- 7. 格納容器圧力逃がし装置の設計基準事象に対する耐性
- 本節で挙げる設計基準事象に対して耐性を確保する必要があるのは設計基準 事故対処設備であり,重大事故等対処設備ではないが,設計基準を超える事象 が発生した場合に使用する重大事故等対処設備が,その前段の設計基準事象の 自然現象によって機能喪失することは回避するべきであることから,以下健全 性を確認する。
- 7.1 地震, 津波以外の自然現象
- 7.1.1 風(台風)
 - (1)設計基準

設計基準風速は保守的に最も風速が大きい新潟市の観測記録史上1位である40.1m/sとした。

- (2)想定される影響
 - a. 影響モード: 風荷重
 - 対象部位^{*1}:フィルタベント遮蔽壁,フィルタ装置,フィルタ装置入口側 及びフィルタ装置出口側の配管・弁,給水設備,窒素パージ設 備,ドレン設備,計器類(水位計,圧力計,放射線モニタ等), 計装ラック
 - ※1 対象部位は、風により影響を受ける屋外に設置されている 格納容器圧力逃がし装置の部位を抽出した。
 - b. 影響モード: 飛来物衝突の際の衝撃荷重
 - 対象部位^{**2}:フィルタベント遮蔽壁,フィルタ装置,フィルタ装置入口側 及びフィルタ装置出口側の配管・弁,給水設備,窒素パージ設 備,ドレン設備,計器類(水位計,圧力計,放射線モニタ等), 計装ラック
 - ※2 対象部位は、飛来物により影響を受け易い屋外に設置されている格納容器圧力逃がし装置の部位及び屋内設備であるが開口部(扉、ルーバ等)の近傍に設置されており、飛来物の影響を受ける可能性があるものを抽出した。

(3)耐性評価結果

- a. 格納容器圧力逃がし装置は、風荷重よりも大きい基準地震動の荷重に対し て機能喪失しない設計としているため、風荷重により破損しない。
 - (例:柏崎刈羽原子力発電所6号炉の原子炉建屋頂部 T.M.S.L.49.70m(地

上高 37.7m) 付近のフィルタ装置出口側配管に作用する単位長さ当たりの 最小の地震荷重は2.81kN/mであるのに対して,風荷重は2.11kN/mである。) b.風(台風)による飛来物の影響は,強い上昇気流を伴い風速も速い竜巻の

- 方が飛来物の影響が大きいことから、竜巻評価に包絡される。
- 7.1.2 竜巻

柏崎刈羽原子力発電所において, 竜巻設計飛来物の影響等については, 以下 の検討・評価を続けているところである。詳細設計段階において竜巻設計飛来 物の影響等の詳細検討を踏まえた評価結果が得られ次第, 設計飛来物が到達す る箇所について, 竜巻への耐性を確保するために必要となる対策を実施する。 (1)設計基準

設計竜巻の最大風速は、竜巻影響評価ガイド*に従い、日本海側地域にお ける竜巻の発生頻度や最大風速の年超過確率を参照し、発電所の敷地地形効 果による風速の増幅効果を評価した上で、将来的な気候変動による竜巻発生 の不確実性を考慮し 92m/s としているため、92m/s での評価を実施した。

安全施設及び格納容器圧力逃がし装置に衝突し得る飛来物は,柏崎刈羽原 子力発電所6号及び7号炉が立地する大湊側の現地調査の結果及び竜巻影響 評価ガイド*に例示されている飛来物を考慮し,砂利,鋼製材,角型鋼管, 足場パイプ及び鋼製足場板を設計飛来物とした。但し,これらのうち飛散防 止対策を講じるものは除く。

- ※:原子力規制委員会,原子力発電所の竜巻影響評価ガイド,平成25年6月制定,平成26年9月一部改正 (2)想定される影響
 - 影響モード:風荷重,気圧差荷重及び飛来物衝突の際の衝撃荷重を適切に組 み合わせた荷重(以下,「複合荷重」という。)
 - 対象部位*:フィルタベント遮蔽壁,フィルタ装置,よう素フィルタ,フィ ルタ装置入口側及びフィルタ装置出口側の配管・弁,ラプチャー ディスク,給水設備,窒素パージ設備,ドレン設備,計器類(水 位計,圧力計,放射線モニタ等),計装ラック
 - ※ 対象部位は、竜巻により影響を受ける屋外に設置されている 格納容器圧力逃がし装置の部位及び屋内設備だが開口部(扉, ルーバ等)の近傍に設置されており、飛来物の影響を受ける 可能性があるものを抽出した。なお、屋内設置のうち、外気 との接続がある換気空調設備は、気圧差の影響が想定される が、格納容器圧力逃がし装置は、それに該当するものはない。

(3)耐性評価結果

格納容器圧力逃がし装置の複合荷重に対する健全性評価の実施にあたり, 先ずは格納容器圧力逃がし装置に作用する竜巻荷重の内,影響が支配的な飛 来物衝突による設備の貫通評価を実施した。なお,衝突を想定する飛来物は, 仮設足場には飛散防止対策を講じた場合を想定し,設計飛来物の内,衝突影 響が大きい鋼製材(長さ4.2m×幅0.3m×奥行0.2m,質量135kg)及び角型鋼 管(長さ4m×幅0.1m×奥行0.1m,質量28kg)とした。

6号炉格納容器圧力逃がし装置の概略図を第7.1.2-1~3 図に,7号炉格納 容器圧力逃がし装置の概略図を第7.1.2-4 図及び第7.1.2-5 図に示す。ま た,鋼製材及び角型鋼管衝突による放射線遮蔽壁,フィルタ装置及び配管の 貫通評価を第7.1.2-1表に示す。

鋼製材及び角型鋼管が衝突する速度の評価条件及び評価モデルについては, 竜巻の最大風速 92m/s, フジタモデルとした。飛散した鋼製材及び角型鋼管 が衝突した場合の飛来物の貫通評価については, 飛来物の貫通を避けるため に必要な鋼板厚さ, コンクリート厚さ(以下,「貫通限界厚さ」という。)及 び飛来物の衝突によるコンクリートの裏面はく離を避けるために必要なコン クリート厚さ(以下,「裏面はく離限界厚さ」という。)と竜巻の影響が想定 される対象部位の板厚を比較することで貫通の有無を判断した。

また, 竜巻の最大風速 92m/s, フジタモデルにおける飛散評価の結果, 鋼 製材及び角型鋼管の浮き上がり高さは, 0.08m, 0.15m と僅かであるが, 飛来 物は回転して飛散すること, 米国 Regulatory Guide 1.76 では飛来物が 9.1m

(30feet)以下に影響を及ぼすこととしていることを踏まえ, 飛来物は原則 地面から 10m の高さまで影響を及ぼすものとして評価を実施し, 貫通等によ り系統機能に影響を及ぼす場合には, 防護対策を実施する。なお, 仮設足場 に飛散防止対策を講じない場合には, 仮設足場材(足場パイプ, 鋼製足場板) は地上から 10m より高い箇所への飛散が想定されることから, どの高さへの 衝突も想定し, 貫通等により系統機能に影響を及ぼす場合には, 防護対策を 実施する。

なお,設計飛来物(極小飛来物である砂利を除く。)より影響の大きい飛来 物は, 固縛等の飛散防止対策を実施する。

格納容器圧力逃がし装置は、各部位単体または防護対策と相まって竜巻に よる影響に対して耐性を有する設計とする。

a. 放射線遮蔽壁

放射線遮蔽壁は,壁厚約0.7~1.6mのコンクリート製であり,飛来物衝突 に対して耐性を有しているため,飛来物の放射線遮蔽壁貫通または放射線遮 蔽壁の裏面はく離は生じない。

b.フィルタ装置,よう素フィルタ

フィルタ装置及びよう素フィルタの周囲には第 7.1.2-1~5 図に示す通 りフィルタベント遮蔽壁が設置されているため,系統機能に影響を及ぼす範 囲には,飛来物が浮上しないことを確認した。

竜巻襲来によりフィルタ装置の周囲の気圧が低下した場合の影響につい ては、フィルタ装置の待機状態を想定した場合、フィルタ装置は外気との接 続がないため、竜巻の襲来に伴い内圧が上昇する。竜巻襲来時のフィルタ装 置の内圧は、フィルタ装置の待機状態における内圧に竜巻による最大気圧低 下量を足し合わせることで算出できることから、竜巻の最大風速が 92m/s, 風速場としてフジタモデルを適用した場合の最大気圧低下量は 6.4kPa とな り、フィルタ装置の待機状態における内圧 10kPa と足し合わせると 16.4kPa となる。それに対してフィルタ装置の容器は、最高使用圧力 0.62MPa に耐え る設計としていることから、竜巻による気圧差がフィルタ装置の性能に影響 を与えることはない。

フィルタ装置の運転状態を想定した場合,フィルタ装置は外気との接続が あるため, 竜巻襲来時は外気の気圧低下に伴いフィルタ装置内の気圧も低下 するため, フィルタ装置内外で差圧が発生しない。したがって, フィルタ装 置の性能に影響を与えることはない。

c.フィルタ装置入口側配管・弁,給水設備,ドレン設備,窒素パージ設備, 計器類(水位計,圧力計,放射線モニタ等)

フィルタ装置入口側の配管は, 飛来物衝突に対して貫通しない板厚を有し ており, また, フィルタ装置入口側の配管・弁の系統機能に影響を及ぼす範 囲には, 飛来物が浮上しないことを確認した。

また,その他の設備は,設計飛来物が到達する箇所に対し,飛来物衝突に 対して貫通しない板厚を有し,複合荷重に対しても耐え得る鋼板等の取り付 け,または十分な板厚を有する遮蔽板の設置により設備を防護するため,竜 巻により破損しない。

d. フィルタ装置出口側の配管・弁

フィルタ装置出口側の配管は, 飛来物衝突に対して貫通しない板厚を有し ており, また, フィルタ装置出口側の配管・弁の系統機能に影響を及ぼす範 囲には, 飛来物が浮上しないことを確認した。

e. ラプチャーディスク

ラプチャーディスクが竜巻襲来時の気圧低下の影響を受けた場合の開放 の有無については,前述のフィルタ装置が待機状態における気圧差影響と同 様にフィルタ装置出口配管及びラプチャーディスクには 16.4kPa(竜巻の最 大風速 92m/s)の圧力が作用する。それに対してラプチャーディスクの設定 圧力は,100kPa であるためラプチャーディスクは開放しない。

また、ラプチャーディスクの機能に影響を及ぼす範囲には、飛来物が浮上 しないことを確認した。 f. 計装ラック

計装ラックの周囲には第7.1.2-3 図及び第7.1.2-5 図に示す通りフィル タベント遮蔽壁が設置されているため,フィルタベント遮蔽壁により計装ラ ックが防護されている部分については飛来物衝突及び複合荷重の影響を受 けない。計装ラック上部については,飛来物衝突に対して貫通しない板厚を 有し,複合荷重に対しても耐え得る鋼板等を取り付けて計装ラックを防護す るため, 竜巻により破損しない。

枠囲みの内容は機密事項に属しますので公開できません。		

こ属しますので公開できません。	(]
肉容は機密事項	(東立面図
や囲みのけ	概略図
¥	6号炉 格納容器圧力逃がし装置
	第7.1.2-2図

枠囲みの内容は機密事項に属しますので公開できません。			

第7.1.2-1表 飛来物貫通評価結果

(竜巻の最大風速 92m/s, 鋼製材及び角型鋼管の最大飛散速度は, フジタモ

デルにより評価。)

	コンクリート	貫通限界厚さ又は裏面	
	厚さ又は鋼板	はく離限界厚さ	評価結果
	厚さ[mm]	[mm]*	
フィルタベ ント遮蔽壁	700~1,600		
フィルタ装	30.4		
置 (胴部)	(最小厚さ)		
フィルタ装	30.0		
置(上部)	(最小厚さ)		
フィルタ装 置入口側配 管	9.5		
	6 号炉		
フィルタ装置出口側配	9.5		
管田口岡配	7 号炉		
	12.7		
給水設備に 係わる配管	5.2		
ドレン設備 に係る配管	3.9		

※: 仮設足場に飛散防止対策を講じない場合における足場パイプ、鋼製足場板による各厚さは以下の通り。 <足場パイプ>

 コンクリート:貫通限界厚さ(水平)110mm, 裏面はく離限界厚さ(水平)180mm 鋼板
 :貫通限界厚さ(水平)17mm,(鉛直)15mm
 <鋼製足場板>
 コンクリート:貫通限界厚さ(水平)120mm, 裏面はく離限界厚さ(水平)210mm 鋼板
 :貫通限界厚さ(水平)6mm,(鉛直)2mm

7.1.3 積雪

(1)設計基準

積雪の設計基準については、規格基準類(建築基準法)及び観測記録(気 象庁アメダス)、年超過確率評価、積雪時の発電所の対応を踏まえ、1日あた りの積雪量に最深積雪量の平均値を加えた値を設計基準として定めた。

評価の結果,統計的な処理による1日あたりの積雪量の年超過確率10⁻⁴/年の値は135.9cmとなり,さらに,過去の観測記録から最深積雪量の平均値31.1cmを加えた167cmを設計基準積雪量に設定した。

(2) 想定される影響

a. 堆積による荷重 影響モード:積雪による静的荷重

対象部位:フィルタ装置

b.積雪による開口部閉塞 影響モード:系統内への侵入による閉塞 対象部位:放出口

(3)耐性評価結果

a. 堆積による荷重

フィルタ装置の上部への積雪による耐荷重については、フィルタ装置の 保有水等の重量を考慮した許容耐荷重を3,832,930[N/m²]と評価しており、 設計基準積雪量 167cm(4,910[N/m²])を上回っていることから、積雪荷重に 対する耐性が確保されていることを確認した。

b. 積雪侵入による閉塞

格納容器圧力逃がし装置の出口配管配置図を第7.1.3-1図に示す。

放出口からの雪の侵入については、上空から落下してくる雪に対して、 開口部が横向き、かつ開口部の形状が斜め下 45°の形状となっていること から、雪が侵入し難い構造となっている。

また、雪が放出口から侵入した場合であっても、放出口付近の配管は水 平方向に設置されているため、雪が配管内部のラプチャーディスク前面ま で到達することは考え難く、侵入した雪は放出口付近の水平方向の配管上 に堆積することが想定される。この場合、開口部の構造により雪の全てが 配管内に侵入するものではないこと、配管の口径は 508mm となっているこ とから、配管は閉塞しないと考えられる。

なお,配管内に堆積した積雪が,気温の上昇に伴い,融雪した場合には, ラプチャーディスク前面に設置されたドレンラインより,排出することが 可能である。 (4) 地震との重畳影響

積雪と地震との重畳により,積雪単独事象より格納容器圧力逃がし装置へ の荷重影響が増長されるが,除雪を行うなど適切な対応を行い,格納容器圧 力逃がし機能を維持する。

枠囲みの内容は機密事項に属しますので公開できません。	第7.1.3-1図 格納容器圧力逃がし装置の出口配管配置図(左:南立面図、右:平面図)

7.1.4 低温

(1)設計基準

低温の設計基準については,規格基準類及び観測記録(気象庁アメダス), 年超過確率評価を踏まえ,最低気温が最も小さくなる値を設計基準として定 めた。

評価の結果,統計的な処理による最低気温の年超過確率 10⁻⁴/年の値は -15.2℃となった。また,低温の継続時間については,過去の最低気温を記録 した当日の気温推移に鑑み,保守的に 24 時間と設定した。

また, 基準温度より高い温度(-2.6℃)が長期間(173.4 時間)継続した 場合について考慮する。

(2) 想定される影響

a. 凍結

影響モード:凍結

対象部位:フィルタ装置,フィルタ装置水位計配管,

フィルタ装置ドレン配管

(3)耐性評価結果

a. 凍結

フィルタ装置保有水の凍結については, 年超過確率 10⁻⁴/年の値よりも厳 しい外気温度-17℃となった場合に, 凍結を開始する時間を解析した結果, フィルタ装置に保温材と, 建物床ヒーター(300W/m²)を設置した条件では 約 38 時間となった。また, 建物床ヒーターを考慮せず, 保温材のみの場合 においても約 25 時間となっており, いずれも低温継続時間 24 時間を上回 っていることを確認した。

また,外気温度が-2.6℃が173.4時間継続する場合であっても,保温材と,建物床ヒーター(300W/m²)を設置した解析条件であれば凍結しないことを確認した。

なお、屋外設置のフィルタ装置水位計や放射線モニタなどの計器類については、防湿対策が施されており、計器内部で凍結による影響は受けない。

7.1.5 落雷

(1)設計基準

設計基準電流値は、柏崎刈羽原子力発電所での落雷観測記録の統計処理に よる年超過確率が10⁻⁴/年となる雷撃電流値から設定する。構内での落雷観測 の結果に避雷鉄塔及び5号炉排気筒による遮蔽効果を考慮し求めた雷撃頻度 及び電力中央研究所報告の雷撃電流頻度分布を用いて、原子炉建屋主排気筒 への年超過確率が10⁻⁴/年となる雷撃電流値を求めると156kAとなる。これに 余裕を持った200kAを設計基準電流値とする。

(2) 想定される影響

影響モード: 雷サージによる電気・計装設備の損傷 対象部位: 計器類(水位計, 圧力計, 放射線モニタ等)

(3)耐性評価結果

格納容器圧力逃がし装置は,原子炉建屋主排気筒頂部に設置されている避 雷針の遮蔽範囲内にあり,落雷頻度が著しく低く,雷が直撃する可能性は十 分小さいと考えられる。したがって,設備への影響が大きいと考えられる排 気筒への落雷による雷サージを想定した。

6 号炉および 7 号炉の原子炉建屋では,主排気筒への直撃雷時に建屋内へ 侵入する雷電流を軽減するために,屋上と外壁に約 2m ピッチの避雷導線を 埋設し雷電流の分流を図る対策(ファラデーケージ化)やメッシュ式の接地 網によって接地抵抗の低減や接地電位の平坦化を図る対策を実施している。 したがって,屋内設置の回路への雷サージの影響は軽微であると考えられる ため,屋外計装設備の計装回路の内,重大事故等対策において機能に期待す るものについて雷サージ評価を行った。

落雷時に回路に加わるサージ電圧値の算出には,過去に7号炉で実施した 雷インパルス試験の結果を用いた。試験では,主排気筒頂部に1kA程度の印 加電流を流し,その時に測定対象のケーブルへ加わった誘導電圧を測定して いる。設計基準電流値200kAの雷撃を受けたときの雷サージ電圧値は,誘導 電圧が印加電流値に保守的に比例するとして,雷インパルス試験の測定結果 から求めた。

a. 屋外計装設備

(a) フィルタ装置に接続される計器

フィルタベント遮蔽壁内側のフィルタ装置には,水位計,圧力計等の計器 が設置されており,その計装回路は中央制御室に至っている。電インパルス 試験の測定結果としては,本回路の位置関係と類似のコントロール建屋とト ランスヤードを融通するケーブルの測定結果を用いる。耐電圧値は,当該回 路に耐雷対策としてシールドケーブルと保安器が使用されていることを考慮して保安器の耐電圧値 15kV を用いる。

評価結果を第7.1.5-1 表に示す。原子炉建屋主排気筒に設計基準である200kAの落雷があった場合に当該回路に加わる雷サージ電圧値は最大で約4.3kVとなる。これは保安器の耐電圧値15kVを下回ることから耐性は確保されている。

(b) フィルタ装置出口放射線モニタ

フィルタ装置出口放射線モニタの検出部は,原子炉建屋壁面の格納容器圧 力逃がし装置排気配管に設置されており,その計装回路は中央制御室に至っ ている。雷インパルス試験の測定結果としては,本回路の位置関係と類似の 原子炉建屋中4階からコントロール建屋に至る回路の測定結果を用いる。ま た耐電圧値は,現場側に検出器の耐電圧値 1.5kV,中央制御室側では耐雷対 策としてシールドケーブルと保安器が使用されていることを考慮して保安器 の耐電圧値 10kV を用いる。

評価結果を第 7.1.5-1 表に示す。原子炉建屋主排気筒に設計基準である 200kA の落雷があった場合に当該回路に加わる雷サージ電圧値は最大で約 0.25kV となる。これは,現場側の耐電圧値 1.5kV および中央制御室側の耐電 圧値 10kV を下回ることから耐性は確保されている。

(4) 地震/風/竜巻 いずれかの事象との重畳

落雷と竜巻等の重畳により,避雷鉄塔の損壊を想定した場合は,落雷単独 事象より原子炉建屋排気筒への雷撃電流値は増長するが,耐電圧性を有する 検出器の採用や保安器の設置等,適切な設計をして,格納容器圧力逃がし装 置の機能を維持する。

評価対象設備		雷インパルス試験結果		誘導電圧 換算値 (200kA時)	耐電圧値	評価	
		測定地点	印加 電流	誘導 電圧	誘導電圧		柏未
フィルタ装置水位 フィルタ装置金属	中央制御室 (指示計, 記録計)	中央制御 室	884A	2.8V	0.63kV	15kV (保安器)	影響 なし
フィルタ装置スク ラバ水 pH	現場 (検出器)	トランス ヤード	876A	18.8V	4. 3kV	15kV (保安器)	影響 なし
	中央制御室 (記録計)	中央制御 室	888A	1.06V	0.24kV	10kV (保安器)	影響 なし
フィルタ装置 出口放射線モニタ	現場 (前置増幅 器) (検出器)	原子炉建 屋 中4階	868A	1.1V	0.25kV	 1.5kV (前置増 幅器) 1.5kV (検出器) 	影響 なし

第7.1.5-1表 落雷評価結果

7.1.6 火山

(1)設計基準

発電所へ影響を及ぼし得る火山のうち,将来の活動可能性が否定できない 33 火山について,設計対応が不可能な火山事象は,地質調査結果によれば, 発電所敷地及び周辺で,痕跡が認められないことから,到達する可能性は十 分小さいものと判断される。その他の発電所の安全性に影響を与える可能性 のある火山事象を抽出した結果,降下火砕物が抽出された。

降下火砕物の堆積量については、文献調査や国内外の噴火実績、シミュレ ーション結果を踏まえ、検討を行った結果、火山噴火実績に保守性を考慮し た 35cm を設計基準に設定する。

(2) 想定される影響

a. 堆積による荷重

影響モード:降下火砕物の堆積による静的荷重

対象部位:フィルタ装置

b. 降下火砕物侵入による閉塞

影響モード:系統内への侵入による閉塞

対象部位:放出口

c. 化学的影響

影響モード:降下火砕物に付着している腐食成分による化学的影響 対象部位:フィルタ装置及び屋外配管

- (3)耐性評価結果
 - a. 堆積による荷重

フィルタ装置に堆積する降下火砕物に対する耐荷重性については、フィ ルタ装置の保有水等の重量を考慮した許容耐荷重を 3,832,930[N/m²]と評 価しており、設計基準の降下火砕物 35cm (5,149[N/m²])を上回っている ことから、降下火砕物の堆積荷重に対する耐性が確保されていることを確 認した。

b. 降下火砕物侵入による閉塞

放出口からの降下火砕物の侵入については、上空から落下してくる降下 火砕物に対して、開口部が横向き、かつ開口部の形状が斜め下45°の形状 となっていることから、降下火砕物が侵入し難い構造となっている。

また,降下火砕物が放出口から侵入した場合であっても,放出口付近の 配管は水平方向に設置されているため,降下火砕物が配管内部のラプチャ ーディスク前面まで到達することは考え難く,侵入した降下火砕物は放出 口付近の水平方向の配管上に堆積することが想定される。この場合,開口 部の構造により降下火砕物の全てが配管内に侵入するものではないこと, 及び配管の口径は508mmとなっていることから,配管は閉塞しないと考え られる。

なお,放出口から降下火砕物が侵入した場合にはファイバースコープや, ラプチャーディスクを取り外しての目視による配管内部の点検等,適切な 対策を実施し,降下火砕物による配管の閉塞に至らないことを確実にする。 c. 化学的影響

フィルタ装置及び屋外配管については,酸性物質を帯びた降下火砕物に 対して,容器材質が耐食性のあるステンレス製であることや,耐食性のあ るふっ素樹脂塗装または,ポリウレタン樹脂塗装を施工していることなど から,耐食性が確保されていることを確認した。

(4)積雪との重畳影響

a. 重畳時の積雪量

冬季において多雪地域である立地地域は,火山噴火による降灰中,同じ 影響モードである積雪の堆積荷重について,重畳を考慮する必要がある。

しかし,積雪の設計基準の167cmについては,10⁻⁴/年程度の極低頻度で あることから,重畳時における積雪量については,1日あたりの積雪量の 年超過確率10⁻²/年値の84.3cmに,最深積雪量の平均値31.1cmを加えた 115.4cmを想定するものとする。

従って,降下火砕物 35cm (5,149[N/m²])に,積雪 115.4cm (3,393[N/m²]) を加えた,堆積荷重 8,542[N/m²]を火山及び積雪の重畳時における評価基 準値と設定する。

b. 耐性評価結果

フィルタ装置の降下火砕物及び積雪の堆積に対する耐荷重については, フィルタ装置の保有水等の重量を考慮した許容耐荷重を 3,832,930[N/m²] と評価しており,降下火砕物及び積雪の重畳時における基準 8,542 [N/m²] を上回っていることから,火山及び積雪の重畳時の堆積荷重に対する耐性 が確保されていることを確認した。

また,放出口からの積雪及び降下火砕物の侵入については,(3)b.のとお り,配管内部へ侵入し難い構造であり,閉塞しないと考えられるが,放出 口からの降下火砕物の侵入を防止するカバーの取り付け,または放出口か ら降下火砕物が侵入した場合における配管内部の点検等について,適切な 対策を実施し,降下火砕物による配管の閉塞に至らないことを確実にする。

(5) 地震との重畳影響

火山と地震との重畳により,火山単独事象より格納容器圧力逃がし装置へ の荷重影響が増長されるが,除灰を行うなど適切な対応を行い,格納容器圧 力逃がし機能を維持する。

- 7.1.7 降水
 - (1)設計基準

降水の設計基準については、規格基準類、観測記録(気象庁アメダス)に 対し、更なる裕度を確保するために年超過確率評価の10⁻⁴/年の値である1時 間降水量101.3mm/hと定める。

(2)想定される影響

a. 浸水

影響モード:浸水

対象部位:フィルタベント遮蔽壁内側設備

- (3) 耐性評価結果
 - a. 浸水

フィルタベント遮蔽壁内側の設備の浸水については,設計基準の降水量 である1時間降水量101.3mm/hについて,タンク室内はサンプ排水ライン を通じて排水するか,ドレン移送ポンプを用いてサプレッション・チェン バに移送することが可能であり影響を受けない。また、附室は排水口を設 置することにより、雨水が溜まることはなく、降水による浸水の影響を受 けない。

- 7.1.8 生物学的事象
 - (1) 想定される影響
 - a. 小動物の侵入

影響モード:ケーブル等の損傷 対象部位:フィルタベント遮蔽壁内側設備

- (3) 耐性評価結果
 - a. 小動物の侵入

生物学的事象のうちネズミ等の小動物に対して,屋外ケーブル貫通部等 は,侵入防止対策により安全機能が損なわれるおそれのない設計とするこ とから,影響を受けることはない。

- 7.1.9 地滑り
 - (1) 想定される影響
 - a. 地滑りによる土砂の到達
 影響モード:土砂による荷重
 対象部位:フィルタ装置

(2)耐性評価結果

地滑りが想定される斜面からの離隔距離を確保することにより,影響を受け ない。フィルタ装置は,近傍の斜面より140m以上の離隔距離を確保しており, 万が一当該斜面に地滑りが生じた場合であっても,影響が及ぶことはない。

7.2 その他事象

7.2.1 外部火災

- (1)設計基準
- a. 森林火災

発電所構内の森林の全面的な火災を想定する(防火帯により延焼が防止されるエリアを除く)。

b. 近隣の産業施設の火災

原子炉施設周辺に設置されており,格納容器圧力逃がし装置までの距離が 近く貯蔵量の多い各号炉の軽油タンクの全面火災。なお,各号炉の軽油タン クは2基隣接して設置しているが,耐震Sクラス設備であり地震随伴事象と しても2基同時火災の想定はしづらいこと,火災報知器や泡消火設備がある ことから延焼防止も可能であること,および隣接軽油タンク火災時にもう一 方の軽油タンクの温度は発火点まで上昇せず2基同時に出火しないことから, 格納容器圧力逃がし装置に近い軽油タンク1基の火災を想定する。

c. 航空機墜落による火災

偶発事象として航空機墜落が発生する確率が 10⁻⁷回/炉・年を超えるエリ アへ墜落した航空機による火災を想定する。なお,航空機墜落火災と危険物 タンク火災との重畳については,当該号炉軽油タンクには航空機は墜落せず 発火点には至らないこと及び,対象航空機によっては他号炉の軽油タンクに 墜落する可能性はあるが,軽油タンクと格納容器圧力逃がし装置との間に位 置するタービン建屋やサービス建屋に輻射熱は遮られることから危険物タン ク火災との重畳は考慮不要である。(第7.2.1-2 図,第7.2.1-3 図)

(2) 想定される影響

a.森林火災

影響モード:森林火災時の火炎からの輻射熱による温度上昇

対象部位*:フィルタベント遮蔽壁,フィルタ装置,屋外配管および弁(フ ィルタ装置入口側,フィルタ装置出口側,弁),給水設備,窒素 パージ設備,ドレン設備,計器類(水位計,圧力計,放射線モ ニタ等),計装ラック

b. 近隣の産業施設の火災

- 影響モード:軽油タンク防油堤全面火災時の火炎からの輻射熱による温度 上昇
- 対象部位*:フィルタベント遮蔽壁,フィルタ装置,屋外配管および弁(フ

ィルタ装置入口側,フィルタ装置出口側,弁),格納容器圧力逃 がし装置給水設備,窒素パージ設備,ドレン設備,計器類(水 位計,圧力計,放射線モニタ等),計装ラック

c. 航空機墜落による火災

影響モード:航空機墜落により発生した火炎からの輻射熱による温度上昇 対象部位*:フィルタベント遮蔽壁,フィルタ装置,屋外配管および弁(フ ィルタ装置入口側,フィルタ装置出口側,弁),給水設備,窒素 パージ設備,ドレン設備,計器類(水位計,圧力計,放射線モ ニタ等),計装ラック

※ 対象部位は,外部火災により影響をうける屋外に設置されている格納 容器圧力逃がし装置の部位を抽出した。

(3)耐性評価結果

a. 森林火災

(a)フィルタベント遮蔽壁

フィルタベント遮蔽壁はコンクリート製であり,健全性の基準 200℃に 対し,森林火災発生時の輻射熱による遮蔽壁外面の温度は約 68℃に止まる ことから,火災に対する耐性が確保されていることを確認した。

(b) フィルタ装置

フィルタ装置の周囲にはフィルタベント遮蔽壁が設置されており、フィ ルタベント遮蔽壁内側の温度は上昇しない。また、フィルタ装置上部は開 口しているが、フィルタベント遮蔽壁はフィルタ装置上部より約5m高く設 置されており、輻射熱が直接フィルタ装置に届くことはないことから、火 災に対する耐性が確保される。

 (c)屋外配管および弁(フィルタ装置入口側、フィルタ装置出口側、弁) 配管の設計温度は 200℃であり、防火帯林縁から至近の配管の温度は約
 67℃に止まることから、火災に対する耐性が確保されていることを確認した。

(d)給水設備,窒素パージ設備,ドレン設備

輻射熱による影響がないように,遮熱性のある板で覆うこと等により, 設備を防護するため火災の影響はない。

(e) 計器類(水位計, 圧力計, 放射線モニタ等)

輻射熱による影響がないように、耐熱性のある計器の使用または遮熱性 のある板で覆うこと等により、設備を防護するため火災の影響はない。

(f) 計装ラック

計装ラックの周囲にはフィルタベント遮蔽壁が設置されており、フィル

タベント遮蔽壁内側の温度は上昇しないことから,火災に対する耐性が確 保されていることを確認した。

b. 近隣の産業施設等の火災

(a)フィルタベント遮蔽壁

フィルタベント遮蔽壁はコンクリート製であり,健全性の基準 200℃に 対し,軽油タンク防油堤全面火災発生時の輻射熱によるフィルタベント遮 蔽壁外面の温度は約 176℃に止まることから,火災に対する耐性が確保さ れていることを確認した。

(b) フィルタ装置

フィルタ装置の周囲にはフィルタベント遮蔽壁が設置されており、フィ ルタベント遮蔽壁内側の温度は上昇しない。また、フィルタ装置上部は開 ロしているが、フィルタベント遮蔽壁はフィルタ装置上部より約5m高く設 置されており、輻射熱が直接フィルタ装置に届くことはないことから、火 災に対する耐性が確保されていることを確認した。

(c) 屋外配管および弁(フィルタ装置入口側,フィルタ装置出口側,弁)
 設計温度は200℃であり,軽油タンク至近の配管の温度は約144℃に止まることから,火災に対する耐性が確保されていることを確認した。
 (d)給水設備,窒素パージ設備,ドレン設備

輻射熱による影響がないように,耐熱性のある計器の使用または遮熱性 のある板で覆うこと等により,設備を防護するため火災の影響はない。

(e) 計器類(水位計, 圧力計, 放射線モニタ等)

輻射熱による影響がないように、耐熱性のある計器の使用または遮熱性 のある板で覆うこと等により、設備を防護するため火災の影響はない。 (f)計装ラック

計装ラックの周囲にはフィルタベント遮蔽壁が設置されており,フィル タベント遮蔽壁内側の温度は上昇しないことから,火災に対する耐性が確 保されていることを確認した。

- c. 航空機墜落による火災
 - (a)フィルタベント遮蔽壁

フィルタベント遮蔽壁はコンクリート製であり,健全性の基準 200℃に 対し,航空機墜落による火災発生時の輻射熱によるフィルタベント遮蔽壁 外面の温度は約 62℃に止まることから,火災に対する耐性が確保されてい ることを確認した。

(b)フィルタ装置

フィルタ装置の周囲にはフィルタベント遮蔽壁が設置されており,フィ ルタベント遮蔽壁内側の温度は上昇しない。また,フィルタ装置上部は開

ロしているが、フィルタベント遮蔽壁はフィルタ装置上部より約5m高く設置されており、輻射熱が直接フィルタ装置に届くことはないことから、火災に対する耐性が確保されていることを確認した。

(c)屋外配管および弁(フィルタ装置入口側、フィルタ装置出口側、弁) 設計温度は200℃であり、火災発生時の配管の温度は約65℃に止まることから、火災に対する耐性が確保されていることを確認した。

(d)給水設備,窒素パージ設備,ドレン設備

輻射熱による影響がないように、耐熱性のある計器の使用または遮熱性 のある板で覆うこと等により、設備を防護するため火災の影響はない。 (e)計器類(水位計,圧力計,放射線モニタ等)

輻射熱による影響がないように、耐熱性のある計器の使用または遮熱性 のある板で覆うこと等により、設備を防護するため火災の影響はない。 (f)計装ラック

計装ラックの周囲にはフィルタベント遮蔽壁が設置されており,フィル タベント遮蔽壁内側の温度は上昇しないことから,火災に対する耐性が確 保されていることを確認した。

第7.2.1-1図 格納容器圧力逃がし装置と各火災の位置関係

第7.2.1-2図 航空機墜落位置と危険物タンク火災の重畳を考慮する位置(6号炉)

第7.2.1-3 図 航空機墜落位置と危険物タンク火災の重畳を考慮する位置(7号炉)

7.2.2 内部火災

(1)設計基準

格納容器圧力逃がし装置に発生する火災を想定する。

地震時においては、耐震 B, Cクラスの機器を火災源とする火災を,火災 区域内に想定する。

(2) 想定される影響

影響モード:火災による温度上昇,引火,発火

対象部位:格納容器圧力逃がし装置の系統を構成する弁(手動弁,電動駆 動弁,空気駆動弁)等

操作時に必要な監視機器

アクセスルート

(3)耐性評価結果

格納容器圧力逃がし装置の系統を構成する弁,操作時に必要な監視機器, アクセスルート等(以下,「機器等」という。)については,6.1.4 (2)a.に記 載のとおり,火災の発生防止対策を施しており,当該機器等の引火・発火の おそれは小さく,温度上昇による損傷のおそれも小さい。また,機器等のう ちケーブル等は難燃性のものを使用している。

万一,格納容器圧力逃がし装置の機器等に火災が発生した場合においても, 6.1.4 (2)b.に記載のとおり、火災の感知、消火対策を施しており、当該機器 等に発生した火災を速やかに感知し消火することによって、当該機器等の損 傷を最小限に抑えることができる。

地震時における,耐震B,Cクラスの機器を火災源とする火災に対しては, 火災によって格納容器圧力逃がし装置の機能に影響を及ぼす可能性のある耐 震B,Cクラスの機器について,当該機器を耐震強化すること,又は当該機 器の設置箇所に耐震強化した消火設備を設置することによって,格納容器圧 力逃がし装置の機能を維持することができる。

7.2.3 内部溢水

(1)設計基準

発生要因別に分類した以下の溢水を想定する。

- ・溢水の影響を評価するために想定する機器の破損等により生じる溢水
- ・発電所内で生じる異常状態(火災を含む)の拡大防止のために設置される 系統からの放水による溢水
- ・地震に起因する機器の破損等により生じる溢水

(2) 想定される影響

溢水の発生要因に依らず,以下の影響を想定する。

影響モード: 没水, 被水, 蒸気による環境条件の悪化

対象部位:格納容器圧力逃がし装置の系統を構成する弁(手動弁,

電動駆動弁, 空気駆動弁)

操作時に必要な監視機器

アクセスルート

- (3)耐性評価結果
 - a. 格納容器圧力逃がし装置の系統を構成する弁(手動弁, 電動駆動弁, 空 気駆動弁)
 - (a)格納容器圧力逃がし装置の系統を構成する手動弁については,没水,被 水,蒸気の影響は無く,機能は維持される。
 - (b)格納容器圧力逃がし装置の系統を構成する電動駆動弁及び空気駆動弁 については,没水,被水等の影響により通常の遠隔操作機能を喪失する 可能性がある。しかし,それぞれ物理的に隔離された箇所に設置された バックアップ設備による代替操作が可能であり,万が一,バックアップ 設備が溢水による影響を受けた場合においても,現場での手動操作が可 能であることから,機能は維持される。
 - b. 操作時に必要な監視機器
 - (a)操作時に必要な監視機器については、止水対策,被水対策等,没水,被 水,蒸気に対する防護対策を講じることにより,機能は維持される。
 - c. アクセスルート
 - (a) 内部溢水発生時は,自動隔離又は手動隔離により,漏えい箇所の隔離操 作を行うこととしている(標準80分を想定)。また,地震時において, 漏えい箇所の隔離が不可能な場合においても,開放ハッチ部,床ファン ネルを介し,建屋最地下階へと導く設計としていること等により,操作 対象機器へのアクセスルート上に溢水が滞留し,操作を阻害することは ない。
 - (b)格納容器圧力逃がし装置の操作時においては,操作対象機器へのアクセ スルート上に溢水が滞留しないこと,壁による遮蔽があること等から, 放射線による影響も限定的であり,操作は可能である。

(4)管理区域外への漏えいについて

止水対策, 堰等の防護対策を講じることにより, 放射性物質を含む液体を放 射線管理区域外へ漏えいさせることがないように設計する。 以上のことから,内部溢水が発生した場合でも,格納容器圧力逃がし装置の 機能は維持される。

- 7.2.4 航空機墜落(偶発的事象)
 - (1)設計基準

原子炉建屋等重要施設を中心として, 落下確率が 1.0×10⁻⁷回/炉・年とな る範囲外への墜落。

(2) 想定される影響

影響モード:衝突による衝撃力,火災による熱影響 対象部位:格納容器圧力逃がし装置を構成する構築物・機器

(3) 耐性評価結果

柏崎刈羽原子力発電所6号炉又は7号炉の原子炉建屋等重要施設に墜落する確率は、約3.4×10⁻⁸回/炉・年であることから、格納容器圧力逃がし装置に対する偶発的な航空機の衝突は設計上考慮する必要はない。なお、10⁻⁷回/炉・年を超えるエリアへ墜落した場合における航空機燃料火災に対する耐性は7.2.1外部火災に示すとおりである。

7.2.5 船舶の衝突

(1) 想定される影響

影響モード:船舶の衝突による荷重 対象部位:フィルタ装置

(2)耐性評価結果

敷地前面の海に面しておらず,また 300m 以上の離隔距離を確保しているため, 船舶の衝突の影響が及ぶことはない。

- 7.2.6 電磁的障害
 - (1)設計基準

電力保安用通信連絡設備(PHS端末)等の電磁波による擾乱を考慮する。

(2) 想定される影響

影響モード:電磁波による擾乱 対象部位:電気設備・計装設備

(3)耐性評価結果

電磁波によりその機能が損なわれるおそれのある設備については、ライン フィルタや絶縁回路を設置することによりサージ・ノイズの侵入防止する、 鋼製筐体や金属シールド付きケーブルの適用等、電磁波の侵入を防止する処 置を講じた設計とする、又は電磁波による影響を確認することから影響を受 けない。

- 格納容器圧力逃がし装置の意図的な航空機衝突事象に対する耐性 意図的な航空機衝突が発生した場合であっても、除熱機能が喪失しないこと を以下、確認する。
- 8.1 航空機衝突(意図的事象)

(1)事象想定(第8.1-1表,第8.1-1図参照)

(2) 想定される影響

影響モード:衝突による衝撃力,火災による熱影響 対象部位:フィルタベント遮蔽壁,フィルタ装置,フィルタ装置入口側配管, フィルタ装置出口側配管,屋外設備(給水設備,窒素パージ設備, ドレン設備,弁),計器類(水位計,圧力計,放射線モニタ等), 計装ラック

(3) 耐性評価結果(第8.1-1 表参照)

(4)代替手段(第8.1-1表参照)

第8.1-1表 航空機の衝突方向別機能の維持状況

第8.1-1図 フィルタ装置及び建屋の配置状況(7号炉)

別紙1 格納容器圧力逃がし装置の計測設備の網羅性について

格納容器圧力逃がし装置の計測設備については,以下の考えに基づき網羅性 を有する設計としている。

①格納容器圧力逃がし装置の使用時,待機時,使用後の各状態で,系統の要 求上確認すべき項目の全てが監視可能であること。

②上記の各状態において、管理すべき値を網羅した計測範囲であること。

1. 確認すべき項目について

格納容器圧力逃がし装置の使用時,待機時,使用後の各状態で確認すべき項目を下記(1)~(5)に抽出し,各確認すべき項目に対する計測設備が設置されていることを第1-1表に示す。(「2.3.2.2 計測設備の目的」の記載内容の一部再掲)

- (1) 格納容器圧力逃がし装置の使用時の状態
 使用時の状態が、以下のとおり把握可能である。
 - a. フィルタ装置の閉塞等によりガスの導入が妨げられていないこと フィルタ装置入口圧力にて,格納容器ベント実施により待機圧力から 上昇した圧力が,原子炉格納容器圧力の低下に追従して低下傾向を示す ことを確認することで把握できる。また,フィルタ装置出口放射線量率 が初期値から上昇することを計測することによりフィルタ装置が閉塞し ていないことを把握できる。
 - b. フィルタ装置の除去性能が低下していないこと フィルタ装置水位にて、水位が約 500mm~約 2200mm の間(2.2.1.3 参 照)であることを確認することで把握できる。
 - c. 放出されるガスの放射線量の確認

フィルタ装置出口放射線モニタにて、フィルタ装置出口配管に内包さ れる放射性物質からの放射線量率を監視し、排出経路の放射性物質濃度 を確認することが可能である。

- (2) 格納容器圧力逃がし装置の待機時の状態 待機時の状態が、以下のとおり把握可能である。
 - a. フィルタ装置の除去性能が低下していないこと フィルタ装置水位にて、水位が約 500mm~約 2200mm の間(2.2.1.3 参 照)であることを確認することで把握できる。

b. フィルタ装置配管内の不活性状態の確認

フィルタ装置入口圧力及びフィルタ装置出口圧力にて,封入した窒素 圧力(0.01MPa[gage]以上)を継続監視することによって配管内の不活性 状態を把握できる。

また,フィルタ装置出口配管圧力にて,点検後の窒素置換操作を実施 した際に,現場で圧力を監視することで,配管内が不活性状態になった ことを把握できる。

- (3) 格納容器圧力逃がし装置の使用後の状態 使用後の状態が、以下のとおり把握可能である。
 - a. フィルタ装置内スクラバ水の確認 フィルタ装置水位にて、フィルタ装置内で捕捉した放射性物質の放熱 により、フィルタ装置内の水が蒸発することによる水位低下を把握でき る。
 - b. フィルタ装置配管内の不活性状態の確認

フィルタ装置入口圧力及びフィルタ装置水素濃度にて,配管内が封入 した窒素で正圧に維持されていること,また,配管内に水素が残留して いないことにより不活性状態が維持されていることを把握できる。

c. 放出されるガスの放射線量の確認

フィルタ装置出口放射線モニタにて、フィルタ装置出口配管に内包さ れる放射性物質からの放射線量率を監視し、排出経路の放射性物質濃度 を確認することが可能である。

(4) フィルタ装置の水位調整時の確認

フィルタ装置の水位調整時の確認として,以下のとおり把握可能である。 a. フィルタ装置の水位調整の確認

フィルタ装置水位にて、フィルタ装置の排水又は水張りを実施する際 に、フィルタ装置の水位が把握できる。また、フィルタ装置ドレン流量 にて、排水操作を実施した際のドレン量の把握ができる。

b. フィルタ装置スクラバ水の水質管理(2.2.1.3 参照)

フィルタ装置水位にて、フィルタ装置の排水又は水張りを実施する際 に、フィルタ装置の水位が把握できると共に、必要な追加薬液量の把握 ができる。また、フィルタ装置ドレン流量にて、排水操作を実施した際 のドレン量から、必要な追加薬液量の把握ができる。

また、フィルタ装置へ薬液を補給する際に、スクラバ水の pH を把握で

きる設計とする。

(5) 想定される機能障害の把握

格納容器圧力逃がし装置の使用時に,想定される機能障害の確認として, 以下のとおり把握可能である。

a. フィルタ装置の閉塞

フィルタ装置入口圧力にて,格納容器ベント実施により待機圧力から 上昇した圧力が,低下傾向を示さないことを確認することで,フィルタ 装置が閉塞していることを把握できる。

また,フィルタ装置出口放射線量率が初期値から上昇しないことを確 認することにより把握できる。

b. 金属フィルタの閉塞

フィルタ装置金属フィルタ差圧にて、金属フィルタの閉塞状態を把握 できる。なお、フィルタ装置入口圧力にて、金属フィルタの閉塞が進行 し、フィルタ装置入口圧力が上昇傾向を示すことを確認することで、金 属フィルタの閉塞状態を把握できる。

c.よう素フィルタ出口配管の閉塞

ドレンタンク水位にて、ドレン水によるよう素フィルタ出口配管の閉 塞状態を把握できる。また、フィルタ装置入口圧力及びフィルタ装置出 口圧力にて、ドレン水によるよう素フィルタ出口配管の閉塞が進行し、 フィルタ装置入口圧力及びフィルタ装置出口圧力が上昇傾向を示すこと を確認することで、よう素フィルタ出口配管のドレンによる閉塞状態を 把握できる。

d. フィルタ装置入口配管の破断

フィルタ装置入口圧力にて,格納容器ベント実施により待機圧力から 上昇した圧力が低下傾向を示すが,フィルタ装置出口放射線量率が初期 値から上昇しないことを確認することにより把握できる。

e. フィルタ装置スクラバ水の漏えい

フィルタ装置水位にて、フィルタ装置からのスクラバ水漏えいによる 水位低下を確認することで把握できる。
2. 計測範囲について

格納容器圧力逃がし装置の使用時,待機時,使用後の各状態で確認すべき項目について,管理すべき値を網羅した計測範囲であることを第1-2表に示す。

3. 設備操作との整合性について

「4. 格納容器圧力逃がし装置の設備操作と操作性」で記載した各操作における監視項目が全て監視可能であることを第1-3表に示す。

	第1-1表 格納容器圧力逃がし装置 言	+測設備の網羅性について	
フィルタ装置の状態	確認すべき項目	計測設備	多重性又は多様性
(1)格納容器圧力逃がし装置の使用時	a. 原子炉格納容器雰囲気ガスがフィルタ装置へ導かれている	①フィルタ装置入口圧力	①20で多様性有り
	ことの確認	③フィルタ装置出口放射線モニタ	①②はそれぞれ多重性有り
	b. フィルタ装置の除去性能に影響するパラメータの確認	①フィルタ装置水位	①は多重性有り
	c. 放出されるガスの放射線量の確認	①フィルタ装置出口放射線モニタ	①は多重性有り
(2)格納容器圧力逃がし装置の待機時	a.フィルタ装置の除去性能に影響するパラメータの確認	①フィルタ装置水位	①は多重性有り
	b.フィルタ装置配管内の不活性状態の確認	①フィルタ装置入口圧力	①②③で多様性有り
		②フィルタ装置出口圧力	①は多重性有り
		③フィルタ装置出口配管圧力	
(3)格納容器圧力逃がし装置の使用後	a. フィルタ装置内スクラバ水の確認	①フィルタ装置水位	①は多重性有り
	b.フィルタ装置配管内の不活性状態の確認	①フィルタ装置入口圧力	①②で多様性有り
		③フィルタ装置水素濃度	①は多重性有り
		1	②は入口と出口配管でそれぞれ
			補完
	c. 放出されるガスの放射線量の確認	①フィルタ装置出口放射線モニタ	①は多重性有り
(4) フィルタ装置の水位調整時	a. フィルタ装置の水位調整の確認	①フィルタ装置水位	①②で多様性有り
		③フィルタ装置ドレン流量	①②はそれぞれ多重性有り
	b. フィルタ装置スクラバ木の水質管理	①フィルタ装置水位	①②③で多様性有り
		③フィルタ装置ドレン流量	①②はそれぞれ多重性有り
		③フィルタ装置スクラバ水 pH	
(3) 想定される機能障害	a. フィルタ装置の閉塞	①フィルタ装置入口圧力	①②で多様性有り
		②フィルタ装置出口放射線モニタ	①②はそれぞれ多重性有り
	b. 金属フィルタの閉塞	①フィルタ装置金属フィルタ差圧	①②で多様性有り
		②フィルタ装置入口圧力	①②はそれぞれ多重性有り
	c.よう素フィルタ出口配管の閉塞	①ドレンタンク水位	①②③で多様性有り
		②フィルタ装置入口圧力	②は多重性有り
		③フィルタ装置出口圧力	
	d. フィルタ装置入口配管の破断	①フィルタ装置入口圧力	①②で多様性有り
		②フィルタ装置出口放射線モニタ	①②はそれぞれ多重性有り
	e. フィルタ装置スクラバ水の漏えい	①フィルタ装置水位	①は多重性有り

いろ
3
備の網羅性(
計測設(
し装置
格納容器圧力逃が日
1表

	スクラバノズル上端を計測範囲のゼロ点とし、フィルタ装置機能維持のための上限水位:※ 2200mm, 下限水位:約200mmを監視可能。	格納容器ベント実施時に,格納容器圧力逃がし装置内の最高圧力(0.62MPa[gage])が監視可能。 また,待機時に,窒素置換(約0.01MPa[gage]以上)が維持されていることを監視可能。	点検後の窒素置換操作を実施した際に、フィルタ装置出口の圧力開放板の設定圧力	(0. IMPa[gage])を超えないことを監視可能。	格納容器ベント実施時に, 想定されるフィルタ装置出口の最大放射線量率 (約1×10 ^{4m} Sv/h) を 監視可能。	格納容器ベント停止後の窒素によるパージを実施し、フィルタ装置入口及び出口配管内に滞留する水素濃度が可燃限界(4vo1%)未満であることを監視可能。格納容器内水素濃度の最大値(38vo1%(ドライ条件))を監視可能。	ドレンポンプの定格流量(10m3/h)を監視可能。	フィルタ装置内スクラバ水のpH (pH0~14) が監視可能。		ドレンタンク内の水位を把握し,ドレンの排水操作の開始やドレン排水操作の停止判断が可能 なことを監視可能。
計測範囲	$0\sim 6000$ mm	0∼1.0MPa[gage]	$0 \sim 0.5 MPa [gage]$	-0.1 \sim 0.2MPa[gage]	10^{-2} $\sim 10^5 \mathrm{mSv/h}$	$0{\sim}100$ vo1%	$0\sim 30 \mathrm{m}^3/\mathrm{h}$	pH0~14	$0\!\sim\!50\mathrm{kPa}$	タンク底部から 510mm タンク底部から 1586mm タンク底部から 3061mm タンク店部から 3061mm
監視パラメータ*1	①フィルタ装置水位	②フィルタ装置入口圧力	③フィルタ装置出口圧力	④フィルタ装置出口配管圧力	⑤フィルタ装置出口放射線モニタ	⑤フィルタ装置水素濃度	①フィルタ装置ドレン流量	⑧フィルタ装置スクラバ水pH	③フィルタ装置金属フィルタ差圧	⑩ドレンタンク水位

第1-2表 格納容器圧力逃がし装置計測設備の計測範囲の網羅性について

※1 監視パラメータの数字は第2.3.2.3-1 図の丸数字に対応する。

第1-(3 表 「4. 格納容器圧力逃/	がし装置の設備操作と操作性」との整合	ふだしいよ
プラント状態	2.3.2.2 計測設備の目的	 格納容器圧力逃がし装置の設備操作 と操作性 	監視パラメータ
、ト停止時又は通常運転	 (1)格納容器圧力逃がし装置の 待機時の状態 (4)フィルタ装置の水位調整時 	4.3 ①格納容器圧力逃がし装置点検等後の窒素置換	フィルタ装置入口圧力 フィルタ装置出口圧力 フィルタ装置出口配管圧力
各生~格納容器ベント前	の確認	4.1.2 a.格納容器ベント操作前準備	フィルタ装置水位 フィルタ装置ドレン流量 フィルタ装置スクラバ水 pH
字器ベント開始	(2)格納容器圧力逃がし装置の	4.1.2 b.格納容器ベント開始操作	フィルタ装置入口圧力
容器ベント開始後~格納 ベント停止前	使用時の状態 (4) フィルタ装置の水位調整時	4.1.2 c.格納容器ベント中操作	フィルタ装置出口圧力 フィルタ装置水位
客器ベント停止	の確認 (5)想定される機能障害の把握		フィルタ装置出口放射線モニタフィルタ装置ドレン流量
			フィルタ装直スクフパボ pH フィルタ装置金属フィルタ差圧 ドレンタンク水位
客器ベント停止後	(3)格納容器圧力逃がし装置の 使用後の状態 (4)フィルク粧器の水位調整時	 4.1.1 d. 格納容器ベント停止操作 4.3 ②格納容器ベント停止後の窒素ガ スピトスパージ 	フィルタ装置入口圧力 フィルタ装置水位 フィルタ地置出口松射線エータ
	の確認		フィルク装置ドレン流量 フィルタ装置スクラバ水 bH フィルタ装置水素濃度

別紙2 格納容器圧力逃がし装置 計測設備の概略構成図

(1) フィルタ装置水位

フィルタ装置水位は、重大事故等対処設備の機能を有しており、フィル タ装置水位の検出信号は、差圧式水位検出器からの電流信号を、中央制御 室の演算装置を経由し、指示部にて水位信号へ変換する処理を行った後、 フィルタ装置水位を中央制御室に指示し、記録する。(第1-1回「フィ ルタ装置水位の概略構成図」参照。)

フィルタ装置水位は、重大事故等対処設備の機能を有しており、フィル タ装置水位の検出信号は、差圧式水位検出器からの電流信号を、中央制御 室の指示部にて水位信号へ変換する処理を行った後、フィルタ装置水位を 中央制御室に指示し、記録する。((第1-2図 「フィルタ装置水位の概略 構成図」参照。)

(2) フィルタ装置入口圧力

フィルタ装置入口圧力は,重大事故等対処設備の機能を有しており,フ ィルタ装置入口圧力の検出信号は,弾性圧力検出器からの電流信号を,中 央制御室の指示部にて圧力信号へ変換する処理を行った後,フィルタ装置 入口圧力を中央制御室に指示し,記録する。(第1-3回 「フィルタ装置 入口圧力の概略構成図」参照。)

(注1) 記録計

(注 2) 緊急時対策支援システム伝送装置

第1-3図 フィルタ装置入口圧力の概略構成図

(3) フィルタ装置出口圧力

フィルタ装置出口圧力の検出信号は,弾性圧力検出器からの電流信号を, 中央制御室の指示部にて圧力信号へ変換する処理を行った後,フィルタ装 置出口圧力を中央制御室に指示し,記録する。(図1-4 「フィルタ装置出 口圧力の概略構成図」参照。)

第1-4図 フィルタ装置出口圧力の概略構成図

(4) フィルタ装置出口配管圧力

フィルタ装置出口配管圧力は,機械式圧力検出器にて圧力を検出し,フィルタ装置出口配管圧力を現場(原子炉建屋4階屋上)に指示する。(第1-5図「フィルタ装置出口配管圧力の概略構成図」参照。)

第1-5図 フィルタ装置出口配管圧力の概略構成図

(5) フィルタ装置出口放射線モニタ

フィルタ装置出口放射線モニタは,重大事故等対処設備の機能を有して おり,フィルタ装置出口放射線モニタの検出信号は,電離箱からの電流信 号を,前置増幅器で増幅し,中央制御室の指示部にて放射線量率に変換す る処理を行った後,放射線量率を中央制御室に指示し,記録する。(第1-6図 「フィルタ装置出口放射線モニタの概略構成図」参照。)

(注1) 記録計

(注 2) 緊急時対策支援システム伝送装置

第1-6図 フィルタ装置出口放射線モニタの概略構成図

(6) フィルタ装置水素濃度

フィルタ装置水素濃度は、重大事故等対処設備の機能を有しており、フ ィルタ装置水素濃度の検出信号は、熱伝導式水素検出器からの電流信号を 前置増幅器にて増幅し、中央制御室の指示部にて水素濃度信号へ変換する 処理を行った後、フィルタ装置水素濃度を中央制御室に指示し、記録す る。(第1-7図 「フィルタ装置水素濃度 システム概要図」及び、第1-8図 「フィルタ装置水素濃度の概略構成図」参照。)

第1-7図 フィルタ装置水素濃度 システム概要図(出口配管側も同様)

(注1)記録計(注2)緊急時対策支援システム伝送装置

第1-8図 フィルタ装置水素濃度の概略構成図

(7) フィルタ装置ドレン流量

フィルタ装置ドレン流量の検出信号は、電磁流量検出器からの電気信号 を、フィルタベント現場制御盤の指示部にて流量信号へ変換する処理を行 った後、フィルタ装置ドレン流量をフィルタベント現場制御盤(フィルタ ベント遮蔽壁附室内)に指示する。(第1-9図 「フィルタ装置ドレン流 量の概略構成図」参照。)

第1-9図 フィルタ装置ドレン流量の概略構成図

(8) フィルタ装置スクラバ水 pH

フィルタ装置スクラバ水 pH は、重大事故等対処設備の機能を有してお り、pH 検出器からの電流信号を、中央制御室の指示部にて pH 信号に変換 する処理を行った後、フィルタ装置スクラバ水 pH を中央制御室に指示し、 記録する。(第1-10図 「フィルタ装置スクラバ水 pH システム概要図」 及び、第1-11図 「フィルタ装置スクラバ水 pH の概略構成図」参照。)

第1-10図 フィルタ装置スクラバ水 pH システム概要図

第1-11図 フィルタ装置スクラバ水 pH の概略構成図

(9) フィルタ装置金属フィルタ差圧

フィルタ装置金属フィルタ差圧は,重大事故等対処設備の機能を有して おり,フィルタ装置金属フィルタ差圧からの電流信号を,中央制御室の指 示部にて差圧信号へ変換する処理を行った後,フィルタ装置金属フィルタ 差圧を中央制御室に指示し,記録する。(第1-12図「フィルタ装置金属 フィルタ差圧の概略構成図」参照。)

(注1) 記録計

(注 2) 緊急時対策支援システム伝送装置

第1-12図 フィルタ装置金属フィルタ差圧の概略構成図

(10) ドレンタンク水位

ドレンタンク水位の検出信号は、フロート式水位検出器からの水位状態 (ON-OFF 信号)を、中央制御室に指示し、記録する。(第1-13 図 「ド レンタンク水位の概略構成図」参照。)

(注1) 記録計

第1-13図 ドレンタンク水位の概略構成図

参考 格納容器圧力逃がし装置 計測設備の機器配置図

第1-14図 6号炉格納容器圧力逃がし装置 計測設備 全体概要図

第1-15図 機器配置図(6号炉屋外)

第1-16図 機器配置図(6号炉屋上)

第1-17図 機器配置図 (6号炉原子炉建屋地上3階)

第1-18図 7号炉格納容器圧力逃がし装置 計測設備 全体概要図

第1-19図 機器配置図(7号炉屋外)

第1-20図 機器配置図(7号炉屋上)

第1-21図 機器配置図(7号炉原子炉建屋地上3階)

第1-22図 機器配置図(7号炉原子炉建屋地上中3階)

別紙3 放射線検出器の計測上限及び放射性物質濃度推定の考え方

放射線検出器の計測範囲は、想定される最大放射線量率(mSv/h)の評価結 果から上限を設定する設計としている。また、放出された放射性物質濃度の推 定にあたっては、放射線検出器の指示値(mSv/h)から、放射性物質濃度(Bq/cm³) を推定する方針としている。

1. フィルタ装置出口放射線モニタの計測上限の考え方

a.評価条件

放射線検出器の計測範囲の上限値は,余裕を持った設計とするため,フィル タ装置出口配管で想定される最大放射線量率の評価条件は,以下のとおり保守 的に設定する。

- ・想定事故は、炉心内の放射性物質の量が最も多く含まれる「炉心状態が平 衡炉心(サイクル末期)」に発生し、原子炉内に内蔵される放射性希ガス が全て原子炉格納容器内に移行し、均一に拡散したものとして設定する。
- ・ 格納容器ベントの開始時間は,原子炉停止から1時間後に設定する。
- フィルタ装置出口配管と放射線検出器の評価モデルは第1-1図のとおりとする。
- フィルタ装置出口配管内の放射性物質濃度は原子炉格納容器内の放射性 物質濃度と同等として設定する。

第1-1図 評価モデル(フィルタ装置出口配管)

b. 想定される最大放射線量率の評価結果

上記「a.」の評価条件に基づき,放射線量率を評価した結果を第 1-1 表に 示す。

	評価点1	評価点2
	(配管表面から 100mm)	(配管表面から 300mm)
放射線量率[mSv/h]	約 1.0×10 ⁵	約 6.2×10 ⁴

第1-1表 放射線量率評価値

以上より,保守性を考慮した評価結果から最大放射線量率は約 1×10⁵mSv/h 程度と想定しているが,放射線検出器は配管表面より 300mm 離した評価点 2 に 設置する計画としていることから,検出器の計測範囲の上限を 1×10⁵mSv/h と して適切に設計している。

2. フィルタ装置出口放射線モニタによる放射性物質濃度推定について a. 放射性物質濃度の推定に関する方針

放射線検出器を配管表面から300mm離した評価点2での放射線量率(mSv/h), 配管内の放射性物質濃度(Bq/cm³)及び換算係数([Bq/cm³]/[mSv/h])を評価 した結果を第1-2表に示す。格納容器ベントの開始時間は,原子炉停止から1 時間後および24時間後とする。

N 1 0 X 1		111-1-10 MANITE 10 92	in a c in the man
原子炉停止後,格納容器ベ	放射線量率	放射性物質濃度	換算係数
ント開始までの時間[h]	[mSv/h]	$[Bq/cm^3]$	$[[Bq/cm^3]/[mSv/h]]$
1	約 6.2×104	約 1.1×10 ⁹	約 1.8×10 ⁴
24	約 2.1×104	約 5.0×10 ⁸	約 2.4×10 ⁴

第1-2表 フィルタ装置出口配管内の放射性物質濃度と換算係数

以上より,第1-2表の換算係数を事前に準備しておくことで、ベント初期 段階での放射性希ガスの放出(少なくともベント実施から最初の1時間におい ては、希ガスの影響が支配的となると考えられる)に対して放射線検出器の指 示値(mSv/h)から放射性物質濃度(Bq/cm³)を推定する方針である。

なお、事故後に当該事故の詳細かつ正確なデータにより、換算係数の再評価 を実施することで、放射線検出器の指示値(mSv/h)から、より精度の高い放 射性物質濃度(Bq/cm³)を評価することが可能である。 b. 放出放射能量の推定方法について

上記「a.」で求めた放射性濃度(Bq/cm³)に、格納容器内圧力から推定されるベントガス流量(m³/h)を乗じ、放出速度(Bq/h)を求め、ベント実施期間で積分することにより、放出放射能量(Bq)を求めることが可能である。

なお、本推定方法において、放射線検出器付近におけるバックグランド分も 含めた保守的な評価となることを理解した上で使用する。

フィルタ装置出口配管の放射性物質濃度の推定について,以下の理由により, サンプリング分析ではなく,配管外表面の放射線量の直接計測を採用した。

- ・原子炉格納容器雰囲気ガスがフィルタ装置へ導かれていることの確認を迅速
 に、かつ、遠隔での連続監視が必要であるが、サンプリング分析の場合は、
 時間遅れやある一定間隔での計測となること。
- ・サンプリング実施時に、サンプリング配管からベントガスが漏えいするリス クがあること。
- 「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針」
 より、「連続計測の場合には、配管又は容器外表面の放射線量の直接計測に
 より放射性物質濃度を推定する方法を採用してもよい」との記述があり、これらを参考にしながら、設備設計を実施したこと。

3. 格納容器内雰囲気放射線レベル等を用いた放射性物質濃度推定について 格納容器圧力逃がし装置より放出される放射能量の算定方法として,上記に格 納容器圧力逃がし装置の放射線検出器を用いる方法を示している。事故時におい て得られたパラメータより多角的に事象進展を分析することが必要となるため, 上記に示す手法以外の推定方法である格納容器内雰囲気放射線レベル(D/W)(S/C) を用いる手法についても示す。

○具体的な手順

- プラントデータを確認し事前に評価する代表的な重大事故時想定の中より最も事象進展が近いものを選定する^{*1}。
- ② 事前に評価した『代表的な重大事故時想定における原子炉格納容器内に存在する放射能量(Bq)及び検出器位置での放射線量率(Sv/h)』をもとに、測定された格納容器内雰囲気放射線レベルの放射線量率(Sv/h)から原子炉格納容器内に存在する放射能量(Bq)を比例計算にて求める。この時、格納容器壁面等に沈着している放射性物質からの影響は必要に応じて補正を行う。
- ③ ②より求めた格納容器気相部内の放射能量(Bq)に格納容器圧力逃がし 装置,S/Cスクラビングの除去係数を考慮し放出放射能量(Bq)を求め る。

射性物質からの寄与はその影響の大きさを確認し,当該事象での補正の 必要性を確認する。

※1 事前に評価する代表的な重大事故時想定として、格納容器内の放射性物質の存在割合に大きく影響するLOCAの発生の有無等を考慮した複数ケースを評価する(平成29年3月27日時点での運用予定のケースを示しており、今後の検討により評価条件及び評価ケースは見直す可能性がある)。 事故時においてはプラントデータを確認し、評価ケースの中より最も近い

事象進展を選定し、評価を行う。

なお、上記手順は、格納容器圧力逃がし装置の使用の可能性がある場合において、その影響(概算)を早期に確認するための手法である。そのため、詳細な値は事故後に得られた詳細な事象進展,データを用いて確認する必要がある。

別紙4 フィルタ装置水素濃度の計測時間遅れについて

フィルタ装置水素濃度は、格納容器圧力逃がし装置の使用後に配管内に水素 ガスが残留していないことにより不活性状態が維持されていることを把握する ため、フィルタ装置入口配管内のガスをサンプルポンプで引き込み、除湿器で 水分が除去されて、水素濃度検出器にて測定されるようにしている。水素計測 後のサンプルガスは格納容器圧力逃がし装置の配管に戻す構成としている。水 素濃度検出器により計測した電気信号は演算装置で水素濃度信号に変換し、中 央制御室に指示し、記録する。

第1-1図 フィルタ装置水素濃度システム概要図

なお、フィルタ装置入口配管内のガスのサンプリング点は、フィルタ装置入 口配管の頂部の原子炉建屋4階であり、そこから水素濃度検出器までの時間遅 れは以下のとおりである。

- ・サンプリング配管長(サンプリング点~水素濃度検出器):6 号炉:約 26m
 7 号炉:約 20m
- ・ サンプリング配管の断面積:359.7mm² (3.597×10⁻⁴m²)
- サンプルポンプの定格流量:約11/min(約1×10⁻³ m³/min)
- サンプルガス流速(流量÷配管断面積):約2.8m/min

なお,ガスは標準状態(0℃,101.325kPa[abs])として算出。

第1-1表 フィルタ装置水素濃度の時間遅れ

210	1	a manage is a first of a set
号炉	6 号炉	7 号炉
時間遅れ	約10分	約8分

<参考>

a.水素濃度計の測定原理

水素濃度検出器は,熱伝導式を用いる計画であり,第1-2図に示すとおり, 検知素子と補償素子(サーミスタ),及び2つの固定抵抗でブリッジ回路が構成されている。検知素子の部分に,サンプリングされたガスが流れるようになっており,補償素子には基準となる標準空気が密閉されており測定対象ガスと は接触しない構造になっている。

水素濃度指示計部より電圧を印加して検知素子と補償素子の両方のサーミ スタを約120℃に加熱した状態で,検知素子側に水素を含む測定ガスを流すと, 測定ガスが熱をうばい,検知素子の温度が低下することにより抵抗が低下する。 この検知素子の抵抗が低下するとブリッジ回路の平衡が失われ,第1-2図の AB間に電位差が生じる。この電位差が水素濃度に比例する原理を用いて,水素 濃度を測定する。

第1-2図 水素濃度計検出回路の概要図

b.水素濃度の測定

水素濃度検出器は「a.」で示したとおり標準空気に対する測定ガスの熱伝 導の差を検出する方式のものであり,酸素,窒素などの空気中のガスに対し, 水素の熱伝導率の差が大きいことを利用しているものである。水素の熱伝導率 は,約0.18 W/(m・K)at27℃である一方,酸素,窒素は,約0.02W/(m・K)at27℃ と水素より1桁小さく,これらのガス成分の変動があっても水素濃度計測に対 する大きな誤差にはならない。

(注1) 記録計

(注 2) 緊急時対策支援システム伝送装置

第1-3図 フィルタ装置水素濃度の概略構成図

水素濃度の計測範囲 0~100vol%において,計器仕様は最大±2.1vol%の誤差 を生じる可能性があるが,この誤差があることを理解した上で,フィルタ装置使 用後の配管内の水素濃度の推移,傾向(トレンド)を監視していくことができる。

別紙5 エアロゾル計測装置について (1) エアロゾル計測装置の計測原理

(2) エアロゾル計測装置の計測精度について

エアロゾル計測装置の計測精度については、以下の通り示す。

1. 光散乱式エアロゾルスペクトロメーター

光散乱式エアロゾルスペクトロメーターは, 粒子に光を当てた際の散乱光パル スの強度を計測し, 粒子の粒径や個数濃度を求めている。

まず,光散乱式エアロゾルスペクトロメーターの粒径に対する精度を第2-1表の通り示す。粒径に対する精度の確認は,粒径が既知の標準粒子(PSL)を計測し,標準粒子の径との比較をすることで評価している。

なお,光散乱式エアロゾルスペクトロメーターの可測粒径は0.2~40µmであるが,計測のメカニズムから,小さい粒子の方が発生する散乱光が弱く,計測の誤差が大きくなることから,可能な限り最小可測粒径に近い粒子を計測している。

また,試験にはエアロゾル計測装置はフィルタ入口側と出口側の2つ使用して いるため,それぞれの誤差を示す。

第2-1表 光散乱式エアロゾルスペクトロメーターの粒径計測に対する誤差

第2-1表より、いずれの計測器も、最小可測粒径(0.2µm)、を含めて粒径計 測に対する誤差は小さく、粒径を適切に計測できていると考える。

次に,光散乱式エアロゾルスペクトロメーターの個数濃度に対する精度を第2 -2表の通り示す。個数濃度に対する精度の確認も,粒径が既知の標準粒子(PSL) を用い,第2-1図に示す通り,国家標準とトレーサブルな凝縮粒子カウンター(標 準器)で計測した個数濃度との比較により精度を評価している。

なお,光散乱式エアロゾルスペクトロメーターの可測粒径は0.2~40µmであるが,計測のメカニズムから,小さい粒子の方が発生する散乱光が弱く,計測の誤差が大きくなることから,可能な限り最小可測粒径に近い粒子を計測している。

また,試験にはエアロゾル計測装置はフィルタ入口側と出口側の2つ使用して いるため,それぞれの誤差を示す。

第2-2表 光散乱式エアロゾルスペクトロメーターの個数濃度計測に対する誤差

第2-1図 個数濃度評価構成

第2-2表に示す通り、いずれの粒径においても、標準器計測値に対する誤差は 計測器1,2で同程度であることから、計測器1,2の個数濃度に対する計測精度は 同等と考えられる。ただし、計測器番号1,2を比較した場合、若干ではあるもの の、個数濃度は計測器1よりも計測器2の方が大きめに計測されることから、DF を保守的に評価するため、計測器1をフィルタ入口側に、計測器2をフィルタ出 口側に設置している。

ここで,第2-2 図の通り,試験フィルタには水を張らず,金属フィルタも取り 外した状態で,計測器1をフィルタ入口側,計測器2を出口側に設置して,第2-3 表の条件にて DF 計測試験を実施した。本条件では水スクラバと金属フィルタの粒 子捕捉効果は発生しないため,容器壁面沈着の捕捉を確認することができる。

第2-2図 フィルタ容器 DF 計測試験装置構成図

項目	条件
試験装置	・実機高さ試験装置
試験ガス	・空気
スクラバ水位	• 0m
金属フィルタ	・無し
ガス温度	・常温
ガフ休穂法昌	・2Pd 相当流量
カ ベ 仲 惧 仉 里	・最小流量相当
試験エアロゾル	• TiO ₂

第2-3表 フィルタ容器 DF 性能試験条件一覧表

上記の条件にて試験を実施した結果, DF は第2-3図, 第2-4図の通りとなった。

第2-3図 フィルタ容器 DF 性能試験結果(2Pd 相当流量)

第2-4図 フィルタ容器 DF 性能試験結果(最小流量相当)

第2-3 図,第2-4 図より,ほとんどの粒径範囲において,DFが1以下となっており,フィルタ入口側の粒子検出個数よりも,フィルタ出口側の粒子検出個数の方が多くなっていることがわかった。計測器1をフィルタ入口側,計測器2を 出口側に設置することで,DFを保守的に評価できていると考える。

なお,第2-3図,第2-4図のDFを評価した際の,フィルタ入口側と出口側の 検出個数を第2-5図,第2-6図に示す。第2-5図と第2-6図より,粒子個数 の分布の形はフィルタ入口側と出口側で大きく変わっていない。そのため,フィ ルタを通過する過程において,エアロゾルの凝集や分離はあまり生じていないと 考えられる。

第2-5図 粒子検出個数(2Pd相当流量)

第2-6 図 粒子検出個数(最小流量相当)

一方,第2-3図,第2-4図に示す通り,DFの最大値は1.12であり,これは 容器壁面や気泡細分化装置への沈着による捕捉効果であると考えられる。

2. 走査式モビリティパーティクルサイザー

走査式モビリティパーティクルサイザーは,ガス中に含まれる粒子に対して, 静電分級装置にて任意の粒径の粒子を分級し,凝縮粒子カウンターにて分級した 粒子の個数濃度を計測するものである。

まず, 粒子を分級する静電分級装置の精度を第2-4表の通り示す。分級に対す る精度の確認は, 粒径が既知の標準粒子(PSL)を計測し, 標準粒子の径との比 較をすることで評価している。

なお,静電分級装置の可測粒径は 0.01~1.0μm であるが,分級のメカニズムから,粒子の粒径に対して電気移動度に非線形性はないことから, μ mに対して 分級誤差を評価することは妥当である。

また,試験にはエアロゾル計測装置はフィルタ入口側と出口側の2つ使用して いるため,それぞれの誤差を示す。

第2-4表 静電分級装置の誤差

第2-4表より、いずれの計測器も粒径に対する誤差はと小さく、粒径を適切に 計測できていると考える。

次に、凝縮粒子カウンターの個数濃度に対する精度を第2-5回、第2-6回に 示す。個数濃度に対する精度の確認も、粒径が 」umの標準粒子(PSL)を用い、 国家標準とトレーサブルな凝縮粒子カウンター(基準器)で計測した個数濃度と の比較により精度を評価している。

なお,凝縮粒子カウンターの可測粒径は0.01~1.0µmであるが,計測のメカニ ズムから,小さい粒子の方が発生する散乱光が弱く,計測の誤差が大きくなるこ とから,可能な限り最小可測粒径に近い粒子を計測している。

また,試験にはエアロゾル計測装置はフィルタ入口側と出口側の2つ使用して いるため,それぞれの評価結果を示す。

第2-5図 凝縮粒子カウンター個数濃度誤差(計測器番号1)

第2-6図 凝縮粒子カウンター個数濃度誤差(計測器番号2)

第2-5回,第2-6回に示す通り,計測器1,2ともに基準器と同等の精度で個 数濃度を計測できている。なお,計測器1,2を比較すると,若干ではあるものの 個数濃度は計測器1よりも,計測器2の方が大きめに計測されることから,DFを 保守的に評価するため,計測器1をフィルタ入口側に,計測器2をフィルタ出口 側に設置している。 別紙6 除去性能試験について

1. 超過流量状態における DF 性能について

格納容器圧力逃がし装置の系統概要図を第1-1図に示す。

格納容器圧力逃がし装置の二次隔離弁については,格納容器ベント操作に よる急激な原子炉格納容器の減圧による原子炉格納容器の破損を防止するこ とと,格納容器圧力逃がし装置の急激なガスの流れによる機器の破損を防止 することが目的で,ベント実施中は開度を『調整開』とする運用としており, 有効性評価においても,弁の開度はこのような状態として解析を実施してい る。

「大 LOCA+SBO+全 ECCS 機能喪失」シナリオにおける, ベントガス流量の 評価結果を第1-2 図に示す。

一方,第二弁を『全開』とした場合,上記より流量は大きくなり,体積流量で約37,000m³/hとなる。この場合,性能試験の試験範囲を超過してしまうことから,新たに37,000m³/hの試験を実施した。37,000m³/h時の除去性能試験結果を第1-3図に示す。

性能試験の結果,体積流量 37,000m³/h においても,DF は 1,000 以上となることが確認できた。

第1-1図 系統概要図

第1-3図 除去性能試験結果(流量:37,000m³/h)
2. フィルタ装置内圧力の DF への影響について

フィルタ装置内圧力の DF への影響を確認するために,フィルタ装置内圧力 を 0.1MPa, 0.41MPa, 0.72MPa (abs) として実施した除去性能試験の結果を 第 2-1 図に示す。

試験条件として,試験粒子は PSL 粒子(粒径 0.05~0.5µm),ガス流量は最 小流量相当の 13,000m³/h,スクラバ水位は 1m としている。

試験の結果, 粒径が 0.2µm以上の粒子においては, フィルタ装置内の圧力の DF への影響がほぼ認められないことがわかった。

第2-1図 フィルタ装置内圧力の除染性能への影響

- 3. 試験のスケール性について
- 【水スクラバ】
 - (1) 実機フィルタ装置と試験用フィルタのボイド率について

7 号炉の格納容器圧力逃がし装置の実機を用いて各ノズルからのガス噴射 状態を確認する試験を行った。

試験概要図を第3-1図に示す。図に示すように2象限分のノズルは閉止し, 残り2象限にノズル流量計測装置を設置する。これらは1象限の半分のノズ ルに対して計測が可能となっており,ノズル噴射の対称性を考慮すると,全 ノズルの流量状態を確認することと同等になると考えられる。

試験は、スクラバ水位を100mmとし、ブロワーにて4象限分に換算して約30,500m³/h相当の空気を送気した状態で、噴射状態の目視確認と噴射量の計測を実施した。

試験結果を第3-2図に示す。試験結果より,各ノズルからほぼ均一にガス が噴射できていることを確認した。

第3-1図 試験概要図

第3-2図 ノズル噴射状況

ここで、実機フィルタ装置と試験装置の比較を第3-3図に示す。第3-3 図に示す通り、試験容器の断面積は実機の1/140、スクラバノズルは実機が 140本であるのに対し1本設置していることから、実機と試験装置で相似則 が成立している。

この試験装置を用いて、実機の 1/140 の体積流量のガスを通気し、試験を 実施している。

実機においては、ガスが各ノズルからほぼ均一に噴射していることから、 実機と試験装置では噴射時のガスの流速は同等になる。そのため、ベントガ ス噴射直後域では、実機と試験装置でガスの挙動は同様である。また、ベン トガス浮上域においては、実機と試験装置では容器断面積の相似則が成立し ていることから、ボイド率は等しくなると考えられるため、実機と試験装置 でガスの挙動は同様となる。

以上より,フィルタ装置の水スクラバ部においては,本試験装置における 性能試験の結果にて,実機の性能を再現できていると考えられる。

(2) 隣接ノズルによる影響について

試験用フィルタは、スクラバノズルが1本のみ設置されているため、実機のように隣接するノズルによる影響は再現できていない。隣接ノズルがある 場合、隣接ノズルのベントガス気泡と合体することにより、気泡が大きくな りDFが低下する可能性がある。なお、第3-3図に記載の気泡細分化装置通 過後のベントガス浮上域においては、気泡細分化装置による整流効果により、 隣接ノズルによる合体気泡については細分化されると考えられる。そのため、 隣接ノズルによる合体気泡の影響は、気泡細分化装置に入る前までの領域(第 3-3図に記載のベントガス噴射直後域)に限定されると考えられる。

そこで、第3-4図の通り、実機と同じ50個孔のノズルと、隣接ノズルの 影響を模した150個孔のノズルを用いて、ベントガス噴射直後域の気泡につ いて、可視化試験装置により確認した。この150個孔のノズルは、ノズル3 つが非常に近接している場合を模擬している。なお、試験はノズル穴から噴 射されるガスの流速を統一(つまり150個孔のノズル試験では、50個孔のノ ズル試験の3倍の流量のガスを送気)し、2Pd相当流量と最小流量相当の2 通りのガス流速にて試験を実施した。

試験の結果を第3-5図,第3-6図に示す。図に示す通り,50個孔のノズ ルと150個孔のノズルにて、ベントガス噴射直後域の気泡に有意な差はない。 そのため、隣接ノズルのベントガス気泡により気泡が合体して大きな気泡に なることによるDFの低下は生じないと考えられる。

以上より,スクラバノズルが1本の試験装置にて,実機の性能は再現できていると考えられる。

【金属フィルタ】

実機フィルタ装置には、金属フィルタは 128 本設置されている。一方、第 3-3 図に示す通り、試験装置は断面積が実機の 1/140 の試験容器に、実機と 同じ金属フィルタを1本設置している。この試験装置に、実機の 1/140 の体 積流量のガスを通気し、試験を実施している。

そのため,金属フィルタ1本当たりの体積流量は,実機と比較して128/140 倍となっており,金属フィルタを通過するガスの流速が実機よりも小さいこ とになる。

一方,実機フィルタ装置に流入する放射性微粒子の粒径分布は3.2.2.1に 示す通りであり,考慮される粒径の存在領域においては,慣性力による捕捉 が主たる捕捉メカニズムとなる。慣性力による捕捉メカニズムにおいては, ガスの流速が大きい程,粒子の捕捉効率は大きくなる。そのため,今回の試 験は,金属フィルタ部のガスの流速は実機よりも小さいことから,保守的な 評価ができていると考えられる。

第3-3図 実機と試験装置の比較

第3-4図 隣接ノズル影響確認試験装置

第3-5図 隣接ノズル影響確認試験結果(2Pd相当流量)

第3-6図 隣接ノズル影響確認試験結果(最小流量相当)

【フィルタ容器】

フィルタ装置の容器内への放射性物質の付着量は、容器の体積/表面積の比が 小さい程、大きくなる。実機のフィルタ装置と試験用フィルタの容器の体積/表 面積比は、試験用フィルタの方が小さい。そのため、実機よりも試験用フィルタ の方が容器内への付着は起こりやすく、その分の DF を過剰に見積もってしまっ ている可能性がある。

そこで、「別紙5 エアロゾル計測装置について」にて記載の通り,スクラバ 水を抜き,金属フィルタを取り外した状態で,試験フィルタの容器部のDFを計測 したところ,最大で1.12であった。そのため,試験用フィルタの容器部における DF は殆ど見込めないことがわかった。ゆえに,実機のフィルタ装置と試験用フ ィルタの容器の体積/表面積比が異なることによる影響は非常に小さく,試験用 フィルタにて,実機のDF を再現できていると考えられる。 4. 試験ガスの代表性について

性能試験においては,試験ガスとして空気を用いている。一方,実機においては,水蒸気がベントガスの主成分となる。そのため,性能試験と実機では, 条件が異なることとなる。

そこで,空気と水蒸気ではいずれの方が粒子の捕捉効果が大きいかを,粒子 の各捕捉メカニズムにおいて確認した。

【慣性力による捕捉】

気体中の粒子の慣性力の大きさを表す値として,『ストークス数』がある。 ストークス数(St)は、下記の式により表される。ストークス数が大きい程, 粒子に作用する慣性力は大きく,慣性力による捕捉効果が大きくなると考えら れる。

$$St = D_p^2(\rho_p + \rho/2)Ccu_0/(9\eta D_f)$$
(1)

ここで、 D_p は粒径、 ρ_p は粒子密度、 ρ はガス密度、 C_e はスリップ補正係数、 u_0 はガスの流速、 η はガス粘度、 D_f は流体中の代表直径である。また、スリッ プ補正係数(C_e)は以下の式により表される。

$$C_{c} = 1 + Kn \left\{ 1.257 + 0.4 \exp(\frac{-1.1}{Kn}) \right\}$$
(2)

$$Kn = 2\lambda_g / D_p \tag{3}$$

$$\lambda_{\sigma} = \eta / (0.499 P \sqrt{8M / \pi RT}) \tag{4}$$

となる。なお, T はガス温度, P はガス圧力, M はガス分子量, R は気体定数 である。

ここで、試験に用いている常温・常圧の空気と、実機で想定される水蒸気に て、各粒径におけるストークス数を算出したところ、第4-1図、第4-2図の 通りとなった。第4-1図、第4-2図の通り、約0.4µm以上の粒径範囲であ れば、常温・常圧の空気は、水蒸気よりもストークス数が小さいことがわかる。 つまり、約0.4µm以上の領域であれば、空気の方が水蒸気よりも粒子に作用 する慣性力が小さく、空気の方が水蒸気よりも慣性力による粒子捕捉効果が小 さいと考えられる。第4-1図、第4-2図中には有効性評価シナリオ(大LOCA +SBO+全 ECCS機能喪失、W/Wベント)時にフィルタ装置に流入する粒子状放 射性物質の粒径分布を示しているが、粒径 0.4 μ m以上の粒子が大部分を占めている。また、性能試験においても、粒径 0.4 μ m以上の粒径範囲の計測もできている。(第 3.2.2.3-1~3 図参照)

そのため、空気による性能試験は、実機よりも保守的な条件ということとなる。

第4-1図 粒径とストークス数(水スクラバ)

第4-2図 粒径とストークス数(金属フィルタ)

【重力沈降による捕捉】

気体中の粒子の重力沈降速度(v_t)の大きさは、下記の式により表される。 重力沈降速度が大きい程,重力沈降による粒子の捕捉効果は大きくなると考え られる。

$$v_t = \frac{C_c D_p^2 (\rho_p - \rho) g}{18\eta} \tag{5}$$

ここで、 D_p は粒径、 ρ_p は粒子密度、 ρ はガス密度、gは重力加速度、 η は ガス粘度、 C_c はスリップ補正係数((2)式)である。

ここで、試験に用いている常温・常圧の空気と、実機で想定される水蒸気に て、各粒径における重力沈降速度を算出したところ、第4-3回の通りとなっ た。第4-3回の通り、約0.4 μ m以上の粒径範囲であれば、常温・常圧の空気 は、水蒸気よりも重力沈降速度が小さいことがわかる。つまり、約0.4 μ m以 上の領域であれば、空気の方が水蒸気よりも粒子に作用する重力沈降速度が小 さく、空気の方が水蒸気よりも重力沈降による粒子捕捉効果が小さいと考えら れる。第4-3回中には有効性評価シナリオ(大LOCA+SBO+全ECCS機能喪失、 W/Wベント)時にフィルタ装置に流入する粒子状放射性物質の粒径分布を示し ているが、粒径 0.4 μ m以上の粒子が大部分を占めている。また、性能試験に おいても、粒径 0.4 μ m以上の粒径範囲の計測もできている。(第3.2.2.3-1 ~3回参照)

そのため、空気による性能試験は、実機よりも保守的な条件ということとなる。

第4-3図 粒径と重力沈降速度

【ブラウン拡散による捕捉】

気体中の粒子のブラウン運動の激しさを表す値として,『拡散係数』がある。 拡散係数(D)は、下記の式により表される。拡散係数が大きい程,粒子のブ ラウン運動は激しくなることから,ブラウン拡散による捕捉効果が大きくなる と考えられる。

$$D = \frac{C_c kT}{3\pi \eta D_p} \tag{6}$$

ここで、k はボルツマン定数、T はガス温度、 η はガス粘度、C。はスリップ 補正係数((2)式)である。

ここで、試験に用いている常温・常圧の空気と、実機で想定される水蒸気に て、各粒径における拡散係数を算出したところ、第4-4図の通りとなった。 第4-4図の通り、約0.1µm以上の粒径範囲であれば、常温・常圧の空気は、 水蒸気よりも拡散係数が小さいことがわかる。つまり、約0.1µm以上の領域 であれば、空気の方が水蒸気よりも粒子のブラウン運動は激しくないことから、 空気の方が水蒸気よりもブラウン拡散による粒子捕捉効果が小さいと考えら れる。第4-4図中には有効性評価シナリオ(大LOCA+SBO+全ECCS機能喪失、 W/Wベント)時にフィルタ装置に流入する粒子状放射性物質の粒径分布を示し ているが, 粒径 0.1μm以上の粒子が大部分を占めている。また, 性能試験に おいても, 粒径 0.1μm以上の粒径範囲の計測もできている。(第 3.2.2.3-1 ~3 図参照)

そのため、空気による性能試験は、実機よりも保守的な条件ということとなる。

第4-4図 粒径と拡散係数

【水蒸気凝縮による捕捉】

水蒸気がスクラバ水中へ流入する時,水蒸気の凝縮が起こり,凝縮による水 蒸気の体積の減少分に相当する粒子が捕捉される。一方,空気は非凝縮性であ るため,空気を用いた性能試験においては,ガスの凝縮による捕捉効果は見込 めない。そのため,空気を用いた性能試験は,実機よりも保守的な条件という こととなる。

【熱泳動による捕捉】

ベントガスは,原子炉格納容器から急減圧されてフィルタ装置へ流入するため,過熱蒸気となっている。一方,スクラバ水はフィルタ装置内の圧力に準じた飽和温度以上にはならないことから,ベントガスの方がスクラバ水よりも高温の状態となっている。そのため,この温度勾配による熱泳動により,粒子が 捕捉される。

性能試験においては、常温の空気を用いていることから、空気とスクラバ水 の温度は等しい。そのため、常温の空気を用いた性能試験においては、熱泳動 による捕捉効果は見込めないことから、実機よりも保守的な条件ということと なる。

以上より,フィルタ装置のそれぞれの捕捉メカニズムにおいて,空気の方が 水蒸気よりも粒子の捕捉効果は劣ることから,空気を用いた性能試験は保守的 であると考えられる。

5. スクラバ下限水位時のフィルタ装置の性能

フィルタ装置の運用水位の下限値は,スクラバ上端から 500mm の位置に設定 している。下限水位時におけるフィルタ装置の DF 性能を確認するため,スクラ バ水位を下限水位(スクラバ上端から 500mm)に設定し,除去性能確認試験を 実施した。なお,ガスの流量は最小流量相当ならびに 2Pd 相当流量の 2 ケースに て試験を実施した。

試験結果を第5-1図,第5-2図に示す。また,比較としてスクラバ上端から1000mmの時の試験結果も同一図にプロットする。試験結果より,スクラバ水位が下限水位であっても、スクラバ水位上端から1000mmとほぼ同等のDFが確保できることが確認できた。

6. オーバーオール DF

フィルタ装置の DF 性能では,第6-1~3 図に示す通り,各流量に対して,各 粒径における DF を評価してきた。

第6-1図 DF性能試験結果(2Pd相当流量)

第6-2図 DF性能試験結果(1Pd相当流量)

第6-3図 DF性能試験結果(最小流量相当)

一方,フィルタ装置に流入するエアロゾルは,粒径分布を持ったものであり,フィルタ装置のDFの評価は,流入するエアロゾルに対して,オーバーオールで どの程度低減されたかを示す必要がある。

そこで、有効性評価シナリオである大 LOCA+SBO+全 ECCS 機能喪失シナリオの W/W ベントと D/W ベントにおいて、各流量におけるオーバーオールの DF を評価する。

まず,大LOCA+SBO+全ECCS機能喪失シナリオのW/WベントとD/Wベントにおける,フィルタ装置に流入するエアロゾル粒径分布は,第6-4図,第6-5図の通りとなる。

[※] 質量分布にて表現している。

第6-4図 エアロゾル粒径分布 (大 LOCA+SBO+全 ECCS 機能喪失, W/W ベント)

※ 質量分布にて表現している。

第6-5図 エアロゾル粒径分布 (大 LOCA+SBO+全 ECCS 機能喪失, D/W ベント)

次に、フィルタ装置の DF 性能線を作成する。第6-4 図, 第6-5 図より、フィ ルタに流入するエアロゾルの粒径分布は、約0.7µm以上の領域に分布している。 そのため, DF 計測試験結果のうち, TiO2のデータが有効であると考える。そこで, DF 計測試験結果のうち、TiO2のデータのみを抜き出し、保守的に DF の下限値で 包絡する線を作成,それを DF 性能線とする。また, DF データが存在しない大粒 径の DF は、保守的に存在する最大粒径における DF する。

以上より、DF性能線を作成すると、第6-6~8図の通りとなる。

第6-7図 DF性能線(1Pd相当流量)

第6-8図 DF性能線(最小流量相当)

最後に,第6-4図,第6-5図の粒径分布の粒子に対して,第6-6~8図に 示す DF性能線を用いて,(1)式によりフィルタ装置のオーバーオールの DFを算 出すると,第6-1表の通りとなった。

$$DF_{total} = \frac{\int M(D_p) dD_p}{\int \frac{M(D_p)}{DF(D_p)} dD_p}$$
(1)

DF(Dp)は、粒径 Dpにおけるフィルタ装置の DF

M(Dp)は、フィルタ装置に流入する粒径 Dp のエアロゾルの総質量

シナリオ	ガス流量	オーバーオール DF
大LOCA+SBO+全ECCS機能喪失, W/Wベント	2Pd 相当流量	34077
	1Pd 相当流量	13337
	最小流量相当	9853
大LOCA+SBO+全ECCS機能喪失, D/Wベント	2Pd 相当流量	39760
	1Pd 相当流量	13602
	最小流量相当	20048

第6-1表 オーバーオール DF(下限包絡性能線)

第 6-1 表より,大 LOCA+SBO+全 ECCS 機能喪失シナリオにおけるフィルタ装置のオーバーオールの DF は,1000 を大幅に上回っていることが確認できた。

また,第6-1表のW/WベントとD/Wベントの評価結果を比較するとわかるよう に,粒径分布が小粒径側にシフトするとオーバーオールDFは低く,粒径分布が大 粒径側にシフトするとオーバーオールDFは高くなる。

なお、大LOCA+SBO+全 ECCS 機能喪失シナリオの D/W ベントにおいては、最小 流量相当の方が、1Pd 相当流量よりもオーバーオール DF が大きくなっている。こ れは、第6-7回、第6-8回より、最小流量相当の方が DF を計測できている粒径 が大きく、DF データが存在しない大粒径の DF を大きく見積もることができてい るためである。

一方,上記評価においては,DFデータが存在しない大粒径のDFは,データが存在する最大粒径のDFであるとし,オーバーオールDFを算出している。しかし, 実際は今回DFデータが存在しない1.0µm程度以上の粒径範囲の粒子においては, 粒径が大きい程DFも大きくなる。

そこで、より現実的な評価として、DF データをフィッティングするカーブを作成し、それを DF 性能線とし、DF データが存在しない粒径範囲の DF についても、この DF 性能線上の DF であるすることで、オーバーオールの DF を算出することとする。フィッティングカーブを作成する際の DF データは、保守的に各粒径における最小値を用いることとする。フィッティングカーブは第6-9~11 図の通りとなる。これを DF 性能線とする。

第6-9図 DF性能線(2Pd相当流量)

第6-10図 DF性能線(1Pd相当流量)

第6-11図 DF性能線(最小流量相当)

これらのDF性能性を用いて,第6-4図,第6-5図の粒径分布の粒子に対して, (1)式によりフィルタ装置のオーバーオールのDFを算出すると,第6-2表の通り となった。

シナリオ	ガス流量	オーバーオール DF
十1004~900~今下009 捲出南生	2Pd 相当流量	91689
×LUCA+SBO+ ± ECCS 機能喪矢, ₩/₩ ベント	1Pd 相当流量	117458
	最小流量相当	10199
大LOCA+SBO+全ECCS機能喪失, D/Wベント	2Pd 相当流量	417803
	1Pd 相当流量	546627
	最小流量相当	54584

第6-2表 オーバーオール DF (フィッティング性能線)

第6-2表によるオーバーオール DF は,第6-1表と比較し大幅に大きくなって いるが,第6-2表の値がより確からしい実力値であると考える。また,第6-1 表の評価方法は非常に保守的であることがわかる。

7. 蒸気を用いた性能試験

これまでの DF 性能試験では、試験ガスとして常温の空気を用いて試験を実施 してきた。これは、「4. 試験ガスの代表性について」に記載の通り、蒸気より も空気の方がフィルタ装置の粒子捕捉メカニズムを考慮すると DF 性能に対して 保守的であるという考察を基にした設定である。

一方,実機ベントガスの主成分は蒸気であることから,蒸気による DF 性能試験についても実施した。試験設備の構成を第7-1図に,試験条件を第7-1表に示す。

第7-1図 試験概要図(蒸気性能試験)

項目	条件	
試験装置	・実機高さ試験装置	
試験ガス	 ・蒸気+空気(エアロゾル送気用) ・試験時蒸気割合:約95%(2Pd相当流量) 	
	約 88%(最小流量相当)	
スクラバ水位	• 1m	
ガス・スクラバ水温度	・約 100℃	
ガス体積流量	·2Pd 相当流量	
	・最小流量相当	
試験エアロゾル	• TiO ₂	

第7-1表 蒸気試験条件一覧表

上記の条件にて試験を実施した結果,蒸気試験におけるのDFは第7-2図,第7-3図の通りとなった。これらより,蒸気試験におけるDFの方が,空気試験におけるDFよりも大きいことがわかり,フィルタ装置はベントガスが蒸気の条件においても、十分な性能を有していることが確認できた。また、「4. 試験ガスの代表性について」にて理論的に示した通り,空気試験は蒸気試験よりも保守的であることが確認できた。なお,空気試験については蒸気試験と条件を合わせるため、実機高さ試験装置にて計測したDFを記載している。

第7-2図 蒸気性能試験結果(2Pd相当流量)

第7-3回 蒸気性能試験結果(最小流量相当)

8. 試験条件の網羅性

格納容器圧力逃がし装置使用時にフィルタ装置に作用する物理パラメータに は、スクラバ水位、スクラバ水温、ベントガス性状、ベントガス流量、フィルタ 装置内圧力がある。また、フィルタ装置には、粒径分布をもったエアロゾルが流 入する。

これらフィルタ装置に作用する物理パラメータについては,下記の通り実機条件を網羅するか,もしくは実機よりも DF が小さく保守的な条件を,試験条件として設定している。

【スクラバ水位】

スクラバ水位は高い程 DF は大きくなる。フィルタ装置使用中は、スクラバ水 位変動要因としてベントガスに含まれる水蒸気の凝縮の影響が支配的となり、ス クラバ水位は上昇する。そのため、スクラバ水位が初期水位の1m以下となるこ とはない。そのため、保守的にスクラバ水位は1mを試験における基本条件とす る。

一方,スクラバ水の運用上の最低水位は0.5mとしている。そのため,スクラ バ水位0.5mにおける試験も実施し,DFは所望の性能を満たせることを確認して いる。(『5.スクラバ下限水位時のフィルタ装置の性能』参照)

【スクラバ水温】

スクラバ水温は低い程水蒸気凝縮や熱泳動によるメカニズムによる DF は大き くなる。試験における基本条件としては常温とするが,試験ガスとして水蒸気凝 縮や熱泳動による DF を見込めない常温空気と組み合わせて試験を実施すること から,保守的な条件となる。

一方,スクラバ水高温状態における条件として,水温を飽和温度まで昇温し, 試験ガスとして水蒸気と組み合わせた試験を実施し,基本条件として設定したス クラバ水常温+常温空気の条件よりもDFが大きくなることを確認している。(『7. 蒸気を用いた性能試験』参照)

【ベントガス性状】

ベントガスの主成分は水蒸気である。水蒸気は凝縮や熱泳動によるメカニズム が作用すること、ならびに慣性力、重力沈降、ブラウン拡散による各捕捉効果が 大きいことから、空気よりも DF は大きくなる(『4. 試験ガスの代表性について』 参照)。そのため、試験ガス条件としては常温空気を用いることを基本条件とす る。

一方,試験ガス条件として水蒸気を用いた試験を実施し,基本条件である常温 空気の条件よりも DF が大きくなることを確認している。(『7. 蒸気を用いた性能 試験』参照) 【ベントガス流量】

ベントガス流量については,実機にて想定される体積流量を網羅するよう,試 験条件を設定している。

また,実機では二次隔離弁は調整開度に設定してベントを行うが,仮に二次隔 離弁を全開とした場合の流量においても試験を実施し,DFは所望の性能を満た せることを確認している。(『1. 超過流量状態におけるDF性能について』参照)

【フィルタ装置内圧力】

フィルタ装置内圧力については,基本条件として常圧条件とした。

一方,フィルタ装置内圧力がDF へ与える影響を確認するため,フィルタ装置 内圧力を0.31MPa,0.62MPa (gage)に加圧した状態で試験を実施し,実機で想 定される径の粒子においては,フィルタ装置内圧力がDF へ与える影響はないこ とを確認している。(『2.フィルタ装置内圧力のDF への影響について』参照)

物理パラメータ	実機条件	試験条件
スクラバ水位	【実機運転時変動範囲】 1m~2.2m 【設定下限水位】 0.5m	【基本条件】 1m 【最低水位条件】 0.5m
スクラバ水温	【実機運転時変動範囲】 常温~飽和温度	【基本条件】 常温 【高温条件】 飽和温度
ベントガス性状	【実機運転時条件】 水蒸気(主成分)	【基本条件】 常温空気 【蒸気条件】 水蒸気
ベントガス流量	【実機運転時変動範囲】 13000m ³ /h~32000m ³ /h 【超過流量(二次隔離弁全開)】 37000m ³ /h	【基本条件】 33000 m ³ /h 相当 27000 m ³ /h 相当 13000 m ³ /h 相当 【超過流量条件】 37000 m ³ /h 相当
フィルタ装置内圧力	【実機運転時変動範囲】 0.1MPa(gage)~0.3MPa(gage)	【基本条件】 常圧 【圧力影響確認試験】 0.31MPa(gage) 0.62MPa(gage)

第8-1表 フィルタ装置物理パラメータと試験条件

【エアロゾル粒径分布】

大LOCA+SBO+全ECCS機能喪失シナリオのW/WベントならびにD/Wベント時のフィルタ装置に流入するエアロゾル粒径は第8-1,2図の通りとなる。W/Wベントにおいては約0.7 μ m〜約3.5 μ m,D/Wベントにおいては約0.7 μ m〜約10 μ mの範囲で粒子が分布している。なお、第8-1,2図にて粒径を空気動力学径^{*1}にて示しており、物理径から空気動力学径へ換算するときの粒子密度としては、保守的にベント時にフィルタ装置に流入する主要核種のうち、密度の小さいCsOHの値を設定している。

第8-1図 エアロゾル粒径分布 (大 LOCA+SBO+全 ECCS 機能喪失, W/W ベント)

第8-2図 エアロゾル粒径分布 (大 LOCA+SBO+全 ECCS 機能喪失, D/W ベント)

また、試験にて使用しているエアロゾルの粒径分布を第 8-3 図に示す。第 8-3 図より、約 3.5μmまでは粒子個数が 1000 個を超えており、DF1000 を計測可能で ある。フィルタ装置の捕捉メカニズムには拡散効果、慣性効果、重力沈降等が考 えられるが、拡散効果以外の慣性効果、重力沈降速度等は、粒径が大きい程 DF が大きくなる方向へ寄与する。拡散効果は粒径が小さい程 DF が大きくなる方向に 寄与するが、拡散による粒子捕捉効果が得られるのは、約 0.1~0.2μmよりも小 さい粒子である。そのため、実機で想定される約 0.7μm以上の粒子に対しては、 拡散による捕捉効果は非常に小さく、それ以外の慣性力等のメカニズムによる捕 捉が支配的である。よって、実機で想定される粒径範囲においては、粒径が大き いほど、DFは大きくなると考えられる。フィルタ装置に流入するエアロゾルは3.5 μmより大きいものも含まれるが、そのDFは試験用エアロゾルで網羅できている 小さい粒径におけるDFよりも小さくなることはない。したがって、試験用エアロ ゾルが実機に流入するエアロゾルの粒径分布上の大きい粒子を網羅できていなく ても、DFを保守的に評価することは可能である。

第8-3図 試験用エアロゾルの粒径分布

※1空気動力学径

異なる密度の粒子を同じ空気動力学特性を持つ密度 1g/cm³の粒子に規格化 したものであり、空気動力学径が同じであれば、その粒子は密度や物理的な 大きさとは関係なく、同じ空気動力学的挙動を示す。

上記の特性から,フィルタ装置の性能評価においては,粒子の径として空気動力学径を用いている。

なお,物理的な粒径を空気動力学径へ変換する際は,物理的な粒径に粒子密 度の平方根を乗じることで算出している。

別紙7 格納容器圧力逃がし装置系統内における可燃性ガスの燃焼について

格納容器圧力逃がし装置には、重大事故等時に原子炉格納容器内にて発生する 可燃性ガスが流入する。可燃性ガスとしては、水の放射線分解、ならびに燃料被 覆管のジルコニウムと水が反応して生成される水素があり、有効性評価シナリオ である大LOCA+SB0+全 ECCS 機能喪失シナリオにおいては、ベント前の原子炉格納 容器内ガスのおよそ 30%(モル分率)が水素となっている。なお、MCCI(溶融炉 心・コンクリート相互作用)が発生した場合、水素ならびに一酸化炭素が発生す るが、格納容器下部注水系により、原子炉格納容器下部に水張りした状態で溶融 炉心が落下するため、MCCI はほとんど発生せず、一酸化炭素の発生量は無視でき る程小さい。また、よう素フィルタにおいて有機よう素を吸着する際には、可燃 性ガスの が発生する可能性があるが、この発生量も無視できる程小さ い。そのため、格納容器圧力逃がし装置に流入する可燃性ガスについては、水素 を対象として燃焼によるリスクを確認することとする。

格納容器圧力逃がし装置系統内で水素が燃焼すると、格納容器圧力逃がし装置 の機器や配管が損傷する恐れがある。特に、ベント開始直後においては、系統内 が冷えた状態となっているため、ベントガスに含まれる水蒸気が凝縮することで、 ベントガス中の水素濃度が上昇し、系統内での燃焼のリスクが大きくなる。

そこで,原子炉格納容器内のガス組成(ウェット条件とドライ条件)を評価し, ベントガス中の水蒸気の凝縮による,格納容器圧力逃がし装置系統内での水素燃 焼のリスクについて確認した。なお,ウェット条件とは原子炉格納容器内のガス 組成そのもので水蒸気も含んでいるものであり,ドライ条件とは,ウェット条件 のガス組成に含まれる水蒸気を仮想的に完全に取り除いた場合のガス組成である。

仮に,格納容器圧力逃がし装置系統内で水蒸気が完全に凝縮するとすると,ベ ントガスの組成は原子炉格納容器内のドライ条件のガス組成と等しくなる。格納 容器圧力逃がし装置内の水蒸気の凝縮量には不確かさがあることから,ここでは 保守的に,格納容器圧力逃がし装置系統内では水蒸気が完全に凝縮するとして, ドライ条件におけるガス組成を用いて格納容器圧力逃がし装置系統内での水素燃 焼のリスクを確認した。

事象が発生してからベントを実施するまでの時間が長いほど,水の放射線分解 により原子炉格納容器内の酸素濃度は大きくなることから,大 LOCA+SBO+全 ECCS 機能喪失シナリオのうち,代替循環冷却系のインサービスに成功した後,原 子炉格納容器内の水素・酸素を排出するためのベントを実施するケースについて 評価を実施した。評価条件を第1表に示す。また,第1,2図にウェット条件の評 価結果を,第3,4図にドライ条件の評価結果を示す。

原子炉格納容器内の水素・酸素を排出するためのベントは,原子炉格納容器内 の酸素濃度が,ウェット条件で4%に到達した時点で実施する運用としている。第 2 図より,事象発生から約 260 時間後にサプレッション・チェンバの酸素濃度が 4%に到達し,ベントを実施することとなる。この時のドライ条件におけるサプレ ッション・チェンバの酸素濃度は 4.54%,ドライウェルの酸素濃度は 3.97%であり, 可燃限界の 5%未満であった。そのため、ベントガス中の水蒸気が完全に凝縮した としても、ベントガスは可燃領域には入らないことを確認した。

また,格納容器圧力逃がし装置は,待機時に系統内を窒素置換することとして いるため,系統内の酸素濃度は極めて低い状態(可燃限界未満)となっている。 そのため,上記のドライ条件のベントガスが格納容器圧力逃がし装置に流入した としても,可燃領域には入らない。よって,ベント開始直後にベントガス中の水 蒸気が完全に凝縮したとしても,格納容器圧力逃がし装置系統内で水素燃焼が発 生することはない。

項目	条件	備考
評価コード	• MAAP $\rightrightarrows - F$	_
シナリオ	・大 LOCA+SBO+全 ECCS 機能喪失	代替循環冷却系のインサービスに成功し,原子炉
	(代替循環冷却系成功ケース)	格納容器内の水素・酸素を排出するためのベント
		を実施するケース
		代替循環冷却系を使用せずにベントを実施する
		場合よりも、ベント開始までの時間が長いことか
		ら,原子炉格納容器内での水の放射線分解によ
		り、水素・酸素の濃度は高くなることため、本ケ
		ースを選定
初期酸素濃度	• 3. 5vol%	保安規定に定める運転上の制限値
		柏崎刈羽原子力発電所 6/7 号炉の運転実績では,
		原子炉格納容器内の酸素濃度は 1~2vol%程度で
		ある
水素・酸素のG値	• G(H ₂) : 0.06	電力共同研究「シビアアクシデントにおける可燃
	• $G(0_2)$: 0.03	性ガスの挙動に関する研究」「事故時放射線分解
		に関する研究」より得られた、重大事故環境下に
		おける値
評価アウトプット	・ウェット条件の PCV ガス組成	_
	・ドライ条件の PCV ガス組成	

第1表 原子炉格納容器内ガス組成評価条件

第4図 サプレッション・チェンバのガス組成(ドライ条件)

この評価で用いた水素及び酸素のG値は、過去の複数回の実験によって測定した値であり、重大事故環境下での水の放射線分解の評価に適した値であると考えている。しかし、重大事故等時の原子炉格納容器内環境の不確かさを考慮すると、よりG値が大きい場合についても確認しておく事が望ましい。そこで感度解析として、水素及び酸素のG値をG(H₂)=0.4、G(O₂)=0.2とした場合の評価を実施した。なお、G(H₂)=0.4、G(O₂)=0.2は、設計基準事故対処設備である可燃性ガス濃度制御系の性能を評価する際に用いているものであり、設計基準事故環境下に対しても一定の保守性を有する値である。設計基準事故環境下に比べ、重大事故環境下ではG値は低下する傾向にあることから、非常に保守的な設定である。また、本ケースは非常に保守的なG値を置いた感度解析であるため、原子炉格納容器内の初期酸素濃度は運転実績を踏まえ、2.0%に設定した。また、原子炉格納容器内の酸素濃度を計測する CAMS は、事故発生から約 20 時間後には復旧を見込むことができる。そのため、事故発生から 20.5 時間後に CAMS が復旧し、原子炉格納容器内の酸素濃度を確認することが可能であることとした。

評価条件を第2表に示す。この条件で評価をした結果,第7図に示す通り,CAMS を確認することができる20.5時間後には、ドライウェルのドライ条件における酸 素濃度は可燃限界である5%を超えた状態となった。そのため、この時点で運転員 は、ドライウェルからベントを実施すると格納容器圧力逃がし装置系統内で水素 燃焼が発生する危険性があることを認知することができる。一方、第8図に示す 通り、この時点でサプレッション・チェンバの酸素濃度はドライ条件であっても 可燃限界よりも低い値であることも確認することができる。

そのため、このような状況が発生した場合は、ドライウェルからベントを実施 した際の格納容器圧力逃がし装置系統内における水素燃焼を防止するため、ドラ イウェルには外部水源からのスプレイを継続して実施し、ドライウェルの圧力を 低下させることで、真空破壊弁を通してサプレッション・チェンバのガスをドラ イウェル側に流す操作を実施することとする。この操作により、ドライウェルと サプレッション・チェンバのガスを混合させることで、ドライウェルのガスの酸 素濃度を可燃限界未満に制御する。その上で、原子炉格納容器内の酸素濃度のト レンドを監視し、上昇傾向が継続することが確認された場合は、ドライ条件にお ける酸素濃度が可燃限界未満であることを確認した後に、サプレッション・チェ ンバもしくはドライウェルからベントを実施することで、原子炉格納容器内の酸 素及び水素を抜くこととする。

評価の結果,第7,8図に示す通り,ドライウェルへの外部水源によるスプレイ を継続することで,ドライウェルとサプレッション・チェンバ共に,事故発生か ら40時間まで,ドライ条件における酸素濃度を可燃限界未満にすることができる ことを確認した。そのため,この状態でサプレッション・チェンバもしくはドラ イウェルからベントを実施した場合,ベントガス中の水蒸気が完全に凝縮したと しても,格納容器圧力逃がし装置系統内における水素燃焼は発生しないことを確 認した。なお,外部水源によるスプレイを継続していることから,事故発生から 約38時間後にサプレッション・チェンバの水位が,サプレッション・チェンバか らのベントを実施するための上限に到達することから,それまでにベントの判断 をすることとなる。

以上より,事故発生から 20.5 時間後に,ドライウェルの酸素濃度が高いことを 認知してから,十分な時間的余裕を持って,ドライウェルとサプレッション・チ ェンバのガスの混合,ならびにベントの操作を実施することができることを確認 した。

項目	条件	備考
評価コード	・MAAP コード	
シナリオ	・大 LOCA+SBO+全 ECCS 機能喪失	事故後 20.5 時間後に CAMS が復旧し, ドライウェ ルのドライ条件における酸素濃度が可燃限界で ある 5%を超過していることを確認。 そのため, ドライウェルとサプレッション・チェ ンバのガスを混合させ, ドライウェル側のドライ 条件における酸素濃度を下げることを目的とし て, 外部水源によるドライウェルスプレイ(水温 40℃)を継続。 (代替循環冷却系によるドライウェルスプレイ では, スプレイ水温が高いことから, ドライウェ ル内の水蒸気の凝縮効果が低く, サプレッショ ン・チェンバとドライウェルのガスの混合効果が 低いことから, 代替循環冷却系はインサービスし ない)
初期酸素濃度	• 2.0vo1%	柏崎刈羽原子力発電所 6/7 号炉の運転実績を踏 まえて, 2.0vo1%に設定。
水素・酸素のG値	• G (H ₂) : 0. 4 • G (O ₂) : 0. 2	可燃性ガス濃度制御系の設計G値
評価アウトプット	 ウェット条件の PCV ガス組成 ドライ条件の PCV ガス組成 PCV 内圧力 PCV 内温度 	

第2表 原子炉格納容器内ガス組成評価条件

0

-293-

第8図 サプレッション・チェンバのガス組成(ドライ条件)

以上をまとめると、格納容器圧力逃がし装置系統内におけるベントガス中の水 蒸気の凝縮を考慮した場合、重大事故等時の確からしい G 値 (G(H₂)=0.06, G(O₂)=0.03)を考えると、サプレッション・チェンバ及びドライウェルの何れか らベントを実施しても、格納容器圧力逃がし装置系統内での水素燃焼は発生しな いことを確認した。

一方,非常に保守的な G 値 (G(H₂)=0.4, G(O₂)=0.2)を考慮しても,ドライウ ェルに外部水源からのスプレイを継続し,原子炉格納容器内のガスを混合するこ とで,サプレッション・チェンバ及びドライウェルの何れからベントを実施して も,格納容器圧力逃がし装置系統内での水素燃焼は発生しないことを確認した。 一方で、ベント開始後には、常にベントガスの流れがあることから、排気口から空気が格納容器圧力逃がし装置内に逆流することはないため^{*1}、外部から系統内に酸素が供給されることはない。よって、ベント実施中は、系統内は可燃限界 未満の状態が維持されることになる。

なお、ベントガスには、原子炉格納容器内やフィルタ装置内の水の放射線分解 により、微量の水素と酸素が混入し続ける。そのため、閉塞端部において、この 水素と酸素の混合ガスが蓄積し、局所的な燃焼を引き起こす恐れがある。このよ うな閉塞端としては、格納容器圧力逃がし装置系統内の上り配管端部(例えば格 納容器圧力逃がし装置と他系統を仕切る弁までの範囲等)や、よう素フィルタの 上部マンホールが挙げられる。

まず,格納容器圧力逃がし装置系統内の上り配管端部のうち,水素と酸素の混 合ガスが蓄積する恐れのある箇所については,別紙19に示すように,混合ガスを 排出するためのベントラインを設置し,混合ガスの蓄積を防止することとしてい る。また,よう素フィルタの上部マンホールについては,流動解析によりマンホ ール内を換気する流れによって,混合ガスの蓄積は生じないことを確認している (第11,12図参照)。

そのため,格納容器圧力逃がし装置系統内においては,水素の燃焼は生じない と考えられる。

なお、ベントガスの温度は、水素が自然発火する約 500℃以上になることはな く、さらにフィルタ装置にアース線を設置して静電気が溜まることを防止する設 計としていることから、仮に可燃限界を超えた濃度の水素や酸素が流入したとし ても、格納容器圧力逃がし装置にて着火・燃焼するリスクは小さいと考えられる。

第11図 よう素フィルタ上部マンホール内ガス流れ状態 [ベントガス組成:水蒸気100%,ガス流量:15.8kg/s]

第12図 よう素フィルタ上部マンホール内ガス流れ状態 [ベントガス組成:水蒸気100%,ガス流量:2.48kg/s(事故後1ヶ月後の流量)]

※1 格納容器ベント実施直後は、水蒸気、窒素、水素等の混合流体がフィルタ 装置に流入するが、水蒸気の一部はスクラバ水に熱を奪われ凝縮する。 スクラバ水が沸騰するまでにフィルタ装置に流入する水蒸気の全量が凝縮 し続けると仮定した場合でも、沸騰するまでの間(1時間以内)水素や窒 素はフィルタ装置へ継続して流入(数百m³/h以上)するため、フィルタ装 置の下流側の流量は維持される。また、沸騰した後はフィルタ装置に流入 する水蒸気は凝縮されず、フィルタ装置の下流側の流量は維持される。以 上より、フィルタ装置の下流側の流量は維持され、対向流は発生しない。 別紙8 ベント方法及び放出位置を変更することによる公衆被ばくへの影響

柏崎刈羽原子力発電所6号及び7号炉においては,格納容器圧力逃がし装置 を用いた格納容器ベントを実施する際,サプレッション・チェンバの排気ライ ンを使用した格納容器ベント(以下,W/Wベントという。)の他に,ドライウェ ルの排気ラインを使用した格納容器ベント(以下,D/Wベントという。)を実施 することも可能である。

ここでは、炉心損傷に至る代表的な事故シーケンスである「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の事故シーケンスにて、ベントライン(W/Wベントまたは D/Wベント)及び放出位置(格納容器圧力逃がし装置配管または主排気筒)を変更することによる公衆被ばくへの影響を評価した。

(1) 選定する事故シーケンス

ベントライン及び放出位置を変更することによる公衆被ばくへの影響を評価 するために、ここでは以下の2つを選定した。

a. 大破断 LOCA (W/W ベント)シナリオ

柏崎刈羽原子力発電所6号及び7号炉の有効性評価の「雰囲気圧力・温度 による静的負荷(格納容器過圧・過温破損)」と同一の事故シーケンスであり, 事象開始から約38時間後にW/Wベントを実施する。格納容器ベント時に原子 炉格納容器から放出され,格納容器圧力逃がし装置に流入するCs-137の放射 能量は約1.4 TBqとなる。原子炉格納容器圧力の推移を第8-1図に示す。

b. 大破断 LOCA (D/W ベント)シナリオ

a. と同一の事故シナリオであるが, 事象開始から約38時間後にD/Wベントを実施する。ベント時に原子炉格納容器から放出され, 格納容器圧力逃がし装置に流入するCs-137の放射能量は約2000TBqとなる。原子炉格納容器圧力の推移を第8-2図に示す。

第8-1図 大破断 LOCA (W/W ベント)シナリオの原子炉格納容器圧力の推移

(2) 被ばく量評価方法

a. 評価コード

被ばく量評価において、ここでは3次元移流拡散評価コードを備えた原子 力発電所周辺線量予測評価システム(以下,DIANAという。)を利用した。DIANA には、「基盤地図情報数値標高モデル 10mメッシュ(標高)」を参照し、柏 崎刈羽原子力発電所周辺の地形データを再現したブロック図がインプットさ れており、地形の形状を考慮した大気拡散評価が可能である。

b. 評価条件

格納容器ベント実施に伴う公衆の被ばく量は、大気中に放出される放射能量の他に、格納容器ベント実施後の気象条件に強く依存する。ここではベントライン及び放出位置を変更することによる被ばく量への影響を明確にするため、気象条件(風向、風速、大気安定度)が時間によらず一定であるとして評価した。具体的な評価条件を第8-1表に示す。また、参考として、柏崎刈羽原子力発電所構内で観測された風向の、年間(1985年10月~1986年9月)の出現頻度を第8-3回から第8-5回に示す。

項目	選定内容	設定事由
	地上高 10m:3.1m/sec	柏崎刈羽原子力発電所構内で観測さ
風速	地上高 75m:5.8m/sec	れた年間(1985 年 10 月~1986 年 9
	地上高 150m:5.9m/sec	月)の平均風速を参照
風向	陸向き:南南西,南西,西南西, 西,西北西,北西, 北北西,北,北北東 海向き:東	拡散が地形形状に影響されることを 考慮し,陸側は全方位を選定。参考 として海側方位も選定
大気安定度	D (中立)	柏崎刈羽原子力発電所構内で観測さ れた大気安定度のうち,年間(1985 年10月~1986年9月)で最も出現 頻度の高い大気安定度を採用
放出位置	6号炉主排気筒(地上高73m),6号炉格納容器圧力逃がし装置配管(地上高40.4m)	7 号炉でも同様の結果が得られると 考えられるため、6 号炉で代表して 評価
評価地点	発電所敷地境界, 発電所中心位置から 5km 地点	距離に対する依存性を確認するため,発電所中心位置から 5km 地点を 評価

第8-1表 DIANAを用いた大気拡散評価条件

第8-3 図 風向出現頻度(標高20m)

第8-5図 風向出現頻度(標高160m)

(3)評価結果

a. ベントラインの違いによる影響

各事故シナリオにおける希ガスによる外部被ばく評価結果を第8-2表に 示す。ここでは、事故シナリオの違いによる影響を明確にするため、大破断 LOCA(W/Wベント)シナリオ時の評価値を1に規格化した相対値を示した。

大破断 LOCA (D/W ベント) シナリオ時の相対値は約 0.81^{*1} となった。このこ とから、希ガスによる外部被ばくの、ベントラインの違いによる影響は限定 的であると考えられる。

※1 大破断 LOCA(D/W ベント)シナリオ時の相対値は大破断 LOCA(W/W ベント)シナリオ時と比べ小さくなっている。これは、大破断 LOCA(D/W ベント)シナリオにおいては、格納容器ベント実施後も希ガスの一部がW/W 気相部に閉じこめられ、しばらくの間原子炉格納容器外に放出されないためである。

なお、(1)に示したとおり、格納容器ベント時に原子炉格納容器外に放出 され、格納容器圧力逃がし装置に流入する Cs-137 の放射能量は、2 つの事故 シナリオの中で W/W ベントシナリオが約 1.4TBq と、D/W ベントシナリオの約 2000TBq に比べ小さい。これは本シナリオにおいては、W/W ベントを行うこと で、Cs-137 が W/W スクラビング効果等により原子炉格納容器内で更に除去さ れるためである。

事故シナリオ	希ガスによる外部被ばく量の相対値の評価結果(実効線量の相対値)	
	敷地境界	5km 地点
大破断 LOCA(W/W ベント) シナリオ	1	1
大破断 LOCA (D/W ベント) シナリオ	約 0.81	約 0.81

第8-2表 希ガスによる外部被ばく量の相対値(事故シナリオの違いによる影響)

放出位置:6号炉格納容器圧力逃がし装置配管

b. 放出位置の違いによる影響

放出位置の違いによる影響の評価結果を第8-3表に示す。ここでは、2つ の事故シナリオのうち、大破断LOCA(W/Wベント)シナリオについて評価を行 った。なお、放出位置の違いによる影響を明確にするため、6号炉格納容器 圧力逃がし装置配管から放出した場合の評価値を1に規格化した相対値を示 した。6号炉主排気筒放出時の敷地境界での相対値は約0.55~約0.91であり、 風向によって相対値が変わるという結果になった。風向毎の相対値と柏崎刈 羽原子力発電所周辺の地形形状を第8-6図に示す。

東風により海側へ放出した場合の5km地点における相対値は約0.62となっているが、障害物がない海側においては距離に応じて相対値が変わる。

一方,陸側に放出した場合においては距離だけではなく,評価位置の標高 と6号炉格納容器圧力逃がし装置配管高さの違いによる影響がある。放出位 置と評価位置の高さ方向の位置関係を第8-7図に示す。さらに,地形の起伏 等による形状の違いから放出されたガスが発散や収束されることにより,敷 地境界における相対値は変わるが,その違いは最大で5割程度である。しか し,5km 地点での相対値は最大で3割程度と,発電所からの距離に従い放出 位置の違いによる影響は更に小さくなるという評価結果になった。

以上のことから,柏崎刈羽原子力発電所周辺の地形形状を考慮すると,放 出位置の違いよる影響は敷地境界においても限定的であり,発電所からの距 離が離れると影響は小さくなることがわかる。

事故シナリオ	放出位置	 希ガスによる外部被ばく量の 相対値の評価結果 (実効線量の相対値) 	
		敷地境界 5km 地点	5km 地点
大破断	6 号炉格納容器圧 力逃がし装置配管	1	1
LUCA (W/W ペシ ト)シナリオ	6 号炉主排気筒	陸側 : 約 0.55 ~約 0.91	陸側:約0.75 ~約0.95 海側:約0.62

第8-3表 希ガスによる外部被ばく量の相対値(放出位置の違いによる影響)

第8-7図 放出位置と評価位置の高さ方向の位置関係のイメージ

(4)まとめ

希ガスによる外部被ばくに対し、ベントラインの変更による影響は限定的で ある。また、長期に渡る土壌汚染を抑制する観点では、2つの事故シナリオの 中では大破断 LOCA(W/W ベント)シナリオを選択することが好ましいと考えられ る。

放出位置を変更しても,柏崎刈羽原子力発電所周辺の地形形状の効果により, 被ばくへの影響は限定的となるため,放出位置として格納容器圧力逃がし装置 配管を選定しても公衆被ばくの観点で問題は無いと考えられる。 別紙9 設備の維持管理についての補足事項

1. 機能確認における外観点検の確認内容について

機能確認における外観点検の確認内容を下記第1表に示す。

対象機器	機能	外観点検の確認内容
スクラバノズル	フィルタ性能	■表面に強度に影響を及ぼす恐れのある亀裂,変形,
		腐食及び摩耗がないこと。
		■性能に影響を及ぼす恐れのあるノズル穴の異物に
		よる閉塞、ノズル穴の変形がないこと。
気泡細分化装置		■表面に強度に影響を及ぼす恐れのある亀裂,変形,
		腐食及び摩耗がないこと。
		■性能に影響を及ぼす恐れのある気泡細分化装置の
		充填高さが、所定の高さであること。
金属フィルタ		■表面に強度に影響を及ぼす恐れのある亀裂,変形,
		腐食及び摩耗がないこと。
		■性能に影響を及ぼす恐れのある金属フィルタの異
	7	物による閉塞、溶接部の割れ、腐食がないこと。
整流板	整流機能	■表面に強度に影響を及ぼす恐れのある亀裂,変形,
		腐食及び摩耗がないこと。
		■性能に影響を及ぼす恐れのある整流板穴の異物に
		よる閉塞,穴の変形がないこと。
オリフィス	流量調整機能	■表面に強度に影響を及ぼす恐れのある亀裂,変形,
		腐食及び摩耗がないこと。
		■性能に影響を及ぼす恐れのあるオリフィス穴の異
		物による閉塞、穴の変形がないこと。

第1表 機能確認における外観点検の確認内容

2. フィルタ性能の確認方法

待機中,定期的に,以下の a~c の項目を確認することでのフィルタ性能 が維持されていることを確認する。

a. 窒素封入圧力確認

窒素封入圧力を 0.01MPa[gage]以上に維持することで、容器内部の不活 性状態が維持され、スクラバノズル及び気泡細分化装置、金属フィルタの 腐食の発生を防止していることを確認する。

b. スクラバ水位確認

スクラバ水位を通常水位(500mm~2200mm)で維持していることを確認する。

c. スクラバ水質確認試験

スクラバ水をサンプリング測定することで,水酸化ナトリウムが規定の 濃度を維持している事を確認する。

3. 点検周期の考え方

5.1 点検方法の第5.1-1表に示す点検周期は,第2表に示すように機能や 設置環境の類似した既設類似機器を踏襲して決定する。また,点検周期は, 今後の保全活動を実施する中で適切な周期の見直しを行うこととする。

容器及び容器内部構造物に対する,アルカリ性の薬液を注入することによ る腐食の影響対策としては,本装置が通常待機状態であること,及び,耐腐 食にすぐれたステンレス材を使用していることから,窒素封入による不活性 状態を維持することにより容器内部構造物の腐食の発生を防止していること の確認を定期的に行うことで適切に維持できると考えられる。

	機能/設置環境			報告 小日 秋秋 現 月	点検周期	
刘家愤奋	型式/機能	材料	内部流体	類似機器	本格	簡易
容器	フィルタ等	ステンレス鋼	スクラバ水 /窒素ガス	原子炉冷却材浄化系 ろ過脱塩器	4	
 内部構造物 ・スクラバノズル ・気泡細分化装置 ・金属フィルタ ・整流板 ・吸着塔 	フィルタ等	ステンレス鋼	スクラバ水 /窒素ガス	原子炉冷却材浄化系 ろ過脱塩器 内部構造物	4	_
よう素フィルタ銀 ゼオライト	フィルタ等	銀ゼオライト	窒素ガス	非常用ガス処理系活 性炭フィルタ	1	
ドレン移送ポン プ	キャンドポ ンプ	ステンレス鋼	スクラバ水	原子炉冷却材浄化系 循環ポンプ	2	1
伸縮継手	変位吸収 機構	ステンレス鋼	窒素ガス	原子炉格納容器ダイヤ フラムフロアシールベ ロー	1	
オリフィス	配管類	ステンレス鋼	窒素ガス	不活性ガス系配管	10	1
ラプチャーディ スク	弁類	ステンレス鋼	窒素ガス/ 外気	不活性系圧力開放板	2	1
		炭素鋼	窒素ガス	不活性ガス系配管	10	1
配管	配管類 ステンレス鋼	スクラバ水 /窒素ガス	気体廃棄物処理系 配管	10	1	
		炭素鋼	窒素ガス	不活性ガス系弁類	10	1
弁	弁類	ステンレス鋼	スクラバ水 /窒素ガス	気体廃棄物処理系 配管	10	1

第2表 点検周期の決定根拠

※点検周期の単位はサイクル

別紙10 弁の操作方法について

格納容器圧力逃がし装置の一次隔離弁,フィルタ装置入口弁は空気駆動弁(以下,「A0弁」)である。また,二次隔離弁及び二次隔離弁バイパス弁は電動駆動弁(以下,「M0弁」)となっている。これらの弁は重大事故等時を考慮し,電源喪失時においても操作が可能な構成としている。電源喪失時の操作方法は第1表の通りである。

第1図 格納容器圧力逃がし装置系統概要図

駆動方式	操作対象弁	電源喪失時の操作方法	操作場所
■一次隔離弁 (サプレッション・	遠隔手動弁操作設備による遠 隔操作	二次格納施設外	
AO	チェンバ側) ■フィルタ装置入口弁 ■一次隔離弁 (ドライウェル側)	専用ボンベからの駆動空気供 給による遠隔操作	二次格納施設外
MO	■二次隔離弁■二次隔離弁バイパス弁	遠隔手動弁操作設備による遠 隔操作	二次格納施設外

第1表 弁の操作方法

MO 弁ならびに AO 弁については,遠隔手動弁操作設備により二次格納施設外から人力のみによる操作を行うことができる。

さらに A0 弁については, 駆動用の空気供給配管系の構成を変更し, 電源喪失時 においても二次格納施設外から操作可能な構成としている。変更前の構成図を第 2 図, 変更後の構成図を第3図に示す。

第2図に示す通り,空気供給配管系の変更前の構成では,電磁弁に電気信号を 印可できなければ,駆動空気をA0弁に供給することができない。そのため,電源 喪失時には,駆動空気によりA0弁を操作することができない。

一方,第3図に示す通り,空気供給配管系の変更後の構成では,電磁弁に電気 信号を印可できない場合においても開放している電磁弁の0UT側ポートより,駆 動空気をA0弁に供給することができる。そのため,電源喪失時においても,駆動 空気により A0 弁を操作することができる。また,空気供給配管系に設置している 弁は,全て二次格納施設外にて操作が可能である。よって,この空気供給配管系 の変更により,電源喪失時において二次格納施設外より,A0 弁を操作することが 可能となる。

以下に、電磁弁内の動作のメカニズムについて詳細に記載する。

(1) 電磁弁待機時(無励磁)の状態

A0 弁用の電磁弁は、電気信号を印加していない状態(無励磁状態)では以下の第4回のような状態である。「IN 側」には計装用圧縮空気系、「OUT 側」は A0 弁の駆動部に接続されており、「EXH 側」は大気開放となっている。

(2) 電磁弁動作時(励磁)の状態

A0 弁用の電磁弁は、電気信号を印加した状態(励磁状態)となると第5図 及び第6図のようなメカニズムにより、IN側の計装用圧縮空気系の空気を0UT 側のA0 弁の駆動部に供給する。

(3) 専用ボンベの空気を EXH 側から供給する場合

A0 弁用の電磁弁は,専用ボンベの空気を EXH 側から供給する場合は,第7 図のようになる。専用ボンベの空気は IN 側にも供給されているため,右側 のダイヤフラムは左右で圧力がバランスし, EXH 側の空気は OUT 側の A0 弁 本体の駆動部へ供給される。

第7図 専用ボンベの空気を EXH 側から供給する場合の概要図

なお,専用ボンベの空気を EXH 側から供給する場合の AO 弁の開閉試験を 実施し,AO 弁が確実に全開及び全閉になることを確認した。

上記(1)~(3)より専用空気ボンベの空気を電磁弁の EXH 側から供給することで、 電磁弁へ悪影響を与えることなく、電源喪失時においても確実に AO 弁の駆動部へ 空気を供給することが可能である。 A0 弁を二次格納施設外から遠隔操作する場合には,A0 弁の駆動源として駆動空気が必要となる。その場合における,駆動空気供給源の信頼性の向上を図るため, 駆動空気は常設の専用ボンベより供給し,第8 図に示すように,その専用ボンベの横に常設の予備ボンベを設置している。

第8図 A0 弁駆動ボンベラック構造図

ここで,A0 弁の専用ボンベによる遠隔操作機構と,M0 弁の遠隔手動弁操作設備 による遠隔操作機構について第2表に示す通り比較を行った。

項目	専用ボンベを用いたA0 弁の遠隔操作	遠隔手動弁操作設備を用いた MO 弁の遠隔操作
操作に必要な 駆動源	常設専用ボンベの空気圧力	人力
弁操作時間	約2分	約 20 分
作業負荷	空気供給弁と排気弁の操作。これ らの弁は 25A 以下の小口径の弁で あるため操作は容易。	操作トルク:約 30~40Nm [※] 全開→全閉回転数:約 1500 回転
必要操作人員	1名	2名
信頼性	故障確率 8.3×10-8	故障確率 3.4×10-8

第2表 弁の遠隔操作機構の比較

※ 電動駆動弁を人力操作する場合の操作トルクについては,弁体の前後配管に最高使用温度で ある 200℃,最高使用圧力である 2Pd の差圧が負荷された状態を考慮している。

MO 弁の遠隔操作機構には,取り回しの容易なフレキシブルジョイントを用いる 構成を仮定した。フレキシブルジョイントには駆動ロスがあり,駆動ロスの分, 操作には大きなトルクが必要となることから,減速機を用いて操作トルクを低減 する構造となっている場合が多い。一方,駆動ロスはフレキシブルジョイントの 敷設長さや敷設時の曲げ箇所の個数,曲げ箇所の曲率半径により決まることから, 敷設ルートが決まらなければ駆動ロスは求められない。そこで,今回は駆動ロス を仮定し,減速比5の減速機を設置する。(一次隔離弁はラビリンス構造の部屋に 設置されており,必ず曲げ箇所を設置する必要があるため,駆動ロスは大きくな ると考えられる。)

A0 弁については空気供給弁と排気弁の操作のみであり、これらは 25A 以下の小 口径の弁かつ一箇所に集中して設置されていることから、1 名約 2 分で操作可能 である。

一方, MO 弁については, 減速機の設置により必要回転数が5倍となることから, 減速機が無ければ約4分の作業であるが,5倍の約20分かかると想定し,これま での訓練の実績を踏まえ,操作には最低2名は必要と考えられる。

これらの条件のもと評価した,遠隔操作機構の信頼性は,A0 弁,M0 弁ともに 10⁻⁸[/h]オーダーであり,非常用の電動ポンプの故障率が1.3×10⁻⁷[/h]よりも小 さく,代替機器としてはいすれの機構も十分な信頼性を有している。

遠隔操作機構の信頼性については、以下の通り算定している。

【信頼性の算定】

各機器の故障率を,有限責任中間法人 日本原子力技術協会(現 原子力安 全推進協会)が 2009 年にとりまとめた「故障件数の不確実さを考慮した国 内一般機器故障率の推定」における国内一般故障率(21 ヵ年データ)時間 故障率(平均値)から想定すると,以下の通りとなる。

(1) 専用ボンベを用いた遠隔操作

専用ボンベを用いた操作について,系統概要図を第9図に,故障率を第3表に示す。第3表の故障率から系統全体の故障率を算出すると「8.3×10⁻⁸[/h]」となる。

第9図 専用ボンベを用いた操作の系統概要図

No.	機器名称	想定故障モード	想定機器と故障モード	故障率 [/h]
1	手動弁	外部リーク	手動弁(外部リーク)	1. 7×10^{-9}
2	減圧弁	減圧	安全弁 (開閉失敗)	1.4×10^{-8}
0	雪動会 (純水)	閉固着	手動弁 (開閉失敗)	8.3 $\times 10^{-9}$
3	电動开 (和水)	外部リーク	電動弁(外部リーク)	2. 5 \times 10 ⁻⁹
4	安全弁	内部リーク	安全弁 (内部リーク)	2. 2×10^{-8}
0	工动会	閉固着	手動弁 (開閉失敗)	8.3 \times 10 ⁻⁹
0	丁動升	外部リーク	手動弁(外部リーク)	1. 7×10^{-9}
6	千動分	開固着	手動弁 (開閉失敗)	8. 3×10^{-9}
⑥ 手動并	于動开	内部リーク	手動弁(内部リーク)	3. 7×10^{-9}
\bigcirc	逆止弁	内部リーク	逆止弁 (内部リーク)	7.1 \times 10 ⁻⁹
8	電磁弁	外部リーク	電磁弁(外部リーク)	4. 0×10^{-9}
9	配管	リーク	配管(リーク)	6. 6×10^{-10}
当該システムの故障率				8.3 \times 10 ⁻⁸

第3表 専用ボンベを用いた操作の故障率

(2) 遠隔手動弁操作設備を用いた遠隔操作

遠隔手動弁操作設備を用いた操作について,系統概要図を第10図に,故 障率を第4表に示す。第3表の故障率から系統全体の故障率を算出すると 「3.4×10⁻⁸[/h]」となる。

第10図 遠隔手動弁操作設備を用いた操作の系統概要図

	機器名称	想定故障モード	想定機器と故障モード	故障率[/h]
10	減速機	動力伝達不可	手動弁 (開閉失敗)	8.3 \times 10 ⁻⁹
1	L 型ジョイント	動力伝達不可	手動弁 (開閉失敗)	8.3×10 ⁻⁹
12	フレキシブルジ ョイント	動力伝達不可	手動弁(開閉失敗)	8.3×10 ⁻⁹
13	M0 弁 (減速機)	動力伝達不可	手動弁 (開閉失敗)	8. 3×10^{-9}
	3. 4×10^{-8}			

第4表 遠隔手動弁操作設備を用いた操作の故障率

以上より,操作の実現性や機構の信頼性を考慮すると, A0 弁, M0 弁いずれも 成立性があると考えられる。

第1図の構造図に記載の通り、一次隔離弁については不活性ガス系の弁と共用 しており、当該弁は通常運転時も操作を実施する弁である。一方、原子炉格納容 器隔離機能に着目すると、原子炉格納容器隔離信号発生時には、当該弁について は確実に閉鎖する必要がある。そのため、電源喪失時に確実に FC となる AO 弁の 方が、FAI となる MO 弁よりも適していると考えられる。 また,福島第一原子力発電所の事故では,空気駆動のベント弁の開操作が困難 を極めたことから,「専用ボンベからの駆動空気供給による遠隔操作」においては, 福島第一原子力発電所事故時の問題を考慮し,以下の第5表の対策を施している。

比較項目	1F での問題点	KK格納容器圧力逃がし装			
		置での対応策			
放射線量	・A0 弁操作のために現場に向かうも現場	放射線量率の低い二次格			
	の放射線量が高く 10 分で引き返した。	納施設外にて操作が可能			
	(1 号機)				
電磁弁	・電磁弁が地絡や他号機の爆発の影響に	電磁弁の排気ポートから			
(電源)	より操作不能であった。(2号機)	空気を供給することで,			
	・仮設で用意した小型発電機が故障した。	強制的にベント弁の開操			
	(3 号機)	作を行うことができる。			
作動空気	・IA 喪失により仮設コンプレッサーを用	専用の駆動用空気ボンベ			
	意したが、別途接続治具が必要であっ	を現場に常設する。			
	た。(1 号機)				
	・駆動用空気の残圧不足により、ベント				
	弁の開状態の維持が困難であった。(2,				
	3 号機)				

第5表 福島第一原子力発電所事故時の問題点と 格納容器圧力逃がし装置における対策

別紙 11 格納容器圧力逃がし装置の劣化要因と対策について

1.フィルタ装置,よう素フィルタ,配管,弁、ドレン移送ポンプ等

屋外に設置するフィルタ装置,よう素フィルタ,屋外配管,弁,ドレン移送ポ ンプ等は外面腐食を防止するため,外面塗装を施している。屋内については,空 調管理されていることから外面腐食リスクは小さいが,炭素鋼配管については外 面塗装を施している。また,格納容器圧力逃がし装置待機時は,系統内は窒素に て置換することにより,配管内面やフィルタ装置内面・内部構造物(ノズル,気 泡細分化装置,金属フィルタ等),よう素フィルタ内面・内部構造物の腐食を防止 している。

2. 銀ゼオライト

よう素フィルタの吸着材として使用する銀ゼオライトは、高湿度ならびに光照 射の環境に長期間晒されると、変質してよう素除去性能が低下する。

そのため、フィルタ装置とよう素フィルタの間に圧力開放板を設置し、待機時 にフィルタ装置のスクラバ水に起因する湿分がよう素フィルタ内に侵入すること を防止し、さらに待機時には、よう素フィルタ内は窒素で置換する。また、よう 素フィルタはステンレス鋼製の容器とし、よう素フィルタ内に充填される銀ゼオ ライトに光が照射されないようにする。

このような対策により、よう素フィルタの吸着材として使用する銀ゼオライト の劣化を防止する。

なお、フィルタ装置とよう素フィルタの間に設置する圧力開放板は、格納容器 ベントの障害とならないよう、格納容器ベント時の原子炉格納容器圧力と比較し て十分小さい圧力にて開放するように設定する。(開放圧力は 100kPa[gage]に設 定)

別紙12 金属フィルタの液滴除去性能について

格納容器ベントを実施すると、スクラバ水には多量の放射性物質が捕捉され る一方、スクラバ水の一部はエントレインメントにより液滴となってスクラバ 水より浮遊する。当然ながら、液滴にも放射性物質は含まれることから、放射 性物質の環境への放出量を抑制するためには、スクラバの後段に設置された金 属フィルタにより、このスクラバ水の液滴を除去することも重要となる。

フィルタ装置に設置される金属フィルタは第2.2.1-7図に記載の通り3層構 造となっている。そのうち、1層目と3層目にはφ30µmの金属繊維からなるウ ェブを設置しており、このウェブの層はスクラバ水の液滴を除去するデミスタ の機能を有している。

金属フィルタの液滴の除去性能は、下記の試験にて確認している。

第1表 金属フィルタ液滴除去性能試験条件一覧表				
項目	条件			
試験装置	・4m 高さ試験装置			
試験ガス	・空気 (エアロゾルは送気しない)			
	・超過流量相当			
ガス流量	 · 2Pd 相当流量 · 1Pd 相当流量 · L小法島相米 			
粒子計測位置	 ・ 取少 加 重 柏 当 ・ 試験装置入口 ・ 水スクラバ通過後(金属フィルタ入口) ・ 金属フィルタ出口 			
評価方法	 ・水スクラバ通過後(金属フィルタ入口)及び金属フィルタ出口の空気中の粒子(液滴)を比較することで、金属フィルタの液滴除去性能を確認 			

【金属フィルタ液滴除去性能試験】

枠囲みの内容は商業機密に属しますので公開できません。

第1図 試験概要図(金属フィルタ液滴除去性能試験)

これらの試験の結果,各流量における粒子(液滴)の個数と粒径分布は以下 の通りとなった。

全ての流量ケースにおいて,金属フィルタ出口側においては,殆ど粒子が検 出されておらず,金属フィルタの液滴除去性能は非常に高いことを確認した。

また、スクラバ水に水溶性のエアロゾルが捕捉されている状態を模擬するため、スクラバ水に水溶性の硫酸カリウム(K₂SO₄)を0.1wt%溶解した状態で、同様の試験を実施した。なお、試験流量については、最小流量相当と2Pd流量相当の2ケースにて実施した。

第7図 計測結果(2Pd相当流量)

スクラバ水に水溶性の硫酸カリウム(K₂SO₄)を添加した状態においても,金属フィルタ出口側においては,殆ど粒子が検出されないことを確認した。

一方,この試験時に金属フィルタの差圧を計測していたが,試験開始時と終 了時おいて差圧に変化はなかった。(第2表参照)

なお、金属フィルタは構造検討段階において、実機と同様の3層構造で、実 機と同じ材料(ϕ 30µmのウェブと ϕ 2µmの金属繊維焼結シート)を用いた ϕ 75mm,高さ500mm(実機は ϕ 150mm,高さ1000mm)の金属フィルタを製作し、そ の金属フィルタを水没させてから取り出し、すぐに差圧を計測する試験を行っ ている。この試験においても差圧が即座に回復する構造を見いだし、実機の金 属フィルタの構造に採用している。そのため、フィルタ装置の金属フィルタは 非常に水はけが良く、金属フィルタに水が付着しても、金属フィルタの差圧に 関して問題はない。

スクラバ水	×+ =	フィルタ装置金属フィルタ差圧[kPa]		
の状態	流重	流量 試験開始時		
	最小流量相当	0.7	0.7	
-4-	1Pd 相当流量	1.9	1.9	
水	2Pd 相当流量	2.2	2.2	
	超過流量相当	2.7	2.7	
硫酸カリウム	最小流量相当	0.7	0.7	
添加	2Pd 相当流量	2.2	2.2	

第2表 フィルタ装置金属フィルタ差圧計測値一覧

別紙13 フィルタ装置からの放射性物質の再浮遊について

水スクラバ

水スクラバに捕捉された放射性物質は,以下のメカニズムにより再浮遊する可 能性がある。

(水スクラバの放射性物質再浮遊メカニズム)

① エントレインメントによる飛沫の浮遊

② よう素イオンが放射線照射により無機よう素となり浮遊

このうち①のエントレインメントによる飛沫については,『別紙12 金属フィ ルタの液滴除去性能について』にて示す通り,水スクラバの後段に設置されてい る金属フィルタによりベントガスから除去することが可能な構成となっている。 そのため,水スクラバより放射性物質を含んだ飛沫が発生したとしても,液滴除 去性能を有する金属フィルタによって,放射性物質が環境へ放出されることを防 止する設計としている。

また、②のよう素イオンの放射線照射による無機よう素の生成については、ス クラバ水がアルカリ性に保たれていれば生じないことを、下記の試験にて確認し ている。スクラバ水の pH は、無機よう素の DF 捕捉性能を維持するためしよと している。そのため、スクラバ水は常にアルカリ性となっていることから、放射 性照射によるよう素イオンからの無機よう素の生成は生じない。

以上より,水スクラバにて捕捉された放射性物質の環境への放出は生じないと 考える。

また,フィルタ装置使用後は,スクラバ水を原子炉格納容器に移送することで, 放射性物質がフィルタ装置から環境へ放出されるリスクを更に低減する。 枠囲みの内容は商業機密に属しますので公開できません。

(無機よう素再浮遊試験)

I⁻(よう素イオン)は照射下で酸化種 0H・ラジカルあるいは H₂O₂によって酸化 され, I₂(無機よう素)および HIO, さらに IO₃⁻になる。一方,生成した I₂, HOI 及び IO₃⁻は還元種(eaq⁻, H) との反応によってもとに戻ると同時に, I₂は加水分 解する。I₂, HOI 及び IO₃⁻は酸化種過剰の場合に応じて溶液内に残留するようにな る。

■酸性環境下における反応式

 $I^- + HOI \rightarrow I_2 + OH^-$

■アルカリ性環境下における反応式

そのため、スクラバ水がアルカリ性に確保されていれば、よう素イオンから生 成された無機よう素は、再びよう素イオンに戻るため、スクラバ水から無機よう 素が再浮遊することはない。

今回,下記の第1図のに示す試験装置にて,放射線照射環境下におけるよう素 イオンの挙動と溶液のpHの影響を確認する試験を実施した。

第1図 照射下よう素イオン挙動確認試験装置図

枠囲みの内容は商業機密に属しますので公開できません。

第1図に示す通り,放射線照射室に置かれた加温容器の中に,CsIを溶解し, pHを調整した後に,高温状態としつつ,空気ボンベによりバブリングを行った状態で放射線を照射する。加温容器からの排気は鉛遮蔽内に設置した空容器,ならびに捕集容器内のよう素吸収液を通気することで,排気に含まれるよう素を回収する構成となっている。

試験開始前の加温容器内のよう素量と,試験開始後の加温容器内,空容器内, 捕集容器内,ならびに配管部のよう素量を比較することで,加温容器からのよう素 の再浮遊の有無を確認した。

加温容器内の初期のよう素量を 6.5mg (CsI:1×10⁻⁴[mo1/1]), pH を 4,7,10 の 3 ケース,加温容器の温度を 90℃とし,積算放射線量約 18[kGy]を照射した後の 各部のよう素量を確認した結果,第1表の通りとなった。

第1表 照射下よう素イオン挙動確認試験結果

第1表より,アルカリ性であれば,よう素イオンを含む溶液に放射線を照射したとしても、よう素の浮遊は生じないことが確認できた。

そのため、スクラバ水からのよう素イオンの浮遊を防止するため、スクラバ水 はアルカリ性に保つ必要がある。 ■ 金属フィルタ

フィルタ装置を使用すると、金属フィルタは捕捉した放射性物質の崩壊熱に より発熱する。もしも、金属フィルタの温度が捕捉した放射性物質の融点より も高くなってしまうと、捕捉した放射性物質が金属フィルタより再浮遊してし まう恐れがある。そのため、金属フィルタの温度は、金属フィルタに捕捉され た放射性物質の融点以下である必要がある。

フィルタ装置使用中は,金属フィルタにはベントガスが通気されることから, 金属フィルタに捕捉された放射性物質の崩壊熱は除去される。一方,フィルタ 装置使用後においては,ベントガスによる熱の除去はできないことから,金属 フィルタの温度は上昇する。そこで,フィルタ装置使用後におけるフィルタ装 置金属フィルタ部の温度評価を行った。

まず,有効性評価シナリオ(大LOCA+SBO+全ECCS機能喪失,D/Wベント) における,金属フィルタに捕捉される放射性物質の崩壊熱を評価する。本シナ リオにてフィルタ装置に流入する粒子状放射性物質の総崩壊熱は約9.3kWとな る。また,粒子径の分布は第2図の通りである。

第2図 エアロゾル粒子径分布(大LOCA+SBO+全ECCS機能喪失,D/Wベント)

第2図の粒子径分布に対して,『別紙 30 2. 金属フィルタ閉塞』にて示した 水スクラバの DF のうち,保守的に最小流量相当の DF 性能線を用いて,(1)式に より水スクラバのオーバーオールの DF を算出すると,水スクラバの DF は 34 となる。

$$DF_{total} = \frac{\int M(D_p) dD_p}{\int \frac{M(D_p)}{DF(D_p)} dD_p} \tag{1}$$

DF(Dp)は、粒径 Dp における水スクラバの DF M(Dp)は、フィルタ装置に流入する粒径 Dp のエアロゾルの総質量

そのため、水スクラバの後段に設置する金属フィルタに捕捉される崩壊熱は

9.3/34=0.28kWとなる。

そこで、金属フィルタ部の温度評価を実施する際の金属フィルタ捕捉崩壊熱 を、0.28kWに対して、放射性物質の不均一な付着等を考慮しても十分保守的な 5kWに設定する。

上記の通り、金属フィルタに捕捉される崩壊熱 5kW にて、まず金属フィルタ 部の温熱解析を実施する。温熱解析には STAR-CCM+ (ver. 8.04.010) を用いた。 なお、STAR-CCM は第4表に示す通り、原子力産業にも広く利用されている解析 コードである。

なお、フィルタ装置使用後においても、スクラバ水に捕捉された放射性物質 の崩壊熱によりスクラバ水が蒸発し、金属フィルタ部においてガスの流れは生 じるが、ここでは保守的にスクラバ水の給水のタイミングを想定し、スクラバ 水の蒸発が発生していない状態の評価を実施した。

【温熱解析条件】

項目	条件
評価コード	• STAR-CCM+ (ver. 8.04.010)
設定条件	 ・乱流モデル:Realizable K-ε ・状態方程式:理想気体 ・圧縮性:考慮 ・重力:考慮 ・気体の種類:水蒸気 ・定常
フィルタ装置内圧力	・大気圧(フィルタ装置使用後を想定)
フィルタ装置 周囲温度	• 65°C
スクラバ水沸騰	・無し
スクラバ水温度	• 100°C
フィルタ装置容器	・材質:SUS316L ・厚さ:30mmm
フィルタ装置保温	 ・有り ・材質:ケイ酸カルシウム保温材 ・厚さ:50mm
金属フィルタ 捕捉崩壊熱	• 5kW

第2表 フィルタ装置温熱解析条件一覧表

枠囲みの内容は商業機密に属しますので公開できません。

第3図 解析モデル

第2表の解析条件ならびに第3図の解析モデルにて評価を実施したところ, 金属フィルタ捕捉崩壊熱5kWの場合の金属フィルタ部最高温度は,約185℃と なった。

第4図 解析結果(金属フィルタ捕捉崩壊熱 5kW)

一方,金属フィルタは第5図の通り,小粒径の粒子を捕捉する焼結シートの

枠囲みの内容は商業機密に属しますので公開できません。

前後に,大粒径の粒子やスクラバ水の飛沫を捕捉する金属繊維からなるウェブ を設置した構造となっている。

第5図 金属フィルタ構造図

第3図の解析モデルは焼結シートのみをモデル化したものであり、ウェブに ついてはモデル化されていない。しかしながら、ウェブは空気を多く含む金属 繊維であることから、ある程度の断熱効果があると考えられる。そこで、半径 方向1次元の定常熱伝導評価式により、ウェブに挟まれた焼結シートの温度評 価を実施した。

評価の条件を第3表に示す。
項目	条件
評価式	・半径方向1次元 定常熱伝導評価式
金属フィルタ 捕捉崩壊熱	• 5kW
金属フィルタ 捕捉部位	 ・全ての放射性物質が焼結シートに付着しているとする (ウェブには付着していない)
金属フィルタ 周囲温度	• 185°C
ウェブ熱伝導率	 ・保守的に水蒸気の熱伝導率を適用 (ステンレス製のウェブによる熱伝導率を考慮しない) ・水蒸気の熱伝導率は、金属フィルタ周囲温度の値を適用 (温度が低い方が、熱伝導率が小さく保守的であるため) ・0.032W/(m・K)(185℃における水蒸気の熱伝導率)
金属フィルタ 設置本数	・128本
金属フィルタ 表面積	• 0. $38m^2$

第3表 定常熱伝導条件一覧表

第3表の条件により評価した結果,ウェブに挟まれた焼結シートの温度は,下 記の通りとなった。

【ウェブを考慮した場合の焼結シートの温度】

金属フィルタ発熱量=5×10³/128

=39.1W

金属熱流束(片面)=39.1/2/0.38

=52.1 W/m²

金属フィルタ厚さ方向度差=52.1×11.45×10-3/0.032

=18.7℃

焼結シート部温度=185+18.7=203.7℃

なお、フィルタ装置使用時に原子炉格納容器から飛来する放射性物質のうち、 高揮発性の水酸化セシウムの融点は約272℃である。そのため、金属フィルタ に捕捉される放射性物質の崩壊熱が5kWの場合、金属フィルタ焼結シートの温 度は放射性物質の融点以下となり、捕捉された放射性物質が再浮遊する恐れは ない。

よって、大LOCA+SBO+全 ECCS 機能喪失シナリオの D/W ベントを考慮したとしても、金属フィルタに捕捉された放射性物質の再浮遊は生じないと考える。

No	企業	企業 使用ツール 概要		備考
1	JAEA	STAR-CD	水銀ターゲットの熱流動設計(流体の核発 熱及び伝熱を考慮した水銀および重水の 熱流体解析)	http://jolissrch-inter.tokai-sc.ju ea.gojp/pdfdata/JAEA-Techno ogy-2008-033.pdf
2	三菱 FBR システムス	STAR-CD	過渡時の自然循環による除熱特性解析手 法の開発(「もんじゅ」実証炉内、冷却系統 の自然循環除熱の検討)	http://www.jst.go.jp/nrd/result /h21/p02.html
3	三菱 FBR システムス	STAR-CD	非定常流動解析に基づいた流動構造連成 解析手法の開発	http://www.mfbr.co.jp/contents /0700.html
4	JAEA	STAR-CD	照射集合体伝熱解析(高速炉「常陽」内の 照射集合体伝熱分布の評価)	
5	東京電力	STAR-CD	東通 ドライウエルスプレイ作動中の原子 炉格納容器内流動解析	http://www.nsr.go.jp/archive/ni sa/shingikai/800/3/1/004/04- 05.pdf
6	AREVA	STAR-CCM+	PWR 集合体のスペーサグリッド周辺評価 (蒸気バブルのふるまい評価)	http://www.aesj.or.jp/~fuel/Pdf /kaihou_2012_48-1.pdf
7	JAEA	STAR-CCM+	気体軸受液体水素ポンプのスラスト軸受 性能評価解析及び気柱管内の熱音響振 動解析コードの開発(スラスト軸受の浮上 量評価)	http://jolissrch-inter.tokai-sc.ji ea.go.jp/pdfdata/JAEA-Review -2012-042.pdf
8	電力中央 研究所	STAR-CCM+	発電ブラントの配管減肉現象の予測手法 開発における STAR-CCM+の適用(流れ 加速型腐食の原因の1つである乱流エネ ルギーの検討)	http://www.idaj.co.jp/ccsc2011 /lecture/star_b13.html
9	JAEA	STAR-CCM+	冷中性子源装置の減速材容器内沸騰解 析(減速材容器の受熱による減速材(液体 水素)の沸騰挙動様相の解析)	
10	JNES	STAR-CCM+	汎用数値流動解析コードを用いた高速増 殖炉におけるナトリウム-水反応解析手法 の整備	http://www.jnes.go.jp/content/ 000119050.pdf
11	エネルギー総 合工学研究所	STAR-CCM+	福島第一原子力発電所の圧力抑制プー ル内における蒸気凝縮の二相流解析	http://www2.cd-adapco.com/l/ 14592/2013-11-05/5smk3

第4表 STAR-CCM+, STAR-CDの原子力産業における使用実績

別紙14 水スクラバにて考慮する荷重と評価結果

フィルタ装置の水スクラバにおいては、ベント開始時にスクラバ配管内にたま っていた水のクリアリングによる噴流により、フィルタ装置の内部構造物に大き な荷重がかかる。そこで、このクリアリング荷重によるフィルタ装置内部構造物 に発生する応力を評価した。なお、保守的に地震荷重(基準地震動 Ss)ならびに 自重による荷重も組み合わせて評価を実施した。

(1) クリアリング荷重の評価

クリアリング荷重を評価するため、まずスクラバノズルからの水の噴射速度を 算出する。ダルシー・ワイスバッハの式より、スクラバノズルからの水の噴射速 度は以下のように算出できる。

$$P_i = P_o + \left(\frac{\zeta + 1}{2}\right) \rho v^2 \tag{1}$$

$$\Delta P = P_i - P_o \tag{2}$$

$$v_{1} = \left(\frac{2\Delta P}{\{\rho(\zeta+1)\}}\right)^{0.5}$$

= $\left(2 \times \frac{\left(0.72 \times 10^{6} - 0.10 \times 10^{6}\right)}{1000 \times (3.05 + 1)}\right)^{0.5}$
= 17.5[m/s] (3)

ここで, P_i, P_o, ρ, ζは, 以下の通り設定した。

 \blacksquare P_i=0.72MPa (abs)

P_iはベント開始時のスクラバ配管内の圧力であり,保守的に原子炉格納容器の最高使用圧力の2倍の圧力である0.72MPa(abs)とする。実際は,原子炉格納容器からフィルタ装置に至る配管の圧力損失により,スクラバ配管内の圧力は原子炉格納容器の圧力以下となる。

P_o =0. 01MPa (abs)

P₀は噴射直後の圧力であり,保守的に大気圧である 0.10MPa (abs)とする。実際は,スクラバ水の水頭圧力が作用するため,大気圧以上となる。

 $\rho = 1000 \text{kg/m}^3$

ρは水の密度であり、1000kg/m³とする。

📕 ζ =3. 05

くは圧力損失係数の総和であり、保守的にスクラバ配管から一番近いノズル までの配管の圧力損失係数とする。 また, 噴射速度から, 力積の式を用いてスクラバノズルにおける荷重 F を算出 した。

$$F\Delta t = mv \tag{4}$$

$$m/_{\Delta t} = \rho A v$$
 (5)

$$F = \frac{m}{\Delta t} \times v = \rho A v^{2}$$

= 1000 × $\left(\pi \times \left(\frac{5}{2}\right)^{2} \times 50 \times 140 \times 10^{-6}\right) \times 17.5^{2}$ (6)
= 42092[N]

ここで,スクラバノズルの断面積Aは,一つのノズルにφ5mmの穴が50個設置 されており,スクラバノズルは全部で140本設置されていることから,(6)式の通 り算出される。

よって,スクラバノズル1本当たりの荷重は以下の通りとなる。

$$(F/g)/140 = m = 30.7[kg]$$
 (7)

また,スクラバ配管の 400A エンドキャップにかかるクリアリング荷重について 評価する。

まず,400A 配管の水の流速を求める。400A 配管の流速は,スクラバノズルの断 面積比より,以下の通り算出することができる。

$$v_{2} = \left(\frac{2\Delta P}{\{\rho(\zeta+1)\}}\right)^{0.5} \times \frac{A_{scrubber}}{A_{400A}}$$
$$= \left(\frac{2\Delta P}{\{\rho(\zeta+1)\}}\right)^{0.5} \times \left(\frac{\pi \times \left(\frac{5}{2}\right)^{2} \times 50 \times 140 \times 10^{-6}}{\pi \times \left(\frac{381}{2}\right)^{2} \times 1 \times 10^{-6}}\right)$$
(8)
$$= 21.1 [m/s]$$

また, 噴射速度から, 力積の式を用いてスクラバノズルにおける荷重 F を算出 した。

$$F = \frac{m}{\Delta t} \times v = \rho A v^{2}$$
$$= 1000 \times \left(\pi \times \left(\frac{381}{2}\right)^{2} \times 1 \times 10^{-6}\right) \times 21.1^{2}$$
$$= 50744[N]$$
(9)

よって、400A 配管エンドキャップに加わる荷重は以下の通りとなる。

$$F/g = m = 5.17[t]$$
 (10)

(2) フィルタ装置内部構造物応力評価

フィルタ装置の FEM モデル(第1図)を作成し,式(7)(10)で算出されたクリア リング荷重,ならびに基準地震動 Ss による地震荷重を負荷し,各部に発生する応 力を算出した。応力の評価には,汎用構造解析コード FINAS v21.0を用いた。ま た,健全性評価に当たり,許容応力は第1表に示す供用状態 D の値を用いた。

第1図 フィルタ装置 FEM 解析モデル

評価対象	曲げ [MPa]	引張 [MPa]	せん断 [MPa]	配管 [MPa]
スクラバ配管	 5	-	· —	240
支持構造物 (Uボルトを含む)	220	162	93	

第1表 許容応力一覧

以上の条件のもと評価を実施したところ,第2表ならびに第3表の通りとなり, 発生応力が許容応力以下となっていることを確認した。そのため,フィルタ装置 内部構造物は,クリアリング荷重・地震荷重・自重による荷重が重畳した場合に おいても,健全性を確保することが可能である。

旗別番号		部位名称			Uボルト新面積 [mm ²]	内圧 [MPa]	σ(自重) [MPa]	σ(水の噴出反力) [MPa]	σ (耐震) [MPa]	ボルト本数	σ(合計) [MPa]	許容值 [MPa]	裕度	料定
1		Ť.(-	(H)	1.50E+08		0	7	28	146.62		181	240	1.3	0
2	1001 5145	直管部(Sch 160)	2	3.88E+06	÷	0	0.35	0.24	12.49		14	240	17.1	0
3	400ARCE	直營部(Sch 40)	<u> </u>	1.50E+06		0	0.28	0.07	7.62	(m)	8	240	30.0	0
4		エルボ		1.50E+06		0	1.15	0.36	20.06		22	240	10.9	0
5	200 A \$3.05	71-	-	2.69E+05		0	8.07	15,79	36.36		61	240	3.9	0
6	200ABCW	直管部	2	2.69E+05	-	0	2.69	5,54	7.74		15	240	15.0	0
7	100A配管	エルボ	-	5,25E+04		0	3.69	7,40	3.02		15	240	16.0	0
8	リポルト	M16	引張方向	-	1.57E+02	-	0.00	0.00	12.55	2	7	162	23.1	0
9	(100A配管用)		せん断方向		1.57E+02		0.19	1.55	21.41	2	12	93	7.7	0
10	リボルト	UボルトM20		-	2.45E+02	-	0.00	0.00	100.04	1	101	162	1.6	0
11	(200A)	管用)	せん断方向		2.45E+02	-	0.00	0.00	35.59	1	36	93	2.5	0

第2表 評価結果一覧表①

※発生応力の内圧, σ(自重), σ(水の噴出反力), σ(耐震)は小数点以下第1位で四捨五入, 発生応力のσ(合計)は小数点以下第1位で切上げ,許容値は小数点以下第1位で切捨て,裕 度は小数点以下第2位で切捨てを実施。これらはすべての評価が完了後に実施している。

第2図 応力発生点①

	部位名称		X (MPa)	Y (MPa)	Z (MPa)	M (MPa)	合計 (MPa)	許容値 (MPa)	裕度	判定
1		引張	7	-	-	-	8	162	20.2	0
2	入口サポート	せん断	-	5	3		9	93	10.3	0
3	section of the start	曲げ		-	-	39	39	220	5.6	0
4	ったこの前井子」	引張	2	-	-	-	2	162	81.0	0
5	スクラハ配管サホート H鋼	せん断	-	3	0	-	3	93	31.0	0
6		曲げ		-	-	22	23	220	9.5	0
7	ったこの前部サポート	引張	1	-	1	-	2	162	81.0	0
8		せん断	-	7	0	-	7	93	13.2	0
9	C鋼	曲げ	-		-	42	42	220	5.2	0
10	マクラバの節サポート	引張	5	-	-	-	6	162	27.0	0
11	スクラバ配管サポート 支持柱	せん断	-	2	2	-	5	93	18.6	0
12		曲げ		-	1	5	6	220	36.6	0

第3表 評価結果一覧表②

※発生応力の X, Y, Z, M は小数点以下第1位で四捨五入,発生応力の合計は小数点以下第1位 で切上げ,許容値は小数点以下第1位で切捨て,裕度は小数点以下第2位で切捨てを実施して いる。なお,これらはすべての評価が完了後に実施している。

第3図 応力発生点②

No	企業	使用ツール	概要	備考
1	JNES	FINAS	BWR 炉内構造物耐震実証試験体解析	https://www.nsr.go.jp/archive/
				jnes/atom-library/seika/00000
				7949.pdf
2	JNES	FINAS	もんじゅ	https://www.nsr.go.jp/archive/
			IHX ベローズの弾塑性大変形クリープ解 析	jnes/content/000126973.pdf
3	JAEA	FINAS	もんじゅ	http://www.nsr.go.jp/archive/n
			炉心構成要素の群振動解析	isa/shingikai/107/4/2/014/14-
				3-5.pdf
4	JAEA	FINAS	もんじゅ	http://www.atom.pref.fukui.jp/s
			原子炉容器及び炉内構造物の鉛直方向	enmon/dai58kai/no1-3.pdf
F		EINIAC Ver 10	恢 则 件 们 五 加 班 社 新	
5	JAEA	FINAS Ver.18	丹処理 他設	http://jolissrch-inter.tokai-sc.j
			フク文行灯帽の地展到による時刻歴心谷	aea.go.jp/pdfdata/JAEA-Techn
6	DNC	EINIAS Ver 10		ology=2011=006.pdt
0	PNC	FINAS Ver.10	FDR 原子炉谷谷モナルのスロッシンク 胖	http://jolissrch-inter.tokai-scj
			151	0-97-125 pdf
7	IANTI	EINIAS Vor 19	拉萨加羽原之力祭雪所	http://www.googileus.is/orehius
	SANF 委員会	TINAS VELTO	No3ス過水タンクおよび7号機軽油タンク	/pdf/.IANTI-SANE-02.pdf
	of the ARA		の地震動による時刻歴応答解析	par or art or are or par
8	東京電力	FINAS Ver.20.1	福島第一 汚染水処理設備	http://www.tepco.co.ip/cc/pre
			円筒型タンク(1000m3容量)の基準地震動	ss/betu14 i/images/140409i01
			Ss に対する耐震性評価	03.pdf
9	九州電力	FINAS	川内原子力発電所2号機	https://www.nsr.go.jp/archive/
			燃料取替用水タンクおよび復水タンクの	nisa/stresstest/files/kaitou15-
			耐震バックチェック評価	4.pdf
10	三菱原子燃料	FINAS	大飯発電所第 1.2 号機	http://www.nsr.go.jp/data/000
	関西電力		燃料体の強度計算に用いる炉心支持構	031724.pdf
	Service of the service of		造物の地震応答解析(基準地震動 Ss)	
11	三菱重工	FINAS	FBR 実用化炉	https://www.mhi.co.jp/technol
			ポンプ組込型 IHX の振動解析	ogy/review/pdf/434/434045.pd
				f
12	海洋技術安全	FINAS	原子カプラント機器の高経年化と熱流動	https://www.nmri.go.jp/main/p
	研究所		挙動に関する研究	ublications/paper/pdf/21/05/0
			流路内円管列の流力弾性振動解析	2/PNM21050201-00.pdf
13	原子力発電環	FINAS Ver.12	最終処分施設の処分場の設計	https://www.numo.or.jp/approa
	境整備機構		廃棄体定置後のニアフィールドにおける	ch/technical_report/tr0401pdf/
			温度解析	TR0401-04c4.pdf

第4表 FINAS の原子力産業における使用実績

別紙 15 よう素フィルタからの放射性物質の再浮遊について

■ 放射線照射による再浮遊

よう素フィルタの銀ゼオライトに捕捉されたよう素は、捕捉した放射性核種 による放射線の照射を受ける。ここで、一旦銀ゼオライトに捕獲されたよう素 が放射線照射下において安定的に保持できるのかを確認するため、有機よう素 を吸着した銀ゼオライトに対して放射線を照射したものと、放射線を照射して いないものとを比較し、放射線照射によるよう素の離脱の有無の確認を行った。

まず,よう素フィルタの銀ゼオライトが吸収する放射線量について,以下の 第1表の条件にて評価を行った。

項目	条件
対象プラント	• ABWR
事故シナリオ	・シナリオレス(原子炉圧力容器から原子炉格納容器内に CsI が 100%放出すると想定)
原子炉格納容器pH制御	・原子炉格納容器の pH 制御は無し
ベントタイミング	・出力停止後1時間後(線量を保守的に算定するための仮定)
対象線源	 ・よう素フィルタに蓄積したよう素(有機よう素,無機よう素)及びよう素が崩壊して 生成したキセノン。放射線としてはガンマ線及びベータ線を考慮
原子炉格納容器外への 放出割合	・有機よう素=0.04, 無機よう素=0.91×1/200 (原子炉格納容器内での自然沈着)
フィルタ装置の DF	・無機よう素,有機よう素=1(除去されない)
よう素フィルタの DF	・無機よう素,有機よう素=∞(全て除去される)
線源分布	 ・よう素フィルタの吸着材全体に均一に吸着されると想定
評価時間	・10万時間(積算値がほぼ変化しなくなるまでの時間)
評価方針	・ORIGEN2 コードにてよう素フィルタに蓄積したよう素、キセノンの放出エネルギ(崩 壊熱)の時間変化を評価し、この放出エネルギが全量よう素フィルタに充填される銀 ゼオライト全量で100%吸収されたとして、吸収線量を評価(系外への漏えい無し)

第1表 銀ゼオライト吸収放射線量評価条件

第1表の条件にて、よう素フィルタに充填される銀ゼオライトに吸収される 累積放射線量を評価したところ、銀ゼオライト1g当たり約20kGyとの結果となった。

上記の評価結果を踏まえ,第2表の条件にて銀ゼオライトの放射線照射試験 を実施した。また,試験設備の概略構成図を第1図に示す。

項目	条件
供試体	 ・有機よう素吸着済みの銀ゼオライト(1サンプル1g) ・有機よう素を性能破過するまで吸着した
照射線量	 ・累積照射線量:4.1kGy, 18.9kGy, 28.4kGy ・照射線量率:1.02Gy/h, 1.05Gy/h
試験温度	• 150°C
分析装置	• SEM/EDX

第2表 銀ゼオライト放射線照射試験条件

第1図 試験設備概略構成図

第2図 試験サンプル,保護容器

第3図 放射線照射設備

第2表の条件にて,有機よう素吸着済みの銀ゼオライトに放射線を照射したものと,放射線を照射していないものに対して成分分析を実施したところ, 第3表の通りとなった。また,放射線照射量とよう素・銀の濃度比の関係は 第4図の通りとなった。これらの結果より,放射線照射の有無,累積放射線 量の大きさに関わらず,よう素と銀の濃度比はほぼ一定であった。そのため, 放射線照射により,銀ゼオライトに捕捉されたよう素の再揮発は生じないと 考えられる。

第3表 成分分析結果

第4図 累積放射線量とよう素・銀濃度比の関係

別紙 16 格納容器圧力逃がし装置の弁選定の考え方

格納容器圧力逃がし装置を使用するためには,第1図に示す通り,一次隔離 弁,二次隔離弁,フィルタ装置入口弁の合計3つの弁が「開」となる必要があ る。一次隔離弁とフィルタ装置入口弁には空気駆動弁(AO 弁),二次隔離弁に は電動駆動弁(MO 弁)を選定している。それぞれの弁の駆動方式・弁の状態(NC (通常状態「閉」; Normal Close),NO(通常時「開」; Normal Open),FC(電源 喪失時「閉」; Failure Close),FO(電源喪失時「開」; Failure Open))及び採 用理由について第1表に示す。

一方,二次隔離弁については,単一故障により格納容器圧力逃がし装置,ならびに耐圧強化ベントともに機能を喪失し,格納容器ベントが実施できなくなる。そのため,原子炉格納容器減圧機能の信頼性を向上されるため,二次隔離弁をバイパスする二次隔離弁バイパス弁を設置する。なお,二次隔離弁バイパス弁は電動駆動弁(M0弁)とする。

第1図 格納容器圧力逃がし装置系統概要と主要弁

No.	弁名称	駆動 弁の	方式 状態	選定理由
12	ー次隔離弁 (ドライウェル側,サ プレッション・チェン バ側)	空気	NC FC	 原子炉格納容器隔離機能の信頼性を高めるためには,FC動作の空気駆動弁が望ましいこと。 全開・全閉の運用であること。 空気供給弁(M0弁)ならびに電磁弁を中央制御室から操作することで,弁操作が可能であること。 全電源喪失時の作業員の弁操作に関する労力の低減を図れること。 全電源喪失時の作業員の弁操作に関する労力の低減を図れること。 (弁駆動空気系の改造により,全電源が喪失した状態においても,二次格納施外よりボンベの空気を電磁弁の排気側から弁駆動部へ供給することにより開操作が可能。ボンベは現場に設置済みであり,小型弁を操作することだけでボンベの空気を弁駆動部へ供給して弁操作をすることができることから,労力が非常に小さい) 遠隔手動弁操作設備により,二次格納施設外からの人力操作も可能であること。 全電源喪失時においても、2つの方式の遠隔操作(ボンベによる操作,遠隔手動弁操作設備による人力操作)が可能であること。 こと。(同等の機能を有する代替循環冷却系が動力電源を必要とするのに対して、動力源の多様性を確保できる)
3	二次隔離弁	電動	NC	 開度調整が必要であること。 電動操作により、中央制御室からの弁操作が可能であること。 遠隔手動弁操作設備により、二次格納施設外からの人力操作が可能であること。 電動機の電路は、二次隔離弁バイパス弁との多重性を図ることで、信頼性向上を図れること。(非常用所内電気設備【区分 I】より給電)
4	二次隔離弁バイパス弁	電動	NC	 開度調整が必要であること。 電動操作により、中央制御室からの弁操作が可能であること。 遠隔手動弁操作設備により、二次格納施設外からの人力操作が可能であること。 電動機の電路は、二次隔離弁との多様性を図ることで、信頼性向上を図れること。(代替所内電気設備より給電)
5	フィルタ装置入口弁	空気	NO FO	 格納容器圧力逃がし装置の機能信頼性を高めるためには,F0 動作の空気駆動弁が望ましいこと。 全開・全閉の運用であること。 全電源喪失時の作業員の弁操作に関する労力の低減を図れること。 (弁駆動空気系の改造により,全電源が喪失した状態においても,二次格納施外よりボンベの空気を電磁弁の排気側から弁 駆動部へ供給することにより開操作が可能。ボンベは現場に 設置済みであり,小型弁を操作することだけでボンベの空気 を弁駆動部へ供給して弁操作をすることができることから, 労力が非常に小さい) 遠隔手動弁操作設備により,二次格納施設外からの人力操作 が可能であること。 遠隔手動弁操作設備により,弁の閉保持が可能であること。

第1表 格納容器圧力逃がし装置 弁選定理由

一方,格納容器圧力逃がし装置(FCVS)を設置している諸外国の弁構成を以下 に例示する。

【フィンランド】

フィンランド BWR プラントに設置されている FCVS 系統の概略系統図を第2図に 示す。V1 と V20 はラプチャーディスクである。ベントラインに設置している弁は 全て手動駆動弁で構成されている。D/W のラインにはバイパスラインが設置され ており、V2、V3 は通常時「開」となっている。また、V21、V23 についても通常時

「開」となっている。そのため,操作員がベントラインに設置された弁の「開」 操作を実施しなくても,原子炉格納容器圧力が規定の値まで上昇し,V1とV20の ラプチャーディスクが開放すれば,D/Wのバイパスラインより格納容器ベントは 自動的に開始される。

第2図 概略系統図(フィンランド BWR プラント)

【ドイツ】

ドイツのBWR プラントに設置されている FCVS 系統の概略系統図を第3図に示す。 FCVS 系統は、2ユニットで共有する設計となっている。ベントラインには、原子 炉格納容器隔離のための電動弁が2つと、ユニット間の切り替えのための電動弁 が1つ設置されている。また、フィルタ装置の出口側には逆止弁が設置されてい る(FCVS 使用後にフィルタ装置内の水蒸気が凝縮し、フィルタ装置内圧力が負圧 となった場合に、スタックから空気を吸い込むことがないよう設置されているも のと考えられる)。

第3図 概略系統図 (ドイツ BWR プラント)

【スイス】

スイスのBWR プラントに設置されている FCVS 系統の概略系統図を第4図に示す。 ベントラインには電動弁が2つ設置されており,原子炉格納容器から1つめの弁 は通常時「開」,2つめの弁は通常時「閉」となっている。また,2つめの弁をバ イパスするラインが設置されており,バイパスラインにはラプチャーディスクが 設置されている。そのため,操作員が2つめの弁の「開」操作を実施しなくても, 原子炉格納容器圧力が規定の値まで上昇し,ラプチャーディスクが開放すれば, 格納容器ベントは自動的に開始される。

第4図 概略系統図 (スイス BWR プラント)

フィンランドならびにスイスのプラントでは、ラプチャーディスクにより格納 容器ベントの開始に際して人的介在が不要な弁構成となっている。一方、柏崎刈 羽 6/7 号炉は格納容器ベントを実施する際は、必ず操作員による弁操作が必要な 構成としている。これは、格納容器ベントのタイミングは、あくまでも人間が決め るべきであるという設計思想によるものである。ただし、弁操作を実施しないと 格納容器ベントができないことから、弁は事故時に確実に操作できることが要求 される。そのため、空気駆動弁には、遠隔手動弁操作設備による人力操作機構と ボンベによる駆動機構を二次格納施設外に設置し、電動駆動弁についても遠隔手 動弁操作設備による人力操作機構を二次格納容器外に設置している。また、電動 駆動弁(二次隔離弁)が単一故障した場合に備え、それをバイパスする手動駆動 弁を設置し、弁操作に対する信頼性の向上を図った構成としている。

また、ドイツのプラントでは、フィルタ装置の下流側に逆止弁が設置されてい るが、柏崎刈羽 6/7 号炉には設置していない。これは、逆止弁の固着等により、 格納容器ベントの実施が阻害されるのを防止するためである。しかしながら、ベ ント実施後には格納容器圧力逃がし装置内が負圧となり、排気口から空気を吸い 込む可能性がある。そのため、格納容器ベント実施後には、可搬型窒素供給装置 により格納容器圧力逃がし装置の窒素パージを実施することとしている。

以上より,諸外国のプラントと柏崎刈羽 6/7 号炉では,格納容器圧力逃がし装置の弁構成が異なるが,これは設計思想の違いであり,諸外国の懸念事項に対して,柏崎刈羽 6/7 号炉の弁構成であったとしても対策は施せていると考えている。

別紙17 格納容器圧力逃がし装置と他系統との隔離

格納容器圧力逃がし装置は、既設の不活性ガス系と耐圧強化ベントのラインよ りフィルタ装置にベントガスを導くが、他の系統・機器とは弁で隔離することで、 他の系統や機器への悪影響を防止する設計としている。それぞれの系統における 隔離弁の駆動方式等を第1表に整理する。各弁の構成については、第1図に示す。

ゴッケトロゴト	系統の隔離弁				採用理由		
<u> </u>	一次隔	離弁	二次隔	離弁	採用理田		
换気空調系 ①②	空気	NC FC	手動 駆動	NC	 既設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から, FCの空気駆動弁が採用されている。 新設手動駆動弁(二次隔離弁) 格納容器圧力逃がし装置から換気空調系の隔離を確実にする観点から,手動駆動 弁を新設する。 		
非常用ガス処理系 ③④	空気	NC FC	手動 駆動	NC	 既設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から, FCの空気駆動弁が採用されている。 新設手動駆動弁(二次隔離弁) 格納容器圧力逃がし装置から非常用ガス 処理系の隔離を確実にする観点から,手 動駆動弁を新設する。 		
耐圧強化ベント	ト 空気 ⑥⑦ 駆動	NC FC	電動 駆動	NC	■ 新設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から, FCの空気駆動金が採用されている。		
567			電動 駆動	NO	■ 既設電動駆動弁(二次隔離弁) 電動駆動弁が採用されている。		

第1表 格納容器圧力逃がし装置に接続している他の系統の隔離弁

① ~⑥の弁については,系統作動時の圧損を減らすよう考慮してバタフライ 弁としており,弁座シール材には EP ゴムを用いている。

弁座シール材に EP ゴムを用いたバタフライ弁においては,格納容器一次隔離弁 が晒される環境を模した条件にてシール機能確認試験を実施しており,閉じこ め機能は確保可能であることを確認している。(小型弁試験装置により, EP ゴ ム弁座シールのバタフライ弁を 0.3MGy の累積放射線量を照射し, PCV 設計圧力 の2倍の圧力・200℃の蒸気暴露環境に 168 時間晒した状態において,シール機 能の健全性を確認する試験を実施)

一方,⑦については,玉型弁としており,弁座シールはメタルタッチである。 そのため,放射線照射に対してシール機能を確保可能である。

別紙18 圧損計算の詳細

- 1 原子炉格納容器圧力毎の圧力損失
 - 1.1 圧力損失・流量の評価

格納容器圧力逃がし装置を流れるガスの流量は,原子炉格納容器の圧力に依 存し変化する。格納容器圧力逃がし装置使用時,格納容器圧力逃がし装置には 原子炉格納容器内にて発生する水蒸気量に応じた流量のガスを通気し,原子炉 格納容器圧力はその流量に応じた圧力にて静定する。

原子炉格納容器圧力が 2Pd (620kPa [gage]), 1Pd (310kPa [gage])の際の ガスの流量,各部の圧力損失,ならびに事故発生1週間後および1ヶ月後に発 生する水蒸気量を通気する際の原子炉格納容器圧力,各部の圧力損失を第 1.1 -1,2表に示す。なお、二次隔離弁(M0弁)については、ベント時は調整開度 にて運用することとしている。そのため、二次隔離弁の開度の影響についても 考慮することとする。また、各部の圧力勾配について、第 1.1-2,3 図に示す。

なお、これらについては S/C を用いたベントの場合の評価であるが、D/W を 用いた場合のベントにおいても、ほぼ同じ評価結果となる。(S/C 取出口~S/C・ D/W 合流部と D/W 取出口~S/C・D/W 合流部の配管口径は同一であり、ルート長 さに大きな違いはないため)

第1.1-1図 格納容器圧力逃がし装置 主ライン概略構成図

原子炉 二次 パス流量 終納容器圧力 隔離金間 よう素	
格納容器圧力 隔離弁開 ノス加重 よう素	
(kPa[gage]) 度 (kg/s) フィルタ装 フィルタ よ 置入口配管 装置 フィルタ フィルタ	う素 イルタ 出口配管

第1.1-1表 (6号炉)格納容器圧力に対するガス流量と各部圧力損失

第1.1-2表 (7号炉)格納容器圧力に対するガス流量と各部圧力損失

原子炉 格納容器圧力 (kPa[gage])	二次 隔離弁 開度	12	各部圧力損失 (kPa)						
		カム流重 (kg/s)	フィルタ装 置入口配管	フィルタ 装置	よう素 フィルタ 入口配管	よう素 フィルタ	よう素 フィルタ 出口配管		
						I	L		

※1,2 フィルタ装置,よう素フィルタの圧力損失については,最大流量時に想 定される圧力損失値を,保守的に全評価ケースに適用

- ※3 有効性評価シナリオ(大LOCA+SB0+全ECCS機能喪失)における,原子炉 格納容器ベント開始時のS/Cの圧力。大LOCA時は,S/CよりもD/Wの方 が圧力が高い状態で推移する。そのため,D/Wが2Pdに到達して原子炉格 納容器ベントを開始する時のS/Cの圧力は、2Pdよりも小さな値となる。
- ※4 事故発生1週間後に原子炉格納容器内にて発生する蒸気量
- ※5 事故発生1ヶ月後に原子炉格納容器内にて発生する蒸気量

第1.1-2図 (6号炉)格納容器圧力逃がし装置 各部圧力勾配

第1.1-3 図 (7号炉)格納容器圧力逃がし装置 各部圧力勾配

第1.1-1,2表に示す通り、フィルタ装置、よう素フィルタに非常に保守的 な圧力損失を見込んだとしても、事故発生1週間後、1ヶ月後に原子炉格納容 器内において発生する蒸気全量を通気し、原子炉格納容器の減圧状態を維持す ることが可能である。

なお,格納容器圧力逃がし装置の系統における各部圧力損失のうち,ガスの 流量に関連しないものは水スクラバ部の水頭圧のみである。それ以外のものは,

ガス流量が小さいほど圧力損失も小さくなる(ガス流量が0であれば,圧力損 失も0となる)。そのため,原子炉格納容器の圧力がスクラバ水の水頭圧以上で あれば,格納容器圧力逃がし装置のガスの通気は可能である。

1.2 フィルタ装置,よう素フィルタの圧力損失

【フィルタ装置】

1.1の評価において、フィルタ装置の圧力損失としては、スクラバ部圧力損 失、スクラバ水頭圧、金属フィルタ圧力損失を考慮している。水スクラバ部に ついては最大流量時の圧力損失 スクラバ水頭圧については設計上の 許容最大スクラバ水位時における水頭圧 金属フィルタ部については 設計上の許容最大圧力損失 を考慮している。

水スクラバ部ならびに金属フィルタ部については,流量が低下すれば圧力損 失も低下するが,1.1 では保守的に最大流量時の圧力損失に固定して評価を実 施している。また,金属フィルタ部の圧力損失は,想定されるエアロゾル負荷 量(大LOCA+SBO+全ECCS機能喪失,S/Cベント時のエアロゾル負荷量)に対 して十分な裕度を持った設計としており,最大流量時においても許容最大圧力 損失 には到達しないことを確認している。

なお,各圧力損失値の評価には,実機のスクラバ,金属フィルタを用いた当 社FV試験設備にて取得した圧力損失データを用いている。

【よう素フィルタ】

1.1 の評価において,よう素フィルタの圧力損失としては,吸着塔の圧力損 失を考慮しており,最大流量時の圧力損失 を考慮している。吸着塔 の圧力損失は,流量が低下すれば圧力損失も低下するが,ここでは保守的に最 大流量時の圧力損失に固定して評価を実施している。

なお,圧力損失値の評価には,実機の吸着塔を用いた当社のよう素フィルタ 試験設備にて取得した圧力損失データを用いている。

2 設計の意図

格納容器圧力逃がし装置の系統設計の意図は,原子炉格納容器圧力が 2Pd (620kPa [gage])の際に,31.6kg/sの蒸気を排出可能であることである。(原 子炉格納容器減圧という目的に対して,十分な容量を持つこと)

系統設計としては、これを満足するよう、配管ルート、配管口径、オリフィ ス径等の設定をしている。

フィルタ装置,よう素フィルタについては,この系統設計により評価される ガス条件において性能が満足できるよう,設計している。 別紙 19 格納容器圧力逃がし装置と他系統との隔離について

1 他系統の接続位置

格納容器圧力逃がし装置には,排気経路に非常用ガス処理系,換気空調系なら びに耐圧強化ベント系が接続されている。非常用ガス処理系と換気空調系との接 続箇所は,第1図に示す通り一次隔離弁と二次隔離弁の間となっている。また, 耐圧強化ベント系は二次隔離弁とフィルタ装置入口弁との間に接続され,耐圧強 化ベント系には非常用ガス処理系が接続されている。また,格納容器圧力逃がし 装置とそれぞれの系統を隔離する弁は各2弁ずつ設置し,格納容器圧力逃がし装 置使用中に,格納容器圧力逃がし装置と確実に隔離できるようにし,ベントガス に含まれる水素が原子炉建屋に回り込むことを防止する設計としている。

第1図 格納容器圧力逃がし装置 接続他系統概略構成図

2 格納容器圧力逃がし装置運用時に他系統隔離弁が受ける負荷

炉心損傷後に格納容器圧力逃がし装置を運用する場合,まず二次隔離弁を「調 整開」とし,次に一次隔離弁を「開」とすることで,格納容器ベントを開始する。 そのため,格納容器圧力逃がし装置に接続される非常用ガス処理系,換気空調系, ならびに耐圧強化ベント系と格納容器圧力逃がし装置を隔離している弁は,一次 隔離弁を「開」操作し,格納容器ベントを開始するタイミングで,ベントガスと 接することとなる。

ここで、格納容器圧力逃がし装置と他系統を隔離している弁の部分におけるベントガスの温度・圧力は、原子炉格納容器から当該弁までの配管部におけるエネルギ損失により、原子炉格納容器の温度・圧力よりも小さな値となる。大LOCA+SBO+全 ECCS 機能喪失シナリオにおける原子炉格納容器の温度・圧力の推移は第2,3図の通りとなる。

第2図より,原子炉格納容器の温度はベント開始後200℃以下となる。そのため,格納容器圧力逃がし装置と他系統を隔離している弁が晒される温度も200℃以下となる。また,第3図より,原子炉格納容器の圧力はベント開始直前にPCV

の設計圧力の2倍となるが、ベント開始後は即座に圧力が降下している。そのため、格納容器圧力逃がし装置と他系統を隔離している弁が晒される圧力もPCVの 設計圧力の2倍以下となる。

第2図 原子炉格納容器温度推移(大LOCA+SBO+全ECCS機能喪失シナリオ)

第4図 原子炉格納容器圧力推移(ベント初期部拡大)

一方,格納容器圧力逃がし装置と他系統を隔離する①~⑥の弁は,弁シール材 に EP ゴムを用いたバタフライ弁としている。EP ゴムシール材のバタフライ弁に ついては、200℃・PCV 設計圧力の2倍の圧力に晒した状態において、シール機能 を確保可能であることを確認している。そのため、格納容器圧力逃がし装置と他 系統を隔離する弁のシール機能は確保可能である。また、シール機能をより強化 するため、各弁のシール材をより耐環境性に優れた改良 EPDM へ変更する。⑦の弁 は玉型弁であり、弁座シールはメタルタッチであることから、耐温度、耐圧力性 能は非常に高く(圧力クラス 150LB(6 号炉),600LB(7 号炉))、格納容器圧力逃が し装置使用時において、弁のシール機能を確保可能である。

格納容器圧力逃がし装置と他系統を隔離する弁の駆動方式,状態,圧カクラス, 採用理由について第1表にまとめる。第1表に記載の通り,格納容器圧力逃がし 装置から他系統を隔離する1つ目の弁(一次隔離弁)については,事故時に確実 に「閉」動作するよう, FCの空気駆動弁を採用している。

また,格納容器圧力逃がし装置と他系統を隔離する弁は,全て圧力クラスを 150LB,ならびに 600LB としており,第5,6 図に示す通り 200℃・PCV 設計圧力の 2 倍の圧力は,許容圧力を下回る。そのため,200℃・PCV 設計圧力の2 倍の圧力 に対して,耐圧部の強度に問題はない。

以上より,格納容器圧力逃がし装置と他系統を隔離する弁は,晒される環境条件に対して,隔離機能を有すると考える。

	一次隔離弁			二次隔離弁			
系統名称	駆動方式 状態		圧力 クラ ス [LB]	駆動方式 状態		圧力 クラス [LB]	採用理由
换気空調系 ①②	空気	NC FC	150	手動 駆動	NC	150	 既設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から,FCの空気駆動弁が採用されている。 新設手動駆動弁(二次隔離弁) 格納容器圧力逃がし装置から換気空調系の隔離を確実にする観点から,通常時「閉」の手動駆動弁を新設する。
非常用ガス 処理系 ③④	空気	NC FC	150	手動	NC	150	 既設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から,FCの空気駆動弁が採用されている。 新設手動駆動弁(二次隔離弁) 格納容器圧力逃がし装置から非常用ガス処理系の隔離を確実にする観点から,通常時「閉」の手動駆動弁を新設する。
耐圧強化 ベント系 ⑤⑥⑦	空気	NC FC	150	電動 駆動	NC	150	 新設空気駆動弁(一次隔離弁) 系統の隔離機能が要求される観点から,FCの空気駆動弁が採用されている。 既設電動駆動弁(二次隔離弁) 電動駆動弁が採用されている。
				電動 駆動	NO	150 (6 号炉) 600 (7 号炉)	

第1表 格納容器圧力逃がし装置に接続している他の系統の隔離弁

第5図 150LB 級バタフライ弁の設計上の許容圧力確認結果 (出展:JSME 設計・建設規格 2005 年版/2007 追補版)

第6図 600LB 級バタフライ弁の設計上の許容圧力確認結果 (出展:JSME 設計・建設規格 2005 年版/2007 追補版)

3. 分岐点から他系統隔離弁までの位置関係及び水素滞留について

6号炉及び7号炉について,格納容器圧力逃がし装置と接続される他系統との隔離弁までの配管口径及び容積等を第2表,系統図を第7図,鳥瞰図を第8 図及び第9図に示す。

ベント時において、これら他系統と隔離弁までの閉止空間における水素滞留の評価を「BWR 配管における混合ガス(水素・酸素)蓄積防止に関するガイド ライン(第3版)」に基づき実施した。

評価の結果,6号炉の換気空調系の隔離弁までの配管,及び耐圧強化ベント 系への二次隔離弁及び二次隔離弁バイパス弁までの配管,及び7号炉の耐圧強 化ベント系への二次隔離弁バイパス弁までの配管については,水平枝管であり 閉止端までの長さが短いため,水素が蓄積することはない。

一方,6号炉及び7号炉の非常用ガス処理系の隔離弁までの配管,及び7号 炉の耐圧強化ベント系への二次隔離弁までの配管については,水平及び上向き で分岐する組合せ枝管であり閉止端までの長さが長いため,水素が滞留する可 能性がある。そのため、ベント時に水素を連続してベントの主ラインに排出さ せるベントラインを設置し、水素が蓄積することのない設計とする。

また、7 号炉においては、W/W ベント時に D/W 側一次隔離弁までの配管合流 部において水素が滞留する可能性がある。そのため、W/W ベント時に水素を連 続してベントの主ラインに排出させるベントラインを設置し、水素が蓄積する ことのない設計とする。一方で6 号炉については、W/W ベント時においては 配管合流部より D/W 側一次隔離弁、D/W ベント時においては配管合流部より W/W 側一次隔離弁までが水平枝管(下り勾配)であるため、水素が蓄積するこ とはない。

上記を踏まえて,水素滞留防止のために設置するベントラインの設置箇所を 第10図~第12図に示す。

号炉			配管	配管長	容積	対応方針
	No	系統	口径	(m)	(m ³)	
6	1	換気空調系	550A	0.7	0.2	対策不要
	2	耐圧強化ベント系 (二次隔離弁)	550A	0.7	0.2	対策不要
	3	耐圧強化ベント系 (二次隔離弁バイパス弁)	550A	2.6	0.6	対策不要
	a	非常田ガス加理系	400A	2.0	0.9	ベントライン設置
	(I)	外市市 / / / 処理示	250A	11.7		
7	1	換気空調系	550A	1.3	0.3	ベントライン設置
	2	耐圧強化ベント系 (二次隔離弁)	550A	4.5	1.1	ベントライン設置
	3	耐圧強化ベント系 (二次隔離弁バイパス弁)	550A	1.1	0.3	対策不要
	4	非常用ガス処理系	250A	4.9	0.3	ベントライン設置
	6	D/W ベントライン	550A	9.7	2.3	ベントライン設置

第2表 主ラインから他系統と隔離する弁までの配管口径及び容積等

主ラインから他系統と隔離する弁までの配管系統図 第7図

第8図 主ラインから他系統と隔離する弁までの配管鳥瞰図(6号炉)

第9図 主ラインから他系統と隔離する弁までの配管鳥瞰図(7号炉)

第10図 非常用ガス処理系及び換気空調系までの配管隔離弁に対するバイパス ラインの設置位置図(7号炉)

第11図 D/Wベントラインに対するベントラインの設置位置図(7号炉)

第12図 非常用ガス処理系までの配管隔離弁に対するベントラインの 設置位置図(6号炉)

4 格納容器圧力逃がし装置運用時における他系統使用との干渉

格納容器圧力逃がし装置と接続する系統は、換気空調系、耐圧強化ベント系、 非常用ガス処理系がある。(第13図参照)

格納容器圧力逃がし装置に接続される換気空調系のラインは、通常時のプラン ト起動・停止時に原子炉格納容器内を窒素・空気に置換するためのものであり、 事故時に格納容器圧力逃がし装置と同時に使用することはない。そのため、格納 容器圧力逃がし装置使用時に、格納容器圧力逃がし装置と換気空調系を隔離する ①②の弁が「閉」であっても問題はない。

格納容器圧力逃がし装置と耐圧強化ベント系は、③④の弁により使用する系統 を選択ことができる。また、格納容器圧力逃がし装置と耐圧強化ベント系は同時 に使用することはない。

第13図 格納容器圧力逃がし装置系統概要と他系統隔離弁

格納容器圧力逃がし装置と非常用ガス処理系の使用時における系統構成を第 14 図に記載する。第 14 図に記載の通り,非常用ガス処理系使用時は原子炉区域 運転階より原子炉建屋内のガスを吸気し,非常用ガス処理系排風機ならびにフィ ルタを通した後に主排気筒へ排気する。そのため,非常用ガス処理系使用時には, 格納容器圧力逃がし装置に接続される非常用ガス処理系のラインは使用しない。 よって,当該ラインに接続される①②弁については,非常用ガス処理系使用時に おいて「閉」となっていても非常用ガス処理系の機能に影響を与えるものではな い。

第14図 格納容器圧力逃がし装置,非常用ガス処理系使用時の系統構成

以上より,格納容器圧力逃がし装置と接続する換気空調系,耐圧強化ベント系, 非常用ガス処理系は,格納容器圧力逃がし装置と接続していることで,その系統 の機能に影響を与えることのない設計としている。 別紙 20

配管内面への放射性物質付着量の考え方について

配管内面への放射性物質(エアロゾル)の付着量を設定するにあたっては, NUREG/CR-4551を参照し,付着量を設定する主要なパラメータとして沈着速度に 着目して,配管内面への沈着割合を検討した。

NUREG/CR-4551 "Evaluation of Severe Accident Risks: Quantification of Major Input Parameters MACCS INPUT"^{*1}は,環境拡散評価(MELCOR Accident Consequence Code System: MACCS 計算)についての文献となっており,その評価には,エアロゾル粒径,エアロゾル粒子密度,対象物の表面粗さで沈着速度を整理した Sehmel のモデルが用いられている。

この Sehmel の沈着速度モデルに基づき, 配管内面の表面粗さ 0.001cm (10 µ m) と粒子密度 4g/cm³を想定した, PCV より放出される粒径ごとの沈着速度(第 1 図参照)を用いて配管内面への沈着割合(エアロゾルの沈着速度と配管内のベ ントガス通過時間から算出された, 流れているベントガス中のエアロゾルが壁 面に到達する割合)を以下の通り評価した。

第1図 エアロゾル粒径と沈着速度の関係
評価条件は、ABWR(6号炉及び7号炉)を対象として、配管長さ100m,配 管内径400mm、2Pdおよび最小流量で排気される蒸気流量を適用する。また、 考慮する粒径分布は「大LOCA+SBO+全ECCS機能喪失(D/Wベント)」(第 3.2.2.1.1-3図)に基づくものとした。

これらの条件から,100mの配管をベントガスが通過する時間を算出し,そ の時間に粒径ごとの沈着速度を乗じて,ベントガス通過時間中に配管内面方 向にどれだけのエアロゾルが移動するかを評価する。この移動した粒子の総 和について,ベントガス通過中のエアロゾル総量に対する割合を算出するこ とで沈着割合を評価する。

評価の考え方を第2図および第3図に,評価結果を第1表に示す。

第2図 沈着割合評価の考え方(1/2)

第3図 沈着割合評価の考え方(2/2)

上記の関係から,沈着割合Rは以下の式で表される。

$$R = \left(\frac{\Sigma \boxed{2}}{\Sigma \boxed{2}}\right) \times 100 = \left(\frac{\Sigma (C(D) \times dD)}{\Sigma (P(D) \times dD)}\right) \times 100 = \left(\frac{\Sigma (C(D))}{\Sigma (P(D))}\right) \times 100$$

ここで、C(D)は以下の式で表される。

$$C(D) = P(D) \times \left(\frac{\pi (Dp/2)^2 - \pi ((Dp/2) - v(D) \cdot t)^2}{\pi (Dp/2)^2} \right)$$

$$= P(D) \times \left(\frac{(Dp/2)^2 - ((Dp/2) - v(D) \cdot t)^2}{(Dp/2)^2} \right)$$

項目	パラメータ	単位	2Pd	最小流量
配管条件	長さ	m	10	00
	内径	m	0.	0.4
沈着条件	沈着速度の分布	m/s	1.9×10 ⁻³	\sim 3.9 \times 10 ⁻¹
排気条件	蒸気流量	kg/s	15.7	2.5
	蒸気流速	m/s	33. 1	14.8
沈着割合		%	約 2.5	約 5.4

第1表 排気される蒸気流量に対する沈着割合評価結果

第1表より,最小流量であっても約5.4%の沈着割合となることが評価された。以上を踏まえ,エルボ部などといった部位での沈着量がばらつくことを考慮し,100m あたり 10%を配管への沈着割合として放射性物質の付着量を設定する。

*1; "Evaluation of Severe Accident Risks: Quantification of Major Input Parameters MACCS INPUT", NUREG/CR-4551 Vol.2 Rev. 1 Pt. 7, 1990 別紙 21 配管内面に付着した放射性物質による発熱の影響について

フィルタベント容器上流の配管内面には放射性物質(エアロゾル)が付着す ることが想定されることから、その放射性物質の崩壊熱による温度上昇が配管 の構造健全性に与える影響について検討した。

検討対象とする状態は、以下の2ケースを想定した。

【ケース1】

ベント中を想定し,配管内に高温の蒸気が流れ、なおかつ配管内面に付 着した放射性物質からの発熱が加わった状態。

【ケース2】

ベント停止後を想定し、配管内面に放射性物質が付着した後で配管内ベ ントガス流れがないため、放射性物質からの発生熱がこもる状態。

まず、【ケース1】として、第1図に示すような配管の半径方向の温度分布を 考慮して評価を行った。配管内には高温のベントガス流れが存在し、配管内面 には放射性物質が付着して崩壊熱による発熱を行っている。この場合、放射性 物質の崩壊熱による熱量は配管内面・外面双方に放熱され、配管板厚方向に熱 勾配ができるが、本評価では保守的に配管外面は断熱されているものとした。

【ケース1】の温度評価条件を第1表に示す。

半径方向分布 x

注:実際の伝熱状態は―― で示すような分布になると想定されるが、保守的な評価 となるよう配管外面を断熱し、全ての熱流束がベントガス側に移行する評価とした。 (赤線で示されるような熱流束の与え方と分布)

第1図 配管内表面の温度評価 (イメージ)

項目	条件
評価シナリオ	有効性評価シナリオ「大破断 LOCA+SBO+全 ECCS 機能喪 失 (D/W ベント)」
PCV より流入する崩壊熱量	9. 3kW
配管内発熱割合 (FP 付着割合)	10%/100m
配管外径, 板厚	400A, Sch40
配管熱流束	7. $3W/m^2$
質量流量	2.5kg/s (ベント後期 (ベント1ヶ月後の蒸気流量))
ベントガス温度	150°C

第1表 配管内表面の温度上昇評価条件【ケース1】

ベント時のガス温度条件を踏まえて配管内面の温度を評価する。第2図に大 LOCA+SBO+全 ECCS 機能喪失シナリオにおける D/W ベント時の原子炉格納容器 内の温度推移を示す。ベント時に最も配管内ガス温度が高い条件としてはベン ト開始直後であり、概ね150℃以下となる。

第2図 原子炉格納容器内温度推移 (大LOCA+SBO+全ECCS機能喪失シナリオ,38h後D/Wベント)

原子炉格納容器より流入する崩壊熱量は 9.3kW とし,配管内面に付着する放射性物質量割合としては,別紙 20 にて設定した 10%/100m を用いる。評価にあ

たっては保守的な条件として、付着割合の全量の放射性物質が付着した条件で 発熱しているものとする。また、ベントガス流量については流速が低くなるこ とで熱伝達率が低くなり、保守的な評価となることから、ベント後1ヶ月の蒸 気流量である2.5kg/sを用いた。

配管内表面に付着する放射性物質の崩壊熱による配管内面の温度上昇は,以 下の式で算出した温度上昇量で評価する。

ΔT=q/h ···式 (1)

ΔT;放射性物質の崩壊熱による配管内表面の温度上昇(℃) q;配管熱流束(W/m²) h;配管内表面の熱伝達率(W/(m²・K))

 $h = Nu \times k / d$ · · · 式 (2)

Nu; ヌッセルト数 k;水蒸気の熱伝導率 (0.032 (W/(m・K))) d;水力等価直径 (m)

ここで、Nu を算出するにあたり円管内乱流の熱伝達率を表現するものとして Kays の式を引用した(式(3))。

Nu = 0.022 Re^{0.8}×Pr^{0.5} • • • 式 (3)

Re; レイノルズ数 Pr; プラントル数(1.1; 保守的に 160℃の飽和蒸気の値を設定)

Re = $v \times d / v$ · · · 式 (4)

v;流速(約6.64(m/s);質量流量から換算) d;水力等価直径(m)

ν;水蒸気の動粘性係数(約4.2×10⁻⁶ (m/s))

これより,配管内面の温度上昇は 0.09℃程度であると評価できる。ベントガスの温度は 150℃程度であることから,上記の温度上昇分を考慮しても,配管内表面温度は配管設計における最高使用温度である 200℃を下回っているため,配

管の構造健全性に影響を与えることはない。

次に、【ケース2】の温度評価条件を第2表に示す。

項目	条件		
評価シナリオ	 有効性評価シナリオ「大破断 LOCA+SB0+全 ECCS 機能 喪失 (D/W ベント)」 		
PCV より流入する崩壊熱量	9.3 k W		
配管内発熱割合 (FP 付着割合)	10%/100m		
配管外径, 板厚	400A, Sch. 40		
配管熱流束	7. 3W/m ²		
配管外表面放射率	0.80 (酸化鉄相当の放射率 ^{*1})		
環境温度	50°C		

第2表 配管内表面の温度上昇評価条件【ケース2】

*1;日本機械学会 伝熱工学資料 改訂第5版

以上の条件に基づき,配管内面に付着した放射性物質の崩壊熱による温度を 評価する。ここで,評価対象の配管板厚は12.7mmであり,炭素鋼の熱伝導率が 50W/(m・K)程度であることから,板厚方向の温度勾配は微小であると考えること ができる。そのため,配管内表面の温度はほぼ配管外表面温度と同等であると 考え,配管内部の熱量による温度を評価する方法としてJIS A 9501 "保温保冷 工事施工標準"の表面温度および表面熱伝達率の算出方法を用いて,配管外表 面温度を評価する。

評価式の概要は以下の通りとなる。

 $T = (q / h_{se}) + T_{atm} \cdot \cdot \cdot 式 (5)$

T;配管外表面温度(℃)
 q;配管熱流束(W/m²)
 h_{se};配管外表面熱伝達率(W/(m²·K))
 T_{atm};環境温度(℃)

この式(5)における, q と h_{se}は以下の式で表される。

q = Q / S · · ·式 (6)

 $h_{se} = h_r + h_{cv} \qquad \cdot \cdot \cdot \vec{z} \quad (7)$

Q;単位長さあたりの配管内面での発熱量(W/m)
 S;単位長さあたりの配管外表面積(m²)
 h_r;放射による配管外表面熱伝達率(W/(m²·K))
 h_{ev};対流による配管外表面熱伝達率(W/(m²·K))

上記の hr は以下の式で表される。

$$h_{r} = \epsilon \times \sigma \times \left(\frac{(T + 273.15)^{4} - (T_{atm} + 273.15)^{4}}{(T - T_{atm})} \right) \quad \cdot \cdot \cdot \vec{\mathfrak{X}} (8)$$

ε;配管外表面放射率(0.80)

σ;ステファン・ボルツマン定数 (5.67×10⁻⁸ (W/(m²·K⁴)))

h_{ev}については、JIS A 9501 "保温保冷工事施工標準"附属書 E (参考) 表面 温度及び表面熱伝達率の算出方法における、垂直平面及び管 (Nusselt の式) 及 び水平管 (Wamsler, Hinlein の式) をもとに対流熱伝達率を算出した。垂直管 (式 (9)、(10))と水平管 (式(11))とで得られる h_{ev}を比較し、小さい方の値を 用いることで保守的な評価値を得るようにしている。

 h_{cv} (垂直管) = 2.56×(T - T_{atm})^{0.25} ((T - T_{atm}) ≧ 10K) …式 (9) h_{cv} (垂直管) = 3.61 + 0.094×(T - T_{atm}) ((T - T_{atm}) < 10K) …式 (10) h_{cv} (水平管) = 1.19×($\frac{(T - T_{atm})}{D_o}$)^{0.25} · · · 式 (11) D_o ; 配管外径 (m)

これらにより評価した結果,配管外表面温度は約51℃となる。

以上の結果から、配管内表面温度は配管設計における最高使用温度である 200℃を下回っているため、配管内表面に付着した放射性物質の崩壊熱は、ベン ト後における配管の構造健全性に影響を与えることはない。

なお、これらの式を含めた評価については、JIS A 9501 において、適用範囲 が-180℃~1000℃となっており、適用に対して問題ないことを確認している。 また、管外径などの寸法にかかる制約条件は規定されていない。

別紙 22 スクラバノズルのエロージョンについて

スクラバノズルは、第1図に示す通り、ノズル吹き出し部手前の配管が細く、 当該部にてベントガスの流速が大きくなる。そのため、ベントガス中の水蒸気が 凝縮してできた液滴が、この高流速のガス流れにより加速され、高速の状態でス クラバノズルの天板に衝突すると考えられる。この液滴の衝突により、スクラバ ノズル天板にエロージョン(液滴衝撃エロージョン)が生じて孔が開くと、水ス クラバの性能が低下する恐れがある。そこで、この液滴の衝突によるスクラバノ ズル天板の液滴衝撃エロージョンに対する評価を行った。

第1図 スクラバノズル構造図

まず、スクラバノズル吹き出し部手前の配管におけるベントガス流速を算出する。ベントガスの体積流量は最も厳しい超過流量時の37000[m³/h]とする。また、スクラバノズル細管部の内径は スクラバノズル本数は140[本]である。 スクラバノズル細管部流速[m/s] = 37000/3600/ {140× (10⁻³)²× π /4}

一方,『発電用設備規格 配管減肉管理に関する規格(2005 年版)(増訂版)JSME S CA1-2005』より,液滴衝撃エロージョン発生の限界流速は 70[m/s]である。そのため,スクラバ細管部の流速は液滴衝撃エロージョン発生の限界流速よりも小さいことから,スクラバノズル天板に液滴衝撃エロージョンは生じない。

なお,蒸気を累積で約179時間通気した後の,フィルタ性能試験設備のノズル を取り外して外観確認を行ったが,エロージョンの発生は認められなかった。

第2図 試験用フィルタノズル 外観確認結果

別紙 23 格納容器圧力逃がし装置からの漏えい対策について

1. フィルタ装置及びフィルタ装置廻り配管からの漏えい対策について

フィルタベント遮蔽壁は上部に屋根が無いため,雨水や降雪等は遮蔽壁内に流 入する。タンク室内に流入した雨水等はサンプに集められ,サンプ排水ラインを 通じて外部へ放出される。

一方で、遮蔽壁内でフィルタ装置及びフィルタ装置廻り配管から漏えいがあっ た場合の対策についてを第1図に示す。サンプ排水ラインに設置されている排水 止め弁をタンク室外部より遠隔手動弁操作設備を介して遠隔操作を行い閉じるこ とで、漏えい水を遮蔽壁内側に貯留し、遮蔽壁外部へ漏えいしないようにする。 また、遮蔽壁タンク室内はコンクリート表面の亀裂への追従性の良いポリウレア 系のライニング材を内側に塗布することにより、地震等により遮蔽壁内のコンク リート面に亀裂が生じていた場合にも、亀裂を通じてタンク室外部へ漏えいする ことを防止する。

第1図 フィルタベント遮蔽壁内の漏えい対策概要図

さらに,遮蔽壁タンク室内の弁を遠隔操作するために設置しているエクステン ションジョイント貫通部については,貫通部を0リングにて水密化することによ り,貫通部を通じた漏えいを防止している。

貫通部シャフトは第2図に示すとおり,遮蔽壁内外よりベアリングにて固定されているが,それぞれのベアリングに対して0リングを組み合わせることにより, 貫通部を2重の水密構造としている。

第2図 遠隔手動弁操作設備貫通部に対する水密構造

フィルタベント使用時に漏えいがあった場合に排水止め弁を閉じる必要があ るため、雨水によってタンク室内の水位が上昇した場合には、漏えい水を含んだ 雨水がオーバーフローにより外部へ漏えいする懸念がある。そのため、第3回に 示すようにドレン移送配管のポンプ吸込側を分岐してタンク室側に開放し、ドレ ン移送ポンプを用いて漏えい水をサプレッション・チェンバへ移送することが可 能な構造とした。通常時はフィルタ装置内のスクラバ水が上昇対策としてサプレ ッション・チェンバへ移送する運用としているが、附室側から遠隔手動弁操作設 備にて切替弁を操作することにより、遮蔽壁内に貯留した雨水等をサプレッショ ン・チェンバへ移送することが可能である。一方で、遮蔽壁内には水位計を設置 することにより、遮蔽壁内の雨水がオーバーフロー水位に達しているかを遮蔽壁 外より監視可能である。

第3図 遮蔽壁内サンプ排水操作概要図

ベント実施後はサンプ排水弁を常時閉運用とすることにより,万が一漏えいが あった場合には環境へ放出することを防止する運用とする。ベント実施後に周辺 線量が下がった後にサンプ排水弁を微開し,サンプ排水ラインより遮蔽壁内の貯 留水をサンプリングし,遮蔽壁内に漏えいがないことを確認した上で排水を行う。

2. ドレン移送ポンプ及びポンプ廻り配管からの漏えい対策について

遮蔽壁外に設置されているドレン移送ポンプについては,軸封部からの漏えい のない構造であるキャンドモーターポンプを用いることとしている。

また、ドレン移送ポンプ及びポンプ廻りの配管については、鉄板遮蔽壁が設置 されており、ドレンライン使用時にポンプ及び配管内のスクラバ水からの線量に 対して操作員の被ばくを低減するよう配慮されている。(第4図,第5図)

第4図 ドレン移送ポンプ廻りメタルホース敷設図(平面図)

第5図 ドレン移送ポンプ廻りメタルホース敷設図(側面図)

3. 遮蔽壁外の屋外配管からの漏えい対策について

ドレン移送ポンプから原子炉建屋までの屋外配管については,可撓性のあるメ タルホースを用いることで地震による変位を吸収する構造としている。また,第 6回に示すように,フレキシブルホースを外筒としてメタルホースを内部に格納 することで二重管構造とし,メタルホースからの漏えいは外筒部のフレキシブル ホース内に貯留する構造となっている。メタルホース間の接合部はフランジ締結 されており,メタルホースに損傷があった場合には対象部を予備品と交換可能な 構造としている。

メタルホースは第7図のように埋設U字溝内に格納されており、U字溝上部に はスクラバ水に含まれる放射性物質による地上面の線量の上昇を抑制するように 鉄板遮蔽蓋が設置されている。

第7図 U字溝内メタルホース敷設図

系統待機時には第8図に示すようにメタルホース内を可搬型窒素供給装置によ り大気圧より高い状態で窒素封入しており,圧力計にてメタルホースの内圧を常 時監視可能な構造としている。ドレン移送ライン使用前にメタルホースが損傷し た場合には、メタルホース内の窒素封入ガスが外筒部へ漏えいして内圧が下がる ため、圧力計にて監視可能である。したがって、ドレン移送ライン使用前には圧 力計を確認し、メタルホースの健全性を確認した上でドレン移送ラインを使用す る手順としている。

また、ドレン移送ライン使用後は、待機時と同様に可搬型窒素供給装置より系 統内に窒素を供給してメタルホース内のスクラバ水をサプレッション・チェンバ へ移送すると共に、メタルホース両端の仕切弁を全閉することにより圧力計にて メタルホースの圧力降下を監視する。

メタルホースの敷設範囲を第9図及び第10図に示す。

枠囲みの内容は商業機密に属しますので公開できません。

第8図 ドレン移送ライン概略系統図

第9図 メタルホース敷設範囲図(7号炉)

第10図 メタルホース敷設範囲図(6号炉)

別紙 24 スクラバ水の pH 調整方法について

ベントガスに含まれる水蒸気の凝縮によりフィルタ装置内のスクラバ水位が 上昇した場合,スクラバ水に含まれる薬液が凝縮水により薄まるため,スクラバ 水の pH 値が低下する。pH 値が規定値よりも低くなった場合には,第1 図に示す ように給水ラインを用いて外部よりスクラバ水へ薬液を補充する必要がある。

第1図 薬液注入箇所

薬液を補充する方法については,第2図に示すように,可搬型窒素供給装置の 空気圧力にて空気駆動水中ポンプ等を用いてフィルタ装置内に薬液を注入する。 補充する薬液濃度は,スクラバ水内の初期濃度よりも十分に濃度の高いものとし, 必要な補充量についてはフィルタ装置水位により予め算出した量を補充するもの とする。

第2図 スクラバ水 pH 制御設備概要図(案)

薬液を貯留するタンク及び水中ポンプ等の資機材は可搬式として薬液補充が必 要な時期までに予め給水口付近まで運搬して待機するものとする。また,補充す る薬液については,高濃度の薬液を予め用意しておき,必要となる時期までに必 要量をタンク内に準備する。 別紙25 窒素ガス置換に対する考え方について

1. 格納容器圧力逃がし装置への水素滞留可能性について

ベント実施直後には原子炉格納容器内でジルコニウム-水反応によって発生 した水素がベントガスとともに格納容器圧力逃がし装置を通じて系外へ放出さ れる。このときのベントガスのモル組成としては水蒸気及び水素,窒素が支配 的であり,酸素はほとんど含まれていない。ベント実施前は予め系統内は窒素 置換されており,ベントガスに含まれる水素濃度が高くても可燃限界に達する ことはない。

ベント実施中においては原子炉格納容器内及びフィルタ装置内へ放出された 放射性物質により水の放射線分解によって発生する水素・酸素が系統内へ放出 される。ただし、常にガス流れがあること、及びベントガス中のモル組成とし ては水蒸気が支配的であるため、系統内が可燃限界に達することはない。また、 配管内で他系統への隔離弁によって閉塞する箇所のうち、水素滞留の可能性が ある箇所については別紙 19 に示すベントラインを設置することで、局所的に水 素・酸素濃度が上昇しないように配慮している。

ベント停止後にベント弁を閉じた後は、系統内にガス流れが無くなるため、 スクラバ水内に蓄積された放射性物質による水の放射線分解によって発生した 水素・酸素が系統内に滞留する。水素は分子量が小さいため、浮力により上部 へ移行して、時間とともに系統内配管頂部に蓄積する。(第1図)

第1図 スクラバ水内での水素・酸素の発生系統図

 スクラバ水で発生する水素・酸素により系統内が可燃限界となるまでの評価 ベント実施時において、スクラバ水内に蓄積された放射性物質の影響により、 水の放射線分解にて発生する水素・酸素の生成速度及び積算生成量について評 価を行った。ベントシナリオとしては大 LOCA+SBO+全 ECCS 機能喪失シナリオと し、38 時間後に W/W 及び D/W よりベントを行った条件とした。評価結果を第2 図及び第3 図に示す。

第2図 スクラバ水内での水素・酸素分子の生成量速度

第3図 スクラバ水内での水素・酸素分子の積算生成量

なお、水素・酸素分子の生成量を算出するにあたって、有効性評価の補足説 明資料「G 値について」にて紹介されている電力共同研究「事故時放射線分解に 関する研究」にて実測された照射開始から短時間経過後の実効 G 値のうち、最 も大きい実効 G 値^{*1}である以下の値を用いた。

 $G(H_2) = 0.36, G(0_2) = 0.14$

※1 上記の値は FCS の性能解析に用いることを目的として設定した環境条件下でのG値の測定結果である。有効性評価の補足説明資料「G値について」で示したとおり、G値は重大事故等時の環境下では上記の値よりも低いという実験結果が得られている。このため、今回の評価において FCS の性能解析条件下でのG値を用いることは保守的な扱いになっているものと考える。

上記をもとに、ベント停止後に系統内の水素及び酸素が可燃限界濃度となる までの概略時間について計算を行った。可燃限界の基準としては、水素4%以上、 酸素 5%以上、水蒸気 60%以下とした。なお、保守的な条件として、系統内の水 蒸気が外気温度まで冷却されて凝縮する時間は考慮せず、ベント停止後直ちに 水蒸気は凝縮したものとする。

評価条件を第1表,評価結果を第4図及び第5図に示す。

評価対象	主な評価条件
フィルタ装置上流側	・隔離弁を閉止後に窒素置換を行わず、系統内配管での放熱に
(ベント停止後直ちに窒	よってベントガスに含まれていた水蒸気が凝縮してフィル
素置換を行わない場合)	タ装置上流側配管が負圧(46℃で約 0.1atm)になることに
	より,スクラバ水がフィルタ装置上流側配管に約 9m 吸い上
	げられたと仮定した。
	・系統内の気体のモル組成として,水素と酸素以外は全て水蒸
	気と仮定した。また、初期の系統内の気体条件として、水素
	1%,酸素 1%が系統内に存在すると仮定した。
	・スクラバ水に蓄積された FP によって水素・酸素が発生する
	範囲としては、フィルタ装置内の配管からフィルタ装置上流
	側配管の水面までの範囲とした。
	・スクラバ水位はノズル上端から 0.5m と仮定し, 吸い上げに
	より下限水位を下回らないものとした。
	・水素,酸素が蓄積する範囲としては,保守的に水面から真上
	の第一エルボまでの小さな空間で評価した。

第1表 評価条件一覧

評価対象	主な評価条件
フィルタ装置上流側	・隔離弁を閉止後に窒素置換を行い、フィルタ装置上流側配管
(ベント停止後直ちに窒	が窒素で置換(latm)されたと仮定した。(スクラバ水がフ
素置換を行う場合)	ィルタ装置上流側配管に吸い上げられることはない)
	 ・系統内の気体のモル組成として、水素と酸素以外は全て窒素
	と仮定した。また,初期の系統内の気体条件として,水素
	1%,酸素 1%が系統内に存在すると仮定した。
	・スクラバ水に蓄積された FP によって水素・酸素が発生する
	範囲としては、フィルタ装置内の配管からフィルタ装置上流
	側配管の水面までの範囲とした。
	・スクラバ水位はスクラバノズル上端部から 2.5m(上限水位)
	と仮定し,水素,酸素が蓄積する範囲としては,保守的に水
	面から真上の第一エルボまでの小さな空間で評価した。
フィルタ装置下流側	・隔離弁を閉止した後に窒素置換を行わないことと仮定した。
	・スクラバ水位はノズル上端から2.5m(上限水位)と仮定した。
	・保守的に狭い空間体積への水素・酸素ガスの蓄積を評価する
	こととし、フィルタ装置気層部から下流側配管への水素・酸
	素ガスの拡散が起こらないものと仮定して評価を行った。
	・フィルタ装置下流部はラプチャーディスクが開放されている
	ことから、初期ガス組成としては、空気 latm とした。

第5図 水素・酸素・水蒸気濃度のベント停止後の時間経過(W/Wベント時)

評価を行った結果、ベント停止後直ちに窒素置換を行わない場合では、D/Wベントの場合は約8時間後、W/Wベントの場合は7日強後にフィルタ装置上流側の水蒸気濃度が60%以下となり、可燃限界に達した。

一方で、ベント停止後直ちに窒素置換を行う場合では、D/W ベントの場合では 5 日強後にフィルタ装置下流側の水素濃度が 4%以上(酸素濃度は大気開放のた め5%以上)となり、可燃限界に達した。W/W ベントの場合では、180日後でも可 燃限界に到達することはなかった。 3. 窒素置換完了までの所要時間について

格納容器圧力逃がし装置の簡略化したモデルにおいて,可搬型窒素供給装置 を用いて系統内に蓄積した水素を窒素置換し,水素濃度が可燃限界濃度以下と なるのに必要な時間を評価した。

評価条件を第2表,評価モデルを第6図に示す。

項目	値	
使用コード	汎用流体計算コード STAR-CCM+ Ver. 8.04	
窒素供給装置流量	70 Nm ³ /h [*]	
窒素供給装置ガス組成	窒素 99%, 酸素 1%	
系統内初期ガス組成	窒素 91%, 酸素 5%, 水素 4%	
FV 系統モデル	 ・第6図参照 ・強制対流と濃度差に伴う混合ガスの相互拡散を 考慮する。 	

第2表 評価条件

※ 可搬型窒素供給装置の窒素供給能力としては,純度 99%以上の窒素ガスを, 70 Nm³/hの流量にて供給可能である。

第6図 窒素置換評価モデル

上記条件にて系統内の水素濃度の時間的変化の評価を行った結果,約3時間 程度で系統内全域において濃度が1%を下回った。以上より,可搬型窒素供給装 置は系統内が可燃限界に達した状態から約3時間程度で水素濃度を1%まで下げ る能力を有している。 4. 窒素置換を間欠的に行う場合の妥当性について

窒素置換が完了後に窒素置換作業を停止し,次回窒素置換を開始するまでの時間余裕について評価を行った。その結果,D/Wベントの場合は5日強後に可燃限界に達したが,W/Wベントの場合は約180日以上可燃限界に達することはなかった。したがって,間欠的に窒素置換を行うことは可能である。

間欠的に窒素置換を行う際の,窒素置換を停止する際の判断基準としては, 前述の評価に基づき,系統内配管頂部に設置されている水素濃度計により監視 を行い,可搬型窒素供給装置の窒素供給能力(70Nm³/hにおいて窒素濃度99%), ならびに水素濃度計の誤差を考慮して,規定時間窒素置換を実施し,その上で 水素濃度が可燃限界未満になった時点で窒素置換を停止する。

以上をもとに,窒素置換を間欠的に実施する運用に関してを第7図に示す。 ベント停止においては,直ちに窒素置換を開始できるよう,予め可搬型窒素供 給装置の配備を行っておき,ベント停止後直ちに窒素置換を開始する運用とす る。また,窒素置換完了後には水素濃度計にて水素濃度を監視しつつ,水素濃 度が上昇した場合には間欠的に窒素置換を行うこととする。

第7図 ベント停止後の間欠的な窒素置換運用

別紙 26 ドレン移送ライン使用時における原子炉格納容器内への空気流入影響について

ドレン移送ラインについては,第1図のように可燃性ガス濃度制御系配管を通 じてサプレッション・チェンバに接続されている。ドレン移送ポンプを用いてス クラバ水をサプレッション・チェンバへ移送した際には,ドレン移送ポンプ下流 側配管のうち水張りを行っていない範囲の空気がスクラバ水と同時にサプレッシ ョン・チェンバへ流入する。サプレッション・チェンバ内の水素濃度が高い状態 でスクラバドレン水を移送した場合には,流入した空気に含まれる酸素と水素が 合流してサプレッション・チェンバ内で局所的な水素燃焼を生じることが懸念さ れる。

したがって,点検停止中に予めドレン移送ライン(ポンプ出口側隔離弁~原子 炉格納容器隔離弁間)の窒素置換をしておくことにより,スクラバドレン水移送 時においてもサプレッション・チェンバ内に酸素が流入しない運用とする。

第1図 ドレン移送ライン窒素置換範囲系統図