東海第二	発電所 審査資料
資料番号	SA 設-C-2 改 23
提出年月日	平成 29 年 8 月 8 日

東海第二発電所

重大事故等対処設備について

(補足説明資料)

平成 29 年 8 月 日本原子力発電株式会社

本資料のうち、 は商業機密又は核物質防護上の観点から公開できません。

下線部:今回提出資料

目 次

39 条

- 39-1 重大事故等対処設備の分類
- 39-2 設計用地震力
- 39-3 重大事故等対処施設の基本構造等に基づく既往の耐震評価手法の適用性 と評価方針について
- 39-4 重大事故等対処施設の耐震設計における重大事故と地震の組合せについて
- 添付資料-1 重大事故等対処施設の網羅的な整理について

- 41-1 重大事故等対処施設における火災防護に係る基準規則等への適合性について
- 41-2 火災による損傷の防止を行う重大事故等対処施設の分類について
- 41-3 火災による損傷の防止と行う重大事故等対処施設に係る火災区域・火災 区画の設定について
- 41-4 重大事故等対処施設が設置される火災区域・火災区画の火災感知設備について
- 41-5 重大事故等対処施設が設置される火災区域・火災区画の消火設備について
- 41-6 重大事故等対処施設が設置される火災区域・火災区画の火災防護対策に ついて

共通

- 共-1 重大事故等対処設備の設備分類及び選定について
- 共-2 類型化区分及び適合内容
- 共-3 重大事故等対処設備の環境条件について
- 共-4 可搬型重大事故等対処設備の必要数,予備数及び保有数について
- 共-5 可搬型重大事故等対処設備の接続口の兼用状況について
- 共-6 重大事故等対処設備の外部事象に対する防護方針について
- 共-7 重大事故等対処設備の内部火災に対する防護方針について
- 共-8 重大事故等対処設備の内部溢水に対する防護方針について

44 条

- 44-1 SA 設備基準適合性 一覧表
- 44-2 単線結線図
- 44-3 配置図
- 44-4 系統図
- 44-5 試験及び検査
- 44-6 容量設定根拠
- 44-7 その他設備
- 44-8 ATWS 緩和設備について
- 44-9 ATWS緩和設備に関する健全性について

- 45-1 SA 設備基準適合性 一覧表
- 45-2 単線結線図
- 45-3 配置図

45-4 系統図

- 45-5 試験及び検査
- 45-6 容量設定根拠

45-7 その他の原子炉冷却時圧力バウンダリ高圧時に発電用原子炉を冷却するための設備について

- 45-8 原子炉隔離時冷却系蒸気加減弁(H0 弁)に関する説明書
- 46 条
- 46-1 SA 設備基準適合性 一覧表
- 46-2 単線結線図
- 46-3 配置図
- 46-4 系統図
- 46-5 試験及び検査
- 46-6 容量設定根拠
- 46-7 接続図
- 46-8 保管場所図
- 46-9 アクセスルート図
- 46-10 その他設備
- 46-11 過渡時自動減圧機能について
- 46-12 過渡時自動減圧機能に関する健全性について

- 47-1 SA 設備基準適合性 一覧表
- 47-2 単線結線図
- 47-3 配置図

- 47-4 系統図
- 47-5 試験及び検査
- 47-6 容量設定根拠
- 47-7 接続図
- 47-8 保管場所図
- 47-9 アクセスルート図
- 47-10 その他設備
- 47-11 その他

- 48-1 SA 設備基準適合性 一覧表
- 48-2 単線結線図
- 48-3 計測制御系統図
- 48-4 配置図
- 48-5 系統図
- 48-6 試験及び検査
- 48-7 容量設定根拠
- 48-8 その他の最終ヒートシンクへ熱を輸送する設備について
- 49 条
- 49-1 SA 設備基準適合性 一覧表
- 49-2 単線結線図
- 49-3 配置図
- 49-4 系統図
- 49-5 試験及び検査

- 49-6 容量設定根拠
- 49-7 接続図
- 49-8 保管場所図
- 49-9 アクセスルート図
- 49-10 その他設備
- 49-11 その他

50 条

- 50-1 SA 設備基準適合性 一覧表
- 50-2 単線結線図
- 50-3 計装設備系統図
- 50-4 配置図
- 50-5 系統図
- 50-6 試験及び検査
- 50-7 容量設定根拠
- 50-8 接続図
- 50-9 保管場所図
- 50-10 アクセスルート図
- 50-11 その他設備
- 51 条
- 51-1 SA 設備基準適合性 一覧表
- 51-2 単線結線図
- 51-3 配置図
- 51-4 系統図

- 51-5 試験及び検査
- 51-6 容量設定根拠
- 51-7 接続図
- 51-8 保管場所図
- 51-9 アクセスルート図
- 51-10 ペデスタル(ドライウェル部)底部の構造変更について
- 51-11 その他設備

- 52-1 SA 設備基準適合性 一覧表
- 52-2 単線結線図
- 52-3 配置図
- 52-4 系統図
- 52-5 試験及び検査
- 52-6 容量設定根拠
- 52-7 計装設備の測定原理
- 52-8 水素及び酸素発生時の対応について

53 条

- 53-1 SA 設備基準適合性 一覧表
- <u>53-2 単線結線図</u>
- 53-3 配置図

53-4 系統図

- 53-5 試験及び検査
- 53-6 容量設定根拠

- 54-1 SA 設備基準適合性 一覧表
- 54-2 単線結線図
- 54-3 配置図
- 54-4 系統図
- 54-5 試験及び検査
- 54-6 容量設定根拠
- 54-7 接続図
- 54-8 保管場所図
- 54-9 アクセスルート図
- 54-10 その他の燃料プール代替注水設備について
- 54-11 使用済燃料プール監視設備
- 54-12 使用済燃料プールサイフォンブレーカの健全性について
- 54-13 使用済燃料プール水沸騰・喪失時の未臨界性評価

- 55-1 SA 設備基準適合性 一覧表
- 55-2 配置図
- 55-3 系統図
- 55-4 試験及び検査
- 55-5 容量設定根拠
- 55-6 接続図
- 55-7 保管場所図

- 55-8 アクセスルート図
- 55-9 その他設備

- 56-1 SA 設備基準適合性 一覧表
- 56-2 配置図
- 56-3 系統図
- 56-4 試験及び検査
- 56-5 容量設定根拠
- 56-6 接続図
- 56-7 保管場所図
- 56-8 アクセスルート図
- 56-9 その他設備
- 57 条
- 57-1 SA設備基準適合性一覧表
- 57-2 配置図
- 57-3 系統図
- 57-4 試験及び検査
- 57-5 容量設定根拠
- 57-6 アクセスルート図
- 57-7 設計基準事故対処設備と重大事故等対処設備のバウンダリ系統図
- 57-8 可搬型代替低圧電源車接続に関する説明書
- 57-9 代替電源設備について
- 57-10 全交流動力電源喪失対策設備について

- 58-1 SA 設備基準適合性 一覧表
- 58-2 単線結線図
- 58-3 配置図
- 58-4 系統図
- 58-5 試験及び検査
- 58-6 容量設定根拠
- 58-7 主要パラメータの代替パラメータによる推定方法について
- 58-8 可搬型計測器について
- 58-9 主要パラメータの耐環境性について
- 58-10 パラメータの抽出について

- 59-1 SA 設備基準適合性一覧
- 59-2 単線結線図
- 59-3 配置図
- 59-4 系統図
- 59-5 試験及び検査性
- 59-6 容量設定根拠
- 59-7 保管場所図
- 59-8 アクセスルート図
- 59-9 原子炉制御室について(被ばく評価除く)
- 59-10 原子炉制御室の居住性に係る被ばく評価について

<u>60 条</u>

60-1 SA 設備基準適合性一覧表

- 60-2 単線結線図
- 60-3 配置図
- 60-4 試験及び検査
- 60-5 容量設定根拠
- 60-6 保管場所図
- 60-7 アクセスルート図
- <u>60-8 監視測定設備について</u>
- 61 条
- 61-1 SA 設備基準適合性 一覧表
- 61-2 単線結線図
- 61-3 配置図
- 61-4 系統図
- 61-5 試験及び検査性
- 61-6 容量設定根拠
- 61-7 保管場所図
- 61-8 アクセスルート図
- 61-9 緊急時対策所について(被ばく評価除く)
- 61-10 緊急時対策所の居住性に係る被ばく評価について

- 62-1 SA 設備基準適合性 一覧表
- 62-2 単線結線図

- 62-3 配置図
- 62-4 系統図
- 62-5 試験及び検査
- 62-6 容量設定根拠
- 62-7 アクセスルート図
- 62-8 設備操作及び切替に関する説明書

59-1 SA設備基準適合性一覧表

	督身	6 59	条:	原子炉制御室	中央制御室遮蔽	類型化 区分	中央制御室待避室遮蔽	類型化 区分	
			環境条件	環境温度・湿度・ 圧力/屋外の天候 /放射線	原子炉建屋の原子炉棟外及びそ の他の建屋内 (原子炉建屋附属棟)	С	原子炉建屋の原子炉棟外及びそ の他の建屋内 (原子炉建屋附属棟)	С	
		笛	14- して	荷重	(有効に機能を発揮する)	-	(有効に機能を発揮する)	-	
		1	にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外	
		号	ける	他設備からの影 響	(周辺機器等からの悪影響によ り機能を失うおそれがない)	_	(周辺機器等からの悪影響によ り機能を失うおそれがない)	—	
			健全性	電磁波による影 響	(電磁波により機能が損なわれ ない)	対象外	(電磁波により機能が損なわれ ない)	対象外	
			1生	関連資料	[配置図]59-3		[配置図]59-3		
		第	操作	乍性	(操作不要)	対象外	(操作不要)	対象外	
	第	Z 号	関連	重資料	_		_		
	1 15	第	試題	策·検査(検査性,系	遮蔽	ĸ	遮蔽	ĸ	
	垻	3	統構	構成・外部入力)	(外観点検が可能)	К	(外観点検が可能)	К	
		号	関連	 重資料					
tata		第 4	切り) 替え性	本来の用途として使用-切替不 要	Bb	本来の用途として使用-切替不 要	Bb	
		号	関連	重資料	_		—		
弟 43 冬		第5号	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad	
214			影響防止	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外	
				関連資料	_		_		
		第	設置	置場所	(操作不要)	対象外	(操作不要)	対象外	
		号	関連	重資料	_		—		
		第 1	常言	gSAの容量	DB施設の系統及び機器の容量が 十分(DB施設と同仕様の遮蔽能 力で設計)	В	重大事故等への対処を本来の目 的として設置するもの	А	
		ヮ	関連	重資料	—		_		
		第	共月	用の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外	
	第 ?	号	関連	 重資料			_		
	٩ آ	第	共通要E	環境条件,自然現 象,外部人為事象, 溢水,火災	防止設備-対象外(共通要因の 考慮対象設備なし)	対象外	緩和設備-対象外(同一目的の SA設備なし)	対象外	
		3 号	故障	サポート系故障	(サポート系なし)	対象外	(サポート系なし)	対象外	
			.,	防止	関連資料	[配置図]59-3		[配置図]59-3	

東海第二発電所 SA設備基準適合性一覧表(常設)

	5	9条	:原	子炉制御室	空気調和機ファン	類型化 区分	フィルタ系ファン	類型化 区分
			環境条	環境温度・湿度・ 圧力/屋外の天 候/放射線	原子炉建屋の原子炉棟外及びその 他の建屋内 (原子炉建屋附属棟)	C	原子炉建屋の原子炉棟外及びその 他の建屋内 (原子炉建屋附属棟)	С
		笛	件	荷重	(有効に機能を発揮する)		(有効に機能を発揮する)	—
		977 1	にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外
		号	ける	他設備からの影 響	(周辺機器等からの悪影響により機 能を失うおそれがない)	_	(周辺機器等からの悪影響により機 能を失うおそれがない)	_
			健全	電磁波による影 響	(電磁波により機能が損なわれない)	対象外	(電磁波により機能が損なわれない)	対象外
		ĺ	性	関連資料	[配置図]59-3	L	[配置図]59-3	
		第	操作	乍性	中央制御室操作 (拇作スイッチ拇作)	А	中央制御室操作 (堀佐スイッチ堀佐)	А
	第	号	關於	 車				
	1	-	試題	^{主員111} 論・検査(検査性,	ファン		ファン	
	項	第	系	統構成・外部入	(機能・性能の確認が可能)	А	(機能・性能の確認が可能)	А
		3	力)		(分解が可能)		(分解が可能)	
		ク	関i	重資料	[試験及び検査]59-5		[試験及び検査]59-5	
		第	切り	り替え性	本来の用途として使用-切替不要	Bb	本来の用途として使用-切替不要	Bb
第 43		4 号	関連	重資料	_		_	
条		笛	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad
		5	影響吐	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外
		亐	必止	関連資料	[系統図]59-4		[系統図]59-4	
		第	設置	置場所	中央制御室操作	В	中央制御室操作	В
		り 号	関連	重資料	_		—	
		第 1	常言	役SAの容量	DB施設の系統及び機器の容量が十 分	В	DB施設の系統及び機器の容量が十 分	В
		号	関連	重資料	_	<u> </u>	_	
		第	共月	目の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外
	第	2 号	関連	車資料	_		_	
	2 項	第	共通要E	環境条件,自然 現象,外部人為 事象,溢水,火災	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外
		3 号	因故障	サポート系故障	対象(サポート系有り)異なる駆 動源又は冷却源	Ca	対象(サポート系有り)異なる駆 動源又は冷却源	Ca
			防止	関連資料	[配置図]59-3		[配置図]59-3	

東海第二発電所 SA設備基準適合性一覧表(常設)

	5	9条	:原-	子炉制御室	高性能粒子フィルタ	類型化	チャコールフィルタ	類型化	
	0	0 >14	<i>"</i> 1•	理接泪度,洞度,	「「日日日」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	区分	原乙烷建長の原乙烷捷別及びその	区分	
			環	環境温度 一位及 一位 一位 一位 一位 一位 一位 一位 一位 一位 一位	他の建屋内	С	他の建屋内	С	
			児条	候/放射線	(原子炉建屋附属棟)	_	(原子炉建屋附属棟)	_	
		ht	件	荷重	(有効に機能を発揮する)	_	(有効に機能を発揮する)	—	
		·弗 1	にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外	
		号	け	他設備からの影	(周辺機器等からの悪影響により機	-	(周辺機器等からの悪影響により機	_	
			る健	響 雪磁油に上る影			能を欠うおてれかない) (電磁油に上り機能が掲なわれた)		
			全	電磁波による影響		対象外		対象外	
			性	関連資料	[配置図]59-3		[配置図]59-3		
		第	操作	乍性	(操作不要)	対象外	(操作不要)	対象外	
		2 号	関連	車資料				1	
	<u>ht</u>		封殿, 按木 (按木州		空調ユニット		空調ユニット		
	弗 1 項	第	武派	た構成・外部入	(機能・性能の確認が可能)	Е	(機能・性能の確認が可能)	Е	
		3 早	力)		(差圧確認が可能)(中如変認が可能)		(差圧確認が可能)		
		7	間追	1 答判	(四部確認か可能) 「試験及び検査]50-5		(内部唯認かり形) 「試驗及び檢查]50-5		
		第	切り) 基 え 性	本来の用途として使用ー切萃不要	Bh	本来の用途として使用ー切萃不要	Bh	
		4	月月二日			00		55	
笛		号	民だ	E 貝 14				1	
43 条		껔	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad	
×		弗 5 号	影響防	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外	
			止	関連資料	[系統図]59-4		[系統図]59-4		
		第。	設置	置場所	(操作不要)	対象外	(操作不要)	対象外	
		6 号	関連	車資料	_		_		
		第 1	常記	GSAの容量	DB施設の系統及び機器の容量が十 分	В	DB施設の系統及び機器の容量が十 分	В	
		号	関連	連資料	_		_		
		第	共月	目の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外	
	第 。	号	関連	車資料	_		_		
	⊿項	第	共通要因	環境条件,自然 現象,外部人為 事象,溢水,火災	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外	
		3 号	山故障	サポート系故障	(サポート系なし)	対象外	(サボート系なし)	対象外	
		.,	5	防止	関連資料	[配置図]59-3		[配置図]59-3	

東海第二発電所 SA設備基準適合性一覧表(常設)

r						. I make and a first		
	5	9条	:原-	子炉制御室	非常用ガス再循環系排風機	類型化 区分	非常用ガス処理系排風機	類型化 区分
			環境条	環境温度・湿度・ 圧力/屋外の天 候/放射線	原子炉建屋原子炉棟内	В	原子炉建屋原子炉棟内	В
			件	荷重	(有効に機能を発揮する)	_	(有効に機能を発揮する)	_
		第	に	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外
		日日	おけ	他設備からの影	(周辺機器等からの悪影響により機		(周辺機器等からの悪影響により機	
		ク	る	響	能を失うおそれがない)	_	能を失うおそれがない)	_
			健全	電磁波による影 響	(電磁波により機能が損なわれない)	対象外	(電磁波により機能が損なわれない)	対象外
			性	 関連資料	「配置図]59-3		「配置図]59-3	
		笛	操作	乍性	中央制御室操作		中央制御室操作	
		2			(操作スイッチ操作)	А	(操作スイッチ操作)	А
	第	号	関連	 重資料	_		_	
	1	1.1.	試題	検·検査(検査性,	ファン		ファン	
	項	第	系統	売構成・外部入	(機能・性能の確認が可能)	А	(機能・性能の確認が可能)	А
		3 早	力)		(分解が可能)		(分解が可能)	
		P	関連	連資料	[試験及び検査]59-5		[試験及び検査]59-5	
		第	切り) 替え性	本来の用途として使用-切替不要	Bb	本来の用途として使用-切替不要	Bb
第 43		4 号	関連	連資料	_		_	
43 条		第	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad
		5	響	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外
		号	防止	関連資料	[系統図]59-4		[系統図]59-4	-
		第	設置	置場所	中央制御室操作	В	中央制御室操作	В
		6 号	関連	連資料	_		_	
		第	常言	GSAの容量	DB施設の系統及び機器の容量が十	D	DB施設の系統及び機器の容量が十	D
		1			分	D	分	D
		号	関連	車資料			_	
		第。	共月	用の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外
	第	4号	関連	連資料			—	
	2 項	第	共通要I	環境条件,自然 現象,外部人為 事象,溢水,火災	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外	防止設備-対象外(共通要因の考 慮対象設備なし)	対象外
		3 号	因 故 障	サポート系故障	対象(サポート系有り)異なる駆 動源又は冷却源	Ca	対象(サポート系有り)異なる駆 動源又は冷却源	Ca
			防止	関連資料	[配置図]59-3		[配置図]59-3	

東海第二発電所 SA設備基準適合性一覧表(常設)

	5	9冬	: 貭-	子炬制御室	非常用ガス再循環系フィルタト	類型化	非常用ガス処理系フィルタトレ	類型化	
	0	ッ.~	• ///	1 》 时间主	レイン	区分	イン	区分	
			環境条	環境温度・湿度・ 圧力/屋外の天 候/放射線	原子炉建屋原子炉棟内	В	原子炉建屋原子炉棟内	В	
		htte	件	荷重	(有効に機能を発揮する)	_	(有効に機能を発揮する)	—	
		第	に	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外	
		」 号	わける	他設備からの影 響	(周辺機器等からの悪影響により 機能を失うおそれがない)	_	(周辺機器等からの悪影響により 機能を失うおそれがない)	_	
			健全性	電磁波による影 響	(電磁波により機能が損なわれな い)	対象外	(電磁波により機能が損なわれな い)	対象外	
			庄	関連資料	[配置図]59-3		[配置図]59-3		
		第 2	操作	乍性	(操作不要)	対象外	(操作不要)	対象外	
		号	関i	重資料	_		_		
	第 1 項	第3号	試 縣 新 力)	策・検査(検査性, 充構成・外部入	空調ユニット (機能・性能の確認が可能) (差圧確認が可能) (内部確認が可能)	E	空調ユニット (機能・性能の確認が可能) (差圧確認が可能) (内部確認が可能)	E	
			関i	重資料	[試験及び検査]59-5		[試験及び検査]59-5		
第		第 4	切り) 替え性	本来の用途として使用-切替不 要	Bb	本来の用途として使用-切替不 要	Bb	
43 条		号	関連	車資料	_		_	•	
		笛	悪影	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad
		5	響	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外	
		亐	此	関連資料	[系統図]59-4		[系統図]59-4		
		第	設置	置場所	(操作不要)	対象外	(操作不要)	対象外	
		6 号	関i	重資料	_		_		
		第 1	常言	没SAの容量	DB施設の系統及び機器の容量が 十分	В	DB施設の系統及び機器の容量が 十分	В	
		号	関i	重資料	—		_		
		第	共月	用の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外	
	第	臱	関連	重資料	_		_		
	2 項	第	共通要因	環境条件,自然 現象,外部人為 事象,溢水,火災	防止設備-対象外(共通要因の 考慮対象設備なし)	対象外	防止設備-対象外(共通要因の 考慮対象設備なし)	対象外	
		3 号	故障	サポート系故障	(サポート系なし)	対象外	(サボート系なし)	対象外	
		兮	防止	関連資料	[配置図]59-3		[配置図]59-3		

東海第二発電所 SA設備基準適合性一覧表(常設)

		5	9条	:原子炉制御室	衛星電話設備 <mark>(可搬型)</mark> (待避室)	類型化 区分
			環	環境温度・湿度・圧力/ 屋外の天候/放射線	原子炉建屋の原子炉棟外及びその他の建屋内 (原子炉建屋附属棟)	С
			^元 条 仕	荷重	(有効に機能を発揮する)	_
		第 1	にお	海水	(海水を通水しない)	対象外
		号	ける	他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)	_
			健全	電磁波による影響	(電磁波により機能が損なわれない)	対象外
			性	関連資料	[配置図]59-3	
		第 9	操作	乍性	中央制御室操作 (操作スイッチ操作)	А
	第	·号	関連	重資料	[配置図]59-3 <mark>, [系統図]59-4</mark>	
	1 項	第 3	試り 成・	徐・検査(検査性,系統構 外部入力)	通信連絡設備 (機能・性能の確認が可能)	L
		号	関連	重資料	[試験及び検査] 59-5	
		第	切り) 替え性	本来の用途として使用ー切替不要	Bb
		4 号	関連	連資料	-	
		倴	悪	系統設計	通常時は隔離又は分離	Ab
		第 5日	影響咕	その他(飛散物)	(考慮対象なし)	対象外
		方	此	関連資料	[配置図]59-3, [系統図]59-4	
第		第6	設置	置場所	中央制御室操作	В
		0 号	関連	重資料	[配置図]59-3, [系統図]59-4	
43 条		<mark>第</mark> 1	<mark>可</mark> 打	設SAの容量	その他設備(必要な台数である1個に加え,故障時及び保 守点検時のバックアップとして1個の合計2個を保有する)	C
		<mark>号</mark>	関i	<mark>連資料</mark>	-	
		第 。	<mark>可</mark> 打	設SAの接続性	より簡便な接続規格等による接続	C
		。 号	関連	<mark>重資料</mark>		
		<mark>第</mark> 3	異れ 保	なる複数の接続箇所の確	(対象外)	<mark>対象外</mark>
		<mark>号</mark>	関J	<mark>連資料</mark>	-	
		<mark>第</mark> 4	<mark>設</mark> 間	置場所	(線量の高くなるおそれの少ない場所を選定)	-
	<mark>第</mark>	<mark>号</mark>	関j	<mark>連資料</mark>	[配置図] 59-3	
	3 項	第	<mark>保管</mark>	管場所	屋内(共通要因の考慮対象設備なし)	Ab
		。 号	<mark>関</mark> 連	基資料	[保管場所図] 59-7	
		第 6	<u>ア</u> ク	⁷ セスルート	対象外(アクセス不要)	-
		。 号	<mark>関</mark> 〕	<mark>重資料</mark>	_	
			共通更	環境条件,自然現象,外 部人為事象,溢水,火災	防止・緩和以外-対象(代替対象DB設備有り)-屋内	B
		第 7 号	安因故院	<mark>サポート系要因</mark>	<mark>対象(サポート系有り)異なる駆動源又は冷却源</mark>	Ca
			厚防止	関連資料	[配置図]59-3	

東海第二発電所 SA設備基準適合性一覧表 (可搬)

		5	9条	:原子炉制御室	データ表示装置(待避室)	類型化 区分
			環	環境温度・湿度・圧力/ 屋外の天候/放射線	原子炉建屋の原子炉棟外及びその他の建屋内 (原子炉建屋附属棟)	С
			^先 条 仕	荷重	(有効に機能を発揮する)	_
		第 1	トにお	海水	(海水を通水しない)	対象外
		号	いける	他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)	_
			健全	電磁波による影響	(電磁波により機能が損なわれない)	対象外
			性	関連資料	[配置図]59-3	
		第 2	操作	乍性	中央制御室操作 (操作スイッチ操作)	А
	第	- 号	関連	重資料	[配置図]59-3	
	1 項	第 3	試験・検査(検査性,系統構 成・外部入力)		通信連絡設備 (機能・性能の確認が可能)	L
		号	関連	重資料	[試験及び検査] 59-5	
		第	切り替え性		本来の用途として使用-切替不要	Bb
		4 号	関連	連資料	-	
		쎀	悪	系統設計	通常時は隔離又は分離	Ab
		- 5 日	影響は	その他(飛散物)	(考慮対象なし)	対象外
		方	此	関連資料	[配置図] 59-3	
		第	設置	置場所	中央制御室操作	В
第		0 号	関連	重資料	[配置図]59-3	
43 条		第 1	可排	骰SAの容量	その他設備(必要な台数である1個に加え,故障時及び保 守点検時のバックアップとして1個の合計2個を保有する)	С
		号	, 异 関ì	重資料	_	
		第	可护	骰SAの接続性	より簡便な接続規格等による接続	С
		号	関連	重資料	-	
		第 3	異 <i>†</i> 保	なる複数の接続箇所の確	(対象外)	対象外
		号	関連	重資料	_	
		第 4	設置	置場所	(線量の高くなるおそれの少ない場所を選定)	—
	第	号	関i	重資料	[配置図] 59-3	
	3 項	第	保管	管場所	屋内(共通要因の考慮対象設備なし)	Ab
		5 号	関i	重資料	[保管場所図] 59-7	
		第 6	アク	クセスルート	対象外 (アクセス不要)	_
		号	関連	重資料	_	
			共通亜	環境条件,自然現象,外 部人為事象,溢水,火災	同一機能の設備なし又は代替対象DB設備なし	対象外
		第 7 号	安因故障	サポート系要因	(サポート系なし)	対象外
			安 因故障防止	関連資料	-	

東海第二発電所 SA設備基準適合性一覧表 (可搬)

	59条:原子炉制御室				酸素濃度計	類型化 区分	
			環暗	環境澁渡・湿度・圧力/屋 外の天候/放射線	原子炉建屋の原子炉棟外及びその他の建屋内 (原子炉建屋附属棟)	С	
			条件	荷重	(有効に機能を発揮する)	—	
		第 1	にお	海水	(海水を通水しない)	対象外	
		号	ける	他設備からの影響	からの影響 (周辺機器等からの悪影響により機能を失うおそれがない)		
			健全	電磁波による影響	(電磁波により機能が損なわれない)	対象外	
			性	関連資料	[保管場所図]59-7		
		第	操作	乍性	中央制御室操作	А	
		⊿ 号	関連	重資料	[保管場所図]59-7		
	第 1 項	第 3	試覧 成・	険・検査(検査性,系絞構 外部入力)	計測制御設備 (機能・性能の確認が可能)	J	
		号	関連	車資料	 [試験及び検査]59-5		
		第	切り) 替え性	本来の用途として使用ー切替不要	Bb	
		4 号	関連	重資料	_		
		htte	悪	系続設計	他設備から独立	Ac	
		第5	影響站	その他(飛散物)	(考慮対象なし)	対象外	
杏		号	防止	関連資料	[保管場所図]59-7		
		第	設置	置場所	中央制御室操作	В	
第 43		6 号	関連	重資料	[保管場所図]59-7		
条		第 1	可拼	設SAの容量	その他設備(必要な台数である1個に加え,故障時及び保 守点検時のバックアップとして1個の合計2個を保有する)	С	
		号	関連	重資料	_		
		第。	可挑	骰SAの接続性	(対象外)	対象外	
		⊿号	関連	重資料	1		
		第 3	異れ 保	なる複数の接続箇所の確	(対象外)	対象外	
		号	関連	重資料	-		
		第 1	設置	置場所	(放射線の高くなるおそれの少ない場所を選定)	—	
	第 3	号	関連	重資料	_		
	項	第	保管	营場所	屋内(共通要因の考慮対象設備なし)	Ab	
		っ号	関連	重資料	[保管場所図] 59-7		
		第6	アク	フセスルート	対象外 (アクセス不要)	_	
		0 号	関連	 重資料			
		笜	<u></u>	環境条作,目然現象,外 部人為事象,浴水,火災	防止・緩和以外-対象外(代替するDB設備無し)	対象外	
		7 月	因故	サポート系要因	(サボート系なし)	対象外	
		厅	障防止	関連資料	_		

東海第二発電所 SA設備基準適合性一覧表(可搬型)

		5	9条	:原子炉制御室	二酸化炭素濃度計	類型化 区分
			環境	環境澁渡・湿度・圧力/ 屋外の天候/放射線	原子炉建屋の原子炉棟外及びその他の建屋内 (原子炉建屋附属棟)	С
			条件	荷重	(有効に機能を発揮する)	_
		第 1	にお	海水	(海水を通水しない)	対象外
		号	ける	他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)	_
			健全	電磁波による影響	(電磁波により機能が損なわれない)	対象外
			性	関連資料	[保管場所図]59-7	
		第	操亻	乍性	中央制御室操作	А
	쎀	号	関ì	重資料	[保管場所図]59-7	
	弗 1 項	第 3	試 駅 成・	験・検査(検査性,系絞構 ·外部入力)	計測制御設備 (機能・性能の確認が可能)	J
		号	閧ì	重資料	[試験及び検査]59-5	
		第	切	り替え性	本来の用途として使用-切替不要	Bb
		4 号	関ì	重資料	_	
		hete	悪影	系続設計	他設備から独立	Ac
		5	影響	その他(飛散物)	(考慮対象なし)	対象外
		号	防止	関連資料	[保管場所図]59-7	
第		第	設計	置場所	中央制御室操作	В
		6 号	閧ì	連資料	[保管場所図]59-7	
43 条		第 1	可打	般SAの容量	その他設備(必要な台数である1個に加え,故障時及び保 守点検時のバックアップとして1個の合計2個を保有する)	С
		号	関ì	車資料	_	
		第	可持	般SAの接続性	(対象外)	対象外
		3号	関ì	車資料	_	
		第 3	異7 保	なる複数の接続箇所の確	(対象外)	対象外
		号	閧ì	車資料		
		第	設計	置場所	(放射線の高くなるおそれの少ない場所を選定)	_
	第	4 号	閧ì	車資料		
	3 項	第	保管	管場所	屋内(共通要因の考慮対象設備なし)	Ab
		5 号	関ì	車資料	[保管場所図] 59-7	
		第	ア :	クセスルート	対象外 (アクセス不要)	—
		6 号	関ì	重資料	_	
			共通	環境条作,目然現象,外 部人為事象,浴水,火災	防止・緩和以外-対象外(代替するDB設備無し)	対象外
		第 7 号	要因故望	サポート系要因	(サボート系なし)	対象外
		.,	障防止	関連資料	_	

東海第二発電所 SA設備基準適合性一覧表(可搬型)

	5	9条	:原了炉制御室	中央制御室待避室空気ボンベユニ ット(空気ボンベ)	類型化 区分	可搬型照明 (SA)	類型化 区分
			環境	原子炉建屋の原子炉棟外及びその 他の建屋内 (原子炉建屋附属棟)	С	原子炉建屋の原子炉棟外及びその 他の建屋内 (原子炉建屋附属棟)	С
			条 荷重	(有効に機能を発揮する)	_	(有効に機能を発揮する)	_
		第 1	に海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外
		号	わ け 他設備からの影 る 響	(周辺機器等からの悪影響により 機能を失うおそれがない)	_	(周辺機器等からの悪影響により機 能を失うおそれがない)	_
			健 電磁波による影 盤	(電磁波により機能が損なわれな い)	対象外	(電磁波により機能が損なわれな い)	対象外
			関連資料	[配置図]59-3		[配置図]59-3	
		第	操作性	弁操作	Bf	設備の運搬,設置	Bc
	笛	2号	関連資料	[保管場所図]59-3		[配置図]59-3	
	1 項	第 3 号	試験・検査(検査性, 系 絞構成・外部入 力)	容器(タンク類) (機能・性能の確認が可能) (規定圧力の確認及び外観の確認 が可能)	С	その他電源設備 (機能・性能の確認が可能)	Ι
		kte	関連資料	_		[試験及び検査]59-5	
		第 4	切り替え性	本来の用途として使用ー切替不要	Bb	本来の用途として使用-切替不要	Bb
		号	関連資料	—		—	
		第	悉 系統設計 影	他設備から独立	Ac	その他	Ae
		5 号	響 その他(飛散物)	(考慮対象なし)	対象外	_	対象外
			止 関連資料	[系統図]59-4		[単線結線図]59-2	D
		第 6	設置場所	中央制御室操作	В	中央制御 至操作 現場(設置場所)で操作可能	В Аа
껔		号	関連資料	[保管場所図]59-7		[配置図]59-3	
ヵ 43 条		第 1 号	可搬SAの容量	その他設備(必要な本数である12 本に加え, バックアップとして8 本の合計20本を保有する)	С	その他設備(必要な台数である7台 に加え,故障時及び保守点検時の バックアップとして2台の合計9台 を保有する)	С
		•	関連資料	[容量設定根拠] 59-6		_	
		第	可搬SAの接続性	(対象外)	対象外	より簡便な接続規格等による接続	С
		2 号	関連資料	_		_	
		第 3	異なる複数の接続 箇所の確保	(対象外)	対象外	(対象外)	対象外
		号	関連資料	_		_	
		第 4	設置場所	(放射線の高くなるおそれの少な い場所を選定)	_	(放射線の高くなるおそれの少な い場所を選定)	—
	第	号	関連資料	_		[配置図]59-3	
	3 項	第 5 号	保管場所	屋内(共通要因の考慮対象設備な し)	Ab	屋内(共通要因の考慮対象設備あ り)(外部からの衝撃による損傷防 止が図られた原子炉建屋附属棟内 に保管)	Aa
			関連資料	_		[保管場所図] 59-7	
		第 6	アクセスルート	対象外 (アクセス不要)	_	対象外(アクセス不要) 屋内	— A
		号	関連資料	_		-	
		第	共 環境条作,目然 通現象,外部人為 要事象,浴水,火災	緩和設備-対象外(同一目的のSA 設備なし)	対象外	防止・緩和以外ー対象(代替するDB 設備有り)	В
		7 号	四 故 サポート系要因 障	(サボート系なし)	対象外	対象(サポート系有り)一異なる駆 動源,冷却源等	Ca
			防止 関連資料	_		[単線結線図] 59-2	

東海第二発電所 SA設備基準適合性一覧表(可搬型)

59-2 単線結線図

図59-2-1 重大事故等対処設備の電源構成図(交流電源設備)

59-3-1

59-3 配置図

第59-3-1図 中央制御室照明配置図

第59-3-2図 中央制御室換気系設備 配置図

(原子炉建屋附属棟4階)

第59-3-3図 原子炉建屋ガス処理系設備 配置図

(原子炉建屋原子炉棟5階)

第59-3-4図 中央制御室待避室 配置図

(原子炉建屋附属棟3階)

第59-3-5図 中央制御室待避室ボンベユニット(空気ボンベ)配置図 (原子炉建屋附属棟3階)

第59-3-6図 中央制御室遮蔽 配置図

第59-3-<mark>7</mark>図 送受話器(制御装置) 配置図

(サービス建屋3階)

第59-3-8図 電力保安通信用電話設備(交換機)配置図

(事務本館3階)

第59-3-9図 中央制御室チェンジングエリア可搬型照明配置図

(原子炉建屋附属棟4階)

59-4 系統図

第59-4-1図 中央制御室換気系 系統概要図

59 - 4 - 2

第59-4-2図 中央制御室待避室空気ボンベユニット 系統概要図

第 59-4-3 図 原子炉建屋ガス処理系 系統概要図

28

※2:中央制御室待避室の通信連絡を行うために必要な設備については「3.19通信連絡を行うために必要な設備(設置許可基準規則第62条に対する設計方針を示す章)」で示す。

図59-4-5 データ表示装置 系統概要図

59-5 試験及び検査性

○可搬型照明(SA)の試験・検査性について

可搬型照明(SA)は、運転中又は停止中においても点灯確認が可能な構造とする。概略構造図を第59-5-1図に示す。

第59-5-1図 可搬型照明(SA)の概略構造図

○中央制御室待避室の気密性に関する試験・検査性について

1. 概要

中央制御室待避室の気密性に関する試験・検査として,原子炉停止中にお いて,正圧化試験を実施する。

- 2. 試験内容
 - (1) 中央制御室待避室の機能・性能検査(気密性能確認)

中央制御室待避室の気密性能確認として、中央制御室待避室の正圧化試験を実施する。中央制御室待避室の正圧化試験として、中央制御室待避室 空気ボンベユニットを用いて、中央制御室待避室と中央制御室で正圧化に 必要な差圧を確保できることを確認する。(正圧化に必要な差圧について は、(59-6-2)を参照)

中央制御室待避室の正圧化試験のバウンダリ構成図を第59-5-2図に示す。

第59-5-2図 中央制御室待避室の正圧化試験におけるバウンダリ構成図

○東海第二発電所 点検計画

第 59-5-3 図 衛星電話設備(可搬型)(待避室)の概要

【試験構成】

※:試験区間:中央制御室(待避室)~緊急時対策所

第 59-5-4 図 衛星電話設備<mark>(可搬型)</mark>(待避室)試験・検査構成

○データ表示装置(待避室)の試験・検査性について

データ表示装置(待避室)における試験及び検査は第59-5-2表の通りである。

データ表示装置(待避室)の概要を第59-5-6図に示す。

第59-5-2表 データ表示装置(待避室)の試験・検査

対応設備	試験・検査項目
データ表示装置 (待避室)	機能・性能検査,外観検査

第59-5-6図 データ表示装置の概要

第59-5-7図 データ表示装置(待避室)試験・検査構成

○酸素濃度計及び二酸化炭素濃度計の試験・検査性について

酸素濃度計及び二酸化炭素濃度計は,運転中又は停止中においても校正ガスによる性能検査が可能な設計とする。概略図を第59-5-8図に示す。

酸素濃度計

二酸化炭素濃度計

第59-5-8図 酸素濃度計及び二酸化炭素濃度計の概略図

59-6 容量設定根拠

名称		中央制御室待避室の正圧化差圧
中央制御室待避室の正	Pa	10
圧化差圧		
機器仕様に関する注記		

【設定根拠】

中央制御室待避室は,配置上,風の影響を受けない屋内に設置され るため,待避室へのインリークは隣接区画(中央制御室)との温度差 によって生じる圧力差によるものと考えられる。

重大事故等が発生した場合の待避室内温度を 48.9℃(中央制御室の 設計最高温度),隣接区画(中央制御室)の温度を-12.7℃(外気の設 計最低温度)とする。待避室の天井高さは約2mであるため,以下のと おり,5.1Paの圧力差があれば,温度の影響を無視できると考えられ る。従って,待避室の加圧目標は,余裕を考慮して隣接区画より+ 10Pa とする。

ΔP={(-12.7℃の乾き空気の密度) [kg/m³]

-(48.9℃の乾き空気の密度) [kg/m³] × (天井高さ) [m]
= {1.3555[kg/m³]-1.0963[kg/m³] × 2[m]
= 0.5184[kg/m²]
→ 0.5184[kg/m²] × 9.80665[m/s²]
≒ 5.1[Pa]

名称		中央制御室待避室空気ボンベユニット
		(空気ボンベ)
本数	本	<mark>13</mark> 以上
容量	L/本	47
充填圧力	MPa	約15(35°C)
機器仕様に関する注記		

【設定根拠】

- 1. 中央制御室待避室の必要空気供給量
- (1) 二酸化炭素濃度基準に基づく必要換気量
 - a. 収容人数:n=3名
 - b. 許容二酸化炭素濃度:C=0.5% (JEAC4622-2009)
 - c. 大気二酸化炭素濃度:C₀=0.0336%(空気ボンベの二酸化炭素濃 度)
 - d. 呼吸による二酸化炭素発生量:M=0.022m³/h/人(空気調和・衛生
 工学便覧の極軽作業の作業程度の吐出し量)
 - e. 必要換気量:Q₁=100×M×n/(C-C₀) m³/h(空気調和・衛生工学
 便覧の二酸化炭素基準の必要換気量)

 $Q_1 = 100 \times 0.022 \times 3 \div (0.5 - 0.0336)$

=14.15

≒14.2 m³∕h

- (2) 酸素濃度基準に基づく必要換気量
 - a. 収容人数:n=3名
 - b. 吸気酸素濃度:a=20.95% (標準大気の酸素濃度)
 - c. 許容酸素濃度:b=19%(鉱山保安法施行規則)
 - d. 成人の呼吸量:c=0.48m³/h/人(空気調和・衛生工学便覧)

e. 乾燥空気換算酸素濃度:d=16.4%(空気調和・衛生工学便覧)
f. 必要換気量:Q₁=c×(a-d)×n/(a-b)m³/h(空気調和・衛生 工学便覧の酸素基準の必要換気量)
Q₁=0.48×(20.95-16.4)×3÷(20.95-19.0)

=3.36

≒3.4m³⁄h

以上により、中央制御室待避室使用に必要な空気供給量は二酸化炭素 濃度基準の14.2m³/hとする。またこの流量にて空気を供給し続けるこ とにより、中央制御室待避室を中央制御室に対し正圧に保つことができ る。

2. 中央制御室待避室の必要ボンベ本数

中央制御室待避室を5時間正圧化する必要最低限のボンベ本数は、二酸 化炭素濃度基準換気量の14.2m³/h及びボンベ供給可能空気量 5.5m³/本 から下記の通り 13本となる。なお、中央制御室待避室の設置後に試験を実 施し必要ボンベ本数が5時間正圧化維持するのに十分であることの確認を 実施し、予備のボンベ容量について決定する。

(1) ボンベ初期充填圧力:14.7MPa (at35℃)

 (2) ボンベ容器容積: 5.5m³(空気ボンベは標準圧力 14.7MPa で 6.8m³/本 であるが,残圧及び使用温度補正により安全側に考慮し 5.5m³/本とし た)
 必要ボンベ本数=14.2m³/h÷5.5m³/本×5時間

≒<mark>13</mark>本

=12.9本

S称				衛星電話設備(可	「搬型)	(待避室)
∃数			台	1		
【設)	定根拠]				
中	央制御	室待避室には、重力	大事故	等発生時に正圧化	した中身	央制御室待避室に
寺避	した場	合においても,衛星	星電話	設備 <mark>(可搬型)</mark> (待避室)	を設置すること
Ś.,	発電所	内の通信連絡をす	る必要	のある場所と通信	連絡を征	亍うことができる
安計	とする	0				-
	機能			使用する通信連絡設備		
発電所内	退避の指示	緊急時対策所 送受話器(ページング):3台 電力保安用通信用電話設備 (固定電話:6台,PHS端末:40台) 無線連絡設備(固定型):2台 衛星電話設備(固定型):4台 中央制御室等から発電所内・グ)で行う。 送受話器は、ブザー鳴動に、 機能とハンドセットを使用し、 難指示等を行う機能があり、 動停止等が発生した場合に,; 退避を指示するために使用する また,送受話器(ページン) 家に、代替手段として電力 末)等により,運転員等に必要 	 への退 の 退避の の お音ザ の し が保 の し の し の し の し こ の し こ <l< td=""><td>中央制御室 ・送受話器:9台 ・電力保安用通信用電話設備 (電力保安用通信用電話設備 (面定型):1台 ・衛星電話設備(固定型):2台 ・衛星電話設備(回搬型)(待機室):1台 ・衛星電話設備(回搬型)(待機室):1台 特示等は,送受話器(ページン 内の人に避難指示等を行う警報 央制御室から発電所内の人に避 能力等自動停止確認・処置及び を喪失するような保守作業を行 引電話設備(固定型,PHS端 行う。</td><td>・ ・ ・ ・ ・ : 1 ・ ・ ・ : 1 : 1 ・ : : : : 1 : : 1 :</td><td>現場 (構内) *1 送受話器 (ページング) 電力保安通信用電話設備 (PHS端末) 現場 (屋外) 送受話器 (ページング) 電力保安通信用電話設備 (PHS端末) 無線連絡設備 (携帯型) 輸星電話設備 (携帯型) 動設置台数 (ページング):約320台 に約300台 26備 (携帯型):約50台 26備 (携帯型):11台</td></l<>	中央制御室 ・送受話器:9台 ・電力保安用通信用電話設備 (電力保安用通信用電話設備 (面定型):1台 ・衛星電話設備(固定型):2台 ・衛星電話設備(回搬型)(待機室):1台 ・衛星電話設備(回搬型)(待機室):1台 特示等は,送受話器(ページン 内の人に避難指示等を行う警報 央制御室から発電所内の人に避 能力等自動停止確認・処置及び を喪失するような保守作業を行 引電話設備(固定型,PHS端 行う。	・ ・ ・ ・ ・ : 1 ・ ・ ・ : 1 : 1 ・ : : : : 1 : : 1 :	現場 (構内) *1 送受話器 (ページング) 電力保安通信用電話設備 (PHS端末) 現場 (屋外) 送受話器 (ページング) 電力保安通信用電話設備 (PHS端末) 無線連絡設備 (携帯型) 輸星電話設備 (携帯型) 動設置台数 (ページング):約320台 に約300台 26備 (携帯型):約50台 26備 (携帯型):11台
• #		いては、今後、訓練等を注 かては、今後、訓練等を注	通して見	直しを行う。	(デーレンシェー

名称		データ表示装置 (待避室)	
台数	台	1	
【設定根拠】			
データ表示装置(待避室)は、重大事故等が発生した場合において、中央			
制御室待避室に待避中に継続的にプラントパラメータを監視するために必要			
なデータ量を伝送及び表示が可能な設計とする。			

第59-6-1表 データ表示装置(待避室)で確認できるパラメータ(1/6)

目的	対象パラメータ
「「「「「「「」」」「「」」「「」」「「」」「」」「「」」「」」「」」「」」「	APRM レベル平均
	APRM レベル A
	APRM レベル B
	APRM レベル C
	APRM レベル D
	APRM レベル E
	APRM レベルF
	SRNM 計数率 CH. A
	SRNM 計数率 CH. B
	SRNM 計数率 CH. C
	SRNM 計数率 CH.D
	SRNM 計数率 CH. E
	SRNM 計数率 CH.F
	SRNM 計数率 CH.G
	SRNM 計数率 CH. H
「「「「「」」「「」」」「「」」」」。	原子炉水位(狭帯域)
	原子炉水位(広帯域)
	原子炉水位(燃料域)
	原子炉水位(SA 広帯域)
	原子炉水位(SA燃料域)
	原子炉圧力
	原子炉圧力(SA)
	高圧炉心スプレイ系系統流量
	低圧炉心スプレイ系系統流量
	原子炉隔離時冷却系系統流量
	残留熱除去系系統流量A
	残留熱除去系系統流量 B
	残留熱除去系系統流量C
	逃がし安全弁出口温度

【設定根拠】(続)

(2/6)

目的	対象パラメータ
「「「「「「」」」「「」」「「」」」「「」」」「「」」」」」	原子炉再循環ポンプ入口温度
	原子炉給水流量
	原子炉圧力容器温度
	残留熱除去系熱交換器入口温度
	高圧代替注水系系統流量
	低圧代替注水系原子炉注水流量
	常設低圧代替注水系ポンプ流量
	代替循環冷却系原子炉注水流量
	代替淡水貯槽水位
	6.9kV 母線 2A-1 電圧
	6.9kV 母線 2A-2 電圧
	6.9kV 母線 2B-1 電圧
	6.9kV 母線 2B-2 電圧
	6.9kV 母線 2C 電圧
	6.9kV 母線 2D 電圧
	6.9kV 母線 HPCS 電圧
	D/G 2C 遮断器(660)閉
	D/G 2D 遮断器(670)閉
	HPCS D/G 遮断器(680)閉
	圧力容器フランジ温度
	125VDC 2A 母線電圧
	125VDC 2B 母線電圧
	6.9kV 緊急用母線電圧
	480V 緊急用母線電圧

【設定根拠】(続)

(3/6)

目的	対象パラメータ
故姉家児市の単能体初	格納容器雰囲気放射線モニタ(D/W)(A)
俗衲谷岙的切状態確認	格納容器雰囲気放射線モニタ(D/W)(B)
	格納容器雰囲気放射線モニタ(S/C)(A)
	格納容器雰囲気放射線モニタ(S/C)(B)
	ドライウェル圧力(広帯域)
	ドライウェル圧力(狭帯域)
	ドライウェル圧力
	サプレッション・チェンバ圧力
	サプレッション・プール圧力
	ドライウェル雰囲気温度
	サプレッション・プール水温度(平均値)
	サプレッション・プール水温度
	サプレッション・プール雰囲気温度
	サプレッション・チェンバ雰囲気温度
	サプレッション・プール水位
	格納容器雰囲気水素濃度(D/W)(A)
	格納容器雰囲気水素濃度(D/W)(B)
	格納容器雰囲気水素濃度(S/C)(A)
	格納容器雰囲気水素濃度(S/C)(B)
	格納容器雰囲気酸素濃度(D/W)(A)
	格納容器雰囲気酸素濃度(D/W)(B)
	格納容器雰囲気酸素濃度(S/C)(A)
	格納容器雰囲気酸素濃度(S/C)(B)
	格納容器内水素濃度(SA)
	格納容器内酸素濃度(SA)
	低圧代替注水系格納容器スプレイ流量
	低圧代替注水系格納容器下部注水流量
	代替循環冷却系格納容器スプレイ流量
	格納谷器卜部水位
	常設局圧代替圧水糸ホンブ吐出圧力
	常設低圧代替圧水糸ホンブ吐出圧力
	代替循環 行却 糸 ホンフ 吐出 上力
	尿ナ炉隔離時行却糸ホンノ吐出圧力
	局圧炉心スプレイ糸ホンブ吐出圧力

【設定根拠】 (続)

(4/6)

目的	対象パラメータ
枚納容哭内の状能確認	残留熱除去系ポンプ吐出圧力
	低圧炉心スプレイ系ポンプ吐出圧力
	代替循環冷却系ポンプ入口温度
	残留熱除去系熱交換器出口温度
	残留熱除去系海水系系統流量
	_ 残留熱除去系 A 注入弁全開
	残留熱除去系 B 注入弁全開
	_ 残留熱除去系 C 注入弁全開
	格納容器内スプレイ弁A(全開)
	格納容器内スプレイ弁 B (全開)
お射線隔離の状能確認	主排気筒放射線モニタ A
》及为170个时间E >> 4/C 155中世间15	主排気筒放射線モニタ B
	主排気筒モニタ(高レンジ)
	主蒸気管放射線モニタA
	主蒸気管放射線モニタ B
	主蒸気管放射線モニタC
	主蒸気管放射線モニタ D
	排ガス放射能(プレホールドアップ)A
	排ガス放射能(プレホールドアップ)B
	NS4 内側隔離
	NS4 外側隔離
	主蒸気内側隔離弁 A 全閉
	主蒸気内側隔離弁 B 全閉
	主蒸気内側隔離弁C全閉
	主蒸気内側隔離弁 D 全閉
	主蒸気外側隔離弁 A 全閉
	主蒸気外側隔離弁 B 全閉
	主蒸気外側隔離弁C全閉
	主蒸気外側隔離弁 D 全閉

【設定根拠】 (続)

(5/6)

目的	対象パラメータ
環境の情報確認	SGTS A 作動
	SGTS B 作動
	SGTS モニタ(高レンジ)A
	SGTS モニタ(高レンジ)B
	SGTS モニタ(低レンジ)A
	SGTS モニタ(低レンジ)B
	耐圧強化ベント系放射線モニタ
	放水口モニタ(T-2)
	モニタリングポスト(A)
	モニタリングポスト(B)
	モニタリングポスト(C)
	モニタリングポスト(D)
	- モニタリングポスト(A)広域レンジ
	モニタリングポスト(B)広域レンジ
	モニタリングポスト(C)広域レンジ
	モニタリングポスト(D)広域レンジ
	大気安定度 10 分值
	18m ベクトル平均風向 10分値
	71m ベクトル平均風向 10分値
	140m ベクトル平均風向 10分値
	18m ベクトル平均風速 10分値
	71m ベクトル平均風速 10分値
	140m ベクトル平均風速 10 分値

【設定根拠】(続)

(6/6)

目的	対象パラメータ		
使用済燃料プールの状	使用済燃料プール水位・温度 (SA 広域)		
	使用済燃料プール水位・温度(SA)		
態確認	使用済燃料プール温度		
	使用済燃料プールエリア放射線モニタ		
	(高レンジ・低レンジ)		
水素爆発による格納容	フィルタ装置出口放射線モニタ		
	(高レンジ・低レンジ)		
器の破損防止確認	フィルタ装置入口水素濃度		
	フィルタ装置圧力		
	フィルタ装置水位		
	フィルタ装置スクラビング水温度		
水素爆発による原子炉	原子炉建屋水素濃度		
建屋の損傷防止確認	静的触媒式水素再結合器動作監視装置		
非常用炉心冷却系	自動減圧系 A 作動		
	自動減圧系 B 作動		
(ECCS)の状態等	原子炉隔離時冷却系ポンプ起動		
	高圧炉心スプレイ系ポンプ起動		
	高圧炉心スプレイ系注入弁全開		
	低圧炉心スプレイ系ポンプ起動		
	低圧炉心スプレイ系注入弁全開		
	残留熱除去系ポンプA起動		
	残留熱除去系ポンプB起動		
	残留熱除去系ポンプC起動		
	残留熱除去系A注入弁全開		
	残留熱除去系 B 注入弁全開		
	残留熱除去系C注入弁全開		
	全制御棒全挿入		
津波監視	取水ピット水位		
	潮位		

名称			酸素濃度計,二酸化炭素濃度計
検知範囲	酸素	vol%	$0.0 \sim 40.0$
	二酸化炭素	vol%	$0.0 \sim 5.0$
機器仕様に関する注記			

【設定根拠】

酸素濃度計及び二酸化炭素濃度計は、可搬型重大事故等対処設備として配置 するものである。

酸素濃度計及び二酸化炭素濃度計は,外気から中央制御室及び中央制御室待 避室への空気の取り込みを停止した場合に,酸素濃度及び二酸化炭素が事故対 策のための活動に支障がない範囲にあることを正確に把握するためのものであ る。

なお,酸素濃度計及び二酸化炭素濃度計は,中央制御室に設置するための1 台に,予備1台を含めた合計2台を中央制御室内に保管する。

- 1. 検知範囲
- 1.1 酸素濃度

労働安全衛生法の酸素欠乏症等防止規則に基づき,空気中の酸素濃度 18vo1%を十分に満足する範囲を検知できる設計とする。また,表示精度と しては,±0.1vo1%の精度を有する設計とする。

1.2 二酸化炭素濃度

JEAC4622-2009「原子力発電所中央制御室運転員の事故時被ばくに関す る規定」に基づき,空気中の二酸化炭素濃度0.5vo1%を十分に満足する範 囲を検知できる設計とする。また,表示精度としては,±3.0%F.Sの精度を 有する設計とする。 59-7 保管場所図
第59-7-1図 酸素濃度計,二酸化炭素濃度計,データ表示装置(待避室)及び

可搬型照明(SA)の保管場所

(原子炉建屋附属棟3階)

第59-7-2図 可搬型照明(SA)の保管場所

(原子炉建屋附属棟4階)

59-8 アクセスルート

第59-8-1図 中央制御室アクセスルート(原子炉建屋附属棟1階)

第59-8-2図 中央制御室アクセスルート(原子炉建屋附属棟2階)

第59-8-3 図 中央制御室アクセスルート(原子炉建屋附属棟3階)

第59-8-4図 中央制御室アクセスルート(原子炉建屋附属棟4階)

59-9 原子炉制御室について

(被ばく評価除く)

目 次

- 1. 概要
 - 1.1 新規制基準への適合方針
 - 1.2 設計における想定シナリオ

2. 設計方針

- 2.1 中央制御室から外の状況を把握する設備について
 - 2.1.1 中央制御室から外の状況を把握する設備の概要
 - 2.1.2 監視カメラについて
 - 2.1.3 監視カメラ映像サンプル
 - 2.1.4 監視カメラにより把握可能な自然現象等
 - 2.1.5 中央制御室にて把握可能なパラメータ
- 2.2 酸素濃度計等について
 - 2.2.1 酸素濃度計及び二酸化炭素濃度計の設備概要
 - 2.2.2 酸素濃度,二酸化炭素濃度の管理
- 2.3 汚染の持ち込み防止について
- 2.4 重大事故が発生した場合に運転員がとどまるための設備について
 - 2.4.1 概要
 - 2.4.2 中央制御室待避室正圧化バウンダリの設計差圧
 - 2.4.3 中央制御室の居住性確保
 - 2.4.4 中央制御室待避室の居住性確保
- 2.5 重大事故等時の電源設備について

3. 添付資料

- 3.1 中央制御室待避室の運用について
- 3.2 配備する資機材の数量について
- 3.3 チェンジングエリアについて
- 3.4 中央制御室への地震及び火災等の影響
- 3.5 中央制御室待避室のデータ表示装置で確認できるパラメータ

1. 概要

- 1.1 新規制基準への適合方針
 - (1) 設計基準事象への対処

原子炉制御室について,実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則第26条及び実用発電用原子炉及びその附属施設の技術基準に関する規則第38条において,追加要求事項を明確化する。原子炉制御室に関する設計基準事象への対処のための追加要求事項と,その適合方針は以下第1.1-1表,第1.1-2表のとおりである。

第1.1-1表 「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」 第26条(原子炉制御室等)

実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則	実用発電用原子炉及びその附属施設 の位置、構造及び設備の基準に関する 規則の解釈	適合方針
 (原子炉制御室等) 第二十六条 発電用原子炉施設には、次に 掲げるところにより、原子炉制御室(安 全施設に属するものに限る。以下この条 において同じ。)を設けなければならな い。 一設計基準対象施設の健全性を確保 するために必要なパラメータを監視 できるものとすること。 二発電用原子炉施設の外の状況を把 握する設備を有するものとすること。 	 第26条(原子炉制御室等) 1 第1項第1号に規定する「必要なパラメータを監視できる」とは、発電用原子炉及び主要な関連施設の運転状況並びに主要パラメータについて、計測制御系統施設で監視が要求されるパラメータのうち、連続的に監視する必要のあるものを原子炉制御室において監視できることをいう。 2 第1項第2号に規定する「発電用原子炉施設の外の状況を把握する」とは、原子炉制御室から、発電用原子炉施設に影響を及ぼす可能性のある自然現象等を把握できることをいう。 	 (追方方針は以下の通り) ・<u>中</u>用求事項への通り) ・<u>中用床での満</u>のの 一中用京況, の 一中用京況, の 一時期 一方 一日月次に, の 一方 一日月次に, の 一方 一日月次に, の 一方 一日月次に, の 一方 一日月次に, の の 本 志 で 一 一 一 一 一 一 一 一 一 用 状に, の び す る に 事 裏 視 力 メ 之 を 一 一 一 一 一 一 一 一 一 一 一 一 一

実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則	実用発電用原子炉及びその附属施設 の位置、構造及び設備の基準に関する 規則の解釈	適合方針
三 発電用原子炉施設の安全性を確保す るために必要な操作を手動により行うことができるものとすること。	3 第1項第3号において「必要な操作を手動により行う」とは、急速な手動による発電用原子炉の停止及び停止後の発電用原子炉の冷却の確保のための操作をいう。	
2 発電用原子炉施設には、火災その他の 異常な事態により原子炉制御室が使用 できない場合において、原子炉制御室以 外の場所から発電用原子炉を高温停止 の状態に直ちに移行させ、及び必要なパ ラメータを想定される範囲内に制御し、 その後、発電用原子炉を安全な低温停止 の状態に移行させ、及び低温停止の状態 を維持させるために必要な機能を有す る装置を設けなければならない。	4 第2項に規定する「発電用原子炉 を高温停止の状態に直ちに移行」と は、直ちに発電用原子炉を停止し、 残留熱を除去し及び高温停止状態 を安全に維持することをいう。	
3 一次冷却系統に係る発電用原子炉施 設の損壊又は故障その他の異常が発生し た場合に発電用原子炉の運転の停止その 他の発電用原子炉施設の安全性を確保す るための措置をとるため、従事者が支障な く原子炉制御室に入り、又は一定期間とど まり、かつ、当該措置をとるための操作を 行うことができるよう、次の各号に掲げる 場所の区分に応じ、当該各号に定める設備 を設けなければならない。	5 第3項に規定する「従事者が支障 なく原子炉制御室に入り、又は一定 期間とどまり」とは、事故発生後、 事故対策操作をすべき従事者が原 子炉制御室に接近できるよう通路 が確保されていること、及び従事者 が原子炉制御室に適切な期間滞在 できること、並びに従事者の交替等 のため接近する場合においては、放 射線レベルの減衰及び時間経過と ともに可能となる被ばく防護策が 採り得ることをいう。「当該措置を とるための操作を行うことができ る」には、有毒ガスの発生に関して、 有毒ガスの発生に関して、 有毒ガスの発生に関して、 有毒が見く低下し、安全施設の安 全機能が損なわれることがないこ とを含む。	
一原子炉制御室及びその近傍並びに 有毒ガスの発生源の近傍工場等内に おける有毒ガスの発生を検出するた めの装置及び当該装置が有毒ガスの 発生を検出した場合に原子炉制御室 において自動的に警報するための装 置	6 第3項第1号に規定する「有毒ガ スの発生源」とは、有毒ガスの発生 時において、運転員の対処能力が損 なわれるおそれがあるものをいう。 「工場等内における有毒ガスの発 生」とは、有毒ガスの発生源から有 毒ガスが発生することをいう。	・「有毒ガス防護に係 る影響がした。 「有毒ガム防護に係」 る影響がした。 「本語では、 「ないた」 「」 「ないた」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」
二 原子炉制御室及びこれに連絡する 通路並びに運転員その他の従事者が 原子炉制御室に出入りするための区 域遮蔽壁その他の適切に放射線から 防護するための設備、気体状の放射性 物質及び原子炉制御室外の火災によ り発生する燃焼ガスに対し換気設備 を隔離するための設備その他の適切 に防護するための設備		

第1.1-2表「実用発電用原子炉及びその附属施設の技術基準に関する規則」

第38条(原子炉制御室等)

実用発電用原子炉及びその附属施設の技 術基準に関する規則	実用発電用原子炉及びその附属施設 の技術基準に関する規則の解釈	適合方針
 (原子炉制御室等) 第三十八条 発電用原子炉施設には、原子炉制御室を施設しなければならない。 2 原子炉制御室には、反応度制御系統及び原子炉停止系統に係る設備を操作する装置、非常用炉心冷却設備その他の非常時に発電用原子炉の安全を確保するための設備を操作する装置、発電用原子炉及び一次冷却系統に係る主要な機械又は器具の 	第38条(原子炉制御室等)	
動作状態を表示する装置、主要計測装置の 計測結果を表示する装置その他の発電用 原子炉を安全に運転するための主要な装 置(第四十七条第一項に規定する装置を 含む。)を集中し、かつ、誤操作すること なく適切に運転操作することができるよ う施設しなければならない。		
<u>3</u> 原子炉制御室には、発電用原子炉施設 の外部の状況を把握するための装置を 施設しなければならない。	8 第3項に規定する「発電用原子炉 施設の外部の状況を把握するため の装置」とは、発電用原子炉施設に 迫る津波等の自然現象をカメラの 映像等により昼夜にわたり監視で きる装置をいう。	 ・設置許可基準規則 第二十六条第1項第2 号に同じ。
4 発電用原子炉施設には、火災その他の 異常な事態により原子炉制御室が使用 できない場合に、原子炉制御室以外の場 所から発電用原子炉の運転を停止し、か つ、安全な状態に維持することができる 装置を施設しなければならない。	9 第4項に規定する「原子炉制御室 以外の場所」とは、原子炉制御室を 構成する区画壁の外であって、原子 炉制御室退避の原因となった居住 性の悪化の影響が及ぶおそれがない程度に隔離された場所をいい、 「安全な状態に維持することがで きる装置」とは、原子炉制御室以外 の場所から発電用原子炉を高温停止でき、引き続き低温停止できる機 能を有した装置であること。	
5 一次冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合に発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保するための措置をとるため、従事者が支障なく原子炉制御室に入り、又は一定期間とどまり、かつ、当該措置をとるための場件を行うことができるとうか	10 第5項に規定する「これに連絡 する通路並びに運転員その他の従 事者が原子炉制御室に出入りする ための区域」とは、一次冷却系統に 係る施設の故障、損壊等が生じた場 合に原子炉制御室に直交替等のた め入退域する通路及び区域をいう。	
の各号に掲げる場所の区分に応じ、当該 各号に定める防護措置を講じなければ ならない。	11 第5項においては、原子炉制御 室等には事故・異常時においても従 事者が原子炉制御室に立ち入り、一 定期間滞在できるように放射線に 係る遮蔽壁、放射線量率の計測装置 の設置等の「適切な放射線防護措 置」が施されていること。この「放 射線防護措置」としては必ずしも設 備面の対策のみではなく防護具の 配備、着用等運用面の対策も含まれ る。「一定期間」とは、運転員が必	

実用発電用原子炉及びその附属施設の技 術基準に関する規則	実用発電用原子炉及びその附属施設 の技術基準に関する規則の解釈	適合方針
	要な交替も含め、一次冷却材喪失等の設計基準事故時に過度の強げく	
	の設計盔牛争取時に過度の被は、なしにとどまり、必要な操作を行う	
	期間をいう。	
	 12 第5項に規定する「遮蔽その他の適切な放射線防護措置」とは、一 	 ・遮蔽その他の適切 な放射線防護措置に
	次冷却材喪失等の設計基準事故時 に、原子炉制御室内にとどまり必要	関し,運転員の被ば く評価を「原子力発
	な操作、措置を行う運転員が過度の	電所中央制御室の居
	していた。 した、 した、 した、 した、 した、 した、 した、 した、	価手法について(内
	間の被はくを「美用発電用原于炉の 設置、運転等に関する規則の規定に	成)」に基づさ美施し,実効線量が
	基づく線量限度等を定める告示」の 第8条における緊急時作業に係る	100mSv 以下であるこ とを確認している。
	線量限度100mSv以下にでき るものであることをいう。	また,フィルタを通 らない空気の原子炉
	この場合における運転員の被ば	制御室への流入量に ついては、被ばく評
	く評価は、判断基準の線量限度内で あることを確認すること 被げく評	価により想定した空気量を下回っている
	価手法は、「原子力発電所中央制御	ことを確認してい
	<u>生の活住住に味る彼はく計画子伝</u> について (内規)」(平成21・07・	~ ○ _
	<u>27</u> 原院第1号(平成21年8月1 <u>2日原子力安全・保安院制定))(以</u>	
	<u>ト「被はく評価手法(内規)」とい</u> う。)に基づくこと <u>。</u>	
	<u>チャコールフィルターを通らな</u> い空気の原子炉制御室への流入量	
	<u>については、被ばく評価手法 (内規)</u> に基づき、原子炉制御室換気設備の	
	新設の際、原子炉制御室換気設備再 循環モード時における再循環対象	
	<u>範囲境界部での空気の流入に影響</u> を与える改造の際、及び、定期的に	
	<u>測定を行い、運転員の被ばく評価に</u> 用いている想定した空気量を下回	
	っていることを確認すること。	
	 13 第5項に規定する「当該措置を とろための操作を行うことができ 	
	る」には、有毒ガスの発生時において、原子に制御室の運転員の吸気中	
	の有毒ガス濃度を有毒ガス防護の	
	しい、 しい、 しい、 しい、 しい、 しい、 しい、 しい、 しい、 しい、	
一 原子炉制御室及びその近傍並びに 有毒ガスの発生源の近傍工場等内に	14 第5項第1号に規定する「工場 等内における有毒ガスの発生を検	・設置許可基準規則 第二十六条第3項第1
おける有毒ガスの発生を検出するた めの装置及び当該装置が有毒ガスの	出するための装置及び当該装置が 有毒ガスの発生を検出した場合に	<mark>芳に同じ。</mark>
発生を検出した場合に原子炉制御室 において自動的に警報するための装	原子炉制御室において自動的に警 報するための装置の設置」について	
置の設置	は「有毒ガスの発生を検出し警報す	

実用発電用原子炉及びその附属施設の技 術基準に関する規則	実用発電用原子炉及びその附属施設 の技術基準に関する規則の解釈	適合方針
 二 原子炉制御室及びこれに連絡する 通路並びに運転員その他の従事者が 原子炉制御室に出入りするための区 域 遮蔽その他の適切な放射線防護措 置、気体状の放射性物質及び原子炉制 御室外の火災により発生する燃焼ガ スに対する換気設備の隔離その他の 適切な防護措置 6 原子炉制御室には、酸素濃度計を施設 しなければならない。 	 るための装置に関する要求事項(別 記-9)」によること。 15 第5項第2号に規定する「換気 設備の隔離」とは、原子炉制御室外 の火災により発生した燃焼ガスを 原子炉制御室換気設備によって取 り入れないように外気との連絡口 を遮断することをいい、「換気設備」 とは、隔離時の酸欠防止を考慮して 外気取入れ等の再開が可能である ものをいう。 14 第6項に規定する「酸素濃度 計」は、設計基準事故時において、 外気から原子炉制御室への空気の 取り込みを、一時的に停止した場合 に、事故対策のための活動に支障の ない酸素濃度の範囲にあることが 正確に把握できるものであること。 また、所定の精度を保証するもので あれば、常設設備、可搬型を問わな い。 	 ・<u>中央</u>制御室には, 酸素濃度計及び二酸 化炭素濃度計を配備 する。

(2) 重大事故等への対処

原子炉制御室について,実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則第五十九条及び実用発電用原子炉及びその 附属施設の技術基準に関する規則第七十四条において,追加要求事項を明 確化する。原子炉制御室に関する重大事故等への対処のための追加要求事 項と,その適合方針は以下第1.1-3表のとおりである。

第1.1-3表 「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」 第五十九条(原子炉制御室)

実用発電用原子炉及びその附 属施設の位置、構造及び設備の 基準に関する規則	実用発電用原子炉及びその附属施設 の位置、構造及び設備の基準に関す る規則の解釈	適合方針
<u>(原子炉制御室)</u> 第 <u>五十九条</u> 第二十六条第一 <u>項の規定により設置される原</u> 子炉制御室には、重大事故が発 <u>生した場合においても運転員</u> がとどまるために必要な設備	 第59条(原子炉制御室) 1 第59条に規定する「運転員が とどまるために必要な設備」とは、 以下に掲げる措置又はこれらと同等 以上の効果を有する措置を行うための設備をいう。 	<u>(なお,重大事故等に対処するため</u> に必要なパラメータについても監 視できる設計とする。)
<u>を設けなければならない。</u>	<u>a) 原子炉制御室用の電源(空調及 び照明等)は、代替交流電源設備か</u> らの給電を可能とすること。	・中央制御室には,重大事故が発生 した場合においても運転員がとど まるために必要な設備(中央制御室 換気系,原子炉建屋ガス処理系,及 び可搬型照明(SA))を設置する 設計とする。 重大事故発生時において運転員が とどまるために必要な設備(中央制 御室換気系,原子炉建屋ガス処理 系,及び可搬型照明(SA))は, 常設代替交流電源設備から給電可 能な設計する。
	b) 炉心の著しい損傷が発生した場 合の原子炉制御室の居住性につい て、次の要件を満たすものであるこ と。	 ・ 炉心の著しい損傷が発生した場合 においても,中央制御室にとどまる 運転員の実効線量が7日間で 100mSvを超えない設計とする。
	① 本規程第37条の想定する格納 容器破損モードのうち、原子炉制御 室の運転員の被ばくの観点から結果 が最も厳しくなる事故収束に成功し た事故シーケンス(例えば、炉心の 著しい損傷の後、格納容器圧力逃が し装置等の格納容器破損防止対策が 有効に機能した場合)を想定するこ と。	・原子炉制御室の運転員の被ばくの 観点から結果が最も厳しくなる事 故収束に成功した事故シーケンス として,格納容器過圧の破損モード において想定している,大破断LO CA時に非常用炉心冷却系の機能 及び全交流動力電源が喪失したシ ーケンスを選定する。
	② 運転員はマスクの着用を考慮し	 ・(マスクの着用は考慮しない)

てもよい。ただしその場合は、実施 のための体制を整備すること。 ③ 交代要員体制を考慮してもよ い。ただしその場合は、実施のため の体制を整備すること。	 ・運転員は5直2交代勤務を前提に 評価を行なうが,積算の被ばく線量 が最も厳しくなる格納容器ベント 実施時に中央制御室に滞在する運 転員の勤務形態を考慮する。
 ④ 判断基準は、運転員の実効線量が 7日間で100mSvを超えないこと。 c)原子炉制御室の外側が放射性物 質により汚染したような状況下において、原子炉制御室への汚染の持ち 込みを防止するため、モニタリング 及び作業服の着替え等を行うための 区画を設けること。 	・中央制御室の外側が放射性物質に より汚染した状況下で,モニタリン グ,作業服の着替え等により中央制 御室への汚染の持ち込みを防止す るための区画を,中央制御室出入口 近傍に設けることとしている。

※なお「実用発電用原子炉及びその附属施設の技術基準に関する規則」 第七 十四条(原子炉制御室)も同様の記載のため,省略する。

なお,原子炉制御室に設置する設備のうち,重大事故対処設備に関する概要 を第1.1-4表に示す。

		代替する機能を有する		設備	設備公箱	
系統機能	設備	設計基準対象施	設	種別	₩ Ⅲ 刀 頬	•
	EX IM	設備	耐震重要 度分類	常設 可搬型	分類	機器 クラス
居住性の確保	中央制御室	(中央制御室)	(S)	常設	(重大事故等対処施設)	—
	中央制御室遮蔽	(中央制御室遮蔽)	(S) 	常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	—
	中央制御室換気系 空気調和機フ アン アン	(中央制御室換気系) 一	(S) —	常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	—
	中央制御室換気系フィルタ系フアン			常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	—
	中央制御室換気系 高性能粒子フ イルタ			常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	_
	中央制御室換気系 チャコールフ イルタ			常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	_
	中央制御室換気系 給排気隔離弁			常設	常設耐震重要重大事故防止設備 常設重大事故緩和設備 ^{*1}	
	非常用ガス再循環系 排風機	<mark>(非常用ガス再循環系)</mark>	<mark>(S)</mark>	常設	<mark>常設重大事故緩和設備^{※1}</mark>	—
	<mark>非常用ガス再循環系 粒子用高効</mark> <mark>率フィルタ</mark>			常設	常設重大事故緩和設備 ^{※1}	—
	<mark>非常用ガス再循環系 よう素用チ</mark> <mark>ャコールフィルタ</mark>			常設	常設重大事故緩和設備※1	—
	<mark>非常用ガス再循環系 配管・弁[流</mark> <mark>路]</mark>			常設	常設重大事故緩和設備 ^{※1}	_
	非常用ガス処理系 排風機	(非常用ガス処理系)	(S)	常設	常設重大事故緩和設備※1	
	<mark>非常用ガス処理系 粒子用高効率</mark> <mark>フィルタ</mark>			常設	常設重大事故緩和設備※1	—
	非常用ガス処理系 よう素用チャ コールフィルタ			常設	常設重大事故緩和設備*1	
	<mark>非常用ガス処理系 配管・弁[流</mark> <mark>路]</mark>			常設	常設重大事故緩和設備 ^{※1}	

第1.1-4表 重大事故対処設備に関する概要(59条 原子炉制御室)

※1 常設耐震重要重大事故防止設備・常設重大事故緩和設備等を操作する人が健全であることを担保する常設設備であるため、本分類としている。

文体卷出	⇒九 /共	代替する機能を有する 設計基準対象施設		設備 種別	設備分類	
术和微胞	i≍ \/用	設備	耐震重要 度分類	常設 可搬型	分類	機器 クラス
居住性の確保	中央制御室待避室	—	_	常設	(重大事故等対処施設)	—
(続き)	中央制御室待避室遮蔽	—	—	常設	常設重大事故緩和設備	_
	中央制御室待避室 空気ボンベユ ニット(空気ボンベ)	—	_	可搬	可搬型重大事故緩和設備	_
	中央制御室待避室 空気ボンベユ ニット(配管・弁)			常設	常設重大事故緩和設備	_
	差圧計*1	—	_	常設	常設重大事故等対処設備 (防止でも緩和でもない設備)	_
	可搬型照明 (SA)	中央制御室照明	—	可搬	可搬型重大事故等対処設備 (防止でも緩和でもない設備)	_
	衛星電話設備 <mark>(可搬型)</mark> (待避室)	_	_	<mark>可搬</mark>	<mark>可搬型</mark> 重大事故等対処設備 (防止でも緩和でもない設備)	_
	衛星制御装置	<mark></mark>	-	<mark>常設</mark>	<mark>常設重大事故等対処設備</mark> (防止でも緩和でもない設備)	-
	衛星制御装置~衛星電話設備(屋 外アンテナ)電路[伝送路]	<mark></mark>	-	<mark>常設</mark>	<mark>常設重大事故等対処設備</mark> (防止でも緩和でもない設備)	-
	データ表示装置(待避室)	_	_	可搬	可搬型重大事故等対処設備 (防止でも緩和でもない設備)	_
	酸素濃度計*1	_	_	可搬	可搬型重大事故等対処設備 (防止でも緩和でもない設備)	
	二酸化炭素濃度計*1	_		可搬	可搬型重大事故等対処設備 (防止でも緩和でもない設備)	
	常設代替交流電源設備			57条に	こ記載	
汚染の持ち込み防止	可搬型照明 (SA)		_	可搬	可搬型重大事故等対処設備 (防止でも緩和でもない設備)	_
	常設代替交流電源設備			57条に	二記載	

59条 原子炉制御室

※1 計測器本体を示すため計器名を記載

1.2 設計における想定シナリオ

原子炉制御室の設計において想定するシナリオについて、以下に記す。

(1) 設計基準事故時の想定シナリオ

「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下 「技術基準」という。)の解釈第 38 条 12 に記載のとおり,「原子力発電 所中央制御室の居住性に係る被ばく評価手法について(内規)」」(平成 21・07・27 原院第1号(平成21年8月12日原子力安全・保安院制定)) に基づき,仮想事故相当の原子炉冷却材喪失及び主蒸気管破断を想定す る。

(2) 重大事故時の想定シナリオ

東海第二発電所においては、「実用発電用原子炉及びその附属施設の位 置、構造及び設備の基準に関する規則」(以下「設置許可基準規則」とい う。)の解釈第59条1b)及び技術基準の解釈第74条1b),並びに「実用 発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係 る被ばく評価に関する審査ガイド」(以下「審査ガイド」という。)に基 づき想定する「設置許可基準規則解釈第37条の想定する格納容器破損モ ードのうち、原子炉制御室の運転員の被ばくの観点から結果が最も厳し くなる事故収束に成功した事故シーケンス(例えば、炉心の著しい損傷 の後、格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能 した場合)」である「LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗+ 損傷炉心冷却失敗+格納容器注水失敗に加えて全交流動力電源が喪失す るシーケンス」においても、格納容器ベントを実施することなく事象を 収束することができる代替循環冷却系を整備する。しかしながら、被ば く評価においては、中央制御室の居住性評価を厳しくする観点から、代 替循環冷却系の機能喪失を仮定する。格納容器圧力逃がし装置を用いた 格納容器ベントに至る事故シーケンスとしては,前述の「LOCA+高 圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷却失敗+格納容器注水 失敗に全交流動力電源喪失を加えた状態」を選定する。

第1.3-1表に基本的な事故収束シナリオと中央制御室の居住性評価用の想定事故シナリオの比較を示す。

第1.3-1表 基本的な事故収束シナリオと中央制御室の居住性評価用の 想定事故シナリオ

	基本的な 事故収束シナリオ	中央制御室の 居住性評価用 想定事故シナリオ
代替循環冷却系の機能	期待する	期待しない

2. 設計方針

- 2.1 中央制御室から外の状況を把握する設備について
- 2.1.1 中央制御室から外の状況を把握する設備の概要

以下の設備等を用いることで、中央制御室内にて原子炉施設の外の状況の 把握が可能な設計とする。概略を第2.1-1図に、配置を第2.1-2図に示す。

(1) 監視カメラ

原子炉施設に影響を及ぼす可能性のある自然現象等(風(台風),竜巻, 凍結,降水,積雪,落雷,火山の影響,森林火災,近隣工場等の火災,船 舶の衝突,及び地震,津波)及び発電所構内の状況を,原子炉建屋屋上<mark>及 び防潮堤上部</mark>に設置する監視カメラの映像により,昼夜にわたり監視でき る設計とする。

- (2) 取水ピット水位計/潮位計津波来襲時の海水面水位変動を監視できる設計とする。
- (3) 気象観測設備

発電所構内に設置している気象観測設備により,風向・風速等の気象状 況を常時監視できる設計とする。

また,周辺モニタリング設備により,発電所周辺監視区域境界付近の外 部放射線量率を把握できる設計とする。

: D B 範囲

枠囲みの内容は機密事項に属しますので公開できません。

第2.1-2 図 中央制御室から外の状況を把握する設備の配置図

2.1.2 監視カメラについて

監視カメラは,津波の襲来及び自然現象等を適切に監視できる位置・方向 で基準津波(T.P.+17.1m)の影響を受けることがない高所に設置する。第 2.1-3 表に監視カメラの概要を示す。

監視カメラは,取付け部材,周辺の建物,設備等で死角となるエリアをカ バーすることができるように配慮して配置する。監視カメラが監視可能な原 子炉施設及び周辺の構内範囲を第2.1-4図に示す。

なお,可視光カメラによる監視が期待できない夜間の濃霧発生時や強雨時 においては,赤外線カメラによる監視機能についても期待できない状況とな ることが考えられる。その場合は,監視カメラ以外で中央制御室にて監視可 能なパラメータを監視することで,外部状況の把握に努めつつ,気象等に関 する公的機関からの情報も参考とし,原子炉施設に影響を及ぼす可能性があ る自然現象等を把握する。

: D B 範囲

					1
	_		監視カメラ		
		外観			
		2 T P9U			
		カメラ構成	可視光と赤外線		
		ズーム	デジタルズーム4倍		
		遠隔可動	水平可動: 360°(連続 垂直可動:+00°)	
		夜間監視			
	-	耐震設計	<u></u>		
		供給電源	所内常設直流電源設備	Ĵ	
		風荷重	設計竜巻を考慮した荷重に、	て設計	
	_	積雪荷重	積雪を考慮した荷重にてま 「「「「」」「「」」「「」」「」「」「」「」「」「」」「」「」」「」」「」」「	設計	
		台数			
	L	第 2.	1- <mark>3</mark> 表 監視カメラの概要		
Г					
L		_			
		第 2.1- <mark>4</mark> 図	監視カメラの監視可能な範囲	Ħ	
			Г		: DB範囲

2.1.3 監視カメラ映像サンプル
中央制御室において、監視カメラにより監視できる映像のサンプルを第
2.1- <mark>5</mark> 図に示す。
また,監視カメラの撮影方向を第 2.1- <mark>6</mark> 図に示す。
: D B 範目

2.1.4 監視カメラで把握可能な自然現象等

地震,津波,及び設置許可基準規則の解釈第6条に記載されている「想定 される自然現象」,「発電用原子炉施設の安全性を損なわせる原因となるおそ れがある事象であって人為によるもの(故意によるものを除く。)」のうち, 監視カメラにより把握可能な自然現象等を第2.1-7表に示す。

白伏珇兔竺	3 6 条選定事象 ^{*1} 4 条 5 条 把		把提できる発電田原子恒施設の外の坐況		
口派党教守	自然	人為	地震	津波	
風(台風)	0				風(台風)・竜巻(飛来物含む)による発電所及び 原子恒施設への被害状況や設備周辺における
竜巻	0				影響の有無
凍結	0				設備周辺における凍結影響の有無
降水	0				発電所構内の排水状況や降雨の状況
積雪	0				降雪の有無や発電所構内及び原子炉施設への 積雪状況
落雷	0				発電所構内及び原子炉施設周辺の落雷の有無
火山	0				降下火砕物の有無や堆積状況
津波				0	津波襲来の状況や発電所構内及び原子炉施設 への影響の有無
地震			0		地震発生後の発電所構内及び原子炉施設への 影響の有無
外部火災※2	0	0			火災状況,ばい煙の方向確認や発電所構内及び 原子炉施設への影響の有無
船舶の衝突		0			発電所港湾施設等に衝突した船舶の状況確認 及び原子炉施設への影響の有無
※1:6条まとめ資料「東海第2発電所 外部からの衝撃による損傷の防止について」参照 ※2:外部火災は「森林火災」,「近隣工場等の火災」を含む。					

第2.1-7表 監視カメラにより中央制御室で把握可能な自然現象等

: DB範囲

2.1.5 中央制御室にて把握可能なパラメータ

監視カメラ以外に中央制御室にて把握可能なパラメータを第2.1-8表に示す。

第2.1-8 表 監視カメラ以外に中央制御室にて把握可能なパラメータ

パラメー	Ø	測定レンジ	測定レンジの考え方	
大気温度		-10~40°C	測定下限は,凍結リスクが生じ る 0℃をカバーできる設定とす る。	
雨量		0~49.5mm (記録紙印字幅)	積算雨量を記録紙に印字し,50 mmを超えると記録紙は再度0mm から印字する。1時間当たりの 積算雨量から,1時間雨量(mm/h) を読みとることができる設計と する。	
風向 (EL.+18m/EL.+89m/EL.+148m)		$0 \sim 540^{\circ}$ (N~S)	台風等の影響の接近と離散を把 握できる設計とする。	
風速 (EL.+18m/EL.+89m/EL.+148m)		0~30m/s (10 分間平均値)	陸地内部で通常起こりうる風速 を測定できる設定とする。	
日射量		$0\sim 1.2 \mathrm{kW/m^2}$	大気安定度を識別できる設計と する。	
放射収支量		$0.05 \sim -0.25 \text{kW/m}^2$		
取水口潮位(新設)		EL5.0~20.0m	津波による水位の低下に対して 非常用海水系の取水を確保する	
取水ピット水位(新設)		EL. −7.8~2.3m	ため、常用系ポンプの停止水位 及び非常用海水系ポンプの取水 可能水位(-6.08m)を把握可能 な設計とする。 なお、設計基準を超える津波に よる原子炉施設への影響を把握 するための設備としては監視カ メラを用いる設計とする。(第 2.1-3表)	
空間線量率	低レンジ	$10^{1}{\sim}10^{5}{ m nGy/h}$	「発電用軽水型原子炉施設にお ける事故時の放射線計測に関す	
(モニタリング・ポス ト A~D)	高レンジ	$10^{-8} \sim 10^{-1} \text{Gy/h}$	る審査指針」に定める測定上限 値(10 ⁸ nGy/h=10 ⁻¹ Gy/h)を満足 する設計とする。	

: D B 範囲

2.2 酸素濃度計等について

ļ

I

L

L

L

L

L

L

I

I

I

L

I

I

I

I

I

I

I

I

L

L

L

i

2.2.1 酸素濃度計及び二酸化炭素濃度計の設備概要

外気から中央制御室への空気の取り込みを停止した場合に,酸素濃度,二 酸化炭素濃度が事故対策のための活動に支障がない範囲にあることを正確に 把握するため,中央制御室に酸素濃度計及び二酸化炭素濃度計を配備する。 酸素濃度計及び二酸化炭素濃度計の概要を第2.2-1表に示す。

	第 2.2-1 表	酸素濃度計及び二酸化	と炭素濃度計の概要
--	-----------	------------	-----------

機器名称及び 外観	仕様等		
(酸素濃度計)	検知原理	ガルバニ式	
	検知範囲	0.0~40.0vol%	
	表示精度	±0.1vo1%	
	電源	 í 二 就 : 乾電池(単四×2本) 測定可能時間:約3,000時間 (バッテリ切れの場合,予備を可動させ,乾電池交換を実施する。) 	
	個数	1個(故障時及び保守点検による待機除外時のバックアップ 用として予備1個を保有する。)	
(二酸化炭素 濃度計)	検知原理	NDIR(非分散型赤外線)	
	検知範囲	0.0~5.0vo1%	
	表示精度	±3.0%F.S	
	電源	 í 二 乾電池(単三×4本) 測定可能時間:約12時間 (バッテリ切れの場合,予備を可動させ,乾電池交換を実施する。) 	
	個数	1個(故障時及び保守点検による待機除外時のバックアップ 用として予備1個を保有する。)	
	個数 	用として予備1個を保有する。)	

2.2.2 酸素濃度,二酸化炭素の管理

労働安全衛生法,JEAC4622-2009「原子力発電所中央制御室運転員等 の事故時被ばくに関する規定」及び鉱山保安法施行規則を踏まえ,酸素濃度 が19%を下回るおそれのある場合,又は二酸化炭素濃度が0.5%上回るおそ れのある場合に,外気をフィルタで浄化しながら取り入れる運用とする。な お,法令要求等における酸素濃度及び二酸化炭素濃度の基準値は以下のとお りである。

酸素濃度の人体への影響についてを第2.2-2表,二酸化炭素濃度の人体へ

の影響についてを第2.2-2表に示す。

(1) 酸素濃度

Т

I

I

I

I

I

I

I

L

I

L

L

I

I

I

I

I

L

L

酸素欠乏症等防止規則(一部抜粋)

(定義)
 第二条 この省令において、次の各号に掲げる用語の意義は、それぞれ当該各号に定めるところによる。
 一 酸素欠乏 空気中の酸素の濃度が十八パーセント未満である状態をいう。
 (換気)

第五条 事業者は、酸素欠乏危険作業に労働者を従事させる場合は、当該作業を行う場所の空気中の酸素の濃度を<u>十八パーセント以上</u>(第二種酸素欠乏危険作業に係る場所にあっては、空気中の酸素の濃度を十八パーセント以上、かつ、硫化水素の濃度を百万分の十以下)に保つように換気しなければならない。ただし、 爆発、酸化等を防止するため換気することができない場合又は作業の性質上換気することが著しく困難な場 合は、この限りでない。

鉱山保安法施行規則(一部抜粋)
 第十六条の一
 一 鉱山労働者が作業し、又は通行する坑内の空気の酸素含有率は<u>十九パーセント以上</u>とし、炭酸ガス含
 有率は<u>一パーセント以下</u>とすること。

第2.2-2表 酸素濃度の人体への影響について ([出典]厚生労働省 HP 抜粋)

酸素濃度	症状等	
21%	通常の空気状態	
18%	安全限界だが連続換気が必要	
16%	頭痛,吐き気	
12%	目まい、筋力低下	
8%	失神昏倒, 7~8 分以内に死亡	
6%	瞬時に昏倒、呼吸停止、死亡	

: D B 範囲

: S A 範囲

(2) 二酸化炭素濃度
鉱山保安法施行規則(一部抜粋)
第十六条の一
一 鉱山労働者が作業し、又は通行する坑内の空気の酸素含有率は <u>十九パーセント以上</u> とし、炭酸ガス含
有率は一パーセント以下とすること。
J E A C 4622-2009「原子力発電所中央制御室運転員等の事故時被ばくに関する規定」 (一部抜粋)
【付属書解説 2.5.2】事故時の外気の取り込み
中央制御室換気空調設備の隔離が長期に亘る場合には、中央制御室内の CO ₂ 濃度の上昇による運転員等
の操作環境の劣化防止のために外気を取り込む場合がある。

L

.

÷

L

.

.

I

.

. è L

I . . . i. L

(1) 許容 CO₂濃度 事務所衛生基準規則(昭和47年労働省令第43号、最終改正平成16年3月30日厚生労働省令第70号) により、事務室内の CO2濃度は 100 万分の 5000 (0.5%) 以下と定められており、中央制御室の CO2濃度 もこれに準拠する。

したがって、中央制御室居住性の評価にあたっては、上記濃度(0.5%)を許容濃度とする。

第2.2-3表 二酸化炭素濃度の人体への影響について ([出典]消防庁 二酸化炭素設備の安全対策 について(通知)H8.9.20)

二酸化炭素濃度	人体への影響
<2%	はっきりした影響は認められない
$2\% \sim 3\%$	呼吸深度の増加,呼吸数の増加
$3\% \sim 4\%$	頭痛,めまい,悪心,知覚低下
$4\% \sim 6\%$	上記症状,過呼吸による不快感
6%~8%	意識レベルの低下,その後意識喪失へ進む,ふる え,けいれんなどの付随運動を伴うこともある
8%~10%	同上
10%<	意識喪失、その後短時間で生命の危険あり

!: S A範囲 : D B 範囲

L

I

I .

I

I

.

.

I

I

.

I

2.3 汚染の持ち込み防止について

L

L

L

中央制御室には,中央制御室の外側が放射性物質により汚染したような状況下において,中央制御室への汚染の持ち込みを防止するため,身体の汚染 検査及び防護具の脱衣等を行うためのチェンジングエリアを設ける。

チェンジングエリアは、中央制御室外で作業を行った要員が、中央制御室 に入室する際等に利用する。

チェンジングエリアは,要員の被ばく低減の観点から原子炉建屋内,かつ 中央制御室バウンダリに隣接した場所に設営する。また,チェンジングエリ ア付近の全照明が消灯した場合を想定し,可搬型照明(SA)を配備する。 中央制御室のチェンジングエリア設営場所及び概略図を図 2.3-1 に示す。

第2.3-1図 中央制御室チェンジングエリア設営場所及び概略図

Ⅰ:SA範囲

2.4 重大事故が発生した場合に運転員がとどまるための設備について 2.4.1 概要

重大事故等が発生した場合においても中央制御室に運転員がとどまるため に必要な設備として,遮蔽設備,換気系設備,通信連絡設備,データ表示装 置(待避室),照明設備,酸素濃度計及び二酸化炭素濃度計を中央制御室に設 置,又は保管する。

中央制御室は,周囲に遮蔽が設置されており,重大事故等が発生した場合 に中央制御室換気系の給・排気隔離弁により外気との連絡口を遮断し,空気 調和機ファン及びフィルタ系ファンによる高粒子フィルタ及びチャコールフ ィルタを通した閉回路循環方式とし,運転員を過度の被ばくから防護する設 計とする。

さらに,原子炉建屋ガス処理系により格納容器から漏えいしたガスに含ま れる放射性物質を低減しつつ原子炉建屋外に排出することで,運転員を過度 の放射線の被ばくから防護する設計とする。

中央制御室待避室は、中央制御室内に設置し、中央制御室待避室空気ボン ベユニットにより中央制御室待避室内の遮蔽に囲まれた空間を正圧化し、外 気の流入を一定時間完全に遮断することで、重大事故発生後の格納容器圧力 逃がし装置を作動させる際のプルームの影響による運転員の被ばくを低減す ることが可能な設計とする。また、重大事故時に格納容器圧力逃がし装置を 作動させた場合においても、中央制御室にとどまる必要のある最低限の要員 である3名を収容可能な設計とする。

中央制御室及び中央制御室待避室は,酸素濃度計,二酸化炭素濃度計及び 電離箱サーベイメータにより,居住性確保ができていることを確認可能な設 計とする。また,中央制御室に保管している可搬型照明(SA)及びデータ 表示装置(待避室)を中央制御室待避室に設置することで,継続的にプラン

: S A範囲

トの監視を行うとともに、通信連絡設備により外部との連絡を	:可能とし,必
 要に応じ中央制御室制御盤でのプラント操作を行うことができ 	る設計とする。
	■ ■ 【:SA範囲

2.4.2 中央制御室待避室正圧化バウンダリの設計差圧

中央制御室待避室正圧化バウンダリは,配置上,動圧の影響を直接受けない 屋内に設置されているため,室内へのインリークは隣接区画との温度差による ものと考えられる。

重大事故等発生時の室内の温度を中央制御室の設計最高温度 48.9℃, 隣接区 画を外気の設計最低温度-12.7℃と仮定すると,中央制御室待避室の天井高さは 最大約 2m であるため,以下のとおり約 5.1Pa の圧力差があれば,温度の影響を 無視できると考えられる。

∠P={(-12.7℃の乾き空気密度[kg/m³])-(+48.9℃の乾き空気の密度[kg

/m³])}×天井高さ [m]

= $(1.3555 [kg/m^3] - 1.0963 [kg/m^3]) \times 2 [m]$

 $=0.5184 \ [kg/m^2]$

≒5.1 [Pa]

このため,正圧化バウンダリの必要差圧は設計裕度を考慮して隣接区画+ 10Paとする。

_____: S A範囲
2.4.3 中央制御室の居住性確保

(1) 設計方針

中央制御室は,放射性物質による室外からの放射線を遮蔽するためコン クリート構造を有している。通常時における中央制御室の換気系は,一部 外気を取り入れる再循環方式により空気調整を行っているが,重大事故等 発生時には外気取り入れのための給・排気隔離弁を全閉とし,中央制御室 換気系を閉回路循環方式とすることにより,中央制御室内へのフィルタを 介さない外気の流入を防止可能な設計とする。また,原子炉建屋ガス処理 系により格納容器から漏えいしたガスに含まれる放射性物質を低減しつつ 原子炉建屋外へ排出することで,運転員を過度の放射線被ばくから防護可 能な設計とする。

: S A 範囲

(2)	遮蔽設備
	中央制御室の遮蔽設備はコンクリート厚さの建屋躯体と
	体となった壁であり、放射性物質のガンマ線による外部被ばくを低減
	る設計とする。第2.4-1 図に中央制御室遮蔽の配置図を示す。
	第941回 中中型省中央海鉄 町里回
	弗 2.4-1 凶 甲犬刑御至り遮敝 配直凶

(3) 中央制御室換気系

中央制御室換気系の概略図を,第2.4-2図に示す。

通常時は,空気調和機ファン及び排気用ファンにより,一部外気を取り 入れる再循環方式によって中央制御室の空気調節を行う。

事故時は、外気取入口を遮断して、フィルタ系ファンによりフィルタ高 性能粒子フィルタ及びチャコールフィルタを通した閉回路循環方式とし、 運転員を放射線被ばくから防護する。なお、外気との遮断は、中央制御室 換気系の給気隔離弁4弁、排気隔離弁2台の合計6台により行い、全交流 動力電源喪失時にも常設代替交流電源設備からの給電により、中央制御室 からの操作スイッチによる操作で弁の閉操作が可能な設計とする。

また、外気の遮断が長期にわたり、室内環境が悪化した場合には、チャ コールフィルタにより外気を浄化して取り入れることも可能な設計とす る。。

なお、中央制御室換気系については常設代替交流電源設備から受電する までの間起動しないが、居住性に係る被ばく評価においては、全交流動力 電源喪失発生後、2時間後に起動することを条件として評価しており、必要 な居住環境が確保されることを確認している。

【設備仕様】

・空気調和機ファン

台数:1(予備1)

容量:約40,000 m³/h/台

・フィルタ系ファン

台数:1(予備1)

容量:約5,100 m³/h/台

99

: SA範囲

・チャコールフィルタ
基数:1(予備1)
処理容量:5,100 m ³ /h/基
よう素除去効率:97%以上
・高性能粒子フィルタ
基数:1(予備1)
処理容量:5,100 m ³ /h/基
粒子除去効率: 99.97%以上(直径 0.5μm以上の粒子に対して)

(4) 原子炉建屋ガス処理系

原子炉建屋ガス処理系を構成する非常用ガス再循環系及び非常用ガス処 理系は、炉心の著しい損傷が発生した場合においても、格納容器から漏え いする放射性物質による運転員の被ばくを低減し中央制御室にとどまるた めに設置している。これらの設備により、格納容器から漏えいしたガスに 含まれる放射性物質を低減しつつ原子炉建屋外に排出することで運転員を 放射線被ばくから防護する。また、原子建屋内を負圧に保つことで、格納 容器から漏えいした放射性物質の原子炉建屋外への直接放出を防止する。

非常用ガス再循環系及び非常用ガス処理系の概略図を,第2.4-3図に示す。 非常用ガス再循環系は排風機,フィルタトレインにより非常用ガス処理系 は排風機及びフィルタトレインにより構成される。

非常用ガス処理系排風機は原子炉建屋内を約59Paの負圧に保ち,原子炉 建屋内空気の100%を1日で処理する能力を有する設計とする。

非常用ガス再循環系及び非常用ガス処理系のフィルタトレインはよう素 用フィルタ及び粒子用高効率フィルタにより構成し,粒子用高効率フィル タにより粒子状の放射性物質を99.97%以上,非常用ガス再循環系よう素用 チャコールフィルタによりよう素を90%以上,非常用ガス処理系よう素用 チャコールフィルタによりよう素を97%以上除去する能力を有する設計と する。

これにより、炉心損傷が発生し、格納容器から放射性物質が漏えいした 場合においても中央制御室にとどまる運転員の被ばく線量は7日間で 100mSvを超えない設計とする。

59-9-35

Ⅰ:SA範囲

【設備仕様】
・非常用ガス再循環系排風機
種類:遠心型
容量:17,000 m ³ /hr
個数:1(予備1)
・非常用ガス再循環系フィルタユニット
個数:1(予備1)
よう素用チャコールフィルタ:90%以上(系統効率)
粒子用高効率フィルタ:99.97%以上(直径0.5µm以上の粒子に対
して)
・非常用ガス処理系排風機
種類:遠心型
容量:3,570 m ³ /h r
個数:1(予備1)
・非常用ガス処理系フィルタユニット
個数:1 (予備1)
よう素用チャコールフィルタ:97%以上(系統効率)
 粒子用高効率フィルタ:99.97%以上(直径 0.5μm以上の粒子に対
して)

Ⅰ2.4.4 中央制御室待避室の居住性確保

(1) 設計方針

中央制御室待避室は,鉛又はコンクリート壁等により遮蔽性能を高めた 設計とする。また中央制御室待避室は気密性を高めた設計とするとともに, 中央制御室待避室空気ボンベユニットにより中央制御室待避室を正圧化し, 中央制御室待避室内への外気流入を防止することで居住性を高めた設計と する。

重大事故発生後の格納容器圧力逃がし装置を作動させる場合においては, 中央制御室待避室を空気ボンベにより正圧化することで,放射性物質の中 央制御室待避室内への流入を防ぎ,中央制御室にとどまる発電長等の被ば くを低減させることが可能な設計とする。また,2.4.2 項に示す正圧化の 設計差圧であることを確認するため,差圧計を設置する。

: S A範囲

(2) 収容人数及び設	置場所
-------------	-----

I

I

I

I

I

I

L

I

格納容器圧力逃がし装置作動中は、中央制御室にはプラントの状態監視 等に必要な最低限の要員を残すこととしており、中央制御室待避室には3 名を収容できる設計とする。

発電長等が中央制御室待避室に待避している間,プラントの運転操作は 行わないことを基本とするが,操作が必要な事象が発生した場合に即座に 対応できるよう,中央制御室内に設置する。中央制御室待避室の設置場所 を,第2.4-4 図に示す。

第2.4-4 図 中央制御室待避室 設置場所

_____!: S A範囲

(3) 遮蔽設備

中央制御室待避室の壁は,鉛壁 20mm,若しくはそれと同等以上の遮蔽能 カを期待できるコンクリート壁(一部,可搬遮蔽装置),若しくはコンクリ ート・鉛の複合壁とし,放射性物質のガンマ線による外部被ばくを低減す る設計とする。また,発電長等が出入りする扉については遮蔽扉を設置す る。

- Ⅰ(4) 中央制御室待避室空気ボンベユニット
 - a. 系統構成

中央制御室待避室空気ボンベユニットの概要図を,第2.4-5 図に示す。 空気ボンベから減圧ユニットを介し,流量計ユニットにより一定流量の 空気を中央制御室待避室内へ供給する。中央制御室待避室内は,微差圧 調整ダンパにより正圧を維持する。また,中央制御室待避室内が微正圧 であることを確認するため差圧計を設置する。

b. 必要空気供給量
①二酸化炭素濃度基準に基づく必要換気量
 収容人数: n =3(名)
 許容二酸化炭素濃度:C=0.5% (JEAC4622-2009)
 空気ボンベ中の二酸化炭素濃度:C₀=0.0336%
 呼吸により排出する二酸化炭素量:M=0.022m³/h/人(空気)
調和・衛生工学便覧の極軽作業の作業程度の吐出し量)
・必要換気量: $Q_1 = 100 \times M \times n / (C - C_0) m^3/h$
(空気調和・衛生工学便覧の二酸化炭素基準の必要換気量)
$Q_1 = 100 \times 0.022 \times 3 \div (0.5 - 0.0336)$
= 14.15
≒14.2m ³ /h
②酸素濃度基準に基づく必要換気量
 ・収容人数:n=3名
・吸気酸素濃度:a=20.95%(標準大気の酸素濃度)
・許容酸素濃度:b=19%(鉱山保安法施工規則)
・成人の呼吸量:c=0.48m ³ /h/人(空気調和・衛生工学便覧)
・乾燥空気換算酸素濃度:d=16.4%(空気調和・衛生工学便覧)
・必要換気量:Q₁=c×(a−d)×n/(a−b)m³/h
(空気調和・衛生工学便覧の酸素基準の必要換気量)
$Q_1 = 0.48 \times (20.95 - 16.4) \times 3 \div (20.95 - 19.0)$
=3.36
$\Rightarrow 3.4 \text{m}^3/\text{h}$
·:SA範囲

59-9-41

以上より,空気ボンベによる正圧化に必要な空気供給量は二酸化炭素 濃度基準の14.2m³/hとする。

c. 必要ボンベ本数

中央制御室待避室を5時間正圧化する必要最低限のボンベ本数は二酸 化炭素濃度基準換気量の14.2 m³/h 及びボンベ供給可能空気量 5.5m³/ 本から下記の通り13本となる。格納容器圧力逃がし装置作動時,中央制 御室待避室内に滞在する発電長等(3名)が5時間滞在するために必要 な本数は13本である。なお,中央制御室待避室においては正圧化試験を 実施し必要ボンベ本数が5時間の正圧化を維持するのに十分であること の確認を実施し,予備のボンベ容量について決定する。

・ボンベ初期充填圧力:14.7MPa (at35℃)

- ・ボンベ内容積:46.7L
- ・ボンベ供給可能空気量: 5.5m³/本*
 - * 空気ボンベは標準圧力14.7MPaで7m³/本であるが,安全側
 (残圧及び使用温度補正)を考慮し5.5m³/本とする。

以上より,必要なボンベ本数は,下記の計算により12本となる。 14.2m³/h÷<mark>5.5</mark>m³/本×5時間 =12.9 ≒13本

(5) 中央制御室換気系の運転状態比較

中央制御室換気系の状態について,通常運転時,設計基準事故時,重大 事故時を比較,図示すると以下のとおりとなる。通常運転時,設計基準事 故時の運転モードを第2.4-7図(1/2)に,重大事故時のプルーム通過前・

(6) 通信連絡設備

中央制御室待避室には,発電長等が格納容器圧力逃がし装置作動に際し て,水素爆発による格納容器の破損防止(格納容器圧力逃がし装置に関す るパラメータ)の確認に加え,格納容器内の状態,使用済燃料プールの状態,水素爆発による格納容器の破損防止,水素爆発による原子炉建屋の損 傷防止を確認できるパラメータを確認できるようデータ表示装置(待避室) を設置する設計とする。中央制御室待避室に設置するデータ表示装置(待 避室)は中央制御室に1台保管する。

なお,データ表示装置(待避室)は今後の監視パラメータ追加や表示機能の拡張等を考慮した設計とする。

データ表示装置(待避室)で確認できる主なパラメータを,第2.4-1表 に,データ表示装置(待避室)に関するデータ伝送の概要を,第2.4-8図 に示す。

また、中央制御室待避室において、発電長等が緊急時対策所及び屋外と 通信連絡できるよう、中央制御室待避室に設置する衛星電話設備(可搬型) (待避室)<mark>は中央制御室に</mark>1台保管する。

中央制御室待避室における通信連絡設備の概要を第2.4-9図に示す。

: S A範囲

データ表示装置<mark>(待避室)</mark>で確認できる主なパラメータ 第 2.4-1 表

	山力領域計准		
炉心反応度の状態確認	山 <u>川</u> 原域可表 記動領域計准		
	匹 助 頃 域 印 衣		
	原 工 炉 小 位		
	示丁//L/J 		
	床」が174711位度 宣圧に応えっプレイズズな法事		
	同江ゲ心ハノレイポポ桃伽里		
伝ふ必却の坐能確認	百之后原辦時没却玄玄統法是		
がいけていていた。	床」 / · · · · · · · · · · · · · · · · · ·		
	同 <u></u> 」 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		
	7% 虽然你云东东杭饥重 百子后下力 <u>灾</u> 哭泪度		
	北党田ディーゼル発雲機の絵雲状能		
	非常田真正母總需正		
	2F市川间江 母 林 电 二		
	格納容哭内温度		
	格納容器内水 丟禮度 酸 丟禮度		
	格納容器内霑囲気放射線レベル		
格納容器内の状態確認	サプレッション・プール水位		
	格納容器下部水位		
	格納容器スプレイ弁開閉状態		
	· · · · · · · · · · · · · · · · · · ·		
	原子炉格納容器隔離の状態		
放射能隔離の状態確認	主排気筒放射線レベル		
使用済燃料プールの状態 確認	使用済燃料プール水位・温度		
	フィルタ装置入口圧力		
水素爆発による格納容器	フィルタ装置水位		
の破損防止確認	フィルタ装置入口水素濃度		
	フィルタ装置出口放射線モニタ		
水素爆発による原子炉建 屋の損傷防止確認	原子炉建屋内水素ガス濃度		

: S A範囲

(7) 中央制御室待避室のその他設備・資機材

L

L

I

L

格納容器圧力逃がし装置作動時において,発電長等が中央制御室待避室 にとどまれるようにするため,中央制御室待避室用として可搬型照明(S A),酸素濃度濃度計,二酸化炭素濃度計及び電離箱サーベイメータを配備 する。

中央制御室待避室にとどまり必要な監視等を行うに必要な照度を有する ものとして,可搬型照明(SA)を1台配備する。第2.4-2表に中央制御 室待避室用の可搬型照明を示す。

名称	保管場所	数量	仕様
可搬型照明 (SA)	中央制御室	1台 (予備1台(中央制 御室の予備1台と共 用))	(AC) 100V—240V 点灯時間 片面:24時間 両面:12時間
			: S A範囲

第2.4-2表 中央制御室待避室用可搬型照明

酸素濃度計及び二酸化炭素濃度計は、中央制御室待避室の居住環境の基 準値の範囲を測定できるものを、それぞれ1個配備する。第2.4-3表に中 央制御室待避室に配備する酸素濃度計及び二酸化炭素濃度計を示す。

L

L

第2.4-3表 酸素濃度計及び二酸化炭素濃度計の概要

機器名称及び 外観	仕様等		
(酸素濃度計)	検知原理	ガルバニ式	
	検知範囲	0.0~40.0vol%	
	表示精度	±0.1vo1%	
	電源	電 源:乾電池(単四×2本) 測定可能時間:約3,000時間 (バッテリ切れの場合,予備を可動させ,乾電池交換を実施する。)	
	個数	1個(故障時及び保守点検による待機除外時のバックアップ 用として予備1個を保有する。)	
(二酸化炭素	検知原理	NDIR (非分散型赤外線)	
<i>低</i> 皮計)	検知範囲	0.0~5.0vo1%	
	表示精度	±3.0%F.S	
	電源	 電 源:乾電池(単三×4本) 測定可能時間:約12時間 (バッテリ切れの場合,予備を可動させ,乾電池交換を実施する。) 	
	個数	1個(故障時及び保守点検による待機除外時のバックアップ 用として予備1個を保有する。)	
電離箱サーイ	ベイメータは	は中央制御室待避室の居住環境の基準値の範囲を	
測定できるもの	のを,1台酯	2備する。第2.4-4 表に中央制御室待避室に配備	
する電離箱サ・	ーベイメータ	を示す。	

名称	保管場所	数量	仕様
電離箱サーベイメータ	中央制御室	1 台	電離箱式検出器 0.001~1000mSv/h 電源:乾電池(単三×4本) 測定時間:約100時間以上

2.5 重大事故等時の電源設備について

中央制御室には,重大事故等が発生した場合においても運転員がとどまるために必要な設備(第2.5-1図に示す換気設備及び第2.5-2図に示す照明)を設置している。これらの設備については,重大事故等が発生した場合にも,第2.5-3図に示すとおり常設代替交流電源設備(常設代替高圧電源装置)からの 給電を可能としている。

常設代替高圧電源装置の容量は,中央制御室の居住性(重大事故等)に係る 被ばく評価で想定する格納容器破損モードのうち,中央制御室の運転員の被ば くの観点から結果が最も厳しくなる事故収束に成功した事故シーケンスである 「LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗+損傷炉心冷却失敗+格納 容器注水失敗に全交流動力電源喪失を加えた状態」に対して,第2.5-1表に示 すとおり十分な電源供給容量を確保している。

照明については,全交流動力電源喪失発生から常設代替高圧電源装置による 給電が開始されるまでの間,第2.5-4 図に示す直流非常灯に加え,12時間以上 無充電で点灯する可搬型照明(SA)を配備しており,常設代替高圧電源装置 から給電を再開するまでの間(事故発生後90分以内)の照明は確保できる。 常設代替高圧電源装置による給電が開始された後については、中央制御室内

の非常用照明にて照明は確保できる。一方,中央制御室の全照明が消灯した場 合には,代替交流電源設備である常設代替高圧電源装置から給電する可搬型照 明(SA)により,必要な照度を確保する。

また,中央制御室内の非常用照明が使用できない場合にも必要な照度を確保 できるよう,可搬型照明(SA)を配備する。仮にこれら照明が活用できない 場合のため,ランタン,ヘッドライト等の乾電池内蔵型照明を中央制御室に備 えている。

換気設備については、常設代替高圧電源装置が起動するまでの間は起動しな

59-9-56

		白山山(), (), (), (), (), (), (), (), (), (),
		貝们谷里
\bigcirc	緊急用母線目動起動負荷	
	・緊急用直流125V充電器盤	59.6kW
	・その他負荷	
2	常設低圧代替注水系ポンプ(2台)	380.0kW
	非常用母線2C自動起動負荷	
	・直流125V充電器盤2A	
3	・非常用照明	389.2kW
	 ・120V AC 計装用電源2A 	
	・その他負荷	
	非常用母線2D自動起動負荷	
	・直流125V充電器盤2B	
(4)	 ・非常用照明 	313.1kW
0	・120V AC 計装用電源2 B	
	・その他負荷	
	非常用ガス再循環系ファン	
$(\overline{5})$	非常用ガス処理系ファン	86.9kW
0	その他負荷	
	中央制御室空調ファン	
(6)	中央制御室非常用循環ファン	217.7kW
0	その他負荷	
0	蓄電池室排気ファン	
(7)	その他負荷	160.5kW
	緊急用海水ポンプ	500 01 W
(8)	その他負荷	520.0kW
9	代替燃料プール冷却系ポンプ	22.0kW
-		2339 OkW

(通常点灯状態)

(直流非常灯点灯状態)

_____!: S A範囲

(1) 可搬型照明(SA)を用いた場合の監視操作について

中央制御室の照明が全て消灯した場合に使用する可搬型照明(SA)は、3 台使用する。個数はシミュレーション施設を用いて監視操作に必要な照度を確 保できることを確認している。可搬型照明(SA)を操作箇所に応じて向きを 変更することによりさらに照度を確保できることを確認している。

仮に可搬型照明(SA)が活用できない場合のため,乾電池内蔵型照明を中 央制御室に備えている。

第2.5-2表に中央制御室に配備している可搬型照明(SA)及び乾電池内蔵 型照明の概要を示す。

名称	保管場所	数量	仕様
可搬型照明 (SA)	中央制御室	3 台 (予備1台(中央制御 室待避室の予備1台 と共用))	(AC) 100V—240V 点灯時間 片面:24時間 両面:12時間
ランタン でで、 でで、 で、 で、 で、 で、 で、 で、 で、	中央制御室	16 個 (予備 4 個)	電池:単一電池4本 点灯時間:約45時間
ヘッドライト 	中央制御室	7個 (予備7個)	電池:単三電池3本 点灯時間:約10時間

第2.5-2表 中央制御室に配備している可搬型照明(SA)及び 乾電池内蔵型照明の概要

: S A 範囲

可搬型照明(SA)の照度は,第2.5-5 図に示すとおり大型表示盤から約6m の机位置に設置した場合で,直流照明の設計値である照度(1ルクス)に対し, 2ルクス以上の照度を確認し,監視操作が可能なことを確認している。

画像については、印刷仕上がり時に照明確認時点と同様の雰囲気となるよう補正を施してあります。

59-9-59

中央制御室の照明が全て消灯した場合,裏盤についての監視操作は,乾電池 内蔵型照明を運転員が装着して行う。(第2.5-6図参照)

乾電池内蔵型照明の照度は,運転員が装着した状態で,直流照明の設計値で ある照度(1ルクス)に対し,監視計器及び操作部で 600 ルクス以上の照度を 確保し,監視操作が可能なことを確認している。

(ヘッドライト使用時)

第2.5-<mark>6</mark>図 シミュレーション施設における乾電池内蔵型照明使用状況

: SA範囲

3. 添付資料

3.1 中央制御室待避室の運用について

格納容器圧力逃がし装置作動前から作動後にわたっての、中央制御室待避 室の運用を以下にまとめる。第3.1-1図に格納容器圧力逃がし装置作動と中央 制御室及び中央制御室待避室における換気設備の運用の概要を示す。

(1) 格納容器圧力逃がし装置作動前(待避前)

発電長等は重大事故等時において,格納容器圧力逃がし装置を作動させる必要があると判断された場合,中央制御室待避室を使用するため,第 3.1-1表に示す設備,資機材の運用準備を行う。

第3.1-1表 中央制御室待避室の運用準備

居住性対策設備	・中央制御室待避室空気ボンベユニットによる	
	•酸素濃度計,二酸化炭素濃度計,可搬型照明(S	
	A)及び電離箱サーベイメータの配置、電源人	
監視設備	・データ表示装置(待避室)の配置,電源入	
通信連絡設備	・通信連絡設備の切替及び通話確認	

(2) 格納容器圧力逃がし装置作動中(待避中)

発電長等は,格納容器圧力逃がし装置作動開始後,速やかに中央制御室 待避室に移動し,出入口扉を閉める。

中央制御室待避室に施設する差圧計を確認し、中央制御室待避室へ適切 に空気が供給され、正圧化されていることを確認する。また、酸素濃度計, 二酸化炭素濃度計により酸素濃度及び二酸化炭素濃度(酸素濃度が19%以 上であること、二酸化炭素濃度が0.5%以下であること)を確認するとと もに、中央制御室待避室の放射線量率を電離箱サーベイメータにて監視す る。

: SA範囲

中央制御室待避室に待避している間にも,データ表示装置(待避室)を 用いることで,格納容器圧力逃がし装置の作動状況等のプラント状態の監 視を行う。また,中央制御室待避室には通信連絡設備を設置し,災害対策 本部との連絡が常時可能とする。

なお、中央制御室待避室に待避している間の運転操作は不要であるが、 万一、中央制御室での運転操作が必要となった場合は、中央制御室の放射 線量率を電離箱サーベイメータで確認した上で、災害対策本部の指示の下、 必要な放射線防護装備、個人線量計管理措置を施した上で、中央制御室に 出て、運転操作を行い、速やかに中央制御室待避室に移動する。そのため に必要な資機材は中央制御室待避室に配備する。

(3) 格納容器圧力逃がし装置作動後(待避解除)

発電長等は,格納容器圧力逃がし装置作動に伴うプルーム放出後,中央 制御室の放射線量率を電離箱サーベイメータで確認した上で,災害対策本 部との協議の上,必要な防護装備を着用し,中央制御室待避室における待 避を解除し,中央制御室での対応を再開する。

│ ·:SA範囲

130

3.2 配備する資機材の数量について

(1) 放射線防護資機材等

中央制御室に配備する放射線防護資機材等の内訳を第3.2-1表及び第 3.2-2表に示す。なお,放射線防護資機材等は,汚染が付着しないようビニ ール袋等であらかじめ養生し,配備する。

配備数※1 品名 緊急時対策所 中央制御室 1,155着^{※2} 17 着^{※11} タイベック 17 足^{※11} 靴下 1,155足**2 1,155個*2 17 個^{※11} 帽子 17 双^{※11} 1,155双^{※2} 綿手袋 34 双^{※12} ゴム手袋 2,310双**3 17 個^{※11} 全面マスク 330個※4 34 個^{※13} チャコールフィルタ 2,310個※5 アノラック 462着**6 17 着^{※11} 132足**7 9 足^{※14} 長靴 9 足^{※14} 11足^{※8} 胴長靴 遮蔽ベスト 15着※9 9 式^{※14} 自給式呼吸用保護具 2式※10 ※1:予備を含む。今後、訓練等で見直しを行う。 ※2:110名(要員数)×7日×1.5倍=1,155 ※3:綿手袋×2倍(二重にして着用)=2,310 ※4:110名(要員数)×2日(3日目以降は除染にて対応)×1.5倍=330 ※5:110名(要員数)×7日×2個×1.5倍=2,310

第3.2-1表 放射線防護具類の配備数

※6:44名(現場の災害対策要員から自衛消防隊員を除いた数)×7日間×1.5倍=462

※7:44名(現場の災害対策要員から自衛消防隊員を除いた数)×2(現場での交代を考慮)×
 1.5倍(基本再使用,必要により除染)=132

- ※8:7名(重大事故等対応要員7名)×1.5倍(基本再使用,必要により除染)=10.5→11
- ※9:10名(重大事故等対応要員(庶務班)6名+(保修班)4名))×1.5倍(基本再使用,必要により除染)=15

※10:1名(重大事故等対応要員1名)×1.5倍=1.5→2

※11:11名(中央制御室要員数)×1.5倍=16.5→17

※12:綿手袋×2倍(二重にして着用)=34
 ※13:11名(中央制御室要員数)×2個×1.5倍=33→34(2個を1セットで使用するため)
 ※14:3名(運転員(現場))×1.5倍×2(現場での交代を考慮)=9

・配備数の妥当性の確認について

【中央制御室】

要員数11名は,発電長等(中央制御室)4名と運転員(現場)3名,情報班員1名,重大事故 等対対応要員(運転操作対応)3名で構成されている。このうち,発電長等(中央制御室)は 中央制御室換気系による閉回路循環運転により空気が浄化されるため,防護具類を着用する必 要はない。ただし,初動対応を行った発電長等は交代時の退室に伴う着用を考慮し,その後の 交代要員は中央制御室に向かう際に,緊急時対策所より防護具類を持参する。

運転員等(現場)は、現場作業時に防護具類を着用する(1回現場に行くことを想定)。 よって以下の通り、タイベック等(靴下,帽子,綿手袋,及びアノラック)の第3.2-1表に 示す配備数は必要数を上回っており妥当である。

11名×1回(交替時)+4名×1回(現場)=15着 < 17着

全面マスク,安全靴,長靴及び胴長靴は,再使用するため,必要数は11(要員数分)であり, 第3.2-1表に示す配備数は必要数を上回っており妥当である。

チャコールフィルタは、全面マスクに2個装着して使用するため、必要数は22個(全面マス クの必要数11個×2)であり、第3.2-1表に示す配備数は必要数を上回っており妥当である。

ゴム手袋は、綿手袋の上に二重にして使用するため、必要数量は34双(綿手袋の必要数17双×2)であり、第3.2-1表に示す配備数は必要数量を上回っており妥当である。

品名	配備数※1	
	緊急時対策所	中央制御室
個人線量計	<mark>330台^{**3}</mark>	<mark>33 台^{※8}</mark>
GM汚染サーベイメータ	5台**4	3 台**8
電離箱サーベイメータ	5台*5	3 台 ^{**8}
緊急時対策所エリアモニタ	2台 ^{※6}	—
可搬型モニタリングポスト*2	2台**6	_
ダストサンプラ**2	2台**7	2 台 ^{**8}
 ※1:予備含む。今後,訓練等で見直しを行う ※2:緊急時対策所の可搬型モニタリングポスト(加圧判断用)については「監視測定設備」 の可搬型モニタリングポストと兼用する。 ※3:110名(要員数)×2台(交代時用)×1.5倍=330 ※4:身体の汚染検査用に2台+3台(予備) ※5:現場作業等用に4台+1台(予備) ※6:加圧判断用に1台+1(予備)=2 ※7:室内のモニタリング用に1台+1台(予備) ※8:11名(中央制御室要員数)×2台(交代時用)×1.5倍=33 ※9:身体の汚染検査用に2台+1台(予備) ※10:現場作業等用に2台+1台(予備) 		

第3.2.-2表 放射線計測器(被ばく管理・汚染管理)の配備数

Ⅰ:SA範囲
(2) 飲食料等

中央制御室に配備する飲食料等の内訳を第3.2-3表に示す。なお,飲食料等は,汚染が付着しないようビニール袋等であらかじめ養生し,配備する。

第3.2-3表 飲食料等

品名	配備数 ^{※4}
飲食料等	
・食料	231 食*1
・飲料水(1.5 リットル)	154 本** 2
簡易トイレ	一式
ヨウ素剤	176 錠 ^{※ 3}
※1:11名(中央制御室運転	員7名+情報連絡要員1名+運転対応要員3名)×7日
×3 食	
※2:11名(中央制御室運転	員7名+情報連絡要員1名+運転対応要員3名)×7日
×2本	
※3:11名(中央制御室運転	員7名+情報連絡要員1名+運転対応要員3名)×(初
日2錠+二日目以降1	錠/1 日×2 交代
※4:予備を含む(今後、訓	練等で見直しを行う)
	!: S A 範囲

3.3 チェンジングエリアについて

(1) チェンジングエリアの基本的な考え方

チェンジングエリアの設営にあたっては,「実用発電用原子炉及びその 附属施設の位置、構造及び設備の基準に関する規則の解釈」第59条第1項 (原子炉制御室)並びに「実用発電用原子炉及びその附属設備の技術基準 に関する規則の解釈」第74条第1項(原子炉制御室)に基づき,中央制御室 の外側が放射性物質により汚染したような状況下において,中央制御室へ の汚染の持ち込みを防止するため,身体の汚染検査及び防護具の脱衣等を 行うための区画を設けることを基本的な考え方とする。

(2) チェンジングエリアの概要

チェンジングエリアは,脱衣エリア,サーベイエリア,除染エリアから なり,要員の被ばく低減の観点から原子炉建屋附属棟内,かつ中央制御室 バウンダリに隣接した場所に設営する。概要は第3.3-1表のとおり。

: SA範囲

	第 3.3-1 表	チェンジングエリアの概要
設営場所	原子炉建屋附属棟4階 空調機械室	中央制御室の外側が放射性物質により汚染し たような状況下において,中央制御室への汚 染の持ち込みを防止するため,身体の汚染検 査及び防護具の脱衣等を行うための区画を設 ける。 なお,空調機械室内への搬入口は地震竜巻等 でも開放せず、事故発生時でも外部の風雨の 影響を防止できる構造とする。
設営形式	テントハウス (一部,通路区画化) (原子炉建屋附属棟内)	テントハウス及びシート等で間仕切りするこ とにより通路を区画化する。
手順着手の判断基準	原子力災害対策特別措 置法第10条特定事象が 発生し,災害対策本部長 の指示があった場合	中央制御室の外側が放射性物質により汚染す るおそれが発生した場合,チェンジングエリ アの設営を行う。なお,事故進展の状況,参 集済みの要員数等を考慮して放射線管理班が 実施する作業の優先順位を判断し,設営を行 う。
実施者	放射線管理班	チェンジングエリアを速やかに設営できるよ う定期的に訓練を行っている放射線管理班員 が参集した後に設営を行う。

(3) チェンジングエリアの設営場所及びアクセスルート

チェンジングエリアは、中央制御室バウンダリに隣接した場所に設置する。チェンジングエリアの設営場所及びアクセスルートは、第3.3-1図のとおり。

L	笙 0 0 1 🔤	市市町御亭イ		テリマの弐	学相式	
	弗3.3⁻1凶	中央前御至ナ	エノンングニ	エリアの設	呂場川	
				· — · — · —		
						:S A範囲

(4) チェンジングエリアの設営(考え方,資機材)

a.考え方

中央制御室への放射性物質の持ち込みを防止するため,第3.3-2図の設営 フローに従い,第3.3-3図のとおりチェンジングエリアを設営する。チェン ジングエリアの設営は,放射線管理班員2名で,初期運用開始に必要なサー ベイエリア及び除染エリアについて約60分,さらに脱衣エリアの設営につ いて約80分の合計140分を想定している。なお,チェンジングエリアが速や かに設営できるよう定期的に訓練を行い,設営時間の短縮及び更なる改善 を図ることとしている。

チェンジングエリアの設営は,原子力防災組織の要員の放射線管理班員 4名のうち,チェンジングエリアの設営に割り当てることができる要員で 行う。設営の着手は,原子力災害対策特別措置法第10条特定事象が発生し, 災害対策本部長の指示があった場合に実施する。

b. チェンジングエリア用資機材

チェンジングエリア用資機材については,運用開始後のチェンジングエリア の補修や汚染によるシート張替え等も考慮して,第3.3-2表のとおりとする。チ ェンジングエリア用資機材は,チェンジングエリア付近に保管する。

名称	数量*	根拠
テントハウス	1式	
養生シート	3 巻	
バリア	3 個	
粘着マット	3枚	
脱衣収納袋	7 個	
難燃袋	70 枚	
難燃テープ	10 巻	
クリーンウエス	2 缶	チェンジングエリア
はさみ,カッター	各3本	設宮に必要な数量
筆記用具	2式	
簡易シャワー	1式	
簡易水槽	1 個	
バケツ	2 個	
排水タンク	1式	
可搬型空気浄化装置	2 台(予備 1 台)	
····································	東等で見直しを行う) 	

第3.3-2表 中央制御室チェンジングエリア用資機材

: S A範囲

(5) チェンジングエリアの運用

(出入管理,脱衣,汚染検査,除染,着衣,要員に汚染が確認された場合の対応,廃棄物管理,チェンジングエリアの維持管理)

a. 出入管理

チェンジングエリアは,中央制御室の外側が放射性物質により汚染した ような状況下において,中央制御室に待機していた要員が,中央制御室外 で作業を行った後,再度,中央制御室に入室する際に利用する。中央制御 室外は,放射性物質により汚染しているおそれがあることから,中央制御 室外で活動する要員は防護具を着用し活動する。

チェンジングエリアのレイアウトは第3.3-4図のとおりであり、チェン ジングエリアには下記の①から③のエリアを設けることで中央制御室内 への放射性物質の持ち込みを防止する。

①脱衣エリア

防護具を適切な順番で脱衣するエリア。

②サーベイエリア

防護具を脱衣した要員の身体や物品のサーベイを行うエリア。汚染が 確認されなければ中央制御室内へ移動する。

③除染エリア

サーベイエリアにて汚染が確認された際に除染を行うエリア。

:SA範囲

b. 脱衣

チェンジングエリアにおける防護具の脱衣手順は以下のとおり。

・脱衣エリアの靴脱ぎ場で、安全靴、ヘルメット、アノラックを脱衣する。

・脱衣エリア前室で、ゴム手袋(外側)、タイベック等を脱衣する。

・脱衣エリア後室で、ゴム手袋(内側)、綿手袋、靴下を脱衣する。

・マスク及び帽子を着用したまま、サーベイエリアへ移動する。

なお,チェンジングエリアでは,放射線管理班員が要員の脱衣状況を適宜 確認し,指導,助言,防護具の脱衣の補助を行う。

c. 汚染検査

チェンジングエリアにおける汚染検査等の手順は以下のとおり。

①サーベイエリアにて、マスク及び帽子を着用した状態の頭部の汚染検査

を受ける。

②汚染基準を満足する場合は、マスク及び帽子を脱衣し、全身の汚染検査 を受ける。

③汚染基準を満足する場合は,脱衣後のマスクを持参して中央制御室へ入 室する。

④②又は③の汚染検査において汚染基準を満足しない場合は、除染エリア

に移動する。

なお,放射線管理班員でなくても汚染検査ができるように汚染検査の手順 について図示等を行う。また,放射線管理班員は汚染検査の状況について, 適宜確認し,指導,助言をする。

: S A 範囲

d. 除染

チェンジングエリアにおける除染手順は以下のとおり。

汚染検査にて汚染基準を満足しない場合は、除染エリアに移動する。

- ・汚染箇所をクリーンウエスで拭き取りする。
- ・再度汚染箇所について汚染検査する。
- ・汚染基準を満足しない場合は、簡易シャワーで除染する(マスク及び帽子は除く)。
- ・簡易シャワーでも汚染基準を満足しない場合は,汚染箇所を養生し,再 度除染ができる施設へ移動する。
- e. 着衣

防護具の着衣手順は以下のとおり。

- ・中央制御室内で綿手袋,靴下,帽子,タイベック,マスク,ゴム手袋内
 側、ゴム手袋外側等を着衣する。
- ・チェンジングエリアの靴脱ぎ場で、ヘルメット、安全靴等を着用する。
- ・放射線管理班員は、要員の作業に応じて、アノラック等の着用を指示する。
- f. 要員に汚染が確認された場合の対応

サーベイエリア内で要員の汚染が確認された場合は,サーベイエリアに隣 接した除染エリアで要員の除染を行う。

要員の除染については,ウェットティッシュでの拭き取りによる除染を基本とするが,拭き取りにて除染できない場合も想定し,汚染箇所への水洗によって除染が行えるよう簡易シャワーを設ける。

簡易シャワーで発生した汚染水は,第3.3-4図のとおり必要に応じてウエス へ染み込ませる等により固体廃棄物として処理する。

: S A 範囲

(6) チェンジングエリアに係る補足事項

a. 可搬型空気浄化装置

チェンジングエリアには、更なる被ばく低減のため、可搬型空気浄化装置 を1台設置する。可搬型空気浄化装置により脱衣エリアの後室から前室及び 靴脱ぎ場の方向に送気することで、中央制御室外で活動した要員に付着した 射性物質が脱衣エリア内で飛散した場合でも、サーベイエリア及び除染エリ アへ放射性物質が流入することを防止する。可搬型空気浄化装置の仕様等を 第3.3-5 図に示す。

可搬型空気浄化装置による送気が正常に行われていることの確認は,可搬 型空気浄化装置に取り付ける吹き流しの動きを目視で確認することで行う。

なお、中央制御室は格納容器圧力逃がし装置の操作直後には、原則出入り しない運用とすることから、チェンジングエリアについても、原則利用しな い。したがって、チェンジングエリア用の可搬型空気浄化装置についてもこ の間は運用しないことから、可搬型空気浄化装置のフィルタが高線量化する ことによる居住性への影響はない。

ただし,可搬型空気浄化装置は長期的に運用する可能性があることから, フィルタの線量が高くなることも想定し,本体(フィルタ含む)の予備を1 台設ける。なお,交換したフィルタ等は,線源とならないようチェンジング エリアから遠ざけて保管する。

: S A範囲

第3.3-5図 可搬型空気浄化装置の仕様等

b. チェンジングエリアの設営状況

チェンジングエリアは、脱衣エリア、サーベイエリア、除染エリアの空間 をテントハウスにより区画する。テントハウスの外観(イメージ)は第3.3-6 図のとおりであり、仕様は第3.3-3 表のとおり。チェンジングエリア内面に は、必要に応じて汚染除去の容易さの観点から養生シートを貼ることとし、 一時閉鎖となる時間を短縮する。

第3.3-6 図 テントハウスの外観

(イメージ)

サイズ	幅 1.4~2.6m×奥行 1.3m~5.2m×高さ 2.3m 程度
本体重量	40 kg ^{*1} 程度
サイズ (折り畳み時)	80 cm×140 cm×40 cm程度 ^{**1}
送風時間(専用ブロワ)*2	約2分*1

第3.3-3表 テントハウスの仕様

※1:幅 2m×奥行 2m×高さ 2.3m のテントハウスでの数値

※2:手動及び高圧ボンベを用いた送風による展開も可能な設計とする。

c. チェンジングエリアへの空気の流れ

中央制御室チェンジングエリアは,第3.3-7図のように,汚染の区分ごと に空間を区画し,汚染を管理する。

また,更なる被ばく低減のため,可搬型空気浄化装置を1台設置する。可 搬型空気浄化装置は,脱衣エリアとサーベイエリアの境界において,最も汚 染が拡大するおそれのある脱衣エリアから靴脱ぎ場へ向かって排気すること で,脱衣により飛散した放射性物質のサーベイエリアへの流入を防止する。

第3.3-7図のようにチェンジングエリア内に空気の流れを作ることで、中 央制御室に汚染を持ち込まないよう管理を行う。

_____: S A範囲

第3.3-7図 中央制御室チェンジングエリア空気の流れ

d. チェンジングエリアでのクロスコンタミ防止について

中央制御室に入室しようとする要員に付着した汚染が他の要員に伝播する ことがないよう,サーベイエリアにおいて要員の汚染が確認された場合は, 汚染箇所を養生するとともにサーベイエリア内に汚染が拡大していないこと を確認する。サーベイエリア内に汚染が確認された場合は,速やかに養生シ ートを張り替える等により,要員の出入りに極力影響を与えないようにする。 また,中央制御室への入室の動線と退室の動線をカーテンで区画すること で,脱衣時の接触を防止する。さらに脱衣エリアでは一人ずつ脱衣を行う運 用とすることで,脱衣する要員同士の接触を防止する。なお,中央制御室から退室する要員は,防護具を着用しているため,中央制御室に入室しようと する要員と接触したとしても,汚染が身体に付着することはない。

(7) 汚染の管理基準

第3.3-4表のとおり、状況に応じた汚染の管理基準を運用する。

ただし、サーベイエリアのバックグラウンドに応じて、第3.3-4表の管理基 準での運用が困難となった場合は、バックグラウンドと識別できる値を設定 する。

	状況	汚染の 管理基準	根拠等
状 況 ①	屋外(発電所構内全 般) へ少量の放射性物 質が漏えい又は 放出されるような 原子力災害時	1,300cpm (4Bq/cm²相当)	法令に定める表面汚染密度限度 (アルファ線を放出しない放射性 同位元素の表面汚染密度限度: 40Bq/cm ² の1/10)
状	大規模プルームが	40,000cpm (120Bq/cm ² 相当)	原子力災害対策指針における OIL4 に準拠
况 ②	放出されるような 原子力災害時	13,000cpm (40Bq/cm²相当)	原子力災害対策指針における OIL4【1ヶ月後の値】に準拠
			·

第3.3-4表 汚染の管理基準

: S A範囲

(8) 中央制御室におけるマスク着用の要否について

中央制御室内は,中央制御室換気系による閉回路循環運転を行うことで, 希ガス以外の放射性物質の流入防止対策を行っているため,マスク着用は不 要とする。

ただし、中央制御室換気系または原子炉建屋ガス処理系が故障した場合は 復旧後1時間が経過するまで中央制御室内でマスクを着用する。

(9) 可搬型照明(SA)

チェンジングエリア設置場所付近の全照明が消灯した場合に使用する可搬 型照明(SA)は、チェンジングエリアの設置、脱衣、汚染検査、除染時に 必要な照度を確保するために3台(予備1台)を使用する。可搬型照明(SA) の仕様を第3.3-5表に示す。

保管場所 数量 仕様 可搬型照明 (SA) (AC) 100V—240V 原子炉建屋 点灯時間 3台 附属棟4階 (予備1台) 片面:24時間 空調機械室 両面:12時間 チェンジングエリアに設置する可搬型照明(SA)の照度は第3.3-8図に示す 設置状況で問題なく設置等が行えることを確認しており、チェンジングエリア 内で5ルクス以上の照度が確保可能である。

第3.3-5表 チェンジングエリアの可搬型照明(SA)

第 3. 3-8 図 チェンジングエリア設置場所における

可搬型照明(SA)確認状況

(10) チェンジングエリアのスペースについて

中央制御室における現場作業を行う運転員等は,2名1組で2組を想定 し,同時に4名の要員がチェンジングエリア内に収容できる設計とする。 チェンジングエリアに同時に4名の要員が来た場合,全ての要員が中央制 御室に入りきるまで約14分であり,全ての要員が汚染している場合でも約 22分であることを確認している。

また,仮に想定人数以上の要員が同時にチェンジングエリアに来た場合 でも,チェンジングエリアは建屋内に設置しており,屋外での待機はなく 不要な被ばくを防止することができる。

(11) 放射線管理班の緊急時対応のケーススタディ

放射線管理班は、チェンジングエリアの設置以外に、緊急時対策所可搬 型エリアモニタの設置(10分)、可搬型モニタリング・ポストの設置(最 大490分)、可搬型気象観測設備の設置(100分)を行うことを技術的能力 にて説明している。これら対応項目の優先順位については、放射線管理班 長が状況に応じ判断する。

例えば、平日昼間に事故が発生した場合(ケース①)には、放射線管理 班員4名にて緊急時対策所可搬型エリアモニタ、可搬型モニタリング・ポス ト及び可搬型気象観測設備の設置を優先し、その後にチェンジングエリア の設置作業を行う。チェンジングエリアの運用を開始するまでは運転員自 ら汚染検査を行うことで中央制御室への汚染持ち込みを防止する。

夜間・休祭日に事故が発生した場合(ケース②)には,放射線管理班員2 名にて緊急時対策所可搬型エリアモニタ,可搬型モニタリング・ポスト(緊 急時対策所加圧判断用)及び可搬型気象観測設備の設置を行い,その後参 集した要員がチェンジングエリアの設置を行う。

要員参集後(発災から2時間後)に参集した放射線管理班員にてチェンジ ングエリアの設置作業を行うことで平日昼間のケースと同等の運用を行え る。

: S A 範囲

						彩	圣過 日	時間	(時	間)							
			1	2	3		4		ļ	5		6	7	7	8		
対応項目	7 員 7	事象発 7 10 条 7	生							⊽ ¢ ⊐	中央は	制御 アの	室チ 運用	·ェン 開対	·ジン 台	・グ	
状況把握(モニタリングポストなど) 緊急時対策所エリアモニタ設置 可搬型モニタリング・ポストの配置	- 放射線管理 - 班員A,B			 													
状況把握(モニタリングポストなど) 可搬型気象観測設備の配置	放射線管理 班員C,D			 2											H	\neg	╞
中央制御室チェンジングエリアの設置 緊急時対策所チェンジングエリア設置	-			 						2 222							F

・ケース②(夜間・休祭日に大規模損壊事象が発生した場合)

								并	圣過日	時間	(時	間)							
			1			2	3	3	4			5		6		7	8	3	
対応項目	7 要 [7	事象 7 10章	発生 条		7	▽参∮	 東完	了				▽中 エ	央制 リア	御雪 の週	ミチ : 軍用目	ェン 開始	ジン	グ	
状況把握 (モニタリングポストなど)																			
緊急時対策所エリアモニタ設置	放射線管理																		
可搬型モニタリング・ポストの配置**	班員A,B		100	87					888	888	993	88		<u> 200</u>	88		<u> 200</u>	889	
可搬型気象観測設備の配置				- 8	888	888	88												
中央制御室チェンジングエリアの設置	放射線管理																		
緊急時対策所チェンジングエリア設置	班員C,D																		

※可搬型モニタリング・ポストは,放射線管理班長の判断により緊急時対策所 加圧判断用モニタを優先して設置する。

· _ · _ · _ · _ · S A範囲

3.4 中央制御室への地震及び火災等の影響

地震,自然災害(竜巻等),及び火災,溢水について,中央制御室に影響 を与える事象を抽出し,対応について整理した。

中央制御室に影響を与える可能性のある事象として,第3.4-1表に示す起 因事象(内部火災,内部溢水,地震等)と同時にもたらされる環境条件が考 えられるが,いずれの場合でも中央制御室での運転操作に影響を与えること はない。

中央制御室における主な対応を以下に示す。

○地震

中央制御室及び制御盤は,耐震 S クラスの原子炉建屋附属棟内に設置し, 基準地震動による地震力に対し必要となる機能が喪失しない設計とする。ま た,制御盤は床等に固定することにより,地震発生時においても運転操作に 影響を与えない設計とする。さらに,制御盤に手すりを設置するとともに天 井照明設備には落下防止措置を講ずることにより,地震発生時における運転 員の安全確保及び制御盤上の操作器への誤接触を防止できる設計とする。

〇火災

中央制御室にて火災が発生した場合は運転員が火災状況を確認できる設 計とし、初期消火を行うことができるよう消火器を設置する。

また,中央制御室外で発生した火災に対しても,中央制御室の機能に影響 を与えることがない設計とする。

○溢水

中央制御室内には溢水源がない設計とする。

万が一,火災が発生したとしても,運転員が火災状況を確認し,消火器に て初期消火を行うこととしているため,消火活動に伴う内部溢水による影響 はない。

また,中央制御室外で発生した溢水に対しても,中央制御室の機能に影響 を与えることがない設計とする。

第3.4-1素	表 中央制御室に同時に	もたらされる環境条件への対応(1/3)
起因事象	同時にもたらされる 中央制御室の環境条件	中央制御室での運転操作に与える影響
内部火災(地 震起因含む)	火災による中央制御室内 設備の機能喪失	中央制御室にて火災が発生しても速やかに消火 できるよう、「運転員が火災状況を確認し,粉末 消火器又は二酸化炭素消火器にて初期消火を行 う」ことを社内規定類に定めることとし、中央制 御室の機能を維持する。(詳細については,設置 許可基準規則第8条「火災による損傷の防止」に 関する審査資料を参照)
内部溢水(地 震起因含む)	溢水による中央制御室内 設備の機能喪失	中央制御室内には溢水源がない設計とする。火 災が発生したとしても、「運転員が火災状況を確 認し、粉末消火器又は二酸化炭素消火器にて初期 消火を行う」ことを社内規定類に定めることとし、 消火水による溢水の影響がない設計とする。 蒸気配管破断が発生した場合も、漏えいした蒸 気の影響がない設計とする。(詳細については、 設置許可基準規則第9条「溢水による損傷の防止 等」に関する審査資料を参照)
地震	余震	中央制御室は,原子炉建屋付属棟(耐震Sクラス) に設置し,基準地震動による地震力に対して機能 を喪失しない設計とする。 中央制御室の照明ルーバーに対し落下防止措置を 講じている。 余震時には,運転員は運転員机又は制御盤のデス ク部下端に掴まることで体勢を維持し,指示計, 記録計等による原子炉施設の監視を行うことがで きる。今後,余震時における運転員の更なる安全 確保を考慮し制御盤に手すりを設置する。

第3.4-1录	表 中央制御室に同時に	もたらされる環境条件への対応(2/3)
起因事象	同時にもたらされる 中央制御室の環境条件	中央制御室での運転操作に与える影響
地震	外部電源喪失による照明 等の所内電源の喪失	外部電源喪失においても、中央制御室の照明は、 ディーゼル発電機から給電され*1,蓄電池からの 給電により点灯する直流非常灯も備え、機能が喪 失することはない。また、蓄電池内蔵型照明を備 え、機能が喪失しない設計とする。(詳細につい ては、設置許可基準規則11条「安全避難通路等」
竜巻・風 (台 風)		 に関する審査資料を参照) *1 ディーゼル発電機は各自然現象に対して、 健全性が確保される設計とする。。
		地 震:基準地震動に対して、耐震5クラス設 計であるため、健全性が確保する。
積雪		 竜 巻:設計基準の竜巻による複合荷重(風圧, 気圧差,飛来物衝撃力)に対して,外 殻その他による防護で健全性を確保す る。 風:設計基準の風(台風)による風圧に対して、外部をの他による広滞で健全性
落雷		を確保する。 積 雪:設計基準の積雪による堆積荷重に対し て、外殻その他による防護で健全性を
外部火災(森 林火災)		その他による防護で健全性を確保す る。 外部火災:防火帯の内側に設置することにより延 焼を防止し,熱影響に対しては隔離距 離の確保によって健全性を確保する。 また,ばい煙の侵入に対してフィルタ
火山		火山:想定する降下火砕物の堆積荷重に対して、外殻その他による防護で健全性を 確保する。また、下火砕物の侵入に対しては、フィルタによる防護で健全性を 確保する。

第3.4-1	表 中央制御室に同時に	もたらされる環境条件への対応(3/3)
起因事象	同時にもたらされる 中央制御室の環境条件	中央制御室での運転操作に与える影響
外部火災 (森林火災)	ばい煙や有毒ガス発生に よる中央制御室内環境へ の影響	中央制御室の換気系について,給気隔離弁及び 排気隔離弁を閉止し,閉回路循環方式とすること により外気を遮断することから,中央制御室内環 境への影響はない。この場合の酸素濃度・二酸化 炭素濃度への影響を【補足1】,【補足2】に示す。 但し,影響が長期化する場合は,必要に応じて一 次的に外気を取り入れて換気する。第3.4-1 図に 運転モード毎の中央制御室換気系の系統概略図を 示す。 なお,外部火災時の有毒ガスについては,中央 制御室外気取入口における濃度が IDLH(急性 の毒性限界濃度(30 分曝露によって生命及び健康 に対する即時の危険な影響を与える曝露レベルの
火山	降下火砕物による中央制 御室内環境への影響	濃度限界値))以下となるため、外気遮断運転の 有無によらず問題とはならない。 外部火災以外の有毒ガスについても、敷地外有 毒ガス及び敷地内屋内貯蔵有毒物質が影響を及ぼ すことなく、敷地内屋外設備からの有毒ガス、窒 素ガスの濃度は外気取入口において判定基準以下 となるため、同様に外気遮断運転の有無によらず 問題とはならない。(詳細については、設置許可 基準規則第6条「外部からの衝撃による損傷の防 止(外部火災))」,設置許可基準規則第6条「外 部からの衝撃による損傷の防止(有毒ガス)」, 外部からの衝撃による損傷の防止(火山)」に関 する審査資料を参照)
凍結	低温による中央制御室内 環境への影響	中央制御室の換気系により環境温度が維持される 環境温度が維持されるため、中央制御室内環境へ の影響はない。(詳細については、設置許可基準 規則第6条「外部からの衝撃による損傷の防止(凍 結)」に関する審査資料を参照)

第3.4-1図 運転モード毎の中央制御室換気系系統概略図

【補足1】外気隔離時の中央制御室の酸素及び二酸化炭素濃度の評価について

(設計基準事故時)

1. 概要

「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第 38条,第13項に規定する「換気設備の隔離その他の適切な防護措置」として, 中央制御室換気設備は,隔離弁を閉操作することにより外気から遮断し閉回 路循環方式とすることができる。

設計基準事故が発生時において,隔離弁を閉操作し,外気から隔離した場 合の中央制御室の居住性について,以下のとおり評価した。

2. 評価

外気隔離時の中央制御室内に滞在する運転員の操作環境の悪化防止のため, 酸素濃度及び二酸化炭素濃度について評価を行った。

- (1) 酸素濃度
 - a. 評価条件

「空気調和・衛生工学便覧 第14版 3空気調和設備編」,「原子力発 電所中央制御室運転員の事故時被ばくに関する規程(JEAC

4622-2009)」に基づき評価した。

- ·滞在人員7名
- ・中央制御室バウンダリ容積:2,700m³
- 初期酸素濃度:20.95%
- ・空気流入率: 0.4回/h(平成 27年2月25日~26日に実施した中央制御室空気流入率測定試験結果 A系: 0.468回/h(±0.015), B系:
 0.435回/h(±0.015)を基に設定)
- ・1人当りの呼吸量は,事故時の運転操作を想定し,歩行時の呼吸量を 適用して,24L/min/人とする。
- ・1 人当りの酸素消費量は,呼気酸素濃度を 16.40% として, 1.092L/min

/人 (=0.06552 m^3 /h/人)

・1時間当たりの酸素消費量は,

0.45864[m³/h] = 0.06552[m³/h/人]×7[名]

- ・許容酸素濃度:19%以上(鉱山保安法施行規則から)
- b.酸素濃度の計算式

中央制御室の平衡状態における酸素濃度の計算式を以下に示す。

 $\mathbf{C}_{\infty} = \mathbf{C}_{0} - \{\mathbf{M} \neq (\mathbf{N} \cdot \mathbf{V})\}$

M:室内酸素消費量(m³/h)

V:中央制御室バウンダリ体積(m³)

C_∞: 平衡状態における室内の酸素濃度(-)

C₀:外気の酸素濃度(-)

N:空気流入率(回/h)

c. 酸素濃度評価結果

 $C_{\infty} = 0.2095 - \{0.45864 / (0.4 \times 2700)\}$

 $=0.209075 \approx 20.90\%$

以上のとおり,閉回路循環方式の中央制御室の酸素濃度は19%以上を満 足しているため,中央制御室での作業環境に影響を与えない。

(2) 二酸化炭素濃度

a. 評価条件

「空気調和・衛生工学便覧 第14版 3 空気調和設備編」,「原子力発 電所中央制御室運転員の事故時被ばくに関する規程(JEAC 4622-2009)」に基づき評価した。

・滞在人員:7名

- ・中央制御室バウンダリ容積:2,700m³
- 初期二酸化炭素濃度:0.03%
- ・空気流入率: 0.4回/h(平成 27年2月25日~26日に実施した中央制御室空気流入率測定試験結果 A系: 0.468回/h(±0.015), B系:
 0.435回/h(±0.015)を基に設定)
- ・1人当りの二酸化炭素吐出量は,事故時の運転操作を想定し,中等作業での吐出量を適用して,0.046[m³/h/人]とする。
- ・1時間当たりの二酸化炭素吐出量は,
 - 0.322[m³/h] = 0.046[m³/h/人]×7[名]
- ・許容二酸化炭素濃度は、0.5%以下
- b. 二酸化炭素の計算式

中央制御室の平衡状態における二酸化炭素の計算式を以下に示す。

 $\mathbf{C}_{\infty} = \mathbf{C}_{0} + \{\mathbf{M} \neq (\mathbf{N} \cdot \mathbf{V})\}$

M:室内二酸化炭素発生量(m³/h)

V:中央制御室バウンダリ体積 (m³)

C_∞:平衡状態における室内の二酸化炭素濃度(-)

C₀:外気の二酸化炭素濃度(-)

N:空気流入率(回/h)

c. 評価結果

 $C_{\infty} = 0.0003 + \{0.322 / (0.4 \times 2700)\}$

 $=0.000599 \approx 0.06\%$

以上のとおり,閉回路循環方式の中央制御室の二酸化炭素濃度は0.5% 以下を満足しているため,中央制御室での作業環境に影響を与えない。 【補足2】外気隔離時の中央制御室の酸素及び二酸化炭素濃度の評価について

(重大事故時)

1. 概要

「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第 38条,第13項に規定する「換気設備の隔離その他の適切な防護措置」として, 重大事故発生時において中央制御室換気設備は,隔離弁を閉操作することに より外気から遮断し閉回路循環方式とすることができる。

設計基準事故が発生時において,隔離弁を閉操作し,外気から隔離した場 合の中央制御室の居住性について,以下のとおり評価した。

重大事故が発生時において,隔離弁を閉操作し,外気から隔離した場合の 中央制御室の居住性について,以下のとおり評価した。

2. 評価

外気隔離時の中央制御室内に滞在する運転員の操作環境の悪化防止のため, 酸素濃度及び二酸化炭素濃度について評価を行った。

- (1) 酸素濃度
 - a. 評価条件

「空気調和・衛生工学便覧 第14版 3空気調和設備編」,「原子力発 電所中央制御室運転員の事故時被ばくに関する規程(JEAC4622-2009)」 に基づき評価した。

- ・滞在人員 11 名
- ・中央制御室バウンダリ容積:2,700m³
- ·初期酸素濃度:20.95%
- ・空気流入率:0.4回/h(平成27年2月25日~26日に実施した中央 制御室空気流入率測定試験結果 A系:0.468回/h(±0.015), B系:
 0.435回/h(±0.015)を基に設定)
- ・1人当りの呼吸量は、事故時の運転操作を想定し、歩行時の呼吸量を

用して,24L/min/人とする。

- ・1 人当りの酸素消費量は、呼気酸素濃度を 16.40%として、1.092L/min
 /人(=0.06552m³/h/人)
- ・1時間当たりの酸素消費量は,

0.72072[m³/h]=0.06552[m³/h/人]×11[名]

- ・許容酸素濃度:19%以上(鉱山保安法施行規則から)
- b. 酸素濃度の計算式

中央制御室の平衡状態における酸素濃度の計算式を以下に示す。

 $\mathbf{C}_{\infty} = \mathbf{C}_{0} - \{\mathbf{M} \neq (\mathbf{N} \cdot \mathbf{V})\}$

M:室内酸素消費量(m³/h)

- V:中央制御室バウンダリ体積(m³)
- C_∞:平衡状態における室内の酸素濃度(-)

C₀:外気の酸素濃度(-)

N:空気流入率(回/h)

c.酸素濃度評価結果

 $C_{\infty} = 0.2095 - \{0.72072 / (0.4 \times 2700)\}$

 $=0.208166 \approx 20.81\%$

以上のとおり,閉回路循環方式の中央制御室の酸素濃度は19%以上を満 足しているため,中央制御室での作業環境に影響を与えない。

- (2) 二酸化炭素濃度
 - a. 評価条件

「空気調和・衛生工学便覧 第14版 3空気調和設備編」,「原子力発

電所中央制御室運転員の事故時被ばくに関する規程(JEAC4622-2009)」 に基づき評価した。

- ·滞在人員:11名
- ・中央制御室バウンダリ容積:2,700m³
- 初期二酸化炭素濃度:0.03%
- ・空気流入率: 0.4回/h(平成27年2月25日~26日に実施した中央制御室空気流入率測定試験結果 A系: 0.468回/h(±0.015), B系:
 0.435回/h(±0.015)を基に設定)
- ・1人当りの二酸化炭素吐出量は,事故時の運転操作を想定し,中等作 業での吐出量を適用して,0.046[m³/h/人]とする。
- ・1時間当たりの二酸化炭素吐出量は,
 0.506[m³/h]=0.046[m³/h/人]×11[名]
- ・許容二酸化炭素濃度は、0.5%以下
- b. 二酸化炭素の計算式

中央制御室の平衡状態における二酸化炭素の計算式を以下に示す。

 $\mathbf{C}_{\infty} = \mathbf{C}_{0} + \{\mathbf{M} \nearrow (\mathbf{N} \cdot \mathbf{V})\}$

M: 室内二酸化炭素発生量 (m³/h)

V:中央制御室バウンダリ体積(m³)

C_∞:平衡状態における室内の二酸化炭素濃度(-)

C₀:外気の二酸化炭素濃度(-)

N:空気流入率(回/h)

c. 評価結果

 $C_{\infty} = 0.0003 + \{0.506 / (0.4 \times 2700)\}$

 $=0.000769 \approx 0.08\%$

以上のとおり,閉回路循環方式の中央制御室の二酸化炭素濃度は0.5% 以下を満足しているため,中央制御室での作業環境に影響を与えない。 3.5 中央制御室待避室のデータ表示装置で確認できるパラメータ

第3.5-1表 データ表示装置(待避室)で確認できるパラメータ

(1/6)

目的	対象パラメータ
	APRM レベル平均
	APRM レベル A
	APRM レベル B
	APRM レベル C
	APRM レベル D
	APRM レベル E
	APRM レベル F
炉心反応度の状態確認	SRNM 計数率 CH. A
	SRNM 計数率 CH. B
	SRNM 計数率 CH. C
	SRNM 計数率 CH. D
	SRNM 計数率 CH. E
	SRNM 計数率 CH. F
	SRNM 計数率 CH. G
	SRNM 計数率 CH. H
	原子炉水位(狭带域)
	原子炉水位(広帯域)
	原子炉水位(燃料域)
	原子炉水位(SA 広帯域)
	原子炉水位(SA燃料域)
	原子炉圧力
后心没却不快能难到	原子炉圧力(SA)
炉心帘却00扒態確認	高圧炉心スプレイ系系統流量
	低圧炉心スプレイ系系統流量
	原子炉隔離時冷却系系統流量
	残留熱除去系系統流量 A
	残留熱除去系系統流量 B
	残留熱除去系系統流量 C
	逃がし安全弁出口温度

目的	対象パラメータ	
炉心冷却の状態確認	原子炉再循環ポンプ入口温度	
	原子炉給水流量	
	原子炉圧力容器温度	
	残留熱除去系熱交換器入口温度	
	高圧代替注水系系統流量	
	低圧代替注水系原子炉注水流量	
	代替循環冷却系原子炉注水流量	
	代替淡水貯槽水位	
	6.9kV 母線 2A-1 電圧	
	6.9kV 母線 2A-2 電圧	
	6.9kV 母線 2B-1 電圧	
	6.9kV 母線 2B-2 電圧	
	6.9kV 母線 2C 電圧	
	6.9kV 母線 2D 電圧	
	6.9kV 母線 HPCS 電圧	
	D/G 2C 遮断器(660)閉	
	D/G 2D 遮断器(670)閉	
	HPCS D/G 遮断器(680)閉	
	圧力容器フランジ温度	
	125VDC 2A 母線電圧	
	125VDC 2A 母線電圧	
	6.9kV 緊急用母線電圧	
	480V 緊急用母線電圧	

: S A範囲

目的	対象パラメータ	
	格納容器雰囲気放射線モニタ(D/W)(A)	
	格納容器雰囲気放射線モニタ(D/W)(B)	
	格納容器雰囲気放射線モニタ(S/C)(A)	
	格納容器雰囲気放射線モニタ(S/C)(B)	
	ドライウェル圧力(広帯域)	
	ドライウェル圧力(狭帯域)	
	ドライウェル圧力	
	サプレッション・チェンバ圧力	
	サプレッション・プール圧力	
	ドライウェル雰囲気温度	
	サプレッション・プール水温度(平均値)	
	サプレッション・プール水温度	
	サプレッション・プール雰囲気温度	
	サプレッション・チェンバ雰囲気温度	
	サプレッション・プール水位	
	格納容器雰囲気水素濃度(D/W)(A)	
格納容器内の状態確認	格納容器雰囲気水素濃度(D/W)(B)	
	格納容器雰囲気水素濃度(S/C)(A)	
	格納容器雰囲気水素濃度(S/C)(B)	
	格納容器雰囲気酸素濃度(D/W)(A)	
	格納容器雰囲気酸素濃度(D/W)(B)	
	格納容器雰囲気酸素濃度(S/C)(A)	
	格納容器雰囲気酸素濃度(S/C)(B)	
	格納容器内水素濃度(SA)	
	格納容器内酸素濃度(SA)	
	低圧代替注水系格納容器スプレイ流量	
	低圧代替注水系格納容器下部注水流量	
	代替循環冷却系格納容器スプレイ流量	
	格納容器下部水位	
	常設高圧代替注水系ポンプ吐出圧力	
	常設低圧代替注水系ポンプ吐出圧力	
	代替循環冷却系ポンプ吐出圧力	
	原子炉隔離時冷却系ポンプ吐出圧力	

·_____: SA範囲
目的	対象パラメータ
	高圧炉心スプレイ系ポンプ吐出圧力
	残留熱除去系ポンプ吐出圧力
	低圧炉心スプレイ系ポンプ吐出圧力
	代替循環冷却系ポンプ入口温度
	残留熱除去系熱交換器出口温度
格納容器内の状態確認	残留熱除去系海水系系統流量
	残留熱除去系 A 注入弁全開
	残留熱除去系 B 注入弁全開
	残留熱除去系 C 注入弁全開
	格納容器内スプレイ弁 A (全開)
	格納容器内スプレイ弁 B (全開)
	主排気筒放射線モニタA
	主排気筒放射線モニタ B
	主排気筒モニタ (高レンジ)
	主蒸気管放射線モニタA
	主蒸気管放射線モニタ B
	主蒸気管放射線モニタC
	主蒸気管放射線モニタ D
	排ガス放射能(プレホールドアップ)A
	排ガス放射能(プレホールドアップ)B
放射能隔離の状態確認	NS4 内側隔離
	NS4 外側隔離
	主蒸気内側隔離弁 A 全閉
	主蒸気内側隔離弁 B 全閉
	主蒸気内側隔離弁C全閉
	主蒸気内側隔離弁 D 全閉
	主蒸気外側隔離弁 A 全閉
	主蒸気外側隔離弁 B 全閉
	主蒸気外側隔離弁C全閉
	主蒸気外側隔離弁 D 全閉
環境の情報確認	SGTS A 作動
	SGTS B 作動

- - -

Г

59-9-102

4

(5/6)

目的	対象パラメータ
環境の情報確認	SGTS モニタ(高レンジ)A
	SGTS モニタ(高レンジ)B
	SGTS モニタ(低レンジ)A
	SGTS モニタ(低レンジ)B
	耐圧強化ベント系放射線モニタ
	放水口モニタ(T-2)
	モニタリングポスト(A)
	モニタリングポスト(B)
	モニタリングポスト(C)
	モニタリングポスト(D)
	モニタリングポスト(A)広域レンジ
	モニタリングポスト(B)広域レンジ
	モニタリングポスト(C)広域レンジ
	モニタリングポスト(D)広域レンジ
	大気安定度 10分值
	18m ベクトル平均風向 10 分値
	71m ベクトル平均風向 10 分値
	140m ベクトル平均風向 10 分値
	18m ベクトル平均風速 10 分値
	71m ベクトル平均風速 10 分値
	140m ベクトル平均風速 10 分値
	使用済燃料プール水位・温度 (SA 広域)
田文牌灯 - 小の単能 本辺	使用済燃料プール水位・温度 (SA)
ビ用	使用済燃料プール温度
	使用済燃料プールエリア放射線モニタ(高レンジ・低レンジ)
	フィルタ装置出口放射線モニタ(高レンジ・低レンジ)
	フィルタ装置入口水素濃度
水素爆発による格納容器の破 損防止確認	フィルタ装置圧力
42 C 12 A ILINA ILIT.	フィルタ装置水位
	フィルタ装置スクラビング水温度
水素爆発による原子炉建屋の	原子炉建屋水素濃度
損傷防止確認	静的触媒式水素再結合器動作監視装置

Г

		(07
目的	対象パラメータ	
	自動減圧系 A 作動	
	自動減圧系 B 作動	
	原子炉隔離時冷却系ポンプ起動	
	高圧炉心スプレイ系ポンプ起動	
	高圧炉心スプレイ系注入弁全開	
	低圧炉心スプレイ系ポンプ起動	
非常用炉心冷却系(ECCS)の状	低圧炉心スプレイ系注入弁全開	
態等	残留熱除去系ポンプA起動	
	残留熱除去系ポンプ B 起動	
	残留熱除去系ポンプC起動	
	残留熱除去系注入弁全開	
	残留熱除去系注入弁全開	
	残留熱除去系注入弁全開	
	全制御棒全挿入	
ンサ. V+P. IF/L - 4日	取水ピット水位	
律波監視	潮位	

·_____: : S A範囲

59-10

原子炉制御室の居住性<mark>(重大事故)</mark>

に係る被ばく評価について

目	欠
---	---

中央制御室の居住性(重大事故)に係る被ばく評価について 59-10-1 1. 評価事象 59-10-1 2. 大気中への放出量の評価 59-10-2 3. 大気拡散の評価 59-10-2
4 原子炬建屋内の放射性物質からのガンマ線の評価 59-10-2
5. 中央制御室の居住性に係る被ばく評価
5.1 中央制御室内での被ばく 59-10-3 5.1.1 原子炉建屋からのガンマ線による被ばく(経路①) 59-10-3 5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく(経路②) 59-10-4
5.1.3 室内に外気から取り込まれた放射性物質による被ばく(経路③)
 5.2 入退域時の被ばく評価
■ 添付資料 中央制御室の居住性(重大事故)に係ろ被げく評価について
1 中央制御室の居住性(重大事故対策)に係る被ばく評価条件
2 事家の速足の与え方について
3 格納容器漏えい率の設定について
4 格納容器内での除去効果について
6.サプレッシュン・プールでのスクラビングによる除主効果(無機よう表)
について
7格納容器外への核分裂生成物の放出割合の設定について地表面への沈着速度
の設定について59-10-添 7-1
の設定について59-10-添 7-1 8 重大事故時の居住性評価(被ばく評価)に用いる大気拡散の評価について 59-10-添 8-1
の設定について59-10-添 7-1 8 重大事故時の居住性評価(被ばく評価)に用いる大気拡散の評価について 59-10-添 8-1 9 フィルタの除去性能について
の設定について
の設定について
の設定について
の設定について
 の設定について

16 地表面への沈着速度の設定について
17 有機よう素の乾性沈着速度について
18 審査ガイド ^{※1} への適合状況
※1 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に
係る被ばく評価に関する審査ガイド

中央制御室の居住性(重大事故)に係る被ばく評価について

重大事故が発生した場合の中央制御室の居住性に係る被ばく評価に当たっ ては、「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド」(以下「審査ガイド」という。)に 基づき、評価を行った。

(実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈第59条より抜粋)

【実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する 規則の解釈】第59条(原子炉制御室)第1項

b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性について, 次の要 件を満たすものであること。

- ①本規程第37条の想定する格納容器破損モードのうち,原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば,炉心の著しい損傷の後,格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能した場合)を想定すること。
- ② 運転員はマスクの着用を考慮してもよい。ただし、その場合は実施のための 体制を整備すること。
- ③ 交代要員体制を考慮してもよい。ただし、その場合は実施のための体制を整 備すること。
- ④ 判断基準は,運転員の実効線量が7日間で100mSvを超えないこと。

1. 評価事象

東海第二発電所においては、「想定する格納容器破損モードのうち,中央制 御室の運転員の被ばく低減の観点から結果が最も厳しくなる事故収束に成功 した事故シーケンス」である「雰囲気圧力・温度による静的負荷(格納容器

59-10-2-1

過圧・過温破損)」で想定される事故シーケンスにおいても,格納容器ベント の回避若しくは格納容器ベントの実施時期を遅延させることができる代替循 環冷却系を整備する。しかし,被ばく評価においては,中央制御室の居住性 評価を厳しくする観点から,代替循環冷却系を使用せず,早期の格納容器圧 力逃がし装置による格納容器ベントを実施した場合を想定する。

2. 大気中への放出量の評価

放射性物質については,上記 2.1 で示した事故シーケンスを想定し,格納容器から格納容器圧力逃がし装置への流入量及び格納容器から原子炉建屋原子炉棟への漏えい量をMAAP解析及びNUREG-1465の知見を用いて評価した。ただし,MAAPコードでは,よう素の化学組成は考慮されないため, 粒子状よう素,無機よう素及び有機よう素については,R.G.1.195の知見を用いて評価した。

3. 大気拡散の評価

被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い実効放出 継続時間を基に計算した結果を年間について小さい方から順に並べた累積出 現頻度 97%に当たる値を用いた。評価においては、2005年4月~2006年3月 の1年間における気象データを使用した。なお、当該データの使用に当たっ ては、当該1年間の気象データが長期間の気象状態を代表しているかどうか の検討をF分布検定により実施し、特に異常でないことを確認している。

4. 原子炉建屋内の放射性物質からのガンマ線の評価

原子炉建屋原子炉棟内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による運転員の実効線量は,施設の位置,建屋の配置,形状等から

評価した。直接ガンマ線についてはQAD-CGGP2Rコード,スカイシャ インガンマ線についてはANISNコード及びG33-GP2Rコードを用い て評価した。

5. 中央制御室の居住性に係る被ばく評価

被ばく評価に当たって考慮している被ばく経路(①~⑤)は第 5-1 図に示す とおりである。それぞれの経路における評価方法及び評価条件は以下に示す とおりである。

中央制御室等の運転員に係る被ばく評価期間は事象発生後7日間とした。

運転員勤務体系としては、5 直 2 交替とし、被ばく線量が最も厳しくなる運転員の勤務体系を考慮して、7 日間の積算線量を中央制御室の滞在期間及び 入退域に要する時間の割合で配分する。また、保守的に格納容器ベント開始 1 時間前から 12 時間は中央制御室に滞在するものとした。想定する勤務体系 を第 5-1 表に示す。

第5-1表 想定する勤務体系

事象発生から	①事象発生~	②約 <mark>18</mark> 時間後~	③約 <mark>30</mark> 時間後~
の時間	約 <mark>18</mark> 時間後	約 <mark>30</mark> 時間後	168 時間後
勤務形態	5直2交替	中央制御室に常時滞在	

5.1 中央制御室内での被ばく

5.1.1 建屋からのガンマ線による被ばく(経路①)

事故期間中に原子炉建屋原子炉棟内に存在する放射性物質からの直接 ガンマ線及びスカイシャインガンマ線による中央制御室内での運転員の 外部被ばくは、前述 4. の方法で実効線量を評価した。 5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく(経路②)

大気中へ放出された放射性物質からのガンマ線による中央制御室内で の外部被ばくは,事故期間中の大気中への放射性物質の放出量を基に大気 拡散効果と中央制御室の壁によるガンマ線の遮蔽効果を踏まえて運転員 の実効線量を評価した。

また,地表面に沈着した放射性物質からのガンマ線についても考慮して 評価した。

5.1.3 室内に外気から取り込まれた放射性物質からのガンマ線による被ばく

(経路③)

事故期間中に大気中へ放出された放射性物質の一部は外気から中央制御 室内に取り込まれる。中央制御室内に取り込まれた放射性物質のガンマ線 による外部被ばく及び放射性物質の吸入摂取による内部被ばくの和とし て実効線量を評価した。なお、内部被ばくの評価に当たってはマスクの着 用による防護係数を考慮した。

評価に当たっては、(1) ~ (4) に示す中央制御室換気系の効果及び中 央制御室に設置する待避室の効果等を考慮した。なお、中央制御室換気系 の起動時間については、全交流動力電源喪失を想定した起動時間を考慮し た評価とした。また、待避室の遮蔽効果は、待避室に待避する期間のみに ついて考慮した評価とした。中央制御室内での対応のタイムチャートを第 5.1.3-1 図に示す。

(1) 中央制御室換気運転モード

中央制御室換気系の運転モードを以下に示す。具体的な系統構成は第 2.5.1.3-2 図に示すとおりである。

1) 通常時運転モード

通常時は、中央制御室空気調和機ファン及び中央制御室排気用ファ ンにより、一部外気を取り入れる再循環方式によって中央制御室の空 気調節を行う。

2) 事故時運転モード

事故時は,外気取入口を遮断して,中央制御室フィルタ系ファンに よりフィルタユニット(高性能粒子フィルタ及びチャコールフィルタ) を通した閉回路循環運転とし,運転員を放射線被ばくから防護する。

なお,外気の遮断が長期にわたり,室内環境が悪化した場合には, チャコールフィルタにより外気を浄化して取り入れることもできる。

(2) フィルタを通らない空気流入量

中央制御室へのよう素除去フィルタを通らない空気の流入量は,空気 流入率測定試験結果を踏まえて保守的に換気率換算で1.0回/hと仮定 して評価した。

(3) 待避室

中央制御室内に設置する待避室には,格納容器ベント開始から5時間待 避すると想定する。待避中は待避室内を空気ボンベにより加圧し室内を 正圧にするものとし,外部からの空気の流入はないものとして評価した。 待避室の概要図及び設置場所を第5.1.3-3 図に示す。

(4) マスクの考慮

事象発生から3時間後まではマスクを着用(DF50)すると想定した。

- 5.2 入退域時の被ばく
- 5.2.1 建屋内からのガンマ線による被ばく(経路④)

事故期間中に原子炉建屋原子炉棟内に存在する放射性物質からの直接 ガンマ線及びスカイシャインガンマ線による入退域時の運転員の外部被 ばくは、中央制御室の壁等によるガンマ線の遮へい効果を期待しないこと 以外は、「5.1.1 建屋からのガンマ線による被ばく(経路①)」と同様な手 法で実効線量を評価した。

入退域時の運転員の実効線量の評価に当たっては,周辺監視区域境界から中央制御室出入口までの運転員の移動経路を対象とし,代表評価点は, サービス建屋入口とした。

5.2.2 大気中へ放出された放射性物質による被ばく(経路⑤)

大気中へ放出された放射性物質からのガンマ線による入退域時の外部被 ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外 は「5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく(経路 ②)」と同様な手法で、吸入摂取による内部被ばくは中央制御室の換気系に 期待しないこと以外は「5.1.3 室内に外気から取り込まれた放射性物質に よる被ばく(経路③)」と同様な方法で放射性物質からのガンマ線による外 部被ばく及び吸入摂取による内部被ばくの和として運転員の実効線量を評 価した。内部被ばくの評価に当たってはマスクの着用による防護係数を考 慮した。また、地表面に沈着した放射性物質からのガンマ線についても考 慮して評価した。

入退域時の運転員の実効線量の評価に当たっては,上記 5.2.1の仮定と 同じである。

第 5-1 図 重大事故時の中央制御室居住性評価における想定被ばく経路

第5.1.3-1 図 中央制御室内での対応のタイムチャート

重大事故時【格納容器ベント実施中】 (空気ボンベ加圧)

※ 格納容器ベント実施後,中央制御室内の線量が下がるまでは,中央制御室内の待 避室に滞在するものとし,待避室内を空気ボンベにより加圧する。

第5.1.3-3 図 待避室の概要図及び設置場所

6. 評価結果のまとめ

1. に示したとおり、東海第二発電所において重大事故が発生したと想定す る場合、第一に代替循環冷却系を用いて事象を収束することになるが、被ば く評価においては、中央制御室の居住性評価を厳しくする観点から、代替循 環冷却系を使用せず、格納容器圧力逃がし装置を用いた格納容器ベントを想 定した。この想定に基づく、中央制御室の居住性(重大事故時)に係る被ば く評価結果は、第6-1表に示すとおり、実効線量が7日間で約57mSvである。

したがって,評価結果は,「判断基準は,運転員の実効線量が7日間で100mSv を超えないこと」を満足している。なお、マスクを着用しない場合は実効線 量は7日間で約 260mSv である。

この評価に係る被ばく経路イメージを第6-2表に,被ばく評価の主要条件 を第6-3表に示す。

第6-1表 中央制御室の居住性(重大事故時)に係る被ばく評価結果

())////		~ >
(曲位	٠	mSv)
(<u>+</u>) <u></u>	•	IIIOV/

被ばく経路		実効線量(7日間)		
		マスクあり	マスクなし	
	①建屋からのガンマ線による被ばく	約 2.7×10 ⁻¹	約 2.7×10 ⁻¹	
	②大気中へ放出された放射性物質のガ			
中	ンマ線による被ばく	新J 9. 2 × 10°	赤り 9. 2 ヘ 10	
労制	③室内に外気から取り込まれた放射性	<u>※午 9 9 × 101</u>	$\frac{1}{2}$	
御室	物質による被ばく	赤り Z. Z 木 10 ⁻	ポリ 2・1 × 10 ⁻	
三内	(内訳) 内部被ばく	<mark>約 1.1×10¹</mark>	<mark>約 2.0×10²</mark>	
作業	外部被ばく	<mark>約 1.1×10¹</mark>	<mark>約 1.1×10¹</mark>	
未時	②大気中へ放出され,地表面に沈着した	$\frac{100}{100}$	$\frac{100}{100}$	
	放射性物質のガンマ線による被ばく	赤り 5. 9 × 10	赤り 5. 9 × 10	
	小 計 (①+②+③)	<mark>約 3.5×10¹</mark>	<mark>約 2.3×10²</mark>	
	④建屋からのガンマ線による被ばく	<mark>約 1.6×10⁻¹</mark>	<mark>約 1.6×10⁻¹</mark>	
	⑤大気中へ放出された放射性物質によ	$\frac{1}{10}$	$\frac{1}{1}$ $\frac{1}{2}$ \times 10 ¹	
7	る被ばく	赤り 4. 4 ヘ 10	ポリ 1.3 × 10 ⁻	
八退城時	(内訳) 内部被ばく	<mark>約 2.6×10⁻¹</mark>	<mark>約 1.3×10¹</mark>	
	外部被ばく	<mark>約 1.8×10⁻¹</mark>	<mark>約 1.8×10⁻¹</mark>	
	⑤大気中へ放出され,地表面に沈着した	$\frac{1}{1}$	$\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{10}$	
	放射性物質のガンマ線による被ばく	赤り 2.1 ヘ10	<u>ポリ Z. 1 × 10⁻</u>	
	小 計 (④+⑤)	<mark>約 2.2×10¹</mark>	<mark>約 3.5×10¹</mark>	
合 計 (①+②+③+④+⑤)		<mark>約 5.7×10¹</mark>	<mark>約 2.6×10²</mark>	

第6-2表 中央制御室の居住性(重大事故)に係る被ばく経路イメージ

	①原子炉建屋内の放射性物質からのガンマ線による被ばく (直接及びスカイシャインガンマ線による外部被ばく)
中央制御室内での被ばく	②大気中へ放出された放射性物質からのガンマ線による被ばく (クラウドシャイン及びグランドシャインによる外部被ばく)
	③外気から中央制御室内へ取り込まれた放射性物質による被ばく (吸入摂取による内部被ばく、室内に浮遊している放射性物質による外部被ばく)
	④原子炉建屋内の放射性物質からのガンマ線による被ばく (直接及びスカイシャインガンマ線による外部被ばく)
入退域での被ばく	⑤大気中へ放出された放射性物質による被ばく (クラウドシャイン、グランドシャイン及びよう素フィルタからのガンマ線による外部 被ばく、吸入摂取による内部被ばく)

(1) 閉回路循環運転

第6-3表 中央制御室の居住性(重大事故)に係る被ばく評価の

<mark>主要評価条件</mark>

項目		評価条件	選定理由
放 出 放	評価事象	「大破断LOCA+高圧炉心冷却失敗 +低圧炉心冷却失敗+全交流動力電源 喪失」 (代替循環冷却系を使用しない場合)	審査ガイドに示されたとおり設定 (添付2参照)
<u></u> 射能量評価	非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	<mark>事象発生から2時間後</mark>	起動操作時間(115分)+負圧達成 時間(5分)(起動に伴い原子炉建 屋内は負圧になるが,保守的に負圧 達成時間として5分を想定)
二条 件	事故の評価期間	<mark>7 日間</mark>	審査ガイドに示す7日間における運 転員の実効線量を評価する観点か <mark>ら</mark> 設定
大気拡散条件	放出源及び 放出源高さ	放出源:原子炉建屋からの放出(地上 高 0m),格納容器圧力逃がし装置排気 口放出(地上高 55m)及び非常用ガス 処理系出口(地上高 148m)	原子炉建屋放出及び格納容器圧力 逃がし装置排気口放出時の高さは 保守的に地上放出として地上高 0m で設定 非常用ガス処理系からの放出時は 排気筒高さとして地上 148m に設定
	 中央制御室非常 用循環設備よう 素フィルタによ る除去効率 	<mark>95%</mark>	フィルタユニットの設計値 (チャコ ールフィルタ効率 : 97%) を保守的 に設定(添付 9, 10 参照)
	中央制御室非常 用換気系微粒子 フィルタによる 除去効率	<mark>99. 9%</mark>	フィルタユニットの設計値(高性能 粒子フィルタ:99. 97%)を保守的 に設定(添付 9, 10 参照)
	中央制御室非常 用換気系の起動 時間	事象発生から2時間	全交流動力電源喪失を考慮し,代替 電源からの電源供給開始時間から 設定
	空気流入率	<mark>1 回/h</mark>	非常用換気系作動時の空気流入率 測定試験結果の結果である 0.45 回 /hに対して保守的に1回/hと設定 (添付11参照)
板 ば く 評 価 条	<mark>マスクによる</mark> 防護係数	マスク着用を考慮する場合は事象発生 から3時間及び入退域時:50 (その他の期間及びマスク着用を考慮 しない場合は評価期間中常時マスク着 用なし)	中央制御室非常用換気系作動前及 び中央制御室内の放射性物質濃度 が下がるまでの時間についてマス クの着用を考慮。(添付 12 参照)
件	<mark>待避室</mark> 加圧開始時間	<mark>事象発生から約 19 時間後</mark> (ベント開始時)	格納容器圧力逃がし装置により放 出される放射性物質からの被ばく を防護するために待避室に待避す ると想定
	<mark>待避室加圧時間</mark>	<mark>ベント開始から 5 時間</mark>	中央制御室内に流入した放射性物 質からの影響を十分に防護できる 時間として設定
	<mark>地表面への</mark> 沈着速度	エアロゾル:1.2 cm/s 無機よう素:1.2 cm/s 有機よう素:4.0×10 ⁻³ cm/s 希ガス:沈着無し	線量目標値評価指針を参考に,湿性 沈着を考慮して乾性沈着速度 (0.3cm/s)の4倍を設定。 エアロゾル及び無機よう素の乾性 沈着速度はNUREG/CR-4551Vol.2よ り設定 有機よう素の乾性沈着速度は NRPB-R322より設定 (添付13,14,15参照)

詳細な評価条件は添付1参照

- 添付資料 中央制御室の居住性(重大事故)に係る被ばく評価につい て
- 1 中央制御室の居住性(重大事故対策)に係る被ばく評価条件

重大事故時における中央制御室の居住性に係る被ばく評価条件に ついて,第1-1表~第1-10表に示す。

- 第 1-1 表 大気中への放出放射能量評価条件
- 第1-2表 大気中への放出放射能量評価結果(7日積算)
- 第 1-1 図 放射性物質の大気放出過程
- 第 1-3 表 大気拡散条件
- 第1-4表 相対濃度及び相対線量
- 第1-5表 直接ガンマ線及びスカイシャインガンマ線の評価条件
- 第 1-6 表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる エネルギ群別ガンマ線積算線源強度
- 第 1-<mark>2</mark>図 直接ガンマ線及びスカイシャインガンマ線の計算モデル
- 第 1-7 表 中央制御室換気設備条件
- 第1-8表 中央制御室内待避室設備条件
- 第 1-9 表 運転員交替考慮条件
- 第1-10表線量換算係数,呼吸率及び地表への沈着速度の条件

項目	評価条件	選定理由	審査ガイドでの記載
評価事象	「大 <mark>破断</mark> LOCA+高圧炉心冷却失敗 +低圧炉心冷却失敗+全交流動力電源 喪失」(代替循環冷却系を使用しない場 合)	審査ガイドに示されたとおり設定 <mark>(添付2参照)</mark>	4.1(2)a. 原子炉制御室の居住性に係る 被ばく評価では,格納容器破損防止対策 の有効性評価で想定する格納容器破損 モードのうち,原子炉制御室の運転員又 は対策要員の被ばくの観点から結果が 最も厳しくなる事故収束に成功した事 故シーケンス(この場合,格納容器破損 防止対策が有効に働くため,格納容器は 健全である)のソースターム解析を基 に,大気中への放射性物質放出量及び原 子炉施設内の放射性物質存在量分布を 設定する。
炉心熱出力	3,293MW	定格熱出力	—
運転時間	1 サイクル当たり 10,000 時間(約 416 日)	1 サイクル 13 ヵ月(395 日)を考 慮して設定	_
取替炉心の装荷割 合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替燃料炉心の燃料装荷割合に基 づき設定	

第1-1表 大気中への放出放射能量評価条件(1/6)

項目	評価条件	選定理由	審査ガイドでの記載	
炉心内蔵量	ポー 希ガス類 C s I 類 C s OH類 S b 類 T e O 2 類 S r O 類 B a O 類 M o O 2 類 C e O 2 類 C e O 2 類 C e D 2 類 C e D 2 類 C m D m C m C m D m C m C m C m C m C m C m C m C	■ 「単位熱出力当たりの炉心内蔵量 (Bq/MW)」×「3293MW(定格熱出 力)」 (単位熱出力当たりの炉心内蔵量 (Bq/MW)は、BWR共通条件と して,東海第二と同じ装荷燃料(9 ×9燃料(A型)),運転時間 (10,000時間)で算出したABW Rのサイクル末期の値を使用)	4.3.(1)a. 希ガス類, ヨウ素類, Cs類, Te類, Ba類, Ru類, Ce類及びLa類を 考慮する。	
<mark>放出</mark> 開始時間	 本に果約して記載) 格納容器漏えい: 事象発生直後 A納容器ベント: 事象発生から約 19 	MAAP解析結果	4.3.(4)a. 放射性物質の大気中への放出 開始時刻及び放出継続時間は,4.1(2)a で選定した事故シーケンスのソースタ ーム解析結果を基に設定する。	
格納容器内 pH 制御 の効果	考慮しない	格納容器内 pH 制御設備は, 重大事 故等対処設備と位置付けていない ため,保守的に設定		
よう素の形態	粒子状よう素 : 5% 無機よう素 : 91% 有機よう素 : 4%	R.G.1.195 <mark>*1</mark> に基づき設定	 4.3(1) a. 原子炉格納容器への放出割合の設定に際し、ヨウ素類の性状を適切に 考慮する。 	

第1-1表 大気中への放出放射能量評価条件(2/6)

項目	評価条件	選定理由	審査ガイドでの記載
		MAAP解析にて格納容器の開口	4.3(3)e. 原子炉格納容器漏えい率は,
格納容器から原子		面積を設定し格納容器圧力に応じ	4.1(2)a で選定した事故シーケンスの事
炉建屋への漏えい	1Pd 以下: <mark>0.9</mark> Pd で 0.5%/day	漏えい率が変化するものとし、格	故進展解析結果を基に設定する。
率 (希ガス、エア	1Pd 超過:2Pd で 1.3%/day	納容器の設計漏えい率(<mark>0.9Pd で</mark>	
ロソル及び有機よ		0.5%/day)及びAECの式 <mark>等</mark> に	
<u>う素)</u>		 基づき設定 <mark>(添付 3 参照)</mark>	
		格納容器の設計漏えい率及びAE	
格納容器から原子		Cの式等に基づき設定 <mark>(格納容器</mark>	
炉建屋への漏えい	1.5h 後~19.5h 後:1.3%/ day	圧力が 0.9Pd を超える期間を包絡	
率 <mark>(無機よう素)</mark>	上記以外の期间:0.5%/ day	<mark>するように 1.3%/day の漏えい</mark>	
		率を設定)(添付3参照)	
			4.3(3)c. 原子炉格納容器スプレイの作
		MAAP <mark>のFP挙動モデル(添付</mark> <mark>4 参照)</mark>	動については, 4.1(2)a で選定した事故
格納容器内での除	MAAP解析に基づく <mark>(沈着,サプレ</mark>		シーケンスの事故進展解析条件を基に
去効果 <mark>(エアロゾ</mark>	<mark>ッション・プールでのスクラビング及</mark>		設定する。
<u>,レ)</u>	びドライウェルスプレイ)		4.3(3)d. 原子炉格納容器内の自然沈着
			率については、実験等から得られた適切
			なモデルを基に設定する。
格納容器内での除			
去効果 <mark>(有機よう</mark>	考慮しない	保守的に設定	—
素)			

第1-1表 大気中への放出放射能量評価条件(3/6)

項目	評価条件	選定理由	審査ガイドでの記載	
	自然沈着率:9.0×10 ⁻⁴ (1/s)	CSE実験 <mark>及び Standard Review</mark>	4.3(3)d. 原子炉格納容器内の自然沈着	
格納容器内での除	(格納容器内の最大存在量から	Plan 6.5.2 ^{※2} に基づき設定(添付	率については,実験等から得られた適切	
去効果 <mark>(無機よう</mark>	1/200 まで)	<mark>5 参照)</mark>	なモデルを基に設定する。	
素)	サプレッション・プールのスクラビン	Standard Review Plan 6.5.5 <mark>※3</mark> に		
	グ <mark>による除去</mark> 効果:10	基づき設定 <mark>(添付6参照))</mark>		
<mark>格納容器から原子</mark> 炉建屋への漏えい <mark>割合</mark>	希ガス類:約4.3×10 ⁻³ CsI類:約6.3×10 ⁻⁵ CsOH類:約3.2×10 ⁻⁵ Sb類:約6.8×10 ⁻⁶ TeO2類:約6.8×10 ⁻⁶ SrO類:約2.7×10 ⁻⁶ BaO類:約3.4×10 ⁻⁷ CeO2類:約6.8×10 ⁻⁸ La2O3類:約2.7×10 ⁻⁸	MAAP解析結果及びNUREG −1465 ^{※4} の知見に基づき設定 <mark>(添</mark> <mark>付7参照)</mark>		
原子炉建屋から <mark>大</mark> <mark>気へ</mark> の漏えい率 (非常用ガス処理 <mark>系</mark> 及びガス再循環 系 <mark>の起動前)</mark>	<mark>無限大</mark> /day(地上放出) (格納容器から原子炉建屋へ漏えいし た放射性物質は,即座に大気へ漏え いするものとして評価)	<mark>保守的に設定</mark>		

第 1-1 表 大気中への放出放射能量評価条件(4/6)

百日	亚屈冬州	湿 字 理 山	本本ガイドでの 記載
	計測未作	送足埕田 ————————————————————————————————————	番疽 ガイト ての記載
原子炉建屋から大			4.3(3)a. 非常用ガス処理系(BWR)
気への放出率(非		設計値に基づき設定	又はアニュラス空気浄化設備(PWR)
常用ガス処理系 <mark>及</mark>	1回/day(排気筒放出)	(非常用ガス処理系のファン容	の作動については, 4.1(2)a で選定した
<mark>び非常用ガス再循</mark>		量)	事故シーケンスの事故進展解析条件を
<mark>環系</mark> の起動後)			基に設定する。
		起動操作時間 <mark>(115 分)+負圧達</mark>	
非常用ガス処理系		<mark>成時間(5 分)(起動に伴い原子</mark>	
及び非常用ガス再	事象発生から2時間後	<mark>炉建屋内は負圧になるが,保守的</mark>	
循環系の起動時間		<mark>に負圧達成時間として 5 分を想</mark>	
		<mark>定)</mark>	
北岸田北フ加田文			4.3(3)b. ヨウ素類及びエアロゾルのフ
作品用ルイ処理系			ィルタ効率は、使用条件での設計値を基
及び非常用ガス再	老園したい	保守的に設定	に設定するたち、フィルタ効率の設定
循環系のフィルタ			
除丰动家			に際し、ヨウ素類の性状を適切に考慮す
			る。

第 1-1 表 大気中への放出放射能量評価条件(5/6)

項目	評価条件	選定理由	審査ガイドでの記載	
格納容器圧力逃 がし装置への放 出割合	希ガス類:約9.5×10 ⁻¹ CsI類:約1.1×10 ⁻⁶ CsOH類:約4.0×10 ⁻⁷ Sb類:約9.0×10 ⁻⁸ TeO2類:約9.0×10 ⁻⁸ SrO類:約3.6×10 ⁻⁸ BaO類:約3.6×10 ⁻⁹ CeO2類:約9.0×10 ⁻¹⁰ La2O3類:約3.6×10 ⁻¹⁰	MAAP解析結果及びNUREG -1465の知見に基づき設定 <mark>(添付 7</mark> <mark>参照)</mark>		
格納容器圧力逃 がし装置の除去 係数	希ガス:1 有機よう素:50 無機よう素:100 エアロゾル:1000	設計値に基づき設定		
事故の評価期間	7 日間	審査ガイドに示す7日間における 運転員の実効線量を評価する観点 から設定	 3. (解釈抜粋)第74条(原子炉制御室) 1 b) ④判断基準は,運転員の実効線 量が7日間で100mSvを超えないこと。 	
*1 Regulatory Guide 1.195, "Methods and Assumptions for Evaluationg Radiological Consequences of Desigh Basis Accidents a Light-Water Nuclear Power Reactors", May 2003				

第1-1表 大気中への放出放射能量評価条件(6/6)

🔆 🕺 🕺 🕺 🔆 🔆 🔆 Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007

💥 3 Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007

💥4 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants",1995

	1-2表 大気中への放け	出放射能量評価結果(7	日積算)			
技種	放出放射能[Bq](gross 值) [※]					
グループ	原子炉建屋から大気	格納容器圧力逃がし	△弐			
	中へ放出	装置を経由した放出				
希ガス類	約 3.6×10 ¹⁶	約8.9×10 ¹⁸	約 9.0×10 ¹⁸			
よう素類	約 2.8×10 ¹⁵	約7.3×10 ¹⁵	約 1.0×10 ¹⁶			
С s OH類	約 3.8×10 ¹³	約 5.0×10 ⁸	約 3.8×10 ¹³			
S b 類	約 4.5×10 ¹²	約 2.6×10 ⁷	約4.5×10 ¹²			
ТеО₂類	約 3.7×10 ¹³	約4.4×10 ⁸	約 3.7×10 ¹³			
S r O類	約 2.0×10 ¹³	約 1.7×10 ⁸	約 2.0×10 ¹³			
B a O類	約 2.0×10 ¹³	約 2.1×10 ⁸	約 2.0×10 ¹³			
M o O ₂類	約 6.9×10 ¹²	約8.4×107	約 6.9×10 ¹²			
СеО₂類	約 4.3×10 ¹²	約 5.5×10 ⁷	約4.3×10 ¹²			
L a 2O3類	約 1.2×10 ¹²	約 1.2×10 ⁷	約 1.2×10 ¹²			

※ 小数点第2位以下切上げ

<mark>第 1−1 図 放射性物質の大気放出過程(1/5)</mark> <mark>(希ガス)</mark>

^{1.5}h 後~19.5h 後:1.3%/day(一定),左記以外の期間:0.5%/day(一定)

大気への放出経路	0h 🔹	▼2h ^{**} 2	▼ 19h ^{**}	168h▼
原子炉建屋から大気中への漏えい				
非常用ガス処理系排気筒から放出				
格納容器圧力逃がし装置からの放出				
※2 非常用ガス処理系の起動により原子炉	建屋内は負	王となるため	め, 事象発生 2h 以降は	原子炉建屋から

^{※2} 非常用ガス処理系の起動により原子炉建屋内は負圧となるため,事象発生 2h 以降は原子炉建屋から 大気中への漏えいは無くなる。

第 1-1 図 放射性物質の大気放出過程(5/5)(イメージ)

^{※3} 事象発生後19h以降は、「非常用ガス処理系排気筒から放出」及び「格納容器圧力逃がし装置からの放出」の両経路から放射性物質を放出する。

項目	評価条件	選定理由	審査ガイドでの記載
大気拡散評価	ガウスプルームモデル	審査ガイド及び被ばく評価	4.2(2)a. 放射性物質の空気中濃度は、放出源高さ及び気象条
モデル		手法(内規)に示されたとお	件に応じて、空間濃度分布が水平方向及び鉛直方向ともに正
		り設定	規分布になると仮定したガウスプルームモデルを適用して計
			算する。
気象データ	東海第二発電所における 1	建屋影響を受ける大気拡散	4.2. (2)a. 風向,風速,大気安定度及び降雨の観測項目を,
	年間の気象資料(2005 年 4	評価を行うため保守的に地	現地において少なくとも 1 年間観測して得られた気象資料を
	月~2006年3月)	上風(地上高 10m)の気象デ	大気拡散式に用いる。
	(地上風を代表する観測点	ータを審査ガイドに示され	
	(地上高 10m) の気象デー	たとおり発電所において観	
	タ)	測された1年間の気象資料を	
		使用	
実効放出継続	全核種:1時間	保守的に最も短い実効放出	4.2. (2)c. 相対濃度は, 短時間放出又は長時間放出に応じて,
時間		継続時間を設定	毎時刻の気象項目と実効的な放出継続時間を基に評価点ごと
			に計算する。

第1-3表 大気拡散条件(1/5)

項目	評価条件	選定理由	審査ガイドでの記載
放出源及び放	放出源:原子炉建屋からの	原子炉建屋放出及び格納容	4.3. (4)b. 放出源高さは, 4.1(2)a で選定した事故シーケンス
出源高さ	放出 (地上高 0m), 格納容器	器圧力逃がし装置排気口放	に応じた放出口からの放出を仮定する。4.1(2)a で選定した
	圧力逃がし装置排気口放出	出時の高さは保守的に地上	事故シーケンスのソースターム解析結果を基に、放出エネル
	(地上高 55m)及び非常用ガ	放出として地上高 0m で設定	ギーを考慮してもよい。
	ス処理系出口(地上高 148m)	非常用ガス処理系からの放	
		出時は排気筒高さとして地	
		上 148m に設定	
累積出現頻度	小さい方から 97%	審査ガイドに示されたとお	4.2.(2)c. 評価点の相対濃度又は相対線量は, 毎時刻の相対
		り設定	濃度又は相対線量を年間について小さい方から累積した場
			合,その累積出現頻度が97%に当たる値とする。
建屋巻き込み	考慮する	原子炉建屋放出及び格納容	4.2. (2)a. 原子炉制御室/緊急時制御室/緊急時対策所の居
		器圧力逃がし装置排気口放	住性評価で特徴的な放出点から近距離の建屋の影響を受ける
		出は放出源から近距離の建	場合には、建屋による巻き込み現象を考慮した大気拡散によ
		屋(原子炉建屋)の影響を受	る拡散パラメータを用いる。
		けるため, 建屋による巻き込	
		み現象を考慮	

第1-3表 大気拡散条件(2/5)

項目	評価条件	選定理由	審査ガイドでの記載
巻き込みを生	原子炉建屋	放出源から最も近く, 巻き込	4.2. (2)b. 巻き込みを生じる建屋として,原子炉格納容器,
じる代表建屋		みの影響が最も大きい建屋	原子炉建屋,原子炉補助建屋,タービン建屋,コントロール
		として選定	建屋及び燃料取り扱い建屋等,原則として放出源の近隣に存
			在するすべての建屋が対象となるが、巻き込みの影響が最も
			大きいと考えられる一つの建屋を代表建屋とすることは、保
			守的な結果を与える。
放射性物質濃	【中央制御室内】	【中央制御室内】	【中央制御室内】
度の評価点	中央制御室中心	審査ガイドに示されたとお	4.2. (2)b. 屋上面を代表とする場合,例えば原子炉制御室/緊
	【入退域時】	り設定	急時制御室/緊急時対策所の中心点を評価点とするのは妥当
	建屋出入口	【入退域時】	である。
		被ばく評価手法(内規)に示	【入退城時】
		された方法に基づき設定	7.5.1(5)a) 管理区域の入口を代表評価とし,入退域ごとに評
			価点に、15分間滞在するとする。(被ばく評価手法(内規))
			なお、審査ガイドには入退域時の評価点について、記載なし。

第 1-3 表 大気拡散条件(3/5)

項目		評価条件	選定理由	審査ガイドでの記載
着目方位		9 方位	審査ガイドに示	4.2. (2)a. 原子炉制御室の居住性に係る被ばく評価では, 建屋
	中央	建屋放出:	された評価方法	の風下後流側での広範囲に及ぶ乱流混合域が顕著であること
	制御	S, SSW, SW, WSW, W, WNW, NW, NNW, N	に基づき設定 <mark>(添</mark>	から、放射性物質濃度を計算する当該着目方位としては、放出
	室山	格納容器圧力逃がし装置排気口放出:	<mark>付 8 参照)</mark>	源と評価点とを結ぶラインが含まれる 1 方位のみを対象とす
	内滞	SW, WSW, WNW, NW, NNW, N, NNE, NE		るのではなく,図5に示すように,建屋の後流側の拡がりの影
	在時	1 方位		響が評価点に及ぶ可能性のある複数の方位を対象とする。
		非常用ガス処理系排気筒放出: W		
		9 方位		
		建屋放出:		
	入	S, SSW, SW, WSW, W, WNW, NW, NNW, N		
	退域	格納容器圧力逃がし装置排気口放出:		
	時	SSW, SW, WSW, W, WNW, NW, NNW, N, NNE		
		1 方位		
		非常用ガス処理系排気筒放出:W		

第 1-3 表 大気拡散条件(4/5)
第 1-3 表 大気拡散条件(5/5)

項目	評価条件	選定理由	審査ガイドでの記載
建屋投影面積	原子炉建屋の投影断面積:	原子炉建屋の投影断面積	4.2. (2)b. 風向に垂直な代表建屋の投影面積を求め, 放射性物
	3000m^2		質の濃度を求めるために大気拡散式の入力とする。
<mark>形状係数</mark>	1/2	審査ガイドに示された評価	5.1.1(2)形状係数の値は、特に根拠が示されるもののほかは
		<mark>方法に基づき設定</mark>	原則として 1/2 を用いる(被ばく評価手法(内規))
			なお、審査ガイドには形状係数について、記載なし。

	評価対象 評価点		相対濃度	相対線量
叶Ⅲ刈豕			χ / Q (s/m ³)	D∕Q (Gy∕Bq)
		建屋放出	8. 3×10^{-4}	2. 9×10^{-18}
室内作業時	中央制御室 中心	非常用ガス 処理系放出	3. 0×10^{-6}	8.8×10 ⁻²⁰
		格納容器圧 力逃がし装 置放出	3. 7×10^{-4}	8.8×10 ⁻¹⁹
入退域時	建屋 出入口	建屋放出	8. 2×10^{-4}	2. 9×10^{-18}
		非常用ガス 処理系放出	3. 0×10^{-6}	9. 0×10^{-20}
		格納容器圧 力逃がし装 置放出	3. 7×10^{-4}	9. 4×10^{-19}

第1-4表 相対濃度及び相対線量

(添付8参照)

59-10-添 1-19

項目		評価条件	選定理由	審査ガイドでの記載
	格納容器から原子炉	「第1-1表 大気中へ	「第 1-1 表 大気中への放	4.3(5)a. 4.1(2)a で選定した事故シーケンスの
	建屋原子炉棟へ放出	の放出放射能量評価	出放射能量評価条件」を参	ソースターム解析結果を基に,想定事故時に原子
	される放射性物質	条件」を参照	照	炉格納容器から原子炉建屋内に放出された放射
				性物質を設定する。
公告	格納容器内線源強度	格納容器内に放出さ	審査ガイドに示されたとお	4.3(5)a. 原子炉建屋内の放射性物質は, 自由空
禄 源	分布	れた核分裂生成物が	り設定	間容積に均一に分布するものとして,事故後 7
条件		均一に分布		日間の積算線源強度を計算する。
	7日間	審査ガイドに示す7日	3. (解釈抜粋) 第74条 (原	7 日間
		間における運転員の	子炉制御室)1 b) ④判断	
		実効線量を評価する	基準は、運転員の実効線量	
		観点から設定	が7日間で100mSv を超えな	
			いこと。	
卦	遮蔽厚さ	第 1- <mark>2</mark> 図のとおり	審査ガイドに示された評価	4.3(5)a. 原子炉建屋内の放射性物質からのスカ
算			方法に基づき設定	イシャインガンマ線及び直接ガンマ線による外
モデ				部被ばく線量は,積算線源強度,施設の位置,遮
ル 条				へい構造及び地形条件から計算する。
件				

第1-5表 直接ガンマ線及びスカイシャインガンマ線の評価条件(1/3)

項目	評価条件	選定理由	審査ガイドでの記	載
直接線・スカイシャイン線	直接線評価:	直接ガンマ線の線量評価に用	4.1②実験等を基に検証され,適	用範囲が適切なモ
評価コード	QAD-CGGP2R	いる QAD-CGGP2R は三次元形	デルを用いる。	
	スカイシャイン線評	状を,スカイシャインガンマ		
	価:	線の線量評価に用いる ANISN		
	G33-GP2R	は三次元形状を, スカイシャ		
		インガンマ線の線量評価に用		
		いる G33-GP2R は三次元形状		
		を扱う遮蔽解析コードであ		
		り,ガンマ線量を計算するこ		
		とができる。計算に必要な主		
		な条件は,線源条件,遮蔽体条		
		件であり,これらの条件が与		
		えられれぱ線量評価は可能で		
		ある。したがって,設計基準事		
		故を超える事故における線量		
		評価に適用可能である。		
		QAD-CGGP2R, ANISN 及 び		
		G33-GP2R はそれぞれ許認可		
		での使用実績がある。		

第1-5表 直接ガンマ線及びスカイシャインガンマ線の評価条件(2/3)

項目	評価条件	選定理由	審査ガイドでの記載
評価点	第 1- <mark>2</mark> 図のとおり	中央制御室内滞在時の評価は	
		で線量が最大となる位置とす	
		る。	—
		入退域時の評価は建屋入口の	
		高さ 2m を選定。	

第1-5表 直接ガンマ線及びスカイシャインガンマ線の評価条件(3/3)

第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる エネルギ群別ガンマ線積算線源強度(1/4)

(格納容器ベント実施前)

群	エネルギ	ガンマ線積算線源強度	群	エネルギ	ガンマ線積算線源強度
	(MeV)	(-)		(MeV)	(-)
1	0.01	7.8×10^{18}	22	1.5	2.4×10^{18}
2	0.02	8.7×10 ¹⁸	23	1.66	7.5×10^{17}
3	0.03	1. 0×10 ¹⁹	24	2.0	<mark>1.6×10¹⁸</mark>
4	0.045	1.4×10^{20}	25	2.5	<mark>4. 6×10¹⁸</mark>
5	0.06	5.3×10^{17}	26	3.0	1. 3×10 ¹⁷
6	0.07	3.6×10^{17}	27	3.5	1.5×10 ¹⁵
7	0.075	2. 0×10^{19}	28	4.0	1.5×10 ¹⁵
8	0.1	9.9×10 ¹⁹	29	4.5	5. 0×10^{5}
9	0.15	4. 6×10^{17}	30	5.0	5. 0×10 ⁵
10	0.2	5.6×10^{19}	31	5.5	5. 0×10 ⁵
11	0.3	1.1×10^{20}	32	6.0	5. 0×10^{5}
12	0.4	6.6×10^{18}	33	6.5	5. 7×10^{4}
13	0.45	3.3×10^{18}	34	7.0	5. 7×10 ⁴
14	0.51	1.1×10^{19}	35	7.5	5. 7×10^{4}
15	0.512	3.7×10^{17}	36	8.0	5. 7×10 ⁴
16	0.6	1.6×10^{19}	37	10.0	1.8×10 ⁴
17	0.7	1.8×10^{19}	38	12.0	<mark>8. 8×10³</mark>
18	0.8	5.4×10^{18}	39	14.0	<mark>0. 0</mark>
19	1.0	1.1×10^{19}	40	20.0	<mark>0. 0</mark>
20	1.33	5.0×10^{18}	41	30.0	<mark>0. 0</mark>
21	1.34	1.5×10^{17}	42	50.0	<mark>0. 0</mark>

第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる エネルギ群別ガンマ線積算線源強度(2/4)

(格納容器ベン	ト実施時)

群	エネルギ	ガンマ線積算線源強度	群	エネルギ	ガンマ線積算線源強度
4 7	(MeV)	(-)	4 7	(MeV)	(-)
1	0.01	1. 3×10 ¹⁹	22	1.5	2.2×10^{18}
2	0.02	1.5×10^{19}	23	1.66	3. 7×10^{17}
3	0.03	1.7×10 ¹⁹	24	2.0	8. 0×10^{17}
4	0.045	2.9×10^{20}	25	2.5	1.1×10 ¹⁸
5	0.06	7.4×10^{17}	26	3.0	1.7×10^{16}
6	0.07	4. 9×10^{17}	27	3.5	4. 8×10^{12}
7	0.075	4. 2×10^{19}	28	4.0	4. 8×10^{12}
8	0.1	2.1×10^{20}	29	4.5	2.2×10^{5}
9	0.15	4. 7×10^{17}	30	5.0	2.2×10^{5}
10	0.2	8. 0×10^{19}	31	5.5	2. 2×10^{5}
11	0.3	1.6×10^{20}	32	6.0	2.2×10^{5}
12	0.4	9. 3×10^{18}	33	6.5	2. 6×10^{4}
13	0.45	4. 6×10^{18}	34	7.0	2. 6×10^{4}
14	0.51	1.4×10^{19}	35	7.5	2.6×10^{4}
15	0.512	4. 7×10^{17}	36	8.0	2.6×10 ⁴
16	0.6	2. 1×10^{19}	37	10.0	<mark>7. 9×10 ³</mark>
17	0.7	2. 3×10^{19}	38	12.0	<mark>4. 0×10³</mark>
18	0.8	7.2×10^{18}	39	14.0	<mark>0. 0</mark>
19	1.0	1.4×10^{19}	40	20.0	<mark>0. 0</mark>
20	1.33	4.6×10^{18}	41	30.0	<mark>0. 0</mark>
21	1.34	1. 4×10^{17}	42	50.0	<mark>0. 0</mark>

第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる エネルギ群別ガンマ線積算線源強度(3/4)

(格納容器ベント	、実施後)
----------	-------

群	エネルギ	ガンマ線積算線源強度	群	エネルギ	ガンマ線積算線源強度
141	(MeV)	(-)	141	(MeV)	(-)
1	0.01	1.6×10 ¹⁹	22	1.5	<mark>1. 9×10¹⁸</mark>
2	0.02	1.8×10^{19}	23	1.66	1.9×10^{17}
3	0.03	2. 0×10^{19}	24	2.0	4. 1×10^{17}
4	0.045	4. 0×10^{20}	25	2.5	4. 1×10^{17}
5	0.06	6. 1×10^{17}	26	3.0	9. 4×10^{15}
6	0.07	4. 1×10^{17}	27	3.5	3.5×10^{11}
7	0.075	5. 9 × 10 ^{1 9}	28	4.0	3.5×10^{11}
8	0.1	2.9×10^{20}	29	4.5	3.6×10^{5}
9	0.15	3.8×10^{17}	30	5.0	3.6×10^{5}
10	0.2	3.5×10^{19}	31	5.5	3.6×10^{5}
11	0.3	7.1 × 10 ¹⁹	32	6.0	3.6×10^{5}
12	0.4	1.1×10^{19}	33	6.5	4. 1×10^{4}
13	0.45	5. 7×10^{18}	34	7.0	4.1×10 ⁴
14	0.51	1.2×10^{19}	35	7.5	4. 1×10^{4}
15	0.512	4. 1×10^{17}	36	8.0	4. 1×10^{4}
16	0.6	1.8×10^{19}	37	10.0	1.3×10^{4}
17	0.7	2. 1×10^{19}	38	12.0	<mark>6. 3×10³</mark>
18	0.8	8.3 × 10 ^{1 8}	39	14.0	<mark>0. 0</mark>
19	1.0	1.7×10^{19}	40	20.0	<mark>0. 0</mark>
20	1.33	3.9×10^{18}	41	30.0	<mark>0. 0</mark>
21	1.34	1.2×10^{17}	42	50.0	<mark>0. 0</mark>

第1-6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる エネルギ群別ガンマ線積算線源強度(4/4)

(合計)

群	エネルギ (MeV)	ガンマ線積算線源強度 (-)	群	エネルギ (MeV)	ガンマ線積算線源強度 (-)
1	0.01	3.7×10 ¹⁹	22	1.5	<mark>6. 5×10¹⁸</mark>
2	0.02	4. 1×10^{19}	23	1.66	1.3×10 ¹⁸
3	0.03	4.8×10^{19}	24	2.0	2.8×10^{18}
4	0.045	<mark>8. 3×10²⁰</mark>	25	2.5	6. 2×10 ¹⁸
5	0.06	1.9×10^{18}	26	3.0	1.6×10^{17}
6	0.07	1.3×10 ¹⁸	27	3.5	1.5×10^{15}
7	0.075	1.2×10^{20}	28	4.0	1.5×10^{15}
8	0.1	<mark>6. 0×10²⁰</mark>	29	4.5	1.1×10^{6}
9	0.15	1.3×10^{18}	30	5.0	1.1×10^{6}
10	0.2	1. 7×10^{20}	31	5.5	1.1×10^{6}
11	0.3	3.4×10^{20}	32	6.0	1.1×10^{6}
12	0.4	2.7×10 ¹⁹	33	6.5	1.2×10^{5}
13	0.45	1.4×10^{19}	34	7.0	1.2×10^{5}
14	0.51	3.7×10^{19}	35	7.5	1.2×10^{5}
15	0.512	1.2×10^{18}	36	8.0	1.2×10^{5}
16	0.6	5. 5 × 10 ^{1 9}	37	10.0	<mark>3. 8×10⁴</mark>
17	0.7	6. 2×10^{19}	38	12.0	1.9×10^{4}
18	0.8	2. 1×10^{19}	39	14.0	0.0
19	1.0	4.2×10^{19}	40	20.0	<mark>0. 0</mark>
20	1.33	1.3×10^{19}	41	30.0	<mark>0. 0</mark>
21	1.34	4. 1×10^{17}	42	50.0	<mark>0. 0</mark>

原子炉建屋 第1-<mark>2</mark>図 直接ガンマ線及びスカイシャインガンマ線の計算モデル(1/2)

第1-<mark>2</mark>図 直接ガンマ線及びスカイシャインガンマ線の計算モデル(2/2)

項目	評価条件	選定理由	審査ガイドでの記載
中央制御室非	95%	フィルタユニットの設計値(チ	4.2(1)a.ヨウ素及びエアロゾルのフィルタ効率は,
常用循環設備		ャコールフィルタ効率:97%)	使用条件での設計値を基に設定する。なお、フィル
よう素フィル		を保守的に設定 <mark>(添付 9,10 参照)</mark>	タ効率の設定に際し、ヨウ素類の性状を適切に考慮
タによる除去			する。
効率			
中央制御室非	99%	フィルタユニットの設計値(高	同上
常用換気系微		性能粒子フィルタ:99.97%)を	
粒子フィルタ		保守的に設定 <mark>(添付 9, 10 参照)</mark>	
による除去効			
率			
中央制御室非	事象発生から2時間	全交流動力電源喪失を考慮し,	4.3(3)f. 原子炉制御室の非常用換気空調設備の作
常用換気系の		代替電源からの電源供給開始時	動については,非常用電源の作動状態を基に設定す
<mark>起動</mark> 時間		間から設定	る。
空気流入率	1回/h	非常用換気系作動時の空気流入	4.2(1)b. 既設の場合では,空気流入率は,空気流
		率測定試験結果の結果である	入率測定試験結果を基に設定する。
		0.45 回/h に対して保守的に 1	
		回/h と設定 <mark>(添付 11 参照)</mark>	

第1-7表 中央制御室換気設備条件(1/2)

項目	評価条件	選定理由	審査ガイドでの記載			
外気取り込み	閉回路循環運転:27時間	閉回路循環運転が長期にわたり				
量	外気取り込み運転:3時間	室内環境が悪化して外気取り込				
		み運転を行う際に必要な運転時	_			
		間として設定				
マスクによる	事象発生から3時間及び入退域	中央制御室非常用換気系作動前	4.2(3)c. 原子炉制御室/緊急時制御室/緊急時対			
防護係数	時:50	及び中央制御室内の放射性物質	策所内でマスク着用を考慮する。その場合は, マス			
	(その他の期間及びマスク着	濃度が下がるまでの時間につい	ク着用を考慮しない場合の評価結果も提出を求め			
	用を考慮しない場合は評価期	てマスクの着用を考慮。 <mark>(添付 12</mark>	る。			
	間中常時マスク着用なし)	参照)				

第1-7表 中央制御室換気設備条件(2/2)

項目	評価条件	選定理由	審査ガイドでの記載
待避室遮蔽	遮蔽厚: <mark>コンクリート 40cm 相</mark>	中央制御室内に流入した放射性	
	<mark>当</mark>	物質からのガンマ線による被ば	_
		くを十分に低減できる設計。	
待避室加圧開	事象発生から約 <mark>19</mark> 時間後	格納容器圧力逃がし装置により	
始時間	(ベント開始時)	放出される放射性物質からの被	
		ばくを防護するために待避室に	
		待避すると想定	
待避室加圧時	ベント開始から <mark>5</mark> 時間	中央制御室内に流入した放射性	
間		物質からの影響を十分に防護で	_
		<mark>きる時間として設定</mark>	
空気流入率	ボンベ加圧時:0回/h	待避室への待避時は待避室内を	
		空気ボンベにより加圧し、外部	_
		からの空気流入がないと想定	

第 1-8 表	中央制御室内待避室設備条件

項目	評価条件	選定理由	審査ガイドでの記載
中央制御室	格納容器ベント実施時以	運転員の勤務形態を5直2交替と想定し、1	3.74 条 1.b)③交代要員体制を考慮してもよ
滞在時間割	外の時間:約0.2	直 12 時間勤務として 7 日間の運転員一人当	い。ただしその場合は実施のための体制を整備
合(7日間	格納容器ベント実施時:1	たりの中央制御室滞在時間割合を設定。な	する事。
当たり)		お,格納容器ベント実施中(12時間)は中央	
		制御室に滞在すると想定 <mark>(添付 13 参照)</mark>	
入退域時時	格納容器ベント実施時以	運転員の勤務形態を5直2交替と想定し、入	
間割合(7	外の時間:約0.008	退域に必要な時間を15分(片道)として、7	
日間当た	格納容器ベント実施時:考	日間の運転員一人当たりの入退域時間割合	_
り)	慮しない	を設定。なお、格納容器ベント実施中(12時	
		間)は交替を行わないと想定 <mark>(添付 13 参照)</mark>	

第1-9表 運転員交替考慮条件

項目	評価条件	選定理由	審査ガイドでの記載
線量換算係数	成人実効線量換算係数を使用 (主な核種を以下に示す) I-131 : 2.0×10 ⁻⁸ Sv/Bq I-132 : 3.1×10 ⁻¹⁰ Sv/Bq I-133 : 4.0×10 ⁻⁹ Sv/Bq I-134 : 1.5×10 ⁻¹⁰ Sv/Bq I-135 : 9.2×10 ⁻¹⁰ Sv/Bq Cs-134 : 2.0×10 ⁻⁸ Sv/Bq Cs-136 : 2.8×10 ⁻⁹ Sv/Bq Cs-137 : 3.9×10 ⁻⁸ Sv/Bq 上記以外の核種は ICRP Pub.71 等に基づく	ICRP Publication 71 等に基づく	
呼吸率	1. 2m ³ /h	成人活動時の呼吸率を設定。 ICRP Publication 71 に基づく	
地表面への沈着	エアロゾル:1.2 cm/s	線量目標値評価指針を参考に,湿性沈着を考慮して乾性	4.2. (2)d 放射性物質の地表
速度	無機よう素:1.2 cm/s	沈着速度(0.3cm/s)の4倍を設定。	面への沈着評価では、地表
	有機よう素: <mark>4×10⁻³cm/s</mark>	エアロゾル及び無機よう素の乾性沈着速度は	面への乾性沈着及び降雨に
	希ガス:沈着無し	NUREG/CR-4551Vol.2 ^{※1} より設定	よる湿性沈着を考慮して地
		<mark>有機よう素の乾性沈着速度は NRPB-R322^{※2}より設定</mark>	表面沈着濃度を計算する。
		(添付 14, 15, 16 参照)	

第1-10表 線量換算係数,呼吸率及び地表への沈着速度の条件

※1 米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident Risks: Quantification of Major Input Parameters"

※2 英国 NRPB-R322-Atomosphere Dispersion Mpdelling Liaison Committee Annual Report

2 事象選定の考え方について

重大事故等時の中央制御室の居住性に係る被ばく線量は,中央制御 室内に取り込まれた放射性物質による被ばく及び地表面に沈着した放 射性物質による被ばくが支配的であることから,放射性物質の放出量 が多くなる事象が被ばく評価の観点から厳しくなる。

炉心損傷を前提とした重大事故では、大規模な放射性物質の放出が 想定されるため、中央制御室の被ばく評価は厳しくなる。さらに、格 納容器圧力が高く維持される事象や炉心損傷時間が早い事象は中央制 御室の被ばく評価の観点から厳しくなる。

重大事故時における対応として,代替循環冷却系を使用せず,格納 容器ベントによる格納容器除熱に期待する場合は,格納容器圧力の抑 制のため格納容器ベント実施までは代替格納容器スプレイ冷却系(常 設)による格納容器スプレイを実施する。格納容器スプレイによる圧 力抑制効果を高くする観点で,格納容器圧力を比較的高い領域で維持 するため,代替循環冷却系を使用する場合と比較して格納容器貫通部 等からの漏えい率が大きくなり,大気への放射性物質の放出量が多く なる。さらに,サプレッション・プール水位が通常水位+6.5mに到達 した時点で,格納容器ベントを実施するため,放射性物質の放出量が 多くなる。

また,原子炉建屋ガス処理系の起動により,原子炉建屋から大気へ の放射性物質の放出率低減効果に期待できることから,事象進展が早 く原子炉建屋ガス処理系の起動前の格納容器貫通部等からの漏えい量 が多いほど,大気への放出量が多くなる。さらに,炉心損傷時間が早 いほど,早期に格納容器内に放出される放射性物質は多くなるため,

59-10-添 2-1

格納容器貫通部からの漏えい量も多くなる。

以上より,代替循環冷却系を使用せず格納容器ベントを実施する場合,更に,炉心損傷の時間が早く評価上想定している原子炉建屋ガス 処理系の起動までの時間が長い場合には,放射性物質の放出量が多く なる。

第2-1表に重大事故事象の中央制御室被ばく評価への影響を示す。 第2-1表に示すとおり,格納容器破損防止対策の有効性評価で想定し ている炉心損傷を前提とした重大事故のうち,炉心損傷時間が早く, 格納容器ベントを実施する「大破断LOCA+高圧炉心冷却失敗+低 圧炉心冷却失敗+全交流動力電源喪失」の代替循環冷却系を使用しな い場合が最も放射性物質の放出量が多くなるため,この事象を中央制 御室の被ばく評価で想定する事象として選定する。

第 2-1 表 重大事故事象の中央制御室被ばく評価への影響

		重大事故		
事象	静的負荷シ	✓ナリオ ^{※1}	DCH シナリオ ^{※ 2}	中央制御室被ば
7 20	代替循環冷却系を使用する	代替循環冷却系を使用した	代替循環冷却	く評価への影響
		W C C M C C		
格納容器				格納容器圧力が
ベント	実施しない	実施する	実施しない	高い状態で推移
	代替循環冷却	格納容器圧力	代替循環冷却	, おと, 福和谷 器からの漏えい
	系の使用によ	は高い状態で	系の使用によ	率が大きくな
	り格納容器内	推移する。ま	り格納容器内	り、放出量が多
	圧力は低い状	た,格納容器べ	圧力は低い状	くなる。
	態で推移する。	ント実施に伴	態で推移する。	格納容器ベント
		い放射性物質		を実施すると,
		を大気へ放出		放射性物質が大
		する。		気へ放出される
				ため、放出量が
				多くなる。
炉 心 損 傷 時 眼 ()	約	1 4	約 30 公	て気への放出率
间 (小U -	±)]	小1 3 5 71	仏 佩 効 未 に 期 付 で き る 百 乙 后 母
復 皆 価 反 1 000K 到 達	大破断LOCA	Aを想定してお	静的負荷シナ	ここる赤丁 が建 長ガス処理系の
1,000K 均建 時間を想	り, 早期(原子	炉建屋ガス処理	リオよりは遅	<u></u> 記動(事象発生
定)	系起動前)に炉	心損傷に至る。	いが,原子炉建	2 時間後) まで
			屋ガス処理系	に、炉心損傷時
			起動前に炉心	間が早いほど放
			損傷に至る。	出量が多くな
				る。

※1 格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損)」及び「水素燃焼」の事故シーケンス「大破断LOCA+高圧 炉心冷却失敗+低圧炉心冷却失敗+全交流動力電源喪失」

※2 格納容器破損モード「高圧溶融物放出/格納容器雰囲気直接加熱」,「原子炉圧力容器外の溶融燃料-冷却材相互作用」及び「溶融炉心・コンクリート相互作用」の事故シーケンス「過渡事象+高圧炉心冷却失敗+手動減 圧失敗+炉心損傷後の手動減圧失敗+DCH」,「過渡事象+高圧炉心冷却 失敗+低圧炉心冷却失敗+損傷炉心冷却失敗+FCI(ペデスタル),デブリ冷却失敗(ペデスタル)」を想定 3 格納容器漏えい率の設定について

格納容器からの原子炉建屋への漏えい率は、MAAP内で模擬した 漏えい孔の等価漏えい面積及び格納容器の圧力に応じて設定している。 模擬する漏えい孔の等価漏えい面積は、以下に示す格納容器圧力が 最高使用圧力(310kPa[gage](1Pd))以下の場合と最高使用圧力を超 過した後の場合の2種類を設定する。

ただし、MAAP解析においては、よう素の化学組成について考慮 されておらず、全て粒子状よう素として扱われることから、無機よう 素及び有機よう素の格納容器漏えい率は別途設定する。

- 格納容器圧力が最高使用圧力以下の場合
 格納容器圧力が最高使用圧力以下の場合,設計漏えい率(0.9Pd で
 0.5%/day)を基に算出した等価漏えい面積(約3×10⁻⁶m²)を設定
 し,MAAP内で圧力に応じた漏えい量を評価している。
- 2. 格納容器圧力が最高使用圧力を超過した場合

格納容器圧力が最高使用圧力を超過した場合,2Pdで漏えい率1.3% /day となる等価漏えい面積(約7×10⁻⁶m²)を設定し,1.と同様に MAAP内で圧力に応じた漏えい量を評価している。

2Pd における漏えい率 1.3% / day は,以下のAECの評価式,GE の評価式及び定常流の式によって評価した漏えい率の結果を包絡す る値として設定した。これらの式は,設計基準事故の原子炉冷却材喪 失事象において格納容器漏えい率の評価に用いている理論式^{*1}であ る。格納容器内圧力(2Pd)及び温度(200℃)までは,事故後7日間 に渡り,格納容器本体並びに開口部及び貫通部の健全性が確保されて いることを確認していることから,これらの理論式を用いて格納容器 内圧力(2Pd)及び温度(200℃)における漏えい率を設定することは 可能と判断した。

○AECの評価式

$$\mathbf{L} = \mathbf{L}_0 \sqrt{\frac{(P_t - P_a) \times R_t \times T_t}{(P_d - P_a) \times R_d \times T_d}}$$

L	:	<mark>事故時の</mark> 格納容器漏えい率 <mark>(2Pd)</mark>	【1.28% / day】
L_0	:	設計漏えい率 <mark>(0.9Pd)</mark>	【0.5%/day】
P_t	:	事故時の格納容器内圧力(2Pd)	【721kPa[abs]】
P_d	:	設計圧力 (0.9Pd)	【380kPa[abs]】
P_a	:	格納容器外の圧力 <mark>(大気圧)</mark>	【101.325kPa[abs]】
R_t	:	事故時の気体定数 <mark>^{*2}</mark>	【523.7J∕Kg·K】
R_d	:	空気の気体定数	【287J/Kg⋅K】
T_t	:	事故時の格納容器 <mark>内</mark> 温度 <mark>(200℃)</mark>	【473.15K】
T_d	:	設計格納容器内温度(20℃)	【293.15K】

◯GEの評価式(General Electric 社の漏えいモデル式)

$$L = L_{0} \sqrt{\frac{1 - \left(\frac{Pa}{Pt}\right)^{2}}{1 - \left(\frac{Pa}{Pd}\right)^{2}}}$$

L :	事故時の格納容器漏えい率(2Pd)	【0.51%/day】
L _o :	設計漏えい率 (0.9Pd)	【0.5%/day】
Pt :	事故時の格納容器内圧力(2Pd)	【721kPa[abs]】
Pd :	設計圧力 (0.9Pd)	【380kPa[abs]】
Pa :	格納容器外の圧力(大気圧)	【101.325kPa[abs]】

○定常流の式

L :
 事故時の格納容器漏えい率(2Pd)
 [0.93%/day]

 L :
 事故時の格納容器漏えい率(2Pd)
 [0.93%/day]

 L₀ :
 設計漏えい率(0.9Pd)
 [0.5%/day]

$$\rho_t$$
:
 事故時の格納容器内気体の平均密度**3
 [2.9kg/m³]

 ρ_d :
 設計温度・圧力における格納容器内気
 [4.5kg/m³]

 ρ_d :
 設計温度・圧力における格納容器内気
 [4.5kg/m³]

 ρ_d :
 事故時の格納容器内圧力(2Pd)
 [721kPa[abs]]

 P_d :
 事故時の格納容器内圧力(大気圧)
 [101.325kPa[abs]]

 P_a :
 格納容器外の圧力(大気圧)
 [101.325kPa[abs]]

 *1
 沸騰水型原子力発電所
 事故時の被ばく評価手法について(平

 成16年1月)」(株式会社
 日立製作所)

 *2
 事故時の気体定数 R_t は、以下の式により算出した。

R_t[J/kg·K]=モル気体定数 8.314[J/K・mol]/平均分子量M

[kg/mol]

A E C の評価式より,事故時の気体定数が大きくなるほど漏え い率は高くなる。また,上記計算式より,事故時の気体定数は, 平均分子量が小さくなるほど大きくなる。事故時の格納容器内は 水素,窒素及び水蒸気で構成されるため,分子量の小さい水素の 割合が増加するほど平均分子量は小さくなり,結果として事故時 の気体定数は大きくなる。平均分子量の設定に当たり,水素,窒 素及び水蒸気のガス組成を34%:33%:33%とし,水素の割合(34%) は,有効性評価(「雰囲気圧力・温度による静的負荷(格納容器過 E・過温破損)」)における水素発生量(約700kg(内訳:ジルコニ ウムー水反応約324kg,アルミニウム/亜鉛の反応約246kg,水 の放射線分解約115kg))を包含した値であることから,保守的な 設定であると考える。

 ※3 事故時の格納容器内気体の平均密度 ρ, は,以下の式により算出した。

 した。
 ρ, [kg/m³] = 平均分子量M[kg/mol]×物質量 n [mol]/格納

 な器体積 V [m³]

 定常流の式より,事故時の格納容器内気体の平均密度が小さく

 なるほど漏えい率は大きくなる。また,上記計算式より,事故時
 の格納容器内気体の平均密度は,平均分子量が小さくなるほど小

 と考える。

※4 設計温度・圧力における格納容器内気体の平均密度ρ_dは、以下 の式により算出した。

 ρ_d [kg/m³] = 乾燥空気密度(20℃)1.205[kg/m³]×(P_d [Pa]

59-10-添 3-4

∕*P_a*[Pa])

3. 無機よう素及び有機よう素の格納容器漏えい率

(1) 無機よう素

他の核種と同様に格納容器圧力に応じて漏えい率が変動すると 考えるが、MAAP解析において無機よう素を模擬していないため、 MAAP解析結果による格納容器圧力を基に漏えい率を設定する。 漏えい率の設定に当たっては、第 3-1 図のとおりMAAP解析結

果による格納容器圧力を包絡した格納容器圧力を設定し、その格納容器圧力に対する漏えい率を設定している。

このように設定した漏えい率は, 0.9Pd 以下で 0.5%/day, 0.9Pd 超過で 1.3%/day を一律に与えるものであり, MAAP解析にお ける漏えい率を包絡した保守的な設定であると考える。

第 3-1 図 格納容器圧力と漏えい率の時間変化 (無機よう素の格納容器漏えい率の設定) 有機よう素についても、無機よう素と同様の漏えい率の設定が可能であるが、有機よう素がガス状として振る舞うこと及び格納容器内での除去効果を受けない点で希ガスに類似していることから、M AAP解析における希ガスと同じ挙動を示すものとし、1.及び2. に基づき漏えい率を設定する。 (2) FP の状態変化・輸送モデル

4

MAAPにおけるエアロゾルに対する格納容器内の除去効果として,沈着, サプレッション・プールでのスクラビング及びドライウェルスプレイを考慮し ている。また,沈着については,重力沈降,拡散泳動,熱泳動,慣性衝突,核 分裂生成物(FP)ガス凝縮/再蒸発で構成される。(「重大事故等対策の有効性 評価に係るシビアアクシデント解析コードについて」の「第5部 MAAP」 (抜粋)参照)

「重大事故等対策の有効性評価に係るシビアアクシデント解析コードについて」

の「第5部 MAAP」(抜粋)

高温燃料から出た希ガス以外の FP は雰囲気の温度に依存して凝固し, エアロゾル へ変化する。気相及び液相中の FP の輸送においては,熱水力計算から求まる体積 流量から FP 輸送量を計算する。FP がガス状とエアロゾル状の場合は,気体の流れ に乗って,原子炉圧力容器内と原子炉格納容器内の各部に輸送される。水プール上 に沈着した FP の場合は,区画内の水の領域間の移動に伴って輸送される。また, 炉心あるいは溶融炉心中の FP の場合は,溶融炉心の移動量に基づいて輸送される。

FPの輸送モデルは上述の仮定に基づいており、炉心燃料から放出されてから原子 炉格納容器に到達する経路としては、次のとおりである。燃料から原子炉圧力容器 内に放出された FPは、原子炉圧力容器破損前には LOCA 破損口あるいは逃がし安 全弁から原子炉格納容器へ放出される。また、原子炉圧力容器破損後には原子炉圧

5-63

カ容器破損口もしくは格納容器下部に落下した溶融炉心から FP が原子炉格納容器 へ放出される。逃がし安全弁を通じて放出された FP はスクラビングによってサプ レッション・チェンバ液相部へ移行する。原子炉格納容器の気相部へ放出された FP は、気体の流れに伴って原子炉格納容器内を移行する。

原子炉圧力容器及び原子炉格納容器内での気体,エアロゾル及び構造物表面上(沈 着)の状態間の遷移を模擬している。原子炉格納容器内の FP 輸送モデル概要を図 3.3-15 に示す。

エアロゾルの沈着の種類としては,重力沈降,拡散泳動,熱泳動,慣性衝突,FP ガス凝縮,FPガス再蒸発を模擬している。なお,沈着したエアロゾルの再浮遊は考 慮していない。

重力沈降は,Stokes の重力沈降式とSmoluchowski 方程式(エアロゾルの粒径分 布に対する保存式)の解から得られる無次元相関式を用いて,浮遊するエアロゾル 質量濃度から沈着率を求める。なお,Smoluchowski 方程式を無次元相関式として いるのは解析時間短縮のためであり,この相関式を使用した MAAP のモデルは様々 な実験データと比較して検証が行われている。

拡散泳動による沈着は、水蒸気凝縮により生じる Stefan 流(壁面へ向かう流体力 学的気流)のみを考慮して沈着率を求める。

熱泳動による沈着は, Epstein のモデルを用い, 沈着面での温度勾配による沈着速 度及び沈着率を求める。

慣性衝突による沈着は、原子炉格納容器内でのみ考慮され、流れの中にある構造 物に、流線から外れたエアロゾルが衝突するものと仮定し、沈着率は重力沈降の場 合と同様に Smoluchowski 方程式の解から得られる無次元相関式を用いて求める。 FP ガスの凝縮は、FP ガスの構造物表面への凝縮であり、雰囲気中の気体状 FP 圧力が FP 飽和蒸気圧を超えると構造物表面への凝縮を計算する。

FP ガスの再蒸発は、凝縮と逆であり、気体状 FP の圧力が FP の飽和蒸気圧を下回ると、蒸発が起こると仮定している。

エアロゾルのプール水によるスクラビング現象による除去効果の取り扱いに関し ては、スクラビングによる除染係数(DF)を設定し、エアロゾル除去効果が計算され る。DF の値は、クエンチャ、垂直ベント、水平ベントの3つの種類のスクラビン グ機器に対し、詳細コード SUPRA^[9]を用いて、圧力、プール水深、キャリアガス中 の水蒸気質量割合、プール水のサブクール度及びエアロゾル粒子径をパラメータと して評価した結果を内蔵しており、これらのデータから求める。

また,格納容器スプレイによる FP 除去も模擬しており,スプレイ液滴とエアロゾルとの衝突による除去率を衝突効率,スプレイの液滴径,流量及び落下高さから計算する。

5-64

また,除去効果に対する感度解析結果を第4-1図に示す。なお,感度解析で は,以下の式により格納容器内の除去効果を算出している。

格納容器内DF=格納容器内へのCsI放出割合/ベントラインから大気への

C s I 放出割合

第4-1図 エアロゾルに対する格納容器内の除去効果(感度解析結果)

第4-1 図より,全除去効果を考慮したベースケースにおけるDF(10⁶オー ダー)との比較から,重力沈降のDFは10³程度,ドライウェルスプレイのD Fは10~10²程度であることがわかる。これより,重力沈降及びドライウェル スプレイ両方によるDFは10⁴~10⁵程度となるため,エアロゾルに対する格 納容器内の除去効果は重力沈降及びドライウェルスプレイの影響が大きいと考 える。

1. 無機よう素の自然沈着率の設定

格納容器内での無機よう素の除去効果として,自然沈着率 9.0×10 ⁻⁴(1/s)(格納容器内の最大存在量から 1/200 まで)を用いている。 以下に,自然沈着率の算出に関する概要を示す。

格納容器内における無機よう素の自然沈着について,財団法人原子 力発電技術機構(以下「NUPEC」という。)による検討「平成9 年度NUREG-1465のソースタームを用いた放射性物質放出量の評 価に関する報告書(平成10年3月)」において,CSE(Containment Systems Experiment) A6 実験に基づく値が示されている。

格納容器内での無機よう素の自然沈着率を λ_d(μg/m³)とすると, 格納容器内における無機よう素濃度 ρの濃度変化(1/s)は式1で表 され,自然沈着率 λ_dは時刻 toにおける無機よう素濃度 ρoと時刻 t₁に おける無機よう素濃度 ρ₁を用いて式2のとおりとなる。

$$\begin{aligned} \frac{d\rho}{dt} &= -\lambda_d \rho & (\vec{x} \ 1 \) \\ \lambda_d &= -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right) & (\vec{x} \ 2 \) \end{aligned}$$

なお、NUPECの報告書では、Nuclear Technology "Removal of Iodine and Particles by Sprays in the Containment Systems Experiment"の記載(CSE A6実験)より、時刻0分における無 機よう素の気相濃度10⁵ μ g/m³及び時刻30分における無機よう素の 気相濃度1.995×10⁴ μ g/m³を上式に代入することで、式3のとおり、 無機よう素の自然沈着率9.0×10⁻⁴ (1/s)を算出したとしている。

59-10-添 5-1

この自然沈着率は, BNWL-1244, "Removal of Iodine and Particles from Containment Atmospheres by Spray-Containment Systems Experiment Interim Report"のCSE A6実験による無機よう素の 気相部濃度の時間変化を表す図に基づくものである。時刻0分から30 分の濃度変化は,よう素の浮遊量が多く,格納容器スプレイを考慮し ていない事故初期の状態を模擬していると考えられる。(第 5-1 図参 照)

CSE実験の適用について

CSE実験条件と東海第二発電所の評価条件の比較を第5-1表に示 す。

第 <mark>5</mark>-1 表 CSE実験と東海第二<mark>発電所の評価</mark>条件の比較

	C S	市 流 笠 一 戏 雲 正			
	A 6 * 1 , * 2	米 			
雰囲気	蒸気+空気	同左	同左	同左	
雰囲気圧力 (MPa[gage])	約 0.20	約 0.22	約 0.24	<mark>約 0.47</mark> 以下** ⁴	
雰囲気温度 (℃)	約 120	約 120	約 120	<mark>約 200</mark> 以下 ^{※ 4}	
格納容器 スプレイ	間欠*5	なし	なし	間欠 ^{※6}	

※1 R.K.Hilliard et.al, "Removal of iodine and particles by sprays in the containment systems experiment", Nucl. Technol. Vol 10 pp499-519, 1971

%2 R.K.Hilliard et.al, "Removal of iodine and particles from containment atmospheries by sprays", BNWL-1244

※3 R.K.Hilliard and L.F.Coleman, "Natural transport effects on fission product behavior in the containment systems experiment", BNWL-1457

※4 評価事故シーケンスにおける格納容器内の雰囲気圧力及び温度のMA AP解析結果より記載

※6 格納容器スプレイを実施するが,評価上は無機よう素の除去効果に対しては自然沈着のみ考慮し,格納容器スプレイによる除去効果は考慮しない。

スプレイを使用していないA5及びA11における無機よう素の 格納容器内気相部濃度の時間変化を第5-2図に示す。初期の沈着に ついてはA6と同様の傾向を示すとともに,初期濃度より数百分の1 程度まで低下した後は緩やかとなる傾向が見られる。また,米国 SRP6.5.2では,格納容器内の無機よう素濃度が1/200になるまでは 無機よう素の除去が見込まれるとしている。

59-10-添 5-3

^{※5} A6 実験はスプレイを伴う実験だが、自然沈着率の算出には1回目のス プレイ実施前における格納容器内の濃度変化より設定している

自然沈着率は,評価する体系の体積と内表面積の比である比表面 積の影響を受け,比表面積が大きいほど自然沈着率は大きくなると 考えられるため,CSE実験における体系と東海第二発電所の比表 面積について第5-2表に示す。表からCSE実験と東海第二発電所 の比表面積は同程度となっていることが確認できる。

	CSE実験体系	東海第二発電所
体積 (m ³)	約 600	約 5700
表面積 (m ²)	約 570	約 5900
比表面積 (1/m)	約 0.96	約 1.04

<mark>第 5-2 表</mark> CSE実験と東海第二発電所の比表面積の比較

6 サプレッション・プールでのスクラビングによる除去効果(無機よう素)について

サプレッション・プールでのスクラビングによる無機よう素の除去 効果として, Standard Review Plan 6.5.5に基づきDF10を設定して いる。これは Standard Review Plan 6.5.5 において,「無機よう素の スクラビングによる除去効果として, Mark-II及びMark-II に対してDF10以下, Mark-Iに対してDF5以下を主張する場 合は,特に計算を必要とせず容認しても良い」との記載に基づくもの であり(抜粋参照),東海第二発電所はMark-IIのためDF10を適 用することとした。

「Standard Review Plan 6.5.5」(抜粋)

1. Pool Decontamination Factor. The decontamination factor (DF) of the pool is defined as the ratio of the amount of a contaminant entering the pool to the amount leaving. Decontamination factors for each fission product form as functions of time can be calculated by the SPARC code. An applicant may use the SPARC code or other methods to calculate the retention of fission products within the pool, provided that these methods are described in the SAR adequately to permit review. If the time-integrated IDF values claimed by the applicant for removal of particulates and elemental iodine are 10 or less for a Mark II or a Mark III containment, or are 5 or less for a Mark I containment, the applicant's values may be accepted without any need to perform calculations. A DF value of one (no retention) should be used for noble gases and for organic iodides. The applicant should provide justification for any DF values greater than those given above.

The reviewer has an option to perform an independent confirmatory calculation of the DF. If the SPARC code is used for a confirmatory calculation of fission product decontamination, the review should take care in proper establishment of the input parameters for the calculations.

7 格納容器<mark>外</mark>への核分裂生成物の放出割合の設定について

	大	<mark>気</mark>	\sim	の	放	出	量	は,	炉	i心	内	蔵	量(こ 有	<mark>各 刹</mark>	内容	器	外	\sim (の方	<u> </u>	書	」合	を	乗し	<u> こ</u> ろ)
۲	と	で	算	出	す	る	0	参	考	1 乽	<mark>≽</mark> 照	Ę))															
	格	納	容	器	外	\sim	の ;	抜 と	出割	合	の	評亻	ਜ਼ ≀	こ 뇔	自た	: つ	て	は,	想	定	事	故:	シナ	- IJ	オ	一大	t
破	断	L	0	С	Α	+	高,	王火	戸心	。冷	却	失	敗 -	+ 伯	玉日	E炉	ī心	冷	却	失貝	女 +	- 全	<u>:</u> 交	流	動フ	り電	
源	喪	失	J	に	お	い	て	原一	子炉	「圧	力	容	器	が仮	書子	きな	: 状	態	で	事背	文小	Z 束	〔す	る	たり	カ,	
そ	の	プ	ラ	ン	\mathbb{P}	状	態	を権	莫掏	间	能	な]	M .	A /	۹ F	、 コ	:	ド	を丿	刊し	۱Z	; Z	. と	<u>ک</u>	する	るカ	, ,
以	下	の	考	察	か	B	, I	V U	R	E	G -	14	65	の	知	見る	を月	٦U)	って		部者	痡ī	Eす	- ろ	。 N	A A	
A	Р	解	析	結	果	を	第	7-:	1 表	に	, N	I U	R	Е	G -	-14	65	の	知	見る	を月	引 し	って		部褚	甫正	4
l	た	結	果	を	第	7-	-2 ‡	表に	こ示	;す	0																

<u>- 1</u>		
核種	格納容器から原子炉建屋へ	格納容器圧力逃がし装置への
グループ	の漏えい割合	放出割合
希ガス類	約 4.3×10 ⁻³	約 9.5×10 ⁻¹
CsI 類	約 6.3×10 ⁻⁵	約 1.1×10 ⁻⁶
CsOH 類	約 3.2×10 ⁻⁵	約 4.0×10 ⁻⁷
Sb 類	約 7.6×10 ⁻⁵	約 2.7×10 ⁻⁶
TeO₂類	約 4.5×10 ⁻⁵	約 3.9×10 ⁻⁷
Sr0 類	約 8.6×10 ⁻⁵	約 2.6×10 ⁻⁵
BaO 類	約 9.2×10 ⁻⁵	約 1.6×10 ⁻⁵
MoO₂類	約 9.2×10 ⁻⁵	約 3.5×10 ⁻⁶
CeO ₂ 類	約 1.6×10 ⁻⁵	約 1.1×10 ⁻⁵
La ₂ 0 ₃ 類	約 1.6×10 ⁻⁵	約 1.1×10 ⁻⁵
₩ 小粉占笛	2位目下扫上げ	

第 7-1 表 故出割合の評価結果(MAAP解析)

※ 小数点第2位以下切上け

	(中・低揮発性の核種グルー	ノに対する補止後)
核種	格納容器から原子炉建屋へ	格納容器圧力逃がし装置への
グループ	の漏えい割合*1	放出割合 ^{※1}
希ガス類	約 4.3×10 ⁻³	約 9.5×10 ⁻¹
CsI 類	約 6.3×10 ⁻⁵	約 1.1×10 ⁻⁶
CsOH 類	約 3.2×10 ⁻⁵	約 4.0×10 ⁻⁷
Cs 類 ^{※2}	約 3.4×10 ⁻⁵	約 4.5×10 ⁻⁷
Sb 類	約 6.8×10 ⁻⁶	約 9.0×10 ⁻⁸
TeO₂類	約 6.8×10 ⁻⁶	約 9.0×10 ⁻⁸
Sr0 類	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸
BaO 類	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸
MoO ₂ 類	約 3.4×10 ⁻⁷	約 4.5×10 ⁻⁹
CeO ₂ 類	約 6.8×10 ⁻⁸	約 9.0×10 ⁻¹⁰
La ₂ O ₃ 類	約 2.7×10 ⁻⁸	約 3.6×10 ⁻¹⁰

第 7-2 表 放出割合の評価結果 中・低調発性の技種グループに対する補正後

※1 小数点第2位以下切上げ

※2 CsI 類及び CsOH 類の値から評価(評価式は式1)

① T M I や福島第一原子力発電所事故での観測事実について

第 <mark>7</mark>-1 表によると、高揮発性核種(CsI、CsOH)のベントラ インからの放出割合($10^{-6} \sim 10^{-7}$ オーダー)と比べ、中・低揮発性核 種の放出割合が大きい(10^{-5} オーダー)という結果になっている。

一方、TMIや福島第一原子力発電所事故での観測事実から、事故 が発生した場合に最も多く放出される粒子状物質は、よう素やセシウ ム等の高揮発性の物質であり、中・低揮発性の物質の放出量は高揮発 性の物質と比べて少量であることがわかっている。

第7-3表は、TMI事故後に評価された放射性核種の場所毎の存在 量であるが、希ガスや高揮発性核種(セシウムやよう素)が原子炉圧 力容器外に炉心内蔵量の半分程度放出される一方で、中・低揮発性核 種はほぼ全量が原子炉圧力容器に保持されているという評価となって いる。

第7-3表 TMI事故後に評価された放射性核種の場所毎の存在量

(畄	佉	0%)
	#	ш	70)

++ 1=	低揮発性				中揮発性		高揮発性			
修裡	¹⁴⁴ Ce	¹⁵⁴ Eu	¹⁵⁵ Eu	⁹⁰ Sr	¹⁰⁶ Ru	¹²⁵ Sb	¹³⁷ Cs	¹²⁹ I	⁸⁵ Kr	
原子炉建屋										
原子炉容器	105.4	122.7	109.5	89.7	93.2	117.2	40.1	42	30	
原子炉冷却系	-	-	-	1	-	0.2	3	1	-	
地階水、気相タンク類	0.01	-	-	2.1	0.5	0.7	47	(47) [†]	54	
補助建屋	-	-	-	0.1	-	0.7	5	7	-	
合計	105	122	110	93	94	119	95	97	85	
† 広範囲のI濃度測定値と多量のデブリ(おもに地下水沈殿物)のため, ここでの保持量は炉心インベントリーを大きく上										

回る分析結果となってしまう。したがって、ここに保持されたIのインベントリーはCsと同等であると考える。 ※存在割合=サンプル試料の分析結果/ORIGEN2コード解析結果

出典:「TMI-2号機の調査研究成果(渡会偵祐,井上康,桝田藤夫 日本原 子力学会誌 Vol. 32, No. 4 (1990))」

また,第7-4表は,福島第一原子力発電所事故後に実施された発電 所敷地内の土壌中放射性核種のサンプリング結果であるが,最も多く 検出されているのは高揮発性核種(セシウムやよう素)であり,多く の中・低揮発性核種は不検出(ND)という結果となっている。

第 7-4 表 福島第一原子力発電所事故後に検出された

_												(単	位:Bq/kg·乾土)
試料採取場所		【定点①】*1 グランド (西北西約500m)*2			【定点②】*1 野鳥の森 (西約500m)*2		【定点③】*1 産廃処分場近傍 (南南西約500m)*2		④5.6号機サービス ビル前 (北約1,000m)*2	⑤固体廃棄物貯 蔵庫1,2棟近傍 (北約500m)*2	⑥南南西 約500m*2	⑦南南西 約750m*2	⑧南南西 約1,000m*2
	試料採取日	3/21	3/25	3/28	3/25	3/28	3/25	3/28	3/25	3/22	3/22	3/22	3/22
Γ	分析機関	JAEA	JAEA	日本分析 センター *3	JAEA	日本分析 センター *3	JAEA	日本分析 センター *3	JAEA	JAEA	JAEA	JAEA	JAEA
	測定日	3/24	3/28	3/30	3/28	3/30	3/28	3/30	3/28	3/25	3/25	3/24	3/25
核	I-131(約8日)	5.8E+06	5.7E+06	3.8E+06	3.0E+06	3.9E+04	1.2E+07	2.6E+06	4.6E+05	3.1E+06	7.9E+05	2.2E+06	5.4E+06
種	I-132(約2時間)	*4	*4	2.3E+05	*4	1.3E+02	*4	1.5E+05	*4	*4	*4	*4	*4
	Cs-134(約2年)	3.4E+05	4.9E+05	5.3E+05	7.7E+04	3.2E+02	3.5E+06	9.7E+05	6.8E+04	9.5E+05	8.7E+03	1.7E+04	1.6E+05
	Cs-136(約13日)	7.2E+04	6.1E+04	3.3E+04	1.0E+04	2.8E+01	4.6E+05	6.9E+04	8.6E+03	1.1E+05	1.9E+03	2.2E+03	2.5E+04
	Cs-137(約30年)	3.4E+05	4.8E+05	5.1E+05	7.6E+04	3.2E+02	3.5E+06	9.3E+05	6.7E+04	1.0E+06	2.0E+04	1.6E+04	1.6E+05
	Te-129m(約34日)	2.5E+05	2.9E+05	8.5E+05	5.3E+04	ND	2.7E+06	6.0E+05	2.8E+04	8.9E+05	9.5E+03	1.9E+04	1.7E+05
	Te-132(約3日)	6.1E+05	3.4E+05	3.0E+05	6.5E+04	1.4E+02	3.1E+06	2.0E+05	3.2E+04	1.9E+06	2.1E+04	3.9E+04	3.8E+05
	Ba-140(約13日)	1.3E+04	1.5E+04	ND	2.5E+03	ND	ND	ND	ND	8.0E+04	ND	ND	ND
	Nb-95(約35日)	1.7E+03	2.4E+03	ND	ND	ND	5.3E+03	ND	ND	8.1E+03	ND	ND	7.9E+02
	Ru-106(約370日)	5.3E+04	ND	ND	6.4E+03	ND	2.7E+05	ND	ND	6.8E+04	1.9E+03	ND	3.2E+04
	Mo-99(約66時間)	2.1E+04	ND	ND	ND	ND	6.6E+04	ND	ND	ND	ND	ND	ND
	Tc-99m(約6時間)	2.3E+04	2.0E+04	ND	ND	ND	4.5E+04	ND	1.8E+03	2.3E+04	ND	ND	8.3E+03
	La-140(約2日)	3.3E+04	3.7E+04	ND	2.3E+03	ND	9.7E+04	ND	2.5E+03	2.1E+05	4.2E+02	6.2E+02	7.8E+03
	Be-7(約53日)	ND	ND	ND	ND	ND	ND	ND	ND	3.2E+04	ND	ND	ND
	Ag-110m(約250日)	1.1E+03	2.6E+03	ND	ND	ND	ND	ND	1.7E+02	1.8E+04	ND	ND	ND

土壤中の放射性核種

出典:東京電力(株)HP(http://www.tepco.co.jp/cc/press/11040609-j.html)
②各元素の放出挙動について

燃料からの核分裂生成物の放出及び移行挙動に関する研究結果より 各元素の放出挙動は以下のように整理されており^{*1},高揮発性核種が 高温でほぼ全量放出されるのに対し,中・低揮発性核種は雰囲気条件 に大きく左右される。

希ガス:高温にてほぼ全量放出される。

I,Cs:高温にてほぼ全量放出される。放出速度は希ガスと同等。 Sb,Te:被覆管と反応した後,被覆管の酸化に伴い放出される。 Sr,Mo,Ru,Rh,Ba:雰囲気条件(酸化条件 or 還元条 件)に大きな影響を受ける。 Ce,Np,Pu,Y,Zr,Nb:高温状態でも放出速度は低い。 ※1 「化学形に着目した破損燃料からの核分裂生成物及びアクチ

ニドの放出挙動評価のための研究(JAEA-Review 2013-034, 2013 年 12 月)」

③補正について

①及び②より,第7-1表の中・低揮発性核種の放出割合が高揮発 性核種よりも大きいという結果は実態に即しておらず,これは,M AAP解析において,中・低揮発性核種の放出割合が過度に大きく 評価されたためと考えられ,要因としては,溶融燃料が再冠水し溶 融燃料の外周部が固化した後でも,燃料デブリ表面からの放射性物 質の放出評価において溶融燃料の平均温度を参照して放出量を評価 していることや,溶融燃料上部の水によるスクラビング効果を考慮 していないことが挙げられる。なお,MAAPコードの開発元であ るEPRIからも,以下の報告がなされている。

59-10-添 7-4

- ・炉心が再冠水した場合の低揮発性核種(Ru及びMo)の放出に ついて,低温の溶融燃料表面付近ではなく,溶融燃料の平均温度 を基に放出速度を算出しているため,MAAP解析が保守的な結 果を与える場合がある。
- ・Moの放出量評価について、NUREG-1465よりもMAAPの方
 が放出量を多く評価する。

したがって、TMI事故や福島第一原子力発電所事故の実態により 見合った、環境中への放出量を評価するため、中・低揮発性核種の放 出割合を補正することとした。補正するに当たり、TMI事故を契機 として行われたシビアアクシデントに係るソースターム研究を踏まえ、 被覆管材であるジルコニウムの酸化量の違い等により核分裂生成物の 放出量や放出タイミングに相違が生じることを考慮し、BWR及びP WRそれぞれに対して放出割合を設定する等、より現実的なソースタ ームの設定を目的として制定されたNUREG-1465 の知見を利用す る。事象発生後、炉心損傷が開始し、原子炉圧力容器が破損するまで のMAAP解析とNUREG-1465 の想定の比較を第7-5 表のとおり であり、想定事故シーケンスでは重大事故等対処設備による原子炉注 水により原子炉圧力容器破損には至らないが、NUREG-1465 の想定 とMAAP解析の事象進展に大きな差はなく、本評価においてNUR EG-1465 の知見は利用可能と判断している。

<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
	燃料被覆管損傷が開始し, ギ ャップから放射性物質が放 出される期間	炉心溶融が開始し,溶融燃 料が原子炉圧力容器破損す るまでの期間
MAAP	約4分~約27分 ^{※1}	約 27 分~約 3.3 時間 ^{※ 2}
N U R E G -1465	<mark>~30 分</mark>	<mark>30 分~2 時間</mark>

第 7-5 表 MAAP事象進展とNUREG-1465の想定の比較

※1 炉心損傷開始(燃料被覆管 1000K)~燃料溶融開始(燃料温度 2500K) ※2 原子炉注水をしない場合における原子炉圧力容器破損時間(本評価におい

ては原子炉注水により原子炉圧力容器破損には至らない)

以下,各核種グループにおける放出割合の具体的な評価手法を示す。

(1) 希ガスグループ, C s I グループ, C s O H グループ

希ガスを含めた高揮発性の核種グループについては、MAAP 解析結果から得られた放出割合を採用する。

なお、Csの放出割合については、CsIグループ及びCsO Hグループの放出割合、I元素とCs元素の原子炉停止直後の炉心 内蔵重量より、式1を用いて評価する。(式1の導出過程は、参考 2参照)

$$F_{Cs}(T) = F_{CsOH}(T) + \frac{M_I}{M_{Cs}} \times \frac{W_{Cs}}{W_I} \times (F_{CsI}(T) - F_{CsOH}(T)) \qquad (\not \exists 1)$$

 Fcs(T)
 : 時刻 T における C s の放出割合

 FcsoH(T)
 : 時刻 T における C s O H グループの放出割合

 FcsI(T)
 : 時刻 T における C s I グループの放出割合

 MI
 : 停止直後の I の炉心内蔵重量

 Mcs
 : 停止直後の C s の炉心内蔵重量

 WI
 : I の分子量

 Wcs
 : C s の分子量

(2) 中・低揮発性の核種グループ

中低揮発性の核種グループについては、MAAP解析から得られ た放出割合は採用せず、MAAP解析の結果から得られたCsの放 出割合、希ガスグループの放出割合及びNUREG-1465の知 見を利用して放出割合を評価する。

ここで、中・低揮発性の核種における放出割合の経時的な振る舞いは、格納容器ベントからの放出については希ガス、原子炉建屋への漏えいについてはCsと同一になるものとし^{*2}、事象発生から 168 時間経過時点におけるCsの放出割合に対する当該核種グルー プの放出割合の比率はNUREG-1465 で得られた比率に等しいと して、式2及び式3に基づき評価する。また、第7-6表に、NUR EG-1465 で評価された格納容器内への放出割合を示す。

【格納容器圧力逃がし装置への放出】	
$Fi(T) = F_{CS}(168h) \times \frac{\gamma_i}{\gamma_{CS}} \times \frac{F_{NG}(T)}{F_{NG}(168h)} \qquad (\not \exists 2)$	
【格納容器から原子炉建屋への漏えい】	
$Fi(T) = F_{CS}(T) \times \frac{\gamma_i}{\gamma_{Cs}} \qquad (\vec{\mathfrak{X}} 3)$	

F_i(T):時刻 T における i 番目のMAAP 核種グループの放出割合 *F_{NG}(T)*:時刻 T における希ガスグループの放出割合

Fcs(T):時刻 T における C s の放出割合

- *γ_i*: NUREG-1465 における i 番目のMAAP核種グループ に相当する核種グループの格納容器への放出割合
- γ cs: NUREG-1465 におけるCsに相当する核種グループの 格納容器への放出割合
- ※2 格納容器内に放出された中・低揮発性の核種グループは, 粒子状として振る舞い,沈着やドライウェルスプレイ等に

よる除去効果を受けると考えられる。したがって,中・低 揮発性の核種グループの原子炉建屋への漏えいについては, 沈着等による除去効果を受けるCsの振る舞いに近いと考 えられる。

また、中・低揮発性の核種グループは、Csに比べて格納 容器内に放出される量が少なく、壁面等への付着量も少な い。したがって、格納容器圧力逃がし装置への放出につい ては、格納容器ベントに伴い大気に放出された後も、壁面 等に付着した放射性物質の再浮遊に伴い大気への放出が生 じるCsではなく、格納容器気相部に浮遊し、壁面等から の追加放出がない希ガスの放出割合の振る舞いに近いと考 えられる。

以上のことから、中・低揮発性の核種グループの「各時刻 における放出割合」は、「各時刻における希ガスグループ<mark>又</mark> はCsの放出割合」に比例するものとする。

第7-6表 NUREG-1465での格納容器内への放出割合

核種グループ	格納容器への放出割合**
Cs	0.25
TeO ₂ , Sb	0.05
SrO, BaO	0.02
MoO ₂	0.0025
CeO ₂	0.0005
La 2 0 3	0.0002

※ NUREG-1465のTable3.12「Gap Release」及び「Early In-Vessel」 の値の和

(NUREG-1465では、「Gap Release」、「Early In-Vessel」、「Ex-Vessel」 及び「Late In-Vessel」の各事象進展フェーズに対して格納容器内への放出割合を与えている。本評価事象は原子炉圧力容器が健全な状態で事故収束するため、原子炉圧力容器損傷前までの炉心からの放出を 想定する「Gap Release」及び「Early In-Vessel」の値を用いる。) 参考1 大気への放出量評価過程について

大気への放出量は、「核種ごとに評価した炉心内蔵量」に「MAAP により評価した核種グループごとの格納容器外への放出割合」を乗じ ることで算出する。本評価において考慮したMAAPにおける核種グ ループと各グループの核種を第 7-7 表に示す。なお、MAAPにおけ る核種グループとNUREG-1465における核種グループの比較は第 7-1 図のとおりであり、分類数に違いはあるが、取り扱っている核種は 同等である。

核種グループ	核種		
希ガス類	Kr, Xe		
<mark>C s I 類</mark>	I		
<mark>C s O H 類</mark>	<mark>Cs, Rb</mark>		
<mark>S b 類</mark>	<mark>S b</mark>		
<mark>T e O ₂ 類</mark>	T e		
<mark>SrO類</mark>	<mark>S r</mark>		
<mark>BaO類</mark>	B a		
<mark>MoO₂類</mark>	<mark>Mo, Co, Tc, Ru, Rh</mark>		
<mark>C e O ₂ 類</mark>	Ce, Np, Pu		
	La, Y, Zr, Nb,		
	<mark>Pr, Nd, Am, Cm</mark>		
※本評価において「Te₂類」及び「UO₂類」の核種グループに対するM」			

第 7-7 表 MAAPにおける核種グループと各グループの核種

A AP解析結果がゼロのため、対象外とした。

[FPの核種グループ]

(NURE	G-1465)	(1)	(MAAP)	
ク゛ルーフ゜	核種		ク゛ルーフ゜	核種
1	希ガス/Xe, Kr		1	希ガス
2	ハロゲン/I, Br		2	CsI
3	アルカリ金属/Cs, Rb		3	TeO_2
4	テルルグループ/	\times	4	SrO
5	16, 50, 56 ハ リウム・ストロンチウム/		5	MoO_2
	Ba, Sr		6	CsOH
6	責金属/ Ru, Rh, Pd, Mo, Tc, Co		7	BaO
7	ランタノイド/	H	8	La_2O_3
	Pr, Sm, Y, Cm, Am	H	9	CeO_2
8	セリウムグループ/ Co Pu Nn		10	Sb
	Ue, ru, mp	\mathbf{n}	11	Te_2
			12	UO_2

第 7-1 図 MAAP及びNUREG-1465 における核種グループの (「重大事故等対策の有効性評価に係るシビアアクシデン

ト解析コードについて」の「第5部 MAAP」(抜粋))

参考2 Csの放出割合の評価式について

C s の放出割合については、C s I グループ及びC s O H グループ の放出割合, I 及びC s の原子炉停止直後の炉心内蔵重量並びに I 及び C s の分子量を用いて、下記の式 1 により評価している。ここでは、 式 1 の導出過程について示す。

 $F_{Cs}(T) = F_{CsOH}(T) + \frac{M_I}{M_{Cs}} \times \frac{W_{Cs}}{W_I} \times (F_{CsI}(T) - F_{CsOH}(T)) \quad (\not \exists 1)$

F _{Cs} (T)	<u>: 時刻 T における C s の放出割合</u>
<mark>Fcsон(T)</mark>	:時刻 T における C s O H グループの放出割合
FC s I(T)	: 時刻 T におけるCsIグループの放出割合
M_I	<mark>:停止直後のIの炉心内蔵重量</mark>
MC s	<mark>:停止直後のCsの炉心内蔵重量</mark>
W_I	:Iの分子量
W _{Cs}	: C s の分子量

1. C s I に含まれるC s

Iは全てC s I として存在しているため, C s I 中に含まれるC s は, C s I 中に含まれる I の重量に I 及びC s の分子量の比を乗ずる ことで算出する。

$$M_{Cs(CsI)}(T) = M_I \times \frac{W_{Cs}}{W_I} \times F_{CsI}(T)$$

Mcs(csi)(T):時刻 T におけるC s I 中に含まれるC s の放出量

2. C s O H に含まれるC s

C s は C s I 又は C s O H のいずれかの形態で存在しているため, C s O H 中に含まれる C s は, 1. で算出した C s I 中に含まれる C s を差引くことで算出する。

 $M_{Cs(CsOH)}(T) = (M_{Cs} - M_I \times \frac{W_{Cs}}{W_I}) \times F_{CsOH}(T)$

Mcs(OH)(T):時刻 T におけるCsOH中に含まれるCsの放出量

3. C s の放出割合

みび 2. で得られた C s の放出量を C s の炉心内蔵重量で除する
 ことで、 C s の放出割合を算出する。

$$F_{Cs}(T) = \frac{M_{Cs(CsI)}(T) + M_{Cs(CsOH)}(T)}{M_{Cs}}$$
$$= \frac{M_I \times \frac{W_{Cs}}{W_I} \times F_{CsI}(T) + (M_{Cs} - M_{Cs(CsI)}) \times F_{CsOH}(T)}{M_{Cs}}$$
$$= \frac{M_I \times \frac{W_{Cs}}{W_I} \times F_{CsI}(T) + (M_{Cs} - M_I \times \frac{W_{Cs}}{W_I}) \times F_{CsOH}(T)}{M_{Cs}}$$

$$= F_{CSOH}(T) + \frac{M_I}{M_{CS}} \times \frac{W_{CS}}{W_I} \times (F_{CSI}(T) - F_{CSOH}(T))$$

参考3 MAAP解析結果及びNUREG-1465の放出割合について

被ばく評価への寄与が大きい核種に対するMAAP解析結果及びN URG-1465の放出割合を第7-8表に示す。第7-8表のとおり、Cs及 びIについてはMAAP解析結果の方が大きい。また、希ガスについ ては、NUREG-1465の放出割合の方が大きいが、これは東海第二の 想定事故シナリオでは、原子炉注水により炉心が再冠水することで炉 心内に健全な状態の燃料が一部存在するためと考える。

第 7-8 表 MAAP解析結果及びNUREG-1465 の放出割合

	MAAP	NUREG-1465 [*]
希ガス	<mark>0. 95</mark>	1
I	<mark>0. 78</mark>	<mark>0. 30</mark>
<mark>C s</mark>	<mark>0. 37</mark>	<mark>0. 25</mark>

※ NUREG-1465 の Table3.12「Gap Release」及び「Early In-Vessel」 の値の和

(NUREG-1465では、「Gap Release」、「Early In-Vessel」、「Ex-Vessel」
 及び「Late In-Vessel」の各事象進展フェーズに対して格納容器内への
 放出割合を与えている。本評価事象は原子炉圧力容器が健全な状態で事
 故収束するため、原子炉圧力容器損傷前までの炉心からの放出を想定す
 る「Gap Release」及び「Early In-Vessel」の値を用いる。)

8 重大事故時の居住性評価(被ばく評価)に用いる大気拡散の評価について

中央制御室の居住性評価で用いる相対濃度及び相対線量は,実効放出継続時間を基に計算した値を年間について小さい値から順に並べて整理し,累積出現頻度 97%に当たる値としている。評価対象方位を第8-1 図から第8-4 図に,各評価点における相対濃度及び相対線量の評価結果を第8-1 表に示す。

第8-1図 中央制御室滞在時の評価対象方位(風向)

(放出源:格納容器圧力逃がし装置排気口,評価点:中央制御室中心)

第8-2図 入退域時の評価対象方位(風向)

(放出源:格納容器圧力逃がし装置排気口,評価点:建屋出入口)

第8-3 図 中央制御室滞在時の評価対象方位(風向)

(放出源:原子炉建屋側壁,評価点:中央制御室中心)

第<mark>8</mark>-4 図 入退域時の評価対象方位(風向)

(放出源:原子炉建屋側壁,評価点:建屋出入口)

評価対象		評価点 (放出源からの距離)	着目方位	相対濃度 (χ/Q) (s/m ³)	相対線量 (D/Q) (Gy/Bq)
格納容器 圧力逃が	室内 作業時	中央制御室中心 (55m)	SW, WSW, W, WNW, NW, NNW, N, NNE, NE (9 方位)	3. 7×10 ⁻⁴	8.8×10 ⁻¹⁹
し装置出 口配管	入退域時	建屋出入口 (45m)	SSW, SW, WSW, W, WNW, NW, NNW, N, NNE (9 方位)	3.7×10 ⁻⁴	9. 4×10^{-19}
建屋放出	室内 作業時	中央制御室中心 (10m)	S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位)	8. 3×10 ⁻⁴	2.9×10 ⁻¹⁸
建屋側壁)	入退城時	建屋出入口 (15m)	S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位)	8. 2×10^{-4}	2.9×10 ⁻¹⁸
非 常 用 ガ ス 処 理 系 出口放出	室内 作業時	中央制御室中心 (100m)	₩ (1 方位)	3. 0×10^{-6}	8.8×10 ⁻²⁰
	入退域時	建屋出入口 (110m)	₩ (1 方位)	3. 0×10^{-6}	9. 0×10^{-2} 0

笛 <mark>Q</mark> _1 美	久証価占における相対濃度及び相対線量	の証価結里
宄 <mark>0</mark> IX	石矸価点にわける伯利儀反及し伯利極重	シューー川山小

相対濃度及び相対線量の評価に当たっては、年間を通じて1時間ごとの気象 条件に対して相対濃度及び相対線量を算出し、小さい値から順に並べて整理し た。評価結果を第8-2表に示す。

	相対	濃度	相対線量		
	累積出現頻度	値	累積出現頻度	値	
	(%)	(s / m^3)	(%)	(Gy∕Bq)	
索					
一一一	96.990	約 3.7×10 ⁻⁴	96.990	約 8.8×10 ⁻¹⁹	
作	97.001	約 3.7×10 ⁻⁴	97.001	約 8.8×10 ⁻¹⁹	
業	97.013	約 3.7×10 ⁻⁴	97.013	約 8.8×10 ⁻¹⁹	
时	•••	•••	•••	•••	
入	96.990	約 3.7×10 ⁻⁴	96.990	約 9.4×10 ⁻¹⁹	
返城	97.001	約 3.7×10 ⁻⁴	97.001	約 9.4×10 ⁻¹⁹	
時	97.013	約 3.7×10 ⁻⁴	97.013	約 9.4×10 ⁻¹⁹	

(格納容器圧力逃がし装置放出)

<mark>第 8-2 表</mark> 相対濃度及び相対線量の値(2/3)

(建屋放出)

	相対濃度		相対線量	
	累積出現頻度	値	累積出現頻度	値
	(%)	(s / m^3)	(%)	(Gy∕Bq)
索				
当内	96.990	約 8.3×10 ⁻⁴	96.990	約 2.9×10 ⁻¹⁸
作	97.001	約 8.3×10 ⁻⁴	97.001	約 2.9×10 ⁻¹⁸
業	97.013	約 8.3×10 ⁻⁴	97.013	約 2.9×10 ⁻¹⁸
吁	•••	•••	•••	
入	96.990	約 8.2×10 ⁻⁴	96.990	約 2.9×10 ⁻¹⁸
返 域 時	97.001	約 8.2×10 ⁻⁴	97.001	約 2.9×10 ⁻¹⁸
	97.013	約 8.2×10 ⁻⁴	97.013	約 2.9×10 ⁻¹⁸

<mark>第 8-2 表</mark> 相対濃度及び相対線量の値(3/3)

(非常用ガス処理系出口放出)

	相対濃度		相対線量	
	累積出現頻度 値 累積出現頻度		累積出現頻度	値
	(%)	(s / m^3)	(%)	(Gy∕Bq)
索		•••	•••	•••
土内	96.990	約 3.0×10 ⁻⁶	96.990	約 8.8×10 ⁻²⁰
作	97.001	約 3.0×10 ⁻⁶	97.001	約 8.8×10 ⁻²⁰
業	97.013	約 3.0×10 ⁻⁶	97.013	約 8.8×10 ⁻²⁰
时	•••	•••	•••	•••
入	96.990	約 3.0×10 ⁻⁶	96.990	約 9.0×10 ⁻²⁰
退城	97.001	約 3.0×10 ⁻⁶	97.001	約 9.0×10 ⁻²⁰
時	97.013	約 3.0×10 ⁻⁶	97.013	約 9.0×10 ⁻²⁰

<mark>9</mark> フィルタの除去性能について

中央制御室の居住性評価に係る被ばく評価において,中央制御室換 気空調系での放射性物質の除去を前提としているため、そのフィルタ 性能に期待している。評価事故シナリオにおけるフィルタのよう素及 び粒子状物質の捕集量を評価し,フィルタに捕集できる容量が確保さ れていることを確認している。以下に,評価方法及び評価結果を示す。

1. フィルタへの捕集量の評価条件

フィルタに捕集されるよう素及び粒子状物質の重量評価の条件を以下のとおり設定する。

- よう素重量の評価において、安定核種として I-127 及び I-129 を考慮する。
- ② 第 9-1 表に示す炉心内蔵量を評価に用いる。
- ③ よう素用チャコールフィルタの捕集量評価においては、よう素の化学組成を有機よう素4%、無機よう素96%とする。
- ④ 粒子用高効率フィルタの捕集量評価においては、よう素の全量 が粒子状よう素として設定する。
- ⑤ 中央制御室換気空調系の再循環フィルタ(よう素用チャコール フィルタ及び粒子用高効率フィルタ)における捕集量評価については、大気放出量評価における格納容器圧力逃がし装置の除染係数は考慮しない。また、フィルタの除去効率は100%として評価する。(第 9-1 図及び第 9-2 図参照)

核種グループ	炉心内蔵量 (kg)
よう素類	約 2.4×10 ¹
C s 類	約 1.5×10 ²
S b 類	約 3.2×10 ⁻²
T e 類	約 5.9×10 ⁻¹
S r 類	約 6.8×10 ¹
B a 類	約 2.2×10 ⁰
R u 類	約 1.9×10 ¹
Се類	約 8.0×10 ²
L a 類	約 2.8×10 ¹
合計	約 1.1×10 ³

第 9-1 表 炉心内蔵量(安定核種含む)

2. フィルタへの捕集量の評価結果

フィルタの捕集量評価結果は第 9-2 表のとおりであり,フィルタの保持容量を十分に下回る。

第 9-2 表 中央制御室換気空調系における フィルタ保持容量と捕集量評価結果

フィルタの種類	保持容量 (g)	捕集量 (g)
よう素用チャコールフィルタ	約 500	1. 4×10^{-1}
粒子用高効率フィルタ	約 2,000	7.5×10 ⁻⁴

よう素用チャコールフィルタへの捕集量評価過程

第 9-2 図 中央制御室換気空調系における 粒子用高効率フィルタへの捕集量評価過程

10 中央制御室換気系バイパスフィルタ内放射性物質からの被ばくに ついて

よう素フィルタの近傍には、中央制御室チェンジングエリアがある ため、フィルタ内に付着した放射性物質からのガンマ線に起因する運 転員の着替え等に伴う被ばく線量を評価した。

1. 考慮する線源

格納容器ベント実施に伴い,中央制御室換気系の微粒子フィルタ及 びよう素フィルタ内には放射性物質が取り込まれる。

取り込まれる放射性物質のうち,希ガス類はフィルタ装置に取り込まれないため線源とならない。また,大気放出量は第 10-1 表のとおりであり,希ガス類及びよう素類の放出割合が大きい。したがって,よう素フィルタに取り込まれたよう素が支配的な線源となる。

上記のことから、よう素フィルタ内のよう素に起因する直接ガンマ 線による影響を評価した。

なお、よう素フィルタに流入するよう素は、その全量がフィルタ内 に取り込まれるものとし、よう素はフィルタ内に一様に分布するもの とした。

	大気放出量 (Bq)
希ガス類	9. 0×10^{1}
よう素類	$1.0 \times 10^{1-6}$
СѕОН類	3.8×10^{13}
S b 類	4. 5 × 10 ^{1 2}
T e O 2 類	3. 7×10^{1}
SrO類	2.0×10^{1}
ВаО類	2.0×10^{13}
M o O 2 類	6.9×10^{12}
C e O 2 類	4. 3×10^{1}
L a 2 O 3 類	1.2×10^{12}

第10-1表 重大事故時の大気放出量

2. 評価点

チェンジングエリアの中でよう素フィルタに最も近い点を評価点と して選定した。線源との位置関係を第 10-1 図に示す。

第10-1図 線源,チェンジングエリア及び評価点の位置関係

3. 評価コード

評価コードは QAD-CGGP2R コードを用いた。

4. 評価結果

評価点における空間線量率の推移を第10-2図に示す。チェンジング エリア内の線量率は最大で約0.4mSv/hである。

事故後の経過時間(h)

第10-2図 チェンジングエリアの空間線量率推移

11 空気流入率試験結果について

「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規) (平成21・07・27 原院第1 号平成 21 年8 月12 日)」の別添資料「原子力発 電所の中央制御室の空気流入率測定試験手法」に基づき,東海第二発電所中央 制御室について平成27年2月に試験を実施した結果,空気流入率は最大で0.47 回/h(±0.012(95%信頼限界値))である。 第11-1表に 試験結果の詳細を示 す。 第11-1表 東海第二発電所中央制御室空気流入率測定試験結果

項目	内 容			
計殿口印	平成27年2月24日~平成27年2月26日			
武 缺 日 栓	(試験時のプラント状態:停止中)			
空気流入率測定	系 統	トレーサガス濃度測定値の場所 : (測定値-平均値)/平均(所によるノ 直(%)	ベラツキ
試験における	A系	A系 —7.6 [,]		
均一化の程度	B系	3系 -5.7~8.1%		
封殿主社	内規に定める空気流入率測定試験手法のうち			
武 阙 于 伝	「基本的な試験手順」/「全サンプリング点による試験手順」にて実施			
	内 容		適用	備考
	トレーサガス濃度測定値のバラツキが 平均値の±10%以内か。		0	
	決定係数R ² が0.90以上であること。		_	均一化の目安を満足 している
適用条件	①中央制御室の空気流入率が,別区画 に比べて小さいこと。		_	均一化の目安を満足 している
	②特異点の除外が、1時点の全測定デ ータ個数の10%以内であること。		—	特異点の除外はない
	③中央制御室以外の空気流入率が大き い区画に,立入規制等の管理的措置 を各種マニュアル等に明記し,運転 員へ周知すること。		_	特定の区画を排除せ ず,全ての区画を包 含するリーク率で評 価している。
	系統 空気流入率 (±以下は95%信頼限界値)		决定係数R ²	
試験結果	A系 0.47 回/h (±0.012)			
	B系 0.44 回/h (±0.012)		—	
特記事項				

12 全面マスクによる防護係数について

重大事故時の居住性に係る被ばく評価において,以下の検討を踏まえ,全面 マスクの防護係数として 50 を使用している。

1. 厚生労働省労働基準局長通知について

「電離放射線障害防止規則の一部を改正する省令の施行等について」(基発 第0412号 都道府県労働局長あて厚生労働省労働基準局長通知)(以下「基発 第0412号」という。)によると「200万ベクレル毎キログラムを超える事故由 来廃棄物等を取り扱う作業であって,粉じん濃度が10ミリグラム毎立方メー トルを超える場所における作業を取り扱う場合,内部被ばく線量を1年につき 1ミリシーベルト以下とするため,漏れを考慮しても,50以上の防護係数を期 待できる捕収効率 99.9%以上の全面型防塵マスクの着用を義務付けたもので あること」としている。

●以下,電離放射線障害防止規則(最終改正:平成25年7月8日)抜粋 第三十八条 事業者は,第二十八条の規定により明示した区域内の作業又は緊 急作業その他の作業で,第三条第三項の厚生労働大臣が定める限度を超えて汚 染された空気を吸入するおそれのあるものに労働者を従事させるときは,をの 汚染の程度に応じて防じんマスク,防毒マスク,ホースマスク,酸素呼吸器等 の有効な呼吸用保護具を備え,これらをその作業に従事する労働者に使用させ なければならない。 ●以下, 基発第 0412 号 (平成 25 年 4 月 12 日抜粋)

第1号 キ 保護衣 (第38条関係)

 第1項の「有効な呼吸用保護具」は、次に掲げる作業の区分及び事故由来 廃棄物等の放射能濃度の区分に応じた捕収効率を持つ呼吸用保護具又はこれと 同等以上のものをいうこと。

	放射能濃度	放射能濃度	放射能濃度
	200 万 Bq/kg 超	50万 Bq/kg 超	50万 Bq/kg 以下
		200万 Bq/kg 以下	
高濃度粉じん作業	捕収効率 99.9%以	捕収効率95%以上	捕収効率80%以上
(粉じん濃度10mg	上		
/m ³ 超の場所にお	(全面型)		
ける作業)			
高濃度粉じん作業	捕収効率95%以上	捕収効率80%以上	捕収効率80%以上
以外の作業			
(粉じん濃度10mg			
/m ³ 以下の場所に			
おける作業)			

②防じんマスクの捕収効率については、200 万ベクレル毎キログラムの超える 事故由来廃棄物を扱う作業であって、粉じん濃度が10ミリグラム毎立方メート ルを超える場所における作業を行う場合、内部被ばく線量を1年につき1ミリ シーベルト以下とするため、漏れを考慮しても、50以上の防護係数を期待でき る捕収効率 99.9%以上の全面型防塵マスクの着用を義務付けたものであるこ と。 2. マスクメーカーによる除染係数検査結果について

全面マスクを納入しているマスクメーカーにおいて,全面マスク(よう素用 吸収缶)についての除染係数を検査している。本検査は,放射性ヨウ化メチル を用い,除染係数を算出したものである。その結果は第12-1表に示すとおり であり,DF≧1.21×10³と十分な除染係数を有することを確認した。(フィル タの透過率は0.083%以下)

4 問		間後	10時間後		
入口濃度 (Pa / am ³)	出口濃度	DE 店	出口濃度	DE 储	試験条件
(БФ/СШ)	(Bq∕cm ³)	DF <u>10.</u>	DF 1但 DF 1但 DF 1但	DF <u>11</u>	
9. 45×10^{-2}	4. 17×10^{-7}	2. 27×10^{5}	8.33×10 ⁻⁷	1.13×10^{5}	試験流量:20L∕min
7.59×10 ⁻⁶	6.25×10 ⁻⁸	1.21×10^{3}	2.78×10 ⁻⁸	2.73×10 ³	通気温度:30℃ 相対湿度:95%RH

第12-1 表 マスクメーカーによる除染係数検査結果

また,同じくマスクメーカーにより全面マスクの漏れ率を検査しており,最 大でも 0.01%であった。この漏れ率と除染係数(フィルタ透過率)から計算 される防護係数は約 1,075 であった。

3. 呼吸用保護具着用に関する教育・訓練について

東海第二発電所では,定期検査等において定期的に着用の機会があることから,基本的に呼吸用保護具着用に関して習熟している。

また,放射線業務従事者指定時及び定期的に,放射線防護に関する教育・訓練を実施している。講師による指導のもとフィッティングテスターを使用した 呼吸用保護具着用訓練において,漏れ率(フィルタ透過率を含む)2%を担保 できるよう正しく呼吸用保護具を着用できていることを確認する。

今後とも,さらに教育・訓練を進めていき,呼吸用保護具着用の熟練度を高 めて行く。 重大事故時の中央制御室居住性評価における直交替の考慮は,勤務形態として5直2交替を仮定して以下のように設定した。

(1) 中央制御室居住性評価で想定する勤務形態

中央制御室居住性評価で想定する勤務形態は,評価で想定する事故シーケンスにおける放射性物質の放出を考慮し以下のとおり設定する。

- 事象発生~約 18 時間後
 格納容器ベント実施(事象発生後約 19 時間)の1時間前までは直交替
 を行うものと想定。
- ② 約 18 時間後~約 30 時間後

格納容器ベント実施中(格納容器ベント実施1時間前から12時間)は, 直交替を行わないものとし、常時、中央制御室内に滞在すると想定。

③ 約 30 時間後~168 時間後
 格納容器ベント後(格納容器ベント実施から12時間後)は、直交替を
 行うと想定。

運転員の直交代サイクルを第 <mark>13</mark>-1 表に,想定する勤務体系の第 <mark>13</mark>-2 表に 示す。

第 <mark>13</mark>-1 表 直交代サイクル

	勤務時間		
1 直	8:00~21:45		
2 直	21:30~8:15		

事象発生から	①事象発生~	②約 <mark>18</mark> 時間後~	③ <mark>30</mark> 時間後~
の時間	約 <mark>18</mark> 時間後	<mark>30</mark> 時間後	<mark>168</mark> 時間後
勤務形態	5 直 2 交替	中央制御室	5 直 9 态扶
		常時滞在	3 匝 4 文音

第 13-2 表 想定する勤務体系

(2) 中央制御室滞在時及び入退域時の線量評価について

a. 中央制御室滞在時の考慮

直交替を考慮した場合の中央制御室滞在時の実効線量は,中央制御室内 に連続滞在した場合の線量を求め,その値に制御室の滞在時間割合を乗じ て評価を行う。直交替を行う場合の滞在時間割合は,1直当たりの中央制 御室滞在時間を12時間*とし以下のように求める。なお,常時滞在する 場合は滞在時間割合を1とする。

滞在時間割合=(12h/直×2直/日/5直)/24h/日=0.2

b. 入退域時(交替時)の考慮

直交替を考慮した場合の入退域時の実効線量は,サービス建屋出入口に 連続滞在した場合の線量を求め,その値に入退域の時間割合を乗じて評価 を行う。直交替を行う場合の入退域の時間割合は,入退域(片道)に必要 な時間を15分とし以下のように求める。

入退域の時間割合=(0.5h/直×2直/日/5直)/24h/日≒0.00833 ※1直と2直の平均勤務時間は12時間15分であり,そのうち片道15分,

往復30分を入退域時間と見込んでいる。評価においては1直当たりの 中央制御室滞在時間を12時間とした。

59-10-添 13-2

中央制御室の居住性に影響するグランドシャインの評価モデルを以下に示す。

(1)線源領域

東海第二発電所原子炉建屋周辺の地形を第 14-1 図に,中央制御室内の評価モ デルを第 14-2 図に示す。線源領域は重大事故時に大気中に放出された放射性物 質が,中央制御室天井及び周辺建屋天井の上面に均一に沈着した面線源とし, 評価点である中央制御室中心を囲む一辺 800m の正方形と設定した。また,線源 範囲の設定は以下のように分けた。

- ・中央制御室天井より高い位置に存在する線源は中央制御室の天井レベル (EL23m)で代表させた。
- ・中央制御室天井より低い位置に存在する線源のレベルはサービス建屋天井 レベル(EL22m)又は南側空調機械室レベル(EL18m)に代表させた。

入退域時の評価モデルを第14-3 図に示す。原子炉建屋周辺の地形は平坦で約 100m離れた場所に丘上の斜面がある。斜面は標高差 20m 程度のなだらかな形状 であり、また原子炉建屋周辺の建屋によって遮蔽されるため地形による寄与は 無視できると考えられる。そこで、地表線源からのグランドシャインの評価に あたっては、放射性物質が平坦な土壌に一様に沈着したものとし、線源領域は 評価点を囲む一辺 800mの正方形と設定した。

(2) 遮蔽

グランドシャインによる影響の評価に当たって, 遮蔽物は第 14-2 図に示す中 央制御室遮蔽とし, 中央制御室を囲む東西南北壁及び天井の躯体について各々

59-10-添14-1

の最少厚さで代表した。また、コンクリートの種類は普通コンクリート(密度 2.23g/cm³)とした。

(3)評価点

中央制御室内の評価点は,線量が最大となる位置とした。評価点を第 14-2 図中に示す。

入退域時の被ばくの評価点は,計算モデルの中心,地表面より高さ1mの位置 とした。評価点を第14-3図中に示す。

(4)評価コード

評価コードはQAD-CGGP2Rコードを用いた。

第 14-1 図 原子炉建屋周辺の地形(赤点線内は線源とした領域:1辺 800m)

第 14-3 図 入退域時の評価モデル及び評価点

15 エアロゾルの乾性沈着速度について

中央制御室の線量影響評価では,地表面への放射性物質の沈着速度として乾 性沈着及び降水による湿性沈着を考慮した沈着速度(1.2cm/s,添付 16 参照) を用いており,沈着速度の評価に当たっては,乾性沈着速度として 0.3cm/s を用いている。以下に,乾性沈着速度の設定の考え方を示す。

エアロゾルの乾性沈着速度は,NUREG/CR-4551^{**1}に基づき 0.3cm/sと設定した。NUREG/CR-4551 では郊外を対象としており,郊外とは道路,芝生及び木々で構成されるとしている。原子力発電所内も同様の構成であるため,この沈着速度が適用できると考えられる。また,NUREG/CR-4551 では 0.5µm~5µm の粒径に対して検討されているが,格納容器内の除去過程で,相対的に粒子径の大きなエアロゾルは格納容器内に十分捕集されるため,粒径の大きなエアロゾルの放出はされにくいと考えられる。

また,W.G.N. Slinnの検討^{**2}によると,草や水,小石といった様々な材質に 対する粒径に応じた乾性の沈着速度を整理しており,これによると 0.1 μ m~5 μ m の粒径では沈着速度は 0.3 cm/s 程度(第 5-1 図)である。以上のことから, 現場作業の線量影響評価におけるエアロゾルの乾性の沈着速度として 0.3 cm/ s を適用できると判断した。

- 第 5-1 図 様々な粒径における地表沈着速度(Nuclear Safety Vol.19^{※2})
- ※1 J.L. Sprung 等:Evaluation of severe accident risk:quantification of major input parameters, NUREG/CR-4451 Vol.2 Rev.1 Part 7, 1990
- ※2 W.G.N. Slinn : Environmental Effects, Parameterizations for Resuspension and for Wet and Dry Deposition of Particles and Gases for Use in Radiation Dose. Calculations, Nuclear Safety Vol. 19 No. 2, 1978

(参考)シビアアクシデント時のエアロゾルの粒径について

シビアアクシデント時に格納容器内で発生する放射性物質を含むエアロゾル 粒径分布として「0.1μm~5μm」の範囲であることは,粒径分布に関して実施 されている研究を基に設定している。

シビアアクシデント時には格納容器内にスプレイ等による注水が実施される ことから、シビアアクシデント時の粒径分布を想定し、「格納容器内でのエア ロゾルの挙動」及び「格納容器内の水の存在の考慮」といった観点で実施され た第1表の②,⑤に示す試験等を調査した。さらに、シビアアクシデント時の エアロゾルの粒径に対する共通的な知見とされている情報を得るために、海外 の規制機関(NRC等)や各国の合同で実施されているシビアアクシデント時の エアロゾルの挙動の試験等(第1表の①,③,④)を調査した。以上の調査結 果を第5-1表に示す。

この表で整理した試験等は,想定するエアロゾル発生源,挙動範囲(格納容 器,原子炉冷却材配管等),水の存在等に違いがあるが,エアロゾル粒径の範 囲に大きな違いはなく,格納容器内環境でのエアロゾル粒径はこれらのエアロ ゾル粒径と同等な分布範囲を持つものと推定できる。

したがって,過去の種々の調査・研究により示されている範囲をカバーする 値として,0.1μm~5μmのエアロゾルを想定することは妥当である。 <mark>第 5-1 表 シビアアクシデント時のエアロゾル粒径についての文献調査結果</mark>

番 号	<mark>試験名又は</mark> 報告書名等	エアロゾル粒径 (μm)	<mark>備 考</mark>
	LACE LA2 ^{*1}	<mark>約0.5~5</mark> (第1図参照)	シビアアクシデント時の評価に使用 されるコードでの格納容器閉じ込め 機能喪失を想定した条件とした比較 試験
2	NUREG/CR-5901 * ²	0.25~2.5 (参考1-1)	格納容器内に水が存在し,溶融炉心を 覆っている場合のスクラビング効果 <mark>のモデル化を紹介したレポート</mark>
3	AECLが実施した 試験 ^{※3}	<mark>0.1~3.0</mark> (参考1-2)	シビアアクシデント時の炉心損傷を 考慮した1次系内のエアロゾル挙動に 着目した実験
4	PBF-SFD ^{* 3}	<mark>0.29~0.56</mark> (参考1-2)	シビアアクシデント時の炉心損傷を 考慮した1次系内のエアロゾル挙動に 着目した実験
5	PHEBUS-FP ^{* 3}	<mark>0.5~0.65</mark> (参考1-2)	 シビアアクシデント時のFP挙動の実 験(左記のエアロゾル粒径はPHEBUS FP 実験の格納容器内のエアロゾル挙動 に着目した実験の結果)

- ※1 J. H. Wilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWR Aerosol Containment Experiments (LACE) LA2, ORNL A. L. Wright, J. H. Wilson and P.C. Arwood, PRETEST AEROSOL CODE COMPARISONS FOR LWR AEROSOL CONTAINMENT TESTS LA1 AND LA2
- ※2 D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete

₩3 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R (2009)

Fig. 11. LA2 pretest calculations - aerodynamic mass median diameter vs time.

第5-2図 LACE LA2でのコード比較試験で得られたエアロゾル粒径の時間変化

グラフ

so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO_2 , H_2 , and H_2O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.

(6) <u>Solute Mass</u>. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of $\ln(0.05 \text{ g/kilogram H}_2\text{O}) = -3.00$ to $\ln(100 \text{ g/kilogram H}_2\text{O}) = 4.61$.

(7) <u>Volume Fraction Suspended Solids</u>. The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.

(8) <u>Density of Suspended Solids</u>. Among the materials that are expected to make up the suspended solids are Ca(OH)₂ ($\rho = 2.2 \text{ g/cm}^3$) or SiO₂ ($\rho = 2.2 \text{ g/cm}^3$) from the concrete and UO₂($\rho = 10 \text{ g/cm}^3$) or ZrO₂ ($\rho = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm³. The upper limit is chosen based on the assumption that suspended UO₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.

(9) <u>Surface Tension of Water</u>. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:

 $\sigma_1 = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$

where $\sigma(w)$ is the surface tension of pure water.

(10) <u>Mean Aerosol Particle Size</u>. The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about $0.1 \,\mu$ m in diameter. Even with a water pool present, smaller particles would not be expected.

Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from ln (0.25 μ m) = -1.39 to ln (2.5 μ m) = 0.92.

(11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.

(12) <u>Aerosol Material Density</u>. Early in the course of core debris interactions with concrete, UO_2 with a solid density of around 10 g/cm³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm³ and condensed products of concrete decomposition such as Na₂O, K₂O, Al₂O₃ SiO₂, and CaO with densities of 1.3 to 4 g/cm³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm³.

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.

(13) <u>Initial Bubble Size</u>. The initial bubble size is calculated from the Davidson-Schular equation:

$$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_s^{0.4}}{g^{0.2}} \ cm$$

where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:

$$D_b = 0.0105 \ \Psi[\sigma_l / g(\rho_l - \rho_s)]^{1/2}$$

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:

参考1-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R(2009)5の抜粋及び試験の概要

9.2.1 Aerosols in the RCS

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 μ m formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 μ m in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range $0.29-0.56 \mu m$ (elimination of the first filter due to it being early with respect to the main transient gives the range $0.32-0.56 \mu m$) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The aerosol size distributions were fairly lognormal with an average size (AMMD) in FPT0 of 2.4 μ m at the end of the 5-hour bundle-degradation phase growing to 3.5 μ m before stabilizing at 3.35 μ m; aerosol size in FPT1 was slightly larger at between 3.5 and 4.0 μ m. Geometric-mean diameter (d₅₀) of particles in FPT1 was seen to be between 0.5 and 0.65 μ m a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there also exist many data on the solubilities of the different elements in numerous deposits giving a clue as to the potential forms of some of the elements. However, post-test oxidation of samples cannot be excluded since storage times were long (months) and the value of speculating on potential speciation on the basis of the available information is debatable. Nevertheless, there is clear evidence that some elements reached higher states of oxidation in the containment when compared to their chemical form in the circuit.

試験名又は報告書名等	試験の概要
AFCLが実施した実験	CANDUのジルカロイ被覆管燃料を使用した,1次系でも核分 裂生成物の挙動についての試験
PBF-SFD	米国アイダホ国立工学環境研究所で実施された炉心損傷状 態での燃料棒及び炉心のふるまい並びに核分裂生成物及び 水素の放出についての試験
PHEBUS FP	フランスカダラッシュ研究所のPHEBUS研究炉で実施され た,シビアアクシデント条件下での炉心燃料から1次系を経 て格納容器に至るまでの核分裂生成物の挙動を調べる実機 燃料を用いた総合試験

地表面への沈着速度の設定について

地表面への放射性物質の沈着は,第16-1 図に示すように乾性沈着と湿性沈着 によって発生する。乾性沈着は地上近くの放射性物質が,地面状態等によって 決まる沈着割合(沈着速度)に応じて地表面に沈着する現象であり,放射性物 質の地表面濃度に沈着速度をかけることで計算される。湿性沈着は降水によっ て放射性物質が雨水に取り込まれ,地表面に落下・沈着する現象であり,大気 中の放射性物質の濃度分布と降水強度及び沈着の割合を示すウォッシュアウト 係数によって計算される。

緊急時対策所の居住性評価において、地表面への沈着速度として、乾性沈着 速度 0.3cm/sの4倍である 1.2cm/s^{*1}を用いている。

「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」(昭和51年 9月28日原子力委員会決定,一部改訂 平成13年3月29日)の解説において,

59-10-添16-1

葉菜上の放射性よう素の沈着率を考慮するときに、「降水時における沈着率は、 乾燥時の 2~3 倍大きい値となる」と示されている。これを踏まえ、湿性沈着 を考慮した沈着速度は、乾性沈着による沈着も含めて乾性沈着速度の4倍と設 定した。

以下では、湿性沈着を考慮した沈着速度を、乾性沈着速度の4倍として設定 した妥当性を検討した。

1. <mark>評価</mark>手法

湿性沈着を考慮した沈着速度の適用性は、乾性沈着率と湿性沈着率を合計 した沈着率の累積出現頻度 97%値を求め,乾性沈着率の累積出現頻度 97%値 との比を求める。その比と乾性沈着速度(0.3cm/s,添付資料 15 参照)の積 が 1.2cm/sを超えていないことを確認する。乾性沈着率及び湿性沈着率は以 下のように定義される。乾性沈着率及び湿性沈着率は以下のように定義され る。

(1) 乾性沈着率

乾性沈着率は、「日本原子力学会標準 原子力発電所の確率論的安全評価 に関する実施基準(レベル 3PSA 編):2008」(社団法人 日本原子力学会) (以下「学会標準」という。)解説 4.7 を参考に評価した。学会標準解説 4.7 では、使用する相対濃度は地表面高さ付近としているが、ここでは内 規[【解説 5.3】①]に従い、地上高さの相対濃度を用いた。

 $(\chi/Q)_{D}(x,y,z)_{i} = V_{d} \cdot \chi/Q(x,y,z)_{i} \cdot \cdot \cdot \cdot \cdot 1$

(χ/Q)_D(x,y,z)_i :時刻 i での乾性沈着率[1/m²] χ/Q(x,y,z)_i :時刻 i での相対濃度[s/m³]

59-10-添 16-2

V_d :沈着速度[m∕s] (0.003 NUREG/CR-4551 Vol.2より)
 (2) 湿性沈着率

降雨時には,評価点上空の放射性核種の地表への沈着は,降雨による影響を受ける。湿性沈着率 $(\chi/Q)_w(x,y)_i$ は学会標準解説 4.11 より以下のように表される。

$$\left(\chi/Q\right)_{w}(x,y)_{i} = \Lambda \cdot \int_{0}^{\infty} \chi/Q(x,y,z)_{i} dz = \chi/Q(x,y,0)_{i} \Lambda_{i} \sqrt{2\pi} \Sigma_{zi} \exp\left[\frac{h^{2}}{2\Sigma_{zi}}\right]$$

の拡散幅[m]

乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97% 値と, 乾 性沈着率の累積出現頻度 97% 値の比は以下で定義される。

乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度 97%値 (①+②) 乾性沈着率の累積出現頻度 97%値 (①) $= \frac{\left(V_{d} \cdot \chi/Q(x,y,z)_{i} + \chi/Q(x,y,0)_{i}\Lambda_{i}\sqrt{2\pi\Sigma_{zi}}exp\left[\frac{h^{2}}{2\Sigma_{zi}}\right]\right)_{97\%}}{(V_{d} \cdot \chi/Q(x,y,z)_{i})_{97\%}} \quad \cdots 3$

59-10-添 16-3

2. 地表面沈着率の累積出現頻度 97%値の求め方

地表面沈着率の累積出現頻度は,気象指針に記載されているχ/Qの累積出 現頻度 97%値の求め方^{※2}に基づいて計算した。具体的には以下の手順で計算 を行った(第 16-2 図参照)。

(1)各時刻における気象条件から,式①及び式②を用いてχ/Q,乾性沈着率,湿性沈着率を1時間毎に算出する。なお,評価対象方位以外に風が吹いた時刻については,評価対象方位におけるχ/Qがゼロとなるため,地表面沈着率(乾性沈着率+湿性沈着率)もゼロとなる。

第 16-2 図の例は,評価対象方位をSWとした場合であり,χ/Qによ る乾性沈着率及び降水による湿性沈着率から地表面沈着率を算出する。評 価対象方位SW以外の方位に風が吹いた時刻については,地表面沈着率は ゼロとなる。

(2)上記(1)で求めた1時間毎の地表面沈着率を値の大きさ順に並びかえ、
 小さい方から数えて累積出現頻度が97%値を超えたところの沈着率を、地
 表面沈着率の97%値とする(地表面沈着率の累積出現頻度であるため、χ
 ✓Qの累積出現頻度と異なる)。

※2(気象指針解説抜粋)

- VI. 想定事故時等の大気拡散の解析方法
- 1. 線量計算に用いる相対濃度
- (2)着目地点の相対濃度は,毎時刻の相対濃度を年間について小さい方から 累積した場合,その累積出現頻度が97%に当たる相対濃度とする。

						降水がない 湿性沈着率	時刻は, はゼロ		
	日時	方位 (風向)	風速 (m/s)	大気 安定度	χ∕Q (s∕m³)	乾性沈着率 (1/m ²) (①)	降水量 (mm/hr)	湿性沈着率 (1/m ²) (②)	地表面沈着率 (①+②)
	4/1 1:00) SW (NE)	4.3	F	$\bigcirc \times 10^{-6}$	$\bigcirc \times 10^{-9}$	0	0	$\bigcirc \times 10^{-9}$
	4/1 2:00) SW (NE)	4.5	Е	$\bigcirc \times 10^{-6}$	$\bigcirc \times 10^{-9}$	1.0	$\bigcirc \times 10^{-8}$	$\bigcirc \times 10^{-8}$
	4/1 3:00) S (N)	1.4	F	$\bigcirc \times 10^{-6}$	$\bigcirc \times 10^{-9}$	1.5	$\bigcirc \times 10^{-8}$	$\bigcirc \times 10^{-8}$
	•••		• • •	•••	•••	• • •	• • •	• • •	
	3/31 24:0	00 SW (NE)	5.5	D	$\bigcirc \times 10^{-7}$	○×10 ⁻¹⁰	0	0	$\bigcirc \times 10^{-1}$ 0
		評価対象方(Q及び乾性)	立の時刻の た着率が出	みχ/ 現	評価5 地表ī	対象方位をSW 面沈着率の出現	7とし, 1頻度を昇順に	^{並び替え} 🗸	
	Ľ	評価対象方位	以外のχ/	Qは	No	出現頻度 (%)	χ∕Q (s∕m³)	地表面》(①+	t着率 ②)
		ゼロとなるた	め, 地表面ネ	^{尤着率} 🝾	1	0.000	0	0	
		はビロとなる。	0		2	0.003	0	0	
		地表	そ面沈着率の))	• • • •	•••	• • •	• •	•
		<u> </u>	刊 出 切 	1 70 1 1 1	00	97.004	$\bigcirc \times 10^{-6}$	$\bigcirc \times 10$)- 9
地表	〔 面沈着率0)並び替えであ	5り,気象象	\$ 件	• 00	97.010	$\bigcirc \times 10^{-6}$	$\bigcirc \times 10$) - 9
によ	にってχ/(まらない	Qは必ずしも	昇順に並ふ		• • •	• • •	• • •	• •	•
(従	é来のχ/G	2計算とは順都	昏が異なる。)	$\times \times \times$	100.000	$\bigcirc \times 10^{-5}$	$\bigcirc \times 10$)-8

第16-2 図 地表面沈着率の累積出現頻度 97%値の求め方

(評価対象方位がSWの場合)

3. <mark>評価</mark>結果

第16-1 表に中央制御室の評価点についての検討結果を示す。乾性沈着率に 放出点と同じ高さの相対濃度を用いたとき,乾性沈着率と湿性沈着率を合計 した沈着率の累積出現頻度 97%値と,乾性沈着率の累積出現頻度 97%値の比 は 1.3 程度となった。

以上より,湿性沈着を考慮した沈着速度を乾性沈着速度の4倍と設定する ことは保守的であるといえる。

評価点	放出点	相対濃度 (s/m ³)	 ① 乾性沈着率 (1/m²) 	 ②乾性沈着率 +湿性沈着率 (1/m²) 	比 (②/①)
中央制御室 中心	原子炉 建屋	8. 3×10^{-4}	2.5×10 ⁻⁶	2.9 × 10 ⁻⁶	1.1
建屋出入口	原子炉 建屋	8. 2×10^{-4}	2.5×10 ⁻⁶	2.9×10 ⁻⁶	1.2

第 16-1 表 沈着率評価結果

17 有機よう素の乾性沈着速度について

今回の評価では,原子炉建屋から放出されるよう素のうち,無機よう素はエ アロゾルと同じ沈着速度を用いる。有機よう素についてはエアロゾルと別に乾 性沈着速度を10⁻³cm/sとし,湿性沈着を考慮して乾性沈着速度の4倍である4 ×10⁻³cm/sを設定した。以下にその根拠を示す。

(1) 英国放射線防護庁(NRPB)による報告

英国放射線防護庁 大気拡散委員会による年次レポート(NRPB-R32 2^{*1})に沈着速度に関する報告がなされている。本レポートでは,有機よう素 について,植物に対する沈着速度に関する知見が整理されており,以下の通り 報告されている。

- ・植物に対する沈着速度の"best judgement"として 10⁻⁵m/s(10⁻³cm/s)を推 奨
- (2) 日本原子力学会による報告

日本原子力学会標準レベル 3PSA 解説 4.8 に沈着速度に関する以下の報告がな されている。

- ・ヨウ化メチルは非反応性の化合物であり、沈着速度が小さく、実験で 10⁻⁴ $\sim 10^{-2} \text{cm/s}$ の範囲である。
- ・ヨウ化メチルの沈着は、公衆のリスクに対し、僅かな寄与をするだけであり、事故影響評価においてはその影響は無視できる。

以上のことから有機よう素の乾性沈着速度はエアロゾルの乾性沈着速度
 0.3cm/sに比べて小さいことがいえる。

また原子力発電所構内は,コンクリート,道路,芝生及び木々で構成されてい

59-10-添 17-1

るが, エアロゾルへの沈着速度の実験結果 (NUREG/CR-4551)によ ると, 沈着速度が大きいのは芝生や木々であり, 植物に対する沈着速度が大き くなる傾向であった。

したがって有機よう素の乾性沈着速度として、NRPB-R322の植物に

対する沈着速度である 10⁻³cm/s を用いるのは妥当と判断した。

※1:NRPB-R322-Atomospheric Dispersion Moddeling Liaison Committee Annual Report, 1988-99

NRPB-R322 ANNEX-A 「2.2 Iodine」の抜粋

2.2.2 Meadow grass and crops

Elemental iodine

Methyl iodide

There are fewer data for methyl iodide than for elemental iodine, but all the data indicate that it is poorly absorbed by vegetation, such that surface resistance is by far the dominant resistance component. The early data have been reviewed elsewhere (Underwood, 1988; Harper *et al*, 1994) and no substantial body of new data is available. The measured values range between 10^{-6} and 10^{-4} m s⁻¹ approximately. Again, there are no strong reasons for taking r_s to be a function of windspeed, so it is recommended that v_d is taken to be a constant. Based on the limited data available, the 'best judgement' value of v_d is taken as 10^{-5} m s⁻¹ and the 'conservative' value as 10^{-4} m s⁻¹. Where there is uncertainty as to the chemical species of the iodine, it is clearly safest to assume that it is all in elemental form from the viewpoint of making a conservative estimate of deposition flux.

2.2.3 Urban

Elemental iodine

Methyl iodide

There appear to be no data for the deposition of methyl iodide to building surfaces: the deposition velocity will be limited by adsorption processes and chemical reactions (if any) at the surface, for which specific data are required. No recommendations are given in this case. For vegetation within the urban area (lawns and parks etc), it is recommended that the values for extended grass surfaces be used.

<mark>18</mark> 審査ガイドへの適合状況	
実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住	中央制御室の居住体に係る被ばく評価の適合状況
性に係る被ばく評価に関する審査ガイド	
3. 制御室及び緊急時対策所の居住性に係る被ばく評価	
(解釈 より抜粋)	
第74条(原子炉制御室)	
1. 第74条に規定する「運転員がとどまるために必要な設備」とは、	
以下に掲げる措置又はこれらと同等以上の効果を有する措置を行うた	
めの設備をいう。	
b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性につい	1 b)→審査ガイドの趣旨に基づき評価
て、次の要件を満たすものであること。	①格納容器圧力逃がし装置による格納容器破損防止対策を考慮
① 設置許可基準規則解釈第 37 条の想定する格納容器破損モードのう	する事故シーケンスを選定している。
ち、原子炉制御室の運転員の被ばくの観点から結果が最も厳しくな	②マスク着用は考慮する場合と考慮しない場合とで評価してい
る事故収束に成功した事故シーケンス(例えば、炉心の著しい損傷	S₀
の後、格納容器圧力逃がし装置等の格納容器破損防止対策が有効に	③運転員の勤務形態(5 直 2 交代)を考慮して評価している。
機能した場合)を想定すること。	④運転員の実効線量が7日間で 100mSv を超えないことを確認し
② 運転員はマスクの着用を考慮してもよい。ただし、その場合は実施	ている。
のための体制を整備すること。	
③ 交代要員体制を考慮してもよい。ただし、その場合は実施のための	
体制を整備すること。	
④ 判断基準は,運転員の実効線量が7日間で100mSvを超えないこと。	
4. 居住性に係る被ばく評価の標準評価手法	

294

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
4 1 民住性に係ろ被げく評価の手法及び範囲	4 1 →寐杏ガイドのとおり
① 居住性に係る被ばく評価にあたったは最適評価手決を適用し、[4.5	
○ 正一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	解析条件」に基づいた評価している。実験等に基づいた検証とれ
的な仮定及び条件の適用を否定するものではない。	たコードやこれまでの許認可で使用したモデルに基づいて評価
② 実験等を基に検証され、適用範囲が適切なモデルを用いる。	している。
③ 不確かさが大きいモデルを使用する場合や検証されたモデルの適	
用範囲を超える場合には、感度解析結果等を基にその影響を適切に考	
慮する。	
(1) 被ばく経路	4.1(1)→ 審査ガイドのとおり
原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ばく評	中央制御室居住性に係る被ばく経路は図1のとおり, ①~⑤の
価では、次の被ばく経路による被ばく線量を評価する。図1に、原子	経路に対して評価している。
炉制御室の居住性に係る被ばく経路を、図2に、緊急時制御室又は緊	
急時対策所の居住性に係る被ばく経路をそれぞれ示す。	
ただし、合理的な理由がある場合は、この経路によらないことができ	
о° Ф	
① 原子炉建屋内の放射性物質からのガンマ線による原子炉制御室/	4.1 (1) ①→審査ガイドのとおり
緊急時制御室/緊急時対策所内での被ばく原子炉建屋(二次格納施設	
(BWR 型原子炉施設)又は原子炉格納容器及びアニュラス部(PWR 型	
原子炉施設)) 内の放射性物質から放射されるガンマ線による原子炉制	
御室/緊急時制御室/緊急時対策所内での被ばく線量を、次の二つの	
経路を対象に計算する。	原子炉建屋内の放射性物質からのスカイシャインガンマ線に

295

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
- 原子炉建屋内の放射性物質からのスカイシャインガンマ線による	よる中央制御室内での外部被ばく線量を評価している。
外部被ばく	原子炉建屋内の放射性物質からの直接ガンマ線による中央制
二 原子炉建屋内の放射性物質からの直接ガンマ線による外部被ばく	御室での外部被ばく線量を評価している。
	4.1(1)②→審査ガイドのとおり
② 大気中へ放出された放射性物質による原子炉制御室/緊急時制御	大気中に放出された放射性物質からのガンマ線によ中央制御
室ノ緊急時対策所内での被ばく大気中へ放出された放射性物質から放	室での外部被ばくは、事故期間中の大気中への放射性物質の放出
射されるガンマ線による外部被ばく線量を、次の二つの経路を対象に	量を基に大気拡散効果と中央制御室の壁によるガンマ線遮蔽効
計算する。	果を踏まえて運転員の外部被ばく(クラウドシャイン)を評価し
→ 放射性雲中の放射性物質からのガンマ線による外部被ばく (クラウ	ている。
ドシャイン)	地表面に沈着した放射性物質からのガンマ線による外部被ば
二 地表面に沈着した放射性物質からのガンマ線による外部被ばく (グ	く (グランドシャイン)についても考慮して評価している。
ランドシャイン)	4.1(1)③→審査ガイドのとおり
③ 外気から取り込まれた放射性物質による原子炉制御室/緊急時制	中央制御室内に取り込まれた放射性物質は, 中央制御室に沈着
御室/緊急時対策所内での被ばく原子炉制御室/緊急時制御室/緊急	せず浮遊しているものとして評価している。
時対策所内に取り込まれた放射性物質による被ばく線量を、次の二つ	
の被ばく経路を対象にして計算する。	
なお、原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれた	
放射性物質は、室内に沈着せずに浮遊しているものと仮定して評価す	
Š₀	事故期間中に大気中に放出された放射性物質の一部は外気か
- 原子炉制御室/緊急時制御室/緊急時対策所内へ外気から取り込	ら中央制御室内に取り込まれる。中央制御室内に取り込まれた放
まれた放射性物質の吸入摂取による内部被ばく	射性物質のガンマ線による外部被ばく及び吸入摂取による内部

296

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
二 原子炉制御室/緊急時制御室/緊急時対策所内へ外気から取り込	彼ばくの和として実効線量を評価している。
まれた放射性物質からのガンマ線による外部被ばく	
④ 原子炉建屋内の放射性物質からのガンマ線による入退域での被ば	4.1(1)④→審査ガイ ドのとおり
~	
原子炉建屋内の放射性物質から放射されるガンマ線による入退域での	
被ばく線量を、次の二つの経路を対象に計算する。	
→ 原子炉建屋内の放射性物質からのスカイシャインガンマ線による	原子炉建屋内の放射性物質からのスカイシャインガンマ線に
外部被试く	よる入退域時の外部被ばく線量を評価している。
二 原子炉建屋内の放射性物質からの直接ガンマ線による外部被ばく	原子炉建屋内の放射性物質からの直接ガンマ線による入退域
	時の外部被ばく線量を評価している。
⑤ 大気中へ放出された放射性物質による入退域での被ぼく大気中へ	4.1(1)⑤→審査ガイドのとおり
放出された放射性物質による被ばく線量を、次の三つの経路を対象に	大気中へ放出された放射性物質からのガンマ線による入退域
計算する。	時の被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待
- 放射性雲中の放射性物質からのガンマ線による外部被ばく (クラウ	しないこと以外は「4.1(1)②大気中へ放出された放射性物質によ
ドシャイン)	る中央制御室内での被ばく」と同様な手段で,放射性物質からの
二 地表面に沈着した放射性物質からのガンマ線による外部被ばく (グ	ガンマ線による外部被ばくおよび吸入摂取による内部被ばくの
ランドシャイン)	和として実効線量を評価している。地表面に沈着した放射物質放
三 放射性物質の吸入摂取による内部被ばく	射性物質からのガンマ線についても考慮して評価している。

297

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
(2)評価の手順	4.1(2)→審査ガイドのとおり
原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ばく評	中央制御室居住性に係る被ばくは,図3の手順に基づいて評価
価の手順を図3 に示す。	している。
a. 原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ば	4.1(2)a. →審査ガイ ドのとおり
く評価に用いるソースタームを設定する。	
・原子炉制御室の居住性に係る被ばく評価では、格納容器破損防止対	評価事象については、炉心の著しい損傷が発生するシーケンス
策の有効性評価 (参2)で想定する格納容器破損モードのうち,原子	「大 LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗+全交流動力
炉制御室の運転員又は対策要員の被ばくの観点から結果が最も厳しく	電源喪失」を選定する。また,放出放射能量の観点から,代替循
なる事故収束に成功した事故シーケンス(この場合、格納容器破損防	環冷却系の機能喪失を仮定し、格納容器圧力逃がし装置による格
止対策が有効に働くため、格納容器は健全である)のソースターム解	納容器ベントを実施する場合を想定する。
析を基に、大気中への放射性物質放出量及び原子炉施設内の放射性物	
質存在量分布を設定する。	
・緊急時制御室又は緊急時対策所の居住性に係る被ばく評価では、放	大気中への放射性物質の放出量については, MAAP 解析結果を元
射性物質の大気中への放出割合が東京電力株式会社福島第一原子力発	に設定しているが,放出割合については,TMI-2 事故や福島第一
電所事故と同等と仮定した事故に対して、放射性物質の大気中への放	原子力発電所事故での知見も踏まえた設定としている。
出割合及び炉心内蔵量から大気中への放射性物質放出量を計算する。	
また、放射性物質の原子炉格納容器内への放出割合及び炉心内蔵量か	
ら原子炉施設内の放射性物質存在量分布を設定する。	
b. 原子炉施設敷地内の年間の実気象データを用いて, 大気拡散を計算	4.1(2)p.→審査ガイドのとおり
して相対濃度及び相対線量を計算する。	被ばく評価に用いる相対濃度及び相対線量は, 大気拡散の評価

298

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
	に従い実効放出継続時間を基に計算した値を年間について、小さ
	い方から順に並べた累積出現頻度 97%に当たる値を用いている。
	評価においては, 2005 年 4 月 1 日から 2006 年 3 月 31 日の 1 年間
	における気象データを使用している。
c. 原子炉施設内の放射性物質存在量分布から原子炉建屋内の線源強度	4.1(2)c.→審査ガイドのとおり
を計算する。	原子炉施設内の放射性物質存在量分布を考慮し、スカイシャイ
	ンガンマ線及び直接ガンマ線による外部被ばく線量を評価する
	ために、原子炉建屋内の線源強度を計算している。
d. 原子炉制御室/緊急時制御室/緊急時対策所内での運転員又は対策	4.1(2)d. →審査ガイドのとおり
要員の被ばく線量を計算する。	前項 c. の結果を用いて, 原子炉建屋内の放射性物質からのガン
・上記 c の結果を用いて, 原子炉建屋内の放射性物質からのガンマ線	マ線による外部被ばく線量を計算している。
(スカイシャインガンマ線、直接ガンマ線)による被ばく線量を計算	前項 a.及び b.の結果を用いて,大気中へ放出された放射性物
する。	質及び地表面に沈着した放射性物質のガンマ線による外部被ば
・上記 a 及び b の結果を用いて,大気中へ放出された放射性物質及び	く線量を計算している。
地表面に沈着した放射性物質のガンマ線による外部被ばく線量を計算	前項 a.及び b.の結果を用いて、中央制御室内に外気から取り
する。	込まれた放射性物質による被ばく線量(ガンマ線による外部被ば
・上記 a 及び b の結果を用いて, 原子炉制御室/緊急時制御室/緊急	く線量及び吸入摂取による内部被ばく線量)を計算している。
時対策所内に外気から取り込まれた放射性物質による被ばく線量(ガ	
ンマ線による外部被ばく及び吸入摂取による内部被ばく)を計算する。	
e. 上記 d で計算した線量の合計値が, 判断基準を満たしているかどう	
かを確認する。	4.1(2)e.→審査ガイドのとおり

299

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
	上記 d. で計算した線量の合計値が,「判断基準は,運転員の実
	効線量が7日間で 100mSv を超えないこと」を満足することを確
4. 2 居住性に係る被ばく評価の共通解析条件	認している。
 (1) 沈着・除去等 	4.2(1)a. →審査ガイドのとおり
a. 原子炉制御室/緊急時制御室/緊急時対策所の非常用換気空調設備	中央制御室非常用循環設備よう素フィルタによる除去効率と
フィルタ効率	して,設計値である 95%を,中央制御室換気設備のフィルタ除去
ヨウ素類及びエアロゾルのフィルタ効率は、使用条件での設計値を基	効率は,設計上期待できる値として,有機よう素は 95%,無機よ
に設定する。	う素及び粒子状物質は 99%として評価している。
なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮する。	
b. 空気流入率	
既設の場合では、空気流入率は、空気流入率測定試験結果を基に設定	4.2(1)b. →審査ガイドのとおり
する。	中央制御室待避室に待避している間は、空気の流入は考慮しな
新設の場合では、空気流入率は、設計値を基に設定する。(なお、原子	لاً کی مربا
炉制御室/緊急時制御室/緊急時対策所設置後、設定値の妥当性を空	中央制御室待避室に待避していない間は,空気流入率を1回/
気流入率測定試験によって確認する。)	h とした。
(2)大気拡散	
a. 放射性物質の大気拡散	
・放射性物質の空気中濃度は、放出源高さ及び気象条件に応じて、空	4.2(2)a. →審査ガイドのとおり
間濃度分布が水平方向及び鉛直方向ともに正規分布になると仮定した	放射性物質の空気中濃度は、ガウスブルームモデルを適用して
ガウスプルームモデルを適用して計算する。	計算している。

300

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
なお、三次元拡散シミュレーションモデルを用いてもよい。	東海第二発電所内で観測して得られた 2005 年 4 月 1 日から
・風向、風速、大気安定度及び降雨の観測項目を、現地において少な	2006年3月31日の1年間の気象データを大気拡散計算に用いて
くとも1 年間観測して得られた気象資料を大気拡散式に用いる。	いる。
・ガウスプルームモデルを適用して計算する場合には,水平及び垂直	水平方向及び鉛直方向の拡散パラメータは、風下距離及び大気
方向の拡散パラメータは、風下距離及び大気安定度に応じて、気象指	安定度に応じて、気象指針の相関式を用いて計算している。
針(参3)における相関式を用いて計算する。	放出点(格納容器圧力逃がし装置配管)から近距離の建屋(原
・原子炉制御室/緊急時制御室/緊急時対策所の居住性評価で特徴的	子炉建屋)の影響を受けるため、建屋による巻き込みを考慮し、
な放出点から近距離の建屋の影響を受ける場合には、建屋による巻き	建屋の影響がある場合の拡散パラメータを用いている。
込み現象を考慮した大気拡散による拡散パラメータを用いる。	
・原子炉建屋の建屋後流での巻き込みが生じる場合の条件については、	
放出点と巻き込みが生じる建屋及び評価点との位置関係について、次	
に示す条件すべてに該当した場合、放出点から放出された放射性物質	→一、三の全ての条件に該当するため、 建屋による巻き込みを考
は建屋の風下側で巻き込みの影響を受け拡散し、評価点に到達するも	慮して評価している。
のとする。	
一 放出点の高さが建屋の高さの 2.5 倍に満たない場合	
二 放出点と評価点を結んだ直線と平行で放出点を風下とした風向 n	放出点(格納容器圧力逃がし装置配管)が原子炉建屋の屋上に
について, 放出点の位置が風向 n と建屋の投影形状に応じて定まる一	あるため,建屋の高さの2.5倍に満たない。
定の範囲(図4の領域An)の中にある場合	放出点の位置は,図4の領域 An の中にある。
三 評価点が,巻き込みを生じる建屋の風下側にある場合	評価点(中央制御室等)は,巻き込みを生じる建屋(原子炉建屋)
上記の三つの条件のうちの一つでも該当しない場合には、建屋の影響	の風下側にある。

301

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 サレルマスサルメンジロン間ナス変オガメン	中央制御室の居住性に係る被ばく評価の適合状況
性に休る彼はく評価に阕9 る番宜ガイ ト	
はないものとして大気拡散評価を行うものとする(参 4)。	建屋による巻き込みを考慮し、図5に示すように, 建屋の後流
・原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ばく	側拡がりの影響が評価点に及ぶ可能性がある複数の方位(評価方
評価では、建屋の風下後流側での広範囲に及ぶ乱流混合域が顕著であ	位 9 方位(中央制御室及び入退域))を対象としている。
ることから、放射性物質濃度を計算する当該着目方位としては、放出	
源と評価点とを結ぶラインが含まれる1方位のみを対象とするのでは	
なく,図5に示すように,建屋の後流側の拡がりの影響が評価点に及	
ぶ可能性のある複数の方位を対象とする。	
・放射性物質の大気拡散の詳細は,「原子力発電所中央制御室の居住性	放射性物質の大気拡散については、「原子力発電所中央制御室
に係る被ばく評価手法について(内規)」(参 1)による。	の居住性に係る被ばく評価手法について(内規)」に基づいて評価
	している。
b. 建屋による巻き込みの評価条件	4.2(2)b.→審査ガイドのとおり
・巻き込みを生じる代表建屋	建屋巻き込みによる拡散を考慮している。
1) 原子炉建屋の近辺では, 隣接する複数の建屋の風下側で広く巻き込	放出源(格納容器圧力逃がし装置配管)から最も近く,巻き込
みによる拡散が生じているものとする。	みの影響が最も大きい建屋として原子炉建屋を代表建屋として
2) 巻き込みを生じる建屋として, 原子炉格納容器, 原子炉建屋, 原子	いる。 、 、 、
炉補助建屋、タービン建屋、コントロール建屋及び燃料取り扱い建屋	
等,原則として放出源の近隣に存在するすべての建屋が対象となるが,	
巻き込みの影響が最も大きいと考えられる一つの建屋を代表建屋とす	
ることは、保守的な結果を与える。	
・放射性物質濃度の評価点	
1) 原子炉制御室/緊急時制御室/緊急時対策所が属する建屋の代表	

302

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
面の選定 原子炉制御室/緊急時制御室/緊急時対策所内には、次の i)又は ii)	
によって、原子炉制御室/緊急時制御室/緊急時対策所が属する建屋	
の表面から放射性物質が侵入するとする。	
i) 事故時に外気取入を行う場合は,主に給気口を介しての外気取入及	
び室内への直接流入	
ii) 事故時に外気の取入れを遮断する場合は, 室内への直接流入	
2) 建屋による巻き込みの影響が生じる場合, 原子炉制御室/緊急時制	建屋による巻き込みの影響を考慮しており、事故時には間欠的
御室/緊急時対策所が属する建屋の近辺ではほぼ全般にわたり、代表	に外気を取り入れる。代表面として建屋側面を選定し、保守的に
建屋による巻き込みによる拡散の効果が及んでいると考えられる。	地上高さにおける濃度を評価している。
このため、原子炉制御室/緊急時制御室/緊急時対策所換気空調設備	
の非常時の運転モードに応じて, 次の i)又は ii)によって, 原子炉制	
御室/緊急時制御室/緊急時対策所が属する建屋の表面の濃度を計算	
する。	
i) 評価期間中も給気口から外気を取入れることを前提とする場合は,	建屋側面を選定しており、評価点は中央制御室内の最も線量が
給気ロが設置されている原子炉制御室/緊急時制御室/緊急時対策所	高い位置とする。
が属する建屋の表面とする。	
ii) 評価期間中は外気を遮断することを前提とする場合は, 原子炉制	
御室/緊急時制御室/緊急時対策所が属する建屋の各表面(屋上面又	
は側面)のうちの代表面(代表評価面)を選定する。	

〈評価に関する審査ガイド ごける評価点 ごける評価点 ご込みの影響を受ける場合には、原子炉制御室/緊急時制 対策所の属する建屋表面での濃度は風下距離の依存性は 様と考えられるので、評価点は厳密に定める必要はない。 とする場合、例えば原子炉制御室/緊急時制御室/緊急 心点を評価点とするのは妥当である。 面を、原子炉制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時封御室/緊急時対策所が属する , 原子炉制御室/緊急時制御室/緊急時対策所が属上面から離れ , 原子炉制御室/緊急時制御室/緊急時均衡所が属上面から離れ 。 前子炉制御室/緊急時制御室/緊急時地御室/緊急時対策所が属する , 代表面とするとは、評価点として原子炉制御室/緊急 急時対策所の中心点を選定し、対応する風下距離から枕 を算出してもよい。 .びっ;=0 として、っ,0,00値を適用してもよい。
/ 緊急時制御室/緊急時対策所の被ばく評価の計算)風下後流側での広範囲に及ぶ乱流混合域が顕著であ

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
源と評価点とを結ぶラインが含まれる1方位のみを対象とするのでは	建屋による巻き込みを考慮し、「原子力発電所中央制御室の居
なく,図5に示すように、代表建屋の後流側の拡がりの影響が評価点	住性に係る被ばく評価手法について(内規)」に基づいて複数方位
に及ぶ可能性のある複数の方位を対象とする。	を対象として評価している。
評価対象とする方位は、放出された放射性物質が建屋の影響を受けて	
拡散すること及び建屋の影響を受けて拡散された放射性物質が評価点	
に届くことの両方に該当する方位とする。	
具体的には, 全 16 方位について以下の三つの条件に該当する方位を選	
定し、すべての条件に該当する方位を評価対象とする。	
i) 放出点が評価点の風上にあること	
ii) 放出点から放出された放射性物質が, 建屋の風下側に巻き込まれ	放出点が評価点の風上にある方位を対象としている。
るような範囲に、評価点が存在すること。この条件に該当する風向の	放出点は建屋に近接しているため、風向の方位は放出点が評価
方位m1の選定には、図6のような方法を用いることができる。図6の	点の風上となる 180°を対象としている。
対象となる二つの風向の方位の範囲mıw,mıBのうち,放出点が評価	
点の風上となるどちらか一方の範囲が評価の対象となる。放出点が建	
屋に接近し,0.5Lの拡散領域(図6のハッチング部分)の内部にある場	
合は,風向の方位m1は放出点が評価点の風上となる180°が対象とな	
Å₀	
iii) 建屋の風下側で巻き込まれた大気が評価点に到達すること。	
この条件に該当する風向の方位m2の選定には、図7に示す方法を用	図7に示す方法により, 建屋の後流側の拡がりの影響が評価点
いることができる。評価点が建屋に接近し, 0.5Lの拡散領域(図7の	に及ぶ可能性のある複数の方位(評価方位は9方位)を評価方位と
ハッチング部分)の内部にある場合は,風向の方位m2は放出点が評価	して選定している。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住	中市単省がの日子ギンダメオジン部分の違んで
性に係る被ばく評価に関する審査ガイド	十大四伊年シノ市住住に伝る彼は、計画シ週ロ小び
点の風上となる 180°が対象となる。	
図 6 及び図7 は, 断面が円筒形状の建屋を例として示しているが, 断	
面形状が矩形の建屋についても、同じ要領で評価対象の方位を決定す	
ることができる。	
建屋の影響がある場合の評価対象方位選定手順を,図8 に示す。	
2) 具体的には、図9 のとおり、原子炉制御室/緊急時制御室/緊急時	「・着目方位 1)」の方法により、評価対象の方位を選定してい
対策所が属する建屋表面において定めた評価点から、原子炉施設の代	о З
表建屋の水平断面を見込む範囲にあるすべての方位を定める。	
幾何学的に建屋群を見込む範囲に対して、気象評価上の方位とのずれ	
によって、評価すべき方位の数が増加することが考えられるが、この	
場合、幾何学的な見込み範囲に相当する適切な見込み方位の設定を行	
ってもよい。	
・建屋投影面積	
1) 図 10 に示すとおり, 風向に垂直な代表建屋の投影面積を求め, 放	風向に垂直な原子炉建屋の投影面積を大気拡散式の入力とし
射性物質の濃度を求めるために大気拡散式の入力とする。	ている。
2) 建屋の影響がある場合の多くは複数の風向を対象に計算する必要	原子炉建屋の最小投影面積を用いている。
があるので、風向の方位ごとに垂直な投影面積を求める。ただし、対	
象となる複数の方位の投影面積の中で、最小面積を、すべての方位の	
計算の入力として共通に適用することは、合理的であり保守的である。	
3) 風下側の地表面から上側の投影面積を求め大気拡散式の入力とす	原子炉建屋の地上階部分の投影面積を用いている。
る。方位によって風下側の地表面の高さが異なる場合は、方位ごとに	

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
地表面高さから上側の面積を求める。また、方位によって、代表建屋	
とは別の建屋が重なっている場合でも、原則地表面から上側の代表建	
屋の投影面積を用いる。	
c. 相対濃度及び相対線量	4.2(2)c.→審査ガイドのとおり
・相対濃度は、短時間放出又は長時間放出に応じて、毎時刻の気象項	相対濃度は,毎時刻の気象項目(風向,風速,大気安定度)及び
目と実効的な放出継続時間を基に評価点ごとに計算する。	実効放出継続時間を基に、短時間放出の式を適用し、評価してい
・相対線量は、放射性物質の空間濃度分布を算出し、これをガンマ線	°
量計算モデルに適用して評価点ごとに計算する。	相対線量は、放射性物質の空間濃度分布を算出し、これをガン
・評価点の相対濃度又は相対線量は、毎時刻の相対濃度又は相対線量	マ線計算モデルに適用し、計算している。
を年間について小さい方から累積した場合,その累積出現頻度が 97%	年間の気象データに基づく相対濃度及び相対線量を各時刻の
に当たる値とする。	風向に応じて,小さい方から累積し,97%に当たる値を用いてい
・相対濃度及び相対線量の詳細は、「原子力発電所中央制御室の居住性	Ŷ
に係る被ばく評価手法について(内規)」 ^(参1) による。	相対濃度及び相対線量の詳細は,「原子力発電所中央制御室の
	居住性に係る被ばく評価手法について(内規)」に基づいて評価
	している。
d. 地表面への沈着	4.2(2)d. →審査ガイドのとおり
放射性物質の地表面への沈着評価では、地表面への乾性沈着及び降雨	地表面への乾性沈着及び降雨による湿性沈着を考慮して地表
による湿性沈着を考慮して地表面沈着濃度を計算する。	面沈着濃度を計算している。
 原子炉制御室/緊急時制御室/緊急時対策所内の放射性物質濃度 	4.2(2)e. →審査ガイドのとおり
・原子炉制御室/緊急時制御室/緊急時対策所の建屋の表面空気中か	中央制御室は間欠的に外気取入れ運転運転により外気が取り
ら、次の二つの経路で放射性物質が外気から取り込まれることを仮定	込まれることを仮定している。また中央制御室非常用循環設備の

307

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
J-2.°	運転による空気が直接流入することを仮定している。
→ 原子炉制御室/緊急時制御室/緊急時対策所の非常用換気空調設	プルーム通過中は運転員は中央制御室待避室に待避し、室内を
備によって室内に取り入れること(外気取入)	加圧するため外気取入れ及び空気流入はないものとして評価し
二 原子炉制御室/緊急時制御室/緊急時対策所内に直接流入するこ	ている。
と(空気流入)	
・原子炉制御室/緊急時制御室/緊急時対策所内の雰囲気中で放射性	中央制御室内では放射性物質は一様混合するとし、室内で放射
物質は, 一様混合すると仮定する。	性物質は沈着せず,浮遊していると仮定している。
なお、原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれた	
放射性物質は、室内に沈着せずに浮遊しているものと仮定する。	
・原子炉制御室/緊急時制御室/緊急時対策所内への外気取入による	外気取入れによる放射性物質の取り込みについては, 中央制御
放射性物質の取り込みについては、非常用換気空調設備の設計及び運	室の換気設備の設計及び運転条件に従って計算している。
転条件に従って計算する。	
・原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれる放射	空気流入量は中央制御室のバウンダリ体積(容積)を用いてい
性物質の空気流入量は、空気流入率及び原子炉制御室/緊急時制御室	計算している。
ノ緊急時対策所バウンダリ体積(容積)を用いて計算する。	
(3)線量評価	
a. 放射性雲中の放射性物質からのガンマ線による原子炉制御室/緊急	4.2(3)a. →審査ガイ ドのとおり
時制御室/緊急時対策所内での外部被ばく(クラウドシャイン)	外部被ばく線量については, 空気中濃度及びクラウドシャイン
 放射性雲中の放射性物質からのガンマ線による外部被ばく線量は、 	に対する外部被ぼく線量換算係数の積で計算した線量率を積算
空気中時間積分濃度及びクラウドシャインに対する外部被ばく線量換	して計算している。
算係数の積で計算する。	

308

宇対策所の居住 中央制御室の居住性に係る被ばく評価の適合状況	5運転員又は対 中央制御室の運転員については建屋による遮蔽効果を考慮して	急時対策所の建 る。		亰子炉制御室/ 4.2(3)b.→審査ガイドのとおり	、ドシャイン) 中央制御室の運転員のグランドシャインによる外部彼ば	↓部被ばく線量 ついては, 建屋による遮蔽効果を考慮している。	形被ばく線量換		5運転員又は対	急時対策所の建		貳から取り込ま 4.2(3)c.→審査ガイドのとおり	¥制御室/緊急 中央制御室内における内部被ばくについては、空気中濃度、	吸率及び内部被ばく換算係数の積で計算した線量率を積算し	気から取り込ま │ 計算している。	室内の空気中時	真係数の積で計		Nに取り込まれ 中央制御室内では室内で放射性物質は沈着せず浮遊してい	仮定する。ものと仮定している。	
実用発電用原子炉に係る重大事故時の制御室及び緊急時、 性に体み被げく評価に関すろ案をガイド	・原子炉制御室/緊急時制御室/緊急時対策所内にいる	策要員に対しては,原子炉制御室/緊急時制御室/緊急	屋によって放射線が遮へいされる低減効果を考慮する。	b. 地表面に沈着した放射性物質からのガンマ線による原	緊急時制御室/緊急時対策所内での外部被ばく(グラン	・地表面に沈着した放射性物質からのガンマ線による外:	は、地表面沈着濃度及びグランドシャインに対する外部:	算係数の積で計算する。	・原子炉制御室/緊急時制御室/緊急時対策所内にいる	策要員に対しては,原子炉制御室/緊急時制御室/緊急	屋によって放射線が遮へいされる低減効果を考慮する。	c. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気	れた放射性物質の吸入摂取による原子炉制御室/緊急時	時対策所内での内部被ばく	・原子炉制御室/緊急時制御室/緊急時対策所内へ外気。	れた放射性物質の吸入摂取による内部被ばく線量は、室	間積分濃度、呼吸率及び吸入による内部被ばく線量換算	算する。	・なお、原子炉制御室/緊急時制御室/緊急時対策所内	た放射性物質は、室内に沈着せずに浮遊しているものとも	

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
する。その場合は、マスク着用を考慮しない場合の評価結果も提出を	v~ ≁
求める。	
d. 原子炉制御室/緊急時制御室/緊急時対策所内へ外気から取り込ま	4.2(3)d.→審査ガイドのとおり
れた放射性物質のガンマ線による外部被ぼく	
・原子炉制御室/緊急時制御室/緊急時対策所内へ外気から取り込ま	中央制御室内に取り込まれた放射性物質からのガンマ線の外
れた放射性物質からのガンマ線による外部被ぼく線量は、室内の空気	部被ばくについては,空気中濃度及びクラウドシャインに対する
中時間積分濃度及びクラウドシャインに対する外部被ばく線量換算係	外部被ばく線量係数の積で計算した線量率を積算して計算して
数の積で計算する。	いる。
・なお、原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれ	中央制御室で室内に取り込まれた放射性物質は沈着せず浮遊
た放射性物質は, c 項の内部被ばく同様, 室内に沈着せずに浮遊して	しているものと仮定している。
いるものと仮定する。	
e. 放射性雲中の放射性物質からのガンマ線による入退域での外部被	4.2(3)e.→審査ガイドのとおり
ばく (クラウドシャイン)	外部被ばく線量については, 空気中濃度及びクラウドシャイン
 放射性雲中の放射性物質からのガンマ線による外部被ばく線量は、 	に対する外部被ばく線量換算係数の積で計算した線量率を積算
空気中時間積分濃度及びクラウドシャインに対する外部被ばく線量換	して計算している。
算係数の積で計算する。	
f. 地表面に沈着した放射性物質からのガンマ線による入退域での外部	4.2(3)f.→審査ガイドのとおり
被ぼく (グランドシャイン)	入退域時の運転員のグランドシャインによる外部被ばくにつ
・地表面に沈着した放射性物質からのガンマ線による外部被ばく線量	いては、地表沈着濃度及びグランドシャインに対する外部被ばく
は、地表面沈着濃度及びグランドシャインに対する外部被ばく線量換	線量換算係数の積で計算した線量率を積算して計算している。考
算係数の積で計算する。	慮している。

+住 中央制御室の居住性に係る被ばく評価の適合状況	 4.2(3)g.→審査ガイドのとおり (中 入退域時の運転員の内部被ばくについては,空気中濃度,呼 	ぎで 率及び内部被ばく換算係数の積で計算した線量率を積算して 算している。	マスク着用を考慮する場合は事象発生から3時間及び入退域 にマスクを着用することとした。	1話 1話 1.2(3)h.→複数原子炉施設は設置されていないため考慮しない 12 13 13 14
実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居 性に係る被ばく評価に関する審査ガイド	 8. 放射性物質の吸入摂取による入退域での内部被ばく ・放射性物質の吸入摂取による内部被ばく線量は、入退域での空気 	時間積分濃度、呼吸率及び吸入による内部被ばく線量換算係数の積 計算する。	・入退域での放射線防護による被ばく低減効果を考慮してもよい。	 h. 彼ばく線量の重ね合わせ ・ 同じ敷地内に複数の原子炉施設が設置されている場合、全原子炉設について同時に事故が起きたと想定して、その結果を合算する おから被ばく経路別に個別に評価を実施して、その結果を合算するとは保守的な結果を与える。原子炉施設敷地内の地形や、原子炉施と評価対象位置の関係等を考慮した、より現実的な被ばく線量の重合わせ評価を実施する場合はその妥当性を説明した資料の提出を求る。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
4.4 緊急時制御室又は緊急時対策所の居住性に係る被ばく評価の主	
要解析条件等	
(1) ソースターム	4.4(1)→審査ガイドのとおり
a. 原子炉格納容器への放出割合	
・原子炉格納容器への放出割合は 4.1(2)a で選定した事故シーケンス	4.1(2)a で選定した事故シーケンスのソースターム解析結果を
のソースターム解析結果をもとに設定する。	もとに設定している。
・希ガス類, ヨウ素類, Cs 類, Te 類, Ba 類, Ru 類, Ce 類, 及び La	希ガス類, ヨウ素類, Cs 類, Te 類, Ba 類, Ru 類, Ce 類, 及び
類を考慮する。	La 類を考慮している。
・なお格納容器への放出割合の設定に際し、ヨウ素類の形状を適切に	よう素の性状については,R. G. 1. 195 を参照している。
考慮する。	
(2) 非常用電源	4.4(2)→審査ガイドのとおり
非常用電源の作動については 4.1(2)a で選定した事故シーケンスの	4.1(2)a で選定した事故シーケンスと同じ電源条件を設定して
事故進展解析条件を基に設定する。	いる。なお、ソースターム条件設定に当たり、代替電源からの給
ただし,代替交流電源からの給電を考慮する場合は,給電までに要	電に要する時間を考慮している。
する余裕時間を見込むこと	
(3) 沈着・除去等	
a. 非常用ガス処理系(BWR)又はアニュラス空気浄化設備(PWR)	4.4(3)a→審査ガイドのとおり
非常用ガス処理系(BWR)又はアニュラス空気浄化設備(PWR)の動作に	4.1(2)a で選定した事故シーケンスのソースターム解析結果を
ついては 4.1(2)a で選定した事故シーケンスの事故進展解析条件を基	もとに非常用ガス再循環系及び非常用ガス処理系の作動を <mark>設定</mark>
に設定する。	している。
b. 非常用ガス処理系(BWR)又はアニュラス空気浄化設備(PWR)フィル	4.4(3)b→審査ガイドのとおり
実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 MF7.66 z MF17 z 新価に開子 z 報本 ガメド	中央制御室の居住性に係る被ばく評価の適合状況
---	---------------------------------
圧に示る吹はく 計画に戻り る 街旦 シイード	
夕効率	非常用ガス再循環系及び非常用ガス処理系のフィルタ効率は
ヨウ素類及びエアロゾルのフィルタ効率は,使用条件での設計値を	<mark>期待しない</mark> 。
基に設定する。	
なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮す	
°Q°	
c. 原子炉格納容器スプレイ	4.4(3)c→審査ガイドのとおり
原子炉格納容器スプレイの作動については 4.1(2)a で選定した事故	格納容器スプレイの作動については4.1(2)aで選定した事故シ
シーケンスの事故進展解析条件を基に設定する。	ーケンスの事故進展解析条件を基に設定している。
d. 原子炉格納容器内への自然沈着	
原子炉格納容器内への自然沈着率については、実験などから得られ	4.4(3)d→審査ガイドのとおり
た適切なモデルを基に設定する。	格納容器内への自然沈着率については, CSE 実験による知見を
e. 原子炉格納容器漏えい率	反映したモデルとしている。
原子炉格納容器漏えい率は 4.1(2)a で選定した事故シーケンスの事	4.4(3)e→審査ガイドのとおり
故進展解析条件を基に設定する。	原子炉格納容器漏えい率については4.1(2)aで選定した事故シ
	ーケンスの事故進展解析条件を基に設定している。
f. 原子炉制御室の非常用換気空調設備	4.4(3)f→審査ガイドのとおり
原子炉制御室の非常用換気空調設備の作動については、非常用電源	中央制御室非常用循環設備の起動時間については全交流動力
の作動状態を基に設定する。	電源喪失祖想定した遅れを有効性評価で設定した2時間として評
(4) 大気拡散	価した。
a. 放出開始時刻及び放出継続時間	4.4(4)a. →審査ガイドのとおり
・放射性物質の大気中への放出開始時刻及び放出継続時間は,4.1(2)a	放射性物質の大気中への放出開始時刻は4.1(2)aで選定した事

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
で選定した事故シーケンスの事故進展解析条件を基に設定する。	故シーケンスのソースターム解析結果をもとに設定している。
	放射性物質の大気中への放出継続時間は,保守的に 1 時間とし
	ている。
b. 放出源高さ	4.4(4)b. →審査ガイ ドのとおり
放出源高さは,4.1(2)aで選定した事故シーケンスに応じた放出口から	放出源高さは、地上放出を仮定する。放出エネルギーは考慮し
の放出を仮定する。4.1(2)aで選定した事故シーケンスのソースターム	C いなたい。
解析結果を基に、放出エネルギーを考慮してもよい。	
(5)線量評価	
a. 原子炉建屋内の 放射性物質からのガンマ線による原子炉制御室内	4.4(5)a→審査ガイドのとおり
での外部被ぼく	
・4.1(2)aで選定した事故シーケンスのソースターム解析結果を基に,	4.1(2)a で選定した事故シーケンスの解析結果を基に,想定事
想定事故時に原子炉格納容器から原子炉建屋内に放出された放射性物	故時に原子炉建屋内に放出された放射性物質を設定し、スカイシ
質を設定する。この原子炉建屋内の放射性物質をスカイシャインガン	ャインガンマ線及び直接ガンマ線の線源としている。
マ線及び直接ガンマ線の線源とする。	
・原子炉建屋内の放射性物質は自由空間容積に均一に分布するものと	原子炉建屋内の放射性物質は,自由空間体積に均一に分布して
して,事故後7日間の積算線源強度を計算する。	いるものとして計算している。
・原子炉建屋内の放射性物質からのスカイシャインガンマ線及び直接	原子炉建屋内の放射性物質からのスカイシャインガンマ線及
ガンマ線による外部被ばく線量は、積算線源強度、施設の位置、遮へ	び直接ガンマ線による外部被ばく線量は、積算線源強度、施設の
い構造及び地形条件から計算する。	位置・地形条件(線源位置と評価点との距離等),遮蔽構造(原
	子炉建屋外部遮蔽構造, 中央制御室遮蔽構造) から計算している。
	直接ガンマ線による外部被ばく線量をQAD-CGGP2Rコ

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
	ード, スカイシャインガンマ線による外部被ばく線量をANIS Nコード及びG33-GP2Rコードで計算している。
b. 原子炉建屋内の放射性物質からのガンマ線による入退域での外部被 ばく ・スカイシャインガンマ線及び直接ガンマ線の線源は,上記 a と同様	原子炉建屋内の放射性物質からのスカイシャインガンマ線及 び直接ガンマ線による入退域時の外部被ばく線量は,4.3(5)a と 同様の計算している。
に設定する。 ・積算線源強度,原子炉建屋内の放射性物質からのスカイシャインガ ンマ線及び直接ガンマ線による外部被ばく線量は,上記 a と同様に設	
定する。	

無任い	発電 係る被	用原子炉に係る重大事故時の制御室及び緊急時対策所の居住 跛ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
	HEK	建屋影響がある場合の評価対象(風向の選定)	
L		•	
	(I	放出点が評価点の風上となる方位を選択	
	(II	放出点から建屋+0.5Lを含む方位を選択	
		(放出点が建屋+0.5との内部に存在する場合は、	
		放出点が評価点の風上となる180°が対象)	
l		-	
		評価点から建屋+0.5とを含む方位を選択 (評価点が建屋+0.5との内部に存在する場合は、	
-		放出点が評価点の風上となる180°が対象)	
1		-	国の、浜木式というと
		↓~Ⅲの重なる方位を選定	図 8→番重ルイトのとわり
		★ 方位選定終了	
		図8 建屋の影響がある場合の評価対象方位選定手順	

60-1

SA設備基準適合性一覧表

第60	第60条:監視測定設備			設備	可搬型モニタリング・ポスト	類型化 区分	可搬型放射能測定装置 (可搬型ダスト・よう素サンプラ)	類型化 区分		
					環	環境温度·湿度・圧力 /屋外の天候/放射線	屋外	D	屋外	D
			境条	荷重	(有効に機能を発揮するよう転倒防止措 置を実施)	_	(人が携行して使用するため,有効に機 能を発揮する)	_		
		第 1	ドにお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外		
		号	ける	他設備からの影響	(周辺機器等からの悪影響により機能を 失うおそれがない)	_	(周辺機器等からの悪影響により機能を 失うおそれがない)	_		
			健全	電磁波による影響	(電磁波により機能が損なわれない)	_	(電磁波により機能が損なわれない)	—		
			性	関連資料	60-3-1 配置図		60-3-2,3 配置図			
		第 2	操	作性	現場操作 (運搬設置)(操作スイッチ操作) (接続作業)	Bc Bd Bg	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd		
	第 1	号	関連資料		60-3-1 配置図		60-3-2,3 配置図			
	項	第 3 号	試 構	験・検査(検査性,系統 成・外部入力)	計測制御設備 (機能・性能検査・特性検査が可能) (校正が可能)	J	計測制御設備 (機能・性能検査が可能) (外観検査が可能)	J		
		亏	関	連資料	60-4-1 試験及び検査		60-4-2 試験及び検査			
		第 4 号	切	り替え性	(本来の用途として使用)	対象外	(本来の用途として使用)	対象外		
			関	連資料	60-3-1 配置図		60-3-2,3 配置図	1		
		第	悪影	系統設計	他設備から独立	Ac	他設備から独立	Ac		
		か 5 号	響防	その他(飛散物)	-	対象外	_	対象外		
			шĽ	関連資料	60-3-1 配置図		60-3-2,3 配置図			
		第 6	設	置場所	現場(設置場所)操作	Aa	現場(設置場所)操作	Aa		
		号	関	連資料	60-3-1 配置図		60-3-2,3 配置図			
第 43 条		第 1 号	न्	搬SAの容量	その他設備 (発電用軽水型原子炉施設における事 故時の放射線計測に関する審査指針の 測定上限値を満足する容量 配備数は10台,故障時又は保守点検時 のバックアップとして2台の合計12台を 配備)	С	その他設備 (発電用軽水型原子炉施設における事 故時の放射線計測に関する審査指針の 測定上限値を満足する容量 配備数は2台,故障時又は保守点検時の バックアップとして1台の合計3台を配 備)	С		
			関連資料		60-5-1 容量設定根拠		60-5-2 容量設定根拠			
		第 2 号 第 3	可	搬SAの接続性	(常設設備と接続せず使用)	—	(常設設備と接続せず使用)	—		
			関	連資料	60-3-1 配置図		60-3-2, 3 配置図			
			異確	なる複数の接続箇所の 保	(常設設備と接続せず使用)	対象外	(常設設備と接続せず使用)	対象外		
		号	関連資料		60-3-1 配置図		60-3-2,3 配置図			
	第 3	第 4	設	置場所	(放射線量の高くなるおそれの少ない 場所を選定)	—	(放射線量の高くなるおそれの少ない 場所を選定)	—		
	項	号	関	連資料	60-3-1 配置図		60-3-2, 3 配置図			
		第 5	保	管場所	屋内(共通要因の考慮対象SA設備な し)	Ab	屋内(共通要因の考慮対象SA設備な し)	Ab		
		号	関	連資料	60-6-1 保管場所図		60-6-2, 3 保管場所図			
		第 6	<i>P</i>	クセスルート	屋外アクセスルートの確保	В	屋外アクセスルートの確保	В		
		号	関	連資料	60-7-1 アクセスルート図		60-7-2 アクセスルート図			
		第 7	共通要因	環境条作,自然現象, 外部人為事象,溢水, 火災	防止・緩和以外 (代替するDB設備あり) (モニタリング・ポストと位置的分 散)	В	防止・緩和以外 (代替するDB設備あり) (放射線観測車と位置的分散)	В		
		号	政 障 防	サポート系要因	サポート系なし (可搬型重大事故防止設備ではない)	対象外	サポート系なし (可搬型重大事故防止設備ではない)	対象外		
			止	関連資料	60-6-1 保管場所図		60-6-2, 3 保管場所図			

第60条:監視測定設備			測定	設備	 可搬型放射能測定装置 (NaIシンチレーションサーベイ・ メータ) 	類型化 区分	可搬型放射能測定装置 (β線サーベイ・メータ)	類型化 区分					
			環境	環境温度・湿度・圧力 /屋外の天候/放射線	屋外	D	屋外	D					
			条件	荷重	(有効に機能を発揮する)	—	(有効に機能を発揮する)	—					
		第 1	にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外					
		号	ける嫌	他設備からの影響	(周辺機器等からの悪影響により機能 を失うおそれがない)	_	(周辺機器等からの悪影響により機能 を失うおそれがない)	_					
			健全	電磁波による影響	(電磁波により機能が損なわれない)	—	(電磁波により機能が損なわれない)	—					
			性	関連資料	60-3-2,3 配置図		60-3-2,3 配置図						
		第	操	作性	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd					
	第	2 号	関連資料		60-3-2,3 配置図		60-3-2,3 配置図						
	1 項	第3日	試構	験・検査(検査性,系統 成・外部入力)	計測制御設備 (機能・性能検査,特性検査が可能) (校正が可能)	J	計測制御設備 (機能・性能検査,特性検査が可能) (校正が可能)	J					
		号	関	連資料	60-4-3 試験及び検査		60-4-4 試験及び検査						
		第 4	切	り替え性	(本来の用途として使用)	対象外	(本来の用途として使用)	対象外					
		4 号	関	連資料	60-3-2, 3 配置図		60-3-2,3 配置図						
		笙	悪影	系統設計	他設備から独立	Ac	他設備から独立	Ac					
		第 5 号	弗 5 日	5	5	影響吐	影響	影響	その他(飛散物)	—	対象外	—	対象外
			此	関連資料	60-3-2,3 配置図		60-3-2,3 配置図						
		第	設	置場所	現場(設置場所)操作	Aa	現場(設置場所)操作	Aa					
		6 号	関	連資料	60-3-2,3 配置図		60-3-2,3 配置図						
第 43 条		第 1 号 第 2 号	第 1 号	第 1 号	第 1 号	第 1 号	第 1 号	र्ग	搬SAの容量	その他設備 (発電用軽水型原子炉施設における事 故時の放射線計測に関する審査指針の 計測上限値を満足する容量 配備数は2台,故障時又は保守点検時の バックアップとして1台の合計3台を配 備)	С	その他設備 (発電用軽水型原子炉施設における事 故時の放射線計測に関する審査指針の 計測上限値を満足する容量 配備数は2台,故障時又は保守点検時の バックアップとして1台の合計3台を配 備)	С
			関	連資料	60-5-3 容量設定根拠		60-5-4 容量設定根拠						
			可	搬SAの接続性	(常設設備と接続せず使用)	—	(常設設備と接続せず使用)	—					
			関	連資料	60-3-2, 3 配置図		60-3-2,3 配置図						
		第 3	異確	なる複数の接続箇所の 保	(常設設備と接続せず使用)	対象外	(常設設備と接続せず使用)	対象外					
		号	関	連資料	60-3-2, 3 配置図		60-3-2, 3 配置図						
	第 3 5	第 4	設	置場所	(放射線量の高くなるおそれの少ない 場所を選定)	_	(放射線量の高くなるおそれの少ない 場所を選定)	_					
	垻	号	関	連資料	60-3-2,3 配置図		60-3-2,3 配置図						
		第 5	保	管場所	屋内(共通要因の考慮対象SA設備な し)	Ab	屋内(共通要因の考慮対象SA設備な し)	Ab					
		号	関	連資料	60-6-2, 3 保管場所図		60-6-2, 3 保管場所図						
		第	P	クセスルート	屋外アクセスルートの確保	В	屋外アクセスルートの確保	В					
		0 号	関	連資料	60-7-2 アクセスルート図		60-7-2 アクセスルート図						
		第	共通要日	環境条件,自然現象, 外部人為事象,溢水, 火災	防止・緩和以外 (代替するDB設備あり) (放射能観測車と位置的分散)	В	防止・緩和以外 (代替するDB設備あり) (放射能観測車と位置的分散)	В					
		7 号	四故障	サポート系要因	サポート系なし (可搬型重大事故防止設備ではない)	対象外	サポート系なし (可搬型重大事故防止設備ではない)	対象外					
1			防止	関連資料	60-6-2,3 保管場所図		60-6-2,3 保管場所図						

第60条:監視測定設備			測定	設備	 可搬型放射能測定装置 (ZnSシンチレーションサーベイ・ メータ) 	類型化 区分	電離箱サーベイ・メータ	類型化 区分					
			環境	環境温度・湿度・圧力 /屋外の天候/放射線	屋外	D	屋外	D					
			条件	荷重	(有効に機能を発揮する)	—	(有効に機能を発揮する)	—					
			にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外					
		号	わける碑	他設備からの影響	(周辺機器等からの悪影響により機能 を失うおそれがない)	_	(周辺機器等からの悪影響により機能 を失うおそれがない)	_					
			健全地	電磁波による影響	(電磁波により機能が損なわれない)	—	(電磁波により機能が損なわれない)	—					
			性	関連資料	60-3-2, 3 配置図		60-3-3 配置図						
		第	操	作性	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd					
	第	2 号	関	連資料	60-3-2, 3 配置図		60-3-3 配置図						
	1 項	第 3 早	試構	験・検査(検査性,系統 成・外部入力)	計測制御設備 (機能・性能検査,特性検査が可能) (校正が可能)	J	計測制御設備 (機能・性能検査,特性検査が可能) (校正が可能)	J					
		7	関	連資料	60-4-5 試験及び検査		60-4-6 試験及び検査						
		第 4	切	り替え性	(本来の用途として使用)	対象外	(本来の用途として使用)	対象外					
		号	関	連資料	60-3-2, 3 配置図		60-3-3 配置図						
		第	悪影	系統設計	他設備から独立	Ac	他設備から独立	Ac					
		衆 5 号	響防	その他(飛散物)	_	対象外	_	対象外					
			止	関連資料	60-3-2, 3 配置図		60-3-3 配置図						
		第	設	置場所	現場(設置場所)操作	Aa	現場(設置場所)操作	Aa					
		号	関	連資料	60-3-2,3 配置図		60-3-3 配置図						
第 43 条		第 1 号	第 1 号	第 1 号	第 1 号	第 1 号	第 1 号	न	搬SAの容量	その他設備 (発電用軽水型原子炉設備における事 故時の放射線計測に関する審査指針の 計測上限値を満足する容量 配備数は2台,故障時又は保守点検時の バックアップとして1台の合計3台を配 備)	С	その他設備 (発電用軽水型原子炉設備における事 故時の放射線計測に関する審査指針の 計測上限値を満足する容量 配備数は1台,故障時又は保守点検時の バックアップとして1台の合計2台を配 備)	С
			関連資料		60-5-5 容量設定根拠		60-5-6 容量設定根拠						
		第 2 号 第 3	可	搬SAの接続性	(常設設備と接続せず使用)	—	(常設設備と接続せず使用)	—					
			関	連資料	60-3-2,3 配置図		60-3-3 配置図						
			異確	なる複数の接続箇所の 保	(常設設備と接続せず使用)	対象外	(常設設備と接続せず使用)	対象外					
		号	関	連資料	60-3-2, 3 配置図	-	60-3-3 配置図	-					
	第 3 5	第 4	設	置場所	(放射線量の高くなるおそれの少ない 場所を選定)	—	(放射線量の高くなるおそれの少ない 場所を選定)	—					
	垻	号	関	連資料	60-3-2, 3 配置図		60-3-3 配置図						
		第 5	保	管場所	屋内(共通要因の考慮対象SA設備な し)	Ab	屋内(共通要因の考慮対象SA設備な し)	Ab					
		号	関	連資料	60-6-2, 3 保管場所図		60-6-3 保管場所図						
		第 6	r	クセスルート	屋外アクセスルートの確保	В	屋外アクセスルートの確保	В					
		号	関	連資料	60-7-2 アクセスルート図		60-7-2 アクセスルート図						
		第	共通要田	環境条件,自然現象, 外部人為事象,溢水, 火災	防止・緩和以外 (代替するDB設備あり) (放射能観測車と位置的分散)	В	防止・緩和以外 (代替するDB設備なし)	対象外					
		7 号	四故障は	サポート系要因	サポート系なし (可搬型重大事故防止設備ではない)	対象外	サポート系なし (可搬型重大事故防止設備ではない)	対象外					
			奶止	関連資料	60-6-2,3 保管場所図		60-6-3 保管場所図						

第60	第60条:監視測定設備			設備	小型船舶	類型化 区分	可搬型気象観測設備	類型化 区分
			環時	環境温度・湿度・圧力 /屋外の天候/放射線	屋外	D	屋外	D
			先条	荷重	(有効に機能を発揮する)	—	(有効に機能を発揮する)	
		第	ドにわ	海水	海水を通水又は海で使用	Ι	(海水を通水しない)	対象外
		号	ゎける	他設備からの影響	(周辺機器等からの悪影響により機能 を失うおそれがない)	—	(周辺機器等からの悪影響により機能 を失うおそれがない)	_
			健全	電磁波による影響	(電磁波により機能が損なわれない)	—	(電磁波により機能が損なわれない)	_
			性	関連資料	60-3-3 配置図		60-3-4 配置図	
		第 2	操	作性	現場操作 (運搬設置) (操作スイッチ操作)	Bc Bd	現場操作 (運搬設置) (操作スイッチ操作) (接続作業)	Bc Bd Bg
	第	号	関連資料		60-3-3 配置図		60-3-4 配置図	
	1 項	第 3 号	試験·検査(検査性,系統 構成·外部入力)		その他設備 (起動試験が可能) (外観検査が可能)	М	計測制御設備 (機能・性能検査,特性検査が可能) (校正が可能)	J
		亏	関	連資料	60-4-7 試験及び検査	1	60-4-8 試験及び検査	1
		第 4	切	り替え性	(本来の用途として使用)	対象外	(本来の用途として使用)	対象外
		号	関	連資料	60-3-3 配置図	1	60-3-4 配置図	
		第	悪影	系統設計	他設備から独立	Ac	他設備から独立	Ac
		7 5号	響防	その他(飛散物)	_	対象外	_	対象外
			止	関連資料	60-3-3 配置図		60-3-4 配置図	
		第 6	設	置場所	現場(設置場所)操作	Aa	現場(設置場所)操作	Aa
		号	関	連資料	60-3-3 配置図		60-3-4 配置図	
第 43 条		第 1 号	न	搬SAの容量	その他設備 (海上モニタリングが可能な容量 設備数は1台、故障時又は保守点検時の バックアップとして1台の合計2台を配 備)	С	その他設備 (発電用原子炉施設の安全解析に関す る気象指針の通常観測項目等を測定可 能な容量 配備数は1台,故障時及び保守点検時の バックアップとして1台の合計2台を配 備)	С
			関	連資料	60-5-7 容量設定根拠	-	60-5-8 容量設定根拠	
		第 ?	可	搬SAの接続性	(常設設備と接続せず使用)	—	(常設設備と接続せず使用)	—
		号	関	連資料	60-3-3 配置図		60-3-4 配置図	
		第 3	異確	なる複数の接続箇所の 保	(常設設備と接続せず使用)	—	(常設設備と接続せず使用)	—
		号	関	連資料	60-3-3 配置図	-	60-3-4 配置図	
	第 3 5	第 4	設	置場所	(放射線量の高くなるおそれの少ない 場所を選定)	—	(放射線量の高くなるおそれの少ない 場所を選定)	—
	垻	号	関	連資料	60-3-3 配置図	-	60-3-4 配置図	
		第 5	保	管場所	屋外(共通要因の考慮対象SA設備な し)	Bb	屋内(共通要因の考慮対象SA設備な し)	Ab
		号	関	連資料	60-6-3 保管場所図		60-6-4 保管場所図	
		第 6	P	クセスルート	屋外アクセスルートの確保	В	屋外アクセスルートの確保	В
		号	関	連資料	60-7-2 アクセスルート図		60-7-3 アクセスルート図	
		号	共通	環境条件,自然現象, 外部人為事象,溢水,	防止・緩和以外	対象外	防止・緩和以外 (代替するDBあり)	В
		第	要因	火災			(気象観測設備と位置的分散)	
		第 7 号	要因故障吐	火災 サポート系要因	 (代替するDB& 備など) サポート系なし (可搬型重大事故防止設備ではない) 	対象外	 (気象観測設備と位置的分散) サポート系なし (可搬型重大事故防止設備ではない) 	対象外

60-2

単線結線図

第60-2-1図 モニタリング・ポストの単線結線図

329

配置図

60-3

第 60-3-2 図 可搬型重大事故等対処設備 使用場所

放射性物質の濃度の測定(可搬型放射能測定装置)

<mark>第 60-3-3 図 可搬型重大事故等対処設備 使用場所</mark>

海上モニタリング(可搬型放射能測定装置,電離箱サーベイ・メータ,小型船舶)

風向、風速その他の気象条件の測定(可搬型気象観測設備)

60-4

試験及び検査

定期事業者検査対象外の設備については、図面を添付している。

第60-4-1図 可搬型モニタリング・ポスト

第60-4-2図 可搬型ダスト・よう素サンプラ

第60-4-3図 NaIシンチレーションサーベイ・メータ

第 60-4-4 図 β線サーベイ・メータ

第60-4-5図 ZnSシンチレーションサーベイ・メータ

注)イメージ図。船舶の型式は詳細設計で決定する。

第 60-4-7 図 小型船舶

第 60-4-8 図 可搬型気象観測設備

60-5

容量設定根拠

名利	东	可搬型モニタリング・ポスト
計測範囲	nGy∕h	B. G. $\sim 10^9$

可搬型モニタリング・ポストは,可搬型重大事故等対処設備として配備する。

可搬型モニタリング・ポストは,モニタリング・ポストの機能喪失時に, 代替措置として用いるものである。

また,発電用原子炉施設周囲(海側を含む。)において,放射線量を監視す るために用いるものである。

可搬型モニタリング・ポストは、モニタリング・ポストの代替測定として モニタリング・ポストと同数の4台,発電用原子炉施設周囲(海側を含む。) の測定として5台,緊急時対策所付近の測定として1台に予備2台を含めた 合計12台を緊急時対策所に保管する。

1. 計測範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める測定上限値(10⁻¹Gy/h)を満足するように設計する。 そのため、計測範囲としては、B.G.~1Gy/hである。

名利	尓	可搬型ダスト・よう素サンプラ
計測範囲	0∕min	$0 \sim 50$

可搬型ダスト・よう素サンプラは,可搬型重大事故等対処設備として配備 する。

可搬型ダスト・よう素サンプラは,放射能観測車の機能喪失時の代替措置 として用いるものである。

また,発電所敷地内及び周辺海域において,空気中の放射性物質を採取す るものである。

なお,可搬型ダスト・よう素サンプラは,2台に予備1台を含めた合計3台 を,緊急時対策所に保管する。

1. 流量範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める敷地周辺空気中放射性物質濃度の測定上限値(3.7×10¹Bq/cm³)を満足するように設計する。

そのため,流量範囲は0~50L/minとする。

名利	东	N a I シンチレーションサーベイ・メータ
計測範囲	µ Sv∕h	B. G. ∼30

Na Iシンチレーションサーベイ・メータは、可搬型重大事故等対処設備 として配備する。

N a I シンチレーションサーベイ・メータは, 放射能観測車の機能喪失時 の代替措置として用いるものである。

また,発電所敷地内及び周辺海域において,採取した試料の放射性物質の 濃度を計測して,その計測結果を監視するものである。

なお, Na I シンチレーションサーベイ・メータは, 2 台に予備 1 台を含め た合計 3 台を, 緊急時対策所に保管する。

1. 計測範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める敷地周辺空気中放射性物質濃度の測定上限値(3.7×10¹Bq/cm³)を満足するように設計する。

そのため,計測範囲としては, B.G~30 µ Gy/h である。

2. 放射性物質の濃度の算出

放射性物質の濃度算出は,以下の算出式から求める。

2.1 放射性物質濃度の算出式

放射性物質濃度(Bq/cm³)

=換算係数(Bq/μSv/h) ×試料の NET 値(μGy/h)/サンプリング量
 (L) ×1000 (cm³/L)

名利	东	β 線サーベイ・メータ
計測範囲	\min^{-1}	B. G. ∼99. 9k

β線サーベイ・メータは,可搬型重大事故等対処設備として配備する。

β線サーベイ・メータは、放射能観測車の機能喪失時の代替措置として用 いるものである。

また,発電所敷地内及び周辺海域において,採取した試料の放射性物質の 濃度を計測して,その計測結果を監視するものである。

なお, β線サーベイ・メータは,2台に予備1台を含めた合計3台を,緊急 時対策所に保管する。

1. 計測範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める敷地周辺空気中放射性物質濃度の測定上限値(3.7×10¹Bq/cm³)を満足するように設計する。

そのため, 計測範囲としては, B.G~99.9 kmin⁻¹である。

2. 放射性物質の濃度の算出 放射性物質の濃度算出は,以下の算出式から求める。

2.1 放射性物質濃度の算出式

放射性物質濃度 (Bq/cm³) =換算係数 (Bq/min⁻¹) ×試料の NET 値 (min⁻¹) /サンプリング量 (L) ×1000 (cm³/L)
名称		Z n Sシンチレーションサーベイ・メータ
計測範囲	\min^{-1}	B. G. ∼99. 9k

ZnSシンチレーションサーベイ・メータは、可搬型重大事故等対処設備 として配備する。

Z n S シンチレーションサーベイ・メータは, 放射能観測車の機能喪失時 の代替措置として用いるものである。

また,発電所敷地内及び周辺海域において,採取した試料の放射性物質の 濃度を計測して,その計測結果を監視するものである。

なお、ZnSシンチレーションサーベイ・メータは、2台に予備1台を含め た合計3台を、緊急時対策所に保管する。

1. 計測範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める敷地周辺空気中放射性物質濃度の測定上限値(3.7×10¹Bq/cm³)を満足するように設計する。

そのため, 計測範囲としては, B.G~99.9 kmin⁻¹である。

2. 放射性物質の濃度の算出 放射性物質の濃度算出は、以下の算出式から求める。

2.1 空気中のよう素の放射性物質濃度の算出式
 空気中のよう素の放射性物質濃度 (Bq/cm³)
 =換算係数 (Bq/min⁻¹) ×試料の NET 値 (min⁻¹) /サンプリング量 (L)
 ×1000 (cm³/L)

名称		電離箱サーベイ・メータ
計測範囲	mSv∕h	0.001~1000

電離箱サーベイ・メータは、可搬型重大事故等対処設備として配備する。

電離箱サーベイ・メータは,発電所及びその周辺(周辺海域を含む。)にお いて,放射線量率を計測して,その計測結果を監視するものである。

なお、電離箱サーベイ・メータは、1台に予備1台を含めた合計2台を、緊 急時対策所に保管する。

1. 計測範囲

「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指 針」に定める測定上限値(10⁻¹Sv/h)を満足するように設計する。 よって計測範囲としては,0.001~1000mSv/hである。

名称		小型船舶	
最大積載重量	kg	350kg 以上	

小型船舶は、可搬型重大事故等対処設備として配備する。

小型船舶は,発電所の周辺海域において,発電用原子炉施設から放出され る放射性物質の濃度及び放射線量の測定を行うために必要な測定装置及び要 員を積載できる設計とする。

なお、小型船舶は、1台に予備1台を含めた合計2台を保管する。

1. 積載重量範囲

放射性物質の濃度及び放射線量の測定を行うために必要な測定装置及び要員の総重量約 350kg(測定装置等約 200kg,要員 150kg(75kg×2))を積載できる設計とする。

名称			可搬型気象観測設備
	国白国法制	m/s	風向 16 方位
	風问風迷計		風速 0~60
測 新	日射計 kW/m ²		0~2.00
囲	放射収支計 kW/m ²		$-0.250 \sim 1.25$
	雨量計 mm/h		0~100

可搬型気象観測設備は、可搬型重大事故等対処設備として配備する。

可搬型気象観測設備は、気象観測設備の機能喪失時の代替措置として用いる ものである。

なお,可搬型気象観測設備は,1 台に予備1 台を含めた合計2 台を保管する。

1. 計測範囲

「発電用原子炉施設の安全解析に関する気象指針」に定める通常観測の観測 項目,観測単位,測定値の最小位数を満足するように設計する。

「発電用原子炉施設の安全解析に関する気象指針」に定める通常観測の観測 項目,観測単位及び測定値の最小位数を下表に示す。

観測項目	測定単位	測定値の最小位数
風向	16 方位	1
風速	m⁄s	1/10
日射量	kW/m^2	1/100
放射収支量	kW/m^2	1/500

司司甘游吉山山四司供え一上
:設計基準事故対処設備を示す。
:重大事故対処設備を示す。

保管場所図

60-6

第 60-6-1 図 可搬型重大事故等対処設備 保管場所

放射線量の測定(可搬型モニタリング・ポスト)

第 60-6-2 図 可搬型重大事故等対処設備 保管場所

放射性物質の濃度の測定(可搬型放射能測定装置)

<mark>第 60-6-3 図 可搬型重大事故等対処設備 保管場所</mark>

海上モニタリング(可搬型放射能測定装置、電離箱サーベイ・メータ、小型船舶)

<mark>第 60-6-4 図 可搬型重大事故等対処設備 保管場所</mark>

風向、風速その他の気象条件の測定(可搬型気象観測設備)

60-7

アクセスルート図

第60-7-1図 可搬型重大事故対処設備 重大事故等時アクセスルート

放射線量の測定(可搬型モニタリング・ポスト)

第60-7-2図 可搬型重大事故対処設備 重大事故等時アクセスルート

放射性物質の濃度の測定,海上モニタリング(可搬型放射能測定装置,電離箱サーベイ・メータ,小型船舶)

60 - 7 - 3

第60-7-3図 可搬型重大事故対処設備 重大事故等時アクセスルート

風向、風速その他の気象条件の測定(可搬型気象観測設備)

60-8

監視測定設備について

< 目 次 >

- 1. 環境モニタリング設備について
- 1.1 モニタリング・ポスト
- 1.1.1 モニタリング・ポストの配置及び計測範囲
- 1.1.2 モニタリング・ポストの電源
- 1.1.3 モニタリング・ポストの伝送
- 1.2 放射能観測車
- 1.3 代替測定
- 1.3.1 可搬型モニタリング・ポストによる放射線量の測定及び
 代替測定
- 1.3.2 可搬型放射能測定装置による放射性物質の濃度の代替測定
- 1.4 可搬型放射能測定装置による放射性物質の濃度及び放射線量の 測定
- 1.4.1 発電所及びその周辺(周辺海域を含む。)の測定
- 1.4.2 海上モニタリング
- 2. 気象観測設備について
- 2.1 気象観測設備
- 2.2 可搬型気象観測設備
- 3. 参考 環境モニタリング設備等

1. 環境モニタリング設備について

1.1 モニタリング・ポスト

1.1.1 モニタリング・ポストの配置及び計測範囲

通常運転時,運転時の異常な過渡変化時,設計基準事故時に発電所 周辺監視区域境界付近の外部放射線量率を連続的に監視するために, モニタリング・ポスト4台を設けており,連続測定したデータは,現場 盤及び中央制御室で監視,記録を行うことができる設計とする。また, 緊急時対策所でも監視を行うことができる設計とする。なお,モニタ リング・ポストは,その測定値が設定値以上に上昇した場合,直ちに 中央制御室に警報を発信できる設計とする。

モニタリング・ポストの計測範囲等を第1.1.1表に,モニタリング・ ポストの配置図及び写真を第1.1.1図に示す。

名称 検出器の種類		計測範囲	警報設定値	台数	取付箇所
	NaI(T1)	$10^{1} \sim 10^{5}$	計測範囲内	1	モニタリング・
モニタリング・	シンチレーション	nGy∕h	で可変	1	ポストは周辺監
ポスト	示成化大	$10^{-8} \sim 10^{-1}$	計測範囲内	1	視区域境界付近
	电颅胚相	Gy⁄h	で可変	1	に4台

第1.1.1表 モニタリング・ポストの計測範囲等

:設計基準事故対処設備

1.1.2 モニタリング・ポストの電源
 モニタリング・ポストは、非常用電源に接続しており、電源復旧までの期間、電源を供給できる設計とする。さらに、モニタリング・ポストは、無停電電源装置を有し、電源切替時の短時間の停電時に電源を供給できる設計とする。代替電源設備としては、常設代替交流電源設備である常設代替高圧電源装置又は可搬型代替交流電源設備である
 可搬型代替低圧電源車からの給電が可能な設計とする。
 無停電電源装置の設備仕様を第1.1.2表に、モニタリング・ポスト

の電源構成概略図を第1.1.2図に示す。

	名 称	個 数	容量	発 電 方 式	バックアップ 時間※1	備 考
đ	無停電 重源装置	局舎毎 に1台 計4台	3.0kVA	蓄電池	約 12 時間	電源切替時の短時 間の停電時に電源 を供給できる

第1.1.2表 無停電電源装置の設備仕様

※1:バックアップ時間は、各モニタリング・ポストの実負荷により算出

第1.1.2 図 モニタリング・ポストの電源構成概略図等(1/2)

:設計基準事故対処設備
 :重大事故等対処設備

<外観写真>

無停電電源装置

常設代替交流電源装置

可搬型代替低圧電源車

第1.1.2 図 モニタリング・ポストの電源構成概略図等(2/2)

:	設計基準事故対処設備
 :	重大事故等対処設備

第1.1.3図 モニタリング・ポスト設備の伝送概略図

:設計基準事故対処設備

1.2 放射能観測車

(その他主な搭載機器) 個数:各1台

·無線連絡設備(放射能観測車搭載)

・ダスト・よう素サンプラ

風向、風速計

周辺監視区域境界付近の放射線量及び空気中の放射性物質濃度を迅速に測定 するために,放射線量率を監視し,及び測定し,並びに記録する装置,空気中 の放射性物質(粒子状物質,よう素)を採取し,及び測定する装置等を搭載し た放射能観測車を1台配備している。また,原子力災害時における原子力事業者 間協力協定に基づき,放射能観測車11台の協力を受けることができる。

放射能観測車搭載の各計測器の計測範囲等及び放射能観測車の写真を第1.2 表に,放射能観測車の保管場所を第1.2図に示す。

名称		検出器の種類	計測範囲	記録方法	台数
放射能 観測車	空間ガンマ	NaI (Tl) シンチレーション	$BG\sim 10^8$	記録紙	1
	線測定装置	半導体	nGy∕h		
	ダスト モニタ	プラスチックシンチレーション	$0 \sim \! 10^5$	記録紙	1
		ΖnS(Ag)シンチレーション	S ⁻¹		
	よう素 測定装置	NaI(Tl)シンチレーション	$0 \sim 10^5$ S ⁻¹	記録紙	1

第1.2表 放射能観測車搭載の各計測器の計測範囲等及び放射能観測車の写真

(放射能観測車の写真)

:設計基準事故対処設備

1.3 代替測定

1.3.1 可搬型モニタリング・ポストによる放射線量の代替測定

モニタリング・ポストが機能喪失した際の代替測定用,また重大事故等が発 生した場合の原子炉周囲(海側を含む。)の放射線量測定用,緊急時対策所付 近の放射線量測定用の可搬型モニタリング・ポストを緊急時対策所に保管する。 可搬型モニタリング・ポストの設置場所及び保管場所を第1.3.1-1図に示す。

可搬型モニタリング・ポストは,外部バッテリーにより6日間以上連続で稼 働できる設計としており,外部バッテリーを交換することにより継続して計測 できる。測定したデータは,可搬型モニタリング・ポストの本体及び緊急時対 策所で監視及び記録することができる。なお,緊急時対策所への伝送は,衛星 回線により行う。

また,故障時及び保守点検時のバックアップ用として予備を考慮した数量を 確保する。

可搬型モニタリング・ポストの計測範囲等を第 1.3.1-1 表に,仕様を第 1.3.1-2 表に,伝送概略図を第 1.3.1-2 図に示す。

____: 重大事故等対処設備

第 1.3.1-1 表 可搬型モニタリング・ポストの計測範囲等							
名称	検出器の種類	計測範囲	警報動作 範囲	台数 (予備)			
可搬型モニタリ ング・ポスト	NaI(T1) シンチレーション 半導体	BG∼10 ⁹ nGy∕h [*]	計測範囲 で可変	10 (予備2)			

※「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針」に定める測定上限値 (10⁻¹Gy/h)等を満足する設計とする。

第1.3.1-2表 可搬型モニタリング・ポストの仕様

項目	内容
	外部バッテリー(6個)により6日間以上連続で稼働 可能。
電源	6日後からは、予備の外部バッテリー(4個ずつ)と
	交換することにより継続して計測可能 外部バッテリーは1個当たり約6時間で充電可能
記録	測定値は7日分以上電子メモリに記録
	衛星回線により、緊急時対策所にデータ伝送
伍达	なお、本体で指示値の確認が可能
概略	本体 (測定部):約 350(W)×240(D)×550(H)mm
寸法	バッテリー部 :約 350(W)×240(D)×505(H)mm
	本体 (検出・測定部):約 15kg
	バッテリー部 : 約 17 kg
舌昌	外部バッテリー(6個):約10.5kg
	アンテナ部 : 約 5kg
	外線ケーブル:約2kg
	合計:約49.5kg

※訓練により運搬・設置作業ができることを確認している。設置に 要する時間は,最大約475分(2名でリヤカーを用いて10箇所)

60-8-11

1.3.2 可搬型放射能測定装置による放射性物質の濃度の代替測定

放射能観測車のダスト・よう素サンプラ,ダストモニタ又はよう素モニタが 機能喪失した際の代替測定設備として,可搬型放射能測定装置(NaIシンチ レーションサーベイ・メータ,β線サーベイ・メータ,ZnSシンチレーショ ンサーベイ・メータ及び可搬型ダスト・よう素サンプラ)を用いて,周辺監視 区域境界付近における空気中の放射性物質の濃度を監視し,測定し,その結果 を記録する。これらの装置は緊急時対策所に保管する。

また,故障時及び保守点検時のバックアップ用として予備を考慮した数量を 確保する。

可搬型放射能測定装置の仕様を表1.3.2表に、保管場所を第1.3.2図に示す。

名称	検出器の種類	計測範囲	記録	保管場所	台数
可搬型ダスト・よう素	_			緊急時	2 ^{**2}
サンプラ				対策所	(予備1)
Na Iシンチレーション	Na I (T l) シンチレーショ	B. G. \sim	サンプリング	緊急時	$2^{\times 2}$
サーベイ・メータ	ン式検出器	30µSv∕h ^{**1}	記録	対策所	(予備1)
		B. G. ~99. 9kmin ⁻¹	サンプリング	緊急時	$2^{\times 2}$
β線サー~~1 · メータ	GM官式使出品	*1	記録	対策所	(予備1)
ZnSシンチレーション	ZnS (Ag) シンチレーショ	B. G. ~99. 9kmin ⁻¹	サンプリング	緊急時	2^{*2}
サーベイ・メータ	ン検出器	*1	記録	対策所	(予備1)
※ 1 「発電用軽水型原子炉施設における事故時の放射線計測に関する審査指針」に定める敷地周辺空気中					
放射性物質濃度の上限値を満たすように設計する。					
※ 2 「第1.4.1表 発電所及びその周辺(周辺海域を含む。)の測定に使用する計測器等の仕様等」に記載					
の装置と共	用				
	,				

第1.3.2表 可搬型放射能測定装置の仕様

: 重大事故等対処設備

1.4 可搬型放射能測定装置による放射性物質の濃度及び放射線量の測定1.4.1 発電所及びその周辺(周辺海域を含む。)の測定

重大事故等が発生した場合に,可搬型放射能測定装置(可搬型ダスト・よう 素サンプラ,NaIシンチレーションサーベイ・メータ,β線サーベイ・メー タ及びZnSシンチレーションサーベイ・メータ),電離箱サーベイ・メータ 及び小型船舶を用いて,発電所及びその周辺(周辺海域を含む。)における放 射線量率及び放射性物質の濃度(空気中,海水及び土壌)を監視し,及び測定 し,並びにその結果を記録する。可搬型放射能測定装置及び電離箱サーベイ・ メータは緊急時対策所に,小型船舶は可搬型設備保管建屋に保管する。

また,故障時及び保守点検時のバックアップ用として予備を考慮した数量を 確保する。

発電所及びその周辺(周辺海域を含む。)の測定に使用する計測器等の仕様 等を第1.4.1表に,保管場所及び海水の試料採取場所を第1.4.1-1図に,写真を 第1.4.1-2図に示す。

: 重大事故等対処設備

<u>_</u>	第1.4.1表	発電所及びその周辺	(周辺海域を含む。)	の測定に使用する計測器
•		ht a 11 12 ht		

名称	検出器の種類	計測範囲	記録	保管場所	台数
可搬型ダスト・よう素		¥1		緊急時	2^{3}
サンプラ	—			対策所	- (予備1)
NaIシンチレーション	Na I (T 1) シンチ	B. G. ∼	サンプリング	緊急時	2 ^{**3}
サーベイ・メータ	レーション式検出器	30µGy∕h ^{%2}	記録	対策所	(予備1)
			サンプリング	緊急時	2**3
β線サー~~1 · メータ	GM官式傾田話	B. G. \sim 99. 9kmin ^{+\approx2}	記録	対策所	(予備1)
ZnSシンチレーション	ZnS (Ag) シンチ	D. C 00.01. :	サンプリング	緊急時	2^{*3}
サーベイ・メータ	レーション検出器	B. G. ~99. 9kmin ^{+***}	記録	対策所	(予備1)
電離箱サーベイ・	雪椒杏大烩山兕	$0.001 \sim 1000 \text{mSv}$	サンプリング	緊急時	1
メータ	电内时日本划火山拍白	∕h ^{*2}	記録	対策所	(予備1)
小无地沿向				緊急時	1
				対策所	(予備1)
 ・Geγ線多重波高 ・ガスフローギカビ 	5分析装置				
※ 1 「実用発電用原	<u> 2</u> 〔子炉の設置,運転等に	こ関する規則の規定に基	長づく線量限度等	を定める告示	」別表第
四欄を満たすよ	う試料を採取する。				
※ 2 「発電用軽水雪	県子炉施設における	事故時の放射線計測に	関する審査指針」	に定める敷却	也周辺空争
射性物質濃度0)上限値を満たすよう(に設計する。			
※ 3 「第1.3.3表 〒	「搬型放射能測定装置の	の仕様」に記載の装置。	と共用		
※ / 技術其進上の	すべての要求事項を満	満たすことや全てのプラ	ラント状況におい	いて使用するこ	ことは困難
~ · · · · · · · · · · · · · · · · · · ·					
るが、プラント	、状況によっては,事†	牧対応に有効な設備			
るが、プラント	◇状況によっては,事前	<u>牧対応に有効な設備</u>			
 1.4.1-1図 発電 等の 	 ·状況によっては,事前 ·戦況によっては,事前 	^{数対応に有効な設備} 辺(周辺海域を 毎水の試料採取な	含む。)の複 場所	副 定 に 使 月	

1.4.2 海上モニタリング

周辺海域への放射性物質の漏えいが確認された場合には、小型船舶により周 辺海域の放射線量を電離箱サーベイ・メータで測定し、その結果を記録すると ともに、可搬型ダスト・よう素サンプラで空気中の放射性物質のサンプリング を、海水サンプリング用具(容器等)で海水のサンプリングを行う。サンプリ ングした試料については、下船後、N a I シンチレーションサーベイ・メータ、 β線サーベイ・メータ及びZ n Sシンチレーションサーベイ・メータを用いて 空気中及び海水の放射性物質の濃度を測定し、結果を記録する。なお、海上モ ニタリングは海上の状況等から安全上の問題がないと判断できた場合に行う。 小型船舶の仕様等を第1.4.2表に、運搬ルートを第1.4.2 図に示す。

項目	内容
台数	1台(予備1台)
最大積載重量	350kg 以上
モニタリング時に持ち込む重 大事故等対処設備等	電離箱サーベイ・メータ:1台 可搬型ダスト・よう素サンプラ:1台 海水サンプリング用具(容器等):1式
保管場所	可搬型設備保管場所(南側,西側)
移動方法	小型船舶を保管している可搬型設備保管場所から 船舶運搬車両等を用いて岸壁まで運搬する。

第1.4.2表 小型船舶の仕様等

: 重大事故等対処設備

2. 気象観測設備について

2.1 気象観測設備

気象観測設備は、気体廃棄物の放出管理、発電所周辺の一般公衆の被ばく線 量評価及び一般気象データ収集のために、風向、風速、その他の気象条件を測 定し、中央制御室及び緊急時対策所に表示するよう設計する。また、そのデー タを記録し、保存することができるよう設計する。

気象観測設備の各測定器は防潮堤等周囲の構造物の影響のない位置^{※1※2}に 設置する設計とする。

気象観測設備の配置図を第2.1-1図に,測定項目等を第2.1表に,伝送概略図 を第2.1-2図に示す。

第2.1-1図 気象観測設備配置図

: 設計基準事故対処設備

- ※1「露場から建物までの距離は建物の高さから1.5mを引いた値の3倍以上、または露場から10m以上。」「露場中心部における地上1.5mの高さから周囲の建物に対する平均仰角は18度以下。」(地上気象観測指針(2002気象庁))
- ※2「(ドップラーソーダの)各アンテナの送信方向の中心軸±45度に反射体のないこと」(ドップラーソーダによる観測要領(2004 原子力安全研究協会))

:設計基準事故対処設備

60-8-22

2.2 可搬型気象観測設備について

気象観測設備が機能喪失した際の代替測定のために,可搬型気象観測設備を 緊急時対策所に保管する。可搬型気象観測設備は,風向,風速その他の気象条 件を測定し,緊急時対策所に表示する。また,そのデータを記録し,保存する ことができる。設置場所は,気象観測設備の位置とする。

また,故障時及び保守点検時のバックアップ用として予備を考慮した数量を 確保する。

可搬型気象観測設備の設置場所及び保管場所を第2.2-1図,測定項目等を第 2.2表に,伝送概略図を第2.2-2図に示す。

<mark>第2.2−1図 可搬型気象観測設備の設置場所及び保管場所</mark>

: 重大事故等対処設備

第2.2表 可搬型気象観測設備の測定項目等

※「発電用原子炉施設の安全解析に関する気象指針」に定める測定項目

3. 参考 環境モニタリング設備(補足説明資料)

- 3.1 その他条文との基準適合性
- 3.1.1 設置許可基準規則第六条

監視設備に関する要求事項のうち,設置許可基準規則第六条(外部からの 衝撃による損傷の防止)への適合方針は以下のとおりである。

(1) 洪水

東海第二発電所敷地の北側に位置する久慈川が大雨により氾濫すると しても東海第二発電所に影響が及ばないこと,及び発電所敷地の南側の 丘陸地を挟んだ反対側に位置する新川の浸水は丘陸地を遡上しないこと から,東海第二発電所への影響はないことを確認しており,洪水による 監視設備の損傷が生じることはない。

(2) 風(台風)

設計基準としての風速は,建築基準法施行令にて定められた東海村の 基準風速である 30m/s(地上高 10m, 10 分間平均)とする。なお,観測 記録(気象庁の気象統計情報における観測記録。以下,本補足説明資料 で同じ。)によると,水戸市の風速の観測記録史上1位の最大風速は 28.3m /s であり,また,最大瞬間風速は 44.2m/s である。

監視設備は風(台風)による損傷を考慮して,代替設備により必要な機能を確保する設計とする。

(3) 竜巻

設計竜巻の最大風速は、東海第二発電所における竜巻規模 F3(風速 70~92m/s)の上限値 92m/sを安全側に切り上げて 100m/s とする。

竜巻特性値(移動速度,最大接線風速,最大接線風速半径,最大気圧

低下量,最大気圧低下率)については,「原子力発電所の竜巻影響評価 ガイド」に示される方法に基づき,設計竜巻の最大風速100m/sでの竜 巻特性値を適切に設定する。

監視設備は竜巻及びその随伴事象による損傷を考慮して,代替設備により必要な機能を確保する設計とする。

(4) 凍結

観測記録によると,水戸市の気温の観測記録史上1位の最低気温は-12.7℃である。

監視設備は低温による凍結を考慮して、代替設備により必要な機能を 確保する設計とする。

(5) 降水

設計基準としての降水量は,降水に対する排水施設の規格・基準として,森林法に基づく林地開発許可に関する審査基準等を示した「森林法に基づく林地開発許可の手びき」(平成28年4月茨城県)において,東海村が適用範囲となる「水戸」における10年確率で想定される雨量強度 127.5mm/hとする。

監視設備は降水による損傷を考慮して、代替設備により必要な機能を 確保する設計とする。

(6) 積雪

設計基準としての積雪深は、建築基準法施行令にて定められた東海村の基準積雪深である 30cm とする。なお、観測記録によると、水戸市の積雪の観測記録史上1位の日最深積雪は 32cm である。

監視設備は積雪による損傷を考慮して、代替設備により必要な機能を 確保する設計とする。

(7) 落雷

落雷の基準電流値は, 観測記録の統計処理による年超過確率 10⁻⁴/年 値である 220kA とする。

監視設備は落雷による損傷を考慮して、代替設備により必要な機能を 確保する設計とする。

(8) 地滑り

東海第二発電所の敷地及びその近傍には地滑りを起こすような地形が 存在しないことを確認しており、地滑りによる監視設備の損傷が生じる ことはない。

(9) 火山の影響

考慮すべき火山事象は降下火砕物(火山灰)とし、文献調査、地質調 査及び降下火砕物シミュレーション解析の結果を踏まえ、降下火砕物の 堆積厚 50cm,密度 0.3g/cm³(乾燥状態)~1.5g/cm³(湿潤状態),粒 径 8mm 以下と設定する。

監視設備は降下火砕物による損傷を考慮して、代替設備により必要な 機能を確保する設計とする。

(10) 生物学的事象

考慮すべき生物学的事象は海生生物の襲来,小動物の侵入とする。 監視設備は生物学的事象による損傷を考慮して,代替設備により必要 な機能を確保する設計とする。

(11) 森林火災

監視設備のうちモニタリング・ポストは、森林火災による損傷を考慮 して、代替設備により必要な機能を確保する設計とする。

監視設備のうち気象観測設備及び放射能観測車は,防火帯の内側に配 置し,森林火災による損傷は生じない設計とする。

(12) 高潮

東海第二発電所の最寄りの港湾である茨城港日立港区で観測された潮 位は,最高潮位が東京湾平均海面(以下「T.P.」という。)+1.46m,朔 望平均満潮位が T.P.+0.61m である。

監視設備は高潮の影響を受けない敷地高さ以上(T.P.+3.3m)に配置し、高潮による損傷は生じない設計とする。

3.2 モニタリング・ポスト及び可搬型モニタリング・ポストのバックグラウン ド低減手段

重大事故等により,モニタリング・ポスト及び可搬型モニタリング・ポス ト周辺の汚染に伴い測定ができなくなることを避けるために,バックグラウ ンド低減手段を以下のとおり整備する。

- (1) モニタリング・ポスト
 - ·汚染予防対策

重大事故等により,放射性物質により検出部カバーが汚染される場合を 想定し,交換用の検出部カバーを備える。

·汚染除去対策

重大事故等により,放射性物質の放出後,モニタリング・ポスト及びそ の周辺が汚染された場合,汚染の除去を行う。

- NaIシンチレーションサーベイ・メータ等により汚染レベルを確認 する。
- ② モニタリング・ポストの検出部カバーの交換を行う。
- ③ 局舎屋上等の洗浄等を行う。
- ④ 除草,落ち葉の撤去,土壌の撤去等を行う。
- ⑤ NaIシンチレーションサーベイ・メータ等により汚染除去後の汚染
 レベルが低減したことを確認する。

- (2) 可搬型モニタリング・ポスト
 - ·汚染予防対策

重大事故等により,放射性物質により可搬型モニタリング・ポストが汚 染される場合を想定し,可搬型モニタリング・ポストの設置を行う際,予 め養生を行う。

·汚染除去対策

重大事故等により,放射性物質の放出後,可搬型モニタリング・ポスト 及びその周辺が汚染された場合,汚染の除去を行う。

- NaIシンチレーションサーベイ・メータ等により汚染レベルを確認 する。
- ② 予め養生を行っていた養生シートを取り除く。
- ③ 除草,土壌の除去,落ち葉の撤去等を行う。
- ④ NaIシンチレーションサーベイ・メータ等により汚染除去後の汚染
 レベルが低減したことを確認する。
- (3) バックグラウンド低減の目安について

放射性物質により汚染した場合のバックグラウンド低減の目安はモニタ リング・ポストの平常時の空間放射線量率レベルとする。ただし,汚染の 状況により,平常時の空間放射線量率レベルまで低減することが困難な場 合は,可能な限り除染を行いバックグラウンドの低減を図る。 3.3 放射能放出率の算出及び妥当性について

重大事故等が発生した場合に,モニタリング・ポスト及び可搬型モニタリ ング・ポストにより発電用原子炉施設の周囲の放射線量を測定し,測定結果 から放射能放出率を算出する。また,算出するにあたり,可搬型モニタリン グ・ポストの設置場所及び計測範囲の妥当性について示す。

3.3.1 環境放射線モニタリング指針に基づく算出

重大事故等時において,放射性物質が放出された場合に放射能放出率を算 出するために,モニタリング・ポスト及び可搬型モニタリング・ポストから 得られた放射線量のデータより,以下の(1),(2)の計算式を用いる。(出典: 「環境放射線モニタリング指針」(原子力安全委員会 平成22年4月))

- (1) 地上高さから放出された場合の測定について
 - a. 放射性希ガス放出率の算出

$\mathbf{Q} = 4 \times \mathbf{D} \times \mathbf{U} / \mathbf{D}_0 / \mathbf{E} (\mathbf{GBq} / \mathbf{h})$
Q:実際の条件下での放射性希ガス放出率 (GBq/h)
D:風下の地表モニタリング地点で実測された空気カーマ率
(µGy∕h) ^{※1}
D ₀ :風下の空気カーマ率図のうち,地上放出高さ及び大気安定度が該当す
る図から読み取った地表地点における空気カーマ率(μGy/h) ^{※2}
(at 放出率:1GBq/h, 風速:1m/s, 実効エネルギー:1MeV/dis)
U:平均風速(m/s)
E:原子炉停止から推定時点までの経過時間によるガンマ線実効エネルギ
← (MeV∕dis)
b. 放射性よう素放出率の算出
$\mathbf{Q} = 4 \times \chi \times \mathbf{U} / \chi_0 (\mathrm{GBq} / \mathrm{h})$
Q:実際の条件下での放射性よう素放出率 (GBq/h)
χ:風下の地表モニタリング地点で実測された大気中の放射性よう素濃度
$(Bq / cm^3) \stackrel{\text{W 1}}{\longrightarrow} 1$
χ ₀ :地上高さ及び大気安定度が該当する地表濃度分布図から読み取った地
表面における大気中放射性よう素濃度(Bq/cm ³)*2
(at 放出率:1GBq/h, 風速:1m/s)
U:平均風速 (m/s)

- ※1:モニタリングで得られたデータを使用
- ※2:排気筒から放出される放射性雲の等濃度分布図および放射性雲からの等空気 カーマ率分布図(Ⅲ)(日本原子力研究所 2004 年 6 月 JAERI-Data/Code 2004-10) を使用

(2) 排気筒高さから放出された場合の測定について

可搬型モニタリング・ポストは、地上位置に配置するため、プルームが 高い位置から放出された場合、プルーム高さで測定した場合に比べて放射 線量率としては低くなる。しかしながら、プルームが通過する上空と地表 面の間に放射線を遮蔽するものがないため、地表面に設置する可搬型モニ タリング・ポストで十分に計測が可能である。

出典:排気筒から放出される放射性雲の等濃度分布図および放射性雲からの等空気カーマ率分 布図(Ⅲ)(日本原子力研究所 2004年6月 JAERI-Data/Code 2004-10)

第3.3.1 図 各大気安定度における地表面での放射性雲からのγ線による空気

カーマ率分布図

(3) 放出放射能の算出

<放射能放出率の計算例>

以下に,放射性希ガスによる放出放射能率の計算例を示す。 (風速は「1.0m/s」,大気安定度は「D型」とする。)

放射性希ガス放出率= $4 \times D \times U / D_0 / E$

 $= 4 \times 5 \times 10^{4} \times 1.0 / 4.5 \times 10^{-4} / 0.5$

 $=8.9 \times 10^8 (GBq/h) = 8.9 \times 10^{17} (Bq/h)$

 (4 :安全係数
 D :地表モニタリング地点(風下方向)にて実測された空間放射線量率 ⇒50mGy/h (5.0×10⁴Gy/h) (1Sv=1Gy とした。)
 U :放出地上高さにおける平均風速(1.0m/s)
 D₀: 4.5×10⁻⁴ µ Gy/h*(排気筒放出(地上高140m,距離200m)
 E :原子炉停止から推定時点までの経過時間によるガンマ線実効エネルギ ー ⇒0.5MeV/dis

※放射性よう素の放出放射能率は、可搬型ダスト・よう素サンプラにより採取、測定したデータから算出する。

3.3.2 可搬型モニタリング・ポストの設置場所におけるプルームの検知性について

プルームが放出された場合において,プルームは必ずしも可搬型モニタリ ング・ポストの設置場所を通過するわけではなく,隙間を通過するケースも 考えられる。そのため,設置する可搬型モニタリング・ポストの検知性につ いて,以下のとおり確認を行った。

(1) 評価条件

第 3.3.2-1 表の条件において,空間ガンマ線線量率の等値線図(第 3.3.2-1 図)及び風下軸上空間ガンマ線量率図(第3.3.2-2 図)を用いて, 各モニタリング・ポスト及び可搬型モニタリング・ポストの検知性を評価 した。

項目	設定内容	設定根拠
風速	1.0m/s	それぞれのモニタ指示値の比には
		影響しないので代表値として 1.0m
		/sを設定した。
風向	8 方位	各モニタリング・ポスト及び可搬
		型モニタリング・ポストの設置方
		位を考慮した。
大気安定度	D (安定)	東海第二発電所構内において、最
		も出現頻度の高い大気安定度を採
		用した。
放出位置	原子炉建屋原子炉棟地上	放射性物質が拡散せずにモニタリ
	高	ング・ポストの隙間を通過する条
		件として格納容器からの漏えいを
		想定した。
評価地点	各モニタリング・ポスト	当該設置場所でのプルームの検知
	/可搬型モニタリング・	性を確認するため
	ポストの設置場所	

第3.3.2-1 表 空間ガンマ線線量率図を用いた大気拡散評価

風速:1.0 m/s 放出高さ:0.0 m 放出率:1.0E+9 Bq/h ア線平均エネルギー:0.5 MeV/photon ア線実効エネルギー:1.0 MeV/ds

第3.3.2-1 図 空間ガンマ線量率の等値線図

第3.3.2-2図 風下軸上空間ガンマ線量率図

出典: 排気筒から放出される放射性雲の等濃度分布図および放射性雲からの等空気カーマ率分布図(Ⅲ) (日本原子力研究所 2004 年 6 月 JAERI-Data/Code 2004-10) (2) 評価結果

各風向におけるモニタリング・ポスト/可搬型モニタリング・ポスト の線量率を読み取り(第3.3.2-3 図),感度をまとめた結果を第3.3.2-2 表に示す。ここでは風向による差を確認するために,風下方向の評価地 点での線量率を1と規格化して求めた。風下方向に対して隣接するモニ タリング・ポスト/可搬型モニタリング・ポストは約2桁低くなるが, 各モニタリング・ポスト/可搬型モニタリング・ポスト位置での評価結 果は,風下方向の数値に対して最低でも0.015程度の感度を有しており, プルーム通過時の線量率の計測は可能であると評価する。

		風向							
		SW	S	SE	Е	NE	Ν	NW	W
	可搬型 M/P(NE)	1	<u>0. 071</u>	0.075	0.011	0.002	0.001	0.002	0.010
/可搬型モニタリング・ポストモニタリング・ポスト	MP-D(N)	0.001	1	0.008	0.000	0.000	0.000	0.000	0.000
	MP-C (NW)	0.001	0.021	1	0.002	0.000	0.000	0.000	0.000
	MP-B	0.001	0.003	<u>0. 250</u>	<u>0. 167</u>	0.001	0.000	0.000	0.000
	MP-A(W)	0.000	0.001	0.025	1	0.001	0.000	0.000	0.000
	可搬型 M/P(SW)	0.008	0.021	0.050	0.111	1	0.010	0.002	0.001
	可搬型 M/P(S)	0.008	0.014	0.075	0.022	<u>0. 060</u>	1	<u>0. 015</u>	0.002
	可搬型 M/P(SE)	0.010	0.021	0.075	0.017	0.008	<u>0. 015</u>	1	<u>0.015</u>
	可搬型 M/P(E)	<u>0. 075</u>	0.071	0.100	0.017	0.008	0.005	<u>0. 015</u>	1

第3.3.2-2表 各風向による評価地点での線量の感度

※太字:風下方向の線量率の感度(1と規格化した方位)

下線:それぞれの風向に対し,最も感度が高いもの

: 下線で示したもののうち, 最も低い値となるもの

 第 3. 3. 2−3 図 可搬型モニタリング・ポスト設置位置と線量率

(風向SWの例)

- 3.3.3 可搬型モニタリング・ポストの計測範囲
 - (1) 重大事故等における空間放射線量率測定に必要な最大測定レンジ

重大事故等時において,放出放射能を推定するために周辺監視区域内で 空間放射線量率を測定する場合の最大測定レンジは,福島第一原子力発電 所の実績を踏まえて150mSv/h程度(炉心から最も近い場所に設置する可搬 型モニタリング・ポストの距離約200mの場合)が必要と考えられる。

このため、1000mSv/hの測定レンジがあれば十分測定可能である。なお、 測定レンジを超えたとしても、近隣のモニタリング設備の測定値より推定 することが可能である。また、瓦礫等の影響でバックグラウンドが高くな る場合は、設置場所を変更する等の対応を実施する。

(2) 最大レンジの考え方

福島第一原子力発電所敷地周辺の最大放射線量率は,原子炉建屋から約900mの距離にある正門付近で約11mSv/h(2011.3.15 9:00)であった。 これを基に炉心から約200mにおける値を計算すると線量率は約13~ 150mSv/hとなる。

炉心からの距離	線量率
原子炉建屋から最も近い可搬型モニタリング・ポスト設置場所	約 13~150
約 200 (m)	(mSv∕h) *
福島第一原子力発電所の正門付近	約 11
約 900(m)	(mSv∕h)

第3.3.3表 炉心からの距離と線量率の関係

※風速 1m/s,放出高さ 30m,大気安定度A~F「排気筒から放出される放射性雲の等濃度分 布図および放射性雲からの等空気カーマ率分布図(Ⅲ)(日本原子力研究所 2004 年 6 月 JAERI-Data/Code2004-010)を用いて算出 3.3.4 可搬型モニタリング・ポストのバッテリー交換における被ばく線量評価

可搬型モニタリング・ポストは、外部バッテリー(6 個)により6日間以 上連続で稼働可能であり、6日後からは予備の外部バッテリー(4 個)と交換 することにより、必要な期間継続して計測が可能な設計とする。なお、外部 バッテリーは、緊急時対策所に保管し、通常時から充電を行うことで、6 日 目に確実に交換できる設計とする。

また,10 台全ての可搬型モニタリング・ポストの外部バッテリーを交換し た場合の所要時間は,移動時間含めて約310分である。ここでは,以下の評 価条件から,可搬型モニタリング・ポストのバッテリー交換における被ばく 線量の評価を示す。

<被ばく線量の評価条件>

- ・発災プラント:東海第二発電所
- ・ソースターム:格納容器ベント実施
- ・評価点:敷地内の最大濃度地点

(可搬型モニタリング・ポストの設置場所よりも線源に近い場所を選定した。)

- ・大気拡散条件:評価点における相対濃度及び相対線量を参照
- 評価時間:約270分※

※事前打合せ及び資機材準備は緊急時対策所内で行うため評価対象としない。

- 緊急時対策所及びモニタリング・ポスト代替の可搬型MPに係る作業:約175分
- (移動合計時間約 125 分+作業時間 10 分×上記 5 か所)
- 発電用原子炉施設周囲(海側を含む。)の可搬型MPに係る作業:約95分

(移動合計時間約45分+作業時間10分×上記5か所)

- ・作業開始時間:事故発生後から6日後(144時間後)から作業開始
- ・遮蔽:考慮しない
- ・マスクによる防護係数:50

・被ばく経路:以下を考慮

原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ 線による外部被ばく,

放射性雲中の放射性物質からのガンマ線による外部被ばく(クラウドシャ イン)及び放射性物質の吸入による内部被ばく,

大気中へ放出され地表面に沈着した放射性物質からのガンマ線による被ば く(グランドシャイン)

作業開始時間	144
(事故発生後の経過時間)(h)	144
作業に係る被ばく線量	約 <mark>27</mark>
(mSv)	

3.4 可搬型放射能測定装置等の数量の考え方

可搬型放射能測定装置等の数量の考え方を以下に示す。

名称	考え方	保管場所	台数
	モニタリング・ポストが機能喪失した際		
	の代替測定用として4台,重大事故等が		
可抑刑エータリング。	発生した場合の発電用原子炉周囲(海側		
可加空モークリンク・	を含む。)の放射線量測定用として5台,	緊急時対策所	12
	緊急時対策所付近の放射線量測定用と		
	して1台*		
	また,これらの予備として2台		
可搬型ダスト・よう素	陸側(放射能観測車の代替)測定用に1	取合吐丹华正	ŋ
サンプラ	台,海側測定用に1台及び予備1台	<u> </u>	3
NaIシンチレーショ	陸側(放射能観測車の代替)測定用に1	取色吐马兹武	3
ンサーベイ・メータ	台,海側測定用に1台及び予備1台	<u> </u>	
0.約出し、ベインス・カ	陸側(放射能観測車の代替)測定用に1	取色吐丹华正	ŋ
β 禄り ニバイ・メータ	台,海側測定用に1台及び予備1台	<u> </u>	3
ZnSシンチレーショ	陸側(放射能観測車の代替)測定用に1	取色吐丹华正	ŋ
ンサーベイ・メータ	台,海側測定用に1台及び予備1台	菜 忌时刈 束別	3
〒御佐山 ベノ ル カ	海上モニタリングのために 1 台及び予	取色吐马兹武	0
電離相ケーヘイ・メータ	備1台	<u> </u>	2
小型船舶	海上モニタリングのために 1 台及び予	可搬型設備	0
	備1台	保管場所	Z
可抛刑户舟知测烈,世	気象観測設備の代替として 1 台及び予	取名吐马安三	0
可颁空风家鲵则設俪	備1台	<u> </u>	2

第3.4表 可搬型放射能測定装置等の数量の考え方

※設置許可基準第61条「緊急時対策所」に対応する設備と共用

3.5 サーベイ車

サーベイ・メータ等を搭載し,任意の場所のモニタリングを行うサーベイ 車を1台配備しており,放射能観測車の保守点検時は,サーベイ車を使用す る。

サーベイ車の仕様を第3.5表に、サーベイ車の写真を第3.5図に示す。

項目	内容			
台数	1台			
	電離箱サーベイ・メータ			
	計測範囲:0.001~1000mSv/h			
	GM汚染サーベイ・メータ			
主な搭載機器	計測範囲:B.G.~99.9kmin ⁻¹			
	NaIシンチレーションサーベイ・メータ			
	計測範囲:B.G.~3.0×10 ⁴ nGy/h			
	可搬型ダスト・よう素サンプラ			

第3.5表 サーベイ車の仕様

第3.5図 サーベイ車の写真

3.6 放射性物質の濃度の測定に用いる設備(自主対策設備)

重大事故等時に機能維持を担保できないが,機能喪失していない場合には, 事故対応に有効であるため,以下の設備を使用する。なお,使用に当たって は,必要に応じ試料に前処理を行い,測定する。

•Geγ線多重波高分析装置

ガスフロー式カウンタ

3.7 緊急時モニタリングの実施手順及び体制

重大事故等が発生した場合に実施する敷地内及び周辺監視区域境界のモニ タリングは、以下の手順で行う。

- (1) 放射線量の測定(モニタリング・ポスト及び可搬型モニタリング・ポスト)
 - a.事象進展に伴う放射線量の変化を的確に把握するため,モニタリング・ ポスト4台の稼働状況を確認する。
 - b. 可搬型モニタリング・ポストを緊急時対策所付近に1台設置する。
 - c.モニタリング・ポストが機能喪失した場合は、リヤカー等により可搬型モニタリング・ポストをモニタリング・ポストに隣接する場所に運搬・設置し、放射線量の監視を行う。なお、現場の状況により原子炉 建屋からの方位が変わらない場所に設置場所を変更する場合がある。
 - d.可搬型モニタリング・ポストを発電用原子炉施設周囲(海側を含む。) に5台設置し、放射線量の監視強化を行う。なお、現場の状況により 原子炉建屋からの方位が変わらない場所に設置位置を変更する場合が ある。
- (2) 放射能観測車
 - a. 放射能観測車の使用可否を確認する。
 - b. 放射能観測車が使用可能な場合,放射能観測車により発電所構内の空気中の放射性物質の濃度を測定する。
 - c. 放射能観測車が機能喪失により使用不可の場合,可搬型放射能測定装置(可搬型ダスト・よう素サンプラ, N a I シンチレーションサーベ イ・メータ, β線サーベイ・メータ及びZ n S シンチレーションサー

ベイ・メータ)により,発電所構内の空気中の放射性物質の濃度を測 定する。

- (3) 空気中,海水,土壌の放射性物質の濃度及び海上モニタリング
 - a. 大気中に放射性物質が放出されるおそれがある場合,可搬型放射能測 定装置により空気中の放射性物質の濃度を測定する。
 - b. 周辺海域に放射性物質が漏えいするおそれがある場合,取水口,放水 口等で海水の採取を行い,可搬型放射能測定装置(NaIシンチレー ションサーベイ・メータ,β線サーベイ・メータ,ΖnSシンチレー ションサーベイ・メータ)により水中の放射性物質の濃度を測定する。
 - c.周辺海域への放射性物質の漏えいが確認された場合,可搬型放射能測 定装置(可搬型ダスト・よう素サンプラ,NaIシンチレーションサ ーベイ・メータ,β線サーベイ・メータ及びZnSシンチレーション サーベイ・メータ),電離箱サーベイ・メータ及び小型船舶により周 辺海域の放射線量及び放射性物質の濃度を測定する。なお,海上モニ タリングは海洋の状況等を考慮し,安全上の問題がないと判断できた 場合に行う。
 - d. 大気中への放射性物質の放出が確認された場合,可搬型放射能測定装置(NaIシンチレーションサーベイ・メータ, β線サーベイ・メー タ及びZnSシンチレーションサーベイ・メータ)により土壌中の放 射性物質の濃度を測定する。
- (4) 気象観測
 - a. 事象進展中の気象情報を的確に把握するため,気象観測設備の稼働状況を確認する。

- b. 気象観測設備が機能喪失した場合は、リヤカー等により可搬型気象観 測設備を気象観測設備に隣接する場所に設置し、気象観測を行う。なお、現場の状況により設置場所を変更する場合がある。
- (5) 緊急時モニタリングの判断基準及び対応要員

	衣 糸心时モー	クリンクの判例産単及し	`刈心安貝
モニタリングの考え方	対応	開始時期の考え方	対応要員※ (必要想定人数)
モニタリング・ポスト の代替	可搬型モニタリ ング・ポストの	モニタリング・ポストが 機能喪失した場合	
発電用原子炉周囲(海	設置及び放射線	原子力災害特別措置法第	
側を含む。)及び緊急	量の測定	10条特定事象発生と判断	
時対策所付近を含む発		した場合	
電用原子炉施設周辺の			
放射線量監視強化			
気象観測設備の代替	可搬型気象観測	気象観測設備が機能喪失	
	設備の設置及び	した場合	
	気象条件の測定		
放射能観測車の代替	可搬型放射能測	放射能観測車が機能喪失	9 夕
	定装置による空	した場合	2 /µ
	気の測定		
空気のモニタリング	可搬型放射能測	大気中に放射性物質が放	
	定装置による空	出されるおそれがある場	
	気の測定	合	
水中のモニタリング	可搬型放射能測	周辺海域に放射性物質が	
	定装置による海	漏えいするおそれがある	
	水の測定	場合	
土壌のモニタリング	可搬型放射能測	空気のモニタリングによ	
	定装置による土	り大気中への放射性物質	
	壌の測定	の放出を確認した場合	
海上モニタリング	小型船舶等によ	水中のモニタリングによ	4名
	る放射線量及び	り周辺海域への放射性物	(船舶吊り降ろしまで)
	放射性物質の濃	質の漏えいを確認した場	2名
	度の測定	合	(船舶吊り降ろし後)

第3.7表 緊急時モニタリングの判断基準及び対応要員

※要員数については、今後の訓練等の結果により人数を見直す可能性がある。

3.8 緊急時モニタリングに関する要員の動き

「3.7 緊急時モニタリングの実施手順及び体制」に示す対応要員について, 事故発生からプルーム通過後までの動きを第3.8 図に示す。なお,対応要員 数及び対応時間については,今後の訓練等の結果により見直す可能性がある。

	とて用品		事故発生,拡大 ①事故発生 ②プルーム放出 ③プルーム通過後		
測定項目	对応要員 (必要想定人数)	設備			
放射線景変の測定		モニタリング・ポスト	稼働状況 確認 (30 分)	•	
<u></u> 成別称 里 半 07		可搬型モニタリング・ ポスト	可搬型モニタリング・ポスト の設置(475分)		
与兔緝測		気象観測設備	稼働状況 確認(30分)	•	
気家観測	2名	可搬型気象観測設備	気象観測設備が 使用不可な場合 可搬型気象観測設備の 設置(100分)		
放射性物質の 濃度の測定		放射能観測車	使用可否 判断(30分) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
		可搬型放射能測定装置 (空気)	放射能観測車が 可搬型放射能測定装置による代替 使用不可な場合 測定(1箇所につき 110分)	•	
		可搬型放射能測定装置 (空気,海水,土壤)		空気,海水,土壌の測定 (1箇所につき 110分(空気, ◆▶ 海水),100分(土壌))	
	4名	可搬型放射能測定装置 電離箱サーベイ・メータ 小型船舶		海上モニタリング(280分) ◆▶	

※稼働状況及び使用可否判断を行った要員は、その後上図に示すとおりの順番に従って作業を行う。

第3.8図 事故発生からプルーム通過後までの要員の動き

- 3.9 発電所敷地外の緊急時モニタリング体制
 - (1) 原子力災害対策指針(原子力規制委員会 平成29年3月22日 全部改正) に従い、国が立ち上げる緊急時モニタリングセンターにおいて、国、地方 公共団体と連携を図りながら、敷地外のモニタリングを実施する。

第3.9図 緊急時モニタリングセンターの体制図

第3.9表 緊急時モニタリングセンター組織の機能と人員構成

	機能	人員構成
企画調整	・緊急時モニタリングセンター	・対策官事務所長及び対策官事務所長代
グループ	の総括	理を企画調整グループ長,所在都道府
	・緊急時モニタリングの実施内	県センター長等を企画調整グループ長
	容の検討,指示等	補佐として配置
		•国,所在都道府県,関係周辺都道府県,
		原子力事業者及び関係指定公共機関等
		で構成
情報収集	・緊急時モニタリングセンター	 ・国の職員(原子力規制庁監視情報課)
管理グル	内における情報の収集等	を情報収集管理グループ長とし、国、
ープ	・緊急時モニタリングの結果の	所在都道府県, 関係周辺都道府県, 原
	共有, 緊急時モニタリングに	子力事業者及び関係指定公共機関等で
	係る関連情報の収集等	構成
	・現地における緊急時モニタリ	
	ング結果の情報共有システム	
	の維持・異常対応等	
測定分析	・企画調整グループで作成され	•所在都道府県,関係周辺都道府県,原
担当	た指示書に基づき、必要に応	子力事業者のグループで構成し、それ
	じて安定よう素剤を服用した	ぞれに全体を統括するグループ長を配
	のち測定対象範囲の測定業務	置
出典:緊急	時モニタリングセンター設置要領	第1版(平成26年10月29日)

(2) 原子力事業者防災業務計画において,以下の状況を把握し,オフサイト センターに所定の様式で情報連絡を行うこととしている。

【オフサイトセンターへ情報連絡する事項】

- ① 事故の発生時刻及び場所
- ② 事故原因,状況及び事故の拡大防止措置
- ③ 被ばく及び障害等人身災害にかかわる状況
- ④ 発電所敷地周辺における放射線及び放射性物質の測定結果
- ⑤ 放出放射性物質の種類,量,放出場所及び放出状況の推移等
- ⑥ 気象状況
- ⑦ 収束の見通し
- ⑧ 放射性物質影響範囲の推定結果
- ⑨ その他必要と認める事項

3.10 他の原子力事業者との協力体制

原子力災害が発生した場合,他の原子力事業者との協力体制を構築するため,原子力災害時における原子力事業者間協力協定(以下「原子力事業者間協力協定」という。)を締結している。

(1) 原子力事業者間協力協定締結の背景

平成11年9月のJCO事故の際に,各原子力事業者が周辺環境のモニタ リングや住民の方々のサーベイなどの応援活動を実施した。

この経験を踏まえ,平成12年6月に施行された原子力災害対策特別措置 法(以下「原災法」という。)の内容とも整合性をとりながら,原子力事業 者間協力協定を締結した。

(2) 原子力事業者間協力協定(内容)

(目的)

原災法第14条*の精神に基づき,国内原子力事業所において原子力災害 が発生した場合,協力事業者が発災事業者に対し,協力要員の派遣,資機 材の貸与その他当該緊急事態応急対策の実施に必要な協力を円滑に実施し, 原子力災害の拡大防止及び復旧対策に努め,原子力事業者として責務を全 うすることを目的としている。

※原災法第14条 (他の原子力事業所への協力)

原子力事業者は,他の原子力事業者の原子力事業所に係る緊急事態応 急対策が必要である場合には,原子力防災要員の派遣,原子力防災資機 材の貸与その他当該緊急事態応急対策の実施に必要な協力をするよう努 めなければならない。 (事業者)

電力9社(北海道,東北,東京,中部,北陸,関西,中国,四国,九 州),日本原子力発電,電源開発,日本原燃

(協力の内容)

発災事業者からの協力要請に基づき,緊急事態応急対策及び原子力災 害事後対策が的確かつ円滑に行われるようにするため,緊急時モニタリ ング,避難退避時検査及び除染その他の住民避難に対する支援に関する 事項について協力要員の派遣,資機材の貸与その他の措置を講ずる。