

地盤と屋外重要土木構造物の連成系地震応答解析モデルの減衰定数につい ては,地中構造物としての特徴,同モデルの振動特性を考慮して適切に設定す る。

7. 耐震重要施設の安全機能への下位クラス施設の波及的影響

耐震重要施設は,耐震重要度分類の下位のクラスに属する施設(以下「下位 クラス施設」という。)の波及的影響によって,その安全機能を損なわないよう に設計する。

波及的影響については,耐震重要施設の設計に用いる地震動又は地震力を適 用して評価を行う。なお,地震動又は地震力の選定に当たっては,施設の配置 状況,使用時間等を踏まえて適切に設定する。また,波及的影響においては水 平2方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性の ある施設を選定し評価する。

波及的影響については、以下に示す(1)~(4)の4つの事項について検討を行う。また、原子力発電所の地震被害情報等から新たに検討すべき事項が抽出された場合には、これを追加する。

- (1) 設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位に よる影響
 - a. 不等沈下

耐震重要施設の設計に用いる地震動又は地震力に伴う不等沈下によ る,耐震重要施設の安全機能への影響

b. 相対変位

耐震重要施設の設計に用いる地震動又は地震力に伴う下位クラス施 設と耐震重要施設の相対変位による,耐震重要施設の安全機能への影響

(2) 耐震重要施設と下位のクラスの施設との接続部における相互影響

耐震重要施設の設計に用いる地震動又は地震力に伴う,耐震重要施設に接続する下位クラス施設の損傷による,耐震重要施設の安全機能への影響

(3) 建屋内における下位のクラスの施設の損傷,転倒及び落下等による耐震重

要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に伴う,建屋内の下位クラス施設の損傷,転倒及び落下等による,耐震重要施設の安全機能への影響

(4) 建屋外における下位のクラスの施設の損傷,転倒及び落下等による耐震重 要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に伴う,建屋外の下位クラス施設の損傷,転倒及び落下等による,耐震重要施設の安全機能への影響

なお,上記(1)~(4)の検討に当たっては,地震に起因する溢水及び火災の 観点からも波及的影響がないことを確認する。

上記観点で抽出した下位クラス施設について,抽出した過程と結果を別 添-4に示す。

- 8. 水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
 - 水平2方向及び鉛直方向の地震力の組合せについて,従来の設計手法に おける水平1方向及び鉛直方向地震力を組み合わせた耐震計算に対して, 施設の構造特性から水平2方向及び鉛直方向地震力の組合せによる影響の 可能性があるものを抽出し,施設が有する耐震性に及ぼす影響を評価する。 評価にあたっては,施設の構造特性から水平2方向及び鉛直方向地震力 の組合せの影響を受ける部位を抽出し,その部位について水平2方向及び 鉛直方向の荷重や応力を算出し,施設が有する耐震性への影響を確認する。 なお,本方針の詳細を別添-5に示す。
 - (1) 建物・構築物
 - ・建物・構築物における耐震評価上の構成部位を整理し,各建屋において, 該当する耐震評価上の構成部位を網羅的に確認する。
 - ・建物・構築物における耐震評価上の構成部位について,水平2方向及び 鉛直方向地震力の組合せの影響が想定される応答特性を整理する。
 - ・整理した耐震評価上の構成部位について、水平2方向及び鉛直方向地震力の組合せの影響が想定される応答特性のうち、荷重の組合せによる応答特性を検討する。水平2方向及び鉛直方向地震力に対し、荷重の組合せによる応答特性により、有する耐震性への影響が想定される部位を抽出する。
 - ・3次元的な応答特性が想定される部位として抽出された部位について, 3次元 FEM モデルを用いた精査を実施し,水平2方向及び鉛直方向地震 力により,有する耐震性への影響が想定される部位を抽出する。
 - ・上記で抽出されなかった部位についても、局所応答の観点から、3次元 FEM モデルによる精査を実施し、水平2方向及び鉛直方向地震力により、 有する耐震性への影響が想定される部位を抽出する。
 - ・評価対象として抽出した耐震評価上の構成部位について,構造部材の発 生応力等を適切に組み合わせることで,各部位の設計上の許容値に対す る評価を実施し,各部位が有する耐震性への影響を評価する。
 - (2)機器・配管系
 - ・基準地震動で評価を行う各設備を代表的な機種ごとに分類し、構造上の 特徴から水平2方向の地震力が重複する観点、若しくは応答軸方向以外 の振動モード(ねじれ振動等)が生じる観点にて検討を行い、水平2方 向の地震力による影響の可能性がある設備を抽出する。
 - ・抽出された設備に対して,水平2方向及び鉛直方向に地震力が入力され た場合の荷重や応力等を求め,従来の設計手法による設計上の配慮を踏 まえて影響を検討する。

- (3) 屋外重要土木構造物
 - ・屋外重要土木構造物について,各構造物の構造上の特徴を踏まえ,構造 形式ごとに大別する。
 - ・従来設計手法における評価対象断面に対して直交する荷重を抽出する。
 - ・屋外重要土木構造物は、おおむね地中に埋設された構造であり、周辺地 盤からの土圧が耐震上支配的な荷重となることから、評価対象断面に対 して直交方向に作用する土圧により水平2方向及び鉛直方向の地震力に よる影響程度が決定される。したがって、地盤からの土圧が直接作用す る部材について影響検討を行う。
 - ・影響検討にあたっては,評価対象断面(弱軸方向)と評価対象断面に直 交する縦断方向(強軸方向)の部材照査に与える影響を検討する。
- 9. 構造計画と配置計画

設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が低 減されるように考慮する。

建物・構築物は、原則として剛構造とし、重要な建物・構築物は、地震力 に対し十分な支持性能を有する地盤に支持させる。剛構造としない建築・構 築物は、剛構造と同等又はそれを上回る耐震安全性を確保する。主要建屋の 平面図、断面図を別添一7に示す。

機器・配管系は、応答性状を適切に評価し、適用する地震力に対して構造 強度を有する設計とする。配置に自由度のあるものは、耐震上の観点から出 来る限り重心位置を低くし、かつ、安定性のよい据え付け状態になるよう配 置する。

また,建物・構築物の建屋間相対変位を考慮しても,建物・構築物及び機 器・配管系の耐震安全性を確保する設計とする。

下位クラス施設は原則,耐震重要施設に対して離隔をとり配置するか,耐 震重要施設の設計に用いる地震動又は地震力に対して耐震性を保持するか 若しくは,下位クラス施設の波及的影響を想定しても耐震重要施設の有す る機能を保持する設計とする。

別添1

柏崎刈羽原子力発電所6号及び7号炉

設計用地震力 (耐震)

設計用地震力

1. 静的地震力

静的地震力は、以下の地震層せん断力係数及び震度に基づき算定する。

種別	耐震 クラス	地震層せん断力係数 及び水平震度	鉛直震度
建物・ 構築物	S	3.0 C _i ^(注)	1.0 C _v
	В	1.5 C_i $^{(\dot{\Xi})}$	_
	С	1.0 C _i ^(注)	_
機器・ 配管系	S	$3.6 C_i^{(\Xi)}$	1.2 C_v
	В	1.8 C _i ^(注)	_
	С	1.2 C _i ^(注)	_
土木 構造物	С	1.0 C _i (注)	_

(注) C_i:標準せん断力係数を 0.2 とし,建物・構築物の振動特性及び地盤の種類等を考慮 して求められる値で柏崎刈羽 6 号及び 7 号炉については建設時に算定した C_iを用い る。 2. 動的地震力

動的地震力は、以下の入力地震動に基づき算定する。

種別		耐震	入力地震動 (注1)	
		クラス	水平地震動	鉛直地震動
建物・ 構築物		S	弾性設計用地震動 Sd	弾性設計用地震動 Sd
		2	基準地震動 Ss	基準地震動 Ss
		В	弹性設計用地震動 Sd×1/2 ^(注2)	弹性設計用地震動 Sd×1/2 ^(注2)
津波防護施設・ 浸水防止設備・ 津波監視設備		S	設計用床応答曲線 Ss 又は 基準地震動 Ss	設計用床応答曲線 Ss 又は 基準地震動 Ss
機器・ 配管系		S	設計用床応答曲線 Sd 又は 弾性設計用地震動 Sd 設計用床応答曲線 Ss 又は 基進地震動 Ss	設計用床応答曲線 Sd 又は 弾性設計用地震動 Sd 設計用床応答曲線 Ss 又は 基準地震動 Ss
		В	設計用床応答曲線 Sd×1/2 ^(注2)	設計用床応答曲線 Sd×1/2 ^(注2)
土木 構造物	屋外重要 土木 構造物	С	基準地震動 Ss	基準地震動 Ss

(注1)設計用床応答曲線は,弾性設計用地震動 Sd 及び基準地震動 Ss に基づき作成した 設計用床応答曲線とする。

(注2)水平及び鉛直方向の地震動に対して共振のおそれのある施設に適用する。

3. 設計用地震力

種別	耐震	入力地震動				
	クラス	水平	鉛直	設計用地震力		
建物・ 構築物	S	地震層せん断力係数	静的震度	荷重の組合せは、水平方		
		$3.0 C_{\rm i}$	1.0 C _v	同及び 5 0 回 万 同 か 時 的 地 震力の 場合は 同時に 不利		
		弾性設計用地震動 Sd	弾性設計用地震動 Sd	な方向に作用するものと する。 水平方向及び鉛直方向が 動的地震力の場合は組合 せ係数法による。		
		基準地震動 Ss	基準地震動 Ss	荷重の組合せは,組合せ 係数法による。		
	В	地震層せん断力係数 1.5 C _i	_	静的地震力とする。		
		弾性設計用地震動 Sd×1/2	弾性設計用地震動 Sd×1/2	(注1) 水平方向及び鉛直方向が 動的地震力の場合は組合 せ係数法による。		
	С	地震層せん断力係数 1.0 C _i	_	静的地震力とする。		
津波防護施設・ 浸水防止設備・ 津波監視設備	S	設計用床応答曲線 Ss 又は 基準地震動 Ss	設計用床応答曲線 Ss 又は 基準地震動 Ss	(注2)(注3) 荷重の組合せは,水平方 向及び鉛直方向が静的地 震力の場合は同時に不利 な方向に作用するものと する。 水平方向及び鉛直方向が 動的地震力の場合は組合 せ係数法又は二乗和平方 根(SRSS)法による,若し くは鉛直地震力は水平地 震力と同時に作用するも のとする。		
種別		耐震	入力地震動		制制用收费力	
--------	---------------	-----	------------------------------	------------------------	---	--
		クラス	水平	鉛直	設計用地農力	
			静的震度	静的震度	(注2)(注3) 共手の知人はは、よう	
			3.6 C _i	$1.2 C_v$	何里の組合せは、水平 方向及び鉛直方向が静 的地震力の場合は同時 に不利な方向に作用す るものとする。	
			設計用床応答曲線 Sd	設計用床応答曲線 Sd		
		S	又は	又は	水半万向及び鉛直万向 が動的地震力の場合け	
			弾性設計用地震動 Sd	弾性設計用地震動 Sd	二乗和平方根(SRSS)法 による。	
機器・配管系			設計用床応答曲線 Ss	設計用床応答曲線 Ss	(注3)	
			又は	又は	荷重の組合せは、二乗 和平方根(SRSS)法によ	
			基準地震動 Ss	基準地震動 Ss	3.	
		В	静的震度	_	(注3)(注4) 水平方向及び鉛直方向 が動い地震力の提合は	
			$1.8 C_i$			
			設計用床応答曲線	設計用床応答曲線	二乗和平方根(SRSS)法	
			$\mathrm{Sd} imes 1/2$ (注1)	Sd×1/2 ^(注1)	による。	
		С	静的震度	_	静的地震力とする。	
			$1.2 C_i$			
土木構造物	屋外重要 土木構造物	C	静的震度	_	静的地震力とする。	
			1.0 C_i			
			基準地震動 Ss	基準地震動 Ss	設計用地震力は動的地 震力とする。 鉛直地震力は,水平地 震力と同時に作用する	
					ものとする。	
	その他	С	静的震度	_	静的地震力とする。	
	土木構造物		1.0 C _i			

- (注1) 水平及び鉛直方向の地震動に対して共振のおそれのある施設に適用する。
- (注 2) 水平における動的と静的の大きい方の地震力と、鉛直における動的と静的の大きい 方の地震力とを、絶対値和法で組み合わせてもよいものとする。
- (注3)絶対値和法で組み合わせてもよいものとする。
- (注4) 水平における動的と静的の大きい方の地震力と、鉛直における動的地震力とを、絶 対値和法で組み合わせてもよいものとする。

別添 2

柏崎刈羽原子力発電所6号及び7号炉

動的機能維持の評価 (耐震)

動的機能維持の評価

動的機能維持に関する評価は,以下に示す機能確認済加速度との比較により 実施する。

動的機能維持の評価手順を第2-1図に示す。

1. 機能確認済加速度との比較

基準地震動 Ss による評価対象機器の応答加速度を求め、その加速度が機能 確認済加速度以下であることを確認する。なお、機能確認済加速度とは、立形 ポンプ、横形ポンプ及びポンプ駆動用タービン等、機種ごとに試験あるいは解 析により動的機能維持が確認された加速度である。

制御棒の地震時挿入性の評価については, 炉心を模擬した実物大の部分モデ ルによる加振時制御棒挿入試験結果から挿入機能に支障を与えない最大燃料 集合体変位を求め, 地震応答解析から求めた燃料集合体変位がその最大燃料集 合体変位を下回ることを確認する。

2. 詳細評価

機能確認済加速度の設定されていない機器,基準地震動 Ss による応答加速 度が機能確認済加速度を上回る機器については,「原子力発電所耐震設計技術 指針 JEAG4601-1991 追補版」等を参考に,動的機能維持を確認する上で評価 が必要となる項目を抽出し,対象部位ごとの構造強度評価または動的機能維持 評価を行い,発生値が評価基準値を満足していることを確認する。

- ※1 制御棒の地震時挿入性の評価については、炉心を模擬した実物大の部分モ デルによる加振時制御棒挿入試験結果から挿入機能に支障を与えない最大 燃料集合体変位を求め、地震応答解析から求めた燃料集合体変位がその最 大燃料集合体変位を下回ることを確認する。
- ※2 解析, 試験等による検討。

第2-1図 動的機能維持の評価手順

別添3

柏崎刈羽原子力発電所6号及び7号炉

弾性設計用地震動 Sd・静的地震力 による評価 (耐震)

弾性設計用地震動 Sd・静的地震力による評価

建物・構築物

弾性設計用地震動 Sd・静的地震力による評価は、建物・構築物が、弾性設計 用地震動 Sd による地震力又は静的地震力のいずれか大きい方の地震力に対し て評価結果がおおむね弾性状態であること及び地震時の最大接地圧が基礎地 盤の短期許容支持力度に対して安全余裕を有していることを確認する。また、 建物・構築物の保有水平耐力が必要保有水平耐力に対して安全余裕を有してい ることを確認する。

2. 機器·配管系

評価対象設備が弾性設計用地震動 Sd 及び静的地震力に対しておおむね弾性 状態にあることを確認する。具体的には,以下の(1),(2)のいずれかの手順に 従う。

(1) 基準地震動 Ss による評価で代用する場合

弾性設計用地震動 Sd は基準地震動 Ss の係数倍にて定義していること, 及び基準地震動 Ss による地震力が静的震度 3.6 C_iよりも大きいことを確認 していることから,基準地震動 Ss による発生値が評価基準値以下であるこ とを確認する。評価手順を第 3-1 図に示す。

評価対象設備の基準地震動 Ss による発生値が弾性設計用の評価基準値 (許容応力状態Ⅲ_AS)以下であることを確認する。

弾性設計用地震動 Sd は基準地震動 Ss の係数倍にて定義していることから,設備の基準地震動 Ss による発生値が,評価基準値(許容応力状態Ⅲ₄S)以下であれば,弾性設計用地震動 Sd による発生値についても,評価基準値(許容応力状態Ⅲ₄S)以下となる。

ただし,基準地震動 Ss 評価では考慮しない事故時荷重(LOCA 時荷重など) を考慮する必要がある評価ケースは,弾性設計用地震動 Sd と組み合わせる べき事故時荷重を考慮した評価を行い,発生値に考慮する。

なお,座屈の評価は JEAG4601 に規定される評価式を用いるため,評価式 中の評価基準値をIV_AS からⅢ_AS とし,評価を行う。

※ 静的地震力についても考慮する。

第 3-1 図 機器・配管系の弾性設計用地震動 Sd 及び静的地震力に対する 評価手順

(2) 弾性設計用地震動 Sd による評価

弾性設計用地震動 Sd による発生値を詳細評価により算定し,その算定し た発生値が評価基準値(許容応力状態Ⅲ_AS)以下であることを確認する。評 価手順を第 3-2 図に示す。なお,その際,弾性設計用地震動 Sd による地震 力と静的地震度 3.6 C_iを比較し,静的震度 3.6 C_iの方が大きい場合は,静 的震度 3.6 C_iについても考慮する。

※ 静的地震力についても考慮する。

第 3-2 図 機器・配管系の弾性設計用地震動 Sd に対する評価手順

なお,弾性設計用地震動 Sd による評価において,一次+二次応力評価の省略を可とするが,その理由について以下に示す。

一次+二次応力評価については、JEAG4601 に規定されている許容応力状態 $IV_{AS} \geq III_{AS}$ の許容値は同一となる。許容値が同じであれば、弾性設計用地震動 Sd より大きな地震動である基準地震動 Ss で評価した結果の方が厳しいことは 明らかであることから、基準地震動 Ss の評価を実施することで、弾性設計用 地震動 Sd による評価は省略した。

ただし,支持構造物(ボルト以外)のうち,「支圧」に対しては,許容応力状態IV_ASとⅢ_ASで許容値が異なるケースが存在する為,個別確認を実施する。

3. 屋外重要土木構造物

従前より屋外重要土木構造物として取扱われている構造物については,既工 認において,Asクラスの動的地震力(基準地震動S₂)に対して,許容応力度法 による耐震評価を実施している。

したがって、今回工認においては、現在の基準により設定される荷重条件や、 許容限界等の諸条件が、既工認における諸条件と同等であることを確認するこ とで、静的地震力に対する耐震評価が既工認にて満足されることを確認する。

別添 4

柏崎刈羽原子力発電所6号及び7号炉

上位クラス施設の安全機能への下位クラス 施設の波及的影響の検討について (耐震) 上位クラス施設の安全機能への下位クラス施設の波及的影響の検討について

1. 概要

本資料は,設計基準対象施設及び重大事故等対処施設の設計を行うに際し て,波及的影響を考慮した設計の基本的な考え方を説明するものである。 本資料の適用範囲は,設計基準対象施設及び重大事故等対処施設である。

2. 基本方針

設計基準対象施設のうち耐震重要度分類のSクラスに属する施設(以下「Sクラス施設」という。),重大事故等対処施設のうち常設耐震重要重大事 故防止設備及び常設重大事故緩和設備並びにこれらが設置される常設重大事 故等対処施設(以下「SA施設」という。)は、下位クラス施設の波及的影響によって、それぞれその安全機能及び重大事故等に対処するために必要な 機能を損なわないように設計する。

- 3. 波及的影響を考慮した施設の設計方針
- 3.1 設置許可基準規則に例示された事項に基づく事例の検討 Sクラス施設の設計においては、「設置許可基準規則の解釈別記2」(以下 「別記2」という。)に記載の以下の4つの観点で実施する。

SA施設の設計においては、別記2における「耐震重要施設」を「SA施設」に、「安全機能」を「重大事故等に対処するために必要な機能」に読み 替えて適用する。

- 設置地盤及び地震応答性状の相違等に起因する相対変位又は不等沈下による影響
- ② 耐震重要施設と下位のクラスの施設との接続部における相互影響
- ③ 建屋内における下位のクラスの施設の損傷,転倒及び落下等による 耐震重要施設への影響
- ④ 建屋外における下位のクラスの施設の損傷,転倒及び落下等による
 耐震重要施設への影響
- 3.2 地震被害事例に基づく事象の検討

上記の別記2に例示された事項のほかに考慮すべき事項が抜け落ちている ものがないかを確認する観点で,原子力施設情報公開ライブラリー(NUC IA)に登録された以下の地震を対象に被害情報を確認する。また,福島第 二原子力発電所の不適合情報から地震による被害情報を抽出する。 (対象とした情報)

- · 宮城県沖地震(女川原子力発電所:平成17年8月)
- ・能登半島地震(志賀原子力発電所:平成19年3月)
- ・新潟県中越沖地震(柏崎刈羽原子力発電所:平成19年7月)
- ・駿河湾地震(浜岡原子力発電所:平成21年8月)
- ・東北地方太平洋沖地震(福島第二,女川,東海第二原子力発電所:平 成23年3月)

※NUCIA最終報告となっているものを対象とした。

その結果,これらの地震の被害要因のうち,3.1の検討事象に整理でき ないものとして、津波や警報発信等の設備損傷以外の要因が挙げられた。

津波については、別途「津波による損傷の防止」への適合性評価を実施 する。津波の影響評価では、基準地震動に伴う津波を超える高さの津波を 基準津波として設定して、施設の安全機能への影響評価を実施することか ら、基準地震動に伴う津波による影響については、これらの適合性評価に 包絡されるため、ここでは検討の対象外とする。

また,警報発信等については,設備損傷以外の要因による不適合事象で あることから,波及的影響の観点で考慮すべき事象に当たらないと判断した。

以上のことから,原子力発電所の地震被害情報から確認された損傷要因 を踏まえても、3.1で整理した波及的影響の具体的な検討事象に追加考慮 すべき事項がないことを確認した。

以上の①~④の具体的な設計方法を以下に示す。

3.3 不等沈下又は相対変位の観点による設計

建屋外に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2①「設置地盤及び地震応答性状の相違等に起因する相対変位又は不等沈 下による影響」の観点で,上位クラス施設の安全機能及び重大事故等に対処 するために必要な機能を損なわないよう下位クラス施設を設計する。

(1) 地盤の不等沈下による影響

下位クラス施設が設置される地盤の不等沈下により,上位クラス施設の 安全機能及び重大事故等に対処するために必要な機能が損なわないよう, 以下のとおり設計する。

離隔による防護を講じて設計する場合には、下位クラス施設の不等沈下

を想定しても上位クラス施設に衝突しない程度に十分な距離をとって配置 するか、下位クラス施設と上位クラス施設の間に波及的影響を防止するた めに、衝突に対する強度を有する障壁を設置する。下位クラス施設を上位 クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合に は、下位クラス施設を上位クラス施設と同等の支持性能を持つ地盤に、同 等の基礎を設けて設置する。支持性能が十分でない地盤に下位クラス施設 を設置する場合は、基礎の補強や周辺の地盤改良を行った上で、同等の支 持性能を確保する。

上記の方針で設計しない場合は、下位クラス施設が設置される地盤の不 等沈下を想定し、上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち,不等沈下を想定し,上位クラス施設の有する機能を保持するよう設計する下位クラス施設を「4.波及的影響の設計対象とする下位クラス施設」に,その設計方針を「5.波及的影響の設計対象とする下位クラス施設の耐震設計方針」に示す。

(2) 建屋間の相対変位による影響

下位クラス施設と上位クラス施設との相対変位により,上位クラス施設 の安全機能及び重大事故等に対処するために必要な機能を損なわないよ う,以下のとおり設計する。

離隔による防護を講じて設計する場合には、下位クラス施設と上位クラ ス施設との相対変位を想定しても、下位クラス施設が上位クラス施設に衝 突しない程度に十分な距離をとって配置するか、下位クラス施設と上位ク ラス施設との間に波及的影響を防止するために、衝突に対する強度を有す る障壁を設置する。下位クラス施設と上位クラス施設の相対変位により、 下位クラス施設が上位クラス施設に衝突する位置にある場合には、衝突部 分の接触状況の確認、建屋全体評価又は局部評価を実施し、衝突に伴い、 上位クラス施設について、それぞれその安全機能及び重大事故等に対処す るために必要な機能が損なわれるおそれのないよう設計する。

以上の設計方針のうち,建屋全体評価又は局部評価を実施して設計する 下位クラス施設を「4.波及的影響の設計対象とする下位クラス施設」に, その設計方針を「5.波及的影響の設計対象とする下位クラス施設の耐震設 計方針」に示す。

3.4 接続部の観点による設計

建屋内外に設置する設計基準対象施設及び重大事故等対処施設を対象に, 別記2②「上位クラス施設と下位のクラスの施設との接続部における相互影 響」の観点で,上位クラス施設の安全機能及び重大事故等に対処するために 必要な機能を損なわないよう下位クラス施設を設計する。

上位クラス施設と下位クラス施設との接続部には,原則,上位クラスの隔 離弁等を設置することにより分離し,事故時等に隔離されるよう設計する。 隔離されない接続部以降の下位クラス施設については,下位クラス施設が上 位クラス施設の設計に用いる地震動又は地震力に対して,内部流体の内包機 能,機器の動的機能,構造強度等を確保するよう設計する。又は,これらが 維持されなくなる可能性がある場合は,下位クラス施設の損傷と隔離による プロセス変化により,上位クラス施設の内部流体の温度,圧力に影響を与え ても,系統としての機能が設計の想定範囲内に維持されるよう設計する。

以上の設計方針のうち,内部流体の内包機能,機器の動的機能,構造強度 を確保するよう設計する下位クラス施設を「4.波及的影響の設計対象とする 下位クラス施設」に,その設計方針を「5.波及的影響の設計対象とする下位 クラス施設の耐震設計方針」に示す。

3.5 損傷,転倒及び落下等の観点による建屋内施設の設計

建屋内に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2③「建屋内における下位のクラスの施設の損傷,転倒及び落下等による 耐震重要施設への影響」の観点で,上位クラス施設の安全機能及び重大事故 等に対処するために必要な機能を損なわないよう下位クラス施設を設計す る。

離隔による防護を講じて設計する場合には、下位クラス施設の損傷、転倒 及び落下等を想定しても上位クラス施設に衝突しない程度に十分な距離をと って配置するか、下位クラス施設と上位クラス施設の間に波及的影響を防止 するために衝突に対する強度を有する障壁を設置する。下位クラス施設を上 位クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合に は、下位クラス施設が上位クラス施設の設計に用いる地震動又は地震力に対 して、下位クラス施設が損傷、転倒及び落下等に至らないよう構造強度設計 を行う。

上記の方針で設計しない場合は、下位クラス施設の損傷,転倒及び落下等 を想定し、上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち、構造強度設計を行う、又は下位クラス施設の損 傷、転倒及び落下等を想定し、上位クラス施設の有する機能を保持するよう 設計する下位クラス施設を「4. 波及的影響の設計対象とする下位クラス施 設」に、その設計方針を「5. 波及的影響の設計対象とする下位クラス施設の 耐震設計方針」に示す。 3.6 損傷,転倒及び落下等の観点による建屋外施設の設計

建屋外に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2④「建屋外における下位のクラスの施設の損傷,転倒及び落下等による耐 震重要施設への影響」の観点で,上位クラス施設の安全機能及び重大事故等に 対処するために必要な機能を損なわないよう下位クラス施設を設計する。

離隔による防護を講じて設計する場合には、下位クラス施設の損傷、転倒 及び落下等を想定しても上位クラス施設に衝突しない程度に十分な距離をと って配置するか、下位クラス施設と上位クラス施設の間に波及的影響を防止 するために衝突に対する強度を有する障壁を設置する。下位クラス施設を上 位クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合に は、下位クラス施設が上位クラス施設の設計に用いる地震動又は地震力に対 して、下位クラス施設が損傷、転倒及び落下等に至らないよう構造強度設計 を行う。

上記の方針で設計しない場合は、下位クラス施設の損傷,転倒及び落下等 を想定し、上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち、構造強度設計を行う、又は下位クラス施設の損傷、 転倒及び落下等を想定し、上位クラス施設の有する機能を保持するよう設計 する下位クラス施設を「4. 波及的影響の設計対象とする下位クラス施設」に、 その設計方針を「5. 波及的影響の設計対象とする下位クラス施設の耐震設計 方針」に示す。

4. 波及的影響の設計対象とする下位クラス施設

「3.波及的影響を考慮した施設の設計方針」に基づき,構造強度等を確保 するよう設計するものとして選定した下位クラス施設を以下に示す。

4.1 不等沈下又は相対変位の観点

(1) 地盤の不等沈下による影響

a. サービス建屋

下位クラス施設であるサービス建屋は、上位クラス施設であるコントロ ール建屋に隣接しており、岩盤(一部が古安田層)に支持されているこ とから、不等沈下による衝突影響の観点で波及的影響を及ぼすおそれが 否定できない。このため波及的影響の設計対象とした。

b. 5 号炉サービス建屋

下位クラス施設である5号炉サービス建屋は、上位クラス施設である5

号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接しており, 地盤改良土を介して更新統(古安田層)に支持されていることから,不 等沈下による衝突影響の観点で波及的影響を及ぼすおそれが否定できな い。このため波及的影響の設計対象とした。

c. 5 号炉連絡通路

下位クラス施設である5号炉連絡通路は、上位クラス施設である5号 炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接しており、マ ンメイドロックを介して更新統(古安田層)に支持されていることか ら、不等沈下による衝突影響の観点で波及的影響を及ぼすおそれが否定 できない。このため波及的影響の設計対象とした。

d. 5 号炉主排気モニタ建屋

下位クラス施設である5号炉主排気モニタ建屋は、上位クラス施設である5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接しており、埋戻し土に支持されていることから、不等沈下による衝突影響の観点で波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の不等沈下に より,波及的影響を受けるおそれのある上位クラス施設を第4-1表に示 す。

第4-1表	波及的影響	の設計対象	とする下位。	クラス施設	(不等沈下)

波及的影響を受けるおそれのある	波及的影響の設計対象とする下位ク
上位クラス施設	ラス施設
コントロール建屋	サービス建屋
「巴尼西乙尼建民市取名味好笨託/「巴	5 号炉サービス建屋
5号炉原子炉建屋内緊急時対策所(5号	5 号炉サービス建屋 5 号炉連絡通路

(注) 詳細設計の段階で変更の可能性有り。

(2) 建屋間の相対変位による影響

a. 6 号炉連絡通路

下位クラス施設である6号炉連絡通路は、上位クラス施設である6号 炉タービン建屋に隣接していることから、上位クラス施設の設計に適用

する地震動又は地震力に伴う相対変位により衝突して、6 号炉タービン 建屋に対して波及的影響を及ぼすおそれが否定できない。このため波及 的影響の設計対象とした。

b. サービス建屋

下位クラス施設であるサービス建屋は、上位クラス施設であるコント ロール建屋に隣接していることから、上位クラス施設の設計に適用する 地震動又は地震力に伴う相対変位により衝突して、コントロール建屋に 対して波及的影響を及ぼすおそれが否定できない。このため波及的影響 の設計対象とした。

c. 5 号炉タービン建屋

下位クラス施設である5号炉タービン建屋は、上位クラス施設である 5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接している ことから、上位クラス施設の設計に適用する地震動又は地震力に伴う相 対変位により衝突して、5号炉原子炉建屋内緊急時対策所(5号炉原子 炉建屋)に対して波及的影響を及ぼすおそれが否定できない。このため 波及的影響の設計対象とした。

d. 5 号炉連絡通路

下位クラス施設である5号炉連絡通路は、上位クラス施設である5号 炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接していること から、上位クラス施設の設計に適用する地震動又は地震力に伴う相対変 位により衝突して、5号炉原子炉建屋内緊急時対策所(5号炉原子炉建 屋)に対して波及的影響を及ぼすおそれが否定できない。このため波及 的影響の設計対象とした。

e. 5 号炉主排気モニタ建屋

下位クラス施設である5号炉主排気モニタ建屋は、上位クラス施設で ある5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接して いることから、上位クラス施設の設計に適用する地震動又は地震力に伴 う相対変位により衝突して、5号炉原子炉建屋内緊急時対策所(5号炉 原子炉建屋)に対して波及的影響を及ぼすおそれが否定できない。この ため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の相対変位に

より,波及的影響を受けるおそれのある上位クラス施設を第4-2表に示 す。

第4-2表 波及的影響の設計対象とする下位クラス施設(相対変位)

波及的影響を受けるおそれのある	波及的影響の設計対象とする下位ク
上位クラス施設	ラス施設
6号炉タービン建屋	6 号炉連絡通路
コントロール建屋	サービス建屋
「日后原了后建昆中取色味料等形(「日	5号炉タービン建屋
3 亏炉原于炉建屋内索急时刈束所(3 亏 偏原乙偏建层)	5 号炉連絡通路
炉原丁炉建屋)	5 号炉主排気モニタ建屋

(注) 詳細設計の段階で変更の可能性有り。

4.2 接続部の観点

上位クラス施設と下位クラス施設との接続部は隔離弁等により隔離されて いること、又は下位クラス施設の損傷と隔離によるプロセス変化に対する上 位クラス施設への過渡条件が設計の想定範囲内に維持されることから、接続 部における相互影響の観点で波及的影響を及ぼす下位クラス施設はない。

4.3 建屋内施設の損傷,転倒及び落下等の観点

(1)施設の損傷,転倒及び落下等による影響

a. 6 号炉原子炉遮蔽壁

下位クラス施設である6号炉原子炉遮蔽壁は、上位クラス施設である6 号炉原子炉圧力容器に隣接していることから、上位クラス施設の設計に適 用する地震動又は地震力に伴う転倒により、6号炉原子炉圧力容器に衝突 し波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計 対象とした。

b. 6 号炉原子炉建屋クレーン

下位クラス施設である6号炉原子炉建屋クレーンは、上位クラス施設で ある6号炉使用済燃料貯蔵プール及び6号炉使用済燃料貯蔵ラック等の上 部又は隣りに設置していることから、上位クラス施設の設計に適用する地 震動又は地震力に伴う転倒又は落下により、6号炉使用済燃料貯蔵プール 及び6号炉使用済燃料貯蔵ラック等に衝突し波及的影響を及ぼすおそれが 否定できない。このため波及的影響の設計対象とした。

c. 6 号炉燃料取替機

下位クラス施設である6号炉燃料取替機は,上位クラス施設である6号 炉使用済燃料貯蔵プール及び6号炉使用済燃料貯蔵ラック等の上部又は隣 りに設置していることから,上位クラス施設の設計に適用する地震動又は 地震力に伴う転倒又は落下により,6号炉使用済燃料貯蔵プール及び6号 炉使用済燃料貯蔵ラック等に衝突し波及的影響を及ぼすおそれが否定でき ない。このため波及的影響の設計対象とした。

d. 6号炉原子炉ウェル遮蔽プラグ

下位クラス施設である6号炉原子炉ウェル遮蔽プラグは,上位クラス施設である6号炉原子炉格納容器の上部に設置していることから,上位クラス施設の設計に適用する地震動又は地震力に伴う落下により,6号炉原子炉格納容器に衝突し波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

e. 6 号炉中央制御室天井照明

下位クラス施設である6号炉中央制御室天井照明は,上位クラス施設で ある6号炉中央運転監視盤及び6号炉運転監視補助盤の上部に設置してい ることから,上位クラス施設の設計に適用する地震動又は地震力に伴う落 下により,6号炉中央運転監視盤及び6号炉運転監視補助盤に衝突し波及 的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象と した。

f. 7 号炉原子炉遮蔽壁

下位クラス施設である7号炉原子炉遮蔽壁は,上位クラス施設である7 号炉原子炉圧力容器に隣接していることから,上位クラス施設の設計に適 用する地震動又は地震力に伴う転倒により,7号炉原子炉圧力容器に衝突 し波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計 対象とした。

g. 7 号炉原子炉建屋クレーン

下位クラス施設である7号炉原子炉建屋クレーンは、上位クラス施設で ある7号炉使用済燃料貯蔵プール及び7号炉使用済燃料貯蔵ラック等の上 部又は隣りに設置していることから、上位クラス施設の設計に適用する地 震動又は地震力に伴う転倒又は落下により、7号炉使用済燃料貯蔵プール 及び7号炉使用済燃料貯蔵ラック等に衝突し波及的影響を及ぼすおそれが 否定できない。このため波及的影響の設計対象とした。

h. 7 号炉燃料取替機

下位クラス施設である7号炉燃料取替機は、上位クラス施設である7号 炉使用済燃料貯蔵プール及び7号炉使用済燃料貯蔵ラック等の上部又は隣 りに設置していることから、上位クラス施設の設計に適用する地震動又は 地震力に伴う転倒又は落下により、7号炉使用済燃料貯蔵プール及び7号 炉使用済燃料貯蔵ラック等に衝突し波及的影響を及ぼすおそれが否定でき ない。このため波及的影響の設計対象とした。

i. 7 号炉原子炉ウェル遮蔽プラグ

下位クラス施設である7号炉原子炉ウェル遮蔽プラグは,上位クラス施設である7号炉原子炉格納容器の上部に設置していることから,上位クラス施設の設計に適用する地震動又は地震力に伴う落下により,7号炉原子炉格納容器に衝突し波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

j. 7 号炉中央制御室天井照明

下位クラス施設である7号炉中央制御室天井照明は,上位クラス施設で ある7号炉中央運転監視盤及び7号炉運転監視補助盤の上部に設置してい ることから,上位クラス施設の設計に適用する地震動又は地震力に伴う落 下により,7号炉中央運転監視盤及び7号炉運転監視補助盤に衝突し波及 的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象と した。

ここで選定した波及的影響の設計対象とする下位クラス施設の損傷,転倒 及び落下等により波及的影響を受けるおそれのある上位クラス施設を第4-3表に示す。

第4-3表 波及的影響の設計対象とする下位クラス施設(損傷,転倒及び落 下等)

波及的影響を受けるおそれのある	波及的影響の設計対象とする下位ク	
上位クラス施設	ラス施設	
6号炉原子炉圧力容器	6 号炉原子炉遮蔽壁	
6号炉使用済燃料貯蔵プール及び6号	6 号临底之临建民力12-22	
炉使用済燃料貯蔵ラック等	0 5 炉原丁炉建産グレーン	
6号炉使用済燃料貯蔵プール及び6号	6 号炉燃料取替機	
炉使用済燃料貯蔵ラック等		
6 号炉原子炉格納容器	6号炉原子炉ウェル遮蔽プラグ	
6号炉中央運転監視盤及び6号炉運転	6月后中中制御宫王井四明	
監視補助盤	0 亏炉中央制御至大开照明	
7 号炉原子炉圧力容器	7 号炉原子炉遮蔽壁	
7号炉使用済燃料貯蔵プール及び7号	7.巴佐原乙佐建民力14.14	
炉使用済燃料貯蔵ラック等		
7号炉使用済燃料貯蔵プール及び7号	7 号炉燃料取替機	
炉使用済燃料貯蔵ラック等		
7 号炉原子炉格納容器	7 号炉原子炉ウェル遮蔽プラグ	
7号炉中央運転監視盤及び7号炉運転	7 号炉中央制御室天井照明	
監視補助盤		

(注) 詳細設計の段階で変更の可能性有り。

4.4 建屋外施設の損傷,転倒及び落下等の観点

(1)施設の損傷,転倒及び落下等による影響

a. 5 号炉主排気筒

下位クラス施設である5号炉主排気筒は、上位クラス施設である6号炉 非常用ディーゼル発電設備軽油タンク、6号炉原子炉建屋等が転倒範囲に 位置していることから、上位クラス施設の設計に適用する地震動又は地震 力に伴う転倒により、6号炉非常用ディーゼル発電設備軽油タンク、6号 炉原子炉建屋等に衝突し、波及的影響を及ぼすおそれが否定できない。こ のため波及的影響の設計対象とした。

b. 6 号炉燃料移送ポンプエリア竜巻防護壁

下位クラス施設である6号炉燃料移送ポンプエリア竜巻防護壁は、上位 クラス施設である6号炉非常用ディーゼル発電設備燃料移送ポンプ、6号 炉非常用ディーゼル発電設備燃料油系配管等が転倒範囲に位置しているこ

とから、上位クラス施設の設計に適用する地震動又は地震力に伴う転倒に より、6号炉非常用ディーゼル発電設備燃料移送ポンプ、6号炉非常用デ ィーゼル発電設備燃料油系配管等に衝突し、波及的影響を及ぼすおそれが 否定できない。このため波及的影響の設計対象とした。

c. 5 号炉タービン建屋

下位クラス施設である5号炉タービン建屋は、上位クラス施設である6 号炉タービン建屋及び5号炉原子炉建屋内緊急時対策所(5号炉原子炉建 屋)に隣接していることから、上位クラス施設の設計に適用する地震動又 は地震力に伴う転倒により、6号炉タービン建屋及び5号炉原子炉建屋内 緊急時対策所(5号炉原子炉建屋)に衝突し、波及的影響を及ぼすおそれ が否定できない。このため波及的影響の設計対象とした。

d. 6 号炉取水護岸

下位クラス施設である6号炉取水護岸は、上位クラス施設である6号炉 海水貯留堰が転倒範囲に位置していることから、上位クラス施設の設計に 適用する地震動又は地震力に伴う転倒により、6号炉海水貯留堰に衝突 し、波及的影響を及ぼすおそれが否定できない。このため波及的影響の設 計対象とした。

e. 7 号炉燃料移送ポンプエリア竜巻防護壁

下位クラス施設である7号炉燃料移送ポンプエリア竜巻防護壁は,上位 クラス施設である7号炉非常用ディーゼル発電設備燃料移送ポンプ,7号 炉非常用ディーゼル発電設備燃料油系配管等が転倒範囲に位置しているこ とから,上位クラス施設の設計に適用する地震動又は地震力に伴う転倒に より,7号炉非常用ディーゼル発電設備燃料移送ポンプ,7号炉非常用デ ィーゼル発電設備燃料油系配管等に衝突し,波及的影響を及ぼすおそれが 否定できない。このため波及的影響の設計対象とした。

f.7 号炉取水護岸

下位クラス施設である7号炉取水護岸は、上位クラス施設である7号炉 海水貯留堰が転倒範囲に位置していることから、上位クラス施設の設計に 適用する地震動又は地震力に伴う転倒により、7号炉海水貯留堰に衝突 し、波及的影響を及ぼすおそれが否定できない。このため波及的影響の設 計対象とした。

g. サービス建屋

下位クラス施設であるサービス建屋は、上位クラス施設であるコントロ ール建屋に隣接していることから、上位クラス施設の設計に適用する地震 動又は地震力に伴う転倒により、コントロール建屋に衝突し、波及的影響 を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

h. 5 号炉サービス建屋

下位クラス施設である5号炉サービス建屋は、上位クラス施設である5 号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接していること から、上位クラス施設の設計に適用する地震動又は地震力に伴う転倒によ り、5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に衝突し、波 及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象 とした。

i.5 号炉格納容器圧力逃がし装置基礎

下位クラス施設である5号炉格納容器圧力逃がし装置基礎は、上位クラス施設である5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に隣接していることから、上位クラス施設の設計に適用する地震動又は地震力に伴う転倒により、5号炉原子炉建屋内緊急時対策所(5号炉原子炉建屋)に衝突し、波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の損傷,転倒 及び落下等により波及的影響を受けるおそれのある上位クラス施設を第4-4表に示す。

第4-4表 波及的影響の設計対象とする下位クラス施設(損傷,転倒及び落 下等)

波及的影響を受けるおそれのある	波及的影響の設計対象とする下位ク	
上位クラス施設	ラス施設	
6号炉非常用ディーゼル発電設備軽油	5	
タンク,6号炉原子炉建屋等	3 万州土护风间	
6号炉非常用ディーゼル発電設備燃料	6 号炉燃料移送ポンプエリア竜巻防護	
移送ポンプ,6号炉非常用ディーゼル		
発電設備燃料油系配管等		
6号炉タービン建屋及び5号炉原子炉		
建屋内緊急時対策所(5号炉原子炉建	5号炉タービン建屋	
屋)		
6号炉海水貯留堰	6号炉取水護岸	
7 号炉非常用ディーゼル発電設備燃料	7 見炉燃料放送ポンプェルマ会光性講	
移送ポンプ,7号炉非常用ディーゼル	「	
発電設備燃料油系配管等		
7 号炉海水貯留堰	7 号炉取水護岸	
コントロール建屋	サービス建屋	
5号炉原子炉建屋内緊急時対策所(5号	「見伝井」ビス建長	
炉原子炉建屋)	5万かり一日久建屋	
5号炉原子炉建屋内緊急時対策所(5号	5号炉格納容器圧力逃がし装置基礎	
炉原子炉建屋)		

(注) 詳細設計の段階で変更の可能性有り。

5. 波及的影響の設計対象とする下位クラス施設の耐震設計方針

「4.波及的影響の設計対象とする下位クラス施設」で選定した施設の耐震 設計方針を以下に示す。

5.1 耐震評価部位

波及的影響の設計対象とする下位クラス施設の評価対象部位は,それぞれ の損傷モードに応じて選定する。すなわち,評価対象下位クラス施設の不等 沈下,相対変位,接続部における相互影響,損傷,転倒及び落下等を防止す るよう,主要構造部材,支持部及び固定部等を対象とする。

5.2 地震応答解析

波及的影響の設計対象とする下位クラス施設の耐震設計において実施する

地震応答解析については,既工認で実績があり,かつ最新の知見に照らして も妥当な手法及び条件を基本として行う。

5.3 設計用地震動又は地震力

波及的影響の設計対象とする下位クラス施設においては,上位クラス施設 の設計に用いる地震動又は地震力を適用する。

5.4 荷重の種類及び荷重の組合せ

波及的影響の防止を目的とした設計において用いる荷重の種類及び荷重の 組合せについては、波及的影響を受けるおそれのある上位クラス施設と同じ 運転状態において下位クラス施設に発生する荷重を組み合わせる。

荷重の設定においては,実運用・実事象上定まる範囲を考慮して設定する。

5.5 許容限界

波及的影響の設計対象とする下位クラス施設の評価に用いる許容限界設定 の考え方を,以下建物・構築物,機器・配管系及び土木構造物にわけて示 す。

5.5.1 建物·構築物

建物・構築物について、下位クラス施設の上位クラス施設に対する衝突を 防止する場合の許容限界は、下位クラス施設と上位クラス施設との離隔距離 を確保することを基本とする。

また,施設の構造を保つことで,下位クラス施設の損傷,転倒及び落下等 を防止する場合は,部材に発生する応力に対して終局耐力を基本として許容 限界を設定する。

5.5.2 機器·配管系

機器・配管系について,施設の構造を保つことで,下位クラス施設の接続 部における相互影響及び損傷,転倒及び落下等を防止する場合は,許容限界 として,評価部位に塑性ひずみが生じる場合であっても,その量が小さなレ ベルに留まって破断延性限界に十分な余裕を有していることに相当する許容 限界を設定する。機器の動的機能維持を確保することで,下位クラス施設の 接続部における相互影響を防止する場合は,許容限界として動的機能確認済 加速度を設定する。

5.5.3 土木構造物

土木構造物について,施設の構造を保つことで,下位クラス施設の損傷, 転倒及び落下等を防止する場合は,構造部材の終局耐力や基礎地盤の極限支 持力度に対し妥当な安全余裕を考慮することを基本として許容限界を設定す る。

また、構造物の安定性や変形により上位クラス施設の機能に影響がないよ う設計する場合は、構造物のすべりや変形量に対し妥当な安全余裕を考慮す ることを基本として許容限界を設定する。

6. 工事段階における下位クラス施設の調査・検討

工事段階においても,設計基準対象施設及び重大事故等対処施設の設計段 階の際に検討した配置・補強等が設計どおりに施されていることを,敷地全 体を俯瞰した調査・検討を行うことで確認する。また,仮置資材等,現場の 配置状況等の確認を必要とする下位クラス施設についても合わせて確認す る。

工事段階における検討は、別記2の4つの観点のうち、③及び④の観点、 すなわち下位クラス施設の損傷、転倒及び落下等による影響について、プラ ントウォークダウンにより実施する。

確認事項としては,設計段階において検討した離隔による防護の観点で行 う。すなわち,施設の損傷,転倒及び落下等を想定した場合に上位クラス施 設に衝突するおそれのある範囲内に下位クラス施設がないこと,又は間に衝 撃に耐えうる障壁,緩衝物等が設置されていること,仮置資材等については 固縛等,転倒及び落下を防止する措置が適切に講じられていることを確認す る。

ただし,仮置資材等の下位クラス施設自体が,明らかに影響を及ぼさない 程度の大きさ,重量等の場合は対象としない。

以上を踏まえて,損傷,転倒及び落下等により,上位クラス施設に波及的 影響を及ぼす可能性がある下位クラス施設が抽出されれば,必要に応じて, 上記の確認事項と同じ観点で対策・検討したり,固縛等の転倒・落下防止措 置等を講じたりすることで対策・検討を行う。すなわち,下位クラス施設の 配置を変更したり,間に緩衝物等を設置したり,固縛等の転倒・落下防止措 置等を講じたりすることで対策・検討を行う。

また,工事段階における確認の後も,波及的影響を防止するように現場を 保持するため,保安規定に機器設置時の配慮事項等を定めて管理する。

別添 5

柏崎刈羽原子力発電所6号及び7号炉

水平2方向及び鉛直方向地震力の組合せに 関する影響評価方針 (耐震) 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針

1. 概要

本資料は,水平2方向及び鉛直方向地震力の組合せに関する影響評価の方針について 説明するものである。

2. 基本方針

施設の耐震設計では,設備の構造から地震力の方向に対して弱軸及び強軸を明確にし, 地震力に対して配慮した構造としている。

今回,水平2方向及び鉛直方向地震力の組合せによる耐震設計に係る技術基準が制定 されたことから,従来の設計手法における水平1方向及び鉛直方向地震力を組み合わせ た耐震計算に対して,施設の構造特性から水平2方向及び鉛直方向地震力の組合せによ る影響の可能性があるものを抽出し,施設が有する耐震性に及ぼす影響を評価する。

評価対象は「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年 6月28日原子力規制委員会規則第6号)」の第5条及び第50条に規定されている耐震重 要施設及びその間接支持構造物,常設耐震重要重大事故防止設備又は常設重大事故緩和 設備が設置される重大事故等対処施設並びにこれらの施設への波及的影響防止のために 耐震評価を実施する施設とする。耐震 B クラスの施設については,共振のおそれのある ものを評価対象とする。

評価に当たっては,施設の構造特性から水平2方向及び鉛直方向地震力の組合せの影響を受ける部位を抽出し,その部位について水平2方向及び鉛直方向の荷重や応力を算出し,施設が有する耐震性への影響を確認する。

施設が有する耐震性への影響が確認された場合は,詳細な手法を用いた検討等,新た に設計上の対応策を講じる。

3. 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動

水平 2 方向及び鉛直方向地震力の組合せによる影響評価には,基準地震動 Ss-1~Ss -8 を用いる。

ここで,水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる基準地震動 は,複数の基準地震動における地震動の特性及び包絡関係を施設の特性による影響も考 慮した上で確認し,本影響評価に用いる。

- 4. 各施設における水平2方向及び鉛直方向地震力の組合せの影響評価方針
 - 4.1 建物·構築物
 - 4.1.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方 従来の設計手法では,建物・構築物の地震応答解析において,各水平方向及び鉛

直方向の地震動を質点系モデルにそれぞれ方向ごとに入力し解析を行っている。また,発電用原子炉施設における建物・構築物は,全体形状及び平面レイアウトから, 地震力を主に耐震壁で負担する構造であり,剛性の高い設計としている。

水平方向の地震力に対しては、せん断力について評価することを基本とし、建物・ 構築物に作用するせん断力は、地震時に生じる力の流れが明解となるように、直交 する2方向に釣合いよく配置された鉄筋コンクリート造耐震壁を主な耐震要素とし て構造計画を行う。地震応答解析は、水平2方向の耐震壁に対して、それぞれ剛性 を評価し、各水平方向に対して解析を実施している。したがって、建物・構築物に 対し水平2方向の入力がある場合、各方向から作用するせん断力を負担する部位が 異なるため、水平2方向の入力がある場合の評価は、水平1方向にのみ入力がある 場合と同等な評価となる。

鉛直方向の地震力に対しては,軸力について評価することを基本としている。建 物・構築物に作用する軸力は,鉄筋コンクリート造耐震壁を主な耐震要素として構 造計画を行う。

入力方向ごとの耐震要素について、第5-4-1図に示す。

(a) 水平方向

4.1.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

建物・構築物において,水平2方向及び鉛直方向地震力の組合せを考慮した場合 に影響を受ける可能性がある部位の評価を行う。

評価対象は,耐震重要施設及びその間接支持構造物,常設耐震重要重大事故防止 設備又は常設重大事故緩和設備が設置される重大事故等対処施設並びにこれらの施 設への波及的影響防止のために耐震評価を実施する施設の評価部位とする。

対象とする部位について,水平2方向及び鉛直方向地震力の組合せの影響が想定 される応答特性から,水平2方向及び鉛直方向地震力の組合せによる影響を受ける 可能性がある部位を抽出する。

応答特性から抽出された水平2方向の地震力による影響を受ける可能性がある部 位は、従来の評価結果の荷重又は応力の算出結果等を水平2方向及び鉛直方向に組 み合わせ、各部位に発生する荷重や応力を算出し、各部位が有する耐震性への影響 を確認する。

各部位が有する耐震性への影響が確認された場合は,詳細な手法を用いた検討等, 新たに設計上の対応策を講じる。

4.1.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

建物・構築物において,水平1方向及び鉛直方向地震力を組み合わせた従来の設計手法に対して,水平2方向及び鉛直方向地震力の組合せによる影響の可能性がある耐震評価上の構成部位について,応答特性から抽出し,影響を評価する。影響評価のフローを第5-4-2図に示す。

- (1) 影響評価部位の抽出
 - ① 耐震評価上の構成部位の整理

建物・構築物における耐震評価上の構成部位を整理し、各建屋において、該 当する耐震評価上の構成部位を網羅的に確認する。

② 応答特性の整理

建物・構築物における耐震評価上の構成部位について,水平2方向及び鉛直 方向地震力の組合せの影響が想定される応答特性を整理する。

③ 荷重の組合せによる応答特性が想定される部位の抽出

整理した耐震評価上の構成部位について,水平2方向及び鉛直方向地震力の 組合せの影響が想定される応答特性のうち,荷重の組合せによる応答特性を検 討する。水平2方向及び鉛直方向地震力に対し,荷重の組合せによる応答特性 により,有する耐震性への影響が想定される部位を抽出する。 ④ 3 次元的な応答特性が想定される部位の抽出

荷重の組合せによる応答特性が想定される部位として抽出されなかった部位 のうち、3次元的な応答特性が想定される部位を検討する。水平2方向及び鉛 直方向地震力の組合せに対し、3次元的な応答特性により、有する耐震性への 影響が想定される部位を抽出する。

⑤ 3次元 FEM モデルによる精査

3次元的な応答特性が想定される部位として抽出された部位について,3次元 FEM モデルを用いた精査を実施し,水平2方向及び鉛直方向地震力の組合せに より,有する耐震性への影響が想定される部位を抽出する。

また,3 次元的な応答特性が想定される部位として抽出されなかった部位に ついても,局所応答の観点から,3次元 FEM モデルによる精査を実施し,水平2 方向及び鉛直方向地震力の組合せにより,有する耐震性への影響が想定される 部位を抽出する。

局所応答に対する 3 次元 FEM モデルによる精査は,施設の重要性,建屋規模 及び構造特性を考慮し,柏崎刈羽原子力発電所 6 号及び 7 号炉原子炉格納容器 及び原子炉建屋について地震応答解析を行う。3 次元 FEM モデルの概要を第 5-4-3 図に示す。

- (2) 影響評価手法
 - ⑥ 水平2方向及び鉛直方向地震力の組合せの影響評価

水平2方向及び鉛直方向地震力の組合せによる影響評価においては、水平1 方向及び鉛直方向地震力の組合せによる局部評価の荷重又は応力の算出結果等 を用い、水平2方向及び鉛直方向地震力を組み合わせる方法として、米国 Regulatory Guide1.92(注)の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として、組合せ係数法(1.0:0.4:0.4) に基づいて地震力を設定する。

評価対象として抽出した耐震評価上の構成部位について,構造部材の発生応 力等を適切に組み合わせることで,各部位の設計上の許容値に対する評価を実 施し,各部位が有する耐震性への影響を評価する。

機器・配管系への影響検討

評価対象として抽出された部位が,耐震重要施設,常設耐震重要重大事故防 止設備又は常設重大事故緩和設備が設置される重大事故等対処施設の機器・配 管系の間接支持機能を有する場合,水平2方向及び鉛直方向地震力の組合せに よる応答値への影響を確認する。 水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認された 場合,機器・配管系の影響評価に反映する。

(注) Regulatory Guide (RG) 1.92 "Combining modal responses and spatial components in seismic response analysis"

第5-4-2図 水平2方向及び鉛直方向地震力の組合せによる影響検討のフロー

4 条--別添 5-7

4.2 機器·配管系

4.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

機器・配管系における従来の水平方向及び鉛直方向地震力の組合せによる設計手法では,建物・構築物の振動特性を考慮し,変形するモードが支配的となり応答が大きくなる方向(応答軸方向)に基準地震動を入力して得られる各方向の地震力(床応答)を用いている。

応答軸(強軸・弱軸)が明確となっている設備の耐震評価においては,水平 各方向の地震力を包絡し,変形モードが支配的となる応答軸方向に入力する等, 従来評価において保守的な取り扱いを基本としている。

一方,応答軸が明確となっていない設備で3次元的な広がりを持つ設備の耐 震評価においては,基本的に3次元のモデル化を行っており,建物・構築物の 応答軸方向の地震力をそれぞれ入力し,この入力により算定される荷重や応力 のうち大きい方を用いて評価を実施している。

さらに、応答軸以外の振動モードが生じにくい構造の採用、応答軸以外の振 動モードが生じ難いサポート設計の採用といった構造上の配慮等、水平方向の 入力に対して配慮した設計としている。

4.2.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

機器・配管系において,水平2方向及び鉛直方向地震力の組合せを考慮した 場合に影響を受ける可能性がある設備(部位)の評価を行う。

評価対象は、耐震重要施設、常設耐震重要重大事故防止設備又は常設重大事 故緩和設備が設置される重大事故等対処施設の機器・配管系並びにこれらの施 設への波及的影響防止のために耐震評価を実施する設備とする。耐震 B クラス の施設については、共振のおそれのあるものを評価対象とする。

対象とする設備を機種ごとに分類し、それぞれの構造上の特徴をもとに荷重 の伝達方向、その荷重を受ける構造部材の配置及び構成等により水平2方向の 地震力による影響を受ける可能性がある設備(部位)を抽出する。

構造上の特徴により影響の可能性がある設備(部位)は,水平2方向及び鉛 直方向地震力の組合せによる影響の検討を実施する。水平各方向の地震力が 1:1で入力された場合の発生値を従来の評価結果の荷重又は算出応力等を水平 2 方向及び鉛直方向に整理して組み合わせる又は新たな解析等により高度化し た手法を用いる等により,水平2方向の地震力による設備(部位)に発生する 荷重や応力を算出する。

これらの検討により,水平2方向及び鉛直方向地震力を組み合わせた荷重や 応力の結果が従来の発生値と同等である場合は影響のない設備として抽出せず, 従来の発生値を超えて耐震性への影響が懸念される場合は,設備が有する耐震 性への影響を確認する。

設備が有する耐震性への影響が確認された場合は,詳細な手法を用いた検討 等,新たに設計上の対応策を講じる。

水平2方向及び鉛直方向地震力による影響評価は,基準地震動Ss-1~Ss-8 を対象とするが,複数の基準地震動における地震動の特性及び包絡関係,地震 力の包絡関係を確認し,代表可能である場合は代表の基準地震動にて評価する。 また,水平各方向の地震動は,それぞれの位相を変えた地震動を用いることを 基本とするが,保守的な手法を用いる場合もある。

4.2.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

機器・配管系において,水平2方向及び鉛直方向地震力の影響を受ける可能 性があり,水平1方向及び鉛直方向の従来評価に加え,更なる設計上の配慮が 必要な設備について,構造及び発生値の増分の観点から抽出し,影響を評価す る。影響評価は従来設計で用いている質点系モデルによる評価結果を用いて行 うことを基本とする。影響評価のフローを第5-4-4 図に示す。

なお、耐震評価は基本的におおむね弾性範囲で留まる体系であることに加え、 国内と海外の機器の耐震解析は、基本的に線形モデルにて実施している等類似 であり、水平2方向及び鉛直方向の位相差は機器の応答にも現れることから、 米国 Regulatory Guide1.92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として、水平2方向及び鉛直方向地震力 の組合せの影響を検討する際は、地震時に水平2方向及び鉛直方向それぞれの 最大応答が同時に発生する可能性は極めて低いとした考え方である Square-Root-of-the-Sum-of-the-Squares 法(以下「最大応答の非同時性を考 慮した SRSS 法」という。)又は組合せ係数法(1.0:0.4:0.4)を適用し、各方 向からの地震入力による各方向の応答を組み合わせる。

① 評価対象となる設備の整理

耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が 設置される重大事故等対処施設の機器・配管系並びにこれらの施設への波及的 影響防止のために耐震評価を実施する設備,共振のおそれのある耐震 B クラス 施設を評価対象とし,代表的な機種ごとに分類し整理する。(第5-4-4 図①)

② 構造上の特徴による抽出

機種ごとに構造上の特徴から水平2方向の地震力が重複する観点,若しくは 応答軸方向以外の振動モード(ねじれ振動等)が生じる観点にて検討を行い, 水平2方向の地震力による影響の可能性がある設備を抽出する。(第5-4-4図2)
第生値の増分による抽出

水平2方向の地震力による影響の可能性がある設備に対して,水平2方向の 地震力が各方向1:1で入力された場合に各部にかかる荷重や応力を求め,従来 の水平1方向及び鉛直方向地震力の組合せによる設計に対して,水平2方向及 び鉛直方向地震力を考慮した発生値の増分を用いて影響を検討し,耐震性への 影響が懸念される設備を抽出する。

また,建物・構築物及び屋外重要土木構築物の検討により,機器・配管系への影響の可能性がある部位が抽出された場合は,機器・配管系への影響を評価し,耐震性への影響が懸念される設備を抽出する。

影響の検討は、機種ごとの分類に対して地震力の寄与度に配慮し耐震裕度が 小さい設備(部位)を対象とする。(第 5-4-4 図③)

④ 水平2方向及び鉛直方向地震力の組合せの影響評価

③の検討において算出された荷重や応力を用いて,設備が有する耐震性への 影響を確認する。(第 5-4-4 図④)

第5-4-4図 水平2方向及び鉛直方向地震力の組合せを考慮した影響評価フロー

4.3 屋外重要土木構造物

4.3.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

従来の設計の考え方について取水路を例に第5-4-1表に示す。

一般的な地上構造物では, 躯体の慣性力が主たる荷重であるのに対し, 屋外 重要土木構造物はおおむね地中に埋設されているため, 動土圧や動水圧等の外 力が主たる荷重となる。また, 屋外重要土木構造物は, 比較的単純な構造部材 の配置で構成され, ほぼ同一の断面が奥行き方向に連続する構造的特徴を有す ることから, 3 次元的な応答の影響は小さいため, 2 次元断面での耐震評価を行 っている。

屋外重要土木構造物は,主に海水の通水機能や配管等の間接支持機能を維持 するため,通水方向や管軸方向に対して空間を保持できるように構造部材が配 置されることから,構造上の特徴として,明確な弱軸,強軸を有する。

強軸方向の地震時挙動は,弱軸方向に対して顕著な影響を及ぼさないことか ら,従来設計手法では,弱軸方向を評価対象断面として,耐震設計上求められ る水平1方向及び鉛直方向地震力による耐震評価を実施している。

第 5-4-5 図に示すとおり,従来設計手法では,屋外重要土木構造物の構造上の特徴から,弱軸方向の地震荷重に対して,保守的に加振方向に平行な壁部材を見込まず,垂直に配置された構造部材のみで受け持つよう設計している。

屋外重要土木構造物のうち軽油タンク基礎は、海水の通水機能や配管等の間 接支持機能を有する構造物と比較して、強軸及び弱軸が明確ではないことから、 従来設計では、長軸方向及び短軸方向ともに評価対象断面として、耐震設計上 求められる水平1方向及び鉛直方向地震力による耐震評価を実施している。

第 5-4-1 表 従来設計手法における評価対象断面の考え方(取水路の例)

第 5-4-5 図 従来設計手法の考え方

4.3.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

屋外重要土木構造物において,水平2方向及び鉛直方向地震力の組合せを考 慮した場合に影響を受ける可能性がある構造物の評価を行う。

評価対象は,軽油タンク基礎,燃料移送系配管ダクト,海水貯留堰,スクリ ーン室,取水路,補機冷却用海水取水路及び波及的影響防止のために耐震評価 を実施する土木構造物(取水護岸,燃料移送ポンプエリア竜巻防護壁)とする。 また,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される 重大事故等対処施設の間接支持構造物のうち第一ガスタービン発電機基礎及び 第一ガスタービン発電機用燃料タンク基礎も本評価では屋外重要土木構造物と して扱うこととし,評価対象に含める。

屋外重要土木構造物を構造形式ごとに分類し、構造形式ごとに作用すると考 えられる荷重を整理し、荷重が作用する構造部材の配置等から水平2方向及び 鉛直方向地震力の組合せによる影響を受ける可能性のある構造物を抽出する。

抽出された構造物については,従来設計手法での評価対象断面(弱軸方向) の地震応答解析に基づく構造部材の照査において,評価対象断面(弱軸方向) に直交する断面(強軸方向)の地震応答解析に基づく構造部材の発生応力等を 適切に組み合わせることで,水平2方向及び鉛直方向地震力の組合せによる構 造部材の発生応力を算出し,構造物が有する耐震性への影響を確認する。

構造物が有する耐震性への影響が確認された場合は詳細な手法を用いた検討 等,新たに設計上の対応策を講じる。

4.3.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

屋外重要土木構造物において,水平2方向及び鉛直方向地震力の組合せの影響を受ける可能性があり,水平1方向及び鉛直方向の従来評価に加え,更なる 設計上の配慮が必要な構造物について,構造形式及び作用荷重の観点から影響 評価の対象とする構造物を抽出し,構造物が有する耐震性への影響を評価する。 影響評価のフローを第5-4-6図に示す。

- (1) 影響評価対象構造物の抽出
- ① 構造形式の分類

屋外重要土木構造物について,各構造物の構造上の特徴や従来設計手法の考 え方を踏まえ,構造形式ごとに大別する。

② 従来設計手法における評価対象断面に対して直交する荷重の整理 従来設計手法における評価対象断面に対して直交する荷重を抽出する。 ③ 荷重の組合せによる応答特性が想定される構造物形式の抽出

②で整理した荷重に対して,構造形式ごとにどのように作用するかを整理し, 耐震性に与える影響程度を検討した上で,水平2方向及び鉛直方向地震力の組 合せの影響が想定される構造形式を抽出する。

 ④ 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇 所の抽出

③で抽出されなかった構造形式について,従来設計手法における評価対象断 面以外の箇所で,水平2方向及び鉛直方向地震力の組合せの影響により3次元 的な応答が想定される箇所を抽出する。

⑤ 従来設計手法の妥当性の確認

④で抽出された箇所が,水平2方向及び鉛直方向地震力の組合せに対して, 従来設計手法における評価対象断面の耐震評価で満足できるか検討を行う。

- (2) 影響評価手法
- ⑥ 水平2方向及び鉛直方向地震力の組合せの影響評価

評価対象として抽出された構造物について,従来設計手法での評価対象断面 (弱軸方向)の地震応答解析に基づく構造部材の照査において,評価対象断面 (弱軸方向)に直交する断面(強軸方向)の地震応答解析に基づく構造部材の 発生応力等を適切に組み合わせることで,構造部材の設計上の許容値に対する 評価を実施し,構造部材が有する耐震性への影響を確認する。

評価対象部位については,屋外重要土木構造物が明確な弱軸・強軸を示し, 地震時における構造物のせん断変形方向が明確であることを考慮し,従来設計 手法における評価対象断面(弱軸方向)における構造部材の耐震評価結果及び 水平2方向の影響の程度を踏まえて選定する。

⑦ 機器・配管系への影響検討

水平2方向及び鉛直方向地震力の組合せの影響が確認された構造物が,耐震 重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置さ れる重大事故等対処施設の機器・配管系の間接支持構造物である場合には,機 器・配管系に対して,水平2方向及び鉛直方向地震力の組合せによる応答値へ の影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認された 場合,機器・配管系の影響評価に反映する。

第5-4-6図 水平2方向及び鉛直方向地震力の組合せによる影響評価のフロー

- 4.4 浸水防止設備及び津波監視設備
 - 4.4.1 水平2方向及び鉛直方向地震力の組合せの影響評価方針

浸水防止設備及び津波監視設備は、「建物・構築物」又は「機器・配管系」に 区分し設計をしていることから水平2方向及び鉛直方向地震力の組合せの影響 評価は、施設、設備の区分に応じて「4.1 建物・構築物」又は「4.2 機器・ 配管系」の方針に基づいて実施する。

別添 6

柏崎刈羽原子力発電所6号及び7号炉

屋外重要土木構造物の耐震評価における 断面選定の考え方 (耐震) 屋外重要土木構造物の耐震評価における断面選定の考え方

1. はじめに

柏崎刈羽原子力発電所 6 号及び 7 号炉での評価対象構造物は,屋外重要土木構造物であ る(重大事故等対処施設を兼ねる)スクリーン室,取水路,補機冷却用海水取水路,軽油 タンク基礎,燃料移送系配管ダクト,海水貯留堰及び重大事故等対処施設である第一ガス タービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎である。

対象構造物のうち,取水路,軽油タンク基礎,燃料移送系配管ダクト,海水貯留堰,第 ーガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎については,構 造物の配置,荷重条件及び地盤条件を考慮し,耐震評価上最も厳しくなると考えられる位 置を評価対象断面とする。

スクリーン室及び補機冷却用海水取水路については,3次元的な構造を考慮した設計を行 うことから,特定の評価対象断面はない。

以下に、取水路,軽油タンク基礎,燃料移送系配管ダクト,海水貯留堰,第一ガスター ビン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎の評価対象断面選定の考え 方を述べる。対象構造物の平面配置図を第6-1-1図に示す。

第6-1-1 図 平面配置図

2. 取水路

取水路の平面図を第 6-2-1 図に, 縦断図を第 6-2-2 図及び第 6-2-3 図に, 断面図を第 6-2-4 図に示す。また, 取水路の構造諸元について 6 号炉を第 6-2-1 表に, 7 号炉を第 6-2-2 表に 示す。

取水路は,鉄筋コンクリート造の地中構造物であり,古安田層洪積粘性土層に直接若し くはマンメイドロックを介して西山層に設置される。

取水路の縦断方向(通水方向)は、加振方向と平行に配置される側壁及び隔壁を耐震設 計上見込むことができるため、強軸方向となる。一方、横断方向(通水方向に対し直交す る方向)は、通水機能を確保するため、加振方向と平行に配置される構造部材がないこと から、弱軸方向となる。

取水路の断面形状は,取水方向に対して複数の断面形状を示し,海側から大きく漸縮部, 一般部,漸拡部に分けられる。

取水路の耐震評価は、構造物の構造的特徴や周辺の地盤条件も考慮して、構造の安全性 に支配的な弱軸方向であるブロック②~⑪の横断方向断面のうち、耐震安全上厳しくなる 断面について基準地震動 Ss による耐震評価を実施する。

ブロック番号	1	2	3	4	5	6	Ō	8	9	10	(1)
設備区分	スクリーン室	取水路 (漸縮部)	取水路 (一般部)				取水路 (漸拡部)				
幅 (m)	48.1	48.1~16.6		16.6	16.6		16.6	17.3~23.9	24.0~30.5	30.5~37.0	
高さ (m)	10.0	7.0~8.0		8.0~6.6	6.6		6.6	7.2	7.2~8.3	8.3~9.5	
壁面積率	0.19	0.20		0.24	0.24		0.24	0.37	0.28	0.23	
頂版開□	有	無	立坑	無	無	立坑	無	無	無	無	立坑
機器荷重	有	無		無	無		無	無	無	無	
土被り厚(m)	0	2.5		2.5~14.7	14.7~19.2		15.8	15.6	15.6~14.5	14.5~13.3	

第6-2-1表 6号炉取水路 構造諸元

第6-2-2図6号炉取水路 縦断図

ブロック番号	1	2	3	4	5	6	\overline{O}	8	9	(10)	(1)
設備区分	スクリーン室	取水路 (漸縮部)	取水路 (一般部)				取水路 《漸拡部》				
幅 (m)	48.1	48.1~16.6		16.6	16.6		16.6	17.3~24.0	24.0~30.9	30.9~37.6	
高さ (m)	10.0	7.0~8.0		8.0~6.6	6.6		6.6	7.2	7.2~8.3	8.3~9.5	
壁面積率	0.19	0.20		0.24	0.24		0.24	0.37	0.28	0.22	
頂版開□	有	無	立坑	無	無	立坑	無	無	無	無	立坑
機器荷重	有	無		無	無		無	無	無	無	
土被り厚(m)	0	2.5		2.5~13.8	13.8~19.2		15.8	15.6	15.6~14.5	14.5~13.3	

第6-2-2表 7号炉取水路 構造諸元

第6-2-3 図 7 号炉取水路 縦断図

3. 軽油タンク基礎

軽油タンク基礎の平面図及び断面図について,6号炉を第6-3-1図に,7号炉を第6-3-2図に示す。

軽油タンク基礎は,鉄筋コンクリート造の基礎版が杭を介して西山層に支持される地中 構造物である。

軽油タンク基礎は比較的単純な基礎構造物であり,評価対象断面方向に一様な構造となっている。また,基礎版及び杭の周辺には地盤改良を実施しているため,周辺の地盤が構造物に与える影響はどの断面も大きな差はないと考えられる。

軽油タンク基礎の耐震評価は、構造物の構造的特徴や周辺の地盤条件も考慮して、耐震 安全上厳しくなる断面について基準地震動 Ss による耐震評価を実施する。

第6-3-1図 6号炉軽油タンク基礎 平面図・断面図

第6-3-2図 7号炉軽油タンク基礎 平面図・断面図

4. 燃料移送系配管ダクト

燃料移送系配管ダクトの平面図,断面図及び縦断図について,6号炉を第6-4-1図に,7 号炉を第6-4-2図に示す。

6号炉燃料移送系配管ダクトは,軽油タンク側は鉄筋コンクリート造のダクトが杭を介し て,6号炉原子炉建屋側はマンメイドロックを介して西山層に支持される地中構造物である。 7号炉燃料移送系配管ダクトは,鉄筋コンクリート造のダクトが杭を介して西山層に支持さ れる地中構造物である。また,6号及び7号炉ともにダクト及び杭の周辺には地盤改良を実 施している。

燃料移送系配管ダクトの縦断方向(軸方向)は、ダクト部の加振方向と平行に配置され る側壁及び隔壁を耐震設計上見込むことができるため、強軸方向となる。一方、横断方向 (軸方向に対し直交する方向)は、加振方向と平行に配置される構造部材がないことから、

弱軸方向となる。

燃料移送系配管ダクトの耐震評価は、構造物の構造的特徴や周辺の地盤条件も考慮して、 構造の安全性に支配的な弱軸方向である横断方向断面のうち、耐震安全上厳しくなる断面 について基準地震動 Ss による耐震評価を実施する。

4条-別添 6-9

5. 海水貯留堰

海水貯留堰の平面図を第6-5-1図に、断面図を第6-5-2図に示す。

海水貯留堰は,取水口前面の海中に設置する鋼管矢板を連結した構造物であり,取水護 岸に接続している。また,鋼管矢板は,西山層若しくは古安田層洪積粘性土層に直接設置 される。

海水貯留堰の縦断方向(軸方向)は,加振方向に隣接する鋼管矢板を耐震設計上見込む ことができるため,強軸方向となる。一方,横断方向(軸方向に対し直交する方向)は, 加振方向に隣接する鋼管矢板がないことから,弱軸方向となる。

海水貯留堰の耐震評価は、構造物の構造的特徴や周辺の地盤条件も考慮して、構造の安 全性に支配的な弱軸方向である横断方向断面のうち、耐震安全上厳しくなる断面について 基準地震動 Ss による耐震評価を実施する。

第6-5-1図 6号及び7号炉海水貯留堰 平面図

第6-5-2図 6号及び7号炉海水貯留堰 断面図

6. 第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎

第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎の平面図を 第 6-6-1 図に,断面図を第 6-6-2 図に示す。

第一ガスタービン発電機基礎は,鉄筋コンクリート造の基礎版が杭を介して西山層に支 持される地中構造物である。

第一ガスタービン発電機基礎は比較的単純な基礎構造物であり,評価対象断面方向に一 様な構造となっている。また,基礎版及び杭の周辺には地盤改良を実施しているため,周 辺の地盤が構造物に与える影響はどの断面も大きな差はないと考えられる。

第一ガスタービン発電機用燃料タンク基礎は,鉄筋コンクリート造のピットが杭を介し て西山層に支持される地中構造物である。

第一ガスタービン発電機用燃料タンク基礎は比較的単純な基礎構造物であり,評価対象 断面方向に一様な構造となっている。また,ピット及び杭の周辺には地盤改良を実施して いるため,周辺の地盤が構造物に与える影響はどの断面も大きな差はないと考えられる。

第一ガスタービン発電機基礎及び第一ガスタービン発電機用燃料タンク基礎の耐震評価 は、構造物の構造的特徴や周辺の地盤条件も考慮して、耐震安全上厳しくなる断面につい て基準地震動 Ss による耐震評価を実施する。

第6-6-1図 第一ガスタービン発電機及び 第一ガスタービン発電機用燃料タンク基礎 平面図

(第一ガスタービン発電機基礎及び燃料タンク基礎 EW 断面)

(第一ガスタービン発電機基礎 NS 断面①)

第 6-6-2 図 第一ガスタービン発電機及び 第一ガスタービン発電機用燃料タンク基礎 断面図 (1/2)

(第一ガスタービン発電機基礎 NS 断面②)

(第一ガスタービン発電機用燃料タンク基礎 NS 断面)

第 6-6-2 図 第一ガスタービン発電機及び 第一ガスタービン発電機用燃料タンク基礎 断面図 (2/2)

別添 7

柏崎刈羽原子力発電所6号及び7号炉

主要建屋の構造概要及び解析モデルについて (耐震)

主要建屋の構造概要及び解析モデルについて

1. 構造概要

(1) 6 号及び7 号炉原子炉格納容器

原子炉格納容器は,鋼製ライナを内張りした鉄筋コンクリート造であり,圧力容器を 取り囲む円筒型ドライウェル,円筒型サプレッション・チェンバ及び基礎版等で構成さ れ,容器の主要寸法は,円筒部直径が約29m,全高が約36mである。

内部にはドライウェルとサプレッション・チェンバを仕切る鉄筋コンクリート造のダ イヤフラム・フロアがある。

原子炉格納容器は,原子炉建屋床版,使用済燃料プール,キャスク・ピット,蒸気乾燥器・気水分離器ピット等と一体にしているので,原子炉圧力容器から原子炉格納容器 に伝えられる地震力及び原子炉格納容器にかかる地震力を,原子炉建屋耐震壁とともに 負担する構造である。

(2) 6 号及び7 号炉原子炉建屋

原子炉建屋は、地上4階、地下3階建で、平面が約57m(南北方向)×約60m(東西 方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造及び鉄骨造)の建物であ る。最下階床面からの高さは約58mで地上高さは約38mである。建物中央部には鉄筋コ ンクリート製原子炉格納容器があり、鉄筋コンクリート造の基礎版上に設置し原子炉建 屋と一体構造としている。その外側に外壁である原子炉建屋側壁がある。

これらは,原子炉建屋の主要な耐震壁を構成している。また,それぞれ壁の間は強固 な床版で一体に連結し,全体として剛な構造としている。

(3) 6 号及び7 号炉コントロール建屋

コントロール建屋は、地上2階、地下2階建で、平面が約42m(南北方向)×約59m (東西方向)の鉄筋コンクリート造を主体とした建物で、一部が鉄骨鉄筋コンクリート 造の建物である。基礎版底面からの高さは約30mであり、地上高さは約12mである。建 物の内部は、多くの遮蔽壁をもち、剛性が高い。したがって十分な耐震性を有する構造 となっている。

(4) 6 号及び7 号炉タービン建屋

タービン建屋は、地上2階(一部3階)、地下2階建で平面が約97m(南北方向)×約 82m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造及び鉄骨造)の 建物である。建物の内部は、多くの遮蔽壁をもち、剛性が高い。したがって十分な耐震 性を有する構造となっている。 (5) 6 号及び7 号炉主排気筒

主排気筒は,原子炉建屋の屋上に位置し,鋼板製筒身(換気空調系用排気筒)と鋼管 四角系鉄塔(制振装置付)で支えた鉄塔支持形排気筒である。筒身内部には,非常用ガ ス処理系用排気筒が筒身に支持されている。

主要建屋の配置図を第 7-1 図に示す。また,各建屋の概略平面図及び断面図を第 7-2 図〜第 7-13 図に,主排気筒の配置図及び概要図を第 7-14 図〜第 7-17 図に示す。

注: 1991 部分は, 原子炉格納容器を示す。

第7-2図 原子炉格納容器の概略平面図・断面図(6号炉)

4 条-別添 7-4

第7-3 図 原子炉格納容器の概略平面図・断面図(7号炉)

4 条-別添 7-5

第7-4図 6号炉原子炉建屋 概略平面図(T.M.S.L.-8.2m)

EW 方向断面 (単位:m)

第7-5図 6号炉原子炉建屋 断面図

(単位:m)

注記 *: 原子炉圧力容器(以下,「RPV」と略す。)

第7-6 図 7 号炉原子炉建屋 概略平面図 (T.M.S.L.-8.2m)

第7-7図 7号炉原子炉建屋 断面図

4 条--別添 7-9

(単位:m)

第7-10図 6号炉タービン建屋 概略平面図(T.M.S.L.-5.1m)
別添-7

(単位:m)

EW 方向断面図 第 7-11 図 6 号炉タービン建屋 断面図

(単位:m) 第7-12図 7号炉タービン建屋 概略平面図(T.M.S.L.-5.1m)

NS 方向断面

EW 方向断面

第7-13図 7号炉タービン建屋 断面図

(単位:m)

第7-14 図 主排気筒配置図(6号炉)

第7-15 図 主排気筒概要図(6号炉)

(単位:m)

第7-16 図 主排気筒配置図(7号炉)

第7-17図 主排気筒概要図(7号炉)

- 2. 解析モデル
 - (1) 地震応答解析モデル

主要建屋の地震応答解析モデルのうち,6号及び7号炉の原子炉建屋を例に第7-18 図に示す。

NS 方向

EW 方向

第7-18図 原子炉建屋の地震応答解析モデル図

(2) 応力解析モデル

主要建屋の応力解析モデルのうち,7号炉原子炉格納容器の応力解析モデルを例として、第7-19図に示す。

第7-19図 原子炉格納容器 解析モデル図

別添 8

柏崎刈羽原子力発電所6号及び7号炉

入力地震動について

(耐震)

入力地震動について

建物・構築物

建物・構築物の地震応答解析における入力地震動は,解放基盤表面で定義される基準 地震動Ss及び弾性設計用地震動Sdを基に,対象建物・構築物の地盤条件を適切に考 慮したうえで,必要に応じ2次元FEM解析又は1次元波動論により,地震応答解析モ デルの入力位置で評価した入力地震動を設定する。なお,敷地における1次元波動論の 適用性は,(参考)に示す敷地における観測記録の分析により確認している。地盤条件 を考慮する場合には,地震動評価で考慮した敷地全体の地下構造との関係や対象建物・ 構築物位置と炉心位置での地質・速度構造の違いにも留意し,地盤の非線形応答に関す る動的変形特性を考慮する。

なお,建物・構築物の地震応答解析においては,建物・構築物と地盤との相互作用を 考慮するものとし,解析モデルの地盤のばね定数は,基礎版の平面形状,基礎側面と地 盤の接触状況及び地盤の剛性等を考慮して定める。各入力地震動が接地率に与える影響 を踏まえて,地盤ばねには,基礎浮上りによる非線形性又は誘発上下動を考慮できる浮 上り非線形性を考慮するものとする。設計用地盤定数は,原則として,弾性波試験によ るものを用いる。

7号炉原子炉建屋(水平方向)を例として,第8-1図に地震応答解析モデルに入力する地震動の概念図を示す。

第8-1図 建物・構築物への入力地震動の概念図(7号炉原子炉建屋の例)

2. 屋外重要土木構造物

屋外重要土木構造物の地震応答解析における入力地震動は,解放基盤表面で定義され る基準地震動Ssを基に,対象構造物の地盤条件を適切に考慮したうえで,必要に応じ 2次元FEM解析又は1次元波動論により,地震応答解析モデルの入力位置で評価した 入力地震動を設定する。なお,敷地における1次元波動論の適用性は,(参考)に示す 敷地における観測記録の分析により確認している。地盤条件を考慮する場合には,地震 動評価で考慮した敷地全体の地下構造との関係にも留意し,地盤の非線形応答に関する 動的変形特性を考慮する。

7 号炉取水路(一般部)を例として,第8-2 図に地震応答解析モデルに入力する地震動の概念図を示す。

第8-2図 屋外重要土木構造物への入力地震動の概念図(7号炉取水路の例)

(参考)

敷地における1次元波動論の適用性について

1. 検討方針

敷地における1次元波動論の適用性について確認するため, 荒浜側の1 号炉鉛直アレイ と大湊側の5 号炉鉛直アレイで得られた地震観測記録や敷地内において評価されている地 下構造モデルを用いて分析を実施する。なお,本検討結果は第266 回及び第404 回原子力 発電所の新規制基準適合性に係る審査会合にて示したものである。

2. 地震観測記録を用いた分析

敷地における地震観測点を参考第1図に示す。1号炉鉛直アレイと5号炉鉛直アレイで 得られた地震観測記録について、スペクトル比(地表観測点/地中観測点)を到来方向別 に評価することで、解放基盤表面以浅の地震波の伝播特性を把握し、1次元波動論の適用 性を検証する。なお、対象とした観測点は観測期間の長さを考慮し、1号炉鉛直アレイに おいて T. M. S. L. +5m(地表)及び T. M. S. L. -122m(地中)とし、5号炉鉛直アレイにおいて T. M. S. L. +9. 3m(地表)及び T. M. S. L. -180m(地中)とした。

検討対象とした地震は以下の条件で選定した。

- ・震源距離 100km 以内
- ・解放基盤表面に近い観測点で観測されており,最大加速度値が1cm/s²程度以上
- ・1 号炉鉛直アレイ及び5号炉鉛直アレイで共通に記録が得られている地震

参考第2図に敷地周辺で発生した小規模地震の到来方向別の地表観測点の地中観測点に 対するスペクトル比を示す。図より解放基盤表面以浅においては、到来方向による特異な 差異は確認されない。

以上から,解放基盤表面以浅においては,不整形性等による影響は確認されないため, 敷地においては1次元波動論により評価可能と考えられる。

3. 地下構造モデルを用いた分析

参考第1図に示す水平アレイ地震観測点においては、各地点の地震観測記録の逆解析に より地震基盤から地表までの地下構造モデルを推定している。参考第1表に5号炉鉛直ア レイ付近に設置されている D71 観測点においける地下構造モデルの例を示す。参考第3図 に D71 観測点の地下構造モデルに基づく伝達関数と5号炉鉛直アレイの地震観測記録に基 づく伝達関数の比較を示す。図より推定した地下構造モデルは、解放基盤表面以浅の伝達 関数を再現可能であることが確認できる。そのため、水平アレイ地震観測点における地下 構造モデルに基づき敷地内における各地点の解放基盤表面相当位置から地表までの伝達関 数を評価し、面的な特徴を整理する。

参考第4図に水平アレイ観測点における地下構造モデルに基づく解放基盤表面相当位置 から地表の伝達関数を1号炉~4号炉側,5号炉~7号炉側及び陸側に区分して示す。1号 炉~4号炉側と5号炉~7号炉側で地震波の伝播特性の傾向に特異な差異は認められず,1 次元地下構造モデルによる評価が可能であると考えられる。一方,標高が高い陸側におい ては長周期側にピークが確認されることから,施設評価においては,各施設近傍でのボー リング調査等に基づき,解放基盤表面以浅の地震波の伝播特性を適切に反映する。

【参考文献】

第266回原子力発電所の新規制基準適合性に係る審査会合 資料1 柏崎刈羽原子力発 電所6号炉及び7号炉 敷地における地震波の増幅特性についてコメント回答 第404回原子力発電所の新規制基準適合性に係る審査会合 資料4-3-1 柏崎刈羽 原子力発電所6号炉及び7号炉 基準地震動の策定について

 插	1号炉鉛直アレイ		5 号炉鉛直アレイ		
保向	地震計	地層	地震計	地層	
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
+12.0m			 ////////////////////////////////		
+9.3m	∇C I		///////////////////////////////////////		
+5.0m	∨ G. L. ///////////////////////////////////			古安田層	
		古安田層			
-24.0m			\bigcirc^{*4}		
-40.0m	\bigcirc^{*1}			西山層	
-100. Om			\bigcirc^{*4}		
-122. Om	O ^{%1}	西山層			
-180. Om			○**4	本公園	
	-)//0			作台眉	
-250. Om	\bigcirc^{*2}				
-300. Om			○*4		
-400. Om	\bigcirc^{3}				

^{※1:1982}年4月観測開始, ※2:1982年4月観測開始~2007年11月観測終了
※3:2009年3月観測開始, ※4:1985年9月観測開始

4 条--別添 8-7

参考第2図 敷地周辺で発生した小規模地震の 到来方向別の地表観測点の地中観測点に対するスペクトル比

4条-別添 8-8

層	層厚	密度	S 波速度	P 波速度	Q	s ^{**}	Q	p*
No.	(m)	(t/m^3)	(m/s)	(m/s)	Qo	n	Qo	n
1	14.8	1.73	242	554	5.7	0.56	2.7	0.56
2	13.9	1.81	368	1190	5.0	0.52	3.2	0.52
3	28.4	1.86	465	1495	7.1	0.70	4.2	0.70
4	66.4	1.70	633	1720	7.2	0.71	4.9	0.71
5	40.3	1.70	694	1836	9.8	0.74	6.8	0.74
6	113.5	2.10	854	1953	17	0.82	14	0.82
7	869.5	2.10	1285	2596	20	0.76	14	0.76
8	619.8	2.30	1826	3413	25	0.92	16	0.92
9	1073.3	2.40	1994	4131	23	0.83	16	0.83
10	1169.1	2.50	2498	4510	25	0.71	14	0.71
11	890.8	2.60	3280	5354	38	0.70	20	0.70
12	_	2.70	3427	5560	81	0.78	46	0.78

参考第1表 水平アレイ観測点における地下構造モデル(D71観測点の例)

※Q(f)=Q₀×fⁿを仮定。

参考第3図 D71 観測点の地下構造モデルに基づく伝達関数^{*}と 5号炉鉛直アレイ地震観測記録に基づく伝達関数の比較 **地下構造モデルに基づく伝達関数は、参考第1表に示す地下構造モデルにおいて地震観測点 と同深度となる位置の伝達関数を評価

(c) 陸側の観測点

参考第4図 水平アレイ観測点における地下構造モデルによる 解放基盤表面相当位置から地表の伝達関数

※参考第1表のハッチ部に示すように、各地下構造モデルにおいてS波速度Vsが概ね700(m/s) となるNo.5層の上面からNo.1層上面の伝達関数を評価

4条-別添 8-10

別紙-1

柏崎刈羽原子力発電所6号及び7号炉

建屋及び原子炉の地震応答解析モデルの詳細化について (耐震)

- 1. はじめに
- 2. 建屋及び原子炉の地震応答解析モデルの概要
 - 2.1 原子炉建屋の地震応答解析モデル
 - 2. 2 原子炉本体基礎の地震応答解析モデル
 - 2.3 炉心,原子炉圧力容器および圧力容器内部構造物の地震応答解析モデル
- 3. 詳細化の検討内容及び妥当性
 - 3.1 コンクリート実強度を考慮した建屋剛性
 - 3.2 補助壁の考慮
 - 3.3 側面地盤回転ばねの考慮
 - 3. 4 原子炉本体基礎の復元力特性の考慮
 - 3.5 今回工認モデルの妥当性検証
- 4. 地震応答解析モデルの保守性と不確かさへの対応方針
 - 4.1 保守性と不確かさを設定する項目
 - 4.2 保守性と不確かさの設定
 - 4.3 検討ケース
 - 4. 4 設計への反映方針
- 5. まとめ
- 添付資料-1 今回工認モデルの地震応答解析に対する 3 次元 FEM モデルによる妥当性の 検証
- 添付資料-2 不確かさ検討ケースの選定について
- 参考資料-1 既工認モデルによる評価
- 参考資料-2 地震応答解析モデル詳細化の定量的な効果
- 参考資料-3 地震応答解析モデルの不確かさの影響(試検討)
- 参考資料-4 各詳細化項目のシミュレーション解析への影響度の検討
- 参考資料-5 新潟県中越沖地震本震以外の地震観測記録を用いたシミュレーション解析 モデルの妥当性確認
- 参考資料-6 表層地盤ばねの取扱いについて
- 別紙1-1 建屋の地震応答解析におけるコンクリート実剛性の採用について
- 別紙1-2 地震応答解析モデルにおける補助壁の評価方法について
- 別紙1-3 建屋側面地盤回転ばねを考慮することの妥当性について
- 別紙1-4 原子炉本体基礎の復元力特性について

1. はじめに

柏崎刈羽原子力発電所6号及び7号炉の今回の工事計画認可申請書(以下「今回工認」 という。)では、基準地震動のレベルの増大に伴い、より現実に近い地震応答を算出するこ とを目的として、建設時の工事計画認可申請書(以下「既工認」という。)の地震応答解析 モデルを詳細化した地震応答解析モデルを採用することとする(第1-1表)。

本資料では、今回工認において地震応答解析モデルを詳細化することの目的及び妥当性、 地震応答解析モデルの不確かさへの対応方針について説明する。

詳細化項目	既工認の 地震応答解析モデル	今回工認の 地震応答解析モデル				
建屋剛性	コンクリートの設計基準強 度を使用	コンクリートの実強度デー タに基づく剛性を使用				
耐震要素(建屋壁)の モデル化	外壁などの主要な壁のみモ デル化	左記に加え、考慮可能な壁 (補助壁)を追加でモデル 化				
建屋側面地盤による 拘束効果	側面地盤回転ばねを 考慮せず	側面地盤回転ばねを 考慮する				
原子炉本体基礎の モデル化	線形解析モデル	コンクリートのひび割れに よる剛性低下を考慮した非 線形解析モデル				

第1-1表 地震応答解析モデルの詳細化の概要

※建屋の弾塑性解析は,既工認では採用していないが,今回工認では,最新の知見「原子力発電所耐震設 計技術指針(JEAG4601-1991追補版)」に基づき採用する。 2. 建屋及び原子炉の地震応答解析モデルの概要

2.1 原子炉建屋の地震応答解析モデル

原子炉建屋は地下3階,地上4階建で,基礎底面からの高さは,63.4mである。平面の大きさは地下部分で56.6m (NS方向)×59.6m (EW方向),最上階は39.0m (NS)×59.6m (EW)である。

建屋の主体構造は鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造及び鉄骨造)であり, その総重量は約20万tである。また,建屋の主な耐震要素は,鉄筋コンクリート製原子炉 格納容器と原子炉建屋の外壁である。

地震応答計算に用いる解析モデルは,建屋を鉄筋コンクリート製原子炉格納容器(以下 「RCCV 部」という。)と外壁(以下「外壁部」という。)に分けた曲げ変形とせん断変形を する質点系とし,地盤を等価なばねで評価した建屋-地盤連成系モデルとする。なお,中間 壁の曲げ及びせん断剛性は,RCCV 部または外壁部に加える。

モデル化は NS 方向, EW 方向それぞれについて行っているが, EW 方向においては, プール壁が RCCV の曲げ変更を拘束する影響を考慮して回転ばねを取り付けている。

建屋側方の地盤は水平ばね及び回転ばねで,建屋底面下の地盤は水平ばね及び回転ばね で置換している。地下部分側面の地盤水平ばねは,各質点の支配深さに従って地盤を水平 に分割し,波動論により評価している。なお,表層部分については,基準地震動Ssによる 地盤の応答レベルを踏まえ,ばね評価を行わないこととする。また,基礎スラブ底面にお ける地盤の水平及び回転ばねは,それ以降の地盤を等価な半無限地盤とみなして,波動論 により評価している。

建屋の断面図を第2-1図,解析モデルを第2-2図に示す。

2.2 原子炉本体基礎の地震応答解析モデル

原子炉建屋内の原子炉圧力容器,原子炉遮蔽壁,原子炉本体基礎等の大型機器・構造物 は、原子炉建屋基礎版やダイヤフラムフロアを介して原子炉建屋からの地震の入力がある ことを考慮して、第2-3回に示すように原子炉建屋と原子炉本体基礎を連成させている。

原子炉圧力容器は,原子炉圧力容器スタビライザと等価なばねで原子炉遮蔽壁と結ばれ, 原子炉本体基礎と剛に結合される。原子炉本体基礎は,その下端において原子炉建屋基礎 スラブ上端と剛に結合され,更にダイヤフラムフロアの剛性と等価なばねにより原子炉格 納容器を介し,原子炉建屋に支持される。

なお,上記のモデル化の考え方については,今回工認においても既工認から変更は無い。

2.3 炉心,原子炉圧力容器および圧力容器内部構造物の地震応答解析モデル

原子炉圧力容器内には,燃料集合体,制御棒,炉心シュラウド,制御棒案内管,制御棒 駆動機構ハウジング,気水分離器,原子炉冷却材再循環ポンプ等が収納されている。

炉心シュラウドは薄肉円筒形で,下端において水平方向をシュラウドサポートプレート, 鉛直方向をシュラウドサポートシリンダ及びレグにより原子炉圧力容器に支持される。炉 心シュラウド上部はさら形のシュラウドヘッド,その上の気水分離器で構成している。

炉心シュラウド内部には燃料集合体が収納され,下端を炉心支持板,上端を上部格子板 により正確に位置が定められている。燃料集合体に加わる荷重は水平方向は上部格子板及 び炉心支持板を支持する炉心シュラウド,鉛直方向は制御棒案内管を支持する制御棒駆動 機構ハウジングを介し,原子炉圧力容器に伝達される。

制御棒駆動機構は,原子炉圧力容器下部鏡板を貫通して取り付けられる制御棒駆動機構 ハウジング内に納められ,その上端に取り付けられる制御棒を炉心に挿入する機能を有し ている。

原子炉冷却材再循環ポンプは原子炉圧力容器下部に環状に設置され、原子炉冷却材を循 環し、その流量を調整する機能を有している。その原動機は、原子炉圧力容器下部鏡板に 溶接された原子炉冷却材再循環ポンプモータケーシング内に収納される。これらの構造図 を第 2-4 図に示す。

また,中性子計測案内管,中性子束計測ハウジングについては,重量が小さく炉内構造物の振動に与える影響は小さいため重量のみを考慮する。

地震応答解析モデルは第 2-5 図に示すように、原子炉建屋、原子炉格納容器、原子炉遮 蔽壁、原子炉本体基礎、原子炉圧力容器、炉心シュラウド、燃料集合体、制御棒駆動機構 ハウジング及び原子炉冷却材再循環ポンプ等の各質点を等価な曲げ、せん断剛性を有する 無質量のばねにより結合した多質点集中系とする。燃料集合体、制御棒案内管、制御棒駆 動機構ハウジング、気水分離器、炉心シュラウドはシュラウドサポートと等価な回転ばね を介して、原子炉圧力容器と結合する。原子炉冷却材再循環ポンプは、原子炉圧力容器と 結合する。原子炉圧力容器は原子炉圧力容器スタビライザおよび原子炉本体基礎を介して、 原子炉建屋に支持される。

なお、上記のモデル化の考え方については、今回工認においても既工認から変更は無い。

4 条-別紙 1-4

 NS 方向
 EW 方向

 第 2-2 図
 建屋-地盤連成地震応答解析モデル(7 号炉の例)

第 2-3 図 原子炉本体基礎の地震応答解析モデル (7 号炉 水平方向(NS 方向)の例)

第 2-5 図 炉心,原子炉圧力容器および圧力容器内部構造物の地震応答解析モデル (7 号炉 水平方向(NS 方向)の例)

3. 詳細化の検討内容及び妥当性

地震応答解析モデル詳細化の検討フローを第3図に示す。

詳細化項目ごとに妥当性を確認したのち,詳細化後の地震応答解析モデル(以下「今回 工認モデル」という。)全体の妥当性を別の解析モデル(建屋3次元 FEM モデル)との比較 により確認する。

第3図 地震応答解析モデルの詳細化検討フロー

3.1 コンクリート実強度を考慮した建屋剛性【別紙1-1】

既工認も含め,通常の構造設計において,地震応答解析は対象構造物の構築前に実施す ることから,地震応答解析時に実際の構造物のデータを得ることは物理的に不可能である。 そのため,解析で用いるコンクリート剛性の評価には,設計基準強度を用いるのが一般的 である。

今回工認の場合,既工認や通常の構造設計とは異なり,対象構造物が解析実施以前に現 に存在しているため,材料物性値を推定することは物理的に可能であることから,地震時 の建屋挙動を実応答に近い形で評価できる条件で設計することを目的として,コンクリー ト剛性の評価に実強度を採用する。

コンクリート実強度を採用する際の論点を整理し、抽出された論点に対して、原子炉建 屋を例として、既往の知見や試験等から得られたデータを通してその妥当性・信頼性につ いて考察した上で、今回工認に用いる実剛性の値を設定する方針とした。また、原子炉建 屋以外の建屋についても同様のデータ整理を行い、原子炉建屋同様のコンクリート実剛性 が適用可能であることを確認する。

原子炉建屋における建設時コンクリートの 91 日強度データを整理し,網羅的にデータ取 得されていること及びデータ数が妥当であることを確認した。

その上で,経年によるコンクリート強度の変化を考察している既往の知見について整理 することによりコンクリート強度の経年による影響について検討し,材齢 91 日から 10 年 にかけてのコンクリート強度の増加を考慮して推定される実強度(推定実強度)を設定し た。

更に長期的な強度増進効果を考慮した推定実強度について,実機から直接採取して得られる強度と比較して数値に大きな差異がないかを確認した。

以上の検討を踏まえた上で,妥当性・信頼性を有していると考えられる実強度を設定した。

また,原子炉建屋以外の建屋についても同様のデータ整理を行い,原子炉建屋同様のコ ンクリート実剛性が共通的に適用可能であることを確認した。

地震応答解析に用いる材料定数は、材料のばらつきによる変動幅を適切に考慮する必要 があることから、コンクリート実強度の値のばらつきについて検討し、不確かさを設計上 考慮することにより地震応答解析における保守性を確保することとした。

第3-1図 コンクリート実剛性の採用(概念図)

3.2 補助壁の考慮【別紙1-2】

既設建屋の地震応答解析の実施にあたっては,より実現象に近い応答を模擬するという 観点から,設計時には考慮されていなかったが実際には耐震要素として考慮可能な壁を補 助壁と位置づけ,地震応答解析モデルに取り込むこととした。

補助壁の選定基準の設定にあたっては、先行審査を含む既工認で適用実績のある規準で ある、日本建築学会:「原子力施設鉄筋コンクリート構造計算規準・同解説(2005)」(以下 「RC-N」規準という。)を参考に設定する。RC-N規準 19条「耐震壁の断面算定」には、耐 震壁の壁厚、せん断補強筋比等に関する規定として「算定外の規定」が示されており、今 回工認の補助壁の選定条件を設定するにあたっては、「算定外の規定」の記載を踏まえて選 定条件を設定することとした。建屋内の鉄筋コンクリート壁のうち、選定条件に適合する 壁を補助壁として選定した。

また,選定された補助壁の地震応答解析で用いる解析モデルへの反映方針としては, JEAG4601-1991 追補版におけるスケルトン評価法のベースとなった実験の内容や耐震壁と 補助壁の違い(鉄筋比,直交壁の有無)を踏まえ,補助壁のせん断スケルトンカーブとし ては第1折点で降伏する完全弾塑性型とし,曲げスケルトンとしては補助壁の剛性を無視 する保守的な設定とした。

3.3 側面地盤回転ばねの考慮【別紙1-3】

側面回転ばねを考慮することの妥当性検証にあたって、地中に埋め込まれた建屋と地盤 との相互作用に関する知見及び6号及び7号炉原子炉建屋の設置状況を整理し、その上で 大きな地震動が作用する場合の側面回転ばねの妥当性に関して、以下の3つの論点を抽出 した。

各論点に対する検討方針を設定し、それぞれの論点について検証を実施した。

- 【論点①】 建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か
- 【論点②】 地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ埋め 込み SR モデルへ回転ばねを適用することが妥当か
- 【論点③】 隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しない か

論点①に対する検討としては、6号及び7号炉原子炉建屋の実機の地下外壁(防水層付き) と側面地盤の間を模擬した摩擦試験により、建屋側面と地盤間に摩擦力があることを確認 した。また、試験結果を踏まえて、論点②及び論点③に対する検証で使用する解析モデル で使用する摩擦特性を設定した。

論点②に対する検討としては、地下外壁と側面地盤の間の接触・剥離や摩擦特性を考慮 した詳細な解析モデルによる地震応答解析を行い、地震時の建屋と地盤間の接触状況、建 屋と地盤間の摩擦による応力伝達状況、側面地盤反力について検討し、拘束効果が得られ ることを確認した。その上で、埋め込み SR モデルに側面回転ばねを適用した場合の建屋応 答と詳細モデルによる建屋応答を比較し、埋め込み SR モデルによる建屋応答が妥当である ことを確認した。

論点③に対する検討としては,論点②のモデルで考慮した接触剝離・摩擦滑り現象に加 えて,原子炉建屋に隣接するタービン建屋や周辺の地盤状況(埋戻し土,マンメイドロッ ク等)を考慮した解析モデルを用いた解析を実施し,論点②のモデルによる解析結果と比 較することにより,隣接建屋や建屋周辺の詳細な地盤状況が建屋応答に与える影響がない ことを確認した。

また,上記の解析的な検証は6号炉原子炉建屋を代表として実施したものであるが,6号 炉原子炉建屋と7号炉原子炉建屋の設置状況の類似性や6号炉を対象とした解析結果の傾 向を踏まえ,7号炉原子炉建屋についても側面回転ばねを適用することが妥当であることを 確認した。

第3-3図 地盤2次元 FEM による解析モデル図(6号炉原子炉建屋 NS 方向の例)

3.4 原子炉本体基礎の復元力特性の考慮【別紙1-4】

原子炉本体基礎は、鋼板とコンクリートの複合構造物であり、既工認の地震応答解析モ デルでは、基準地震動のレベルが小さく地震応答は概ね弾性領域と考えられたことから、 剛性一定の線形仮定としていた。

しかしながら、今回工認では基準地震動のレベルが増大し、地震応答が線形領域を超え ることから、より現実に近い適正な地震応答解析を実施する観点から、コンクリートのひ び割れによる剛性変化を考慮した非線形解析モデルを採用することとする。

非線形解析モデルの評価は、鉄筋コンクリートの評価手法として実績のある手法に加え、 鋼板とコンクリートの複合構造としての特徴に留意した既往の知見を参考にしておこない、 実物の原子炉本体基礎を模擬した試験体による加力試験結果を用いてその妥当性を確認す る。

原子炉本体基礎の非線形特性を考慮した復元力特性(スケルトンカーブ)の設定は,規 格基準や既往の知見を参考に,曲げ及びせん断のそれぞれに対し,コンクリートのひび割 れを表す第1折点と鋼板の降伏を表す第2折点を設定することによりおこなった。

曲げの第1,第2折点及びせん断の第1折点の評価は、「原子力発電所耐震設計技術指針 (JEAG4601-1991 追補版)」に規定されるスケルトンカーブ評価方法を基本とし、せん断の 第2折点の評価は、鋼板及びコンクリートで構成された複合構造物に関する既往知見に示 されたコンクリートひび割れ後の荷重変形関係の理論式を基本とした。

実機原子炉本体基礎の構造の特徴を踏まえ,評価式への反映方法について検討し,実機 を模擬した試験体でその妥当性を確認した。

第 3-4 図 原子炉本体基礎の復元力特性の例 (7 号炉, Ss-1, NS 方向の概念図)
3.5 今回工認モデルの妥当性検証

今回工認モデルの妥当性検証として,過去の地震観測記録でベンチマーキングした別の 解析モデル(建屋3次元FEM)の地震応答解析結果の比較を行う。検証にあたっては,建屋 3次元FEMモデルについて,新潟県中越沖地震によるシミュレーション解析によりその妥当 性を確認した上で,今回工認モデルと建屋3次元FEMモデルのそれぞれに対して弾性設計 用地震動Sdを入力とした地震応答解析を行い,両者の応答結果を比較することにより今回 工認モデルの妥当性を確認する。今回工認モデルの妥当性検討のフローを第3-5図に示す。 妥当性検証のフローに基づき検討を実施し,今回工認モデルと建屋3次元FEMの地震応答 解析結果の比較を行った結果,応答が整合的であったことから,今回工認モデルが妥当で あると判断した。(添付資料-1)。

第3-5図 地震応答解析モデルの妥当性検証フロー

4. 地震応答解析モデルの保守性と不確かさへの対応方針

4.1 保守性と不確かさを設定する項目

今回工認では、既工認時より詳細化しつつ保守性に配慮した地震応答解析モデルを採用 する方針である。詳細化した項目については、項目毎に保守性を有することを確認すると ともに、必要に応じ追加で保守性を設定し、地震応答解析結果へ与える影響を確認する。 同様に、詳細化項目のうち不確かさが考えられるものについては、不確かさが地震応答解 析結果へ与える影響を確認する。

また,詳細化した項目ではないものの地盤剛性については,実測した地盤のせん断波速 度を用いて算出していることから,地盤のせん断波速度の不確かさが地震応答解析結果へ 与える影響を確認する。

なお、本検討では地震応答解析モデルにおけるコンクリート減衰定数を既工認時同様 5% としているが、先行審査では減衰定数を 3%とした場合の影響についても確認している。柏 崎刈羽原子力発電所は、軟岩サイトであり、かつ建屋が地中に深く埋め込まれていること から、建屋地盤相互作用による減衰効果の影響が大きく、コンクリートの減衰定数による 影響はほとんど無いと考えられるためここでは検討の対象とはしていない。ただし、今回 工認では、念のため、コンクリートの減衰定数を 3%とした場合の影響についても検討を実 施する予定である。

- 4.2 保守性と不確かさの設定
 - (1) 建屋剛性(コンクリート強度)

今回工認では、建屋の地震応答解析モデルにおけるコンクリート剛性の評価にコン クリート実強度を採用する予定であり、その数値は概ね建設時コンクリートの91日強 度の平均値と同等となっている。ここでは、保守的に材齢91日以降の強度上昇を無視 している。不確かさの検討にあたっては、データベースである91日強度の分布を考慮 し、平均値に対して±1σを考慮することとした。さらに、実強度値のマイナス側につ いては、91日強度の値として95%信頼区間の下限値に相当する値(平均値-2σ)を、 プラス側については、実機の経年後のコア強度の平均値である568kg/cm²(55.7N/mm²) を考慮する。

地震応答解析モデル	コンクリート強度
基本ケース	実強度(91 日強度) 440kg/cm ² (43.1N/mm ²)
保守性	91 日以降の強度上昇を無視
不確かさ	・+1 σ 470kg/cm ² (46.0N/mm ²) ・-1 σ 410kg/cm ² (40.2N/mm ²) ・コア強度平均 568kg/cm ² (55.7N/mm ²) ・-2 σ 380kg/cm ² (37.2N/mm ²)

第4-2(1)表 コンクリート強度の保守性と不確かさ検討の考え方

(2) 補助壁の耐震要素化

今回工認では,設計時には考慮されていなかったが実際には耐震要素として考慮可 能な壁を補助壁と位置づけ,地震応答解析モデルに取り込むこととした。補助壁のせ ん断スケルトンカーブとしては第1折点で降伏する完全弾塑性型とし,曲げスケルト ンとしては補助壁の剛性を無視する保守的な設定としている。また,規格に該当しな い間仕切壁の剛性を保守的に無視している。なお,本項目についての不確かさは特に 無いものと考えられる。

第42(2)及 補助型の耐震安米ににわける休り住と小確から使的の考え方			
地震応答解析モデル	補助壁の耐震要素化		
基本ケース	・補助壁を耐震要素として考慮		
保守性	 ・補助壁のせん断スケルトンカーブは第1折点で 降伏する完全弾塑性型 ・補助壁の曲げ剛性は無視 ・規格に該当しない間仕切り壁の剛性を無視 		
不確かさ	特に無し		

第4-2(2) 表 補助壁の耐震要素化における保守性と不確かさ検討の考え方

(3) 側面地盤回転ばね定数

側面地盤回転ばねについては,別紙1-3における検討で用いた地盤2次元FEMの 地盤反力が埋込みSRモデルの地盤反力より小さいという傾向が見られたことを踏まえ, 接地率の評価が保守的になるように,NOVAKの方法により算定される側面地盤回転ばね 定数を0.5倍して半減させたケースについて,影響評価を行うこととする。不確かさ の検討にあたっては,後述する地盤剛性の不確かさを考慮することで,回転ばね定数 も変化することから,地盤剛性の不確かさの検討と合わせて影響を確認することとす る。

第4-2(3)表 側面地盤回転ばね定数の保守性と不確かさ検討の考え方

地震応答解析モデル	側面地盤回転ばね定数
基本ケース	100%
保守性	無し (但し,不確かさの考慮において回転拘束効果を 低減(50%)した場合の影響を評価)
不確かさ	回転ばね定数の変動を考慮 (地盤剛性を±σ変化させることで回転ばね定 数も変化する)

(4) 原子炉本体基礎の非線形モデル化

建屋と連成させる「原子炉本体基礎の地震応答解析モデル」及び「炉心,原子炉圧 力容器および圧力容器内部構造物の地震応答解析モデル」(以下「原子炉系の地震応答 解析モデル」という。)に含まれるコンクリート構造物は,建物のように実測したコン クリート強度がないことから保守的に設計基準強度を用いているが,コンクリート強 度は設計基準強度を上回るよう設計されるため,実構造物と地震応答解析モデルとで 剛性が異なることが考えられる。不確かさの検討にあたっては,原子炉系の地震応答 解析モデルのうち,コンクリート構造物である原子炉本体基礎とダイヤフラムフロア について,コンクリート実強度を考慮した影響評価をおこなうこととする。

また,原子炉本体基礎の復元力特性(スケルトンカーブ)の設定は,保守的に許容 限界を鋼板降伏までとしており,折線近似で評価している。しかしながら,現実の挙 動は上に凸な曲線になると考えられることから,手法特有の配慮としてスケルトンカ ーブを曲線包絡した場合の影響を確認することとする。

地震応答解析モデル	設定方法
基本ケース	 ・許容限界を鋼板降伏までと設定 ・コンクリート強度を設計基準強度と設定 原子炉本体基礎: 300kg/cm² (29. 4N/mm²) ダイヤフラムフロア: 330kg/cm² (32. 3N/mm²)
保守性	 ・鋼板降伏以降の領域は設定しない ・コンクリート強度の下限値を採用
不確かさ	 ・コンクリート強度を実強度とした場合の影響を考慮 原子炉本体基礎:400kg/cm² (39.2N/mm²) ダイヤフラムフロア[※]:440kg/cm² (43.1N/mm²)
手法特有の配慮	・スケルトンカーブを曲線包絡とした場合の影響を考慮

第4-2(4)表 原子炉本体基礎の非線形モデル化における保守性と不確かさ検討の考え方

※ダイヤフラムフロアの設計基準強度は原子炉建屋と同じ値であることから、実強度は原子炉 建屋と同じ値を用いる。

(5) 地盤剛性

地盤剛性については,地盤調査結果の平均値を元に設定した数値を基本ケースとし て採用している。地盤剛性の不確かさ検討にあたっては,初期せん断波速度に対して, 標準偏差に相当するばらつきを考慮することにより,影響評価を行うこととする。

地震応答解析モデル	せん断波速度			
基本ケース	・標準地盤(平均値)			
不確かさ	+地盤(表層(+13%),古安田層(+25%),西山層(+10%)) -地盤(表層(-13%),古安田層(-25%),西山層(-10%))			

第4-2(5)表 地盤剛性の不確かさ検討の考え方

4.3 検討ケース

前項で述べた不確かさのうち,統計的なもの(建物のコンクリート剛性±σのケースと 地盤剛性±σのケース)については重畳を考慮した上で影響を確認する。それ以外につい ては保守的に設定したものであることから,重畳は考慮せず個別に影響を確認する(詳細 は,添付資料-2参照)。

以上を踏まえ、検討ケースを下表に示す。

検討ケース	コンクリート剛性	回転ばね定数	RPV ペデスタル	地盤剛性	備考
◆ケース1 (基本ケース)	実強度 (440kg/cm ²)	100%	非線形 (折線近似)	標準地盤	
 ◆ケース2 (建屋剛性+σ,地盤剛 性+σ) 	実強度+σ (470kg/cm²)	100% (+ σ)	非線形 (折線近似)	標準地盤+σ	地盤剛性の変化 に伴い, 回転ばね 定数が変化
 ◆ケース3 (建屋剛性-σ,地盤剛 性-σ) 	実強度—σ (410kg/cm ²)	100% (— σ)	非線形 (折線近似)	標準地盤-σ	地盤剛性の変化 に伴い, 回転ばね 定数が変化
◆ケース4 (建屋剛性コア平均)	実強度(コア平均) (568kg/cm ²)	100%	非線形 (折線近似)	標準地盤	
◆ケース5 (建屋剛性-2σ)	実強度-2σ (380kg/cm ²)	100%	非線形 (折線近似)	標準地盤	
◆ケース6 (回転ばね低減)	実強度 (440kg/cm²)	50%	非線形 (折線近似)	標準地盤	
◆ケース7 (原子炉系コンクリート 実強度相当)	実強度 (440kg/cm ²)	100%	非線形・実強度 (折線近似)	標準地盤	原子炉本体基 礎:400kg/cm ² ダイヤフラムフ ロア:440kg/cm ²
◆ケース8 (原子炉本体基礎曲線包 絡スケルトンカーブ)	実強度 (440kg/cm ²)	100%	非線形 (曲線包絡)	標準地盤	

第4-3表 検討ケース

- 4.4 設計への反映方針
- (1) 建物・構築物

今回工認の設計においては、基本ケースの地震応答解析モデルを用いることとする。但 し、不確かさを考慮した各検討ケースの地震応答解析から得られる地震力(せん断力、曲 げモーメント、最大せん断ひずみ等)が基本ケースの地震力を上回る場合には、それらの 影響を考慮した場合でも許容値を満足することを確認する。

(2)機器・配管系

今回工認の設計においては,原則,基本ケースの地震応答解析モデルによる地震応答解 析結果と不確かさを考慮した各検討ケースの地震応答解析結果を全て包絡した条件を用い ることとする。但し,今回工認の耐震計算書作成においては,自主的に保守的な条件を設 定する場合がある。

a. 建屋床面の最大加速度を用いて設計する設備

各建屋のフロア毎に,基本ケースの最大加速度と各検討ケースの最大加速度を全て包 絡した加速度を用いて設計する。

b. 地震応答解析結果から得られる荷重(モーメント, せん断力等)を用いて設計する 設備

地震応答解析モデルの質点のうち設備の設計に用いる箇所について,基本ケースの荷 重と各検討ケースの荷重を全て包絡した荷重を用いて設計する。

c. 床応答スペクトルを用いて設計する設備

基本ケースの床応答スペクトルを周期方向に±10%拡幅したものと各検討ケースの床 応答スペクトル(拡幅無し)を全て包絡したスペクトルを用いて設計する。

(地震荷重の例)

設備名	設備 A	設備 B	設備 C
荷重(単位)	モーメント (kN・m)	モーメント (kN・m)	反力 (kN)
◆ケース1 (基本ケース)	100000	3000	500
◆ケース X (不確かさケース)	150000	2000	600
◆ケース Y (不確かさケース)	200000	2500	500
最大値 (設計に用いる値)	200000	3000	600

⁽床応答スペクトルの例)

第4-4図 機器・配管系の設計条件(イメージ)

4 条-別紙 1-25

5. まとめ

柏崎刈羽原子力発電所6号及び7号炉の今回工認の耐震設計に用いる建屋及び原子炉の 地震応答解析モデルを,既工認の地震応答解析モデルから詳細化するにあたって,詳細化 する目的及び妥当性について検討した。その結果,今回の詳細化は,既往の知見や得られ た試験データ等に基づき適切に設定されていること,今回工認モデルと3次元FEMモデル の応答性状は整合的であることから,今回工認モデルは妥当であると考える。

また,地震応答解析モデルにおける保守性と不確かさについて整理するとともに,不確 かさの変動幅や不確かさの検討ケースを設定し,地震応答解析結果における影響検討方針 を示した。今後,本方針に従い検討を実施する。

以上

添付資料-1 今回工認モデルの地震応答解析に対する 3次元 FEM モデルによる妥当性の検証 目 次

- 1. はじめに
- 2. 3 次元 FEM モデルの構築
- 3. 3 次元 FEM モデルによる評価
- 4. まとめ

1. はじめに

詳細化した原子炉建屋の地震応答解析モデル(以下「今回工認モデル」という。)の妥当 性検証として、今回工認モデルと、過去の地震観測記録でベンチマーキングした別の解析モ デル(以下「建屋3次元 FEM モデル」という。)の地震応答解析結果の比較を行う。

検証に当たっては,建屋3次元 FEM モデルについて,新潟県中越沖地震によるシミュレ ーション解析によりその妥当性を確認した上で,今回工認モデルと建屋3次元 FEM モデル のそれぞれに対して弾性設計用地震動Sdを入力とした地震応答解析を行い,両者の応答性 状を比較することにより今回工認モデルの妥当性を確認する。

今回工認モデルと建屋3次元FEMモデルの主要なモデル化条件について第1-1表に示す。

モデル化条件	今回工認モデル	建屋 3 次元 FEM モデル	
建屋剛性	コンクリートの実強度デー		
(コンクリート剛性の設定)	タに基づく剛性を使用	问上	
「副電亜書 (神民時) の	外壁等の主要な壁に加え,		
	考慮可能な壁**(補助壁)を	同左	
	追加		
床のモデル化	床剛	床柔	
山山のティージョ	側面地盤回転ばねを考慮す		
	る	问工	

第1-1表 地震応答解析モデルの主要なモデル化条件

※「原子力施設鉄筋コンクリート構造計算規準・同解説(2005),日本建築学会」に基づき設定。

なお,検証に当たっては,6号及び7号炉原子炉建屋の構造が類似していることを踏まえ, 6号炉を代表として実施するものとする。

今回工認モデルの妥当性検証のフローを第1-1図に示す。

第1-1図 今回工認モデルの妥当性検証フロー

2. 3次元 FEM モデルの構築

2.1 原子炉建屋の3次元 FEM モデル

原子炉建屋の3次元 FEM モデルを構築する。モデル化の範囲は、原子炉建屋、鉄筋コンク リート製原子炉格納容器(以下「RCCV」という。)及び基礎とする。建屋3次元 FEM モデル の解析モデルを第2.1-1図に示す。

3次元 FEM モデルで設定する各部材の要素タイプは、次のとおりである。

床スラブ・壁は面材で軸剛性, せん断剛性及び曲げ剛性を評価するためシェル要素(約 21000 要素)とする。

基礎スラブは、床スラブと同一の面材であるが、床スラブに比ベスラブ厚が大きいことか らソリッド要素(約5600要素)とする。

柱・梁は線材で軸剛性, せん断剛性及び曲げ剛性を評価するためビーム要素とし, 屋根ト ラスのメイントラス・サブトラス・サブビームについても柱・梁と同一の線材なのでビーム 要素(約 3600 要素), 斜材・束材・水平ブレースは線材で軸剛性のみ評価するのでトラス要 素(約 600 要素)でモデル化する。

また、壁・床の開口部については、主要な開口部のみモデル化する。

なお、シェル要素のサイズについて検討した事例として、吉田伸一、足立高雄ほか「3次 元 FEM 弾塑性解析における要素サイズの影響評価(その1)、(その2)」(日本建築学会大会 学術講演概要集 2011 年 8 月)がある。ここでは、シェル要素の要素分割を変えた 3 次元 FEM による固有値解析、静的漸増解析及び動的弾塑性解析を実施した結果から、弱非線形レ ベルでは 1 層 2 分割で耐震安全性確認は十分可能であり、強非線形レベルでも 1 層 4 分割 程度で十分であるとしている。この文献によれば、添付資料-1 で実施する原子炉建屋の 3 次元 FEM モデルによる地震応答解析は線形の解析であることから、シェル要素の要素分割 は 1 層 2 分割でも十分と考えられる。しかし、念のため文献より細かめにモデル化するこ ととし、壁に用いるシェル要素の要素分割は 1 層 4 分割以上としている。

使用材料の物性値を第 2.1-1 表に示す。コンクリートの実強度及びヤング係数について は、今回工認モデルと同一の設定である。

解析には解析コード「MSC Nastran Version 2013.1.1」を用いる。

4 条-別紙 1-添 1-4

部在	立他	使用材料	ヤング係数 E (N/mm ²)	せん断弾性 係数 G (N/mm ²)	ポアソン比	減衰定数 h (%)
建屋部	実強度	コンクリート Fc = 440kg/cm ²	2.88×10 ⁴	1.20×10^4	0.2	5
基礎部	実強度	コンクリート Fc = 400kg/cm ²	2.79×10 ⁴	1.16×10^{4}	0. 2	5
屋根ト 鉄†	ラス, 骨部	鋼材	2. 05×10^5	7.90 $\times 10^4$	0.3	2

第2.1-1表 使用材料の物性値

2.2 観測記録を用いた解析

(1) 観測記録を用いた解析の概要

観測記録を対象に,建屋3次元FEMモデルを用いたシミュレーション解析を実施する。 今回のシミュレーション解析においては,柏崎刈羽サイトにおいて最大の地震記録が観 測されている,2007年新潟県中越沖地震の地震記録を対象とする。なお,建屋3次元FEM モデルのさらなる妥当性検証の観点から,今回工認時にはほか観測記録(中越地震(本震) 等)も対象とし、シミュレーション解析を実施する予定である。

解析に用いる地震の諸元を第2.2-1 図に, 地震計位置を第2.2-2 図に示す。原子炉建屋 基礎上で得られた観測記録を第2.2-3 図及び第2.2-4 図に示す。

観測記録を用いた解析は、原子炉建屋基礎上(6-R2:T.M.S.L.-8.2m)で観測された記録を使用する。

地震計を設置している3階位置(6-R2:T.M.S.L. 23.5m)での観測記録と建屋3次元 FEM モデルの解析結果とを比較する。

地震名	新潟県中越沖地震
発生日時	2007 年 7 月 16 日 午前 10 時 13 分頃
マグニチュード	6.8
震源深さ	17km
震央距離	16km
震源距離	約 23km

第2.2-1 図 解析に用いる地震の諸元(2007 年新潟県中越沖地震)

第2.2-2図 地震計位置(6号炉原子炉建屋)

(記録の主要動を含む 50 秒間を表示)

第 2. 2-3 図 原子炉建屋の基礎上の観測記録 加速度時刻歴波形 (6-R2: T. M. S. L. -8. 2m)

第2.2-4図 原子炉建屋の基礎上の観測記録 加速度応答スペクトル (6-R2:T.M.S.L.-8.2m)

4 条-別紙 1-添 1-10

(2) 観測記録による解析結果

原子炉建屋3階の地震計位置(6-R1:T.M.S.L. 23.5m)での観測記録及び解析結果の加 速度応答スペクトルの比較を第2.2-5図に示す。なお、観測記録と比較するための解析結 果は、地震計位置近傍の節点を用いる。

(3) 観測記録と解析結果の比較・考察

加速度応答スペクトルにおいて示されるように,解析結果は建屋全体応答の主要モー ドを捉えているとともに,機器評価において主要な周期帯である 0.2 秒以下においても 観測記録と整合的な応答の傾向を示している。

以上より,建屋3次元 FEM モデルは観測記録を再現可能なモデルであると考えられる。

なお,建屋3次元 FEM モデルは直接建屋各部をモデル化することから詳細な評価が可 能であり,計算機能力の向上とともに極めて有力な解析手法となっており,他サイトにお いても,建屋3次元 FEM モデルによる類似のシミュレーション解析事例が報告^{3),4)}されて いる。

今回の検討に用いた建屋3次元 FEM モデルについて,他プラント評価への適用に加え, 将来的に設計等に直接適用していく場合も想定される。

しかし,実際の適用に際しては,現在の設計クライテリアを活用するために建屋3次元 FEMモデルから得られる複数の結果(応力やひずみ)を平均化して比較したり,複数の床 応答スペクトルを平均化して評価する方法が想定される。さらに長期的には,個別の要素 から得られる情報を平均化して評価するのではなく,それぞれの情報を直接的に評価す ることも考えられるが,そのためには設計体系全体の見直しも含めて十分な検討を踏ま えて高度化を図っていくべき項目も残されている。

このため, 建屋 3 次元 FEM モデルに関して, 今回の検討への適用性について確認され たものの, 今後一般化するに当たっては, 各種の検討を継続的に行っていく必要がある。

(a) NS 方向

第2.2-5 図 観測記録と解析結果の加速度応答スペクトルの比較 (6-R1:T.M.S.L. 23.5m)(1/2)

4 条-別紙 1-添 1-12

第2.2-5 図 観測記録と解析結果の加速度応答スペクトルの比較 (6-R1:T.M.S.L. 23.5m)(2/2)

3. 3 次元 FEM モデルによる評価

3.1 地震応答解析の概要

今回工認モデルの妥当性の検証として、今回工認モデルと建屋3次元 FEM モデルの各フ ロアの最大応答加速度及び加速度応答スペクトルの比較を行う。

原子炉建屋の地震応答解析は基準地震動 Ss にて実施されることが望ましいが,3 次元 FEM 解析の演算時間が長時間となるため、その負担が少なくなるよう、基準地震動 Ss を 1/2 倍 して算出される弾性設計用地震動 Sd で解析を行う。なお、弾性設計用地震動 Sd において も、今回工認モデルと建屋 3 次元 FEM モデルの違いによる応答への影響はとらえることが できると考えられる。

弾性設計用地震動 Sd の応答スペクトルを第3.1-1 図に示す。第3.1-1 図より,耐震評価 へおよぼす影響が大きい弾性設計用地震動 Sd として Sd-1 と Sd-2 が挙げられるが,今回検 討では,断層モデルにおいて3方向それぞれで入力が定義されている弾性設計用地震動 Sd-2 を検討用地震動として選定し,解析を実施した。

弾性設計用地震動 Sd-2 の加速度時刻歴波形を第3.1-2 図に,加速度応答スペクトルを第3.1-3 図に示す。

第3.1-1図 弾性設計用地震動 Sd の応答スペクトル(水平方向)(大湊側)(1/2)

4 条-別紙 1-添 1-15

第3.1.-1 図 弾性設計用地震動 Sd の応答スペクトル(鉛直方向)(大湊側)(2/2)

4 条-別紙 1-添 1-16

鉛直方向

第3.1-2 図 弾性設計用地震動 Sd-2 加速度時刻歷波形 (解放基盤表面)

第3.1-3 図 弾性設計用地震動 Sd-2 加速度応答スペクトル(解放基盤表面)

3.2 最大応答加速度の比較による妥当性の検証

(1) 検証方針

今回工認モデルと建屋 3 次元 FEM モデルの最大応答加速度の比較を行い,今回工認モ デルの妥当性を検証する。

評価に当たっては、今回工認モデルの質点位置(床レベル)での応答を評価対象とし、 今回工認モデルの各質点位置に対応する 3 次元 FEM モデルの評価点としては、原子炉建 屋外壁(以下「ボックス壁」という。)の隅部及び中間部を評価点とし、また RCCV 部につ いても NS・EW 方向での影響が検討できるよう直行方向よりそれぞれ評価点を抽出した。 なお、建屋の対称性を考慮し、各床の評価点は 5 点程度とした。

(2) 検証結果

第3.2-1 図及び第3.2-1 表に最大応答加速度の比較結果を示す。

第 3.2-1 図及び第 3.2-1 表より,今回工認モデルの応答性状は建屋 3 次元 FEM モデルの応答性状と整合的であることを確認した。

第3.2-1図 今回工認モデル及び建屋3次元 FEM における最大応答加速度の比較

		最大応答加速度(cm/s ²)			
部位	床レベル (T.M.S.L.)	NS 方向		EW 方向	
		今回工認 モデル	建屋 3 次元 FEM モデル	今回工認 モデル	建屋 3 次元 FEM モデル
	4 階 (31.7m)	341	355	536	533
原子炉建屋	3 階 (23.5m)	295	300	489	477
	2 階 (18.1m)	262	278	455	454
	1 階 (12.3m)	253	257	449	416
	地下1階 (4.8m)	245	240	410	381
	地下 2 階 (-1.7m)	225	224	358	341
	地下3階 (-8.2m)	212	216	294	315

第 3.2-1 表 最大応答加速度一覧

3.3 加速度応答スペクトルの比較による妥当性の検証

(1) 検証方針

今回工認モデルと建屋 3 次元 FEM モデルの加速度応答スペクトルの比較を行い,今回 工認モデルの妥当性を検証する。

今回工認モデル及び建屋 3 次元 FEM モデルの加速度応答スペクトルの比較について, 地震動の入力は今回工認モデルで1方向入力していることから,建屋 3 次元 FEM モデル においても1方向入力で比較する。

建屋 3 次元 FEM モデルの応答評価位置について,高さ方向については原子炉建屋の地下部及び地上部(下部,上部)を網羅できるよう,地下3階(T.M.S.L. -8.2m),1階(T.M.S.L. 12.3m)及び3階(T.M.S.L. 23.5m)を代表高さとし,重要機器が付近にあるボックス壁の隅部及び中間部を評価点とし,また RCCV 部についても NS・EW 方向での影響が検討できるよう直行方向よりそれぞれ評価点を抽出した。なお,建屋の対称性を考慮し,各床の評価点は5点程度とし,合計14点を評価点とし抽出した。

(2) 検証結果

第3.3-1図に加速度応答スペクトルの比較結果を示す。

今回工認モデル及び建屋 3 次元 FEM モデルの加速度応答スペクトルを比較した結果, NS 方向, EW 方向, UD 方向とも,両者の応答性状は整合的であることを確認した。この傾 向については,6号炉原子炉建屋が軟岩サイトに深く埋込まれていること及び地盤ばねの 設定が理由として考えられる。一般的に軟岩サイトで建屋の埋込みが深い場合には,地盤 相互作用の影響が建屋応答に対して支配的となり,建屋 3 次元 FEM モデルの地盤ばねは 今回工認モデルの地盤ばねを離散化してモデル化していることから両者の応答性状が整 合的な傾向を示したと考えられる。さらに,BWR 型原子炉建屋の構造的特徴として,外壁 と内壁(6号及び7号炉の場合には RCCV が該当)がバランスよく配置されているため質 点系モデルで建屋全体の地震時の応答性状が評価可能であることも両者の応答の差異が 小さい要因と考えられる。

ただし、NS 方向の一部の周期帯(周期 0.2 秒付近)で建屋 3 次元 FEM モデルの応答が 質点系モデルより大きくなる傾向を示した。これは別途実施した固有値解析結果にみら れるように、建屋 3 次元 FEM モデルの周期 0.2 秒付近において質点系モデルでモデル化 されない屋根中央部が水平方向に振動するモードがあることが影響していると考えられ る。周期 0.2 秒付近で影響の大きい設備については主に配管系の設備が考えられる。この 3 次元的応答特性が及ぼす影響については、今回工認時にその影響の評価を行う予定であ る。固有値解析結果を第 3.3-1 表に、固有モードを第 3.3-2 図に示す。

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(1/6)

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(2/6)

⁴ 条-別紙 1-添 1-24

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(3/6)

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(4/6)

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(5/6)

第3.3-1図 今回工認モデル及び建屋3次元 FEM モデルの応答スペクトルの比較(6/6)

第 3.3-1 表	固有値解析結果

	建屋3次元FEMモデル					今回工認モデル		
エード	田友垢動粉 田友用期		刺激係数			田右垢動粉	固有周期	
	回有抓動数	回伯问旁	^{国有周期} EW方向		UD方向	回有1版勤致 回有问题		刺激係数
	(Hz)	(sec)	(X)	(Y)	(Z)	(Hz)	(sec)	
NS1次	2.296	0.435	-3.86	385.27	-0.19	2.343	0.427	1.59
EW1次	2.387	0.419	-390.67	-3.89	-0.43	2.397	0.417	1.55
NS2次	5.023	0.199	-1.24	-165.64	-16.10	5.347	0.187	0.71
EW2次	5.316	0.188	-161.01	0.38	6. 92	5.390	0.186	0.62

第3.3-2図 固有モード図:NS方向2次

4. まとめ

今回工認モデルの妥当性検証の観点から,6号炉原子炉建屋を対象として,建屋3次元 FEMモデルによる地震応答解析を実施し,両者の応答の比較を行った。

今回工認モデルと,建屋3次元FEMモデルの最大応答加速度の比較を行い,両者の応答 性状が整合的であることを確認した。

今回工認モデルと,建屋3次元FEMモデルの加速度応答スペクトルの比較を行い,両者の応答性状が整合的であることを確認した。

以上のことから、今回工認モデルは妥当と考えられる。

5. 参考文献

- 1) 吉田伸一 ほか :「3 次元 FEM 弾塑性解析における要素サイズの影響評価(その1)検 討条件および静的漸増解析による検討」,日本建築学会学術講演概 要集,2011 年 8 月
- 2) 足立高雄 ほか :「3 次元 FEM 弾塑性解析における要素サイズの影響評価(その2)動的
 弾塑性解析による検討」,日本建築学会学術講演概要集,2011 年 8 月
- 3)Kumagai T et al : [[]Simulation Analysis using3-D Nonlinear FEM model for Onagawa Unit 2 Control Building at the time of the 2011 off the Pacific coast of Tohoku Earthquake], Transactions, SMiRT-23 Manchester, United Kingdom-August 10-14, 2015
- 4) Iwashima N et al : 「Study of simulation analysis of nuclear reactor building for Surugawan Earthquake」, Transactions, SMiRT-23 Manchester, United Kingdom-August 10-14, 2015

建屋の不確かさの影響検討として選定した6ケースについて、組み合わせパターンを下表に示す。

建屋コンクリート剛性については、別紙-1の検討を踏まえて設定した91日強度データの平均値(440kg/cm²)に基づく値を基本ケースとしており、 この数値に対して各種ばらつきの影響を検討するが、保守的にばらつきを大きく設定した条件として、実機のコア強度の平均値及び実強度-2σを 採用した場合の影響も確認する。

なお、回転ばね定数は地盤剛性の変化に伴って変化するため、ケース2、3は、回転ばね定数のばらつきも考慮したケースとなっている。

			建屋コンクリート剛性 回転ばね定数			地盤剛性						
	ケース名		実強度+σ (470kg/cm2) 【統計的】	実強度一σ (410kg/cm2) 【統計的】	コア平均 (568kg/cm2) 【保守的】	実強度-2 <i>σ</i> (380kg/cm2) 【保守的】	100% 【基本】	50% 【保守的】	標準 【基本】	標準 + σ 【統計的】	標準 一 σ 【統計的】	備考
ケース1	基本ケース	0					0		0			
			0				$O(+\sigma)$			0		
ケース2	建屋剛性+σ,地盤剛性+σ (建屋剛性と地盤剛性を統計的に硬く)。		0				0		0			
, ,,_	たケース)	0					$O(+\sigma)$			0		・建屋-地盤連成系の剛性が最も硬 山い側(全体系の固有周期が短い側) 及び最も柔らかい側(全体系の固有 周期が長い側)で代表(方の赤枠
			0				$O(-\sigma)$				0	
				0			$O(-\sigma)$				0	ケース)。 ・地般剛性の変化に伴い 回転ばわ
ケース3	建屋剛性- σ , 地盤剛性- σ (建屋剛性と地盤剛性を統計的に柔ら			0			0		0			定数も変化する。
,	かくしたケース)	0					$O(-\sigma)$				0	
				0			$O(+\sigma)$			0		
ケース4	建屋剛性 コア平均 (建屋剛性を保守的に硬くしたケース)				0		0		0			データ点数の少ない経年後の強度測 定データから設定したものであり、必 ずしも実態を表しているものではない ため、個別に影響を確認する。
ケース5	 建屋剛性 -2σ (建屋剛性を保守的に柔らかくしたケー ス)					0	0		0			極端に(保守的に)設定した項目であ ることから、個別に影響を確認する。
ケース6	回転ばね定数低減 (回転ばね定数を保守的に半減した ケース)	0						0	0			ケース2,3において、回転ばね定数 のばらつきの影響を考慮している。

4条-別紙1-添2-1

参考資料-1 既工認モデルによる評価

今回工認で既工認モデルを地震応答解析モデルとして採用し耐震評価を実施した場合に, 計算値等が規格基準で定められる許容値を満足することが可能かを見極めるため,基準地 震動 Ss に対して既工認モデルを用いた地震応答解析をおこない,算出される地震荷重を確 認した。確認にあたっては,改造が困難な原子炉本体の設備に着目して,地震応答結果か ら算出された各設備の地震荷重と,許容値を満足する地震荷重の目安値(規格基準上の各 設備の許容値から逆算して算出)との比較をおこなった。

設備名	荷重(単位)	地震荷重※1	許容値を満足する 地震荷重の目安値 ※1	判定
原子炉本体の基礎	モーメント (kN・m)	2000000	2000000 1200000	
原子炉圧力容器 (基礎ボルト)	モーメント (kN・m)	146000 461000		目安値以下
炉心支持構造物 (シュラウドサポート)	モーメント (kN・m)	38700	171500	目安値以下
気水分離器	モーメント (kN・m)	2660	4800	目安値以下
制御棒駆動機構貫通部 ※2	モーメント (kN・m)	5.6	9. 2	目安値以下
原子炉圧力容器 スタビライザ	反力 (kN)	2900	12000	目安値以下
ダイヤフラムフロア	反力 (kN)	66100	53000	<u>目安値を超える</u>
原子炉冷却材再循環ポ ンプ付け根部	モーメント (kN・m)	1720	2310	目安値以下

第1表 既工認モデルに基づく原子炉本体設備の地震荷重

※1 7号炉を例とした概算値(地震荷重は Ss-1 及び Ss-2 包絡値)

※2 1本あたりの地震荷重

参考資料-2 地震応答解析モデル詳細化の定量的な効果

1. はじめに

地震応答解析モデルの詳細化が地震応答へ与える効果を定量的に把握するため,地震応 答解析モデルのパラメータスタディを実施した。

検討に当たっては,既工認モデル,既工認モデルに詳細化項目の一部を加えた地震応答 解析モデル,既工認モデルに詳細化項目の全てを加えた地震応答解析モデルのそれぞれで 地震応答解析をおこない,地震荷重等の比較をおこなった。

なお,柏崎刈羽原子力発電所6号炉と7号炉は,同設計,同構造であり,地震応答性状 もおおむね同等と考えられることから,本検討は7号炉を代表としておこなった。

2. 検討に用いた地震動

本検討は詳細化の定量的な効果の確認を目的として,暫定モデルを用いておこなう試検 討であることから,柏崎刈羽原子力発電所の基準地震動 Ss のうち,施設の耐震性評価にお いて支配的な地震動である Ss-1 及び Ss-2 を用いておこなった。

3. 詳細化の効果を測る指標

今回の地震応答解析モデルの詳細化による効果が現れるのは主に水平方向であることか ら、水平方向の地震荷重等(加速度,せん断力,モーメント等)の変化に着目した。具体 的には、地震応答解析モデルでモデル化される部位のうち、主要な部位(第1図)におけ る地震荷重等の比較をおこない、詳細化の効果を確認した。

第1図 詳細化の効果を測る指標

4. 検討ケース

地震応答解析モデルの個々の詳細化項目が地震応答へ与える効果を定量的に把握するため、「既工認モデル」、「既工認モデルに対して詳細化項目を1項目のみ加えた地震応答解析 モデル(第1表のケース1~4)」、「詳細化モデル」のそれぞれで地震応答解析を実施し、 地震荷重等(加速度,せん断力,モーメント等)の比較をおこなった。なお、比較に際し ては、既工認モデルにおける地震荷重等からの増減に着目して整理した。

		(Jr		いりの友又面川を小り
ケース名	①コンクリート剛性	②補助壁	③回転ばね	④原子炉本体基礎
既工認モデル	設計基準強度	無	無	線形
ケース1 (コンクリート実強度)	実強度※	無	無	線形
ケース 2 (補助壁考慮)	設計基準強度	有	無	線形
ケース3 (回転ばね考慮)	設計基準強度	無	有	線形
ケース4 (原子炉本体基礎)	設計基準強度	無	無	非線形
詳細化モデル	実強度*	有	有	非線形

第1表 検討ケース

(網掛けは,既工認モデルからの変更箇所を示す)

※本検討では暫定的に耐震バックチェック時に採用した値である 500kg/cm²を用いている(今回工認で採用 する地震応答解析モデル(基本ケース)では 440kg/cm²を用いる)。

- 5. 検討結果
- 5. 1原子炉建屋

地震応答解析モデルの詳細化が建物の応答等に与える影響を把握するため,建屋壁のせん断ひずみ,せん断力の比較をおこなった。また,建屋の接地率と建屋床面の加速度(床 応答スペクトル)の比較をおこなった。

(1) せん断ひずみ, せん断力

各ケースにおける建屋のせん断ひずみの比較を第2図に、せん断力の比較を第3図に 示す。

せん断ひずみは,各ケースとも耐震壁の評価基準値である 2.0×10⁻³に対して十分に余裕 のある結果となっており,耐震安全性評価への影響がないことを確認した。せん断力に ついては,各ケースとも大きな変動がないことを確認した。

第2図 建屋せん断ひずみの比較

建屋のせん断力の比較(Ss-1,NS方向)

第3図 建屋せん断力の比較

(2) 建屋接地率

各ケースにおける建屋接地率を第2表に示す。既工認モデルではSRモデルの適用範囲 である接地率50%を下回るが,既工認モデルに回転ばねを考慮することにより接地率が改 善されることを確認した。

御井戸ケー・フ	接地率 (%)				
西中がリクース	NS 方向	EW 方向			
既工認モデル	51.5 (Ss-1)	49.9 (Ss-2)			
ケース 1 (コンクリート実強度)	50.3 (Ss-1)	47.3 (Ss-2)			
ケース 2 (補助壁考慮)	51.0 (Ss-1)	47.4 (Ss-2)			
ケース3 (回転ばね考慮)	70.1 (Ss-1)	67.0 (Ss-2)			
詳細化モデル	68.5 (Ss-1)	65.0 (Ss-2)			

第2表 建屋接地率の比較

※接地率の下の括弧内は接地率が最小となる地震動

(3) 床応答スペクトル

第4図に床応答スペクトルを示す。各ケースの解析結果は、多少のばらつきは見られるものの、建屋の応答性状を大きく変更させるようなものでないことを確認した。

基礎版上と燃料取替床 における応答スペクトル比較(Ss-1、NS 方向、減衰 5.0%)

第4図 原子炉建屋の床応答スペクトルの比較

5.2 機器·配管系

地震応答解析モデルの詳細化が機器・配管系に与える影響を把握するため、代表部位の地震荷重(せん断力,モーメント,ばね反力),床応答スペクトルの比較をおこなった。 また,配管の評価に用いる構築物間の相対変位の比較をおこなった。

(1) 地震荷重

原子炉圧力容器支持スカートの地震荷重の比較を第5図に示す。原子炉圧力容器支持 スカートの地震荷重は、地震応答解析モデルを詳細化することにより、若干の減少傾向 が見られた。

原子炉本体基礎基部の地震荷重の比較を第6回に示す。原子炉本体基礎基部の地震荷 重は、回転ばねのみを考慮することにより若干の増加が見られるが、地震応答解析モデ ルを詳細化することにより大幅に低減することが確認された。

ダイヤフラムフロアのばね反力の比較を第7図に示す。ダイヤフラムフロアのばね反 力は、回転ばねのみを考慮することにより若干の増加が見られるが、地震応答解析モデ ルを詳細化することにより大幅に低減することが確認された。

原子炉冷却材再循環ポンプ付け根部の地震荷重の比較を第8図に示す。原子炉冷却材 再循環ポンプ付け根部の地震荷重は、地震応答解析モデルを詳細化することにより若干 増加することが確認された。

第6図 原子炉本体基礎基部における地震荷重の比較 (上:せん断力,下:モーメント) (Ss-1及びSs-2包絡値)

第8図 原子炉冷却材再循環ポンプ付け根部における地 震荷重の比較(上:せん断力,下:モーメント) (Ss-1及びSs-2包絡値)

(2) 床応答スペクトル

原子炉遮蔽壁における床応答スペクトルの比較を第9図に示す。ケース4以外では, 固有周期が約0.2秒以下の領域で既工認モデルより震度が若干減少し,固有周期が約0.2 秒以上の領域で既工認モデルより震度が若干増加することが確認された。なお,ケース4 (原子炉本体基礎)ではほとんど変化がないことが確認された。

第9図(1/2) 原子炉遮蔽壁における床応答スペクトル比較 (T. M. S. L. 18. 440m, Ss-1, NS 方向, 減衰 2. 0%)

第9図(2/2) 原子炉遮蔽壁における床応答スペクトル比較 (T. M. S. L. 18. 440m, Ss-1, NS 方向, 減衰 2. 0%)

(3) 相対変位

原子炉格納容器内の主蒸気系配管の評価に用いる構築物間の相対変位の比較を第3表 に示す。回転ばねのみを考慮することにより若干の増加が見られるが、地震応答解析モ デルを詳細化することにより低減することが確認された。

(水平方向,Ss-1)	及び Ss−2 包絡値)		
	相対変位		
<u> 所料 位下 グ ― ス</u>	(mm)		
既工認モデル	2.6		
ケース1 (コンクリート実強度)	1.5		
ケース 2 (補助壁考慮)	1.8		
ケース3 (回転ばね考慮)	2.7		
ケース4 (原子炉本体基礎)	2.4		
詳細化モデル	1.3		

第3表 主蒸気系配管評価用構築物間相対変位の比較

※原子炉圧力容器-原子炉遮蔽壁間及び原子炉遮蔽壁-原子炉格納容器間のうち, 最大値を記載

6. 詳細化の効果(まとめ)

本検討より得られた結果を整理したものを第4表に示す。

恋 雨 占	応答への効果	応答への効果
及又示	(建物系)	(機器系)
①コンクリート剛性 に実強度を使用	採用により, Ss による建屋のせん断ひ ずみを小さくする効果があるが, 原子 炉建屋は評価基準値に対して十分余	・原子炉系(特に,原子炉本体基礎, ダイヤフラムフロア)の地震荷重を低 減する効果がある
②耐震要素に補助壁 をモデル化	裕のある設計となっており,既工認モ デルで評価した場合も,評価基準値を 満足する。	・配管系の設計条件(床応答スペクト ル,相対変位)を低減する効果もある。
③側面地盤ばねに回転ばねを追加	回転ばねを採用することにより,接地 率を大きく改善する効果がある。採用 しない場合,接地率が小さくなり,浮 き上がりの影響を考慮した検討が必 要となる可能性がある。	・原子炉系の地震荷重は、おおむね既 工認モデルと同等か若干増加する傾 向。 ・配管系の設計条件(床応答スペクト ル,相対変位)を低減する効果もある。
④RPVペデスタルに非 線形特性を考慮	_	・原子炉系(特に,原子炉本体基礎, ダイヤフラムフロア)の地震荷重を低 減する効果がある。 ・配管系の設計条件(床応答スペクト ル,相対変位)に与える影響は軽微。

第4表 地震応答解析モデル詳細化の効果(まとめ)

参考資料-3 地震応答解析モデルの不確かさの影響(試検討)

1. はじめに

本文4項に示した地震応答解析モデルの保守性と不確かさへの対応方針に基づき,7号炉の原子炉建屋を例に試検討をおこなった。

2. 検討に用いた地震動

本検討は試検討であり耐震成立性の見通しの確認をおこなうことを目的として,柏崎刈 羽原子力発電所の基準地震動 Ss のうち,施設の耐震性評価において支配的な地震動である Ss-1 及び Ss-2 を用いておこなう。

検討ケース	コンクリート剛性	回転ばね定数	RPV ペデスタル	地盤剛性	備考
◆ケース1 (基本ケース)	実強度 (440kg/cm²)	100%	非線形 (折線近似)	標準地盤	
 ケース2 (建屋剛性+σ, 地盤剛 性+σ) 	実強度+σ (470kg/cm²)	100% (+ σ)	非線形 (折線近似)	標準地盤+σ	地盤剛性の変化 に伴い,回転ばね 定数が変化
 ◆ケース3 (建屋剛性-σ, 地盤剛 性-σ) 	実強度-σ (410kg/cm ²)	100% (— σ)	非線形 (折線近似)	標準地盤一 o	地盤剛性の変化 に伴い, 回転ばね 定数が変化
◆ケース4 (建屋剛性コア平均)	実強度(コア平均) (568kg/cm²)	100%	非線形 (折線近似)	標準地盤	
 ◆ケース5 (建屋剛性−2σ) 	実強度-2σ (380kg/cm²)	100%	非線形 (折線近似)	標準地盤	
◆ケース6 (回転ばね低減)	実強度 (440kg/cm²)	50%	非線形 (折線近似)	標準地盤	
◆ケース7 (原子炉系コンクリート 実強度相当)	実強度 (440kg/cm ²)	100%	非線形・実強度 (折線近似)	標準地盤	原子炉本体基 礎:400kg/cm ² ダイヤフラムフ ロア:440kg/cm ²
 ◆ケース8 (原子炉本体基礎曲線包 絡スケルトンカーブ) 	実強度 (440kg/cm ²)	100%	非線形 (曲線包絡)	標準地盤	

第1表 検討ケース

3. 検討結果

3.1 建物·構築物

次頁以降に,ケース1~6に対する検討結果を示す(ケース7およびケース8は機器・ 配管系のみの検討ケースであるため,ここでは図示していない)。

第1図に最大せん断ひずみを示す。各ケースとも耐震壁の評価基準値(2.0×10⁻³)に対して十分な余裕があり、耐震安全性へ与える影響が無いことを確認した。

第2図に各階の最大せん断力,第3図及び第4図に燃料取替床(4階)と基礎版上の加速度応答スペクトル(減衰定数5%及び1%)を示す。これより,材料物性の不確かさが最大せん断力及び加速度応答スペクトルに与える影響は軽微であることを確認した。

第2表に建屋の接地率を示す。回転ばねを低減させたケース6については接地率が小さくなるものの、それ以外のケースについては建屋の接地率に有意な変動が無いことを確認した。また、全てのケースにおいて埋め込み SR モデルの適用範囲内(接地率 50%以上)にあることを確認した。

第1図(1/2) 建屋せん断ひずみの比較

(d) Ss-2、EW 方向

第2図(1/2) 建屋せん断力の比較

4条-別紙1-参3-5

第2図(2/2) 建屋せん断力の比較

 ケース1(基本ケース)
 ケース2(建屋剛性+ σ , 地盤剛性+ σ)
 ケース3(建屋剛性 $-\sigma$, 地盤剛性 $-\sigma$)
 ケース4(建屋剛性コア平均)
 ケース5(建屋剛性-2σ)
 ケース6(側面回転ばわ50%)

(a) Ss-1、NS 方向

第3図(1/4) 建屋床応答スペクトルの比較(h=5%)

第3図(2/4) 建屋床応答スペクトルの比較(h=5%)

第3図(3/4) 建屋床応答スペクトルの比較(h=5%)

(d) Ss-2、EW 方向

第3図(4/4) 建屋床応答スペクトルの比較(h=5%)

ケース1(基本ケース)
 ケース2(建屋剛性+σ,地盤剛性+σ)
 ケース3(建屋剛性-σ,地盤剛性-σ)
 ケース4(建屋剛性コア平均)
 ケース5(建屋剛性-2σ)
 ケース6(側面回転ばね50%)

燃料取替床

第4図(1/4) 建屋床応答スペクトルの比較(h=1%)

第4図(2/4) 建屋床応答スペクトルの比較(h=1%)

 ケース1(基本ケース)
 ケース2(建屋剛性+ σ , 地盤剛性+ σ)
 ケース3(建屋剛性 $-\sigma$, 地盤剛性 $-\sigma$)
 ケース4(建屋剛性コア平均)
 ケース5(建屋剛性-2σ)
 ケース6(側面回転ばね50%)

第4図(4/4) 建屋床応答スペクトルの比較(h=1%)

		接地	率(%)	
解析ケース	NS 🖯	NS 方向		方向
	Ss-1	Ss-2	Ss-1	Ss-2
ケース1	68.9	81.8	69.2	67.7
ケース2	70.5	88.5	69.2	71.0
ケース3	68.7	80.4	69.4	66.7
ケース4	68.1	82.6	69.3	67.8
ケース5	69.3	81.7	69.5	67.7
ケース6	61.0	72.5	61.4	56.6

第2表 建屋接地率の比較

3.2 機器·配管系

耐震成立性の見通し確認評価に用いる「原子炉本体基礎の地震応答解析モデル」および 「炉心,原子炉圧力容器および圧力容器内部構造物の地震応答解析モデル」の地震荷重等 について以下に示す。なお、ここでは基本ケースに加えて、建物・構築物の検討において 主要な応答を示したケース2およびケース5と、機器・配管系のみの検討ケースであるケ ース7およびケース8を代表として実施した。

なお,不確かさの設計への反映は全てのケースを対象とし,上記の地震応答解析モデル を用いない原子炉建屋等に設置される機器・配管系に対してもおこなう予定である。

(1) 地震荷重

各ケースの地震応答解析から得られる代表設備の地震荷重(モーメント,ばね反力)の 比較を第3表に示す。

設備名	原子炉本体の 基礎	原子炉圧力容器 (基礎ボルト)	ダイヤフラム フロア	原子炉冷却材再循 環ポンプ付け根部
荷重(単位)	モーメント (kN・m)	モーメント (kN・m)	ばね反力 (kN)	モーメント (kN・m)
【参考】許容値を満足 する地震荷重の目安 値※1	1200000	461000	53000	2310
◆ケース1 (基本ケース)	843000	100000	32000	2110
 ケース2 (建屋剛性+σ,地盤剛 性+σ) 	808000	108000	35200	2160
 ◆ケース5 (建屋剛性-2σ) 	937000	101000	29000	2110
◆ケース7 (原子炉系コンクリー ト実強度相当)	902000	99100	29600	2080
◆ケース8 (原子炉本体基礎曲線 包絡スケルトンカーブ)	903000	99000	27200	2120

第3表 代表部位における地震荷重等の比較

※1 7 号炉を例とした概算値(地震荷重は Ss-1 及び Ss-2 包絡値)

(2) 床応答スペクトル

代表箇所(原子炉遮蔽壁)における基本ケースの床応答スペクトルを周期方向に±10% 拡幅したものと各ケースの床応答スペクトルの比較を第5回に示す。

第5図(1/4) 原子炉遮蔽壁における床応答スペクトル比較(ケース2) (T. M. S. L. 18.44m, Ss-1及びSs-2包絡,水平方向(NS/EW包絡),減衰2.0%)

第5図(2/4) 原子炉遮蔽壁における床応答スペクトル比較(ケース5) (T.M.S.L.18.44m, Ss-1及びSs-2包絡,水平方向(NS/EW包絡),減衰2.0%)

第5図(3/4) 原子炉遮蔽壁における床応答スペクトル比較(ケース7) (T. M. S. L. 18.44m, Ss-1及びSs-2包絡,水平方向(NS/EW包絡),減衰2.0%)

第5図(4/4) 原子炉遮蔽壁における床応答スペクトル比較(ケース8) (T. M. S. L. 18.44m, Ss-1及びSs-2包絡,水平方向(NS/EW包絡),減衰2.0%)

4. 機器・配管系への影響検討

(1) 検討方法

各ケースの地震応答解析結果を用いて、代表設備(第6図)の評価を実施し、評価結果 へ与える影響を確認した。

第6図 評価対象設備(代表設備)

(2)評価結果

代表設備の評価結果を第4表に示す。なお、ケース7およびケース8については、地震 荷重等と床応答スペクトルがケース2およびケース5に包絡されることから、評価結果は ケース1、2、5について示す。

設備名	評価部位 (応力分類)	検討ケース	発生値**1	許容值※2	単位
原子炉本体 の基礎	アンカボルト (引ち力)	ケース1	3607		kN/4.5°
		ケース2	3303	5907	
	()))///////////////////////////////////	ケース5	3954		
		ケース1	233		
原子炉 下力容器	基礎ホルト (引張)	ケース2	237	499	MPa
		ケース5	233		
炉心支持		ケース1	58		
構	レク (一次一般膜)	ケース2	56	334	MPa
ドサポート)		ケース5	57		
	スタンド パイプ (一次一般膜 +一次曲げ)	ケース1	76		
気水分離器		ケース2	78	205	MPa
		ケース5	80		
制御棒駆動	スタブ	ケース1	90		
機構ハウジ ング貫通孔	チューブ (軸圧縮)	ケース2	91	124	MPa
		ケース5	96		
原子炉圧力	原子炉圧力 容器スタビ ロッド ライザ (引張)	ケース1	241		
容器スタビ ライザ		ケース2	244	513	MPa
		ケース5	240		
	シアプレート (曲げ応力度)	ケース1	297		
ダイヤフラムフロア		ケース2	326	492	MPa
		ケース5	269		
原子炉冷却		ケース1	184		
材冉循境ボ ンプモータ	ケーシング (軸圧縮)	ケース2	184	207	MPa
ケーシング	(114)/1147	ケース5	184		

第4表 代表設備の評価結果

※1:7号炉を例とした概算値。

※2:許容応力状態IVASにおける許容値。

参考資料-4 各詳細化項目のシミュレーション解析への影響度の検討

1. はじめに

今回工認で採用を予定している建屋の地震応答解析モデルは、平成19年新潟県中越沖地震時 の観測記録に基づく建屋シミュレーション解析から得られた知見を踏まえて、より実現象に近 い応答を再現するという観点から、既工認で構築していた建屋解析モデルに対して、①コンク リート実剛性、②補助壁の考慮、③側面地盤ばねにおける回転成分の考慮を反映する予定であ る。本資料は、シミュレーション解析の結果と観測記録との整合性及び各変更項目がシミュレ ーション解析結果に与える影響を示すものである。なお、6号炉原子炉建屋と7号炉原子炉建 屋はほぼ同様の構造となっていることから、7号炉原子炉建屋を代表として検討を実施する。

2. 新潟県中越沖地震時に取得された観測記録を用いたシミュレーション解析

(1) 観測記録を用いた検討の概要

シミュレーション解析に用いる地震の諸元を第2-1図に,地震計位置を第2-2図に示す。 原子炉建屋基礎版上で得られた観測記録を第2-3図に示す。

また、本検討におけるシミュレーション解析は、地震時に観測した基礎版上における水平方 向及び鉛直方向の地震観測記録を用いた弾性応答解析による。建屋各部位の応答は、原子炉建 屋の基礎版上での観測記録波を解析モデルの基礎版上に入力し、基礎版上からの建屋各部の伝 達関数を用いて算定する。シミュレーション解析における地震応答解析のフローを第 2-4 図に 示す。

地震名	新潟県中越沖地震
発生日時	2007 年 7 月 16 日 午前 10 時 13 分頃
マグニチュード	6.8
震源深さ	17km
震央距離	16km
震源距離	約 23km

W

[※]T.M.S.L.とは、東京湾平均海面のことを指す。

3 階(T.M.S.L.+23.5m)

地下3階(基礎版上)

(T. M. S. L. -8. 2m)

第2-2図 7号炉原子炉建屋 地震計設置位置

第 2-3 図 原子炉建屋基礎版上の地震観測記録 加速度時刻歴波形 (7-R2:T.M.S.L.-8.2m)

第2-4図 解析フロー図

(2) 検討ケース

第 2-1 表に示す全5ケースについて解析を実施した。鉛直方向の解析モデルでは、側面地盤の効果は考慮していないことから、Case1 及び Case2 でのみ検討を実施している。

	建屋モデル		地盤モデル	
ケース名	コンクリート のヤング係数	剛性を考慮 する部位	側面ばね	
既工認手法に	設計基準強度	耐震壁	水平	
基づく解析モデル	に基づく			
Case1	実剛性*	耐震壁	水平	
	設計基準強度	耐震壁+	1. T	
Case2	に基づく	補助壁	水平	
	設計基準強度	工命时	水平・回転	
Case3	に基づく	顺晨壁		
シミュレーション解析モ		北哥胺		
デル(今回工認採用予定の	実剛性*		水平・回転	
項目を反映したモデル)		備り壁		

第2-1表 パラメータスタディケース

※本シミュレーション解析においては、建設時の取得データを元に文献調査等を踏まえて経年による強度増進効果を加味して設定した推定実強度(Fc=500kg/cm²,詳細は別紙-1参照)に基づく剛性を使用している。 なお、工認計算では、別紙-1で検討したとおり、妥当性・信頼性の観点から、建設時の91日強度の平均値 に相当する値(Fc=440kg/cm2)をコンクリート実強度として剛性を算定する予定である。

3. シミュレーション解析結果

Case 1~3 の各ケースの地震応答解析結果と既工認手法の地震応答解析結果,観測記録とを比較した結果(床応答スペクトル,最大応答加速度)を第3-1図~第3-6図に示す。また,シミュレーション解析モデル(今回工認で採用予定の項目を反映したモデル)による解析結果を第3-7図及び第3-8図に示す。第3-1表に各解析ケースを考察した結果を示す。

4. まとめ

各モデルの変更点が中越沖地震時のシミュレーション解析結果に与える影響を把握するために, パラメータスタディを実施し,各変更点がシミュレーション解析結果に与える影響を確認した。

解析ケース		考察		
		・加速度応答スペクトルについては、NS, EW, 鉛直方向共に, 既工認手法と比		
	実剛性考慮	較して、観測記録との整合性が向上している。		
		・最大応答加速度については、NE・EW 方向については、既工認手法よりも整		
(NS/EW/距但)		合性が向上するかほぼ同等の結果となっており、鉛直方向については、記録		
		と整合性が大きく向上している。		
		・加速度応答スペクトルについては, NS, EW では既工認手法と比較して観測		
	補助壁考慮	記録との整合性が向上している。鉛直方向については,周期 0.1 秒より長周		
Case2		期側での整合性は向上している。		
(NS/EW/鉛直)		・最大応答加速度については、NE・EW 方向については、既工認手法よりも整		
		合性が向上している。鉛直方向については、観測記録取得位置では、設計モ		
		デルよりも少し応答が大きめとなっている。		
	回転バネ考慮	・加速度応答スペクトルについては, NS, EW 共に既工認手法と比較して観測		
Case3 (NS/EW)		記録との整合性が向上している。他のケースと比べても向上度合いは大きい。		
		・最大加速度についても、NS・EW 方向共に既工認手法と比較して整合性が向		
		上している。		
		・加速度応答スペクトルについては、NS, EW 方向共に Case 1~3 と比較して、		
シミュレーショ		観測記録とより整合する結果となっている。鉛直方向についても、建屋モデ		
ン解析モデル	全項目反映	ルを1項目のみを変更した Case1,2 と比較して整合性は向上している。		
(NS/EW/鉛直)		・最大加速度についても1項目のみを変更した Case1~3 と比較して,整合性		
		は向上する結果となっている。		

第 3-1 表 考察結果

第 3-1(a)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)【Case1】

4条-別紙1-参4-7

第 3-1(b)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)【Case1】

第 3-2(a)図 7 号炉原子炉建屋最大応答加速度の比較【Case1】

第 3-2(b)図 7 号炉原子炉建屋最大応答加速度の比較【Case1】

(1) NS 方向

第 3-3(a)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)【Case2】

第 3-3(b)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)【Case2】

第 3-4(a)図 7 号炉原子炉建屋最大応答加速度の比較【Case2】

第 3-4(b)図 7 号炉原子炉建屋最大応答加速度の比較【Case2】

第3-5図 7号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)【Case3】

(2) EW 方向

第 3-6 図 7 号炉原子炉建屋最大応答加速度の比較【Case3】

(1) NS 方向

第 3-7(a)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)

第 3-7(b)図 7 号炉原子炉建屋加速度応答スペクトルの比較(T.M.S.L.+23.5m)

(2) EW 方向

第 3-8(a)図 7 号炉原子炉建屋最大応答加速度の比較

(3) 鉛直方向

第 3-8(b)図 7 号炉原子炉建屋最大応答加速度の比較

参考資料-5 新潟県中越沖地震本震以外の地震観測記録を用いたシミュレーション解析モ デルの妥当性確認

1. はじめに

参考資料-4でも示したとおり,新潟県中越沖地震本震(以下「本震」という。)のシミュ レーション解析では,地震応答解析のモデル化を既工認手法に基づく解析モデルから詳細化 することにより,解析結果と観測記録との整合性が向上する。ここでは,構築したシミュレ ーション解析モデルが,本震以外の地震観測記録によるシミュレーション解析でも本震同様 に再現性のある結果が得られるかを確認する。なお,検討は,6号及び7号炉原子炉建屋の 構造が類似していることを踏まえ,7号炉原子炉建屋を代表として実施する。

2. 検討に用いる観測記録及び地震応答解析モデル

検討に用いる地震動としては,2007 年 7 月 16 日 15 時 37 分頃に発生した新潟県中越沖地 震の最大余震(以下「最大余震」という。)とする。諸元を第 1 表に示す。地震計の設置位置 を第 1 図に示す。7 号炉原子炉建屋基礎版上(7-R2: T.M.S.L.-8.2m)で得られた観測記録を 第 2 図に示す。

最大余震によるシミュレーション解析は基礎版上で取得された観測記録を入力として,動 的解析を実施し,地震計が設置された中間階(7-R1:T.M.S.L.+23.5m)の応答が再現できる かを確認する。なお、シミュレーション解析手法は参考資料-4と同様の手法とし、解析モデ ルとしては、第2表に示すとおり既工認手法に基づく解析モデルとシミュレーション解析モ デル(参考資料-4で示した本震のシミュレーション解析と同一のモデル)を用いるものとす る。

発生日時	2007年7月16日 午後3時37分頃	
マグニチュード	5.8	
震源深さ(km)	23	

第1表 新潟県中越沖地震の最大余震の諸元

第1図 7号炉原子炉建屋 地震計設置位置

(主要動を含む 50 秒間を記載)

第2図 地震観測記録 (7-R2)

	建屋	地盤諸元	
ケース	コンクリート のヤング係数	剛性を考慮 する部位	側面ばね
既工認手法	設計基準強度 に基づく	耐震壁	水平
シミュレーショ ン解析モデル	実剛性*	耐震壁+ 補助壁	水平・回転

第2表 パラメータスタディケース

※本シミュレーション解析においては、建設時の取得データを元に文献調査等を踏まえて経年による強度増進効果を加味 して設定した推定実強度(Fc=500kg/cm²,詳細は別紙-1参照)に基づく剛性を使用している。なお、工認計算では、別紙 -1で検討したとおり、妥当性・信頼性の観点から、建設時の91日強度の平均値に相当する値(Fc=440kg/cm²)をコンクリ ート実強度として剛性を算定する予定である。
3. 解析結果

解析結果を第3図及び第4図に示す。加速度応答スペクトルについては、シミュレーション解析モデルの方が設計時モデルよりも観測記録との整合性が向上していることが確認できる。また、最大応答加速度分布についても同様にシミュレーション解析モデルの方が既工認 手法よりも観測記録との整合性が向上していることが確認できる。これらは、参考資料-4 で示した本震のシミュレーション解析結果でもおおむね同様の傾向である。

4. まとめ

本検討では,既工認手法による解析モデルと本震のシミュレーション解析モデルを用いて, 最大余震によるシミュレーション解析を実施した。

その結果,シミュレーション解析モデルの方が既工認手法による解析モデルよりも観測記 録との整合性が向上することを確認した。

以上より、本震の観測記録によるシミュレーション解析でチューニングした項目を反映す ることにより、本震以外の地震でも記録の再現性が向上することが確認でき、実現象に近い 応答を再現するための解析モデルとして妥当であると考えられる。

第3(a)図 加速度応答スペクトルの比較(T.M.S.L.+23.5m)

4 条-別紙 1-参 5-5

第3(b)図 加速度応答スペクトルの比較(T.M.S.L.+23.5m)

第4(a)図 最大応答加速度の比較

第4(b)図 最大応答加速度の比較

参考資料-6 表層地盤ばねの取扱いについて

1. はじめに

既工認時には地盤表層部(新期砂層)についても地盤ばねとして考慮していたが、今回工認で採用 予定の解析モデルでは、基準地震動による地盤応答レベルを踏まえ、表層部では地盤-建屋相互作用 が見込めないと判断し、この部分の地盤ばねを考慮しないこととしている。本資料はその妥当性を説 明するものである。

2. 検討概要

柏崎刈羽原子力発電所6号及び7号炉では、検討に用いる地震動を用いた一次元波動論による等価 線形解析によって、地盤内各層の加速度、有効歪みを求めている。

本検討では、6号及び7号炉原子炉建屋の地盤モデルを対象として、基準地震動Ss-1による等価線 形解析を実施し、表層部(新期砂層)の応答(剛性低下率、有効歪み)を確認することにより、この 部分の地盤-建屋相互作用が有効かどうかを確認する。

3. 地盤の等価線形解析結果

基準地震動 Ss-1 に対する地盤の等価線形解析結果を第 1-1 図に示す。

表層部(新期砂層, T. M. S. L. 4. 0m~12. 0m)において,急激に剛性が低下しており,有効歪みについても大きくなっている(剛性低下率(G/G)は最小で0.1程度,有効歪みは最大で1%程度)。

したがって、当該層における建屋-地盤連成効果は見込めず、建屋応答評価上、この部分の地盤ば ねは評価しないことが適切であると考えられる。

4. まとめ

以上より,原子炉建屋の耐震設計に用いる地震応答解析モデルにおいて,表層部の地盤ばねを無 視することは妥当であると考えられる。

第1-1図 地盤の等価線形解析結果 (Ss-1)

別紙1-1

建屋の地震応答解析における

コンクリート実剛性の採用について

- 1. 概要
- 2. 今回工認における施設の耐震設計上のコンクリート実強度の扱いについて
- 3. 建屋の地震応答解析におけるコンクリート物性値について
 - 3.1 既工認と今回工認におけるコンクリート物性値の差異について
 - 3.2 既工認との差異についての考察
- 4. コンクリート実剛性を採用するに当たっての論点について
- 5. 実強度の値の妥当性・信頼性について
 - 5.1 実強度の値の設定方針
 - 5.2 原子炉建屋における建設時コンクリートの 91 日強度データの整理
 - 5.3 経年後のコンクリート強度に関する知見
 - 5.4 原子炉建屋から直接採取したコア強度との比較
 - 5.5 実強度の値の設定
- 6. 原子炉建屋以外の建屋への適用性について
- 7. 実強度のばらつきに関する考え方
- 8. まとめ

1. 概要

柏崎刈羽原子力発電所6号及び7号炉の補正工認(以下「今回工認」という。)における 建屋(原子炉建屋,タービン建屋,コントロール建屋,廃棄物処理建屋)の地震応答解析 においては,建屋コンクリートの実強度を用いて算定したコンクリート実剛性を採用する 予定である。本資料は,原子炉建屋を含む鉄筋コンクリート構造物の地震応答解析におい てコンクリートの実剛性を用いることが,先行電力を含めた既工認での採用事例がないこ とを踏まえ,その妥当性・信頼性について説明するものである。

本資料では、まず、今回工認での耐震設計におけるコンクリート実強度の取り扱いについて明確にする。その上で、コンクリート実剛性の採用に関して、建屋の地震応答解析におけるコンクリート物性値について、既工認と今回工認における差異を考察し、新手法としての妥当性を確認するべき項目として、コンクリート剛性の評価にコンクリート実強度の値を用いていることが抽出されることを確認する。その後、コンクリート実強度を採用する際の論点を整理し、抽出された論点に対して、原子炉建屋を例として、既往の知見や試験等から得られたデータを通してその妥当性・信頼性について考察した上で、今回工認に用いる実剛性の値を設定する。また、原子炉建屋以外の建屋についても同様のデータ整理を行い、原子炉建屋同様のコンクリート実剛性が適用可能であることを確認する。

2. 今回工認における施設の耐震設計上のコンクリート実強度の扱いについて

今回工認の耐震設計に当たっては,既工認とは異なり,対象施設が設計前に現に存在していることから,地震時の挙動をより実応答に近い形で評価できる条件を用いて耐震設計を実施する予定である。上記条件の一つとして,原子力施設の主要構造材料であるコンクリートの剛性の評価が挙げられる。ここでは,コンクリートの剛性の評価に用いるコンクリート実強度に関して,今回工認における耐震設計上の取り扱いについて説明する。

今回工認においては評価条件を実応答に近づけるという観点から、動的地震荷重算定時 の地震応答解析において使用する建屋剛性の評価に関して、コンクリート実強度に基づき 評価される実剛性を用いる予定である。ただし、評価対象部位に発生する応力が許容値以 内におさまっているか否かの応力評価の検討に当たっては、設計基準強度(330kg/cm²: 32.3N/mm²)を用いて算定される許容値を用いて検討を行う。 3. 建屋の地震応答解析におけるコンクリート物性値について

3.1 既工認と今回工認におけるコンクリート物性値の差異について

既工認で採用したコンクリートの物性値と今回工認で採用予定のコンクリートの物性値 を比較し、論点となり得る項目を整理する。

地震応答解析に用いるコンクリートの物性値について,既工認及び今回工認での設定を 第3-1表に示す。第3-1表のうち,コンクリートの単位体積重量及びヤング係数の差異につ いては、1992年の計量法改正において、重力単位系から国際単位系に見直されたことを受 け、適用規準である学会刊行物においても単位系を国際単位系へ変更したことによるもの である。以上を踏まえると、既工認と今回工認におけるコンクリート物性値の主要な差異 は、コンクリート剛性(ヤング係数 Ec)の評価に用いる Fc の値に、コンクリート実強度 を用いていることである。

材料物性值	既工認	今回工認		
コンクリート強度 <i>Fc</i>	設計基準強度 330【kg/cm ² 】	実強度		
コンクリートの単位体積重量	2.3 【t/m³】	23.5 【kN/m ³ 】		
ヤング係数 <i>Ec</i>	$2.1 \times 10^5 \times \left(\frac{\gamma}{2.3}\right)^{1.5} \times \sqrt{\frac{Fc}{200}}$ [kg/cm ²]	$3.35 \times 10^4 \times \left(\frac{\gamma}{24}\right)^2 \times \left(\frac{Fc}{60}\right)^{\frac{1}{3}}$ [N/mm ²]		
せん断弾性係数 <i>Gc</i>	$\frac{Ec}{2(1+\nu)}$	$\frac{Ec}{2(1+\nu)}$		
ポアソン比 v	0.167	0.2		
適用規準	日本建築学会:鉄筋コンクリート構造 計算規準・同解説(1988)	日本建築学会:原子力施設鉄筋コンク リート構造計算規準・同解説(2005)		

第3-1表 地震応答解析に用いるコンクリートの材料物性値の設定

3.2 既工認との差異についての考察

既工認も含め,通常の構造設計において,地震応答解析は対象構造物の構築前に実施し, 構造物の耐震安全性についての検討を完了し場合によってはその結果を設計へ反映してか ら,構造物の構築に着手する。したがって,地震応答解析時に実際の構造物のデータを得 ることは物理的に不可能である。そのため,解析で用いるコンクリート剛性の評価には, 設計基準強度を用いるのが一般的である。

今回工認の場合,既工認や通常の構造設計とは異なり,対象構造物が解析実施以前に現 に存在しているため,材料物性値を推定することは物理的に可能であることから,建屋挙 動を実応答により近い形で評価できる条件で設計することを目的として,コンクリート剛 性の評価に実強度を採用している。ただし,先行電力を含めた既工認での採用事例がない ことから,以降でその詳細について検討し,今回工認で新手法として採用することの妥当 性を確認することとする。

4. コンクリート実剛性を採用するに当たっての論点について

6号及び7号炉の原子炉建屋,タービン建屋,コントロール建屋及び廃棄物処理建屋の地 震応答解析は、多質点系曲げせん断棒モデルを用いて行う。同モデルによる地震応答解析 において、解(応答値)の精度は、構造物のせん断ばね特性の精度に大きく依存し、誤差 を小さく抑えるためには、せん断ばねの復元力特性(スケルトンカーブ)をできる限り精 度よくモデル化する必要がある。

今回工認では、スケルトンカーブの設定にあたり、コンクリートのせん断剛性の評価に 用いるコンクリート強度に実強度の値を用いる予定だが、コンクリート実強度の値は、応 答値の精度に直接影響を及ぼすことから、その設定の妥当性・信頼性については十分に確 認する必要があると判断し、「コンクリート実強度の値」を論点として位置づけ、その妥当 性・信頼性を検討することとした。

5. 実強度の値の妥当性・信頼性について

5.1 実強度の値の設定方針

一般に、コンクリート強度は打ち込みから 14 日くらいまで大きく強度が増進し、材齢 28 日から 90 日くらいでほぼ安定し、材齢 1 年以上の長期においては緩やかに増進する傾向に あるといわれている。したがって、コンクリート実強度を推定するに当たっては、データ ベースとして豊富なサンプル数があることから、建設時のコンクリート打設の際にフレッ シュコンクリートから採取したコア供試体の材齢 91 日における圧縮強度(以下「91 日強度」 という。)をデータベースとして用いることとした。なお、柏崎刈羽原子力発電所 6 号及び 7 号炉の建築工事(鉄筋コンクリート工事)では、日本建築学会「建築工事標準仕様書・同 解説 JASS 5N 原子力発電所施設における鉄筋コンクリート工事」(以下「JASS5N」とい う。)に基づく品質管理が行われており、91 日強度についても、JASS5N で定められた方 法※及び頻度により得られた試験結果がデータベース化されている。

また,実際に実強度の数値を設定するに当たっては,コンクリートの長期的な強度増進 効果に関する既往の知見や,実機から採取して得たコア強度との比較を通じて,総合的に 判断することとした。

※試験方法について JASS5N では, JIS A 1108 (コンクリートの圧縮強度試験方法), JIS A 1132 (コンクリートの強度試験用供試体の作り方)に基づくことが指定されている。

5.2 原子炉建屋における建設時コンクリートの 91 日強度データの整理

6号及び7号炉原子炉建屋の建設時におけるコア供試体の91日強度試験の統計値を第5-1 表に示す。本統計値は、6号及び7号炉原子炉建屋の各階、各部位ごとに打設の際に採取し た供試体から得られており、十分な数のデータから算出されているため、建屋コンクリー トの平均的な91日強度を推定する統計値として妥当性・信頼性を有していると考えられる。 なお、第5-1表(c)から、6号及び7号炉原子炉建屋の91日強度は平均で445kg/cm²で あり、その標準偏差は30.3kg/cm²である。

第5-1表 建設時コンクリートの91日強度データの統計値

打設箇所	平均值 【lag(am ² 】	標準偏差	最大值 【kg/am ² 】	最小值 【kg/am ² 】	中央值 【kg/am ² 】	データ数	
	Kg/cm-	Kg/cm-	[Kg/CIII-]	Kg/cm-	[kg/cm-]		
B3F,MB3F	437	25.4	510	403	433	41	
B2F	425	23.8	483	344	426	65	
B1F,MB1F	431	34.5	518	376	422	69	
1F	468	16.8	490	430	473	67	
$2\mathrm{F}$	453	25.6	493	366	456	48	
3F	439	19.8	471	358	444	74	
4F,M4F,RF	465	21.4	547	428	465	82	
全体	446	29.0	547	344	447	446	

(a) 6 号炉原子炉建屋

(b) 7 号炉原子炉建屋

打設箇所	平均值 【kg/cm ² 】	標準偏差 【kg/cm ² 】	最大値 【kg/cm ² 】	最小値 【kg/cm ² 】	中央値 【kg/cm²】	データ数 【個】
B3F	476	14.9	494	423	479	51
B2F	460	26.4	496	404	472	55
B1F,MB1F	427	16.8	475	400	425	62
$1\mathrm{F}$	460	20.0	493	403	465	59
$2\mathrm{F}$	460	24.9	489	389	466	45
3F	422	20.6	477	372	426	45
4F,M4F,RF	418	28.7	473	365	422	97
全体	443	31.7	496	365	442	414

(c) 6号及び7号炉原子炉建屋全体

打設箇所	平均值	標準偏差	最大値	最小值	中央値	データ数
****	[kg/cm ²]	【個】				
B3F,MB3F	459	28.1	510	403	466	92
B2F	441	30.6	496	344	439	120
B1F,MB1F	429	27.5	518	376	425	131
$1\mathrm{F}$	464	18.7	493	403	470	126
$2\mathrm{F}$	457	25.4	493	366	458	93
3F	432	21.5	477	358	434	119
4F,M4F,RF	440	34.8	547	365	446	179
全体	445	30.3	547	344	446	860

5.3 経年後のコンクリート強度に関する知見

前述のとおり、一般的にはコンクリート強度は打ち込み後 90 日程度でほぼ安定し、材齢 1年以上の長期においては緩やかに増進することが知られている。ここでは、経年によるコ ンクリート強度の変化を考察している既往の知見について整理し、コンクリート強度の経 年による影響について検討する。

6号及び7号炉原子炉建屋の構造体コンクリートの調合に用いている材料のうち,普通コ ンクリートと異なる点は,混和材としてフライアッシュを用いていることである。コンク リートの強度発現はセメントの水和反応に伴う物性変化であるため,水とセメントの割合 (水セメント比:W/C) に大きく依存する。さらに,混和材としてフライアッシュを用い た場合,ポゾラン反応によりセメントの水和生成物と類似した化合物を生成し,コンクリ ートの耐久性や水密性を高めることにつながる。以上を踏まえると,コンクリートの強度 発現に影響を及ぼす要因として,水セメント比及び水結合材比(水とセメント及びフライ アッシュの割合:W/(C+F))が挙げられることから,本検討においては,水セメント比 及び水結合材比に着目して文献を抽出し整理を行った。コンクリート強度の経年変化に関 する文献の一覧を第5-2表に,文献の抽出フローを第5-1図に示す。

No.	文献名 (出典)	著者名	FA 有無	水セメ ント比	水結合 材比	セメント 種類
1	コンクリートの長期物性モニタリング試験 (日本建築学会技術報告集 第13号 9·14 2001)	尾﨑昌彦 大藤信雄 北川高史 小野香	有	47.9%	39.0%	中庸熱
2	10 年曝露した FAⅢ種コンクリートのコア供試体の強度 特性及び中性化性状(コンクリート工学年次論文集, Vol.31, No.1, 2009)	岡野智久 山地功二 橋本親典 渡辺健	有	$56 \sim 66\%$	$40 \sim 62\%$	普通
3	10 年屋外暴露したフライアッシュを使用したコンクリ ートの性状 (コンクリート工学年次論文集, Vol.29, No.1, 2007)	安田正雪 阿部道彦 千歩修 小山智幸	有	$27 \sim 78\%$	27,40, 55%	普通
4	材齢 10 年以上を経過した高強度コンクリートの強度性 状に関する研究【基盤】(平成 20 年度に終了した研究開 発)	古賀純子	無	22,27 %	_	不明
5	長期材齢における高強度コンクリートの圧縮強度と弾性 係数の関係に関する研究(日本建築学会大会学術講演梗 概集,2000)	中村則清 真野孝次 池永博威	無	$^{25\sim}_{65\%}$	_	普通
6	32 年経過した早強ポルトランドセメントコンクリート の強度・中性化(日本建築学会大会学術講演梗概集, 2003)	依田彰彦 横室隆	無	57%		早強
7	40 年経過した高炉スラグ細骨材を用いたコンクリート の長期性状(日本建築学会関東支部研究報告集 I, 2015)	彦根俊海 尾作勇介 阿部道彦	無	72%		高炉
8	45 年経過した混合セメントコンクリートの長期強度発 現性について(コンクリート工学論文集,第 23 巻第 2 号,2012)	植木康知 大塚勇介 平本真也 檀康弘	有	58~86 %	$58 \sim 65\%$	高炉

第5-2表 コンクリート強度の経年変化に関する文献一覧

第5-1図 コンクリート強度の経年変化に関する文献の抽出フロー

第5-1 図のフローから整理対象となる文献は,第5-1 表中の No.2, No.3 の文献である。 第5-3 表に 6 号及び 7 号炉原子炉建屋の構造体コンクリートと対象文献におけるコンクリ ートの使用材料及び水結合材比の比較を,第5-2 図に対象文献における水セメント比,水結 合材比ごとの圧縮強度の経年変化を示す。第5-2 図(a)~(c)から,フライアッシュを用 いたコンクリートの圧縮強度の経年変化は,打設時期に関わらず 91 日以降 10 年目までお おむね緩やかに増進しており,その増加率は 91 日強度に対して約 1.2~1.4 倍程度になって いることが伺える。また第5-2 図(d)から,水結合材比の過多に関わらず,程度は異なる ものの長期的な強度の増進効果は表れていることが分かる。

各文献における水セメント比及び水結合材比は,6号及び7号炉原子炉建屋の構造体コン クリートにおけるそれと類似しているため,強度発現の傾向は定性的には同一であると考 えられることから,当該原子炉建屋の構造体コンクリートついても,材齢91日に対して 強度は増進していると推察される。以上を踏まえると,既往の知見から得られた材齢91日 から10年にかけてのコンクリート強度の増加を考慮して推定される実強度(推定実強度) の値は,約500kg/cm²程度となる。

	使用	材料	水セメント比	水結合材比	
	セメント	混和材	(%)	(%)	
6 号炉 7 号炉	普通ポルトランド セメント	フライアッシュ	$50 \sim 60$	$40 \sim 50$	
文献 No.2	普通ポルトランド セメント	フライアッシュ	$56~\sim~66$	$40 \sim 62$	
文献 No.3	普通ポルトランド セメント	フライアッシュ	$27~\sim~78$	27, 40, 55	

第5-3表 使用材料,水セメント比及び水結合材比の比較

 ^{※2:}凡例は、左:水セメント比、右:水結合材比の順に示す。
 ※3:上記のうち、論文中に直接記載のない値については、各単位量から算定した値を記載している。
 ※4:グラフ中の色付きで示す線は、6号及び7号炉と同程度の水セメント比、水結合比を有し、かつ、混和材にフライアッシュを使用しているコンクリートを示す。

5.4 原子炉建屋から直接採取したコア強度との比較

長期的な強度増進効果を考慮した推定実強度 500kg/cm² について,実機から直接採取し て得られる強度と比較して数値に大きな差異がないかを検討した。第 5-3 図に 6 号及び 7 号炉原子炉建屋の経年後(約 10 年)のコア強度と,強度増進を考慮して得られる推定実強 度との比較を示す。また,各建屋におけるコアの採取位置及び試験実施日を第 5-4 表に示す。

第5-3 図から,長期的な強度増進効果を考慮した推定実強度の値は,サンプル数が少ない という問題はあるものの,経年後のコア強度の平均値とおおむね同等であることを確認した。

第5-3図 コア強度との比較

第5-4表 コア採取位置(1/4)

4 条·別紙 1·別 1·10

第 5-4 表 コア採取位置(2/4) (b) 7 号炉原子炉建屋

4 条·別紙 1·別 1·11

第5-4表 コア採取位置(3/4)

4 条·別紙 1-別 1-12

第5-4表 コア採取位置(4/4)

5.5 実強度の値の設定

6号及び7号炉原子炉建屋については、建設後約20年経過しており、経年後のコンクリート強度に関する既往の知見や実機から直接採取したコア強度の値を鑑みても、建設時コンクリートの91日強度に対してある程度強度増進していることが推察される。一方で、強度増進効果を考慮する際に必要となる増加率の値に関しては、既往の文献において詳細な考察はなされておらず、コンクリートの養生場所や温度等の環境条件により変動することが考えられる。また、実機から直接採取したコア強度の値については、現状ではサンプル数が少ないため、妥当性・信頼性に欠ける。

以上を踏まえ、今回工認で用いるコンクリート実強度の値については、経年によるコン クリート強度の増進効果を無視することとし、妥当性・信頼性の観点からサンプルの数と 種類が豊富な 91 日強度を基に設定することとした。

第 5-1 表から, 6 号及び 7 号炉原子炉建屋の 91 日強度の平均値はそれぞれ, 446kg/cm², 443kg/cm² であり, 両建屋のデータをまとめて処理した場合の平均値は 445kg/cm² である ことから, 今回工認で採用するコンクリート実強度の値としては, 保守的に評価して有効 数字 3 桁を切り下げ, 440kg/cm² (43.1N/mm²) という値を用いることとした。また, ば らつきについては, 標準偏差の平均値を参考に 30kg/cm² (2.94N/mm²) とした。

6. 原子炉建屋以外の建屋への適用性について

今回工認においては、6号及び7号炉原子炉建屋に加えて、同タービン建屋、コントロー ル建屋及び廃棄物処理建屋についても、地震応答解析においてコンクリート実剛性を採用 する予定である。ここでは、原子炉建屋について設定した実強度の値が、原子炉建屋以外 の建屋についても適用可能であるかを検討する。

第6-1表に、原子炉建屋及び原子炉建屋以外の建屋のコンクリートの使用材料、水セメント比及び水結合材比を示す。原子炉建屋以外の建屋については、原子炉建屋と同じ設計基準強度でほぼ同時期に同じ発電所構内に建設されており、コンクリートの調合もおおむね同等であることや建屋の経年環境もほぼ同等であることを踏まえると、材齢91日からの強度の増進については原子炉建屋と同程度の効果が期待できると考えられる。

各建屋の 91 日強度データの整理結果を第 6・2 表に示す。第 6・2 表から、どの建屋におい ても 91 日強度の平均値は原子炉建屋で設定した実強度の値(440kg/cm²)と同程度であり、 建設時期や経年環境が同等であることを踏まえると、原子炉建屋で設定した実強度の値を 用いることは妥当であると考えられる。なお、標準偏差についても、全ての建屋において 原子炉建屋のそれとほぼ同等になっていることが確認できる。

,,, · · · ·			· • • • • •	
は日	使用相	才料	水セメント比	水結合材比
建崖	セメント 混和材		【%】	【%】
6号炉原子炉建屋				
7号炉原子炉建屋				
6号炉タービン建屋	普通ポルトランド	フライアンシン	500,60	10~50
7号炉タービン建屋	セメント	ノノイノツシュ	50, 00	40, 50
コントロール建屋				
廃棄物処理建屋				

第6-1表 各建屋の使用材料,水セメント比及び水結合材比

第6-2表 原子炉建屋以外の建屋における91日強度データの統計値

建屋	平均值 【kg/cm ² 】	標準偏差 【kg/cm ² 】	データ数 【個】
6号炉タービン建屋	455	28.6	531
7号炉タービン建屋	449	30.5	453
コントロール建屋	442	32.0	123
廃棄物処理建屋	450	31.0	245
(参考)6号炉原子炉建屋	446	29.0	446
(参考)7号炉原子炉建屋	443	31.7	414

7. 実強度のばらつきに関する考え方

今回工認では、建屋の地震応答解析におけるコンクリート剛性の評価にコンクリート実 強度を採用する予定である。地震応答解析に用いる材料定数は、材料のばらつきによる変 動幅を適切に考慮する必要があることから、ここでは、コンクリート実強度の値のばらつ きについて検討する。

コンクリート剛性の不確かさの検討における先行電力との考え方の比較を第7-1表に示 す。先行電力では、一般的にコンクリート強度は設計基準強度を上回るよう設計されてい ることから、不確かさとしては実強度を考慮することとしている。一方、今回工認におい ては、基本ケースとして実強度を用いており、その数値はおおむね建設時コンクリートの 91 日強度の平均値と同等となっている。不確かさの検討に当たっては、データベースであ る 91 日強度の分布を考慮し、平均値に対して $\pm 1\sigma^{*5}$ を考慮することとした。更に保守的 な評価として、実強度値のマイナス側については、91 日強度の値として 95%信頼区間の下 限値に相当する値(平均値- $2\sigma^{*5}$)を、プラス側については、実機のコア強度の平均値で ある 568kg/cm² (55.7N/mm²)を設計上考慮し、地震応答解析における保守性を確保する こととした。

 $%5: \sigma = 30$ kg/cm²とする。

第7-1表 地震応答解析モデルにおけるコンクリート強度の不確かさ検討の考え方

地震応答解析モデル	先行電力	今回工認
		実強度
基本ケース	設計基準強度	440kg/cm ²
		(43.1N/mm^2)
		・ばらつき:±1σ
		470kg/cm ² , 410kg/cm ²
		$(46.0 \text{N/mm}^2, 40.2 \text{N/mm}^2)$
不確かさケース	実強度	・保守性
		プ ラ ス側:568kg/cm²
		(55.7N/mm^2)
		マイナス側 : 380kg/cm ²
		(37.2N/mm^2)

8. まとめ

今回工認における建屋の地震応答解析に用いるコンクリート物性値について,既工認と 今回工認での設定の差異を整理した。その際,地震応答解析の解(応答値)の精度に直接 影響を及ぼすコンクリート実強度の値を論点として抽出した。その上で,コンクリート実 強度の設定の考え方や用いたデータベースについて整理し,既往の知見やデータと比較し た結果,設定した実強度の値が妥当性・信頼性を有していることを確認した。

設定したコンクリートの各物性値を第8-1表に示す。

第8-1表 設定したコンクリート物性値

コンクリート実強度	440kg/cm^2 (43.1N/mm ²)
ヤング係数	$2.88{ imes}10^4$ N/mm 2
せん断弾性係数	$1.20 imes10^4$ N/mm ²

<参考文献>

- [1] 日本建築学会:鉄筋コンクリート造建物の耐震性能評価指針(案)・同解説,2006
- [2] 日本建築学会:構造体コンクリートの品質に関する研究の動向と問題点, 2008
- [3] 岡野ほか:10年曝露した FAIII種コンクリートのコア供試体の強度特性及び中性化性 状,コンクリート工学年次論文集, Vol.31,No.1,2009
- [4] 安田ほか: 10 年屋外暴露したフライアッシュを使用したコンクリートの性状, コンク リート工学年次論文集, Vol.29,No.1,2007

地震応答解析モデルにおける

補助壁の評価方法について

- 1. 概要
- 2. 補助壁の選定
- 2.1 補助壁の選定方針
- 2.2 補助壁の選定結果
- 3. 地震応答解析で用いるスケルトンカーブへの補助壁の反映方針
- 3.1 せん断スケルトンカーブ
- 3.2 曲げスケルトンカーブ
- 4. 設計手法としての妥当性
- 5. まとめ
- 添付資料1 補助壁の選定結果(6号炉原子炉建屋)
- 添付資料2 補助壁の選定結果(7号炉原子炉建屋)
- 添付資料3 せん断スケルトンカーブにおける耐震壁と補助壁の合算方法
- 参考資料1補助壁の維持管理について

1. 概要

柏崎刈羽原子力発電所6号及び7号炉の補正工認(以下「今回工認」という。)において は、地震応答解析モデルで考慮する建屋剛性に、設計時には耐震要素として考慮できなか ったが、実際には耐震壁として考慮可能であると考えられる壁を補助壁として、その分の 剛性を考慮する予定である。

本資料は、柏崎刈羽原子力発電所6号及び7号炉の既工認(以下「既工認」という。)で 考慮した耐震壁と今回工認で新たに考慮する補助壁の扱いの差異及び耐震性評価における 考え方について整理し、その上で耐震要素として補助壁を考慮することの設計手法として の妥当性を判断する。

2. 補助壁の選定

2.1 補助壁の選定方針

既設建屋の地震応答解析の実施に当たっては,より実現象に近い応答を模擬するという 観点から,設計時には考慮されていなかったが実際は耐震要素として考慮可能な壁を補助 壁として位置づけ,地震応答解析モデルに取り込むこととした。

補助壁の選定基準の設定に当たっては、先行審査を含む既工認で適用実績のある規準で ある、日本建築学会:「原子力施設鉄筋コンクリート構造計算規準・同解説(2005)」(以下 「RC-N規準」という。)を参考にした。RC-N規準19条「耐震壁の断面算定」には、耐震 壁の壁厚、せん断補強筋比等に関する規定として「算定外の規定」が示されており、今回 工認の補助壁の選定条件を設定するにあたり、「算定外の規定」の記載を踏まえ、第2-1表 に示す選定条件を設定することとした。 第2-1表を踏まえた具体的な選定プロセスを、第 2-1図にフロー図として示す。

第2-1表 補助壁の選定条件

項目	RC-N 規準 (算定外の規定)	補助壁の選定条件	【参考】耐震壁の選定条件(既工認)	
壁厚・内法高さ	・壁の厚さは 200mm 以上, かつ壁の内法高 さの 1/30 以上	・壁の厚さは 300mm 以上,かつ壁の内法高 さの 1/30 以上	同左	
せん断補強筋比	・壁のせん断補強筋比は、直交する各方向	同左	・壁のせん断補強筋比は、直交する各方	
	に関し, それぞれ 0.25%以上		向に関し, それぞれ 0.6%以上	
	・複筋配置			
壁筋	・D13 以上の異形鉄筋を用い,壁の見付面	同左	同左	
	に関する間隔は 300mm 以下			
		 ・下階まで壁が連続している,若しくは床 	・甘琳フラブから 海结し アウナ しがっア	
9 - 11 A M		スラブを介して壁に生じるせん断力を下	・	
その他余件		階の耐震壁に伝達できる壁	いる壁	
		・フレーム構面外でも上記を満たす壁	・フレーム構面内(柱,梁間)の壁	

第2-1図 補助壁の選定プロセス

2.2 補助壁の選定結果

第2-1 表で示した考え方に基づき,耐震要素として考慮する補助壁の選定を実施した。 新たに補助壁として剛性を考慮した壁の断面積と耐震壁として従来から考慮していた分 の断面積について整理した結果を,6号炉原子炉建屋を第2-2表に,7号炉原子炉建屋を第 2-3表に示す。(耐震壁+補助壁)/耐震壁の比率は約1.1~1.7程度であり,数字が大きくな っている部分は燃料プールや蒸気乾燥器・気水分離器ピットの壁を補助壁として算定した ことに起因している。考慮した補助壁の範囲(概要図)については添付資料1及び添付資料2 に示す。

T.M.S.L.		耐震壁		補助壁		耐震壁+補助壁		比率 (今回工認/既工認)	
(m)	陷	NS 方向	EW 方向	NS 方向	EW 方向	NS 方向	EW 方向		
		m^2	m^2	m^2	m^2	m^2	m^2	NS 方问	EW 方回
49.7	屋上階	41.0	54.7	0.0	0.0	41.0	54.7	1.00	1.00
38.2	クレーン階	82.4	122.6	0.0	0.0	82.4	122.6	1.00	1.00
31.7	4 階	231.3	273.2	70.7	137.3	302.0	410.5	1.31	1.50
23.5	3階	213.6	209.4	22.1	146.4	235.7	355.8	1.10	1.70
10.1	2 阳	220.3	231.7	86.2	85.0	306.5	316.7	1.39	1.37
12.3	1階	260.8	274.7	52.4	40.9	313.2	315.6	1.20	1.15
4.8	地下1階	280.8	288.2	40.5	106.6	321.3	394.8	1.14	1.37
-1.7	地下2階 地下3階	336.3	340.1	64.9	78.7	401.2	418.8	1.19	1.23

第2-2表 補助壁の評価結果(6号炉原子炉建屋)*1

※1:表に示した数値は暫定値であり、今後の審査における議論を踏まえ適宜見直す。

T.M.S.L. (m)	階	耐震壁		補助壁		耐震壁+補助壁		比率 (今回工認/既工認)	
		NS 方向	EW 方向	NS 方向	EW 方向	NS 方向	EW 方向	NS方向	EW 方向
		m^2	m^2	m^2	m^2	m^2	m^2		
49.7	屋上階	41.0	54.7	0.0	0.0	41.0	54.7	1.00	1.00
38.2	クレーン階	83.0	122.9	0.0	0.0	83.0	122.9	1.00	1.00
31.7	4 階	231.8	267.7	75.7	124.0	307.5	391.7	1.33	1.46
23.5	3階	214.5	207.3	31.0	147.3	245.5	354.6	1.14	1.71
18.1	2階	215.8	228.9	71.2	145.2	287.0	374.1	1.33	1.63
12.3	1階	261.9	275.8	57.7	55.7	319.6	331.5	1.22	1.20
4.8	地下2階 地下3階	281.6	288.2	34.1	103.3	315.7	391.5	1.12	1.36
-1.7		337.2	343.6	72.7	80.3	409.9	423.9	1.22	1.23

第2-3表 補助壁の評価結果(7号炉原子炉建屋) ※2

※2:表に示した数値は暫定値であり、今後の審査における議論を踏まえ適宜見直す。

- 地震応答解析で用いるスケルトンカーブへの補助壁の反映方針
 地震応答解析で用いるスケルトンカーブへの補助壁の反映方針を以下で説明する。
- 3.1 せん断スケルトンカーブ

鉄筋コンクリート造耐震壁のせん断スケルトンカーブは、(社)日本電気協会「原子力 発電所耐震設計技術指針 JEAG4601-1991 追補版」(以下「JEAG4601-1991 追補版」と いう。)の評価法を基本とするが、補助壁については、JEAG4601-1991 追補版で評価さ れる第1折点で降伏する,完全弾塑性型のスケルトンカーブとして評価する方針とする。 終局点を与えるせん断ひずみについては JEAG4601-1991 追補版の記載による値を採用 する方針としている。耐震壁及び補助壁のせん断に関するスケルトンカーブの概念図を 第3-1 図に示す。

補助壁のせん断スケルトンカーブを完全弾塑性型とした理由は,以下の点を踏まえた 上で,保守的な評価とするためである。

- ・JEAG4601-1991 追補版におけるせん断スケルトンカーブの終局点の評価法はボックス壁, 円筒壁, I型壁の実験結果に基づいており,直交壁が存在しない壁の場合は,直交する壁 の効果を見込まないような終局点の評価方法を適用する必要があると考えられるが,補 助壁については,直交壁が存在しない場合も多いことから,JEAG4601-1991 追補版の終 局点の評価法を採用すると過剰にせん断応力の負担を期待するようなスケルトンカーブ となる場合があること。
- ・補助壁の鉄筋比は耐震壁と比べて小さい場合が多く、鉄筋によるせん断力の負担が生じる第1折点以降のせん断応力の負担については補助壁分の寄与が小さいと考えられることから、第1折点まで補助壁の効果を考慮することにより、補助壁による効果を踏まえた応答性状になると考えられること。

また,実際の地震応答解析は,複数の耐震壁と補助壁のスケルトンカーブを軸ごとに 集約した合算後のスケルトンカーブを用いて解析を実施している。スケルトンカーブの 集約方法の詳細を添付資料3に示す

(a) 耐震壁

(b) 補助壁

第3-1図 せん断に関するスケルトンカーブの概念図

4 条·別紙 1·別 2·6

3.2 曲げスケルトンカーブ

鉄筋コンクリート造耐震壁の曲げスケルトンカーブは、せん断スケルトンカーブと同様に JEAG4601-1991 追補版の評価法を基本とするが、補助壁については、その影響を 無視する方針である。

曲げスケルトンカーブの算定時に補助壁の影響を無視することとしたのは、以下の点 を踏まえた上で、保守的な評価とするためである。

- ・補助壁として新たに考慮した壁のうち、使用済燃料プール、蒸気乾燥器・気水分離器ピットの壁については、 EW 方向の解析モデルの曲げ剛性への影響は大きいと考えられるため、建屋質点系モデルにおける建屋質点間を繋ぐ回転ばねとして既工認時から考慮済みであること(第3-2図参照)。
- その他の補助壁については、既工認で耐震壁として考慮した外壁部やフレーム部を構成 するような大スパンの連続的な壁ではなく、短スパンの壁であり、建屋全体の曲げ剛性 に与える影響は小さいと判断されることから、その影響を無視しても応答性状に与える 影響は小さいと考えられること。

第3-2図 今回工認で採用予定の原子炉建屋の地震応答解析モデル(EW 方向)

4. 設計手法としての妥当性

今回工認で新たに耐震要素として考慮する補助壁は, RC-N 規準における耐震壁の規定を踏まえて設定した選定基準に基づき選定されていることから, 耐震要素として十分に考慮可能であると考えられる。

また,地震応答解析で用いる解析モデルへの反映方針としては,JEAG4601-1991 追補版に おけるスケルトン評価法のベースとなった実験の内容や耐震壁と補助壁の違い(鉄筋比, 直交壁の有無)を踏まえ,補助壁のせん断スケルトンカーブとしては第1折点で降伏する 完全弾塑性型とし,曲げスケルトンとしては補助壁の剛性を無視する保守的な設定として いる。

以上のことから,補助壁を耐震要素として新たに考慮することは,設計手法として妥当 であると判断した。

5. まとめ

今回工認では、より実現象に近い応答を模擬するという観点から新たに耐震要素として 取り入れる補助壁について、選定の考え方と選定結果について整理した。また、耐震評価 の考え方についても整理した。その上で今回工認において耐震要素として、補助壁を考慮 することが設計手法として妥当であると判断した。 6号炉原子炉建屋の地震応答解析時に耐震壁及び補助壁として剛性を評価する範囲(概 要図)を以下に示す。

PN

NS方向

EW方向

B3F(T.M.S.L.-8.2m~T.M.S.L.-1.7m)

NS方向

EW方向

B2F(T.M.S.L.-1.7m~T.M.S.L.+4.8m)

4条-別紙1-別2-添1-1

NS方向

B1F(T.M.S.L.+4.8m~T.M.S.L.+12.3m)

NS方向

1F(T.M.S.L. +12.3m~T.M.S.L.+ 18.1m)

: 耐震壁として剛性を評価する範囲 (既工認と同じ) : 補助壁として剛性を評価する範囲

4条-別紙1-別2-添1-2

3F(T.M.S.L. +23.5m~T.M.S.L.+31.7m)

第1-3図 耐震壁と補助壁の考慮範囲

4F(T.M.S.L.+31.7m~T.M.S.L. +38.2m)

(既エ認と同じ)

第1-4図 耐震壁と補助壁の考慮範囲

7号炉原子炉建屋の地震応答解析時に耐震壁及び補助壁として剛性を評価する範囲(概 要図)を以下に示す。

B3F(T.M.S. L.- 8.2m~T.M.S.L.-1.7m)

B2F(T.M.S.L. -1.7 m~T.M.S.L.+4.8m)

第2-1図 耐震壁と補助壁の考慮範囲

4条-別紙1-別2-添2-1

B1F(T.M.S.L.+4.8m~T.M.S.L.+12.3m)

1F(T.M.S.L. +12.3m~T.M.S.L.+ 18.1m)

第2-2図 耐震壁と補助壁の考慮範囲

NS方向

EW方向

2F(T. M.S.L.+18.1m~T.M.S.L.+23.5m)

NS方向

EW方向

3F(T.M.S.L. +23.5m~T.M.S.L.+31.7m)

第2-3図 耐震壁と補助壁の考慮範囲

(既エ認と同じ)

第2-4図 耐震壁と補助壁の考慮範囲

4 条·別紙 1·別 2·添 2·4

添付資料3 せん断スケルトンカーブにおける耐震壁と補助壁の合算方法

原子炉建屋の地震応答解析モデルにおけるせん断スケルトンカーブは、耐震壁と補助壁 を合算評価して設定している。耐震壁と補助壁を評価する場合のスケルトンカーブの算定 フローを第 3-1 図に示す。

算定フローに基づき算定した結果として、7号炉原子炉建屋のNS方向B3F(最下階)の 外壁軸における計算例を第3-1表に示す。

また,算定フローに基づき設定した地震応答解析モデルに用いるせん断スケルトンカー ブについて,7号炉原子炉建屋のNS方向を例として、第3-2図~第3-9図に示す。

第3-1図 スケルトンカーブの算定フロー

4条-別紙1-別2-添3-2

第3-1表 せん断スケルトンカーブ算定例(原子炉建屋 NS方向,地下3階 外壁軸)

① 耐震壁のスケルトンの算定結果

			JEAG 第1折点			JEAG 第2折点			JEAG 終局点		
T.M.S.L.	通り	耐震壁As	τ_1	q 1	γ_1	τ2	q 2	γ_2	τ ₃	q ₃	γ_3
(m)		(m^2)	(kg/cm^2)	(t)	$(\times 10^{-3})$	(kg/cm^2)	(t)	$(\times 10^{-3})$	(kg/cm^2)	(t)	$(\times 10^{-3})$
-8.2~-1.7	RA	96.2	28.09	27023	0.230	37.92	36480	0.691	79.55	76523	4.000
	RG	96.2	28.34	27262	0.232	38.26	36804	0.697	79.76	76730	4.000

			耐震壁の台	算					
T.M.S.L.	部位	耐震壁As		Q ₁	γ_1	Q_2	γ_2	Q ₃	γ_3
(m)		(m^2)		(t)	$(\times 10^{-3})$	(t)	$(\times 10^{-3})$	(t)	$(\times 10^{-3})$
-8.2~-1.7	耐震壁	192.4		54285	0.231	73284	0.691	153253	4.000

注 : G = 1.22×10^5 kg/cm²

② 補助壁のスケルトンの算定結果

			JEAG 第1折点					
T.M.S.L.	壁NO	補助壁As	τ 1	q ₁	γ 1			
(m)		$A(m^2)$	(kg/cm^2)	(t)	$(\times 10^{-3})$			
	1	3.50	22.27	779	0.183			
	2	6.93	22.27	1543	0.183			
	3	4.83	22.27	1076	0.183			
-8 20 -1 7	4	1.65	22.27	367	0.183			
0.2 - 1.7	5	3.06	22.27	681	0.183			
	6	3.06	22.27	681	0.183			
	7	5.04	22.27	1122	0.183			
	8	3.06	22.27	681	0.183			

				補助壁の合	算	
	T.M.S.L.	部位	補助壁As		Q_1	γ_1
	(m)		(m^2)		(t)	$(\times 10^{-3})$
	-8.2~-1.7	補助壁	31.13		6933	0.183
1						

注 : G = 1.22×10^5 kg/cm²

③ 地震応答解析モデルのためのスケルトンの設定結果(1軸への集約)

			第1折点			第2折点			第3折点		
T.M.S.L.	部位	ΣAs		Q_1^{*1}	γ_1		Q_2^{*1}	γ_2		Q_3^{*1}	γ_3
(m)		(m^2)		(t)	$(\times 10^{-3})$		(t)	$(\times 10^{-3})$		(t)	$(\times 10^{-3})$
-8.2~-1.7	外壁軸	223.53		61218	0.224		80217	0.691		160186	4.000

*1 : ①耐震壁と②補助壁の和

④ 地震応答解析モデルのためのスケルトンの設定結果(Q-y曲線から τ-y曲線へ変換)

			第1折点			第2折点			第3折点		
T.M.S.L.	部位	ΣAs	τ 1 *1		γ1	τ 2 *1		γ_2	τ 3 *1		γ_3
(m)		(m^2)	(kg/cm^2)		$(\times 10^{-3})$	(kg/cm^2)		$(\times 10^{-3})$	(kg/cm^2)		$(\times 10^{-3})$
-8.2~-1.7	外壁軸	223.53	27.39		0.224	35.89		0.691	71.66		4.000
			(2.686)			(3.519)			(7.028)		

*1 : $\tau_i = Q_i / \Sigma As$ 、 ()内は、 N/mm^2 (SI単位換算値を示す)

(NS 方向)

「 第 3-2 図 せん断スケルトンカーブ (NS 方向, CRF)

第3-3図 せん断スケルトンカーブ (NS 方向, 4F)

4 条·別紙 1·別 2·添 3·4

第3-4図 せん断スケルトンカーブ (NS 方向, 3F)

第3-5図 せん断スケルトンカーブ (NS 方向, 2F)

4条·別紙 1-別 2-添 3-5

第3-6図 せん断スケルトンカーブ (NS 方向, 1F)

第3-7図 せん断スケルトンカーブ (NS 方向, B1F)

4条·別紙 1·別 2·添 3·6

第3-8図 せん断スケルトンカーブ (NS 方向, B2F)

第3-9図 せん断スケルトンカーブ (NS 方向, B3F)

4条·別紙 1-別 2-添 3-7

参考資料1 補助壁の維持管理について

柏崎刈羽原子力発電所では、原子炉建屋、タービン建屋、コントロール建屋、廃棄物処 理建屋等の鉄筋コンクリート造建物の躯体について、躯体の健全性維持の観点から、社内 マニュアル*に基づく定期点検を実施している。点検は建屋躯体全てを対象として実施して いるため、今回工認から地震応答解析モデルで新たに考慮する予定の補助壁についても、 耐震壁を含む他の壁と同様に、以前から全てが点検の対象となっており、耐震壁と同様の 維持管理がなされている。点検項目については、ひび割れ、表面劣化等が設定されており、 それぞれの項目について点検周期が設定されている。

以上のように全ての補助壁について,鉄筋コンクリート構造としての要求機能が満たせ るように適切な維持管理がなされていることから,耐震要素として補助壁を新たに考慮し た場合についてもこれまで同様の維持管理を実施することで特段の支障は生じないものと 考えられる。

なお,鉄筋コンクリート構造の壁のうち,生体遮蔽装置としての機能が要求される部分 については,使用前検査の確認対象となっており,建設時に使用前検査を受検しているが, 地震応答解析モデルで考慮している耐震壁のうち,生体遮蔽装置の対象となっていない壁 は,使用前検査の対象とはなっていない。今回工認で新たに耐震要素として考慮する補助 壁についても,耐震壁と同様に使用前検査の対象となっている壁となっていない壁が混在 している。

※NE-55-7「原子力発電所建築設備点検マニュアル」