別紙1-3

建屋側面地盤回転ばねを考慮することの妥当性について

1. はじめに

- 2. 論点の整理と検討方針
 - 2.1 建屋地盤相互作用とモデル化について
 - 2.2 側面回転ばねを採用する目的・効果について
 - 2.3 建屋の設置状況を踏まえた論点の抽出
 - 2.4 妥当性の検討方針
- 3. 論点①に対する検討

(論点① 建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か)

- 3.1 試験の目的
- 3.2 試験方法
- 3.3 一方向載荷及び繰返し載荷試験
- 3.4 スケール影響試験
- 3.5 考察
- 4. 論点②に対する検討

(論点② 地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ,埋め込み SR モデルへ回転ばねを適用することが妥当か)

- 4.1 検討概要
- 4.2 建屋拘束効果の検討
- 4.3 建屋応答の比較
- 4.4 ジョイント要素せん断ばねのせん断剛性のばらつきの影響検討
- 4.5 まとめ
- 5. 論点③に対する検討

(論点③ 隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しない

カゝ)

- 5.1 検討概要
- 5.2 解析ケース
- 5.3 解析モデル
- 5.4 検討用地震動
- 5.5 解析結果
- 5.6 まとめ

- 6. 全体まとめ
- 7. 参考文献
- 添付資料1 NOVAK ばねの円形仮定の妥当性(辺長比)について
- 添付資料 2 中越沖地震の観測記録を用いた 2 次元 FEM 解析モデルの信頼性の検証
- 添付資料3 2次元 FEM モデルの建屋基礎下の地反力分布
- 添付資料4 せん断ばねの履歴特性と初期剛性の建屋応答への影響について
- 添付資料5 建屋基礎下のマンメイドロックの建屋応答への影響について
- 添付資料6 建屋周辺のマンメイドロックについて
- 参考資料1 回転ばね考慮モデルと既工認モデルとの応答結果比較(Ss-2EW 方向)
- 参考資料 2 埋め込み SR モデルにおける側面回転ばねの影響検討

1. はじめに

本資料は、今回工認における、原子炉建屋の地下部分の埋め込みを考慮した水平方向 の地震応答解析モデル(以下「埋め込み SR モデル」という。)に採用する予定の原子炉 建屋地下外壁部の側面回転ばねの妥当性に関して検討したものである。

本資料では、はじめに、地中に埋め込まれた建屋と地盤との相互作用の代表的な評価 法のひとつである側面回転ばねを付与した埋め込み SR モデルや、地盤を離散系モデル で評価した 2 次元 FEM モデルに関する既往の知見を整理する。その上で、比較的大き い地震動が作用する場合の、側面回転ばねの妥当性に関する論点を整理する。

次に,実機の地下外壁(防水層付き)と側面地盤の間を模擬した摩擦試験の結果から, 大入力時を想定した,建屋・地盤間の摩擦特性を評価する。

また,原子炉建屋の地下外壁と側面地盤の間の接触・剥離や,摩擦特性を考慮して地 盤を2次元 FEM とし,建屋を質点モデルとした詳細な解析モデルによる地震応答解析 を行い,側面地盤による建屋の拘束効果について検討する。その上で,埋め込みSR モ デルに側面回転ばねを適用した場合の建屋応答と詳細モデルによる建屋応答を比較し, 埋め込みSR モデルによる建屋応答が妥当であることを確認する。

さらに,原子炉建屋に隣接するタービン建屋や周辺の地盤状況(埋戻し土,マンメイ ドロック等)を考慮した解析モデルを用いた解析を実施し,隣接建屋や建屋周辺の詳細 な地盤状況が建屋応答に与える影響を確認する。

2. 論点の整理と検討方針

ここでは、側面回転ばねを考慮することの目的・効果を説明した上で、側面回転ばねを 考慮するに当たっての論点を抽出し、各論点に対する検討方針を設定する。

2.1 建屋地盤相互作用とモデル化について

2.1.1 埋め込み効果を考慮した地震応答解析モデルについて

比較的大規模で地中に深く埋め込まれている建物の地震時挙動には,地盤と建屋の相互 作用(地盤の建屋拘束効果や側方地盤からの入力)が存在し,これを適切に評価する必要 がある。

評価方法としては、建屋の各床位置に集中質点を設け、曲げせん断剛性要素でモデル化 した質点系モデルに、地盤の剛性や減衰を適切なばね(=地盤ばね)として付与し、地盤 ばねを介して地震動を入力する比較的簡易な方法がある。この場合質点系モデルの各質点 には水平及び回転の自由度を有するので、地盤ばねも建屋の水平・回転に対する抵抗、す なわち水平ばね・回転ばねを考慮する(スウェイ・ロッキング=SRモデル)。

SR モデルを用いる場合,地盤ばねの評価方法がポイントとなるが,地盤ばねとしては弾 性波動論に基づいた理論解を簡便化して用いることが多く,基礎底面には振動アドミッタ ンスによる方法,側面地盤に NOVAK の方法を用いることが一般的である。柏崎刈羽原子 力発電所原子炉建屋のように地中に深く埋め込まれている場合に有効な方法である。(埋め 込み考慮=埋め込み SR モデル)この方法は,以下に示すように振動試験や地震観測での妥 当性が確認され,「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」(以下

「JEAG4601-1991 追補版」という。)に示されている。なお、「JEAG4601-1991 追補版」 では NOVAK の側面ばねのうち水平ばねのみを付与し回転ばねは考慮しないこととしてい る。

地盤をばねで評価する方法の他に,地盤を離散系でモデル化する方法として,地盤を質 点と質点を連結する軸ばねとせん断ばねで評価する多質点系並列地盤モデル(格子型モデ ル)と,地盤を有限要素法でモデル化し必要に応じて建屋周辺の埋土や地盤の不整形等を 併せて考慮する方法(FEM モデル)がある。この方法も,地盤を格子型モデルや2次元 FEM でモデル化した場合について,地震観測での妥当性が確認され,「JEAG4601-1991追 補版」に示されている。

これらのモデルは、目的に応じて使い分けられるが、原子力発電所の設計においては、「建 屋の弾塑性や基礎の浮上りを考慮する」、「膨大な荷重条件を想定したパラメータスタディ が必要である」及び「重要機器を詳細にモデル化して建屋と一体化した精緻な解析を行う 必要がある」等の理由から、これまでは埋め込み SR モデルや格子型モデルが用いられてい る。

一方で、埋め込み SR モデルや格子型モデルの場合に、地盤を平行成層にモデル化することが前提であるのに対し、FEM モデルは、建屋周辺の状況を詳細に表現することができる。 このため、周辺地盤の精緻なモデル化や建屋と地盤の間の非線形性等考慮した場合の検証 に用いられている。

第2.1.1 図に埋め込みを考慮した建屋地盤相互作用を評価するためのモデルを示す。

第2.1.1図 埋め込みを考慮した建屋地盤相互作用を評価するモデル

2.1.2 埋め込み SR モデルについて

(1) NOVAK のばねの算定における仮定について

埋め込み SR モデルにおいて,側面ばねとして適用することとした NOVAK のばね(側面水平ばね及び側面回転ばね)は,次の仮定をもうけ弾性波動論に基づいて算定されている。

- ・地盤は単位厚さで平面的にスライスされた当方均質な弾性体とし、地盤の鉛直方向の連 成は無視する。
- ・建屋は半径 r0 の円形平面を持ち,振動時に円形平面の形状は変化しない。
- ・地盤の鉛直方向の変位を無視し、建屋と地盤の接触面を水平方向に加振することにより、 水平ばねを算定する。
- ・地盤の水平方向の変位を無視し、回転に対して平面保持を考慮した外力を想定し建屋と
 地盤の接触面を鉛直方向に加振することにより、回転ばねを算定する。
 NOVAKの側面ばね算定の概念を第2.1.2図に示す。

NOVAKの側面ばね算定における変位の近似化の概念を第2.1.3図に示す。

この近似の過程では,第2.1.3 図に示すように軸方向の抵抗と鉛直方向のせん断抵抗は 考慮されているが,水平方向のせん断抵抗は考慮されていない。

以上の過程によって求まる,NOVAKの側面ばねの算定式を第2.1.1表に示す。

第2.1.3 図 NOVAK の側面ばね算定における近似

以上の,NOVAKのばねの算定における仮定をまとめると次のとおりである。

・円形の形状を仮定している。

・建屋と地盤間は接触していることを仮定しており,特に回転ばねにおいては建屋と地盤 間が摩擦力により伝達することを仮定している。

・地盤を平面的にスライスすることを仮定しており、軸方向の抵抗と鉛直方向のせん断抵 抗は考慮されているが、水平方向のせん断抵抗は考慮されていない。

対象建屋が矩形形状をしているのに対して,円形を仮定していることについては,添付 資料1において適用性を示す。

建屋と地盤間の接触を仮定していることに関しては,地震時に建屋と地盤間が引張にな る面と圧縮になる面があることを踏まえ,地震時の挙動と地盤の建屋拘束効果への影響を 検討することが必要である。

地盤の水平方向のせん断抵抗は考慮されていないことに関しては,側面ばねのうち水平 ばねの建屋拘束効果を小さめに評価しているので,上記地震時の挙動と地盤の建屋拘束効 果と併せて検討する。

4 条·別紙 1·別 3·5

- (2) NOVAK の側面ばねに関する既往文献について
- a. 実機振動試験との比較について

NOVAKの側面ばねを用いた埋め込みSRモデルについては、原子炉建屋の振動試験や地 震観測のシミュレーション解析において、その妥当性が検証されている。これらの結果は、

「JEAG4601-1991 追補版」において引用されている原子力発電耐震設計特別調査委員会調 査報告書 Vol.12「建屋埋込み効果の評価法の標準化に関する調査報告書」(昭和62年6月) (以下「標準化報告書」という。)にまとめられている。

「標準化報告書」においては、埋め込みを考慮した側面ばねの評価法として次の4ケースについて比較検討している。

・評価法A NOVAKの側面ばね(水平ばね及び回転ばね)

- ・評価法B 境界要素法 (BEM)
- ·評価法C 薄層要素法
- ・評価法 D 軸対称 FEM

これらのうち,境界要素法,薄層要素法,軸対称 FEM は,ともに地盤を3次元連続体として取り扱う方法である。

これらの方法を比較検討し、次の4点を評価項目として標準化する手法を選定している。

- (1) 波動論との整合があること
- (2) 振動試験結果との整合性があること
- (3) 建屋モデルを質点系としたときに埋め込み効果が簡単にモデルに組み込めること
- (4) 実用性を考慮して地盤ばねの算定ができるだけ簡単であること

その結果, 質点系モデルへの適用性や実用性の観点から, 評価法 A NOVAK の側面ばね を選定したとしている。

「標準化報告書」での振動試験結果と各種評価法による振動試験の比較例を第 2.1.4 図に 示す。これらの比較例は、「標準化報告書」のほかに、Yano et al. 「Seismic Design Model of Embedded Structures」(9th World Conference on Earthquake Engineering (9WCEE), 1988), 矢野, 土方ほか: 埋込みを考慮した原子炉建屋の地震応答解析法 (その1~その4), 日本建築学会学術講演梗概集,昭和 62 年 10 月, K. Hijikata, Uchiyama, et al. : Dynamic soil stiffness of embedded reactor buildings, 9th Conference on Structural Mechanics in

Reactor Technology (SMiRT), 1987 においても報告されている。

実機振動試験と、埋め込みを考慮した場合と埋め込みを考慮しない場合のシミュレーション解析結果を比較した事例を第2.1.5 図に示す。

建屋の概要

b.振動試験結果(共振曲線)

4 条·別紙 1-別 3-8

PLANT II

b. 振動試験結果と解析結果の比較(埋め込み SR モデルは MODEL A)
第 2.1.5 図 埋め込み SR モデルによる実機振動試験のシミュレーション解析事例
(Yano et al. 「Seismic Design Model of Embedded Structures」(9th World Conference on Earthquake Engineering (9WCEE), 1988) に図題を加筆)

b.地震観測との比較について

析結果の一例を, 第2.1.6 図に示す。

原子力発電技術機構(NUPEC)の報告書「耐震安全解析コード改良試験 原子炉建屋の 埋込み震動効果試験 実地盤上試験に関する報告書」(平成7年3月原子力発電技術機構) (以下「NUPEC報告書」という。)では、実機サイトにおいて、軟質地盤(Vs400m/s程 度)と硬質地盤(Vs900m/s程度)上に試験体を設置した地震観測を実施している。これら の地震観測結果とシミュレーション解析結果を比較することにより、NOVAKの側面ばね (水平ばね及び回転ばねを考慮)を用いた埋め込みSRモデルが、埋め込みのある試験体の 応答特性を評価する場合に有効であるとしている。既往文献におけるシミュレーション解

第2.1.6 図 埋め込み SR モデルによる模型試験体の地震観測シミュレーション解析事例 (「耐震安全解析コード改良試験 原子炉建屋の埋込み震動効果試験 実地盤上試験に 関する報告書」(平成7年3月原子力発電技術機構)に図題を加筆)

4 条·別紙 1·別 3·10

c. NOVAK の側面回転ばねについて

「標準化報告書」においては、実機振動試験との比較結果より NOVAK の側面ばね(水 平ばね及び回転ばね)を考慮した評価法が、実用的かつ合理的であるとの評価を行った後 に、側面ばねのうち回転ばねの扱いについて検討を行っている。

「標準化報告書」における記載の概要は次のとおりである。

側面ばねのうち回転ばねを考慮した場合と削除した場合を,実機振動試験結果と比較し次に言及している。比較結果を第2.1.7図に示す。

・NOVAKの側面ばねのうち回転ばねを考慮した場合と削除した場合で共振振動数の差異 はほとんど生じない。

・NOVAKの回転ばねを削除することにより、共振振動数における振幅は増大し、建屋-地盤連成系の減衰効果は小さく評価される。

これらより、「標準化報告書」では地震応答解析に用いる地震加速度レベル程度での防水 層のせん断耐力が不明である現状を勘案すれば、建屋-地盤連成系の減衰定数を小さく評 価する回転ばねを削除した埋め込み SR モデルで地震応答解析するのが適切であると判断 されるとしている。

以上の検討結果を踏まえると、次のことが結論付けられる。

・NOVAKの回転ばねを考慮した方が試験結果との対応が良くなることから、建屋の埋め込み効果をより適切に評価するためには、NOVAKの回転ばねを考慮することが望ましい。

・NOVAKの回転ばねを考慮するためには、「標準化報告書」で指摘されているように、地 震加速度レベル程度での防水層のせん断耐力を明らかにすることが必要である。

第2.1.7 図 実機振動試験結果と側面回転ばねの有無による解析結果の比較事例 (「標準化報告書」に図題等を加筆)

4 条·別紙 1-別 3-12

2.1.3 離散系モデルについて

地盤を離散系でモデル化する地震応答解析モデルとしては,格子型モデル及び FEM モデ ルがある。本資料では,FEM モデルを用いて原子炉建屋の地下外壁と側面地盤の間の接触・ 剥離や摩擦を考慮した場合の影響評価等を実施するので,より精緻なモデル化が可能な FEM モデルについて述べる。

地盤を2次元 FEM によりモデル化した地震応答解析については、矢野ほか「埋込みを考慮した原子炉建屋の地震応答解析法(その1~その4)」(日本建築学会学術講演梗概集 1988年)における、埋め込みのある原子炉建屋の地震観測記録に対するシミュレーション 解析により、その妥当性が検証されている。これらの結果は、埋め込み SR モデルと同様に

「JEAG4601-1991 追補版」において引用されている「標準化報告書」にまとめられている。

また、埋め込みを有する構造物模型の摩擦滑りや剥離・浮上り等を対象にした振動台実 験の2次元 FEM によるシミュレーション解析の事例としては、鈴木康嗣ほか「埋め込みを 有する構造物の非線形応答に関する実験とその解析」(日本建築学会構造系論文集第438 号・1992年8月)がある。ここでは、地盤の材料非線形を等価線形で扱い、地盤と構造物 の接触部分の滑り剥離の幾何学非線形を考慮した2次元 FEM の解析モデルで、加速度応答、 共振振動数及び動土圧等に対して実験結果と整合する結果が得られたとしている。さらに、 これらの結果から、シミュレーションが2次元モデルであることや、実験・解析ともに有 限領域のものであるという制約はあるものの、ここで示した2次元 FEM による解析手法の 精度・信頼性が確認されたとしている。既往文献におけるシミュレーション解析結果を、 第2.1.8 図に示す。

一方,埋め込みを有する構造物模型の摩擦滑りや剥離・浮上り等を対象にした遠心振動 台実験の2次元 FEM によるシミュレーション解析の事例として,古山田耕司ほか「大地震 入力に対する埋込み構造物の非線形挙動に関する研究(その4)」(日本建築学会大会学術 講演梗概集・2008年9月)がある。ここでは、2次元 FEM による非線形解析により、埋 め込みありの場合、建屋底面の接地率(以降、底面の接地率と表記)30%程度の実験結果 も含めて、実験結果の性状を定量的に良く捉えているとしている。既往文献におけるシミ ュレーション解析結果を、第2.1.9 図に示す。なお、井原和弘ほか「大地震入力に対する埋 込み構造物の非線形挙動に関する研究(その5)」(日本建築学会大会学術講演梗概集・2008 年9月)では3次元 FEM による非線形解析により、埋め込みのない場合のシミュレーショ ン解析を実施し、3次元 FEM による解析手法の妥当性を確認したとしている。

さらに,埋め込みを有する構造物模型の摩擦滑りや剥離・浮上り等を対象にした遠心振動台実験の3次元 FEM によるシミュレーション解析の事例として,今村晃ほか「浮上りを 考慮した構造物の大地震入力時非線形挙動に関する研究(その2)」(日本建築学会大会学

4 条·別紙 1·別 3·13

術講演梗概集・2013 年 8 月)がある。ここでは、3 次元 FEM による非線形解析により、 埋め込みないの場合と埋め込みありの場合のシミュレーション解析を実施し、3 次元 FEM の適用範囲として文献等に記載されている底面の接地率 35%以上よりも広い適用範囲があ るとしている。3 次元 FEM によるシミュレーション解析結果の例を,第2.1.10 図に示す。

埋め込みのない原子炉建屋を対象とした場合ではあるが、3次元 FEM 解析と2次元解析 の地震応答解析結果を比較した事例として、内山不二男ほか「3次元 FEM を用いた建屋– 地盤の基礎浮き上がり評価法の高度化に関する研究(その4)」(日本建築学会大会学術講 演梗概集・2004 年 8 月)がある。3次元 FEM 解析と2次元解析の地震応答解析結果の比 較例を第 2.1.11 図に示す。

これらの結果より、3次元 FEM 解析と2次元解析の違いとして次を言及している。

- ・3次元 FEM 解析と2次元解析の水平応答はおおむね対応した値であり,解析次元が異な る応答結果としてはその差異は小さい。
- ・建屋頂部と基礎の上面の応答スペクトルに関しては、水平応答は同等であり、上下応答は2次元 FEM が大きい。
- ・基礎に生じる転倒モーメントはほぼ等しいが,底面の接地率は2次元 FEM の方が小さく なっており,2次元 FEM の地反力分布が奥行き方向に一定であるため浮上りが生じやす いことが影響している。

第2.1.8 図 埋め込みを有する構造物模型の振動台実験の2次元 FEM による解析事例 (鈴木康嗣ほか「埋め込みを有する構造物の非線形応答に関する実験とその解析」 (日本建築学会構造系論文集第438号・1992年8月)に図題を加筆)

図1 試験体の浮上り応答と接地率の時刻歴波形 (実線:解析、点線:実験、最大値は上段が解析) c. 試験結果と解析結果の比較

第2.1.9図 埋め込みを有する構造物模型の遠心振動台実験の2次元 FEM による解析事例
 (古山田耕司ほか「大地震入力に対する埋込み構造物の非線形挙動に関する研究(その
 4)」(日本建築学会大会学術講演梗概集・2008年9月)に図題を加筆)

図2 三次元有限要素モデル

第2.1.10図 埋め込みを有する構造物模型の遠心振動台実験の3次元 FEM による解析事例 (今村晃ほか「浮上りを考慮した構造物の大地震入力時非線形挙動に関する研究(その2)」(日本建築学会大会学術講演梗概集・2013年8月)に図題を加筆)

4 条·別紙 1·別 3·17

第2.1.11 図 埋め込みを有する構造物模型の遠心振動台実験の3次元 FEM による解析事例 (内山不二男ほか「3次元 FEM を用いた建屋-地盤の基礎浮き上がり評価法の高度化に関する 研究(その4)」(日本建築学会大会学術講演梗概集・2004 年 8 月)

2.1.4 建屋地盤相互作用とモデル化についてのまとめ

本章では,建屋地盤相互作用とモデル化について概括した。それらの結果次のことが確認された。

・埋込まれた原子炉施設の設計における地震応答解析では,埋め込み SR モデルや格子型モ デルが多用されている。

・今回工認で用いる NOVAK の側面回転ばねを考慮した埋め込み SR モデルは,実機の振動試験や地震観測シミュレーションにより,その妥当性が確認されている。

・「標準化報告書」では、地震加速度レベル程度での防水層のせん断耐力が不確かであることから埋め込み SR モデルに NOVAK の側面回転ばねを用いないこととしている。

・NOVAKの回転ばねを考慮するためには、「標準化報告書」で指摘されているように、地 震加速度レベル程度での防水層のせん断耐力を明らかにすることが必要である。

・NOVAKの側面回転ばねは、建屋側面と地盤が接触しておりかつ摩擦力が伝達されている ことを仮定して算定されている。実現象においては摩擦による応力伝達に加え水平方向の せん断抵抗も期待できるので、NOVAKの側面回転ばねの適用に当たっては地震時の建屋~ 地盤間の挙動と地盤の建屋への拘束効果の関係を確認することが望ましい。

・2 次元 FEM モデルは、振動台実験等により建屋と周辺地盤間の摩擦滑りや剥離等が評価 できることが確認されているので、地震時の建屋〜地盤間の挙動と地盤の建屋への拘束効 果の確認においては、2 次元 FEM の活用が有効と考えられる。 2.2 側面回転ばねを採用する目的・効果について

今回工認の原子炉建屋の水平方向の地震応答解析モデルでは、上述の埋め込み SR モデル を用いるものとする。既工認モデル時から考慮している NOVAK の側面水平ばねに加え、 第 2.2.1 図に示すように NOVAK の側面回転ばねを採用する予定である。

これは、2007 年新潟県中越沖地震の観測記録を用いたシミュレーション解析において、 他の項目(コンクリート実剛性等)と併せて、側面回転ばねを採用したモデルによる解析 結果が、観測記録を精度良く再現できたことを踏まえ、より実状に近い建屋応答を再現す るという観点から、側面回転ばねによる効果を考慮することとしたものである。また、側 面回転ばねを考慮することにより、埋め込み SR モデル適用の判定基準として用いる建屋の 底面の接地率の改善効果も期待できる。

側面回転ばねを考慮することが建屋応答に与える影響を定量的に把握するために,6号及び7号炉原子炉建屋のうち7号炉を代表として検討を実施した。検討に当たっては、①既工認ベースのモデル(側面回転ばね非考慮)、②既工認ベースのモデルに側面回転ばねを追加したモデルのそれぞれの解析モデルについて、建屋応答の大きくなる基準地震動Ss-1を 代表波として動的解析を実施し、結果を比較することとした。第2.2.1表に建屋の底面の接地率、第2.2.2図に床応答スペクトル、第2.2.3図に建屋の最大応答せん断ひずみについての比較結果を示す。

まず,第2.2.1 表から側面回転ばねを考慮することによって底面の接地率が大きく改善することが確認できる。底面の接地率は前述のとおり,埋め込みSRモデル適用の判定基準として用いる指標である。「原子力発電所耐震設計技術規定JEAC4601-2008」((社)日本電気協会,2009年)を参考に,底面の接地率が50%を下回った場合においては,埋め込みSRモデルの適用範囲外とし,特別な検討が必要になると考えている。

第2.2.2 図の床応答スペクトルについては、側面回転ばねを考慮することにより、短周期 側の応答スペクトルを多少低減する効果が認められる。側面回転ばねは、建屋の地下側面 と地盤の間の摩擦力による建屋の回転方向の拘束効果をモデル化したものであるため、そ の効果で短周期側の振動が低減したものと考えられる。

第2.2.3 図の建屋のせん断ひずみは,耐震壁の耐震安全性評価の評価基準値として参照す る応答値であるが,既工認モデル及び側面回転ばねを追加で考慮したモデル共に評価基準 値に対して十分な余裕がある。側面回転ばねを考慮することにより,最大せん断ひずみは 大きくなる傾向が確認できる。

以上で説明したとおり、側面回転ばねを考慮することの主要な目的としては、「側面の摩擦力による拘束効果をモデルに取り込むことによってより実状に近い応答を模擬すること」にあると考えており、結果として埋め込みSRモデル適用の判定基準として用いる建屋の底面の接地率が改善することとなる。

第2.2.1 図 6号及び7号炉原子炉建屋の地震応答解析モデル※(NS方向) ※原子炉建屋の解析モデル図としては、6、7号炉原子炉建屋で同じ表現となる。

第 2.2.1 表	側面回転ばねが建屋底面の接地率に与える影響(7号炉原子炉建屋での	試算例)
-----------	----------------------------------	------

解析ケース	建屋底面の接地率
	NS 方向
既工認モデル	51.5%(Ss-1)
側面回転ばね考慮	70.1%(Ss-1)

(基礎版上, Ss⁻1, NS 万回) 第 2.2.2 図 側面回転ばねが床応答スペクトルに与える影響 (7 号炉原子炉建屋での試算例)

2.3 建屋の設置状況を踏まえた論点の抽出

NOVAKの側面回転ばねは,第2.3.1 図に示したように,建屋地下外壁部と側面地盤との 間に作用するせん断力の埋め込み建屋の回転方向の変形に対する拘束効果を表現したもの であり,側面回転ばねを採用することの妥当性・適用性の確認に当たっては,埋め込みの 状況や建屋周辺部の状況を適切に考慮した上で,側面回転ばねの反力を負担できることを 確認する必要があると考えられる。

6号炉原子炉建屋の地盤及び周辺建屋の設置状況の詳細について,第2.3.2 図に平面図, 第2.3.3 図に断面図を示す。また、7号炉原子炉建屋についても同様に、第2.3.4 図に平面 図、第2.3.5 図に断面図を示す。6号炉原子炉建屋と7号炉原子炉建屋は、建屋の構造躯体 の形状と地盤への埋め込み深さが同じであることから振動性状は類似していると考えられ、 また、他の建屋との位置関係についてもおおむね類似している。建屋地下外壁部には防水 層が設けられているが、この仕様も6号炉と7号炉で共通の仕様となっている。したがっ て、建屋地下外壁と地盤間のせん断力による建屋拘束効果を確認するという観点を踏まえ、 6号炉原子炉建屋を代表として検討を進めることとした。なお、検討結果の7号炉への適用 性については6号炉原子炉建屋の検討結果を踏まえ、改めて判断することとする。

地下外壁部については第2.3.6 図に詳細を示すとおり,防水層が設けられており,建屋地 下外壁が防水層を介しておおむね西山モルタル (マンメイドロック)と接する状況にある。

したがって,側面回転ばねの妥当性の検討に当たっては,防水層が介在することを踏ま えた上で建屋と地盤間でせん断力が伝達可能かを確認する必要があると考え,これを論点 として位置づけることとした。

→ 【論点① 建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か】

また、今回工認で採用する地震応答解析モデル(埋め込みSRモデル)への適用性の検 討に当たっては、原子炉建屋の検討に用いる基準地震動 Ss 及び弾性設計用地震動 Sd を想 定した場合でも側面回転ばねが機能することを確認することが必要と考えられる。地震時 には建屋地下外壁面と側面地盤の境界部で、地盤の接触剥離の発生や土圧変動が発生する ことにより、建屋外壁と地盤との間に作用して建屋の動きを抑える力(せん断力や軸圧等)、 すなわち、側面地盤による建屋の拘束効果が影響を受けることが想定されることから、そ れらの影響を考慮した上での適用性を示すことが必要であると考えられる。具体的には、 地震時に建屋と地盤間がどの程度接触しているか、建屋と地盤間の摩擦でどの程度応力伝 達ができるか、側面地盤反力の観点ではどうかについて検討し、力のやりとり=拘束効果

その上で、埋め込み SR モデルに側面回転ばねを適用した場合の建屋応答が、詳細モデル と比較して妥当かどうかを確認する必要があると考えられる。これらをあわせて2つめの 論点として位置づけることとした。

→ 【<u>論点②</u> 地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ, 埋め込み SR モデルへ回転ばねを適用することが妥当か】

一方,第2.3.2 図,第2.3.3 図に示したとおり,6号炉原子炉建屋の西側側面には6号炉 タービン建屋が接している。さらに,建屋周辺においてマンメイドロックが複雑に打設さ れていることや埋め戻し土が存在することについても確認できる。以上のような状況を踏 まえると,隣接建屋や建屋周辺の詳細な地盤状況を踏まえた場合の側面回転ばねの適用性 についても確認する必要があると考えられるため,これを3つめの論点として位置づける こととした。

→ 【<u>論点③</u> 隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しな いか】

以降では,以上の3つの論点を踏まえた上で,妥当性の確認方針を設定する。

第2.3.1図 側面回転ばねの作用機構概念

第2.3.2図 6号炉原子炉建屋の設置状況(平面図)

【凡例】 ──:マンメイドロック(西山モルタル)

4 条·別紙 1·別 3·27

C-Csec

第2.3.3図 6号炉原子炉建屋の設置状況(断面図)

4 条·別紙 1·別 3·28

第2.3.4図 7号炉原子炉建屋の設置状況(平面図)

4 条·別紙 1·別 3·29

【凡例】 ☆☆:マンメイドロック(西山モルタル)

第2.3.5 図 7 号炉原子炉建屋の設置状況(断面図)

4 条·別紙 1-別 3-30

跶──:マンメイドロック(西山モルタル)

2.4 妥当性の検討方針

2.3 で抽出した論点を踏まえて、今後の検討方針を設定することとした。検討の全体フローを第2.4.1 図に示す。

以降では,以上の3つの論点を踏まえた上で,妥当性の確認方針を設定する。

目的 側面地盤の側面回転ばねの妥当性の検討

建屋の設置状況を踏まえた論点

【論点①】建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か

【論点②】地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ、埋め込み SR モデルへ回転ばねを適用することが妥当か

【論点③】隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しないか

【論点①】	建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か
→側面地盤 の2次元 について	撃擦試験結果から摩擦力があることを確認する。また,実験結果による摩擦特性は下記 FEM 解析モデルに反映する。(試験結果から得られる摩擦力のばらつきを考慮した検討 も実施)
【論点②】	地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ埋め込み SR モデルへ回転ばねを適用することが妥当か
→地震時に きるか, とを確認	律屋と地盤間がどの程度接触しているか,建屋と地盤間の摩擦でどの程度応力伝達がで 側面地盤反力の観点ではどうかについて検討し,力のやりとり=拘束効果が得られるこ する。
その上で モデルに	,拘束効果をNOVAKばねで表現した埋め込みSRモデルによる建屋応答が,2次元FEM よる応答と比較して妥当かどうかを確認する
【論点③】	隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しないか
→2 次元 F	EM 解析モデルに隣接するタービン建屋も考慮する。また,詳細な地盤状況を解析モデ

以上の論点を総合評価し、埋め込み SR モデルの側面回転ばねに影響がある場合はこれを反映する。

第2.4.1図 側面回転ばねの妥当性に関する全体の検討フロー
2.4.1 【論点①】についての確認方針

【論点①】建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か

原子炉建屋の地下外壁には第2.3.6図に示したとおり,防水層が設置されていることから, 側面回転ばねの妥当性検討に当たっては,建屋側面に防水層がある場合の建屋-側面地盤の 境界部で保持できる摩擦力(以下「摩擦耐力」という)を適切に設定した上で,確認を行 うことが必要であると考えられる。

防水層が存在する場合の建屋・側面地盤の境界部の摩擦耐力については、地盤摩擦試験に より確認する方針とした。地盤摩擦試験の実施に当たっては,第 2.4.2 図に示すように実機 防水仕様の状況や側面に作用する土圧による影響も踏まえたモデル化を行うこととし,試験 に用いる材料(保護層,防水層等)については,試験結果の実機への適用性を考慮し,実 機と同製品若しくは同等品を使用することとした。試験により得られた摩擦耐力について は、側面回転ばねの妥当性確認に用いる 2 次元 FEM モデル(後述)に反映する。

なお,2次元 FEM モデルの基礎側面と地盤間のジョイント要素の摩擦力(せん断応カー 垂直圧関係)は、地盤摩擦試験結果(第2.4.3図)の平均値を採用することを基本とするが、 試験結果のばらつきを考慮した場合の影響についても検討を実施する。

第2.4.2 図 地中外壁の摩擦試験のモデル化の考え方

垂直圧 σ_v(kN/m²)

(せん断ばね定数と垂直圧の関係)

(動摩擦耐力-垂直圧関係)

第2.4.3 図 地盤摩擦試験結果

2.4.2 【論点②】についての確認方針

【論点②】地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ、埋め 込み SR モデルへ回転ばねを適用することが妥当か

地震時には建屋地下外壁面と側面地盤の境界部で,地盤の接触剥離の発生や土圧変動が 発生することにより,外壁側面の摩擦抵抗力が影響を受ける。そこで,FEMモデルを用い た地震応答解析を行い,基準地震動Ss時における建屋・側面地盤の境界部の接触剥離及び摩 擦を検討する。FEMモデルには第2.4.4回に破線で示す建屋・地盤境界部に接触剥離や摩擦 を考慮したジョイント要素(軸ばねとせん断ばね)を設ける。なお,地盤の接触剥離の発 生や地盤摩擦試験結果に基づく滑りを伴う動摩擦特性を考慮した解析を行うため,ここで は解析演算上の利便性の良い2次元FEMモデルを用いることとした。

検討に用いるモデルを第2.4.5 図に示す。第2.4.5 図に示す解析モデルは、建屋を質点系 モデルとし、地盤を成層地盤としてモデル化するが、建屋周囲に存在するマンメイドロッ クも考慮する。

上記の2次元 FEM モデルによる詳細な地震応答解析を行い, 地震時に建屋と地盤間がどの程度接触しているか, 建屋と地盤間の摩擦でどの程度応力伝達ができるか, 側面地盤反力の観点ではどうかについて検討し, 力のやりとり=拘束効果が得られることを確認する。

その上で、埋め込み SR モデルに側面回転ばねを適用した場合の建屋応答が、詳細モデル と比較して妥当かどうかを確認する。

第2.4.4 図 建屋と隣接地盤の剥離・接触の検討箇所

赤色着色部:マンメイドロック

第2.4.5図 6号炉原子炉建屋モデル図(NS方向)

4 条-别紙 1-别 3-39

2.4.3 【論点③】についての確認方針

【論点③】隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しないか

2 次元 FEM による検討は、【論点②】に対する検討で用いる地盤を成層としたモデルに 加えて、隣接建屋(タービン建屋)や建屋周辺の詳細な地盤状況の影響を考慮したモデル による解析についても実施し、詳細な地盤状況を考慮することの影響を確認する。第2.3.2 図、第2.3.3 図で示した周辺地盤状況のうち原子炉建屋近傍の地盤を詳細にモデル化した場 合のモデル図を第2.4.6 図及び第2.4.7 図に示す。

赤色着色部:マンメイドロック

第2.4.6図 6号炉原子炉建屋 モデル図 (NS 方向)

4 条-別紙 1-別 3-41

赤色着色部:マンメイドロック

第2.4.7図 6号炉原子炉建屋 モデル図(EW方向)

3. 論点①に対する検討

(論点① 建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か)

3.1 試験の目的

論点①は、第 3.1.1 図に示すように原子炉建屋の地下外壁が防水層を介しておおむね西 山モルタル(マンメイドロック)と接する状況にあり、側面回転ばねの妥当性の検討に 当たっては、防水層が介在することを踏まえた上で建屋と地盤間で摩擦力が伝達可能か を確認する必要があるとの考えに基づくものである。また、摩擦耐力を適切に設定した 上で、論点②、論点③についての検討を進める必要がある。

ここでは、防水層が存在する場合の建屋-側面地盤の境界部の摩擦特性について、実機防水仕様と同製品若しくは同等品を用いた地盤摩擦試験(屋内試験)により確認する。 また、試験より得られた摩擦特性については、論点②及び論点③として行う側面回転ばねの妥当性確認に用いる FEM モデルに反映する。

実施した地盤摩擦試験は、以下の3試験である。

- ① 一方向載荷試験 ・・・ 防水層を介した基本的な摩擦特性の確認
- ② 繰返し載荷試験 ・・・ 地震時の繰返し条件下での摩擦特性の確認
- ③ スケール影響試験・・・ 摩擦面積の寸法影響確認

また,上記試験より得られた試験結果に基づき,建屋側面に防水層がある場合の建屋-側面地盤の境界部で保持できる平均的な摩擦特性(せん断ばね定数及び動摩擦耐力)を 設定し,論点②,論点③の検討に用いる FEM モデルの地下外壁と地盤間のジョイント要 素として用いる。

第3.1.2 図に試験から評価に至る一連の検討の流れを示す。

第3.1.1図 建屋外壁部の防水層と西山モルタルの位置関係

建屋側面に防水層が存在する場合に防水層と地盤間で摩擦力が伝達可能か

第3.1.2図 論点①に対する検討フロー

⁴条-別紙1-別3-45

3.2 試験方法

柏崎刈羽原子力発電所の原子炉建屋等で使用されている防水層及び保護層を考慮し, これらを挟むように地盤と躯体からなる供試体を製作する。この供試体に対して, せん 断加力試験を行い, 摩擦特性を把握する。

3.2.1 試験方法の概要

試験は、以下に示す一方向載荷及び繰返し載荷試験とスケール影響試験を実施する。 第3.2.1 表に試験計画の概要を示す。

一方向載荷及び繰返し載荷試験では,一方向載荷や繰返し載荷が可能な試験装置を用いて,せん断加力試験を実施し,摩擦特性データを取得する。

スケール影響試験では、摩擦面積の寸法影響を把握するため、大型供試体及び中型供 試体を作成し、せん断加力試験を実施する。なお、一方向載荷及び繰返し載荷試験結果 より、防水層の部分では滑らず、保護層と西山モルタルの間で滑ることが確認されたこ とより、スケール影響試験の供試体は、西山モルタルと保護層のみを模擬した供試体と する。

試験	目的	概要	摩擦面の	使用試験
			試験寸法(mm)	装置
①一方向載	防水層の基本的な摩擦	建屋側面の構造を模擬		一面せん
荷試験	抵抗特性を把握する。	した供試体を作成し, 一		断試験装
		方向載荷(滑り開始時の		置
		載荷速度がおおむね下	90	
		記の繰返し載荷試験と		
		同程度となる 25mm/s		
		で載荷)による一面せん		
		断試験を実施する。		
②繰返し載	防水層への動摩擦特性	建屋側面の構造を模擬		
荷試験	を把握する。	した供試体を作成し,繰		
		返し載荷(建屋・地盤連		
		成系一次周期相当の		
		2Hz で載荷)による一		
		面せん断試験を実施す		
		る。		
③スケール	摩擦面積の寸法影響を	西山モルタルと保護層	90	一面せん
影響試験	確認する。	を模擬した中型供試体		断試験装
		を作成し,静的一方向載		置
		荷試験(0.02mm/min		
		で載荷)を実施する。		
		西山モルタルと保護層	270	大型一面
		を模擬した大型供試体		せん断試
		を作成し,静的一方向載	27(験装置
		荷試験(0.02mm/min		
		で載荷)を実施する。		

第 3.2.1 表 試験計画概要

3.2.2 建屋側面構造の室内試験へのモデル化

実際に施工された建屋側面の構造は、第3.2.1 図に示すとおり、躯体(コンクリート)、 防水シート、保護層、地盤(西山モルタル)からなる。

一方向載荷及び繰返し載荷試験では上記の建屋側面の構造を模擬するため,第3.2.2 図 に示すような供試体を製作する。なお,供試体の製作も,実際の施工手順におおむね準 じることとし,先ず躯体コンクリートを打設,その上に1層目の防水シートを接着する。 次に,別途敷設した2層目の防水シートに保護層を接着,その上に西山モルタルを打設 する。最後に,1層目と2層目の防水シート間を接着する手順で行う。

また,前述のとおりスケール影響試験の供試体は,西山モルタルと保護層のみを模擬 した供試体とする。各試験に用いる供試体について,第3.2.3 図に示す。

第3.2.3 図 各試験に用いる供試体

4条-別紙1-別3-48

保護層及び防水シートは基本的には実機で用いられた材料を用いることとし, 6 号及 び7号炉で用いられた材料を調査した。調査した結果,対象となる材料が製造されてい ない場合は,同等品を用いた。なお,一般的に合成ゴムや合成樹脂材料(接着剤を含む) の経年劣化要因として熱・紫外線・酸素等が挙げられるが,土中環境においては,比較 的影響が小さいと考えられる。

実機の調査結果及び試験で用いることとした材料を整理して第3.2.2表に示す。

,	使用材料	6号及び7号炉	試験に用いる材料	備考	
1	フ。ライマー	サンタックフ [°] ライマー SR-200	サンタックプ [。] ライマー SR-200		
		<早川ゴム(株)>	<早川ゴム(株)>	—	
2	接着剤	サンタックホント・ T	サンタックホント、PB-50	沙 1	
		<早川ゴム(株)>	<早川ゴム(株)>	往 1	
3	1層目	サンタックルーフ R-400	サンタックルーフ TY-400		
	防水シート	t=1.5mm	t=2.0mm	注2	
		<早川ゴム(株)>	<早川ゴム(株)>		
4	接着剤	サンタックホ゛ント゛ T	サンタックホ [*] ント [*] PB-50	汁 1	
		<早川ゴム(株)>	<早川ゴム(株)>	往1	
5	2 層目	サンタックルーフ TY‐400	サンタックルーフ TY-400		
	防水シート	t=1.5mm	t=1.5mm	_	
		<早川ゴム(株)>	<早川ゴム(株)>		
6	接着剤	水性ボンド	水性ボンド		
		<(株)エイ・アール・センター>	<化研マテリアル株)>	注 3	
7	保護層	テ゛ラタイトフ゜ロテクター+ホ゜リエチレンフ	テ゛ラタイトフ゜ロテクター+ホ゜リエチレンフ		
		4-4	7-4	济 4	
		t=7mm	t=6mm	(土 4	
		<奥山化工業㈱)>	<奥山化工業㈱)>		
8	西山モル	西山泥岩を細かく砕いた			
	タル	ものと砂をセメント系固化材	同左	注5	
		と水で固化させたもの			

第3.2.2 表 実機材料の調査結果及び試験に用いる材料

(注1) 実機と同製品は製造していないので、メーカが指定する同等品を使用

(注2) 実機と同製品は製造していないので、メーカが指定する同一素材の同等品を 使用

(注3) 実機と同製品は製造していないので,防水専門会社(奥山化工業㈱)が指定す る他メーカの同等品を使用

- (注4) t=7mm は製造していないので,試験に保護材の厚みによる影響は小さいと考え, 同一メーカ・同一素材の t=6mm を使用
- (注5) 西山モルタルの基本調合は、下表のとおり

西山モルタルの基本調合

単位量(kg/m ³)			畄位 <u>灾</u> 待重县(+/m₃)		
西山泥岩	砂	固化材	水	中位谷镇里里(UIII9	
230	700	180	600	1.71	

3.2.3 試験装置

試験装置の仕様を第3.2.3表に、試験装置を第3.2.4図~第3.2.9図に示す。

試験装置名称	最大供試体寸法 (mm)	加力方法	最大変位 (mm)
一面せん断 試験装置	縦 70×横 120	静的加力 動的加力(繰返し加力)	20
大型一面せん断 試験装置	縦 300×横 300	静的加力	50

第3.2.3 表 試験装置の仕様

第3.2.4図 一面せん断試験装置

第3.2.5 図 一面せん断試験装置(詳細図)

4 条·別紙 1-別 3-52

第3.2.6 図 一面せん断試験装置全景

第3.2.7図 大型一面せん断試験装置

第3.2.8図 大型一面せん断試験装置全景

4条-別紙1-別3-54

3.3 一方向載荷及び繰返し載荷試験

3.3.1 目的

一方向載荷及び繰返し載荷試験の2種類の動的試験を行うことで、建屋-側面地盤の境 界部に防水層が存在する場合の静止摩擦抵抗~動摩擦抵抗状態に至る一連の基本的な摩 擦特性及び地震時の繰返し条件を想定した場合の動摩擦特性の確認を目的とする。

3.3.2 試験ケース

一方向載荷及び繰返し載荷試験の試験ケースを第3.3.1表に示す。

なお、原子炉建屋の埋め込み深さは約25mであり、常時土圧は~250kN/m²程度である。地震時には、この静土圧に動土圧の変動分が加算される。ここでは、地震時土圧の 変動が摩擦特性に及ぼす影響の有無を確認するため試験体に作用させる垂直圧に幅をも たせることとし、垂直圧を100kN/m²~600kN/m²と設定した。

ケース	加力方法	供試体サイズ	垂直圧
		(mm)	(kN/m^2)
1-1			100
1-2	一方向載荷		200
1-3			400
1-4		幅 60×	600
1-5		加力方向 90	100
1-6	・繰返し載荷		200
1-7			400
1-8			600

第3.3.1表 一方向載荷及び繰返し載荷試験ケース

3.3.3 供試体

供試体は,実機の状態を模擬できるように実機の材料仕様あるいは同等品を用い,さ らに保護層に西山モルタルを打設して製作する。

供試体を第3.3.1 図に示す。

第3.3.1 図 一方向載荷及び繰返し載荷試験供試体

3.3.4 試験結果(一方向載荷試験)

(1) せん断応カーせん断変位関係

試験の結果得られた最大せん断応力とその時のせん断変位の一覧を第 3.3.2 表に, せん断応力-せん断変位関係を第 3.3.2 図(図中□印:第 3.3.2 表で最大せん断応力 とせん断変位を示した点)に示す。

- ① 静止摩擦耐力に相当する最大せん断応力は 125~317kN/m²で, 垂直圧にお おむね比例した値を示した。
- ② いずれの試験においても最大せん断応力を過ぎると摩擦すべりが発生し、荷 重が低下し、動摩擦抵抗状態に移行した。
- ③ 動摩擦耐力は,変位量約15mm以上まで安定的に保持された。

試験 No.	垂直圧	最大せん断応力	せん断変位 *1	
	(kN/m ²)	(kN/m^2)	(mm)	
1-1	100	125	4.1	
1-2	200	181	4.9	
1-3	400	236	5.4	
1-4	600	317	7.4	

第3.3.2表 一方向載荷試驗 試驗結果一覧

*1 最大せん断応力を示した時のせん断変位

4条-別紙1-別3-59

(2) 試験後の状況

試験後の供試体の状況を第3.3.3 図~第3.3.10 図に示す。

供試体は、全試験において保護層表面と西山モルタル表面の間で分離しており、 摩擦すべりは、保護層と西山モルタルの間で生じることが確認された。

なお, 躯体コンクリートと1層目防水シート間, 1層目と2層目の防水シート間及び2層目 防水シートと保護層間は接着剤で強固に接着処理されていることから, 接着処理されてい ない保護層と西山モルタル間で滑りが生じたと考えられる。

一部の試験体で、保護層端部に剥がれが見られるが、試験結果のせん断応力・せん断変位関係は動摩擦領域への移行後も全域にわたり滑らかな性状を示しており、この剥がれ が滑り性状や摩擦特性に影響を与えた可能性は小さいと考えられる。

ケース 1-1 (保護層表面)

第3.3.4 図 一方向載荷試験後の供試体状況 ケース 1-1 (西山モルタル表面)

第3.3.5 図 一方向載荷試験後の供試体状況 ケース 1-2(保護層表面)

第3.3.6 図 一方向載荷試験後の供試体状況 ケース 1-2 (西山モルタル表面)

4条-別紙1-別3-62

第3.3.7図 一方向載荷試験後の供試体状況 ケース1-3(保護層表面)

第3.3.8 図 一方向載荷試験後の供試体状況 ケース 1-3 (西山モルタル表面)

4 条·別紙 1·別 3·63

第3.3.9図 一方向載荷試験後の供試体状況 ケース1-4(保護層表面)

第3.3.10図 一方向載荷試験後の供試体状況 ケース1-4 (西山モルタル表面)

4条·別紙1-別3-64

3.3.5 試験結果(繰返し載荷試験結果)

(1) せん断応力ーせん断変位関係

試験の結果から得られた最大せん断応力とその時のせん断変位の一覧を第3.3.3表 に示す。また,第3.3.11 図に示したように、本試験では一定の垂直圧を作用させた 上で、徐々に目標変位量を漸増させながら変位制御により繰返し載荷を行うため、 目標としたせん断変位量ごとに離散的な試験結果が得られる。全ての繰返し載荷試験 のせん断応力-せん断変位関係を第3.3.12 図(図中□印:第3.3.3 表で最大せん断応 力とせん断変位を示した点)に示す。

なお、繰り返し載荷試験におけるせん断応力については、ピーク値を記録する段 階までを静止摩擦が働く領域と定義し、ピーク値以降でせん断応力が低下した段階 を動摩擦が働く領域と定義した。したがって、最大せん断応力を評価する場合は静 止摩擦による値として試験結果を整理し、残留せん断応力を評価する場合は動摩擦 による値として試験結果を整理した。

- 静止摩擦領域,静止摩擦→動摩擦移行領域,動摩擦領域のいずれの領域においても,安定した荷重変形ループを示した。
- ② 第3.3.2 図に示した一方向載荷試験のせん断応カーせん断変位関係と比較すると、静止摩擦耐力に相当する最大せん断応力及び動摩擦耐力は若干向上する傾向が見られた。

⇒聆 N。	垂直圧	最大せん断応力	せん断変位*1
时间央 INO.	(kN/m^2)	(kN/m^2)	(mm)
1-5	100	136	3.3
1-6	200	164	3.9
1-7	400	236	4.2
1-8	600	363	4.5

第3.3.3表 繰返し載荷試験 試験結果一覧

*1 最大せん断応力を示した時のせん断変位

第3.3.11 図 繰返し載荷試験の試験結果に基づくせん断応カーせん断変位関係 (試験ケース 1-7のデータ整理の例)

4条-別紙1-別3-66

第3.3.12図 繰返し載荷試験 せん断応カーせん断変位関係(全試験ケース 1-5~1-8) (図中□印: 第3.3.3 表で最大せん断応力を示した点)

(2) 試験後の状況

試験後の供試体の状況を第3.3.13図~第3.3.20図に示す。

一方向載荷試験と同様,供試体は,全試験において保護層表面と西山モルタル表面 の間で分離しており,摩擦すべりは,保護層と西山モルタルの間で生じることが確 認された。

なお、一方向載荷試験と同様、躯体コンクリートと1層目防水シート間、1層目と2層目の 防水シート間及び2層目防水シートと保護層間は接着剤で強固に接着処理されていること から、接着処理されていない保護層と西山モルタル間で滑りが生じたと考えられる。

一部の試験体で,保護層端部に剥がれが見られるが,試験結果のせん断応力・せん断変位関係は動摩擦領域に移行後も全域にわたり滑らかな性状を示しており,この剥がれが 滑り性状や摩擦特性に影響を与えた可能性は小さいと考えられる。

第3.3.13図 繰返し載荷試験後の供試体状況 ケース1-5(保護層表面)

第3.3.14 図 繰返し載荷試験後の供試体状況 ケース1-5 (西山モルタル表面)

4条·別紙1·別3-69

第3.3.15図 繰返し載荷試験後の供試体状況 ケース1-6(保護層表面)

第3.3.16図 繰返し載荷試験後の供試体状況 ケース1-6(西山モルタル表面)

第3.3.17図 繰返し載荷試験後の供試体状況 ケース1-7(保護層表面)

第3.3.18 図 繰返し載荷試験後の供試体状況 ケース1-7(西山モルタル表面)

第3.3.19図 繰返し載荷試験後の供試体状況 ケース1-8(保護層表面)

第3.3.20図 繰返し載荷試験後の供試体状況 ケース1-8(西山モルタル表面)

3.3.6 試験結果の評価

第3.3.21 図に、一方向載荷試験4ケース及び繰返し載荷試験4ケースのせん断応力とせん断変位の関係を重ね描いたものを示す。静止摩擦領域及び垂直圧の小さい動摩擦領域において一方向載荷と繰返し載荷試験結果にばらつきが見られる。

なお,載荷方向,載荷速度及び供試体スケール等,試験条件の違いが試験結果に与える 有意な影響は認められなかった。

平均的な摩擦特性(せん断ばね定数及び動摩擦係数)を分析するために、下記の評価点 を設定し(第3.3.22図参照)、せん断ばね定数(=評価点のせん断応力/評価点のせん断変 位)及び動摩擦係数(=評価点のせん断応力/垂直圧)を求めた結果を第3.3.4表に示す。

・せん断ばね定数の評価点

一方向載荷及び繰返し載荷試験結果における最大せん断応力を示す点で評価した。
・動摩擦係数の評価点

一方向載荷試験及び繰り返し載荷試験結果におけるせん断応力がピーク後に安定化 (残留せん断応力)した時点で評価した。ただし、一方向載荷試験においては比較的 安定した残留せん断応力を与える変位を15mmと定義し、繰返し載荷試験においては、 安定化したループ上で、変位=0mmにおける点の平均値で評価した。

せん断ばね定数と垂直圧の相関関係を第 3.3.23 図に示す。せん断ばね定数は垂直圧が高 いと若干増加する傾向が見られる。せん断ばね定数と垂直圧が線形関係にあると考え,最 小二乗法によりせん断ばね定数の近似値を求めると以下となる。

(せん断ばね定数) K_s = 51.9× 垂直圧 o_v+2.98 (×10⁴kN/m/m²)

しかしながら,論点②③で行う解析において,時間刻みで変化する垂直圧に応じてせん 断ばね定数を変化させるのは演算が複雑になり収束しにくくなるため,せん断ばね定数の 違いが解析結果に及ぼす影響は小さいことが推察されることから,ここでは全結果の平均 値として評価することとし,以下の値を採用する。

(解析に用いるせん断ばね定数) K_s = 4.67×10^4 (kN/m/m²)

なお,垂直圧の変動に対して,せん断ばね定数は最大8.06×10⁴(kN/m/m²)~最小3.03×10⁴ (kN/m/m²)とばらついていることから,せん断ばね定数のばらつきの影響について上下 限値を用いた解析を実施し確認する。

動摩擦耐力と垂直圧の相関関係を第3.3.24 図に示す。垂直圧が増加すると動摩擦耐力はおおむね比例して増加する。動摩擦耐力を垂直圧で除した動摩擦係数はおおむね一定値と

見なせると考え,最小二乗法により動摩擦係数の近似値を求めると以下となる。データ数 は少ないものの,拘束圧が小さい部分(100kN/m²)を除けば,動摩擦係数には,ほとんどば らつきは見られない。また,動摩擦耐力は垂直圧に応じて変動するため,拘束圧が小さい 場合は負担するせん断力も小さく,この領域のばらつきが応答性状に与える影響は小さい と考えられることから,解析においては最小二乗法により近似した動摩擦係数を用いた検 討を実施する。

(動摩擦係数) $\mu_d = 0.35$ (動摩擦耐力) $\tau_d = 動摩擦係数 \mu_d \times 垂直圧 \sigma_v (kN/m^2)$

第3.3.21図 一方向載荷及び繰返し載荷試験によるせん断応力ーせん断変位関係

第3.3.22図 せん断ばね定数及び動摩擦係数の評価点 (図中□印: せん断ばね定数の評価点, 図中○印: 動摩擦係数の評価点)

試験ケース		垂直圧 A	最大 せん断応力 B	最大せん断応力時の 最大せん断変位 C	摩擦ばね定数 B/C	残留 せん断応力 D	動摩擦係数 B/A
		kN/m²	<u>kN/m²</u>	mm	<u>kN/m/m²</u>	kN/m ²	
	1-1	100	125	4.1	3.03.E+04	14	0.14
一方向載荷	1-2	200	181	4.9	3.71.E+04	56	0.28
	1-3	400	236	5.4	4.33.E+04	150	0.38
	1-4	600	317	7.4	4.28.E+04	222	0.37
繰返し載荷	1-5	100	136	3. 3	4.16.E+04	43	0.43
	1-6	200	164	3. 9	4.20.E+04	69	0.35
	1-7	400	236	4.2	5.57.E+04	135	0.34
	1-8	600	363	4.5	8.06.E+04	202	0.34

第3.3.4 表 試験結果によるせん断ばね定数と動摩擦係数

第3.3.23 図 せん断ばね定数と垂直圧の関係(一方向載荷及び繰返し載荷試験)

第3.3.24 図 動摩擦耐力と垂直圧の関係(一方向載荷及び繰返し載荷試験)

3.4 スケール影響試験

3.4.1 目的

供試体に用いたコンクリート,防水層,保護層及び西山モルタルは全て実機と同製品 若しくは同等品を用いており,実大の供試体となっている。また,せん断ばね定数や動 摩擦係数は,一般的に摩擦面積に影響を受けないと考えられている。しかし,前述の一 方向載荷及び繰返し載荷試験に用いた供試体の摩擦面は90mm×60mmであり,実機の地下 外壁に比べ非常に小さい。そこで,念のため摩擦面積の大きい場合について確認試験を 行う。

ここでは、大型一面せん断試験装置の可能な範囲で、摩擦面積が大きい供試体(中型: 幅 60mm×加力方向 90mm に対し、大型:幅 270mm×加力方向 270mm)を用いる。な お、試験装置の制約より前述の一方向載荷試験及び繰返し載荷試験で行った動的載荷が 行えないため、ここでは静的な一方向載荷によりスケール影響を確認した。

3.4.2 試験ケース

スケール影響試験ケースを第3.4.1表に示す。

k. 7	加力	供きけよくブ	垂直圧
リース		浜祇体サイス	(kN/m^2)
2-1	一方向 載荷	hor commy	200
2-2		幅 60mm× 加力支向 00mm	400
2-3			600
2-4		梔 270mm ×	200
2-5		™ 270mm×	400
2-6			600

第3.4.1 表 スケール影響試験ケース

3.4.3 供試体

(1) 供試体

前述の一方向載荷及び繰返し載荷試験結果で滑り面が保護層と西山モルタルの間であることが確認されたことより,スケール影響試験の供試体は,西山モルタルと保護層のみを模擬した供試体とした。

供試体を第3.4.1 図に示す。

(中型供試体)

第3.4.1図 スケール影響試験供試体

3.4.4 試験結果

(1) せん断応カーせん断変位関係

せん断応力-せん断変位関係を第3.4.2 図に, 試験結果一覧を第3.4.2 表に示す。試験結果より以下を確認した。

- ① 静止摩擦耐力に相当する最大せん断応力は、中型供試体で156~265kN/m²、 大型供試体で141~278kN/m²で、垂直圧におおむね比例した値を示した。
- ② いずれの試験においても最大せん断応力を過ぎると摩擦すべりが発生し、荷 重が低下し、動摩擦抵抗状態に移行した。
- ③ 動摩擦耐力は,変位量約20mm以上までおおむね安定的に保持された。
- ④ 同じ垂直圧条件での中型供試体と大型供試体の結果を比較すると、動摩擦状態に至るまでのせん断応カーせん断変位関係には多少差異が見られるものの動摩擦耐力はおおむね一致した。
- ⑤ 垂直圧を変化させても中型供試体と大型供試体はおおむね類似した摩擦特 性を示した。

以上のことから、摩擦面積の違いによる顕著なスケール影響は認められない と考えられる。

第3.4.2図 スケール影響試験 せん断応力ーせん断変位関係

試験ケ		垂直圧 A (kN/m²)	最大 せん断応力 B (kN/m²)	最大せん断応力 時のせん断変位 C (mm)
山田	2-1	200	156	7.0
中空	2-2	400	206	7.9
中代初天	2-3	600	265	8.2
大型 試験	2-4	200	141	9.8
	入空 2-5 400	400	238	10.1
	2-6	600	278	9.5

第3.4.2 表 スケール影響試験 試験結果一覧表

(2) 試験後の状況

試験後の供試体の状況を第3.4.3 図~第3.4.14 図に示す。

一方向載荷試験及び繰り返し載荷試験と同様に、一部の試験体で保護層端部に剥が れが見られるが,試験結果のせん断応力-せん断変位関係は動摩擦領域に移行後も全域 にわたり滑らかな性状を示しており,この剥がれが滑り性状や摩擦特性に影響を与えた可 能性は小さいと考えられる。

第3.4.3 図 スケール影響試験後の供試体状況 ケース 2-1 (保護層表面)

第3.4.4 図 スケール影響試験後の供試体状況 ケース 2-1 (西山モルタル表面)

スケール影響試験後の供試体状況 ケース 2-2 (保護層表面) 第 3.4.5 図

第3.4.6 図 スケール影響試験後の供試体状況 ケース 2-2 (西山モルタル表面)

第3.4.7図 スケール影響試験後の供試体状況 ケース2-3(保護層表面)

第3.4.8 図 スケール影響試験後の供試体状況 ケース 2-3 (西山モルタル表面)

第3.4.9図 スケール影響試験後の供試体状況 ケース 2-4 (保護層表面)

第3.4.10図 スケール影響試験後の供試体状況 ケース2-4 (西山モルタル表面)

第3.4.11図 スケール影響試験後の供試体状況 ケース2-5(保護層表面)

第3.4.12図 スケール影響試験後の供試体状況 ケース2-5 (西山モルタル表面)

第3.4.13図 スケール影響試験後の供試体状況 ケース2-6(保護層表面)

第3.4.14図 スケール影響試験後の供試体状況 ケース2-6 (西山モルタル表面)

3.5 考察

実機地下外壁の防水仕様を模擬した各種摩擦試験(一方向載荷試験,繰返し載荷試験, スケール影響試験)を行い,防水層が存在する場合の建屋-側面地盤間の摩擦特性を確認 した。その結果,以下の結論を得た。

- (1)防水層が存在する場合の防水層と地盤間の摩擦力伝達の可否 実験結果に基づき得られた以下の検討結果より、防水層が存在する場合の防水層と地 盤間は安定した摩擦力伝達が可能と判断する。
 - 防水層が存在する建屋・側面地盤間の摩擦力とせん断変位の関係(せん断ばねの剛性)は、摩擦すべりが生じるまで安定した特性を有する。
 - ② 摩擦すべりが生じると摩擦力は一旦低下するが、動摩擦状態にスムーズに移行し、 安定した動摩擦耐力を維持する。
 - ③ 地震時の繰返し条件を想定した場合においても安定した動摩擦耐力を保持する。
 - ④ 摩擦面積の違いにより顕著な摩擦特性へのスケール影響は認められない。
- (2)防水層が存在する場合の防水層と地盤間の摩擦特性 論点②~論点③の検討に用いる FEM モデルにおいて予定する地下外壁と地盤間の摩 擦を模擬したジョイント要素の条件として,実験結果より得られた以下の摩擦特性(第 3.5.1 図参照)を用いることで,より実情に近い解析結果を得ることが可能と判断する。
 - ① せん断ばね定数 K_s = 4.67×10⁴ (kN/m/m²)
 - ② 動摩擦係数 $\mu_{d} = 0.35$
 - ③ 動摩擦耐力 τ_d = 動摩擦係数 $\mu_d \times \pm$ 重正 σ_v (kN/m²)

第3.5.1 図 2 次元 FEM 解析モデルで用いる地下外壁と地盤間の摩擦特性

4. 論点②に対する検討

(論点② 地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られ,埋め込み SR モデルへ回転ばねを適用することが妥当か)

4.1 検討概要

論点②に対して以下の検討を行う。

(1) 地震時の側面地盤の剥離や土圧変動を考慮した建屋拘束効果の検討

剥離や土圧変動を考慮した 2 次元 FEM モデルによる地震応答解析を実施し,地震時に建 屋と地盤間がどの程度接触しているか,建屋と地盤間の摩擦でどの程度応力伝達ができる かを確認する。さらに,建屋の回転に対する側面地盤反力の観点より,2次元 FEM モデル による反力を算定し,埋め込み SR モデルによる結果と比較検討を行う。これらより,地震 時に地盤・建屋間の剥離や土圧変動を考慮しても,側面地盤の拘束効果が得られることを確 認する。

(2) 2次元 FEM モデルと埋め込みSRモデルによる建屋応答比較

NOVAK ばねで表現した埋め込み SR モデルによる地震応答解析を実施し、2次元 FEM モデルによる建屋応答の比較検討を行う。これにより、NOVAK ばねで表現した埋め込み SR モデルによる建屋応答解析の妥当性を確認する。

なお、上記の地震応答解析で対象とする地震動は、4.1.1 に示す基準地震動 Ss-1 とする。 検討フローを第4.1.1 図及び第4.1.2 図に示す。

なお、上記検討に加え、論点①に示した摩擦試験結果のばらつき範囲を考慮した 2 次元 FEM 解析を実施し、建屋応答に及ぼす影響について確認する。

第4.1.1 図 論点②に対する検討フロー (その1)

第4.1.2図 論点②に対する検討フロー(その2)

4.1.1 検討用地震動

対象とする地震動は基準地震動 Ss-1 とする。 第 4.1.1.1 図に基準地震動 Ss-1 の加速度波形を示す。

第4.1.1.1図 基準地震動 Ss-1の加速度波形(解放基盤表面)

4.1.2 解析モデル

(1) 2 次元 FEM モデル

原子炉建屋を質点系モデル,地盤を2次元 FEM モデルとし,原子炉建屋地下外壁と 側面地盤の間の接触剥離や上下方向の摩擦すべり,及び,建屋基礎底面の浮上りを考 慮した詳細なモデルを用いて非線形地震応答解析*1を行い,応答性状を把握する。

なお、本検討で用いる 2 次元 FEM モデルについては、2007 年新潟県中越沖地震に 対するシミュレーション解析を実施し、モデルの信頼性について別途検証を行ってい る。(添付資料 2 参照) また、2 次元 FEM モデルを用いた理由は以下のとおりである。

- ・2次元 FEM モデルでは外壁周辺の側面地盤の剥離や摩擦力,外壁に作用する変動 土圧は地震入力方向に直交する面(2面)に考慮されるが,地震入力方向に並行と なる面(2面)に対しては,剥離や変動土圧に伴う摩擦力は考慮しないことになる。 したがって,地盤を3次元 FEM とする場合よりも地盤による建屋の拘束効果は小 さ目に考慮されると考えられる。
- ・ 2 次元 FEM 解析に比べて 3 次元 FEM 解析は解析時間が多大に要する。このため、 解析条件を変えた影響検討を含めた解析を行う場合等では、2 次元 FEM 解析のほうが有用である。

*1 使用する解析プログラムは KANDYN_2N ver.4.06(鹿島建設株式会社による開 発,所有)

1) 地盤のモデル化

成層地盤に加えて建屋地下外壁側面のマンメイドロックを考慮した地盤とする。成 層地盤の物性は、第4.1.1.1 図に示す基準地震動 Ss-1 を対象に、既工認における地盤 物性値(せん断波速度,単位体積重量等)と非線形特性(剛性低下率 G/G0~γ及び減 衰定数h~γ)を用いて、地盤のひずみ依存特性を考慮した一次元波動論による等価 線形解析*2 の結果に基づく等価物性とする。地盤の減衰特性はレーリー減衰とし、各 地盤の減衰定数を与える。

地盤の境界条件は、地盤の半無限的な広がりを表現するために、底面を粘性境界、 側面を粘性境界かつ周期境界とする。また、境界条件の影響を受けないように、地盤 のモデル化範囲を大きく設定し、水平方向は原子炉建屋の建屋幅の 6 倍程度、深さ方 向は地表面から解放基盤表面までとした。

第 4.1.2.1 表に成層地盤の物性を,第 4.1.2.2 表にマンメイドロックの物性を示す。 第 4.1.2.1 図~第 4.1.2.4 図に地盤のメッシュを示す。

*2 使用する解析プログラムは SHAKE_ ver.1.6.2

2) 建屋地下外壁と側面地盤のジョイント部のモデル化

建屋地下外壁と側面地盤の間は,側面地盤の剥離・接触を表す軸ばね(水平方向) 及びせん断抵抗を表すせん断ばね(上下方向)で接続する。

軸ばねは,側面地盤が剥離したときには剛性(引張方向)を0とし,接触中の剛性 (圧縮方向)は剛とした。また,軸ばねには静止土圧による初期応力を考慮する。軸 ばねは側面地盤モデルのFEMメッシュの各節点に設置する。

せん断ばねは、軸ばねと連成させて、側面地盤の剥離が生じている間は摩擦を 0 と する。また、せん断ばねの力が動摩擦力に達すると滑りが発生するものとし、軸ばね の圧縮軸力に応じて動摩擦力が変動するようにした(動摩擦力=動摩擦係数×圧縮軸 力)。なお、動摩擦係数及びせん断ばねのせん断剛性は摩擦試験結果から設定した。な お、せん断ばねは摩擦試験により摩擦力の存在が確認できたマンメイドロックと接触 している FEM メッシュの節点にのみに設定する。

第 4.1.2.5 図に地下外壁と側面地盤要素接合及び建物基礎と底面地盤要素接合の概念 図を示す。また,第 4.1.2.6 図にせん断ばねの特性を示す。

3) 建屋基礎底面と地盤のジョイント部のモデル化

建屋基礎底面部分は浮上りを考慮する。基礎底面の地盤の FEM メッシュの各節点に は浮上りを表す鉛直方向の軸ばねを設定する。鉛直方向の軸ばねについては,引張側 の剛性は 0, 圧縮側の剛性は剛とした。初期状態では基礎底面に建屋の自重による長期 軸力を考慮する。

4)原子炉建屋のモデル化

原子炉建屋は後述する埋め込み SR モデルと同様とする。

標高 T.M.S.L (m)	地層	せん断波 速度 Vs (m/s)	単位体積 重量 γ (kN/m ³)	ポアソン比 ν	せん断 弾性係数 G (×10 ² N/mm ²)	ヤング 係数 E (× 10^2 N/mm ²)	減 定 数 h (%)
+12.0	〔砂圈〕	150	16.1	0.347	0.10	0.27	23
+8.0	〔 ¹¹ 〕/il)/il	200	16.1	0.308	0.08	0.21	28
+4.0	古安田層	330	17.3	0.462	1.01	2.95	6
-6.0		490	17.0	0.451	3.82	11.09	3
-33.0	西山層	530	16.6	0.446	4. 22	12. 20	3
-90.0		590	17.3	0. 432	5.28	15. 12	3
-136.0		650	19.3	0.424	7.40	21.08	3
-155.0	(解放) 基盤)	720	19.9	0.416	10.50	29.74	-

第 4.1.2.1 表 地盤物性

第4.1.2.2 表 マンメイドロックの物性

単位体積重量	ポアソン比	せん断弾性係数	ヤング係数	減衰定数
(kN/m ³)		(N/mm ²)	(N/mm ²)	(%)
17.2	0.36	1910.0	5195.2	2.0

第4.1.2.2 図 地盤メッシュ図(EW方向)

第4.1.2.4 図 建屋周辺の地盤メッシュの詳細(EW方向)

第4.1.2.5 図 建屋地下外壁と側面地盤要素及び建物基礎と 底面地盤要素との接合部のモデル化概要

第4.1.2.6図 建屋地下外壁と側面地盤の間のせん断ばねの特性

(2) 埋め込み SR モデル

今回工認の水平方向の地震応答解析モデルは,建屋を質点系モデルとした埋め込み SRモデルである。埋め込み効果を考慮するため,原子炉建屋の地下外壁側面部分には 側面水平ばねと側面回転ばねを取付けている。側面水平ばねと側面回転ばねはいずれ も NOVAK ばねとして,第4.1.2.1 表の地盤物性に基づき第2.1.1 表に示す式により算 定している。なお,表層地盤については地盤の非線形化が大きいため埋め込み効果が 期待できないものとして側面水平ばねと側面回転ばねを無視する。

原子炉建屋のせん断剛性及び曲げ剛性は非線形とし、今回工認で用いる予定の建屋 諸元を有するものとする。また、建屋の減衰は今回工認と同じひずみエネルギー比例 減衰とし、減衰定数は h=5% とする。

第4.1.2.7 図に建屋のモデル図を,第4.1.2.3 表~第4.1.2.5 表に諸元を示す。コンク リートの実強度(43.1N/mm²)に基づく剛性を反映し、かつ補助壁を考慮した今回工認モ デルに対応したモデルとなっている。

第 4.1.2.7 図 今回工認で採用予定の埋め込み SR モデル

		回封煙性毛目	1上 / 脉广	WE TO VA	
質点 番号	質点重量 W (kN)	凹転頂性里重 I _G (×10 ⁵ kNm ²)	せん町 断面積 As (m ²)	町田 2 次 モーメント I (m4)	
1	39,540	70.7			
		100.0	41.0	13,600	
2	79,450	403.0	82.4	50,500	
3	86,670	484.3	100.0		
4	83.020	287.2	183.8	71,400	
	, 		126.5	70,400	
5	55,470	199.9	183.7	87.200	
6	82,360	293.2	100.0	, , , , , , , , , , , , , , , , , , , ,	
7	78,650	291.3	180.2	103,000	
	,		201.8	112,800	
8	79,430	293.2	271.5	119.000	
9	339,800	936.5			
10	216,920	580.6	3,373.4	900,600	
合計	1,956,740				

第4.1.2.3 表 埋め込み SR モデルの諸元 (NS 方向)

質点 番号	質点重量 W (kN)	回転價性重量 I _G (×10 ⁵ kNm ²)	せん断 断面積 <u>As (m²)</u>	断面 2 次 モーメント I (m ⁴)
11	94,140	33.3	110.0	
12	157,400	384.4	118.2	7,200
13	101 890	303.0	109.2	23,300
10	100.050	400.1	122.8	23,500
14	199,370	400.1	133.0	23,400
15	125,920	392.3	119.5	23 600
16	136,710	369.7	110.0	28,000
			129.7	29,500

建屋部 ヤング係数 Ec 2.88×10⁴ (N/mm²) せん断弾性係数 G 1.20×10⁴ (N/mm²) ポアソン比 v 0.20 減衰定数 h 5% ②基礎スラブ

ヤング係数 Ec 2.79×10⁴ (N/mm²) せん断弾性係数 G 1.16×10⁴ (N/mm²) ポアソン比 v 0.20 減衰定数 h 5%

基礎形状 56.6m (NS 方向) ×59.6m (EW 方向)
質点 番号	質点重量 W (kN)	回転慣性重量 I _G (×10 ⁵ kNm ²)	せん断 断面積 As (m²)	断面 2 次 モーメント I (m4)
1	39,540	147.4		
-	5 0 (7 0	201.0	54.7	29,900
2	79,450	301.3	122.6	61.200
3	91,670	303.9		- ,
4	67 180	275.6	166.9	89,400
-	01,100		139.1	82,600
5	52,160	220.6	153.8	96 200
6	81,290	330.4	100.0	00,200
7	77.080	317 7	197.0	111,700
'	11,000	517.7	215.7	124,000
8	77,960	320.7	280.2	191.000
9	339,800	1030.7	260.2	131,000
10	216,920	647.2	3,373.4	998,600
合計	1,956,740		1	

第 4.1.2.4 表 埋め込み SR モデルの諸元 (EW 方向)

質点 番号	質点重量 W (kN)	回転慣性重量 I _G (×10 ⁵ kNm ²)	せん断 断面積 As (m²)	断面 2 次 モーメント I (m ⁴)
11	89,140	275.6	2.42.0	
12	173,240	480.4	243.6	6,700
13	105,200	332.4	162.9	23,300
14	200,440	439.3	118.6	23,100
15	127,490	433.5	179.1	21,400
16	138,180	408.9	138.6	23,800
			150.0	20,000

5,740

①建屋部

ヤング係数 Ec 2.88×104 (N/mm²) せん断弾性係数 G 1.20×104 (N/mm²) ポアソン比 v 0.20 減衰定数 h 5% ②基礎スラブ

ヤング係数 Ec 2.79×10⁴ (N/mm²) せん断弾性係数 G 1.16×10⁴ (N/mm²) ポアソン比 v 0.20 減衰定数 h 5%

基礎形状 56.6m(NS 方向)×59.6m(EW 方向) 回転ばね K₀ 2.13×10¹⁰(kNm/rad)

第4.1.2.5 表 地盤のばね定数と減衰係数

ばね 番号	質点番号	地盤ばね成分	ばね定数 ^(*1) K _c	減衰係数 ^(*2) C _c
K1	7	側面·並進	1.07×10^{6}	4.24×10^{5}
K2	7	側面·回転	8. 33×10^8	1.05×10^{8}
K3	8	側面·並進	2.85 $\times 10^{6}$	1.13×10^{6}
K4	8	側面·回転	2. 21×10^8	2.80 $\times 10^{8}$
K5	9	側面·並進	8.53 $\times 10^{6}$	1.73×10^{6}
K6	9	側面・回転	6. 73×10^8	3.98×10^8
K7	10	側面·並進	4. 52×10^{6}	8.62 $\times 10^{5}$
K8	10	側面·回転	3. 54×10^8	1.96×10^{8}
К9	10	底面・並進	7. 28×10^7	2.84 $\times 10^{6}$
K10	10	底面・回転	7.06 $\times 10^{10}$	6.09 $\times 10^{8}$

(NS 方向)

(*1) K1,K3,K5,K7,K9はkN/m K2,K4,K6,K8,K10はkNm/rad

(*2) K1, K3, K5, K7, K9 は kNs/m K2, K4, K6, K8, K10 は kNsm/rad

(EW 方向)

ばね 番号	質点番号	地盤ばね成分	ばね定数 ^(*1) K _c	減衰係数 ^(*2) C _c
K1	7	側面·並進	1.07×10^{6}	4. 26×10^5
K2	7	側面·回転	8.33 $\times 10^{8}$	1.06×10^{8}
K3	8	側面·並進	2.85 $\times 10^{6}$	1.13×10^{6}
K4	8	側面·回転	2. 21×10^8	2.80 $\times 10^{8}$
K5	9	側面·並進	8.53 $ imes 10^{6}$	1.73×10^{6}
K6	9	側面·回転	6. 73×10^8	4.00 $\times 10^{8}$
K7	10	側面·並進	4. 52×10^{6}	8.61 $ imes$ 10 ⁵
K8	10	側面·回転	3. 54×10^8	1.97×10^{8}
К9	10	底面・並進	7. 25×10^{7}	2.82 $\times 10^{6}$
K10	10	底面・回転	7. 60×10^{10}	7. 10×10^8

(*1) K1, K3, K5, K7, K9 / kN/m K2, K4, K6, K8, K10 / kNm/rad

(*2) K1, K3, K5, K7, K9 ½ kNs/m K2, K4, K6, K8, K10 ½ kNsm/rad

4.1.3 解析ケース

第4.1.3.1 表に解析ケースを示す。原子炉建屋を単独とした NS 方向と EW 方向の 2 ケースである。なお、2 次元 FEM モデルにおいて、地盤のモデルには、埋め込み SR モデルの地震応答解析と同じ成層地盤に加えて、地下外壁に接しているマンメイドロック (MMR) を考慮する。

No	方向	建屋	地盤	備考	
1	NS 方向 原子;	百乙后母民畄孙	成層地盤+外壁側面	NS 方向	
1		尿丁炉建度单强	の MMR	基本ケース	
2 EW 方向	百乙后建民畄幼	成層地盤+外壁側面	EW 方向		
	Ŀ₩ 刀凹 尿于炉建全单独	の MMR	基本ケース		

第4.1.3.1 表 解析ケース

MMR:マンメイドロック

4.2 建屋拘束効果の検討

4.2.1 2次元 FEM モデルによる検討

地震時の側面地盤の剥離や土圧変動を考慮しても建屋拘束効果が得られるかについて,地震応答 解析結果について以下のとおり検討を行った。

(1) NS 方向

第4.2.1.1 図及び第4.2.1.2 図に地下外壁と側面地盤の間を接続する軸ばねの軸圧の時刻歴 を、高さ方向に領域を設定しその領域ごとにまとめて、単位面積当たりの応力に換算して示 す。ここで、各領域は埋め込み SR モデルにおける各質点にとりつく側面回転ばねの支配領 域に対応する。また、第4.2.1.3 図に上記の両側の地下外壁にある軸ばねの軸圧の時刻歴を応 答の比較的大きい時刻について重ね描きしたものを示す。

これらの結果から以下が明らかである。

- ・軸圧は深度が増すほど大きくなる傾向にあり、ごく短時間の剝離が生じた場合にゼロに なることもあるが、大部分の時間帯で軸圧が作用した状態となる。
- ・外壁両側の軸圧の時刻歴には逆位相の傾向がみられ、片側が剥離(軸圧 0) してもその 反対側では軸圧が作用している。
- ・軸圧は最大 700kN/m²程度であり、摩擦試験で対象とした垂直圧の範囲と整合する。

第4.2.1.4 図及び第4.2.1.5 図に地下外壁と側面地盤の間を接続するせん断ばねのせん断応 カ(摩擦力)の時刻歴を,建屋の南側及び北側について,高さ方向に領域をとりその領域ご とにまとめて,単位面積当たりの応力に換算して示す。ここで,各領域は埋め込み SR モデ ルにおける各質点にとりつく側面回転ばねの支配領域に対応する。また,第4.2.1.6 図及び第 4.2.1.7 図に領域ごとに平均化したせん断ばねのせん断変位の時刻歴を示す。

- これらの結果から以下が明らかである。
- ・軸圧の時間変化と建物の振動性状との組合せによるものとなり、ばねのせん断応力は、 時間領域で細かく変動している。
- ・建屋が側面地盤よりも沈み込む方向をせん断ばねの正側にとると、建屋のロッキングに より沈み込むと考えられる正側でせん断力が大きくなる傾向を示している。
- ・せん断変位分布は地表に近いほど大きい傾向にある。
- ・せん断ばねの最大変位は13mm 程度であり、側面地盤と建屋が剥離した状態で生じている。また、側面地盤と建屋が接触した状態での最大変位は6mm 程度である。

せん断ばねは,軸圧の変化に応じて保持できる最大せん断力が変化する。ある軸圧下で最 大せん断力に達した後は,一定の力を保ちながら滑る設定である。また,軸ばねに剥離が生

じた際にはせん断力は作用しない。

せん断変位は、せん断力作用時においてはせん断力と線形関係にあるが、せん断ばねに滑 りが生じた場合や剥離が生じた場合には線形関係にはない。(各ケースに共通)

(2) EW 方向

第4.2.1.8 図及び第4.2.1.9 図に地下外壁と側面地盤の間を接続する軸ばねの軸圧の時刻歴 を,高さ方向に領域をとりその領域ごとにまとめて,単位面積当たりの応力に換算して示す。 ここで,各領域は埋め込み SR モデルにおける各質点にとりつく側面回転ばねの支配領域に 対応する。また,第4.2.1.10 図に上記の両側の地下外壁にある軸ばねの軸圧の時刻歴を重ね 描きして示す。

これらの結果から以下が明らかである。

- ・軸圧は深度が増すほど大きくなる傾向にあり、ごく短時間の剝離が生じた場合にゼロに なることもあるが、大部分の時間帯で軸圧が作用した状態となる。
- ・外壁両側の軸圧の時刻歴には逆位相の傾向がみられ、片側が剥離(軸圧 0) してもその 反対側では軸圧が作用している。
- ・軸圧は最大800kN/m²程度であり、摩擦試験で対象とした垂直圧の範囲と整合する。

第4.2.1.11 図及び第4.2.1.12 図に地下外壁と側面地盤の間を接続するせん断ばねのせん断 応力(摩擦力)の時刻歴を,建屋の東側及び参考に西側について,高さ方向に領域をとりそ の領域ごとにまとめて,単位面積当たりの応力に換算して示す。ここで,各領域は埋め込み SR モデルにおける各質点にとりつく側面回転ばねの支配領域に対応する。また,第4.2.1.13 図及び第4.1.5.14 図に領域ごとに平均化したせん断ばねのせん断変位の時刻歴を示す。

- これらの結果から以下が明らかである。
- ・軸圧の時間変化と建物の振動性状との組合せによるものとなり、ばねのせん断応力は、 時間領域で細かく変動している。
- ・建屋が側面地盤よりも沈み込む方向をせん断ばねの正側にとると、建屋のロッキングに より沈み込むと考えられる正側でせん断力が大きくなる傾向を示している。
- ・せん断変位分布は地表に近いほど大きい傾向にある。
- ・せん断ばねの最大変位は10mm 程度であり、側面地盤と建屋が剥離した状態で生じている。また、側面地盤と建屋が接触した状態での最大変位は6mm 程度である。

4 条·別紙 1·別 3·111

軸圧は, 地盤を圧縮する 方向を正とする

第4.2.1.2図 軸ばねの軸圧の時刻歴(NS方向基本モデル,北側)

第4.2.1.3 図 南側と北側の軸ばねの軸圧の時刻歴の比較(NS方向基本モデル)

※領域1と2にはせん断ばねがモデル化されていないため, 領域3と4のみの作図となっている。

第4.2.1.4 図 せん断ばねのせん断応力の時刻歴(NS方向基本モデル,南側)

せん断応力は, 地盤に沈み込んだとき に生ずる力の方向を正とする

第4.2.1.5 図 せん断ばねのせん断応力の時刻歴(NS方向基本モデル,北側)

せん断変位は建屋が地盤より下に ずれたとき,値を正とする

※領域1と2にはせん断ばねがモデル化されていないため, 領域3と4のみの作図となっている。

第4.2.1.6 図 せん断ばねのせん断変位の時刻歴 (NS 方向基本モデル,南側)

第4.2.1.7図 せん断ばねのせん断変位の時刻歴(NS方向基本モデル,北側)

第4.2.1.8図 軸ばねの軸圧の時刻歴(EW方向基本モデル,西側)

第4.2.1.9図 軸ばねの軸圧の時刻歴(EW方向基本モデル,東側)

1F 床以深(T.M.S.L.12.3m~)

B1F床位置(T.M.S.L.4.8m)

B3F床位置(T.M.S.L.-8.2m)

領域4のみの作図となっている。

第4.2.1.11図 せん断ばねのせん断応力の時刻歴(EW方向基本モデル,西側)

第4.2.1.12図 せん断ばねのせん断応力の時刻歴(EW方向基本モデル,東側)

せん断変位は建屋が地盤より下に ずれたとき,値を正とする

※領域1~3にはせん断ばねがモデル化されていないため, 領域4のみの作図となっている。

第4.2.1.13図 せん断ばねのせん断変位の時刻歴(EW方向基本モデル,西側)

せん断変位は建屋が地盤より下に ずれたとき,値を正とする

第4.2.1.14図 せん断ばねのせん断変位の時刻歴(EW方向基本モデル,東側)

(1) 検討概要

ここでは先ず,第4.2.2.1 図に示す建屋の回転に対する側面地盤反力について,埋め込み SR モ デルの NOVAK ばね(側面地盤ばね)に生じる地盤反力と2次元 FEM モデルの側面地盤ばねに 生じる地盤反力を算定し比較する。2次元 FEM モデルの側面地盤ばねに生じる地盤反力について は、2次元 FEM モデルの解析結果を用い,建屋外壁と側面地盤間のジョイント要素に生じる力か ら側面地盤反力を算定する。その結果を埋め込み SR モデルの NOVAK ばねに生じる側面地盤反 力と比較する。

第4.2.2.1図 建屋の回転に対する側面地盤反力のイメージ

(2) 検討条件

1) 検討ケース

第4.2.2.1 表に解析ケースを示す。原子炉建屋を単独とした NS 方向及び EW 方向の基本ケースについて検討する。

ケース	方向	建屋	地盤	備考
1	NG 十古	百乙后母民出劝	成層地盤+外壁側面	NS 方向
T	NO刀凹	原于炉建産单强	の MMR	基本ケース
		百乙后冲已光冲	成層地盤+外壁側面	EW 方向
2	EW 万问 原于炉建厔単独	の MMR	基本ケース	

第4.2.2.1 表 検討ケース

MMR:マンメイドロック

2) 解析モデル

解析モデルは、4.1.2 に示した NS 方向と EW 方向の 2 次元 FEM 解析モデル、及び、NS 方向 と EW 方向の埋め込み SR モデルを用いる。

3) 検討用地震動

対象とする地震動は 4.1.1 に示した基準地震動 Ss-1 とする。

4) 側面地盤反力算定方法

第4.2.2.2 図に示すように、埋め込み SR モデルの NOVAK の側面地盤回転ばねに対応する 2 次元 FEM モデルの領域を区切り、表層地盤や建屋底面地盤の影響を受けにくい代表領域に ついて建屋の回転に対する側面地盤反力(曲げモーメント M)を算定する。

第4.2.2.2 表に選定した代表領域を示す。表層の影響を受けにくい地下2階(T.M.S.L-1.7m) レベルの地盤ばねに相当する領域③と建屋底面地盤の影響を受けにくい地下3階(T.M.S.L -8.2m)レベルの地盤ばねに相当する領域④を選定する。

第4.2.2.3 図に側面地盤反力の算定方法の概要を示す。

埋め込み SR モデルの側面地盤反力 M_{SR} は、NOVAK の水平ばね反力 P_H に基礎下端からの高 さ h を掛けた曲げモーメント Mp (= P_H ・h) と NOVAK の回転ばね反力 M の和として算定す る。

2 次元 FEM モデルの側面地盤反力 M_{FEM} については、軸ばね反力 P_H に基礎下端からの高さ h を掛けた曲げモーメントの合計 Mph (= $\Sigma P_H \cdot h$) とせん断ばね反力 P_V に基礎中心から基礎 端部までの長さ L を掛けた合計 Mpv (= $\Sigma P_V \cdot L$) との和として、埋め込み SR モデルの NOVAK ばねの支配領域ごとに算定する。

第4.2.2.2 図 2 次元 FEM モデルの領域区分

領域名	埋め込み SR モデル	2 次元 FEM モデル
領域③	Т.М.S.L -1.7m Ø	T.M.S.L -4.95m~1.55m
	NOVAK ばね	に位置する地盤ばね
領域④	T.M.S.L -8.2m の	T.M.S.L -10.45m~-4.95m
	NOVAK ばね	に位置する地盤ばね

第4.2.2.2 表 領域区分(対象とする建屋・地盤間モデル化部分)

(埋め込み SR モデル)

2次元 FEM の側面地盤反力 MFEM

= Σ (せん断ばね反力 $P_V \times 建屋中心から端部までの長さ L)$ + Σ (軸ばね反力 $P_H \times 基礎下端からの高さ h)$

(2 次元 FEM モデル)

第4.2.2.3図 側面地盤反力算定方法の概要

(3) 検討結果

ケース1(NS 方向)の領域③(T.M.S.L-1.7m レベル)及び領域④(T.M.S.L-8.2m レベル)の 側面地盤反力(曲げモーメント)の算定結果を第4.2.2.5 図及び第4.2.2.6 図に示す。2 次元 FEM の側面地盤反力と埋め込み SR の側面地盤反力は共に,建屋応答(曲げモーメント)と同等オー ダー(×10⁹N・m)の比較的大きな値を示しており,建屋の拘束効果が認められる。

ケース2(EW 方向)の領域③(T.M.S.L -1.7m レベル)及び領域④(T.M.S.L -8.2m レベル)の 側面地盤反力(曲げモーメント)の算定結果を第4.2.2.7 図及び第4.2.2.8 図に示す。ケース1(NS 方向)と同様,2次元 FEM の側面地盤反力と埋め込み SR の側面地盤反力は共に建屋応答(曲げ モーメント)と同等オーダー(×10⁹N・m)の比較的大きな値を示しており,領域④についても 建屋の拘束効果が認められる。

なお,ケース1(NS方向)及びケース2(EW方向)共に,2次元 FEMの側面地盤反力の方が埋め 込みSRの側面地盤反力よりも小さい。これは,2次元 FEMでは外壁に作用する変動土圧は地震 入力方向に直交する面(2面)に考慮されるが,地震入力方向に並行となる面(2面)からの拘束 力は考慮されていないこと等,モデル化の違いが要因のひとつとして考えられる。(第4.2.2.4 図 参照)

以上より,地震時の側面地盤の剥離や土圧変動が考慮されている2次元 FEM の側面地盤反力 と埋め込み SR モデルの側面地盤反力を比較した結果,両者は同様に建屋を拘束する効果を与え ていることが確認できた。

第4.2.2.4 図 2次元 FEM による地盤と建屋のモデル化のイメージ

4.3 建屋応答の比較

建屋地下外壁と側面地盤の接触剥離や摩擦すべり等を考慮した2次元 FEM による建屋応 答を、今回工認で用いる埋め込み SR モデルによる建屋応答を比較することにより、両者の モデルによる結果が同等であれば、埋め込み SR モデルに用いる側面回転ばねは有効である と考える。

埋め込み SR モデルと比較する地盤を 2 次元 FEM としたモデルは,原子炉建屋単独の基本モデル(NS, EW)を対象とする。

(1) NS 方向

第4.3.1 図に建屋の最大応答分布を比較して示す。全体的には埋め込み SR モデルのほうが 若干大きくなっているが、大きな差異は認められない。

第4.3.2 図及び第4.3.3 図に床応答スペクトルを比較して示す。建屋の上層部分ではスペクトルのピーク値や高振動数領域において埋め込み SR モデルのほうが大きくなっているが、大きな差異は認められない。

(2) EW 方向

第4.3.4 図に建屋の最大応答分布の比較,第4.3.5 図及び第4.3.6 図に床応答スペクトルの 比較を示す。NS 方向と同様な結果であり,FEM モデルと埋め込み SR モデルの建屋応答の 差異はわずかである。

なお、2次元 FEM 解析の NS 方向及び EW 方向に共通してみられる周期 0.7 秒付近のピークは、基礎版上レベル(質点番号⑨)の応答スペクトルでも生じていることから、地盤深部の影響により、建屋への入力地震動に含まれる成分が励起されたものと推測でき、2次元 FEM 解析で側面の接触剝離及び摩擦を詳細に考慮したことの影響ではないと考えられる。また、重要な機器の固有周期帯からは外れており、耐震評価上問題となるものではない。

第4.3.1 表に建屋の底面の接地率の最小値を比較して示す。参考として、同表の2次元F EMモデルにおける底面の接地率が最小となる時刻の地反力分布を添付資料3に示す。

	NS方向	EW方向
埋め込みSRモデル	68%	68%
2 次元FEMモデル	87%	87%

第4.3.1表 底面の接地率の最小値一覧

	(cm/s ²)
埋込SR	2DFEM
モデル	基本NS
1771	1382
1218	1000
1065	840
908	784
819	730
795	682
722	649
694	593
579	630

埋込SR	2DFEM
モデル	基本NS
1065	840
908	784
819	730
010	/00
795	682
722	649
694	593
570	
5/0	620

2DFEM 基本NS

39.09

154.80

158.90

268.20

252.50

236.90

	(×10 ³ kN)	
埋込SR	2DFEM	埋込SR
モデル	基本NS	モデル
71.66	55.80	
166.48	131.30	
357.48	252.00	50.75
346.32	311.40	193.83
474.58	422.20	188.95
524.49	475.90	322.76
652.84	541.10	336.79
719.35	554.20	298.10

第4.3.1 図 建屋の最大応答分布の比較(基本モデルと埋め込み SR モデル)(NS 方向)

T.M.S.L. (m) 1 - 49.7 3 - 38.2 3 - 31.7 - 11 4 - 23.5 - 12 5 - 18.1 - 13 6 - 12.3 - 14 7 - 4.8 - 15 8 - 1.7 - 16-13.7 - 10

第4.3.2 図 床応答スペクトルの比較(基本モデルと埋め込み SR モデル)(NS 方向) h=5%

4 条·別紙 1·別 3·134

第4.3.3 図 床応答スペクトルの比較(基本モデルと埋め込み SR モデル)(NS 方向) h=1%

T.M.S.L. (m)

$$1 \qquad 49.7$$

 $2 \qquad 38.2$
 $3 \qquad 31.7 \qquad 11$
 $4 \qquad 23.5 \qquad 12$
 $5 \qquad 18.1 \qquad 13$
 $6 \qquad 12.3 \qquad 14$
 $7 \qquad 4.8 \qquad 15$
 $8 \qquad -1.7 \qquad 16$
 $-8.2 \qquad 9$
 $-13.7 \qquad 10$

	(cm/s^2)	
埋込SR	2DFEM	
モデル	基本EW	
1668	1080	
1220	948	
1067	825	
874	765	
821	739	
787	690	
703	633	
667	585	
EOG	610	

埋込SR	2DFEM
モデル	基本EW
1067	825
874	765
0/4	700
821	739
/8/	690
703	633
667	585
586	619

$(\times 10^{3} \text{kN})$		
埋込SR	2DFEM	
モデル	基本EW	
67.32	43.53	
165.13	118.80	
282.39	184.10	
320.49	231.20	
387.69	331.90	
537.67	496.70	
586.02	483.90	
731.95	563.10	

埋込SR モデル

0.45

1.22

2.03 3.10 3.83

6.08 6.66 8.37

8.83

<u>11.07</u> 11.69

15.58 14.96 18.49 16.31

19.42

埋込SR モデル	2DFEM 基本EW
95.46	95.52
229.29	222.00
269.33	232.00
308.77	228.10
441.03	302.90
347.63	250.10

0.69

1.15 1.66 0.64

0.91

1.33 2.14

3.29 3.80 5.50 5.91

7.26

DFEM	埋込SR	2DFEM
本EW	モデル	基本EW
0.34		
0.83		
1.36		
2.01		
2.47	1.07	0.69
3.70	1.64	1.15
4.10	2.62	1.66
.09	1.45	0.64
6	1.32	0.91
2	1.78	1.33
1	2.86	2.14
94	4.53	3.29
49	5.52	3.80
1	6.99	5.50
7	7.69	5.91
9	9.19	7.26

モーメント

60

せん断力

第4.3.4 図 建屋の最大応答分布の比較(基本モデルと埋め込み SR モデル)(EW 方向)

第 4.3.5 図 床応答スペクトルの比較(基本モデルと埋め込み SR モデル)(EW 方向) h=5%

第4.3.6 図 床応答スペクトルの比較(基本モデルと埋め込み SR モデル)(EW 方向) h=1%

4.4 ジョイント要素せん断ばねのせん断剛性のばらつきの影響検討

論点①の検討として実施した,防水層がある建屋外壁と側面地盤の間を模擬した摩擦試験によ れば,試験結果から算定したせん断剛性には垂直圧等の影響によるばらつきが見られた。そこで, ここでは 4.1 節で示した NS 方向の基本モデルのジョイント要素であるせん断ばねのせん断剛性 を,摩擦試験結果のばらつき範囲を考慮して,第4.4.1 表に示すように試験結果の最大と最小の せん断剛性を設定して地震応答解析を行い,平均的なせん断剛性を用いた基本モデルによる結果 と比較するとにより,せん断ばねのせん断剛性のばらつきの影響を検討する。

解析モデルは NS 方向の基本モデルについて,建屋地下壁と側面地盤の間に設置したジョイン ト要素のせん断ばねのせん断剛性にばらつきを与えたものである。

	平均値 (基本モデル)	剛性大	剛性小
せん断剛性 (×10 ⁴ kN/m/m ²)	4.67	8.06	3.03

第4.4.1 表 2次元 FEM 解析モデルに用いるせん断ばねのせん断剛性のばらつき

第4.4.1 図~第4.4.3 図に建屋の最大応答結果及び床応答スペクトルを比較して示す。せん断ば ねのせん断剛性のばらつきを考慮しても建屋の応答は平均的なせん断剛性を用いた場合とほぼ同 じであり、せん断ばねのせん断剛性のばらつきの影響は殆どないことが判った。なお、せん断ば ねの履歴特性とせん断ばね剛性の建屋応答への影響について検討した結果を添付資料4に示す。

	(cm/s ²)		
せん断	せん断	せん断	
剛性平均	剛性大	剛性小	
1382	1381	1383	
1000	998	996	
840	841	838	
784	784	784	
730	732	730	
682	684	683	
649	648	649	
593	591	593	
630	630	629	

せん断 剛性平均	せん断 剛性大	せん断 剛性小
840	841	838
784	784	784
730	732	730
682	684	683
649	648	649
593	591	593
630	630	629

		$(\times 10^{3} kN)$
せん断 剛性平均	せん断 剛性大	せん断 剛性小
55.80	55.77	55.83
131.30	130.50	131.10
252.00	251.70	252.50
311.40	311.20	311.60
422.20	421.70	422.70
475.90	476.00	475.80
541.10	541.30	540.90
554.20	553.00	555.60

せん断 剛性平均	せん断 剛性大	せん断 剛性小
39.09	39.04	39.16
154.80	154.90	154.60
158.90	158.90	158.80
268.20	268.40	267.90
252.50	252.60	252.40
236.90	236.30	237.30

第4.4.2 図 床応答スペクトルの比較(せん断剛性:平均,大,小)h=5%

第4.4.3 図 床応答スペクトルの比較(せん断剛性:平均,大,小)h=1%

4 条·別紙 1-別 3-142

4.5 まとめ

(1) 建屋拘束効果の検討

地盤を2次元 FEM モデル,建屋を質点系モデルとして,建屋地下外壁と側面地盤の剥離や摩擦を考慮した解析モデルを用いて基準地震動Ss-1に対する地震応答解析を実施した。

この結果,側面地盤・建屋間に剥離が生じる場合でも,地震継続中の大半の時間において, 地下外壁には土圧及びせん断応力が作用する結果が示された。2次元 FEM では,建屋と地盤 間の摩擦を介したせん断力の伝達が比較的小さい場合であっても,NOVAK のばねに考慮さ れていない水平方向のせん断抵抗(第 2.1.3 図参照)による軸方向の力が作用すること等に より側面地盤の拘束効果が得られることが分かった。

さらに、埋め込み SR モデルの NOVAK ばねに作用する側面地盤反力を、2 次元 FEM の 側面地盤反力と比較した結果、NOVAK ばねに作用する側面地盤反力と 2 次元 FEM の側面 地盤反力は共に、建屋応答(曲げモーメント)と同等オーダー(×10⁹N・m)の比較的大き な値を示し、建屋を相応に拘束していることが確認された。これらのことから、地震時にお いて建屋~地盤間の力の伝達が生じ、地盤による建屋の拘束効果が期待できることがわかっ た。なお、2 次元 FEM の側面地盤反力は埋め込み SR モデルの側面地盤反力より小さい傾向 が見られた。

(2) 建屋応答の比較

2次元 FEM モデルによる建屋応答と側面回転ばねを有する埋め込み SR モデルの建屋応答 を比較した。この結果, NS 方向, EW 方向ともに両者のモデルによる建屋応答や床応答スペ クトルの差異はわずかであり, 埋め込み SR モデルに側面回転ばねを考慮することは妥当で あると考えられる。また, 側面回転ばねは先に述べたように底面の接地率の改善に効果があ るものの地震応答解析結果の差異は小さい傾向がある。しかしながら, 側面地盤反力で見ら れた傾向を踏まえ, 今回工認においては底面の接地率の評価において保守的に, 側面回転ば ねの値を半減させた場合についても検討することとする。(参考資料-2)

(3) ジョイント要素せん断ばねのせん断剛性のばらつきの影響検討

論点①の検討として実施した摩擦試験結果のせん断剛性のばらつきの範囲を考慮した 2 次 元 FEM 解析を実施した。その結果,ばらつきを考慮しても建屋の応答は,平均的なせん断 剛性を用いた場合とほぼ同じであり,ばらつきの影響は殆どないことがわかった。 5. 論点③に対する検討

(論点③ 隣接建屋や建屋周辺の詳細な地盤状況が側面回転ばねの適用性に影響しないか)

5.1 検討概要

原子炉建屋に隣接するタービン建屋の影響及び原子炉建屋周辺にあるマンメイドロ ック(メイントランス基礎)や埋戻し等詳細な地盤状況の影響について、それらを考 慮した2次元 FEM モデルを用いて地震応答解析を行い、論点②で検討した基本モデル の結果と比較することにより影響を検討する。

EW 方向は基本モデルにタービン建屋を考慮したモデルにより,隣接建屋の影響を検討する。NS 方向は基本モデルの地盤の一部をマンメイドロック(メイントランス基礎) や埋戻し土に変更して地盤の精緻化による影響を検討する。

第5.1.1 図に論点③の検討フローを示す。

第5.1.1図 隣接建屋や建屋周辺の詳細な地盤状況を考慮した側面回転ばねの適用性検討フロー

5.2 解析ケース

第5.2.1 表に解析ケースを示す。

No	方向	建屋	地盤	備考
3	NS 方向	原子炉建屋単独	成層地盤+外壁側面の	地盤精緻化
			MMR+(建屋周辺	モデル
			MMR 及び埋戻し状況	
			の反映)	
4	EW 方向	原子炉建屋+	成層地盤+外壁側面の	タービン建屋
		タービン建屋連成	MMR	連成モデル

第5.2.1表 解析ケース

MMR:マンメイドロック