東海第二発電所 審査資料	
資料番号	PS-C-1 改 23
提出年月日	平成 29 年 7 月 19 日

東海第二発電所

重大事故等対策の有効性評価

平成 29 年 7 月 日本原子力発電株式会社

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

下線部:今回提出資料

目 次

1. 重大事故等への対処に係る措置の有効性評価の基本的考え方 H29.1.23 版

1.1 概 要

- 1.2 評価対象の整理及び評価項目の設定
- 1.3 評価にあたって考慮する事項
- 1.4 有効性評価に使用する計算プログラム
- 1.5 有効性評価における解析の条件設定方針
- 1.6 解析の実施方針
- 1.7 解析コード及び解析条件の不確かさの影響評価方針
- 1.8 必要な要員及び資源の評価方針
- <u>付録1</u>事故シーケンスグループの抽出及び重要事故シーケンスの選定について H29.5.18版
- 付録2 原子炉格納容器の限界温度・圧力 H29.3.17版
- <u>付録3</u>重大事故等対策の有効性評価に係るシビアアクシデント解析コード について H29.1.23 版
- 2. 運転中の原子炉における重大事故に至るおそれがある事故
 - <u>2.1 高圧・低圧注水機能喪失 H29.4.13 版</u>
 - 2.2 高圧注水·減圧機能喪失 H29.5.18 版
 - 2.3 全交流動力電源喪失
 - 2.3.1 全交流動力電源喪失(長期TB) H29.6.9 版
 - <u>2.3.2</u> 全交流動力電源喪失(TBD, TBU) H29.6.9版
 - <u>2.3.3 全交流動力電源喪失(TBP)H29.6.9版</u>

2.4 崩壞熱除去機能喪失

2.4.1 取水機能が喪失した場合 H29.7.6 版

- 2.5 原子炉停止機能喪失 H29.7.6 版
- 2.6 LOCA時注水機能喪失 H29.4.13 版
- <u>2.7 格納容器バイパス(インターフェイスシステムLOCA)</u> H29.5.18 版
- 2.8 津波浸水による注水機能喪失 H29.6.30 版
- 3. 重大事故
 - 3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)
 - 3.1.1 格納容器破損モードの特徴,格納容器破損防止対策
 - 3.1.2 代替循環冷却系を使用する場合
 - 3.1.3 代替循環冷却系を使用しない場合
 - 3.2 高圧溶融物放出/格納容器雰囲気直接加熱
 - 3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用
 - 3.4 水素燃焼
 - 3.5 溶融炉心・コンクリート相互作用
- 4. 使用済燃料プールにおける重大事故に至るおそれがある事故
 - 4.1 想定事故1 H29.6.15 版
 - 4.2 想定事故 2 H29.6.15 版
- 5. 運転停止中の原子炉における重大事故に至るおそれがある事故 H29.6.15版
 - 5.1 崩壊熱除去機能喪失(残留熱除去系の故障による停止時冷却機能喪失)
 - <u>5.2 全交流動力電源喪失</u> H29.6.15 版

^{2.4.2} 残留熱除去系が故障した場合 H29.4.13 版

- 5.3 原子炉冷却材の流出 H29.6.15 版
- <u>5.4 反応度の誤投入 H29.6.15 版</u>
- <u>6.</u> 必要な要員及び資源の評価 H29.1.23 版
 - 6.1 必要な要員及び資源の評価条件
 - 6.2 重大事故等対策時に必要な要員の評価結果
 - 6.3 重大事故等対策時に必要な水源,燃料及び電源の評価結果

添付資料 目次

- 添付資料 1.2.1 定期検査工程の概要
- <u>添付資料 1.3.1 重大事故等対策の有効性評価における作業毎の成立性確認結</u> 果について
- 添付資料 1.3.2 運転員等の操作時間に対する仮定
- <u>添付資料1.4.1 有効性評価に使用している解析コード/評価手法の開発に係</u> <u>る当社の関与について</u>
- 添付資料 1.5.1 東海第二発電所の重大事故等対策の有効性評価の一般データ
- <u>添付資料 1.5.2 有効性評価におけるLOCA時の破断位置及び口径設定の考</u> <u>え方について</u>
- 添付資料 1.5.3 使用済み燃料プールにおける重大事故に至るおそれがある事 故(想定事故1及び2)の有効性評価における共通評価条件 について

添付資料 1.7.1 解析コード及び解析条件の不確かさ影響評価フロー

添付資料 2.1.1 安定状態について(高圧・低圧注水機能喪失)

- <u>添付資料 2.1.2 解析コード及び解析条件の不確かさの影響評価について(高</u> 圧・低圧注水機能喪失)
- <u>添付資料 2.1.3 7日間における水源の対応について(高圧・低圧注水機能喪</u> 失)
- <u>添付資料 2.1.4 7日間における燃料の対応について(高圧・低圧注水機能喪</u> <u>失)</u>

添付資料 2.1.5 常設代替交流電源設備の負荷(高圧・低圧注水機能喪失)

添付資料 2.2.1 安定状態について(高圧注水・減圧機能喪失)

<u>添付資料 2.2.2 解析コード及び解析条件の不確かさの影響評価について(高</u> 圧注水・減圧機能喪失)

<u>添付資料 2.2.3</u>高圧注水・減圧機能喪失時における低圧非常用炉心冷却系の 作動台数の考え方

<u>添付資料 2.2.4 7日間における燃料の対応について(高圧注水・減圧機能喪</u> 失)

<u>添付資料 2.3.1.1 全交流動力電源喪失時における原子炉隔離時冷却系の 8 時</u> 間継続運転が可能であることの妥当性について

添付資料 2.3.1.2 蓄電池による給電時間評価結果について

<u>添付資料 2.3.1.3 安定状態について(全交流動力電源喪失(長期 T B))</u>

添付資料 2.3.1.4 解析コード及び解析条件の不確かさの影響評価について

(全交流動力電源喪失(長期TB))

添付資料 2.3.1.5 逃がし安全弁作動用の窒素の供給について

<u>添付資料 2.3.1.6 7日間における水源の対応について(全交流動力電源喪失</u> (長期TB))

<u>添付資料 2.3.1.7 7日間における燃料の対応について(全交流動力電源喪失</u> (長期TB))

添付資料 2.3.1.8 常設代替交流電源設備の負荷(全交流動力電源喪失(長期 TB))

添付資料 2.3.2.1 全交流動力電源喪失(TBD, TBU)時における高圧代 替注水系の 8 時間継続運転が可能であることの妥当性につ いて 添付資料 2.3.2.2 蓄電池による給電時間評価結果について

- <u>添付資料 2.3.2.3</u>安定状態について(全交流動力電源喪失(TBD, TB U))
- <u>添付資料 2.3.2.4 解析コード及び解析条件の不確かさの影響評価について</u> (全交流動力電源喪失(TBD, TBU))
- <u>添付資料 2.3.2.5 7日間における水源の対応について(全交流動力電源喪失</u> (TBD, TBU))
- <u>添付資料 2.3.2.6 7日間における燃料の対応について(全交流動力電源喪失</u> (TBD, TBU))
- <u>添付資料 2.3.2.7</u> 常設代替交流電源設備の負荷(全交流動力電源喪失(TB D, TBU))

添付資料 2.3.3.1 安定状態について(全交流動力電源喪失(TBP))

添付資料 2.3.3.2 解析コード及び解析条件の不確かさの影響評価について

(全交流動力電源喪失(TBP))

添付資料 2.3.3.3 減圧・注水開始の時間余裕について

- <u>添付資料 2.3.3.4 7日間における水源の対応について(全交流動力電源喪失</u> (TBP))
- <u>添付資料 2.3.3.5 7日間における燃料の対応について(全交流動力電源喪失</u> (TBP))
- <u>添付資料 2.3.3.6</u> 常設代替交流電源設備の負荷(全交流動力電源喪失(TB P))

添付資料 2.4.1.1 安定状態について(崩壊熱除去機能喪失(取水機能が喪失)

<u>した場合))</u>

<u>添付資料2.4.1.2</u> 解析コード及び解析条件の不確かさの影響評価について

(崩壊熱除去機能喪失(取水機能が喪失した場合))

- <u>添付資料 2.4.1.3 7日間における水源の対応について(崩壊熱除去機能喪失</u> (取水機能が喪失した場合))
- 添付資料 2.4.1.4 7日間における燃料の対応について(崩壊熱除去機能喪失) (取水機能が喪失した場合))
- <u>添付資料 2.4.1.5</u> 常設代替交流電源設備の負荷(崩壊熱除去機能喪失(取水 機能が喪失した場合))
- <u>添付資料 2.4.2.1 安定状態について(崩壊熱除去機能喪失(残留熱除去系が</u> 故障した場合))
- 添付資料 2.4.2.2 解析コード及び解析条件の不確かさの影響評価について (崩壊熱除去機能喪失(残留熱除去系が故障した場合))
- <u>添付資料 2.4.2.3 7日間における水源の対応について(崩壊熱除去機能喪失</u> (残留熱除去系が故障した場合))
- <u>添付資料 2.4.2.4 7日間における燃料の対応について(崩壊熱除去機能喪失</u> (残留熱除去系が故障した場合))
- <u>添付資料 2.4.2.5</u> 常設代替交流電源設備の負荷(崩壊熱除去機能喪失(残留 熱除去系が故障した場合))

<u>添付資料 2.5.1 プラント動特性評価における評価対象炉心の選定について</u>

- 添付資料 2.5.2 自動減圧系の自動起動阻止操作の考慮について
- 添付資料 2.5.3 安定状態について(原子炉停止機能喪失)

<u>添付資料 2.5.4 解析コード及び解析条件の不確かさの影響評価について(原</u>

子炉停止機能喪失)

- 添付資料 2.5.5 リウェットを考慮しない場合の燃料被覆管温度への影響
- 添付資料 2.5.6 原子炉への注水に使用する水源とその水温の影響
- 添付資料 2.5.7 高圧炉心スプレイ系及び原子炉隔離時冷却系の運転可能性に

関する水源温度の影響

- 添付資料 2.5.8 外部電源の有無による評価結果への影響
- 添付資料 2.5.9 ほう酸水注入系を手動起動としていることについての整理

<u>添付資料 2.5.10</u> 原子炉水位が低めに維持される条件設定とした場合の影響

- 添付資料 2.6.1 「LOCA時注水機能喪失」の事故条件の設定について
- 添付資料 2.6.2 敷地境界外での実効線量評価について
- 添付資料2.6.3 安定状態について(LOCA時注水機能喪失)
- 添付資料 2.6.4 解析コード条件及び解析条件の不確かさの影響評価について (LOCA時注水機能喪失)
- 添付資料 2.6.5 原子炉注水開始が遅れた場合の影響について
- <u>添付資料 2.6.6 7日間における水源の対応について(LOCA時注水機能喪</u> 失)
- <u>添付資料 2.6.7 7日間における燃料の対応について(LOCA時注水機能喪</u> 失)

添付資料 2.6.8 常設代替交流電源設備の負荷(LOCA時注水機能喪失)

- <u>添付資料2.7.1 インターフェイスシステムLOCA発生時の破断面積及び現</u> 場環境等について
- <u>添付資料 2.7.2 安定状態について(格納容器バイパス(インターフェイスシ</u> ステムLOCA))

<u>添付資料 2.7.3 解析コード条件及び解析条件の不確かさの影響評価について</u> (格納容器バイパス (インターフェイスシステムLOCA))

- 添付資料 2.7.4 7日間における水源の対応について(格納容器バイパス(イ ンターフェイスシステムLOCA))
- <u>添付資料 2.7.5 7日間における燃料の対応について(格納容器バイパス(イ</u> ンターフェイスシステムLOCA))
- <u>添付資料 2.7.6</u> 常設代替交流電源設備の負荷(格納容器バイパス(インター フェイスシステムLOCA))
- 添付資料 2.8.1 基準津波を超え敷地に遡上する津波に対する施設の防護方針 について
- <u>添付資料 2.8.2</u> 地震発生と同時に津波が到達するとした評価上の想定の妥当 性について
- <u>添付資料 2.8.3 解析コード及び解析条件の不確かさの影響評価について(津</u> 波浸水による注水機能喪失)
- 添付資料 3.1.2.1 炉心損傷の判断基準及び炉心損傷判断前後の運転操作の差 異について
- 添付資料 3.1.2.2 原子炉建屋から大気中への放射性物質の漏えい量について
- 添付資料 3.1.2.3 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破 損)における炉心の損傷状態及び損傷炉心の位置について
- 添付資料 3.1.2.4 安定状態について(代替循環冷却系を使用する場合)
- 添付資料 3.1.2.5 格納容器内に存在するアルミニウム/亜鉛の反応により発 生する水素の影響について
- 添付資料 3.1.2.6 非凝縮性ガスの影響について

添付資料 3.1.2.7 解析コード及び解析条件の不確かさの影響評価について (雰囲気圧力・温度による静的負荷(格納容器過圧・過温 破損)(代替循環冷却系を使用する場合))

- 添付資料 3.1.2.8 注水操作が遅れる場合の影響について
- 添付資料 3.1.2.9 7日間における水源の対応について(雰囲気圧力・温度に よる静的負荷(格納容器過圧・過温破損)(代替循環冷却 系を使用する場合))
- 添付資料 3.1.2.10 7日間における燃料の対応について(雰囲気圧力・温度 による静的負荷(格納容器過圧・過温破損)(代替循環冷 却系を使用する場合))
- 添付資料 3.1.2.11 常設代替交流電源設備の負荷(雰囲気圧力・温度による 静的負荷(格納容器過圧・過温破損)(代替循環冷却系を 使用する場合))
- 添付資料 3.1.3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破 損)(代替循環冷却系を使用しない場合)におけるCs-137 放出量評価について
- 添付資料 3.1.3.2 原子炉建屋から大気中への放射性物質の漏えい量について
- 添付資料 3.1.3.3 安定状態について(代替循環冷却系を使用しない場合)
- 添付資料 3.1.3.4 解析コード及び解析条件の不確かさの影響評価について (雰囲気圧力・温度による静的負荷(格納容器過圧・過温 破損)(代替循環冷却系を使用しない場合))
- 添付資料 3.1.3.5 7日間における水源の対応について(雰囲気圧力・温度に よる静的負荷(格納容器過圧・過温破損)(代替循環冷却 系を使用しない場合))

- 添付資料 3.1.3.6 7日間における燃料の対応について(雰囲気圧力・温度に よる静的負荷(格納容器過圧・過温破損)(代替循環冷却 系を使用しない場合))
- 添付資料 3.1.3.7 常設代替交流電源設備の負荷(雰囲気圧力・温度による静 的負荷(格納容器過圧・過温破損)(代替循環冷却系を使 用しない場合))
- 添付資料 3.2.1 原子炉建屋から大気中への Cs-137 の漏えい量について
- 添付資料 3.2.2 高温環境下での逃がし安全弁の開保持機能維持について
- 添付資料 3.2.3 格納容器破損モード「DCH」,「FCI」,「MCCI」の評 価事故シーケンスの位置付け
- 添付資料 3.2.5 7日間における水源の対応について(高圧溶融物放出/格納 容器雰囲気直接接触)
- 添付資料 3.2.6 7日間における燃料の対応について(高圧溶融物放出/格納 容器雰囲気直接接触)
- 添付資料 3.2.7 常設代替交流電源設備の負荷(高圧溶融物放出/格納容器雰囲気直接接触)
- 添付資料 3.3.1 原子炉圧力容器外の溶融燃料 冷却材相互作用(炉外FCI) に関する知見の整理について
- 添付資料 3.3.2 水蒸気爆発の発生を仮定した場合の原子炉格納容器の健全性 への影響評価
- 添付資料 3.3.3 ペデスタル(ドライウェル部)への水張りの適切性

- 添付資料 3.3.4 解析コード及び解析条件の不確かさの影響評価について(原 子炉圧力容器外の溶融燃料-冷却材相互作用)
- 添付資料 3.3.5 エントレインメント係数の圧力スパイクに対する影響
- 添付資料 3.3.6 プラント損傷状態をLOCAとした場合の圧力スパイクへの

影響

- 添付資料 3.4.1 G値の不確かさによる評価結果への影響
- 添付資料 3.4.2 水の放射線分解の評価について
- 添付資料 3.4.3 安定状態について
- 添付資料 3.4.4 解析コード及び解析条件の不確かさの影響評価について(水 素燃焼)
- 添付資料 3.4.5 原子炉注水開始時間の評価結果への影響
- 添付資料 3.5.1 安定状態について
- 添付資料 3.5.2 解析コード及び解析条件の不確かさの影響評価について(溶 融燃料・コンクリート相互作用)
- 添付資料 3.5.3 溶融炉心の崩壊熱及び溶融炉心からプール水への熱流束を保守的に考慮する場合のペデスタル(ドライウェル部)のコンクリートの浸食量及び溶融炉心・コンクリート相互作用によって発生する非凝縮性ガスの影響評価
- 添付資料 3.5.4 ペデスタル (ドライウェル部) 床部の構造について

<u>添付資料 4.1.1 使用済燃料プールの水位低下と遮蔽水位に関する評価につい</u> <u>て</u>

添付資料 4.1.2 水遮蔽厚に対する貯蔵中の使用済燃料からの線量率の算出に

ついて

- 添付資料 4.1.3 安定状態について
- 添付資料 4.1.4 使用済燃料プール水沸騰・喪失時の未臨界性評価
- 添付資料 4.1.5 評価条件の不確かさの影響評価について(想定事故1)

添付資料 4.1.6 7日間における水源の対応について(想定事故1)

添付資料 4.1.7 7日間における燃料の対応について(想定事故1)

<u>添付資料 4.2.1 使用済燃料プールの水位低下と遮蔽水位に関する評価につい</u> て

- 添付資料 4.2.2 使用済燃料プールサイフォンブレーカについて
- <u>添付資料 4.2.3 安定状態について</u>
- 添付資料 4.2.4 評価条件の不確かさの影響評価について(想定事故2)
- 添付資料 4.2.5 7日間における水源の対応について(想定事故2)
- <u>添付資料 4.2.6 7日間における燃料の対応について(想定事故2)</u>

添付資料 5.1.1 運転停止中の崩壊熱除去機能喪失及び全交流動力電源喪失に おける基準水位到達までの時間余裕と必要な注水量の計算 方法について

- <u>添付資料 5.1.2 重要事故シーケンスの選定結果を踏まえた有効性評価の条件</u> 設定
- <u>添付資料 5.1.3</u>崩壊熱除去機能喪失及び全交流動力電源喪失における崩壊熱 設定の考え方

<u>添付資料 5.1.4</u> 安定停止状態について(運転停止中 崩壊熱除去機能喪失) 添付資料 5.1.5 原子炉停止中 崩壊熱除去機能喪失及び全交流動力電源喪失

時における放射線の遮蔽維持について

<u>添付資料 5.1.6</u> 評価条件の不確かさの影響評価について(運転停止中 崩壊 熱除去機能喪失)

<u>添付資料 5.1.7 7日間における燃料の対応について(運転停止中 崩壊熱除</u> 去機能喪失)

添付資料 5.2.1 安定停止状態について(運転停止中 全交流動力電源喪失)

添付資料 5.2.2 評価条件の不確かさの影響評価について(運転停止中 全交 流動力電源喪失)

- <u>添付資料 5.2.3 7日間における水源の対応について(運転停止中 全交流動</u> 力電源喪失)
- <u>添付資料 5.2.4 7日間における燃料の対応について(運転停止中 全交流動</u> 力電源喪失)

<u>添付資料 5.2.5</u> 常設代替交流電源設備の負荷(運転停止中 全交流動力電源 喪失)

<u>添付資料 5.3.1</u>原子炉圧力容器開放時における運転停止中の線量評価につい て

<u>添付資料 5.3.2 「原子炉冷却材の流出」におけるプラント状態選定の考え方</u> <u>添付資料 5.3.3 安定停止状態について(運転停止中 原子炉冷却材の流出)</u> 添付資料 5.3.4 評価条件の不確かさの影響評価について(運転停止中 原子

炉冷却材の流出)

<u>添付資料 5.3.5 7日間における燃料の対応について(運転停止中 原子炉冷</u> <u>却材の流出)</u>

添付資料 5.4.1 安定停止状態について(運転停止中 反応度の誤投入)

<u>添付資料 5.4.2</u> 解析コード及び解析条件の不確かさの影響評価について(運

転停止中 反応度の誤投入)

添付資料 5.4.3 反応度誤投入事象の代表性について

- 添付資料 6.1.1 同時被災時における必要な要員及び資源について
- 添付資料 6.2.1 重大事故等対策の要員の確保及び所要時間について
- 添付資料 6.2.2 重要事故(評価事故)シーケンス以外の事故シーケンスの要

<u>員の評価について</u>

添付資料 6.3.1 水源,燃料,電源負荷評価結果について

1. 重大事故等への対処に係る措置の有効性評価の基本的考え方

1.1 概 要

本発電用原子炉施設において、「運転中の原子炉における重大事故 に至るおそれがある事故」、「運転中の原子炉における重大事故」、「使 用済燃料プールにおける重大事故に至るおそれがある事故」及び「運 転停止中の原子炉における重大事故に至るおそれがある事故」(以下 「重大事故等」という。)が発生した場合にも、炉心や燃料集合体の 著しい損傷の防止あるいは原子炉格納容器(以下「格納容器」とい う。)の破損及び発電所外への放射性物質の異常な水準の放出の防止 のために講ずることとしている措置(以下「重大事故等対策」とい う。)が有効であることを示すため、以下のとおり、評価対象とする 事故シーケンスを整理し、対応する評価項目を設定した上で、計算 プログラムを用いた解析等を踏まえて、設備、手順及び体制の有効 性を評価する。

1.1.1 評価対象の整理及び評価項目の設定

本発電用原子炉施設を対象とした確率論的リスク評価(以下「P RA」という。)の知見等を踏まえ,重大事故等に対処するための措 置が基本的に同じである事故シーケンスのグループ化を行い,措置 の有効性を確認するための代表的な事故シーケンス(以下「重要事 故シーケンス」という。)を選定して,対応する措置の有効性評価を 行う。

有効性評価に際しては,事故の様相やプラントの特徴を踏まえて 有効性を確認するための評価項目を設ける。

具体的には「1.2 評価対象の整理及び評価項目の設定」による。

1.1.2 評価にあたって考慮する事項

有効性評価は、「実用発電用原子炉に係る発電用原子炉設置者の重 大事故の発生及び拡大の防止に必要な措置を実施するために必要な 措置を実施するために必要な技術的能力に係る審査基準」に係る適 合性状況説明資料(以下「技術的能力に係る審査基準への適合状況 説明資料」という。)で講ずることとしている措置のうち、「重大事 故等対処設備について」で重大事故等対処設備としている設備を用 いたものを対象とするが、手順及び体制としてはその他の措置との 関係を含めて必要となる水源、燃料及び電源の資源並びに要員を整 理した上で,安全機能の喪失に対する仮定,外部電源に対する仮定, 単一故障に対する仮定、運転員等の操作時間に対する仮定等を考慮 して, 原則として事故が収束し,「運転中の原子炉における重大事故 に至るおそれがある事故」及び「運転中の原子炉における重大事故」 については原子炉及び格納容器が安定状態に,「使用済燃料プールに おける重大事故に至るおそれがある事故」については使用済燃料プ ールの水位が回復し、水位及び温度が安定した状態に、「運転停止中 の原子炉における重大事故に至るおそれがある事故」については原 子炉が安定状態(以下「原子炉等が安定停止状態」という。)に導か れる時点までを対象とする。

具体的には「1.3 評価にあたって考慮する事項」による。

1.1.3 有効性評価に使用する計算プログラム

有効性評価において使用する計算プログラム(以下「解析コード」 という。)は、事故シーケンスの特徴に応じて、評価項目となるパラ メータに有意な影響を与える現象や運転員等操作に有意な影響を与 える現象(以下「重要現象」という。)がモデル化されており,実験 等を基に妥当性が確認され,適用範囲を含めてその不確かさが把握 されているものを選定して使用する。

具体的には「1.4 有効性評価に使用する計算プログラム」に示す 解析コードを使用する。

1.1.4 有効性評価における解析の条件設定

有効性評価における解析の条件設定については,「1.3 評価にあ たって考慮する事項」による仮定等を考慮するとともに,事象進展 の不確かさを考慮して,設計値等の現実的な条件を基本としつつ, 原則,有効性を確認するための評価項目となるパラメータの判断基 準に対する余裕が小さくなるよう設定する。また,解析コードや解 析条件の不確かさの影響が大きい場合には,影響評価において感度 解析等を実施することを前提に設定する。

具体的には「1.5 有効性評価における解析の条件設定の方針」に よる。

1.1.5 解析の実施

有効性評価における解析は,評価項目となるパラメータの推移の ほか,事象進展の状況を把握する上で必要なパラメータの推移につ いて解析を実施し,その結果を明示する。

なお,事象進展の特徴や厳しさ等を踏まえ,解析以外の方法で原 子炉等が安定停止状態に導かれ,評価項目を満足することが合理的 に説明できる場合はこの限りではない。 1.1.6 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては、 運転員等操作時間に与える影響,評価項目となるパラメータに与え る影響及び操作時間余裕を評価する。

これらの不確かさの影響を踏まえても,措置の実現性に問題がなく,評価項目を満足することを感度解析等により確認する。

具体的には「1.7 解析コード及び解析条件の不確かさの影響評価 方針」による。

1.1.7 必要な要員及び資源の評価

必要な要員及び資源については、少なくとも外部資源がないもの として発電所内単独での措置を7日間継続して実施できることを確 認する。

具体的には「1.8 必要な要員及び資源の評価方針」による。

1.2 評価対象の整理及び評価項目の設定

重大事故等対策の有効性を確認するため,重大事故等のそれぞれ について,以下のとおり,事故シーケンスのグループ化,重要事故 シーケンスの選定及び有効性を確認するための評価項目の設定を行 う。

炉心損傷防止対策及び運転停止中の原子炉における燃料損傷防止 対策の有効性を確認する事故シーケンスグループ並びに格納容器破 損防止対策の有効性を確認する格納容器破損モード(以下「事故シ ーケンスグループ等」という。)の選定に当たっては,アクシデント マネジメント策や緊急安全対策等を考慮しない仮想的なプラント状 態を対象として実施したPRAの結果を活用する。

「運転中の原子炉における重大事故に至るおそれがある事故」に 対しては、原子炉施設内部の原因によって引き起こされる事象(以 下「内部事象」という。)を対象とする内部事象出力運転時レベル1 PRAに加えて、PRAが適用可能な外部事象として地震、津波に ついてそれぞれ地震レベル1PRA及び津波レベル1PRAを活用 する。「運転中の原子炉における重大事故」に対しては、内部事象出 力運転時レベル1.5PRAを活用する。「運転停止中の原子炉にお ける重大事故に至るおそれがある事故」に対しては、内部事象停止 時レベル1PRAを活用する。

PRAを実施した結果,本原子炉施設の運転中の炉心損傷頻度は 10⁻⁴ / 炉年程度,格納容器破損頻度は10⁻⁴ / 炉年程度,運転停止中 の炉心損傷頻度は10⁻⁵ / 施設定期検査程度である。

また,現状 P R A が適用できない地震,津波以外の外部事象については,当該外部事象により誘発される起因事象について分析した結果,いずれも内部事象出力運転時レベル1 P R A で想定する起因事象に包絡されること及び炉心損傷後の格納容器内の事象進展は内部事象と同等であると考えられることから,新たに追加すべき事故シーケンスグループはない。

なお,有効性評価における重要事故シーケンスと「実用発電用原 子炉に係る発電用原子炉設置者の重大事故の発生及び拡大の防止に 必要な措置を実施するために必要な技術的能力に係る審査基準(以 下「技術的能力審査基準」という。)」,「実用発電用原子炉及びその 附属施設の位置、構造及び設備の基準に関する規則(以下「設置許 可基準規則」という。)」及び「実用発電用原子炉及びその附属施設

の技術基準に関する規則(以下「技術基準規則」という。)」との関 連を第1.2-1表に示す。

ここで記載している事故シーケンスグループ等の選定の考え方に ついては、「付録 1 事故シーケンスグループの抽出及び重要事故シ ーケンスの選定について」に示す。

1.2.1 運転中の原子炉における重大事故に至るおそれがある事故
 1.2.1.1 事故シーケンスのグループ化と重要事故シーケンスの選定

「運転中の原子炉における重大事故に至るおそれがある事故」に ついては、運転時の異常な過渡変化及び設計基準事故に対し、原子 炉施設の安全性を損なうことがないよう設計することが求められる 構築物、系統及び機器がその安全機能を喪失した場合であって、炉 心の著しい損傷に至る可能性があると想定する事故シーケンスにつ いて本原子炉施設を対象とした P R A の結果を踏まえてグループ化 し、それぞれの事故シーケンスグループに対して重要事故シーケン スを選定し評価を行う。

(1) 事故シーケンスの抽出

内部事象出力運転時レベル1PRAにおいては,各起因事象の 発生から炉心損傷に至ることを防止するための緩和設備等の成功 及び失敗の組合せについてイベントツリーを用いて網羅的に分析 し,炉心損傷に至る事故シーケンスを抽出する。第 1.2-1 図に内 部事象出力運転時レベル1PRAにおけるイベントツリーを示す。

地震レベル1PRA及び津波レベル1PRAにおいては,地震 や津波により引き起こされる起因事象をプラントへ与える影響度 の高い順に階層イベントツリーの形で整理することで,複合的な

事象発生の組み合わせも含めた事故シーケンスの抽出を実施して いる。また,緩和設備による対応に期待できる起因事象について は、内部事象出力運転時レベル1PRAと同様に各起因事象の発 生から炉心損傷に至ることを防止するための緩和設備等の成功及 び失敗の組合せについてイベントツリーで分析し、事故シーケン スを抽出している。第 1.2-2 図に地震レベル1PRAの階層イベ ントツリーを、第 1.2-3 図に地震レベル1PRAのイベントツリ ーを、第 1.2-4 図に津波レベル1PRAの階層イベントツリーを、 第 1.2-5 図に津波レベル1PRAのイベントツリーを示す。

地震の場合,各安全機能の喪失に至るプロセスは異なるものの, 喪失する安全機能が内部事象と同じ場合は炉心損傷を防止するた めの緩和設備も同じとなるため,事故シーケンスは内部事象と同 じとなる。また,地震レベル1PRA及び津波レベル1PRAで は,複数の安全機能が地震又は津波によって同時に損傷する事象 や,建屋・構築物等の損傷の発生により直接的に炉心損傷に至る 事故シーケンスについても取り扱う。

(2) 事故シーケンスのグループ化

PRAの知見を活用して抽出した事故シーケンスを,重大事故 等に対処するための措置が基本的に同じとなるよう,炉心損傷に 至る主要因の観点から以下の事故シーケンスグループに分類する。

a. 高圧 · 低圧注水機能喪失

- b. 高圧注水 · 減圧機能喪失
- c. 全交流動力電源喪失
- d. 崩壞熱除去機能喪失

e. 原子炉停止機能喪失

f. LOCA時注水機能喪失

g. 格納容器バイパス(インターフェイスシステムLOCA)

h. 津波浸水による注水機能喪失

津波 P R A より 抽出される 事故シーケンスについては, 敷地内 への浸水により内部事象起因の事故シーケンスとはプラントへの 影響が異なることから, 津波特有の事故シーケンスグループとし て抽出している。

また,地震特有の事象で,以下に示す事故シーケンスは,地震 動に応じた安全機能の損傷の程度や影響を定量化することが困難 であるため,上記の事故シーケンスグループとは直接的に対応し ない事象として抽出している。

原子炉建屋損傷

- 格納容器損傷
- 原子炉圧力容器損傷
- ・格納容器バイパス(地震による格納容器外での配管破損と隔離弁の閉失敗の重畳)
- ・原子炉冷却材圧力バウンダリ喪失(E-LOCA)
- 計装・制御系喪失
- 直流電源喪失+原子炉停止失敗
- 交流電源喪失+原子炉停止失敗

これらの事故シーケンスの全炉心損傷頻度への寄与割合は極め て小さく,全てを合計しても 0.6%程度であり有意な頻度ではない。 更に,これらの事故シーケンスはプラントに及ぼす影響について 大きな幅を有しており,事故シーケンスグループとして単独で定 義するものではなく,発生する事象の程度や組合せに応じて対応 していくべきものである。具体的には,影響が限定されるような 小規模な事故の場合には,使用可能な炉心損傷防止対策や格納容 器破損防止対策を柔軟に活用して,事故進展の緩和を図ることが 可能であり,実際には炉心損傷頻度はより低減されると考えられ る。なお,上記に該当しないような深刻な事故の場合には,可搬 型設備や放水砲等を駆使した大規模損壊対策による対応を含め, 臨機応変に影響緩和を図ることとする。

以上のことから,これらの事故シーケンスを有意な頻度又は影響をもたらす事故シーケンスグループとして追加する必要はない と総合的に判断した。

(3) 重要事故シーケンスの選定

事故シーケンスグループごとに,有効性評価の対象とする重要 事故シーケンスを選定する。重要事故シーケンスは,共通原因故 障又は系統間の機能の依存性,炉心損傷防止対策の実施に対する 余裕時間,炉心損傷防止に必要な設備容量及び事故シーケンスグ ループ内の代表性を考慮し選定する。

各事故シーケンスグループに含まれる事故シーケンス及び重要 事故シーケンスについて整理した結果を第 1.2-2 表に,重要事故 シーケンス選定結果の概要を以下に示す。

a. 高圧 · 低圧注水機能喪失

本事故シーケンスグループは,高圧及び低圧の注水機能が喪失 することで炉心損傷に至るものである。よって,重大事故等対処 設備の有効性評価としては,高圧又は低圧注水機能に対する重大 事故対処設備に期待することが考えられる。高圧注水機能を有す る重大事故等対処設備に期待する場合,より早期に原子炉注水を 開始することができるため,原子炉水位の低下は小さくなり,判 断基準に対する余裕は大きくなる。このため,本事故シーケンス グループに対しては,重大事故等対処設備の低圧注水機能の有効 性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスの中で, 原子炉が自動停止する過渡事象又はサポート系喪失(自動停止) を起因事象とする事故シーケンスの方が,原子炉を通常停止する 手動停止/サポート系喪失(手動停止)を起因とする事故シーケ ンスと比較して事象進展が早いことから,余裕時間の観点で厳し い事故シーケンスとなる。また,事象進展が早い事故シーケンス の方が重大事故等対処設備による原子炉注水を開始した時点の 崩壊熱が高くなることから,設備容量の観点でも厳しい事故シー ケンスとなる。

原子炉が自動停止する事故シーケンスは,余裕時間及び設備容量の観点で変わりがないため,代表性の観点で炉心損傷頻度の高い「過渡事象(原子炉水位低下の観点で厳しい給水流量の全喪失を選定)+高圧炉心冷却失敗+低圧炉心冷却失敗」を重要事故シ ーケンスとして選定する。

b. 高圧注水 · 減圧機能喪失

本事故シーケンスグループは,低圧注水機能は維持されるが高 圧注水機能が喪失するとともに減圧機能が喪失することで炉心 損傷に至るものである。よって,重大事故等対処設備の有効性評 価としては,高圧注水機能又は減圧機能に対する重大事故等対処 設備に期待することが考えられる。高圧注水機能を有する重体事 故等対処設備に期待する場合,より早期に原子炉注水を開始する ことができるため,原子炉水位の低下は小さくなり,判断基準に 対する余裕は大きくなる。このため,本事故シーケンスグループ に対しては,重大事故等対処設備の減圧機能の有効性を確認する こととする。

本事故シーケンスグループに含まれる事故シーケンスは, a. と同様に原子炉が自動停止する事故シーケンスの方が余裕時間 及び設備容量の観点で厳しい事故シーケンスとなり,原子炉が自 動停止する事故シーケンスは,余裕時間及び設備容量の観点で変 わりがないため,代表性の観点で炉心損傷頻度の高い「過渡事象 (原子炉水位低下の観点で厳しい給水流量の全喪失を選定)+高 圧炉心冷却失敗+手動減圧失敗」を重要事故シーケンスとして選 定する。

c. 全交流動力電源喪失

事故シーケンスグループ「全交流動力電源喪失」に含まれる事 故シーケンスは,以下に示すとおり機能喪失の状況が異なる事故 シーケンスグループに細分化できることから,細分化した事故シ ーケンスグループからそれぞれ重要事故シーケンスを選定する。 (a) 長期TB

本事故シーケンスグループは,全交流動力電源喪失後,蒸気 駆動の原子炉隔離時冷却系により炉心冷却を維持するが,蓄電 池が枯渇した時点で原子炉隔離時冷却系が機能喪失し,炉心損 傷に至るものである。このため,本事故シーケンスグループに 対しては,交流動力電源を必要としない重大事故等対処設備の 有効性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスは,い ずれも蒸気駆動の原子炉隔離時冷却系による初期注水に成功 するため,事象進展は緩やかとなり余裕時間の観点で変わりが ない。また,必要な注水設備容量の観点でも変わりがないこと から,代表性の観点で炉心損傷頻度の高い「外部電源喪失+D G失敗+HPCS失敗(RCIC成功)」を重要事故シーケン スとして選定する。

(b) T B D, T B P, T B U

本事故シーケンスグループは,全交流動力電源喪失の発生後, 直流電源喪失,逃がし安全弁再閉鎖失敗又は原子炉隔離時冷却 系の故障が重畳することにより,交流動力電源が不要な原子炉 隔離時冷却系を含む全注水機能が喪失し,炉心の冷却が十分に 行われずに事象早期に炉心損傷に至るものである。このため, 本事故シーケンスグループに対しては,重大事故等対処設備の 代替電源による早期の電源復旧及び代替注水手段による原子 炉注水の有効性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスの中 で、TBD、TBUに含まれる事故シーケンスは、逃がし安全 弁再閉鎖失敗により原子炉隔離時冷却系が動作できない範囲 に原子炉圧力が低下するまで炉心への注水が継続されるシー ケンスであるTBPと比較して事象進展が早いことから、余裕 時間の観点で厳しい事故シーケンスとなる。

TBD, TBUに含まれる事故シーケンスについては, 余裕 時間及び設備容量の観点で変わりがないため, 代表性の観点で 炉心損傷頻度の高い「外部電源喪失+直流電源失敗+高圧炉心 冷却失敗」を重要事故シーケンスとして選定する。

d. 崩壞熱除去機能喪失

本事故シーケンスグループは, 炉心冷却には成功するが崩壊熱 除去機能喪失により, 炉心損傷より先に格納容器破損に至り, 格 納容器破損に伴う減圧沸騰によりサプレッション・プールの水源 としての機能が喪失し原子炉注水ができなくなることで, 炉心損 傷に至るものである。このため,本事故シーケンスグループに対 しては, 重大事故等対処設備の崩壊熱除去機能の有効性を確認す ることとする。

本事故シーケンスグループに含まれる事故シーケンスの中で, 原子炉が自動停止する過渡事象,サポート系喪失(自動停止)又 はLOCAを起因事象とする事故シーケンスの方が,原子炉を通 常停止する手動停止/サポート系喪失(手動停止)を起因とする 事故シーケンスと比較して事象進展が早いことから,余裕時間の 観点で厳しい事故シーケンスとなる。また,事象進展が早い事故 シーケンスの方が重大事故等対処設備による格納容器除熱を開 始した時点の崩壊熱が高くなることから,設備容量の観点でも厳 しい事故シーケンスとなる。

原子炉が自動停止する事故シーケンスは,余裕時間及び設備容 量の観点で変わりがないため,代表性の観点で炉心損傷頻度の高 い「過渡事象(原子炉水位低下の観点で厳しい給水流量の全喪失 を選定)+RHR失敗」を重要事故シーケンスとして選定する。 崩壊熱除去機能喪失に至る原因としては,残留熱除去系海水系の サポート系の故障による場合と残留熱除去系のフロントライン

系の故障による場合とが考えられ,これらは,炉心損傷防止対策 が異なることから,取水機能が喪失した場合及び残留熱除去系が 故障した場合の有効性評価を実施する。

e. 原子炉停止機能喪失

本事故シーケンスグループは, 炉心冷却には成功するが原子炉 停止機能喪失により原子炉出力が維持され,格納容器に対して大 きな熱負荷が継続して負荷されることで, 炉心損傷より先に格納 容器破損に至り,格納容器破損に伴う減圧沸騰によりサプレッシ ョン・プールの水源としての機能が喪失し原子炉注水ができなく なることで, 炉心損傷に至るものである。このため,本事故シー ケンスグループに対しては,重大事故等対処設備の原子炉停止機 能の有効性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスは,いず れも原子炉スクラムに失敗するため,負の反応度印加の余裕時間 及び設備容量の観点で変わりがないため,代表性の観点で炉心損 傷頻度の高い「過渡事象(原子炉圧力の上昇が大きく反応度の観 点で厳しい主蒸気隔離弁の誤閉止を選定)+原子炉停止失敗」を 重要事故シーケンスとして選定する。

f. LOCA時注水機能喪失

本事故シーケンスグループは、中小規模のLOCAが発生し、 同時に高圧及び低圧の注水機能が喪失することで炉心損傷に至 るものである。よって、重大事故等対処設備の有効性評価として は、高圧又は低圧注水機能に対する重大事故対処設備に期待する ことが考えられる。高圧注水機能を有する重大事故等対処設備に 期待する場合、より早期に原子炉注水を開始することができるた め,原子炉水位の低下は小さくなり,判断基準に対する余裕は大 きくなる。このため,本事故シーケンスグループに対しては,重 大事故等対処設備の低圧注水機能の有効性を確認することとす る。

本事故シーケンスグループに含まれる事故シーケンスは,いず れもLOCAを起因事象としており,破断面積が同じ場合は余裕 時間及び設備容量の観点で変わりがないため,代表性の観点で炉 心損傷頻度の高い「LOCA+高圧炉心冷却失敗+低圧炉心冷却 失敗」を重要事故シーケンスとして選定する。

なお,大破断LOCAのように破断規模が一定の大きさを超え る場合は,国内外の先進的な対策を講じても炉心損傷防止対策を 有効に実施することができないため,格納容器破損防止対策を講 じて,その有効性を確認する。

g. 格納容器バイパス(インターフェイスシステムLOCA)

本事故シーケンスグループに含まれる事故シーケンスは,「イ ンターフェイスシステムLOCA」のみであることから,これを 重要事故シーケンスとして選定する。

h. 津波浸水による注水機能喪失

本事故シーケンスグループに含まれる事故シーケンスは,防潮 堤を超え敷地に浸水する津波により,取水設備及び原子炉建屋内 の緩和系設備が機能喪失することで,原子炉注水機能及び崩壊熱 除去機能が喪失して炉心損傷に至るものである。このため,本事 故シーケンスグループに対しては,津波防護対策を実施した重大 事故等対処設備の有効性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスは,津波

高さがより高い事故シーケンスの方が,共通原因故障,余裕時間 及び設備容量の観点で厳しい事故シーケンスとなるため,「原子 炉建屋内浸水による複数の緩和機能喪失」を重要事故シーケンス として選定する。

1.2.1.2 有効性を確認するための評価項目の設定

「1.2.1.1 事故シーケンスのグループ化と重要事故シーケンスの選定」に挙げた事故シーケンスグループについては、炉心の著しい損傷を防止するための対策に対して有効性があることを確認するため、以下の評価項目を設定する。

- (1) 炉心の著しい損傷が発生するおそれがないものであり、かつ、 炉心を十分に冷却できるものであること。具体的には燃料被覆管 の最高温度が 1,200℃以下であること及び燃料被覆管の酸化量は 酸化反応が著しくなる前の被覆管厚さの 15%以下であること。
- (2) 原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力
 8.62MPa「gage」の1.2倍である10.34MPa「gage」を下回ること。
- (3) 原子炉格納容器バウンダリにかかる圧力は、限界圧力を下回る
 圧力である最高使用圧力 0.31MPa [gage] の 2 倍の圧力 0.62MPa
 [gage] を下回ること。
- (4) 原子炉格納容器バウンダリにかかる温度は、限界温度を下回る温度である 200℃を下回ること。

また,格納容器圧力逃がし装置等を使用する事故シーケンスグル ープの有効性評価では,上記の評価項目に加えて,敷地境界外での 実効線量を評価し,周辺の公衆に対して著しい放射線被ばくのリス クを与えないこととして,発生事故当たり 5mSv 以下であることを確 認する。 ここで,格納容器バウンダリの健全性に対する有効性を確認する ための評価項目の上限については,漏えい経路になる可能性がある 格納容器バウンダリ構成部に対して,規格計算又は試験にて,東海 第二発電所における仕様を踏まえた構造健全性及びシール部機能維 持の確認を行っており,継続的に評価条件を維持していく。

ここで記載している,格納容器本体,シール部等の格納容器バウ ンダリ構成部の健全性については,「付録 2 原子炉格納容器の限界 圧力・温度」にて示す。

- 1.2.2 運転中の原子炉における重大事故
- 1.2.2.1 格納容器破損モードの選定と評価事故シーケンスの選定

「運転中の原子炉における重大事故」については,著しい炉心損 傷の発生後,格納容器が破損に至る可能性があると想定する格納容 器破損モードを,本原子炉施設を対象としたPRAの結果を踏まえ て選定し,格納容器破損モードごとに評価事故シーケンスを選定し て評価を行う。

(1) 格納容器破損モードの抽出

内部事象出力運転時レベル1.5PRAにおいては,事故の進展に伴い生じる格納容器の健全性に影響を与える負荷を分析し, 格納容器破損モードの抽出を行う。

具体的には事象進展を炉心損傷前,原子炉圧力容器破損前,原 子炉圧力容器破直後,事故後期の長期の各プラント状態に分類し, それぞれの状態で発生する負荷を抽出している。また,事故進展 中に実施される緩和手段等を考慮し,第 1.2-6 図に示すイベント ツリー作成し,格納容器破損に至る格納容器破損モードを整理す (2) 格納容器破損モードの選定

る。

格納容器イベントツリーにより抽出した格納容器破損モードを, 事象進展の類似性から以下の格納容器破損モードに分類する。こ こで,水素燃焼については,本原子炉施設では,運転中は格納容 器内雰囲気を窒素で置換し,酸素濃度を低く管理しているため, PRAで定量化する格納容器破損モードから除外しているが,有 効性評価においては窒素置換の有効性を確認する観点で,格納容 器破損モードとして挙げている。

- a. 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)
- b. 高圧溶融物放出/格納容器雰囲気直接加熱
- c. 原子炉圧力容器外の溶融燃料 冷却材相互作用
- d. 水素燃焼
- e. 溶融炉心・コンクリート相互作用

また,上記に分類されない格納容器破損モードとして,以下の 格納容器破損モードを抽出している。

- ·過圧破損(未臨界確保失敗)
- ·過圧破損(崩壊熱除去失敗)
- ・格納容器バイパス(インターフェイスシステムLOCA)
- ・格納容器バイパス(格納容器隔離失敗)

過圧破損(未臨界確保失敗),過圧破損(崩壊熱除去失敗)は格納容器先行破損,格納容器バイパス(インターフェイスシステム LOCA)は炉心損傷の前に格納容器が破損している事故シーケ ンスであり,「運転中の原子炉における重大事故に至るおそれがあ る事故」の評価において,各々重要事故シーケンスを選定し,重 大事故等防止対策の有効性を確認していることから,新たな格納 容器破損モードとして追加する必要はない。

格納容器バイパス(格納容器隔離失敗)については,炉心が損 傷した時点で格納容器隔離に失敗している破損モードとして抽出 されており,事象の進展に伴う物理的な現象に由来するものでは なく,炉心損傷時点で格納容器が隔離機能を喪失している事象と なる。

隔離失敗の原因としては,格納容器貫通部,アクセス部等から の漏えい等の機械的破損や格納容器漏えい試験後の弁の復旧忘れ 等の人的過誤が考えられる。これらの隔離失敗を防止するため, 定期試験時及び原子炉起動前における格納容器隔離機能の確認や 手順書に基づく確実な操作を実施している。さらに出力運転中は 格納容器内を窒素置換し管理しているため,格納容器からの漏え いが存在する場合は,格納容器圧力の低下等により速やかに検知 できる可能性が高いと考える。

また,出力運転時レベル1.5PRAでは,国内BWRプラントの格納容器隔離失敗の実績がないことから,NUREG/CR-4220に記載された米国における通常運転時の長期間の格納容器隔離失敗実績に基づき,本破損モードのCFF(6.1×10⁻¹⁰/ 炉年)を定量化しているが,国内の運転管理実績を考慮すれば,本破損モードのCFFはさらに小さくなると推定される。

以上より,本破損モードは事象の進展に伴い発生するものでは なく,事象発生前に格納容器の隔離機能が喪失している事象であ

り,通常の運転管理において格納容器の状態を確認する運用とす ることが対策であること,また,本破損モードにより格納容器隔 離機能が喪失する頻度は十分に低いことから,重大事故等対処設 備の有効性評価の対象とする格納容器破損モードとして追加する 必要はないと判断した。

(3) 評価事故シーケンスの選定

格納容器破損モードごとに選定した PDSに属する事故シーケンスを整理し、それらのシーケンスのうち、格納容器破損モードの発生の観点で最も厳しくなると判断されるシーケンスを評価対象事故シーケンスとして選定した。各格納容器破損モードに対する評価事故シーケンスの選定理由及び選定結果について、第1.2-3表に示す。

なお,原子炉圧力容器の破損が前提となる「高圧溶融物放出/ 格納容器雰囲気直接加熱(DCH)」,「原子炉圧力容器外溶融燃料 -冷却材相互作用(FCI)」,「溶融炉心・コンクリート相互作用 (MCCI)」の格納容器破損モードについては,物理現象及びそ の対策の有効性を確認する観点から,一部の重大事故等対処設備 による対応に期待せず,原子炉圧力容器破損まで事象が進展する ことを想定して評価することとする。

1.2.2.2 有効性を確認するための評価項目の設定

「1.2.2.1 格納容器破損モードの選定と評価事故シーケンスの 選定」に挙げた格納容器破損モードについては,格納容器破損防止 対策に対して有効性があることを確認するため,以下の評価項目を
設定する。なお、格納容器直接接触(シェルアタック)については、 BWR MARK-I型の格納容器に特有の格納容器破損モードであ り、東海第二発電所のMARK-II型の格納容器は溶融炉心が格納容 器バウンダリに直接接触する構造ではないため、格納容器直接接触 (シェルアタック)に係る評価項目「原子炉格納容器の床上に落下 した溶融炉心が床面を拡がり原子炉格納容器バウンダリと直接接触 しないこと及び溶融炉心が適切に冷却されること」については、有 効性を確認するための評価項目として設定しない。

- (1) 原子炉格納容器バウンダリにかかる圧力が、限界圧力を下回る
 圧力である最高使用圧力 0.31MPa[gage]の2 倍の圧力
 0.62MPa[gage]を下回ること。
- (2) 原子炉格納容器バウンダリにかかる温度が、限界温度を下回る 温度である 200℃を下回ること。
- (3) 放射性物質の総放出量は、放射性物質による環境への汚染の視点も含め、環境への影響をできるだけ小さくとどめるものであること。
- (4) 原子炉圧力容器の破損までに,原子炉圧力は 2.0MPa[gage]以下 に低減されていること。
- (5) 急速な原子炉圧力容器外の溶融燃料 冷却材相互作用による熱的・機械的荷重によって、原子炉格納容器バウンダリの機能が喪失しないこと。
- (6) 原子炉格納容器が破損する可能性のある水素の爆轟を防止する こと。具体的には、原子炉格納容器内の酸素濃度が 5vo1%以下であ ること。
- (7) 可燃性ガスの蓄積,燃焼が生じた場合においても,(1)の要件を

満足すること。

- (8) 溶融炉心による浸食によって、原子炉格納容器の構造部材の支持機能が喪失しないこと及び溶融炉心が適切に冷却されること。
- 1.2.3 使用済燃料プールにおける重大事故に至るおそれがある事故1.2.3.1 想定事故

「使用済燃料プールにおける重大事故に至るおそれがある事故」 については、本原子炉施設において、使用済燃料プール内に貯蔵さ れている燃料の著しい損傷に至る可能性があると想定する以下の事 故の評価を行う。

(1) 想定事故1

使用済燃料プールの冷却機能又は注水機能が喪失することによ り,使用済燃料プール内の水の温度が上昇し,蒸発により水位が 低下する事故

(2) 想定事故 2

サイフォン現象等により使用済燃料プール内の水の小規模な喪 失が発生し、使用済燃料プールの水位が低下する事故

1.2.3.2 有効性を確認するための評価項目

「1.2.3.1 想定事故」に挙げた想定事故ついては、使用済燃料プ ールにおける燃料損傷を防止するための対策に対して有効性がある ことを確認するため、以下の評価項目を設定する。

- (1) 燃料有効長頂部が冠水していること。
- (2) 放射線の遮蔽が維持される水位を確保すること。
- (3) 未臨界が維持されていること。

1.2.4 運転停止中の原子炉における重大事故に至るおそれがある事 故

1.2.4.1 事故シーケンスのグループ化と重要事故シーケンスの選定

「運転停止中の原子炉における重大事故に至るおそれがある事故」 については、復水器真空破壊から制御棒引き抜き開始までの期間を 評価対象*とし、原子炉の水位、温度、圧力などのプラントパラメー タの類似性、保守点検状況などに応じた緩和設備の使用可能性、起 因事象、成功基準に関する類似性に応じて、プラントの状態を適切 に区分する。また、区分したプラント状態を考慮し、燃料の著しい 損傷に至る可能性があると想定する事故シーケンスを、本原子炉施 設を対象としたPRAの結果を踏まえ運転停止中事故シーケンスグ ループにグループ化し、運転停止中事故シーケンスグループごとに、 重要事故シーケンスを選定して評価を行う。

※:「実用発電用原子炉に係る運転停止中原子炉における燃料損傷防止対策の有効性評価に関する審査ガイド」の共通解析条件に定められている運転停止中の期間は「主発電機の解列から、原子炉起動の過程における主発電機の解列から復水器真空破壊まで」及び「制御棒引抜き開始から原子炉起動の過程における主発電機の併列まで」における低出力運転時及びプラント停止時の期間においては、給復水系を含む緩和設備の待機状態が出力運転時とほぼ同程度であり、かつ発生する起因事象もほぼ同様であることから運転時における内部事象レベル1PRAの評価範囲と位置づけている。

(添付資料 1.2.1)

(1) 運転停止中事故シーケンスの抽出

施設定期検査中はプラントの状態が大きく変化することから、 停止時PRAにおいては、原子炉の水位・温度・圧力、崩壊熱除 去等に対する余裕時間及び使用可能な設備の組み合わせ等によっ て、評価対象期間をいくつかのプラント状態を分類して評価する。

停止時レベル1PRAにおいては,原子炉の運転停止中の各プラ ント状態において燃料損傷へ波及する可能性のある起因事象をマ スターロジックダイアグラム及び過去の国内プラントのトラブル 事例等から選定し,ここから燃料損傷に至ることを防止するため の緩和手段の組合せ等を第1.2-7図のイベントツリーで分析する ことにより,燃料損傷に至る事故シーケンスを抽出した。

(2) 運転停止中事故シーケンスのグループ化

停止時レベル 1PRAにより抽出した各事故シーケンスについ て,緩和機能の喪失状況,プラントの状態及び燃料損傷に至る要 因の観点で必ず想定する事故シーケンスグループに対応する(1) から(3)の事故シーケンスとして整理した。

a. 崩壞熱除去機能喪失

運転中の残留熱除去系の故障が発生した後,崩壊熱除去・炉心 冷却に失敗し,燃料損傷に至る事故シーケンスを解釈 4-1(a) に記載の「崩壊熱除去機能喪失」に分類する。

b. 全交流動力電源喪失

外部電源喪失の発生時に非常用交流電源の電源確保に失敗す る等,全交流動力電源喪失の発生後に,崩壊熱除去・炉心冷却の 失敗により,燃料損傷に至る事故シーケンスを解釈 4-1(a)に 記載の「全交流動力電源喪失」に分類する。 c. 原子炉冷却材の流出

原子炉冷却材圧力バウンダリに接続された系統の誤操作等に より原子炉冷却材が系外に流出後,崩壊熱除去・炉心冷却に失敗 し,燃料損傷に至る事故シーケンスを解釈 4-1(a)に記載の「原 子炉冷却材の流出」に分類する。

(3) 重要事故シーケンスの選定

運転停止中原子炉における燃料破損防止対策の有効性評価の実 施に際しては,事故シーケンスグループごとに重要事故シーケン スの選定を実施している。

- a. 崩壞熱除去機能喪失
- (a) 事故シーケンス
 - ① 残留熱除去系の故障(RHR喪失)

+崩壞熱除去·炉心冷却失敗

②残留熱除去系の故障(RHRS喪失)

+崩壊熱除去·炉心冷却失敗

- ③外部電源喪失+崩壞熱除去·炉心冷却失敗
- (b) 事故シーケンスグループの特徴

(a)に含まれる事故シーケンスは,運転中の残留熱除去系に 故障等が発生した後,崩壊熱除去・炉心冷却に失敗し,燃料損 傷に至る事故シーケンスとなる。

(c) 有効性を確認する主な炉心損傷防止対策

(b)の特徴を有する事故シーケンスの対応として,以下の燃料損傷防止対策の有効性を確認する。

・待機中の残留熱除去系

(d) 選定した重要事故シーケンス

①残留熱除去系の故障(RHR喪失)

+崩壞熱除去·炉心冷却失敗

(e) 選定理由

着眼点における「高」の数が最も多い①のシーケンスを重要事故シーケンスとして選定した。

なお,対策実施の余裕時間及び燃料損傷回避に必要な設備容量を厳しく評価する観点から,崩壊熱が高く,原子炉冷却材の 保有水量が少ない原子炉停止後1日後に,崩壊熱除去機能が喪 失する事象を想定する。

- b. 全交流動力電源喪失
- (a) 事故シーケンス

①外部電源喪失+交流電源失敗+崩壊熱除去・炉心冷却失敗
 ②外部電源喪失+直流電源失敗+崩壊熱除去・炉心冷却失敗

(b) 事故シーケンスグループの特徴

(a)に含まれる事故シーケンスは、外部電源喪失の発生時に 非常用交流電源の電源確保に失敗する等,全交流動力電源喪失 の発生後に,崩壊熱除去・炉心冷却の失敗によって,燃料損傷 に至る事故シーケンスとなる。

(c) 有効性を確認する主な炉心損傷防止対策

(b)の特徴を有する事故シーケンスの対応として,以下の燃料損傷防止対策の有効性を確認する。

- ·緊急用蓄電池
- 常設代替高圧電源装置
- 低圧代替注水系(常設)
- (d) 選定した重要事故シーケンス

①外部電源喪失+交流電源失敗+崩壊熱除去·炉心冷却失敗

(e) 選定理由

着眼点における「高」の数が最も多い①のシーケンスを重要事故シーケンスとして選定した。

なお,対策実施の余裕時間及び燃料損傷回避に必要な設備容 量を厳しく評価する観点から,崩壊熱が高く,原子炉冷却材の 保有水量が少ない原子炉停止後1日後に,崩壊熱除去機能が喪 失する事象を想定する。

- c. 原子炉冷却材の流出
- (a) 事故シーケンス
 - ①原子炉冷却材の流出(RHR切替時のLOCA)

+崩壞熱除去·炉心冷却失敗

②原子炉冷却材の流出(CUWブロー時のLOCA)

+崩壞熱除去·炉心冷却失敗

③原子炉冷却材の流出(CRD点検時のLOCA)

+崩壞熱除去·炉心冷却失敗

④原子炉冷却材の流出(LPRM点検時のLOCA)

+崩壞熱除去·炉心冷却失敗

(b) 事故シーケンスグループの特徴

(a)に含まれる事故シーケンスは、原子炉冷却材圧力バウン ダリに接続された系統の誤操作等により原子炉冷却材が系外 に流出後、崩壊熱除去・炉心冷却の失敗によって、燃料損傷に 至る事故シーケンスとなる。

(c) 有効性を確認する主な炉心損傷防止対策

(b)の特徴を有する事故シーケンスの対応として,原子炉冷

却材の流出を補う,以下の燃料損傷防止対策の有効性を確認する。

・待機中の残留熱除去系

(d) 選定した重要事故シーケンス

①原子炉冷却材の流出(RHR切替時のLOCA)

+崩壞熱除去·炉心冷却失敗

(e) 選定理由

着眼点における「高」の数が最も多い①のシーケンスを重要 事故シーケンスとして選定した。

なお,対策実施の余裕時間及び燃料損傷回避に必要な設備容量を厳しく評価する観点から,原子炉水位が通常運転水位の状態でLOCAが発生する事象を想定する。

- d. 反応度の誤投入
- (a) 事故シーケンスグループの特徴

反応度事故により,燃料損傷に至る事故シーケンスとなる。 本評価では,代表性の観点から,停止余裕検査や冷温臨界試験 等の制御棒が2本以上引き抜ける試験において,制御棒1本が 全引き抜きされている状態から,他の1本の制御棒が操作量の 制限を超える誤った操作によって引き抜かれ,臨界近接を認知 できずに臨界に至る事象を想定する。

(b) 有効性を確認する主な炉心損傷防止対策

(a)の特徴を有する事故シーケンスの対応として,以下の燃料損傷防止対策の有効性を確認する。

・原子炉出力ペリオド短信号(10秒)による原子炉自動スクラム

1.2.4.2 有効性を確認するための評価項目の設定

「1.2.4.1 事故シーケンスのグループ化と重要事故シーケンスの 選定」に挙げた事故シーケンスグループについては,運転停止中の 原子炉における燃料の著しい損傷を防止するための対策に対して有 効性があることを確認するため,以下の評価項目を設定する。

- (1) 燃料有効長頂部が冠水していること。
- (2) 放射線の遮蔽が維持される水位を確保すること。
- (3) 未臨界を確保すること(ただし,通常の運転操作における臨界 又は燃料の健全性に影響を与えない一時的かつ僅かな出力上昇 を伴う臨界は除く。)。
- 1.3 評価にあたって考慮する事項
- 1.3.1 有効性評価において考慮する措置

グループ化した事故シーケンス毎に関連する措置を「技術的能力 に係る審査基準への適合状況説明資料」及び「重大事故等対処設備 について」との関係を含めて整理して評価を行う。評価にあたって は、「技術的能力に係る審査基準への適合状況説明資料」で講じるこ ととした措置のうち、「重大事故等対処設備について」で重大事故等 対策として用いたものを対象とするが、手順及び体制としてはその 他の措置との関係も含めて必要となる水源、燃料、電源等の資源や 要員を整理し、資源及び要員の確保に関する評価を行う。なお、「運 転中の原子炉における重大事故に至るおそれがある事故」及び「運 転停止中の原子炉における重大事故に至るおそれがある事故」にお ける 1 つの事故シーケンスグループ並びに「運転中の原子炉におけ

1 - 29

る重大事故」における 1 つの格納容器破損モードにおいて複数の対 策があり、それぞれで重要事故シーケンスを選定していない場合に は、代表性、包含性を整理し、解析を行う。

1.3.2 安全機能の喪失に対する仮定

グループ化した事故シーケンス毎に、 P R A の結果を踏まえ,起 因事象の発生に加えて,想定する多重故障,共通原因故障又は系統 間の機能依存性を考慮した従属故障等の安全機能の喪失を考慮する。 また,機能喪失の要因として故障又は待機除外を想定した設備の復 旧には期待しない。

1.3.3 外部電源に対する仮定

外部電源の有無の双方について考慮するが,基本的には常用系機 器の機能喪失,工学的安全施設の作動遅れ及び運転員等操作への影響を考慮して外部電源がない場合を想定する。ただし,外部電源が ある場合の方が有効性を確認するための評価項目の判断基準に対す る余裕が小さくなるような場合には,その影響を適切に考慮する。

1.3.4 単一故障に対する仮定

重大事故等は設計基準事故対処設備が多重の機能喪失を起こすこ とを想定しており,さらに,重大事故等対処設備は,設計基準事故 対処設備に対して可能な限り多様性を考慮して設置していることか ら,重大事故等対処設備の単一故障は仮定しない。

1.3.5 運転員等の操作時間に対する仮定

事故に対処するために必要な運転員等の手動操作については,原 則として,中央制御室での警報発信又は監視パラメータが操作開始 条件に達したことを起点として,確実な実施のための時間余裕を含 め,以下に示す時間で実施するものとして考慮する。

- (1) 可搬型設備に関しては,事象発生から8時間の間は,その機能に期待しないと仮定する。
- (2) 可搬型設備以外の操作については,実際の操作に要する時間の 不確定性を考慮し,以下の考え方に基づき設定する。
 - a. 中央制御室で警報発信等を起点として実施する操作について は,事象発生後の状況の把握や他のパラメータの確認等を考慮 して開始するものとする。
 - b. 上記操作に引き続き中央制御室で実施する操作については、 速やかに操作を開始するものとし、個別の運転操作に必要な時 間を考慮する。運転員は手順書に従い、各操作条件を満たせば 順次操作を実施するものとし、有効性評価における解析の条件 設定においては、各操作に必要な時間に基づき設定する。なお、 事象発生直後の輻輳している状態においては操作を開始するま での余裕時間を考慮する。
 - c. 現場で実施する操作については, 個別の現場操作に必要な時間を考慮する。なお, 有効性評価における解析の条件設定においては, 操作場所までのアクセスルートの状況, 操作場所の作業環境等を踏まえて, 現場操作に必要な時間を設定する。

(添付資料 1.3.1)

1.3.6 考慮する範囲

有効性評価を行うに当たっては,異常状態の発生前の状態として, 通常運転範囲及び運転期間の全域について考慮し,サイクル期間中 の炉心燃焼度変化,燃料交換等による長期的な変動及び運転中予想 される運転状態を考慮する。

また,有効性評価においては,原則として事故が収束し,原子炉 等が安定状態に導かれるまでを対象とするが,有効性評価における 解析としては,原子炉等が安定状態に導かれることが合理的に推定 可能な時点までとし,外部支援がないものとして7日間の対策成立 性を評価する。

燃料の種類については、代表的に9×9燃料(A型)を評価対象 とする。9×9燃料(A型)及び9×9燃料(B型)の熱水力特性は ほぼ同じであり、また、炉心全体及び局所的な核特性が混在炉心ゆ えに厳しくなることはないため、代表的に9×9燃料(A型)単独 炉心及び9×9燃料(B型)単独炉心について、解析条件を厳しく 与え評価を行っているが、燃料型式の違いにより解析結果に大きな 差異は確認されていない。これらの結果及び本原子炉施設の重大事 故等対策(設備、手順等)の有効性を確認するという目的を踏まえ、 評価対象の燃料型式は1つとし、代表的に9×9燃料(A型)につ いて評価を実施する。

1.4 有効性評価に使用する計算プログラム

有効性評価に使用する解析コードは,事故シーケンスの特徴に応 じて,重要現象がモデル化されており,実験等を基に妥当性が確認 され,適用範囲を含めてその不確かさが把握されているものとして, 以下に示す解析コードを使用する。また,重要事故シーケンスに対

1 - 32

して適用する解析コードについて,事故シーケンスグループ等との 対応を第1.4.1表から第1.4.3表に示す。

ここで記載している,解析コードの妥当性確認内容や不確かさ等 については,「付録 3 重大事故等対策の有効性評価に係るシビアア クシデント解析コードについて」に示す。

(添付資料 1.4.1)

1.4.1 SAFER

1.4.1.1 概 要

長期間熱水力過渡変化解析コードSAFERは長期間の原子炉内 熱水力過渡変化を解析するコードである。原子炉内を9ノードに分 割し,原子炉圧力及び各ノードの水位変化等を計算する。原子炉内 冷却材量の評価に当たっては,上部タイプレート及び炉心入口オリ フィス等での気液対向流制限現象(CCFL)及び上部プレナムに おけるサブクール域の局在化により冷却材が下部プレナムに落下す る現象(CCFLブレークダウン)を考慮することができる。

また、本コードでは、平均出力燃料集合体及び高出力燃料集合体 に対して燃料ペレット、燃料被覆管及びチャンネルボックス等の温 度計算を行なう。燃料被覆管の温度計算においては、その冷却状態 に応じた熱伝達係数、燃料棒間の輻射及び燃料棒とチャンネルボッ クスの輻射を考慮することができる。また、燃料被覆管と冷却水又 は水蒸気との化学反応(ジルコニウムー水反応)をBaker-J ustの式によって計算し、表面の酸化量を求める。さらに、燃料 棒内の圧力を計算することによって、燃料被覆管の膨れと破裂の有 無を評価し、破裂が起きた場合には、燃料被覆管の内面に対しても ジルコニウムー水反応を考慮する。

1 - 33

本コードの入力は,原子炉出力,原子炉圧力等の初期条件,原子 炉の幾何学的形状及び水力学的諸量,燃料集合体及び炉心に関する データ,プラント過渡特性パラメータ,ECCS等の特性,想定破 断の位置及び破断面積等であり,出力として,原子炉圧力,原子炉 水位,燃料被覆管最高温度,燃料被覆管酸化量等が求められる。

1.4.1.2 重要現象のモデル化

事故シーケンスの特徴に応じて、炉心及び原子炉圧力容器における重要現象がモデル化されている。具体的には以下のとおりである。 (1) 炉 心

核については,重要現象として,崩壊熱がモデル化されている。 燃料については,重要現象として,燃料棒表面熱伝達,沸騰遷

熱流動については,重要現象として,沸騰・ボイド率変化,気 液分離(水位変化)・対向流,三次元効果及び気液熱非平衡がモデ ル化されている。

移、燃料被覆管酸化及び燃料被覆管変形がモデル化されている。

(2) 原子炉圧力容器

重要現象として,冷却材放出(臨界流・差圧流),沸騰・凝縮・ ボイド率変化,気液分離(水位変化)・対向流及びECCS注水(給 水系・代替注水設備含む)がモデル化されている。

1.4.1.3 妥当性確認及び不確かさの把握

事故シーケンスの特徴に応じた重要現象に対するモデルの妥当性 確認を実施している。具体的には, TBL, ROSA-Ⅲ, FIS T-ABWRの実験解析により確認している。また、入力条件により不確かさを考慮しているものを除いて、妥当性確認により、その不確かさを把握している。具体的には、第 1.4-4 表に示すとおりである。

1.4.2 REDY

1.4.2.1 概 要

プラント動特性解析コードREDYは、炉心、圧力容器、圧力容 器内部構造物、原子炉冷却材再循環系、主蒸気管、タービン系、格 納容器等のプラント全体を模擬し、6群の遅発中性子及び反応度フィ ードバックを含む炉心一点近似動特性、燃料棒の熱的動特性及び冷 却材の熱水力挙動を計算する。

本コードの入力は,原子炉出力,炉心流量等の初期条件,原子炉, 主蒸気管,格納容器等のデータ,核データ,燃料棒データ,各種制 御系データ等であり,出力として,原子炉出力,原子炉圧力,炉心 流量,原子炉水位,格納容器圧力,サプレッション・チェンバ・プ ール水温度等の時間変化が求められる。

なお,本コードは,従来の原子炉設置変更許可申請書において適 用実績のあるものに,格納容器圧力,サプレッション・チェンバ・ プール水温度の時間変化を求めることができるように,格納容器モ デルを追加したものである。

1.4.2.2 重要現象のモデル化

事故シーケンスの特徴に応じて, 炉心, 原子炉圧力容器及び格納 容器における重要現象がモデル化されている。具体的には, 以下の とおりである。

(1) 炉 心

核については,重要現象として核分裂出力,反応度フィードバック効果及び崩壊熱がモデル化されている。

熱流動については,重要現象として,沸騰・ボイド率変化がモ デル化されている。

(2) 原子炉圧力容器

重要現象として,冷却材流量変化,冷却材放出(臨界流・差圧 流),ECCS注水(給水系・代替の注水設備含む)及びほう酸水 の拡散がモデル化されている。

(3) 格納容器

重要現象として, サプレッション・プール冷却がモデル化され ている。

1.4.2.3 妥当性確認及び不確かさの把握

事故シーケンスの特徴に応じた重要現象に対するモデルの妥当性 確認を実施している。具体的には、ABWR実機試験解析、設計解 析での確認等により確認している。また、入力条件により不確かさ を考慮しているものを除いて、妥当性確認により、その不確かさを 把握している。具体的には、第1.4-5表に示すとおりである。

1.4.3 SCAT

1.4.3.1 概 要

単チャンネル熱水力解析コードSCATは、単一チャンネルを模

擬し,これを軸方向一次元に多ノード分割する。各ノードについて, 燃料棒には半径方向にのみ熱伝導方程式を適用して冷却材への熱伝 達を計算し,チャンネル内冷却材には,質量及びエネルギー保存則 を適用して冷却材の熱水力挙動を計算する。

本コードの入力は,燃料集合体の幾何学的形状,軸方向出力分布 等の炉心データ,燃料集合体出力,チャンネル入口流量等の初期条 件,REDYコードの出力から得られたチャンネル入口流量等の過 渡変化のデータ等であり,出力として,GEXL相関式に基づく限 界出力比(CPR),各ノードでの冷却材流量,クオリティ等の時間 変化が求められる。

なお、本コードは、従来の原子炉設置変更許可申請書において適 用実績のあるものに、沸騰遷移後の燃料被覆管温度を求めることが できるように、沸騰遷移後の燃料被覆管 – 冷却材間の熱伝達評価式 とリウェット相関式を適用している。

1.4.3.2 重要現象のモデル化

事故シーケンスの特徴に応じて,炉心における重要現象がモデル 化されている。具体的には,以下のとおりである。

(1) 炉 心

燃料については,重要現象として,燃料棒内温度変化,燃料棒 表面熱伝達及び沸騰遷移がモデル化されている。

熱流動については,重要現象として,気液熱非平衡がモデル化 されている。

1.4.3.3 妥当性確認及び不確かさの把握

事故シーケンスの特徴に応じた重要現象に対するモデルの妥当性 確認を実施している。具体的には、ATLAS試験、NUPEC B WR燃料集合体熱水力試験により確認している。また、入力条件に より不確かさを考慮しているものを除いて、妥当性確認により、そ の不確かさを把握している。具体的には、第 1.4-6 表に示すとおり である。

- 1.4.4 MAAP
- 1.4.4.1 概 要

シビアアクシデント総合解析コードMAAPは、炉心損傷を伴う 事故シーケンスについて、炉心損傷、圧力容器破損、格納容器破損、 放射性物質の環境放出に至るまでのプラント内の熱水力及び放射性 物質挙動を解析するコードである。炉心損傷後の原子炉内及び格納 容器内を一次系、ドライウェル、ウェットウェルに分割し、重大事 故等時に想定される炉心のヒートアップ、燃料被覆管の酸化・破損、 炉心損傷、溶融炉心移行挙動と冷却性、水素と水蒸気の生成、溶融 炉心・コンクリート反応、格納容器圧力・温度、放射性物質の放出 と移行/沈着挙動等の諸現象がモデル化され、また、種々の注水設備 や冷却設備の特性や制御系がモデル化できるため、自動トリップや 運転員操作等によるシステム応答を含む、重大事故等時のプラント 挙動の評価が可能である。

本コードの入力は,原子炉出力,原子炉圧力,格納容器圧力,格 納容器温度等の初期条件,原子炉の幾何学的形状及び水力学的諸量, 燃料集合体及び炉心に関するデータ,格納容器自由空間体積,流路 面積及び流路抵抗,注水設備,減圧設備及び冷却設備の特性,想定 破断の位置及び破断面積等であり,出力として,原子炉圧力,原子 炉水位,燃料温度,溶融炉心温度,格納容器圧力,格納容器温度, コンクリート浸食量,放射性物質の格納容器内の分布等が求められ る。

1.4.4.2 重要現象のモデル化

事故シーケンスの特徴に応じて, 炉心, 原子炉圧力容器, 格納容器, 原子炉圧力容器(炉心損傷後), 格納容器(炉心損傷後)における重要現象がモデル化されている。具体的には, 以下のとおりである。

(1) 炉 心

核については,重要現象として,崩壊熱がモデル化されている。 燃料については,重要現象として,燃料棒内温度変化,燃料棒 表面熱伝達,燃料被覆管変形及び燃料被覆管酸化がモデル化され ている。

熱流動については,重要現象として,沸騰・ボイド率変化及び 気液分離(炉心水位)・対向流がモデル化されている。

(2) 原子炉圧力容器

重要現象として,冷却材流出(臨界流・差圧流)及びECCS 注 水(給水系・代替注水設備含む)がモデル化されている。

(3) 格納容器

重要現象として,格納容器各領域間の流動,構造材との熱伝達 及び内部熱伝導,気液界面の熱伝達,スプレイ冷却,放射線分解 等による水素・酸素発生,格納容器ベント及びサプレッション・ プール冷却がモデル化されている。 (4) 原子炉圧力容器(炉心損傷後)

重要現象として、リロケーション、構造材との熱伝達、原子炉 圧力容器内FCI(溶融炉心細粒化)、原子炉圧力容器内FCI(デ ブリ粒子熱伝達)、下部プレナムでの溶融炉心の熱伝達、原子炉圧 力容器破損及び原子炉圧力容器内FP挙動がモデル化されている。 (5) 格納容器(炉心損傷後)

重要現象として,原子炉圧力容器外FCI(溶融炉心細粒化), 原子炉圧力容器外FCI(デブリ粒子熱伝達),格納容器下部床面 での溶融炉心の拡がり,溶融炉心と格納容器下部プール水との伝 熱,溶融炉心とコンクリートの伝熱,コンクリート分解及び非凝 縮性ガス発生,格納容器内FP挙動がモデル化されている。

1.4.4.3 妥当性確認及び不確かさの把握

事故シーケンスの特徴に応じた重要現象に対するモデルの妥当性 確認を実施している。具体的には、TMI事故解析、CORA実験 解析、HDR実験解析、CSTF実験解析、ACE実験解析、SU RC-4実験解析、PHEBUS-FP実験解析、ABCOVE実験 解析、感度解析等により、その不確かさを把握している。具体的に は、第1.4-7表に示すとおりである。

- 1.4.5 A P E X
- 1.4.5.1 概 要

反応度投入事象解析コードAPEXは,熱的現象を断熱としてお り,炉心平均出力の過渡変化を炉心一点近似による中性子動特性方 程式で表し,出力の炉心空間分布を二次元(R-Z)拡散方程式で 表す。炉心各部分のエンタルピの上昇は,出力分布に比例するもの とし,炉心平均エンタルピがある程度上昇する間(エンタルピステ ップ)は,出力分布は一定としている。また,投入反応度としては, 制御棒価値,スクラム反応度及びドップラ反応度を考慮するが,こ のドップラ反応度は,二次元拡散計算による出力分布を考慮して求 められる。

APEXの入力は, 炉心の幾何学的形状, 各種中性子断面積, 拡 散係数, ドップラ係数, 炉心動特性パラメータ等の核データ, 制御 棒反応度の時間変化等であり, 出力として, 中性子束分布, エンタ ルピ分布及び炉心平均出力の時間変化が求められる。

APEXの出力に基づき,単チャンネル熱水力解析を行う場合に は,単チャンネル熱水力解析コードSCAT(RIA用)を用いる。

SCAT(RIA用)は、燃料棒を燃料ペレット、ペレットと被 覆管の間の空隙部であるギャップ部、被覆管で構成し、ノード毎に 径方向の熱伝達を計算する。燃料ペレット及び被覆管には、径方向 一次元の非定常熱伝導方程式を適用して燃料棒内の温度分布を計算 し、チャンネル内冷却材には、質量、運動量及びエネルギー保存則 を適用して冷却材の熱水力挙動を計算する。冷却材の沸騰状態に応 じた熱伝達率相関式を用いることにより、燃料棒の除熱量を求める。

SCAT(RIA用)の入力は,APEXの出力から得られた炉 心平均出力変化,炉心出力分布に加え,燃料集合体幾何条件,燃料 集合体熱水力データ,燃料物性データ,ギャップ熱伝達係数,ペレ ット径方向出力分布,局所出力ピーキング係数等であり,出力とし て,非断熱燃料エンタルピの時間変化が求められる。 1.4.5.2 重要現象のモデル化

事故シーケンスの特徴に応じて、炉心における重要現象がモデル 化されている。具体的には、以下のとおりである。

(1) 炉 心

核については,重要現象として,核分裂出力,出力分布変化, 反応度フィードバック効果及び制御棒反応度効果がモデル化され ている。

燃料については,重要現象として,燃料棒内温度変化,燃料棒 表面熱伝達及び沸騰遷移がモデル化されている。

1.4.5.3 検証/妥当性確認及び不確かさの把握

事故シーケンスの特徴に応じた重要現象に対するモデルの検証/ 妥当性確認を実施している。具体的には、SPERT-IIE炉心実 験、実効共鳴積分測定に関わるHellstrandの実験式、M ISTRAL臨界試験、実機での制御棒価値測定試験により確認し ている。また、入力条件により不確かさを考慮しているものを除い て、検証/妥当性確認により、その不確かさを把握している。具体的 には、第1.4-8表に示すとおりである。

1.5 有効性評価における解析の条件設定方針

1.5.1 解析条件設定の考え方

有効性評価における解析の条件設定については,事象進展の不確 かさを考慮して,設計値等の現実的な条件を基本としつつ,原則, 有効性を確認するための評価項目となるパラメータの判断基準に対 する余裕が小さくなるような設定とする。この際,「1.4 有効性評 価に使用する計算プログラム」において把握した解析コードの持つ 重要現象に対する不確かさや解析条件の不確かさによって,さらに 本原子炉施設の有効性評価の評価項目となるパラメータ及び運転員 等操作時間に対する余裕が小さくなる可能性がある場合は,影響評 価において感度解析等を行うことを前提に設定する。ただし,「1.5.2 共通解析条件」に示す解析条件については共通の解析条件として設 定する。

なお,初期条件とは異常状態が発生する前の原子炉施設の状態, 事故条件とは重大事故等の発生原因となる機器の故障又は安全機能 の喪失の状態,機器条件とは重大事故等を収束させる際に使用する 重大事故等対処設備の状態,操作条件とは運転員等が重大事故等対 処設備を操作可能となる状態のことをいう。

(添付資料 1.5.1)

1.5.2 共通解析条件

操作条件については、「1.3.5 運転員等の操作時間に対する仮定」 に示すとおり個別に解析条件を設定するが、以下に示す解析条件は、 各重要事故シーケンスにおいてその影響が大きく変わらないことか ら、原則として共通の条件として設定する。なお、解析条件の不確 かさの影響については、グループ化した事故シーケンスごとに確認 する。

1.5.2.1 運転中の原子炉における重大事故に至るおそれがある事故

(1) 初期条件

a. 初期運転条件

原子炉熱出力の初期値として定格値(3,293MW),原子炉圧力(圧 力容器ドーム部)の初期値として定格値(6.93MPa[gage])及び 炉心流量の初期値として定格値(48,300t/h(100%流量))を用 いるものとする。

b. 炉心及び燃料

炉心及び燃料に関する解析条件の設定を以下に示す。なお、炉 心に関する条件は9×9燃料(A型)を装荷した平衡サイクルを 想定した値,燃料ペレット/被覆管等の炉心及び燃料形状に関す る条件は設計値を用いるものとする。

(a) 原子炉停止後の崩壊熱

原子炉停止後の崩壊熱は,第1.5-1 図に示すANSI/AN S-5.1-1979に基づく崩壊熱曲線を使用する。また,使用する 崩壊熱は,燃焼度が高くなる条件として1サイクルの運転期間 (13ヶ月)に調整運転期間(1ヶ月)を考慮した最大の運転期間 に対応する燃焼度 33GWd/t の条件に対応したものとする。

(b) 最大線出力密度

燃料棒の最大線出力密度は,設計の最大値として,44.0kW /mを用いるものとする。

c. 原子炉圧力容器

原子炉水位の初期値は,通常運転水位とする。

- d. 格納容器
- (a) 容 積

格納容器容積について、ドライウェルは設計値として 5,700m³、ウェットウェル空間部及び液相部は、サプレッショ ン・プールでの圧力抑制効果が厳しくなる少なめの水量として、 サプレッション・プール水位の保安規定の運転上の制限におけ る下限値に対応する 4,100m³及び 3,300m³を用いるものとする。 (b) 初期温度及び初期圧力

格納容器の初期温度について、ドライウェル雰囲気温度は 57℃、サプレッション・プール水温度は 32℃を用いるものと する。また、格納容器の初期圧力は 5kPa[gage]を用いるもの とする。

(c) サプレッション・プール初期水位

サプレッション・プールの初期水位は、サプレッション・プ ールでの圧力抑制効果が厳しくなる低めの水位として、保安規 定の運転上の制限における下限値である 6.983m を用いるもの とする。

e. 外部水源の温度

外部水源の温度は、35℃を用いるものとする。

f. 主要機器の形状

原子炉圧力容器,原子炉冷却材圧力バウンダリを構成する配管, 格納容器等の形状に関する条件は設計値を用いるものとする。

- (2) 重大事故等対策に関連する機器条件
 - a. 安全保護系等の設定点

原子炉保護系の原子炉スクラム設定点として,以下の値を用いるものとする。

原子炉水位低(レベル3)

セパレータスカート下端から+66cm(遅れ時間 1.05 秒) 工学的安全施設作動回路等の設定点として,以下の値を用いる ものとする。

原子炉水位異常低下(レベル2)(原子炉隔離時冷却系起動) 設定点

セパレータスカート下端から-63cm

原子炉水位異常低下(レベル2)(高圧炉心スプレイ系起動) 設定点

セパレータスカート下端から-63cm

原子炉水位異常低下(レベル2)(再循環ポンプトリップ) 設定点

セパレータスカート下端から-63cm

原子炉水位異常低下(レベル2)(主蒸気隔離弁閉止)設定 点

セパレータスカート下端から-63cm

原子炉水位異常低下(レベル1)(低圧炉心スプレイ系起動) 設定点

セパレータスカート下端から-345cm

原子炉水位異常低下(レベル1)(低圧注水系起動)設定点

セパレータスカート下端から-345cm

原子炉圧力高(再循環ポンプトリップ)設定点

原子炉圧力 7.39MPa [gage]

格納容器圧力高(高圧炉心スプレイ系起動,自動減圧系作動) 設定点

格納容器圧力 13.7kPa [gage]

b. 逃がし安全弁

逃がし安全弁の吹出し圧力及び容量(吹出し圧力における値)

は、設計値として以下の値を用いるものとする。

7.79MPa[gage]×2 個, 385.2t/h/個

8.10MPa[gage]×4 個, 400.5t/h/個

8.17MPa[gage]×4 個, 403.9t/h/個

8.24MPa[gage]×4 個, 407.2t/h/個

8.31MPa[gage]×4 個, 410.6t/h/個

c. ベント管真空破壊装置

ベント管真空破壊装置の作動条件は,設計値(3.45kPa(ドラ イウェルーサプレッション・チェンバ間差圧))を用いるものと する。

- 1.5.2.2 運転中の原子炉における重大事故
- (1) 初期条件

1.5.2.1(1)に同じ。なお、「1.5.2.1(1)b. 炉心及び燃料」の うち、最大線出力密度については、条件として用いていない。

(2) 重大事故等対策に関連する機器条件

1.5.2.1(2)に同じ。

- 1.5.2.3 使用済燃料プールにおける重大事故に至るおそれがある事 故
 - (1) 初期条件
 - a. 燃料崩壞熱

使用済燃料プールには貯蔵燃料の他に,原子炉の停止後最短期 間(原子炉停止後9日)で取り出された全炉心分の燃料と過去に 取り出された燃料を合わせて,使用済燃料貯蔵ラックに最大数が 貯蔵されていることを想定して,使用済燃料プールの崩壊熱は約9.1MWを用いるものとする。

b. 使用済燃料プール水温

使用済燃料プールの初期水温は,通常運転中の最大値として, 保安規定の運転上の制限値である65℃を用いるものとする。

c. 使用済燃料プールのプールゲートの状態

保有水量を厳しく見積もるため,使用済燃料プールと隣接する 原子炉ウェルとの間に設置されているプールゲートは閉状態と する。

d. 主要機器の形状

使用済燃料プール等の主要機器の形状に関する条件は設計値 を用いる。

(添付資料1.5.3)

- 1.5.2.4 運転停止中の原子炉における重大事故に至るおそれがある
 事故
 - (1) 初期条件(事故シーケンスグループ「反応度の誤投入」を除く)a. 崩壊熱

原子炉停止後の崩壊熱は,第1.5-1図に示すANSI/ANS -5.1-1979に基づく崩壊熱曲線を使用し,崩壊熱を厳しく見積も るために,原子炉停止1日後の崩壊熱として約18.8MWを用いるも のとする。

b. 原子炉圧力

水位低下量を厳しく見積もるために,原子炉圧力の初期値は大 気圧とし,事象発生後も大気圧が維持されるものとする。 c. 原子炉水温

残留熱除去系の原子炉停止時冷却モードでの炉水側の設計温 度として、原子炉水温の初期値は52℃とする。

d. 主要機器の形状

原子炉圧力容器等の形状に関する条件は設計値を用いるものとする。

1.6 解析の実施方針

有効性評価における解析は,評価項目となるパラメータの推移の ほか,事象進展の状況を把握する上で必要なパラメータの推移につ いて解析を実施する。

なお,事象進展の特徴や厳しさ等を踏まえ,原子炉等が安定状態 に導かれ,評価項目を満足することが解析以外の方法で合理的に説 明できる場合はこの限りではない。

1.7 解析コード及び解析条件の不確かさの影響評価方針

解析コード及び解析条件の不確かさの影響評価の範囲として,運 転員等操作時間に与える影響,評価項目となるパラメータに与える 影響及び操作余裕時間を評価する。ここで,操作の不確かさの影響 とは,運転員等操作に対する不確かさ要因である,認知,要員配置, 移動,操作所要時間,他の並列操作有無及び操作の確実さに起因し て生じる運転員等操作の開始時間の変動が,有効性評価の成立性に 与える影響のことである。

不確かさ等の影響確認は,評価項目となるパラメータの判断基準 に対する余裕が小さくなる場合に感度解析等を行う。事象推移が緩

1 - 49

やかであり,重畳する影響因子がないと考えられる等,影響が容易 に把握できる場合は,選定している重要事故シーケンスの解析結果 等を用いて影響を確認する。事象推移が早く,現象が複雑である等, 影響が容易に把握できない場合は,事象の特徴に応じて解析条件を 変更した感度解析によりその影響を確認する。

(添付資料 1.7.1)

1.7.1 解析コードにおける重要現象の不確かさの影響評価

「1.4 有効性評価に使用する計算プログラム」においては,重要 現象として評価指標及び運転操作に対する影響が大きい又は中程度 と考えられる物理現象を選定しており,そのうち第 1.7-1 表から第 1.7-3 表に示す物理現象を有効性評価において評価項目となるパラ メータに有意な影響を与えると整理している。解析コードの不確か さは,選定している重要事故シーケンスにおける上記の物理現象に 対する不確かさを考慮し,運転員等操作時間に与える影響及び評価 項目となるパラメータに与える影響を確認する。

1.7.2 解析条件の不確かさの影響評価

解析条件のうち,初期条件,事故条件及び機器条件の不確かさに ついて,運転員等操作時間に与える影響及び評価項目となるパラメ ータに与える影響を確認する。また,解析条件のうち操作条件の不 確かさとして,操作の不確かさ要因に起因して生じる運転員等操作 の開始時間の変動が,その操作開始時間に与える影響及び評価項目 となるパラメータに与える影響を確認する。 1.7.3 操作時間余裕の把握

解析上考慮する運転員等操作について、その遅れによる影響度合いを把握する観点から、評価項目となるパラメータに対して、対策 の有効性が確認できる範囲内での操作時間余裕を確認する。

- 1.8 必要な要員及び資源の評価方針
- 1.8.1 必要な要員の評価

重大事故等対策時において,時間外,休日(夜間)における要員 の確保の観点から,「技術的能力に係る審査基準への適合状況説明資 料」で整備されている体制にて,対処可能であることを確認すると ともに,必要な作業が所要時間内に実施できることを確認する。

1.8.1 必要な資源の評価

重大事故等対策時において,必要となる水源,燃料及び電源の資源の確保の観点から,必要水量,燃料消費量及び電源負荷を確認するとともに,7日間継続してこれらの資源が供給可能であることを評価する。また,有効性評価において考慮されていない機器についても,使用した場合を想定して,各資源について7日間継続して資源の供給が可能であることを確認する。

			技術的能力審查基準	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16
			設置許可基準規則/技術基準規則	44 条 /59 条	45 条 /60 条	46 条 /61 条	47 条 /62 条	48 条 /63 条	49 条 /64 条	50 条 /65 条	51 条 /66 条	52 条 /67 条	53 条 /68 条	54条 /69条	55 条 /70 条	56 条 /71 条	57 条 /72 条	58 条 /73 条	59 条 /74 条
事故シーケンスグループ等		も故シーケンスグループ等	重要事故シーケンス	未臨界にするための手順等緊急停止失敗時に発電用原子炉を	発電用原子炉を冷却するための手順等原子炉冷却材圧力バウンダリ高圧時に	減圧するための手順等原子炉冷却材圧力バウンダリを	発電用原子炉を冷却するための手順等原子炉冷却材圧力バウンダリ低圧時に	熱を輸送するための手順等最終ヒートシンクへ	冷却等のための手順等原子炉格納容器内の	過圧破損を防止するための手順等原子炉格納容器の	溶融炉心を冷却するための手順等原子炉格納容器下部の	破損を防止するための手順等水素爆発による原子炉格納容器の	損傷を防止するための手順等水素爆発による原子炉建屋等の	冷却等のための手順等使用済燃料貯蔵槽の	拡散を抑制するための手順等工場等外への放射性物質の	水の供給手順等重大事故等の収束に必要となる	電源の確保に関する手順等	事故時の計装に関する手順等	居住性等に関する手順等原子炉制御室の
	2.1	高圧・低圧注水機能喪失	運転時の異常な過渡変化又は設計基準事故(LOCA を除く)の発生後,高圧注水機能が喪失し,原子炉 減圧には成功するが,低圧注水機能が喪失する事故			•	•	•	•							•	•	•	
	2.2	高圧注水・減圧機能喪失	運転時の異常な過渡変化又は設計基準事故(LOCA を除く)の発生後,高圧注水機能が喪失し,かつ, 原子炉減圧機能が喪失する事故			•													
		全交流動力電源喪失 (長期 T B)	外部電源喪失発生後,非常用ディーゼル発電機の起動に失敗する事故		•	•	•		•							•	•	•	
	2.3	全交流動力電源喪失 (TBD, TBP, TBU)	外部電源喪失発生後,非常用ディーゼル発電機の起動に失敗し,かつ,直流電源が喪失,逃がし安全弁 再閉に失敗又は原子炉隔離時冷却系の起動に失敗 する事故			•	•		•								•	•	
炉心損	0.4	崩壊熱除去機能喪失 (取水機能が喪失した場合)	運転時の異常な過渡変化又は設計基準事故(LOCA を除く)の発生後、炉心冷却には成功するが、取水 機能の喪失により崩壊熟除去機能が喪失する事故		•	•	•	•	•								•	•	
傷 防 止	2.4	崩壊熱除去機能喪失 (残留熱除去系が故障した場合)	連転時の異常な過渡変化又は設計基準事故(LOCA を除く)の発生後、炉心冷却には成功するが、残留 熱除去系の故障により崩壊熱除去機能が喪失する 事故			•	•	•	•							•	●	•	
	2.5	原子炉停止機能喪失	運転時の異常な過渡変化の発生後,原子炉停止機能 が喪失する事故	•															
	2.6	L O C A 時注水機能喪失	原子炉の出力運転中に原子炉冷却材圧力バウンダ リを構成する配管の中小規模の破断の発生後,高圧 注水機能及び低圧注水機能が喪失する事故			•	•	•	•							•	•	•	
	2.7	格納容器バイパス (インターフェイスシステムLOC A)	原子炉冷却材圧力パウンダリと接続された系統で, 高圧設計部分と低圧設計部分のインターフェイス となる配管のうち,隔離弁の故障等により,低圧設 計部分が過圧され破断する事故			•	•		•								•	•	
	2.8	津波浸水による注水機能喪失	津波により海水取水ポンプエリア及び原子炉建屋 への大量浸水が発生することで,取水機能及び原子 炉注水機能が喪失する事故		•	•	•	•	•								•	•	

第1.2-1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(1/11)

			技術的能力審査基準	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	1.11	1.12	1.13	1.14	1.15	1.16
			設置許可基準規則/技術基準規則	44 条 /59 条	45 条 /60 条	46 条 /61 条	47 条 /62 条	48 条 /63 条	49 条 /64 条	50 条 /65 条	51 条 /66 条	52 条 /67 条	53 条 /68 条	54 条 /69 条	55 条 /70 条	56 条 /71 条	57 条 /72 条	58 条 /73 条	59 条 /74 条
事故シーケンスグループ等		故シーケンスグループ等	重要事故シーケンス	未臨界にするための手順等緊急停止失敗時に発電用原子炉を	発電用原子炉を冷却するための手順等原子炉冷却材圧力バウンダリ高圧時に	減圧するための手順等原子炉冷却材圧力バウンダリを	発電用原子炉を冷却するための手順等原子炉冷却材圧力バウンダリ低圧時に	熱を輸送するための手順等	冷却等のための手順等原子炉格納容器内の	過圧破損を防止するための手順等原子炉格納容器の	溶融炉心を冷却するための手順等原子炉格納容器下部の	破損を防止するための手順等水素爆発による原子炉格納容器の	損傷を防止するための手順等水素爆発による原子炉建屋等の	冷却等のための手順等使用済燃料貯蔵槽の	拡散を抑制するための手順等工場等外への放射性物質の	水の供給手順等重大事故等の収束に必要となる	電源の確保に関する手順等	事故時の計装に関する手順等	居住性等に関する手順等原子炉制御室の
14	3.1	雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) (代替循環冷却を使用する場合) 雰囲気圧力・温度による静的負荷	LOCA 発生時に高圧・低圧注水機能が喪失する事故 であり、代替循環冷却を使用する場合				•		•	•	•						•	•	
格 納 容		(格納容器過圧・過温破損) (代替循環冷却を使用しない場合)	LOCA 発生時に高圧・低圧注水機能が喪失する事故 であり、代替循環冷却を使用しない場合				•		•	•	•					•	•	•	
器 破	3.2	高圧溶融物放出/格納容器直接加熱	原子炉の出力運転中の過渡事象の発生と,原子炉へ の注水機能が全喪失する事故			•	•		•	•	•		•				•	●	
損 防	3.3	原子炉圧力容器外の 溶融燃料 - 冷却材相互作用	原子炉の出力運転中の過渡事象の発生と,原子炉へ の注水機能が全喪失する事故			•	•		•	•	•		•				•	•	
止	3.4	水素燃焼	LOCA発生時に高圧・低圧注水機能が喪失する事故 であり、代替循環冷却を使用する場合				•		•	•	•	•					•	●	
	3.6	溶融炉心・コンクリート相互作用	原子炉の出力運転中の過渡事象の発生と,原子炉へ の注水機能が全喪失する事故			•	•		•	•	•		•				•	•	
日 日 日 日 日 日 日 日 日 日 日 日 日 日	4.1	想定事故1	使用済燃料プールの冷却機能又は注水機能が喪失 することにより,使用済燃料プール内の水の温度が 上昇し、蒸発により水位が低下する事故											•		•	•	•	
防燃料	4.2	想定事故 2	サイフォン現象等により使用済燃料プール内の水 の小規模な喪失が発生し,使用済燃料プールの水位 が低下する事故											•		•	•	•	
位	5.1	崩壞熱除去機能喪失	原子炉の運転停止中に残留熱除去系の故障により, 崩壊熱除去機能が喪失する事故																
中の	5.2	全交流動力電源喪失	原子炉の運転停止中に全交流動力電源が喪失し,残 留熱除去系等による崩壊熱除去機能が喪失する事 故				•	•									•	•	
の燃料損傷防止	5.3	原子炉冷却材の流出	原子炉の運転停止中に原子炉冷却材圧力バウンダ リに接続された系統から,運転員の誤操作等により 系外への冷却材の漏えいが発生し,崩壊熱除去機能 が喪失する事故																
	5.4	反応度の誤投入	原子炉の運転停止中に制御棒の誤引抜き等によっ て,燃料に反応度が投入されることにより,臨界に 達する事故																

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(2/11)

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(3/11)

		重要事故シーケンス 使用済燃料																						
			炉心の著しい損傷の防止									原子炉格納容器の破損の防止							脊燃料 曹内の 皮損の 止	運転	運転停止中原子炉内の 燃料損傷の防止			
技術的能力対応手段と有効性評価 比較表 ●:有効性評価において,解析上考慮している ○:有効性評価において,解析上考慮していない		高圧・	高圧注	全交流	(全 T 交 B 流	(崩 取壊 水熱	(崩 残壊 留熱	原子炉	L O C	L (格 O イ 納 C ン 容	津波浸	(((雰 代格 囲 替 納 気	格高 納 座 容	溶原 融子 燃炉	水素燃	溶融炉	想定事	想定事	停 (崩 止 残 壊 時 留 熱	全交流	原子炉	反応度	
		低圧注水機能率	水・減圧機能要	動力電源喪失	D , T B P , T B P , T	機能が喪失した除去系機能喪失	熱除去系が故障	停止機能喪失	A 時注 水機能 ==	A タ器 フィイ イス スシ	小による注水機	循環冷却を使用容器過圧・過温	循環冷却を使用容器過圧・過温度にト	器雰囲気直接加融物放出/	 (二) 力 <l< td=""><td>焼</td><td>心・コンクリー</td><td>故 1</td><td>故 2</td><td>冷却機能喪失)熱除去系の故障</td><td>動力電源喪失</td><td>冷却材の流出</td><td>の誤投入</td></l<>	焼	心・コンクリー	故 1	故 2	冷却機能喪失)熱除去系の故障	動力電源喪失	冷却材の流出	の誤投入	
※対応手段は、今後の検討等により変更となる可能性があります。		失	失	(長 期 T B	B U Ŭ	場合)	」 した 場 合		失	ステム	能喪失	「する湯」 (る静的角)	にしない場(る静的角)	熱	一 作 用		- ト 相 互 作			ドによる				
技術的能力 審査基準	対応手段			Ŭ)					〕荷	合荷				用							
	原子炉手動スクラム							0																
	代替制御棒挿入機能による制御棒緊急挿入							0																
	選択制御棒挿入機構による原子炉出力抑制							0																
1.1	原子炉再循環ポンプ停止による原子炉出力抑制							•																
	ほう酸水注入							•																
	原子炉水位低下							0																
	制御棒手動挿入							0																
	高圧代替注水系の中央制御室からの操作による原子炉の冷却	0	0		0				0					0	0		0							
	高圧代替注水系の現場操作による原子炉の冷却																							
	原子炉隔離時冷却系の中央制御室からの操作による原子炉の冷却			•		•					●													
1.2	代替交流電源設備による原子炉隔離時冷却系への給電																							
	代替直流電源設備による原子炉隔離時冷却系への給電																							
	ほう酸水注入系による進展抑制																							
	制御棒駆動水圧系による進展抑制	0	0				0		0															

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(4/11)

											重	[要事故シーケン	ノス									
			炉心の著しい損傷の防止 原子炉格納容器の破損の防止												:	使用済燃料貯 蔵槽内の燃料 破損の防止 選転停止中原子炉内 燃料損傷の防止						
技術的能力対応手段と有効性評価 比較表 ●:有効性評価において,解析上考慮している ○:有効性評価において,解析上考慮していない		高圧・低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期	(TBD、TBP、TBU	(取水機能が喪失した場合崩壊熱除去系機能喪失	(残留熱除去系が故障した崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	LOCA)(インターフェイスシステ格納容器バイパス	津波浸水による注水機能喪	(代替循環冷却を使用する(格納容器過圧・過温破損雰囲気圧力・温度による静気性が調査)と、過温破損気性が、した、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料―冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相	想定事故 1	想定事故2	停止時冷却機能喪失)(残留熱除去系の故障によ崩壊熱除去機能喪失	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
※対応手段は、今後の検討等により変更となる可能性があります。				T B Ŭ	Ŭ)	場 合)			Д	失	場) 的 い) 的 合 負 場 負 一 荷 合 荷				互 作 用			3			
技術的能力 審査基準	対応手段											Ĭ										
	原子炉減圧の自動化		•																			
	手動による原子炉の減圧	•		•		•	•		•		•		•	•		•						
	常設代替直流電源設備による減圧				•																	
	可搬型代替直流電源設備による減圧				0																	
	逃がし安全弁用可搬型蓄電池接続による減圧																					
1.3	代替逃がし安全弁駆動装置による減圧																					
	高圧窒素ガス供給系(非常用)による作動窒素ガス確保																					
	主蒸気逃がし安全弁の背圧対策																					
	代替直流電源設備による復旧																					
	代替交流電源設備による復旧																					
	ISLOCA発生時の対応手順									•												

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(5/11)

		重要事故シーケンス 使用済燃料貯 運転値止中国で続け																					
					炉心	の著し	い損傷の	り防止					原子炉	格納容	器の破損	員の防止	-	使用済燃料貯 蔵槽内の燃料 破損の防止 運転4 燃			;停止中 燃料損(原子炉 傷の防⊥	内の と
技術的能力対応手段と有効性評価 比較表 ●:有効性評価において,解析上考慮している ○:有効性評価において,解析上考慮していない ※対応手段は,今後の検討等により変更となる可能性があります。		高圧·低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期TB	(TBD,TBP,TBU)全交流動力電源喪失	(取水機能が喪失した場合)崩壊熱除去系機能喪失	(残留熱除去系が故障した場合崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	LOCA)(インターフェイスシステム格納容器バイパス	津波浸水による注水機能喪失	(代替循環冷却を使用する場合(格納容器過圧・過温破損) 雰囲気圧力・温度による静的負	(代替循環冷却を使用しない場(格納容器過圧・過温破損)雰囲気圧力・温度による静的負	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料―冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相互作	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去系の故障による崩壊熱除去機能喪失)	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
技術的能力 審査基準	対応手段	-) 荷	合荷)				用						
	低圧代替注水系(常設)による原子炉の冷却	•			•	•	•		•	•	•	•	•			•					•		
	低圧代替注水系(可搬型)による原子炉の冷却	0		•	0	0	0		0		0	0	0			0					0		
	代替循環冷却系による原子炉の冷却											•											
	消火系による原子炉の冷却	0		0	0	0	0		0		0	0	0			0					0		
	補給水系による原子炉の冷却	0					0		0														
	常設代替交流電源設備による残留熱除去系(低圧注水系)の復旧			•	•	•					•												
1.4	低圧代替注水系(常設)による残存溶融炉心の冷却																						
	低圧代替注水系(可搬型)による残存溶融炉心の冷却																						
	代替循環冷却系による残存溶融炉心の冷却													•	•		•						
	消火系による残存溶融炉心の冷却																						
	補給水系による残存溶融炉心の冷却																						
	常設代替交流電源設備による残留熱除去系(原子炉停止時冷却系)の 復旧																				•		
	格納容器圧力逃がし装置による格納容器内の減圧及び除熱	•					•		•														
	耐圧強化ベント系による格納容器内の減圧及び除熱	0					0		0														
1.5	格納容器圧力逃がし装置による格納容器内の減圧及び除熱(現場操作)	0					0		0														
	常設代替海水取水設備による除熱					•					•										•		
	代替残留熱除去系海水系による除熱					0					0										0		
第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(6/11)

											重	要事故	シーケン	イス								·	
					炉心	の著し	い損傷の)防止					原子炉	各納容者	器の破損	員の防止		使用済 蔵槽内 破損0	燃料 町 の燃料 の防止	宁 译 運転	:停止中 然料損(原子炉 傷の防」	内の E
技術的f ●:7 ○:7	追力対応手段と有効性評価 比較表 有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない	高圧·低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期	(TBD, TBP, TBU 全交流動力電源喪失	(取水機能が喪失した場合崩壊熱除去系機能喪失	(残留熱除去系が故障した崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	L O C A) (インターフェイスシステ 格納容器バイパス	津波浸水による注水機能喪	(代替循環冷却を使用する(格納容器過圧・過温破損雰囲気圧力・温度による静	(代替循環冷却を使用しな(格納容器過圧・過温破損雰囲気圧力・温度による静	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料―冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去系の故障によ崩壊熱除去機能喪失	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
※対応	、手段は、今後の検討等により変更となる可能性があります。			T B O	<u> </u>)	場合			Д	失	場)的 合負) 荷	い)的場損点				互作田			る			
技術的能力 審査基準	対応手段											Juj					11						
	代替格納容器スプレイ冷却系(常設)による格納容器内の冷却	•		0	0	0	•		•		0	•	•	•	•	•	•						
	代替格納容器スプレイ冷却系(可搬型)による格納容器内の冷却	0		•	0	0	0		0		0	0	0	0	0	0	0						
	代替循環冷却系による格納容器除熱	0		0	0	0	0		0		0	•	0	•	•	•	•						
1.6	消火系による格納容器内の冷却	0		0	0	0	0		0		0	0	0	0	0	0	0						
1.0	補給水系による格納容器内の冷却	0		0	0	0	0		0		0			0	0		0						
	ドライウェル内ガス冷却装置による格納容器除熱											0	0	0	0	0	0						
	常設代替交流電源設備による残留熱除去系(格納容器スプレイ冷却系)の復旧			•	•	•					●												
	常設代替交流電源設備による残留熱除去系(サプレッション・プール 冷却系)の復旧			0	0	0					0												
	格納容器圧力逃がし装置による格納容器内の減圧及び除熱											0	•	0	0	0	0						
1 7	格納容器圧力逃がし装置による格納容器内の減圧及び除熱(現場操作)												0										
1. /	代替循環冷却系による原子炉格納容器内の減圧及び除熱											•	0	•	•	•	•						
	サプレッション・プール水 p H 制 御設備による薬液注入											0	0	0	0	0	0						

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(7/11)

											重	要事故	シーケン	/ス									
					炉心	の著しい	い損傷の	り防止					原子炉	格納容者	器の破損	員の防止	-	使用	済燃料 槽内の 破損の 5止	運転	、停止中 然料損傷	原子炉 ��の防止	 力の
技術的 ●: [:] ○: [:] ※対G	能力対応手段と有効性評価 比較表 有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない 5.手段は,今後の検討等により変更となる可能性があります。	高圧·低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期	(TBD, TBP, TBU 全交流動力電源喪失	(取水機能が喪失した場合崩壊熱除去系機能喪失	(残留熱除去系が故障した崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	L O C A) (インターフェイスシステ	津波浸水による注水機能喪	(代替循環冷却を使用する(格納容器過圧・過温破損雰囲気圧力・温度による静	(代替循環冷却を使用しな(格納容器過圧・過温破損雰囲気圧力・温度による静	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料 冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去飛の故障によ崩壊熱除去機能喪失)	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
技術的能力 審査基準	対応手段			Т В Ŭ			場合)			4	失	場 ⁻ 的 合 負) 荷	い ⁻ 的 場 負 荷				互 作 用			\$			
	格納容器下部注水系(常設)によるペデスタル(ドライウェル部)への注水											•	•	•	•	•	•						
	格納容器下部注水系(可搬型)によるペデスタル(ドライウェル部) への注水											0	0	0	0	0	0						
	消火系によるペデスタル(ドライウェル部)への注水											0	0	0	0	0	0						
	補給水系によるペデスタル(ドライウェル部)への注水													0	0		0						
	原子炉隔離時冷却系による原子炉圧力容器への注水																						
1.0	高圧代替注水系による原子炉圧力容器への注水													0	0		0						
1.8	低圧代替注水系(常設)による原子炉圧力容器への注水											•	•			•							
	低圧代替注水系(可搬型)による原子炉圧力容器への注水											0	0	0	0	0	0						
	代替循環冷却系による原子炉圧力容器への注水											•	0	0	0	•	0						
	消火系による原子炉圧力容器への注水											0	0	0	0	0	0						
	補給水系による原子炉圧力容器への注水													0	0		0						
	ほう酸水注入系による原子炉圧力容器へのほう酸水注入																						
	格納容器内不活性化による格納容器水素爆発防止															•							
	格納容器圧力逃がし装置等による格納容器内の水素ガス及び酸素ガ スの排出															0							
1.9	可燃性ガス濃度制御系による水素濃度制御																						
	水素濃度監視											0	0	0	0	0	0						
	代替電源による必要な設備への給電																						

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(8/11)

											重	要事故	シーケン	ノス							-		
					炉心	の著し	い損傷の	り防止					原子炉	格納容者	器の破損	員の防止	· -	使用済 蔵槽内 破損(F燃料貯 1の燃料 の防止	運軋	₹停止中 燃料損(原子炉 傷の防止	内の :
技術的 ●: ○:	能力対応手段と有効性評価 比較表 有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない	高圧·低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期	(TBD, TBP, TBU) 全交流動力電源喪失	(取水機能が喪失した場合)崩壊熱除去系機能喪失	(残留熱除去系が故障した胃崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	LOCA) (インターフェイスシステ、 格納容器バイパス	津波浸水による注水機能要が	(代替循環冷却を使用する!)(格納容器過圧・過温破損)雰囲気圧力・温度による静?	(代替循環冷却を使用しな(格納容器過圧・過温破損)雰囲気圧力・温度による静?	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料―冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相一	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去系の故障による崩壊熱除去機能喪失)	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
※対/	芯手段は, 今後の検討等により変更となる可能性があります。 ┓	_		B			場合)			Д	矢	場 的 合 負	い ⁻ 的 場 負 合 荷				作用			5			1
技術的能力 審査基準	対応手段											14)					Л						
	静的触媒式水素再結合器による水素濃度抑制																						
	原子炉建屋原子炉棟内の水素濃度監視																						
	代替電源による必要な設備への給電																						
1.10	格納容器頂部注水系(常設)による注水													•	•		•						
	格納容器頂部注水系(可搬型)による注水																						
	原子炉建屋原子炉棟ベントによる水素ガスの排出																						
	常設低圧代替注水ポンプによる常設スプレイヘッダを使用した使用 済燃料プールへの注水																	0	0				
	可搬型代替注水系大型ポンプによる常設スプレイヘッダを使用した 使用済燃料プールへの注水																	•	•				
	可搬型代替注水系大型ポンプによる可搬型スプレイノズルを使用し た使用済燃料プールへの注水																	0	0				
	補給水系による使用済燃料プール注水																						
	消火系による使用済燃料プール注水																	0	0				
	サイフォン効果による使用済燃料プール水漏えい発生時の漏えい抑 制																		•				
	常設低圧代替注水ポンプによる常設スプレイヘッダを使用した使用 済燃料プールへのスプレイ																						
1.11	可搬型代替注水系大型ポンプによる常設スプレイヘッダを使用した 使用済燃料プールへのスプレイ																						
	可搬型代替注水系大型ポンプによる可搬型スプレイノズルを使用し た使用済燃料プールへのスプレイ																						
	使用済燃料プール漏えい緩和																						
	大気への拡散抑制																						
	使用済燃料プールの監視																	0	0				
	使用済燃料プール監視計器への代替電源による給電																	0	0				
	代替燃料プール冷却系による使用済燃料プール除熱	0	0	0	0	0	0	0			0	0	0	0	0	0	0			0	0		

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(9/11)

											重	要事故	ンーケン	イス									
					炉心	の著し	い損傷の)防止					原子炉	格納容	器の破掛	員の防止	-	使用	^斉 燃料 曹内の 皮損の 止	運転	。停止中 燃料損(原子炉 傷の防」	内の止
技術的	能力対応手段と有効性評価 比較表	高 圧	高圧注	全交流	(全 T 交 B 流	(崩 取壊 水熱	, 崩残壊留熱	原子炉	L O C	L 、 格 O イ 納 C ン 容	津波浸	((雰 代 格 囲 替 納 気	((雰 代格囲 替納気	格高納圧容溶	溶原 融子 燃炉	水素燃	溶融炉	想 定 事	想 定 事	停 (崩 止 残 壊 時 留 熱	全交流	原子炉	反応度
•:::	有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない	低圧注水機能喪	水・減圧機能喪	動力電源喪失(D , T B P , T T	機能が喪失した	「熱除去系が故障	停止機能喪失	A 時注水機能喪	A A フェイスシ ストン - スシ	水による注水機	「循環冷却を使用」容器過圧・過温	「循環冷却を使用」容器過圧・過温度によ	融物放出/ 加	料 冷却材相互	焼	心・コンクリー	故 1	故 2	冷却機能喪失)(熱除去機能喪失)	動力電源喪失	冷却材の流出	の誤投入
※対点	5手段は、今後の検討等により変更となる可能性があります。	失	失	長 期 T B	B U	場合)	し た 場 合		失	ステム	能喪失	する静的負	しない場の	熱	作 用		ト 相 互 作			による			
技術的能力 審査基準	対応手段			-)			1)					·) 荷	合荷				用						
	可搬型代替注水大型ポンプ及び放水砲による大気への拡散抑制																						
	放射性物質吸着材による海洋への拡散抑制																						
1.12	汚濁防止膜による海洋への拡散抑制																						
	可搬型代替注水大型ポンプ,放水砲及び泡消火薬剤(SA)による航空機燃料火災への泡消火																						
	可搬型代替注水大型ポンプによる代替淡水貯槽への補給	•					•		•				•					0	0				
1 13	淡水貯水池 B (A) から淡水貯水池 A (B) への補給																						
1.10	可搬型代替注水大型ポンプによる淡水貯水池への補給																						
	可搬型代替注水大型ポンプによる送水	0		•	0	0	0		0		0	0	0	0	0	0	0	•	•		0		

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(10/11)

											重	要事故	シーケン	ノス									
					炉心	の著し	い損傷の	の防止					原子炉	格納容	器の破損	員の防⊥	Ŀ	使用 貯蔵 燃料 び	済燃料 槽内の 破損の 5止	運載	≤停止中 燃料損↑	□原子炉 傷の防止	内の :
技術的↑ ●:: ○:: ²	能力対応手段と有効性評価 比較表 有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない	高圧・低圧注水機能喪失	高圧注水・減圧機能喪失	全交流動力電源喪失(長期	(TBD,TBP,TBU) 全交流動力電源喪失	(取水機能が喪失した場合崩壊熱除去系機能喪失	(残留熱除去系が故障した崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪失	LOCA) (インターフェイスシステ	津波浸水による注水機能喪	(代替循環冷却を使用する(格納容器過圧・過温破損雰囲気圧力・温度による静	(代替循環冷却を使用しな(格納容器過圧・過温破損雰囲気圧力・温度による静	格納容器雰囲気直接加熱高圧溶融物放出/	溶融燃料―冷却材相互作用原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリート相	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去蒸の故障によ崩壊熱除去機能喪失)	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
技術的能力 審查基準	対応手段	-		T B Ŭ			場 合)			7	失	場 ⁾ 的 合 负 づ荷	い 				互 作 用			3			
	常設代替高圧電源装置による非常用所内電気設備への給電			•	•	•					•	•	•	•	•	•	•				•		
	可搬型代替低圧電源車による非常用所内電気設備への給電			0	0	0					0	0	0	0	0	0	0				0		
	高圧炉心スプレイ系ディーゼル発電機による非常用所内電気設備へ の電力融通																						
	非常用ディーゼル(高圧炉心スプレイ系を含む)冷却系海水系への代 替海水送水																						
	所内常設直流電源設備による非常用所内電気設備への給電			•																			
	可搬型代替直流電源設備による直流 125V 主母線盤2A・2Bへの給電																						
1 14	常設直流電源喪失時の直流 125V 主母線盤 2 A ・ 2 B への給電																						
1.14	常設代替高圧電源装置による代替所内電気設備への給電	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		
	可搬型代替低圧電源車による代替所内電気設備への給電			0	0	0					0	0	0	0	0	0	0				0		
	常設代替直流電源設備による緊急用直流 125V 主母線盤への給電				•																		
	可搬型代替直流電源設備による緊急用直流 125V 主母線盤への給電																						
	可搬型設備用軽油タンクからタンクローリへの給油	•		•			•		•				•					•	•				
	タンクローリから各機器への給油	•		•			•		•				•					•	•				
	燃料補給設備による常設代替高圧電源装置への給油	•		•	•	•	•		•	•	•	•	•	•	•	•	•	•	•		•		

第1.2.1 表 有効性評価における重要事故シーケンスと技術的能力審査基準/設置許可基準規則/技術基準規則との関連(11/11)

											重	要事故	シーケン	イス									
					炉心	の著し	い損傷の)防止					原子炉	各納容岩	器の破損	員の防止		使用注 貯蔵 燃料 防	済燃料 曹内の 破損の 5止	運転	。停止中 然料損傷	原子炉 『の防止	対 の :
技術的† ●: ⁷ ○: ⁷	進力対応手段と有効性評価 比較表 有効性評価において,解析上考慮している 有効性評価において,解析上考慮していない	高圧·低圧注水機能喪	高圧注水・減圧機能喪	全交流動力電源喪失((TBD,TBP,T) 全交流動力電源喪失	(取水機能が喪失した崩壊熱除去系機能喪失	(残留熱除去系が故障崩壊熱除去機能喪失	原子炉停止機能喪失	LOCA時注水機能喪	L O C A A A A A A A A A A A A A A A A A A	津波浸水による注水機	(代替循環冷却を使用(格納容器過圧・過温雰囲気圧力・温度によ	(代替循環冷却を使用(格納容器過圧・過温雰囲気圧力・温度によ	格納容器雰囲気直接加高圧溶融物放出/	溶融燃料―冷却材相互原子炉圧力容器外の	水素燃焼	溶融炉心・コンクリー	想定事故1	想定事故2	停止時冷却機能喪失)(残留熱除去系の故障崩壊熱除去機能喪失	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入
※対応	「手段は、今後の検討等により変更となる可能性があります。	失	失	長 期 T B	B U Ŭ	場合)	し た 場 合		失	ステム	能 喪 失	する損) る静的自	しな 損) しな 損) し り 目	熱	作 用		ト 相 互 作			による			
技術的能力 審査基準	対応手段						1)					·〕 荷	》 合 一 荷				用						
	他チャンネルによる計測,代替パラメータによる推定(計器の故障時)											•	•			•							
	代替パラメータによる推定(計器の計測範囲を超えた場合)																						
1.15	蓄電池,代替電源(交流,直流)からの給電	•		•	•	•	•		•		٠	•	•	•	•	•	•	•	•		•		
	可搬型計測器によるパラメータの計測又は監視																						
	パラメータ記録																						
	中央制御室換気系,非常用ガス処理系及び非常用ガス再循環系の運転 手順等 交流動力電源が正常な場合																						
	中央制御室換気系,非常用ガス処理系及び非常用ガス再循環系の運転 手順等 全交流動力電源が喪失した場合											0	0	0	0	0	0						
	中央制御室の酸素及び二酸化炭素の濃度測定と濃度管理手順											0	0	0	0	0	0						
	中央制御室の照明を確保する手順																						
1.10	中央制御室待避室の照明を確保する手順												0										
1.16	データ表示装置(待避室)によるプラントパラメータの監視手順												0										
	中央制御室待避室準備手順												0										
	中央制御室待避室の酸素及び二酸化炭素の濃度測定と濃度管理手順												0										
	その他の放射線防護措置等に関する手順等											0	0	0	0	0	0						
	その他の手順項目について考慮する手順																						
	チェンジングエリアの設置及び運用手順										_	0	0	0	0	0	0						

第1.2-2表 重要事故シーケンスの選定(運転中の原子炉における重大事故に至るおそれがある事故)(1/2)

事故シーケンスグ	ループ	事故シーケンス	選定した事故シーケンス (重要事故シーケンス)
	1.		
局圧・低圧圧水機能喪失	天	• 週渡事象+ 高庄炉心冷却矢敗+ 低庄炉心冷却矢敗 调速事务 - 逃ぶ, 中人会 天開然告告, 京長長 > ※ 相告	· 週 渡 事 象 + 局 上 炉 心 伶 却 矢 敗 + 怟 上 炉 心 伶 却
			大 敗
		取+ 做 上 炉 心 伶 却 矢 敗	
		・手動停止/サボート系喪失(手動停止)+高圧炉心冷	
		却失敗+低圧炉心冷却失敗	
		・手動停止/サポート系喪失(手動停止)+逃がし安全	
		弁 再 閉 鎖 失 敗 + 高 圧 炉 心 冷 却 失 敗 + 低 圧 炉 心 冷 却 失 敗	
		・サポート系喪失(自動停止) + 高圧炉心冷却失敗+低	
		E 炉 心 冷 却 失 敗	
		・サポート系喪失(自動停止)+逃がし安全弁再閉鎖失	
		敗 + 高 圧 炉 心 冷 却 失 敗 + 低 圧 炉 心 冷 却 失 敗	
高圧注水・減圧機能喪気	夫	 ・過渡事象+高圧炉心冷却失敗+手動減圧失敗 	 ・過渡事象+高圧炉心冷却失敗+手動減圧失敗
		・手動停止/サポート系喪失(手動停止)+高圧炉心冷	
		却失敗 + 手動減圧失敗	
		・サポート系喪失(自動停止)+高圧炉心冷却失敗+手	
		動減圧失敗	
全交流動力電源喪失	長期TB	 ・外部電源喪失+DG失敗+HPCS失敗(RCIC成 	 外部電源喪失+DG失敗+HPCS失敗(R
		功)	C I C 成功)
		 ・サポート系喪失(直流電源故障)+DG失敗+HPC 	
		S 失敗 (R C I C 成功)	
	ΤΒD,	 外部電源喪失+直流電源失敗+高圧炉心冷却失敗 	 外部電源喪失+直流電源失敗+高圧炉心冷却
	ТВР,	 外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+ 	失敗
	ТВU	高 圧 炉 心 冷 却 失 敗	
		 ・サポート系喪失(直流電源故障) + D G 失敗 + 逃がし 	
		安全弁再閉鎖失敗 + 高圧 炉心冷却失敗	
		 外部電源喪失+DG失敗+高圧炉心冷却失敗 	
		 ・サポート系喪失(直流電源故障)+DG失敗+高圧炉 	
		心冷却失敗	

第1.2-2表 重要事故シーケンスの選定(運転中の原子炉における重大事故に至るおそれがある事故)(2/2)

事故シーケンスグループ	事故シーケンス	選定した事故シーケンス (重要事故シーケンス)
崩壊熱除去機能喪失	 ・過渡事象+RHR失敗 	 ・過渡事象+RHR失敗
	 ・過渡事象+逃がし安全弁再閉鎖失敗+RHR失敗 	
	・手動停止/サポート系喪失(手動停止) + R H R 失敗	
	・手動停止/サポート系喪失(手動停止)+逃がし安全	
	弁 再 閉 鎖 失 敗 + R H R 失 敗	
	・サポート系喪失(自動停止)+RHR失敗	
	・サポート系喪失(自動停止)+逃がし安全弁再閉鎖失	
	敗+RHR失敗	
	・LOCA+RHR失敗	
原子炉停止機能喪失	・過渡事象+原子炉停止失敗	 ・ 過 渡 事 象 + 原 子 炉 停 止 失 敗
	・サポート糸喪失(目動停止)+原子炉停止失敗	
	 ・LOCA+原子炉停止失敗 	
L O C A 時 注 水 機 能 喪 失	 LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗 	 ・LOCA+高圧炉心冷却失敗+低圧炉心冷却
	 ・LOCA+高圧炉心冷却失敗+原子炉减圧失敗 	失敗
格納容器バイパス(インターフェ	・インターフェイスシステムLOCA	・インターフェイスシステムLOCA
イスシステムLOCA)		
津波浸水による注水機能喪失	・原子炉建屋内浸水による複数の緩和機能喪失(全交流	・原子炉建屋内浸水による複数の緩和機能喪失
	動力電源喪失+最終ヒートシンク喪失)	(全交流動力電源喪失+最終ヒートシンク
	 ・最終ヒートシンク喪失(RCIC成功) 	喪失)
	・ 最終ヒートシンク喪失+高圧炉心冷却失敗	
	・最終ヒートシンク喪失+逃がし安全弁再閉鎖失敗	

第1.2-3表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(1/7)

格納容器破損モード	該当するPDS	選定したPDS	選定したPDSの考え方
雰囲気圧力・温度によ	• T Q U X	• L O C A + S B O	【事象進展(過圧・過温)緩和の余裕時間及び設備容量の厳しさ】
る静的負荷	 長期 T B 		 ・他のPDSと比較して、LOCAは原子炉冷却材の流出を伴うことから、
(格納容器過圧破損)	• T B D		水位低下が早く、事象進展が早い。
	• T B U		 ・過圧破損については対策として格納容器の除熱が必要となる。
	• L O C A		・過温破損については対策として格納容器(損傷炉心)への注水が必要と
			なる。
			・LOCAにECCS注水機能喪失及び全交流動力電源喪失を加えること
雰囲気圧力・温度によ			で、電源の復旧、注水機能の確保等必要となる事故対処設備が多く、格
る静的負荷			納容器破損防止対策を講じるための対応時間が厳しくなり、格納容器へ
(格納容器過温破損)			の注水・除熱対策の有効性を網羅的に確認可能なシナリオとなる。なお、
			いずれのPDSを選定しても必要な監視機能は維持可能である。
			以上より、LOCAにSBOを加え、過圧及び過温への対策の有効性を
			総合的に評価するためのPDSとする。
高圧溶融物放出/格	·ТQUX	· T Q U X	【事象進展緩和(減圧)の余裕時間の厳しさ】
納容器雰囲気直接加	 長期 T B 		・長期TBは事象初期においてRCICによる冷却が有効なPDSであり、
熱	• T B D		減圧までの余裕時間の観点ではTQUX,TBD.TBUの方が厳しい。
(DCH)	• T B U		・高圧状態で原子炉圧力容器破損に至る点ではTQUX, TBD, TBU
			にPDS選定上の有意な違いはない。
			以上より、最も厳しいPDSから、TQUXを評価対象PDSとして選
			定する。なお、いずれのPDSを選定しても必要な監視機能は維持可能で
			ある。

第1.2-3表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(2/7)

格納容器破損モード	該当するPDS	選定したPDS	選定したPDSの考え方
原子炉圧力容器外の溶	• Т Q U X	• T Q U V	【事象(FCIにおける発生エネルギーの大きさ)の厳しさ】
融燃料一冷却材相互作	• L O C A		・溶融燃料 - 冷却材相互作用の発生エネルギーは, 格納容器下部の水中に落下
用			する溶融炉心の量が多く,保有エネルギー大きくなるほど厳しくなる。この
(FCI)			観点から、高圧状態が維持されるPDSであるTQUX、TBD、TBU、
			長期TBはFCIの観点で厳しい事象とはならないと考えられる。
			・LOCAは、炉内での蒸気の発生状況の差異から、酸化ジルコニウムの質量
			割合が他の低圧破損シーケンス(TQUV,TBP)より小さくなり、デブ
			リの内部エネルギーが小さくなると考えられる。また, FCIは低温の水に
			落下する場合の方が厳しい事象であり, LOCAは破断口から高温の冷却材
			が流出し、ペデスタル(ドライウェル部)に滞留するため、FCIの観点で
			厳しい事象とはならないと考えられる。
			・TBPについて、事象初期のRCICによる一時的な注水を考慮すると、T
			QUVに比べて水位低下が遅く事象進展が遅い。
			 ・過渡事象のうち、原子炉の水位低下が早い事象を選定することで対応が厳し
			いシーケンスとなる
			以上より, FCIの厳しさの観点でTQUVを評価対象PDSとして選定す
			る。なお、いずれのPDSを選定しても必要な監視機能は維持可能である。
溶融炉心・コンクリー	・ΤQUV	• T Q U V	【事象(MCCIに寄与する溶融炉心のエネルギーの大きさ)及び事象緩和の
卜相互作用	• T Q U X		ための対応の厳しさ
(МССІ)	• T B P		・MCCIの観点からは、ペデスタル(ドライウェル部)に落トする溶融炉心
	• T B U		の割合が多くなる原子炉圧力容器が低圧で破損に全るシーケンスが厳しい。
	• L O C A		この観点で、高圧状態が維持されるPDSであるTQUX、TBD、TBU、
			長期TBはMCCIの観点で厳しい事象とはならないと考えられる。
			・ LOCAは、ベテスタル(ドライウェル部)への冷却材の流人の可能性があ
			り、MCCIへの対応を考慮する上で厳しい事象とはならないと考えられ
			・ 過渡事家の つち, 原子炉の水位低下が早い事家を選定することで対応が厳し
	1		いシーケンスとなる。

第1.2-3表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(3/7)

【有効性評価に関する審査ガイドの選定基準等との整合】	格納容器破損モード
 ホット酸化シーケンスを選定するし、と記載されているが、東海第二 が、点から厳しいシーケンスを選定する。」と記載されているが、東海第二 所では格納容器内を窒素で置換しているため、レベル1.5PRAで 燃焼により格納容器容器が破損するシーケンスは考慮していない。こ め、東海第二発電所において評価することが適切と考えられる評価事 ケンスを選定するものとする。 「評価において着目するパラメータ】 ・東海第二発電所では、格納容器内が窒素置換され、初期酸素濃度が低 れている。また、炉心損傷に伴い、水素は容易に可燃限界を超えること 水素燃焼防止の関点では酸素濃度が重要となる。このため、水の放射; に伴う酸素濃度の上昇に着目する。 「東海第二発電所において評価するシーケンス】 ・東海第二発電所において評価するシーケンス】 ・東海第二発電所において評価するシーケンス】 ・東海第二発電所において正価するシーケンス】 ・東海第二発電所において評価する。このため、水の放射; に伴う酸素濃度の上昇に着目する。 【東海第二発電所において評価する。 【東海第二発電所において評価する。 「東海第二発電所において評価する。 「東海第二発電所において正価する。 「東海第二発電所において正価する。 「京田気田力」のため、評価シーケンスでは、地路の厳しを考えられる。 これに加え、「雰囲気圧力・温度による静的長 ・密ると考えられる。これに加え、「雰囲気圧力・温度による静的長 ・密ると考えられる。これに加え、「アン本では、対応の厳しさの観点 のの重量を想定していることを考慮し、LOCA+SBOをPDSと 	格納容器破損モード 水素燃焼

第1.2-3 表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(4/7)

P D S	格納容器破損時期	原子炉圧力	炉心損傷時期	電源確保
ΤQUV	炉心損傷後	低圧	早期	交流電源 有 直流電源 有
ΤQUX	炉心損傷後	高圧	早期	交流電源 有 直流電源 有
長期TB	炉心損傷後	高圧	後期	交流電源 無 直流電源 有
ТВИ	炉心損傷後	高圧	早期	交流電源 無 直流電源 有
ТВР	炉心損傷後	低圧	早期	交流電源 無 直流電源 有
ТВД	炉心損傷後	高圧	早期	交流電源 無 直流電源 無
Т W ∕ Т В W	炉心損傷前	_	後期	
ТС	炉心損傷前	_	早期	I
LOCA	炉心損傷後	低圧	早期	交流電源 有 直流電源 有
ISLOCA	炉心損傷前	_	早期	_

補足: PDSの分類の定義

注:ハッチングは炉心損傷前に格納容器破損に至る事故シーケンスであることから,解釈1-2(b)に基づき, 「炉心の著しい損傷を防止する対策に有効性がある」ことを確認する。このため,格納容器破損防止対策の 有効性評価の対象外とするPDSを示す。

第1.2-3表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(5/7)

格納容器破損 モード	選定した PDS	事故シーケンス	選定した事故シーケンス	評価事故シーケンス
雰囲気圧力・温 度による静的 負荷 (格納容器過 圧破損)	• L O C A + S B O	 ・LOCA(大,中,小LOCA)+高圧炉心冷却失敗+低圧 炉心冷却失敗+損傷炉心冷却失敗+(デブリ冷却成功)+格 納容器注水(ドライウェル)失敗 ・LOCA(中,小LOCA)+高圧炉心冷却失敗+原子炉減 圧失敗+損傷炉心冷却失敗+(デブリ冷却成功)+格納容器 注水(ドライウェル)失敗 	 LOCA(大,中,小L OCA)+高圧炉心冷却 失敗+低圧炉心冷却失敗 +損傷炉心冷却失敗 +(デブリ冷却成功)+ 格納容器注水(ドライウ ェル)失敗 	 ・大LOCA+高圧炉 心冷却失敗+低圧 炉心冷却失敗+全 交流動力電源喪失 (過圧・過温の各々に おいて損傷炉心冷
雰囲気圧力・温 度による静的 負荷 (格納容器過 温破損)	• L O C A + S B O	 ・LOCA(大,中,小LOCA)+高圧炉心冷却失敗+低圧 炉心冷却失敗+損傷炉心冷却失敗+格納容器注水(ペデスタ ル)失敗 ・LOCA(中,小LOCA)+高圧炉心冷却失敗+原子炉減 圧失敗+損傷炉心冷却失敗+格納容器注水(ペデスタル)失 敗 	 LOCA(大,中,小L OCA)+高圧炉心冷却 失敗+低圧炉心冷却失敗 共損傷炉心冷却失敗 +格納容器注水(ペデス タル)失敗 	却失敗までは同じ 事故シーケンスと なり,各事故シーケ ンスの対策は損傷 炉心への注水(損傷 炉心冷却)の点で同 じとなることから, 有効性評を同じ事做 シーケンスで評価 している。)
高 圧 溶 融 物 放 出 / 格 納 容 器 雰 囲 気 直 接 加 熱 (D C H)	• T Q U X	 ・過渡事象+高圧炉心冷却失敗+手動減圧失敗+炉心損傷後の 手動減圧失敗+DCH ・手動停止/サポート系喪失(手動停止)+高圧炉心冷却失敗 +手動減圧失敗+炉心損傷後の手動減圧失敗+DCH ・サポート系喪失(自動停止)+高圧炉心冷却失敗+手動減圧 失敗+炉心損傷後の手動減圧失敗+DCH 	 ・過渡事象+高圧炉心冷却 失敗+手動減圧失敗+ 炉心損傷後の手動減圧 失敗+DCH 	 ・過渡事象+高圧炉心 冷却失敗+手動減 圧失敗+炉心損傷 後の手動減圧失敗 +DCH

第1.2-3表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(6/7)

格納容器破損	選定した			
モード	PDS	事故シーケンス	選定した事故シーケンス	評価事故シーケンス
原子炉圧力容	·ΤQUV	 ・過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心 	 ·過渡事象+高圧炉心冷却 	 ・過渡事象+高圧炉心
器外の溶融燃		冷却失敗+FCI(ペデスタル)	失敗 + 低圧炉心冷却失	冷却失敗+低圧炉
料一冷却材相		 ・過渡事象+逃がし安全弁再閉鎖失敗+高圧炉心冷却失敗+低 	敗 + 損 傷 炉 心 冷 却 失 敗	心 冷 却 失 敗 + 損 傷
互作用		圧炉心冷却失敗+損傷炉心冷却失敗+FCI (ペデスタル)	+FCI(ペデスタル)	炉 心 冷 却 失 敗 + F
(FCI)		・手動停止/サポート系喪失(手動停止)+高圧炉心冷却失敗		C I (ペデスタル)
		+ 低圧炉心冷却失敗 + 損傷炉心冷却失敗 + F C I (ペデスタ		
		ル)		
		・手動停止/サポート系喪失(手動停止)+逃がし安全弁再閉		
		鎖失敗+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷		
		却失敗+FCI(ペデスタル)		
		・サポート系喪失(自動停止)+高圧炉心冷却失敗+低圧炉心		
		冷却失敗+損傷炉心冷却失敗+FCI (ペデスタル)		
		・サポート系喪失(自動停止)+逃がし安全弁再閉鎖失敗+高		
		CI (ペデスタル)		
溶融炉心・コン	·ΤQUV	 ・過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心 	 ・過渡事象+高圧炉心冷却 	 ・過渡事象+高圧炉心
クリート相互		冷却失敗+デブリ冷却失敗 (ペデスタル)	失敗+低圧炉心冷却失	冷 却 失 敗 + 低 圧 炉
作用		・過渡事象+逃がし安全弁再閉鎖失敗+高圧炉心冷却失敗+低	敗 + 損 傷 炉 心 冷 却 失 敗	心 冷 却 失 敗 + 損 傷
(M C C I)		圧炉心冷却失敗+損傷炉心冷却失敗+デブリ冷却失敗(ペデ)	+デブリ冷却失敗(ペデ	炉 心 冷 却 失 敗 + デ
		スタル)	スタル)	ブリ冷却失敗(ペデ
		・手動停止/サポート系喪失(手動停止)+高圧炉心冷却失敗		スタル)
		+ 低圧 炉 心 冷 却 失 敗 + 損 傷 炉 心 冷 却 失 敗 + デ ブ リ 冷 却 失 敗		
		(ペデスタル)		
		・手動停止/サポート系喪失(手動停止)+逃がし安全弁再閉		
		鎖失敗+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷		
		却失敗+デブリ冷却失敗(ペデスタル)		
		・サボート系喪失(自動停止)+高圧炉心冷却失敗+低圧炉心		
		冷却失敗+損傷炉心冷却失敗+デブリ冷却失敗(ペデスタル)		
		・サボート糸喪失(自動停止)+逃がし安全弁再閉鎖失敗+高		
		圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷却失敗+デ		
		ブリ冷却失敗(ペデスタル)		

格納容器破損 モード	選定した PDS	事故シーケンス	選定した事故シーケンス	評価事故シーケンス
水素燃焼	• L O C A + S B O			 ・大LOCA+高圧炉 心冷却失敗+低圧 炉心冷却失敗+全 交流動力電源喪失 (+格納容器ベン ト無し)
				(ジルコニウム・水反 応な水気の ながかした。 がたまた、 がたたた。 がたたたたたたたたた にたたたたたたた にたたたたたたた にたたたた にたたた にたたた にたた にたた にたた にたた にたた に たた に たた に たた に たた に たた に た た の た で た の た で た の た で た の た で た の た で た の た で た の た で た の た の
				く 低下することから, 格納容器ベントを実 施しないシナリオを 評価するものとす る。)

第1.2-3 表 評価事故シーケンスの選定(運転中の原子炉における重大事故)(7/7)

第1.2-4 表 重要事故シーケンスの選定(運転停止中の原子炉における重大事故に至るおそれがある事故)

事故シーケンスグループ	事故シーケンス	選定した事故シーケンス (重要事故シーケンス)
崩壞熱除去機能喪失	 ・残留熱除去系の故障(RHR喪失)+崩壊熱除去・炉心 冷却失敗 ・残留熱除去系の故障(RHRS喪失)+崩壊熱除去・炉 心冷却失敗 ・外部電源喪失+崩壊熱除去・炉心冷却失敗 	 ・残留熱除去系の故障(RHR喪失)+崩壊熱除 去・炉心冷却失敗
全交流動力電源喪失	 ・外部電源喪失+交流電源失敗+崩壊熱除去・炉心冷却失敗 ・外部電源喪失+直流電源失敗+崩壊熱除去・炉心冷却失敗 	 ・外部電源喪失+交流電源失敗+崩壊熱除去・炉 心冷却失敗
原子炉冷却材の流出	 ・原子炉冷却材の流出(RHR切替時のLOCA)+崩壊 熱除去・炉心冷却失敗 ・原子炉冷却材の流出(CUWブロー時のLOCA)+崩 壊熱除去・炉心冷却失敗 ・原子炉冷却材の流出(CRD点検時のLOCA)+崩壊 熱除去・炉心冷却失敗 ・原子炉冷却材の流出(LPRM点検時のLOCA)+崩 壊熱除去・炉心冷却失敗 	 ・原子炉冷却材の流出(RHR切替時のLOCA) +崩壊熱除去・炉心冷却失敗
反応度の誤投入	・反応度の誤投入	 ・反応度の誤投入 (代表性の観点から停止中に実施される試験等により,最大反応度価値を有する制御棒1本が 全引き抜きされている状態から,他の1本の制 御棒が操作量の制限を超える誤った操作によって引き抜かれ,臨界近接を認知できずに臨界 に至る事象を想定する。)

第1.4-1表 有効性評価に使用する解析コード一覧表

-運転中の原子炉における重大事故に至るおそれがある事故-

事故シーケンスグループ	適用コード
高圧·低圧注水機能喪失	SAFER
	ΜΑΑΡ
高圧注水・減圧機能喪失	SAFER
	ΜΑΑΡ
全交流動力電源喪失	SAFER
	ΜΑΑΡ
崩壞熱除去機能喪失	SAFER
	ΜΑΑΡ
原子炉停止機能喪失	REDY
	S C A T
LOCA時注水機能喪失	SAFER
	ΜΑΑΡ
格納容器バイパス	SAFER
(インターフェイスシステムLOCA)	
津波浸水による注水機能喪失	SAFER
	МААР

第1.4-2表 有効性評価に使用する解析コード一覧表

-運転中の原子炉における重大事故-

格納容器破損モード	適用コード
雰囲気圧力・温度による静的負荷(格納容	МААР
器過 圧 ・ 過 温 破 損)	
高圧溶融物放出/格納容器雰囲気直接加熱	МААР
原子炉圧力容器外の溶融燃料ー冷却材相互	МААР
作用	
水素燃焼	МААР
溶融炉心・コンクリート相互作用	МААР

第1.4-3 表 有効性評価に使用する解析コード一覧表

-運転停止中の原子炉における重大事故に至るおそれがある事故-

運転停止中原子炉における燃料損傷防止	適用コード
崩壞熱除去機能喪失	_
全交流動力電源喪失	_
原子炉冷却材の流出	_
反応度の誤投入	АРЕХ
	SCAT(RIA用)

分類	重要現象	解析モデル	不確かさ
炉 心 (核)	崩壊熱	崩壊熱モデル	入力値に含まれる。最確条件を包絡できる条件を設定することにより崩壊 勢を大きくするよう考慮している。
	燃料棒表面熱伝達, 沸 騰遷移	燃料棒表面熱伝達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数を低めに評価する可能性が あり, 他の解析モデルの不確かさともあいまってコード全体として, スプ レイ冷却のある実験結果の燃料被覆管最高温度に比べて 10℃~50℃程度高 めに評価する。また, 低圧代替注水系による注水での燃料棒冷却過程にお ける蒸気単相冷却又は噴霧流冷却の不確かさは 20℃~40℃程度である。
炉 心 (燃 料)	燃料被覆管酸化	ジルコニウム-水反応モ デル	酸化量及び酸化反応に伴う発熱量をより大きく見積もる Baker-Just 式による計算モデルを採用しており、保守的な結果を与える。
	燃料被覆管変形	膨れ・破裂評価モデル	膨れ・破裂は,燃料被覆管温度と円周方向応力に基づいて評価され,燃料 被覆管温度は上述のように高めに評価され,円周方向応力は燃焼期間中の 変化を考慮して燃料棒内圧を大きく設定し保守的に評価している。従って, ベストフィット曲線を用いる場合も破裂の判定は保守的となることを確認 した。
炉心 (熱流動)	沸騰・ボイド率変化, 気液分離(水位変化)・ 対向流,三次元効果	二相流体の流動モデル	TBL, ROSA-Ⅲ, FIST-ABWRの実験解析において,二相水位変化は,解析結果 に重畳する水位振動成分を除いて,実験結果と概ね同等の結果が得られて いる。低圧代替注水系の注水による燃料棒冷却(蒸気単相冷却又は噴霧流 冷却)の不確かさは+20℃~+40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは,2MPaより低い圧力で系統 的に圧力低下を早めに予測する傾向を呈しており,解析上,低圧注水系の 起動タイミングを早める可能性が示される。しかし,実験で圧力低下が遅 れた理由は,水面上に露出した上部支持格子等の構造材の温度が燃料被覆 管からの輻射や過熱蒸気により上昇し,LPCS スプレイの液滴で冷却された 際に蒸気が発生したためであり,低圧代替注水系を注水手段として用いる 本事故シーケンスでは考慮する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注水系の注水タイミングに特 段の差異を生じる可能性はないと考えられる。
	気液熱非半衡	燃料棒衣面烈伝達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数を低めに評価する可能性が あり, 他の解析モデルの不確かさとも相まってコード全体として, スプレ イ冷却のない実験結果の燃料被覆管最高温度に比べて 10℃~50℃程度高め に評価する。

第1.4-4表 SAFERにおける重要現象の不確かさ等(1/2)

分類	重要現象	解析モデル	不確かさ
	冷却材放出 (臨界流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果と概 ね同等の解析結果が得られており, 臨界流モデルに関して特段の不確かさ を考慮する必要はない。
原子炉 圧力容器 (逃がし安 弁含む)	 沸騰・ボイド率変化 気液分離(水位変化)・ 対向流 全 	二相流体の流動モデル	下部プレナムの二相水位を除き,ダウンカマの二相水位(シュラウド外水 位)に関する不確かさを取り扱う。シュラウド外水位については,燃料被 覆管温度及び運転員操作のどちらに対しても二相水位及びこれを決定する 二相流動モデルの妥当性の有無は重要でなく,質量及び水頭のバランスだ けで定まるコラプスト水位が取り扱えれば十分である。このため,特段の 不確かさを考慮する必要はない。
	ECCS 注水(給水系・代 替注水含む)	原子炉注水系モデル	入力値に含まれる。各系統の設計条件に基づく原子炉圧力と注水流量の関係を使用しており,実機設備仕様に対して注水流量を少なめに与え,燃料 被覆管温度を高めに評価する。

第1.4-4表 SAFERにおける重要現象の不確かさ等(2/2)

分類	重要現象	解析モデル	不確かさ
	核分裂出力	核特性モデル	反応度フィードバック効果の不確かさに含まれる。
	反応度フィードバック	反応度モデル	原子炉スクラム失敗を仮定した主蒸気隔離弁の誤閉止の事象に対して、初
	効果	(ボイド・ドップラ)	期の運転状態から炉心流量、原子炉圧力、炉心入口エンタルピ及び軸方向
			出力分布が変化した場合の、炉心一点近似手法による不確かさに、反応度
			係数計算及び取替炉心設計段階における不確かさを考慮し、反応度係数の
			保守因子の変動範囲の検討から、事象進展期間にわたる保守因子の変動範
			囲として以下を確認した。
炉心			 動的ボイド係数 : 0.70~1.53
(核)			・動的ドップラ係数:0.81~1.25
		反応度モデル	高温停止に必要なボロン反応度の不確は、平衡炉心におけるほう酸水注入
		(ボロン)	系の三次元未臨界性評価における停止余裕基準の-1.5%∆kに, 炉心変更等
			の不確かさとして停止余裕基準と同等の 1.5%∆k を考慮して,-3%∆k を不
			確かさとした。
	崩壊熱	崩壊熱モデル	学会推奨値等と崩壊熱モデル式の比較から,崩壊熱計算の不確かさが-0.1%
			~+0.8%であることを確認した。
炉心	沸騰・ボイド率変化	炉心ボイドモデル	設計データとの比較手法から、炉心流量補正の不確かさとして、補正なし
(熱流動)			を下限,最大補正二次関数を上限として設定した。
	冷 却 材 流 コースト	再循環系モデル	再循環ポンプ慣性時定数の不確かさは、再循環ポンプの設計仕様から-10%
	量変化 ダウン特		~+10%であることを確認した。
原子炉	性		
圧力容器	自然循環		モデルの仮定に含まれる。
(逃がし安	流量		
全弁含む)	冷却材放出(臨界流·差	逃がし安全弁モデル	モデルにおける吹出し容量は,「日本工業規格 JISB8210」付属書記載の算
	圧流)		出式により計算された値をインプットデータとして用いており、吹出し容
			量の不確かさは-0%~+16.6%であることを確認した。

第1.4-5表 REDYにおける重要現象の不確かさ等(1/2)

	分類	重要現象	解析モデル	不確かさ
Γ		ECCS 注水	給水系モデル	給水モデルの不確かさは入力値に含まれる。
	原子炉	(給水系・代替の注水設		H P C S 流量の不確かさは入力値に含まれる。
	圧力容器	備含む)		サプレッション・プール水の初期エンタルピの不確かさは入力値に含まれ
	(逃がし安			る。
	全弁含む)	ほう酸水の拡散	ほう酸水拡散モデル	従来型BWR向けの試験結果から、保守的な値を使用していることを確認
				しており、不確かさは入力値に含まれる。
Γ	拔妯索吧	サプレッション・プー	格納容器モデル	モデル式の確認により保守的に評価することを確認しており、不確かさは
	俗附谷岙	ル冷却		モデルの保守性に含まれる。

第1.4-5表 REDYにおける重要現象の不確かさ等(2/2)

第1.4-6表 SCATにおける重要現象の不確かさ等

分類	重要現象	解析モデル	不確かさ
炉 心 (核)	出力分布変化	出力分布モデル	入力値に含まれる。
炉心 (燃料)	燃料棒内温度変化	熱伝導モデル,燃料ペレッ トー被覆管ギャップ熱伝 達モデル	入力値に含まれる。
	燃料棒表面熱伝達	熱伝達モデル,リウェット モデル	NUPEC BWR 燃料集合体熱水力試験の試験解析から, 沸騰遷移後の膜沸騰状態で修正 Dougall-Rohsenow 式及び相関式2 を適用することにより,燃料被覆管温度を高めに評価する傾向となることを確認した。
	沸騰遷移	沸騰遷移評価モデル	ATLAS 試験の測定限界出力と GEXL 相関式の予測限界出力から求められる標準偏差は 3.6%以下であることを確認した。
炉心 (熱流動)	気液熱非平衡	熱伝達モデル,リウェット モデル	NUPEC BWR 燃料集合体熱水力試験の試験解析から, 沸騰遷移後の膜沸騰状態で修正 Dougall-Rohsenow 式及び相関式 2 を適用することにより,燃料被 覆管温度を高めに評価する傾向となることを確認した。 また,発生した過熱蒸気の影響が隣接する燃料棒に波及しないことを確認 しており,不確かさの影響は修正 Dougall-Rohsenow 式に含まれる。

第 1.4-7 表	ΜΑΑΡ	における	重要現象の	不確かさ	き等((1/4)
-----------	------	------	-------	------	-----	-------

分類	重要現象	解析モデル	不確かさ
	崩壊熱	炉心モデル(原子炉出力及 び崩壊熱)	入力値に含まれる。
	燃料棒内温度変化	炉心モデル(炉心熱水力モ デル)	TMI事故解析における炉心ヒートアップ時の水素発生,炉心領域での溶融進 展世能について、TMI事故分析結果と良く一致することを確認した
	燃料棒表面熱伝達	溶融炉心の挙動モデル(炉 心ヒートアップ)	CORA 実験解析における,燃料被覆管,制御棒及びチャンネルボックスの温度変化について,測定データと良く一致することを確認した。
	燃料被覆管変形		炉心ヒートアップ速度の増加(燃料被覆管酸化が促進される場合)を想定 し,仮想的な厳しい振り幅ではあるが,ジルコニウム-水反応速度の係数を 2倍とした感度解析により影響を確認した。
》27 亿	燃料被覆管酸化		・TQUV,大破断 LOCA シーケンスともに炉心溶融の開始時刻への影響は小 さい。
	沸騰・ボイド率変化気液分離(炉心水	炉心モデル(炉心水位計算 モデル)	TQUX 及び中小破断 LOCA シーケンスに対して, MAAP コードと SAFER コード の比較を行い,以下の傾向を確認した。
	位)•対向流(炉心(熱 流動))		・MAAP コードでは CCFL を取り扱っていないこと等から水位変化に差異が生じたものの、水位低下幅は MAAP コードの方が保守的であり、その後の注す場次によるな燃料体帯部までのよりに気味剤は悪っ、ド
			の後の注水操作による有効燃料棒頂部までの水位回復時刻は両コートで同等である。
原子炉 圧力容器	冷却材放出(臨界流・差圧流)	原子炉圧力容器モデル(破 断流モデル)	逃がし安全弁からの流量は、設計値に基づいて計算される。
(逃がし安全弁含む)	ECCS 注水(給水系・代 替注水設備含む)	安全系モデル(非常用炉心 冷却系)	入力値に含まれる。

第1.4-7表 MAAPにおける重要現象の不確かさ等(2/4)

分類	重要現象	解析モデル	不確かさ					
	格納容器各領域間の流 動	格納容器モデル(格納容器 の熱水力モデル)	HDR 実験解析では,格納容器圧力及び CSTF 実験解析では,格納容器温度及 温度について,温度成層化を含めて び非凝縮性ガス濃度の挙動につい 傾向は良く再現できることを確認し て,解析結果が測定データと良く一					
	構造材との熱伝達及び 内部熱伝導		た。格納容器雰囲気温度を十数℃程 度高めに,格納容器圧力を1割程度					
	気液界面の熱伝達		局めに評価する傾向が確認された が、実験体系に起因するものと考え られ、実機体系においてはこの種の 不確かさけ小さくたると考えられ					
格納容器			る。また,非凝縮性ガス濃度の挙動 について,解析結果が測定データと 良く一致することを確認した。					
	スプレイ冷却	安全系モデル(格納容器ス プレイ)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平衡に至ることから伝熱モデ ルの不確かさはない。					
	放射線水分解等による 水素・酸素発生	格納容器モデル(水素発 生)	窒素置換による格納容器雰囲気の不活性化が行われており,酸素発生は水の放射線分解に起因する。					
	格納容器ベント	格納容器モデル(格納容器 の熱水力モデル)	入力値に含まれる。 MAAP コードでは格納容器ベントについては設計流量に基づいて流路面積を 入力値として与え,格納容器各領域間の流動と同様の計算方法が用いられ ている。					
	サプレッション・プー ル冷却	安全系モデル(非常用炉心 冷却系)	入力値に含まれる。					

第1.4-7表 MAAPにおける重要現象の不確かさ等(3/4)

分類	重要現象	解析モデル	不確かさ
	リロケーション	溶融炉心の挙動モデル(リ	TMI 事故解析における炉心損傷挙動について, TMI 事故分析結果と良く一致
		ロケーション)	することを確認した。
			リロケーションの進展が早まることを想定し、炉心ノード崩壊のパラメー
	構造材との熱伝達		タを低下させた感度解析により影響を確認した。
			・TQUV, 大破断 LOCA シーケンスともに、炉心溶融時刻, 原子炉圧力容器
			の破損時刻への影響が小さいことを確認した。
	原子炉圧力容器内	溶融炉心の挙動モデル(下	原子炉圧力容器内 FCI に影響する項目として, 溶融ジェット径, エントレ
	FCI(溶融炉心細粒化)	部プレナムでの溶融炉心	インメント係数及びデブリ粒子径をパラメータとして感度解析を行い、い
	原子炉圧力容器内	の 挙 動)	ずれのパラメータについても原子炉圧力容器破損時点での原子炉圧力に対
	FCI (デブリ粒子熱伝		する感度は小さいことを確認した。
原子炉	達)		
圧力容器	下部プレナムでの溶融	溶融炉心挙動モデル(下部	TMI 事故解析における下部プレナムの温度挙動について, TMI 事故分析結果
(炉心損傷	炉心の熱伝達	ブレナムでの溶融炉心挙	と良く一致することを確認した。
後)		動)	ト部プレナム内の溶融炉心と上面水ブールとの間の限界熱流束、ト部プレ
(逃かし安全			ナムギャップ除熱量に係る係数に対する感度解析を行い、原子炉圧力容器
开るむり			していたので、「「「「「「「」」」では、「「」」では、「「」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、
	原子炉圧刀容器破損	溶融炉心 挙動モテル(原子	原子炉圧刀谷器破損に影響するバフメータとして、制御棒駆動機構ハワシ
		炉圧刀谷器破損モアル)	ンク溶接部の破損判定に用いる最大いすみ(しさい値)に対する感度解析
			を行い、原于炉圧刀谷奋破損か約13分早よることを確認した。たたし、仮相的な厳止い条件に其べく破垢な用でも の一字機になけて影響はし八小さ
			②的な厳しい未件に基づく 脾机 結果 じめり、 夫機における影響は十万小さ いと判断される。
	原子 后 正 力 索 哭 内 FD 送	按八刻开式版 (FD) 送動工	V'こ刊例される。
	尿丁炉 <u>圧刀谷</u> 奋的「F 争 動	核力表生成初(Fr) 季動で デル	「ILDUS-FF 美駅時付により、FF 放山の開始時間を良く再免てきているものの 燃料 披露傍 温度を喜めに 証価 オステレに トルー 刍激 か FP 放出を示す 結
	34/	1 12	ッ, ※17 欧復百吨反と同じに町回りることにより、芯飯な FF 放田を小り柏 里とたった ただし この百田け宝輪における小相構た信心体系の構築に
			「へこなうに。ににし、このが凶は天妖におりる小尻侯なが心体示の侯族に」 トスものであり 宝楼の大相横た休系においてこの種の不確かさけ小さく
			なると考えられる。
	原子炉圧力容器内 FP 挙 動	核分裂生成物 (FP) 挙動モ デル	想的な厳しい条件に基づく解析結果であり、実機における影響は十分小 いと判断される。 PHEBUS-FP 実験解析により、FP 放出の開始時間を良く再現できているも の、燃料被覆管温度を高めに評価することにより、急激な FP 放出を示す 果となった。ただし、この原因は実験における小規模な炉心体系の模搦 よるものであり、実機の大規模な体系においてこの種の不確かさは小さ なると考えられる。

第1.4-7表 MAAPにおける重要現象の不確かさ等(4/4)

分類	重要現象	解析モデル	不確かさ
	原子炉圧力容器外 FCI (溶融炉心細粒化) 原子炉圧力容器外 FCI	溶融炉心の挙動モデル(格 納容器下部での溶融炉心 の挙動)	原子炉圧力容器外 FCI 現象に関する項目としてエントレインメント係数及 びデブリ粒子径をパラメータとして感度解析を行い,原子炉圧力容器外 FCI によって生じる圧力スパイクへの感度が小さいことを確認した。
	 (デブリ粒子熱伝達) 格納容器下部床面での 溶融炉心の拡がり 	溶融炉心の挙動モデル(格納容器下部での溶融炉心	MAAP コードでは溶融炉心の拡がり実験や評価に関する知見に基づき,落下した溶融炉心は床上全体に均一に拡がると仮定し,それを入力で与えてい
	溶融炉心と格納容器下 部プール水の伝熱	(7)	る。 MCCI現象への影響の観点で、エントレインメント係数、上面熱流束及び溶 融プールからクラストへの熱伝達係数をパラメータとした感度解析を行っ
格納容器 (炉心損傷			た。評価の結果、コンクリート浸食量に対して上面熱流束の感度が支配的 であることを確認した。また、上面熱流束を下限値とした場合でも、コン クリート浸食量が 22.5cm 程度に収まることを確認した。
俊)			上記の感度解析は、想定される範囲で厳しい条件を与えるものであり、美 績でのコンクリート浸食量は、感度解析よりも厳しくなることはないと考 えられ、これを不確かさととして設定する。
	溶融炉心とコンクリートの伝熱		ACE 実験解析及び SURC-4 実験解析により,溶融炉心堆積状態が既知である 場合の溶融炉心とコンクリートの伝熱及びそれに伴うコンクリート浸食挙 動について妥当に評価できることを確認した。
	非凝縮性ガス発生		実験で確認されている浸食の不均一性については,実験における浸食のば らつきが MAAP コードの予測値の 20%程度の範囲内に収まっていることか ら,上面熱流束の感度に比べて影響が小さいことを確認した。
	格納容器内 FP 挙動	核分裂生成物 (FP) 挙動モ デル	ABCOVE 実験解析により、格納容器内のエアロゾル沈着挙動を適正に評価で きることを確認した。

第 1.4-8 表	ΑΡΕ	Xにおけ	る重要現象の)不確かる	き等((1/2)	2)
-----------	-----	------	--------	-------	-----	-------	----

分類	重要現象	解析モデル	不確かさ
	核分裂出力	ー点近似動特性モデル(炉 出力) 出力分布は二次元拡散モ デル 核定数は三次元体系の炉 心の空間効果を考慮し二	ドップラ反応度フィードバック及び制御棒反応度効果の不確かさに含まれる。
炉心	出力分布変化	次元体糸に縮約 二次元(RZ)拡散モデル エンタルピステップの進 行に伴う相対出力分布変 化を考慮	解析では制御棒引抜に伴う反応度印加曲線を厳しく設定し, さらに局所出 カピーキング係数は対象領域にある燃料の燃焼寿命を考慮した最大値(燃 焼度 0GWd/t での値)を用いるといった保守的なモデルを適用していること から,出力分布変化の不確かさは考慮しない。
	反応度フィードバック 効果	ドップラ反応度フィード バック効果は出力分布依 存で考慮 熱的現象は断熱,ボイド反 応度フィードバック効果 は考慮しない	ドップラ反応度フィードバックの不確かさは,Hellstrandの試験等との比較から7~9%であることを確認した。 実効遅発中性子割合の不確かさは,MISTRAL臨界試験との比較から4%であることを確認した。
	制御棒反応度効果	三次元拡散モデル 動特性計算では外部入力	制御棒反応度の不確かさは,起動試験時及び炉物理試験時に行われた制御 棒価値の測定結果と解析結果の比較から9%以下であることを確認した。 実効遅発中性子割合の不確かさは,MISTRAL臨界試験との比較から4%であ ることを確認した。

分類	重要現象	解析モデル	不 確 か さ
	燃料棒内温度変化	熱伝導モデル	「反応度投入事象評価指針」において燃料棒内メッシュの「制御棒落下」
		燃料ペレット- 彼復管キャ ップ熱伝達モデル	解析結果への影響は 0%と報告されており、類似の事象である本事故シー ケンスについても、影響はほとんど生じないため,考慮しない。
	燃料棒表面熱伝達	単相強制対流:	「反応度の誤投入」事象は挙動が緩やかであるために出力上昇も小さく、
		Dittus-Boelter の式	事象発生後はスクラム反応度印加により速やかに収束するため、除熱量に
炉心		核沸騰状態:	个確かさがあるとしても,燃料エンタルビの最大値に対する影響はほとん
(Jens-Lottes の式	どないため、考慮しない。
(15/1/ 1/		膜沸騰状態(低温時):	
		NSRRの実測データに基づい	
		て導出された熱伝達相関式	
	沸騰遷移	低温時:	事象を通じての表面熱流束は限界熱流束に対して充分小さくなっている
		Rohsenow-Griffith の式及	ことから,沸騰遷移の判定式の不確かさが燃料エンタルピの最大値に与え
		び Kutateladze の式	る影響はほとんどないため,考慮しない。

第1.4-8表 APEXにおける重要現象の不確かさ等(2/2)

第1.7-1表 評価項目となるパラメータに有意な影響を与える重要現象一覧

	評価事象	高圧・低圧注 水機能喪失	高圧注水・減 圧機能喪失	全 交 流 動 力 電 源 喪 失	崩壞熱除去機 能喪失	原子炉停止機 能喪失	LOCA時注水機 能喪失	格納容器バイ パス(インタ ーフェイスシ ステムLOCA)	津波浸水によ る注水機能喪 失
分類	評価指標物理	燃料被覆管温 度 原子炉圧力容 器圧力	燃料被覆管温 度 原子炉圧力容 器圧力						
	現象	格納容器圧力 及び温度	格納容器圧力 及び温度	格納容器圧力 及び温度	格納容器圧力 及び温度	格納容器圧力 及び温度	格納容器圧力 及び温度		格納容器圧力 及び温度
	核分裂出力	—	—	—	—	0	—	—	—
炉	出力分布変化	—	—	—	—	0	—	—	—
<u>،</u> ۲,	反応度フィードバック効果	—	—	—	—	0	—	—	—
(核	制御棒反応度効果	_	_	_	_	_	_	_	_
\sim	崩壊熱	0	0	0	0	0	0	0	0
	三次元効果	—	—	—	—	$\bigcirc *^1$	—	—	—
炉	燃料棒内温度変化	—	—	—	—	0	—	—	—
心	燃料棒表面熱伝達	0	0	0	0	0	0	0	0
	沸騰遷移	0	0	0	0	0	0	0	0
燃	燃料被覆管酸化	0	0	0	0	—	0	0	0
料	燃料被覆管変形	0	0	0	0	—	0	0	0
	三次元効果	—	—	—	—	—	—	—	—
炉	沸騰・ボイド率変化	0	0	0	0	0	0	0	0
心(熱	気液分離(水位変化)·対向流	0	0	0	\bigcirc	_	0	0	0
	気液熱非平衡	0	0	0	0	0	0	0	0
流	圧力損失	—	—	—	—	—	—	—	—
剄	三次元効果	0	0	0	0	$\bigcirc *^1$	0	0	0

(運転中の原子炉における重大事故に至るおそれがある事故)(1/3)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象 ※1:三次元効果の模擬は,REDY/SCATコード体系では困難であるため,米国において中性子束振動の評価実績のある原子炉過渡解析 コード(TRAC)を使用して,参考的に解析して影響を確認している。 第1.7-1表 評価項目となるパラメータに有意な影響を与える重要現象一覧

	評価事象	高圧・低圧注 水機能喪失	高圧注水・減 圧機能喪失	全 交 流 動 力 電 源 喪 失	崩 壊 熱 除 去 機 能 喪 失	原子 炉停止機 能喪失	LOCA時注水機 能喪失	格納容器バイ パス(インタ ーフェイスシ ステムLOCA)	津波浸水によ る注水機能喪 失
分類	評価 指標 現象	 燃料 被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料 被覆 管温 度 原子炉 圧力容 器 圧力 格納容器 圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料 被覆 管 温 度 原子炉 圧力容 器 圧力 格納容器 圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	燃料被覆管温 度 原子炉圧力容 器圧力	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度
	冷却材流量変化	_	_	_	_	0	_	_	_
原子	冷却材放出(臨界流・差圧 流)	0	0	0	0	0	0	0	0
炉圧	沸騰・凝縮・ボイド率変化	0	0	0	0	_	0	0	0
力容哭	気液分離(水位変化)・対 向流	0	0	0	0	_	0	0	0
	気液熱非平衡	_	_	_	_	_	_	_	_
がし	圧力損失	_	_	_	_	—	_	_	_
安全	構造材との熱伝達	_	—	_	_	_	_	_	_
三弁含む)	ECCS注水(給水系・代替注 水設備含む)	0	0	0	0	0	0	0	0
	ほう酸水の拡散	_	_	_	_	0	_	_	—
	三次元効果	—	—	_	_	_	_	_	_

(運転中の原子炉における重大事故に至るおそれがある事故)(2/3)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象

第1.7-1表 評価項目となるパラメータに有意な影響を与える重要現象一覧

	評価事象	高圧 · 低圧注 水機能喪失	高圧注水・減 圧機能喪失	全 交 流 動 力 電 源 喪 失	崩 壊 熱 除 去 機 能 喪 失	原子 炉停止機 能喪失	LOCA時注水機 能喪失	格納容器バイ パス(インタ ーフェイスシ ステムLOCA)	津波浸水によ る注水機能喪 失
分類	評価 指標 現象	 燃料 被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	 燃料 被覆管温 度 原子炉圧力容 器圧力 格納容 及び温度 	 燃料被覆管温 度 原子炉圧力容 器圧力 格納容器圧力 及び温度 	燃料被覆管温 度 原子炉圧力容 器圧力	 燃料 被覆管温 度 原子炉 圧力容 器 圧力 格納容器 圧力 及び温度
	冷却材放出	—	—	—	—	—	—	-	—
	格納容器各領域間の流動	0	0	0	0	—	0	_	0
	サプレッション・プール冷却	_	0	0	○*	0	—	—	0
格納	気液界面の熱伝達	0	0	0	0	—	0	_	0
容器	構造材との熱伝達及び内部 熱伝導	0	0	0	0	_	0	_	0
	スプレイ冷却	0	-	0	0	_	0	_	0
	放射線水分解等による水 素・酸素発生	_	-	-	-	_	—	-	-
	格納容器ベント	0	_	_	0*	_	0	_	_

(運転中の原子炉における重大事故に至るおそれがある事故)(3/3)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象

※:評価事象「崩壊熱除去機能喪失」の有効性評価では、「取水機能が喪失した場合」と「残留熱除去系が故障した場合」につい て有効性を確認しており、取水機能が喪失した場合には、サプレッション・プール冷却が、残留熱除去系が故障した場合に は格納容器ベントがそれぞれ重要現象となる。 第1.7-2表 評価項目となるパラメータに有意な影響を与える重要現象一覧

評価事象		雰囲気圧力・温度に よる静的負荷(格納 容器過圧・過温破 損)	高 圧 溶 融 物 放 出 / 格 納 容 器 雰 囲 気 直 接 加 熱	原 子 炉 圧 力 容 器 外 の 溶 融 燃 料 ー 冷 却 材 相 互 作 用	水素燃焼	溶融炉心・コンクリ ート相互作用
分 類	評価指標 物理現象	格 納 容 器 圧 力 及 び 温度	原子炉圧力	格納容器圧力	酸素濃度	コンクリート浸食 量
炉心(核)	核分裂出力	—	—	—	_	—
	出力分布変化	—	—	—	_	—
	反応度フィードバック効果	_	_	—	_	_
	制御棒反応度効果	—	—	—	—	—
	崩壊熱	0	0	0	0	0
	三次元効果	_	_	—	_	_
炉心(燃料)	燃料棒内温度変化	0	0	0	0	0
	燃料棒表面熱伝達	0	0	0	0	0
	沸騰遷移	—	—	—	_	—
	燃料被覆管酸化	0	0	0	0	0
	燃料被覆管変形	0	0	0	0	0
	三次元効果	—	—	—	_	—
炉心(熱流動)	沸騰・ボイド率変化	0	0	0	0	0
	気液分離(水位変化) · 対向流	0	0	0	0	0
	気液熱非平衡	_	—	—	_	—
	圧力損失	—	—	—	—	—
	三次元効果	_	_	—	—	—

(運転中の原子炉における重大事故)(1/5)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象

第1.7-2表 評価項目となるパラメータに有意な影響を与える重要現象一覧

評価事象		雰囲気圧力・温度に よる静的負荷(格納 容 器過圧・過温破 損)	高圧溶融物放出/格 納容器雰囲気直接 加熱	原子炉圧力容器外の 溶融燃料 – 冷却材相 互作用	水素燃焼	溶融炉心・コンリー ト相互作用
分類	評価指標 物理現象	格納容器圧力及び 温度	原子炉圧力	格納容器圧力	酸素濃度	コンクリート侵食 量
	冷却材流量変化	_	_	_	_	_
原 子	冷却材放出(臨界流・差圧流)	_	0	_	_	_
炉 圧	沸騰・凝縮・ボイド率変化	_	_	_	_	_
力容	気液分離·対向流	_	_	_	_	_
奋 (沙	気液熱非平衡	_	_	_	_	_
がし	圧力損失	_	_	_	_	_
安全	構造材との熱伝達	_	_	_	_	_
- 弁 含	ECCS注水(給水系・代替注水設 備含む)	0	_	_	0	0
む	ほう酸水の拡散	_	_	_	_	_
	三次元効果	_	_	_	_	_

(運転中の原子炉における重大事故) (2/5)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象

第1.7-2表 評価項目となるパラメータに有意な影響を与える重要現象一覧

(運転中の原子炉における重大事故)(3/5)

評価事象		雰囲気圧力・温度に よる静的負荷(格納 容器過圧・過温破 損)	高圧溶融物放出/格 納容器雰囲気直接 加熱	原子炉圧力容器外 の溶融燃料 – 冷却 材相互作用	水素燃焼	溶融炉心・コンクリ ート相互作用
分 類	評価指標 物理現象	格納容器圧力及び 温度	原子炉圧力	格納容器圧力	酸素濃度	コンクリート侵食 量
	冷却材放出	_	_	_	_	_
	格納容器各領域間の流動	0	-	0	0	-
	サプレッション・プール冷却	○ ** 1	-	-	0	-
格 納	気液界面の熱伝達	0	-	-	—	-
容 器	構造材との熱伝達及び内部熱伝 導	0	-	-	_	-
	スプレイ冷却	0	_	-	0	_
	放射線水分解等による水素・酸 素発生	○ ** 2	-	-	○ ** 2	-
	格納容器ベント	○ * 1	_	_	0	_

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)ー:評価項目となるパラメータに有意な影響を与えない現象 ※1:評価事象「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の有効性評価においては、「代替循環冷却系を使

※1.計画事家「雰囲気圧力・温度による静的負荷(俗納各語過圧・過温破損力)の有効性計画においては、「代替循環帯却系を使 用する場合」と「代替循環冷却系を使用しない場合」の有効性を確認しており、代替循環冷却系を使用する場合はサプレッ ション・プール冷却が、代替循環冷却系を使用しない場合は格納容器ベントがそれぞれ重要現象となる。

※2:物理現象「放射線水分解による水素・酸素発生」の評価指標への影響については,評価事象「水素燃焼」において,解析条件の不確かさとして整理し,評価指標への影響を確認する。
第1.7-2表 評価項目となるパラメータに有意な影響を与える重要現象一覧

	評価事象	雰囲気圧力・温度に よる静的負荷(格納 容器過圧・過温破 損)	高 圧 溶 融 物 放 出 / 格 納 容 器 雰 囲 気 直 接加熱	原子炉圧力容器外 の溶融燃料 – 冷却 材相互作用	水素燃焼	溶融炉心・コンクリ ート相互作用
分類	評価指標 物理現象	格納容器圧力及び 温度	原子炉圧力	格納容器圧力	酸素濃度	コンクリート侵食 量
	リロケーション	○ * 1	0	0	0	0
原 子	原子炉容器内FCI(溶融炉心細 粒化)	_	0	_	_	_
- 「炉 圧	原子炉容器内FCI (デブリ粒子 熱伝達)	_	0	_	_	_
力 容	溶融炉心の再臨界	_	_	_	_	_
器 (構造材との熱伝達	○ ** 1	0	0	0	0
炉心	下部プレナムでの溶融炉心の熱 伝達	○ ** 1	0	_	_	0
損傷	原子炉圧力容器破損	$\bigcirc * 1$	0	0	0	0
後)	放射線水分解等による水素・酸素 発生	○ * 2	_	_	○ * 2	—
	原子炉圧力容器内 F P 挙動	0	_	_	0	0

(運転中の原子炉における重大事故)(4/5)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象

※1:評価事象「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の有効性評価では、当該物理現象の発生に至ら ないが、当該物理現象による評価指標への影響については、評価事象「高圧溶融物放出/格納容器雰囲気直接加熱」「原子 炉圧力容器外の溶融燃料-冷却材相互作用」「溶融炉心・コンクリート相互作用」の有効性評価の中で確認できる。

※2:物理現象「放射線水分解による水素・酸素発生」の評価指標への影響については,評価事象「水素燃焼」において,解析条件の不確かさとして整理し,評価指標への影響を確認する。

第1.7-2表 評価項目となるパラメータに有意な影響を与える重要現象一覧

	評価事象	雰囲気圧力・温度に よる静的負荷(格納 容器過圧・過温破 損)	高圧溶融物放出/格 納容器雰囲気直接 加熱	原 子 炉 圧 力 容 器 外 の 溶 融 燃 料 ー 冷 却 材 相 互 作 用	水素燃焼	溶融炉心・コンクリ ート相互作用
分 類	評価指標 物理現象	格納容器圧力及び 温度	原子炉圧力	格納容器圧力	酸素濃度	コンクリート侵食 量
	原子炉圧力容器破損後の高圧溶 融炉心放出	_	_	_	_	_
	格納容器雰囲気直接加熱	—	—	_		—
格	格納容器下部床面での溶融炉心 の拡がり	_	_	_	_	0
納	内部構造物の溶融、破損	—	—	—	_	—
容 器	原子炉圧力容器外FCI(溶融 炉心細粒化)	○ ** 1	_	0	_	0
「炉	原子炉圧力容器外FCI(デブ リ粒子熱伝達)	○ ** 1	_	0	_	0
損	格納容器直接接触	—	—	—	_	—
傷 後	溶融炉心と格納容器下部プール 水との伝熱	○ ** 1	_	_	_	0
	溶融炉心とコンクリートの伝熱	○ * 1	-		_	0
	コンクリート分解及び非凝縮性 ガス発生	○ * 1	_	_	0	0
	溶融炉心の再臨界	-	-		_	-
	格納容器内FP挙動	0	—	—	0	_

(運転中の原子炉における重大事故) (5/5)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)-:評価項目となるパラメータに有意な影響を与えない現象
 ※1:評価事象「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」の有効性評価では、当該物理現象の発生に至らないが、当該物理現象による評価指標への影響については、評価事象「原子炉圧力容器外の溶融燃料-冷却材相互作用」「溶融炉心・コンクリート相互作用」の有効性評価の中で確認できる。

第1.7-3表 評価項目となるパラメータに有意な影響を与える

重要現象一覧

評価事象 反応度の誤投入 評価指標 分 物理現象 燃料エンタルピ 頪 核分裂出力 Ο 出力分布変化 \bigcirc 炉 心 \bigcirc 反応度フィードバック効果 核 制御棒反応度効果 \bigcirc 崩壊熱 _ 三次元効果 ____ 燃料棒内温度変化 \bigcirc 炉 \bigcirc 燃料棒表面熱伝達 心 沸騰遷移 \bigcirc (燃 _ 燃料被覆管酸化 料 燃料被覆管変形 _ 三次元効果 ____ 沸騰・ボイド率変化 _ 炉 心 気液分離(水位変化)·対向流 _ 熱 気液熱非平衡 _ 流 _ 圧力損失 動 _ 三次元効果 冷却材流量変化 冷却材放出(臨界流·差圧流) ____ 沸騰・凝縮・ボイド率変化 _ 原子炉圧力容器(逃がし安全弁含む 気液分離(水位変化)·対向流 _ 気液熱非平衡 圧力損失 — 構造材との熱伝達 _ ECCS 注水(給水系·代替注水設備含 む) ほう酸水の拡散 _ 三次元効果 _

(運転停止中の原子炉における重大事故に至るおそれがある事故)

○:評価項目となるパラメータに有意な現象を与える影響(重要現象)

-:評価項目となるパラメータに有意な影響を与えない現象

第1.2-1 図 内部事象出力運転時レベル1 P R A イベントツリー (1/6)

第 1.2-1 図 内部事象出力運転時レベル 1 P R A イベントツリー (2/6)

第 1.2-1 図 内部事象出力運転時レベル1 P R A イベントツリー (3/6)

第 1.2-1 図 内部事象出力運転時レベル1 P R A イベントツリー (4/6)

サポート系喪失 (直流電源故障)	原子炉停止	交流電源	圧力バウンダリ健全性	高圧炉心冷却	事故シーケンス	事故シーケンス グループ	No.
	成功	成功 失敗	成功 失敗	成功 失敗 成功 失敗	サポート系喪失(自動停止)へ サポート系喪失(直流電源故障)+DG失敗+HPCS失敗 (RCIC成功) サポート系喪失(自動停止)+RHR失敗 サポート系喪失(直流電源故障)+DG失敗+高圧炉心冷却 失敗 サポート系喪失(自動停止)+逃がし安全弁再閉鎖失敗+R HR失敗 サポート系喪失(直流電源故障)+DG失敗+逃がし安全弁 再閉鎖失敗+高圧炉心冷却失敗 サポート系喪失(自動停止)+原子炉停止失敗	サポート系喪失 (自動停止)へ 全交流動力電源喪失(長期TB) 崩壊熟除去機能喪失 全交流動力電源喪失(TBU) 崩壊熱除去機能喪失 全交流動力電源喪失(TBP) 原子炉停止機能喪失	 (22) (19) (23) (20) (24) (21)

第 1.2-1 図 内部事象出力運転時レベル1 P R A イベントツリー (5/6)

インターフェイスシステムLOCA	事故シーケンス	事故シーケンス グループ	No.
	インターフェイスシステムLOCA	格納容器バイパス (インターフェイス システムLOCA)	(29)

第1.2-1 図 内部事象出力運転時レベル1PRAイベントツリー (6/6)

第1.2-2 図 地震レベル1 P R A 階層イベントツリー

第1.2-3 図 地震レベル1 P R A イベントツリー (1/3)

第1.2-3 図 地震レベル1 P R A イベントツリー (2/3)

交流電源喪失	原子炉停止	主蒸気逃がし 安全弁開放	圧力バウンダリ健全性	高圧炉心冷却	事故シーケンス	事故シーケンスグループ	No.
	成功 	成功 失敗	<u>成功</u> 失敗	成功 失敗 成功 失敗	過渡事象+RHR失敗 外部電源喪失+DG失敗+HPCS失敗(RCIC成功) 外部電源喪失+DG失敗+高圧炉心冷却失敗 過渡事象+逃がし安全弁再閉鎖失敗+RHR失敗 外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+高圧炉 心冷却失敗 Excessive-LOCA 交流電源喪失+原子炉停止失敗	崩壊熱除去機能喪失 全交流動力電源喪失(長期TB) 全交流動力電源喪失(TBU) 崩壊熱除去機能喪失 全交流動力電源喪失(TBP) Excessive-LOCA 交流電源喪失+原子炉停止失敗	(4) (7) (8) (5) (9) (34) (37)

第1.2-3 図 地震レベル1 P R A イベントツリー (3/3)

※: 炉心損傷直結のためイベントツリーは展開しない

第1.2-4 図 津波レベル1 P R A 階層イベントツリー

最終ヒートシンク喪失	圧力バウンダリ健全性	高圧炉心冷却	事故シーケンス	事故シーケンスグループ	No.
	成功	成功	最終ヒートシンク喪失(RCIC成功)	津波浸水による注水機能喪失	(37)
		失敗	最終ヒートシンク喪失+高圧炉心冷却失敗	津波浸水による注水機能喪失	(38)
	失敗		最終ヒートシンク喪失+逃がし安全弁再閉鎖失敗	津波浸水による注水機能喪失	(39)

第1.2-5 図 津波レベル1PRAイベントツリー

第1.2-6 図 格納容器イベントツリー

残留熱除去系の故障	崩壊熱除去・炉心冷却	事故シーケンス	事故シーケンス グループ
	成功	_	燃料損傷なし
	失敗	残残留熱除去系の故障(RHR喪失) +崩壊熱除去・炉心冷却失敗 残留熱除去系の故障(RHRS喪失) +崩壊熱除去・炉心冷却失敗	崩壞熱除去機能喪失

原子炉冷却材の流出 崩壊熱除去・炉心	冷却 事故シーケンス	事故シーケンス グループ
成功 	原子炉冷却材の流出(RHR切替時のLOCA) +崩壊熟除去・炉心冷却失敗 原子炉冷却材の流出(CUWプロー時のLOCA) +崩壊熟除去・炉心冷却失敗 原子炉冷却材の流出(CRD点検時のLOCA) +崩壊熟除去・炉心冷却失敗 原子炉冷却材の流出(LPRM点検時のLOCA) +崩壊熟除去・炉心冷却失敗	がかった。 燃料損傷なし 原子炉冷却材の流出

第1.2-7 図 内部事象停止時レベル1 P R A イベントツリー

第1.5-1図 原子炉停止後の崩壊熱

添付資料 1.2.1

			反	、	投入	はサイクル初期を想定	~				
			崩	壞熱除	去機	能喪失(残留熱除去系>	ポンフ	 プ等の故障による	残留熱		
			除び	去系(原子炉	〔停止 「冷却	時冷却系)の機能喪失 材の流出の有効性評価), 刍 で想	と交流動力電源喪 定する原子炉の#	失,及		
				_							
発	き電機出力										
原	王子炉 圧力	約 6.9MPa		(大学	貳圧)	新 6.9MPa 新 6.9MPa					
冷	合却材温度	約 280℃				約 50℃				約 280℃	
	主復水器 真空度	約-93kPa[gage]							_	約-93kPa[gage]	
1	原子 炉内 ンベントリ	通常水位			/	原子炉ウェル満水		R P V 满 水		通常水位	
	主 主 発 制 復 電 御 水 電 構 器 主 要 操 全 算 一 第 一 引 一 一 一 主 要 操 作 第 第 一 一 一 一 第 一 一 一 一 第 - - - -						R P V閉鎖	R P V 起動 え 準 備 験	主復水器真空度上昇	発 電 機 並 列	
P プ	R A 評 価 で 設 定 した ラ ン ト 状 態	出力運転時に 含まれる期間	S	А		В		С	D	出力運転時に 含まれる期間	
保安規	定上の要求設住	備とSA対策とし	て新規	しに要	求する	5 設 備					
原	子炉の状態	運転	運 転 → 高 温 停 止	冷温停止	燃料 交換	燃料交換 (原子炉水位がオーバーフロー水位付 近,または残留熱除去系(原子炉停止時 冷却系)が停止した場合も冷却材温度を 65℃以下に保てる期間)	燃料 交換	冷 温 停 」	Ł	起動→運転	
残 留 熱 停 」	除 去 系 (原 子 炉 上 時 冷 却 系)	_	2 系列 動作可能	1 系列 運転, 1 系列 待機 ^{**1}	1 系列 運転, 1 系列 待機 ^{**2}	1 系列運転 ³⁶²	1 系列 運転, 1 系列 待機 ^{※2}	1 系列運転 1 系列待機	, @1	_	
残留素	热除去系海水系	2 系 列		其	待さ:	れている残留熱除去系(原う	子炉停	止時冷却系)を維持	する系列	2 系列	
	高圧炉心 スプレイ系	1系列								1系列	
非	低圧炉心 スプレイ系	1 系 列		非常用	炉心					1 系列	
冷常 却用	低圧注水系 原子炉隔離時	3 系列		冷却系列また	2 系 は 非		非常田	1. 炉心冶却系 2 系列 =	たは非常田恒	3 系列	
示 が 心	冷却系	1系列※3		常用炉 却系 1	心冷系列	_	心冷	却系1系列及び復水;	移送系 1 系列	1 系列 ^{※3} 7 亚和 ^{※4}	
	日 助 咸 庄 ポ 格 納 容 器	2系列		及び復送系1	水 移 系 列					2 系列	
彷	スプレイ系夏水移送系	_								_	
低日	E 代 替 注 水 系	1 系 列	(常設)					1系	列(常設)		
代替燃	世界に見ていた。 セルボボー エルボー エルボー				1 系列 ^{を5} 1 系列 ^{を5}				(可搬型)		
非常甲	常田ディーゼル発言雄 3				2				3		
一 四 四 四	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	5				6 () () - 一 年 相)	5 7611 70 <i>k</i> r /17	◎6 a 相 宁			
常設付	、首父沉电源設備	(百乙后位止時込却	至) べ(古山 1 土	电ム	SA対応として新規に1済	*列催保	****を想足	ポガキと根ム	む 降 ノ	

定期検査工程の概要

※1:残留熱除去系(原子炉停止時冷却系)が停止した場合においても、原子炉冷却材温度を100℃以下に保つことができる場合を除く ※2:残留熱除去系(原子炉停止時冷却系)が停止した場合においても、原子炉冷却材温度を65℃以下に保つことができる場合を除く ※3:原子炉圧力が1.03MPa[gage]以上の場合 ※4:原子炉圧力が0.84MPa[gage]以上の場合 ※5:炉心に燃料がありブールゲートが間の期間は、低圧代替注水系(常設)及び代替燃料ブール注水系(可搬型)を各々1系列動作可能とする ※6:必要な電源容量を満足する台数を確保

重大事故等対策の有効性評価における作業毎の成立性確認結果について

重大事故等対策の有効性評価において行われる各作業について,作業(操作) の概要,作業(操作)時間及び操作の成立性について下記の要領で確認した。

個別確認結果とそれに基づく重大事故等対策の成立性確認を「表 重大事故 等対策の成立性確認」に示す。

「操作名称」

- 1. 作業概要:各作業の操作内容の概要を記載
- 2. 操作時間
- (1) 想定時間 : 移動時間+操作時間に余裕を見て5分単位で値を設定。た
 (要求時間) だし,時間余裕が少ない操作については,1分単位で値を 設定
- (2)操作時間 : 現地への移動時間(重大事故発生時における放射線防護具
 (実績又は模擬) 着用時間含む,訓練による実績時間,模擬による想定時間
 等を記載
- 3. 操作の成立性について
- (1)状況 : 対応者,操作場所を記載
- (2)作業環境 : 現場の作業環境について記載
 アクセス性,重大事故等の状況を仮定した環境による影響,
 暗所の場合の考慮事項 など
- (3) 連絡手段 : 各所との連絡手段について記載
- (4) 操作性 : 現場作業の操作性について記載
- (5) その他 : 対応する技術的能力条文番号を記載

添付 1.3.1-1

		事故	操作·作業	訓練等	訓練等 からの 状況 -		作業	環境		Note that we will	10 16 14	技術的 能力
作莱坝日	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
機能喪失	高圧注水機能喪失の判断 ●高圧炉心スプレイ系及び 原子炉隔離時冷却系の手 動起動操作(失敗)	2. 1 2. 2 2. 6 3. 2	2分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv√7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備している可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。	_
	低圧注水機能喪失の判断 ●低圧炉心スプレイ系及び 残留熟除去系(低圧注水 系)の手動起動操作(失敗)	2. 1 2. 6	4分	3分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であることから、容易に操作できる。	_
	全交流動力電源喪失の確認 ●高圧炉心スプレイ系ディ ーゼル系発電機の手動起 動操作(失敗)	$\begin{array}{c} 2. \ 3. \ 1\\ 2. \ 4. \ 1\\ 2. \ 8\\ 3. \ 1. \ 2\\ 3. \ 1. \ 3\\ 3. \ 2\\ 5. \ 2\end{array}$	1分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv∕7日間	直流非常灯が点灯する ことにより操作に影響 はない。なお,直流非常 灯が使用できない場合 には、中央制御室内に配明 備している可搬型照代 により,照度を確保す る。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。	_
U) the BC	全交流動力電源喪失の確認 ●非常用ディーゼル発電機 等の手動起動操作(失敗)	$\begin{array}{c} 2.\ 3.\ 1\\ 2.\ 4.\ 1\\ 2.\ 8\\ 3.\ 1.\ 2\\ 3.\ 1.\ 3\\ 3.\ 2\\ 5.\ 2\end{array}$	2分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。なお,直流非常 灯が使用できない場合 には,中央制御室内に配明 備している可搬型照合配明 により,照度を確保す る。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。	_
	取水機能喪失の判断 ●残留熱除去系海水系の手 動起動操作(失敗)	2. 4. 1 2. 8	4分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性な あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じ無響はない。 必要に応配備して中央制御 室内に配備している可 擬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であることから、容易に操作できる。	_
	崩壊熱除去機能喪失の確認 ●残留熱除去系によるサプ レッション・プール冷却操 作(失敗)	2.4.2	10分	5分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。	_

表 重大事故等対策の成立性確認(1/14)

		事故	操作·作業	訓練等 からの	16 No.		作業	環境			19.77-14	技術的 能力
作業項目	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
機能 喪 失 の確認	 状況判断 原子炉自動スクラム失敗 の操作 手動スクラムボタンによる手動スクラム操作 原子炉モードスイッチ「SHUT DOWN」への切替え 操作 再環ボンプトリップの 確認 	2.5	3分	2分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する機構 作で実施する操作で支施する操作であること から,容易に操作で きる。	_
	 状況判断 主蒸気隔離弁の閉止及び 逃がし安全弁による原子 炉圧力制御の確認 タービン停止の確認 高圧炉心スプレイ系,低 圧炉心スプレイ系,低 エ炉心スプレイ系のび残 留熟除去系(低圧注水系) 自動起動の確認 	2. 5	4分	3分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作 と同様であること から、容易に操作で きる。	_
	炉心損傷の確認 ●炉心損傷の確認	3. 2	2分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する運転での操作で実施すること た同様であること から、容易に操作で きる。	_
	原子炉圧力容器破損の判断 ●原子炉圧力容器破損の確 認	3. 2	5分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施すること の様であること から,容易に操作で きる。	_

表 重大事故等対策の成立性確認(2/14)

化米西口	作業・操作の内容	事故	操作・作業	訓練等	AUS 200		作業	環境		计放大机	+11 / 4-14-	技術的 能力
作兼項日	作業項目 作業・操作の内容 ジ		の想定時間	実績時間	1/ 1/1	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡于段	操作性	審査基準 No.
	常設代替高圧電源装置によ る緊急用母線受電操作 ●常設代替高圧電源装置2台 起動及び緊急用母線受電 操作	$\begin{array}{c} 2.1\\ 2.3.2\\ 2.4.1\\ 2.4.2\\ 2.6\\ 2.7\\ 2.8\\ 3.1.2\\ 3.1.3\\ 3.2\\ 4.1\\ 4.2\\ 5.2\end{array}$	4分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能に対 あるが,作業に支響 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備している可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.15
常設代替源	常設代替高圧電源装置によ る緊急用母線受電操作 ●常設代替高圧電源装置5台 起動及び緊急用母線受電操 作	2. 3. 1	15分	11分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支管 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。なお、直流非常 灯が使用できない場合 には、中央制御室内に明 により、照度を確保す る。	周辺には支障 となる設備は ない。	_	中央制御室での操 伸に,通常の運転操作で実施する操作で実施する操作でまた。 から,容易に操作で きる。	
の交竜操作	※ 常設代替高圧電源装置による非常用母線の受電準備操作 ●受電前準備	2.3.1 2.3.2 2.4.1	35分	9分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で見施する操作 と同様であること から,容易に操作で きる。	
		2. 4. 1 2. 8 3. 1. 2 3. 1. 3 3. 2 5. 2	70分	65分	運転員 重大事故等 対応要員 (現場)	通常運転時と同程 度。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 2.6mSv/h以下	蓄電池内蔵型照明を作いる。 整エリアに配備してい照明をしている。 時では、ペッドライトやLED ライトを携行している。 ため、著電池内蔵型照明 が使用できない場合に おいても、操作に影響は ない。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話装置,電力保安通信用 電話設備(固定電話 機,PHS端末),送受 話器のうち,使用可 能な設備により,中 央制御室との連絡 が可能である。	通常運転時等に行 うNFB操作と同様で あり,容易に操作で きる。	1.14

表 重大事故等対策の成立性確認(3/14)

		事故	操作·作業	訓練等	ally Ser		作業	環境		1+44 - C.		技術的 能力
作兼項日	作業・操作の内容	۷- <i>1</i> -92 No.	の想定時間	からの 実績時間	状 況	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
	常設代替高圧電源装置によ る非常用母線受電操作 ●緊急用高圧母線から非常 用母線2C系への受電操作 ●非常用母線2C系から非常 用母線2D系への受電操作	$\begin{array}{c} 2.\ 3.\ 1\\ 2.\ 3.\ 2\\ 2.\ 4.\ 1\\ 2.\ 8\\ 3.\ 1.\ 2\\ 3.\ 1.\ 3\\ 3.\ 2\\ 5.\ 2\end{array}$	5分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で同様であること から,容易に操作で きる。	
常高装の作 設圧置受 構	常設代替高圧電源装置によ る非常用母線の受電操作 ●常設代替高圧電源装置3台 追加起動操作	2.3.2 2.4.1 2.8 3.1.2 3.1.3 3.2 5.2	8分	7分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が障 あるが、作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操作 作で実施する操作 と同様であること から,容易に操作で きる。	
	常設代替高圧電源装置によ る非常用母線の受電準備操 作 ●緊急用直流母線から非常 用直流母線の受電操作	2. 3. 2	65分	58分	運転員 (現場)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	蓄電池内蔵型照開を ない。 本 型 照 加 内蔵型 照 備 し て 肥 内 非 常 相 に て い る た め 、 時 保 し て い る 。 お 坊 時 保 し て い る 。 た 、 の 、 時 保 し て い る 。 た 、 、 ち っ に て い る 。 た 、 、 、 や た て い る 。 た 、 、 、 や た で 、 、 や た て い る 。 た 、 、 や た こ て い る 。 た 、 た 、 や た こ て い る 。 た 、 た 、 た 、 や た こ て い る 。 た 、 た 、 や た こ て い る 。 た 、 た 、 や た こ て い る 。 た た た た た た や た ED う イ ト や た ED る 、 あ か 場 行 し て い る 、 参 馬 で き え な い 場 寄 置 池 る 、 あ 、 場 た こ た い る 、 あ 、 、 あ 、 、 あ 、 、 、 あ 、 、 あ 、 、 、 、 、 、 、 、 、 、 、 、 、	アクセスルー ト上に支障と なる設備はな い。	携行電気 電力24 電力24 電話設 の 電話設 の 手 話 設 の 手 話 設 の う の 備 定 の 言 話 設 の に 新 設 の の の の の の の の の の の の の の の の の の	通常運転時等に行 うNFB操作と同様で あり,容易に操作で きる。	1.14
			6分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により報慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り、照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作 た同様であること から,容易に操作で きる。	
	直流電源の負荷切離し操作 ●不要負荷の切離し操作	2. 3. 1	50分	42分	運転員 重大事故 対応要員 (現場)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	蓄電池内蔵型照明を作い 素エリアに配備してい照 明でに配備してい照 明消灯時にしている。 た, ヘッドライトやLED ライトを携行している ため,蓄電池内蔵型照向 だめいる。 装いても,操作に影響は ない。	アクセスルー ト上に支障と なる設備はな い。	携行 電 行 電 話 設 保 備 間 話 設 保 (個 末) 保 (個 末) の う 、 備 話 設 別 備 (電 話 設 器 に の (個 末) に 備 に の 、 言 話 設 と BIS 昭 話 設 と 時 、 の 、 の う 、 の 、 の 、 の 、 の 、 の 、 の 、 の う 、 の 、 の	通常運転時等に行 う遮断器操作と同 じであり,容易に操 作できる。	

表 重大事故等対策の成立性確認(4/14)

		事故	操作・作業	訓練等	16		作業	環境		\\		技術的 能力
作業項目	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
	低圧代替注水系(常設)の 起動準備操作 ●原子炉注水,格納容器ス プレイ及び原子炉減圧に 必要な負荷の電源切替操 作	2. 3. 2 2. 4. 1 2. 8 5. 2	4分	3分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	通常運転時等に行 うNFB操作と同様で あり,容易に操作で きる。	
低注設原水び納プ却る器作任永に定作特器イに納熱作代(よ炉作替器イに納熱特常る注及格ス冷よ容操	代替格納容器スプレイ冷却 系(常設)及び低圧代替注 水系(常設)準備操作 ●原子炉注水,格納容器ス プレイ及び原子炉減圧に 必要な負荷の電源切替操 作	3. 1. 2 3. 1. 3 3. 2	4分	3分	運転員 (中央制御室)	中央制御室の室温の 停止により緩慢に 上昇する可能性度が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	通常運転時等に行 うNFB操作と同様で あり,容易に操作で きる。	1.3 1.4 1.6
	低圧代替注水系(常設)起 動準備操作 ●注入弁開許可信号発信の ためのインターロックバ イバス操作	2. 3. 2	1分	1分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作で実施する法律作で実施するよどの後であることから、容易に操作できる。	
	代替格納容器スプレイ冷却 系(常設)及び低圧代替注 水系(常設)準備操作 ●原子炉冷却材浄化系吸込 弁の閉操作	3. 1. 2 3. 1. 3	2分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性な あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	
	低圧代替注水系(常設)の 起動準備操作 ●低圧代替注水系(常設) による原子炉注水 系統 構成	$\begin{array}{c} 2.1\\ 2.3.2\\ 2.4.1\\ 2.4.2\\ 2.6\\ 2.7\\ 2.8\\ 5.2 \end{array}$	3分	3分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作で実施する操作 と同様であること から、容易に操作で きる。	1.4 1.6
	代替格納容器スプレイ冷却 系(常設)及び低圧代替注 水系(常設)準備操作 ●代替格納容器スプレイ冷 却系(常設)による格納 容器スプレイ及び低圧代 替注水系(常設)による 原子炉注水系統構成	3. 1. 2 3. 1. 3	3分	3分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する場合、 作で実施する場合、 たの様であること から,容易に操作で きる。	

表 重大事故等対策の成立性確認(5/14)

								· · · ·				
化米西口	化光 相比不由应	事故	操作・作業	訓練等	ally are		作業	環境		生物工品	+H 16-14L	技術的 能力
作兼項日	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状 況	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
	代替格納容器スプレイ冷却 系(常設)による格納容器 スプレイ操作及び低圧代替 注水系(常設)による原子 炉注水操作 ●代替格納容器スプレイ冷 却系(常設)による格納容 器スプレイ開始操作	3. 1. 2 3. 1. 3	4分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する基操作 と同様であること から,容易に操作で きる。	
低注設原水び納プ却る器作圧水、ご子操代容レ系格除常る注及格ス冷よ容操	代替格納容器スプレイ冷却 系(常設)による格納容器 スプレイ操作及び低圧代替 注水系(常設)による原子 炉注水操作 ●低圧代替注水系(常設)に よる原子炉注水開始操作	3. 1. 2 3. 1. 3	2分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可衡型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は、通常の運転操 作で実施する操作 と同様であること から、容易に操作で きる。	
	代替格納容器スプレイ冷却 系(常設)による格納容器ス プレイ操作及び低圧代替注 水系(常設)による原子炉注 水操作 ●低圧代替注水系(常設)に よる原子炉注水の流量調 整操作	3. 1. 2 3. 1. 3	6分	5分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	-	中央制御室での操 作は、通常の運転操 作で実施する操作 と同様であること から、容易に操作で きる。	
	代替格納容器スプレイ冷却 系(常設)による格納容器ス プレイ操作及び低圧代替注 水泵(常設)による原子炉注 水操作 ●代替格納容器スプレイ冷 却系(常設)による格納容 器スプレイー時停止操作	3. 1. 2 3. 1. 3	3分	2分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じてሞ 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	-	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.4 1.6
	代替格納容器スプレイ冷却 系(常設)による格納容器 スプレイ操作 ●代替格納容器スプレイ冷 却系(常設)による格納容 器スプレイ開始操作(原子 炉圧力容器破損後) 【300m ³ /h】	3.2	1分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	l	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	
	代替格納容器スプレイ冷却 系(常設)による格納容器 スプレイ操作 ●代替格納容器スプレイ冷 却系(常設)による格納 容器スプレイの流量低下 操作(原子炉圧力容器破 損後)【300m ³ /h→130m ³ /h	3. 2	4分	3分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周 辺 に は 支 障 と なる 設 備 は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	

表 重大事故等対策の成立性確認(6/14)

		事故	操作・作業	訓練等	16. 344		作業	環境				技術的 能力
作業項目	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状況	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
	逃がし安全弁による原子炉 減圧操作 ●逃がし安全弁7弁の開放操 作	$\begin{array}{c} 2.1\\ 2.3.1\\ 2.3.2\\ 2.4.1\\ 2.4.2\\ 2.6\\ 2.7\\ 2.8 \end{array}$	1分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv√7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備している可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で環施する操作 と同様であること から,容易に操作で きる。	
逃 が し 会 <i>弁</i> に 子 減圧 操 作	逃がし安全弁2弁による原子 炉急速減圧操作 ●逃がし安全弁2弁による原 子炉急速減圧操作	3. 2	1分	1分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない場 合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67msv/7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備していのの可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で環様であること から,容易に操作で きる。	1.3
	逃がし安全弁による原子炉 の低圧状態維持 ●逃がし安全弁の開放操作	5. 1 5. 2	2分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性支障 あるが,作業に支撃 さ及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作 と同様であること から、容易に操作で きる。	
各機器へ の給油	燃料補給準備 ●可搬型設備用軽油タンク からタンクローリへの補 給	2.1 2.3.1 2.4.2 2.6	110分	102分	重大事故等 対応要員 (現場)	屋外での作業。	【炉心損傷がない場 合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある場 合】 <ペント前> 3.5mSv/h以下 <ペント後> 5.4mSv/h以下	車両の作業用照明・ヘッ ドライト・LEDライトに より,操作可能である。 夜間においても,操作に 影響はない。	アクセスルー ト上に支障と なる設備はな い。	衛星電話設備(固定 型,携帯型),無線 設備(固定型, 携帯型),電力保定型, 携帯型1,電力保固 電話設備(固 定電話機,PHS端 末),送受話器のう ち,使用可能な設備 により,災害対策本 能との連絡が可能 である。	燃料補給の各操作 には複雑な操作手 順はなく,容易に操 作できる。	1 14
	燃料補給操作 ●可搬型代替注水大型ボン ブへの給油	3. 1. 3 4. 1 4. 2	適宜実施 3.5時間に 1回給油※ ※燃料が枯 渇しないた めに必要な 補給時間の 間隔(許容時 間)	25分	重大事故等 対応要員 (現場)	屋外での作業。	【炉心損傷がない場 合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある場 合】 / / / / / / / /	車両の作業用照明・ヘッ ドライト・LEDライトに より,操作可能である。 夜間においても,操作に 影響はない。	アクセスルー ト上に支障と なる設備はな い。	衛星電話設備(固定 型,携帯型),電力保 運絡設備(固定型, 連絡設備(固定型, 通信用電話機(固定型, 定電話機,可電話機(BIS端) 末),送受話器のう ち,使用可能な設備 により,災害対策本 部との連絡が可能 である。	燃料補給の各操作 には複雑な操作手 順はなく,容易に操 作できる。	1.17

表 重大事故等対策の成立性確認 (7/14)

	<i>他来,相你不再定</i>	事故	操作・作業	訓練等	d (s. art		作業	環境		**************************************	+17 /6- 14	技術的 能力
作兼項目	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状况	温度·湿度	放射線環境	照明	その他 (アクセスルート等)	連給于段	操作性	審査基準 No.
代 替 淡 水 貯 槽 へ の 補給	可搬型代替注水大型ボンプ による水源補給準備 ●可搬型代替注水大型ボン プの移動,ホース敷設等	2.1 2.4.2 2.6 3.1.3	160分	130分	重大事故等 対応要員 (現場)	屋外での作業。	【炉心損傷がない場 合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある場 合】 <ベント前> 3.5mSv/h以下 <ベント後> 5.4mSv/h以下	車両の作業用照明・ヘッ ドライト・LEDライトに より,操作可能である。 夜間においても,操作に 影響はない。	アクセスルー ト上に支障と なる設備はな い。	衛星電話設備(周定 型,携帯型),無特型),電設備(固定 線帯型),電力に 電電電機,四方型 定電電器設備(固定 定安 定 電話器のう ち,使用可能話器のう ち,使用可能な対策本 により,災害が策本 部との連絡が可能 である。	可型型一式を発見した。 型型ではないた。 を容易した。 である。 作業文章となるに、 でためののした。 でののののした。 でののののした。 でのののした。 でののので、 でののののした。 でののので、 でののので、 でののので、 でのでのでので、 でのでのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでので、 でのでのでで、 でのでのでので、 でのでのでので、 でのでのでので、 でのでのでので、 でのでので、 でのでのでので、 でのでので、 でのでのでので、 でのでのでので、 でのでので、 でのでので、 でのでのでので、 でのでので、 でのでので、 でのでのでので、 でのでので、 でのでので、 でのでのでので、 でのでので、 でのでのでので、 でのでのでので、 でのでのでので、 でのでので、 でのでのでで、 でのでのでで、 でのでのででで、 でのでのでででのでのでででででででのでででででででででで	1.13
緊 急 用 海 水 系 の 起 動操作	緊急用海水系を用いた海水 通水操作 ●緊急用海水系による海水 通水 系統構成	3. 1. 2 3. 2	20分	16分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備してい利の可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	-	中央制御室での操作は、通常の運転操作で実施する操作と同様であること から、容易に操作できる。	1.7
代 替 循 環 冷 却 系 の 起動	代替循環冷却系準備操作 ●代替循環冷却系系統構成	3. 1. 2 3. 2	35分	27分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により電機に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であること から、容易に操作できる。	1.7
格納容器 圧力逃が し装置に	格納容器ペント準備操作 ●格納容器ペント準備(系 統構成)	2. 1 2. 4. 2	5分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能に支障 あるが,作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 67mSv/7日間	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備している可 搬型照明により,照度を 確保する。	周辺には支障 となる設備は ない。	-	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.5
し 装 置 に よ る 格 納 容 器 除 操 作	格納容器ペント準備操作 ●現場移動(第二弁)	2.6 3.1.3	45分	40分	重大事故等 対応要員 (現場)	通常運転時と同程 度。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 3.5mSv/h以下	ヘッドライトやLEDライ トを携行しているため, 建屋内非常用照明が消 灯した場合においても, 操作に影響はない。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話集 置,電力保安通電話 開電話設備(固定電話 機,PHS端末),送 日 部な設備により,送 町 能な設備により,中 約 衛室との連絡 が可能である。	通常運転時等に行 う弁の手動操作と 同様であり,容易に 操作できる。	1.7

表 重大事故等対策の成立性確認(8/14)

				• •			,	. , ,				
作業項目 作業・操作の内容		事故	操作・作業	訓練等	d fa and		作業	環境		生物工品	+F //- LiL	技術的 能力
作亲項日	作業・操作の内容	シーケーンスNo.	想定時間	実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連給于校	操作性	審査基準 No.
格納 容 器 が に よ る 器 旅 に 納 熟 操作	格納容器圧力逃がし装置等 による格納容器ベント操作 ●格納容器圧力逃がし装置 等による格納容器ベント 操作	2. 1 2. 4. 2 2. 6 3. 1. 3	格納容器 ベント 施後	4分 2分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	【炉心損傷がない 場合】 炉心損傷がないた め高線量となるこ とはない。 【炉心損傷がある 場合】 678%-719問	非常用照明又は直流非 常灯が点灯することに より操作に影響はない。 必要に応じて中央制御 室内に配備している可 搬型照明により,照度を 確保する。	周辺には支障となる設備はない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.5 1.7
残 去 名 格 除 泉 子 が 保 ま 名 格 除 泉 子 格 除 泉 子 格 除 原 子 ゲ ア 注 水 操 作	残留熱除去系による格納容 器スプレイ及び原子炉注水 操作 ●残留熱除去系海水系の起 動操作	2. 3. 1	4分	2分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作で実施する操作 と同様であること から、容易に操作で きる。	
	残留熱除去系による格納容 器スプレイ及び原子炉注水 操作 ●残留熱除去系による原子 炉注水操作	2. 3. 1	2分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作 と同様であること から、容易に操作で きる。	1.5
可 搬 型 代 替 述 水 ン の 準備	可搬型代替注水大型ポンプ の準備	2. 3. 1	140分	119分	重大事故等		炉心損傷がないた	車両の作業用照明・ヘッ ドライト・LEDライトに	アクセスルー トトに支障と	衛星電話設備(固定 型,携帯型),無線 連絡設備(固定型, 携帯型),電力保安 通信用電話設備(固	可搬型代替注水大 型ポンプからのホ ース接続は,専用の 結合金具を使用し て容易に接続可能	
	●可搬型代替注水大型ボン ブ準備,代替淡水貯槽か らのホース敷設等	4.1 4.2	145分	121分	対応要員 (現場)	屋外での作業。	め高線量となるこ とはない。	より,操作可能である。 夜間においても,操作に 影響はない。	なる設備はな い。	定電話機,PHS端 末),送受話器のう ち,使用可能な設備 により,災害対策本 部との連絡が可能 である。	である。 作業エリア周辺に は,支障となる設備 はなく,十分な作業 スペースを確保し ている。	1.13
低注搬い炉作替器イ(に納熱 圧系)を原水び納プ却型の と注及格ス冷艇る器 の用子操代容レ系) 格家作	低圧代替注水系(可搬型)に よる原子炉注水操作 ●原子炉注水のための系統 構成	2. 3. 1	125分	113分	運転員 重大事故等 対応要員 (現場)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	ヘッドライトやLEDライ トを携行しているため, 建屋内非常用照明が消 灯した場合においても, 操作に影響はない。。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話装 置,電力保安通信電話 機,配力保安通信電話 機,PHS端末),送受 話器のうち,使用可 能な設備定より,進系 が可能である。	通常運転時等に行 う電動弁の手動操 作と同様であり,容 易に操作できる。	1.4
	代替格納容器スプレイ冷却 系(可搬型)による格納容器 スプレイ操作 ●格納容器スプレイのため の系統構成	2. 3. 1	175分	119分	運転員 重大事故等 対応要員 (現場)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	ヘッドライトやLEDライ トを携行しているため, 建屋内非常用照明が消 灯した場合においても, 操作に影響はない。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話装 置,電力保安通信用 電話設備(固定電話 器のうち,使用可 能な設備により,中 央制御室との連絡 が可能である。	通常運転時等に行 う電動弁の手動操 作と同様であり,容 易に操作できる。	1.6

表 重大事故等対策の成立性確認 (9/14)

		事故	操作・作業	訓練等	db Net		作業	環境		Note that we will		技術的 能力
作業項目	作業・操作の内容	シーケーンスNo.	の想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連給于段	操作性	審査基準 No.
自動減圧 系起動阻 止操作	自動減圧系等の作動阻止操 作 ●自動減圧系/過渡時自動 減圧回路の作動阻止操作	2.5	1分	1分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.1
ほう酸注 入系起動 操作	ほう酸水注入系の起動操作 ●ほう酸水注入系起動操作	2.5	2分	1分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する足と たの様であること から,容易に操作で きる。	1.1
低 圧 炉 心 ス プ レ イ 系の起動	低圧炉心スプレイ系の起動 操作 ●低圧炉心スプレイ系の起 動操作	2. 7	2分	2分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であること から、容易に操作できる。	_
残 留 熱 除 去 新 節 離	残留熱除去系の注入弁閉止 操作 ●残留熱除去系の注入弁の 閉止操作 ●残留熱除去系レグシール ポンプの停止操作	2. 7	2分	2分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作 と同様であること から、容易に操作で きる。	
	現場における破損系統の注 入弁の閉止操作 ●保護具装備/装備補助 ●現場移動 ●残留熱除去系B系の注入 弁の閉止操作	2. 7	115分	109分	運転員 重大事故等 対応要員 (現場)	操作現場の温度は 40℃程度,温度は 100%程度となる可 能性があるが,保護 具を装着すること から,問題はない。	操作現場の放射線 線量率は最も高い 地点で約5.2mSv/h であり,作業時間は 60分*1であるた め,約5.2mSvの被ば くとなる。	ヘッドライトやLEDライ トを携行しているため, 建屋内非常用照明が消 灯した場合においても, 操作に影響はない。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話装置,電力保安通信用 電話設備(固定電話 機,PHS端志),送受 話器のうち,使用可 能な設備により,中 央制御室との連絡 が可能である。	通常運転時等に行 う電動弁の手動操 作と同様であり,容 易に操作できる。	1.3
残 留 熱 に プ ・ プ ー ル 冷 圳 操 作	残留熱除去系によるサプレ ッション・プール冷却操作 ●残留熱除去系によるサプ レッション・プール冷却モ ード操作	2. 7	6分	6分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であることから、容易に操作できる。	
	残留熱除去系によるサプレ ッション・プール冷却操作 ●低圧注水モードからサプ レッション・プール冷却モ ードへの切替え操作(1系 列)	2.2	4分	4分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	

表 重大事故等対策の成立性確認(10/14)

※1:2次格納施設内での作業時間にて被ばく評価を実施。

		事故	操作·作業	訓練等	10. 34		作業	環境		Value (da um 1711	10 // 14	技術的 能力
作莱坦日	作業・操作の内容	シーケーンスNo.	の 想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡手段	操作性	審査基準 No.
 残 留 熱 報 系 プ プ シ ・ プ ・ プ ・ プ ・ プ ・ プ ・ プ ・ デ ・ ジ ・ <l< td=""><td>残留熱除去系によるサプレ ッション・プール冷却操作 ●低圧注水モードからサプ レッション・プール冷却モー ドへの切替え操作(2系列)</td><td>2.5</td><td>6分</td><td>6分</td><td>運転員 (中央制御室)</td><td>通常運転時と同程 度。</td><td>炉心損傷がないた め高線量となるこ とはない。</td><td>非常用照明が点灯する ことにより操作に影響 はない。</td><td>周辺には支障 となる設備は ない。</td><td>_</td><td>中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。</td><td>_</td></l<>	残留熱除去系によるサプレ ッション・プール冷却操作 ●低圧注水モードからサプ レッション・プール冷却モー ドへの切替え操作(2系列)	2.5	6分	6分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であることから,容易に操作できる。	_
	格納容器下部注水系(常設) によるペデスタル (ドライ ウェル部) 注水操作	3. 1. 2 3. 1. 3	6分	5分	運転員	中央制御室の室温 については,空調の 停止により緩慢に		直流非常灯が点灯する ことにより操作に影響 けたい、必要に広じて	周辺には支障		中央制御室での操 作は,通常の運転操 作で実施する操作	
溶 融 炉 前 の 器 水 下 系 (常 る 水 張 り 操 作	●格納容器下部注水系(常設)によるペデスタル(ドライウェル部)注水開始 操作	3. 2	7分	6分	(中央制御室)	上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv /7日間	中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	となる設備は ない。	_	と同様であること から,容易に操作で きる。	
	格納容器下部注水系(常設) によるペデスタル(ドライ ウェル部)注水操作 ●格納容器下部注水系(常 設)によるペデスタル(ド ライウェル部)注水停止 操作	3. 1. 2 3. 1. 3 3. 2	4分	3分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作 たつ様であること から,容易に操作で きる。	
溶落格下注(相水) 炉後容へ操壊の にの器の作熱注 (相水)	格納容器下部注水系(常設) によるペデスタル(ドライ ウェル部)注水操作 ●格納容器下部注水系(常 設)によるペデスタル(ド ライウェル部)注水再開 操作【80m ³ /h】	3. 2	1分	1分	運転員 (中央制御室)	中央制御室の室温 については,空闘の 停止により可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であること から、容易に操作できる。	1.8
	格納容器下部注水系(常設) によるペデスタル(ドライ ウェル部)注水操作 ●格納容器下部注水系(常 設)によるペデスタル(ド ライウェル部)注水流量 調整【80m ³ /h→崩壊熟相 当】	3. 2	3分	3分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障となる設備はない。	_	中央制御室での操作は、通常の運転操作で実施する操作 と同様であること から、容易に操作で きる。	
	格納容器下部注水系(常設) によるペデスタル(ドライ ウェル部)注水操作 ●格納容器下部注水系(常 設)によるペデスタル(ド ライウェル部)注水停止 撮作	3. 2	4分	3分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 けない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は,通常の運転操作で実施する操作と同様であること から,容易に操作できる。	

表 重大事故等対策の成立性確認(11/14)

表	重大事故等対策の成立性確認	(12/1	4)

伦娄西日	你 要,提你不再容	事故	操作・作業	訓練等	ارد جار		作業	環境		演發工机	+EL 1/- 1/-	技術的 能力
TF来項日	作来・操作の内谷	シーケーンスNo.	想定時間	実績時間	1人 7九	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連給 十枚	f来TF1生	審査基準 No.
使 用 済 燃 料 プ ー ル へ の 注 水 操作	代替燃料プール注水系(可 搬型)の系統構成 ●代替燃料プール注水系 (可搬型)の電動弁の開操 作	4.1 4.2	3分	3分	運転員 (中央制御室)	中央制御室の室温 については、空調の 停止により緩慢に 上昇する可能性が あるが、作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	非常用照明が点灯する ことにより操作に影響 はない。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施するほど、 作で実施すること から、容易に操作で きる。	1. 11
待機中の 残留熱を の除 また 低 田 田	待機中残留熱除去系(低圧注 水系)による原子炉注水 ●待機中残留熱除去系(低 圧注水系)による原子炉 注水	5.1 5.3	5分	4分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて暫 央制御室内に配備して いる可擬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	
注水系による注水操作	残留熱除去系(原子炉停止時 冷却系)による原子炉冷却 ●待機中残留熱除去系(低 圧注水系)の停止	5.1	2分	2分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であること から、容易に操作できる。	
	残留熱除去系(原子炉停止 時冷却系)による原子炉冷 却 ●残留熱除去系(原子炉停 止時冷却モード)の系統 構成	5.1	30分	18分	運転員 (中央制御室)	通常運転時と同程 度。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備してて いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施するほと たの様であること から、容易に操作で きる。	
待機 中 の 残留 熱 除 ま た 原 子	残留熱除去系(原子炉停止 時冷却系)による原子炉冷 却 ●残留熱除去系(原子炉停 止時冷却モード)への系 統構成	5.1	45分	38分	運転員 (現場)	中央制御室の室温 については,空調の 停止により変慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作と同様であることから、容易に操作できる。	
(去い炉冷ド崩去旧)	残留熱除去系(原子炉停止 時冷却系)による原子炉冷 却 ●残留熱除去系海水系の起 動操作	5.2	4分	2分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて中 央制御室内に配備して いる可搬型照明により, 照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	_
	残留熱除去系(原子炉停止 時冷却系)による原子炉冷 却 ●残留熱除去系(原子炉停 止時冷却系)の起動操作	5.2	6分	5分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	ヘッドライトやLEDライ トを携行しているため, 建屋内非常用照明が消 灯した場合においても, 操作に影響はない。	アクセスルー ト上に支障と なる設備はな い。	携行型有線通話開 電話設備(固定電話) 、電力保安通信話 設備(固定電話) 、送受話器の設備によ り、中央制御室とる。 連絡が可能である。	通常運転時等に行 う弁の手動操作と 同様であり,容易に 操作できる。	

作業		操作の内容 事故 操作・作業 訓練等 の からの		訓練等	d b - Nu		作業	環境		1+ 44 - C. C.B.		技術的 能力
項目	作業・操作の内容	シーケーンスNo.	の想定時間	からの 実績時間	状况	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連絡于段	操作性	審査基準 No.
原子炉保 護系母線 の復旧	原子炉保護系母線の受電操 作 ●原子炉保護系母線の復旧 準備操作	5. 1 5. 2	10分	9分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性な あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	
	原子炉保護系母線の受電操 作 ●原子炉保護系母線の復旧 操作	5. 1 5. 2	40分	28分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作で実施する操作で支施するとこと に同様であること から、容易に操作で きる。	
	原子炉保護系母線の受電操 作 ●原子炉保護系母線の復旧 操作	5.1 5.2	85分	76分	運転員 (現場)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	炉心損傷がないた め高線量となるこ とはない。	蓄電池内蔵型照曲ないの 素エリアに屋内非常用 照明をでい なため、建屋内非常用 照明性を確保してい また、ヘッドライトで たしているため、 とEDライトを携行して いるため、著電できない 型照明がおいても、操作 に影響はない。	アクセスルー ト上に支障と なる設備はな い。	_	 通常運転時等に行うNPB操作と同様であり,容易に操作できる。 	

表 重大事故等対策の成立性確認(13/14)

作業	佐 要 相步 ~ 古皮	事故	操作・作業	訓練等	dis 20		作業	環境		生物工品		技術的 能力
項目	作業・操作の内容	シーケーンスNo.	想定時間	からの 実績時間	次 況	温度・湿度	放射線環境	照明	その他 (アクセスルート等)	連給于校	操作性	審査基準 No.
	原子炉建屋ガス処理系及び 中央制御室換気系の起動操 作 ●原子炉建屋ガス処理系及 び中央制御室換気系の起 動操作	3. 1. 2 3. 1. 3 3. 2	15分	8分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性な あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操作で実施する操作 と同様であること から,容易に操作で きる。	
居住性の 確保	中央制御室待避室の準備操 作 ●中央制御室待避室内の正 圧化準備操作	3. 1. 3	20分	15分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操作で実施する操作 と同様であること から,容易に操作で きる。	
	格納容器ベント準備操作 ●データ表示装置(待避室) の起動操作	3. 1. 3	15分	10分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	1.16
	中央制御室待避室の準備操 作 ●可搬型照明の設置	3. 1. 3	4分	3分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支障 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操 作は,通常の運転操 作で実施する操作 と同様であること から,容易に操作で きる。	
	格納容器圧力逃がし装置等 による格納容器除熟操作 ●中央制御室待避室内の正 圧化	3. 1. 3	5分	4分	運転員 (中央制御室)	中央制御室の室温 については,空調の 停止により緩慢に 上昇する可能性が あるが,作業に支管 を及ぼす程の影響 はない。	67mSv/7日間	直流非常灯が点灯する ことにより操作に影響 はない。必要に応じて 中央制御室内に配備し ている可搬型照明によ り,照度を確保する。	周辺には支障 となる設備は ない。	_	中央制御室での操作は、通常の運転操作で実施する操作で実施する操作 と同様であること から、容易に操作で きる。	

表 重大事故等対策の成立性確認(14/14)

添付資料 1.4.1

有効性評価に使用している解析コード/評価手法の開発に係る当社の 関与について

重大事故等対策の有効性評価のうち,シビアアクシデント解析業務は プラントメーカに委託しているものの,解析コード/評価手法の開発に あたっては,以下のとおり当社としても従前より積極的に関与している。

- ・各種解析コードの妥当性を審議する検討会(当時の通産省原子力発電 技術顧問会(基本設計)LOCA検討会「沸騰水側原子炉のLOCA /ECCS解析コード(SAFER)について」(昭和61年7月)等) における,検討のために必要な材料を当社より当時の通産省に対し積 極的に提供している。(SAFER,CHASTE,REDY,SCA T,APEX)
- ・安全評価を実施する上で適切な保守性を担保しつつ最新知見に基づく 合理的な評価手法について検討した日本原子力学会標準「BWRにお ける過渡的な沸騰遷移後の燃料健全性評価基準」(2003年発行)や 「統計的安全評価の実施基準」(2009年発行)の策定にあたり、当 社より委員として参画した上で、検討のために必要な材料を積極的に 提供している(REDY,SCAT)。また、シビアアクシデント解析 の知見を活用した日本原子力学会標準「原子力発電所の出力運転状態 を対象とした確率論的リスク評価に関する実施基準」(レベル1及びレ ベル2)等の策定にあたり、当社より委員として参画した上で、検討 のために必要な材料を積極的に提供している(MAAP)。
- ・アクシデントマネジメント整備の検討を開始した当初(1990年代前半)より、シビアアクシデント現象の研究及びアクシデントマネジ

添付 1.4.1-1

メント検討に当社も参画し,アクシデントマネジメント策の策定,整 備に対して貢献している(表1参照。MAAP)。

・現在においても、以下【参考】及び表1に示す通り、通常の業務の中
 でシビアアクシデント解析及び評価手法の活用及び改良に努めている。
 今後も不確かさを含む現象などに対する継続的な検討を進め、さらなる知見の拡充に努めていく。

【参考】シビアアクシデント解析の活用例

- ・シビアアクシデント解析結果を反映した運転手順書の整備と整備した 手順に基づく机上教育及び訓練の実施,さらに、有効性評価等を踏ま えた改善等を行い、継続的に教育、訓練を実施している。また、重大 事故等発生時の対応の要となる運転員に対しては、自社のシミュレー タ又はBWR運転訓練センターにおけるシミュレータを活用し、シビ アアクシデント時の挙動の把握・対応能力の向上に努めている。
- ・アクシデントマネジメント手順の改善及びPRA評価手法の改善のため、国内外関係機関(EPRI、BWROG等)の活動状況を踏まえつつ、シビアアクシデント解析の知見をふまえた手順及び評価手法の最新化に努めている。
表1 シビアアクシデント解析コード/評価手法の開発に係る当社の

解析コード	時期	件名
МААР	平成 4~5 年度	アクシデントマネジメントにおける
		運転操作指針の開発研究
	平成5年度	アクシデントマネジメント検討報告
		書
	平成 6~7 年度	アクシデントマネジメントにおける
		運転操作指針の開発(フェーズⅡ)
	平成 8~9 年度	アクシデントマネジメントガイドラ
		インの高度化に関する研究
	平成 13~14 年度	IVR等を考慮したAMGの高度化
		に関する研究
	現在継続中	EPRI MAAP Users Group (MUG)への参
		画

関与例

東海第二発電所の重大事故等対策の有効性評価の一般データ

(1) 炉心損傷防止 今回のご提示範囲

- (2) 格納容器破損防止
- (3) 原子炉圧力容器外の溶融燃料 冷却材相互作用(FCI)
- (4) 溶融炉心・コンクリート相互作用(MCCI)

なお,本資料中の **□**の中の値は,商業機密事項に相当いたします ので公開できません。

1. 解析初期条件データ

項目	数 值	備考
原子炉熱出力	3293 MWt (100%)	設計値
原子炉水位	セパレータスカート下端から +126cm (通常運転水位)	プラント仕様
炉心流量	$\begin{array}{cccc} 48.3 \times 10^{3} & t/h \\ (100\%) \\ 41.06 \times 10^{3} & t/h \\ (85\%) \end{array}$	設計値 TC解析条件
原子炉給水温度	215.6 °C	設計値
原子炉圧力 (圧力容器ドーム部)	6.93 MPa[gage]	設計値
主蒸気流量	6. 42×10^{3} t/h	設計値
ヒートバランス	図 1 参照 (各部の圧力、流量、エンタ ルピ等のデータ)	図1は定格運転状態の場合を提示。 設計値
燃料及び炉心	9×9燃料(A型)	燃料仕様
燃料集合体数	764 体	設計値
最大線出力密度	44.0 kW/m	設計値

2. 解析に関する情報

項目	数值	備考	
初期 MCPR	1.24	設計値	
給水温度低下特性	給水加熱器出口温度,給水スパー		
	ジャーまでの時間遅れ特性等のデ		
	ー <i>タ</i>		
	・初期給水温度から。	包絡値	
	MSIV 閉鎖により,60 秒の一次遅		
	れで給水温度低下。		
	別添8参照		
原子炉スクラム遅れ時		注記 1	
間	0.05 秒	安全保護系の遅れ時間	
		設計值	
再循環ポンプトリップ	7.39MPa[gage]:2 台		
台数	水位異常低下L2:2台		
再循環ポンプトリップ	0 2 秋	設計値	
遅れ時間	0.249		
再循環ポンプ回転数半	5 25 利		
減時間	0.20 19		
スクラム後の事象シー	スクラム後の給水制御, 圧力制御,		
ケンス	再循環制御等の事象シーケンスの		
	説明	事象進展シナリオ	
	別添1参照		

注記1:時間は、スクラム信号発生時刻を時刻0と定義する。

注記2:注入特性は、格納容器破損防止資料のⅢ.工学的安全施設等に示

したデータを提示した。

3. 幾何形状データ

項目	対象	データ	備考
蒸気ドーム部出口から	長さ,断面積(内径),	図2参照	注記1,2
主蒸気隔離弁までのデ	容積,エレベーショ		設計値
ータ	ン		
主蒸気隔離弁から主蒸	長さ,断面積(内径),	図 2 参照	注記 2
気加減弁までのデータ	容積,エレベーショ		設計値
(主蒸気ヘッダを含む)	ン		
主蒸気ラインからター	長さ,断面積(内径),	図 2 参照	注記 2
ビンバイパス弁までの	容積,エレベーショ		設計値
データ	ン		
燃料集合体(9×9 燃料	長さ	図 3-1 参照	各燃料型式毎に記載
(A型)) のデータ			設計値
蒸気ドーム部のデータ	長さ、容積	図 4 参照	設計値
燃料棒(9×9 燃料(A	長さ,半数,ギャッ	図 5-1 参照	各燃料型式毎に記載
型))のデータ	プ熱伝達係数(炉心		設計値
	平均,ホット)		
水位計のタップ位置	圧力容器底部からの 高さ		設計値

(1) 主蒸気管, 燃料棒等に関するデータ

注記1:蒸気ドーム部からMSIVまでの配管長さ等のデータについては、

各ライン(4本)の個別データを提示した。

注記2:配管の始点・終点の明確化のため名称を併せて記載した。

(例) 蒸気ドーム部~MSIV入口,長さ ××mm,断面積 ××mm²···

(2) R P V に関するデータ

項目	対象	寸法 (m)	備考
原子炉のエレベー ションに関するデ	・蒸気ドーム部 (ベッセル内) 高さ		設計値
ータ	・蒸気乾燥器頂部高さ		設計値
	・蒸気出口ノズル下端高さ及		設計値
	び内径		
	・蒸気乾燥器底部高さ		設計値
	・気水分離器頂部高さ		設計値
	·通常運転水位		解析では狭帯域と広
			帯域の初期水位は同
			ーとする。
			設計値
	・シュラウドヘッド・ドーム		設計値
	頂部高さ(内側)		
	・シュラウドヘッド・ドーム		設計値
	底部高さ		
	・チャンネルボックス上端高		設計値
	5		
	・燃料有効長頂部高さ		設計値
	・ジェットポンプ底部高さ		設計値
	・ジェットポンプ・スロート		設計値
	入口高さ		
	・燃料有効長底部高さ		設計値
	・再循環水出口ノズル下端高		設計値
	さ及び内径		
	・支持板底部高さ		設計値
	・制御棒案内管頂部高さ		設計値
	・制御棒案内管底部高さ		設計値
	・給水スパージャノズル高さ		設計値

(RPV底部からの高さ)

項目	対象	体積 (m ³)	ボイド率 (%)	備考
原子炉の体積に関	・下部プレナム底部から炉心支		_	設計値
するデータ	持板までの体積			
(1)下部プレナム	(制御棒案内管体積は除く)			
	 制御棒案内管体積 		—	設計値
(2)炉心	・下部体プレート内部及び燃料		—	設計値
(チャンネル内)	サポート内部			
	・燃料有効長底部から燃料有効		38	設計値
	長頂部までの体積及び平均			
	ボイド率			
	・燃料有効長頂部からチャンネ		64	
	ルボックス上端までの体積			設計値
	及び平均ボイド率			
(3)バイパス	・炉心支持板からチャンネルボ		0	設計値
(シュラウド内)	ックス上端までの体積及び			
	平均ボイド率			
(4)上部プレナム	・チャンネルボックス上端から		60	
	シュラウドヘッド・ドーム頂			設計値
	部までの体積及び平均ボイ			成时间
	ド率			
	・気水分離器		—	
	(全数,スタンドパイプ及び気			設計値
	水分離器スカート内を除く			의 17 자
	溢水レベルまで)			
	・スタンドパイプ (全数)		_	設計値

項目	対象	体積 (m ³)	備考
(1)蒸気ドーム(主蒸気管体積を除	 ・通常水位から蒸気乾燥器底部までの体積 		設計値
<)	 ・蒸気乾燥器底部から蒸気乾燥器底 部までの体積 		設計値
(2)ダウンカマ (再循環配管体積及	 ・支持板頂部からジェットポンプ頂 部(スロート入口)までの体積 		設計値
びジェットポンプ体 積を除く)	 ・ジェットポンプサクションからの シュラウドヘッド頂部までの体積 		設計値
	 ・シュラウドヘッド頂部から通常水 位までの体積 		
			設計値
(3)再循環配管	・1 ループの再循環配管体積 ・再循環配管の底部から頂部までの		設計値
(4)ジェットポンプ	<u> </u>		設計値

4. 核データ・熱水力関連データ

項目	対象	データ	備考
ボイド反応度	炉心平均ボイド率	別添2①参照	設計値
	(%) とボイド反応		
	度係数((Δ k / k)		
	/%ボイド率)のデ		
	ジタル値		
	保守係数(設置許可		
	申請書添付八記載の		
	1.25倍等)について		
	も記載		
ドップラ反応度	燃料棒平均温度(℃)	別添2②参照	設計値
	とドップラ反応度係		
	数(Δ k/k/℃)の		
	デジタル値		
	保守係数(設置許可		
	申請書添付八記載の		
	0.9倍等)についても		
	記載		
ボロン反応度(ATWS	ボロン濃度 (ppm) 及	図2参照③参照	反応度K, ボロン反
解析用)	びボイド率と反応度	(ボイド率の影響は	応度B,ボイド率α
	係数(Δk/k/ppm))	冷却材密度の変化と	として,
	のデジタル値	して考慮、5ほう酸	$K = f (B, \alpha)$
	(注)ボロン濃度0~	ナトリウム濃度:	のテーブルで記載
	600ppmに対して	13.4wt%)	設計値
スクラム反応度	制御棒挿入割合とス	図 2④参照	設計値
	クラム反応度(\$)		
	のデジタル値		
	設計用スクラム曲線		

項目	対象	データ	備考
スクラム挿入速度	スクラム挿入割合	SOM:	*:スクラム時間
(BWRの仕様)	(%) とスクラム時	0.2秒	はSOMを含む。
	間*(秒)のデジタル	5%ストローク:	(SOM:スクラム信号
		0.375秒	をCRD系が受信して
		20%ストローク	から動作開始までの
		0.90秒	時間)
		50%ストローク	$SOM \sim 5\%$, $5\% \sim$
		2.0秒	20% , $20\% \sim 50\%$,
		90%ストローク	50%~90%はそれぞ
		3.5秒	れ直線近似とした。
			設計値
中性子関連	中性子寿命 (µ sec)	別添2⑤参照	設計値
	実効遅発中性子割合		
	β		
軸方向出力分布	SAFER, RED	SAFER:別添2 ⑥参照 *	設計値
	Y, SCATの各解	2	
	析コードで使用して	REDY:別添3 ②参照 * 1	
	いる半均チャンネル	SCAT:別杰3 ①参照 * 2	
	とホッテストナヤン		
	ネルのテンタル値		
集合体出刀	平均ナヤンネルと高	平均:4.3MW	計具コード内部計具
	田力ナヤンネル	かット: 7 ONW (CCAT) + 9	1但
		$7.2 \text{MW} (\text{SCAI}) \neq 3$	
作人は1日法昌	亚カチャンタルトす	$\frac{0.1 \text{MW}}{\text{W} \text{K}_1 \cdot \text{E7}} + \frac{1}{2}$	
朱百仲八日仉里	平均ノインイルと同	$+ 19 \cdot 57 \cdot 6 t / 11$	
	山川ノインイル(ワ	332 752 752 110 10 10 10 10 10 10 1	
	ユーノー 加重 会まず)	50A1 . 55.2 t/ II . 0	
	<u> </u>	平均·14 %	設計値
	(ウォーターロッド	ホット・15 %	<u> </u>
	を含む)		

*1:下方ピーク(初期ボイド率を高めに設定、過圧時の反応度印加割合を大きくした。)

- *2:中央ピーク(代表的な出力分布として設定)
- *3:初期MCPRをOLMCPRと一致するように設定。TC解析条件85%炉心流量の値を記載。
- *4:燃料棒本数、最大線出力密度、軸方向出力分布、有効発熱部長さに基づいて設定し、燃料被覆管 温度を厳しめに評価した。
- *5: SAFERでは下記のように設定される。

(全炉心流量)*(流量配分比)/(体数)-(バイパス流量)として設定される。 SCATではホッテストチャンネル出力に応じた流量として設定される。

*6:TC解析条件85%炉心流量の値を記載。

項目	対 象	データ	備考
出ロクオリティ、出ロボイ ド率	平均チャンネルとホッ テストチャンネル	平均: クオリティ 14% ボイド率 64% ホット: クオリティ 33% ボイド率 80%	設計値
崩壊熱曲線	SA有効性評価(炉心損傷防止)解析で用いる崩壊熱データ (ANSI/ANS-5.1-1979燃焼度33GWd∕t)	原子炉停止機能喪 失:別添4 原子炉停止機能喪 失以外:別添5	原子炉停止機能喪失: 計算コード内部計算値 原子炉停止機能喪失以 外:崩壊熱評価式(ANSI /ANS-5.1-1979)によ る計算値

5. 機器特性データ他

項目	対 象	データ	備	考
ジェットポンプに関	・ジェットポンプ基数	20基	設計値	
するデータ	・ジェットポンプ駆動流量 ・ジェットポンプ吐出流量			
RIP又は再循環ポ	・単相ホモロガス曲線		設計値	
ンプの特性データ	またはポンプQ-H特性及び Q-T特性			
	 ・トルク(Nm)、水頭(m)、回転数(rad/sec)、流量(m³/s)、モーメント(kg-m²)水頭換算水密度(kg/m³) 			
RIP又は再循環ポ	・逆流時の抵抗係数		設計値	
ンプ逆流時の特性				
再循環流量制御系	REDYで使っている原子炉再循 環流量制御系の運転モード(自 動/手動)及び下記制御器の特	再循環流量制御系は 手動モード。事象発 生直後に2台ともト		
	性(伝達関数ブロック図) ・主制御器 ・速度制御器	リップするため制御 系 は 使 用 し て い な い。		

項目	対象	データ	備考
原子炉給水制御系	原子炉検出水位,主蒸気流	別添6「給水制御系ブ	設計値
	量,給水流量を入力とし,原	ロック図」参照	
	子炉への給水流量を算出す		
	る3要素制御系の制御特性		
	(伝達関数ブロック図)		
原子炉圧力制御系	制御特性(伝達関数ブロック	原子炉停止機能喪	設計値
	図)	失: 圧力制御はMS	
		IV閉鎖による逃が	
		し弁機能にて実施し	
		ているため圧力制御	
		系は使用していな	
		√v₀	
水位計	狭帯域及び広帯域水位計の	3. (1)参照	タップ位置
	タップ位置と初期水位の値		
		セパレータスカート	初期水位の値
		下端から	設計値
		(図4の3参照)	

逃がし弁設計値

	R E D Y	SAFER
開遅れ時間	0.2秒(包絡値)	0.1秒
全閉-全開時間	0.1秒	同左
閉設定値	下表参照	同左

(表中の値は全て設計値)

逃がし/安全弁

(逃がし弁)

吹出圧力 (MPa[gage])	弁個数	容量/個(吹出 圧力において) (t/h)
7.37	2	354.6
7.44	4	357.8
7.51	4	361.1
7.58	4	364.3
7.65	4	367.6

⁽表中の値は全て設計値)

(安全弁)

吹出圧力 (MPa[gage])	弁個数	容 量 / 個 (t / h)
7.79	2	385.2
8.10	4	400.5
8.17	4	403.9
8.24	4	407.2
8.31	4	410.6

(表中の値は全て設計値)

初期定格状態のパラメータ (炉心出力<u>100</u>%、炉心流量<u>100</u>%、蒸気ドーム圧力<u>6.93</u>MPa[gage])

ス弁へのラインは同一エレベーションである。

項目	9×9燃料(A型)	備考
L 1 (mm)		
L 2 (mm)		
L 3 (mm)		
L 4 (mm)		
L 5 (mm)		コーナ部曲率半径
L 6 (mm)		
ギャップ	平均:	
コンダクタンス	REDY 7380 ₩∕(m²·K)	
(W∕m ² ⋅K)	SAFER 別添2参照	
	(軸方向一定値)	
	ホット:	
	SAFER 別添2参照	
	SCAT 別添3参照	

図4 蒸気ドーム周辺略図

添付 1.5.1-16

項目	仕 様	入力値	備考
R PEL (mm)	燃料ペレット半径		
R FCI (mm)	被覆管内半径		
\mathbf{D} (\mathbf{D} (\mathbf{x})	もとしも町		
R GP (mm)	キャッノ幅		
R FCO(mm)	被覆管外半径		
LF(mm)	燃料棒有効長(標準)		部分長の下端/上端
	燃料棒有効長(部分長)		位置は標準の下端を
	下端位置(部分長)		基準(0mm)としたと
	上端位置(部分長)		きの値とする。
ペレット		SAFER:平坦	
径方向発熱分布		SCAT:別添 3	
		①参照	
ペレット密度	(kg/m ³)		
ペレット物性値	温度(K)と熱伝導率(W/m・K)のテーブル	表 5-1-1 参照	温度 300~3000K の
	温度(K)と比熱(J/kg・K)のテーブル		範囲
被覆管密度	(kg/m ³)		
被覆管物性值	温度(K)と熱伝導率(W/m・K)のテーブル	表 5-1-2 参照	温度 300~1100K
	温度(K)と比熱(J/kg・K)のテーブル		(被覆管の物性値と
			して現実的な範囲)
ギャップ	平均:	図 3-1 9×9 燃	集合体のギャップコ
コンダクタンス		料(A型)集合	ンダクタンスのた
(W∕m²·K)	ホット:	体略図参照	め、図 3-1 への記載
			とする。

図 5-1	9×9	燃料	(A型))燃料	棒略	义
-------	--------------	----	------	-----	----	---

ペレット温度	熱伝導率	比熱
(K)	(₩∕(m • K))	(J ∕Kg • K)
300		
400		
500		
600		
700		
800		
900		
1000		
1100		
1200		
1300		
1400		
1500		
1600		
1700		
1800		
1900		
2000		
2100		
2200		
2300		
2400		
2500		
2600		
2700		
2800		
2900		
3000		

表 5-1-1 ペレット物性値 9×9燃料 (A型)

被覆管温度	熱伝導率	比熱
(K)	(W∕(m • K))	(J ∕Kg • K)
300		
400		
500		
600		
700		
800		
900		
1000		
1100		

表 5-1-2 被覆管物性值 9×9燃料 (A型)

項目	数值	備考
再循環吸込側配管内径(D1)	547.7 mm	設計値
再循環吐出側配管内径(D2)	547.7 mm	
再循環リングヘッダ内径(D3)	367.9 mm	
再循環外部ライザ管内径(D4)	289.0 mm	
再循環内部ライザ管内径(D5)	257.5 mm	
再循環吸込側配管長さ(L1)	15.42 m	
再循環吐出側配管長さ(L2)	12.21 m	
再循環リングヘッダ長さ(L3)	10.759 m	
再循環外部ライザ管長さ(L4)	3.26 m	
再循環内部ライザ管長さ(L5)	5.92 m	ノズル出口まで
再循環外部ライザ管インターバル(I1~I2)	30°間隔	

図6 再循環配管の底部から頂部までの高さと内径の関係

	項目	数值	備考
スロート上端	内径(D1)	161.0 mm	
スロート下端	内径(D2)	214.9 mm	
デフューザ下端	内径(D3)	473.7 mm	
ノズル	内径(D4)	33.0 mm	
テイル部	長さ(L1)	275.6 mm	
デフューザ	長さ(L2)	3197.9 mm	
スロート (下部)	長さ(L3)	1016.8 mm	
スロート (上部)	長さ(L4)	588.3 mm	
ノズル	個数(N1)	5 個	

図7 ジェットポンプの底部から頂部までの高さと内径の関係

	1			
	原子炉側		PCV 側	
シーケンス	設備	動作	設備	動作
吉 [] [] [] []	公式制御	お田東色のたみ市生	体 井 DCU フプレノ	
同圧・ 仏圧 注水機能車	后 小 前 仰 下 力 判 御	他囚事家のため茂大 MCIV 期の水位思党低玉I 9 又は 0 秒		5/0 圧力 2/9KPa 到達 時 開 始 、 21/KPa 到達 時 停止 c/0 水 位 12 52m 到 遠時 値 止
失	二 刀 响 响		PCV ~ > b	S/C 不位 13.35m 判定时停止 S/C 下力 210KP。 到 法時
	再循環流量制御	水位 異 常 低 下 L 2 で 全 台 ト リ ッ プ		U/UE/J UIUMIA 对定利
	原子炉減圧	SRV 7 弁 手 動 減 圧 @ 25 分		
	原子炉注水	低圧代替注水系(常設) @ 減圧後		
		起動:L3/停止:L8にて水位制御		
高圧注水・	給水制御	起因事象のため喪失	RHR1 系列-S/C 冷却	冷却開始@水位高L8+5分
减止機能喪	圧力制御	MSIV 閉@水位異常低下L 2 又は 0 秒		
~		MSIV 閉鎖後は SRV 開閉		
	円 佰 坂 流 重 前 御	水位		
	原 丁 炉 碱 庄	小位低LI+10万夜,迴復时ADS 2 开日勤顽圧		
		記動:L3/停止:L8にて水位制御		
		LPCI 3 系統注水 @ 減圧後		
		停止: L 8		
長期TB	給水制御	SBO のため事故と同時に喪失	代替 PCV スプレイ	S/C 圧力 279KPa 到達時開始、217kPa 到達時停止
	上 刀 制 御	MSIV 闭 @O 秒 MCIV 開 始 终 ch cpv 開 問		
	再 循 帶 法 县 制 御	MS1V 別 頻 仮 は SKV 囲 闭 車 歩 ト 同 時 に 今 〜 ト 川 ッ プ	RHR-PUV X J V 1	FUV ヘノレイ 起動 @ LFUI 注水 停止 仮 L 8 +5 分 停止・ L 3 /記動・ L 8 +5 分
	原子炉减压	事成と同時に至日下ラララ SRV 7 弁手動減圧@8 時間 1 分	-	PCV 圧力 13.7kPa 到達時停止
	原子炉注水	RCIC(~10分:起動/停止:L2/L8)	RHR-S/C 冷却	S/C 冷却起動@PCV 圧力 13.7kPa+5 分
		10 分~: 起動/停止: L 3 / L 8		停止: L 3 / 起動: L 8 +5 分
		RC1C 停止:減圧と同時 低圧体共注れず(可拠型)の対圧後		
		14 二八谷江小宗(可振空) () () () () () () () () () () () () ()		
		24 時間 5 分後停止		
		RHR-LPCI 注水開始@24時間10分		
	AA L that floor	停止: L 8 / 起動: L 3 +5 分		
IRD	裕 水 制 御 広 力 判 御	SBU のため事故と同時に喪失 MSTV 関 00 秒	KHK-PCV スプレイ	PUV スノレイ 起動@S/C 圧力 279kPa 到達時 停止・Ⅰ 3 /起動・Ⅰ 8 +5 ↔
	ルト・ノノ 中川 10年	MSIV 閉鎖後け SRV 即問	4	PCV 圧力 13.7kPa 到達時停止
1	再循環流量制御	事故と同時に全台トリップ	RHR-S/C 冷却	S/C 冷却起動@PCV 圧力 13.7kPa+5 分
	原子炉減圧	SRV 7 弁手動減圧 @ 25 分	1	停止: L 3 / 起動: L 8 +5 分
	原子炉注水	低圧代替注水系(常設)@減圧後		
		起動: L3/停止: L8にて水位制御 S/C 圧力 270kPa 到遠徑 L8にて水位制御		
		5/0 圧力 21 JR F a 均 建 夜 L O に し 停 止 RHR-LPCI 注 水 @ PCV スプ レイ 信 止 後 T 3+5 分		
		停止:L8/起動:L3+5分		
崩壞熱除去	給水制御	起因事象のため喪失	代替 RHRS-PCV スプレイ	PCV スプレイ起動@S/C 圧力 279KPa 到達時
機能喪失				停止: L 3 / 起動: L 8 +5 分
(収水機能 喪失)	王力制御	MSIV 閉@水位異堂低下I 9 マけ 0 秒	代 恭 RHRS-S/C 冷却	r い 圧 /J 13. (KF a 到 達 時 停 止 S/C 冷 却 起 動 @ PCV 圧 力 13 7bPa+5 公
及入)	二 刀 前 响	MSIV Rev L H H K I L Z X & U V	1(1) 1111(3 5)(1) 5)	停止:L3/起動:L8+5分
		MSIV 閉鎖後は SRV 開閉		
	再循環流量制御	水位異常低下L2で全台トリップ		
	原子炉減圧	SRV 7 弁 手 動 減 圧 @S/C 水 温 65℃		
	原 壬 炉 汪 水	RCIC(~10分:起動/停止:L2/L8) 10分~・起動/停止・L3/L8		
		RCIC 停止:減圧と同時		
		低圧代替注水系(常設)@減圧後		
		起動:L3/停止:L8にて水位制御		
		S/C 圧力 279kPa 到 達後 L 8 にて停止		
		代替 RHRS-LPCI 注水 @ PCV スフ レイ停止後し3+5分 停止・L Q / 記動・L 2+5 公		
崩壊執除去	給水制御	お因事象のため喪失	代 萃 PCV スプレイ	S/C 圧力 279KPa 到達時開始 217kPa 到達時停止
機能喪失	五 六 前 母 王 力 制 御	MSIV 閉@水位異常低下L 2 又は 0 秒		S/C 水位 13.53m 到達時停止
(RHR 機能喪		MSIV 閉鎖後は SRV 開閉	PCV ベント	S/C 圧力 310KPa 到達時
失)	再循環流量制御	水位異常低下L2で全台トリップ		
	原子炉減圧	SRV 7 弁手動減圧@S/C 水温 65℃		
	原子炉注水	RCIC(~10 分:起動/停止:L2/L8)		
		TO ガー・起動/ 停止・しる/ しる RCIC 停止 : 減圧と同時		
		HPCS(~10分:起動/停止:L2/L8)		
		10 分~:起動/停止:L3/L8		
		HPCS 停止: 21 分 低圧化粧決力系(常計) の対圧後		
		低圧 代 督 汪 亦 糸 (帛 設) ⁽¹) 岡 庄 俊 記 動 ・ L 3 / 停止 ・ L 8 に て 水 位 制 御		
津波浸水に	給水制御	起因事象のため喪失	PCV ベント	S/C 圧力 310kPa 到達時
よる注水機	圧力制御	MSIV 閉@0秒		
能喪失		MSIV 閉鎖後は SRV 開閉		
	冉 循 環 流 量 制 御	事故と同時に全台トリップ SDV 7 か 手動 Mill C の 2 /2 より C SS		
	尿丁炉阀圧 百子に注 ル	SRV (井士 期 阀 庄 凹 S/し 水 温 b5 U RCIC(~10 分・起 動 / 値 止・エ 9 / エ 0)		
	小小小仁小	10 分~:起動/停止:L3/L8		
		RCIC 停止:減圧と同時		
		低圧代替注水系(常設) @ 減圧後		
LOCA 時注水	給水制御	<u> 起動:しる/ 停止:しるにし水位</u> 制御 事故と同時に喪失	代替 PCV スプレイ	S/C 圧力 279kPa 到 達時開始。 217kPa 到 達時停止
機能喪失	圧力制御	MSIV 閉@水位異常低下L 2 又は 0 秒	1	S/C水位 13.53m 到達時停止
		MSIV 閉鎖後は SRV 關閉	PCVベント	8/0 压力 210kD 2 动 安吐
	百 彽 閂 汰 具 蛅 /m		· - · · ·	5/5/L /J 310KF省 判 座 吋
	<u></u> 一 1 1 1 現 孤 重 刑 御 原 子 仁 減 正	 小世共市地下してて王ロトリツノ 25 分後、SRV 7 弁手動減圧 		
	原子炉注水	低圧代替注水系(常設)@減圧後		
		起動:L3/停止:L8にて水位制御		
	at 1. that then	S/C水位 13.53m 到達後は崩壊熱相当の流量	DUD	
原子炉停止 ^榔 能===+	給水制御	裕水流量は3要素制御。MSIV閉鎖から、5秒で68%	КНК	事家開始から17分で冷却開始
1成 肥 茂 大		m 小 m 里 a て W T 夜、 復 小 奋 小 位 K に よ り 裕 水 ホ ン プ が 停 止 し 5 秒 で 給 水 流 量 0 %。		
	圧力制御	MSIV閉のため、圧力制御はSRVの開閉による。		
	再循環流量制御	MSIV 閉に伴う炉圧高で2台 RPT		
	原子炉注水	KUIC(起動:L2) (I 1 + 150 とI 1 + 250 cm で維佐協ル)		
		(E I 100 C E I 2000m C # 行 探 1) S/P 水温 106℃でトリップ		
		HPCS (起動: PCV 圧力高)		
TOLOGY	4A J. Hel Men	(L1+150とL1+250cmで維持操作)	DUD(A) a /a M ba	
ISLUCA (RHR-R	「 拓 小 削 御	 単	KHK(A)-S/C 冷却 RHR(B) 隔離場 佐 空 マ	5/0 行 却 起 期 他 25 分 5 時 間
Hx)	ルノノ町畑	moiv 加e小世共市地ドレイスは U 砂 MSIV 閉鎖後は SRV 開閉	ハロハ \0/ 脣 雁 馃 作 元 ↓	「 「 日 」
	再循環流量制御	水位異常低下L2で全台トリップ		
	原子炉減圧	配管破断による減圧		
		15 分後, SRV 7 弁手動減圧		
	原子炉注水	RCIC(~10分:起動/停止:L2/L8)		
		10 万~: 匹 IJ / 停止: L 3 / L 8 RCTC 停止: 減 圧 と 同 時		
		低圧代替注水系(常設)起動@17分		
		L 3 +1 分~: L 3 維持の水位制御		
		5時間1分後停止		
		LPCS 起動 @ 減圧後 記動・L 9 / 原止・L 9 に て かけ #11 /#1		
1	1	匹動:L3/停止:L8にて水位制御		
		LPCS 停止 : L 3 +1 分		

添付 1.5.1-22

①ボイド反応度 1. ボイド反応度(×10 ⁻⁴	Δ k/k/%ボイド)
ボイド率	9×9 燃料 (A型) 炉心
(%)	平衡サイクル末期
0	
10	
20	
30	
40	
50	
60	
70	

保守係数:1.25 (9×9 燃料 (A型))

②ドップラ係数

(2) ドッフフ 係 数		
2. ドップラ反応度 (×10 ⁻	⁵ Δk/k/℃)(減速材:,ボイ	「ド率=40%)
燃料温度	9×9 燃料 (A型) 炉心	
(°C)	平衡サイクル末期	
520		
750		
1000		
1250		
1500		
1750		
2000		
2250		
2500		
2750		
3000		

保守係数: 0.9 (9×9 燃料 (A型))

ボロン価値 (%Δk/ppm)

③ボロン反応度3.ボロン反応度

サイ	ク	ル初	期

④スクラム反応度4、スクラム反応度(\$)

挿入割合	設計用スクラム曲線 (サイクル末期)
0.00	
0.05	
0.10	
0.20	
0.30	
0.40	
0.50	
0.60	
0.70	
0.80	
0.90	
1.00	

⑤中性子関連

6. 中性子関連

百日	9×9燃料 (A型) 炉心
項	平衡サイクル末期
中性子寿命 (µ sec)	43
ガループ	9×9 燃料 (A型) 炉心
9 N - 9	平衡サイクル末期
トータルβ	0.0053

⑥平均/ホッテストチャンネル軸方向(SAFER) 【SAFER】

軸方向ノード	1	2	3	4	5	6	7	8	9	10
軸方向出力分布	0.5317	0.7517	1.0342	1.2758	1.3817	1.3625	1.2208	1.0442	0.845	0.5525

ギャップコンダクタンス

ホット

$9 \land 9 A$										
軸方向ノード	1	2	3	4	5	6	7	8	9	10
Btu/hr-ft2-F	781.56	1126.44	1571.76	1938.24	2082.96	2063.88	1847.88	1585.8	1230.12	816.84
W/(m2-K)	4437.9	6396.2	8924.9	11005.8	11827.6	11719.3	10492.8	9004.6	6984.9	4638.2

1)										
[SCAT]										
軸方向ノード	1	2	3	4	5	6	7	8	9	10
軸方向出力分布	0.431	0.511	0.596	0.692	0.797	0.912	1.037	1.158	1.253	1.318
軸方向ノード	11	12	13	14	15	16	17	18	19	20
軸方向出力分布	1.363	1.393	1.403	1.378	1.333	1.268	1.193	1.118	1.048	0.972
軸方向ノード	21	22	23	24	25					
軸方向出力分布	0.887	0.792	0.672	0.516	0.346					

[SCAT]

半径方向出力分布 9×9A燃料

No	規 格 化 半 径	相対出力
1	0.00	0.929
2	0.10	0.929
3	0.20	0.930
4	0.30	0.932
5	0.40	0.937
6	0.50	0.944
7	0.60	0.955
8	0.70	0.971
9	0.80	0.991
10	0.90	1.027
11	1.00	1.478

ギャップコンダクタンス

[SCAT]

100111	
単位換算	[Btu/hr-ft2-F]*5.678264
9X9A 燃料	
平均	軸方向一定值
Btu/hr-ft2-F	1900
W/(m2-K)	10788.7

ホットロッド

軸方向ノード	1	2	3	4	5	6	7	8	9	10
Btu/hr-ft2-F	860.5	989.7	1126.9	1280.3	1527.7	1820.3	2108.4	2334.3	2576.2	2822.8
W/(m2-K)	4886.1	5619.8	6398.8	7269.9	8674.7	10336.1	11972.1	13254.8	14628.3	16028.6
軸方向ノード	11	12	13	14	15	16	17	18	19	20
Btu/hr-ft2-F	2990.5	3058.4	3081	3024.5	2879.8	2633.1	2418.3	2261.4	2131.5	1958.6
W/(m2-K)	16980.8	17366.4	17494.7	17173.9	16352.3	14951.4	13731.7	12840.8	12103.2	11121.4
軸方向ノード	21	22	23	24	25					
Btu/hr-ft2-F	1759.7	1514.8	1248	997.8	714.6					
W/(m2-K)	9992.0	8601.4	7086.5	5665.8	4057.7					

② 【REDY】

[REDY]	
規格化高さ	相対出力
0.000	0.00
0.042	0.44
0.167	0.77
0.292	1.14
0.500	1.46
0.625	1.35
0.708	1.07
0.792	0.94
0.917	0.69
1.000	0.40

サブクール環境計算のための分布

崩壞熱曲線 (原子炉停止機能喪失)

時間(s)	崩壞熱割合
0.1	0.06447
0.2	0.06396
0.3	0.06349
0.4	0.06305
0.5	0.06262
0.6	0.06222
0.7	0.06183
0.8	0.06145
0.9	0.06109
1	0.06074
2	0.0578
3	0.05558
4	0.05383
5	0.05239
6	0.05118
7	0.05014
8	0.04922
9	0.04841
10	0.04768
20	0.04288
30	0.04013
40	0.03819
50	0.03669
60	0.03548
70	0.03446
80	0.03359
90	0.03283
100	0.03217
200	0.02812
300	0.02602
400	0.0246
500	0.02351
600	0.02261
700	0.02183
800	0.02116
900	0.02055
1000	0.02001
2000	0.01639
3000	0.01438
4000	0.0131
5000	0.0122
6000	0.01153
7000	0.01101
8000	0.01059
9000	0.01023
10000	0.00993

崩壊熱曲線(原	子炉停止機能喪失」	以外)
時間(s)	崩壊熱割合	
0.1	0.06445	
0.3	0.06347	
0.4	0.06303	
0.5	0.0626	
0.6	0.0622	
0.7	0.06143	
0.9	0.06106	
1	0.06072	
2	0.05778	
3	0.05557	
5	0.05382	
6	0.05118	
7	0.05014	
8	0.04923	
9	0.04842	
10	0.04769	
20	0.0429	
40	0.03822	
50	0.03673	
60	0.03551	
70	0.03449	
80	0.03362	
90	0.03287	
200	0.02817	
300	0.02607	
400	0.02465	
500	0.02355	
600	0.02265	
800	0.02187	
900	0.02059	
1000	0.02004	
2000	0.01641	
3000	0.0144	
4000	0.01311	
6000	0.01221	
7000	0.01102	
8000	0.01059	
9000	0.01024	
10000	0.009944	
30000	0.008282	
40000	0.006928	
50000	0.006542	
60000	0.006242	
70000	0.006001	
80000	0.005802	
100000	0.00549	
200000	0.004574	
300000	0.003971	
400000	0.003565	
500000	0.003265	
700000	0.00284	
800000	0.002684	
900000	0.002554	
100000	0.002443	
200000	0.00181	
3000000	0.001495	
4000000	0.001294	
6000000	0.001052	
700000	0.0009714	
8000000	0.0009032	
9000000	0.0008464	
10000000	0.0001999	

図1 PLR ポンプ特性

	ポンプ流量/台	回転速度	揚程
最大流量運転			

図2 給水制御ブロック図

図 3

図 4

添付資料 1.5.2

コメント No.171-25 に対する回答

有効性評価におけるLOCA時の破断位置及び口径設定の 考え方について

重大事故等対策の有効性評価において, LOCA事象を想定するシ ーケンスの破断位置及び口径の設定の考え方については,以下のとお り。

- 1. 運転中の原子炉における重大事故に至るおそれがある事故
- (1) LOCA時注水機能喪失

a. 破断位置

燃料被覆管破裂が発生しない範囲の破断面積(約3.7cm²)を 考慮し,気相部配管,シュラウド外の液相部配管及びシュラウド 内の液相部配管の各配管(第1表)について,流出量の観点から 最も低い位置に存在する配管で破断が発生した場合の感度解析 を実施した。

その結果,第2表に示すとおり,燃料被覆管温度が最も高くなる再循環配管を「LOCA時注水機能喪失」で想定する破断位置 として選定した。

第1表 原子炉圧力容器に接続する配管(計装配管を除く。)

第2表 破断位置の感度解析結果

破断位置	破断面積	燃料被覆管 最高温度	燃料被覆管の 酸化量
①気相部配管(主蒸気配管)		338°C	約 0.1%
②シュラウド外の液相部配管 (再循環配管)	[※] 力 9 7 ²	626°C	約 0.1%
 ③シュラウド内の液相部配管 (原子炉圧力容器底部ドレン配管) 	示J 3.7 CIII -	617°C	約 0.1%

b. 破断面積

炉心損傷防止対策の有効性を確認する上で,「LOCA時注水機能喪失」の事象進展の特徴を代表できる破断面積約 3.7cm² (0.004ft²)を設定した。

添付 1.5.2-2

破断面積が大きく,炉心損傷(燃料被覆管破裂を含む。)に至る場合については,「3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」にて確認する。

なお,第3表に示すとおり,破断面積の感度解析の結果,再循 環配管(シュラウド外の液相部配管)の破断について,燃料被覆 管破裂が発生しない破断面積の限界は,約9.5cm²となった。

また,主蒸気配管(気相部配管)及び原子炉圧力容器底部ドレン配管(シュラウド内の液相部配管)については,燃料被覆管破裂が発生しない破断面積の限界は,それぞれ約 224cm²及び約9.2cm²となった。

破断位置	破断面積	燃料被覆管 最高温度	燃料被覆管の 酸化量	破裂の 有無
①気相部配管 (主蒸気配管)	約 224 cm ²	約 887℃	約 0.6%	無
	約 225 cm ²	約 906℃	約 1.0%	有
 ②シュラウド外の液相 部配管 (再循環配管) 	約 9.5 cm ²	約 842℃	約 0.7%	無
	約 9.6 cm ²	約 862℃	約 1.4%	有
 ③シュラウド内の液相 部配管 (原子炉圧力容器 底部ドレン配管) 	約 9.2 cm ²	約 846℃	約 0.7%	無
	約 9.3 cm ²	約 853℃	約 1.4%	有

第3表 破断面積の感度解析結果

(2) 格納容器バイパス(インターフェイスシステムLOCA)

a. 漏えい位置

事故シーケンスグループ「格納容器バイパス(インターフェイ スシステムLOCA)」(以下「ISLOCA」という。)では, 原子炉冷却材圧力バウンダリと接続される系統において,高圧設

添付 1.5.2-3
計部分と低圧設計部分を分離する隔離弁の誤開等により低圧設 計部分が過圧され,格納容器外での原子炉冷却材の漏えいが発生 することを想定する。

東海第二発電所の主要系統のうち,原子炉冷却材圧力バウンダ リから格納容器外に接続する配管は以下のとおりである。

- · 給水系注入配管
- ・高圧炉心スプレイ系注入配管
- ・原子炉隔離時冷却系原子炉圧力容器頂部スプレイ配管
- 原子炉隔離時冷却系蒸気供給配管
- ・低圧炉心スプレイ系注入配管
- ·残留熱除去系原子炉注入配管
- ・残留熱除去系原子炉圧力容器頂部スプレイ配管
- ・残留熱除去系停止時冷却モード吸込配管
- ・残留熱除去系停止時冷却モード原子炉圧力容器戻り配管
- 制御棒駆動水圧系制御棒挿入側配管
- 制御棒駆動水圧系制御棒引抜側配管
- ・ほう酸水注入系注入配管
- ·原子炉冷却材浄化系入口配管
- · 主蒸気系配管
- ·原子炉圧力容器計装系計装配管
- ・試料採取系サンプリング配管

これらの系統のうち,原子炉圧力容器接続部の配管口径が小さ く I S L O C A の発生を想定した場合でもその影響が軽微であ る制御棒駆動水圧系並びに高圧バウンダリのみで構成される計

装系配管及び主蒸気系配管は除外する。また,発生頻度の観点か ら低圧設計部が4弁以上の弁或いは3弁以上の弁及び高圧設計の ポンプで隔離されている給水系,残留熱除去系原子炉圧力容器頂 部スプレイ配管及びほう酸水注入系配管は除外する。さらに,通 常運転中に隔離弁の開閉試験を実施しない残留熱除去系停止時 冷却モード配管については,隔離弁2弁の内部リークによりIS LOCAが発生する場合があるが,弁間差圧等により1弁の内部 リークが発生した時点で容易に認知可能と考えられることから 対象外とする。

したがって、以下の配管が評価対象として選定される。

- ・高圧炉心スプレイ系注入配管
- ・原子炉隔離時冷却系原子炉圧力容器頂部スプレイ配管
- ・低圧炉心スプレイ系注入配管
- •残留熱除去系原子炉注入配管(A系, B系)
- •残留熱除去系原子炉注入配管(C系)

上記配管のうち,ISLOCA発生時の過圧範囲において最も 大きなシール構造であり,主要な漏えい源となり得る熱交換器の 水室フランジ部を有する残留熱除去系原子炉注入配管(A系,B 系)の構造健全性評価の結果,ISLOCAが発生する可能性が 最も高い残留熱除去系熱交換器フランジを「ISLOCA」で想 定する漏えい位置として選定した。

b. 漏えい面積

構造健全性評価の結果を踏まえ、漏えい面積 21 cm²を設定した。

2. 重大事故

- (1) 雰囲気圧力・温度による静的負荷(格納容器過圧・過温)
 - a. 破断位置

破断位置は以下の理由から再循環ポンプ吸込配管を想定して いる。(第1図参照)

(a) LOCA事象は、破断面積が大きいほど原子炉水位低下及び 炉心溶融までの事故進展が早く、格納容器破損防止対策を講 じるための余裕時間が厳しくなるため、配管面積が大きいも のを選定する。(第1表参照)

なお,気相部配管の破断及び液相部配管(シュラウド内及び シュラウド外)の破断を原子炉水位低下及び炉心溶融までの 時間で比較した場合,液相部配管の破断の方が厳しいことか ら,配管位置が低く,配管面積が大きい再循環配管(出ロノ ズル)を想定する。

- (b) また,再循環ポンプ吐出側での破断を想定した場合,破断口の上流には再循環ポンプがあるため,破断面積としては,再循環配管1本より小さくなり,破断流量は吸込側破断より少なくなる。そのため,再循環ポンプ吸込配管を想定する。
- (c) なお、大口径配管ではないが、再循環出口ノズルより下部に 位置する原子炉圧力容器下部のドレン配管があり、炉心冠水 後も継続して原子炉圧力容器から格納容器内への流出が継 続し、サプレッション・プールの水位上昇を早めることとな る。本影響については、c.において述べる。

第1図 再循環ポンプ吸込み側配管破断の概要

b. 破断面積

破断面積を大きくすると,原子炉からの冷却材漏えい量が多く なり,格納容器へのエネルギ放出量が多くなることから,再循環 ポンプ吸込配管の両端破断(0.24m²)を想定する。

c. 原子炉圧力容器下部ドレン配管からのLOCAについて

格納容器破損モード「雰囲気圧力・温度による静的負荷(格納 容器過圧・過温破損)」における起因事象は,原子炉内の保有水 量の減少及び炉心のヒートアップを厳しく見積もる観点から,原 子炉再循環ポンプ配管の両端破断を選定した。

一方,原子炉再循環ポンプ配管のような大口径配管は存在しな いが,炉心位置よりも下部に存在する配管もある。このような配 管は原子炉圧力容器内の保有水量及び炉心のヒートアップの観 点からは厳しくないが,炉心冠水過程において,破断箇所から漏 えいした冷却材はペデスタル(ドライウェル部)へ流入し続ける ため,当該配管が破断した場合についても考慮する必要がある。

しかしながら,全般的に静的な過圧・過温という観点では,今回 選定した原子炉再循環ポンプ配管の両端破断のシナリオより格 納容器圧力・温度は緩慢に推移するため,原子炉圧力容器下部ド レン配管の破断は,雰囲気圧力・温度による静的負荷(格納容器 過圧・過温)として想定した原子炉再循環ポンプ配管の両端破断 シナリオに包絡される事象となる。 使用済燃料プールにおける重大事故に至るおそれがある事故 (想定事故1及び2)の有効性評価における共通評価条件について

1. 使用済燃料プールの概要

使用済燃料プール周辺の概要図を第1図に示す。

定期検査時において、多くの場合はプールゲートが開放され、使用 済燃料プールは原子炉ウェル、D/Sピット、キャスクピットとつな がっているが、有効性評価においてはプールゲートを閉鎖している場 合を想定し、原子炉ウェル、ドライヤ気水分離機器貯蔵プール及びキ ャスクピットの保有水量は考慮しない。

第1図 使用済燃料プール周辺の概要図

 2. 放射線の遮蔽の維持に必要な使用済燃料プールの遮蔽水位について 想定事故1では、原子炉建屋6階における作業は必要ないが、原子 炉建屋6階において作業することを考慮した。また、想定事故1にお ける遮蔽が維持されているとする基準線量率は、緊急作業時の被ばく 限度(100mSv)から十分余裕のある10mSv/hとした。

第2図より必要な遮蔽水位は約6.4mとなり,通常水位から約0.9m* 低下した水位である。

※:放射線の遮蔽の維持のために必要な水位の算出方法については 添付資料 4.1.2 に示す。

第2図 放射線の遮蔽に必要な使用済燃料プールの遮蔽水位について

3. 使用済燃料プールの高さと断面積について

使用済燃料プールの高さを第3図に,使用済燃料プールの断面積及 び保有水の容積を第1表に示す。

第3図 東海第二発電所 使用済燃料プールの構造高さ

項目	断面積[m ³]	容積[m ³]
1)	約 116	約 100
2	約 116	約 737
3	約 83	約 352
合計		約 1,189

第1表 使用済燃料プールの断面積及び保有水の容積

第3図に示す各領域①~③の保有水の容積は,使用済燃料プール容 積から機器の容積を除くことで算出し,各領域の断面積については, ①の領域では使用済燃料プールの寸法より求めた断面積を使用し,②, ③の領域では求めた各領域の容積から高さを除して求めた。なお,断 面積については各領域での平均的な値を示しているが,プール内に設 置されている機器の多くは②,③の底部又は壁面にあるため,保有水 量に対する水位の低下という観点で保守的な評価となっている。

4. 想定事故1における時間余裕

使用済燃料プールの冷却機能及び注水機能の喪失時における,崩壊 熱による使用済燃料プール水の沸騰までの時間,沸騰開始後の水位低 下時間及び沸騰による水位低下平均速度について,以下の式を用いて 算定した。事象を厳しく評価するため,使用済燃料プールの初期水温 は,運転上許容される65℃とする。また,発生する崩壊熱は全て水温 上昇及び蒸発に寄与するものとし,使用済燃料プールの水面及び壁面 等からの放熱を考慮しない。

さらに,注水時においては顕熱を考慮せず注水流量から崩壊熱相当 の蒸発量を差し引いた分の水が注水されることを想定した。 (1) 算定方法,算定条件

a. 冷却機能停止から沸騰 (プール水 100℃到達) までの時間
 沸騰までの時間 [h]= (100[℃]-65[℃])×水の比熱 [kJ/kg/℃]^{*1}×使用済燃料プールの水 量[m³]×水の密度 [kg/m³]^{*2}
 燃料の崩壊熱 [MW]×10³×3600

b. 沸騰開始からの水位低下時間

1時間あたりの沸騰に よる蒸発量
$$[m^3/h] = \frac{$$
燃料の崩壊熱 $[MW] \times 10^3 \times 3600}{$ 水の密度 $[kg/m^3]^{*2} \times 蒸発潜熱[kJ/kg]^{*3}}$

水位低下時間 [h]= 通常水位から燃料有効 長頂部までの水量 [m³]×水の密度 [kg/m³]^{※2}×蒸発潜熱 [kJ/kg]^{※3} 燃料の崩壊熱 [MW]×10³×3600

c. 沸騰による水位低下平均速度

水位低下速度[m/h]= 通常水位から燃料有効長頂部までの高低差[m] 通常水位から燃料有効長頂部まで水位低下にかかる時間[h]

使用済燃料プールの下部は機器等が設置されており,保有水が少な いため,使用済燃料プールの下部では水位低下速度は早く,使用済燃 料プール上部では水位低下速度は遅い。燃料有効長頂部に水位が到達 するまでの時間評価では,保守的に一律の水位低下速度を想定する。

上記計算式を用いて,以下の条件にて算定した。

水の比熱 ^{*1}	使用済燃料プールの水	水の密度 ^{*2}	燃料の崩壊熱
[kJ∕kg∕℃]	量[m ³]	[kg/m ³]	[MW]
4.185	1,189.9	958	9.058

蒸発潜熱 ^{※3}	通常水位から燃料有効長	通常水位から燃料有効長	通常水位から約0.9m
[kJ/kg]	頂部までの水量[m ³]	頂部までの高低差[m]	までの水量[m ³]
2256.47	837.6	7.26	100

※1:65℃から100℃までの飽和水の比熱のうち,最小となる65℃の値を使用

(1999年蒸気表より)

※2:65℃から100℃までの飽和水の密度のうち,最小となる100℃の値を使用 (1999年蒸気表より)

※3:100℃の飽和水のエンタルピと100℃飽和蒸気のエンタルピの差より算出

(1999年蒸気表より)

なお, a. ~ c. の算出においては以下の保守的な仮定と非保守的

な仮定があるが、使用済燃料プールの水面や壁面からの放熱を考慮し ていないことの影響が大きいと考えられ、総合的に保守的な評価にな っていると考えられる。

【保守的な仮定】

 ・温度変化に対する比熱及び密度の計算にて最も厳しくなる値を想 定している。

・使用済燃料プールの水面や壁面からの放熱を考慮していない。 【非保守的な仮定】

・簡易的な評価とするため、プール水は全て均一の温度と仮定し、 プールの全体が100℃に到達した時間を沸騰開始としている。

なお,注水等の操作時間余裕は十分に大きいことからこれらの評価 の仮定による影響は無視できる程度だと考える。

(2) 算定結果

項目	算定結果
使用済燃料プール水温 100℃到達までの時間[h]	約 5.1
燃料の崩壊熱による使用済燃料プールの保有水の蒸散量[m ³ /h]	約 15.1
使用済燃料プール水位が通常水位から約0.9m低下するまでの時間[h]	約 11.7
燃料有効長頂部まで使用済燃料プール水位が低下するまでの時間[h]	約 60.6
使用済燃料プール水位の低下速度[m/h]	約 0.13

使用済燃料プールの冷却機能が喪失した場合,燃料の崩壊熱により 使用済燃料プール温度が上昇し,約 5.1 時間後に沸騰開始となり,蒸 発により水位低下が始まる。この時の蒸発量は約 15.1m³/h である。

よって,使用済燃料プールの水位が放射線の遮蔽が維持される最低 水位(通常水位より約0.9m下)まで低下するのは約11.7時間後であ り,可搬型代替注水大型ポンプによる代替燃料プール注水系(常設ス プレイヘッダ)を使用した注水操作の時間余裕は十分にある。

<参考>

有効性評価では崩壊熱が厳しい定検中に全炉心燃料が取り出される想

定であり、通常運転中の想定は以下のとおりとなる。

使用済燃料プール冷却機能が喪失した場合,燃料の崩壊熱により使用 済燃料プール温度が上昇し,約 22.1 時間後に沸騰開始となり,その後使 用済燃料プールの水位が放射線の遮蔽が維持される最低水位(通常水位 より約 0.9m下)まで低下するのは約 50.7 時間後となる。このように原 子炉運転中の使用済燃料プールは,原子炉停止中の使用済燃料プールに 比べてさらに長い時間余裕がある。

項目	算定結果
燃料の崩壊熱[MW]	約 2.095
使用済燃料プール水温100℃到達までの時間[h]	約 22.1
燃料の崩壊熱による使用済燃料プールの保有水の蒸散量[m ³ /h]	約 3.5
使用済燃料プール水位が通常水位から約0.9m低下するまでの時間[h]	約 50.7
燃料有効長頂部まで使用済燃料プール水位が低下するまでの時間[h]	約 262.1
使用済燃料プール水位の低下速度[m/h]	約 0.03

5. 燃料取出スキーム

使用済燃料プール 貯蔵燃料	冷却期間	燃料体数	取出平均燃焼度 [GWd/t]	崩壊熱 [MW]
9サイクル冷却燃料	9×(13 か月+30 日)+9 日	142 体	45	0.045
8 サイクル冷却燃料	8×(13 か月+30 日)+9 日	168 体	45	0.056
7 サイクル冷却燃料	7×(13 か月+30 日)+9 日	168 体	45	0.059
6 サイクル冷却燃料	6×(13 か月+30 日)+9 日	168 体	45	0.065
5 サイクル冷却燃料	5×(13 か月+30 日)+9 日	168 体	45	0.073
4 サイクル冷却燃料	4×(13 か月+30 日)+9 日	168 体	45	0.086
3 サイクル冷却燃料	3×(13 か月+30 日)+9 日	168 体	45	0.112
2 サイクル冷却燃料	2×(13 か月+30 日)+9 日	168 体	45	0.165
1サイクル冷却燃料	1×(13 か月+30 日)+9 日	168 体	45	0.293
定検時取出燃料	9 日	764 体	33	8.104
合計	_	2,250体	—	9.058

注1:使用済燃料プールの燃料保管容量2,250体の燃料が貯蔵されているものとする。

注2: 炉心燃料の取出しにかかる期間(冷却期間)は過去の実績より最も短い原子炉停止 後9日を採用する。原子炉停止後9日とは全制御棒全挿入からの時間を示している。 通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機解列以前か ら徐々に低下させるが,崩壊熱評価はスクラムのような瞬時に出力を低下させる保 守的な計算条件となっている。 6. 使用済燃料の計算条件

使用済燃料プール内のラックに全てに使用済燃料が貯蔵された状態 を仮定し、その時の使用済燃料を線源とする。

計算条件を以下に示す。

○線源形状:使用済燃料プール内のラックの全てに使用済燃料が満た された状態

○線量材質:使用済燃料及び水を考慮(密度 / cm³) ○ガンマ線エネルギ:計算に使用するガンマ線は,エネルギ4群(文

献値*1ベース)とする。

※ 1 : Blizard E. P. and Abbott L. S., cd., "REACTOR HANDBOOK. 2nd cd. Vol. III Part B, SHIELDING", INTERSCIENCE

PUBLISHERS, New York, London, 1962

○線源強度は、以下の条件でQAD-CGGP2Rコードを使用して
 算出した。

・燃料照射期間:10⁶時間(無限時間を想定)

・原子炉停止後の期間:停止後9日(実績を考慮した値を設定)

・燃料集合体当たりの熱出力:4.31MW/体(STEPⅢ 9×9A型)

・燃料集合体体積: 7.179E+04cm³ (STEPⅢ 9×9A型)

○計算モデル:直方体線源

線量率計算はQAD-CGGP2Rコードを用いており,その評価 モデルを第4図に示す。また,使用した線源強度を第2表に示す。

第4図 使用済燃料の線量率計算モデル

群	ガンマ線エネルギ (MeV)	燃料線源強度 (cm ⁻³ ・s ⁻¹)
1	1.0	4. 4×10^{1} ¹
2	2.0	7.5 \times 10 ¹⁰
3	3.0	1. 3×10^{9}
4	4.0	2. 7 \times 10 ⁷
	合計	5. 2×10^{1}

第2表 使用済燃料の線源強度

7. 制御棒・破損燃料貯蔵ラックの計算条件

使用済燃料プール内の制御棒・破損燃料貯蔵ラック(以下「制御棒 貯蔵ラック」という。)の使用済制御棒を線源とする計算条件を以下に 示す。

○線源形状:制御棒貯蔵ラックの制御棒用スペースが全て満たされた 状態

○線源材料:水(密度 0.958g/cm³^{*})

※:65℃から100℃までの飽和水の密度のうち、最小となる

100℃の値を設定

- ○ガンマ線エネルギ:計算に使用するガンマ線はエネルギ18群(OR IGEN群構造)とする。
- ○線源強度は、使用済制御棒を高さ方向に3領域に分割し、使用済制 御棒上部はピンローラを、使用済制御棒中間部はアブソーバ管やタ イロッド等を、使用済制御棒下部は落下速度リミッタを代表として モデル化している。制御棒へ照射される中性子フラックスは、制御 棒が全挿入された状態での照射を想定した値とした。照射期間につ いては、制御棒照射量制限値(B₄C型:1.5snvt)を炉心中央の平 均熱中性子フラックスで除した値とした(約435日)。
- ○制御棒貯蔵ラックには冷却期間が異なる使用済制御棒が貯蔵されていることを想定し、制御棒貯蔵ラックに保管されている使用済制御棒の平均線源強度を式①により算出した。
- 平均線量強度 = ∑(制御棒タイプ・冷却期間別の線源強度)×(制御棒タイプ・冷却期間別の保管本数))・・・①
 全貯蔵本数

 制御棒のタイプはB₄C型,冷却期間は0~1サイクルの2種類,全
 貯蔵本数は24本とした。

○計算モデル:直方体線源

線量率計算はQAD-CGGP2Rコードを用いており,その評価モ デルを第5図に示す。また,計算により求めた線源強度を第3表に示 す。

第5図 制御棒貯蔵ラックの線量率計算モデル

群	ガンマ線 エネルギ (MeV)	制御棒上部 線源強度 (cm ⁻³ ・s ⁻¹)	制御棒中間部 線源強度 (cm ⁻³ ・s ⁻¹)	制御棒下部 線源強度 (cm ⁻³ ・s ⁻¹)
1	1.00×10^{-2}	3. 6×10^{7}	4.9×10 ⁸	1.3×10^{9}
2	2. 50×10^{-2}	1.8×10^{5}	1. 1×10^{6}	5. 1×10^{6}
3	3. 75×10^{-2}	1.3×10^{5}	8.8×10 ⁵	1.1×10^{7}
4	5. 75×10^{-2}	1.5×10^{5}	9. 0×10^{5}	8.9×10 ⁸
5	8. 50 × 10 ⁻²	9. 1×10^{4}	5. 1×10^{5}	8.3×10 ⁷
6	1.25×10^{-1}	1. 7×10^{5}	1.3×10^{6}	1.8×10^{8}
7	2. 25×10^{-1}	1.8×10^{5}	1.3×10^{6}	2.6×10 ⁸
8	3. 75×10^{-1}	9. 7×10^{6}	2.6×10 ⁸	5.9 $\times 10^{8}$
9	5.75 $\times 10^{-1}$	3. 4×10^{7}	1.6×10^{8}	2.7×10 ⁸
10	8.50×10 ⁻¹	1.2×10^{8}	8.4×10 ⁸	1.6×10^{9}
11	1.25×10^{0}	7.9 \times 10 ⁷	6.9×10 ⁸	5. 5×10^{9}
12	1.75 \times 10 ⁰	6. 3×10^{5}	2.9 \times 10 ⁶	5.0 $\times 10^{6}$
13	2. 25×10^{0}	4. 2×10^{4}	3. 7×10^{3}	2. 4×10^{4}
14	2. 75×10^{0}	9.9 \times 10 ⁰	1.1×10^{1}	7.5 \times 10 ¹
15	3. 50×10^{0}	5.9×10 ⁻³	2. 1×10^{-10}	1.0×10^{-9}
16	5. 00×10^{0}	6. 1×10^{-5}	2.2×10^{-12}	1.1×10^{-11}
17	7.00 \times 10 ⁰	0.0×10^{0}	0.0×10^{0}	0.0×10^{0}
18	9. 50×10^{0}	0.0×10^{0}	0.0×10^{0}	0.0×10^{0}
合計		2.8×10^{8}	2.4×10^{9}	1.1×10 ¹⁰

第3表 制御棒貯蔵ラック内の使用済制御棒の線源強度

8. 制御棒貯蔵ハンガの計算条件

使用済燃料プール内の制御棒貯蔵ハンガの使用済制御棒を線源とす る計算条件を以下に示す。

○線源形状:制御棒貯蔵ハンガの全てに制御棒が吊るされた状態

○線源材料:水(密度 0.958g/cm³)

65℃から 100℃までの飽和水の密度のうち,最小となる 100℃の値を設定

○ガンマ線エネルギ:計算に使用するガンマ線はエネルギ18群(OR IGEN群構造)とする。

- ○線源強度は、使用済制御棒を高さ方向に3領域に分割し、使用済制 御棒上部はピンローラを、使用済制御棒中間部はアブソーバ管やタ イロッド等を、使用済制御棒下部は落下速度リミッタを代表として モデル化している。制御棒へ照射される中性子フラックスは、制御 棒が全挿入された状態での照射を想定した値とした。照射期間につ いては、制御棒照射量制限値(Hf型:4snvt, B₄C型:1.5snvt) を炉心中央の平均熱中性子フラックスで除した値とした(Hf型: 約1,160日, B₄C型:約435日)。
- ○制御棒貯蔵ハンガには、タイプ別でかつ冷却期間の異なる使用済制 御棒が混在して貯蔵されていることを想定し、貯蔵使用済制御棒全 体の放射能を保存して平均した線源強度を式②により算出した。
 ・_{平均線量強度=}∑((制御棒タイプ・冷却期間別の線源強度)×(制御棒タイプ・冷却期間別の保管本数))

制御棒のタイプはHf, B₄Cの2タイプ, 冷却期間は 0~10 サイク ルの 11 種類, 全貯蔵本数は 156 本とした。

○計算モデル:直方体線源

線量率計算はQAD-CGGP2Rコードを用いており,その評価 モデルを第6図に示す。また,計算により求めた線源強度を第4表に 示す。

第6図 使用済制御棒ハンガの線量率計算モデル

群	ガンマ線 エネルギ (MeV)	制御棒上部 線源強度 (cm ⁻³ ・s ⁻¹)	制御棒中間部 線源強度 (cm ⁻³ ・s ⁻¹)	制御棒下部 線源強度 (cm ⁻³ ・s ⁻¹)
1	1.00×10^{-2}	8.0×10 ⁴	1.5×10^{6}	5.5 $\times 10^{6}$
2	2. 50 × 10 ⁻²	1.3×10^{4}	8.7×10 ⁴	5.3×10 ⁵
3	3. 75×10^{-2}	7. 1×10^{3}	5. 0×10^{4}	3. 1×10^{5}
4	5.75×10 ⁻²	8. 0×10 ³	5.6 \times 10 ⁴	1.7×10^{6}
5	8. 50 × 10 ⁻²	3. 2×10^{3}	2. 2×10^{4}	2.6×10 ⁵
6	1.25×10^{-1}	1.2×10^{3}	8.6×10 ³	3. 3×10^{5}
7	2. 25×10^{-1}	4.5 \times 10 ²	3. 1×10^{3}	4. 1×10^{5}
8	3. 75×10^{-1}	1.2×10^{3}	8.6×10 ³	5. 3×10^{4}
9	5. 75×10^{-1}	6. 5×10^{3}	3. 0×10^{4}	5. 3×10^{4}
10	8. 50 \times 10 ⁻¹	2. 5×10^{4}	7. 3×10^{6}	1.5×10^{7}
11	1.25×10^{0}	3. 5×10^{7}	2. 4×10^{8}	1.5×10^{9}
12	1.75 \times 10 ⁰	1.2×10^{2}	5. 5×10^{2}	9.7 \times 10 ²
13	2. 25×10^{0}	1.8×10^{2}	1.3×10^{3}	7.8 \times 10 ³
14	2. 75×10^{0}	5. 7×10^{-1}	3.9 \times 10 ⁰	2. 4×10^{1}
15	3. 50×10^{0}	4. 1×10^{-16}	1.9×10^{-15}	2.7×10 ⁻¹⁵
16	5.00×10^{0}	0.0×10^{0}	0.0×10^{0}	$\overline{0.0 \times 10^{0}}$
17	7.00×10^{0}	0.0×10^{0}	0.0×10^{0}	0.0×10^{0}
18	9. 50×10^{0}	0.0×10^{0}	0.0×10^{0}	0.0×10 ⁰
合計		3.5×10^{7}	2.5×10^{8}	1.5×10^{9}

第4表 制御棒貯蔵ハンガの使用済制御棒の線源強度

○使用済制御棒の冠水時及び露出時の線量率計算モデルについて

使用済制御棒は次に示すようにステンレスの使用済制御棒ハンガにハ ンドル部を通して格納されている。評価ではこの構造材を含めた使用済 制御棒設置個所を直方体の線源としてモデル化している(第7図)。

遮蔽計算をする際,線源材にも密度を設定することで自己遮蔽等の計算を行う。本評価では制御棒が①冠水時,②一部露出時,③露出時のい ずれにおいても遮蔽性能の低い水として計算している。

こちらは③露出時において、制御棒間等は気中であるが、制御棒は水 より密度の大きいステンレスやB₄C(又はHf)等で構成されている こと、線源以外にも使用済制御棒ハンガのような構造材があることから 十分保守的なモデルとなっている。

①冠水時,②一部露出時の状態においては使用済制御棒等の遮蔽効果に加えて、制御棒間の隙間等、気中であった箇所に水が入るため、遮蔽効果はさらに高まるが、評価においては③露出時と同様、水と設定して評価をすることでさらに保守的なモデルとなっている。

評価結果において、水位低下により使用済制御棒露出が開始した際の 現場の線量率と、完全に露出した後の現場の線量率にあまり差異がない ことは、評価で上記に示すとおり①冠水時と③露出時を等しく、線源が 水として計算しているためである(第8図)。

<参考>

ー例としてCo60を線源としたときの1/10価層は水であると約70cmであるのに対して、鉄(密度: $7.87 \text{kg}/\text{cm}^3$)であると約7.4cmとなり、これらの遮蔽性能が水と比べて大きいことが分かる。

第7図 使用済燃料プール概要図

第8図 冠水時及び露出時の線量率計算モデル

線量率の評価

線量率は、QAD-CGGP2Rコードを用いて計算している。

一般的に点減衰核積分法では、線源領域を細分化し点線源で近似を 行い、各点線源から計算点までの媒質の通過距離から非散乱ガンマ線 束を求める。これにビルドアップ係数をかけ、線源領域全空間で積分 した後、線量率換算係数をかけることで計算点での線量率を求める。

QAD-CGGP2Rコードでは、式③を用い、線量率を計算して いる。図3にQAD-CGGP2Rコードの計算体系を示す。

•
$$D_j = \sum_i F_j \cdot \frac{S_{ij}}{4 \cdot \pi \cdot R_i^2} \cdot e^{\left(-\sum_k \mu_{jk} \cdot t_k\right)} \cdot B_{ij} \cdots 3$$

j:エネルギ群番号(18群)

i:線源点番号

k:領域番号(遮蔽領域)

F_i:線量率換算係数

- S_{ij}: i 番目の線源点で代表される領域の体積で重みづけされたエネ
 ルギ j 群の点線源強度
- R_i: i 番目の線源点と計算点の距離

B_{ii}:ビルドアップ係数

μ_{jk}:領域 k におけるエネルギ j 群のガンマ線に対する線吸収係数

t_k:領域kをガンマ線が透過する距離

これにより求まったエネルギ第j群の線量率Djから,全ての線源エ ネルギ群について加えることによって全線量率を計算している。

- 10. 線量率を求める際の評価点と放射線遮蔽が維持される水位について
 - (1) 線量率を求める際の評価点

線源からの線量率を求める際に設定する評価点は、制御棒ハンガ 真上のオペフロ床面高さとした。なお、評価では第4図及び5図の 線量率計算モデルに示すようにプール筐体による遮蔽は考慮せず、 線源から評価点までの距離を入力として評価している。

(2) 放射線の遮蔽が維持される水位

想定事故1では,原子炉建屋最上階での作業は不要であるため, 被ばくの評価で照射時間を想定することは困難であるが,仮に使用 済燃料プールの近傍にある補給水系の手動弁の操作であっても長時 間の作業とならない。そこで想定事故1の線量率は,緊急作業時の 被ばく限度(100mSv)から十分余裕のある値であり,かつ定期検査 作業での原子炉建屋最上階における現場作業の実績値(3.5mSv/h (東海第二発電所 平成28年8月 蒸気乾燥器及び気水分離器取り

外し作業の例))を考慮して 10mSv/h とした。

必要な遮蔽水位は第10図より東海第二発電所において約6.4mとなり,開始水位から約0.9m低下した水位である。

第10図 放射線の遮蔽が維持される水位

添付 1.7.1-1

2.1 高圧·低圧注水機能喪失

- 2.1.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「高圧・低圧注水機能喪失」に含まれる事故シ ーケンスとしては,「1.2 評価対象の整理及び評価項目の設定」に示すと おり,①「過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗」,②「過渡事 象+逃がし安全弁再閉鎖失敗+高圧炉心冷却失敗+低圧炉心冷却失敗」,③ 「手動停止/サポート系喪失(手動停止)+高圧炉心冷却失敗+低圧炉心 冷却失敗」,④「手動停止/サポート系喪失(手動停止)+逃がし安全弁再 閉鎖失敗+高圧炉心冷却失敗+低圧炉心冷却失敗」,⑤「サポート系喪失(自 動停止)+高圧炉心冷却失敗+低圧炉心冷却失敗」及び⑥「サポート系喪 失(自動停止)+逃がし安全弁再閉鎖失敗+高圧炉心冷却失敗+低圧炉心 冷却失敗」である。

コメント No. 148-12, 158-08, 49, 50 に対する回答!

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方 事故シーケンスグループ「高圧・低圧注水機能喪失」は、運転時の異常 な過渡変化又は設計基準事故(原子炉冷却材喪失事故を除く。)の発生後、 高圧及び低圧注水機能が喪失することで原子炉へ注水する機能が喪失する ことを想定する。このため、原子炉圧力制御に伴い原子炉圧力容器内の蒸 気が流出し、保有水量が減少することで原子炉水位が低下し、緩和措置が 取られない場合には、原子炉水位の低下が継続し、炉心が露出することで 炉心損傷に至る。また、低圧注水機能喪失を想定することから、併せて残 留熱除去系の機能喪失に伴う崩壊熱除去機能喪失を想定する。

本事故シーケンスグループは,高圧及び低圧の原子炉注水機能を喪失したことによって炉心損傷に至る事故シーケンスグループである。このため,

重大事故等対処設備の有効性評価としては,高圧又は低圧注水機能に対す る重大事故等対処設備に期待することが考えられる。高圧・低圧注水機能 喪失が発生した場合,重大事故等対処設備により高圧の原子炉注水を実施 する方が,より早期に原子炉注水を開始することが可能となり,原子炉水 位の低下が小さくなることで評価項目となるパラメータに対する余裕は大 きくなる。また,高圧の原子炉注水を実施した場合でも,中長期的にはサ プレッション・プール熱容量制限に到達した時点で原子炉を減圧して低圧 の原子炉注水に移行するため,事象進展は同じとなる。このため,本事故 シーケンスグループに対しては,代表として低圧注水機能に対する重大事 故等対処設備の有効性を確認することとする。

以上により,本事故シーケンスグループでは,原子炉減圧後に低圧の注 水機能を用いて原子炉へ注水することにより炉心損傷の防止を図る。また, 最終的な熱の逃がし場へ熱の輸送を行うことによって除熱を行い,格納容 器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「高圧・低圧注水機能喪失」において、炉心が 著しい損傷に至ることなく、かつ、十分な冷却を可能とするため、初期の 対策として低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能)に よる原子炉注水手段を整備する。また、格納容器の健全性を維持するため、 安定状態に向けた対策として、代替格納容器スプレイ冷却系(常設)によ る格納容器冷却手段及び格納容器圧力逃がし装置による格納容器除熱手段 を整備する。対策の概略系統図を第2.1-1図に、対応手順の概要を第2.1-2 図に、対策の概要を以下に示す。また、重大事故等対策における手順と設 備との関係を第2.1-1表に示す。

2.1-2

本事故シーケンスグループにおける重要事故シーケンスにおいて,事象 発生2時間までの重大事故等対策に必要な要員は,中央制御室の運転員及 び災害対策要員で構成され,合計17名である。その内訳は次のとおりであ る。中央制御室の運転員は,発電長1名,副発電長1名,運転操作対応を 行う運転員5名である。発電所構内に常駐している要員のうち,通報連絡 等を行う災害対策要員は2名,重大事故等対応要員(現場)は8名である。

また,事象発生後2時間以降に追加で必要な要員は,燃料補給作業を行うための招集要員2名,現場手動による格納容器ベント操作を行うための 招集要員3名である。必要な要員と作業項目について第2.1-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,17名で対処 可能である。

a. 原子炉スクラムの確認

原子炉がスクラムしたことを確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等である。

b. 高圧注水機能喪失の確認

原子炉スクラム後,原子炉水位の低下が継続し,原子炉水位異常低下 (レベル2)設定点に到達したが,高圧炉心スプレイ系及び原子炉隔離 時冷却系が自動起動していないことを確認し,中央制御室からの遠隔操 作によりこれらの系統の手動起動を試みるがこれにも失敗したことを確 認する。また,主蒸気隔離弁が閉止するとともに,再循環ポンプがトリ ップしたことを確認する。

高圧注水機能喪失の確認に必要な計装設備は、各系統の流量計等である。

2.1-3

c. 低圧注水機能喪失の確認

高圧注水機能喪失の確認後,一連の操作として中央制御室からの遠隔 操作により低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の手動 起動を試みるがこれにも失敗したことを確認する。

低圧注水機能喪失の確認に必要な計装設備は,各系統の流量計等であ る。

d. 高圧・低圧注水機能の回復操作

対応可能な要員にて高圧注水機能及び低圧注水機能の回復操作を実施する。

e. 低圧代替注水系(常設)の起動準備操作

低圧注水機能喪失の確認後,一連の操作として中央制御室からの遠隔 操作により低圧代替注水系(常設)を起動する。

低圧代替注水系(常設)の起動準備操作に必要な計装設備は、常設低 圧代替注水系ポンプ吐出圧力計である。

外部電源が喪失している場合は,中央制御室からの遠隔操作により常 設代替高圧電源装置を起動し,緊急用母線を受電する。

f. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

低圧代替注水系(常設)の起動準備操作の完了後,中央制御室からの 遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手動開放し,原子 炉減圧を実施する。原子炉圧力が低圧代替注水系(常設)の吐出圧力を 下回ると,原子炉注水が開始されることで原子炉水位が回復することを 確認する。

逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設 備は,原子炉圧力計等である。

炉心損傷がないことを継続的に確認するために必要な計装設備は、格

2.1-4

納容器雰囲気放射線モニタ(D/W, S/C)である。

g. 原子炉水位の調整操作

低圧代替注水系(常設)による原子炉水位回復後は,原子炉水位を原 子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の 間で維持する。

原子炉水位の調整操作に必要な計装設備は,原子炉水位計(広帯域, 燃料域)である。

h. 代替格納容器スプレイ冷却系(常設)による格納容器冷却

崩壊熱除去機能を喪失しているため,格納容器圧力及び雰囲気温度が 上昇する。サプレッション・チェンバ圧力が279kPa[gage]に到達した場 合又はドライウェル雰囲気温度が171℃に到達した場合は、中央制御室 からの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納 容器冷却を実施する。また、低圧代替注水系(常設)による原子炉注水 を継続する。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に必要な計 装設備は、サプレッション・チェンバ圧力計、低圧代替注水系格納容器 スプレイ流量計、サプレッション・プール水位計等である。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に伴い,サ プレッション・プール水位は徐々に上昇する。サプレッション・プール 水位が、通常数位+5.5mに到達した時点で,格納容器圧力逃がし装置に よる格納容器除熱の準備として,中央制御室からの遠隔操作により格納 容器圧力逃がし装置一次隔離弁の開操作を実施する。さらに,サプレッ ション・プール水位が,通常水位+6.5mに到達した場合,中央制御室か らの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納容 器冷却を停止する。 i. 格納容器圧力逃がし装置による格納容器除熱(サプレッション・チェンバ側)

代替格納容器スプレイ冷却系(常設)による格納容器冷却の停止後, 格納容器除熱操作に備え炉心損傷が発生していないことを確認する。サ プレッション・チェンバ圧力が310kPa[gage]に到達した場合,中央制御 室からの遠隔操作により格納容器圧力逃がし装置二次隔離弁を全開とし サプレッション・チェンバ側から格納容器圧力逃がし装置による格納容 器除熱を実施する。

格納容器圧力逃がし装置による格納容器除熱に必要な計装設備は,サ プレッション・チェンバ圧力計,格納容器雰囲気放射線モニタ(D/W, S/C)等である。

サプレッション・チェンバ側からの格納容器圧力逃がし装置のベント ラインが水没しないことを確認するために必要な計装設備は,サプレッ ション・プール水位計等である。

j. 可搬型代替注水大型ポンプによる水源補給操作

可搬型代替注水大型ポンプにより淡水貯水池から代替淡水貯槽へ水源 補給操作を実施する。

可搬型代替注水大型ポンプによる水源補給操作に必要な計装設備は, 代替淡水貯槽水位計である。

k. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

1. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

以降、炉心冷却は低圧代替注水系(常設)を用いた原子炉注水により

継続的に行い,格納容器除熱は格納容器圧力逃がし装置により継続的に 行う。

- 2.1.2 炉心損傷防止対策の有効性評価
 - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、過渡事象 (原子炉水位低下の観点で厳しい給水流量の全喪失を選定)を起因事象と し、逃がし安全弁により原子炉圧力が高圧状態に制御される「過渡事象(給 水流量の全喪失)+高圧炉心冷却失敗+低圧炉心冷却失敗」である。

本重要事故シーケンスでは、炉心における崩壊熱、燃料棒表面熱伝達, 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流)、沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及び格納容器ベントが重要 現象となる。よって、これらの現象を適切に評価することが可能である長 期間熱水力過渡変化解析コードSAFER及びシビアアクシデント総合解 析コードMAAPにより、原子炉圧力、原子炉水位、燃料被覆管温度、格 納容器圧力、格納容器雰囲気温度等の過渡応答を求める。なお、本有効性 評価では、SAFERコードによる燃料被覆管温度の評価結果は、ベスト フィット曲線の破裂判断基準に対して十分な余裕があることから、燃料棒 やチャンネルボックスの幾何学的配置を考慮した詳細な輻射熱伝達計算を 行うことで燃料被覆管温度の評価結果がSAFERコードより低くなるC HASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.1-2表に示す。また,主要な解析条件について,本重要事故シーケンス特有の解析条件を以下に示す。

- a. 事故条件
- (a) 起因事象

起因事象として,給水流量の全喪失が発生するものとする。

(b) 安全機能の喪失に対する仮定

高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系, 低圧注水機能として低圧炉心スプレイ系及び残留熱除去系(低圧注水 系)が機能喪失するものとする。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レ ベル2)信号にて発生する。このため,原子炉水位の低下が大きくな ることで,燃料被覆管温度の観点で厳しくなる。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは、原子炉水位低(レベル3)信号によるものとす
(b) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は、原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ プさせるものとする。

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7弁を使用するものとし,容量として,1弁当 たり定格主蒸気流量の約6%を処理するものとする。

(d) 低圧代替注水系(常設)

常設低圧代替注水ポンプを2台使用するものとし,原子炉注水のみ を実施する場合は,炉心冷却を厳しく評価する観点で機器設計上の最 小要求値である最小流量特性(注水流量:0~378m³/h,注水圧力:0 ~2.38MPa[dif]*)とし,原子炉注水と格納容器スプレイを同時に実 施する場合は,230m³/h(一定)を用いるものとする。また,原子炉 水位が原子炉水位高(レベル8)まで回復した以降は,原子炉水位を 原子炉水位低(レベル3)から原子炉水位高(レベル8)の範囲に維 持する。

※: MPa[dif]…原子炉圧力容器と水源との差圧。(以下同様)

(e) 代替格納容器スプレイ冷却系(常設)

格納容器スプレイは、常設低圧代替注水ポンプを2台使用するもの とし,格納容器圧力及び雰囲気温度の上昇を抑制可能な流量を考慮し、 130m³/h(一定)を用いるものとする。また、格納容器スプレイは、 サプレッション・チェンバ圧力が217kPa[gage]に到達した場合は停止 し、279kPa[gage]に到達した場合に再開する。

(f) 格納容器圧力逃がし装置

サプレッション・チェンバ圧力が 310kPa[gage]において,13.4kg/ sの排気流量にて格納容器除熱を実施するものとする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧代替注水系(常設)による原子炉注水操作)は、外部電源がない場合も考慮し、状況判断、高圧注水機能喪失の確認、解析上考慮しない高圧代替注水系の起動、低圧注水機能喪失の確認、常設代替高圧電源装置による緊急用母線受電、低圧代替注水系(常設)の起動準備及び逃がし安全弁(自動減圧機能)による原子炉減圧操作に要する時間を考慮して、事象発生25分後に実施する。
- (b) 代替格納容器スプレイ冷却系(常設)による格納容器冷却操作は、 サプレッション・チェンバ圧力が 279kPa[gage]に到達した場合に 実施する。なお、格納容器スプレイは、サプレッション・プール 水位が通常水位+6.5mに到達した場合に停止する。
- (c) 格納容器圧力逃がし装置による格納容器除熱操作は,サプレッショ ン・チェンバ圧力が 310kPa[gage]に到達した場合に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.1-4 図から第2.1-8 図に,燃料被覆管温度,燃 料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発生 位置におけるボイド率,平均出力燃料集合体のボイド率,炉心下部プレナ ム部のボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管温 度と燃料被覆管の円周方向の応力の関係を第2.1-9 図から第2.1-14 図に, 格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位及びサ プレッション・プール水温度の推移を第2.1-15 図から第2.1-18 図に示す。

※:シュラウド内水位は、炉心部で発生するボイドを含む二相水位であることから、シュラウド外水位より高めの水位となる。一方、運転員の監視や非常用炉心冷却系等の起動信号を発信に用いる原子炉水位計(広帯域)は、シュラウド外水位を計測することから、シュラウド内外水位を合わせて示している。

a. 事象進展

給水流量の全喪失が発生することで原子炉水位は低下し,原子炉水位 低(レベル3)信号により原子炉がスクラムする。その後,原子炉水位 が原子炉水位異常低下(レベル2)設定点まで低下すると,主蒸気隔離 弁の閉止及び再循環ポンプトリップが発生するともに,原子炉隔離時冷 却系及び高圧炉心スプレイ系の自動起動信号が発信するが,機器故障等 により自動起動及び手動起動に失敗する。その後,一連の操作として低 圧炉心スプレイ系及び残留熱除去系(低圧注水系)の手動起動を試みる が,機器故障等により失敗し,低圧炉心スプレイ系及び残留熱除去系(低 圧注水系)の吐出圧力が確保されないため,自動減圧系についても作動 しない。このため,低圧代替注水系(常設)の起動操作を実施し,事象 発生の約25分後に,逃がし安全弁(自動減圧機能)7弁による原子炉減 圧を実施することで,低圧代替注水系(常設)による原子炉注水を開始 する。原子炉減圧を開始すると,原子炉冷却材の流出により原子炉水位

は低下し,燃料有効長頂部を下回るが,原子炉圧力が低下し低圧代替注 水系(常設)による原子炉注水が開始されると,原子炉水位が回復し炉 心は再冠水する。

燃料被覆管最高温度発生位置のボイド率は,原子炉減圧操作による原 子炉圧力の低下に伴い上昇する。熱伝達係数は,燃料被覆管最高温度発 生位置が露出し,核沸騰冷却から蒸気冷却に移行することで低下する。 原子炉圧力が低下し,低圧代替注水系(常設)による原子炉注水流量が 増加することで炉心が再冠水すると,ボイド率は低下し,熱伝達係数が 上昇することで燃料被覆管温度は低下する。平均出力燃料集合体及び炉 心下部プレナムのボイド率については,上記の挙動に伴い増減する。

また、崩壊熱除去機能が喪失しているため、原子炉で発生した蒸気が 逃がし安全弁を介して格納容器内に放出されることで、格納容器圧力及 び雰囲気温度が上昇する。このため、サプレッション・チェンバ圧力が 279kPa[gage]に到達した時点で、代替格納容器スプレイ冷却系(常設) の格納容器冷却を実施することにより、格納容器圧力及び雰囲気温度の 上昇は抑制される。代替格納容器スプレイ冷却系(常設)による格納容 器冷却を実施することでサプレッション・プール水位は徐々に上昇し、 事象発生の約27時間後にサプレッション・プール水位が通常水位+6.5 m到達した時点でサプレッション・チェンバベントラインの機能維持の ために代替格納容器スプレイ冷却系(常設)による格納容器冷却を停止 する。これにより格納容器圧力及び雰囲気温度は再び上昇傾向に転じ、 事象発生の約28時間後にサプレッション・チェンバ圧力が310kPa[gage] に到達した時点で格納容器圧力逃がし装置による格納容器除熱を実施す ることにより、格納容器圧力及び雰囲気温度は安定又は低下傾向となる。 なお、格納容器除熱実施時のサプレッション・プール水位は、ベント管 真空破壊装置及びサプレッション・チェンバ側のベントライン設置高さ と比較して十分に低く推移するため,これらの設備の機能は維持される。

b. 評価項目等

燃料被覆管温度は,第2.1-9 図に示すとおり,低圧代替注水系(常設) の原子炉注水により原子炉水位が回復するまでの期間は,一時的な炉心 の露出に伴い上昇し,事象発生の約35分後に最高温度の約338℃に到達 コメント No.181-18に対する回答 するが,評価項目である1,200℃を下回る。燃料被覆管の最高温度は, 平均出力燃料集合体で発生している。また,燃料被覆管の酸化量は酸化 反応が著しくなる前の燃料被覆管厚さの1%以下にとどまることから, 評価項目である15%を下回る。

原子炉圧力は,第2.1-4 図に示すとおり,逃がし安全弁(安全弁機能) の作動により,約7.79MPa[gage]以下に維持される。このため,原子炉 冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容器底 部圧力との差(0.3MPa程度)を考慮しても,約8.09[gage]以下であり, 評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を下回る。

格納容器圧力は,第2.1-15 図に示すとおり,崩壊熱除去機能が喪失し ているため,原子炉で発生した蒸気が格納容器内に放出されることによ って,事象発生後に上昇傾向が継続するが,格納容器圧力逃がし装置に よる格納容器除熱により低下傾向となる。事象発生の約28時間後に最高 値の約0.31MPa[gage]となるが,格納容器バウンダリにかかる圧力は, 評価項目である限界圧力(0.62MPa[gage])を下回る。格納容器雰囲気温 度は,第2.1-16 図に示すとおり,事象発生の約28時間後に最高値の約 143℃となり,以降は低下傾向となっていることから,格納容器バウンダ リにかかる温度は,評価項目の限界温度(200℃)を下回る。 第2.1-5 図に示すように、低圧代替注水系(常設)による原子炉注水 を継続することで、炉心の冠水状態が維持され、炉心冷却が確保されて いる。また、第2.1-15 図及び第2.1-16 図に示すように、事象発生の約 28 時間後に、格納容器圧力逃がし装置による格納容器除熱を実施するこ とで、安定状態が確立する。また、代替循環冷却系又は残留熱除去系の 復旧により除熱を行い、格納容器ベントを閉止し格納容器を隔離するこ とで、更なる除熱機能の確保及び維持が可能となる。

(添付資料 2.1.1)

格納容器圧力逃がし装置による格納容器除熱実施時の敷地境界での実 効線量は,格納容器除熱開始までの時間が本事象より短く,格納容器内 での放射性物質の減衰効果が少ない「2.6 LOCA時注水機能喪失」の 評価結果以下となり,5mSvを下回ることから,周辺の公衆に対して著し い放射線被ばくのリスクを与えることはない。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目及び周辺の公衆に対して著しい 放射線被ばくのリスクを与えないことについて、対策の有効性を確認し た。

2.1.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは,高圧・低圧注水機能喪失に伴い原子炉水位が低 下するため,低圧代替注水系(常設)の起動後に原子炉を減圧して原子炉注 水を実施すること並びに崩壊熱除去機能喪失に伴い格納容器圧力及び雰囲気

温度が上昇するため,代替格納容器スプレイ冷却系(常設)による格納容器 冷却を実施すること及び格納容器圧力逃がし装置による格納容器除熱を実施 することが特徴である。よって,不確かさの影響を確認する運転員等操作は, 事象進展に有意な影響を与えると考えられる操作及び事象発生から12時間 程度までの短時間に期待する操作として,逃がし安全弁(自動減圧機能)に よる原子炉減圧操作(低圧代替注水系(常設)による原子炉注水操作),代替 格納容器スプレイ冷却系(常設)による格納容器冷却操作及び格納容器圧力 逃がし装置による格納容器除熱操作とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を行う重要事象とは, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり、影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて+50℃高め に評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評価 する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくなり, 燃料被覆管温度は低くなるが,操作手順(速やかに注水手段を準備する こと)に変わりはなく,燃料被覆管温度を操作開始の起点とする運転員 等操作はないことから,運転員等操作時間に与える影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,操作手順(速やかに注水 手段を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起 点とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

格納容器における格納容器各領域間の流動、気液界面の熱伝達並びに 構造材との熱伝達及び内部熱伝導の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、BWRの格納容器内の区画とは異なる等、実験 体系に起因するものと考えられ、実機体系においては不確かさが小さく なるものと推定され、全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため、格納容器圧力及び雰囲気温度を操作開始 の起点とする代替格納容器スプレイ冷却系(常設)による格納容器冷却 操作及び格納容器圧力逃がし装置による格納容器除熱操作に係る運転員 等操作時間に与える影響は小さい。また、格納容器各領域間の流動、構 造材との熱伝達及び内部熱伝導の不確かさにおいては、CSTF実験解 析により格納容器温度及び非凝縮性ガスの挙動は測定データと良く一致 することを確認しており、その差異は小さいため、格納容器圧力及び雰 囲気温度を操作開始の起点としている代替格納容器スプレイ冷却系(常 設)による格納容器冷却操作及び格納容器圧力逃がし装置による格納容 器除熱操作に係る運転員等操作時間に与える影響は小さい。

(添付資料 2.1.2)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余

裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータ対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,評価項目となるパラメータに与える影響 は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部 熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気 温度及び非礙縮性ガスの挙動は測定データと良く一致することを確認し ているため,評価項目となるパラメータに与える影響は小さい。

(添付資料 2.1.2)

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件 初期条件,事故条件及び重大事故等対策に関連する機器条件は,第
 2.1-2 表に示すとおりであり,これらの条件設定を設計値等の最確条件 とした場合の影響を評価する。解析条件の設定にあたっては,設計値を 用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう

保守的な設定をしていることから,この中で事象進展に有意な影響を与 える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は 燃料被覆管温度の上昇が緩和されるが,操作手順(速やかに注水手段 を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起点 とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,操作手順(速やかに注水手段を準備すること)に変わり はないことから,運転員等操作時間に与える影響はない。また,格納 容器圧力,サプレッション・プール水位及びサプレッション・プール 水温度の上昇が遅くなり,これらのパラメータを起点とする運転員等 操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器容積(ウェットウェル)の空間部及 び液相部,サプレッション・プール水位は,ゆらぎにより解析条件に 対して変動を与えうるが,事象進展に与える影響は小さく,運転員等 操作時間に与える影響は小さい。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定している。外部電源がない場合でも,非常用母線は非 常用ディーゼル発電機等から自動的に受電され,また,低圧代替注水 系(常設)の起動準備操作時間は,外部電源がない場合も考慮して設 定していることから,運転員等操作時間に与える影響はない。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなり,炉心冠水後の原子炉水位の維持操作の開始が早くな るが,原子炉減圧から水位回復までの原子炉水位を継続監視している 期間の流量調整操作であるため,運転員等操作時間に与える影響はな い。

(添付資料 2.1.2)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 緩和され,格納容器圧力等の上昇は遅くなることから,評価項目とな るパラメータに対する余裕は大きくなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器容積(ウェットウェル)の空間部及 び液相部,サプレッション・プール水位は、ゆらぎにより解析条件に

対して変動を与えうるが,事象進展に与える影響は小さく,評価項目 となるパラメータに与える影響は小さい。

起因事象発生から原子炉スクラムまでの期間の原子炉水位の低下を 厳しくする条件として,外部電源ありを想定している。外部電源がな い場合は,外部電源喪失に伴い原子炉スクラム,再循環ポンプトリッ プ等が発生するため,外部電源がある場合と比較して原子炉水位の低 下は緩和されることから,評価項目となるパラメータに対する余裕は 大きくなる。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなることで,評価項目となるパラメータに対する余裕は大 きくなる。

(添付資料 2.1.2)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価した。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,解析上の操作開始 時間として,事象発生から25分後を設定している。運転員等操作時間 に与える影響として,認知時間及び操作所要時間は,余裕時間を含め て設定していることから,実態の操作開始時間は解析上の設定よりも 若干早まる可能性がある。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,解析上の操作開始時間として,サプレッション・チェンバ 圧力279kPa[gage]到達時を設定している。運転員等操作時間に与える 影響として,不確かさ要因により操作開始時間に与える影響は小さく, 実態の操作開始時間は解析上の設定とほぼ同等となる。本操作は,解 析コード及び解析条件(操作条件を除く。)の不確かさにより,操作開 始時間は遅くなる可能性があるが,他の操作との重複もないことから, この他の操作に与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,解 析上の操作開始時間として,サプレッション・チェンバ圧力 310kPa[gage]到達時を設定している。運転員等操作時間に与える影響 として,不確かさ要因により操作開始時間に与える影響は小さく,実 態の操作開始時間は解析上の設定とほぼ同等となる。仮に格納容器ベ ント時に遠隔操作に失敗した場合は,現場操作にて対応するため,75 分程度操作開始時間が遅れる可能性がある。本操作は,解析コード及 び解析条件(操作条件を除く。)の不確かさにより,操作開始時間は遅 れる可能性があるが,他の操作との重複もないことから,この他の操 作に与える影響はない。

(添付資料 2.1.2)

(b) 評価項目となるパラメータに与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,運転員等操作時間 に与える影響として,実態の操作開始時間は解析上の操作開始時間よ

りも早くなる可能性があり、この場合は、原子炉への注水開始が早く なることで、原子炉水位の回復が早くなり、評価項目となるパラメー タに対する余裕は大きくなる。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,運転員等操作時間に与える影響として,実態の操作開始時 間は解析上の操作開始時間よりも遅くなる可能性があるが,この場合 でもパラメータが操作実施基準に到達した時点で開始することで同等 の効果が得られ,有効性評価解析における格納容器圧力の最大値に変 わりがないことから,評価項目となるパラメータに与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも遅くなる可能性があるが,この場合でもパラメー タが操作実施基準に到達した時点で開始することで同等の効果が得ら れ,有効性評価解析における格納容器圧力の最大値に変わりがないこ とから,評価項目となるパラメータに与える影響はない。仮に格納容 器ベント時に遠隔操作に失敗した場合は,現場操作にて対応するため, 75分程度操作開始時間が遅れる可能性がある。この場合,格納容器圧 力は 310kPa[gage]より若干上昇し,評価項目となるパラメータに影響 を及ぼすが,格納容器限界圧力は 620kPa[gage]であり,格納容器の健 全性の観点からは問題とならない。

(添付資料 2.1.2)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し、その結果を以下に示す。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧 代替注水系(常設)による原子炉注水操作)については,同様に高圧・低 圧注水機能が喪失し,原子炉減圧操作も25分であることから事象進展が同 等となる「LOCA時注水機能喪失」において,10分の減圧操作開始遅れ を想定した場合でも,燃料被覆管の破裂は発生せず,評価項目を満足する。 また,25分の減圧操作遅れを想定した場合には,一部の燃料被覆管に破裂 が発生するが,炉心の著しい損傷は発生せず,格納容器ベント時の敷地境 界線量も約4.4mSvとなり5mSvを下回るが,この場合には格納容器雰囲気 放射線モニタにより炉心損傷の判断を行い,炉心損傷後のマネジメントに 移行するため,重大事故での対策の範囲となる。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷却操 作は,事象発生の約14時間後に実施するものであり,準備時間が確保でき るため、時間余裕がある。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,事象発 生の約28時間後に実施するものであり,準備時間が確保できるため,時間 余裕がある。仮に,中央制御室からの遠隔操作に失敗し,現場操作にて格 納容器圧力逃がし装置二次隔離弁の開操作を実施する場合には,格納容器 ベント操作の開始が遅れることで,格納容器圧力は310kPa[gage]から上昇 するが,過圧の観点で厳しい「3.1 雰囲気圧力・温度による静的負荷(格 納容器過圧・過温破損)」において,スプレイを実施しない場合,格納容器 圧力が310kPa[gage]に到達してから,格納容器限界圧力620kPa[gage]に 到達するまで11時間程度の時間余裕があり,現場操作に要する時間は75 分程度であることから,時間余裕がある。

(添付資料 2.1.2, 2.6.5)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.1.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「高圧・低圧注水機能喪失」において重大事故 等対策に必要な要員は、「2.1.1(3)炉心損傷防止対策」に示すとおり 17 名である。「6.2 重大事故等対策時に必要な要員の評価結果」で示す運転 員及び災害対策要員の 39 名で対処可能である。

また,事象発生2時間以降に必要な招集要員は5名であり,発電所構外 から2時間以内に招集可能な要員の71名で確保可能である。

(2) 必要な資材の評価

事故シーケンスグループ「高圧・低圧注水機能喪失」において、必要な 水源、燃料及び電源は「6.1(2)資源の評価条件」の条件にて評価を行い、 以下のとおりである。

a.水 源

低圧代替注水系(常設)による原子炉注水及び代替格納容器スプレイ

冷却系(常設)による格納容器冷却については,7日間の対応を考慮すると,合計約5,350m³の水が必要となる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,必要な水源は確保可能である。また, 事象発生48時間程度以降から可搬型代替注水大型ポンプを用いて,淡水 貯水池から代替淡水貯槽への補給を行うことで,代替淡水貯槽を枯渇さ せることなく代替淡水貯槽を水源とした7日間の注水継続が可能である。 ここで,代替淡水貯槽への補給開始を事象発生の48時間後としているが, 実際には数時間で補給を開始することが可能である。

(添付資料 2.1.3)

b.燃料

外部電源喪失を想定した場合,非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約130.3kLの軽油が必要となる。常設代替交流電源装置による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約141.2kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから,非常用ディーゼル発電機,高圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源装置による電源供給について,7日間の継続が可能である。

可搬型代替注水大型ポンプによる代替淡水貯槽への給水については, 事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽油 が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有してい

ることから,可搬型代替注水大型ポンプによる給水について,7日間の 継続が可能である。

(添付資料 2.1.4)

c. 電 源

外部電源喪失を想定した場合,重大事故等対策時に必要な負荷のうち, 非常用ディーゼル発電機等からの電源供給を考慮する負荷については, 非常用ディーゼル発電機等の容量内に収まることから,電源供給が可能 である。

常設代替交流電源設備からの,電源供給を考慮する負荷については約 982kW 必要となるが,常設代替交流電源設備(常設代替高圧電源装置 2 台)の連続定格容量は 2,208kW であることから必要負荷に対しての電源 供給が可能である。

(添付資料 2.1.5)

2.1.5 結 論

事故シーケンスグループ「高圧・低圧注水機能喪失」では,高圧・低圧注 水機能が喪失することで,原子炉水位の低下が継続し,炉心損傷に至ること が特徴である。事故シーケンスグループ「高圧・低圧注水機能喪失」に対す る炉心損傷防止対策としては,初期の対策として低圧代替注水系(常設)及 び逃がし安全弁(自動減圧機能)による原子炉注水手段,安定状態に向けた 対策として代替格納容器スプレイ冷却系(常設)による格納容器冷却手段及 び格納容器圧力逃がし装置による格納容器除熱手段を整備している。

事故シーケンスグループ「高圧・低圧注水機能喪失」の重要事故シーケン ス「過渡事象(給水流量の全喪失)+高圧炉心冷却失敗+低圧炉心冷却失敗」 について有効性評価を行った。

上記の場合においても,逃がし安全弁(自動減圧機能)による原子炉減圧, 低圧代替注水系(常設)による原子炉注水,代替格納容器スプレイ冷却系(常 設)による格納容器冷却及び格納容器圧力逃がし装置による格納容器除熱を 実施することで,炉心の著しい損傷を防止することができる。

その結果,燃料被覆管最高温度及び酸化量,原子炉冷却材圧力バウンダリ にかかる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目 を満足している。また,安定状態を維持することができる。

なお,格納容器圧力逃がし装置の使用による敷地境界での実効線量は,周 辺公衆に対して著しい放射線被ばくのリスクを与えることはない。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「高圧・低圧注水機能喪失」に おいて,低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能)による 原子炉注水,格納容器圧力逃がし装置による格納容器除熱等の炉心損傷防止 対策は,選定した重要事故シーケンスに対して有効であることが確認でき, 事故シーケンスグループ「高圧・低圧注水機能喪失」に対して有効である。

第2.1-1表 高圧・低圧注水機能喪失における重大事故等対策について(1/3)

出 作及75体到	千 順	重大事故等対処設備		章 対処設備
1米TF及い唯裕	十 順	常設設備	可搬型設備	計装設備
原子炉スクラムの確認	・原子炉スクラムを確認する。	—	—	平均出力領域計装
				起動領域計装
高圧注水機能喪失の確認	・原子炉水位が,原子炉水位異常低下(レベル2)	ATWS緩和設	_	原子炉水位計(広帯域,燃料域)
	設定点に到達したことを確認する。	備 (代替原子炉再		原子炉水位計(SA 広帯域, SA
	・高圧炉心スプレイ系及び原子炉隔離時冷却系の	循環ポンプトリ		燃料域)
	自動起動に失敗したことを確認する。	ップ機能)		【高圧炉心スプレイ系系統流
	・高圧炉心スプレイ系及び原子炉隔離時冷却系の			量計】
	手動起動操作を実施し, 手動起動に失敗したこ			【原子炉隔離時冷却系系統流
	とを確認する。			量計】
	・低圧炉心スプレイ系及び残留熱除去系(低圧注			原子炉圧力計
	水系)の手動起動操作を実施し、手動起動に失			原子炉圧力計 (SA)
	敗したことを確認する。			
	・これらにより、高圧注水機能喪失と判断する。			
	・主蒸気隔離弁が自動閉止したことを確認する。			
	・再循環ポンプがトリップしたことを確認する。			
高圧代替注水系の起動操作	・高圧注水機能喪失の確認後、高圧代替注水系を	高圧代替注水系	—	原子炉水位計(広帯域,燃料域)
	起動する。			原子炉水位計(SA 広帯域, SA
				燃料域)
				高圧代替注水系系統流量計
低圧注水機能喪失の確認	・高圧注水機能喪失及び高圧代替注水系の起動操	—	—	【低圧炉心スプレイ系ポンプ
	作失敗後、一連の操作として低圧炉心スプレイ			吐出圧力計】
	系及び残留熱除去系(低圧注水系)の手動起動			【残留熱除去系ポンプ吐出圧
	操作を実施し、手動起動に失敗したことを確認			力計】
	する。			
			重大事故等刘	讨処設備(設計基準拡張)

:有効性評価上考慮しない操作

第2.1-1表 高圧・低圧注水機能喪失における重大事故等対策について(2/3)

出作正で変刺	五 話		重大事故等	対処設備
操作及び確認	一 一 一 順	常設設備	可搬型設備	計装設備
高圧/低圧注水機能の回復操	・対応可能な要員にて高圧注水機能及び低圧	—	—	-
作	注水機能の回復操作を実施する。			
低圧代替注水系(常設)の起動	・低圧注水機能喪失の確認後,低圧代替注水	常設低圧代替注水	—	常設低圧代替注水系ポンプ吐
準備操作	系(常設)を起動する。	系ポンプ		出圧力計
	・外部電源が喪失している場合は、常設代替	代替淡水貯槽		
	高圧電源装置を起動し,緊急用母線を受電	常設代替高圧電源		
	する。	装置		
		軽油貯蔵タンク		
逃がし安全弁(自動減圧機能)	・低圧代替注水系(常設)の起動準備完了後,	逃がし安全弁(自	_	原子炉水位計(広帯域,燃料域)
による原子炉減圧操作	逃がし安全弁(自動減圧機能)7弁を手動開	動減圧機能)		原子炉水位計(SA 広帯域, SA
	放することにより、原子炉減圧操作を実施	常設低圧代替注水		燃料域)
	する。	系ポンプ		原子炉圧力計
	・原子炉減圧に伴い、低圧代替注水系(常設)	代替淡水貯槽		原子炉圧力計 (SA)
	からの原子炉注水が開始され、原子炉水位	常設代替高圧電源		低圧代替注水系原子炉注水流
	が回復することを確認する。	装置		量計
	・炉心損傷がないことを継続的に確認する。	軽油貯蔵タンク		代替淡水貯槽水位計
				格納容器雰囲気放射線モニタ
				(D/W, S/C)
原子炉水位の調整操作	・低圧代替注水系(常設)による原子炉水位	常設低圧代替注水	—	原子炉水位計(広帯域,燃料域)
	回復後,原子炉水位は,原子炉水位低(レ	系ポンプ		原子炉水位計(SA 広帯域, SA
	ベル3)から原子炉水位高(レベル8)の	代替淡水貯槽		燃料域)
	間に維持する。	常設代替高圧電源		
		装置		
		軽油貯蔵タンク		

:有効性評価上考慮しない操作

おかれていた	五 話		重大事故等	対処設備
操作及び確認	一 一 一 順	常設設備	可搬型設備	計装設備
代替格納容器スプレイ冷却系 (常設)による格納容器冷却	 ・サプレッション・チェンバ圧力が 279kPa[gage]に到達したことを確認する。 ・代替格納容器スプレイ冷却系(常設)による 格納容器スプレイ操作を実施する。 ・サプレッション・プール水位が,通常水位 +6.5mに到達した時点で,代替格納容器ス プレイ冷却系(常設)による格納容器スプ 	常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク	_	ドライウェル圧力計 サプレッション・チェンバ圧力 計 低圧代替注水系格納容器スプ レイ流量計 代替淡水貯槽水位計 サプレッション・プール水位計
格納容器圧力逃がし装置によ る格納容器除熱操作(サプレッ ション・チェンバ側)	 ・サプレッション・チェンバ圧力が 310kPa[gage]に到達したことを確認し、サ プレッション・チェンバ側から格納容器圧 力逃がし装置による格納容器ベントを実施 する。 	格納容器圧力逃が し装置 耐圧強化ベント系		ドライウェル圧力計 サプレッション・チェンバ圧力 計 サプレッション・プール水位計 格納容器雰囲気放射線モニタ (D/W, S/C) フィルタ装置出口放射線モニ タ(高レンジ,低レンジ) 耐圧強化ベント系放射線モニ タ
可搬型代替注水大型ポンプに よる水源補給操作	 可搬型代替注水ポンプにより代替淡水貯水 池から代替淡水貯槽に水源補給操作を実施 する。 	代替淡水貯槽 淡水貯水池	可搬型代替注 水大型ポンプ	代替淡水貯槽水位計
タンクローリによる燃料補給 操作	 ・タンクローリによる燃料補給操作を実施する。 	可搬型設備用軽油 タンク	タンクローリ	-
使用済燃料プールの冷却操作	 ・対応可能な要員にて使用済燃料プールの冷却操作を実施する。 	_	_	-

第2.1-1表 高圧・低圧注水機能喪失における重大事故等対策について(3/3)

:有効性評価上考慮しない操作

_	_		_	_				_		•••		_				. –		_
_	1	X	`	/	Ь	N	0	1	63	3-	-41	6	17	쑤	++	ろ	回饮	
		-	~			- ± 1	•••	-	00		- T.		\sim	×.	1 /	° av		

第 2.1-2 表 主要解析条件(高圧・低圧注水機能喪失)(1/5)

	項目	主要解析条件	条件設定の考え方
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できる解析コード
	原子炉熱出力	3, 293MW	定格熱出力を設定
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定
	原子炉水位	通常運転水位(セパレータスカー ト下端から+126 cm)	通常運転水位を設定
	炉心流量	48,300 t∕h	定格流量を設定
	炉心入口温度	約 278℃	熱平衡計算による値
211	炉心入口サブクール度	約 9℃	熱平衡計算による値
期条件	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等であ り,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含され ることから,代表的に9×9燃料(A型)を設定
	燃料棒最大線出力密度	44. 0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定 となるため,保安規定の運転上の制限における上限値を設定
	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため,崩壊熱が大きくなる燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に 対応する燃焼度を設定
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定
	格納容器雰囲気温度	57℃	ドライウェル内ガス冷却装置の設計温度を設定

	項目	主要解析条件	条件設定の考え方
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定
初	格納容器体積	空間部:4,100m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし
期	(ウェットウェル)	液相部:3,300m ³	て,保安規定の運転上の制限における下限値を設定
条 件	サプレッション・プール 水位	6.983m (通常水位-4-7cm)	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限値を設定
	サプレッション・プール 水温度	32℃	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限値を設定
	起因事象	給水流量の全喪失	運転時の異常な過渡変化の中で原子炉水位の低下が早く,炉心損傷までの余 裕時間が短い給水流量の全喪失を設定
事故条件	安全機能の喪失に対する仮 定	高圧注水機能喪失 低圧注水機能喪失	高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系,低圧注水 機能として低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の機能喪失 を設定
14-	外部電源	外部電源あり	外部電源がある場合,原子炉スクラム及び再循環ポンプトリップは,それぞ れ原子炉水位低(レベル3)信号及び原子炉水位異常低下(レベル2)信号 となり,原子炉水位の低下が大きくなることで,燃料被覆管温度の観点で厳 しくなる
関 連 す 事	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位低(レ ベル3)信号による原子炉スクラムを設定
する機器条件	ATWS緩和設備 (代替原子炉再循環ポンプ トリップ機能)	原子炉水位異常低下(レベル2) 信号で全台停止	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位異常低 下(レベル2)信号による再循環ポンプトリップを設定

第2.1-2表 主要解析条件(高圧·低圧注水機能喪失)(2/5)

第 2.1-2 表	主要解析条件	(高圧・	低圧注水機能喪失)	$(3 \angle 5)$

	項目	主要解析条件	条件設定の考え方
			炉心冷却の観点で厳しい設定として,機器設計上の最小要 求値である最小流量特性を設定
重大事故等対策に関連する機器条件		原子炉水位が原子炉水位高(レベル8)設定点まで 回復した以降は原子炉水位を原子炉水位低(レベル 3)設定点から原子炉水位高(レベル8)設定点の 範囲に維持	<常設低圧代替注水ポンプ2台による注水特性>
	低圧代替注水系(常設)	 (原子炉注水単独時) 最小流量特性(2台) ・注水流量:0~378m³∕h ・注水圧力:0~2.38MPa[dif] 	(UT) (UT)
		 (原子炉注水と格納容器スプレイ併用時) ・注水流量:230 m³/h(一定) 	併用時の系統評価に基づき、保守的な流量を設定
	代替格納容器スプレイ冷却 系(常設)	サプレッション・チェンバ圧力が 217kPa[gage]に到 達した場合は停止し, 279kPa[gage]に到達した場合 に再開 スプレイ流量:130m ³ /h (一定)	格納容器圧力上昇を抑制可能な流量として,運転手順に基 づき設定
	外部水源の水温	35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい高め の水温として,代替淡水貯槽及び水源補給に用いる淡水貯 水池の年間の気象条件変化を包含する高めの水温を設定

	項目	主要解析条件	条件設定の考え方
重大		 (原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2 個, 385.2t/h/個 8.10MPa [gage] ×4 個, 400.5t/h/個 8.17MPa [gage] ×4 個, 403.9t/h/個 8.24MPa [gage] ×4 個, 407.2t/h/個 8.31MPa [gage] ×4 個, 410.6t/h/個 	設計値を設定
事 古 等 文 舒 に 艮 運 す る 核 暑 务 作	本 が し安全弁 こ 見 三 - - - - - - - - - - - - -	(原子炉減圧操作時) 逃がし安全弁(自動減圧機能)7弁を開放すること による原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェン バ間差圧)	設計値を設定
	格納容器圧力逃がし装置	排気特性:最小流量特性 13.4kg/s(格納容器圧力 310kPa[gage]において)	格納容器減圧特性の観点で厳しい設定として、機器設計上 の最低要求値である最小流量特性を設定

第2.1-2表 主要解析条件(高圧·低圧注水機能喪失)(4/5)

第 2.1-2 表	主要解析条件	(高圧・	低圧注水機能喪失)	(5/5)
		(1, 1, 1)		(~, ~,

	項目	主要解析条件	条件設定の考え方
関連する操作条件重大事故等対策に	逃がし安全弁(自動減圧機能) による原子炉減圧操作 (低圧代替注水系(常設)に よる原子炉注水操作)	事象発生から 25 分後	運転手順に基づき,高圧・低圧注水機能喪失を確認し,低 圧代替注水系(常設)の準備が完了した時点で原子炉減圧 操作を実施するため,外部電源がない場合も考慮し,状況 判断,高圧注水機能喪失の確認,解析上考慮しない高圧代 替注水系の起動,低圧注水機能喪失の確認,常設代替高圧 電源装置による緊急用母線受電,低圧代替注水系(常設) の起動準備及び逃がし安全弁(自動減圧機能)による原子 炉減圧操作に要する時間を考慮して設定
	代替格納容器スプレイ冷却系 (常設)による格納容器冷却 操作	サプレッション・チェンバ圧力 279kPa[gage]到達時	運転手順に基づき格納容器ベント実施基準である格納容器 最高使用圧力(310kPa[gage])に対する余裕を考慮し設定
	格納容器圧力逃がし装置によ る格納容器除熱操作	サプレッション・チェンバ圧力 310kPa[gage]到達時	運転手順に基づき、格納容器最高使用圧力を踏まえて設定

第2.1-1図 高圧・低圧注水機能喪失時の重大事故等対策の概略系統図(2/3) (低圧代替注水系(常設)による原子炉注水及び 代替格納容器スプレイ冷却系(常設)による格納容器冷却段階)

第2.1-1 図 高圧・低圧注水機能喪失時の重大事故等対策の概略系統図(3/3) (低圧代替注水系(常設)による原子炉注水及び 格納容器圧力逃がし装置による格納容器除熱段階)

第 2.1-2 図 高圧・低圧注水機能喪失の対応手順の概要	
コメント No. 147-19, 20, 23, 25, 29, 148-01, 17 に対する回答	

2.1 - 39

	高圧・低圧注水機能喪失																			
			経過時間(分) 0 10 20 30 40 50 60 70 80 90 100 110																	
																				010 5
		実施箇所	・必要要」	員数	7	↓ ▼ 事象発生														
操作項目		[]	は他作業後	发		▶ 原子炉スクラム														
		移動し	てきた要員	₹		✔ 約20秒 原子	炉水位異常	常低下(レ	ベル2)	設定点到這	ž Ž									
	責任者 発電長 1人		中央監視 運転操作指揮		▼ プラント状況判断															
	補佐 副発電長 1人		運転操作指揮補佐	廃作の内容	▼ 約21分 原子炉水位異常低下(レベル1)設定点到達															
	通報連絡者 災害対策要員 2人		2人	災害対策本部連絡 発電所外部連絡		▶ 25分 原子炉减圧開始														
	運転員 (中央制御室)	運転員		重大事故等対応要員 (現場)																
		-			 ●外部電源喪失の確認 															
					 ●給水流量全喪失の確認 															
	2人 A, B				●原子炉スクラムの確認															外部電源喪失の確認及び
					●タービン停止の確認															#常用外部電源喪矢の確 認及び非常用ディーゼル 発電機等の自動お動の確
状況判断				_	●非常用ディーゼル発電機等の自動起動の確認	10 分														第二日 一 元 日 一 元 日 初 正 前 の 但 初 に 前 の 但 初 に 前 の に 前 の に 前 か な い 場 合 に 実 施 す ろ 雪 様 等 の 白
					●再循環ポンプトリップの確認															動起動の確認は、外部電源がない場合に実施する
					●高圧炉心スプレイ系及び原子炉隔離時冷却系の自動起動失敗の 確認															
					●主蒸気隔離弁閉止及び逃がし安全弁による原子炉圧力制御の確認															
高圧注水機能喪失 の判断	【1人】 A	-		-	●高圧炉心スプレイ系及び原子炉隔離時冷却系の手動起動操作 (失敗)	2分														
常設代替高圧電源 装置による緊急用 母線受電操作	【1人】 B	-		_	●常設代替高圧電源装置2台起動及び緊急用母線受電操作	4分														外部電源がない場合に実 施する
高圧代替注水系の 起動操作	【1人】 A	-		-	 ●高圧代替注水系の起動操作 		4分													解析上考慮しない
低圧注水機能喪失 の判断	【1人】 A	-		-	●低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の手動起動 操作(失敗)			4分												
高圧/低圧注水 機能の回復操作	-	-		-	●高圧炉心スプレイ系等の回復操作															対応可能な要員にて実施
低 圧 代 替 注 水 系 (常設)の起動準 備操作	【1人】 B	-		_	●低圧代替注水系(常設)による原子炉注水 系統構成				3分											
逃がし安全弁によ る原子炉減圧操作	【1人】 B	【1人】 B —		-	●逃がし安全弁7弁の開放操作	1														
原子炉水位の調整 操作	[1]] B			_	●低圧代替注水系(常設)による原子炉注水の調整操作						原	子炉水位を原子炉フ	水位低(レベル3)設定点から原子;	戸水位高(レベル	 8) 設定点の間 	に維持			

コメント No. 147-27 に対する回答

第2.1-3 図 高圧・低圧注水機能喪失の作業と所要時間(1/2)

							南	圧・低圧注水機	能喪失											
											叙温時	月 (時間)								[
					4	8	8	12	16	20	<u>개료 100</u> 따랐다. 24	a] (Hof [B])	28	32	36		44	48	52	備考
操作項目		実施箇所・必要要員 【 】は他作業後 移動してきた要員	数	操作の内容	7 事象発生 ▼ 25分 原子炉減圧開始 ▼ 約14時間 サブレッション・チェンバ圧力279kPa [gage] 到達 ▼ 約24時間 サブレッション・ブール水位 通常水位+5.5m到達 ▼ 約27時間 サブレッション・ブール水位 通常水位+6.5m到達															
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)																	
原子 炉 水 位 の 調 整 操 作	【1人】 B	-	-	●低圧代替注水系(常設)による原子炉注水の調整操作				原	子炉水位を	原子炉水位低(レベル	3) 設定点;	から原子炉水	立高 (レヘ	ベル8)設定点	の間に維持					
代 替格 納 容 器 ス プレイ冷却系(常 設)による格納容 器冷却操作	【1人】 B	_	_	●格納容器スプレイ操作						格納容器スプレイ中,	適宜状態監	視								
				●代替循環冷却系による原子炉注水操作	注水開始後,適宜原子炉水位調整										解析上考慮しない 代替循環冷却系のみで状					
代 替 循 環 冷 却 系 の起動操作	【1人】 B	-	-	●代替循環冷却系による格納容器スプレイ操作					格納容器スプレイ中、適宜状態監視							維持が可能な場合は,低圧 代替注水系(常設)による 注水を停止する				
原子炉満水操作	【1人】 B	-	_	 ●原子炉注水流量の増加操作 	原子炉水位を可能な限り高く維持									解析上考慮しない						
使用済燃料ブール の冷却操作	-	-	-	●使用済燃料プールの冷却操作																使用済燃料ブールの除熱 機能が喪失した場合でも、 ブール水温度が80°Cに到達 するまでには1日程度の時 間余裕があるため、本操作 は対応可能な要員にて実 施する
₩ 04 00 PP ->>>>	【1人】 A	-	-	●格納容器ベント準備(系統構成)							5 分									
進備操作	_	3人 C, D, E	-	 ●現場移動(第一弁) ●格納容器ベント準備(系統構成) 	125 分								解析上考慮しない							
格納容器圧力逃 がし装置による	【1人】 A	_	-	●中央制御室からの格納容器ベント操作		格納容器ベント実施後,適宜状態監視														
格 納 容 器 除 熱 操 作(サプレッショ ン・チェンバ側)	-	-	【3人】 (招集)	●現場手動による格納容器ベント操作										75 分						解析上考慮しない
可 搬型代 替 注 水 大型 ポンプによ る水源補給操作	-	_	8人 a~h	●可搬型代替注水大型ポンプの移動,ホース敷設等														160 分		
	_	_	【2人】 a, b	●ポンプ起動及び水源補給操作															適宜実施	水源枯渇までは十分余裕 がある
タンクローリに よる燃料補給操 作			2人	●可搬型設備用軽油タンクからタンクローリへの補給														110 分		タンクローリ残量に応じ て適宜軽油タンクから補 給
	_	_	(招集)	●可搬型代替注水大型ポンプへの給油															適宜実施	
• 必要要員合計	2人 A, B	3人 C, D, E	8人 a~h 及び招集5人			,														

コメント No. 147-27 に対する回答

第 2.1-3 図 高圧・低圧注水機能喪失の作業と所要時間(2/2)

※1 SAFERでは炉心シュラウド内側を下から炉心下部プレナム、炉心、炉心上部プレナムの領域に分け水位 を計算している。ここでは炉心上部プレナムについては下限の水位(ノード内水位なしの状態)、平均出力 燃料集合体及び炉心下部プレナムについては、上限の水位(ノード内の満水状態)が示されている。例えば、 炉心上部プレナムの水位を「下限の水位」と表現しているのは、その領域の冷却材が完全になくなった状態 を示し、炉心部または高出力燃料集合体と炉心下部プレナムの水位を「上限の水位」と表現しているのは、 各々の領域が満水となっている状態を示している。

なお,図の点線は炉心上部プレナム,実線は高出力燃料集合体,一点破線は炉心下部プレナムそれぞれの領 域の水位を示す。

- ※2 シュラウド内外水位はボイドを含む二相水位を示しており、二相水位評価の範囲としてボイド率を0.9と制限している。(蒸気単相を仮定している蒸気ドームを除く各領域では、水と蒸気の質量及び二相混合相のボイド率が計算され、二相混合体積から二相水位を求めている。ボイド率が1.0となるまで二相混合体積を計算し続けると、水がほぼない状態でも、二相混合体積(水位)として扱われるため水位を高めに評価することとなる。)
- ※3 高出力燃料集合体とは、「燃料被覆管温度計算の観点から、集合体初期出力を保守的な設定とした燃料集合 体」をいう。
 - (付録3 重大事故等対策の有効性評価に係るシビアアクシデント解析コードについて 第1部 SAFER コード 3.3 解析モデル 3.3.1 熱水力モデル (1) ノード分割 ⑨ノード9:燃料集合体 参照)

第2.1-7図 逃がし安全弁からの蒸気流量の推移

第2.1-8図 原子炉圧力容器内の保有水量の推移

第2.1-9図 燃料被覆管温度の推移

2.1-46

第2.1-14 図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係

2.1 - 49

ニュメント No. 147-10, 11, 17, 150-01, 31, 163-05, 14, 20, 42, 171-32, 181-09, 10, 添付資料 2.1.1 182-04, 12, 187-04, 205-01, 03, 04, 06, 265-04, 270-01 に対する回答

安定状態について(高圧・低圧注水機能喪失)

高圧・低圧注水機能喪失時の安定状態については、以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備又は重大事故等対処 設備を用いた炉心冷却が維持可能であり、また、冷却の ための設備がその後も機能維持でき、かつ、必要な要員 の不足や資源の枯渇等のあらかじめ想定される事象悪 化のおそれがない場合に安定停止状態が確立されたも のとする。

格納容器安定状態 : 炉心冷却が維持された後に,設計基準事故対処設備又は 重大事故等対処設備を用いた格納容器除熱により格納 容器圧力及び温度が安定又は低下傾向に転じ,また,格 納容器除熱のための設備がその後も機能維持でき,か つ,必要な要員の不足や資源の枯渇等のあらかじめ想定 される事象悪化のおそれがない場合に安定状態が確立 されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

逃がし安全弁により原子炉減圧状態を維持し,低圧代替注水系(常設)を用 いた原子炉注水を継続することで,炉心の冷却は維持され原子炉安定停止状態 が確立される。

格納容器安定状態の確立について

炉心冷却を継続し,事象発生の約28時間後に格納容器圧力逃がし装置等を用いた格納容器除熱を実施することで,格納容器圧力及び雰囲気温度は安定又は低下傾向となる。格納容器雰囲気温度は150℃を下回るとともに,ドライウェル雰囲気温度は,低圧注水継続のための逃がし安全弁の機能維持が確認されている126℃を上回ることはなく,格納容器安定状態が確立される。なお,格納容器圧力逃がし装置等を用いた格納容器除熱を実施するが,敷地境界における実効線量は,本事故シーケンスとベントタイミングが同等であり,放射性物質の減衰効果も同等となる「2.6 LOCA時注水機能喪失」の評価結果6.2×10⁻¹mSvと同等となり,また,燃料被覆管の破裂も発生しないことから,周辺公衆に対して著しい放射線被ばくのリスクを与えることはない。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また、代替循環冷却系又は残留熱除去系の復旧により除熱を行い、格納容器 ベントを閉止し格納容器を隔離することで、安定状態の更なる除熱機能の確保 及び維持が可能となる。(別紙1)

安定状態の維持について

1. 安定状態の維持に関する定量評価

サプレッション・プール水温度に関する長期間解析及び残留熱除去系の復 旧に関する定量評価について以下に示す。

(1) 格納容器ベントを使用した場合のサプレッション・プール水温度に関す る長期間解析

格納容器ベントを使用した場合の長期的なサプレッション・プール水温 度の挙動を確認するため,運転中の原子炉における重大事故に至るおそれ がある事故において格納容器ベントを実施するシーケンスのうち,サプレ ッション・プール水温度が高く推移する「崩壊熱除去機能喪失(残留熱除 去系が故障した場合)」について,サプレッション・プール水温度が約100℃ に低下するまでの長期間解析を実施した。

第1図から第3図に格納容器圧力,温度及びサプレッション・プール水 温度の解析結果を示す。第3図に示すとおり,事象発生から7日後時点で は、サプレッション・プール水温度は最高使用温度の104℃(格納容器設 計条件を決定するための冷却材喪失事故時の解析結果での最高温度に余裕 をもたせた温度)を上回っているが、事象発生から7日以降の100℃に低 下するまでの全期間にわたって150℃を下回っている。トップヘッドフラ ンジや機器搬入用ハッチに使用されている改良EPDM製シール材は一般 特性として耐温度性は150℃であることから、格納容器の放射性物質の閉 じ込め機能は維持される。

したがって、事故発生7日以降にサプレッション・プール水温度が最高 使用温度を上回っていても格納容器の健全性が問題となることはない。

第1図 格納容器圧力の推移

(崩壊熱除去系機能喪失(残留熱除去系が故障した場合))

第2図 格納容器雰囲気温度の推移

(崩壊熱除去系機能喪失(残留熱除去系が故障した場合))

(別紙1)-2

(2) 残留熱除去系の復旧に関する定量評価

ここでは,残留熱除去系の復旧による安定状態の維持に関する定量評価 として,崩壊熱除去機能喪失(取水機能が喪失した場合)を例に残留熱除 去系により原子炉停止時冷却モード運転を実施した場合の長期間解析を実 施した。

第4図から第6図に格納容器圧力,サプレッション・プール水温度及び 水位の解析結果を,それぞれ事象発生の14日後まで示す。

第5回に示すとおり、サプレッション・プール水温度は事象発生の約13 時間後に残留熱除去系による格納容器除熱を開始した以降に低下傾向とな り、事象発生の7日後までに最高使用温度(104℃)を下回る。その後、事 象発生の7日後に原子炉停止時冷却モード運転を開始すると、除熱性能が 向上し、第4回及び第5回に示すとおり、格納容器圧力及びサプレッショ ン・プール水温度は大幅に低下する。サプレッション・プール水位につい ては、第6回に示すとおり残留熱除去系により格納容器除熱を実施しつつ、 サプレッション・プール水源にて原子炉注水を行うことで上昇は抑制され る。

以上から,残留熱除去系の復旧により安定状態の更なる除熱機能の確保 及び維持が可能である。

第4図 格納容器圧力の推移

第5図 サプレッション・プール水温度の推移

第6図 サプレッション・プール水位の推移

2. 残留熱除去系の復旧について

(1) 残留熱除去系の復旧方法及び予備品の確保について

残留熱除去系の機能喪失の原因によっては,大型機器の交換が必要となり 復旧に時間かかる場合も想定されるが,予備品の活用やサイト外からの支援 等を考慮すれば,1ヶ月程度で残留熱除去系を復旧させることが可能である 場合もあると考えられる。

残留熱除去系の復旧に当たり,残留熱除去系海水系については,予備品を 保有することで復旧までの時間が短縮でき,成立性の高い作業で機能回復で きる機器であり,機械的故障と電気的故障の要因が考えられる残留熱除去系 海水系ポンプ電動機を予備品として確保し,重要安全施設との位置的分散を 考慮し保管している。

一方,残留熱除去系については,防潮堤等の津波対策及び原子炉建屋内の 内部溢水対策により区分分離されていることから,複数の残留熱除去系が同 時浸水により機能喪失することはないと考えられる。

なお,ある1系統の残留熱除去系の電動機が浸水し,当該の残留熱除去系 が機能喪失に至った場合においても,残りの系統の残留熱除去系の電動機を 接続することにより復旧する手順を準備する。

(2) 残留熱除去系の復旧手順について

炉心損傷もしくは格納容器破損に至る可能性のある事象が発生した場合に, 運転員及び災害対策要員により残留熱除去系を復旧するための手順を整備し てきている。

本手順では,機器の故障個所,復旧に要する時間,炉心損傷あるいは格納 容器破損に対する時間余裕に応じて「恒久対策」,「応急対策」,又は「代替対 策」のいずれかを選択するものとしている。具体的には,故障個所の特定と

(別紙1)-7

対策の選択を行い,故障個所に応じた復旧手順にて復旧を行う。第7図に, 手順書の記載例を示す。

第7図 残留熱除去系の復旧手順書の記載例(1/7)

第7図 残留熱除去系の復旧手順書の記載例(2/7)

第7図 残留熱除去系の復旧手順書の記載例 (3/7)

第7図 残留熱除去系の復旧手順書の記載例(4/7)

第7図 残留熱除去系の復旧手順書の記載例(5/7)

第7図 残留熱除去系の復旧手順書の記載例(6/7)

第7図 残留熱除去系の復旧手順書の記載例(7/7)

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響	
	崩壞熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熱を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。	
炉心	燃料棒表面熱伝 達,沸騰遷移,気 液熱非平衡	な料棒表面熟伝 熱,沸騰遷移,気 達来デル 然料棒表面熟伝 達モデル 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、操作手順(速 やかに注水手段を準備すること)に変わりはなく、燃料被覆管温 度を起点とする運転員等操作はないことから、運転員等操作時間 に与える影響はない。	解析コードは,実験解析において熱伝達モデルの保守性により燃 料被覆管温度を高めに評価し,有効性評価解析においても燃料被 覆管温度を高めに評価することから,評価項目となるパラメータ の判断基準に対する余裕は大きくなる。	
	燃料被覆管酸化	ジル コ ニ ウ ム ー 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,操作手順(速 やかに注水手段を準備すること)に変わりはなく,燃料被覆管温 度を起点とする運転員等操作はないことから,運転員等操作時間 に与える影響はない	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるパラメータの判断基準に対する余裕は大きくなる。	
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は、燃料被覆管温度と円周方向応力 に基づいて評価され、燃料被覆管温度は上述の ように高めに評価され、円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって、ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	解析コードは、燃料被覆管の破裂判定においておおむね保守的な 判定結果を与え、有効性評価解析における燃料被覆管の最高温度 は 338℃であることから、ベストフィット曲線の破裂判断基準に 対して十分な余裕があり、燃料被覆管の破裂判定の不確かさが運 転員等操作に与える影響はない。	破裂発生前の被覆管の膨れ及び破裂発生の有無は、伝熱面積やギ ャップ熱伝達保数,破裂後の金属-水反応熱に影響を与え、燃料 被覆管最高温度及び酸化割合に影響を与える。解析コードは、燃 料被覆管の破裂判定においておおむわ保守的な判定結果を与え、 有効性評価解析における燃料被覆管の最高温度は 338℃であるこ とから、ベストフィット曲線の破裂判断基準に対して十分な余裕 があり、燃料被覆管の破裂判定の不確かさにより、評価項目とな るパラメータに与える影響はない。	

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重量する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは+20℃~+40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,低圧代替注水系を注 水手段として用いる本事故シーケンスでは考慮 する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注 水系の注水タイミングに特段の差異を生じる可 能性はないと考えられる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると 20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析におけ る燃料被覆管最高温度は約 338℃であり、判断基準に対して十分な 余裕があることから、その影響は非常に小さい。
原子炉 圧力容器	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるバラメータに与える影響は小さい。
	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-III, FIST-ABWRの実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉上力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉上力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており,実機設備仕様に対し て注水流量を少なめに与え,燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壊熱	炉 心 モ デ ル (原子炉出力 及び崩壊熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モデルの不確かさの影 響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水 (給 水 系・代替注 水設備含 む。)	安全系モデル (非常用炉心 冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析モデルの不確かさの 影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるバラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるバラメータに与える影響」にて確認。
格納容器	格 各 谷 の の 及 熟 で 導 、 た 会 熟 び 導 、 、 で 熟 の 及 気 、 、 で 熟 の の 及 気 、 、 で 熟 の の の 、 の で 熟 の の の の 、 で き 熟 の び 、 で き 熟 の の の の し 、 た う の の の の の し 、 う の の の の の の の の の の の の の	格納容器モデ ル (格納容器 の熱水力モデ ル)	HDR実験解析では、格納容器圧力及び雰囲気温度について、温度 成層化を含めて傾向をよく再現できることを確認した。格納容器雰 囲気温度を十数℃程度高めに,格納容器圧力を1割程度高めに評価 する傾向が確認されたが、実験体系に起因するものと考えられ、実 機体系においてはこの種の不確かさは小さくなるものと考えられ る。また,非疑縮性ガス濃度の挙動について,解析結果が測定デー タとよく一致することを確認した。 格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確 かさにおいては,CSTF実験解析では,格納容器雰囲気温度及び 非疑縮性ガス濃度の挙動について,解析結果が測定データとよく一 致することを確認した。	解析コードは、HDR実験解析において区画によって格納容器 常囲気温度を十数℃程度,格納容器圧力を1割程度高めに評 価する傾向が確認されているが,BWRの格納容器内の区画 とは異なる等,実験体系に起因するものであり,実機体系に おいては不確かさが小さくなるものと推定され,全体として は格納容器圧力及び温度の傾向を適切に再現できているた め,格納容器圧力を操作開始の起点としている代替格納容器 スプレイ冷却系(常設)による格納容器冷却及び格納容器圧 力逃がし装置等による格納容器除熟に係る運転員等操作時間 に与える影響は小さい。 また,格納容器各領域間の流動,構造材との熱伝達及び内部 熟伝導の不確かさにおいては,CSTF実験解析において格 納容器圧力気においては,CSTF実験解析において格 納容器圧力気で非疑縮性ガスの挙動は測定データと良 く一致することを確認しており,その差異は小さいため,格 納容器圧力及び雰囲気温度を操作開始の起点としている代替 格納容器に力必ず回気温度を操作開始の起点としている代替 格納容器に力及び雰囲気温度を操作開始の起点としている代替	解析コードは、HDR 実験解析において区画によって格納容器雰 囲気温度を十数で程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが、BWRの格納容器内の区面とは異 なる等,実験体系に起因するものであり,実機体系においては 不確かさが小さくなるものと推定され、全体としては格納容器 圧力及び温度の傾向を適切に再現できているため,評価項目と なるパラメータに与える影響は小さい。 また,格納容器各領域間の流動,構造材との熱伝達及び内部熱 伝導の不確かさにおいては,CSTF実験解析により格納容器 雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一致 することを確認しているため,評価項目となるパラメータに与 える影響は小さい。
	ス プ レ イ 冷却	安全系モデル (格納容器ス プレイ)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平衡に至ることから伝 熱モデルの不確かさはない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。
	格 納 容 器 ベント	格納容器モデ ル(格納容器 の熱水力モデ ル)	入力値に含まれる。 格納容器ペントについては,設計流量に基づいて流路面積を入力値 として与え,格納容器各領域間の流動と同様の計算方法を用いてら れている。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるバラメータに与える影響」にて確認。

	7 7 D	解析条件の不確かさ		条件設定の考え方	でおことないたは目にたらて見想	評価項目となるパラメータに
	垻 日	解析条件	最確条件	米性設定の考え方	運転員寺傑作时间に与える影響	与える影響
	原子炉熱出力	3, 293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には,最大線出力密度及び原子 炉停止後の崩壊熱が緩和される。最確条件とした場 合の運転員等操作時間及び評価項目となるパラメー タに与える影響は,最大線出力密度及び原子炉停止 後の崩壊熱にて説明する。	最確条件とした場合には,最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は,最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
初期条件	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響は小さい。
	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ + 132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)設定点までの原子炉水位の低下量は約 2m であるのに対してゆらぎによる水位低下量は約 40mmであり非常に小さい。したがって、事象進展に 及ぼす影響は小さく、運転員等操作時間に与える影 響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)設定点までの原子炉水位の低下量は約2mである のに対してゆらぎによる水位低下量は約40mmであり 非常に小さい。したがって、事象進展に及ぼす影響は 小さく、評価項目となるパラメータに与える影響は小 さい。
	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい て解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さい。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は,熱 水力的な特性はほぼ同等であり,その他の 核的特性等の違いは燃料棒最大線出力密度 の保守性に包含されることから,代表的に 9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性は ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響は小さい。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件とした場合には,解析条件で設定している 燃料棒線出力密度よりも小さくなるため,燃料被覆 管温度の上昇が緩和されるが,操作手順(途やかに 注水手段を準備すること)に変わりはなく,燃料被 覆管温度を起点とする運転員等操作はないことか ら,運転員等操作時間に与える影響はない。	最確条件とした場合には,解析条件で設定している燃料棒線出力密度よりも小さくなるため,燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータの判断基準に対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/4)

項日		解析条件の不確かさ		久 供訊 · · · · · · · · · · · · · · · · · ·	運転員等操作時間に与える影響	評価項目となるパラメータに
	項 日	解析条件	最確条件	条件設定の考え方	運転員寺操作时间に与える影響	与える影響
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33G₩d/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低 下及び格納容器圧力上昇の観点で 厳しい設定となる。このため,崩壊 熱が大きくなる燃焼度の高い条件 として,1 サイクルの運転期間(13 ヶ月)に調整運転期間(1ヶ月)を考 慮した運転期間に対応する燃焼度 を設定	最確条件とした場合には,解析条件で設定している崩壊 熱よりも小さくなる傾向となるため,原子炉からサブレ ッション・プールに流出する蒸気量が減少することで, 原子炉水位の低下が遅くなるが,操作手順(速やかに注 水手段を準備すること)に変わりはなく,運転員等操作 時間に与える影響はない。また,格納容器圧力,サブレ ッション・プール水位及びサブレッション・プール水温 度の上昇が遅くなり,これらのパラメータを起点とする 運転員等操作の開始時間は遅くなる。	最確条件とした場合には,解析条件で設定している崩 壊熟よりも小さくなる傾向となるため,燃料からの発 熱が小さくなり,原子炉からサプレッション・プール に流出する蒸気量が減少することで,原子炉水位の低 下並びに格納容器圧力及び温度の上昇が緩和される ことから,評価項目となるパラメータに対する余裕が 大きくなる。
	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高め の設定として,通常運転時の圧力を 包含する値を設定	最確条件とした場合には,解析条件で設定している圧力 よりも小さくなるため,格納容器圧力が低めに推移する ことから,格納容器圧力を起点とする運転員等操作の開 始時間は遅くなる。	最確条件とした場合には,解析条件で設定している格 納容器初期圧力よりも小さくなるため,格納容器圧力 が低めに推移することから,評価項目となるパラメー 夕の判断基準に対する余裕は大きくなる。
初期条件	ドライウェル 雰囲気温度	57°C	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設 計温度を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、ドライウェル雰囲気温度は、格納 容器スプレイの実施に伴い飽和温度となることから、初 期温度のゆらぎが事象進展に与える影響は小さく、運転 員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ドライウェル雰囲気温度は、 格納容器スプレイの実施に伴い飽和温度となること から、初期温度のゆらぎが事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。
	格納容器体積 (ドライウェル)	5, 700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約4,058m ³ 液相部: 約3,308m ³ ~約3,342m ³ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる少なめの水量 として,保安規定の運転上の制限に おける下限値を設定	最確条件とした場合には、格納容器体積(ウェットウェ ル)の液相部の運転範囲において解析条件より高めの水 位となるが、ゆらぎの幅は非常に小さい。例えば、サプ レッション・プール水位が6.983mの時の水量は3,300m ³ であるのに対し、ゆらぎ(0.087m)による水量変化は約 42m ³ であり、その割合は初期保有水量の1.3%程度と非 常に小さい。したがって、事象進展に与える影響は小さ く、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウ エル)の液相部の運転範囲において解析条件より高め の水位となるが、ゆらぎの幅は非常に小さい。例えば、 サプレッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、評価項目となるパラメータに与 える影響は小さい。
	サプレッション・ プール水位	6.983m (通常運転水位-4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる低めの水位と して,保安規定の運転上の制限にお ける下限値を設定	最確条件とした場合には、サプレッション・プール水位 の運転範囲において解析条件より高めの水位となるが、 ゆらぎの幅は非常に小さい。例えば、サプレッション・ プール水位が6.983mの時の水量は3,300m ³ であるのに対 し、ゆらぎ(0.087m)による水量変化は約42m ³ であり、 その割合は初期保有水量の1.3%程度と非常に小さい。 したがって、事象進展に与える影響は小さく、運転員等 操作時間に与える影響は小さい。	最確条件とした場合には、サプレッション・プール水 位の運転範囲において解析条件より高めの水位とな るが、ゆらぎの幅は非常に小さい。例えば、サプレッ ション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m) による水量変化は 約 42m ³ であり、その割合は初期保有水量の 1.3%程度 と非常に小さい。したがって、事象進展に与える影響 は小さく、評価項目となるパラメータに与える影響は 小さい。
	ー サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる高めの水温と して,保安規定の運転上の制限にお ける上限値を設定	最確条件とした場合には,解析条件で設定している水温 よりも低くなるため、サプレッション・プールでの圧力 抑制効果が高まり格納容器圧力の上昇は緩和されること から,格約容器圧力を起点とする運転員等操作の開始は 遅くなる。	最確条件とした場合には,解析条件で設定している水 温よりも低くなるため、サプレッション・プールでの 圧力抑制効果が高まり格納容器圧力の上昇は緩和さ れることから,評価項目となるパラメータの判断基準 に対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/4)

		解析条件	の不確かさ	タルホウのおうナ		評価項目となるパラメータに
	項日	解析条件	最確条件	米什該たの考え方	連転員寺操作时间に子える影響	与える影響
	起因事象	給水流量の 全喪失	_	運転時の異常な過渡変化の中で原子炉水位の低 下が早く,炉心損傷までの余裕時間が短い給水 流量の全喪失を設定		
事故条	安全機能の喪失 高圧注水機能喪失 - 高圧注水機能として高圧炉へスプレイ系及び原 に対する仮定 低圧注水機能喪失 - - みずの場時冷却系,低圧注水機能として低圧炉 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		_	-		
件	外部電源	外部電源あり	_	起因事象発生から原子炉スクラムまでの期間の 原子炉水位の低下を厳しくする条件として,外 部電源ありを設定	外部電源がない場合は、外部電源喪失に伴い原子炉 スクラム,再循環ボンプトリップ等が発生するため、 外部電源がある場合と比較して原子炉水位の低下は 遅くなるが、操作手順(速やかに注水手段を準備す ること)に変わりはないことから、運転員等操作時 間に与える影響はない。	外部電源がない場合は,外部電源喪失に伴い原子 炉スクラム,再循環ボンプトリップ等が発生する ため,外部電源がある場合と比較して原子炉水位 の低下は緩和されることから,評価項目となるパ ラメータに対する余裕は大きくなる。
	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	原子炉水位低 (レベル3)信号 (遅れ時間 1.05 秒)	事象進展の観点で,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しく する条件として,外部電源がある場合の原子炉 水位低(レベル3)信号による原子炉スクラム を設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから, 事象 進展に影響はなく, 評価項目となるパラメータに 与える影響はない。
関連する機器	ATWS緩和設備 (代替原子炉再循 環ポンプトリップ 機能)	ATWS緩和設備 (代替原子炉再循 ^最 ボンプトリップ 機能) (レベル2)信号 (レベル2)信号		事象進展の観点で,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しく する条件として,外部電源がある場合の原子炉 水位異常低下(レベル2)信号による再循環ポ ンプトリップを設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象 進展に影響はなく,評価項目となるパラメータに 与える影響はない。
機 等 対 条 作 に	低圧代替注水系 (常設)	(原子炉注水単独時) (原子炉注水単独時) 炉心冷去 最小流量特性(2台) 定格流量特性(2台) 計上の最 ・注水流量:0~378 m ・注水流量:0~378 m ³ 3/h ・注水匠力:0~ ・注水压力:0~ 2.38MPa[dif] 2.38MPa[dif]		炉心冷却性の観点で厳しい設定として,設備設 計上の最低要求値である最小流量特性を設定	設 最確条件とした場合には、注水開始後の原子炉水位 の回復が早くなり、原子炉水位の維持操作の開始が 早くなるが、原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため、運転員等操作時間に与える影響はない。	
		(原子炉注水と格納容 器スプレイ併用時) ・注水流量:230 m ³ ∕h	 (原子炉注水と格納容 器スプレイ併用時) ・注水流量:230 m³ ∕ h 以上 	併用時の系統評価に基づき,保守的な流量を設 定		
	代替格納容器スプ レイ冷却系(常設)	スプレイ流量: 130m ³ /h(一定)	スプレイ流量: 130m ³ /h 以上	格納容器圧力上昇を抑制可能な流量として,運 転手順に基づき設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象 進展に影響はなく,評価項目となるパラメータに 与える影響はない。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/4)

男2衣 脾切余性を取催余性としに場合に連転貝寺操作时间及い評価項目となるハフメニタに与える影響(4

	та н	解析条件の不確かさ		冬休乳空の老さ士	海転昌筮協佐時間にたうて影響	評価項目となるパラメータに
	頃 日	解析条件	最確条件	米件設定の考え方	運転員寺傑作时间に与える影響	与える影響
関連する機器条件	外部水源の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制効果の観 点で厳しい高めの水温として、代替淡水貯 槽及び水源補給に用いる淡水貯水池の年間 の気象条件変化を包含する高めの水温を設 定。	最確条件とした場合には、解析条件で設定している 水温よりも低くなる可能性があり、格納容器スプレ イによる圧力抑制効果が高まることから、同等の効 果を得るために必要となるスプレイ水量が少なくな り、外部水源を用いた格納容器スプレイ水量が少なくな り、外部水源を用いた格納容器スプレイに伴うサプ レッション・プール水位の上昇が緩和されることか ら、サプレッション・プール水位を起点とする操作 の開始は遅くなる。	最確条件とした場合には,解析条件で設定している水 温よりも低くなる可能性があり,格納容器スプレイに よる圧力抑制効果が高まるが,格納容器最高使用圧力 に到達した時点で格納容器ベントを実施するマネジ メントに変わりはなく,格納容器圧力の最大値はおお むね格納容器ベント時の圧力で決定されるため,評価 項目となるパラメータに与える影響はない。
	冰水上安全会	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	 (原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個 (設計値) 	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない
	逃がし安全弁	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから、事象進 展に影響はなく、運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
	格納容器圧力逃がし 装置	排気流量: 最小流量特性	排気流量: 定格流量特性	格納容器減圧特性の観点で厳しい設定とし て,設備設計上の最低要求値である最小流 量特性を設定	最確条件とした場合には,格納容器ベント後の格納 容器圧力の低下が早くなるが,格納容器ベント後に 格納容器圧力を起点とする操作はないため,運転員 等操作時間に与える影響はない。	最確条件とした場合には、格納容器ベント後の格納容 器圧力の低下が早くなるが、格納容器最高使用圧力に 到達した時点で格納容器ベントを実施するマネジメ ントに変わりはなく、格納容器圧力の最大値はおおむ ね格納容器ベント時の圧力で決定されるため、評価項 目となるパラメータに与える影響はない。
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、水源は枯渇しないこと から運転員等操作時間に与える影響はない。	-
	燃料の容量	約 1,010kL	約1,010kL以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/4)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	低水によれ、 低、常原生産の 「「「「「「「」」 「「「」」 「「」」 「「」」 「」」 「」」 「」」	事象発生から 25 分後	運き水穏赤が備点操たなし、東美大臣起電に低くで、 「「「「「「」」」であった。 「「「」」」、「「」」、「「」」、「「」」、「」、「」、「」、「」、「」、「」、	【認知】 中央制御室にて機器ランプ表示,機器故障警報,平均出力領域計装,系統流量 計等にて,原子炉スクラム等を確認する。この事象初期の状況判断に余裕時間 を含めて 10 分を想定している。この後、高圧炉心スプレイ系及び原子炉隔離 時冷却系の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作として4分並びに低圧炉心スプレイ系及び残留熟除去系(低圧注 水系)の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作として4分並びに低圧炉心スプレイ系及び残留熟除去系(低圧注 水系)の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作として4分を想定し,余裕時間を含めて20分を設定して おり、十分な時間余裕を確保していることから,認知遅れが操作開始時間に影 響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 低圧代替注水系(常設)の起動操作として3分及び逃がし安全弁による原子炉 減圧操作として1分を想定し、余裕時間を含めて操作時間として4分を設定し ている。いずれも中央制御室の制御整の操作スイッチによる簡易な操作であ り、操作所要時間が長くなる可能性は非常に低く、操作所要時間が操作開始時間 に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉注水を最優先に実施するため、他の並列操作が操作開始時間に与える影響 はない。 【操作の確実さ】 中央制御室の制御整の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び操作所 要時間は,余裕時間を 含めて設定しいる ことから,実態の操作 開始時間よりも 若干早まる可能性が ある。	実態の操作開始時間 は,解析上の操作開始 時間よりも早くなる 可能性があり,この場 合には原子間が早くなる ることで燃料は緩和さ れ,評価項目となるパ ラメータに対する余 裕は大きくなる。	高圧・低、床をした。 高圧・低、のための などので、 などので、 高圧したに、 などので、 などので、 などので、 などので、 しつした。 などので、 しつした。 などので、 しつした。 などので、 しつした。 などので、 しつした。 などので、 しつした。 などので、 しつした。 などので、 した、 などので、 した、 などので、 ないで、 ない、 ないで、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 ない	中るミ操訓解は、赤ら機び(子後作い実定しがことない、 物学の中で、 が、 の一む は、 し、 で、 の を は 思 の 手に 総 、 、 に の 生 の ま る 線 に 内 の ま る 線 に 内 の た 、 た に 割 作 レ 含 実 上 起 の 一 た 、 洗 高 能低 常 炉のまる 線の の ー む 、 な り 、 を に 、 、 、 高 能低 常 炉の の 本 の 、 を た に の を 、 た の の を 、 に る を 、 た の を 、 た の の を 、 た の の を 、 の を の 、 を 、 に の を 、 の を 、 の 、 を 、 、 の 、 で の 、 、 、 、 の 、 で の 、 、 、 、 の 、 の

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/4)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	代替格納容器 スプレイ冷却 系(常設) 容器 冷却操作	サプレッショ ン・チェンバ 圧 力 279kPa[gage] 到達時	運転	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監 視しており、また,格納容器スプレイの操作実施基準(サプレッション・チェ ンバ圧力 279kPa[gagel)に到達するのは事象発生約 14 時間後であり、比較的 緩やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、緩やかな圧力上 昇に対して操作所要時間は十分に短く、操作開始時間に影響を及ぼす可能性は 非常に小さい。 【他の並列操作看無】 原子炉水位の調整操作を並列して実施する場合があるが、同一の制御盤による 対応が可能であることから、他の並列操作が操作開始時間に与える影響はない。 また、代替格納容器スプレイ冷却系(常設)は、低圧代替注水系(常設) とポンプ等を共用しているが、原子炉注水と格納容器スプレイの流量を同時に 確保可能なポンプ容量を備えているため、原子炉注水と格納容器スプレイの同 時運用が可能である。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かがな時間に与える と数時間にに与える 影響は小さにことから、実解が上の設定 は解析との設定 は解析との設定 はぼ同等である。 本操作は、解析し、解析 人ので構成 により、体化 体を除く。) の不開め時間 があるが、他の操作に があるが、他の操作に与 える影響はない。	実態の操作開始時間 ほの操作の設定ことか の操作のあるになった。 影響析でで項目になった。 影響析でで項目にする。 影響析はない。 がた体系のでで項目ができた。 がたいになった。 がたいになった。 がたいになった。 がたいになった。 がたいに、 がたいでででででででででででででででででででででででででででででででででででで	代替格納容器スプレ イ冷却系(常設)によ る格納容器冷却操作 は,事象発生の約14 時間後に実施するも のであり,準備時間が 確保できるため,時間 余裕がある。	中るミノ操 中を操ュ作練練で力 この を な に め に 、 イ に し た 、 、 イ に し た 、 、 く て り た 、 、 く て し 、 、 く て し 、 、 く に し 、 く に し 、 く に し 、 く に し 、 く に し 、 く に に い く て た 、 く に に 、 く に に 、 く に に い く て た 、 く に に 、 く に に 、 く に に い く に に 、 く に に い し 、 く に に い く に に い く に に い く に に い く に に い く に に い く に に い く に に い し 、 く に い く に い し 、 く に に い し て に に の を た 、 く に に い し て に に つ を た 、 く に し い し 、 、 た し し う 、 た た し い し の た 、 、 く た し い し い た 、 た こ の に い た の に い た の に い た の た 、 た し の た 、 た し の た 、 た し の た 、 た 、 た 。 の つ た 。 の で た 。 の つ に た 。 の つ に た 。 の っ た っ た 。 の つ に た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ た っ つ に 一 の の の の つ し の の つ し

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/4)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	格納容はない。 格納なして、 との 格がよる 熱 レン エン イン ・ ン 、 、 、 、 、 の 、 の 、 と の 、 と の 、 と の 、 と の 、 と の 、 と の 、 の 、	サプレッショ ン・チェンバ 圧 力 310kPa[gage] 到達時	運転手順に基づ き,格納容器最高 使用圧力を踏ま えて設定	 【認知】 事故時には重要監視パラメータであるサブレッション・チェンバ圧力を継続監視しており,格納容器ベントの操作実施基準(サブレッション・チェンバ圧力300k76(2000) 10股内(2000) 10股内(2000) 2000) <li< td=""><td>左確称したである。 定本確称ので主いた。 たいのでする。 たいのでする。 たいので、 たいので、 たいので、 たいので、 には、 たいので、 には、 たいので、 には、 たいので、 には、 たいので、 には、 ないので、 には、 ないので、 に、 たいので、 に、 たいので、 に、 に、 たいので、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に</td><td>実態の操作開始時間 は解析上の設定とか ら、評価であることとか ら、評価ないの違いのであるに与える 影響弾はないの違合にする になっの違合にする になっの違いのでは の、現場操作にて対応する ため、現場操作にて対応する ため、現場操作にて対応する ため、現場操作にの が失いので、 の、ので、 の、の、 の、の、 の、 の、の、 の、 の、 の、 の、 の、 の、 の、</td><td>格納容器 圧力逃がし 装置除熱操作は、事象発 生の方も約容 器除熱操28 時であり、準 備時の約28 時であり、さ ためりであり、さ ため、すた、中作の分子であり、 であり、ご により、海保にの により、海保にの により、海保にの により、 が遅れる場合、 格納容器 匠力 は 310kPa [gage] かられ、 で厳しい「3.1 零 開 気圧力・温度による静 的負通正のも、格納容器 匠力が310kPa[gage] に到達していら、格納容器 圧力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、時間余裕があり、 間 構作に要するあるこ とから、時間余裕があ る。</td><td>中作タむ家では、 中作タむ、 し、 や、 し、 し、 し、 、、 上、 、 達べ 操想の 運能認、 遠たに現 等で 含を作 想の 運能認、 遠たに現 等で なるを作 想の 運能認、 遠たに現 等で なるを作 想の 運能認、 遠たに現 等で 含を作 想の 運能認 、 遠たに現 等で なるを作 しる の 運能認 して に し、 に し、 に し、 に し、 に に し、 に に し、 に に に に に に に に に に に に に</td></li<>	左確称したである。 定本確称ので主いた。 たいのでする。 たいのでする。 たいので、 たいので、 たいので、 たいので、 には、 たいので、 には、 たいので、 には、 たいので、 には、 たいので、 には、 ないので、 には、 ないので、 に、 たいので、 に、 たいので、 に、 に、 たいので、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に	実態の操作開始時間 は解析上の設定とか ら、評価であることとか ら、評価ないの違いのであるに与える 影響弾はないの違合にする になっの違合にする になっの違いのでは の、現場操作にて対応する ため、現場操作にて対応する ため、現場操作にて対応する ため、現場操作にの が失いので、 の、ので、 の、の、 の、の、 の、 の、の、 の、 の、 の、 の、 の、 の、 の、	格納容器 圧力逃がし 装置除熱操作は、事象発 生の方も約容 器除熱操28 時であり、準 備時の約28 時であり、さ ためりであり、さ ため、すた、中作の分子であり、 であり、ご により、海保にの により、海保にの により、海保にの により、 が遅れる場合、 格納容器 匠力 は 310kPa [gage] かられ、 で厳しい「3.1 零 開 気圧力・温度による静 的負通正のも、格納容器 匠力が310kPa[gage] に到達していら、格納容器 圧力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、格納容器 匠力が310kPa[gage] に到達していら、時間余裕があり、 間 構作に要するあるこ とから、時間余裕があ る。	中作タむ家では、 中作タむ、 し、 や、 し、 し、 し、 、、 上、 、 達べ 操想の 運能認、 遠たに現 等で 含を作 想の 運能認、 遠たに現 等で なるを作 想の 運能認、 遠たに現 等で なるを作 想の 運能認、 遠たに現 等で 含を作 想の 運能認 、 遠たに現 等で なるを作 しる の 運能認 して に し、 に し、 に し、 に し、 に に し、 に に し、 に に に に に に に に に に に に に

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
	代替淡水貯槽 への補給	事象発生 48 時間後程度 から	代替淡れ、解 の補給はないが、解 析で花な定し成立体 が、 線にの成なな に必要、 が 時 構 、 解 い や 、 縦 に の 、 の 、 の 、 に が 、 、 に が 、 、 に が 、 、 に が 、 、 に が 、 、 の 、 、 、 解 析 、 解 、 、 解 、 、 解 、 、 解 、 、 解 、 、 解 、 、 解 、 、 解 、 、 の 、 の	代替淡水貯槽への補給までの時間は,事象発生から 48 時間程度あり十分な時 間余裕がある。	_	_	_	代替淡水貯槽への 補給は所要時間 160分のところ,訓 練実績等により約 120分に実施可能 なことを確認し た。
操作条件	代 替 淡水 貯 槽 いる 水大 型 ポ 水 フ 燃 料 補給	事象発生 48 時間後程度 から適宜	可搬型代社 教料補給はないが が が が が の 新 が 、 解 が 、 解 が 、 の 析 、 条件でで 想 た つ 、 の 析 、 条件でで 想 た の 、 の 析 、 、 、 の 、 解 析 、 条件で で 想 常 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、	可搬型代替注水大型ポンプへの補給開始時間は,事象発生から48時間程度あ り十分な時間余裕がある。	_	_	_	可搬が出た。 「一般」では、 「一、 「一、 「一、 「一、 「一、 「一、 「一、 「一

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(4/4)

7日間における水源の対応について

(高圧·低圧注水機能喪失)

- 1. 水源に関する評価
 - ① 淡水源(有効水量)
 - •代替淡水貯槽:約4,300m³
 - ·淡水貯水池 :約5,000m³ (約2,500m³×2基)
- 2. 水使用パターン
 - 低圧代替注水系(常設)による原子炉注水 事象発生25分後,定格流量で代替淡水貯槽を水源とした低圧代替注水系 (常設)による原子炉注水を実施する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水位低(レベル3)設定点の範囲で注水する。

② 代替格納容器スプレイ冷却系(常設)による格納容器スプレイ

格納容器圧力が 279kPa[gage]に到達する事象発生約 14 時間後,代替淡水貯槽を水源とした代替格納容器スプレイ冷却系(常設)による格納容器 スプレイを実施する。

サプレッション・プール水位が通常水位+6.5mに到達後,格納容器スプレイを停止する。

③ 淡水貯水池から代替淡水貯槽への補給

事象発生48時間程度以降から,淡水貯水池の水を代替淡水貯槽へ水位が 上昇する流量で補給する。

添付 2.1.3-1

3. 時間評価

原子炉注水等によって,代替淡水貯槽の水量は減少する。事象発生48時間 程度以降の代替淡水貯槽の減少は,崩壊熱による蒸散量に相当する量である ため,崩壊熱による蒸散量以上の流量で補給を行うことで,代替淡水貯槽の 水量は回復し,以降安定して冷却を継続することが可能である。

第1図 外部水源による積算注水量

(高圧·低圧注水機能喪失)

4. 水源評価結果

時間評価の結果から代替淡水貯槽が枯渇することはない。また,7日間の 対応を考慮すると,合計約5,350m³必要となる。代替淡水貯槽及び淡水貯水 池に合計約9,300m³の水を保有することから必要水量を確保可能であり,安 定して冷却を継続することが可能である。 7日間における燃料の対応について

(高圧·低圧注水機能喪失)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものとして評価

する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{※1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転台数)= 約484.0kL		
高圧炉心スプレイ系ディーゼル発電機 1 台起動 ^{※2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1 台(運転台数)=約 130.3kL	7日間の 軽油消費量 約755.5kL	 ・ ・ ・
常設代替高圧電源装置 2 台起動 ^{※3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運転台数)=約 141.2kL		
可搬型代替注水大型ポンプ 1 台起動 (代替淡水貯槽給水) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転台数)=約 36.6kL	7日間の 軽油消費量 約36.6kL	可搬型設備 用軽油タン クの容量は 約 210kL で あり,7日間 対応可能

※1:事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ るが,保守的にディーゼル発電機2台の起動を仮定した。

※2:事故収束に必要ではないが、保守的に起動を仮定した。

※3:緊急用 P / C の電源を,常設代替高圧電源装置 2 台で確保することを仮 定した。

常設代替交流電源設備の負荷

(高圧·低圧注水機能喪失)

主要負荷リスト

電源設備:常設代替高圧電源装置

起動順序	主要機器名称	負荷容量(kW)	負荷起動時の最 大負荷容量 (kW)	定常時の連続運 転負荷容量(kW)
	緊急用母線自動起動負荷	04.0	104.0	50.0
Û	 ・ 究忌用直流125V元電益盛 ・ その他負荷 	24. 0 35. 6	124. 3	59.6
2	常設低圧代替注水系ポンプ	190.0	544.0	249.6
3	常設低圧代替注水系ポンプ	190.0	734.0	439.6
4	緊急用海水ポンプ その他	510.0 10.0	1, 775. 8	959.6
5	代替燃料プール冷却系ポンプ	22.0	1, 039. 1	981.6

2.2 高圧注水·減圧機能喪失

- 2.2.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「高圧注水・減圧機能喪失」に含まれる事故シ ーケンスとしては、「1.2 評価対象の整理及び評価項目の設定」に示すと おり、①「過渡事象+高圧炉心冷却失敗+手動減圧失敗」、②「手動停止/ サポート系喪失(手動停止)+高圧炉心冷却失敗+手動減圧失敗」及び③ 「サポート系喪失(自動停止)+高圧炉心冷却失敗+手動減圧失敗」であ る。

コメント No. 148-12, 158-08, 49, 50 に対する回答!

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方 事故シーケンスグループ「高圧注水・減圧機能喪失」は、運転時の異常 な過渡変化又は設計基準事故(原子炉冷却材喪失事故を除く。)の発生後、 高圧注水機能が喪失するとともに、原子炉減圧機能も喪失することで原子 炉へ注水する機能が喪失することを想定する。このため、原子炉圧力制御 に伴い原子炉圧力容器内の蒸気が流出し、保有水量が減少することで原子 炉水位が低下し、緩和措置が取られない場合には、原子炉水位の低下が継 続し、炉心が露出することで炉心損傷に至る。

本事故シーケンスグループは,低圧注水機能は維持されるが高圧注水機 能が喪失するとともに原子炉が高圧のまま減圧できないため炉心損傷に至 る事故シーケンスグループである。このため,重大事故等対処設備の有効 性評価としては,高圧注水機能又は減圧機能に対する重大事故等対処設備 に期待することが考えられる。高圧注水・減圧機能喪失が発生した場合, 重大事故等対処設備により高圧の原子炉注水を実施する方が,より早期に 原子炉注水を開始することが可能となり,原子炉水位の低下が小さくなる ことで評価項目に対する余裕は大きくなる。また,高圧の原子炉注水を実施した場合でも、中長期的にはサプレッション・プール熱容量制限に到達した時点で原子炉を減圧して低圧の原子炉注水に移行するため、事象進展は同じとなる。このため、本事故シーケンスグループに対しては、代表として減圧機能に対する重大事故等対処設備の有効性を確認することとする。

以上により,本事故シーケンスグループでは,代替の原子炉減圧機能に より原子炉を減圧し低圧注水機能を用いて原子炉へ注水することによって 炉心損傷の防止を図る。また,最終的な熱の逃がし場へ熱の輸送を行うこ とによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「高圧注水・減圧機能喪失」において、炉心が 著しい損傷に至ることなく、かつ、十分な冷却を可能とするため、初期の 対策として過渡時自動減圧回路を用いた逃がし安全弁(過渡時自動減圧機 能)による原子炉自動減圧手段並びに低圧炉心スプレイ系及び残留熱除去 系(低圧注水系)による原子炉注水手段を整備する。また、格納容器の健 全性を維持するため、安定状態に向けた対策として、残留熱除去系による 格納容器除熱手段を整備する。対策の概略系統図を第2.2-1 図に、対応手 順の概要を第2.2-2 図に、対策の概要を以下に示す。また、重大事故等対 策における手順と設備との関係を第2.2-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は運転員及び災害対策要員で構成される初動対応要員6名である。 内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員2名,通 報連絡等を行う災害対策要員2名である。必要な要員と作業項目について 第2.2-3 図に示す。 なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,6名で対処 可能である。

a. 原子炉スクラムの確認

運転時の異常な過渡変化又は設計基準事故が発生して原子炉がスクラムしたことを確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等であ る。

b. 高圧注水機能喪失の確認

原子炉スクラム後,原子炉水位の低下が継続し,原子炉水位異常低下 (レベル2)設定点に到達したが,高圧炉心スプレイ系及び原子炉隔離 時冷却系が自動起動していないことを確認し,中央制御室からの遠隔操 作によりこれらの系統の手動起動を試みるが,これにも失敗したことを 確認する。また,主蒸気隔離弁が閉止するとともに,再循環ポンプがト リップしたことを確認する。

高圧注水機能喪失の判断に必要な計装設備は、各系統の流量計等である。

c. 高圧代替注水系による原子炉注水操作

高圧注水機能喪失の確認後,中央制御室からの遠隔操作により高圧代 替注水系を起動し,原子炉注水を開始することで原子炉水位が回復する ことを確認する。なお,本操作は解析上考慮しない。

高圧代替注水系による原子炉注水操作に必要な計装設備は,高圧代替 注水系系統流量計等である。

d. 高圧注水機能の回復操作

対応可能な要員にて高圧炉心スプレイ系及び原子炉隔離時冷却系の回

復操作を実施する。

e. 低圧炉心スプレイ系等の自動起動の確認

原子炉水位異常低下(レベル1)信号発信により低圧炉心スプレイ系 及び残留熱除去系(低圧注水系)3系統が自動起動する。

低圧炉心スプレイ系等の自動起動の確認に必要な計装設備は,原子炉 水位計(広帯域,燃料域),低圧炉心スプレイ系吐出圧力計等である。

外部電源が喪失している場合は,ディーゼル発電機が自動起動し,非 常用母線に電源を供給する。

f. 原子炉自動減圧の確認

原子炉水位異常低下(レベル1)信号発信の10分後,かつ低圧炉心ス プレイ系又は残留熱除去系(低圧注水系)が吐出圧が確保されている場 合,過渡時自動減圧回路により逃がし安全弁(過渡時自動減圧機能)2 弁が自動開放することで原子炉が減圧される。

原子炉自動減圧の確認に必要な計装設備は,原子炉水位計(広帯域, 燃料域),原子炉圧力計等である。

炉心損傷がないことの継続的な確認に必要な計装設備は,格納容器雰 囲気放射線モニタ(D/W, S/C)である。

g. 原子炉水位の調整操作

過渡時自動減圧回路を用いた逃がし安全弁(過渡時自動減圧機能)に よる原子炉減圧により,原子炉圧力が低圧炉心スプレイ系の吐出圧力を 下回ると,原子炉注水が開始されることで原子炉水位が回復する。

原子炉水位回復後は,原子炉水位を監視しつつ,低圧炉心スプレイ系 により原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高 (レベル8)設定点の間で維持する。

原子炉水位の調整操作に必要な計装設備は,原子炉水位計(広帯域,

燃料域),原子炉圧力計等である。

h. 残留熱除去系(サプレッション・プール水冷却系)によるサプレッション・プール冷却操作

低圧炉心スプレイ系による原子炉水位維持を確認後,低圧注水運転を していた残留熱除去系をサプレッション・プール冷却運転に切換えるこ とでサプレッション・プール冷却を開始する。

残留熱除去系(サプレッション・プール水冷却系)によるサプレッション・プール冷却に必要な計装設備は,サプレッション・プール水温度 計等である。

以降, 炉心冷却は低圧炉心スプレイ系を用いた原子炉注水により継続 的に行い, 格納容器除熱は残留熱除去系により継続的に行う。

i. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

i. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から 代替淡水貯槽へ水源補給操作を実施する。

k. タンクローリによる燃料補給操作

対応可能な要員にてタンクローリにより可搬型設備用軽油タンクから 可搬型代替注水大型ポンプに燃料補給を実施する。

- 2.2.2 炉心損傷防止対策の有効性評価
 - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、過渡事象 (原子炉水位低下の観点で厳しい給水流量の全喪失を選定)を起因事象と する「過渡事象(給水流量の全喪失)+高圧炉心冷却失敗+手動減圧失敗」 である。

本重要事故シーケンスでは、 炉心における崩壊熱、 燃料棒表面熱伝達, 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流)、沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCS注水(給水系・代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導, サプレッション・プール冷却が重要現象 となる。よって、これらの現象を適切に評価することが可能である長期間 熱水力過渡変化解析コードSAFER及びシビアアクシデント総合解析コ ードMAAPにより、原子炉圧力、原子炉水位、燃料被覆管温度、格納容 器圧力、格納容器雰囲気温度等の過渡応答を求める。なお、本有効性評価 では、SAFERコードによる燃料被覆管温度の評価結果は、ベストフィ ット曲線の破裂判断基準に対して十分な余裕があることから、燃料棒やチ ャンネルボックスの幾何学的配置を考慮した詳細な輻射熱伝達計算を行う ことで燃料被覆管温度の評価結果がSAFERコードより低くなるCHA STEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.2-2表に示す。また,主要な解析条件について,本重要事故シーケンス特有の解析条件を以

下に示す。

- a. 事故条件
- (a) 起因事象

起因事象として、給水流量の全喪失が発生するものとする。

(b) 安全機能の喪失に対する仮定

高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系, 原子炉減圧機能として自動減圧系の機能が喪失するものとする。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レ ベル2)信号にて発生する。このため,原子炉水位の低下が大きくな ることで,燃料被覆管温度の観点で厳しくなる。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は、原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ

プさせるものとする。

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,過渡時自動減圧回路を用 いた逃がし安全弁(過渡時自動減圧機能)による原子炉減圧は,原子 炉水位異常低下(レベル1)設定点到達から10分後に開始し,逃がし 安全弁(過渡時自動減圧機能)2弁により原子炉を自動開放するもの とし,容量として1弁当たり定格主蒸気流量の約6%を処理するもの とする。

(d) 低圧炉心スプレイ系

原子炉水位異常低下(レベル1)信号で自動起動し,逃がし安全弁 (過渡時自動減圧機能)による原子炉減圧後に,最小流量特性(0~ 1,561m³/h,注水圧力0~1.99MPa[dif]*において)で原子炉へ注水す るものとする。また,原子炉水位が原子炉水位高(レベル8)設定点 まで回復した以降は,原子炉水位を原子炉水位低(レベル3)設定点 から原子炉水位高(レベル8)設定点の範囲に維持する。

※: MPa[dif]…原子炉圧力容器と水源との差圧。(以下同様)

(e) 残留熱除去系(低圧注水系)

原子炉水位異常低下(レベル1)信号で3系統が自動起動し,逃が し安全弁による原子炉減圧後に,1台あたり最小流量特性(0~1,676m ³/h,注水圧力0~1.55MPa[dif])で原子炉へ注水するものとする。 また,原子炉水位が原子炉水位高(レベル8)設定点まで回復し,低 圧炉心スプレイ系のみにより原子炉水位の維持が可能な場合は,注水 を停止する。

(f) 残留熱除去系(サプレッション・プール水冷却系)

低圧注水運転にて自動起動した残留熱除去系のうち、1 系統をサプ レッション・プール冷却運転に切り替えるものとし、伝熱容量は、熱 交換器1基当たり約43MW(サプレッション・プール水温度100℃、海 水温度32℃において)とする。 c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 残留熱除去系によるサプレッション・プール冷却操作は、運転手順 に基づき、原子炉水位の制御範囲(原子炉水位低(レベル3)設定 点から原子炉水位高(レベル8)設定点)を踏まえ、原子炉注水に よる炉心冷却達成後の操作として、運転モードの切替えに要する時 間を考慮し、原子炉水位高(レベル8)設定点到達の5分後に実施 する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.2-4 図から第2.2-8 図に,燃料被覆管温度,燃 料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発生 位置におけるボイド率,高出力燃料集合体のボイド率,炉心下部プレナム 部のボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管温度 と燃料被覆管の円周方向の応力の関係を第2.2-9 図から第2.2-14 図に,格 納容器圧力,格納容器雰囲気温度,サプレッション・プール水位及びサプ レッション・プール水温度の推移を第2.2-15 図から第2.2-18 図に示す。

※:炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、シュラウド内は炉心部で発生するボイドを含む二相水位であることから、 原子炉水位が低下する過程ではシュラウド外水位と比較して高めの水位を示 す。

a. 事象進展

給水流量の全喪失が発生することで原子炉水位は低下し,原子炉水位 低(レベル3)信号により原子炉がスクラムする。その後,原子炉水位 が原子炉水位異常低下(レベル2)設定点まで低下すると,主蒸気隔離 弁の閉止及び再循環ポンプトリップが発生するとともに,原子炉隔離時 冷却系及び高圧炉心スプレイ系の自動起動信号が発信するが,機器故障 等により自動起動及び手動起動に失敗する。

事象発生の約21分後に原子炉水位が原子炉水位異常低下(レベル1) 設定点に到達すると、低圧炉心スプレイ系及び残留熱除去系(低圧注水 系)が自動起動するとともに、過渡時自動減圧回路の作動タイマーが動 作し、この10分後、事象発生の約31分後に過渡時自動減圧回路により 逃がし安全弁(過渡時自動減圧機能)2弁が自動開放する。原子炉減圧 が開始されると、逃がし安全弁(過渡時自動減圧機能)開放による蒸気 流出によって原子炉水位は低下し、燃料有効長頂部を下回るが、原子炉圧 力が低下し低圧炉心スプレイ系等による原子炉注水が開始されると、原 子炉水位が回復し炉心は再冠水する。

燃料被覆管最高温度発生位置のボイド率は,原子炉減圧による原子炉 圧力の低下に伴い上昇する。熱伝達係数は,燃料被覆管最高温度発生位 置が露出し,核沸騰冷却から蒸気冷却に移行することで低下する。原子 炉圧力が低下し,低圧炉心スプレイ系等による原子炉注水流量が増加す ることで炉心が再冠水すると,ボイド率は低下し,熱伝達係数が上昇す ることで燃料被覆管温度は低下する。高出力燃料集合体及び炉心下部プ レナムのボイド率については、上記の挙動に伴い増減する。

また、炉心が再冠水した以降は、残留熱除去系による格納容器除熱を

実施することで,格納容器圧力及び雰囲気温度は安定又は低下傾向とな る。

b. 評価項目等

燃料被覆管温度は,第2.2-9 図に示すとおり,低圧炉心スプレイ系等 による原子炉注水により原子炉水位が回復するまでの期間は,一時的な 炉心の露出に伴い上昇し,事象発生の約41分後に最高温度の約711℃に コメントNo.181-18に対する回答; 到達するが,評価項目である1,200℃を下回る。燃料被覆管の最高温度 は,高出力燃料集合体で発生している。また,燃料被覆管の酸化量は, 酸化反応が著しくなる前の燃料被覆管厚さの1%以下であり,評価項目 である15%を下回る。

原子炉圧力は,第2.2-4 図に示すとおり,逃がし安全弁(安全弁機能 機能)の作動により,約7.79MPa[gage]以下に維持される。このため, 原子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力 容器底部圧力との差(0.3MPa程度)を考慮しても,約8.09[gage]以下で あり,評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を下回 る。

格納容器圧力は,第2.2-15 図に示すとおり,事象発生後に上昇傾向が 継続するが,事象発生の約41分後にサプレッション・プール冷却を実施 することにより上昇が抑制され,崩壊熱が残留熱除去系の除熱能力を下 回った以降に低下傾向となる。このため,格納容器バウンダリにかかる 圧力の最高値は,約0.04MPa[gage]となり,評価項目である最高使用圧 力の2倍(0.62MPa[gage])を下回る。

格納容器雰囲気温度は,第2.2-16 図に示すとおり,事象発生の約128 時間後に最高値の約90℃となり,以降は低下傾向となっていることから, 原子炉格納容器バウンダリにかかる温度は,評価項目である200℃を下

2.2-11

回る。

第2.2-5 図に示すように、低圧炉心スプレイ系による原子炉注水を継続することで、原子炉の冠水状態を維持し、高温停止状態での炉心冷却が確保されている。第2.2-15 図及び第2.2-16 図に示すように、残留熱除去系による格納容器除熱を実施することで、安定状態が確立し、またその状態を維持することが可能である。

(添付資料 2.2.1)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目について、対策の有効性を 確認した。

2.2.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは、高圧注水・減圧機能喪失に伴い原子炉水位が低 下するため、低圧炉心スプレイ系及び残留熱除去系(低圧注水系)が自動起 動した後に過渡時自動減圧回路により原子炉が自動減圧し炉心を冷却するこ と並びに残留熱除去系による格納容器除熱を実施することが特徴である。よ って、不確かさの影響を確認する運転員等操作は、事象進展に有意な影響を 与えると考えられる操作及び事象発生から 12 時間程度までの短時間に期待 する操作として、残留熱除去系(サプレッション・プール水冷却系)による

2.2-12

サプレッション・プール冷却操作とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を実施する重要現象 は、「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すと おりであり、影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて+50℃高め に評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評価 する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくなり, 燃料被覆管温度は低くなるが,事象初期の原子炉注水は低圧炉心スプレ イ系等の自動起動及び過渡時自動減圧回路による原子炉自動減圧により 確保され,燃料被覆管温度を操作開始の起点とする運転員等操作はない ことから,運転員等操作時間に与える影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,事象初期の原子炉注水は 低圧炉心スプレイ系等の自動起動及び過渡時自動減圧回路による原子炉 自動減圧により確保され,燃料被覆管温度を操作開始の起点とする運転 員等操作はないことから,運転員等操作時間に与える影響はない。

格納容器における格納容器各領域間の流動,気液界面の熱伝達並びに 構造材との熱伝達及び内部熱伝導の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、BWRの格納容器内の区画とは異なる等,不確 かさは実験体系に起因するものと考えられ,実機体系においては不確か さが小さくなるものと推定される。全体としては格納容器圧力及び雰囲 気温度の傾向を適切に再現できており,また,格納容器圧力及び雰囲気 温度を操作開始の起点とする運転員等操作はないことから,運転員等操 作時間に与える影響はない。また,格納容器各領域間の流動,構造材と の熱伝達及び内部熱伝導の不確かさにおいては,CSTF実験解析によ り格納容器温度及び非凝縮性ガスの挙動は測定データと良く一致するこ とを確認しており,その差異は小さいく,格納容器圧力及び雰囲気温度 を操作開始の起点としている運転員等操作はないため,運転員等操作時 間に与える影響はない。

(添付資料 2.2.2)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,気液界面の熱伝達並びに 構造材との熱伝達及び内部熱伝導の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容

2.2-14

器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾向が確認されているが,BWRの格納容器内の区画とは異なる等,実験体系に起因するものと考えられ,実機体系においては不確かさが小さくなるものと推定される。全体としては格納容器圧力及び雰囲気温度の傾向を適切に再現できているため,評価項目となるパラメータに与える影響は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一致することを確認しているため,評価項目となるパラメータに与える影響は小さい。

(添付資料 2.2.2)

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件 初期条件,事故条件及び重大事故等対策に関連する機器条件は,第
 2.2-2表に示すとおりであり,これらの条件設定を設計値等の最確条件 とした場合の影響を評価する。解析条件の設定にあたっては,設計値を 用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう 保守的な設定をしていることから,この中で事象進展に有意な影響を与 える可能性がある項目について,評価結果を以下に示す。
 - (a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/ m に対して最確条件は約33~41kW/m であり,最確条件とした場合は 燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は低圧 炉心スプレイ系等の自動起動及び過渡時自動減圧回路による原子炉自 動減圧により確保され,燃料被覆管温度を操作開始の起点とする運転 員等操作はないことから、運転員等操作時間に与える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は低圧炉心スプレイ系等の自動起 動及び過渡時自動減圧回路による原子炉自動減圧により確保され,燃 料被覆管温度を操作開始の起点とする運転員等操作はないことから, 運転員等操作時間に与える影響はない。また,格納容器圧力,サプレ ッション・プール水位及びサプレッション・プール水温度の上昇が遅 くなるが,これらのパラメータを起点とする運転員等操作はないこと から運転員等操作時間に与える影響はない。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,格 納容器雰囲気温度,格納容器容積(ウェットウェル)の空間部及び液 相部,サプレッション・プール水位は,ゆらぎにより解析条件に対し て変動を与えうるが,事象進展に与える影響は小さく,運転員等操作 時間に与える影響は小さい。

事故条件の外部電源の有無については,外部電源がない場合でも, 非常用母線は非常用ディーゼル発電機等から自動的に受電されること で低圧炉心スプレイ系等の電源は確保されるため,運転員等操作時間 に与える影響はない。

機器条件の低圧炉心スプレイ系及び残留熱除去系(低圧注水系)は, 最確条件とした場合は実際の注水流量が解析よりも大きくなるため, 注水開始後の原子炉水位の回復が早くなり,炉心冷却達成後(炉心冠 水後)に実施する残留熱除去系によるサプレッション・プール冷却操 作の開始は早くなる。

(添付資料 2.2.2)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 緩和され,格納容器圧力等の上昇は遅くなることから,評価項目とな るパラメータに対する余裕は大きくなる。

事故条件の外部電源の有無については,事象進展の観点では,起因 事象発生から原子炉スクラムまでの期間の原子炉水位の低下を厳しく する条件として,外部電源ありを想定する。外部電源がない場合は, 外部電源喪失に伴い原子炉スクラム,再循環ポンプトリップ等が発生 するため,外部電源がある場合と比較して原子炉水位の低下は緩和さ れることから,評価項目となるパラメータに対する余裕は大きくなる。 なお,外部電源がない場合は非常用ディーゼル発電機等により電源が 確保される。

機器条件の低圧炉心スプレイ系及び残留熱除去系(低圧注水系)は, 本解析条件の不確かさとして,実際の注水量が解析より多い場合(注 水特性の保守性),燃料被覆管温度の上昇が緩和されることから,評価 項目となるパラメータに対する余裕は大きくなる。

2.2 - 17

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の残留熱除去系(サプレッション・プール水冷却系)によ るサプレッション・プール冷却操作は,解析上の操作開始時間として 原子炉水位高(レベル8)設定点到達(事象発生から約36分)から5 分後を設定している。運転員等操作時間に与える影響として,不確か さ要因により操作開始時間に与える影響はなく,実態の操作開始時間 は解析上の設定とほぼ同等となる。本操作は,解析条件(操作条件を 除く。)の不確かさにより,操作開始時間が早くなる可能性があるが, 他の操作との重複もないことから,この他の操作に与える影響はない。 (添付資料 2.2.2)

(b) 評価項目となるパラメータに与える影響

操作条件の残留熱除去系(サプレッション・プール水冷却系)によ るサプレッション・プール冷却操作は,運転員等操作時間に与える影 響として,実態の操作開始時間は解析上の操作開始時間よりも早くな る可能性があるが,この場合には,格納容器除熱の開始が早くなるこ とで格納容器圧力及び雰囲気温度の上昇は緩和され,評価項目となる パラメータに対する余裕は大きくなる。

2.2 - 18

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の残留熱除去系(サプレッション・プール水冷却系)のサプレ ッション・プール冷却操作は、サプレッション・プール冷却の開始は事象 発生から約41分後であり、運転操作が遅れる場合においても、代替格納容 器スプレイ冷却系(常設)による格納容器冷却操作の実施基準である 279kPa [gage] に到達するまでの時間は、事象進展が同様となる「2.1 高 圧・低圧注水機能喪失」に示すとおり事象発生から約14時間後であり、準 備時間が確保できるため、時間余裕がある。

(添付資料 2.2.2)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.2.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「高圧注水・減圧機能喪失」において重大事故 等対策に必要な要員は、「2.2.1(3) 炉心損傷防止対策」に示すとおり 6 名である。「6.2 重大事故等対策時に必要な要員の評価結果」で示す運転 員及び災害対策要員の 39 名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「高圧注水・減圧機能喪失」において、必要な 水源,燃料及び電源は、「6.1(2) 資源の評価条件」の条件にて評価を行い、 以下のとおりである。

a.水 源

低圧炉心スプレイ系及び残留熱除去系(低圧注水系)による原子炉注 水については、サプレッション・プールを水源とすることから、水源が 枯渇することはなく、7日間の注水継続が可能である。

なお、外部電源喪失を想定した場合でも同様の対応である。

b.燃料

外部電源喪失を想定していない。

なお、外部電源喪失を想定した場合、非常用ディーゼル発電機による 電源供給については、事象発生直後からの運転を想定すると、7日間の 運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディー ゼル発電機による電源供給については、事象発生直後からの運転を想定 すると、7日間の運転継続に約130.3kLの軽油が必要となる。軽油貯蔵 タンクに約800kLの軽油を保有していることから、非常用ディーゼル発 電機及び高圧炉心スプレイ系ディーゼル発電機による電源供給について, 7日間の継続が可能である。

(添付資料 2.2.4)

c. 電 源

外部電源喪失を想定していない。

なお,外部電源喪失を想定した場合,重大事故等対策時に必要な負荷 のうち,非常用ディーゼル発電機等からの電源供給を考慮する負荷につ いては,非常用ディーゼル発電機等の容量内に収まることから,電源供 給が可能である。

2.2.5 結 論

事故シーケンスグループ「高圧注水・減圧機能喪失」では,高圧注水機能 及び減圧機能が喪失することで,原子炉水位の低下が継続し,炉心損傷に至 ることが特徴である。事故シーケンスグループ「高圧注水・減圧機能喪失」 に対する炉心損傷防止対策としては,初期の対策として過渡時自動減圧回路 を用いた逃がし安全弁(過渡時自動減圧機能)による原子炉自動減圧手段並 びに低圧炉心スプレイ系及び残留熱除去系(低圧注水系)による原子炉注水 手段,安定状態に向けた対策として,残留熱除去系による格納容器除熱手段 を整備している。

事故シーケンスグループ「高圧注水・減圧機能喪失」の重要事故シーケン ス「過渡事象(給水流量の全喪失)+高圧炉心冷却失敗+手動減圧失敗」に ついて有効性評価を行った。

上記の場合においても,過渡時自動減圧回路を用いた逃がし安全弁(過渡 時自動減圧機能)による原子炉自動減圧,低圧炉心スプレイ系等による原子 炉注水及び残留熱除去系による格納容器除熱を実施することで、炉心の著し い損傷を防止することができる。

その結果,燃料被覆管最高温度及び酸化量,原子炉冷却材圧力バウンダリ にかかる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目 を満足している。また,安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「高圧注水・減圧機能喪失」に おいて,過渡時自動減圧回路を用いた逃がし安全弁(過渡時自動減圧機能) による原子炉自動減圧,低圧炉心スプレイ系による原子炉注水等の炉心損傷 防止対策は、選定した重要事故シーケンスに対して有効性であることが確認 でき,事故シーケンスグループ「高圧注水・減圧機能喪失」に対して有効で ある。

第2.2-1表 高圧注水・減圧機能喪失における重大事故等対策について(1/2)

	て、「「」	重大事故等対処設備					
操作及び帷認	于 順	常設設備	可搬型設備	計装設備			
原子炉スクラムの確認	・原子炉がスクラムしたことを確認する。	—	-	平均出力領域計装			
				起動領域計装			
高圧注水機能喪失の確認	・原子炉水位が,原子炉水位異常低下(レベル2)	【 主 蒸 気 隔 離	—	原子炉水位計(広帯域,燃料)			
	設定点に到達したことを確認する。	弁】		域)			
	・高圧炉心スプレイ系及び原子炉隔離時冷却系の	ATWS緩和設		原子炉水位計(SA 広帯域, SA			
	自動起動に失敗したことを確認する。	備(代替原子炉		燃料域)			
	・高圧炉心スプレイ系及び原子炉隔離時冷却系の	再循環ポンプト		【高圧炉心スプレイ系系統流			
	手動起動操作を実施し,手動起動に失敗したこ	リップ機能)		量計】			
	とを確認する。			【原子炉隔離時冷却系系統流			
	・これらにより、高圧注水機能喪失と判断する。			量計】			
	・主蒸気隔離弁が自動閉止したことを確認する。			原子炉圧力計			
	・再循環ポンプがトリップしたことを確認する。			原子炉圧力計 (SA)			
高圧代替注水系による原子炉	・高圧注水機能喪失の確認後,高圧代替注水系を	高圧代替注水系	_	原子炉水位計(広帯域,燃料			
注水操作	起動する。			域)			
				原子炉水位計(SA 広帯域, SA			
				燃料域)			
				高圧代替注水系系統流量計			
高圧注水機能の回復操作	・対応可能な要員にて高圧炉心スプレイ系及び原	—	—	-			
	子炉隔離時冷却系の回復操作を実施する。						
低圧炉心スプレイ系等の自動	・原子炉水位が,原子炉水位異常低下(レベル1)	【低圧炉心スプ		原子炉水位計(広帯域,燃料			
起動の確認	設定点に到達した時点で低圧炉心スプレイ系	レイ系】		域)			
	及び低圧注水系が自動起動したことを確認す	【残留熱除去系		原子炉水位計(SA 広帯域, SA			
	る。	(低圧注水系)】		燃料域)			
	・外部電源が喪失している場合には,非常用ディ	【非常用ディー		【低圧炉心スプレイ系ポンプ			
	ーゼル発電機が自動起動し,非常用母線に電源	ゼル発電機】		吐出圧力計】			
	を供給する。	軽油貯蔵タンク		【残留熱除去系ポンプ吐出圧			
				力計】			
		r 1	· 臿大重齿笙	お加設備(設計其進坊事)			

】: 重大事故等対処設備(設計基準拡張)

: 有効性評価上考慮しない操作

2.2-23

第2.2-1表 高圧注水・減圧機能喪失における重大事故等対策について(2/2)

品作及下游感到	五 晒	重大事故等対処設備						
操作 及び 確認	一 一 一 順	常設設備	可搬型設備	計装設備				
原子炉自動減圧の確認	・原子炉水位異常低下(レベル1)設定点到	過渡時自動減圧回路	—	原子炉水位計(広帯域,燃				
	達の10分後に過渡時原子炉自動減圧回路が	逃がし安全弁(過渡時		料域)				
	作動することにより逃がし安全弁(過渡時	自動減圧機能)		原子炉水位計(SA 広帯域,				
	自動減圧機能)2 弁が自動開放したことを確			SA 燃料域)				
	認する。			原子炉圧力計				
				原子炉圧力計 (SA)				
				【低圧炉心スプレイ系ポン				
				プ吐出圧力計】				
				【残留熱除去系ポンプ吐出				
				[圧力計]				
原子炉水位の調整操作	・原子炉減圧に伴い低圧炉心スプレイ系及び	逃がし安全弁(過渡時	—	原子炉水位計(広帯域,燃				
	低圧注水系による原子炉注水が開始され,	自動減圧機能)		料域)				
	原子炉水位が回復することを確認する。	【低圧炉心スプレイ		原子炉水位計(SA 広帯域,				
	・以降、低圧炉心スプレイ系により原子炉水	系】		SA 燃料域)				
	位は,原子炉水位低(レベル3)設定点か	【残留熱除去系 (低圧		原子炉圧力計				
	ら原子炉水位高(レベル8)設定点の間に	注水系)】		原子炉圧力計 (SA)				
	維持する。			【低圧炉心スプレイ系ポン				
				プ吐出圧力計】				
				【残留熱除去系ポンプ吐出				
				圧力計】				

【 】:重大事故等対処設備(設計基準拡張)

第2.2-1表 高圧注水・減圧機能喪失における重大事故等対策について(3/3)

胡作及不能感到	千 晒	重大事故等対処設備						
操作及び確認	于 順	常設設備	可搬型設備	計装設備				
残留熱除去系(サプレッショ	・低圧炉心スプレイ系のみにより原子炉水位	【残留熱除去系 (サプ	-	サプレッション・プール水				
ン・プール水冷却系)によるサ	を維持可能であることを確認後,残留熱除	レッション・プール水		温度計				
プレッション・プール冷却操作	去系(サプレッション・プール水冷却系)	冷却系)】		【残留熱除去系系統流量				
	によりサプレッション・プール冷却を開始			計】				
	する。							
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	-	-	—				
	却操作を実施する。							
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	-	-	-				
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ							
	水源補給を実施する。							
タンクローリによる燃料補給	・対応可能な要員にてタンクローリにより可	-	-	-				
操作	搬型代替注水設備用軽油タンクから可搬型							
	代替注水大型ポンプに燃料補給を実施す							
	る。							
		[]:	重大事故等对外	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2				

:有効性評価上考慮しない操作

コメント No. 163-46 に対する回答

第2.2-2表 主要解析条件(高圧注水・減圧機能喪失)(1/5)

. _ . _ . _ . _ . _ . _ . _ . _ . _ .

項目		主要解析条件	条件設定の考え方			
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できる解析コード			
	原子炉熱出力	3,293MW	定格熱出力を設定			
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定			
	原子炉水位	通常運転水位(セパレータ スパート下端から+126cm)	通常運転水位を設定			
	炉心流量	48,300t⁄h	定格流量を設定			
	炉心入口温度	約 278℃	熱平衡計算による値			
初	炉心入口サブクール度	約 9℃	熱平衡計算による値			
^期 条 件	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等であ り,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含され ることから,代表的に9×9燃料(A型)を設定			
	燃料棒最大線出力密度	44.0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度に対して厳しい設定となるため、保安規定の運転上の制限における上限値を設定			
-	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため、崩壊熱が大きくなる燃焼度の高い条件として、1サイクル の運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に 対応する燃焼度を設定			
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定			
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定			

	項目	主要解析条件	条件設定の考え方				
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定				
初	格納容器体積	空間部:4,100m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし				
崩	(ウェットウェル)	液相部:3,300m ³	て、保安規定の運転上の制限における下限値を設定				
条	サプレッション・プール	6. 983m	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として、				
1午	水位	(通常水位-4.7cm)	保安規定の運転上の制限における下限値を設定				
	サプレッション・プール	32%	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として,				
	水温度	02 C	保安規定の運転上の制限における上限値を設定				
	却田東角	公水法豊の全市生	軍転時の異常な過渡変化の中で原子炉水位の低下が早く、炉心損傷までの余				
	此囚事家	和小侃里の主茂大	裕時間が短い給水流量の全喪失を設定				
事	安全機能の喪失に対する仮	高圧注水機能喪失	高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系,原子炉減				
故	定	減圧機能喪失	圧機能として自動減圧系の機能喪失を設定				
条 件 	外部電源	外部電源あり	外部電源がある場合,原子炉スクラム及び再循環ポンプトリップは,それぞ れ原子炉水位低(レベル3)信号及び原子炉水位異常低下(レベル2)信号 となり,原子炉水位の低下が大きくなることで,燃料被覆管温度の観点で厳 しくなる				
重大事故な	原子炉スクラム	原子炉水位低(レベル3)信号(遅 れ時間:1.05秒)	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位低(レ ベル3)信号による原子炉スクラムを設定				
機器条件	ATWS緩和設備(代替原 子炉再循環ポンプトリップ 機能)	原子炉水位異常低下(レベル2)信 号で全台停止	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位異常低 下(レベル2)信号による再循環ポンプトリップを設定				

第 2.2-2 表 主要解析条件(高圧注水·減圧機能喪失)(2/5)

第 2, 2-2 表	主要解析条件	(高圧注水・	減圧機能喪失)	$(3 \angle 5)$
				(0, 0)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に明	低圧炉心スプレイ系	原子炉水位異常低下(レベル1)信号で自動起動 原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 最小流量特性 ・注水流量:0~1,561m ³ /h ・注水圧力:0~1.99MPa[dif]	炉心冷却性の観点で厳しい設定として,設計基準事故の解 析で用いる最小流量特性を設定
「連する機器条件	残留熱除去系(低圧注水系)	原子炉水位異常低下(レベル1)信号で自動起動 し3台で注水 原子炉水位が原子炉水位高(レベル8)設定点ま で回復し,低圧炉心スプレイ系のみにより原子炉 水位の維持が可能な場合は注水停止 最小流量特性(1台あたり) ・注水流量:0~1,676m ³ /h ・注水圧力:0~1.55MPa[dif]	炉心冷却性の観点で厳しい設定として,設計基準事故の解 析で用いる最小流量特性を設定

	項目	主要解析条件	条件設定の考え方
	残留熱除去系(サプレッショ ン・プール水冷却系)	約 43MW(サプレッション・プール水温 100℃, 海 水温度 32℃において)	残留熱除去系の除熱性能を厳しくする観点で,過去の実績を 包含する高めの海水温度を設定
重大事故		<pre>(原子炉圧力制御) 安全弁機能 7.79MPa[gage]×2個, 385.2t/h/個 8.10MPa[gage]×4個, 400.5t/h/個 8.17MPa[gage]×4個, 403.9t/h/個 8.24MPa[gage]×4個, 407.2t/h/個 8.31MPa[gage]×4個, 410.6t/h/個</pre>	設計値を設定
等対策に関連する機器条件	原子炉減圧機能	過渡時自動減圧回路による逃がし安全弁(過渡時 自動減圧機能)2弁を開放することによる原子炉 減圧 作動時間:原子炉水位異常低下(レベル1)設定 点到達から10分後 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	設計値を設定

第 2.2-2 表 主要解析条件(高圧注水·減圧機能喪失)(4/5)

第 2.2-2 表	主要解析条件	(高圧注水·	減圧機能喪失)	(5 / 5)
>1· · ·				· · /

項目	主要解析条件	条件設定の考え方
関 重 す す す 数 び ・ プ ー ル 水 冷 却 系)による サ プ レ ッ シ ミ る 故 ン ・ プ ー ル 水 冷 却 系 、 、 プ ー ル 水 冷 却 系 、 、 プ ー の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の	原子炉水位高(レベル8)設定点到達から5分後	運転手順に基づき,原子炉水位の制御範囲(原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点)を踏まえ,原子炉注水による炉心冷却達成後の操作として,運転モードの切替えに要する時間を考慮して設定

第2.2-1 図 高圧注水・減圧機能喪失時の重大事故等対策の概略系統図(2/2) (低圧炉心スプレイ系による原子炉注水及び残留熱除去系による格納容器除熱段階)

									高圧注水・減圧株	能喪失								
						1								纹温味門 (/	<u></u>			
						0 10	1	20	30		40		50	100 HE 100 HE 10 (7]	70	80	ç
		実施箇所	所・必要要」	員数		▼事象発生	1			1			<u> </u>		I	<u> </u>		1
		【 】 移動 l	】は他作業行 してきた要員	後員	-	 ▼原子炉スクラ、 ▼約20秒 原子: 	ム 炉水位異常	「低下(ι	/ベル2)設定点	到達								
揭作百日	責任者	発電長	1人	中央監視 運転操作指揮	撮作の内容		▼ プラント状況判断 ▼ 約21分 原子炊				- 炉水位異常低下(レベル1)設定点到達							
1811-26 0	補佐	副発電長	1人	運転操作指揮補佐	D# [P = 277 3 47					↑ 約315 □	分 過渡! 約94公	寺自動減圧回 原こにまた#]路自動作動 #*! 右袖트1	面如到法				
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡						▼ 約34分 原ナ炉水位燃料有効長頃部到達 ▼ 約41分 残留熟除去系(サプレッション・プール水冷却系)への移行								
	運転員 (中央制御室)	運転」 (現場	員湯)	重大事故等対応要員 (現場)	-													
					 ●外部電源喪失の確認 													
					 給水流量全喪失の確認 													
					●原子炉スクラム確認													
状況判断	2人 A B			_	●タービン手動停止操作	10 分												
	A, D				 ●再循環ボンプトリップの確認 ●高圧炉心スプレイ系及び原子炉隔離時冷却系の自動起動失敗の 													
					確認 ●主蒸気隔離弁閉止及び逃がし安全弁(安全弁機能)による原子 炉圧力制御の確認													
高圧注水機能喪失 の判断	【1人】 A	-		-	●高圧炉心スプレイ系及び原子炉隔離時冷却系の手動起動操作 (失敗)	2分												
高圧代替注水系の 起動操作	【1人】 A	-		-	 ●高圧代替注水系の手動起動操作 		4分											
高圧注水機能の回 復操作	-	-		-	●高圧炉心スプレイ系の回復操作													
低圧炉心スプレイ 系等の自動起動	【1人】 A	-		-	●低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の 自動起動確認				適宜確認									
原子炉自動減圧の 確認	【1人】 A				●逃がし安全弁(過渡時自動減圧機能)2弁 自動開放確認					適)	直確認							
原子炉水位の調整 操作	【1 人】 A			-	●低圧炉心スプレイ系による原子炉注水の調整操作							厉	原子炉水位を	を原子炉水位	と低 (レベ)	レ3)設定点	ほから原子炉	水位高(レベル
残留熱除去系(サ プレッション・プ					●低圧注水モードからサプレッション・プール冷却モードへの切替え操作(1系列)						4 分							
ール水冷却系)に よるサプレッショ ン・プール冷却操 作	【1人】 B	-		-	●サプレッション・プール冷却運転の状態監視												適宜確	認
使用済燃料プール の冷却操作	_	_		-	●使用済燃料プールの冷却操作													
可搬型代替注水大					●可搬型代替注水大型ボンブの移動,ホース敷設等													
型ポンプによる水 源補給操作	_	-		-	●ボンブ起動及び水源補給操作								•					
タンクローリによ					●可搬型設備用軽油タンクからタンクローリへの補給													
る燃料補給操作	_	-		-	●可搬型代替注水大型ボンプへの給油													
必要要員合計	2人 A, B	0人		0人														

コメント No. 147-27 に対する回答

第 2. 2-3 図 高圧注水・減圧機能喪失時の作業と所要時間

90 100 110	備考
	解析上考慮しない
	対応可能な要員にて実施
ル8)設定点の間に維持	
	手順上は原子炉水位燃料
	有効長頂部回復で実施す るが、解析上は原子炉水位 高到達から5分後に開始
	使用済燃料プールの除熱 機能が喪失した場合で
	も,プール水温度が80℃ に到達するまでには1日
	程度の時間余裕があるた め,本操作は対応可能な 要員にて実施する。
	対応可能な要員にて実施 する
	対応可能な要員にて実施 する

2.2-35

第2.2-7図 逃がし安全弁からの蒸気流量の推移

第2.2-8図 原子炉圧力容器内の保有水量の推移

第2.2-9図 燃料被覆管温度の推移

第2.2-14 図 燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の 円周方向の応力の関係

第2.2-15図 格納容器圧力の推移

第2.2-16図 格納容器雰囲気温度の推移

2.2-42

安定状態について(高圧注水・減圧機能喪失)

高圧注水・減圧機能喪失時の安定状態については、以下のとおり。

原子炉安定停止状態	事象発生後,設計基準事故対処設備又は重大事故等対処
	設備を用いた炉心冷却が維持可能であり、また、冷却の
	ための設備がその後も機能維持でき,かつ,必要な要員
	の不足や資源の枯渇等のあらかじめ想定される事象悪
	化のおそれがない場合に安定停止状態が確立されたも
	のとする。
格納容器安定状態	炉心冷却が維持された後に、設計基準事故対処設備又は
	重大事故等対処設備を用いた格納容器除熱により格納
	容器圧力及び温度が安定又は低下傾向に転じ、また、格
	納容器除熱のための設備がその後も機能維持でき、か
	つ、必要な要員の不足や資源の枯渇等のあらかじめ想定
	される事象悪化のおそれがない場合に安定状態が確立
	されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

逃がし安全弁により原子炉減圧状態を維持し,低圧炉心スプレイ系を用いた 原子炉注水を継続することで,炉心の冷却は維持され原子炉安定停止状態が確 立される。

格納容器安定状態の確立について

炉心冷却を継続し、事象発生の約1時間後に残留熱除去系による格納容器除 熱を実施することで、格納容器圧力及び雰囲気温度は安定又は低下傾向となる。 格納容器雰囲気温度は150℃を下回るとともに、ドライウェル雰囲気温度は、 低圧注水継続のための逃がし安全弁の機能維持が確認されている126℃を上回 ることはなく、格納容器安定状態が確立される。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。

(添付資料 2.1.1 別紙 1)

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壊熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料 棒表面熱 伝 達,沸騰遷移,気 液熱非平衡	燃料棒表面熱伝 達モデル	TBL, ROSA-Ⅲの実験解析において,熱伝達係数 を低めに評価する可能性があり,他の解析モデ ルの不確かさとあいまってコード全体として, スプレイ冷却のない実験結果の燃料被覆管温度 に比べて+50℃程度高めに評価する。また、低 圧代替注水系(常設)による注水での燃料棒冷 却過程における蒸気単相冷却又は噴霧流冷却の 不確かさは20℃~40℃程度である。	解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、事象初期の原 子炉注水は低圧炉心スプレイ系等の自動起動及び過渡時自動減圧 回路による原子炉自動減圧により確保され、燃料被覆管温度を起 点とする運転員等操作はないことから、運転員等操作時間に与え る影響はない。	解析コードは、実験解析において熱伝達モデルの保守性により燃 料被覆管温度を高めに評価し、有効性評価解析においても燃料被 覆管温度を高めに評価することから,評価項目となるバラメータ に対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジル コニ ウム ー 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは、酸化量及び発熱熱の評価について保守的な結果を 与えるため、解析結果は燃料被覆管温度を高く評価する可能性が ある。よって、実際の燃料棒表面での熱伝達は大きくなることで、 燃料被覆管温度は低くなるが、事象初期の原子炉注水は低圧炉心 スプレイ系等の自動起動及び過渡時自動減圧回路による原子炉自 動減圧により確保され、燃料被覆管温度を起点とする運転員等操 作はないことから、運転員等操作時間に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるパラメータに対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は,燃料被覆管温度と円周方向応力 に基づいて評価され,燃料被覆管温度は上述の ように高めに評価され,円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって,ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	解析コードは、燃料被覆管の破裂判定においておおむね保守的な 判定結果を与え、有効性評価解析における燃料被覆管の最高温度 は711℃であることから、ベストフィット曲線の破裂判断基準に 対して 180℃程度の余裕があり、燃料被覆管の破裂判定の不確か さが運転員等操作に与える影響はない。	破裂発生前の被覆管の膨れ及び破裂発生の有無は、伝熱面積やギ ャップ熱伝達係数、破裂後の金属-水反応熱に影響を与え、燃料 被覆管温度に影響を与える。解析コードは、燃料被覆管の破裂判 定においておおむね保守的な判定結果を与え、有効性評価解析に おける燃料被覆管の最高温度は711℃であることから、ベストフィ ット曲線の破裂判断基準に対して180℃程度の余裕があり、燃料被 覆管の破裂判定の不確かさにより、評価項目となるパラメータに 与える影響はない。また、低圧注水系等の注水開始タイミングを 早める可能性がある点については、LPCS スプレイによるものであ り、「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」の残留納除去系(低圧注 水系)にて LPC11 台でも評価項目を満足することを確認している。

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

	分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	炉心	 沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果 	ニ相流体の流動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重量する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, LPCS スプレイの影響により2MPaより低い圧力 で系統的に圧力低下を早めに予測する傾向を呈 しており,解析上,低圧注水系等の注水開始タ イミングを早める可能性があるが,この場合で も解析コードは被覆管温度を高めに評価してお り,評価項目となるバラメータに対しては保守 的な結果を与える。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析におけ る燃料被覆管の最高温度は711℃であり、評価項目に対して十分な 余裕があることから、その影響は非常に小さい。また、低圧炉心 スプレイ系に期待する場合、原子炉圧力の評価において、解析コ ードは、2MPaより低い圧力で系統的に圧力低下を早めに予測する 傾向を呈しており、低圧注水系等の注水開始タイミングを早める 可能性があるが、この場合でも解析コードは被覆管温度を高めに 評価することから、評価項目となるパラメータに対する余裕は大 きくなる。
		冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
Д	原子炉 E力容器	 沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果 	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけで定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。
		ECCS 注水(給水 系・代替注水系含 む)	原 子 炉 注 水 系 モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており、実機設備仕様に対し て注水流量を少なめに与え、燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壊熱	炉 心 モ デ ル (原子炉出力 及び崩壊熱)	入力値に含まれる。 保守的な崩壊熟を入力値に用いており,解析モデルの不確かさの影 響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水 (給 水 系・代替注 水設備含 む)	安全系モデル (非常用炉心 冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析モデルの不確かさの 影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。
格納容器	格納 (() () () () () () () () ()	格納容器 モデ ル (格納容器 の熟水力 モデ ル)	HDR実験解析では、格納容器圧力及び雰囲気温度について、温度 成層化を含めて傾向をよく再現できることを確認した。格納容器雰 囲気温度を十数℃程度高めに、格納容器圧力を1割程度高めに評価 する傾向が確認されたが、実験体系に起因するものと考えられ、実 機体系においてはこの種の不確かさは小さくなるものと考えられ る。また、非凝縮性ガス濃度の挙動について、解析結果が測定デー タとよく一致することを確認した。 格納容器各領域間の流動、構造材との熱伝達及び内部熱伝導の不確 かさにおいては、CSTF実験解析では、格納容器雰囲気温度及び 非凝縮性ガス濃度の挙動について、解析結果が測定データとよく一 致することを確認した。	解析コードは,HDR 実験解析において区画によって格納容器 雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評 価する傾向が確認されているが,BWRの格納容器内の区画 とは異なる等,実験体系に起因するものと考えられ,実機体 系においては不確かさが小さくなるものと推定され,全体と しては格納容器圧力及び湿度の傾向を適切に再現できてお り、また,格納容器圧力及び雰囲気温度を操作開始の起点と している運転員等操作はないため,運転員等操作時間に与え る影響はない。 また,格納容器各領域間の流動,構造材との熱伝達及び内部 熱伝導の不確かさにおいては、CSTF実験解析において格 納容器雰囲気温度及び非凝縮性ガスの挙動は測定データと良 く一致することを確認しており,その差異は小さく,格納容 器圧力及び雰囲気温度を操作開始の起点としている運転員等 操作はないため,運転員等操作時間に与える影響はない。	解析コードは、HDR実験解析において区画によって格納容器雰 囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが、BWRの格納容器内の区面とは異 なる等,実験体系に起因するものと考えられ,実機体系におい ては不確かさが小さくなるものと推定され,全体としては格納 容器圧力及び温度の傾向を適切に再現できているため,評価項 目となるパラメータに与える影響は小さい。 また,格納容器各領域間の流動,構造材との熟伝達及び内部熟 伝導の不確かさだもいては、CSTF実験解析により格納容器 雰囲気温度及び非疑縮性ガスの挙動は測定データと良く一致 することを確認しているため,評価項目となるパラメータに与 える影響は小さい。
	サ プ レ ッ ション・プ ール冷却	安全系モデル (非常用炉心 冷却系)	入力値に含まれる。 ボンブ流量及び除熱量は,設計値に基づき与えられており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。

	百日	解析条件0	り不確かさ	冬州記史の考えて	流転号笠地佐氏町にたみて影響	評価項目となるパラメータに
	項日	解析条件	最確条件	本性成足の考え力	連転員ず採 11时间に サんる 影響	与える影響
	原子炉熱出力	3,293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は,最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熱にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は淡がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響はない。
初期条	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ +132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mであ り非常に小さい。したがって、事象進展に及ぼす影響は小さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるパラメータに与える影響はない。
件	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい て解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ポンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さい。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は、 熱水力的な特性はほぼ同等であり、その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含されることから、代表的に9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性は ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、事象初期の原子炉注水は低圧炉 心スプレイ系等の自動起動及び過渡時自動減圧回路 による原子炉自動減圧により確保され、燃料被覆管 温度を起点とする運転員等操作はないことから、運 転員等操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから、評価項目となるパラメータに 対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/4)

第2表 解	析条件を最確条件と	した場合に運転員等	操作時間及び評価項目	1となるノ	ペラメー	タに与える	影響(2	2/4)
-------	-----------	-----------	------------	-------	------	-------	------	------

	ž –	解析条件の不	ド確かさ	タル地穴のおうた	YITH ID 除ち (Fort III) - トントビ系	評価項目となるパラメータに
	垻 日	解析条件	最確条件	条件設定の考え力	運転員寺操作時间に与える影響	与える影響
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下 及び格納容器圧力上昇の観点で厳しい 設定となる。このため,崩壊熱が大き くなる燃焼度の高い条件として,1サイ クルの運転期間(13ヶ月)に調整運転期 間(1ヶ月)を考慮した運転期間に対応 する燃焼度を設定	最確条件は解析条件で設定している崩壊熱よりも小さくなる 傾向となるため、原子炉からサプレッション・プールに流出 する蒸気量が減少することで、原子炉水位の低下が遅くなる が、事象知期の原子炉注水は低圧炉心スプレイ系等の自動起 動及び過渡時自動減圧回路による原子炉自動減圧により確保 されることから、運転員等操作時間に与える影響はない。ま た、格納容器圧力、サプレッション・プール水位及びサプレ ッション・プール水温度の上昇が遅くなるが、これらのパラ メータを起点とする運転員等操作はないことから運転員等操 作時間に与える影響はない。	最確条件は解析条件で設定している崩壊熱よりも小さく なる傾向となるため,燃料からの発熱が小さくなり,原子 炉からサブレッション・プールに流出する蒸気量が減少す ることで,原子炉水位の低下並びに格納容器圧力及び雰囲 気温度の上昇が緩和されることから,評価項目となるパラ メータに対する余裕が大きくなる。
	格納容器圧力	5kPa[gage]	約 2.2~ 4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として,通常運転時の圧力を包含す る値を設定	最確条件は解析条件で設定している格納容器初期圧力よりも 小さくなる。このため,格納容器圧力が低めに推移するが, これらのパラメータを起点とする運転員等操作はないことか ら運転員等操作時間に与える影響はない。	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため,格納容器圧力が低めに推移す ることから,評価項目となるパラメータに対する余裕は大 きくなる。
	ドライウェル 雰囲気温度	57℃	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に対して変 動を与えうるが、格納容器圧力が上昇し格納容器スプレイを 実施した場合、ドライウェル雰囲気温度は飽和温度となるこ とから、初期温度のゆらぎが事象進展に与える影響は小さく、 運転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、格納容器圧力が上昇し格納容器スプレ イを実施した場合、ドライウェル雰囲気温度は飽和温度と なることから、初期温度のゆらぎが事象進展に与える影響 は小さく、評価項目となるパラメータに与える影響は小さ い。
初期条件	格納容器体積 (ドライウェル)	5, 700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから、事象進展に影響 はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。
11	格納容器体積 (ウェットウェ ル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約 4,058m ³ 液相部: 約3,308m ³ ~約 3,342m ³ (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる少なめの水量とし て,保安規定の運転上の制限における 下限値を設定	最確条件とした場合には、格納容器体積(ウェットウェル) の液相部の運転範囲において解析条件より高めの水位となる が、ゆらぎの幅は非常に小さい。例えば、サプレッション・ プール水位が 6.983mの時の水量は 3,300m ³ であるのに対し、 ゆらぎ(0.087m)による水量変化は約42m ³ であり、その割合 は初期保有水量の 1.3%程度と非常に小さい。したがって、 事象進展に与える影響は小さく、運転員等操作時間に与える 影響は小さい。	最確条件とした場合には,格納容器体積(ウェットウェル) の液相部の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプレッシ ョン・プール水位が 6.983m の時の水量は 3,300m ³ である のに対し、ゆらぎ (0.087m) による水量変化は約 42m ³ で あり、その割合は初期保有水量の 1.3%程度と非常に小さ い。したがって、事象進展に与える影響は小さく、評価項 目となるパラメータに与える影響は小さい。
	サプレッション・ プール水位	6.983m (通常運転水位-4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限 値を設定	最確条件とした場合には、サプレッション・プール水位の運 転範囲において解析条件より高めの水位となるが、ゆらぎの 幅は非常に小さい。例えば、サプレッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m)による水量変化は約42m ³ であり、その割合は初期 保有水量の 1.3%程度と非常に小さい。したがって、事象進 展に与える影響は小さく、運転員等操作時間に与える影響は 小さい。	最確条件とした場合には、サブレッション・プール水位の 運転範囲において解析条件より高めの水位となるが、ゆら ぎの幅は非常に小さい。例えば、サプレッション・プール 水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆ らぎ (0.087m) による水量変化は約 42m ³ であり、その割 合は初期保有水量の 1.3%程度と非常に小さい。したがっ て、事象進展に与える影響は小さく、評価項目となるバラ メータに与える影響は小さい。
	サプレッション・ プール水温度	32℃	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限 値を設定	最確条件は解析条件で設定している水温よりも低くなるた め、サブレッション・ブールでの圧力抑制効果が高まり格納 容器圧力の上昇は緩和されるが、格納容器圧力を起点とする 運転員等操作はないことから運転員等操作時間に与える影響 はない。	最確条件は解析条件で設定している水温よりも低くなる ため、サブレッション・ブールでの圧力抑制効果が高まり 格納容器圧力の上昇は緩和される。このため、評価項目と なるパラメータに対する余裕は大きくなる。

	百日	解析条件の不確かさ		冬世記史の考えて	海武昌笠堤佐時町にたらて影響	評価項目となるパラメータに	
	項 日	解析条件	最確条件	本計蔵たの考え方	連転員守操計时间に サんる 影響	与える影響	
	起因事象	給水流量の 全喪失	_	運転時の異常な過渡変化の中で原子炉水位 の低下が早く,炉心損傷までの余裕時間が 短い給水流量の全喪失を設定			
事故条	安全機能の喪失 に対する仮定	高圧注水機能喪失 減圧機能喪失	_	高圧注水機能として高圧炉心スプレイ系及 び原子炉隔離時冷却系,減圧機能喪失とし て自動減圧系の機能が喪失するものとす る。	-	-	
伴	外部電源	外部電源あり	_	外部電源がある場合,原子炉スクラム及び 再循環ボンプトリップは,それぞれ原子炉 水位低(レベル3)信号及び原子炉木位異 常低下(レベル2)信号となり,原子炉木 位の低下が大きくなることで,燃料被覆管 温度の観点で厳しくなる。	外部電源がない場合でも,非常用母線は非常用ディ ーゼル発電機等から自動的に受電されることで低圧 炉心スプレイ系等の電源は確保されるため,運転員 等操作時間に与える影響はない。	外部電源がない場合は、外部電源喪失に伴い原子炉ス クラム、再循環ボンプトリップ等が発生するため、外 部電源がある場合と比較して原子炉水位の低下は緩 和されることから、評価項目となるパラメータに対す る余裕は大きくなる。	
関連する	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉水位の低下 を厳しくする条件として,外部電源がある 場合の原子炉水位低(レベル3)信号によ る原子炉スクラムを設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから, 事象進展 に影響はなく, 評価項目となるパラメータに与える影 響はない。	
機 等対策に	ATWS緩和設備 (代替原子炉再循環 ポンプトリップ機能)	原子炉水位異常低下 (レベル 2)	原子炉水位異常低下 (レベル 2)	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉水位の低下 を厳しくする条件として,外部電源がある 場合の原子炉水位異常低下(レベル2)信 号による再循環ポンプトリップを設定	解析条件と最確条件は同様であることから、事象進 展に影響はなく、運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/4)

第2表 1	解析条件を最確条件と	した場合に運転員等操作時間及	び評価項目となる	パラメー	タに与える影響(4,	/4)
-------	------------	----------------	----------	------	------------	-----

	75 D	解析条件	+の不確かさ	女 世动应办来之士	YIII - P W HI W HI HI I - トンマ B MI	評価項目となるパラメータに	
	項 日	解析条件	最確条件	条件設定の考え方	連転員等操作時間に与える影響	与える影響	
	低圧炉心 スプレイ系	原子炉水位異常低下(レベル 1)信号にて自動起動 最小流量特性 ・注水流量:0~1,561m ³ /h ・注水正力:0~1,99MPa[dif]	原子炉水位異常低下(レベル1)信 号にて自動起動 ・注水流量:0~1,561m ³ /h以上 ・注水圧力:0~1,99MPa[dif]	炉心冷却性の観点で 厳しい設定として,設 計基準事故の解析で 用いる最小流量特性 を設定	最確条件とした場合には、実際の注水流量が解析よ りも大きくなるため、注水開始後の原子炉水位の回 復が早くなり、炉心冷却達成後(炉心冠水後)に実 施する残留熱除去系によるサプレッション・プール 冷却操作の開始は早くなる。	実際の注水量が解析より多い場合(注水特性の保守性),燃料被覆管温度の上昇が緩和されることから, 評価項目となるパラメータに対する余裕は大きくな る。	
関連す	残留熟除去系 (低圧注水系)	 原子炉水位異常低下(レベル 1)信号にて自動起動 3台注水 最小流量特性 ・注水流量:0~1,676m³/h ・注水元日:0~1.55MPa[dif] 	原子炉水位異常低下(レベル1)信 号にて自動起動 3 台注水 ・注水流量:0~1,676m ³ /h以上 ・注水正力:0~1.55MPa[dif]				
	逃がし安全弁	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	 (原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個 (設計値) 	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
る機器条件 に		(原子炉自動減圧時) 過渡時自動減圧回路により逃 がし安全弁(過渡時自動減圧機 能)2弁を自動開放することで 原子炉を減圧	(原子炉自動減圧時) 過渡時自動減圧回路により逃がし 安全弁(過渡時自動減圧機能)2弁 を自動開放することで原子炉を減 圧	逃がし安全弁の設計 値に基づく原子炉圧 力と蒸気流量の関係 から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサプレッシ ョン・チェンバ間差圧)	作動差圧:3.45kPa (ドライウェルーサプレッショ ン・チェンバ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
	残留熱除去系 (サプレッション・プ ール冷却モード)	熱交換器 1 基あたり 約 43MW (サプレッション・プール水温 度 100℃, 海水温度 32℃におい て)	熱交換器 1 基あたり 約 43W 以上 (サプレッション・プール水温度 100℃,海水温度 32℃以下におい て)	残留熱除去系の除熱 性能を厳しくする観 点で,過去の実績を包 含する高めの海水温 度を設定	最確条件とした場合には、海水温度が低めとなり除 熱性能が向上するため、格納容器圧力及びサプレッ ション・プール水温度の上昇が遅くなるが、これら のパラメータを起点とする運転員等操作はないこと から運転員等操作時間に与える影響はない。	最確条件とした場合には、海水温度が低めとなり除熱 性能が向上するため、格納容器圧力及び雰囲気温度の 上昇が緩和されることから、評価項目となるパラメー タに対する余裕が大きくなる。	
	燃料の容量	約 1,010kL	約1,010kL 以上 (軽油貯蔵タンク+可搬型設備用 軽油タンク)	軽油貯蔵タンクの管 理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており,燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_	

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	残留 熱 除る ディン・プロシュー 残留 たい シュール 除る ショール 大学 (1997年) 一世 (1997年) (199774) (1977740000000000000000000000000000000000	原子炉水位が 原子炉水位高 (レベル8) 設定点到達か ら5分後	運転,原本は 事子理 「「「」」 「「」」 「」」 「」」 「」」 「」」 「」」	【認知】 事故時には重要監視パラメータである原子炉水位を継続監視しているため,認 知に大幅な遅れが生じることは考えにくい。さらに,運転員の認知を助けるた めに原子炉水位の上昇に伴い複数の警報が消灯又は点灯することから,認知遅 れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 残留熟除去系の低圧注水モードからサプレッション・プール冷却モードへの切 換え操作として余裕時間を含めて4分を設定している。中央制御室の制御盤の 操作スイッチによる簡易な操作であり,操作所要時間が長くなる可能性は十分 に低く、操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉水位の調整操作を並列して実施する場合があるが、異なる運転員が実施 することから、他の並列操作が操作開始時間に与える影響はない。 【操作の確実き】 中央制御室の制御盤の操作スイッチによる簡易な操作のため、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のと要時したり操作の 権かさなから に与えるから 時間はに与えるから 時間にに 時代である。 本び解析上の設 に開定 にぼ同等である。 本び解析したのる。 本び解析したのる。 本ですの ない一様確 です。 解析したのる。 本での ない一様でであり、 ない にて、 解析したので がい一様でで ある。 でで あら、 とに にて、 解析したので から、 して にて、 解析 に ので のる。 一 に て 構 な で た い に 開定 に に に に に に に に に に に に に	実態の操作開始時間 は解析であるこちる 影響在項目に与える 影響析コード及び解析 条件(一次作衆介さに早 がなる場合で開始にすが なる場合で開始が がなる場合の開始が がなる たなる及び緩和され、 評価項目となる パライン は大きくなる。	残留熱除ション・ボーム の時間は事象であり、 がたり、 がは、 ないで	中るミノ操御の中で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないないない」で、「ないないない」で、「ないないない。」で、「ないないない。」で、「ないないない。」で、「ないないない。」で、「ないないない。」で、「ないないない。」で、「ないないない。」で、「ないないない。」、「ないないないない。」、「ないないない。」、「ないないない。」、「ないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないない。」、「ないないないないない。」、「ないないないないないない。」、「ないないないない、」、「ないないないない、」、「ないないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、」、「ないない、、」、「ないない、、」、「ないない、、、、、、、、、、

高圧注水・減圧機能喪失時における

低圧非常用炉心冷却系の作動台数の考え方

1. はじめに

高圧注水・減圧機能喪失は,運転時の異常な過渡変化又は設計基 準事故(原子炉冷却材喪失事故を除く。)発生後,高圧注水機能が喪 失し,かつ,原子炉減圧機能が機能喪失する事故シーケンスである。 本事故シーケンスにおいては,低圧非常用炉心冷却系(以下「低圧 ECCS」という。)は健全であり,自動起動することを想定してい ることから,実機挙動を考慮し,低圧炉心スプレイ系及び残留熱除 去系(低圧注水系)3系列による原子炉注水に期待した評価を実施し ている。

なお,残留熱除去系(低圧注水系)1系列による原子炉注水を想定 した場合でも,過渡時自動減圧回路を用いた逃がし安全弁(過渡時 自動減圧機能)2弁による原子炉減圧により評価項目を満足すること を以下のとおり確認している。

2. 残留熱除去系(低圧注水系)1系列に期待した場合の解析結果

残留熱除去系(低圧注水系)1系列により原子炉注水を実施した場 合の解析結果を,第1表及び第1図から第4図に示す。

残留熱除去系(低圧注水系)は、低圧炉心スプレイ系と比較して 吐出圧力が低く、原子炉減圧後の注水開始タイミングが遅くなるこ とにより、燃料被覆管の最高温度は約821℃となるが、この場合でも 判断基準を満足することを確認した。

添付 2.2.3-1

解析ケース		感度解析ケース	ベースケース	
低圧ECCS作動数		残留熱除去系(低圧注水系)×1	残留熱除去系(低圧注水系)×3 低圧炉心スプレイ系×1	
解析結果	燃料被覆管温度	約 821℃ (燃料被覆管の破裂なし)	約 711℃ (燃料被覆管の破裂なし)	

第1表 解析結果

第1図 原子炉圧力の推移(感度解析ケース)

第2図 原子炉水位(シュラウド内外水位)の推移(感度解析ケース)

第3図 燃料被覆管温度の推移(感度解析ケース)

添付 2.2.3-3

第4図 燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の 円周方向の応力の関係

7日間における燃料の対応について

(高圧注水·減圧機能喪失)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものとして評価

する。

時系列	合計	判定
非常用ディーゼル発電機 2 台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2 台(運転台 数)=約484.0kL	7 日間の軽油 消費量 約 614.3kL	軽油貯蔵タン クの容量は約 800kLであり, 7日間対応可 能
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{※2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台数) =約130.3kL		

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ るが,保守的にディーゼル発電機2台の起動を仮定した。

※2 事故収束に必要ではないが、保守的に起動を仮定した。

2.3 全交流動力電源喪失

2.3.1 全交流動力電源喪失(長期TB)

2.3.1.1 事故シーケンスグループの特徴, 炉心損傷防止対策

(1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「全交流動力電源喪失(長期TB)」に含まれる 事故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」に示すと おり、①「外部電源喪失+DG失敗+HPCS失敗(RCIC成功)」及び ②「サポート系喪失(直流電源故障)+DG失敗+HPCS失敗(RCI C成功)」である。

コメント No. 148-12 に対する回答

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方

コメント No.150-38 に対する回

事故シーケンスグループ「全交流動力電源喪失(長期TB)」は,全交流 動力電源喪失後,蒸気駆動の原子炉隔離時冷却系が自動起動し設計基準事 故対処設備として期待する期間は運転を継続するものの,その期間を超え た後に蓄電池の直流電源供給能力の枯渇により機能喪失することで,原子 炉へ注水する機能が喪失することを想定する。このため,原子炉圧力制御 に伴い原子炉圧力容器内の蒸気が流出し,保有水量が減少することで原子 炉水位が低下し,緩和措置が取られない場合には,炉心が露出することで 炉心損傷に至る。

本事故シーケンスグループは,全交流動力電源が喪失した状態において, 直流電源の枯渇により蒸気駆動の原子炉注水機能も喪失することで炉心損 傷に至る事故シーケンスグループである。このため,重大事故等対策の有 効性評価には,全交流動力電源喪失に対する重大事故等対処設備に期待す ることが考えられる。

以上により、本事故シーケンスグループでは、一定期間の蓄電池からの

給電を確保し蒸気駆動の原子炉注水機能を用いた原子炉注水によって原子 炉水位を維持し、その後原子炉を減圧し可搬型の原子炉注水機能を用いて 原子炉へ注水することによって炉心損傷の防止を図る。また、交流動力源 電源が不要な格納容器冷却機能を用いて格納容器冷却を実施するとともに、 代替交流電源設備により交流電源を復旧し、最終的な熱の逃がし場へ熱の 輸送を行うことによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「全交流動力電源喪失(長期TB)」において, 炉心が著しい損傷に至ることなく,かつ,十分な冷却を可能とするため, 初期の対策として原子炉隔離時冷却系,可搬型代替注水大型ポンプを用い た低圧代替注水系(可搬型)及び逃がし安全弁(自動減圧機能)による原 子炉注水手段を整備する。また,格納容器の健全性を維持するため,安定 状態に向けた対策として,可搬型代替注水大型ポンプを用いた 代替格納容 器スプレイ冷却系(可搬型)による格納容器冷却手段及び常設代替高圧電 源装置からの給電後の残留熱除去系による格納容器除熱手段を整備する。 対策の概略系統図を第2.3.1-1図に,対応手順の概要を第2.3.1-2図に示 すとともに,重大事故等対策の概要を以下に示す。また,重大事故等対策 における手順と設備との関係を第2.3.1-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員22名及び事象発生から2時間以降に期待する招集要 員6名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員5名,通報連絡等を行う災害対策要員2名,現場操作を行う重大事故等対応要員13名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名,可搬 型代替注水大型ポンプを用いた低圧代替注水系(可搬型)及び代替格納容 器スプレイ冷却系(可搬型)の現場系統構成を行う重大事故等対応要員4 名である。

必要な要員と作業項目について第2.3.3-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,初動対応要 員 22 名及び招集要員 6 名で対処可能である。

a. 原子炉スクラム及び全交流動力電源喪失の確認

外部電源が喪失するとともに,非常用ディーゼル発電機等が全て機能 喪失することで,全交流動力電源喪失となり,原子炉がスクラムしたこ とを確認する。また,主蒸気隔離弁が閉止するとともに,再循環ポンプ がトリップしたことを確認する。

原子炉スクラム及び全交流動力電源喪失の確認に必要な計装設備は, 平均出力領域計装,原子炉圧力計等である。

b. 原子炉隔離時冷却系の自動起動の確認

原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点 で原子炉隔離時冷却系が自動起動したことを確認する。

原子炉隔離時冷却系<mark>の自動起動の確認</mark>に必要な計装設備は,原子炉水 位計(広帯域,燃料域),原子炉隔離時冷却系系統流量計等である。

c. 原子炉水位の調整操作(原子炉隔離時冷却系)

原子炉隔離時冷却系の起動により原子炉水位が回復することを確認す る。また,原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(原子炉隔離時冷却系)に必要な計装設備は,

原子炉水位計(広帯域,燃料域)等である。

d. 早期の電源回復不能の確認

全交流動力電源喪失の確認後,中央制御室からの遠隔操作により外部 電源受電及び非常用ディーゼル発電機の起動ができず,非常用母線の電 源回復ができない場合,早期の電源回復不能と判断する。これにより, 常設代替高圧電源装置による非常用母線の受電準備操作を開始する。

e. 交流電源の回復操作

早期の電源回復不能の確認後,対応可能な要員により非常用ディーゼ ル発電機等の機能回復操作及び外部電源の機能回復操作を実施する。

f. 可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の起動 準備操作

全交流動力電源喪失の確認後,可搬型代替注水大型ポンプを用いた低 圧代替注水系(可搬型)による原子炉注水準備を開始する。原子炉建屋 内の現場操作にて原子炉注水に必要な系統構成を実施し,屋外の現場操 作にて可搬型代替注水大型ポンプの準備,ホース敷設等を実施後にポン プ起動操作を実施する。

g. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプへの燃料補給を実施する。

h. 直流電源の負荷切離し操作

早期の電源回復不能の確認後,中央制御室内及び現場配電盤にて所内 常設直流電源設備の不要な負荷の切り離しを実施することにより 24 時 間後までの蓄電池による直流電源供給を確保する。

i. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

サプレッション・プール水温度が 65℃に到達し, <mark>可搬型代替注水大型</mark>

ポンプを用いた低圧代替注水系(可搬型)の起動準備操作が完了した後に、中央制御室からの遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手動開放し、原子炉減圧を実施する。

逃がし安全弁(自動減圧機能)による原子炉減圧に必要な計装設備は, 原子炉圧力計等である。

j. 原子炉水位の調整操作(低圧代替注水系(可搬型))

逃がし安全弁(自動減圧機能)による原子炉減圧により,原子炉圧力 が可搬型代替注水大型ポンプの吐出圧力を下回ると,原子炉注水が開始 されることで原子炉水位が回復する。また,原子炉水位回復後は,原子 炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8) 設定点の間で維持する。

原子炉水位の調整操作(低圧代替注水系(可搬型)) に必要な計装設備 は、原子炉水位計(広帯域、燃料域)、低圧代替注水系原子炉注水流量系 等である。

k. <mark>可搬型代替注水大型ポンプを用いた</mark>代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却

全交流動力電源喪失に伴い崩壊熱除去機能を喪失しているため,格納 容器圧力及び雰囲気温度が上昇する。サプレッション・チェンバ圧力が 279kPa[gage]に到達した場合又はドライウェル雰囲気温度が171℃に到 達した場合は,現場操作にて可搬型代替注水大型ポンプを用いた代替格 納容器スプレイ冷却系(可搬型)による格納容器冷却を実施する。また, 同じ可搬型代替注水大型ポンプを用いて原子炉注水を継続する。

可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却に必要な計装設備は,サプレッション・チェ ンバ圧力計,低圧代替注水系格納容器スプレイ流量計,サプレッション・

プール水位計等である。

1. 常設代替高圧電源装置による緊急用母線受電操作

外部電源喪失の確認後、中央制御室からの遠隔操作により常設代替高

圧電源装置から緊急用母線を受電する。

常設代替高圧電源装置による緊急母線受電操作に必要な計装設備は,

緊急用M/C電圧である。

m.常設代替高圧電源装置による非常用母線の受電準備操作

<mark>早期の電源回復不能の確認後,中央制御室及び現場にて常設代替高圧</mark>

電源装置による非常用母線の受電準備操作を実施する。

n. 常設代替高圧電源装置による非常用母線受電操作

常設代替高圧電源装置による緊急用母線受電操作及び非常用母線の受 電準備操作の完了後,中央制御室からの遠隔操作により常設代替高圧電 源装置から緊急用母線を介して非常用母線を受電する。

常設代替高圧電源装置による非常用母線受電操作に必要な計装設備は, M/C 2C(2D)電圧である。

o. 残留熱除去系による原子炉注水及び格納容器除熱

常設代替高圧電源装置による非常用母線受電操作の完了後,可搬型代 替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水 及び代替格納容器スプレイ冷却系(可搬型)による格納容器冷却を停止 し,残留熱除去系による原子炉注水及び格納容器除熱を開始する。

残留熱除去系による原子炉注水及び格納容器除熱に必要な計装設備は, 原子炉水位計(広帯域),残留熱除去系系統流量計等である。

以降は,残留熱除去系により原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持しつつ,原子炉 注水の停止期間中に格納容器スプレイを実施する。

p. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

q. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から 代替淡水貯槽へ水源補給操作を実施する。

- 2.3.1.2 炉心損傷防止対策の有効性評価
 - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、外部電源 喪失を起因事象とし、全ての非常用ディーゼル発電機等が機能喪失するこ とで原子炉隔離時冷却系を除く注水機能が喪失する「外部電源喪失+DG 失敗+HPCS失敗(RCIC成功)」である。

本重要事故シーケンスでは、炉心における崩壊熱、燃料棒表面熱伝達、 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流)、沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及びサプレッション・プー ル冷却が重要現象となる。よって、これらの現象を適切に評価することが 可能である長期間熱水力過渡変化解析コードSAFER及びシビアアクシ デント総合解析コードMAAPにより、原子炉圧力、原子炉水位、燃料被 覆管温度、格納容器圧力、格納容器雰囲気温度等の過渡応答を求める。な お、本有効性評価では、SAFERコードによる燃料被覆管温度の評価結

果は,ベストフィット曲線の破裂判断基準に対して十分な余裕があること から,燃料棒やチャンネルボックスの幾何学的配置を考慮した詳細な輻射 熱伝達計算を行うことで燃料被覆管温度の評価結果がSAFERコードよ り低くなるCHASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.3.1-2表に示す。 また,主要な解析条件について,本重要事故シーケンス特有の解析条件を 以下に示す。

- a. 事故条件
- (a) 起因事象

送電系統又は所内主発電設備の故障等によって,外部電源が喪失す るものとする。

(b) 安全機能の喪失に対する仮定

全ての非常用ディーゼル発電機等の機能喪失を想定し,全交流動力 電源が喪失するものとする。

(c) 外部電源

起因事象として、外部電源が喪失することを想定している。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉水位低下を厳しくする観点で、部電源喪失に伴う原子炉保護

系電源喪失及びタービン蒸気加減弁急閉信号は保守的に考慮せず,原 子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h(原子炉圧力 1.04~7.86MPa[dif]において)の流量で原子炉へ注 水するものとする。原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は,原子炉水位を原子炉水位低(レベル3)設定点か ら原子炉水位高(レベル8)設定点の範囲に維持する。また,原子炉 減圧時の可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型) による原子炉水位回復性能を確認する観点で,原子炉減圧操作と同時 に注水を停止する。

※:MPa[dif]…原子炉圧力容器と水源との差圧(以下同様)

(c) 低圧代替注水系(可搬型)

可搬型代替注水大型ポンプ1台を使用し原子炉注水のみを実施する 場合は、炉心冷却性の観点で機器設計上の最小要求値である最小流量 特性(注水流量:0~110m³/h,注水圧力:0~1.4MPa[dif])とし、 原子炉注水と格納容器スプレイを同時に実施する場合は、50m³/h(一 定)を用いるものとする。また、原子炉水位が原子炉水位高(レベル 8)設定点まで回復した以降は、原子炉水位を原子炉水位低(レベル 3)設定点から原子炉水位高(レベル8)設定点の範囲に維持する。

(d) 代替格納容器スプレイ冷却系(可搬型)

低圧代替注水系(可搬型)と同じ可搬型代替注水大型ポンプ1台を 使用し格納容器圧力及び雰囲気温度の上昇を抑制可能な流量を考慮し、 130m³/h(一定)を用いるものとする。また、格納容器スプレイは、 サプレッション・チェンバ圧力が217kPa[gage]に到達した場合は停止

し、279kPa[gage]に到達した場合に再開する。

(e) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7弁を使用するものとし,容量として,1弁当 たり定格主蒸気流量の約6%を処理するものとする。

(f) 残留熱除去系(低圧注水系)

 残留熱除去系(低圧注水系)ポンプは1台使用するものとし,
 非常

 用母線の受電が完了した後に手動起動し,
 0~1,676m³/h(0~

 1.55MPa[dif]において)
 の流量で原子炉へ注水するものとする。

(g) 残留熱除去系(格納容器スプレイ冷却系)

残留熱除去系(低圧注水系)による<mark>原子炉注水を停止している期間 に 1.9×10³t/h の流量で格納容器へスプレイするものとし,そのう ち 95%をドライウェルへ,5%をサプレッション・チェンバへ分配す るものとする。 伝熱容量は,熱交換器1基当たり約43MW(サプレッシ ョン・プール水温度100℃,海水温度32℃において)とする。</mark>

(h) 残留熱除去系(サプレッション・プール水冷却系)

格納容器スプレイ実施中に格納容器圧力が 13.7kPa[gage]に到達し た時点でサプレッション・プール冷却運転に切り換える。伝熱容量は 残留熱除去系(格納容器スプレイ冷却系)と同様とする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

(a) 交流電源は24時間使用できないものとし、事象発生から24時間後

に常設代替高圧電源装置により非常用母線への給電を開始する。

- (b) 所内常設直流電源設備は、事象発生から1時間経過するまでに中央 制御室にて不要な負荷を切り離し、事象発生から8時間後に現場に て不要な負荷の切り離しを実施する。
- (c) 逃がし安全弁による原子炉減圧操作(可搬型代替注水大型ポンプを 用いた低圧代替注水系(可搬型)による原子炉注水)は、余裕時間 を確認する観点で事象発生の8時間後に可搬型代替注水大型ポンプ を用いた低圧代替注水系(可搬型)の準備が完了するものとし、減 圧操作に要する時間を考慮して、事象発生から8時間1分後に実施 する。
- (d) 可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系 (可搬型)による格納容器冷却は、サプレッション・チェンバ圧力 が 279kPa[gage]に到達した場合に実施する。
- (e) 残留熱除去系による原子炉注水及び格納容器除熱は,常設代替高圧 電源装置による非常用母線受電操作及び残留熱除去系の起動操作 に要する時間を考慮して,事象発生から24時間10分後に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.3.1-4回から第2.3.1-8回に,燃料被覆管温度, 燃料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発 生位置におけるボイド率,高出力燃料集合体のボイド率,炉心下部プレナ ム部のボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管温 度と燃料被覆管の円周方向の応力の関係を第2.3.1-9回から第2.3.1-14

図に,格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位 及びサプレッション・プール水温度の推移を第2.3.1-15 図から第2.3.1-18 図に示す。

※:炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、シュラウド内は炉心部で発生するボイドを含む二相水位であることから、 原子炉水位が低下する過程ではシュラウド外水位と比較して高めの水位を示 す。

a. 事象進展

全交流動力電源喪失後,原子炉スクラム,主蒸気隔離弁の閉止及び再 循環ポンプトリップが発生し,原子炉水位が原子炉水位異常低下(レベ ル2)設定点に到達すると,原子炉隔離時冷却系が自動起動し,原子炉 への注水が開始されることで,原子炉水位は維持される。

所内常設直流電源設備は、事象発生から1時間経過するまでに中央制 御室にて不要な負荷を切り離し、事象発生から8時間後に現場にて不要 な負荷の切り離しを実施することにより、24時間にわたり重大事故等の 対応に必要な設備に電源を供給できるものとする。

(添付資料 2.3.1.1, 2.3.1.2)

事象発生の8時間後に可搬型代替注水大型ポンプを用いた低圧代替注 水系(可搬型)の準備が完了した時点で,逃がし安全弁(自動減圧機能) 7 弁による原子炉減圧を実施する。逃がし安全弁(自動減圧機能)開放 による蒸気流出によって原子炉水位が低下するが,可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)による原子炉注水が開始され ることで原子炉水位は回復し,炉心の冷却は維持される。なお,原子炉 隔離時冷却系は,原子炉減圧と同時に停止する想定とする。

事象発生から 24 時間経過した時点で常設代替高圧電源装置による非 常用母線への交流電源供給を開始し,その後中央制御室からの遠隔操作 により残留熱除去系(低圧注水系)を起動し,原子炉注水を開始するこ とで,その後も炉心の冷却が維持される。

また,崩壊熱除去機能が喪失しているため,原子炉圧力容器内で発生 する蒸気が逃がし安全弁を介して格納容器内に放出されることで,格納 容器圧力及び雰囲気温度は徐々に上昇する。このため,事象発生の約13 時間後にサプレッション・チェンバ圧力が279kPa[gage]に到達した時点 で,可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却を開始し,事象発生の24時間後に交流電源が 復旧した時点で残留熱除去系による格納容器除熱を開始することで,格 納容器圧力及び雰囲気温度は安定又は低下傾向となる。

<u>b.</u>評価項目等 コメント No. 181-18 に対する回答;

燃料被覆管温度は,第2.3.1-9 図に示すとおり,炉心の冷却が維持され,初期値(約309℃)以下にとどまることから,評価項目である1,200℃を下回る。燃料被覆管の最高温度は,高出力燃料集合体で発生している。 また,燃料被覆管の酸化量は,酸化反応が著しくなる前の燃料被覆管厚 さの1%以下であり,評価項目である15%を下回る。

原子炉圧力は,第2.3.1-4 図に示すとおり,逃がし安全弁(安全弁機 能)の作動により,約8.16MPa[gage]以下に維持される。このため,原 子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容 器底部圧力との差(0.3MPa 程度)を考慮しても,約8.46MPa[gage]以下 であり,評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を下 回る。

また,崩壊熱除去機能を喪失しているため,原子炉圧力容器内で崩壊 熱により発生する蒸気が格納容器内に流入することにより,格納容器圧 力及び雰囲気温度は徐々に上昇するが,可搬型代替注水大型ポンプを用 いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却及び残 留熱除去系による格納容器除熱を実施することで,格納容器バウンダリ にかかる圧力及び温度の最大値は,約0.28MPa[gage]及び約141℃に抑え られる。このため,格納容器バウンダリにかかる圧力及び温度は,評価 項目である最高使用圧力の2倍(0.62MPa[gage])及び200℃を下回る。 原子炉隔離時冷却系及び可搬型代替注水大型ポンプを用いた低圧代替

注水系(可搬型)による原子炉注水を継続することで,炉心は冠水状態 を維持し,冷却が維持される。その後,非常用母線の受電完了後に残留 熱除去系による原子炉注水及び格納容器除熱を実施することで,高温停 止での安定状態が確立する。

(添付資料 2.3.1.3)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目について、対策の有効性を確認 した。

2.3.1.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは、全交流動力電源喪失後、原子炉隔離時冷却系が 設計基準事故対処設備として期待する期間を超えることで蓄電池の枯渇によ り機能喪失し,原子炉注水機能が喪失することで原子炉水位が低下するため, 直流電源の負荷切離し操作を実施すること、原子炉隔離時冷却系が機能維持 している期間内に<mark>可搬型代替注水大型ポンプを用いた</mark>低圧代替注水系(可搬 型)による原子炉注水を実施すること、全交流電源喪失に伴い崩壊熱除去機 能も喪失し格納容器圧力及び雰囲気温度が上昇することから<mark>可搬型代替注水</mark> <mark>大型ポンプを用いた</mark>代替格納容器スプレイ冷却系(可搬型)による格納容器 冷却を実施すること並びに事象発生 24 時間後に交流電源を復旧し残留熱除 去系による原子炉注水及び格納容器除熱を実施することが特徴である。よっ て、不確かさの影響を確認する運転員等操作は、事象進展に有意な影響を与 えると考えられる操作及び事象発生から 12 時間程度までの短時間に期待す る操作として、直流電源の負荷切離し操作、逃がし安全弁による原子炉減圧 操作(可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による <mark>原子炉注水)</mark>, <mark>可搬型代替注水大型ポンプを用いた</mark>代替格納容器スプレイ冷却 系(可搬型)による格納容器冷却操作並びに残留熱除去系による原子炉注水 及び格納容器除熱操作とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を実施する重要現象 は、「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すと おりであり、それらの不確かさの影響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて 50℃程度高 めに評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評

価する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくな り,燃料被覆管温度は低くなるが,事象初期の原子炉注水は原子炉隔離 時冷却系の自動起動により確保され,燃料被覆管温度を操作開始の起点 とする運転員等操作はないことから,運転員等操作時間に与える影響は ない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作 開始の起点とする運転員等操作はないことから,運転員等操作時間に与 える影響はない。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル) はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,格納容器圧力及び雰囲気温度の傾向 の起点とする可搬型代替注水大型ポンプを用いた 代替格納容器スプレイ 冷却系(可搬型)による格納容器冷却に係る運転員等操作時間に与える 影響は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び 内部熱伝導の不確かさにおいては,CSTF実験解析により格納容器温 度及び非凝縮性ガスの挙動は測定データと良く一致することを確認して おり、その差異は小さいため、格納容器圧力及び雰囲気温度を操作開始
の起点としている可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却に係る運転員等操作時間に与える影響は小さい。

(添付資料 2.3.1.4)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル) はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,不確かさが小さくなるものと推定され, 全体としては格納容器圧力及び雰囲気温度の傾向を適切に再現できてい るため,評価項目となるパラメータに与える影響は小さい。また,格納 容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確かさにお いては,CSTF実験解析により格納容器雰囲気温度及び非凝縮性ガス

の挙動は測定データと良く一致することを確認しているため,評価項目 となるパラメータに与える影響は小さい。

(添付資料 2.3.1.4)

(2) 解析条件の不確かさの影響評価

a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 2.3.1-2 表に示すとおりであり,これらの条件設定を設計値等の最確条 件とした場合の影響を評価する。解析条件の設定にあたっては,設計値 を用いるか又は評価項目となるパラメータの判断基準に対する余裕が小 さくなるよう保守的な設定をしていることから,この中で事象進展に有 意な影響を与える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は原子炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作開始の起点とする運転員等操作はないことから運転員等操作時間に与える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/tに対して最確条件は33GWd/t以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は原子炉隔離時冷却系の自動起動 により確保されることから,運転員等操作時間に与える影響はない。

また,格納容器圧力及びサプレッション・プール水位の上昇が遅くなり,これらのパラメータを起点とする運転員等操作の開始時間は遅く なる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,格 納容器雰囲気温度,格納容器体積(ウェットウェル)及びサプレッシ ョン・プール水位は,ゆらぎにより解析条件に対して変動を与えうる が,事象進展に与える影響は小さく,運転員等操作時間に与える影響 は小さい。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は、最確条件とした場合は注水開始後の原子炉水位の回復が早く なり、炉心冠水後の原子炉水位の維持操作の開始が早くなるが、原子 炉水位を継続監視している期間の流量調整操作であるため、運転員等 操作時間に与える影響はない。

(添付資料 2.3.1.4)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなり,原子炉からサプレッション・プールに流 出する蒸気量が減少することで,原子炉水位の低下は緩和され,格納 容器圧力等の上昇は遅くなることから,評価項目となるパラメータに 対する余裕は大きくなる。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は,最確条件とした場合は注水開始後の原子炉水位の回復が早く なり,燃料被覆管温度の上昇が緩和されることから,評価項目となる パラメータに対する余裕は大きくなる。

(添付資料 2.3.1.4)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の直流電源の負荷切離し操作(中央制御室)は,解析上の 操作開始時間として事象発生から1時間経過するまでを設定しており, 直流電源の負荷切離し操作(現場)は,解析上の操作開始時間として 事象発生から8時間後を設定している。運転員等操作時間に与える影 響として,認知時間及び移動・操作所要時間は,余裕時間を含めて設 定していることから,実態の操作開始時間は解析上の操作開始時間よ り若干早まる可能性がある。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原 子炉注水)は,解析上の操作開始時間として事象発生から8時間1分 後を設定している。運転員等操作時間に与える影響として,認知時間 及び移動・操作所要時間は,余裕時間を含めて設定していることから,

実態の操作開始時間は解析上の操作開始時間より若干早まる可能性がある。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却は,解析上の操作開始時間と してサプレッション・チェンバ圧力279kPa[gage]到達時を設定してい る。運転員等操作時間に与える影響として,不確かさ要因により操作 開始時間に与える影響はなく,実態の操作開始時間は解析上の設定と ほぼ同等となる。本操作は,解析コード及び解析条件(操作条件を除 く。)の不確かさにより,操作開始時間は遅れる可能性があるが,他の 操作との重複もないことから,この他の操作に与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,解 析上の操作開始時間として事象発生から24時間10分後を設定してい る。運転員等操作時間に与える影響として,認知時間及び移動・操作 所要時間は,余裕時間を含めて設定していることから,実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性がある。

(添付資料 2.3.1.4)

(b) 評価項目となるパラメータに与える影響

操作条件の直流電源の負荷切離し操作は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の操作開始時間より若干 早まる可能性があるが,解析条件ではないことから,蓄電池枯渇まで に実施することで評価項目となるパラメータに与える影響はない。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原 子炉注水)は、運転員等操作時間に与える影響として、実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性があるが、可搬

型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子 炉注水に移行するまでの期間は原子炉隔離時冷却系により原子炉注水 が確保されていることから,評価項目となるパラメータに与える影響 はない。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の操作開始時間よりも遅 くなる可能性があるが,この場合でもパラメータが操作実施基準に到 達した時点で開始することで同等の効果が得られ,有効性評価解析に おける格納容器圧力の最大値に変わりがないことから,評価項目とな るパラメータに与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも早くなる可能性があるが,この場合には,格納容 器除熱の開始が早くなることで格納容器圧力及び雰囲気温度の上昇は 緩和され,評価項目となるパラメータの判断基準に対する余裕は大き くなる。

(添付資料 2.3.1.4)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の直流電源の負荷切離し操作(中央制御室)は事象発生から1 時間経過するまでに実施し,直流電源の負荷切離し操作(現場)は事象発

生から8時間後に実施するものであり、準備時間が確保できるため、時間 余裕がある。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水)は,可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の 準備完了後に実施するものであり,評価上は余裕時間を確認する観点で事 象発生の8時間後に準備が完了するものとしていることから,準備時間が 確保できるため,時間余裕がある。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷 却系(可搬型)による格納容器冷却操作は,事象発生の約13時間後に実施 するものであり,可搬型代替注水大型ポンプを用いた低圧代替注水系(可 搬型)と同じ可搬型代替注水大型ポンプを使用し,評価上は余裕時間を確 認する観点で可搬型代替注水大型ポンプの準備完了を事象発生の8時間後 と想定していることから,準備時間が確保できるため,時間余裕がある。 操作条件の残留熱除去系による原子炉注水及び格納容器除熱操作は,非 常用母線の受電後に実施するものであり,評価上は事象発生の24時間後に 非常用母線の受電が完了する想定としていることから,準備時間が確保で きるため,時間余裕がある。

(添付資料 2.3.1.4)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな

るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.3.1.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「全交流動力電源喪失(長期TB)」の重大事故 等対策における必要な初動対応要員は,「2.3.1(3)炉心損傷防止対策」に 示すとおり22名である。「6.2 重大事故等対策時に必要な要員の評価結果」 で示す運転員及び災害対策要員の39名で対処可能である。

また,必要な招集要員は6名であり,発電所構外から2時間以内に招集 可能な要員の71名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「全交流動力電源喪失(長期TB)」において, 必要な水源,燃料及び電源は,「6.1(2) 資源の評価条件」の条件にて評 価を行い,以下のとおりである。

(添付資料 2.3.1.5)

a.水 源

可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による 原子炉注水及び代替格納容器スプレイ冷却系(可搬型)による格納容器 スプレイについては,7日間の対応を考慮すると合計約2,130m³必要と なる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水を保有している。これにより,水源が枯渇することなく注水継続が

(添付資料 2.3.1.6)

b.燃料

常設代替交流電源設備による電源供給については、事象発生直後からの運転を想定すると、7日間の運転継続に約352.8kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから、常設代替交流電源設備による電源供給について、7日間の継続が可能である。

可搬型代替注水大型ポンプによる原子炉注水等については,事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽油が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有していることから,可搬型代替注水大型ポンプによる原子炉注水等について,7日間の継続が可能である。

(添付資料 2.3.1.7)

c. 電 源

常設代替交流電源設備の負荷については,重大事故等対策時に必要な 負荷として約4,165kW必要となるが,常設代替交流電源設備(常設代替 高圧電源装置5台)の連続定格容量は5,520kWであることから,必要負 荷に対しての電源供給が可能である。

また,蓄電池の容量については,交流電源が復旧しない場合を想定しても,不要な負荷の切離しを行うことにより,事象発生後24時間の直流 電源の供給が可能である。

(添付資料 2.3.1.8)

2.3.1.5 結 論

事故シーケンスグループ「全交流動力電源喪失(長期TB)」では,全交流 動力電源喪失後,蒸気駆動の原子炉隔離時冷却系が自動起動し設計基準事故 対処設備として期待する期間は運転を継続するものの,その期間を超えた後 に蓄電池の直流電源供給能力の枯渇により機能喪失し,原子炉へ注水する機 能が喪失することで,原子炉水位の低下が継続し,炉心損傷に至ることが特 徴である。事故シーケンスグループ「全交流動力電源喪失(長期TB)」に対 する炉心損傷防止対策としては,初期の対策として原子炉隔離時冷却系,可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)及び逃がし安全 弁による原子炉注水手段,安定状態に向けた対策として可搬型代替注水大型 ポンプを用いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却 手段及び常設代替高圧電源装置からの給電による残留熱除去系を用いた格納 容器除熱手段を整備している。

事故シーケンスグループ「全交流動力電源喪失(長期TB)」の重要事故シ ーケンス「外部電源喪失+DG失敗+HPCS失敗(RCIC成功)」につい て有効性評価を行った。

上記の場合においても、原子炉隔離時冷却系、可搬型代替注水大型ポンプ を用いた低圧代替注水系(可搬型)及び逃がし安全弁よる原子炉注水によっ て原子炉水位を維持し、可搬型代替注水大型ポンプを用いた 代替格納容器ス プレイ冷却系(可搬型)による格納容器冷却及び常設代替高圧電源装置から の給電による残留熱除去系を用いた格納容器除熱を実施することで、炉心の 著しい損傷を防止することができる。

この結果、燃料被覆管温度及び酸化量、原子炉冷却材圧力バウンダリにか かる圧力並びに格納容器バウンダリにかかる圧力及び温度は、評価項目 を満 足している。また、安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,評価項 目となるパラメータに与える影響は小さい。また,対策の有効性が確認でき る範囲内において,操作時間余裕について確認した結果,操作が遅れた場合 でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「全交流動力電源喪失(長期T B)」において,原子炉隔離時冷却系,可搬型代替注水大型ポンプを用いた低 圧代替注水系(可搬型)及び逃がし安全弁による原子炉注水,常設代替高圧 電源装置からの給電による残留熱除去系を用いた格納容器除熱等の炉心損傷 防止対策は,選定した重要事故シーケンスに対して有効であることが確認で き,事故シーケンスグループ「全交流動力電源喪失(長期TB)」に対して有 効である。

第2.3.1-1表 全交流動力電源喪失(長期TB)における重大事故対策について(1/4)

王 匠	重大事故等対処設備		
一 一 一 順	常設設備 可搬型設		計装設備
・外部電源が喪失するとともに、非常用ディ	逃がし安全弁(安	—	平均出力領域計装
ーゼル発電機等が全て機能喪失すること	全弁機能)		起動領域計装
で、全交流動力電源喪失となり、原子炉が	所内常設直流電源		原子炉圧力
スクラムしたことを確認する。	設備		<mark>原子炉圧力(SA)</mark>
・主蒸気隔離弁が自動閉止したことを確認す			<mark>M/C 2C電圧</mark>
<mark>る。</mark>			<mark>M/C 2D電圧</mark>
・再循環ポンプがトリップしたことを確認す			<mark>緊急用M/C電圧</mark>
る <mark>。</mark>			
・原子炉水位が原子炉水位異常低下(レベル	【原子炉隔離時冷	—	原子炉水位 (広帯域, 燃料域)
2) 設定点に到達した時点で原子炉隔離時	却系】		原子炉水位(SA 広帯域, SA 燃
冷却系が自動起動したことを確認する。			料域)
			【原子炉隔離時冷却系系統流
			量
・原子炉隔離時冷却系の起動により原子炉水	【原子炉隔離時冷	—	原子炉水位 (広帯域, 燃料域)
位が回復したことを確認する。	却系】		原子炉水位(SA 広帯域, SA 燃
・原子炉水位回復後は、原子炉水位を原子炉			料域)
水位低(レベル3)設定点から原子炉水位			【原子炉隔離時冷却系系統流
高(レベル8)設定点の間に維持する。			量】
		【 】: 重大事故	y等対処設備(設計基準拡張)
	 手 順 ・外部電源が喪失するとともに、非常用ディーゼル発電機等が全て機能喪失することで、全交流動力電源喪失となり、原子炉がスクラムしたことを確認する。 ・主蒸気隔離弁が自動閉止したことを確認する。 ・再循環ポンプがトリップしたことを確認する。 ・原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点で原子炉隔離時冷却系が自動起動したことを確認する。 ・原子炉隔離時冷却系の起動により原子炉水位が回復したことを確認する。 ・原子炉水位回復後は、原子炉水位を原子炉水位低(レベル3)設定点の間に維持する。 	手順 常設設備 ・外部電源が喪失するとともに、非常用ディ ーゼル発電機等が全て機能喪失すること で、全交流動力電源喪失となり、原子炉が スクラムしたことを確認する。 逃がし安全弁(安 全弁機能) ・主蒸気隔離弁が自動閉止したことを確認する。 所内常設直流電源 設備 ・主蒸気隔離弁が自動閉止したことを確認する。 原子炉水位が原子炉水位異常低下(レベル 2)設定点に到達した時点で原子炉隔離時 冷却系が自動起動したことを確認する。 ・原子炉隔離時冷却系の起動により原子炉水位 加減したことを確認する。 【原子炉隔離時冷却系】 ・原子炉水位回復後は、原子炉水位を原子炉水位 高(レベル8)設定点の間に維持する。 【原子炉隔離時冷却系】	手順 重大事故等: 常設設備 可搬型設備 ・外部電源が喪失するとともに、非常用ディ ーゼル発電機等が全て機能喪失すること で、全交流動力電源喪失となり、原子炉が スクラムしたことを確認する。 逃がし安全弁(安 全弁機能) – ・主蒸気隔離弁が自動閉止したことを確認する。 一 全弁機能) 所内常設直流電源 ・主蒸気隔離弁が自動閉止したことを確認する。 設備 – ・・ ・ ・ 第子炉水位が原子炉水位異常低下(レベル 2)設定点に到達した時点で原子炉隔離時 冷却系が自動起動したことを確認する。 ・ 原子炉隔離時冷却系の起動により原子炉水位 ・ 原子炉水位回復後は、原子炉水位を原子炉水位 水位低(レベル8)設定点の間に維持する。 【 算子如常 【 】:重大事故

:有効性評価上考慮しない操作

第2.3.1-1表 全交流動力電源喪失(長期TB)における重大事故対策について(2/4)

	二		重大事故等対処設備	
操作及び帷認	于順	常設設備	可搬型設備	計装設備
<mark>早期の電源回復不能の確認</mark>	 ・全交流動力電源喪失の確認後、中央制御室 	—	—	-
	からの遠隔操作により外部電源の受電を試			
	みるが、失敗したことを確認する。			
	・中央制御室からの遠隔操作により非常用デ			
	ィーゼル発電機等の起動を試みるが、失敗			
	したことを確認する。			
	・以上により、早期の電源回復不能を確認す			
	る。			
可搬型代替注水大型ポンプを	・ 全交流動力電源喪失の確認後, <mark>可搬型代替</mark>	代替淡水貯槽	可搬型代替注	—
用いた低圧代替注水系(可搬	<mark>注水大型ポンプを用いた</mark> 低圧代替注水系		水大型ポンプ	
型)の起動準備操作	(可搬型)による原子炉注水準備を開始す			
	る。			
タンクローリによる燃料補給	・タンクローリにより可搬型代替注水設備用	可搬型設備用軽油	タンクローリ	—
<mark>操作</mark>	軽油タンクから可搬型代替注水大型ポンプ	タンク		
	に燃料補給を実施する。			
直流電源の負荷切り離し操作	・ <mark>早期の電源回復不能の確認</mark> 後,中央制御室	所内常設直流電源	-	—
	及び現場にて所内常設直流電源設備の不要	設備		
	な負荷の切り離しを実施する。			
逃がし安全弁 <mark>(自動減圧機能)</mark>	・サプレッション・プール水温度がサプレッ	逃がし安全弁 <mark>(自</mark>	可搬型代替注	サプレッション・プール水温
による原子炉減圧 <mark>操作</mark>	ション・プール熱容量制限(原子炉が高圧	動減圧機能)	水大型ポンプ	度
	の場合は65℃)に到達したことを確認する。	代替淡水貯槽	タンクローリ	原子炉圧力
	・可搬型代替注水大型ポンプを用いた低圧代	可搬型設備用軽油		原子炉圧力(SA)
	替注水系(可搬型)の起動準備操作の完了	タンク		
	後,逃がし安全弁 <mark>(自動減圧機能)</mark> 7弁を手			
	動開放することで、原子炉減圧操作を実施			
	する。			

【】: 重大事故等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

第2.3.1-1 表 全交流動力電源喪失(長期TB)における重大事故対策について(3/4)

世化正式にない	五 匠	重大事故等対処設備		
操作及び確認	于 順	常設設備	可搬型設備	計装設備
<mark>原子炉水位の調整操作 (可搬型</mark>	・原子炉減圧により <mark>可搬型代替注水大型ポン</mark>	代替淡水貯槽	可搬型代替注	原子炉水位 (広帯域, 燃料域)
<mark>代替注水大型ポンプを用いた</mark>	<mark>プを用いた</mark> 低圧代替注水系(可搬型)から		水大型ポンプ	原子炉水位(SA 広帯域, SA 燃
低圧代替注水系(可搬型))	の原子炉注水が開始され,原子炉水位が回			料域)
	復することを確認する。			低圧代替注水系原子炉注水流
	・原子炉隔離時冷却系が停止することを確認			量
	する。			代替淡水貯槽水位
	・以降,原子炉水位を原子炉水位低(レベル			
	3)設定点から原子炉水位高(レベル8)			
	設定点の間に維持する。			
可搬型代替注水大型ポンプを	・サプレッション・チェンバ圧力が	代替淡水貯槽	可搬型代替注	ドライウェル圧力
<mark>用いた</mark> 代替格納容器スプレイ	279kPa[gage]に到達したことを確認する。		水大型ポンプ	サプレッション・チェンバ圧
冷却系(可搬型)による格納容	・可搬型代替注水大型ボンブを用いた代替格			力
器 伶 却	納容器スプレイ冷却糸 (可搬型) による格			低上代替注水糸格納容器スプ
	納容器スプレイ操作を実施する。			レイ流量
				サブレッジョン・ブール水位
<u> </u>	剧却最渡卖生。""我我们一些那小林士厅最近	尚部小社支庁 康源		
常設代替尚圧電源装直による	・外部電源喪矢の確認後, 常設代替局圧電源	吊設代替局圧電源	_	<u> </u>
<u> </u>	装直から紫急用は緑を交更する。	装直		
一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	日期の電源回復了他の確認後、賞凱仏共言	軽田灯廠ダンク		
品 設 八 谷 尚 止 竜 侭 表 直 に よ る 北 労 田 丹 迫 の 受 電 準 借 場 佐	 ・早期の電源凹復个能の確認後、吊設代省局 「電源社業による北党田母娘の受電準備場」 	吊	_	_
<u> 介市市母林の文电芋脯採作</u>	二 电 你 太 但 に よ る か 书 用 日	衣旦 収油贮蔵タンク		
	1Fで天心りる。 ・ 告記仕共言に重酒壮罟に上る駆刍田回始系	牡田則 敞ク ノク 台 記 件 扶 言 口 重 酒		
市政 八省同 二 电	市	市 収 11 省 同 工 电 你 壮 墨		
<u> </u>	电深旧及い介币用母楙の又电牛佣保住の元 了後 非常田母娘のCBだのDを受重する	衣旦 枢油貯蔵タンカ		
	」は、介市用母隊とし及いと口を又电りる。	THE III III ア イ フ		

【 】:重大事故等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

第2.3.1-1表 全交流動力電源喪失(長期TB)における重大事故対策について(4/4)

出 你 及 (1) 座 (3)	千 晒	重大事故等対処設備		対処設備
操作及び確認	十 順	常設設備	可搬型設備	計装設備
残留熱除去系による原子炉注	・非常用母線の受電後、 <mark>可搬型代替注水大型</mark>	【残留熱除去系	—	原子炉水位 (広帯域)
水及び格納容器除熱	<mark>ポンプを用いた</mark> 低圧代替注水系(可搬型)	(低圧注水系)】		原子炉水位(SA 広帯域)
	による原子炉注水及び代替格納容器スプレ	【残留熱除去系		【残留熱除去系系統流量】
	イ冷却系(可搬型)による格納容器スプレ	(格納容器スプレ		【残留熱除去系海水系系統流
	イを停止する。	イ冷却系)】		量】
	・残留熱除去系による原子炉注水及び格納容	常設代替高圧電源		低圧代替注水系原子炉注水流
	器スプレイを実施する。	装置		量
	・以降,残留熱除去系により原子炉注水及び	軽油貯蔵タンク		サプレッション・チェンバ圧
	格納容器スプレイを交互に実施しつつ、原			力
	子炉水位を原子炉水位低(レベル3)設定			ドライウェル圧力
	点から原子炉水位高(レベル8)設定点の			
	間に維持する。			
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	—	—	-
	却操作を実施する。			
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	-	_	-
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ			
	水源補給を実施する。			
			【 】: 重大事故	y (安 対 処 設 計 基 準 拡 張)

: 有効性評価上考慮しない操作

コメント No. 163-46 に対する回答

第 2.3.1-2 表 主要解析条件(全交流動力電源喪失(長期 T B))(1/6)

	項目	主要解析条件	条件設定の考え方	
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できるコード	
	原子炉熱出力	3,293MW	定格熱出力を設定	
-	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定	
	原子炉水位	通常運転水位(セパレータ スカート下端から+126cm)	通常運転水位を設定	
	炉心流量	48,300 t∕h	定格流量を設定	
	炉心入口温度	約 278°C	熱平衡計算による値	
初	炉心入口サブクール度	約 9℃	熱平衡計算による値	
期 条 件	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等で あり,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定	
	燃料棒最大線出力密度	44.0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定 となるため,保安規定の運転上の制限における上限値を設定	
	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため、崩壊熱が大きくなる燃焼度の高い条件として、1サイクル の運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に 対応する燃焼度を設定	
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定	
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定	

	項目	主要解析条件	条件設定の考え方
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定
初	格納容器体積	空間部:4,100m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし
期	(ウェットウェル)	液相部:3,300m ³	て,保安規定の運転上の制限における下限値を設定
条 件	サプレッション・プール水位	6.983m (通常水位-4.7cm)	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限値を設定
	サプレッション・プール水温 度	32℃	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限値を設定
	起因事象	外部電源喪失	送電系統又は所内主発電設備の故障等によって,外部電源が喪失することを 想定
■ 事故 条件	安全機能の喪失に対する仮定	非常用ディーゼル発電機等の 機能喪失	非常用ディーゼル発電機等が機能喪失するものとして設定。 なお,交流動力電源は24時間使用できないことを想定し,この期間は交流 動力電源の復旧及び代替交流動力電源には期待しない。
	外部電源	外部電源なし	起因事象として,外部電源が喪失することを想定

第2.3.1-2表 主要解析条件(全交流動力電源喪失(長期TB))(2/6)

	項目	主要解析条件	条件設定の考え方
	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	原子炉水位低下を厳しくする観点で,外部電源喪失に伴うタ ービン蒸気加減弁急閉及び原子炉保護系電源喪失による原 子炉スクラムについては保守的に考慮せず,原子炉水位低 (レベル3)による原子炉スクラムを設定
重大事故等対策に関連する機器	原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて自動起 動 原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 原子炉減圧時の可搬型代替注水大型ポンプを用 いた低圧代替注水系(可搬型)による原子炉水位 回復性能を確認する観点で,原子炉減圧操作と同 時に注水停止 最小流量特性 ・注水特性:136.7m ³ /h ・注水圧力: 1.04~7.86MPa[dif]	設計値を設定。原子炉隔離時冷却系は、タービン回転数制御により原子炉圧力に依らず一定の流量にて注水する設計となっている。
·条件	残留熱除去系(低圧注水系)	最小流量特性 <mark>注水流量:0~1,676m³/h</mark> 注水圧力:0~1.55MPa[dif]	炉心冷却性の観点で厳しい設定として,設計基準事故の解析 で用いる最小 <mark>流量</mark> 特性を設定

第2.3.1-2表 主要解析条件(全交流動力電源喪失(長期TB))(3/6)

項目		主要解析条件	条件設定の考え方	
重大事故等対策に関連す	<mark>可搬型代替注水大型ポンプを</mark> <mark>用いた</mark> 低圧代替注水系(可搬 型)	原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m ³ /h ・注水圧力:0~1.4MPa[dif]	炉心冷却性の観点で厳しい設定として,機器設計上の最低要 求値である最小流量特性を設定	
る機		(原子炉注水と格納容器スプレイ併用時) ・注水流量:50m ³ /h(一定)	併用時の系統評価に基づき、保守的な流量を設定	
希 条 件	<mark>可搬型代替注水大型ポンプを</mark> <mark>用いた</mark> 代替格納容器スプレイ 冷却系(可搬型)	サプレッション・チェンバ圧力が 217kPa[gage] に到達した場合は停止し,279kPa[gage]に到達し た場合に再開 スプレイ流量:130m ³ /h <mark>(一定)</mark>	格納容器圧力上昇を抑制可能な流量として,運転手順に基づ き設定	
	外部水源の水温	35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい高め の水温として,年間の気象条件変化を包含する高めの水温を 設定	

第2.3.1-2表 主要解析条件(全交流動力電源喪失(長期TB))(4/6)

	項目	主要解析条件	条件設定の考え方
重		 (原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2 個, 385.2t/h/個 8.10MPa [gage] ×4 個, 400.5t/h/個 8.17MPa [gage] ×4 個, 403.9t/h/個 8.24MPa [gage] ×4 個, 407.2t/h/個 8.31MPa [gage] ×4 個, 410.6t/h/個 	設計値を設定
大事故等対策に関連する機器条	逃がし安全弁	(原子炉減圧操作時) 逃がし安全弁 <mark>(自動減圧機能)</mark> 7弁を開放するこ とによる原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
件	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	格納容器減圧特性の観点で厳しい設定として,機器設計上の 最低要求値である最小流量特性を設定
	残留熱除去系(格納容器スプ レイ冷却系)	スプレイ流量:1.9×10 ³ t/h (95%:ドライウェル,5%:サプレッション・ チェンバ)	。 設計値を設定
	残留熱除去系(サプレッショ ン・プール冷却系)	約 43MW(サプレッション・プール水温度 100℃, 海水温度 32℃において)	残留熱除去系の除熱性能を厳しくする観点で,過去の実績を 包含する高めの海水温度を設定

第 2.3.1-2 表 主要解析条件(全交流動力電源喪失(長期 T B))(5/6)

第2.3.1-2表 主要解析条件(全交流動力電源喪失(長期TB))(6/6)

	項目	主要解析条件	条件設定の考え方
	常設代替高圧電源装置による 非常用母線の受電操作	事象発生から 24 時間後	本事故シーケンスの前提条件として設定
関連する操作	逃がし安全弁 (自動減圧機能) による原子炉減圧操作(可搬 型代替注水大型ポンプを用い た低圧代替注水系(可搬型) による原子炉注水)	事象発生から8時間1分後	実際には,低圧で注水可能な系統(可搬型代替注水大型ポン プを用いた低圧代替注水系(可搬型))が準備できた時点で サプレッション・プール水温度が熱容量制限を超過している 場合は減圧操作を実施するが,余裕時間を確認する観点で8 時間後に可搬型代替注水大型ポンプを用いた低圧代替注水 系(可搬型)の準備が完了するものとし,減圧操作に要する 時間を考慮して設定
:条に 件 に	 可搬型代替注水大型ポンプを 用いた代替格納容器スプレイ 冷却系(可搬型)による格納 容器冷却 残留熱除去系による原子炉注 水及び格納容器除熱 	サプレッション・チェンバ圧力 279kPa[gage]到達時 事象発生から 24 時間 10 分後	運転手順に基づき格納容器ベント実施基準である格納容器 最高使用圧力(310kPa[gage])に対する余裕を考慮し設定 常設代替高圧電源装置による非常用母線の受電操作の完了 後,残留熱除去系の起動操作に要する時間を考慮して設定

コメント No. 182-15 に対する回答

第2.3.1-1 図 全交流動力電源喪失(長期TB)時の重大事故等対策の概略系統図(2/3) (可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水 及び代替格納容器スプレイ冷却系(可搬型)による格納容器冷却段階)

第2.3.1-1図 全交流動力電源喪失(長期TB)時の重大事故等対策の概略系統図(3/3) (残留熱除去系による原子炉注水及び格納容器除熱段階)

※1:原子炉スクラムは、甲央制御室にて平均出力領域等により確認する。	器スプレイ冷却系(可搬型)による格納容器スプレイも実施可能である。
※2:中央制御室にて機器ランプ表示,系統流量計指示等にて確認する。	流量は少ないが,消火系及び復水補給水系による格納容器スプレイも実施可能である。

※3:原子炉隔離時冷却系により、原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。

※4:中央制御室からの遠隔操作により外部電源受電及び非常用ディーゼル発電機の起動ができず、非常用母線の電源回復ができない場合、早期の電源回復不能と判断する。

- ※5: 全交流動力電源喪失を確認した場合は,速やかに<mark>可搬型代替注水大型ボンブを用いた</mark>低圧代替注水系(可搬型)による原子炉注水の準備を開始する。なお,<mark>可搬型代替注水大型ボンブを用いた</mark>低圧代替注水系(可 搬型)及び代替格納容器スプレイ冷却系(可搬型)には同じ可搬型代替注水大型ボンブを用いる。
- ※6:サプレッション・プール水温度がサプレッション・プール熱容量制限(原子炉が高圧の場合は65℃)に到達又は超過した場合は、低圧で注水可能な系統の準備完了後に原子炉減圧操作を実施する。また、実際の操作では、原子炉圧力が低下し可搬型代替注水大型ボンプを用いた低圧(替注水系(可搬型)による原子炉注水が開始された後に原子炉隔離時冷却系が停止するが、評価上は可搬型代替注水大型ボンプを用いた低圧 代替注水系(可搬型)のみによる水位回復性能を確認する観点で、原子炉減圧開始と同時に原子炉隔離時冷却系は停止する想定としている。
- ※7:原子炉水位不明は、以下により判断する。
 - ・ドライウェル雰囲気温度と原子炉圧力の関係が原子炉水位不明領域に入った場合
 - ・原子炉水位計の電源が喪失した場合
 - ・原子炉水位計のばらつきが大きく有効燃料長頂部以上であることが判断できない場合
- ※8:可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。
- ※9:残留熱除去系は、原子炉水位低(レベル3)設定点にて原子炉注水モード運転に切り換え、原子炉水位高(レベル8)設定点にて格納容器スプレイモード運転に切り替える。

第 2.3.1-2 図	全交流動力'	電源喪失	(長期TB)	の対応手順の	「概要
コメント No. 147-19, 20, 2 148-01, 09, 17 に対する回	3,25,29, 答	2.3.1-	-41		

									全交流動	」力電源雲	喪失(長期 T B	;)							
						1								(2) 日本間 (八)	\ \				
						0	10	20		30	40		50	栓៉一时间(分 60	70	80	90	100	
	1				1		I	1		1	1		1	I	1	I	I		1
操作項目		実施箇所·	必要要	員数		↓ ▼ 事象発生	生												
		[]]]	は他作業後	发		▶ 原子炉スクラム													
		移動して	、さに安り	₹	4	▽ プラント状況判断													
	責任者	発電長	1人	中央監視 運転操作指揮															
	補佐	副発電長 1人 運転操作指揮補佐		運転操作指揮補佐	操作の内容														
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡	-														
	運転員 (中央制御室)	運転員 (現場)		重大事故等対応要員 (現場)															
		3 —			●原子炉スクラムの確認														
				_	●外部電源喪失の確認														
					●非常用ディーゼル発電機等の自動起動失敗の確認														
状況判断	2人 A, B				●タービン停止の確認	10 分													
					●原子炉隔離時冷却系の自動起動の確認														
					 ●主蒸気隔離弁閉止及び逃がし安全弁による 原子炉圧力制御の確認 														
				●再循環ポンプトリップの確認															
原子炉水位の調整 操作 <mark>(原子炉隔離</mark> 時冷却系)	【1人】 A	-		_	●原子炉隔離時冷却系による原子炉注水の調整操作					鳫	原子炉水位を	·原子炉水	位低(レ	ベル3)設定	点から原子炉オ	、位高(レベル	8)設定点の間	に維持	
全交流動力電源 喪失の確認 交流電源の回復 操作	【1人】 — —		-	●高圧炉心スプレイ系ディーゼル発電機の手動起動操作(失敗)		1分													
	【1人】 B	[1人] B — — —		_	 ●非常用ディーゼル発電機等の手動起動操作(失敗) 		2分												
		_		-	●非常用ディーゼル発電機の機能回復														
	_				●外部電源の機能回復														
直流電源の負荷切 り離し操作 (中央制御室)	【1人】 B	-		_	 ●不要負荷の切離し操作 									6分					

コメント No. 147-27 に対する回答

第2.3.1-3図 全交流動力電源喪失(長期TB)の作業と所要時間(1/2)

第2.5.13因 主义流動力电源丧入(反朔1D)。》作来它所安时间(1/2)

110 120	備考
	解析上考慮しない 対応可能な要員にて実施

					全交流動力電源喪失(長	期 T B)									
					1					- 1. 1999 \					
					経過時間(時間) 4 8 12 16 20 24 28 32 36										40 備考
					1	1	I	1	1		1	I	1	1	
						▼ 8時間	書 直流電源の	負荷切り離し操	作(現場)						
		実施箇所・必要要	夏員数			, o⊫	·問1八 面乙烷	建己酮 松							
操作項目		【 】は他作業 移動してきた要	é後 E員	操作の内容	▼ 8時间1分 原十炉减圧開始										
				_			✔ 24時間 非常用母線受電								
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)								∇ 24	時間 10 分 残留 原子	熱除去系による構	各納容器スプレイ及び 5開始	
原子炉水位の調整操作 <mark>(原子炉隔離時</mark> <mark>冷却系)</mark>	【1人】 A	-	_	●原子炉隔離時冷却系による原子炉注水の調整操作	原子炉水位を原子炉水位低(レベ) 3)設定点から原子炉水位高(レベ) 8)設定点の間に維持							<i>74. 1</i>	// 10//··· / Clark2 (
	-	-	10人 a~i	●アクセスルート復旧,可搬型代替注水大型ボンプ準備,代替淡水貯 槽からのホース敷設築	170 分										
	-	_	[2人] a.b	●可搬型代替注水大型ポンプ起動操作				起動後, 通	窗宜監視						
- 可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)の起動準備	-	-	[2人] c. d	●淡水貯水池B(A)から淡水貯水池A(B)への補給	60	分									
操作			2人 k, 1												
	-	2 八 C, D	2人 (招集)	●原子炉注水のための系統構成	125 4										
タンクローリによる 燃料補給操作	_	_	2人 (招集)	●可搬型設備用軽油タンクからタンクローリへの補給	90 3										タンクローリ残量に応じ て適宜軽油タンクから補 給
				●可搬型代替注水大型ボンプへの給油							適宜実施				
逃がし安全弁 <mark>(自動減圧機能)</mark> による 原子炉減圧操作	【1人】 B	-	-	●逃がし安全弁 <mark>(自動減圧機能)</mark> 7弁の開放操作	1 5										
原子炉水位の調整操作(可搬型代替注 水大型ボンブを用いた低圧代替注水系 (可搬型))	-	【2人】 C, D	【2人】 (招集)	●原子炉注水の流量調整				系統構成後,	適宜流量調整						
直流電源の負荷切り離し操作(現場)	-	1人 E	1人 m	●不要負荷の切り離し操作	50 5										
常設代替高圧電源装置による	【1人】 B	-	_	●非常用母線受電準備		35 分									
非常用母線の受電準備操作	-	【1人】 E	【1人】 m	●非常用母線受電準備		70 分									
可搬型代替注水大型ポンプを用いた 代替格納容器スプレイ冷却系(可搬型)	_	【1人】	【3人】 k, 1, m	●格納容器スプレイのための系統構成			175 分								
による格納容器冷却		E	2人 (招集)	●格納容器スプレイの流量調整				系系	統構成後,適宜流量	赴調整					
常設代替高圧電源装置による 緊急用母線受電操作	【1人】 B	-	_	●常設代替高圧電源装置2台起動及び緊急用母線への受電操作						4分					
常設代替高圧電源装置による	【1人】	-	-	●常設代替高圧電源装置3台追加起動						8分					
非常用母線受電操作	В			●非常用母線受電						5 分					
				 ●残留熱除去系海水系の起動操作 						4	分				
残留熱除去系による原子炉注水及び格	【1人】	_	-	●残留熟除去系による原子炉注水							2 分				
納容器除熱	A			●残留熟除去系による格納容器スプレイ操作及び原子炉注水の交互運転							原 子 ン・ 定点	ビ炉水位高(レベル プール冷却開始への 気にて原子炉注水への	 8)設定点にて格納 の切替え操作を実施し の切替え操作を実施 	容器スプレイ又はサプレッ レ,原子炉水位低(レベル:	/ ショ 3)設
使用済燃料ブールの冷却操作	-	-	-	●使用済燃料プールの冷却操作											使用済燃料ブールの除熟 機能が喪失した場合で も、ブール水温度が80℃ に到達するまでには1日 以上の時間余裕があるた め、本操作は対応可能な 要員にて実施する。
可搬型代替注水大型ボンブによる水源 補給機作	_	-	-	●可搬型代替注水大型ボンプの移動,ホース敷設等											対応可能な要員にて実施 する
				●ボンプ起動及び水源補給操作											
必要要員合計	2人 A, B	3人 C, D, E	<mark>13人 a~m</mark> <mark>及び招集6人</mark>												

第2.3.1-3 図 全交流動力電源喪失(長期TB)の作業と所要時間(2/2)

第2.3.1-7図 逃がし安全弁からの蒸気流量の推移

第2.3.1-8図 原子炉圧力容器内の保有水量の推移

第2.3.1-9図 燃料被覆管温度の推移

第2.3.1-14図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係

第2.3.1-15図 格納容器圧力の推移

第2.3.1-16図 格納容器雰囲気温度の推移

コメント No. 150-17, 34 に対する回答
 全交流動力電源喪失(長期 T B)時における原子炉隔離時冷却系の
 8時間継続運転が可能であることの妥当性について

有効性評価の全交流動力電源喪失(長期TB)時において,交流電源が喪失している8時間,原子炉隔離時冷却系を用いた原子炉注水に 期待している。

原子炉隔離時冷却系の起動から 8 時間の継続運転のために直流電源 を必要とする設備は,計測制御設備の他,電動弁,真空ポンプ及び復 水ポンプの電動機である。第 1 図に原子炉隔離時冷却系の系統構成概 略を示す。事故時には直流電源の容量以外にも,サプレッション・チ エンバ圧力及びサプレッション・プール水温度の上昇や原子炉隔離時 冷却系室温度及び中央制御室温度の上昇が,原子炉隔離時冷却系の運 転継続に影響することも考えられるため,その影響についても確認し た(第1表参照)。

第1表に記載したそれぞれの要因は原子炉隔離時冷却系の8時間継 続運転上の制約とならないことから、本有効性評価においてこの機能 に期待することは妥当であると考える。
第1表 全交;	流動力電源喪失(長期丁B)時における	原子炉隔離時冷却系の継続運転への影響評価
評価項目	影響概要	新 価
サプレッション・プーレメ追接工程	サプレッション・プール水温度の上昇によ り、原子炉隔離時治却系ポンプのキャビテー ションやポンプ軸受の潤滑油冷却機能が阻 害され、原子炉隔離時冷却系ポンプの運転に 影響を与える可能性が考えられる。	原子炉隔離時冷却系ポンプの第一水源であるサプレッション・プールを水源とした場合、事象発生後8時間での水温 は約100℃となる。この時の原子炉隔離時冷却系ポンプの有 効吸込み水頭(NPSH)は約6.4mまで低下するが、原子 炉隔離時冷却系ポンプの必要NPSHである約5.8mに対し て十分余裕があるため、キャビテーションは発生しない。 また、温度耐性の観点から余裕の小さいポンプ軸受の潤滑 油温度に対しても、冷却器の設計上、潤滑油の冷却に使用 しているサプレッション・プール水温より しているサプレッション・プール水温より の高裕和の許容温度である が、潤滑油の許容温度である 冷却が阻害されることはない。したがって、サプレッショ ン・プールの温度上昇による原子炉隔離時冷却系の8時間 運転継続への影響はない。
サプレッション・チェンバ圧力上昇	原子炉隔離時冷却系タービン保護のため、サプレッション・チェンバ圧力 0.172MPa [gage]にて、原子炉隔離時冷却系タービン排気圧高トリップインターロックが動作し、原子炉隔離時冷却系の運転が停止する可能性が考えられる。	全交流動力電源喪失(長期TB)時のサプレッション・チェンバ圧力を評価した結果,事象発生から 8 時間後の圧力は約 0.07MPa [gage]であり,原子炉隔離時冷却系タービン排気圧高トリップインターロック設定圧力を下回る。したがって,サプレッション・チェンバ圧力上昇によって原子炉隔離時冷却系の 8 時間継続運転は阻害されない。
原子炉隔離時冷却系ポンプ室温度上昇	原子炉隔離時冷却系のポンプ,電気制御系統,弁、タービン等の設計で想定している環境の最高温度は 65.6℃を想定している。全交流動力電源喪失時は換気空調系が停止しているため,原子炉隔離時冷却系ポンプ室温が 65.6℃を超える可能性が考えられる。	全交流動力電源喪失(長期TB)時の原子炉隔離時冷却系ポンプ室温度を評価した結果,事象発生から 8 時間後の室温は約 65℃(初期温度 40℃)であり,原子炉隔離時冷却系の設計で想定している 65.6℃を下回る。したがって,原子炉隔離時冷却系ポンプ室温度上昇によって原子炉隔離時冷却系の 8 時間継続運転は阻害されない。
中央制御室温度上昇	中央制御室の環境条件として想定している最高温度は40℃である。全交流動力電源喪失では換気空調系が停止するため、中央制御室温度が最高温度を超える可能性が考えられる。	全交流動力電源喪失(長期TB)時の中央制御室温度を評価した結果,事象発生から 8時間後の室温は約 39℃であり,制御盤の設計で想定している環境の最高温度 40℃を下回る。したがって,中央制御室温度上昇によって原子炉隔離時冷却系の 8 時間継続運転は阻害されない。

第1図 原子炉隔離時冷却系系統概要図

全交流動力電源喪失(長期TB)時における

原子炉隔離時冷却系ポンプ室及び中央制御室の室温評価について

- 1. 温度上昇の評価方法
- (1) 評価の流れ

全交流動力電源喪失時には換気空調系による除熱が行われない ため,評価対象の部屋の温度変化は,タービンや配管などの室温 の熱源から受ける熱量(室内熱負荷)と隣の部屋(上下階含む) への放熱(躯体放熱)のバランスによって決定される。

換気空調系停止後,室温が上昇を始め,最終的には室内熱負荷 と躯体放熱のバランスにより平衡状態となる。

(2) 評価条件

評価条件を以下にまとめる。

・評価対象とする部屋の条件:

	中央制御室	原子炉隔離時冷却系 ポンプ室
発熱負荷[₩]	$\begin{array}{c} 26, 647 & (0 \sim 1h) \\ 25, 070 & (1 \sim 8h) \end{array}$	下記参照
容 積[m ³]	2,774	556
<mark>熱容量[kJ/℃]^{*1}</mark>	<mark>47960.6</mark>	665.2
初期温度[℃]	2 <mark>4</mark>	40

(原子炉隔離時冷却系ポンプ室 発熱負荷)

時間 (時間)	0	1	2	3	4	5	6	7	8
発熱負荷 (k₩)	13.5 * 2	13.5 * 2	13.5 * 2	13.5 * 3	<mark>14.2</mark>	<mark>14.9</mark>	<mark>15.5</mark>	<mark>16.0</mark>	<mark>16.7</mark>

※1:熱容量は以下のとおり保守的に設定する。

・中央制御室:空間に占める空気容積,既設盤のみの鉄重量分

・原子炉隔離時冷却系ポンプ室:空間に占める空気容積分のみ
 ※2:0~2時間まで発熱負荷の内,原子炉隔離時冷却系注水配管の発熱

負荷は、保守的に配管内温度を 66℃とし、算出。

※3:3時間後の発熱負荷の詳細値は,約13.49kWであり,安全側に切り上げ13.5kWに設定。なお,0~2時間までの発熱負荷の詳細値は約13.401kwであり,安全側に切り上げ13.5kWに設定。

・評価対象の部屋に隣接する部屋の温度^{※4}

原子炉棟	<mark>65.6</mark> ℃ (機器設計温度)
一般エリア	<mark>50.0</mark> ℃(同上)
(二次格納容器外)	
サプレッション・チェンバ	100.0 [℃] (8 時間後の最大温度)
地中	<mark>20.0</mark> ℃ ^{⋇₅}
M S トンネル室	100.0 [℃] (機器設計温度)
屋外	38.4 ℃ (外気最厳値)
<mark>※ 4 :当該温度は,保守的に</mark> 続するものとして評f	こ事象初期から評価期間の間,継 mを行う。

※5:水戸市の地中温度の年間月月平均温度の最大 16.2℃に 余裕を見た値にて設定。(「地中温度等に関する資料 (農業気象資料第3号,1982)」)

原子炉建屋地下 2 階

原子炉建屋地下丨階

第2図 原子炉隔離時冷却系ポンプ室及び隣接する部屋の位置関係図

原子炉建屋2階
 原子炉建屋3階
 原子炉建屋3階
 原子炉建屋付属棟4階
 ※6:当該隣接室は,評価が保守的となるようにMSトンネル室を代表させている。
 第3図
 中央制御室及び隣接する部屋の位置関係図

・コンクリート壁-空気の熱伝達率

熱伝達率 (W/m ² ・℃)
·····

 ※ 7: 伝熱工学資料第5版に基づき,温度差5℃,代表高さ 5mにて算出した値

・コンクリートの熱伝達率

評価壁面	物性値 ^{※ 8}
熱伝導率	
熱拡散率	

※8: 伝熱工学資料第5版に基づく

(3) 評価結果

全交流動力電源喪失(長期TB)時において,事象発生 8 時後の原子炉隔離時冷却系ポンプ室の温度は約 65℃,中央制御室の温度は約 39℃となり,設計で考慮している温度を超過しないため,原子炉隔離時冷却系の運転継続に与える影響はない。

第4図 原子炉隔離時冷却系ポンプ室温の推移図

第5図 中央制御室室温の推移図

添付資料 2.3.1.2

<u>コメント No. 148-04 に対する回答</u> 蓄電池による給電時間評価結果について

非常用の常設直流電源設備として、125V A系蓄電池、125V B 系蓄電池、125V HPCS系蓄電池の3系統、中性子モニタ用蓄電 池A系及びB系の2系統、常設代替直流電源設備として、緊急用直 流125V蓄電池の1系統を有している。

原子炉隔離時冷却系の運転操作に係る負荷は,直流 125V 主母線盤 2 Aに接続されており,125V A系蓄電池より給電される。全交流 動力電源喪失時においては,同蓄電池からの電源供給により,原子 炉隔離時冷却系が起動し,原子炉への注水が行われる。同蓄電池か らの電源供給としては,電源供給開始から1時間後に中央制御室内 にて,電源供給開始から8時間後には現場分電盤にて負荷の手動切 り離しを行うことで,その後16時間にわたり原子炉隔離時冷却系に よる注水に係る負荷に電源を供給するものとして評価する。

上記運転方法に必要な負荷容量が約 5,314Ah であることに対し, 125V A系蓄電池の容量が 6,000Ah^{*1}であることから,24時間*²に わたり原子炉隔離時冷却系の運転継続のための電源供給が可能であ る。(第1図)

また,重大事故等の対応に必要な計装設備については,緊急用直流 125V 主母線盤に接続されており,緊急用直流 125V 蓄電池より給 電される。全交流動力電源喪失時においては,同蓄電池からの電源 供給により,電源供給開始から負荷の切り離しを行うことなく,24 時間*1にわたり必要な計装設備に電源供給が可能である。

上記に必要な負荷容量が約 3,039.6Ah であることに対し, 緊急用

直流 125V 蓄電池の容量が 6,000Ah^{*1}であることから,24 時間にわた り電源供給が可能である。(第2図)

- ※1 蓄電池容量は、使用開始から寿命までの間変化し、使用年数を経 るに従い容量が低下するため、蓄電池容量の算出にあたっては、 「据置蓄電池の容量算出法」(SBA S 0601-2014)による保守率 0.8 を採用していること及び各負荷の電流値を実負荷電流では なく、設計値を用いていることから、必要容量に対して余裕を 持った容量を設定している。
- ※2 全交流動力電源装置(長期TB)においては事象発生3時間後, 全交流動力電源喪失(TBP)においては事象発生8時間後に 低圧代替注水系(可搬型)による原子炉への注水に切り替える が,蓄電池の容量評価を保守的に評価するため,高圧代替注水 系を24時間運転継続した想定で評価を実施している。
- (1) 所内常設直流電源設備の仕様
 名称:125V A系蓄電池
 型式:制御弁式据置鉛蓄電池
 容量:約 6,000Ah
 設置場所:原子炉建屋附属棟中1階
- (2) 常設代替直流電源設備の仕様
 名称:緊急用直流 125V 蓄電池
 型式:制御弁式据置鉛蓄電池

容量:約6,000Ah

設置場所:屋内(常設代替高圧電源装置置場)

第1図 125V A系蓄電池 負荷曲線

第2図 緊急用直流 125V 蓄電池 負荷曲線

安定状態について(全交流動力電源喪失(長期TB))

全交流動力電源喪失(長期TB)時の安定状態については,以下の

とおり。

 原子炉安定停止状態:事象発生後,設計基準事故対処設備又は重大事故等対処 設備を用いた炉心冷却が維持可能であり、また、冷却の ための設備がその後も機能維持でき、かつ、必要な要員 の不足や資源の枯渇等のあらかじめ想定される事象悪 化のおそれがない場合に安定停止状態が確立されたも のとする。
 格納容器安定状態: 炉心冷却が維持された後に、設計基準事故対処設備又は 重大事故等対処設備を用いた格納容器除熱により格納 容器圧力及び温度が安定又は低下傾向に転じ、また、格 納容器除熱のための設備がその後も機能維持でき、か つ、必要な要員の不足や資源の枯渇等のあらかじめ想定 される事象悪化のおそれがない場合に安定状態が確立 されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

原子炉隔離時冷却系の原子炉注水により炉心が冠水し,炉心冷却が維持される。可搬型代替注水大型ポンプによる原子炉注水の準備完了後,原子炉を減圧し,低圧代替注水系(可搬型)による原子炉注水を実施することで,引き続き 炉心が冠水し,炉心の冷却は維持され,原子炉安定停止状態が確立される。

格納容器安定状態の確立について

炉心冷却を継続し、常設代替高圧電源装置による交流電源の供給開始後に残留熱除去系を用いた格納容器除熱を実施することで、格納容器圧力及び雰囲気 温度は安定又は低下傾向となる。格納容器雰囲気温度は 150℃を下回るととも に、ドライウェル雰囲気温度は、低圧注水継続のための逃がし安全弁の機能維 持が確認されている 126℃を上回ることはなく、格納容器安定状態が確立され る。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料及 び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。

(添付資料 2.1.1 別紙 1)

^{コメント No. 148-21, 265-06, 07, 08 に対する回答} 解析コード及び解析条件の不確かさの影響評価について(全交流動力電源喪失(長期 T B))

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	・類 重要現象 解析モデル 不確かさ		不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壞熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熱を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料棒表面熱伝 達,沸騰遷移,気 液熱非平衡	燃料棒表面熟伝 達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数 を低めに評価する可能性があり,他の解析モデ ルの不確かさとあいまってコード全体として, スプレイ冷却のない実験結果の燃料被覆管温度 に比べて+50℃程度高めに評価する。また,低 圧代替注水系による注水での燃料棒冷却過程に おける蒸気単相冷却又は噴霧流冷却の不確かさ は 20℃~40℃程度である。	解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、事象初期の原 子炉注水は原子炉隔離時冷却系の自動起動により確保され、燃料 被覆管温度を起点とする運転員等操作はないことから、運転員等 操作時間に与える影響はない。	解析コードは,実験解析において熱伝達モデルの保守性により燃 料被覆管温度を高めに評価し,有効性評価解析においても燃料被 覆管温度を高めに評価することから,評価項目となるパラメータ の判断基準に対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジルコニウム – 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,事象初期の 原子炉注水は原子炉隔離時冷却系の自動起動により確保され,燃 料被覆管温度を起点とする運転員等操作はないことから,運転員 等操作時間に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,実際の燃 料被覆管温度は低めとなり,評価項目となるパラメータの判断基 準に対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は、燃料被覆管温度と円周方向応力 に基づいて評価され、燃料被覆管温度は上述の ように高めに評価され、円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって、ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが運転員等操作に与える影響はない。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが評価項目となるパラメータに与える影響はない。

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象 解析モデル 不確かさ		運転員等操作時間に与える影響	評価項目となるパラメータに与える影響	
炉心	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	<u></u> 二相流体の流動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相木位変化は,解析結果に重量する木位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,原子炉隔離時冷却系 及び低圧代替注水系を注水手段として用いる事 故シーケンスでは考慮する必要のない不確かさ である。このため,燃料被覆管温度に大きな影 響を及ぼす低圧代替注水系の注水タイミングに 特段の差異を生じる可能性はないと考えられ る。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析におけ る燃料被覆管最高温度は初期値を上回ることがなく、評価項目に 対して十分な余裕があることから、その影響は非常に小さい。
原子炉 圧力 容器	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のパランスだけで定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。
	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており、実機設備仕様に対し て注水流量を少なめに与え、燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	重要現象	解析 モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壞熱	炉心モデル(原子 炉出力及び崩壊 熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水(給水 系・代替注水設備 含む)	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析 モデルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	格納容器各領域 間の流動 構造材との熱伝 達及び内部熱伝 導		HDR実験解析では,格納容器圧力及び雰囲気 温度について,温度成層化を含めて傾向をよく 再現できることを確認した。格納容器雰囲気温 度を十数℃程度高めに,格納容器圧力を1割程 度高めに評価する傾向が確認されたが,実験体	解析コードは、HDR 実験解析において区画によって格納容器雰囲 気温度を十数 ²⁰ 程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、これらの不確かさは実験体系に起因する ものであり、実機体系においては不確かさが小さくなるものと推 定され、全体としては格納容器圧力及び温度の傾向を適切に再現	解析コードは、HDR実験解析において区画によって格納容器雰囲気 温度を十数C程度,格納容器圧力を1割程度高めに評価する傾向 が確認されているが、これらの不確かさは実験体系に起因するも のであり、実機体系においては不確かさが小さくなるものと推定 され、全体としては格納容器圧力及び温度の傾向を適切に再現で
格納容器	気液界面の熱伝 達	格納容器モデル (格納容器の熟 水力モデル)	系に起因するものと考えられ、実機体系におい てはこの種の不確かさは小さくなるものと考え られる。また、非振縮性ガス濃度の挙動につい て、解析結果が測定データとよく一致すること を確認した。 CSTF実験解析では、格納容器雰囲気温度及 び非凝縮性ガス濃度の挙動について、解析結果 が測定データとよく一致することを確認した。	できているため、格納容器圧力を操作開始の起点としている代替 格納容器スプレイ冷却系(可擬型)による格納容器冷却に係る運 転員等操作時間に与える影響は小さい。 また、CSTF実験解析において格納容器雰囲気温度及び非凝縮 性ガスの挙動は測定データと良く一致することを確認しており、 その差異は小さいため、格納容器圧力及び雰囲気温度を操作開始 の起点としている代替格納容器スプレイ冷却系(可擬型)による 格納容器冷却に係る運転員等操作時間に与える影響は小さい。	きているため,評価項目となるパラメータに与える影響は小さい。 また, CSTF実験解析により格納容器雰囲気温度及び非凝縮性 ガスの挙動は測定データと良く一致することを確認しているた め,評価項目となるパラメータに与える影響は小さい。
	スプレイ冷却	安全系モデル(格 納容器スプレイ)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	サ プ レ ッ シ ョ ン・プール冷却	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

項 目		解析条件の不確かさ		タル記念の考えた	であた日位はかれ目にたらて引続	評価項目となるパラメータに
		解析条件	最確条件	余件設定の考え方	運転員寺操作时间に与える影響	与える影響
	原子炉熱出力	3,293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は,最大線出力密度及び原子炉停止後 の崩壊熟にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響は小さい。
初期条件	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト 下端から約 122cm~ + 132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約2mであ り非常に小さい。したがって、事象進展に及ぼす影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるバラメータに与える影響は小さい。
* 件	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい て解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さい。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は、 熱水力的な特性はほぼ同等であり、その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含されることから、代表的に9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性はほ ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44.0kW∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、事象初期の原子炉注水は原子炉 隔離時冷却系の自動起動により確保され、燃料被覆 管温度を起点とする運転員等操作はないことから、 運転員等操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから、評価項目となるパラメータの 判断基準に対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(1/4)

項目		解析条件の不確かさ				証価商口 しわて パニュー カート とて 影響
		解析条件	最確条件	条件設定の考え方	連転員等操作時間に与える影響	評価項目となるハフメータに与える影響
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下及 び格納容器圧力上昇の観点で厳しい設 定となる。このため,崩壊熱が大きくな る燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(1 ヶ月)を考慮した運転期間に対応する燃 焼度を設定	最確条件は解析条件で設定している崩壊熱よりも小 さくなる。このため、原子炉からサプレッション・ ブールに流出する蒸気量が減少することで、原子炉 水位の低下が遅くなるが、事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保されるこ とから運転員等操作時間に与える影響はない。また、 格納容器圧力、サプレッション・プール水位及びサ プレッション・プール水温度の上昇が遅くなり、こ れらのパラメータを起点とする運転員等操作の開始 時間は遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小 さくなる。このため、燃料からの発熱が小さくなり、 原子炉からサブレッション・ブールに流出する蒸気量 が減少することで、原子炉水位の低下並びに格納容器 圧力及び雰囲気温度の上昇が緩和されることから、評 価項目となるパラメータに対する余裕が大きくなる。
初期条件	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として,通常運転時の圧力を包含する 値を設定	最確条件は解析条件で設定している格納容器初期圧 力よりも小さくなる。このため、格納容器圧力が低 めに推移することから、格納容器圧力を起点とする 運転員等操作の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧 力よりも小さくなる。このため,格納容器圧力が低め に推移することから,評価項目となるパラメータの判 断基準に対する余裕は大きくなる。
	ドライウェル雰囲気 温度	57℃	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ドライウェル雰囲気温度 は、格納容器スプレイの実施に伴い飽和温度となる ことから、初期温度のゆらぎが事象進展に与える影響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ドライウェル雰囲気温度は、 格納容器スプレイの実施に伴い飽和温度となること から、初期温度のゆらぎが事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。
	格納容器体積 (ドライウェル)	5, 700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約4,058m ³ 液相部: 約3,308m ³ ~約3,342m ³ (実測値)	サプレッション・プールでの圧力抑制効 果が厳しくなる少なめの水量として,保 安規定の運転上の制限における下限値 を設定	最確条件とした場合には,格納容器体積(ウェット ウェル)の液相部の運転範囲において解析条件より 高めの水位となるが,ゆらぎの幅は非常に小さい。 例えば,サプレッション・プール水位が6.983mの時 の水量は3,300m ³ であるのに対し,ゆらぎ(0.087m) による水量変化は約42m ³ であり,その割合は初期保 有水量の1.3%程度と非常に小さい。したがって,事 象進展に与える影響は小さく,運転員等操作時間に 与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウ エル)の液相部の運転範囲において解析条件より高め の水位となるが、ゆらぎの幅は非常に小さい。例えば、 サプレッション・プール水位が6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、評価項目となるバラメータに与 える影響は小さい。
	サプレッション・ プール水位	6.983m (通常運転水位 -4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、サブレッション・ブール 水位の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプ レッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約 42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、運転員等操作時間に与える影響 響は小さい。	最確条件とした場合には、サブレッション・プール木 位の運転範囲において解析条件より高めの水位とな るが、ゆらぎの幅は非常に小さい。例えば、サブレッ ション・ブール木位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m)による水量変化は 約 42m ³ であり、その割合は初期保有水量の 1.3%程度 と非常に小さい。したがって、事象進展に与える影響 は小さく、評価項目となるパラメータに与える影響は 小さい。
	サプレッション・ プール水温度	32℃	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる高めの水温として,保安 規定の運転上の制限における上限値を 設定	最確条件は解析条件で設定している水温よりも低く なるため、サプレッション・プールでの圧力抑制効 果が高まり格納容器圧力の上昇は緩和される。この ため、格納容器圧力を起点とする運転員等操作の開 始は遅くなる。	最確条件は解析条件で設定している水温よりも低く なるため、サプレッション・プールでの圧力抑制効果 が高まり格納容器圧力の上昇は緩和される。このた め、評価項目となるバラメータの判断基準に対する余 裕は大きくなる。

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(2/4)

項目		解析条件6	の不確かさ	タル乳ウのおう十	マボ昌幼祖作曲町にたらて影響	評価項目となるパラメータに
		解析条件	最確条件	米件設定の考え方	運転員寺操作时间に与える影響	与える影響
事	起因事象	外部電源喪失	-	送電系統又は所内主発電設備の故障等によ って,外部電源が喪失することを想定	_	-
故条	安全機能の喪失に 対する仮定	全交流動力電源喪失	-	全ての非常用ディーゼル発電機等の機能喪 失を設定	-	-
件	外部電源	外部電源なし	_	起因事象として、外部電源が喪失すること を想定	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない。
	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	タービン加減弁急速閉信 号又は原子炉保護系電源 喪失	短時間であるが原子炉熱出力が維持される 厳しい設定として,外部電源喪失時のター ビン蒸気加減弁急速閉信号及び原子炉保護 系電源喪失による原子炉スクラムについて は保守的に考慮せず,原子炉水位低(レベ ル3)にてスクラムするものとして設定	最確条件とした場合には、原子炉熱出力の低下が早 くなるため、原子炉からサブレッション・ブールに 流出する蒸気量が減少することで、原子炉水位の低 下が遅くなるが、事象初期の原子炉注水は原子炉隔 離時冷却系の自動起動により確保されることから運 転員等操作時間に与える影響はない。また、格納容 器圧力、サブレッション・ブール水位及びサブレッ ション・プール水温度の上昇が遅くなり、これらの バラメータを起点とする運転員等操作の開始時間は 遅くなる。	最確条件とした場合には、原子炉熱出力の低下が早く なるため、原子炉からサブレッション・ブールに流出 する蒸気量が減少することで、原子炉水位の低下並び に格納容器圧力及び温度の上昇が緩和されることか ら、評価項目となるパラメータに対する余裕が大きく なる。
関連する機器条件	原子炉隔離時冷却系	原子炉水位異常低下 (レベル2)信号にて 自動起動 136.7m ³ /h(7.86~ 1.04MPa[gage]におい て)	原子炉水位異常低下 (レベル2)信号にて 自動起動 136.7m ³ /h(7.86~ 1.04MPa[gage]におい て)	設計値を設定。原子炉隔離時冷却系は,タ ービン回転数制御により原子炉圧力に依ら ず一定の流量にて注水する設計となってい る。	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから, 事象進展 に影響はなく, 評価項目となるパラメータに与える影 響はない。
	残留熱除去系 (低圧注水系)	最小流量特性 ・注水流量:0~1,676m ³ ∕h ・注水匠力:0~ 1.55MPa[dif]	・注水流量:0~1,676m ³ /h以上 ・注水圧力:0~ 1.55MPa[dif]	炉心冷却の観点で厳しい設定として,設計 基準事故の解析で用いる最小流量特性を設 定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,注水開始後の原子炉水位の維持 操作の開始が早くなるが,注水後の調整操作であり, 運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、評価項目となるパラメータの判断基 準に対する余裕は大きくなる。
	残留熱除去系(サプレ ッション・プール水冷 却系)	熱交換器1基あたり 約43MW (サプレッション・プ ール水温度100℃,海 水温度32℃において)	熱交換器 1 基あたり 約 43MW 以上 (サプレッション・プ ール水温度 100℃,海 水温度 32℃以下にお いて)	残留熱除去系の除熱性能を厳しくする観点 で,過去の実績を包含する高めの海水温度 を設定	最確条件とした場合には、海水温度が低めとなり除 熱性能が向上するため、格納容器圧力及びサプレッ ション・プール水温度の上昇が遅くなるが、これら のパラメータを起点とする運転員等操作はないこと から運転員等操作時間に与える影響はない。	最確条件とした場合には、海水温度が低めとなり除熟 性能が向上するため、格納容器圧力及び雰囲気温度の 上昇が緩和されることから、評価項目となるパラメー タに対する余裕が大きくなる。

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(3/4)

頂日		解析条件の不確かさ		タル乳ウのおう十	であた日放根が中国にたらて影響	評価項目となるパラメータに	
	項日	解析条件	最確条件	余件設定の考え方	運転員等操作時間に与える影響	与える影響	
	低圧代替注水系 (可搬型)	 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m ³/h ・注水圧力:0~ 1.4MPa[dif] 	 (原子炉注水単独時) 定格流量特性 ・注水流量:0~110 m ³/h以上 ・注水圧力:0~ 1.4MPa[dif] 	炉心冷却性の観点で厳しい設定として,設 備設計上の最低要求値である最小流量特性 を設定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,原子炉水位の維持操作の開始が 早くなるが,原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため,運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、炉心の再冠水が早まることから、評 価項目となるパラメータの判断基準に対する余裕は 大きくなる。	
		(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50 m ³ ∕ h	(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50 m ³ /h <mark>以上</mark>	併用時の系統評価に基づき,保守的な流量 を設定			
	代替格納容器スプレ イ冷却系(可搬型)	スプレイ流量: 130m ³ /h <mark>(一定)</mark>	スプレイ流量: 130m ³ /h 以上	格納容器圧力上昇を抑制可能な流量とし て,運転手順に基づき設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
関連する	外部水源の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制効果の観 点で厳しい高めの水温として、年間の気象 条件変化を包含する高めの水温を設定。	最確条件とした場合には、解析条件で設定している 水温よりも低くなる可能性があり、格納容器スプレ イによる圧力抑制効果が高まることから、同等の効 果を得るために必要となるスプレイ水量が少なくな り、外部水源を用いた格納容器スプレイ水量が少なくな り、サ部水源を用いた格納容器スプレイに伴うサプ レッション・プール水位の上昇が緩和されることか ら、サプレッション・プール水位を起点とする操作 の開始は遅くなる。	最確条件とした場合には,解析条件で設定している水 温よりも低くなる可能性があり,格納容器スプレイに よる圧力抑制効果が高まるが,格納容器最高使用圧力 に到達した時点で格納容器ベントを実施するマネジ メントに変わりはなく,格納容器圧力の最大値はおお むね格納容器ベント時の圧力で決定されるため,評価 項目となるパラメータに与える影響はない。	
機 等 対 条 策 件 に	冰花上安全金	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	 (原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個 (設計値) 	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
	週かし女王开	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから、事象進 展に影響はなく、運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、水源は枯渇しないこと から運転員等操作時間に与える影響はない。	_	
	燃料の容量	約 1,010kL	約1,010kL以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_	

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(4/4)

第3表 操作の不確さが操作開始時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(1/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	直流電源の 負荷切離し操 作	事象発生から 8時間後	直離し件所る。 離し件ではな定の切り が、 り、 がでした ででれている ででれている ででれて、 のの要 置い に、 のの での し、 のの の の が が の の の が が の の の が い が し た の で れ 、 い が し た の の が の で れ で た た の 、 あ 、 し た る た こ あ し 、 ひ 、 し 、 ひ 、 で れ で た た か あ し た ひ 、 で れ で た で か に で た つ た こ た つ た こ た つ た こ で た で た で た で し て で で で で で で た っ で た で た で た で た で た で た で た で た っ で た で た で た で た で た で た で た で た で た で た て た で た で た で た で た で た で た で た で た で た で の で た で た で た で た で た で た で た で た で た て た で た て た て た で た で た で た で た で た た た で た で た で た で た で た で た で た で た で た で た で た で た で た で た で た で た の た た た た た た で た で た で た で た で た た た た た で た た た た た た た た た た た た た	 【認知】 中央制御室からの遠隔操作により外部電源又は非常用ディーゼル発電機等による非常用母線の交流電源回復ができない場合、早期の電源回復不能と判断し、常設代替高圧電源装置による緊急用母線及び非常用母線の受電を開始し、これに失敗した場合は、直流電源の負荷切り離し操作を開始する手順としている。中央制御室にて機器ランプ表示消灯、機器故障警報、照明の消灯等により全交流動力電源喪失を確認する事象初期の状況判断に余裕時間を含めて10分を想定している。この後、非常用ディーゼル発電機等の手動起動操作(失敗)として余裕時間を含めて2分を想定している。また、重大事故等対処設備の故障は想定しないが、常設代替高圧電源装置の起動操作時間として4分を想定する。よって、認知時間として余裕時間を含めて16分を設定しており、十分な時間余裕を確保していることから、認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 現場操作のため、中央制御室の運転員とは別に現場操作を行う運転員(現場)及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中に他の操作を担っていないことから、要員配置が操作開始時間に与える影響はない。 【移動・操作所要時間】 中央制御室から操作現場までの移動時間及び不要負荷の切離し操作時間として余裕時間を含めて50分を設定しており、十分な時間余裕を確保していることから、移動及び操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 運転員の直流電源の負荷切り離し操作は、不要な負荷への給電を遮断する操作であり、その他の操作との並列操作が可能である。 【操作の確実さ】 運転員の現場操作は、操作の信頼性向上や要員の安全のため2人1組で実施することとしており、誤操作は起こりにくく、誤操作等により操作時間が長くなる可能性は低い。 	認知時間及び移動・操 作所要時間は,余裕時 間を含めて設定して いることから,準備の 完了は解析上の操作 開始条件よりも若干 早まる可能性がある。	実態の操作開始時間 は解析しの設定から 早まる町を住がはない ことから、蓄地すること で,メート でにご確項目に与える影 響はない。	直流負荷の切り離し 操作は,事象発生から 8時間後に実施する基 のであり十分な操作 時間余裕が確保され ている。	直前離所 電し所要 の り 移想 こで, 窓 操 た と で 、 窓 操 た と で 、 窓 様 た を り の る を を の の を を の の を を の の を を の の を を の

第3表 操作の不確さが操作開始時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(2/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃がし安全弁 し安子炉 減圧費を注水 に て 瀬原子 (て 教原子 (る 原子 (て 教 原子 (て る 原子 (て る 原子 (て る 原子 (て る 原子 (て る 原子 (て る 原子 (て る 原子) (て る 原子) (て る 原子) (て る 原子) (て る 原子) (て る 原子) (て る 原子) (の) (の 原子) (の) (の) (の) () () () () () ()	事象発生から 8時間1分後	実際に可にで、 実際に可に一定で、 には、低な替し、 には、低な替し、 には、で、 が、 超した。 ので、 で、 が、 が、 たで、 に、 ので、 で、 が、 が、 た ので、 で、 が、 が、 た ので、 で、 が、 や た の 、 の に 一 量 て に 一 、 数 過 は 施 む を を 8 時 ショ 、 数 間 点 に 千 搬 う て 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 、 数 置 に 一 数 一 一 、 数 置 に 一 数 一 、 数 置 に 、 数 置 で 、 数 置 に 、 数 で 、 る た 、 、 、 の た 、 、 、 、 数 に 、 、 、 記 間 た 、 、 、 こ 、 、 る た 、 、 、 、 、 こ 、 、 、 、 、 、 、 、 、 、 、 、 、	【認知】 中央制御室にて機器ランプ表示消灯,機器故障警報,照明の消灯等により全交 流動力電源喪失を確認する事象初期の状況判断に余裕時間を含めて10分を想 定している。よって、認知時間として余裕時間を含めて10分を設定しており、 十分な時間余裕を確保していることから,認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから,要員配置が操作開始時間に与える影響は ない。 【移動・操作所要時間】 低圧代替注水系(可搬型)に用いる可搬型代替注水大型ボンプ等は車両であり、 自走にて作業現場へ移動することを想定している。仮に地震等の外部事象が起 因事象で、アクセスルートに被害がある場合でも、ブルドーザー等にて必要な アクセスルートを復旧できる体制としている。アクセスルートの復旧(がれき 撤去)に25分、可搬型代替注水大型ボンプ準備、ホース敷設等として移動も 含め145分を想定している。また、異なる要員にて並行して実施する原子炉注 水のための系統構成として移動も含め125分を想定している。いずれも十分な 時間余裕を確保していることから、移動及び操作所要時間が操作開始時間に影響 を及ぼす可能性は非常に小さい。 逃がし安全弁による原子炉減圧操作として余裕時間を含めて1分を設定して いる。中央制御室の制御整の操作スイッチによる簡易な操作であり、操作所要 時間が長くなる可能性は非常に低く、操作所要時間が操作開始時間に影響を及 ぼす可能性は非常に小さい。 【他の並列操作有無】 他の並列操作有無】 他の並列操作有無】 他の並列操作有無」 他の如列操作はないことから操作開始時間に与える影響はない。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため、操作要員2人以上 で実施することとしており、誤操作は起こりにくいことから、誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び移動・操 作所要時間は、余裕し でから、定態の 操作開始時間は解析 上のも若干早まる可能 性がある。	実態の操作開始時間 は解析上の設定から 早まる搬型に行きるが、可ンプに移行原子が が、ポンプに移行原子が の期間却系症保存 うかの での時冷水が確られ ていることから が、 アクロークに い。	低圧代替注水系(可搬型)の準備完了後に実施するものであり,評価上は余裕時間をであり,評価上は余裕時間を観えて8時間後に準備が完了するものとしていることから,準備時間が確保できるため,時間余裕がある。	ア復び水備は要にした。 「ないれった」で、 「ないた、 「ない、 「、 「ない、 「ない、 「、 「、 「、 「、 「、 「、 「、 「、 「、 「

第3表 操作の不確さが操作開始時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(3/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	低水型子作に搬水プライに ケーマント をするので、 がに用型大への を がい代型の たい や の を が に 、 に 注 い に 、 、 が 、 に 、 に 、 に 、 に 、 に 、 、 、 が 、 、 、 、	低圧代替注水 系(こる原子炉 注水開始から 適宜	可 搬型 代 型 代 型 代 型 ポ 給 料 作 で で 想 た で で 、 解 れ の 板 析 、 解 れ の 校 教 件 で で 被 た た の 必 、 、 い い し 成 な い が し な い い し 成 た の い 、 て で 、 、 の 、 の 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、	【認知】 「述がし安全弁による原子炉減圧操作(低圧代替注水系(可搬型)による原子 炉注水操作)」と同様であり,認知遅れが操作開始時間に影響を及ぼす可能性 は非常に小さい。 【要員配置】 本操作を実施する招集要員は,操作の実施期間中に他の操作を担っていないこ とから,要員配置が操作開始時間に与える影響はない。 【移動・操作所要時間】 招集要員の招集まで120分を想定している。また,燃料補給に用いるタンクロ ーリは車両であり,招集後,自走にて作業現場へ移動することを想定している。 仮に地震等の外部事象が起因事象で,アクセスルートに被害がある場合でも、 ブルドーザー等にて必要なアクセスルートを復旧できる体制としている。 仮に地震等の外部事象が起因事象で,アクセスルートに被害がある場合でも、 ブルドーザー等にて必要なアクセスルートを復旧できる体制としている。 個の並列操作開始時間余裕を確保していることから,移動及び操作所要時 間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため、操作要員2人以上 で実施することとしており,誤操作は起こりにくいことから,誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び移動・操 作所要時間は,余裕時 間を含めて設定して いることから,実態の 操作開始時間は解析 上の操作開始時間よ りも若干早まる可能 性がある。	実態の操作開始時間 は解析上の設定から 早まる可能性がある が,評価項目となるパ ラメータに直接影響 を与えることはない。	各機器の燃料が枯渇 しない時間内に実施 することで炉心損傷 を回避することが可 能であり、低圧代替注 水系(可搬型)による 原子炉注水開始から3 時間半程度の時間余 裕がある。	可塑ボ給ていた。 「一型補給での動想ので、 「一型 がなりのるでは、 の の な の の る 等 た の に な 時 市 り の と で し 们 の る 、 数 都 に 、 物 路 れ の の る 等 た た い は い 数 ま 器 器 な い 時 市 り の の で で し に 約 の の る に に は 約 の る に に れ 約 に た の の の に に れ 約 の の の で し に れ 約 の の の で し に れ 約 の の の に に れ 約 の の の の に に に れ 約 の の の の に の 時 同 り の の の で に ら つ り の の で に ら つ り の の で に た う の の の で に た っ の の の の に に 時 同 り の の の に ら に ち の の の の に に 時 市 り の の の の の の の の の の た こ た る の の の の の の た こ た る の の の の た に ら つ り の の た こ た る の の の の で た こ た る の の の の た に ら つ の り の で た こ た る の の の た に ら で で が る い 市 間 の つ の の た に ら 時 で い た こ た ら で で む た こ た ら で で ん し 町 る つ で で で む た っ で で ん り 間 っ で し し て で で む た っ で で っ た っ で で む で で の で で で で の で で の っ で で で っ の で で う の つ で の っ で の っ で で う の っ で の こ っ で で う の っ で で う で で の っ で で の っ で の っ の で の っ の つ の つ の つ の の の の つ の つ の の の つ の つ の つ の の

第3表 操作の不確さが操作開始時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(4/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	代替格納容 器 オプレイ 冷却系(可搬 型)による格 納容器冷却	サプレッショ ン・チェンバ 圧力 279kPa [gage] 到達 時	運転手順に基づき	 【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェンバ圧力を継続回しており、また、格納容器スプレイの操作実施基準(サプレッション・チェンバ圧力を継続回しており、記知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場)及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中に他の操作を担っていないことから、要員配置が操作開始時間に与える影響はない。 【移動】 格納容器スプレイのための系統構成の実施場所は、原子炉注水のための系統構成と同じ原子炉建屋内であり、操作要員はすでに配置済みであることから、移動が操作開始時間に与える影響はない。 【操作所要時間】 格納容器スプレイのための系統構成として175分を想定しており、十分な時間余裕を確保していることから、操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉注水の流量調整を並列して実施する場合があるが、異なる要員による対応が可能であるため、他の並列操作が操作開始時間に与える影響はない。また、代替格納容器スプレイ約却系(可搬型)は、低圧代替注水系(可搬型)とボンプ等を共用しているが、原子炉注水と格納容器スプレイの同時運用が可能である。 【操作の確実さ】 運転員(現場)及び重大事故等対応要員の現場操作は、操作の信頼性向上や要員の安全のため2人1組で実施することとしており、誤操作は起こりにくく、誤操作等が操作開始時間に影響を及ぼす可能性は小さい。 	左記のとおし、 を記のとおして、 なのとなり、 しまええる 影響時での設定に して、 に、 ないで開始でである。 本様ですが、 して、 して、 して、 たい、 して、 して、 して、 して、 して、 して、 して、 して	実態所不られる。 実態所不であ目して、 が、 にであり、 が、 に、 が、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に	事象発生の約 13 時の 参え、 を施する若特で のかるもれた のが を たり、 低型 り水 た 評価 に た に た に た に た に た に た に た に た に た に	格納容めの開発した。 格納容の時間を175 分想ろ、前定に加速して、 がして、 がして、 にで 意様の る に た。 に た の の 時 に い る は で の 時 に い た に 、 所定 い る は で の に 、 所定 い い の を の の 時 に の 、 時 に の 、 の 時 で の の 時 に の 、 の 時 に の 、 の で に の 、 の 思 で に つ ま に の 、 う だ に の 、 に の ま に の ま に の ま に の ま に の ま に の ま に の ま の 、 に の ま の 、 に の ま の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、

第3表 操作の不確さが操作開始時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(5/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	残留 熱 除	事象発生 24 時間 10 分後	常設代替高圧る高店る高店る高店の高店の高店の売工業に 常用作の完了後、の 留熟味作に考慮して 設定	【認知】 常設代替高圧電源装置による非常用母線の受電操作の完了後,連続して操作を 実施するため,認知に大幅な遅れが生じることは考えにくく,認知遅れが操作 開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 残留熟除去系海水系の起動操作として4分,残留熟除去系による原子炉注水操 作として1分を想定し,余裕時間を含めて操作時間として5分を設定している。 いずれも中央制御室の制御盤の操作スイッチによる簡易な操作であり,操作所 要時間が長くなる可能性は十分に低く,操作所要時間が操作開始時間に影響を 及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉水位の調整操作を並列で実施する場合があるが,異なる運転員による対 応が可能であることから,他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作のため,誤操作は起こり にくく,誤操作等が操作時間に影響を及ぼす可能性は非常に小さい。	操作所要時間は, 余裕 時間を含めて設定し ていることから, 実態 の操作開始時間は時間 析上の操作開始時間 よりも若干早まる可 能性がある。	実態の操作開始時間 は解析上り早くなる可 能性があるが、この熱 の開始が早くなる可 には格納容器の熟 の開始が早くなることで格納容器度の上昇 は緩和され、評価項の 判断基準に対する余 裕は大きくなる。	非常用母線の受電後 に実施するものであ り,評価上は24時間 後に非常用母線の受 電が完了る想定 して時間が確保できる ため,時間余裕があ る。	中央操作の一タ。 、 や 大 制御の クタ 、 し た の と 、 機 に れ 、 機 に や の し の し の し の し の し の し の し の き た の の り の し の し の き た の の う い れ に 親 い 谷 の う の い 得 に ろ の の の い で し の ま の 絵 宗 密 た に 和 た の の の の し 、 親 の た の の の の し の ま の 絵 に 熟 い 密 つ た の た の た の 、 い れ の た の の の の の た 、 、 熟 に 察 空 に 和 た い た の の の の た 、 ま 熟 に 察 思 注 水 ま い た 、 熟 た の た の た 、 熟 た の た の た 、 熟 た か た の た い た 、 ま 、 熟 作 の い た 、 ま い た 、 熟 作 い か ま の た 、 ま た か た 、 れ た た か た た た た た た た た た た た た た

コメント No. 147-01, 148-11, 150-04, 11, 30 に対する回答	添付資料 2.3.1.5
 逃がし安全弁作動用の窒素の供給について	

1. 逃がし安全弁について

逃がし安全弁は,原子炉冷却材圧力バウンダリの過圧を防止するため格納 容器内の主蒸気管に設置されている。排出した蒸気は排気管によりサプレッ ション・プール水中に導き凝縮するようにしている。逃がし安全弁はバネ式 (アクチュエータ付)で,アクチュエータにより逃がし弁として作動させる こともできるバネ式安全弁である。すなわち,逃がし安全弁はバネ式の安全 弁に外部から強制的に開閉を行うアクチュエータを取り付けたもので,蒸気 圧力がスプリングの設定圧力に達すると自動開放するほか,外部信号によっ てアクチュエータのピストンに窒素ガスを供給して弁を強制的に開放するこ とができる。逃がし安全弁は18個からなり,次の機能を有している。

(1) 逃がし弁機能

逃がし安全弁は,原子炉冷却材圧力バウンダリの過圧を防止するため, 原子炉圧力が設定圧力に到達した場合に信号を発信し,アクチュエータの ピストンを駆動して強制的に開放する。18 個の逃がし安全弁は,全てこの 機能を有している。

(2) 安全弁機能

逃がし安全弁は、原子炉冷却材圧力バウンダリの過圧を防止するため、 逃がし弁機能のバックアップとして、圧力上昇に伴いスプリングに打ち勝 って自動開放されることにより、原子炉冷却材圧力バウンダリの最も過酷 な圧力変化に対しても、原子炉圧力が最高使用圧力の1.1倍を超えないよ うに設計されている。18個の逃がし安全弁は、全てこの機能を有している。

(3) 自動減圧機能

自動減圧機能(以下「ADS機能」という。)は、非常用炉心冷却系の一 部であり、「原子炉水位異常低下(レベル1)」と「ドライウェル圧力高」 の同時信号によりピストンを駆動して弁を強制的に開放し、LOCA時等 に原子炉圧力をすみやかに低下させて、低圧注水系の早期の注水をうなが す。18 個の逃がし安全弁のうち、7 個がこの機能を有している。

(4) その他の機能

原子炉停止後,熱除去源としての復水器が何らかの原因で使用不能な場 合に,崩壊熱により発生した蒸気を除去するため,中央制御室からの遠隔 手動操作で弁を開放し,原子炉圧力を制御することができる。18 個の逃が し安全弁は,全てこの機能を有している。

第1表に,逃がし安全弁の吹出し圧力を示す。

第1表 逃がし安全弁の逃がし弁機能及び安全弁機能の吹出し圧力

(逃が	し弁機能の吹出	し圧力)

吹出し圧力 (MPa[gage])	弁個数	容量/個(t/h)	備 考*1
7.37	2	354.6	D, N
7.44	4	357.8	E, G, P, U
7.51	4	361.1	H, J, M, V
7.58	4	364.3	A, C, F, S
7.65	4	367.6	B, K, L, R

(安全弁機能の吹出し圧力)

吹出し圧力 (MPa[gage])	弁個数	容量/個(t/h) ^{※2}	備 考*1
7.79	2	385.2	D, N
8.10	4	400.5	E, G, P, U
8.17	4	403.9	H, J, M, V
8.24	4	407.2	A, C, F, S
8. 31	4	410.6	B, K, L, R

※1:囲み文宇は,自動減圧機能付きの逃がし安全弁を示す。

※2:吹出し圧力×1.03において

2. 逃がし安全弁の作動用の窒素の供給について

逃がし安全弁の機能のうち,バネ式の安全弁機能以外の「逃がし弁機能」, 「自動減圧機能」及び「その他の機能」は,弁の開閉のために窒素を供給し てアクチュエータを作動させる。第2表に逃がし安全弁(ADS機能付き) 及び逃がし安全弁(ADS機能なし)の動作回数及びアキュムレータ容量を 示す。

	動作回数	使用する アキュムレータ	概略図
逃がし安全弁 (ADS 機能付き)	1回 (ドライウェル最高使用圧力 (310kPa[gage])) 又は 5回 (ドライウェル通常圧力 (12.7kPa[maga]) パ下)	ADS 機能用 アキュムレータ (250 リットル)	第 1 図 参照
	(13.7kFa[gage]) 以下) 1回 (ドライウェル通常圧力 (13.7kPa[gage])以下)	逃がし弁機能用 アキュムレータ (8.5リットル)	
逃がし安全弁 (ADS 機能なし)	1回 (ドライウェル通常圧力 (13.7kPa[gage])以下)	逃がし弁機能用 アキュムレータ (8.5リットル)	第2図 参照

第2表 逃がし安全弁の動作回数(外部からの窒素供給なしの場合)

逃がし安全弁のアキュムレータへ窒素ガスを供給する設備は、常用系と非 常用系から構成されている。常用系はフィルタ、減圧弁等で構成され、窒素 ガスは不活性ガス系より供給される。非常用系は高圧窒素ガスボンベ、減圧 弁等から構成され、独立したA系、B系の2系列からなる高圧窒素ガス供給 系(非常用)より供給される。また、常用系と非常用系との間にはタイライ ンを設け、通常時は非常用系へも常用系の不活性ガス系から供給される。第 3 図に系統構成図を示す。

LOCA後等の長期冷却時には,逃がし安全弁(ADS機能付き)のアキ ュムレータに窒素ガスを供給する。このとき,常用系が健全であれば常用系 から供給するが,常用系が機能を喪失した場合は,非常用系(窒素ガスボン べ)から供給する。

第1図 逃がし安全弁(ADS機能付き)概略図

第2図 逃がし安全弁(ADS機能なし)概略図

第3図 高圧窒素ガス供給系(非常用) 系統概要図

高圧窒素ガスボンベの容量は,自動減圧機能付き逃がし安全弁7弁(A系4弁,B系3弁)を開弁させた後,7弁を7日間開保持させるために必要な窒素ガス量を基に,必要ボンベ本数を確保している。

1系列あたりの必要ボンベ本数は以下のとおり。

【窒素ガス消費量】

合計	:	20871[NL]
を7日間開保持するための消費量	:	19032[NL]
高圧窒素ガス供給系(非常用)1系列4弁		
を開動作するための消費量	:	1454[NL]
高圧窒素ガス供給系(非常用)1系列4弁		
費量	:	385[NL]
大事故等の供給圧力まで加圧するための消		
高圧窒素ガス供給系(非常用)1系列を重		

【高圧窒素ガスボンベによる供給量】

$$\begin{split} S_{b} &= \frac{(P_{1}[MPa(abs)] - P_{2}[MPa(abs)])}{P_{N}[MPa(abs)]} \times V_{b}[L/\&] \times M[\&] \\ &= \frac{(P_{1}[MPa[abs]] - P_{2}[MPa[abs]])}{0.101325[MPa[abs]]} \times V_{b}\left[\frac{L}{\&}\right] \times M[\&] \\ &= \frac{(14.8 [MPa[abs]] - 5.1[MPa[abs]])}{0.101325[MPa[abs]]} \times 46.7 \left[\frac{L}{\&}\right] \times M[\&] \\ &= 4.471[NL/\&] \times M[\&] \end{split}$$

ここで,

S_b:ボンベによる供給量 [NL]

P₁: ボンベ初期充填圧力=14.8 [MPa (abs)]

P₂: ボンベ交換圧力=5.1 [MPa (abs)]

P_N:大気圧=0.101325 [MPa (abs)]

V_b:ボンベ容量(46.7[L/本])

M : 必要ボンベ本数[本]

開保持するために必要な窒素ガス消費量より多い供給量(S_b)が必要であり,

 $S_{h} > 20,781$

上記の関係式より

4,471 \times M > 20,781

M > 4.7 [本] → 5 [本]

高圧窒素ガス供給系(A系:5本,B系:5本)及び予備の高圧窒素ガスボン べ(10本)ともに必要容量を確保している。 3. 原子炉圧力制御に係るサプレッション・プールの温度成層化の影響

「重大事故等対策の有効性評価に係るシビアアクシデント解析コードについて 第5部 MAAP 別添1(補足)圧力抑制プール(S/C)の温度成層化の 影響について」(以下「解析コード資料」という。)にて,温度成層化の発生 の可能性について,福島事故を踏まえた考察をまとめている。

第4図及び第5図に示すとおり,東海第二発電所の逃がし安全弁の排気管 のクエンチャ(Xクエンチャ)及び原子炉隔離時冷却系の排気スパージャの 位置関係は解析コード資料で参照した福島第二原子力発電所4号炉と同様な 位置関係である。また,事故シーケンスグループ「全交流動力電源喪失」の ように,原子炉隔離時冷却系の間欠運転によって原子炉水位を維持しつつ, 逃がし安全弁で原子炉圧力の制御を実施する場合には,原子炉隔離時冷却系 が停止している間の逃がし安全弁の動作に伴う攪拌効果により,サプレッシ ョン・プールの温度成層化の発生の可能性は小さくなる。

一方,原子炉隔離時冷却系を停止し,逃がし安全弁による原子炉減圧状態 を維持して低圧代替注水系(可搬型)による原子炉注水を実施する場合には, 温度成層化の発生の可能性はあるが,逃がし安全弁クエンチャの排気口はサ プレッション・チェンバの底部から約2.2m程度の下部の位置に設置されてい ることから,この付近を境に上下の温度差が発生したとしても、サプレッシ ョン・プール水の多くを上部の温度が高い層が占めるため,解析コード資料 で参照した福島第二原子力発電所2号炉と同様に格納容器圧力に対する影響 は小さいものと考えられる。

第4図 サプレッション・プール内の逃がし安全弁クエンチャの配置図

第5図 逃がし安全弁クエンチャ及び原子炉隔離時冷却系

排気スパージャの配置図

7日間における水源の対応について

(全交流動力電源喪失(長期TB))

- 1. 水源に関する評価
 - ① 淡水源(有効水量)
 - •代替淡水貯槽:約4,300m³
 - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
 - 低圧代替注水系(可搬型)による原子炉注水

事象発生 8 時間 1 分後,定格流量で代替淡水貯槽を水源とした 低圧代替注水系(可搬型)による原子炉注水を実施する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

交流動力電源が復旧した後,低圧代替注水系(可搬型)による 原子炉注水を停止する。

② 代替格納容器スプレイ冷却系(可搬型)による格納容器スプレ
 イ

格納容器圧力が 279kPa[gage]に到達する事象発生約 13 時間後, 代替淡水貯槽を水源とした格納容器スプレイ冷却系(可搬型)に よる格納容器スプレイを実施する。

交流動力電源が復旧した後,代替格納容器スプレイ冷却系(可 搬型)による格納容器スプレイを停止する。
3. 時間評価

事象発生から低圧代替注水系(可搬型)による原子炉注水が開始 されるまでは,原子炉隔離時冷却系により原子炉注水を実施するた め,代替淡水貯槽の水量は減少しない。

事象発生8時間1分以降は,低圧代替注水系(可搬型)による原 子炉注水等を実施するため,代替淡水貯槽の水量は減少する。

交流動力電源が復旧する事象発生24時間以降は,残留熱除去系に よる原子炉注水等を実施し,低圧代替注水系(可搬型)による原子 炉注水等を停止するため,代替淡水貯槽の水量の減少は停止する。

この間の代替淡水貯槽の使用水量は合計約2,130m³である。

第1図 外部水源による積算注水量

(全交流動力電源喪失(長期TB))

4. 水源評価結果

時間評価の結果から,7日間の対応において合計約2,130m³必要と

なるが,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水 を保有することから必要水量を確保可能であり,安定して冷却を継 続することが可能である。 7日間における燃料の対応について

(全交流動力電源喪失(長期TB))

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

して評価する。

時系列	合計	判定
常設代替高圧電源装置 5 台起動 (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×5 台(運 転台数)=約 352.8kL	7日間の 軽油消費量 約352.8kL	軽油貯蔵タ ンクの容量 は約800kLで あり,7日間 対応可能
可搬型代替注水大型ポンプ 1 台起動 (低圧代替注水系(可搬型)及び代替格納容器スプレ イ系(可搬型)) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転 台数)=約 36.6kL	7日間の 軽油消費量 約36.6kL	可搬型設備 用軽油タン クの容量は 約210kLであ り、7日間対 応可能

常設代替交流電源設備の負荷

(全交流動力電源喪失(長期TB))

主要負荷リスト

【電源設備:常設代替高圧電源装置】

起 動 順 序	主 要 機 器 名 称	負 荷 容 量 (kW)	負荷 起動時の 最 大 負 荷 容 量 (k₩)	定常時の連続運転 負荷容量 (kW)
Ū	緊急用母線自動起動負荷 - 堅合田直流 125V 本 雪 哭般	24 0	194.9	50.6
	・その他負荷	35.6	124.5	00.0
	非常用母線2C自動起動負荷			
	・ 直 流 125V 充 電 器 盤 2 A	47.1		
2	 非常用照明 	89.0	495.9	448.8
	 ・ 120V A C 計装用電源2 A 	28.6		
	 その他負荷 	224.5		
	非常用母線2D自動起動負荷			
	・ 直 流 125V 充 電 器 盤 2 B	35.9		
3	 非常用照明 	71.2	785.8	761.9
	 ・ 120V A C 計装用電源2 B 	102.1		
	 その他負荷 	103.9		
4	残留熱除去系海水系ポンプ	871.0	1,958.9	1,632.9
5	残留熱除去系海水系ポンプ	871.0	2,829.9	2,503.9
ē	残 留 熱 除 去 系 ポ ン プ	651.1	2 0 9 9 2	3,157.2
0	そ の 他 負 荷	2.2	3, 920. 3	
	非 常 用 ガ ス 再 循 環 系 フ ァ ン	55.0		
Ø	非 常 用 ガ ス 処 理 系 フ ァ ン	7.5	3,461.7	3,244.1
U	その他負荷	78.7		
	停止負荷	- 54.3		
	中 央 制 御 室 空 調 ファン	45.1		
8	中 央 制 御 室 非 常 用 循 環 フ ァ ン	7.5	3,824.0	3,461.8
	その他負荷	165.1		
9	蓄電池室排気ファン	7.5	4 0 4 1 9	2 6 9 9 9
	その他負荷	153.0	4,041.8	3,022.3
10	緊 急 用 海 水 ポ ン プ	510.0	4 058 5	4 149 9
W	その他	10.0	4,908.0	4,142.3
11)	代 替 燃 料 プ ー ル 冷 却 系 ポ ン プ	22.0	4,221.8	4,164.3

添付 2.3.1.8-1

コメント No. 150-15, 163-39 に対する回答

2.3.2 全交流動力電源喪失(TBD, TBU)

2.3.2.1 事故シーケンスグループの特徴, 炉心損傷防止対策

(1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」に 含まれる事故シーケンスとしては、「1.2 評価対象の整理及び評価項目の 設定」に示すとおり、①「外部電源喪失+直流電源失敗*+高圧炉心冷却 失敗」(TBD)、②「外部電源喪失+DG失敗+高圧炉心冷却失敗」(T BU)及び③「サポート系喪失(直流電源故障)+DG失敗+高圧炉心冷 却失敗」(TBU)である。

※:直流電源失敗により非常用ディーゼル発電機の起動ができなくなる。

コメント No. 148-12, 158-08, 49, 50 に対する回答

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」は、 原子炉の出力運転中に全交流動力電源喪失に加えて、直流電源喪失又は原 子炉隔離時冷却系の故障が重畳することを想定する。このため、電動の原 子炉注水機能が喪失するとともに、原子炉隔離時冷却系も機能喪失するこ とで全ての原子炉注水機能が喪失し、逃がし安全弁による原子炉圧力制御 に伴う蒸気の流出により原子炉圧力容器内の保有水量が減少し原子炉水位 が低下することから、緩和措置が取られない場合には、炉心が露出するこ とで炉心損傷に至る。

本事故シーケンスグループは,全交流動力電源喪失に加えて,直流電源 喪失又は原子炉隔離時冷却系の故障が重畳することにより,原子炉隔離時 冷却系を含む全ての原子炉注水機能が喪失し,炉心損傷に至る事故シーケ ンスグループである。このため,重大事故等対策の有効性評価には,交流 動力電源及び直流電源の供給機能に加えて交流動力電源を必要としない蒸

気駆動の注水機能に対する重大事故等対処設備に期待することが考えられる。

以上により、本事故シーケンスグループでは、代替の直流電源供給機能 及び交流動力電源が不要な代替の原子炉注水機能を用いた原子炉注水によ って原子炉水位を維持し、この後原子炉を減圧し可搬型の注水設備を用い て原子炉へ注水することによって炉心損傷の防止を図る。また、交流動力 源電源が不要な格納容器冷却機能を用いて格納容器冷却を実施するととも に、代替交流電源設備により交流電源を復旧し、最終的な熱の逃がし場へ 熱の輸送を行うことによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「全交流動力電源喪失(TBD,TBU)」にお いて、炉心が著しい損傷に至ることなく、かつ、十分な冷却を可能とする ため、初期の対策として高圧代替注水系、可搬型代替注水大型ポンプを用 いた低圧代替注水系(可搬型)及び逃がし安全弁(自動減圧機能)による 原子炉注水手段を整備する。また、格納容器の健全性を維持するため、安 定状態に向けた対策として、可搬型代替注水大型ポンプを用いた代替格納 容器スプレイ冷却系(可搬型)による格納容器冷却手段及び常設代替高圧 電源装置からの給電後の残留熱除去系による格納容器除熱手段を整備する。 対策の概略系統図を第2.3.2-1図に、対応手順の概要を第2.3.2-2図に示 すとともに、重大事故等対策の概要を以下に示す。また、重大事故等対策 における手順と設備との関係を第2.3.2-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員22名及び事象発生から2時間以降に期待する招集要 員6名である。初動対応要員の内訳は,発電長1名,副発電長1名,運転

操作対応を行う運転員 5 名,通報連絡等を行う災害対策要員 2 名,現場操 作を行う重大事故対応要員 13 名である。招集要員の内訳は,燃料補給作業 を行う重大事故等対応要員 2 名,可搬型代替注水大型ポンプを用いた 低圧 代替注水系(可搬型)及び代替格納容器スプレイ冷却系(可搬型)の現場 系統構成を行う重大事故等対応要員(招集要員)4 名である。必要な要員 と作業項目について第 2.3.2-3 図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,初動対応要 員 22 名及び招集要員 6 名で対処可能である。

a. 原子炉スクラム及び全電源喪失の確認

外部電源が喪失するとともに,直流電源喪失に伴い非常用ディーゼル 発電機等が全て機能喪失する^{*1}ことで,全電源喪失となり,原子炉がス クラムしたことを確認し^{*2},早期の電源回復不能と判断する。また,全 電源喪失に伴い原子炉隔離時冷却系を含む全ての設計基準事故対処設備 の注水機能が喪失する。

※1:直流電源喪失に伴い非常用ディーゼル発電機等の起動ができなくなる。
 ※2:直流電源喪失時には、平均出力領域計装等による原子炉スクラム確認はできないが、直流電源喪失に伴いスクラムパイロット電磁弁が無励磁となり原子炉スクラムが発生する。また、原子炉スクラムに失敗している場合は、逃がし安全弁による蒸気放出が頻繁に発生するため、その動作状況から原子炉スクラムの成功/失敗を推定できるものと考

える。

b. 高圧代替注水系の起動操作

全電源喪失の確認後,中央制御室からの遠隔操作により,高圧代替注 水系を起動する。

高圧代替注水系の起動操作に必要な計装設備は,原子炉水位(SA広 帯域,SA燃料域)及び高圧代替注水系系統流量である。

c. 原子炉水位の調整操作(高圧代替注水系)

高圧代替注水系の起動により,原子炉水位が回復したことを確認する。 また,原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3)設 定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(高圧代替注水系)に必要な計装設備は,原子 炉水位(SA広帯域, SA燃料域)である。

d. <mark>可搬型代替注水大型ポンプを用いた</mark>低圧代替注水系(可搬型)の起動 準備操作

全交流動力電源喪失の確認後,可搬型代替注水大型ポンプを用いた低 E代替注水系(可搬型)による原子炉注水準備を開始する。原子炉建屋 内の現場操作にて原子炉注水に必要な系統構成を実施し,屋外の現場操 作にて可搬型代替注水大型ポンプの準備,ホース敷設等を実施した後に ポンプ起動操作を実施する。

e. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

f. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

サプレッション・プール水温度が65℃に到達し,可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)の起動準備操作が完了した後 に,中央制御室からの遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手動開放し,原子炉減圧を実施する。

逃がし安全弁<mark>(自動減圧機能)</mark>による原子炉減圧操作に必要な計装設 備は,原子炉圧力(SA)等である。

g. 原子炉水位の調整操作(低圧代替注水系(可搬型))

逃がし安全弁(自動減圧機能)による原子炉減圧により,原子炉圧力 が可搬型代替注水大型ポンプの吐出圧力を下回ると,原子炉注水が開始 されることで原子炉水位が回復する。また,原子炉水位回復後は,原子 炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8) 設定点の間で維持する。

原子炉水位の調整操作(低圧代替注水系(可搬型))に必要な計装設備 は,原子炉水位(SA広帯域,SA燃料域),低圧代替注水系原子炉注水 流量等である。

h. <mark>可搬型代替注水大型ポンプを用いた</mark>代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却

全電源喪失に伴い崩壊熱除去機能を喪失しているため,格納容器圧力 及び雰囲気温度が上昇する。サプレッション・チェンバ圧力が 279kPa[gage]に到達した場合又はドライウェル雰囲気温度が171℃に到 達した場合は,可搬型代替注水大型ポンプを用いた代替格納スプレイ冷 却系(可搬型)による格納容器冷却を実施する。また,同じポンプを用 いて原子炉注水を継続する。

可搬型代替注水大型ポンプを用いた代替格納スプレイ冷却系(可搬型) による格納容器冷却に必要な計装設備は、サプレッション・チェンバ圧 力、低圧代替注水系格納容器スプレイ流量、サプレッション・プール水 位等である。

i. 常設代替高圧電源装置による緊急母線受電操作

外部電源喪失の確認後,中央制御室からの遠隔操作により常設代替高 圧電源装置から緊急用母線を受電する。

常設代替高圧電源装置による緊急母線受電操作に必要な計装設備は,

緊急用M/C電圧である。

j. 常設代替高圧電源装置による非常用母線の受電準備操作

早期の電源回復不能の確認後,中央制御室及び現場にて常設代替高圧 電源装置による非常用母線の受電準備操作を実施する。

k. 常設代替高圧電源装置による非常用母線受電操作

常設代替高圧電源装置による緊急用母線受電操作及び非常用母線の受 電準備操作の完了後,中央制御室からの遠隔操作により常設代替高圧電 源装置から緊急用母線を介して非常用母線を受電する。

常設代替高圧電源装置による非常用母線受電操作に必要な計装設備は, M/C 2C電圧(M/C 2D電圧)である。

1. 残留熱除去系による原子炉注水及び格納容器除熱

常設代替高圧電源装置による非常用母線受電操作の完了後,可搬型代 替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水 及び可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系 (可搬型)による格納容器冷却を停止し,残留熱除去系による原子炉注

水及び格納容器除熱を実施する。

残留熱除去系による原子炉注水及び格納容器除熱に必要な計装設備は, 原子炉水位(広帯域),残留熱除去系系統流量等である。

m. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

n. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から 代替淡水貯槽へ水源補給操作を実施する。

以降は,残留熱除去系により原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持しつつ,原子炉

注水の停止期間中に格納容器スプレイを実施する。

2.3.2.2 炉心損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、外部電源 喪失を起因事象とし、直流電源喪失に伴い全ての非常用ディーゼル発電機 等及び全ての注水機能を喪失する「外部電源喪失+直流電源失敗+高圧炉 心冷却失敗」(TBD)である。なお、「外部電源喪失+DG失敗+高圧炉 心冷却失敗」(TBU)及び「サポート系喪失(直流電源故障)+DG失敗 +高圧炉心冷却失敗」(TBU)は、全交流動力電源喪失時に原子炉隔離時 冷却系の機能喪失が重畳するという点で安全機能の喪失状態が同じであり、 この代替として高圧代替注水系及び常設代替直流電源装置に期待するため 重大事故等対策及び事象進展も同じとなる。

本重要事故シーケンスでは、炉心における崩壊熱、燃料棒表面熱伝達、 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流),沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCCS注水(給水系及び代替注水系含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及びサプレッション・プー ル冷却が重要現象となる。よって、これらの現象を適切に評価することが 可能である長期間熱水力過渡変化解析コードSAFER及びシビアアクシ デント総合解析コードMAAPにより、原子炉圧力、原子炉水位、燃料被 覆管温度、格納容器圧力、格納容器雰囲気温度等の過渡応答を求める。な

お、本有効性評価では、SAFERコードによる燃料被覆管温度の評価結 果は、ベストフィット曲線の破裂判断基準に対して十分な余裕があること から、燃料棒やチャンネルボックスの幾何学的配置を考慮した詳細な輻射 熱伝達計算を行うことで燃料被覆管温度の評価結果がSAFERコードよ り低くなるCHASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.3.2-2表に示す。 また,主要な解析条件について,本重要事故シーケンス特有の解析条件を 以下に示す。

- a. 事故条件
- (a) 起因事象

送電系統又は所内主発電設備の故障等によって、外部電源が喪失するものとする。

(b) 安全機能の喪失に対する仮定

所内常設直流電源設備の機能喪失を想定する。これにより,全ての 非常用ディーゼル発電機等及び直流電源を制御電源としている原子炉 隔離時冷却系が機能喪失するものとする。

(c) 外部電源

起因事象として、外部電源が喪失することを想定している。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉水位低下を厳しくする観点で,外部電源喪失に伴う原子炉保 護系電源喪失及びタービン蒸気加減弁急閉信号は保守的に考慮せず, 原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) 高圧代替注水系

136.7m³/h(原子炉圧力1.04~7.86MPa[dif]において)の流量で原 子炉へ注水するものとする。原子炉水位が原子炉水位高(レベル8) 設定点まで回復した以降は,原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の範囲に維持する。また, 原子炉減圧時の可搬型代替注水大型ポンプを用いた低圧代替注水系 (可搬型)による原子炉水位回復性能を確認する観点で,原子炉減圧 操作と同時に注水を停止する。

※: MPa[dif]…原子炉圧力容器と水源との差圧(以下同様)

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)(7 弁)を使用するものとし,容量として,1 弁当たり定格主蒸気流量の約6%を処理するものとする。

(d) 低圧代替注水系(可搬型)

原子炉注水のみを実施する場合は、炉心冷却性の観点で機器設計上 の最小要求値である最小流量特性(注水流量:0~110m³/h,注水圧 力:0~1.4MPa[dif])とし、原子炉注水と格納容器スプレイを同時に 実施する場合は、50m³/h(一定)を用いるものとする。また、原子 炉水位が原子炉水位高(レベル8)設定点まで回復した以降は、原子

炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル 8)設定点の範囲に維持する。

(e) 代替格納容器スプレイ冷却系(可搬型)

格納容器圧力及び雰囲気温度の上昇を抑制可能な流量を考慮し, 130m³/hにて格納容器内にスプレイするものとする。なお,代替格納 容器スプレイ冷却系(可搬型)による格納容器スプレイは,低圧代替 注水系(可搬型)と同じ可搬型代替注水大型ポンプを用いて弁の切替 えにより運用する。

(f) 残留熱除去系(低圧注水系)

非常用母線の受電が完了した時点で手動起動し, <mark>0~1,676m³/h(0</mark> <mark>~1.55MPa[dif]において)</mark>の流量で原子炉へ注水するものとする。

(g) 残留熱除去系(格納容器スプレイ冷却系)

残留熱除去系(低圧注水系)による原子炉注水を停止している期間 に、1.9×10³t/hの流量で格納容器へスプレイするものとし、そのう ち95%をドライウェルへ、5%をサプレッション・チェンバへ分配す るものとする。伝熱容量は、熱交換器1基当たり約43MW(サプレッシ ョン・プール水温度100℃、海水温度32℃において)とする。

(h) 残留熱除去系(サプレッション・プール冷却系)

残留熱除去系(格納容器スプレイ冷却系)による格納容器スプレイ 実施中に格納容器圧力が 13.7kPa[gage]に到達した時点でサプレッシ ョン・プール冷却運転に切り替える。伝熱容量は,残留熱除去系(格 納容器スプレイ冷却系)と同様とする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対

する仮定」に示す分類に従って以下のとおり設定する。

- (a) 交流電源は24時間使用できないものとし、事象発生から24時間後 に常設代替高圧電源装置により非常用母線への給電を開始する。
- (b) 高圧代替注水系の起動操作は,状況判断及び高圧代替注水系の準備 に要する時間を考慮して,事象発生25分後に実施するものとする。
- (c) 逃がし安全弁(自動減圧機能)による原子炉減圧操作(可搬型代替 注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注
 水)は、余裕時間を確認する観点で8時間後に低圧代替注水系(可 搬型)の準備が完了するものとし、減圧操作に要する時間を考慮し て、事象発生から8時間1分後に実施する。
- (d) 可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系 (可搬型)による格納容器冷却は、サプレッション・チェンバ圧力 が 279kPa[gage]に到達した場合に実施する。
- (e) 残留熱除去系による原子炉注水及び格納容器除熱は,常設代替高圧 電源装置による非常用母線受電操作及び残留熱除去系の起動操作 に要する時間を考慮して,事象発生から24時間10分後に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.3.2-4図から第2.3.2-8図に,燃料被覆管温度, 燃料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発 生位置におけるボイド率,高出力燃料集合体のボイド率,炉心下部プレナ ム部のボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管温 度と燃料被覆管の円周方向の応力の関係を第2.3.2-9 図から第2.3.2-14

図に,格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位 及びサプレッション・プール水温度の推移を第2.3.2-15図から第2.3.2-18 図に示す。

※: 炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、炉心の再冠水過程においては、シュラウド内水位の方が高めの水位とな ることもある。

a. 事象進展

全電源喪失後,原子炉スクラム,主蒸気隔離弁の閉止及び再循環ポン プトリップが発生する。外部電源喪失及び直流電源喪失の確認後,事象 発生 25 分後に代替直流電源設備からの給電により高圧代替注水系を起 動し,原子炉注水が開始されることで,原子炉水位は維持される。

代替の直流電源設備は,事象発生から24時間にわたり重大事故等の対応に必要な設備に電源を供給できるものとする。

(添付資料 2.3.2.1, 2.3.2.2)

事象発生の8時間後に<mark>可搬型代替注水大型ポンプを用いた</mark>低圧代替注 水系(可搬型)の準備が完了した時点で,逃がし安全弁(自動減圧機能) 7 弁による原子炉減圧を実施する。逃がし安全弁(自動減圧機能)開放 による蒸気流出によって原子炉水位が低下するが,可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)による原子炉注水が開始され ることで原子炉水位は回復し,炉心の冠水は維持される。なお,高圧代 替注水系は,原子炉減圧と同時に停止する想定とする。

事象発生から 24 時間経過した時点で常設代替高圧電源装置による非 常用母線への交流電源供給を開始し,その後中央制御室からの遠隔操作 により残留熱除去系(低圧注水系)を起動し,原子炉注水を開始するこ

とで、その後も炉心の冠水が維持される。

また,崩壊熱除去機能が喪失しているため,原子炉圧力容器内で発生 する蒸気が逃がし安全弁を介して格納容器内に放出されることで,格納 容器圧力及び雰囲気温度は徐々に上昇する。このため,事象発生の約13 時間後にサプレッション・チェンバ圧力が279kPa[gage]に到達した時点 で,可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却を開始し,事象発生の24時間後に交流電源が 復旧した時点で残留熱除去系による格納容器除熱を開始することで,格 納容器圧力及び雰囲気温度は安定又は低下傾向となる。

b. 評価項目等

燃料被覆管温度は,第2.3.2-9 図に示すとおり,可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)による原子炉注水により原子 炉水位が回復するまでの間に,一時的に炉心が露出するが,初期値(約 309℃)以下にとどまることから,評価項目である1,200℃を下回る。燃 料被覆管の最高温度は,高出力燃料集合体で発生している。また,燃料 被覆管の酸化量は,酸化反応が著しくなる前の燃料被覆管厚さの1%以 下であり,評価項目である15%を下回る。

原子炉圧力は,第2.3.2-4 図に示すとおり,逃がし安全弁(安全弁機 能)の作動により,約8.16MPa[gage]以下に維持される。このため,原 子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容 器底部圧力との差(0.3MPa 程度)を考慮しても,約8.46MPa [gage]以 下であり,評価項目である最高使用圧力の1.2 倍(10.34MPa[gage])を 下回る。

また、崩壊熱除去機能を喪失しているため、原子炉圧力容器内で崩壊

熱により発生する蒸気が格納容器内に流入することにより,格納容器圧 力及び雰囲気温度は徐々に上昇するが,残留熱除去系による格納容器除 熱により低下傾向となる。格納容器バウンダリにかかる圧力及び温度の 最大値は,約0.28MPa [gage]及び約141℃に抑えられる。このため,炉 格納容器バウンダリにかかる圧力及び温度は,評価項目である最高使用 圧力の2倍(0.62MPa[gage])及び200℃を下回る。

高圧代替注水系及び可搬型代替注水大型ポンプを用いた低圧代替注水 系(可搬型)による原子炉注水を継続することで,炉心は冠水状態を維 持し,冷却が維持される。その後,事象発生の約24時間後に,残留熱除 去系による原子炉注水及び格納容器除熱を実施することで,高温停止で の安定状態が確立する。

(添付資料 2.3.2.3)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目について、対策の有効性を確認 した。

2.3.2.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは,全交流動力電源喪失に加えて,直流電源喪失に 伴い原子炉隔離時冷却系が機能喪失し,原子炉注水機能が喪失することで原

子炉水位が低下するため,高圧代替注水系が機能維持している期間内に<mark>可搬 型代替注水大型ボンプを用いた</mark>低圧代替注水系(可搬型)により原子炉注水 を実施すること並びに全交流動力電源喪失に伴い崩壊熱除去機能も喪失し格 納容器圧力及び雰囲気温度が上昇することから,可搬型代替注水大型ポンプ を用いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却を実施 すること及び交流動力電源復旧後に残留熱除去系による原子炉注水及び格納 容器除熱を実施することが特徴である。よって,不確かさの影響を確認する 運転員等操作は,事象進展に有意な影響を与えると考えられる操作及び事象 発生から12時間程度までの短時間に期待する操作として,高圧代替注水系の 起動操作,逃がし安全弁(自動減圧機能)による原子炉減圧操作(可搬型代 替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水),可 搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可搬型)に よる格納容器冷却並びに残留熱除去系による原子炉注水及び格納容器除熱と する。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を実施する重要現象 は、「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すと おりであり、それらの不確かさの影響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて 50℃ 程度 高 めに評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評 価する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくな り,燃料被覆管温度は低くなるが,操作手順(速やかに注水手段を準備 すること)に変わりはなく,燃料被覆管温度を操作開始の起点とする運

転員等操作はないことから、運転員等操作時間に与える影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,操作手順(速やかに注水 手段を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起 点とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

格納容器における格納容器各領域間の流動、構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 <mark>納容器の熱水力モデル)</mark>はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、BWRの格納容器内の区画とは異なる等、実験 体系に起因するものと考えられ、実機体系においては不確かさが小さく なるものと推定され、全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,格納容器圧力及び雰囲気温度を操作開始 の起点とする可搬型代替注水大型ポンプを用いた代替格納容器スプレイ 冷却系(可搬型)による格納容器冷却並びに残留熱除去系による原子炉 注水及び格納容器除熱に係る運転員等操作時間に与える影響は小さい。 また、格納容器各領域間の流動、構造材との熱伝達及び内部熱伝導の不 確かさにおいては、CSTF実験解析により格納容器温度及び非凝縮性 ガスの挙動は測定データと良く一致することを確認しており、その差異 は小さいため、格納容器圧力及び雰囲気温度を操作開始の起点としてい る

可搬型代替注水大型ポンプを用いた

代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却並びに残留熱除去系による原子炉注水及び格 納容器除熱に係る運転員等操作時間に与える影響は小さい。

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル) はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,評価項目となるパラメータに与える影響 は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部 熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気 温度及び非礙縮性ガスの挙動は測定データと良く一致することを確認し ているため、評価項目となるパラメータに与える影響は小さい。

(添付資料 2.3.2.4)

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 2.3.2-2 表に示すとおりであり,これらの条件設定を実績値等の最確条 件とした場合の影響を評価する。解析条件の設定にあたっては,設計値 を用いるか又は評価項目となるパラメータの判断基準に対する余裕が小 さくなるよう保守的な設定をしていることから,この中で事象進展に有 意な影響を与える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/ m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は 燃料被覆管温度の上昇が緩和されるが,操作手順(速やかに注水手段 を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起点 とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,操作手順(速やかに注水手段を準備すること)に変わり はないことから,運転員等操作時間に与える影響はない。また,格納 容器圧力及びサプレッション・プール水位の上昇が遅くなり,これら のパラメータを起点とする運転員等操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,<mark>格納容器圧力,</mark>格 納容器雰囲気温度,格納容器体積(ウェットウェル)及びサプレッシ

ョン・プール水位は、ゆらぎにより解析条件に対して変動を与えうる が、事象進展に与える影響は小さく、運転員等操作時間に与える影響 は小さい。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は、最確条件とした場合は注水開始後の原子炉水位の回復が早く なり、炉心冠水後の原子炉水位の維持操作の開始が早くなるが、原子 炉水位を継続監視している期間の流量調整操作であるため、運転員等 操作時間に与える影響はない。

(添付資料 2.3.2.4)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなり,原子炉からサプレッション・プールに流 出する蒸気量が減少することで,原子炉水位の低下は緩和され,格納 容器圧力等の上昇は遅くなることから,評価項目となるパラメータに 対する余裕は大きくなる。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は、最確条件とした場合は注水開始後の原子炉水位の回復が早く なることで、評価項目となるパラメータに対する余裕は大きくなる。 (添付資料 2.3.2.4)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の高圧代替注水系の起動操作は,解析上の操作開始時間と して,事象発生から25分後を設定している。運転員等操作時間に与え る影響として,認知時間及び操作所要時間は,余裕時間を含めて設定 していることから,実態の操作開始時間は解析上の設定よりも若干早 まる可能性がある。

操作条件の逃がし安全弁による原子炉減圧操作(可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水)は、 解析上の操作開始時間として事象発生から8時間1分後を設定している。運転員等操作時間に与える影響として,認知時間及び移動・操作 所要時間は,余裕時間を含めて設定していることから,実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性がある。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却は,解析上の操作開始時間と してサプレッション・チェンバ圧力279kPa[gage]到達時を設定してい る。運転員等操作時間に与える影響として,不確かさ要因により操作 開始時間に与える影響はなく,実態の操作開始時間は解析上の設定と ほぼ同等となる。本操作は,解析コード及び解析条件(操作条件を除 く。)の不確かさにより,操作開始時間は遅れる可能性があるが,他の

操作との重複もないことから、この他の操作に与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,解 析上の操作開始時間として事象発生から24時間10分後を設定してい る。運転員等操作時間に与える影響として,認知時間及び移動・操作 所要時間は,余裕時間を含めて設定していることから,実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性がある。

(添付資料 2.3.2.4)

(b) 評価項目となるパラメータに与える影響

操作条件の高圧代替注水系の起動操作は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の操作開始時間よりも早 くなる可能性があり,この場合は,原子炉への注水開始が早くなるこ とで,原子炉水位の回復が早くなり,評価項目となるパラメータの判 断基準に対する余裕は大きくなる。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原 子炉注水)は、運転員等操作時間に与える影響として、実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性があるが、可搬 型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子 炉注水に移行するまでの期間は高圧代替注水系により原子炉注水が確 保されていることから、評価項目となるパラメータに与える影響はな い。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却は,運転員等操作時間に与える影響として,実態の操作開始時間は解析上の操作開始時間よりも遅くなる可能性があるが,この場合でもパラメータが操作実施基準に到

達した時点で開始することで同等の効果が得られ,有効性評価解析に おける格納容器圧力の最大値に変わりがないことから,評価項目とな るパラメータに与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも早くなる可能性があるが,この場合には,格納容 器除熱の開始が早くなることで格納容器圧力及び雰囲気温度の上昇は 緩和され,評価項目となるパラメータの判断基準に対する余裕は大き くなる。

(添付資料 2.3.2.4)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の高圧代替注水系の起動操作については、同様に高圧・低圧注 水機能が喪失するが、事象発生25後に原子炉減圧操作を実施し、低圧の注 水系統により原子炉注水を実施することから、本事故シーケンスに比べて 事象進展がより厳しくなる「LOCA時注水機能喪失」において、10分の 減圧操作開始遅れを想定した場合でも、燃料被覆管の破裂は発生せず、評 価項目を満足する。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水)は,低圧代替注水系(可搬型)の準備完了後に実施するものであり,評価上は余裕時間を確認する観点で事象発生の8時間後に準備が完了する

ものとしていることから,準備時間が確保できるため,時間余裕がある。 操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷 却系(可搬型)による格納容器冷却は,事象発生の約13時間後に実施する ものであり,低圧代替注水系(可搬型)と同じ可搬型代替注水大型ポンプ を使用し,評価上は余裕時間を確認する観点で可搬型代替注水大型ポンプ の準備完了を事象発生の8時間後と想定していることから,準備時間が確 保できるため,時間余裕がある。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,非常用 母線の受電後に実施するものであり,評価上は事象発生の24時間後に非常 用母線の受電が完了する想定としていることから,準備時間が確保できる ため,時間余裕がある。

(添付資料 2.3.2.4)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間及び評価項目となるパラメータに与える影響を確認した。この結 果,解析コード及び解析条件の不確かさが運転員等操作時間に与える影響 等を考慮した場合においても,評価項目となるパラメータに与える影響は 小さい。この他,評価項目となるパラメータに対して,対策の有効性が確 認できる範囲内において,操作時間には時間余裕がある。

- 2.3.2.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」の重 大事故等対策における必要な初動対応要員は、「2.3.2.1(3) 炉心損傷防

止対策」に示すとおり22名であり、「6.2 重大事故等対策時に必要な要員の評価結果」で示す運転員及び災害対策要員の39名で対処可能である。

また,必要な招集要員は6名であり,発電所構外から2時間以内に招集 可能な要員の71名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」において,必要な水源,燃料,電源は,「6.1(2) 資源の評価条件」の条件に て評価を行い,以下のとおりである。

a.水 源

可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による 原子炉注水及び可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器スプレイについては,7日間の対応 を考慮すると,合計約850m³必要となる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,水源が枯渇することなく注水継続が 可能である。

(添付資料 2.3.2.5)

b.燃料

常設代替交流電源設備による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約353kLの軽油が必要となる。 軽油貯蔵タンクに約800kLの軽油を保有していることから,常設代替交流電源設備による電源供給について,7日間の継続が可能である。

可搬型代替注水大型ポンプによる原子炉注水等については、事象発生

からの運転を想定すると,7日間の運転継続に約36.6kLの軽油が必要と なる。可搬型設備用軽油タンクに約210kLの軽油を保有していることか ら,可搬型代替注水大型ポンプによる原子炉注水等について,7日間の 継続が可能である。

(添付資料 2.3.2.6)

c. 電 源

常設代替交流電源設備の負荷については,重大事故等対策時に必要な 負荷として約4,165kW必要となるが,常設代替交流電源設備(常設代替 高圧電源装置5台)の連続定格容量は5,520kWであることから,必要負 荷に対しての電源供給が可能である。

また,代替の蓄電池の容量については,交流電源が復旧しない場合を 想定しても,事象発生後24時間の直流電源の供給が可能である。

(添付資料 2.3.2.7)

2.3.2.5 結 論

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」では, 原子炉の出力運転中に全交流動力電源喪失が発生し電動の原子炉注水機能が 喪失するとともに,直流電源喪失により蒸気駆動の原子炉隔離時冷却系も機 能喪失し原子炉注水機能が喪失することで,原子炉水位の低下が継続し,炉 心損傷に至ることが特徴である。事故シーケンスグループ「全交流動力電源 喪失(TBD, TBU)」に対する炉心損傷防止対策としては,初期の対策と して高圧代替注水系,可搬型代替注水大型ポンプを用いた低圧代替注水系(可 搬型)及び逃がし安全弁(自動減圧機能)による原子炉注水手段,安定状態 に向けた対策として可搬型代替注水大型ポンプを用いた代替格納容器スプレ

イ冷却系(可搬型)による格納容器冷却手段及び常設代替高圧電源装置から の給電後の残留熱除去系による格納容器除熱手段を整備している。

事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」の重要 事故シーケンス「外部電源喪失+直流電源失敗+高圧注水機能喪失」につい て有効性評価を行った。

上記の場合においても、高圧代替注水系及び<mark>可搬型代替注水大型ポンプを</mark> 用いた低圧代替注水系(可搬型)による原子炉注水を継続することで、炉心 冷却を維持することができる。また、残留熱除去系による格納容器除熱を継 続することで、格納容器の健全性を長期的に維持することができる。

その結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに原子炉格納容器バウンダリにかかる圧力及び温度は,判断基 準を満足している。また,安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「全交流動力電源喪失(TBD, TBU)」において,高圧代替注水系及び<mark>可搬型代替注水大型ポンプを用いた</mark> 低圧代替注水系(可搬型)による原子炉注水,残留熱除去系による格納容器 除熱操作等の炉心損傷防止対策は,選定した重要事故シーケンスに対して有 効であることが確認でき,事故シーケンスグループ「全交流動力電源喪失(T BD,TBU)」に対して有効である。

第2.3.2-1 表 全交流動力電源喪失(TBD, TBU)時における重大事故対策について(1/3)

おかれていた	五 匠	重大事故等対処設備		
操作及び確認	手 順	常設設備	可搬設備	計装設備
原子炉スクラム及び全電源喪	・外部電源が喪失するとともに、直流電源喪	逃がし安全弁(安	—	原子炉圧力 (SA)
失の確認	失に伴い非常用ディーゼル発電機等が全て	全弁機能)		M/C 2C電圧
	機能喪失することで、全電源喪失となり、	常設代替直流電源		M/C 2D電圧
	原子炉はスクラムするが,直流電源喪失に	設備		緊急用M/C電圧
	より平均出力領域モニタ等による確認がで			
	きないため、原子炉圧力の推移及び逃がし			
	安全弁の動作状況等により原子炉の停止状			
	態を確認する。			
	・全電源喪失により、早期の電源回復不能と			
	判断する。			
高圧代替注水系の起動操作	・全電源喪失の確認後,高圧代替注水系を起	高圧代替注水系	_	高圧代替注水系系統流量
	動する。	常設代替直流電源		
		設備		
原子炉水位の調整操作(高圧代	・高圧代替注水系の起動により、原子炉水位	高圧代替注水系	—	原子炉水位(SA 広帯域, SA 燃
替注水系)	が回復したことを確認する。	常設代替直流電源		料域)
	・原子炉水位回復後は、原子炉水位を原子炉	設備		高圧代替注水系系統流量
	水位低(レベル3)設定点から原子炉水位			
	高(レベル8)設定点の間に維持する。			
可搬型代替注水大型ポンプを	・ <mark>全交流電源喪失の確認後,<mark>可搬型代替注水</mark></mark>	代替淡水貯槽	可搬型代替注	-
用いた低圧代替注水系(可搬	<mark>大型ポンプを用いた</mark> 低圧代替注水系(可搬		水大型ポンプ	
型)の起動準備操作	型)を起動する。			
<mark>タンクローリによる燃料補給</mark>	・タンクローリにより可搬型代替注水設備用	可搬型設備用軽油	タンクローリ	—
<mark>操作</mark>	軽油タンクから可搬型代替注水大型ポンプ	タンク		
	に燃料補給を実施する。			

第2.3.2-1 表 全交流動力電源喪失(TBD, TBU)時における重大事故対策について(2/3)

提//:Tu //:Tu ====================================	五 話	重大事故等対処設備		
操作及び確認	于 順	常設設備	可搬設備	計装設備
逃がし安全弁 <mark>(自動減圧機能)</mark>	・サプレッション・プール水温度がサプレッ	逃がし安全弁 <mark>(自</mark>	可搬型代替注	サプレッション・プール水温
による原子炉減圧 <mark>操作</mark>	ション・プール熱容量制限(原子炉が高圧	動減圧機能)	水大型ポンプ	度
	の場合は65℃)に到達したことを確認する。	代替淡水貯槽		原子炉圧力 (SA)
	・ <mark>可搬型代替注水大型ポンプを用いた</mark> 低圧代			
	替注水系(可搬型)の起動準備操作の完了			
	後,逃がし安全弁 <mark>(自動減圧機能)</mark> 7 弁の手			
	動開放により,原子炉減圧操作を実施する。			
<mark>原子炉水位の調整操作(低圧代</mark>	・原子炉減圧により低圧代替注水系(可搬型)	代替淡水貯槽	可搬型代替注	原子炉水位(SA 広帯域, SA 燃
替注水系(可搬型))	からの原子炉注水が開始され,原子炉水位		水大型ポンプ	料域)
	が回復することを確認する。			原子炉圧力 (SA)
	・原子炉水位回復後は、原子炉水位低(レベ			低圧代替注水系原子炉注水流
	ル3)設定点から原子炉水位高(レベル8)			量
	設定点の間に維持する。			代替淡水貯槽水位
<mark>可搬型代替注水大型ポンプを</mark>	・サプレッション・チェンバ圧力が	代替淡水貯槽	可搬型代替注	ドライウェル圧力
<mark>用いた</mark> 代替格納スプレイ冷却	279kPa[gage]に到達したことを確認する。		水大型ポンプ	サプレッション・チェンバ圧
系(可搬型)による格納容器冷	・ <mark>可搬型代替注水大型ポンプを用いた</mark> 代替格			力
却	納スプレイ冷却系(可搬型)による格納容			低圧代替注水系格納容器スプ
	器スプレイ操作を実施する。			レイ流量
				サプレッション・プール水位
				代替淡水貯槽水位
常設代替高圧電源装置による	・早期の電源回復不能の確認後,常設代替高	常設代替高圧電源		緊急用M/C電圧
緊急用母線の受電操作	圧電源装置から緊急用母線を受電する。	装置		
		軽油貯蔵タンク		

【 】: 重大事故等対処設備(設計基準拡張)

第2.3.2-1 表 全交流動力電源喪失(TBD, TBU)時における重大事故対策について(3/3)

根化正で変更	王 匠	重大事故等対処設備		
1条11-1次 0.4進於	于 順	常設設備	可搬設備	計装設備
常設代替高圧電源装置による	 ・外部電源喪失の確認後,常設代替高圧電源 	常設代替高圧電源	—	—
<mark>非常用母線の受電準備操作</mark>	装置による非常用母線の受電準備操作を実	装置		
	施する。	軽油貯蔵タンク		
常設代替高圧電源装置による	・常設代替高圧電源装置による緊急用母線受	常設代替高圧電源	—	M/C 2C電圧
<mark>非常用母線の受電操作</mark>	電操作及び非常用母線の受電準備操作の完	装置		M/C 2D電圧
	了後,非常用母線2C及び2Dを受電する。	軽油貯蔵タンク		
残留熱除去系による原子炉注	・ 非常用母線の受電後、 <mark>可搬型代替注水大型</mark>	【残留熱除去系	—	原子炉水位 (広帯域)
水及び格納容器除熱	<mark>ポンプを用いた</mark> 低圧代替注水系(可搬型)	(低圧注水系)】		原子炉水位(SA 広帯域)
	による原子炉注水及び <mark>可搬型代替注水大型</mark>	【残留熱除去系		【残留熱除去系系統流量】
	<mark>ポンプを用いた</mark> 代替格納容器スプレイ冷却	(格納容器スプレ		【残留熱除去系海水系系統流
	系(可搬型)による格納容器スプレイを停	イ冷却系)】		量】
	止する。	常設代替高圧電源		低圧代替注水系原子炉注水流
	・残留熱除去系(低圧注水系)を起動する。	装置		量
	・以降,残留熱除去系により原子炉注水及び	軽油貯蔵タンク		サプレッション・チェンバ圧
	格納容器スプレイを交互に実施しつつ、原			力
	子炉水位を原子炉水位低(レベル3)設定			ドライウェル圧力
	点から原子炉水位高(レベル8)設定点の			
	間に維持する。			
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	—	—	—
	却操作を実施する。			
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	—	-	—
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ			
	水源補給を実施する。		• • • • • •	

【】:重大事故等対処設備(設計基準拡張)
 :有効性評価上考慮しない操作

コメント No. 163-46 に対する回答

第2.3.2-2表 主要解析条件(全交流動力電源喪失(TBD, TBU)(1/6)

	項目	主要解析条件	条件設定の考え方
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できるコード
	原子炉熱出力	3,293MW	定格熱出力を設定
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定
	原子炉水位	通常運転水位(セパレータ スカート下端から+126cm)	通常運転水位を設定
	炉心流量	48,300 t⁄h	定格流量を設定
	炉心入口温度	約 278°C	熱平衡計算による値
初	炉心入口サブクール度	約 9℃	熱平衡計算による値
期 条 件	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等で あり,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定
	燃料棒最大線出力密度	44. 0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定となるため、保安規定の運転上の制限における上限値を設定
	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため、崩壊熱が大きくなる燃焼度の高い条件として、1サイクル の運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に 対応する燃焼度を設定
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定

	項目	主要解析条件	条件設定の考え方
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定
初	格納容器	空間部:4,100m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし
期	(ウェットウェル)	気相部:3,300m ³	て、保安規定の運転上の制限における下限値を設定
条	サプレッション・プール水位	6. 983 m	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として,
件	リノレッション・ノール水位	(通常水位-4.7cm)	保安規定の運転上の制限における下限値を設定
	サプレッション・プール水温	22%	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として,
	度	52 C	保安規定の運転上の制限における上限値を設定
事	起因事象	外部電源喪失	送電系統又は所内主発電設備の故障等によって,外部電源が喪失するものとして設定
+ 故条 は	安全機能の喪失に対する仮定	直流電源の機能喪失	直流電源の喪失により,非常用ディーゼル発電機等及び原子炉隔離時冷却系の機能喪失を設定
1午	外部電源	外部電源なし	起因事象として、外部電源が喪失することを想定

第2.3.2-2表 主要解析条件(全交流動力電源喪失(TBD, TBU))(2/6)

項目		主要解析条件	条件設定の考え方
重大事故等対策	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	原子炉水位低下を厳しくする観点で,外部電源喪失に伴う原 子炉保護系電源喪失及びタービン蒸気加減弁急閉信号は保 守的に考慮せず,原子炉水位低(レベル3)による原子炉ス クラムを設定
		<pre>(原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2個, 385.2t/h/個 8.10MPa [gage] ×4個, 400.5t/h/個 8.17MPa [gage] ×4個, 403.9t/h/個 8.24MPa [gage] ×4個, 407.2t/h/個 8.31MPa [gage] ×4個, 410.6t/h/個 (原子炉減圧操作時)</pre>	設計値を設定
関連する機器条件	逃がし安全弁	逃がし安全弁 <mark>(自動減圧機能)</mark> 7弁を開放するこ とによる原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定

第2.3.2-2表 主要解析条件(全交流動力電源喪失(TBD, TBU))(3/6)
第2.3.2-2表 主要解析条件(全交流動力電源喪失(TBD, TBU))(4/6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に	高圧代替注水系	原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 原子炉減圧時の可搬型代替注水ポンプを用いた 低圧代替注水系(可搬型)による原子炉水位回復 性能を確認する観点で,原子炉減圧操作と同時に 注水停止 最小流量特性 ・注水特性:136.7m ³ /h ・注水圧力:1.04~7.86MPa[dif]	設計値を設定。高圧代替注水系は、タービン回転数制御により原子炉圧力に依らず一定の流量にて注水する設計となっている。
関連する機器条件	低圧代替注水系 (可搬型)	 原子炉水位が原子炉水位高(レベル8)設定点まで回復した以降は原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の範囲に維持 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m³∕h ・注水正力:0~1.4MPa[dif] (原子炉注水と格納容器スプレイ併用時) ・注水流量:50m³∕h(一定) 	炉心冷却性の観点で厳しい設定として,機器設計上の最低要 求値である最小注入特性を設定

	第 2.3.2-2 表	主要解析条件	(全交流動力電源喪失	(TBD,	TBU))	(5/6	;)
--	-------------	--------	------------	-------	-------	------	----

	項目	主要解析条件	条件設定の考え方
	代替格納容器スプレイ冷却系 (可搬型)	サプレッション・チェンバ圧力が 217kPa[gage] に到達した場合は停止し,279kPa[gage]に到達し た場合に再開	格納容器圧力上昇を抑制可能な流量として,運転手順に基づ き設定
		スプレイ流量:130m ³ /h <mark>(一定)</mark>	
 重 大	外部水源の温度	35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい高め の水温として,年間の気象条件変化を包含する高めの水温を 設定
事故	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	設計値を設定
寺対策に関連する機器条件	残留熱除去系 (低圧注水系)	<mark>最小流量特性</mark> 注水流量:0~1,676m ³ /h 注水圧力:0~1.55MPa[dif]	炉心冷却性の観点で厳しい設定として,設計基準事故の解析 で用いる最小 <mark>流量</mark> 特性を設定
	残留熱除去系(格納容器スプ レイ冷却系)	スプレイ流量:1.9×10 ³ t/h (95%:ドライウェル,5%:サプレッション・ チェンバ)	<mark>設計値を設定</mark>
	残留熱除去系 (サプレッショ ン・プール冷却系)	約 43MW(サプレッション・プール水温度 100℃, 海水温度 32℃において)	残留熱除去系の除熱性能を厳しくする観点で,過去の実績を 包含する高めの海水温度を設定

第2.3.2-2表 主要解析条件(全交流動力電源喪失(TBD, TBU))(6/6)

	項目	主要解析条件	条件設定の考え方
	常設代替高圧電源装置による 非常用母線の受電操作	事象発生から 24 時間後	本事故シーケンスの前提条件として設定
重大事	高圧代替注水系の起動操作	事象発生から 25 分後	運転手順に基づき,直流電源喪失を確認した後に高圧代替注 水系の起動操作を実施するため,状況判断及び高圧代替注水 系の準備に要する時間を考慮して設定
故等対策に関連する	逃がし安全弁による原子炉減 圧操作(<mark>可搬型代替注水大型</mark> ポンプを用いた低圧代替注水 系(可搬型)による原子炉注 水)	事象発生から8時間1分後	実際には,低圧で注水可能な系統(可搬型代替注水大型ポン プを用いた低圧代替注水系(可搬型))が準備できた時点で サプレッション・プール水温度が熱容量制限を超過している 場合は減圧操作を実施するが,余裕時間を確認する観点で8 時間後に可搬型代替注水大型ポンプを用いた低圧代替注水 系(可搬型)の準備が完了するものとし,減圧操作に要する 時間を考慮して設定
操作条件	可搬型代替注水大型ポンプを 用いた代替格納容器スプレイ 冷却系(可搬型)による格納 容器冷却	サプレッション・チェンバ圧力 279kPa[gage]到達時	運転手順に基づき格納容器ベント実施基準である格納容器 最高使用圧力(310kPa[gage])に対する余裕を考慮し設定
	残留熱除去系による原子炉注 水及び格納容器除熱	事象発生から 24 時間 10 分後	常設代替高圧電源装置による非常用母線の受電操作の完了 後,残留熱除去系の起動操作に要する時間を考慮して設定

第2.3.2-1 図 全交流動力電源喪失(TBD, TBU)時の重大事故等対策の概略系統図(2/3) (可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水及び 代替格納容器スプレイ冷却系(可搬型)による格納容器冷却段階)

第2.3.2-1図 全交流動力電源喪失(TBD, TBU)時の重大事故等対策の概略系統図(3/3) (残留熱除去系による原子炉注水及び格納容器除熱段階)

- ※1・主蒸気隔離弁は制御電源が喪失することで閉となる。
- ※1:1.1.2% X時間#17は町町電販が安大することで困さなる。 ※2:直流電源喪失によりスクラムパイロット電磁弁が開放することで制御棒はスクラム動作をする。 ※3:直流電源喪失は、中央制御室にて、照明の消灯,非常用ディーゼル発電機の機器ランプ表示、機器故障警報,非常用交流母線電圧計,直流母線電圧計等により判断する。 ※4:高圧代替注水系の起動操作は以下により判断する。

全電源喪失

- ・全電源喪失 ※5:代替直流電源設備から電源を融通することにより原子炉隔離時冷却系を起動する。 ※6:高圧代替注水系により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。 ※7:全交流動力電源喪失を確認した場合は,速やかに可搬型代替注水大型ボンブを用いた 低圧代替注水系(可搬型)には同じ可搬型代替注水大型ボンブを用いる。 ※8:サプレッション・プール水温度がサプレッション・プール熱容量制限(原子炉が高圧の場合は65℃)に到達又は超過した場合は,低圧で注水可能な系統の準備完了後に原子炉減圧操作を実施する。実際の操作では、 原子炉圧力が低下し<mark>可搬型代替注水大型ボンブを用いた</mark>低圧代替注水系(可搬型)による原子炉注水が開始された後に高圧代替注水系が停止するが、可搬型代替注水大型ボンブを用いた</mark>低圧代替注水系(可搬型) の原子炉水位回復性能を確認する観点で,原子炉減圧開始と同時に高圧代替注水系は停止する想定としている。
- ※9:原子炉水位不明は、以下により判断する。
 - ・ドライウェル雰囲気温度と原子炉圧力の関係が原子炉水位不明領域に入った場合
 - ・原子炉水位計の電源が喪失した場合
- ・原子炉水位計のばらつきが大きく有効燃料長頂部以上であることが判断できない場合 ※10:可搬型代替注水大型ボンプを用いた低圧代替注水系(可搬型)により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。 ※11:残留熱除去系は,原子炉水位低(レベル3)設定点にて原子炉注水モード運転に切り換え,原子炉水位高(レベル8)設定点にて格納容器スプレイモード運転に切り替える。

コメント No. 147-19 148-01, 17 に対する	, 20, 23, 25, 29, 回答			
第 2.3.2-2 図	全交流動力電源喪失	(TBD,	TBU)	の対応手順の概要

	交流動力電源喪失(TBD, TBU)																			
				経過時間(分)																
						0	10	20		30 40	50	60	. 70		80	90	100	110	120	備考
		宝饰笛可,	心更更目	浙				1						1				I		
		天旭曲川	~~~~	C 3A		♥ 爭象発生														
		【 】は 移動して	他作業後 きた要員	ź		▶ 原子炉ス	クラム													
				中中歐祖			⊽ ⊅	プラント状況	則断											
	責任者	発電長	1人	運転操作指揮					Y 25	5分 高圧代替注水	系による原子炸	『注水開始								
操作項目	補佐	副発電長	1人	運転操作指揮補佐	操作の内容															
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡																
	運転員	運転員		重大事故等対応要員																
	(中央制御室)	(現場)		(現場)																
乾電池式内蔵型照 明の準備	2人 A, B	3人 C, D, E		-	●乾電池内蔵型照明(ヘッドライト等)の準備	1分														
					●全電源喪失の確認															
					●原子炉スクラムの確認	子炉スクラムの確認														
状況判断	2人 A P	_		_	 ●タービン停止の確認 	10 分														
	А, Б				●主蒸気隔離弁閉止及び逃がし安全弁による															
					原子炉圧力制御の確認															
	1111				●冉焔東ホシノトリッノの確認		_													
高圧代替注水系	A	-		_	●高圧代替注水系に必要な負荷の電源切替操作 4分		र्भ													
の起動操作	【1人】 B	_		_	●高圧代替注水系による原子炉注水 系統構成 6分															
原子炉水位の調整 操作(高圧代替注 水系)	【1人】 A	_		_	●高圧代替注水系による原子炉注水の調整操作					原	子炉水位を原	子炉水位低(レベル3)設定	『点から原子	炉水位高	(レベル8)	設定点の間に	維持		
交流電源の					●非常用ディーゼル発電機の機能回復															解析上考慮しない
回復操作	-	_		-	●外部電源の機能回復															対応可能な要員にて実施

第2.3.2-3 図 全交流動力電源喪失(TBD, TBU)の作業と所要時間(1/2)

第 2.3.2-3 図 全交流動力電源喪失(TBD, TBU)の作業と所要時間 (2/2) コメント No.147-27 に対する回答

					全交流動力電源喪失(ТВД, ТВЦ	U)							
					1									
				経過時間(時間) 4 8 12 16 20 24 28 32 36				26	40 # *					
					4	° I	12	10	20	24	20	32	30	40 1用 45
		実施箇所·必要要	員数											
地作百日						∇ 8	3時間1分 原子炉	減圧開始						
採旧復日		移動してきた安	-	探正の内谷				▼ 約13時間 サプ	レッション・チェンバ圧ス	力279kPa[gag	ge]到達			
										24時	間 非常用母線受	電		
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)							▼ 24	4 時間 10 分 残留 原子	熱除去系による格 炉注水の交互運車	納容器スプレイ及び 開始	
原子炉水位の調整操作 <mark>(高圧代替注水 系)</mark>	【1人】 A	_	-	●高圧代替注水系による原子炉注水の調整操作	原子炉水位を原子炉水位低(L 3)設定点から原子炉水位高(1 8)設定点の間に維持	レベル レベル								
	-	-	10人 a~j	●アクセスルート復旧,可搬型代替注水大型ボンプ準備,代替淡水貯 槽からのホース敷設等	1	.70 分								
	-	-	【2人】 a, b	●可搬型代替注水大型ポンプ起動操作				起動後,適宜監	視					
可搬型代替注水大型ポンプを用いた低 圧代替 <mark>注水系(可搬型)による原子炉注</mark>			【2人】 c, d	●淡水貯水池B(A)から淡水貯水池A(B)への補給		60分								
水準備		21	2人 k, 1											
	-	C, D	2人	●原子炉注水のための系統構成	12	25 分								
			(招集)	● 可搬型設備用軽油タンクからタンクローリへの補給		90 分		-						タンクローリ務量に広じ
<mark>タンクローリ</mark> による燃料補給操作	-	-	2人 (招集)	 ● 可服 王 U 備加 任 価 / ジ / パ ジ / ジ / ビ / ジ 価 福 ● 可 纏 刑 件 熱 注 水 士 刑 ポ ン プ への 经 油 						诸官宝旗				て適宜軽油タンクから補
逃がし安全弁 <mark>(自動減圧機能)</mark> による原	【1人】	_		● 「煎王氏自己が氏王がシノーの前面 ● 迷惑日安全会 (百動速圧進発) 7 金の開放場作				-		旭山,天心				
子炉減圧操作 原子炉水位の調整操作(可搬型代替注	В	[24]	[24]											<u> </u>
<mark>水大型ポンプを用いた低圧代替注水</mark> 系)	-	C, D	(招集)	●原子炉注水の流量調整				系統構成後,適宜流	〔量調整					
常設代替高圧電源装置による	【1人】 B	-	-	 ●非常用母線受電準備 	30 分									
非常用母線の受電準備操作	-	【1人】 E	【1人】 m	●非常用母線受電準備		240 分								
<mark>可搬型代替注水大型ポンプを用いた</mark> 代		11.41	【3人】 k, l, m	●格納容器スプレイのための系統構成			175 分							
替格納容器スプレイ冷却系(可搬型)に よる格納容器冷却	_	E	2人 (招集)	●格納容器スプレイの流量調整				系統構成	送後,適宜流量調整					
常設代替高圧電源装置による 緊急用母線受電操作	【1人】 B	-	-	●常設代替高圧電源装置2台起動及び緊急用母線受電操作					4 分					
常設代替高圧電源装置による	【1人】			●常設代替高圧電源装置3台追加起動					8 分					
非常用母線受電操作	В		_	●非常用母線受電					9 分	7				
				 残留熱除去系海水系の起動操作 					4	分				
残留熱除去系による原子炉注水	【1人】			●残留熱除去系による原子炉注水操作						2分				
及び格納容器除熱	A	_		●残留熱除去系による格納容器スプレイ操作及び原子炉注水の交互運転						原= ン 定;	子炉水位高(レベル ・プール冷却開始への 点にて原子炉注水への	 8)設定点にて格納: の切替え操作を実施し の切替え操作を実施 	容器スプレイ又はサプレッショ ,原子炉水位低(レベル3)副	4 役
使用済燃料プールの冷却操作	-	-	-	●使用済燃料プールの冷却操作										使用済燃料ブールの除熱 機能が喪失した場合で も、ブール水温度が80℃ に到達するまでには1日 以上の時間会裕があるた め、本操作は対応可能な 要員にて実施する。
可搬型代替注水大型ポンプによみ水源				●可搬型代替注水大型ボンブの移動,ホースの敷設等										
補給操作	-	-	-	 ●ボンブ起動及び水源補給操作 										対応可能な要員にて実施
必要要員合計	2人 A, B	3人 C, D, E	13人 a〜m 及び招集6人											

第2.3.2-7図 逃がし安全弁からの蒸気流量の推移

第2.3.2-8図 原子炉圧力容器内の保有水量の推移

第2.3.2-9図 燃料被覆管温度の推移

2.3.2-44

第2.3.2-14 図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係

第2.3.2-15図 格納容器圧力の推移

第2.3.2-16図 格納容器雰囲気温度の推移

全交流動力電源喪失(TBD, TBU)時における高圧代替注水系の

8時間継続運転が可能であることの妥当性について

有効性評価の全交流動力電源喪失(TBD, TBU)時において, 交流電源が喪失している 8 時間,高圧代替注水系を用いた原子炉注水 に期待している。

高圧代替注水系の起動から 8 時間の継続運転のために代替直流電源 を必要とする設備は,計測制御設備及び電動弁である。第1 図に高圧 代替注水系の系統構成概略を示す。事故時には代替直流電源の容量以 外にも,サプレッション・プール水温度の上昇や高圧代替注水系ポン プ室温度及び中央制御室温度の上昇が,高圧代替注水系の運転継続に 影響することも考えられるため,その影響についても確認した(第1 表参照)。

第1表に記載したそれぞれの要因は高圧代替注水系の8時間継続運転上の制約とならないことから、本有効性評価においてこの機能に期待することは妥当であると考える。

第1表 全交流動力電源喪失時(TBD, TBU)における高圧代替注水系の継続運転への影響評価

評価項目	影響概要	評 価
サプレッション・	サプレッション・プール水温度の上昇によ	高圧代替注水系ポンプの第一水源であるサプレッション・
プール水温度上昇	り,高圧代替注水系ポンプのキャビテーショ	プールを水源とした場合,事象発生後8時間での水温は約
	ンやポンプ軸受の潤滑油冷却機能が阻害さ	100℃となる。 <mark>この時の高圧代替注水系の有効吸込み水頭</mark>
	れ,高圧代替注水系ポンプの運転に影響を与	(NPSH)は,類似システムである原子炉隔離時冷却系
	える可能性が考えられる。	ポンプと比較評価し、有効NPSH評価条件である静水頭
		(サプレッション・プール水位低レベル~ポンプ吸込みレ
		ベル)及び配管設計が類似となり,静水頭及び配管圧損に
		大きな差異が生じないことから、サプレッション・プール
		水温上昇時においても,原子炉隔離時冷却系ポンプ同様,
		<mark>必要NPSHに対し有効NPSHが上回るため,キャビテ</mark>
		ーションは発生しない。また,温度耐性の観点からも,高
		<mark>圧代替最高使用温度 120℃で</mark> 設計するため, サプレッショ
		ン・プールの温度上昇による高圧代替注水系の 8 時間運転
		継続への影響はない。
高圧代替注水系ポン	高圧代替注水系のポンプ, 電気制御系統, 弁,	全交流動力電源喪失(TBD, TBU)時の高圧代替注水
プ室温度上昇	タービン等の設計で想定している環境の最	系ポンプ室温度を評価した結果,事象発生から 8 時間後の
	高温度は 65.6℃を想定している。全交流動力	室温は約 65.1℃(初期温度 40℃)であり、高圧代替注水系
	電源喪失時は換気空調系が停止しているた	の設計で想定している <mark>65.6</mark> ℃を下回る。したがって,高圧
	め、高圧代替注水系が設置される高圧代替注	代替注水系ポンプ室温度上昇によって高圧代替注水系の 8
	水系ポンプ室温が <mark>65.6</mark> ℃を超える可能性が	時間継続運転は阻害されない。
	考えられる。	
中央制御室温度上昇	中央制御室の環境条件として想定している	全交流動力電源喪失(TBD, TBU)は全交流動力電源
	最高温度は40℃である。全交流動力電源喪失	喪失(長期TB)とほぼ同様の事象進展であり,中央制御
	では換気空調系が停止するため,中央制御室	室の温度評価に当たっては全交流動力電源喪失(長期TB)
	温度が最高温度を超える可能性が考えられ	の直流電源の熱負荷に包含されることから、全交流動力電
	る。	源喪失(TBD, TBU)時の中央制御室温度は, 全交流
		動力電源喪失(長期TB)の評価結果と同様であり、制御
		盤の設計で想定している環境の最高温度 40℃を下回る。し
		たがって,中央制御室温度上昇によって高圧代替注水系の8
		時間継続運転は阻害されない。(添付資料 2.3.1.1)

第1図 高圧代替注水系系統概要図

全交流動力電源喪失時(TBD, TBU)における

高圧代替注水系ポンプ室の室温評価について

- 1. 温度上昇の評価方法
 - (1) 評価の流れ

全交流動力電源喪失時には換気空調系による除熱が行われない ため,評価対象の部屋の温度変化は,タービンや配管などの室温 の熱源から受ける熱量(室内熱負荷)と隣の部屋(上下階含む) への放熱(躯体放熱)のバランスによって決定される。

換気空調系停止後,室温が上昇を始め,最終的には室内熱負荷 と躯体放熱のバランスにより平衡状態となる。

(2) 評価条件

評価条件を以下にまとめる。

・評価対象とする部屋の条件:

	高圧代替注水系
	ポンプ室
発熱負荷[₩] <mark>* 1</mark>	16, 900
容 積[m ³]	692
熱容量[kJ/℃] <mark>*2</mark>	827.9
初期温度[℃]	40

 ※1:発熱負荷の内,原子炉隔離時冷却系注水配管の発熱 負荷は,保守的に8時間後の温度100℃が事象初期 から評価期間の間,継続するものとして評価を行う。
 ※2:熱容量は,保守的に空間に占める空気容積のみを考慮する。

・評価対象の部屋に隣接する部屋の温度*3

原子炉棟	65.6℃(機器設計温度)
一般エリア	50.0℃(同上)
(二次格納容器外)	
地中	20.0℃ ^{* 4}
サプレッション・チェンバ	<mark>100.0℃(8時間後の最大温度)</mark>
※3:当該温度は,保守的に	事象初期から評価期間の間、継
続するものとして評価	を行う。
※4:水戸市の地中温度の年間	引月月平均温度の最大 16.2℃に
<mark>余裕を見た値にて設定</mark>	。(「地中温度等に関する資料

(農業気象資料第3号,1982)」)

原子炉建屋地下1階

第2図 高圧代替注水系ポンプ室及び隣接する部屋の位置関係図

添付 2.3.2.1-6

・コンクリート壁ー空気の熱伝達率

評価壁面	熱伝達率 (W/m ² ・℃)
鉛直壁面	and the second se
水平壁面(上向き)	
水平壁面(下向き)	La

 ※5: 伝熱工学資料第5版に基づき,温度差5℃,代表高さ 5mにて算出した値

・コンクリートの熱伝達率

評価壁面	物性値 ^{※6}
熱伝導率	
熱拡散率	

※6:伝熱工学資料第5版に基づく

(3) 評価結果

全交流動力電源喪失時(TBD, TBU)において,事象発生 8 時後の高圧代替注水系ポンプ室の温度は約 65.1℃となり,設計で 考慮している温度を超過しないため,高圧代替注水系の運転継続 に与える影響はない。

添付 2.3.2.1-7

添付資料 2.3.2.2

<u>コメント No. 148-04 に対する回答</u> 蓄電池による給電時間評価結果について

重大事故等対象設備に電源供給を行う常設代替直流電源設備として,緊急用直流 125V 蓄電池の 1 系統を有している。

高圧代替注水系の運転操作に係る負荷は,緊急用直流 125V 主母線 盤に接続されており,緊急用直流 125V 蓄電池より給電される。全交 流動力電源喪失時においては,同蓄電池からの電源供給により,高 圧代替注水系を起動し,原子炉への注水を行う。同蓄電池からの電 源供給としては,電源供給開始から負荷の切り離しを行うことなく, 24 時間*1にわたり高圧代替注水系による注水に係る負荷に電源を 供給するものとして評価する。

上記運転方法に必要な負荷容量が約 5,278.8Ah であることに対し, 緊急用直流 125V 蓄電池の容量が 6,000Ah^{※2}であることから,24 時間 にわたり高圧代替注水系の運転継続のための電源供給が可能である。 (第1図)

- ※1 全交流動力電源喪失(TBD)においては、事象発生8時間後に 低圧代替注水系(可搬型)による原子炉への注水に切り替える が、蓄電池の容量評価を保守的に評価するため、高圧代替注水 系を24時間運転継続した想定で評価を実施している。
- ※2 蓄電池容量は、使用開始から寿命までの間変化し、使用年数を経 るに従い容量が低下するため、蓄電池容量の算出にあたっては、 「据置蓄電池の容量算出法」(SBA S 0601-2014)による保守率 0.8 を採用していること及び各負荷の電流値を実負荷電流では なく、設計値を用いていることから、必要容量に対して余裕を

添付 2.3.2.2-1

持った容量を設定している。

(1) 常設代替直流電源設備の仕様

名称:緊急用直流 125V 蓄電池

型式:制御弁式据置鉛蓄電池

容量:約 6,000Ah

設置場所:屋内(常設代替高圧電源装置置場)

第1図 緊急用直流 125V 蓄電池 負荷曲線

安定状態について(全交流動力電源喪失(TBD, TBU))

全交流動力電源喪失(TBD, TBU)時の安定状態については,

以下のとおり。

原子炉安定停止状態	事象発生後,設計基準事故対処設備又は重大事故等対処
	設備を用いた炉心冷却が維持可能であり、また、冷却の
	ための設備がその後も機能維持でき、かつ、必要な要員
	の不足や資源の枯渇等のあらかじめ想定される事象悪
	化のおそれがない場合に安定停止状態が確立されたも
	のとする。
格納容器安定状態	炉心冷却が維持された後に、設計基準事故対処設備又は
	重大事故等対処設備を用いた格納容器除熱により格納
	容器圧力及び温度が安定又は低下傾向に転じ、また、格
	納容器除熱のための設備がその後も機能維持でき、か
	つ、必要な要員の不足や資源の枯渇等のあらかじめ想定
	される事象悪化のおそれがない場合に安定状態が確立
	されたものとする。

原子炉安定状態の確立について

高圧代替注水系の原子炉注水により炉心が冠水し,炉心冷却が維持される。 可搬型代替注水大型ポンプによる原子炉注水の準備完了後,原子炉を減圧し, 可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注 水を実施することで,引き続き炉心が冠水し,炉心の冷却は維持され,原子炉 安定停止状態が確立される。

格納容器安定状態の確立について

炉心冷却を継続し、常設代替高圧電源装置による交流電源の供給開始後に残 留熱除去系を用いた格納容器除熱を実施することで、格納容器圧力及び雰囲気 温度は安定又は低下傾向となる。格納容器雰囲気温度は 150℃を下回るととも に、ドライウェル雰囲気温度は、低圧注水継続のための逃がし安全弁の機能維 持が確認されている 126℃を上回ることはなく、格納容器安定状態が確立され る。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料及 び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。

(添付資料 2.1.1 別紙 1)

コメント No. 148-21, 265-06, 07, 08 に対する回答

解析コード及び解析条件の不確かさの影響評価について(全交流動力電源喪失(TBD, TBU))

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壊熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料棒表面熱伝 達,沸騰遷移,気 液熱非平衡	燃料棒表面熱伝 達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数 を低めに評価する可能性があり, 他の解析モデ ルの不確かさとあいまってコード全体として, スプレイ冷却のない実験結果の燃料被覆管温度 に比べて+50℃程度高めに評価する。低圧代替注 水系の注水による燃料棒冷却(蒸気単相冷却又 は噴霧流冷却)の不確かさは 20℃~40℃程度で ある。	解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、操作手順(速 やかに注水手段を準備すること)に変わりはなく、燃料被覆管温 度を起点とする運転員等操作はないことから、運転員等操作時間 に与える影響はない。	解析コードは,実験解析において熱伝達モデルの保守性により燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被 覆管温度を高めに評価することから,評価項目となるパラメータ の判断基準に対する余裕は大きくなる。
	燃料被覆管酸化	ジル コニウム – 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,操作手順(速 やかに注水手段を準備すること)に変わりはなく,燃料被覆管温 度を起点とする運転員等操作はないことから,運転員等操作時間 に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,実際の燃 料被覆管温度は低めとなり,評価項目となるパラメータの判断基 準に対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は、燃料被覆管温度と円周方向応力 に基づいて評価され、燃料被覆管温度は上述の ように高めに評価され、円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって、ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	有効性評価解析では原子炉水位が燃料有効長頂部を下回ることは なく,燃料被覆管最高温度は初期値を上回ることがないことから, 燃料被覆管の破裂判定の不確かさが運転員等操作に与える影響は ない。	有効性評価解析では原子炉水位が燃料有効長頂部を下回ることは なく,燃料被覆管最高温度は初期値を上回ることがないことから, 燃料被覆管の破裂判定の不確かさが評価項目となるバラメータに 与える影響はない。

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象	象 解析モデル 不確かさ		運転員等操作時間に与える影響	評価項目となるバラメータに与える影響	
炉心	 沸騰・ボイド率変化,気液分離(水 位変化)・対向流, 三次元効果 		TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重量する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,低圧代替注水系を注 水手段として用いる本事故シーケンスでは考慮 する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注 水系の注水タイミングに特段の差異を生じる可 能性はないと考えられる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重量する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析におけ る燃料被覆管最高温度は初期値を上回ることがなく、評価項目に 対して十分な余裕があることから、その影響は非常に小さい。	
原子炉 圧力容器	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。	
	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを想定する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	
	ECCS 注水(給水 系・代替注水系含 む。)	原子 炉 注 水 系 モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており,実機設備仕様に対し て注水流量を少なめに与え,燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	

第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	重要現象	重要現象 解析モデル 不確かさ		運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壞熱	炉心モデル(原子 炉出力及び崩壊 熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水(給水 系・代替注水設備 含む)	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析 モデルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉格納容器	格納容器各領域 間の流動 構造材との熟伝 達及び内部熟伝 導 気液界面の熟伝 達	格納容器モデル (格納容器の熟 水力モデル)	HDR実験解析では、格納容器圧力及び雰囲気 温度について、温度成層化を含めて傾向をよく 再現できることを確認した。格納容器死囲気温 度を十数で程度高めに、格納容器た力を1割程 度高めに評価する傾向が確認されたが、実験体 系に起因するものと考えられ、実機体系におい てはこの種の不確かさは小さくなるものと考え られる。また、非疑縮性ガス濃度の挙動につい て、解析結果が測定データとよく一致すること を確認した。 CSTF実験解析では、格納容器雰囲気温度及 び非凝縮性ガス濃度の挙動について、解析結果 が測定データとよく一致することを確認した。	解析コードは、HDR 実験解析において区画によって格納容器雰囲 気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、これらの不確かさは実験体系に起因する ものであり、実機体系においては不確かさが小さくなるものと推 定され、全体としては格納容器圧力及び温度の傾向を適切に再現 できているため、格納容器圧力を操作開始の起点としている代替 格納容器スプレイ冷却系(可搬型)による格納容器冷却に係る運 転員等操作時間に与える影響は小さい。 また、CSTF実験解析において格納容器雰囲気温度及び非凝縮 性ガスの挙動は測定データと良く一致することを確認しており、 その差異は小さいため、格納容器エクレイ冷却系(可搬型)による 格納容器冷却に係る運転員等操作時間に与える影響は小さい。	解析コードは、HDR 実験解析において区画によって格納容器雰囲気 温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾向 が確認されているが、これらの不確かさは実験体系に起因するも のであり、実機体系においては不確かさが小さくなるものと推定 され、全体としては格納容器圧力及び温度の傾向を適切に再現で きているため,評価項目となるパラメータに与える影響は小さい。 また、CSTF実験解析により格納容器雰囲気温度及び非疑縮性 ガスの挙動は測定データと良く一致することを確認しているた め,評価項目となるパラメータに与える影響は小さい。
	スプレイ冷却	安全系モデル(格 納容器スプレイ)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	サ プ レ ッ シ ョ ン・プール冷却	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

項目		解析条件の不確かさ		タル記念の考えた	であた日位也の作用にたらても郷	評価項目となるパラメータに
		解析条件 最確条件		米性設定の考え方	運転員寺傑作时间に与える影響	与える影響
	原子炉熱出力	3, 293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は,最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
初期条件	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響は小さい。
	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ + 132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mmであ り非常に小さい。したがって、事象進展に及ぼす影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるバラメータに与える影響は小さい。
	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい で解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さ い。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は、 熱水力的な特性はほぼ同等であり、その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含されることから、代表的に9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性はほ ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが,両型式の燃料の特性はほぼ同 等であることから,炉心冷却性に大きな差は無く,評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、操作手順(逆やかに注水手段を 準備すること)に変わりはなく、燃料被覆管温度を 起点とする運転員等操作はないことから、運転員等 操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから、評価項目となるパラメータの 判断基準に対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/5)

項目		解析条件の不確かさ				評価項目となるパラメータに
		解析条件 最確条件		条件設定の考え方	運転員等操作時間に与える影響	与える影響
	原子炉停止後の 崩壊熱	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下及 び格納容器圧力上昇の観点で厳しい設 定となる。このため,崩壊熱が大きくな る燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(1 ヶ月)を考慮した運転期間に対応する燃 焼度を設定	最確条件は解析条件で設定している崩壊熟よりも小 さくなる。このため、原子炉からサプレッション・ プールに流出する蒸気量が減少することで、原子炉 水位の低下が遅くなるが、操作手順(速やかに注水 手段を準備すること)に変わりはなく、運転員等操 作時間に与える影響はない。また、格納容器圧力、 サプレッション・プール水位及びサプレッション・ プール水温度の上昇が遅くなり、これらのパラメー タを起点とする運転員等操作の開始時間は遅くな る。	最確条件は解析条件で設定している崩壊熟よりも小 さくなる。このため、燃料からの発熱が小さくなり、 原子炉からサプレッション・プールに流出する蒸気量 が減少することで、原子炉水位の低下並びに格納容器 圧力及び温度の上昇が緩和されることから、評価項目 となるパラメータに対する余裕が大きくなる。
	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として、通常運転時の圧力を包含する 値を設定	最確条件とした場合には,解析条件で設定している 圧力よりも小さくなるため,格納容器圧力が低めに 推移するため,格納容器圧力を起点とする運転員等 操作の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧 力よりも小さくなる。このため、格納容器圧力が低め に推移することから,評価項目となるパラメータの判 断基準に対する余裕は大きくなる。
	ドライウェル 雰囲気温度	57°C	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ドライウェル雰囲気温度 は、格納容器スプレイの実施に伴い飽和温度となる ことから、初期温度のゆらぎが事象進展に与える影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ドライウェル雰囲気温度は、 格納容器スプレイの実施に伴い飽和温度となること から、初期温度のゆらぎが事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。
初期	格納容器体積 (ドライウェル)	5, 700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
初期条件	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約4,058m ³ 液相部: 約3,308m ³ ~約3,342m ³ (実測値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、格納容器体積(ウェット ウェル)の液相部の運転範囲において解析条件より 高めの水位となるが、ゆらぎの幅は非常に小さい。 例えば、サプレッション・プール水位が 6.983m の時 の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m) による水量変化は約42m ³ であり、その割合は初期保 有水量の1.3%程度と非常に小さい。したがって、事 象進展に43%整じ小さく、運転員等操作時間に 与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウ ェル)の液相部の運転範囲において解析条件より高め の水位となるが、ゆらぎの幅は非常に小さい。例えば、 サプレッション・プール水位が6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、評価項目となるパラメータに与 える影響は小さい。
	サプレッション・ プール水位	6.983m (通常運転水位-4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、サブレッション・プール 水位の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプ レッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、運転員等操作時間に与える影響 響は小さい。	最確条件とした場合には、サプレッション・プール水 位の運転範囲において解析条件より高めの水位とな るが、ゆらぎの幅は非常に小さい。例えば、サプレッ ション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m)による水量変化は 約 42m ³ であり、その割合は初期保有水量の 1.3%程度 と非常に小さい。したがって、事象進展に与える影響は 小さく、評価項目となるパラメータに与える影響は 小さい。
	サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる高めの水温として,保安 規定の運転上の制限における上限値を 設定	最確条件は解析条件で設定している水温よりも低く なるため、サブレッション・ブールでの圧力抑制効 果が高まり格納容器圧力の上昇は緩和される。この ため、格納容器圧力を起点とする運転員等操作の開 始は遅くなる。	最確条件は解析条件で設定している水温よりも低く なるため、サブレッション・プールでの圧力抑制効果 が高まり格納容器圧力の上昇は緩和される。このた め、評価項目となるパラメータの判断基準に対する余 裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/5)

	百日	解析条件の	り不確かさ	冬世記中の考え士	流転号笠堤佐時町にたうて影響	評価項目となるパラメータに
項目		解析条件	最確条件	末日設定の与え方	歴転員守珠旧时间にすんる影響	与える影響
	起因事象	外部電源喪失	_	送電系統又は所内主発電設備の故障等によ って,外部電源が喪失するものとして設定		
事故条件	安全機能の喪失に対 する仮定	直流電源喪失	_	直流電源の喪失により,非常用ディーゼル 発電機等及び原子炉隔離時冷却系の機能喪 失を設定	-	-
件	外部電源	外部電源なし	_	起因事象として、外部電源が喪失すること を想定	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない。	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない。
関連する機器条件重大事故等対策に	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	タービン加減弁急速閉信 号又は原子炉保護系電源 喪失	原子炉水位低下を厳しくする観点で,外部 電源喪失に伴う原子炉保護系電源喪失及び タービン蒸気加減弁急閉信号は保守的に考 慮せず,原子炉水位低(レベル3)による 原子炉スクラムを設定	最確条件とした場合には、原子炉熱出力の低下が早 くなるため、原子炉からサプレッション・プールに 流出する蒸気量が減少することで、原子炉水位の低 下が遅くなるが、操作手順(速やかに注水手段を準 備すること)に変わりはなく、運転員等操作時間に 与える影響はない。また、格納容器圧力、サプレッ ション・プール水位及びサプレッション・プール水 温度の上昇が遅くなり、これらのパラメータを起点 とする運転員等操作の開始時間は遅くなる。	最確条件とした場合には、原子炉熟出力の低下が早く なるため、原子炉からサプレッション・プールに流出 する蒸気量が減少することで、原子炉水位の低下並び に格納容器圧力及び温度の上昇が緩和されることか ら、評価項目となるパラメータに対する余裕が大きく なる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/5)

第2表	解析条件を最確条件と	した場合に運転員等操作時間及び評価項目となるパラメータに与える影響(4/	5)
-----	------------	--------------------------------------	------------

項目		解析条件の不確かさ		冬世記中の考えて	海転昌傑協佐時間に長さて影響	評価項目となるパラメータに	
		解析条件 最確条件		米件設定の考え方	運転員寺操作时间に子える影響	与える影響	
	高圧代替注水系	136.7m ³ /h(1.04~ 7.86MPa[gage]におい て)	136.7m ³ /h(1.04~ 7.86MPa[gage]におい て)	設計値を設定。高圧代替注水系は,原子炉 圧力に依らず一定の流量にて注水する設計 となっている。	解析条件と最確条件は同様であることから、事象進 展に影響はなく、運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
関連する機器条件	残留熱除去系 (低圧注水系)	最小流量特性 ・注水流量:0~1,676m ³ /h ・注水圧力:0~ 1.55MPa[dif]	・注水流量:0~1,676m ³ /h以上 ・注水圧力:0~ 1.55MPa[dif]	炉心冷却の観点で厳しい設定として,設計 基準事故の解析で用いる最小流量特性を設 定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,注水開始後の原子炉水位の維持 操作の開始が早くなるが,注水後の調整操作であり, 運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、評価項目となるパラメータの判断基 準に対する余裕は大きくなる。	
	<mark>可搬型代替注水大型 ポンプを用いた</mark> 低圧代替注水系 (可搬型)	 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m³ /h ・注水 圧力:0~ 1.4MPa[dif] 	 (原子炉注水単独時) 定格流量特性 注水流量:0~110m³ /h以上 ・注水 圧 力 : 0~ 1.4MPa[dif] 	炉心冷却性の観点で厳しい設定として,設備設計上の最低要求値である最小流量特性 を設定	最確条件とした場合には、注水開始後の原子炉水位 の回復が早くなり、原子炉水位の維持操作の開始が 早くなるが、原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため、運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、炉心の再冠水が早まることから、評 価項目となるパラメータの判断基準に対する余裕は 大きくなる。	
		(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50m ³ /h	(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50m ³ /h 以上	併用時の系統評価に基づき,保守的な流量 を設定			
	<mark>可搬型代替注水大型</mark> ポンプを用いた 代替格納容器スプレ イ冷却系(可搬型)	スプレイ流量: 130m ³ /h <mark>(一定)</mark>	スプレイ流量: 130m ³ /h 以上	格納容器圧力上昇を抑制可能な流量として,運転手順に基づき設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
	外部水源の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制効果の観 点で厳しい高めの水温として,年間の気象 条件変化を包含する高めの水温を設定。	最確条件とした場合には,解析条件で設定している 水温よりも低くなる可能性があり,格納容器スプレ イによる圧力抑制効果が高まることから,同等の効 果を得るために必要となるスプレイ水量が少なくな り,外部水源を用いた格納容器スプレイに伴うサプ レッション・プール水位の上昇が緩和されることか ら,サプレッション・プール水位を起点とする操作 の開始は遅くなる。	最確条件とした場合には,解析条件で設定している水 温よりも低くなる可能性があり,格納容器スプレイに よる圧力抑制効果が高まるが,格納容器最高使用圧力 に到達した時点で格納容器ベントを実施するマネジ メントに変わりはなく,格納容器圧力の最大値はおお むね格納容器ベント時の圧力で決定されるため,評価 項目となるパラメータに与える影響はない。	

項目		解析条件の不確かさ		冬世記史の老さ士	毎些月始現化時期におうて影響	評価項目となるパラメータに
	垻 日	解析条件	最確条件	米件設定の考え方	連転員寺傑作时间に子える影響	与える影響
	逃がし安全弁	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	 (原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個 (設計値) 	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影響はない。
関連する機器条件		(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開 放することによる原 子炉減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
	<mark>残留熱除去系(格納容</mark> 器スプレイ冷却系)	スプレイ流量:1.9×10 ³ t/h (95%:ドライウェ ル,5%:サプレッシ ョン・チェンバ)	スプレイ流量:1.9× 10 ³ t/h (95%:ドライウェ ル,5%:サプレッシ ョン・チェンバ)	設計値を設定	解析条件は最確条件と同等であることから,事象進展に差異はなく,運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから, 事象進展 に差異はなく, 評価項目となるパラメータに与える影 響はない
	残留熱除去系 (サプレッション・プ ール冷却モード)	熱交換器 1 基あたり 約 43MW (サプレッション・プ ール水温度 100℃,海 水温度 32℃において)	熱交換器 1 基あたり 約 43WW 以上 (サプレッション・プ ール水温度 100℃,海 水温度 32℃以下にお いて)	残留熱除去系の除熱性能を厳しくする観点 で,過去の実績を包含する高めの海水温度 を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、水源は枯渇しないこと から運転員等操作時間に与える影響はない。	_
	燃料の容量	約 1,010kL	約1,010kL 以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており,燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(5/5)

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/5)

項目		解析上の 操作開始時間	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	高圧代替注水 系による原子 炉注水操作	事象発生から 25 分後	運きを確定した。 重きを確認し、不した。 「「「「」」」では、 で、 「」」で、 に に 基 要に に 構 に で 、 に に し、 、 に し て 子 る る た 、 の に し、 、 し に し、 、 し に し、 、 し に し、 、 し に し、 、 し に し、 、 し 、 の し、 、 し 、 の し、 、 の し 、 の し、 、 の し た と の し、 、 の し た と の し、 の し、 の し 、 の し た と の し 、 の し に と の の し の と の し た の の し た と の し た の の し た と の の と の と の の と の と の の の と の の の の	【認知】 中央制御室にて機器ランプ表示消灯,機器故障警報,照明の消灯等により原子 炉スクラム,全電源喪失等を確認し,可搬型照明の準備を実施する。この事象 初期の状況判断に余裕時間を含め10分を想定している。よって,認知時間と して余裕を含めて10分を設定しており,十分な時間余裕を確保していること から,認知遅れが操作開始時間に影響を及ぼす影響は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 高圧代替注水系に必要な負荷の電源切替操作として4分,高圧代替注水系の起 動操作として6分を想定し,余裕時間を含めて操作時間として10分を設定し ている。いずれも中央制御室の制御盤の操作スイッチによる簡易な操作であ 切,操作所要時間が長くなる可能性は非常に低く,操作所要時間が操作開始時 間に影響を及ぼす可能性は非常に低く,操作所要時間が操作開始時 間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉注水を最優先に実施するため,他の並列操作が操作開始時間に与える影響 さない。 【操作の確実さ】 全電源喪失時の状況を考慮し,可搬型照明を確保した後に操作を実施する想定 としており,また,中央制御室の制御盤の操作スイッチによる簡易な操作であ ることから,誤操作は起こりにくく,誤操作等が操作開始時間に影響を及ぼす 可能性は非常に小さい。	認知時間,高な負荷 不電に 4000 で 1000 1100 1100 1100 1100 1100 11	実態の操作開始時間 が,解析上の操作開始 時間よりも早くなる 可能性があるが,解析 上の操作開始までの操作開始 が冠水維 持されていることか ら,評価項目となるパ ラメータに与える影 響はない。	同様に高圧・低圧注水 機能が喪失するが,事 象発生25分後に原子 炉減圧の注水系統により原子炉注水を実施し、 低圧の注水系統により原子炉注水を実施し することから,本事始 することから,本事始 する「LOCA時注 水機能喪失」に操作問 始遅れを想定したおい て、10分の減圧操作場 合でも,燃料被覆管の 破裂は発生す,評価 項目を満足する。 (添付資料2.6.5)	中るミュ保護の 中る実生に、 御の一む凌に、 御の一む凌に、 御の一む凌に、 御の一む凌に、 御の一む凌に、 事業、 上因、 一般、 一般、 一般、 一般、 一般、 一般、 一般、 一般、 一般、 一般
第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃に減壞大用替搬原子 しる操作者ン低系に注 でで、 「 で しる操作者ン低系に注 、 「 で の 本 を 代 で の た の 、 に 歴 型 いた水 の に の の に の の に の の に の の に の の の の に の の に の の に の の に の の に の の に の	事象発生から 8時間1分後	実注 (水用注が点ョ度を場を裕るに水用注のる操間定際水可大い水準でンが超合実時観可大い水準も作をは、能型求低何でププ容し減すをで8型が低何に考低な代ン圧搬きレル量て圧る確時代ノビイ搬うに、備して、すして がして がした 要慮 にかれ (がらの) 時 シ 温限る作余す後注を替) す 圧時設	【認知】 中央制御室にて機器ランプ表示消灯,機器故障警報,照明の消灯等により全交 流動力電源喪失を確認する事象初期の状況判断に余裕時間を含めて10分を想 定している。よって、認知時間として余裕時間を含めて10分を設定しており、 十分な時間余裕を確保していることから,認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから,要員配置が操作開始時間に与える影響は ない。 【移動・操作所要時間】 低圧代替注水系(可搬型)に用いる可搬型代替注水大型ボンプ等は車両であり、 自走にて作業現場へ移動することを想定している。仮に地震等の外部事象が起 因事象で、アクセスルートに被害がある場合でも、ブルドーザー等に必要な アクセスルートに被害がある場合でも、ブルドーザー等に必要な アクセスルートに被害がある場合でも、ブルドーザー等に必要な アクセスルートに被害がある場合でも、ブルドーザー等に必要な ためための系統構成として移動も含め125分を想定している。いずれも十分な 時間余裕を確保している。また、異なる要員にて並行して実施する原子炉注 水のための系統構成として移動も含め125分を想定している。いずれも十分な 時間余裕を確保していることから、移動及び操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 逃がし安全弁による原子炉減圧操作として余裕時間を含めて1分を設定して いる。中央制御室の制御盤の操作スイッチによる簡易な操作であり、操作所要 時間が長くなる可能性は非常に小さい。 【他の並列操作有無】 他の並列操作有無】 他の並列操作有無】 他の並列操作はないことから操作開始時間に与える影響はない。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため、操作要員2人以上 で実施することとしており、誤操作違こりにくいことから、誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間周及び移動・操 作所要含めて設定して いることから、実解 があら、実解析 上の操作開始時間よ りも若干早まる可能 性がある。	実態の操作開始時間 は解析る型定がある が,可型性がある大型が注水間ない。 が、可定体若な原子でのが がたい間には、 の原子での が、 での が、 での が、 たた に は、 の 原子での た で の た た さるる た 子 で の た が ある 大 子 で の た に た お の 型 に た お る る る た 、 子 、 で 物 型 に た お る る る た 、 一 物 型 に た お の の た の 部 た う の の た た う の の た の に た お の の た の た ろ る る た 、 ろ の の た た う た の の の た の た う の の た の た う の の 、 ろ る る 、 の に た す た う る る ろ 、 の に た す の の 、 の の 、 ろ る ろ る ろ ろ る ろ の た う の の 、 の の 、 ろ ろ る ろ ろ ろ ろ ろ る ろ の た う の の 、 の の 、 の の 、 の の 、 う の の 、 の の ろ の の 、 の ろ の ろ ろ ろ ろ ろ ろ ろ ろ	低圧代準結水系(可搬型)の準備にため、 「一般」であり、 「一般」であり、 「一般」であり、 「一般」でであり、 「一般」では 「一般」でであり、 「一般」では 「一般」でで 「一般」で 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一であり、 「一でる 「一であり、 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「一でる 「 「 「 「 「 「 「 「 「 「 「 「 「	ア復及木備は要定セ(ジ分で)を増し、 ア復及木備は要定セ(ジ分で)を増売。 ないれ型ン敷含した、時しスが分で)を増売。 おいした、、、 、、 、、 、、 、、 、、 、、 、、 、、 、、

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可注ンだ注型子作可注ン料 搬水ブ低水)炉に搬水ブ補 代型用代可る水い代型の 替ボい替搬原操る替ポ燃	低圧代替注水 系(可搬型) による原子炉 注水開始から 適宜	可 搬型 ポイン 型 ポイン は、 ない が て で 操 件 で で た の 数 株 作 で 花 な た い い し て 立 た 彩 れ た で た な い い し て 立 た 来 が 、 、 、 、 、 、 、 、 、 、 、 、 、	【認知】 「述がし安全弁による原子炉減圧操作(低圧代替注水系(可搬型)による原子 炉注水操作)」と同様であり,認知遅れが操作開始時間に影響を及ぼす可能性 は非常に小さい。 【要員配置】 本操作を実施する招集要員は,操作の実施期間中に他の操作を担っていないこ とから,要員配置が操作開始時間に与える影響はない。 【移動・操作所要時間】 招集要員の招集まで120分を想定している。また,燃料補給に用いるタンクロ ーリは車両であり,招集後,自走にて作業現場へ移動することを想定している。 仮に地震等の外部事象が起因事象で,アクセスルートに被害がある場合でも、 ブルドーザー等にて必要なアクセスルートを復旧できる体制としている。可搬 型設備用軽油タンクからタンクローリへの燃料補給として移動も含め90分を 想定しており,十分な時間余裕を確保していることから,移動及び操作所要時 間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため,操作要員2人以上 で実施することとしており,誤操作は起こりにくいことから,誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び移動・操 作所要時間は,余裕時 間を含めて設定 いることから,実態の 操作開始時間は解析 上の操作開始時間よ りも若干早まる可能 性がある。	実態の操作開始時間 は解析上の設定から 早まる可能性がある が,評価項目となるパ ラメータに直接影響 を与えることはない。	各機器の燃料が枯渇 しない時間内に実施 することで炉心損傷 を回避することが可 能であり,低圧代替注 水系(可搬型)による 原子炉注水開始から3 時間半程度の時間余 裕がある。	可型補めて実分。機していた、 型ンは90るをでより間 がない。 でしてい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 してい、 した。 で、 してい、 たの した。 した。 してい 能認 に、 ない た、 ない に、 ない た、 ない た、 ない に、 ない た、 ない た、 ない た、 ない た、 ない た、 ない た、 ない た 、 ない た 、 ない に、 ない た 、 ない た 、 た る 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た 、 た い に い に い に い に い に い に 、 で で 、 、 、 、 、 、 、 、 、 、 、 、 、

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(4/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可注ンた容子が見た。 「「「「」」」で「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	サプレッショ ン・チェンバ 圧力 279kPa [gage] 到達 時	運転手順に基づき 格納客器ペント実 施制客である格納 容器最高使用圧力 (310kPa[gage]) に対する余裕を考 慮し設定	【認知】 事故時には重要監視パラメータであるサプレッション・チェンパ圧力を継続監 視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェ ンパ圧力279kPa[gage])に到達するのは事象発生約13時間後であり、比較的 緩やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから、要員配置が操作開始時間に与える影響は ない。 【移動】 格納容器スプレイのための系統構成の実施場所は、原子炉注水のための系統構 成と同じ原子炉建屋内であり、操作要員はすでに配置済みであることから、移 動が操作開始時間に与える影響はない。 【操作所要時間】 格納容器スプレイのための系統構成として175分を想定しており、十分な時間 余裕を確保していることから、操作所要時間が操作開始時間に影響を及ぼす可 能性は非常に小さい。 【他の並列操作有無】 原子炉注水の流量調整を並列して実施する場合があるが、異なる要員による対 応が可能であるため、他の並列操作が操作開始時間に与える影響はない。また、 代替格納容器スプレイの清重、(可搬型)は、低圧代替注水系(可搬型)とポン プ等を共用しているが、原子炉注水と格納容器スプレイの高量を間時に確保可 能なポンプ容量を備えているため、原子炉注水と格納容器スプレイの同時運用 が可能である。 【操作の確実ま】 運転員(現場)及び重大事故等対応要員の現場操作は、操作の信頼性向上や要 員の安全のため2人1組で実施することとしており、誤操作は起こりにくく、 誤操作等が操作開始時間に影響を及ぼす可能性は小さい。	左記のとおり操作不 確かがない。 を記ってのためです。 を記ったので、 を取ります。 を して、 ための して、 ための して、 ための して、 ための して、 ための した。 ための した。 ための した。 ための した。 たい に した。 ため に ため、 ため に のる。 の で ある。 の た の た の た の た の た の た の た の た の た の	実態の一操たので、 実態の「操んのること」 には、 解析であること、 解析であること、 などの、 解析コーズので、 に、 などの、 が、 なび、 などの、 に、 なび、 などの、 で、 で、 ので、 開合で、 で、 で、 ので、 開合で、 し、 で、 ので、 開合で、 に、 し、 で、 ので、 開合で、 に、 で、 に、 ので、 開合で、 に、 で、 に、 ので、 開合で、 に、 で、 に、 ので、 に、 ので、 開合で、 に、 で、 に、 ので、 に、 ので、 に、 ので、 に、 ので、 に、 ので、 に、 ので、 に、 な ので、 に、 な ので、 に、 な ので、 に、 な ので、 に、 な ので、 に、 な ので、 に、 な ので、 に、 ので、 に、 な ので、 に、 た ので、 開合で、 し、 た ら、 れ、 に、 お で、 し、 、 、 な の で、 し、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に	事象発生の約 13 時 の約 13 時 のする 生施する 生施する 学施 にり、 般生 にの 水子 を の 水子 を の 、 一 の 本 着 同 型 ボ と た の の 本 着 同 型 ボ と の の 本 着 同 型 本 を た の の で ボ の 考 を 施 定 り、 般 三 と し の の 考 を 施 二 の を を た の の で が 考 を た の の で が た で の で が で が の た の の で が の た の で が の た の で が の た の で が の た の の の 、 の の で が の た の の の 、 の の こ の た の の の 、 の の の の の の の 、 の の の の の の	格納容器スプレイ のた,所要出るなどで、 分想ス,就能を175 分想スに、 が要にして、 にの にで、 に の の に の の 時 て いる な 等 の の 時 て いる た の 等 に の 時 に の 要 時 つ の 等 の の 時 の の 時 の の 等 の で 、 前 を の の 等 間 を の の 時 て いる と さ の の に う た の 、 売 定 し つ た う た の 、 前 定 し の の ら に の こ と に つ た う た し ろ と た の の 、 時 定 し い る と つ の た に の る と の た の に の た の の に の た の た の た し ろ と の た の た の た の た の た の と の た の の と の た の の の と の の の の

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(5/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	残留熱なる 発生に 炉格納 除急水 器 除熱	事象発生 24 時間 10 分後	常設代替高圧る高圧る高になる。 常設置 でで、 で、 で、 の の 定 で、 の 、 の の の 、 で 後 の の の 、 で 後 の の の 、 で 後 の の の 、 で 後 の の の 、 で 後 の の の 、 で 後 の の の 、 で 後 の の の た こ の の の 、 で 後 の の た こ の そ の 、 の 、 の 、 の 、 の 、 の 、 の 、 の の 、 の 、 の の の た こ の の の つ 、 の 、 の の た こ の の の つ る し の 受 、 残 の の つ る 、 の す む て の 、 の む ら つ 、 の む ら つ の た に の ま の こ の で し て る 、 の む る つ る し て る 、 の む る で し て て う し て つ る つ る つ る つ る つ る つ ら つ る つ ち の つ る つ ち つ て つ る つ つ て の つ る つ う つ て つ る つ つ て つ る つ つ て つ る つ つ て つ て つ て つ て つ て つ て つ て つ て つ つ つ つ て つ つ つ つ つ つ つ つ つ つ つ つ つ	【認知】 常設代替高圧電源装置による非常用母線の受電操作の完了後,連続して操作を 実施するため,認知に大幅な遅れが生じることは考えにくく,認知遅れが操作 開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 残留熟除去系海水系の起動操作として4分,残留熟除去系による原子炉注水操 作として1分を想定し,余裕時間を含めて操作時間として5分を設定している。 いずれも中央制御室の制御盤の操作スイッチによる簡易な操作であり,操作所 要時間が長くなる可能性は十分に低く,操作所要時間が操作開始時間に影響を 及ぼす可能性は非常に小さい。 【他の並列操作看無】 原子炉水位の調整操作を並列で実施する場合があるが,異なる運転員による対 応が可能であることから,他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作のため,誤操作は起こり にくく,誤操作等が操作時間に影響を及ぼす可能性は非常に小さい。	操作所要時間は, 余裕 時間を含めて設定し ていることから, 実態 の操作開始時間は間 よりも若干早まる可 能性がある。	実態の操作開始時間 は解析上の操作開始 時間より早くなる可 諸性には格納容なるの場 の開始約容器除こ とで務囲気れ、評価項の して移納容置度の上昇 は後なるパラメーチの 判断基準に対する余 裕は大きくなる。	非常用母線の の受でで時 の受でで時 の の の の の の の の の の の の の の の の の の	中ス操った。 中の人気ででの 御のため、 「 御のため、 に 和のため、 に れた。 、 た の の り の し 、 、 代 に や の し の し の し の し の し の し の し の し の し の う の し の し の し の き 、 の 、 の 、 の 、 の 、 の 、 の に た の う の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の に た の 、 の 、 の 、 の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の 、 た の 、 た の た の 、 た の 、 た の た の た の た の た の た の た の た の 、 た の た の 、 た の 、 た の 、 た の 、 た の 、 た の 、 た の た の た の た の た た の た の た の た た た た ろ こ え ら こ て こ て の に の 、 の の で の で の い の い の い の い の い が こ こ こ こ の の い の で の で の で の で の い ん て つ て 、 の で の で の い ん で つ で の い ん で つ の い ん た つ て の い 海 で の い ん た つ て の に の い ら の い ら の い ら の い ら の い ん 作 つ つ い た ろ た つ て の い ん 作 う つ の い ら の い の い の い の い の い の い の の い の い の い の い の い の い の い の い の い の い の い の い の い の い の い の い の い の い う の の い の の つ つ つ つ つ つ つ つ の の つ つ つ つ つ つ つ つ つ つ つ つ つ

7日間における水源の対応について

(全交流動力電源喪失(TBD, TBU))

- 1. 水源に関する評価
 - ① 淡水源(有効水量)
 - •代替淡水貯槽:約4,300m³
 - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
 - 低圧代替注水系(可搬型)による原子炉注水

事象発生 8 時間 1 分後,定格流量で代替淡水貯槽を水源とした 低圧代替注水系(可搬型)による原子炉注水を実施する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

交流動力電源が復旧した後,低圧代替注水系(可搬型)による 原子炉注水を停止する。

② 代替格納容器スプレイ冷却系(可搬型)による格納容器スプレ
イ

格納容器圧力が 279kPa[gage]に到達する事象発生約 13 時間後, 代替淡水貯槽を水源とした格納容器スプレイ冷却系(可搬型)に よる格納容器スプレイを実施する。

交流動力電源が復旧した後,代替格納容器スプレイ冷却系(可 搬型)による格納容器スプレイを停止する。

添付 2.3.2.5-1

3. 時間評価

事象発生から低圧代替注水系(可搬型)による原子炉注水が開始 されるまでは,高圧代替注水系により原子炉注水を実施するため, 代替淡水貯槽の水量は減少しない。

事象発生8時間1分以降は,低圧代替注水系(可搬型)による原 子炉注水等を実施するため,代替淡水貯槽の水量は減少する。

交流動力電源が復旧する事象発生24時間以降は,残留熱除去系に よる原子炉注水等を実施し,低圧代替注水系(可搬型)による原子 炉注水等を停止するため,代替淡水貯槽の水量の減少は停止する。

この間の代替淡水貯槽の使用水量は合計約2,130m³である。

第1図 外部水源による積算注水量

(全交流動力電源喪失(TBD, TBU))

4. 水源評価結果

時間評価の結果から,7日間の対応において合計約2,130m³必要と

添付 2.3.2.5-2

なるが,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水 を保有することから必要水量を確保可能であり,安定して冷却を継 続することが可能である。 7日間における燃料の対応について

(全交流動力電源喪失(TBD, TBU))

して評価する。

時系列	合計	判定
常設代替高圧電源装置 5 台起動 (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×5 台(運 転台数)=約 352.8kL	7日間の 軽油消費量 約352.8kL	軽油貯蔵タ ンクの容量 は約800kLで あり,7日間 対応可能
可搬型代替注水大型ポンプ 1 台起動 (低圧代替注水系(可搬型)及び代替格納容器スプレ イ系(可搬型)) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転 台数)=約 36.6kL	7日間の 軽油消費量 約36.6kL	可 搬 型 設 備 ア 軽 油 タン ク の 容 量 は 約 210kLであ り,7日間対 応可能

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

常設代替交流電源設備の負荷

(全交流動力電源喪失(TBD, TBU))

主要負荷リスト

【電源設備:常設代替高圧電源装置】

起 動 順 序	主要機器名称	負 荷 容 量 (kW)	負荷 起 動 時 の 最 大 負 荷 容 量 (kW)	定常時の連続運転 負荷容量 (kW)
1	緊急用母線自動起動負荷 ・緊急用直流 125V充電器盤 ・その他負荷	$\begin{array}{c} 24.0\\ 35.6\end{array}$	124.3	59.6
0	非常用母線2C自動起動負荷 ・直流125V充電器盤2A ・非常用照明 120VAC計装用電源2A ・その他負荷	47.1 89.0 28.6 224.5	495.9	448.8
3	非常用母線2D自動起動負荷 ・直流125V充電器盤2B ・非常用照明 ・120VAC 計装用電源2B ・その他負荷	35.9 71.2 102.1 103.9	785.8	761.9
4	残留熱除去系海水系ポンプ	871.0	1,958.9	1,632.9
5	残留熱除去系海水系ポンプ	871.0	2,829.9	2,503.9
6	残 留 熱 除 去 系 ボ ン プ そ の 他 負 荷	651.1 2.2	3,928.3	3,157.2
Ō	非 常 用 ガ ス 再 循 環 系 フ ァ ン 非 常 用 ガ ス 処 理 系 フ ァ ン そ の 他 負 荷 停 止 負 荷	55.0 7.5 78.7 -54.3	3,461.7	3,244.1
8	中 央制 御 室 空 調 ファン 中 央 制 御 室 非 常 用 循 環 ファン そ の 他 負 荷	45.1 7.5 165.1	3,824.0	3,461.8
9	蓄電池室排気ファン その他負荷	7.5 153.0	4,041.8	3,622.3
10	緊 急 用 海 水 ボ ン プ そ の 他	510.0 10.0	4,958.5	4,142.3
(1)	代 替 燃 料 プール 冷 却 系 ポ ン プ	22.0	4,221.8	4,164.3

添付 2.3.2.7-1

コメント No. 150-15, 163-39 に対する回答

2.3.3 全交流動力電源喪失(TBP)

2.3.3.1 事故シーケンスグループの特徴、炉心損傷防止対策

(1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「全交流動力電源喪失(TBP)」に含まれる 事故シーケンスとしては、「1.2 評価対象の整理及び評価項目の設定」に 示すとおり、①「外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+H PCS失敗」、②「サポート系喪失(直流電源故障)+DG失敗+逃がし 安全弁再閉鎖失敗+HPCS失敗」である。

コメント No. 148-12, 158-08, 49, 50 に対する回答!

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方 事故シーケンスグループ「全交流動力電源喪失(TBP)」は、原子炉の 出力運転中に全交流動力電源喪失により、電動の原子炉注水機能が喪失す るとともに、逃がし安全弁1弁が開固着することで原子炉圧力が低下し、 蒸気駆動の原子炉隔離時冷却系も停止することで全ての原子炉注水機能が 喪失することを想定する。このため、逃がし安全弁からの蒸気の流出によ り原子炉圧力容器内の保有水量が減少し原子炉水位が低下することから、 緩和措置が取られない場合には、炉心が露出することで炉心損傷に至る。

本事故シーケンスグループは,全交流動力電源喪失した状態において, 逃がし安全弁1弁開固着によって,蒸気駆動の注水系が動作できない範囲 に原子炉圧力が低下することで原子炉注水機能が喪失し,炉心損傷に至る 事故シーケンスグループである。このため,重大事故等対策の有効性評価 には,交流動力電源及び直流電源の供給機能に加えて交流動力電源を必要 としない高圧及び低圧注水機能に対する重大事故等対処設備に期待するこ とが考えられる。

以上により、本事故シーケンスグループでは、逃がし安全弁1弁開固着

によって蒸気駆動の原子炉注水機能が動作できない範囲に原子炉圧力が低 下するまでの間は蒸気駆動の原子炉注水機能を用いた原子炉注水によって 原子炉水位を維持し,その後原子炉を減圧し可搬型の注水機能を用いて原 子炉へ注水することによって炉心損傷の防止を図る。また,交流動力電源 が不要な格納容器冷却機能を用いて格納容器冷却を実施するとともに,代 替交流電源設備により交流電源を復旧し,最終的な熱の逃がし場へ熱の輸 送を行うことによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「全交流動力電源喪失(TBP)」において,炉 心が著しい損傷に至ることなく,かつ,十分な冷却を可能とするため,初 期の対策として原子炉隔離時冷却系,可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)及び逃がし安全弁(自動減圧機能)による原子 炉注水手段を整備する。また,格納容器の健全性を維持するため,安定状 態に向けた対策として,可搬型代替注水大型ポンプを用いた 代替格納容器 スプレイ冷却系(可搬型)による格納容器冷却手段及び常設代替高圧電源 からの給電後の残留熱除去系による格納容器除熱手段を整備する。対策の 概略系統図を第2.3.3-1図に,対応手順の概要を第2.3.3-2図に示すとと もに,重大事故等対策の概要を以下に示す。また,重大事故等対策におけ る手順と設備との関係を第2.3.3-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員22名及び事象発生から2時間以降に期待する招集要 員6名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員5名,通報連絡等を行う災害対策要員2名,現場操作を行う重大

事故等対応要員13名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名,可搬 型代替注水大型ポンプを用いた低圧代替注水系(可搬型)及び代替格納容 器スプレイ冷却系(可搬型)の現場系統構成を行う重大事故等対応要員4 名である。

必要な要員と作業項目について第2.3.3-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,初動対応要 員 22 名及び招集要員 6 名で対処可能である。

a. 原子炉スクラム及び全交流動力電源喪失の確認

外部電源が喪失するとともに,非常用ディーゼル発電機等が全て機能 喪失することで,全交流動力電源喪失となり,原子炉がスクラムしたこ とを確認する。さらに,主蒸気隔離弁が閉止するとともに,再循環ポン プがトリップしたことを確認する。

原子炉スクラム及び全交流動力電源喪失の確認に必要な計装設備は, 平均出力領域計装,原子炉圧力等である。

b. 原子炉隔離時冷却系の自動起動の確認

原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点 で原子炉隔離時冷却系が自動起動したことを確認する。

原子炉隔離時冷却系<mark>の自動起動の確認</mark>に必要な計装設備は,原子炉水 位(広帯域,燃料域),原子炉隔離時冷却系系統流量等である。

c. 原子炉水位の調整操作(原子炉隔離時冷却系)

原子炉隔離時冷却系の起動により原子炉水位が回復することを確認す る。また,原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(原子炉隔離時冷却系)に必要な計装設備は, 原子炉水位(広帯域,燃料域)等である。

原子炉隔離時冷却系による原子炉注水は,逃がし安全弁の開固着によ って,原子炉隔離時冷却系が動作できない範囲に原子炉圧力が低下する までの間継続する。

d. 早期の電源回復不能の確認

全交流動力電源喪失の確認後,中央制御室からの遠隔操作により外部 電源受電及び非常用ディーゼル発電機の起動ができず,非常用母線の電 源回復ができない場合,早期の電源回復不能と判断する。これにより, 常設代替高圧電源装置による非常用母線の受電準備操作を開始する。

e. 逃がし安全弁再閉鎖失敗の確認

主蒸気隔離弁が閉止しているにもかかわらず、原子炉圧力が低下していることにより逃がし安全弁の開固着を確認する。

逃がし安全弁再閉鎖失敗の確認に必要な計装設備は,原子炉圧力計等 である。

原子炉圧力は徐々に低下するが原子炉隔離時冷却系による原子炉注水 が継続されていることを適宜確認する。

原子炉隔離時冷却系による原子炉注水が継続していることの確認に必要な計装設備は,原子炉水位等である。

f. 可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の起動 準備操作

全交流動力電源喪失の確認後,可搬型代替注水大型ポンプを用いた低 圧代替注水系(可搬型)による原子炉注水準備を開始する。原子炉建屋 内の現場操作にて原子炉注水に必要な系統構成を実施し,屋外の現場操 作にて可搬型代替注水大型ポンプの準備,ホース敷設等を実施後にポン

プ起動操作を実施する。可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の起動準備操作の完了後,原子炉圧力が低圧代替注水系 (可搬型)の吐出圧力を下回った時点で原子炉注水が開始され,原子炉 水位は回復する。

g. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

h. 交流電源の回復操作

早期の電源回復不能の確認後,対応可能な要員により非常用ディーゼ ル発電機等の機能回復操作及び外部電源の機能回復操作を実施する。

i. 直流電源の負荷切離し操作

早期の電源回復不能の確認後,中央制御室内及び現場配電盤にて所内 常設直流電源設備の不要な負荷の切り離しを実施することにより 24 時 間後までの蓄電池による直流電源供給を確保する。

j.逃がし安全弁<mark>(自動減圧機能)</mark>による原子炉減圧操作

原子炉圧力の低下に伴う原子炉隔離時冷却系による原子炉注水の停止 を確認し、中央制御室からの遠隔操作により逃がし安全弁(自動減圧機 能)を開固着したものを含め7弁手動開放し、原子炉減圧を実施する。 逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設備 は、原子炉圧力計等である。

逃がし安全弁(自動減圧機能)による原子炉減圧に必要な計装設備は, 原子炉圧力計等である。

炉心損傷がないことを継続的に確認するために必要な計装設備は,格 納容器雰囲気放射線モニタ(D/W, S/C)である。

k. <mark>原子炉水位の調整操作(低圧代替注水系(可搬型))</mark>

可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)により 原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(低圧代替注水系(可搬型)) に必要な計装設備 は、原子炉水位(広帯域、燃料域)、低圧代替注水系原子炉注水流量等で ある。

1. <mark>可搬型代替注水大型ポンプを用いた</mark>代替格納スプレイ冷却系(可搬型) による格納容器冷却

全交流動力電源喪失に伴い崩壊熱除去機能を喪失しているため,格納 容器圧力及び雰囲気温度が上昇する。サプレッション・チェンバ圧力が 279kPa[gage]に到達した場合又はドライウェル雰囲気温度が 171℃に到 達した場合は,現場操作にて可搬型代替注水大型ポンプを用いた代替格 納スプレイ冷却系(可搬型)による格納容器冷却を実施する。また,同 じ可搬型代替注水大型ポンプを用いて原子炉注水を継続する。

可搬型代替注水大型ポンプを用いた代替格納スプレイ冷却系(可搬型) による格納容器冷却に必要な計装設備は、サプレッション・チェンバ圧 力、低圧代替注水系格納容器スプレイ流量、サプレッション・プール水 位等である。

m. 常設代替高圧電源装置による緊急母線受電操作

外部電源喪失の確認後,中央制御室からの遠隔操作により常設代替高 圧電源装置から緊急用母線を受電する。

常設代替高圧電源装置による緊急母線受電操作に必要な計装設備は, 緊急用M/C電圧である。

n. 常設代替高圧電源装置による非常用母線の受電準備操作

早期の電源回復不能の確認後、中央制御室及び現場にて常設代替高圧

電源装置による非常用母線の受電準備操作を実施する。

o. 常設代替高圧電源装置による非常用母線受電操作

常設代替高圧電源装置による緊急用母線受電操作及び常設代替高圧電 源装置による非常用母線の受電準備操作の完了後,中央制御室からの遠 隔操作により常設代替高圧電源装置から緊急用母線を介して非常用母線 を受電する。

常設代替高圧電源装置による非常用母線受電操作に必要な計装設備は, M/C 2C(2D)電圧である。

p. 残留熱除去系による原子炉注水及び格納容器除熱

常設代替高圧電源装置による非常用母線受電操作の完了後,可搬型代 替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水 及び代替格納容器スプレイ冷却系(可搬型)による格納容器スプレイを 停止し,残留熱除去系による原子炉注水及び格納容器スプレイを開始す る。

残留熱除去系による原子炉注水及び格納容器除熱に必要な計装設備は, 原子炉水位(広帯域),残留熱除去系系統流量等である。

以降は,残留熱除去系により原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持しつつ,原子炉 注水の停止期間中に格納容器スプレイを実施する。

q. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

r. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から

代替淡水貯槽へ水源補給操作を実施する。

2.3.3.2 炉心損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、外部電源 喪失を起因事象とし、全ての非常用ディーゼル発電機を喪失することで原 子炉隔離時冷却系を除く注水機能を喪失し、逃がし安全弁の再閉鎖失敗に より蒸気駆動の注水系が動作できない範囲に原子炉圧力が低下した後は、 原子炉隔離時冷却系を喪失し、全ての注水機能を喪失する「外部電源喪失 +DG失敗+逃がし安全弁再閉鎖失敗+高圧炉心冷却失敗」である。

本重要事故シーケンスでは、炉心における崩壊熱、燃料棒表面熱伝達、 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流)、沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及びサプレッション・プー ル冷却が重要現象となる。よって、これらの現象を適切に評価することが 可能である長期間熱水力過渡変化解析コードSAFER及びシビアアクシ デント総合解析コードMAAPにより、原子炉圧力、原子炉水位、燃料被 覆管温度、格納容器圧力、格納容器雰囲気温度等の過渡応答を求める。な お、本有効性評価では、SAFERコードによる燃料被覆管温度の評価結 果は、ベストフィット曲線の破裂判断基準に対して十分な余裕があること から、燃料棒やチャンネルボックスの幾何学的配置を考慮した詳細な輻射

熱伝達計算を行うことで燃料被覆管温度の評価結果がSAFERコードよ り低くなるCHASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.3.3-2表に示す。 また,主要な解析条件について,本重要事故シーケンス特有の解析条件を 以下に示す。

- a. 事故条件
- (a) 起因事象

送電系統又は所内主発電設備の故障等によって,外部電源が喪失す るものとする。

(b) 安全機能の喪失に対する仮定

全ての非常用ディーゼル発電機等の機能喪失を想定し、全交流動力 電源を喪失するものとする。同時に、逃がし安全弁1弁の開固着が発 生するものとする。

(c) 外部電源

起因事象として、外部電源が喪失することを想定している。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉水位低下を厳しくする観点で,外部電源喪失に伴う原子炉保 護系電源喪失及びタービン蒸気加減弁急閉信号は保守的に考慮せず,

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h(原子炉圧力 1.04~7.86MPa[dif]において)の流量で原子炉へ注 水するものとする。原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は,原子炉水位を原子炉水位低(レベル3)設定点か ら原子炉水位高(レベル8)設定点の範囲に維持する。また,運転手 順の停止判断基準に余裕を考慮して,原子炉圧力が 1.04MPa[gage]ま で低下した時点で停止することとする。

※:MPa[dif]…原子炉圧力容器と水源との差圧(以下同様)

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)を開固着の1弁と合わせて合計7弁使用する ものとし,容量として,1弁当たり定格主蒸気流量の約6%を処理する ものとする。

(d) 低圧代替注水系(可搬型)

可搬型代替注水大型ポンプ1台を使用し,原子炉注水のみを実施す る場合は,炉心冷却性の観点で機器設計上の最小要求値である最小流 量特性(注水流量:0~110m³/h,注水圧力:0~1.4MPa[dif])とし, 原子炉注水と格納容器スプレイを同時に実施する場合は,50m³/h(一 定)を用いるものとする。また,原子炉水位が原子炉水位高(レベル 8)設定点まで回復した以降は,原子炉水位を原子炉水位低(レベル 3)設定点から原子炉水位高(レベル8)設定点の範囲に維持する。

(e) 代替格納容器スプレイ冷却系(可搬型)

可搬型代替注水大型ポンプ1台を使用し,格納容器圧力及び雰囲気 温度の上昇を抑制可能な流量を考慮し,130m³/h(一定)を用いるも のとする。また,格納容器スプレイは,サプレッション・チェンバ圧 力が217kPa[gage]に到達した場合は停止し,279kPa[gage]に到達した 場合に再開する。

(f) 残留熱除去系(低圧注水系)

残留熱除去系(低圧注水系)ポンプは1台使用するものとし, 非常 用母線の受電が完了した後に手動起動し, 最小流量特性(0~1,676m³ /h, 注水圧力 0~1.55MPa[dif])で 原子炉へ注水するものとする。

(g) 残留熱除去系(格納容器スプレイ冷却系)

残留熱除去系による原子炉注水を停止している期間に 1.9×10³t/ hの流量で格納容器へスプレイするものとし,そのうち 95%をドライ ウェルへ,5%をサプレッション・チェンバへ分配するものとする。 伝 熱容量は,熱交換器1基当たり約43MW(サプレッション・プール水温 度100℃,海水温度32℃において)とする。

(h) 残留熱除去系(サプレッション・プール水冷却系)

格納容器スプレイ実施中に格納容器圧力が 13.7kPa[gage]に到達し た時点でサプレッション・プール冷却運転に切り換える。伝熱容量は 残留熱除去系(格納容器スプレイ冷却系)と同様とする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

(a) 交流電源は24時間使用できないものとし、事象発生から24時間後

に常設代替高圧電源装置により非常用母線への給電を開始する。

- (b) 所内常設直流電源設備は、事象発生から1時間経過するまでに中央 制御室にて不要な負荷を切り離し、事象発生から8時間後に現場に て不要な負荷の切り離しを実施する。
- (c) 逃がし安全弁による原子炉減圧操作(低圧代替注水系(可搬型)による原子炉注水)は、状況判断、可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の準備及び減圧操作に要する時間を考慮して、事象発生3時間1分後に実施する。
- (d) 可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系 (可搬型)による格納容器冷却は、サプレッション・チェンバ圧力 が 279kPa[gage]に到達した場合に実施する。
- (e) 残留熱除去系による原子炉注水及び格納容器除熱は,常設代替高圧 電源装置による非常用母線受電操作及び残留熱除去系の起動操作 に要する時間を考慮して,事象発生から24時間10分後に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.3.3-4図から第2.3.3-8図に,燃料被覆管温度, 燃料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発 生位置におけるボイド率,平均出力燃料集合体のボイド率,炉心下部プレ ナム部のボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管 温度と燃料被覆管の円周方向の応力の関係を第2.3.3-9図から第2.3.3-14 図に,格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位 及びサプレッション・プール水温度の推移を第2.3.3-15図から第2.3.3-18

図に示す。

※:炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、シュラウド内は炉心部で発生するボイドを含む二相水位であることから、 原子炉水位が低下する過程ではシュラウド外水位と比較して高めの水位を示 す。

a. 事象進展

全交流動力電源喪失後,原子炉スクラム,主蒸気隔離弁の閉止及び再 循環ポンプトリップが発生し,原子炉水位が原子炉水位異常低下(レベ ル2)設定点に到達すると,原子炉隔離時冷却系が自動起動し,原子炉 への注水が開始されることで,原子炉水位は維持される。

逃がし安全弁1弁が開固着することで,蒸気の流出が継続し,事象発 生の約1.3時間後に原子炉圧力が1.04MPa[gage]まで低下し,原子炉隔 離時冷却系が停止することで原子炉水位は徐々に低下する。

事象発生の3時間後に可搬型代替注水大型ポンプを用いた低圧代替注 水系(可搬型)による原子炉注水を開始するとともに,逃がし安全弁(自 動減圧機能)7年による原子炉減圧を実施する。逃がし安全弁(自動減 圧機能)開放による蒸気流出により原子炉水位は一時的に低下するが, 可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の原子炉 注水により原子炉水位は徐々に上昇し,炉心は再冠水する。

燃料被覆管最高温度発生位置のボイド率は,逃がし安全弁の開固着に より蒸気が流出することで炉心が露出し上昇する。その後,原子炉減圧 操作により減圧沸騰に伴い一時的に燃料被覆管最高温度発生位置が再冠 水し,ボイド率は低下する。熱伝達係数は,燃料被覆管最高温度発生位 置が露出し,核沸騰冷却から蒸気冷却に移行することで低下する。原子

炉圧力が低下し,可搬型代替注水大型ポンプを用いた低圧代替注水系(可 搬型)による原子炉注水流量が増加することで炉心が再冠水すると,ボ イド率は低下し,熱伝達係数が上昇することで燃料被覆管温度は低下す る。 平均出力燃料集合体及び炉心下部プレナムのボイド率については, 上記の挙動に伴い増減する。

また,全交流動力電源の喪失により崩壊熱除去機能が喪失しているた め,崩壊熱により発生する蒸気が逃がし安全弁を介して格納容器内に放 出されることで,格納容器圧力及び雰囲気温度は徐々に上昇する。この ため,事象発生の約 14 時間後にサプレッション・チェンバ圧力が 279kPa[gage]に到達した時点で,可搬型代替注水大型ポンプを用いた代 替格納容器スプレイ冷却系(可搬型)による格納容器冷却を開始する。

事象発生 24 時間後に常設代替高圧電源装置による非常用母線への交流電源供給を開始した後は,残留熱除去系による原子炉注水及び格納容器除熱に切り換えることで,炉心の冷却が維持され,また,格納容器圧力及び雰囲気温度は安定又は低下傾向となる。

b. 評価項目等

燃料被覆管温度は,第2.3.3-9 図に示すとおり,可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)の原子炉注水により原子炉水 位が回復するまでの期間は,炉心の露出に伴い上昇し,事象発生の約212 分後に約746℃に到達するが,評価項目である1,200℃を下回る。燃料被 覆管の最高温度は,平均出力燃料集合体で発生している。また,燃料被 覆管の酸化量は,酸化反応が著しくなる前の燃料被覆管厚さの1%以下 にとどまることから,評価項目である15%を下回る。

原子炉圧力は,第2.3.3-4 図に示すとおり,逃がし安全弁<mark>(安全弁機</mark> <mark>能)</mark>の作動により,約 8.16MPa[gage]以下に維持される。このため,原 子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容 器底部圧力との差(0.3Mpa 程度)を考慮しても,約8.46MPa [gage]以 下であり,評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を 下回る。

また,崩壊熱除去機能を喪失しているため,原子炉圧力容器内で崩壊 熱により発生する蒸気が格納容器内に流入することにより,格納容器圧 力及び雰囲気温度は徐々に上昇するが,可搬型代替注水大型ポンプを用 いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却及び残 留熱除去系による格納容器除熱により低下傾向となる。格納容器バウン ダリにかかる圧力及び温度の最大値は,約0.28MPa [gage]及び約141℃ に抑えられる。このため,格納容器バウンダリにかかる圧力及び温度は, 評価項目である最高使用圧力の2倍(0.62MPa [gage])及び200℃を下 回る。

可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による 原子炉注水を継続することで,炉心の冠水が維持され,炉心の冷却が維持される。その後,約24時間後に残留熱除去系による原子炉注水及び格納容器除熱を実施することで,高温停止での安定状態が確立する。

(添付資料 2.3.3.1)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目について、対策の有効性を確認 した。 2.3.3.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは、全交流動力電源喪失に加えて、逃がし安全弁 1 弁が開固着することに伴い原子炉隔離時冷却系が動作できない範囲まで原子 炉圧力が低下し原子炉隔離時冷却系が停止することで原子炉水位が低下する ため、<mark>可搬型代替注水大型ポンプを用いた</mark>低圧代替注水系(可搬型)による 原子炉注水及び逃がし安全弁(自動減圧機能)による原子炉減圧を実施する こと、全交流動力電源喪失に伴い崩壊熱除去機能も喪失し格納容器圧力及び 雰囲気温度が上昇することから、<mark>可搬型代替注水大型ポンプを用いた</mark>代替格 納容器スプレイ冷却系(可搬型)による格納容器冷却を実施すること並びに 事象発生 24 時間後に交流電源を復旧し残留熱除去系による原子炉注水及び 格納容器除熱を実施することが特徴である。よって、不確かさの影響を確認 する運転員等操作は、事象進展に有意な影響を与えると考えられる操作及び 事象発生から12時間程度までの短時間に期待する操作として,逃がし安全弁 (自動減圧機能)による原子炉減圧操作(可搬型代替注水大型ポンプを用い た低圧代替注水系(可搬型)による原子炉注水),可搬型代替注水大型ポンプ を用いた代替格納容器スプレイ冷却系(可搬型)による格納容器冷却並びに 残留熱除去系による原子炉注水及び格納容器除熱とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を実施する重要現象 は、「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すと おりであり、それらの不確かさの影響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて 50℃程度高 めに評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評 価する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくな り,燃料被覆管温度は低くなるが,事象初期の原子炉注水は原子炉隔離 時冷却系の自動起動により確保され,燃料被覆管温度を操作開始の起点 とする運転員等操作はないことから,運転員等操作時間に与える影響は ない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作 開始の起点とする運転員等操作はないことから,運転員等操作時間に与 える影響はない。

格納容器における格納容器各領域間の流動,気液界面の熱伝達並びに 構造材との熱伝達及び内部熱伝導の不確かさとして,格納容器モデル(格 納容器の熱水力モデル) はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,格納容器圧力及び雰囲気温度の傾向 の起点とする可搬型代替注水大型ポンプを用いた代替格納容器スプレイ 冷却系(可搬型)による格納容器冷却に係る運転員等操作時間に与える 影響は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び

内部熱伝導の不確かさにおいては、CSTF実験解析により格納容器温 度及び非凝縮性ガスの挙動は測定データと良く一致することを確認して おり、その差異は小さいため、格納容器圧力及び雰囲気温度を操作開始 の起点としている可搬型代替注水大型ポンプを用いた代替格納容器スプ レイ冷却系(可搬型)による格納容器冷却に係る運転員等操作時間に与 える影響は小さい。

(添付資料 2.3.3.2)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水カモデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向

を適切に再現できているため,評価項目となるパラメータに与える影響 は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部 熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気 温度及び非凝縮性ガスの挙動は測定データと良く一致することを確認し ているため,評価項目となるパラメータに与える影響は小さい。

(添付資料 2.3.3.2)

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 2.3.3-2 表に示すとおりであり,これらの条件設定を実績値等の最確条 件とした場合の影響を評価する。解析条件の設定にあたっては,設計値 を用いるか又は評価項目となるパラメータに対する余裕が小さくなるよ う保守的な設定をしていることから,この中で事象進展に有意な影響を 与える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/ m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は 燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は原子 炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作開 始の起点とする運転員等操作はないことから,運転員等操作時間に与 える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/tに対して最確条件は33GWd/t以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ

ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は原子炉隔離時冷却系の自動起動 により確保され,運転員等操作時間に与える影響はない。また,格納 容器圧力及びサプレッション・プール水位の上昇が遅くなり,これら のパラメータを起点とする運転員等操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器体積(ウェットウェル)の空間部及 び液相部及びサプレッション・プール水位は,ゆらぎにより解析条件 に対して変動を与えうるが,事象進展に与える影響は小さく,運転員 等操作時間に与える影響は小さい。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は、最確条件とした場合は注水開始後の原子炉水位の回復が早く なり、炉心冠水後の原子炉水位の維持操作の開始が早くなるが、原子 炉水位を継続監視している期間の流量調整操作であるため、運転員等 操作時間に与える影響はない。

(添付資料 2.3.3.2)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメ

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/tに対して最確条件は 33GWd/t以下であり,最確条件とした 場合は崩壊熱が小さくなり,原子炉からサプレッション・プールに流 出する蒸気量が減少することで,原子炉水位の低下は緩和され,格納

容器圧力等の上昇は遅くなることから,<mark>評価項目となるパラメータに</mark> <mark>対する余裕は大きくなる。</mark>

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,格 納容器雰囲気温度,格納容器容積(ウェットウェル)の空間部及び液 相部,サプレッション・プール水位は,ゆらぎにより解析条件に対し て変動を与えうるが,事象進展に与える影響は小さく,評価項目とな るパラメータに与える影響は小さい。

機器条件の低圧代替注水系(可搬型)及び残留熱除去系(低圧注水 系)は、最確条件とした場合は注水開始後の原子炉水位の回復が早く なることで、評価項目となるパラメータに対する余裕は大きくなる。 (添付資料 2.3.3.2)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の直流電源の負荷切離し操作(中央制御室)は,解析上の 操作開始時間として事象発生から1時間経過するまでを設定しており, 直流電源の負荷切離し操作(現場)は,解析上の操作開始時間として 事象発生から8時間後を設定している。運転員等操作時間に与える影 響として,認知時間及び移動・操作所要時間は,余裕時間を含めて設 定していることから,実態の操作開始時間は解析上の操作開始時間よ

り若干早まる可能性がある。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原 子炉注水)は、解析上の操作開始時間として事象発生から3時間1分 後を設定している。運転員等操作時間に与える影響として、認知時間 及び移動・操作所要時間は,余裕時間を含めて設定していることから、 実態の操作開始時間は解析上の操作開始時間より若干早まる可能性が ある。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却は,解析上の操作開始時間と してサプレッション・チェンバ圧力279kPa[gage]到達時を設定してい る。運転員等操作時間に与える影響として,不確かさ要因により操作 開始時間に与える影響はなく,実態の操作開始時間は解析上の設定と ほぼ同等となる。本操作は,解析コード及び解析条件(操作条件を除 く。)の不確かさにより,操作開始時間は遅れる可能性があるが,他の 操作との重複もないことから,この他の操作に与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,解 析上の操作開始時間として事象発生から24時間10分後を設定してい る。運転員等操作時間に与える影響として,認知時間及び移動・操作 所要時間は,余裕時間を含めて設定していることから,実態の操作開 始時間は解析上の操作開始時間より若干早まる可能性がある。

(添付資料 2.3.3.2)

(b) 評価項目となるパラメータに与える影響

操作条件の直流電源の負荷切離し操作は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の操作開始時間より若干

早まる可能性があるが,解析条件ではないことから,蓄電池枯渇まで に実施することで評価項目となるパラメータに与える影響はない。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可 搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原 子炉注水)は、運転員等操作時間に与える影響として、解析上の注水 開始時間は余裕時間を含めて設定されており、実態の操作開始時間は 解析上の操作開始時間より若干早まる可能性があり、この場合には、 格納容器除熱の開始が早くなることで格納容器圧力及び雰囲気温度の 上昇は緩和され、評価項目となるパラメータに対する余裕は大きくな る。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の操作開始時間よりも遅 くなる可能性があるが,この場合でもパラメータが操作実施基準に到 達した時点で開始することで同等の効果が得られ,有効性評価解析に おける格納容器圧力の最大値に変わりがないことから,評価項目とな るパラメータに与える影響はない。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも早くなる可能性があるが,この場合には,格納容 器除熱の開始が早くなることで格納容器圧力及び雰囲気温度の上昇は 緩和され,評価項目となるパラメータに対する余裕は大きくなる。

(添付資料 2.3.3.2)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の直流電源の負荷切離し操作(中央制御室)は事象発生から1 時間経過するまでに実施し,直流電源の負荷切離し操作(現場)は事象発 生の8時間後に実施するものであり,^準備時間が確保できるため,時間余 裕がある。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水)は、運転手順に従い原子炉隔離時冷却系の再起動を考慮し、事象発生から3時間56分(操作開始時間の55分の時間遅れ)までに操作を実施する場合、燃料被覆管の最高温度は875℃となり、燃料被覆管の破裂は発生せず、評価項目を満足する。

操作条件の可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷 却系(可搬型)による格納容器冷却は,事象発生の約14時間後に実施する ものであり,低圧代替注水系(可搬型)と同じ可搬型代替注水大型ポンプ を使用し,可搬型代替注水大型ポンプの準備完了を事象発生の3時間後と 想定していることから,準備時間が確保できるため,時間余裕がある。

操作条件の残留熱除去系による原子炉注水及び格納容器除熱は,非常用 母線の受電後に実施するものであり,評価上は事象発生の24時間後に非常 用母線の受電が完了する想定としていることから,準備時間が確保できる ため,時間余裕がある。

(添付資料 2.3.3.2, 2.3.3.3)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間及び評価項目となるパラメータに与える影響を確認した。この結 果,解析コード及び解析条件の不確かさが運転員等操作時間に与える影響 等を考慮した場合においても,評価項目となるパラメータに与える影響は 小さい。この他,評価項目となるパラメータに対して,対策の有効性が確 認できる範囲内において,操作時間には時間余裕がある。

- 2.3.3.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「全交流動力電源喪失(TBP)」において重大 事故等対策における必要な初動対応要員は、「2.3.3.1(3) 炉心損傷防止 対策」に示すとおり22名である。「6.2 重大事故等対策時に必要な要員の 評価結果」で示す運転員及び災害対策要員の39名で対処可能である。

また,必要な招集要員は6名であり,発電所構外から2時間以内に招集 可能な要員の71名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「全交流動力電源喪失(TBP)」において、必要な水源、燃料、電源は、「6.1(2) 資源の評価条件」の条件にて評価を行い、以下のとおりである。

a.水 源

可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による 原子炉注水及び代替格納容器スプレイ冷却系(可搬型)による格納容器 スプレイについては,7日間の対応を考慮すると,合計約2,160m³必要 となる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,水源が枯渇することなく注水継続が 可能である。

(添付資料 2.3.3.4)

b.燃料

常設代替交流電源設備による電源供給については,事象発生直後からの運転を想定すると、7日間の運転継続に約352.8kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから、常設代替交流電源設備による電源供給について、7日間の継続が可能である。

可搬型代替注水大型ポンプによる原子炉注水等については,事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽油が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有していることから,可搬型代替注水大型ポンプによる原子炉注水等について,7日間の継続が可能である。

(添付資料 2.3.3.5)

c. 電 源

常設代替交流電源設備の負荷については,重大事故等対策時に必要な 負荷として約4,165kW必要となるが,常設代替交流電源設備(常設代替 高圧電源装置5台)の連続定格容量は5,520kWであることから,必要負 荷に対しての電源供給が可能である。

また,蓄電池の容量については,交流電源が復旧しない場合を想定しても,不要な負荷の切離しを行うことにより,事象発生後24時間の直流 電源の供給が可能である。

2.3.3.5 結 論

事故シーケンスグループ「全交流動力電源喪失(TBP)」では,原子炉の 出力運転中に全交流動力電源喪失が発生し電動の原子炉注水機能が喪失する とともに,逃がし安全弁再閉鎖失敗が重畳し原子炉隔離時冷却系が動作でき ない範囲に原子炉圧力が低下することに伴い原子炉隔離時冷却系も停止し原 子炉注水機能が喪失することで,原子炉水位の低下が継続し,炉心損傷に至 ることが特徴である。事故シーケンスグループ「全交流動力電源喪失(TB P)」に対する炉心損傷防止対策としては,初期の対策として原子炉隔離時冷 却系,可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)及び逃 がし安全弁(自動減圧機能)による原子炉注水手段,安定状態に向けた対策 として可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却手段及び常設代替高圧電源装置からの給電後の残 留熱除去系による格納容器除熱手段を整備している。

事故シーケンスグループ「全交流動力電源喪失(TBP)」の重要事故シー ケンス「外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+高圧炉心冷却 失敗」について有効性評価を行った。

上記の場合においても、原子炉隔離時冷却系及び<mark>可搬型代替注水大型ポン プを用いた</mark>低圧代替注水系(可搬型)による原子炉注水を継続することで、 炉心冷却を維持することができる。また、残留熱除去系による格納容器除熱 を継続することで、格納容器の健全性を長期的に維持することができる。

その結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに原子炉格納容器バウンダリにかかる圧力及び温度は,判断基 準を満足している。また,安定状態を維持することができる。
解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「全交流動力電源喪失(TBP)」 において,可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)に よる原子炉注水,残留熱除去系による格納容器除熱等の炉心損傷防止対策は, 選定した重要事故シーケンスに対して有効であることが確認でき,事故シー ケンスグループ「全交流動力電源喪失(TBP)」に対して有効である。

第2.3.3-1 表 全交流動力電源喪失(TBP)時における重大事故対策について(1/4)

	工 順	重大事故等対処設備						
操作及び確認	于 順	常設設備	可搬型設備	計装設備				
原子炉スクラム及び全交流動	・外部電源が喪失するとともに、非常用ディ	逃がし安全弁	—	平均出力領域計装				
力電源喪失の確認	ーゼル発電機等が全て機能喪失すること	所内常設直流電源		起動領域計装				
	で、全交流動力電源喪失となったことを確	設備		<mark>原子炉圧力</mark>				
	認する。			<mark>原子炉圧力(SA)</mark>				
	・原子炉スクラムを確認する。			<mark>M/C 2C電圧</mark>				
	・主蒸気隔離弁が自動閉止したことを確認す			<mark>M/C 2D電圧</mark>				
	<mark>る。</mark>			<mark>緊急用M/C電圧</mark>				
	 再循環ポンプがトリップしたことを確認す 							
	る。							
	・原子炉圧力が逃がし安全弁の設定点以下ま							
	で低下することにより異常を検知し、逃が							
	し安全弁の開固着を確認する。							
原子炉隔離時冷却系 <mark>の自動起</mark>	・原子炉水位が,原子炉水位異常低下(レベ	【原子炉隔離時冷	—	原子炉水位(広帯域,燃料域)				
<mark>動の確認</mark>	ル2)設定点に到達し,原子炉隔離時冷却	却系】		原子炉水位(SA 広帯域, SA 燃				
	系が自動起動したことを確認する。			料域)				
				【原子炉隔離時冷却系系統流				
				量】				
原子炉水位の調整操作(原子炉	・原子炉隔離時冷却系の起動により、原子炉	【原子炉隔離時冷	—	原子炉水位(広帯域,燃料域)				
隔離時冷却系)	水位が回復したことを確認する。	却系】		原子炉水位(SA 広帯域, SA 燃				
	・原子炉水位回復後は、原子炉水位を原子炉			料域)				
	水位低(レベル3)設定点から原子炉水位			【原子炉隔離時冷却系系統流				
	高(レベル8)設定点の間に維持する。			量】				
	・逃がし安全弁 1 弁の開固着により原子炉隔			原子炉圧力				
	離時冷却系が動作できない範囲に原子炉圧			原子炉圧力 (SA)				
	力が低下するまでの間継続する。							

第2.3.3-1 表 全交流動力電源喪失(TBP)時における重大事故対策について(2/4)

	五 晒		重大事故等	如設備			
操作及び確認	于順	常設設備	可搬型設備	計装設備			
<mark>早期の電源回復不能の確認</mark>	 ・全交流動力電源喪失の確認後、中央制御室からの遠隔操作により外部電源の受電を試みるが、失敗したことを確認する。 ・中央制御室からの遠隔操作により非常用ディーゼル発電機等の起動を試みるが、失敗したことを確認する。 ・以上により、早期の電源回復不能を確認する。 	_	_	_			
可搬型代替注水大型ポンプを 用いた低圧代替注水系(可搬 型)の起動準備操作	 ・全交流動力電源喪失の確認後,可搬型代替 注水大型ポンプを用いた低圧代替注水系 (可搬型)による原子炉注水準備を開始す る。 ・現場操作にて系統構成実施後,ポンプ起動 操作を実施する。 ・可搬型代替注水大型ポンプを用いた低圧代 替注水系(可搬型)の起動準備操作の完了 後,原子炉圧力が可搬型代替注水大型ポン プを用いた低圧代替注水系(可搬型)の吐 出圧力を下回り原子炉水位が回復する。 	代替淡水貯槽	可搬型代替注 水大型ポンプ	原子炉水位(広帯域,燃料域) 原子炉水位(SA 広帯域, SA 燃 料域) 低圧代替注水系原子炉注水流 量 代替淡水貯槽水位			
<mark>タンクローリによる燃料補給</mark> 操作	 ・タンクローリにより可搬型代替注水設備用 軽油タンクから可搬型代替注水大型ポンプ への燃料補給を実施する。 	可搬型設備用軽油 タンク	タンクローリ	_			
交流電源の回復操作	 ・非常用ディーゼル発電機の回復操作を実施 する。 ・外部電源の回復操作を実施する。 						

:有効性評価上考慮しない操作

第2.3.3-1 表 全交流動力電源喪失(TBP)時における重大事故対策について(3/4)

提作及びな動	山山		章 対処設備	
操作及び確認	手 順	常設設備	可搬型設備	計装設備
直流電源の負荷切り離し操作	・ <mark>早期の電源回復不能の確認</mark> 後,中央制御室及び	所内常設直流電	_	—
	現場配電盤にて所内常設直流電源設備の不要	源設備		
	な負荷の切り離しを実施する。			
逃がし安全弁 <mark>(自動減圧機能)</mark>	・原子炉圧力の低下に伴い原子炉隔離時冷却系に	逃がし安全弁	可搬型代替注	原子炉圧力
による原子炉減圧 <mark>操作</mark>	よる原子炉注水が停止した場合は,逃がし安全	(自動減圧機	水大型ポンプ	原子炉圧力 (SA)
	弁(自動減圧機能)7 弁を手動開放により,原	<mark>能)</mark>		格納容器雰囲気放射線モニタ
	子炉減圧操作を実施する。	代替淡水貯槽		(D∕W, S∕C)
<mark>原子炉水位の調整操作</mark> (低圧代	・原子炉水位を原子炉水位低(レベル3)設定点	代替淡水貯槽	可搬型代替注	原子炉水位 (広帯域, 燃料域)
替注水系(可搬型))	から原子炉水位高(レベル8)設定点の間に維		水大型ポンプ	原子炉水位(SA 広帯域, SA 燃
	持する。			料域)
				低圧代替注水系原子炉注水流
				量
				代替淡水貯槽水位
可搬型代替注水大型ポンプを	・サプレッション・チェンバ圧力が 279kPa[gage]	代替淡水貯槽	可搬型代替注	ドライウェル圧力
<mark>用いた</mark> 代替格納スプレイ冷却	に到達に到達したことを確認する。		水大型ポンプ	サプレッション・チェンバ圧
系(可搬型)による格納容器冷	・ <mark>可搬型代替注水大型ポンプを用いた</mark> 代替格納ス			力
却	プレイ冷却系(可搬型)による格納容器スプレ			ドライウェル雰囲気温度
	イ操作を実施する。			低圧代替注水系格納容器スプ
				レイ流量
				サプレッション・プール水位
				代替淡水貯槽水位
常設代替高圧電源装置による	 外部電源喪失の確認後,常設代替高圧電源装置 	常設代替高圧電	—	<mark>緊急用M/C 電圧</mark>
緊急用母線受電操作	から緊急用母線を受電する。	源装置		
		軽油貯蔵タンク		

第2.3.3-1 表 全交流動力電源喪失(TBP)時における重大事故対策について(4/4)

根作及び破到	T. IIG	重大事故等対処設備							
採作及び確認	十 順	常設設備	可搬型設備	計装設備					
常設代替高圧電源装置による	・ 早期の電源回復不能の確認後,常設代替高	常設代替高圧電源	—	—					
非常用母線の受電準備操作	圧電源装置による非常用母線の受電準備操	装置							
	作を実施する。	軽油貯蔵タンク							
常設代替高圧電源装置による	・常設代替高圧電源装置による緊急用母線受	常設代替高圧電源	—	<mark>M/C 2C電圧</mark>					
非常用母線受電操作	電操作及び常設代替高圧電源装置による非	装置		<mark>M/C 2D電圧</mark>					
	常用母線の受電準備操作の完了後,非常用	軽油貯蔵タンク							
	母線 2C及び 2Dを受電する。								
残留熱除去系による原子炉注	・非常用母線受電後, <mark>可搬型代替注水大型ポ</mark>	【残留熱除去系	—	原子炉水位 (広帯域)					
水及び格納容器除熱	<mark>ンプを用いた</mark> 低圧代替注水系(可搬型)に	(低圧注水系)】		原子炉水位(SA 広帯域)					
	よる原子炉注水及び代替格納容器スプレイ	【残留熱除去系		【残留熱除去系系統流量】					
	冷却系(可搬型)による格納容器スプレイ	(格納容器スプレ		【残留熱除去系海水系系統流					
	を停止する。	イ冷却系)】		量】					
	・残留熱除去系による原子炉注水及び格納容	常設代替高圧電源		低圧代替注水系原子炉注水流					
	器除熱を実施する。	装置		量					
	・以降,残留熱除去系により原子炉注水及び	軽油貯蔵タンク		サプレッション・チェンバ圧					
	格納容器冷却を交互に実施しつつ、原子炉			力					
	水位を原子炉水位低(レベル3)設定点か			ドライウェル圧力					
	ら原子炉水位高(レベル8)設定点の間に								
	維持する。								
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	_	—	—					
	却操作を実施する。								
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	-	—	—					
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ								
	水源補給を実施する。								

:有効性評価上考慮しない操作

コメント No. 163-46 に対する回答

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(TBP))(1/6)

項目		主要解析条件	条件設定の考え方				
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できるコード				
	原子炉熱出力	3,293MW	定格熱出力を設定				
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定				
	原子炉水位	通常運転水位(セパレータ スカート下端から+126cm)	通常運転水位を設定				
	炉心流量	48,300 t∕h	定格流量を設定				
	炉心入口温度	約 278℃	熱平衡計算による値				
初	炉心入口サブクール度	約 9℃	熱平衡計算による値				
期 条 件	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等で あり,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定				
	燃料棒最大線出力密度	44. 0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定となるため、保安規定の運転上の制限における上限値を設定				
	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳し い設定となるため,崩壊熱が大きくなる燃焼度の高い条件として,1サイ クルの運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転 期間に対応する燃焼度を設定				
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定				
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定				

	項目	主要解析条件	条件設定の考え方
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定
初期	格納容器 (ウェットウェル)	空間部:4,100m ³ 気相部:3,300m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量として,保安規定の運転上の制限における下限値を設定
条 件	サプレッション・プール水位	6.983m (通常水位-4.7cm)	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限値を設定
	サプレッション・プール水温 度	32°C	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限値を設定
	起因事象	外部電源喪失	送電系統又は所内主発電設備の故障等によって,外部電源が喪失するものと して設定
事故条件	安全機能の喪失に対する仮定	全交流動力電源喪失 逃がし安全弁1弁開固着	本重要事故シーケンスの前提条件として非常用ディーゼル発電機等が機能 喪失すると同時に逃がし安全弁1弁が開固着するものとして設定。 なお,交流動力電源は24時間使用できないことを想定し,この期間は交流 動力電源の復旧及び代替交流動力電源には期待しない。
	外部電源	外部電源なし	起因事象として、外部電源が喪失することを想定

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(TBP))(2/6)

	項目	主要解析条件	条件設定の考え方
	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	原子炉水位低下を厳しくする観点で,外部電源喪失に伴う原 子炉保護系電源喪失及びタービン蒸気加減弁急閉信号は保 守的に考慮せず,原子炉水位低(レベル3)による原子炉ス クラムを設定
重大事故等対策に関連する	原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて自動起 動 原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 運転手順の停止判断基準に余裕を考慮し,原子炉 圧力が 1.04MPa[gage]まで低下した時点で停止 最小流量特性 ・注水特性:136.7m ³ /h ・注水圧力:1.04~7.86MPa[dif]	設計値を設定。原子炉隔離時冷却系は,タービン回転数制御 により原子炉圧力に依らず一定の流量にて注水する設計と なっている。
>機器条件	残留熱除去系 (低圧注水系)	<mark>最小流量特性</mark> 注水流量:0~1,676m ³ /h 注水圧力:0~1.55MPa[dif]	炉心冷却性の観点で厳しい設定として,設計基準事故の解析 で用いる最小流量特性を設定

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(T B P))(3/6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に関連す	低圧代替注水系 (可搬型)	原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m ³ /h ・注水圧力:0~1.4MPa[dif]	炉心冷却性の観点で厳しい設定として,機器設計上の最低要 求値である最小流量特性を設定
る機盟		(原子炉注水と格納容器スプレイ併用時) ・注水流量:50m ³ /h(一定)	併用時の系統評価に基づき、保守的な流量を設定
奋 条 件	代替格納容器スプレイ冷却系 (可搬型)	サプレッション・チェンバ圧力が 217kPa[gage] に到達した場合は停止し,279kPa[gage]に到達し た場合に再開	格納容器圧力上昇を抑制可能な流量として,運転手順に基づ き設定
	外部水源の水温	35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい高め の水温として,年間の気象条件変化を包含する高めの水温を 設定

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(TBP))(4/6)

	項目	主要解析条件	条件設定の考え方
		 (原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2 個, 385.2t/h/個 8.10MPa [gage] ×4 個, 400.5t/h/個 8.17MPa [gage] ×4 個, 403.9t/h/個 8.24MPa [gage] ×4 個, 407.2t/h/個 8.31MPa [gage] ×4 個, 410.6t/h/個 	設計値を設定
重大事故等対策に関連する機器条件	逃がし安全弁	(原子炉減圧操作時) 逃がし安全弁 <mark>(自動減圧機能)</mark> 6弁を開放するこ とによる原子炉減圧(再閉鎖失敗の1弁と合わせ て7弁で減圧) <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	設計値を設定
	残留熱除去系(格納容器スプ レイ冷却系)	スプレイ流量:1.9×10 ³ t/h (95%:ドライウェル,5%:サプレッション・ チェンバ)	<mark>設計値を設定</mark>
	残留熱除去系(サプレッショ ン・プール冷却系)	約 43MW(サプレッション・プール水温度 100℃, 海水温度 32℃において)	残留熱除去系の除熱性能を厳しくする観点で,過去の実績を 包含する高めの海水温度を設定

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(T B P))(5/6)

第 2.3.3-2 表 主要解析条件(全交流動力電源喪失(TBP))(6/6)

	項目	主要解析条件	条件設定の考え方
	常設代替高圧電源装置による 非常用母線の受電操作	事象発生から 24 時間後	本事故シーケンスの前提条件として設定
関連する場	逃がし安全弁による原子炉減 圧操作(<mark>可搬型代替注水大型</mark> ポンプを用いた低圧代替注水 系(可搬型)による原子炉注 水)	事象発生から3時間1分後	状況判断, <mark>可搬型代替注水大型ポンプを用いた</mark> 低圧代替注水 系(可搬型)の準備及び原子炉減圧に要する時間を考慮して 設定
操 寺 対 策 に	<mark>可搬型代替注水大型ポンプを</mark> 用いた代替格納容器スプレイ 冷却系(可搬型)による格納 容器冷却	サプレッション・チェンバ圧力 279kPa[gage]到達時	運転手順に基づき格納容器ベント実施基準である格納容器 最高使用圧力(310kPa[gage])に対する余裕を考慮し設定
	残留熱除去系による原子炉注 水及び格納容器	事象発生から 24 時間 10 分後	常設代替高圧電源装置による非常用母線の受電操作の完了 後,残留熱除去系の起動操作に要する時間を考慮して設定

第2.3.3-1図 全交流動力電源喪失(TBP)時の重大事故等対策の概略系統図(2/3) (可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)^並による原子炉注水及び 代替格納容器スプレイ冷却系(可搬型)^並による格納容器冷却段階)

第2.3.3-1図 全交流動力電源喪失(TBP)時の重大事故等対策の概略系統図(3/3) (残留熱除去系による原子炉注水及び格納容器除熱段階)

※1:原子炉スクラムは、中央制御室にて平均出力領域計装等により確認する。 ※2:主蒸気隔離弁の閉止時に原子炉圧力が逃がし安全弁の設定圧力以下まで低下することにより異常を検知し、逃がし安全弁の開固着を確認する。 ※3:中央制御室にて機器ランプ表示、系統流量計指示等にて確認する。 ※4:原子炉隔離時冷却系により、原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。

- ※5: 中央制御室からの遠隔操作により外部電源受電及び非常用ディーゼル発電機の起動ができず、非常用母線の電源回復ができない場合、早期の電源回復不能と判断する。 ※6: 全交流動力電源<mark>喪失</mark>を確認した場合は,速やかに<mark>可搬型代替注水大型ポンプを用いた</mark>低圧代替注水系(可搬型)による原子炉注水の準備を開始する。なお,低圧代替注水系(可搬型)及び代替格納容器スプレイ冷却系(可搬型)
- ※6・主交に動力電源表を確認した場合は、速やかた回転型代替在水入型ホンクを用いた には同じ可搬型代替注水大型ポンプを用いる。 ※7:サプレッション・プール水温度がサプレッション・プール熱容量制限(原子炉が高圧の場合は 65℃)に到達又は超過した場合は、低圧で注水可能な系統の準備完了後に原子炉減圧操作を実施する。実際の操作では、原子炉圧力 が低下し可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)による原子炉注水が開始された後に原子炉隔離時冷却系が停止するが、可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)のみによる原子炉注水 性能を確認する観点で、原子炉減圧開始と同時に原子炉隔離時冷却系は停止する想定としている。
- ※8:原子炉水位が燃料有効長頂部以下となった場合は、格納容器雰囲気監視系により格納容器内の水素・酸素濃度を確認する。 ※9:炉心損傷は、以下により判断する。(炉心損傷をもって炉心損傷後の手順に移行)
- - ・格納容器雰囲気放射線モニタy線線量率が設計基準原子炉冷却材喪失事故時追加放出相当の10倍以上
- ※10:原子炉水位不明は、以下により判断する。 ・ドライウェル雰囲気温度と原子炉圧力の関係が原子炉水位不明領域に入った場合
 - ・原子炉水位計の電源が喪失した場合
 - ・原子炉水位計のばらつきが大きく有効燃料長頂部以上であることが判断できない場合
- ※11:原子炉水位が燃料有効長頂部以下となった場合は、燃料有効長頂部以下の維持時間を測定し、「最長許容炉心露出時間」の禁止領域に入っているかを確認するとともに、格納容器雰囲気 y線モニタにより燃料の健全性を確認す る。 ※12:可搬型代替注水大型ボンプを用いた低圧代替注水系(可搬型)により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。 ※13:残留熱除去系は,原子炉水位低(レベル3)設定点にて原子炉注水モード運転に切り換え,原子炉水位高(レベル8)設定点にて格納容器スプレイモード運転に切り替える。

コメント No. 147-19, 20 148-01, 17 に対する回名	23, 25, 29,						
第 2.3.3-2 図	全交流動力電源喪失(TBP)の対応手順の概要						
2. 3. 3-42							

								全交流	〔動力電源喪9	€ (ТВР)																					
r												성전 \ 및 미는 PP																			
						0 10	20		30	40	50	経週時間 60	(分)	70	80	90	100														
					1		I	I	I	I	I			I	I	I	1														
		実施箇所・	必要要員	員数		↓ 事象発生																									
	【 】は他作業後			发		▶ 原子炉スクラム																									
		移動して	. e /. y		-	7	▼ プラント状	況判断																							
胡作百日	責任者	発電長	1人	中央監視 運転操作指揮	操作の内容										▼約79	9分 原子炉日	E力1.04MPa到;														
探旧住日	補佐	副発電長	1人	運転操作指揮補佐	球(トロ) 43										(原	子炉隔離時冷	却系停止)														
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡	1																										
	運転員 (中央制御室)	運転員 (現場)	1	重大事故等対応要員 (現場)																											
					●原子炉スクラムの確認																										
	2人 A, B				 ●外部電源喪失の確認 																										
					●非常用ディーゼル発電機等の自動起動失敗の確認																										
					●逃がし安全弁開固着の確認																										
状況判断		_		_	●タービン停止の確認	10分																									
																			 ●原子炉隔離時冷却系の自動起動の確認 												
					●主蒸気隔離弁閉止及び逃がし安全弁による原子炉圧力制御の確認																										
					●再循環ポンプトリップの確認																										
原子炉水位の調整 操作 <mark>(原子炉隔離</mark> 時冷却系)	【1人】 A	_		-	●原子炉隔離時冷却系による原子炉注水の調整操作		原-	子炉水位を原	原子炉水位	低 (レベル3) 設定点の	設定点から間に維持	原子炉水位	高(レベル	▶8)																	
早期の電源回復不	【1人】 A	_		-	●高圧炉心スプレイ系ディーゼル発電機の手動起動操作(失敗)	1分																									
能の確認	【1人】 B	_		-	●非常用ディーゼル発電機等の手動起動操作(失敗)	2 分																									
可 搬型代替 注水 大型ボンプを用 いた低圧代替注水 系(可搬型)の起 動準備操作	_	_		10人 a~j	●アクセスルート復旧,可搬型代替注水大型ポンプ準備,ホース 敷設等								170 分																		
交流電源の回復抽作	-	-		-	●非常用ディーゼル発電機の機能回復										,																
四波採作					●外部電源の機能回復																										
 直流電源の 負荷切り離し操作 (中央制御室) 	【1人】 B	-		-	●不要負荷の切離し操作							6分																			

第2.3.3-3図 全交流動力電源喪失(TBP)の作業と所要時間(1/2)

_____ コメント No. 147-27 に対する回答

110 120	備考
1	
	解析上考慮しない
	対応可能な要員にて実施

					全交流動力電	[源喪失(TBP)]								
					4	9	19	16	経過時間(時間) 20	94	28	20	36	40 億 老
					ч І	Ū I	12	10	20	24	20	32 I	i i	10 111 -5
		実施箇所・必要要員	数			·		, i	·	•		·	·	
操作項目		【 】は他作業後 移動してきた要員		操作の内容	♥ 3時間15	分 原子炉減圧操作		♥ 約14時間 り	-プレッション・チェン	・バ圧力279	kPa[gage]到達			
		運転目	重大事故等対応要員	-						Y,	24時間 非常用母線受 ▼ 24 時間 10 八 本6	電力和除士でに下てお	マークレイルバ	
	(中央制御室)	(現場)	(現場)								▼ 24 時間 10 万 残留 原言	子炉注水の交互運転	気開始	
	-	-	10人 a~j	●アクセスルート復旧,可搬型代替注水大型ポンプ準備,ホース敷設等 170 分										
可搬型代替注水大型ポンプを用いた	-	-	【2人】 a, b	●可搬型代替注水大型ポンプ起動操作			起動後, i	窗 <mark>宜監視</mark>						
低圧代替注水系(可搬型)による原子 炉注水準備	-	-	【2人】 c.d	 ●淡水貯水池B(A)から淡水貯水池A(B)への補給 	60 5	ਹੋ								
	_	3人 C.D.F	3人 k 1 m	 ●原子炉注水のための系統構成 125 分 										
タンクローリによる燃料補給操作	_	-	2人 (切/#)	●可搬型設備用軽油タンクからタンクローリへの補給	90 分									タンクローリ残量に応じ て適宜軽油タンクから補 給
			(招来)	●可搬型代替注水大型ポンプへの給油					適宜	実施				
逃がし安全弁 <mark>(自動減圧機能)</mark> による 原子炉減圧操作	【1人】 B	-	-	 ●逃がし安全弁(自動減圧機能)6弁の開放操作 1分 										
原子炉水位の調整操作(低圧代替注水 <mark>系(可搬型))</mark>	-	【2人】 C, D	2人 (招集)	●原子炉注水の流量調整			系統構成後,這	^酓 宜流量調整						
直流電源の負荷切り離し操作(現場)	-	1人 E	1人 k	●不要負荷の切り離し操作		50 分								
常設代替高圧電源装置による非常用母	【1人】 B	-	-	●非常用母線受電準備		35 分								
線の受電準備操作	-	【1人】 E	【1人】 k	●非常用母線受電準備		70 分								
可搬型代替注水大型ポンプを用いた		【1人】	【3人】 k, 1, m	●格納容器スプレイのための系統構成			175 分							
による格納容器冷却		E	2人 (招集)	●格納容器スプレイの流量調整				系統權	^{素成後,適宜流量調整}					
常設代替高圧電源装置による緊急用母 線受電操作	【1人】 B	-	-	●常設代替高圧電源装置2台起動及び緊急用母線への受電操作					4 分					
常設代替高圧電源装置による非常用母	[1人]	_	_	●常設代替高圧電源装置3台追加起動					8	分				
旅受电操作	В			●非常用母線受電 5分 5分 5分 50 50 50 50 50 50 50 50 50 50 50 50 50										
				●残留熱除去系海水系の起動操作						4分	-			
残留熱除去系による原子炉注水及び格 納容器除熱	【1人】 A	_	-	●残留熱除去系による原子炉注水						2分				
				●残留熱除去系による格納容器スプレイ操作及び原子炉注水の交互運転							原子炉水位高(レベル ン・プール冷却開始へ 定点にて原子炉注水へ	 8)設定点にて格納: の切替え操作を実施しの切替え操作を実施 	容器スプレイ又はサプレッショ , 原子炉水位低(レベル3)該	ze i
使用済燃料プールの冷却操作	-	-	-	●使用済燃料プールの冷却操作										使用済燃料プールの除熟 機能が喪失した場合で も、プール水温度が80℃ に到達するまでには1日 以上の時間余裕があるた め、本操作は対応可能な 要員にて実施する。
可搬型代替注水大型ポンプによる水源				●可搬型代替注水大型ポンプの移動、ホース敷設等										対応可能な要員にて実施
補給操作	_	_	_	●ボンブ起動及び水源補給操作										する
必要要員合計	2人 A, B	3人 C, D, E	<mark>13人 a~m</mark> 及び招集6人											

第2.3.3-3図 全交流動力電源喪失(TBP)の作業と所要時間(2/2) コメント No. 147-27 に対する回答

2.3.3-45

第2.3.3-7図 逃がし安全弁からの蒸気流量の推移

2.3.3-46

第2.3.3-8図 原子炉圧力容器内の保有水量の推移

第2.3.3-9図 燃料被覆管温度の推移

2.3.3-47

2.3.3 - 48

2.3.3 - 49

第2.3.3-14図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係

第2.3.3-15図 格納容器圧力の推移

原子炉減圧に伴い原子炉飽和温度が低下することで,圧力容器壁面(内表面)温度が低下し,熱伝導の遅れを伴って,外表面の温度も低下し,格納容器気相部温度の低下に繋がる。また,格納容器気相 部から壁面への伝熱により,壁面温度が上昇することで格納容器気相部温度が低下する

第2.3.3-16図 格納容器雰囲気温度の推移

2.3.3-52

安定状態について(全交流動力電源喪失(TBP))

全交流動力電源喪失(TBP)時の安定状態については,以下のと

おり。

原子炉安定停止状態:	事象発生後,設計基準事故対処設備又は重大事故等対処
	設備を用いた炉心冷却が維持可能であり、また、冷却の
	ための設備がその後も機能維持でき、かつ、必要な要員
	の不足や資源の枯渇等のあらかじめ想定される事象悪
	化のおそれがない場合に安定停止状態が確立されたも
	のとする。
格納容器安定状態 :	炉心冷却が維持された後に、設計基準事故対処設備又は
	重大事故等対処設備を用いた格納容器除熱により格納
	容器圧力及び温度が安定又は低下傾向に転じ、また、格
	納容器除熱のための設備がその後も機能維持でき、か
	つ,必要な要員の不足や資源の枯渇等のあらかじめ想定
	される事象悪化のおそれがない場合に安定状態が確立
	されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

原子炉隔離時冷却系の原子炉注水により炉心が冠水し,炉心冷却が維持される。可搬型代替注水大型ポンプによる原子炉注水の準備完了後,原子炉を減圧し,可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子 炉注水を実施することで,引き続き炉心が冠水し,炉心の冷却は維持され,原 子炉安定停止状態が確立される。

格納容器安定状態の確立について

炉心冷却を継続し、常設代替高圧電源装置による交流電源の供給開始後に残留熱除去系を用いた格納容器除熱を実施することで、格納容器圧力及び雰囲気 温度は安定又は低下傾向となる。格納容器雰囲気温度は 150℃を下回るととも に、ドライウェル雰囲気温度は、低圧注水継続のための逃がし安全弁の機能維 持が確認されている 126℃を上回ることはなく、格納容器安定状態が確立され る。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料及 び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。

(添付資料 2.1.1 別紙 1)

: コメント No. 148-21, 265-06, 07, 08 に対する回答 !		
解析コード及び解析条件の不確かさの影響評価について	(全交流動力電源喪失	(TBP))

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壞熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料棒表面熟伝 達,沸騰遷移,気 液熟非平衡	法料棒表面熱伝 燃料棒表面熱伝 達、沸騰遷移,気 凌熟非平衡 燃料棒表面熱伝 達モデル ボ目し、ROSA-Ⅲの実験解析において、熱伝達係数 を低めに評価する可能性があり、他の解析モデルの不確かさとあいまってコード全体として、 スプレイ冷却のない実験結果の燃料被覆管温度 に比べて450℃程度高めに評価する。また、低圧 代替注水系による注水での燃料棒冷却過程にお ける蒸気単相冷却又は噴霧流冷却の不確かさは 20℃~40℃程度である。		解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熟伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熟伝達は 大きくなることで、燃料被覆管温度は低くなるが、事象初期の原 子炉注水は原子炉隔離時冷却系の自動起動により確保され、燃料 被覆管温度を起点とする運転員等操作はないことから、運転員等 操作時間に与える影響はない。	解析コードは,実験解析において熱伝達モデルの保守性により燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被 覆管温度を高めに評価することから,評価項目となるパラメータ の判断基準に対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジル コニ ウム ー 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,事象初期の 原子炉注水は原子炉隔離時冷却系の自動起動により確保され,燃 料被覆管温度を起点とする運転員等操作はないことから,運転員 等操作時間に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,実際の燃 料被覆管温度は低めとなり,評価項目となるバラメータの判断基 準に対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は、燃料被覆管温度と円周方向応力 に基づいて評価され、燃料被覆管温度は上述の ように高めに評価され、円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって、ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	解析コードは,燃料被覆管の破裂判定においておおむね保守的な 判定結果を与え,有効性評価解析において炉心が露出することに よる燃料被覆管温度の上昇は最大 746℃程度であることから,ベ ストフィット曲線の破裂判断基準に対して十分な余裕があり,燃 料被覆管の破裂判定の不確かさが運転員等操作に与える影響はな い。	破裂発生前の被覆管の膨れ及び破裂発生の有無は、伝熱面積やギ ャップ熱伝達係数,破裂後の金属-水反応熱に影響を与え、燃料 被覆管温度に影響を与える。解析コードは、燃料被覆管の破裂判 定においておむむね保守的な判定結果を与え、有効性評価解析に おいて炉心が露出することによる燃料被覆管温度の上昇は最大 746℃程度であることから、ベストフィット曲線の破裂判断基準に 対して十分な余裕があり、燃料被覆管の破裂判定の不確かさによ り、評価項目となるパラメータに与える影響はない。

第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	 市心 滞藤・ボイド率変 化、気液分離(水 位変化)・対向流、 三次元効果 二相流体の流動 モデル 二日流体の活動 モデル 二日流体のにしためいたが マーク系がにおいて, ROSA-IIIでは, 2000 年の 二日流体のである。 このため、燃料破壊管はたき な影響を及ぼす低圧代替注水系の注水タイミン グに特段の差異を生じる可能性はないと考えら れる。 下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か 		TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相木位変化は,解析結果に重量する木位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,原子炉隔離時冷却系 及び」低圧代替注水系を注水手段として用いる 本事故シーケンスでは考慮する必要のない不確 かさである。このため,燃料被覆管温度に大き な影響を及ぼす低圧代替注水系の注水タイミン グに特段の差異を生じる可能性はないと考えら れる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して,解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが,有効性評価解析におい て炉心が露出することによる燃料被覆管温度の上昇は最大746℃ 程度であり,判断基準に対して十分な余裕があることから,その 影響は非常に小さい。
	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるバラメータに与える影響は小さい。
原子炉 圧力容器	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを想定する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは,原子炉圧力変化を適切に評価することから,評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全からの流出は,圧力容器ノズル又はノズ ルに接続する配管を通過し,平衡均質流に達するのに十分な長さ であることから,管入口付近の非平衡の影響は無視できると考え られ,平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子 炉 注 水 系 モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており、実機設備仕様に対し て注水流量を少なめに与え、燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるバラメータに与える影響」にて確認。

第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	a 重要現象 解析モデル 不確かさ		不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壞熱	炉心モデル(原子 炉出力及び崩壊 熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水(給水 系・代替注水設備 含む)	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析 モデルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉格納容器	格納容器各領域 間の流動 構造材との熟伝 達及び内部熱伝 導 気液界面の熱伝 達	格納容器モデル (格納容器の熱 水力モデル)	HDR実験解析では、格納容器圧力及び雰囲気 温度について、温度成層化を含めて傾向をよく 再現できることを確認した。格納容器雰囲気温 度を十数℃程度高めに、格納容器圧力を1割程 度高めに評価する傾向が確認されたが、実験体 系に起因するものと考えられ、実機体系におい てはこの種の不確かさは小さくなるものと考え られる。また、非疑縮性ガス濃度の挙動につい て、解析結果が測定データとよく一致すること を確認した。 CSTF実験解析では、格納容器雰囲気温度及 び非凝縮性ガス濃度の挙動について、解析結果 が測定データとよく一致することを確認した。	解析コードは、HDR 実験解析において区画によって格納容器雰囲 気温度を十数 ⁽² 程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、これらの不確かさは実験体系に起因する ものであり、実機体系においては不確かさが小さくなるものと推 定され、全体としては格納容器圧力及び温度の傾向を適切に再現 できているため、格納容器圧力を操作開始の起点としている代替 格納容器スプレイ冷却系(可搬型)による格納容器冷却に係る運 転員等操作時間に与える影響は小さい。 また、CSTF実験解析において格納容器雰囲気温度及び非凝縮 性ガスの挙動は測定データと良く一致することを確認しており、 その差異は小さいため、格納容器エケルスペ声気気量を操作開始 の起点としている代替格納容器スプレイ冷却系(可搬型)による 格納容器冷却に係る運転員等操作時間に与える影響は小さい。	解析コードは、HDR 実験解析において区画によって格納容器雰囲気 温度を十数で程度,格納容器圧力を1割程度高めに評価する傾向 が確認されているが、これらの不確かさは実験体系に起因するも のであり、実機体系においては不確かさが小さくなるものと推定 され、全体としては格納容器圧力及び温度の傾向を適切に再現で きているため、評価項目となるパラメータに与える影響は小さい。 また、CSTF実験解析により格納容器雰囲気温度及び非凝縮性 ガスの挙動は測定データと良く一致することを確認しているた め、評価項目となるパラメータに与える影響は小さい。
	スプレイ冷却	安全系モデル(格 納容器スプレイ)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	サ プ レ ッ シ ョ ン・プール冷却	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

	12 0	解析条件0	の不確かさ	タル記点の老う士	でまた日始現在中国にたらて影響	評価項目となるパラメータに
	垻 日	解析条件	最確条件	米性設定の考え力	運転員寺傑作时间に与える影響	与える影響
	原子炉熱出力	3, 293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は、最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響は小さい。
初期条件	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ + 132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mmであ り非常に小さい。したがって、事象進展に及ぼす影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるバラメータに与える影響は小さい。
	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい で解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さ い。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は、 熱水力的な特性はほぼ同等であり、その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含されることから、代表的に9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性は ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、事象初期の原子炉注水は原子炉 隔離時冷却系の自動起動により確保され、燃料被覆 管温度を起点とする運転員等操作はないことから、 運転員等操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため,燃料被覆管温度上昇 が緩和されることから,評価項目となるパラメータの 判断基準に対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/5)

	第2表	遅析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/5))
--	-----	--	---

		解析条件	+の不確かさ	友供现亡办书之十		評価項目となるパラメータに
	頃 日	解析条件	最確条件	条件設定の考え方	運転員等操作時間に与える影響	与える影響
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下及 び格納容器圧力上昇の観点で厳しい設 定となる。このため,崩壊熱が大きくな る燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(1 ヶ月)を考慮した運転期間に対応する燃 焼度を設定	最確条件は解析条件で設定している崩壊熟よりも小 さくなる。このため、原子炉からサプレッション・ プールに流出する蒸気量が減少することで、原子炉 水位の低下が遅くなるが、事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保され、運 転員等操作時間に与える影響はない。また、格納容 器圧力、サプレッション・プール水位及びサプレッ ション・プール水温度の上昇が遅くなり、これらの パラメータを起点とする運転員等操作の開始時間は 遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小 さくなる。このため、燃料からの発熱が小さくなり、 原子炉からサプレッション・プールに流出する蒸気量 が減少することで、原子炉水位の低下並びに格納容器 圧力及び温度の上昇が緩和されることから、評価項目 となるパラメータに対する余裕が大きくなる。
	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として,通常運転時の圧力を包含する 値を設定	最確条件とした場合には,解析条件で設定している 圧力よりも小さくなるため,格納容器圧力が低めに 推移するため,格納容器圧力を起点とする運転員等 操作の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧 力よりも小さくなる。このため,格納容器圧力が低め に推移することから,評価項目となるパラメータの判 断基準に対する余裕は大きくなる。
	ドライウェル 雰囲気温度	57°C	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ドライウェル雰囲気温度 は、格納容器スプレイの実施に伴い飽和温度となる ことから、初期温度のゆらぎが事象進展に与える影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ドライウェル雰囲気温度は、 格納容器スプレイの実施に伴い飽和温度となること から、初期温度のゆらぎが事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。
初期	格納容器体積 (ドライウェル)	5, 700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。
· 条件	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約4,058m ³ 液相部: 約3,308m ³ ~約3,342m ³ (実測値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、格納容器体積(ウェット ウェル)の液相部の運転範囲において解析条件より 高めの水位となるが、ゆらぎの幅は非常に小さい。 例えば、サプレッション・プール水位が 6.983m の時 の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m) による水量変化は約 42m ³ であり、その割合は初期保 有水量の 1.3%程度と非常に小さい。したがって、事 象進展に与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウ ェル)の液相部の運転範囲において解析条件より高め の水位となるが、ゆらぎの幅は非常に小さい。例えば、 サプレッション・プール水位が 6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、評価項目となるバラメータに与 える影響は小さい。。
	サプレッション・ プール水位	6.983m (通常運転水位-4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、サプレッション・プール 水位の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプ レッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、運転員等操作時間に与える影響 響は小さい。	最確条件とした場合には、サプレッション・プール水 位の運転範囲において解析条件より高めの水位とな るが、ゆらぎの幅は非常に小さい。例えば、サプレッ ション・プール水位が6.983mの時の水量は3.300m ³ であるのに対し、ゆらぎ(0.087m)による水量変化は 約42m ³ であり、その割合は初期保有水量の1.3%程度 と非常に小さい。したがって、事象進展に与える影響 は小さく、評価項目となるパラメータに与える影響は 小さい。
	サプレッション・ プール水温度	32℃	約 15~約 32℃ (実績値)	サブレッション・ブールでの圧力抑制効 果が厳しくなる高めの水温として,保安 規定の運転上の制限における上限値を 設定	最確条件は解析条件で設定している水温よりも低く なるため、サブレッション・ブールでの圧力抑制効 果が高まり格納容器圧力の上昇は緩和される。この ため、格納容器圧力を起点とする運転員等操作の開 始は遅くなる。	最確条件は解析条件で設定している水温よりも低く なるため、サプレッション・プールでの圧力抑制効果 が高まり格納容器圧力の上昇は緩和される。このた め、評価項目となるパラメータの判断基準に対する余 裕は大きくなる。

	百日	解析条件。	り不確かさ	冬川北中の老う士	流転号筮覘佐時間におうて影響	評価項目となるパラメータに
	項口	解析条件	最確条件	木田設定の考え力	歴紀員寺孫中时间に子ての影響	与える影響
	起因事象	外部電源喪失	_	送電系統又は所内主発電設備の故障等によ って,外部電源が喪失することを想定		
事故	安全機能の喪失	全交流動力電源喪失	_	全ての非常用ディーゼル発電機等の機能喪 失を設定	-	-
▲ 件	に対する仮定	逃がし安全弁1弁 開固着	_	本事故シーケンスにおける前提条件		
	外部電源	外部電源なし	_	起因事象として、外部電源が喪失すること を想定	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない。	外部電源喪失は起因事象として設定していることか ら,外部電源がある場合については考慮しない。
関連する機器条件重大事故等対策に	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	タービン加減弁急速閉信 号又は原子炉保護系電源 喪失	短時間であるが原子炉熱出力が維持される 厳しい設定として,外部電源喪失時のター ビン蒸気加減弁急速閉信号及び原子炉保護 系電源要失による原子炉スクラムについて は保守的に考慮せず,原子炉水位低(レベ ル3)にてスクラムするものとして設定	最確条件とした場合には、原子炉熱出力の低下が早 くなるため、原子炉からサプレッション・プールに 流出する蒸気量が減少することで、原子炉水位の低 下が遅くなるが、事象初期の原子炉注水は原子炉隔 離時冷却系の自動起動により確保され、運転員等操 作時間に与える影響はない。また、格納容器圧力、 サプレッション・プール水位及びサプレッション・ プール水温度の上昇が遅くなり、これらのパラメー タを起点とする運転員等操作の開始時間は遅くな る。	最確条件とした場合には、原子炉熱出力の低下が早く なるため、原子炉からサブレッション・ブールに流出 する蒸気量が減少することで、原子炉水位の低下並び に格納容器圧力及び温度の上昇が緩和されることか ら、評価項目となるパラメータに対する余裕が大きく なる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/5)

第2表	解析条件を最確条件。	とした場合に運転員等操作時間及	び評価項目となるパラ	ラメータに与える影響(4/5)
-----	------------	-----------------	------------	-----------------

項目		解析条件の不確かさ		冬州凯宁小老之十	安む昌歴場が曲期にたらて影響	評価項目となるパラメータに		
		解析条件 最確条件		余件設定の考え方	連転員寺操作時間に与える影響	与える影響		
関連する機器条件	原子炉隔離時冷却系	原子炉水位異常低下 (レベル2)信号にて 自動起動 136.7m ³ /h(1.04~ 7.86MPa[gage]におい て)	原子炉水位異常低下 (レベル2)信号にて 自動起動 136.7m ³ /h(1.04~ 7.86MPa[gage]におい て)	設計値を設定。原子炉隔離時冷却系は,タ ービン回転数制御により原子炉圧力に依ら ず一定の流量にて注水する設計となってい る。	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。		
	残留熟除去系 (低圧注水系)	最小流量特性 ・注水流量:0~1,676m ³ /h ・注水圧力:0~ 1.55MPa[dif]	・注水流量:0~1,676m ³ ∕h以上 ・注水圧力:0~ 1.55MPa[dif]	炉心冷却の観点で厳しい設定として,設計 基準事故の解析で用いる最小流量特性を設 定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,注水開始後の原子炉水位の維持 操作の開始が早くなるが,注水後の調整操作であり, 運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、評価項目となるパラメータの判断基 準に対する余裕は大きくなる。		
	残留熱除去系 (サプレッション・プ ール冷却モード)	熱交換器 1 基あたり 約 43MW (サプレッション・プ ール水温度 100℃,海 水温度 32℃において)	 熱交換器1基あたり 約43MW以上 (サプレッション・プレル水温度100℃,海 木温度32℃以下において) 	残留熱除去系の除熱性能を厳しくする観点 で,過去の実績を包含する高めの海水温度 を設定	最確条件とした場合には、海水温度が低めとなり除 熱性能が向上するため、格納容器圧力及びサプレッ ション・プール水温度の上昇が遅くなるが、これら のパラメータを起点とする運転員等操作はないこと から運転員等操作時間に与える影響はない。	最確条件とした場合には、海水温度が低めとなり除熱 性能が向上するため,格納容器圧力及び雰囲気温度の 上昇が緩和されることから,評価項目となるパラメー タに対する余裕が大きくなる。		
	低圧代替注水系 (可搬型)	 (原子炉注水単独時) 最小流量特性 ・注水流量:0~110m³ /h ・注水正力:0~ 1.4MPa[dif] 	 (原子炉注水単独時) 定格流量特性 ・注水流量:0~110 m ³/h以上 ・注水圧力:0~ 1,4MPa[dif] 	炉心冷却性の観点で厳しい設定として,設 備設計上の最低要求値である最小流量特性 を設定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,原子炉水位の維持操作の開始が 早くなるが,原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため,運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、炉心の再冠水が早まることから、評 価項目となるパラメータの判断基準に対する余裕は 大きくなる。		
		(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50 m ³ /h	(原子炉注水と格納 容器スプレイ併用時) ・注水流量:50 m ³ /h 以上	併用時の系統評価に基づき,保守的な流量 を設定				
	代替格納容器スプレ イ冷却系(可搬型)	スプレイ流量: 130m ³ /h <mark>(一定)</mark>	スプレイ流量: 130m ³ /h 以上	格納容器圧力上昇を抑制可能な流量として,運転手順に基づき設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。		
	外部水源の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制効果の観 点で厳しい高めの水温として,年間の気象 条件変化を包含する高めの水温を設定。	最確条件とした場合には、解析条件で設定している 水温よりも低くなる可能性があり、格納容器スプレ イによる圧力抑制効果が高まることから、同等の効 果を得るために必要となるスプレイ水量が少なくな り、外部水源を用いた格納容器スプレイに伴うサプ レッション・プール水位の上昇が緩和されることか ら、サプレッション・プール水位を起点とする操作 の開始は遅くなる。	最確条件とした場合には、解析条件で設定している水 温よりも低くなる可能性があり、格納容器スプレイに よる圧力抑制効果が高まるが、格納容器最高使用圧力 に到達した時点で格納容器ベントを実施するマネジ メントに変わりはなく、格納容器圧力の最大値はおお むね格納容器ベント時の圧力で決定されるため、評価 項目となるパラメータに与える影響はない。		

項目		解析条件の不確かさ		冬川北京の老さ士	毎転昌笠塩作時間に与うス影郷	評価項目となるパラメータに	
		解析条件	最確条件	木田設定の与え方	建料具守珠ド时间に子んる影響	与える影響	
関連する機器条件重大事故等対策に	逃がし安全弁	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	 (原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個 (設計値) 	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
		 (原子炉減圧操作時) 逃がし安全弁(自動減 圧機能6弁及びに逃が し安全弁再閉鎖失敗 の1弁とあわせて)7 弁を開放することに よる原子炉減圧 	(原子炉減圧操作時) 逃がし安全弁(自動減 圧機能6弁及びに逃 がし安全弁再閉鎖失 敗の1弁とあわせて) 7弁を開放することに よる原子炉減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。	
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、水源は枯渇しないこと から運転員等操作時間に与える影響はない。	_	
	燃料の容量	約 1,010kL	約1,010kL 以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_	

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(5/5)

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃に減 <mark>搬型型、</mark> た水 しる原作(注 安子子) 一 安子子(注 大水) に た水 、 に 本 操 代 ギン圧 代 本 ン に 来 の た 来 の た の の に 歴 戦 で よ の に 来 の と の に 一 数 で い た の と の に 一 数 で の に 一 数 の に 、 の に 一 数 で の 、 の 、 の に 一 数 一 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の	事象発生から 3時間1分後	状況判断,低圧代 若注水系(可搬 型)の準備及びる 時間を考慮して 設定	【認知】 中央制御室にて機器ランプ表示消灯,機器故障警報,照明の消灯等により全交 流動力電源喪失を確認する事象初期の状況判断に余裕時間を含めて10分を想 定している。よって、認知時間として余裕時間を含めて10分を設定しており、 十分な時間余裕を確保していることから,認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから,要員配置が操作開始時間に与える影響は ない。 【移動・操作所要時間】 低圧代替注水系(可搬型)に用いる可搬型代替注水大型ボンプ等は車両であり、 自走にて作業現場へ移動することを想定している。仮に地震等の外部事象が起 因事象で、アクセスルートに被害がある場合でも、ブルドーザー等にて必要な アクセスルートに被害がある場合でも、ブルドーザー等にて必要な アクセスルートに被害がある場合でも、ブルドーザー等にて必要な なっための系統構成として移動も含め125分を想定している。いずれも十分な 間余裕を確保している。また、異なる要員にて並行して実施する原子炉注 水のための系統構成として移動も含め125分を想定している。いずれも十分な 時間余裕を確保していることから、移動及び操作所要時間が操作開始時間に影響 を及ぼす可能性は非常に小さい。 逃がし安全弁による原子炉減圧操作として余裕時間を含めて1分を設定して いる。中央制御室の制御整の操作スイッチによる簡易な操作であり、操作所要 時間が長くなる可能性は非常に低く、操作所要時間が操作開始時間に影響を及 ぼす可能性は非常に小さい。 【他の並列操作はないことから操作開始時間に与える影響はない。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため、操作要員 2人以上 で実施することとしており、誤操作は起こりにくいことから、誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間間は、余裕 間ので移動・操 作所要含めて設また に、余して いることから、実解析 上の時間は時間よ りも若干早まる可能 性がある。	実態の操作開始時間 は,解析上の注水開始 時間は余裕時間を含 めて設定されており, 実態の操作開始時間 は解析上の若干早まる 可能性があるが,メー タに与える影響はな い。	運転員による原子炉 隔離ち点の再起 動をて、事象発生から 3時間遅れ)までに逃ぶ し安全弁を開始でで見っ による原子 炉減燃料被覆管の最高 温度は875℃となり, 燃料被覆管のの見 発行5℃となり, 燃料被覆管のの現 経費での約 発行での 第価項目を 満足する。 (添付資料 2.3.3.3)	ア復及水備は要定セ(5500000000000000000000000000000000000

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可注ンだ注型子作可注ン料 搬水ブ低水)炉に搬水ブ補 代型用代可る水い代型の 替ポい替搬原操る替ポ燃	低圧代替注水 系(可搬型) による原子炉 注水開始から 適宜	可 搬型 代 才 社 水	【認知】 「述がし安全弁による原子炉減圧操作(低圧代替注水系(可搬型)による原子 炉注水操作)」と同様であり,認知遅れが操作開始時間に影響を及ぼす可能性 は非常に小さい。 【要員配置】 本操作を実施する招集要員は,操作の実施期間中に他の操作を担っていないこ とから,要員配置が操作開始時間に与える影響はない。 【移動・操作所要時間】 招集要員の招集まで120分を想定している。また,燃料補給に用いるタンクロ ーリは車両であり,招集後,自走にて作業現場へ移動することを想定している。 仮に地震等の外部事象が起因事象で,アクセスルートに被害がある場合でも, ブルドーザー等にて必要なアクセスルートを復旧できる体制としている。可搬 型設備用軽油タンクからタンクローリへの燃料補給として移動も含め90分を 想定しており,十分な時間余裕を確保していることから,移動及び操作所要時 間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【操作の確実さ】 現場での操作は、操作の信頼性の向上や要員の安全のため,操作要員2人以上 で実施することとしており,誤操作等が操作 開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び移動・操 作所要時間は、余裕時 間を含めて設定して いることから、実態の 操作開始時間は解析 上の操作開始時間よ りも若干早まる可能 性がある。	実態の操作開始時間 は解析上の設定から 早まる可能性がある が,評価項目となるパ ラメータに直接影響 を与えることはない。	各機器の燃料が枯渇 しない時間内に実施 することで炉心損傷 を回避することが可 能であり,低圧代替式 水系(可搬型)による 原子炉注水開始から3 時間半程度の時間余 裕がある。	可型補約のて実分、各場して、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、
第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/5)

項目		解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	直流電源の 負荷切離し操 作	事象発生から 8時間後	直流負荷の切り 離し操作は、解析 全体でで想定成ないが、 解析で想定成でを や継続に必要 であり、しな い ように設定	【認知】 中央制御室からの遠隔操作により外部電源又は非常用ディーゼル発電機等に よる非常用母線の交流電源回復ができない場合、早期の電源回復不能と判断 し、常設代替高圧電源装置による緊急用母線及び非常用母線の受電を開始し、 これに失敗した場合は、直流電源の負荷切り離し操作を開始する手順としてい る。中央制御室にて機器ランプ表示消灯,機器故障警報、照明の消灯等により 全交流動力電源喪失を確認する事象初期の状況判断に余裕時間を含めて 10 分 を想定している。この後、非常用ディーゼル発電機等の手動起動操作(失敗) として余裕時間を含めて 2 分を想定している。また、重大事故等対処設備の故 障は想定しないが、常設代替高圧電源装置の起動操作時間として4分を想定す る。よって、認知時間として余裕時間を含めて 16 分を設定しており、十分な 時間余裕を確保していることから、認知遅れが操作開始時間に影響を及ぼす可 能性は非常に小さい。 【要員配置】 現場操作のため、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから、要員配置が操作開始時間に与える影響は ない。 【移動・操作所要時間】 中央制御室から操作現場までの移動時間及び不要負荷の切離し操作時間とし て余裕時間を含めて 50 分を設定しており、十分な時間余裕を確保しているこ とから、移動及び操作所要時間が操作開始時間に影響を及ぼす可能性は非常に 小さい。 【他の並列操作有無】 運転員の直流電源の負荷切り離し操作は、不要な負荷への給電を遮断する操作 であり、その他の操作との並列操作が可能である。 【操作の確実ま】 運転員の現場操作は、操作の信頼性向上や要員の安全のため2人1組で実施す ることとしており、誤操作は起こりにくく、誤操作等により操作時間が長くな る可能性は低い。	認知時間及び移動・操 作所要時間は,余裕時 間を含めて設定して いることから,準備の 完了は解析上の操作 開始条件よりも若干 早まる可能性がある。	実態の操作開始時間 は解析可能性がある が,解析条件ではない ことから,蓄電社は枯渇 までにご知道したるるパ ラメータに与える影 響はない。	直流負荷の切り離し 操作は、事象発生から 8時間後に実施するも のであり十分な操作 時間余裕が確保され ている。	直流離の 電して が離り の の 移動 を の の 移動 を の の 移動 を の の 移 た と 、 約 れ り 等 し て 来 し て ま た こ は 、 時 し て 、 約 名 で う 約 2 の で 、 約 4 の の た こ は 、 約 日 て い 実 で て 、 約 4 の の の た こ は 点 に し て 来 た し の 練 し て 来 う 約 4 の の の で い ま で こ は 点 に し て 、 約 4 の の の で い た し う 約 4 の の の で い た こ は え の の の の で い た が た の る の ち の ろ ろ ち ろ ろ ろ ち ろ ろ ろ ち の ろ の た し 、 新 4 の で の た し で 、 新 4 の で の た し の ま た で の た こ に ま 定 で 、 た た た た た た た た る た こ な た た た た た た た る た た た た た た た た た た た た た

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(4/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可注ンた容イ搬型大を整体が開きた。 「「「「」」で、「「」」の「「」」で、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	サプレッショ ン・チェンバ 圧力 279kPa [gage] 到達 時	 運転手順に基づき 格納客器ベント案 納客器のある 本部を考定 本部 本部 本部 本部 本 本 本 本 本 本 ま ま 	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監 視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェ ンバ圧力 279kPa[gage])に到達するのは事象発生約13時間後であり、比較的 緩やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 現場での操作は、中央制御室の運転員とは別に現場操作を行う運転員(現場) 及び重大事故等対応要員を配置している。これらの要員は、操作の実施期間中 に他の操作を担っていないことから、要員配置が操作開始時間に与える影響は ない。 【移動】 格納容器スプレイのための系統構成の実施場所は,原子炉注水のための系統構 成と同じ原子炉建屋内であり、操作要員はすでに配置済みであることから,移 動が操作開始時間に与える影響はない。 【操作所要時間】 格納容器スプレイのための系統構成として175分を想定しており、十分な時間 余裕を確保していることから,操作所要時間が操作開始時間に影響を及ぼす可 能性は非常に小さい。 【他の並列操作有無】 原子炉注水の流量調整を並列して実施する場合があるが、異なる要員による対 応が可能であるため,他の並列操作が操作開始時間に与える影響はない。また、 代替格納容器スプレイの清重系で可能では非常に小さい。 【操作の確実さ】 運転員(現場)及び重大事故等対応要員の現場操作は、操作の信頼性向上や要 員の安全のため2人1組で実施することとしており、誤操作は起こりにくく、 誤操作開始時間に影響を及ぼす可能性は小さい。	左記のとおり操作不 確かさ要時したり、 を記のさ要時でする 影響は他の設定の にしたい。 ためでする ための した。 実解析での の ための した。 ための した。 ため に ため に ため に た の た の た の た の た の た の た の た の た の た	実態の析になった。 実態の析であり目 が が の が に の が に な の に し た の し の る に ち 、 に し た の に し た の に し た の し の に 他 で に 命 に 飾 一 に 作 確 始 時 に り 、 し た シ れ る の に 飾 に か 一 に 作 確 始 時 に り 、 し た シ れ お の に 動 に が 、 、 、 、 の に 動 に が 、 か し た い た れ 、 の に 動 た い に あ た い た に か に し た い た れ た の に の に の に の に の に の に の に の ら い こ い た こ ん い た に に ら い こ た こ べ ろ た に に ら 、 こ と ら た こ べ い で し に こ べ い る に に こ い っ 、 、 、 、 、 、 、 、 、 、 、 、 、	格納容器&発生の約14 時に、事象発生の約14 時間後のであり、低生代であり、低生化であり、低生化 が不振型とたし、可能替注し、可能を加えたた。 がプロンプのでは、のである。 を3、 のでのため、 のでのため、 のでのため、 のののでのため。 ののののでの のののでの ののでの ののでの ののでの ののでの ののでの	格納容めの開発 客とのの時間をついていた。 その時間をついていた。 からしてのに、 のたい、 のたい、 を で に してい に の に の に の た の 時 に の の 時 に の の 時 に の の 時 に の の 時 に の の の 時 に の の 時 に の の の の

第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(5/5)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	残留 熱除 去 系納 なる なび操作 注水操作	事象発生 24 時間 10 分後	常 設 代 替 高 石 る 受 残 借 に の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 て 系 の の 完 こ 系 の の 完 た に の の の た に の の 完 た の の 売 こ 系 の の た に の の た こ ろ の の た に の の た こ ろ の の の た こ ろ の の た こ ろ の の た こ ろ の の の す る の 時 志 こ の の す る の 市 こ て ろ 、 の す る の す て て の す る の す て て の す る の す て て の す る て に つ て る の す つ て つ つ つ つ て つ つ つ つ つ つ つ つ つ つ つ つ つ	【認知】 常設代替高圧電源装置による非常用母線の受電操作の完了後,連続して操作を 実施するため,認知に大幅な遅れが生じることは考えにくく,認知遅れが操作 開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 残留熟除去系海水系の起動操作として4分,残留熟除去系による原子炉注水操 作として1分を想定し,余裕時間を含めて操作時間として5分を設定している。 いずれも中央制御室の制御盤の操作スイッチによる簡易な操作であり,操作所 要時間が長くなる可能性は十分に低く,操作所要時間が操作開始時間に影響を 及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉水位の調整操作を並列で実施する場合があるが,異なる運転員による対 応が可能であることから,他の並列操作が操作開始時間に与える影響はない 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作のため,誤操作は起こり にくく,誤操作等が操作時間に影響を及ぼす可能性は非常に小さい。	操作所要時間は, 余裕 時間を含めて設定し ていることから, 実態 の操作開始時間は間 よりも若干早まる可 能性がある。	実態の操作開始時間 は解析上の操作開始 時間より早くなる可 諸性があるが、この 着には格納容器の 器の開始が早くなるこ とで格納容器度の上昇 は緩和され、評価項の 判断基準に対する余 裕は大きくなる。	操作条件の残留熱除 去系による原子炉注 水及び格納容器除熟 は、事象発生の約 24 時間後の受電後に実施する ものであり、準備時間 が確保できるため、時 間余裕がある。	中央 制御の クタ 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、

減圧・注水開始の時間余裕について

1. はじめに

事故シーケンスグループ「全交流動力電源喪失(外部電源喪失+ DG喪失)+逃がし安全弁再閉鎖失敗」では,原子炉水位異常低下 (レベル2)設定点で原子炉隔離時冷却系が自動起動して注水を開 始し,原子炉圧力の低下によって注水が停止する。その後,低圧代 替注水系(可搬型)の準備が完了した事象発生の3時間1分後に逃 がし安全弁(自動減圧機能)7弁を用いた原子炉減圧操作を実施する ことで原子炉水位が回復し,炉心が再冠水する評価結果となってい る。

ここでは,実際の運転手順に従い,原子炉圧力の低下により原子 炉隔離時冷却系が停止した後に原子炉圧力が上昇し,原子炉水位の 低下に伴い原子炉隔離時冷却系を再起動した場合の減圧・注水開始 操作の時間余裕を評価した。

2. 評価項目への影響

本評価では、運転員による原子炉隔離時冷却系の再起動を考慮した場合の逃がし安全弁による原子炉減圧操作(可搬型代替注水大型 ポンプを用いた低圧代替注水系(可搬型)による原子炉注水操作)の操作時間余裕について確認した。

第1表に評価結果を示す。また,55分遅れの場合(事象発生の3時間56分後に減圧操作を実施)の原子炉圧力,原子炉水位(シュラウド内外水位),燃料被覆管温度及び燃料被覆管酸化割合の推移を第 1図から第4図に示す。

添付 2.3.3.3-1

55 分遅れの場合でも,評価項目となる燃料被覆管温度 1,200℃及 び燃料被覆管酸化割合 15%を下回り,評価項目を満足する。また, 燃料被覆管の破裂も発生していない。以上より,可搬型代替注水大 型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水操作 は、少なくとも 55 分程度の時間余裕がある。

なお、実際には原子炉圧力が再上昇する場合には、原子炉隔離時 冷却系の2回目以降の再起動を実施すること及び設計値よりも低い 原子炉圧力までの原子炉隔離時冷却系の運転継続が可能と考えられ ることから、余裕時間は55分よりも長くなるものと考える。

第1表 操作遅れによる燃料被覆管温度及び酸化量への影響

減圧操作の遅れ時間	燃料被覆管 最高温度	燃料被覆管の 酸化量
55分 (事象発生3時間56分後に 原子炉減圧開始)	約 875℃	約 2%
60分 (事象発生4時間1分後に 原子炉減圧開始)	約 934°C	約 3%

第1図 原子炉圧力の推移(遅れ時間55分)

添付 2.3.3.3-3

第4図 燃料被覆管酸化割合の推移(遅れ時間 55分)

添付 2.3.3.3-4

7日間における水源の対応について

(全交流動力電源喪失(TBP))

- 1. 水源に関する評価
 - ① 淡水源(有効水量)
 - •代替淡水貯槽:約4,300m³
 - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
 - 可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)
 による原子炉注水

事象発生 3 時間後,定格流量で代替淡水貯槽を水源とした<mark>可搬</mark> 型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)による 原子炉注水を実施する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

交流動力電源が復旧した後,低圧代替注水系(可搬型)による 原子炉注水を停止する。

 可搬型代替注水大型ポンプを用いた 代替格納容器スプレイ冷却 系(可搬型)による格納容器スプレイ

格納容器圧力が 279kPa[gage]に到達する事象発生約 14 時間後, 代替淡水貯槽を水源とした可搬型代替注水大型ポンプを用いた格納容器スプレイ冷却系(可搬型)による格納容器スプレイを実施 する。

交流動力電源が復旧した後、可搬型代替注水大型ポンプを用い

添付 2.3.3.4-1

た代替格納容器スプレイ冷却系(可搬型)による格納容器スプレイを停止する。

3. 時間評価

事象発生から可搬型代替注水大型ポンプを用いた低圧代替注水系 (可搬型)による原子炉注水が開始されるまでは,原子炉隔離時冷 却系により原子炉注水を実施するため,代替淡水貯槽の水量は減少 しない。

事象発生3時間以降は,可搬型代替注水大型ポンプを用いた低圧 代替注水系(可搬型)による原子炉注水等を実施するため,代替淡 水貯槽の水量は減少する。

交流動力電源が復旧する事象発生24時間以降は,残留熱除去系に よる原子炉注水等を実施し,可搬型代替注水大型ポンプを用いた低 圧代替注水系(可搬型)による原子炉注水等を停止するため,代替 淡水貯槽の水量の減少は停止する。

この間の代替淡水貯槽の使用水量は合計約2,160m³である。

第1図 外部水源による積算注水量

(全交流動力電源喪失(TBP))

4. 水源評価結果

時間評価の結果から、7日間の対応において合計約2,160m³必要と なるが、代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水 を保有することから必要水量を確保可能であり、安定して冷却を継 続することが可能である。 7日間における燃料の対応について

(全交流動力電源喪失 (TBP))

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

して評価する。

時系列	合計	判定
常設代替高圧電源装置 5 台起動 (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×5 台(運 転台数)=約 352.8kL	7日間の 軽油消費量 約352.8kL	軽油貯蔵タ ンクの容量 は約800kLで あり,7日間 対応可能
可搬型代替注水大型ポンプ 1 台起動 (低圧代替注水系(可搬型)及び代替格納容器スプレ イ系(可搬型)) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転 台数)=約 36.6kL	7日間の 軽油消費量 約36.6kL	可 搬 型 設 備 用 軽 油 タン ク の 容 量 は 約 210kL であ り,7 日間対 応可能

常設代替交流電源設備の負荷

(全交流動力電源喪失(TBP))

主要負荷リスト

【電源設備:常設代替高圧電源装置】

起動順序	主要機器名称	負 荷 容 量 (kW)	負荷起動時の最 大負荷容量 (k₩)	定常時の連続運転 負荷容量 (kW)
1	緊急用母線自動起動負荷 ・緊急用直流 125V充電器盤 ・その他負荷	$\begin{array}{c} 24.0\\ 35.6\end{array}$	124.3	59.6
2	非常用母線2C自動起動負荷 ・直流125V充電器盤2A ・非常用照明 ・120VAC計装用電源2A ・その他負荷	47.1 89.0 28.6 224.5	495.9	448.8
3	非常用母線2D自動起動負荷 ・直流125V充電器盤2B ・非常用照明 ・120VAC計装用電源2B ・その他負荷	35.9 71.2 102.1 103.9	785.8	761.9
4	残留熱除去系海水系ポンプ	871.0	1,958.9	1,632.9
5	残留熱除去系海水系ポンプ	871.0	2,829.9	2,503.9
6	残 留 熱 除 去 系 ポ ン プ そ の 他 負 荷	651.1 2.2	3,928.3	3,157.2
Ţ	非常用ガス再循環系ファン 非常用ガス処理系ファン その他負荷 停止負荷	55.0 7.5 78.7 - 54.3	3,461.7	3,244.1
8	中 央制 御 室 空 調 フ ァ ン 中 央 制 御 室 非 常 用 循 環 フ ァ ン そ の 他 負 荷	45.1 7.5 165.1	3,824.0	3,461.8
9	蓄 電池 室 排 気 ファン そ の 他 負 荷	7.5 153.0	4,041.8	3,622.3
10	緊 急 用 海 水 ポ ン プ そ の 他	510.0 10.0	4,958.5	4,142.3
11	代 替 燃 料 プール 冷 却 系 ポ ン プ	22.0	4,221.8	4,164.3

添付 2.3.3.6-1

2.4 崩壊熱除去機能喪失

事故シーケンスグループ「崩壊熱除去機能喪失」は,崩壊熱除去機能の喪 失に至る要因により「取水機能が喪失した場合」又は「残留熱除去系が故障 した場合」に分類される。

2.4.1 取水機能が喪失した場合

...

- 2.4.1.1 事故シーケンスグループの特徴, 炉心損傷防止対策
 - (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「崩壊熱除去機能喪失」に含まれる事故シーケ ンスとしては、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、 ①「過渡事象+RHR失敗」、②「過渡事象+逃がし安全弁再閉鎖失敗+ RHR失敗」、③「手動停止/サポート系喪失(手動停止)+RHR失敗」、 ④「手動停止/サポート系喪失(手動停止)+逃がし安全弁再閉鎖失敗+ RHR失敗」、⑤「サポート系喪失(自動停止)+RHR失敗」、⑥「サポ ート系喪失(自動停止)+逃がし安全弁再閉鎖失敗+RHR失敗」、⑦ 「中小破断LOCA+RHR失敗」及び⑧「大破断LOCA+RHR失敗」 である。

i	コメント No.148-12 に対する回答 ;
	(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方
•	事故シーケンスグループ「崩壊熱除去機能喪失(取水機能が喪失した場
	合)」は,運転時の異常な過渡変化又は設計基準事故の発生後,高圧注水
	機能等により炉心冷却には成功するが、取水機能の喪失により崩壊熱除去
	機能が喪失することを想定する。このため、炉心の崩壊熱により発生した
	蒸気が逃がし安全弁を介して格納容器に流入し格納容器圧力が上昇するこ
	とで、緩和措置が取られない場合には、炉心損傷より先に格納容器破損に
	至る。これに伴い炉心冷却機能を喪失する場合には,原子炉水位の低下に

より炉心が露出し、炉心損傷に至る。

本事故シーケンスグループのうち取水機能が喪失した場合については, 取水機能の喪失により崩壊熱除去機能が失われることによって最終的に炉 心損傷に至る事故シーケンスグループである。このため,重大事故等対策 の有効性評価には,取水機能に対する重大事故等対処設備に期待すること が考えられる。

以上により,本事故シーケンスグループのうち取水機能が喪失した場合 については,原子炉注水機能を用いて原子炉へ注水することにより炉心損 傷の防止を図る。また,代替の海水取水機能を用いて最終的な熱の逃がし 場へ熱の輸送を行うことによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「崩壊熱除去機能喪失」のうち取水機能が喪失 した場合において、炉心が著しい損傷に至ることなく、かつ、十分な冷却 を可能とするため、初期の対策として原子炉隔離時冷却系、常設低圧代替 注水系ポンプを用いた低圧代替注水系(常設)及び逃がし安全弁(自動減 圧機能)による原子炉注水手段を整備する。また、格納容器の健全性を維 持するため、安定状態に向けた対策として緊急用海水系を用いた残留熱除 去系(格納容器スプレイ冷却系及びサプレッション・プール水冷却系)に よる格納容器除熱手段を整備する。対策の概略系統図を第2.4.1-1 図に、 対応手順の概要を第2.4.1-2 図に、対策の概要を以下に示す。また、重大 事故対策の手順と設備との関係を第2.4.1-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員 16 名及び事象発生から 2 時間以降に期待する招集 要員 2 名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員4名,通報連絡等を行う災害対策要員2名,現場操作を行う重大事故等対応要員8名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名である。 必要な要員と作業項目について第2.4.1-3図に示す。

a. 原子炉スクラムの確認

運転時の異常な過渡変化又は設計基準事故が発生して原子炉がスクラムしたことを確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等であ る。

b. 原子炉隔離時冷却系の自動起動の確認

原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点 で原子炉隔離時冷却系が自動起動したことを確認する。また,主蒸気隔 離弁が閉止するとともに,再循環ポンプがトリップしたことを確認する。

原子炉隔離時冷却系の自動起動の確認に必要な計装設備は,原子炉水 位(広帯域,燃料域),原子炉隔離時冷却系系統流量等である。

c. 原子炉水位の調整操作(原子炉隔離時冷却系)

原子炉隔離時冷却系の起動により原子炉水位が回復することを確認す る。また,原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(原子炉隔離時冷却系)に必要な計装設備は, 原子炉水位(広帯域,燃料域)等である。

d. 取水機能喪失の確認

サプレッション・プール水温度が 32℃に到達したことを確認し,中 央制御室からの遠隔操作により残留熱除去系によるサプレッション・プ

ール冷却操作を試みるが,残留熱除去系海水系の起動に失敗したことを 確認し,取水機能喪失を確認する。

取水機能喪失の確認に必要な計装設備は,残留熱除去系海水系系統流 量等である。

外部電源が喪失している場合,中央制御室からの遠隔操作により常設 代替高圧電源装置から緊急用母線を介して非常用母線を受電する。

e. 残留熱除去系海水系の回復操作

対応可能な要員にて残留熱除去系海水系の回復操作を実施する。

f. 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)の起動準 備操作

取水機能喪失の確認後,中央制御室からの遠隔操作により常設低圧代 替注水系ポンプを用いた低圧代替注水系(常設)を起動する。

常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)の起動準 備操作に必要な計装設備は,常設低圧代替注水系ポンプ吐出圧力である。 g.逃がし安全弁(自動減圧機能)による原子炉減圧操作

サプレッション・プール水温度が 65℃に到達したことを確認し,中 央制御室からの遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手 動開放し,原子炉減圧を実施する。

逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設 備は,原子炉圧力等である。

h. 原子炉水位の調整操作(低圧代替注水系(常設))

原子炉圧力が常設低圧代替注水系ポンプの吐出圧力を下回ると,原子 炉注水が開始されることで原子炉水位が回復することを確認する。原子 炉水位回復後は,原子炉水位を原子炉水位低(レベル3)設定点から原 子炉水位高(レベル8)設定点の間で維持する。また,原子炉圧力の低 下により原子炉隔離時冷却系が停止したことを確認する。

原子炉水位の調整操作(低圧代替注水系(常設))に必要な計装設備 は、原子炉水位(広帯域、燃料域)等である。

i. 緊急用海水系を用いた海水通水操作

取水機能喪失の確認後,中央制御室からの遠隔操作により緊急用海水 系を起動する。

緊急用海水系を用いた海水通水操作に必要な計装設備は,緊急用海水 系流量(残留熱除去系熱交換器)等である。

j.緊急用海水系を用いた残留熱除去系による原子炉注水及び格納容器除
 熱

緊急用海水系の起動後,中央制御室からの遠隔操作により残留熱除去 系を起動し,格納容器除熱を実施する。また,常設低圧代替注水系ポン プを用いた低圧代替注水系(常設)による原子炉注水を停止し,残留熱 除去系による原子炉注水に切り換える。

残留熱除去系による原子炉注水及び格納容器除熱に必要な計装設備は, 原子炉水位計(広帯域),残留熱除去系系統流量,緊急用海水系流量 (残留熱除去系熱交換器)等である。

以降は,残留熱除去系1系統を用いて原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間で維持しつつ, 原子炉注水の停止期間中に格納容器スプレイを実施し,炉心冷却及び格納容器除熱は残留熱除去系により継続的に行う。

k. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

1. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から

代替淡水貯槽へ水源補給操作を実施する。

m. タンクローリによる燃料補給操作

対応可能な要員にてタンクローリにより可搬型設備用軽油タンクから 可搬型代替注水大型ポンプに燃料補給を実施する。

- 2.4.1.2 炉心損傷防止対策の有効性評価
 - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、過渡事象 (原子炉水位の急速な低下に伴い、原子炉スクラム、高圧注水機能の自動 起動、主蒸気隔離弁の閉止等が発生するため、事象発生後の状況判断にお ける余裕時間の観点で厳しい給水流量の全喪失を選定)を起因事象とし、 逃がし安全弁により原子炉圧力が高圧状態に維持される「過渡事象(給水 流量の全喪失)+RHR失敗」である。また、運転員等操作においては、 非常用ディーゼル発電機等の機能喪失及び外部電源喪失についても考慮す る。

本事故シーケンスグループは、LOCAを起因事象とする事故シーケン スも含め、高圧炉心スプレイ系に期待できる場合には、炉心冷却に成功す る。また、中長期的な格納容器の過圧・過温の観点では、崩壊熱が支配要 因となりLOCAも過渡事象も同等となり、崩壊熱除去機能喪失に対する 重大事故等対策にも違いはない。このため、代表性の観点で炉心損傷頻度 の高い事故シーケンスを重要事故シーケンスとしている。なお、LOCA 時注水機能喪失及び雰囲気圧力・温度による静的負荷(格納容器過圧・過 温破損)にて、LOCAに加えて崩壊熱除去機能が喪失した場合の重大事 故等対策の有効性を確認している。

本重要事故シーケンスでは、 炉心における崩壊熱、 燃料棒表面熱伝達、 沸騰遷移,燃料被覆管酸化,燃料被覆管変形,沸騰・ボイド率変化,気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容 器における冷却材放出(臨界流・差圧流),沸騰・ボイド率変化,気液分 離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及びサプレッション・プー ル冷却が重要現象となる。よって、これらの現象を適切に評価することが 可能である長期間熱水力過渡変化解析コードSAFER及びシビアアクシ デント総合解析コードMAAPにより、原子炉圧力、原子炉水位、燃料被 覆管温度,格納容器圧力,格納容器雰囲気温度等の過渡応答を求める。な お、本有効性評価では、SAFERコードによる燃料被覆管温度の評価結 果は、ベストフィット曲線の破裂判断基準に対して十分な余裕があること から、燃料棒やチャンネルボックスの幾何学的配置を考慮した詳細な輻射 熱伝達計算を行うことで燃料被覆管温度の評価結果がSAFERコードよ り低くなるCHASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.4.1-2表に示す。 また,主要な解析条件について,本重要事故シーケンス特有の解析条件を 以下に示す。

a. 事故条件

(a) 起因事象

起因事象として、給水流量の全喪失が発生するものとする。

(b) 安全機能の喪失に対する仮定

取水機能の喪失により,崩壊熱除去機能が喪失するものとする。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レ ベル2)信号にて発生する。このため,原子炉水位の低下の観点で厳 しくなる。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

- (b) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は、原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ プさせるものとする。
- (c) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h(原子炉圧力1.04~7.86MPa[dif]において)の流量で原子炉へ注 水するものとする。原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は,原子炉水位を原子炉水位低(レベル3)設定点か ら原子炉水位高(レベル8)設定点の範囲に維持する。また,原子炉

減圧時の常設低圧代替注水系ポンプを用いた低圧代替注水系(常設) による原子炉水位回復性能を確認する観点で,原子炉減圧操作と同時 に注水を停止する。

※:MPa[dif]…原子炉圧力容器と水源との差圧(以下同様)(d) 低圧代替注水系(常設)

常設低圧代替注水系ポンプを2台使用するものとし,原子炉注水の みを実施する場合は,炉心冷却を厳しく評価する観点で機器設計上の 最小要求値である最小流量特性(注水流量:0~378m³/h,注水圧 力:0~2.38MPa[dif]*)にて注水するものとする。また,原子炉水 位が原子炉水位高(レベル8)設定点まで回復した以降は,原子炉水 位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8) 設定点の範囲に維持する。残留熱除去系の準備完了後,原子炉水位高 (レベル8)設定点到達で常設低圧代替注水系ポンプを用いた低圧代 替注水系(常設)による原子炉注水を停止する。

(e) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7 弁を使用するものとし,容量として,1 弁 当たり定格主蒸気流量の約6%を処理するものとする。

(f) 残留熱除去系(低圧注水系)

残留熱除去系(低圧注水系)ポンプは1台使用するものとし,非常 用母線の受電が完了した後に手動起動し,0~1,676m³/h(0~ 1.55MPa[dif]において)の流量で原子炉へ注水するものとする。なお, 原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レ ベル8)設定点の間で維持しつつ,原子炉注水の停止期間中に格納容

器スプレイを実施するものとする。

(g) 残留熱除去系(格納容器スプレイ冷却系)

残留熱除去系(低圧注水系)による原子炉注水を停止している期間 に 1.9×10³t/h の流量で格納容器へスプレイするものとし、そのう ち 95%をドライウェルへ,5%をサプレッション・チェンバへ分配す るものとする。

(h) 緊急用海水系

伝熱容量は、約24MW(サプレッション・プール水温度100℃,海水 温度32℃において)とする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 逃がし安全弁(自動減圧機能)による原子炉減圧操作(常設低圧 代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉 注水)は,運転手順に基づきサプレッション・プール水温度が 65℃に到達した時点で実施する。
- (b) 緊急用海水系を用いた残留熱除去系による原子炉注水及び格納容器除熱は、サプレッション・チェンバ圧力が 279kPa [gage] に到達した時点で実施する。また、残留熱除去系による格納容器除熱の開始後に、原子炉水位が原子炉水位高(レベル8)設定点に到達した時点で常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉注水を停止する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.4.1-4 図から第2.4.1-8 図に,燃料被覆管温度, 燃料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発 生位置におけるボイド率,高出力燃料集合体のボイド率,炉心下部プレナ ムのボイド率の推移及び燃料被覆管破裂が発生した時点の燃料被覆管温度 と燃料被覆管の円周方向の応力の関係を第2.4.1-9 図から第2.4.1-14 図 に,格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位及 びサプレッション・プール水温度の推移を第2.4.1-15 図から第2.4.1-18 図に示す。

- ※:炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、シュラウド内は炉心部で発生するボイドを含む二相水位であることから、 原子炉水位が低下する過程ではシュラウド外水位と比較して高めの水位を示 す。
- a. 事象進展

給水流量の全喪失が発生することで原子炉水位は低下し,原子炉水位 低(レベル3)信号により,原子炉はスクラムする。その後原子炉水位 が原子炉水位異常低下(レベル2)設定点まで低下すると,主蒸気隔離 弁の閉止及び再循環ポンプトリップが発生するとともに,原子炉隔離時 冷却系が自動起動することで、炉心の冠水が維持される。

中央制御室からの遠隔操作により低圧代替注水系(常設)を起動し, 事象発生の約2時間後にサプレッション・プール水温度がサプレッショ ン・プール熱容量制限に到達した時点で,逃がし安全弁(自動減圧機能) 7 弁による原子炉減圧を実施する。逃がし安全弁(自動減圧機能)開放 による蒸気流出によって原子炉水位が低下するが,常設低圧代替注水系 ポンプを用いた低圧代替注水系(常設)による原子炉注水が開始される ことで原子炉水位は回復し,炉心の冠水は維持される。なお,原子炉隔 離時冷却系は,原子炉減圧と同時に停止する想定とする。

高出力燃料集合体及び炉心下部プレナムのボイド率については,原子 炉水位及び原子炉圧力の変化に伴い増減する。

また,崩壊熱除去機能を喪失しているため,原子炉圧力容器内で発生 する蒸気が逃がし安全弁を介して格納容器内に流入することで,格納容 器圧力及び雰囲気温度は徐々に上昇する。このため,事象発生の約 13 時間後にサプレッション・チェンバ圧力が 279kPa[gage]に到達した時 点で,緊急用海水系を用いた残留熱除去系(格納容器スプレイ冷却系) による格納容器除熱を開始することにより,格納容器圧力及び雰囲気温 度は安定又は低下傾向となる。

b. 評価項目等

燃料被覆管の最高温度は第2.4.1-9 図に示すとおり、炉心の冠水が維持され、初期値(約309℃)以下にとどまることから、評価項目である 1,200℃を下回る。また、燃料被覆管の酸化量は、酸化反応が著しくな る前の燃料被覆管厚さの1%以下であり、評価項目である15%を下回る。

原子炉圧力は第2.4.1-4 図に示すとおり,逃がし安全弁(安全弁機能) の作動により,約7.79MPa[gage]以下に維持される。このため,原子炉 冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容器底 部圧力との差(0.3MPa 程度)を考慮しても,約8.09[gage]以下であり, 評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を下回る。

また、崩壊熱除去機能を喪失しているため、原子炉圧力容器内で崩壊

熱により発生する蒸気が格納容器内に流入することにより,格納容器圧 力及び雰囲気温度は徐々に上昇するが,緊急用海水系を用いた残留熱除 去系による格納容器除熱を実施することで,格納容器バウンダリにかか る圧力及び温度の最大値は,約 0.28MPa[gage]及び約 141℃に抑えられ る。このため,格納容器バウンダリにかかる圧力及び温度は,評価項目 である最高使用圧力の2倍(0.62MPa[gage])及び200℃を下回る。

原子炉隔離時冷却系及び常設低圧代替注水系ポンプを用いた低圧代替 注水系(常設)による原子炉注水を継続し,その後,約13時間後に緊 急用海水系を用いた残留熱除去系による原子炉注水を開始することで炉 心の冠水状態が維持され,炉心の冷却が維持される。また,残留熱除去 系による格納容器除熱を開始することで,高温停止での安定状態が確立 する。

(添付資料 2.4.1.1)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目の設定」に示す(1)から(4)の評価項目について、対策の有効性を確認 した。

2.4.1.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは、炉心冷却には成功するが、取水設備の故障によ

り崩壊熱除去機能が喪失することで格納容器圧力及び雰囲気温度が上昇する ため、緊急用海水系を用いた残留熱除去系による格納容器除熱を実施するこ とが特徴である。よって、不確かさの影響を確認する運転員等操作は、事象 進展に有意な影響を与えると考えられる操作及び事象発生から 12 時間程度 までの短時間に期待する操作として、逃がし安全弁(自動減圧機能)による 原子炉減圧操作(常設低圧代替注水系ポンプを用いた低圧代替注水系(常設) による原子炉注水)及び緊急用海水系を用いた残留熱除去系による原子炉注 水及び格納容器除熱とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を行う重要事象とは, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり、それらの不確かさの影響評価以下のとおりである。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて最大 50℃ 程度高めに評価することから,解析結果は燃料棒表面の熱伝達係数を小 さく評価する可能性がある。よって,実際の燃料棒表面での熱伝達は大 きくなり,燃料被覆管温度は低くなるが,事象初期の原子炉注水は原子 炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作開始 の起点とする運転員等操作はないことから,運転員等操作時間に与える 影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び酸化反応に伴う発熱量の評価について保守的な結果を与えるため, 解析結果は燃料被覆管酸化を大きく評価する可能性があるが,事象初期 の原子炉注水は原子炉隔離時冷却系の自動起動により確保され,燃料被 覆管温度を操作開始の起点とする運転員等操作はないことから,運転員 等操作時間に与える影響はない。

格納容器における格納容器各領域間の流動、構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして、格納容器モデル (格納容器の熱水力モデル)はHDR実験解析において区画によって格 納容器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが、BWRの格納容器内の区画とは異なる等, 実験体系に起因するものと考えられ、実機体系においては不確かさが小 さくなるものと推定され、全体としては格納容器圧力及び雰囲気温度の 傾向を適切に再現できていることから、格納容器圧力及び雰囲気温度を 操作開始の起点とする緊急用海水系を用いた残留熱除去系による原子炉 注水及び格納容器除熱に係る運転員等操作時間に与える影響は小さい。 また、格納容器各領域間の流動、構造材との熱伝達及び内部熱伝導の不 確かさにおいては、CSTF実験解析により格納容器温度及び非凝縮性 ガスの挙動は測定データと良く一致することを確認しており、その差異 は小さいことから,格納容器圧力及び雰囲気温度を操作開始の起点とし ている緊急用海水系を用いた残留熱除去系による原子炉注水及び格納容 器除熱に係る運転員等操作時間に与える影響は小さい。

(添付資料 2.4.1.2)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余

裕は大きくなる。ただし,炉心部の冠水が維持される本事故シーケンス では,この影響は小さいと考えられる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び酸化反応に伴う発熱量の評価について保守的な結果を与えるため, 燃料被覆管温度を高く評価することから,実際の燃料被覆管温度は低め となり,評価項目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル (格納容器の熱水力モデル)はHDR実験解析において区画によって格 納容器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが、これらの不確かさは実験体系に起因するも のと考えられ,BWRの格納容器内の区画とは異なる等,不確かさが小 さくなるものと推定され,全体としては格納容器圧力及び雰囲気温度の 傾向を適切に再現できていることから,評価項目となるパラメータに与 える影響は小さい。また,格納容器各領域間の流動,構造材との熱伝達 及び内部熱伝導の不確かさにおいては,CSTF実験解析により格納容 器雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一致すること を確認していることから,評価項目となるパラメータに与える影響は小 さい。

(添付資料 2.4.1.2)

- (2) 解析条件の不確かさの影響評価
 - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 2.4.1-2 表に示すとおりであり,これらの条件設定を実績値等の最確条

件とした場合の影響を評価する。解析条件の設定にあたっては,設計値 を用いるか又は評価項目となるパラメータに対する余裕が小さくなるよ う保守的な設定をしていることから,この中で事象進展に有意な影響を 与える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW /mに対して最確条件は約 33~41kW/m であり,最確条件とした場合 は燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は原 子炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作 開始の起点とする運転員等操作はないことから,運転員等操作時間に 与える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/tに対して最確条件は33GWd/t以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は原子炉隔離時冷却系の自動起動 により確保されることから,運転員等操作時間に与える影響はない。 また,格納容器圧力及び雰囲気温度並びにサプレッション・プール水 位及びサプレッション・プール水温度の上昇が遅くなり,これらのパ ラメータを起点とする運転員等操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器容積の空間部及び液相部,サプレッ ション・プール水位は,ゆらぎにより解析条件に対して変動を与えう るが,事象進展に与える影響は小さいことから,運転員等操作時間に 与える影響は小さい。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定している。外部電源がない場合は,常設低圧代替注水 系ポンプを用いた低圧代替注水系(常設)の起動準備操作並びに緊急 用海水系を用いた残留熱除去系による原子炉注水及び格納容器除熱の 時間は,外部電源がない場合も考慮して設定していることから,運転 員等操作時間に与える影響はない。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなり,炉心冠水後の原子炉水位の維持操作の開始が早くな るが,原子炉減圧から水位回復までの原子炉水位を継続監視している 期間の流量調整操作であることから,運転員等操作時間に与える影響 はない。

(添付資料 2.4.1.2)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW /mに対して最確条件は約 33~41kW/m であり,最確条件とした場合 は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラ メータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなり,原子炉からサプレッション・プールに流 出する蒸気量が減少することで,原子炉水位の低下は緩和され,格納 容器圧力及び雰囲気温度並びにサプレッション・プール水位及びサプ レッション・プール水温度の上昇は遅くなることから,評価項目とな

るパラメータに対する余裕は大きくなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器容積の空間部及び液相部,サプレッ ション・プール水位は,ゆらぎにより解析条件に対して変動を与えう るが,事象進展に与える影響は小さいことから,評価項目となるパラ メータに与える影響は小さい。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定している。外部電源がない場合は,外部電源喪失に伴 い原子炉スクラム,再循環ポンプトリップ等が発生するため,外部電 源がある場合と比較して原子炉水位の低下は緩和されることから,評 価項目となるパラメータに対する余裕は大きくなる。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなることから,評価項目となるパラメータに対する余裕は 大きくなる。

(添付資料 2.4.1.2)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作 (常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による 原子炉注水)は,解析上の操作開始時間としてサプレッション・プー ル水温度 65℃到達時を設定している。運転員等操作時間に与える影 響として,不確かさ要因により操作開始時間に与える影響は小さく, 実態の操作開始時間は解析上の設定とほぼ同等となる。本操作は,解 析コード及び解析条件(操作条件を除く。)の不確かさにより,操作 開始時間が遅くなる可能性があるが,他の操作との重複もないことか ら,この他の操作に与える影響はない。

操作条件の緊急用海水系を用いた残留熱除去系による原子炉注水及 び格納容器除熱は,解析上の操作開始時間として格納容器圧力 279kPa[gage]到達時を設定している。運転員等操作時間に与える影響 として,操作不確かさ要因により操作開始時間に与える影響は小さい ことから,実態の操作開始時間は解析上の設定とほぼ同等である。本 操作は,解析コード及び解析条件(操作条件を除く。)の不確かさに より,操作開始時間が遅くなる可能性があるが,他の操作との重複も ないことから,この他の操作に与える影響はない。

(添付資料 2.4.1.2)

(b) 評価項目となるパラメータに与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作 (常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による 原子炉注水)は,運転員等操作時間に与える影響として,実態の操作 開始時間は解析上の操作開始時間よりも遅くなる可能性があるが,こ の場合でもパラメータが操作実施基準に到達した時点で開始すること で同等の効果が得られ,事象進展に変わりがないことから,評価項目

となるパラメータに与える影響はない。

操作条件の緊急用海水系を用いた残留熱除去系による原子炉注水及 び格納容器除熱は,運転員等操作時間に与える影響として,実態の操 作開始時間は解析上の操作開始時間よりも遅くなる可能性があるが, この場合でもパラメータが操作実施基準に到達した時点で開始するこ とで同等の効果が得られ,有効性評価解析における格納容器圧力の最 大値に変わりがないことから,評価項目となるパラメータに与える影 響はない。

(添付資料 2.4.1.2)

(3) 操作時間余裕の把握

操作開始時間の遅れによる影響度合いを把握する観点から,評価項目と なるパラメータに対して,対策の有効性が確認できる範囲内での操作時間 余裕を確認し,その結果を以下に示す。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(常設 低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉注水) は,原子炉隔離時冷却系による注水継続が可能な時間内に実施することで 炉心損傷を回避することが可能であり,事象発生から8時間程度の時間余 裕がある。

操作条件の緊急用海水系を用いた残留熱除去系による原子炉注水及び格 納容器除熱は,事象発生の約 13 時間後に実施するものであり,準備時間 が確保できるため,時間余裕がある。

(添付資料 2.4.1.2)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として、運転員等 操作時間及び評価項目となるパラメータに与える影響を確認した。この結

果,解析コード及び解析条件の不確かさが運転員等操作時間に与える影響 等を考慮した場合においても,評価項目となるパラメータに与える影響は 小さい。この他,評価項目となるパラメータに対して,対策の有効性が確 認できる範囲内において,操作時間には時間余裕がある。

- 2.4.1.4 必要な要員及び資源の評価
 - (1) 必要な要員の評価

事故シーケンスグループ「崩壊熱除去機能喪失」の取水機能が喪失した 場合において重大事故等対策における必要な初動対応要員は,「2.4.1.1 (3) 炉心損傷防止対策」に示すとおり16名である。「6.2 重大事故等対 策時に必要な要員の評価結果」で示す運転員及び災害対策要員の39名で 対処可能である。また,事象発生2時間以降に必要な招集要員は2名であ り,発電所構外から2時間以内に招集可能な要員の71名で確保可能である。

(2) 必要な資材の評価

事故シーケンスグループ「崩壊熱除去機能喪失」の取水機能が喪失した 場合において,必要な水源,燃料及び電源は「6.1(2) 資源の評価条件」 の条件にて評価を行い,以下のとおりである。

a.水 源

常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原 子炉注水については、7日間の対応を考慮すると、合計約 620m³必要と なる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,水源が枯渇することなく注水継続が 可能である。 (添付資料2.4.1.3)

b.燃料

外部電源喪失を想定した場合,常設代替交流電源設備による電源供給 については,事象発生直後からの運転を想定すると,7日間の運転継続 に約352.8kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を 保有していることから,常設代替交流電源設備による電源供給について, 7日間の継続が可能である。

可搬型代替注水大型ポンプによる代替淡水貯槽への給水については, 事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽 油が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有して いることから,可搬型代替注水大型ポンプによる給水について,7日間 の継続が可能である。

(添付資料 2.4.1.4)

c. 電 源

外部電源喪失を想定した場合,重大事故等対策時に必要な負荷として 常設代替交流電源設備から電源供給を考慮する負荷は約2,781kW必要と なるが,常設代替交流電源設備(常設代替高圧電源装置5台)の連続定 格容量は5,520kWであることから,必要負荷に対しての電源供給が可能 である。

(添付資料 2.4.1.5)

2.4.1.5 結 論

事故シーケンスグループ「崩壊熱除去機能喪失」の取水機能が喪失した場 合では、炉心冷却には成功するが、崩壊熱除去機能の喪失により炉心損傷よ り先に格納容器が破損し、これに伴い炉心冷却機能を喪失する場合には、原 子炉水位が低下し炉心が露出することで炉心損傷に至ることが特徴である。 事故シーケンスグループ「崩壊熱除去機能喪失」の取水機能が喪失した場合

に対する炉心損傷防止対策としては,初期の対策として原子炉隔離時冷却系, 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)及び逃がし安全 弁による原子炉注水手段,安定状態に向けた対策として緊急用海水系を用い た残留熱除去系による格納容器除熱手段を整備している。

事故シーケンスグループ「崩壊熱除去機能喪失」の重要事故シーケンス 「過渡事象(給水流量の全喪失)+RHR失敗」について有効性評価を行った。

上記の場合においても,原子炉隔離時冷却系,常設低圧代替注水系ポンプ を用いた低圧代替注水系(常設)及び逃がし安全弁による原子炉注水並びに 緊急用海水系を用いた残留熱除去系による格納容器除熱を実施することによ り,炉心の著しい損傷を防止することができる。

この結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに格納容器バウンダリにかかる圧力及び温度は,判断基準を満 足している。また,安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「崩壊熱除去機能喪失」の取水 機能が喪失した場合において,緊急用海水系を用いた格納容器除熱等の炉心 損傷防止対策は,選定した重要事故シーケンスに対して有効であることが確 認でき,事故シーケンスグループ「崩壊熱除去機能喪失」の取水機能が喪失 した場合に対して有効である。
	第 2.4.1-1 表 自	崩壞熱除去機能喪失	(取水機能が喪失した場合)	における重大事故対策について	(1/3)
--	---------------	-----------	---------------	----------------	-------

協 你 乃 7 《 亦 羽	チ		重大事故等	対処設備
際作及い唯裕	于順	常設設備	可搬設備	計装設備
原子炉スクラムの確認	・原子炉スクラムを確認する。	—	—	平均出力領域計装
				起動領域計装
原子炉隔離時冷却系の	・原子炉水位が,原子炉水位異常低下(レベル2)	【原子炉隔離時冷	—	原子炉水位 (広帯域, 燃料
自動起動の確認	設定点に到達したことを確認する。	却系】		域)
	・原子炉隔離時冷却系が自動起動し、原子炉水位が	ATWS緩和設備		原子炉水位(SA 広帯域, SA 燃
	回復したことを確認する。	(代替原子炉再循		料域)
	・主蒸気隔離弁が自動閉止したことを確認する。	環ポンプトリップ		【原子炉隔離時冷却系系統流
	・再循環ポンプがトリップしたことを確認する。	機能)		量】
				原子炉圧力
				原子炉圧力 (SA)
原子炉水位の調整操作	・原子炉隔離時冷却系により、原子炉水位を原子炉	【原子炉隔離時冷	-	原子炉水位(広帯域,燃料
(原子炉隔離時冷却	水位低(レベル3)から原子炉水位高(レベル	却系】		域)
系)	8)の間に維持する。			原子炉水位(SA 広帯域, SA 燃
				料域)
				【原子炉隔離時冷却系系統流
				量
取水機能喪失の確認	・サプレッション・プール水温度が 32℃以上であ	常設代替高圧電源	-	サプレッション・プール水温
	ることを確認する。	装置		度 ·
	・中央制御室からの遠隔操作によりサプレッショ	軽油貯蔵タンク		【残留熱除去系海水系系統流
	ン・プール冷却操作を試みるが、残留熱除去系海			量】
	水系の起動に失敗したことを確認する。			M/C 2C電圧
	・以上により、取水機能喪失を確認する。			M/C 2D電圧
	・外部電源が喪失している場合は、常設代替高圧電			
	源装置から緊急用母線を介して非常用母線を受電			
	する。			
残留熱除去系海水系の	・対応可能な要員にて残留熱除去系の回復操作を実	-	-	-
回復操作	施する。			
			【 】: 重大事;	牧等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

$\pi 4$ $\pi 4$ $\pi 4$ $\pi 5$ $\pi $	第 2.4.1-1 表	崩壞熱除去機能喪失	(取水機能が喪失した場合)	における重大事故対策について	$(2 \neq 3)$
--	-------------	-----------	---------------	----------------	--------------

₩//: ┺ィジァ━=ラコ	千 晒	重大事故等対処設備		
採住及び確認	于 順	常設設備	可搬設備	計装設備
常設低圧代替注水系ポンプを	・取水機能喪失の確認後,常設低圧代替注水	常設低圧代替注水	—	常設低圧代替注水系ポンプ吐
用いた低圧代替注水糸(常	糸ホンフを用いた低圧代替注水糸(常設)	糸ホンフ		出圧刀
設りの起動準備操作	を起動する。	代替淡水貯槽		
		常設代替高圧電源		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		軽油貯蔵タンク		
逃がし安全弁(自動減圧機	・サプレッション・プール水温度がサプレッ	逃がし安全弁(自	—	サプレッション・プール水温
能)による原子炉減圧操作	ション・プール熱容量制限(原子炉が高圧	動減圧機能)		度
	の場合は65℃)に到達したことを確認す	常設低圧代替注水		原子炉水位 (広帯域, 燃料
	る。	系ポンプ		域)
	・逃がし安全弁(自動減圧機能)7 弁を手動	代替淡水貯槽		原子炉水位(SA 広帯域, SA
	開放することにより、原子炉減圧操作を実	常設代替高圧電源		燃料域)
	施する。	装置		原子炉圧力
	・原子炉減圧により常設低圧代替注水系ポン	軽油貯蔵タンク		原子炉圧力 (SA)
	プを用いた低圧代替注水系(常設)からの			低圧代替注水系原子炉注水流
	原子炉注水が開始され,原子炉水位が回復			量
	することを確認する。			代替淡水貯槽水位
	・原子炉隔離時冷却系が停止することを確認			【原子炉隔離時冷却系系統流
	する。			量
原子炉水位の調整操作(低圧	・常設低圧代替注水系ポンプを用いた低圧代	常設低圧代替注水	—	原子炉水位 (広帯域, 燃料
代替注水系(常設))	替注水系(常設)による原子炉水位回復	系ポンプ		域)
	後,原子炉水位は,原子炉水位低(レベル	代替淡水貯槽		原子炉水位(SA 広帯域, SA
	3)から原子炉水位高(レベル8)の間に	常設代替高圧電源		燃料域)
	維持する。	装置		
		軽油貯蔵タンク		

	第 2.4.1-1 表 崩壞熱除去機能	「失(取水機能が喪失した場合)	における重大事故対策について(3/	$\langle 3 \rangle$
--	---------------------	-----------------	-------------------	---------------------

₩/r: Ђィド/œ 款	五 話	重大事故等対処設備		
操作及び確認	十 順	常設設備	可搬設備	計装設備
緊急用海水系を用いた海水通	・取水機能喪失の確認後,緊急用海水系を起	緊急用海水系	—	緊急用海水系流量(残留熱除
水操作	動する。	常設代替高圧電源		去系熱交換器)
		装置		緊急用海水系流量(残留熱除
		軽油貯蔵タンク		去系補機)
緊急用海水系を用いた残留熱	・緊急用海水系の起動後,残留熱除去系(格	【残留熱除去系	—	原子炉水位 (広帯域)
除去系による原子炉注水及び	納容器スプレイ冷却系)を起動する。	(低圧注水系)】		原子炉水位 (SA 広帯域)
格納容器除熱	・以降,残留熱除去系により原子炉注水及び	【残留熱除去系		【残留熱除去系系統流量】
	格納容器スプレイを交互に実施しつつ、原	(格納容器スプレ		低圧代替注水系原子炉注水流
	子炉水位を原子炉水位低(レベル3)設定	イ冷却系)】		量
	点から原子炉水位高(レベル8)設定点の	緊急用海水系		サプレッション・チェンバ圧
	間に維持する。	常設代替高圧電源		力
	・残留熱除去系による原子炉注水を開始した	装置		ドライウェル圧力
	後に常設低圧代替注水系ポンプを用いた低	軽油貯蔵タンク		
	圧代替注水系(常設)による原子炉注水を			
	停止する。			
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	—	—	—
	却操作を実施する。			
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	—	—	—
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ			
	水源補給を実施する。			
タンクローリによる燃料補給	・対応可能な要員にてタンクローリにより可	—	—	—
操作	搬型代替注水設備用軽油タンクから可搬型			
	代替注水大型ポンプに燃料補給を実施す			
	る。			
				安計加設備 (設計其進量)

【】: 重大事故等対処設備(設計基準拡張)
 : 有効性評価上考慮しない操作

		コメント No. 163-46 に対	する回答		
		第 2.4.1-2 表	主要解析条件(崩壊熱除去株	幾能喪失(取水機能が喪失した場合))(1/6)	
項 目			主要解析条件	条件設定の考え方	
解析コード		斤コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できる解析コード	
	原子炉熱	出力	3,293MW	定格熱出力を設定	
初期	原子炉圧力 (圧力容器ドーム部)		6.93MPa[gage]	定格圧力を設定	
	原子炉水位		通常運転水位(セパレータスカ ート下端から+126 cm)	7 通常運転水位を設定	
	炉心流量		48,300 t ⁄h	定格流量を設定	
	炉心入口温度		約 278℃	熱平衡計算による値	
条件	炉心入口サブクール度		約 9℃	熱平衡計算による値	
· 14	燃料		9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等であ り,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定	
	燃料棒最大線出力密度 44.0kW/m		44.0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定 となるため,保安規定の運転上の制限における上限値を設定	
	原子炉停	止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため,崩壊熱が大きくなる燃焼度の高い条件として,1 サイク ルの運転期間(13 ヶ月)に調整運転期間(約 1 ヶ月)を考慮した運転期間 に対応する燃焼度を設定	

	第 2.4.1-2 表	主要解析条件	(崩壊熱除去機能喪失	(取水機能が喪失した場合)	) (2/6
--	-------------	--------	------------	---------------	--------

	項目	主要解析条件	条件設定の考え方
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含 する値を設定
	ドライウェル雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定
初期	格納容器体積 (ドライウェル)	5,700m ³	設計値を設定
条件	格納容器体積	空間部:4,100m ³ 液相部:3,300 m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量として 保安担定の運転上の制限における下限値を設定
	サプレッション・プール水位	6.983m (通常水位-4.7cm)	マ, 保安規定の運転上の制限における下限値を設定 サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位とし て, 保安規定の運転上の制限における下限値を設定
	サプレッション・ プール水温度	32°C	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温とし て,保安規定の運転上の制限における上限値を設定
事	起因事象	給水流量の全喪失	運転時の異常な過渡変化の中で原子炉水位の急速な低下に伴い,原子炉ス クラム,高圧注水機能の自動起動,主蒸気隔離弁の閉止等が発生するた め,事象発生後の状況判断における余裕時間の観点で厳しい給水流量の全 喪失を設定
-	安全機能の喪失に対する仮定	崩壊熱除去機能喪失	取水機能の喪失による崩壊熱除去機能が喪失を設定
	外部電源	外部電源あり	外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3)信号 にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レベル2) 信号にて発生する。このため,原子炉水位の低下の観点で厳しくなる。
関連する	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05 秒)	起因事象発生から原子炉スクラムまでの期間の原子炉水位の低下を厳しく する条件として,外部電源がある場合の原子炉水位低(レベル3)信号に よる原子炉スクラムを設定
機器条件	ATWS緩和設備 (代替原子炉再循環ポンプト リップ機能)	原子炉水位異常低下(レベル 2)信号で全台停止	起因事象発生から原子炉スクラムまでの期間の原子炉水位の低下を厳しく する条件として,外部電源がある場合の原子炉水位異常低下(レベル2) 信号による再循環ポンプトリップを設定

# 第2.4.1-2表 主要解析条件(崩壊熱除去機能喪失(取水機能が喪失した場合))(3/6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に関	原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて自動 起動 原子炉水位が原子炉水位高(レベル8)設定点 まで回復した以降は原子炉水位を原子炉水位低 (レベル3)設定点から原子炉水位高(レベル 8)設定点の範囲に維持 原子炉減圧時の常設低圧代替注水系ポンプを用 いた低圧代替注水系(常設)による原子炉水位 回復性能を確認する観点で,原子炉減圧操作と 同時に注水停止 最小流量特性 ・注水特性:136.7m ³ /h ・注水圧力:1.04~7.86MPa[dif]	設計値を設定 原子炉隔離時冷却系は、タービン回転数制御により原子炉圧 力に依らず一定の流量にて注水する設計となっている
連する機器条件	低圧代替注水系 (常設)	原子炉水位が原子炉水位高(レベル8)設定点 まで回復した以降は原子炉水位を原子炉水位低 (レベル3)設定点から原子炉水位高(レベル 8)設定点の範囲に維持 残留熱除去系の準備完了後,原子炉水位高(レ ベル8)に到達した時点で注水停止 (原子炉注水単独時) 最小流量特性 ・注水流量:0~378m ³ /h ・注水圧力:0~2.38MPa[dif]	炉心冷却性の観点で厳しい設定として,機器設計上の最小要 求値である最小流量特性を設定

弗 2.4.1-2 衣   土安聨忉余件(朋瑗恐际女機能丧矢(取ぶ機能が丧失したり	場合月	(4/6)
-------------------------------------------	-----	-------

	項目	主要解析条件	条件設定の考え方
関連する機器条件	逃がし安全弁	(原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2個, 385.2t/h/個 8.10MPa [gage] ×4個, 400.5t/h/個 8.17MPa [gage] ×4個, 403.9t/h/個 8.24MPa [gage] ×4個, 407.2t/h/個 8.31MPa [gage] ×4個, 410.6t/h/個 (原子炉減圧操作時) 逃がし安全弁(自動減圧機能)7弁を開放すること による原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	設計値を設定 なお,安全弁機能は逃がし弁機能に比べて原子炉圧力が高 めに維持され,原子炉減圧操作時に原子炉圧力が所定の圧 力に到達するまでの時間が遅くなるため,事象発生初期に おいて高圧注水機能が喪失し低圧注水機能を用いて原子炉 注水を実施する事故シーケンスにおいては,評価項目に対 して厳しい条件となる 逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェン バ間差圧)	設計値を設定

第 2.4.1-2 表	主要解析条件	(崩壞熱除去機能喪失	(取水機能が喪失した場合))	(5/	6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に関連す	残留熱除去系(低圧注水 系)	原子炉水位を原子炉水位低(レベル3)設定点か ら原子炉水位高(レベル8)設定点の範囲に維持 し,原子炉注水停止中に格納容器スプレイを実施 最小流量特性 注水流量:0~1,676m ³ /h 注水圧力:0~1.55MPa[dif]	炉心冷却性の観点で厳しい設定として,機器設計上の最小 要求値である最小流量特性を設定
る機器条件	残留熱除去系(格納容器ス プレイ冷却系)	スプレイ流量:1.9×10 ³ t/h (95%:ドライウェル,5%:サプレッション・チ ェンバ)	設計値を設定
	緊急用海水系	約 24MW(サプレッション・プール水温度 100℃,海 水温度 32℃において)	残留熱除去系の除熱性能を厳しくする観点で,過去の実績 を包含する高めの海水温度を設定

第 2.4.1-2 表	主要解析条件	(崩壞熱除去機能喪失	(取水機能が喪失した場合))	(6/6)

コ メント No.163- 04,08 に対す		A7 2, 1, 1 2 4										
		項目	主要解析条件	条件設定の考え方								
	重大事故等対策	逃がし安全弁(自動減圧機 能)による原子炉減圧操作 (常設低圧代替注水系ポン プを用いた低圧代替注水系 (常設)による原子炉注 水)	サプレッション・プール水温度 65℃到達時	運転手順に基づき,サプレッション・プール熱容量制限を 踏まえて設定								
2. 4. 1-33	「に関連する操作条件	<ul> <li>(加加) * 60 0 m * m 出</li> <li>水)</li> <li>緊急用海水系を用いた残留</li> <li>熱除去系による原子炉注水</li> <li>及び格納容器除熱</li> </ul>	サプレッション・チェンバ圧力 279kPa[gage]到達時	実際には残留熱除去系の起動準備が完了した時点で,サプ レッション・プール水温度が 32℃を超過している場合はサ プレッション・プール冷却モード運転,サプレッション・ チェンバ圧力が 245kPa[gage]を超過している場合は格納容 器スプレイモード運転を実施するが,余裕時間を確認する 観点で,評価上はサプレッション・チェンバ圧力が代替格 納容器スプレイの実施基準である 279kPa[gage]に到達した 時点で格納容器スプレイモード運転を開始するものと設定								





第2.4.1-1 図 崩壊熱除去機能喪失(取水機能が喪失した場合)時の重大事故等対策の概略系統図(2/3) (常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉注水段階)





の準備も開始する。
常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)と同等の流量は確保できないが,消火系及び復水補給水系による原子炉注水も実施可 能である。
準備操作の完了時間は遅くなるが、可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水も実施可能である。
П
代替残留熱除去系海水系を用いた残留熱除去系の使用も可能である。
Ш
代替循環冷却系,常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設)及び可搬型代替注水大型ポンプを用いた代替格納容器 スプレイ冷却系(可搬型)による格納容器スプレイも実施可能である。
流量は少ないが,消火系及び復水補給水系による格納容器スプレイも実施可能である。

#### 第2.4.1-2図 崩壊熱除去機能喪失(取水機能が喪失した場合)の対応手順の概要 コメント No.147-19,20,23,25,29, 148-01,17 に対する回答 2.4.1-37

		実施個所	í • 必要要員																	
		実施個所	「・必要要員										経過時間 (分)							
		実施個所	「・必要要員			0 10	)	20	30	l	40	50	60	70	80	90	100		110	備考
		r 1	実施個所・必要要員数						1		•	•			•	•			•	
操作項目	移動してきた要員           まだす。         *****		は他作業後 てきた要員	22 11																
	責任者	発電長	1人	中央監視 運転操作指揮		↓ 事象発生 ↓ 原子炉スクラ2	Ь													
操作項日	補佐	副発電長	1人	運転操作指揮補佐	操作の内谷	▼ 約20秒 原子炸	炉水位異常低	K下 (レベル2) いいの Mail Naci	)設定点到達											
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡			V	4人7几十9时												
	運転員 (中央制御室)	運転員 (現場		重大事故等対応要員 (現場)																
					<ul> <li>●外部電源喪失の確認</li> </ul>															
				<ul> <li>給水流量全喪失の確認</li> </ul>																
					●原子炉スクラムの確認															
JLS 377 Mart Net.	2人				●タービン停止の確認															外部電源喪失の確認及び 非常用ディーゼル発電機
状说判断	А, В	_		_	●非常用ディーゼル発電機等の停止確認	10 77														の停止確認は,外部電源 がない場合に実施する
					●原子炉隔離時冷却系の自動起動確認															
					●主蒸気隔離弁閉止及び逃がし安全弁による原子炉圧力制御の確認															
					●再循環ポンプトリップの確認															
原子炉水位の調整 操作(原子炉隔離 時冷却系)	【1人】 A	-		_	●原子炉隔離時冷却系による原子炉注水の 調整操作						原子炉水(	立を原子炉水位低	(レベル3)設定点か	ら原子炉水位高(レベ	ベル8)設定点の間に維	持				
全交流動力電源喪	【1人】 A	-		_	●高圧炉心スプレイ系ディーゼル発電機の 手動起動操作(失敗)	1分														外部電源がない場合に実
失の確認	【1人】 B	-		-	<ul> <li>●非常用ディーゼル発電機等の手動起動操</li> <li>作(失敗)</li> </ul>	2 分														施する
交流電源の回復	_	_		_	●非常用ディーゼル発電機等の機能回復															外部電源がない場合に対応可能な要員にて実施す
操作					●外部電源の機能回復															3
常設代替高圧電 源装置による緊 急用母線受電操 作	【1人】 B	-		_	<ul> <li>常設代替高圧電源装置2台起動及び緊急用</li> <li>母線受電操作</li> </ul>		4 分													外部電源がない場合に実 施する
常設代替高圧電 源装置による非	【1人】 B	-		_	●非常用母線受電準備					35 分										外部電源がない場合に実
常用母線の受電 準備操作	-	2人 C, D		-	<ul> <li>●非常用母線受電準備</li> </ul>							70 分								施する
常設代替高圧電源	【1人】				●常設代替高圧電源装置3台追加起動操作											8分				外部電源がない場合に実
装置による非常用 母線の受電操作	В	_		-	●非常用母線受電												5分			施する
取水機能喪失の 確認	【1人】 B	-		_	<ul> <li>●残留熱除去系海水系の手動起動操作(失敗)</li> </ul>												4	分		
残留熱除去系海水 系の回復操作	-	-		-	<ul> <li>●残留熱除去系海水系の機能回復操作</li> </ul>															対応可能な要員にて実施 する
					コメント No. 147-27, 第 2. 4. 1-3 [	148-07 に対す 図 崩壊剤	^{3回答} 內除去核	送能喪失	(取水	機能が	喪失した	:場合)	の作業と同	所要時間	(1/2)			対応 復 整 (6 月	<ul> <li>可能な要員</li> <li>作に必要な</li> <li>して説明い</li> <li>15 日審査会</li> </ul>	にて実施する機能回 要員については別途 たします。 ≿合の指摘事項)

								崩壊熱除去機能	喪失(取水機能が喪失	した場合)							
					-							( 14 19 )					
					0	4	8	12	16	20	產適時间 24	(時間) 28	32	36	40	44	48 備考
実施個所・必要要員数 【 】は他作業後 操作項目 移動してきた要員		操作の内容	♥ 事象	事象発生 ▼ 約2時間 サプレッション・プール水温度65℃ ▼ 約13時間 サプレッション・チェンバ圧力279kPa [gage] 到達													
	運転員 (中央制御 室)	運転員 (現場)	重大事故等対応要員 (現場)														
常設低圧代替注水 系ポンプを用いた 低圧代替注水系 (常設)の起動準 備操作	【1人】 B	_	_	<ul> <li>●原子炉注水,格納容器スプレイ及び原子 炉減圧に必要な負荷の電源切替操作</li> <li>●常設低圧代替注水系ポンプを用いた低圧 代替注水系(常設)による原子炉注水 系統構成</li> </ul>	4分 3分												外部電源がない場合に実施する           取水機能喪失後に実施する
逃がし安全弁 (自動減圧機 能)による原子 炉減圧操作	【1人】 B	_	-	<ul> <li>●逃がし安全弁(自動減圧機能)7弁の開放 操作</li> </ul>	(1分												
原子炉水位の調整 操作(低圧代替注 水系(常設))	【1人】 A	_	_	<ul> <li>●原子炉隔離時冷却系による原子炉注水の 調整操作</li> <li>●常設低圧代替注水系ボンブを用いた低圧 代替注水系(常設)による原子炉注水の 調整操作</li> </ul>		原子炉水位? 原子炉水位?	を原子炉水位低(レ・ 2高(レベル8)設定	ベル3)設定点から E点の間に維持する									
緊急用海水系を用 いた海水通水操作	【1 人】 B	-	-	●緊急用海水系による海水通水 系統構成		•		20 分									
緊急用海水系を用 いた残留熱除去系 による原子炉注水 及び格納容器除熱	【1 人】 B	_	_	<ul> <li>●残留熱除去系の起動操作</li> <li>●残留熱除去系による原子炉注水及び格納容器スプレイ操作の交互運転</li> </ul>	ġ			2 \$	<del>}</del>	テ 原子炉水位高(レベル8)設定点にて格納容器スプレイ又はサプレッション・プール冷却運転への切替え操作を実施し, 面子切水位低(レベル3)設定点にて「面子切注水への切基う操作を実施する					を実施し,		
使用済燃料プール の冷却操作	【1 人】 A	-	-	●常設低圧代替注水系ポンプによる代替燃料ブール注水系(注水ライン)を使用した使用済燃料ブールへの注水操作				適宜	工実施								解析上考慮しない スロッシングに3本位 低下がある場合は代替燃 料ブール冷却系の起動ま でに実施する 解たした感しない。
				●代替燃料プール冷却系起動操作							15 分						扉町工考慮しない。 事象発生後約25時間まで に実施する
可搬型代替注水大 型ポンプによる水	_	_	8人	●可搬型代替注水大型ポンプの移動,ホー ス敷設等	-	220 分											<ul> <li>解析上考慮しない</li> <li>水源枯渇までは十分余裕</li> </ul>
源補給操作			a∼h	●ポンプ起動及び水源補給操作							適宜実施						がある
タンクローリによ	_	-	2人	●可搬型設備用軽油タンクからタンクロー リへの補給	-		90 分										解析上考慮しない タンクローリ残量に応じ
る燃料補給操作			(指来)	●可搬型代替注水大型ボンプへの給油							適宜実施						て 適 11 単 油 ダ ン ク から 補 給
必要要員合計	2人 A, B	2人 C, D	8人 a~h 及び招集2人														

コメント No. 147-27 に対する回答

<u>×>+ № 14, 27 (ス) 388</u> 第 2.4.1-3 図 崩壊熱除去機能喪失(取水機能が喪失した場合)の作業と所要時間(2/2)









第2.4.1-7図 逃がし安全弁からの蒸気流出流量の推移



第2.4.1-8図 原子炉圧力容器内の保有水量の推移



第2.4.1-9図 燃料被覆管温度の推移







第2.4.1-14 図 燃料被覆管破裂が発生した時点の燃料被覆温度と 燃料被覆管の円周方向の応力の関係



#### 第2.4.1-15図 格納容器圧力の推移

残留熱除去系(サプレッション・プール冷却系)への切替後,原子炉圧 力容器からの放熱の影響により上昇傾向となるが,原子炉減圧後の原子 炉圧力容器温度より若干低い温度(100℃程度)で平衡状態となる



#### 第2.4.1-16図 格納容器雰囲気温度の推移



安定状態について(崩壊熱除去機能喪失(取水機能が喪失した場合))

崩壊熱除去機能喪失(取水機能が喪失した場合)時の安定状態については,

以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備又は重大事故等対処設備を用い た炉心冷却が維持可能であり,また,冷却のための設備がその後も 機能維持でき,かつ,必要な要員の不足や資源の枯渇等のあらかじ め想定される事象悪化のおそれがない場合に安定停止状態が確立 されたものとする。 格納容器安定状態: : 炉心冷却が維持された後に,設計基準事故対処設備又は重大事故等

対処設備を用いた格納容器除熱により格納容器圧力及び温度が安 定又は低下傾向に転じ,また,格納容器除熱のための設備がその後 も機能維持でき,かつ,必要な要員の不足や資源の枯渇等のあらか じめ想定される事象悪化のおそれがない場合に安定状態が確立さ れたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

原子炉隔離時冷却系の原子炉注水により炉心が冠水し,炉心冷却が維持される。サプレ ッション・プール熱容量制限に到達後,原子炉を減圧し,常設低圧代替注水系ポンプを用 いた低圧代替注水系(常設)を用いた原子炉注水を継続することで,引き続き炉心が冠水 し,炉心の冷却は維持され,原子炉安定停止状態が確立される。

格納容器安定状態の確立について

炉心冷却を継続し、常設代替海水取水設備を用いた残留熱除去系による格納容器除熱を 実施することで、格納容器圧力及び雰囲気温度は安定[※]又は低下傾向となる。格納容器雰 囲気温度は150℃を下回るとともに、ドライウェル雰囲気温度は、低圧注水継続のための 逃がし安全弁の機能維持が確認されている126℃を上回ることはなく、格納容器安定状態 が確立される。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料及び電源を供 給可能である。

(※)残留熱除去系をサプレッション・プール冷却モードに切り替えると、原子炉圧力容器からの放熱の影響によりドライウェル雰囲気温度はわずかに上昇傾向となる。ただし、残留熱除去系による格納容器除熱は確立しており、長期的には減圧後の原子炉圧力容器温度(100℃程度)より若干低い温度で平衡状態となることから、この状態も含め安定傾向とする。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し炉心冷却及び除熱を継続することで,安定状態の維持が可能となる。

(添付資料 2.1.1 別紙 1)

# <u>コメントNo.148-21,265-06,07,08に対する回答</u> 解析コード及び解析条件の不確かさの影響評価について(崩壊熱除去機能喪失(取水機能が喪失した場合))

### 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象 解析モデル 不確かさ		不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響	
	崩壞熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	
	燃料棒麦面熱伝 達,沸騰遷移,気 液熱非平衡	燃料棒表面熱伝 達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数 を低めに評価する可能性があり,他の解析モデ ルの不確かさと相まってコード全体として,ス ブレイ冷却のない実験結果の燃料被覆管温度に 比べて最大 50℃程度高めに評価する。また,低 圧代替注水系による注水での燃料棒冷却過程に おける蒸気単相冷却又は噴霧流冷却の不確かさ は 20℃~40℃程度である。	解析コードは、実験結果の燃料被覆管温度に比べて最大50℃高め に評価することから、解析結果は燃料棒表面の熱伝達係数を小さ く評価する可能性がある。よって、実際の燃料棒表面での熱伝達 は大きくなることで、燃料被覆管温度は低くなるが、事象初期の 原子炉注水は原子炉隔離時冷却系の自動起動により確保され、燃 料被覆管温度を起点とする運転員等操作はないことから、運転員 等操作時間に与える影響はない。	解析コードは、実験解析において熱伝達モデルの保守性により燃料被覆管温度を高めに評価し、有効性評価解析においても燃料被 覆管温度を高めに評価することから、評価項目となるパラメータ に対する余裕は大きくなる。ただし、炉心部の冠水が維持される 本事故シーケンスでは、この影響は小さいと考えられる。	
炉 心	燃料被覆管酸化	ジル コニウム – 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もる Baker-Just 式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,事象初期の 原子炉注水は原子炉隔階時冷却系の自動起動により確保され,燃 料被覆管温度を起点とする運転員等操作はないことから,運転員 等操作時間に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるバラメータに対する余裕は大きくなる。	
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は,燃料被覆管温度と円周方向応力 に基づいて評価され,燃料被覆管温度は上述の ように高めに評価され,円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって,ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが運転員等操作に与える影響はない。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが評価項目となるパラメータに与える影響はない。	

# 第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重畳する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPa より低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,低圧代替注水系を注 水手段として用いる本事故シーケンスでは考慮 する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注 水系の注水タイミングに特段の差異を生じる可 能性はないと考えられる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析では原 子炉水位が燃料有効長頂部を下回ることがなく、炉心露出後の再 冠水過程で現れる解析結果に重畳する水位振動成分を考慮する 必要がないため、評価項目となるパラメータに与える影響はな い。
原子炉压力容器	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。
	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており、実機設備仕様に対し て注水流量を少なめに与え、燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。

# 第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響	
炉心	崩壊熱	炉心モデル(原子 炉出力及び崩壊 熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	
圧 力 容 器	ECCS 注水 (給水系・代替注 水設備含む)	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析 モデルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	
格納容器	格納容器各領域 間の流動 構造材との 熱伝達及び 内部熱伝導 気液界面の 熱伝達	格納容器モデル (格納容器の熟 水力モデル)	HDR 実験解析では,格納容器圧力及び雰囲気温度 について,温度成層化を含めて傾向をよく再現 できることを確認した。格納容器雰囲気温度を 十数で程度高めに,格納容器圧力を1割程度高 めに評価する傾向が確認されたが,実験体系に 起因するものと考えられ,実機体系においては この種の不確かさは小さくなるものと考えられ る。また,非凝縮性ガス濃度の挙動について, 解析結果が測定データとよく一致することを確 認した。 格納容器各領域間の流動,構造材との熱伝達及 び内部熱伝導の不確かさにおいては,CSTF実験 解析では,格納容器雰囲気温度及び非凝縮性ガ ス濃度の挙動について,解析結果が測定データ とよく一致することを確認した。	解析コードは、HDR 実験解析において区画によって格納容器雰囲 気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが、BWR の格納容器内の区画とは異なる等, 実験体系に起因するものであり、実機体系においては不確かさが 小さくなるものと推定され、全体としては格納容器圧力及び温度 の傾向を適切に再現できているため、格納容器圧力を操作開始の 起点としている残留熟除去系による格納容器除熟に係る運転員等 操作時間に与える影響は小さい。 また,格納容器各領域間の流動,構造材との熱伝達及び内部熱伝 導の不確かさにおいては、CSTF 実験解析において格納容器雰囲気 温度及び非凝縮性ガスの挙動は測定データと良く一致することを 確認しており、その差異は小さいため、格納容器圧力及び雰囲気 温度を操作開始の起点としている残留熟除去系による格納容器除 熟に係る運転員等操作時間に与える影響は小さい。	解析コードは、HDR 実験解析において区画によって格納容器雰囲気 温度を十数で程度,格納容器圧力を1割程度高めに評価する傾向 が確認されているが、BWR の格納容器内の区面とは異なる等,実験 体系に起因するものであり,実機体系においては不確かさが小さ くなるものと推定され、全体としては格納容器圧力及び温度の傾 向を適切に再現できているため,評価項目となるパラメータに与 える影響は小さい。 また,格納容器各領域間の流動,構造材との熟伝達及び内部熟伝 導の不確かさにおいては,CSTF 実験解析により格納容器雰囲気温 度及び非疑縮性ガスの挙動は測定データと良く一致することを確 認しているため,評価項目となるパラメータに与える影響は小さ い。	
	スプレイ冷却	安全系モデル(格 納容器スプレイ)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平 衡に至ることから伝熱モデルの不確かさはな い。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	
	サプレッション・ プール冷却	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 ボンブ流量及び除熱量は,設計値に基づき与え られており,解析モデルの不確かさの影響はな い。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	

	77 0	解析条件0	り不確かさ	タルホウのおうナ	安村日かれたは用いたとう思想	ボ伊ボロトムマパニナーねたとう影響
	項日	解析条件	最確条件	条件設定の考え方	運転員寺操作时间に与える影響	評価項目となるハフメータに与える影響
	原子炉熱出力	3,293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉停止 後の崩壊熱が緩和される。最確条件とした場合の運転員 等操作時間及び評価項目となるパラメータに与える影響 は、最大線出力密度及び原子炉停止後の崩壊熱にて説明 する。	最確条件とした場合には最大線出力密度及び原子炉停止 後の崩壊熱が緩和される。最確条件とした場合の運転員等 操作時間及び評価項目となるパラメータに与える影響は, 最大線出力密度及び原子炉停止後の崩壊熟にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、事故初期において主蒸気隔離弁が 閉止し、原子炉圧力は逃がし安全弁により制御されるた め事象進展に及ぼす影響は小さく、運転員等操作時間に 与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、事故初期において主蒸気隔離弁が閉止 し、原子炉圧力は逃がし安全弁により制御されるため、事 象進展に及ぼす影響は小さく、評価項目となるパラメータ に与える影響はない。
初期条件	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ +132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、ゆらぎの幅は事象発生後の水位低 下量に対して非常に小さい。例えば、解析条件で設定し た通常運転水位から高圧炉心スプレイ系等の自動起動信 号が発信する原子炉水位異常低下(レベル2)までの原 子炉水位の低下量は約2mであるのに対してゆらぎによ る水位低下量は約2mであり非常に小さい。したがっ て、事象進展に及ぼす影響は小さく、運転員等操作時間 に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、ゆらぎの幅は事象発生後の水位低下量 に対して非常に小さい。例えば、解析条件で設定した通常 運転水位から高圧炉心スプレイ系等の自動起動信号が発 信する原子炉水位異常低下(レベル2)までの原子炉水位 の低下量は約2mであるのに対してゆらぎによる水位低下 量は約40mであり非常に小さい。したがって、事象進展 に及ぼす影響は小さく、評価項目となるパラメータに与え る影響は小さい。
件	炉心流量	48,300t/h (定格流量(100%流 量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲において 解析条件から変動しうるが、事故初期において原子炉が スクラムするとともに、再循環ポンプがトリップするた め、初期炉心流量が事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、炉心流量の運転範囲において解 析条件から変動しうるが、事故初期において原子炉がスク ラムするとともに、再循環ポンプがトリップするため、初 期炉心流量が事象進展に及ぼす影響は小さく、評価項目と なるパラメータに与える影響は小さい。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B 型)は、熱水力的な特性はほぼ同等 であり、その他の核的特性等の違い は燃料棒最大線出力密度の保守性 に包含されることから、代表的に9 ×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9×9 燃料(B型)の混在炉心又はそれぞれ型式の単独炉心とな る場合があるが、両型式の燃料の特性はほぼ同等である ことから、事象進展に及ぼす影響は小さく、運転員等操 作時間に与える影響は小さい。	最確条件とした場合には、9×9燃料(A型)及び9×9燃 料(B型)の混在炉心又はそれぞれ型式の単独炉心となる 場合があるが、両型式の燃料の特性はほぼ同等であること から、炉心冷却性に大きな差は無く,評価項目となるパラ メータに与える影響は小さい。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい 方が燃料被覆管温度に対して厳し い設定となる このため,保安規定の運転上の制限 における上限値を設定	最確条件は解析条件で設定している燃料棒線出力密度よ りも小さくなる。このため、燃料被覆管温度上昇が緩和 されるが,事象初期の尻子炉注水は原子炉隔離時冷却系 の自動起動により確保され、燃料被覆管温度を起点とす る運転員等操作はないことから,運転員等操作時間に与 える影響はない。	最確条件は解析条件で設定している燃料棒線出力密度よ りも小さくなる。このため、燃料被覆管温度上昇が緩和さ れることから,評価項目となるパラメータに対する余裕は 大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/5)

	16 D	解析条件の	り不確かさ	冬世凯亡の老う士	マボ日体根作曲目にたらて影響	誕年宿日 しみて パニュー カー たきて 影響
	項日	解析条件	最確条件	米件設定の考え方	運転員寺傑作时间に子える影響	許価項目となるハノメータに与える影響
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t以下 (実績値)	崩壊熱が大きい方が,原子炉水位低 下及び格納容器圧力上昇の観点で 厳しい設定となる。このため,崩壊 熱が大きくなる燃焼度の高い条件 として,1サイクルの運転期間(13 ヶ月)に調整運転期間(1ヶ月)を考 慮した運転期間に対応する燃焼度 を設定	最確条件は解析条件で設定している崩壊熱よりも小さく なる傾向となる。このため、原子炉からサプレッション・ プールに流出する蒸気量が減少することで、原子炉水位 の低下が遅くなるが、事象初期の原子炉注水は原子炉隔 離時冷却系の自動起動により確保されることから、運転 員等操作時間に与える影響はない。また、格納容器圧力、 サプレッション・プール水位及びサプレッション・プー ル水温度の上昇が遅くなり、これらのパラメータを起点 とする運転員等操作の開始時間は遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小さく なる傾向となる。このため,燃料からの発熱が小さくなり, 原子炉からサプレッション・プールに流出する蒸気量が減 少することで,原子炉水位の低下並びに格納容器圧力及び 温度の上昇が緩和されることから,評価項目となるパラメ ータに対する余裕が大きくなる。
	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高め の設定として,通常運転時の圧力を 包含する値を設定	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため,格納容器圧力が低めに推移 することから,格納容器圧力を起点とする運転員等操作 の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため、格納容器圧力が低めに推移す ることから、評価項目となるパラメータに対する余裕は大 きくなる。
	ドライウェル 雰囲気温度	57°C	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設 計温度を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、ドライウェル雰囲気温度は、格納 容器スプレイの実施に伴い飽和温度となることから、初 期温度のゆらぎが事象進展に与える影響は小さく、運転 員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、ドライウェル雰囲気温度は、格納容器 スプレイの実施に伴い飽和温度となることから、初期温度 のゆらぎが事象進展に与える影響は小さく、評価項目とな るパラメータに与える影響は小さい。
初期	格納容器体積 (ドライウェル)	5,700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進展に 影響はなく,運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない
5期	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約 4,058m ³ 液相部: 約3,308m ³ ~約 3,342m ³ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる少なめの水量 として,保安規定の運転上の制限に おける下限値を設定	最確条件とした場合には、格納容器体積(ウェットウェ ル)の液相部の運転範囲において解析条件より高めの水 位となるが、ゆらぎの幅は非常に小さい。例えば、サブ レッション・ブール水位が 6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水量変化は約 42m ³ であり、その割合は初期保有水量の 1.3%程度と非 常に小さい。したがって、事象進展に与える影響は小さ く、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウェル) の液相部の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプレッシ ョン・プール水位が 6.983m の時の水量は 3,300m ³ である のに対し、ゆらぎ(0.087m)による水量変化は約 42m ³ で あり、その割合は初期保有水量の1.3%程度と非常に小さ い。したがって、事象進展に与える影響は小さく、評価項 目となるパラメータに与える影響は小さい。
	サプレッション・ プール水位	6.983m (通常運転水位 -4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる低めの水位と して,保安規定の運転上の制限にお ける下限値を設定	最確条件とした場合には、サプレッション・プール水位 の運転範囲において解析条件より高めの水位となるが、 ゆらぎの幅は非常に小さい。例えば、サプレッション・ プール水位が6.983mの時の水量は3,300m ³ であるのに対 し、ゆらぎ(0.087m)による水量変化は約42m ³ であり、 その割合は初期保有水量の1.3%程度と非常に小さい。 したがって、事象進展に与える影響は小さく、運転員等 操作時間に与える影響は小さい。	最確条件とした場合には、サブレッション・ブール水位の 運転範囲において解析条件より高めの水位となるが、ゆら ぎの幅は非常に小さい。例えば、サブレッション・ブール 水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆ らぎ (0.087m) による水量変化は約 42m ³ であり、その割 合は初期保有水量の 1.3%程度と非常に小さい。したがっ て、事象進展に与える影響は小さく、評価項目となるパラ メータに与える影響は小さい。
	サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる高めの水温と して,保安規定の運転上の制限にお ける上限値を設定	最確条件は解析条件で設定している水温よりも低くなる ため、サブレッション・プールでの圧力抑制効果が高ま り格納容器圧力の上昇は緩和される。このため、格納容 器圧力を起点とする運転員等操作の開始は遅くなる。	最確条件は解析条件で設定している水温よりも低くなる ため、サプレッション・プールでの圧力抑制効果が高まり 格納容器圧力の上昇は緩和される。このため、評価項目と なるパラメータに対する余裕は大きくなる。

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/5)

	百日	解析条件の不確かさ		冬仕部中の老さ士	海転号笠地佐時町におうて影響	<b>証価値日レわスパラメータに片うス影</b> 郷		
'Я P		解析条件 最確条件		米田設定の考え方	連転員守操作时间に子える影響	計価項目となるハノメータに与える影響		
事故条件	起因事象	給水流量の全喪失	_	運転時の異常な過渡変化の中で,原 子炉水位の急速な低下に伴い,原子 炉スクラム,主蒸気隔離弁の閉止等 が発生するため,事象発生後の状況 判断における余裕時間の観点で厳 しい給水流量の全喪失を設定	-	_		
	安全機能の喪失 に対する仮定	崩壞熱除去機能喪失	-	取水機能の喪失による崩壊熱除去 機能喪失を設定				
	外部電源	外部電源あり	_	起因事象発生から原子炉スクラム までの期間の原子炉水位の低下を 厳しくする条件として,外部電源あ りを設定	運転員等操作時間は,外部電源がない場合も考慮して設 定していることから,運転員等操作時間に与える影響は ない。	外部電源がない場合は、外部電源喪失に伴い原子炉スクラ ム、再循環ボンプトリップ等が発生するため、外部電源が ある場合と比較して原子炉水位の低下は緩和されること から、評価項目となるバラメータに対する余裕は大きくな る。		
関連する機器条件	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	起因事象発生から原子炉スクラム までの期間の原子炉水位の低下を 厳しくする条件として、外部電源が ある場合の原子炉水位低(レベル 3)信号による原子炉スクラムを設 定	解析条件と最確条件は同様であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解析条件と最確条件は同様であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。		
	<ul> <li>ATWS 緩和設備(代</li></ul>	原子炉水位異常低下 (レベル2)信号	原子炉水位異常低下 (レベル2)信号	起因事象発生から原子炉スクラム までの期間の原子炉水位の低下を 厳しくする条件として,外部電源が ある場合の原子炉水位異常低下(レ ベル2)信号による再循環ボンプト リップを設定	解析条件と最確条件は同様であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解析条件と最確条件は同様であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。		

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/5)

項目		解析条件の不確かさ		<b>久</b> 世刊: 古 本 之 十		市価でロートング、ペニットは、とう見るの
		解析条件	最確条件	条件設定の考え方	運転員寺傑作时间に与える影響	at might C なるハノクニク に サんる影響
	原子炉隔離時冷却系	原子炉水位異常低下 (レベル2)信号にて 自動起動 ・注水流量: 136.7m ³ /h ・注水圧力: 1.04~7.86MPa[gage]	原子炉水位異常低下 (レベル2)信号にて 自動起動 ・注水流量: 136.7m ³ /h ・注水圧力: 1.04~7.86MPa[gage]	設計値を設定 原子炉隔離時冷却系は,タービン回 転数制御により原子炉圧力に依ら ず一定の流量にて注水する設計と なっている	解析条件と最確条件は同様であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解析条件と最確条件は同様であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。
重大事故等対策に関連する機器条件	低圧代替注水系 (常設)	<ul> <li>(原子炉注水単独時</li> <li>(2台))</li> <li>注水流量:</li> <li>0~378m³/h</li> <li>注水圧力:</li> <li>0~2.38MPa[dif]</li> </ul>	<ul> <li>(原子炉注水単独時</li> <li>(2台))</li> <li>注水流量:</li> <li>0~378m³/h以上</li> <li>注水压力:</li> <li>0~2.38MPa[dif]</li> </ul>	炉心冷却性の観点で厳しい設定と して,設備設計上の最低要求値であ る最小流量特性を設定	最確条件とした場合には,注水開始後の原子炉水位の回 復が早くなり,原子炉水位の維持操作の開始が早くなる が,原子炉減圧から水位回復までの原子炉水位を継続監 視している期間の流量調整操作であるため,運転員等操 作時間に与える影響はない。	最確条件とした場合には,注水開始後の原子炉水位の回復 が早くなり,炉心の再冠水が早まることから,評価項目と なるパラメータに対する余裕は大きくなる。
	残留熱除去系 (低圧注水系)	<ul> <li>注水流量:</li> <li>0~1,676m³/h</li> <li>注水圧力:</li> <li>0~1.55MPa[dif]</li> </ul>	<ul> <li>注水流量:</li> <li>0~1,676m³/以上</li> <li>注水圧力:</li> <li>0~1.55MPa[dif]</li> </ul>	炉心冷却の観点で厳しい設定とし て,設計基準事故の解析で用いる最 小流量特性を設定	最確条件とした場合には、注水開始後の原子炉水位の回 復が早くなり、注水開始後の原子炉水位の維持操作の開 始が早くなるが、注水後の調整操作であり、運転員等操 作時間に与える影響はない。	最確条件とした場合には,注水開始後の原子炉水位の回復 が早くなり,評価項目となるパラメータに対する余裕は大 きくなる
	逃がし安全弁	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t/h/個</li> <li>(設計値)</li> </ul>	設計値を設定 なお、安全弁機能は逃がし弁機能に 比べて原子炉圧力が高めに維持さ れ、原子炉減圧操作時に原子炉圧力 が所定の圧力に到達するまでの時 間が遅くなるため、事象発生初期に おいて高圧注水機能が喪失し低圧 注水機能を用いて原子炉注水を実 施する事故シーケンスにおいては、 評価項目に対して厳しい条件とな る	解析条件は最確条件と同等であることから,事象進展に 差異はなく,運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に差 異はなく,評価項目となるパラメータに与える影響はな い。 なお,本事故シーケンスにおいては,高圧注水機能である 原子炉隔離時冷却系が自動起動することから,逃がし弁機 能に期待した場合でも評価項目となるパラメータに与え る影響はない。
		<ul> <li>(原子炉減圧操作時)</li> <li>逃がし安全弁(自動減</li> <li>圧機能)7弁を開放す</li> <li>ることによる</li> <li>原子炉減圧</li> </ul>	<ul> <li>(原子炉減圧操作時)</li> <li>逃がし安全弁(自動減</li> <li>圧機能)7弁を開放す</li> <li>ることによる</li> <li>原子炉減圧</li> </ul>	逃がし安全弁の設計値に基づく原 子炉圧力と蒸気流量の関係から設 定	解析条件は最確条件と同等であることから、事象進展に 差異はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に差 異はなく,評価項目となるパラメータに与える影響はない
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事象進展に 影響はなく,運転員等操作時間に与える影響はない。	解析条件と最確条件は同等であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。
	残留熱除去系(格納容 器スプレイ冷却系)	スプレイ流量: 1.9×10 ³ t/h (95%:ドライウェ ル,5%:サプレッシ ョン・チェンバ)	スプレイ流量: 1.9×10 ³ t/h (95%:ドライウェ ル,5%:サプレッシ ョン・チェンバ)	設計値を設定	解析条件は最確条件と同等であることから、事象進展に 差異はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に差 異はなく,評価項目となるパラメータに与える影響はない

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(4/5)

	百日	解析条件の不確かさ		冬世記史の老さ士	流転号焼協化時間に長さて影響	河口百日しみて パニノ、 カー ヒンプ 彫趣	
項 日		解析条件 最確条件		米什畝足の考え方	<b>連転員寺探</b> 11时间に 子ん \ の 診 會	計画項目となるハノメークに与える影響	
関連する機器条件	緊急用海水系	約 24MW (サプレッション・プ ール水温度 100℃,海 水温度 32℃において)	約 24MW 以上 (サプレッション・プ ール水温度 100℃,海 水温度 32℃以下にお いて)	残留熱除去系の除熱性能を厳しく する観点で,過去の実績を包含する 高めの海水温度を設定	解析条件は最確条件と同等であることから、事象進展に 差異はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に差 異はなく,評価項目となるパラメータに与える影響はない	
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管 理下限値を設定	管理値下限の容量として事象発生から7日間後までに必 要な容量を備えており,水源は枯渇しないことから運転 員等操作時間に与える影響はない。	_	
	燃料の容量	約 1,010kL	約1,010kL 以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用 軽油タンクの管理下限値を設定	管理値下限の容量として事象発生から7日間後までに必要な容量を備えており,燃料は枯渇しないことから運転 員等操作時間に与える影響はない。	_	

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(5/5)

# 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/2)

項目		解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃弁子作代者ンた水、 しよ減設がを圧く 安る圧低水を圧(おいた) なったが、に注 たい 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	サプレッショ ン・プール水 達時	運転手順に基づ きサプレッショ ン・プール熱容量 制定	【認知】 事故時の重要監視パラメータとしてサプレッション・プール水温を継続監視し ており、また、逃がし安全弁による原子炉減圧の操作実施基準(サプレッショ ン・プール水温度65℃)に到達するのは事象発生約2時間後であり、比較的緩 やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及ぼ す可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 透がし安全弁による原子炉減圧操作として余裕時間を含めて1分を設定してい る。中央制御室の制御盤の操作スイッチによる簡易な操作であり、操作所要時 間が長くなる可能性は非常に低く、操作所要時間が操作開始時間に影響を及ぼ す可能性は非常に小さい。 【他の並列操作有無】 他の並列操作有無】 他の並列操作なく、他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かさ要問に与える 影響はいこちたから、 実態の操作開始にしている。 な操作は、解析上の設定 はぼ同等である。 本操作な件を除く。) の不開始性があるが、他 の操作との重他の操作 とのがら、他の操作 に与える影響はない。	実態の操作開始時間 は解析上の設定とかる 影響にあることかる 影響体項目になった。 影響体集件(操作条件を により、操作集件体(操作条件を により、操作集合でも、 がしたのが がない。 がない。 がしたののです。 が したです が したです が したの を に り 、 が に り 、 が に な の の 不開始でも、 、 が に な の の 不開始でも、 の 不開始でも、 、 操作集合でも、 が の て 用 始 の で り の 、 が 体 始 い の で り の 、 が や 条件 を で の の 、 が や に の 、 が の の の の の の の の の の の の の の の の の	原子炉隔離時冷却系 による語がす たる活水継続がす るこすることが可 の避り、事象発生から 少なくとも8時間程度 の操されている。	中央制御室におけ シ シ 操作レーシ。 し た 、 訓練につ り 、 に て 訓練につ の 、 の た の た タ し に た 、 制 線 に つ や の た タ 、 (にて 、 訓練に の の ク タ 、 、 の た の の の の の の の の の の の の の の の の

# 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/2)

項目		解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	緊急用 御水系 留 加 た 系 院 路 物 な 系 器 器 府 に 大 系 留 日 い た 系 の に 、 系 の 開 い た 系 の に 、 系 の 開 い た 系 の に 系 の に 、 の に の の の の の の の の の の の の の の の	サプレッショ ン・チェンバ 圧 力 279kPa[gage] 到達時	実除完パリン転券のより 際点子フラサプロデン にのたーレンド が作記 フラサプー開上間でンジン格 のた ーレン冷却は間でンジン 格のる 279kPa[gage] 点の と り ン 転 の た も の た ーレン 冷 始 は の た ーレン 冷 切 が の た の た ーレン パ の た の た ーレン ペ や の た の た の た の た の た の た の た の た の た の	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監 視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェ ンバ圧力 279kPa[gage])に到達するのは事象発生約 13 時間後であり、比較的 緩やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室の制御盤の操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、緩やかな圧力上 昇に対して操作所要時間は十分に短く、操作開始時間に影響を及ぼす可能性は 非常に小さい。 【他の並列操作有無】 原子伊水位の調整操作を並列して実施する場合があるが、異なる運転員による 対応が可能であることから、他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確から要問に与えるから とのとなりによりる 影響は低のとした。 とのです。 とのです。 とのです。 によりる によりる によりる によりる がら、実解がである。 一ド条 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 ない、 ない、 たい、 にない、 たい、 にの、 でので、 でので、 ない、 たい、 にない、 たい、 にない、 たい、 にの、 ない、 たい、 たい、 たい、 にの、 ない、 たい、 たい、 たい、 たい、 たい、 たい、 たい、 た	実態解等。 なの なの ない。 と と なる に な し た な し た な し た た た た た た 、 し た た た た た た 、 し た た た 、 た の 、 で で 項 は な ー 、 に ん 、 で で 項 に っ 、 で び 、 し 、 で が 、 、 で で 項 に っ 、 で ん 、 で で 項 に っ 、 で ん 、 、 で の 、 で 、 で 、 で 、 で 、 で 、 で 、 、 の 、 で ん 、 、 で た 、 、 の 、 で た 、 、 の 、 で ん 、 の 、 で た た 、 の 、 の 、 で た た 、 の 、 の 、 で た た の 、 の 、 の た 作 作 唯 か や つ む に う 、 れ た に む っ い に し た の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 た 、 に 、 の 、 の 、 の 、 、 た こ ら 、 れ に し の い 、 、 た こ の 、 の 、 に た の 、 の 、 い た し の 、 の 、 の 、 の 、 し こ ら 、 、 こ こ ら 、 、 に こ の 、 の い が 聞 い じ い が い が い じ 、 の 、 の い う 、 い う し 、 つ 、 い う 、 し う 、 、 つ ら 、 こ と こ る い が い う 、 、 、 つ 、 、 、 つ 、	緊急用海水系を用い た残留熱除去系によ る格納容器除熱及び 原子炉注水操作は,事 象発生の約13時間 を実施するものであ り準備時間が確時 きるため,時間余裕が ある。	中央操シート 中の操いの の の の の り 取 和 能 で 力 2 時 系 ス 、 操 の し る 総 式 、 5 8 た の ( の ち の り の た の 、 の た の 、 の ち の 、 の ち の ら の ち の ち の ち の ち の ち の ち の ち の ち の ち の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の で 転 こ つ に ま ひ に た た 想 他 き の で 転 で で 転 で で 転 で で 転 で で 転 で で 転 で で 転 で 転 で で 転 で 転 で で 転 で で 転 で 転 で で 転 で で 転 で 転 で で 転 で 転 で で 転 で 転 で で 転 で で 転 で 転 で で 転 で で 転 で で 転 で で 転 で む た た た た た た た た た た つ 転 で 転 で で し た 。 。 。 つ で で し た っ の で の っ の で し た っ の っ の っ の で っ つ て の っ の っ の の の の の の の の の の の の

7日間における水源の対応について

(崩壊熱除去機能喪失(取水機能が喪失した場合))

- 1. 水源に関する評価
  - ① 淡水源(有効水量)
    - •代替淡水貯槽:約4,300m³
    - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
  - ① 低圧代替注水系(常設)による原子炉注水

サプレッション・プール水温が 65℃に到達する事象発生約 2 時間後,定格流量で代替淡水貯槽を水源とした常設低圧代替注水系 ポンプを用いた低圧代替注水系(常設)による原子炉注水を実施 する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

格納容器圧力が 279kPa[gage]に到達する事象発生約 13 時間後, 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)によ る原子炉注水を停止する。

3. 時間評価

事象発生から常設低圧代替注水系ポンプを用いた低圧代替注水系 (常設)による原子炉注水が開始されるまでは,原子炉隔離時冷却 系により原子炉注水を実施するため,代替淡水貯槽の水量は減少し ない。

#### 添付 2.4.1.3-1

事象発生約2時間以降は,常設低圧代替注水系ポンプを用いた低 圧代替注水系(常設)による原子炉注水を実施するため,代替淡水 貯槽の水量は減少する。

格納容器圧力が279kPa[gage]に到達する事象発生約13時間まで に残留熱除去系による原子炉注水等を実施し、常設低圧代替注水系 ポンプを用いた低圧代替注水系(常設)による原子炉注水を停止す るため、代替淡水貯槽の水量の減少は停止する。

この間の代替淡水貯槽の使用水量は合計約 620m³である。



第1図 外部水源による積算注水量

(崩壊熱除去機能喪失(取水機能が喪失した場合))

#### 4. 水源評価結果

時間評価の結果から、7日間の対応において合計約 620m³必要となるが、代替淡水貯槽に約 4,300m³及び淡水貯水池に約 5,000m³の水を保有することから必要水量を確保可能であり、安定して冷却を継続

添付 2.4.1.3-2
することが可能である。

7日間における燃料の対応について

(崩壊熱除去機能喪失(取水機能が喪失した場合))

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

l	て	評	価	す	る	0
---	---	---	---	---	---	---

時系列	合計	判定
常設代替高圧電源装置 5 台起動 (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×5 台(運 転台数) =約 352.8kL	7日間の 軽油消費量 約352.8kL	軽 油 貯 蔵 タ の 容 量 は約 800kLで あり,7日間 対応可能
可搬型代替注水大型ポンプ 1 台起動 (代替淡水貯槽給水) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転 台数) =約 36.6kL	7日間の 軽油消費量 約36.6kL	可 搬 型 設 備 用 軽 油 タン ク の 容 量 は 約 210kL であ り,7 日間対 応可能

## 常設代替交流電源設備の負荷

(崩壊熱除去機能喪失(取水機能が喪失した場合))

主要負荷リスト

【電源設備:常設代替高圧電源装置】

起 動 順 序	主要機器名称	負 荷 容 量 (k₩)	負 荷 起 動 時 の 最 大 負 荷 容 量 (k ₩)	定常時の連続運転 負荷容量 (kW)
0	緊急用母線自動起動負荷 ・緊急用直流125V充電器盤 ・その他負荷	24.0 35.6	124.3	59.6
2	非常用母線2C自動起動負荷 ・直流125v充電器盤2A ・非常用照明 ・120vAC計装用電源2A ・その他負荷	47.1 89.0 28.6 224.5	495.9	448.8
3	非常用母線2D自動起動負荷 ・直流125V充電器盤2B ・非常用照明 ・120VAC計装用電源2B ・その他負荷	35.9 71.2 102.1 103.9	785.8	761.9
4	非常用ガス再循環系ファン 非常用ガス処理系ファン その他負荷 停止負荷	55.0 7.5 78.7 - 54.3	1,066.4	848.8
5	中央制御室空調ファン 中央制御室非常用循環ファン その他負荷	45.1 7.5 165.1	1,428.7	1,066.5
6	蓄電池室排気ファン その他負荷	7.5 153.0	1,646.5	1,227.0
7	常設低圧代替注水系ポンプ	190.0	1,711.4	1,417.0
8	常設低圧代替注水系ポンプ	190.0	1,901.4	1,607.0
9	緊 急 用 海 水 ポ ン プ そ の 他	510.0 10.0	2,943.2	2,127.0
10	残 留 熱 除 去 系 ポ ン プ そ の 他 負 荷	651.1 2.2	3,551.4	2,780.3
0	停 止 負 荷 常 設 低 圧 代 替 注 水 系 ポ ン プ 2 台	- 380	-	2,400.3
12	代 替 燃 料 プ ー ル 冷 却 系 ポ ン プ	22.0	2,479.8	2,422.3



※1:常設代替高圧電源装置定格出力運転時の容量(1,380kW×運転台数=最大容量)
 ※2:常設代替高圧電源装置定格出力運転時の80%の容量(1,380kW×0.8×運転台数=連続定格容量)
 ※3:非常用母線の負荷への給電に伴い,負荷容量が増加するため,常設代替高圧電源装置を3台追加起動する

添付 2.4.1.5-1

2.4.2 残留熱除去系が故障した場合

- 2.4.2.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「崩壊熱除去機能喪失」に含まれる事故シーケ ンスは、「1.2評価対象の整理及び評価項目の設定」に示すとおり、①「過 渡事象+RHR失敗」、②「過渡事象+逃がし安全弁再閉鎖失敗+RHR失 敗」、③「手動停止/サポート系喪失(手動停止)+RHR失敗」、④「手 動停止/サポート系喪失(手動停止)+逃がし安全弁再閉鎖失敗+RHR 失敗」、⑤「サポート系喪失(自動停止)+RHR失敗」、⑥「サポート系 喪失(自動停止)+逃がし安全弁再閉鎖失敗+RHR失敗」及び⑦「LO CA+RHR失敗」である。

コメントNo.148-12に対する回答
 (2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方
 事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系が故障した場合)」は、運転時の異常な過渡変化又は設計基準事故の発生後、高圧注

水機能等により炉心冷却には成功するが,残留熱除去系の故障により崩壊 熱除去機能が喪失することを想定する。このため,炉心の崩壊熱により発 生した蒸気が逃がし安全弁を介して格納容器に流入し格納容器圧力が上昇 することで,緩和措置が取られない場合には,炉心損傷より先に格納容器 破損に至る。これに伴い炉心冷却機能を喪失する場合には,原子炉水位の 低下により炉心が露出し,炉心損傷に至る。

本事故シーケンスグループのうち残留熱除去系が故障した場合について は,残留熱除去系の故障により崩壊熱除去機能が失われることによって最 終的に炉心損傷に至る事故シーケンスグループである。このため,重大事 故対策の有効性評価には,残留熱除去系の有する原子炉注水機能及び格納

容器除熱機能に対する重大事故等対処設備に期待することが考えられる。

以上により、本事故シーケンスグループのうち残留熱除去系が故障した 場合については、原子炉注水機能を用いて原子炉へ注水することにより炉 心損傷の防止を図るとともに、最終的な熱の逃がし場へ熱の輸送を行うこ とによって除熱を行い格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「崩壊熱除去機能喪失」のうち残留熱除去系が 故障した場合において、炉心が著しい損傷に至ることなく、かつ、十分な 冷却を可能とするため、初期の対策として原子炉隔離時冷却系、高圧炉心 スプレイ系、低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能) による原子炉注水手段を整備する。また、格納容器の健全性を維持するた め、安定状態に向けた対策として、代替格納容器スプレイ冷却系(常設) による格納容器冷却手段及び格納容器圧力逃がし装置による格納容器除熱 手段を整備する。対策の概略系統図を第2.4.2-1 図に、対応手順の概要を 第2.4.2-2 図に、対策の概要を以下に示す。また、重大事故等対策におけ る手順と設備との関係を第2.4.2-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,事象 発生2時間までの重大事故等対策に必要な要員は,中央制御室の運転員及 び災害対策要員で構成され,合計17名である。その内訳は次のとおりであ る。中央制御室の運転員は,発電長1名,副発電長1名,運転操作対応を 行う運転員5名である。発電所構内に常駐している要員のうち,通報連絡 等を行う災害対策要員は2名,重大事故等対応要員(現場)は8名である。

また,事象発生2時間以降に追加で必要な要員は,燃料補給作業を行う ための招集要員2名,現場手動による格納容器ベント操作を行うための招 集要員3名である。この必要な要員と作業項目について第2.4.2-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,17名で対処 可能である。

a. 原子炉スクラムの確認

原子炉がスクラムしたことを確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等であ る。

b. 原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起動の確認

原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点 で原子炉隔離時冷却系及び高圧炉心スプレイ系が自動起動し,原子炉注 水を開始することで原子炉水位が回復することを確認する。また,主蒸 気隔離弁が閉止するとともに,再循環ポンプがトリップしたことを確認 する。

原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起動の確認に必要 な計装設備は,原子炉水位計(広帯域,燃料域),原子炉隔離時冷却系系 統流量計等である。

c. 原子炉水位の調整操作(原子炉隔離時冷却系)

原子炉水位回復後は,原子炉水位を監視しつつ,原子炉隔離時冷却系 により原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高 (レベル8)設定点の間で維持する。

原子炉水位の調整操作(原子炉隔離時冷却系)に必要な計装設備は, 原子炉水位計(広帯域,燃料域),原子炉隔離時冷却系系統流量計等であ る。

d. 崩壊熱除去機能喪失の確認

サプレッション・プール水温度が 32℃に到達したことを確認し, 残留 熱除去系によるサプレッション・プール冷却操作を試みるが, 残留熱除 去系の起動に失敗したことを確認し, 崩壊熱除去機能喪失を確認する。

崩壊熱除去機能喪失の確認に必要な計装設備は,残留熱除去系ポンプ 吐出圧力計等である。

e. 低圧代替注水系(常設)の起動準備操作

崩壊熱除去機能喪失の喪失により,サプレッション・プール水温度が 上昇し,サプレッション・プール熱容量制限(原子炉が高圧の場合は65℃) に到達した場合には原子炉減圧を実施する。このため,崩壊熱除去機能 喪失の確認後に,あらかじめ低圧で注水可能な系統の準備操作を実施す る。ここでは,低圧で注水可能な系統^{**}として,評価上低圧代替注水系 (常設)を起動する。

低圧代替注水系(常設)の起動準備操作に必要な計装設備は、常設低 圧代替注水系ポンプ吐出圧力計である。

外部電源が喪失している場合は,中央制御室からの遠隔操作により常 設代替高圧電源装置を起動し,緊急用母線を受電する。

- ※)本事故シーケンスでは、低圧で注水可能な系統として、自動起動 した高圧炉心スプレイ系若しくは低圧炉心スプレイ系又は残留熱除 去系(低圧注水系)C系の手動起動に期待することも可能であるが、 原子炉減圧時の水位回復性能を確認する観点で、注水流量の小さい 低圧代替注水系(常設)に期待した評価としている。
- f. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

低圧代替注水系(常設)の起動準備操作の完了後、サプレッション・ プール水温度がサプレッション・プール熱容量制限(原子炉が高圧の場 合は65℃)に到達したことを確認し、中央制御室からの遠隔操作により 逃がし安全弁(自動減圧機能)の7弁を手動開放し、原子炉減圧を実施 する。

逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設 備は,原子炉圧力計等である。

g. 原子炉水位の調整操作(低圧代替注水系(常設))

逃がし安全弁(自動減圧機能)による原子炉減圧により,原子炉圧力 が低圧代替注水系(常設)の吐出圧力を下回ると,原子炉注水が開始さ れることで原子炉水位が回復する。

原子炉水位の調整操作(低圧代替注水系(常設))に必要な計装設備は, 原子炉水位計(広帯域,燃料域),低圧代替注水系原子炉注水流量系等で ある。

原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3)から原 子炉水位高(レベル8)の間で維持する。

h. 代替格納容器スプレイ冷却系(常設)による格納容器冷却

崩壊熱除去機能を喪失しているため,格納容器圧力及び雰囲気温度が 上昇する。サプレッション・チェンバ圧力が279kPa[gage]に到達した場 合又はドライウェル雰囲気温度が171℃に到達した場合は、中央制御室 からの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納 容器冷却を実施する。また,低圧代替注水系(常設)による原子炉注水 を継続する。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に必要な計 装設備は、サプレッション・チェンバ圧力計、低圧代替注水系格納容器 スプレイ流量計、サプレッション・プール水位計等である。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に伴い、サ

プレッション・プール水位は徐々に上昇する。サプレッション・プール 水位が、通常水位+5.5mに到達した時点で,格納容器圧力逃がし装置に よる格納容器除熱の準備として,中央制御室からの遠隔操作により格納 容器圧力逃がし装置一次隔離弁の開操作を実施する。さらに,サプレッ ション・プール水位が,通常水位+6.5mに到達した場合,中央制御室か らの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納容 器冷却を停止する。

i. 格納容器圧力逃がし装置による格納容器除熱(サプレッション・チェンバ側)

代替格納容器スプレイ冷却系(常設)による格納容器冷却の停止後, 格納容器除熱操作に備え炉心損傷が発生していないことを確認する。サ プレッション・チェンバ圧力が310kPa[gage]に到達した場合,中央制御 室からの遠隔操作により格納容器圧力逃がし装置二次隔離弁を全開とし サプレッション・チェンバ側から格納容器圧力逃がし装置による格納容 器除熱を実施する。

格納容器圧力逃がし装置による格納容器除熱に必要な計装設備は,サ プレッション・チェンバ圧力計,格納容器雰囲気放射線モニタ(D/W, S/C)等である。

サプレッション・チェンバ側からの格納容器圧力逃がし装置のベント ラインが水没しないことを確認するために必要な計装設備は,サプレッ ション・プール水位計等である。

j. 可搬型代替注水大型ポンプによる水源補給操作

可搬型代替注水大型ポンプにより淡水貯水池から代替淡水貯槽へ水源 補給操作を実施する。

可搬型代替注水大型ポンプによる水源補給操作に必要な計装設備は,

代替淡水貯槽水位計である。

k. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

1. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

以降, 炉心冷却は低圧代替注水系(常設)を用いた原子炉注水により 継続的に行い,格納容器除熱は格納容器圧力逃がし装置により継続的に 行う。

- 2.4.2.2 炉心損傷防止対策の有効性評価
  - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、過渡事象 (原子炉水位の急速な低下に伴い、原子炉スクラム、高圧注水機能の自動 起動、主蒸気隔離弁の閉止等が発生するため、事象発生後の状況判断にお ける余裕時間の観点で厳しい給水流量の全喪失を選定)を起因事象とし、 逃がし安全弁(安全弁機能)により原子炉圧力が高圧状態に制御される「過 渡事象(給水流量の全喪失)+RHR失敗」である。本事故シーケンスグ ループは、LOCAを起因事象とする事故シーケンスも含め、高圧炉心ス プレイ系に期待でき、炉心冷却に成功している。中長期的な格納容器の過 圧・過温の観点では、崩壊熱が支配要因となりLOCAも過渡事象も同等 となる。また、崩壊熱除去機能喪失に対する重大事故等対策にも違いはな い。このため、代表性の観点で炉心損傷頻度の高い事故シーケンスを重要 事故シーケンスとしている。なお、LOCA時注水機能喪失及び雰囲気圧

力・温度による静的負荷(格納容器過圧・過温破損)にて、LOCAに加 えて崩壊熱除去機能が喪失した場合の挙動を確認している。

本重要事故シーケンスでは, 炉心における崩壊熱, 燃料棒表面熱伝達, 沸騰遷移、燃料被覆管酸化、燃料被覆管変形、沸騰・ボイド率変化、気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流)、沸騰・凝縮・ボイド率変化、気液 分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、スプレイ冷却及び格納容器ベントが重要 現象となる。よって、これらの現象を適切に評価することが可能である長 期間熱水力過渡変化解析コードSAFER及びシビアアクシデント総合解 析コードMAAPにより、原子炉圧力、原子炉水位、燃料被覆管温度、格 納容器圧力、格納容器雰囲気温度等の過渡応答を求める。なお、本有効性 評価では、SAFERコードによる燃料被覆管温度の評価結果は、ベスト フィット曲線の破裂判断基準に対して十分な余裕があることから、燃料棒 やチャンネルボックスの幾何学的配置を考慮した詳細な輻射熱伝達計算を 行うことで燃料被覆管温度の評価結果がSAFERコードより低くなるC HASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.4.2-2表に示す。 また,主要な解析条件について,本重要事故シーケンス特有の解析条件を

以下に示す。

- a. 事故条件
- (a) 起因事象

起因事象として、給水流量の全喪失が発生するものとする。

(b) 安全機能の喪失に対する仮定

残留熱除去系の故障等により,崩壊熱除去機能が喪失するものとす る。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レ ベル2)信号にて発生する。このため,原子炉水位の低下が大きくな ることで,燃料被覆管温度の観点で厳しくなる。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)

ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は,原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ プさせるものとする。

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7弁を使用するものとし,容量として,1弁当

たり定格主蒸気流量の約6%を処理するものとする。

(d) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h(原子炉圧力1.04~7.86MPa[dif]*において)の流量で原子炉へ注 水するものとする。また,原子炉水位が原子炉水位高(レベル8)設 定点まで回復した以降は,原子炉水位を原子炉水位低(レベル3)設 定点から原子炉水位高(レベル8)設定点の範囲に維持し,原子炉減 圧時の低圧代替注水系(常設)による原子炉水位回復性能を確認する 観点で,原子炉減圧操作と同時に注水を停止する。

※:MPa[dif]・・・原子炉圧力容器と水源との差圧(以下,同様)(e) 高圧炉心スプレイ系

原子炉水位異常低下(レベル2)信号により自動起動し,最小流量 特性(0~1,419m³/h,注水圧力:0~7.65MPa[dif])の流量で原子炉 へ注水するものとする。また,原子炉水位が原子炉水位高(レベル8) 設定点まで回復し,原子炉隔離時冷却系のみにより原子炉水位の維持 が可能な場合は,注水を停止する。

(f) 低圧代替注水系(常設)

常設低圧代替注水ポンプを2台使用するものとし,原子炉注水のみ を実施する場合は,炉心冷却を厳しく評価する観点で機器設計上の最 小要求値である最小流量特性(注水流量:0~378m³/h,注水圧力:0 ~2.38MPa[dif])とし,原子炉注水と格納容器スプレイを同時に実施 する場合は,230m³/h(一定)を用いるものとする。また,原子炉水 位が原子炉水位高(レベル8)設定点まで回復した以降は,原子炉水 位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8) 設定点の範囲に維持する。

(g) 代替格納容器スプレイ冷却系(常設)

格納容器スプレイは、常設低圧代替注水ポンプを2台使用するもの とし,格納容器圧力及び雰囲気温度の上昇を抑制可能な流量を考慮し、 130m³/h(一定)を用いるものとする。また、格納容器スプレイは、 サプレッション・チェンバ圧力が217kPa[gage]に到達した場合は停止 し、279kPa[gage]に到達した場合に再開する。

(h) 格納容器圧力逃がし装置

サプレッション・チェンバ圧力が 310kPa[gage]において,13.4kg/ sの排気流量にて格納容器除熱を実施するものとする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に 対する仮定」に示す分類に従って以下のとおり設定する。

- (a) 逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧代替 注水系(常設)による原子炉注水操作)は運転手順に基づきサプレ ッション・プール水温が65℃に到達した時点で実施する。
- (b) 代替格納容器スプレイ冷却系(常設)による格納容器冷却操作は、 サプレッション・チェンバ圧力が279kPa[gage]に到達した場合に実施する。なお、格納容器スプレイは、サプレッション・プール水位が通常水位+6.5mに到達した場合に停止する。
- (c) 格納容器圧力逃がし装置による格納容器除熱操作は、サプレッショ ン・チェンバ圧力が 310kPa[gage]に到達した場合に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力、原子炉水位(シュラウド内

外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉内保有水量の推移を第2.4.2-4 図から第2.4.2-8 図に,燃料被覆管温度,高出力燃料集合体の熱伝達係数,燃料被覆管最高温度発生位置におけるボイド率,高出力燃料集合体のボイド率及び炉心下部プレナム部のボイド率の推移並びに燃料被覆管破裂が発生した時点の燃料被覆管温度と燃料被覆管の円周方向の応力の関係を第2.4.2-9 図から第2.4.2-14 図に,格納容器圧力,格納容器雰囲気温度,サプレッション・プール水位及びサプレッション・プール水温度の推移を第2.4.2-15 図から第2.4.2-18 図に示す。

※:シュラウド内水位は、炉心部で発生するボイドを含む二相水位であることから、シュラウド外水位より高めの水位となる。一方、運転員の監視や非常用炉心冷却系等の起動信号を発信に用いる原子炉水位計(広帯域)は、シュラウド外水位を計測することから、シュラウド内外水位を合わせて示している。
 a.事象進展

給水流量の全喪失が発生することで原子炉水位は低下し,原子炉水位 低(レベル3)信号により原子炉がスクラムする。その後,原子炉水位 が原子炉水位異常低下(レベル2)設定点まで低下すると,主蒸気隔離 弁の閉止及び再循環ポンプトリップが発生するともに,原子炉隔離時冷 却系及び高圧炉心スプレイ系が自動起動することで原子炉水位が維持さ れる。

その後,低圧代替注水系(常設)を起動し,サプレッション・プール 水温度が65℃に到達した時点で逃がし安全弁(自動減圧機能)7弁によ る原子炉減圧を実施する。逃がし安全弁(自動減圧機能)開放による蒸 気流出によって原子炉水位が低下するが,低圧代替注水系(常設)によ る原子炉注水が開始されることで原子炉水位は回復し,炉心の冠水は維 持される。なお,原子炉隔離時冷却系は,原子炉減圧と同時に停止する

想定とする。

高出力燃料集合体及び炉心下部プレナムのボイド率については,原子 炉減圧により増加する。

また、崩壊熱除去機能が喪失しているため、原子炉で発生した蒸気が 逃がし安全弁を介して格納容器内に放出されることで、格納容器圧力及 び雰囲気温度は上昇する。このため、サプレッション・チェンバ圧力が 279kPa [gage] に到達した時点で, 代替格納容器スプレイ冷却系(常設) の格納容器冷却を実施することにより、格納容器圧力及び雰囲気温度の 上昇は抑制される。代替格納容器スプレイ冷却系(常設)による格納容 器冷却を実施することでサプレッション・プール水位は徐々に上昇し, 事象発生の約 27 時間後にサプレッション・プール水位が通常水位+6.5m 到達した時点でサプレッション・チェンバベントラインの機能維持のた めに代替格納容器スプレイ冷却系(常設)による格納容器冷却を停止す る。これにより格納容器圧力及び雰囲気温度は再び上昇傾向に転じ、事 象発生の約 28 時間後にサプレッション・チェンバ圧力が 310kPa[gage] に到達した時点で格納容器圧力逃がし装置による格納容器除熱を実施す ることにより,格納容器圧力及び雰囲気温度は安定又は低下傾向となる。 なお、格納容器除熱実施時のサプレッション・プール水位は、ベント管 真空破壊装置及びサプレッション・チェンバ側のベントライン設置高さ と比較して十分に低く推移するため,これらの設備の機能は維持される。

b. 評価項目等

燃料被覆管温度は,第2.4.2-9 図に示すとおり,炉心は冠水状態が維持されることから,初期値(約309℃)以下にとどまる。このため,燃料被覆管温度は,評価項目である1,200℃以下にとどまる。また,燃料

被覆管の酸化量は,酸化反応が著しくなる前の燃料被覆管厚さの1%以下であり,評価項目である15%を下回る。

原子炉圧力は,第2.4.2-4 図に示すとおり,逃がし安全弁(安全弁機 能機能)の作動により,約7.79MPa[gage]以下に維持される。このため, 原子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力 容器底部圧力との差(0.3MPa程度)を考慮しても,約8.09[gage]以下で あり,評価項目である最高使用圧力の1.2 倍(10.34MPa[gage])を下回 る。

格納容器圧力は,第2.4.2-15 図に示すとおり,崩壊熱除去機能が喪失 しているため,原子炉で発生した蒸気が格納容器内に放出されることに よって,事象発生後に上昇傾向が継続するが,格納容器圧力逃がし装置 による格納容器除熱により低下傾向となる。事象発生の約28時間後に最 高値約0.31MPa[gage]となるが,格納容器バウンダリにかかる圧力は, 評価項目である限界圧力(0.62MPa[gage])を下回る。格納容器雰囲気温 度は,第2.4.2-16 図に示すとおり,事象発生の約28時間後に最高値約 143℃となり,以降は低下傾向となっており,格納容器バウンダリにかか る温度は,評価項目である限界温度(200℃)を下回る。

第2.4.2-5 図に示すように,原子炉隔離時冷却系,高圧炉心スプレイ 系及び低圧代替注水系(常設)による原子炉注水を継続することで,炉 心の冠水状態が維持され,炉心冷却が確保されている。また,第2.4.2-15 図及び第2.4.2-16 図に示すように,事象発生の約28時間後に,格納容 器圧力逃がし装置による格納容器除熱を実施することで,安定状態が確 立する。また,代替循環冷却系又は残留熱除去系の復旧により除熱を行 い,格納容器ベントを閉止し格納容器を隔離することで,更なる除熱機 能の確保及び維持が可能となる。

(添付資料 2.4.2.1)

格納容器圧力逃がし装置による格納容器ベント実施時の敷地境界での 実効線量は,格納容器ベント実施までの時間が本事象より短く,格納容 器内での放射性物質の減衰効果が少ない「2.6 LOCA時注水機能喪失」 の評価結果以下となり,5mSvを下回ることから,周辺の公衆に対して著 しい放射線被ばくのリスクを与えることはない。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目」に示す(1)から(4)の評価項目及び周辺の公衆に対して著しい放射線 被ばくのリスクを与えないことについて、対策の有効性を確認した。

2.4.2.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは,原子炉隔離時冷却系等により炉心冷却には成功 するが,残留熱除去系の故障により崩壊熱除去機能が喪失することで格納容 器圧力及び雰囲気温度が上昇するため,代替格納容器スプレイ冷却系(常設) による格納容器冷却を実施すること及び格納容器圧力逃がし装置による格納 容器除熱を実施することが特徴である。よって,不確かさの影響を確認する 運転員等操作は,事象進展に有意な影響を与えると考えられる操作及び事象 発生から12時間程度までの短時間に期待する操作として,逃がし安全弁(自 動減圧機能)による原子炉減圧操作(低圧代替注水系(常設)による原子炉 注水操作),代替格納容器スプレイ冷却系(常設)による格納容器冷却操作及 び格納容器圧力逃がし装置による格納容器除熱操作とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を行う重要事象とは, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり,影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて+50℃高め に評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評価 する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくなり, 燃料被覆管温度は低くなるが,事象初期の原子炉注水は原子炉隔離時冷 却系及び高圧炉心スプレイ系の自動起動により確保され,燃料被覆管温 度を操作開始の起点とする運転員等操作はないことから,運転員等操作 時間に与える影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,事象初期の原子炉注水は 原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起動により確保され, 燃料被覆管温度を操作開始の起点とする運転員等操作はないことから, 運転員等操作時間に与える影響はない。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向

を適切に再現できているため,格納容器圧力及び雰囲気温度を操作開始 の起点とする代替格納容器スプレイ冷却系(常設)による格納容器冷却 操作及び格納容器圧力逃がし装置による格納容器除熱操作に係る運転員 等操作時間に与える影響は小さい。また,格納容器各領域間の流動,構 造材との熱伝達及び内部熱伝導の不確かさにおいては,CSTF実験解 析により格納容器温度及び非凝縮性ガスの挙動は測定データと良く一致 することを確認しており,その差異は小さいため,格納容器圧力及び雰 囲気温度を操作開始の起点としている代替格納容器スプレイ冷却系(常 設)による格納容器冷却操作及び格納容器圧力逃がし装置による格納容 器除熱操作に係る運転員等操作時間に与える影響は小さい。

(添付資料 2.4.2.2)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,評価項目となるパラメータに対する余裕は大 きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容

器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾向が確認されているが,BWRの格納容器内の区画とは異なる等,実験体系に起因するものと考えられ,実機体系においては不確かさが小さくなるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向を適切に再現できているため,評価項目となるパラメータに与える影響は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一致することを確認しているため,評価項目となるパラメータに与える影響は小さい。

(添付資料 2.4.2.2)

- (2) 解析条件の不確かさの影響評価
  - a.初期条件,事故条件及び重大事故等対策に関連する機器条件 初期条件,事故条件及び重大事故等対策に関連する機器条件は,第
    2.4.2-2表に示すとおりであり,これらの条件設定を設計値等の最確条件とした場合の影響を評価する。解析条件の設定にあたっては,設計値を用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう保守的な設定をしていることから,この中で事象進展に有意な影響を与える可能性がある項目について,評価結果を以下に示す。
    - (a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起動により確保され,燃料被覆管温度を操作開始の起点とする運転員等操作はないことから,

運転員等操作時間に与える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は原子炉隔離時冷却系及び高圧炉 心スプレイ系の自動起動により確保されることから,運転員等操作時 間に与える影響はない。また,格納容器圧力及びサプレッション・プ ール水温度の上昇が遅くなり,これらのパラメータを起点とする運転 員等操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度,格納容器容積(ウェットウェル)の空間部及 び液相部,サプレッション・プール水位は,ゆらぎにより解析条件に 対して変動を与えうるが,事象進展に与える影響は小さく,運転員等 操作時間に与える影響は小さい。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定している。外部電源がない場合でも,非常用母線は非 常用ディーゼル発電機等から自動的に受電され,また,低圧代替注水 系(常設)の起動準備操作時間は,外部電源がない場合も考慮して設 定していることから,運転員等操作時間に与える影響はない。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなり,炉心冠水後の原子炉水位の維持操作の開始が早くな るが,原子炉減圧から水位回復までの原子炉水位を継続監視している

期間の流量調整操作であるため,運転員等操作時間に与える影響はな い。

(添付資料 2.4.2.2)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 緩和され,格納容器圧力等の上昇は遅くなることから,評価項目とな るパラメータに対する余裕は大きくなる。

起因事象発生から原子炉スクラムまでの期間の原子炉水位の低下を 厳しくする条件として,外部電源ありを想定している。外部電源がな い場合は,外部電源喪失に伴い原子炉スクラム,再循環ポンプトリッ プ等が発生するため,外部電源がある場合と比較して原子炉水位の低 下は緩和されることから,評価項目となるパラメータに対する余裕は 大きくなる。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は実際 の注水流量が解析よりも大きくなるため,注水開始後の原子炉水位の 回復が早くなることで,評価項目となるパラメータに対する余裕は大 きくなる。

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に起因して生じる運転員等操作時間に与える影響を評価す る。また,運転員等操作時間に与える影響が評価項目となるパラメータ に与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の逃がし安全弁(自動減圧系)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,解析上の操作開始 時間としてサプレッション・プール水温度65℃到達時を設定している。 運転員等操作時間に与える影響として,不確かさ要因により操作開始 時間に与える影響は小さく,実態の操作開始時間は解析上の設定とほ ぼ同等となる。本操作は,解析コード及び解析条件(操作条件を除く。) の不確かさにより,操作開始時間が遅くなる可能性があるが,他の操 作との重複もないことから,この他の操作に与える影響はない。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,解析上の操作開始時間として,サプレッション・チェンバ 圧力279kPa[gage]到達時を設定している。運転員等操作時間に与える 影響として,不確かさ要因により操作開始時間に与える影響は小さく, 実態の操作開始時間は解析上の設定とほぼ同等となる。本操作は,解 析コード及び解析条件(操作条件を除く。)の不確かさにより,操作開 始時間は遅くなる可能性があるが,他の操作との重複もないことから, この他の操作に与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,解 析上の操作開始時間として,サプレッション・チェンバ圧力 310kPa[gage]到達時を設定している。運転員等操作時間に与える影響 として,不確かさ要因により操作開始時間に与える影響は小さく,実 態の操作開始時間は解析上の設定とほぼ同等となる。仮に格納容器ベ ント時に遠隔操作に失敗した場合は,現場操作にて対応するため,75 分程度操作開始時間が遅れる可能性がある。本操作は,解析コード及 び解析条件(操作条件を除く。)の不確かさにより,操作開始時間は遅 れる可能性があるが,他の操作との重複もないことから,この他の操 作に与える影響はない。

(添付資料 2.4.2.2)

(b) 評価項目となるパラメータに与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,運転員等操作時間 に与える影響として,実態の操作開始時間は解析上の操作開始時間よ りも遅くなる可能性があるが,この場合でもパラメータが操作実施基 準に到達した時点で開始することで同等の効果が得られ,事象進展に 変わりがないことから,評価項目となるパラメータに与える影響はな い。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,運転員等操作時間に与える影響として,実態の操作開始時 間は解析上の操作開始時間よりも遅くなる可能性があるが,この場合 でもパラメータが操作実施基準に到達した時点で開始することで同等 の効果が得られ,有効性評価解析における格納容器圧力の最大値に変

わりがないことから,評価項目となるパラメータに与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも遅くなる可能性があるが,この場合でもパラメー タが操作実施基準に到達した時点で開始することで同等の効果が得ら れ,有効性評価解析における格納容器圧力の最大値に変わりがないこ とから,評価項目となるパラメータに与える影響はない。仮に格納容 器ベント時に遠隔操作に失敗した場合は,現場操作にて対応するため, 75分程度操作開始時間が遅れる可能性がある。この場合,格納容器圧 力は 310kPa[gage]より若干上昇し,評価項目となるパラメータに影響 を及ぼすが,格納容器限界圧力は 620kPa[gage]であり,格納容器の健 全性の観点からは問題とならない。

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧 代替注水系(常設)による原子炉注水操作)については,少なくも原子炉 隔離時冷却系による注水持続が可能な時間内に実施することで炉心損傷を 回避することが可能であり,事象発生から8時間程度の時間余裕が確保さ れている。なお,高圧炉心スプレイ系による原子炉注水を継続することも 可能であり,この場合は更に余裕時間がある。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷却操 作は,事象発生の約13時間後に実施するものであり,準備時間が確保でき

るため,時間余裕がある。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,事象発 生の約28時間後に実施するものであり,準備時間が確保できるため,時間 余裕がある。仮に,中央制御室からの遠隔操作に失敗し,現場操作にて格 納容器圧力逃がし装置二次隔離弁の開操作を実施する場合には,格納容器 ベント操作の開始が遅れることで,格納容器圧力は310kPa[gage]から上昇 するが,過圧の観点で厳しい「3.1 雰囲気圧力・温度による静的負荷(格 納容器過圧・過温破損)」において,スプレイを実施しない場合,格納容器 圧力が310kPa[gage]に到達してから,格納容器限界圧力 620kPa[gage]に 到達するまで11時間程度の時間余裕があり,現場操作に要する時間は75 分程度であることから,時間余裕がある。

(添付資料 2.4.2.2)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.4.2.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「崩壊熱除去機能喪失」の残留熱除去系が故障

した場合において重大事故等対策に必要な要員は,「2.4.2.1(3) 炉心損傷 防止対策」に示すとおり 17 名である。「6.2 重大事故等対策時に必要な要 員の評価結果」で示す運転員及び災害対策要員の 39 名で対処可能である。

また,事象発生2時間以降に必要な参集要員は5名であり,発電所構外 から時間以内に参集可能な要員の71名で確保可能である。

(2) 必要な資材の評価

事故シーケンスグループ「崩壊熱除去機能喪失」の残留熱除去系が故障 した場合において,必要な水源,燃料及び電源は「6.1(2) 資源の評価条 件」の条件にて評価を行い,以下のとおりである。

a.水 源

低圧代替注水系(常設)による原子炉注水及び代替格納容器スプレイ 冷却系(常設)による格納容器スプレイについては,7日間の対応を考 慮すると,合計約5,410m³の水が必要となる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,必要な水源は確保可能である。また, 事象発生48時間程度以降から可搬型代替注水大型ポンプを用いて,淡水 貯水池から代替淡水貯槽への補給を行うことで,代替淡水貯槽を枯渇さ せることなく代替淡水貯槽を水源とした7日間の注水継続が可能である。 ここで,代替淡水貯槽への補給開始を事象発生の48時間後としているが, 実際には数時間で補給を開始することが可能である。

(添付資料 2.4.2.3)

b.燃料

外部電源喪失を想定した場合,非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継

続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発 電機による電源供給については,事象発生直後からの運転を想定すると, 7日間の運転継続に約130.3kLの軽油が必要となる。常設代替交流電源 装置による電源供給については,事象発生直後からの運転を想定すると, 7日間の運転継続に約141.2kLの軽油が必要となる。軽油貯蔵タンクに 約800kLの軽油を保有していることから,非常用ディーゼル発電機,高 圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源装置による電 源供給について,7日間の継続が可能である。

可搬型代替注水大型ポンプによる代替淡水貯槽への給水については, 事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽油 が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有してい ることから,可搬型代替注水大型ポンプによる給水について,7日間の 継続が可能である。

(添付資料 2.4.2.4)

c. 電 源

外部電源喪失を想定した場合,重大事故等対策時に必要な負荷のうち, 非常用ディーゼル発電機等からの電源供給を考慮する負荷については, 非常用ディーゼル発電機等の容量内に収まることから,電源供給が可能 である。

常設代替交流電源設備からの電源供給を考慮する負荷については約 982kW 必要となるが,常設代替交流電源設備(常設代替高圧電源装置 2 台)の連続定格容量は 2,208kW であることから,必要負荷に対しての電 源供給が可能である。

(添付資料 2.4.2.5)

2.4.2.5 結 論

事故シーケンスグループ「崩壊熱除去機能喪失」の残留熱除去系が故障し た場合では、崩壊熱除去機能の喪失により格納容器が先行破損し、その後、 炉心損傷に至ることが特徴である。事故シーケンスグループ「崩壊熱除去機 能喪失」の残留熱除去系が故障した場合に対する炉心損傷防止対策としては、 初期の対策として原子炉隔離時冷却系、高圧炉心スプレイ系、低圧代替注水 系(常設)及び逃がし安全弁による原子炉注水手段、安定状態に向けた対策 として代替格納容器スプレイ冷却系(常設)による格納容器冷却手段及び格 納容器圧力逃がし装置による格納容器除熱手段を整備している。

事故シーケンスグループ「崩壊熱除去機能喪失」の重要事故シーケンス「過 渡事象(給水流量の全喪失)+RHR失敗」について有効性評価を行った。

上記の場合においても,原子炉隔離時冷却系,高圧炉心スプレイ系,低圧 代替注水系(常設)及び逃がし安全弁による原子炉注水,代替格納容器スプ レイ冷却系(常設)による格納容器冷却並びに格納容器圧力逃がし装置によ る格納容器除熱を実施することで,炉心の著しい損傷を防止することができ る。

その結果,燃料被覆管最高温度及び酸化量,原子炉冷却材圧力バウンダリ にかかる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目 を満足している。また,安定状態を維持することができる。

なお,格納容器圧力逃がし装置等の使用による敷地境界での実効線量は, 周辺公衆に対して著しい被ばくのリスクを与えることはない。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「崩壊熱除去機能喪失」の残留 熱除去系が故障した場合において,原子炉隔離時冷却系,高圧炉心スプレイ 系,低圧代替注水系(常設)及び逃がし安全弁による原子炉注水,代替格納 容器スプレイ冷却系(常設)による格納容器冷却並びに格納容器圧力逃がし 装置による格納容器除熱等の炉心損傷防止対策は,選定した重要事故シーケ ンスに対して有効であることが確認でき,事故シーケンスグループ「崩壊熱 除去機能喪失」の残留熱除去系が故障した場合に対して有効である。

# 第2.4.2-1 表 崩壊熱除去機能喪失時(残留熱除去系が故障した場合)における重大事故等対策について(1/3)

			重大	事故等対処設備
操作及び確認	手順	常設設備	可搬型 設備	計装設備
原子炉スクラムの確認	・原子炉スクラムを確認する。	—	_	平均出力領域計装
				起動領域計装
原子炉隔離時冷却系及び高	・原子炉水位が、原子炉水位異常低下(レベル	【原子炉隔離時	—	原子炉水位計(広帯域,燃料域)
圧炉心スプレイ系の自動起	2) 設定点に到達したことを確認する。	冷却系】		原子炉水位計(SA 広帯域, SA 燃料域)
動の確認	・原子炉隔離時冷却系及び高圧炉心スプレイ系	【高圧炉心スプ		【原子炉隔離時冷却系系統流量計】
	が自動起動し、原子炉水位が回復したことを	レイ系】		【高圧炉心スプレイ系系統流量計】
	確認する。	ATWS緩和設		原子炉圧力計
	・主蒸気隔離弁が自動閉止したことを確認する。	備(代替原子炉再		原子炉圧力計 (SA)
	・再循環ポンプがトリップしたことを確認する。	循環ポンプトリ		
		ップ機能)		
原子炉水位の調整操作	・原子炉隔離時冷却系により、原子炉水位を原	【原子炉隔離時	—	原子炉水位計(広帯域,燃料域)
(原子炉隔離時冷却系)	子炉水位低(レベル3)から原子炉水位高(レ	冷却系】		原子炉水位計(SA 広帯域, SA 燃料域)
	ベル8)の間に維持する。	【高圧炉心スプ		【原子炉隔離時冷却系系統流量計】
	・原子炉隔離時冷却系により原子炉水位の維持	レイ系】		【高圧炉心スプレイ系系統流量計】
	が可能な場合は、高圧炉心スプレイ系による			
	原子炉注水を停止する。			
崩壊熱除去機能喪失の確認	・サプレッション・プール水温度が 32℃以上で	—	_	サプレッション・プール水温度計
	あることを確認する。			【残留熱除去系ポンプ吐出圧力計】
	・残留熱除去系によるサプレッション・プール			
	冷却操作を試みるが,残留熱除去系の起動に			
	失敗したことを確認する。			
	・以上により崩壊熱除去機能喪失を確認する。			
		Ι	]:重大	事故等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

	育 2.4.2−1 表	崩壞熱除去機能喪失時	(残留熱除去系が故障した場合)	における重大事故等対策について	`(2/:
--	-------------	------------	-----------------	-----------------	-------

<b>出作及</b> 式 碑 初	揭作及TI在题 毛 順		重大事故等対処設備		
採作及び推認	一 一 順	常設設備	可搬型設備	計装設備	
低圧代替注水系(常設)の起動 準備操作	<ul> <li>・崩壊熱除去機能喪失の確認後,低圧代替注水系(常設)を起動する。</li> <li>・外部電源が喪失している場合は,常設代替高圧電源装置を起動し,緊急用母線を受電する。</li> </ul>	常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク	_	常設低圧代替注水系ポンプ吐出圧力計	
逃がし安全弁(自動減圧機能) による原子炉減圧操作	<ul> <li>・低圧代替注水系(常設)の起動準備操作の 完了後、サプレッション・プール水温度が サプレッション・プール熱容量制限(原子 炉が高圧の場合は65℃)に到達したことを 確認する。</li> <li>・逃がし安全弁(自動減圧機能)7弁の手動開 放により、原子炉減圧操作を実施する。</li> </ul>	逃がし安全弁(自 動減圧機能) 常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク	_	サプレッション・プール水温 度計 原子炉圧力計 原子炉圧力計(SA) 低圧代替注水系原子炉注水流 量計 代替淡水貯槽水位計	
原子炉水位の調整操作 (低圧代替注水系(常設))	<ul> <li>・原子炉減圧により低圧代替注水系(常設) からの原子炉注水が開始され,原子炉水位 が回復することを確認する。</li> <li>・原子炉隔離時冷却系が停止することを確認 する。</li> <li>・以降,原子炉水位は,原子炉水位低(レベ ル3)設定点から原子炉水位高(レベル8) 設定点の間に維持する。</li> </ul>	逃がし安全弁 常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク	_	原子炉水位計(広帯域,燃料 域) 原子炉水位計(SA広帯域, SA 燃料域) 原子炉圧力計 原子炉圧力計(SA) 低圧代替注水系原子炉注水流 量計 代替淡水貯槽水位計	

第 2.4.2-1 表  崩壊熱除去機能喪矢時(残留熱除去糸か故障した場合)における重大事故等対策につい
------------------------------------------------------

操作及び確認     ・ ・ ・ ・ ・ サプレッション・チェンバ圧力が     常設設備     可搬型設備       代替格納容器スプレイ冷却系     ・ ・ サプレッション・チェンバ圧力が     常設低圧代替注水     -     ドライウ: ・ サプレッション・ ・ イジレクション・ ・ (常設)による格納容器冷却操     ・ ・ 279kPa[gage]に到達したことを確認する。     系ポンプ     ・     サプレッション・ ・ (常設)による格納容器冷却操     ・     ・     ・     ・     ドライウ: ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・     ・ <th>計装設備 ェル圧力計 ション・チェンバ</th>	計装設備 ェル圧力計 ション・チェンバ
代替格納容器スプレイ冷却系       ・サプレッション・チェンバ圧力が       常設低圧代替注水       ー       ドライウ:         (常設)による格納容器冷却操       279kPa[gage]に到達したことを確認する。       系ポンプ       サプレッジ         作       ・代替格納容器スプレイ冷却系(堂設)による       代替淡水貯槽       ドライウ:	ェル圧力計 ション・チェンバ
(常設)による格納容器冷却操 279kPa[gage]に到達したことを確認する。 系ポンプ サプレッシュ や (***********************************	ション・チェンバ
作 ・代萃格納容器スプレイ冷却系(堂設)による「代萃淡水貯榑」 「正力計	
格納容器スプレイ操作を実施する。    常設代替高圧電源      低圧代替	注水系格納容器ス
<ul> <li>・サプレッション・プール水位が、通常水位   装置</li> <li>プレイ流動</li> </ul>	量計
+6.5m に到達した時点で,代替格納容器ス 軽油貯蔵タンク 代替淡水野	貯槽水位計
プレイ冷却系(常設)による格納容器スプ サプレッジ	ション・プール水
レイを停止する。 位計	
格納容器圧力逃がし装置によ   ・ サ プ レ ッ シ ョ ン ・ チ ェ ン バ 圧 力 が   格納容器圧力逃が   - ドライウ:	ェル圧力計
る格納容器除熱操作(サプレ 310kPa[gage]に到達したことを確認し,サ し装置 サプレッジ	ション・チェンバ
ッション・チェンバ側) プレッション・チェンバ側から格納容器圧 圧力計	
力逃がし装置による格納容器ベントを実施 サプレッジ	ション・プール水
する。 位計	
格納容器	雰囲気放射線モニ
タ(D/W,	S/C)
フィルタミ	装置出口放射線モ
ニタ(高し	レンジ, 低レンジ)
可搬型代替注水大型ポンプに   ・可搬型代替注水ポンプにより代替淡水貯水   代替淡水貯槽   可搬型代替   代替淡水野	貯槽水位計
よる水源補給操作 池から代替淡水貯槽に水源補給操作を実施 淡水貯水池 注水大型ポ	
する。	
タンクローリによる燃料補給 ・タンクローリによる燃料補給操作を実施す 可搬型設備用軽油 タンクロー -	
操作     る。     タンク     リ	
使用済燃料プールの冷却操作 ・対応可能な要員にて使用済燃料プールの冷 – – – –	
却操作を実施する。	

:有効性評価上考慮しない操作

第2.4.2-2表 主要解析条件(崩壊熱除去機能喪失(残留熱除去系が故障した場合))(1/6)					
項目		主要解析条件	条件設定の考え方		
解析コード		原子炉側; SAFER 格納容器側; MAAP	本重要事故シーケンスの重要現象を評価できる解析コード		
原子炉熱出力		3, 293MW	定格熱出力を設定		
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定		
	原子炉水位	通常運転水位(セパレータスカー ト下端から+126 cm)	通常運転水位を設定		
	炉心流量	48,300 t ⁄h	定格流量を設定		
	炉心入口温度	約 278℃	熱平衡計算による値		
初	炉心入口サブクール度	約 9℃	熱平衡計算による値		
	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等であ り,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定		
	燃料棒最大線出力密度	44.0kW/m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定となるため、保安規定の運転上の制限における上限値を設定		
	原子炉停止後の崩壊熱 	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳 しい設定となるため,崩壊熱が大きくなる燃焼度の高い条件として,1 サイクルの運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した 運転期間に対応する燃焼度を設定		
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい設定として,通常運転時の管理範囲を考慮し た高めの圧力を設定		
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計におけるドライウェル平均温度を設定		

第 2.4.2-2 表 主要	解析条件(肩	₋ 崩壊熱除去機能喪失	(残留熱除去系が故障した場合))	(2/	6)
----------------	--------	------------------------	------------------	-----	----

項目		主要解析条件	条件設定の考え方
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定
初期条件	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300 m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし て,保安規定の運転上の制限における下限値を設定
	サプレッション・ プール水位	6.983m (通常水位-4.7cm)	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限値を設定
	サプレッション・ プール水温度	32°C	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限値を設定
	起因事象	給水流量の全喪失	運転時の異常な過渡変化の中で原子炉水位の急速な低下に伴い,原子炉ス クラム,炉心損傷までの余裕時間が短い給水流量の全喪失を設定
事故条件 関連する機器条件 していたので、 しいたので、 した	安全機能の喪失 に対する仮定	崩壊熱除去機能喪失	残留熱除去系の故障により崩壊熱除去機能の喪失を設定
	外部電源	外部電源あり	外部電源がある場合,原子炉スクラム及び再循環ポンプトリップは,それ ぞれ原子炉水位低(レベル3)信号及び原子炉水位異常低下(レベル2) 信号となり,原子炉水位の低下が大きくなることで,燃料被覆管温度の観 点で厳しくなる
	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉 水位の低下を厳しくする条件として,外部電源がある場合の原子炉水位低 (レベル3)信号による原子炉スクラムを設定
	ATWS緩和設備 (代替原子炉再循環ポンプト リップ機能)	原子炉水位異常低下(レベル2) 信号で全台停止	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉 水位の低下を厳しくする条件として,外部電源がある場合の原子炉水位異 常低下(レベル2)信号による再循環ポンプトリップを設定
### 第2.4.2-2表 主要解析条件(崩壊熱除去機能喪失(残留熱除去系が故障した場合))(3/6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に関連	原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて 自動起動 原子炉水位が原子炉水位高(レベル8)設 定点まで回復した以降は原子炉水位を原 子炉水位低(レベル3)設定点から原子炉 水位高(レベル8)設定点の範囲に維持 原子炉減圧時の低圧代替注水系(常設)に よる原子炉水位回復性能を確認する観点 で,原子炉減圧操作と同時に注水停止 最小流量特性 ・注水流量:136.7m ³ /h ・注水圧力:7.86~1.04MPa[dif]	設計値を設定 原子炉隔離時冷却系は、タービン回転数制御により原子炉圧力に 依らず一定の流量にて注水する設計となっている
座する機器条件	高圧炉心スプレイ系	原子炉水位異常低下(レベル2)信号にて 自動起動 原子炉水位が原子炉水位高(レベル8)設 定点まで回復し,原子炉隔離時冷却系のみ により原子炉水位の維持が可能な場合は 注水停止 最小流量特性 ・注水流量:0~1,419m ³ ∕h ・注水圧力:1.38M~7.65Pa[dif]	設計値を設定 原子炉水位の観点で厳しい設定として,最小流量特性を設定

### 第2.4.2-2表 主要解析条件(崩壊熱除去機能喪失(残留熱除去系が故障した場合))(4/6)

	項目	主要解析条件	条件設定の考え方		
重大事故等対策に明	低圧代替注水系(常設)	原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 (原子炉注水単独時) 最小流量特性(2台) ・注水流量:0~378m ³ /h ・注水圧力:0~2.38MPa[dif]	炉心冷却の観点で厳しい設定として,機器設計上の最低要 求値である最小流量特性を設定 <常設低圧代替注水ポンプ2台による注水特性>		
ば連する		(原子炉注水と格納容器スプレイ併用時) ・注水流量:230m ³ /h (一定)	併用時の系統評価に基づき、保守的な流量を設定		
機器条件	代替格納容器スプレイ冷却系 (常設)	サプレッション・チェンバ圧力が 217kPa[gage] に到達した場合は停止し, 279kPa[gage]に到達し た場合に再開	格納容器圧力上昇を抑制可能な流量として,運転手順にま づき設定		
	外部水源の水温	スフレイ流量:130m°/h(一定)   35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい めの水温として,代替淡水貯槽及び水源補給に用いる淡 貯水池の年間の気象条件変化を包含する高めの水温を 定		

	項目	主要解析条件	条件設定の考え方
重		<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79MPa [gage] ×2 個, 385.2t/h/個</li> <li>8.10MPa [gage] ×4 個, 400.5t/h/個</li> <li>8.17MPa [gage] ×4 個, 403.9t/h/個</li> <li>8.24MPa [gage] ×4 個, 407.2t/h/個</li> <li>8.31MPa [gage] ×4 個, 410.6t/h/個</li> </ul>	設計値を設定
大事故等対策に関連する機器条:	逃がし安全弁	(原子炉減圧操作時) 自動減圧機能付き逃がし安全弁7弁を開放するこ とによる原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の 関係から設定
件	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	設計値を設定
	格納容器圧力逃がし装置	排気特性:最小流量特性 13.4kg/s(格納容器圧力310kPa[gage]において)	格納容器減圧特性の観点で厳しい設定として,機器設計上 の最低要求値である最小流量特性を設定

第2.4.2-2表 主要解析条件(崩壊熱除去機能喪失(残留熱除去系が故障した場合))(5/6)

第2.4.2-2表 主要解析条件(崩壊熱除去機能喪失(残留熱除去系が故障した場合))(6/6)

	項目	主要解析条件	条件設定の考え方		
関連する操作条件重大事故等対策に	逃がし安全弁(自動減圧機 能)による原子炉減圧操作 (低圧代替注水系(常設)に よる原子炉注水操作)	サプレッション・プール水温度 65℃到達時	運転手順に基づき,サプレッション・プール熱容量制限を踏ま えて設定。		
	大 事 代替格納容器スプレイ冷却 数 系(常設)による格納容器冷 募 却操作	サプレッション・チェンバ圧力 279kPa[gage]到達時	運転手順に基づき格納容器ベント実施基準である格納容器最高 使用圧力(310kPa[gage])に対する余裕を考慮し設定		
	へ を 格納容器圧力逃がし装置に よる格納容器除熱操作	サプレッション・チェンバ圧力 310kPa[gage]到達時	運転手順に基づき,格納容器最高使用圧力を踏まえて設定		





第2.4.2-1 図 崩壊熱除去機能喪失(残留熱除去系が故障した場合)時の重大事故等対策の概略系統図(2/4) (低圧代替注水系(常設)による原子炉注水段階)



第2.4.2-1 図 崩壊熱除去機能喪失(残留熱除去系が故障した場合)時の重大事故等対策の概略系統図(3/4) (低圧代替注水系(常設)による原子炉注水及び 代替格納容器スプレイ冷却系(常設)による格納容器冷却段階)



第2.4.2-1 図 崩壊熱除去機能喪失(残留熱除去系が故障した場合)時の重大事故等対策の概略系統図(4/4) (低圧代替注水系(常設)による原子炉注水及び 格納容器圧力逃がし装置を使用した格納容器ベントによる格納容器除熱段階)





							崩壊熱除去	機能喪失(残留熱除去系が	女障した場合)								
						1											
						0	0 20	30	40	超	E過時間(分) 60	70	80	90	100	110	-
								1 1		1		1	1	1	1		備考
過作項目	責任者補佐	実施箇所・, 【 】は 移動して 発電長 副発電長	必要要員 他作業後 きた要員 1人 1人	数 中央監視 運転操作指揮 運転操作指揮補佐	進作の内容	<ul> <li>▼ 事象発生</li> <li>▼ 原子炉スクラ</li> <li>▼ 約20秒 原子</li> </ul>	ム ·炉水位異常低下(	レベル 2) 設定点到達								k	
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡	2001 - SA 1924		▼ プラント状況判断										
	運転員 (中央制御室)	運転員 (現場)		重大事故等対応要員 (現場)													
状況判断	2 Á A, B	-		_	<ul> <li>         ・給水流量全喪失の確認         ・原子炉スクラムの確認         ・タービン停止の確認         ・タービン停止の確認         ・外部電源喪失の確認         ・非常用ディーゼル発電機の自動起動確認         ・非常用ディーゼル発電機の自動起動確認         ・正素気隔離非閉止及び高圧炉心スプレイ系自動起動の確         認         ・主素気隔離非閉止及び透がし安全弁による原子炉圧力制御の確認         ・再循環ボンプトリップの確認     </li> </ul>												<ul> <li>外部電源喪失の確認</li> <li>及び非常勝万ィーゼ</li> <li>動の確認は、外部電</li> <li>源がない場合に実施</li> <li>する</li> </ul>
原子炉水位の調整操 作(原子炉隔離時冷 却系)	【1人】 A	_		_	●原子炉隔離時冷却系及び高圧炉心スプレイ系による 原子炉注水の調整操作		低圧代替注水系 原子炉水位が安定	・ (常設)による原子炉注水が こして維持される場合は,高	開始されるまでの間, 原 E炉心スプレイ系は待機	【子炉水位を原子炉水位 #状態とする	:低(レベル3)設定	点から原子炉水位高	(レベル8)設定点の	間に維持			
崩壊熱除去機能喪失 の確認	【1人】 B	_		_	●残留熱除去系によるサブレッション・プール冷却操作(失敗)	)	10 分										
残留熱除去系の回復 操作	-	-		_	<ul> <li>●残留熱除去系の機能回復操作</li> </ul>												解析上考慮しない 対応可能な要員にて 実施
常設代替高圧電源装 置による緊急用母線 受電操作	【1人】 B	_		_	●常設代替高圧電源装置2台起動及び緊急用母線受電操作			4 分									外部電源がない場合 に実施する

# コメント No. 147-27 に対する回答

第2.4.2-3 図 崩壊熱除去機能喪失(残留熱除去系が故障した場合)の作業と所要時間(1/2)

第2.4.2-3 図 崩壊熱除去機能喪失(残留熱除去系が故障した場合)の作業と所要時間(2/2)

				· - · - · - ·		· · -	
-	211	h No	147 - 97	レナナ	て同次	1	
,	~ ~	P NO.	141 21		の回合		

						崩壊熱除	去機能喪失(残留熱	除去系が故障した場合)									
									بہ اللہ جن	6 BB ( D4 BB )							/世 -王
					-	4 8	12	16	<u>推適</u> 転 20 24	子同 (時間)	28	32	36	44	48	52	/ / / / / / / / / / / / / / / / / / /
操作項目	実施箇所・必要要員数 【 】は他作業後 移動してさた要員 操作の内容			× 7	事象発生 ▼約2時間 サプレッション・プール水温度65℃到達 ▼約13時間 サプレッション・チェンバ圧力279kPa [gage] 到達												
						▼ 約24時间 サブレッション・ワール水位 通常水位+5.5m到達 ▼約27時間 サブレッション・ブール水位 通常水位+6.5m到達											
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)								<del>۳</del> *	528時間 サプレ _ン	ッション・チェン	バ圧力310kPa [g	gage]到達		
低圧代替注水系(常設) の起動準備操作	【1人】 B	-	-	●低圧代替注水系(常設)による原子炉注水 系統構成		3 分											サプレッション・プー ル熱容量制限到達まで に実施
逃がし安全弁による原 子炉減圧操作	【1人】 B	-	-	●逃がし安全弁7弁の開放操作		1分											
原子炉水位の調整操作 (低圧代替注水系(常	【1人】	_	_	●原子炉隔離時冷却系による原子炉注水の調整操作													
設))	A			●低圧代替注水系(常設)による原子炉注水の調整操作				原子炉水位を原子	子炉水位低(レベル3)設定	定点から原子炸	戸水位高(	レベル8)設定点	気の間に維持				4
代替格納容器スプレイ 冷却系(常設)による格 納容器冷却操作	【1人】 B	-	-	●格納容器スプレイ操作				格納容器	スプレイ中,適宜状態監視								
代替循環冷却系の起動 操作	【1人】 B	_	-	<ul> <li>●代替循環冷却系による原子炉注水操作</li> <li>●代替循環冷却系による格納容器スプレイ操作</li> </ul>				格納容器	スプレイ中,適宜状態監視	注	水開始後,	適宜原子炉水位書	调整				解析上考慮しない 代替循環冷却系のみて 状態維持が可能な場合 は、低圧代替注水系(常 設)による注水を停止す ス
原子炉满水操作	【1人】 B	_	_	<ul> <li>●原子炉注水流量の増加操作</li> </ul>									原子炉水位を可能	能な限り高く維持	ŕ		解析上考慮しない
使用済燃料プールの冷 却操作	_	_	-	●使用済燃料プールの冷却操作													使用済燃料ブールの賢 熱機能が喪失した場合 でも,ブール水温度効 80℃に到達するまでに は1日程度の時間余裕が あるため,本操作は対処 可能な要員にて実施す る
格納容器ベント準備機	【1人】 A	-	-	●格納容器ベント準備(系統構成)					5分								
作	-	3人 C, D, E	-	<ul> <li>●現場移動(第一弁)</li> <li>●格納容器ベント準備(系統構成)</li> </ul>						125 分							1
格納容器圧力逃がし装置によるな独容器に対	【1人】 A	_	_	●中央制御室からの格納容器ベント操作									格納容器ベント	実施後 適宜状態	態監視		
<ul> <li></li></ul>	-	-	【3人】 (招集)	●現場手動による格納容器ベント操作						75	分					_	解析上考慮しない
可搬型代替注水大型ポ	-	-	8人 a~h	●可搬型代替注水大型ポンプの移動,ホース敷設等											160 分		
ンプによる水源補給操 作	_	-	【2人】 a, b	●ボンブ起動及び水源補給操作												適宜実施	水源枯渇までは十分余 裕がある。
タンクローリによる	_	_	<u>2人</u> (約145)	●可搬型設備用軽油タンクからタンクローリへの補給											110 分		<ul> <li>タンクローリー残量に</li> <li>応じて適宜軽油タンクから補給</li> </ul>
燃料補給操作			(招集)	●可搬型代替注水大型ポンプへの給油												適宜実施	
必要要員合計	2人 A, B	3人 C, D, E	8人 a~h 及び招集5人		•												







2.4.2-45



第2.4.2-7図 逃がし安全弁からの蒸気流量の推移



第2.4.2-8 図 原子炉内保有水量の推移



第2.4.2-9図 燃料被覆管温度の推移



第2.4.2-10図 燃料被覆管最高温度発生位置における熱伝達係数の推移



2.4.2-48





第2.4.2-14 図 燃料被覆管破裂が発生した時点の燃料被覆温度と 燃料被覆管の円周方向の応力の関係









安定状態について

(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

崩壊熱除去機能喪失(残留熱除去系が故障した場合)時の安定状態 については,以下のとおり。

原子炉安定停止状態:	事象発生後,設計基準事故対処設備又は重大事故等対処
	設備を用いた炉心冷却が維持可能であり、また、冷却の
	ための設備がその後も機能維持でき、かつ、必要な要員
	の不足や資源の枯渇等のあらかじめ想定される事象悪
	化のおそれがない場合に安定停止状態が確立されたも
	のとする。
格納容器安定状態 :	炉心冷却が維持された後に、設計基準事故対処設備又は
	重大事故等対処設備を用いた格納容器除熱により格納
	容器圧力及び温度が安定又は低下傾向に転じ、また、格
	納容器除熱のための設備がその後も機能維持でき、か
	つ,必要な要員の不足や資源の枯渇等のあらかじめ想定
	される事象悪化のおそれがない場合に安定状態が確立
	されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

原子炉隔離時冷却系及び高圧炉心スプレイ系の原子炉注水により炉心が冠水 し、炉心冷却が維持される。サプレッション・プール熱容量制限に到達後、原 子炉を減圧し、低圧代替注水系(常設)を用いた原子炉注水を継続することで、 引き続き炉心が冠水し、炉心の冷却は維持され、原子炉安定停止状態が確立さ れる。

格納容器安定状態の確立について

炉心冷却を継続し,事象発生の約28時間後に格納容器圧力逃がし装置等を用いた格納容器除熱を実施することで,格納容器圧力及び雰囲気温度は安定又は低下傾向となる。格納容器雰囲気温度は150℃を下回るとともに、ドライウェル雰囲気温度は,低圧注水継続のための逃がし安全弁の機能維持が確認されている126℃を上回ることはなく,格納容器安定状態が確立される。なお、格納容器圧力逃がし装置等を用いた格納容器除熱を実施するが、敷地境界における実効線量は、本事故シーケンスとベントタイミングが同等であり、放射性物質の減衰効果も同等となる「2.6 LOCA時注水機能喪失」の評価結果6.2×10⁻¹mSvと同等となり、また、燃料被覆管の破裂も発生しないことから、周辺公衆に対して著しい放射線被ばくのリスクを与えることはない。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,代替循環冷却系又は残留熱除去系の復旧により除熱を行い,格納容器 ベントを閉止し格納容器を隔離することで,安定状態の更なる除熱機能の確保 及び維持が可能となる。

(添付資料 2.1.1 別紙 1)

# コメントNo.148-21,265-06,07,08に対する回答 解析コード及び解析条件の不確かさの影響評価について(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

#### 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壊熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料 棒表 面熱 伝 達,沸騰遷移,気 液熱非平衡		TBL, ROSA-Ⅲの実験解析において, 熱伝達係数 を低めに評価する可能性があり,他の解析モデ ルの不確かさとあいまってコード全体として, スプレイ冷却のない実験結果の燃料被覆管温度 に比べて+50℃程度高めに評価する。また、低 圧代替注水系(常設)による注水での燃料棒冷 却過程における蒸気単相冷却又は噴霧流冷却の 不確かさは20℃~40℃程度である。	解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、操作手順(速 やかに注水手段を準備すること)に変わりはなく、事象初期の原 子炉注水は原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起 動により確保され、燃料被覆管温度を起点とする運転員等操作は ないことから、運転員等操作時間に与える影響はない。	実解析コードは、実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し、有効性評価解析においても燃料 被覆管温度を高めに評価することから、評価項目となるパラメー タに対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジル コニウム - 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もる Baker-Just 式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,操作手順(速 やかに注水手段を準備すること)に変わりはなく,事約初期の原 子炉注水は原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起 動により確保され,燃料被覆管温度を起点とする運転員等操作は ないことから,運転員等操作時間に与える影響はない。	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるバラメータに対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は、燃料被覆管温度と円周方向応力 に基づいて評価され、燃料被覆管温度は上述の ように高めに評価され、円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって、ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	有効性評価解析では原子炉水位が燃料有効長頂部を下回ることは なく,燃料被覆管最高温度は初期値を上回ることがないことから, 燃料被覆管の破裂判定の不確かさが運転員等操作に与える影響は ない。	有効性評価解析では原子炉水位が燃料有効長頂部を下回ることは なく,燃料被覆管最高温度は初期値を上回ることがないことから, 燃料被覆管の破裂判定の不確かさが評価項目となるバラメータに 与える影響はない。

### 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	<ul> <li>沸騰・ボイド率変化、気液分離(水 位変化)・対向流、</li> <li>三次元効果</li> </ul>	二 相 流 体 の 流 動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重畳する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPa より低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早める可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの板滴で冷却された際に蒸 気が発生したためであり,低圧代替注水系を注 水手段として用いる本事故シーケンスでは考慮 する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注 水系の注水タイミングに特段の差異を生じる可 能性はないと考えられる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析では原 子炉水位が燃料有効長頂部を下回ることがなく、炉心露出後の再 冠水過程で現れる解析結果に重畳する水位振動成分を考慮する必 要がないため、評価項目となるバラメータに与える影響はない。
	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。
原子炉 圧力容器	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃じ安全先からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており,実機設備仕様に対し て注水流量を少なめに与え,燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

# 第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壊熱	炉心モデル(原 子炉出力及び 崩壊熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モデルの不確かさの影 響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注 水(給水 系・代替 注 水 備含む)	安全系モデル (非常用炉心 冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析モデルの不確かさの 影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるバラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。
原子炉格納容器	格器域流 構と伝び熱 名間動 が熱及部導 系 教 の 達	格納容器モデ ル(格納容器の 熱水力モデル)	HDR実験解析では,格納容器圧力及び雰囲気温度について,温度 成層化を含めて傾向をよく再現できることを確認した。格納容器雰 囲気温度を十数℃程度高めに,格納容器圧力を1割程度高めに評価 する傾向が確認したが,実験体系に起因するものと考えられ、実機 体系においてはこの種の不確かさは小さくなるものと考えられる。 また,非凝縮性ガス濃度の挙動について,解析結果が測定データと よく一致することを確認した。 格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確 かさにおいては,CSTF実験解析では,格納容器雰囲気温度及び 非凝縮性ガス濃度の挙動について,解析結果が測定データとよく一 致することを確認した。	解析コードは、HDR 実験解析において区画によって格納容器雰 囲気温度を十数で程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが,BWRの格納容器内の区画とは異 なる等,実験体系に起因するものと考えられ,実機体系におい ては不確かさが小さくなるものと推定され,全体としては格納 容器圧力及び温度の傾向を適切に再現できているため,格納容 器圧力を操作開始の起点としている代替格納容器スプレイ冷 却系(常設)による格納容器冷却及び格納容器圧力逃がし装置 等による格納容器各領域間の流動,構造材との熱伝達及び内部熱 伝導の不確かさにおいては,CSTF実験解析において格納容 器雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一 致することを確認しており,その差異は小さいため,格納容器 圧力及び雰囲気温度を操作開始の起点としている代替格納容 器スプレイ冷却系(常設)による格納容器除熱に係る運転員等操作時間 に与える影響は小さい。	解析コードは、HDR 実験解析において区画によって格納容器雰 囲気温度を十数で程度,格納容器圧力を1割程度高めに評価す る傾向が確認されているが、BWRの格納容器内の区面とは異 なる等,実験体系に起因するものと考えられ、実機体系におい ては不確かさが小さくなるものと推定され、全体としては格納 容器圧力及び温度の傾向を適切に再現できているため、評価項 目となるパラメータに与える影響は小さい。 また,格納容器各領城間の流動,構造材との熱伝達及び内部熟 伝導の不確かさにおいては、CSTF実験解析により格納容器 雰囲気温度及び非凝縮性ガスの挙動は測定データと良く一致す ることを確認しているため,評価項目となるパラメータに与え る影響は小さい。
	ス プ レ イ冷却	安全系モデル (格納容器ス プレイ)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平衡に至ることから伝 熱モデルの不確かさはない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。
	格 納 容 器 ベ ン ト	格納容器モデ ル(格納容器の 熱水力モデル)	入力値に含まれる。 MAAPコードでは格納容器ベントについては,設計流量に基づいて流 路面積を入力値として与え,格納容器各領域間の流動と同様の計算 方法を用いてられている。	「解析条件を最確条件とした場合の運転員等操作時間及び評 価項目となるバラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価 項目となるパラメータに与える影響」にて確認。

(MAAP)

	75 D	解析条件	牛の不確かさ	<b>久供訊台の共主</b> 士		評価項目となるパラメータに
	項 日	解析条件	最確条件	条件設定の考え方	運転員寺操作时间に与える影響	与える影響
	原子炉熱出力	3, 293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は,最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熱にて説明する。
初	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は途がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響はない。
	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカート下 端から約 122cm~+132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mであ り非常に小さい。したがって、事象進展に及ぼす影響ない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるパラメータに与える影響はない。
- <del>期</del> 条 件	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ボンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響はな い。	最確条件とした場合には、炉心流量の運転範囲におい て解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響はな い。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型) は、熱水力的な特性はほぼ同等であり、 その他の核的特性等の違いは燃料棒最 大線出力密度の保守性に包含されるこ とから、代表的に9×9燃料(A型)を設 定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性はほ ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44. 0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が 燃料被覆管温度に対して厳しい設定と なる このため,保安規定の運転上の制限にお ける上限値を設定	解析コードは、酸化量及び発熱熱の評価について保 守的な結果を与えるため、解析結果は燃料被覆管温 度を高く評価する可能性がある。よって、実際の燃 料被覆管温度は低くなるが、事象初期の原子炉注水 は原子炉隔離時冷却系及び高圧炉心スプレイ系の自 動起動により確保され、燃料被覆管温度を起点とす る運転員等操作はないことから、運転員等操作時間 に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから,評価項目となるパラメータに 対する余裕は大きくなる。

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/5)

|--|

		解析条件のオ	下確かさ	タルシークタント		評価項目となるパラメータに	
項目		解析条件	最確条件	条件設定の考え方	運転員等操作時間に与える影響	与える影響	
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下 及び格納容器圧力上昇の観点で厳しい 設定となる。このため,崩壊熱が大き くなる燃焼度の高い条件として、1サイ クルの運転期間(13ヶ月)に調整運転期 間(1ヶ月)を考慮した運転期間に対応 する燃焼度を設定	最確条件は解析条件で設定している崩壊熱よりも小さく なる傾向となるため、原子炉からサブレッション・プー ルに流出する蒸気量が減少することで、原子炉水位の低 下が遅くなるが、事象初期の原子炉注水は原子炉隔離時 冷却系及び高圧炉心スプレイ系の自動起動により確保さ れることから、運転員等操作時間に与える影響はない。 また、格納容器圧力、サプレッション・プール水位及び サプレッション・プール水温度の上昇が遅くなり、これ らのパラメータを起点とする運転員等操作の開始時間は 遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小さくなる 傾向となるため,燃料からの発熱が小さくなり,原子炉からサ プレッション・プールに流出する蒸気量が減少することで,原 子炉水位の低下並びに格納容器圧力及び温度の上昇が緩和さ れることから,評価項目となるパラメータに対する余裕が大き くなる。	
初期条件	格納容器圧力	5kPa[gage]	約 2.2~ 4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として,通常運転時の圧力を包含す る値を設定	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため,格納容器圧力が低めに推移 することから,格納容器圧力を起点とする運転員等操作 の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧力よりも 小さくなる。このため,格納容器圧力が低めに推移することか ら,評価項目となるパラメータに対する余裕は大きくなる。	
	ドライウェル 雰囲気温度	57°C	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、ドライウェル雰囲気温度は、格納 容器スプレイの実施に伴い飽和温度となることから、初 期温度のゆらぎが事象進展に与える影響は小さく、運転 員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して変動 を与えうるが、ドライウェル雰囲気温度は、格納容器スプレイ の実施に伴い飽和温度となることから、初期温度のゆらぎが事 象進展に与える影響は小さく、評価項目となるパラメータに与 える影響は小さい。	
	格納容器体積 (ドライウェル)	5,700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解折条件は最確条件と同等であることから,事象進展に影響は なく,評価項目となるパラメータに与える影響はない	
	格納容器体積 (ウェットウェ ル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約 4,058m ³ 液相部: 約3,308m ³ ~約 3,342m ³ (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる少なめの水量とし て,保安規定の運転上の制限における 下限値を設定	最確条件とした場合には、格納容器体積(ウェットウェ ル)の液相部の運転範囲において解析条件より高めの水 位となるが、ゆらぎの幅は非常に小さい。例えば、サブ レッション・プール水位が6.983mの時の水量は3,300m ³ であるのに対し、ゆらぎ(0.087m)による水量変化は約 42m ³ であり、その割合は初期保有水量の1.3%程度と非 常に小さい。したがって、事象進展に与える影響は小さ く、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、格納容器体積(ウェットウェル)の 液相部の運転範囲において解析条件より高めの水位となるが、 ゆらぎの幅は非常に小さい。例えば、サブレッション・ブール 水位が 6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m)による水量変化は約42m ³ であり、その割合は初期 保有水量の1.3%程度と非常に小さい。したがって、事象進展 に与える影響は小さく、評価項目となるパラメータに与える影響 響は小さい。	
	サプレッション・ プール水位	6.983m (通常運転水位 -4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限 値を設定	最確条件とした場合には、サプレッション・プール水位 の運転範囲において解析条件より高めの水位となるが、 ゆらぎの幅は非常に小さい。例えば、サプレッション・ プール水位が 6.983mの時の水量は 3,300m ³ であるのに対 し、ゆらぎ (0.087m) による水量変化は約 42m ³ であり、 その割合は初期保有水量の 1.3%程度と非常に小さい。 したがって、事象建展に与える影響は小さく、運転員等 操作時間に与える影響は小さい。	最確条件とした場合には、サプレッション・プール水位の運転 範囲において解析条件より高めの水位となるが、ゆらぎの幅は 非常に小さい。例えば、サプレッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)によ る水量変化は約42m ³ であり、その割合は初期保有水量の1.3% 程度と非常に小さい。したがって、事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。	
	サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑制 効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限 値を設定	最確条件は解析条件で設定している水温よりも低くなる ため、サプレッション・プールでの圧力抑制効果が高ま り格納容器圧力の上昇は緩和される。このため、格納容 器圧力を起点とする運転員等操作の開始は遅くなる。	最確条件は解析条件で設定している水温よりも低くなるため, サプレッション・プールでの圧力抑制効果が高まり格納容器圧 力の上昇は緩和される。このため,評価項目となるパラメータ に対する余裕は大きくなる。	

	та п	解析条件0	D不確かさ	冬供訊中小老之十	実だ号筮根が吐用にたらて影響	評価項目となるパラメータに	
	項日	解析条件 最確条件		米性設定の考え方	運転員寺傑作时间に与える影響	与える影響	
	起因事象	給水流量の全喪失	_	運転時の異常な過渡変化の中で原子炉水位 の急速な低下に伴い,原子炉スクラム,炉 心損傷までの余裕時間が短い給水流量の全 喪失を設定	_	_	
事故条	安全機能の喪失 に対する仮定	崩壞熱除去機能喪失	-	残留熱除去系の故障による崩壊熱除去機能 の喪失を設定			
件	外部電源	外部電源あり	_	起因事象発生から原子炉スクラムまでの期間の原子炉水位の低下を厳しくする条件として、外部電源ありを設定	外部電源がない場合でも,非常用母線は非常用ディ ーゼル発電機等から自動的に受電され,また,低圧 代替注水系(常設)の起動準備操作時間はたみ部電 源がない場合も考慮して設定していることから,運 転員等操作時間に与える影響はない。	外部電源がない場合は、外部電源喪失に伴い原子炉ス クラム、再循環ポンプトリップ等が発生するため、外 部電源がある場合と比較して原子炉水位の低下は緩 和されることから、評価項目となるパラメータに対す る余裕は大きくなる。	
関連する機器条件	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間 1.05 秒)	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉木位の低下 を厳しくする条件として,外部電源がある 場合の原子炉木位低(レベル3)信号によ る原子炉スクラムを設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
	A T W S 緩和設備 (代替原子炉再循環 ポンプトリップ機能)	原子炉水位異常低下 (レベル2)信号	原子炉水位異常低下 (レベル2)信号	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉水位の低下 を厳しくする条件として,外部電源がある 場合の原子炉水位異常低下(レベル2)信 号による再循環ポンプトリップを設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	

## 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(3/5)

安石孜   肝忉木口で取睡木口としに勿口に座船貝守床口时间及し口画曳口となる/ アノバーブに子んる影音(1	第2表	解析条件を最確条件とした場合	に運転員等操作時間及び評価項目	となるパラメータに与える影響(4	4/5)
-------------------------------------------------------	-----	----------------	-----------------	------------------	------

	百日	解析条件0	)不確かさ	冬州記字の老さ士	<b>海転号策協佐時間にちうて影響</b>	評価項目となるパラメータに	
垻 日		解析条件	最確条件	米什畝たり考え力	運転員寺採作时间にせんる影響	与える影響	
	原子炉隔離時 冷却系	原子炉水位異常低下(レベル2)信 号にて自動起動	原子炉水位異常低下(レベル2)信 号にて自動起動	設計値を設定。原子炉隔離時冷却系 は、タービン回転数制御により原子 炉圧力に依らず一定の流量にて注 オオス設計となっている	解析条件と最確条件は同様であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	解析条件と最確条件は同様であることから,事象 進展に影響はなく,評価項目となるパラメータに 与える影響はない。	
		・注水流量:136.7m°/h ・注水圧力:7.86~1.04MPa[gage]	・注水流量:136.7m ³ /h ・注水圧力:7.86~1.04MPa[gage]	パチ G 政府 となり CV る。			
関連する機器条件	高圧炉心	原子炉水位異常低下(レベル2)信 号にて自動起動	原子炉水位異常低下(レベル2)信 号にて自動起動	設計値を設定。原子炉水位の観点で 厳しい設定として,最小流量特性を 設定	最確条件とした場合には,注水開始後の原子炉 水位の回復が早くなり,原子炉水位の維持操作 の開始が早くなるが,原子炉水位回復までの期	最確条件とした場合には、注水開始後の原子炉水 位の回復が早くなり、炉心の再冠水が早まること から評価項目となるバラメータに対する余裕は	
	スノレイ糸	取小流量特性 ・注水流量:0~1,419m ³ /h ・注水圧力:1.38~7.65MPa[dif]	正格流量特性 ・注水流量:0~1,419m ³ /h 以上 ・注水圧力:1.38~7.65MPa[dif]		同は原ナ炉水位を継続監視していることから、 運転員等操作時間に与える影響は小さい。	大さくなる。	
	低圧代替 注水系(常設)	<ul> <li>(原子炉注水単独時)</li> <li>最小流量特性(2台)</li> <li>・注水流量:0~378 m³/h</li> <li>・注水圧力:0~2.38MPa[dif]</li> </ul>	<ul> <li>(原子炉注水単独時)</li> <li>定格流量特性(2台)</li> <li>・注水流量:0~378 m³/h以上</li> <li>・注水に力:0~2.38MPa[dif]</li> </ul>	炉心冷却性の観点で厳しい設定と して,設備設計上の最低要求値であ る最小流量特性を設定	最確条件とした場合には,注水開始後の原子炉 水位の回復が早くなり,原子炉水位の維持操作 の開始が早くなるが,原子炉減圧から水位回復 までの原子炉水位を継続監視している期間の流	最確条件とした場合には、注水開始後の原子炉水 位の回復が早くなり、炉心の再冠水が早まること から、評価項目となるパラメータに対する余裕は 大きくなる。	
		(原子炉注水と格納容器スプレイ 併用時) ・注水流量:230 m ³ ∕h	(原子炉注水と格納容器スプレイ 併用時) ・注水流量:230 m ³ ∕h以上	併用時の系統評価に基づき,保守的 な流量を設定	量調整操作であるため,運転員等操作時間に与 える影響はない。		
	代替格納容器 スプレイ冷却 系(常設)	スプレイ流量: 130m ³ /h(一定)	スプレイ流量: 130m ³ /h 以上	格納容器圧力上昇を抑制可能な流 量として,運転手順に基づき設定	解析条件と最確条件は同様であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	解析条件と最確条件は同様であることから,事象 進展に影響はなく,評価項目となるパラメータに 与える影響はない。	
	外部水源 の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制 効果の観点で厳しい高めの水温と して,代替淡水貯槽及び水源補給に 用いる淡水貯水池の年間の気象条 件変化を包含する高めの水温を設 定。	最確条件とした場合には,解析条件で設定して いる水温よりも低くなる可能性があり,格納容 器スプレイによる圧力抑制効果が高まることか ら,同等の効果を得るために必要となるスプレ イ水量が少なくなり,外部水源を用いた格納容 器スプレイに伴うサプレッション・プール水位 の上昇が緩和されることから,サプレッショ ン・プール水位を起点とする操作の開始は遅く なる。	最確条件とした場合には,解析条件で設定してい る水温よりも低くなる可能性があり,格納容器ス プレイによる圧力抑制効果が高まるが,格納容器 最高使用圧力に到達した時点で格納容器ペント を実施するマネジメントに変わりはなく,格納容 器圧力の最大値はおおむね格納容器ペント時の 圧力で決定されるため,評価項目となるパラメー タに与える影響はない。	

	西日	解析条件0	り不確かさ	タルホウのおうナ	安村号始根が中国にたらて影響	評価項目となるパラメータに
項 目		解析条件	最確条件	余件設定の考え方	運転員等操作時間に与える影響	与える影響
	*** + * * *	(原子炉圧力制御時) 安全弁機能 7.79~8.31MPa[gage] 385.2~410.6t/h/個	<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t/h/個</li> <li>(設計値)</li> </ul>	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。
関連する機器条件	述かし女主弁	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	(原子炉減圧操作時) 自動減圧機能付き逃 がし安全弁7弁を開放 することによる原子 炉減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない。
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同等であることから, 事象進展 に影響はなく, 評価項目となるパラメータに与える影 響はない。
	格納容器圧力逃がし 装置	排気流量: 最小流量特性	排気流量: 定格流量特性	格納容器減圧特性の観点で厳しい設定とし て,設備設計上の最低要求値である最小流 量特性を設定	最確条件とした場合には,格納容器ベント後の格納 容器圧力の低下が早くなるが,格納容器ベント後に 格納容器圧力を起点とする操作はないため,運転員 等操作時間に与える影響はない。	最確条件とした場合には,格納容器ベント後の格納容 器圧力の低下が早くなるが,格納容器最高使用圧力に 到達した時点で格納容器ベントを実施するマネジメ ントに変わりはなく,格納容器圧力の最大値はおおむ ね格納容器ベント時の圧力で決定されるため,評価項 目となるパラメータに与える影響はない。
	外部水源の容量	約 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており,水源は枯渇しないこと から運転員等操作時間に与える影響はない。	-
	燃料の容量	約 1,010kL	約1,010kL以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_

## 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(5/5)

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/3)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
	逃弁機定の が自動に成任代を がに し、 動に が に た た た た た た た た た た た た た た の に の に の	サン ン・度 時	<ul> <li>運転手順に基づき</li> <li>サプレッションン</li> <li>アプール熱容量制限</li> <li>を踏まえて設定</li> </ul>	【認知】 事故時の重要監視パラメータとしてサブレッション・プール水温を継続監視し ており、また、逃がし安全弁による原子炉減圧の操作実施基準(サプレッショ ン・プール水温度65℃)に到達するのは事象発生約2時間後であり、比較的緩 やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及ぼ す可能性は非常に小さい。 【要員配置) 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 透がし安全弁による原子炉減圧操作として余裕時間を含めて1分を設定してい る。中央制御室の制御盤の操作スイッチによる簡易な操作であり、操作所要時 間が長くなる可能性は非常に低く、操作所要時間が操作開始時間に影響を及ぼ す可能性は非常に小さい。 【他の並列操作有無】 他の並列操作有無】 他の並列操作なく、他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かさ要因に与える 影響大力の なりたいことから に与えるから、 た解析上の設定 はぼ同等である。 本操作条件を除く。) の不開始性がある。 本操作条件を除く。) の不開始性があるが、他 の操作との重他の操作 に与える影響はない。	実態の根上のあることなる 実態の根上のあることえ 能解析生であるに与 影響在ない。 解析条ののない、操作権から がですりにない。 解析条のの体理が がしたたで、 がしたたで、 がしたたで、 が、 がしたたで、 が、 が、 が、 が、 に 始の が、 に 始の が、 に た の 、 に 始 の や 作 作 か か し た 、 、 が し た 、 、 が 、 、 、 、 、 、 、 、 、 、 、 、 、	少雄時冷却が 「 御 本 総 た な た な た な た な た な た な た な た な た な た な た な た な た な た な た な た な た む こ な 時 れ が が 前 が ら っ ら の む の む の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の ち り 、 く 本 ち ち ち の ち の ち の ち の ち の ち の ち の ち の ち の ち の た が お お ら 。 な 作 に て む お う 、 な 作 に て つ ち り 、 な 作 れ て い ち う 、 な た れ ち 、 な た に て る た の ち し の な た 作 に て る た の た 、 た 本 に れ お れ 、 れ 三 に る る る て ち 、 た た ち ろ る た ち ろ る こ た ち ろ る こ た ろ る る る た ち う 、 た に た ら ろ る る る ろ ろ る こ て ろ る る ろ る る ろ る る る る ろ る る る る る る る る る る る る る	中央制御である。 中央操作レーシーンでは、 御のケタシントで、 御のケタントンでは、 御のため、 横線レントンでは、 での、 御のため、 での、 の、 の、 の、 の、 の、 の、 の、 の、 の、
操作条件	代 替 格 納 容 イ 常 力 、 よ る お 却 、 よ る た 、 、 、 、 、 、 、 、 、 、 、 、 、	サプレッショ ン・チェンバ 圧 力 279kPa[gage] 到達時	運転手順に基づき 手順に基づき 実納 着で 着で 本 ある 君 定 カ に 大 本 納 和 で で ある る 民 五 月 に 思 み 高 の 氏 用 た 力 ) に 、 本 約 の た 明 に 、 る る た 、 あ る た 二 九 う に 大 、 ち れ 二 九 う に 大 力 い た 式 の の 氏 用 圧 力 ) に 文 古 名 余 次 る の 用 圧 力 ) に 文 ち 名 た 新 約 二 月 二 月 二 月 二 月 二 月 二 月 二 月 二 月 二 月 二 の る 兄 た ガ う の た 二 か う れ た 二 か う れ た 二 か う 介 治 い た う 余 裕 を う 宗 書 う に ま 会 う う 余 裕 を き 奏 二 の ま の た う 余 裕 を き 考 う 、 新 を う 、 新 で う 、 新 で う 、 新 で う 、 新 で う 、 新 で う 、 新 で う 、 新 で う 、 新 で う 、 新 つ し 記 の こ う う 、 新 つ う 、 う 、 う 、 う っ で う う 、 う っ つ こ う う 、 う う う 、 う 一 う う う っ た う う う う う う っ で う う っ 一 う う う っ う う う 一 う う う う う う う う う う う う う	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監 視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェ ンバ圧力 279kPa[gage])に到達するのは事象発生約13時間後であり、比較的 緩やかなパラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 操作開始時間は設定していないが、中央制御室の制御盤の操作スイッチによる 簡易なものであり、緩やかな圧力上昇に対して操作所要時間は十分に短いた め、操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作を並列して実施する場合があるが、同一の制御盤による 対応が可能であることから、他の並列操作が操作開始時間に与える影響はない。 また、代替格納容器スプレイ冷却系(常設)は、低圧代替注水系(常設) とボンプ等を共用しているが、原子炉注水と格納容器スプレイの流量を同時に 確保可能なポンプ容量を備えているため、原子炉注水と格納容器スプレイの同 時運用が可能である。 【操作の確実き】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のと思わり操作り後の を記のさ要時1000 な因間にに与した にしたりたい。 たいのとなりにした。 なので解析である。 本ので解析である。 にいて解解等で解析。 ないたい、 ないたい、 ないたい、 ないたい、 ないたい、 ないたい、 ないたい、 ないたい、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 な	実は解の に 解の が に な の 、 に な 、 に な 、 に な 、 に な 、 に な 、 に な 、 に な 、 に な 、 に た 条 が に る 場 が に な 、 に た 条 が に 、 に た 条 が に た 、 の 、 に た 条 が に 、 に な 一 に れ 、 に た 条 が に た 、 に た 条 が に た 、 の 、 に た 条 が に た 、 の 、 に た 条 が に た 、 の 、 に た 条 が に な ー に た の の 、 に た 条 が た の た の 、 に た 条 が た の 、 に た 条 が た の た の 、 に た 条 が た の た の た の た の た の た の 、 に た 、 か れ 、 り す 果 が 解 れ た で の 、 の た 、 、 か ま の で の た で の 、 の た の 、 の た 、 か に の の の 、 に が の 、 た た で の 、 た た で の れ 、 か 定 ら た れ 、 れ 品 た い の た の な ら 、 れ た よ の う た た な ろ た な る と な る た た え る た た え る た た え こ た な ろ た た 、 、 の 、	代替格納容器スプレ イ冷却系(常設)によ る格納容器冷却操作 は,事象発生の約13 時間後に実施するも のであり,準備時間が 確保できるため,時間 余裕がある。	中 中 小 小 小 御 た の し た の ( に 制 御 た の し た の に め 、 物 に つ ま た の に め 、 物 に つ っ の 得 部 定 る た 取 れ れ に の 。 の 客 た の 、 の に の 、 の に の 、 の に の 、 の に の 、 の に の 、 の に の 、 の に の 、 の に の 、 の に の 、 の た 、 の に の 、 の た 、 の に の 、 の た の 、 の た の 、 の た の 、 の た の 、 の た の た に の の 内 い た の た の た の た い し に の た の た の た の た の た の た の た の た の た の た の た の た し に の た の た し に の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の ん た の た の た の た の た の た の た の た の た の た の ん う た の た の ん う ん う た の た の た の た の た の の た の た の た の た の ろ の の た の た の た の の の の の の の の の の の の の

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/3)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	格加置格納速等納減です。 客がに容響物換でした。 日本では ので、 ので、 名称で、 名称で、 ので、 名称で、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 の	サプレッショ ン・チェンバ 圧 力 310kPa[gage] 到達時	運転手順に基づ き,用転力を踏ま えて設定	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧 力を継続監視しており,格納容器ペントの操作実施基準(サプレッ ション・チェンバ圧力310kPa[gage])に到達するのは、事象発生の 約28時間後であり,比較的緩やかなパラメータ変化であることか ら,認知遅れが操作開始時間に与える影響はない。 【要員配置 中央制御室での操作のみであり,運転員は中央制御室に常駐してい ることから,要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、緩や かな圧力上昇に対して十分に短く,操作所要時間が操作開始時間に 影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 低圧代替注水系(常設)による原子炉水位維持操作を並列して実施 する場合があるが,異なる運転員による対応が可能であることか ら,他の並列操作有無】 低圧代替注水系(常設)による原子炉水位維持操作を並列して実施 する場合があるが,異なる運転員による対応が可能であることか ら,他の並列操作で操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室での操作は、中央制御室の制御盤の操作スイッチによる 簡易な操作であり,誤操作は起こりにくいことから,誤操作等が操 作開始時間に影響を及ぼす可能性は非常に小さい。 なお、中央制御室での操作に失敗した場合は現場での操作を実施す ることとしており,操作の信頼性を向上しているが,この場合,75 分程度は操作開始時間が遅れる可能性がある。	左記のとおり操作不確かさ 要因により操作不確かに 与える影響は小さめいにか ら、実態の規定と制制に 解析上の設定と制制にてなって にある。操作操作をにて対応時間等 ののにで生み取した応する時 にのして応する にのにでする場合での 達保操作程がある。 解析にて対応関係での不 確か遅コード及び解析の不 確か遅コード及び解析の不 確か遅コード及び解析の不 確かしてなる可能性がある場 合でが可能性がある場 合なが可能性がある場 合なが可能で見にとかる 影響はない。現場保作に対 応する場合ににとかる 影響はない。現場保作に対 応する場合にに とから、この他の操たに 算により対応が可能で 操たまりす応である に対応での に を が に たる影響はない。	実態の操作開始時間は解析 上の設定しまである ことから、評価項目である ことが調査のの場合である 調整でない隔現場操作にで大 の場合である。 た場るため、75分程度性が ある。この場合、格納容器 圧力は310kPa [gage]より 若干上昇し、評価項目とな るがラメーの容器。 であり、格納容器 「すが、格納容器、「であり、格 納容器の健全性の観点から は問題とならない。	格納容法であることの時間、 格納容法での約28 との約28 によれ、 本部では などの を たの前の で したい で したい で したい で したい に たので したい したい で したい したい したい で したい したい したい したい したい したい したい したい	中作化タセン 中作の や、 し、 、 、 、 、 、 、 、 、 、 、 、 、 、

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/3)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
	代 替 淡 水 貯 槽への補給	事象発生 48 時間後程度か ら	代替総は、 代替総は、 解析条件では ないが、 解析 でで 想定の 成立 や に 総 た の 要 、 特 が 、 解 が 、 解 が 、 解 が 、 解 が 、 、 い の い の い の い の い の し 立 立 や で 、 む い の し 立 立 や で 、 む い の し て 立 や で む む た の し の 立 や で 想 た の む の し て 立 や で 他 た む た の し て む や で 想 た の む の し て む や を 巻 に む し て む で む た や た 数 た た で 数 た た か 、 い し て や た 来 た た の し て む で む た た た た た た た た た た た た た	代替淡水貯槽への補給までの時間は,事象発生から 48 時間程度あり十分な時 間余裕がある。	_	_	_	代替淡水貯槽への 補給は所要時間 160分のところ, 訓練実績等により 約120分に実施可 能なことを確認し た。
操作条件	代 槽 に 用 型 大 へ の い 代 型 大 の の い 代 型 大 の い 代 型 大 の の い 代 型 大 の の 、 術 る 替 本 川 型 大 の の い 代 型 大 の の 、 、 都 る 替 本 、 、 、 新 る 替 本 、 、 、 、 、 、 、 、 、 、 、 、 、	事象発生 48 時間後程度か ら適宜	可搬型代替注水 大型ポ給は,解析 条件ではないが, 解析で想作の成立 や継続に必の要料 が枯渇しないよ うに設定	可搬型代替注水大型ポンプへの補給開始時間は,事象発生から 48 時間程度あ り十分な時間余裕がある。	_	_	_	可搬が大 料補給料間) こる。大料 前島線ででして 着への機器ない時 間) しと一般が になっ を 機構 間) と で 乗 し を 様 や ス 株 料 間) と で 乗 他 構 や の 機器ない時 間) と で 乗 施 本 は が 品 (許 に 案 施 本 の 、 格 褐 (許 定 、 名 機 、 物 間 以 と で 条 し 機器ない 、 結 、 格 掲 、 間 、 と つ 型 構 部 に 、 と 可 型 ポ 結 、 た 、 で 奥 し 、 と 可 型 ポ 結 、 た の 、 の 、 の 、 の 、 と 四 型 ポ 結 、 に 、 の で 、 し つ 型 が 着 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、

7日間における水源の対応について

(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

- 1. 水源に関する評価
  - ① 淡水源(有効水量)
    - •代替淡水貯槽:約4,300m³
    - ・淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
  - ① 低圧代替注水系(常設)による原子炉注水

サプレッション・プール水温が 65℃に到達する事象発生約 2 時間後,定格流量で代替淡水貯槽を水源とした低圧代替注水系(常設)による原子炉注水を実施する。

炉心冠水後は、原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

 ② 代替格納容器スプレイ冷却系(常設)による格納容器スプレイ 格納容器圧力が279kPa[gage]に到達する事象発生約13時間後, 代替淡水貯槽を水源とした代替格納容器スプレイ冷却系(常設)
 による格納容器スプレイを実施する。

サプレッション・プール水位が通常水位+6.5m に到達後,格納 容器スプレイを停止する。

③ 淡水貯水池から代替淡水貯槽への補給

事象発生 48 時間程度以降から,淡水貯水池の水を代替淡水貯槽 へ水位が上昇する流量で補給する。

#### 添付 2.4.2.3-1

3. 時間評価

原子炉注水等によって,代替淡水貯槽の水量は減少する。事象発 生48時間程度以降の代替淡水貯槽の減少は,崩壊熱による蒸散量に 相当する量であるため,崩壊熱による蒸散量以上の流量で補給を行 うことで,代替淡水貯槽の水量は回復し,以降安定して冷却を継続 することが可能である。



第1図 外部水源による積算注水量

(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

4. 水源評価結果

時間評価の結果から代替淡水貯槽が枯渇することはない。また,7 日間の対応を考慮すると,合計約 5,410m³必要となる。代替淡水貯 槽及び淡水貯水池に合計約 9,300m³の水を保有することから必要水 量を確保可能であり,安定して冷却を継続することが可能である。 7日間における燃料の対応について

(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

して評価する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転 台数)=約484.0kL		軽油貯蔵
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{*2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台 数)=約130.3kL	7日間の 軽油消費 量 約755.5kL	タンクの 容量は約 800kL であ り,7日間
常設代替高圧電源装置 2 台起動 ^{*3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運転台 数)=約 141.2kL		対応可能
可搬型代替注水大型ポンプ 1台起動 (代替淡水貯槽給水) 218L/h(燃料消費率)×168h(運転時間)×1台(運転台数) =約 36.6kL	7日間の 軽油消費 量 約36.6kL	可搬型設備 用軽油タン クの容量は 約 210kL で あり,7日 間対応可能

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ

るが,保守的にディーゼル発電機2台の起動を仮定した。

- ※2 事故収束に必要ではないが、保守的に起動を仮定した。
- ※3 緊急用 P / C の電源を,常設代替高圧電源装置 2 台で確保することを仮定した。

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

### 常設代替交流電源設備の負荷

(崩壊熱除去機能喪失(残留熱除去系が故障した場合))

主要負荷リスト

電源設備:常設代替高圧電源装置

起動順序	主要機器名称	負荷容量(kW)	負荷起動時の最 大負荷容量 (kW)	定常時の連続運 転負荷容量(kW)
1	緊急用母線自動起動負荷 ・緊急用直流125V充電器盤 ・その他負荷	24.0 35.6	124.3	59.6
2	常設低圧代替注水系ポンプ	190.0	544.0	249.6
3	常設低圧代替注水系ポンプ	190.0	734.0	439.6
4	緊急用海水ポンプ その他	510.0 10.0	1,775.8	959.6
5	代替燃料プール冷却系ポンプ	22.0	1,039.1	981.6



#### 2.5 原子炉停止機能喪失

- 2.5.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「原子炉停止機能喪失」に含まれる事故シーケンスは、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、①「過 渡事象+原子炉停止失敗」、②「サポート系喪失(自動停止)+原子炉停止 失敗」、③「中小破断LOCA+原子炉停止失敗」及び④「大破断LOCA +原子炉停止失敗」である。

コメント No. 148-12 に対する回答

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方 事故シーケンスグループ「原子炉停止機能喪失」では、運転時の異常な 過渡変化の発生後、炉心冷却には成功するが、原子炉停止機能が喪失する ことを想定する。このため、原子炉は臨界状態が継続し、原子炉出力が高 い状態が維持されることから、炉心で発生した蒸気が格納容器に流入し格 納容器圧力が上昇することで、緩和措置が取られない場合には、炉心損傷 より先に格納容器破損に至る。これに伴い炉心冷却機能を喪失する場合に は、原子炉水位の低下により炉心が露出し、炉心損傷に至る。

_____

本事故シーケンスグループは,原子炉停止機能を喪失したことによって 最終的に炉心損傷に至る事故シーケンスグループである。このため,重大 事故等対策の有効性評価としては,原子炉停止機能に対する重大事故等対 処設備に期待することが考えられる。

以上により,本事故シーケンスグループでは,代替の原子炉停止機能を 用いて原子炉出力を抑制し,原子炉注水機能を用いて原子炉水位を適切に 維持することにより炉心損傷の防止を図る。また,最終的な熱の逃がし場 へ熱の輸送を行うことによって除熱を行い格納容器破損の防止を図る。

2.5-1
## (3) 炉心損傷防止対策

事故シーケンスグループ「原子炉停止機能喪失」において、炉心が著し い損傷に至ることなく、かつ、十分な冷却を可能とするため、初期の対策 として代替制御棒挿入機能による原子炉停止手段又はATWS緩和設備 (代替原子炉再循環ポンプトリップ機能)及びほう酸水注入系による原子 炉停止手段を整備し、原子炉水位の制御には原子炉隔離時冷却系及び高圧 炉心スプレイ系を用いる。また、格納容器の健全性を維持するため、安定 状態に向けた対策として残留熱除去系(サプレッション・プール冷却系) による格納容器除熱手段を整備する。ただし、重要事故シーケンスに対す る有効性評価では、保守的に代替制御棒挿入機能には期待しないものとす る。対策の概略系統図を第2.5-1図に、対応手順の概要を第2.5-2図に示 すとともに、重大事故等対策の概要を以下に示す。また、重大事故等対策 における手順と設備との関係を第2.5-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員8名である。初動対応要員の内訳は,発電長1名, 副発電長1名,運転操作対応を行う運転員4名,通報連絡等を行う災害対 策要員2名である。必要な要員と作業項目について第2.5-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,初動対応要 員6名で対処可能である。

a. 原子炉停止機能喪失の確認

運転時の異常な過渡変化の発生に伴い,原子炉がスクラムすべき状況 にも係らず制御棒が原子炉へ挿入されない場合,原子炉自動スクラム失 敗を確認する。 原子炉自動スクラム失敗の確認後,中央制御室からの遠隔操作により 手動スクラムボタン及び原子炉モードスイッチ「RUN」から「SHU T DOWN」への切換えによる手動スクラム操作を実施し,操作に失 敗したことで,原子炉停止機能喪失と判断する。

主蒸気隔離弁が閉止に伴い原子炉圧力高信号によりATWS緩和設備 (代替原子炉再循環ポンプトリップ機能)が作動し,再循環ポンプが全 台停止したことで炉心流量が低下し,原子炉出力が低下したことを確認 する。また,対応可能な要員にて制御棒挿入機能の回復操作を実施する。

原子炉停止機能喪失の確認に必要な計装設備は,平均出力領域計装等 である。

b. 高圧炉心スプレイ系の自動起動確認等

主蒸気隔離弁の閉止により原子炉で発生した蒸気が逃がし安全弁を介 してサプレッション・プールに流入することで格納容器圧力が上昇し, ドライウェル圧力高(13.7kPa[gage])設定点に到達することで高圧炉心 スプレイ系が自動起動し,原子炉注水を開始する。また,低圧炉心スプ レイ系及び残留熱除去系(低圧注水系)も自動起動し,ミニフロー運転 にて起動待機状態となる。

主蒸気隔離弁の閉止によりタービン駆動給水ポンプは停止するが,電 動給水ポンプにより原子炉注水は継続されるため,対応可能な要員にて 原子炉水位を原子炉水位異常低下(レベル1)設定点近傍まで低下させ ることで原子炉出力を抑制する。また,給水加熱喪失となり給水温度が 低下することで,原子炉出力は徐々に上昇する。

その後,復水器ホットウェル水位の低下に伴い,給復水系は全停とな るが,原子炉水位が原子炉水位異常低下(レベル2)設定点に到達する と,原子炉隔離時冷却系が自動起動し,原子炉注水を開始する。 高圧炉心スプレイ系等の自動起動確認に必要な計装設備は,ドライウ ェル圧力,高圧炉心スプレイ系系統流量等である。

c. 自動減圧系等の作動阻止操作

原子炉が自動減圧されることで低圧の非常用炉心冷却系の原子炉注水 により原子炉水位が上昇し正の反応度が印加されることを防止するため, 原子炉停止機能喪失の確認後,中央制御室からの遠隔操作により自動減 圧系の作動阻止スイッチを用いてこれらの作動を阻止する。

自動減圧系等の作動阻止操作に必要な計装設備は,原子炉水位(広帯 域)等である。

d. ほう酸水注入系の起動操作

原子炉停止機能喪失及び再循環ポンプ停止による原子炉出力低下を確認した後,平均出力領域計装指示値が10%以上で,かつサプレッション・ プール水温度が49℃に近接又は超過していることを確認し,中央制御室 からの遠隔操作によりほう酸水注入系の起動操作を実施する。また,中 性子束振動の発生を確認した場合にも,ほう酸水注入系の起動操作を実施する。

ほう酸水注入系の起動操作に必要な計装設備は,平均出力領域計装, サプレッション・プール水温度等である。

ほう酸水の注入により原子炉出力は徐々に低下し原子炉は未臨界に至 る。

原子炉の未臨界を確認するために必要な計装設備は,起動領域計装等 である。

e. 残留熱除去系(サプレッション・プール冷却系)による格納容器除熱 原子炉で発生した蒸気が逃がし安全弁を介してサプレッション・プー ルに流入することで、サプレッション・プール水温度は上昇する。この ため、サプレッション・プール水温度が 32℃に到達した時点で、中央制 御室からの遠隔操作により残留熱除去系(サプレッション・プール冷却 系)によるサプレッション・プール冷却運転を開始し、格納容器除熱を 開始する。有効性評価においては、事象発生から短時間でサプレッショ ン・プール水温度が 49℃まで上昇するため、手順に従い、ほう酸水注入 系の起動操作を優先して実施する。

残留熱除去系(サプレッション・プール冷却系)による格納容器除熱 に必要な計装設備は,サプレッション・プール水温度,残留熱除去系系 統流量等である。

残留熱除去系(サプレッション・プール冷却系)による格納容器除熱 を開始した以降も,原子炉出力が残留熱除去系(サプレッション・プー ル冷却系)の除熱能力を上回っている期間はサプレッション・プール水 温度の上昇が継続する。サプレッション・プール水温度が 106℃に到達 した場合は,原子炉隔離時冷却系を停止する。

f. 原子炉水位の調整操作

ほう酸水の注入に伴い,原子炉出力が徐々に低下し原子炉は未臨界に 至る。また,原子炉出力の低下に伴い原子炉水位は徐々に上昇するため, ほう酸水の全量注入完了の確認までは高圧炉心スプレイ系により原子炉 水位を原子炉水位異常低下(レベル1)設定点近傍に維持する。また, ほう酸水の全量注入完了を確認した後は,ほう酸水注入系を停止すると ともに,高圧炉心スプレイ系により原子炉水位を原子炉水位低(レベル 3)設定点から原子炉水位高(レベル8)設定点の範囲に維持する。

原子炉水位の調整操作に必要な計装設備は,原子炉水位(広帯域,燃料域),起動領域計装等である。

以降、炉心冷却は高圧炉心スプレイ系を用いた原子炉注水により継続

的に行い,格納容器除熱は残留熱除去系(サプレッション・プール冷却 系)により継続的に行う。

g. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

- 2.5.2 炉心損傷防止対策の有効性評価
  - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、過渡事象 (反応度印加の観点で厳しい主蒸気隔離弁の誤閉止を選定)を起因事象と し、原子炉圧力上昇による反応度印加の観点で厳しくなる「過渡事象(主 蒸気隔離弁の誤閉止)+原子炉停止機能喪失」である。本事故シーケンス グループにおける事故シーケンスのうち、LOCAを起因事象とする事故 シーケンスは、原子炉冷却材の流出により、ほう酸水注入系が有効に機能 しないことも考えられるが、これらの炉心損傷頻度は非常に小さくなって おり、また、この場合においても重大事故等対処設備である代替制御棒挿 入機能(ARI)により原子炉を未臨界とすることが可能である。本事故 シーケンスでは、原子炉水位が高めに維持され、また、炉心入口サブクー リングが大きくなることで反応度の観点で厳しい条件として、評価上、重 大事故等対処設備ではない給復水系が一定期間運転を継続する条件として いる。

本重要事故シーケンスでは,炉心における核分裂出力,出力分布変化, 反応度フィードバック効果(ボイド反応度,ドップラ反応度,ボロン反応 度),崩壊熱,燃料棒内温度変化,燃料棒表面熱伝達,沸騰遷移,沸騰・ボ イド率変化,気液熱非平衡,原子炉圧力容器における冷却材流量変化,冷 却材放出(臨界流・差圧流), ECCS注水(給水系・代替の注水設備含む), ほう酸水の拡散,格納容器におけるサプレッション・プール冷却が重要現 象となる。よって,これらの現象を適切に評価することが可能であるプラ ント動特性解析コードREDY,単チャンネル熱水力解析コードSCAT により中性子束,平均表面熱流束,燃料被覆管温度,炉心流量,原子炉圧 力,原子炉水位,サプレッション・プール水温,格納容器圧力等の過渡応 答を求める。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.5-2表に示す。また,主要な解析条件について,本重要事故シーケンス特有の解析条件を以下に示す。

- a. 初期条件
- (a) 炉心流量

初期炉心流量が小さいほど,初期のボイド率が大きくなることで原 子炉圧力上昇時にボイドが潰れることで印加される正の反応度が大き くなり,原子炉出力の観点で厳しい設定となる。このため,保安規定 の運転範囲における原子炉定格出力時の下限流量を設定した。

b. 事故条件

(a) 起因事象

起因事象として、主蒸気隔離弁の誤閉止が発生するものとする。

(b) 安全機能等の喪失に対する仮定

- 1) 原子炉停止機能喪失として原子炉スクラム失敗を仮定する。
- 2) 手動での原子炉スクラムは実施できないものと仮定する。
- 3) 代替制御棒挿入機能は保守的に作動しないものとする。
- (c) 評価対象とする炉心の状態

評価対象とする炉心の状態は,平衡炉心のサイクル末期とする。サ イクル末期の方がサイクル初期に比べてボイド反応度印加割合が大き く,原子炉出力の観点で厳しくなる。

(添付資料 2.5.1)

(d) 外部電源

外部電源はあるものとする。

外部電源がある場合は,給復水系及び再循環ポンプが一定期間運転 を継続することで,原子炉出力の観点で厳しくなる。

- c. 重大事故等対策に関連する機器条件
- (a) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能) 原子炉圧力高(7.39MPa[gage])信号により,再循環ポンプをトリッ プさせるものとする。また,原子炉出力が35%以上となり,再循環ポ ンプが1台トリップした場合に作動する選択制御棒挿入については, 作動しないものとする。
- (b) 逃がし安全弁

原子炉圧力が低めに維持される方が,原子炉圧力に依存する高圧炉 心スプレイ系の注水流量が大きくなり,原子炉水位が高めに維持され ることで,反応度の観点で厳しい設定となる。このため,原子炉圧力 が低めに維持される逃がし安全弁(逃がし弁機能)にて原子炉冷却材 圧力バウンダリの過度の圧力上昇を抑制するものとする。また,逃が し安全弁(18 弁)は、容量として、1 弁当たり定格主蒸気流量の約 6% を処理するものとする。

(c) 高圧炉心スプレイ系

ドライウェル圧力高(13.7kPa[gage])信号により自動起動し,145 ~1,506m³/h,注水圧力:0~8.30MPa[dif]*の流量で原子炉へ注水 するものとする。炉心に冷水が大量に注水された方が正の反応度が添 加されることからポンプ性能評価に基づく大きめの注水量を設定して いる。

※: MPa[dif]…原子炉圧力容器と水源との差圧(以下同様)

(d) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h,注水圧力: 1.04~7.86MPa[dif]の流量で原子炉へ注水するもの とする。また,サプレッション・プール水温度が 106℃に到達した時 点で注水を停止する。

(e) ほう酸水注入系

注入流量163L/min及びほう酸濃度13.4wt%にて注水するものとする。

(f) 残留熱除去系(サプレッション・プール冷却系)

伝熱容量は,熱交換器1基あたり約53MW(サプレッション・プール 水温度100℃,海水温度27.2℃において)とする。

d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

(a) 自動減圧系等の作動阻止操作は,原子炉停止機能喪失の確認及び自

動減圧系等の作動阻止操作に要する時間を考慮して,事象発生4分 後に実施する。

(添付資料 2.5.2)

- (b) ほう酸水注入系の起動操作は、自動減圧系等の作動阻止操作の完了 後にほう酸水注入系の起動操作に要する時間を考慮して、事象発生 から6分後に実施する。
- (c) 残留熱除去系(サプレッション・プール冷却系)による格納容器除 熱は、状況判断及び操作に要する時間を考慮して、事象発生 17 分 後に実施する。
- (3) 有効性評価の結果

本重要事故シーケンスにおける中性子束,平均表面熱流束,炉心流量, 原子炉蒸気流量,給水流量,原子炉隔離時冷却系及び高圧炉心スプレイ系 の流量,原子炉圧力,原子炉水位(シュラウド外水位)*,逃がし安全弁 の流量,炉心平均ボイド率,燃料被覆管最高温度発生位置及び沸騰遷移発 生位置の燃料被覆管温度並びに燃料被覆管最高温度発生位置の熱伝達係数 及びクオリティの推移を第2.5-4図から第2.5-18図に,サプレッション・ プール水温度及び格納容器圧力の推移を第2.5-19図に示す。

※:非常用炉心冷却系の起動信号となり運転員が監視に用いる原子炉水位計(広帯域)はシュラウド外水位を測定していることから、シュラウド外水位の評価結果を示した。

a. 事象進展

主蒸気隔離弁の誤閉止の発生後,原子炉自動スクラム信号が発信する が,原子炉自動スクラムに失敗する。主蒸気隔離弁の閉止により原子炉 圧力が上昇し,これによるボイドの減少によって正の反応度が印加され, 中性子束が増加するとともに平均表面熱流束が上昇し、これに伴い燃料 棒表面で沸騰遷移が生じるため、燃料被覆管の温度が一時的に約 872℃ まで上昇する。また、約2秒後に原子炉圧力高信号により再循環ポンプ が全台トリップする。なお、本評価では保守的に期待していない代替制 御棒挿入機能は、本来この原子炉圧力高信号にて作動する。

主蒸気隔離弁閉止により,タービン駆動給水ポンプはトリップするが, 電動駆動給水ポンプが自動起動することで,給水系による原子炉注水が 継続される。中性子束及び平均表面熱流束は,再循環ポンプトリップに よる炉心流量の低下に伴い低下するが,給水加熱喪失により給水温度が 低下することで徐々に上昇する。これに伴い燃料棒表面で沸騰遷移が発 生し,燃料被覆管温度が一時的に上昇するが,初期のピーク温度(872℃) 未満となる。

原子炉で発生した蒸気が逃がし安全弁(逃がし弁機能)を介してサプ レッション・プールに流入するため、サプレッション・プール水温度及 び格納容器圧力が上昇し,事象発生の約57秒後にドライウェル圧力高信 号(13.7kPa[gage])により高圧炉心スプレイ系、低圧炉心スプレイ系等 が自動起動する。また、事象発生の約85秒にサプレッション・プール水 温度は49℃に到達し、この後も上昇傾向が継続する。

事象発生から約 131 秒後に復水器ホットウェル水位の低下により電動 駆動給水ポンプがトリップすることで原子炉水位が低下し,事象発生か ら約 153 秒後に原子炉水位異常低下(レベル2)信号により原子炉隔離 時冷却系が自動起動する。高圧炉心スプレイ系及び原子炉隔離時冷却系 による原子炉注水により炉心冷却は維持される。また,原子炉隔離時冷 却系は,サプレッション・プール水温度が 106℃に到達した時点で停止 するが,高圧炉心スプレイ系により炉心冷却は維持される。 事象発生の6分後に手動操作によりほう酸水注入系を起動し、炉心へのほう酸水の注入を開始する。ほう酸水の注入に伴い炉心の反応度が低下し、原子炉水位は徐々に上昇するため、高圧炉心スプレイ系により原子炉水位を原子炉水位異常低下(レベル1)設定点近傍に維持する。

事象発生の17分後に残留熱除去系(サプレッション・プール冷却系) 2系統による格納容器除熱を開始する。

b. 評価項目等

燃料被覆管温度は,第2.5-10 図に示すとおり,主蒸気隔離弁閉止に伴 い原子炉圧力が上昇するため炉内のボイドが急減することで出力が上昇 し沸騰遷移が生じる期間が最も高温となり,再循環ポンプトリップによ る出力低下によってリウェットすることで燃料被覆管温度は低下する。 事象発生の約13秒後に燃料被覆管最高温度は最高値約872℃に到達する が,評価項目である1,200℃以下となる。また,燃料被覆管の酸化量は, 酸化反応が著しくなる前の燃料被覆管厚さの1%以下であり,評価項目 である15%を下回る。

原子炉圧力は,第2.5-7 図及び第2.5-17 図に示すとおり,逃がし安全 弁(逃がし弁機能)の作動により,約8.19MPa[gage]以下に維持される。 このため,原子炉冷却材圧力バウンダリにかかる圧力は,原子炉圧力と 原子炉圧力容器底部圧力との差(0.3MPa 程度)を考慮しても,約 8.49MPa[gage]以下であり,評価項目である最高使用圧力の 1.2 倍 (10.34MPa[gage])を下回る。

また,ほう酸水注入系及び残留熱除去系(サプレッション・プール冷 却系)の起動後も,格納容器圧力及びサプレッション・プール水温度は 徐々に上昇するが,それぞれ約0.20MPa[gage],約115℃以下に抑えられ,

評価項目である最高使用圧力の2倍(0.62MPa[gage])及び200℃を下回る。

ほう酸水注入系による炉心へのほう酸水注入によって中性子束は徐々 に低下し、未臨界に至る。この後は高圧炉心スプレイ系による原子炉注 水及び残留熱除去系(サプレッション・プール冷却系)によるサプレッ ション・プール冷却を維持することで安定状態が確立し、また、安定状 態を維持できる。

(添付資料 2.5.3)

本評価では「1.2.1.2 有効性を確認するための評価項目の設定」に示 す(1)から(4)の評価項目について,対策の有効性を確認した。

2.5.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは,原子炉停止機能喪失に伴い原子炉は臨界状態が 維持され,逃がし安全弁を介したサプレッション・プールへの蒸気の流出が 継続するため,ほう酸水注入系により原子炉出力を抑制すること及び残留熱 除去系(サプレッション・プール冷却系)により格納容器除熱を実施するこ と並びに原子炉自動減圧に伴う低圧炉心スプレイ系等による多量の冷水注入 による正の反応度印加を防止するため自動減圧系及び過渡時自動減圧系の作 動を阻止することが特徴である。よって,不確かさの影響を確認する運転員 等操作は,事象進展に有意な影響を与えると考えられる操作として,自動減 圧系等の作動阻止操作,ほう酸水注入系の起動操作及び残留熱除去系(サプ レッション・プール冷却系)による格納容器除熱とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を行う重要現象とは, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり、影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における出力分布変化の不確かさとして,解析コードは保守的に 中央ピークに基づく軸方向出力分布を設定するため,燃料被覆管温度を 高めに評価する。このため,実際の燃料被覆管温度は低くなるが,燃料 被覆管温度を操作の起点とする運転員等操作はないことから,運転員等 操作時間に与える影響はない。

炉心における燃料棒内温度変化の不確かさとして,解析コードは燃料 ペレットと燃料被覆管との間のギャップ熱伝達係数を高めに設定するた め,過渡的な沸騰遷移時の燃料被覆管温度を高めに評価する。このため, 実際の燃料被覆管温度は低くなるが,燃料被覆管温度を操作の起点とす る運転員等操作はないことから,運転員等操作時間に与える影響はない。

炉心における燃料棒表面熱伝達の不確かさとして,解析コードは燃料 棒表面熱伝達及びリウェット時刻を概ね保守的に評価する相関式を採用 するとともに高温領域において輻射熱伝達に期待しない評価としている ことから,燃料棒表面の熱伝達係数を概ね小さく評価する。このため, 実際の燃料棒表面での熱伝達は大きめとなり,燃料被覆管温度は低めと なるが,燃料被覆管温度を起点とする運転員等操作はないことから,運 転員等操作時間に与える影響はない。

炉心における沸騰遷移の不確かさとして,解析コードは沸騰遷移が生 じやすい条件として,SLMCPRを基準に沸騰遷移の発生及び沸騰遷 移位置を判定するよう設定しているため,燃料被覆管温度を高めに評価

2.5-14

する。このため、実際の燃料被覆管温度は低くなるが、燃料被覆管温度 を操作の起点とする運転員等操作はないことから、運転員等操作時間に 与える影響はない。

原子炉圧力容器におけるほう酸水の拡散の不確かさとして,解析コー ドは保守的な混合特性を用いるため,実際の炉心内におけるほう酸水の 拡散は早くなりボロン反応度の印加が早くなることで未臨界の達成時間 が早くなるため,格納容器圧力及びサプレッション・プール水温度の上 昇は抑制される。このため,実際の格納容器圧力及びサプレッション・ プール水温度は低くなるが,ほう酸水注入開始後にこれらのパラメータ を起点とする運転員等操作はないことから,運転員等操作時間に与える 影響はない。

(添付資料 2.5.4)

## b. 評価項目となるパラメータに与える影響

炉心における出力分布変化の不確かさとして,解析コードは保守的に 中央ピークに基づく軸方向出力分布を設定するため,燃料被覆管温度を 高めに評価する。このため,実際の燃料被覆管温度は低くなり,評価項 目となるパラメータに対する余裕は大きくなる。

炉心における燃料棒内温度変化の不確かさとして,解析コードは燃料 ペレットと燃料被覆管との間のギャップ熱伝達係数を高めに設定するた め,過渡的な沸騰遷移時の燃料被覆管温度を高めに評価する。このため, 実際の燃料被覆管温度は低くなり,評価項目となるパラメータに対する 余裕は大きくなる。

炉心における燃料棒表面熱伝達の不確かさとして,解析コードは燃料 棒表面熱伝達及びリウェット時刻を概ね保守的に評価する相関式を採用 するとともに高温領域において輻射熱伝達に期待しない評価としている ことから,燃料棒表面の熱伝達係数を概ね小さく評価する。このため, 実際の燃料棒表面での熱伝達は大きめとなり,燃料被覆管温度は低めと なることから,評価項目となるパラメータに対する余裕は大きくなる。 なお,燃料被覆管が高めに評価されることに伴いリウェット時刻は遅く 評価されるが,更に保守的な取扱いとして,リウェットを考慮しない場 合を仮定しても,燃料被覆管の最高温度は約1060℃,燃料被覆管の酸化 量は酸化反応が著しくなる前の燃料被覆管厚さの2%以下であり,評価項 目となるパラメータを満足することを確認している。

炉心における沸騰遷移の不確かさとして,解析コードは沸騰遷移が生 じやすい条件として,SLMCPRを基準に沸騰遷移の発生及び沸騰遷 移位置を判定するよう設定しているため,燃料被覆管温度を高めに評価 する。このため,実際の燃料被覆管温度は低くなり,評価項目となるパ ラメータに対する余裕は大きくなる。

原子炉圧力容器におけるほう酸水の拡散の不確かさとして,解析コー ドは保守的な混合特性を用いるため,実際の炉心内におけるほう酸水の 拡散は早くなりボロン反応度の印加が早くなることで未臨界の達成時間 が早くなるため,格納容器圧力及びサプレッション・プール水温度の上 昇は抑制される。このため,実際の格納容器圧力及びサプレッション・ プール水温度は低くなり,評価項目となるパラメータに対する余裕は大 きくなる。

(添付資料 2.5.4, 2.5.5)

(2) 解析条件の不確かさの影響評価

a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 2.5-2 表に示すとおりであり,これらの条件設定を実績値等の最確条件 とした場合の影響を評価する。解析条件の設定にあたっては,設計値を 用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう 保守的な設定をしていることから,この中で事象進展に有意な影響を与 える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の炉心流量は,解析条件で設定した 41,060 t /h(定格流 量の85%流量)に対して最確条件は「定格流量の約86%~約104%」で あり,最確条件とした場合は炉心のボイド率が低くなり主蒸気隔離弁 閉止に伴う原子炉圧力の上昇により印加される反応度が小さくなるこ とで原子炉出力の上昇が緩和されるが,事象進展に与える影響は小さ く,運転員等操作時間に与える影響は小さい。

初期条件の最小限界出力比は,解析条件で設定した 1.24 に対して最 確条件は限界出力比指標*で 0.98 以下であり,最確条件とした場合は 沸騰遷移の発生が遅れることで燃料被覆管温度の上昇が緩和されるが, 燃料被覆管温度を起点とする運転員等操作はないことから,運転員等 操作時間に与える影響はない。

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は燃 料被覆管温度の上昇が緩和されるが,燃料被覆管温度を起点とする運 転員等操作はないことから,運転員等操作時間に与える影響はない。

初期条件の核データ(動的ボイド係数及び動的ドップラ係数)は, 解析条件で設定した平衡炉心のサイクル末期の値の1.25倍(動的ボイ ド係数)及び平衡炉心のサイクル末期の値の0.9倍(動的ドップラ係 数)に対して,最確条件とした場合には,印加反応度が小さくなるこ とで燃料被覆管温度の上昇が緩和されるが,事象進展に与える影響は 小さく,運転員等操作時間に与える影響は小さい。なお,解析コード の不確かさ等を考慮している保守因子の大きさは,事象進展に応じて 変動し得るが,厳しい組合せとした場合においても,事象進展に与え る影響が小さいことを確認している。(「付録3 重大事故等対策の有 効性評価に係るシビアアクシデント解析コードについて(第3部 R EDY)」)

初期条件の原子炉圧力,原子炉水位及びサプレッション・プール水 量は,ゆらぎにより解析条件に対して変動を与えうるが,事象進展に 与える影響は小さく,運転員等操作時間に与える影響は小さい。

事故条件の外部電源の有無については,給復水系及び原子炉再循環 ポンプが一定期間運転を継続することで,反応度の観点で厳しい条件 として,外部電源ありを設定している。外部電源がない場合でも,非 常用母線は非常用ディーゼル発電機等から自動的に受電され,高圧炉 心スプレイ系等の電源は確保されるため,運転員等操作時間に与える 影響はない。

機器条件の主蒸気隔離弁の閉止は,解析条件で設定した閉止時間3 秒に対して最確条件は3秒から4.5秒であり,本解析条件の不確かさ として,解析条件で設定している主蒸気隔離弁の閉止時間を長くした 場合,初期の原子炉圧力上昇により印加される反応度は小さくなり, 原子炉出力の上昇が緩和されるが,事象進展に与える影響は小さく, 運転員等操作時間に与える影響は小さい。

※:限界出力比指標は、実際の運転管理に用いる指標であり、最小限界出力 比の運転上の制限値を実際の最小限界出力比で除したものであり、この 値が1以下であれば最小限界出力比は運転上の制限を下回らない。

(添付資料 2.5.4, 2.5.6)

## (b) 評価項目となるパラメータに与える影響

初期条件の炉心流量は,解析条件で設定した 41,060 t /h(定格流 量の85%流量)に対して最確条件は「定格流量の約86%~約104%」で あり,最確条件とした場合は炉心のボイド率が低くなり主蒸気隔離弁 閉止に伴う原子炉圧力の上昇により印加される反応度が小さくなり原 子炉出力の上昇が緩和されることから,評価項目となるパラメータに 対する余裕は大きくなる。

初期条件の最小限界出力比は,解析条件で設定した 1.24 に対して最 確条件は限界出力比指標*で 0.98 以下であり,最確条件とした場合は 沸騰遷移の発生が遅れることで燃料被覆管温度の上昇が緩和されるこ とから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は燃 料被覆管温度の上昇が緩和されることから,評価項目となるパラメー タに対する余裕は大きくなる。

初期条件の核データ(動的ボイド係数及び動的ドップラ係数)は, 解析条件で設定した平衡炉心のサイクル末期の値の1.25倍(動的ボイ ド係数)及び平衡炉心のサイクル末期の値の0.9倍(動的ドップラ係 数)に対して,最確条件とした場合には,印加反応度が小さくなるこ とで,原子炉出力の上昇が緩和されることから,評価項目となるパラ メータに対する余裕は大きくなる。なお,解析コードの不確かさ等を 考慮している保守因子の大きさは,事象進展に応じて変動し得るが,

厳しい組合せとした場合においても,評価項目となるパラメータに与 える影響が小さいことを確認している。(「付録3 重大事故等対策の 有効性評価に係るシビアアクシデント解析コードについて(第3部 REDY)」)

事故条件の外部電源の有無については,給復水系及び原子炉再循環 ポンプが一定期間運転を継続することで,反応度の観点で厳しい条件 として,外部電源ありを設定している。外部電源がない場合は,電動 駆動給水ポンプ及び再循環ポンプが停止することで原子炉出力が低め となることから,評価項目となるパラメータに対する余裕は大きくな る。

機器条件の主蒸気隔離弁の閉止は,解析条件で設定した閉止時間3 秒に対して最確条件は3秒から4.5秒であり,本解析条件の不確かさ として,解析条件で設定している主蒸気隔離弁の閉止時間を長くした 場合,初期の原子炉圧力上昇により印加される反応度は小さくなり, 原子炉出力の上昇が緩和されることから,評価項目となるパラメータ に対する余裕は大きくなる。

機器条件の高圧炉心スプレイ系は,原子炉水位が高めに維持され自 然循環流量が大きくなることで,反応度の観点で厳しい条件として, ポンプ性能評価に基づく大きめの流量を設定している。また,高圧炉 心スプレイ系の注水流量は原子炉圧力に依存することから,機器条件 の逃がし安全弁は,原子炉圧力が低めに維持されることで高圧炉心ス プレイ系の注水流量が大きくなる条件として,逃がし弁機能を設定し ている。高圧炉心スプレイ系の注水流量を小さめとした場合,原子炉 水位が低めとなり自然循環力が低下することで炉心流量が低下する。 このため,REDYコードでは実験結果に基づき炉心流量依存の保守 的なボロンミキシング効率を設定していることと相まって中性子束の 低下が遅くなり、サプレッション・プール水温度が最大となるタイミ ングが遅くなるが、炉心流量の低下に伴い中性子束も低めとなること から、サプレッション・プールの最大値は同等となり、中長期的なプ ラント挙動に与える影響は小さく、評価項目となるパラメータに与え る影響は小さい。また、安全弁機能に期待した場合、主蒸気隔離弁閉 止時の原子炉圧力の上昇が大きめとなるが、ドップラ効果や原子炉圧 力上昇に伴う再循環ポンプトリップの効果により中性子束の最大値は 同等となり、事象初期のプラント挙動に与える影響が小さく、評価項 目となるパラメータに与える影響は小さい。

(添付資料 2.5.4, 2.5.7, 2.5.8, 2.5.10)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が操作開始時間に与える影響を評 価する。また,操作開始時間に与える影響が評価項目となるパラメータ に与える影響を評価した。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の自動減圧系等の作動阻止操作は,解析上の操作開始時間 として事象発生から4分後を設定している。運転員等操作時間に与え る影響として,不確かさ要因により操作開始時間に与える影響は小さ く,実態の操作開始時間は解析上の設定とほぼ同等となる。

操作条件のほう酸水注入系の起動操作は,解析上の操作開始時間と して事象発生から6分後を設定している。運転員等操作時間に与える 影響として,不確かさ要因により操作開始時間に与える影響は小さく, 実態の操作開始時間は解析上の設定とほぼ同等となる。

操作条件の残留熱除去系(サプレッション・プール冷却系)による 格納容器除熱は,解析上の操作開始時間として事象発生から17分後を 設定している。運転員等操作時間に与える影響として,不確かさ要因 により操作開始時間に与える影響は小さく,実態の操作開始時間は解 析上の設定とほぼ同等となる。

(添付資料 2.5.4)

(b) 評価項目となるパラメータに与える影響

操作条件の自動減圧系等の作動阻止操作は,運転員等操作時間に与 える影響として,実態の操作開始時間は解析上の設定とほぼ同等であ ることから,評価項目となるパラメータに与える影響はない。

操作条件のほう酸水注入系の起動操作は,運転員等操作時間に与え る影響として,実態の操作開始時間は解析上の設定とほぼ同等である ことから,評価項目となるパラメータに与える影響はない。

操作条件の残留熱除去系(サプレッション・プール冷却系)による 格納容器除熱は,運転員等操作時間に与える影響として,実態の操作 開始時間は解析上の設定とほぼ同等であることから,評価項目となる パラメータに与える影響はない。

(添付資料 2.5.4)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し、その結果を以下に示す。

操作条件の自動減圧系等の作動阻止操作については,解析上,ドライウ エル圧力高(13.7kPa[gage])及び原子炉水位異常低下(レベル1)の設定 点に到達し自動減圧系タイマーが作動するのは事象発生の約230秒後であ り,この120秒後に逃がし安全弁(自動減圧機能)が自動開放する。仮に 操作が遅れ自動減圧系が作動した場合でも,原子炉圧力が低圧炉心スプレ イ系の注水開始圧力に低下するまでに操作を実施することで,原子炉水位 上昇による正の反応度印加は防止できるため,これまでの操作時間余裕が 確保されている。逃がし安全弁(自動減圧機能)7 弁にて原子炉減圧をす る場合について,同操作を実施している「2.1 高圧・低圧注水機能喪失」 を参照すると,減圧開始から約160秒で原子炉圧力が約2MPaまで低下して いる。よって,合計で事象発生から約510秒程度の時間余裕が確保されて いる。

操作条件のほう酸注入系の起動操作は,仮に操作が遅れた場合,未臨界 達成タイミングが遅れることでサプレッション・プール水温度の上昇が大 きくなる。本重要事故シーケンスにおけるサプレッション・プールの最高 水温は約 115℃であり,ほう酸水の炉心部への注水が開始される事象発生 の 570 秒後における水温上昇率は 2℃/分程度であることから,限界温度 200℃に対して十分な時間余裕を有している。

操作条件の残留熱除去系(サプレッション・プール冷却系)による格納 容器除熱は,仮に操作が遅れた場合,格納容器除熱の開始が遅れることで, サプレッション・プール水温の上昇が大きくなる。本重要事故シーケンス におけるサプレッション・プールの最高水温は約 115℃であり,サプレッ ション・プール冷却を開始する事象発生の 17 分後における水温上昇率は 2℃/分程度であることから,限界温度 200℃に対して十分な時間余裕を有

(添付資料 2.5.4, 2.5.9)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.5.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「原子炉停止機能喪失」において重大事故等対 策に必要な要員は、「2.5.1(3) 炉心損傷防止対策」に示す通り8名である。 「6.2 重大事故等対策時に必要な要員の評価結果」で示す運転員及び災害 対策要員の39名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「原子炉停止機能喪失」において,必要な水源, 燃料及び電源は「6.1(2) 資源の評価条件」の条件にて評価を行い,以下 のとおりである。

a.水 源

原子炉隔離時冷却系及び高圧炉心スプレイ系による原子炉注水につい ては、サプレッション・プールを水源とすることから、水源が枯渇する ことはなく、7日間の注水継続が可能である。

なお、外部電源喪失を想定した場合でも同様である。

b.燃料

外部電源喪失を想定した場合,非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約130.3kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから,非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機による電源供給について,7日間の継続が可能である。

c. 電 源

外部電源喪失を想定した場合,重大事故等対策時に必要な負荷のうち, 非常用ディーゼル発電機等からの電源供給を考慮する負荷については, 非常用ディーゼル発電機等の容量内に収まることから,電源供給が可能 である。

2.5.5 結 論

事故シーケンスグループ「原子炉停止機能喪失」では,運転時の異常な過 渡変化時に原子炉停止機能が喪失することで,反応度制御や原子炉水位の維 持に失敗し,炉心損傷に至ることが特徴である。事故シーケンスグループ「原 子炉停止機能喪失」に対する炉心損傷防止対策としては,初期の対策として ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)による炉心流量 の低減,原子炉隔離時冷却系及び高圧炉心スプレイ系による原子炉水位の維 持,ほう酸水注入系による炉心へのほう酸水の注入手段,安定状態に向けた

対策として残留熱除去系(サプレッション・プール冷却系)による格納容器 除熱手段を整備している。また,重要事故シーケンスに対する有効性評価で は使用できないものと仮定したものの,原子炉停止機能のバックアップとし て代替制御棒挿入機能,手動での原子炉スクラムの手段を整備している。

事故シーケンスグループ「原子炉停止機能喪失」の重要事故シーケンス「過 渡事象(主蒸気隔離弁の誤閉止)+原子炉停止機能喪失」について有効性評 価を行った。

上記の場合においても、ATWS緩和設備(代替原子炉再循環ポンプトリ ップ機能)による炉心流量の低減,原子炉隔離時冷却系及び高圧炉心スプレ イ系による原子炉水位の維持,ほう酸水注入系による炉心へのほう酸水の注 入,残留熱除去系(サプレッション・プール冷却系)による格納容器除熱を 実施することで,炉心の著しい損傷を防止することができる。

この結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目を満 足している。また,安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「原子炉停止機能喪失」において,ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)による炉心 流量の低減,原子炉隔離時冷却系及び高圧炉心スプレイ系による原子炉水位

の維持,ほう酸水注入系による炉心へのほう酸水の注入,残留熱除去系(サ プレッション・プール冷却系)による格納容器徐熱等の炉心損傷防止対策は, 選定した重要事故シーケンスに対して有効であることが確認でき,事故シー ケンスグループ「原子炉停止機能喪失」に対して有効である。

第2.5-1表 原子炉停止機能喪失における重大事故対策について(1/4)

根がある	五 話		重大事故等	対処設備
1架11人口14世纪	一 一 一 順	常設設備	可搬型設備	計装設備
原子炉停止機能喪失の確認	・運転時の異常な過渡変化の発生に伴い、原	ATWS緩和設備	—	平均出力領域計装
	子炉がスクラムすべき状況にも係らず制御	(代替原子炉再循		起動領域計装
	棒が原子炉へ挿入されない場合,原子炉自	環ポンプトリップ		原子炉圧力
	動スクラム失敗を確認する。	機能)		原子炉圧力(SA)
	・原子炉自動スクラム失敗の確認後,手動ス			
	クラムボタン及び原子炉モードスイッチを			
	「RUN」から「SHUT DOWN」へ			
	の切換えによる手動スクラム操作を実施す			
	る。			
	・手動原子炉スクラム操作にも失敗したこと			
	で,原子炉停止機能喪失を判断する。			
	・原子炉圧力高信号によりATWS緩和設備			
	(代替原子炉再循環ポンプトリップ機能)			
	が作動し再循環ポンプが全台停止したこと			
	で炉心流量が低下し,原子炉出力が低下し			
	たことを確認する。			
	・対応可能な要員にて制御棒挿入機能の回復			
	操作を実施する。			

第2.5-1表 原子炉停止機能喪失における重大事故対策について(2/4)

世化亚亚和	五 匠	重大事故等対処設備			
	一 一 一 順	常設設備	可搬型設備	計装設備	
高圧炉心スプレイ系の自動起	・ドライウェル圧力が 13.7kPa[gage]に到達し	【高圧炉心スプレ	—	ドライウェル圧力	
動確認等	たことを確認する。	イ系】		原子炉水位(広帯域,燃料域)	
	・高圧炉心スプレイ系が自動起動し、原子炉	【原子炉隔離時冷		原子炉水位(SA 広帯域, SA 燃	
	注水を開始したことを確認する。	却系】		料域)	
	・低圧炉心スプレイ系及び残留熱除去系(低			原子炉圧力	
	圧注水系)が自動起動し、ミニフロー運転			原子炉圧力 (SA)	
	にて起動待機状態になったことを確認す			【高圧炉心スプレイ系系統流	
	る。			量】	
	・主蒸気隔離弁の閉止に伴い、タービン駆動			【原子炉隔離時冷却系系統流	
	給水ポンプは停止するが、電動給水ポンプ			量】	
	により原子炉注水が継続されていることを				
	確認する。				
	・対応可能な要員にて原子炉水位を原子炉水				
	位異常低下(レベル1)近傍まで低下させ				
	ることで原子炉出力を抑制する。				
	・給水加熱喪失により原子炉出力が徐々に上				
	昇することを確認する。				
	・その後、復水器ホットウェル水位低下によ				
	り、給復水系が全停となり、原子炉水位が				
	原子炉水位異常低下(レベル2)設定点に				
	到達したことで,原子炉隔離時冷却系が自				
	動起動し、原子炉注水を開始したことを確				
	認する。				

【】: 重大事故等対処設備(設計基準拡張)

第2.5-1表 原子炉停止機能喪失における重大事故対策について(3/4)

田小田	千 順		重大事故等	対処設備
操作 及び 確認	└────────────────────────────────────	常設設備	可搬型設備	計装設備
自動減圧系等の作動阻止操作	・原子炉停止機能喪失の確認後,自動減圧系 の起動阻止スイッチにより原子炉の自動減 圧を阻止する。	自動減圧系の起動 阻止スイッチ		原子炉水位(広帯域,燃料域) 原子炉水位(SA 広帯域, SA 燃 料域) 原子炉圧力 原子炉圧力(SA)
ほう酸水注入系の起動操作	<ul> <li>・原子炉停止機能喪失及び再循環ポンプ停止による原子炉出力低下を確認した後,原子炉出力が 10%以上で,かつサプレッション・プール水温度が 49℃に近接又は超過していることを確認する。</li> <li>・ほう酸水注入系の起動操作を実施する。</li> <li>・中性子束振動の発生を確認した場合にも,ほう酸水注入系の起動操作を実施する。</li> </ul>	ほう酸水注入系	_	出力領域計装 起動領域計装 サプレッション・プール水温 度

第2.5-1表 原子炉停止機能喪失における重大事故対策について(4/4)

<b>提作</b> 五元》在初	千 順	重大事故等対処設備			
1架1F及U1框認	于 順	常設設備	可搬型設備	計装設備	
残留熱除去系(サプレッショ	・サプレッション・プール水温度が 32℃に到	【残留熱除去系	—	サプレッション・プール水温	
ン・プール冷却系)による格納	達したことを確認し、残留熱除去系(サプ	(サプレッショ		度	
容器除熱	レッション・プール冷却系)によるサプレ	ン・プール冷却		【残留熱除去系系統流量】	
	ッション・プール冷却を開始する。	系)】			
	・残留熱除去系(サプレッション・プール冷				
	却系)による格納容器除熱を開始した以降				
	も,原子炉出力が残留熱除去系(サプレッ				
	ション・プール冷却系)の除熱能力を上回				
	っている期間はサプレッション・プール水				
	温度の上昇が継続することを確認する。				
	・サプレッション・プール水温度が 106℃に到				
	達した時点で,原子炉隔離時冷却系を停止				
	する。				
原子炉水位の調整操作	・ほう酸水注入により原子炉出力が徐々に低	ほう酸水注入系		出力領域計装	
	下することで、原子炉水位は徐々に上昇す	【高圧炉心スプレ		起動領域計装	
	るため、ほう酸水の全量注入完了を確認す	イ系】		原子炉水位 (広帯域, 燃料域)	
	るまでは、高圧炉心スプレイ系により原子			原子炉水位(SA 広帯域, SA 燃	
	炉水位を原子炉水位異常低下(レベル1)			料域)	
	近傍に維持する。			【高圧炉心スプレイ系系統流	
	・ほう酸水の全量注入完了の確認後は、ほう			量】	
	酸水注入系を停止するとともに、高圧炉心				
	スプレイ系により原子炉水位を原子炉水位				
	低(レベル3)から原子炉水位高(レベル				
	8)の範囲に維持する。				
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	-	—	-	
	却操作を実施する。				
			【 】: 重大事故	女等対処設備 (設計基準拡張)	

:有効性評価上考慮しない操作

• - •									•
	>	× .	1	N.T.	101	0.0	ノマームトート	マロな	•
1	ア	~		NO.	181	1-03	(二) 9	つ凹合	ι.

- コメント No. 181-03 に対する回答 第 2.5-2 表 主要解析条件(原子炉停止機能喪失)(1/6)

	項目	主要解析条件	条件設定の考え方
	解析コード	プラント動特性: REDY	_
	原子炉熱出力	3,293MW	定格熱出力を設定
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定
	原子炉水位	通常運転水位(セパレータスカ ート下端から+126 cm)	通常運転時の原子炉水位を設定
初	炉心流量	41,060 t ∕ h (85%)	初期炉心流量が小さいほど,初期のボイド率が大きくなることで原子炉圧力 上昇時にボイドが潰れることで印加される正の反応度が大きくなり,原子炉 出力の観点で厳しい設定となる このため,保安規定の運転範囲における原子炉定格出力時の下限流量を設定
期条件	主蒸気流量	6,420 t 🖊 h	定格主蒸気流量を設定
	給水温度	216°C	初期給水温度が低い方が,印加反応度が大きくなり原子炉出力が高めに推移 することで,格納容器圧力及び温度並びにサプレッション・プール水温度に 対して厳しい設定となる。このため,通常運転時の状態を包含する低めの温 度を設定 初期温度 216℃から主蒸気隔離弁閉止に伴う給水加熱喪失により一次遅れで 低下し,電動給水ポンプ停止時点で約 84℃まで低下
	燃料及び炉心	9×9燃料(A型) 単一炉心	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等で あり,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定

	項目	主要解析条件	条件設定の考え方
	<ul><li>核データ</li><li>(動的ボイド係数)</li></ul>	平衡サイクル末期の値の1.25倍	伝心に印加される正の反応度が大きくれる限定的な冬供な恐定
初	核データ (動的ドップラ係数)	平衡サイクル末期の値の 0.9 倍	炉心に印加される正の反応度が入さくなる体寸的な条件を設定
期冬	格納容器空間体積	9, 800m ³	設計値を設定
件	サプレッション・プール	$2 - 200 m^3$	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量とし
	水量	3, 300m	て、保安規定の運転上の制限における下限値を設定
	サプレッション・プール	2200	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として,
	水温度	52 C	保安規定の運転上の制限における上限値を設定
	却田東角	主蒸気隔離弁の誤閉止	運転時の異常な過渡変化の中で原子炉圧力の上昇が大きく,反応度の観点で
	起囚爭豕		厳しい主蒸気隔離弁の誤閉止を設定
事	安全機能の喪失	原子炉停止機能	
条	に対すろ仮定	手動での原子炉スクラム	バックアップを含めた全ての制御棒挿入機能の喪失を設定
件		代替制御棒挿入機能(ARI)	
	外部電源	外部電源あり	給復水系が一定期間運転を継続することで,反応度の観点で厳しい外部電源
			ありを設定

第 2.5-2 表 主要解析条件(原子炉停止機能喪失)(2/6)

	項目	主要解析条件	条件設定の考え方
	原子炉スクラム	主蒸気隔離弁閉	_
	主蒸気隔離弁の閉止時間	3秒	原子炉圧力の上昇が早く,反応度の観点で厳しい条件である 保安規定の運転上の制限における下限値を設定
■ 重 大 事 故	<ul><li>ATWS緩和設備</li><li>(代替原子炉再循環ポンプ</li><li>トリップ機能)</li></ul>	原子炉圧力高(7.39MPa[gage])にて 再循環ポンプが2台トリップ (遅れ時間0.2秒)	設計値を設定
等	ドライウェル圧力高設定点	13.7kPa[gage]	設計値を設定
対策に関連する	逃がし安全弁	逃がし弁機能 7.37MPa[gage]×2個, 354.6t/h/個 7.44MPa[gage]×4個, 357.8t/h/個 7.51MPa[gage]×4個, 361.1t/h/個 7.58MPa[gage]×4個, 364.3t/h/個 7.65MPa[gage]×4個, 367.6t/h/個	原子炉圧力が低めに維持される方が,原子炉圧力に依存する 高圧炉心スプレイ系の注水流量が大きくなり,原子炉水位が 高めに維持されることで,反応度の観点で厳しい設定とな る。このため,原子炉圧力が低めに維持される逃がし弁機能 を設定。
機器条件	ほう酸注入系	注入流量:163L/min ほう酸水濃度:13.4wt%	注入流量は,設計値を設定。 ほう酸水濃度は単位時間当たりに投入される負の反応度が 小さくなるよう保安規定の運転上の制限における下限値を 設定。
	残留熱除去系(サプレッショ ン・プール冷却系)	熱交換器1基あたり約53MW(サプレッション・ プール水温度100℃,海水温度27.2℃において)	設計値を設定

第2.5-2表 主要解析条件(原子炉停止機能喪失)(3/6)

	項目	主要解析条件	条件設定の考え方
重大事故等対策に	高圧炉心スプレイ系	ドライウェル圧力高 (13.7kPa[gage]) 信号にて 自動起動 (遅れ時間:0秒) 原子炉水位は原子炉水位異常低下 (レベル1)設 定点近傍に維持する。 ・注水流量:145~1,506m ³ /h ・注水圧力:0~8.30MPa[dif]	高圧炉心スプレイ系による原子炉注水開始タイミングが早 く,注水流量が大きい方が,原子炉水位が高めに維持される ことで,反応度の観点で厳しい設定となる。このため,自動 起動遅れ時間を0秒とし,注水流量はポンプ性能評価に基づ く大きめの流量特性を設定。
関連する機器条件	原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて自動起 動 (遅れ時間:0秒) 原子炉水位は原子炉水位異常低下(レベル1)設 定点近傍に維持する。 サプレッション・プール水温度が106℃に到達し た時点で停止する。 ・注水流量:136.7m ³ /h ・注水圧力:1.04~7.86MPa[dif]	原子炉隔離時冷却系による原子炉注水開始タイミングが早 い方が,原子炉水位が高めに維持されることで,反応度の観 点で厳しい設定となるため,自動起動遅れ時間を 0 秒と設定 注水特性は,タービン回転数制御により一定流量に制御され ることから,設計値を設定

第2.5-2表 主要解析条件(原子炉停止機能喪失)(4/6)

第2.	5-2 表	主要解析条件	(原子炉停止機能喪失)	(5/6)
211 4.		エタルエル・ハー		(0, 0)

	項目	主要解析条件	条件設定の考え方
	自動減圧系等の作動阻止操作	事象発生から4分後	運転手順に基づき,原子炉停止機能喪失の確認及び自動減圧 系等の作動阻止に要する時間を考慮して設定
関連する操作条重大事故等対策	ほう酸水注入系の起動操作	事象発生から6分後 (炉心部へのほう酸水注入開始は事象発生か ら9分30秒後)	運転手順に基づき,自動減圧系等の作動阻止操作後に実施す るため,自動減圧系等の作動阻止操作が完了する事象発生の 4 分後からほう酸水注入系の起動操作に要する時間を考慮し て設定 炉心部へのほう酸注入開始は,ほう酸水注入系の起動後,注 入配管及び原子炉圧力容器内での輸送遅れを考慮して設定
件 に	<ul> <li>残留熱除去系 (サプレッション・プール冷却系) による格納容器除熱</li> </ul>	事象発生から 17 分後	運転手順に基づき,状況判断及び操作に要する時間を考慮し て設定

第 2,5-2 表	主要解析条件	(原子炉停止機能喪失)	$(6 \angle 6)$
XI 4.0 4 X	エタルエル・ハー		(0, 0)

項目	主要解析条件	条件設定の考え方
解析コード	ホットバンドル解析: SCAT	—
最小限界出力比(MCPR)	1.24	初期の最小限界出力比が小さい方が沸騰遷移までの余裕が小 さくなることで,被覆管温度に対して厳しい設定となる。この ため,9×9燃料(A型)のサイクル初期における保安規定の 運転上の制限の下限値を設定
燃料棒最大線出力密度 (MLHGR)	44.0 k₩∕m	初期の燃料線出力密度が大きい方が燃料被覆管温度に対して 厳しい設定となる。このため,保安規定の運転上の制限におけ る上限値を設定
B T 判定(時刻)	GEXL相関式	_
BT後の被覆管表面熱伝達率	修正 Dougall-Rohsenow 式	_
リウェット相関式	「BWRにおける過渡的な沸騰遷移後の燃料 健全性評価基準:2003」における相関式2	_




第2.5-1 図 原子炉停止機能喪失時の重大事故等対策の概略系統図(2/3) (高圧炉心スプレイ系及び原子炉隔離時冷却系による原子炉注水, ほう酸注入系による原子炉停止並びに 残留熱除去系(サプレッション・プール冷却系)による格納容器除熱段階)



第2.5-1 図 原子炉停止機能喪失時の重大事故等対策の概略系統図(3/3) (高圧炉心スプレイ系による原子炉注水及び 残留熱除去系(サプレッション・プール冷却系)による格納容器除熱段階)



※12:ほう酸水注入系の全量注入完了後は、原子炉水位を原子炉水位低(レベル3)から原子炉水位高(レベル8)の間に維持する。

9. 古古制物ウトマー機明らいピオラー教和「おいピョルによりおうめトマがおより」 医スピジュア小蛇のちょ 低に帰りっピーノズ

- ※13:中央制御室にて,機器ランブ表示,警報,ボンブ吐出圧力計指示等にて確認する。 原子炉が高圧状態のため,低圧炉心スブレイ系 及び残留熱除去系(低圧注水系)の注入弁は開放せずミニフロー運転となる。
- ※14:原子炉隔離時冷却系は、水源であるサプレッション・プール水温度が106℃に近接していると判断した時点で停止する。 原子炉隔離時冷却系の停止後は、高圧炉心スプレイ系の原子炉注水により原子炉水位が適切に維持されていることを確認する。



2.5-41

									原子炉停止機能喪失								
F																	
								経過時間(分)							経過時間	(時間)	備考
							5			15	20	30 	40			25	
					7	↓ 事象発生											
		実施箇所・	必要要員数		7	✔ 原子炉自動スクラ	ラム信号発	信									
		【】は	他作業後			▼約57秒ド	ライウェ	ル圧力高(13.7kPa[gage]	設定点)到達								
		移動しく	さだ安貝			▶ 約1.4分	サプレッシ	ション・プール水温 49℃	到達								
操作項目					操作の内容	↓ 約 2.	2分 復元 約26公	水器ホットウェル水位低	下による電動給水ポンプ停止 ベル2) 到達								
	責任者	発電長	1人	中央監視 運転操作指揮			MJ 2. 0 JJ.	↓ 約5.9分 原子炉2	* 、	≧点到達+1	120 秒						
	補佐	副発電長	1人	運転操作指揮補佐				▶ 6分 ほう酸水注ス	《系起動								
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡				$\bigtriangledown$	7 9.5分 炉心部へのほう酸液	主入開始 🕇	▶ 17 分 残留熱除去系 (2 系列)	による格納容器除熱開始					
	運転員 (中央制御室)	運転員 (現場)		重大事故等対応要員 (現場)								▶ 約28分 サプレッシ	ョン・プール水温度 106	℃到達			
					●原子炉自動スクラム失敗の操作												手動スクラムボタン及び原子炉モードス イッチ切換えによるスクラム成功は解析
	1人 A	_		-	●手動スクラムボタンによる手動スクラム操作	3分											上考慮しないが,原子炉停止機能喪失の確認の運転員等操作時間(3分)ではこれら
					<ul> <li>●原子がビモートスイック「SHU DOWN」への切合え操作</li> <li>●再循環ポンプトリップの確認</li> </ul>												の操作時間も考慮して設定している。
原子炉停止機能					●タービン停止の確認												
喪失の確認及び 状況判断					●タービン駆動給水ポンプトリップ及び電動駆動給水ポンプ 自動起動の確認												
	1人	_		_	●電動駆動給水ポンプトリップの確認		10 5	÷									
	В				●非常用炉心冷却系及び非常用ディーゼル発電機等の自動起 動の確認 ● 古奈気隔離魚の関連及び進送した合金(迷惑した時後)に上												
					● 三点入時間ボの利止及び起かし安全元(近かし元後に)によ る原子炉圧力制御の確認 ● 国子炉圧増働の確認												
自動減圧系等の	【1人】	_		_	●示1/~₩問題**1114/3パジロ動に見知い/#Eac	1分											
作動阻止操作	A				<ul> <li>□ 1000×1/2 = 100×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 2010×1 = 201</li></ul>	2	<u></u> 〕 分										
はう酸水注入糸 の起動操作	[1入] A	-		-	●ほう酸水注入系の注入状態監視			-	ほう酸水全量	: 注入完了ま	では適宜状態監視し,全量注入完	了 を確認した後にほう酸水	、注入系を停止				中性子束振動の発生を確認した場合にも実施
	【1人】	-		-	●原子炉水位低下操作による原子出力抑制						原子炉水位調整						
原子炉水位低下 による原子炉出 カ加制撮作及75	[2人]				●代替制御棒挿入回路起動 ●到御枝手動挿入過佐							16 🛆					解析上考慮しない 手順上は以下の優先順位で実施 のほう酔水は入るみび路段執険主系
制御棒手動挿入 機能の回復操作	A, B	24			<ul> <li>● スクラム・パイロット弁継電器用ヒューズ引き抜き</li> <li>● 用世森m</li> </ul>							10 7					<ul> <li>②原子炉水位低下操作による原子炉出力抑制</li> <li>③制御棒挿入機能の回復操作</li> </ul>
途の麹除土るに	-	C, D		-	●スクラム・パイロット弁空気ヘッダ計器用空気系排気操作									45分			
よる格納容器 (サプレッショ	【1人】	_		_	●収圧社水モートからサブレッジョン・ノール常却モートへの切 替え操作(2系列)				6分	-							
ン・プール冷却 系)除熱操作	В				●サプレッション・プール冷却状況監視								適宜実施				
原子炉水位調整	【1人】 A	_		_	<ul> <li>原子炉隔離時冷却系による原子炉注水監視</li> <li>原子炉隔離時冷却系の停止操作</li> </ul>			サプレッション	適宜実施 ・プール水温度が 106℃に近接	^徳 _{後した時点} ・	で原子炉隔離時冷却系を停止						
操作	【1人】 A	-		-	<ul> <li>●高圧炉心スプレイ系による原子炉注水監視</li> <li>●高圧炉心スプレイ系 流量調整</li> </ul>			適宜実施 ほう酸水 全量注入完了後は原	全量注入完了までは原子炉水 子炉水位を原子炉水位低(レ-	位を原子炉 ベル3) 設	5水位異常低下(レベル1)設定点 設定点から原子炉水位高(レベル8	付近に維持し, )設定点の間に維持					
毎田这株料プー	1141				●常設低圧代替注水系ポンプによる代替燃料プール注水系(注水 ライン)を使用した使用済燃料プールへの注水操作							適宜実施					解析上考慮しない スロッシングによる水位低下がある場合は代替燃 料プール冷却系の起動までに実施する
ルの冷却操作	В	-		-	●緊急用海水系の起動操作										20 分		解析上考慮しない
					●代替燃料ブール冷却系起動操作											15 分	25 時間までに実施する
必要要員合計	2人 A, B	2人 C, D		0人			_										

コメント No. 147-27 に対する回答

第2.5-3 図 原子炉停止機能喪失時の作業と所要時間



第2.5-5図 原子炉蒸気流量及び給水流量の推移(短期)



第2.5-6図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移(短期)



第2.5-7図 原子炉圧力,原子炉水位(シュラウド外水位)及び 逃がし安全弁の流量の推移(短期)

#### 2.5-44



第2.5-8 図 炉心平均ボイド率の推移(短期)



第2.5-9図 燃料被覆管温度(燃料被覆管最高温度発生位置)の推移(短期)



第2.5-10図 燃料被覆管温度(沸騰遷移発生位置)の推移(短期)

[※] 燃料被覆管については,外面より内面の方が高い温度となるものの,今回の評価が燃料の著しい損傷の有無(重 大事故防止)を確認していることに鑑み,燃料が露出し燃料温度が上昇した場合に,酸化の有無によって破損が 先行すると考えられる燃料被覆管表面で,最高温度を評価している。



第2.5-11図 熱伝達係数(燃料被覆管最高温度発生位置)の推移(短期)



第2.5-12図 クオリティ(燃料被覆管最高温度発生位置)の推移(短期)



事故後の時間(m)

第2.5-13 図 中性子束の推移(長期)



事故後の時間(m)

第2.5-14図 炉心流量の推移(長期)



第2.5-15図 原子炉蒸気流量及び給水流量の推移(長期)



第2.5-16 図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移



第2.5-17図 原子炉圧力及び原子炉水位の推移(長期)



第2.5-18 図 原子炉水位(シュラウド外水位)の推移(長期)



第2.5-19図 サプレッション・プール水温度及び格納容器圧力の推移(長期)

プラント動特性評価における評価対象炉心の選定について

原子炉圧力の上昇等によって炉心のボイド率が低下した場合,動的 ボイド係数の絶対値が大きいほど,炉心に印加される正の反応度が大 きくなり,原子炉出力の増加量が大きくなる。よって,プラント動特 性評価では,動的ボイド係数が重要なパラメータとなる。

動的ボイド係数は,減速材ボイド係数を遅発中性子発生割合(β値) で除した値であり,一般にサイクル末期の方が絶対値が大きい。サイ クル初期とサイクル末期の遅発中性子発生割合(β値)を第1表に, 今回の評価におけるボイド率の推移を第1図に,減速材ボイド係数を 第2図に,動的ボイド係数を第3図に示す。今回の評価ではボイド率 が40%から60%程度で推移することから,第3図に示すとおり,動的 ボイド係数はサイクル末期の方が絶対値が大きくなり,ボイド効果に より炉心に印加される正の反応度が大きくなる。

よって,プラント動特性評価における評価対象炉心として平衡炉心 のサイクル末期を選定した。

	平衡炉心サイクル初期	平衡炉心サイクル末期
遅発中性子発生割合 (β値)	0.0060	0.0053

第1表 サイクル初期とサイクル末期の遅発中性子発生割合(β値)



第1図 ベースケースにおける炉心平均ボイド率の推移

添付 2.5.1-3



減速材ボイド係数(9×9燃料(A型)取替炉心) 第3図 動的ボイド係数(9×9燃料(A型)取替炉心) 第2図

コメント No. 163-47, 48, 51, 274-05 に対する回答 自動減圧系の自動起動阻止操作の考慮について

1. 自動減圧系の自動起動阻止操作について

自動減圧系は、中小破断LOCA時に高圧炉心スプレイ系等の機能が十分に発揮されずに原子炉水位を維持することができない場合 に自動作動し、原子炉を減圧することで低圧炉心スプレイ系等によ る原子炉注水をうながし、原子炉水位を維持するための系統である。 自動減圧系は、ドライウェル圧力高(13.7kPa[gage])信号及び原 子炉水位異常低下(レベル1)信号により自動作動信号が発信され、 120秒の時間遅れの後、低圧炉心スプレイ系ポンプ又は低圧注水系ポ ンプの吐出圧力が確立している場合に、逃がし安全弁(自動減圧機 能)7弁を開放する。

原子炉停止機能喪失時に自動減圧系により原子炉が自動減圧し, これに伴い低圧炉心スプレイ系等により炉心に大量の低温水が注入 されると,ボイド効果等により炉心に正の反応度が投入されること で,急激な原子炉出力上昇をもたらすこととなる。

このため,運転手順において原子炉停止機能喪失時には自動減圧 系の作動を阻止することを明確にしており,また,作動阻止用の操 作スイッチを設けている。

2. 自動減圧系の自動起動阻止操作について

原子炉停止機能喪失の有効性評価では,事象発生の約230秒後に 自動減圧系のタイマーが作動し,作動阻止操作をしない場合には, この120秒後に逃がし安全弁が開放する。このため,原子炉停止機 能喪失の確認及び自動減圧系等の作動阻止操作に要する時間を考慮

添付 2.5.2-1

して、事象発生の4分後に自動減圧系等の作動阻止操作を実施する こととしている。これは事象発生から10分以内の操作であり、他の 事象で見込んでいる事象発生からの10分の状況判断時間を考慮して いない。原子炉停止機能喪失を確認した場合は、その時点で原子炉 停止機能喪失時の反応度制御操作に移行することを手順書で明確に 定めるとともに、中央制御室に操作スイッチを設置し、継続的な訓 練を実施していることから、10分以内の操作であっても運転員によ る対応は可能である。また、他の事故シーケンスグループと同様に 10分の状況判断時間を条件として評価に組み込むと、原子炉停止機 能喪失時の炉心損傷防止の手順に沿った有効性評価を行うことがで きない。

以上により,原子炉停止機能喪失の有効性評価においては,10分 の状況判断時間を考慮するのではなく,原子炉停止機能喪失の確認 及び操作に要する時間に余裕時間を考慮して,事象発生の4分後に 自動減圧系の自動起動阻止操作が完了する操作条件を設定している。 なお,訓練実績によると原子炉停止機能喪失の確認から自動減圧系 の自動起動阻止操作の完了まで2分で実施可能である。 安定状態について(原子炉停止機能喪失)

原子炉停止機能喪失時の安定状態については、以下のとおり。

 原子炉安定停止状態:事象発生後,設計基準事故対処設備又は重大事故等対処 設備を用いた炉心冷却が維持可能であり,また,冷却の ための設備がその後も機能維持でき,かつ,必要な要員 の不足や資源の枯渇等のあらかじめ想定される事象悪 化のおそれがない場合に安定停止状態が確立されたも のとする。
 格納容器安定状態: 炉心冷却が維持された後に,設計基準事故対処設備又は 重大事故等対処設備を用いた格納容器除熱により格納 容器圧力及び温度が安定又は低下傾向に転じ,また,格 納容器除熱のための設備がその後も機能維持でき,か つ,必要な要員の不足や資源の枯渇等のあらかじめ想定 される事象悪化のおそれがない場合に安定状態が確立 されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

ほう酸水注入系を用いた炉心へのほう酸水注入により中性子束は徐々に低下 し未臨界が達成され,高圧炉心スプレイ系を用いた原子炉注水を継続すること で炉心の冷却は維持され,原子炉安定停止状態が確立される。

格納容器安定状態の確立について

炉心冷却を継続し,事象発生の約 17 分後から残留熱除去系による格納容器除 熱を実施する。原子炉出力が維持されている期間は、格納容器圧力及びサプレ ッション・プール水温度は緩やかに上昇を継続するが、ほう酸水注入系により 未臨界が達成されると低下傾向となり、格納容器雰囲気温度は 150℃を下回る とともに、逃がし安全弁の機能維持が確認されている 126℃を上回ることはな く、格納容器安定状態が確立される。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。制御棒挿入機能の復旧後は,制御棒を挿入することで,ほう酸 水による未臨界維持に代わる未臨界の維持が可能となる。

(添付資料 2.1.1 別紙 1)

#### コメント No. 148-21, 265-06, 07, 08 に対する回答

解析コード及び解析条件の不確かさの影響評価について(原子炉停止機能喪失)

#### 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (REDY)(1/2)

-	1				
分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	核分裂出力	核特性モデル	反応度フィードバック効果の不確かさに含まれ る	「反応度フィードバック効果」にて確認する。	「反応度フィードパック効果」にて確認する。
		反応度モデル(ボ イド・ドップラ)	<ul> <li>動的ボイド係数:</li> <li>〜</li> <li>ー</li> <li>ー</li> <li>ー</li> </ul>	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認する。
	反応度フィード バック効果	反応度モデル(ボ ロン)	高温停止に必要なボロン反応度: -3%Δk	反応度モデル(ボロン)の不確かさは、ほう酸水注入開始後の挙 動に影響を与えるものであり、ほう酸水注入開始後にサプレッシ ョン・プール水温度を起点とする運転員等操作はないことから、 運転員等操作時間に与える影響はない。	高温停止に必要なボロン反応度を - 3% $\Delta$ k とした場合には、サプ レッション・プール水温度が 7℃上昇し、格納容器圧力が 0.04MPa 上昇することを感度解析により確認している。有効性評価解析に おけるサプレッション・プール水温度の最大値は 115℃,格納容器 圧力の最大値は 0.20MPa[gage]であり,評価項目に対して十分な余 裕があることから、その影響は非常に小さい。(重大事故等対策 の有効性評価に係るシビアアクシデント解析コードについて(第3 部 REDY))
炉心	崩壞熱	崩壊熱モデル	非常用炉心冷却系の性能評価において使用が認 められている崩壊熱曲線に対して、1秒後の時点 で+0.8%/-0.1%の不確かさを有する	原子炉停止機能喪失により高出力状態が維持されることから,崩 壊熟モデルの不確かさにより事象進展に与える影響は小さく,運 転員操作時間等に与える影響は小さい。	崩壊熱曲線を初期状態において+1%/-2%とした場合でも評価 項目となるパラメータに影響を与えないことを感度解析により確 認している。(重大事故等対策の有効性評価に係るシビアアクシ デント解析コードについて(第3部 REDY))
	沸騰・ボイド率変 化	炉心ボイドモデ ル	炉心ボイドマップ確認試験により,炉心ボイド モデルにおいて使用するボイド率補正率に対し て,以下の不確かさを有する 補正無し/最大補正二次関数	炉心ボイドモデル等の影響は,原子炉出力変化に影響を及ぼし, 燃料被覆管温度,サプレッション・プール水温度や水位変化に影響すると考えられる。しかしながら,その影響は小さく,運転員 等操作時間に与える影響は小さい。	ボイド率補正率を補正無しとした場合には、評価項目となるバラ メータに対する余裕が大きくなることを感度解析により確認して いる。 ボイド率補正率を最大補正二次関数とした場合には、サプレッシ ョン・プール水温度が 2℃上昇し、格納容器圧力が 0.01MPa 上昇す ることを感度解析により確認している。有効性評価解析における サプレッション・プール水温度の最大値は 115℃,格納容器圧力の 最大値は 0.20MPa[gage]であり、評価項目に対して十分な余裕があ ることから、その影響は非常に小さい。(重大事故等対策の有効 性評価に係るシビアアクシデント解析コードについて(第3部 REDY))
原子炉口	<ul> <li>冷却材流量変化</li> <li>(コーストダウン特性)</li> </ul>	再循環モデル	再循環ポンプ慣性時定数 : +10%/-10%	再循環ポンプ慣性時定数の影響は,再循環ポンプトリップ時の炉 心流量,原子炉出力変化に影響するが,事象発生初期の短時間の 影響であり,事象進展に与える影響は小さく,運転員等操作時間 に与える影響は小さい。	再循環ボンブ慣性時定数を+10%/-10%とした場合には,評価 項目となるパラメータに対する余裕が大きくなるか又は影響を与 えないことを感度解析にて確認している。(重大事故等対策の有 効性評価に係るシビアアクシデント解析コードについて(第3部 REDY))
压 力 容 器	冷却材流量変化 (自然循環流量)	再循環モデル	モデルの仮定に含まれる	自然循環状態は、シュラウド内外の位置ヘッド差(マスパランス) が支配的であり、炉内ボイドによる摩擦圧損等の炉心流量への影 響は小さいこと及び実機試験での挙動を概ね再現できることを確 認していることから、事象進展に与える影響は小さく、運転員等 操作時間に与える影響は小さい。	自然循環状態は、シュラウド内外の位置ヘッド差(マスパランス) が支配的であり,炉内ボイドによる摩擦圧損等の炉心流量への影響は小さいこと及び実機試験での挙動を概ね再現できることを確 認していることから、事象進展に与える影響は小さく,評価項目 となるパラメータに与える影響は小さい。

# 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (REDY)(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	冷却材放出(臨界 流・差圧流)	逃がし安全弁モ デル	逃がし弁流量:+16.6%	述がし安全弁流量が大きくなった場合,原子炉水位の低下やサブ レッション・プール水温度の上昇が早くなることが考えられるが, 感度解析結果より評価項目となるパラメータに与える影響が小さ いことを確認している。また,実機試験での挙動を概ね再現でき ることを確認していることから,事象進展に与える影響は小さく, 運転員等操作時間に与える影響は小さい。(重大事故等対策の有 効性評価に係るシビアアクシデント解析コードについて(第3部 REDY))	述がし弁流量を+16.6%とした場合には,評価項目となるパラメ ータに対する余裕が大きくなるか又は影響を与えないことを感度 解析にて確認している。(重大事故等対策の有効性評価に係るシ ビアアクシデント解析コードについて(第3部 REDY))
原子炉圧力容器	ECCS注水(給 水系・代替注水含 む)	給水系モデル	給水エンタルビ (1)給水温度(主蒸気流量零で):-60kJ/kg(- 14℃) (2)遅れ時間:+50秒 高圧炉心注水系流量 :実力値(137%)	給木エンタルビが低下した場合には、炉心入口サブタールが低下 することで原子炉出力が上昇し、また、給木エンタルビの低下が 遅れた場合には、炉心入口サブタールの低下が遅くなることで原 子炉出力の上昇が遅くなることが考えられるが、感度解析結果に より評価項目となるパラメータ対する余裕が大きくなるか又はそ の影響が小さいことを確認している。また、解析コードは実機試 瞭データと比較し給木エンタルビを多少小さめに評価し、全体的 に良く一致することを確認している。また、解析コードは実機試 瞭データと比較し給木エンタルビを多少小さめに評価し、全体的 に良く一致することを確認していることから、事象進展に与える 影響は小さく、運転員等操作時間に与える影響は小さい。(重大 事故等対策の有効性評価に係るシビアアクシデント解析コードに ついて(第3部 REDY)) 高圧炉心スプレイ系の流量が増加した場合、原子炉水位が高めに 維持されることで、原子炉出力は高めとなることが考えられるが、 感度解析結果により評価項目となるパラメータに与える影響が小 さいことを確認している。また、原子炉へ注水する場合の影響と しては、ECCS注水も給水系による注水も同等と考えられ、解 析コードは、給水ボンブがトリップした場合や給水流量が増減し た場合の実機試験の挙動を良く模擬できることを確認しているこ とから、事象進展に与える影響は小さく、運転員等操作時間に与 える影響は小さい。(重大事故等対策の有効性評価に係るシビア アクシデント解析コードについて(第3部 REDY))	給水エンタルビについて給水温度を-60kJ/kg(-14℃),遅れ 時間を+50秒とした場合には,評価項目となるパラメータに対す る余裕が大きくなることを感度解析により確認している。また, 絡水温度のみを-60kJ/kg(-14℃)とした場合には、燃料被覆 管温度が10℃上昇することを感度解析により確認している。有効 性評価解析における燃料被覆管温度の最大値は872℃であり,評価 項目に対して十分な余裕があることから,その影響は非常に小さ い。(重大事故等対策の有効性評価に係るシビアアクシデント解 析コードについて(第3部 REDY)) 高圧炉心注水系流量を137%とした場合には、サブレッション・プ ール水温度が4℃上昇し、格納容器圧力が0.03MPa上昇することを 感度解析により確認している。有効性評価解析におけるサブレッ ション・プール水温度の最大値は115℃,格納容器圧力の最大値は 0.20MPa[gage]であり,評価項目に対して十分な余裕があることか ら、その影響は非常に小さい。(重大事故等対策の有効性評価に 係るシビアアクシデント解析コードについて(第3部 REDY))
			サプレッション・プール水の初期エンタルピ :設計仕様の常用温度下限(-104kJ/kg(- 25℃))	サプレッション・プール水の初期エンタルビが低下した場合,サ プレッション・プール水源を用いてECCS注水を実施する際の 炉心入口サブクールが低下することで原子炉出力が上昇すること が考えられるが,感度解析結果により評価項目となるパラメータ 対する余裕が大きくなるか又は影響がないことを確認しており, 事象進展に与える影響は小さく,運転員等操作時間に与える影響 は小さい。(重大事故等対策の有効性評価に係るシビアアクシデ ント解析コードについて(第3部 REDY))	サプレッション・プール水の初期エンタルビを-104kJ/kg(- 25℃)とした場合には、サプレッション・プール水温度が18℃低 下し、格納容器圧力が0.06MPa低下することを感度解析により確 認しているため,評価項目となるパラメータに対する余裕は大き くなる。(重大事故等対策の有効性評価に係るシビアアクシデン ト解析コードについて(第3部 REDY))
	ほう酸水の拡散	ほう酸水拡散モ デル	保守的な混合特性を設定	解析コードは保守的な混合特性を用いるため、実際の炉心内にお けるほう酸水の拡散は早くなり、ボロン反応度の印加が早くなる ことで未臨界達成の時間が早くなり、格納容器圧力及びサプレッ ション・プール水温度の上昇は抑制される。このため、実際の格 納容器圧力及びサプレッション・プール水温度は低くなるが、ほ う酸水注入開始後にこれらのパラメータを起点とする運転員等操 作はないことから、運転員等操作時間に与える影響はない。	解析コードは保守的な混合特性を用いるため、実際の炉心内にお けるほう酸水の拡散は早くなり、ボロン反応度の印加が早くなる ことで未臨界達成の時間が早くなり、格納容器圧力及びサプレッ ション・プール水温度の上昇は抑制される。このため、実際の格 納容器圧力及びサプレッション・プール水温度は低くなり、評価 項目となるパラメータに対する余裕は大きくなる。
容 格 器 納	サ プ レ ッ シ ョ ン・プール冷却	格納容器モデル	保守的モデルに含まれる	解析コードは、単純な計算で保守性を確保しているため、不確か さ要因としては考慮しない。	解析コードは、単純な計算で保守性を確保しているため、不確か さ要因としては考慮しない。

添付 2.5.4-2

# 第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び 評価項目となるパラメータに与える影響 (SCAT)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	出力分布変化	出力分布モデル	解析コードは保守的に中央ビークに基づく軸方向出 力分布を設定するため,燃料被覆管温度を高めに評 価する。	解析コードは、保守的に中央ビークに基づく軸方向出力分布 を設定するため、燃料被覆管温度を高めに評価する。このた め、実際の燃料被覆管温度は低くなるが、燃料被覆管温度を 起点とする運転員等操作はないことから、運転員等操作時間 に与える影響はない。	解析コードは,保守的に中央ビークに基づく軸方向出力分布を設 定するため,燃料被覆管温度を高めに評価する。このため,実際 の燃料被覆管温度は低くなり,評価項目となるパラメータに対す る余裕は大きくなる。
	燃料棒内温度変 化	熱伝導モデル,燃 料ペレット-被覆 管ギャップ熱伝 達モデル	解析コードは、燃料ペレットと燃料被覆管間のギャ ップ熱伝達係数を高めに設定することで、原子炉出 力が上昇する時の表面熱流束に対する熱伝達遅れが 小さくなる。このため、主蒸気隔離弁閉止によって 原子炉出力が急増する状態では、燃料被覆管温度を 高めに評価する。また、給水加熱喪失によって原子 炉出力が準静的に増加する状態では、表面熱流速に 対する熱伝達遅れの燃料被覆管温度への影響は大き くないと考えられる。	解析コードは、燃料ペレットと燃料被覆管間のギャップ熱伝 達係数を高めに設定することで,原子炉出力が上昇する時の 表面熟流束に対する熱伝達遅れを小さくし,主蒸気隔離弁閉 止によって原子炉出力が急増する状態では,燃料被覆管温度 を高めに評価する。このため,実際の燃料被覆管温度は低く なるが,燃料被覆管温度を起点とする運転員等操作はないこ とから,運転員等操作時間に与える影響はない。	解析コードは、燃料ペレットと燃料被覆管間のギャップ熱伝達係 数を高めに設定することで,原子炉出力が上昇する時の表面熱流 束に対する熱伝達遅れを小さくし,主蒸気隔離弁閉止によって原 子炉出力が急増する状態では、燃料被覆管温度を高めに評価する。 このため,実際の燃料被覆管温度は低くなり,評価項目となるパ ラメータに対する余裕は大きくなる。
炉心	燃料棒麦面熟伝 達	熟伝達モデル リウェットモデ ル	解析コードは燃料棒表面熱伝達をおおむね保守的に 評価する相関式(修正Dougall-Rohsenow式)を採用 したことに加え、被覆管温度が高温となる領域で重 要な熱伝達機構となる輻射熱伝達を無視しているた め、燃料棒表面の熱伝達係数をおおむね小さく評価 し、燃料被覆管温度を高めに評価する。 解析コードは、燃料被覆管温度に依存するリウェッ ト相関式(相関式2)を使用し、上述のとおり被覆 管温度を高めに評価することから、リウェット時刻 を遅めに評価し、燃料被覆管温度を高めに評価する。	解析コードは、燃料棒表面熱伝達及びリウェット時刻をおお むね保守的に評価する相関式を採用するとともに、高温領域 においても輻射熱伝達に期待しない評価としていることか ら、燃料棒表面の熱伝達保数をおおむね小さく評価する。こ のため、実際の燃料棒表面での熱伝達は大きめとなり、燃料 被覆管温度は低めとなるが、燃料被覆管温度を起点とする運 転員等操作はないことから、運転員等操作時間に与える影響 はない。	解析コードは、燃料棒表面熱伝達及びリウェット時刻をおおむね 保守的に評価する相関式を採用するとともに、高温領域において も輻射熱伝達に期待しない評価としていることから、燃料棒表面 の熱伝達係数をおおむね小さく評価する。このため、実際の燃料 棒表面での熱伝達は大きめとなり、燃料被覆管温度は低めとなる ことから、評価項目となるパラメータに対する余裕は大きくなる。 なお、燃料被覆管温度が高めに評価されることに伴いリウェット 時刻は遅く評価されるが、更に保守的な取扱いとして、リウェッ トを考慮しない場合を想定した感度解析を実施し、この場合でも 評価項目となるパラメータは評価項目を満足することを確認して いる。 (添付資料 2.5.5)
	沸騰遷移	沸 騰 遷 移 評 価 モ デル	解析コードは沸騰遷移が生じ易い条件として、SL MCPRを基準に沸騰遷移の発生及び沸騰遷移位置 を判定するよう設定しているため、燃料被覆管温度 をおおむね高めに評価する。	解析コードは、沸騰遷移が生じ易い条件として、SLMCPR を基 準に沸騰遷移の発生及び沸騰遷移位置を判定するよう設定し ているため、燃料被覆管温度を高めに評価する。このため、 実際の燃料被覆管温度は低くなるが、燃料被覆管温度を起点 とする運転員等操作はないことから、運転員等操作時間に与 える影響はない。	解析コードは、沸騰遷移が生じ易い条件として、SLMCPR を基準に 沸騰遷移の発生及び沸騰遷移位置を判定するよう設定しており、 燃料被覆管温度を高めに評価する。このため、実際の燃料被覆管 温度は低くなり、評価項目となるパラメータに対する余裕は大き くなる。
	気液熱非平衡	熟伝達モデル リウェットモデ ル	解析コードは沸騰遷移後の熱伝達をおおむね保守的 に評価する相関式(修正 Dougal1-Rohsenow 式)を採 用したことに加え、被覆管温度が高温となる領域で 重要な熱伝達機構となる輻射熱伝達を無視している ため、冷却材温度を飽和温度として熱伝達を取り扱 った場合でも燃料被覆管温度はおおむね高めに評価 される。よって、燃料被覆管温度に対する気液熱非 平衡の不確かさの影響は、修正 Dougal1-Rohsenow 式 の保守性に含まれる。	解析コードは沸騰遷移後の燃料棒表面熱伝達をおおむね保守 的に評価する相関式(修正 Dougall-Rohsenow式)を採用する とともに、高温領域においても輻射熱伝達に期待しない評価 としていることから、気液熟非平衡の不確かさの影響は、修 正 Dougall-Rohsenow式の保守性に含まれ,燃料被覆管温度を おおむね高く評価する。このため、実際の燃料被覆管温度は 低くなるが,燃料被覆管温度を起点とする運転員等操作はな いことから、運転員等操作時間に与える影響はない。	解析コードは沸騰遷移後の燃料棒表面熱伝達をおおむね保守的に 評価する相関式(修正 Dougall-Rohsenow 式)を採用するとともに, 高温領域においても輻射熱伝達に期待しない評価としていること から、気液熱非平衡の不確かさの影響は,修正 Dougall-Rohsenow 式の保守性に含まれ,燃料被覆管温度をおおむね高く評価する。 このため,実際の燃料被覆管温度は低くなり,評価項目となるパ ラメータに対する余裕は大きくなる。

	ri u	解析条件0	)不確かさ	冬世现它の老文士	海村日原市市にたって影響	対に百日 こうていいし ひてたいて 営業
	垻 日	解析条件	最確条件	米件設定の考え方	運転員寺保作时间に与える影響	計価項目となるハノメニタに与える影響
	原子炉熱出力	3,293MW	約 3,279~ 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度が緩和される。 最確条件とした場合の運転員等操作時間及び評価項目と なるパラメータに与える影響は,最大線出力密度にて説 明する。	最確条件とした場合には最大線出力密度が緩和される。最 確条件とした場合の運転員等操作時間及び評価項目とな るパラメータに与える影響は,最大線出力密度にて説明す る。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~ 約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、事故初期において主蒸気隔離弁が 閉止し、原子炉圧力は逃がし安全弁により制御されるた め事象進展に及ぼす影響は小さく、運転員等操作時間に 与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、事故初期において主蒸気隔離弁が閉止 し、原子炉圧力は逃がし安全弁により制御されるため、事 象進展に及ぼす影響は小さく、評価項目となるパラメータ に与える影響はない。
初期条件	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ +132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、ゆらぎの幅は事象発生後の水位低 下量に対して非常に小さい。例えば、解析条件で設定し 通常運転水位から自動減圧系の作動信号の一つである 原子炉水位異常低下(レベル1)までの原子炉水位の低 下量は4700 mmであるのに対して、ゆらぎによる水位低下 量は約40 mmであり非常に小さい。したがって、事象進展 に及ぼす影響は小さく、運転員等操作時間に与える影響 は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、ゆらぎの幅は事象発生後の水位低下量 に対して非常に小さい。例えば、解析条件で設定した通常 運転水位から自動減圧系の作動信号の一つである原子炉 水位異常低下(レベル1)までの原子炉水位の低下量は 4700 mmであるのに対して、ゆらぎによる水位低下量は約 40 mmであり非常に小さい。したがって、事象進展に及ぼ す影響は小さく、評価項目となるパラメータに与える影響 はない。
	炉心流量	41,060t/h (定格流量の 85%流量)	定格流量の 約 86%~約 104% (実績値)	初期炉心流量が小さいほど,初期の ボイド率が大きくなることで原子 炉圧力上昇時にボイドが潰れるこ とで印加される正の反応度が大き くなり,原子炉出力の観点で厳しい 設定となる このため,保安規定の運転範囲にお ける原子炉定格出力時の下限流量 を設定	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されるが、事象進展に与え る影響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されることから、評価項目と なるパラメータに対する余裕は大きくなる。
	主蒸気流量	6,420t∕h	約 6, 398t/h~ 約 6, 466t/h	定格主蒸気流量を設定	最確条件とした場合には、ゆらぎにより解析条件に対し て変動を与えうるが、事故初期において主蒸気隔離弁が 閉止し、主蒸気は遮断されるため事象進展に及ぼす影響 は小さく、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対して 変動を与えうるが、事故初期において主蒸気隔離弁が閉止 し、主蒸気が遮断されるため、事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響はない。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/6)

	75 0	解析条件。	の不確かさ	タ供説它の老さ士	であた日位旧かたらて見細	誕年百日しわてポニノ、カレビニア影響
	項日	解析条件	最確条件	米件設定の考え方	連転員寺傑作时间に与える影響	計価項目となるハノメニタに与える影響
	給水温度	216°C	約 217~219°C	初期給水温度が低い方が、印加反応 度が大きくなり原子炉出力が高め に推移することで、格納容器圧力及 び温度並びにサプレッション・プー ル水温度に対して厳しい設定とな る。このため、通常運転時の状態を 包含する低めの温度を設定 初期温度 216℃から主蒸気隔離弁 閉止に伴う給水加熱喪失により一 次遅れで低下し、電動給水ボンプ停 止時点で約84℃まで低下	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されるが、事象進展に与え る影響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されることから、評価項目と なるパラメータに対する余裕は大きくなる。
初期名	燃料及び炉心	9×9燃(A型) 単一炉心	装荷炉心ごと	<ul> <li>9×9燃料(A型)と9×9燃料(B</li> <li>型)は、熱水力的な特性はほぼ同等 であり、その違いの影響は修正</li> <li>Dougall-Rohsenow 式及び相関式2</li> <li>の保守性に概ね包含されることから、代表的に9×9燃料(A型)を設定</li> </ul>	最確条件とした場合には、9×9燃料(A型)又は9×9 燃料(B型)の単独炉心若しくはこれらの混在炉心となる 場合があるが、両型式の熟水力的な特性はほぼ同等であ り、事象進展に及ぼす影響は小さいことから、運転員等 操作時間に与える影響は小さい。 (重大事故等対策の有効性評価に係るシビアアクシデン ト解析コードについて(第4部 SCAT))	最確条件とした場合には、9×9燃料(A型)又は9×9燃 料(B型)の単独炉心若しくはこれらの混在炉心となる場 合があるが、両型式の熱水力的な特性はほぼ同等であり、 ともに炉心動特性及びボストBT挙動の評価特性に主に 由来する安全余裕に概ね包含されることから、評価項目と なるバラメータに与える影響は有意とならない。 (重大事故等対策の有効性評価に係るシビアアクシデン ト解析コードについて(第4部 SCAT))
件	燃料棒最大 線出力密度	44.0kW/m	約 33~41kW/m (実績値)	初期の燃料線出力密度が大きい方 が燃料被覆管温度に対して厳しい 設定となる。このため,保安規定の 運転上の制限における上限値を設 定	最確条件とした場合,燃料被覆管温度の上昇が緩和され るが,燃料被覆管温度を起点とする運転員等操作はない ことから,運転員等操作時間に与える影響はない。	最確条件とした場合,燃料被覆管温度上昇が緩和されるこ とから,評価項目となるパラメータに対する余裕は大きく なる。
	最小限界出力比	1.24	限界出力比指標* 0.98以下 (実績値) ※実際の運転管理 上は,最小限界出力 比の運転制限値を 最小限界出力比で 除したで管理を行っ ており,この値が1 以下でおりば限界 出力比の制限値を 超過していない	初期の最小限界出力比が小さい方 が沸騰遷移までの余裕が小さくな ることで,被管管温度に対して厳し い設定となる。このため、9×9% 料(A型)のサイクル初期における 保安規定の運転上の制限の下限値 を設定	最確条件とした場合,沸騰遷移の発生が遅れることで燃 料被覆管温度の上昇が緩和されるが,燃料被覆管温度を 起点とする運転員等操作はないことから,運転員等操作 時間に与える影響はない。	最確条件とした場合,沸騰遷移の発生が遅れることで燃料 被覆管温度の上昇が緩和されることから,評価項目となる パラメータに対する余裕は大きくなる。

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/6)

另 4 衣   胜州未住を取帷未住とした笏市に連転貝寺保住时间及び計画項目となるハノノニクに子んる影響 (	第2表	解析条件を最確条件と	した場合に運転員等操作時間及	.び評価項目となるパラ	・メータに与える影響(3	$\langle 6 \rangle$
-------------------------------------------------------	-----	------------	----------------	-------------	--------------	---------------------

		解析条件6	の不確かさ	タルホウのネッナ	安村昌歴祖が吐用にたらて影響	河(正省口)、みて パニコー カー ヒュア 昭娜
	項日	解析条件	最確条件	米件設定の考え方	連転員寺傑作时间に与える影響	計価項目となるハノメニタに与える影響
	核データ (動的ボイド係数)	平衡炉心サイクル末 期の値×1.25	_	炉心に印加される正の反応度が大 きくなる保守的な条件を設定	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されるが、事象進展に与え る影響は小さく、運転員等操作時間に与える影響は小さ い。 なお、解析コードの不確かさ等を考慮している保守因子	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されることから、評価項目と なるパラメータに対する余裕は大きくなる。 なお、解析コードの不確かさ等を考慮している保守因子の 大きさは、事象進展に応じて変動し得るが、厳しい組合せ
	核データ (動的ドップラ係数)	平衡炉心サイクル末 期の値×0.9			の大きさは、事象進展に応じて変動し得るが、厳しい組 合せとした場合においても、事象進展に与える影響が小 さいことを確認している。(重大事故等対策の有効性評 価に係るシビアアクシデント解析コードについて(第3 部 REDY))	とした場合においても,評価項目となるパラメータに与え る影響が小さいことを確認している。(重大事故等対策の 有効性評価に係るシビアアクシデント解析コードについ て(第3部 REDY))
	格納容器圧力	5kPa[gage]	約 2. 2~4. 7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高め の設定として,通常運転時の圧力を 包含する値を設定	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため、格納容器圧力は低めに推移 するが、解析上格納容器圧力を起点とする運転員等操作 はないことから、運転員等操作時間に与える影響はない。	最確条件は解析条件で設定している格納容器初期圧力よ りも小さくなる。このため,格納容器圧力が低めに推移す ることから,評価項目となるバラメータに対する余裕は大 きくなる。
初期	格納容器体積	9, 800m ³	9,800m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから、事象進展に 影響はなく、運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。
徐   件	サプレッション・ プール水量	3, 300m ³	約 3,308m ³ ~約 3,342m ³ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる少なめの水量 として,保安規定の運転上の制限に おける下限値を設定	最確条件とした場合には、サブレッション・ブール水量 の運転範囲において解析条件より高めの水位となるが、 ゆらぎの幅は非常に小さい。例えば、サブレッション・ ブール水位が6.983mの時の水量は3,300m ³ であるのに対 し、ゆらぎ(0.087m)による水量変化は約42m ³ であり、 その割合は初期保有水量の1.3%程度と非常に小さい。 したがって、事象進展に与える影響は小さく、運転員等 操作時間に与える影響は小さい。	最確条件とした場合には、サブレッション・ブール水量の 運転範囲において解析条件より高めの水位となるが、ゆら ぎの幅は非常に小さい。例えば、サブレッション・ブール 水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆ らぎ (0.087m) による水量変化は約 42m ³ であり、その割 合は初期保有水量の 1.3%程度と非常に小さい。したがっ て、事象進展に与える影響は小さい。
	サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑 制効果が厳しくなる高めの水温と して,保安規定の運転上の制限にお ける上限値を設定	最確条件は解析条件で設定している水温よりも低くなる ため、サプレッション・プール水温度は低めに推移する が、解析上サプレッション・プール水温度を起点とする 運転員等操作はないことから、運転員等操作時間に与え る影響はない。 また、非常用炉心冷却系の原子炉注水による反応度印加 の観点では、注水水温が低い方が高い反応度が印加され るが、注水水温を低くした場合においても、プラント挙 動への影響が小さいことを感度解析により確認してい る。 (添付資料 2.5.6)	最確条件は解析条件で設定している水温よりも低くなる ため、サプレッション・プール水温度は低めに推移し、サ プレッション・プールでの圧力抑制効果が高まり格納容器 圧力の上昇は緩和される。このため、評価項目となるパラ メータに対する余裕は大きくなる。 また、非常用炉心冷却系の原子炉注水による反応度印加の 観点では、注水水温が低い方が高い反応度が印加される が、注水水温を低くした場合においても評価項目となるパ ラメータに与える影響が小さいことを感度解析により確 認している。 (添付資料 2.5.6)

	百日	解析条件0	り不確かさ	冬世乳空の老さ士	海転昌笠協佐時期におうて影響	<b>亚価佰日しねてパラマーカにおうて影響</b>
	項 口	解析条件	最確条件	米什蔵足の考え方	運転員守操作时间に子える影響	計画項目となるハノメニクに与える影響
	起因事象	主蒸気隔離弁の 誤閉止	_	運転時の異常な過渡変化の中で原 子炉圧力の上昇が大きく、反応度の 観点で厳しい主蒸気隔離弁の誤閉 止を設定		
事故条件	安全機能の喪失 に対する仮定	原子炉停止機能 手動での原子炉スク ラム 代替制御棒挿入機能 (ARI)	_	バックアップを含めた全ての制御 棒挿入機能の喪失を設定	_	_
	外部電源	外部電源あり	_	給復水系及び原子炉再循環ボンプ が一定期間運転を継続することで、 反応度の観点で厳しい外部電源あ りを設定	外部電源がない場合でも,非常用母線は非常用ディーゼ ル発電機等から自動的に受電され,高圧炉心スプレイ系 等の電源は確保されるため,運転員等操作時間に与える 影響はない。	外部電源がない場合には、電動給水ボンプ及び原子炉再循 環ボンブが停止することで、原子炉出力が低めとなること から、評価項目となるパラメータに対する余裕は大きくな る。 (添付資料 2.5.8)
関連する	主蒸気隔離弁 閉止	閉止時間:3秒	閉止時間: 3秒~4.5秒 (設計値)	原子炉圧力の上昇が早く、反応度の 観点で厳しい条件である保安規定 の運転上の制限における下限値を 設定	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されるが、事象進展に与え る影響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されることから、評価項目と なるパラメータに対する余裕は大きくなる。
機等対 条件 に	ATWS 緩和設備 (代替原子炉再循環 ポンプトリップ機能)	原子炉圧力高信号 (7.39MPa[gage]) (遅れ時間:0.2秒)	原子炉圧力高信号 (7.39MPa[gage]) (遅れ時間:0.2秒) (設計値)	設計値を設定	解析条件と最確条件は同等であることから、事象進展に 与える影響はなく、運転員等操作時間に与える影響はな い。	解析条件と最確条件は同等であることから,事象進展に与 える影響はなく,評価項目となるパラメータに与える影響 はない。

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(4/6)

弗2衣   脾切余性を取帷余性としに場合に連転貝寺操作時间及い評価項目となるハフメータに与える影響	響 (5	5影響	- 7	Ż	与	に	・タ	< <u> </u>	メ	、ラ	バ	る	な	57	Z	目	項	価	評	び	及	間	寺間	巨臣	副作	挅	等	員		宦車	追	に	合	場	た	し	- 1	: と	件	条′	確	最		:ち	:件	条	析	解		2 君	<b>第</b> 2	貨
---------------------------------------------------	------	-----	-----	---	---	---	----	------------	---	----	---	---	---	----	---	---	---	---	---	---	---	---	----	----	----	---	---	---	--	----	---	---	---	---	---	---	-----	-----	---	----	---	---	--	----	----	---	---	---	--	-----	------------	---

	百日	解析条件0	の不確かさ	冬仕記字の老う士	流転昌衆協佐時間におうて影響	証価百日しわてパラノ」 タにおうて影響
	項日	解析条件	最確条件	米件設定の考え方	運転員寺傑作时间に与える影響	許価項日となるハノメークに与える影響
関連する機器条件	逃がし安全弁	逃がし弁機能 7.37~7.65MPa[gage] 354.6~367.6t/h/個	逃がし弁機能 7.37~7.65MPa[gage] 354.6~367.6t/h/個	原子炉圧力が低めに維持され る方が,原子炉圧力に依存する 高圧炉心スプレイ系の注水流 量が大きくなり,原子炉水位が 高めに維持されることで,反応 度の観点で厳しい設定となる。 このため,原子炉圧力が低めに 維持される逃がし弁機能を設 定	安全弁機能に期待する場合、主蒸気隔離弁閉止時の原子炉 圧力の上昇が大きめとなり、また高圧炉心スプレイ系の注 水流量が小さめとなることで原子炉水位が低めとなる。 主蒸気隔離弁閉止時の圧力上昇が大きくなった場合でも、 ドップラ効果や原子炉圧力上昇に伴う再循環ポンプトリッ プの効果により中性子束の最大値は同等となり、事象初期 のプラント挙動に与える影響が小さいことを感度解析によ り確認していることから、運転員等操作時間に与える影響 は小さい。 また、高圧炉心スプレイ系の注水流量が低下し原子炉水位 が低めとなった場合、自然循環力が低下することで炉心流 量が低下し、ボロンミキシング効率が低下することでが応流 なるり、サブレッション・プール水温度が最大と なるタイミングが遅くなるが、炉心流量の低下に伴い中性 子束も低めとなることから、サブレッション・プールの最 大値は同等となり、中長期的なブラント挙動に与える影響 が小さいことを感度解析により確認していることから、運 転員等操作時間に与える影響は小さい。 (添付資料 2.5.10)	安全弁機能に期待する場合、主蒸気隔離弁閉止時の原子炉 圧力の上昇が大きめとなり、また高圧炉心スプレイ系の注 水流量が小さめとなることで原子炉水位が低めとなる。 主蒸気隔離弁閉止時の圧力上昇が大きくなった場合でも、 ドップラ効果や原子炉圧力上昇に伴う再循環ポンプトリ ップの効果により中性子束の最大値は同等となり、事象初 期のプラント挙動に与える影響が小さいことを感度解析 により確認していることから、評価項目となるパラメータ に与える影響は小さい。 また、高圧炉心スプレイ系の注水流量が低下し原子炉水位 が低めとなった場合、自然循環力が低下することで炉心流 量が低下し、ボロンミキシング効率が低下することで炉心流 量が低下し、ボロンミキシング効率が低下する。このため、 REDYコードにおいて実験結果に基づき保守的なボロ ンミキシング効率を設定していることと相まって中性子 束の低下が遅くなり、サプレッション・プール の最大値は同等となり、中長期的なプラント挙動に与える 影響が小さいことを感度解析により確認していることから 。評価項目となるパラメータにある影響は小さい。 (添付資料 2.5.10)
	高圧炉心 スプレイ系	ドライウェル圧力高 (13.7kPa[gage])に て自動起動 (遅れ時間:0秒) ・注水流量: 145~1,506m ³ ∕h ・注水圧力: 0~8.30MPa[dif]	ドライウェル圧力高 (13.7kPa[gage])に て自動起動 (遅れ時間:17秒) ・注水流量: 375~1,419m ³ /h以 上 ・注水圧力: 0~7.65MPa[dif]	原子炉注水開始タイミングが 早く,注水流量が大きい方が, 原子炉水位が高めに維持され ることで、反応度の観点で厳し い設定となる。このため,自動 起動遅れ時間を0秒とし,注水 流量はポンプ性能評価に基づ く大きめの流量特性を設定	高圧炉心スプレイ系の注水流量を小さめとし原子炉水位が 低めとなった場合、自然循環力が低下することで炉心流量 が低下し、ボロンミキシング効率が低下する。このため、 REDYコードにおいて実験結果に基づき保守的なボロン ミキシング効率を設定していることと相まって中性子束の 低下が遅くなり、サプレッション・プール水温度が最大と なるタイミングが遅くなるが、炉心流量の低下に伴い中性 子束も低めとなることから、サプレッション・プールの最 大値は同等となり、中長期的なプラント挙動に与える影響 が小さいことを感度解析により確認していることから、運 転員等操作時間に与える影響は小さい。 (添付資料 2.5.10)	高圧炉心スプレイ系の注水流量を小さめとし原子炉木位 が低めとなった場合、自然循環力が低下することで炉心流 量が低下し、ボロンミキシング効率が低下する。このため、 R E D Y コードにおいて実験結果に基づき保守的なボロ ンミキシング効率を設定していることと相まって中性子 束の低下が遅くなり、サプレッション・プール水温度が最 大となるタイミングが遅くなるが、炉心流量の低下に伴い 中性子束も低めとなることから、サプレッション・プール の最大値は同等となり、中長期的なプラント挙動に与える 影響が小さいことを感度解析により確認していることか ら、評価項目となるパラメータに与える影響は小さい。 (添付資料 2.5.10)

	百日	解析条件の不確かさ		冬州郡空の老さ士	海転号ゲ協作時間にたらて影響	評価項目となるバラメータに与える影響	
· · · · · · · · · · · · · · · · · · ·		解析条件	最確条件	米田設定の考え方	連転員ず採作時間に子んる影響		
関連する機器条件	原子炉隔離時 冷却系	原子炉水位異常低下 (レベル2)にて自動 起動 (遅れ時間:0秒) ・注水流量: 136.7m ³ /h ・注水圧力: 1.04MPa~7.86[gage]	原子炉水位異常低下 (レベル2)にて自動 起動 (遅れ時間:30秒) ・注水流量: 136.7m ³ /h ・注水圧力: 1.04MPa~7.86[gage]	原子炉注水開始タイミングが 早い方が、原子炉水位が高めに 維持されることで、反応度の観 点で厳しい設定となるため、自 動起動遅れ時間を0秒と設定 注水特性は、タービン回転数制 御により一定流量に制御され ることから、設計値を設定	最確条件とした場合には、印加反応度が小さくなることで、 原子炉出力の上昇が緩和されるが、事象進展に与える影響 は小さく、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、印加反応度が小さくなること で、原子炉出力の上昇が緩和されることから、評価項目と なるバラメータに対する余裕は大きくなる。	
	ほう酸水注入系	注入流量: 163L/min ほう酸水濃度: 13.4wt%	注入流量: 163L/min(設計値) ほう酸水濃度: 13.4wt%以上	注入流量は,設計値を設定 ほう酸水濃度は単位時間当た りに投入される負の反応度が 小さくなるよう保安規定の運 転上の制限における下限値を 設定	最確条件とした場合には、負の反応度印加が早くなり、原 子炉出力の低下が早くなることで格納容器への熱負荷が軽 減し、格納容器圧力及びサプレッション・プール水温度の 上昇が緩和されるが、解析上これらのパラメータを起点と する運転員等操作はないことから、運転員等操作時間に与 える影響はない。	最確条件とした場合には、負の反応度印加が早くなり、原 子炉出力の低下が早くなることで格納容器への熱負荷が 軽減し、格納容器圧力及び温度並びにサブレッション・ブ ール水温度の上昇が緩和されることから、評価項目となる パラメータに対する余裕は大きくなる。	
	残留熱除去系 (サプレッション・プ ール冷却系)	熱交換器1基あたり 約53MW (サプレッション・プ ール水温度100℃,海 水温度27.2℃におい て)	熱交換器 1 基あたり 約 53MW (サプレッション・プ ール水温度 100℃,海 水温度 27.2℃におい て) (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進展に差 異はなく,運転員等操作時間に与える影響はない。	解析条件は最確条件と同等であることから、事象進展に差 異はなく、評価項目となるパラメータに与える影響はな い。	

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(6/6)

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/3)

項目		解析上の 操作開始時間	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	自動 減 作 単 単 作	事象発生から 4 分後	運転手の施工を 「「「「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「	【認知】 事故時には重要監視事項である原子炉スクラムの成否を最初に確認すること から認知に大幅な遅れが生じることは考えにくい。さらに、運転員の認知を助 けるために原子炉自動スクラム警報が発信し、全制御棒全挿入ランプは消灯し たままとなる。この事象初期の状況判断に余裕時間を含め3分を想定している。 また、自動減圧系等のタイマーが作動した場合は、タイマー作動を知らせる警 報が発報する。以上により,認知遅れが操作開始時間に影響を及ぼす可能性は 非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか 6、操作開始時間に与える影響はない。 【検動】 中央制御室内での操作のみであり、操作開始時間に与える影響はない。 【操作所要時間】 自動減圧系等の作動阻止操作として余裕時間も含め1分を想定している。中央 制御室の制御盤の操作スイッチによる簡易な操作であり、操作所要時間が長く なる可能性は非常に低く、操作所要時間が操作開始時間に影響を及ぼす可能性 は非常に小さい。 【他の並列操作有無】 制御棒の手動減圧系の作動阻止操作はこれらの操作に優先して実施する場 合があるが、自動減圧系の作動阻止操作はこれらの操作に優先して実施する場 合があるが、自動減圧系の作動阻止操作はこれらの操作に優先して実施するも のである。また、複数の運転員にて優先順位に基づき分担して操作を実施する ととしていることから、他の並列操作は操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かさ要因にようる 要因は小さいことから、実態の操作開始時間は解析上の設定と ほぼ同等である。	実態の操作開始時間 は解析上の設定とほ ぼ同等であることか ら,評価項目に与える 影響はない。	解析に、 解析に、 「 「 に 」 、 に 、 、 、 、 、 、 、 、 、 、 、 、 、	中るミ操連が開始した。 中るミ操連が、気か能自動阻と、分の声ででした。 御の一や独っ作は、たち、大学の大学では、「ないない」では、「ないない」では、「ないない」では、「ないのいいでは、「ないの」では、 ないの、「ないの、「ない」では、「ないない」では、「ないの、」では、「ないの、」では、「ないの、」では、していたいでは、 にの、「ないの、」では、「ないない」では、「ないない、」では、「ないの、」では、「ないない」では、 にの、「ないない、」では、「ないない」では、「ないない」では、「ないない。」では、 に、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/3)

	項目	解析上の 操作開始時間	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	ほう酸 水 起 動 操作	事象発生から 6 分後	運き、 に 、 喪失 減阻 し た り 、 た 、 し た り に 実 定 に 実 定 に 実 定 に 実 定 れ し た り っ 混 法 た し た り っ 混 法 た し た り っ 混 法 た い っ 水 れ い 少 水 し た り っ 混 法 ち の た い の 水 引 動 い し た り っ 混 法 ち つ た い た い た た に 実 評 れ 4 り の 水 い し た り っ れ に 支 評 二 、 算 の れ い う 、 れ 当 の 、 い か れ い っ 水 に 、 定 流 約 約 う ッ 水 、 い の に 、 算 部 の の 、 れ 当 の 、 に 妻 訳 前 い う 、 れ 当 の 、 に う こ 。 の た い こ 、 の う い れ ら っ に 、 に し た い こ 、 に 、 、 引 動 取 に ん っ っ 、 に 、 、 の の の の で つ た の に 、 て 二 、 の た い こ 、 に う 二 。 の た の た の た の で っ た の の た の た っ た の た の た の た 時 に こ る の た の の た の た の た の た 、 た い た の た の た で っ た の た の た で で で が た る ろ 不 勝 定 た ち っ た 、 ち っ た っ た 、 の る ろ 、 、 、 ろ ろ 、 、 、 、 、 た っ っ た っ た っ っ た っ っ た っ っ た っ っ た っ っ た っ っ た っ の の こ の の	【認知】 自動減圧系等の作動阻止操作の完了後に一連の操作として実施するため,認知 に大幅な遅れが生じることは考えにくい。さらに,運転員の認知を助けるため に、サブレッション・ブール水温度上昇に伴い複数の警報が発信する。以上に より,認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら、操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,操作開始時間に与える影響はない。 【操作所要時間】 ほう酸水注入系の起動操作として余裕時間も含め2分を設定している。中央制 御室の制御盤の操作スイッチによる簡易な操作であり,操作所要時間が長くな る可能性は非常に低く,操作所要時間が操作開始時間に影響を及ぼす可能性は 非常に小さい。 【他の並列操作有無】 制御棒の手動挿入操作及び原子炉水位の低下維持操作を並行して実施する場 合があるが,ほう酸水注入系の起動操作はこれらの操作に優先して実施する場 合があるが,ほう酸水注入系の起動操作はこれらの操作に優先して実施するも のである。また,複数の運転員にて優先順位に基づき分担して操作を実施する こととしていることから,他の並列操作は操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,誤操作は起こり にくいことから,誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かさ要因により操 作開始時間に与える 影響は小さいことか ら、実態の操作開始時 間は解析上の設定と ほぼ同等である。	実態の操作開始時間 は解析上の設定とほ ぼ同等であることか ら,評価項目に与える 影響はない。	ほう酸水注入系の起 動操作が遅れた場合, 未臨界達成タイミン グが遅れることで,サ ブレッション・プール 水温度の上昇が大き くなる。本重要事故シ ーケンスにおける一 の最高水追は,約 115℃であり,ほう酸 、が開始される事象発 生の570秒後における 水温上昇率は2℃/分 程度であることから, 限界温度200℃に対し て十分な操作時間余 裕を有している。 (添付資料2.5.9)	中るミ操訓解は煮止機自動う動し訓想図作るた、 御たレも実上因解ら喪減地水作い実のて実と 知んの、うなお象の炉認等及系のとと約内運能 に得いの誤停知のびの分ろ3分で転で認 に得いの誤停知のびの分ろ3分で転で認 けシ擬て。て主閉止,作ほ起と,念意操あし

### 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/3)

項目		解析上の 操作開始時間	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	残留 熱除 マ ッ ン ・ 系 シ ッ ル よ 系 シ ッ ル よ 系 シ ル ー よ 新 務 瀬 株 本 り 、 、 系 シ 、 、 、 、 、 、 、 、 、 、 、 、 、	事象発生から 17 分後	残プーる操シ温を支性初サン・ステム のの状態であって、 ないのため、 現実にのないため、 ため、 が、 に、 ため、 に、 ため、 に、 、 、 、 、 、 、 、 、 、 、 、 、 、	【認知】 原子炉停止機能喪失時には重要監視パラメータとなるサブレッション・プール 水温度を継続監視しているため,認知に大幅な遅れが生じることは考えにく い。さらに、運転員の認知を助けるためにサブレッション・プール水温度上昇 による複数の警報が発信する。以上により,認知遅れが操作開始時間に影響を 及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら、操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,操作開始時間に与える影響はない。 【操作所要時間】 残留熱系による格納容器除熟操作として余裕時間も含め6分を設定している。 中央制御室の制御盤の操作スイッチによる簡易な操作であり,操作所要時間が 長くなる可能性は非常に低く,操作所要時間が操作開始時間に影響を及ぼす可 能性は非常に小さい。 【他の並列操作有無】 制御棒の手動挿入操作及び原子炉水位の低下維持操作を並行して実施する場 合があるが,残留熟除去系(サブレッション・ブール冷却系)による格納容器 除熟操作はこれらの操作に優先して実施するものである。また,複数の運転員 にて優先順位に基づき分担して操作を実施することとしていることから,他の 並列操作は操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,誤操作は起こり にくいことから,誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かさ要因により操 作開始時間に与える 影響は小さいことか ら、実態の操作開始時 間は解析上の設定と ほぼ同等である。	実態の操作開始時間 は解析上の設定とほ ぼ同等価項目に与える 影響はない。	残留熱除去系(サプレ ッション・プール冷却 系)による格納た場合, サプレッション・プー ル水温度の上昇がた場合, サル水温度の上昇がた シーケンスロン・プー たきくなる。本重おする サプロッション・プー ルの最高り, 部時、熱発生の17分後 における水温上昇ある に対しる水温上引容 における水温上早ある ことから, 限界和る を有し ている。	中るミュ作練練去ョ系器はていして、 御の一む歳を、サプーる作業で、 御の一む歳を、サプーム作業が、 にめ(・プよ体・別の一部に、 して、 した。 に、 して、 して、 して、 して、 して、 して、 して、 して、 して、 して

リウェットを考慮しない場合の燃料被覆管温度への影響

#### 1. リウェットの考慮と燃料被覆管温度への影響

原子炉停止機能喪失の有効性評価においては,主蒸気隔離弁閉止 による原子炉圧力の上昇や,給水加熱喪失に伴う給水系の炉心入口 サブクール度上昇による反応度印加に伴い原子炉出力が上昇し,燃 料被覆管表面で沸騰遷移(ドライアウト)が発生することで燃料被 覆管温度が上昇する。ドライアウトの発生により上昇した燃料被覆 管温度は再び水に覆われた状態となる(リウェット)ことで急減に 低下する。よって,燃料被覆管の最高温度は,このリウェットを判 定するモデルの影響を大きく受けることとなる。

原子炉停止機能喪失の有効性評価では、リウェット判定に「BWR における過渡的な沸騰遷移後の燃料健全性評価基準:2003」(2003 年 6月、日本原子力学会)における相関式2を用いている。相関式2に よるリウェット判定は燃料被覆管温度に依存し、解析コードは燃料 被覆管温度を高めに評価することから、相関式2によるリウェット 判定時刻も遅くなる傾向となり、燃料被覆管温度評価の観点では保 守的な評価となる。一方で、相関式2によるリウェット時刻の予測 が及ぼす影響を確認しておくことは重要と考えられることから、こ こではリウェットを考慮しない条件での燃料被覆管温度を評価し、 その最高温度を確認した。

2. 評価条件

リウェットを考慮しないものとし、その他の条件については、有 効性評価の解析ケース(以下「ベースケース」という。)と同じであ

添付 2.5.5-1

る。

3. 評価結果

リウェットを考慮しない場合の燃料被覆管温度の評価結果を第1 図にベースケースの評価結果を第2図に示す。また、リウェットを 考慮しない場合とベースケースとを比較した評価結果を第1表に、 燃料被覆管最高温度発生位置における燃料被覆管温度及び燃料被覆 管表面熱流束のベースケースとリウェットを考慮しない場合の比較 を第3図及び第4図に示す。

リウェットを考慮しない場合,燃料被覆管表面でドライアウトが 発生した後,燃料被覆管温度はリウェットによる低下がなく高い状 態を継続する。その後,復水器ホットウェルの水位低下による給水 系の停止に伴い原子炉水位が低下し,原子炉出力が抑制されること で燃料被覆管温度は低下傾向となる。

燃料被覆管の最高温度及び酸化量は、リウェットを考慮しないこ とによってベースケースに比べて高い値となるが、評価項目である 1,200℃及び酸化反応が著しくなる前の被覆管厚さの15%を下回る。

以上の結果より, リウェットを考慮しない場合について, 原子炉 停止機能喪失の重大事故等防止対策の有効性を評価しても評価項目 を満足することを確認した。よって, リウェットモデルの精度に係 らず, 事故シーケンスグループ「原子炉停止機能喪失」において評 価項目を満足することを確認した。

項目	感度解析 (リウェット考慮無)	ベースケース (相関式2)	評価項目
燃料被覆管最高温度	約 1,060℃	約 872℃	1,200℃以下
燃料被覆管の酸化量	約2%以下	1%以下	酸化反応が著しくなる前の 被覆管厚さの15%以下

第1表 リウェット考慮の有無による評価項目パラメータへの影響



第1図 燃料被覆管温度の推移(リウェットを考慮しない場合)



第2図 燃料被覆管温度の推移(ベースケース(相関式2))

添付 2.5.5-4


第3図 燃料被覆管最高温度発生位置における燃料被覆管温度のベー



スケースとリウェットを考慮しない場合の比較

第4図 燃料被覆管最高温度発生位置における燃料被覆管表面熱流束 のベースケースとリウェットを考慮しない場合の比較

添付 2.5.5-5

原子炉への注水に使用する水源とその水温の影響

1. はじめに

今回の評価では,高圧炉心スプレイ系及び原子炉隔離時冷却系の 水源はサプレッション・プールとしている。

一方,高圧炉心スプレイ系及び原子炉隔離時冷却系の水源としては、復水貯蔵タンクに切り替えることも可能であり、復水貯蔵タンクの水温はサプレッション・プール水温度と比較して低いことから、反応度の観点では厳しい条件となる。

このため、原子炉注水に用いる水源温度の影響を確認するため、 高圧炉心スプレイ系及び原子炉隔離時冷却系の水源を復水貯蔵タン クとし、かつ、水温を復水貯蔵タンク水温低警報設定点である 10℃ とした場合の感度解析を実施し、事象進展に与える影響を確認した。

2. 評価条件

高圧炉心スプレイ系及び原子炉隔離時冷却系の水源を復水貯蔵タンクとし、復水貯蔵タンクの水温を 10℃とする。その他の条件はベ ースケースの解析条件と同様とする。

3. 評価結果

評価結果を第1図から第7図に示す。また,評価結果のまとめを 第1表に示す。炉心に注入する水の温度が低くなるため,ベースケ ースに比べて炉心入口のサブクールが高くなり,出力が高めに推移 する。

ベースケースに比べて出力が高めに推移するため、サプレッショ

#### 添付 2.5.6-1

ン・プールへの蒸気の流入量が多くなるが,サプレッション・プー ルを水源として使用しないため,サプレッション・プールの水量が 多く維持される。このため,サプレッション・プール水温度の上昇 が抑制されるものと考えるが,ベースケースの場合との差は僅かで ある。

4. まとめ

原子炉注水に用いる水源温度の影響を確認するため、高圧炉心ス プレイ系及び原子炉隔離時冷却系の水源を復水貯蔵タンク、水温を 10℃とした場合について評価した結果、評価項目となるパラメータ の最大値はベースケースとほぼ同じであり、評価項目を満足するこ とを確認した。

評価項目	感度解析 (復水貯蔵タンク 水温 10℃)	ベースケース (サプレッション・ プール)	評価項目
燃料被覆管最高温度	約 872℃	約 872℃	1,200℃以下
燃料被覆管の酸化量	1%以下	1%以下	酸化反応が著しくなる前の 被覆管厚さの15%以下
原子炉冷却材バウン ダリにかかる圧力	約 8.42MPa[gage]	約 8.42MPa[gage]	10.34MPa[gage] (最高使用圧力の 1.2 倍) を下回る
格納容器バウンダリ にかかる圧力	約 0.18MPa[gage]	約 0.20MPa[gage]	0.62MPa[gage](限界圧力) を下回る
格納容器バウンダリ の温度	約 110℃	約 115℃	200℃を下回る

第1表 水源及び水温の差異による評価項目への影響



第1図 燃料被覆管温度(燃料被覆管最高温度発生位置)の推移

(短期)



第2図 燃料被覆管温度(沸騰遷移発生位置)の推移(短期)

添付 2.5.6-3



第3図 中性子束,平均表面熱流束及び炉心流量の推移(長期)



第4図 原子炉蒸気流量及び給水流量の推移(長期)

## 添付 2.5.6-4



第5図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移



第6図 原子炉圧力及び原子炉水位(シュラウド外水位)の推移

## (長期)

## 添付 2.5.6-5



第7図 サプレッション・プール水温度及び格納容器圧力の推移 (長期)

高圧炉心スプレイ系及び原子炉隔離時冷却系の運転可能性に関する

#### 水源温度の影響

1. はじめに

今回の評価では,高圧炉心スプレイ系及び原子炉隔離時冷却系の 水源はサプレッション・プールとしている。

今回のベースケース解析ケースでは、事象発生と同時に主蒸気隔 離弁が閉止するため、原子炉で発生した蒸気が流入することでサプ レッション・プール水温度は上昇し、事象発生から約8分程度で77℃、 28分程度で106℃を上回り、最高で約115℃まで上昇する。このため、 高圧炉心スプレイ系及び原子炉隔離時冷却系について、この温度領 域での運転継続性について以下に述べる。

2. 高圧炉心スプレイ系の運転継続性に関する検討

高圧炉心スプレイ系は、サプレッション・プール水温度の上昇に 伴うポンプのキャビテーションが想定されるものの、サプレッショ ン・チャンバ内が飽和蒸気圧条件となることから、NPSHの観点 では運転継続性に問題ないものと考える。

また,高圧炉心スプレイ系には,高圧炉心スプレイ系ディーゼル 発電機海水系を用いたポンプメカニカルシール冷却装置及び高圧炉 心スプレイ系ポンプ室空調が設置されており,配管及びポンプの内 部流体温度(サプレッション・プール水温度)が最大115℃になった 場合でも運転継続性に問題はない。

#### 添付 2.5.7-1

- 3. 原子炉隔離時冷却系の運転継続性に関する検討
  - (1) 原子炉隔離時冷却系の運転継続性

事象発生から約 8 分程度でサプレッション・プールの水温度が 原子炉隔離時冷却系の最高使用温度である 77℃を超えるが,サプ レッション・プール水温度 106℃までの運転継続可能性を確認して いる。

仮に原子炉隔離時冷却系が,サプレッション・プール水温度 77℃ 到達時に停止した場合の影響について感度解析により確認した。

(2) 評価条件

サプレッション・プール水温度 77℃到達時に原子炉隔離時冷却 系が停止するものとする。その他の条件はベースケースの解析条 件と同様とする。

(3) 評価結果

評価結果を第1図から第7図に示す。また,評価結果のまとめ を第1表に示す。燃料被覆管最高温度は,原子炉隔離時冷却系が 自動起動する前の第1ピークにて発生していることから影響はな い。また,ベースケースと比べて原子炉隔離時冷却系による原子 炉注水が停止するタイミングが早くなることで,原子炉水位の低 下に伴う自然循環による炉心流量の低下も早まる。解析上は炉心 流量に依存するボロンミキシング特性について保守的な特性を使 用しているため,炉心流量の低下が早まることで未臨界達成タイ ミングが遅くなり,その分サプレッション・プール水温度及び格 納容器圧力の最大値は高くなるが,ベースケースとの差は僅かで ある。 4. まとめ

高圧炉心スプレイ系はサプレッション・プール水温度が上昇した 場合でも運転継続性に問題ないことを確認した。また,サプレッシ ョン・プール水温度が77℃に到達した時点で原子炉隔離時冷却系が 停止した場合の感度解析を実施した結果,評価項目となるパラメー タに大きな影響はなく,評価項目を満足することを確認した。

第1表 原子炉隔離時冷却系の有無による評価項目パラメータへの

項 目	感度解析 (S/P水温度77℃	ベースケース (S/P 水温度	評価項目
	にて停止)	106℃にて停止)	
燃料被覆管最高温度(℃)	約 872	約 872	1200°C以下
燃料被覆管の酸化量(%)	1%以下	1%以下	酸化反応が著しくなる前の 被覆管厚さの15%以下
原子炉冷却材圧力バウンダリ にかかる圧力(MPa[gage])	約 8.42	約 8.42	10.34MPa[gage] (最高圧力の 1.2 倍) を下回る
原子炉格納容器バウンダリ にかかる圧力(MPa[gage])	約 0.26	約 0.20	0.62MPa[gage](限界圧力) を下回る
原子炉格納容器バウンダリの温度 (サプレッション・プール水温(℃))	約 124	約 115	200℃(限界温度) を下回る

影響



第1図 燃料被覆管温度(燃料被覆管最高温度発生位置)の推移

(短期)



添付 2.5.7-4



第3図 中性子束, 平均熱流束及び炉心流量の推移(長期)



第4図 原子炉蒸気流量及び給水流量の推移(長期)

## 添付 2.5.7-5



第5図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移



第6図 原子炉圧力及び原子炉水位(シュラウド外水位)の推移

## (長期)

# 添付 2.5.7-6



第7図 サプレッション・プール水温度及び格納容器圧力の推移 (長期)

#### 外部電源の有無による評価結果への影響

1. はじめに

今回の評価では,外部電源は喪失しない条件としており,給水系 や原子炉再循環ポンプはインターロックにより停止するまで運転を 継続する。ここでは,外部電源が喪失した場合を仮定し,外部電源 の有無が評価結果に与える影響を確認した。

2. 評価条件

外部電源はないものとする。その他の条件はベースケース解析と 同様とする。

3. 評価結果

評価結果を第1図から第14図に示す。また,評価結果のまとめを 第1表に示す。

事象発生と同時に外部電源が喪失するため,原子炉再循環ポンプ が停止し,原子炉出力の上昇が抑制されることで,事象初期の燃料 被覆管温度の上昇はベースケースに比べて低めとなる。同様に,サ プレッション・プールへ放出される蒸気量も少なくなることにより, サプレッション・プール水温度及び格納容器圧力の最大値はベース ケースと比べて低くなる。

また,外部電源喪失により給復水系が停止し,原子炉水位が低下 することから,ベースケースで見られた給水加熱喪失による原子炉 出力の上昇は発生しない。

#### 添付 2.5.8-1

4. まとめ

外部電源が無い場合の感度解析を実施し,評価項目となるパラメ ータに対する余裕が大きくなることを確認した。

また,外部電源が有ることにより使用可能となる給復水系及び再 循環ポンプについては,一定期間これらの運転が継続する方が事象 進展は厳しくなることから,重大事故等対処設備として位置付ける 必要はない。

項目	感度解析 (外部電源無)	ベースケース (外部電源有)	判断基準
燃料被覆管最高温度 (℃)	約 699	約 872	1,200℃以下
燃料被覆管の酸化量(%)	1%以下	1%以下	酸化反応が著しくなる 前の被覆管厚さの 15%以下
原子炉冷却材圧力バウンダリ にかかる圧力(MPa[gage])	約 8.20	約 8.42	10.34MPa[gage] (最高圧力の 1.2倍) を下回る
原子炉格納容器バウンダリ にかかる圧力(MPa[gage])	約 0.14	約 0.20	0.62MPa[gage] (限界圧力)を下回る
原子炉格納容器バウンダリの温度 (サプレッション・プール水温(℃))	約 103	約 115	200℃(限界温度) を下回る

第1表 外部電源の有無による評価項目パラメータへの影響



第1図 中性子束,平均表面熱流束及び炉心流量の推移(短期)



第2図 原子炉蒸気流量及び給水流量の推移(短期)

# 添付 2.5.8-3



第3図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移



第4図 原子炉圧力,原子炉水位(シュラウド外水位)及び 逃がし安全弁流量の推移(短期)

添付 2.5.8-4



第5図 炉心平均ボイド率の推移(短期)



第6図 燃料被覆管温度(燃料被覆管最高温度発生位置)の推移

(短期)



第7図 燃料被覆管温度(燃料被覆管最高温度発生位置)の推移

添付 2.5.8-6



第8図 中性子束の推移(長期)



第9図 炉心流量の推移



第10図 給水流量及び平均表面熱流束の推移(長期)



第11図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移

## (長期)

## 添付 2.5.8-8



第12図 原子炉圧力及び原子炉水位(シュラウド外水位)の推移



第13図 原子炉水位(シュラウド外水位)の推移(長期)



第14図 サプレッション・プール水温度及び格納容器圧力の推移 (長期)

コメント No. 163-33, 48 に対する回答 ほう酸水注入系を手動起動としていることについての整理

1. ほう酸水注入系を手動起動としている意図について

原子炉停止機能喪失時の操作は、「非常時運転手順書(徴候ベース)」 に規定されており、原子炉停止機能喪失の確認後に①ほう酸水注入 系(以下「SLC」という。)の起動操作、②原子炉水位の低下操作 及び③制御棒の手動挿入操作の優先順位で反応度を抑制する。また、 操作を同時に実施できない場合は上記の優先順位に従い実施するこ とが規定されており、このうちSLC起動操作は最優先で実施する 操作である。SLC起動操作は、訓練により事象発生から約3分程 度で起動操作が可能であることを確認しており、大きな操作遅れを 伴うことはないと考えられる。

SLCは炉心にほう酸水を注入することにより反応度を抑制する 系統である。このため,起動時には炉水中の不純物をフィルタデミ ネライザにより除去する原子炉冷却材浄化系は自動で隔離される。 仮にSLC起動時に原子炉冷却材浄化系が自動隔離されない場合, フィルタデミネライザにより炉心部のほう酸が希釈され,反応度抑 制に支障をきたす恐れがある。このため,運転手順において,SL C起動時は原子炉冷却材浄化系の自動隔離を確認し,自動隔離に失 敗している場合には手動隔離を実施することを重要操作としている。

以上により, SLCの起動操作は関連する設備やパラメータの状態を認識しつつ確実に実施することが最適であると考え,運転員の 判断による手動起動としている。 2. SLC自動起動により期待される効果について

SLCによる反応度抑制効果は第1図に示すとおり、30分程度の 時間遅れを伴う非常に緩やかなものであり、事象初期の急激な出力 変動に対応できるものではない。このことを踏まえると、仮に自動 起動とした場合でも、事象初期の急激な出力変動に対応できるもの ではなく、手動起動と自動起動でその効果に大きな違いは無いと考 えられる。

また、SLCを自動起動とすることで、原子炉出力の低下が早ま り、サプレッション・プールへの蒸気の流入量が低減し、サプレッ ション・プール水温度の上昇が抑制されることが考えられるが、第2 図に示すとおり有効性評価におけるサプレッション・プール水温度 の最大値は115℃であり、ほう酸水の炉心部への注入が開始される事 象発生570秒後の水温上昇率は2℃/min 程度であることから、仮に SLC起動操作が10分程度遅れた場合でも評価項目である限界温度 (200℃)に対して十分な余裕があり、手動起動による多少の操作の 時間遅れは問題とならないと考える。

以上により, SLCについては, 手動起動とすることで仮に自動 化した場合に比べて時間遅れが生じるとしても, その効果に大きな 違いは表れず, 手動起動であっても自動起動とした場合とほぼ同等 の効果が得られるものと考えられる。

3. 【参考】SLC自動起動に関する海外の状況

SLCの自動起動は米国の一部のプラントにおいて採用されている。米国ABWRの Design Control Document によると、以下の条件での自動起動インターロックが設定されている。

#### 添付 2.5.9-2

- ・「原子炉圧力高」+「SRNMがダウンスケール設定値を下回っていないこと」の AND 条件成立から 3 分
- 「原子炉水位低(レベル2)」+「SRNMがダウンスケール設定
   値を下回っていないこと」の AND 条件成立から3分
- ・「手動ARI/FMCRD run-in信号」+「SRNMがダウンス ケール設定値を下回っていないこと」のAND条件成立から3分 上記のとおり、SLCの自動起動には3分の運転員の確認時間が 含まれており、運転員による確認に期待したインターロックである ことを考慮すると、運転員の対応としては手動起動と大きな違いは ないものと考える。なお、米国においてもSLCの自動起動を採用 しているのは一部のプラントに留まっている。

#### 4. 結 論

SLCの起動操作は,関連する設備やパラメータの状態を認識し つつ確実に実施することが最適であると考えられ,また,手動起動 の場合でも自動起動と同等の効果が得られると考えられることから, 現状は手動起動としている。



第2図 SLCによるサプレッション・プール水温度の抑制効果

### 添付 2.5.9-4

原子炉水位が低めに維持される条件設定とした場合の影響

原子炉停止機能喪失の有効性評価では,原子炉水位が高めに維持さ れ自然循環流量が大きくなることで,反応度の観点で厳しい条件とし て給水系が運転継続する条件を設定している。これを踏まえて,高圧 炉心スプレイ系については,注水流量が大きくなり原子炉水位が高め に維持される条件として,ポンプ性能評価に基づく大きめの注水流量 を設定するとともに,遅れ時間を0秒と設定している。加えて,高圧 炉心スプレイ系の注水流量は原子炉圧力に依存することから,原子炉 圧力が低めに維持されることで高圧炉心スプレイ系の注水流量が大き くなる条件として,逃がし弁機能を設定している。また,原子炉隔離 時冷却系については,注水流量は一定に制御されることから,遅れ時 間を0秒と設定している。

一方で,ほう酸水のミキシング効率は炉心流量に依存することから, 原子炉水位が低めとなり炉心流量が低めに維持される場合,ほう酸水 のミキシング効率が悪化することで中性子束の低下が遅くなることも 想定される。また,安全弁機能を設定した場合,主蒸気隔離弁閉止に 伴う原子炉出力の上昇が大きくなることで,中性子束の上昇が大きく なることも想定される。

以上を踏まえ、ここでは、解析条件として(1)高圧炉心スプレイ系の 注水流量を小さめとし遅れ時間を設定した場合及び(2)安全弁機能を 設定した場合の感度解析を実施し、事象進展に与える影響を確認する。

# (1) 高圧炉心スプレイ系の注水流量を小さめとし遅れ時間を設定した場合

原子炉水位が低めとなり炉心流量が低めに維持されることでボ ロンミキシング効率が悪化した場合に,中性子束の低下が遅くな ることで,サプレッション・プール水温度及び格納容器圧力に与 える影響を確認するため,高圧炉心スプレイ系の注水流量を小さ めとし遅れ時間を設定した場合の感度解析を実施した。

高圧炉心スプレイ系の注水流量として,安全解析で用いる最小 流量特性を設定するとともに,高圧炉心スプレイ系及び原子炉隔 離時冷却系の遅れ時間を設定した以外はベースケースと同じ解析 条件としている。ベースケースから変更した解析条件を第1表に, 解析結果を第2表に示す。

原子炉水位が低めとなり炉心流量が低めに維持された場合,ボ ロンミキシング効率が悪化することで,中性子束の低下が遅くな り,これに伴いサプレッション・プール水温度及び格納容器圧力 が最大となる時刻も遅くなるが,炉心流量の低下に伴い中性子束 も低めとなっていることから,最大値に変わりはなく,事象進展 に与える影響が小さいことを確認した。なお,REDYコードの ボロンミキシング効率は,実験結果に基づき保守的に設定してい る。

(2) 安全弁機能を設定した場合

事象初期の主蒸気隔離弁閉止に伴う原子炉圧力の上昇が大きく なった場合に、中性子束、燃料被覆管温度及び酸化量並びに原子 炉冷却材圧力バウンダリにかかる圧力に与える影響を確認するた

添付 2.5.10-2

め,解析条件として安全弁機能を設定した場合の感度解析を実施 した。

安全弁機能を設定した以外はベースケースと同じ解析条件としている。ベースケースから変更した解析条件を第3表に,解析結果を第4表に示す。

安全弁機能を設定した場合,主蒸気隔離弁閉止時の原子炉圧力 の上昇が大きくなり原子炉冷却材圧力バウンダリにかかる圧力は 大きくなるが,燃料温度の上昇に伴うドップラフィードバック等 の自己制御特性が働き,また原子炉圧力高信号にて再循環ポンプ トリップが発生するため,中性子束,燃料被覆管温度及び酸化量 の上昇は同等となり,事象進展に与える影響が小さいことを確認 した。

第1表 解析条件(原子炉水位を低めとする条件)

解析条件	感度解析(原子炉水位を低めとする条件)	ベースケース(原子炉水位を高めとする条件)
	ドライウェル圧力高(13.7kPa[gage])にて自動起動	ドライウェル圧力高(13.7kPa[gage])にて自動起動
高圧炉心スプレイ系	(遅れ時間:17秒)	(遅れ時間:0秒)
	<ul> <li>・注水流量:375~1,419m³/h</li> </ul>	・注水流量:145~1,506m ³ /h
	・注水圧力:0~7.65MPa[dif]	・注水圧力:0~8.30MPa[dif]
	原子炉水位異常低下(レベル2)にて自動起動	原子炉水位異常低下(レベル2)にて自動起動
原子炉隔離時冷却系	(遅れ時間:30秒)	(遅れ時間:0秒)
	・注水流量:136.7m ³ /h	<ul> <li>・注水流量:136.7m³/h</li> </ul>
	・注水圧力:1.04~7.86MPa[dif]	・注水圧力:1.04~7.86MPa[dif]

添付
$\dot{\mathbf{N}}$
<u>с</u>
10 - 4

第2表 解析結果(原子炉水位を低めとする条件)

評価項目となるパラメータ	感度解析 (原子炉水位を低めとする条件)	ベースケース (原子炉水位を高めとする条件)
サプレッション・プール水温度	115℃(約55分)	115℃ (約 45 分)
格納容器圧力	0.20MPa[gage] (約 55 分)	0.20MPa[gage] (約 45 分)

第3表 解析条件(安全弁機能)

解析条件	感度解析 (安全弁機能)	ベースケース(逃がし弁機能)
	安全弁機能	逃がし弁機能
	7.79MPa[gage]×2 個, 385.2t/h/個	7.37MPa[gage]×2 個, 354.6t/h/個
氷がし字合金	8.10MPa[gage]×4 個, 400.5t/h/ 個	7.44MPa[gage]×4 個, 357.8t/h/個
超加し女主弁	8.17MPa[gage]×4 個, 403.9t/h/ 個	7.51MPa[gage]×4 個, 361.1t/h/個
	8.24MPa[gage]×4 個, 407.2t/h/ 個	7.58MPa[gage]×4 個, 364.3t/h/個
	8.31MPa[gage]×4 個, 410.6t/h/個	7.65MPa[gage]×4 個, 367.6t/h/個

第4表 解析結果 (安全弁機能)

評価項目となるパラメータ	感度解析 (安全弁機能)	ベースケース(逃がし弁機能)
燃料被覆管温度	842°C	872°C
燃料被覆管酸化量	1%以下	1%以下
原子炉冷却材圧力バウンダリにかかる圧力	8.98MPa[gage]	8.49MPa[gage]
中性子束*	約 560%	約 560%

※:評価項目となるパラメータではないが、参考情報として記載

REDYコード説明資料抜粋

(2) 従来型 B W R の場合

炉心下部の下部プレナムスタン ドパイプから注入される従来型B WRでは,原子炉に一定速度で注入 されるほう酸水は, 炉心流量が小さ い場合にはその一部が下部プレナ ムに滞留し反応度に寄与できない ことが考えられる。これを模擬する ためにほう酸水拡散モデルでは,注 入速度に炉心流量依存のボロンミ キシング効率を掛けている。このボ ロンのミキシング効率は図-1 従来 型BWRのボロンミキシング効率 のようにモデル化されている。

従来型BWR向けの試験結果を 図-2 従来型BWRのボロン混合試 験結果に示す。なお、ミキシング効 率は「反応度に寄与する領域の濃度」 を「炉内全領域で十分に混合した時 の濃度」で割った無次元数で定義さ れる。試験の結果から以下がいえる。

図-1 従来型BWRのボロンミキシング効率

これにより,従来型BWRにおい

図-2 従来型BWRのボロン混合試験結果

τ.

することは妥当である。

以上より、ほう酸水拡散モデルは妥当であることが確認された。なお、拡 散モデルにおけるボイドの影響を添付6に示す。

原子炉スクラム失敗を仮定した事象が発生し、ほう酸水注入系が作動する 時点では,ある程度の変動は有るものの,燃料棒での中性子発生及び中性子 吸収,減速材による中性子減速及び中性子吸収などがバランスしている。こ の状態でほう酸水注入系が作動すると、炉心が沸騰状態であっても減速材中 にはボロンが含まれ、吸収効果が増加する。このため、前述の状態よりも反 応度は低下する。ボロン濃度が一定であれば、上記状態よりも出力が低下し たところで再びバランスするが、ボロン濃度は増加し続けるため、沸騰状態 においても確実に出力は低下して原子炉停止に至ると考える。

本資料のうち,枠囲みの内容は商業機密に属しますので公開できません。

2.6 LOCA時注水機能喪失

- 2.6.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「LOCA時注水機能喪失」に含まれる事故シ ーケンスとしては、「1.2 評価対象の整理及び評価項目の設定」に示すと おり、①「LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」、②「LOC A+高圧炉心冷却失敗+原子炉減圧失敗」である。

なお,大破断LOCAのように破断規模が一定の大きさを超える場合は, 国内外の先進的な対策を考慮しても炉心損傷防止対策を有効に実施するこ とができないため,格納容器破損防止対策を講じて,その有効性を確認す る。

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方
 事故シーケンスグループ「LOCA時注水機能喪失」は、原子炉の出力
 運転中に原子炉冷却材圧力バウンダリを構成する配管に中小破断LOCA
 が発生した後、高圧注水機能及び低圧注水機能が喪失することで原子炉へ
 注水する機能が喪失することを想定する。このため、破断箇所からの原子
 炉冷却材の流出により、原子炉圧力容器内の保有水量が減少し原子炉水位
 が低下することから、緩和措置が取られない場合には、炉心が露出することで炉心損傷に至る。また、低圧注水機能喪失を想定することから、併せ
 て残留熱除去系機能喪失による崩壊熱除去機能喪失を想定する。

本事故シーケンスグループは、中小破断LOCAが発生し、同時に高圧 及び低圧の原子炉注水機能を喪失したことによって炉心損傷に至る事故シ ーケンスグループである。このため、重大事故等対策の有効性評価として は、中小破断LOCA発生時の高圧注水機能又は低圧注水機能に対する重 大事故等対処設備に期待することが考えられる。中小破断LOCA発生後 に高圧・低圧注水機能喪失が発生した場合,重大事故等対処設備により高 圧の原子炉注水を実施する方が,より早期に原子炉注水を開始することが 可能となり,原子炉水位の低下が小さくなることで評価項目に対する余裕 は大きくなる。また,高圧の原子炉注水を実施した場合でも,中長期的に はサプレッション・プール熱容量制限に到達した時点で原子炉を減圧して 低圧の原子炉注水に移行するため,事象進展は同じとなる。このため,本 事故シーケンスグループに対しては,代表として重大事故等対処設備の低 圧注水機能の有効性を確認することとする。

以上により、本事故シーケンスグループでは、原子炉減圧後に低圧の注 水機能を用いて原子炉へ注水することによって炉心損傷の防止を図るとと もに、最終的な熱の逃がし場へ熱の輸送を行うことによって除熱を行い、 格納容器破損の防止を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「LOCA時注水機能喪失」において、炉心が 著しい損傷に至ることなく、かつ、十分な冷却を可能とするため、初期の 対策として低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能)に よる原子炉注水手段を整備する。また、格納容器の健全性を維持するため、 安定状態に向けた対策として、代替格納容器スプレイ冷却系(常設)によ る格納容器冷却手段及び格納容器圧力逃がし装置による格納容器除熱手段 を整備する。対策の概略系統図を第2.6-1図に、対応手順の概要を第2.6-2 図に示すとともに、対策の概要を以下に示す。また、重大事故等対策にお ける手順と設備との関係を第2.6-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて、事象
発生2時間までの重大事故等対策に必要な要員は、中央制御室の運転員及 び災害対策要員で構成され、合計17名である。その内訳は次のとおりであ る。中央制御室の運転員は、発電長1名、副発電長1名、運転操作対応を 行う運転員5名である。発電所構内に常駐している要員のうち、通報連絡 等を行う災害対策要員は2名、重大事故等対応要員(現場)は8名である。

また,事象発生2時間以降に追加で必要な要員は,燃料補給作業を行うための招集要員2名,現場手動による格納容器ベント操作を行うための招集要員3名である。必要な要員と作業項目について第2.6-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,17名で対処 可能である。

a. 原子炉スクラム及びLOCA発生の確認

原子炉がスクラムしたことを確認する。また,格納容器圧力が 13.7kPa[gage]に到達したことによりLOCAが発生したことを確認す る。

原子炉スクラム及びLOCA発生の確認に必要な計装設備は、平均出 力領域計装等である。

b. 高圧注水機能喪失の確認

原子炉スクラム後,原子炉水位の低下が継続し,原子炉水位異常低下 (レベル2)設定点に到達したが,高圧炉心スプレイ系及び原子炉隔離 時冷却系が自動起動していないことを確認し,中央制御室からの遠隔操 作によりこれらの系統の手動起動を試みるがこれにも失敗したことを確 認する。また,主蒸気隔離弁が閉止するとともに,再循環ポンプがトリ ップしたことを確認する。

高圧注水機能喪失の確認に必要な計装設備は、各系統の流量計等であ

る。

c. 低圧注水機能喪失の確認

高圧注水機能喪失の確認後,一連の操作として中央制御室からの遠隔 操作により低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の手動 起動を試みるがこれにも失敗したことを確認する。

低圧注水機能喪失の確認に必要な計装設備は,各系統の流量計等であ る。

d. 低圧代替注水系(常設)の起動準備操作

低圧注水機能喪失の確認後,一連の操作として低圧代替注水系(常設) を起動する。

低圧代替注水系(常設)の起動準備操作に必要な計装設備は、常設低 圧代替注水系ポンプ吐出圧力計である。

外部電源が喪失している場合,中央制御室からの遠隔操作により常設 代替高圧電源装置から緊急用母線を受電する。

e. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

低圧代替注水系(常設)の起動準備操作の完了後,中央制御室からの 遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手動開放し,原子 炉減圧を実施する。原子炉圧力が低圧代替注水系(常設)の吐出圧力を 下回ると,原子炉注水が開始されることで原子炉水位が回復することを 確認する。

逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設 備は,原子炉圧力計等である。

炉心損傷がないことの継続的な確認に必要な計装設備は,格納容器雰 囲気放射線モニタ(D/W, S/C)である。 f. 原子炉水位の調整操作

低圧代替注水系(常設)による原子炉水位回復後は,原子炉水位を原 子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の 間で維持する。

原子炉水位の調整操作に必要な計装設備は,原子炉水位計(広帯域, 燃料域)等である。

g. 代替格納容器スプレイ冷却系(常設)による格納容器冷却

崩壊熱除去機能を喪失しているため,格納容器圧力及び雰囲気温度が 上昇する。サプレッション・チェンバ圧力が279kPa[gage]に到達した場 合又はドライウェル雰囲気温度が171℃に到達した場合は、中央制御室 からの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納 容器冷却を実施する。また、低圧代替注水系(常設)による原子炉注水 を継続する。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に必要な計 装設備は,サプレッション・チェンバ圧力計,低圧代替注水系格納容器 スプレイ流量計,サプレッション・プール水位計等である。

代替格納容器スプレイ冷却系(常設)による格納容器冷却に伴い,サ プレッション・プール水位は徐々に上昇する。サプレッション・プール 水位が、通常水位+5.5mに到達した時点で,格納容器圧力逃がし装置に よる格納容器除熱の準備として,中央制御室からの遠隔操作により格納 容器圧力逃がし装置一次隔離弁の開操作を実施する。さらに,サプレッ ション・プール水位が,通常水位+6.5mに到達した時点で,中央制御室 からの遠隔操作により代替格納容器スプレイ冷却系(常設)による格納 容器冷却を停止する。

h. 格納容器圧力逃がし装置による格納容器除熱(サプレッション・チェ

ンバ側)

代替格納容器スプレイ冷却系(常設)による格納容器冷却の停止後, 格納容器ベント操作に備え炉心損傷が発生していないことを確認する。 サプレッション・チェンバ圧力が310kPa[gage]に到達した場合,中央制 御室からの遠隔操作により格納容器圧力逃がし装置二次隔離弁を全開と しサプレッション・チェンバ側から格納容器圧力逃がし装置による格納 容器除熱を実施する。

格納容器圧力逃がし装置による格納容器除熱に必要な計装設備は、サ プレッション・チェンバ圧力計,格納容器雰囲気放射線モニタ(D/W, S/C)等である。

サプレッション・チェンバ側からの格納容器圧力逃がし装置のベント ラインが水没しないことを確認するために必要な計装設備は,サプレッ ション・プール水位計等である。

i. 可搬型代替注水大型ポンプによる水源補給操作

可搬型代替注水大型ポンプにより淡水貯水池から代替淡水貯槽へ水源 補給操作を実施する。

可搬型代替注水大型ポンプによる水源補給操作に必要な計装設備は, 代替淡水貯槽水位計である。

j. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

k. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

以降, 炉心冷却は低圧代替注水系(常設)を用いた原子炉注水により 継続的に行い, 格納容器除熱は格納容器圧力逃がし装置により継続的に

- 2.6.2 炉心損傷防止対策の有効性評価
  - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、LOCA を起因事象とし、全ての注水機能を喪失する「LOCA+高圧炉心冷却失 敗+低圧炉心冷却失敗」である。また、原子炉水位の低下を厳しくする観 点で、評価上は給水流量の全喪失を想定する。

本重要事故シーケンスでは、 炉心における崩壊熱、 燃料棒表面熱伝達、 沸騰遷移,燃料被覆管酸化,燃料被覆管変形,沸騰・ボイド率変化,気液 分離(水位変化)・対向流、気液熱非平衡及び三次元効果、原子炉圧力容器 における冷却材放出(臨界流・差圧流),沸騰・凝縮・ボイド率変化,気液 分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備含む) 並びに格納容器における格納容器各領域間の流動、気液界面の熱伝達、構 造材との熱伝達及び内部熱伝導、気液界面の熱伝達、スプレイ冷却及び格 納容器ベントが重要現象となる。よって、これらの現象を適切に評価する ことが可能である長期間熱水力過渡変化解析コードSAFER及びシビア アクシデント総合解析コードMAAPにより,原子炉圧力,原子炉水位, 燃料被覆管温度、格納容器圧力、格納容器雰囲気温度等の過渡応答を求め る。なお、本有効性評価では、SAFERコードによる燃料被覆管温度の 評価結果は、ベストフィット曲線の破裂判断基準に対して十分な余裕があ ることから、燃料棒やチャンネルボックスの幾何学的配置を考慮した詳細 な輻射熱伝達計算を行うことで燃料被覆管温度の評価結果がSAFERコ ードより低くなるCHASTEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスに対する主要な解析条件を第2.6-2表に示す。また,主要な解析条件について,本重要事故シーケンス特有の解析条件を以下に示す。

- a. 事故条件
- (a) 起因事象

シュラウド外の液相部配管のうち最も低い位置にある再循環配管 (配管断面積約 2,400 cm²)に対して,運転員等操作の操作時間余裕 を考慮しても,対策の有効性が確認できる範囲内において最大となる 約 3.7 cm²の破断を想定する。

(添付資料 2.6.1)

(b) 安全機能の喪失に対する仮定

高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系, 低圧注水機能として低圧炉心スプレイ系及び残留熱除去系(低圧注水 系)が機能喪失するものとする。また,原子炉減圧機能として自動減 圧系の機能が喪失するものとする。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラム及び再循環ポンプトリップは, それぞれ原子炉水位低(レベル3)信号及び原子炉水位異常低下(レ ベル2)信号となり,原子炉水位の低下が大きくなることで,燃料被 覆管温度の観点で厳しくなる。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)

ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は,原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ プさせるものとする。

(c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7弁を使用するものとし,容量として,1弁当 たり定格主蒸気流量の約6%を処理するものとする。

(d) 低圧代替注水系(常設)

常設低圧代替注水ポンプを2台使用するものとし,原子炉注水のみ を実施する場合は,炉心冷却を厳しく評価する観点で機器設計上の最 小要求値である最小流量特性(注水流量:0~378m³/h,注水圧力:0 ~2.38MPa[dif]*)とし,原子炉注水と格納容器スプレイを同時に実 施する場合は,230m³/h(一定)を用いるものとする。また,原子炉 水位が原子炉水位高(レベル8)まで回復した以降は,原子炉水位を 原子炉水位低(レベル3)から原子炉水位高(レベル8)の範囲に維 持する。

※: MPa[dif]…原子炉圧力容器と水源との差圧。(以下同様)

2.6 - 9

(e) 代替格納容器スプレイ冷却系(常設)

格納容器スプレイは、常設低圧代替注水ポンプを2台使用するもの とし,格納容器圧力及び雰囲気温度の上昇を抑制可能な流量を考慮し、 130m³/h(一定)を用いるものとする。また、格納容器スプレイは、 サプレッション・チェンバ圧力が217kPa[gage]に到達した場合は停止 し、279kPa[gage]に到達した場合に再開する。

(f) 格納容器圧力逃がし装置

サプレッション・チェンバ圧力が 310kPa[gage]において,13.4kg/ sの排気流量にて格納容器除熱を実施するものとする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧代替注水系(常設)による原子炉注水操作)は、外部電源もない場合を考慮し、状況判断、高圧注水機能喪失の確認、解析上考慮しない高圧代替注水系の起動、低圧注水機能喪失の確認、常設代替高圧電源装置による緊急用母線受電、低圧代替注水系(常設)の起動準備及び逃がし安全弁(自動減圧機能)による原子炉減圧操作に要する時間を考慮して、事象発生25分後に実施する。
- (b) 代替格納容器スプレイ冷却系(常設)による格納容器冷却操作は、 サプレッション・チェンバ圧力が279kPa[gage]に到達した場合に実施する。なお、格納容器スプレイは、サプレッション・プール水位が通常水位+6.5mに到達した場合に停止する。
- (c) 格納容器圧力逃がし装置による格納容器除熱操作は、サプレッショ

ン・チェンバ圧力が 310kPa[gage]に到達した場合に実施する。

コメント No. 148-18, 150-24 に対する回答

(3) 有効性評価(敷地境界外での実効線量評価)の条件

本重要事故シーケンスでは炉心損傷は発生せず,燃料被覆管の破裂も発 生していないため,放射性物質の放出を評価する際は,設計基準事故に対 する評価手法を採用することで保守性が確保される。このため,敷地境界 外での実効線量評価にあたっては,「実用発電用軽水型原子炉施設の安全評 価に関する審査指針(原子力安全委員会 平成2年8月30日)」に示され ている評価手法を参照した。本重要事故シーケンスに対する主要な評価条 件を以下に示す。

- a.事故発生時の原子炉冷却材中の核分裂生成物の濃度は、運転上許容される I-131の最大濃度とし、その組成を拡散組成とする。これにより、
   事故発生時に原子炉冷却材中に存在するよう素は、I-131 等価量で約
   4.7×10¹²Bq となる。
- b. 原子炉圧力の低下に伴う燃料棒からの核分裂生成物の追加放出量は、 I-131 については先行炉等での実測値の平均値に適切な余裕を見た値 *である 2.22×10¹⁴Bq とし、その他の核分裂生成物についてはその組 成を平衡組成として求め、希ガスについてはよう素の 2 倍の放出があ るものとする。これにより、原子炉圧力の低下に伴う燃料棒からの追 加放出量は、希ガスについては γ 線実効エネルギ 0.5MeV 換算値で約 6.0×10¹⁵Bq、よう素については I-131 等価量で約 3.9×10¹⁴Bq とな る。
  - ※:過去に実測された I-131 の追加放出量から,熱出力 1,000MW あたりの追加 放出量の出現頻度を用いて算出している。原子炉熱出力 3,440MW (定格の 約 105%)の場合,熱出力 1,000MW あたりの I-131 の追加放出量の平均値

にあたる値は 2.78×10¹³Bq (750Ci) であり、東海第二発電所の線量評価 で用いる追加放出量は、これに余裕を見込んだ 2.22×10¹⁴Bq (6,000Ci) を条件としている。(1Ci=3.7×10¹⁰Bq)

出典元

・「沸騰水型原子力発電所 事故時の被ばく評価手法について」(HLR-021)

- c. 燃料棒から追加放出されるよう素のうち,有機よう素は 4%とし,残 りの 96%は無機よう素とする。
- d. 燃料棒から追加放出される核分裂生成物のうち、希ガスはすべて瞬時 に気相部に移行するものとする。有機よう素のうち、10%は瞬時に移 行するものとし、残りは分解するものとする。有機よう素から分解し たよう素及び無機よう素が気相部にキャリーオーバされる割合は2% とする。
- e.原子炉圧力容器気相部の核分裂生成物は、逃がし安全弁(自動減圧機能)を介して崩壊熱相当の蒸気に同伴し、格納容器内に移行するものとする。この場合、希ガス及び有機よう素の全量が、無機よう素は格納容器ベント開始までに発生する崩壊熱相当の蒸気に伴う量が移行するものとする。
- f.サプレッション・チェンバの無機よう素は、サプレッション・プール のスクラビングにより除去されなかったものが格納容器気相部へ移行 するが、ドライウェルからの格納容器ベントを考慮し、スクラビング の効果を考慮しないものとする。また、核分裂生成物の減衰は、格納 容器ベント開始までの期間について考慮する。
- g.核分裂生成物の格納容器からの漏えいは考慮しないものとする*。
   ※:本評価では、格納容器ベント時に瞬時に核分裂生成物が全量大気中に放出する評価としているため、設計基準事故「環境への放射性物質の異常な放

出」の「原子炉冷却材喪失」のような原子炉建屋ガス処理系による緩やか な系外放出に基づく実効線量は有意ではない。

- ※:格納容器生成物の格納容器から建屋への漏えいを考慮する場合,建屋内に 蓄積した核分裂生成物が原子炉建屋ガス処理系を介して大気に放出される が、これによる敷地境界外での実効線量への影響は、格納容器ベントによ り核分裂生成物全量が大気に放出される条件の「LOCA時注水機能喪失」 と設計基準事故「環境への放射性物質の異常な放出」の「原子炉冷却材喪 失」の敷地境界外の実効線量を比較することにより有意とならないことを 確認し、格納容器圧力上昇の観点で厳しく格納容器ベント時間が早くなる ことで核分裂生成物の減衰時間が短くなる漏えいなしを設定した。
- h.敷地境界外における実効線量は、内部被ばくによる実効線量及び外部 被ばくによる実効線量の和として計算し、よう素の内部被ばくによる 実効線量(1)式で、希ガスの外部被ばくによる実効線量は(2)式で、そ れぞれ計算する。
  - - R :呼吸率  $(m^3/h)$
    - H_∞:よう素を 1Bq 吸入した場合の小児の実効線量

 $(1.6 \times 10^{-7} \, \text{Sv} / \text{Bq})$ 

 $\chi / Q$ :相対濃度(s/m³)

Q₁:事故期間中のよう素の大気放出量(Bq)

(I-131 等価量-小児実効線量係数換算)

K : 空気吸収線量から実効線量への換算係数

(K=1Sv∕Gy)

D/Q:相対線量(Gy/Bq)

**Q**_{*a*} : 事故期間中の希ガスの大気放出量(Bq)

(γ線実効エネルギ 0.5MeV 換算値)

- i. 大気拡散条件については,格納容器圧力逃がし装置を用いる場合は, 地上放出,実効放出継続時間1時間*の値として,相対濃度(χ/Q) を 2.9×10⁻⁵ s/m³,相対線量(D/Q)を4.0×10⁻¹⁹ Gy/Bqとし, 耐圧強化ベントを用いる場合は,主排気筒放出,実効放出継続時間1 時間の値として,相対濃度(χ/Q)は2.0×10⁻⁶ s/m³,相対線量 (D/Q)は8.1×10⁻²⁰ Gy/Bqとする。
  - ※:本評価では、格納容器ベント時に瞬時に核分裂生成物が全量大気中に放出 される評価としているため、実効放出継続時間は気象データの最小集計単 位である1時間を使用している。なお、実効放出継続時間は放射性物質の 放出率の時間変化を考慮して定めるものであり、短時間であるほど保守的 な相対濃度、相対線量となる。
- j.格納容器圧力逃がし装置による有機よう素の除染係数を 50, 無機よう素の除染係数を 100 とする。

(添付資料 2.6.2)

(4) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.6-4 図から第2.6-8 図に,燃料被覆管温度,燃 料被覆管最高温度発生位置における熱伝達係数及びボイド率,平均出力燃 料集合体のボイド率,炉心下部プレナム部のボイド率,破断流量の推移並 びに燃料被覆管破裂が発生した時点の燃料被覆管温度と燃料被覆管の円周 方向の応力の関係を第2.6-9 図から第2.6-15 図に,格納容器圧力,格納容

2.6 - 14

器雰囲気温度,サプレッション・プール水位及びサプレッション・プール 水温度の推移を第2.6-16 図から第2.6-19 図に示す。

※:シュラウド内水位は、炉心部で発生するボイドを含む二相水位であることから、シュラウド外水位より高めの水位となる。一方、運転員の監視や非常用 炉心冷却系等の起動信号を発信に用いる原子炉水位計(広帯域)は、シュラ ウド外水位を計測することから、シュラウド内外水位を合わせて示している。

a. 事象進展

外部電源が喪失し、給水流量の全喪失が発生することで原子炉水位は 低下し、原子炉水位低(レベル3)信号により原子炉がスクラムする。 その後原子炉水位が原子炉水位異常低下(レベル2)設定点まで低下す ると、主蒸気隔離弁の閉止及び再循環ポンプトリップが発生するともに, 原子炉隔離時冷却系及び高圧炉心スプレイ系の自動起動信号が発信する が、機器故障等により自動起動及び手動起動に失敗する。その後、一連 の操作として低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の手 動起動を試みるが、機器故障等により失敗し、低圧炉心スプレイ系及び 残留熱除去系(低圧注水系)の吐出圧力が確保されないため、自動減圧 系についても作動しない。このため、低圧代替注水系(常設)の起動操 作を実施し、事象発生の25分後に、逃がし安全弁(自動減圧機能)7弁 による原子炉減圧操作を実施することで,低圧代替注水系(常設)によ る原子炉注水を開始する。原子炉減圧を開始すると、原子炉冷却材の流 出により原子炉水位は低下し,燃料有効長頂部を下回るが,原子炉圧力 が低下し低圧代替注水系(常設)による原子炉注水が開始されると、原 子炉水位が回復し炉心は再冠水する。

燃料被覆管最高温度発生位置のボイド率は,原子炉減圧操作による原 子炉圧力の低下に伴い上昇する。熱伝達係数は,燃料被覆管最高温度発 生位置が露出し,核沸騰冷却から蒸気冷却に移行することで低下する。 原子炉圧力が低下し,低圧代替注水系(常設)による原子炉注水流量が 増加することで炉心が再冠水すると,ボイド率は低下し,熱伝達係数が 上昇することで燃料被覆管温度は低下する。平均出力燃料集合体及び炉 心下部プレナムのボイド率については,上記の挙動に伴い増減する。

また、崩壊熱除去機能が喪失しているため、原子炉で発生した蒸気が 逃がし安全弁を介して格納容器内に放出されることで、格納容器圧力及 び雰囲気温度が上昇する。このため、サプレッション・チェンバ圧力が 279kPa「gage」に到達した時点で、代替格納容器スプレイ冷却系(常設) の格納容器冷却を実施することにより、格納容器圧力及び雰囲気温度の 上昇は抑制される。代替格納容器スプレイ冷却系(常設)による格納容 器冷却を実施することでサプレッション・プール水位は徐々に上昇し, 事象発生の約27時間後にサプレッション・プール水位が通常水位+6.5m 到達した時点でサプレッション・チェンバベントラインの機能維持のた めに代替格納容器スプレイ冷却系(常設)による格納容器冷却を停止す る。これにより格納容器圧力及び雰囲気温度は再び上昇傾向に転じ、事 象発生の約 28 時間後にサプレッション・チェンバ圧力が 310kPa「gage] に到達した時点で格納容器圧力逃がし装置による格納容器除熱を実施す ることにより,格納容器圧力及び雰囲気温度は安定又は低下傾向となる。 なお、格納容器除熱実施時のサプレッション・プール水位は、ベント管 真空破壊装置及びサプレッション・チェンバ側のベントライン設置高さ と比較して十分に低く推移するため、これらの設備の機能は維持される。

b. 評価項目等

燃料被覆管温度は,第2.6-9図に示すとおり,低圧代替注水系(常設)

2.6 - 16

による原子炉注水により原子炉水位が回復するまでの期間は,一時的な <u>炉心の露出に伴い上昇</u>し,事象発生の約37分後に最高値の約616℃に到 ^{3メントNo.181-18に対する回答} 達するが,評価項目である1,200℃を下回る。燃料被覆管最高温度は平 均出力燃料集合体にて発生している。また,燃料被覆管の酸化量は,酸 化反応が著しくなる前の燃料被覆管厚さの約1%以下であり,評価項目 である15%を下回る。

原子炉圧力は,第2.6-4 図に示すとおり,逃がし安全弁(安全弁機能) の作動により,約7.79MPa[gage]以下に維持される。このため,原子炉 冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容器底 部圧力との差(0.3MPa程度)を考慮しても,約8.09[gage]以下であり, 評価項目である最高使用圧力の1.2 倍(10.34MPa[gage])を下回る。

格納容器圧力は,第2.6-16 図に示すとおり,崩壊熱除去機能が喪失し ているため,原子炉で発生した蒸気が格納容器内に放出されることによ って,事象発生後に上昇傾向が継続するが,格納容器圧力逃がし装置に よる格納容器除熱により低下傾向となる。事象発生の約28時間後に最高 値の約0.31MPa[gage]となるが,格納容器バウンダリにかかる圧力は, 評価項目である限界圧力(0.62MPa[gage])を下回る。格納容器雰囲気温 度は,第2.1-17 図に示すとおり,事象発生の約28時間後に最高値の約 143℃となり,以降は低下傾向となっていることから,格納容器バウンダ リにかかる温度は,評価項目である限界温度(200℃)を下回る。

第2.1-5 図に示すように、低圧代替注水系(常設)による原子炉注水 を継続することで、炉心の冠水状態が維持され、炉心冷却が確保されて いる。また、第2.1-16 図及び第2.1-17 図に示すように、事象発生の約 28 時間後に、格納容器圧力逃がし装置による格納容器除熱を実施するこ とで、安定状態が確立する。また、代替循環冷却系又は残留熱除去系の 復旧により除熱を行い,格納容器ベントを閉止し格納容器を隔離するこ とで,更なる除熱機能の確保及び維持が可能となる。

(添付資料 2.6.3)

格納容器圧力逃がし装置によるベント時の敷地境界での実効線量の評価結果は、約1.6×10⁻¹mSvであり、5mSvを下回る。また、耐圧強化ベントによるベント時の敷地境界での実効線量の評価結果は約6.2×10⁻¹mSvであり、5mSvを下回る。いずれの場合も、周辺の公衆に対して著しい放射線被ばくのリスクを与えることはない。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目」に示す(1)から(4)の評価項目及び周辺の公衆に対して著しい放射線 被ばくのリスクを与えないことについて、対策の有効性を確認した。

2.6.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは,原子炉冷却材圧力バウンダリを構成する配管に 中小破断LOCAが発生した後,高圧・低圧注水機能及び減圧機能の喪失に 伴い原子炉水位が低下するため,低圧代替注水系(常設)の起動後に原子炉 を減圧して原子炉注水を実施すること並びに崩壊熱除去機能喪失に伴い格納 容器圧力及び雰囲気温度が上昇するため,代替格納容器スプレイ冷却系(常 設)により格納容器冷却を実施すること及び格納容器圧力逃がし装置による 格納容器除熱を実施することが特徴である。よって,不確かさの影響を確認 する運転員等操作は,事象進展に有意な影響を与えると考えられる操作及び 事象発生から12時間程度までの短時間に期待する操作として,逃がし安全弁 (自動減圧機能)による原子炉減圧操作(低圧代替注水系(常設)による原 子炉注水操作),代替格納容器スプレイ冷却系(常設)による格納容器冷却操 作及び格納容器圧力逃がし装置による格納容器除熱操作とする。

(1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を行う重要事象とは, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり,影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて+50℃高め に評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評価 する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくなり, 燃料被覆管温度は低くなるが,操作手順(速やかに注水手段を準備する こと)に変わりはなく,燃料被覆管温度を操作開始の起点とする運転員 等操作はないことから,運転員等操作時間に与える影響はない。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,操作手順(速やかに注水 手段を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起 点とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが, BWRの格納容器内の区画とは異なる等, 実験 体系に起因するものと考えられ, 実機体系においては不確かさが小さく なるものと推定され, 全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため, 格納容器圧力及び雰囲気温度を操作開始 の起点とする代替格納容器スプレイ冷却系(常設)による格納容器冷却 操作及び格納容器圧力逃がし装置による格納容器ベント操作に係る運転 員等操作時間に与える影響は小さい。また, 格納容器各領域間の流動, 構造材との熱伝達及び内部熱伝導の不確かさにおいては, CSTF実験 解析により格納容器温度及び非凝縮性ガスの挙動は測定データと良く一 致することを確認しており, その差異は小さいため, 格納容器圧力及び 雰囲気温度を操作開始の起点としている代替格納容器スプレイ冷却系 (常設)による格納容器冷却操作及び格納容器圧力逃がし装置による格 納容器ベント操作に係る運転員等操作時間に与える影響は小さい。

(添付資料 2.6.4)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

格納容器における格納容器各領域間の流動,構造材との熱伝達及び内 部熱伝導並びに気液界面の熱伝達の不確かさとして,格納容器モデル(格 納容器の熱水力モデル)はHDR実験解析において区画によって格納容 器雰囲気温度を十数℃程度,格納容器圧力を1割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等,実験 体系に起因するものと考えられ,実機体系においては不確かさが小さく なるものと推定され,全体としては格納容器圧力及び雰囲気温度の傾向 を適切に再現できているため,評価項目となるパラメータに与える影響 は小さい。また,格納容器各領域間の流動,構造材との熱伝達及び内部 熱伝導の不確かさにおいては,CSTF実験解析により格納容器雰囲気 温度及び非凝縮性ガスの挙動は測定データと良く一致することを確認し ているため,評価項目となるパラメータに与える影響は小さい。

(添付資料 2.6.4)

- (2) 解析条件の不確かさの影響評価
  - a.初期条件,事故条件及び重大事故等対策に関連する機器条件 初期条件,事故条件及び重大事故等対策に関連する機器条件は,第
    2.6-2表に示すとおりであり,これらの条件設定を設計値等の最確条件 とした場合の影響を評価する。解析条件の設定にあたっては,設計値を 用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう 保守的な設定をしていることから,この中で事象進展に有意な影響を与 える可能性がある項目について,評価結果を以下に示す。
    - (a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は

燃料被覆管温度の上昇が緩和されるが,操作手順(速やかに注水手段 を準備すること)に変わりはなく,燃料被覆管温度を操作開始の起点 とする運転員等操作はないことから,運転員等操作時間に与える影響 はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,操作手順(速やかに注水手段を準備すること)に変わり はないことから,運転員等操作時間に与える影響はない。また,格納 容器圧力,サプレッション・プール水位,格納容器体積(ウェットウ ェル)及びサプレッション・プール水温度の上昇が遅くなり,これら のパラメータを起点とする運転員等操作の開始時間は遅くなる。

初期条件の原子炉圧力,原子炉水位,炉心流量,格納容器圧力,ド ライウェル雰囲気温度及びサプレッション・プール水位は,ゆらぎに より解析条件に対して変動を与えうるが,事象進展に与える影響は小 さく,運転員等操作時間に与える影響は小さい。

事故条件の起因事象については,気相部の配管と比べ破断口からの 流出流量が大きくなり,また,低圧注水のために原子炉の減圧が必要 となる燃料有効長頂部以下の液相配管のうち,代表として原子炉再循 環配管に約 3.7 cm²の破断面積を設定している。なお,破断面積が約 9.5 cm²までは,同じ 25 分後の原子炉減圧操作を想定した場合でも燃 料被覆管の破裂を防止することが可能であり,運転員等操作時間に与 える影響は小さい。破断面積が約 9.5 cm²を超え,炉心損傷(一定以上 の燃料被覆管の破裂も含む。)に至る場合については,「3.1 雰囲気圧

力・温度による静的負荷(格納容器過圧・過温破損)」の対応となる。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定するとともに,保守的に給水流量の全喪失も想定して いる。外部電源がない場合でも,非常用母線は非常用ディーゼル発電 機等から自動的に受電され,また,低圧代替注水系(常設)の起動準 備操作は,外部電源がない場合も考慮して設定していることから,運 転員等操作時間に与える影響はない。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は注水 開始後の原子炉水位の回復が早くなり,炉心冠水後の原子炉水位の維 持操作の開始が早くなるが,原子炉減圧から水位回復までの原子炉水 位を継続監視している期間の流量調整操作であるため,運転員等操作 時間に与える影響はない。

(添付資料 2.6.4)

(b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 緩和され,格納容器圧力等の上昇は遅くなることから,評価項目とな るパラメータに対する余裕は大きくなる。

事故条件の起因事象については,気相部の配管と比べ破断口からの 流出流量が大きくなり,また,低圧注水のために原子炉の減圧が必要 となる燃料有効長頂部以下の液相配管のうち,代表として原子炉再循 環配管に約 3.7 cm²の破断面積を設定している。なお,破断面積が約 9.5 cm²までは,同じ 25 分後の原子炉減圧操作を想定した場合でも燃 料被覆管の破裂を防止することが可能であり,燃料被覆管の最高温度 は約 842℃となる。破断面積が約 9.5 cm²を超え,炉心損傷(一定以上 の燃料被覆管の破裂も含む。)に至る場合については,「3.1 雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損)」の対応となる。

事故条件の外部電源の有無については,起因事象発生から原子炉ス クラムまでの期間の原子炉水位の低下を厳しくする条件として,外部 電源ありを想定するとともに,保守的に給水流量の全喪失も想定して いる。外部電源がない場合は,外部電源喪失に伴い原子炉スクラム, 再循環ポンプトリップ等が発生するため,外部電源がある場合と比較 して原子炉水位の低下は緩和されるが,この場合でも初期の原子炉注 水は原子炉水位異常低下(レベル2)設定点にて原子炉隔離時冷却系 が自動起動することで確保されることから,評価項目となるパラメー タに対する余裕は大きくなる。

機器条件の低圧代替注水系(常設)は,最確条件とした場合は注水 開始後の原子炉水位の回復が早くなることで,評価項目となるパラメ ータに対する余裕は大きくなる。

(添付資料 2.6.1, 2.6.4)

b. 操作条件

操作条件の不確かさとして、操作に係る不確かさを「認知」、「要員配

置」、「移動」、「操作所要時間」、「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し、これらの要因が運転員等操作時間に与える影響 を評価する。また、運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,解析上の操作開始 時間として,事象発生から25分後を設定している。運転員等操作時間 に与える影響として,認知時間及び操作時間は,余裕時間を含めて設 定していることから,実態の操作開始時間は解析上の設定よりも若干 早まる可能性がある。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,解析上の操作開始時間として,サプレッション・チェンバ 圧力279kPa[gage]到達時を設定している。運転員等操作時間に与える 影響として,不確かさ要因により操作開始時間に与える影響は小さく, 実態の操作開始時間は解析上の設定とほぼ同等となる。本操作は,解 析コード及び解析条件(操作条件を除く。)の不確かさにより,操作開 始時間は遅くなる可能性があるが,他の操作との重複もないことから, この他の操作に与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,解析上の操作開始時間として,サプレッション・チェンバ圧力 310kPa[gage]到達時を設定している。運転員等操作時間に与える影響 として,不確かさ要因により操作開始時間に与える影響は小さく,実 態の操作開始時間は解析上の設定とほぼ同等となる。仮に格納容器ベ ント時に遠隔操作に失敗した場合は,現場操作にて対応するため,75

分程度操作開始時間が遅れる可能性がある。本操作は,解析コード及 び解析条件(操作条件を除く。)の不確かさにより,操作開始時間は遅 れる可能性があるが,他の操作との重複もないことから,この他の操 作に与える影響はない。

(添付資料 2.6.4)

## (b) 評価項目となるパラメータに与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧代替注水系(常設)による原子炉注水操作)は,運転員等操作時間 に与える影響として,実態の操作開始時間は解析上の操作開始時間よ りも早くなる可能性があり,この場合は,原子炉への注水開始が早く なることで,原子炉水位の回復が早くなり,評価項目となるパラメー タに対する余裕は大きくなる。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷 却操作は,運転員等操作時間に与える影響として,実態の操作開始時 間は解析上の操作開始時間よりも遅くなる可能性があるが,この場合 でもパラメータが操作実施基準に到達した時点で開始することで同等 の効果が得られ,有効性評価解析における格納容器圧力の最大値に変 わりがないことから,評価項目となるパラメータに与える影響はない。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,運 転員等操作時間に与える影響として,実態の操作開始時間は解析上の 操作開始時間よりも遅くなる可能性があるが,この場合でもパラメー タが操作実施基準に到達した時点で開始することで同等の効果が得ら れ,有効性評価解析における格納容器圧力の最大値に変わりがないこ とから,評価項目となるパラメータに与える影響はない。仮に格納容 器ベント時に遠隔操作に失敗した場合は,現場操作にて対応するため,

75 分程度操作開始時間が遅れる可能性がある。この場合,格納容器圧 力は 310kPa[gage]より若干上昇し,評価項目となるパラメータに影響 を及ぼすが,格納容器限界圧力は 620kPa[gage]であり,格納容器の健 全性の観点からは問題とならない。

(添付資料 2.6.4)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧 代替注水系(常設)による原子炉注水操作)については,10分の減圧操作 開始遅れを想定した場合でも,燃料被覆管の破裂は発生せず,評価項目を 満足する。また,25分の減圧操作遅れを想定した場合には,一部の燃料被 覆管に破裂が発生するが,炉心の著しい損傷は発生せず,格納容器ベント 時の敷地境界線量も約4.4mSvとなり5mSvを下回るが,この場合には格納 容器雰囲気放射線モニタにより炉心損傷の判断を行い,炉心損傷後のマネ ジメントに移行するため,重大事故での対策の範囲となる。

操作条件の代替格納容器スプレイ冷却系(常設)による格納容器冷却操 作は,事象発生の約16時間後に実施するものであり,準備時間が確保でき るため,時間余裕がある。

操作条件の格納容器圧力逃がし装置による格納容器除熱操作は,事象発 生の約28時間後に実施するものであり,準備時間が確保できるため,時間 余裕がある。仮に,中央制御室からの遠隔操作に失敗し,現場操作にて格 納容器圧力逃がし装置二次隔離弁の開操作を実施する場合には,格納容器 ベント操作の開始が遅れることで,格納容器圧力は 310kPa[gage]から上昇 するが,過圧の観点で厳しい「3.1 雰囲気圧力・温度による静的負荷(格 納容器過圧・過温破損)」において,スプレイを実施しない場合,格納容器 圧力が 310kPa[gage]に到達してから,格納容器限界圧力 620kPa[gage]に到 達するまで 11 時間程度の時間余裕があり,現場操作に要する時間は 75 分 程度であることから,時間余裕がある。

(添付資料 2.6.4, 2.6.5)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間 余裕がある。

- 2.6.4 必要な要員及び資源の評価
- (1) 必要な要員の評価

事故シーケンスグループ「LOCA時注水機能喪失」の重大事故等対策 における事象発生2時間までに必要な要員は、「2.6.1(3) 炉心損傷防止対 策」に示すとおり17名である。「6.2 重大事故等対策時に必要な要員の評 価結果」で示す運転員及び災害対策要員の39名で対処可能である。

また,事象発生2時間以降に追加で必要な要員は5名であり,発電所構 外から2時間以内に参集可能な要員の71名で対処可能である。 (2) 必要な資材の評価

事故シーケンスグループ「LOCA時注水機能喪失」において、必要な 水源、燃料及び電源は「6.1(2) 資源の評価条件」の条件にて評価を行い、 以下のとおりである。

a.水 源

低圧代替注水系(常設)による原子炉注水及び代替格納容器スプレイ 冷却系(常設)による格納容器冷却については,7日間の対応を考慮す ると,合計約5,320m³の水が必要となる。

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³ の水を保有している。これにより,必要な水源は確保可能である。また, 事象発生48時間程度以降から可搬型代替注水大型ポンプを用いて,淡水 貯水池から代替淡水貯蔵槽への補給を行うことで,代替淡水貯槽を枯渇 させることなく代替淡水貯槽を水源とした7日間の注水継続が可能であ る。ここで,代替淡水貯槽への補給開始を事象発生の48時間後としてい るが、実際には数時間で補給を開始することが可能である。

(添付資料 2.6.6)

b.燃料

外部電源喪失を想定した場合,非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約130.3kLの軽油が必要となる。常設代替交流電源装置による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約141.2kLの軽油が必要となる。軽油貯蔵タンクに

約800kLの軽油を保有していることから,非常用ディーゼル発電機,高 圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源装置による電 源供給について,7日間の継続が可能である。

可搬型代替注水大型ポンプによる代替淡水貯槽への給水については, 事象発生からの運転を想定すると,7日間の運転継続に約36.6kLの軽油 が必要となる。可搬型設備用軽油タンクに約210kLの軽油を保有してい ることから,可搬型代替注水大型ポンプによる給水について,7日間の 継続が可能である。

(添付資料 2.6.7)

c. 電 源

外部電源喪失を想定した場合,重大事故等対策時に必要な負荷のうち, 非常用ディーゼル発電機等からの電源供給を考慮する負荷については, 非常用ディーゼル発電機等の容量の容量内に収まることから,電源供給 が可能である。

常設代替交流電源設備からの電源供給を考慮する負荷については,約 982kW 必要となるが,常設代替交流電源設備(常設代替高圧電源装置 2 台)の連続定格容量は 2,208kW であることから,必要負荷に対しての電 源供給が可能である。

(添付資料 2.6.8)

2.6.5 結 論

事故シーケンスグループ「LOCA時注水機能喪失」では,原子炉の出力 運転中に原子炉冷却材圧力バウンダリを構成する配管において中小破断LO CAが発生した後,高圧注水機能及び低圧注水機能が喪失し,かつ,自動減 圧系が機能喪失することで、原子炉水位の低下が継続し、炉心損傷に至ることが特徴である。事故シーケンスグループ「LOCA時注水機能喪失」に対する炉心損傷防止対策としては、初期の対策として低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能)による原子炉注水手段、安定状態に向けた対策として代替格納容器スプレイ冷却系(常設)による格納容器冷却手段及び格納容器圧力逃がし装置による格納容器除熱手段を整備している。

事故シーケンスグループ「LOCA時注水機能喪失」の重要事故シーケン ス「LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」について有効性評価 を行った。

上記の場合においても,逃がし安全弁(自動減圧機能)による原子炉減圧, 低圧代替注水系(常設)による原子炉注水,代替格納容器スプレイ冷却系(常 設)による格納容器冷却及び格納容器圧力逃がし装置による格納容器除熱を 実施することで,炉心の著しい損傷を防止することができる。

この結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目を満 足している。また,安定状態を維持することができる。

なお,格納容器圧力逃がし装置の使用による敷地境界での実効線量は,周 辺公衆に対して著しい放射線被ばくのリスクを与えることはない。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部支援を考慮しな いとしても,7日間以上の供給が可能である。

以上のことから,事故シーケンスグループ「LOCA時注水機能喪失」に おいて,低圧代替注水系(常設)及び逃がし安全弁(自動減圧機能)による 原子炉注水,格納容器圧力逃がし装置による格納容器除熱等の炉心損傷防止 対策は,選定した重要事故シーケンスに対して有効であることが確認でき, 事故シーケンスグループ「LOCA時注水機能喪失」に対して有効である。

第2.6-1表 LOCA時注水機能喪失における重大事故対策について(1/4)

<u>佐</u> 羽 ひょぎ 堤 化	手順	重大事故等対処設備		
唯 裕 久 い 採 T F		常設設備	可搬型設備	計装設備
原子炉スクラム及びLOCA	・原子炉がスクラムしたことを確認する。	【非常用ディーゼ	_	平均出力領域計装
発生の確認	<ul> <li>・格納容器圧力が 13.7kPa[gage]に到達したこ</li> </ul>	ル発電機】		起動領域計装
	とによりLOCAが発生したことを確認す	軽油貯蔵タンク		ドライウェル圧力計
	る。			サプレッション・チェンバ圧
				力計
高圧注水機能喪失の確認	・原子炉水位が,原子炉水位異常低下(レベ	ATWS緩和設備	—	原子炉水位計 (広帯域, 燃料
	ル2)設定点に到達したことを確認する。	(代替原子炉再循		域)
	・高圧炉心スプレイ系及び原子炉隔離時冷却	環ポンプトリップ		原子炉水位計(SA 広帯域, SA
	系の自動起動に失敗したことを確認する。	機能)		燃料域)
	・高圧炉心スプレイ系及び原子炉隔離時冷却			【高圧炉心スプレイ系系統流
	系の手動起動操作を実施し、手動起動に失			量計】
	敗したことを確認する。			【原子炉隔離時冷却系系統流
	・低圧炉心スプレイ系及び残留熱除去系(低			量計】
	圧注水系)の手動起動操作を実施し、手動			原子炉圧力計
	起動に失敗したことを確認する。			原子炉圧力計 (SA)
	・これらにより、高圧注水機能喪失と判断す			
	る。			
	・主蒸気隔離弁が自動閉止したことを確認す			
	る。			
	・再循環ポンプがトリップしたことを確認す			
	る。			
高圧代替注水系の起動操作	・高圧注水機能喪失の確認後、高圧代替注水	高圧代替注水系	—	原子炉水位計(広帯域,燃料
	系を起動する。			域)
				原子炉水位計(SA 広帯域, SA
				燃料域)
				高圧代替注水系系統流量計
			· 重大事故等対/	如設備 (設計基進拡張)

:有効性評価上考慮しない操作

第2.6-1表 LOCA時注水機能喪失における重大事故対策について(2/4)

本司五代世化	千	重大事故等対処設備		
唯祕及の操作	常設設備	可搬型設備	計装設備	
低圧注水機能喪失の確認	・高圧注水機能喪失及び高圧代替注水系の起	—	—	【低圧炉心スプレイ系ポンプ
	動操作失敗後、低圧炉心スプレイ系及び残			吐出圧力計】
	留熱除去系(低圧注水系)の手動起動操作			【残留熱除去系ポンプ吐出圧
	を実施し、手動起動に失敗したことを確認			力計】
	する。			
低圧代替注水系(常設)の起動	・常設代替高圧電源装置による緊急用母線受	常設低圧代替注水	_	常設低圧代替注水系ポンプ吐
準備操作	電後,低圧代替注水系(常設)を起動する。	系ポンプ		出圧力計
	・外部電源が喪失している場合は、常設代替	代替淡水貯槽		
	高圧電源装置を起動し,緊急用母線を受電	常設代替高圧電源		
	する。	装置		
		軽油貯蔵タンク		
逃がし安全弁(自動減圧機能)	・低圧代替注水系(常設)の起動準備操作の	逃がし安全弁(自	_	原子炉水位計(広帯域,燃料域)
による原子炉減圧操作	完了後,逃がし安全弁(自動減圧機能)7弁	動減圧機能)		原子炉水位計(SA 広帯域, SA
	を手動開放することにより、原子炉減圧操	常設低圧代替注水		燃料域)
	作を実施する。	系ポンプ		原子炉圧力計
	・原子炉減圧に伴い、低圧代替注水系(常設)	代替淡水貯槽		原子炉圧力計 (SA)
	からの原子炉注水が開始され,原子炉水位	常設代替高圧電源		低圧代替注水系原子炉注水流
	が回復することを確認する。	装置		量計
	・炉心損傷がないことを継続的に確認する。	軽油貯蔵タンク		代替淡水貯槽水位計
				格納容器雰囲気放射線モニタ
				(D/W, S/C)

【 】: 重大事故等対処設備(設計基準拡張)

第2.6-1表 LOCA時注水機能喪失における重大事故対策について(3/4)

空気及びたがない	五 話		重大事故等対処設備		
唯認及び操作	于 順	常設設備	可搬型設備	計装設備	
原子炉水位の調整操作	<ul> <li>・低圧代替注水系(常設)による原子炉水位</li> <li>回復後,原子炉水位は,原子炉水位低(レベル3)設定点から原子炉水位高(レベル</li> <li>8)設定点の間に維持する。</li> </ul>	常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク	_	原子炉水位計(広帯域,燃料域) 原子炉水位計(SA 広帯域, SA 燃料域) 代替淡水貯槽水位計	
代替格納容器スプレイ冷却系 (常設)による格納容器冷却	<ul> <li>サプレッション・チェンバ圧力が 279kPa[gage]に到達したことを確認する。</li> <li>代替格納容器スプレイ冷却系(常設)による 格納容器スプレイ操作を実施する。</li> <li>サプレッション・プール水位が,通常水位 +6.5mに到達した時点で,代替格納容器ス プレイ冷却系(常設)による格納容器スプレイを停止する。</li> </ul>	常設低圧代替注水 系ポンプ 代替淡水貯槽 常設代替高圧電源 装置 軽油貯蔵タンク		ドライウェル圧力計 サプレッション・チェンバ圧力 計 低圧代替注水系格納容器スプ レイ流量計 代替淡水貯槽水位計 サプレッション・プール水位計	
格納容器圧力逃がし装置によ る格納容器除熱(サプレッショ ン・チェンバ側)	・サプレッション・チェンバ圧力が 310kPa[gage]に到達したことを確認し、サ プレッション・チェンバ側から格納容器圧 力逃がし装置による格納容器ベントを実施 する。	格納容器圧力逃がし装置		ドライウェル圧力計 サプレッション・チェンバ圧力 計 サプレッション・プール水位計 格納容器雰囲気放射線モニタ (D/W, S/C) フィルタ装置出口放射線モニ タ(高レンジ・低レンジ)	
可搬型代替注水大型ポンプに  よる水源補給操作	<ul> <li>可搬型代替注水ボンプにより代替淡水貯水</li> <li>池から代替淡水貯槽に水源補給操作を実施</li> <li>する。</li> </ul>	代替淡水貯槽 代替淡水貯水池	可搬型代替注 水大型ポンプ	代替淡水貯槽水位計	

第2.6-1表 LOCA時注水機能喪失における重大事故対策について(4/4)

確認及び操作	千 晒	重大事故等対処設備		対処設備
	一 一 一 順	常設設備	可搬型設備 計装設備	
タンクローリによる燃料補給	・タンクローリによる燃料補給操作を実施す	可搬型設備用軽油	タンクローリ	_
操作	る。	タンク		
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	-	—	—
	却操作を実施する。			

:有効性評価上考慮しない操作

## コメント No. 163-46, 182-17, 18 に対する回答

第 2.6-2 表 主要解析条件(LOCA時注水機能喪失)(1/5)

	項目	主要解析条件	条件設定の考え方		
	解析コード	原子炉側: SAFER 格納容器側: MAAP	本重要事故シーケンスの重要現象を評価できる解析コード		
	原子炉熱出力	3,293MW	定格熱出力を設定		
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定		
	原子炉水位	通常運転水位(セパレータスカ ート下端から+126 cm)	通常運転水位を設定		
	炉心流量	48,300 t⁄h	定格流量を設定		
	炉心入口温度	約 278℃	熱平衡計算による値		
	炉心入口サブクール度	約 9℃	熱平衡計算による値		
初	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等であ り,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含され ることから,代表的に9×9燃料(A型)を設定		
期   条   仕	燃料棒最大線出力密度	44.0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定となるため、保安規定の運転上の制限における上限値を設定		
件	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい 設定となるため,崩壊熱が大きくなる燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に 対応する燃焼度を設定		
	格納容器圧力	5kPa[gage]	格納容器圧力の観点で厳しい高めの設定として,通常運転時の圧力を包含す る値を設定		
	格納容器雰囲気温度	57°C	ドライウェル内ガス冷却装置の設計温度を設定		
	格納容器体積 (ドライウェル)	5, 700m ³	設計値を設定		
	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	サプレッション・プールでの圧力抑制効果が厳しくなる少なめの水量として,保安規定の運転上の制限における下限値を設定		

	項目	主要解析条件	条件設定の考え方
初期条件	サプレッション・プール水位	6.983m (通常水位-4.7cm)	サプレッション・プールでの圧力抑制効果が厳しくなる低めの水位として, 保安規定の運転上の制限における下限値を設定
	サプレッション・プール水 温度	32°C	サプレッション・プールでの圧力抑制効果が厳しくなる高めの水温として, 保安規定の運転上の制限における上限値を設定
事故条件 関連する機器条件 重大事故等対策に	起因事象	再循環配管に 約 3.7cm ² の破断が発生	シュラウド外の液相部配管のうち最も低い位置にある再循環配管(配管断面 積約 2,400 cm ² )に対して,運転員等操作の操作時間余裕を考慮しても,対 策の有効性が確認できる範囲内において最大となる約 3.7 cm ² の破断を設定
	安全機能の喪失に対する仮定	高圧注水機能喪失 低圧注水機能喪失 減圧機能喪失	高圧注水機能として高圧炉心スプレイ系及び原子炉隔離時冷却系,低圧注水 機能として低圧炉心スプレイ系及び残留熱除去系(低圧注水系)の機能喪失 を設定 減圧機能として自動減圧系の機能喪失を設定
	外部電源	外部電源あり	外部電源がある場合,原子炉スクラム及び再循環ポンプトリップは,それぞ れ原子炉水位低(レベル3)信号及び原子炉水位異常低下(レベル2)信号 となり,原子炉水位の低下が大きくなることで,燃料被覆管温度の観点で厳 しくなる
	原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位低(レ ベル3)信号による原子炉スクラムを設定
	ATWS緩和設備 (代替原子炉再循環ポンプト リップ機能)	原子炉水位異常低下(レベル2) 信号で全台停止	事象進展の観点で,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源がある場合の原子炉水位異常低 下(レベル2)信号による再循環ポンプトリップを設定

第2.6-2表 主要解析条件(LOCA時注水機能喪失)(2/5)
		項目	主要解析条件	条件設定の考え方
	重大事故等対策に関	低圧代替注水系 (常設)	原子炉水位が原子炉水位高(レベル8)設定点ま で回復した以降は原子炉水位を原子炉水位低(レ ベル3)設定点から原子炉水位高(レベル8)設 定点の範囲に維持 (原子炉注水単独時) 最小流量特性(2台) ・注水流量:0~378m ³ /h ・注水圧力:0~2.38MPa[dif]	炉心冷却性の観点で厳しい設定として,機器設計上の最小要 求値である最小流量特性を設定
関連す		<ul> <li>(原子炉注水と格納容器スプレイ併用時)</li> <li>・注水流量:230m³/h(一定)</li> </ul>	併用時の系統評価に基づき、保守的な流量を設定	
	る機器条件	代替格納容器スプレイ冷却系 (常設)	サプレッション・チェンバ圧力が 217kPa[gage] に到達した場合は停止し, 279kPa[gage]に到達し た場合に再開 スプレイ流量: 130m ³ /h (一定)	格納容器圧力上昇を抑制可能な流量として,運転手順に基づ き設定
		外部水源の水温	35℃	格納容器スプレイによる圧力抑制効果の観点で厳しい高め の水温として,代替淡水貯槽及び水源補給に用いる淡水貯水
				池の年間の気象条件変化を包含する高めの水温を設定

第2.6-2表 主要解析条件(LOCA時注水機能喪失)(3/5)

	項目	主要解析条件	条件設定の考え方
重		<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79MPa [gage] ×2 個, 385.2t/h/個</li> <li>8.10MPa [gage] ×4 個, 400.5t/h/個</li> <li>8.17MPa [gage] ×4 個, 403.9t/h/個</li> <li>8.24MPa [gage] ×4 個, 407.2t/h/個</li> <li>8.31MPa [gage] ×4 個, 410.6t/h/個</li> </ul>	設計値を設定
入事故等対策に関連する機器条件	逃がし安全弁	(原子炉減圧操作時) 逃がし安全弁(自動減圧機能)7弁を開放するこ とによる原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定
	ベント管真空破壊装置 作動差圧	3.45kPa(ドライウェルーサプレッション・チェ ンバ間差圧)	設計値を設定
	格納容器圧力逃がし装置	排気特性:最小流量特性   13.4kg/s(格納容器圧力310kPa[gage]において)	格納容器減圧特性の観点で厳しい設定として,機器設計上の 最低要求値である最小流量特性を設定

第2.6-2表 主要解析条件(LOCA時注水機能喪失)(4/5)

	第 2.6-2 表	主要解析条件	( L O	CA時注水機能喪失)	(5/5)
--	-----------	--------	-------	------------	-------

	項目	主要解析条件	条件設定の考え方
関連する操作条件	逃がし安全弁(自動減圧機能) による原子炉減圧操作(低圧 代替注水系(常設)による原 子炉注水操作)	事象発生から 25 分後	運転手順に基づき,高圧・低圧注水機能喪失を確認し,低 圧代替注水系(常設)の準備が完了した時点で原子炉減圧 操作を実施するため,外部電源がない場合も考慮し,状況 判断,高圧注水機能喪失の確認,解析上考慮しない高圧代 替注水系の起動,低圧注水機能喪失の確認,常設代替高圧 電源装置による緊急用母線受電,低圧代替注水系(常設) の起動準備及び逃がし安全弁(自動減圧機能)による原子 炉減圧操作に要する時間を考慮して設定
	代替格納容器スプレイ冷却系 (常設)による格納容器冷却 操作	サプレッション・チェンバ圧力 279kPa[gage]到達時	運転手順に基づき格納容器ベント実施基準である格納容器 最高使用圧力(310kPa[gage])に対する余裕を考慮し設定
	格納容器圧力逃がし装置によ る格納容器除熱操作	サプレッション・チェンバ圧力 310kPa[gage]到達時	運転手順に基づき,格納容器最高使用圧力を踏まえて設定



コメント No. 182-15 に対する回答



第2.6-1 図 LOCA時注水機能喪失時の重大事故等対策の概略系統図(2/3) (低圧代替注水系(常設)による原子炉注水及び 代替格納容器スプレイ冷却系(常設)による格納容器冷却段階)



第2.6-1 図 LOCA時注水機能喪失時の重大事故等対策の概略系統図(3/3) (低圧代替注水系(常設)による原子炉注水及び 格納容器圧力逃がし装置による格納容器ベント段階)



第 2.6-2 図	LOCA時注水機能要	喪失(中小破断L <b>(</b>	OCA)の対応手順	の概要
コメント No. 147-19, 148-01, 17 に対する[	20, 23, 25, 29, 回答	2.6-45		

											LOCA時注水機能	喪失								
						1									Arr NE min H					
						0 1	0		20		30	40		50	経過時間	町 (分) 60	70		80	90
												1				1				
		実施箇所	斤・必要要	員数	.	↓ ▼ 事象発生														
		[]	は他作業	後		↓ 原子炉スクラ♪	5													
		移動し	してきた要	員	4	✓ 約20秒 原子炉水位異常低下(レベル2)設定点到達														
	責任者	発電長	1人	中央監視 運転操作指揮		▼ 約40秒 ドライウェル圧力高設定点 (13.7kPa[gage]) 到達														
操作項目	補佐	副発電長	1人	運転操作指揮補佐	操作の内容	▼ プラント状況判断														
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡				V MJ1	5,1 )	1 .										
	運転員         運転員           (中央制御室)         (現場)		重大事故等対応要員 (現場)						Ň	/ 20分 原于炉砌	() 土   刑 5日									
					●LOCA発生の確認															
					●外部電源喪失及び給水流量全喪失の確認															
				●原子炉スクラムの確認																
					<ul> <li>●タービン停止の確認</li> </ul>															
状況判断	2人	_		_	●北常田ディーゼル発電機等の自動記動の確認															
	А, В				●五倍増ポンプトリップの確認	10 分														
					<ul> <li>●高圧炉心スプレイ系及び原子炉隔離時冷却系の</li> </ul>															
						自動起動失敗の確認 ●低圧炉心スプレイ系及び残留熱除去系(低圧注 水系)の自動起動失敗の確認 ●主蒸気隔離弁閉止及び透がし安全弁(安全弁機														
高圧注水機能喪失の判	【1人】	_		_	<ul> <li>能)による原子炉圧力制御の確認</li> <li>●高圧炉心スプレイ系及び原子炉隔離時冷却系の</li> </ul>	2分														
断 常設代替高圧電源装置 による緊急用母線受電	A 【1 人】 B	_		_	<ul> <li>+ 動起動操作(矢取)</li> <li>●常設代替高圧電源装置2台起動及び緊急用母線</li> <li>受電操作</li> </ul>	4 分														
操作 高圧代替注水系の起動 場件	【1人】	-		-	<ul> <li>●高圧代替注水系の起動操作</li> </ul>			4分												
低圧注水機能喪失の判 断	【1人】 A	-		-	●低圧炉心スプレイ系及び残留熱除去系(低圧注 水系)の手動起動操作(失敗)			4	分											
高圧/低圧注水機能の 回復操作	-	-		-	●高圧炉心スプレイ系等の回復操作															
低圧代替注水系(常設)	【1人】 A	-		-	<ul> <li>●原子炉冷却材浄化系吸込弁の閉操作</li> </ul>			2	分											
の起動準備操作	【1人】 B	-		-	●低圧代替注水系(常設)による原子炉注水 系 統構成			3	分											
逃がし安全弁(自動減圧 機能)による原子炉減圧 操作	【1 人】 B	-		-	●逃がし安全弁7弁の開放操作				1 :	分										
原子炉水位の調整操作	【1 人】 B	-		_	●低圧代替注水系(常設)による原子炉注水の調整操作								原子炉水	立を原子り	炉水位低	(レベル3)	)設定点から	。原子炉水位	こ高(レベル	8)設定点(

第2.6-3 図 LOCA時注水機能喪失の作業と所要時間(1/2)

100 110	備考
	解析上考慮しない
	対応可能な要員にて実施
	解析上考慮しない
の間に維持する	

								LOCA時注水:	機能喪失										
					1						(文)局由土田	(味間)							1
					4		8	12	16	20	<u>栓</u> 適時间 24	(時间)	28	32	36	44	48	5	. 備考
操作項目	実施箇所・必要要員数 【 】は他作業後 移動してきた要員 操作の内容			▼ 25分 原子炉	5分 原子炉減圧開始						·								
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)										▼約28時間 サ	ナプレッション・チ	チェンバ圧	力310kPa[gage	]到達		
原子炉水位の調整 操作	【1人】 A	_	-	●低圧代替注水系(常設)による原子炉注水の調整操作		原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する													
代替格納容器スプ レイ冷却系(常設) による格納容器冷 却操作	【1人】 B	_	_	●格納容器スプレイ操作						格納容器スプレ	イ中適宜状	態監視							
<ul> <li>代替循環冷却系の</li> <li>起動操作</li> </ul>	【1人】 B	_	-	<ul> <li>         ・代替循環冷却系による原子炉注水操作     </li> <li>         ・代替循環冷却系による格納容器スプレイ操作     </li> </ul>						格納容器スプレ	イ中適宜状	適宜原子炉注水を調整       宜状態監視						解析上考慮しない 代替循環冷却系のみで状 態維持が可能な場合は, 低圧代替注水系(常設) による注水を停止する	
原子炉満水操作	【1人】 A	-	-	<ul> <li>●原子炉注水流量の増加操作</li> </ul>										原子炉7	水位を可能	な限り高く維持	夺		解析上考慮しない
使用済燃料プール の冷却操作	-	-	-	●使用済燃料ブールの冷却操作															使用済燃料ブールの除熱 機能が喪失した場合で も、ブール水温度が80℃ に到達するまでには1日 程度の時間余裕があるた め、本操作は対応可能な 要員にて実施する
格納容器ベント	【1 人】 A	-	-	●格納容器ベント準備(系統構成)							5分								
準備操作	-	3人 C, D, E	-	<ul> <li>●現場移動(第一弁)</li> <li>●格納容器ベント準備(系統構成)</li> </ul>								125 分							解析上考慮しない
格納容器圧力逃が し装置による格納	【1 人】 A	-	_	●中央制御室からの格納容器ベント操作										格納容器	景ベント実	施後 適宜状態	《監視		
容益际熟操作(り プレッション・チ ェンバ側)	-	-	【3人】 (招集)	●現場手動による格納容器ベント操作									75 分						解析上考慮しない
可搬型代替注水大	_	_	8人 a~h	●可搬型代替注水大型ポンプの移動,ホース敷設等													160分		水源枯渇までは十分余裕
空ホンプによる水 源補給操作	_	_	【2人】 a, b	●ポンプ起動及び水源補給操作														適宜監視	がある。
タンクローリによ			2 人	●可搬型設備用軽油タンクからタンクローリへの補給													110 分		タンクローリ残量に応じ て適宜軽油タンクから補 給
る燃料補給操作	_	_	(招集)	●可搬型代替注水大型ボンプへの給油														適宜実施	
必要要員合計	2人 A, B	3人 C, D, E	8人 a~h 及び招集5人																

第2.6-3 図 LOCA時注水機能喪失の作業と所要時間(2/2)







^{₩2} シュラウド内外水位はボイドを含む二相水位を示しており、二相水位評価の範囲としてボイド率を0.9と制 限している。 2.6-48



第2.6-7図 逃がし安全弁からの蒸気流量の推移



第2.6-8図 原子炉圧力容器内の保有水量の推移



第2.6-9図 燃料被覆管温度の推移



## 2.6-51



## 2.6-52







第2.6-15図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係



第2.6-16図 格納容器圧力の推移



第2.6-17図 格納容器雰囲気温度の推移



## 2.6-56

添付資料 2.6.1

<u>コメント No. 182-02, 14 に対する回答</u> 「LOCA時注水機能喪失」の事故条件の設定について

1. 事故シーケンスグループ「LOCA時注水機能喪失」の特徴

「LOCA時注水機能喪失」は、原子炉冷却材圧力バウンダリを構成する 配管に中小破断LOCAが発生した後に、高圧注水機能及び低圧注水機能が 喪失することを想定する。このため、原子炉へ注水する機能が喪失するとと もに、破断口及び逃がし安全弁からの原子炉冷却材の流出により、原子炉水 位が低下し、緩和措置が取られない場合には炉心が露出することで炉心損傷 に至ることが特徴である。よって、「LOCA時注水機能喪失」の有効性評価 においては、重大事故等対処設備である低圧代替注水系(常設)を用いた原 子炉注水をする。また、低圧注水機能喪失に伴い残留熱除去系による崩壊熱 除去機能喪失を想定することから、代替循環冷却系に期待しない場合は、格 納容器圧力逃がし装置を用いた格納容器除熱を実施する。

LOCA事象は,破断位置及び破断面積により原子炉冷却材の流出流量や 原子炉圧力挙動が変化し,事象進展や評価結果に影響を与えることから,「L OCA時注水機能喪失」の炉心損傷防止対策の有効性評価における破断位置 及び破断面積の事故条件設定の考え方について以下に示す。

2. 事故シーケンスグループ「LOCA時注水機能喪失」に対する評価項目

「LOCA時注水機能喪失」は格納容器圧力逃がし装置を使用する事故シ ーケンスグループであるため、「実用発電用原子炉及びその付属施設の位置、 構造及び設備基準に関する規則の解釈」及び「実用発電用原子炉に係る炉心 損傷防止対策及び格納容器破損防止対策の有効性評価に関する審査ガイド」 に基づき、以下の評価項目をいずれも満足する必要がある。

① 炉心の著しい損傷が発生するおそれのないものであり、かつ炉心を十

分に冷却できるものであること

- (a) 燃料被覆管の最高温度が 1,200℃以下であること
- (b) 燃料被覆管の酸化量は酸化反応が著しくなる前の被覆管厚さの 15%以下であること
- ②格納容器圧力逃がし装置を使用する事故シーケンスグループの有効性 評価では、敷地境界での実効線量を評価し、周辺の公衆に対して著し い放射線被ばくリスクを与えないこと(発生事故当たり概ね 5mSv 以下)

燃料被覆管温度の最高温度が 1,200℃以下で,①の評価項目を満足する場合でも,燃料被覆管の最高温度が約 900℃を超え,破裂が発生する燃料棒の 割合が 1%を超えると,燃料棒ギャップ中に蓄積した放射性物質が原子炉冷 却材中に放出され,破断口及び逃がし安全弁を介して格納容器内に蓄積し, 格納容器ベント実施時に環境に放出されることで,敷地境界外での実効線量 が 5mSv を超過し,②の評価項目を満足しない(添付資料 2.6.5 参照)。また, この場合には,格納容器内空間線量率がドライウェルで最大約 4.8×10³ Gy /h,サプレッション・チェンバで最大約 4.3×10⁴ Gy/h となり,炉心損傷 後の運転手順へ移行する判断基準を上回る。

以上により, 炉心損傷防止対策の有効性評価においては, 燃料被覆管の破 裂が発生しないことを判断の目安とする。

- 3. 「LOCA時注水機能喪失」の事故条件設定の考え方
- 3.1 破断位置の事故条件設定の考え方
- (1) 破断位置の分類

LOCAの破断を想定する原子炉冷却材圧力バウンダリに接続する配管 は、大きく以下の3通りに分類することができる。また、原子炉圧力容器

a. 気相部配管

気相部配管に破断が発生した場合は,液相部配管破断と比較して 破断流量は小さくなる。また,原子炉の減圧が促進されることから, 低圧の原子炉注水開始が早くなる。

b. シュラウド外の液相部配管

液相部配管に破断が発生した場合は,配管の接続位置が低いほど 水頭圧の影響により破断流量は大きくなる。シュラウド外の液相部 配管に破断が発生した場合,燃料棒が配置されるシュラウド内から の原子炉冷却材流出は,崩壊熱による蒸発及びジェットポンプ上端 からのオーバーフローとなる。このため,シュラウド内に崩壊熱相 当の流量で注水することにより,ジェットポンプ上端までのシュラ ウド内冠水は維持され,炉心冷却は確保される。

c. シュラウド内の液相部配管

シュラウド内の液相部配管に破断が発生した場合,シュラウド内 からの原子炉冷却材流出は,崩壊熱による蒸発,ジェットポンプ上 端からのオーバーフロー及び破断口からの流出となる。このため, ジェットポンプ上端までのシュラウド内冠水を維持するためには, 崩壊熱相当の流量に破断流量を加えた原子炉注水が必要となる。

第1表 代表的な原子炉圧力容器に接続する配管



第1図 代表的な原子炉圧力容器に接続する配管

(2) 破断位置の違いによる影響について

破断位置の違いによる燃料被覆管温度挙動への影響を確認するため,気 相部配管として主蒸気配管(出口ノズル)及びシュラウド内の液相部配管

として底部ドレン配管(出口ノズル)にベースケースと同じ約 3.7 cm² (0.004ft²)の破断面積を設定した場合の感度解析を実施した。原子炉圧 力,水位及び燃料被覆管温度挙動の比較を第2図に,評価結果の比較を第 2表に示す。

この結果,気相部配管の破断を想定した場合は,シュラウド内外の液相 部配管に破断を想定した場合と比較して,燃料被覆管最高温度が低くなる。 また,液相部配管についてはシュラウド内外で燃料被覆管温度及び事象進 展に有意な差はない。したがって,「LOCA時注水機能喪失」で想定す る破断位置は,格納容器破損防止対策の有効性評価(雰囲気圧力・温度に よる静的負荷(格納容器過圧・過温破損))での想定との整合も考慮し,原 子炉圧力バウンダリに接続する配管の中で最大口径である再循環配管(出 ロノズル)を設定した。

破断位置破断面積燃料被覆管最高温度a.主蒸気配管(出口ノズル)<br/>(気相部配管)約 338℃b.再循環配管(出口ノズル)<br/>(シュラウド外の液相部配管)約 3.7 cm²c.底部ドレン配管(出口ノズル)<br/>(シュラウド内の液相部配管)約 616℃シュラウド内の液相部配管)約 617℃

第2表 破断位置の感度解析結果

- 3.2 破断面積の事故条件設定の考え方
- (1) 燃料被覆管の破裂を回避可能な破断面積の範囲

2. に示すとおり、「LOCA時注水機能喪失」では、燃料被覆管の破裂 が発生しないことを判断の目安としている。この考え方に基づき、低圧代 替注水系(常設)を用いた原子炉注水により燃料被覆管の破裂を回避でき る破断面積を感度解析により確認し、再循環配管(出口ノズル)に対して

約 9.5 c m²の破断面積の範囲までは燃料被覆管の破裂発生を防止することが可能であることを確認した。ベースケース(約 3.7 c m²)と感度解析ケース(約 9.5 c m²)との原子炉圧力,水位及び燃料被覆管温度挙動の比較を第 3 図に,評価結果の比較を第 3 表に示す。

第3図に示すとおり、ベースケースと感度解析ケースとでは、事象進展 に有意な差が生じるものではない。また、逃がし安全弁(自動減圧機能) による原子炉減圧操作(低圧代替注水系(常設)による原子炉注水操作) の操作条件(事象発生の25分後)は、10分間の状況判断の後に高圧炉心 スプレイ系等の手動起動を試みる操作など一連の操作時間を考慮して設定 したものであり、パラメータを起点とした条件設定としていないことから、 破断面積の違いによる影響はない。

第3表 破断面積の感度解析結果

破断位置	破断面積	破裂の有無
再循環配管(出口ノズル)	約 9.5 cm ²	無
(シュラウド外の液相部配管)	約 9.6 cm ²	有

(2) 有効性評価における破断面積の事故条件の設定

有効性評価においては,逃がし安全弁(自動減圧機能)による原子炉減 圧操作(低圧代替注水系(常設)による原子炉注水操作)に対して評価上 の操作時間余裕を確認している。

再循環配管(出口ノズル)に対して破断面積の事故条件を燃料被覆管の 破裂発生防止が可能な限界である 9.5 c m²に設定すると,評価上の操作余 裕時間がなくなることから,炉心損傷防止対策の有効性評価では,燃料被 覆管の破裂防止が可能であり,かつ,10分程度の操作時間余裕が確保でき る破断面積として,再循環配管(出口ノズル)に対して 3.7 c m²を事故条

件として設定する。

なお,実際にLOCAが発生した場合,破断面積を確認することはでき ないため,運転手順においては,LOCAの確認(ドライウェル圧力 13.7kPa[gage])後に炉心損傷発生の有無によってその後の対応手順を選択 することとしている。また,LOCA時に高圧及び低圧注水機能が喪失す る場合の有効性評価は,炉心損傷防止対策としてのLOCA時注水機能喪 失及び格納容器破損防止対策としての雰囲気圧力・温度による静的負荷(格 納容器過圧・過温破損)により中小破断LOCAから大破断LOCAまで の範囲を確認している。

(3) 炉心損傷防止対策が有効である破断面積について

気相部配管,シュラウド内の液相部配管及びシュラウド外の液相部配管 に対して低圧代替注水系(常設)を用いた原子炉注水により燃料被覆管の 破裂を回避できる破断面積を感度解析により確認した。評価結果を第4表 並びに第4図及び第5図に示す。

この結果,低圧代替注水系(常設)による炉心損傷防止対策が有効に実 施可能な破断面積の範囲は以下のとおりとなる。

a. 主蒸気配管(出口ノズル)(気相部配管):約224cm²以下

b.再循環配管(出口ノズル)(シュラウド外の液相部配管):

約 9.5 cm² 以下

c. 底部ドレン配管(出口ノズル)(シュラウド内の液相部配管):

約 9.2 cm² 以下

確率論的リスク評価(以下「PRA」という。)では、NUREG-1150
 の定義と同様にLOCAを第5表のとおり分類しており、125A(約126cm
 ²)以上の配管破断は大破断LOCAと定義されることから、炉心損傷防

止対策が有効に実施可能な気相部配管の破断面積は大破断LOCA相当と なる。一方,液相部配管破断は炉心損傷防止対策が有効に実施可能な破断 面積が小さいが,原子炉冷却材の流出が長期的に継続すること及び原子炉 の高圧状態が維持されるための原子炉減圧が必要となることから,事象進 展の厳しさとしては中破断LOCA相当となる。

破断位置 破断面積 破裂の有無 a. 主蒸気配管(出口ノズル) 約 224 cm² 無 (気相部配管) 約 225 cm² 有 b.再循環配管(出口ノズル) 無 約 9.5 cm² (シュラウド外の液相部配管) 約 9.6 cm² 有 c.底部ドレン配管(出口ノズル) 約 9.2 cm² 無 (シュラウド内の液相部配管) 約 9.3 cm² 有

第4表 破断面積の感度解析結果

事象分類	状態定義	等価破断径	流出流量
漏えい	常用系(CRDポンプ等)で 補給可能な範囲		
小破断LOCA	RCICで注水可能な範囲		
中破断LOCA	小破断LOCAと大破断LO CAの中間範囲		
大破断LOCA	事象発生により原子炉が減圧 状態になる範囲		
DBA超過	設計基準事象でのLOCAを		
LOCA	超える範囲		

第5表 LOCA関連事象の分類定義



第2図 破断位置の違いによるパラメータ推移の違いの比較

添付 2.6.1-10

破断面積:約3.7cm²

破断面積:約9.5cm²



第3図 破断面積約3.7cm²と約9.5cm²とのパラメータ推移の比較



第4図 主蒸気配管に約224cm²の破断面積を設定した場合

添付 2.6.1-12



第5図 原子炉圧力容器底部ドレン配管に約9.2cm²の破断面積を設定した場合

添付 2.6.1-13

(4) 再循環配管の破断に伴う炉心損傷の発生頻度について

原子炉冷却材圧力バウンダリの溶接箇所における配管の破断により,L OCAが発生することを想定し,かつ,非常用炉心冷却系によるLOCA 発生後の事象緩和に期待できないものとして,以下の式により炉心損傷頻 度を算出した。

配管の破断による炉心損傷頻度

各系統の配管口径別の溶接線数と炉心損傷頻度を第5表に示す。なお, LOCA発生頻度及び全非常用炉心冷却系機能喪失確率はPRAで用いた 値を使用した。

							0.01	
		小飯断」	LOCA			甲破断」	LOCA	
系統	溶接 線数 ^{*1}	配管破断 発生頻度	条件付き 炉心損傷	炉心損傷 頻度	溶接 線数 ^{*1}	配管破断 発生頻度	条件付き 炉心損傷	炉心損傷 頻度
		(/ 炉平)	唯平	(/ 炉平)		(/ 炉车)	唯平	(/ 炉平)
RCIC	33	$1.3 \times 10^{-5}$	_ * 2	_ * 2	33	8.4 $\times 10^{-6}$	_ * 2	_ * 2
HPCS	19	7. $2 \times 10^{-6}$	_ * 2	_ * 2	19	4.8×10 ⁻⁶	_ * 2	_ * 2
LPCS	19	7.2×10 ⁻⁶	_ * 2	_ * 2	19	4.8×10 ⁻⁶	_ * 2	_ * 2
RHR-A	21	8.0×10 ⁻⁶	_ * 2	_ * 2	21	5. $3 \times 10^{-6}$	_ * 2	_ * 2
RHR-B	21	8.0×10 ⁻⁶	_ * 2	_ * 2	21	5. $3 \times 10^{-6}$	_ * 2	_ * 2
RHR-C	21	8.0×10 ⁻⁶	_ * 2	_ * 2	21	5. $3 \times 10^{-6}$	_ * 2	_ * 2
PLR	193	7.4×10 ⁻⁵	$1.5 \times 10^{-4}$	$1.1 \times 10^{-8}$	193	4.9×10 ⁻⁵	$1.5 \times 10^{-4}$	7.4 $\times 10^{-9}$
その他 の原子 炉庄ウン ダリ	460	$1.8 \times 10^{-4}$	_ * 2	* 2	460	$1.2 \times 10^{-4}$	_ * 2	_ * 2
合計	787	$3.0 \times 10^{-4}$			787	$2.0 \times 10^{-4}$		

第5表 各系統における溶接線数とLOCA後炉心損傷頻度

※1:溶接線数はクラス1機器の検査カテゴリ B-F 及び B-J から抽出。

※2:再循環配管の破断による炉心損傷頻度の算出には不要であるため、記載を省略した。

再循環配管の破断によりLOCAが発生し、非常用炉心冷却系による事 象緩和ができず、炉心損傷に至る頻度は1.1×10⁻⁸/炉年である。なお、 破断面積約9.5cm²以下のLOCAは炉心損傷防止が可能であるため、実際 に炉心損傷に至る頻度は1.1×10⁻⁸/炉年より小さくなる。

また、国内外の先進的な対策を考慮しても炉心損傷防止対策を有効に実施することが困難である大破断LOCAについては、PRAにおいて、炉心損傷頻度を3.0×10⁻⁸/炉年としている。なお、気相部配管の破断面積224cm²以下のLOCAは、炉心損傷防止が可能であるため、実際に炉心損傷に至る頻度は3.0×10⁻⁸/炉年より小さくなる。したがって、再循環配管の破断により発生するLOCAで炉心損傷に至る頻度は十分に小さいものであると整理される。

(5) 国内外の先進的な対策との比較

炉心損傷防止対策が有効な破断面積以上のLOCAに対しては, 炉心損 傷防止対策を有効に実施することが困難であることから, 審査ガイドに基 づき,「LOCA時注水機能喪失」に対する重大事故等対策である低圧代替 注水系(常設)が国内外の先進的な対策と同等であることを確認する。

炉心損傷防止対策が有効な破断面積以上のLOCAに対して炉心損傷防 止対策を有効に実施するためには、LOCA時の原子炉水位低下速度に対 して、燃料被覆管の破裂を回避できる大容量かつ即時の原子炉注水手段が 必要となる。東海第二発電所と欧米のプラントで講じられている諸対策の 対比を第6表に示す。

第6表に示すとおり,国外プラントにおいてLOCA時の原子炉水位低 下速度に対して,燃料被覆管の破裂を回避できる大容量かつ即時の原子炉 注水手段については確認されなかった。

なお,東海第二発電所の重大事故等対策のうち高圧注水機能の強化策で ある蒸気駆動の常設高圧代替注水ポンプは,国外では見られない対策であ り,大破断LOCAを除く事象初期において重要な高圧注水機能の多重性

向上及び駆動源の多様性向上の観点で有用な対策である。

事故シーケンス	长候在日		炉心損傷防	ち止対策に係る設備又は操作			
グループ	代发用已	東海第二発電所	米国	ドイツ	スウェーデン	フィンランド	]
LOCA 時注水機能喪失	炉心冷却	・常設低圧代替注水ポンプ	・ディーゼル駆動消火ポ	・独立非常用系の中圧注		・火災用ポンプ,ブース	
		・常設高圧代替注水ポンプ	ンプ(RHR 経由)	入ポンプ		ターポンプ(専用電源	5
		・復水ポンプ	・高圧サービス水系	・サービス水系(RHR		あり)	7
		・電動消火ポンプ	(RHR 経由)	経由)			
		・ディーゼル駆動消火ポンプ	・RHRSW (RHR 経由)	・復水ポンプ(給水ポン			16
		・復水移送ポンプ	・制御棒駆動機構ポンプ	プバイパスライン追			郁
		・制御棒駆動水圧系ポンプ	・復水ポンプ	設)			髟
		・ほう酸水注入系ポンプ		・インターナルポンプ・	_		
				シール水系ポンプ			オ
				・ほう酸水注入系ポンプ			を
				・制御棒駆動水系ポンプ			
				・サプレッションプール			7
				ドレンポンプ(RHR			「見
				経由)			衫
				・1 次系満水ポンプ			5
			ゴを使用しない。	二丁柏明田山沙仏、「ムユピン、ノープ」(八上		⊐ர400.∓பி-பூல், ு	
		・ 円掫空1、管注水入空ホンノ	<ul> <li>• 町版空小ノノ</li> </ul>	・可版空伯バルンノ(サ		<ul> <li>• り版空小シノ</li> </ul>	
					_		
				田ノ			

第6表 「LOCA時注水機能喪失」に対する国外における炉心損傷防止対策と東海第二発電所の対策との比較

<u>下線部</u>:有効性評価において有効性を確認する対策

対策の概要

欧米では,既設又は追設する常設ポンプ及び可搬 型ポンプによる多様な代替炉心冷却手段を整備し ている。

これらの代替炉心冷却手段のポンプの吐出容量 は、最大でも 300m³/h 程度であり、燃料被覆管の 破裂を回避できる大容量かつ即時の原子炉注水手 殴とは考えにくい。

東海第二発電所においても,既設,追設する常設 ポンプ及び可搬型ポンプによる代替炉心冷却手段 を対策としている。

これらの対策のうち,高圧注水機能の強化策であ 5蒸気駆動の常設高圧代替注水ポンプは,国外では 見られない対策であり,大破断LOCAを除く事象 切期において重要な高圧注水機能の多重性向上及 び駆動源の多様性向上の観点で有用な対策である。

# 敷地境界外での実効線量評価について

# 【事象の概要】

- 1. LOCAが発生し、高圧・低圧注水機能が喪失するが、低圧代替注水系(常設)による原子炉注水により炉心は冠水 が維持される。発生した蒸気は逃がし安全弁を通じてサプレッション・チェンバに移行する。
- 2. 事象発生から約 28 時間後, サプレッション・チェンバ圧力が 310kPa[gage] 到達することにより格納容器ベント操作 を実施する。

# 【評価結果】

敷地境界外での実効線量は5mSv に対して十分小さい。



約 4.0×10⁻¹⁹Gv/Ba

約 1.6×10⁻¹mSv

実効線量

約 8.1×10⁻²⁰Gv/Bq

約 6.2×10⁻¹ mSv


※:ベント開始(事象発生28時間後)までの放射性物質の自然減衰を考慮

第1図 格納容器圧力逃がし装置による格納容器ベント時の

放射性希ガスの大気放出過程

(γ線実効エネルギ 0.5MeV 換算値)



※:ベント開始(事象発生28時間後)までの放射性物質の自然減衰を考慮

第2図 格納容器圧力逃がし装置による格納容器ベント時の

放射性よう素の大気放出過程



※:ベント開始(事象発生28時間後)までの放射性物質の自然減衰を考慮

第3図 耐圧強化ベントによる格納容器ベント時の

放射性希ガスの大気放出過程

(γ線実効エネルギ 0.5MeV 換算値)



※:ベント開始(事象発生28時間後)までの放射性物質の自然減衰を考慮

### 第4図 耐圧強化ベントによる格納容器ベント時の

#### 放射性よう素の大気放出過程

安定状態について(LOCA時注水機能喪失)

LOCA時注水機能喪失時の安定状態については、以下のとおり。

原子炉安定停止状態	事象発生後,設計基準事故対処設備又は重大事故等対処
	設備を用いた炉心冷却が維持可能であり、また、冷却の
	ための設備がその後も機能維持でき,かつ,必要な要員
	の不足や資源の枯渇等のあらかじめ想定される事象悪
	化のおそれがない場合に安定停止状態が確立されたも
	のとする。
格納容器安定状態	炉心冷却が維持された後に、設計基準事故対処設備又は
	重大事故等対処設備を用いた格納容器除熱により格納
	容器圧力及び温度が安定又は低下傾向に転じ、また、格
	納容器除熱のための設備がその後も機能維持でき、か
	つ、必要な要員の不足や資源の枯渇等のあらかじめ想定
	される事象悪化のおそれがない場合に安定状態が確立
	されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

逃がし安全弁により原子炉減圧状態を維持し,低圧代替注水系(常設)を用 いた原子炉注水を継続することで,炉心の冷却は維持され原子炉安定停止状態 が確立される。

格納容器安定状態の確立について

炉心冷却を継続し,事象発生の約28時間後に格納容器圧力逃がし装置等を用いた格納容器除熱を実施することで、格納容器圧力及び雰囲気温度は安定又は低下傾向となる。格納容器雰囲気温度は150℃を下回るとともに、ドライウェル雰囲気温度は、低圧注水継続のための逃がし安全弁の機能維持が確認されている126℃を上回ることはなく、格納容器安定状態が確立される。なお、格納容器圧力逃がし装置等を用いた格納容器除熱を実施するが、敷地境界における実効線量は、6.2×10⁻¹ mSv となり、また、燃料被覆管の破裂も発生しないことから、周辺公衆に対して著しい放射線被ばくのリスクを与えることはない。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料及 び電源を供給可能である。

【安定状態の維持について】

上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,代替循環冷却系又は残留熱除去系の復旧により除熱を行い,格納容器 ベントを閉止し格納容器を隔離することで,安定状態の更なる除熱機能の確保 及び維持が可能となる。

(添付資料 2.1.1 別紙 1)



第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壊熱	崩壊熱モデル	入力値に含まれる。 最確条件を包絡できる条件を設定することによ り崩壊熟を大きくするよう考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料棒表面熱伝 達,沸騰遷移,気 液熟非平衡	^本 表面熱伝		解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、操作手順(速 やかに注水手段を準備すること)に変わりはなく、燃料被覆管温 度を起点とする運転員等操作はないことから、運転員等操作時間 に与える影響はない。	解析コードは、実験解析において熱伝達モデルの保守性により燃料被覆管温度を高めに評価し、有効性評価解析においても燃料被 覆管温度を高めに評価することから、評価項目となるパラメータ に対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジル コニウム – 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もる Baker-Just 式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,操作手順(速 やかに注水手段を準備すること)に変わりはなく,燃料被覆管温 度を起点とする運転員等操作はないことから,運転員等操作時間 に与える影響はない。	解析コードは,酸化量及び発熱量の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるバラメータに対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は,燃料被覆管温度と円周方向応力 に基づいて評価され,燃料被覆管温度は上述の ように高めに評価され,円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって,ベスト フィット曲線を用いる場合も破裂の判定はおお むね保守的となる。	解析コードは、燃料被覆管の破裂判定においておおむね保守的な 判定結果を与え、有効性評価解析における燃料被覆管の最高温度 は 616℃であることから、ベストフィット曲線の破裂判断基準に 対して十分な余裕があり、燃料被覆管の破裂判定の不確かさが運 転員等操作に与える影響はない。	破裂発生前の被覆管の膨れ及び破裂発生の有無は、伝熱面積やギ ャップ熱伝達係数,破裂後の金属-水反応熱に影響を与え、燃料 被覆管温度に影響を与える。解析コードは、燃料被覆管の破裂判 定においておおむね保守的な判定結果を与え、有効性評価解析に おける燃料被覆管の最高温度は616℃であることから、ベストフィ ット曲線の破裂判断基準に対して十分な余裕があり、燃料被覆管 の破裂判定の不確かさにより、評価項目となるパラメータに与え る影響はない。

# 第1-1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (SAFER)(2/2)

分類	重要現象 解析モデル		不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響	
炉心	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二 相 流 体 の 流 動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重畳する水位振動 成分を除いて,実験結果とおおむね同等の結果 が得られている。低圧代替注水系の注水による 燃料棒冷却(蒸気単相冷却又は噴霧流冷却)の 不確かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧注水 系の起動タイミングを早め名可能性が示され る。しかし,実験で圧力低下が遅れた理由は, 水面上に露出した上部支持格子等の構造材の温 度が燃料被覆管からの輻射や過熱蒸気により上 昇し,LPCS スプレイの液滴で冷却された際に蒸 気が発生したためであり,低圧代替注水系を注 水手段として用いる本事故シーケンスでは考慮 する必要のない不確かさである。このため,燃 料被覆管温度に大きな影響を及ぼす低圧代替注 水系の注水タイミングに特段の差異を生じる可 能性はないと考えられる。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると 20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析におけ る燃料被覆管の最高温度は 338℃であり、評価項目に対して十分な 余裕があることから、その影響は非常に小さい。	
 原子炉 圧力容器	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけて定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。	
	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-III, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており,実機設備仕様に対し て注水流量を少なめに与え,燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	

## 第1-2表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響 (MAAP)

分類	分類 重要現象 解析モデル		不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	崩壞熱	炉心モデル(原子 炉出力及び崩壊 熱)	入力値に含まれる。 保守的な崩壊熱を入力値に用いており,解析モ デルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
原子炉 圧力容器	ECCS 注水(給水 系・代替注水設備 含む)	安全系モデル(非 常用炉心冷却系)	入力値に含まれる。 保守的な注水特性を入力値に用いており,解析 モデルの不確かさの影響はない。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
格納容器	格納容器各領域 間の流動 構造材との熱伝 達及び内部熱伝 導 気液界面の熱伝 達	格納容器モデル (格納容器の熱 水力モデル)	HDR 実験解析では, 格納容器圧力及び雰囲気温度 について, 温度成層化を含めて傾向をよく再現 できることを確認した。 格納容器雰囲気温度を 十数℃程度高めに, 格納容器圧力を1 割程度高 めに評価する傾向が確認されたが, 実験体系に起因する ものと考えられ, 実機体系においてはこの種の 不確かさは小さくなるものと考えられる。また, 非疑縮性ガス濃度の挙動について, 解析結果が 測定データとよく一致することを確認した。 格納容器各頃域間の流動,構造材との熱伝達及 び内部熱伝導の不確かさによいては, CSTF 実験 解析では, 格納容器雰囲気温度及び非凝縮性ガ ス濃度の挙動について, 解析結果が測定データ とよく一致することを確認した。	解析コードは、HDR 実験解析において区画によって格納容器雰囲 気温度を十数℃程度,格納容器圧力を1 割程度高めに評価する傾 向が確認されているが,BWRの格納容器内の区画とは異なる等, 実験体系に起因するものと考えられ、実験体系に起因するもので あり,実機体系においては不確かさが小さくなるものと推定され、 全体としては格納容器圧力及び温度の傾向を適切に再現できてい るため,格納容器圧力を操作開始の起点としている代替格納容器 スプレイ冷却系(常設)による格納容器冷却及び格納容器圧力逃 がし装置による格納容器除熱に係る運転員等操作時間に与える影 響は小さい。 また,格納容器各領域間の流動,構造材との熱伝達及び内部熱伝 導の不確かさにおいては,CSTF実験解析において格納容器雰囲気 温度及び非凝縮性ガスの挙動は測定データと良く一致することを 確認しており、その差異は小さいため,格納容器圧力及び雰囲気 温度を操作開始の起点としている代替格納容器エブレイ冷却系 (常設)による格納容器合利及び格納容器圧力述がし装置による 格納容器除熱に係る運転員等操作時間に与える影響は小さい。	解析コードは、HDR 実験解析において区面によって格納容器雰囲気 温度を十数で程度,格納容器圧力を1割程度高めに評価する傾向 が確認されているが、BWRの格納容器内の区面とは異なる等, 実験体系に起因するものと考えられ,実験体系に起因するもので あり、実機体系においては不確かさが小さくなるものと推定され, 全体としては格納容器圧力及び温度の傾向を適切に再現できてい るため,評価項目となるパラメータに与える影響は小さい。 また,格納容器各領域間の流動,構造材との熟伝達及び内部熟伝 導の不確かさにおいては,CSTF 実験解析により格納容器雰囲気温 度及び非凝縮性ガスの挙動は測定データと良く一致することを確 認しているため,評価項目となるパラメータに与える影響は小さい。
	スプレイ冷却	安全系モデル(格 納容器スプレイ)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平 衡に至ることから伝熱モデルの不確かさはな い。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	格納容器ベント	格納容器モデル (格納容器の熱 水力モデル)	入力値に含まれる。 MAAPコードでは格納容器ベントについては,設 計流量に基づいて流路面積を入力値として与 え,格納容器各領域間の流動と同様の計算方法 を用いてられている。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

		解析条件6	の不確かさ	タ供売されました		評価項目となるパラメータに
		解析条件	最確条件	米性設定の考え方	運転員寺傑作时间に与える影響	与える影響
	原子炉熱出力	3,293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は、最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響は小さい。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響は小さい。
初期条件	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ + 132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から高圧炉心スプレイ 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mmであ り非常に小さい。したがって、事象進展に及ぼす影 響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から高圧炉心スプレイ系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるバラメータに与える影響は小さい。
_ 件	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響は小 さい。	最確条件とした場合には、炉心流量の運転範囲におい で解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンプがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響は小さ い。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は, 熱水力的な特性はほぼ同等であり,その他 の核的特性等の違いは燃料棒最大線出力密 度の保守性に包含されることから,代表的 に9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性はほ ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響は小さい。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが、両型式の燃料の特性はほぼ同 等であることから、炉心冷却性に大きな差は無く、評 価項目となるパラメータに与える影響は小さい。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となるため,保安規定の運転上の制限における上限 値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、操作手順(速やかに注水手段を 準備すること)に変わりはなく、燃料被覆管温度を 起点とする運転員等操作はないことから,運転員等 操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから評価項目となるパラメータに 対する余裕は大きくなる。

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(1/5)

項目		解析条件の不確かさ		な供知己のおうナ		評価項目となるパラメータに	
		解析条件	最確条件	条件設定の考え方	運転員等操作時間に与える影響	与える影響	
	原子炉停止後の 崩壊熟	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が,原子炉水位低下及 び格納容器圧力上昇の観点で厳しい設 定となる。このため,崩壊熱が大きくな る燃焼度の高い条件として,1サイクル の運転期間(13ヶ月)に調整運転期間(1 ヶ月)を考慮した運転期間に対応する燃 焼度を設定	最確条件は解析条件で設定している崩壊熱よりも小 さくなる傾向となる。このため、原子炉からサプレ ッション・ブールに流出する蒸気量が減少すること で、原子炉水位の低下が遅くなるが、操作手順(速 やかに注水手段を準備すること)に変わりはなく、 運転員等操作時間に与える影響はない。また、格納 容器圧力、サプレッション・ブール水位及びサプレ ッション・プール水温度の上昇が遅くなり、これら のパラメータを起点とする運転員等操作の開始時間 は遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小 さくなる傾向となる。このため、燃料からの発熱が小 さくなり、原子炉からサブレッション・プールに流出 する蒸気量が減少することで、原子炉水位の低下並び に格納容器圧力及び温度の上昇が緩和されることか ら、評価項目となるバラメータに対する余裕が大きく なる。	
	格納容器圧力	5kPa[gage]	約 2.2~4.7kPa[gage] (実績値)	格納容器圧力の観点で厳しい高めの設 定として,通常運転時の圧力を包含する 値を設定	最確条件は解析条件で設定している圧力よりも小さ くなる。このため,格納容器圧力が低めに推移する ことから,格納容器圧力を起点とする運転員等操作 の開始時間は遅くなる。	最確条件は解析条件で設定している格納容器初期圧 力よりも小さくなる。このため,格納容器圧力が低め に推移することから,評価項目となるパラメータに対 する余裕は大きくなる。	
	ドライウェル 雰囲気温度	57℃	約 25~58℃ (実績値)	ドライウェル内ガス冷却装置の設計温 度を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ドライウェル雰囲気温度 は、格納容器スプレイの実施に伴い飽和温度となる ことから、初期温度のゆらぎが事象進展に与える影響は小さく、運転員等操作時間に与える影響は小さ い。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ドライウェル雰囲気温度は、 格納容器スプレイの実施に伴い飽和温度となること から、初期温度のゆらぎが事象進展に与える影響は小 さく、評価項目となるパラメータに与える影響は小さい。	
初期	格納容器体積 (ドライウェル)	5,700m ³	5,700m ³ (設計値)	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
条件	格納容器体積 (ウェットウェル)	空間部:4,100m ³ 液相部:3,300m ³	空間部: 約4,092m ³ ~約4,058m ³ 液相部: 約3,308m ³ ~約3,342m ³ (実測値)	サプレッション・プールでの圧力抑制効 果が厳しくなる少なめの水量として,保 安規定の運転上の制限における下限値 を設定	最確条件とした場合には、格納容器体積(ウェット ウェル)の液相部の運転範囲において解析条件より 高めの水位となるが、ゆらぎの幅は非常に小さい。 例えば、サブレッション・プール水位が 6.983m の時 の水量は 3,300m ³ であるのに対し、ゆらぎ (0.087m) による水量変化は約 42m ³ であり、その割合は初期保 有水量の 1.3%程度と非常に小さい。したがって、事 象進展に与える影響は小さく、運転員等操作時間に 与える影響は小さい。	最確条件とした場合には,格納容器体積(ウェットウ エル)の液相部の運転範囲において解析条件より高め の水位となるが,ゆらぎの幅は非常に小さい。例えば, サプレッション・プール水位が 6.983mの時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約 42m ³ であり,その割合は初期保有水量の 1.3%程度と非常に小さい。したがって,事象進展に 与える影響は小さく,評価項目となるバラメータに与 える影響は小さい。。	
	サプレッション・ プール水位	6.983m (通常運転水位-4.7cm)	7.000m~7.070m (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる低めの水位として,保安 規定の運転上の制限における下限値を 設定	最確条件とした場合には、サブレッション・ブール 水位の運転範囲において解析条件より高めの水位と なるが、ゆらぎの幅は非常に小さい。例えば、サプ レッション・プール水位が 6.983m の時の水量は 3,300m ³ であるのに対し、ゆらぎ(0.087m)による水 量変化は約42m ³ であり、その割合は初期保有水量の 1.3%程度と非常に小さい。したがって、事象進展に 与える影響は小さく、運転員等操作時間に与える影響 響は小さい。	最確条件とした場合には、サブレッション・ブール水 位の運転範囲において解析条件より高めの水位とな るが、ゆらぎの幅は非常に小さい。例えば、サブレッ ション・ブール水位が 6.983m の時の水量は 3.300m ³ であるのに対し、ゆらぎ (0.087m)による水量変化は 約 42m ³ であり、その割合は初期保有水量の 1.3%程度 と非常に小さい。したがって、事象進展に与える影響 は小さく、評価項目となるパラメータに与える影響は 小さい。	
	サプレッション・ プール水温度	32°C	約 15~約 32℃ (実績値)	サプレッション・プールでの圧力抑制効 果が厳しくなる高めの水温として,保安 規定の運転上の制限における上限値を 設定	最確条件は解析条件で設定している水温よりも低く なるため、サプレッション・プールでの圧力抑制効 果が高まり格納容器圧力の上昇は緩和される。この ため、格納容器圧力を起点とする運転員等操作の開 始は遅くなる。	最確条件は解析条件で設定している水温よりも低く なるため、サプレッション・プールでの圧力抑制効果 が高まり格納容器圧力の上昇は緩和される。このた め、評価項目となるバラメータに対する余裕は大きく なる。	

	第2表	解析条件を最確条件と	した場合に運転員等操作時間及	び評価項目となる。	パラメー	-タに与える影響(	(3/	5)
--	-----	------------	----------------	-----------	------	-----------	-----	----

百日		解析条件の不確かさ		タル乳ウのおう十	でまた日始現代は国にたらて影響	評価項目となるパラメータに	
	項日	解析条件	最確条件	余件設定の考え方	運転員等操作时间に与える影響	与える影響	
事	起因事象	再循環配管に 破断面積約 3.7cm ² の 破断が発生	_	シュラウド外の液相部配管のうち最も低い 位置にある再循環配管(配管断面積約2,400 cm ² )に対して,運転員等操作の操作時間余 裕を考慮しても,対策の有効性が確認でき る範囲内において最大となる約3.7 cm ² の破 断を設定	破断面積によって原子炉からの冷却材の流出量が変 わり、初期の原子炉水位低下挙動に影響を与える。 破断面積が本解析よりかさく冷却材の流出量が少な い場合は、運転員等操作時間に対する余裕時間は大 さくなる。 破断面積が本解析よりも大きい場合、約9.5cm ² まで は、ベースケースと同じ25分後の原子炉減圧操作を 想定した場合でも燃料被覆管の破裂を防止可能であ ることを感度解析により確認している。破断面積が 約9.5cm ² を超え、炉心損傷が発生する場合は、「3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損)」の対応となる。 (添付資料 2.6.1)	破断面積によって原子炉からの冷却材の流出量が変 わり、初期の原子炉水位低下挙動に影響を与える。破 断面積が本解析より小さく冷却材の流出量が少ない 場合は、評価項目となるパラメータに対する余裕は大 きくなる。 破断面積が本解析よりも大きい場合、約9.5cm ² まで は、ベースケースと同じ25分後の原子炉減圧操作を 想定した場合でも燃料被覆管の破裂を防止可能であ ることを感度解析により確認している。破断面積が約 9.5cm ² を超え、炉心損傷が発生する場合は、「3.1 雰 囲気圧力・温度による静的負荷(格納容器過圧・過温 破損)」の対応となる。 (添付資料 2.6.1)	
故   条 	安全機能の喪失 に対する仮定	高圧注水機能喪失 低圧注水機能喪失 減圧機能喪失	_	高圧注水機能として高圧炉心スプレイ系及 び原子炉隔離時冷却系,低圧注水機能とし て低圧炉心スプレイ系及び残留熱除去系 (低圧注水系)の機能喪失を設定 減圧機能として自動減圧系の機能喪失を設 定	_	_	
	外部電源	外部電源あり	-	外部電源がある場合,原子炉スクラム及び 再循環ポンプトリップは,それぞれ原子炉 水位低(レベル3)信号及び原子炉水位異 常低下(レベル2)信号となり,原子炉水 位の低下が大きくなることで,燃料被覆管 温度の観点で厳しくなる	外部電源がある場合は、常設代替高圧電源装置の起 動が不要となることから、低圧代替注水系(常設) による原子炉注水操作の開始は早くなる。	外部電源がない場合は、外部電源喪失に伴い原子炉ス クラム、再循環ポンプトリップ等が発生するため、外 部電源がある場合と比較して原子炉水位の低下は緩 和されることから、評価項目となるパラメータに対す る余裕は大きくなる。 また、給水系による原子炉注水に期待する場合は、原 子炉水位の低下は緩和されることから、評価項目とな るパラメータに対する余裕は大きくなる	
関連する	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉木位の低下 を厳しくする条件として,外部電源がある 場合の原子炉木位低(レベル3)信号によ る原子炉スクラムを設定	解析条件と最確条件は同様であることから、事象進 展に影響はなく、運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから, 事象進展 に影響はなく, 評価項目となるパラメータに与える影 響はない。	
機 等 対 条 作 に	A T W S 緩和設備 (代替原子炉再循環 ポンプトリップ機能)	原子炉水位異常低下 (レベル2)信号	原子炉水位異常低下 (レベル2)信号	事象進展の観点で,起因事象発生から原子 炉スクラムまでの期間の原子炉水位の低下 を厳しくする条件として,外部電源がある 場合の原子炉水位異常低下(レベル2)信 号による再循環ポンプトリップを設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	

	第2表	解析条件を最確条件とし	、た場合に運転員等操作時間及	び評価項目となる。	パラメータレ	こ与える影響	(4/5)
--	-----	-------------	----------------	-----------	--------	--------	-------

	百日	解析条件の不確かさ		冬世記史の考えて	海転昌筮協佐時間に占うて影響	評価項目となるパラメータに	
	項日	解析条件	最確条件	米件設定の考え方	運転員寺傑作时间に与える影響	与える影響	
	低圧代替注水系 (當設)	<ul> <li>(原子炉注水単独時)</li> <li>最小流量特性(2台)</li> <li>・注水流量:0~378m</li> <li>³/h</li> <li>注水 圧 力:0~</li> <li>2.38MPa[dif]</li> </ul>	<ul> <li>(原子炉注水単独時)</li> <li>定格流量特性(2台)</li> <li>注水流量:0~378m</li> <li>³ / h以上</li> <li>注水 圧 力:0~</li> <li>2.38MPa[dif]</li> </ul>	炉心冷却性の観点で厳しい設定として,設 備設計上の最低要求値である最小流量特性 を設定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,原子炉水位の維持操作の開始が 早くなるが,原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため,運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、炉心の再冠水が早まることから、評 価項目となるパラメータに対する余裕は大きくなる。	
		(原子炉注水と格納 容器スプレイ併用時) ・注水流量:230m ³ /h	<ul> <li>(原子炉注水と格納</li> <li>容器スプレイ併用時)</li> <li>・注水流量:230m³ ∕ h</li> <li>以上</li> </ul>	併用時の系統評価に基づき,保守的な流量 を設定			
関重	代替格納容器スプレ イ冷却系(常設)	スプレイ流量: 130m ³ /h	スプレイ流量: 130m ³ /h	格納容器圧力上昇を抑制可能な流量として,運転手順に基づき設定	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
連する機器条件	外部水源の温度	35℃	35℃以下	格納容器スプレイによる圧力抑制効果の観 点で厳しい高めの水温として,代替淡水貯 槽及び水源補給に用いる淡水貯水池の年間 の気象条件変化を包含する高めの水温を設 定	最確条件とした場合には、解析条件で設定している 水温よりも低くなる可能性があり、格納容器スプレ イによる圧力抑制効果が高まることから、同等の効 果を得るために必要となるスプレイ水量が少なくな り、外部水源を用いた格納容器スプレイに伴うサプ レッション・プール水位の上昇が緩和されることか ら、サプレッション・プール水位を起点とする操作 の開始は遅くなる。	最確条件とした場合には,解析条件で設定している水 温よりも低くなる可能性があり,格納容器スプレイに よる圧力抑制効果が高まるが,格納容器最高使用圧力 に到達した時点で格納容器ペントを実施するマネジ メントに変わりはなく,格納容器圧力の最大値はおお むね格納容器ペント時の圧力で決定されるため,評価 項目となるパラメータに与える影響はない。	
		<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t/h/個</li> </ul>	<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t / h / 個</li> <li>(設計値)</li> </ul>	設計値を設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない	
	逃がし安全弁	(原子炉減圧操作時) 逃がし安全弁(自動減 圧機能)7弁を開放す ることによる原子炉 減圧	(原子炉減圧操作時) 逃がし安全弁(自動減 圧機能)7弁を開放す ることによる原子炉 減圧	逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影 響はない	

та н		解析条件の不確かさ		冬世記中の考えて	海転昌笹忠佐時期に長うて影響	評価項目となるパラメータに
	項 口	解析条件	最確条件	木件成足の考え力	運転員守操作时间に分んの影響	与える影響
	ベント管 真空破壊装置 作動差圧	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧)	作動差圧:3.45kPa (ドライウェルーサ プレッション・チェン バ間差圧) (設計値)	設計値を設定	解析条件と最確条件は同等であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	解析条件と最確条件は同等であることから,事象進展に影響はなく,評価項目となるパラメータに与える影響はない。
関連する機器	格納容器圧力逃がし 装置	排気流量: 最小流量特性	排気流量: 定格流量特性	格納容器減圧特性の観点で厳しい設定とし て,設備設計上の最低要求値である最小流 量特性を設定	最確条件とした場合には,格納容器ベント後の 格納容器圧力の低下が早くなるが,格納容器ベ ント後に格納容器圧力を起点とする操作はない ため,運転員等操作時間に与える影響はない。	最確条件とした場合には,格納容器ベント後の格納容器圧 力の低下が早くなるが,格納容器最高使用圧力に到達した 時点で格納容器ベントを実施するマネジメントに変わり はなく,格納容器圧力の最大値はおおむね格納容器ベント 時の圧力で決定されるため,評価項目となるバラメータに 与える影響はない。
条策件に	外部水源の容量	約 9,300m³	約 9,300m ³ 以上 (淡水貯水池+ 代替淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後 までに必要な容量を備えており、水源は枯渇し ないことから運転員等操作時間に与える影響は ない。	_
	燃料の容量	約 1,010kL	約1,010kL 以上 (軽油貯蔵タンク+ 可搬型設備用軽油 タンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後 までに必要な容量を備えており、燃料は枯渇し ないことから運転員等操作時間に与える影響は ない。	_

第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(5/5)

## 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(1/4)

	項目	解析上の 操作開始時間	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃弁子(炉) しよ減圧 がに が に 注 水 に 注 水 ( る て 伊 低 天 ( る 王 伊 ( 低 天 、 ( る 王 伊 ( 低 天 、 ( る 、 に が に 、 が に 、 が に 、 が に 、 が に う 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、	事象発生から 25 分後	運き水洗、 、機、 に、 低、 な、 、、、、 、、、、、、、、、、、、、、、、、、、、、、、	【認知】 中央制御室にて機器ランプ表示,機器故障警報,平均出力領域計装,系統流量 計等にて,原子炉スクラム等を確認する。この事象初期の状況判断に余裕時間 を含めて 10 分を想定している。この後、高圧炉心スプレイ系及び原子炉隔離 時冷却系の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作として4分並びに低圧炉心スプレイ系及び残留熱除去系(低圧注 水系)の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作として4分並びに低圧炉心スプレイ系及び残留熱除去系(低圧注 水系)の手動起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系の起動操作(失敗)として2分,解析上考慮しない高圧代替注水 系)の手動起動操作(失敗)として2分,解析上考慮して0分 を設定している。よって,認知時間として余裕時間を含めて20分を設定して おり,十分な時間余裕を確保していることから,認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置が操作開始時間に与える影響はない。 【操作所要時間】 低圧代替注水系(常設)の起動操作として3分及び逃がし安全弁による原子炉 減圧操作として1分を想定し,余裕時間を含めて操作時間として4分を設定し ている。いずれも中央制御室の制御室の操作スイッチによる簡易な操作であ り,操作所要時間が長くなる可能性は非常に低く,操作所要時間が操作開始時間 間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 原子炉注水を最優先に実施するため,他の並列操作が操作開始時間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,誤操作は起こり にくいことから,誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び操作時間は、余裕時間を含め て設定していること から、実態の操作開始 時間は解析上の操作 開始時間よりも若干 早まる可能性がある。	実態の操作開始時間 は,解析上の操作開始 時間よりも早くなる 可能性があり,この場 合には原子炉への注 水開始時間が早くな ることで燃料被覆管 温度の上昇目となるパ ラメータに対する余 裕は大きくなる。	逃が子祥た、 水子祥た水平に、 な子祥水水準作(低に よるに、 な子祥水水準作) は、10分を想料でするより 確し、 ため、 開始ででしため、 による。 になっ、 など、 など、 など、 など、 など、 など、 など、 など	中な、 中な、 中な、 中で、 中で、 中で、 な、、 にの、 の、 にの、 にの、 にの、 してのの、 機び、 くて、 の、 で、 にの、 しての、 の、 の、 で、 に、 の、 の、 で、 た、 の、 の、 で、 た、 の、 の、 た、 の、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 た、 の、 、 、 、 の、 本、 き、 た、 の、 、 、 の、 本 、 、 の、 、 、 、 の、 、 、 の、 、 の、 、 の、 、 の、 で、 た 、 の、 、 の、 の、 、 の、 、 の、 、 、 の、 、 の、 、 、 の、 、 の、 、 の、 、 、 の、 、 、 、 、 の、 、 、 、 、 、 の、 、 、 、 の、 、 、 、 、 、 の、 、 、 、 の、 、 、 の、 、 、 、 、 、 、 、 、 、 、 、 、 、

## 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/4)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	代替格納容イ 器ス却による して、 の の の の の の の の の の の の の の の の の の の	サプレッショ ン・チェンバ 圧 力 279kPa[gage] 到達時	<ul> <li>運転手順に基づき</li> <li>格納容器ベント実施基準である格納</li> <li>容器最高使用圧力 (310kPa[gage])</li> <li>に対する余裕を考慮し設定</li> </ul>	【認知】 事故時には重要監視パラメータであるサプレッション・チェンバ圧力を継続監 視しており、また、格納容器スプレイの操作実施基準(サプレッション・チェ ンバ圧力 279kPa[gage])に到達するのは事象発生約 16 時間後であり、比較的 緩やかなバラメータ変化であることから、認知遅れが操作開始時間に影響を及 ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室の何操作のみであり、移動が操作開始時間に与える影響はない。 【操作所要時間】 中央制御室の制御盤の操作スイッチによる簡易な操作であり、緩やかな圧力上 昇に対して十分に短く、操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 低圧代替注水系(常設)による原子炉水位維持操作を並列して実施する場合が あるが、同一の制御盤による対応が可能であることから、他の並列操作が操作 開始時間に与える影響はない。また、代替格納容器スプレイ冷却系(常設)は、 低圧代替注水系(常設)とポンプ等を共用しているが、原子炉注水と格納容器 スプレイの流量を同時に確保可能なポンプ容量を備えているため、原子炉注水 と格納容器スプレイの同時運用が可能である。 【操作の確実さ】 中央制御室の操作ネイッチによる簡易な操作であり、誤操作は起こり にくいことから、誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	左記のとおり操作不 確かのとおりに与える がないによりえる 影響は此いことが時間 によりえるか 時間は小の設定の にするのでの になった。 実能の上のおかっ 一下条件の で解析条()の 作用始時 間があるのが、 の 生で いた の 生で いた の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の の た の た い に に に れ 、 ) の 作 に れ 条 件 い 一解 確 た か う の た に た よ り 、 し の 作 由 た い の 、 の の 作 に た 、 り の 作 れ 、 発 作 い に 発 作 で に 条 件 の で 解 析 雪 座 た の た の の た の た の た の た た り 、 な る の で に た か つ た た た た り 、 た の た た た た り 、 た た の た た た た た た た た た た の た た た た た た た た た た た た た	実態解析を応見した。 実態解析等価での によって、 に、 、 、 、 、 、 、 、 、 、 、 、 、 、	代替格納容器スプレ イ冷却系(常設)によ る格納容器冷却操作 は, 事象発生の約16 時間後に実施するも のであり, 準備時間が 確保できるため, 時間 余裕がある。	中央操 中ク操 作 の 一 タ レ 一 火 機 振 御 な た の っ 枚 機 繰 し 来 し た の た 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 大 し 、 た の 志 め た っ た 、 、 代 し 、 大 し 、 大 し 、 大 し 、 大 し 、 た ひ ら む 、 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し 、 ス む し て し 、 し て し 、 し て し て し て し 、 、 む し 、 、 た う た 、 た 、 、 た う 、 た 、 た 、 た 、 た 、 た 、 、 、 た 、 、 、 た 、 、 、 、 、 、 、 、 、 、 、 、 、

## 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(3/4)

	項目	解析上の 操作開始条件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	格力置納操ッエンジングの開始に、「ないない」では、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ないない」で、「ない おんしょう おんしょう しんしゅう しんしゅう おんしょう しんしゅう しんしゅう おんしゅう おんしゅう しんしゅう しんしゅう しんしゅう しんしゅう しんしゅう おんしゅう しんしゅう おんしゅう しんしゅう おんしゅう しんしゅう かいしんしゅう かいしんしゅう おんしゅう おんしゅう おんしゅう かいしんしゅう おんしゅう ひょう かいしんしゅう おんしゅう ひょう かいしんしゅう おんしゅう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょう ひょ	サプレッショ ン・チェンバ 圧 力 310kPa[gage] 到達時	運転手 手 順 に 納 年 路 ま た 路 ま え て 設 た 高 使 王 式 、 高 使 王 、 、 高 使 王 、 、 の で き 、 高 の 王 、 の の の の の の の の の の の の の の の の の	【認知】 事故時には重要監視パラメータであるサブレッション・チェンバ圧力を継続監視し ており,格納容器ベントの操作実施基準(サブレッション・チェンバ圧力 310kPa[gage])に到達するのは、事象発生の約28時間後であり,比較的緩やかな パラメータ変化であることから、認知遅れが操作開始時間に与える影響はない。 【要員配置】 中央制御室での操作のみであり、運転員は中央制御室に常駐していることから、要 員配置が操作開始時間に与える影響はない。 【移動】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,緩やかな圧力上昇に 対して十分に短く、操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小 さい。 【他の並列操作有無】 低圧代替注水系(常設)による原子炉水位維持操作を並列して実施する場合がある が、異なる運転員による対応が可能であることから、他の並列操作が操作開始時間 に与える影響はない。 【操作の確実さ】 中央制御室での操作は、中央制御室の制御盤の操作スイッチによる簡易な操作であ り、誤操作は起こりにくいことから、誤操作等が操作開始時間に影響を及ぼす可能 性は非常に小さい。 なお、中央制御室での操作に失敗した場合は現場での操作を実施することとしてお り、操作の信頼性を向上しているが、この場合、75分程度は操作開始時間が遅れ る可能性がある。	左 龍かられる を 、 な か が か が し に 与 た と 要 時 れ の さ 歩 能 析 に ち っ た 数 ち ら 、 に 年 年 か か か 婚 析 し の る の し に 与 よ と か 時 市 む る の っ し に に 与 よ と か 時 市 む る の っ し に て 空 空 た た い 作 開 空 の た の ち の よ の た の 時 し た の よ し に に 日 常 御 戦 作 作 の る の で 空 で た つ に ち み だ た か 時 る る の ば 中 中 作 れ の む め 、 ち る た が 年 神 作 の た の に ち み だ た か に う 足 他 た の た る た び 足 や 作 作 命 か さ る た び 足 中 作 作 命 た の た る た び 足 中 作 作 命 か さ る 、 び 解 作 作 命 か さ る の で こ つ 作 作 確 か た る た の た の た る た の た の た る た の た の た の た る た の た の た の た る た で る つ び た の た の た の た の た の た の た に が か ろ る の び た に た よ た え た に た よ ち 、 、 の む ら え る こ で た に た よ ち え っ た の た ら え る 、 、 の で の の た の ら え る 、 の で の の に の た の た の た の た の た た	実態の操作開始時間 は解析等であることか ら、評価項目にとか ら、評価項目をとか ら、評価項目をとか を 物御室での遠高に与える 影響はない。遼隔4 地球のようで、 の場合は、現 地球のある。この場合、 格納容器 圧力は 310kPa [gage]より若 干上昇し、評価項目と なるパラナが、格納容 器限界圧力は 620kPa [gage]であり、格納 容器の健全性の観点 からは問題とならない。	格納容器圧力逃がし 装置に決した。 ないした。 装置に換作的により、 を に換作の約28時間後に実施するもの時間のであり にの約28時間後に、 したの約28時間後に、 したの約28時間後に、 したの約28時間のであり、 構築のためのであり、 構築のために、 に、 したのであり、 構築のために、 に、 したの観点での この観点での に、 したい、 に、 したの観点で の観点で の観点で の観点で したい。 による したい。 による したい。 によい、 したい。 によい、 したい。 によい、 したい。 によい、 したい、 によい、 によい、 によい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 にない、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 によい、 したい、 したい、 にない、 したい、 によい、 したい、 にない、 によい、 したい、 したい、 したい、 したい、 したい、 したい、 したい、 した	中作タむ歳で力視し、 中作タむ績でたし、 し、と、 し、 し、 し、 し、 し、 し、 し、 し、 し、 し

項目		解析上の 操作開始条 件	条件設定の 考え方	操作不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
	代替淡水貯槽 への補給	事象発生 48 時間後程度 から	代替給はないが, 解析条件でで想作に必要が が、いる を が、の でで を して で で た に 数 た の の の 、 の 、 の 、 の い の い の し つ 立 む む た の の い の い の し つ 立 む む た の の の の し の 立 の む む む の し の 立 の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む の む な む か た か た か た た た た た た た た た た た た た	代替淡水貯槽への補給までの時間は,事象発生から 48 時間程度あり十分な時 間余裕がある。	_	_	_	代替淡水貯槽への 補給は,所要時間 160分のところ,訓 練実績等により約 120分に実施可能 なことを確認し た。
操作条件	代 替 淡水 貯 槽 いる 水 大 型 ポ 二 、 の 燃 料 補給 二 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、	事象発生 48 時間後程度 から適宜	可 授型代替 注水 大型 補給は、解析 条件ではないが, 解 析る 操にしてい や継であり,燃料 が 枯渇しないよ うに設定	可搬型代替注水大型ポンプへの補給開始時間は,事象発生から48時間程度あ り十分な時間余裕がある。	_	-	_	可搬 型 ポ 補 総 料 間 以 と 型 型 ポ 礼 れ 隔 に と 型 型 ポ 礼 れ 間 以 と 型 型 ポ 礼 れ 間 に と つ 型 ボ 結 れ 間 に と つ 型 ボ 結 れ 間 に と つ 型 ボ 結 れ 間 に と つ 型 ボ 結 に 、 ち 馬 の で し て 夢 低 本 局 の で し て 夢 値 、 た 新 筒 で し て 夢 値 ボ に 、 に ち に の で し て 夢 版 ボ に 、 の で し て 夢 版 ボ に 、 の で し て 夢 版 ボ れ に 、 の で し て 夢 版 ボ に れ の で し て 夢 版 ボ に れ の の で し て 夢 近 ボ れ さ に の 、 の 教 ボ に の う 、 新 約 空 の で い に で 新 か 空 の で い に で あ た つ た 一 で し に 一 で た つ で 新 か こ の た 、 の ち に の ち の ち の ち の ち の ち の ち の ち の ち の ち て の ち に の ち に の ち に の ち に の ち に の ち に の ち に の ち に の ち に の ち に の ち に の た ら に ら に に ら っ こ に ら っ た ら に に ら っ こ こ に あ の っ た ら に で っ た ら っ っ の た っ た ら っ の た っ の っ っ た っ の っ っ た っ っ っ の っ の っ っ っ っ っ の っ の っ の っ っ っ っ の っ っ つ た っ っ っ っ の っ っ っ っ の っ っ っ っ っ っ っ

## 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(4/4)

添付資料 2.6.5 コメント No. 147-07, 148-03, ! 150-23に対する回答 原子炉注水開始が遅れた場合の影響について

逃がし安全弁による原子炉減圧操作が遅れることで,低圧代替注水 系(常設)による原子炉注水の開始時間が有効性評価における設定よ りも遅れた場合の評価項目となるパラメータに与える影響を確認した。

なお、解析は、ベースケースと同様に輻射熱伝達を保守的に取り扱うSAFERコードを使用している。

燃料被覆管破裂を回避可能な範囲での減圧操作の時間余裕
 逃がし安全弁による原子炉減圧操作が有効性評価における設定よ

りも10分及び25分遅れた場合の感度解析結果を第1表に示す。

また,燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の円周 方向の応力の関係を第1図に,逃がし安全弁による原子炉減圧操作 が10分遅れた場合の原子炉圧力,原子炉水位(シュラウド内外水位), 燃料被覆管温度及び燃料被覆管酸化割合の推移を第2図から第5図 に示す。

第1図に示すとおり、10分の遅れ時間を想定した場合でも、燃料 被覆管の破裂は発生しないことから、運転員による原子炉減圧操作 には少なくとも10分程度の時間余裕は確保されている。

 燃料被覆管に破裂が発生した場合の敷地境界外での実効線量評価 炉心損傷防止対策の有効性評価においては、周辺の公衆に対して 著しい放射線被ばくリスクを与えないことを考慮し、燃料被覆管の 破裂が発生しないことを目安としている。

一方で、実際の炉心は線出力密度の異なる燃料棒から構成されて

添付 2.6.5-1

おり,線出力密度の高い一部の燃料棒のみに破裂が発生し,その他 の燃料棒には破裂が発生しない場合もある。一部の燃料棒に破裂が 発生しても,炉心全体に対する破裂割合が低い場合には,非居住区 域境界外での実効線量が評価項目である 5mSv 以下となることが考え られる。

以上により,逃がし安全弁による原子炉減圧操作が有効性評価に おける設定よりも 25 分遅れた場合を想定し,実炉心設計に基づく破 裂割合を考慮した場合の敷地境界外での実効線量を感度解析により 評価した。

減圧時間等の条件は変えずに燃料棒初期線出力密度を変化させた 解析を実施し,燃料棒初期線出力密度がどの程度であれば燃料棒が 破裂するかの評価を行った結果を第2表に示す。本表より,燃料棒 初期線出力密度が約36.1kW/mを超える燃料棒は破裂すると想定し た場合,9×9燃料(A型)平衡炉心において最大線出力密度を 44.0kW/mと仮定した燃料棒線出力密度分布では燃料棒線出力密度 約36.1kW/mを超える燃料棒は全燃料棒の約0.2%であることから, 実効線量の評価においては,保守的に全燃料棒の1%に破裂が発生す るものとする。実効線量の評価結果を第3表に,ベースケースと同 様の線出力密度(44.0kW/m)を設定した燃料棒に対する燃料被覆管 破裂発生時点の燃料被覆管温度と燃料被覆管の円周方向の応力の関 係を第1図に示す。

25 分の減圧操作遅れを想定した場合,第1図に示すとおり一部の 燃料被覆管に破裂が発生するが,第3表に示すとおり実炉心設計を 考慮した場合には敷地境界外での実効線量の最大値は約4.4mSvとな り,評価項目である5mSvを下回る。

添付 2.6.5-2

なお、この場合には、格納容器内空間線量率がドライウェルで最 大約 4.8×10³ Gy/h、サプレッション・チェンバで最大約 4.3×10⁴ Gy/hとなり、炉心損傷後のマネジメントへ移行する判断基準を上回 る。

第1表 減圧操作遅れによる燃料被覆管温度及び酸化量への影響

ベースケースの	燃料被覆管	燃料被覆管の 酸化量
10 分	約 706℃	1%以下
25 分	約 1,000℃	約 5%

第2表 燃料被覆管の破裂本数と全炉心の破裂割合(遅れ時間25分)

使用するベント設備	敷地境界外での実効線量
格納容器圧力逃がし装置による ドライウェルベント	約 1.1mSv
耐圧強化ベント系による ドライウェルベント	約 4.4mSv

第3表 敷地境界外での実効線量評価結果(遅れ時間25分)



第1図 燃料棒破裂発生時点の燃料被覆管温度と燃料被覆管の 円周方向の応力*の関係

※:燃料被覆管の円周方向の応力算出方法について

燃料被覆管の破裂については、SAFERの解析結果である燃料被 覆管温度と燃料被覆管の円周方向の応力の関係から判定する。

燃料被覆管の円周方向応力σについては、次式により求められる。

$$\sigma = \frac{D}{2t}(P_{in} - P_{out})$$

ここで,

D : 燃料被覆管内径

t : 燃料被覆管厚さ

P_{in}:燃料被覆管内側にかかる圧力

P_{out}:燃料被覆管外側にかかる圧力(=原子炉圧力) である。

燃料被覆管内側にかかる圧力P_{in}は、燃料プレナム部とギャップ部の温度及び体積より、次式で計算される。

$$P_{in} = \left(\frac{\frac{V_P T_F}{V_F T_P}}{1 + \frac{V_P T_F}{V_F T_P}}\right) \frac{NRT_P}{V_P}$$

ここで,

- V:体積 添字_p:燃料プレナム部
- T : 温度 _F: ギャップ部
- N : ガスモル数

R : ガス定数

である。

燃料棒に破裂が発生する時点の燃料被覆管温度と燃料被覆管の円 周方向の応力の関係図に示される実験は、LOCA条件下での燃料 棒の膨れ破裂挙動を把握することが目的であり、燃料被覆管内にガ

添付 2.6.5-5

スを封入して圧力をかけた状態で加熱することによりLOCA条件 を模擬している。このため、これらの実験ではペレット-被覆管の 接触圧を考慮していない。

また,燃料被覆管内側にかかる圧力のうち,ペレットー被覆管の 接触圧は,設計用出力履歴において最大線出力密度を維持する最大 燃焼度,すなわち燃料被覆管温度評価を最も厳しくする燃焼度の時 に運転中の最大値を取るものの,スクラムによる出力低下に伴って 接触圧は緩和される。このため,燃料被覆管内側にかかる圧力にペ レットー被覆管の接触圧を考慮しない。



第2図 原子炉圧力の推移(遅れ時間10分)



第3図 原子炉水位(シュラウド内外水位)の推移(遅れ時間10分)

#### 添付 2.6.5-7



第5図 燃料被覆管酸化割合の推移(遅れ時間10分)

### 添付 2.6.5-8

7日間における水源の対応について

(LOCA時注水機能喪失)

- 1. 水源に関する評価
  - ① 淡水源(有効水量)
    - •代替淡水貯槽:約4,300m³
    - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
  - ① 低圧代替注水系(常設)による原子炉注水

事象発生 25 分後,定格流量で代替淡水貯槽を水源とした低圧代 替注水系(常設)による原子炉注水を実施する。

炉心冠水後は,原子炉水位高(レベル8)設定点から原子炉水 位低(レベル3)設定点の範囲で注水する。

 ② 代替格納容器スプレイ冷却系(常設)による格納容器スプレイ 格納容器圧力が279kPa[gage]に到達する事象発生約16時間後, 代替淡水貯槽を水源とした代替格納容器スプレイ冷却系(常設)
 による格納容器スプレイを実施する。

サプレッション・プール水位が通常水位+6.5m に到達後,格納 容器スプレイを停止する。

淡水貯水池から代替淡水貯槽への補給

事象発生48時間程度以降から,淡水貯水池の水を代替淡水貯槽 へ水位が上昇する流量で補給する。

#### 添付 2.6.6-1

3. 時間評価

原子炉注水等によって、代替淡水貯槽の水量は減少する。事象発 生48時間程度以降の代替淡水貯槽の減少は、崩壊熱による蒸散量に 相当する量であるため、崩壊熱による蒸散量以上の流量で補給を行 うことで、代替淡水貯槽の水量は回復し、以降安定して冷却を継続 することが可能である。



第1図 外部水源による積算注水量

(LOCA時注水機能喪失)

4. 水源評価結果

時間評価の結果から代替淡水貯槽が枯渇することはない。また,7 日間の対応を考慮すると,合計約 5,320m³必要となる。代替淡水貯 槽及び淡水貯水池に合計約 9,300m³の水を保有することから必要水 量を確保可能であり,安定して冷却を継続することが可能である。 7日間における燃料の対応について

(LOCA時注水機能喪失)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

して評価する。

時系列	合計	判定	
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運 転台数)=約484.0kL			
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{*2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運 転台数)=約130.3kL	7日間の 軽油消費量 約755.5kL	<ul> <li>軽油 貯蔵タ</li> <li>ンクの容量</li> <li>は約800kLで</li> <li>あり,7日間</li> <li>対応可能</li> </ul>	
常設代替高圧電源装置 2 台起動 ^{*3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運 転台数) = 約 141.2kL			
可搬型代替注水大型ポンプ 1 台起動 (代替淡水貯槽給水) 218L/h(燃料消費率)×168h(運転時間)×1 台(運転 台数)=約 36.6kL	7日間の 軽油消費量 約36.6kL	可 搬 型 設 備 用 軽 油 タン ク の 容 量 は 約 210kL であ り,7 日間対 応可能	

※1:事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ るが,保守的にディーゼル発電機2台の起動を仮定した。

※2:事故収束に必要ではないが,保守的に起動を仮定した。

※3:緊急用 P / C の電源を,常設代替高圧電源装置 2 台で確保することを仮 定した。

## 常設代替交流電源設備の負荷

(LOCA時注水機能喪失)

主要負荷リスト

電源設備:常設代替高圧電源装置

起動順序	主要機器名称	負荷容量(kW)	負荷起動時の最 大負荷容量 (kW)	定常時の連続運 転負荷容量(kW)
1	緊急用母線自動起動負荷 ・緊急用直流125V充電器盤 ・その他負荷	24. 0 35. 6	124. 3	59.6
2	常設低圧代替注水系ポンプ	190.0	544.0	249.6
3	常設低圧代替注水系ポンプ	190.0	734.0	439.6
4	緊急用海水ポンプ その他	510.0 10.0	1,775.8	959.6
5	代替燃料プール冷却系ポンプ	22.0	1, 039. 1	981.6



2.7 格納容器バイパス (インターフェイスシステムLOCA)

- 2.7.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「格納容器バイパス(インターフェイスシステムLOCA)」に含まれる事故シーケンスとしては、「1.2 評価対象の整理 及び評価項目の設定」に示すとおり、「インターフェイスシステムLOCA (以下「ISLOCA」という。)」のみである。

コメント No. 148-12 に対する回答

(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方 事故シーケンスグループ「格納容器バイパス(ISLOCA)」は、原子 炉冷却材圧力バウンダリと接続された系統において、高圧設計部分と低圧 設計部分を分離するための隔離弁の誤開等により、低圧設計部分が過圧さ れて破損し、原子炉冷却材が格納容器外へ漏えいすることを想定する。こ のため、破断箇所からの原子炉冷却材の流出により、原子炉圧力容器内の 保有水量が減少し原子炉水位が低下することから、緩和措置が取られない 場合には、炉心が露出することで炉心損傷に至る。

本事故シーケンスグループは、ISLOCAが発生することによって炉 心損傷に至る事故シーケンスグループである。このため、重大事故等対処 設備の有効性評価としては、ISLOCAに対する重大事故等対処設備に 期待することが考えられる。

以上により,本事故シーケンスグループでは,健全な原子炉注水機能を 用いて原子炉へ注水することによって炉心損傷の防止を図るとともに,原 子炉を減圧することにより原子炉冷却材の流出の抑制を図り,漏えい箇所 を隔離することによって格納容器外への原子炉冷却材の流出の停止を図る。 また,最終的な熱の逃がし場へ熱を輸送することによって除熱を行い,格 (3) 炉心損傷防止対策

事故シーケンスグループ「格納容器バイパス(インターフェイスシステ ムLOCA)」において、炉心が著しい損傷に至ることなく、かつ、十分な 冷却を可能とするため、初期の対策として原子炉隔離時冷却系、低圧炉心 スプレイ系及び低圧代替注水系(常設)による原子炉注水手段、逃がし安 全弁(自動減圧機能)を用いた原子炉減圧による漏えい抑制手段並びに隔 離弁閉止による漏えい箇所の隔離手段を整備する。また、格納容器の健全 性を維持するため、安定状態に向けた対策として、残留熱除去系による格 納容器除熱手段を整備する。対策の概略系統図を第2.7-1 図に、対応手順 の概要を第2.7-2 図に、対策の概要を以下に示す。また、重大事故等対策 における手順と設備の関係を第2.7-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,重大 事故等対策に必要な要員は、中央制御室の運転員及び災害対策要員で構成 され、合計 10 名である。その内訳は次のとおりである。中央制御室の運転 員は、発電長 1 名、副発電長 1 名、運転操作対応を行う運転員 5 名である。 発電所構内に常駐している要員のうち、通報連絡等を行う災害対策要員は 2 名、重大事故等対応要員(現場)は 1 名である。この必要な要員と作業 項目について第 2.7-3 図に示す。

a. ISLOCAの発生

原子炉冷却材圧力バウンダリと接続された系統で,高圧設計部分と低 圧設計部分とを分離するための隔離弁の誤開等により,低圧設計部分が 過圧されて破損することで, ISLOCAが発生する。 b. 原子炉スクラムの確認

事象発生後に給水流量の全喪失が発生し,原子炉がスクラムしたこと を確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等であ る。

c. 原子炉隔離時冷却系の自動起動の確認

原子炉水位が原子炉水位低(レベル2)設定点に到達し,原子炉隔離 時冷却系が自動起動することにより,原子炉への注水が開始されたこと を確認する。

原子炉隔離時冷却系の自動起動の確認に必要な計装設備は,原子炉水 位計(広帯域,燃料域)原子炉隔離時冷却系系統流量計等である。

d. ISLOCA発生の確認

隔離弁(残留熱除去系の注入弁)の開操作に伴いポンプ吐出圧力が変動したこと,主蒸気隔離弁が閉止し原子炉隔離時冷却系が自動起動したにも関わらず原子炉水位の低下が継続していること等によりISLOC Aが発生したことを確認する。

ISLOCA発生の確認に必要な計装設備は,原子炉水位計(広帯域, 燃料域),残留熱除去系ポンプ吐出圧力計等である。

監視可能であれば、原子炉建屋内空間線量率、区画浸水警報、火災警報等による情報も総合的に確認する。

e. 中央制御室における残留熱除去系の注入弁の閉止操作

ISLOCA発生の確認後、中央制御室からの遠隔操作により残留熱 除去系の注入弁の閉止操作を実施するが、これに失敗する。

中央制御室における残留熱除去系の注入弁の閉止操作に必要な計装設 備は,原子炉水位計(広帯域,燃料域)等である。 f. 低圧炉心スプレイ系の起動操作

中央制御室における残留熱除去系の注入弁の閉止失敗後,中央制御室 からの遠隔操作により低圧炉心スプレイ系を起動する。

低圧炉心スプレイ系の起動操作に必要な計装設備は,低圧炉心スプレ イ系ポンプ吐出圧力計である。

外部電源が喪失している場合は,ディーゼル発電機が自動起動し,非 常用母線に電源を供給する。

g. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

低圧炉心スプレイ系の起動後,破断箇所からの漏えい抑制のため,中 央制御室からの遠隔操作により逃がし安全弁(自動減圧機能)7 弁を手 動開放し,原子炉減圧を実施する。

逃がし安全弁(自動減圧機能)による原子炉減圧操作に必要な計装設 備は,原子炉圧力計等である。

h. 低圧代替注水系(常設)の起動準備操作

ISLOCA発生の確認後,外部水源にて注水可能な系統として中央 制御室からの遠隔操作により低圧代替注水系(常設)を起動する。

低圧代替注水系(常設)の起動準備操作に必要な計装設備は、常設低 圧代替注水系ポンプ吐出圧力計である。

外部電源が喪失している場合は,中央制御室からの遠隔操作により常 設代替高圧電源装置から緊急用母線を受電する。

i. 原子炉水位の調整操作

原子炉水位が原子炉水位低(レベル3)設定点以上に回復した後は, 破断口からの漏えい抑制のため,低圧代替注水系(常設)により原子炉 水位を,原子炉水位異常低下(レベル2)設定点以上で可能な限り低め に維持する。 原子炉水位の調整操作に必要な計装設備は,原子炉水位計(広帯域) 等である。

j. 中央制御室における残留熱除去系の弁の閉止操作

原子炉圧力が 3MPa [gage] に到達後,対応可能な要員にて中央制御室 からの遠隔操作により残留熱除去系の注入弁以外の電動弁の閉止操作を 実施する。

中央制御室における残留熱除去系の注入弁の閉止操作に必要な計装設 備は、原子炉水位計(広帯域、燃料域)、原子炉圧力計等である。

k. 残留熱除去系によるサプレッション・プール冷却操作

サプレッション・プール水温度が 32℃に到達したことを確認し,中央 制御室からの遠隔操作により残留熱除去系によるサプレッション・プー ル冷却操作を実施する。

残留熱除去系によるサプレッション・プール冷却操作に必要な計装設 備は、サプレッション・プール水温度計等である。

1. 現場における残留熱除去系の注入弁の閉止操作

現場操作により残留熱除去系の注入弁を閉止し,残留熱除去系を隔離 する。

現場における残留熱除去系の注入弁の閉止操作に必要な計装設備は, 原子炉水位計(広帯域,燃料域)等である。

m. 原子炉水位の調整操作

残留熱除去系の隔離成功後は,低圧炉心スプレイ系により原子炉水位 を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定 点の間で維持する。

原子炉水位の調整操作に必要な計装設備は,原子炉水位計(広帯域, 燃料域)等である。 以降, 炉心冷却は低圧炉心スプレイ系を用いた原子炉注水により, 格 納容器除熱は残留熱除去系により継続的に行う。

n. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

o. 可搬型代替注水大型ポンプによる水源補給操作

対応可能な要員にて可搬型代替注水大型ポンプにより淡水貯水池から 代替淡水貯槽へ水源補給操作を実施する。

p. タンクローリによる燃料補給操作

対応可能な要員にてタンクローリにより可搬型設備用軽油タンクから 可搬型代替注水大型ポンプに燃料補給を実施する。

- 2.7.2 炉心損傷防止対策の有効性評価
  - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、原子炉冷 却材圧力バウンダリと接続された系統で、高圧設計部分と低圧設計部分と を分離するための隔離弁の誤開等により、低圧設計部分が過圧されて破損 する「ISLOCA」である。また、原子炉水位の低下を厳しくする観点 で、評価上は給水流量の全喪失を想定する。

本重要事故シーケンスでは、炉心における崩壊熱,燃料棒表面熱伝達, 沸騰遷移,燃料被覆管酸化,燃料被覆管変形,沸騰・ボイド率変化,気液 分離(水位変化)・対向流,三次元効果及び気液熱非平衡並びに原子炉圧力 容器における冷却材放出(臨界流・差圧流),沸騰・凝縮・ボイド率変化, 気液分離(水位変化)・対向流及びECCS注水(給水系及び代替注水設備 含む)が重要現象となる。よって,これらの現象を適切に評価することが

2.7-6

可能である長期間熱水力過渡変化解析コードSAFERにより原子炉圧力, 原子炉水位,燃料被覆管温度等の過渡応答を求める。なお,本有効性評価 では,SAFERコードによる燃料被覆管温度の評価結果は,ベストフィ ット曲線の破裂判断基準に対して十分な余裕があることから,燃料棒やチ ャンネルボックスの幾何学的配置を考慮した詳細な輻射熱伝達計算を行う ことで燃料被覆管温度の評価結果がSAFERコードより低くなるCHA STEコードは使用しない。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目と なるパラメータに与える影響及び操作時間余裕を評価する。

(2) 有効性評価の条件

本重要事故シーケンスにおける主要な解析条件を第2.7-2表に示す。また,主要な解析条件について,本重要事故シーケンス特有の解析条件を以下に示す。

- a. 事故条件
- (a) 起因事象

起因事象として,残留熱除去系B系の注入弁の誤開放による残留熱除去系の系統圧力上昇により,残留熱除去系B系の熱交換器フランジ部に破断面積約21cm²相当の漏えいが発生するものとする。

破断面積は、ISLOCA発生時の系統加圧状態を保守的に考慮し た構造健全性評価^{**}の結果、系統に破損が発生しないことを確認した ことから、加圧範囲のうち最も大きなシール構造である残留熱除去系 の熱交換器フランジ部に対して、保守的にガスケットに期待しない場 合にフランジ部に生じる間隙の面積を設定した。
※;保守的に圧力 8.2MPa[gage]及び温度 288℃が継続して負荷され
 る条件にて構造健全性評価を実施

(添付資料 2.7.1)

(b) 安全機能の喪失に対する仮定

ISLOCAの発生を想定する残留熱除去系B系が機能喪失するものとする。

また,原子炉冷却材の漏えいにより残留熱除去系B系が設置されて いる原子炉建屋西側は高温多湿となるため,保守的に同じ原子炉建屋 西側に設置されている高圧炉心スプレイ系及び残留熱除去系C系も機 能喪失するものとする。

(c) 外部電源

外部電源はあるものとする。

外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3) 信号にて発生し,再循環ポンプトリップは,原子炉水位異常低下(レ ベル2)信号にて発生する。このため,原子炉水位の観点で厳しくな る。

- b. 重大事故等対策に関連する機器条件
- (a) 原子炉スクラム

原子炉スクラムは,原子炉水位低(レベル3)信号によるものとする。

(b) ATWS緩和設備(代替再循環ポンプトリップ機能)

ATWS緩和設備(代替原子炉再循環ポンプトリップ機能)は,原 子炉水位異常低下(レベル2)信号により再循環ポンプを全台トリッ プさせるものとする。 (c) 逃がし安全弁

逃がし安全弁(安全弁機能)にて原子炉冷却材圧力バウンダリの過 度の圧力上昇を抑制するものとする。また,原子炉減圧には,逃がし 安全弁(自動減圧機能)7弁を使用するものとし,容量として,1弁当 たり定格主蒸気流量の約6%を処理するものとする。

(d) 原子炉隔離時冷却系

原子炉水位異常低下(レベル2)信号により自動起動し,136.7m³ /h(原子炉圧力1.04~7.86MPa[dif]*において)の流量で原子炉へ注 水する。原子炉水位が原子炉水位高(レベル8)設定点まで回復した 以降は,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水 位高(レベル8)設定点の範囲に維持する。また,原子炉減圧と同時 に注水を停止するものとする。

※: MPa[dif]…原子炉圧力容器と水源との差圧。(以下同様)

(e) 低圧炉心スプレイ系

逃がし安全弁(自動減圧機能付き)による原子炉減圧後に,最小流 量特性(0~1,561m³/h,注水圧力0~1.99MPa[dif]*において)で原 子炉へ注水するものとする。また,ISLOCA発生時は隔離成功ま での期間において外部水源による注水を優先するため,原子炉減圧後 に低圧代替注水系(常設)による原子炉注水が開始し,原子炉水位が 原子炉水位低(レベル3)設定点まで回復した1分後に注水を停止す るものとし,残留熱除去系の隔離成功後は,原子炉水位を原子炉水位 低(レベル3)設定点から原子炉水位高(レベル8)設定点の範囲に 維持するものとする。

(f) 低圧代替注水系(常設)

常設低圧代替注水ポンプを2台使用するものとし,原子炉注水のみ

を実施する場合は、炉心冷却を厳しく評価する観点で機器設計上の最 小要求値である最小流量特性(注水流量:0~378m³/h,注水圧力:0 ~2.38MPa[dif])で原子炉へ注水するものとする。また、運転手順に 従い、ISLOCA発生時は隔離成功までの期間において、漏えい抑 制のために原子炉水位を原子炉水位異常低下(レベル2)以上で可能 な限り低めに維持することから、評価上は、漏えい量を厳しくする観 点で原子炉水位を原子炉水位低(レベル3)設定点以上に維持するも のとする。また、隔離成功後は低圧炉心スプレイ系による内部水源の 原子炉注水に切り替えることから、残留熱除去系の隔離に成功した 1 分後に注水を停止するものとする。

c. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って、以下のとおり設定する。

- (a) 逃がし安全弁(自動減圧機能)による原子炉減圧操作は,状況判断, 中央制御室における残留熱除去系の注入弁の閉止操作,低圧炉心ス プレイ系の起動操作及び逃がし安全弁(自動減圧機能)による原子 炉減圧操作に要する時間を考慮して,事象発生15分後に実施する ものとする。なお,外部電源がない場合でも,非常用ディーゼル発 電機等が自動起動し非常用母線に電源を供給することから運転員 等操作に与える影響はない。
- (b) 低圧代替注水系(常設)の起動準備操作は、外部電源がない場合も 考慮し、状況判断、常設代替高圧電源装置による緊急用母線受及び 低圧代替注水系(常設)の起動準備に要する時間を考慮して、事象 発生17分後に完了するものとする。

- (c) 現場における残留熱除去系の注入弁の閉止操作は、ISLOCA発 生時の現場環境並びに現場移動及び操作に要する時間を考慮して、 事象発生5時間後に完了するものとする。
- (3) 有効性評価の結果

本重要事故シーケンスにおける原子炉圧力,原子炉水位(シュラウド内 外水位)*,注水流量,逃がし安全弁からの蒸気流量及び原子炉圧力容器 内の保有水量の推移を第2.7-4 図から第2.7-8 図に,燃料被覆管温度,燃 料被覆管最高温度発生位置における熱伝達係数,燃料被覆管最高温度発生 位置におけるボイド率,高出力燃料集合体のボイド率,炉心下部プレナム 部のボイド率,破断流量の推移並びに燃料被覆管破裂が発生した時点の燃 料被覆管温度と燃料被覆管の円周方向の応力の関係を第2.7-9 図から第 2.7-15 図に示す。

- ※:炉心冷却の観点ではシュラウド内水位に着目し、運転員操作の観点ではシュ ラウド外水位に着目するためシュラウド内外水位を合わせて示している。な お、シュラウド内は炉心部で発生するボイドを含む二相水位であることから、 原子炉水位が低下する過程ではシュラウド外水位と比較して高めの水位を示 す。
- a. 事象進展

事象発生と同時に給水流量が全喪失することで原子炉水位は低下し, 原子炉水位低(レベル3)信号により原子炉がスクラムする。その後原 子炉水位が原子炉水位異常低下(レベル2)設定点まで低下すると,主 蒸気隔離弁の閉止及び再循環ポンプトリップが発生するとともに,原子 炉隔離時冷却系が自動起動することで,原子炉注水が開始され,原子炉 水位は回復する。この後,中央制御室からの遠隔操作により残留熱除去

2.7-11

系の注入弁の閉止を試みるが,これに失敗するため,低圧炉心スプレイ 系を起動し,逃がし安全弁(自動減圧機能)による原子炉減圧操作を実 施し,原子炉冷却材の漏えいを抑制する。また,低圧代替注水系(常設) を起動し,隔離に成功するまでの期間は,外部水源による原子炉注水を 実施する。

事象発生の5時間後に,現場操作により残留熱除去系の破断箇所を隔 離した後は,低圧炉心スプレイ系により原子炉水位は適切に維持される。

高出力燃料集合体のボイド率については,原子炉減圧や原子炉注水に より増減するが,炉心の冠水状態は維持されるため燃料被覆管温度が上 昇することはない。

b. 評価項目等

燃料被覆管温度は,第2.7-9 図に示すとおり,炉心の冠水が維持され, 初期値(約309℃)以下にとどまることから,評価項目である1,200℃を コメント No. 181-18 に対する回答 下回る。燃料被覆管最高温度は,高出力燃料集合体で発生している。ま た,燃料被覆管の酸化量は,酸化反応が著しくなる前の燃料被覆管厚さ の1%以下であり,評価項目である15%を下回る。

原子炉圧力は,第2.7-4 図に示すとおり,逃がし安全弁(安全弁機能) の作動により約7.79MPa [gage]以下に維持される。このため,原子炉 冷却材圧力バウンダリにかかる圧力は,原子炉圧力と原子炉圧力容器底 部圧力との差(0.3MPa程度)を考慮しても,約8.09MPa[gage]以下であ り,評価項目である最高使用圧力の1.2倍(10.34MPa[gage])を下回る。

格納容器バウンダリにかかる圧力及び温度は,原子炉減圧や破断箇所 から原子炉建屋へ流出するものを除く蒸気がサプレッション・プールへ 流入することで上昇する。一方,設計基準事故「原子炉格納容器内圧力, 雰囲気等の異常な変化」の「原子炉冷却材喪失」においては,事象開始 から原子炉圧力容器内で発生した蒸気はすべて格納容器内に流入し続け ることを想定し解析しており,この場合でも格納容器バウンダリにかか る圧力及び温度の最大値は,それぞれ約 0.25MPa[gage]及び約 136℃にと どまる。このため、本事象においても格納容器バウンダリにかかる圧力 及び温度は,評価項目である最高使用圧力の 2 倍 (0.62MPa[gage])及び 200℃を下回る。

第2.7-5 図に示すように、中央制御室における残留熱除去系の注入弁 の閉止操作には失敗するが、逃がし安全弁(自動減圧機能)による原子 炉減圧操作を実施することで破断箇所からの原子炉冷却材の漏えいが抑 制され、低圧代替注水系(常設)による原子炉注水を継続することで、 炉心の冠水が維持される。その後、現場における残留熱除去系の注入弁 の閉止操作を実施し、低圧炉心スプレイ系による原子炉注水を継続する ことで、炉心の冠水状態が維持され、高温停止状態での炉心の冷却が確 保されている。残留熱除去系によるサプレッション・プール冷却操作を 実施することで、安定状態が確立し、またその状態を長期的に維持する ことが可能である。

(添付資料 2.7.2)

安定状態が確立した以降は,機能喪失している設備の復旧に努めると ともに,残留熱除去系を原子炉停止時冷却モード運転とし,冷温停止状 態とする。

以上により、本評価では、「1.2.1.2 有効性を確認するための評価項 目」に示す(1)から(4)の評価項目について、対策の有効性を確認し た。

2.7.3 解析コード及び解析条件の不確かさの影響評価

解析コード及び解析条件の不確かさの影響評価の範囲としては,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時 間余裕を評価する。

本重要事故シーケンスは、給水流量の全喪失及びISLOCAの発生に伴 い原子炉水位が低下するため、原子炉を減圧することで原子炉冷却材の漏え い量を抑制すること及び漏えい箇所の隔離操作を実施することが特徴である。 よって、不確かさの影響を確認する運転員等操作は、事象進展に有意な影響 を与えると考えられる操作及び事象発生から12時間程度までの短時間に期 待する操作として、逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧炉心スプレイ系による原子炉注水操作)、低圧代替注水系(常設)の起動準 備操作及び現場における残留熱除去系の注入弁の閉止操作とする。

## (1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおいて不確かさの影響評価を実施する重要現象 は、「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すと おりであり、影響評価の結果を以下に示す。

a. 運転員等操作時間に与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験結果の燃料被覆管温度に比べて+50℃高め に評価することから,解析結果は燃料棒表面の熱伝達係数を小さく評価 する可能性がある。よって,実際の燃料棒表面での熱伝達は大きくなり, 燃料被覆管温度は低くなるが,事象初期の原子炉注水は原子炉隔離時冷 却系の自動起動により確保され,燃料被覆管温度を操作開始の起点とす る運転員等操作はないことから,運転員等操作時間に与える影響はない。 炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,解析結果は燃料 被覆管酸化を大きく評価する可能性があるが,事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作 開始の起点とする運転員等操作はないことから,運転員等操作時間に与 える影響はない。

(添付資料 2.7.3)

b. 評価項目となるパラメータに与える影響

炉心における燃料棒表面熱伝達,沸騰遷移及び気液熱非平衡の不確か さとして,解析コードは実験解析において熱伝達モデルの保守性により 燃料被覆管温度を高めに評価し,有効性評価解析においても燃料被覆管 温度を高めに評価することから,評価項目となるパラメータに対する余 裕は大きくなる。

炉心における燃料被覆管酸化の不確かさとして,解析コードは酸化量 及び発熱量の評価について保守的な結果を与えるため,燃料被覆管温度 を高く評価することから,実際の燃料被覆管温度は低めとなり,評価項 目となるパラメータに対する余裕は大きくなる。

(添付資料 2.7.3)

- (2) 解析条件の不確かさの影響評価
  - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件 初期条件,事故条件及び重大事故等対策に関連する機器条件は,第
     2.7-2表に示すとおりであり,これらの条件設定を設計値等の最確条件 とした場合の影響を評価する。解析条件の設定にあたっては,設計値を

用いるか又は評価項目となるパラメータに対する余裕が小さくなるよう 保守的な設定をしていることから,この中で事象進展に有意な影響を与 える可能性がある項目について,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した 44.0kW/m に対して最確条件は約 33~41kW/m であり,最確条件とした場合は 燃料被覆管温度の上昇が緩和されるが,事象初期の原子炉注水は原子 炉隔離時冷却系の自動起動により確保され,燃料被覆管温度を操作開 始の起点とする運転員等操作はないことから,運転員等操作時間に与 える影響はない。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 遅くなるが,事象初期の原子炉注水は原子炉隔離時冷却系の自動起動 により確保されることから,運転員等操作時間に与える影響はない。 また,格納容器圧力及びサプレッション・プール水温度の上昇が遅く なり,これらのパラメータを起点とする運転員等操作の開始時間は遅 くなる。

初期条件の原子炉圧力,原子炉水位及び炉心流量は,ゆらぎにより 解析条件に対して変動を与えうるが,事象進展に与える影響は小さく, 運転員等操作時間に与える影響は小さい。

事故条件の外部電源の有無については,外部電源がない場合でも, 非常用母線は非常用ディーゼル発電機等から自動的に受電されること で低圧炉心スプレイ系の電源は確保され,また,低圧代替注水系(常 設)の起動準備操作時間は,外部電源がない場合も考慮して設定して いることから,運転員等操作時間に与える影響はない。

機器条件の低圧炉心スプレイ系及び低圧代替注水系(常設)は,最 確条件とした場合は注水開始後の原子炉水位の回復が早くなり,原子 炉水位の維持操作の開始が早くなるが,原子炉減圧から水位回復まで の原子炉水位を継続監視している期間の流量調整操作であるため,運 転員等操作時間に与える影響はない。

(添付資料 2.7.3)

## (b) 評価項目となるパラメータに与える影響

初期条件の燃料棒最大線出力密度は,解析条件で設定した44.0kW/mに対して最確条件は約33~41kW/mであり,最確条件とした場合は燃料被覆管温度の上昇が緩和されることから,評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉停止後の崩壊熱は,解析条件で設定した燃焼度 33GWd/t に対して最確条件は 33GWd/t 以下であり,最確条件とした 場合は崩壊熱が小さくなる傾向となるため,原子炉からサプレッショ ン・プールに流出する蒸気量が減少することで,原子炉水位の低下は 緩和され,格納容器圧力等の上昇は遅くなることから,評価項目とな るパラメータに対する余裕は大きくなる。

事故条件の外部電源の有無については,事故条件の外部電源の有無 については,起因事象発生から原子炉スクラムまでの期間の原子炉水 位の低下を厳しくする条件として,外部電源ありを想定するとともに, 保守的に給水流量の全喪失も想定している。外部電源がない場合は, 外部電源喪失に伴い原子炉スクラム,再循環ポンプトリップ等が発生 するため,外部電源がある場合と比較して原子炉水位の低下は緩和さ れるが、この場合でも初期の原子炉注水は原子炉水位異常低下(レベル2)にて原子炉隔離時冷却系が自動起動することで確保されることから評価項目となるパラメータに与える影響はない。

機器条件の低圧炉心スプレイ系及び低圧代替注水系(常設)は,最 確条件とした場合は注水開始後の原子炉水位の回復が早くなることで, 評価項目となるパラメータに対する余裕は大きくなる。

(添付資料 2.7.3)

## b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が運転員等操作時間に与える影響 を評価する。また,運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧炉心スプレイ系による原子炉注水操作)は,解析上の操作開始時間 として事象発生から15分後を設定している。運転員等操作時間に与え る影響として,認知時間及び操作所要時間は,余裕時間を含めて設定 していることから,実態の操作開始時間は解析上の設定よりも若干早 まる可能性がある。

操作条件の低圧代替注水系(常設)の起動準備操作は,解析上の操 作開始時間として事象発生17分後を設定している。運転員等操作時間 に与える影響として,認知時間及び操作所要時間は,外部電源がない 場合も考慮し,余裕時間を含めて設定していることから,実態の操作 開始時間は解析上の設定よりも若干早まる可能性がある。

操作条件の現場における残留熱除去系の注入弁の閉止操作は,解析 上の操作開始時間として事象発生から5時間後を設定している。運転 員等操作時間に与える影響として,認知時間及び移動・操作所要時間 は,余裕時間を含めて設定していることから,実態の操作開始時間は 解析上の設定よりも若干早まる可能性がある。

(添付資料 2.7.3)

(b) 評価項目となるパラメータに与える影響

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低 圧炉心スプレイ系による原子炉注水操作)は,運転員等操作時間に与 える影響として,実態の操作開始時間は解析上の操作開始時間よりも 早くなる可能性があり,この場合,減圧時点の崩壊熱が高くなるが, 原子炉隔離時冷却系,低圧炉心スプレイ系及び低圧代替注水系(常設) の原子炉注水により炉心の冠水状態は維持されることから,評価項目 となるパラメータに与える影響はない。

操作条件の低圧代替注水系(常設)の起動準備操作は,運転員等操 作時間に与える影響として,実態の操作開始時間は解析上の操作開始 時間よりも早くなる可能性があるが,低圧代替注水系(常設)による 外部水源注水への切換えは,低圧炉心スプレイ系により炉心の冠水状 態が維持されていることを確認した後に実施することから,この場合 でも評価項目となるパラメータに与える影響はない。

操作条件の現場における残留熱除去系の注入弁の閉止操作は,運転 員等操作時間に与える影響として,実態の操作開始時間は解析上の操 作開始時間よりも早くなる可能性があるが,低圧代替注水系(常設) の原子炉注水により炉心の冠水状態は維持されることから,評価項目

となるパラメータに与える影響はない。

(添付資料 2.7.3)

(3) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の逃がし安全弁(自動減圧機能)による原子炉減圧操作(低圧 炉心スプレイ系による原子炉注水操作)は、減圧が遅れた場合でも原子炉 隔離時冷却系の原子炉注水により、炉心の冠水状態は維持されることから、 時間余裕がある。

操作条件の低圧代替注水系(常設)の起動準備操作は,操作が遅れた場 合でも低圧炉心スプレイ系により炉心の冠水状態が維持されることから, 時間余裕がある。

操作条件の現場における残留熱除去系の注入弁の閉止操作は,閉止操作 の有無に関わらず,低圧代替注水系(常設)の原子炉注水により,炉心の 冠水状態は維持されることから,時間余裕がある。

(添付資料 2.7.3)

(4) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。この結果,解析コード及び解析条件の不確かさが運 転員等操作時間に与える影響等を考慮した場合においても,評価項目とな るパラメータに与える影響は小さい。この他,評価項目となるパラメータ に対して,対策の有効性が確認できる範囲内において,操作時間には時間

2.7-20

余裕がある。

- 2.7.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「格納容器バイパス(ISLOCA)」において, 重大事故等対策に必要な要員は,「2.7.1(3) 炉心損傷防止対策」に示す とおり10名であり,「6.2 重大事故等対策時に必要な要員の評価結果」で 示す運転員及び災害対策要員の39名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「格納容器バイパス(ISLOCA)」において, 必要な水源,燃料及び電源は、「6.1(2) 資源の評価条件」にて評価を行い, 以下のとおりである。

a.水 源

低圧代替注水系(常設)による原子炉注水については,7日間の対応 を考慮すると、合計約490m³必要となる。

水源として,代替淡水貯槽に約4,300m³の水を保有している。これに より,水源が枯渇することなく注水継続が可能である。

なお、外部電源喪失を想定した場合でも同様の対応である。

(添付資料 2.7.4)

b.燃料

外部電源喪失を想定していない。

なお,外部電源喪失を想定した場合,非常用ディーゼル発電機による 電源供給については,事象発生直後からの運転を想定すると,7日間の

2.7-21

運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディー ゼル発電機による電源供給については,事象発生直後からの運転を想定 すると,7日間の運転継続に約130.3kLの軽油が必要となる。常設代替 交流電源設備による電源供給については,事象発生直後からの運転を想 定すると,7日間の運転継続に約141.2kLの軽油が必要となる。軽油貯 蔵タンクに約800kLの軽油を保有していることから,非常用ディーゼル 発電機,高圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源設 備による電源供給について,7日間の継続が可能である。

(添付資料 2.7.5)

c. 電 源

外部電源喪失を想定していない。

なお,外部電源喪失を想定した場合,重大事故等対策時に必要な負荷 のうち,非常用ディーゼル発電機等からの電源供給を考慮する負荷につ いては,非常用ディーゼル発電機等の容量内に収まることから,電源供 給が可能である。

常設代替交流電源設備からの電源供給を考慮する負荷については約 982kW 必要となるが,常設代替交流電源設備(常設代替高圧電源装置 2 台)の連続定格容量は 2,208kW であることから,必要負荷に対しての電 源供給が可能である。

(添付資料 2.7.6)

2.7.5 結 論

事故シーケンスグループ「格納容器バイパス(ISLOCA)」では, IS LOCAの発生により原子炉冷却材が流出し, 原子炉水位の低下が継続し, 炉心損傷に至ることが特徴である。事故シーケンスグループ「格納容器バイ パス(ISLOCA)」に対する炉心損傷防止対策としては,初期の対策とし て原子炉隔離時冷却系,低圧炉心スプレイ系及び低圧代替注水系(常設)に よる原子炉注水手段,逃がし安全弁(自動減圧機能)を用いた原子炉減圧に よる漏えい抑制手段,隔離弁閉止による漏えい箇所の隔離手段並びに安定状 態に向けた対策として残留熱除去系による格納容器除熱手段を整備している。

事故シーケンスグループ「格納容器バイパス(ISLOCA)」の重要事故 シーケンス「ISLOCA」について有効性評価を行った。

上記の場合においても,原子炉隔離時冷却系,低圧炉心スプレイ系及び低 圧代替注水系(常設)による原子炉注水並びに残留熱除去系による格納容器 除熱を実施することで炉心の著しい損傷を防止することができる。

この結果,燃料被覆管温度及び酸化量,原子炉冷却材圧力バウンダリにか かる圧力並びに格納容器バウンダリにかかる圧力及び温度は,評価項目を満 足している。また,安定状態を維持することができる。

解析コード及び解析条件の不確かさの影響について確認した結果,運転員 等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さ い。また,対策の有効性が確認できる範囲内において,操作時間余裕につい て確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源を供給可能である。

以上のことから,事故シーケンスグループ「格納容器バイパス(ISLO CA)」において,原子炉隔離時冷却系,低圧炉心スプレイ系及び低圧代替注 水系(常設)による原子炉注水,逃がし安全弁(自動減圧機能)を用いた原 子炉減圧による漏えい抑制,残留熱除去系による格納容器除熱等の炉心損傷 防止対策は,選定した重要事故シーケンスに対して有効であることが確認で

き,事故シーケンスグループ「格納容器バイパス(ISLOCA)」に対して 有効である。

第2.7-1 表 格納容器バイパス(ISLOCA)における重大事故対策について(1/4)

			重大事故等対処設備			
操作及び確認	于順	常設設備	可搬型設備	計装設備		
ISLOCAの発生	原子炉冷却材圧力バウンダリと接続された系統で,高圧 設計部分と低圧設計部分とを分離するための隔離弁の誤 開等により,低圧設計部分が過圧されて破損することで, ISLOCAが発生する。	_	_	_		
原子炉スクラムの確認	・原子炉がスクラムしたことを確認する。		_	平均出力領域計装 起動領域計装		
原子炉隔離時冷却系の 自動起動の確認	<ul> <li>・原子炉水位が、原子炉水位異常低下(レベル2)設定 点に到達したことを確認する。</li> <li>・原子炉隔離時冷却系が自動起動し、原子炉注水を開始 したことを確認する。</li> <li>・主蒸気隔離弁が自動閉止したことを確認する。</li> <li>・再循環ポンプがトリップしたことを確認する。</li> </ul>	【原子炉隔離時 冷却系】 【主蒸気隔離 弁】 ATWS緩和設 備(代替再循環 ポンプトリップ 機能)	_	原子炉水位計(広帯域) 原子炉水位計(SA 広帯域) 【原子炉隔離時冷却系系統流量 計】 原子炉圧力計 原子炉圧力計(SA)		
ISLOCA発生の確 認	・隔離弁の開操作に伴いポンプ吐出圧力が変動したこと, 主蒸気隔離弁が閉止し原子炉隔離時冷却系が自動起動 したにも関わらず原子炉水位の低下が継続しているこ と等によりISLOCAが発生したことを確認する。	_	_	原子炉水位計(広帯域) 原子炉水位計(SA広帯域) 【原子炉隔離時冷却系系統流量 計】 残留熱除去系ポンプ吐出圧力計		
中央制御室における残 留熱除去系の注入弁の 閉止操作	<ul> <li>・中央制御室からの遠隔操作により残留熱除去系の注入 弁の閉止操作を実施するが、これに失敗する。</li> <li>・残留熱除去系ポンプのコントロールスイッチを停止位 置に固定するとともに、レグシールポンプを停止する。</li> </ul>	_	_	原子炉水位計(広帯域) 原子炉水位計(SA 広帯域)		

【 】:重大事故等対処設備(設計基準拡張)

根化正式でない	五 話	重大事故等対処設備		
採作及び確認	于  順	常設設備	可搬型設備	計装設備
低圧炉心スプレイ系の起動操	・中央制御室からの残留熱除去系の注入弁の	【低圧炉心スプレ	—	【低圧炉心スプレイ系ポンプ
作	閉止失敗後、中央制御室からの遠隔操作に	イ系】		吐出圧力計】
	より低圧炉心スプレイ系を起動する。	【非常用ディーゼ		
	・外部電源が喪失している場合には、非常用	ル発電機】		
	ディーゼル発電機が自動起動し、非常用母	軽油貯蔵タンク		
	線に電源を供給する。			
逃がし安全弁(自動減圧機能)	・低圧炉心スプレイ系の起動操作の完了後,	逃がし安全弁(自	—	原子炉水位計(広帯域,燃料
による原子炉減圧操作	中央制御室からの遠隔操作により逃がし安	動減圧機能)		域)
	全弁(自動減圧機能)7弁を手動開放するこ			原子炉水位計(SA 広帯域, SA
	とにより、原子炉減圧操作を実施する。			燃料域)
	・原子炉減圧に伴い、低圧炉心スプレイ系か			原子炉圧力計
	らの原子炉注水が開始され,原子炉水位が			原子炉圧力計 (SA)
	回復することを確認する。			【低圧炉心スプレイ系流量
	・炉心損傷がないことを継続的に確認する。			言十】
				格納容器雰囲気放射線モニタ
低圧代替注水系(常設)の起動	・ISLOCA発生の確認後、中央制御室か	常設低圧代替注水	-	常設低圧代替注水系ポンプ吐
準備操作	らの遠隔操作により低圧代替注水系(常設)	系ポンプ		出圧力計
	を起動する。	代替淡水貯槽		
	・外部電源喪失が喪失している場合は、中央	常設代替高圧電源		
	制御室からの遠隔操作により常設代替高圧	装置		
	電源装置を起動し、緊急用母線を受電する。	軽油貯蔵タンク		
原子炉水位の維持操作	・原子炉水位が原子炉水位低(レベル3)設	常設低圧代替注水	_	原子炉水位計(広帯域,燃料
	定点以上に回復した後に、低圧代替注水系	系ポンプ		域)
	(常設)により,原子炉水位異常低下(レ	代替淡水貯槽		原子炉水位計(SA 広帯域, SA
	ベル2)設定点以上で可能な限り低めに維	常設代替高圧電源		燃料域)
	持する。	装置		低圧代替注水系原子炉注水流
		軽油貯蔵タンク		量計
				代替淡水貯槽水位計

第2.7-1表 格納容器バイパス(ISLOCA)における重大事故対策について(2/4)

【】:重大事故等対処設備(設計基準拡張)

第2.7-1 表 格納容器バイパス(ISLOCA)における重大事故対策について(3/4)

根が正でである			重大事故等	対処設備
採作及び確認	· · · · · · · · · · · · · · · · · · ·	常設設備	可搬型設備	計装設備
中央制御室における残留熱除	・原子炉圧力が 3MPa [gage] 到達後, 中央制	—	—	原子炉圧力計
去系の弁の閉止操作	御室からの遠隔操作により残留熱除去系の			原子炉圧力計 (SA)
	電動弁の閉止操作を実施する。			原子炉水位計(広帯域,燃料
				域)
				原子炉水位計(SA 広帯域, SA
				燃料域)
残留熱除去系によるサプレッ	・サプレッション・プール水温度が 32℃に到	【残留熱除去系	—	サプレッション・プール水温
ション・プール冷却操作	達したことを確認する。	(サプレッショ		度計
	・中央制御室からの遠隔操作により残留熱除	ン・プール冷却		【残留熱除去系系統流量計】
	去系によるサプレッション・プール冷却を	系)】		
	開始する。			
現場における残留熱除去系の	・現場操作により残留熱除去系の注入弁を閉	【残留熱除去系注	—	原子炉水位計(広帯域,燃料
注入弁の閉止操作	止し,残留熱除去系を隔離する。	入弁】		域)
				原子炉水位計(SA 広帯域, SA
				燃料域)
				残留熱除去系ポンプ吐出圧力
				<u></u> 書十

【 】:重大事故等対処設備(設計基準拡張)

第2.7-1 表 格納容器バイパス(ISLOCA)における重大事故対策について(4/4)

提作及び変刺	千 順	重大事故等対処設備			
操作及び確認		常設設備	可搬型設備	計装設備	
原子炉水位の調整操作	・残留熱除去系の隔離成功後は、低圧炉心ス	【低圧炉心スプレ	—	原子炉水位計(広帯域,燃料	
	プレイ系により原子炉水位を原子炉水位低	イ系】		域)	
	(レベル3)設定点から原子炉水位高(レ	【非常用ディーゼ		原子炉水位計(SA 広帯域, SA	
	ベル8)設定点の間で維持する。	ル発電機】		燃料域)	
		軽油貯蔵タンク		原子炉圧力計	
				原子炉圧力計 (SA)	
				【低圧炉心スプレイ系流量	
				計】	
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	-	-	-	
	却操作を実施する。				
可搬型代替注水大型ポンプに	・対応可能な要員にて可搬型代替注水大型ポ	-	—	-	
よる水源補給操作	ンプにより淡水貯水池から代替淡水貯槽へ				
	水源補給を実施する。				
タンクローリによる燃料補給	・対応可能な要員にてタンクローリにより可	-	—	-	
操作	搬型代替注水設備用軽油タンクから可搬型				
	代替注水大型ポンプに燃料補給を実施す				
	る。				
			重大事故等対	·処設備(設計基準拡張)	

2.7-28

: 有効性評価上考慮しない操作

コメント No. 163-46 に対する回答

第2.7-2表 主要解析条件(格納容器バイパス(ISLOCA))(1/6)

_._...

	項目	主要解析条件	条件設定の考え方
	解析コード	SAFER	本重要事故シーケンスの重要現象を評価できるコード
	原子炉熱出力	3,293MW	定格熱出力を設定
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	定格圧力を設定
	原子炉水位	通常運転水位(セパレータ スカート下端から+126cm)	通常水位を設定
	炉心流量	48,300t/h(100%流量)	定格流量を設定
初期	炉心入口温度	約 278℃	熱平衡計算による値
(条 ) 件	炉心入口サブクール度	約 9℃	熱平衡計算による値
	燃料	9×9燃料(A型)	9×9燃料(A型)と9×9燃料(B型)は,熱水力的な特性はほぼ同等で あり,その他の核的特性等の違いは燃料棒最大線出力密度の保守性に包含さ れることから,代表的に9×9燃料(A型)を設定
	燃料棒最大線出力密度	44.0k₩∕m	初期の燃料棒線出力密度が大きい方が燃料被覆管温度の観点で厳しい設定 となるため、保安規定の運転上の制限における上限値を設定
	原子炉停止後の崩壊熱	ANSI/ANS-5.1-1979 (燃焼度 33GWd/t)	崩壊熱が大きい方が原子炉水位低下の観点で厳しい設定となる。このため, 崩壊熱が大きくなる燃焼度の高い条件として,1 サイクルの運転期間(13 か月)に調整運転期間(約1か月)を考慮した運転期間に対応する燃焼度を 設定

 $2.7^{-}29$ 

項目		主要解析条件	条件設定の考え方
	起因事象	残留熱除去系 B 系 熱交換器フランジ部に 約 21cm ² の破断面積を想定	残留熱除去系の構造健全性評価の結果, ISLOCAによる加圧事象発生時 (圧力8.2MPa[gage],温度288℃)においても破損が発生することはないた め,加圧範囲のうち最も大きなシール構造である熱交換器フランジ部に対し て,ガスケットに期待しない場合にフランジ部に生じる間隙の面積を破断面 積として設定 (添付資料271)
事故		ISLOCAの発生を想定する 残留熱除去系B系の機能喪失	ISLOCAが発生した系統の機能喪失を想定
余   件	安全機能の喪失に対する 仮定	原子炉建屋西側に設置されてい る高圧炉心スプレイ系及び 残留熱除去系C系の機能喪失	残留熱除去系B系が設置されている原子炉建屋西側は原子炉冷却材の原子 炉建屋への漏えいにより高温多湿となるため,保守的に同じ原子炉建屋西側 に設置されている高圧炉心スプレイ系及び残留熱除去系C系は事象発生と 同時に機能喪失するものとして設定
	外部電源	外部電源あり	外部電源がある場合,原子炉スクラムは,原子炉水位低(レベル3)信号に て発生し,再循環ポンプトリップは,原子炉水位異常低下(レベル2)信号 にて発生する。このため,原子炉水位の低下の観点で厳しくなる

第2.7-2表 主要解析条件(格納容器バイパス(ISLOCA))(2/6)

第 2.7-2 表	主要解析条件	(格納容器バイパス	( I S	LOCA)	$) (3 \neq 6)$
				/	/ \-/ -/

項目	主要解析条件	条件設定の考え方
原子炉スクラム	原子炉水位低(レベル3)信号 (遅れ時間:1.05秒)	起因事象発生から原子炉スクラムまでの期間の原子炉水位 の低下を厳しくする条件として,外部電源がある場合の原子 炉水位低(レベル3)信号による原子炉スクラムを設定
ATWS緩和設備(代替原 子炉再循環ポンプトリップ 機能)	原子炉水位異常低下(レベル2)信号で全台停止	起因事象発生から原子炉スクラムまでの期間の原子炉水位 の低下を厳しくする条件として,外部電源がある場合の原子 炉水位異常低下(レベル2)信号による再循環ポンプトリッ プを設定
 原子炉隔離時冷却系	原子炉水位異常低下(レベル2)信号にて自動起動 原子炉減圧操作と同時に注水停止 最小流量特性: ・注水流量:136.7m ³ /h ・注水圧力: 1.04~7.86MPa[dif] MPa[dif]:原子炉圧力容器と水源との差圧	設計値を設定 原子炉隔離時冷却系は,タービン回転数制御により原子炉圧 力に依らず一定の流量にて注水する設計となっている
 低圧炉心スプレイ系	原子炉減圧後は,原子炉水位が原子炉水位低(レベ ル3)設定点まで回復した1分後に注水停止 残留熱除去系の隔離成功後は,原子炉水位を原子炉 水位低(レベル3)設定点から原子炉水位高(レベ ル8)設定点の範囲に維持 最小流量特性 ・注水流量:0~1,561m ³ /h ・注水圧力:0~1.99MPa[dif]	設計値を設定 原子炉水位の観点で厳しい設定として,最小流量特性を設定

	項目	主要解析条件	条件設定の考え方
重大事故等対策に関連する機器条件	低圧代替注水系(常設)	原子炉減圧後は,原子炉水位が原子炉水位低(レベ ル3)設定点まで回復した以降に,原子炉水位を原 子炉水位低(レベル3)設定点以上に維持 残留熱除去系の隔離成功の1分後に注水停止 (原子炉注水単独時) 最小流量特性(2台) ・注水流量:0~378m ³ /h ・注水圧力:0~2.38MPa[dif]	炉心冷却の観点で厳しい設定として,機器設計上の最低要求 値である最小流量特性を設定 <常設低圧代替注水ポンプ2台による注水特性>

第2.7-2表 主要解析条件(格納容器バイパス(ISLOCA))(4/6)

	項 目 主要解析条件		条件設定の考え方
重大事故等		(原子炉圧力制御時) 安全弁機能 7.79MPa [gage] ×2 個, 385.2t/h/個 8.10MPa [gage] ×4 個, 400.5t/h/個 8.17MPa [gage] ×4 個, 403.9t/h/個 8.24MPa [gage] ×4 個, 407.2t/h/個 8.31MPa [gage] ×4 個, 410.6t/h/個	設計値を設定
対策に関連する機器条件	逃がし安全弁	(原子炉減圧操作時) 逃がし安全弁(自動減圧機能)7弁を開放すること による原子炉減圧 <原子炉圧力と逃がし安全弁蒸気流量の関係>	逃がし安全弁の設計値に基づく原子炉圧力と蒸気流量の関 係から設定

第2.7-2表 主要解析条件(格納容器バイパス(ISLOCA))(5/6)

第 2.7-2 表	主要解析条件	(格納容器バイパス	(I S L O C A))	(6/6)

項目		主要解析条件	条件設定の考え方
関連す	逃がし安全弁(自動減圧機 能)による原子炉減圧操作	事象発生から 15 分後	運転手順に基づき I S L O C A が発生し,中央制御室からの 遠隔隔離操作に失敗した場合に,原子炉圧力容器からの漏え いを抑制するために実施することから,状況判断,中央制御 室からの遠隔隔離操作及び減圧操作に要する時間を考慮し て設定。
る操作条件	低圧代替注水系(常設)の 起動準備操作	事象発生から 17 分後	運転手順に基づき,ISLOCAの発生を確認した場合に実施することから、外部電源がない場合も考慮し、状況判断,常設代替高圧電源装置による緊急用母線受電及び低圧代替注水系(常設)の起動準備に要する時間を考慮して設定
	現場における残留熱除去系 の注入弁の閉止操作	事象発生から5時間後	ISLOCA発生時の現場環境並びに現場移動及び操作に 要する時間を考慮して,事象発生5時間後に隔離が完了する ものとして設定





第2.7-1図 格納容器バイパス(ISLOCA)時の重大事故等対策の概略系統図(2/3) (漏えい抑制のための原子炉減圧後の低圧炉心スプレイ系及び低圧代替注水系 (常設)による原子炉注水段階)

2.7-36



2

7-

37

(隔離成功後の低圧炉心スプレイ系による原子炉注水及び残留熱除去系による 格納容器除熱段階)



※13:残留熱除去系の注入弁の閉止完了後は,原子炉注水を低圧炉心スプレイ系に切替え,原子炉水位を原子炉水 位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。

<ul> <li>補足1</li> <li>ISLOCAの発生は、隔離弁等の開操作実施時に以下のパラメータにより確認する。</li> <li>・弁操作を実施した系統の圧力変動(残留絮除去系ポンプ吐出圧力計)</li> <li>・主蒸気隔離弁が閉止し、原子炉隔離時冷却系による原子炉注水が開始されたにも関わらず原子炉水位の低下</li></ul>	補足2         ISLOCAの発生時は、原子炉水位異常低下(レベル2)以上を維持しつつ,漏えい抑制のため可能な限り原
が継続(原子炉水位計(広帯域、SA広帯域),原子炉隔離時冷却系系統流量計) <li>監視可能であれば、以下のパラメータによる情報も勘案し総合的にISLOCA発生を確認する。</li> <li>・系統異常過圧警報(RHR PUMP DISCH PRESS ABNORMAL HI/LOW 等)発報</li> <li>・区面浸水警報(RHR HAREA FLOODING 等)発報</li> <li>・区面温度上昇警報(RHR EQUIPMENT AREA AMBIENT TEMP HI 等)発報</li> <li>・火災警報発報</li> <li>・原子炉建屋内空間線量率上昇警報(R/B AREA RADIATION HIGH)発報</li> <li>・原子炉建屋内グストモニタ上昇警報(R/B FD SUMP LEAKAGE HIGH, R/B FD SUMP LEVEL HI-HI 等)発報</li> <li>・原子炉建屋内累常漏えい警報(R/B FD SUMP LEAKAGE HIGH, R/B FD SUMP LEVEL HI-HI 等)発報</li> <li>・原子炉建屋機器ドレンサンブ温度高(R/B ED SUMP TEMP HIGH)発報</li> <li>・ドライウェル圧力及び雰囲気温度が有意に上昇していない</li>	子炉水位を低めに維持する。         ・原子炉水位風常低下(レベル2)・・・・300mm         ・原子炉水位異常低下(レベル2)・・・・-950mm         ・高圧炉心スプレイ系注水ノズル・・・・-1,227mm         ・低圧炉心スプレイ系注水ノズル・・・・-1,227mm         ・原子炉水位異常低下(レベル1)・・・-3,800mm         ・残留熱除去系注水ノズル・・・・-3,983mm         ・燃料有効長頂部

第2.7-2図 格納容器バイパス(ISLOCA)の対応手順の概要 コメント No. 147-19, 20, 23, 25, 29, 148-01, 17, 205-08 に対する回答

								格納	容器バイパス(IS	SLOCA)										
												終温時間								
					0	10	20	1	30	40	50	程 画 叶 间 60 分		2	3	4		5 時間	6	. 備 考
操作項目	実施箇所・必要要員数 【 】は他作業後 移動してきた要員				<ul> <li>✓ 事象発生</li> <li>✓ 原子炉スクラム</li> <li>✓ タンのか、原子だれた用端低下(1+×*1,0) 乳会方利素</li> </ul>															
	責任者         発電長         1人         中央監視 運転操作指揮			▼ 約20秒 原子伊水位美常低下(レベル2)設定点到達 ▼ プラント状況判断																
	補佐	副発電長 1人	運転操作指揮補佐	操作の内容	▼ 約15分 原子炉減圧開始															
	通報連絡者	災害対策要員 2人	災害対策本部連絡 発電所外部連絡											▼約5時間 残留除去系からの漏えい停止						
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)																	
状况確認	2人 A, B	_	-	<ul> <li>● I SLOCA発生の確認</li> <li>●外部電源喪失及び給水流量全喪失の確認</li> <li>●原子炉スクラムの確認</li> <li>●タービン停止の確認</li> <li>●非常用ディーゼル発電機等の自動起動確認</li> <li>●再循環ボンプトリップの確認</li> <li>●原子炉隔纏時冷却系の自動起動の確認</li> <li>●主素気隔離弁関止及び透がし安全弁(安全弁機 能)による原子炉圧力制御の確認</li> </ul>	····· ····· ···· ····															外部電源喪失の確認及び 非常用ディーゼル発電機 等の自動起動の確認は,外 部電源がない場合に実施 する
中央制御室におけ る残留熱除去系の 注入弁の閉止操作	【1人】 A	_	_	<ul> <li>●残留熱除去系の注入弁の閉止操作(失敗)</li> <li>●残留熱除去系レグシールポンプの停止操作</li> </ul>		2分														
低圧炉心スプレ イ系の起動操作	【1人】 A	_	_	●低圧炉心スプレイ系の起動操作		2分														
逃がし安全弁(自 動減圧機能)によ る原子炉減圧操作	【1人】 A	-	-	●逃がし安全弁(自動減圧機能)7弁の開放操作		1分														
残留熱除去系によ るサプレッショ ン・プール冷却操 作	【1人】 A	-	-	●残留熱除去系によるサプレッション・プール冷 却操作			6分													
常設代替高圧電源 装置による緊急用 母線受電操作	【1人】 B	-	_	<ul> <li>●常設代替高圧電源装置2台起動及び緊急用母線</li> <li>受電操作</li> </ul>		4分														外部電源がない場合に実 施する
低 圧 代 替 注 水 系 (常設)の起動準 備操作	【1人】 B	-	_	●低圧代替注水系(常設)による原子炉注水 系 統構成			3分													
原子炉水位の維持 操作	【1人】 B	-	-	●低圧代替注水系(常設)による原子炉水位調整 操作	:			-	漏え	い抑制のため原子	子炉水位を原子	炉水位異常低了	F(レベル2)	以上で可能な限	り低めに維持					
中央制御室におけ る残留熱除去系の 弁の閉止操作	-	-	-	<ul> <li>熱交換器出入口弁等の閉止操作</li> </ul>																対応可能な要員にて実施 する
現場における残留 熱除去系の注入弁 の閉止操作	-	3人 C, D, E	1人 a	<ul> <li>●保護具装備/装備補助</li> <li>●現場移動</li> <li>●残留熱除去系B系の注入弁の閉止操作</li> </ul>												115分				
原子炉水位の維持 操作	【1人】 B	-	-	●低圧炉心スプレイ系による原子炉水位調整操作														原子炉水位低(1 設定点から原子 (レベル8)設案	レベル3) - 炉水位高 定点に維持	
使用済燃料プール の冷却操作	-	-	-	●使用済燃料ブールの冷却操作																使用済燃料プールの除熟 機能が喪失した場合で も、プール水温度が80℃ に到達するまでには1 程度の時間余裕があるた め、本操作は対応可能な 要員にて実施する。
可搬型代替注水大 型ポンプによる水 源補給操作	_	-	-	<ul> <li>●可搬型代替注水大型ボンブの移動,ホース敷設等</li> <li>●ボンブ起動及び水源補給操作</li> </ul>	ž															対応可能な要員にて実施 する
タンクローリによ る燃料補給操作	-	-	-	<ul> <li>●可搬型設備用軽油タンクからタンクローリへの 補給</li> <li>●可搬型代替注水大型ポンプへの給油</li> </ul>																対応可能な要員にて実施 する
必要要員合計	2人 A R	3人	1人																	

# 第2.7-3図 格納容器バイパス(ISLOCA)の作業と所要時間









第2.7-7図 逃がし安全弁からの蒸気流量の推移



第2.7-8図 原子炉圧力容器内の保有水量の推移



第2.7-9図 燃料被覆管温度の推移

2.7-42




## 2.7 - 44







第2.7-15図 燃料被覆管破裂が発生した時点の燃料被覆管温度と 燃料被覆管の円周方向の応力の関係

添付資料 2.7.1

コメント No. 182-10, 11, 13, 19, 20, 205-09, 11 に対する回答; インターフェイスシステムLOCA発生時の 破断面積及び現場環境等について

1. 評価対象系統について

事故シーケンスグループ「格納容器バイパス(インターフェイスシステムL OCA)」(以下「ISLOCA」という。)では,原子炉冷却材圧力バウンダリ と接続し格納容器外に敷設された配管を有する系統において,高圧設計部分と 低圧設計部分を分離する隔離弁の誤開放等により低圧設計部分が過圧され,格 納容器外での原子炉冷却材の漏えいが発生することを想定する。

ISLOCAの評価対象となる系統は,確率論的リスク評価(以下「PRA」 という。)での対象系統の選定の考え方に従い以下の条件を基に選定している。 原子炉冷却材圧力バウンダリに接続し格納容器外に敷設された配管を第1図に, PRAでの選定結果を第1表に示す。

①出力運転中に高圧設計部と低圧設計部とを分離する隔離弁が閉止されて

おり、隔離弁の誤開放等により低圧設計部が過圧されることでISLO

CA発生の可能性がある系統を選定

②閉状態の弁が直列に4弁以上設置されている系統は発生頻度の観点で除外

PRAにおいて選定された対象系統のうち,残留熱除去系停止時冷却モード 配管については,通常運転中に隔離弁の開閉試験を実施しない系統であるため, 対象外とした。なお,仮に残留熱除去系停止時冷却モード吸込配管にてISL OCAが発生した場合は,原子炉圧力はサプレッション・プールに放出される ため系統が加圧されることはなく,残留熱除去系停止時冷却モード原子炉圧力 容器戻り配管にてISLOCAが発生した場合は,系統加圧状態が注入配管に て発生した場合と同じとなることから,注入配管にてISLOCA発生を想定

した場合の構造健全性評価に包含される。

以上により、ISLOCAの評価対象としては、以下が選定された。

- ・高圧炉心スプレイ系
- ·原子炉隔離時冷却系
- ・低圧炉心スプレイ系
- •残留熱除去系(A系, B系)
- ・残留熱除去系(C系)

これらの評価対象に対して構造健全性評価を実施し,この結果に基づき有効 性評価における破断面積を設定する。



第1表 PRAでのISLOCAの評価対象の選定結果

系統名	原子炉冷却材圧力バウンダリ に接続されている配管	選定結果	備考
給水系	給水系注入配管	対象外*1	通常運転時に隔離弁が開状 態となっており,隔離弁の誤 開放等により発生する IS LOCA評価の対象外
高圧炉心スプレイ系	高圧炉心スプレイ注入配管	評価対象	_
原子炉隔離時冷却系	原子炉隔離時冷却系原子炉圧力 容器頂部スプレイ配管	評価対象	_
	原子炉隔離時冷却系蒸気供給配 管	対象外*1	通常運転時に隔離弁が開状 態となっており,隔離弁の誤 開放等により発生する IS LOCA評価の対象外
低圧炉心スプレイ系	低圧炉心スプレイ系注入配管	評価対象	
残留熱除去系(A, B,C)	残留熱除去系原子炉注入配管	評価対象	_
残留熱除去系(A, B)	残留熱除去系停止時冷却モード 吸込配管	評価対象	_
	残留熱除去系停止時冷却モード 原子炉圧力容器戻り配管	評価対象	_
残留熱除去系(A)	残留熱除去系原子炉圧力容器頂 部スプレイ配管	対象外* ²	<ul> <li>閉状態の弁が直列に4弁設置</li> <li>されておりISLOCAの</li> <li>発生頻度が十分低いため対象外</li> </ul>
制御棒駆動水圧系	制御棒駆動水圧系制御棒挿入側 配管	対象外*1	通常運転時に隔離弁が開状 態となっており,隔離弁の誤 開放等により発生する IS
	制御棒駆動水圧系制御棒引抜側 配管	対象外*1	LOCA評価の対象外
ほう酸水注入系	ほう酸水注入系注入配管	対象外**2	閉状態の弁が直列に4弁設置 されており ISLOCA の発生頻 度が十分低いため対象外
原子炉冷却材浄化系	原子炉冷却材浄化系入口配管	対象外 ^{*1}	通常運転時に隔離弁が開状
主蒸気系	主蒸気系配管	対象外 ^{*1}	態となっており,隔離弁の誤
□ 原子炉圧力容器計装 系	原子炉圧力容器計装系配管	対象外*1	開放等により発生する I S           LOCA評価の対象外
試料採取系	試料採取系サンプリング配管	対象外*1	]

※1:出力運転中に高圧設計部と低圧設計部とを分離する隔離弁が閉止されており、隔離弁の誤開放等により低 圧設計部が過圧されることでISLOCA発生の可能性がある系統ではないため除外。
 ※2:閉状態の弁が直列に4弁以上設置されている系統は発生頻度の観点で除外。

2. I S L O C A 発生時に低圧設計部に負荷される圧力及び温度条件の設定

1. で選定された I SLOCAの評価対象については,低圧設計部の機器設計は同等であるため,以下では加圧範囲に大きなシール構造である熱交換器が設置されている残留熱除去系(A系)に対する構造健全性評価について示す。

残留熱除去系は,通常運転中に原子炉圧力が負荷される高圧設計部と低圧 設計部とを内側隔離弁(逆止弁(テスタブルチェッキ弁))及び外側隔離弁(電 動弁)の2弁により隔離している。外側隔離弁には,弁の前後差圧が低い場 合のみ開動作を許可するインターロックが設けられており,開許可信号が発 信した場合は警報が発報する。また,これらの弁の開閉状態は中央制御室に て監視が可能である。本重要事故シーケンスでは,内側隔離弁の内部リーク 及び外側隔離弁前後差圧低の開許可信号が誤発信している状態を想定し,こ の状態で外側隔離弁が誤開放することを想定する。また,評価上は,保守的 に逆止弁の全開状態を想定する。

隔離弁によって原子炉定格圧力が負荷されている高圧設計部と低圧設計部 が物理的に分離されている状態から隔離弁を開放すると,高圧設計部から低 圧設計部に水が移動し,配管内の圧力は最終的に原子炉定格圧力にほぼ等し い圧力で静定する。

一般に,大きな圧力差のある系統間が隔離弁の誤開放等により突然連通し た場合,低圧側の系統に大きな水撃力が発生することが知られている。特に 低圧側の系統に気相部が存在する場合,圧力波の共振が発生し,大きな水撃 力が発生する場合があるが,残留熱除去系は満水状態で運転待機状態にある ため,その懸念はない。また,残留熱除去系以外の非常用炉心冷却系及び原 子炉隔離時冷却系も満水状態で運転待機状態にある。

一方、満水状態であったとしても、隔離弁が急激に開動作する場合は大き

な水撃力が発生するが,緩やかな開動作であれば管内で生じる水撃力も緩や かとなり,また,後述するとおり圧力波の共振による大きな水撃力も発生せ ず,圧力がバランスするまで低圧側の系統が加圧される。

電動弁は,駆動機構にねじ構造やギアボックス等があるため機械的要因で は急激な開動作(以下「急開」という。)とはなり難い。また,電動での開放 時間は約10.6秒であり,電気的要因でも急開とならないことから,誤開放を 想定した場合,水撃作用による圧力変化が大きくなるような急開とはならな い。

文献^{*1}によると,配管端に設置された弁の急開により配管内で水撃作用に よる圧力変化が大きくなるのは,弁の開放時間(T)が圧力波の管路内往復 時間(μ)より短い場合であるとされている。

$$\theta = \frac{T}{\mu} \le 1$$

$$\mu = \frac{2L}{\alpha}$$

T:弁の開放時間(s)

μ: 圧力波の管路内往復時間(s)

L:配管長(m)

α: 圧力波の伝搬速度(m/s)

ここで、αは管路内の流体を伝わる圧力波の伝播速度であり、音速とみな すことができ、保守的に圧力波の管路内往復時間が長くなるように水の音速 (α)を1,400m/s^{*2}とし、実機の残留熱除去系(低圧注水系)の注水配管 の配管長を基に配管長(L)を保守的に130mとすると、圧力波の管路内往復 時間(μ)は約0.19秒となる。残留熱除去系の外側隔離弁(電動弁)の開放

時間(T)は約10.6秒であることから、水撃作用による大きな圧力変化が生じることはなく、低圧設計部に負荷される圧力は原子炉圧力を大きく上回ることはないと考えられる。

※2: 圧力 0.01MPa[abs],水温 0℃の場合,水の音速は約 1,412.3m/s となる。なお、液体の音速の圧力及び温度の依存性は小さいが、 圧力については小さいほど、温度については約 70℃までは小さい ほど音速は小さくなる傾向がある。

以上より,残留熱除去系の隔離弁の誤開放等により系統が加圧される場合 においても,原子炉圧力を大きく超える圧力は発生しないものと考えられる が,残留熱除去系の逆止弁が全開状態において電動弁が10.6秒で全閉から全 開する場合の残留熱除去系の圧力推移をTRACGコードにより評価した。

残留熱除去系過圧時の各部の圧力最大値を第2表に,圧力推移図を第2図 に示す。

位置	圧力最大値(MPa[abs])
注入弁(F042A)入口(系統側)	約 7.50
逃がし弁(F025A)入口	約 7.10
熱交換器	約 8.00
ポンプ出口逆止弁(F031A)出口	約 8.01

第2表 残留熱除去系過圧時の各部の圧力最大値

^{※1:}水撃作用と圧力脈動[改定版]第2編「水撃作用」((財)電力中央 研究所 元特任研究員 秋元徳三)



第2図 残留熱除去系過圧時の圧力推移

弁開放直後は,定格運転状態の残留熱除去系の注入弁出口(原子炉圧力容器側)の圧力(7.2MPa[abs])に比べて最大約0.8MPa高い圧力(8.01MPa[abs]) まで上昇し,その後,上昇幅は減衰し10秒程度で静定する。

次項の構造健全性評価にあたっては,圧力の最大値であるポンプ出口逆止 弁出口における約 8.01MPa [abs] に,加圧される範囲の最下端の水頭圧

(0.24MPa) を加えた約 8.25MPa[abs]を丸めてゲージ圧力に変換した 8.2MPa[gage]が保守的に系統に負荷され続けることを想定する。また,圧力 の上昇は 10 秒程度で静定することからこの間に流体温度や構造材温度が大 きく上昇することはないと考えられるが,評価上は保守的に構造材温度が定 格運転状態の原子炉冷却材温度である 288℃となっている状態を想定する。

- 3. 構造健全性評価
- 3.1 構造健全性評価の対象とした機器等について

残留熱除去系の隔離弁の誤開放等により加圧される範囲において,圧力バ ウンダリとなる以下の箇所に対して 2. で評価した圧力(8.2MPa[gage]),温 度(288℃)の条件下に晒された場合の構造健全性評価を実施した。

- ① 熱交換器
- ② 逃がし弁
- ③ 弁
- ④ 計 器
- ⑤ 配管・配管フランジ部

詳細な評価対象箇所を第3図及び第3表に示す。



第3図 残留熱除去系A系の評価対象範囲

		機 器		弁番号, 個数等
1	<ol> <li>① 熱交換器</li> </ol>			1 個
2	逃が	し弁		1 台 F025A
3	③ 弁 プロセス弁			20 台 F003A, F016A, F023, F024A, F027A, F031A, F047A, F048A, F049, F051A, F053A, F063A, F085A, F086, F087A, F098A, F170A, FF012, FF101A, FF104A
		その他の弁	ベント弁 ドレン弁	17 台 F065A, F072A, F073A, F074A, F080A, F171, F179A, F181, FF020-201, FF020-206, FF020-215, FF020-230, FF022-205, FF022-219, FF022-221, FF022-223, FF022-230
	計器隔離弁		計器隔離弁	10 台 FF006-201, FF006-202, FF007-203, FF007-204, FF007-206, FF007-207, FF007-208, FF009-201, FF018-201, FF018-202
			サンプル弁	4 台 F060A, FF029-201, FF029-202, V25-606
4	₩ T	器		10 個 TE-N004A , TE-N027A , PT-N002A , PT-N026A , PT-N053A , dPT-N058A , FT-N013, FT-N015A, FT-N060A, FT-N060A
5	配	管		1式

第3表 評価対象範囲に設置された機器

3.2 構造健全性評価の結果

(1) 熱交換器

隔離弁の誤開放等による加圧事象発生時に加圧,加温される熱交換器の 各部位について,「東海第二発電所 工事計画認可申請書」(以下「既工認」 という。)を基に設計上の裕度を確認し,裕度が評価上の想定圧力 (8.2MPa[gage])と系統の最高使用圧力(3.45MPa[gage])との比である 2.4より大きい部位を除く胴板(厚肉部,薄肉部),胴側鏡板,胴側入り口・ 出口管台及びフランジ部について評価した。

a. 胴側胴板(厚肉部,薄肉部)

「発電用原子力設備規格 設計・建設規格(2005 年版(2007 年追補版 を含む)) <第 I 編 軽水炉規格>(JSME S NC1-2005/2007)」(以下「設 計・建設規格」という。)「PCV-3122 円筒形の胴の厚さの規定」を適用 し, 胴板の必要最小厚さを算出した。その結果, 実機の最小厚さは必要 最小厚さ以上であり, 評価した各部位は破損せず漏えいは発生しないこ とを確認した。

評価部位	材料	実機の最小厚さ (mm)	計算上必要な厚さ ^{※1} (mm)	判定 ^{※2} (+_>+)
厚肉部	SB410	53. 32	35.71	
薄肉部	SB410	37.05	35.71	0

※1:1次一般膜応力 0.6Su 適用値。設計引張強さ(S_u)までの余裕を考えると、さらなる余裕が含まれることになる。

※2:実機の最小厚さが計算上必要な厚さ以上であること

b. 胴側鏡板

設計・建設規格「PCV-3225 半だ円形鏡板の厚さの規定1」を適用し、 胴側鏡板の必要最小厚さを算出した。その結果,実機の最小厚さは必要 最小厚さ以上であり,評価した各部位は破損せず漏えいは発生しないこ とを確認した。

亚価部位	たた 半に	実機の最小厚さ	計算上必要な厚さ*1	判定 ^{*2}
그 어디 때 구비	12 12	(mm)	(mm)	$(t_s \ge t)$
胴側鏡板	SB410	56.95	35.08	0

※1:1次一般膜応力 0.6Su 適用値

c. 胴側入口,出口管台

設計・建設規格「PVC-3610 管台の厚さの規定」を適用し, 胴側入口・ 出口管台の必要最小厚さを算出した。その結果, 実機の最小厚さは必要 最小厚さ以上であり, 評価した各部位は破損せず漏えいは発生しないこ

とを確認した。

評価部位	材 料	実機の最小厚さ (mm)	計算上必要な厚さ ^{※1} (mm)	判定 ^{*2} (t _s ≧t)
胴側入口・ 出口管台	SF490A	14.55	8.62	0

※1:1次一般膜応力 0.6Su 適用値

※2:実機の最小厚さが計算上必要な厚さ以上であること

d. フランジ部

日本工業規格 JIS B8265「圧力容器の構造-一般事項」を適用して算 出したボルトの必要な断面積及び許容応力を算出した。その結果,ボル トの実機の断面積はボルトの必要な断面積以上であり,かつ,発生応力 が許容応力以下であり,評価した各部位は破損せず漏えいは発生しない

ことを確認した。

評価部位	ボルトの 実機の断面積 (mm ² )	ボルトの 必要な断面積 (mm ² )	発生応力 (MPa)	許容応力 (MPa)	判定*
フランジ部	106, 961	74, 184	246	262	0

※:ボルトの実機の断面積がボルトの必要な断面積以上であり、かつ、発生応力が許容圧力以下であること

(2) 逃がし弁

a. 弁 座

設計・建設規格「VVC-3230 耐圧部に取り付く管台の必要最小厚さ」 を適用し、必要な最小厚さを算出した。その結果、実機の最小厚さは必 要最小厚さ以上であり、評価した各部位は破損せず漏えいは発生しない

^{※2:}実機の最小厚さが計算上必要な厚さ以上であること

ことを確認した。

評価部位	実機の最小厚さ (mm)	計算上必要な厚さ ^{※1} (mm)	判定**2		
弁 座	2.8	0.7	0		
※1:1次一般膜応力 0.6Su 適用値					

※2:実機の最小厚さが計算上必要な厚さ以上であること

b. 弁 体

弁体下面にかかる圧力が全て弁体の最小肉厚部に作用するとして発生 するせん断応力を評価した。その結果,許容せん断応力は発生せん断応 力以上であり,評価した部位は破損せず漏えいは発生しないことを確認 した。

評価部位	発生せん断応力 (MPa)	許容せん断応力 (MPa)	判定*
弁 体	81	88	0

※:発生せん断応力が許容せん断応力以下であること

c. 弁本体の耐圧部

設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適用し,必要 な最小厚さを算出した。その結果,実機の最小厚さは必要厚さ以上であ り,評価した部位は破損せず漏えいは発生しないことを確認した。

評価部位	実機の最小厚さ (mm)	必要な最小厚さ ^{*1} (mm)	判定*2
弁本体の耐圧部	9.0	4.8	0

※1:1次一般膜応力 0.6Su 適用値

※2:実機の最小厚さが計算上必要な厚さ以上であること

d. 弁耐圧部の接合部

設計・建設規格「VVC-3310 弁箱と弁ふたがフランジ結合の弁のフラ ンジの応力評価」を適用して算出したボルトの必要な断面積及び許容応 力を算出した。

評価部位	ボルトの 実機の断面積 (mm ² )	ボルトの 必要な断面積 (mm ² )	発生応力 (MPa)	許容応力 (MPa)	判定*
弁耐圧部の接合部	481.3	438.5	215	142	_

※:ボルトの実機の断面積がボルトの必要な断面積以上であり、かつ、発生応力が許容圧力以下であること

上記の評価の結果,ボルトの実機の断面積がボルトの必要な断面積以 上であるが,発生応力が許容圧力以上であったため,ボンネットボルト の内圧と熱による伸び量及びボンネットフランジと弁箱フランジの熱に よる伸び量を算出した。その結果,ボンネットボルトの伸び量からボン ネットフランジと弁箱フランジの伸び量を差し引いた伸び量がマイナス であり,弁耐圧部の接合部が圧縮されることになるが,許容応力が発生 応力以上であり,評価した部位は破損せず漏えいは発生しないことを確 認した。

評価部位	発生応力 (MPa)	許容応力 (MPa)	判定*
弁耐圧部の接合部	17	152	0

※:発生応力が許容応力以下であること

(3) 弁

a. 弁本体

設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適用し,必要 な最小厚さを算出した。その結果,実機の最小厚さは計算上必要な厚さ 以上であり,評価した部位は破損せず漏えいは発生しないことを確認し

た。

分来旦	++ wi	実機の最小厚さ	計算上必要な厚さ*1	判定 ^{**2}
<b>开留</b> 5	12 12	(mm)	(mm)	$(t_s \ge t)$
F003A	SCPH2	22.0	10.6	0
F016A	SCPL1	20.0	9.5	0
F024A	SCPL1	24.0	10.9	0
F027A	SCPH2	10.0	3. 2	0
F031A	SCPH2	22.5	9.8	0
F047A	SCPH2	22.0	10.6	0
F048A	SCPH2	31.0	14.6	0
F049	SCPH2	7.0	4.1	0
F063A	SCPH2	11.0	4.1	0
F086	SCPH2	8.0	2.0	0
F098A	SCPH2	23.0	11.1	0
F170A	SCPL1	16.0	6.4	0
F065A	SCPH2	8.0	3.1	0
F072A	SCPH2	11.0	4.1	0
F080A	SCPH2	11.0	2.3	0
F060A	SCPH2	6.5	1.2	0
FF029-201	SUS304	12.5	1.5	0
FF029-202	SUS304	12.5	1.5	0

※1:1次一般膜応力 0.6Su 適用値

### b. 弁耐圧部の接合部

設計・建設規格「VVC-3310 弁箱と弁ふたがフランジ結合の弁のフラ ンジの応力評価」を適用して算出したボルトの必要な断面積及び許容応 力を算出した。その結果, F024A, F086, F065A, F080A, F060A, FF029-201 及び FF029-202 の弁はボルトの実機の断面積がボルトの必要な断面積以 上であり, かつ, 発生応力が許容圧力以下の弁の評価した部位は破損せ

	ボルトの	ギルトの	xx /+	<u> </u>	
<b>金采</b> 旦	事機の断面積	山 西 か 断 西 待	完 生	市谷 広力	*11字※
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	天1成07四回1頃 (mm ² )	必安な町面積 (mm ² )	がいフリ (MPa)	(MPa)	刊足
E0024	(IIIII )	10.675	(MI d)	(MI d)	
FUUSA	13, 672	18, 675	203	177	
F016A	11,033	14, 289	237	168	-
F024A	16,406	15, 451	167	168	0
F027A	1,758	2,919	197	177	-
F031A	13, 400	11,608	305	177	-
F047A	13,672	18,675	253	177	-
F048A	11,033	24, 157	153	177	-
F049	2,770	3, 818	181	177	-
F063A	1,803	2,060	206	177	-
F086	901	693	127	177	0
F098A	11, 241	13, 372	315	177	-
F170A	5,411	5,821	242	168	-
F065A	1,204	1,192	124	165	0
F072A	1,803	2,060	206	177	-
F080A	901	833	118	177	0
F060A	321	261	86	177	0
FF029-201	601	318	47	165	0
FF029-202	601	318	47	165	0

ず漏えいは発生しないことを確認した。

※:ボルトの実機の断面積がボルトの必要な断面積以上であり、かつ、発生応力が許容圧力以下であること

また,上記の条件を満たさない弁については,ボンネットボルトの内 圧と熱による伸び量及びボンネットフランジと弁箱フランジの熱による 伸び量を算出した。その結果,ボンネットボルトの伸び量からボンネッ トフランジと弁箱フランジの伸び量を差し引いた伸び量がプラスである 弁については,伸び量がガスケットの復元量以下であり,評価した部位 は漏えいが発生しないことを確認した。伸び量がマイナスの弁について はボンネットフランジとリフト制限板がメタルタッチしており,それ以

上ガスケットが圧縮しない構造となっていることから,ボンネットナッ ト座面の面圧とボンネットフランジとリフト制限板の合わせ面の面圧が 材料の許容応力以下であり,評価した部位は破損せず漏えいが発生しな いことを確認した。

弁番号	伸び量 (mm)	ガスケット 復元量 (mm)	発生応力 (MPa)	許容応力 (MPa)	判定*
F003A	0.008	0.1	-	—	0
F016A	0.004	0.1	-	—	0
F027A	0.015	0.1	-	—	0
F031A	-0.029	-	45	596	0
F047A	0.008	0.1	-	—	0
F048A	0.063	0.1	—	_	0
F049	0.001	0.1	-	—	0
F063A	0.001	0.2	-	—	0
F098A	0.002	0.2	-	—	0
F170A	0.001	0.2	-	—	0
F072A	0.001	0.2	-	—	0

※:伸び量がプラスの場合は、伸び量がガスケット復元量以下であること。伸び量がマイナスの場合は、発生応 力が許容応力以下であること。

なお,以下の弁は加圧時の温度,圧力以上で設計していることから,

破損は発生しないことを確認した。

評価部位	弁番号	設計圧力	設計温度
プロセス弁	F023, F051A	8.62MPa	$302^{\circ}$ C

また,以下の弁は設計・建設規格第 I 編 別表1にて温度 300℃にお ける許容圧力を確認し,加圧時の圧力を上回ることから,破損は発生し ないことを確認した。

評価部位		弁番号	許容圧力
プロセス弁		F087A, FF104A	14.97MPa
		FF012	13.30MPa
		F053A	10.58MPa
		F085A, FF101A	9.97MPa
その他の弁	ベント弁	F073A, F074A	14.97MPa
	ドレン弁	F171, F179A, F181A, FF020-201, FF020-206, FF020-215, FF020-230, FF022-205, FF022-219, FF022-221, FF022-223, FF022-230	9.97MPa
	計器隔離弁	FF009-201	14.97MPa
		FF006-201, FF006-202, FF007-203, FF007-204, FF007-206, FF007-207, FF007-208, FF018-201, FF018-202	9.97MPa
	サンプル弁	V25-606	25.9MPa

(4) 計器

a. 圧力計, 差圧計

以下の圧力計及び差圧計は,隔離弁の誤開放等による加圧事象発生時 の圧力以上の計装設備耐圧値を有しており,構造材の温度上昇に伴う耐 力低下(温度-30~40℃における設計引張強さに対する 288℃における 設計引張強さの割合は SUS316L の場合で約 79%)を考慮しても加圧時に おける圧力以上であることから,破損は発生しないことを確認した。

計器番号	計装設備耐圧 (MPa)	判定
PT-E12-N002A-1	14.7 $(150  \text{kg/cm}^2)$	0
PT-E12-N026A	14.7(150kg/cm ² )	0
PT-E12-N053A	14.7(150kg/cm ² )	0
dPT-E12-N058A	13.7(140kg/cm ² )	0
FT-E12-N013	14.7(150kg/cm ² )	0
FT-E12-N015A	14.7(150kg/cm ² )	0
FT-E12-N060A	14.7(150kg/cm ² )	0
FT-C61-N001	14.7(150kg/cm ² )	0

b. 温度計

日本機械学会「配管内円柱状構造物の流量振動評価指針」(JSME S012-1998)を適用し,同期振動発生の回避又は抑制の判定並びに応力評価及び疲労評価を実施した。その結果,換算流速 V_yが1より小さく,許容値が組み合わせ応力を上回り,かつ,設計疲労限σ_Fが応力振幅を上回ることから,評価した部位は破損せず漏えいは発生しないことを確認した。

(同期垢動発生の同避マけ抑制証価)			
	(同期振動発	生の回避マ	け抑制 評価)

計器番号	流速 V (m/s)	换算流速 V _γ	换算係数率 C _n	判定*
TE-N004A	0.77	0.08	0.05	○ (V _γ <1のため)
TE-N027A	0.76	0.08	0.05	○ (V,<1のため)

※: V_y<1, C_n>64, V_y<3.3かつC_n>2.5のいずれかを満足すること

(流体振動に対する強度評価)

計器番号	組合せ応力 (MPa)	組合せ応力の 許容値(MPa)	応力振幅 (MPa)	応力振幅の 設計疲労限 (MPa)	判定*
TE-N004A	14.7	184	0.43	76	0
TE-N027A	14.7	184	0.41	76	0

※:組合せ応力が組合せ応力の許容値以下であること、かつ、応力振幅が応力振幅の設計疲労限以下であること

(5) 配管

a. 管

設計・建設規格「PPC-3411 直管(1)内圧を受ける直管」を適用し、必要最小厚さを算出した。その結果、実機の最小厚さは必要厚さ以上であり、評価した部位は破損せず漏えいは発生しないことを確認した。

評価部位	既工認配管 No	実機の最小厚さ (mm)	計算上必要な厚さ ^{*1} (mm)	判定**2
	3	12.80	8.26	0
	4	12.80	8.26	0
	6	9.71	5.94	0
	9	5.25	1.91	0
<u> ////</u>	10	5.25	1.91	0
	17	5.25	1.91	0
	26	6.21	2.76	0
· · · · · · · · · · · · · · · · · · ·	31	7.17	3.61	0
	34	11.20	6.23	0
	37	4.55	1.28	0
	39	14.40	10.09	0
	40	9.01	5.32	0
	56	12.51	7.63	0
	58	12.51	7.63	0

※1:1次一般膜応力 0.6Su 適用値

※2:実機の最小厚さが計算上必要な厚さ以上であること

b. フランジ部

設計・建設規格「PPC-3414 フランジ」を適用してフランジ応力算定 用応力を算出し、フランジボルトの伸び量を評価した。その結果、伸び 量がマイナスであり、フランジ部が圧縮されることになるが、ガスケッ トの許容圧縮量が合計圧縮量以上であり、評価した部位は破損せず漏え いは発生しないことを確認した。

評価部位	伸び量 (mm) 【最小値】	ガスケットの 初期圧縮量 (mm)	ガスケットの 合計圧縮量(mm) 【最大値】	ガスケットの 許容圧縮量 (mm)	判定*
フランシ゛部	-0.01	1.20	1.21	1.30	0
		2.40	2.41	2.60	0
	-0.04	2.40	2.44	2.60	0

※:伸び量がマイナスの場合は、発生応力が許容応力以下であること。

4. 破断面積の設定について

3. の評価結果から,隔離弁の誤開放等により残留熱除去系の低圧設計部分 が加圧されたとしても,破損は発生しないことを確認した。

そこで,残留熱除去系の加圧範囲のうち最も大きなシール構造である熱交 換器フランジ部に対して,保守的に弁開放直後の圧力ピーク値(8.2MPa [gage]),原子炉冷却材温度(288℃)に晒され続け,かつ,ガスケットに期 待しないことを想定した場合の破断面積を評価した。

	<b>広力</b> 11 座		伸び量 (mm)			山汉	全部材	破账声捷
評価部位	)圧力 (MPa)	瘟度 (℃)	+ ⊿L1	+ ⊿L2	_ ∠L3	内控 (mm)	伸び量 (mm)	4反四 回 恒 (cm ² )
熱交換器 フランジ部	8.2	288	0.19	1.31	1.19	2, 120	0.31	約 21

⊿L1:ボルトの内圧による伸び量

∠L3:管板及びフランジ部の熱による伸び量

その結果,破断面積は約21cm²となり,有効性評価のISLOCAでは, 残留熱除去系熱交換器フランジ部に約21cm²の漏えいが発生することを想定 する。

なお,他の系統において加圧事象が発生したとしても,低圧設計部の機器 設計は同等であり,本構造健全性評価の結果から破損が発生することはない と考えられる。また,残留熱除去系A系及びB系以外の系統は,加圧範囲に 熱交換器のような大きなシール構造を有する機器は設置されていない。

[⊿]L2:ボルトの熱による伸び量

5. 現場の環境評価

ISLOCAが発生した場合,事象を収束させるために,健全な原子炉注 水系統による原子炉注水操作,逃がし安全弁による原子炉減圧操作及び残留 熱除去系によるサプレッション・プール冷却操作を実施する。また,漏えい 箇所の隔離は,残留熱除去系(低圧注水系)の注入弁を現場にて閉止する想 定としている。

ISLOCA発生に伴い原子炉冷却材が原子炉建屋内に漏えいすることで、建屋下層階への漏えい水の滞留並びに高温水及び蒸気による建屋内の雰囲気温度、湿度、圧力及び放射線量の上昇が想定されることから、設備の健 全性及び現場作業の成立性に与える影響を評価した。

現場の環境評価において想定する事故条件,重大事故等対策に関連する機器条件及び重大事故等対策に関連する操作条件は,有効性評価の解析と同様であり,ISLOCAは残留熱除去系B系にて発生するものとする。

なお, ISLOCAが残留熱除去系A系にて発生することを想定した場合 は,破断面積(21 cm²)及び破断箇所(熱交換器フランジ部)はB系の場合 と同じであり,漏えい発生区画は東側となることから,原子炉建屋の東側区 画の建屋内雰囲気温度等が同程度上昇する。

(1) 設備の健全性に与える影響について

有効性評価において,残留熱除去系B系におけるISLOCA発生時に 期待する設備は,原子炉隔離時冷却系,低圧炉心スプレイ系,残留熱除去 系A系及び低圧代替注水系(常設),逃がし安全弁並びに関連する計装設備 である。

ISLOCA発生時の原子炉建屋内環境を想定した場合の設備の健全性 への影響について以下のとおり評価した。

a. 溢水による影響

東海第二発電所の原子炉建屋は,地下2階から5階まで耐火壁を設置 し東側区分と西側区分に区画化することで,非常用炉心冷却系を物理的 に分離する方針である。ISLOCAによる原子炉冷却材の漏えいは, 残留熱除去系B系が設置されている西側区画において発生するのに対し て,原子炉隔離時冷却系,低圧炉心スプレイ系及び残留熱除去系A系は 東側区画に位置していることから,溢水の影響はない。

低圧代替注水系(常設)は、ポンプが原子炉建屋から物理的に分離さ れた区画に設置されているため、溢水の影響はない。また、低圧代替注 水系(常設)の電動弁のうち原子炉建屋内に設置されるものは原子炉建 屋3階以上に位置しており、事象発生から有効性評価において現場隔離 操作の完了タイミングとして設定している5時間までの原子炉冷却材の 流出量は300tであり、原子炉冷却材が全て水として存在すると仮定して も浸水深は地下2階の床面から約2m程度であるため、溢水の影響はない。

#### b. 雰囲気温度・湿度による影響

別紙7に示すとおり,東側区画における温度・湿度については,初期 値から有意な上昇がなく,原子炉隔離時冷却系,低圧炉心スプレイ系及 び残留熱除去系A系への影響はない。また,低圧代替注水系(常設)の 原子炉建屋内の電動弁は,西側区画に位置するものが2弁あるが,これ らはISLOCA発生時の原子炉建屋内の環境を考慮しても機能が維持 される設計とすることから影響はない。逃がし安全弁及び関連する計装 設備についても,別紙6に示す温度・湿度条件において機能喪失するこ とはない。

(2) 現場操作の成立性に与える影響について

有効性評価において,残留熱除去系B系におけるISLOCA発生時に 必要な現場操作は,残留熱除去系B系の注入弁の閉止操作である。また, ISLOCA発生時のアクセスルートは,原子炉建屋内の環境を考慮して, 残留熱除去系B系におけるISLOCA発生時には漏えいが発生している 原子炉建屋西側とは逆の原子炉建屋東側区画から入域し,東側区画の3階 まで昇った後に注入弁の閉止操作場所である西側区画3階に移動して作業 を実施する。残留熱除去系B系の注入弁の操作場所及びアクセスルートを 第4図に示す。

ISLOCA発生時の原子炉建屋内環境を想定した場合のアクセス性への影響を以下のとおり評価した。

a. 溢水による影響

東側区画は、ISLOCAによる原子炉冷却材漏えいが発生する西側 区画とは物理的に分離されていることから、溢水による東側区画のアク セス性への影響はない。また、別紙7に示すとおり、注入弁は西側区画 の3階に設置されており、この場所において注入弁の現場閉止操作を実 施するが、事象発生から有効性評価において現場隔離操作の完了タイミ ングとして設定している5時間までの原子炉冷却材の流出量は300tであ り、原子炉冷却材が全て水として存在すると仮定しても浸水深は地下 2 階の床面から約2m程度であるため、操作及び操作場所へのアクセスへの 影響はない。

なお,別紙8に示すとおりブローアウトパネルに期待しない場合でも, 同様に操作及び操作場所へのアクセスへの影響はない。 b. 雰囲気温度・湿度による影響

別紙7に示すとおり,東側区画における温度・湿度については,初期 値から有意な上昇がなく,アクセス性への影響はない。また,西側区画 のうちアクセスルート及び操作場所である3階においては,原子炉減圧 操作後に建屋内環境が静定する事象発生2時間から有効性評価において 現場隔離操作の完了タイミングとして設定している5時間までの雰囲気 温度の最大値は約41℃程度であり,操作場所へのアクセス及び操作は可 能である^{*}。

なお,別紙8に示すとおりブローアウトパネルに期待しない場合でも, 同様に操作及び操作場所へのアクセスは可能である。

- ※:想定している作業環境(最大約 41℃)においては,主に低温やけどが懸念されるが,一般的に,接触温度と低温やけどになるまでのおおよその時間の関係は,44℃で 3~4 時間として知られている。
   (出典:消費者庁 News Release (平成 25 年 2 月 27 日))
- c. 放射線による影響

別紙9に示すとおり,原子炉減圧時に燃料から追加放出される核分裂 生成物の全量が,原子炉建屋内に瞬時に移行するという保守的な条件で 評価した結果,線量率は最大でも約15.2mSv/h程度である。残留熱除去 系B系の注入弁の閉止操作は2チーム体制で交代で実施し,1チーム当 たりの原子炉建屋内の滞在時間は約36分であるため,作業時間を1時間 と設定し時間減衰を考慮しない場合においても作業員の受ける実効線量 は約15.2mSvである。

また,時間減衰によってその線量率も低下するため,線量率の上昇が 期待している機器の機能維持を妨げることはない。

なお、事故時には原子炉建屋内に漏えいした放射性物質の一部はブロ ーアウトパネルを通じて環境へ放出されるおそれがあるが、これらの事 故時においては原子炉建屋放射能高の信号により中央制御室の換気系は 閉回路循環運転となるため、中央制御室内にいる運転員は過度な被ばく の影響を受けることはない。



第4図 操作場所へのアクセスルート

-

•

•

(3) 結 論

ISLOCA発生時の原子炉建屋内環境を想定した場合でも, ISLO CA対応に必要な設備の健全性は維持される。また,中央制御室の隔離操 作に失敗した場合でも,現場での隔離操作が可能であることを確認した。

6. 敷地境界外の実効線量評価について

ISLOCAが発生後,原子炉建屋が加圧されブローアウトパネルが開放さ れた場合,原子炉建屋内に放出された核分裂生成物がブローアウトパネルから 大気中に放出されるため,この場合における敷地境界外の実効線量を評価した。 その結果,敷地境界外における実効線量は約1.2×10⁻¹mSvとなり,「2.6 L OCA時注水機能喪失」における耐圧強化ベント系によるベント時の実効線量

(約6.2×10⁻¹mSv)及び事故時線量限度の5mSvを下回ることを確認した。

添付資料 2.7.1-27

### 熱交換器からの漏えいの可能性について

既工認から設計上の裕度を算出し,裕度が2.4より大きい部位を除く胴板(厚 肉部,薄肉部),胴側鏡板及び胴側入口・出口管台及びフランジ部について,隔 離弁の誤開放等による加圧事象発生時の圧力(8.2MPa[gage]),温度(288℃) の条件下で破損が発生しないことを以下のとおり確認した。

1. 強度評価

1.1 評価部位の選定

既工認から設計上の裕度を算出し,裕度が 2.4 (隔離弁の誤開放等による加 圧事象発生時の圧力 8.2MPa[gage]と最高使用圧力 3.45MPa[gage]の比)より大 きい部位を除く胴板 (厚肉部,薄肉部),胴側鏡板,胴側入口・出口管台及びフ ランジ部について評価した。

別第1-1表に既工認強度計算結果の設計裕度及を示す。

評価部位	実機の値	判定基準	裕度
胴板 (厚肉部)	53.32mm 最小厚さ	≧34.21mm 必要厚さ	<u>1.55</u>
胴板 (薄肉部)	37.05mm 最小厚さ	≧34.21mm 必要厚さ	<u>1.08</u>
胴側鏡板	56.95mm 最小厚さ	≧33.64mm 必要厚さ	<u>1.69</u>
胴側出口	14.55mm 最小厚さ	≧7.78mm 必要厚さ	<u>1. 87</u>
胴側液面計	6.15mm 最小厚さ	≧0.56mm 必要厚さ	10.98
胴側ドレン	62.50mm 最小厚さ	≧2.26mm 必要厚さ	27.65
胴側ベント(1)	5.50mm 最小厚さ	≧0.84mm 必要厚さ	6.54
胴側ベント(2)	10.00mm 最小厚さ	≧0.42mm 必要厚さ	23.80
胴側入口	14.55mm 最小厚さ	≧7.78mm 必要厚さ	<u>1.87</u>
胴側逃がし弁(座)	5.45mm 最小厚さ	≧0.84mm 必要厚さ	6. 48
胴側逃がし弁(管)	3.20mm 最小厚さ	≧0.80mm 必要厚さ	4.00

別第 1-1 表 既工認強度計算結果の設計裕度(3.45MPa, 249℃)

## 1.2 評価方法

(1) 胴側胴板の評価

設計・建設規格「PVC-3122 円筒形の胴の厚さの規定」を適用して必要 な最小厚さを算出し,実機の最小厚さが必要な最小厚さ以上であることを 確認した。

$$t = \frac{PD_i}{2S\eta - 1.2P}$$

t:胴側胴板の計算上必要な厚さ(mm)

P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)

D_i:胴の内径 (=2,000mm)

S:胴板の設計引張強さ (Su=391MPa, at 288℃ SB410)

 $\eta$ :継手効率 (=1.0)

(2) 胴側鏡板の評価

設計・建設規格「PVC-3225 半だ円形鏡板の厚さの規定1」を適用して 必要な最小厚さを算出し,実機の最小厚さが計算上必要な厚さ以上である ことを確認した。

$$t = \frac{PD_iK}{2S\eta - 0.2P}$$

t:胴側鏡板の計算上必要な厚さ(mm)

- P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)
- D_i: 鏡板の内面における長径(=2,000mm)
- K:半だ円形鏡板の形状による係数(=1.0)
- S:鏡板の設計引張強さ(Su=391MPa, at 288℃ SB410)
- $\eta$ :継手効率 (=1.0)
- (3) 胴側入口,出口管台

設計・建設規格「PVC-3610 管台の厚さの規定」を適用して必要な最小 厚さを算出し,実機の最小厚さが必要な最小厚さ以上であることを確認し た。

$$t = \frac{PD_{\circ}}{2S\eta + 0.8P}$$

t: 胴側入口, 出口管台の計算上必要な厚さ (mm)

P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)

D₀:管台の外径(=558.8mm)

S:管台の設計引張強さ (Su=438MPa, at 288℃ SF490A)

 $\eta$ :継手効率 (=1.0)

(4) フランジ部

日本工業規格 JIS B8265「圧力容器の構造-一般事項」を適用して算出 したボルトの必要な断面積及び許容応力を算出した。その結果,ボルトの 実機の断面積はボルトの必要な断面積以上であり,かつ,発生応力が許容 応力以下であることを確認した。

1.3 評価結果

熱交換器の各部位について評価した結果,別第1-2表及び別第1-3表に示す とおり実機の値は判定基準を満足し,隔離弁の誤開放等による加圧事象発生時 の圧力(8.2MPa[gage]),温度(288℃)の条件下で破損せず,漏えいは発生し ないことを確認した。

評価部位	実機の値	判定基準	
胴側胴板 (厚肉部)	53.32mm (実機の最小厚さ)	35.71mm (計算上必要な厚さ)	
胴側胴板 (薄肉部)	37.05mm (実機の最小厚さ)	35.71mm (計算上必要な厚さ)	
胴側鏡板	56.95mm (実機の最小厚さ)	35.08mm (計算上必要な厚さ)	
胴側入口・出口管台14.55mm (実機の最小厚さ)		8.62mm (計算上必要な厚さ)	

別第1-2表 フランジ部以外の評価結果

別第1-3表 フランジ部の評価結果

評価部位	ボルトの実機の断面積	ボルトの必要な断面積	発生応力	許容応力
	(mm ² )	(mm ² )	(MPa)	(MPa)
フランジ部	106, 961	74, 184	246	262

#### 逃がし弁からの漏えいの可能性について

逃がし弁について,隔離弁の誤開放等による加圧事象発生時の圧力 (8.2MPa[gage]),温度(288℃)の条件下で破損が発生しないことを以下のと おり確認した。

#### 1. 強度評価

1.1 評価部位

逃がし弁については,隔離弁の誤開放等による加圧事象発生時において吹き 出し前に加圧される弁座,弁体及び入口配管並びに吹き出し後に加圧される弁 耐圧部及び弁耐圧部の接合部について評価した。

1.2 評価方法

隔離弁の誤開放等による加圧事象発生時には 8.2MPa[gage]になる前に逃が し弁が吹き出し,圧力は低下すると考えられるが,ここでは,逃がし弁の吹き 出し前に加圧される箇所と吹き出し後に加圧される箇所ともに 8.2MPa[gage], 288℃になるものとして評価する。

(1) 弁座の評価

設計・建設規格には安全弁に関する強度評価手法の記載がない。弁座は 円筒形の形状であることから,設計・建設規格「VVC-3230 耐圧部に取り 付く管台の必要最小厚さ」を準用し,計算上必要な厚さを算出し,実機の 最小厚さが計算上必要な厚さ以上であることを確認した。

$$t = \frac{PD_{\circ}}{2S\eta + 0.8P}$$

- t:管台の計算上必要な厚さ(mm)
- P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)
- D₀:管台の外径 (mm)
- S:使用温度における許容引張応力(MPa)
- $\eta$ :継手効率^{*}

※:弁座は溶接を実施していないため、1.0を使用

(2) 弁体の評価

設計・建設規格には安全弁に関する強度評価手法の記載がない。弁体の 中心部は弁棒で支持されており、外周付近は構造上拘束されていることか ら、弁体下面にかかる圧力(8.2MPa[gage])がすべての弁体の最小肉厚部 に作用するとして発生するせん断応力を算出し、許容せん断応力以下であ ることを確認する。

$$\sigma = \frac{F}{A}$$

$$F = 1.05 \times \frac{\pi}{4} \times D^4 \times P$$

σ: せん断応力 (MPa)

- F: せん断力 (N)
- A: 弁体最小断面積 (mm²)
- D: 弁座口の径 (mm)

P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)

(3) 弁本体の耐圧部の評価

設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適用し必要な最
小厚さを算出し,実機の最小厚さが計算上必要な厚さ以上であることを確認した。

$$t = \frac{Pd}{2S - 1.2P}$$

t:弁箱の必要な厚さ

P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)

d:内径 (mm)

S:設計降伏点

(4) 弁耐圧部の接合部の評価

設計・建設規格「WVC-3310 弁箱と弁ふたがフランジ結合の弁のフラン ジ応力評価」を適用しボルトの必要な断面積及び許容応力を算出し、実機 のボルトの断面積がボルトの必要な断面積以上であるが、発生応力が許容 応力以下であることを確認した。

別第 2-1 表 ボルトの必要な断面積と許容応力

評価部位	ボルトの実機の断面積	ボルトの必要な断面積	発生応力	許容応力
	(mm ² )	(mm ² )	(MPa)	(MPa)
弁耐圧部の接合部	481.3	438.5	215	142

上記を満たさない場合は、ボンネットボルトの内圧と熱による伸び量及 びボンネットフランジと弁箱の熱による伸び量を評価し、ボンネットボル トの伸び量からボンネットフランジと弁箱フランジの伸び量を差し引いた 伸び量がプラスの場合とマイナスの場合について評価した。

・伸び量がプラスの場合

ボンネットボルトの伸び量からボンネットフランジと弁箱フランジの 伸び量を差し引いた伸び量がガスケットの復元量**以下であることを確 認した。

- ※:ガスケットに締付面圧を加えていくと弾性変形が生じ、更に締付面圧を 加えていくと塑性変形が生じる。塑性変形したガスケットの締付面圧を 緩和した場合、弾性領域分のみが復元する性質がある。弁耐圧部の接合 部のシールのため、ガスケットには塑性領域まで締付面圧を加えており、 締付面圧緩和時に弾性領域分の復元が生じ、復元量以下であればシール 性は確保される。ガスケットの復元量は、メーカ試験によって確認した 値。
- ・伸び量がマイナスの場合

伸び量がマイナスの場合は, 弁耐圧部の接合部は増し締めされること になる。弁耐圧部の接合部については, ボンネットフランジとリフト制 限板がメタルタッチしており, それ以上ガスケットが圧縮しない構造と なっていることから, ボンネットナット座面の面圧並びにボンネットフ ランジ及びリフト制限板の合わせ面の面圧が材料の許容応力を以下であ ることを確認した。

- a. 伸び量によるフランジの評価
- (a) 内圧による伸び量

# ・ボンネットボルトの発生応力

- (4)' =  $(1,000 \times (1)' \times (2)') / (0.2 \times (3)')$
- (8)' =  $(\pi \times 5' \times 8.2/4) \times (5' + 8 \times 6' \times 7')$
- 9' = 4' 8'
- 10' = 9' / 2'

②':ボンネットボルト本数(本)

③':ボンネットボルト外径 (mm)

- ④':ボンネットボルト締付けトルクによる全締付荷重(N)
- ⑤':ガスケット反力円の直径(mm)
- ⑥':ガスケット有効幅 (mm)
- ⑦':ガスケット係数
- ⑧':8.2MPaの加圧に必要な最小荷重(N)
- ⑨':不足する荷重(N)
- (1): ボンネットボルト1本あたりに発生する荷重(N)
- ① : ボンネットボルト径面積 (mm²)
- 12':ボンネットボルトの発生応力 (MPa)
- ・ボンネットボルトの内圧による伸び量

 $(7) = (12)' \times (1+2))/3$ 

①:ボンネットフランジ厚さ (mm)

- ②:弁箱フランジ厚さ (mm)
- ③:ボンネットボルト材料の縦弾性係数(MPa at 288℃)
- ⑦:ボンネットボルトの熱による伸び量(mm)
- (b) 熱による伸び量
  - ・ボンネットボルトの熱による伸び量
    - $(\$) = (4) \times ((1+2)) \times (288^{\circ}C 20^{\circ}C^{*})$ 
      - ①:ボンネットフランジ厚さ (mm)
      - ②:弁箱フランジ厚さ (mm)
      - ④:ボンネットボルト線膨張係数(mm/mm℃ at 288℃)
      - ⑧:ボンネットボルトの熱による伸び量 (mm)
        - ※:伸び量を大きく見積もるため,隔離弁の誤開放等による加圧事象 発生前後の温度差を大きくするように保守的に低めの温度を設

- ・ボンネットフランジ及び弁箱フランジの熱による伸び量
  - $9 = 5 \times 1 \times (288^{\circ} \text{C} 20^{\circ} \text{C}) + 6 \times 2 \times (288^{\circ} \text{C} 20^{\circ} \text{C}^{*})$ 
    - ①:ボンネットフランジ厚さ (mm)
    - ②:弁箱フランジ厚さ (mm)
    - ⑤:ボンネットフランジ線膨張係数(mm/mm℃ at 288℃)
    - ⑥:弁箱フランジ線膨張係数(mm/mm℃ at 288℃)
    - ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量

(mm)

- ※:伸び量を大きく見積もるため,隔離弁の誤開放等による加圧事象 発生前後の温度差を大きくするように保守的に低めの温度を設 定
- (c) 伸び量

伸び量 (mm) =⑦+(8-9)

- ⑦:ボンネットボルトの内圧による伸び量(mm)
- ⑧:ボンネットボルトの熱による伸び量(mm)
- ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量 (mm)
- b. ボンネット座面の面圧

ボンネットボルト締付荷重として評価された荷重®'をボンネットナット座面の面積 S で除し面圧を算出する。

・ボンネットナット座面の面積(ナット座面丸面の場合)

 $S = (a^2 - b^2) / 4 \times \pi$ 

- a: ボンネットナット面外径 (mm)
- b:ボンネット穴径 (mm)

S: ボンネットナット面面積 (mm²)

・ボンネットナット座面の面積(ナット座面平面の場合)

 $S = (\sqrt{3} / 16 \times a^2 \times 6) - (b^2 \times \pi / 4)$ 

a: ボンネットナット面外径 (mm)

b:ボンネット穴径 (mm)

S:ボンネットナット面面積 (mm²)

・ボンネット座面の面圧

d = (S × c)

c: ボンネットボルト本数(本)

d:ボンネットナット応力 (MPa)

S:ボンネットナット面面積 (MPa)

c. ボンネットフランジ及び弁箱フランジの合わせ面の面圧

ボンネットボルト締付荷重として評価された⑧'を合わせ面の面積 S で除し面圧を算出する。

・ボンネットフランジ及びリフト制限板の合わせ面の面積

 $\mathbf{S} = (\mathbf{a}^2 - \mathbf{b}^2) / 4 \times \pi$ 

a:メタルタッチ部外径 (mm)

b:メタルタッチ部内径 (mm)

S: メタルタッチ部面積 (mm²)

・ボンネットフランジ及びリフト制限板の合わせ面の面圧
 d=⑧'/S

d:メタルタッチ部応力 (MPa)

S: メタルタッチ部面積 (mm²)

### 1.3 評価結果

逃がし弁の各部位について評価した結果,別第2-2表から別第2-6表に示す とおり実機の値は判定基準を満足し,隔離弁の誤開放等による加圧事象発生時 の圧力(8.2MPa[gage]),温度(288℃)の条件下で破損せず,漏えいは発生し ないことを確認した。

別第 2-2 表 評価結果 (弁座)

評価部位	材料	P:内圧 (MPa)	D _o :外径(mm)	S:使用温度におけ る許容引張応力 (MPa)	実機の最小厚さ (mm)	計算上必要な厚さ (mm)
弁座	SUS304	8.2	19	110	2.8	0.7

### 別第 2-3 表 評価結果 (弁体)

評価部位	材料	P:内圧 (MPa)	A: 弁体最小断面積 (mm ² )	D:弁座口の径 (mm)	許容せん断応力 [※] (MPa)	発生せん断応力 (MPa)
弁体	SUS304	8.2	19	15	88	81

※:ボイラー構造規格より設計の許容値として 0.8S を適用した。

別第 2-4 表 評価結果(弁本体の耐圧部)

評価部位	材料	P:内圧 (MPa)	d:内径 (mm)	S:設計引張強さ (MPa)	実機の最小厚さ (mm)	計算上必要な厚さ (mm)
弁本体の耐圧部	SCPH2	8.2	50	191	9.0	4.8

評価 部位	①ボンネット フランジ 厚さ (ふた) (mm)	②弁箱 フランジ 厚さ (mm)	③縦弾性係数 (ボンネットボルト) (MPa)	④線膨張 係数 (ボンネットボ ルト) (mm∕ mm℃)	ボンネット ボルトの 材料	⑤線膨張係数 (ボンネットフラン ジ) (mm/mm℃)	ボンネット フランジ の材料	⑥線膨張係数 (弁箱フランジ) (mm/mm℃)	弁箱 フランジ の材料	<ul> <li>⑦ボンネットボルト</li> <li>の内圧による</li> <li>伸び量</li> <li>(mm)</li> </ul>	<ul> <li>⑧ボンネット</li> <li>ボルトの</li> <li>熱による</li> <li>伸び量</li> <li>(mm)</li> </ul>	<ul> <li>⑨ボンネット</li> <li>フランジ及び</li> <li>弁箱フランジ</li> <li>の熱による伸び量</li> <li>(mm)</li> </ul>	⑩伸び量 (mm)
弁耐圧部の 接合部	16	16	183960	1.29E-05	S45C	1.29E-05	SCPH2	1.29E-05	SCPH2	-0.003	0.111	0.111	-0.003

別第2-5表 弁耐圧部の接合部の評価結果(ボンネットボルトの伸び量)

別第2-6表 弁耐圧部の接合部の評価結果(ボンネットボルトの発生応力)

評価 部位	①' 締付 トルク値 (N・m)	②' ボンネット ボルト本数 (本)	③' ボンネット ボルト外径 (mm)	④, ボンネットボルト 締付トルク による 全締付荷重 (N)	⑤, ガスケット 反力円の 直径 (mm)	⑥' ガスケットの 有効幅 (mm)	⑦, ガスケット 係数	<ul> <li>⑧'8.2MPaの 加圧に 必要な 最小荷重 (N)</li> </ul>	⑨, 不足する 荷重 (N)	<ul> <li>⑩,</li> <li>ボンネットボルト</li> <li>1本当たり</li> <li>に発生する</li> <li>荷重 (N)</li> </ul>	①' ボンネット ボルト 径面積 (mm²)	⑫' ボンネッ トボルトの 発生応力 (MPa)
弁耐圧部の 接合部	25.01	6	12	62, 525	62.5	3.25	2.75	53, 937	8, 588	-1,431	84.3	17

弁(逃がし弁を除く。)からの漏えいの可能性について

逃がし弁を除く弁について,隔離弁の誤開放等による加圧事象発生時の圧力 (8.2MPa[gage]),温度(288℃)の条件下で破損が発生しないことを以下のと おり確認した。

ここで,以下の弁については隔離弁の誤開放等による加圧事象発生時の圧力, 温度以上で設計していることから破損が発生しないことを確認した。

別第 3-1 表 弁の設計圧力・温度

機器等	弁番号	設計圧力	設計温度
プロセス弁	F023, F051A	8.62MPa	302°C

また,以下の弁は設計・建設規格第 I 編 別表1にて温度 300℃における許 容圧力を確認し,加圧時の圧力を上回ることから,破損は発生しないことを確 認した。

機器等	弁番号	許容圧力
プロセス弁	F087A, FF104A	14.97MPa
	FF012	13.30MPa
	F053A	10.58MPa
	F085A, FF101A	9.97MPa
ベント弁	F073A, F074A	14.97MPa
ドレン弁	F171, F179A, F181, FF020-201, FF020-206,	
	FF020-215, FF020-230, FF022-205, FF022-219,	9.97MPa
	FF022-221, FF022-223, FF022-230	
計器隔離弁	FF009-201	14.97MPa
	FF006-201, FF006-202, FF007-203, FF007-204,	
	FF007-206, FF007-207, FF007-208, FF018-201,	9.97MPa
	FF018-202	
サンプル弁	V25-606	25.9MPa

別第 3-2 表 弁の許容圧力

1. 強度評価

評価対象弁の構成部品のうち,隔離弁の誤開放等による加圧事象発生時に破 損が発生すると想定される部位として,弁箱及び弁蓋からなる弁本体の耐圧部 並びに弁本体耐圧部の接合部について評価した。

(1) 弁本体の耐圧部の評価

設計・建設規格「解説 VVB-3100 弁の圧力温度基準」を適用し必要な最小厚さを算出し、実機の最小厚さが必要な最小厚さを上回ることを確認した。

$$t = \frac{Pd}{2S - 1.2P}$$

t: 弁箱の必要な厚さ

P: ISLOCA発生時の圧力(=8.2MPa)

d:内径 (mm)

S:設計降伏点

(2) 弁耐圧部の接合部の評価

設計・建設規格「WVC-3310 弁箱と弁ふたがフランジ結合の弁のフランジ応力評価」を適用しボルトの必要な断面積及び許容応力を算出し、実機のボルトの断面積がボルトの必要な断面積を上回り、かつ、発生応力が許容応力を下回ることを確認した。

<b>弁</b> 釆巳	ボルトの実機の断面積	ボルトの必要な断面積	発生応力	許容応力
	(mm ² )	$(mm^2)$	(MPa)	(MPa)
F024A	16, 406	15, 451	167	168
F086	901	693	127	177
F065A	1,204	1, 192	124	165
F080A	901	833	118	177
F060A	321	261	86	177
FF029-201	601	318	47	165
FF029-202	601	318	47	165

別第 3-3 表 ボルトの必要な断面積と許容応力

上記の条件を満たさない弁については,ボンネットボルトの内圧と熱に よる伸び量及びボンネットフランジと弁箱の熱による伸び量を評価し,ボ ンネットボルトの伸び量からボンネットフランジと弁箱フランジの伸び量 を差し引いた伸び量がプラスの場合とマイナスの場合について評価した。

・伸び量がプラスの場合

ボンネットボルトの伸び量からボンネットフランジと弁箱フランジの 伸び量を差し引いた伸び量がガスケットの復元量^{**3}を下回ることを確 認した。

※3:ガスケットに締付面圧を加えていくと弾性変形が生じ、更に締付面圧 を加えていくと塑性変形が生じる。塑性変形したガスケットの締付面 圧を緩和した場合、弾性領域分のみが復元する性質がある。弁耐圧部 の接合部のシールのため、ガスケットには塑性領域まで締付面圧を加 えており、締付面圧緩和時に弾性領域分の復元が生じ、復元量以下で あればシール性は確保される。ガスケットの復元量は、メーカ試験に よって確認した値。

・伸び量がマイナスの場合

伸び量がマイナスの場合は, 弁耐圧部の接合部は増し締めされること になる。弁耐圧部の接合部については, ボンネットフランジとリフト制 限板がメタルタッチしており, それ以上ガスケットが圧縮しない構造と なっていることから, ボンネットナット座面の面圧並びにボンネットフ ランジ及びリフト制限板の合わせ面の面圧が材料の許容応力を下回るこ とを確認した。

- a. 伸び量によるフランジの評価
- (a) 内圧による伸び量
  - ・ボンネットボルトの発生応力 ④' = (1,000×①' ×②')/(0.2×③') ⑧' = ( $\pi$ ×⑤' ×8.2/4)×(⑤' +8×⑥' ×⑦') ⑨' =④' -⑧' ⑩' =⑨' /②' ⑫' =⑩' /⑪'
    - ①': 締付けトルク値 (N・m)
    - ②':ボンネットボルト本数(本)
    - ③':ボンネットボルト外径 (mm)
    - ④':ボンネットボルト締付けトルクによる全締付荷重(N)
    - ⑤':ガスケット反力円の直径 (mm)
    - ⑥':ガスケット有効幅 (mm)
    - ⑦':ガスケット係数
    - ⑧': 8.2MPaの加圧に必要な最小荷重(N)
    - ⑨':不足する荷重(N)
    - ⑩':ボンネットボルト1本あたりに発生する荷重(N)
    - ① : ボンネットボルト径面積 (mm²)
    - 12':ボンネットボルトの発生応力 (MPa)
  - ・ボンネットボルトの内圧による伸び量

 $7 = (12' \times (1+2)) / 3$ 

- ①:ボンネットフランジ厚さ (mm)
- ②:弁箱フランジ厚さ (mm)

③:ボンネットボルト材料の縦弾性係数(MPa at 288℃)

⑦:ボンネットボルトの内圧による伸び量(mm)

- (b) 熱による伸び量
  - ・ボンネットボルトの熱による伸び量
    - $(\$) = (4) \times ((1) + (2)) \times (288^{\circ}C 20^{\circ}C)$ 
      - ①:ボンネットフランジ厚さ (mm)
      - ②:弁箱フランジ厚さ (mm)
      - ④:ボンネットボルト線膨張係数 (mm/mm℃ at 288℃)
      - ⑧:ボンネットボルトの熱による伸び量(mm)
        - ※:伸び量を大きく見積もるため,隔離弁の誤開放等による加圧事象 発生前後の温度差を大きくするように保守的に低めの温度を設 定
  - ・ボンネットフランジ及び弁箱フランジの熱による伸び量
    - $9 = 5 \times 1 \times (288^{\circ}\text{C} 20^{\circ}\text{C}) + 6 \times 2 \times (288^{\circ}\text{C} 20^{\circ}\text{C})$ 
      - ①:ボンネットフランジ厚さ (mm)
      - ②:弁箱フランジ厚さ (mm)
      - ⑤:ボンネットフランジ線膨張係数 (mm/mm℃ at 288℃)
      - ⑥:弁箱フランジ線膨張係数(mm/mm℃ at 288℃)
      - ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量
         (mm)
        - ※:伸び量を大きく見積もるため,隔離弁の誤開放等による加圧事象 発生前後の温度差を大きくするように保守的に低めの温度を設 定

(c) 伸び量

伸び量 (mm) =⑦+(8-9)

- ⑦:ボンネットボルトの内圧による伸び量 (mm)
- ⑧:ボンネットボルトの熱による伸び量(mm)
- ⑨:ボンネットフランジ及び弁箱フランジの熱による伸び量 (mm)
- b. ボンネット座面の面圧

ボンネットボルト締付荷重として評価された荷重⑧'をボンネットナット座面の面積Sで除し面圧を算出する。

- ・ボンネットナット座面の面積(ナット座面丸面の場合) S= $(a^2-b^2)/4 \times \pi$ 
  - a:ボンネットナット面外径 (mm)
  - b:ボンネット穴径 (mm)
  - S: ボンネットナット面面積 (mm²)
- ・ボンネットナット座面の面積(ナット座面平面の場合)

 $S = (\sqrt{3} \swarrow 16 \times a^2 \times 6) - (b^2 \times \pi \swarrow 4)$ 

a:ボンネットナット面外径 (mm)

- b:ボンネット穴径 (mm)
- S:ボンネットナット面面積 (mm²)
- ・ボンネット座面の面圧

$$d =$$
 (S×c)

- c:ボンネットボルト本数(本)
- d:ボンネットナット応力 (MPa)
- S:ボンネットナット面面積 (MPa)

c. ボンネットフランジ及び弁箱フランジの合わせ面の面圧

ボンネットボルト締付荷重として評価された⑧'を合わせ面の面積 S で除し面圧を算出する。

・ボンネットフランジ及びリフト制限板の合わせ面の面積

 $S = (a^2 - b^2) \swarrow 4 \times \pi$ 

- a:メタルタッチ部外径 (mm)
- b:メタルタッチ部内径 (mm)
- S: メタルタッチ部面積 (mm²)
- ・ボンネットフランジ及びリフト制限板の合わせ面の面圧
   d=⑧'/S
  - d:メタルタッチ部応力 (MPa)
  - S: メタルタッチ部面積 (mm²)

1.3 評価結果

弁(逃がし弁を除く。)の各部位について評価した結果,別第3-3表から別第 3-5表に示すとおり実機の値は判定基準を満足し,隔離弁の誤開放等による加 圧事象発生時の圧力(8.2MPa[gage]),温度(288℃)の条件下で破損せず,漏 えいは発生しないことを確認した。

<b>家</b> (本) (六)	++ 本1	P:内圧	」. 内汉 (mm)	S:設計引張強さ	実機の最小厚さ	計算上必要な厚さ
一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	1/1 作4	(MPa)		(MPa)	(mm)	(mm)
F003A	SCPH2	8.2	480	191	22.0	10.6
F016A	SCPL1	8.2	416	186	20.0	9.5
F024A	SCPL1	8.2	480	186	24.0	10.9
F027A	SCPH2	8.2	144	191	10.0	3.2
F031A	SCPH2	8.2	444.5	191	22.5	9.8
F047A	SCPH2	8.2	480	191	22.0	10.6
F048A	SCPH2	8.2	660	191	31.0	14.6
F049	SCPH2	8.2	184	191	7.0	4.1
F063A	SCPH2	8.2	184	191	11.0	4.1
F086	SCPH2	8.2	90	191	8.0	2.0
F098A	SCPH2	8.2	500	191	23.0	11.1
F170A	SCPL1	8.2	280	186	16.0	6.4
F065A	SCPH2	8.2	136.5	191	8.0	3.1
F072A	SCPH2	8.2	184	191	11.0	4.1
F080A	SCPH2	8.2	102	191	11.0	2.3
F060A	SCPH2	8.2	54	191	6.5	1.2
FF029-201	SUS304	8.2	45	128	12.5	1.5
FF029-202	SUS304	8.2	45	128	12.5	1.5

別第 3-3 表 弁耐圧部の強度評価結果

弁番号	①ボンネット フランジ 厚さ (ふた) (mm)	②弁箱 フランジ 厚さ (mm)	③縦弾 性係数 (ボンネット ボルト) (MPa)	④線膨張 係数 (ボンネット ボルト) (mm/ mm℃)	ボンネット ボルトの 材料	⑤線膨張係数 (ボンネットフラン ジ) (mm/mm℃)	ボンネット フランジ の材料	<ul> <li>⑥線膨張</li> <li>係数</li> <li>(弁箱</li> <li>フランジ)</li> <li>(mm/</li> <li>mm℃)</li> </ul>	弁箱 フランジ の材料	⑦ボンネット ボルトの 内圧によ る伸び量 (mm)	⑧ボンネット ボルトの 熱による 伸び量 (mm)	<ul> <li>③ボンネット</li> <li>フランジ及び</li> <li>弁箱フランジの</li> <li>熱による伸び</li> <li>量(mm)</li> </ul>	⑩伸び量 (mm)	ガスケット の 復元量
F003A	66	66	186,960	1.33E-05	A193 B7	1.29E-05	SCPH2	1.29E-05	SCPH2	-0.004	0.469	0.457	0.008	0.1
F016A	62	62	186,960	1.33E-05	A320 L7	1.29E-05	SCPL1	1.29E-05	SCPL1	-0.007	0.440	0.429	0.004	0.1
F027A	36	36	186,960	1.33E-05	A193 B7	1.29E-05	SCPH2	1.29E-05	SCPH2	0.008	0.256	0.249	0.015	0.1
F031A	58	64	186, 960	1.29E-05	SCM435	1.29E-05	ASTM A515	1.29E-05	SCPH2	-0.029	0. 422	0. 422	-0.029	_
F047A	66	66	186,960	1.33E-05	A193 B7	1.29E-05	SCPH2	1.29E-05	SCPH2	-0.004	0.469	0.457	0.008	0.1
F048A	65	65	186,960	1.33E-05	A193 B7	1.29E-05	SCPH2	1.29E-05	SCPH2	0.051	0.462	0.450	0.063	0.1
F049	41	41	186,960	1.33E-05	A193 B7	1.29E-05	SCPH2	1.29E-05	SCPH2	-0.006	0.291	0.284	0.001	0.1
F063A	11	26	186,960	1.29E-05	SCM3	1.29E-05	SCPH2	1.29E-05	SCPH2	0.001	0.128	0.128	0.001	0.2
F098A	60	54	186,960	1.29E-05	SCM3	1.29E-05	SCPH2	1.29E-05	SCPH2	0.002	0. 394	0.394	0.002	0.2
F170A	47	53	186,960	1.29E-05	SNB7	1.29E-05	SCPL1	1.29E-05	SCPL1	0.001	0.346	0.346	0.001	0.2
F072A	11	26	186,960	1.29E-05	SCM3	1.29E-05	SCPH2	1.29E-05	SCPH2	0.001	0.128	0.128	0.001	0.2

別第 3-4 表 弁耐圧部の接合部評価結果(ボンネットボルトの伸び量)

別第 3-5 表 弁耐圧部の接合部の評価結果(ボンネットボルトの発生応力)

弁番号	①' 締付トルク値 (N・m)	②' ボンネットボルト 本数 (本)	③' ボンネット ボルト外 径 (mm)	④, ボンネットボルト 締付トルク による 全締付荷重 (N)	⑤, ガスケット 反力円の 直径 (mm)	⑥' ガスケットの 有効幅 (mm)	⑦' ガスケット 係数	⑧, 8.2MPaの 加圧に必要な 最小荷重 (N)	⑨' 不足する 荷重 (N)	<ul> <li>⑩,</li> <li>ボンネットボルト</li> <li>1本当たり</li> <li>に発生する</li> <li>荷重         <ul> <li>(N)</li> </ul> </li> </ul>	⑪' ボンネット ボルト 径面積 (mm²)	⑫' ボンネッ トボルトの 発生応力 (MPa)	許容 応力 (MPa)
F031A	911	20	33	2,760,606	498.2	10.9	2	2, 158, 064	602,542	-30, 127	670.2	45	596

計器からの漏えいの可能性について

計器について,隔離弁の誤開放等による加圧事象発生時の圧力 (8.2MPa[gage]),温度(288℃)の条件下で破損が発生しないことを以下のと おり確認した。

1. 圧力計, 差圧系計

隔離弁の誤開放等による加圧事象発生時に加圧される以下の全ての計器について,隔離弁の誤開放等による加圧事象発生時の圧力以上の計装設備耐圧値を 有しており,構造材の温度上昇に伴う耐力低下(温度-30℃~40℃における設 計引張強さに対する288℃における設計引張強さの割合はSUS316Lの場合で約 79%)を考慮しても加圧時における圧力以上であることから破損が発生しない ことを確認した。

計器番号	計装設備耐圧 (MPa)
PT-E12-N002A-1	14.7(150kg/cm ² )
PT-E12-N026A	14.7(150kg/cm ² )
PT-E12-N053A	14.7(150kg/cm ² )
dPT-E12-N058A	$13.7(140  \text{kg/cm}^2)$
FT-E12-N013	14.7(150kg/cm ² )
FT-E12-N015A	14.7(150kg/cm ² )
FT-E12-N060A	14.7(150kg/cm ² )
FT-C61-N001	14.7(150kg/cm ² )

別第4-1表 圧力計,差圧計の設計圧力

2. 温度計

2.1 評価方針

隔離弁の誤開放等による加圧事象発生時に加圧される温度計について,耐圧 部となる温度計ウェルの健全性を評価した。評価手法として,日本機械学会「配 管内円通状構造物の流量振動評価指針(JSME S 012-1998)に従い,同期振動発 生の回避又は抑制評価,一次応力評価並びに疲労評価を実施し,破損の有無を 確認した。評価条件を別第4-2表に示す。

別第 4-2 表 評価条件

圧力	温度	流量	流体密度	動粘度
8.2MPa	288°C	200m³⁄h	736kg⁄m³	$1.25 \times 10^{-7} \mathrm{m}^2 \mathrm{/s}$

### 2.2 評価方法

### (1) 評価手順

流力振動評価指針に従った評価手順を別第4-1図に示す。



別第 4-1 図 配管内円柱状構造物の流力振動フロー

(2) 評価式

流力振動評価指針に従い評価を実施する場合に使用する評価式を別第 4-3表に示す。

	項目	評価式									
1.	各種パラ	・基本固有振動数 f ₀									
	メータの 算定	$f_{o} = \frac{\lambda_{o}^{2}}{2 \cdot \pi \cdot L^{2}} \cdot \sqrt{\frac{E \cdot I}{m}}$									
		$I = \frac{\pi}{64} \cdot (d_{0}^{4} - d_{1}^{4})$									
		$\lambda_{\circ} = 1.875$									
		$m = \frac{\pi}{4} \left\{ \rho_{\rm s} \cdot (d_{\rm o}^{2} - d_{\rm i}^{2}) + \rho \cdot d_{\rm o}^{2} \right\}$									
		・換算流速 V _ッ									
		$V_{\gamma} = \frac{V}{f_{\circ} \cdot d_{\circ}}$									
		流速 V には流速分布が非一様(通常,管中心部で管壁部よりも流速は									
		大きい。)の場合は,構造物周辺平均流速 $\overline{V}$ を用いる。									
		$\overline{V} = \frac{2 \cdot \left\{ \frac{n}{n+1} \left( \frac{L_{\circ}}{D \swarrow 2} \right) - \frac{n}{2 \cdot n+1} \left( \frac{L_{\circ}}{D \swarrow 2} \right)^{\frac{1}{n+2}} \right\}}{\left( \frac{n+1}{2} \cdot n+1 \right) \cdot V_{\circ}} \cdot \frac{(n+1)(2 \cdot n+1)}{(n+1)(2 \cdot n+1)} \cdot V_{\circ}$									
		$1 - \left\{1 - \left(\frac{L_{\circ}}{D \swarrow 2}\right)\right\}^{2} \qquad 2 \cdot n^{2} \qquad m$									
		また, 流速 V はエルボ等による偏流の影響を考慮して構造物周辺平均									
		流速 $\overline{V}$ に以下の割増係数を乗じた値とするが、今回は十分な保守性が確									
		保されていることを確認するために割増係数「2」として計算する。									
		副唱所数     本・幅加先生(赤から)構造(初)       1.5     x/D≦3									
		1.25 3 <x d:配管内径<="" d≦5="" th=""></x>									
		・換算減衰率 C _n									
		$C_{n} = \frac{2 \cdot m \cdot \sigma}{f_{0} \cdot d_{0}}$									
		$\delta = 2 \cdot \pi \cdot \xi$									
		$\xi$ =0.002(ねじ接合),0.0005(溶接接合)									

別第 4-3 表 評価式 (その1)

	項目	評価式
2.	流体力に	・定常抗力による応力 σ D
	よる応力	$\sigma = F_{D} \cdot L_{\bullet} \cdot (2 \cdot L - L_{\bullet})$
	の算出	$o_{\rm d} = \frac{1}{2 \cdot Z}$
		$F_{\rm d} = \frac{1}{2} \cdot \rho \cdot V^2 \cdot d_{\rm o} \cdot C_{\rm d}$
		$C_{_{\rm D}} = 1.2$
		$Z = \frac{\pi}{32} \cdot \frac{(d_{0}^{4} - d_{1}^{4})}{d_{0}}$
		・ランダム振動応力振幅 $\sigma_R$
		$\rho_{\rm R} = \frac{E \cdot I}{Z} \cdot y_{\rm R}(L) \cdot \frac{\lambda_{\rm o}^2}{L^2}$
		$y_{R}(L) = 2 \cdot C_{0} \cdot \sqrt{\frac{\beta_{0}^{2} \cdot G(f_{0})}{64 \cdot \pi^{3} \cdot m^{2} \cdot f_{0}^{3} \cdot (\xi + \xi_{f})}}$
		$C_0 = 3.0$ $\xi_f = 0$
		$\beta_{0} = \eta_{0} / \lambda_{0}$
		$\eta_{\circ} = -\{\sinh(\kappa_{\circ}) - \sin(\kappa_{\circ})\} + \tau_{\circ} \cdot \{\cosh(\kappa_{\circ}) + \cos(\kappa_{\circ})\}$
		$\kappa_{o} = \lambda_{o} \cdot (1 - \frac{L_{o}}{L})$
		$\tau_{0} = 0.734$
		$G(f_{\circ}) = (C' \cdot \frac{1}{2} \cdot \rho \cdot V^{2} \cdot d_{\circ})^{2} \Phi(\overline{f_{\circ}}) \cdot \frac{d_{\circ}}{V}$
		C' = 0.13
		$\Phi(\overline{f_{o}}) = \frac{4}{1+4 \cdot \pi^{2} \cdot \overline{f_{o}}}$
		$\overline{f_{\circ}} = \frac{f_{\circ} \cdot d_{\circ}}{V}$
		・外圧により円柱状構造物に発生する応力 ρ _G
		厚肉円筒において、外圧がかかっている場合の円周方向の応力式を使 用する。
		$\sigma = 2 \cdot P \cdot d_{2}$
		$O_{\rm G} = \frac{1}{\left(d_{\rm o}^2 - d_{\rm i}^2\right)^2}$

別第4-3表 評価式 (その2)

(3) 記号説明

B ₁ , B ₂	応力係数(-)
C _o	二乗平均値からピーク値への換算係数(-)
C _D	定常抗力係数(-)
C _n	換算減衰率
C'	ランダム励振力係数(-)
d _o	構造物の代表外径 (-)
d i	構造物の代表内径 (-)
Е	構造物の縦弾性係数 (Pa)
f ₀	円柱状構造物の基本固有振動数 (Pa)
F _D	単位長さ当たりの流体抗力(N/m)
G	単位長さ当たりのランダム励振力のパワースペクトル密度
	$(N^2 \cdot S / m^2)$
Ι	構造物の断面二次モーメント (m ² )
К	応力集中係数(-)
L	構造物の長さ (m)
L _e	流体中に突き出た構造物長さ(m)
m	付加質量を含む構造物の単位長さ当たり質量(kg/m)
n	Re 数に基づく係数 (-)
Р	配管の最高使用圧力 (MPa)
S _m	設計応力強さ (MPa)
V	流速(m/s)
V _m	断面平均流速(m/s)
$\overline{V}$	構造物周辺平均流速(m/s)
V _r	換算流速(-)
y _R (L)	ランダム振動変位振幅(m)
Ζ	構造物の断面係数 (m ³ )
βο	基本振動モードの刺激係数(-)
δ	空気中における構造物の対数減衰率(-)
ξ	空気中における構造物の臨界減衰比(-)
ξ _f	流体減衰(-)
ρ	流体の密度(kg/m ³ )
ρ _s	構造物の密度(kg/m ³ )
σ	定常抗力による応力(MPa)
σ _F	設計疲労限 (MPa)
σ _R	ランダム振動応力振幅 (MPa)
σ _G	外圧により構造物に発生する応力(MPa)
Φ	ランダム励振力の規格化パワースペクトル密度(-)

(4) 判定基準

流力振動評価指針に従い評価を実施する場合に使用する判定基準を別第 4-4表に示す。

別第 4-4 表 判定基準

	項目	判定基準
1.	同期振動	下記のいずれかを満足すること。
	の回避又	(a) $V_{\gamma} < 1$
	は抑制評	(b) $C_n > 64$
	価	(c) $V_{\gamma} < 3.3$ かつ $C_n > 2.5$
2.	流力振動	・応力制限
	に対する	組合せ応力は,設計建設規格より PPB-3520(クラス1)を適用した以
	強度評価	下の条件を満足すること。
		(ク
		B ₁ =1.0 (ねじ接合), 0.75 (溶接接合)
		B ₂ =4.0 (ねじ接合), 1.5 (溶接接合)
		・疲労評価
		応力集中係数Kを考慮した応力振幅が以下の条件を満足すること。
		$\mathrm{K} \cdot \sigma_{\mathrm{R}} \leq \sigma_{\mathrm{F}}$
		K=4.0 (ねじ接合), 4.2 (溶接接合)

### 2.3 評価結果

計器について評価した結果,別第4-5表に示すとおり実機の値は判定基準を 満足し,隔離弁の誤開放等による加圧事象発生時の圧力(8.2MPa[gage]),温度 (288℃)の条件下で破損せず,漏えいは発生しないことを確認した。

別第 4-5 表 評価結果

			流体条件			配管仕様		構造物仕様						同期振動評価				
構造物	計器 番号	流体種別	V (m∕s)	ρ (kg∕m ³)	クラス	P (MPa)	最高 使用 温度 (℃)	タイプ	材料	d ₀ (×10 ⁻³ m)	d _i (×10 - ³ m)	L (×10 ⁻³ m)	L _e (×10 ⁻³ m)	$\rho_{s} (\times 10)^{3} \text{ kg/m}^{3}$	I (×10 ⁻⁸ m ⁴ )	m (kg/ m)	E ^{**1} (×10 ^{1 1} Pa)	f ₀ (Hz)
温度	TE-N004A	水	0.77	736	3	8.2	288	溶接 接合	ASTM-A 105	23.85	9.1	203	203	7.85	1.55	3.33	1.84	398.19
ョウェル	TE-N027A	水	0.76	736	3	8.2	288	溶接 接合	ASTM-A 105	23.85	9.1	203	155.2	7.85	1.55	3. 33	1.84	398.19

		同期振動評価						構造物仕様							同期振	動評価
構造物	計器 番号	V _v	C _n	(a) $V_{\gamma} < 1$	(b) C _n >64	(c) $V_{\gamma} < 3.3$ $C_n > 2.5$	F _D (N∕m)	$\begin{bmatrix} Z \\ (\times 10 \\ -6 m^3) \end{bmatrix}$	σ _D (MPa)	$y_{R}$ (L) (×10 ⁻⁸ m)	σ _R (MPa)	σ _G (MPa)	組合せ 応力 (MPa)	1.5 • S ^{ж₂} (MPa)	応力 振幅 (MPa)	σ _F (MPa)
温度	TE-N004A	0.08	0.05	0	-	_	6.24	1.30	0.10	54.8	0.10	19.2	14.7	184	0.43	76
計ウ ェル	TE-N027A	0.08	0.05	0	-	_	6.08	1.30	0.09	52.1	0.10	19.2	14.7	184	0.41	76

※1:設計・建設規格 付録材料図表 Part6表1における炭素量が0.3%を超える炭素鋼の288℃の値

※2:S_mは設計・建設規格 付録材料図表 Part5表5におけるASTM-A105(SF490A)の288℃の値

※3:設計・建設規格 付録材料図表 Part8図1における Su≦550MPa 線図の繰返しピーク応力強さを 288℃の縦弾性係数で補正した値

#### 配管からの漏えいの可能性について

配管及び配管フランジ部について,隔離弁の誤開放等による加圧事象発生時の圧力(8.2MPa),温度(288℃)の条件下で破損が発生しないことを以下のとおり確認した。

- 1. 強度評価
- 1.1 評価部位の選定

配管の構成部品のうち漏えいが想定される部位は,高温・高圧の加わる配管と,配管と配管を繋ぐフランジ部があり,それらについて評価を実施した。 評価対象配管を別第 5-1 図に示す。

- 1.2 評価方法
  - (1) 配管の評価

クラス2配管の評価手法である設計・建設規格「PPC-3411(1)内圧を受け る直管」を適用して必要な厚さを算出し、実機の最小厚さが必要な最小厚 さを上回ることを確認した。

$$t = \frac{PD_{\circ}}{2Su\eta + 0.8P}$$

t:管の計算上必要な厚さ(mm)

- P:隔離弁の誤開放等による加圧事象発生時の圧力(=8.2MPa)
- D₀:管の外径 (mm)

Su:管の設計引張強さ(MPa)

η:長手継手効率

(2) フランジ部の評価

設計・建設規格「PPC-3411 フランジ」を適用してフランジの手法を適 用してフランジ応力算定用圧力からフランジボルトの伸び量を算出したと ころ,伸び量がマイナスの場合は,フランジ部が増し締めされるため,ガ スケット最大圧縮量を下回ることを確認した。配管フランジ部の構造を別 第 5-2 図に示す。

また,熱曲げモーメントの影響については,設計・建設規格で規定されている (PPC-1.7) 式を使用し,フランジ部に作用するモーメントを圧力に換算して評価を実施した。

1.3 評価結果

配管の各部位について評価した結果,別第 5-1 表及び別第 5-2 表に示すとお り実機の値は判定基準を満足し,隔離弁の誤開放等による加圧事象発生時の圧 カ(8.2MPa[gage]),温度(288℃)の条件下で破損せず,漏えいは発生しない ことを確認した。



別第 5-1 図 残留熱除去系A系 必要板厚評価対象配管(既工認系統図)

配管 No.	クラス 区分	外径 D _o (mm)	公称厚さ (mm)	材料	評価圧力 (MPa)	評価温度 (℃)	η	公差 (%)	最小厚さ (mm)	0.6Su (MPa)	必要厚さ t (mm)
3	2	457.20	14.30	SM41B (SM400B)	8.20	288	1.00	1.5	12.80	223.80	8.26
4	2	457.20	14.30	SM41B (SM400B)	8.20	288	1.00	1.5	12.80	223.80	8.26
6	2	355.60	11.10	STPT42 (STPT410)	8.20	288	1.00	12.5	9.71	242.40	5.94
9	2	114.30	6.00	STPT42 (STPT410)	8.20	288	1.00	12.5	5.25	242.40	1.91
10	2	114.30	6.00	STPT42 (STPT410)	8.20	288	1.00	12.5	5.25	242.40	1.91
17	2	114.30	6.00	STPT42 (STPT410)	8.20	288	1.00	12.5	5.25	242.40	1.91
26	2	165.20	7.10	STPT42 (STPT410)	8.20	288	1.00	12.5	6.21	242.40	2.76
31	2	216.30	8.20	STPT42 (STPT410)	8.20	288	1.00	12.5	7.17	242.40	3.61
34	2	406.40	12.70	SM50B (SM490B)	8.20	288	1.00	1.5	11.20	264.60	6.23
37	2	76.30	5.20	STPT42 (STPT410)	8.20	288	1.00	12.5	4.55	242.40	1.28
39	2	558.80	15.90	SM41B (SM400B)	8.20	288	1.00	1.5	14.40	223.80	10.09
40	2	318.50	10.30	STPT42 (STPT410)	8.20	288	1.00	12.5	9.01	242.40	5.32
56	2	457.20	14.30	STPT42 (STPT410)	8.20	288	1.00	12.5	12.51	242.40	7.63
58	2	457.20	14.30	STPT42 (STPT410)	8.20	288	1.00	12.5	12.51	242.40	7.63

別第 5-1 表 必要厚さ評価結果

別第 5-2 表 フランジ部評価結果 (1/2)

7	ランジ用途	F1 150A 検出フランジ	F2 450A 検出フランジ	F3 350A 検出フランジ	F4 安全弁取合フランジ	F5 熱交換器ドレン フランジ
フラ	ランジロ径	150A	450A	350A	25A	40A
評価		288	288	288	288	288
ŕ	常温(℃)	20	20	20	20	20
評価温度⊿t(℃)=	:ISLOCA 発生時温度-常温	268	268	268	268	268
評佰	面圧力(MPa)	8.2	8.2	8.2	8.2	8.2
ガス	ケット仕様	SUS304 4.5t×2	SUS304 4.5t×2	SUS304 4.5t×2	SUS304 4.5t×1	SUS304 4.5t×1
	ボルト材質	SCM435	SCM435	SCM435	SCM435	SCM435
ゼルト仕住	ボルトサイズ	20	30	30	16	20
ハルト江家	本数	12	24	20	4	4
	縦弾性係数 E(MPa)	186,960	186,960	186,960	186, 960	186,960
卢	7圧(MPa)	8.2	8.2	8.2	8.2	8.2
フランジに作用する自	重曲げモーメント ^{**1} M(N・mm)	3.90E+05	6.42E+06	9.20E+05	2.00E+04	1.00E+04
フランジに作用する	熱伸び曲げモーメント ^{*1} M (N・mm)	3.37E+06	4.65E+07	2.81E+07	1.10E+05	2.40E+05
曲げモーメントによる等価圧力 ^{※2} Peq(MPa)		2.52	2.05	2.46	10.50	4.14
内圧 P+等価圧力 Peq(MPa)		10.72	10.25	10.66	18.70	12.34
	G (mm)	196.51	508.78	391.53	39.8	67.5
有効断面積	$f(mm^2) A = \pi \swarrow 4G^2$	3.03E+04	2.03E+05	1.20E+05	1.24E+03	3.58E+03
発生荷重 F	$P(N) = (P + Peq) \times A$	3.25E+05	2.08E+06	1.28E+06	2.33E+04	4.42E+04
ボルト1本当	iたりの荷重 F/n (N)	2.71E+04	8.68E+04	6.42E+04	5.82E+03	1.10E+04
ボルト	断面積 A2(mm ² )	234.9	562.09	562.09	150.33	234.9
ボノ	レト歪み ε	6.17E-04	8.26E-04	6.11E-04	2.07E-04	2.51E-04
ボルー	ト長さL1(mm)	85.2	131.8	130	50	31
荷重によるボ	ルト伸び量⊿L1(mm)	0.05	0.11	0.08	0.01	0.01
初期	締付荷重(N)	43,691	83, 464	49, 450	11,960	25,062
初期締付	による応力(MPa)	186.0	148.5	88.0	79.6	106.7
ボルト歪み ε ₀		9.95E-04	7.94E-04	4.71E-04	4.26E-04	5.71E-04
初期締付によるボルト伸び量⊿L0(mm)		0.08	0.10	0.06	0.02	0.02
ボルト熱膨張	長係数α1(mm/mm℃)	1.29E-05	1.29E-05	1.29E-05	1.29E-05	1.29E-05
フランジ熱膨	張係数α2(mm/mm℃)	1.29E-05	1.29E-05	1.29E-05	1.29E-05	1.29E-05
オリフィス熱腸	膨張係数α3(mm/mm℃)	1.71E-05	1.71E-05	1.70E-05	-	—
ガスケット内外輪	熱膨張係数α4(mm/mm℃)	1.70E-05	1.70E-05	1.70E-05	1.70E-05	1.70E-05

※1:該当するフランジを含んだ配管モデルにて応力解析を実施し、算出した値にて評価。

※2:設計・建設規格による機械的荷重による曲げモーメントを等価圧力に換算する式 Peq=16M/(πG3)により算出。今回は,熱伸びによる曲げモーメントも本計算式により等価 圧力換算した。

別第 5-2 表 フランジ部評価結果 (2/2)

フランジ用途	F1 150A 検出フランジ	F2 450A 検出フランジ	F3 350A 検出フランジ	F4 安全弁取合フランジ	F5 熱交換器ドレン フランジ
ボルト熱伸び対象長さL2(mm)	85.2	131.8	130.0	50.0	31.0
フランジ熱伸び対象長さL3(mm)	76.2	120.8	108.8	47.0	28.0
オリフィス熱伸び対象長さ L4(mm)	3.0	5.0	16.0	—	—
ガスケット内外輪熱伸び対象長さL5(mm)	6.0	6.0	6.0	3.0	3.0
ボルト熱伸び⊿L2=α1・L2・⊿T(mm)	0.29	0.46	0.45	0.17	0.11
フランジ熱伸び⊿L3=α2・L3・⊿T(mm)	0.26	0. 42	0.38	0.16	0.10
オリフィス熱伸び⊿4=α3・L4・⊿T(mm)	0.01	0.02	0.07	_	_
ガスケット内外輪熱伸び⊿5=α4・L5・⊿T(mm)	0.03	0.03	0.03	0.01	0.01
伸び量⊿L1-⊿L0+⊿L2-⊿L3-⊿L4-⊿L5(mm)	-0.04	-0.01	-0.01	-0.01	-0.01
ガスケットの初期圧縮量:最大(mm)	2.40	2.40	2.40	1.20	1.20
ガスケットの合計圧縮量(mm)	2. 44	2.41	2.41	1.21	1.21
ガスケットの許容圧縮量(mm)	2.60	2.60	2.60	1.30	1.30

#### 破断面積の設定について

#### 1. 評価部位の選定と破断面積の評価方法

別紙1~5の評価結果から,隔離弁の誤開放等により残留熱除去系の低圧設計部分が加圧されたとしても,破損が発生しないことを確認した。

そこで、隔離弁の誤開放による加圧事象発生時の加圧範囲のうち最も大き なシール構造であり、損傷により原子炉冷却材が流出した際の影響が最も大 きい熱交換器フランジ部に対して、保守的に弁開放直後の圧力ピーク値 (8.2MPa [gage])、原子炉冷却材温度(288℃)に晒され続け、かつ、ガスケ ットに期待しないことを想定した場合の破断面積を評価した。

a. 内圧による伸び量

・フランジのボルト荷重△W

$$\Delta W = \frac{\pi}{4} \times G^2 \cdot (P_2 - P_1)$$

G:ガスケット反力円の直径 (=D₀-2b=2,153mm)

$$b = 2.5\sqrt{\frac{1}{2} \times (\frac{D_{0} - D_{1}}{2} - 2)}$$

D₀: ガスケット接触面の外径(=2,170mm)

D_i: ガスケット接触面の内径 (=2,120mm)

P₁:設計条件における圧力(5.18MPa)

P₂:隔離弁の誤開放による加圧事象発生時の圧力(=8.2MPa)
 ・内圧による伸び量∠L1

$$\Delta L1 = H_{\rm b} \times \frac{\Delta W}{N_{\rm b} \cdot A} \times \frac{1}{E}$$

H_b:ボルト長さ(ナット下面-ボルト留め部間)(=349.5mm)

N_b:ボルト本数 (=68)

A: ボルト有効径における断面積 (=  $\pi / 4 \times 46.051^2 = 1,665 \text{mm}^2$ ) E: ボルトのヤング率 (=187,000N/mm² at288℃[SNCM8])

- b. 熱による伸び量
  - ・ボルトの熱による伸び量/L2

 $\Delta L2 = \alpha_1 \times H_1 \times (288^{\circ}\text{C} - 20^{\circ}\text{C})$ 

α₁:ボルトの熱膨張係数 (=13.98×10⁻⁶mm/mm℃ at288℃ [SNCM8])

N_b:ボルト長さ (=349.5mm)

・管板及びフランジの熱による伸び量/L3

 $\Delta L3 = \alpha_{a} \times (h \ 1 + h2) \times (288^{\circ}\text{C} - 20^{\circ}\text{C})$ 

- α₂:管板及び胴側フランジの熱膨張係数(=12.91×10⁻⁶mm/ mm℃ at288℃[SF50, SFV1])
- h1: 胴側フランジ厚さ (=150mm)
- h2:管板厚さ (=195mm)

c. 破断面積 A

 $A = \pi \times D \times (\angle L1 + \angle L2 - \angle L3)$ 

D_i: ガスケット接触面の内径(=2,120mm)

2. 破断面積の評価結果

熱交換器フランジの破断面積について評価した結果,別第6-1表に示すと おり破断面積は約21cm²となり,有効性評価のISLOCAでは,残留熱除 去系熱交換器フランジ部に約21cm²の漏えいが発生することを想定する。

## 別第 6-1 表 破断面積評価結果

評価部位	圧力 (MPa)	泪座	,	伸び量 (mm)		内汉	全部材	破断
		(℃)	+	+		P J 1主 (mm)	伸び量	面積
			⊿L1	⊿L2	∐L3	(mm)	(mm)	(cm ² )
フランジ部	8.2	288	0.19	1.31	1.19	2, 120	0.31	約 21

⊿L1:ボルトの内圧による伸び量

△L2:ボルトの熱による伸び量 △L3:管板及びフランジ部の熱による伸び量

ISLOCA発生時の原子炉冷却材漏えい量評価

#### 及び原子炉建屋内環境評価

1. 評価条件

有効性評価の想定のとおり,残留熱除去系B系におけるISLOCA発生 時の原子炉冷却材の漏えい量及び原子炉建屋内の環境(雰囲気温度,湿度及 び圧力)を評価した。

原子炉建屋内の環境評価特有の評価条件を別第 7-1 表に,原子炉建屋のノ ード分割図を別第 7-1 図に示す。

項目	主要解析条件	条件設定の考え方
解析コード	MAAP4	—
漏えい箇所	残留熱除去系 B 系 熱交換器室	有効性評価の解析と同様
漏えい面積	約 21cm ²	有効性評価の解析と同様
事故シナリオ	<ul> <li>・原子炉水位低下(レベル2)設定点 到達時に,原子炉隔離時冷却系によ る原子炉注水開始</li> <li>・低圧炉心スプレイ系を起動し,事象 発生15分後に逃がし安全弁(自動 減圧機能)7弁による原子炉減圧</li> <li>・事象発生17分後に低圧代替注水系 (常設)を起動</li> <li>・原子炉水位回復後,低圧炉心スプレ イ系を停止し,原子炉水位を原子炉 水位(レベル3)設定点以上に維持</li> <li>・事象発生25分後,サプレッション・ プール冷却開始</li> <li>・事象発生5時間後,残留熱除去系隔 離完了</li> </ul>	有効性評価の解析と同様
原子炉建屋モデル	別第 6-1 図参照	原子炉建屋東西の物理的分離  等を考慮して設定
原子炉建屋壁から 環境への放熱	考慮しない	雰囲気温度,湿度,圧力及び放 射線量の観点から厳しい想定 として設定
原子炉建屋换気系	考慮しない	雰囲気温度,湿度及び圧力の観 点から厳しい想定として設定
ブローアウトパネル 開放圧力	6.9kPa[gage]	ブローアウトパネル設定値を 設定

別第 7-1 表 原子炉建屋内の環境評価条件




2. 評価結果

原子炉冷却材の積算漏えい量の推移を別第7-2回に,原子炉建屋内の雰囲 気温度(西側区画),雰囲気温度(東側区画),湿度(西側区画),湿度(西側 区画),圧力(西側区画)及び圧力(東側区画)の推移を別第7-3回から別第 7-8回に示す。

別第7-2 図に示すとおり,現場隔離操作の完了タイミングとして設定して いる事象発生5時間までの原子炉冷却材の漏えい量は300tである。また,別 第7-3 図及び別第7-4 図に示すとおり,原子炉減圧操作後に建屋内環境が静 定する事象発生2時間から5時間までのアクセスルート及び操作場所の雰囲 気温度の最大値は41℃である。



別第7-2図 原子炉冷却材の積算漏えい量



別第 7-3 図 原子炉建屋内の雰囲気温度の推移(西側区画)



別第7-4図 原子炉建屋内の雰囲気温度の推移(東側区画)



別第7-5図 原子炉建屋内の湿度の推移(西側区画)



別第7-6図 原子炉建屋内の湿度の推移(東側区画)



別第7-7図 原子炉建屋内の圧力の推移(西側区画)



別第7-8図 原子炉建屋内の圧力の推移(東側区画)

#### ブローアウトパネルに期待しない場合の

#### ISLOCA発生時の原子炉冷却材漏えい量評価

#### 及び原子炉建屋内環境評価

1. 評価条件

別紙7の評価条件のうち、ブローアウトパネルのみが開かない場合の条件 で評価を実施した。

2. 評価結果

原子炉冷却材の積算漏えい量の推移を別第8-1 図に,原子炉建屋内の雰囲 気温度(西側区画),雰囲気温度(東側区画),湿度(西側区画),湿度(西側 区画),圧力(西側区画)及び圧力(東側区画)の推移を別第8-2 図から別第 8-7 図に示す。

別第8-1 図に示すとおり,現場隔離操作の完了タイミングとして設定して いる事象発生5時間までの原子炉冷却材の漏えい量は300tである。また,別 第8-2 図及び別第8-3 図に示すとおり,原子炉減圧操作後に建屋内環境が静 定する事象発生2時間から5時間までのアクセスルート及び操作場所の雰囲 気温度の最大値は44℃である。ブローアウトパネルに期待する場合と期待し ない場合の比較を第8-1表に示す。

第8-1表 ブローアウトパネルに期待する場合と期待しない場合の

#### 評価結果の比較

項目	期待する場合	期待しない場合
原子炉冷却材の漏えい量	300t	300t
事象発生2時間から5時間ま		
でのアクセスルート及び雰	41°C	44°C
囲気温度の最大値		



別第8-1図 原子炉冷却材の積算漏えい量



別第8-2図 原子炉建屋内の雰囲気温度の推移(西側区画)



別第8-3図 原子炉建屋内の雰囲気温度の推移(東側区画)



別第8-4図 原子炉建屋内の湿度の推移(西側区画)



別第8-5図 原子炉建屋内の湿度の推移(東側区画)



別第8-6図 原子炉建屋内の圧力の推移(西側区画)



別第8-7図 原子炉建屋内の圧力の推移(東側区画)

ISLOCA発生時の原子炉建屋内線量率評価

#### 及び敷地境界外の実効線量評価

- 1. 原子炉建屋内線量率について
  - (1) 評価の想定

原子炉冷却材圧力バウンダリが喪失すると,原子炉冷却材が直接原子炉 建屋内に放出される。

原子炉建屋内の線量率の評価に当たっては,漏えいした冷却材中から気 相に移行する放射性物質及び燃料から追加放出される放射性物質が原子炉 建屋から漏えいしないという条件で原子炉建屋内の線量率について評価し た。

評価上考慮する核種は現行設置許可と同じものを想定し,線量評価の条件となる I-131 の追加放出量は,実績データから保守的に設定した。

運転開始から施設定期検査による原子炉停止時等に測定している I-131 の追加放出量の最大値は約 41Ci(約 1.5×10¹²Bq)[昭和 62 年 4 月 9 日(第 8 回施設定期検査)]であり,評価に使用する I-131 の追加放出量は,実績 値を包絡する値として 100Ci (3.7×10¹²Bq)と設定した。

また,放出される放射性物質には,冷却材中に含まれる放射性物質があ るが,追加放出量と比較すると数%程度であり,追加放出量で見込んだ余 裕分に含まれるため考慮しないものとする。

原子炉建屋内の作業の被ばく評価においては,放射線防護具(自給式呼 吸用保護具等)を装備することにより内部被ばくの影響が無視できるため, 外部被ばくのみを対象とする。

項目	評価値	実績値 (最大)
I-131 追加放出量 (Bq)	3. $7 \times 10^{12}$	$1.5 \times 10^{12}$
希ガス及びハロゲン等の 追加放出量 (γ線 0.5MeV 換算値)(Bq)	2. $3 \times 10^{14}$	—

別第9-1表 評価条件(追加放出量)

(2) 評価の方法

原子炉建屋内の空間線量率は、以下のサブマージョンモデルにより計算 する。サブマージョンモデルの概要を別第 9-1 図に示す。

$$D = 6.2 \times 10^{-1 4} \cdot \frac{Q_{\gamma}}{V_{\text{R/B}}} E_{\gamma} \cdot \left(1 - e^{-\mu \cdot R}\right) \cdot 3600$$

ここで,

D : 放射線量率 (Gy/h)

 $6.2 \times 10^{-14}$ : サブマージョンモデルによる換算係数  $\left(\frac{\text{dis} \cdot \text{m}^3 \cdot \text{Gy}}{\text{MeV} \cdot \text{Bq} \cdot \text{s}}\right)$ 

Q, :原子炉建屋内放射性物質量

(Bq:γ線実効エネルギ 0.5MeV 換算値)

- V_{R/B}:原子炉区域内気相部容積(85,000m³)
- E_γ : γ線エネルギ (0.5MeV/dis)
- $\mu$  : 空気に対する  $\gamma$  線のエネルギ吸収係数  $(3.9 \times 10^{-3} / m)$
- R :評価対象エリアの空間容積と等価な半球の半径(m)

$$R = \sqrt[3]{\frac{3 \cdot V_{OF}}{2 \cdot \pi}}$$

V_{OF}:評価対象エリア(原子炉建屋地上3階)の容積(5,000m³)



別第 9-1 図 サブマージョンモデルの概要

(3) 評価の結果

評価結果を別第9-2図に示す。線量率の最大は約15.2mSv/h程度であり、 時間減衰によって低下するため、線量率の上昇が現場操作に影響を与える 可能性は小さく、期待している機器の機能は維持される。



別第9-2図 原子炉建屋立ち入り開始時間と線量率の関係

なお、事故時には原子炉建屋内に漏えいした放射性物質が環境へ放出さ れる可能性があるが、これらの事故時においては原子炉建屋放射能高の信 号により中央制御室の換気系は閉回路循環運転となるため、中央制御室内 にいる運転員は過度な被ばくの影響を受けることはない。

核種	収 率 (%)	崩壊定数 (d ⁻¹ )	γ線実効エネルギ (MeV)	追加放出量 (Bq)	追加放出量(Bq) (γ線実効エネルギ0.5MeV換算値)
I-131	2.84	8.60E-02	0.381	3.70E+12	2.82E+12
I - 132	4.21	7.30	2.253	5.48E+12	2.47E+13
I - 133	6.77	8.00E-01	0.608	8.82E+12	1.07E+13
I - 134	7.61	1.90E+01	2.75	9.91E+12	5.45E+13
I - 135	6.41	2.52	1.645	8.35E+12	2.75E+13
Br - 83	0.53	6.96	0.0075	6.90E+11	1.04E+10
Br - 84	0.97	3.14E+01	1.742	1.26E+12	4.40E+12
Mo — 99	6.13	2.49E-01	0.16	7.99E+12	2.56E+12
Tc — 99m	5.4	2.76	0.13	7.04E+12	1.83E+12
ハロゲン等 合計	—	_	_	5.32E+13	1.29E+14
Kr-83m	0.53	9.09	0.0025	1.38E+12	6.90E+09
Kr — 85m	1.31	3.71	0.159	3.41E+12	1.09E+12
Kr-85	0.29	1.77E-04	0.0022	2.25E+11	9.91E+08
Kr-87	2.54	1.31E+01	0.793	6.62E+12	1.05E+13
Kr — 88	3.58	5.94	1.950	9.33E+12	3.64E+13
${ m Xe}-131{ m m}$	0.040	5.82E-02	0.020	1.04E+11	4.17E+09
${ m Xe}-133{ m m}$	0.19	3.08E-01	0.042	4.95E+11	4.16E+10
Xe-133	6.77	1.31E-01	0.045	1.76E+13	1.59E+12
${ m Xe}-135{ m m}$	1.06	6.38E+01	0.432	2.76E+12	2.39E+12
Xe-135	6.63	1.83	0.250	1.73E+13	8.64E+12
Xe-138	6.28	7.04E+01	1.183	1.64E+13	3.87E+13
希ガス 合 計	—	_	_	7.56E+13	9.93E+13
ハロゲン等					
+希ガス 合 計	—	—	—	1.29E+14	2.28E+14

別第 9-2 表 ISLOCA時の放出量

- 2. 敷地境界外の実効線量評価について
  - (1) 評価想定

敷地境界外の実効線量評価では、ISLOCAにより原子炉建屋内に放 出された核分裂生成物が大気中に放出されることを想定し、非居住区域境 界の実効線量を評価した。評価条件は別第 9-1 表から別第 9-5 表に従うも のとする。

破断口から漏えいする原子炉冷却材が原子炉建屋内に放出されることに 伴う減圧沸騰によって気体となる分が建屋内の気相部へ移行するものとし, 破断口から漏えいする冷却材中の放射性物質が気相へ移行する割合は,運 転時の原子炉冷却材量に対する原子炉建屋放出に伴う減圧沸騰による蒸発 量の割合から算定した。燃料から追加放出される放射性物質が気相へ移行 する割合は,燃料棒内ギャップ部の放射性物質が原子炉圧力の低下割合に 応じて冷却材中に放出されることを踏まえ,同様に運転時の原子炉冷却材 量に対する原子炉減圧に伴う減圧沸騰による蒸発量の割合から算定した。 また,破断口及び逃がし安全弁から放出される蒸気量は,各々の移行率に 応じた量が流出するものとした。(別第9-3 図及び別第9-4 図参照)

その結果,放出量は別第9-4表に示すとおりとなった。

(2) 評価結果

敷地境界外における実効線量は約1.2×10⁻¹mSv となり,「LOCA時注 水機能喪失」における耐圧強化ベント系によるベント時の非居住区域境界 での実効線量(約6.2×10⁻¹mSv)及び事故時線量限度の5mSv を下回った。

なお,評価上は考慮していないものの,原子炉建屋に放出された放射性 物質は外部に放出されるまでの建屋内壁への沈着による放出量の低減に期 待できること及び冷却材中の放射性物質の濃度は運転時の原子炉冷却材量

に応じた濃度を用いているが,実際は原子炉注水による濃度の希釈に期待 できることにより,さらに実効線量が低くなると考えられる。

別第 9-3 表 放出評価条件

項目	主要解析条件	条件設定の考え方
原子炉運転日数(日)	2,000	十分な運転時間として仮定した時間
追加放出量 (I-131) (Bq)	3. 7×10 ^{1 2}	至近の I-131 追加放出量の実績値を 包絡する値として設定し,その他の 核種はその組成を平衡組成として求 め,希ガスについてはよう素の2倍 の放出があるものとする。
冷却材中濃度 (Ⅰ—131) (Bq∕g)	$1.5 \times 10^{2}$	I-131 の追加放出量に基づく全希ガ ス漏えい率から冷却材中濃度を設定 し,その組成を拡散組成とする。 (運転実績の最大の I-131 の冷却材 中濃度(5.6×10 ⁻¹ Bq∕g)を十分に 包絡する値である。)
原子炉冷却材重量(t)	289	設計値から設定
原子炉冷却材浄化系流量(g/s)	$1.68 \times 10^{4}$	設計値から設定
主蒸気流量 (g∕s)	1. $79 \times 10^{6}$	設計値から設定
原子炉冷却材浄化系の除染係数	10	「発電用軽水型原子炉施設周辺の線 量目標値に対する評価指針」に基づ き設定
主蒸気中への移行割合 (ハロゲン)(%)	2	「発電用軽水型原子炉施設周辺の線 量目標値に対する評価指針」に基づ き設定
主蒸気中への移行割合 (ハロゲン以外)(%)	0.1	「発電用軽水型原子炉施設周辺の線 量目標値に対する評価指針」に基づ き設定
燃料から追加放出されるよう素 の割合(%)	無機よう素:96 有機よう素:4	「発電用軽水型原子炉施設の安全評 価に関する審査指針」に基づき設定
逃がし安全弁からサプレッショ ン・チェンバへの移行率(%)	<ul> <li>無機よう素,</li> <li>ハロゲン等:100</li> <li>有機よう素:</li> <li>99.958</li> </ul>	無機よう素,ハロゲン等については 保守的に全量が逃がし安全弁からサ プレッション・チェンバ及び破断口 から格納容器のそれぞれに移行する
破断口から格納容器への移行率 (%)	無機よう素, ハロゲン等:100 有機よう素:0.042	ものとするものとして設定 有機よう素についてはSAFER解 析の積算蒸気量の割合に基づき設定
サプレッション・チェンバのプー ル水でのスクラビング等による 除去係数	10	Standard Review Plan6.5.5に基づ き設定
逃がし安全弁からサプレッショ ン・チェンバへ移行した放射性物 質の気相部への移行割合	2	「発電用軽水型原子炉施設の安全評 価に関する審査指針」に基づき設定
冷却材から気相への放出割合 (冷却材中の放射性物質)(%)	11	原子炉冷却材量に対する原子炉建屋 放出に伴う減圧沸騰による蒸気量の 割合を設定
ペ却材から気相への放出割合 (追加放出される放射性物質) (%)	4	原子炉減圧により燃料棒内ギャップ 部から冷却材中へ放出されることを 踏まえ,原子炉冷却材量に対する減 圧沸騰による蒸気量から算出
格納容器からの漏えい率 (%/d)	0.5	格納容器の設計漏えい率から設定

核種	放出量 (Bq)
希ガス+ハロゲン等 (ガンマ線実効エネルギ 0.5MeV 換算値)	9. $5 \times 10^{12}$
よう素 (I-131 等価量(小児実効線量係数換算))	2. $8 \times 10^{11}$

別第 9-4 表 放出量

別第 9-5 表 大気拡散条件

核種	放出量 (Bq)
相対濃度(χ/Q) (s/m ³ )	2. $9 \times 10^{-5}$
相対線量(D/Q) (Gy/Bq)	4. $0 \times 10^{-19}$





※1 運転時冷却材量に対する減圧沸騰による蒸発量の割合として算定。

※2 燃料棒内ギャップ部の放射性物質が原子炉圧力の低下割合に応じて冷却材中に放出される ことを踏まえ、急速減圧するまではその低下割合に応じた量の放射性物質が冷却材中に放 出されるものとし、急速減圧以降はギャップ内の残りの放射性物質が全て冷却材中に放出 されるものとして、冷却材中の放射性物質の濃度を決定し、その冷却材量に対する減圧沸 騰による蒸発量の割合として算定。

別第 9-3 図 よう素,ハロゲン等の環境への放出過程



別第 9-4 図 希ガスの環境への放出過程

(ガンマ線実効エネルギ 0.5MeV 換算値)

運転開始から施設定期検査による原子炉停止時等に測定している I-131の 追加放出量の測定値は以下のとおり。

中間停止	(昭和54年6月2日)	0.0Ci
第1回定検	(昭和54年9月7日)	0.0Ci
中間停止	(昭和55年4月29日)	0.0Ci
第2回定検	(昭和 55 年 9 月 6 日)	0.0Ci
中間停止	(昭和 56 年 6 月 16 日)	0.0Ci
第3回定検	(昭和56年9月12日)	0.01Ci
第4回定検	(昭和57年6月11日)	0.01Ci
中間停止	(昭和58年1月31日)	0.01Ci
第5回定検	(昭和 58 年 9 月 17 日)	0.01Ci
第6回定検	(昭和 59 年 12 月 12 日)	0.01Ci
中間停止	(昭和60年8月1日)	0.01Ci
第7回定検	(昭和61年1月20日)	0.01Ci
第8回定検	(昭和62年4月9日)	40.9Ci
第9回定検	(昭和63年8月1日)	0.01Ci
第10回定検	(平成元年 11 月 30 日)	4.5 $\times$ 10 ⁸ Bq
中間停止	(平成2年11月29日)	4.7 $\times$ 10 ⁸ Bq
第11回定検	(平成3年4月20日)	4.4 $\times$ 10 ⁸ Bq
第12回定検	(平成4年9月6日)	1.9 $\times$ 10 ⁸ Bq
中間停止	(平成5年4月4日)	1.7 $\times$ 10 ⁸ Bq
第13回定検	(平成6年2月19日)	1. $6 \times 10^{8}$ Bq
第14回定検	(平成7年4月14日)	1.7 $\times$ 10 ⁸ Bq
中間停止	(平成8年8月10日)	9.8 $\times$ 10 ⁷ Bq
第15回定検	(平成8年9月10日)	1.5 $\times$ 10 ⁸ Bq
中間停止	(平成9年7月12日)	1.5 $\times$ 10 ⁸ Bq
第16回定検	(平成10年1月8日)	1. $6 \times 10^{8}$ Bq
第17回定検	(平成11年4月4日)	1. $7 \times 10^{8}$ Bq
中間停止	(平成 12 年 12 月 26 日)	1.7 $\times$ 10 ⁸ Bq
第 18 回定検	(平成13年3月26日)	1.7 $\times$ 10 ⁸ Bq
第19回定検	(平成 14 年 9 月 15 日)	1. $5 \times 10^{8}$ Bq
中間停止	(平成 15 年 3 月 20 日)	8.9 $\times$ 10 ⁷ Bq
第 20 回定検	(平成16年2月2日)	1. $3 \times 10^{8}$ Bq
第 21 回定検	(平成17年4月24日)	1.5 $\times$ 10 ⁸ Bq
第 22 回定検	(平成 18 年 11 月 20 日)	8.9 $\times$ 10 ⁷ Bq
	(平成19年3月17日)	1. $1 \times 10^{8}$ Bq
第 23 回定検	(平成 20 年 3 月 19 日)	$1.2 \times 10^{8}$ Bq
中間停止	(平成 21 年 7 月 21 日)	$1.2 \times 10^{8}$ Bq
第 24 回定検	(平成 21 年 9 月 9 日)	$1.2 \times 10^{8}$ Bq
中間停止	(平成 22 年 6 月 28 日)	9. $7 \times 10^{7}$ Bq
第 25 回定検	—	

 $(\%1Ci = 3.7 \times 10^{10} Bq)$ 

安定状態について

(格納容器バイパス (インターフェイスシステムLOCA))

格納容器バイパス(インターフェイスシステムLOCA)時の安定

状態については,以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備又は重大事故等対処 設備を用いた炉心冷却が維持可能であり,また,冷却の ための設備がその後も機能維持でき,かつ,必要な要員 の不足や資源の枯渇等のあらかじめ想定される事象悪 化のおそれがない場合に安定停止状態が確立されたも	
格納容器安定状態 : 炉心冷却が維持された後に,設計基準事故対処設備又は 重大事故等対処設備を用いた格納容器除熱により格納 容器圧力及び温度が安定又は低下傾向に転じ,また,格 納容器除熱のための設備がその後も機能維持でき,か つ,必要な要員の不足や資源の枯渇等のあらかじめ想定	、 よりそう 言こ
されたものとする。	
<u>原子炉安定停止状態の確立について</u> <u>事象発生の5時間後に現場操作により残留熱除去系の破断箇所を隔離するこ</u> とで漏えいが停止し,逃がし安全弁により原子炉減圧状態を維持し,低圧炉心 スプレイ系を用いた原子炉注水を継続することで炉心の冷却は維持され,原子 炉安定停止状態が確立される。	- 1 - -
格納容器安定状態の確立について 残留熱除去系を用いた格納容器除熱を実施することで,格納容器安定状態が 確立される。	ŝ
また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。	ł
【安定状態の維持について】 上記の炉心損傷防止対策を継続することにより安定状態を維持できる。 また,残留熱除去系の機能を維持し除熱を継続することで,安定状態の維持 が可能となる。 (添付資料 2.1.1 別紙 1)	f

#### コメント No. 148-21, 265-06, 07, 08 に対する回答

解析コード及び解析条件の不確かさの影響評価について(格納容器バイパス(インターフェイスシステムLOCA))

## 第1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響(1/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
	崩壊熱	崩壊熱モデル	入力値に含まれる。最確条件を包絡できる条件 を設定することにより崩壊熱を大きくするよう 考慮している。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。
	燃料棒表面熱伝 達,沸騰遷移,気 液熱非平衡	燃料棒表面熱伝 達モデル	TBL, ROSA-Ⅲの実験解析において, 熱伝達係数 を低めに評価する可能性があり,他の解析モデ ルの不確かさとあいまってコード全体として, スプレイ冷却のない実験結果の燃料被覆管温度 に比べて+50℃程度高めに評価する。また,低 圧代替注水系による注水での燃料棒冷却過程に おける蒸気単相冷却又は噴霧流冷却の不確かさ は20℃~40℃程度である。	解析コードは、実験結果の燃料被覆管温度に比べて+50℃高めに 評価することから、解析結果は燃料棒表面の熱伝達係数を小さく 評価する可能性がある。よって、実際の燃料棒表面での熱伝達は 大きくなることで、燃料被覆管温度は低くなるが、事象初期の原 子炉注水は原子炉隔離時冷却系の自動起動により確保され、燃料 被覆管温度を起点とする運転員等操作はないことから、運転員等 操作時間に与える影響はない。	解析コードは、実験解析において熱伝達モデルの保守性により燃料被覆管温度を高めに評価し、有効性評価解析においても燃料被 覆管温度を高めに評価することから、評価項目となるパラメータ に対する余裕は大きくなる。
炉心	燃料被覆管酸化	ジル コニウム – 水反応モデル	酸化量及び酸化反応に伴う発熱量をより大きく 見積もるBaker-Just式による計算モデルを採用 しており,保守的な結果を与える。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,解析結果は燃料被覆管温度を高く評価する可能性が ある。よって,実際の燃料被覆管温度は低くなるが,事象初期の 原子炉注水は原子炉隔離時冷却系の自動起動により確保され,燃 料被覆管温度を起点とする運転員等操作はないことから,運転員 等操作時間に与える影響はない。	解析コードは,酸化量及び発熱熱の評価について保守的な結果を 与えるため,燃料被覆管温度を高く評価することから,評価項目 となるバラメータに対する余裕は大きくなる。
	燃料被覆管変形	膨れ・破裂評価モ デル	膨れ・破裂は,燃料被覆管温度と円周方向応力 に基づいて評価され,燃料被覆管温度は上述の ように高めに評価され,円周方向応力は燃焼期 間中の変化を考慮して燃料棒内圧を大きく設定 し保守的に評価している。したがって,ベスト フィット曲線を用いる場合も破裂の判定は概ね 保守的となる。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが運転員等操作に与える影響はない。	有効性評価解析では炉心の冷却は維持され,燃料被覆管最高温度 は初期値を上回ることがないことから,燃料被覆管の破裂判定の 不確かさが評価項目となるパラメータに与える影響はない。

# 第1表 解析コードにおける重要現象の不確かさが運転員等操作時間及び評価項目となるパラメータに与える影響(2/2)

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与える影響	評価項目となるパラメータに与える影響
炉心	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	二相流体の流動 モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 二相水位変化は,解析結果に重量する水位振動 成分を除いて,実験結果と概ね同等の結果が得 られている。低圧代替注水系の注水による燃料 棒冷却(蒸気単相冷却又は噴霧流冷却)の不確 かさは20℃~40℃程度である。 また,原子炉圧力の評価において,ROSA-Ⅲでは, 2MPaより低い圧力で系統的に圧力低下を早めに 予測する傾向を呈しており,解析上,低圧炉心 スプレイ系の注水開始タイミングを早める可能 性が示される。しかし,実験で圧力低下が遅れ た理由は,水面上に露出した上部支持格子等の 構造材の温度が燃料被覆管からの輻射や過熟蒸 気により上昇し,LPCS スプレイの液滴で冷却さ れた際に蒸気が発生したためであり,炉心冷却 が維持され,燃料被覆管が高温にならない事故 シーケンスでは考慮する必要のない不確かさで ある。	運転操作はシュラウド外水位(原子炉水位計)に基づく操作であ ることから,運転員等操作時間に与える影響は原子炉圧力容器の 分類にて示す。	解析コードは、燃料被覆管温度に対して、解析結果に重畳する水 位振動に伴う燃料棒冷却の不確かさの影響を考慮すると20℃~ 40℃程度低めに評価する可能性があるが、有効性評価解析では低 圧炉心スプレイ系等の注水に伴うボイド率上昇による一時的な原 子炉水位の低下を除き炉心の冠水は維持されるため、炉心露出後 の再冠水過程で現れる解析結果に重畳する水位振動成分や燃料被 覆管が高温となり輻射等により構造材温度が上昇した場合に現れ るLPCS注水に伴う原子炉圧力低下の鈍化を考慮する必要がないた め,評価項目となるパラメータに与える影響はない。
	沸騰・ボイド率変 化,気液分離(水 位変化)・対向流, 三次元効果	ニ相流体の流動 モデル	下部プレナムの二相水位を除き、ダウンカマの 二相水位(シュラウド外水位)に関する不確か さを取り扱う。シュラウド外水位については、 燃料被覆管温度及び運転員操作のどちらに対し ても二相水位及びこれを決定する二相流動モデ ルの妥当性の有無は重要でなく、質量及び水頭 のバランスだけで定まるコラプスト水位が取り 扱えれば十分である。このため、特段の不確か さを考慮する必要はない。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、運転員等操作時間に与える影響は小さい。	解析コードは、ダウンカマ部の二相水位変化を適切に評価することから、評価項目となるパラメータに与える影響は小さい。
原子炉 圧力容器	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ, FIST-ABWR の実験解析において, 圧力変化は実験結果とおおむね同等の解析結果 が得られており,臨界流モデルに関して特段の 不確かさを考慮する必要はない。	解析コードは、原子炉圧力変化を適切に評価することから、運転 員等操作時間に与える影響は小さい。 破断口及び逃がし安全弁からの流出は、圧力容器/ズル又は/ズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。	解析コードは、原子炉圧力変化を適切に評価することから、評価 項目となるパラメータに与える影響は小さい。 破断口及び逃がし安全からの流出は、圧力容器ノズル又はノズ ルに接続する配管を通過し、平衡均質流に達するのに十分な長さ であることから、管入口付近の非平衡の影響は無視できると考え られ、平衡均質臨界流モデルを適用可能である。
	ECCS 注水(給水 系・代替注水系含 む。)	原子炉注水系モ デル	入力値に含まれる。 各系統の設計条件に基づく原子炉圧力と注水流 量の関係を使用しており,実機設備仕様に対し て注水流量を少なめに与え,燃料被覆管温度を 高めに評価する。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。	「解析条件を最確条件とした場合の運転員等操作時間及び評価項 目となるパラメータに与える影響」にて確認。

百日		解析条件の不確かさ		<b>久</b> 世凯宫尔老之十		評価項目となるパラメータに
	項目	解析条件	最確条件	余件設定の考え方	運転員等操作時間に与える影響	与える影響
	原子炉熱出力	3,293MW	約 3,279~ 約 3,293MW (実績値)	定格熱出力を設定	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熱が緩和される。最確条件とした場合 の運転員等操作時間及び評価項目となるパラメータ に与える影響は、最大線出力密度及び原子炉停止後 の崩壊熱にて説明する。	最確条件とした場合には最大線出力密度及び原子炉 停止後の崩壊熟が緩和される。最確条件とした場合の 運転員等操作時間及び評価項目となるパラメータに 与える影響は、最大線出力密度及び原子炉停止後の崩 壊熟にて説明する。
	原子炉圧力 (圧力容器ドーム部)	6.93MPa[gage]	約 6.91~約 6.94MPa[gage] (実績値)	定格圧力を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、事故初期において主蒸気 隔離弁が閉止し、原子炉圧力は逃がし安全弁により 制御されるため事象進展に及ぼす影響は小さく、運 転員等操作時間に与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、事故初期において主蒸気隔離 弁が閉止し、原子炉圧力は逃がし安全弁により制御さ れるため、事象進展に及ぼす影響は小さく、評価項目 となるパラメータに与える影響はない。
	原子炉水位	通常運転水位 (セパレータスカー ト下端から+126cm)	通常運転水位 (セパレータスカー ト下端から約 122cm~ +132cm) (実績値)	通常運転水位を設定	最確条件とした場合には、ゆらぎにより解析条件に 対して変動を与えうるが、ゆらぎの幅は事象発生後 の水位低下量に対して非常に小さい。例えば、解析 条件で設定した通常運転水位から原子炉隔離時冷却 系等の自動起動信号が発信する原子炉水位異常低下 (レベル2)までの原子炉水位の低下量は約2mであ るのに対してゆらぎによる水位低下量は約40mであ り非常に小さい。したがって、事象進展に及ぼす影響は小さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、ゆらぎにより解析条件に対 して変動を与えうるが、ゆらぎの幅は事象発生後の水 位低下量に対して非常に小さい。例えば、解析条件で 設定した通常運転水位から原子炉隔離時冷却系等の 自動起動信号が発信する原子炉水位異常低下(レベル 2)までの原子炉水位の低下量は約2mであるのに対 してゆらぎによる水位低下量は約40mmであり非常に 小さい。したがって、事象進展に及ぼす影響は小さく、 評価項目となるパラメータに与える影響はない。
初期条件	炉心流量	48,300t/h (定格流量 (100%流量))	定格流量の 約 86%~約 104% (実績値)	定格流量を設定	最確条件とした場合には、炉心流量の運転範囲にお いて解析条件から変動しうるが、事故初期において 原子炉がスクラムするとともに、再循環ポンプがト リップするため、初期炉心流量が事象進展に及ぼす 影響は小さく、運転員等操作時間に与える影響はな い。	最確条件とした場合には、炉心流量の運転範囲におい て解析条件から変動しうるが、事故初期において原子 炉がスクラムするとともに、再循環ボンブがトリップ するため、初期炉心流量が事象進展に及ぼす影響は小 さく、評価項目となるパラメータに与える影響はな い。
	燃料	9×9燃料 (A型)	装荷炉心ごと	9×9燃料(A型)と9×9燃料(B型)は,熱 水力的な特性はほぼ同等であり,その他の 核的特性等の違いは燃料棒最大線出力密度 の保守性に包含されることから,代表的に 9×9燃料(A型)を設定	最確条件とした場合には、9×9燃料(A型)及び9 ×9燃料(B型)の混在炉心又はそれぞれ型式の単独 炉心となる場合があるが、両型式の燃料の特性はほ ぼ同等であることから、事象進展に及ぼす影響は小 さく、運転員等操作時間に与える影響はない。	最確条件とした場合には、9×9燃料(A型)及び9× 9燃料(B型)の混在炉心又はそれぞれ型式の単独炉 心となる場合があるが,両型式の燃料の特性はほぼ同 等であることから,炉心冷却性に大きな差は無く,評 価項目となるパラメータに与える影響はない。
	燃料棒最大 線出力密度	44.0k₩∕m	約 33~41kW/m (実績値)	初期の燃料棒線出力密度が大きい方が燃料 被覆管温度に対して厳しい設定となる このため,保安規定の運転上の制限におけ る上限値を設定	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上 昇が緩和されるが、事象初期の原子炉注水は原子炉 隔離時冷却系の自動起動により確保され、燃料被覆 管温度を起点とする運転員等操作はないことから、 運転員等操作時間に与える影響はない。	最確条件は解析条件で設定している燃料棒線出力密 度よりも小さくなる。このため、燃料被覆管温度上昇 が緩和されることから,評価項目となるパラメータに 対する余裕は大きくなる。
	原子炉停止後の 崩壊熱	ANSI/ANS-5.1-1979 燃焼度 33GWd/t	燃焼度 33GWd/t 以下 (実績値)	崩壊熱が大きい方が、原子炉水位低下及び 格納容器圧力上昇の観点で厳しい設定とな る。このため、崩壊熱が大きくなる燃焼度 の高い条件として、1サイクルの運転期間 (13ヶ月)に調整運転期間(1ヶ月)を考慮し た運転期間に対応する燃焼度を設定	最確条件は解析条件で設定している崩壊熟よりも小 さくなる。このため、原子炉からサプレッション・ プールに流出する蒸気量が減少することで、原子炉 水位の低下が遅くなるが、事象初期の原子炉注水は 原子炉隔離時冷却系の自動起動により確保されるこ とから運転員等操作時間に与える影響はない。また、 格納容器圧力、サプレッション・プール水位及びサ プレッション・プール水温度の上昇が遅くなり、こ れらのパラメータを起点とする運転員等操作の開始 時間は遅くなる。	最確条件は解析条件で設定している崩壊熱よりも小 さくなる。このため、燃料からの発熱が小さくなり、 原子炉からサプレッション・プールに流出する蒸気量 が減少することで、原子炉水位の低下並びに格納容器 圧力及び雰囲気温度の上昇が緩和されることから、評 価項目となるパラメータに対する余裕が大きくなる。

男 4 衣   脾忉米性を取雌米性としに笏口に連転貝寺傑作时间及い計画項日となるハノクニクに子んる影響 (	項日となるハフメータに与える影響(1/3)
-------------------------------------------------------	-----------------------

	175 - 1	解析条件の不確かさ		<b>久供</b> 现亡 本 表 注 士		評価項目となるパラメータに	
	項 日	解析条件	最確条件	条件設定の考え方	連転員寺操作时间に与える影響	与える影響	
	起因事象	残留熱除去系B系の 熱交換器フランジ部 に約21cm ² の破断面積 を想定	_	残留熱除去系の構造健全性評価の結果, ISLOCA による加圧事象発生時(圧力 8.2MPa[gage],温 度288℃)においても破損が発生することはない ため,加圧範囲のうち長も大きなシール構造で ある熱交換器フランジ部に対して,ガスケット に期待しない場合にフランジ部に生じる間隙の 面積を破断面積として設定	_	_	
		残留熱除去系 B 系 の機能喪失	_	本重要事故シーケンスの前提条件として設定	-	_	
事故条件	安全機能の喪失 に対する仮定	高圧炉心スプレイ系 及び残留熱除去系C 系の機能喪失	-	残留熱除去系 B系が設置されている原子炉建屋 西側は原子炉冷却材の原子炉建屋への漏えいに より高温る湿となるため,保守的に同じ原子炉 建屋西側に設置されている高圧炉心スプレイ系 及び残留熟除去系 C系は事象発生と同時に機能 喪失するものとして設定	_	_	
	外部電源	外部電源あり	-	外部電源がある場合,原子炉スクラムは原子炉 水位低(レベル3)信号にて発生し,再循環ボ ンプトリップは,原子炉水位異常低下(レベル 2)信号にて発信する。このため,原子炉水位 の観点で厳しくなる	外部電源がない場合でも,非常用母線は非常用 ディーゼル発電機等から自動的に受電され、ま た,低圧代替注水系(常設)の起動準備操作は, 外部電源がない場合も考慮して設定しているこ とから,運転員等操作に与える影響はない。	起因事象発生から原子炉スクラムまでの期間の原子 炉木位の低下を厳しくする条件として、外部電源あり を想定するとともに,保守的に給水流量の全要失も想 定している。外部電源がない場合は,外部電源喪失に 伴い原子炉スクラム,再循環ボンプトリップ等が発生 するため,外部電源がある場合と比較して原子炉木位 の低下は緩和されるが、この場合でも初期の原子炉注 木は原子炉水位異常低下(レベル2)にて原子炉隔離 時冷却系が自動起動することにより確保されること から,評価項目となるパラメータに与える影響はな い。	
関連する機	原子炉スクラム	原子炉水位低 (レベル3)信号 (遅れ時間 1.05 秒)	原子炉水位低 (レベル3)信号 (遅れ時間1.05秒)	起因事象発生から原子炉スクラムまでの期間の 原子炉水位の低下を厳しくする条件として,外 部電源がある場合の原子炉水位低(レベル3) 信号による原子炉スクラムを設定	解析条件と最確条件は同様であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
機 等 器 対 策 作 に	ATWS緩和設備 (代替原子炉再循環 ポンプトリップ機能)	原子炉水位異常低下 (レベル2)	原子炉水位異常低下 (レベル2)	起因事象発生から原子炉スクラムまでの期間の 原子炉水位の低下を厳しくする条件として,外 部電源がある場合の原子炉水位異常低下(レベ ル2)信号による再循環ポンプトリップを設定	解析条件と最確条件は同様であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	

# 第2表 解析条件を最確条件とした場合に運転員等操作時間及び評価項目となるパラメータに与える影響(2/3)

項目		解析条件の不確かさ		タルホウのおうナ	海村号磁根が吐用にたらて影響	評価項目となるパラメータに	
		解析条件	最確条件	米什酸足の考え方	運転員守探社时间に子える影響	与える影響	
	原子炉隔離時冷却系	原子炉水位異常低下 (レベル2)信号にて 自動起動 ・注水流量:136.7m ³ /h ・注水圧力:7.86~ 1.04MPa[gage]	原子炉水位異常低下 (レベル2)信号にて 自動起動 ・注水流量:136.7m ³ /h ・注水圧力7.86~ 1.04MPa[gage]	設計値を設定 原子炉隔離時冷却系は、タービン回転数制 御により原子炉圧力に依らず一定の流量に て注水する設計となっている	解析条件と最確条件は同様であることから,事象進 展に影響はなく,運転員等操作時間に与える影響は ない。	解析条件と最確条件は同様であることから,事象進展 に影響はなく,評価項目となるパラメータに与える影 響はない。	
重大事故等対策に関連する機器条件	低圧炉心スプレイ系	原子炉水位異常低下 (レベル1)信号にて 自動起動 ・注水流量:0~1,561m ³ /h ・注水 圧力:0~ 1.99MPa[dif]	原子炉水位異常低下 (レベル1)信号にて 自動起動 ・注水流量:0~1,561m ³ /h以上 ・注水 圧力:0~ 1.99MPa[dif]	設計値を設定 原子炉水位の観点で厳しい設定として,最 小流量特性を設定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,原子炉水位の維持操作の開始が 早くなるが,原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため,運転員等操作時間に与える影響はない。	最確条件とした場合には,注水開始後の原子炉水位の 回復が早くなり,炉心の再冠水が早まることから,評 価項目となるパラメータに対する余裕は大きくなる	
	低圧代替注水系 (常設)	<ul> <li>(2 台)</li> <li>・注水流量:0~378 m</li> <li>³∕h</li> <li>・注水圧力:0~</li> <li>2.38MPa[dif]</li> </ul>	<ul> <li>(2 台)</li> <li>・注水流量: 0~378 m</li> <li>³ ∕ h 以上</li> <li>・注水圧力: 0~</li> <li>2.38MPa[dif]</li> </ul>	炉心冷却性の観点で厳しい設定として,設 備設計上の最低要求値である最小流量特性 を設定	最確条件とした場合には,注水開始後の原子炉水位 の回復が早くなり,原子炉水位の維持操作の開始が 早くなるが,原子炉減圧から水位回復までの原子炉 水位を継続監視している期間の流量調整操作である ため,運転員等操作時間に与える影響はない。	最確条件とした場合には、注水開始後の原子炉水位の 回復が早くなり、炉心の再冠水が早まることから、評 価項目となるパラメータに対する余裕は大きくなる	
	逃がし安全弁	<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t/h/個</li> <li>(原子炉減圧操作時)</li> <li>自動減圧機能付き逃</li> </ul>	<ul> <li>(原子炉圧力制御時)</li> <li>安全弁機能</li> <li>7.79~8.31MPa[gage]</li> <li>385.2~410.6t/h/個</li> <li>(設計値)</li> <li>(原子炉減圧操作時)</li> <li>自動減圧機能付き逃</li> </ul>	設計値を設定 逃がし安全弁の設計値に基づく原子炉圧力 と蒸気流量の関係から設定	解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は ない。 解析条件は最確条件と同等であることから,事象進 展に差異はなく,運転員等操作時間に与える影響は	解析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影響はない 響析条件は最確条件と同等であることから,事象進展 に差異はなく,評価項目となるパラメータに与える影	
		がし安全弁7弁を開放 することによる原子 炉減圧	がし安全弁7弁を開放 することによる原子 炉減圧		ない。	響はない	
	外部水源の容量	彩 9,300m ³	約 9,300m ³ 以上 (淡水貯水池+代替 淡水貯槽)	淡水貯水池及び代替淡水貯槽の管理下限値 を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており,水源は枯渇しないこと から運転員等操作時間に与える影響はない。	_	
	燃料の容量	約 1,010kL	約 1,010kL 以上 (軽油貯蔵タンク+ 可搬型設備用軽油タ ンク)	軽油貯蔵タンク及び可搬型設備用軽油タン クの管理下限値を設定	管理値下限の容量として事象発生から7日間後まで に必要な容量を備えており、燃料は枯渇しないこと から運転員等操作時間に与える影響はない。	_	

	第3表	操作条件が要員の配置による他の操作,	評価項目となるパラメータ及び操作時間	余裕に与える影響(1/2)
--	-----	--------------------	--------------------	---------------

	項目	解析上の 操作開始条件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	逃がし安全 弁子炉 作	事象発生から 15 分後	運きの中のにに器を低なにか中の(心起圧時設転I発生制隔敗人気をした、かり、「「「「「「」」」で、「「」」で、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、	【認知】 I S L O C A は定期試験等による隔離弁の開操作中に発生する事象であり,隔 離弁の開操作時は原子炉圧力等の関連パラメータを継続監視しているため, I S L O C A 発生の認知に大幅な遅れが生じることは考えにくい。さらに、運転 員の認知を助けるため, I S L O C A 発生に伴い警報が発報する。事象初期の 状況判断に余裕時間を含めて 10 分を想定しており, 十分な余裕時間を確保し ていることから,認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さ い。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることか ら,要員配置】 中央制御室内での操作のみであり,運転員は中央制御室に常駐していることか ら、要員配置が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【操作所要時間】 残留熟除去系の注入弁の閉止操作及び残留熱除去系レグシールボンブの停止 操作として 2 分、低圧炉心スプレイ系の起動操作として 2 分並びに逃がし安全 弁による原子炉減圧操作として 1 分を超定し、余裕時間を含めて操作時間として 5 分を設定している。いずれも中央制御室の制御盤の操作スイッチによる簡 易な操作であり、操作所要時間が長くなる可能性は非常に低く,操作所要時間 が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 当該操作に対応する運転員に他の並列操作はなく,他の並列操作が操作開始時 間に与える影響はない。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,誤操作は起こり にくいことから,誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び操作所 要時間は,余裕時いる 含めて設定してい とから,実飾の人生の とから、は 解析より も が り た り た し て り た し て い 操作 所 を さ め て 設 た し て い 操作 所 を さ め て 設 定 し て い 操作 所 を こ と 、 令 裕 時 い 、 令 と て 設 で 記 の で し て い た し で い の の 、 の で し て し で い の の の 、 の に し て し て し で い の ろ の 、 の に し て し て い の の の の の の の の の の の の の の の の の の	実態のった場所 解 に 場 た 場 れ が に 場 、 た 場 れ が に 開 始 時 点 の 崩 娘 子 が 同 原 子 が 同 原 子 が に 系 及 び 系 の び 系 の び の の 原 子 び に が の 原 子 び に が の 原 子 び に が の 原 子 び に が の 原 子 び に が の 原 び の の が の 原 ひ で が の 原 で が の 原 で が の 原 で び の の 原 ひ で の の の の の の の の の の で む 、 の の で の の の の の の の の の の の の の	減圧操作が遅れた場 合でも,原子炉炉注水 の原子炉炉されること がら,操作時間余裕は 十分に確保される。	中るミ操訓解は.S水発去止去ン炉起全減とろ12内運能認御の一む績、足流生系操系プ心動弁圧し、分で転でし制作レ含実上起〇量かの作レのス及に操て訓。意操あたにめ()取お象及喪留弁留一,イが原でる績のにがここと、美人残シルレ逃るま、実定して実とな、模に得いのび失熱の熱ル低系し子15とは範い施をはシ擬で、てI給の除閉除ポ圧の安炉分こ約囲る可確

# 第3表 操作条件が要員の配置による他の操作,評価項目となるパラメータ及び操作時間余裕に与える影響(2/2)

項目		解析上の 操作開始条 件	条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となる パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	低圧代替注水系 (常設)の起動 準備操作	事 象 発 生 か ら 17 分後	運転手順電源が ま、外部合も判定 に基が に、 がな して、 代報高子 高 に る 数 置 母 線 代替 の よ の 電 源 意 し て 代 祝 高 古 る 文 の な む し 、 外 部 合 も 判 第 、 外 部 合 も 判 第 、 外 部 合 も 判 第 、 の 合 、 り 第 の 、 の 合 む 男 の 馬 の 、 の 合 の 一 の 一 の 一 の 一 の 一 の 一 の 一 の の 一 の 一	【認知】 I S L O C A は定期試験等による隔離弁の開操作中に発生する事象であり,隔 離弁の開操作時は原子炉圧力等の関連バラメータを継続監視しているため, I S L O C A 発生の認知に大幅な遅れが生じることは考えにくい。さらに、運転 員の認知を助けるため、I S L O C A 発生に伴い警報が発報する。事象初期の 状況判断に余裕時間を含めて 10 分を想定しており, 十分な余裕時間を確保して いることから,認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 中央制御室での操作のみであり,運転員は中央制御室に常駐していることから, 要員配置】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作開始時間に与える影響はない。 【移動】 中央制御室内での操作のみであり,移動が操作目始時間に与える影響はない。 【特動】 中央制御室内での操作のみであり,移動が操作自らめて分を想定し,余裕時間 だ匠代替注水系(常設)の起動準備操作として,外部電源がない場合も考慮し 常設代替高圧電源装置による緊急用母線受電操作も含めて分を想定し,余裕時間 だるめて操作時間としてて分を設定している。中央制御室の制御盤の操作スイッチによる簡易な操作であり,操作所要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【操作の確実さ】 中央制御室の制御盤の操作スイッチによる簡易な操作であり,誤操作は起こり にくいことから,誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び操作所 要時間は、余裕時間 を含めてむら、支援に がから間は間が 上の操作開始時間よ りも若干早まる 性がある。	実態の操作開始時間 が早まった場合,減圧 時点の崩壊熱が着注水 系(常設)による外熱 水源注水への切換え 不定炉が心スプレネ 状態が総たま 総正炉がされてい ることから、 評価項目となるパラ メータに与える影響 はない。	減圧操作が遅れた場 合でも,低圧炉心スプ レイ系の原子炉注水 により炉心の冠水状 態が維持されること から,操作時間余裕は 十分に確保される。	中央操ュ作練術で、 中央操ュ作律練術では、 「 ないのから」 にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にのでた に約 にののから にののから にののから にののから にののから にのでた にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にののから にのた にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのから にのかる にのから にのから にのから にのから にのから にのかる にのから にのかる にのかる にのかる にのかる にのかる にのかる にのから にのた にのた にのた にのた にのた にのた にのの に たら に にのた にのの に たら に にのた にのの た の に にのた に にのた に に た の に た の に に た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の で た の た の た の の の の の の の の の の の の の
	現場における残 留熱除去系の注 入弁の閉止操作	事 象 発 生 か ら 5 時間後	<ol> <li>ISLOCA発 生時の現場の現場</li> <li>生時で規構を発 度動</li> <li>及び時間発生がして、事象発離</li> <li>ない、事のの</li> <li>ない、</li> <li>ない、</li> <li>(後にるものとして、</li> <li>(2)</li> <li>(2)</li> <li>(3)</li> <li>(4)</li> <li>(4)</li> <li>(4)</li> <li>(5)</li> <li>(5)</li> <li>(5)</li> <li>(6)</li> <li>(7)</li> <li>(</li></ol>	【 i SLOC A は定期試験等による隔離弁の開操作中に発生する事象であり, 隔 離弁の開操作時は原子炉圧力等の関連パラメータを継続監視しているため, I SLOC A 発生の認知に大幅な遅れが生じることは考えにくい。さらに, 運転 員の認知を助けるため, I SLOC A 発生に伴い警報が発報する。事象初期の 状況判断に余裕時間を含めて10分を想定しており, 十分な余裕時間を確保して いることから, 認知遅れが操作開始時間に影響を及ぼす可能性は非常に小さい。 【要員配置】 現場操作のため, 中央制御室の運転員とは別に現場操作を行う運転員(現場) を配置している。現場運転員は, 操作の実施期間中に他の操作を担っていない ことから, 要員配置が操作開始時間に与える影響はない。 【移動・操作所要時間】 現場における破損系統の注入弁の閉止操作として移動及び余裕時間を含め115 分を設定しており, 十分な時間余裕を確保していることから, 移動及び操作所 要時間が操作開始時間に影響を及ぼす可能性は非常に小さい。 【他の並列操作有無】 当該操作に対応する運転員に他の並列操作はなく, 他の並列操作が操作開始時間 に与える影響はない。 【操作の確実さ】 当該操作は, 操作の信頼性の向上や要員の安全のため, 操作要員 2 人及び補助 要員 2 人の 4 人で実施することとしており, 誤操作は起こりにくいことから, 誤操作等が操作開始時間に影響を及ぼす可能性は非常に小さい。	認知時間及び移動・ 操作所要時間は,余 裕時間を含めて設定 していることから,実態の開始時間は解 析上の操作開早まる可 能性がある。	隔離操作の有無に関 わらず,低圧代替注水 系(常設)による原子 炉注水によって,炉心 は冠水維持されるた め,評価項目となるパ ラメータに与える影 響はない。	隔離操作の有無に関わらず,低圧代替注水 系(常設)による原子 炉注水能よって、炉心 は冠水維持されるた め,操作時間余裕は十 分に確保される。	現場における被損 系統作は、移動 合力が想定している があり、移動 している績想定ではの範 るの範 ので意操をと 副の内 で 意操作 ことを確 認 して 施 部 の に 、 移 時 で に 、 移 の り の の の の の の の の の の の の の の の の の

7日間における水源の対応について

(格納容器バイパス (インターフェイスシステムLOCA))

- 1. 水源に関する評価
  - ① 淡水源(有効水量)
    - •代替淡水貯槽:約4,300m³
    - 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン
  - ① 低圧代替注水系(常設)による原子炉注水

事象発生17分後,原子炉水位低(レベル3)設定点を維持する よう代替淡水貯槽を水源とした低圧代替注水系(常設)による原 子炉注水を実施する。

破断箇所の隔離操作が完了した事象発生約5時間1分後,低圧 代替注水系(常設)による原子炉注水を停止する。

3. 時間評価

原子炉注水によって、代替淡水貯槽の水量は減少する。

破断箇所の隔離操作が完了する事象発生約5時間から低圧炉心ス プレイ系による原子炉注水を実施し,低圧代替注水系(常設)によ る原子炉注水を停止するため,代替淡水貯槽の水量の減少は停止す る。

この間の代替淡水貯槽の使用水量は合計約 490m³である。

#### 添付 2.7.4-1



第1図 外部水源による積算注水量

(格納容器バイパス (インターフェイスシステムLOCA))

4. 水源評価結果

時間評価の結果から、7日間の対応において合計約490m³必要となるが、代替淡水貯槽に約4,300m³の水を保有することから必要水量を確保可能であり、安定して冷却を継続することが可能である。

7日間における燃料の対応について

(格納容器バイパス (インターフェイスシステムLOCA))

して評価する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運 転台数) =約484.0kL		
高圧炉心スプレイ系ディーゼル発電機 1台起動* ² (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運 転台数)=約130.3kL	7日間の 軽油消費量 約755.5kL	軽 油 貯 蔵 タ の 容 量 は約 800kLで あり,7日間 対応可能
常設代替高圧電源装置 2 台起動 ^{*3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運 転台数) =約 141.2kL		

※1:事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ るが,保守的にディーゼル発電機2台の起動を仮定した。

※2:事故収束に必要ではないが、保守的に起動を仮定した。

※3:緊急用 P / C の電源を,常設代替高圧電源装置 2 台で確保することを仮 定した。

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

### 常設代替交流電源設備の負荷

(格納容器バイパス (インターフェイスシステムLOCA))

主要負荷リスト

【電源設備:常設代替高圧電源装置】

起動順序	主要機器名称	負荷容量 (kW)	負荷起動時の最 大負荷容量 (k₩)	定常時の連続運 転負荷容量 (kW)
	緊急用母線自動起動負荷 • 緊急用直流125V充電器盤	24 0	124_3	59.6
	<ul> <li>その他負荷</li> </ul>	35.6	121.0	
2	常設低圧代替注水系ポンプ	190.0	544.0	249.6
3	常設低圧代替注水系ポンプ	190.0	734.0	439.6
4	緊急用海水ポンプ その他	510.0 10.0	1, 775. 8	959.6
5	代替燃料プール冷却系ポンプ	22.0	1,039.1	981.6



※1:常設代替高圧電源装置定格出力運転時の容量(1,380kW×運転台数=最大容量) ※2:常設代替高圧電源装置定格出力運転時の80%の容量(1,380kW×0.8×運転台数=連続定格容量) 2.8 津波浸水による注水機能喪失

津波特有の事象である事故シーケンスグループ「津波浸水による注水機能 喪失」は、津波PRAによって評価された炉心損傷頻度が4.0×10⁻⁶/炉年 と有意な値であること及び敷地内への津波浸水によりプラントへの影響が内 部事象に係る事故シーケンスとは異なり、炉心損傷防止のために必要な対応 が異なることから、「実用発電用原子炉及びその附属施設の位置、構造及び 設備の基準に関する規則の解釈」(平成25年6月19日)に基づき必ず想定 する事故シーケンスグループに追加する事故シーケンスグループとして抽出 している。

- 2.8.1 事故シーケンスグループの特徴, 炉心損傷防止対策
  - (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「津波浸水による注水機能喪失」に含まれる事 故シーケンスとしては、「1.2 評価対象の整理及び評価項目の設定」に示 すとおり、①「原子炉建屋内浸水による複数の緩和機能喪失」、②「最終 ヒートシンク喪失(RCIC成功)」、③「最終ヒートシンク喪失+高圧炉 心冷却失敗」、④「最終ヒートシンク喪失+逃がし安全弁再閉鎖失敗」で ある。

ļ	コメント No. 148-12 に対する回答
	(2) 事故シーケンスグループの特徴及び炉心損傷防止対策の基本的考え方
	事故シーケンスグループ「津波浸水による注水機能喪失」は、基準津波
	を超え敷地に遡上する津波(以下、「敷地に遡上する津波」という。)によ
	り取水機能及び原子炉注水機能が喪失することを想定する。このため、原
	子炉圧力制御に伴い原子炉圧力容器内の蒸気が流出し,保有水量が減少す
	ることで原子炉水位が低下し、緩和措置が取られない場合には、原子炉水
	位の低下が継続し、炉心が露出することで炉心損傷に至る。
本事故シーケンスグループは、津波浸水により複数の緩和機能が失われ ることによって炉心損傷に至る事故シーケンスグループである。このため、 重大事故等対処設備の有効性評価としては、敷地に遡上する津波に対する 防護対策を実施した重大事故等対処設備に期待することが考えられる。

以上により,本事故シーケンスグループでは,敷地に遡上する津波に対 する津波防護対策を実施した設備を用いて原子炉へ注水し,最終的な熱の 逃がし場への熱の輸送を行うことにより炉心損傷及び格納容器破損の防止 を図る。

(3) 炉心損傷防止対策

事故シーケンスグループ「津波浸水による注水機能喪失」において,炉 心が著しい損傷に至ることなく,かつ,十分な冷却を可能とするため,原 子炉建屋(原子炉隔離時冷却系,高圧代替注水系,逃がし安全弁(自動減 圧機能),残留熱除去系,所内常設直流電源設備及び常設代替直流電源設 備),低圧代替注水系(常設),低圧代替注水系(可搬型),代替格納容器 スプレイ冷却系(可搬型),緊急用海水系,常設代替高圧電源装置に対し て敷地に遡上する津波への防護対策を実施する。

(添付資料 2.8.1)

敷地に遡上する津波への防護対策を実施した重大事故等対処設備により, 初期の対策として原子炉隔離時冷却系,可搬型代替注水大型ポンプを用い た低圧代替注水系(可搬型)及び逃がし安全弁(自動減圧機能)による原 子炉注水手段を整備する。また,格納容器の健全性を維持するため,安定 状態に向けた対策として,可搬型代替注水大型ポンプを用いた代替格納容 器スプレイ冷却系(可搬型)による格納容器冷却手段及び常設代替高圧電 源装置からの給電後の緊急用海水系を用いた残留熱除去系による格納容器 除熱手段を整備する。津波防護対策の概要を第2.8-1 図に,対策の概略系統図を第2.8-2 図に,対応手順の概要を第2.8-3 図に示す。また,重大事故等対策における手順と設備との関係を第2.8-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員 22 名及び事象発生から 2 時間以降に期待する招集 要員 6 名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員5名,通報連絡等を行う災害対策要員2名,現場操作を行う重大事故等対応要員13名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名,可搬型代替注水大型ポンプを用いた格納容器スプレイ冷却系(可搬型)の現場系統構成を行う重大事故等対応要員4名である。

必要な要員と作業項目について第2.8-4図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し必要な要員数を確認した結果,初動対応要 員 22 名及び招集要員 6 名で対処可能である。

a. 原子炉スクラムの確認

原子炉がスクラムしたことを確認する。

原子炉スクラムの確認に必要な計装設備は,平均出力領域計装等であ る。

b. 原子炉隔離時冷却系の自動起動の確認

原子炉水位が原子炉水位異常低下(レベル2)設定点に到達した時点 で原子炉隔離時冷却系が自動起動したことを確認する。また,主蒸気隔 離弁が閉止するとともに,再循環ポンプがトリップしたことを確認する。

2.8 - 3

原子炉隔離時冷却系の自動起動の確認に必要な計装設備は,原子炉水 位(広帯域,燃料域),原子炉隔離時冷却系系統流量等である。

外部電源が喪失している場合は,津波による非常用ディーゼル発電機 海水ポンプの機能喪失により全交流電源喪失となるため,中央制御室か らの遠隔操作により外部電源受電及び非常用ディーゼル発電機の起動を 試み,非常用母線の電源回復ができない場合,早期の電源回復不能と判 断する。これにより,常設代替高圧電源装置による非常用母線の受電準 備操作を開始する。

c. 原子炉水位の調整操作(原子炉隔離時冷却系)

原子炉隔離時冷却系の起動により原子炉水位が回復することを確認す る。また,原子炉水位回復後は,原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持する。

原子炉水位の調整操作(原子炉隔離時冷却系)に必要な計装設備は, 原子炉水位(広帯域,燃料域)等である。

d. 可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の起動 準備操作

外部電源が喪失している場合は,全交流動力電源喪失の確認後,敷地 に遡上する津波の影響を受けない高所において可搬型代替注水大型ポン プを用いた低圧代替注水系(可搬型)による原子炉注水準備を開始する。 原子炉建屋内の現場操作にて原子炉注水に必要な系統構成を実施し,屋 外の現場操作にて可搬型代替注水大型ポンプの準備,ホース敷設等を実 施後にポンプ起動操作を実施する。

e. タンクローリによる燃料補給操作

敷地に遡上する津波の影響を受けない高所においてタンクローリによ り可搬型設備用軽油タンクから可搬型代替注水大型ポンプへの燃料補給

2.8-4

を実施する。

f. 直流電源の負荷切離し操作

外部電源が喪失している場合は、早期の電源回復不能の確認後、中央 制御室内及び現場配電盤にて所内常設直流電源設備の不要な負荷の切り 離しを実施することにより24時間後までの蓄電池による直流電源供給 を確保する。

g. 逃がし安全弁(自動減圧機能)による原子炉減圧操作

サプレッション・プール水温度が65℃に到達し,可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)の起動準備操作が完了した後に,中央制御室からの遠隔操作により逃がし安全弁(自動減圧機能) 7 弁を手動開放し,原子炉減圧を実施する。

逃がし安全弁(自動減圧機能)による原子炉減圧に必要な計装設備は, 原子炉圧力等である。

h. 原子炉水位の調整操作(低圧代替注水系(可搬型))

逃がし安全弁(自動減圧機能)による原子炉減圧により,原子炉圧力 が可搬型代替注水大型ポンプの吐出圧力を下回ると,原子炉注水が開始 されることで原子炉水位が回復する。また,原子炉水位回復後は,原子 炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8) 設定点の間で維持する。

原子炉水位の調整操作(低圧代替注水系(可搬型))に必要な計装設 備は,原子炉水位(広帯域,燃料域),低圧代替注水系原子炉注水流量 等である。

i. 可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却

津波により崩壊熱除去機能を喪失しているため、格納容器圧力及び雰

囲気温度が上昇する。サプレッション・チェンバ圧力が 279kPa[gage] に到達した場合又はドライウェル雰囲気温度が 171℃に到達した場合は, 現場操作にて可搬型代替注水大型ポンプを用いた代替格納容器スプレイ 冷却系(可搬型)による格納容器冷却を実施する。また,同じ可搬型代 替注水大型ポンプを用いて原子炉注水を継続する。

可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系(可 搬型)による格納容器冷却に必要な計装設備は,サプレッション・チェ ンバ圧力,低圧代替注水系格納容器スプレイ流量,サプレッション・プ ール水位等である。

j. 常設代替高圧電源装置による緊急用母線受電操作

外部電源が喪失している場合は,中央制御室からの遠隔操作により常 設代替高圧電源装置から緊急用母線を受電する。

常設代替高圧電源装置による緊急母線受電操作に必要な計装設備は, 緊急用M/C電圧である。

k. 常設代替高圧電源装置による非常用母線の受電準備操作

外部電源が喪失している場合は,早期の電源回復不能の確認後,中央 制御室及び現場にて常設代替高圧電源装置による非常用母線の受電準備 操作を実施する。

1. 常設代替高圧電源装置による非常用母線受電操作

常設代替高圧電源装置による緊急用母線受電操作及び非常用母線の受 電準備操作の完了後,中央制御室からの遠隔操作により常設代替高圧電 源装置から緊急用母線を介して非常用母線を受電する。

常設代替高圧電源装置による非常用母線受電操作に必要な計装設備は, M/C 2C(2D)電圧である。

m. 緊急用海水系を用いた残留熱除去系による原子炉注水及び格納容器除

常設代替高圧電源装置による非常用母線受電操作の完了後,緊急用海 水系の起動操作を実施する。その後,可搬型代替注水大型ポンプを用い た低圧代替注水系(可搬型)による原子炉注水及び代替格納容器スプレ イ冷却系(可搬型)による格納容器冷却を停止し,緊急用海水系を用い た残留熱除去系による原子炉注水及び格納容器除熱を開始する。

残留熱除去系による原子炉注水及び格納容器除熱に必要な計装設備は, 原子炉水位(広帯域),残留熱除去系系統流量等である。

以降は,残留熱除去系により原子炉水位を原子炉水位低(レベル3) 設定点から原子炉水位高(レベル8)設定点の間で維持しつつ,原子炉 注水の停止期間中に格納容器スプレイを実施する。

n. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

## 2.8.2 炉心損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループにおいては、「1.2 評価対象の整理及び評価項 目の設定」に示すとおり、敷地に遡上する津波を起因とする事故シーケンス のうち、想定する津波高さが最も高い「原子炉建屋内浸水による複数の緩和 機能喪失」が代表的な事故シーケンスとなるが、事故シーケンスグループ 「全交流動力電源喪失」との従属性を考慮して、「外部電源喪失+原子炉建 屋内浸水による複数の緩和機能喪失」を重要事故シーケンスとする。

本重要事故シーケンスにおける重要現象,適用する解析コード及び不確か さの影響評価方法については,「2.3.1 全交流動力電源喪失(長期TB)」 と同様である。

熱

なお、本事故シーケンスグループにおける事故シーケンスのうち、原子炉 隔離時冷却系を含む高圧注水機能が喪失する「最終ヒートシンク喪失+高圧 炉心冷却失敗」及び逃がし安全弁1弁の開固着が発生する「最終ヒートシン ク喪失+逃がし安全弁再閉鎖失敗」については、「全交流動力電源喪失(T BD,TBU)」及び「全交流動力電源喪失(TBP)」との従属性を考慮し て、高圧代替注水系及び常設代替直流電源設備を津波防護対象とするととも に、所定の時間内に低圧代替注水系(可搬型)による原子炉注水準備操作が 完了することを確認している。

(2) 有効性評価の条件

本重要事故シーケンスにおける有効性評価の条件については,残留熱除去 系海水系に代わり緊急用海水系に期待している点を除き「2.3.1 全交流動 力電源喪失(長期TB)」と同様である。

(3) 有効性評価の結果

本重要事故シーケンスにおける有効性評価の結果については,残留熱除去系海水系に代わり緊急用海水系に期待している点を除き「2.3.1 全交流動力電源喪失(長期TB)」と同様となる。

緊急用海水系を用いた場合,残留熱除去系海水系を用いた場合と比較 して除熱容量が小さくなるが,緊急用海水系を用いた残留熱除去系によ る原子炉注水及び格納容器除熱を実施するのは,交流電源の復旧を想定 する事象発生の24時間後であり,崩壊熱は減衰している。同じく緊急 用海水系を用いた残留熱除去系による原子炉注水及び格納容器除熱を実 施する「2.4.1 崩壊熱除去機能喪失(取水機能が喪失した場合)」にお いて,これより早く崩壊熱が高い事象発生の13時間後において,緊急 用海水系を用いた残留熱除去系による原子炉注水及び格納容器除熱を実

2.8 - 8

施した場合でも、格納容器圧力及び雰囲気温度を低下させるのに十分な 除熱性能を確認している。

2.8.3 解析コード及び解析条件の不確かさの影響評価

本重要事故シーケンスにおける有効性評価の条件については,残留熱除去 系海水系に代わり緊急用海水系に期待している点を除き「2.3.1 全交流動 力電源喪失(長期TB)」と同様である。

緊急用海水系の不確かさの影響については,「2.4.1 崩壊熱除去機能喪失 (取水機能が喪失した場合)」において確認している。

2.8.4 必要な要員及び資源の評価

(1) 必要な要員の評価

事故シーケンスグループ「津波浸水による注水機能喪失」の重大事故等対 策における必要な初動対応要員は、「2.3.1(3) 炉心損傷防止対策」と同様 22 名である。このため、「6.2 重大事故等対策時に必要な要員の評価結果」 で示す運転員及び災害対策要員の39名で対処可能である。

また,必要な招集要員は6名であり,発電所構外から2時間以内に招集可能な要員の71名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「津波浸水による注水機能喪失」において、必要 な水源、燃料及び電源の資源の評価については、残留熱除去系海水系に代わ り緊急用海水系に期待している点を除き「2.3.1 全交流動力電源喪失(長 期TB)」と同様である。

緊急用海水系を用いた場合の電源の資源の評価については,「2.4.1 崩壊 熱除去機能喪失(取水機能が喪失した場合)」において確認している。

2.8 - 9

#### 2.8.5 結 論

事故シーケンスグループ「津波浸水による注水機能喪失」では,敷地に遡 上する津波により取水機能及び原子炉注水機能が喪失することで炉心損傷に 至ることが特徴である。事故シーケンスグループ「津波浸水による注水機能 喪失」に対する炉心損傷防止対策としては,敷地に遡上する津波への防護対 策を実施した重大事故等対処設備により,初期の対策として原子炉隔離時冷 却系,可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)及び逃 がし安全弁(自動減圧機能)による原子炉注水手段,安定状態に向けた対策 として,可搬型代替注水大型ポンプを用いた代替格納容器スプレイ冷却系 (可搬型)による格納容器冷却手段及び常設代替高圧電源装置からの給電後 の残留熱除去系による格納容器除熱手段を整備している。

事故シーケンスグループ「津波浸水による注水機能喪失」の重要事故シー ケンス「外部電源喪失+原子炉建屋内浸水による複数の緩和機能喪失」につ いて,有効性評価を実施した。

上記は「2.3.1 全交流動力電源喪失(長期TB)」と同様であり,燃料被 覆管温度及び酸化量,原子炉冷却材圧力バウンダリにかかる圧力並びに原子 炉格納容器バウンダリにかかる圧力及び温度は,評価項目を満足している。 また,安定状態を維持することができる。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,「2.3.1 全交流動力 電源喪失(長期TB)」と同様であり,7日間以上の供給が可能である。

以上により,事故シーケンスグループ「津波浸水による注水機能喪失」に おいて,敷地に遡上する津波への防護対策を実施した重大事故等対処設備に よる炉心損傷防止対策は,選定した重要事故シーケンスに対して有効である

2.8-10

ことが確認でき,事故シーケンスグループ「津波浸水による注水機能喪失」 に対して有効である。

第2.8-1表 津波浸水による注水機能喪失における重大事故対策について(1/4)

出 <i>作</i> 五八章羽	千 順	重大事故等対処設備							
操作及び確認	于  順	常設設備	可搬型設備	計装設備					
原子炉スクラムの確認	・原子炉スクラムを確認する。	_	-	平均出力領域計装					
				起動領域計装					
原子炉隔離時冷却系の自動起	・原子炉水位が,原子炉水位異常低下(レベ	【原子炉隔離時冷	—	原子炉水位 (広帯域, 燃料					
動の確認	ル2)設定点に到達したことを確認する。	却系】		域)					
	・原子炉隔離時冷却系が自動起動し、原子炉	ATWS緩和設備		原子炉水位(SA 広帯域, SA					
	水位が回復したことを確認する。	(代替原子炉再循		燃料域)					
	・主蒸気隔離弁が自動閉止したことを確認す	環ポンプトリップ		【原子炉隔離時冷却系系統流					
	る。	機能)		量】					
	<ul> <li>・再循環ポンプがトリップしたことを確認す</li> </ul>			原子炉圧力					
	る。			原子炉圧力 (SA)					
	• 外部電源が喪失している場合は,中央制御								
	室からの遠隔操作により外部電源の受電及								
	び非常用ディーゼル発電機等の起動を試								
	み,これらに失敗した場合は,早期の電源								
	回復不能を確認する。								
原子炉水位の調整操作(原子	・原子炉隔離時冷却系の起動により原子炉水	【原子炉隔離時冷	-	原子炉水位 (広帯域, 燃料					
炉隔離時冷却系)	位が回復したことを確認する。	却系】		域)					
	・原子炉水位回復後は、原子炉水位を原子炉			原子炉水位(SA 広帯域, SA					
	水位低(レベル3)設定点から原子炉水位			燃料域)					
	高(レベル8)設定点の間に維持する。			【原子炉隔離時冷却系系統流					
				量】					
			【 】: 重大事故	汝等対処設備(設計基準拡張)					

: 有効性評価上考慮しない操作

第2.8-1表 津波浸水による注水機能喪失における重大事故対策について(2/4)

協作正で変刺	王 匠	重大事故等対処設備						
操作及び確認	手 順	常設設備	可搬型設備	計装設備				
可搬型代替注水大型ポンプを	・外部電源が喪失している場合は、全交流動	代替淡水貯槽	可搬型代替注	-				
用いた低圧代替注水系(可搬	力電源喪失の確認後、可搬型代替注水大型		水大型ポンプ					
型)の起動準備操作	ポンプを用いた低圧代替注水系(可搬型)							
	による原子炉注水準備を開始する。							
タンクローリによる燃料補給	・タンクローリにより可搬型代替注水設備用	可搬型設備用軽油	タンクローリ	-				
操作	軽油タンクから可搬型代替注水大型ポンプ	タンク						
	に燃料補給を実施する。							
直流電源の負荷切り離し操作	・外部電源が喪失している場合は、早期の電	所内常設直流電源	—	—				
	源回復不能の確認後、中央制御室及び現場	設備						
	にて所内常設直流電源設備の不要な負荷の							
	切り離しを実施する。							
逃がし安全弁(自動減圧機	・サプレッション・プール水温度がサプレッ	逃がし安全弁(自	可搬型代替注	サプレッション・プール水温				
能)による原子炉減圧操作	ション・プール熱容量制限(原子炉が高圧	動減圧機能)	水大型ポンプ	度				
	の場合は 65℃)に到達したことを確認す	代替淡水貯槽		原子炉圧力				
	る。			原子炉圧力(SA)				
	・可搬型代替注水大型ポンプを用いた低圧代							
	替注水系(可搬型)の起動準備操作の完了							
	後,逃がし安全弁(自動減圧機能)7 弁を							
	手動開放することで、原子炉減圧操作を実							
	施する。							
			【 】: 重大事故	(等対処設備(設計基準拡張)				

: 有効性評価上考慮しない操作

第2.8-1表 津波浸水による注水機能喪失における重大事故対策について(3/4)

堤佐正で変刻	五 匠	重大事故等対処設備						
操作及び確認	一 一 一 順	常設設備	可搬型設備	計装設備				
原子炉水位の調整操作(可搬 型代替注水大型ポンプを用い た低 圧 代 替 注 水 系 (可 搬 型))	<ul> <li>・原子炉減圧により可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)からの原子炉注水が開始され,原子炉水位が回復することを確認する。</li> <li>・原子炉隔離時冷却系が停止することを確認する。</li> <li>・以降,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。</li> </ul>	代替淡水貯槽	可搬型代替注 水大型ポンプ	原子炉水位(広帯域,燃料 域) 原子炉水位(SA 広帯域, SA 燃料域) 低圧代替注水系原子炉注水流 量				
可搬型代替注水大型ポンプを 用いた代替格納容器スプレイ 冷却系(可搬型)による格納 容器冷却	<ul> <li>サプレッション・チェンバ圧力が 279kPa[gage]に到達したことを確認する。</li> <li>可搬型代替注水大型ポンプを用いた代替格 納容器スプレイ冷却系(可搬型)による格 納容器スプレイ操作を実施する。</li> </ul>	代替淡水貯槽	可搬型代替注 水大型ポンプ	ドライウェル圧力 サプレッション・チェンバ圧 力 低圧代替注水系格納容器スプ レイ流量 サプレッション・プール水位				
常設代替高圧電源装置による 緊急用母線受電操作	<ul> <li>外部電源が喪失している場合は、常設代替 高圧電源装置から緊急用母線を受電する。</li> </ul>	常設代替高圧電源 装置 軽油貯蔵タンク	_	緊急用M/C電圧				
常設代替高圧電源装置による 非常用母線の受電準備操作	<ul> <li>・外部電源が喪失している場合は、早期の電源回復不能の確認後、常設代替高圧電源装置による非常用母線の受電準備操作を実施する。</li> </ul>	常設代替高圧電源 装置 軽油貯蔵タンク	_	_				
常設代替高圧電源装置による 非常用母線受電操作	<ul> <li>・常設代替高圧電源装置による緊急用母線受 電操作及び非常用母線の受電準備操作の完 了後,非常用母線2C及び2Dを受電す る。</li> </ul>	常設代替高圧電源 装置 軽油貯蔵タンク		M/C 2C電圧 M/C 2D電圧				

【 】:重大事故等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

第2.8-1表 津波浸水による注水機能喪失における重大事故対策について(4/4)

世化エスジロの	王 話	重大事故等対処設備					
採作及び確認	· · · · · · · · · · · · · · · · · · ·	常設設備	可搬型設備	計装設備			
残留熱除去系による原子炉注	・非常用母線の受電後,緊急用海水系の起動	【残留熱除去系	_	原子炉水位 (広帯域)			
水及び格納容器除熱	操作を実施する。	(低圧注水系)】		原子炉水位(SA 広帯域)			
	・可搬型代替注水大型ポンプを用いた低圧代	【残留熱除去系		【残留熱除去系系統流量】			
	替注水系(可搬型)による原子炉注水及び	(格納容器スプレ		緊急用海水系流量(残留熱除			
	代替格納容器スプレイ冷却系(可搬型)に	イ冷却系)】		去系熱交換器)			
	よる格納容器スプレイを停止する。	常設代替高圧電源		緊急用海水系流量(残留熱除			
	・残留熱除去系による原子炉注水及び格納容	装置		去系補機)			
	器スプレイを実施する。	軽油貯蔵タンク		低圧代替注水系原子炉注水流			
	・以降,残留熱除去系により原子炉注水及び			量			
	格納容器スプレイを交互に実施しつつ、原			サプレッション・チェンバ圧			
	子炉水位を原子炉水位低(レベル3)設定			力			
	点から原子炉水位高(レベル8)設定点の			ドライウェル圧力			
	間に維持する。						
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷	-	_	-			
	却操作を実施する。						
			【 】: 重大事故	汝等対処設備(設計基準拡張)			

:有効性評価上考慮しない操作



第2.8-1図 敷地に遡上する津波への防護対策概要



第2.8-2図 津波浸水による注水機能喪失時の重大事故等対策の概略系統図(1/3) (原子炉隔離時冷却系による原子炉注水段階)



第2.8-2 図 津波浸水による注水機能喪失時の重大事故等対策の概略系統図(2/3) (可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水 及び代替格納容器スプレイ冷却系(可搬型)による格納容器冷却段階)



第2.8-2図 津波浸水による注水機能喪失時の重大事故等対策の概略系統図(3/3) (緊急用海水系を用いた残留熱除去系による原子炉注水及び格納容器冷却段階)



※1:敷地に遡上する津波の到達に伴い循環水ボンプが停止し復水器が使用不能となることで給水流量の全喪失が発生する。また,重要事故シーケンスにおいては,「外部電源喪失+DG失敗+HPCS失敗(RCIC 成功)」との従属性を考慮して,外部電源喪失を想定する。

※2:原子炉スクラムは、中央制御室にて平均出力領域等により確認する。

※3:中央制御室にて機器ランプ表示,系統流量計指示等にて確認する。

※4:原子炉隔離時冷却系により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。

※5:中央制御室からの遠隔操作により外部電源受電及び非常用ディーゼル発電機の起動ができず,非常用母線の電源回復ができない場合,早期の電源回復不能と判断する。

- ※6:全交流動力電源喪失を確認した場合は、速やかに可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水の準備を開始する。なお、可搬型代替注水大型ポンプを用いた低圧代替注水系 (可搬型)及び代替格納容器スプレイ冷却系(可搬型)には同じ可搬型代替注水大型ポンプを用いる。
- ※7:サプレッション・プール水温度がサプレッション・プール熱容量制限(原子炉が高圧の場合は 65℃)に到達又は超過した場合は、低圧で注水可能な系統の準備完了後に原子炉減圧操作を実施する。また、実際の 操作では、原子炉圧力が低下し可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)による原子炉注水が開始された後に原子炉隔離時冷却系が停止するが、評価上は可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)のみによる水位回復性能を確認する観点で、原子炉減圧開始と同時に原子炉隔離時冷却系は停止する想定としている。

#### ※8:原子炉水位不明は、以下により判断する。

- ・ドライウェル雰囲気温度と原子炉圧力の関係が原子炉水位不明領域に入った場合
- ・原子炉水位計の電源が喪失した場合
- ・原子炉水位計のばらつきが大きく有効燃料長頂部以上であることが判断できない場合
- ※9:可搬型代替注水大型ポンプを用いた低圧代替注水系(可搬型)により,原子炉水位を原子炉水位低(レベル3)設定点から原子炉水位高(レベル8)設定点の間に維持する。
- ※10:残留熱除去系は,原子炉水位低(レベル3)設定点にて原子炉注水モード運転に切り換え,原子炉水位高(レベル8)設定点にて格納容器スプレイモード運転に切り替える。

# 第2.8-3図 津波浸水による注水機能喪失の対応手順の概要

2.8 - 20

									津波注	浸水によ	る注水機能喪	要失							
						0	10	2	) ]	30	40		50	経過時間(分) 60	70	80	90	100	
		実施箇所・ 【 】は 移動して	必要要員 t他作業行 こきた要員	員数 後 員		▼ 事象発 ▼ 動地内	生 への津波	5浸水發生											
	責任者	発電長	1人	中央監視 運転操作指揮	10 fb = - is de	▲ 放地门 ● 原子炉	スクラム	CLE N. H. L.											
操作項目	補佐	副発電長	1人	運転操作指揮補佐	操作の内容		⊽ 3	プラント状	況判断										
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡															
	運転員 (中央制御室)         運転員 (現場)         重大事故等対応要員 (現場)																		
					●原子炉スクラムの確認														
					<ul> <li>給水流量の全喪失の確認</li> </ul>														
					●外部電源喪失の確認														
. ( b. Sen star blet	2人				●非常用ディーゼル発電機等の停止確認														
状況判断	Α, Β	_		_	●タービン停止の確認	- 10 分													
					●原子炉隔離時冷却系の自動起動の確認														
					●主蒸気隔離弁閉止及び逃がし安全弁による 原子炉圧力制御の確認														
					●再循環ポンプトリップの確認		_												_
原子炉水位の調整 操作(原子炉隔離 時冷却系)	【1人】 A	-		_	●原子炉隔離時冷却系による原子炉注水の調整操作						原子炉水位を	を原子炉オ	k位低(レ-	ベル3)設定点	気から原子炉水	位高(レベル8	3)設定点の間	]に維持	
全交流動力電源	【1人】 A	-		-	●高圧炉心スプレイ系ディーゼル発電機の手動起動操作(失敗)		1分												
喪失の確認	【1人】 B	-		-	●非常用ディーゼル発電機等の手動起動操作(失敗)	:	2 分												
直流電源の負荷切 り離し操作 (中央制御室)	【1人】 B	_		-	●不要負荷の切離し操作								6	分					_

第2.8-4 図 津波浸水による注水機能喪失の作業と所要時間(1/2)

110 120	備考
	外部電源喪失の確認及び非常用ディーゼル発電機等の 停止確認は,外部電源がない場合に実施する
	外部電源がない場合に実施する
	外部電源がない場合に実施する

					津波浸水による注水機	能喪失								
·									<b>ジズ \日 n + 用 / n + 用 )</b>					
					4	8	12	16	20 20	24	28	32	36	40 備考
	-				I	1	i					I	I	
						▼ 8時間	直流電源の負	負荷切り離し操作(現場	)					
		実施箇所・必要要	員数			▼ 8時間	1分 原子炉	咸圧開始						
操作項目		移動してきた要	ld 員	操作の内容			7	▼ 約13時間 サプレ	ッション・チェンバ圧フ	力279kl	Pa[gage]到達			
										<b>V</b> ²	24時間 非常用母線受電			
	運転員 (中央制御室)	運転員 (現場)	重大事故等対応要員 (現場)							,	▼ 24時間25分 緊急用剤 原子炉剤	毎水系を用いた残 主水及び格納容器	留熱除去系による 除熱開始	
原子炉水位の調整操作(原子炉隔離時 冷却系)	【1人】 A	-	-	●原子炉隔離時冷却系による原子炉注水の調整操作	原子炉水位を原子炉水位低(レベル 3)設定点から原子炉水位高(レベ ル8)設定点の間に維持									
	-	-	8人 a~h	●可搬型代替注水大型ポンプ準備,高所淡水池からのホース敷設等	160 分									
可搬型代替注水大型ポンプを用いた 低圧代替注水系(可搬型)の起動準備	-	-	【2人】 a.b	●可搬型代替注水大型ポンプ起動操作				起動後,適宜監視	Į					
一理作	-	2人 C. D	4人 i~1	●原子炉注水のための系統構成	125 分									
タンクローリによる燃料補給操作	_	-	2人 (切/#1	●可搬型設備用軽油タンクからタンクローリへの補給	90 分									タンクローリ残量に応じ て適宜軽油タンクから補 給
		(加来)	(指来)	●可搬型代替注水大型ポンプへの給油						適宜	I 実施			
逃がし安全弁(自動減圧機能)による 原子炉減圧操作	【1人】 B	-	-	●逃がし安全弁(自動減圧機能)7弁の開放操作	1分									
原子炉水位の調整操作(可搬型代替注 水大型ポンプを用いた低圧代替注水系 (可搬型))	_	【2人】 C, D	【2人】 i, j	●原子炉注水の流量調整				系統構成後,適宜流量	<b>ま</b> 調整					
直流電源の負荷切り離し操作(現場)	-	1人 E	1人 m	●不要負荷の切り離し操作	50 分									外部電源がない場合に実 施する
常設代替高圧電源装置による	【1人】 B	-	-	<ul><li>●非常用母線受電準備</li></ul>		35 分								外部電源がない場合に実
非常用母線の受電準備操作	-	【1人】 E	【1人】 m	●非常用母線受電準備		70分								施する
可搬型代替注水大型ポンプを用いた 代替格納容器スプレイ冷却系(可搬	_	[1]]	【1人】 m	●格納容器スプレイのための系統構成			175 分							
型)による格納容器冷却		L	4人 (招集)	●格納容器スプレイの流量調整				系統構成後	後,適宜流量調整					
常設代替高圧電源装置による 緊急用母線受電操作	【1人】 B	-	-	●常設代替高圧電源装置2台起動及び緊急用母線への受電操作					4 分					外部電源がない場合に実 施する
常設代替高圧電源装置による	[1人]	_	_	●常設代替高圧電源装置3台追加起動	8分     Annu (1)				外部電源がない場合に実					
并吊用母廠交电操作	Б			●非常用母線受電					5 多	6				ME 9 S
				<ul> <li>●緊急用海水系の起動操作</li> </ul>					2	20 分				
緊急用海水系を用いた残留熱除去系に	【1人】			●残留熱除去系による原子炉注水						2分				
よる原子炉注水及び格納容器除熱 A ●残留熱除去系による原子炉注水及び格納容器スプレイ操作の交互運 転								原子炉水位高(レベル8 ン・プール冷却開始への 設定点にて原子炉注水へ	<ul> <li>)設定点にて格納容</li> <li>)切替え操作を実施しの切替え操作を実施</li> </ul>	器スプレイ又はサプレッ , 原子炉水位低(レベル	ショ 3)			
使用済燃料プールの冷却操作	-	-	【2人】 <u>k, 1</u>	●可搬型代替注水大型ボンブによる代替燃料ブール注水系(注水ラ イン)を使用した使用済燃料ブールへの注水操作	k-7         intervention         intervention			<ul> <li>解析上考慮しない</li> <li>スロッシングによる水位</li> <li>低下がある場合は代替燃</li> <li>料ブール冷却系の起動ま</li> <li>でに実施する</li> </ul>						
	【1人】 A	-	_	●代替燃料ブール冷却系起動操作						15 分				解析上考慮しない 約25時間までに実施する
必要要員合計	2人 A, B	3人 C, D, E	13人 a~m 及び招集6人											

第2.8-4 図 津波浸水による注水機能喪失の作業と所要時間(2/2)

基準津波を超え敷地に遡上する津波に対する

#### 施設の防護方針について

基準津波を超え敷地に遡上する津波(以下「敷地に遡上する津波」という。) に対する浸水対策が本有効性評価の前提となることから,敷地に遡上する津波 に対する施設の防護方針について以下に示す。なお,詳細は耐津波設計方針等 において説明する。

1. 敷地に遡上する津波

敷地に遡上する津波については,事故シーケンス選定の評価結果に基づき,防潮堤位置において T.P.+24m^{*1*2}の津波を想定する。なお,敷地に遡上する津波の年超過確率は,確率論的津波ハザードの評価結果から,約3×10⁻⁷ / 炉年に相当する。

※1 T.P.は Tokyo Peilの略で東京湾中等潮位(平均潮位)を示す。

- ※2 津波高さ(T.P.+24m)は、仮想的に防潮堤位置に無限鉛直壁を設定した場合の 防潮堤位置の最高水位(駆け上がり高さ)を示す。
- 2. 敷地に遡上する津波に対する津波防護対象の選定

敷地に遡上する津波に対する津波防護対象については,敷地に遡上する津 波により重大事故等が発生した場合において,事故対応を行うために必要と なると考えられる設備として,以下の設備を選定する。なお,ここで発電用 原子炉を未臨界にする設備については,大津波警報発表時にはあらかじめ原 子炉停止操作を行うことから,防護対象としていない。

- (1)設備要求に係る条文である設置許可基準規則第45条~第62条に適合するために必要となる重大事故等対処設備^{*3}
- (2)事故シーケンスグループ「津波浸水による注水機能喪失」の有効性 評価において、その機能に期待する重大事故等対処設備(設計基準 拡張)
  - ※3:「設置許可基準規則第43条(重大事故等対処設備)」における可搬型重大 事故等対処設備の接続口,保管場所及び機能保持に対する要求事項を満足 するため,可搬型設備保管場所(西側及び南側),東側接続口,西側接続 口(地下格納槽),11m 盤接続口についても津波防護の対象とする

選定した津波防護対象について,第1表に示す。

3. 敷地に遡上する津波に対する防護方針

選定した津波防護対象(第1表)は、以下の施設等に内包されることから、 これらの施設を敷地に遡上する津波から防護する。

• 原子炉建屋

- ・ 緊急用海水ポンプピット(地下格納槽)
- SA用海水ピット取水塔
- ・ 格納容器圧力逃がし装置フィルタ装置(地下格納槽)
- 常設低圧代替注水系格納槽(地下格納槽)
- ・ 軽油貯蔵タンク(地下式)
- ・ 東側接続口及び西側接続口(地下格納槽)
- · 常設代替高圧電源装置置場
- 可搬型設備保管場所(西側及び南側)
- 緊急時対策所

### 添付 2.8.1-2

敷地に遡上する津波からの施設の防護に当たっては,防潮堤により敷地へ の浸水量を抑制し,その上で,以下の対策を実施する。

a. 建屋・壁により津波による影響から防護

原子炉建屋等の津波防護対象を内包する建屋・壁については,万一, 当該建屋・壁内に浸水した場合には,同時に重要機能の喪失に至るリス クがあることから,浸水経路(扉,貫通部等)を特定し,それぞれに対 して,十分高い位置まで浸水防止対策(水密扉の設置,貫通部止水処置 等)を実施する。

【対象】

- ① 原子炉建屋
- 2 緊急用海水ポンプピット(地下格納槽)
- ③ 格納容器圧力逃がし装置フィルタ装置(地下格納槽)
- ④ 常設低圧代替注水系格納槽(地下格納槽)
- ⑤ 軽油貯蔵タンク(地下式)
- ⑥ 西側接続口(地下格納槽)
- b. 津波による影響に対して機能維持できるよう設計

緊急用海水ポンプピット(地上敷設部)等の建屋・壁に内包されない 津波防護対象については,敷地に遡上する津波による浸水経路がなく, 機能に影響がないよう設計するとともに,点検路等の浸水経路がある場 合は,それに対して浸水防止対策(止水処置等)を実施する。

【対象】

- ⑦ 緊急用海水ポンプピット(地上敷設部)
- ⑧ 格納容器圧力逃がし装置フィルタ装置(地上敷設部)

### 添付 2.8.1-3

- ⑨ SA用海水ピット取水塔
- ⑩ 東側接続口
- c. 津波による影響のない高所に設置

敷地浸水評価結果から求めた近傍の最大浸水深より高所に津波防護対 象を設置する。

【対象】

- ⑪ 常設代替高圧電源装置置場
- 可搬型設備保管場所(西側及び南側)
- 13 緊急時対策所
- ⑭ 11m盤接続口

また,津波により想定される漂流物及び倒壊物が起因となって,津波防護 対象に対し波及的影響を与えないよう,漂流防止措置,倒壊防止措置又は津 波防護対象に対して防護対策を実施する。

敷地に遡上する津波から防護する①~⑭の施設等の配置を第1図に示す。

	第1表	津波防護対象	(1 /	3)
--	-----	--------	------	----

設置許可基準規則	津波防護対象
第45条 (原子炉冷却材圧力バウンダ リ高圧時に発電用原子炉を 冷却するための設備)	<ul> <li>・高圧代替注水系</li> <li>・ほう酸水注入系</li> <li>【設計基準拡張】</li> <li>・原子炉隔離時冷却系</li> </ul>
第46条 (原子炉冷却材圧力バウンダ リを減圧するための設備)	<ul> <li>・逃がし安全弁</li> <li>・過渡時自動減圧機能</li> <li>・逃がし安全弁用可搬型蓄電池         <ul> <li>(逃がし安全弁機能回復(可搬型代替直流電源供給))</li> </ul> </li> <li>・高圧窒素ガスボンベ             <ul></ul></li></ul>
第47条 (原子炉冷却材圧力バウンダ リ低圧時に発電用原子炉を 冷却するための設備)	<ul> <li>低圧代替注水系(可搬型)</li> <li>低圧代替注水系(常設)</li> <li>代替循環冷却系</li> <li>【設計基準拡張】</li> <li>残留熱除去系(低圧注水系)</li> <li>残留熱除去系(原子炉停止時冷却系)</li> </ul>
第48条 (最終ヒートシンクへ熱を輸 送するための設備)	<ul> <li>・緊急用海水系</li> <li>・格納容器圧力逃がし装置</li> <li>・耐圧強化ベント系</li> <li>【設計基準拡張】</li> <li>・残留熱除去系</li> </ul>
第49条 (原子炉格納容器内の冷却等 のための設備)	<ul> <li>・代替格納容器スプレイ冷却系(常設)</li> <li>・代替格納容器スプレイ冷却系(可搬型)</li> <li>・代替循環冷却系</li> <li>【設計基準拡張】</li> <li>・残留熱除去系(格納容器スプレイ冷却系)</li> <li>・残留熱除去系(サプレッション・プール冷却系)</li> </ul>
<ul> <li>第50条</li> <li>(原子炉格納容器の過圧破損</li> <li>を防止するための設備)</li> </ul>	<ul> <li>・格納容器圧力逃がし装置</li> <li>・代替循環冷却系</li> <li>・可搬型窒素供給装置</li> </ul>
第51条       (原子炉格納容器下部の溶融       炉心を冷却するための設       備)	<ul> <li>・原子炉格納容器下部注水設備(常設)</li> <li>・原子炉格納容器下部注水設備(可搬型)</li> </ul>
第52条       (水素爆発による原子炉格納       容器の破損を防止するための設備)	<ul> <li>・格納容器圧力逃がし装置</li> <li>・水素濃度監視設備</li> </ul>
<ul> <li>第53条</li> <li>(水素爆発による原子炉建屋</li> <li>等の損傷を防止するための</li> <li>設備)</li> </ul>	<ul> <li>・静的触媒式水素再結合器</li> <li>・水素濃度の監視設備</li> </ul>

第1表 津波防護対象 (2/3)

設置許可基準規則	津波防護対象
第54条 (使用済燃料貯蔵槽の冷却等 のための設備)	<ul> <li>・常設低圧代替注水系ポンプ及び代替燃料プール注水系 (注水ライン)</li> <li>・可搬型代替注水大型ポンプ及び代替燃料プール注水系 (注水ライン)</li> <li>・常設低圧代替注水系ポンプ及び代替燃料プール注水系 (常設スプレイヘッダ)</li> <li>・可搬型代替注水大型ポンプ及び代替燃料プール注水系 (可搬型スプレイノズル)</li> <li>・可搬型代替注水大型ポンプ及び代替燃料プール注水系 (常設スプレイヘッダ)</li> <li>・可搬型代替注水大型ポンプ(放水用)及び放水砲 (大気への拡散抑制)</li> <li>・代替燃料プール冷却設備</li> </ul>
第55条 (工場等外への放射性物質の 拡散を抑制するための設 備)	<ul> <li>可搬型代替注水大型ポンプ(放水用)及び放水砲 (大気への拡散抑制)</li> <li>・汚濁防止膜 (海洋への拡散抑制)</li> </ul>
第56条 (重大事故等の収束に必要と なる水の供給設備)	<ul> <li>・重大事故等の収束に必要となる水源の確保 (代替淡水貯槽、サプレッション・プール,ほう酸水貯 蔵タンク,使用済燃料プール)</li> <li>・水の移送設備の確保 (可搬型代替注水大型ポンプ,ホース等)</li> </ul>
第57条 (電源設備)	<ul> <li>可搬型代替交流電源設備</li> <li>常設代替交流電源設備</li> <li>非常用所内電気設備</li> <li>所内常設直流電源設備</li> <li>常設代替直流電源設備</li> <li>可搬型代替直流電源設備</li> <li>代替所内電気設備</li> <li>燃料補給設備</li> </ul>
第58条 (計装設備)	<ul> <li>・重要監視パラメータ及び重要代替監視パラメータを計測 する設備</li> <li>・代替パラメータを計測する設備</li> <li>・パラメータ記録時に使用する設備</li> </ul>
第59条 (原子炉制御室)	<ul> <li>・中央制御室及び中央制御室待避室の照明を確保するための設備(可搬型照明(SA))</li> <li>・居住性を確保するための設備         <ul> <li>-遮蔽及び換気設備</li> <li>(中央制御室換気系,原子炉建屋ガス処理系,中央制御室待避室,中央制御室待避室ボンベユニット)</li> <li>-衛星電話設備(可搬型)(待避室)及びデータ表示装置(待避室)</li> <li>-酸素濃度計,二酸化炭素濃度計</li> </ul> </li> </ul>
第60条 (監視測定設備)	<ul> <li>・放射性物質の濃度及び放射線量の測定に用いる設備</li> <li>–可搬型モニタリング・ポスト</li> <li>–可搬型放射能測定装置</li> <li>・風向,風速その他の気象条件の測定に用いる設備</li> <li>–可搬型気象観測設備</li> </ul>

第1表	津波防護対象	(3/3)	)

設置許可基準規則	津波防護対象
第61条 (緊急時対策所)	<ul> <li>・緊急時対策所</li> <li>・必要な情報を把握できる設備及び通信連絡を行うために必要な設備</li> <li>-安全パラメータ表示システム</li> <li>-通信設備         <ul> <li>(衛星電話設備(固定型),衛星電話設備(携帯型),携行型有線通話装置及び統合原子力防災ネットワークに接続する通信連絡設備(テレビ会議システム,IP電話,IP-FAX),データ伝送設備)</li> </ul> </li> <li>・代替電源設備         <ul> <li>(緊急時対策所用発電機,緊急時対策所用発電機燃料油貯蔵タンク,緊急時対策所用発電機給油ポンプ及び緊急時対策所用M/C)</li> </ul> </li> <li>・居住性を確保するための設備         <ul> <li>(緊急時対策所遮蔽,緊急時対策所非常用送風機,緊急時対策所加圧設備及び酸素濃度計,二酸化炭素濃度計,可搬型モニタリング・ポスト,緊急時対策所エリアチニタ)</li> </ul> </li> </ul>
第62条 (通信連絡を行うた めに必要な設備)	<ul> <li>・発電所内の通信連絡を行うための設備         <ul> <li>ー通信設備(発電所内)                (携行型有線通話装置,衛星電話設備(固定型),衛星電話                設備(携帯型)及び無線連絡設備(携帯型))                ー安全パラメータ表示システム</li> <li>・発電所外との通信連絡を行うための設備                ー通信設備(発電所外)                (衛星電話設備(固定型),衛星電話設備(携帯型)及び統                合原子力防災ネットワークに接続する通信連絡設備(テレ                ビ会議システム, IP電話, IP-FAX))                ーデータ伝送設備</li> </ul> </li> </ul>

第1図 津波防護対象の配置図

地震発生と同時に津波が到達するとした

### 評価上の想定の妥当性について

基準津波を超え敷地に遡上する津波(以下「敷地に遡上する津波」 という。)が発生した場合には,最初に地震が発生し,その後に津波が 発電所敷地に到達すると想定される。これに対して本評価においては, 地震の発生と同時に津波が発電所に到達したとして評価している。

以下では,地震発生から敷地に遡上する津波が発電所に到達するま での時間を考慮した場合の影響について検討する。

- 1. 津波到達の時間遅れを考慮する場合の対応操作
  - (1) 地震発生から敷地に遡上する津波の到達までに想定される対応
     操作

地震発生時点で「地震加速度大」により原子炉がスクラムする。 また,給復水系が停止した場合には,原子炉水位が低下し,原子 炉水位異常低下(レベル2)設定点にて原子炉隔離時冷却系及び 高圧炉心スプレイ系が自動起動し,原子炉への注水が行われると ともに主蒸気隔離弁が閉止し,原子炉は隔離状態となる。これら の機器動作は,インターロックによる自動作動であるため,運転 員による対応はプラント状況及び自動作動した機器等の確認のみ である。

原子炉への注水が確保された以降は,サプレッション・プール 水温度等を確認し,必要に応じて残留熱除去系による格納容器除 熱を実施する。

### 添付 2.8.2-1

(2) 敷地に遡上する津波の到達後に想定される対応操作

地震に伴い発生する事象への対応中に敷地に遡上する津波の到 達により敷地内が浸水した場合には,非常用ディーゼル発電機海 水ポンプ,高圧炉心スプレイ系ディーゼル発電機海水ポンプ及び 残留熱除去系海水系ポンプが機能喪失する。このため,高圧炉心 スプレイ系は停止するが,原子炉隔離時冷却系による原子炉注水 は維持される。また,外部電源が喪失している場合は,高所作業 により可搬型設備の準備を開始するとともに,常設代替高圧電源 装置により交流電源を確保し,サプレッション・プール水温度が 熱容量制限に到達した時点で原子炉を減圧し,低圧の注水機能を 用いて原子炉注水を実施する。格納容器除熱は,緊急用海水系及 び残留熱除去系により確保する。これらの対応操作は,地震発生 と同時に津波が発電所に到達すると想定した場合と同様である。

# 2. 津波到達の時間遅れを考慮した場合の影響

で述べたとおり、地震が発生してから津波到達までは、自動起動した原子炉隔離時冷却系及び高圧炉心スプレイ系による原子炉注水の状況を確認するとともに、サプレッション・プール水温度が上昇した場合には、残留熱除去系による格納容器除熱を実施する。ここで、原子炉注水又は格納容器除熱が開始される直前に津波が到達した場合の影響について考察する。

原子炉注水については,原子炉水位が原子炉水位異常低下(レベル2)設定点に到達する直前に津波が到達し,高圧炉心スプレイ系が自動起動しなかった場合でも,原子炉隔離時冷却系が自動起動することで原子炉注水が確保され,炉心冷却は維持される。また,解

添付 2.8.2-2

析上も高圧炉心スプレイ系による原子炉注水に期待しない評価としている。

格納容器除熱については、サプレッション・プール水温度が 32℃ に到達し、残留熱除去系の起動操作を開始した直後に津波により残 留熱除去系海水系が停止した場合でも、格納容器限界温度(200℃) 及び限界圧力(620kPa[gage])に到達するまでに緊急用海水系を用 いた残留熱除去系による格納容器除熱を開始すれば良く、+分な時 間余裕が確保されている

3. まとめ

地震の発生と同時に津波が発電所に到達することを想定する場合, 地震による原子炉スクラム等への対応操作に加えて,敷地に遡上す る津波による機能喪失状態に応じた対応操作が重なるため,運転員 等操作の観点からより厳しい条件となる。また,津波到達の時間遅 れを考慮した場合でも,原子炉注水は原子炉隔離時冷却系の自動起 動により確保され,格納容器除熱は事象後期に実施することから, 評価項目に与える影響はない。以上により,評価上,地震の発生と 同時に津波が発電所に到達することを想定することは妥当であると 考える。

- 4. 使用済燃料プールにおける重大事故に至るおそれがある事故
- 4.1 想定事故1
- 4.1.1 想定事故1の特徴,燃料損傷防止対策
- (1) 想定する事故

「使用済燃料プールにおける重大事故に至るおそれがある事故」におい て、使用済燃料プールにおける燃料損傷防止対策の有効性を確認するため に想定する事故の一つには、「1.2 評価対象の整理及び評価項目の設定」 に示すとおり、想定事故1として「使用済燃料プールの冷却機能又は注水 機能が喪失することにより、使用済燃料プール内の水の温度が上昇し、蒸 発により水位が低下する事故」がある。

(2) 想定事故1の特徴及び燃料損傷防止対策の基本的考え方

想定事故1では、使用済燃料プールの冷却機能又は注水機能が喪失する ことを想定する。このため、使用済燃料プール水温が徐々に上昇し、やが て沸騰して蒸発することによって使用済燃料プール水位が緩慢に低下する ことから、緩和措置が取られない場合には、使用済燃料プール水位の低下 により燃料が露出し、燃料損傷に至る。

本想定事故は,使用済燃料プールの冷却機能及び注水機能を喪失したこ とによって燃料損傷に至る事故を想定するものである。このため,重大事 故等対策の有効性評価には使用済燃料プールの注水機能に対する重大事故 等対処設備に期待することが考えられる。

したがって,想定事故1では,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用して使用済燃料プールへ注水することによって,燃料損傷の防止を図る。また,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用して使用済燃料プール水

(3) 燃料損傷防止対策

想定事故1における機能喪失に対して,使用済燃料プール内の燃料が著 しい損傷に至ることなく,かつ,十分な冷却を可能とするため,常設低圧 代替注水系ポンプによる代替燃料プール注水系(注水ライン)を使用した 使用済燃料プールへの注水手段及び可搬型代替注水大型ポンプによる代替 燃料プール注水系(注水ライン)を使用した使用済燃料プールへの注水手 段を整備する。

なお、これらの手段はいずれも重大事故等対処設備を用いた手段であり、 本来はいずれの設備でも想定事故1において対処可能であるが、手順上、 後段の手段である可搬型代替注水大型ポンプによる代替燃料プール注水系

(注水ライン)を使用した使用済燃料プールへの注水手段を代表として評価対象とすることとし、その他の注水手段については評価上考慮しないものとする。これらの対策の概略系統図を第4.1-1図に、対応手順の概要を 第4.1-2図に示すとともに、重大事故等対策の概要を以下に示す。また、 重大事故等対策における手順と設備との関係を第4.1-1表に示す。

想定事故1において,必要な要員は,初動対応要員13名及び事象発生から2時間以降に期待する招集要員2名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員1名,通報連絡等を行う災害対策要員2名,現場操作を行う重大事故等対応要員8名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名である。 必要な要員と作業項目について第4.1-3図に示す。

a. 使用済燃料プール冷却機能喪失の確認

使用済燃料プールを冷却している系統が機能喪失することにより,使 用済燃料プール水の温度が上昇する。燃料プール冷却浄化系及び残留熱 除去系(燃料プール冷却機能)の再起動操作が困難な場合,使用済燃料 プールの冷却機能が喪失したことを確認する。

使用済燃料プールの冷却機能の喪失を確認するために必要な計装設備 は,使用済燃料プール水位・温度(SA広域),残留熱除去系系統流量等 である。

b. 使用済燃料プール注水機能喪失の確認

使用済燃料プール冷却機能喪失の確認後,使用済燃料プール水の温度 上昇による蒸発により,使用済燃料プール水位が低下することが想定さ れるため,補給水系及び残留熱除去系による使用済燃料プールへの注水 *準備を行う。補給水系及び残留熱除去系による使用済燃料プールへの 注水が困難な場合,使用済燃料プールの注水機能が喪失したことを確認 する。

※:残留熱除去系(燃料プール冷却機能)と系統構成が異なるため,残留熱除去 系による使用済燃料プールへの注水が可能な場合がある。

使用済燃料プール注水機能喪失を確認するために必要な計装設備は、

使用済燃料プール水位・温度(SA広域),残留熱除去系系統流量等である。

c. 使用済燃料プール水位, 温度監視

使用済燃料プールの冷却機能喪失の確認後,使用済燃料プールの水位, 温度を監視する。

使用済燃料プール水位,温度を監視するために必要な計装設備は,使 用済燃料プール水位・温度(SA広域)等である。

d. 使用済燃料プール冷却機能の復旧操作

使用済燃料プール冷却機能(燃料プール冷却浄化系及び残留熱除去系) の復旧操作を対応可能な要員にて実施する。

- e.使用済燃料プール注水機能の復旧操作
   使用済燃料プール注水機能(補給水系及び残留熱除去系)の復旧操作を
   対応可能な要員にて実施する。
- f.可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水準備

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) の準備は冷却機能喪失による異常の認知を起点として開始する。

外部電源が喪失している場合,中央制御室からの遠隔操作により常設 代替高圧電源装置から緊急用母線を受電し,必要な計装設備及び可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)に給電 する。

g.可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) の準備完了後,使用済燃料プールへの注水を開始することにより,使用 済燃料プール水位を回復する。その後,蒸発量に応じた水量を注水する ことで,使用済燃料プール水位を必要な遮蔽を確保できる水位(線量率 が10mSv/hとなる通常水位から約0.9m下の水位)^{※1}より高く維持する。

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水を確認するために必要な計装設備 は、使用済燃料プール水位・温度(SA広域)等である。

※1:必要な遮蔽の目安として設定した 10mSv/h は,施設定期検査作業での原 子炉建屋最上階における現場作業の実績値(約 3.5mSv/h)を考慮した
ものであり、本事故発生時において使用済燃料プール周りでの作業時間 が最も長い、可搬型代替注水大型ポンプによる代替燃料プール注水系(可 搬型スプレイノズル)を使用した使用済燃料プールスプレイのためのホ ースの敷設や可搬型スプレイノズルの設置作業時間を保守的に見積って も1時間以内であることから、緊急作業時の被ばく限度である100mSv に 対しても、十分に余裕がある値である。

h. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

- 4.1.2 燃料損傷防止対策の有効性評価
  - (1) 有効性評価の方法

想定する事故は、「1.2 評価対象の整理及び評価項目の設定」に示すと おり、想定事故1として、「使用済燃料プールの冷却機能又は注水機能が喪 失することにより、使用済燃料プール内の水の温度が上昇し、蒸発により 水位が低下する事故」である。

想定事故1では、使用済燃料プールの冷却機能及び注水機能の喪失に伴 い使用済燃料プール水温が上昇し、やがて沸騰して蒸発することによって 使用済燃料プール水位が緩慢に低下するが、使用済燃料プールへの注水に より、使用済燃料プール水位が放射線の遮蔽が維持される水位を確保でき ることを評価する。なお、使用済燃料プール水位が放射線の遮蔽が維持さ れる水位を確保できることで、燃料有効長頂部の冠水は維持される。また、 未臨界が維持されることについては、使用済燃料プール水の水密度によら ず実効増倍率が1.0を下回ることを評価する。また、評価条件の不確かさ の影響評価の範囲として、想定事故1における運転員等操作時間に与える 影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する。

(添付資料 4.1.1, 4.1.2)

(2) 有効性評価の条件

想定事故1に対する初期条件も含めた主要な評価条件を第4.1-2表に示 す。また,主要な評価条件について,想定事故1特有の評価条件を以下に 示す。

なお、本評価では、崩壊熱及び運転員の人数の観点から厳しい条件であ る、原子炉運転停止中の使用済燃料プールを前提とする。原子炉運転中の 使用済燃料プールは、崩壊熱が原子炉運転停止中の使用済燃料プールに比 べて小さく事象進展が緩やかになること、また、より多くの運転員による 対応が可能であることから本評価に包絡される。

(添付資料 4.1.1)

- a. 初期条件
- (a) 使用済燃料プールの初期水位及び初期水温

使用済燃料プールの初期水位は通常水位とし,保有水量を厳しく見 積もるため,使用済燃料プールと隣接する原子炉ウェルの間に設置さ れているプールゲートは閉状態を仮定する。また,使用済燃料プール の初期水温は,運転上許容される上限の65℃とする。

(b) 崩壊熱

使用済燃料プールには貯蔵燃料の他に,原子炉停止後に最短時間(原 子炉停止後9日)で取り出された全炉心分の燃料が一時保管されてい ることを想定して,使用済燃料プールの崩壊熱は約9.1MWを用いるも のとする。 なお,崩壊熱に相当する保有水の蒸発量は約15m³/hである。

b. 事故条件

(a) 安全機能の喪失に対する仮定

使用済燃料プール冷却機能及び注水機能として,残留熱除去系,燃 料プール冷却浄化系,補給水系等の機能が喪失するものとする。

(b) 外部電源

外部電源は使用できないものと仮定する。

外部電源がない場合においても,可搬型代替注水大型ポンプによる 代替燃料プール注水系(注水ライン)を使用した使用済燃料プールへ の注水は可能であり,外部電源がある場合と事象の進展は同様である が,資源の評価の観点から厳しくなる,外部電源がない場合を想定す る。

- c. 重大事故等対策に関連する機器条件
- (a) 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)

使用済燃料プールへの注水は,可搬型代替注水大型ポンプ1台を使 用するものとする。使用済燃料プールへの注水流量は,燃料の崩壊熱 による使用済燃料プール水の蒸発量を上回り燃料損傷防止が可能な流 量として,50m³/hを設定する。

d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

(a) 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライ

ン)を使用した使用済燃料プールへの注水は、事象発生8時間後から 開始する。

(3) 有効性評価の結果

想定事故1における使用済燃料プール水位の時間変化を第4.1-4 図に, 使用済燃料プール水位と線量率の関係を第4.1-5 図に示す。

a. 事象進展

使用済燃料プールの冷却機能が喪失した後,使用済燃料プール水温は 約6.9℃/hで上昇し,事象発生から約5.1時間後に100℃に到達する。 その後,蒸発により使用済燃料プール水位は低下し始めるが,事象発生 から8時間経過した時点で可搬型代替注水大型ポンプによる代替燃料プ ール注水系(注水ライン)を使用した使用済燃料プールへの注水を開始 することにより,使用済燃料プール水位は回復する。その後は,使用済 燃料プールの冷却機能を復旧しつつ,可搬型代替注水大型ポンプによる 代替燃料プール注水系(注水ライン)を使用し,蒸発量に応じた水量を 使用済燃料プールに注水し,使用済燃料プール水位を維持する。

b. 評価項目等

使用済燃料プール水位は,第4.1-4 図に示すとおり,通常水位から約 0.4m下まで低下するに留まり,燃料有効長頂部は冠水維持される。また, 使用済燃料プール水は事象発生約 5.1 時間で沸騰し,その後 100℃付近 で維持される。

また,第4.1-5 図に示すとおり,使用済燃料プール水位が通常水位か ら約0.4m下の水位になった場合の線量率は,約1.0mSv/hであり,必要 な遮蔽の目安と考える10mSv/hと比べて低いことから,この水位におい

て放射線の遮蔽は維持されている。なお,線量の評価点は原子炉建屋最 上階における使用済制御棒ハンガ真上の床面高さとしている。

使用済燃料プールでは燃料がボロン添加ステンレス鋼製ラックセルに 貯蔵されており、必要な燃料間距離をとる等の設計により、水密度によ らず臨界未満となるため、未臨界は維持される。

事象発生8時間後から可搬型代替注水大型ポンプによる代替燃料プー ル注水系(注水ライン)を使用した使用済燃料プールへの注水を行うこ とで使用済燃料プール水位は回復し,その後,蒸発量に応じた使用済燃 料プールへの注水を継続し,機能喪失している設備の復旧に努める。復 旧後は残留熱除去系等による冷却を実施することで安定状態を維持でき る。

本評価では、「1.2.3.2 有効性を確認するための評価項目の設定」に 示す(1)から(3)の評価項目について、対策の有効性を確認した。

(添付資料 4.1.3, 4.1.4)

## 4.1.3 評価条件の不確かさの影響評価

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与える 影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する。

想定事故1では,使用済燃料プールの冷却機能及び注水機能が喪失するこ とが特徴である。また,不確かさの影響を確認する運転員等操作は,可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用した 注水操作とする。

- (1) 評価条件の不確かさの影響評価
  - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件、事故条件及び重大事故等対策に関連する機器条件は、第

4.1-2 表に示すとおりであり、それらの条件設定を設計値等、最確条件とした場合の影響を評価する。また、評価条件の設定に当たっては、原則、評価項目となるパラメータに対する余裕が小さくなるよう保守的な設定としているが、その中で事象進展に有意な影響を与えると考えられる燃料の崩壊熱、事象発生前の使用済燃料プールの初期水温、及び初期水位、並びにプールゲートの状態に関する影響評価の結果を以下に示す。
(a) 運転員等操作時間に与える影響

初期条件の燃料の崩壊熱は,評価条件の約9.1MWに対して最確条件 は9.1MW以下であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している燃料の崩壊熱より小さくなるため,使 用済燃料プールの水温上昇及び水位低下速度は緩やかになるが,注水 操作は燃料の崩壊熱の状態に応じた対応をとるものではなく,冷却機 能喪失による異常の認知を起点とするものであるため,運転員等操作 時間に与える影響はない。

初期条件の使用済燃料プール水温は,評価条件の65℃に対して最確 条件は約12℃~約40℃であり,本評価条件の不確かさとして,最確条 件とした場合,評価条件で設定している使用済燃料プールの初期水温 より低くなることが考えられ,さらに時間余裕が長くなることが考え られるが,注水操作は,燃料プール水の初期水温に応じた対応をとる ものではなく,冷却機能喪失による異常の認知を起点とするものであ るため,運転員等操作時間に与える影響はない。

初期条件の使用済燃料プールの水位は,評価条件の通常水位に対し て最確条件は通常水位付近であり,本評価条件の不確かさとして,そ の変動を考慮した場合,通常水位より低くなることも考えられ,それ により時間余裕及び水位低下による異常認知の時間が短くなることが

考えられるが,注水操作は,燃料プール水の初期水位に応じた対応を とるものではなく,冷却機能喪失による異常の認知を起点とするもの であるため,運転員等操作時間に与える影響はない。また,初期に地 震誘因のスロッシングが発生していた場合は,最大で0.70m程度の水 位の低下が発生し,使用済燃料プール水位が放射線の遮蔽が維持され る最低水位に到達するまでの時間は事象発生から約5時間後となり, それ以降は原子炉建屋最上階の線量率が上昇し,その場における長時 間の作業は困難となる。ただし,可搬型代替注水大型ポンプによる代 替燃料プール注水系(注水ライン)を使用した使用済燃料プールへの 注水操作は屋外での操作であるため,現場操作に必要な遮蔽は維持さ れる。このため運転員等操作時間に与える影響はない。

初期条件のプールゲートの状態は,評価条件のプールゲート閉鎖に 対して最確条件はプールゲート開放であり,本評価条件の不確かさと して,最確条件とした場合,保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用済燃料プールの水温上昇及び蒸発による水位低下 速度は緩やかになるが,注水操作は水温の状態に応じた対応をとるも のではなく,冷却機能喪失による異常の認知を起点とするものである ため,運転員等操作時間に与える影響はない。

(b) 評価項目となるパラメータに与える影響

初期条件の燃料の崩壊熱は,評価条件の約9.1MWに対して最確条件 は9.1MW以下であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している燃料の崩壊熱より低くなるため,評価 項目となるパラメータに対する余裕が大きくなる。

初期条件の使用済燃料プール水温は,評価条件の65℃に対して最確条件は約12℃~40℃であり,本評価条件の不確かさとして,最確条件

とした場合、評価条件で設定している使用済燃料プールの水温より低 くなるため、沸騰開始時間が遅くなり、水位低下は緩和されることか ら、評価項目となるパラメータに対する余裕が大きくなる。なお、自 然蒸発、使用済燃料プールの水温及び温度上昇の非一様性により、評 価で想定している沸騰による水位低下開始時間より早く水位の低下が 始まることも考えられる。しかし、自然蒸発による影響は沸騰による 水位低下と比べてわずかであり、気化熱により使用済燃料プール水は 冷却される。また、使用済燃料プールの水温の非一様性も沸騰開始後 の気泡上昇を駆動力とした対流により影響が小さくなることが考えら れる。仮に事象発生直後から沸騰による水位低下が開始すると想定し た場合は、使用済燃料プール水位が放射線の遮蔽が維持される最低水 位に到達するまでの時間は事象発生から約6時間後となり、それ以降 は原子炉建屋最上階の線量率が上昇し、その場における長時間の作業 は困難となる。ただし、可搬型代替注水大型ポンプによる代替燃料プ ール注水系(注水ライン)を使用した使用済燃料プールへの注水操作 は屋外での操作であるため、現場操作に必要な遮蔽は維持される。

初期条件の使用済燃料プール水位は,評価条件の通常水位に対して 最確条件は通常水位付近であり,本評価条件の不確かさとして,その 変動を考慮した場合,通常水位より低くなることも考えられ,それに より時間余裕が短くなることが考えられるが,仮に初期水位を水位低 警報レベル(通常水位から約0.14m低下した位置)とした場合であっ ても,放射線の遮蔽が維持される最低水位に到達するまでの時間は事 象発生から約10時間,水位が燃料有効長頂部まで低下するまでの時間 は事象発生から2日以上あり,事象発生から8時間後までに可搬型代 替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用

した注水が可能であるため,評価項目となるパラメータに与える影響 は小さい。また,初期に地震誘因のスロッシングが発生していた場合 は,最大で約0.70m程度の水位の低下が発生し,使用済燃料プール水 位が放射線の遮蔽が維持される最低水位に到達するまでの時間は事象 発生から約5時間後となり,それ以降は原子炉建屋最上階の線量率が 上昇し,その場における長時間の作業は困難となる。ただし,可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使 用した使用済燃料プールへの注水操作は屋外での操作であるため,現 場操作に必要な遮蔽は維持される。なお,本スロッシングの評価には 余震の影響は考慮していないが,余震は本震よりも小さな地震動とな ると考えられ,本震時のスロッシングによってプール水位が約0.70m 低下しているため,プール水温度の上昇による水位の上昇を考慮して も余震による有意な水位低下はないと考えられる。

初期条件のプールゲートの状態は,評価条件のプールゲート閉鎖に 対して最確条件はプールゲート開放であり,本評価条件の不確かさと して,最確条件とした場合,保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用済燃料プールの水温上昇及び水位低下速度は緩や かになることから,評価項目となるパラメータに対する余裕は大きく なる。

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が,運転員等操作時間に与える影響 響を評価する。また,運転員等操作時間に与える影響が評価項目となる パラメータに与える影響を評価し、評価結果を以下に示す。

(a) 操作の不確かさが操作時間に与える影響

操作条件の可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した使用済燃料プールへの注水操作は,評価上 の操作開始時間として事象発生から8時間後を設定している。運転員 等の操作時間に与える影響として,評価上の操作開始時間を事象発生 8時間後として設定しているが,他の操作はないため,使用済燃料プ ールの冷却機能の喪失を認知した時点で注水準備に着手可能である。 よって,評価上の操作開始時間に対し,実際の操作開始時間が早くな る場合が考えられ,使用済燃料プール水位の回復を早める。

(b) 評価項目となるパラメータに与える影響

操作条件の可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した注水操作は,運転員等操作時間に与える影響として,評価上の操作開始時間に対して,実際の操作開始時間が早 くなる場合が考えられ,この場合使用済燃料プール水位の回復が早く なり,評価項目となるパラメータに対する余裕は大きくなる。

(添付資料 4.1.5)

(2) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の可搬型代替注水大型ポンプによる代替燃料プール注水系(注 水ライン)を使用した使用済燃料プールへの注水操作に対する時間余裕に ついては,放射線の遮蔽が維持される最低水位に到達するまでの時間が事

象発生から11時間以上,燃料有効長頂部に到達するまでの時間が事象発生 から2日以上であり、これに対して、事故を認知して注水を開始するまで の時間は事象発生から8時間であることから、時間余裕がある。

(添付資料 4.1.5)

(3) まとめ

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与え る影響,評価項目となるパラメータに与える影響及び操作時間余裕を確認 した。その結果,評価条件の不確かさが運転員等操作時間に与える影響等 を考慮した場合においても,評価項目となるパラメータに与える影響は小 さい。この他,評価項目となるパラメータに対して,対策の有効性が確認 できる範囲内において,運転員等操作時間には時間余裕がある。

- 4.1.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

想定事故1の重大事故等対策における必要な初動対応要員は「4.1.1(3) 燃料損傷防止対策」に示すとおり13名である。「6.2 重大事故等対策に必 要な要員の評価結果」で示す運転員及び災害対策要員の37名で対処可能で ある。

また,必要な招集要員は2名であり,発電所構外から2時間以内に召集 可能な要員の71名で対処可能である。

なお、今回評価した原子炉の運転停止中ではなく、原子炉運転中を想定 した場合、事象によっては、原子炉における重大事故又は重大事故に至る おそれのある事故の対応と、想定事故1の対応が重畳することも考えられ る。しかし、原子炉運転中においては、使用済燃料プールに貯蔵されてい る燃料の崩壊熱が低いため,操作時間余裕が十分長く(原子炉運転開始直後を考慮しても使用済燃料プール水が100℃に到達するまで約1日以上), 原子炉における事故対応が収束に向かっている状態での対応となるため, 災害対策要員や招集要員により対応可能である。

(2) 必要な資源の評価

想定事故1において,必要な水源,燃料及び電源は「6.1(2) 資源の評価条件」の条件にて評価している。その結果を以下に示す。

a. 水源

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水については,7日間の対応を考慮 すると合計約2,500m³必要となる。代替淡水貯槽に約4,300m³,淡水貯水 池に約5,000m³の水量を保有していることから,7日間の継続した注水 が可能である。

(添付資料 4.1.6)

b. 燃料

外部電源喪失を想定した場合,非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約130.3kLの軽油が必要となる。常設代替交流電源設備による電源供給については,事象発生直後からの運転を想定すると,7日間の運転継続に約141.2kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから,非常用ディーゼル発電機,高圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源設備による電

源供給について、7日間の継続が可能である。

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水については,事象発生直後からの 運転を想定すると,7日間の運転を想定して約36.6kLの軽油が必要とな る。可搬型設備用軽油タンクに約210kLの軽油を保有していることから, 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水について,7日間の継続が可能で ある。

(添付資料 4.1.7)

c. 電源

外部電源は使用できないものと仮定し,非常用ディーゼル発電機,高 圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源設備によって 給電を行うものとする。

4.1.5 結論

想定事故1では,使用済燃料プールの冷却機能が喪失し,使用済燃料プ ール水温が上昇し,やがて沸騰して蒸発することによって使用済燃料プー ル水位が緩慢に低下することから,緩和措置がとられない場合には,使用 済燃料プール水位の低下により燃料が露出し,燃料損傷に至ることが特徴 である。想定事故1に対する燃料損傷防止対策としては,可搬型代替注水 大型ポンプによる代替燃料プール注水系(注水ライン)を使用した使用済 燃料プールへの注水手段を整備している。

想定事故1について有効性評価を実施した。

上記の場合においても,可搬型代替注水大型ポンプによる代替燃料プー ル注水系(注水ライン)を使用した使用済燃料プールへの注水により,使

用済燃料プールの水位を回復させ維持することができることから,放射線 の遮蔽が維持され,かつ,燃料損傷することはない。

また,使用済燃料プールでは燃料がボロン添加ステンレス鋼製ラックセ ルに貯蔵されており,必要な燃料間距離をとる等の設計により水密度の状 態によらず臨界未満となるため,未臨界は維持される。

その結果,燃料有効長頂部の冠水,放射線の遮蔽が維持される水位の確 保及び未臨界を維持できることから評価項目を満足している。また,安定 状態を維持できる。

評価条件の不確かさについて確認した結果,運転員等操作時間に与える 影響及び評価項目となるパラメータに与える影響は小さい。また,対策の 有効性が確認できる範囲内において,操作時間余裕について確認した結果, 操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源については,外部電源喪失を仮 定しても供給可能である。

以上のことから,可搬型代替注水大型ポンプによる代替燃料プール注水 系(注水ライン)を使用した使用済燃料プールへの注水等の燃料損傷防止 対策は,想定事故1に対して有効である。

品作及不可	揭佐内容	重大事故等対処設備					
操作及び確認	1条1FP1谷	常設設備	可搬型設備	計装設備			
使用済燃料プール冷却機	・使用済燃料プールを冷却している系統が機能喪失するこ	【非常用ディ	—	使用済燃料プール温度 (SA)			
能喪失の確認	とにより、使用済燃料プール水の温度が上昇する。残留	ーゼル発電機】		使用済燃料プール水位・温度(SA 広域)			
	熱除去系及び燃料プール冷却浄化系の再起動操作が困難	軽油貯蔵タン		使用済燃料プールエリア放射線モニタ			
	な場合、使用済燃料プールの冷却機能が喪失したことを	ク		(高レンジ、低レンジ)			
	確認する。			使用済燃料プール監視カメラ(使用済燃			
				料プール監視カメラ用空冷装置を含む)			
				【残留熱除去系系統流量】			
使用済燃料プール注水機	・使用済燃料プール冷却機能喪失の確認後,使用済燃料プ	【非常用ディ	-	使用済燃料プール水位・温度(SA 広域)			
能喪失の確認	ール水の温度上昇による蒸発により、使用済燃料プール	ーゼル発電機】		使用済燃料プールエリア放射線モニタ			
	水位が低下することが想定されるため、補給水系による	軽油貯蔵タン		(高レンジ,低レンジ)			
	使用済燃料プールへの注水準備を行う。補給水系による	ク		使用済燃料プール監視カメラ(使用済燃			
	注水が困難な場合、使用済燃料プール注水機能喪失であ			料プール監視カメラ用空冷装置を含む)			
	ることを確認する。			【残留熱除去系系統流量】			
使用済燃料プール水位,	・使用済燃料プール冷却機能喪失の確認後,使用済燃料プ	-	-	使用済燃料プール温度 (SA)			
温度の監視	ールの水位,温度を監視する。			使用済燃料プールエリア放射線モニタ			
				(高レンジ,低レンジ)			
				使用済燃料プール水位・温度(SA 広域)			
				使用済燃料プール監視カメラ(使用済燃			
				料プール監視カメラ用空冷装置を含む)			
使用済燃料プール冷却機	・使用済燃料プールの冷却機能(燃料プール冷却浄化系及	-	-	-			
能の復旧操作	び残留熱除去系)の復旧操作を対応可能な要員にて実施						
	する。						
使用済燃料プール注水機	・使用済燃料プールの注水機能の復旧操作を対応可能な要	-	-	-			
能の復旧操作	員にて実施する。						

第4.1-1表 想定事故1における重大事故等対策について(1/2)

【 】: 重大事故等対処設備(設計基準拡張)

:有効性評価上考慮しない操作

出作及下来到	揭佐内容	重大事故等対処設備				
操作及び確認	採作的谷	常設設備	可搬型設備	計装設備		
常設低圧代替注水系ポン	・常設低圧代替注水系ポンプによる代替燃料プール注水系	常設低圧代替	—	使用済燃料プール温度 (SA)		
プによる代替燃料プール	(注水ライン)を使用した使用済燃料プールへの注水を	注水系ポンプ		使用済燃料プール水位・温度(SA 広域)		
注水系(注水ライン)を	開始し、使用済燃料プール水位を回復する。	代替淡水貯槽		使用済燃料プールエリア放射線モニタ		
使用した使用済燃料プー	<ul> <li>・その後、蒸発量に応じた水量を注水することで、使用済</li> </ul>	常設代替高圧		(高レンジ,低レンジ)		
ルへの注水	燃料プール水位を必要な遮蔽を確保できる水位より高く	電源装置		使用済燃料プール監視カメラ(使用済燃		
	維持する。			料プール監視カメラ用空冷装置を含む)		
				代替淡水貯槽水位		
可搬型代替注水大型ポン	・可搬型代替注水大型ポンプによる代替燃料プール注水系	常設代替高圧	可搬型代替注	使用済燃料プール温度 (SA)		
プによる代替燃料プール	(注水ライン)の常設配管に設置されている電動弁の開	電源装置	水大型ポンプ	使用済燃料プール水位・温度(SA 広域)		
注水系(注水ライン)を	操作を実施する。	代替淡水貯槽		使用済燃料プールエリア放射線モニタ		
使用した使用済燃料プー	・外部電源が喪失している場合、中央制御室からの遠隔操			(高レンジ,低レンジ)		
ルへの注水準備	作により常設代替高圧電源装置を起動し緊急用母線を受			使用済燃料プール監視カメラ(使用済燃		
	電する。			料プール監視カメラ用空冷装置を含む)		
				代替淡水貯槽水位		
可搬型代替注水大型ポン	・可搬型代替注水大型ポンプによる代替燃料プール注水系	常設代替高圧	可搬型代替注	使用済燃料プール温度 (SA)		
プによる代替燃料プール	(注水ライン)の準備完了後,使用済燃料プールへの注	電源装置	水大型ポンプ	使用済燃料プール水位・温度(SA 広域)		
注水系(注水ライン)を	水を開始することにより、使用済燃料プール水位を回復	代替淡水貯槽		使用済燃料プールエリア放射線モニタ		
使用した使用済燃料プー	する。			(高レンジ,低レンジ)		
ルへの注水	・その後、蒸発量に応じた水量を注水することで、使用済			使用済燃料プール監視カメラ(使用済燃		
	燃料プール水位を必要な遮蔽を確保できる水位より高く			料プール監視カメラ用空冷装置を含む)		
	維持する。			代替淡水貯槽水位		
タンクローリによる燃料	・タンクローリにより可搬型設備用軽油タンクから可搬型	可搬型設備用	タンクローリ	_		
補給操作	代替注水大型ポンプに燃料給油を実施する。	軽油タンク				

# 第4.1-1表 想定事故1における重大事故等対策について(2/2)

:有効性評価上考慮しない操作

第4.1-2表 主要評価条件(想定事故1)

	項目	主要評価条件	条件設定の考え方
	使用済燃料プールの保有水量	約 1,189m ³	使用済燃料プールの保有水量を厳しく見積もるため、プールゲート閉時の水量を設定
初	使用済燃料プールの初期水位	通常水位	通常水位を設定
期条	使用済燃料プールの初期水温	65℃	通常運転中の最大値として、保安規定の運転上の制限を設定
侔	燃料の崩壊熱	約 9.1MW 取出時平均燃焼度: 貯蔵燃料:45GWd/t 炉心燃料:33GWd/t	原子炉の停止後最短期間(原子炉停止後9日) ^{*1} で取り出された全炉心分の燃料と 過去に取り出された燃料を合わせて,使用済燃料貯蔵ラックに最大体数貯蔵されて いることを想定し,崩壊熱は ORIGEN2 を用いて算出
事故	安全機能の喪失 に対する仮定	使用済燃料プール冷却機能 及び注水機能喪失	使用済燃料プール冷却機能及び注水機能喪失として,残留熱除去系,燃料プール冷却浄化系及び補給水系の機能喪失を設定
条件	外部電源	外部電源なし	外部電源の有無は事象進展に影響しないことから,資源の観点で厳しい外部電源な しを設定
関連する機器条件	可搬型代替注水大型ポンプに よる代替燃料プール注水系(注 水ライン)を使用した使用済燃 料プールへの注水流量	50m ³ /h	燃料の崩壊熱による使用済燃料プール水の蒸発量を上回り燃料損傷防止が可能な流 量として設定
関連する操作条件	可搬型代替注水大型ポンプに よる代替燃料プール注水系 (注水ライン)を使用した使 用済燃料プールへの注水開始	事象発生から8時間後	可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)の準備期間 を考慮し,使用済燃料プール水位が放射線の遮蔽を維持する最低水位に到達しない 時間として設定
₩1:	東海第二発電所の施設定期検査	における実績を確認し、解列	後から全燃料取出完了までの最短期間である約9日を考慮して原子炉停止後9日

を設定。原子炉停止後9日とは全制御棒全挿入からの時間を示している。通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電 機解列以前から徐々に低下させるが、崩壊熱評価はスクラムのような瞬時に出力を低下させる保守的な計算条件となっている。



第4.1-1図 想定事故1の重大事故対策の概略系統図



第4.1-2図 想定事故1の対応手順の概要

1 - 23



補給水系及び消火系による使用済燃料プール注水は、自主対策 設備であるため、解析上考慮していない。なお、消火系による使 用済燃料プール注水は火災が発生していない場合に使用する。

スプレイヘッダ)を使用した使用済燃料プールスプレイ、可搬型 代替注水大型ポンプによる代替燃料プール注水系(常設スプレイ ヘッダ)を使用した使用済燃料プールスプレイ、及び可搬型代替 注水大型ポンプによる代替燃料プール注水系(可搬型スプレイノ ズル)を使用した使用済燃料プールスプレイは、使用済燃料プー ルからの大量の水の漏えいが発生した場合に使用する対応手段で

					想定事	故1											
														経過時	間 (時間)		
								1	2		3		4	5	6 1		7
		実施箇所・必要 【 】は他作 移動してきた	要要員数 乍業後 こ要員				發発生		·					·			
操作項目	責任者	発電長	1人	中央監視 運転操作指揮	操作の内容		プラント	伏況判断						_	_		
	補佐 	副発電長 災害対策要員	1人 2人	運転操作指揮補佐 災害対策本部連絡 発電所外部連絡	-						$\checkmark$	7約5.1時	間 使用液 水温	斉燃料プール 100℃到達			
	運転員 (中央監視)	運転員 (現場)		重大事故等対応要員 (現場)	1												
状况判断	1人 A	-	(·R.m) (·R.m)		<ul> <li>●外部電源喪失の確認</li> <li>●非常用ディーゼル発電機等の自動起動の確認</li> <li>●使用済燃料ブール冷却機能喪失の確認(燃料ブール冷却浄化系及び残留熟除去系)</li> <li>●使用済燃料ブール注水機能喪失の確認(残留熱除去系及び補給水系)</li> </ul>	10分											
	【1人】 A			_	●使用済燃料ブール水位,温度監視						ì	窗宜実施					
使用済燃料プール冷却機能及び注水 機能の復日操作	_			_	<ul> <li>●使用済燃料ブール冷却機能の復旧操作(残留熱除去系)</li> <li>●使用済燃料ブール注水機能の復旧操作(残留熱除去系及び補給水系)</li> </ul>												
常設代替高圧電源装置による緊急用 母線受電操作	【1人】 A			-	●常設代替高圧電源装置2台起動及び緊急用母線受電操作	4分											
常設低圧代替注水系ポンプによる代 替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注 水操作	【1人】 A	-		-	●常設低圧代替注水系ボンプによる代替燃料ブール注水系(注水ライン)の系統構成,注水操作		13 5	7									
可搬型代替注水大型ボンプによる代 替燃料プール注水系(注水ライン) を使用」た使用き燃料プールへの注	-	_		8人 a~h	● 可搬型代替注水大型ボンプ準備,ホース敷設等											170	)分
水準備	【1人】 A	-		-	●可搬型代替注水大型ボンプによる代替燃料プール注水系の系統構成(電動弁の開操作)										•		3分
可搬型代替注水大型ポンプによる代 替燃料ブール注水系(注水ライン)	_	_		【2人】 a, b	●可搬型代替注水大型ボンブによる代替燃料ブール注水系を使用した使用済燃料ブールへの注 水,水位維持												
を使用した使用済燃料プールへの注 水開始	-	-		【2人】 c, d	●淡水貯水池B (A)から淡水貯水池A (B) への補給												
タンクローリによる燃料補給操作	_	_		2人 (招集)	●可搬型設備用軽油タンクからタンクローリへの補給操作												
				04/5/	●可搬型代替注水大型ボンブへの給油操作												
必要人員数 合計	1人 A	0人		8人 a~h 及び招集2人													

第4.1-3図 想定事故1の作業と所要時間

-	8	9		10		11	備考
7	78 時間 代表	埲燃料	プールネ	主水系 (	(可搬型	1)	
	によ	る使用	済燃料	プール注	主水開始	é	
							解析上考慮しない 対応可能な要員により対 応する
							解析上考慮しない
	走	己動後;	適宜状態	熊監視			
	60分						
	90分						タンクローリの残量に応 じて適宜軽油貯蔵タンク から補給
			適宜実加				



第4.1-4図 使用済燃料プール水位の変化



第4.1-5 図 線量評価点における線量率と水位の関係

使用済燃料プールの水位低下と遮蔽水位に関する評価について

1. 使用済燃料プールの概要

使用済燃料プール周辺の概要図を第1図に示す。

施設定期検査時において,多くの場合はプールゲートが開放され, 使用済燃料プールは原子炉ウェル,ドライヤ気水分離器貯蔵プールと つながっているが,有効性評価においてはプールゲートを閉鎖してい る場合を想定し,原子炉ウェル,ドライヤ気水分離機器貯蔵プール及 びキャスクピットの保有水量は考慮しない。



第1図 使用済燃料プール周辺の概要図

2. 放射線の遮蔽の維持に必要な使用済燃料プールの遮蔽水位について
 第2図に放射線の遮蔽の維持に必要な使用済燃料プールの遮蔽水位
 について示す。

放射線の遮蔽の維持に必要な使用済燃料プールの遮蔽水位は、その 状況(必要となる現場及び操作する時間)によって異なる。重大事故で あることを考慮し、例えば原子炉建屋最上階において 10mSv/h の場合

は、通常水位から約 0.9m*下の位置より高い遮蔽水位が必要となる。

※:放射線の遮蔽の維持のために必要な水位の算出方法については 添付資料 4.1.2 に示す。



第2図 放射線の遮蔽に必要な使用済燃料プールの遮蔽水位

3. 使用済燃料プールの高さと断面積について

使用済燃料プールの高さを第3図に,使用済燃料プールの断面積及 び保有水の容積を第1表に示す。



第3図 東海第二発電所 使用済燃料プールの構造高さ

項目	断面積[m ² ]	保有水の容積[m ³ ]
1)	約 116	約 100
2	約 115	約 737
3	約 83	約 352
合計		約 1,189

第1表 使用済燃料プールの断面積及び保有水の容積

第3図に示す各領域①~③の保有水の容積は,使用済燃料プール容 積から機器の容積を除くことで算出し,各領域の断面積については, ①の領域では使用済燃料プールの寸法より求めた断面積を使用し,②, ③の領域では求めた各領域の容積から高さを除して求めた。なお,断 面積については各領域での平均的な値を示しているが,プール内に設 置されている機器の多くは②,③の底部又は壁面下部にあるため平均 化によって上部の断面積が実際より狭く評価される。保有水量に対す る水位の低下という観点では断面積が小さいほど水位低下速度は速く なることから,保守的な評価となっている。

## 4. 想定事故1における時間余裕

使用済燃料プールの冷却機能及び注水機能の喪失時における,崩壊 熱による使用済燃料プール水の沸騰までの時間,沸騰開始後の水位低 下時間及び沸騰による水位低下平均速度について,以下の式を用いて 算定した。事象を厳しく評価するため,使用済燃料プールの初期水温 は,運転上許容される 65℃とする。また,発生する崩壊熱は全て水温 上昇及び蒸発に寄与するものとし,使用済燃料プールの水面及び壁面 等からの放熱を考慮しない。さらに,注水時においては顕熱を考慮せ ず注水流量から崩壊熱相当の蒸発量を差し引いた分の水が注水される ことを想定した。

(1) 算定方法,算定条件

a. 冷却機能停止から沸騰までの時間

沸騰までの時間 [h]=  $\frac{(100[^{\circ}C]-65[^{\circ}C]) \times \pi$ の比熱 [kJ/kg/ $^{\circ}C$ ]^{*1}×使用済燃料プールの水 量[m³]× 本の密度 [kg/m³]^{*2} 燃料の崩壊熱 [MW]×10³×3600

b. 沸騰開始からの水位低下時間

1時間あたりの沸騰による蒸発量 $[m^3/h] = \frac{$ 燃料の崩壊熱 $[MW] \times 10^3 \times 3600}{$ 水の密度 $[kg/m^3]^{*2} \times 蒸発潜熱[kJ/kg]^{*3}$ 

水位低下時間 [h]= <u>通常水位から燃料有効</u>長頂部までの水量 [m³]×水の密度 [kg/m³]^{*2}×蒸発潜熱 [kJ/kg]^{*3} 燃料の崩壊熱 [MW]×10³×3600

c. 沸騰による水位低下平均速度

水位低下速度[m/h]= 通常水位から燃料有効長頂部までの高低差[m] 通常水位から燃料有効長頂部まで水位低下にかかる時間[h]

使用済燃料プールの下部は機器等が設置されており,保有水が少な いため,使用済燃料プールの下部では水位低下速度は早く,使用済燃 料プール上部では水位低下速度は遅い。ここでは,上記3.のとおり, 下部から上部までの平均的な断面積により水位低下速度の平均値を求 め,一律適用する。これは,遮蔽が維持されるまでの水位の評価におい て保守的な想定である。

上記訂昇氏を用	V'C, 1	ノ未什(	こく昇圧した。	
		101	しの時世影?	

し記卦質士な田いて 凹下の冬班にて質空した

水の比熱 ^{×1} [kJ∕kg∕℃]	使用済燃料ブールの水   量[m ³ ]	水の密度 ^{*2} [kg/m ³ ]	燃料の崩壊熱   [MW]
4.185	1,189.9	958	9.058

蒸発潜熱※3	通常水位から燃料有効長	通常水位から燃料有効長	通常水位から約0.9m
[kJ/kg]	頂部までの水量[m ³ ]	頂部までの高低差[m]	までの水量[m ³ ]
2256.47	837.6	7.26	100

※1:65℃から100℃までの飽和水の比熱のうち,最小となる65℃の値を使用

(1999年蒸気表より)

(1999年蒸気表より)

^{※2:65℃}から100℃までの飽和水の密度のうち,最小となる100℃の値を使用

※3:100℃の飽和水のエンタルピと100℃飽和蒸気のエンタルピの差より算出

(1999年蒸気表より)

なお, a. ~ c. の算出においては以下の保守的な仮定と非保守的な 仮定があるが,使用済燃料プールの水面や壁面からの放熱を考慮して いないことの影響が大きいと考えられ,総合的に保守的な評価になっ ていると考えられる。

【保守的な仮定】

 ・温度変化に対する比熱及び密度の計算にて最も厳しくなる値を想 定している。

・使用済燃料プールの水面や壁面からの放熱を考慮していない。 【非保守的な仮定】

・簡易的な評価とするため、プール水は全て均一の温度と仮定し、 プール全体が100℃に到達した時間を沸騰開始としている。

なお,注水等の操作時間余裕は十分に大きいことからこれらの評価 の仮定による影響は無視できる程度だと考える。

(2) 算定結果

項目	算定結果
使用済燃料プール水温 100℃到達までの時間[h]	約 5.1
燃料の崩壊熱による使用済燃料プールの保有水の蒸発量[m ³ /h]	約 15.1
使用済燃料プール水位が通常水位から約0.9m低下するまでの時間*4[h]	約 11.7
燃料有効長頂部まで使用済燃料プール水位が低下するまでの時間※4[h]	約 60.6
使用済燃料プール水位の低下速度[m/h]	約 0.13

※4:事象発生から沸騰開始までの時間を含む

使用済燃料プールの冷却機能が喪失した場合,燃料の崩壊熱により 使用済燃料プール温度が上昇し,約 5.1 時間後に沸騰開始となり,蒸 発により水位低下が始まる。この時の蒸発量は約 15.1m³/h である。

よって、使用済燃料プールの水位が放射線の遮蔽が維持される最低水位(通常水位より約 0.9m下)まで低下するのは約 11.7 時間後であ

り,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ラ イン)を使用した注水操作の時間余裕は十分にある。

<参考>

有効性評価では崩壊熱が厳しい施設定期検査中に全炉心燃料が取り出 される想定であり,通常運転中の想定は以下のとおりとなる。

使用済燃料プール冷却機能が喪失した場合,燃料の崩壊熱により使用 済燃料プール温度が上昇し,約37.8時間後に沸騰開始となり,その後使 用済燃料プールの水位が放射線の遮蔽が維持される最低水位(通常水位 より約0.9m下)まで低下するのは約66.4時間後となる。このように原 子炉運転中の使用済燃料プールは,原子炉停止中の使用済燃料プールに 比べて更に長い時間余裕がある。

項目	算定結果
燃料の崩壊熱[MW]	約 2.095
使用済燃料プール水温100℃到達までの時間[h]	約 37.8
燃料の崩壊熱による使用済燃料プールの保有水の蒸発量[m ³ /h]	約 3.5
使用済燃料プール水位が通常水位から約0.9m低下するまでの時間※4[h]	約 66.4
燃料有効長頂部まで使用済燃料プール水位が低下するまでの時間※4[h]	約 277.8
使用済燃料プール水位の低下速度[m/h]	約 0.03

※4:事象発生から沸騰開始までの時間を含む

- 5. 燃料取出スキーム
  - (1) 算定条件

燃料取出スキームの算定条件を下表に示す。

項目	算定条件	算定根拠
使用済燃料プール合	2,250 体	使用済燃料プール貯蔵容量
計燃料体数		
定検時取出燃料体数	764 体	原子炉内装荷全燃料
燃料取替体数	168 体	9×9燃料(A型)平衡炉心時の燃料取替体数
冷却期間	13 ヶ月	9×9燃料(A型)平衡炉心時の運転日数
停止期間	30 日	過去の施設定期検査における発電機解列から併
		入までの期間の実績(65日)よりも短い日数を
		設定
原子炉停止から全燃	9 日	炉心燃料の取出しにかかる期間(冷却期間)は
料取出しにかかる日		過去の実績より最も短い原子炉停止後の日数
数		
定期検査毎に取出さ	45GWd∕ t	9×9燃料(A型)燃料集合体平均燃焼度

れた使用済燃料の取		
出平均燃焼度		
サイクル末期平均燃	33GWd∕ t	崩壊熱が高い方が厳しい設定となるため,13ヶ
焼度		月運転に1ヶ月の調整運転期間を考慮した運転
		期間におけるサイクル末期の炉心平均燃焼度

(2) 燃料取出スキーム

崩壊熱を保守的に評価するに当たり,使用済燃料プール内に照射済 燃料が貯蔵容量(2,250体)分保管されているとした。そのうち施設定 期検査時取出燃料は原子炉内に装荷されている全燃料(764体),それ 以前の施設定期検査時に取り出された燃料は9×9燃料(A型)の平衡 炉心における燃料取替体数(168体)ずつ取り出されたものと仮定して ORIGEN2で算出した。

使用済燃料プール 貯蔵燃料	冷却期間	燃料体数	取出平均燃焼度 [GWd/t]	崩壊熱 [MW]
9サイクル冷却燃料	9×(13 か月+30 日)+9 日	142 体	45	0.045
8サイクル冷却燃料	8×(13 か月+30 日)+9 日	168 体	45	0.056
7 サイクル冷却燃料	7×(13か月+30日)+9日	168 体	45	0.059
6 サイクル冷却燃料	6×(13 か月+30日)+9日	168 体	45	0.065
5 サイクル冷却燃料	5×(13か月+30日)+9日	168 体	45	0.073
4 サイクル冷却燃料	4×(13 か月+30 日)+9 日	168 体	45	0.086
3サイクル冷却燃料	3×(13か月+30日)+9日	168 体	45	0.112
2サイクル冷却燃料	2×(13 か月+30 日)+9 日	168 体	45	0.165
1 サイクル冷却燃料	1×(13 か月+30日)+9日	168 体	45	0.293
定検時取出燃料	9 日	764 体	33	8.104
合計	—	2,250体	—	9.058

注1:使用済燃料プールの燃料保管容量2,250体の燃料が貯蔵されているものとする。

注2: 炉心燃料の取出しにかかる期間(冷却期間)は過去の実績より最も短い原子炉停止 後9日を採用する。原子炉停止後9日とは全制御棒全挿入からの時間を示している。 通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機解列以前から 徐々に低下させるが,崩壊熱評価はスクラムのような瞬時に出力を低下させる保守 的な計算条件となっている。 水遮蔽厚に対する貯蔵中の使用済燃料からの線量率の算出について

1. 使用済燃料の計算条件

使用済燃料プール内のラックに全てに使用済燃料が貯蔵された状態を仮定し、その時の使用済燃料を線源とする。

計算条件を以下に示す。

○線源形状:使用済燃料プール内のラックの全てに使用済燃料が満 たされた状態

○線量材質:使用済燃料及び水を考慮(密度 / cm³)

○ガンマ線エネルギ:計算に使用するガンマ線は、エネルギ4群と

## する。

○線源強度:文献^{*1}に記載のエネルギ当たりの線源強度を基に、S TEPⅢ 9×9燃料(A型)の体積当たりの線源強度を式①で算 出した。

線源強度(y/s/cm²)= 文献に記載の線源強度(MeV/(W・s))>燃料集合体当たりの熱出力(W/体) 各群のエネルギ(MeV)>燃料集合体体積(cm²/体) このときの線源条件は以下となる。なお、本評価で使用している 線源強度(文献値)に対する燃料照射期間は 10⁶時間(約 114 年) であり、これは、東海第二の運転時間を十分に包絡している。

·燃料照射期間:10⁶時間

 ・原子炉停止後の期間^{**2}:停止後9日(実績を考慮した値を設定)
 ・燃料集合体当たりの熱出力:4.31MW/体(STEPⅢ9×9燃料 (A型))

・燃料集合体体積: 7.179E+04cm³(STEPⅢ 9×9燃料(A型))

- ※ 1 : Blizard E.P. and Abbott L.S., ed., "REACTOR HANDBOOK. 2nd ed. Vol. III Part B, SHIELDING", INTERSCIENCE PUBLISHERS, New York, London, 1962"
- ※2:原子炉停止後9日とは全制御棒全挿入からの時間を示している。 通常停止操作において原子炉の出力は全制御棒全挿入完了及び発 電機解列以前から徐々に低下させるが、線源強度評価は崩壊熱評 価と同様にスクラムのような瞬時に出力を低下させる保守的な条 件となっている。

○計算モデル:直方体線源

線量率計算はQAD-CGGP2Rコード(ver1.04)を用いてお り、その評価モデルを第1図に示す。また、式①で算出した体積当 たりの線源強度を第1表に示す。なお、評価モデルにおいては、燃 料有効長以外の構造体は評価対象に含めていないが、実際の使用済 燃料では、燃料有効長以外の構造体(上部タイプレート等)におい ても、放射化等により線源を有している。しかしながら、燃料有効 長以外の構造体の線源強度は、10⁹ cm⁻³・s⁻¹程度と考えられ^{*3}、 燃料有効長に比べて1%程度と小さい。本線量評価は、使用済燃料 プールにおいて放射線の遮蔽が維持される水位を評価するものであ り、放射線の遮蔽が維持される水位(通常水位から約0.9m)におい ては、使用済燃料由来の線量率は小さく(第7図参照)、線量率全体 の0.01%未満の寄与であるため、評価結果に対する燃料有効長以外 の構造体の影響は十分に無視できる。

※3:同等の材料組成及び中性子照射量を受けていると考えられる制御棒 中間部と同等の線源強度と仮定(第2表参照)



使用済燃料の線量率計算モデル 第1図

群	ガンマ線エネルギ (MeV)	燃料線源強度 (cm ⁻³ ・s ⁻¹ )
1	1.0	4.4E+11
2	2.0	7.5E+10
3	3.0	1.3E+09
4	4.0	2.7E+07
	合計	5.2E+11

第1表 使用済燃料の線源強度

2. 使用済制御棒(制御棒・破損燃料貯蔵ラック)の計算条件

使用済燃料プール内の制御棒・破損燃料貯蔵ラック(以下「制御 棒貯蔵ラック」という。)の使用済制御棒を線源とする計算条件を以 下に示す。

○線源形状:制御棒貯蔵ラックの制御棒用スペースが全て満たされ た状態

○線源材料:水(密度 0.958g/cm³^{*})

※65℃から100℃までの飽和水の密度のうち、最小となる

100℃の値を設定

- ○ガンマ線エネルギ:計算に使用するガンマ線はエネルギ18群(O
   RIGEN群構造)とする。
- ○線源強度は、使用済制御棒を高さ方向に3領域に分割し、使用済 制御棒上部はピンローラを、使用済制御棒中間部はアブソーバ管 やタイロッド等を、使用済制御棒下部は落下速度リミッタを代表 としてモデル化している。制御棒へ照射される中性子フラックス は、制御棒が全挿入された状態での照射を想定した値とした。照 射期間については、制御棒照射量制限値(B₄C型:1.5snvt)を 炉心中央の平均熱中性子フラックスで除した値とした(435日)。
   ○制御棒貯蔵ラックには冷却期間が異なる使用済制御棒が貯蔵され ていることを想定し、モデル上で分割した3領域毎に制御棒貯蔵 ラックに保管されている使用済制御棒の平均線源強度を式②によ り算出した。

○計算モデル:直方体線源

線量率計算はQAD-CGGP2Rコードを用いており、その評価モデルを第2図に示す。また、計算により求めた線源強度を第2表に示す。



第2図 制御棒貯蔵ラックの線量率計算モデル

群	ガンマ線 エネルギ (MeV)	制御棒上部 線源強度 (cm ⁻³ ・s ⁻¹ )	制御棒中間部 線源強度 (cm ⁻³ ・s ⁻¹ )	制御棒下部 線源強度 (cm ⁻³ ・s ⁻¹ )
1	$1.00 \times 10^{-2}$	$3.6 \times 10^{7}$	4.9×10 ⁸	1. 3×10 ⁹
2	2. 50 × 10 ⁻²	$1.8 \times 10^{5}$	1. $1 \times 10^{6}$	5. $1 \times 10^{6}$
3	3. $75 \times 10^{-2}$	$1.3 \times 10^{5}$	8.8×10 ⁵	1.1×10 ⁷
4	5. $75 \times 10^{-2}$	$1.5 \times 10^{5}$	9. $0 \times 10^{5}$	8.9×10 ⁸
5	8. 50 × 10 ⁻²	9. 1×10 ⁴	5. $1 \times 10^{5}$	8. 3×10 ⁷
6	$1.25 \times 10^{-1}$	1. $7 \times 10^{5}$	$1.3 \times 10^{6}$	$1.8 \times 10^{8}$
7	2. $25 \times 10^{-1}$	$1.8 \times 10^{5}$	$1.3 \times 10^{6}$	2. $6 \times 10^{8}$
8	3. $75 \times 10^{-1}$	9. $7 \times 10^{6}$	2.6×10 ⁸	5. $9 \times 10^{8}$
9	5. $75 \times 10^{-1}$	3. $4 \times 10^{7}$	$1.6 \times 10^{8}$	2. $7 \times 10^{8}$
10	8. $50 \times 10^{-1}$	$1.2 \times 10^{8}$	8.4×10 ⁸	$1.6 \times 10^{9}$
11	$1.25 \times 10^{0}$	$7.9 \times 10^{7}$	$6.9 \times 10^{8}$	5. $5 \times 10^{9}$
12	$1.75 \times 10^{0}$	$6.3 \times 10^{5}$	$2.9 \times 10^{6}$	5. $0 \times 10^{6}$
13	$2.25 \times 10^{0}$	$4.2 \times 10^{4}$	$3.7 \times 10^{3}$	$2.4 \times 10^{4}$
14	2. $75 \times 10^{0}$	9.9 $\times$ 10 ⁰	$1.1 \times 10^{1}$	$7.5 \times 10^{1}$
15	$3.50 \times 10^{0}$	5.9×10 ⁻³	2. $1 \times 10^{-1}$ °	$1.0 \times 10^{-9}$
16	$5.00 \times 10^{0}$	$6.1 \times 10^{-5}$	2. $2 \times 10^{-1}$ ²	1. $1 \times 10^{-1}$ ¹
17	$7.00 \times 10^{0}$	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$
18	9. $50 \times 10^{0}$	0. 0×10 ⁰	$0.0 \times 10^{0}$	0. $0 \times 10^{0}$
合計		2.8 × 10 ⁸	2. $4 \times 10^{9}$	1. $1 \times 10^{10}$

第2表 制御棒貯蔵ラック内の使用済制御棒の線源強度

3. 使用済制御棒(制御棒貯蔵ハンガ)の計算条件

使用済燃料プール内の制御棒貯蔵ハンガの使用済制御棒を線源とする計算条件を以下に示す。

○線源形状:制御棒貯蔵ハンガの全てに制御棒が吊るされた状態
 ○線源材料:水(密度 0.958g/cm³*)

※65℃から 100℃までの飽和水の密度のうち,最小となる 100℃の値を設定

○ガンマ線エネルギ:計算に使用するガンマ線はエネルギ18群(O RIGEN群構造)とする。

- ○線源強度は、使用済制御棒を高さ方向に3領域に分割し、使用済制御棒上部はピンローラを、使用済制御棒中間部はアブソーバ管やタイロッド等を、使用済制御棒下部は落下速度リミッタを代表としてモデル化している。制御棒へ照射される中性子フラックスは、制御棒が全挿入された状態での照射を想定した値とした。照射期間については、制御棒照射量制限値(Hf型:4snvt,B₄C型:1.5snvt)を炉心中央の平均熱中性子フラックスで除した値とした(Hf型:1,160日,B₄C型:435日)。
- ○制御棒貯蔵ハンガには、タイプ別でかつ冷却期間の異なる使用済 制御棒が混在して貯蔵されていることを想定し、モデル上で分割 した3領域毎に貯蔵使用済制御棒全体の放射能を保存して平均し た線源強度を式③により算出した。

_{平均線量強度=} <u>∑</u>{制御棒タイプ・冷却期間別の線源強度)×(制御棒タイプ・冷却期間別の保管本数)}</u> 全貯蔵本数 制御棒のタイプはHf, B₄Cの2タイプ,冷却期間は0~10サイ クルの11種類,全貯蔵本数は156本とした。

○計算モデル:直方体線源
線量率計算はQAD-CGGP2Rコード(ver1.04)を用いており、その評価モデルを第3図に示す。また、計算により求めた線源強度を第3表に示す。



第3図 使用済制御棒ハンガの線量率計算モデル

群	ガンマ線 エネルギ (MeV)	制御棒上部 線源強度 (cm ⁻³ ・s ⁻¹ )	制御棒中間部 線源強度 (cm ⁻³ ・s ⁻¹ )	制御棒下部 線源強度 (cm ⁻³ ・s ⁻¹ )	
1	$1.00 \times 10^{-2}$	8.0×10 ⁴	$1.5 \times 10^{6}$	5. $5 \times 10^{6}$	
2	2. 50 × 10 ⁻²	1. $3 \times 10^{4}$	8.7×10 ⁴	5. 3×10 ⁵	
3	3. $75 \times 10^{-2}$	7. $1 \times 10^{3}$	5. $0 \times 10^{4}$	3. $1 \times 10^{5}$	
4	5. $75 \times 10^{-2}$	8.0×10 ³	5. $6 \times 10^{4}$	1.7 $\times$ 10 ⁶	
5	8. 50 × 10 ⁻²	3. $2 \times 10^{3}$	2. $2 \times 10^{4}$	2. $6 \times 10^{5}$	
6	$1.25 \times 10^{-1}$	1. $2 \times 10^{3}$	8.6×10 ³	3. $3 \times 10^{5}$	
7	2. $25 \times 10^{-1}$	4. $5 \times 10^{2}$	3. $1 \times 10^{3}$	4. $1 \times 10^{5}$	
8	3. $75 \times 10^{-1}$	$1.2 \times 10^{3}$	8.6×10 ³	5. $3 \times 10^{4}$	
9	5.75 $\times$ 10 ⁻¹	6. $5 \times 10^{3}$	3. $0 \times 10^{4}$	5. $3 \times 10^{4}$	
10	8.50×10 ⁻¹	2. 5 $\times$ 10 ⁴	7.3 $\times$ 10 ⁶	1. $5 \times 10^{7}$	
11	$1.25 \times 10^{0}$	3. $5 \times 10^{7}$	2. $4 \times 10^{8}$	1. $5 \times 10^{9}$	
12	1.75 $\times$ 10 ⁰	$1.2 \times 10^{2}$	5. $5 \times 10^{2}$	9. $7 \times 10^{2}$	
13	2. $25 \times 10^{0}$	$1.8 \times 10^{2}$	1. $3 \times 10^{3}$	7.8 $\times$ 10 ³	
14	2. $75 \times 10^{0}$	5. $7 \times 10^{-1}$	3. $9 \times 10^{0}$	2. $4 \times 10^{1}$	
15	3. $50 \times 10^{0}$	4. $1 \times 10^{-16}$	$1.9 \times 10^{-15}$	2. $7 \times 10^{-15}$	
16	5.00 $\times$ 10 ⁰	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	0. 0×10 ⁰	
17	7.00 $\times$ 10 ⁰	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	
18	9. $50 \times 10^{0}$	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	$0.0 \times 10^{0}$	
2		$3.5 \times 10^{7}$	2. $5 \times 10^{8}$	$1.5 \times 10^{9}$	

第3表 制御棒貯蔵ハンガの使用済制御棒の線源強度

○使用済制御棒の冠水時及び露出時の線量率計算モデルについて

使用済制御棒は制御棒貯蔵ハンガにハンドル部を通して格納又は 制御棒貯蔵ラック内へ格納されている。評価では、これらの制御棒 貯蔵ハンガ及び制御棒貯蔵ラックの構造材を含めた使用済制御棒設 置個所を直方体の線源としてモデル化している(第4図)。

遮蔽計算をする際,線源材にも密度を設定することで自己遮蔽等 の計算を行う。本評価では制御棒が①冠水時,②一部露出時,③露 出時のいずれにおいても遮蔽性能の低い水として計算している。

こちらは③露出時において、制御棒間等は気中であるが、制御棒 は水より密度の大きいステンレスやB₄C(又はHf)等で構成され ていること、線源以外にも使用済制御棒ハンガ、制御棒貯蔵ラック のような構造材があることから十分保守的なモデルとなっている。

①冠水時,②一部露出時の状態においては使用済制御棒等の遮蔽 効果に加えて、制御棒間の隙間等,気中であった箇所に水が入るた め,遮蔽効果はさらに高まるが,評価においては③露出時と同様, 水と設定して評価をすることでさらに保守的なモデルとなっている。

評価結果において,水位低下により使用済制御棒露出が開始した 際の現場の線量率と,完全に露出した後の現場の線量率にあまり差 異がないことは,評価で上記に示すとおり①冠水時と③露出時を等 しく,線源が水として計算しているためである(第5図)。

<参考>

ー例として⁶⁰Coを線源としたときの 1/10 価層は水であると約 70cmであるのに対して,鉄(密度:7.87kg/cm³)であると約 7.4cm となり,これらの遮蔽性能が水と比べて大きいことが分かる。

添付 4.1.2-11



第4図 使用済燃料プール概要図



遮蔽の効果は水などの触媒

②一部露出時



③露出時



冠水時及び露出時の線量率計算モデ 第5図

4. 線量率の評価

線量率は、QAD-CGGP2Rコード(ver1.04)を用いて計算 している。

一般的に点減衰核積分法では、線源領域を細分化し点線源で近似 を行い、各点線源から計算点までの媒質の通過距離から非散乱ガン マ線束を求める。これにビルドアップ係数をかけ、線源領域全空間 で積分した後、線量率換算係数をかけることで計算点での線量率を 求める。

QAD-CGGP2Rコードでは、式④を用い、線量率を計算している。第4図にQAD-CGGP2Rコードの計算体系を示す。

$$D_{j} = \sum_{i} F_{j} \cdot \frac{S_{ij}}{4 \cdot \pi \cdot R_{i}^{2}} \cdot e^{\left(-\sum_{k} \mu_{jk} \cdot t_{k}\right)} \cdot B_{ij} \cdot \cdot \cdot (4)$$

j:エネルギ群番号

i:線源点番号

k:領域番号(遮蔽領域)

F::線量率換算係数

S_{ij}: i 番目の線源点で代表される領域の体積で重みづけされたエネルギ i 群の点線源強度

R_i: i 番目の線源点と計算点の距離

B_{ii}:ビルドアップ係数

μ_{ik}:領域kにおけるエネルギ j 群のガンマ線に対する線吸収係数

t_k:領域kをガンマ線が透過する距離

これにより求まったエネルギ第 j 群の線量率 D_jから,全ての線源エ ネルギ群について加えることによって全線量率を計算している。

### 添付 4.1.2-14



- 5. 線量率を求める際の評価点と放射線遮蔽が維持される水位につい て
  - (1) 線量率を求める際の評価点

線源からの線量率を求める際に設定する評価点は,第4図に示 すように制御棒ハンガ線源,制御棒貯蔵ラック線源,使用済燃料 ラック線源の各線源毎に,それぞれの真上のオペフロ床面高さと した。

線源毎にその真上のオペフロ床面高さの評価点における,使用 済燃料プール水位に応じた線量率算出結果を合計したものを第7 図に示す。

なお,評価では第1図及び第2図の線量率計算モデルに示すようにプール筐体による遮蔽は考慮せず,線源から評価点までの距離を入力として評価している。

(2) 放射線の遮蔽が維持される水位

必要な遮蔽の目安は,施設定期検査作業での原子炉建屋最上階 における現場作業の実績値(約3.5mSv/h)を考慮して10mSv/h と設定しており,本事故発生時において使用済燃料プール周りで

添付 4.1.2-15

の作業時間が最も長い,可搬型代替注水大型ポンプによる代替燃料プール注水系(可搬型スプレイノズル)を使用した使用済燃料 プールスプレイのためのホースの敷設や可搬型スプレイノズルの 設置作業時間は保守的に見積っても1時間以内であることから, この値は緊急作業時の被ばく限度である100mSvに対しても,十分 に余裕がある値である。

必要な遮蔽水位は第7図より東海第二発電所において約6.4mとなり,開始水位から約0.9m低下した水位である。



第7図 放射線の遮蔽が維持される水位

### 安定状態について

想定事故1(使用済燃料プールの冷却機能又は注水機能の喪失)の 安定停止状態については以下のとおり。

使用済燃料プール安定状態:	事象発生後,設計基準事故対処設備及び重大事故
	等対処設備を用いた使用済燃料プールへの注水
	により、使用済燃料プール水位を回復・維持する
	ことで、燃料の冠水、放射線遮蔽及び未臨界が維
	持され、使用済燃料プールの保有水の温度が安定
	し、かつ、必要な要員の不足や資源の枯渇等のあ
	らかじめ想定される事象悪化のおそれがない場
	合,安定状態が確立されたものとする。

【安定状態の確立について】

使用済燃料プールの安定状態の確立について

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)で使 用した使用済燃料プールへの注水を実施することで,使用済燃料プール水位は 回復,維持され,使用済燃料プールの安定状態が確立される。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の燃料損傷防止対策により安定状態を維持できる。

また,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) で使用した使用済燃料プールへの注水を継続し,残留熱除去系等を復旧し,復 旧後は補給水系統等によりスキマサージタンクへの補給を実施する。使用済燃 料プールの保有水を残留熱除去系等により冷却することによって,安定状態後 の状態維持のための冷却が可能となる。 (添付資料 2.1.1 別紙 1 参照) 使用済燃料プール水沸騰・喪失時の未臨界性評価

東海第二発電所の使用済燃料プールでは、ボロン添加ステンレス 鋼製ラックセルに燃料を貯蔵する。使用済燃料プールには、通常は 限られた体数の新燃料と照射済燃料を貯蔵するが、臨界設計では、 新燃料及びいかなる燃焼度の照射済燃料を貯蔵しても十分安全側の 評価を得るように、炉心装荷時の無限増倍率が1.30となる燃料を用 いて評価している。また、使用済燃料プール水温、ラック製造公差、 ボロン添加率、ラックセル内燃料配置それぞれについて最も結果が 厳しくなる状態で評価している。未臨界性評価の基本計算条件を第1 表に、計算体系を第1図に示す。

仮に使用済燃料プール水が沸騰又は喪失状態となり,使用済燃料 プールのスプレイ設備が作動する状態となった場合には,使用済燃 料プールの水密度が減少することにより,ラックセル内で中性子を 減速する効果が減少し,実効増倍率を低下させる効果が生じる。一 方,ラックセル間では水及びラックセルによる中性子を吸収する効 果が減少するため,隣接ラックへの中性子の流れ込みが強くなり, 実効増倍率を増加させる効果が生じる。

低水密度状態を想定した場合の使用済燃料プールの実効増倍率は 上記の2つの効果のバランスにより決定されるため、ラックの材質・ ピッチの組合せによっては通常の冠水状態と比較して未臨界性評価 結果が厳しくなる可能性がある。

そこで、東海第二発電所の使用済燃料プールにおいて水密度を一様に 1.0~0.0g/cm³と変化させて実効増倍率を計算したところ、中 性子の強吸収体であるラックセル中のボロンの効果により、実効増

添付 4.1.4-1

倍率を増加させる効果がある隣接ラックへの中性子流れ込みが抑制 されることから,第2図に示すとおり,水密度の減少に伴い実効増 倍率は単調に減少する結果が得られた。このため,水密度が減少す る事象が生じた場合でも未臨界は維持されることとなる。

なお,解析には,米国オークリッジ国立研究所(ORNL)が米 国原子力規制委員会(NRC)の原子力関連許認可評価用として作 成したモンテカルロ法に基づく3次元多群輸送計算コードであり, 米国内及び日本国内の臨界安全評価に広く使用されているSCAL Eシステムを用いた。

	項目	仕様
	燃料種類	9×9燃料(A型)
	U ²³⁵ 濃縮度	wt% * 1
	ペレット密度	理論密度の 97%
/ 燃料仕様	ペレット直径	0.96 cm
	被覆管外径	1.12 cm
	被覆管厚さ	0.71 mm
	燃料有効長	3.71 m
	ラックタイプ	キャン型
	ラックピッチ	m
<b>法田这个资</b> 约 5 5	材料	ボロン添加ステンレス鋼
使 用 済 燃 科 ブ ツ ク 	ポロン濃度	wt% * 2
	板厚	mm
. · ·	内のり	m

第1表 未臨界性評価の基本計算条件

※1:未臨界性評価用燃料集合体(k∞=1.3 未燃焼組成, Gd なし) ※2:ボロン濃度の解析使用値は, 製造公差下限値とする。



第1図 角管型ラックの計算体系



# 第2図 実効増倍率の水密度依存性

添付 4.1.4-4

## 評価条件の不確かさの影響評価について(想定事故1)

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(1/3)

項目	評価条件(初 機器条件) 評価条件	<ul><li>期,事故及び</li><li>の不確かさ</li><li>最確条件</li></ul>	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目パラメータに与える影響
初期条 伊 川 プ 初 期 (位	然 ル 水 通常水位	通常水位付近	通常水位を設定	評価条件では通常水位を設定して いるため、通常水位より低い水位の 変動を考慮した場合、それにより時 間余裕及び水位低下による異常の 認知の時間が短くなることが考え られるが、本事象における注水操作 は、燃料プール水の初期水位に応じ た対応をとるものではなく、冷却機 能喪失による異常の認知を起点と して操作を開始するため、その起点 より操作開始が遅くなることはな く、運転員等操作時間に与える影響 はない。 また、初期に地震誘因のスロッシン グが発生していた場合は、最大で 0.70m 程度の水位の低下が発生し、 この場合、事象発生から約5時間以 降は原子炉建屋最上階の線量率が 上昇し、その場における長時間の作 業は困難となる。ただし、可搬型代 替注水大型ポンプによる代替燃料 プール注水系(注水ライン)を使用 した注水操作は屋外での操作であ るため、現場操作に必要な遮蔽は維 持される。このため、運転員等操作 時間に与える影響はない。	評価条件では通常水位を設定しているため、その変動を考慮した場合、通 常水位よりも低くなることが考えられ、それにより時間余裕が短くなるこ とが考えられるが、仮に初期水位を水位低警報レベル(通常水位から約 0.14m低下した位置)とした場合であっても放射線の遮蔽が維持される最低 水位に到達するまでの時間は事象発生から約11時間、水位が燃料有効長頂 部まで低下するまでの時間は事象発生から2日以上あり、事象発生から8 時間後までに可搬型代替注水大型ポンプによる代替燃料プール注水系(注 ホライン)を使用した注水が可能であるため、評価項目となるパラメータ に与える影響は小さい。 また、初期に地震誘因のスロッシングが発生していた場合は、最大で約 0.70m程度の水位の低下が発生し、使用済燃料プール水位が放射線の遮蔽が 維持される最低水位に到達するまでの時間は事象発生から約5時間後とな り、それ以降は原子炉建屋最上階の線量率が上昇し、その場における長時 間の作業は困難となる。ただし、可搬型代替注水大型ポンプによる代替燃 料プール注水系(注水ライン)を使用した使用済燃料プールへの注水操作 は屋外での操作であるため、現場操作に必要な遮蔽は維持される。なお、 本スロッシングの評価には余震の影響は考慮していないが、余震は本震よ りも小さな地震動となると考えられ、本震時のスロッシングによってプー ル水位が約0.70m低下しているため、プール水温度の上昇による水位の上 昇を考慮しても余震による有意な水位低下はないと考えられる。

添付資料 4.1.5

## 第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(2/3)

	評価条件(初期,事故及び		and have be ful and up a star of the					
	項目	(機器条件)( 証価条件)	の 小 催 か 	評価条件設定の考え方	連転員等の操作時間に与える影響	評価項目ハフメーダに与える影響		
	使用済燃料 プールの初 期水温	65°C	約 12℃~ 40℃ (実績値)	通常運転中の最大値として,保安 規定の設定値である 65℃を設定	最確条件では評価条件で設定してい る使用済燃料プールの初期水温より 低くなることが考えられ,時間余裕 が長くなることが考えられるが,注 水操作は,燃料プール水の初期水温 に応じた対応をとるものではなく, 冷却機能喪失による異常の認知を起 点とするものであるため,運転員等 操作時間に与える影響はない。	最確条件では評価条件で設定している使用済燃料プールの水温より低くな るため、沸騰開始時間が遅くなり、水位低下は緩和されることから、評価 項目となるパラメータに対する余裕が大きくなる。 なお、自然蒸発、使用済燃料プールの水温及び温度上昇の非一様性により、 評価で想定している沸騰による水位低下開始時間より早く水位の低下が始 まることも考えられる。しかし、自然蒸発による影響は沸騰による水位低 下と比べてわずかであり、気化熱により使用済燃料プール水は冷却される。 また、使用済燃料プールの水温の非一様性も沸騰開始後の気泡上昇を駆動 力とした対流により影響が小さくなることが考えられる。 仮に事象発生直後から沸騰による水位低下が開始すると想定した場合は、 使用済燃料プール水位が放射線の遮蔽が維持される最低水位に到達するま での時間は事象発生から約 6.6 時間後となり、それ以降は原子炉建屋最上 階の線量率が上昇し、その場における長時間の作業は困難となる。ただし、 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を 使用した使用済燃料プールへの注水操作は屋外での操作であるため、現場 操作に必要な遮蔽は維持される。		
初期条件	燃料の崩壊 熱	約 9. 1MW (原子炉停 止後 9 日)	9.1MW以下	原子炉の運転停止後に取り出さ れた全炉心分の燃料とそれ以前 に取り出された燃料を合わせて, 使用済燃料プールの貯蔵ラック の容量の最大数となるように保 管した状態を設定 炉心燃料の冷却期間については 過去の実績より取出期間が最も 短い9日を想定 崩壊熱は, ORIGEN2を用いて評価	最確条件では評価条件で設定してい る燃料の崩壊熱より小さくなるた め,使用済燃料プールの水温上昇及 び水位低下速度は緩やかになり,時 間余裕が長くなることが考えられる が,注水操作は燃料の崩壊熱の状態 に応じた対応をとるものではなく, 冷却機能喪失による異常の認知を起 点とするものであるため,運転員等 操作時間に与える影響はない。	最確条件では評価条件で設定している燃料の崩壊熱より低くなるため,使 用済燃料プールの水温上昇及び水位低下速度は緩やかになることから,評 価項目となるパラメータに対する余裕が大きくなる。		
	プールゲー トの状態	プールゲー ト開子の (原子の アレンマン の が アイ が 来 の の の の で が の の で の の で の の で の の で の の で の の で の で の で の で の で の で の で の で の で の の で の の で の の の の の の の の の の の の の の の の の の の の	プールゲー ト開放 (原子炉ウ ァル及び マイヤ 安 開 器 町 で ド オ プールの保 有水量 を考 慮)	全炉心燃料取出直後であるため, プールゲートは開放されている ことが想定されるが,保守的に原 子炉ウェル及びドライヤ気水分 離器貯蔵プールの保有水量を考 慮しない状態を想定	最確条件では保有水量はプールゲー ト閉鎖時と比べ約1.6倍となり,使 用済燃料プールの水温上昇及び水位 低下速度は緩やかになり,時間余裕 が長くなることが考えられるが,注 水操作はプールゲートの状態に応じ た対応をとるものではなく,冷却機 能喪失による異常の認知を起点とす るものであるため,運転員等操作時 間に与える影響はない。	最確条件では保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用 済燃料プールの水温上昇及び水位低下速度は緩やかになることから,評価 項目となるパラメータに対する余裕は大きくなる。		

男   衣 評価条件を取催条件とした場合の理転員の傑作時面及ひ評価項目となるハフメータ	タに与える影響(3/3	パラメー	び評価項目となるノ	場合の運転員の	確条件と	評価条件を最る	第1表
---------------------------------------------	-------------	------	-----------	---------	------	---------	-----

	評価条件(初期,事故及び		河原を供乳ウの老さ士	) 安む 日 炊 の 根 (た 吐 眼) こ た き て 彫 郷	河(市内 パニューカ)テト ミス 民郷	
	坝日	機 奋 采件 / 評 価 条 件	の不確かさ 最確条件	計画余件設定の考え方	連転員等の操作時间に与える影響	計画項日ハフメーダに与える影響
初	外 部 水 源 の容量	約 9, 300m ³	9,300m ³ 以上 (淡水貯 水池+代 替淡水貯 槽)	淡水貯水池及び代替淡水 貯槽の管理下限値を設定	管理値下限の容量として事象発生 から7日間後までに必要な容量を備 えており,水源は枯渇しないことか ら運転員等操作時間に与える影響 はない。	_
 	燃 料 の 容 量	約 1,010kL	1,010kL 以上 (軽油貯蔵 タンク+可 搬型設備用 軽 油 タン ク)	軽油貯蔵タンク及び可搬型設備 用軽油タンクの管理下限値を設 定	管理値下限の容量として事象発生 から7日間後までに必要な容量を備 えており,燃料は枯渇しないことか ら運転員等操作時間に与える影響 はない。	_
事故条	安全機能 の喪失に 対する仮 定	使料 冷 期 プ 却 失 水 機 及 機 、 次 に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	使 料 冷 喪 大 機 及 機 と 浅 機 及 機 、 次 部 失 水 機 、 次 部 失 水 歳 で 部 失 、 次 の 総 の 。 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、	使用済燃料プール冷却機能及び 注水機能喪失として,残留熱除 去系,燃料プール冷却浄化系及 び補給水系の機能喪失を設定	評価条件と最確条件が同様である ことから,事象進展に影響はなく, 運転員等操作時間に与える影響は ない。	評価条件と最確条件が同様であることから,事象進展に影響はなく,評価 項目となるパラメータに与える影響はない。
件	外部電源	外 部 電 源 なし	事 故 ご と に変化	外部電源の有無は事象進展に影響しないことから,資源の観点で 厳しい外部電源なしを設定	外部電源がない場合と外部電源が ある場合では、事象進展は同様であ ることから、運転員等操作時間に与 える影響はない。	外部電源がない場合と外部電源がある場合では,事象進展は同様であるこ とから,評価項目となるパラメータに与える影響はない。
機器条件	代 替 燃 料 プ ー ル 注 水 系 (可 搬型) に よる 使 用 済 燃 料 プ ー ル 注 水 系 (可 搬型) に よる 使 用 済 燃 れ プ ・ 、 、 、 、 、 、 、 、 、 、 、 、 、	50m ³ ⁄h	50m³∕h 以上	燃料の崩壊熱による使用済燃料 プール水の蒸発量を上回り燃料 損傷防止が可能な流量として設 定	可搬型代替注水大型ポンプによる 代替燃料プール注水系(注水ライン)で使用した注水操作は,注水流 量を起点に開始する操作ではない ことから,運転員等操作時間に与え る影響はない。	評価条件で設定している可搬型代替注水大型ポンプによる代替燃料プール 注水系(注水ライン)で使用した注水流量は崩壊熱に相当する保有水の蒸 発速度(約 15m ³ /h)より大きく,注水操作開始以降の流量であることか ら,評価項目となるパラメータに与える影響はない。

毎 4 衣   理転員寺傑作时間に子んの影響,詳価項目となるハノオニクに子んの影響及い傑作时間宗俗 \	第 2 ₹	表	運転員等操	作時間に	与え	る影響,	評価項目	となる	パラメー	ータに与	える影響及び	び操作時間余裕	(1/	(2)
-----------------------------------------------------	-------	---	-------	------	----	------	------	-----	------	------	--------	---------	-----	-----

		評価条件	=(操作条件)			評価項日とかろ		
項目		評価上の 操作開始 時間	評価条件設定 の考え方	操作の不確かさ要因	運転員等操作時間 に与える影響	パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可替型に替一系イ用用プの作搬注ポよ燃ル(ン)し済一注型水ンる料注水をた燃ル水代大プ代プ水ラ使使料へ操	事から8時間 後	可水に料系ン間使一射維水なて搬大よプ()を用ル線持位い設型る一注の考済水のすに時定代ポ代ル水準慮燃位遮る到間さン替注ラ備し料が蔽最達と注プ燃水イ期,プ放を低しし	【認知】 可搬型代替注水大型ボンプによる代替燃料プール注水系(注水 ライン)を使用した使用済燃料プールへの注水操作の開始は事 象発生から 8 時間後としているが,それまでに冷却機能の喪失 による異常を認知できる時間は十分にあり,認知遅れにより操 作開始時間に与える影響はない。 【要員配置】 当該操作を行う重大事故等対応要員は,準備操作の実施期間中 に他の操作を担っていないことから,操作開始時間に与える影 響はない。 【移動】 可搬型代替注水大型ボンプによる代替燃料プール注水系(注水 ライン)で使用する可搬型代替注水大型ボンプ等は車両であり, 自走にて作業現場へ移動することを想定している。仮に地震等 の外部事象が起因事象の場合に,アクセスルートに被害があっ ても,ブルドーザー等にて必要なアクセスルートを復旧できる 体制としている。 【操作所要時間】 アクセスルートの復旧(がれき撤去)に25分,可搬型代替注水 大型ボンブ準備,代替淡水貯槽からのホース敷設等の準備操作 に移動時間を含め145分を想定している。評価上の操作開始時 間を 8 時間後と設定しているが,他の操作はないため,使用済 燃料プールの水位低下による異常を認知した時点での準備が可 能である。なお,その場合は実際の操作開始時間は早くなる場 合が考えられる。 【他の並列操作の有無】 当該操作に対応する重大事故等対応要員に他の並列操作はな く,操作開始時間に与える影響はない。 【操作の確実さ】 重大事故等対応要員の現場操作は、操作の信頼性向上や要員の 安全のため2人1組で実施することとしており,誤操作は起こ りにくく,誤操作等が操作開始時間に影響を及ぼす可能性は非 常に低い。	評時間でに、「「「「」」」で、「」で、「」で、「」で、「」で、「」で、「」で、「」で、「」	評価時間操早くられ、 がが合う、 がする、 がすり、 がすり、 がすり、 がすり、 がすり、 にたれ、 がする、 の がする、 の がする、 の がする、 の がす の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の がする、 の で り に れて、 ななな なな に なる で し の は 大 き る の 、 で の い う る る る の 、 の で し の 、 の で の り の し の 、 の で し の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し 、 し の し の し の し の し の し の し の し の し の し の し の し の し の し の し つ し る し る し る し る し る し る し る し る し る し う る る る る る の る の し う る る る る る し う し う る の し う し う し う し う し う し う し う う う る う る う う ら し う う う う る う う う う う う る う う う う う う う う う う う う う	当時間のであるす事ののでは、 当時間でです。 当時間では、 一般でのため、 には、 たち、 当時で、 一般で、 した、 した、 した、 した、 した、 した、 した、 した	アトき搬大備等め11いル(に実り注プ敷も績分る図転可とクの撤型型ホは所分。「れな2施,水準設含等。範し操能をセ復去代ポー移要想アトき分可で大備等めで想囲て作で確ス(及替ンス動時定クの撤以能型型ホ,訓約し内いがあしルがび注プ敷も間しセ復去内で代ポー移練11てでる実るた。ーれ可水準設含をてス旧)にあ替ンス動実24い意運施こ。

		評価条件	=(操作条件)			評価項目となる		
項目		評価上の 操作開始 時間	評価条件設定 の考え方	操作の不確かさ要因	連転員等操作時 間に与える影響	パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可替型へ補搬注ポの給	事 象 発 生 から 8 時間 後	可水へはで解て成必あ枯う一般大の,は析い立要り渇たの。は析い立要り渇に代ポ料析い想操継作燃なに注プ給件,しのにでがよ	可搬型代替注水大型ポンプへの補給開始時間は, 事象発生から 8 時間程度あり, 十分な時間余裕がある。				可水へはてしろでま機枯間間すて間ろに許意作能を 型型燃動分で割はた器渇間)るお12,11割り時しがあ なり、練約以のたいでと許の実るしがあし しがあしに、分類約問て実るした。 注プ給め定こ等。各が時時施し時こ等。でる可と

### 第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(2/2)

7日間における水源の対応について

### (想定事故1)

1. 水源に関する評価

①淡水源(有効水量)

- 代替淡水貯槽:約4,300m³
- 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン

 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水 ライン)を使用した使用済燃料プールへの注水

事象発生8時間以降から,50m³/hで代替淡水貯槽を水源として, 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ラ イン)を使用した使用済燃料プールへの注水を実施する。

水位回復後は,蒸発量に応じた水量(最大約16m³/h)で使用済燃料プールへの注水を実施する。

3. 時間評価

使用済燃料プールへの注水によって,代替淡水貯槽の水量は減少 する。

この間の代替淡水貯槽の使用水量は合計約2,460m³である。

4. 水源評価結果

時間評価の結果から,7日間の対応において合計約2,460m³必要となるが,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水

### 添付 4.1.6-1

を保有することから必要水量を確保可能であり,安定して冷却を継 続することが可能である。 7日間における燃料の対応について

(想定事故1)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

して評価する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転 台数)=約484.0kL		軽油貯蔵
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{*2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台 数)=約130.3kL	7日間の軽 油消費量 約755.5kL	タンクの 容量は約 800kL であ り,7日間
常設代替高圧電源装置 2 台起動 ^{*3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運転台 数)=約 141.2kL		対応可能
可搬型代替注水大型ポンプ 1 台起動 (代替燃料プール冷却系 (可搬型)) 218L/h(燃料消費率)×168h (運転時間)×1 台 (運転台数) =約 36.6kL	7日間の軽 油消費量 約36.6kL	可搬型設備 用軽油タン クの容量は 約 210kL で あり,7日間 対応可能

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ

るが,保守的にディーゼル発電機2台の起動を仮定した。

- ※2 事故収束に必要ではないが、保守的に起動を仮定した。
- ※3 緊急用 P / C の電源を,常設代替高圧電源装置2台で確保することを仮定した。

4.2 想定事故2

- 4.2.1 想定事故2の特徴,燃料損傷防止対策
- (1) 想定する事故

「使用済燃料プールにおける重大事故に至るおそれがある事故」におい て、使用済燃料プールにおける燃料損傷防止対策の有効性を確認するため に想定する事故の一つには、「1.2 評価対象の整理及び評価項目の設定」に 示すとおり、想定事故2として「サイフォン現象等により使用済燃料プー ル内の水の小規模な喪失が発生し、使用済燃料プールの水位が低下する事 故」がある。

(2) 想定事故2の特徴及び燃料損傷防止対策の基本的考え方

想定事故2では、使用済燃料プールの冷却系の配管破断によるサイフォ ン現象等により使用済燃料プール内の水の小規模な漏えいが発生するとと もに、使用済燃料プール注水機能が喪失することを想定する。このため、 使用済燃料プール水位が低下することから、緩和措置がとられない場合に は、燃料は露出し、燃料損傷に至る。

本想定事故は,使用済燃料プール水の漏えいによって燃料損傷に至る事 故を想定するものである。このため,重大事故等対策の有効性評価には使 用済燃料プール水の漏えいの停止手段及び使用済燃料プールの注水機能に 対する重大事故等対処設備に期待することが考えられる。

したがって,想定事故2では,静的サイフォンブレーカによる使用済燃 料プール水の漏えいの停止や,可搬型代替注水大型ポンプによる代替燃料 プール注水系(注水ライン)を使用した使用済燃料プールへの注水によっ て,燃料損傷の防止を図る。また,可搬型代替注水大型ポンプによる代替 燃料プール注水系(注水ライン)を使用して使用済燃料プール水位を維持

4.2-1

する。

### (3) 燃料損傷防止対策

想定事故2における機能喪失に対して,使用済燃料プール内の燃料が著 しい損傷に至ることなく,かつ,十分な冷却を可能とするため,静的サイ フォンブレーカによる使用済燃料プール保有水のサイフォン現象による漏 えいの防止手段及び常設低圧代替注水系ポンプによる代替燃料プール注水 系(注水ライン)を使用した使用済燃料プールへの注水手段及び可搬型代 替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用した 使用済燃料プールへの注水手段を整備する。

なお、これらの手段はいずれも重大事故等対処設備を用いた手段であり、 本来はいずれの設備でも想定事故2において対処可能であるが、手順上、 後段の手段である可搬型代替注水大型ポンプによる代替燃料プール注水系

(注水ライン)を使用した使用済燃料プールへの注水手段を代表として評価対象とすることとし、その他の注水手段については評価上考慮しないものとする。これらの対策の概略系統図を第4.2-1図に、対応手順の概要を 第4.2-2図に示すとともに、重大事故等対策の概要を以下に示す。また、 重大事故等対策における手順と設備の関係を第4.2-1表に示す。

想定事故2において,必要な要員は,初動対応要員13名及び事象発生から2時間以降に期待する招集要員2名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員1名,通報連絡等を行う災害対策要員2名,現場操作を行う重大事故等対応要員8名である。

招集要員の内訳は,燃料補給作業を行う重大事故等対応要員2名である。 必要な要員と作業項目について第4.2-3図に示す。 a. 使用済燃料プール水位低下の確認

外部電源喪失により使用済燃料プールを冷却している系統が停止する と同時に,燃料プール冷却浄化系配管の破断によるサイフォン現象等に より使用済燃料プール内の水の小規模な漏えいが発生し,使用済燃料プ ール水位が低下する。使用済燃料プールの水位が低下したことを使用済 燃料プール水位低警報の発信等により確認する。

使用済燃料プール水位低下を確認するために必要な計装設備は,使用 済燃料プール水位・温度(SA広域)等である。

b. 使用済燃料プール注水機能喪失の確認

使用済燃料プールの喪失した保有水を補給するため,残留熱除去系及 び補給水系による使用済燃料プールへの注水準備を行う。中央制御室か らの遠隔操作により使用済燃料プールへの注水準備が困難な場合,使用 済燃料プールの注水機能が喪失したことを確認する。

使用済燃料プール注水機能喪失を確認するために必要な計装設備は, 使用済燃料プール水位・温度(SA広域),残留熱除去系系統流量等であ る。

c. 使用済燃料プール水位, 温度監視

使用済燃料プールの注水機能喪失の確認後,使用済燃料プールの水位, 温度を監視する。

使用済燃料プール水位,温度を監視するために必要な計装設備は,使 用済燃料プール水位・温度(SA広域)等である。

d. 使用済燃料プール注水機能の復旧操作

使用済燃料プール注水機能(残留熱除去系及び補給水系)の復旧操作は 対応可能な要員にて実施する。

e.可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)

を使用した使用済燃料プールへの注水準備

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)の準備は注水機能喪失による異常の認知を起点として開始する。

外部電源が喪失している場合,中央制御室からの遠隔操作により常設 代替高圧電源装置から緊急用母線を受電し,必要な計装設備及び可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)に給電 する。

f.可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) の準備完了後,可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した使用済燃料プールへの注水を開始することに より,使用済燃料プール水位を回復する。その後,可搬型代替注水大型 ポンプによる代替燃料プール注水系(注水ライン)により蒸発量に応じ た水量を注水することで,使用済燃料プール水位を,必要な遮蔽を確保 できる水位(線量率が10mSv/hとなる通常水位から約0.9m下の水位) *1より高く維持する。

※1:必要な遮蔽の目安として設定した 10mSv/hは,施設定期検査作業での原 子炉建屋最上階における現場作業の実績値(約3.5mSv/h)を考慮した ものであり,本事故発生時において使用済燃料プール周りでの作業時間 が最も長い,可搬型代替注水大型ポンプによる代替燃料プール注水系(可 搬型スプレイノズル)を使用した使用済燃料プールスプレイのためのホ ースの敷設や可搬型スプレイノズルの設置作業時間を保守的に見積って も1時間以内であることから,緊急作業時の被ばく限度である 100mSv に 対しても,十分に余裕がある値である。

4.2-4

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水を確認するために必要な計装設備 は,使用済燃料プール水位・温度(SA広域)等である。

g. タンクローリによる燃料補給操作

タンクローリにより可搬型設備用軽油タンクから可搬型代替注水大型 ポンプに燃料補給を実施する。

- 4.2.2 燃料損傷防止対策の有効性評価
  - (1) 有効性評価の方法

想定事故2の評価においては、「1.2 評価対象の整理及び評価項目の設 定」に示すとおり、「サイフォン現象等により使用済燃料プール水の小規模 な喪失が発生し、使用済燃料プールの水位が低下する事故」を想定する。

なお、使用済燃料プールの保有水の漏えいを防止するため、使用済燃料 プールには排水口を設けない設計としており、また、燃料プール冷却浄化 系はスキマせきを越えてスキマサージタンクに流出する水を循環させる設 計とするとともに、使用済燃料プールに入る配管には真空破壊弁を設け、 サイフォン現象により、使用済燃料プール水が流出しない設計としている。 使用済燃料プールに入る配管の真空破壊弁は動力を必要としない設計であ り、信頼性は十分高いと考えられるが、本想定事故では固着を想定する。

想定事故2では、燃料プール冷却浄化系配管の破断の後、使用済燃料プ ール水の漏えいが発生するが、静的サイフォンブレーカにより使用済燃料 プール水のサイフォン現象による漏えいは防止され、使用済燃料プール水 位の低下は燃料プール冷却浄化系戻り配管下端位置(通常水位から約 0.23m 下)で停止する。その後、崩壊熱による使用済燃料プール水温の上 昇、沸騰及び蒸発によって使用済燃料プール水位は低下する。可搬型代替 注水大型ポンプによる代替燃料プール注水系(注水ライン)を用いた使用 済燃料プールへの注水により,使用済燃料プール水位が放射線の遮蔽が維 持される水位を確保できることを評価する。なお,使用済燃料プール水位 が放射線の遮蔽が維持される水位を確保できることで,燃料有効長頂部の 冠水は維持される。また,未臨界が維持されることについては,使用済燃 料プール水の水密度によらず実効増倍率が1.0を下回ることを評価する。

また,評価条件の不確かさの影響評価の範囲として,想定事故2におけ る運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する。

(添付資料 4.1.4, 4.2.1)

(2) 有効性評価の条件

想定事故2に対する初期条件も含めた主要な評価条件を第4.2-2表に示 す。また,主要な評価条件について,想定事故2特有の評価条件を以下に 示す。

なお、本評価では、崩壊熱及び運転員の人数の観点から厳しい条件であ る、原子炉運転停止中の使用済燃料プールを前提とする。原子炉運転中の 使用済燃料プールは、崩壊熱が原子炉運転停止中の使用済燃料プールに比 べて小さく事象進展が緩やかになること、また、より多くの運転員による 対応が可能であることから本評価に包絡される。

(添付資料 4.1.1)

a. 初期条件

(a) 使用済燃料プールの初期水位及び初期水温

使用済燃料プールの初期水位は通常水位とし,保有水量を厳しく見 積もるため,使用済燃料プールと隣接する原子炉ウェルの間に設置さ れているプールゲートは閉状態を仮定する。また,使用済燃料プール の初期水温は,運転上許容される上限の65℃とする。

(b) 崩壞熱

使用済燃料プールには貯蔵燃料の他に,原子炉停止後に最短時間(原 子炉停止後9日)で取り出された全炉心分の燃料が一時保管されてい ることを想定して,使用済燃料プールの崩壊熱は約9.1MWを用いるも のとする。

なお,崩壊熱に相当する保有水の蒸発量は約15m³/hである。 b.事故条件

(a) 安全機能の喪失に対する仮定

使用済燃料プール冷却機能及び注水機能として,残留熱除去系,燃料プール冷却浄化系,補給水系等の機能が喪失するものとする。

(b) 配管破断の想定

燃料プール冷却浄化系配管の破断を想定する。

(c) 使用済燃料プール水位の低下

燃料プール冷却浄化系配管に設置されている真空破壊弁については 閉固着を仮定する。サイフォン現象による使用済燃料プールの水位低 下は,静的サイフォンブレーカにより,燃料プール冷却浄化系のプー ル内設置配管のうち最も高所に設置されている水平配管の配管下端部 (通常水位から約0.23m下)で停止することを想定する。なお,この ときの水位低下は,保守的に瞬時に上記水位まで低下することを想定 する。

(添付資料 4.2.2)

(d) 外部電源

外部電源は使用できないものと仮定する。

外部電源がない場合においても,可搬型代替注水大型ポンプによる 代替燃料プール注水系(注水ライン)を使用した使用済燃料プールへ の注水は可能であり,外部電源がある場合と事象進展は同様となるが, 資源の評価の観点から厳しくなる外部電源がない場合を想定する。

- c. 重大事故等対策に関連する機器条件
- (a) 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ラ イン)

使用済燃料プールへの注水は,可搬型代替注水大型ポンプ1台を使 用するものとする。使用済燃料プールへの注水流量は,燃料の崩壊熱 による使用済燃料プール水の蒸発量を上回り燃料損傷防止が可能な流 量として,50m³/hを設定する。

d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用した使用済燃料プールへの注水は、事象発生8時間後から開始する。
- (3) 有効性評価の結果

想定事故2における使用済燃料プール水位の時間変化を第4.2-4 図に, 使用済燃料プール水位と線量率の関係を第4.2-5 図に示す。

a. 事象進展

燃料プール冷却浄化系配管の破断により,使用済燃料プール水位が燃料プール冷却浄化系戻り配管下端まで低下する。スキマせきを越える水 がなくなるためスキマサージタンクの水位低下又は使用済燃料プール水 位低下に伴い発生する警報により異常を認知する。使用済燃料プール水 位が通常水位から約0.23m下まで低下していること等を確認し,使用済 燃料プールからの漏えいが発生したこと及び静的サイフォンブレーカに よりサイフォン現象による漏えいが停止したことを確認する。使用済燃 料プールの注水機能喪失を確認し,補給水系による使用済燃料プールへ の注水準備を行うが,補給水系が使用不可能な場合,可搬型代替注水大 型ポンプによる代替燃料プール注水系(注水ライン)を使用した使用済 燃料プールへの注水準備を行う。

使用済燃料プールへの注水が開始されるまで,使用済燃料プール水温 は約7.0℃/hで上昇し,事象発生から約5.0時間後に100℃に達する。 その後,蒸発により使用済燃料プール水位は低下し始めるが,事象発生 から8時間後に可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した使用済燃料プールへの注水を開始すると,使

用済燃料プール水位は回復する。

その後は、使用済燃料プールの冷却系を復旧しつつ、可搬型代替注水 大型ポンプによる代替燃料プール注水系(注水ライン)により、蒸発量 に応じた水量を使用済燃料プールに注水し、使用済燃料プール水位を維 持する。

b. 評価項目等

使用済燃料プール水位の時間変化は第4.2-4 図に示すとおり,通常水 位から約0.6m下まで低下するに留まり,燃料有効長頂部は冠水維持され る。また,使用済燃料プール水温は事象発生約5.0時間で沸騰し,その 後100℃付近で維持される。

また,第4.2-5 図に示すとおり,使用済燃料プール水位が通常水位か ら約0.6m下の水位になった場合の線量率は,約3.0mSv/hであり,必要

4.2-9

な遮蔽の目安と考える 10mSv/hと比べて低い値であることから,この水 位において放射線の遮蔽は維持される。なお、線量率の評価点は原子炉 建屋最上階における使用済制御棒ハンガ真上の床面高さとしている。

使用済燃料プールでは燃料がボロン添加ステンレス鋼製ラックセルに 貯蔵されており、必要な燃料間距離をとる等の設計により、水密度によ らず臨界未満となるため、未臨界は維持される。

事象発生 8 時間後から可搬型代替注水大型ポンプによる代替燃料プー ル注水系(注水ライン)を使用した使用済燃料プールへの注水を行うこ とで使用済燃料プール水位は回復し,その後,蒸発量に応じた使用済燃 料プールへの注水を継続し,機能喪失している設備の復旧に努める。復 旧後は補給水系によりスキマサージタンクへの注水を実施し,漏えい個 所を隔離した状態で残留熱除去系等により冷却を実施することで安定状 態を維持できる。

本評価では、「1.2.3.2 有効性を確認するための評価項目の設定」に 示す(1)から(3)の評価項目について、対策の有効性を確認した。

(添付資料 4.1.1, 4.2.3)

#### 4.2.3 評価条件の不確かさの影響評価

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与える 影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する ものとする。

想定事故2では、燃料プール冷却浄化系配管の破断により使用済燃料プー ル内の水の小規模な喪失が発生し、静的サイフォンブレーカにより使用済燃 料プール水のサイフォン現象による漏えいは防止され、燃料プール冷却浄化 系戻り配管下端(通常水位から約0.23m下)まで使用済燃料プールの水位が 低下することが特徴である。また,不確かさの影響を確認する運転員等操作 は,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した注水操作とする。

- (1) 評価条件の不確かさの影響評価
  - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 4.2-2 表に示すとおりであり,それらの条件設定を設計値等,最確条件 とした場合の影響を評価する。また,評価条件の設定に当たっては,原 則,評価項目となるパラメータに対する余裕が小さくなるような設定と していることから,その中で事象進展に有意な影響を与えると考えられ る燃料の崩壊熱,事象発生前の使用済燃料プールの初期水温,初期水位, プールゲートの状態,破断箇所・状態の想定及びサイフォン現象による 水位低下量の影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料の崩壊熱は,評価条件の約9.1MWに対して最確条件 は9.1MW以下であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している燃料の崩壊熱より小さくなるため,使 用済燃料プールの水温上昇及び水位低下速度は緩やかになるが,注水 操作は,燃料の崩壊熱の状態に応じた対応をとるものではなく,水位 低下による異常の認知を起点とするものであるため,運転員等操作時 間に与える影響はない。

初期条件の使用済燃料プール水温は,評価条件の65℃に対して最確 条件は約12℃~40℃であり,本評価条件の不確かさとして,最確条件 とした場合,評価条件で設定している使用済燃料プールの初期水温よ り低くなることが考えられ,さらに時間余裕が長くなることが考えら れるが,注水操作は,使用済燃料プール水の初期水温に応じた対応を とるものではなく,水位低下による異常の認知を起点とするものであ るため,運転員等操作時間に与える影響はない。

初期条件の使用済燃料プール水位は,評価条件の通常水位に対して 最確条件では通常水位付近であり,本評価条件の不確かさとして,そ の変動を考慮した場合,通常水位よりも低くなることも考えられ,そ れにより時間余裕が短くなることが考えられるが,注水操作は,燃料 プール水の初期水位に応じた対応をとるものではなく,水位低下によ る異常の認知を起点とするものであるため,運転員等操作時間に与え る影響はない。また,初期に地震誘因のスロッシングが発生していた 場合は,最大で約0.70mの水位の低下が発生し,使用済燃料プール水 位が放射線の遮蔽が維持される最低水位に到達するまでの時間は事象 発生から約5時間後となり,それ以降は原子炉建屋最上階の線量率が 上昇し,その場における長時間の作業は困難となる。ただし,可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使 用した使用済燃料プールへの注水操作は屋外での操作であるため,現 場操作に必要な遮蔽は維持される。このため,運転員等操作時間に与 える影響はない。

初期条件のプールゲートの状態は,評価条件のプールゲート閉鎖に 対して最確条件はプールゲート開放であり,本評価条件の不確かさと して,最確条件とした場合,保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用済燃料プールの水温上昇及び蒸発による水位低下 速度は緩やかになるが,注水操作はプールゲートの状態に応じた対応 をとるものではなく,水位低下による異常の認知を起点とするもので あるため,運転員等操作時間に与える影響はない。

4.2-12

(b) 評価項目となるパラメータに与える影響

初期条件の燃料の崩壊熱は,評価条件の約9.1MWに対して最確条件 は9.1MW以下であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している燃料の崩壊熱より低くなるため,評価 項目となるパラメータに対する余裕が大きくなる。

初期条件の使用済燃料プール水温は,評価条件の65℃に対して最確 条件は約12℃~40℃であり、本評価条件の不確かさとして、最確条件 とした場合、評価条件で設定している使用済燃料プールの水温より低 くなるため,沸騰開始時間が遅くなり,水位低下は緩和されることか ら、評価項目となるパラメータに対する余裕が大きくなる。なお、自 然蒸発,使用済燃料プールの水温及び温度上昇の非一様性により,評 価で想定している沸騰による水位低下開始時間より早く水位の低下が 始まることも考えられる。しかし、自然蒸発による影響は沸騰による 水位低下と比べてわずかであり、気化熱により使用済燃料プール水は 冷却される。また、使用済燃料プールの水温の非一様性も沸騰開始後 の気泡上昇を駆動力とした対流により影響が小さくなることが考えら れる。仮に事象発生直後から沸騰による水位低下が開始すると想定し た場合は、使用済燃料プール水位が放射線の遮蔽が維持される最低水 位に到達するまでの時間は事象発生から約4時間後となり、それ以降 は原子炉建屋最上階の線量率が上昇し、その場における長時間の作業 は困難となる。ただし、可搬型代替注水大型ポンプによる代替燃料プ ール注水系(注水ライン)を使用した使用済燃料プールへの注水操作 は屋外での操作であるため、現場操作に必要な遮蔽は維持される。ま た、燃料有効長頂部まで水位が低下するまでの時間は事象発生から2 日以上あり、事象発生から8時間後までに可搬型代替注水大型ポンプ

4.2-13

による代替燃料プール注水系(注水ライン)を使用した注水が可能で あるため,評価項目となるパラメータに与える影響は小さい。

初期条件の使用済燃料プール水位は、評価条件の通常水位に対して 最確条件では通常水位付近であり,本評価条件の不確かさとして,そ の変動を考慮した場合,通常水位よりも低くなることも考えられるが, 仮に初期水位を水位低警報レベル(通常水位から約0.14m低下した位 置)とした場合であっても、漏えいによる水位低下は、静的サイフォ ンブレーカにより燃料プール冷却浄化系配管下端位置(通常水位から 約0.23m下) で停止することから, 評価項目となるパラメータに与え る影響はない。また、初期に地震誘因のスロッシングが発生していた 場合は、最大で約0.70mの水位の低下が発生し、使用済燃料プール水 位が放射線の遮蔽が維持される最低水位に到達するまでの時間は事象 発生から約5時間後となり、それ以降は原子炉建屋最上階の線量率が 上昇し、その場における長時間の作業は困難となる。ただし、注水ラ インを用いる可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した使用済燃料プールへの注水操作は屋外での 操作であるため、現場操作に必要な遮蔽は維持される。また、燃料有 効長頂部まで水位が低下するまでの時間は事象発生から2日以上あり, 事象発生から8時間後までに可搬型代替注水大型ポンプによる代替燃 料プール注水系(注水ライン)を使用した注水が可能であるため、評 価項目となるパラメータに与える影響は小さい。なお、本スロッシン グの評価には余震の影響は考慮していないが、余震は本震よりも小さ な地震動となると考えられ、本震時のスロッシングによってプール水 位が約 0.70m 低下しているため、プール水温度の上昇による水位の上 昇を考慮しても余震による有意な水位低下はないと考えられる。

4.2 - 14
初期条件のプールゲートの状態は,評価条件のプールゲート閉鎖に 対して最確条件はプールゲート開放であり,本評価条件の不確かさと して,最確条件とした場合,保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用済燃料プールの水温上昇及び水位低下速度は緩や かになることから,評価項目となるパラメータに対する余裕は大きく なる。

破断箇所・状態及びサイフォン現象による水位低下量の想定は,評 価条件では残留熱除去系に比べて耐震性が低い燃料プール冷却浄化系 配管が破断し,燃料プール冷却浄化系配管に設置されている真空破壊 弁については閉固着を想定しているが,最確条件では事故毎に異なる。 ただし,静的サイフォンブレーカにより燃料プール冷却浄化系配管下 端位置(通常水位から約0.23m下)で漏えいが停止することから,評 価項目となるパラメータに与える影響はない。

(添付資料 4.2.4)

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が,運転員等操作時間に与える影 響を評価する。また,運転員等操作時間に与える影響が評価項目となる パラメータに与える影響を評価し,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

評価条件の可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した使用済燃料プールへの注水操作は,評価上 の操作開始時間として事象発生から8時間後を設定している。運転員 等の操作時間に与える影響として,評価上の操作開始時間を事象発生 8時間後として設定しているが、他の操作はないため、使用済燃料プ ールの注水機能の喪失を認知した時点で注水準備に着手可能である。 よって、評価上の操作開始時間に対し、実際の操作開始時間が早くな る場合が考えられ、使用済燃料プール水位の回復を早める。

(b) 評価項目となるパラメータに与える影響

操作条件の可搬型代替注水大型ポンプによる代替燃料プール注水系 (注水ライン)を使用した注水操作は,運転員等操作時間に与える影響として,評価上の操作開始時間に対して,実際の操作開始時間が早 くなる場合が考えられ,この場合使用済燃料プール水位の回復が早く なり,評価項目となるパラメータに対する余裕は大きくなる。

(添付資料 4.2.4)

(2) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内での操作時間余裕を確認 し,その結果を以下に示す。

操作条件の可搬型代替注水大型ポンプによる代替燃料プール注水系(注 水ライン)を使用した使用済燃料プールへの注水操作に対する時間余裕に ついては,放射線の遮蔽が維持される最低水位に到達するまでの時間が事 象発生から9時間以上,燃料有効長頂部に到達するまでの時間が事象発生 から2日以上であり,これに対して,事故を認知して注水を開始するまで の時間は事象発生から8時間であることから,時間余裕がある。

(添付資料 4.2.4)

(3) まとめ

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与え る影響,評価項目となるパラメータに与える影響及び操作時間余裕を確認 した。その結果,評価条件の不確かさが運転員等操作時間に与える影響等 を考慮した場合においても,評価項目となるパラメータに与える影響は小 さい。この他,評価項目となるパラメータに対して,対策の有効性が確認 できる範囲内において,運転員等操作時間には時間余裕がある。

### 4.2.4 必要な要員及び資源の評価

(1) 必要な要員の評価

想定事故2の重大事故等対策における必要な初動対応要員は「4.2.1(3) 燃料損傷防止対策」に示すとおり13名である。「6.2 重大事故等対策に必 要な要員の評価結果」で示す運転員及び災害対策要員の37名で対処可能で ある。

また,必要な招集要員は2名であり,発電所構外から2時間以内に召集 可能な要員の71名で対処可能である。

なお、今回評価した原子炉運転停止中ではなく、原子炉運転中を想定し た場合、事象によっては、原子炉における重大事故又は重大事故に至るお それのある事故の対応と、想定事故2の対応が重畳することも考えられる。 しかし、原子炉運転中においては、使用済燃料プールに貯蔵されている燃 料の崩壊熱が低いため、操作時間余裕が十分長く(原子炉運転開始直後を 考慮しても使用済燃料プール水が100℃に到達するまで約1日以上)、原子 炉における事故対応が収束に向かっている状態での対応となるため、災害 対策要員や招集要員により対応可能である。

(2) 必要な資源の評価

想定事故2において,必要な水源,燃料及び電源は「6.1(2) 資源の評価条件」の条件にて評価している。その結果を以下に示す。

a. 水源

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水については,7日間の対応を考慮 すると合計約2,500m³必要となる。代替淡水貯槽に約4,300m³,淡水貯 水池に約5,000m³の水量を保有していることから,7日間の継続した注 水が可能である。

(添付資料 4.2.5)

b. 燃料

非常用ディーゼル発電機による電源供給については、事象発生直後か らの運転を想定すると、7日間の運転継続に約484.0kLの軽油が必要と なる。高圧炉心スプレイ系ディーゼル発電機による電源供給については、 事象発生直後からの運転を想定すると、7日間の運転継続に約130.3kL の軽油が必要となる。常設代替交流電源設備による電源供給については、 事象発生直後からの運転を想定すると、7日間の運転継続に約141.2kL の軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有している ことから、非常用ディーゼル発電機、高圧炉心スプレイ系ディーゼル発 電機及び常設代替交流電源設備による電源供給について、7日間の継続 が可能である。

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水については,事象発生直後からの 運転を想定すると,7日間の運転を想定して約36.6kLの軽油が必要とな る。可搬型設備用軽油タンクに約210kLの軽油を保有していることから, 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) を使用した使用済燃料プールへの注水について,7日間の継続が可能で ある。

(添付資料 4.2.6)

c. 電源

外部電源は使用できないものと仮定し,非常用ディーゼル発電機,高 圧炉心スプレイ系ディーゼル発電機及び常設代替交流電源設備によって 給電を行うものとする。

#### 4.2.5 結論

想定事故2では,燃料プール冷却浄化系配管の破断により漏えいが発生し た際に真空破壊弁の機能が十分に働かず,サイフォン現象等による使用済燃 料プール水の小規模な喪失が発生し,かつ,使用済燃料プールへの水の補給 にも失敗して使用済燃料プール水位が低下することで,やがて燃料が露出し 燃料損傷に至ることが特徴である。想定事故2に対する燃料損傷防止対策と しては,静的サイフォンブレーカによる漏えい防止手段,可搬型代替注水大 型ポンプによる代替燃料プール注水系(注水ライン)を使用した使用済燃料 プールへの注水手段を整備している。

想定事故2について有効性評価を実施した。

上記の場合においても,可搬型代替注水大型ポンプによる代替燃料プール 注水系(注水ライン)を使用した使用済燃料プールへ注水により,使用済燃 料プール水位を回復し維持することができることから,放射線の遮蔽が維持 され,かつ,燃料損傷することはない。

また,使用済燃料プールでは燃料がボロン添加ステンレス鋼製ラックセル に貯蔵されており,必要な燃料間距離をとる等の設計により水密度の状態に よらず臨界未満となるため,未臨界は維持される。

4.2-19

その結果,燃料有効長頂部の冠水,放射線の遮蔽が維持される水位の確保 及び未臨界を維持できることから評価項目を満足している。また,安定状態 を維持できる。

重大事故等対策時に必要な要員は運転員及び災害対策要員にて確保可能で ある。また,必要な水源,燃料及び電源については,外部電源喪失時を仮定 しても供給可能である。

以上のことから,静的サイフォンブレーカによる漏えいの防止及び可搬型 代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を使用した 使用済燃料プールへの注水等の燃料損傷防止対策は,想定事故2に対して有 効である。

品作及75体初	<b>墙</b> 作内容		重7	大事故等対処設備
操作及び確認	1条1FP1谷	常設設備	可搬型設備	計装設備
使用済燃料プール水位	・外部電源喪失により使用済燃料プールを冷却している系統	【非常用ディ	-	使用済燃料プール温度 (SA)
低下の確認	が停止すると同時に、使用済燃料プール冷却浄化系の配管	ーゼル発電機】		使用済燃料プール水位・温度(SA広域)
	破断によるサイフォン現象等により使用済燃料プール内の	軽油貯蔵タンク		使用済燃料プールエリア放射線モニタ
	水の小規模な漏えいが発生し、使用済燃料プールを冷却し			(高レンジ,低レンジ)
	ている系統が停止する。使用済燃料プールの水位が低下し			使用済燃料プール監視カメラ(使用済燃
	たことを使用済燃料プール水位低警報の発信等により確認			料プール監視カメラ用空冷装置を含む)
	する。			
使用済燃料プール注水	・使用済燃料プールの喪失した保有水を補給するため、残留	—	-	使用済燃料プール温度 (SA)
機能喪失の確認	熱除去系及び補給水系による使用済燃料プールへの注水準			使用済燃料プール水位・温度(SA 広域)
	備を行う。中央制御室からの遠隔操作により使用済燃料プ			使用済燃料プールエリア放射線モニタ
	ールへの注水が困難な場合、使用済燃料プール注水機能喪			(高レンジ,低レンジ)
	失であることを確認する。			使用済燃料プール監視カメラ(使用済燃
				料プール監視カメラ用空冷装置を含む)
				【残留熱除去系系統流量】
使用済燃料プール水位,	・使用済燃料プールの注水機能喪失の確認後,使用済燃料プ	—	—	使用済燃料プール温度 (SA)
温度監視	ールの水位,温度を監視する。			使用済燃料プール水位・温度(SA 広域)
				使用済燃料プールエリア放射線モニタ
				(高レンジ,低レンジ)
				使用済燃料プール監視カメラ(使用済燃
				料プール監視カメラ用空冷装置を含む)
使用済燃料プール注水	・使用済燃料プール注水機能(残留熱除去系及び補給水系)の	—	-	-
機能の復旧操作	復旧操作は対応可能な要員にて実施する。			
常設低圧代替注水系ポ	・常設低圧代替注水系ポンプによる代替燃料プール注水系(注	常設低圧代替	-	使用済燃料プール温度(SA)
ンプによる代替燃料プ	水ライン)を使用した使用済燃料プールへの注水を開始し,	注水系ポンプ		使用済燃料プール水位・温度(SA広域)
ール注水系(注水ライ	使用済燃料プール水位を回復する。	代替淡水貯槽		使用済燃料プールエリア放射線モニタ
ン)を使用した使用済燃	<ul> <li>・その後、蒸発量に応じた水量を注水することで、使用済燃</li> </ul>	常設代替高圧		(高レンジ、低レンジ)
料プールへの注水	料プール水位を必要な遮蔽を確保できる水位より高く維持	電源装置		使用済燃料プール監視カメラ(使用済燃
	する。	注水ライン		料ブール監視カメラ用空冷装置を含む)
		軽油貯蔵タンク		代替淡水貯槽水位
				<ul> <li>・ 重大 車 故 等 対 机 設 備 (設 計 其 準 拡 帯)</li> </ul>

# 第4.2-1 表 想定事故2における重大事故対策について(1/2)

:有効性評価上考慮しない操作

品作及工作中的	揭佐内容	重大事故等対処設備					
操作及び確認	1架TFPJ谷	常設設備	可搬型設備	計装設備			
可搬型代替注水大型ポ	・可搬型代替注水大型ポンプによる代替燃料プール注水系(注	常設代替高圧	可搬型代替	使用済燃料プール温度 (SA)			
ンプによる代替燃料プ	水ライン)の常設配管に設置されている電動弁の開操作を	電源装置	注水大型ポ	使用済燃料プール水位・温度 (SA 広域)			
ール注水系(注水ライ	実施する。	注水ライン	ンプ	使用済燃料プールエリア放射線モニタ			
ン)を使用した使用済燃	・外部電源が喪失している場合、中央制御室からの遠隔操作	代替淡水貯槽		(高レンジ,低レンジ)			
料プールへの注水準備	により常設代替高圧電源装置から緊急用母線を受電する。			使用済燃料プール監視カメラ(使用済燃			
				料プール監視カメラ用空冷装置を含む)			
				代替淡水貯槽水位			
可搬型代替注水大型ポ	・可搬型代替注水大型ポンプによる代替燃料プール注水系(注	常設代替高圧	可搬型代替	使用済燃料プール温度 (SA)			
ンプによる代替燃料プ	水ライン)の準備完了後、使用済燃料プールへの注水を開	電源装置	注水大型ポ	使用済燃料プール水位・温度 (SA 広域)			
ール注水系(注水ライ	始し,使用済燃料プール水位を回復する。	注水ライン	ンプ	使用済燃料プールエリア放射線モニタ			
ン)を使用した使用済燃	・その後、蒸発量に応じた水量を注水することで、使用済燃	代替淡水貯槽		(高レンジ,低レンジ)			
料プールへの注水	料プール水位を維持する。			使用済燃料プール監視カメラ(使用済燃			
				料プール監視カメラ用空冷装置を含む)			
				代替淡水貯槽水位			
タンクローリによる燃	・タンクローリにより可搬型設備用軽油タンクから可搬型代	可搬型設備用	タンクロー	—			
料補給操作	替注水大型ポンプに燃料補給を実施する。	軽油タンク	IJ				

第4.2-1 表 想定事故2における重大事故対策について(2/2)

	項 目	主要評価条件	条件設定の考え方
	使用済燃料プールの保有水量	約 1, 189m ³	使用済燃料プールの保有水量を厳しく見積もるため,プールゲート閉鎖時の水量を設定
初	使用済燃料プールの初期水位	通常水位	通常水位を設定
期条	使用済燃料プールの初期水温	65°C	通常運転中の最大値として、保安規定の運転上の制限を設定
件	使用済燃料プール貯蔵燃料の 崩壊熱	約 9.1MW 取出時平均燃焼度: 貯蔵燃料:45GWd/t 炉心燃料:33GWd/t	原子炉の停止後最短期間(原子炉停止後9日) ^{*1} で取り出された全炉心分の燃料 と過去に取り出された燃料を合わせて,使用済燃料貯蔵ラックに最大体数貯蔵さ れていることを想定し,崩壊熱は ORIGEN2 を用いて算出
事故条	漏えいによる使用済燃料プ ール水位の低下	事象発生と同時に通常水位 から約0.23m下まで低下	使用済燃料プール水位が低下する可能性のある漏えい事象として,使用済燃料プ ールの冷却系の配管破断を想定するとともに,使用済燃料プールに入る配管に設 置されている真空破壊弁については閉固着を仮定する。静的サイフォンブレーカ により,サイフォン現象による流出が防止されるため,使用済燃料プール水位は 燃料プール冷却浄化系のプール内設置配管のうち最も高所に設置されている水平 配管の配管下端部(通常水位から約0.23m下)までの低下にとどまり,保守的に この水位まで瞬時に低下するものとする。
件	安全機能の喪失 に対する仮定	使用済燃料プール冷却機能 及び注水機能喪失	使用済燃料プール冷却機能及び注水機能喪失として,残留熱除去系,燃料プール 冷却浄化系及び補給水系の機能喪失を設定
	外部電源	外部電源なし	外部電源の有無は事象進展に影響しないが、資源の観点で厳しい外部電源なしを 設定
機器条件 (戦率) (戦率) (戦率) (戦率) (戦率) (戦率) (戦率) (戦率)	可搬型代替注水大型ポンプ による代替燃料プール注水 系(注水ライン)の使用済燃 料プールへの注水流量	50m³∕h	燃料の崩壊熱による使用済燃料プール水の蒸発量を上回り燃料損傷防止が可能な 流量として設定
」操作条件 →策に関連する	可搬型代替注水大型ポンプ による代替燃料プール注水 系(注水ライン)の使用済燃 料プールへの注水開始	事象発生から 8時間後	可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)の準備期 間を考慮し,使用済燃料プール水位が放射線の遮蔽を維持する最低水位に到達し ない時間として設定
<u>※1:東</u> を	[海第二発電所の施設定期検査 ・設定。原子炉停止後9日とけ	における実績を確認し,解列 全制御榛全插入からの時間を	後から全燃料取出完了までの最短期間である約9日を考慮して原子炉停止後9日 示している。通常停止操作において原子炉の出力は全制御榛全挿入完了及び発電

# 第4.2-2表 主要評価条件(想定事故 2)

を成止。原ナル停止後9日とは至制卿俸至押入からの時间を示している。通常停止操作において原ナ炉の出力は至制御俸至押入 機解列以前から徐々に低下させるが,崩壊熱評価はスクラムのような瞬時に出力を低下させる保守的な計算条件となっている。 光 龟



第4.2-1図 想定事故2の重大事故対策の概略系統図



第4.2-2図 想定事故2の対応手順の概要



設備であるため、解析上考慮していない。なお、消火系による使 用済燃料プール注水は火災が発生していない場合に使用する。

スプレイヘッダ)を使用した使用済燃料プールスプレイ,可搬型 代替注水大型ポンプによる代替燃料プール注水系(常設スプレイ ヘッダ)を使用した使用済燃料プールスプレイ、及び可搬型代替 注水大型ポンプによる代替燃料プール注水系(可搬型スプレイノ ズル)を使用した使用済燃料プールスプレイは、使用済燃料プー ルからの大量の水の漏えいが発生した場合に使用する対応手段で

						想定	事故 2									
[												経	過時間(時間	)		
							1		2	3	4	5	6	17	7	
		実施箇所・4 【 】はれ 移動してき	必要要員数 也作業後 きた要員				4-			- I	•	,	▼約 5.0 時間	1 使用済燃	****	
操作項目	責任者	発電長	1人	中央監視 運転操作指揮	操作の内容	♥ ^{事 承 元} :	^エ ント状況半	断						水温 100	℃到達	•
	補佐	副発電長	1人	運転操作指揮補佐												
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡												
	運転員 (中央監視)	運転員 (現場)	)	重大事故等対応要員 (現場)												
状況判断	1人 A			_	<ul> <li>●外部電源喪失の確認</li> <li>●非常用ディーゼル発電機等の自動起動の確認</li> <li>●使用済燃料ブール水位低下の確認</li> <li>●使用済燃料ブール注水機能喪失の確認(残留熱除去系及び補給水系)</li> </ul>	10 4	······									
	【1人】 A			-	●使用済燃料プール水位、温度監視								適宜実施			
使用済燃料ブール注水機能の復旧 操作	(能の復旧		_	<ul> <li>●使用済燃料ブール冷却機能の復旧操作(残留熟除去系)</li> <li>●使用済燃料ブール注水機能の復旧操作(残留熟除去系及び補給水系)</li> </ul>						 						
常設代替高圧電源装置による緊急 用母線受電操作	【1人】 A	Δ <b>1</b> – –		_	●常設代替高圧電源装置2台起動及び緊急用母線受電操作	4 \$	3									
常設低圧代替注水系ボンプによる 代替燃料プール注水系(注ホライ ン)を使用した使用済燃料プール への注水操作     【1人】 A     -     -		●常設低圧代替注水系ボンプによる代替燃料プール注水系(注水ライン)の系統構成,注水操作		13 分												
可搬型代替注水大型ボンプによる 代替燃料プール注水系(注水ライ	-	-		8人 a~h	●可搬型代替注水大型ポンプ準備,ホース敷設等									170 分		
ン)を使用した使用済燃料プール への注水準備	【1人】 A	_		_	●可搬型代替注水大型ボンプによる代替燃料プール注水系の系統構成(電動弁の開操作)										:	3分
可搬型代替注水大型ボンプによる 代替燃料プール注水系(注水ライ	_	【2人】 		【2人】 a, b	●可搬型代替注水大型ボンプによる代替燃料プール注水系を使用した使用済燃料プールへの注 水、水位維持											
ン)を使用した使用済燃料プール への注水開始	_	-		【2人】 c, d	●淡水貯水池B(A)から淡水貯水池A(B)への補給											
漏えい箇所の同定及び隔離         -         -         -			<ul> <li>●警報確認による原因調査</li> <li>●現場での系統隔離操作</li> </ul>						 							
タンクローリにトス紛転4曲6644666	_			2人	●可搬型設備用軽油タンクからタンクローリへの補給操作											
シックローンによるKaff曲柄健TF	_			(招集)	● 可搬型代替注水大型ポンプへの給油操作											
必要人員数 合計	1人 A	0人		8人 a~h 及び招集 2 人							 					

第4.2-3 図 想定事故2の作業と所要時間

			<b>供</b> 考
8	8 9 10 I I I	11	加石
7	▼ 9 時間 可搬刑件核注水十刑ポンプにトス件	実ん検索L	
	✓ 「「「「「「「」」」、「」」、「」」、「」、「」、「」、「」、「」、「」、「」、	済燃料	
_			
			解析上考慮しない。 対応可能な要員により対 応する。
			解析上考慮しない。
Ι			
	起動後適宜状態監視		
	60 分		
			解析上考慮しない。 対応可能な要員により対 応する。
	90 分		タンクローリの残量に応 じて適宜軽油貯蔵タンク から補給する。
	適宜実施		



事故後の時間(h)





第4.2-5 図 線量評価点における線量率と水位の関係

使用済燃料プールの水位低下と遮へい水位に関する評価について

- 使用済燃料プールの概要
   添付資料 4.1.1 と同様である。
- 2. 放射線の遮蔽の維持に必要な水位 添付資料 4.1.1と同様である。
- 3. 想定事故2における時間余裕

第1図に示すように、想定事故2では使用済燃料プールに入る配管に設置されている真空破壊弁については閉固着を仮定する。静的 サイフォンブレーカにより、サイフォン現象による流出を防止する ため、使用済燃料プール水位は燃料プール浄化冷却系のプール内設 置配管のうち最も高所に設置されている水平配管の配管下端部(通 常水位から約 0.23m 下)までの低下にとどまり、保守的にこの水位 まで瞬時に低下するものとする。



第1図 想定事故2の想定

配管破断により保有水が漏えいし,水平配管の配管下端部(通常 水位から約 0.23m 下)まで水位が低下した場合,崩壊熱除去機能喪 失に伴い,事象発生から約 5.0 時間後に沸騰の開始により水位が低 下する。

プールの水位が放射線の遮蔽維持水位(通常水位より約 0.9m 下) まで低下するのは事象発生から約 9.8 時間後であり,重大事故等対 策として期待している可搬型代替注水大型ポンプによる代替燃料プ ール注水系(注水ライン)による注水操作の時間余裕はある。

項目	算出結果
使用済燃料プール水温 100℃到達までの時間[h]	約 5.0
燃料の崩壊熱による使用済燃料プールの保有水の蒸散量[m ³ /h]	約 15.1
使用済燃料プール水位が通常水位から約 0.9m 低下するまでの時間* [h]	約 9.8
燃料有効長頂部まで使用済燃料プール水位が低下するまでの時間※ [h]	約 58.7
使用済燃料プール水位の低下速度[m/h]	約 0.13

※:事象発生から沸騰開始までの時間を含む

添付 4.2.1-2

使用済燃料プールサイフォンブレーカについて

1. サイフォンブレーカの概要

使用済燃料プールは,第1図のように燃料プール冷却浄化系により 冷却及び水質管理されている。使用済燃料プール水がサイフォン効果 により流出する場合は,使用済燃料プールに入る配管に設置されてい る真空破壊弁によりサイフォンブレークすることで使用済燃料プール 水の流出を防止する設計となっている。仮に真空破壊弁が機能喪失し た場合においても,静的サイフォンブレーカから空気を吸入すること でサイフォン現象による使用済燃料プール水の流出を防止することが 可能な設計とする。



第1図 燃料プール冷却浄化系及び残留熱除去系 系統概略図

添付 4.2.2-1

- 2. 静的サイフォンブレーカの機器仕様
  - (1) 静的サイフォンブレーカの寸法・設置箇所

静的サイフォンブレーカは,2本のディフューザ配管に設置され ており,弁等の機器がない口径 1/2インチの配管である。

第2図に示すとおり、ディフューザ配管の真空破壊弁がある配管 から枝分かれした形状であり、静的サイフォンブレーカ配管の下端 が通常水位より約200mm下となるよう設置されている。



第2図 使用済燃料プール内のレベル相関図

(2) サイフォン現象発生時の水位低下

真空破壊弁の閉固着を想定した場合,サイフォン現象が発生し, 通常水位より約200mm下まで水位が低下すると,静的サイフォンブ レーカから空気を吸込み,配管頂部に空気が溜まり始め,配管下端 まで空気が溜まったところでサイフォン現象が停止する。

以上により,使用済燃料プール水位は燃料プール冷却浄化系のプ ール内設置配管のうち最も高所に設置されている水平配管の配管下 端部(通常水位から約0.23m下)までの低下にとどまる。

### 添付 4.2.2-2

(3) 想定被ばく線量率

使用済燃料プール水位と線量率の関係を第3図に示す。第3図よ り,使用済燃料プール水位が通常水位から約0.23m下まで低下した 場合においても,原子炉建屋最上階の雰囲気線量率は約1.0mSv/h 以下となることから,使用済燃料プールはサイフォン現象等による 小規模な漏えいが発生した場合においても十分な遮蔽水位を確保す ることが可能である。



第3図 使用済燃料プール水位と線量率

添付 4.2.2-3

- 3. 静的サイフォンブレーカの健全性について
- (1) 配管強度への影響について

ディフューザ配管及びその配管に接続されている真空破壊弁を設置した配管は耐震 S クラスで設計されており,その配管に静的サイフォンブレーカを接続するため,耐震性については問題ない。

(2) 人的要因による機能阻害について

静的サイフォンブレーカは操作や作動機構を有さない単管のみで あることから,誤操作や故障により機能を喪失することはない。そ のため,使用済燃料プールの冷却系のサイフォン現象による漏えい が発生した場合においても,操作や作業を実施することなく,静的 サイフォンブレーカ開口部レベルまで使用済燃料プール水位が低下 すればサイフォン効果を除去することができる。

(3) 異物による閉塞について

静的サイフォンブレーカ(内径 φ 16.1mm)は、使用済燃料プール 出口配管より、使用済燃料プールポンプ、使用済燃料プール熱交換 器を経由して、使用済燃料プール側に向けて冷却材が流れており、 ろ過脱塩装置の出口配管にストレーナ(24/110 mesh:縦約 1.016 mm×横約 0.23 mm)が設置されていることから、異物によるサイフォ ンブレーカの閉塞の懸念はない。

(4) 落下物干渉による変形について

静的サイフォンブレーカの落下物干渉を考慮する必要がある周辺 設備として,原子炉建屋原子炉棟鉄骨梁,原子炉建屋クレーン,燃 料取替機等の重量物があるが,これらは基準地震動 Ss に対する耐震 評価にて使用済燃料プール内に落下しないことを確認しているため, 静的サイフォンブレーカの落下物干渉による変形は考えられない。

その他手摺等の軽量物については、ボルト固定,固縛による運用 としている。

よって,落下物として静的サイフォンブレーカに干渉すると考え られる設備は軽量物であり,仮に静的サイフォンブレーカに変形が 生じたとしても,本配管は剛性の高いステンレス鋼であることから, 配管が完全閉塞に至る変形は考えにくいことからサイフォン効果の 除去機能は確保される。

4. 静的サイフォンブレーカの健全性確認方法について

静的サイフォンブレーカについては,定期的な巡視点検(1回/週) を実施し,目視により水面の揺らぎ等を確認することで通水状態を確認する。

## 安定状態について

想定事故2(サイフォン現象等による燃料プール水の小規模な喪失) の安定停止状態については以下のとおり。

使用 済燃料プール安定状態:設計基準事	お対処設備及び重大事故等対処設備を
用いた使用	済燃料プールへの注水により, 使用済
燃料プール	水位を回復・維持することで、燃料の
冠水,放射	線遮蔽及び未臨界が維持され、使用済
燃料プール	の保有水の温度が安定し、かつ、必要
な要員の不	足や資源の枯渇等のあらかじめ想定さ
れる事象悪	化のおそれがない場合,安定状態が確
立されたも	のとする。

【安定状態の確立について】

使用済燃料プールの安定状態の確立について

可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)で使 用した使用済燃料プールへの注水を実施することで,使用済燃料プール水位は 回復,維持され,使用済燃料プールの安定状態が確立される。

また,重大事故等対策時に必要な要員は確保可能であり,必要な水源,燃料 及び電源を供給可能である。

【安定状態の維持について】

上記の燃料損傷防止対策により安定状態を維持できる。

また,可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン) で使用した使用済燃料プールへの注水を継続しつつ,弁閉止による漏えい箇所 の隔離,残留熱除去系又は燃料プール浄化冷却系の復旧を実施し,復旧後は補 給水系統等によりスキマサージタンクへの補給を実施する。使用済燃料プール の保有水を残留熱除去系等により冷却することによって,安定状態後の状態維 持のための冷却が可能となる。

(添付資料 2.1.1 別紙 1 参照)

# 評価条件の不確かさの影響評価について(想定事故2)

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(1/4)

	項目	評価条件(初 機器条件) 評価条件	期, 事故及び の不確かさ 最確条件	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目パラメータに与える影響
衣其身作	」 使用 ア の 初 期 が	通常水位	通常水位 付近	通常水位を設定	評価条件では通常水位を設定して いるため、その変動を考慮した場 合、通常水位よりも低くなることが 考えられるが、注水操作は、燃料プ ール水の初期水位に応じた対応を とるものではなく、水位低下による 異常の認知を起点とするものであ るため、運転員等操作時間に与える 影響はない。 また、初期に地震誘因のスロッシン グが発生していた場合は、最大で 0.70m程度の水位の低下が発生し、 この場合、事象発生から約5時間以 降は原子炉建屋最上階の線量率が 上昇し、その場における長時間の作 業は困難となる。ただし、可搬型代 替注水大型ポンプによる代替燃料 プール注水系(注水ライン)を使用 した注水操作は屋外での操作であ るため、現場操作に必要な遮蔽は維 持される。このため、運転員等操作 時間に与える影響はない。	評価条件では通常水位を設定しているため、その変動を考慮した場合、通 常水位よりも低くなることが考えられるが、仮に初期水位を水位低警報レ ベル(通常水位から約0.14m低下した位置)とした場合であっても、サイ フォン現象により瞬時に燃料プール冷却浄化系配管下端部(通常水位から 約0.23m下)まで低下することを解析上想定しているため、評価項目とな るパラメータに与える影響はない。 また、初期に地震誘因のスロッシングが発生していた場合は、最大で約0.70 m程度の水位の低下が発生し、使用済燃料プール水位が放射線の遮蔽が維持 される最低水位に到達するまでの時間は事象発生から約5時間後となり、 それ以降は原子炉建屋最上階の線量率が上昇し、その場における長時間の 作業は困難となる。ただし、可搬型代替注水大型ポンプによる代替燃料プ ール注水系(注水ライン)を使用した使用済燃料プールへの注水操作は屋 外での操作であるため、現場操作に必要な遮蔽は維持される。なお、本ス ロッシングの評価には余震の影響は考慮していないが、余震は本震よりも 小さな地震動となると考えられ、本震時のスロッシングによってプール水 位が約0.70m低下しているため、プール水温度の上昇による水位の上昇を 考慮しても余震による有意な水位低下はないと考えられる。

第 1 表 評価条件を
-------------

項目     評価条       項目     機器		評価条件(初 機器条件)( 評価条件	期, 事故及び の不確かさ 最確条件	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目パラメータに与える影響
	使用済燃 料プール の初期水 温	65°C	約 12℃~ 40℃ (実績値)	通常運転中の最大値として,保安 規定の設定値である 65℃を設定	最確条件では評価条件で設定して いる使用済燃料プールの初期水温 より低くなることが考えられ、さら に時間余裕が長くなることが考え られるが、注水操作は使用済燃料プ ール水の初期水温に応じた対応を とるものではなく、水位低下による 異常の認知を起点とするものであ るため、運転員等操作時間に与える 影響はない。	最確条件では評価条件で設定している使用済燃料プールの水温より低くな るため、沸騰開始時間が遅くなり、水位低下は緩和されることから、評価 項目となるパラメータに対する余裕が大きくなる。 なお、自然蒸発、使用済燃料プールの水温及び温度上昇の非一様性により、 評価で想定している沸騰による水位低下開始時間より早く水位の低下が始 まることも考えられる。しかし、自然蒸発による影響は沸騰による水位低 下と比べてわずかであり、気化熱により使用済燃料プール水は冷却される。 また、使用済燃料プールの水温の非一様性も沸騰開始後の気泡上昇を駆動 力とした対流により影響が小さくなることが考えられる。 仮に事象発生直後から沸騰による水位低下が開始すると想定した場合は、 使用済燃料プール水位が放射線の遮蔽が維持される最低水位に到達するま での時間は事象発生から約4.8時間後となり、それ以降は原子炉建屋最上 階の線量率が上昇し、その場における長時間の作業は困難となる。ただし、 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ライン)を 使用した使用済燃料プールへの注水操作は屋外での操作であるため、現場 操作に必要な遮蔽は維持される。
初期条件	燃 料 の 崩 壊熱	約 9. 1MW (原子炉 停止後 9 日)	9.1MW 以下	原子炉の運転停止後に取り出さ れた全炉心分の燃料とそれ以前 に取り出された燃料を合わせ て、使用済燃料プールの貯蔵ラ ックの容量の最大数となるよう に保管した状態を設定 炉心燃料の冷却期間については 過去の実績より取出期間が最も 短い9日を想定 崩壊熱は、ORIGEN2を用いて評価	最確条件では評価条件で設定して いる燃料の崩壊熱より小さくなる ため,使用済燃料プールの水温上昇 及び水位低下速度は緩やかになり, 時間余裕が長くなることが考えら れるが,注水操作は燃料の崩壊熱の 状態に応じた対応をとるものでは なく,水位低下による異常の認知を 起点とするものであるため,運転員 等操作時間に与える影響はない。	最確条件では評価条件で設定している燃料の崩壊熱より低くなるため,評価項目となるパラメータに対する余裕が大きくなる。
	プールゲ ートの状 態	プールゲー ト閉鎖 (原子炉ウウ マル及び マイヤ 安貯 水 分離 器 の の 表 の の 、 の で が 、 の 、 の 、 の で 、 の で 、 、 の 、 の 、 で 、 の 、 の	プールゲー ト開放 (原子炉ウ ェル及びド ライヤ気水 分離器貯蔵 プールの保 有水量を考 慮)	全炉心燃料取出直後であるため, プールゲートは開放されている ことが想定されるが,保守的に原 子炉ウェル及びドライヤ気水分 離器貯蔵プールの保有水量を考 慮しない状態を想定	最確条件では保有水量はプールゲー ト閉鎖時と比べ約1.6倍となり,使 用済燃料プールの水温上昇及び水位 低下速度は緩やかになり,時間余裕 が長くなることが考えられるが,注 水操作はこれらの状態に応じた対応 をとるものではなく,水位低下によ る異常の認知を起点とするものであ るため,運転員等操作時間に与える 影響はない。	最確条件では保有水量はプールゲート閉鎖時と比べ約 1.6 倍となり,使用 済燃料プールの水温上昇及び水位低下速度は緩やかになることから,評価 項目となるパラメータに対する余裕は大きくなる。

第 1	1 表	評価条件を最確条件	とした場合のi	運転員の操作時間及	び評価項目となる	るパラメー	タに与える影響(3/4)
-----	-----	-----------	---------	-----------	----------	-------	--------------

		評価条件(初	期,事故及び			
	項目	機器条件)(	の不確かさ	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目パラメータに与える影響
<u> </u>		評価条件	最確条件			
初期条件	外 部 水 源 の容量	約 9, 300m ³	9,300m ³ 以上 (淡水貯水 池+代替淡 水貯槽)	淡水貯水池及び代替淡水貯槽の 管理下限値を設定	管理値下限の容量として事象発生か ら7日間後までに必要な容量を備え ており、水源は枯渇しないことから 運転員等操作時間に与える影響はな い。	_
	燃 料 の 容 量	1,010kL	1,010kL 以上 (軽油貯蔵 タンク+可 搬型設備用 軽 油 タ ン ク)	軽油貯蔵タンク及び可搬型設備 用軽油タンクの管理下限値を設 定	管理値下限の容量として事象発生か ら7日間後までに必要な容量を備え ており,燃料は枯渇しないことから 運転員等操作時間に与える影響はな い。	_
	破 断 ・ 状態の 想 定	使用済燃料 プールに入 る配管の破 断 真空破壊弁 の閉固着	事故ごとに 異なる	残留熱除去系に比べて耐震性の 低い燃料プール冷却浄化系配管 の破断,及び真空破壊弁の閉固 着を想定	注水操作は,破断箇所及び漏えい量 を起点に開始する操作ではないこと から,運転員等操作時間に与える影 響はない。	破断箇所・状態の想定によっては漏えい量が変化するが,静的サイフォン ブレーカにより燃料プール冷却浄化系配管下端位置(通常水位から約0.23m 下)で漏えいが停止することから,評価項目となるパラメータに与える影響はない。
故条件	サイフま フォに フォに 用 プ ーの低下	事 象発生 と	事	静的サイフォンブレーカによ り、サイフォン現象による流出 が停止するため、使用済燃料プ ール水位は燃料プール浄化冷却 系のプール内設置配管のうち最 も高所に設置されている水平配 管の配管下端部(通常水位から 約0.23m下)までの低下にとど まり、保守的にこの水位まで瞬 時に低下することを想定	最確条件では水位の低下に時間を要 するため、時間余裕が長くなるが, 注水操作は使用済燃料プール水位の 状態に応じた対応をとるものではな く,水位低下による異常の認知を起 点とするものであることから,運転 員等操作時間に与える影響はない。	最確条件では水位の低下に時間を要するため、時間余裕が長くなり、評価 項目となるパラメータに対する余裕が大きくなる。

第 1	表	評価条件を最確条件。	:した場合	の運転員の操	作時間及び評価	亜項目とな	るパラメ	ータに与える	,影響(4/4)
-----	---	------------	-------	--------	---------	-------	------	--------	----------

項目		評価条件(初期,事故及び 機器条件)の不確かさ		評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目パラメータに与える影響		
		評価条件 最確条件						
事故条件	安全機能 の喪失に 対する仮 定	使用済燃料 プール注水 機能喪失	使用済燃料 プール注水 機能喪失	使用済燃料プール冷却機能及び 注水機能喪失として,残留熱除 去系,燃料プール冷却浄化系及 び補給水系の機能喪失を設定	評価条件と最確条件が同様であるこ とから,事象進展に影響はなく,運 転員等操作時間に与える影響はな い。	評価条件と最確条件が同様であることから,事象進展に影響はなく,評価 項目となるパラメータに与える影響はない。		
	外部電源	外部電源な し	事故ごとに 変化	外部電源の有無は事象進展に影響 しないことから,資源の観点で厳 しい外部電源なしを設定	外部電源がない場合と外部電源があ る場合では,事象進展は同様である ことから,運転員等操作時間に与え る影響はない。	外部電源がない場合と外部電源がある場合では,事象進展は同様であるが, 評価項目となるパラメータに与える影響はない。		
機器条件	代 ポ ポ ポ 型 ) ( に よ 済 ル ル で 、 に よ 済 ル ル で 、 、 に よ 済 ル の 、 に よ 済 ル の 、 に よ 済 ル の 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 、 に よ 済 ー ル 、 、 た 、 、 た 、 、 に よ 済 ー ル 、 、 、 た 、 、 、 、 、 、 、 、 、 、 、 、 、	50m³∕h	50m ³ /h 以上	燃料の崩壊熱による使用済燃料 プール水の蒸発量を上回り燃料 損傷防止が可能な流量として設 定	可搬型代替注水大型ポンプによる代 替燃料プール注水系(注水ライン) を使用した注水操作は,注水流量を 起点に開始する操作ではないことか ら,運転員等操作時間に与える影響 はない。	評価条件で設定している可搬型代替注水大型ポンプによる代替燃料プール 注水系(注水ライン)の注水流量は崩壊熱に相当する保有水の蒸発速度(約 15m ³ /h)より大きく,注水操作開始以降の流量であることから,評価項目 となるパラメータに与える影響はない。		

第 2 表	運転員等操作時間に与え	こる影響、	評価項目となる	ペラメータに	- 与える影響及	び操作時間余裕	(1/2)
-------	-------------	-------	---------	--------	----------	---------	-------

		評価条件	牛(操作条件)			評価項目となる			
項目		評価上の 操作開始 時間	評価条件設定 の考え方	操作の不確かさ要因	連転員等操作時 間に与える影響	パラメータに 与える影響	操作時間余裕	訓練実績等	
	可替型に替一系イ用用プの作搬注ポよ燃ル(ン)し済一注	事から8 発時間 後	可水に料系ン間使一射維水なて搬型型る一注の考済水のすに時定代ポ代ル水準慮燃位遮る到間替ン替注ラ備し料が蔽最達と注プ燃水イ期,プ放を低しし	【認知】 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水 ライン)を使用した使用済燃料プールへの注水操作の開始は事 象発生から8時間後としているが,それまでに外部電源喪失等 による使用済燃料プールの注水機能の喪失を認知できる時間は 十分にあり,認知遅れにより操作開始時間に与える影響はない。 【要員配置】 当該操作を行う重大事故等対応要員は,準備操作の実施期間中 に他の操作を担っていないことから,操作開始時間に与える影響はない。 【移動】 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水 ライン)で使用する可搬型代替注水大型ポンプ等は車両であり, 自走にて作業現場へ移動することを想定している。仮に地震等 の外部事象が起因事象の場合に,アクセスルートに被害があっ ても,ブルドーザー等にて必要なアクセスルートに被害があっ ても、ブルドーザー等にて必要なアクセスルートを復旧できる 体制としている。 【操作所要時間】 アクセスルートの復旧(がれき撤去)に25分,可搬型代替注水 大型ポンプ準備,代替淡水貯槽からのホース敷設等の準備操作 に移動時間を含め145分を想定している。評価上の操作開始時 間を8時間後と設定しているが,他の操作はないため、使用済 燃料プールの水位低下による異常を認知した時点での準備が可 能である。なお,その場合は実際の操作開始時間は早くなる場 合が考えられる。 【使作開始時間に与える影響はない。 【操作の確実さ】 重大事故等対応要員の現場操作は,操作の信頼性向上や要員の 安全のため2人1組で実施することとしており,誤操作は起こ りにくく,誤操作等が操作開始時間に影響を及ぼす可能性は非 常に低い。	評始生し操使ルの喪時にると間操く考然料ののを後く、他め、中に、「「「」」では「「」」では「「」」では「「」」では「「」」で、「」」では「」」で、「」」で、	評価 時間 かし、 に対 に対 に対 始 合 が よ この 場 作 開 が の 場 合 、 に 明 始 始 合 か 、 の 場 つ い 水 立 の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ の よ る く な な る る 。 。 、 こ の よ っ よ い こ の よ の よ っ し 、 、 こ の よ れ し 、 こ の よ れ し 、 こ ろ 、 、 、 、 る 、 る 、 る 、 る 、 る 、 。 、 、 、 、 、 、 、 、 、 、 、 、 、	当時間の人体です。 当時でのです。 当時でのです。 当時のです。 学校でので、 学校でので、 学校で、 学校で、 学校で、 学校で、 学校で、 学校で、 学校で、 学校	アトき搬大備等め11いル(に実り注プ敷も績分る図転可とクの撤型型ホは所分。一が25施,水準設含等。範し操能をセ復去代ポー移要想アトキ分可搬型ホ,は等めで想囲て作で確ス(及替ンス動時定クの撤以能型型ホ,訓約したれががあししセ復去内で代ポー移練110でる実るた。ーれ可水準設含をてス旧)にあ替ンス動実24い意運施こ。	

		評価条件(操作条件)				評価項目となる		
項目		<ul> <li>評価上の 操作開始</li> <li>時間</li> <li>評価条件設定</li> <li>の考え方</li> </ul>		操作の不確かさ要因	連転員等操作時間 に与える影響	パラメータに 与える影響	操作時間余裕	訓練実績等
操作条件	可替型へ補搬注ポの給代大プ料	事 象発生 から8時間 後	可水へはで解て成必あ枯う 搬大の,は析い立要り渇に 型型燃解なでるやな,し設 替ン補条が定作続業料い 注プ給件,しのにでがよ	可搬型代替注水大型ポンプへの補給開始時間は,事象発生から 約8時間程度あり,十分な時間余裕がある。				可水へはてしろでま機枯間間すて間ろに許意作能を 型型燃動分の減約以合わって間のに許意に能を ないすい、おいで、おいい、おいい、ない、ない、ない、 型型燃動分のは、おい、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、

## 第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(2/2)

7日間における水源の対応について

### (想定事故2)

1. 水源に関する評価

①淡水源(有効水量)

- •代替淡水貯槽:約4,300m³
- 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン

 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水 ライン)を使用した使用済燃料プールへの注水

事象発生8時間以降から,50m³/hで代替淡水貯槽を水源として, 可搬型代替注水大型ポンプによる代替燃料プール注水系(注水ラ イン)を使用した使用済燃料プールへの注水を実施する。

水位回復後は,蒸発量に応じた水量(最大約16m³/h)で使用済燃料プールへの注水を実施する。

3. 時間評価

使用済燃料プールへの注水によって,代替淡水貯槽の水量は減少 する。

この間の代替淡水貯槽の使用水量は合計約2,470m³である。

4. 水源評価結果

時間評価の結果から,7日間の対応において合計約2,470m³必要となるが,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水

### 添付 4.2.5-1

を保有することから必要水量を確保可能であり,安定して冷却を継 続することが可能である。 7日間における燃料の対応について

(想定事故2)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものと

して評価する。

時系列	合計	判定	
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転 台数)=約484.0kL		軽 油 貯 蔵	
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{※2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台 数)=約130.3kL	7日間の軽 油消費量 約755.5kL	タンクの 容量は約 800kL であ り,7日間	
常設代替高圧電源装置 2 台起動 ^{*3} (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×2 台(運転台 数)=約 141.2kL		対応可能	
可搬型代替注水大型ポンプ 1 台起動 (代替燃料プール冷却系 (可搬型)) 218L/h(燃料消費率)×168h (運転時間)×1 台 (運転台数) =約 36.6kL	7日間の軽 油消費量 約36.6kL	可 開 型 設 が よ タ ン は や に 、 7 日 間 、 、 7 日 間 、 、 7 日 間 、 、 、 、 、 、 、 、 、 、 、 、 、	

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台であ

るが,保守的にディーゼル発電機2台の起動を仮定した。

- ※2 事故収束に必要ではないが、保守的に起動を仮定した。
- ※3 緊急用 P / C の電源を,常設代替高圧電源装置2台で確保することを仮定した。

5 運転停止中の原子炉における重大事故に至るおそれがある事故

5.1 崩壊熱除去機能喪失(残留熱除去系の故障による停止時冷却機能喪失)

5.1.1 事故シーケンスグループの特徴,燃料損傷防止対策

(1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障に よる停止時冷却機能喪失)」において,燃料損傷防止対策の有効性に含まれ る事故シーケンスとしては,「1.2 評価対象の整理及び評価項目の設定」 に示すとおり,①「残留熱除去系の故障(RHR喪失)+崩壊熱除去・炉 心冷却失敗」,②「残留熱除去系の故障(RHRS喪失)+崩壊熱除去・炉

(2) 事故シーケンスグループの特徴及び燃料損傷防止対策の基本的考え方 事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障に よる停止時冷却機能喪失)」では,原子炉の運転停止中に残留熱除去系の故 障により,崩壊熱除去機能が喪失することを想定する。このため,燃料の 崩壊熱により原子炉冷却材が蒸発することから,緩和措置がとられない場 合には,原子炉水位の低下により燃料が露出し燃料損傷に至る。

本事故シーケンスグループは,崩壊熱除去機能を喪失したことによって 燃料損傷に至る事故シーケンスグループである。このため,運転停止中の 原子炉における燃料損傷防止対策の有効性評価としては,崩壊熱除去機能 を有する設備に期待することが考えられる。

したがって,本事故シーケンスグループでは,運転員が異常を認知して, 待機中残留熱除去系(低圧注水系)による原子炉注水を行うことによって 燃料損傷の防止を図る。また,残留熱除去系(原子炉停止時冷却系)の運 転による最終的な熱の逃がし場へ熱の輸送を行うことにより原子炉除熱を 行う。

(3) 燃料損傷防止対策

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障に よる停止時冷却機能喪失)」における機能喪失に対して,燃料が著しい損傷 に至ることなく,かつ,十分な冷却を可能とするため,待機中残留熱除去 系(低圧注水系)及び残留熱除去系(原子炉停止時冷却系)による原子炉 注水手段及び除熱手段を整備する。これらの対策の概略系統図を第 5.1-1 図に,手順の概要を第 5.1-2 図に示すとともに,重大事故等対策の概要を 以下に示す。また,重大事故等対策における設備と操作手順の関係を第 5.1-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は,初動対応要員7名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員3名,通報連絡等を行う災害対策要員2名である。必要な要員と 作業項目について第5.1-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し,必要な要員数を確認した結果,初動対応 要員7名で対処可能である。

a. 残留熱除去系(原子炉停止時冷却系)の停止確認

崩壊熱除去機能が喪失していることを,1時間毎の中央制御室の巡視により確認する。

残留熱除去系(原子炉停止時冷却系)の故障に伴う崩壊熱除去機能喪 失を判断するために必要な計装設備は,残留熱除去系熱交換器入口温度

5.1-2

b. 逃がし安全弁(自動減圧機能)による原子炉の低圧状態維持

崩壊熱除去機能喪失により原子炉水温が 100℃に到達すると,原子炉 圧力が上昇する。原子炉を低圧状態に維持するため,中央制御室からの 遠隔操作により逃がし安全弁(自動減圧機能)1弁を開操作する。

逃がし安全弁(自動減圧機能)による原子炉の低圧状態維持を確認す るために必要な計装設備は、原子炉圧力等である。

c. 待機中残留熱除去系(低圧注水系)による原子炉注水

崩壊熱除去機能喪失により原子炉冷却材が蒸発し原子炉水位が低下す るため、中央制御室からの遠隔操作により待機中残留熱除去系(低圧注 水系)運転による原子炉注水を開始し、原子炉水位を回復する。

残留熱除去系(低圧注水系)による原子炉注水を確認するために必要 な計装設備は,残留熱除去系系統流量等である。

d. 原子炉保護系母線の受電操作

常設代替高圧電源装置による非常用母線受電操作の完了後,非常用母線を介して原子炉保護系母線を受電する。

e. 残留熱除去系(原子炉停止時冷却系)による原子炉冷却

待機中残留熱除去系(低圧注水系)運転による原子炉水位回復後,中 央制御室及び現場にて残留熱除去系(原子炉停止時冷却系)へ切替を行 い,崩壊熱除去機能を回復する。

残留熱除去系(原子炉停止時冷却系)による崩壊熱除去機能回復を確

認するために必要な計装設備は,残留熱除去系熱交換器入口温度等である。

崩壊熱除去機能回復後,逃がし安全弁(自動減圧機能)を全閉とし, 原子炉低圧状態の維持を停止する。

f. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

- 5.1.2 燃料損傷防止対策の有効性評価
  - (1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象事象の整理及び評価項目の設定」に示すとおり、「残留 熱除去系の故障(RHR喪失)+崩壊熱除去・炉心冷却失敗」である。

本重要事故シーケンスは,運転停止中のいずれのプラント状態(POS) においても起こり得るため,崩壊熱,原子炉冷却材の保有水量及び注水手 段の多様性の観点から,「POS-A PCV/RPV開放及び原子炉ウェ ル満水への移行状態」を代表として,評価項目である燃料有効長頂部の冠 水,放射線の遮蔽が維持される水位の確保及び未臨界の確保を満足するこ とを確認する。また,他のプラント状態も考慮した想定においてもこれら の評価項目を満足することを確認する。

また,評価条件の不確かさの影響評価の範囲として,本重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する。

(添付資料 5.1.1, 5.1.2)

### 5.1-4

(2) 有効性評価の条件

本重要事故シーケンスに対する初期条件も含めた主要な評価条件を第 5.1-2 表に示す。また、主要な評価条件について、本重要事故シーケンス 特有の評価条件を以下に示す。

a. 初期条件

(a) 原子炉圧力容器の状態

原子炉圧力容器の未開放時について評価する。原子炉圧力容器の開 放時については,遮蔽維持水位到達までの時間余裕の観点で厳しくな る未開放時の評価に包絡される。

(b) 崩壞熱

原子炉停止後の崩壊熱は、ANSI/ANS-5.1-1979の 式に基づくものとし、また、崩壊熱を厳しく見積もるために、原子炉 停止1日後の崩壊熱を用いる。この時の崩壊熱は約18.8MWである。 なお、崩壊熱に相当する冷却材の蒸発量は約27m³/hである。

(添付資料 5.1.3)

(c) 原子炉初期水位及び原子炉初期水温

事象発生前の原子炉水位は通常運転水位とし、また、原子炉初期水 温は残留熱除去系(原子炉停止時冷却系)の設計温度である 52℃とす る。

(d) 原子炉初期圧力

原子炉の初期圧力は大気圧が維持されているものとする。また,解 析上,原子炉の水位低下量を厳しく見積もるために,逃がし安全弁(自 動減圧機能)の開操作によって原子炉圧力が大気圧に維持されている ものとする*。

- ※:実操作では待機中残留熱除去系(低圧注水系)の準備が完了した時点で 原子炉減圧を実施することとなり,待機中残留熱除去系(低圧注水系)の 注水特性に応じて大気圧より高い圧力で注水が開始されることとなる。こ のため,原子炉圧力が大気圧で維持されているとした評価は保守的な評価 となる。
- b. 事故条件
- (a) 起因事象

起因事象として,運転中の残留熱除去系の故障によって,崩壊熱除 去機能を喪失するものとする。

(b) 外部電源

外部電源は事象発生1時間後に喪失するものと仮定する。

外部電源喪失が発生すると原子炉保護系電源が喪失し,格納容器隔 離信号により格納容器隔離弁が閉となる。この状態ではインターロッ クにより残留熱除去系ポンプが起動不可となるため,崩壊熱除去機能 喪失を認知可能である。このため,事象発生1時間後(1時間毎の中 央制御室の巡視により事象を認知する時刻)までは,事象認知の観点 で厳しくなる外部電源がある場合を想定する。

事象発生1時間以降は,原子炉保護系電源の復旧等,運転員操作に 時間を要する外部電源がない場合を想定する。

(添付資料 5.1.6)
- c. 重大事故等対策に関連する機器条件
- (a) 残留熱除去系(低圧注水系)による原子炉注水流量
   残留熱除去系(低圧注水系)による原子炉注水流量は 1,605m³/h
   (0.14MPa[dif]において)とする。
- (b) 残留熱除去系(原子炉停止時冷却系)の伝熱容量 伝熱容量は、熱交換器1基当たり43MW(原子炉冷却材温度100℃、 海水温度32℃において)とする。
- d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 待機中残留熱除去系(低圧注水系)による原子炉注水は,残留熱除
   去系(原子炉停止時冷却系)故障の認知及び操作の時間を基に,更に
   時間余裕を考慮して,事象発生から2時間後に実施するものとする。
- (3) 有効性評価の結果

本重要事故シーケンスの事象進展を第5.1-2 図に,原子炉水位の推移を 第5.1-4 図に示す。

a. 事象進展

事象発生後,残留熱除去系の故障に伴い崩壊熱除去機能が喪失するこ とにより原子炉水温が上昇し,約1.1時間後に沸騰,蒸発することによ り原子炉水位は低下し始める。崩壊熱除去機能が喪失していることを,1 時間毎の中央制御室の巡視により確認し,事象発生から2時間後に待機 中残留熱除去系ポンプを起動し,待機中残留熱除去系(低圧注水系)に よる原子炉注水を行う。

原子炉水位回復から2時間15分後,残留熱除去系(原子炉停止時冷却 系)への切替,除熱を開始することによって,原子炉水温は低下する。

b. 評価項目等

原子炉水位は,第 5.1-4 図に示すとおり,燃料有効長頂部の約 4.3m 上まで低下するに留まり,燃料は冠水維持される。

原子炉圧力容器は未開放であり,第5.1-5 図に示すとおり,必要な遮蔽が維持できる水位(必要な遮蔽の目安とした 10mSv/h が維持される水位)*である燃料有効長頂部の約 1.7m 上まで低下することがないため, 放射線の遮蔽は維持される。また,全制御棒挿入状態が維持されるため, 未臨界は確保されている。

原子炉水位回復後,残留熱除去系(原子炉停止時冷却系)による除熱 を継続することで,長期的に安定状態を維持できる。

本評価では、「1.2.4.2 有効性を確認するための評価項目の設定」に 示す(1)から(3)の評価項目について、対策の有効性を確認した。

※:必要な遮蔽の目安は緊急作業時の被ばく限度(100mSv)と比べ、十分余裕のある値であり、かつ施設定期検査作業での原子炉建屋最上階における現場作業の実績値(約3.5mSv/h)を考慮した値(10mSv/h)とする。この線量率となる水位は、有効燃料長頂部の約1.7m上(通常水位から約3.6m下)の位置である。

(添付資料 5.1.4, 5.1.5)

5.1.3 評価条件の不確かさの影響評価

評価条件の不確かさの影響評価の範囲として、運転員等操作時間に与える

影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する ものとする。

本重要事故シーケンスは,原子炉の運転停止中に残留熱除去系の故障によ り,崩壊熱除去機能を喪失することが特徴である。また,不確かさの影響を 確認する運転員等操作は,待機中残留熱除去系(低圧注水系)による原子炉 注水操作とする。

(1) 評価条件の不確かさの影響評価

a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 5.1-2 表に示すとおりであり,それらの条件設定を設計値等,最確条件 とした場合の影響を評価する。また,評価条件の設定に当たっては,評 価項目となるパラメータに対する余裕が小さくなるような設定があるこ とから,その中で事象進展に有意な影響を与えると考えられる燃料の崩 壊熱,事象発生前の原子炉初期水温,原子炉初期水位,原子炉初期圧力 及び原子炉圧力容器の状態に関する影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料の崩壊熱は,評価条件の約 18.8MW に対して最確条件は 18MW 以下であり,本評価条件の不確かさとして,最確条件とした場合,評価条件で設定している燃料の崩壊熱より小さくなるため, 原子炉水温上昇及び原子炉水位低下速度は緩やかになるが,原子炉 への注水操作は崩壊熱に応じた対応をとるものではなく,崩壊熱除 去機能喪失による異常の認知を起点とするものであるため,運転員 等操作時間に与える影響はない。

初期条件の原子炉初期水温は、評価条件の 52℃に対して最確条件

5.1-9

は約 43℃~51℃であり、本評価条件の不確かさとして、最確条件と した場合、評価条件で設定している原子炉初期水温より低くなるた め、時間余裕が長くなることが考えられるが、原子炉への注水操作 は原子炉水温に応じた対応をとるものではなく、崩壊熱除去機能喪 失による異常の認知を起点とするものであるため、運転員等操作時 間に与える影響はない。

初期条件の原子炉初期水位は,評価条件の通常運転水位に対して 最確条件は通常運転水位以上であり,本評価条件の不確かさとして, 最確条件とした場合,評価条件で設定している原子炉初期水位より 高くなるため,燃料有効長頂部まで水位が低下する時間は長くなる が,原子炉への注水操作は原子炉水位に応じた対応ではなく,崩壊 熱除去機能喪失による異常の認知を起点とするものであるため,運 転員等操作時間に与える影響はない。

初期条件の原子炉初期圧力は,評価条件の大気圧に対して最確条件も大気圧であり,本評価条件の不確かさとして,最確条件とした場合,評価条件と同様であるため,事象進展に与える影響はなく,運転員等操作時間に与える影響はない。仮に,原子炉圧力が大気圧より高い場合は,沸騰開始時間が遅くなり,水位低下速度は緩やかになるが,原子炉への注水操作は原子炉初期圧力に応じた対応をとるものではなく,崩壊熱除去機能喪失による異常の認知を起点とするものであるため,運転員等操作時間に与える影響はない。

初期条件の原子炉圧力容器の状態は,評価条件の原子炉圧力容器 未開放に対して最確条件は事故事象毎であり,本評価条件の不確か さとして,最確条件とした場合,原子炉圧力容器未開放状態の場合 は評価条件と同様であるため,事象進展に与える影響はなく,運転

5.1-10

員等操作時間に与える影響はない。また,原子炉圧力容器開放状態 とした場合は原子炉減圧操作が不要となるが,事象進展に与える影響は小さく,運転員等操作時間に与える影響は小さい。

(b) 評価項目となるパラメータに与える影響

初期条件の燃料の崩壊熱は、評価条件の約 18.8MW に対して最確条 件は18MW以下であり、本評価条件の不確かさとして、最確条件とし た場合、評価条件で設定している燃料の崩壊熱より小さくなるため、 原子炉水温上昇及び原子炉水位低下速度は緩やかになることから, 評価項目となるパラメータの判断基準に対する余裕が大きくなる。 また、原子炉停止後の時間が短く、燃料の崩壊熱が大きい場合は燃 料有効長頂部が露出するまでの時間余裕が短くなる。原子炉スクラ ムによる原子炉停止から12時間後(POS-S 原子炉冷温停止へ の移行状態)の燃料の崩壊熱によって燃料有効長頂部が露出するま での時間余裕を評価すると、必要な遮蔽が維持できる水位(必要な 遮蔽の目安とした10mSv/hが維持できる水位)である燃料有効長頂 部の約1.7m上の高さに到達するまでの時間は約3.8時間,燃料有効 長頂部までの時間は約5.3時間となり,評価条件である原子炉停止1 日後の評価より時間余裕は短くなる。ただし、必要な放射線の遮蔽 は維持され、注水操作に対して十分な時間が確保されているため、 評価項目となるパラメータに与える影響は小さい。

初期条件の原子炉初期水温は,評価条件の 52℃に対して最確条件 は約 43℃~51℃であり,本評価条件の不確かさとして,最確条件と した場合,評価条件で設定している原子炉初期水温より低くなるこ とから,原子炉水位が燃料有効長頂部まで低下するまでの時間余裕 は長くなり,評価項目となるパラメータの判断基準に対する余裕は 大きくなる。

初期条件の原子炉初期水位は,評価条件の通常運転水位に対して 最確条件は通常運転水位以上であり,本評価条件の不確かさとして 最確条件とした場合,評価条件で設定している原子炉初期水位より 高くなるため,原子炉水位が燃料有効長頂部まで低下するまでの時 間は長くなることから,評価項目となるパラメータに対する余裕が 大きくなる。

初期条件の原子炉初期圧力は,評価条件の大気圧に対して最確条件も大気圧であり,本評価条件の不確かさとして,最確条件とした場合,評価条件と同様であることから,事象進展に与える影響はなく,評価項目となるパラメータに与える影響はない。仮に,原子炉 圧力が大気圧より高い場合は,沸騰開始時間が遅くなり,原子炉水 位の低下速度は緩やかになることから,評価項目となるパラメータ の判断基準に対する余裕が大きくなる。

初期条件の原子炉圧力容器の状態は,評価条件の原子炉圧力容器未 開放に対して最確条件は事故事象毎であり,本評価条件の不確かさ として最確条件とした場合,原子炉圧力容器未開放状態の場合は評 価条件と同様であるため,事象進展に与える影響はなく,評価項目 となるパラメータに与える影響はない。原子炉圧力容器が開放の場 合は原子炉減圧操作が不要となるが,事象進展に与える影響は小さ く,評価項目となるパラメータに与える影響はない。

b. 操作条件

操作条件の不確かさとして、操作に係る不確かさを「認知」、「要員配

置」、「移動」、「操作所要時間」、「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し、これらの要因が運転員等操作時間に与える影響 を評価する。また、運転員等操作時間に与える影響が評価項目となるパ ラメータに与える影響を評価する。評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の待機中残留熱除去系(低圧注水系)の注水操作は,評 価上の操作開始時間として,事象発生から2時間を設定している。 運転員等操作時間に与える影響として,原子炉水位低下時に原子炉 注水の必要性を認知し操作を実施することは容易であり,評価では 事象発生から2時間後の注水操作開始を設定しているが,実際の注 水操作開始時間は早くなる場合が考えられ,原子炉水位の回復が早 くなる。

(b) 評価項目となるパラメータに与える影響

操作条件の待機中残留熱除去系(低圧注水系)の注水操作は,運 転員等操作時間に与える影響として,注水開始が早くなる場合は原 子炉水位の低下が抑制され,評価項目となるパラメータの判断基準 に対する余裕が大きくなる。なお,残留熱除去系(原子炉停止時冷 却系)の機能喪失時には,警報発生により崩壊熱除去機能が喪失し ていることを確認し,速やかに注水操作を開始できるため,評価項 目となるパラメータの判断基準に対する余裕が大きくなるが,本評 価ではこれに期待しないこととする。

(添付資料 5.1.6)

(2) 操作時間余裕の把握

操作遅れによる影響を把握する観点から,評価項目となるパラメータに 対して,対策の有効性が確認できる範囲内での操作時間余裕を確認し,そ の結果を以下に示す。

操作条件の待機中残留熱除去系(低圧注水系)の注水操作については, 通常運転水位から放射線の遮蔽が維持される最低水位に到達するまでの時間は約4.5時間,燃料有効長頂部まで原子炉水位が低下するまでの時間は 約6.3時間であり,これに対して,事故を検知して注水を開始するまでの 時間は2時間であることから,準備時間が確保できるため,時間余裕があ る。

(添付資料 5.1.6)

(3) まとめ

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与え る影響,評価項目となるパラメータに与える影響及び操作時間余裕を確認 した。その結果,評価条件等の不確かさを考慮した場合においても,評価 項目となるパラメータに与える影響は小さい。

この他,評価項目となるパラメータに対して,対策の有効性が確認できる範囲内において,操作時間には時間余裕がある。

- 5.1.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障に よる停止時冷却機能喪失)」において,重大事故等対策時に必要な初動対応 要員は,「5.1.3(3) 燃料損傷防止対策」に示すとおり7名である。「6.2

5.1-14

重大事故等対策時に必要な要員の評価結果」で示す運転員及び災害対策要 員の37名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障に よる停止時冷却機能喪失)」において,水源,燃料及び電源の資源は,「6.1(2) 資源の評価条件」の条件にて評価をしている。その結果を以下に示す。

a. 水源

待機中残留熱除去系(低圧注水系)による原子炉注水については,必要な注水量が少なく,また,サプレッション・チェンバのプール水を水源とすることから,水源が枯渇することはないため,7日間の対応が可能である。

b. 燃料

非常用ディーゼル発電機による電源供給については,事象発生直後からの運転を想定すると、7日間の運転継続に約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機による電源供給については、事象発生直後からの運転を想定すると、7日間の運転継続に約130.3kLの軽油が必要となる。軽油貯蔵タンクに約800kLの軽油を保有していることから、非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電機による電源供給について、7日間の継続が可能である。

(添付資料 5.1.7)

c. 電源

重大事故等対策時に必要な負荷のうち,非常用ディーゼル発電機等か らの電源供給を考慮する負荷については,非常用ディーゼル発電機等の 容量内に収まることから、電源供給が可能である。

5.1.5 結論

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障によ る停止時冷却機能喪失)」では,原子炉の運転停止中に残留熱除去系の故障に より,崩壊熱除去機能を喪失することが特徴である。事故シーケンスグルー プ「崩壊熱除去機能喪失(残留熱除去系の故障による停止時冷却機能喪失)」 に対する燃料損傷防止対策としては,待機中残留熱除去系による原子炉注水 手段及び除熱手段を整備している。

事故シーケンスグループ「崩壊熱除去機能喪失(残留熱除去系の故障によ る停止時冷却機能喪失)」の重要事故シーケンス「残留熱除去系の故障(RH R喪失)+崩壊熱除去・炉心冷却失敗」について有効性評価を行った。

上記の場合においても,待機中残留熱除去系による原子炉注水及び除熱を 実施することにより,燃料損傷することはない。

その結果,燃料有効長頂部の冠水,放射線遮蔽の維持及び未臨界の確保が できることから,評価項目を満足している。また,安定状態を維持できる。

評価条件の不確かさについて確認した結果,運転員等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さい。また,対策の有効性が確認できる範囲内において,操作時間余裕について確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び対策本部要員にて確保可能 である。また,必要な水源,燃料及び電源を供給可能である。

以上のことから,事故シーケンスグループ「崩壊熱除去機能喪失(残留熱 除去系の故障による停止時冷却機能喪失)」において,残留熱除去系による原 子炉注水及び除熱等の燃料損傷防止対策は,選定した重要事故シーケンスに

5.1-16

対して有効であることが確認でき,事故シーケンスグループ「崩壊熱除去機 能喪失(残留熱除去系の故障による停止時冷却機能喪失)」に対して有効であ る。

七日、ノケーマレーマンファクラス	工版	重大事故等対処設備				
操作及 OT推認	于順	常設設備	可搬型設備	計装設備		
残留熱除去系(原子炉停止時冷却	・崩壊熱除去機能が喪失していることを,1時間毎の中央制御	-	-	【残留熱除去系系統流量】*1		
系)の停止確認	室の巡視により確認する。			【残留熱除去系ポンプ吐出圧力】**1		
				【残留熱除去系熱交換器入口温度】*2		
				【残留熱除去系熱交換器出口温度】 ^{※3}		
				【残留熱除去系海水系系統流量】**4		
逃がし安全弁(自動減圧機能)に	・残留熱除去系(原子炉停止時冷却系)の運転停止により原子	逃がし安全弁(自動減圧	_	原子炉圧力		
よる原子炉の低圧状態維持	炉水温が 100℃に到達すると,原子炉圧力が上昇する。原子	機能)		原子炉圧力 (SA)		
	炉圧力を低圧状態に維持するため、中央制御室からの遠隔操	所内常設直流電源設備				
	作により逃がし安全弁(自動減圧機能)1 弁を開操作する。					
待機中残留熱除去系(低圧注水系)	・崩壊熱除去機能喪失により原子炉冷却材が蒸発し原子炉水位	【残留熱除去系(低圧注	-	原子炉水位 (広帯域, 燃料域)		
による原子炉注水	が低下するため、中央制御室からの遠隔操作により待機して	水系)】		原子炉水位(SA 広帯域, SA 燃料域)		
	いた残留熱除去系(低圧注水系)による原子炉注水を開始し,	【非常用ディーゼル発電		【残留熱除去系系統流量】		
	原子炉水位を回復する。	機】				
		軽油貯蔵タンク				
原子炉保護系母線の受電操作	・常設代替高圧電源装置による非常用母線受電操作の完了後,	常設代替高圧電源装置	_	_		
	非常用母線を介して原子炉保護系母線を受電する。	軽油貯蔵タンク				
残留熱除去系(原子炉停止時冷却	・残留熱除去系(低圧注水系)運転による原子炉水位回復後、	【残留熱除去系(原子炉	_	原子炉水位 (広帯域, 燃料域)		
系)運転による原子炉冷却	中央制御室及び現場にて残留熱除去系(原子炉停止時冷却	停止時冷却系)】		原子炉水位(SA 広帯域, SA 燃料域)		
	系)へ切替を行い,崩壊熱除去機能を回復する。	【非常用ディーゼル発電		【残留熱除去系系統流量】		
	・崩壊熱除去機能回復後、逃がし安全弁(自動減圧機能)を全	機】		【残留熱除去系熱交換器入口温度】		
	閉とし、原子炉低圧状態の維持を停止する。	軽油貯蔵タンク		【残留熱除去系熱交換器出口温度】		
				【残留熱除去系海水系系統流量】		
使用済燃料プールの冷却操作	・対応可能な要員にて使用済燃料プールの冷却操作を実施す	-	-	-		
	る。					

# 第5.1-1表 崩壊熱除去機能喪失における重大事故等対策について

※1:残留熱除去系ポンプの運転失敗時に当該計装設備で崩壊熱除去機能喪失を認知

※2:残留熱除去系ポンプの運転継続成功かつ熱交換器バイパス弁の誤開時に当該計装設備で崩壊熱除去機能喪失を認知

※3:残留熱除去系ポンプの運転継続成功かつ熱交換器入口弁の誤閉時に当該計装設備で崩壊熱除去機能喪失を認知

※4:残留熱除去系海水ポンプの運転失敗時に当該計装設備で崩壊熱除去機能喪失を認知

【】:重大事故等対処設備(設計基準拡張):有効性評価上考慮しない操作

5.1-18

第5.1-2表 主要評価条件(崩壊熱除去機能喪失)(1/2)

	項目	主要評価条件	条件設定の考え方				
初	原子炉圧力容器の状態	原子炉圧力容器未開放	燃料の崩壊熱及び保有水量の観点から設定				
	崩壊熱	約18.8MW (9×9燃料(A型),原子炉停止1日後 ^{※1} )	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい設定と なるため,崩壊熱が大きくなる燃焼度の高い条件として,1サイクルの運転期間(13 ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に対応する燃焼度を設定				
- ^朔 条   件	原子炉初期水位	通常運転水位(セパレータスカート下端 から+126cm)	運転停止1日後の水位から保守性を持たせた値				
	原子炉初期水温	52°C	残留熱除去系(原子炉停止時冷却系)の設計値及び運転停止1日後の原子炉水温 実績値(43℃~51℃)を踏まえて設定				
	原子炉初期圧力	大気圧	原子炉の運転停止1日後の実績を設定				
	起因事象	残留熱除去系機能喪失	運転中の残留熱除去系の故障を想定				
事故条件	外部電源	事象認知まで:外部電源あり 事象認知後 :外部電源なし	外部電源喪失が発生すると原子炉保護系電源が喪失し,格納容器隔離信号により 格納容器隔離弁が閉となる。この状態ではインターロックにより残留熱除去系ポ ンプが起動不可となるため,崩壊熱除去機能喪失を認知可能である。このため, 事象発生1時間後(1時間毎の中央制御室の巡視により事象を認知する時刻)まで は,事象認知の観点で厳しくなる外部電源がある場合を想定する。事象発生1時間 以降は,原子炉保護系電源の復旧等,運転員操作に時間を要する外部電源がない 場合を想定する				

※1:原子炉停止1日後とは全制御棒全挿入からの時間を示している。通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機解列以前から徐々に低下させるが、崩壊熱評価はスクラ ムのような瞬時に出力を低下させる保守的な計算条件となっている。

	項目	主要評価条件	条件設定の考え方	
関連する機器条件	残留熱除去系(低圧注水系)に よる原子炉注水流量	1,605m³∕h	残留熱除去系(低圧注水系)の設計値を設定	
	残留熱除去系(原子炉停止時冷 却系)による原子炉除熱量	熱交換器1台当たり43MW(原子炉 冷却材温度100℃,海水温度32℃ において)	残留熱除去系の設計値を設定	
関連する操作条件重大事故等対策に	残留熱除去系(低圧注水系)に よる原子炉注水	事象発生から2時間後	事象発生の認知及び操作の時間を基に、更に時間余裕を考慮して設定	

# 第5.1-2表 主要評価条件(崩壊熱除去機能喪失)(2/2)



*開操作に当たって格納容器隔離信号のリセットが必要な弁

第5.1-1図 崩壊熱除去機能喪失時の重大事故等対策の概略系統図(1/2) (原子炉減圧及び残留熱除去系(低圧注水系))

5.1 - 21



*開操作に当たって格納容器隔離信号のリセットが必要な弁

第5.1-1図 崩壊熱除去機能喪失時の重大事故等対策の概略系統図(2/2) (残留熱除去系(原子炉停止時冷却系))

5.1 - 22



	停止中の崩壊熱除去機能喪失													
										経過時間	(時間)			
							1		2	1	3	4	5	備考
	実施箇所・必要要員数				7	7 事象発生	,	_ ▼約1	1 時間 プラント状況判断			· · ·		
	<ol> <li>は他作業後</li> <li>移動してきた要員</li> </ol>								約11時間 百子恒水泪 100	行利法				
18.16-176 D	責任者	者         発電長         1人         中央監視 運転操作指揮		中央監視 運転操作指揮	48.640.4427			v	WE I THE PLAN AND A THE TOO	CPDE				
SRIP'A H	補佐	副発電長	1人	運転操作指揮補佐	5961 PU 27 1 361				又 2時間 税留熱除去系 (低には火水系) にとえ 個子相応 * 1996					
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡	-					√ 約2.1時間 原子炉;	水位回復,原子炉安定停止状	態確認		
	運転員 (中央制御室)	運転員 (現場)		重大事故等対応要員 (現場)										
					●原子炉水温上昇,残留熱除去系の系統流量低下等による崩壊熱除去機 能喪失の確認									
状况判断	1人	-		●外部電源喪失の確認										
10 LDU LDHUI	A				●非常用ディーゼル発電機等自動起動確認									
					●残留熱除去系(原子炉停止時冷却系)の停止確認					残留熱除去系 (A)				
逃がし安全弁(自動減圧機能) による原子炉の低圧状態維持	【1人】 A	-		-	●逃がし安全弁(自動減圧機能)の開放操作		1 分	r						
原子炉保護系母線の受雷操作	【1人】 ●原子炉保護系母結		-	●原子炉保護系母線の復旧準備操作				10 分						
	-	2人 B, C		-	●原子炉保護系母線の復旧操作				85 分					
待機中残留熱除去系(低圧注水 系)による原子炉注水	【1人】 A	-		-	●待機中残留熟除去系(低圧注水系)による原子炉注水				5分					
原子炉保護系母線の受電操作	【1人】 A	-		-	●原子炉保護系母線の復旧操作						40 分			
	【1人】 A	-		-	●待機中残留熟除去系(低圧注水系)の停止						2分			
	【1人】 A	-		-	●残留熟除去系(原子炉停止時冷却系)への系統構成	30 分								
残留熱除去系(原子炉停止時冷 却系)による原子炉冷却	-	【2人】 B, C		-	●残留熟除去系(原子炉停止時冷却系)への系統構成							45 分		残留熱除去系(B)
	[1人]	_		-	●残留熱除去系(原子炉停止時冷却系)の起動操作							6分		
	л				●残留熱除去系(原子炉停止時冷却系)運転による原子炉状態監視								適宜監視	市田次始約1プニョルの10分類通常
使用済燃料プールの冷却操作	-	-		-	●使用済燃料ブールの治却操作				が喪失した場合でも、プール 水温度が80℃に到達するまで には1日以上の時間余裕があ るため、本操作は対応可能な 要員にて実施する。					
必要要目對 合計	1人	2人		0人										

第5.1-3図 崩壊熱除去機能喪失時の作業と所要時間

Г



5.1-25





運転停止中の崩壊熱除去機能喪失及び全交流動力電源喪失における

基準水位到達までの時間余裕と必要な注水量の計算方法について

運転停止中の崩壊熱除去機能喪失及び全交流動力電源喪失により,基準水位到 達までの時間余裕と必要な注水量について,以下の式を用いて計算を行った。な お,事象を詳しく評価するため,発生する崩壊熱は全て原子炉水温の上昇及び蒸 発に寄与するものとし,原子炉圧力容器や水面からの放熱は考慮しない。

(1) 100℃に至るまでの時間

100℃に至るまでの時間は次の式で求める。

t₁ = (h₁₀₀ - h₅₂) × V_c ×  $\rho_{52}$ / (Q×3600) =約 1.1[h]

- t₁ :100℃に至るまでの時間[h]
- h₁₀₀:100℃の飽和水の比エンタルピ[kJ/kg]=419.10
- h₅₂ : 52℃の飽和水の比エンタルピ[kJ/kg]=217.70
- V c : 通常運転水位時の原子炉保有水の体積[m³]=381
- ρ₅₂ :52℃の水密度[kg/m³]=987
- Q :崩壊熱[kW]=1.88×10⁴
- (2) 基準水位(燃料有効長頂部)又は放射線の遮蔽が維持される目安の水位に 至るまでの時間 崩壊熱(蒸発)によって基準水位に至るまでの時間は次の式で求める。
   t = t₁+t₂=約6.3[h]
  - t₂= (h_s-h₁₀₀) × V_u× $\rho_{52}$ / (Q×3600) =約5.2[h]

## 添付 5.1.1-1

t :基準水位に至るまでの時間[h]
t₂:100℃到達から基準水位に至るまでの時間[h]
h_s:飽和蒸気の比エンタルピ[kJ/kg]=2675.57
V_u:基準水位までの水の体積[m³] =157

(3) 必要な注水量

崩壊熱によって喪失する冷却材を補うために必要な注水量は次の式で求める。

f = (Q × 3600)  $\checkmark$  ((h_s - h_f) ×  $\rho$ _f)

f : 必要な注水量[m³/h]

 $\rho_{f}$ :注水(飽和水)の密度[kg/m³]

h_f:注水(飽和水)の比エンタルピ[kJ/kg]

水源がサプレッション・プール(水温:32℃)の場合及び外部水源(水温 35℃)の飽和水の密度,飽和水の比エンタルピ及び必要注水量の評価結果は 次のとおりである。

水源	サプレッション・ チェンバ	外部水源
飽和水の密度(ρ _f )[kg/m ³ ]	995	994
飽和水の比エンタルピ(h _f )[kJ/kg]	134.11	146.64
必要注水流量(f)[m ³ /h]	約 26.7	約 26.9

重要事故シーケンスの選定結果を踏まえた有効性評価の条件設定

1. 「崩壊熱除去機能喪失」の重要事故シーケンスの選定

運転停止中原子炉における燃料損傷防止対策の有効性評価のうち, 「崩壊熱除去機能喪失」の重要事故シーケンスは,他のほとんどの 重要事故シーケンス等の選定と同様に,PRAから抽出された事故 シーケンスグループから,「実用発電用原子炉に係る運転停止中原子 炉における燃料損傷防止対策の有効性評価に関する審査ガイド」(以 下「審査ガイド」という。)に示された着眼点を考慮して選定してい る。

「崩壊熱除去機能喪失」の重要事故シーケンスは,審査ガイドに 示された着眼点に加えて,事故シーケンスグループ「全交流動力電 源喪失」における評価内容との差別化を図ることを考慮し,次の事 故シーケンスを選定した。

- ・残留熱除去系の故障(RHR喪失)+崩壊熱除去・炉心冷却失 敗
- 2. 重要事故シーケンスに対する燃料損傷防止対策の選定

有効性評価では,設計基準事故対処設備の機能喪失により燃料損 傷に至る重要事故シーケンスに対し,重大事故等対処設備を用いて 燃料損傷を防止することができることを確認する。この観点では, 全ての崩壊熱除去機能及び注水機能の喪失を想定して重大事故等対 処設備を用いて燃料損傷を防止することができることの有効性を評 価することも考えられるが,この場合,事故シーケンスグループ「全 交流動力電源喪失」において選定した重要事故シーケンスで有効性

添付 5.1.2-1

を評価する対策と同じ対策の有効性を評価することとなる。

このため、「崩壊熱除去機能喪失」の重要事故シーケンスに対する 有効性評価では、審査ガイドの主要解析条件及び対策例を参照し、 待機中の残留熱除去系によって崩壊熱除去機能を確保し、燃料損傷 を防止可能であることを確認している。

3. プラント状態の選定

重要事故シーケンスの選定プロセスでは、同じ事故シーケンスグ ループに含まれる事故シーケンスの中から有効性評価の対象とする 重要事故シーケンスを選定しているが、プラント状態(以下「PO S」という。)については選定しておらず、有効性評価の評価条件を 設定する際に選定している。「崩壊熱除去機能喪失」の事故シーケン スグループにおいては、代替の崩壊熱除去機能及び原子炉への注水 機能を用いて炉心損傷を防止することとなる。このため、POSを 選定する上では、事象発生から燃料損傷に至るまでの時間余裕が短 い、すなわち崩壊熱が高く、保有水量が少ないプラント状態を選定 することが適切であると考えられる。時間余裕が最も短いPOSは POS-Sであり、次にPOS-A、その次がPOS-Bという順 となる。保有水の観点では原子炉水位が通常運転水位付近の可能性 があるPOS-S、POS-A、POS-C及びPOS-Dが厳し

次に崩壊熱除去・注水機能を持つ設備の事故時の使用可否につい て考えると、POS-S及びPOS-Dの原子炉停止直後・起動準 備において、給水系を除く緩和設備が原子炉運転中と同様に待機状 態又は早期復旧により使用可能な状態である^{**}。そのため、緩和設備

添付 5.1.2-2

については P O S - S 及び P O S - D 以外の P O S - A ~ P O S - C が厳しい条件となる。

なお,原子炉圧力容器蓋閉時は原子炉圧力の上昇が考えられるが, 急激に原子炉圧力が上昇するような事象ではないこと,原子炉圧力 が上昇しても逃がし安全弁(自動減圧機能)で減圧できることから 低圧注水系が使用できるとしている。

このため、本評価では、POS-Sの次に崩壊熱が高く、原子炉 圧力容器内の保有水量が少ないことに加え、使用可能な緩和設備が 原子炉運転中と同等であるPOS-S、POS-S以外のPOSと して、POS-Aを選定している。なお、POS-Aは「PCV/ RPV開放への移行状態」と定義される状態であり、原子炉ウェル 水張り完了までの期間であるが、本評価では燃料損傷までの時間余 裕の観点から厳しくなる、原子炉圧力容器内の保有水量が少ない原 子炉圧力容器閉鎖状態を想定した。

停止時レベル1PRAにおけるPOSの分類及び定期検査工程の 概要を第1図に示す。また、POSの選定方法及び原子炉圧力容器の 閉鎖/開放状態を第1表に示す。

- ※:一例として後述する「添付資料5.1.5 6. RCICによる注水について」 に示すとおり、POS-S及びPOS-Dにおいては原子炉圧力容器が 閉鎖状態であるため、原子炉圧力が上昇した後は原子炉隔離時冷却系に よる注水も使用可能となる。
- 4. 他の燃料損傷防止対策を想定した場合の影響

本評価で確認している,待機中の残留熱除去系による崩壊熱除去機能確保とは別の燃料損傷防止対策として,低圧代替注水系(常設)

#### 添付 5.1.2-3

又は待機中のECCSによる原子炉注水が考えられるが,低圧代替 注水系(常設)については「全交流動力電源喪失」で選定される重 要事故シーケンスにおいて,本評価と同じPOS-Aでその有効性 を確認している。また,待機中の非常用炉心冷却系については,注 水流量が低圧代替注水系(常設)に比べて多いことから,低圧代替 注水系(常設)の有効性評価に包絡される。

POS		S A	B1	B2	B3	B4	B5	B6	C1	C2	D
定	【検日数	1 2 3	4 5 6 7	8 9 10 11	12 13 14 15 16 17 18 19 20 21 22 23 24 25	26 27 28 29 30 31 32	33 34 35 36 37 38 39 40 41 42 43 44 45	46 47 48 49 50 51 52 53 54 55 56 57 58	59 60 61 62 63 64 65 66	67 68 69 70 71 72 73 74 75	76 77 78 79 80 81 82
代	表水位	通常水位				原子炉ウェル湯	<b></b>			通常水位	1
	K D 忌便 D M 占於										
LF	<b>K</b> M 尽快										
除執系	RHR - A			<u> </u>	<u> </u>						
PARTICI N	R H R - B										
	C S T - A			-							
	C S T - B			, iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii					1		
	H P C S										
注水系	L P C S			<i>ùµ111111</i>							
	L P C I – A								:		
	LPCI-B			7							
	L P C I - C			ù <i>mm</i>							
Libridi M. Januar	RHRS-A			¥///////							
補機/行却糸	RHRS-B								1		
	DG - 2C										
電源系	DG - 2D			Ż	1		•				
	HPCS-DC			Ů.					1		1
	日数	1 2	5	3	14	8	12	13	8	9	7
	除熱系	×1 RHR−A RHR−B	RHR-A	RHR-B	RHR-B	RHR-A RHR-B	RHR-A	RHR-A RHR-B	RHR-A RHR-B	RHR-B	RHR-A RHR-B
使用可能 緩和設備	注水系	HPCS LPCS LPCI-A W2 LPCI-B CST-A CST-B	LPCI-A CST-A	LPCI-B CST-A	LPCI-B CST-B	HPCS LPCS LPCI-A LPCI-B CST-A CST-B	HPCS LPCS LFCT-A CST-A CST-B	1975 1975 1975 1971-A 1971-B 1971-B 1971-B 1971-A CST-B	HPCS IPCS LPCI-A LPCI-A LPCI-B LPCI-C CST-A CST-B	HPCS LPCS LPCI-B LPCI-C CST-A CST-B	HPCS LPCS LPCI-A LPCI-B LPCI-C CST-A CST-B
		X1 · DHD_A	PHP-B	1	1			C31-B	US1-B		

※1 : RHR-A, RHR-B ※2 : HPCS, LPCS, LPCI-A, LPCI-B, LPCI-C, CST-A, CST-B

第1図 停止時レベル1PRAにおけるPOSの分類及び施設定期検査工程

第1表	各プラン	ト状態における評	価項目に対する影響	(崩壊熱除去機能喪失及び全交流動力電源喪失)
-----	------	----------	-----------	------------------------

				運転停止中の評価項目					
	プラント状態(POS)	包絡事象	重大事故等対処設備等	燃料有効長頂部の冠水	原子炉圧力容器 蓋の開閉状態	放射線の遮蔽が維持できる水位の確保	未臨界の確保		
s	原子炉冷温停止への移行状態	「崩壊熱除去機能喪失(POS-A)」,及び 「全交流動力電源喪失(POS-A)」を想定し た有効性評価の条件に包絡	<ul> <li>・残留熱除去系-A.B.C</li> <li>・高圧炉心スプレイ系</li> <li>・低圧炉心スプレイ系</li> <li>・低圧炉込スプレイ系</li> <li>・低圧代替注水系(営設)</li> </ul>	POS-Aに比べて崩壊熱は高いため、燃料有効長頂部が露出する までの時間余裕(約5.3時間)は短いが、有効性評価で考慮してい る操作開始時間(約2時間)で燃料相係を防止できることから、P OS-Aを想定した有効性評価の条件に包絡される。	閉鎖	原子枦圧力容器が未開放であり、原子枦圧力容器 蓋、蒸気乾燥器及び気水分離器の遮蔽にも期待でき ることから、必要な遮蔽は確保される。 (添付資料5.1.5)	POS-Aに同じ。		
A	PCV/RPV開放への移行状態	_	<ul> <li>・残留熱除去系-A、B</li> <li>・高圧炉心スプレイ系</li> <li>・低圧炉心スプレイ系</li> <li>・低圧代替注水系(常設)</li> </ul>	有効性評価において評価項目を満足することを確認している。	閉鎖	有効性評価において評価項目を満足することを確認 している。 (原子炉圧力容器が未開放であり、原子炉圧力容器 蓋、蒸気乾燥器及び気水分離器の遮蔽にも期待でき ることから、必要な遮蔽は確保される (活付資料5.15))	有効性評価において評価項目を満足 することを確認している。 制御棒引き抜きに関わる試験は「反 応度誤投入」に包絡。		
B1			<ul> <li>・ 残留熟除去系-A</li> <li>・ 低圧代替注木系(宮設)</li> <li>・ 低圧代替注木系(可搬型)</li> <li>・ 代替燃料ブール注水系(宮設)</li> <li>・ 代替燃料ブール注水系(可搬型)</li> </ul>	DOS-Aにレイア出版数ボバノ 皮女支鼻がない レムと 併料					
B2		「全交流動力電源喪失(POS-A)」及び 「使用済燃料ブール 想定事故1」を想定した有 効性評価の条件に包絡	・残留熟除去系-B     ・低圧代替注水系(宮設)     ・低圧代替注水系(宮設)     ・低任代替注水系(可酸型)     ・代替燃料ブール注水系(宮設)     ・代替燃料ブール注水系(宮酸型)	105 Aにして、実際不加通少にとかう、減料、加加少にとかう、減料 有効長預部が離出するまでの余裕時間は長くなる。 崩壊熟除去機能喪失の発生により残留熱除去系の喪失となるが、低 圧代替注水系(常設)及び低圧代替注水系(可能型)による原子炉 への注水に加え、ブールゲート開放時は代替燃料ブール注水系(常 設)及び代替燃料ブール注水系(可搬型)による使用済燃料ブール		原子炉ウェル満木時は保有水量が多いため, 達蔵が 維持される水位到達前に注水が可能である。 また、使用活燃料ブールにおける放射線の連破確保 については「使用済燃料ブール 想定事故1」に包 絡される。	POSーAに同じ。 燃料の取出・装荷に関わる作業は 「反応度調投入」に包絡。		
B3			<ul> <li>・ 残留熱除去系 - B</li> <li>・ 低圧代替注水系 (宮殻)</li> <li>・ 低圧代替注水系 (可搬型)</li> <li>・ 代替燃料ブール注水系 (宮殻)</li> <li>・ 代替燃料ブール注水系 (可搬型)</li> </ul>	への注水により,燃料有効長頂部の冠水は維持できる。 					
B4	原子炉ウェル満水状態	「崩壊熱除去機能喪失(POS-A)」, 「全交流動力電源喪失(POS-A)」,及び 「使用済燃料ブール 想定事故1」を想定した有 効性評価の条件に包絡	- 理留製絵去 <u>スーム B</u> - 海田町心スプレイ系 - 低田仁性皆注水 <u>系</u> (常設) - 低田仁性皆注水 <u>系</u> (常設) - 代替燃料ブール注水 <u>系</u> (可能型) - 代替燃料ブール注水 <u>系</u> (可能型)	POS-Aに比べて前機熱が低く、保有水量が多いことから、燃料 有効長質額が離出するまでの時間条約は長くなるため、POS-A を想定した有効性評価に包絡される。 また、高圧FOAのエジレイ系等による原子が注水に加え、ブールゲー ト開放時は代替燃料ブール注水系(常設)及び代替燃料ブール注水 系(可機型)による使用済燃料ブールへの注水により、燃料有効長 頂部の冠水は維持できる。	開放				
В5		「全交流動力電源喪失(POS-A)」,及び 「使用済燃料ブール 想定事故1」を想定した有 効性評価の条件に包絡	- 理留報絵去系 - A - 高圧可心スプレイ系 - 低圧代替法太系 (富設) - 低圧代替法太系 (富設) - 代目常読社ズ系 (常意) - 代替燃料プール注水系 (可能型)	POS-Aに比べて前機熱が低く、保有水量が多いことから、燃料 有効長質額が離出するまでの時間条約は長くなる。 前機熟除去機能喪失の発生により残留熱除主系の喪失となるが、 古炉なスプレイ系等よる原子炉への注水に加え、プールゲート開放 時は代替燃料ブール注水系(常設)友び代替燃料ブール注水系(可 撮空)による使用溶燃料ブールへの注水により、燃料有効長頂部の 遅木は維持できる。					
B6		「崩壊熟除去機能喪失(POS-A)」, 「全交流動力電源喪失(POS-A)」,及び 「使用済燃料ブール 想定事故1」を想定した有 効性評価の条件に包絡	- 残留熟絵去系-A, B, C - 高田垣のスプレイ系 - ・ 低田代参注水系(富遼) - ・ 低田代参注水系(富遼) - ・ 低田代参注水系(高慶型) - 代替燃料ブール注水系(両慶型) - (代替燃料ブール注水系(両慶型)	POS-Aに比べて時機整が低く、保有水量が多いことから、燃料 有効長軍額が離出するまでの時間条裕は長くなるため、POS-A を想定した有効性評価に包絡される。。 また、高圧炉ルマアレイ系等による原子炉注水に加え、プールゲー ト開放時は代替燃料プール注水系(常設)及び代替燃料プール注水 系(可機型)によら使用清燃料プールへの注水により、燃料有効長 圓額の遅れは維持できる。					
C1	PCV/RPV閉鎖への移行北能	「崩壊熟除去機能喪失(POS-A)」,及び 「全交流動力電源喪失(POS-A)」を想定し た有効性評価の条件に包絡	・飛留熱除去系ーA、B、C           ・商田炉心スプレイ系           ・低田行も次プレイ系           ・低田代替注水系(宮設)           ・低田代替注水系(可搬型)	OS-Aに比べて崩壊熱が低く,燃料有効長頂部が適出するまで 時間余裕は長くなるため, POS-Aを想定した有効性評価に包 される。					
C2	,	「全交流動力電源喪失(POS-A)」を想定し た有効性評価の条件に包絡	<ul> <li>・ 戒留熟除去系一B、C</li> <li>・ 高正炉心スプレイ系</li> <li>・ 低圧炉心スプレイ系</li> <li>・ 低圧庁へなプレイ系</li> <li>・ 低圧代替注水系(常設)</li> <li>・ 低圧代替注水系(可搬型)</li> </ul>	崩壊熱除去機能喪失の発生により残留熱除去系の喪失となるが、P OS-Aに比べて崩壊熱が低く、燃料有効長百部が竃出するまでの 時間条裕は長くなるため、POS-Aを想定した「全交流動力電源 喪失」の有効性評価に包給される。		原子炉圧力容器が未開放であり,原子炉圧力容器 蓋.蒸気乾燥器及び気水分解器の運蔵にも期待でき ることから,必要な遮蔽は確保される。 (添付資料5.1.5)	POS-Aに同じ。		
D	起動準備状態	「崩壊熱除去機能喪失(POS-A)」,及び, 「全交流動力電源喪失(POS-A)」を想定し た有効性評価の条件に包絡	<ul> <li>・ 戒留熟除去系 - A、 B、 C</li> <li>・ 高圧炉心スプレイ系</li> <li>・ 低圧炉心スプレイ系</li> <li>・ 低圧化替注水系 (宮政)</li> <li>・ 低圧代替注水系 (可搬型)</li> </ul>	POSーAに比べて崩壊熱が低く、燃料有効長頂部が費出するまで の時間余裕は長くなるため、POS-Aを想定した有効性評価に包 給される。	閉鎖				

※重大事故等対処設備等のうち下線が引いてあるものは、津波襲来時にも使用可能な設備

崩壊熱除去機能喪失及び全交流動力電源喪失における

### 崩壊熱設定の考え方

1. 本評価における崩壊熱の設定

運転停止中の原子炉における燃料損傷防止対策の有効性評価のう ち,「崩壊熱除去機能喪失」及び「全交流動力電源喪失」の重要事故 シーケンスに対する有効性評価では,原子炉スクラムによる原子炉 停止から1日後の崩壊熱を用いて原子炉水温の上昇及び蒸発による 原子炉水位の低下を評価している。

一般に、定期検査期間が数十日であることを考慮すると、原子炉 停止から1日(24時間)後の崩壊熱を用いることは保守的な設定であ ると考えられるが、仮に原子炉停止からの時間がより短い時点での 崩壊熱を用いれば、より厳しい評価条件となる。

※:原子炉停止から1日(24時間)後とは全制御棒全挿入からの時間を示している。通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機解列以前から徐々に低下させるが、崩壊熱評価はスクラムのような瞬時に出力を低下させる保守的な計算条件となっている。具体的には制御棒の挿入開始及び発電機解列の実績は、全制御棒全挿入完了を基準とするとそれぞれ十数時間以前、2~3時間以前となっており、実際の崩壊熱は評価値より小さくなる。

2. より厳しい崩壊熱を設定した場合の時間余裕への影響

プラント停止時の期間を復水器真空破壊からとすると,通常,復 水器真空破壊のタイミングは通常のプラント停止操作における全制 御棒挿入完了から12時間程度経過(POS-S 原子炉冷温停止への移

添付 5.1.3-1

行状態)している。仮に,原子炉スクラムによる原子炉停止から12 時間後の崩壊熱によって,燃料有効長頂部まで原子炉水位が低下す るまでの時間余裕は約5.3時間であることから,時間余裕の観点では 約1時間短くなるが,本重要事故シーケンスにおける「崩壊熱除去機 能喪失」では事象発生から原子炉注水開始までの対応は2時間,「全 交流動力電源喪失」では25分であることから,十分対応可能な範囲 である。

また,必要な遮蔽の確保の観点においても,現場作業員の退避ま での時間余裕は原子炉停止から1日(24時間後)の崩壊熱の場合は約 4.5時間に対して,12時間後の場合は約3.8時間後と短くなるものの, 十分退避可能である。

(添付資料5.1.5)

このように、崩壊熱の設定によっては原子炉注水及び現場作業員 の退避の時間余裕に変動が生じるが、最確条件より高めの崩壊熱を 設定していること、及び原子炉注水までの時間余裕の評価では崩壊 熱の減衰を考慮していないこと等、様々な保守性を含めた評価とし ていることから、本重要事故シーケンスにおいて、原子炉注水が間 に合わず、燃料損傷に至る状況、及び作業員が過度な被ばくを受け る状況は想定し難いものと考える。 安定停止状態について(運転停止中 崩壊熱除去機能喪失)

運転停止中の崩壊熱除去機能喪失時の安定停止状態については以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備及び重大 事故等対処設備を用いた炉心冷却により,炉 心冠水が維持でき,また,冷却のための設備 がその後も機能維持できると判断され,かつ, 必要な要員の不足や資源の枯渇等のあらかじ め想定される事象悪化のおそれがない場合, 安定停止状態が確立されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

崩壊熱除去機能喪失により原子炉水温が上昇し,沸騰開始による 原子炉水位の低下が始まるが,待機していた残留熱除去系(低圧注 水系)による注水継続により原子炉水位は回復し,炉心の冷却が維 持される。

その後,残留熱除去系を原子炉停止時冷却系に切り替え,原子炉 除熱を開始することで冷温停止状態に移行し,原子炉安定停止状態 が確立される。

重大事故等対策時に必要な要員は確保可能であり,また,必要な 水源,燃料及び電源を供給可能である。

【安定停止状態の維持について】

上記の燃料損傷防止対策により安定停止状態を維持できる。

また,残留熱除去系の機能を維持し,除熱を行うことにより,安 定停止状態後の状態維持が可能である。 原子炉停止中 崩壊熱除去機能喪失及び全交流動力電源喪失時に

おける放射線の遮蔽維持について

運転停止中の「崩壊熱除去機能喪失」,及び「全交流動力電源喪失」に おける放射線の遮蔽維持について評価を行い,事故時の作業員の退避を 考慮すると,退避までの間,放射線の遮蔽維持に必要な水位(目安と考 える 10mSv/h^{*})が維持されることを確認したため,その結果を以下に 示す。

※:必要な遮へいの目安とする線量率は,緊急作業時の被ばく限度(100mSv)
 及び緊急作業時の被ばく限度を適用する作業区域(15mSv を超える区域)
 等の条件から十分余裕のある値であり,かつ定期検査作業での原子炉建屋
 最上階における現場作業の実績値(3.5mSv/h(東海第二発電所 平成 28
 年8月 蒸気乾燥器及び気水分離器取外し作業の例))を考慮して10mSv/
 hとした。

なお,事故対応に関わる操作は,原子炉建屋最上階のように現場の線 量率が大きく上昇する場所では実施しないため,作業員の現場退避を評 価の代表とした。

また,放射線の遮蔽を検討する際,原子炉圧力容器開放作業の流れ, 原子炉圧力容器等構造物,原子炉水位が重要となるため,それらを考慮 した評価とした。

1. 原子炉圧力容器開放作業の流れ

○原子炉圧力容器開放作業の流れ

①原子炉圧力容器開放作業の開始前,コンクリートハッチ取外し,原
 子炉格納容器蓋取外し(第1図中の1,2・3,4)

原子炉を停止後,残留熱除去系(原子炉停止時冷却系)で除熱可

## 添付 5.1.5-1

能な圧力に減圧されるまでは,原子炉は主蒸気系を介して,復水器 によって除熱される。残留熱除去系(原子炉停止時冷却系)による 除熱を開始した後,復水器真空破壊を経て,復水器による除熱を停 止する。

これらの原子炉の冷温停止状態に向けた操作と並行して、コンクリートハッチ及び原子炉格納容器蓋の取外し作業を実施する。

②原子炉圧力容器蓋取外し(第1図中の5)

原子炉が冷温停止状態になった後,原子炉の水位を徐々に上昇させ,原子炉圧力容器保温材及び原子炉圧力容器蓋を開放する(原子炉圧力容器開放時の水位はフランジ下 0.5m 程度)。

③蒸気乾燥器取外し(第1図中の6)

蒸気乾燥器をドライヤー気水分離器貯蔵プールへと移動する(蒸 気乾燥器は気中移動)。

④気水分離器取外し(第1図中の7)

気水分離器をドライヤー気水分離器貯蔵プールへと移動する(気 水分離器は水中移動)。

なお,原子炉起動に向けて実施する原子炉圧力容器閉鎖作業におい ては開放作業の逆の流れで実施される。この状況においては原子炉圧 力容器開放作業時に比べ,原子炉停止後の冷却時間が長く燃料の崩壊 熱及び線源強度が小さくなる。そのため,放射線の遮蔽維持における 影響は原子炉圧力容器開放作業時に包絡される。

(添付資料 5.1.2)

#### 添付 5.1.5-2

<参考>原子炉開放の流れ*



原子炉圧力容器の取外し作業に向けてフ ランジ部付近まで原子炉水位を上昇



第1図 原子炉圧力容器開放作業の流れ

※:http://www.tepco.co.jp/nu/f2-np/handouts/j140528a-j.pdf
 東海第二発電所では蒸気乾燥器の取外しが気中移動



評価点(燃料交換機床(後述するコンクリートハッチ取り 外し,原子炉格納容器蓋取り外し状態の現場操作を想定))

第2図 原子炉圧力容器等構造物の概要

3. 各状態における遮蔽維持について

原子炉圧力容器開放作業時の各状態における現場の放射線遮蔽につ いて以下に示す。

①-1 原子炉圧力容器開放作業開始前(第1図中の1)

原子炉運転中や原子炉停止直後等は図に示すようにコンクリートハ ッチ,原子炉格納容器蓋及び原子炉圧力容器蓋が閉鎖されており,ま た蒸気乾燥器,気水分離器等も炉内に存在するため,炉心燃料等の線

# 添付 5.1.5-4

源からの放射線の多くはこれらに遮られ,原子炉建屋上階での線量率 は十分小さくなる。そのため,原子炉圧力容器開放作業の開始前にお いて,原子炉水位低下に伴う放射線の遮蔽の評価は不要である。

 ※:一例として⁶⁰Coを線源とした時の 10cm の鉄の実効線量透過率は約
 8.2E-02, 155cmのコンクリートの実効線量透過率は約 4.1E-07 である。
 (参考:放射線施設のしゃへい計算実務マニュアル 2000 公益財団法人 原子力安全技術センター)

①-2 コンクリートハッチ取外し、原子炉格納容器蓋取外し(第1図中の2・3,4)

コンクリートハッチ,原子炉格納容器蓋の開放後は,これらの遮蔽 効果には期待できなくなるが,原子炉圧力容器蓋,蒸気乾燥器,気水 分離器の遮蔽効果に期待できる。さらに原子炉圧力容器蓋の開放作業 に向けて,原子炉の水位の上昇操作を実施するため,上昇した原子炉 水位の遮蔽効果にも期待できる。この状態で原子炉建屋最上階にて原 子炉圧力容器開放に向けた作業を実施していることも考えられるため, コンクリートハッチ及び原子炉格納容器蓋の遮蔽に期待しない場合の 現場線量率の評価が必要である。

②原子炉圧力容器蓋取外し(第1図中の5)

原子炉圧力容器蓋開放時はフランジ下 0.5m 程度まで水位を上昇さ せた後,開放作業を実施する。この際,水位上昇により炉心燃料や上 部格子盤からの放射線の影響は非常に小さくなる。また,保有水量が 多くなるため,沸騰開始までの時間は更に長くなる(約1.4時間程度)。

仮に原子炉圧力容器蓋を取外し中に全交流動力電源喪失事象等の事 故事象が発生した際を考えても,原子炉圧力容器蓋を完全に移動させ

#### 添付 5.1.5-5
てなければ、その遮蔽に期待できる。

また,取り外した後の状態にて全交流動力電源喪失の水位低下を仮 定した場合も,原子炉水位をフランジより更に上昇させている可能性 があること,炉心燃料及び上部格子板からの放射線影響は後述する原 子炉冷却材の流出の原子炉水位と線量率の関係(第7図)に包絡でき ることから,必要な遮蔽の目安とした 10mSv/h を超えることはない。

なお,蒸気乾燥器及び気水分離器からの放射線影響においても線源 強度が大きくないこと,水位低下により露出する蒸気乾燥器は通常作 業でも気中移動させる設備であることから,これらを考慮しても必要 な遮蔽は維持される。

以上より,原子炉水位低下に伴う放射線の遮蔽の評価は不要である (上記の①-2 での評価に包絡)。

③蒸気乾燥器取外し(第1図中の6)及び④気水分離器取外し(第1図中の7)

蒸気乾燥器の取り出しに合わせ,水位を上昇させていく状態であり, 崩壊熱除去機能喪失や全交流動力電源喪失事象が発生した場合におい ても,沸騰開始及び水位低下まで十分に時間余裕があるため,原子炉 水位低下に伴う放射線の遮蔽の評価は不要である。

4. 放射線の遮蔽維持に必要な水位

放射線の遮蔽維持に必要な水位(目安と考える 10mSv/h)は、3 章 での検討を踏まえ、「①-2 コンクリートハッチ取外し、原子炉格納容 器取外し(第1図中の2・3,4)」の状態を想定して評価を行った。

線量率の算出は、「添付資料 4.1.2「水遮蔽厚に対する貯蔵中の使用 済燃料からの線量率」の算出について」と同様にQAD-CGGP 2

Rコード(Ver1.04)を用いて計算し,評価に用いた条件は以下に示す ものを用いた。

評価点は燃料交換機床*とした。

- ※:原子炉停止中の崩壊熱除去機能喪失及び全交流動力電源喪失時の事故対応で原子炉建屋最上階等の現場作業は不要であるため、作業員の退避を想定して評価点を設定した。コンクリートハッチ取外し、原子炉格納容器蓋取外し作業時において作業員は天井クレーン操作室等にいることが考えられるため、より線源に近い燃料交換機床を代表としている。なお、停止作業中においては作業員が原子炉格納容器内(ドライウェル含む)に入って作業することも考えられるが、これらの作業は停止直後に実施しないこと、炉心燃料からの放射線は遮蔽物(原子炉圧力容器、シュラウド、生体遮蔽(原子炉遮蔽壁)等)により減衰すること、原子炉建屋最上階と同様に事故後に作業員が退避することから、作業員の退避に関する被ばく評価は本評価に包絡される。
- (1) 炉心燃料・炉内構造物の評価モデルと線源強度

放射線源として燃料,上部格子坂,気水分離器及び蒸気乾燥器を モデル化した。

a. 炉心燃料

計算条件を以下に示す。

○線源形状:燃料集合体の全てに燃料がある状態

○燃料有効長:3,708mm

○ガンマ線エネルギ:計算に使用するガンマ線は、エネルギ 5

群とする。

○線源材質:燃料及び水(密度_____g/cm³)

○線源強度:文献値^{*1}に記載のエネルギー当たりの線源強度を

基に、STEPⅢ 9×9燃料(A型)の体積当たりの線源強度を式①で算出した。

線源強度 $(\gamma/s/cm^{i}) = \frac{$ 文献に記載の線源強度 $(MeV/(W \cdot s)) \times 燃料集合体当たりの熱出力(W/体)$ 各群のエネルギ $(MeV) \times 燃料集合体体積(cm^{i}/\phi)$ ・・①

このときの線源条件は以下となる。なお、使用している文献 値は、燃料照射期間 10⁶時間(約 114 年)と、東海第二の実績 を包絡した条件で評価されており、東海第二に関する本評価 においても適用可能である。

- ·燃料照射期間:10°時間
- ・運転停止後の期間:停止12時間*2(原子炉未解放状態での 実績を考慮して設定した値)
- ・燃料集合体当たりの熱出力:4.31MW/体(STEPⅢ 9× 9燃料(A型))
- ・燃料集合体体積: 7.179E+04cm³ (STEPⅢ 9×9燃料(A型))
- ※ 1 : Blizard E. P. and Abbott L. S., ed., "REACTOR HANDBOOK. 2nd ed. Vol. III Part B, SHIELDING", INTERSCIENCE PUBLISHERS, New York, London, 1962"

※2:停止後の期間は全制御棒全挿入からの時間を示している。通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機 解列以前から徐々に低下させるが,線源強度評価は崩壊熱評価と 同様にスクラムのような瞬時に出力を低下させる保守的な計算 条件となっている。

○計算モデル:円柱線源

線量率計算モデルを第3図に示す。また,式①で算出した体 積当たりの線源強度を第2表に示す。



(寸法は公称値を示す)

単位:mm

×:評価点(燃料取替機床上)

第3図 燃料の線量率計算モデル

エネルギ	線源強度
(MeV)	$(\gamma / \mathrm{cm}^3 \cdot \mathrm{s})$
1. 0	9.6E+11
2.0	1.6E+11
3.0	4.6E+09
4. 0	7.2E+07
5.0	1.9E+07

第2表 燃料の線源強度

b. 上部格子坂

計算条件を以下に示す。

○線源形状:円柱線源としてモデル化

○線源の高さ:368.3mm

○ガンマ線エネルギ:計算に使用するガンマ線は、主要核種⁶⁰
 Coを想定して1.5MeVとする。

○線源材質:水と同等(密度0.958g/cm³^{*})

※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の

値を採用

○線源強度は,機器表面の実測値( Sv/h)より7.3E+09Bq
 /cm³と算出した。

線量計算モデルを第4図に示す。



(寸法は公称値を示す)

単位:mm

×:評価点(燃料取替機床上)

第4図 上部格子坂の線量率計算モデル

c. シュラウドヘッド

計算条件を以下に示す。

○線源形状:円柱線源としてモデル化

○線源の高さ:5162.2mm

○ガンマ線エネルギ:計算に使用するガンマ線は、主要核種
 ⁶⁰Coを想定して1.5MeVとする。

○線源材質:水と同等(密度0.958g/cm³^{*})

※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の

値を採用

○線源強度は,機器表面の実測値 (**□**Sv/h) より6.7E+05

Bq/cm³と算出した。

線量計算モデルを第5図に示す。



(寸法は公称値を示す)

単位:mm

×:評価点(燃料取替機床上)

第5図 シュラウドヘッドの線量率計算モデル

d. 蒸気乾燥器

計算条件を以下に示す。

○線源形状:円柱線源としてモデル化

○線源の高さ:5524.5 mm

○ガンマ線エネルギ:計算に使用するガンマ線は,主要核種 ⁶⁰Coを想定して1.5MeVとする。

○線源材質:水と同等(密度0.958g/cm^{3*})

※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の 値を採用

○線源強度は,機器表面の実測値(_____Sv/h)より2.7E+05 Bq/cm³と算出した。

線量計算モデルを第6図に示す。



(寸法は公称値を示す)

単位:mm

×:評価点(燃料取替機床上)

第6図 蒸気乾燥器の線量率計算モデル

(2) 遮蔽物の評価モデル

原子炉内の冷却材以外に放射線を遮蔽する構造物として,原子炉 圧力容器蓋,蒸気乾燥器,シュラウドヘッドをモデル化した。なお, 蒸気乾燥器及びシュラウドヘッドは構造が複雑であり,放射線の遮 蔽物を平均化したモデルとするストリーミング(放射線漏れ)の影 響により非保守的な評価となるため,線源を覆うような構造物のみ 遮蔽物として考慮した。

a. 原子炉圧力容器蓋

遮蔽物形状 :円柱線源としてモデル化
遮蔽物の高さ: (圧力容器蓋の最薄部厚さ)
線源材料 : 平板 (密度 g/cm ³ ) *
※: 圧力容器鋼板 の密度は、同等である で代表した
線量率計算モデル(遮蔽)を第3~6図に示す。

b. 蒸気乾燥器

遮蔽物形状 :円柱線源としてモデル化
遮蔽物の高さ: (フード部の最薄部厚さ)
線源材料 : 平板 (密度 g/cm ³ ) *
※:蒸気乾燥器の材質 の密度は、同等である で代表した
線量率計算モデル(遮蔽)を第3~5図に示す。

c. シュラウドヘッド

遮蔽物形状	: 円柱線源としてモデル化
遮蔽物の高さ	: m (シュラウドヘッドの厚さ(スワラによる
	遮蔽も考慮))
線源材質	: 平板(密度 g/cm ³ ) [*]

※:シュラウドヘッドの材質 の密度は、同等である で代 表した

線量率計算モデル(遮蔽)を第3、4図に示す。

(3)現場の線量率の評価結果

(1), (2)の条件を用いて評価した現場の線量率と原子炉水位の関係を第7図に示す。

グラフより必要な遮蔽を確保できる水位(目安と考える 10mSv/h*) は以下の仮定の基で「燃料有効長頂部の約 1.7m 上」とした。

※:必要な遮蔽の目安は緊急作業時の被ばく限度(100mSv)と比べ、十分余裕のある値であり、かつ施設定期検査作業での原子炉建屋最上階における現場作業の実績値(約3.5mSv/h)を考慮した値(10mSv/h)とする。





(4) 必要な遮蔽を確保できる水位到達までの時間余裕

崩壊熱除去喪失及び全交流動力電源喪失から放射線の遮蔽維持に 必要な水位到達までの時間を,「添付資料 5.1.1」の「原子炉圧力上 昇による原子炉冷却材蒸発の抑制効果を考慮しない簡易計算」を用 いて求めた。

計算は後述する「添付 5.1.6」の評価条件の不確かさを踏まえ,原 子炉停止後 12 時間後(POS-S 原子炉冷温停止への移行状態) と1日後(POS-A PCV/RPV開放及び原子炉ウェル満水 への移行状態)の2ケースを実施した。

算出条件及び算出結果を第1表に示す。

評価より,原子炉停止1日後の状態は崩壊熱除去機能喪失時の注 水までの時間(2時間),全交流動力電源喪失時の注水までの時間(25 分)に対して十分であることが分かった。

また,原子炉停止後 12 時間後の状態では,保守的な「添付資料 5.1.1」の簡易計算を用いた場合,現場の線量率が目安と考える 10mSv /hを約 2.9 時間後に超えることが分かった。

	評価条件		評価結果			
原子炉停止後 の時間(h)	原子炉初期 水温 (℃)	崩壞熱(MW)	必要な 遮蔽 を確保でき る水位到達 までの時間 余裕(h)	燃料有効長 頂部までの 時間余裕(h)	崩壊熱除去 機能喪失時 の注水まで の時間 (h)	全交流動力 電源喪失時 の注水まで の時間 (h)
12 時間(不確かさで確認する感度解析ケース)	100	約 22.4	約 3.8 時間	約 5.3 時間	2時間以内※1	25 分
24 時間 (有効性評価 で確認するべ ースケース)	52	約 18.8	約 4.5 時間	約6.3時間	2 時間	25 分

第1表 必要な遮蔽を確保できる水位到達までの時間余裕の算出条件と結果

※1:水位低下の発生が早まるため、運転員の事象認知が早まる。

5. 事故時の退避について

事故発生時の現場作業員の退避について確認した。事象発生時,作 業員は,発電長のページングによる退避指示により,現場からの退避 を開始し,全ての現場作業員の退避が完了するまでの時間は,1時間 程度である。また,運転員は,作業員の退避が完了したことを確認し, 原子炉注水等の操作を開始する。

一旦避難指示が出ると管理区域内への入域制限が実施されるため、 作業員は緊急作業を除き現場の安全性が確認される前に再入域することはない。

6. RCICによる注水について

RCICの設計として,作動には 1.04MPa[gage]以上の原子炉圧力 を必要としており,停止時の原子炉の初期圧力は大気圧程度まで低下 しているため,評価においてRCICによる注水に期待していない。 ただし,有効性評価で想定しているような原子炉未開放状態において 事象進展とともに原子炉の圧力が上昇し,RCICによる注水が可能 となることが考えられる。なお,RCICの点検の準備として弁の電 源等に隔離操作(アイソレーション)を実施していることも考えられ るが,これらの事故時にRCICでの注水を必要とした際は,運転員 がただちに復旧を実施することが可能であるため,RCICの使用の 問題とならない。

7. まとめ

崩壊熱除去機能喪失及び全交流動力電源喪失で想定する原子炉停止 1日後において,必要な遮蔽を確保できる水位を下回ることはない。

また,評価条件の不確かさを考慮して原子炉停止12時間後(POS

-S 原子炉冷温停止への移行状態)の状態を想定した場合でも,現 場の作業員の退避を考慮しても4章で評価した必要な遮蔽を確保でき る水位到達までの時間余裕である約3.8時間に比べて十分な時間余裕 がある。

以上より,運転員及び作業員が現場にいる間,放射線の遮蔽は維持 される。

# 評価条件の不確かさの影響評価について(運転停止中 崩壊熱除去機能喪失)

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 崩壊熱除去機能喪失)(1/2)

佰日		評価条件(初期, 事故及び	び機器条件)の不確かさ	評価条件設定の	運転昌笠の堀作時間に長うる影響	「証価佰日とわるパラメータに与うる影響」	
	供口	評価条件	最確条件	考え方	連転員寺の操作时间に子える影響	計画項目となるパノノークに子える影響	
初期条件	燃料の崩壊熱	約 18.8MW (ANSI/ANS-5.1-1979) (原子炉停止後1日)	18.8MW 以下 (実績値)	停止後の時間につい ては,停止後の時間が 短くなるように1日後 の状態を想定	最確条件では評価条件で設定している燃料の崩 壊熱より小さくなるため,原子炉水温上昇及び原 子炉水位低下速度は緩やかになるが,原子炉への 注水操作は崩壊熱に応じた対応をとるものでは なく,崩壊熱除去機能喪失による異常の認知を起 点とするものであるため,運転員等操作時間に与 える影響はない。	最確条件では評価条件で設定している燃料 の崩壊熱より小さくなるため、原子炉水温 上昇及び原子炉水位低下速度は緩やかにな ることから、評価項目となるパラメータの 判断基準に対する余裕が大きくなる。 逆に原子炉停止後の時間が短く、燃料の崩 壊熱が大きい場合は、燃料有効長頂部が露 出するまでの時間余裕が短くなる。原子炉 スクラムによる原子炉停止から12時間後 (POS-S 原子炉冷温停止への移行状 態)の燃料の崩壊熱によって燃料有効長頂 部が露出するまでの時間を評価すると、放 射線の遮蔽が維持される最低水位に達する までの時間は約3.8時間、燃料有効長頂部 到達までの時間は約5.3時間となる。注水 操作(事象開始から2時間後)に対して十 分な時間が確保されているため、評価項目 となるパラメータに与える影響は小さい。	
	原子炉初期水温	52°C	約 43℃~51℃ ^{※1} (実績値)	残留熱除去系(原子炉 停止時冷却系)の設計 値及び運転停止1日後 の原子炉水温の実績 値(43℃~51℃)を踏 まえて設定	最確条件では評価条件で設定している原子炉初 期水温より低くなるため,原子炉水位が燃料有効 長頂部まで低下するまでの時間余裕が長くなる ことが考えられるが,原子炉への注水操作は原子 炉水温に応じた対応をとるものではなく,崩壊熱 除去機能喪失による異常の認知を起点とする操 作であるため,運転員等操作時間に与える影響は ない。	最確条件では評価条件で設定している原子 炉初期水温より低くなることから,原子炉 水位が燃料有効長頂部まで低下するまでの 時間余裕は長くなり,評価項目となるパラ メータに対する余裕は大きくなる。	
	原子炉初期水位	通常運転水位 (セパレータスカート 下端から+126cm)	通常運転水位以上 (セパレータスカー ト下端から約 122cm~ +132cm)(実績値)	原子炉停止初期の通 常水位付近にある状 態を想定	最確条件では評価条件で設定している原子炉初 期水位より高くなるため,原子炉水位が燃料有効 長頂部まで低下するまでの時間余裕が長くなる が,原子炉への注水操作は原子炉水位に応じた対 応をとるものではなく,崩壊熱除去機能喪失によ る異常の認知を起点とするものであるため,運転 員等操作時間に与える影響はない。	最確条件では評価条件で設定している原子 炉初期水位より高くなるため,原子炉水位 が燃料有効長頂部まで低下するまでの時間 余裕は長くなることから,評価項目となる パラメータに対する余裕は大きくなる。	
	原子炉初期圧力	大気圧	大気圧**2	原子炉停止から1日後 の原子炉圧力を想定	最確条件は評価条件と同様であることから,事象 進展に与える影響はなく,運転員等操作時間に与 える影響はない。仮に,原子炉圧力が大気圧より 高い場合は,沸騰開始時間が遅くなり,原子炉水 位の低下速度は緩やかになるが,原子炉への注水 操作は原子炉圧力に応じた対応をとるものでは なく,崩壊熟除去機能喪失による異常の認知を起 点とする操作であるため,運転員等操作時間に与 える影響はない。	最確条件と評価条件は同様であることか ら、事象進展に与える影響はなく、評価項 目となるパラメータに与える影響はない。 仮に、原子炉圧力が大気圧より高い場合は、 沸騰開始時間が遅くなり、原子炉水位の低 下速度は緩やかになることから、評価項目 となるパラメータに対する余裕は大きくな る。	

※1:過去のプラント停止操作実施時の全制御棒全挿入から約24時間経過後の原子炉水温の実績データ。

添付資料 5.1.6-1

添付資料 5.1.6

#### ※2:原子炉停止直後や原子炉圧力容器耐圧試験実施時等の特殊な場合を除く。

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 崩壊熱除去機能喪失)(2/2)

		評価条件(初期,事故及び機器条件)					
項目		の不確かさ		評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目となるパラメータに与える影響	
	1	評価条件	最確条件				
初期条件	原子炉圧力容器の 状態	原子炉圧力容器 未開放	事故事象毎	原子炉圧力容器が未開放状態 での水位を想定	原子炉圧力容器が未開放の場合は,評価条件と同様であることから,事象進展に与える影響はなく,運転員等操作時間に与える影響はない。また, 原子炉圧力容器が開放の場合は,原子炉減圧操作 は不要となるが,事象進展に与える影響は小さく,運転員等操作時間に与える影響はない。	原子炉圧力容器が未開放の場合は、評価条件と同様であることから、事象進展に与える影響はなく、評価項目となるパラメータに与える影響はない。 また、原子炉圧力容器が開放の場合は、原子炉減圧操作は不要となるが、事象進展に与える影響は小さく、評価項目となるパラメータに与える影響はない。	
	燃料の容量	約 800kL	800kL以上	通常時の軽油貯蔵タンクの管 理値を参考に,最確条件を包絡 できる条件を設定	最確条件とした場合には,解析条件よりも燃料容 量の余裕が大きくなる。また,事象発生直後から 最大負荷運転を想定しても燃料は枯渇しないこ とから,運転員等操作時間に与える影響はない。	_	
	起因事象	運転中の 残留熱除去系の 機能喪失	運転中の 残留熱除去系の 機能喪失	残留熱除去系(原子炉停止時冷 却系)1台による原子炉の崩壊 熱除去を実施中に,残留熱除去 系ポンプの故障等により機能 喪失するものとして設定	解析条件と最確条件は同様であることから,事象 進展に与える影響はなく,運転員等操作時間に与 える影響はない。	解析条件と最確条は同様であることから, 事象進展に与える影響はなく,評価項目と なるパラメータに与える影響はない。	
事故条件	外部電源	事象認知まで :外部電源あり 事象認知後 :外部電源なし	事故事象毎	外部電源喪失が発生すると原 子炉保護系電源が喪失し,格納 容器隔離信号により格納容器 隔離弁が閉となる。この状態で はインターロックにより残留 熟除去系ポンプが起動不可と なるため,崩壊熱除去機能喪失 を認知可能である。このため, 事象発生1時間の巡視により事象 認知の観点で厳しくなる外部 電源がある場合を想定する。事 象発生1時間以降は,原子炉保 護系電源の復旧等,運転員操作 に時間を要する外部電源がな い場合を想定する	<ul> <li>・事象認知前:外部電源がない場合は崩壊熱除去 機能喪失の認知が早まるため,運転員操作の開 始時間は早くなる。</li> <li>・事象認知後:外部電源がある場合は,必要な運 転員操作が少なくなるため,運転員操作の完了 時間が早くなる。</li> </ul>	外部電源がない場合と外部電源がある場合 では、事象進展は同じであることから、評 価項目となるパラメータに与える影響はな い。	
機器条件	待機中の残留熱除 去系(低圧注水系) の注水流量	1,605m³∕h	1,605m³∕h	低圧注水系の設計値を設定	解析条件と最確条件は同様であることから,事象 進展に与える影響はなく,運転員等操作時間に与 える影響はない。	解析条件と最確条件は同様であることか ら、事象進展に与える影響はなく、評価項 目となるパラメータに与える影響はない。	
	残留熱除去系(原 子 炉 停 止 時 冷 却 系)の除熱量	熱交換器 1 基当 たり 43MW (原子 炉冷却材温度 100℃,海水温度 32℃において)	熱交換器 1 基当た り 43MW(原子炉冷 却材温度 100℃,海 水温度 32℃におい て)	残留熱除去系の設計値を設定	解析条件と最確条件は同様であることから,事象 進展に与える影響はなく,運転員等操作時間に与 える影響はない。	解析条件と最確条件は同様であることか ら,事象進展に与える影響はなく,評価項 目となるパラメータに与える影響はない。	

項目		評価条件 評価上の お 佐間 4 名 供	‡(操作条件) 評価条件設定の	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となるパラ メータに与える影響	操作余裕時間	訓練実績等
操作条件	待機中の残留熱 除去系(低圧注 水系)の注水操 作	<u>操</u> 作開始条件 事象発生から 2時間後	<u>考え方</u> 事象の認知及び 操作に要する時 間に,更に時間余 裕を考慮して設 定	【認知】 評価では、崩壊熱除去機能が喪失している ことを、1時間毎の中央制御室の巡視によ り確認すると想定している。原子炉水位低 下を認知した後に原子炉注水操作の必要性 を認知することは容易であり、評価上の原 子炉注水操作開始時間に対して、実際の原 子炉注水操作開始時間に対して、実際の原 子炉注水操作開始時間に対して、実際の原 子炉注水操作開始時間に早くなる場合が考 えられる。 【要員配置】 中央制御室での操作のみであり、運転員は 中央制御室での操作のみであり、運転員は 中央制御室での操作のみであり、操作開始 時間に与える影響はない。 【操作所要時間】 待機中の残留熱除去系ポンプ起動操作及び 注入弁の開操作は、制御盤の操作スイッチ による操作のため、容易な操作である。操 作時間は5分を想定しており、原子炉水位 の低下に対して操作に要する時間は短い。 【他の並列操作はないため、操作時間に与 える影響はない。 【操作の確実さ】 中央制御室における操作は、制御盤の操作 スイッチによる容易な操作のため、誤操作 は起こりにくく、誤操作等により操作時間 が長くなることは考え難い。	原子炉水位低下を認 知した際に原子炉 かの必要性を認知す ることは容易であり, 評価では間後始をであり, 評価でいるが,実際の原子炉 注水操作開始時間は早くなることが 考えられ,原子炉水位 の回復が早くなる。	原子炉注水場作開始 デ子炉注水る場合がなる。 水型がすった。 なび位価項に対する ので、 ななでで、 なるの報知に がたい、 やすい、 に に た なるの。 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の に に ま 、 の 、 の に 、 の 、 の に 、 の 、 の に 、 の 、 の に 、 の 、 の に の に の た の の 。 の 、 の 、 の に い た の 。 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 の 、 、 、 、 、 、 、 、 、 、 、 、 、	原子「小位から 原子「小位がら が一位がら た。 が一位がら た。 が が が 位 か に 時 頂 ま で 時 頃 ま で 時 に 去 し く よ 4.6 長 ま る 、 れ た 去 に 去 し 、 な た 、 れ に 去 に 寺 頂 ま で 時 頃 ま で 時 頃 ま で 時 頃 ま で 時 頃 ま で 時 町 ざ い に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 去 に 寺 に ま に 寺 に ま に 寺 に ま に 寺 に ま に 寺 に ま に 寺 に ま に ち に ま に ち に ま に ち に ち に ま に ち に う に ち に ま に ち に ま に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち に ち ら し る る 。 、 ら 、 ら 、 ら 、 ら 、 ら 、 ら 、 ら 、 ち ら し こ ら 、 あ る 。 。 う ら ち う ら 、 ら う ら う ら う ら う ら ち う ら う ち ら ち ら ち ら ち ら う ら う ら う う う ら う う う う う ら う う う う う ら う う う う う う う う う う う う う	中 中 中 す る ミ 訓 し 要 想 た 時 定 ろ 約 、 間 た 時 定 ろ 約 、 間 た 時 定 ろ 約 、 間 た 時 定 ろ 約 、 間 た 時 定 ろ 約 、 間 た ち い る 。 定 で 運 可 記 志 た 。 間 で こ た あ る 。 定 て 通 で で 通 で あ る る 、 で で 運 可 記 た た 。 間 で こ ち い う て も た の 一 夕 春 を ち い る 、 間 た で あ る の の 一 夕 春 を ち い る た る ち い る た 。 間 で こ あ る る の 一 が 春 を ち い る た る る る る た 。 間 で で あ る る る る で 画 で 題 で あ こ で あ る る る る る た 。 で あ で あ る る る る る る る た 。 た 。 で あ る る る る る る た 。 た 。 の 、 、 う る る た 。 た 。 う る る た 。 た 。 う る る た 。 た 。 う る る た 。 た 。 う る る た う る る た う る る た う る た う る る 清 た う る る 清 た こ ろ る る 清 た こ ろ る る た う る る 清 う て が た 。 う ろ る た う ろ る た う る う る た う ち つ て が う ろ る た う ろ る た こ ろ る う る う る う う る う る う る う る う る う る う る う る う る う る る る る う る る う る う る る う る る る る る う る る う る る る る る る る る る る る う る る る る る る る る う う う う る る る う る る る る う う る る る う る る る る る う る う る る る る る る る る る る る る る

第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(運転停止中 崩壊熱除去機能喪失)(1/2)

評価条件(操作条件)           項目         評価上の         評価条件設定の           操作開始条件         考え方			運転員等操作時間	評価項目となるパラメ				
		評価上の 操作開始条件	<ul> <li>評価条件設定の</li> <li>考え方</li> </ul>	操作の个確かさ要因	に与える影響	ータに与える影響	操作时间余 俗	訓 裸 美 禎 等
操作条件	待留(止系崩機中除子)壊れ(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、(1)、	事 象 発 生 か ら 4 時間 20 分後	状し減る状炉受中(に水の(冷崩復間定況安圧原態保電残低よ,残原却壊旧を犯安権子維護操留圧る及留子系熱に考断弁能炉持系作熱注原び熱炉)除要慮、()の、電、除水子待除停に去すし、砂山よ圧子の機系)注中系時る能時設	残留熱除去系(低圧注水系)によ り,原子炉への注水を実施してい ることから,残留熱除去系(原子 炉停止時冷却系)による崩壊熱除 去機能復旧には時間余裕(サプレ ッション・プール水温度が100℃に 到達するのは事象発生から約20.3 時間後)がある。	_	_		所要時間を 51 分 と想定している ころ, 訓練実績で る。 想定で意図してい る運転なことを確認 した。

第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(運転停止中 崩壊熱除去機能喪失)(2/2)

7日間における燃料の対応について

# (運転停止中 崩壞熱除去機能喪失)

て評価する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{*1} 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転台 数)=約484.0kL 高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{*2}	7日間の軽 油消費量 約614.2hl	軽油貯蔵タ ンクの容量 は約 800kL であり,7
<ul> <li>(燃料消費率は保守的に定格出力運転時を想定)</li> <li>775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台数)</li> <li>=約130.3kL</li> </ul>	π9 014.3KL	日間対応可 能

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台である

が,保守的にディーゼル発電機2台の起動を仮定した。

※2 事故収束に必要ではないが、保守的に起動を仮定した。

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものとし

#### 5.2 全交流動力電源喪失

- 5.2.1 事故シーケンスグループの特徴, 炉心損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「全交流動力電源喪失」に含まれる事故シーケンスとしては、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、 ①「外部電源喪失+交流電源失敗+崩壊熱除去・炉心冷却失敗」、②「外部 電源喪失+直流電源失敗+崩壊熱除去・炉心冷却失敗」である。

(2) 事故シーケンスグループの特徴及び燃料損傷防止対策の基本的考え方 事故シーケンスグループ「全交流動力電源喪失」では、原子炉の運転停 止中に全交流動力電源が喪失することにより、原子炉注水機能及び崩壊熱 除去機能が喪失することを想定する。このため、燃料の崩壊熱により原子 炉冷却材が蒸発することから、緩和措置が取られない場合には、原子炉水 位の低下により燃料が露出し燃料損傷に至る。

本事故シーケンスグループは,全交流動力電源を喪失したことによって 燃料損傷に至る事故シーケンスグループである。このため,運転停止中の 原子炉における燃料損傷防止対策の有効性評価としては,代替交流電源か らの給電が可能な原子炉への注水機能を有する重大事故等対処設備に期待 することが考えられる。

したがって,本事故シーケンスグループでは,運転員が異常を認知して, 常設代替高圧電源装置による電源供給及び低圧代替注水系(常設)による 原子炉注水を行うことによって,燃料損傷の防止を図る。また,残留熱除 去系(原子炉停止時冷却系)による最終的な熱の逃がし場への熱輸送を行 うことにより原子炉除熱を行う。

#### (3) 燃料損傷防止対策

事故シーケンスグループ「全交流動力電源喪失」における機能喪失に対 して、燃料が著しい損傷に至ることなく、かつ、十分な冷却を可能とする ため、初期の対策として常設代替高圧電源装置による給電手段及び低圧代 替注水系(常設)による原子炉注水手段を整備する。また、安定状態に向 けた対策として、残留熱除去系による除熱手段を整備する。これらの対策 の概略系統図を第5.2-1 図に、対応手順の概要を第5.2-2 図に示すととも に、重大事故等対策の概要を以下に示す。また、重大事故対策における設 備と手順の関係を第5.2-1 表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は,初動対応要員7名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員3名,通報連絡等を行う災害対策要員2名である。必要な要員と 作業項目について第5.2-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し,必要な要員数を確認した結果,初動対応 要員7名で対処可能である。

a. 全交流動力電源喪失の確認

原子炉の運転停止中に全交流動力電源が喪失し,残留熱除去系(原子 炉停止時冷却系)運転停止により崩壊熱除去機能が喪失する。

残留熱除去系(原子炉停止時冷却系)運転停止による崩壊熱除去機能 喪失を確認するために必要な計装設備は,残留熱除去系系統流量である。

b. 常設代替高圧電源装置による緊急用母線受電操作

非常用ディーゼル発電機の機能喪失が発生したことを確認し,中央制 御室からの遠隔操作により外部電源の受電ができず,非常用母線の電源 回復ができない場合,早期の電源回復不能と判断する。これにより,常 設代替高圧電源装置による緊急用母線受電操作を行う。

c. 低圧代替注水系(常設)の起動準備操作

緊急用母線受電操作完了後,低圧代替注水系(常設)による原子炉注 水の系統構成を実施する。

d. 常設代替高圧電源装置による非常用母線の受電準備操作

早期の電源回復不能の確認後,中央制御室及び現場にて常設代替高圧 電源装置による非常用母線の受電準備操作を実施する。

e. 逃がし安全弁(自動減圧機能)による原子炉の低圧状態維持

残留熱除去系(原子炉停止時冷却系)運転停止により原子炉水温が 100℃に到達すると,原子炉圧力が上昇する。原子炉圧力を低圧状態に維 持するため,中央制御室からの遠隔操作により逃がし安全弁(自動減圧 機能)1弁を開操作する。

逃がし安全弁(自動減圧機能)による原子炉の低圧状態維持を確認す るために必要な計装設備は,原子炉圧力等である。

f. 原子炉水位の調整操作

低圧代替注水系(常設)により原子炉冷却材の蒸発量に応じた原子炉 注水を実施し,原子炉水位を通常運転水位付近で維持する。

低圧代替注水系(常設)による原子炉注水を確認するために必要な計 装設備は,原子炉水位(SA広帯域,SA燃料域)及び低圧代替注水系 原子炉注水流量等である。

g. 常設代替高圧電源装置による非常用母線受電操作

常設代替高圧電源装置による緊急用母線受電操作及び非常用母線の受 電準備操作の完了後,中央制御室からの遠隔操作により常設代替高圧電 源装置から緊急用母線を介して非常用母線を受電する。 h. 原子炉保護系母線の受電操作

常設代替高圧電源装置による非常用母線受電操作の完了後,非常用母線を介して原子炉保護系母線を受電する。

i. 残留熱除去系(原子炉停止時冷却系)による原子炉冷却

常設代替高圧電源装置による緊急用母線を介した非常用母線及び原子 炉保護系母線の受電操作の完了後,中央制御室からの遠隔操作により残 留熱除去系(原子炉停止時冷却系)の運転を再開する。残留熱除去系(原 子炉停止時冷却系)の運転開始を確認するために必要な計装は,残留熱 除去系熱交換器入口温度等である。

崩壊熱除去機能回復後,逃がし安全弁(自動減圧機能)を全閉とし, 原子炉低圧状態の維持を停止する。

j. 使用済燃料プールの冷却操作

対応可能な要員にて使用済燃料プールの冷却操作を実施する。

# 5.2.2 燃料損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、「外部電源 喪失+交流電源喪失+崩壊熱除去・炉心冷却失敗」である。

本重要事故シーケンスは,運転停止中のいずれのプラント状態(POS) においても起こり得るため,崩壊熱,原子炉冷却材の保有水量及び注水手 段の多様性の観点から,「POS-A PCV/RPV開放及び原子炉ウェ ル満水への移行状態」を代表として,評価項目である燃料有効長頂部の冠 水,放射線の遮蔽が維持される水位の確保及び未臨界の確保を満足するこ とを確認する。また,他のプラント状態も考慮した想定においてもこれら の評価項目を満足することを確認する。

また,評価条件の不確かさの影響評価として,本重要事故シーケンスに おける運転員等の操作時間に与える影響,評価項目となるパラメータに与 える影響及び操作時間余裕を評価する。

(添付資料 5.1.1, 5.1.2)

(2) 有効性評価の条件

本重要事故シーケンスに対する初期条件も含めた主要な解析条件を第 5.2-2 表に示す。また、主要な解析条件について、本重要事故シーケンス 特有の解析条件を以下に示す。

a. 初期条件

(a) 原子炉圧力容器の状態

原子炉圧力容器の未開放時について評価する。原子炉圧力容器の開 放時については,遮蔽維持水位到達までの時間余裕の観点で厳しくな る未開放時の評価に包絡される。

(b) 崩壞熱

原子炉停止後の崩壊熱は、ANSI/ANS-5.1-1979の 式に基づくものとし、また、崩壊熱を厳しく見積もるために、原子炉 停止1日後の崩壊熱を用いる。このときの崩壊熱は約18.8MWである。 なお、崩壊熱に相当する冷却材の蒸発量は約27m³/hである。

(添付資料 5.1.3)

(c) 原子炉初期水位及び初期水温

事象発生前の原子炉の水位は通常運転水位とし、また、原子炉初期 水温は残留熱除去系(原子炉停止時冷却系)の設計温度である 52℃と する。 (d) 原子炉圧力

原子炉の初期圧力は大気圧が維持されているものとする。また,解 析上,水位低下量を厳しく見積もるために,逃がし安全弁(自動減圧 機能)の開操作によって原子炉圧力が大気圧に維持されているものと する^{*}。

- ※:実操作では低圧代替注水系(常設)の準備が完了した時点で原子炉減圧 を実施することとなり、低圧代替注水系(常設)の注水特性に応じて大気 圧より高い圧力で注水が開始されることとなる。このため、原子炉圧力 が大気圧で維持されているとした評価は保守的な評価となる。
- b. 事故条件
- (a) 起因事象

送電系統又は所内主発電設備の故障等によって、外部電源が喪失するものとする。

(b) 安全機能の喪失に対する仮定

全ての非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル 発電機が機能喪失するものとする。

(c) 外部電源

起因事象として、外部電源が喪失することを想定している。

- c. 重大事故等対策に関連する機器条件
- (a) 低圧代替注水系(常設)による原子炉注水流量

低圧代替注水系(常設)による原子炉注水流量は、崩壊熱による蒸 発を上回る流量とする。 (b) 残留熱除去系(原子炉停止時冷却系)

伝熱容量は,熱交換器1基当たり43MW(原子炉冷却材温度100℃, 海水温度32℃において)とする。

d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

- (a) 低圧代替注水系(常設)による原子炉注水準備操作は,事象発生25 分後に完了する。
- (b) 残留熱除去系(原子炉停止時冷却系)の運転は,非常用母線及び原子炉保護系母線の受電操作が必要となるため,事象発生4時間10分後から開始する。
- (3) 有効性評価の結果

本重要事故シーケンスの事象進展を第5.2-2 図に,原子炉水位の推移を 第5.2-4 図に,原子炉水位と線量率の関係を第5.2-5 図に示す。

(a) 事象進展

事象発生後,全交流動力電源喪失に伴い崩壊熱除去機能が喪失する ことにより,原子炉水温が上昇し,約1.1時間後に沸騰,蒸発するこ とで原子炉水位は低下し始めるが,事象発生後速やかに全交流動力電 源喪失を判断し,中央制御室からの遠隔操作により常設代替高圧電源 装置による交流電源の供給を開始し,事象発生から25分経過した時 点で低圧代替注水系(常設)による原子炉注水準備操作を完了し,原 子炉冷却材の蒸発量に応じて原子炉注水を実施することによって,原 事象発生から4時間10分経過した時点で,残留熱除去系(原子炉停 止時冷却系)原子炉圧力容器の除熱を開始することによって,原子炉 水温は低下する。

(b) 評価項目等

原子炉水位は,第5.2-4 図に示すとおり,蒸発量に応じた注水により通常運転水位付近で維持でき,燃料有効長頂部は冠水を維持する。

原子炉圧力容器は未開放であり,第5.2-6 図に示すとおり,必要な 遮蔽を確保できる水位(必要な遮蔽の目安とした 10mSv/h が確保さ れる水位)*である燃料有効長頂部の約1.7mを下回ることがないため, 放射線の遮蔽は維持される(必要な遮蔽の目安とした 10mSv/h を下 回る)。また,全制御棒全挿入状態が維持されているため,未臨界は確 保されている。

なお,事象発生前に現場にいた作業員の待避における放射線影響に ついては,現場環境が悪化する前に退避が可能であるため,影響はな い。

事象発生から4時間10分経過した時点で,残留熱除去系(原子炉停止時冷却系)の運転を再開することにより,安定状態を維持できる。

本評価では、「1.2.4.2 有効性を確認するための評価項目の設定」 に示す(1)から(3)の評価項目について、対策の有効性を確認した。

※:必要な遮蔽の目安は緊急作業時の被ばく限度(100mSv)と比べ、十分余裕のある値であり、かつ施設定期検査作業での原子炉建屋最上階における現場作業の実績値(約3.5mSv/h)を考慮した値(10mSv/h)とする。この線量率となる水位は、有効燃料長頂部の約1.7m上(通常水位から約3.6m下)の位置である。

5.2.3 不確かさの影響評価

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与える 影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する ものとする。

本重要事故シーケンスは,原子炉の運転停止中に全交流動力電源が喪失し, 残留熱除去系等による崩壊熱除去機能が喪失することが特徴である。また, 不確かさの影響を確認する運転員等操作は,常設代替高圧電源装置による受 電,低圧代替注水系(常設)による原子炉注水操作とする。

- (1) 評価条件の不確かさの影響評価
  - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 5.2-2 表に示すとおりであり,それらの条件設定を設計値等,最確条件 とした場合の影響を評価する。また,評価条件の設定に当たっては,原 則,評価項目となるパラメータに対する余裕が小さくなるような設定と していることから,その中で事象進展に有意な影響を与えると考えられ る燃料の崩壊熱,事象発生前の原子炉初期水温,原子炉初期水位,原子 炉初期圧力及び原子炉圧力容器の状態に関する影響評価の結果を以下に 示す。

(a) 運転員等操作時間に与える影響

初期条件の燃料の崩壊熱は,評価条件の約 18.8MW に対して最確条件は 18MW 以下であり,本評価条件の不確かさとして,最確条件とした場合,評価条件で設定している燃料の崩壊熱より小さくなるため,原

5.2 - 9

子炉水温上昇及び原子炉水位低下速度は緩やかになるが,注水操作や 給電操作は崩壊熱に応じた対応をとるものではなく,全交流動力電源 の喪失による異常の認知を起点とする操作であるため,運転員等操作 時間に与える影響はない。

初期条件の原子炉初期水温は,評価条件の52℃に対して最確条件は 約43℃~51℃であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している原子炉初期水温より低くなるため,時 間余裕が長くなることが考えられるが,注水操作や給電操作は原子炉 水温に応じた対応をとるものではなく,全交流動力電源の喪失による 異常の認知を起点とする操作であるため,運転員等操作時間に与える 影響はない。

初期条件の原子炉初期水位は,評価条件の通常運転水位に対して最 確条件は通常運転水位以上であり,本評価条件の不確かさとして,最 確条件とした場合,評価条件で設定している原子炉初期水位より高く なるため,燃料有効長頂部まで水位が低下する時間は長くなるが,注 水操作や給電操作は原子炉水位に応じた対応をとるものではなく,全 交流動力電源の喪失による異常の認知を起点とする操作であるため, 運転員等操作時間に与える影響はない。

初期条件の原子炉初期圧力は,評価条件の大気圧に対して,最確条件も大気圧であり,本評価条件の不確かさとして,最確条件とした場合,評価条件と同様であることから,事象進展に与える影響はなく,運転員等操作時間に与える影響はない。仮に,原子炉圧力が大気圧より高い場合は,沸騰開始時間が遅くなり,水位低下速度は緩やかになるが,注水操作や給電操作は崩壊熱に応じた対応をとるものではなく, 全交流動力電源の喪失による異常の認知を起点とする操作であるため, 運転員等操作時間に与える影響はない。

初期条件の原子炉圧力容器の状態は,評価条件の原子炉圧力容器未 開放に対して最確条件は事故事象毎であり,本評価条件の不確かさと して,原子炉圧力容器未開放の場合は評価条件と同様であるため,事 象進展に与える影響はなく,運転員等操作時間に与える影響はない。 また,原子炉圧力容器開放状態とした場合は原子炉減圧操作が不要と なるが,事象進展に与える影響は小さく,運転員等操作時間に与える 影響は小さい。

(b) 評価項目となるパラメータに与える影響

初期条件の燃料の崩壊熱は,評価条件の約 18.8MW に対して最確条 件は 18MW 以下であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している燃料の崩壊熱より小さくなるため,原 子炉水温上昇及び原子炉水位低下速度は緩やかになることから,評価 項目となるパラメータに対する余裕は大きくなる。逆に原子炉停止後 の時間が短く,燃料の崩壊熱が大きい場合は注水までの時間余裕が短 くなる。原子炉停止から 12 時間後(POS-S 原子炉冷温停止への 移行状態)の燃料の崩壊熱によって原子炉冷却材温度が 100℃に到達 するまでの時間余裕が約 0.9 時間であることに対し,事象発生から 25 分経過した時点で低圧代替注水系(常設)による原子炉注水準備操作 を完了し,原子炉冷却材の蒸発量に応じて原子炉注水を実施すること によって,原子炉水位を通常運転水位付近で維持することができるた め,原子炉水位が必要な遮蔽を確保できる水位(必要な遮蔽の目安と した 10mSv/h が確保される水位)を下回ることはなく,評価項目とな るパラメータに与える影響はない。

初期条件の原子炉初期水温は,評価条件の52℃に対して最確条件は

約43℃~51℃であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している原子炉初期水温より低くなることから, 原子炉冷却材の沸騰開始までの時間余裕が長くなり,評価項目となる パラメータに対する余裕は大きくなる。

初期条件の原子炉初期水位は,評価条件の通常運転水位に対して最 確条件は通常水位以上であり,本評価条件の不確かさとして,最確条 件とした場合,評価条件で設定している原子炉初期水位より高くなる ため,燃料有効長頂部まで水位が低下する時間は長くなることから, 評価項目となるパラメータに対する余裕は大きくなる。

初期条件の原子炉初期圧力は,評価条件の大気圧に対して最確条件 も大気圧であり,本評価条件の不確かさとして,最確条件とした場合, 評価条件と同様であることから,事象進展に与える影響はなく,評価 項目となるパラメータに与える影響はない。仮に,原子炉圧力が大気 圧より高い場合は,沸騰開始時間が遅くなり,水位低下速度は緩やか になることから,評価項目となるパラメータに対する余裕は大きくな る。

初期条件の原子炉圧力容器の状態は,評価条件の原子炉圧力容器未 開放に対して最確条件は事故事象毎であり,本評価条件の不確かさと して,最確条件とした場合,原子炉圧力容器未開放状態の場合は,評 価条件と同様であるため,事象進展に与える影響はなく,評価項目と なるパラメータに与える影響はない。原子炉圧力容器が開放の場合は 原子炉減圧操作が不要となるが,事象進展に与える影響は小さく,評 価項目となるパラメータに与える影響は小さい。

#### 5. 2-12

b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要因が,運転員等操作時間に与える影 響を評価する。また,運転員等操作時間に与える影響が評価項目となる パラメータに与える影響を評価し,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の常設代替高圧電源装置からの緊急用母線の受電,及び低 圧代替注水系(常設)の起動による原子炉注水準備操作は,評価上の 操作開始時間として,事象発生から25分後に完了する。運転員等操作 時間に与える影響として,常設代替高圧電源装置からの緊急用母線の 受電操作について実態の運転操作は,移動及び操作所要時間を合計し て約4分間であり,評価上の受電完了時間とほぼ同等であり,操作開 始時間に与える影響は小さい。操作条件の低圧代替注水系(常設)に よる原子炉注水操作は,常設代替交流電源設備からの受電操作後に実 施するため,受電操作の完了時刻の影響を受けるが,実態の操作時間 が評価上の操作開始時間とほぼ同等であり,操作開始時間に与える影 響は小さい。

(b) 評価項目となるパラメータに与える影響

操作条件の常設代替高圧電源装置からの緊急用母線の受電,及び低 圧代替注水系(常設)による原子炉注水操作は,運転員操作時間に与 える影響として,実態の操作開始時間は解析上の設定とほぼ同等であ ることから,評価項目となるパラメータに与える影響は小さい。

(添付資料 5.2.2)

(2) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲での操作時間余裕を確認し, その結果を以下に示す。

操作条件の常設代替高圧電源装置からの緊急用母線の受電,及び低圧代 替注水系(常設)による原子炉注水操作の時間余裕については,原子炉水 位が通常水位から放射線の遮蔽が維持される最低水位に到達するまでの時 間は事象発生から約4.5時間,通常水位から燃料有効長頂部まで低下する までの時間余裕は約6.3時間であり,事象発生から25分で原子炉注水準 備が完了するため,十分な時間余裕を確保できる。

(添付資料 5.2.2)

(3) まとめ

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与え る影響,評価項目となるパラメータに与える影響及び操作時間余裕を確認 した。その結果,評価条件等の不確かさを考慮しても操作時間に対する十 分な時間余裕を確保でき,評価項目となるパラメータに与える影響はない。 この他,評価項目となるパラメータに対して,対策の有効性が確認でき る範囲内において,操作時間に対して一定の時間余裕がある。

- 5.2.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「全交流動力電源喪失」において,重大事故等 対策時に必要な要員は,「5.2.1(3) 燃料損傷防止対策」に示すとおり7名 である。「6.2 重大事故等対策時に必要な要員の評価結果」で説明してい

5.2-14

る運転員及び災害対策要員の37名で対応可能である。

(2) 必要な資源の評価

事故シーケンスグループ「全交流動力電源喪失」において、水源、燃料 及び電源は、「6.1(2) 資源の評価条件」の条件にて評価している。その結 果を以下に示す。

a. 水源

低圧代替注水系(常設)による原子炉注水については,7日間の対応 を考慮すると,合計約90m³必要となる。

水源として,代替淡水貯槽に約4,300m³の水を保有している。これにより,水源が枯渇することなく注水継続が可能である。

(添付資料 5.2,3)

b. 燃料

常設代替交流電源設備による電源供給については,事象発生直後から の運転を想定すると,7日間の運転継続に約352.8kLの軽油が必要とな る。軽油貯蔵タンクに約800kLの軽油を保有していることから,常設代 替交流電源設備による電源供給について,7日間の継続が可能である。 (添付資料5.2.4)

c. 電源

常設代替交流電源設備の負荷については,重大事故等対策時に必要な 負荷として約4,255kW必要となるが,常設代替交流電源設備(常設代替 高圧電源装置5台)の連続定格容量は5,520kWであることから,必要負 荷に対しての電源供給が可能である。

5.2 - 15
また,蓄電池の容量については,交流電源が復旧しない場合を想定しても,不要な負荷の切離しを行うことにより,事象発生後24時間の直流 電源の供給が可能である。

(添付資料 5.2.5)

5.2.5 結論

事故シーケンスグループ「全交流動力電源喪失」では,原子炉の運転停止 中に全交流動力電源が喪失し,残留熱除去系等による崩壊熱除去機能を喪失 することが特徴である。事故シーケンスグループ「全交流動力電源喪失」に 対する燃料損傷防止対策としては,初期の対策として,常設代替高圧電源装 置による緊急用母線への交流電源の供給手段,低圧代替注水系(常設)によ る原子炉注水手段,長期の安定状態に向けた対策として,残留熱除去系によ る原子炉圧力容器の除熱手段を整備している。

事故シーケンスグループ「全交流動力電源喪失」の重要事故シーケンス「外 部電源喪失+交流電源失敗+崩壊熱除去・炉心冷却失敗」について有効性評 価を行った。

上記の場合においても、常設代替高圧電源装置による緊急用母線への交流 電源の給電,低圧代替注水系(常設)による原子炉注水及び残留熱除去系に よる原子炉圧力容器の除熱を実施することにより,燃料損傷することはない。

その結果,燃料有効長頂部の冠水,放射線遮蔽の維持及び未臨界の確保が できることから,評価項目を満足している。また,安定状態を維持できる。

評価条件の不確かさについて確認した結果,運転員等操作時間及び評価項 目となるパラメータに与える影響は小さい。また,対策の有効性が確認でき る範囲内において,操作時間余裕について確認した結果,操作が遅れた場合 でも一定の余裕がある。 重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源を供給可能である。

以上のことから,事故シーケンスグループ「全交流動力電源喪失」におい て,低圧代替注水系(常設)による原子炉注水及び残留熱除去系による原子 炉除熱等の燃料損傷防止対策は,選定した重要事故シーケンスに対して有効 であることが確認でき,事故シーケンスグループ「全交流動力電源喪失」に 対して有効である。

	T. III		重大事故等対	処設備
操作及び確認	于順	常設設備	可搬型設備	計装設備
全交流動力電源喪失の 確認	・原子炉の運転停止中に全交流動力電源が喪 失し,残留熱除去系(原子炉停止時冷却系) 運転停止により崩壊熱除去機能が喪失す る。	所内常設直流電源設備	_	
常設代替高圧電源装置 による緊急用母線受電 操作	<ul> <li>・非常用ディーゼル発電機の機能喪失を確認し、中央制御室からの遠隔操作により外部電源の受電ができず、非常用母線の電源回復ができない場合、早期の電源回復不能と判断する。これにより、常設代替高圧電源装置による緊急用母線受電操作を行う。</li> </ul>	常設代替高圧電源装置	_	
低圧代替注水系(常設) の起動準備操作	<ul> <li>・緊急用母線受電操作完了後,低圧代替注水</li> <li>系(常設)による原子炉注水の系統構成を</li> <li>実施する。</li> </ul>	常設低圧代替注水系ポンプ 常設代替高圧電源装置 軽油貯蔵タンク 代替淡水貯槽	_	原子炉水位(広帯域,燃料域) 原子炉水位(SA 広帯域, SA 燃料域) 原子炉圧力 原子炉圧力(SA) 低圧代替注水系原子炉注水流量 代替淡水貯槽水位
常設代替高圧電源装置 による非常用母線の受 電準備操作	<ul> <li>・早期の電源回復不能の確認後,中央制御室 及び現場にて常設代替高圧電源装置によ る非常用母線の受電準備操作を実施する。</li> </ul>	常設代替高圧電源装置 軽油貯蔵タンク	_	_
逃がし安全弁(自動減圧 機能)による原子炉の低 圧状態維持	・残留熱除去系(原子炉停止時冷却系)の運転停止により原子炉水温が100℃に到達して原子炉圧力が上昇したことを確認し,原子炉圧力を低圧状態に維持するため,中央制御室からの遠隔操作により逃がし安全弁(自動減圧機能)1弁を開操作する。	逃がし安全弁(自動減圧機能) 所内常設直流電源設備	_	原子炉圧力 原子炉圧力(SA)
原子炉水位の調整操作	<ul> <li>・低圧代替注水系(常設)により原子炉冷却 材の蒸発量に応じた原子炉注水を実施し, 原子炉水位を通常運転水位付近で維持す る。</li> </ul>	常設低圧代替注水系ポンプ 常設代替高圧電源装置 軽油貯蔵タンク 代替淡水貯槽	_	原子炉水位(広帯域,燃料域) 原子炉水位(SA 広帯域, SA 燃料域) 原子炉圧力 原子炉圧力(SA) 低圧代替注水系原子炉注水流量 代替淡水貯槽水位

第5.2-1表 全交流動力電源喪失における重大事故対策について

【 】:重大事故等対処設備(設計基準拡張)

根が正です	王 匠		重大	事故等対処設備
操作及 U 推認	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	常設設備	可搬型設備	計装設備
常設代替高圧電源装置によ	・常設代替高圧電源装置による緊急用母線受電操	常設代替高圧電	-	-
る非常用母線の受電操作	作の完了後、中央制御室からの遠隔操作により	源装置		
	常設代替高圧電源装置から緊急用母線を介して	軽油貯蔵タンク		
	非常用母線を受電する。			
原子炉保護系母線の受電操	・常設代替高圧電源装置による非常用母線受電操	常設代替高圧電	-	-
作	作の完了後、非常用母線を介して原子炉保護系	源装置		
	母線を受電する。	軽油貯蔵タンク		
残留熱除去系(原子炉停止	・常設代替高圧電源装置による緊急用母線を介し	【残留熱除去系	-	原子炉水位 (広帯域, 燃料域)
時冷却系)による原子炉冷	た非常用母線及び原子炉保護系母線の受電操作	(原子炉停止時		原子炉水位(SA 広帯域, SA 燃料域)
却	の完了後、中央制御室からの遠隔操作により残	冷却系)】		【残留熱除去系系統流量】
	留熱除去系(原子炉停止時冷却系)の運転を再	常設代替高圧電		【残留熱除去系熱交換器入口温度】
	開する。	源装置		【残留熱除去系熱交換器出口温度】
	・崩壊熱除去機能回復後、逃がし安全弁(自動減	軽油貯蔵タンク		【残留熱除去系海水系系統流量】
	圧機能)を全閉とし、原子炉低圧状態の維持を			
	停止する。			
使用済燃料プールの冷却操	・対応可能な要員にて使用済燃料プールの冷却操	—	—	-
作	作を実施する。			

第5.2-1表 全交流動力電源喪失における重大事故対策について

【】:重大事故等対処設備(設計基準拡張):有効性評価上考慮しない操作

第5.2-2表 主要評価条件(全交流動力電源喪失)(1/2)

	項目	主要評価条件	条件設定の考え方				
	原子炉圧力容器の状態	原子炉圧力容器未開放	燃料の崩壊熱及び保有水量の観点から設定				
初期	崩壊熱	約18.8MW (9×9燃料 (A型),原子炉停 止1日後 [*] )	崩壊熱が大きい方が原子炉水位低下及び格納容器圧力上昇の観点で厳しい設定と なるため,崩壊熱が大きくなる燃焼度の高い条件として,1サイクルの運転期間(13 ヶ月)に調整運転期間(約1ヶ月)を考慮した運転期間に対応する燃焼度を設定				
	原子炉初期水位	通常運転水位(セパレータスカ ート下端から+126cm)	原子炉の運転停止1日後の水位から保守性を持たせた値				
件	原子炉初期水温 52℃		残留熱除去系(原子炉停止時冷却系)の設計値及び運転停止1日後の原子炉水温の 実績値(43℃~51℃)を踏まえて設定				
	原子炉初期圧力	大気圧	原子炉の運転停止1日後の実績を設定				
	水源の温度	35℃	原子炉注水による原子炉水位維持の観点で厳しい高めの水温として,年間の気象条 件変化を包含する高めの水温を設定				
	起因事象	外部電源喪失	送電系統又は所内主発電設備の故障等によって,外部電源が喪失するものとして設 定				
事故条件	安全機能の喪失に 対する仮定 全交流動力電源喪失		全ての非常用ディーゼル発電機及び高圧炉心スプレイディーゼル発電機の機能喪 失を想定				
	外部電源	外部電源なし	起因事象として外部電源の喪失を設定				

※:原子炉停止1日後とは全制御棒全挿入からの時間を示している。通常停止操作において原子炉の出力は全制御棒全挿入完了及び発電機解列以前から徐々に低下させるが、崩壊熱評価はスクラ ムのような瞬時に出力を低下させる保守的な計算条件となっている。

	項目	主要評価条件	条件設定の考え方
関連する	低圧代替注水系(常設)による 原子炉注水流量	27m³∕h	崩壊熱による蒸発量と同等の注水流量を設定
<ul><li>○機器条件</li><li>●</li></ul>	残留熱除去系海水系	熱交換器1基当たり約 43MW(原子炉冷却材温度 100℃,海水温度32℃に おいて)	設計値を設定(熱交換器は緊急用海水系と共用)
重大事故等対策に関連する操作条件	低圧代替注水系(常設)起動準備操 作	事象発生から 25 分後	常設代替高圧電源装置からの受電後であること,及び低圧代替注水系(常設)の操 作時間を考慮して設定
	残留熱除去系(原子炉停止時冷却 系)による原子炉除熱	事象発生から 4 時間 10 分 後	残留熱除去系の操作時間を考慮して設定



*開操作に当たって格納容器隔離信号のリセットが必要な弁

第5.2-1図 全交流動力電源喪失時の重大事故等対策の概略系統図(1/2) (原子炉減圧及び残留熱除去系(低圧注水系))

5.2 - 22



第5.2-1図 全交流動力電源喪失時の重大事故等対策の概略系統図(2/2) (残留熱除去系(原子炉停止時冷却系))

5.2 - 23



第5.2-2図 全交流動力電源喪失時の対応手順の概要

経過時間(時間) 備考 1 2 4 実施箇所・必要要員数 【 】は他作業後 移動してきた要員 ↓ 事象発生 √ 約10分 プラント状況判断 中央監視 運転操作指揮 責任者 発電長 又 13 分 全交流動力電源喪失の確認 操作項目 操作の内容 副発電長 课标场作用课稿优 補仕 24 分 低圧代替注水系(常設)準備完了 ▼ 4時間10分 災害対策本部連絡 発電所外部連絡 通報連絡者 炎害対策要員 残留熱除去系 (原子炉停止時冷却系) √ 約 1.1 時間 原子炉水温 100℃到達 運転開始 運転員 運転員 (理場) 重大事故等対応要員 (現場) (中央制御室) ●外部電源喪失の確認 1人 状況判断 10分 A ●非常用ディーゼル発電機等の自動起動失敗確認 ●高圧炉心スプレイ系ディーゼル発電機の手動起動操作(失敗) [1人] 全交流動力電源喪失の確認 ●非常用ディーゼル発電機等の手動起動操作(失敗) 2分 常設代替高圧電源装置に。 る緊急用母線受電操作 [1人] ●常設代替高圧電源装置2台起動及U緊急用母線受電操作 4分 ●原子炉注水、格納容器スプレイ及び原子炉減圧に必要な負荷の電源切替操作 4分 低圧代替注水系(常設)の起 動準備操作 [1人] ●低圧代替注水系(常設)による原子炉注水 系統構成 3分 [1人] 35分 常設代替高圧電源装置に。 ●非常用母線受電準備 る非常用母線の受電準備操 2人 B, C ●非常用母線受電準備 70分 逃がし安全弁(自動減圧機 能)による原子炉の低圧状態 【1人】 1分 ●逃がし安全弁(自動減圧機能)の開放操作 12:55 【1人】 原子炉水位の調整操作 ●低圧代替注水系(常設)による原子炉注水の調整操作 原子炉水位を通常運転水位付近に維持 8分 ●常設代替高圧電源装置3台追加起動操作 常設代替高圧電源装置に [1人] る非常用母線の受電操作 ●非常用母親受常 5分 【1人】 10分 ●原子炉保護系母線の復旧準備操作 【2人】 85 分 原子炉保護系母線の受電操作 ●原子炉保護系母線の復旧操作 B ( [1人] ●原子炉保護系母線の復旧操作 40分 ●残留熟除去系(原子炉停止時冷却系)の起動準備 6分 残留熱除去系(A) 残留熱除去系(原子炉停止時 冷却系)による原子炉冷却 [1人] 4分 ●残留熱除去系海水系の起動操作 ●残留熱除去系(原子炉停止時冷却系)運転による原子炉状態監視 適宜実施 使用済燃料プールの 使用済燃料ブールの除 熱機能が喪失した場合 でも、ブール水温度が 80℃に到達するまでに は1日以上の時間余裕 があるため、本操作は 対応可能な要員にて実 施する 使用済燃料プールの冷却操作 ●使用済燃料プールの冷却操作 商する。 ●非常用ディーゼル発電機の機能回復 解析上考慮しない 対応可能な要員に 実施 交流電源の回復操作 ●外部電源の機能回復 1人 2人 B, C 必要人員数 合計 A

停止中の全交流動力電源喪失

第5.2-3図 全交流動力電源喪失時の作業と所要時間



第5.2-4図 全交流電源喪失における原子炉水位の変化





安定停止状態について(運転停止中 全交流動力電源喪失)

運転停止中の全交流動力電源喪失時の安定停止状態については以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備及び重大事 故等対処設備を用いた炉心冷却により,炉心冠 水が維持でき,また,冷却のための設備がその 後も機能維持できると判断され,かつ,必要な 要員の不足や資源の枯渇等のあらかじめ想定さ れる事象悪化のおそれがない場合,安定状態が 確立されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

崩壊熱除去機能喪失により原子炉水温が上昇し,沸騰開始による原 子炉水位の低下が始まるが,常設代替高圧電源装置により非常用母線 への交流電源の供給を開始した後,低圧代替注水系(常設)により原 子炉冷却材の蒸発量に応じて原子炉注水を実施することによって,原 子炉水位を通常運転水位付近で維持することにより,炉心の冷却が維 持される。

その後,残留熱除去系(原子炉停止時冷却系)により原子炉除熱を 開始することで冷温停止状態に移行することができ,原子炉安定停止 状態が確立される。

重大事故等対策時に必要な要員は確保可能であり,また,必要な水 源,燃料及び電源を供給可能である。

【安定停止状態の維持について】

上記の燃料損傷防止対策により安定停止状態を維持できる。

また,残留熱除去系の機能を維持し,除熱を行うことにより,安定 停止状態後の更なる除熱が可能となる。

# 評価条件の不確かさの影響評価について(運転停止中 全交流動力電源喪失)

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 全交流動力電源喪失)(1/3)

項目		評価条件(初期,事故及び機器条件)の不確かさ		「証価冬仲設定の考え古	運転昌笠の撮作時間に長うる影響	<b>証価項目となるパラメータに与うる影響</b>	
		評価条件	最確条件	計画未住成足の与ん力	連転員寺の操作時间に子んる影響	計画項目となるパクク クに子える影響	
初期条件	燃料の崩壊熱	約 18.8MW (ANSI/ANS-5.1-1979) (原子炉停止後1日)	18MW 以下 (実績値)	停止後の時間について は,停止後の時間が短く なるように1日後の状態 を想定	最確条件では評価条件で設定している燃料の 崩壊熱より小さくなるため,原子炉水温の上 昇は緩やかになるが,注水操作や給電操作は 崩壊熱に応じた対応をとるものではなく,全 交流動力電源の喪失による異常の認知を起点 とする操作であるため,運転員等操作時間に 与える影響はない。	最確条件では評価条件で設定している燃料の崩壊熱より小さくなるため、原子炉水温上昇及び原子炉水位低下速度は緩やかになることから、評価項目となるパラメータに対する余裕は大きくなる。逆に原子炉停止後の時間が短く、燃料の崩壊熱が大きい場合は注水までの時間余裕が短くなる。原子炉停止から12時間後(POS-S原子炉冷温停止への移行状態)の燃料の崩壊熱によって原子炉冷却材温度が100℃に到達するまでの時間余裕が約0.9時間であることに対し、事象発生から25分経過した時点で低圧代替注水系(常設)を起動し、原子炉注水準備操作を行い原子炉冷却材の蒸発量に応じて原子炉注水を実施することによって、原子炉水位を通常運転水位付近で維持することができるため、原子炉水位が必要な遮蔽を確保できる水位(必要な遮蔽の目安とした10mSv/hが確保される水位)を下回ることはなく、評価項目となるパラメータに与える影響はない。	
	原子炉初期水温	52°C	約 43℃~51℃ ^{**1} (実績値)	残留熱除去系(原子炉停 止時冷却系)の設計値及 び運転停止1日後の原子 炉水温の実績値(43℃~ 51℃)を踏まえて設定	最確条件では評価条件で設定している原子炉 初期水温より低くなるため、時間余裕が長く なることが考えられるが、注水操作や給電操 作は原子炉水温に応じた対応をとるものでは なく、全交流動力電源の喪失による異常の認 知を起点とする操作であるため、運転員等操 作時間に与える影響はない。	最確条件では評価条件で設定している原 子炉初期水温より低くなることから,原 子炉冷却材の沸騰開始までの時間余裕が 長くなり,評価項目となるパラメータに 対する余裕は大きくなる。	
	原子炉初期水位 通常運転水位 通常運転水位以上 原子炉 位付近		原子炉停止初期の通常水 位付近にある状態を想定	最確条件では評価条件で設定している原子炉 初期水位より高くなるため,燃料有効長頂部 まで水位が低下する時間は長くなるが,注水 操作や給電操作は原子炉水位に応じた対応を とるものではなく,全交流動力電源の喪失に よる異常の認知を起点とする操作であるた め,運転員等操作時間に与える影響はない。	最確条件では評価条件で設定している原 子炉初期水位より高くなるため,燃料有 効長頂部まで水位が低下する時間は長く なることから,評価項目となるパラメー タに対する余裕は大きくなる。		

※1:過去のプラント停止操作実施時の全制御棒全挿入から約24時間経過後の原子炉水温の実績データ。

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 全交流動力電源喪失)(2/3)

	тя н	評価条件(初期,事故及	び機器条件)の不確かさ	萩年冬仲乳ウの老さ士	、安む日体の思いたよる影響		
項目		評価条件	最確条件	許恤未忤故足の考え方	連転員寺の操作時间に子える影響	評価項目となるハノメータに与える影響	
	原子炉初期圧力	原子炉初期圧力 大気圧		原子炉停止から1日後の 原子炉圧力を想定	最確条件は評価条件と同様であることから, 事象進展に与える影響はなく,運転員等操作 時間に与える影響はない。 仮に,原子炉圧力が大気圧より高い場合は, 沸騰開始時間が遅くなり,水位低下速度は緩 やかになるが,注水操作や給電操作は崩壊熱 に応じた対応をとるものではなく,全交流動 力電源の喪失による異常の認知を起点とす る操作であるため,運転員等操作時間に与え る影響はない。	最確条件と評価条件は同様であることか ら、事象進展に与える影響はなく、評価 項目となるパラメータに与える影響はな い。 仮に、原子炉圧力が大気圧より高い場合 は、沸騰開始時間が遅くなり、水位低下 速度は緩やかになることから、評価項目 となるパラメータに対する余裕は大きく なる。	
初期条件	原子炉圧力容器 の状態	原子炉圧力容器未開放	事故事象毎	炉心の崩壊熱及び保有 水量の観点から設定	原子炉圧力容器が未開放の場合は,評価条件 と同様であることから,事象進展に与える影響はなく,運転員等操作時間に与える影響は ない。また,原子炉圧力容器が開放の場合は, 原子炉減圧操作が不要となるが,事象進展に 与える影響は小さく,運転員等操作時間に与 える影響はない。	原子炉圧力容器が未開放の場合は、評価 条件と同様であることから、事象進展に 与える影響はなく、評価項目となるパラ メータに与える影響はない。 また、原子炉圧力容器が開放の場合は、 原子炉減圧操作が不要となるが、事象進 展に与える影響は小さく、評価条件とな るパラメータに与える影響は小さい。	
	外部水源の温度	35℃	35℃以下	原子炉注水による原子 炉水位維持の観点で厳 しい高めの水温として、 年間の気象条件変化を 包含する高めの水温を 設定		最確条件とした場合には,評価条件で設 定している外部水源の温度よりも低くな る可能性があるため,原子炉注水後の原 子炉水位低下速度が遅くなることが考え られるが,その影響は小さく,評価項目 となるパラメータに与える影響は小さ い。	
	外 部 水 源 の 容 量	約 9,300m ³	9,300m ³ 以上 (淡水貯水池: 4300m ³ +代替淡水 貯槽:5000m ³ )	淡水貯水池及び代 替淡水貯槽の管理 下限値を設定	最確条件は評価条件と同様であることから, 事象進展に与える影響はなく,運転員等操作 時間に与える影はない。	_	
	燃料の容量	約 800kL	軽油貯蔵タンク: 800kL	軽油貯蔵タンクの 管理下限値を設定	最確条件とした場合には,解析条件よりも燃料容量の余裕が大きくなる。また,事象発生 直後から最大負荷運転を想定しても燃料は 枯渇しないことから,運転員等操作時間に与 える影響はない。	_	

※2:原子炉停止直後や原子炉圧力容器耐圧試験実施時等の特殊な場合を除く。

添付 5.2.2-2

第1表	評価条件を最確条件と	した場合の運転員の	の操作時間及び評価項目と	こなるパラメー	- タに与える影響	(運転停止中	全交流動力電源喪失)	(3/3)
-----	------------	-----------	--------------	---------	-----------	--------	------------	-------

	тя п	評価条件(初期,事故及	び機器条件)の不確かさ	萩年を仲凯ウの老さ士	でも、日本の根(には明)にたらて影響	萩江西口 しわて パニ ひ たたらて 彫郷	
	項日	評価条件	最確条件	評価栄件設定の考え方	連転員寺の傑作時间に子える影響	評価項目となるハブメータに与える影響	
事故条件	起因事象	外部電源喪失	外部電源喪失	起因事象として外部電源 喪失が発生するものとし て設定	- 旦破久仲し河江久仲は田祥づちてこしみご	<u>見破タ供し</u>	
	安全機能の 喪失に対する仮定	非常用交流電源喪失	非常用交流電源喪失	外部電源喪失時に非常用 ディーゼル発電機及び高 圧炉心スプレイ系ディー ゼル発電機が機能喪失す るものとして設定	取確采件と評価条件は回体であることから, 事象進展に与える影響はなく,運転員等操作 時間に与える影響はない。	最確条件と評価条件は同様であること; ら,事象進展に与える影響はなく,評価; 目となるパラメータに与える影響はない	
	外部電源	外部電源なし	事故事象毎	起因事象として,外部電 源が喪失することを想定	外部電源喪失は起因事象として設定していることから,外部電源がある場合については 考慮しない。	外部電源喪失は起因事象として設定して いることから,外部電源がある場合につい ては考慮しない。	
機	低 圧 代 替 注 水 系 (常設)の流量	27m ³ ∕h	27m³∕h	崩壊熱による蒸発量と同 等の注水流量を設定	最確条件と評価条件は同様であることから, 事象進展に与える影響はなく,運転員等操作 時間に与える影響はない。	最確条件と評価条件は同様であることか ら、事象進展に与える影響はなく、評価項 目となるパラメータに与える影響はない。	
器条件	残留熱除去系 (原子炉停止 時冷却モード 系)	熱交換器 1 基当たり約 43MW(原子炉冷却材温度 100℃,海水温度 32℃に おいて)	熱交換器 1 基当たり約 43MW(原子炉冷却材温 度 100℃,海水温度 32℃ において)	残留熱除去系の設計値と して設定	最確条件と評価条件は同様であることから, 事象進展に与える影響はなく,運転員等操作 時間に与える影響はない。	最確条件と評価条件は同様であることか ら、事象進展に与える影響はなく、評価項 目となるパラメータに与える影響はない。	

	第 2 表	運転員等操作時間に与える影	響,評価項目となるパラ)	メータに与える影響及び操作時間余裕(1/2)
--	-------	---------------	--------------	------------------------

		評価	条件(操作条件)			「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一		
	項目	評価上の 操作開始 条件	評価条件設定の 考え方	操作の不確かさ要因	運転員等操作時間に与える 影響	計価項目となるパ ラメータに与える 影響	操作時間余裕	訓練実績等
操作条件	常源装ひて着高ら代設) に大学権 による の代 で で で で で で で で で で で の で で で で で の で で の で で の で の の で の の で の の の の で の の の の の の の の の の の の の の の の の の の の	低注設原水象ら代(よ炉:生分後替常る注事か後	状況判断,全交流動 力電源喪失の判断, 常設代替高圧電源装 置からの受電,及び 低圧代替注水系(常 設)の間 を考慮して 設定	【認知】 中央制御室にて外部電源受電及び非常 用ディーゼル発電機等の電源回復がで きない場合,早期の電源回復不可と判 断し,これにより常設代替高圧電源装 置からの受電,及び低圧代替注水系(常 設)の準備を開始する手順としている。 事象判断の時間として10分を想定して おり,全交流動力電源喪失時に交流電 源及び注水手段の確保の必要性を認知 することは容易であることから,認知 遅れにより操作時間に与える影響はない。 【要員配置】 中央制御室での操作のみであり,運転 員は中央制御室に常駐していることか ら,操作時間に与える影響はない。 【移動】 中央制御室での操作のみであり,運転 員は中央制御室に常駐していることか ら,操作時間に与える影響はない。 【移動】 中央制の時間に与える影響はない。 【操作所要時間】 操作所要時間は1分単位で設定してお り,実際の操作時間は解析上の想定時 間よりも早くなることから,操作開始 時間に与える影響はない。 【他の並列操作の有無】 当該操作に対応する運転員に他の並列 操作は起く,操作開始時間に与える影響 はない。	低圧代替注水系(常設)の起 動操作は,常設代替交流電源 設備からの受電操作と同時 に実施するため,受電操作の 影響を受けるが,実際の操作 時間が解析上の操作開始時間とほぼ同等であり,操作開 始時間に与える影響は小さ い。	実際の操作開始時 間はぼ同等、評価 ととから、 目となるパラメー タに与える 影響は 小さい。	原運転ので、 原転ののでで、 原本がで、 「運転ので、 で、 一本で、 一本で、 一本で、 一本で、 一本で、 一本で、 一本で、	常設備はなる績るま水作なる績る見いた。 常設備は、とていた。 た系は、全球で、 た系は、とこは、 で転し調査でで、 でで、 でで、 でで、 でで、 で、 で、 で、 で、 で、 で、 で、

	項目		評価条件(操作条件) 評価条件設定の考え方	操作の不確かさ要因	運転員等操 作時間に与 える影響	評価項目となるパラメータ に与える影響	操作時間余裕	訓 練 実 績 等
操作条件	残 留 熱 除 去 系(原子炉停 止時冷却系) 運転操作	事 象 発 生 から 4時間 10 分後	状況判断,全交流動力電源喪失の 判断,及び常設代替高高電源源装置 からの受電,常設代格替高度電源源 置ながし安全がの自動 による原子炉の低圧 による原子がの低 に に た た 、 た た た た た た た た た た た た た た た	残留熱除去系(原子炉 停止時冷却系)の運転 操作までの時間は,事 象発生から約3時間55 分あり,十分な時間余 裕がある	_			中 け シ て 制 作 ル レ 妻 穂 た の し ま 制 他 た レ 男 穂 た し ま し ま し む ち に で し こ 、 の で し こ 、 の で し こ 、 の で こ ろ 、 で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ の で こ こ こ 意 転 転 む し し 訓 施 施 を む こ の で こ こ こ 意 転 転 む に で こ こ こ 意 転 転 能 た こ で こ こ 意 転 転 能 た こ で 運 可 記 い で で 正 で 正 の で こ こ こ 意 転 能 能 た こ の で こ こ こ 意 転 能 能 む た 。 で 運 可 こ の で こ の で こ の こ こ こ 意 転 能 む た 。 で こ こ こ こ こ こ こ こ こ こ こ こ の で こ の で こ の で こ の で 二 の で の で の で つ で こ つ で で こ の つ て が で つ の つ て の つ つ ろ つ こ つ ろ つ つ こ つ つ つ こ つ つ つ こ つ つ つ こ つ つ つ こ つ つ つ こ つ つ つ こ つ つ つ つ つ つ つ つ つ つ つ つ つ

第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(2/2)

7日間における水源の対応について

(運転停止中 全交流動力電源喪失)

1. 水源に関する評価

①淡水源(有効水量)

- •代替淡水貯槽:約4,300m³
- 淡水貯水池 :約 5,000m³ (約 2,500m³×2 基)
- 2. 水使用パターン

① 低圧代替注水系(常設)による原子炉注水

事象発生 1.1 時間後,崩壊熱に相当する流量(最大約 27m³/h) で,代替淡水貯槽を水源とした低圧代替注水系(常設)による原 子炉注水を実施する。

残留熱除去系による原子炉注水が開始される事象発生後約 4 時間 10 分後,低圧代替注水系(常設)による原子炉注水を停止する。

3. 時間評価

原子炉注水によって、代替淡水貯槽の水量は減少する。

事象発生後4時間10分までに残留熱除去系(原子炉停止時冷却系) の運転を再開し,低圧代替注水系(常設)による原子炉注水を停止 するため,代替淡水貯槽の水量の減少は停止する。

この間の代替淡水貯槽の使用水量は合計約 90m³である。

4. 水源評価結果

時間評価の結果から、7日間の対応において合計約 90m³必要とな

### 添付 5.2.3-1

るが,代替淡水貯槽に合計約4,300m³及び淡水貯水池に約5,000m³ の水を保有することから必要水量を確保可能であり,安定して冷却 を継続することが可能である。 7日間における燃料の対応について

## (運転停止中 全交流動力電源喪失)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものとし

## て評価する。

時系列	合計	判定
常設代替高圧電源装置 5 台起動 (燃料消費率は保守的に定格出力運転時を想定) 420.0L/h(燃料消費率)×168h(運転時間)×5 台(運転台数) =約 352.8kL	7日間の軽 油消費量 約352.8kL	軽油貯蔵タ ンクの容量 は約 800kL であり,7 日間対応可 能

## 常設代替交流電源設備の負荷

### (運転停止中 全交流動力電源喪失)

主要負荷リスト

## 【電源設備:常設代替高圧電源装置】

起 動 順 序	主要機器名称	負 荷 容 量 (kW)	負荷起動時の最 大負荷容量 (k₩)	定常時の連続運 転負荷容量 (k₩)
D	緊急用母線自動起動負荷 ・緊急用直流125V充電器盤 ・その他負荷	24.0 35.6	124.3	59.6
2	常 設 低 圧 代 替 注 水 系 ポ ン プ	190.0	544.0	249.6
3	常 設 低 圧 代 替 注 水 系 ポ ン プ ** 1	190.0	734.0	439.6
٩	非常用母線2C自動起動負荷 ・直流125V充電器盤2A ・非常用照明 ・120VAC計装用電源2A ・その他負荷	47.1 89.0 28.6 224.5	875.9	828.8
5	非常用母線2D自動起動負荷 ・直流125V充電器盤2B ・非常用照明 ・120VAC計装用電源2B ・その他負荷	35.9 71.2 102.1 103.9	1,165.8	1,141.9
6	非常用ガス再循環系ファン 非常用ガス処理系ファン その他負荷 停止負荷	55.0 7.5 78.7 - 54.3	1,446.4	1,228.8
Ø	中央制御室空調ファン 中央制御室非常用循環ファン その他負荷	45.1 7.5 165.1	1,808.7	1,446.5
8	蓄電池室排気ファン その他負荷	7.5 153.0	2,026.5	1,607.0
9	原 子 炉 保 護 系 電 源 装 置 2 A 原 子 炉 保 護 系 電 源 装 置 2 B	45.1 45.1	1,932.8	1,697.2
10	残 留 熱 除 去 系 海 水 系 ポ ン プ	871.0	2,894.2	2,568.2
11)	残留熱除去系海水系ポンプ	871.0	3,765.2	3,439.2
12	残留熱除去系ポンプ その他負荷	651.1 2.2	4,863.6	4,092.5
(3	停止負荷 常設低圧代替注水系ポンプ2台	- 380	_	3,712.5
(4)	緊 急 用 海 水 ポ ン プ そ の 他	510.0 10.0	5,048.7	4,232.5
15	代 替 燃 料 プ ー ル 冷 却 系 ポ ン プ	22.0	4,312.0	4,254.5



※1:常設低圧代替注水系ボンプ1台でも崩壊熱による蒸発を上回る注水流量を確保可能 ※2:常設代替高圧電源装置定格出力運転時の容量(1,380kW×運転台数=最大容量) ※3:常設代替高圧電源装置定格出力運転時の80%の容量(1,380kW×0.8×運転台数=連続定格容量) ※4:非常用母線の負荷への給電に伴い,負荷容量が増加するため,常設代替高圧電源装置を3台追加起動する

添付 5.2.5-1

### 5.3 原子炉冷却材の流出

- 5.3.1 事故シーケンスグループの特徴、燃料損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「原子炉冷却材の流出」において,燃料損傷防 止対策の有効性を確認する事故シーケンスは,「1.2 評価対象の整理及び 評価項目の設定」に示すとおり,①「原子炉冷却材の流出(RHR切替時 のLOCA)+崩壊熱除去・炉心冷却失敗」,②「原子炉冷却材の流出(C UWブロー時のLOCA)+崩壊熱除去・炉心冷却失敗」,③「原子炉冷却 材の流出(CRD点検時のLOCA)+崩壊熱除去・炉心冷却失敗」,④「原 子炉冷却材の流出(LPRM点検時のLOCA)+崩壊熱除去・炉心冷却 失敗」である。

(2) 事故シーケンスグループの特徴及び燃料損傷防止対策の基本的考え方 事故シーケンスグループ「原子炉冷却材の流出」では、運転停止中に原 子炉冷却材圧力バウンダリに接続された系統から、運転員の誤操作等によ り系外への原子炉冷却材の漏えいが発生し、崩壊熱除去機能が喪失するこ とを想定する。このため、緩和措置がとられない場合には、原子炉冷却材 の流出及び燃料の崩壊熱による蒸発に伴い原子炉冷却材の保有水量が減少 し、燃料損傷に至る。

本事故シーケンスグループは,原子炉冷却材の漏えいによって燃料損傷 に至る事故シーケンスグループである。このため,運転停止中における燃 料損傷防止対策の有効性評価としては,注水機能に対する重大事故等対処 設備に期待することが考えられる。

したがって、本事故シーケンスグループでは、残留熱除去系(低圧注水 系)による原子炉注水や、原子炉圧力容器からの原子炉冷却材流出の停止

5.3-1

を行うことで必要量の原子炉冷却材を確保することによって,燃料損傷の 防止を図る。また,残留熱除去系(原子炉停止時冷却系)運転により最終 的な熱の逃がし場へ熱の輸送を行うことにより,原子炉除熱を行う。

(3) 燃料損傷防止対策

事故シーケンスグループ「原子炉冷却材の流出」において、燃料が著し い損傷に至ることなく、かつ、十分な冷却を可能とするため、残留熱除去 系による原子炉注水手段及び運転員による原子炉冷却材流出の停止手段を 整備する。これらの対策の概略系統図を第5.3-1図に、対応手順の概要を 第5.3-2図に、重要事故等対策の概要を以下に示す。また、重大事故等対 策における設備と操作手順の関係を第5.3-1表に示す。

本事故シーケンスグループにおける重要事故シーケンスにおいて,必要 な要員は初動対応要員7名である。

初動対応要員の内訳は,発電長1名,副発電長1名,運転操作対応を行う運転員3名,通報連絡等を行う災害対策要員2名である。必要な要員と 作業項目について第5.3-3図に示す。

なお,重要事故シーケンス以外の事故シーケンスについては,作業項目 を重要事故シーケンスと比較し,必要な要員を確認した結果,初動対応要 員7名で対処可能である。

a. 原子炉冷却材流出の確認

原子炉水位の低下及びサプレッション・プールの水位の上昇を,1時 間毎の中央制御室の巡視により確認する。

原子炉冷却材圧力バウンダリ外への原子炉冷却材流出を確認するため に必要な計装設備は,原子炉水位(広帯域,燃料域)等である。 b. 待機中残留熱除去系(低圧注水系)による原子炉注水

原子炉冷却材流出により低下した原子炉水位を回復するため,中央制 御室からの遠隔操作により残留熱除去系(低圧注水系)で待機中の残留 熱除去系ポンプを起動し,原子炉注水を実施する。これにより,原子炉 水位は回復する。

残留熱除去系(低圧注水系)の起動確認に必要な計装設備は,残留熱除去系系統流量等である。

c. 原子炉冷却材漏えい箇所の隔離

原子炉冷却材圧力バウンダリに接続された系統から漏えいしている箇 所の隔離を行うことで,原子炉冷却材流出が停止することを確認する。 原子炉冷却材圧力バウンダリ外への原子炉冷却材流出停止を確認する ために必要な計装設備は,原子炉水位(広帯域,燃料域)等である。

### 5.3.2 燃料損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、事象認知 までに要する時間(点検作業に伴う原子炉冷却材の流出事象は認知が容易) や原子炉冷却材の流出の観点から、「原子炉冷却材の流出(RHR切替時の LOCA)+崩壊熱除去・炉心冷却失敗」である^{*}。

残留熱除去系は通常,2系統あるうち1系統を用いて崩壊熱除去を実施 しており,作業や点検等に伴い運転号機の切替を実施する場合がある。運 転号機の切替に当たって,原子炉冷却材が系外に流出しないように系統構 成を十分に確認して行うが,操作の誤り等によって原子炉冷却材が系外に

5.3-3

流出する事象を想定している。

「RHR切替時のLOCA」は原子炉冷却材流出事象発生時の認知が他 の作業等よりも困難な事象であり,原子炉水位が通常運転水位であるプラ ント状態(以下「POS」という。)を想定することにより,時間余裕の観 点においても最も厳しい想定となる。なお,原子炉水位が通常運転水位の 場合は原子炉水位(広帯域,燃料域)による警報や緩和設備の自動起動に 期待できることも考えられるが,評価上これらに期待しない場合でも評価 項目を満足することを確認することにより,運転停止中の他のプラント状 態においても評価項目を満足できる。

本重要事故シーケンスでは,操作の誤り等による原子炉冷却材の系外流 出により原子炉水位が低下するが,燃料有効長頂部の冠水及び未臨界を維 持できることを評価する。さらに,原子炉水位が放射線の遮蔽が維持され る水位を確保できることを評価する。

また,評価条件の不確かさの影響評価の範囲として,本重要事故シーケンスにおける運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する。

 ※:RHR切替時のLOCAによる流出は他の原子炉冷却材流出事象と比べて流 出量が大きい(付録1 別添 東海第二発電所 確率論的リスク評価(PR A)について 添付資料3.1.2.3-13 LOCAにおける時間余裕の評価につい て)

(添付資料 5.3.1, 5.3.2)

(2) 有効性評価の条件

本重要事故シーケンスに対する初期条件も含めた主要な評価条件を第 5.3-2表に示す。また、主要な評価条件について、本重要事故シーケンス 特有の評価条件を以下に示す。

a. 初期条件

(a) 原子炉圧力容器の状態

原子炉圧力容器の未開放時について評価する。原子炉圧力容器の開 放時については、遮蔽維持水位到達までの時間余裕の観点で厳しくな る未開放時の評価に包絡される。なお、原子炉未開放時においては原 子炉水位による警報発生や緩和設備の自動起動等に期待できる場合が あるが、本評価ではこれらに期待しないこととする。

(b) 原子炉初期水位及び原子炉初期水温

事象発生前の原子炉の初期水位は通常運転水位とする。また,原子 炉初期水温は残留熱除去系(原子炉停止時冷却系)の設計温度である 52℃とする。

- b. 事故条件
- (a) 原子炉冷却材のサプレッション・プールへの流出流量

残留熱除去系の運転号機の切替時の原子炉冷却材流出を想定する。 具体的には,待機側の残留熱除去系の系統構成の際,原子炉停止時冷 却系流量調整弁の開操作が不十分な状態で残留熱除去系ポンプを起動 することにより,残留熱除去系ポンプミニマムフロー弁がインターロ ックにより自動開となり,開固着することによって原子炉冷却材がサ プレッション・プールへ流出することを想定し,流出流量は45m³/h とする。

(b) 崩壊熱による原子炉水温の上昇及び蒸発について

本評価事象では原子炉冷却材の流出流量を厳しく評価するため,残 留熱除去系(原子炉停止時冷却系)は運転状態を想定しており,崩壊 熱除去機能は維持されていることから,崩壊熱による原子炉水温の上 昇及び蒸発については考慮しない。

(c) 外部電源

外部電源は使用できるものと仮定する。

外部電源がない場合は、原子炉保護系電源の喪失により残留熱除去 系(原子炉停止時冷却系)の取水ラインの格納容器隔離弁が閉となり、 原子炉冷却材流出が停止することから、外部電源がある場合の方が、 原子炉冷却材流出の観点で厳しくなる。

- c. 重大事故等対策に関連する機器条件
- (a) 残留熱除去系(低圧注水系)による原子炉注水流量
   残留熱除去系(低圧注水系)による原子炉注水流量は 1,605m³/h
   を設定するものとする。
- d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として、「1.3.5 運転員等の操作時間に対 する仮定」に示す分類に従って以下のとおり設定する。

(a) 残留熱除去系(低圧注水系)による原子炉注水は,原子炉水位低下 確認後,事象発生から2時間後に実施するものとする。また,運転 中の残留熱除去系(原子炉停止時冷却系)からの漏えい箇所の隔離 は,残留熱除去系(低圧注水系)による原子炉水位の回復後に実施 する。

(添付資料 5.3.2)

(3) 有効性評価の結果

本重要事故シーケンスの事象進展を第5.3-2 図に,原子炉水位の推移を 第5.3-4 図に,原子炉水位と線量率の関係を第5.3-5 図に示す。

a. 事象進展

事象発生後,原子炉冷却材が流出することにより,原子炉水位は低下 し始めるが,原子炉水位の低下により異常事象を認知し,事象発生から 2時間経過した時点で,待機中の残留熱除去系ポンプを起動し,残留熱 除去系(低圧注水系)による原子炉注水を行う。

その後は原子炉冷却材の漏えい個所を隔離することによって流出を止め,また,残留熱除去系(原子炉停止時冷却系)の運転により崩壊熱除 去機能を回復する。

原子炉圧力容器は未開放であり、必要な遮蔽が維持できる水位(必要な遮蔽の目安とした 10mSv/h^{*}が維持される水位)である燃料有効長頂部の約1.7m を下回ることがないため、放射線の遮蔽は維持される。

※:必要な遮蔽の目安は緊急時の被ばく限度(100mSv)と比べ、十分余裕のあ る値 10mSv/hとする。この線量率となる水位は燃料有効長頂部の約 1.7m

上(通常運転水位から約3.6m下)である。

b. 評価項目等

原子炉水位は,第 5.3-4 図に示すとおり,燃料有効長頂部の約 2.1m 上まで低下するにとどまり,燃料は冠水維持される。

原子炉水位が燃料有効長頂部の約2.1m上の場合の線量率は約2mSv/h であり,必要な遮蔽の目安と考える10mSv/hと比べて低い値であること から,放射線の遮蔽は維持されている。

また,全制御棒全挿入状態が維持されているため,未臨界は確保されている。

原子炉水位回復後,残留熱除去系(原子炉停止時冷却系)の運転によ る崩壊熱除去機能を回復することで,安定状態を維持できる。

本評価では、「1.2.4.2 有効性を確認するための評価項目の設定」に 示す(1)から(3)の評価項目について、対策の有効性を確認した。

※:必要な遮蔽の目安は緊急作業時の被ばく限度(100mSv)と比べ、十分余裕のある値であり、かつ施設定期検査作業での原子炉建屋最上階における原子炉建屋現場作業の実績値(約3.5mSv/h)を考慮した値(10mSv/h)とする。この線量率となる水位は、有効燃料長頂部の約1.7m上(通常水位から約3.6m下)の位置である。

(添付資料 5.1.5, 添付資料 5.3.3)

5.3.3 評価条件の不確かさの影響評価

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与える 影響,評価項目となるパラメータに与える影響及び操作時間余裕を評価する ものとする。

本重要事故シーケンスは,事象進展が緩やかであり,運転員等操作である 待機中の残留熱除去系(低圧注水系)により,水位を回復させることが特徴 である。また,不確かさの影響を確認する運転員等操作は,待機中の残留熱 除去系(低圧注水系)による原子炉注水操作とする。

- (1) 評価条件の不確かさの影響評価
  - a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 5.3-2 表に示すとおりであり,それらの条件設定を設計値等,最確条件 とした場合の影響を確認する。また,評価条件の設定に当たっては,原 則,評価項目に対する余裕が小さくなるような設定としていることから, その中で事象進展に有意な影響を与えると考えられる事象発生前の原子 炉初期水温,原子炉初期水位及び原子炉圧力容器の状態,並びに原子炉 初期圧力に関する影響評価の結果を以下に示す。

(a) 運転員等操作時間に与える影響

初期条件の原子炉初期水温は,評価条件の52℃に対して最確条件は 約43℃~51℃であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している原子炉初期水温より低くなるため,時 間余裕が長くなることが考えられるが,原子炉冷却材流出の停止及び 注入操作は原子炉冷却材流出の認知を起点とする操作であるため,運 転員等操作に与える影響はない。

初期条件の原子炉初期水位及び原子炉圧力容器の状態については, 評価条件として設定した通常運転水位かつ原子炉圧力容器が閉鎖状態 に対し,最確条件は事故事象毎に異なる。原子炉圧力容器が開放状態 で,原子炉ウェル満水期間及び原子炉ウェル満水への移行期間,かつ プールゲートが閉状態の場合においては,評価条件よりも原子炉初期 水位が高くなるため時間余裕が長くなるが,残留熱除去系(低圧注水 系)による原子炉への注水操作及び原子炉冷却材流出の停止操作は原 子炉冷却材流出の認知を起点とする操作であるため,運転員等操作時 間に与える影響はない。また,プールゲートが開状態の場合は更に時 間余裕が長くなるが,同様の理由により運転員等操作時間に与える影響

初期条件の原子炉初期圧力は,評価条件の大気圧に対して最確条件 も大気圧であり,本評価条件の不確かさとして,最確条件とした場合, 評価条件と同様であることから,事象進展に与える影響はなく,運転

5.3-9

員等操作時間に与える影響はない。

(b) 評価項目となるパラメータに与える影響

初期条件の原子炉初期水温は,評価条件の52℃に対して最確条件は 約43℃~51℃であり,本評価条件の不確かさとして,最確条件とした 場合,評価条件で設定している原子炉初期水温より低くなることから, 原子炉水位の回復は早くなり,評価項目となるパラメータに対する余 裕は大きくなる。

初期条件の原子炉初期水位及び原子炉圧力容器の状態は,評価条件 の通常運転水位及び原子炉圧力容器未開放に対して最確条件は事故事 象毎に異なる。原子炉圧力容器が開放状態で,原子炉初期水位が原子 炉ウェル満水又は原子炉ウェル満水への移行期間,かつプールゲート が閉状態の場合,評価条件よりも原子炉初期水位が高くなるため,R HR切替時のLOCAにより遮蔽が維持される水位まで原子炉水位が 低下するまでの時間は約18.4時間となり,評価条件に比べて時間余裕 が長くなる。また,プールゲートが開状態の場合は更に時間余裕が長 くなることから,評価項目となるパラメータに与える余裕は更に大き くなるが,残留熱除去系(低圧注水系)による原子炉への注水操作及 び原子炉冷却材流出の停止操作は原子炉冷却材流出の認知を起点とす る操作であるため,評価項目となるパラメータに与える影響は小さい。

初期条件の原子炉初期圧力は,評価条件の大気圧に対して最確条件 も大気圧であり,本評価条件の不確かさとして,最確条件とした場合, 評価条件と同様であることから,事象進展に与える影響はなく,運転 員等操作時間に与える影響はない。 b. 操作条件

操作条件の不確かさとして,操作に係る不確かさを「認知」,「要員配 置」,「移動」,「操作所要時間」,「他の並列操作有無」及び「操作の確実 さ」の6要因に分類し,これらの要員が,運転員等操作時間に与える影 響を評価する。また,運転員等操作時間に与える影響が評価項目となる パラメータに与える影響を評価し,評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

操作条件の待機中の残留熱除去系(低圧注水系)の注水操作は,評 価上の操作開始条件として,事象発生から2時間後を設定している。 運転員等操作時間に与える影響として,原子炉水位の低下を確認した 際に原子炉注水の必要性を認知することは容易であり,評価では事象 発生から2時間後の原子炉注水操作開始を設定しているが,実際は運 転員の残留熱除去系(原子炉停止時冷却系)の運転号機の切替時のプ ラント状態確認による早期の認知に期待でき,その後速やかに原子炉 注水操作を実施するため,その開始時刻は早くなると考えられる。

操作条件の原子炉冷却材流出の停止操作は,操作条件の待機中の残 留熱除去系(低圧注水系)の注水操作の開始時間が早くなることに伴 い,当操作の開始時間が早くなる場合が考えられる。

(b) 評価項目となるパラメータに与える影響

操作条件の待機中の残留熱除去系(低圧注水系)の注水操作は,運 転員等操作時間に与える影響として,原子炉注水の開始が早くなる場 合は原子炉水位低下が抑制され,評価項目となるパラメータに与える 余裕は大きくなる。

操作条件の原子炉冷却材流出の停止操作は、運転員等操作時間に与

5.3-11

える影響として,原子炉冷却材流出の停止操作が早くなる場合は原子 炉水位の低下が抑制され,評価項目となるパラメータに対する余裕は 大きくなる。

(添付資料 5.3.4)

(2) 操作時間余裕の把握

操作遅れによる影響度合いを把握する観点から,評価項目となるパラメ ータに対して,対策の有効性が確認できる範囲内で操作時間余裕を確認し, その結果を以下に示す。

操作条件の待機中の残留熱除去系(低圧注水系)の注水操作について, 当該操作に対する時間余裕は,必要な遮蔽が確保される最低水位に到達す るまでに約2.3時間あり,これに対して,事故を認知して原子炉注水を開 始するまでの時間は2時間であることから,時間余裕がある。

操作条件の原子炉冷却材流出の停止操作について,残留熱除去系(低圧 注水系)により原子炉水位を回復させた後に実施する操作であるため,十 分な時間余裕がある。

(添付資料 5.3.4)

(3) まとめ

評価条件の不確かさの影響評価の範囲として,運転員等操作時間に与え る影響,評価項目となるパラメータに与える影響及び操作時間余裕を確認 した。その結果,評価条件等の不確かさを考慮しても操作時間に与える十 分な時間余裕を確保でき,評価項目となるパラメータに与える影響は小さ い。

この他、評価項目となるパラメータに対して、対策の有効性が確認でき

5.3-12

る範囲内において、操作時間に対して一定の時間余裕がある。

### 5.3.4 必要な要員及び資源の評価

(1) 必要な要員の評価

事故シーケンスグループ「原子炉冷却材の流出」において重大事故等対 策時に必要な要員は、「5.3.1(3) 燃料損傷防止対策」に示すとおり7名で ある。「6.2 重大事故等対策時に必要な要員の評価結果」で説明している 運転員及び災害対策要員の37名で対処可能である。

(2) 必要な資源の評価

事故シーケンスグループ「原子炉冷却材の流出」において,必要な水源, 燃料及び電源は,「6.1.2(2) 資源の評価条件」の条件にて評価している。 その結果を以下に示す。

a. 水源

残留熱除去系(低圧注水系)による原子炉注水については、必要な注 水量が少なく、また、サプレッション・プール水を水源とすることから、 水源が枯渇することはないため、7日間の対応が可能である。

b. 燃料

外部電源の喪失は想定していないが、燃料評価上は外部電源が喪失し 非常用ディーゼル発電機及び高圧炉心スプレイディーゼル発電機から電 源供給することを想定する。非常用ディーゼル発電機による電源供給に ついては、事象発生直後からの運転を想定すると、7 日間の運転継続に 約484.0kLの軽油が必要となる。高圧炉心スプレイ系ディーゼル発電機 による電源供給については、事象発生直後からの運転を想定すると、7 日間の運転継続に約130.3kLの軽油が必要となる。軽油貯蔵タンクに約 800kL の軽油を保有していることから,非常用ディーゼル発電機及び高 圧炉心スプレイ系ディーゼル発電機による電源供給について,7 日間の 継続が可能である。

(添付資料 5.3.5)

c. 電源

本重要事故シーケンスの評価では外部電源の喪失は想定していないが, 仮に外部電源が喪失して非常用ディーゼル発電機等からの電源供給を想 定した場合においても,重大事故等対策時に必要な負荷は,非常用ディ ーゼル発電機等の容量内に収まることから,電源供給が可能である。

5.3.5 結論

事故シーケンスグループ「原子炉冷却材の流出」では,残留熱除去系の運転号機の切替時の操作誤り等によって原子炉冷却材が系外に流出することで 原子炉圧力容器内の保有水量が減少し,燃料損傷に至ることが特徴である。 事故シーケンスグループ「原子炉冷却材の流出」に対する炉心損傷防止対策 としては,残留熱除去系(低圧注水系)による原子炉注水手段を整備してい る。

事故シーケンスグループ「原子炉冷却材の流出」の重要事故シーケンス「原 子炉冷却材の流出(RHR切替時のLOCA)+崩壊熱除去・炉心冷却失敗」 について,有効性評価を実施した。

上記の場合においても,残留熱除去系による原子炉注水を行うことにより, 燃料は露出することなく燃料有効長頂部は冠水しているため,燃料損傷する ことはない。

その結果、燃料有効長頂部の冠水、放射線の遮蔽の維持及び制御棒の全挿
入状態が維持されており未臨界の確保ができることから,評価項目を満足し ている。また,安定状態を維持できる。

評価条件の不確かさについて確認した結果,運転員等操作時間に与える影響及び評価項目となるパラメータに与える影響は小さい。また,対策の有効性が確認できる範囲内において,操作時間余裕について確認した結果,操作が遅れた場合でも一定の余裕がある。

重大事故等対策時に必要な要員は,運転員及び災害対策要員にて確保可能 である。また,必要な水源,燃料及び電源を供給可能である。

以上のことから,残留熱除去系による原子炉注水等の燃料損傷防止対策は, 重要事故シーケンスに対して有効であることが確認でき,事故シーケンスグ ループ「原子炉冷却材の流出」に対して有効である。

		重大事故等対処設備					
操作及び確認		常設設備	可搬型設備	計装設備			
原子炉冷却材流出の確認	・原子炉水位の低下及びサプレッション・プール	_	_	原子炉水位(広帯域,燃料域)			
	の水位の上昇を,1時間毎の中央制御室の巡視			原子炉水位(SA 広帯域, SA 燃料域)			
	により確認する。			サプレッション・プール水位			
待機中残留熱除去系(低圧注水	・原子炉冷却材流出により低下した原子炉水位を	【残留熱除去	_	原子炉水位(広帯域,燃料域)			
系)による原子炉注水	回復するため、中央制御室からの遠隔操作によ	系(低圧注水		原子炉水位(SA 広帯域, SA 燃料域)			
	り残留熱除去系(低圧注水系)で待機中の残留	系)】		【残留熱除去系系統流量】			
	熱除去系ポンプを起動し、原子炉注水を実施す						
	る。これにより、原子炉水位は回復する。						
原子炉冷却材漏えい箇所の隔離	・原子炉冷却材圧力バウンダリに接続された系統	_	_	原子炉水位(広帯域,燃料域)			
	から漏えいしている箇所の隔離を行うことで,			原子炉水位(SA 広帯域, SA 燃料域)			
	原子炉冷却材流出が停止することを確認する。						

第5.3-1表 原子炉冷却材の流出時における重大事故等対策について

【 】: 重大事故等対処設備(設計基準拡張)

	項目	主要評価条件	条件設定の考え方				
	原子炉圧力容器の状態	原子炉圧力容器未開放	原子炉水位が遮蔽水位に到達するまでの時間余裕の観点から最も厳しくなる,原子 炉圧力容器が未開放,かつ原子炉水位が通常水位の状態を想定				
初期条件	原子炉の初期水位	通常運転水位 (セパレータスカート下端 から+126cm)					
	原子炉の初期水温 52℃		残留熱除去系(原子炉停止時冷却系)の設計値及び運転停止1日後の原子炉水温の 実績値(43℃~51℃)を踏まえて設定				
	原子炉の初期圧力	大気圧	原子炉の運転停止1日後の実績を設定				
	原子炉冷却材のサプレッシ ョン・チェンバへの流出量	45m³∕h	残留熱除去系のミニマムフローラインの設計流量を設定				
事故条件	崩壊熱による原子炉水温の 上昇及び蒸発 は発生しない		原子炉冷却材の流出流量を厳しく評価するため,残留熱除去系(原子炉停止時冷却 系)は運転状態を想定している。このため,崩壊熱除去機能は喪失しないことから, 原子炉水温の上昇及び蒸発は発生しない。				
	外部電源あり		外部電源がない場合は,原子炉保護系電源の喪失により残留熱除去系(原子炉停止 時冷却系)の取水ラインの弁が閉となり,原子炉冷却材流出が停止することから, 原子炉冷却材流出の観点で厳しい外部電源ありを設定				

第5.3-2表 主要評価条件(原子炉冷却材の流出)(1/2)

第5.3-2表 主要評価条件(原子炉冷却材の流出)(2/2)

	項目	主要評価条件	条件設定の考え方
関連する機器条件	待機中の残留熱除去系(低圧 注水系)による原子炉への注 水流量	1,605m³∕h	残留熱除去系(低圧注水系)の設計値を設定
関連する操作	待機中の残留熱除去系(低圧 注水系)による原子炉注水	事象発生から2時間後	事象の認知及び操作の時間を基に、更に時間余裕を考慮して設定
操 年 対 策 に	原子炉冷却材流出の停止	_	残留熱除去系(低圧注水系)により原子炉水位を維持した状態での操作であり、十 分な時間余裕がある



第5.3-1図 原子炉冷却材の流出時の重大事故等対策の概略系統図(1/3)

(原子炉冷却材流出)



第5.3-1図 原子炉冷却材の流出時の重大事故等対策の概略系統図(2/3)

(残留熱除去系(低圧注水系))



第5.3-1図 原子炉冷却材の流出時の重大事故等対策の概略系統図(3/3) (漏えいの隔離操作及び残留熱除去系(原子炉停止時冷却系))



- ※1:残留熱除去系(原子炉停止時冷却系)の運転号機の切替時,原子炉停止時冷却系流量調整弁の開度が不十分な状態で待機中の残留熱除去系ポンプを起動することにより、ミニマムフロー弁が自動開となり、開固着することで原子炉冷却材がサプレッション・ プールに流出することを想定する(原子炉冷却材流出は45m³/h,原子炉水位の低下速度は1.5m/h)。実際は,残留熱除去系(原 子炉停止時冷却系)の運転号機の切替後にプラント状態(原子炉水位,原子炉水温等)を確認するため、早期に原子炉冷却材の 流出を確認することができる。
- ※2:原子炉水位の低下及びサプレッション・プール水位の上昇を、1時間毎の中央制御室の巡視により確認する。
- ※3:実操作においては、作業員の退避後に操作を実施する。
- ※4:注水前の原子炉水位は燃料有効長頂部+2.1m(原子炉水位低(レベル3)-2.4m)となる。
- ※5:現場作業員は、発電長のページングによる退避指示を確認後、退避する。なお、全ての現場作業員の退避が完了するまでの時間 は、1時間程度である。
- ※6:中央制御室において,原子炉水位(広帯域,燃料域)等により原子炉水位の回復を確認する。
- ※7:残留熱除去系(低圧注水系)により原子炉水位を維持した状態での操作であるため、十分な時間余裕がある。
- ※8:残留熱除去系の系統加圧ラインの手動弁を閉状態にする。

第5.3-2図 事故シーケンスグループ「原子炉冷却材の流出」の対応手順の概要

原子炉冷却材の流出															
r	(開始) 同時配容											ſ			
									0		1			3 4	備考
					1					1	1				
	実施箇所・必要要員数														
		【 】は他 移動してき	作業後 た要員				▼事条発生								
	責任者	発電長	1人	中央監視 運転操作指揮											
操作項目	補佐	副発電長	1人	運転操作指揮補佐	操作の内容						Ì	▲ #31#1#1 #71 % 7 % 12 ° 2 181	0		
	通報連絡者	災害対策要員	2人	災害対策本部連絡 発電所外部連絡									✓ 2時間 待機側の残留熱除去 及び原子炉冷却材流!	系(低圧注水系)による原子炉注水開始 出の原因調査/隔離操作開始	3
	運転員 (中央制御室)	運転員 (現場)		重大事故等対応要員 (現場)									♥約2.1時間 原子炉水位回	復,原子炉安定停止状態確認	
	-	2人 B, C		-	●運転中残留熱除去系(原子炉停止時冷却系)の停止操作		45 分								
	1人 A	-		-	●運転中残留熱除去系(原子炉停止時冷却系)の停止操作			9	9分						
残留熱除去系 (原子炉 停止時冷却系)の運転 号機の切替	【1人】 A	-		-	●待機中残留熱除去系を原子炉停止時冷却系へ系統構成/起動操作				20 分						残留熱除去系 (B)
	-	【2人】 B, C		-	●停止した残留熱除去系を低圧注水系へ系統構成	45 分		45 分							
	【1人】 A	-		-	●停止した残留熱除去系を低圧注水系への系統構成					7分					
状況判断	【1人】 A	-		-	●原子炉冷却材流出の確認							10 分			残留熱除去系 (A)
	【1人】 A	-		-	●原子炉水位,温度監視								適宜監視		
符機中残留熱除去系 (低圧注水系)による 原子炉注水	【1人】	_		_	●待機中残留熱除去系(低圧注水系)による原子炉注水							5分			
	A			●待機中残留熱除去系(低圧注水系)による原子炉注水の調整操作	F機中残留熱除去系(低圧注水系)による原子炉注水の調整操作 原子炉水位を通常)				通常運転水位付近で維持	Amonson (A)					
原子炉冷却材         [1人]         _         _         ●原子炉冷却材流出の原因調査/隔離操作/残留熱除去系ポンプの 停止				,					原因調查後,隔離操作。	/ 残留熱除去系ボンプの停止を実施					
必要要員数 合計 A 2人 A, C 0人															

第5.3-3図 原子炉冷却材の流出時の作業と所要時間



(燃料有効長頂部からの水位)





原子炉圧力容器開放時における運転停止中の線量率評価について

1. はじめに

運転停止中の原子炉における燃料損傷防止対策の有効性評価の評価 項目として、「放射線遮蔽が維持される水位を確保すること」がある。

運転停止中の「崩壊熱除去機能喪失」,「全交流電源喪失」において は、原子炉圧力容器未開放時を想定しており、原子炉上部での作業は 不要であることに加えて、事象の認知は容易でありかつ事象発生から 沸騰による水位低下が開始されるまでの時間余裕は1.1時間程度ある ため、作業員が現場にいた場合も退避することが可能である。また、 「原子炉冷却材の流出」においても原子炉圧力容器未開放時を想定し ており、原子炉上部での作業は不要であることに加えて、事象の認知 は容易であり、必要な遮蔽が確保される最低水位に到達するまでに2.3 時間程度あるため、作業員が現場にいた場合も退避することが可能で ある。

(添付資料5.1.6)

運転停止中の「原子炉冷却材の流出」の事故シーケンスでは崩壊熱 除去機能喪失に比べて原子炉圧力容器内の保有水量の減少が大きく, 点検などに係る原子炉冷却材流出事故は原子炉圧力容器開放状態にて 発生することも考えられるため,ここでは,原子炉圧力容器開放状態 を対象に線量率の評価を行う。

2. 炉心燃料・炉内構造物の線源強度

放射線源として燃料,上部格子板,シュラウドヘッド及び蒸気乾燥 器をモデル化した。

(1) 炉心燃料

計算条件を以下に示す。

○線源形状:燃料集合体の全てに燃料がある状態

○燃料有効長:3,708mm

○ガンマ線エネルギ:計算に使用するガンマ線は、エネルギ5 群とする。

○線源材質:燃料及び水(密度 g/cm³)

○線源条件:文献値^{*1}に記載のエネルギー当たりの線源強度を 基に、STEPⅢ 9×9燃料(A型)の体積当たりの線源強 度を式①で算出した。

このときの線源条件は以下となる。なお、使用している文献値 は、燃料照射期間10⁶時間(約114年)と、東海第二の実績を包絡し た条件で評価されており、東海第二に関する本評価においても適 用可能である。

・燃料照射期間:10⁶時間

- ・運転停止後の期間:運転停止後3日^{*2}(実績を考慮して設定)
- ・燃料集合体当たりの熱出力:4.31MW/体(STEPII 9×9 A型)
- 燃料集合体体積: 7.179E+04cm³ (STEPⅢ 9×9A型)
  ※1:Blizard E. P. and Abbott L. S., cd., "REACTOR HANDBOOK. 2nd cd. Vol. Ⅲ Part B, SHIELDING", INTERSCIENCE PUBLISHERS, New York, London, 1962
  - ※2:運転停止後の期間は全制御棒全挿入からの時間を示している。 通常停止操作において原子炉の出力は全制御棒全挿入完了及 び発電機解列以前から徐々に低下させるが、線源強度評価は崩

## 添付 5.3.1-2

線源強度 $(\gamma/s/cm')=\frac{$ 文献に記載の線源強度 $(MeV/(W \cdot s))$ ×燃料集合体当たりの熱出力 $(W/\Phi)$ 各群のエネルギ(MeV)×燃料集合体体積 $(cm'/\Phi)$ 

壊熱評価と同様にスクラムのような瞬時に出力を低下させる 保守的な計算条件となっている。

○計算モデル:円柱線源

線量率計算モデルを第1図に示す。また,計算により求めた 線源強度を第1表に示す。



第1図 燃料の水深と線量率の計算モデル

エネルギ	線源強度
(MeV)	$(cm^{-3} \cdot s^{-1})$
1. 0	6.0E+11
2.0	1.1E+11
3. 0	2.0E+09
4. 0	3.0E+07

第1表 燃料の線源強度

(2) 上部格子板

計算条件を以下に示す。

○線源形状:円柱線源としてモデル化

○線源の高さ:368.3mm

- ○ガンマ線エネルギ:計算に使用するガンマ線は,主要核種
  - ⁶⁰Coを想定して1.5MeVとする。
- ○線源材質:水と同等(密度0.958g/cm^{3*})
  - ※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の値を

使用。

○線源強度は、機器表面の実測値 (Sv/h) より7.3E+09

Bq/cm³と算出した。

線量率計算モデルを第2図に示す。

# 添付 5.3.1-4



第2図 上部格子板の水深と線量率の計算モデル

(3) シュラウドヘッド

計算条件を以下に示す。

- ○線源形状:円柱線源としてモデル化
- ○線源の高さ:5,162.2mm
- ○ガンマ線エネルギ:計算に使用するガンマ線は、主要核種
   ⁶⁰Coを想定して1.5MeVとする。
- ○線源材質:水と同等(密度0.958g/cm³[※])

## 添付 5.3.1-5

※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の値を

使用。

○線源強度は,機器表面の実測値(**___n**Sv/h)より6.7E+05

Bq/cm³と算出した。

線量率計算モデルを第3図に示す。



第3図 シュラウドヘッドの水深と線量率の計算モデル

(4) 蒸気乾燥器

計算条件を以下に示す。

○線源形状:円筒線源としてモデル化

○線源の高さ:5,524.5mm

○ガンマ線エネルギ:計算に使用するガンマ線は,主要核種

⁶⁰Coを想定して1.5MeVとする。

○線源材質:水と同等(密度0.958g/cm³)

※:52℃から100℃までの飽和水の密度のうち,最小となる100℃の値を 使用。

○線源強度は、機器表面の実測値(□nSv/h)より2.7E+05
 Bq/cm³と算出した。

線量率計算モデルを第4図に示す。

# 添付 5.3.1-7



第4図 蒸気乾燥器の水深と線量率の計算モデル

2. 線量率

線量率は、「添付資料4.1.2「水遮蔽厚に対する貯蔵中の使用済燃料 からの線量率の算出について」」と同様にQAD-CGGP2Rコード (Ver1.04)を用いて計算している。

- 3. 線量率を求める際の評価点と放射線遮蔽が維持される水位について
- (1) 線量率を求める際の評価点

### 添付 5.3.1-8

線源からの線量率を求める際に設定する評価点は,保守的に燃料 交換機床とした。なお,評価では第1図~第4図の線量率計算モデル に示すように原子炉ウェル筐体による遮蔽は考慮せず,線源から評 価点までの距離を入力として評価している。

(2) 放射線の遮蔽が維持される水位

運転停止中の「崩壊熱除去機能喪失」,「全交流動力電源喪失」及 び「原子炉冷却材の流出」では,評価点とした燃料交換機床がある 原子炉建屋最上階での操作は不要であり,仮に事象発生時に作業員 が原子炉建屋最上階で施設定期検査による作業を実施している場合 であっても,退避警報による事象認知後に速やかに退避するため, 水位低下後に長時間作業することはない。このため,運転停止中に おける線量率は,緊急作業時の被ばく限度(100mSv)から十分余裕 のある10mSv/hを必要な遮蔽の目安とした。

放射線の遮蔽を維持するために必要な水位は第5図より,燃料有効 長頂部から約6.4mとなり,原子炉ウェル満水時の水位から約10.4m 低下した水位である。



第5図 線量評価結果

「原子炉冷却材の流出」におけるプラント状態選定の考え方

1. 本評価におけるプラント状態の決定

運転停止中の原子炉における燃料損傷防止対策の有効性評価,「原子炉冷却 材の流出」の重要事故シーケンスの評価では,次項に示すとおり,施設定期 検査中に実施する作業等を確認し,原子炉冷却材の流出が生じうる作業を抽 出した後,各々の作業を比較して重要事故シーケンスとする作業を選定した。 施設定期検査中に各作業が実施される時期は概ね決まっているため,評価対 象とするPOSを,選びうるPOSの比較により選定した。

2. 原子炉冷却材の流出評価の対象とした作業等

重要事故シーケンスの選定に当たり,施設定期検査中に原子炉冷却材流出 が想定され得るとして抽出した作業等は次の4つである。この4つの作業等 から,本評価では「RHR切替」を選定した。選定の理由は,燃料損傷まで の時間余裕が短いこと*,及び停止時PRAの結果から炉心損傷頻度が最も 高く,代表性が高いことによるものである。

- RHR切替
- ・CUWブロー
- C R D 点検
- L P R M 点検
- ※: RHR切替時のLOCAによる流出は他の冷却材流出事象と比べて流出量が 大きい(別添 東海第二発電所 確率論的リスク評価(PRA)について 添 付資料 3.1.2.3-13 LOCAにおける余裕時間の評価について)

< R H R 切替時の L O C A 発生時の 流出量の 算出>

- (1) 評価条件
  - a. ミニマムフローラインオリフィス仕様
    - ・オリフィス設計流量 56.8m³/h
    - ・オリフィス設計差圧 198.1m
  - b. 炉圧 大気圧状態
  - c. RHRポンプと原子炉水との水頭差(RHRポンプレベル: E.L-3,400)
    - ・通常水位 38.0m (EL. 34, 590~+EL. 3, 400)
    - ・原子炉ウェル満水 42.7m (EL.39,215~+EL.3,400)
  - d. 残留熱除去系(原子炉停止時冷却系)の運転中にミフマムフロー弁
     が全開となった場合のオリフィス差圧=ポンプ出口圧力=ポンプ揚
     程(85.3m)+水頭差
    - ・通常水位 123.3m (EL.34,590~+EL.3,400)
    - ・原子炉ウェル満水 128.0m (EL. 39, 215~+EL. 3, 400)
- (2) 評価式
  - オリフィス差圧は流量比の二乗に比例するとして評価。

 $\Delta P = 198.1 \times (Q \swarrow 56.8)^{-2}$ 

 $Q = 56.8 \times \sqrt{(\Delta P / 198.1)}$ 

**Δ**P:オリフィス差圧

Q : オリフィス差圧が $\Delta$  Pの際の流量 (m³/h)

- (3) 評価結果
  - •通常水位 : 45m³/h
  - ・ウェル満水:47m³/h

3. **POSを選定する上で考慮した**点

施設定期検査中にRHR切替を実施する時期としては,RHRの運転や待 機の系統を変化させる場合があり,この作業は施設定期検査中のほぼ全ての 期間で生じうる。このため、プラント状態についてはいずれの場合も選び得 る。その上で、プラント状態の選定に当たっては、以下の点を考慮した。

(1) 崩壊熱による原子炉水温の上昇及び蒸発

崩壊熱による原子炉冷却材の減少を厳しく評価する観点では,原子炉停 止後の時間が短いPOSの方が適切である。ただし,本重要事故シーケン スでは崩壊熱除去機能が喪失しないため,崩壊熱による原子炉水温の上昇 及び蒸発は発生しないことから,崩壊熱の違いによる時間余裕への影響は ない。

(2) 原子炉圧力容器内の保有水量

原子炉圧力容器内の保有水量の観点では,原子炉ウェル満水の状態が最 も余裕があり,原子炉圧力容器が通常運転水位に近いほど厳しい条件とな る。原子炉ウェル満水時における遮蔽維持水位到達までの時間余裕は約 18.4 時間であるのに対して通常運転水位における遮蔽維持水位到達まで の時間余裕は約2.3時間である。

(3) 事象発生時の認知性

事象発生時の認知性の観点では,時間余裕が短い,すなわち保有水量が 少ないPOSの方が適切である。なお,原子炉圧力容器の上蓋が閉止され ている場合,原子炉水位の低下による警報発生や緩和設備の自動起動等に 期待できるが,有効性評価ではこれらに期待しないことで認知性をより厳 しく扱った。

(4) 原子炉水位低下時の作業環境
 原子炉水位低下時の作業環境への影響の観点では,原子炉圧力容器の上
 添付 5.3.2-3

蓋が閉止されている場合,原子炉水位が燃料有効長頂部から約1.7mに低下 するまでは原子炉圧力容器に上蓋等により遮蔽される。一方,原子炉圧力 容器の上蓋が開放されている場合は,原子炉水位が燃料有効長頂部から約 6.4mに低下するまでは原子炉ウェルの水により遮蔽される。

いずれの場合においても,遮蔽が維持される下限水位到達までに注水することにより遮蔽は維持されることから,作業環境に与える影響はない。

4. POSの選定結果と考察

重要事故シーケンスとして選定した「RHR切替時のLOCA」のプラン ト状態は、上記 3. に記載の4つの観点のうち、時間余裕の観点で厳しい原子 炉水位が通常運転水位のPOS-S, A, C, Dの中から、残留熱除去系の 切替操作の実施が考えられるPOS-Aを選定した。また、他のプラント状 態及び事故シーケンスが、POS-AのRHR切替時のLOCAの評価に包 絡されることを第1表で確認した。なお、原子炉水位が通常運転水位の場合 は、原子炉水位低下による警報発報や緩和設備の自動起動に期待できること も考えられるが、有効性評価ではこれらに期待しないことにより認知性の観 点からも厳しい扱いとした。

第1表 各プラント状態における評価項目に対する影響(原子炉冷却材の流出)

				運転停止中の評価項目				
プ	ラント状態(POS)	包絡事象	重大事故等対処設備等	燃料有効長頂部の冠水	原子炉圧力容器 蓋の開閉状態	放射線の遮蔽が維持できる 水位の確保	未臨界の確保	
s	原子炉冷温停止への 移行状態	POS-Sにおいては, 冷却材流 出事象の要因となる作業や操作を 実施しないため, 対象外	<ul> <li>・残留熱除去系-A, B, C</li> <li>・高圧炉心スプレイ系</li> <li>・低圧炉心スプレイ系</li> <li>・低圧代替注水系(常設)</li> <li>・低圧代替注水系(可搬型)</li> </ul>	POS-Sにおいては, 冷却材流出 事象の要因となる作業や操作を実施 しないため, 対象外	閉鎖	POS-Sにおいては, 冷却材 流出事象の要因となる作業や操 作を実施しないため, 対象外	POS-Sにおいては、冷却材流 出事象の要因となる作業や操作を 実施しないため、対象外	
A	PCV∕RPV開放 への移行状態	_	<ul> <li>・残留熱除去系-A,B</li> <li>・高圧炉心スプレイ系</li> <li>・低圧炉心スプレイ系</li> <li>・低圧代替注水系(常設)</li> <li>・低圧代替注水系(可搬型)</li> </ul>	有効性評価にて評価項目を満足する ことを確認している	閉鎖	有効性評価において評価項目を 満足することを確認している (原子炉圧力容器は未開放状態 であり,原子炉圧力容器蓋,煮 気能燥器,シュラウドヘッドの 遮蔽にも期待できることから, 必要な遮蔽は確然される(添付 資料5.1.6)	有効性評価において評価項目を満 足することを確認している 制御棒引き抜きに関する試験は 「反応度の誤投入」に包絡される	
B1			<ul> <li>・残留熱除去系-A</li> <li>・低圧代替注水系(常設)</li> <li>・低圧代替注水系(可搬型)</li> <li>・代替燃料プール注水系(常設)</li> <li>・代替燃料プール注水系(可搬型)</li> </ul>					
B2			•低圧代替注水系(常設)					
B3	-		・低圧代替注水系(可搬型) ・代替燃料プール注水系(常設)			放射線の遮蔽を維持するために 必要な水位は原子炉未開放時に 比べて高くなるが,有効性評価 でのPOS- Aの想定に比べ原 子炉水位が高く,遮蔽が維持さ れる水位を下回るまでの時間が 長いため,「添付資料5.4.3 評 長いため,「添付資料5.4.3 評 包絡される		
B4	原子炉ウェル満水状 態(原子炉ウェル水 抜き開始まで)	冷却材流出事象の要因となる作業 として「RHR切替」,「CRD 点検」及び「LPRM点検」が考 えられるが,有効性評価でのPO S-Aの想定に比べ,原子炉圧力 容器が開放状態の場合原子炉水位 が高く、燃料損傷に至るまでの時 間が長いため,「添付資料5.3.4 評価条件の不確かさについて」に 包絡される	令却材流出事象の要因となる作業 として「RHR切替」、「CRD 点検」及び「LPRM点検」が考 えられるが、有効性評価でのPO S-Aの想定に比べ、原子炉圧力 容器が開放状態の場合原子炉木位 が高く、燃料損傷に至るまでの時 間が長いため、「添付資料5.3.4 双冊名件のの元と		開放		プラントPOS-Aに同じ 有効性評価において評価項目を満 足することを確認している 燃料の取出・装荷に関する作業は 「反応度の誤投入」に包絡される	
В5	_		<ul> <li>・低圧代替注水系(常設)</li> <li>・低圧代替注水系(可搬型)</li> <li>・代替燃料プール注水系(常設)</li> <li>・代替燃料プール注水系(可搬型)</li> </ul>					
B6			<ul> <li>・残留熟除去系-A、B,C</li> <li>・高圧炉心スプレイ系</li> <li>・低圧(ひるプレイ系)</li> <li>・低圧(替注水系(常設)</li> <li>・低圧(替注水系(常設))</li> <li>・代替燃料ブール注水系(常設)</li> <li>・代替燃料ブール注水系(可避型))</li> </ul>					
C1	C1 PCV/RPVの閉 鎖への移行状態 C2	<ul> <li>・残留熱除去系-A, B, C</li> <li>・高圧炉心スプレイ系</li> <li>・低圧炉心スプレイ系</li> <li>・低圧付替注水系(常設)</li> <li>・低圧代替注水系(常設)</li> <li>・低圧代替注水系(常設)</li> </ul>		DAC AFFはママ県実施が広い、	閉鎖			
C2		Wブロー」が考えられるが、プラント状態の違い(崩壊熱等)が事 象進展に影響しないため、POS	<ul> <li>して「RHK96月」及び「ブロー」が考えられるが、ブラ</li> <li>・ 決留熱除去系-B,C</li> <li>・ 決能の違い(崩壊熱等)が事</li> <li>・ 低圧炉レスプレイ系</li> <li>・ 低圧(特注水系(常設)</li> <li>・ 低圧(特注水系(常設)</li> <li>・ 低圧(特注水系(可搬型)</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 成田(熱除去系-A,B,C)</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 残留熱除去系-A,B,C</li> <li>・ 残田(おしスプレイ系)</li> <li>・ 低圧(特注水系(常設)</li> <li>・ 低圧(特注水系(常設))</li> </ul>			有効性評価でのPOS-Aの想 定とプラント状態が同等である ため、POS-Aの有効性評価 と同じ評価となる	rOS-Aに回し 有効性評価において評価項目を満 足することを確認している 制御棒引き抜きに関する試験は	
D	起動準備状態	- Aを想定した有効性評価と同じ 評価となる			閉鎖		「反応度の誤投入」に包絡される	

添付資料 5.3.3

安定停止状態について(運転停止中 原子炉冷却材の流出)

運転停止中の原子炉冷却材の流出の安定状態については以下のとおり。

原子炉安定停止状態:事象発生後,設計基準事故対処設備及び重 大事故等対処設備を用いた炉心冷却及び原 子炉冷却材の流出の停止により,炉心冠水 が維持でき,また,冷却のための設備がそ の後も機能維持できると判断され,かつ, 必要な要員の不足や資源の枯渇等のあらか じめ想定される事象悪化のおそれがない場 合,安定状態が確立されたものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

事象発生直後から原子炉冷却材の流出により原子炉水位が低下 するが,事象発生から2時間後に残留熱除去系(低圧注水系)に よる原子炉注水を行うことで原子炉水位が回復する。その後,原 子炉冷却材の流出を停止させ,残留熱除去系(原子炉停止時冷却 系)に切り替えて冷却することで,冷温停止状態を維持すること ができ,原子炉安定停止状態が確立される。

重大事故等対策時に必要な要員は確保可能であり,また,必要 な水源,燃料及び電源を供給可能である。

【安定停止状態の維持について】 上記の燃料損傷防止対策により安定停止状態を維持できる。 また,残留熱除去系の機能を維持し,除熱を行うことにより, 安定停止状態後の状態維持が可能となる。

# 評価条件の不確かさの影響評価について(原子炉冷却材の流出)

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 原子炉冷却材の流出)(1/2)

		評価条件(初期、事故及び機器条件)					
	項目	の不確	<b></b>	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目となるパラメータに与える影響	
		評価条件	最確条件				
	原子炉初期水温	52°C	約 43℃~51℃ (実績値)	残留熱除去系(原子炉停 止時冷却系)の設計値及 び運転停止1日後の原子 炉水温の実績値(43℃~ 51℃)を踏まえて設定	最確条件では評価条件で設定している原子炉 初期水温より低くなるため時間余裕が長くな ることが考えられるが,残留熱除去系(低圧注 水系)による原子炉への注水操作及び原子炉冷 却材流出の停止操作は原子炉冷却材流出の認 知を起点とする操作であるため,運転員等操作 時間に与える影響はない。	最確条件では評価条件で設定している原子炉 初期水温より低くなることから,原子炉水位 の回復は早くなり,評価項目となるパラメー タに対する余裕は大きくなる。	
初期条件	原子炉の初期水位 及び原子炉圧力容 器の状態	通常運転水位及 び原子炉圧力容 器未開放	事故事象毎	評価項目となるパラメ ータに対して時間余裕 が厳しくなる,通常水位 を想定	原子炉圧力容器が開放状態で,原子炉ウェル満 水又は原子炉ウェル満水への移行期間,かつプ ールゲートが閉状態の場合,評価条件よりも原 子炉初期水位が高くなるため遮蔽水位到達まで の時間余裕が長くなるが,残留熱除去系(低圧 注水系)による原子炉への注水操作及び原子炉 冷却材流出の停止操作は原子炉冷却材流出の認 知を起点とする操作であるため,運転員等操作 時間に与える影響はない。 また,原子炉ウェル満水時においてプールゲー トが開状態の場合は更に時間余裕が長くなる が,同様の理由により運転員等操作時間に与え る影響はない。	原子炉圧力容器が開放状態で,原子炉初期水 位が原子炉ウェル満水又は原子炉ウェル満水 への移行期間,かつプールゲートが閉状態の 場合,評価条件よりも原子炉初期水位が高く なるため,遮蔽水位到達までの時間余裕は約 18.4 時間と,評価条件に比べて長くなる。 また,プールゲートが開状態の場合は更に時 間余裕が長くなることから,評価項目となる パラメータに与える余裕は更に大きくなる が,残留熱除去系(低圧注水系)による原子 炉への注水操作及び原子炉冷却材流出の停止 操作は原子炉冷却材流出の認知を起点とする 操作であるため,評価項目となるパラメータ に与える影響はない。	
	原子炉初期圧力	大気圧	大気圧	原子炉停止から1日後の 状態を想定	最確条件と解析条件が同様であることから,事 象進展に与える影響はなく,運転員等操作時間 に与える影響はない。	評価条件と最確条件は同様であることから、 事象進展に与える影響はなく、評価項目となるパラメータに与える影響はない。	

		評価条件(初期,事故及び機器					
	項目	の不得	確かさ	評価条件設定の考え方	運転員等の操作時間に与える影響	評価項目となるパラメータに与える影響	
		評価条件 最確条件					
	燃料の容量	約 800kL	800kL以上	軽油貯蔵タンクの管理下 限値を設定	管理値下限の容量として事象発生から7日間後 までに必要な容量を備えており,燃料は枯渇し ないことから,運転員等操作時間に与える影響 はない。	_	
	起因事象	RHR切替時の 冷却材流出	RHR切替時の 冷却材流出	燃料損傷までの時間余裕 が厳しい事象を仮定			
	冷却材流出流量	45m³∕h	約 45m³/h	<ul><li>ミニマムフローラインの</li><li>設計流量を設定</li></ul>			
事故条件	崩壊熱による原子 炉水温の上昇及び 蒸発	原子炉水温の上 昇及び蒸発は発 生しない	原子炉水温の上 昇及び蒸発は発 生しな	原子炉冷却材の流出流量 を厳しく評価するため, 残留熱除去系(原子炉停 止時冷却系)は運転状態 を想定しており,崩壊熱 除去機能は喪失しないこ とから,原子炉水温の上 昇及び蒸発は発生しない	最確条件と解析条件が同様であることから,事 象進展に影響はなく,運転員等操作時間に与え る影響はない。	最確条件と解析条件が同様であることから, 事象進展に与える影響はなく,評価項目とな るパラメータに与える影響はない。	
	外部電源	外部電源あり	事故事象毎	外部電源がない場合は, 原子炉保護系電源の喪失 により残留熟除去系(原 子炉停止時冷却系)の吸 込みラインの弁が閉とな り,原子炉冷却材流出が 停止することから,原子 炉冷却材流出の観点で厳 しい外部電源ありを設定	外部電源がある場合は評価条件と同様であるこ とから,事象進展に与える影響はなく,運転員 等操作時間に与える影響はない。また,外部電 源がない場合は,原子炉保護系電源の喪失によ り残留熱除去系(原子炉停止時冷却系)の取水 ラインの格納容器隔離弁が自動閉となることで 原子炉冷却材流出は停止するが,残留熱除去系 (低圧注水系)による原子炉への注水操作は原 子炉水位低下の認知を起点とする操作であるた め,運転員等操作時間に与える影響はない。	外部電源がある場合は評価条件と同様であ ることから,事象進展に与える影響はなく, 運転員等操作時間に与える影響はない。ま た,外部電源がない場合は,原子炉保護系電 源の喪失により残留熱除去系(原子炉停止時 冷却系)の取水ラインの格納容器隔離弁が自 動閉となることで原子炉冷却材流出は停止 するが,残留熱除去系(低圧注水系)による 原子炉への注水操作は原子炉水位低下の認 知を起点とする操作であることから,事象進 展に与える影響はなく,評価項目となるパラ メータに与える影響はない。	
機器条件	残留熱除去系 (低圧 注水系) の注水流量	1,605m³∕h	1,605m³∕h	残留熱除去系(低圧注水 系)の設計値として設定	最確条件と評価条件は同様であることから,事 象進展に与える影響はなく,運転員等操作時間 に与える影響はない。	最確条件と評価条件は同様であることから, 事象進展に与える影響はなく,評価項目とな るパラメータに与える影響はない。	

第1表 評価条件を最確条件とした場合の運転員の操作時間及び評価項目となるパラメータに与える影響(運転停止中 原子炉冷却材の流出)(2/2)

### 第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(運転停止中 原子炉冷却材の流出)(1/2)

		評価条件(操作	乍条件)の不確かさ		~ 田林根/在时期)。	萩年香りしたている		
	項目	評価上の操作 開始条件	評価条件設定の 考え方	操作の不確かさ要因	連転員等操作時間に 与える影響	評価項目となるハワ メータに与える影響	操作時間余裕	訓練実績等
操作条件	待機中の残留熱 除去系(低圧注 水系)の注水操 作	事象発生から 2 時間後	事 象の 認時 で の の 時 に 時 て 設 で る 考 慮 し て 設	【認知】 評価では、原子炉水位の低下及びサプレッ ション・プールの水位の上昇を、1 時間毎 の中央制御室の巡視により確認すると想定 している。実際は、残留熱除去系(原子炉 停止時冷却系)の運転号機の切替時のプラ ント状態(原子炉水位等)の確認により、 早期に原子炉冷却材流出を認知できる可能 性がある。 【要員配置】 中央制御室内での操作のみであり、運転員 は中央制御室内での操作のみであり、運転員 は中央制御室内での操作のみであり、運転員 は中央制御室内での操作のみであり、移動が 操作所要時間 とな動】 中央制御室内での操作のみであり、移動が 操作所要時間】 残留熱除去系(低圧注水系)のポンプ起動 操作及び注入弁の開操作は、中央制御室内 の操作盤での操作スイッチによる操作であ るため、容易な操作である。操作時間は 5 分を想定しており、原子炉水位の低下に対 して操作に要する時間は短い。 【他の並列操作の有無】 当該操作を実施する運転員は、残留熱除去 系(低圧注水系)による原子炉注水操作時 に他の並列操作はなく、操作開始時間に与 える影響はない。 【操作の確実さ】 中央制御室内における操作は、制御盤での 操作スイッチによる簡易な操作のため、誤 操作は起こりにくく、そのため誤操作等に より操作時間が長くなる可能性は低い。	原原 原 で 原 要 は な 本 な 本 ま な ま な の た た に ち に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た に た た に た に た た に た に た た た た た た た に た た た た た た た た た た た た た	原子炉注水操作開始 が早くなる場合は原 子炉水位低下が抑制 され,評価項目となる パラメータに対する 余裕は大きくなる。	原子の遮低水位が かながが かなる なる す 間 効 る る る ま の の 最 る る る ち の り 、 ま や 時 対 し て で あ り 、 ま や 時 対 し て で あ り 、 ま か の 、 る ち あ り 、 ま の の る る る ち の り 、 ま の の 、 る ち の り 、 ま の ち の う 、 ち ち り 、 ま か り 、 ち た か れ 記 か を た で で で あ り 、 ま 、 ち ち ち ち ち ち ち ち ち ち ち ち ち	中み操レンスので、「「「」」」では、「「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、

### 第2表 運転員等操作時間に与える影響,評価項目となるパラメータに与える影響及び操作時間余裕(運転停止中 原子炉冷却材の流出)(2/2)

	項目	評価条件(操作 評価上の操作 開始条件	<ul> <li>条件)の不確かさ</li> <li>評価条件設定の</li> <li>考え方</li> </ul>	操作の不確かさ要因	運転員等操作時間に 与える影響	評価項目となるパラ メータに与える影響	操作時間余裕	訓練実績等
操作条件	原子炉冷却材流 出停止操作及び 停止確認		運転操作手順等 を踏まえて設定	【認知】 評価では、中央制御室の巡視により、原子 炉水位低下を認知すると想定している。実際は、残留熱除去系(原子炉停止時冷却系) の運転号機の切替時のプラント状態(原子 炉水位等)の確認により、早期に原子炉冷 却材流出を認知できる可能性がある。 【要員配置】 運転員による操作のみであり、運転員は中 央制御室に常駐してことから、操作開始時間に与える影響はない。 【移動】 運転員による操作のみであり、移動が操作 開始時間に与える影響はない。 【操作所要時間】 残留熱除去系(低圧注水系)によって原子 炉水位を維持した状態での操作となるた め、十分な時間余裕がある。 【他の並列操作の有無】 原子炉水位の維持のための操作と並列した 操作となるが、中央制御室での簡易な操作 であるため、操作時間に与える影響はない。 【操作の確実さ】 中央制御室内における操作は、制御盤での 操作は起こりにくく、そのため誤操作等に より操作時間が長くなる可能性は低い。	運系系のプラントは、 運系系ののプラントない。 のプラントない。 のプラントがで、 のプラントがのの にので、 のプラントがのの にので、 のの のの の の の の の の の の の の の の の の の	原子止操 の 停止操作の の なる る の 早 大 炉 水 な の で な た れ が む を 能 除 去 系 ( に よ っ て た た 、 、 次 水 立 を 推 作 で る が 部 派 に よ っ て た た 、 、 な た た 、 、 な で な 時 間 余 、 て た た 、 、 な た た 、 、 た た 、 、 か た し た あ が あ る び 低 原 た 、 、 た た た ち ち ち ち ち た ち た ち ち ち ち ち ち ち ち ち ち ち ち ち	残留注水系(低) 原子炉水位を回施 させた後である である間 裕がある。	中央制御でため,シ シレータ取得しため,シ シレータ取得した。 ジークを取っては、原 子の調査をです。 が か が た の た の た の の た の ク の た の ク の た の の た の ク の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の で し の た の で し の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の た の の の の の の ろ の の の の

7日間における燃料の対応について

(運転停止中 原子炉冷却材の流出)

事象:保守的に全ての設備が,事象発生直後から燃料を消費するものとし

て評価する。

時系列	合計	判定
非常用ディーゼル発電機 2台起動 ^{*1} (燃料消費率は保守的に定格出力運転時を想定) 1,440.4L/h(燃料消費率)×168h(運転時間)×2台(運転台 数) =約 484.0kL	7日間の軽 油湖豊長	軽油貯蔵タ ンクの容量 は約 800kL
高圧炉心スプレイ系ディーゼル発電機 1台起動 ^{*2} (燃料消費率は保守的に定格出力運転時を想定) 775.6L/h(燃料消費率)×168h(運転時間)×1台(運転台数) =約130.3kL	価 佰 貢 重 約 614.3kL	であり,7 日間対応可 能

※1 事故収束に必要なディーゼル発電機は非常用ディーゼル発電機1台である

が,保守的にディーゼル発電機2台の起動を仮定した。

※2 事故収束に必要ではないが、保守的に起動を仮定した。

- 5.4 反応度の誤投入
- 5.4.1 事故シーケンスグループの特徴,燃料損傷防止対策
- (1) 事故シーケンスグループ内の事故シーケンス

事故シーケンスグループ「反応度の誤投入」において,燃料損傷防止対 策の有効性を確認する事故シーケンスは,「1.2 評価対象の整理及び評価 項目の設定」に示すとおり,「反応度の誤投入」である。

(2) 事故シーケンスグループの特徴及び燃料損傷防止対策の基本的考え方

事故シーケンスグループ「反応度の誤投入」では,運転停止中に制御棒 の誤引き抜き等によって,燃料に反応度が投入されることを想定する。こ のため,緩和措置がとられない場合には原子炉は臨界に達し,急激な反応 度投入に伴う出力上昇により燃料損傷に至る。

本事故シーケンスグループは、反応度の誤投入により、原子炉が臨界に 達することによって、燃料損傷に至る事故シーケンスグループである。こ のため、運転停止中の原子炉における燃料損傷防止対策の有効性評価には、 原子炉停止機能に対する設備に期待することが考えられる。

したがって、本事故シーケンスグループでは、異常な反応度の投入に対 して制御棒の引き抜きの制限及びスクラムによる負の反応度の投入により、 未臨界を確保し、燃料損傷の防止を図る。

(3) 燃料損傷防止対策

事故シーケンスグループ「反応度の誤投入」に対しては,燃料が著しい 損傷に至ることなく,かつ,十分な冷却を可能とするため,制御棒引抜阻 止機能により制御棒引き抜きを阻止し,出力の異常上昇を未然に防止する とともに,原子炉停止機能により原子炉をスクラムし,未臨界とする。対 応手順の概要を第5.4-1 図に示すとともに,重大事故等対策の概要を以下 に示す。また,重大事故等対策における設備と操作手順の関係を第5.4-1 表に示す。

本事故シーケンスにおいては,重大事故等対策は全て自動で作動するた め,中央制御室の運転員による確認のみであり,対応操作の要員は不要で ある。

なお,スクラム動作後の原子炉の状態確認については,中央制御室の運転員1名で実施可能である。

a. CR-2*の「連続引き抜き」(誤操作による反応度誤投入)

運転停止中に制御棒の誤引き抜き等によって,燃料に反応度が投入さ れることにより,臨界に達する。

原子炉の臨界を確認するために必要な計装設備は,起動領域計装であ る。

※: CR-2:最大反応度価値制御棒(CR-1)の対角隣接の制御棒 b.反応度誤投入後の原子炉スクラムの確認

制御棒の誤引き抜きによる反応度の投入により,原子炉出力ペリオド 短短(10秒)信号が発生することで原子炉はスクラムし,制御棒が全挿 入となり,原子炉は未臨界状態となる。

原子炉のスクラムを確認するために必要な計装設備は,起動領域計装 である。

5.4.2 燃料損傷防止対策の有効性評価

(1) 有効性評価の方法

本事故シーケンスグループを評価する上で選定した重要事故シーケンス は、「1.2 評価対象の整理及び評価項目の設定」に示すとおり、「停止中に 実施される試験等により,最大反応度価値を有する制御棒1本が全引き抜きされている状態から,他の1本の制御棒が操作量の制限を超える誤った操作によって引き抜かれ,臨界近接を認知できずに臨界に至る事象」である。

運転停止中の原子炉においては、不用意な臨界の発生を防止するため、 停止余裕(最大反応度価値を有する1本の制御棒が引き抜かれても炉心を 未臨界に維持できること)を確保できるように燃料を配置するとともに、 通常は原子炉モード・スイッチを「燃料交換」位置として、1本を超える 制御棒の引き抜きを防止するインターロックを維持した状態で必要な制御 棒の操作が実施される。

しかしながら,運転停止中の原子炉においても,検査等の実施に伴い, 原子炉モード・スイッチを「起動」位置として複数の制御棒の引き抜きを 実施する場合がある。このような場合,制御棒の引き抜きは原則として 1 ノッチずつ操作を行い,起動領域計装により中性子束の監視を行いながら 実施している。

本重要事故シーケンスでは, 誤操作によって制御棒が過剰に引き抜かれ ることにより臨界に至る反応度が投入されるため, 炉心における核分裂出 力, 出力分布変化, 反応度フィードバック効果, 制御棒反応度効果, 燃料 棒内温度変化, 燃料棒表面熱伝達及び沸騰遷移が重要現象となる。

よって、この現象を適切に評価することが可能である反応度投入事象解 析コードAPEXにより炉心平均中性子束の過渡応答を求める。

また,解析コード及び解析条件の不確かさの影響評価の範囲として,本 重要事故シーケンスにおける評価項目となるパラメータに与える影響を評 価する。

さらに,解析コード及び解析条件の不確かさのうち,評価項目となるパ

ラメータに与える影響があるものについては、「5.4.3(3) 感度解析」において、それらの不確かさの重畳を考慮した影響評価を実施する。

(2) 有効性評価の条件

本重要事故シーケンスに対する初期条件も含めた主要な解析条件を第 5.4-2 表に示す。また,主要な解析条件について,本重要事故シーケンス 特有の解析条件を以下に示す。

a. 初期条件

(a) 炉心状態

燃料交換後における余剰反応度の大きな炉心での事象発生を想定し て,評価する炉心状態は,平衡炉心のサイクル初期とする。

(b) 実効増倍率

事象発生前の炉心の実効増倍率は1.0とする。

(c) 原子炉初期出力,原子炉初期圧力,燃料被覆管表面温度及び原子炉冷却材温度

事象発生前の原子炉初期出力は定格値の 10⁻⁸,原子炉初期圧力は 0.0MPa[gage],燃料被覆管表面温度及び原子炉冷却材温度は 20℃とす る。また、燃料エンタルピの初期値は 8kJ/kgUO₂とする。

- b. 事故条件
- (a) 起因事象

運転停止中の原子炉において,制御棒1本が全引き抜きされている 状態から,他の1本の制御棒が操作量の制限を超える誤った操作によ って連続的に引き抜かれる事象を想定する。
(b) 誤引き抜きされる制御棒

誤引き抜きされる制御棒は,最大反応度価値を有する制御棒の対角 隣接の制御棒とし,事象を厳しく評価するため,最大反応度価値を有 する制御棒が引き抜かれている状態での原子炉の臨界状態と,その状 態からの連続的な誤引き抜きを想定する。誤引き抜きされる制御棒 1 本の反応度価値は約 1.71%Δk である。引き抜き制御棒反応度曲線を 第 5.4-2 図に示す。

なお,通常,制御棒1本が全引き抜きされている状態の未臨界度は 深く,また,停止余裕検査時において,連続的に制御棒を引き抜くこ とはないため,上記の想定は保守的である。原子炉停止中の臨界近接 におけるその他の制御棒の引き抜きとしては冷温臨界検査があるが, 冷温臨界検査においては,臨界近接における制御棒の反応度価値を 1.0%Δk以下となるよう管理しており,臨界状態からの誤引き抜きに より反応度価値約1.71%Δkが加わる上記の評価に包含されるものと 考える。

(c) 外部電源

制御棒の引き抜き操作には外部電源が必要である。外部電源がない 状態では反応度誤投入事象が想定できないことも踏まえ,外部電源は 使用できるものとする。

c. 重大事故等対策に関連する機器条件

(a) 制御棒の引き抜き速度

制御棒は,引き抜き速度の上限値9.1cm/sにて連続で引き抜かれ^{**}, 起動領域計装の原子炉出力ペリオド短短(10秒)信号で引き抜きが阻 止されるものとする。引抜制御棒反応度曲線を第5.4-2 図に示す。 ※:あらかじめ停止余裕が確認されている場合,一本目の制御棒の全挿入状態 からの全引き抜き操作,及び反応度価値の小さい制御棒位置(30Pos.)以 降の制御棒引抜操作については,連続引き抜きが実施可能な手順としてい る。そのため,ここでは人的過誤等によって連続引き抜きされることを想 定する。

(b) 原子炉スクラム信号

原子炉スクラムは,起動領域計装の原子炉出力ペリオド短短(10秒) 信号によるものとする。スクラム反応度曲線を第5.4-3図に示す。

- d. 重大事故等対策に関連する操作条件
   運転員操作に関する条件はない。
- (3) 有効性評価の結果

本重要事故シーケンスの対応手順の概要を第5.4-1 図に, 炉心平均中性 子束の推移を第5.4-4 図に示す。

a. 事象進展

制御棒の引き抜き開始から約 10 秒後に起動領域計装の原子炉出力ペ リオド短短(10 秒)信号が発生し,原子炉はスクラムする。このとき, 投入される反応度は約 1.13 ドル(投入反応度最大値:0.68% Δk)であ るが,原子炉出力は定格出力の約 15%まで上昇するにとどまる。また, 燃料エンタルピは最大で約 85kJ/kgUO₂であり,「発電用軽水型原子炉 施設の反応度投入事象評価指針」に示された燃料の許容設計限界の最低 値である 272kJ/kgUO₂(65cal/gUO₂)を超えることはない。燃料 (65cal/gUO₂)を超えることはない。燃料エンタルピ増分の最大値 は約77kJ/kgUO₂であり、「発電用軽水型原子炉施設の反応度投入事象 における燃焼の進んだ燃料の取扱いについて」に示された燃料ペレット 燃焼度 65,000MWd/t 以上の燃料に対するペレットー被覆管機械的相互 作用を原因とする破損を生じるしきい値の目安である、ピーク出力部燃 料エンタルピの増分で 167kJ/kgUO₂ (40cal/gUO₂)を用いた場合 においても、これを超えることはなく燃料の健全性は維持される。

b. 評価項目等

制御棒の引き抜きによる反応度の投入に伴い一時的に臨界に至るもの の,原子炉スクラムにより未臨界は確保される。なお,原子炉水位に有 意な変動はないため,燃料有効長頂部は冠水を維持しており,放射線の 遮蔽は維持される。

本評価では、「1.2.4.2 有効性を確認するための評価項目の設定」に 示す(1)から(3)の評価項目について、対策の有効性を確認した。

(添付資料 5.4.1)

5.4.3 解析コード及び解析条件の不確かさの影響評価

評価条件の不確かさの影響評価の範囲として,運転員等操作に与える影響, 評価項目となるパラメータに与える影響及び操作時間余裕を評価するものと する。

本重要事故シーケンスでは,自動作動する原子炉緊急停止系及び制御棒引 抜阻止回路により,自動的に制御棒の引き抜きを阻止するとともに,原子炉 をスクラムさせることで,プラントを安定状態に導くことが特徴である。こ のため,運転員等操作はなく,操作時間が与える影響等はない。 (1) 解析コードにおける重要現象の不確かさの影響評価

本重要事故シーケンスにおける不確かさの影響評価を行う重要現象は, 「1.7 解析コード及び解析条件の不確かさの影響評価方針」に示すとおり であり,それらの不確かさの影響評価は以下のとおりである。

a. 運転員等操作時間に与える影響

本重要事故シーケンスは、「5.4.2(2) 有効性評価の条件」に示すとおり、運転員等操作には期待しないため、運転員等操作時間に与える影響はない。

b. 評価項目となるパラメータに与える影響

ドップラ反応度フィードバックの不確かさは,実験にて7~9%と評価 されていることから,これを踏まえて解析を行う必要がある。また,臨 界試験との比較により,実効遅発中性子割合の不確かさは約4%と評価 されていることから,これを踏まえて解析を行う必要がある。この不確 かさを考慮した感度解析を「(3) 感度解析」にて実施する。

制御棒反応度の不確かさは約 9%と評価されていることから,これを 踏まえて解析を行う必要がある。また,臨界試験との比較により,実効 遅発中性子割合の不確かさは約 4%と評価されていることから,これを 踏まえて解析を行う必要がある。この不確かさを考慮した感度解析を 「(3) 感度解析」にて実施する。

(添付資料 5.4.2)

(2) 解析条件の不確かさの影響評価

a. 初期条件,事故条件及び重大事故等対策に関連する機器条件

5.4-8

初期条件,事故条件及び重大事故等対策に関連する機器条件は,第 5.4-2 表に示すとおりである。その中で事象進展に有意な影響を与える と考えられる炉心状態,実効増倍率,燃料被覆管表面温度及び原子炉冷 却材温度,誤引き抜きされる制御棒,制御棒引き抜き速度,制御棒引き 抜き阻止及びスクラム信号に関する影響の評価結果を以下に示す。

(a) 運転員等操作時間に与える影響

本重要事故シーケンスは、「5.4.2(2) 有効性評価の条件」に示すと おり、運転員等操作には期待しないため、運転員操作時間に与える影響はない。

(b) 評価項目となるパラメータに与える影響

炉心状態においては装荷炉心毎に制御棒反応度価値やスクラム反応 度等の特性が変化するため,投入反応度が大きくなるおそれがある。 そのため,評価項目に対する余裕は小さくなることが考えられるが,

「(5) 評価条件の不確かさが評価項目となるパラメータに与える影響評価」にて、投入される反応度について確認しており、評価項目となるパラメータに与える影響は小さい。

実効増倍率について,実際の炉心設計では,設計上の余裕を見込み, 最大反応度価値を持つ制御棒1本が完全に引き抜かれた状態でも,炉 心の実効増倍率の計算値は,常に0.99未満となるよう設計する。実効 増倍率が0.99の場合は,臨界到達までにかかる時間が追加で必要とな り,また投入される反応度も0.96ドル(燃料エンタルピ最大値:約 10kJ/kgUO₂,増分の最大値:約1kJ/kgUO₂)と小さくなり,即 発臨界に至らないこととなるため,評価項目となるパラメータに対す る余裕が大きくなる。

原子炉初期出力は炉心状態毎に異なり、評価項目となるパラメータ

に影響を与えるため、その不確かさが与える影響を評価した。原子炉 初期出力の不確かさにより評価項目に対する余裕が変化するが、「(5) 評価条件の不確かさが評価項目となるパラメータに与える影響評価」 において、原子炉初期出力の不確かさの影響を確認しており、評価項 目となるパラメータに与える影響は小さい。

初期燃料温度は炉心状態毎に異なり,評価項目となるパラメータに 影響を与えるため,その不確かさが与える影響を評価した。初期燃料 温度の不確かさにより評価項目に対する余裕が変化するが,「(5) 評 価条件の不確かさが評価項目となるパラメータに与える影響評価」に おいて,初期燃料温度の不確かさの影響を確認しており,評価項目と なるパラメータに与える影響は小さい。

制御棒引抜阻止は、本評価において期待していないが、これに期待 した場合、運転員が事象を認知して速やかに制御棒を挿入し、事象が 収束するため、評価項目となるパラメータに対する余裕は大きくなる。

b. 操作条件

本重要事故シーケンスは、「5.4.2(2) 有効性評価の条件」に示すとおり、運転員等操作には期待しないため、運転員等操作に関する条件はない。

(添付資料 5.4.2)

(3) 感度解析

解析コードの不確かさによりドップラ反応度フィードバック効果,制御 棒反応度効果及び実効遅発中性子割合は評価項目となるパラメータに影響 を与えることから,本重要事故シーケンスにおいて感度解析を実施する。

5.4 - 10

ドップラ反応度を+10%とした場合の燃料エンタルピ最大値は約 80kJ /kgUO₂(増分の最大値:約72kJ/kgUO₂), -10%とした場合の燃料 エンタルピ最大値は約92kJ/kgUO₂(増分の最大値:約83kJ/kgUO₂), また制御棒反応度を+10%とした場合に投入される反応度は1.15 ドル(燃 料エンタルピ最大値:約 102kJ/kgUO₂,増分の最大値:約 94kJ/kgU O₂), -10%とした場合に投入される反応度は1.12 ドル,実効遅発中性 子割合を+10%とした場合に投入される反応度は1.11 ドル,-10%とした 場合に投入される反応度は1.16 ドル(燃料エンタルピ最大値:約 90kJ/ kgUO₂,増分の最大値:約 82kJ/kgUO₂)であり,これらの不確かさを 考慮しても燃料の健全性に影響がない。

(添付資料 5.4.2)

(4) 操作時間余裕の把握

本重要事故シーケンスは、「5.4.2(2) 有効性評価の条件」に示すとおり、運転員等操作には期待しないため、操作時間余裕に関する影響はない。

(5) 解析条件の不確かさが評価項目となるパラメータに与える影響評価 解析条件の不確かさにより投入される反応度が大きくなることも考えら れ,評価項目となるパラメータに影響を与えることから,炉心状態の変動 による評価項目となるパラメータに与える影響について確認した。サイク ル初期及びサイクル末期の炉心状態においてB型平衡炉心の反応度印加率 を包含した評価においても,投入される反応度は1.16ドル(燃料エンタル ピ最大値:79.6kJ/kgUO₂,燃料エンタルピの増分の最大値:71.2kJ/ kgUO₂)に留まることから,不確かさが評価項目となるパラメータに与

5.4 - 11

える影響は小さい。

原子炉初期出力は炉心状態毎に異なり,評価項目となるパラメータに影響を与えるため,その不確かさが与える影響を評価した。定格出力の  $10^{-8}$ の 10 倍及び 1/10 倍とした場合の感度解析を行い,有効性評価での結果 (1.13 ドル)と大きく差異がない,1.09 ドル(10 倍)及び 1.17 ドル(燃料エンタルピ最大値:約 123kJ/kgUO₂,増分の最大値:約 115kJ/kgUO₂)(1/10 倍)であることから,初期出力の不確かさが与える影響は小さい。

初期の燃料被覆管表面温度及び冷却材温度は炉心状態毎に異なり,評価 項目となるパラメータに影響を与えるため,その不確かさ*が与える影響 を評価した。初期燃料温度を残留熱除去系(原子炉停止時冷却系)の設計 温度(52°C)を考慮して 60°Cとした場合の感度解析を実施し,1.13 ドル(燃 料エンタルピ最大値:約 96kJ/kgUO₂,増分の最大値:約 80kJ/kgUO 2)であった。有効性評価での結果(1.13 ドル,燃料エンタルピ最大値: 約 85kJ/kgUO₂,増分の最大値:約 77kJ/kgUO₂)と大きな差異がな いことから,初期燃料温度の不確かさが与える影響は小さい。

※:本評価で評価対象とした9×9燃料では,初期の燃料被覆管表面温度及び冷却材 温度を高く設定した場合に,Gdの燃焼やPuの蓄積により,結果が厳しくな る場合がある。

(添付資料 5.4.2)

(6) まとめ

解析コード及び解析条件の不確かさの影響評価の範囲として,運転員等 操作時間に与える影響,評価項目となるパラメータに与える影響及び操作 時間余裕を確認した。感度解析結果より,不確かさの重畳を考慮した場合

5.4-12

でも評価項目となるパラメータを満足できる。その結果,解析コード及び 解析条件の不確かさが運転員等操作時間に与える影響等を考慮した場合に おいても,自動作動する原子炉緊急停止系により,自動的に制御棒の引き 抜きを阻止するとともに原子炉スクラムすることで,評価項目となるパラ メータに与える影響は小さい。

- 5.4.4 必要な要員及び資源の評価
  - (1) 必要な要員の評価

事故シーケンスグループ「反応度の誤投入」において,重大事故等対策 は自動で作動するため,対応に必要な要員はいない。

(2) 必要な資源の評価

事故シーケンスグループ「反応度の誤投入」において,必要な水源,燃 料及び電源の評価結果は以下のとおりである。

a. 水源

本重要事故シーケンスの評価では、原子炉注水は想定していない。

b. 燃料

本重要事故シーケンスの評価では、燃料の使用は想定していない。

c. 電源

本重要事故シーケンスの評価では、外部電源喪失は想定していない。

5.4.5 結論

事故シーケンスグループ「反応度の誤投入」では、誤操作により制御棒の

過剰な引き抜きが行われ,臨界に至る反応度が投入されることで,原子炉が 臨界に達し燃料損傷に至ることが特徴である。事故シーケンスグループ「反 応度の誤投入」に対する燃料損傷防止対策としては,原子炉停止機能を整備 している。

事故シーケンスグループ「反応度の誤投入」の重要事故シーケンス「制御 棒1本が全引き抜きされている状態から、その隣接制御棒の1本が操作量の 制限を超える誤った操作によって引き抜かれ、臨界に至る事故」について有 効性評価を行った。

上記の場合においても,原子炉停止機能により,燃料が損傷することはなく,未臨界を維持することが可能である。

その結果,燃料有効長頂部の冠水,放射線遮蔽の維持及び未臨界の確保が できることから,評価項目を満足している。また,安定状態を維持できる。

評価条件の不確かさについて確認した結果,評価項目となるパラメータに 与える影響は小さい。

本事故シーケンスグループにおける重大事故等対策は自動で作動するため, 対応に必要な要員はいない。スクラム動作後の原子炉の状態確認において, 中央制御室の運転員1名で実施可能である。

以上のことから,事故シーケンスグループ「反応度の誤投入」において, 原子炉停止機能の燃料損傷防止対策は,選定した重要事故シーケンスに対し て有効であることが確認でき,事故シーケンスグループ「反応度の誤投入」 に対して有効である。

第5.4-1表 反応度の誤投入における重大事故対策について

<b>堀作及7%</b> 確認	千 順	有効性評価上期待する重大事故等対処設備			
1朱1日次 〇州自心	于順	常設設備	可搬型設備	計装設備	
CR-2の「連続引き抜	運転停止中に制御棒の誤引き抜き等によって,燃	—	—	起動領域計装	
き」(誤操作による反応度	料に反応度が投入されることにより,臨界に達す				
誤投入)	る。				
反応度誤投入後の原子炉	制御棒の誤操作による反応度の投入により、原子	—	—	起動領域計装	
スクラムの確認	炉出力ペリオド短短 (10 秒) 信号で原子炉はスク				
	ラムする。制御棒が全挿入し,原子炉は未臨界状				
	態となる。				

# 第5.4-2表 主要解析条件(反応度の誤投入)(1/2)

項目		主要評価条件	条件設定の考え方
解析コード		A P E X	_
初期冬	炉心状態	平衡炉心サイクル初期	9×9燃料(A型)と9×9燃料(B型)の熱水力学的な特性はほぼ同等であること から,代表的に9×9燃料(A型)を設定 燃料交換後の余剰反応度の大きな炉心を想定
	実効増倍率	1.0	原子炉は臨界状態にあるものとして設定
	原子炉初期出力	定格出力の10 ⁻⁸	原子炉は臨界状態にあるものとして設定
件	原子炉初期圧力	0.0MPa[gage]	停止時余裕検査時の原子炉圧力を想定
	燃料被覆管表面温度及び 原子炉冷却材温度	20°C	冷却材温度が低い場合,水密度が大きくなり投入反応度が増加する傾向にあるため, 冷却材温度の運用の下限値を設定
	初期燃料エンタルピ	8kJ∕kgUO₂	冷却材温度20℃における燃料エンタルピを想定
事故条件	起因事象	制御棒の誤引き抜き	運転停止中の原子炉において,最大反応度価値の制御棒1本が全引き抜きされている 状態から,他の1本の制御棒が操作量の制限を超える誤った操作によって連続的に引 き抜かれる事象を想定する なお,通常,制御棒1本が全引き抜きされている状態の未臨界度は深く,また,停止 余裕検査時において,連続的に制御棒を引き抜くことはないため,上記の想定は保守 的である。原子炉停止中の臨界近接におけるその他の制御棒の引き抜きとしては冷温 臨界検査があるが,冷温臨界検査においては,臨界近接における制御棒の反応度価値 を1.0% Δk以下となるよう管理しており,臨界状態からの誤引き抜きにより反応度価 値約1.71% Δkが加わる上記の評価に包含されるものと考える
	誤引き抜きされる制御棒	最大反応度価値制御棒及 びその対角隣接の制御棒	運転停止中に実施する複数の制御棒引き抜きを伴う検査を考慮し設定(誤引き抜きされる制御棒1本の反応度価値は約1.71%Δk)。 引抜制御棒反応度曲線は,第5.4-2図のとおり。
	外部電源	外部電源あり	制御棒引抜操作には外部電源が必要となるため、外部電源があるものとして想定

項目    主要評価条件		主要評価条件	条件設定の考え方
	制御棒の引抜速度	9.1cm/s	引き抜き速度の上限値を設定
機	重 起動領域計装の 大 小イパス状態	A, Bチャンネルそれぞれ1個	A, Bチャンネルとも引抜制御棒に最も近い検出器が1個ずつバイパス状態に あるとする。スクラム信号が遅れることにより,厳しい評価となる
器条件	2 関 車 制御棒引抜阻止信号	期待しない(原子炉出力ペリ オド短信号(20秒))	制御棒の引き抜きが制限されないことにより,制御棒の誤操作の量が増加し, 厳しい評価となる
	5 スクラム信号	原子炉出力ペリオド短短信号 (10 秒)	起動領域計装のスクラム機能を設定*

第5.4-2表 主要解析条件(反応度の誤投入)(2/2)

※: 複数の制御棒引抜を伴う検査の実施する際において, 発電長が最初の制御棒引抜開始前に原子炉保護系計装及び起動領域計装の機能が維持され ていること(指示値の異常有無確認, 点検記録及び校正記録等の確認等), 制御棒のスクラムアキュムレータの圧力等を確認することで, 必要 な原子炉緊急停止系が正常に動作することを確認する運用としている。

そのため、本事象においてスクラム信号の機能に期待できる。



第5.4-1図 事故シーケンスグループ「反応度の誤投入」の対応手順の概要



第5.4-2図 反応度の誤投入における引抜制御棒反応度曲線



第5.4-3 図 反応度の誤投入におけるスクラム反応度曲線



第5.4-4図 反応度の誤投入における事象変化

安定停止状態について(運転停止中 反応度の誤投入)

運転停止中の反応度の誤投入の安定状態については以下のとおり。

原子炉安定停止状態:	事象発生後,設計基準事故対処設備及び重
	大事故等対処設備を用いた炉心冷却によ
	り、炉心冠水が維持でき、また、冷却のた
	めの設備がその後も機能維持できると判断
	され、かつ、必要な要員の不足や資源の枯
	渇等のあらかじめ想定される事象悪化のお
	それがない場合、安定停止状態が確立され
	たものとする。

【安定状態の確立について】

原子炉安定停止状態の確立について

運転停止中に制御棒の誤引き抜き等によって,燃料に反応度が 投入されるが,原子炉出力ペリオド短短(10秒)信号により原子 炉はスクラムして制御棒全挿入となり,未臨界状態となることで, 原子炉安定停止状態が確立される。

また,重大事故等対策は自動で作動するため,対応に必要な要 員はいない。

【安定状態の維持について】

上記の燃料損傷防止対策により安定停止状態を維持できる。

また,残留熱除去系機能を維持し,除熱を継続することにより, 安定停止状態後の更なる除熱が可能となる。

# 解析コード及び解析条件の不確かさの影響評価について(運転停止中 反応度の誤投入)

|--|

分類	重要現象	解析モデル	不確かさ	運転員等操作時間に与え る影響	評価項目パラメータに与える影響
	核 分 裂 出 力	<ul> <li>・一点近似動特性モデル(炉出力)</li> <li>・出力分布は二次元拡散モデル</li> <li>・核定数は三次元体系の炉心を空間効果を 考慮し二次元体系に縮約</li> </ul>	考慮しない		ドップラ反応度フィードバック及び制御棒反応度効 果の不確かさに含まれる。
炉心 (核)	出 力 分 布 変化	<ul> <li>・二次元(RZ)拡散モデル</li> <li>・エンタルピステップの進行に伴う相対出 力分布変化を考慮</li> </ul>	考慮しない		解析では制御棒引抜に伴う反応度印加曲線を厳しく 設定し,さらに局所出力ピーキング係数は対象領域に ある燃料の燃焼寿命を考慮した最大値(燃焼度 0GWd /tでの値)を用いるといった保守的なモデルを適用 していることから,出力分布変化の不確かさは考慮し ない。
	反応度フィードバック効果	<ul> <li>・ドップラ反応度フィードバック効果は出 力分布依存で考慮</li> <li>・熱的現象は断熱,ボイド反応度フィード バック効果は考慮しない*</li> </ul>	<ul> <li>・ドップラ反応度フィ ードバック効果:7~ 9%</li> <li>・実効遅発中性子割 合:4%</li> </ul>	停止時の制御棒の誤引き抜 きは,起動領域計装の原子炉 出力ペリオド短短(10秒) 信号の発生により,自動的に 原子炉スクラムされること で未臨界となり,事象は収束 することから,運転員等の操 作を必要としない。 したがって,解析コードの不 確かさが運転員等操作時間	実験によるとドップラ反応度フィードバックの不確 かさは7~9%と評価されていることから,これを踏ま えて解析を行う必要がある。 また,臨界試験との比較により,実効遅発中性子割合 の不確かさは約4%と評価されていることから,これ を踏まえて解析を行う必要がある。
	制御棒反応度効果	<ul> <li>・三次元拡散モデル</li> <li>・動特性計算では外部入力</li> </ul>	<ul> <li>・制御棒反応度:9%</li> <li>・実効遅発中性子割合:4%</li> </ul>		制御棒反応度の不確かさは約9%程度あることから, これを踏まえて解析を行う必要がある。 また,臨界試験との比較により,実効遅発中性子割合 の不確かさは約4%と評価されていることから,これ を踏まえて解析を行う必要がある。
	燃 料 棒 内 温度変化	<ul> <li>・熱伝導モデル</li> <li>・燃料ペレットー被覆管ギャップ熱伝達モデル</li> </ul>	考慮しない	に与える影響を考慮する必要はない。	「反応度投入事象評価指針」において燃料棒内メッシ ュの「制御棒落下」解析結果への影響は0%と報告さ れており,類似の事象である本事故シーケンスについ ても,影響はほとんど生じない。
炉心 (燃料)	燃 料 棒 表 面熱伝達	<ul> <li>・単相強制対流:Dittus-Boelterの式</li> <li>・核沸騰状態:Jens-Lottesの式</li> <li>・膜沸騰状態(低温時):NSRRの実測データに基づいて導出された熱伝達相関式</li> </ul>	考慮しない		本事象では即発臨界となり,急激な出力上昇が生じる が,スクラム反応度印加により出力は速やかに降下 し,燃料エンタルピはその数秒後に最大値となる。こ のような短時間の事象であることから,燃料棒表面熱 伝達の不確かさが燃料エンタルピの最大値に及ぼす 影響はほとんどない。
	沸騰遷移	低 温 時 : Rohsenow-Griffith の式及び Kutateladzeの式	考慮しない		事象を通じての表面熱流束は限界熱流束に対して十 分小さくなっていることから,沸騰遷移の判定式の不 確かさが燃料エンタルピの最大値に与える影響はほ とんどない。

※: A P E X は断熱モデルに基づくドップラ反応度フィードバックモデルを採用し、減速材温度フィードバック及び減速材ボイドフィードバックは考慮しない

項目		解析条件(初期,事故及び機器条 件)の不確かさ		評価条件設定の考え方	運転員等操作時間に	評価項目パラメータに与える影響		
		解析条件	最確条件		与える影響			
	炉心状態	平 衡 炉 心 サ イ クル初期	装荷炉心毎, 燃焼度毎に 変化	<ul> <li>・装荷炉心については9×9燃料 (A型)の平衡炉心を代表とし て設定</li> <li>・燃料交換後の余剰反応度の大き な炉心としてサイクル初期を想 定</li> </ul>		実炉心においては装荷炉心毎,燃焼度毎に制御棒反応度価値やス クラム反応度等の特性が変化する。 これらの影響については以下の保守的な想定をした評価において も,投入される反応度は約1.16ドル(燃料エンタルピ最大値: 79.6kJ/kgUO ₂ ,燃料エンタルピの増分の最大値:71.2kJ/kg UO ₂ )にとどまることから,不確かさが評価項目となるパラメー タに与える影響は小さい。 ・サイクル初期及びサイクル末期の炉心状態においてB型平衡 炉心の反応度印加率を包含する引抜制御棒反応度曲線を用い た場合(補足説明資料77「反応度誤投入における炉心状態の 不確かさの感度解析について」参照)		
初期条件	実効増倍率	1.0	0.99以下	原子炉は臨界状態にあるものとし て設定	停止時の制御棒の誤引き 抜きは,起動領域計装の 原子炉出力ペリオド短短 (10秒)信号の発生によ り,自動的に原子炉スク ラムされることで表面異	実効増倍率について、実際の設計では、設計上の余裕を見込み、 最大反応度価値を持つ制御棒1本が完全に引き抜かれた状態でも、 炉心の実効増倍率の計算値は、常に0.99未満となるよう設計する。 実効増倍率が0.99の場合は、臨界到達までにかかる時間が追加で 必要となり、また投入される反応度も0.96ドル(燃料エンタルピ 最大値:約10kJ/kgUO ₂ 、増分の最大値:約1kJ/kgUO ₂ )と 小さくなり、即発臨界に至らないこととなるため、評価項目とな るパラメータに対する余裕が大きくなる。		
	原子炉 初期出力	定格出力の 10 ⁻⁸	定格出力の 10 ⁻⁸ 程度	原子炉が低温状態であることを想 定して設定	となり,事象は収束する ことから,運転員等の操 作を必要としない。 したがって,初期条件の 不確かさが運転員等操作 時間に与える影響を考慮 する必要はない。	<ul> <li>初期出力は炉心状態毎に異なり、評価項目となるパラメータに影響を与えるため、その不確かさが与える影響を評価した。</li> <li>定格出力の10⁻⁸の10倍及び1/10倍とした場合の感度解析を行い、結果は以下のとおりとなった。</li> <li>定格出力の10⁻⁷:1.09ドル</li> <li>定格出力の10⁻⁹:1.17ドル(燃料エンタルピ最大値:約123kJ/kgUO2,増分の最大値:約115kJ/kgUO2)</li> <li>有効性評価での結果(1.13ドル,燃料エンタルピ最大値:約85kJ/kgUO2,増分の最大値:約77kJ/kgUO2)と大きく差異がないことから、初期出力の不確かさが与える影響は小さい。</li> </ul>		
	燃料被覆管 表面温度及 び冷却材温 度	20°C	事故事象毎 20℃以上	冷却材温度が低い場合,水密度 が大きくなり投入反応度が増 加する傾向にあるため,冷却材 温度の運用の下限値を設定		初期燃料被覆管表面温度は炉心状態毎に異なり,評価項目となる パラメータに影響を与えるため,その不確かさ**が与える影響を評 価した。 初期燃料温度を 60℃とした場合の感度解析を実施し,結果は以下		
	燃料初期エンタルピ	8kJ∕kgUO₂	事故事象每	冷却材温度 20℃における燃料エ ンタルピを想定		<ul> <li>のとおりとなった。</li> <li>・初期燃料温度 60℃:1.13 ドル (燃料エンタルピ最大値:約 96kJ/kgUO₂,増分の最大値:約 80kJ/kgUO₂)</li> <li>有効性評価での結果 (1.13 ドル,燃料エンタルピ最大値:約 85kJ /kgUO₂,増分の最大値:約 77kJ/kgUO₂)と大きな差異がな いことから,初期燃料温度の不確かさが与える影響は小さい。</li> </ul>		
*	:本評価で計	仙对象とした!	9 × 9 燃料で	は、 初 期 の 燃 料 被 覆 管 表 面 温 度 /	及 び 伶 却 材 温 度 を 高 く 設	て し た 場 台 に , G d の 燃 焼 や P u の 蓄 積 に よ り , 結 果 が		

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(運転停止中 反応度の誤投入)(1/2)

厳しくなる場合がある。

添付 5.4.2-2

項目		解析条件(初期,事故及び機器条 件)の不確かさ		評価条件設定の考え方	運転員等操作時間に 与える影響	評価項目パラメータに与える影響
事故条件	誤引き抜き される制御 棒	最大反応度価 値制御棒の斜 め隣接制御棒	解析条件と 同様	運転停止中に実施する複数の制御 棒引き抜きを伴う検査を考慮し設 定(誤引き抜きされる制御棒1本 の反応度価値は約1.71%Δk)。 (添付資料5.4.3)	停止時の制御権の誤引き 抜きは,起動領は 原子炉出力ペリオド短 (10秒)信号の発生にク ラムされることで未忘 となり,事運転員 となり、事運転員 作を必要としない。 したがって,事故条件の 不確かさが運転員等を考 する必要はない。	解析条件と同様であることから,評価項目となるパラメータに与 える影響はない。
機器条件	制御棒引抜速 度	9.1cm⁄s	9.1cm/s 以 下	引抜速度の上限値として設定	停止時の制御棒の誤引き	解析上では引抜速度の上限値を設定しているが,最確条件では上 限値に比べて遅い引抜速度であり,投入反応度が小さくなるため, 評価項目となるパラメータに対する余裕が大きくなる。
	起動領域計装 のバイパス状 態	A, Bチャンネ ルそれぞれ1個	バイパスな し	A, Bチャンネルとも引抜制御棒 に最も近い検出器が1個ずつバイ パス状態にあるとする。スクラム 信号が遅れることにより,厳しい 評価となる	抜きは,起動領域計装の 原子炉出力ペリオド短短 (10秒)信号の発生によ り,自動的に原子炉スク ラムされることで未臨界	バイパス状態がない場合は制御棒引抜阻止及びスクラム信号の応 答が早くなり,投入反応度が小さくなるため,評価項目となるパ ラメータに対する余裕が大きくなる。
	制 御 棒 引 抜 阻止信号	期待しない (原子炉出力 ペリオド短信 号(20秒))	期待する (原子炉出 力ペリオド 短信号(20 秒))	制御棒の引き抜きが制限され ないことにより,制御棒の誤操 作の量が増加し,厳しい評価と なる	ことから,運転員等の操 作を必要としない。 したがって,機器条件の 不確かさが運転員等操作 時間に与える影響を考慮	制御棒引抜阻止に期待した場合,運転員が事象を認知して 速やかに制御棒を挿入し,事象が収束するため,評価項目 となるパラメータに対する余裕は大きくなる。
	スクラム信号	原子炉出力ペ リオド短短(10 秒)信号	解析条件と 同様	設計値を設定	する必要はない。	解析条件と同様であることから,評価項目となるパラメータに与 える影響はない。

第2表 解析条件を最確条件とした場合の運転員等操作時間及び評価項目となるパラメータに与える影響(運転停止中 反応度の誤投入)(2/2)

#### 反応度誤投入事象の代表性について

1. はじめに

有効性評価では反応度の誤投入事象として、「原子炉停止時に最大反応度価 値を有する1本の制御棒1本が全引き抜きされている状態から、その隣接制 御棒の1本が操作量の制限を超える誤った操作によって引き抜かれ、臨界に 至る事故」を想定している。これは、運転停止中に実施する停止時冷温臨界 検査や停止余裕検査を考慮した想定であり、その検査の制御棒引き抜き事象 の代表性について以下に示す。

2. 運転停止中において制御棒を複数引き抜く検査

運転停止中の原子炉においては,停止余裕(最大反応度価値を有する1本 の制御棒が引き抜かれた状態でも炉心の未臨界を維持できること)を確保し た燃料配置としていることに加え,原子炉モード・スイッチを「燃料取替」 位置にすることで,1本を超える制御棒の引き抜きを阻止するインターロッ クが作動する状態とし,不用意な臨界の発生を防止している。

しかしながら,停止余裕検査及び冷温臨界検査の実施時においては,原子 炉モード・スイッチを「起動」位置として複数の制御棒の引き抜きを実施す る。このため,これらの検査中に人的過誤が発生すると,想定を超える反応 度が投入される可能性がある。

それぞれの検査の概要や対象となる制御棒等は以下のとおり。

(1) 冷温臨界検査

検査の目的 :臨界予測精度の維持・向上のためのデータベースの蓄積。 検査方法 :あらかじめ作成した検査用引き抜きシーケンスに従って順

番に対象となる制御棒引き抜きを実施し,臨界状態確認後 に,制御棒パターン,原子炉水温度,ペリオド等のデータ を採取する。

- 対象制御棒 :評価ケースにより異なる。臨界状態が確認されるまで,複数本の制御棒の引き抜きを実施する。
- 事故防止対策:制御棒の操作を行う運転員とは異なる運転員1名による監 視。
- (2)停止余裕検査
  - 検査の目的 : 停止余裕(挿入可能な制御棒のうち最大反応度価値を有す る制御棒1本が挿入されない場合でも,原子炉を常に冷温 で未臨界にできること)を確認する。
  - 検査方法 : ①最大価値を有する制御棒(CR-1)の全引き抜き。 ②最大価値を有する制御棒(CR-1)を位置N^{*}まで挿 入する。
    - ※:最大価値を有する制御棒(CR-1)の斜め方向 に隣接した制御棒(CR-2)について停止余裕

の確認に必要な引き抜き位置

- ③最大価値を有する制御棒(CR-1)の斜め隣接の制御
   棒(CR-2)を位置Nまで引き抜く。
- ④最大価値を有する制御棒(CR-1)を再度全引き抜き この状態で炉心が臨界未満であることを確認する。なお、 制御棒の引き抜きに際しては、1ノッチ引き抜き毎に検 査担当者で未臨界を確認している。
- 対象制御棒 :最大反応度価値制御棒1本。

最大反応度価値制御棒の斜め隣接した制御棒1本。

引き抜かれる制御棒は斜め隣接の制御棒のうち反応度の補 正に必要な価値を有していて印加反応度が大きすぎないよ うに選択。

- 事故防止対策:制御棒価値ミニマイザによる制御棒操作手順の監視,又は 制御棒の操作を行う運転員とは異なる運転員1名による監 視。
- 3. 想定する人的過誤

想定を超えた反応度が投入されるおそれのある人的過誤として,「燃料の誤 装荷」,「制御棒の選択誤り」及び「制御棒の連続引き抜き」について検討し た。

- 3.1 単一の人的過誤
  - (1) 燃料の誤装荷

燃料の誤装荷は、燃料の誤配置や燃料・制御棒の装荷順序の誤りにより、 想定以上の反応度が投入されることが考えられる。しかしながら、燃料を 装荷する際は燃料取替機が自動で燃料装荷位置まで移動し、かつ作業員に よる燃料装荷位置の確認や定検時燃料移動監視装置による確認等が行われ る。このため、本事象が発生しても適切に認知がされることから、反応度 の連続投入や急激な反応度の投入は考えにくい。

(2) 制御棒の選択誤り

操作対象制御棒の選択を誤ると,当該制御棒の反応度価値が変化する。 停止時冷温臨界検査及び停止余裕検査では,事前に対象となる制御棒の価

値が臨界近傍で大きくならないように評価により対象を選定しており、その制御棒パターンは制御棒価値ミニマイザ^{**}や運転員等により監視されているため、操作対象以外の制御棒が選択されることは考えにくい。また、 選択誤りが発生した場合においても臨界付近での制御棒引き抜き操作は1 ノッチずつであるため、反応度の急激な投入は考えにくい。 **停止余裕検査では使用していない。

(3) 制御棒の連続引き抜き

運転員,及び制御棒の操作を行う運転員とは異なる運転員が制御棒や起 動領域計装の確認を実施しており,人的過誤発生時も認知が容易である。 しかし,これらの認知は運転員に期待しているため,有効性評価ではこれ らの認知に期待せず,制御棒が連続引き抜きされることを想定する。

3.2 人的過誤の重畳

人的過誤として抽出した「燃料の誤装荷」,「制御棒の選択誤り」及び「制 御棒の連続引き抜き」の重畳事象の発生について検討した。反応度の投入速 度等の理由*から,検討するべき人的過誤の重畳は「制御棒の選択誤り」+ 「制御棒の連続引き抜き」のみであると考えられる。

評価の結果,人的過誤の重畳は発生の可能性が低いことから,有効性評価 では単一の人的過誤である「制御棒の誤引き抜き」について検討する。

※:「制御棒の連続引き抜き」を含まない人的過誤が重畳した場合には、制御棒が1 ノッチずつ引き抜かれるため、投入される反応度は「制御棒の連続引き抜き」 に比べて小さいと考えられる。また、「燃料の誤装荷」については、燃料取替機 により自動で選択されるため、運転員等の作業時の誤りにより間違った配置に なることは考えにくく、燃料の装荷順序に係るデータの入力についても十分確

認がなされていることから、「燃料の誤装荷」単一の過誤発生確率でも十分低い と考えられ、他の過誤との重畳事象は考慮する必要がないと考えられる。

(1)「制御棒の選択誤り」及び「制御棒の連続引き抜き」重畳時の人的過誤確率 人的過誤の重畳を考慮すべき試験は、「2. 停止時において制御棒を複数 引き抜く試験」に示すとおり、原子炉停止余裕検査及び冷温臨界検査であ る。通常、冷温臨界検査では機械的に制御棒の選択の誤りを防止している。 したがって、この機能を使用している場合は、人的過誤による制御棒の選 択の誤りは発生しないため、人的過誤の重畳の考慮は不要である。これら の機能に期待しないで試験を実施することもあるため、その場合における 人的過誤の重畳を検討した。なお、制御棒価値ミニマイザによる運転員の 制御棒操作手順の監視に期待しない場合においては、操作する運転員以外 の運転員が1名以上監視に当たることで人的過誤の発生を防止しているた め、これらについてもモデル化する。

第1図に「制御棒の連続引き抜き」,第2図に「制御棒の選択誤り」+「制 御棒の連続引き抜き」の重畳(人的過誤に従属性を考えた場合)における HRAツリー及び人的過誤の確率を示す。

その結果,「制御棒の連続引き抜き」の単一の人的過誤に比べて「制御棒 の選択誤り」+「制御棒の連続引き抜き」の重畳を考慮すると,発生確率 が小さくなっていることがわかる。なお,ここでの評価は同じ操作者・指 示者による「制御棒の選択誤り」と「制御棒の連続引き抜き」の人的過誤 の従属性については,NUREG/CR-6883のSPAR-H手法に おける従属性レベルの選定フロー(第1表)に基づき,高従属と設定した。

同じ操作者・指示者による「制御棒の選択誤り」と「制御棒の連続引き 抜き」の人的過誤の従属性は,作業内容の差異やステップ毎に実施してい

ることから独立事象として考えることもでき、その場合についても評価した(第3図)。

以上のように人的過誤確率が発生する確率は低いことから,有効性評価 では単一の人的過誤である「制御棒の誤引き抜き」について検討する。



	人的過誤の内容	過誤確率 (中央値)	EF	備考
F11	操作員の指示誤りによる制御棒 の連続引き抜き	3. 0E-03	3	MUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定
F12	操作する運転員や監視している 運転員による過誤回復	5.3E-02	3	NUREG/CR-6883 (SPAR-H)の低従属 F11の操作に対して、時間的な間隔,作業者の相違があるため,低従属とした 特に高いストレスとはならないため,ストレスファクタは1と設定
F2	操作する運転員による制御棒の 連続引き抜き	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定

※操作する運転員による制御棒の連続引き抜きにおける過誤回復には保守的に期待しないこととした。

 人的過誤(平均值)
 EF

 4.0E-03
 2.8

第1図 「制御棒の連続引き抜き」のHRAツリー及び人的過誤確率

## 添付 5.4.3-7

# HRAツリー(従属性を考慮する場合)

「制御棒の選択誤り」及び「制御棒の連続引き抜き」重畳時の 第2図

人的過誤(平均值)	EF
3.1E-04	3.6

また、HRAツリー及び人的過誤の確率は、複数の制御棒を引き抜く冷温臨界試験を想定して評価した。

				(人的過誤の重畳)
8	人的過誤の内容	過誤確率 (中央値)	EF	偏考
F11	操作員の指示誤りによる制御棒 の選択誤り	3. <mark>0</mark> E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定
F12	操作する運転員や監視している 運転員による過誤回復	5.3E-02	3	NUREG/CR-1278の低従属 F11の操作に対して,時間的な間隔,作業者の相違があるため,低従属とした た 特に高いストレスとはならないため,ストレスファクタは1と設定
F13	検査員の指示による制御棒の連 続引き抜き	5. 0E-01	2	NUREG/CR-1278の高従属 F11の操作と作業内容が異なるが,操作者,操作場所は同じであるため,高 従属とした 特に高いストレスとはならないため,ストレスファクタは1と設定 (過誤回復には期待しない)
F21	操作する運転員による制御棒の 連続引き抜き	5.3E-02	3	NUREG/CR-1278の低従属 F11の操作と作業内容が異なり,操作と時間的な間隔,作業者の相違がある ため、低従属とした 特に高いストレスとはならないため、ストレスファクタは1と設定
F31	操作する運転員による制御棒の 連続引き抜き	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定
F32	検査員や監視している運転員に よる制御枠の選択誤りに対する 過誤回復	5.3E-02	3	NUREG/CR-1278の低従属 F11の操作に対して、時間的な間隔、作業者の相違があるため、低従属とした た 特に高いストレスとはならないため、ストレスファクタは1と設定
F33	検査員の指示による制御棒の連 続引き抜き	5. 3E-02	3	NUREG/CR-1278の低従属 F11の操作に対して、時間的な間隔、作業者の相違があるため、低従属とした 特に高いストレスとはならないため、ストレスファクタは1と設定
F41	操作する運転員による制御棒の 連続引き抜き	5. 0E-01	2	NUREG/CR-1278の高従属 F11の操作と作業内容が異なるが,操作者,操作場所は同じであるため,高 従属とした 特に高いストレスとはならないため,ストレスファクタは1と設定 (過誤回復には期待しない)
※操作	目する運転員による制御棒の連続引き	抜きにおける過	訳回復に	は保守的に期待しないこととした。



#### F11 検査員の指示による 制御棒の選択誤り F12 誤選択の過誤回復 F13 F31 検査員の指示による 運転員による 副御棒の連続引き抜き 制御棒の選択誤り F14 F32 連続引き抜きの 誤選択の過誤回復 F21 過誤回復 成功, 運転員による (単一の人的過誤) F33 成功 制御棒の連続引き抜き (人的過誤なし、又は単 一の人的過誤) 失敗 操作員の指示による (人的過誤の重畳) 制御棒の連続引き抜き F34 ¹³⁴ 連続引き抜きの 矢敗 ^{1992回復} (人<mark>的</mark>過誤の重畳) F41 運転員による 成功 (単一の人的過誤) 制御棒の連続引き抜き 失敗 (人的過誤の重畳) 失敗

(人的過誤の重畳)

	人的過誤の内容	過誤確率 (中央値)	EF	備考
F11	操作員の指示誤りによる制御棒 の選択誤り	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定
F12	操作する運転員や監視している 運転員による過鉄回復	5. 3E-02	3	NUREG/CR-1278の低従属 F11の操作に対して、時間的な問題、作業者の相違があるため、低従属とした 特に高いストレスとはならないため、ストレスファクタは1と設定
F13	検査員の指示による制御棒の速 統引き抜き	3. 0E-03	3	NRRE6/CR-1278の高従属 F11の操作と作業内容が異なるが、操作者、操作場所は同じであるため、高従属とした 特に高いストレスとはならないため、ストレスファクタは1と設定 ※削削権の選択額りと作業内容が異なり、操作は検査要領書に従ってステップ毎に実施 することから、完全独立とした
F14	操作する運転員や監視している 運転員による過誤回復	5. 3E-02	3	NUREG/CR-1278の低従属 F13の操作に対して、時間的な間隔、作業者の相違があるため、低従属とした 特に高いストレスとはならないため、ストレスファクタを1と設定
F21	操作する運転員による制御棒の 連続引き抜き	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファククは1と設定 ※制御権の選択説りと作業内容が異なり、操作は検査要領書に従ってステップ毎に実施 することから、完全独立とした
F31	操作する運転員による制御棒の 連続引き抜き	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定
F32	検査員や監視している運転員に よる制御棒の選択誤りに対する 過誤回復	5. 3E-02	3	NIREG/CR-1278の低従属 F11の操作に対して、時間的な問題。作業者の相違があるため、低従属とした 特に高いストレスとはならないため、ストレスファクタは1と設定
F33	検査員の指示による制御様の連 統引き抜き	3. 0E-03	3	NIREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定 ※制御権の選択載)と作業内容が異なり、操作は検査要領書に従ってステップ毎に実施 することから、完全独立とした
F34	操作する運転員や監視している 運転員による過誤回復	5. 3E-02	3	NUREG/CR-1278の低従属 F33の操作に対して、時間的な間隔,作業者の相違があるため,低従属とした 特に高いストレスとはならないため,ストレスファクタは1と設定
F41	操作する運転員 <mark>に</mark> よる制御棒の 連続引き抜き	3. 0E-03	3	NUREG/CR-1278 手順書を用いる時のオミッションエラー (チェック表が正しく用いられている場合の長い操作(10項目以上)) 特に高いストレスとはならないため、ストレスファクタは1と設定 ※制御権の選択誤りと作業内容が異なり、操作は検査要領書に従ってステップ毎に実施 することから、完全独立とした
N: 10.	をする運転員に上る制御縁の演装計	きせきにわける湯	副相同省()	14.原京朝小田(朱) わいてもしした

※操作する運転員による前側棒の運転引き抜きにおける両調回復には床寸的に動件しないこととした。 また、HRAツリー及び人的過誤の確率は、複数の制御棒を引き抜く冷温臨界試験を想定して評価した。

人的過誤(平均値)	EF 4.5	
2.0E-06		

第3図 「制御棒の選択誤り」及び「制御棒の連続引き抜き」重畳時の

HRAツリー(独立事象の場合)

第1表 SPAR-H手法における従属性レベルの選定フロー

Condition Number	Crew (same or different)	Time (close in time or not close in time)	Location (same or different)	Cues (additional or no additional)	Dependency	Number of Human Action Failures Rul Not Applicable		
1	S	c	s	na	complete	<ul> <li>When considering recovery in a series e.g., 2nd, 3rd, or 4th checker</li> <li>If this error is the 3rd error in the sequence, then the dependency is at least moderate.</li> <li>If this error is the 4th error in the sequence, then the dependency is at least high.</li> </ul>		
2				а	complete			
3			d	na	high			
4				a	high			
5		nc	s	na	high			
6				a	moderate			
7			d	na	moderate			
8				a	low			
9	d	c	s	na	moderate			
10				a	moderate			
11			d	na	moderate			
12				а	moderate			
13		nc	s	na	low			
14				а	low			
15			d	na	low			
16				а	low			
17					7610	1		

#### Dependency Condition Table

 過去に発生した制御棒誤引き抜け事象と東海第二発電所における発生防止 対策

(1) 志賀原子力発電所1号炉における制御棒引き抜け事象

平成11年6月,志賀原子力発電所1号炉において,原子炉停止機能強化 工事の機能確認工事の準備として,制御棒関連の弁を操作していたところ, 3本の制御棒が想定外に全挿入位置から引き抜かれ,原子炉が臨界状態と なった。この事象により,原子炉自動停止信号が発生したが,直ちに制御 棒が挿入されず,約15分間制御棒が全挿入されなかった。

この事象は、制御棒駆動水圧系(以下「CRD」という。)の原子炉戻り ラインの弁を開けずにCRD挿入ライン隔離弁を閉としたことにより、引 き抜きラインに圧力がかかり、制御棒が引き抜けた。また、原子炉自動停 止信号が発生したにも関わらず制御棒が挿入されなかったのは、CRD挿 入ライン隔離弁が閉であったこと及び制御棒駆動水圧制御ユニット(以下 「HCU」という。)アキュムレータに圧力が充てんされていなかったこと が原因である。

上記の事象を踏まえ、東海第二発電所では、次の対策を講じている。

a. HCU隔離時のCRDリターンライン運転手順の整備

b. 原子炉-CRD冷却水ヘッダ間差圧上昇時のCRDポンプ自動トリ ップインターロックの設置

これらの対策を考慮して制御棒の誤引き抜け事象の発生頻度を評価した 結果,4.5E-10/施設定期検査と評価され,志賀原子力発電所1号炉で発生 した制御棒誤引き抜け事象と同様の事象が東海第二発電所で発生する頻度 は十分小さいことを確認している。

(2) 東海第二発電所における意図せぬ制御棒動作事象

東海第二発電所においては、制御棒の誤引き抜け事象等により反応度が 誤投入された事象の発生実績はないが、平成20年4月、定期検査中(全燃 料取出,全制御棒全引き抜き、制御棒駆動水圧系ユニット(以下「HCU」 という。)隔離)のところ、1本の制御棒が44ポジション(全引き抜き位 置(48ポジション)から4ポジション挿入)に動作し、「制御棒ドリフト」 警報が発報した。

この事象は、動作した制御棒のHCUの制御弁のリークテストを実施中 に、当該制御弁の圧力が安定せず加圧を通常よりも長時間実施したこと、 及び当該HCU周りの手動弁のシートパスが重畳したことが原因である。

ただし、本事象は全燃料取出状態であったこと、及び制御棒は挿入側に 動作した事象であることから、反応度が投入された事象ではない。

なお、当事象への対策として、以下の対策を行った。

- ・当該HCU弁の弁体取り替え
- ・HCUリークテストにおける圧力が安定しない場合は、当該リーク テストを中止する
- ・警報処置手順書における「制御棒ドリフト」警報に本事象を発生要

因として加えることで、当該警報発報時にHCUリークテストも要 因の調査対象とする。

5. 重要事故シーケンスの想定

有効性評価では2~4章を踏まえ,以下の理由により冷温臨界検査や原子炉 停止余裕検査時に,人的過誤により制御棒が連続的に引き抜かれる事象を想 定した。

このとき,引き抜かれる制御棒は,以下の点を考慮して「最大反応度価値 を有する制御棒が全引き抜きされている状態での隣接制御棒の1本の引き抜 き」を反応度誤投入の代表性があるものとして選定した。

- ・引き抜かれる制御棒の反応度価値が管理値*を超えるもの
- ・冷温臨界検査や停止余裕検査での試験対象や事故防止の対策
- ・一般的に臨界近傍まで複数の制御棒を引き抜いていくと、1本当たりの 制御棒価値は相対的に低下していく傾向にあること
- ・設計により挿入可能な制御棒のうち最大反応度価値制御棒1本が引き抜かれた状態であっても臨界未満が維持されていること

以上より,反応度の誤投入事象として,「原子炉停止時に最大反応度価値を 有する1本の制御棒が全引き抜きされている状態から,その隣接制御棒の1 本が操作量の制限を超える誤った操作によって引き抜かれ,臨界に至る事故」 を代表性のあるシナリオとしている。

※:冷温臨界検査においては,臨界近接における制御棒の反応度価値は 1.0% Δk 以 下となるよう管理

- 6. 必要な要員及び資源の評価
- 6.1 必要な要員及び資源の評価条件
- (1) 要員の評価条件
  - a. 各事故シーケンスグループにおいて対応可能であるか評価を行う。
  - b. 招集要員に期待しない重要事故シーケンス等においては、中央制御室の発電長、副発電長、運転員及び発電所構内に常駐している重大事故等対応要員により、必要な作業対応が可能であることを評価する。

また,招集要員に期待する重要事故シーケンス等において,事象発生 2 時間までは,中央制御室の運転員及び発電所構内に常駐している重大 事故等対応要員のみにより必要な作業対応が可能であること,さらに事 象発生2時間以降は発電所外から招集される招集要員についても考慮し て,必要な作業対応が可能であることを評価する。なお,発電所外から 招集される招集要員については,実際の運用では集まり次第,作業対応 が可能であるが,評価上は事象発生2時間以前の招集要員による作業対 応は見込まないものとする。

- c.可搬型設備操作において,可搬型設備を事象発生から8時間までは機能に期待しないと仮定するため,その使用開始を8時間後として要員を評価する。
- (2) 資源の評価条件
  - a. 全般
    - (a) 重大事故等対策の有効性評価において、通常系統からの給水及び給 電が不可能となる事象についての水源、燃料及び電源に関する評価を 実施する。また、前提として、有効性評価の条件(各重要事故シーケ ンス等特有の解析条件又は評価条件)を考慮する。

b. 水源

- (a) 炉心,格納容器等への注水において,水源となる代替淡水貯槽の保 有水量(約4,300m³:有効水量)が,淡水貯水池から可搬型代替注水 大型ポンプを用いた水の移送を開始するまでに枯渇しないことを評 価する。
- (b) 代替淡水貯槽については,淡水貯水池から可搬型代替注水大型ポン プを用いた水の移送で必要注水量以上が補給可能であることを評価 する。
- (c) 水源の評価については、必要注水量が多い重要事故シーケンス等が 水源(必要水量)として厳しい評価となることから、必要注水量が多 い重要事故シーケンス等を評価し成立性を確認することで、他の事故 シーケンスグループ等も包絡されることを確認する。
- c.燃料
- (a) 非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発電 機(以下「非常用ディーゼル発電機等」という。),常設代替交流電源 設備,可搬型代替注水大型ポンプのうち,事故シーケンスグループ等 における事故収束に必要な設備を考慮し,消費する燃料(軽油)が, 備蓄している軽油量にて7日間の運転継続が可能であることを評価す る。
- (b) 外部電源喪失を想定しない重要事故シーケンスにおいては、仮に外部電源が喪失し非常用ディーゼル発電機等及び必要に応じて常設代替交流電源設備から給電することを想定し、燃料消費量の確認を行う。この場合、燃料(軽油)の備蓄量として、軽油貯蔵タンク(約800kL)の容量を考慮する。
- (c) 全交流動力電源喪失の発生を想定する重要事故シーケンス等につ

いては,常設代替交流電源設備からの給電による燃料消費量の評価を 行う。

この場合, 燃料(軽油)の備蓄量として, 軽油貯蔵タンク(約800kL) の容量を考慮する。

- (d) 燃料消費量の計算においては,電源設備等が保守的に事象発生直後 から最大負荷で連続運転することを想定し算出する。
- (e) 可搬型代替注水大型ポンプの使用を想定する重要事故シーケンス
   等については,可搬型代替注水大型ポンプの燃料消費量の評価を行う。
   この場合,燃料(軽油)の備蓄量として,可搬型設備用軽油タンク
   (約 210kL)の容量を考慮する。
- d. 電 源
- (a) 常設代替交流電源設備からの電源供給を考慮する重要事故シーケンス等においては、有効性評価で考慮する設備への常設代替交流電源設備からの電源供給時の最大負荷が、連続定格容量未満となることを評価する。
- (b) 外部電源喪失を想定しない重要事故シーケンス等においても,保守 的に外部電源が喪失するものとして評価する。
- (c) 各事故シーケンスグループ等における対策に必要な設備は,重要事 故シーケンス等の対策設備に包絡されるため,重要事故シーケンス等 を評価し成立性を確認することで,事故シーケンスグループ等も包絡 されることを確認する。
- 6.2 重大事故等対策時に必要な要員の評価結果
  - (1) 必要な要員の評価結果各事故シーケンスグループ等において、重大事故等対策時に必要な操作

項目,必要な要員数及び移動時間を含めた各操作の所要時間について確認 した。

原子炉運転中に必要な要員数が最も多い事故シーケンスグループは, 「2.3.1 全交流動力電源喪失(長期TB)」であり,事象発生後2時間に 必要な要員は20名である。必要な作業対応及び有効性評価においては考慮 しないが実際に重大事故等の発生時に実施する操作を合わせても,中央制 御室の運転員7名,発電所構内に常駐している災害対策要員32名の初動体 制の要員39名で対処可能である。これらの要員数を時間外,休日(夜間) においても確保可能である。また,事象発生2時間以降に追加で必要な要 員数は6名であり,招集要員(72名)により確保可能である。

原子炉運転停止中に必要な要員数が最も多い事故シーケンスグループ等 は、「5.1 崩壊熱除去機能喪失(残留熱除去系の故障による停止時冷却機 能喪失)」、「5.2 全交流動力電源喪失」及び「5.3 原子炉冷却材流出」の 事象であり、事象発生後2時間に必要な要員は7名である。必要な作業対 応は、中央制御室の運転員5名、発電所構内に常駐している災害対策要員 32名の初動体制の要員37名で対処可能である。これらの要員数を時間外、 休日(夜間)においても確保可能である。

使用済燃料プールに燃料が取り出されている期間において,必要な要員 が最も多い事故シーケンスグループ等は,「4.1 想定事故1」及び「4.2 想定事故2」の事象であり,事象発生後2時間に必要な要員は13名である。 必要な作業対応は,中央制御室の運転員5名,発電所構内に常駐している 災害対策要員32名の初動体制の要員37名で対処可能である。これらの要 員数を時間外,休日(夜間)においても確保可能である。また,事象発生 2時間以降に追加で必要な要員数は2名であり,招集要員(72名)により 確保可能である。

6-4

6.3 重大事故等対策時に必要な水源,燃料及び電源の評価結果

事象発生後7日間は、外部からの支援がない場合においても、必要量以上 の水源、燃料及び電源の供給が可能である。

- 水源の評価結果
  - a. 原子炉,格納容器等への注水

原子炉,格納容器等への注水における水源評価において,最も厳しく なる事故シーケンスグループ等は,「3.1 雰囲気圧力・温度による静的 負荷(格納容器過圧・過温破損)のうち,事故収束に代替循環冷却を使 用しない場合(3.1.3)」である。

低圧代替注水系(常設)による原子炉注水,代替格納容器スプレイ冷 却系(常設)による格納容器スプレイ等において,約 5,690m³の水が必 要となる。

水源として,代替淡水貯槽に約4,300m³,淡水貯水池に約5,000m³の 水を保有しており,事象発生48時間程度以降から淡水貯水池から代替淡 水貯槽へ水の移送を行うことで,代替淡水貯槽を枯渇させることなく,

代替淡水貯槽を水源とした7日間の注水継続が可能である。

b. 使用済燃料プールへの注水

使用済燃料プールへの注水における水源評価において,最も厳しくなる事故シーケンスグループ等は,「4.1 想定事故1」及び「4.2 想定事故2」である。

可搬型代替注水大型ポンプによる使用済燃料プール注水において,約2,470m³の水が必要となる。

水源として,代替淡水貯槽に約4,300m³,淡水貯水池に約5,000m³の
水を保有しており、7日間の注水継続が可能である。

(添付資料 6.3.1)

- (2) 燃料の評価結果
  - a. 電源供給に係る燃料評価

最も軽油貯蔵タンクの燃料の消費量が厳しくなる事故シーケンスグル ープ等は、「2.1 高圧・低圧注水機能喪失」等である。

非常用ディーゼル発電機等及び常設代替交流電源設備からの電源供給 については、保守的に事象発生直後から最大負荷で運転することを想定 すると、7日間の運転継続に約756kLの軽油が必要となる。軽油貯蔵タ ンクに備蓄している軽油量の合計は約800kLであり、必要量の軽油を供 給可能である。

b. 可搬型設備に係る燃料評価

最も可搬設備用軽油タンクの燃料の消費量が厳しくなる事故シーケン スグループ等は,「2.1 高圧・低圧注水機能喪失」等である。

可搬型代替注水大型ポンプを考慮する事故シーケンスグループ等では, 保守的に事象発生直後から最大負荷での運転を想定すると,7日間の運 転継続に約35kLの軽油が必要となる。可搬型設備用軽油タンクに備蓄し ている軽油量の合計は約210kLであり,必要量の軽油を供給可能である。 (添付資料 6.3.1)

(3) 電源の評価結果

電源評価において,最も負荷が厳しくなる事故シーケンスグループ等は, 「5.2 全交流動力電源喪失」である。

常設代替交流電源設備の電源負荷については,重大事故等対策時に必要 な負荷として,合計約4,255kW必要となるが,常設代替交流電源設備の連 続定格容量である5,520kW未満であることから,必要負荷に対しての電源

6 - 6

供給が可能である。

なお,直流電源については外部電源喪失時においても,非常用ディーゼ ル発電機等又は常設代替交流電源設備から交流電源を充電器盤に供給する ことで継続的な直流電源の供給が可能である。なお,事故シーケンスグル ープ「2.3.1 全交流動力電源喪失(長期TB)」においては,交流電源が 事象発生後24時間復旧しない場合を想定しており,この場合でも直流電源 負荷の制限の実施により,事象発生後24時間の連続した直流電源の供給が 可能である。

(添付資料 6.3.1)

同時被災時における必要な要員及び資源について

東海第二発電所の原子炉運転中に重大事故等が発生した場合,使用 済燃料プールについても重大事故等が発生すると想定し,それらの対 応を含めた同時被災時に必要な要員,資源について整理する。

なお,更に使用済燃料乾式貯蔵設備の原子炉等との重大事故等同時 被災を想定しても,使用済燃料乾式貯蔵容器への対応を要する状態に はならないため,原子炉及び使用済燃料プールの重大事故等の対応に 必要となる要員及び資源は使用されることはなく確保される。

また,東海第二発電所と同一敷地内に設置している東海発電所(廃 止措置中,核燃料搬出済み。)等の他事業所の同時被災を想定しても, 東海第二発電所の重大事故等の対応に必要となる要員及び資源を使用 することがなく,他事業所が被災する状況になった場合においても, 東海第二発電所の重大事故等対応に係るアクセスルートが確保される ようにしている。

- 1. 同時被災時に必要な要員及び資源の十分性
- (1) 想定する重大事故等

使用済燃料プールに係る重大事故等を除く有効性評価の各シナ リオのうち,必要な要員及び資源(水源,燃料及び電源)毎に最も 厳しいシナリオを想定する。

使用済燃料プールについては,全交流動力電源喪失及びスロッ シングの発生を想定する。

添付 6.1.1-1

第1表に想定する状態を示す。上記に対して,7日間の対応に必要な要員,必要な資源への影響を確認する。

なお,火災対応に係る要員及び資源は重大事故等対応に必要な 要員及び資源と重複利用することがないため,ここでは,火災対応 に係る要員及び資源の評価は行わない。

- (2) 評価結果
  - a. 必要な要員の評価

重大事故等発生時に必要な使用済燃料プールへの対応操作に ついては、常設低圧代替注水ポンプ等を、炉心等への対応と使用 済燃料プールへの対応に同時に使用することが可能であり、使用 済燃料プールへの対応が必要となるまでには1日以上の余裕が ある。このため、原子炉側への重大事故等対策を行っている運転 員、災害対策要員にて対応可能である。

- b. 必要な資源の評価
- (a) 水源

水源の使用量が最も多い「雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損(代替循環冷却を使用しない場合))」 を想定すると、炉心注水、格納容器スプレイ等のために、7日 間で約5,690m³の水が必要となる。また,第2表に示すとおり、 事象発生から7日間の間に必要となる使用済燃料プールへの 注水量(通常水位までの水位回復及びその後の水位維持)は、 約527m³となる。(合計約6,217m³)

水源として,代替淡水貯槽に約4,300m³及び淡水貯水池に約5,000m³の水を保有しているため,原子炉及び使用済燃料プー

#### 添付 6.1.1-2

ルの対応について、7日間の対応は確保である。

(b) 燃料(軽油)

軽油貯蔵タンクの軽油消費量が最も多い「高圧・低圧注水機 能喪失」を想定すると、非常用ディーゼル発電機(2台)及び 高圧炉心スプレイ系ディーゼル発電機並びに常設代替交流電 源設備の7日間の運転継続に約756kL*が必要となる。

また,可搬型設備用軽油タンクの軽油消費量が最も多い「高 圧・低圧注水機能喪失」を想定すると,可搬型代替注水大型ポ ンプの7日間の運転継続に約35kL*が必要となる。

軽油貯蔵タンクに約 800kL,可搬型設備用軽油タンクに約 210kLの軽油を保有していることから,原子炉及び使用済燃料 プールの対応について,7日間の対応は可能である。

- ※:保守的に事象発生直後から運転を想定し,燃費は最大負 荷時を想定。
- (c) 電源

常設代替交流電源設備からの電源供給により,重大事故等の 対応に必要な負荷に電源供給が可能である。なお,常設代替交 流電源設備,可搬型代替交流電源設備等からの給電ができない 場合に備え,可搬型計測器使用等の手順を用意している。

(3) 重大事故等時対応への影響について

「(2) 評価結果」に示すとおり,重大事故等発生時に必要とな る対応操作は,運転員,災害対策要員及び2時間以降の発電所外か らの招集要員にて対応可能であることから,重大事故等に対応す る要員に影響を与えない。

#### 添付 6.1.1-3

確保する各資源にて原子炉及び使用済燃料プールにおける 7 日 間の対応が可能である。

以上のことから,原子炉及び使用済燃料プールで同時に重大事 故等が発生した場合にも,その対応への影響はない。

#### 2. まとめ

1. に示すとおり,原子炉及び使用済燃料プールにおいて同時に重大事故等が発生した場合にも,対応は可能である。

項目	状態
	· 全交流動力電源喪失
	・使用済燃料プールでスロッシング発生
要員	・「雰囲気圧力・温度による静的負荷(格納容器過圧・過
	温破損)(代替循環冷却を使用しない場合)」
	・「想定事故2(使用済燃料プール漏えい)」*1
	· 全交流動力電源喪失
	・使用済燃料プールでスロッシング発生
水源	・「雰囲気圧力・温度による静的負荷(格納容器過圧・過
	温破損)(代替循環冷却を使用しない場合)」
	・「想定事故2(使用済燃料プール漏えい)」*1
	·外部電源喪失 ^{※2}
<b>欧</b> 彩	・使用済燃料プールでスロッシング発生
<i>K</i> (1)11	<ul> <li>「高圧・低圧注水機能喪失」</li> </ul>
	・「想定事故2(使用済燃料プール漏えい)」*1
	· 全交流動力電源喪失
雪湄	・使用済燃料プールでスロッシング発生
电你	<ul> <li>「全交流動力電源喪失(TBD)」</li> </ul>
	<ul> <li>「想定事故2(使用済燃料プール漏えい)」^{※1}</li> </ul>

第1表 想定する状態

※1 同時被災時の使用済燃料プール状態を想定する。また、サイフォン現象 による漏えい量より、スロッシングによる溢水量の方が多いため、スロッ シングによる漏えいを想定する。

※2 燃料については,消費量を保守的に評価する観点から,外部電源喪失が 発生し,非常用ディーゼル発電機及び高圧炉心スプレイ系ディーゼル発 電機並びに常設代替交流電源設備の運転を継続させる状態を想定する。

	使用済燃料プール
炉心燃料	装荷済
原子炉開放状態	未開放(プールゲート閉)
水位	通常運転水位
想定するプラントの状態	スロッシングによる漏えい
スロッシング溢水量[m ³ ]	約 64
100℃到達までの時間[h] ^{**1}	約 35
必要な注水量① ^{※2} [m ³ @168h]	約 463
事故発生から燃料有効長頂部到達	※5 220
までの時間[h] ^{*1}	₩J 229
必要な注水量② ^{※3} [m ³ @168h]	約 527

### 第2表 使用済燃料プールの対応に必要な水量等

※1 初期水温を使用済燃料プール水温の実績を踏まえて40℃とした場合の 時間

※2 「必要な注水量①」:蒸発による水位低下防止に必要な注水量。

※3 「必要な注水量②」:通常水位までの回復及びその後の水位維持に必要 な注水量。 重大事故等対策の要員の確保及び所要時間について

重大事故等の発生時においては,原子力警戒態勢を発令し,災害対 策本部要員を召集することで事故の対応に当たる。時間外,休日(夜 間)において,初動体制として,中央制御室の運転員7名(運転停止 中においては5名),発電所構内に常駐している災害対策要員32名の 合計39名(運転停止中においては37名)により,迅速な対応を図る こととしている。また,事象発生2時間以降は,発電所外から招集さ れる招集要員も考慮した対応を行う。

第1表及び第2表に各事故シーケンスグループ等における作業に必要な要員数及び事象発生2時間以降に必要となる招集要員の要員数を示す。

原子炉運転中に最も多く要員を必要とするのは,「2.3.1 全交流動 力電源喪失(長期TB)」である。招集要員に期待しない事象発生後2 時間に必要な要員は,発電長1名,副発電長1名,運転員5名,災害 対策本部要員(通報連絡等を行う要員)2名及び重大事故等対応要員 11名の合計20名であることから,初動体制の要員(39名)で事故対 応が可能である。また,事象発生2時間以降に必要となる招集要員は 6名であり,発電所外から2時間以内に招集可能な要員(72名)で確 保可能である。

原子炉運転停止中に最も多く要員数を必要とするのは,「5.1 崩壊 熱除去機能喪失(残留熱除去系の故障による停止時冷却機能喪失)」, 「5.2 全交流動力電源喪失」及び「5.3 原子炉冷却材流出」の事象 である。招集要員に期待しない事象発生後2時間に必要な要員は,発 電長1名,副発電長1名,運転員3名及び災害対策本部要員(通報連

添付 6.2.1-1

絡等を行う要員)2名の合計7名であることから,初動体制の要員(37 名)で事故対応が可能である。

使用済燃料プールに燃料を取り出している期間中に最も要員を必要 とするのは、「4.1 想定事故1」及び「4.2 想定事故2」の事象であ る。招集要員に期待しない事象発生後2時間に必要な要員は、発電長1 名、副発電長1名、運転員1名、災害対策本部要員(通報連絡等を行 う要員)2名及び重大事故等対応要員8名の合計13名であることから、 初動体制の要員(37名)で対応が可能である。また、事象発生2時間 以降に必要となる招集要員は2名であり、発電所外から2時間以内に 招集可能な要員(72名)で確保可能である。

各事故シーケンスグループ等において,事象発生後2時間までに必要な作業については初動体制の要員により実施可能である。また,事 象発生2時間以降は,発電所外から招集される招集要員についても期 待できる。以上より,重大事故等対策の成立性に問題がないことを確 認した。

		当直員			災害対策要員				心一面	切住而已	
事故シーケンス	発電長	副発電長	運転員	合計	災 害 対 策 本 部 要 員	重大事故等 対応要員	合計	庶務班	- 必 安 要 員 数	招集安員 (2時間後)	
発電所に常駐している要員及び招集 要員	1	1	5	7	4	17	21	11	39	72	
<ol> <li>2.1</li> <li>高圧・低圧注水機能喪失</li> </ol>	1	1	5	7	2	8	10	_	17	5	
2.2 高圧注水 · 減圧機能喪失	1	1	2	4	2	0	2	_	6	0	
2.3.1 全交流電源喪失 (長期TB)	1	1	5	7	2	11	13	_	20	6	
2.3.2 全交流電源喪失 (TBD, TBP, TBU)	1	1	4	6	2	0	2	_	8	0	
2.4.1 崩壊熱除去機能喪失 (取水機能が喪失した場合)	1	1	4	6	2	0	2	_	8	0	
<ol> <li>2.4.2</li> <li>崩壊熱除去機能喪失</li> <li>(残留熱除去系が故障した場合)</li> </ol>	1	1	5	7	2	8	10	_	17	5	
2.5 原子炉停止機能喪失	1	1	2	4	2	0	2	_	6	0	
2.6 LOCA 時注水機能喪失	1	1	5	7	2	8	10	_	17	5	
2.7 格納容器バイパス (インターフェイスシステム LOCA)	1	1	5	7	2	1	3	_	10	0	
<ol> <li>2.8</li> <li>津波浸水による注水機能喪失</li> </ol>	1	1	4	6	2	0	2	_	8	0	

第1表 運転中の各事故シーケンスグループ等における初動要員と招集要員(1/2)

は、必要な要員数が最大となる事故シーケンスグループ等を示す。

		当直員			災害対策要員				2 用	切住西吕
事故シーケンス	発電長	副発電長	運転員	合計	災 害 対 策 本 部 要 員	重大事故等 対応要員	合計	庶 務 班	- 必 安 要 員 数	招集安員 (2時間後)
発電所に常駐している要員及び招集 要員	1	1	5	7	4	17	21	11	39	72
<ol> <li>3.1.2</li> <li>雰囲気圧力・温度による静的負荷</li> <li>(格納容器過圧・過温破損)</li> <li>(代替循環冷却を使用する場合)</li> </ol>	1	1	4	6	2	0	2	_	8	0
<ul> <li>3.1.3</li> <li>雰囲気圧力・温度による静的負荷</li> <li>(格納容器過圧・過温破損)</li> <li>(代替循環冷却を使用しない場合)</li> </ul>	1	1	5	7	2	8	10	_	17	5
3.2 高圧溶融物放出/格納容器雰囲気直 接加熱	1	1	4	6	2	0	2	_	8	0
3.3 原子炉圧力容器外の溶融燃料 – 冷却 材相互作用	1	1	4	6	2	0	2	_	8	0
3.4 水素燃焼	1	1	4	6	2	0	2	_	8	0
3.5 溶融炉心・コンクリート相互作用	1	1	4	6	2	0	2	_	8	0

第1表 運転中の各事故シーケンスグループ等における初動要員と招集要員(2/2)

		当直員			災害対策要員				心声	切住西吕	
事故シーケンス	発電長	副発電長	運転員	合計	災 害 対 策 本 部 要 員	重大事故等 対応要員	合計	庶 務 班	要員数	(2時間後)	
発電所に常駐している要員及び招集 要員	1	1	2	4	4	17	21	11	37	72	
4.1 想定事故1	1	1	1	3	2	8	10		13	2	
4.2 想定事故 2	1	1	1	3	2	8	10		13	2	
<ul> <li>5.1</li> <li>崩壊熱除去機能喪失</li> <li>(残留熱除去系の故障による停止時 冷却機能喪失)</li> </ul>	1	1	3	5	2	0	2	-	7	0	
5.2 全交流動力電源喪失	1	1	3	5	2	0	2	_	7	0	
5.3 原子炉冷却材流出	1	1	3	5	2	0	2		7	0	
5.4 反応度の誤投入	_	_	_	_	_	_	_	_	_	_	

第2表 運転停止中の各事故シーケンスグループ等における初動要員と招集要員

は、必要な要員数が最大となる事故シーケンスグループ等を示す。

重要事故(評価事故)シーケンス以外の

事故シーケンスの要員の評価について

1. はじめに

各事故シーケンスグループの有効性評価で,重要事故(評価事故) シーケンスの事故対応に必要な要員について評価している。各事故 シーケンスグループのその他の事故シーケンスについては本資料に て,重要事故シーケンスの作業項目を基に必要な要員数を確認する。

重要事故シーケンス以外の事故シーケンスにおける要員の評価結
 果

重要事故シーケンス以外の事故シーケンスにおいて,重大事故等 対策の実施に必要な作業項目を抽出し,各事故シーケンスグループ の重要事故シーケンスと比較し,発電長,副発電長,運転員及び緊 急時対策要員の要員数を確認した。その結果は,第1表から第3表 及び別紙のとおりである。

なお,評価の結果,最も要員が必要となる事故シーケンスにおいても最大 20 名(原子炉停止状態では 7 名)であり,重大事故等対策 要員の 39 名(原子炉停止状態では 37 名)以内で重大事故等の対応 が可能である^{*1}。

※1:記載値は招集要員を除く。招集要員は最大 6 名に対して事象 発生2時間まで必要な要員数を十分確保できる。

- 3. 必要な要員の評価方法
  - (1) 各事故シーケンスの評価においても、対応する重要事故シーケンスと同様又は保守的な条件で評価する。
  - (2) 事故発生初期の状況判断時に対応する確認行為については、これまでの重要事故シーケンスと同様に、中央制御室の全ての運転員で対応するため、要員数としての評価は不要とする。
  - (3) 運転員の操作及び移動についても重要事故シーケンスと同様の 考え方にて評価を行う。
  - (4) 「運転中の原子炉における重大事故」の評価は、別紙「必要な 要員数の観点での評価事故シーケンスの代表性の整理」に示す とおり、要員の観点で厳しいPDS及び炉心損傷後の事故シー ケンスを考慮しても、現在の要員数で重大事故への対応は可能 であり、必要な要員数を考慮しても評価事故シーケンスは代表 性を有していることを確認する。

第1表 運転中の原子炉における重大事故に至るおそれがある事故の評価結果(1/4)

事故シーケ ンスグルー プ	重要事故 シーケンス	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
高圧・低圧 注水機能喪 失		<ol> <li>2.1-①</li> <li>過渡事象</li> <li>+逃がし安全弁再閉鎖失敗</li> <li>+高圧炉心冷却失敗</li> <li>+低圧炉心冷却失敗</li> </ol>	<ul> <li>「給水流量の全喪失」と同時に「外部電源喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・主蒸気隔離弁閉鎖により原子炉圧力は上昇し、逃がし安全弁が開放される。このとき、逃がし安全弁の再閉に失敗し、原子炉圧力は低下を始めるが、その後、急速減圧 を実施し、低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>・重要事故シーケンスとの差異は原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)のみであり、本事故シーケンスの方がより速やかに低圧状態に移行でき るため事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	17	
		<ul> <li>2.1-②</li> <li>手動停止/サポート系喪失(手動停止)</li> <li>+高圧炉心冷却失敗</li> <li>+低圧炉心冷却失敗</li> </ul>	<ul> <li>・手動停止により全制御棒挿入操作後、「給水流量の全喪失」が発生する。給水流量の全喪失の対応として「主蒸気隔離弁閉」操作も想定する。</li> <li>・原子炉は高圧状態にあるため原子炉の減圧操作後、低圧代替注水系(常設)による原子炉注水を実施し原子炉水位を維持する。</li> <li>・格納容器は除熱機能喪失により格納容器圧力が上昇し格納容器圧力逃がし装置等による格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は全制御棒挿入操作後に事故が発生することであり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	17	
	<ul> <li>過渡事象</li> <li>+高圧炉心冷</li> <li>却失敗</li> <li>+低圧炉心冷</li> </ul>	<ul> <li>▶ 非動停止/サポート系喪失(手 動停止)</li> <li>+ 逃がし安全弁再閉鎖失敗</li> <li>+ 適応にたり全制御棒挿入操作後、「給水流量の全喪失」が発生する。給水流量の全喪失の対応として「王蒸気隔離弁閉」操作も想定する。</li> <li>・ 主蒸気隔離弁閉鎖により原子炉圧力は上昇し,逃がし安全弁が開放される。このとき,逃がし安全弁の再閉に失敗し、原子炉圧力は低下を始めるが,その後、急速減圧 を実施し、低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>・ 格納容器は除熱機能喪失により格納容器圧力が上昇し格納容器圧力逃がし装置等による格納容器除熱操作を実施する。</li> <li>・ 重要事故シーケンスとの差異は全制御棒挿入操作後に事故が発生すること及び原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)が発生することであり、 事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> <li>・ サポート系1区分の喪生の提合、一般的に他の区分が健全であるため対応手段が蒸しく知風される状態ではないが、事象を厳しくするため起因事象として緩和設備</li> </ul>	17	17	
	刘大奴	2.1-④ サポート系喪失(自動停止) +高圧炉心冷却失敗 +低圧炉心冷却失敗	<ul> <li>・サポート系1区分の喪失の場合、一般的に他の区分が健全であるため対応手段が著しく制限される状態ではないが、事象を厳しくするため起因事象として緩和設備への影響が大きい「交流電源故障」を代表として設定する。</li> <li>・「交流電源故障(区分Ⅱ)」発生により、給復水系の制御機能等が喪失し、原子炉スクラムする。</li> <li>・原子炉は高圧状態にあるため原子炉の減圧操作後、低圧代替注水系(常設)による原子炉注水を実施し原子炉水位を維持する。</li> <li>・重要事故シーケンスとの差異は「交流電源故障(区分Ⅱ)」が発生することであり、必要な操作は同様であるため、人数に増減なし。</li> </ul>	17	_
		<ul> <li>2.1-⑤</li> <li>サポート系喪失(自動停止)</li> <li>+逃がし安全弁再閉鎖失敗</li> <li>+高圧炉心冷却失敗</li> <li>+低圧炉心冷却失敗</li> </ul>	<ul> <li>・サポート系1区分の喪失の場合、一般的に他の区分が健全であるため対応手段が著しく制限される状態ではないが、事象を厳しくするため起因事象として緩和設備への影響が大きい「交流電源故障」を代表として設定する。</li> <li>・「交流電源故障(区分Ⅱ)」発生により、給復水系の制御機能等が喪失し、原子炉スクラムする。</li> <li>・主蒸気隔離弁閉鎖により原子炉圧力は上昇し、逃がし安全弁が開放される。このとき、逃がし安全弁の再閉に失敗し、原子炉圧力は低下を始めるが、その後、急速減圧を実施し、低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>・重要事故シーケンスとの差異は「交流電源故障(区分Ⅱ)」及び原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)が発生することであり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	17	
高圧注水・ 減圧機能喪 失	過渡事象 +高圧炉心冷	<ul> <li>2.2-①</li> <li>手動停止/サポート系喪失(手動停止)</li> <li>+高圧炉心冷却失敗</li> <li>+手動減圧失敗</li> </ul>	<ul> <li>・手動停止により全制御棒挿入後、「給水流量の全喪失」が発生する。給水流量の全喪失の対応として「主蒸気隔離弁閉」操作も想定する。</li> <li>・原子炉水位が低下するため低圧注水系及び低圧炉心スプレイ系を準備後、原子炉の減圧を試みるが失敗する。</li> <li>・過渡時自動減圧回路の作動により逃がし安全弁が自動開放することで原子炉圧力が低下し、低圧注水系及び低圧炉心スプレイ系による原子炉注水により原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は全制御棒挿入後に事故が発生することであり、事象進展は穏やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	6	6
	コル天虹 +手動減圧失 敗	<ul> <li>2.2-②</li> <li>サポート系喪失(自動停止)</li> <li>+高圧炉心冷却失敗</li> <li>+手動減圧失敗</li> </ul>	<ul> <li>・サポート系1区分の喪失に伴い、原子炉スクラムする。</li> <li>・原子炉水位が低下するため低圧注水系又は低圧炉心スプレイ系を準備後、原子炉の減圧を試みるが失敗する。</li> <li>・過渡時自動減圧回路の作動により逃がし安全弁が自動開放することで原子炉圧力が低下し、低圧注水系又は低圧炉心スプレイ系による原子炉注水により原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は、使用できる残留熱除去系及び低圧炉心スプレイ系の系統数のみであり、必要な操作は同様であるため、人数に増減なし。</li> </ul>	6	0

第1表 運転中の原子炉における重大事故に至るおそれがある事故の評価結果(2/4)

事故シーケ ンスグルー プ	重要事故 シーケンス	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
全交流動力 電源喪失 (長期TB)	外部電源喪失 +DG 失敗 + HPCS 失 敗 (RCIC 成功)	<ul> <li>2.3.1-①</li> <li>サポート系喪失(直流電源故障)</li> <li>+DG 失敗</li> <li>+HPCS 失敗(RCIC 成功)</li> </ul>	<ul> <li>・区分2サポート系喪失に伴う「外部電源喪失」により、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、原子炉水位異常低下(レベル2)設定点に到達することで、原子炉隔離時冷却系が自動起動し、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・電源復旧後、常設代替交流電源設備により非常用高圧母線を受電し、残留熱除去系による原子炉注水に切り替えることで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は使用できる計装設備の数のみであり、事象進展への影響はなく、必要な操作は同様であるため、人数に増減なし。</li> </ul>	20	20
		2.3.2-① 外部電源喪失 +DG 失敗 +逃がし安全弁再閉鎖失敗 +高圧炉心冷却失敗	<ul> <li>・「外部電源喪失」により、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、常設代替交流電源設備による緊急用P/C受電後、低圧代替注水系(常設)を起動し原子炉 を減圧することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・非常用母線復旧後、残留熱除去系による原子炉注水に切り替えることで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)のみであり、本事故シーケンスの方がより速やかに低圧状態に移行でき るため事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	8	
全交流動力 電 源 喪 失 (TBD, TBP,	外部電源喪失 +直流電源失 敗 + 高压恒心冷	<ul> <li>2.3.2-②</li> <li>サポート系喪失(直流電源喪失)</li> <li>+DG 失敗</li> <li>+逃がし安全弁再閉鎖失敗</li> <li>+高圧炉心冷却失敗</li> </ul>	<ul> <li>・区分1サポート系喪失に伴う「外部電源喪失」により、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、常設代替交流電源設備による緊急用P/C受電後、低圧代替注水系(常設)を起動し原子炉を減圧することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・非常用高圧母線復旧後、残留熱除去系による原子炉注水に切り替えることで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)のみであり、本事故シーケンスの方がより速やかに低圧状態に移行できるため事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	8	8
TBU)	+高庄炉心冷 却失敗	2.3.2-③ 外部電源喪失 +DG 失敗 +高圧炉心冷却失敗	<ul> <li>「外部電源喪失」により、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・同時に非常用ディーゼル発電機、高圧炉心スプレイ系及び原子炉隔離時冷却系が故障するが、常設代替交流電源設備による緊急用 P/C 受電後、低圧代替注水系(常設)を起動し原子炉を減圧することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・非常用高圧母線復旧後、残留熱除去系による原子炉注水に切り替えることで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は使用できる計装設備の数のみであり、事象進展への影響はなく、必要な操作は同様であるため、人数は減少する。</li> </ul>	8	
		<ul> <li>2.3.2-④</li> <li>サポート系喪失(直流電源喪失)</li> <li>+DG 失敗</li> <li>+高圧炉心冷却失敗</li> </ul>	<ul> <li>・区分1サボート系喪失に伴う「外部電源喪失」により、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、常設代替交流電源設備による緊急用P/C受電後、低圧代替注水系(常設)を起動し原子炉を減圧することで、原子炉注水が開始され、原子炉水位が維持される。</li> <li>・非常用高圧母線復旧後、残留熱除去系による原子炉注水に切り替えることで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は使用できる計装設備の数のみであり、事象進展への影響はなく、必要な操作は同様であるため、人数に増減なし。</li> </ul>	8	

第1表 運転中の原子炉における重大事故に至るおそれがある事故の評価結果(3/4)

事故シーケ ンスグルー プ	重要事故 シーケンス	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
		<ol> <li>2.4-①</li> <li>過渡事象</li> <li>+逃がし安全弁再閉鎖失敗</li> <li>+ RHR 失敗</li> </ol>	<ul> <li>「給水流量の全喪失」発生後,原子炉水位が低下し,原子炉スクラムする(起因事象は原子炉水位低下の観点で厳しい「給水流量の全喪失」を設定)。</li> <li>主蒸気隔離弁閉鎖により原子炉圧力は上昇し,逃がし安全弁が開放される。このとき,逃がし安全弁の再閉に失敗し,原子炉圧力は低下を始めるが,原子炉隔離時冷却 系及び低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>重要事故シーケンスとの差異は原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)のみであり,本事故シーケンスの方がより速やかに低圧状態に移行でき るため事象進展は緩やかとなるが,必要な操作は同様であるため,人数に増減なし。</li> </ul>	17	
		2.4-② 手動停止/サポート系喪失(≒ 動停止) +RHR 失敗	<ul> <li>・手動停止による全制御棒の挿入後,「給水流量の全喪失」が発生する。給水流量の全喪失の対応として「主蒸気隔離弁閉」操作も想定する。</li> <li>・原子炉水位は原子炉隔離時冷却系及び原子炉減圧後の低圧代替注水系(常設)により維持される。</li> <li>・除熱機能喪失により格納容器圧力が上昇し格納容器圧力逃がし装置等又は常設代替海水取水設備を使用した残留熱除去系により格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は全制御棒挿入操作後に事故が発生することであり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	17	
		<ul> <li>2.4-③</li> <li>手動停止/サポート系喪失(手動停止)</li> <li>+逃がし安全弁再閉鎖失敗</li> <li>+RHR 失敗</li> </ul>	<ul> <li>・手動停止による全制御棒の挿入後,「給水流量の全喪失」が発生する。全給水喪失の対応として「主蒸気隔離弁閉」操作も想定する。</li> <li>・主蒸気隔離弁閉鎖により原子炉圧力は上昇し,逃がし安全弁が開放される。このとき,逃がし安全弁の再閉に失敗し,原子炉圧力は低下を始めるが,原子炉隔離時冷却 系及び低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>・除熱機能喪失により格納容器圧力が上昇し格納容器圧力逃がし装置等又は常設代替海水取水設備を使用した残留熱除去系により格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は全制御棒挿入操作後に事故が発生すること及び原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)であり,事象進展は緩や かとなるが,必要な操作は同様であるため,人数に増減なし。</li> </ul>	17	【取水機能が喪失 した場合】 8
朋 <b>瑛</b> 熱际云 機能喪失	過渡事象 + RHR 失敗	2.4-④ サポート系喪失(自動停止) +RHR 失敗	<ul> <li>・サポート系1区分の喪失の場合,一般的に他の区分が健全であるため対応手段が著しく制限される状態ではないが,事象を厳しくするため起因事象として緩和設備への影響が大きい「交流電源故障」を代表として設定する。</li> <li>・「交流電源故障(区分Ⅱ)」発生により,給復水系の制御機能等が喪失し,原子炉スクラムする。</li> <li>・重要事故シーケンスとの差異は「交流電源故障(区分Ⅱ)」が発生することであり,必要な操作は同様であるため,人数に増減なし。</li> </ul>	17	- 【残留熱除去機能 が喪失した場合】 17
		2.4-⑤ サポート系喪失(自動停止) +逃がし安全弁再閉鎖失敗 +RHR 失敗	<ul> <li>・サポート系1区分の喪失の場合,一般的に他の区分が健全であるため対応手段が著しく制限される状態ではないが,事象を厳しくするため起因事象として緩和設備への影響が大きい「交流電源故障」を代表として設定する。</li> <li>・「交流電源故障(区分Ⅱ)」発生により,給復水系の制御機能等が喪失し,原子炉スクラムする。</li> <li>・主蒸気隔離弁閉鎖により原子炉圧力は上昇し,逃がし安全弁が開放される。このとき,逃がし安全弁の再閉に失敗し,原子炉圧力は低下を始めるが,その後,急速減圧を実施し,低圧代替注水系(常設)による原子炉注水を開始することで原子炉水位は回復する。</li> <li>・重要事故シーケンスとの差異は「交流電源故障(区分Ⅱ)」及び原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)が発生することであり,事象進展は緩やかとなるが,必要な操作は同様であるため,人数に増減なし。</li> </ul>	17	
		2.4-⑥ LOCA +RHR 失敗	<ul> <li>「外部電源喪失+LOCA」発生後、原子炉水位が低下し、原子炉スクラムする。</li> <li>・原子炉隔離時冷却系及び高圧炉心スプレイ系による原子炉注水を開始することで原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は原子炉隔離時冷却系の機能に期待できないこと及び原子炉冷却材が格納容器に漏えいすることで、格納容器圧力の上昇が早くなることであるが、必要な操作は同様であるため、人数に増減なし。</li> <li>・なお、事故事象の有効性評価としては期待できる緩和設備をより少なくしている LOCA 時注水機能喪失にて確認される。</li> </ul>	17	

第1表 運転中の原子炉における重大事故に至るおそれがある事故の評価結果(4/4)

事故シーケ ンスグルー プ	重要事故 シーケンス	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
原子炉停止	過渡事象	2.5-① サポート系喪失(自動停止) +原子炉停止失敗	<ul> <li>・サポート系1区分喪失に伴い、原子炉スクラム信号が発信又は手動スクラムを実施するが、原子炉スクラムに失敗する。</li> <li>・直流電源故障(区分Ⅰ,Ⅱ)時は当該区分の代替原子炉冷却材再循環ポンプトリップ機能が喪失するが、手動停止に期待できる。</li> <li>・ほう酸水注入系により原子炉出力が抑制され、未臨界に至る。</li> <li>・給水系、原子炉隔離時冷却系及び高圧炉心スプレイ系により原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は、使用できる残留熱除去系の系統数等であるが、中央制御室の運転員による対応となることから要員数は変化しない。</li> </ul>	6	
機能喪失	+原子炉停止 失敗	2.5-② LOCA +原子炉停止失敗	<ul> <li>・「LOCA」発生後、原子炉冷却材流出により、原子炉スクラム信号が発信又は手動スクラムを実施するが、原子炉スクラムに失敗する。</li> <li>・代替制御棒挿入機能の動作により、原子炉は未臨界になる。</li> <li>・代替制御棒挿入機能に期待できない場合は、ほう酸水注入系により原子炉出力を抑制する。</li> <li>・給水系、原子炉隔離時冷却系及び高圧炉心スプレイ系により原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異として、LOCAへの対応が生じるが、中央制御室の運転員による対応となることから要員数は変化しない。</li> </ul>	6	- 6
LOCA時注水 機能喪失	LOCA +高圧炉心冷 却失敗 +低圧炉心冷 却失敗	2.6-① LOCA +高圧炉心冷却失敗 +原子炉減圧失敗	<ul> <li>・「LOCA」発生と同時に「外部電源喪失」が発生し、「給水流量の全喪失」が発生し、原子炉水位が低下し、原子炉スクラムする。</li> <li>・原子炉水位が低下するため低圧注水系及び低圧炉心スプレイ系を準備後、原子炉の減圧を試みるが失敗する。</li> <li>・過渡時自動減圧回路の作動により逃がし安全弁が自動開放することで原子炉圧力が低下し、低圧注水系及び低圧炉心スプレイ系による原子炉注水により原子炉水位は維持される。</li> <li>・重要事故シーケンスとの差異は低圧炉心スプレイ及び残留熱除去系が使用できることであり、可搬型代替注水大型ポンプによる水源補給操作及び格納容器圧力逃がし装置等による格納容器ベント操作が不要となり、対応人数は減少する。</li> </ul>	6	17
格納容器バ イパス (ISLOCA)	インターフェ イスシステム LOCA	重要事故シーケンス以外のシ ーケンスなし		_	10
		2.8-① 最終ヒートシンク喪失 (RCI C成功)	<ul> <li>・津波を起因とする「最終ヒートシンク喪失」が発生し、手動により原子炉を停止する。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、原子炉隔離時冷却系により、原子炉注水が開始される。</li> <li>・常設代替交流電源設備による緊急用 P / C 受電後、低圧代替注水系(常設)を起動し原子炉を減圧することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・除熱機能喪失により格納容器圧力が上昇し格納容器圧力逃がし装置等又は常設代替海水取水設備を使用した残留熱除去系により格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は全制御棒挿入操作後に事故が発生することであり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。</li> </ul>	8	
津波浸水に よる注水機 能喪失	原子炉建屋内 浸水による複 数の緩和機能 喪失 (全交流動力 電源喪失	2.8-② 最終ヒートシンク喪失+高圧 炉心冷却失敗	<ul> <li>・津波を起因とする「最終ヒートシンク喪失」が発生し、手動により原子炉を停止する。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障するが、常設代替交流電源設備からの緊急用P/C受電後、低圧代替注水系(常設)を起動することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・除熱機能喪失により格納容器圧力が上昇し常設代替海水取水設備を用いた残留熱除去系による格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は原子炉隔離時冷却系の機能に期待できないこと及び全制御棒挿入操作後に事故が発生することであり、本事故シーケンスの方がより速やかに低圧状態に移行できるため事象進展は緩やかとなるが、必要な操作は高圧・低圧注水機能喪失にて確認しているため、人数に増減なし。</li> </ul>	8	8
	ーボスス + 最終ヒート シンク喪失)	2.8-③ 最終ヒートシンク喪失+逃が し安全弁再閉鎖失敗	<ul> <li>・津波を起因とする「最終ヒートシンク喪失」が発生し、手動により原子炉を停止する。</li> <li>・同時に非常用ディーゼル発電機及び高圧炉心スプレイ系が故障する。</li> <li>・主蒸気隔離弁閉鎖により原子炉圧力は上昇し、逃がし安全弁が開放される。このとき、逃がし安全弁の再閉に失敗し、原子炉圧力は低下を始めるが、常設代替交流電源設備からの緊急用P/C受電後、低圧代替注水系(常設)を起動することで、原子炉注水が開始され、原子炉水位は回復する。</li> <li>・除熱機能喪失により格納容器圧力が上昇し常設代替海水取水設備を用いた残留熱除去系による格納容器除熱操作を実施する。</li> <li>・重要事故シーケンスとの差異は原子炉の減圧(逃がし安全弁の再閉失敗による減圧の有無)及び全制御棒挿入操作後に事故が発生することであり、本事故シーケンスの方がより速やかに低圧状態に移行できるため事象進展は緩やかとなるが、必要な操作は高圧・低圧注水機能喪失にて確認しているため、人数に増減なし。</li> </ul>	8	

# 第2表 使用済燃料プールにおける重大事故に至るおそれがある事故の評価結果

事故シーケンスグループ	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
想定事故1 (冷却機能又は注水機能喪 失)	想定事故以外の事故シーケン スなし			13
想定事象2 (使用済燃料プール内の水 の小規模な喪失)	想定事故以外の事故シーケン スなし		_	13

## 第3表 運転停止中の原子炉における重大事故に至るおそれのある事故の評価結果

事故シーケ ンスグルー プ	重要事故 シーケンス	その他の事故シーケンス	事象進展及び人数の増減理由	必要 要員数	重要事故シーケン スに必要な要員数
崩壊熱除去 機能喪失	残留熱除去系 の故障(RHR 喪 失)	5.1-① 残留熱除去系の故障(RHRS 喪 失) +崩壊熱除去・炉心冷却失敗	<ul> <li>・運転中の残留熱除去系海水系の機能喪失により,運転中の残留熱除去系の機能喪失により,原子炉冷却材の温度が上昇する。本事象に対して,重要事故シーケンスと同様,待機中の残留熱除去系による注水を実施する。</li> <li>・重要事故シーケンスとの差異は起因事象のみであり,必要な操作は同様であるため,人数に増減なし。</li> </ul>	7	7
	- 崩 豪 怒 际 去・炉心冷却失 敗	5.1-② 外部電源喪失 +崩壊熱除去・炉心冷却失敗	<ul> <li>・外部電源喪失後,非常用ディーゼル発電機等により非常用電源は確保するものの,残留熱除去系(原子炉停止時冷却モード)及び残留熱除去系海水系の再起動に失敗することにより,原子炉冷却材の温度が上昇する。本事象に対して,重要事故シーケンスと同様,待機中の残留熱除去系による注水を実施する。</li> <li>・重要事故シーケンスに対する評価では外部電源喪失を仮定しており,必要な操作は同様であるため,人数に増減なし。</li> </ul>	7	
全交流動力 電源喪失	外部電源喪失 +交流電源喪 失 +崩壊熱除 去・炉心冷却失 敗	5.2-① 外部電源喪失 +直流電源喪失 +崩壊熱除去・炉心冷却失敗	<ul> <li>・起因事象により外部電源が喪失し,非常用ディーゼル発電機の起動に必要なバッテリーの故障により全交流動力電源喪失に至り,原子炉冷却材の温度が上昇する。</li> <li>本事象に対しては,重要事故シーケンスと同様,常設代替高圧電源設備により電源を回復後,低圧代替注水系(常設)により原子炉への注水を実施する。</li> <li>・重要事故シーケンスとの差異は所内直流電源の喪失の有無であるが,常設代替高圧電源装置は常設代替直流電源設備により起動することから,必要な操作は同様であるため,人数に増減なし。</li> </ul>	7	7
	5.3-① 原子炉冷却材の流出(CUWブロ 一時のLOCA) 原子炉冷却材 +崩壊熱除去・炉心冷却失敗		・起因事象が「原子炉冷却材の流出(CUW ブロー時の LOCA)」となる。 ・重要事故シーケンスとの差異は起因事象のみであり、事象進展も同様であることから、必要な操作は同様であるため、人数に増減なし。	7	
原子炉冷却 材流出	の流出(RHR切     5.3-②       却     「原子炉冷却材の流出(CRD 点検       + 崩壊熱除     時の LOCA)       + 崩壊熱除     時の LOCA)       + 崩壊熱除     ・起因事象が「原子炉冷却材の流出(CRD 点検       ・起因事象が「原子炉冷却材の流出(CRD 点検       ・起因事象が「原子炉冷却材の流出(CRD 点検時の LOCA)」となり、事象の認       ・重要事故シーケンスとの差異は起因事象のみとなり、事象進展は緩やかとな	・起因事象が「原子炉冷却材の流出(CRD 点検時の LOCA)」となり、事象の認知が早くなる。 ・重要事故シーケンスとの差異は起因事象のみとなり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。	7	7	
	敗	5.3-③ 原子炉冷却材の流出(LPRM 点 検時の LOCA) +崩壊熱除去・炉心冷却失敗	・起因事象が「原子炉冷却材の流出(LPRM 点検時の LOCA)」となり、事象の認知が早くなる。 ・重要事故シーケンスとの差異は起因事象のみとなり、事象進展は緩やかとなるが、必要な操作は同様であるため、人数に増減なし。	7	
反応度の誤 投入	制御棒の誤引 き抜き	 重要事故シーケンス以外のシ ーケンスなし		_	_

必要な要員数の観点での評価事故シーケンスの代表性の整理

設置許可基準規則第 37 条第 2 項に規定されている「重大事故が発生 した場合」の評価では,各格納容器破損モードに至るおそれのあるプ ラント損傷状態(PDS)の中から,当該破損モードに至る場合にそ の破損モードが最も厳しく表れると考えられるPDSを選定し,その PDSに属する事故シーケンスの中から最も厳しい事故シーケンスを 評価事故シーケンスとして選定している。ここでは,各PDS及び炉 心損傷後の対応に必要な要員数の観点から,評価事故シーケンスの代 表性を整理する。

今回のPRAにより抽出したPDSを第1表に示す。また,設置許 可基準規則第37条第1項の「重大事故に至るおそれがある事故発生し た場合」の評価結果をもとに,各PDSによる炉心損傷を防止する際 に必要な要員数を合わせて示す。

なお,第1表のうち,TW(崩壊熱除熱機能喪失),TC(原子炉停 止機能喪失)は格納容器先行破損事象であり,ISLOCA(インタ ーフェイスシステムLOCA)は格納容器バイパス事象である。いず れも炉心損傷の前に原子炉格納容器が機能喪失するPDSであるため, 評価事故シーケンスの選定の起点となるPDSの選定対象からは除外 している。

本来,重大事故等対処設備に期待しないPRAから抽出された各P DSは,第1表の炉心損傷防止に必要な数の要員が適切な対応をとる ことによって炉心損傷を防止できるものであるが,何らかの対応の失 敗によって炉心損傷に至るものと仮定する。

添付 6.2.2-9

このとき,評価事故シーケンスの起点として必要な要員数は,第1 表の炉心損傷防止に必要な人数であり,この観点で最も厳しいPDS は,全交流動力電源喪失を伴うPDS(長期TB)の20名である。

次に,各格納容器破損モードと,炉心損傷防止のための重大事故等 対処設備に期待しない場合に当該格納容器破損モードに進展し得る P DSを,要員及び破損モードが最も厳しく表れると考えられる PDS の観点で整理し,第2表に示す。

第2表の格納容器破損モードは、全て選定したPDSにSBOを含 めており、SBOの対応には要員数の観点で最も厳しいPDSである 長期TBに必要な要員数が必要となることから、PDSの観点では、 選定したPDSは要員の観点で最も厳しいPDSを包絡している。ま た、炉心損傷後は重大事故等対処設備を用いた原子炉注水や格納容器 熱除去等を実施する必要があるが、これらの対応に必要となる要員数 はPDSによらずほぼ同じであり、これに加えて電源復旧が必要とな る場合が、必要な要員数の観点で厳しいと考えられる。このことから、 今回選定した評価事故シーケンスは必要な要員数の観点においても他 の事故シーケンスを包絡していると考える。

以上より,要員の観点で厳しい P D S 及び炉心損傷後の事故シーケ ンスを考慮しても,現在の要員数で重大事故への対応は可能であり, 必要な要員数を考慮しても評価事故シーケンスは代表性を有している ことを確認した。 第1表 PRAにより抽出したPDSと炉心損傷防止に際して必要な

DDC	PCV 破損	RPV	炉心損傷	炉心損傷防止に
PD5	時期	圧力	時期	必要な人数*1
TQUV	炉心損傷後	低圧	早期	17
TQUX	炉心損傷後	高圧	早期	6
長期 TB	炉心損傷後	高圧	後期	20
TBD, TBP, TBU	炉心損傷後	高圧	早期	8
LOCA	炉心損傷後	低圧	早期	17 ^{** 2}
TW(取水機能喪失)*3	炉心損傷前	_	後期	8
TW(RHR 喪失) ^{※3}	炉心損傷前	_	後期	17
TC ^{** 3}	炉心損傷前	—	早期	6
ISLOCA ^{** 3}	炉心損傷前	_	早期	10

要員数

※1 「重大事故に至るおそれがある事故発生した場合」の評価結果 から抽出

- ※2 「中破断LOCA(S1E)+ECCS注水機能喪失」及び「小破 断LOCA(S2E)+ECCS注水機能喪失」による炉心損傷防 止の評価結果から抽出
- ※3 炉心損傷の前に格納容器が機能喪失するため,評価事故シーケンスの選定の起点となるPDSの選定対象からは除外したPDS

### 第2表 要員及び事象の厳しさの観点からの

格納容器破損モード	該当する PDS	要員の観点で 厳しい PDS	選定した PDS
雰囲気圧力・温度に よる静的負荷(格納 容器過圧破損)	TQUX	長期 TB	LOCA+SB0
雰囲気圧力・温度に よる静的負荷(格納 容器過温破損)	TQUX 長期TB TBU TBD LOCA		
高圧溶融物放出/格 納容器雰囲気直接加 熱 (DCH)	TQUX 長期TB TBU TBD	長期 TB	TQUX ^{* 1}
原子炉圧力容器外の 溶融燃料-冷却材相 互作用 (炉外 FCI)	TQUX Loca	LOCA	TQUV ^{* 1}
溶融炉心・コンクリ ート相互作用(MCCI)	TQUV TQUX TBU TBP LOCA	LOCA	TQUV ^{% 1}
水素燃焼	—	—	LOCA+SBO

各格納容器破損モードのPDSの整理

※1 有効性評価における DCH, 炉外 FCI, MCCI シーケンスについては,

格納容器破損防止対策を講じるための対応時間が厳しくなる等の観点から,事象発生時に SBO を想定している

#### 水源,燃料,電源負荷評価結果について

1. はじめに

重大事故等対策の有効性評価において,重大事故等対策を外部支援に期待 することなく7日間継続するために必要な水源及び燃料について評価を実施 するとともに,電源負荷の積み上げが給電容量内にあることを確認する。

2. 事故シーケンス別の必要量について

重大事故等対策の有効性評価において,通常系統からの給水及び給電が不 可能となる事象についての水源,燃料に関する評価結果を第1表に整理した。

また,同様に常設代替交流電源設備からの電源供給が必要な事象について, 必要負荷が常設代替交流電源設備を連続運転させた場合の定格容量内である ことを第1表に整理した。

3. まとめ

重大事故等対策の有効性評価において,水源,燃料及び電源負荷のそれぞ れに対して最も厳しい事故シーケンスを想定した場合についても,発電所構 内に備蓄している水源,燃料により,必要な対策を7日間継続することが十 分に可能であることを確認した。また,常設代替交流電源設備から給電する 場合の電源負荷についても,常設代替交流電源設備を連続運転させた場合の 定格容量内であることを確認した。

|--|

事故シーケンス	水源 原子炉注水,格納容器スプレイ等 (必要水量/水源総量)	使用済燃料プール注水 (必要水量/水源総量)	燃料(軽油) (7日間必要燃料/備蓄量)	電源負荷 (最大負荷/給電容量)
2.1 高圧・低圧注水機能喪失	約 5, 350m ³ /約 9, 300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設)		<ul> <li>(1)軽油貯蔵タンク約755.5kL/約800kL</li> <li>非常用ディーゼル発電機(約242.0kL)×2</li> <li>高圧炉心スプレイ系ディーゼル発電機(約130.3kL)</li> <li>常設代替高圧電源装置(2台分)(約141.2kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	約 982kW/2, 208kW
2.2 高圧注水・減圧機能喪失	_	_	<ul> <li>(1)軽油貯蔵タンク 約 614. 3kL/約 800kL</li> <li>・非常用ディーゼル発電機(約 242. 0kL) ×2</li> <li>・高圧炉心スプレイ系ディーゼル発電機(約 130. 3kL)</li> </ul>	_
2.3.1 全交流電源喪失 (長期TB)	約 2, 130m ³ /約 4, 300m ³ ・低圧代替注水系(可搬型) ・代替格納容器スプレイ冷却系(可搬型)	_	<ul> <li>(1)軽油貯蔵タンク約352.8kL/約800kL</li> <li>・常設代替高圧電源装置(5台分)(約352.8kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>・可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	約 4, 165k₩/5, 520k₩ ^{※1}
2.3.2 全交流電源喪失 (TBD, TBP, TBU)	約 850m ³ /約 4,300m ³ • 低圧代替注水系(常設)	_	(1)軽油貯蔵タンク 約 352.8kL/約 800kL ・常設代替高圧電源装置(5 台分)(約 352.8kL)	約 4, 165k₩/5, 520k₩
<ol> <li>2.4.1</li> <li>崩壊熱除去機能喪失 (取水機能が喪失した場合)</li> </ol>	約 620m ³ /約 4,300m ³ • 低圧代替注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク約352.8kL/約800kL</li> <li>・常設代替高圧電源装置(5台分)(約352.8kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>・可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	約 2, 781kW/5, 520kW
<ol> <li>2.4.2</li> <li>崩壊熱除去機能喪失 (残留熱除去系が故障した場合)</li> </ol>	約 5, 410m ³ /約 9, 300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 755.5kL/約 800kL</li> <li>・非常用ディーゼル発電機(約 242.0kL) ×2</li> <li>・高圧炉心スプレイ系ディーゼル発電機(約 130.3kL)</li> <li>・常設代替高圧電源装置(2 台分)(約 141.2kL)</li> <li>(2)可搬設備用軽油タンク 約 34.8kL/約 210kL</li> <li>・可搬型代替注水大型ポンプ(約 34.8kL)×1</li> </ul>	約 982kW/2, 208kW

※1:直流電源については、電源負荷の制限により、24時間電源供給が可能である。

は、各資源の必要量(負荷)が最大のものを示す。

添付 6.3.1-2

# 第1表 水源,燃料及び電源負荷の必要量(2/4)

事故シーケンス	水源 原子炉注水,格納容器スプレイ等 (必要水量/水源総量)	燃料プール注水 (必要水量/水源総量)	燃料(軽油) (7日間必要燃料/備蓄量)	電源負荷 (最大負荷/給電容量)
2.5 原子炉停止機能喪失 ^{※1}	_	_	<ul> <li>(1)軽油貯蔵タンク 約 614.3kL/約 800kL</li> <li>・非常用ディーゼル発電機(約 242.0kL) ×2</li> <li>・高圧炉心スプレイ系ディーゼル発電機(約 130.1kL)</li> </ul>	_
2.6 LOCA 時注水機能喪失	約 5, 320m ³ /約 4, 300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設)	_	<ul> <li>(1)軽油貯蔵タンク約755.5kL/約800kL</li> <li>非常用ディーゼル発電機(約242.0kL)×2</li> <li>高圧炉心スプレイ系ディーゼル発電機(約130.3kL)</li> <li>常設代替高圧電源装置(2台分)(約141.2kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	約 982kW/2, 208kW
2.7 格納容器バイパス (インターフェイスシステム LOCA)	約 490m ³ /約 4,300m ³ ・低圧代替注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 755.5kL/約 800kL</li> <li>非常用ディーゼル発電機(約 242.0kL) ×2</li> <li>高圧炉心スプレイ系ディーゼル発電機(約 130.1kL)</li> <li>常設代替高圧電源装置(2 台分)(約 141.2kL)</li> </ul>	約 982kW/2, 208kW
2.8 津波浸水による注水機能喪失	約 620m ³ /約 4,300m ³ ・低圧代替注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 352.8kL/約 800kL</li> <li>・常設代替高圧電源装置(5 台分)(約 352.8kL)</li> </ul>	約 2,781k₩/5,520k₩

※1:有効性評価において外部電源喪失は想定していないが、燃料評価としては外部電源が喪失し非常用ディーゼル発電機等が起動したことを想定する。

は、各資源の必要量(負荷)が最大のものを示す。

为IX 小你,然何及O电你真问。DD安里(5/ 4	第1表	水源,	燃料及び電源負荷の必要量	(3/4)
---------------------------	-----	-----	--------------	-------

	水源		燃料 (軽油)	電源負荷
事故シーケンス	原子炉注水,格納容器スプレイ等 (必要水量/水源総量)	燃料プール注水 (必要水量/水源総量)	(7日間必要燃料/備蓄量)	(最大負荷/給電容量)
<ol> <li>3.1.2</li> <li>雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) (代替循環冷却を使用する場合)</li> </ol>	約1,700m ³ /約4,300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	(1)軽油貯蔵タンク 約 352.8kL/約 800kL ・常設代替高圧電源装置(5 台分)(約 352.8kL)	約 2, 339k₩/5, 520k₩
<ol> <li>3.1.3</li> <li>雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) (代替循環冷却を使用しない場合)</li> </ol>	約 5, 690m ³ /約 9, 300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク約352.8kL/約800kL</li> <li>・常設代替高圧電源装置(5台分)(約352.8kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>・可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	約 2, 149k₩/5, 520k₩
3.2 高圧溶融物放出/格納容器雰囲気 直接加熱	約 2, 270m ³ /約 4, 300m ³ ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 352.8kL/約 800kL</li> <li>・常設代替高圧電源装置(5 台分)(約 352.8kL)</li> </ul>	約 2, 339kW/5, 520kW
3.3 原子炉圧力容器外の溶融燃料-冷却材 相互作用	約 2, 270m ³ /約 4, 300m ³ ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 352. 8kL/約 800kL</li> <li>・常設代替高圧電源装置(5 台分)(約 352. 8kL)</li> </ul>	約 2, 339kW/5, 520kW
3.4 水素燃焼	約1,700m ³ /約4,300m ³ ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	(1)軽油貯蔵タンク 約 352.8kL/約 800kL ・常設代替高圧電源装置(5 台分)(約 352.8kL)	約 2, 339kW/5, 520kW
3.5 溶融炉心・コンクリート相互作用	約 2, 270m ³ /約 4, 300m ³ ・代替格納容器スプレイ冷却系(常設) ・格納容器下部注水系(常設)	_	<ul> <li>(1)軽油貯蔵タンク 約 352. 8kL/約 800kL</li> <li>・常設代替高圧電源装置(5 台分)(約 352. 8kL)</li> </ul>	約 2, 339kW/5, 520kW

は、各資源の必要量(負荷)が最大のものを示す。

	水源		燃料(軽油) (7日間必要燃料/備蓄量)	雷源負荷
事故シーケンス	原子炉注水,格納容器スプレイ等 (必要水量/水源総量)	燃料プール注水 (必要水量/水源総量)		(最大負荷/給電容量)
4.1 想定事故 1 ^{※1}	_	約 2,460m ³ /約 9,300m ³ ・代替燃料プール注水系(可搬 型)	<ul> <li>(1)軽油貯蔵タンク約755.5kL/約800kL</li> <li>非常用ディーゼル発電機(約242.0kL)×2</li> <li>高圧炉心スプレイ系ディーゼル発電機(約130.3kL)</li> <li>常設代替高圧電源装置(2台分)(約141.2kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	—
4.2 想定事故 2 ^{※1}	_	約 2, 470m ³ /約 9, 300m ³ ・代替燃料プール注水系(可搬 型)	<ul> <li>(1)軽油貯蔵タンク約755.5kL/約800kL</li> <li>非常用ディーゼル発電機(約242.0kL)×2</li> <li>高圧炉心スプレイ系ディーゼル発電機(約130.3kL)</li> <li>常設代替高圧電源装置(2台分)(約141.2kL)</li> <li>(2)可搬設備用軽油タンク約34.8kL/約210kL</li> <li>可搬型代替注水大型ポンプ(約34.8kL)×1</li> </ul>	—
5.1 崩壊熱除去機能喪失 (残留熱除去系の故障による停止 時冷却機能喪失)	_	_	<ul> <li>(1)軽油貯蔵タンク 約 614.3kL/約 800kL</li> <li>・非常用ディーゼル発電機(約 242.0kL) ×2</li> <li>・高圧炉心スプレイ系ディーゼル発電機(約 130.3kL)</li> </ul>	_
5.2 全交流動力電源喪失	約 90m ³ /約 4,300m ³ ・低圧代替注水系(常設)	_	(1) 軽油貯蔵タンク 約 352. 8kL/約 800kL ・常設代替高圧電源装置(5 台分)(約 352. 8kL)	約 4, 255kW/5, 520kW
5.3 原子炉冷却材の流出	_	_	<ul> <li>(1)軽油貯蔵タンク 約 614.3kL/約 800kL</li> <li>・非常用ディーゼル発電機(約 242.0kL) ×2</li> <li>・高圧炉心スプレイ系ディーゼル発電機(約 130.3kL)</li> </ul>	_
5.4 反応度の誤投入	_	_		

# 第1表 水源,燃料及び電源負荷の必要量(4/4)