東海第二発電所 審査資料		
資料番号	SA 設-C-1 改 56	
提出年月日	平成 29 年 9 月 25 日	

東海第二発電所

重大事故等対処設備について

平成 29 年 9 月 日本原子力発電株式会社

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

目 次

- 1 重大事故等対処設備
- 2 基本設計の方針
 - 2.1 耐震性·耐津波性
 - 2.1.1 発電用原子炉施設の位置
 - 2.1.2 耐震設計の基本方針 【39条】
 - 2.1.3 耐津波設計の基本方針【40条】
 - 2.2 火災による損傷の防止
 - 2.3 重大事故等対処設備の基本設計方針 【43 条】
 - 2.3.1 多様性,位置的分散,悪影響防止等について
 - 2.3.2 容量等
 - 2.3.3 環境条件等
 - 2.3.4 操作性及び試験・検査性について
- 3 個別設備の設計方針
 - 3.1 緊急停止失敗時に発電用原子炉を未臨界にするための設備 【44 条】
 - 3.2 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を冷却するための
 設備【45条】
 - 3.3 原子炉冷却材圧力バウンダリを減圧するための設備 【46条】
 - 3.4 原子炉冷却材圧カバウンダリ低圧時に発電用原子炉を冷却するための
 設備【47条】
 - 3.5 最終ヒートシンクへ熱を輸送するための設備 【48条】
 - 3.6 原子炉格納容器内の冷却等のための設備 【49条】
 - 3.7 原子炉格納容器内の過圧破損を防止するための設備 【50条】
 - 3.8 原子炉格納容器下部の溶融炉心を冷却するための設備 【51条】

3.9 水素爆発による原子炉格納容器の破損を防止するための設備 【52 条】

<u>3.10 水素爆発による原子炉建屋等の損傷を防止するための設備 【53 条】</u>

3.11 使用済燃料貯蔵槽の冷却等のための設備 【54条】

3.12 工場等外への放射性物質の拡散を抑制するための設備 【55条】

- 3.13 重大事故等の収束に必要となる水の供給設備 【56 条】
- 3.14 電源設備 【57 条】
- 3.15 計装設備 【58 条】
- 3.16 原子炉制御室 【59 条】
- 3.17 監視測定設備 【60 条】
- 3.18 緊急時対策所 【61 条】
- 3.19 通信連絡を行うために必要な設備【62条】
- 別添資料-1 基準津波を超え敷地に遡上する津波に対する津波防護方針に ついて

<u> 別添資料-2 原子炉格納容器の過圧破損を防止するための設備(格納容器</u> <u> 圧力逃がし装置) について</u>

- 別添資料-3 代替循環冷却の成立性について
- <u> 別添資料-4 水素爆発による原子炉建屋等の損傷を防止するための設備に</u>

3.10 水素爆発による原子炉建屋等の損傷を防止するための設備【53条】

基準適合への対応状況

9.10 水素爆発による原子炉建屋等の損傷を防止するための設備

9.10.1 概要

炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による 損傷を防止するために必要な重大事故等対処設備を設置する。

水素爆発による原子炉建屋等の損傷を防止するための設備の系統概要図を 第9.10-1 図から第9.10-3 図に示す。

- 9.10.2 設計方針
 - (1) 水素爆発による原子炉建屋等の損傷を防止するための設備
 - a. 原子炉建屋ガス処理系による水素排出

水素爆発による原子炉建屋等の損傷を防止するための設備のうち,炉 心の著しい損傷により原子炉格納容器内に水素が発生した場合に原子炉 建屋原子炉棟内へ漏えいする水素濃度を低減することで水素爆発による 原子炉建屋等の損傷を防止する。

静的触媒式水素再結合器による水素濃度制御により,原子炉建屋原子 炉棟内の水素を可燃限界濃度未満にして水素爆発を防止するとともに, 放射性物質を低減するため,原子炉建屋原子炉棟内の水素等を含む気体 を排出できる設備として水素排出設備(原子炉建屋ガス処理系による水 素排出)を設ける。

水素排出設備(原子炉建屋ガス処理系による水素排出)として,原子 炉建屋ガス処理系の非常用ガス処理系排風機,非常用ガス再循環系排風 機,非常用ガス処理系フィルタユニット及び非常用ガス再循環系フィル タユニットを使用する。また,代替電源設備として常設代替高圧電源装 置を使用する。

非常用ガス処理系排風機及び非常用ガス再循環系排風機は、原子炉格

納容器から原子炉建屋原子炉棟内へ漏えいする水素等を含む気体を吸引 し、非常用ガス処理系フィルタユニット及び非常用ガス再循環系フィル タユニットにて放射性物質を低減して排気筒に隣接する非常用ガス処理 系排気筒から排出することにより原子炉建屋原子炉棟内に水素が滞留し ない設計とする。

非常用ガス処理系排風機及び非常用ガス再循環系排風機は,ディーゼ ル発電機に加えて,代替電源設備である常設代替高圧電源装置から給電 できる設計とする。

具体的な設備は、以下のとおりとする。

・非常用ガス処理系排風機

- ・非常用ガス再循環系排風機
- ・非常用ガス処理系フィルタユニット
- ・非常用ガス再循環系フィルタユニット
- ・常設代替高圧電源装置(10.2)代替電源設備)

その他,設計基準事故対処設備である非常用電源設備のディーゼル発 電機を重大事故等対処設備として使用する。

b. 静的触媒式水素再結合器による水素濃度抑制

水素爆発による原子炉建屋等の損傷を防止するための設備のうち,炉 心の著しい損傷により原子炉格納容器から原子炉建屋原子炉棟内に水素 が漏えいした場合において,原子炉建屋原子炉棟内の水素濃度上昇を抑 制し,水素濃度を可燃限界未満に制御する設備として,水素濃度制御設 備(静的触媒式水素再結合器による水素濃度抑制)を設ける。

水素濃度制御設備(静的触媒式水素再結合器による水素濃度抑制)として,静的触媒式水素再結合器を使用し,作動状況確認のため静的触媒

式水素再結合器動作監視装置を使用する。また,代替電源設備として緊 急用直流 125V 蓄電池,可搬型代替低圧電源車及び可搬型整流器を使用 する。

静的触媒式水素再結合器は,運転員の起動操作を必要とせずに,原子 炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反 応によって再結合させることで,原子炉建屋原子炉棟内の水素濃度の上 昇を抑制し,原子炉建屋原子炉棟の水素爆発を防止できる設計とする。

静的触媒式水素再結合器動作監視装置は,静的触媒式水素再結合器の 入口側及び出口側の温度により静的触媒式水素再結合器の作動状態を中 央制御室から監視できる設計とする。静的触媒式水素再結合器動作監視 装置は,常設代替直流電源設備である緊急用直流125V 蓄電池又は可搬 型代替直流電源設備である可搬型代替低圧電源車及び可搬型整流器から 給電できる設計とする。

具体的な設備は、以下のとおりとする。

·静的触媒式水素再結合器

- ·静的触媒式水素再結合器動作監視装置
- ・緊急用直流 125V 蓄電池(10.2)代替電源設備)

·可搬型代替低圧電源車(10.2 代替電源設備)

・可搬型整流器(10.2 代替電源設備)

本系統の流路として、原子炉建屋原子炉棟を重大事故等対処設備として使用する。

c. 原子炉建屋原子炉棟内の水素濃度監視

水素爆発による原子炉建屋等の損傷を防止するための設備のうち、炉

心の著しい損傷が発生した場合の原子炉格納容器から原子炉建屋原子炉 棟内へ漏えいした水素の濃度を測定するため,想定される事故時に水素 濃度が変動する可能性のある範囲で測定できる設備として監視設備(原 子炉建屋原子炉棟内の水素濃度監視)を設ける。

監視設備(原子炉建屋原子炉棟内の水素濃度監視)として,原子炉建 屋水素濃度を使用する。また,代替電源設備として常設代替高圧電源装 置,可搬型代替低圧電源車,緊急用直流125V蓄電池及び可搬型整流器 を使用する。

原子炉建屋水素濃度は,原子炉建屋原子炉棟に設置し,中央制御室に おいて連続監視できる設計とする。原子炉建屋水素濃度のうち,原子炉 建屋原子炉棟6階に設置するものについては,常設代替交流電源設備で ある常設代替高圧電源装置又は可搬型代替交流電源設備である可搬型代 替低圧電源車より給電できる設計とする。原子炉建屋原子炉棟6階を除 く原子炉建屋原子炉棟に設置するものについては,常設代替直流電源設 備である緊急用直流125V 蓄電池又は可搬型代替直流電源設備である可 搬型代替低圧電源車及び可搬型整流器より給電できる設計とする。

具体的な設備は、以下のとおりとする。

·原子炉建屋水素濃度

- ·常設代替高圧電源装置(10.2 代替電源設備)
- ·可搬型代替低圧電源車(10.2 代替電源設備)
- ・緊急用直流 125V 蓄電池(10.2)代替電源設備)

·可搬型整流器(10.2 代替電源設備)

常設代替高圧電源装置,可搬型代替低圧電源車,緊急用直流125V 蓄電 池及び可搬型整流器については,「10.2 代替電源設備」に示す。

9.10.2.1 多様性,位置的分散

基本方針については、「1.1.7.1 多様性、位置的分散、悪影響防止等」 に示す。

非常用ガス処理系排風機及び非常用ガス再循環系排風機は,ディーゼル発 電機に対して多様性を持った常設代替高圧電源装置から給電できる設計とす る。

静的触媒式水素再結合器動作監視装置と原子炉建屋水素濃度は,共通要因 によって同時に機能を損なわないよう,異なる計測方式とすることで多様性 を有する設計とする。

電源設備の多様性,位置的分散については「10.2 代替電源設備」にて記載する。

9.10.2.2 悪影響防止

基本方針については、「1.1.7.1 多様性、位置的分散、悪影響防止等」 に示す。

原子炉建屋ガス処理系による水素排出に使用する非常用ガス処理系排風 機,非常用ガス再循環系排風機,非常用ガス処理系フィルタユニット及び非 常用ガス再循環系フィルタユニットは,設計基準対象施設として使用する場 合と同じ系統構成で重大事故等対処設備として使用することで,他の設備に 悪影響を及ぼさない設計とする。

静的触媒式水素再結合器による水素濃度抑制に使用する静的触媒式水素再 結合器は、原子炉建屋原子炉棟6階壁面近傍に設置し、他の設備と独立して 作動する設計とするとともに、重大事故等時の再結合反応による温度上昇が 重大事故等時に使用する他の設備に悪影響を及ぼさない設計とする。 静的触媒式水素再結合器による水素濃度抑制に使用する静的触媒式水素再 結合器動作監視装置は,静的触媒式水素再結合器の水素処理性能へ悪影響を 及ぼさない設計とするとともに,他の設備から独立して使用可能なことによ り,他の設備に悪影響を及ぼさない設計とする。

原子炉建屋原子炉棟内の水素濃度監視に使用する原子炉建屋水素濃度は, 他の設備から独立して使用可能なことにより,他の設備に悪影響を及ぼさな い設計とする。

9.10.2.3 容量等

基本方針については、「1.1.7.2 容量等」に示す。

炉心の著しい損傷により原子炉格納容器内で発生した水素が,原子炉格納 容器から原子炉建屋原子炉棟内に漏えいした場合において,水素等を含む気 体を排出するために使用する非常用ガス処理系排風機,非常用ガス再循環系 排風機,非常用ガス処理系フィルタユニット及び非常用ガス再循環系フィル タユニットは,原子炉格納容器から漏えいした原子炉建屋原子炉棟内の水素 等を含む気体を排出させる機能として,設計基準事故対処設備としての原子 炉建屋原子炉棟内の負圧達成能力及び負圧維持能力を使用することにより, 原子炉建屋原子炉棟内の水素を屋外に排出することができるため,同仕様の 排風機容量及びフィルタ容量で設計する。

非常用ガス処理系排風機,非常用ガス再循環系排風機,非常用ガス処理系 フィルタユニット及び非常用ガス再循環系フィルタユニットは,静的触媒式 水素再結合器による水素濃度抑制とともに,原子炉建屋原子炉棟内を可燃限 界濃度未満にして水素爆発による原子炉建屋等の損傷を防止する排風機容量 及びフィルタ容量を有する設計とする。

炉心の著しい損傷が発生した場合における原子炉建屋原子炉棟内の水素濃

度を抑制するために使用する静的触媒式水素再結合器は,原子炉建屋原子炉 棟内の水素の効率的な除去を考慮して原子炉建屋原子炉棟6階に分散させた 配置とし,ガス状よう素による性能低下及び水素再結合反応開始の不確かさ を考慮しても重大事故等時の原子炉建屋原子炉棟内の水素濃度を抑制できる 容量を有する設計とする。

静的触媒式水素再結合器の作動状況確認のために使用する静的触媒式水素 再結合器動作監視装置は、炉心損傷時の静的触媒式水素再結合器の作動時に 想定される温度範囲を計測できる設計とする。

原子炉建屋水素濃度は,原子炉建屋原子炉棟6階の天井付近に分散させた 適切な位置に配置し,想定される重大事故等時において,原子炉建屋原子炉 棟内の水素濃度を測定できる計測範囲を有する設計とする。また,原子炉建 屋水素濃度は,原子炉建屋原子炉棟6階以外の水素が漏えいする可能性の高 いエリアにも設置し,水素の早期検知及び滞留状況を把握できる設計とす る。

9.10.2.4 環境条件等

基本方針については、「1.1.7.3 環境条件等」に示す。

非常用ガス処理系排風機,非常用ガス再循環系排風機,非常用ガス処理系 フィルタユニット及び非常用ガス再循環系フィルタユニットは,原子炉建屋 原子炉棟内に設置し,重大事故等時における環境条件を考慮した設計とす

る。

非常用ガス処理系排風機及び非常用ガス再循環系排風機の操作は中央制御室で 可能な設計とする。

静的触媒式水素再結合器,静的触媒式水素再結合器動作監視装置及び原子 炉建屋水素濃度は,原子炉建屋原子炉棟内に設置し,重大事故等時における

環境条件を考慮した設計とする。

9.10.2.5 操作性の確保

基本方針については,「1.1.7.4 操作性及び試験・検査性について」に示 す。

非常用ガス処理系排風機,非常用ガス再循環系排風機,非常用ガス処理系 フィルタユニット及び非常用ガス再循環系フィルタユニットを使用した水素 排出を行う系統は,重大事故等が発生した場合でも,通常時の系統から弁操 作等にて速やかに切替えできる設計とする。非常用ガス処理系排風機及び非 常用ガス再循環系排風機は,中央制御室の制御盤の操作スイッチでの操作が 可能な設計とする。

静的触媒式水素再結合器及び静的触媒式水素再結合器動作監視装置を使用 した静的触媒式水素再結合器による水素濃度抑制を行う系統は,重大事故等 が発生した場合でも,設計基準対象施設と兼用せず,他の系統と切り替える ことなく使用できる設計とする。

原子炉建屋水素濃度を使用した原子炉建屋原子炉棟内の水素濃度監視を行 う系統は,設計基準対象施設と兼用せず,他の系統と切り替えることなく使 用できる設計とする。

静的触媒式水素再結合器は,水素と酸素が流入すると触媒反応によって受動的に起動する設備とし,操作不要な設計とする。静的触媒式水素再結合器動作監視装置及び原子炉建屋水素濃度は,中央制御室で監視が可能な設計とする。

9.10.3 主要設備及び仕様

水素爆発による原子炉建屋等の損傷を防止するための設備の主要設備及び

9.10.4 試験検査

基本方針については、「1.1.7.4 操作性及び試験・検査性について」に 示す。

原子炉建屋ガス処理系による水素排出に使用する非常用ガス処理系排風 機,非常用ガス再循環系排風機,非常用ガス処理系フィルタユニット及び非 常用ガス再循環系フィルタユニットは,発電用原子炉の運転中又は停止中に 他系統と独立した試験系統により機能・性能及び漏えいの有無の確認が可能 な設計とする。

非常用ガス処理系排風機及び非常用ガス再循環系排風機は,発電用原子炉 の停止中に分解が可能な設計とする。

非常用ガス処理系フィルタユニット及び非常用ガス再循環系フィルタユニ ットは,発電用原子炉の運転中又は停止中に差圧確認が可能な設計とする。 また,発電用原子炉の停止中に内部の確認が可能なように,点検口を設ける 設計とし,性能の確認が可能なようフィルタを取り出すことができる設計と する。

静的触媒式水素再結合器による水素濃度抑制に使用する静的触媒式水素再 結合器は,発電用原子炉の停止中に,触媒の外観の確認及び機能・性能の確 認を行うため,触媒を取り出すことができる設計とする。

静的触媒式水素再結合器は,発電用原子炉の運転中又は停止中に,外観の 確認が可能な設計とする。

静的触媒式水素再結合器による水素濃度抑制に使用する静的触媒式水素再 結合器動作監視装置は,発電用原子炉の停止中に模擬入力による機能・性能 の確認(特性の確認)及び校正ができる設計とする。

原子炉建屋原子炉棟の水素濃度監視に使用する原子炉建屋水素濃度は,発 電用原子炉の停止中に模擬入力による機能・性能の確認(特性の確認)及び 校正ができる設計とする。 第9.10-1表 水素爆発による原子炉建屋等の損傷を防止するための設備(常

設)の設備仕様

(1) 非常用ガス処理系排風機

兼用する設備は以下のとおり。

- ・原子炉建屋ガス処理系
- ・中央制御室の運転員の被ばくを低減するための設備
- ・水素爆発による原子炉建屋等の損傷を防止するための設備

個数 1 (予備 1)

- 容量約3,570m³/h
- (2) 非常用ガス再循環系排風機

兼用する設備は以下のとおり。

- ・原子炉建屋ガス処理系
- ・中央制御室の運転員の被ばくを低減するための設備
- ・水素爆発による原子炉建屋等の損傷を防止するための設備
 - 個数 1 (予備 1)
 - 容量約17,000m³/h
- (3) 非常用ガス処理系フィルタユニット

兼用する設備は以下のとおり。

- ・原子炉建屋ガス処理系
- ・水素爆発による原子炉建屋等の損傷を防止するための設備
 - 型 式 電気加熱器,粒子用高効率フィルタ及びよう素 用チャコールフィルタ内蔵型

個 数 1 (予備 1)
容 量 約 3,570m 3 / h
チャコール層厚さ 約 150mm
よう素除去効率 97%以上(系統効率)
粒子除去効率 99.97%以上(直径 0.5µm 以上の粒子)

- (4) 非常用ガス再循環系フィルタユニット兼用する設備は以下のとおり。
 - ・原子炉建屋ガス処理系
 - ・水素爆発による原子炉建屋等の損傷を防止するための設備

型	式	電気加熱器、粒子用高効率フィルタ及びよう素		
		用チャコールフィルタ内蔵型		
個	数	1 (予備 1)		
容	皇	約 17,000 m 3 /h		
チャコール層厚さ		彩 50mm		
よう素	零除去効率	90%以上(系統効率)		
粒子院	法动率	99.97%以上(直径 0.5μm以上の粒子)		

- (5) 水素濃度制御設備
 - a. 静的触媒式水素再結合器

種 類	触媒反	応式		
個 数	24			
水素処理容	序量 約 0.51	xg/h/個	(水素濃度4	.0vol%,
	100°C,	大気圧に	おいて)	

b. 静的触媒式水素再結合器動作監視装置

兼用する設備は以下のとおり。

- ·計装設備(重大事故等対処設備)
- ・水素爆発による原子炉建屋等の損傷を防止するための設備
 - 検出器の種類 熱電対
 - 計測範囲 0~300℃
 - 個数 4(2個の静的触媒式水素再結合器に対し

て、出入口に1個設置)

(6) 原子炉建屋水素濃度

兼用する設備は以下のとおり。

- ·計装設備(重大事故等対処設備)
- ・水素爆発による原子炉建屋等の損傷を防止するための設備

検出器の種類	触媒式, 熱伝導式
計測範囲	[触媒式] 0~10vol%
	[熱伝導式] 0~20vo1%
個 数	[触媒式] 2
	[熱伝導式] 3

第9.10-1図 水素爆発による原子炉建屋等の損傷を防止するための設備系統

概要図

(原子炉建屋ガス処理系による水素排出)

第9.10-2 図 水素爆発による原子炉建屋等の損傷を防止するための設備系統 概要図

(静的触媒式水素再結合器による水素濃度抑制)

第 9.10-3 図 水素爆発による原子炉建屋等の損傷を防止するための設備系統 概要図

(原子炉建屋原子炉棟内の水素濃度監視)

3.10 水素爆発による原子炉建屋等の損傷を防止するための設備【53条】

< 添付資料 目次 >

- 3.10 水素爆発による原子炉建屋等の損傷を防止するための設備
- 3.10.1 設置許可基準規則第53条への適合方針
 - (1) 静的触媒式水素再結合器(設置許可基準規則解釈の第1項 a), c))
 - (2) 水素濃度の監視設備(設置許可基準規則解釈の第1項 b), c))
 - (3) 格納容器頂部注水系の設置
 - (4) 原子炉建屋原子炉棟トップベント設備の設置
- 3.10.2 重大事故等対処設備
- 3.10.2.1 静的触媒式水素再結合器
- 3.10.2.1.1 設備概要
- 3.10.2.1.2 主要設備の仕様
 - (1) 静的触媒式水素再結合器
 - (2) 静的触媒式水素再結合器動作監視装置
- 3.10.2.1.3 設置許可基準規則第43条への適合方針
- 3.10.2.1.3.1 設置許可基準規則第43条第1項への適合方針
 - (1) 環境条件(設置許可基準規則第43条第1項一)
 - (2) 操作性(設置許可基準規則第43条第1項二)
 - (3) 試験及び検査(設置許可基準規則第43条第1項三)
 - (4) 切り替えの容易性(設置許可基準規則第43条第1項四)
 - (5) 悪影響の防止(設置許可基準規則第43条第1項五)
 - (6) 設置場所(設置許可基準規則第43条第1項六)
- 3.10.2.1.3.2 設置許可基準規則第43条第2項への適合方針

- (1) 容量(設置許可基準規則第43条第2項一)
- (2) 共用の禁止(設置許可基準規則第43条第2項二)
- (3) 設計基準事故対処設備との多様性(設置許可基準規則第43条第2項三)
- 3.10.2.2 原子炉建屋水素濃度
- 3.10.2.2.1 設備概要
- 3.10.2.2.2 主要設備の仕様
- (1) 原子炉建屋水素濃度
- 3.10.2.2.3 設置許可基準規則第43条への適合方針
- 3.10.2.2.3.1 設置許可基準規則第43条第1項への適合方針
- (1) 環境条件(設置許可基準規則第43条第1項一)
- (2) 操作性(設置許可基準規則第43条第1項二)
- (3) 試験及び検査(設置許可基準規則第43条第1項三)
- (4) 切り替えの容易性(設置許可基準規則第43条第1項四)
- (5) 悪影響の防止(設置許可基準規則第43条第1項五)
- (6) 設置場所(設置許可基準規則第43条第1項六)

3.10.2.2.3.2 設置許可基準規則第43条第2項への適合状況

- (1) 容量(設置許可基準規則第43条第2項一)
- (2) 共用の禁止(設置許可基準規則第43条第2項二)
- (3) 設計基準事故対処設備との多様性(設置許可基準規則第43条第2項三)
- 3.10.3 その他設備
- 3.10.3.1 格納容器頂部注水系
- 3.10.3.1.1 設備概要
- 3.10.3.1.2 他設備への悪影響について

53-1 SA 設備基準適合性 一覧表

- 53-2 単線結線図
- 53-3 配置図
- 53-4 系統図
- 53-5 試験及び検査
- 53-6 容量設定根拠
- 53-7 水素爆発による原子炉建屋等の損傷を防止するための設備について
- 53-8 その他設備

3.10 水素爆発による原子炉建屋等の損傷を防止するための設備【53条】

【設置許可基準規則】

(水素爆発による原子炉建屋等の損傷を防止するための設備)

第五十三条 発電用原子炉施設には、炉心の著しい損傷が発生した場合において原子炉建屋その他の原子炉格納容器から漏えいする気体状の放射性物質を格納するための施設(以下「原子炉建屋等」という。)の水素爆発による損傷を防止する必要がある場合には、水素爆発による当該原子炉建屋等の損傷を防止するために必要な設備を設けなければならない。

(解釈)

- 1 第53条に規定する「水素爆発による当該原子炉建屋等の損傷を防止す るために必要な設備」とは、以下に掲げる措置又はこれらと同等以上の効 果を有する措置を行うための設備をいう。
 - a)水素濃度制御設備(制御により原子炉建屋等で水素爆発のおそれがないことを示すこと。)又は水素排出設備(動的機器等に水素爆発を防止する機能を付けること。放射性物質低減機能を付けること。)を設置すること。
 - b) 想定される事故時に水素濃度が変動する可能性のある範囲で推定でき る監視設備を設置すること。
 - c)これらの設備は、交流又は直流電源が必要な場合は代替電源設備から の給電を可能とすること。

3.10 水素爆発による原子炉建屋等の損傷を防止するための設備

3.10.1 設置許可基準規則第53条への適合方針

炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による 損傷を防止するために,水素濃度制御設備及び水素濃度の監視設備として以 下の設備を設置する。

(1) 静的触媒式水素再結合器(設置許可基準規則解釈の第1項 a), c))

水素濃度制御設備として,原子炉建屋原子炉棟6階(オペレーティング フロア)に静的触媒式水素再結合器を設置し,重大事故等の発生時に格納 容器から原子炉建屋原子炉棟内に水素が漏えいした場合において,原子炉 建屋原子炉棟内の水素濃度上昇を抑制し,水素濃度を可燃限界未満に制御 することで,原子炉建屋原子炉棟での水素爆発を防止する設計とする。ま た,静的触媒式水素再結合器は運転員による起動操作を行うことなく,水 素と酸素を触媒反応によって再結合できる装置を適用し,駆動用の電源が 不要な設計とする。

また,静的触媒式水素再結合器の動作確認を行うために静的触媒式水素 再結合器の動作監視装置として,静的触媒式水素再結合器の入口側及び出 口側に温度計を設置し,中央制御室で監視可能な設計とする。静的触媒式 水素再結合器動作監視装置は,全交流動力電源喪失時においても代替電源 設備からの給電により中央制御室において静的触媒式水素再結合器の動作 確認が可能な設計とする。

(2) 原子炉建屋ガス処理系(設置許可基準規則解釈の第1項 a), c))
 水素爆発による原子炉建屋等の損傷を防止するための設備のうち, 炉心の著しい損傷により原子炉格納容器内に水素が発生した場合に原子炉建屋

3.10-2

原子炉棟へ漏えいする水素濃度を低減することで水素爆発による原子炉建 屋等の損傷を防止する。

静的触媒式水素再結合器による水素濃度抑制により,原子炉建屋原子炉 棟内の水素を可燃限界濃度未満にして水素爆発を防止するとともに,放射 性物質を低減するため,原子炉建屋原子炉棟内の水素等を含む気体を排出 できる設備として水素排出設備(原子炉建屋ガス処理系による水素排出) を設ける。

水素排出設備(原子炉建屋ガス処理系による水素排出)として,原子炉 建屋ガス処理系の非常用ガス処理系排風機及び非常用ガス再循環系排風機 は,原子炉格納容器から原子炉建屋原子炉棟内へ漏えいする水素等を含む 気体を吸引し,非常用ガス処理系フィルタユニット及び非常用ガス再循環 系フィルタユニットにて放射性物質を低減して排気筒に隣接する非常用ガ ス処理系排気筒から排出することにより原子炉建屋原子炉棟内に水素が滞 留しない設計とする。非常用ガス処理系排風機及び非常用ガス再循環系排 風機は,ディーゼル発電機に加えて,代替電源設備である常設代替高圧電 源装置から給電できる設計とする。

(3) 水素濃度の監視設備(設置許可基準規則解釈の第1項 b), c))

原子炉建屋水素濃度は,炉心の著しい損傷が発生した場合において水素 濃度が変動する可能性のある範囲で水素濃度を監視することを目的として 原子炉建屋原子炉棟内に検出器を設置し,水素濃度を測定する。また,原 子炉建屋水素濃度は,全交流動力電源喪失時においても代替電源設備から の給電により中央制御室において原子炉建屋水素濃度の監視が可能な設計 とする。 また, 炉心の著しい損傷が発生した場合において原子炉建屋原子炉棟の水 素爆発による損傷を防止するための自主対策設備として, 以下を整備する。

(4) 格納容器頂部注水系の設置

原子炉ウェルに注水することで格納容器トップヘッドフランジを冷却す る格納容器頂部注水系を設置する。本設備によって水素漏えいは防止でき ないが,格納容器トップヘッドフランジのシール材の熱劣化を緩和し,格 納容器から原子炉建屋原子炉棟への水素漏えいを抑制する設計とする。格 納容器頂部注水系には常設と可搬型がある。

格納容器頂部注水系(常設)は,重大事故等発生時に常設低圧代替注水 系ポンプにより,代替淡水貯槽を水源として原子炉ウェルに注水すること で,格納容器トップヘッドフランジ部を冷却する設計とする。

格納容器頂部注水系(可搬型)は,重大事故等発生時に原子炉建屋外から代替淡水貯槽を水源として可搬型代替注水大型ポンプにより原子炉ウェ ルに注水することで,格納容器トップヘッドフランジ部を冷却する設計と する。 3.10.2 重大事故等対処設備

3.10.2.1 静的触媒式水素再結合器

3.10.2.1.1 設備概要

静的触媒式水素再結合器は、炉心の著しい損傷が発生した場合において、 原子炉建屋原子炉棟内の水素濃度上昇を抑制し、水素爆発を防止する機能を 有する。この設備は、触媒カートリッジ、ハウジングで構成し、運転員によ る起動操作を行うことなく、格納容器から原子炉建屋原子炉棟内に漏えいし た水素と酸素を触媒反応によって再結合させる設備である。

静的触媒式水素再結合器の動作監視装置として,静的触媒式水素再結合器 の入口側及び出口側に温度計を設置し,中央制御室から監視可能な設計とす る。また,静的触媒式水素再結合器動作監視装置は代替電源設備から給電が 可能な設計とする。

静的触媒式水素再結合器及び静的触媒式水素再結合器動作監視装置に関する概要図を第3.10-1図,2図に,重大事故等対処設備一覧を第3.10-1表に示す。

触媒カートリッジ (ハウジングに内蔵)

ハウジング

第3.10-1図 静的触媒式水素再結合器概要図

第3.10-2図 静的触媒式水素再結合器動作監視装置の概要図

第3.10-1表 静的触媒式水素再結合器及び静的触媒式水素再結合器動作監視装 置に関する重大事故等対処設備一覧

設備区分	設備名	
主要設備	静的触媒式水素再結合器【常設】 静的触媒式水素再結合器動作監視装置【常設】	
付属設備		
水源		
流路	—	
注水先	—	
電源設備*1	常設代替交流電源設備 常設代替高圧電源装置【常設】 軽油貯蔵タンク【常設】 常設代替高圧電源装置用燃料移送ポンプ【常設】 可搬型代替交流電源設備 可搬型代替低圧電源車【可搬】 常設代替直流電源設備 緊急用直流125V蓄電池【常設】 可搬型代替低圧電源車【可搬】 可搬型代替低圧電源車【可搬】 可搬型整流器【可搬】 可搬型設備用軽油タンク【常設】 タンクローリ【可搬】	
計装設備	—	

*1:電源設備については「3.14 電源設備(設置許可基準規則第57条に対する設計方針 を示す章)」で示す。 3.10.2.1.2 主要設備の仕様

主要機器の仕様を以下に示す。

(1) 静的触媒式水素再結合器

種 類 :触媒反応式

水素処理容量:約0.5kg/h/個

(水素濃度4.0vo1%, 100℃, 大気圧において)

最高使用温度:300℃

個数:24

本体材料 : ステンレス鋼

- 取付箇所 : 原子炉建屋原子炉棟6階
- (2) 静的触媒式水素再結合器動作監視装置 兼用する設備は以下のとおり。
 - ·計装設備(重大事故等対処設備)
 - ・水素爆発による原子炉建屋等の損傷を防止するための設備
 - 種 類 :熱電対
 - 計測範囲 : 0~300℃
 - 個数:4*
 - 取付箇所 : 原子炉建屋原子炉棟6階
 - ※:静的触媒式水素再結合器1個当たり2個(出口及び入口)の熱電対を取 り付ける。2個の静的触媒式水素再結合器に対して動作監視装置を取 り付けるので,熱電対は4個となる。

3.10.2.1.3 設置許可基準規則第43条への適合方針

3.10.2.1.3.1 設置許可基準規則第43条第1項への適合方針

(1) 環境条件(設置許可基準規則第43条第1項一)

(i) 要求事項

想定される重大事故等が発生した場合における温度,放射線,荷重そ の他の使用条件において,重大事故等に対処するために必要な機能を有 効に発揮するものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

静的触媒式水素再結合器及び静的触媒式水素再結合器動作監視装置 は、原子炉建屋原子炉棟内に設置する設備であることから、その機能を 期待される重大事故等が発生した場合における、原子炉建屋原子炉棟内 の環境条件を考慮し、第3.10-2表に示す設計とする。なお、静的触媒式 水素再結合器は、触媒が湿度及び蒸気により性能低下することを防止す るため、触媒粒に疎水コーティングを施す設計とする。

環境条件	対応	
温度, 圧力, 湿度, 放射線	設置場所である原子炉建屋原子炉棟内で想定される温度,圧力, 湿度及び放射線条件に耐えられる性能を確認した機器を使用す る。	
屋外の天候による 影響	屋外に設置する設備ではないため、天候による影響は受けない。	
海水を通水する系 統への影響	海水を通水することはない。	
地震	適切な地震荷重との組合せを考慮した上で機器が損傷しない設計とする(詳細は「2.1.2 耐震設計の基本方針」に示す)。	
風(台風), 竜巻, 積雪, 火山の影響	原子炉建屋原子炉棟内に設置するため,風(台風),竜巻,積雪 及び火山の影響は受けない。	
電磁的障害	機械装置のため、電磁波の影響を受けない。	

第3.10-2表 想定する環境条件

(53 - 3 - 2)

- (2) 操作性(設置許可基準規則第43条第1項二)
- (i) 要求事項

想定される重大事故等が発生した場合において確実に操作できるもの であること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」 に示す。

静的触媒式水素再結合器は,水素と酸素が流入すると触媒反応によっ て受動的に起動する設備とし,操作不要な設計とする。また,作動状況 は静的触媒式水素再結合器動作監視装置により確認できる設計とする。

3.10-10

なお,静的触媒式水素再結合器動作監視装置は,重大事故等発生時に おいて中央制御室にて監視できる設計であり現場又は中央制御室による 操作は発生しない。

- (3) 試験及び検査(設置許可基準規則第43条第1項三)
- (i) 要求事項

健全性及び能力を確認するため,原子炉の運転中又は停止中に試験又 は検査ができるものであること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」 に示す。

静的触媒式水素再結合器は,第3.10-3表に示すように,原子炉の停止 中に機能・性能検査及び外観検査が可能な設計とする。

静的触媒式水素再結合器は,原子炉の停止中に機能・性能検査とし て,専用の検査装置を用意し,静的触媒式水素再結合器内の触媒カート リッジを抜き取り,検査装置にセット後,水素を含む試験ガスを通気す ることで,触媒カートリッジの水素処理性能を確認可能な設計とする。 また,原子炉の停止中に,外観検査として触媒カートリッジに異物の付 着がないこと,ハウジングが設計通りの形状を保持していることを確認 可能な設計とする。

(53-5-2, 53-7)

原子炉の状態	項目	内容
停止中	外観検査	触媒カートリッジの外観確認 ハウジングの外観確認
	機能・性能検査	触媒カートリッジの水素処理性能確認

第3.10-3表 静的触媒式水素再結合器の試験及び検査

静的触媒式水素再結合器動作監視装置は,第3.10-4表に示すように, 原子炉の停止中に機能・性能検査が可能な設計とする。

静的触媒式水素再結合器動作監視装置は,原子炉の停止中に機能・性 能検査として,検出器の絶縁抵抗測定,温度1点確認及び模擬入力によ る計器校正が可能な設計とする。

第3.10-4表 静的触媒式水素再結合器動作監視装置の試験及び検査

原子炉の状態	項目	内容
停止中	機能・性能検査	絶縁抵抗測定 温度1点確認 計器校正

(53 - 5 - 3)

(4) 切り替えの容易性(設置許可基準規則第43条第1項四)

(i) 要求事項

本来の用途以外の用途として重大事故等に対処するために使用する設 備にあっては,通常時に使用する系統から速やかに切り替えられる機能 を備えるものであること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」

静的触媒式水素再結合器は重大事故等発生時における原子炉建屋原子 炉棟内の水素濃度上昇抑制機能としてのみ使用することとし、本来の用 途以外の用途に使用しない設計とする。また、静的触媒式水素再結合器 動作監視装置は、重大事故等発生時における静的触媒式水素再結合器の 動作確認に使用するものであり、本来の用途以外の用途には使用しない 設計とする。そのため、静的触媒式水素再結合器、静的触媒式水素再結 合器動作監視装置について、切替操作は発生しない。

- (5) 悪影響の防止(設置許可基準規則第43条第1項五)
- (i) 要求事項

工場等内の他の設備に対して悪影響を及ぼさないものであること。

(ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等 について」に示す。

静的触媒式水素再結合器は,他の設備と独立して原子炉建屋原子炉棟 6階壁面近傍に機器単独で設置することで,他の設備に悪影響を及ぼさ ない設計とする。また,静的触媒式水素再結合器は,水素が存在しない と再結合反応を起こすことはなく,原子炉の運転中に他の設備に悪影響 を及ぼさない設計とする。重大事故発生時に原子炉建屋原子炉棟6階に 水素が漏えいした場合は,静的触媒式水素再結合器が再結合反応により 温度上昇するが,重大事故等発生時に使用する設備の機能に影響を与え

3.10-13
るような温度範囲となる位置に配置しないことで,他の設備に悪影響を 及ぼさない設計とする。なお,水素の再結合により発生した水は蒸気と して静的触媒式水素再結合器出口より排出されるため,他の設備に悪影 響を及ぼさない。

(53 - 3 - 2)

静的触媒式水素再結合器動作監視装置は,遮断器又はヒューズによる 電気的な分離を行うことで,他の設備に電気的な悪影響を及ぼさない設 計とする。また,静的触媒式水素再結合器動作監視装置は,静的触媒式 水素再結合器内への水素ガス流入流路に対して十分小さくすることで, 静的触媒式水素再結合器の水素処理性能に影響を及ぼさない設計とす る。

(53-7)

- (6) 設置場所(設置許可基準規則第43条第1項六)
- (i) 要求事項

想定される重大事故等が発生した場合において重大事故等対処設備の 操作及び復旧作業を行うことができるよう,放射線量が高くなるおそれ が少ない設置場所の選定,設置場所への遮蔽物の設置その他の適切な措 置を講じたものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

静的触媒式水素再結合器は、触媒反応によって受動的に運転される設

備とし、現場における操作は発生しない。

静的触媒式水素再結合器動作監視装置は,重大事故等発生時において 中央制御室にて監視できる設計であり現場における操作は発生しない。 3.10.2.1.3.2 設置許可基準規則第43条第2項への適合方針

(1) 容量(設置許可基準規則第43条第2項一)

(i) 要求事項

想定される重大事故等の収束に必要な容量を有するものであること。

(ii) 適合性

基本方針については、「2.3.2 容量等」に示す

静的触媒式水素再結合器は,重大事故等の発生時に格納容器から原子 炉建屋原子炉棟内に水素が漏えいした場合において,原子炉建屋原子炉 棟での水素爆発を防止するために,原子炉建屋原子炉棟6階の水素濃度 を可燃限界未満に制御するために必要な水素処理容量を有する設計とす る。また,静的触媒式水素再結合器は,原子炉建屋原子炉棟6階内の水 素の効率的な除去を考慮して,原子炉建屋原子炉棟6階に分散させた配 置とする。

静的触媒式水素再結合器は重大事故等時に格納容器内に存在するガス 状よう素による性能低下を考慮し、必要な水素処理容量に裕度をもたせ た容量を有する個数を配備する。個数の設定にあたっては、水素発生量 として燃料有効部被覆管(AFC)100%に相当する1,400kgとする。ま た、発生した水素が格納容器から原子炉建屋原子炉棟に漏えいする格納 容器漏えい率としては、格納容器圧力2Pd(設計圧力の2倍)における格 納容器漏えい率である約1.4%/dayに余裕を考慮し10%/dayとする。 これらに加えて、反応阻害物質ファクタ 0.5を考慮し、静的触媒式水素 再結合器の個数は、上記で示す水素漏えい量において原子炉建屋原子炉 棟6階を可燃限界未満に処理することができる「24個」とする。 静的触媒式水素再結合器動作監視装置(静的触媒式水素再結合器の出入口に熱電対1個ずつ設置:計2個)は,静的触媒式水素再結合器作動時に想定される温度範囲を監視可能な設計とし,位置的分散を考慮して, 原子炉建屋原子炉棟6階の両壁面に分散配置した静的触媒式水素再結合器のうち,それぞれ1個(計2個)に設置する設計とする。

(53-3-2, 53-6-5)

- (2) 共用の禁止(設置許可基準規則第43条第2項二)
- (i) 要求事項

二以上の発電用原子炉施設において共用するものでないこと。ただ し、二以上の発電用原子炉施設と共用することによって当該二以上の発 電用原子炉施設の安全性が向上する場合であって、同一の工場等内の他 の発電用原子炉施設に対して悪影響を及ぼさない場合は、この限りでな い。

(ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等 について」に示す。

敷地内に二以上の発電用原子炉施設はないことから,静的触媒式水素 再結合器及び静的触媒式水素再結合器動作監視装置は共用しない。

- (3) 設計基準事故対処設備との多様性(設置許可基準規則第43条第2項三)
- (i) 要求事項

常設重大事故防止設備は、共通要因によって設計基準事故対処設備の

3.10-17

安全機能と同時にその機能が損なわれるおそれがないよう,適切な措置 を講じたものであること。

(ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等 について」に示す。

静的触媒式水素再結合器は重大事故緩和設備であり,同一目的の設計 基準事故対処設備はない。

静的触媒式水素再結合器動作監視装置は熱電対方式であり,同一目的 の水素爆発による原子炉建屋原子炉棟の損傷を防止するための監視設備 である触媒式及び熱伝導式の原子炉建屋水素濃度とは多様性を有した計 測方式とする。また,原子炉建屋原子炉棟6階の床面付近に設置する静 的触媒式水素再結合器動作監視装置に対して原子炉建屋水素濃度は,原 子炉建屋原子炉棟6階の天井付近,地下1階及び2階に設置することで位 置的分散を図り,地震,火災,溢水等の共通要因故障によって同時に機 能を損なわない設計とする。

(53-2-2) (53-3-2)

3.10.2.2 原子炉建屋水素濃度

3.10.2.2.1 設備概要

原子炉建屋水素濃度は炉心の著しい損傷が発生し,ジルコニウム-水反応 等で短期的に発生する水素及び水の放射線分解等で長期的に緩やかに発生し 続ける水素が格納容器から原子炉建屋原子炉棟へ漏えいした場合に,原子炉 建屋原子炉棟において,水素濃度が変動する可能性のある範囲で測定を行 い,中央制御室において連続監視できる設計とする。また,原子炉建屋水素 濃度は代替電源設備からの給電が可能な設計とする。

原子炉建屋水素濃度に関する系統概要図を第3.10-3図に,重大事故等対処 設備一覧を第3.10-5表に示す。

第3.10-3 図 原子炉建屋水素濃度の系統概要図

第3.10-5表 原子炉建屋水素濃度に関する重大事故等対処設備一覧

設備区分	設備名
主要設備	原子炉建屋水素濃度【常設】
附属設備	—
水源	—
流路	—
注水先	—
電源設備*1	常設代替交流電源設備 常設代替高圧電源装置【常設】 軽油貯蔵タンク【常設】 常設代替高圧電源装置用燃料移送ポンプ【常設】 可搬型代替交流電源設備 可搬型代替低圧電源車【可搬】 常設代替直流電源設備 緊急用直流125V蓄電池【常設】 可搬型代替低圧電源車【可搬】 可搬型代替低圧電源車【可搬】 可搬型整流器【可搬】 可搬型整流器【可搬】 可搬型設備用軽油タンク【常設】 タンクローリ【可搬】
計装設備	

*1:電源設備については「3.14 電源設備(設置許可基準規則第57条に対す る設計方針を示す章)」で示す。 3.10.2.2.2 主要設備の仕様

主要設備の仕様を以下に示す。

(1) 原子炉建屋水素濃度

兼用する設備は以下のとおり。

- ·計装設備(重大事故等対処設備)
- ・水素爆発による原子炉建屋等の損傷を防止するための設備

種	類	触媒式, 熱伝導式
計 測 範	囲	触媒式 : 0~10vo1%
		熱伝導式:0~20vo1%
個	数	触媒式 :2
		熱伝導式:3
取付箇	所	触媒式 :原子炉建屋原子炉棟6階
		熱伝導式:原子炉建屋原子炉棟2階

原子炉建屋原子炉棟地下1階

3.10.2.2.3 設置許可基準規則第43条への適合方針

3.10.2.2.3.1 設置許可基準規則第43条第1項への適合方針

(1) 環境条件(設置許可基準規則第43条第1項一)

(i) 要求事項

想定される重大事故等が発生した場合における温度,放射線,荷重そ の他の使用条件において,重大事故等に対処するために必要な機能を有 効に発揮するものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

原子炉建屋水素濃度は,原子炉建屋原子炉棟内に設置する設備である ことから,その機能を期待される重大事故等が発生した場合における, 原子炉建屋原子炉棟内の環境条件を考慮し,以下の第3.10-6表に示す設 計とする。

環境条件	対応
温度, 圧力, 湿度, 放射線	設置場所である原子炉建屋原子炉棟内で想定される温度,圧力, 湿度及び放射線条件下に耐えられる性能を確認した機器を使用す る。
屋外の天候による影 響	屋外に設置する設備ではないため、天候による影響は受けない。
海水を通水する系統 への影響	海水を通水することはない。
地震	適切な地震荷重との組合せを考慮した上で機器が損傷しない設計 とする。(詳細は「2.1.2 耐震設計の基本方針」に示す)。
風(台風), 竜巻, 積雪, 火山の影響	原子炉建屋原子炉棟内に設置するため,風(台風),竜巻,積雪 及び火山の影響は受けない。
電磁的障害	重大事故等が発生した場合においても、電磁波による影響を考慮 した設計とする。

第3.10-6表 想定する環境条件

- (2) 操作性(設置許可基準規則第43条第1項二)
- (i) 要求事項

想定される重大事故等が発生した場合において確実に操作できるもの であること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」 に示す。

原子炉建屋水素濃度は,重大事故等発生時において中央制御室にて監 視できる設計であり現場又は中央制御室における操作は発生しない。

- (3) 試験及び検査(設置許可基準規則第43条第1項三)
- (i) 要求事項

健全性及び能力を確認するため,発電用原子炉の運転中又は停止中に 試験又は検査ができるものであること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」 に示す。

原子炉建屋水素濃度は,第3.10-7表に示すように原子炉の停止中に機 能・性能検査が可能な設計とする。検出器の機能・性能検査として,基 準ガスによる校正及び模擬入力による計器校正を行う。

第3.10-7表 原子炉建屋水素濃度の試験及び検査性

原子炉の状態	項目	内容
停止中	機能・性能検査	基準ガス校正 計器校正

(53 - 5 - 4)

- (4) 切り替えの容易性(設置許可基準規則第43条第1項四)
 - (i) 要求事項

本来の用途以外の用途として重大事故等に対処するために使用する設 備にあっては,通常時に使用する系統から速やかに切り替えられる機能 を備えるものであること。

(ii) 適合性

基本方針については、「2.3.4 操作性及び試験・検査性について」 に示す。

原子炉建屋水素濃度は,本来の用途以外の用途には使用しない設計と する。

- (5) 悪影響の防止(設置許可基準規則第43条第1項五)
- (i) 要求事項 工場等内の他の設備に対して悪影響を及ぼさないものであること。
- (ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等

原子炉建屋水素濃度は,遮断器又はヒューズによる電気的な分離を行 うことで,他の設備に電気的な悪影響を及ぼさない設計とする。

- (6) 設置場所(設置許可基準規則第43条第1項六)
- (i) 要求事項

想定される重大事故等が発生した場合において重大事故等対処設備の 操作及び復旧作業を行うことができるよう,放射線量が高くなるおそれ が少ない設置場所の選定,設置場所への遮蔽物の設置その他の適切な措 置を講じたものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

原子炉建屋水素濃度は,重大事故等発生時において中央制御室にて監 視できる設計であり現場における操作は発生しない。 3.10.2.2.3.2 設置許可基準規則第43条第2項への適合方針

- (1) 容量(設置許可基準規則第43条第2項一)
- (i) 要求事項

想定される重大事故等の収束に必要な容量を有するものであること。

(ii) 適合性

基本方針については、「2.3.2 容量等」に示す。

原子炉建屋水素濃度は、炉心損傷時に格納容器内に発生する水素が原 子炉建屋原子炉棟に漏えいした場合に、静的触媒式水素再結合器による 水素濃度低減(可燃限界である4vol%未満)をトレンドとして連続的に 監視できることが主な役割であることから、原子炉建屋原子炉棟6階に おいて0~10vol%を計測可能な設計とする。なお、原子炉建屋水素濃度 は、水素が最終的に滞留する原子炉建屋原子炉棟6階の天井付近に位置 的分散して設置するとともに、格納容器内で発生した水素が漏えいする 可能性のある原子炉建屋原子炉棟2階、地下1階のエリアにも設置し、水 素の早期検知及び滞留状況を把握するために0~20vol%が計測可能な設 計とする。

 $(53 - 3 - 2 \sim 5)$ $(53 - 6 - 7 \sim 8)$

- (2) 共用の禁止(設置許可基準規則第43条第2項二)
- (i) 要求事項

二以上の発電用原子炉施設において共用するものでないこと。ただ し、二以上の発電用原子炉施設と共用することによって当該二以上の発 電用原子炉施設の安全性が向上する場合であって、同一の工場等内の他 の発電用原子炉施設に対して悪影響を及ぼさない場合は、この限りでない。

(ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等 について」に示す。

敷地内に二以上の発電用原子炉施設はないことから,原子炉建屋水素 濃度は共用しない。

- (3) 設計基準事故対処設備との多様性(設置許可基準規則第43条第2項三)
- (i) 要求事項

常設重大事故防止設備は,共通要因によって設計基準事故対処設備の 安全機能と同時にその機能が損なわれるおそれがないよう,適切な措置 を講じたものであること。

(ii) 適合性

基本方針については、「2.3.1 多様性、位置的分散、悪影響防止等 について」に示す。

原子炉建屋水素濃度は触媒式及び熱伝導式であり,同一目的の水素爆 発による原子炉建屋原子炉棟の損傷を防止するための監視設備である熱 電対式の静的触媒式水素再結合器動作監視装置とは多様性を有した計測 方式とする。また,原子炉建屋原子炉棟6階の天井付近,地下1階及び2 階に設置する原子炉建屋水素濃度に対して静的触媒式水素再結合器動作 監視装置は,原子炉建屋原子炉棟6階床面付近に設置することで位置的 分散を図り,地震,火災,溢水等の共通要因故障によって同時に機能を 損なわない設計とする。

(53-2-2) $(53-3-2\sim5)$

3.10.2.3 原子炉建屋ガス処理系

3.10.2.3.1 設備概要

水素排出設備は、炉心の著しい損傷が発生した場合に、原子炉建屋等の水 素爆発を防止ため、原子炉建屋ガス処理系により水素を排出し、原子炉建屋 原子炉棟内に水素の滞留を防止することを目的として設置するものである。

本設備は,非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用 ガス再循環系フィルタユニット及び非常用ガス処理系フィルタユニットから 構成する。

原子炉建屋ガス処理系は,原子炉格納容器から原子炉建屋原子炉棟へ漏え いする水素を含む気体を吸引し,放射性物質を低減しつつ原子炉建屋外に排 出することにより原子炉建屋原子炉棟内に水素が滞留しない設計とする。ま た,原子炉建屋ガス処理系は,常設代替交流電源設備である常設代替高圧電 源装置からの給電を可能とする。

水素排出設備の重大事故等対処設備一覧を第3.10-8表に,原子炉建屋ガス 処理系の系統概略図を第3.10-4図に示す。

<mark>第3.10-8表 重大事故等対処設備一覧</mark>

設備区分		設備名
<mark>主要設備</mark>		非常用ガス再循環系排風機【常設】 非常用ガス処理系排風機【常設】 非常用ガス再循環系フィルタユニット【常設】 非常用ガス処理系フィルタユニット【常設】
	<mark>付属設備</mark>	<mark>—</mark>
	<mark>水源</mark>	<mark>–</mark>
	<mark>流路</mark>	非常用ガス処理系 配管・弁【常設】 非常用ガス再循環系 配管・弁【常設】 非常用ガス処理系排気筒【常設】
<mark>関連設備</mark>	<mark>注水先</mark>	<mark>—</mark>
	<mark>電源設備*1</mark> (燃料補給設 備含む)	常設代替交流電源設備 常設代替高圧電源装置【常設】 軽油貯蔵タンク【常設】 常設代替高圧電源装置用燃料移送ポンプ【常設】
	計装設備	_

*1: 電源設備については「3.14電源設備(設置許可基準規則第57条に対する設計 方針を示す章)」で示す。

なお,電源設備については「3.14 電源設備(設置許可基準規則第57条に

対する設計方針を示す章)」で示す。

第3.10-4図 原子炉建屋ガス処理系の系統概略図

3.10.2.3.2 主要設備の仕様

型 式 電気加熱器,粒子用高効率フィルタ及びよう素

用チャコールフィルタ内蔵型

個 数 1	(予備 1)
-------	--------

3.10-33

非常用ガス再循環系フィルタユニット (4)兼用する設備は以下のとおり。 ・原子炉建屋ガス処理系 ・水素爆発による原子炉建屋等の損傷を防止するための設備 電気加熱器, 粒子用高効率フィルタ及びよう素 型式 用チャコールフィルタ内蔵型 数 1(予備 1) 個 容 量 約 17,000 m 3 / h チャコール層厚さ 約 50mm よう素除去効率 90%以上(系統効率) 99.97%以上(直径 0.5 µm以上の粒子) 粒子除去効率

3.10.2.3.3 設置許可基準規則第43条への適合方針

3.10.2.3.3.1 設置許可基準規則第43条第1項への適合方針

(1) 環境条件(設置許可基準規則第43条第1項一)

(i) 要求事項

想定される重大事故等が発生した場合における温度,放射線,荷重そ の他の使用条件において,重大事故等に対処するために必要な機能を有 効に発揮するものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,原 子炉建屋原子炉棟内に設置される設備であることから,その機能を期待 される重大事故等時における原子炉建屋原子炉棟内の環境条件を考慮 し,第3.10-9表に示す設計とする。

非常用ガス再循環系排風機及び非常用ガス処理系排風機操作は,中央 制御室で可能な設計とする。

環境条件	対応
<mark>温度,圧力,湿度,放射</mark> 線	設置場所である原子炉建屋原子炉棟で想定される 温度, 圧力, 湿度及び放射線条件に耐えられる性能 を確認した機器を使用する。
屋外の天候による影響	<mark>屋外に設置するものではないため, 天候による影響</mark> <mark>は受けない。</mark>
<mark>海水を通水する系統へ</mark> の影響	海水を通水することはない。
<mark>地震</mark>	<mark>適切な地震荷重との組合せを考慮した上で機器が</mark> 損傷しない設計 とする。(詳細は「2.1.2 耐震設 計の基本方針」に示す。)
<mark>津波</mark>	<mark>原子炉建屋原子炉棟内に設置するため, 津波の影響</mark> を受けない。
風 (台風), 竜巻, 積雪, 火山の影響 電磁的影響	原子炉建屋原子炉棟内に設置するため,風(台風), 竜巻,積雪及び火山の影響を受けない。
電磁的影響	<mark>機械装置のため,電磁波の影響を受けない。</mark>

<mark>第3.10-9表 想定する環境条件</mark>

(2) 操作性(設置許可基準規則第43条第1項二)

(i) 要求事項

想定される重大事故等が発生した場合において確実に操作できるもの

であること。

(ii) 適合性

基本方針については, 「2.3.4 操作性及び試験・検査性について」

<mark>に示す。</mark>

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス 再循環系フィルタユニット,非常用ガス処理系フィルタユニットは, 想定される重大事故等が発生した場合において,原子炉建屋原子炉棟 内の環境条件(被ばく影響等)を考慮の上,中央制御室にて操作可能 な設計とする。

原子炉建屋ガス処理系の運転切替は,原子炉建屋隔離信号による自動作動のほか,中央制御室での操作スイッチ操作による手動切替も可能な設計とし,設計基準対象施設として使用する場合と同じ系統構成で使用できる設計とする。

操作が必要な対象機器について、第3.10-10表に示す。

第3.10-10表 操作対象機器 (換気設備)

機器名称	操作内容	操作場所	操作方法
<mark>非常用ガス再循環系排風機</mark>	<mark>起動・停止</mark>	<mark>中央制御室</mark>	<mark>スイッチ操作</mark>
非常用ガス処理系排風機	<mark>起動・停止</mark>	<mark>中央制御室</mark>	<mark>スイッチ操作</mark>

(3) 試験及び検査(設置許可基準規則第43条第1項三)

(i) 要求事項

健全性及び能力を確認するため、発電用原子炉の運転中又は停止中に

試験又は検査ができるものであること。

(ii) 適合性

基本方針については, 「2.3.4 操作性及び試験・検査性について」 に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,第 3.10-11表に示すように発電用原子炉の運転中又は停止中に外観検査, 機能・性能検査及び分解検査が可能な設計とする。

3.10-37

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,発 電用原子炉の運転中又は停止中に機能・性能検査が可能な系統設計とす る。

非常用ガス再循環系排風機及び非常用ガス処理系排風機は,発電用原 子炉の停止中に分解検査が可能な設計とする。

非常用ガス再循環系フィルタユニット及び非常用ガス処理系フィルタ ユニットは,発電用原子炉の運転中又は停止中に差圧確認が可能な設計 とする。また,発電用原子炉の停止中に内部の確認が可能なように点検 ロを設ける設計とし,性能の確認が可能なようフィルタを取り出すこと ができる設計とする。

第3.10-11表 原子炉建屋ガス処理系の試験及び検査

<mark>原子炉の状態</mark>	項目	内容
	<mark>外観検査</mark>	各機器 ^{*1} の表面状態を目視により確認
<mark>) 電転由</mark>		<mark>弁動作の確認</mark>
	<mark>機能・性能検査</mark>	<mark>排風機の運転状態の確認</mark>
		<mark>フィルタ差圧の確認</mark>
	<mark>外観検査</mark>	各機器*1の表面状態を目視により確認
		<mark>弁動作の確認</mark>
<mark>停止中</mark>	<mark>機能・性能検査</mark>	<mark>排風機の運転状態の確認</mark>
		フィルタ差圧の確認
	<mark>分解検査</mark>	<mark>排風機の分解点検</mark>

(*1) 各機器とは以下のとおり:

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再循 環系フィルタユニット及び非常用ガス処理系フィルタユニット (4) 切り替えの容易性(設置許可基準規則第43条第1項四)

(i) 要求事項

本来の用途以外の用途として重大事故等に対処するために使用する設備にあっては、通常時に使用する系統から速やかに切り替えられる機能を備えるものであること。

(ii) 適合性

基本方針については, 「2.3.4 操作性及び試験・検査性について」 に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,重 大事故等が発生した場合でも,設計基準対象施設として使用する場合と 同じ系統構成で使用するため,切り替えせずに使用できる設計とする。

(5) 悪影響の防止(設置許可基準規則第43条第1項五)

(i) 要求事項

工場等内の他の設備に対して悪影響を及ぼさないものであること。

(ii) 適合性

基本方針については,「2.3.1 多様性,位置的分散,悪影響防止等 について」に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,設

3.10-39

計基準対象施設として使用する場合と同じ系統構成で重大事故等対処設 備として使用することで,他の設備に悪影響を及ぼさない設計とする。

- (6) 設置場所(設置許可基準規則第43条第1項六)
- (i) 要求事項

想定される重大事故等が発生した場合において重大事故等対処設備の 操作及び復旧作業を行うことができるよう,放射線量が高くなるおそれ が少ない設置場所の選定,設置場所への遮蔽物の設置その他の適切な措 置を講じたものであること。

(ii) 適合性

基本方針については、「2.3.3 環境条件等」に示す。

非常用ガス再循環系排風機及び非常用ガス処理系排風機は,原子炉建 屋原子炉棟内に設置し,重大事故等時における環境条件を考慮の上,中 央制御室から操作可能な設計とする。

これらの設備の設置場所,操作場所を第3.10-12表に示す。

機器名称	設置場所	操作場所
非常用ガス再循環系排風機	<mark>原子炉建屋原子炉棟5階</mark>	中央制御室
非常用ガス処理系排風機	原子炉建屋原子炉棟5階	中央制御室

第3.10-12表 操作対象機器設置場所

3.10.2.3.3.2 設置許可基準規則第 43 条第 2 項への適合方針

(1) 容量(設置許可基準規則第43条第2項一)

(i) 要求事項

想定される重大事故等の収束に必要な容量を有するものであること。

(ii) 適合性

基本方針については、「2.3.2 容量等」に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス再 循環系フィルタユニット及び非常用ガス処理系フィルタユニットは,設 計基準事故対処設備としての容量が,重大事故等時に原子炉建屋原子炉 棟の水素を屋外に排出するために必要な容量に対して十分であるため, 設計基準事故対処設備と同仕様で設計する。

(2) 共用の禁止(設置許可基準規則第43条第2項二)

(i) 要求事項

二以上の発電用原子炉施設において共用するものでないこと。ただ し、二以上の発電用原子炉施設と共用することによって当該二以上の発 電用原子炉施設の安全性が向上する場合であって、同一の工場等内の他 の発電用原子炉施設に対して悪影響を及ぼさない場合は、この限りでな い。

(ii) 適合性

基本方針については,「2.3.1 多様性,位置的分散,悪影響防止等 について」に示す。

3.10-41

敷地内に二以上の発電用原子炉施設はないことから,原子炉建屋ガ ス処理系は共用しない。

(3) 設計基準対象設備との多様性(設置許可基準規則 第43条第2項三)

(i) 要求事項

常設重大事故防止設備は,共通要因によって設計基準事故対処設備 の安全機能と同時にその機能が損なわれるおそれがないよう,適切な 措置を講じたものであること。

(ii) 適合性

基本方針については、「2.3.1 多様性,位置的分散,悪影響防止 等について」に示す。

非常用ガス再循環系排風機,非常用ガス処理系排風機,非常用ガス 再循環系フィルタユニット及び非常用ガス処理系フィルタユニット は、地震、津波、その他の外部事象による損傷の防止が図られた原子 炉建屋原子炉棟内に設置する。

非常用ガス再循環系排風機及び非常用ガス処理系排風機は,共通要 因によって同時に機能を損なわないよう,全交流動力電源喪失時にお いても常設代替交流電源設備から給電可能な設計とする。 3.10.3 その他設備

3.10.3.1 格納容器頂部注水系

3.10.3.1.1 設備概要

炉心の著しい損傷が発生した場合において,格納容器頂部を冷却するこ とで格納容器外への水素漏えいを抑制し,原子炉建屋原子炉棟の水素爆発 を防止するため,格納容器頂部注水系を設ける。なお,本設備は事業者の 自主的な取り組みで設置するものである。

格納容器頂部注水系は,原子炉ウェルに注水し,格納容器トップヘッド フランジのシール材を格納容器外部から冷却することを目的とした系統で ある。格納容器頂部注水系(常設)は,常設低圧代替注水系ポンプ等で構 成しており,炉心の著しい損傷が発生した場合において,代替淡水貯槽を 水源として原子炉ウェルに注水し格納容器頂部を冷却することで,格納容 器頂部からの水素漏えいを抑制する設計とする。

また,格納容器頂部注水系(可搬型)は,可搬型代替注水大型ポンプ等 で構成しており,炉心の著しい損傷が発生した場合において,代替淡水貯 槽を水源として原子炉ウェルに注水し格納容器頂部を冷却することで,格 納容器頂部からの水素漏えいを抑制する設計とする。

3.10.3.1.2 他設備への悪影響について

格納容器頂部注水系を使用することで,原子炉ウェルに水が注水される。この際,悪影響として懸念されるのは,以下の通りである。

 ・格納容器温度が200℃のような過温状態で常温の水を原子炉ウェルに注水 することから、格納容器トップヘッドフランジ部を急冷することによる鋼 材部の熱収縮による応力発生に伴う格納容器閉じ込め機能への影響

・格納容器トップヘッドフランジ部を冷却することにより、格納容器トップ

ヘッドフランジからの水素漏えいを抑制することから,原子炉建屋原子 炉棟6階への漏えいが減少する一方で,原子炉建屋原子炉棟下層階(2 階,地下1階)への漏えい量が増加することによる原子炉建屋原子炉棟水 素爆発防止機能への影響

・原子炉ウェルへ注水した水が蒸発し、原子炉建屋原子炉棟6階に水蒸気が
 滞留することで、静的触媒式水素再結合器が設置されている原子炉建屋原
 子炉棟6階への下層階から漏えいした水素の流入が阻害されることによる
 原子炉建屋原子炉棟水素爆発防止機能への影響

このうち,格納容器トップヘッドフランジ部急冷による格納容器閉じ込 め機能への影響については,格納容器トップヘッドフランジ締付ボルト冷 却時の発生応力を評価した結果,ボルトが急冷された場合でも応力値は降 伏応力を下回っていることからボルトが破損することはない。

また,格納容器トップヘッドフランジからの水素漏えいを防ぐことによ る,原子炉建屋水素爆発防止機能への影響については,水素の漏えい箇所 を原子炉建屋原子炉棟下層階(2階,地下1階)のみとして原子炉建屋原子 炉棟内の水素挙動を評価し,下層階で水素が滞留しないこと及び可燃限界 に至ることはないことを確認した。このため,原子炉建屋原子炉棟水素爆 発防止機能に悪影響を与えない。

原子炉ウェルに溜まった水が蒸発することによる原子炉建屋水素爆発防 止機能への影響については、原子炉建屋ガス処理系による混合効果が大き く、原子炉建屋原子炉棟6階に水蒸気が滞留することはないため、水素の 流入に悪影響を与えない。

(53-7)

53-1 SA設備基準適合性 一覧表

第53条:水素爆発による原子炉建屋等 の損傷を防止するための設備			、素炸 : 防」	暴発による原子炉建屋等 上するための設備	静的触媒式水素再結合器	類型化区分									
			環境条	環境温度・湿度・圧力/ 屋外の天候/放射線	原子炉建屋原子炉棟内	В									
				荷重	(有効に機能を発揮する)	—									
		第	件 に お	海水	(海水を通水しない)	対象外									
		 号	日わける	他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)	—									
			健全性	電磁波による影響	(電磁波により機能が損なわれない)	_									
			任	関連資料	53-3 配置図										
		第	操(乍性	(操作不要)	対象外									
	∽	号	関ì	重資料	_										
	第 1 項	第	試験成	険・検査(検査性,系統構 ・外部入力)	その他	М									
		3 号	関ì	重資料	53-5 試験及び検査										
		第	切り替え性		当該系統の使用に当たり系統の切替操作が不要	Вb									
第		4 号	関連資料		_										
43 条		第5号 第6号	悪ビ	系統設計	他設備から独立	A c									
			。	その他(飛散物)	対象外	対象外									
				関連資料	53-3 配置図										
			設情	置場所	(操作不要)	対象外									
			関ì	連資料											
		第 1	常調	没SAの容量	重大事故等への対処を本来の目的として設置するもの	А									
		号	関連資料		53-3 配置図 53-6 容量設定根拠										
		第	共月	用の禁止	(共用しない設備)	対象外									
	第 2	号	関ì	重資料	_										
	項	第	共通要用	環境条件,自然現象, 外部人為事象,溢水, 火災	(共通要因の考慮対象般備なし)	対象外									
		3 号	山故障	サポート系故障	(サポート系なし)	対象外									
												防止	関連資料	_	

東海第二発電所 SA 設備基準適合性 一覧表(常設)

第53条:水素爆発による原子炉建屋等 の損傷を防止するための設備				暴発による原子炉建屋等 止するための設備	静的触媒式水素再結合器動作監視装置	類型化区分		
			環	環境温度・湿度・圧力/ 屋外の天候/放射線	原子炉建屋原子炉棟内	В		
			境条曲	荷重	(有効に機能を発揮する)	_		
		第 1	件にお	海水	(海水を通水しない)	対象外		
		号	ける	他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)	_		
			健 全 性	電磁波による影響	(電磁波により機能が損なわれない)	_		
				関連資料	53-3 配置図			
		第	操	乍性	(操作不要)	対象外		
	tete	号	関	車資料	_			
	用 1 百	第	試験成	験・検査(検査性,系統構 ・外部入力)	計測制御設備	J		
	-7	3 号	関	車資料	53-5 試験及び検査			
		第4号 第5号 第6号	切	り替え性	当該設備の使用に当たり系統の切替操作が不要	Вb		
			関連資料		53-4 系統図			
第 43 条			悪影	系統設計	<mark>他設備から独立</mark>	A c		
			5 響防 止	その他(飛散物)	対象外	対象外		
				関連資料	_			
			設情	置場所	(操作不要)	対象外		
			関	重資料	—			
		第	常詞	設SAの容量	重大事故等への対処を本来の目的として設置するもの	А		
		1 号	関連資料		53-3 配置図 53-6 容量設定根拠			
		第	共	用の禁止	(共有しない設備)	対象外		
	第 2	2 号	関	車資料	_			
	項	笛	共通要	環境条件,自然現象, 外部人為事象,溢水, 火災	緩和設備又は防止でも緩和でもない設備—対象(同一目的の SA設備あり)	В		
		わ 3 号	因故院	サポート系故障	対象(サポート系有り)―異なる駆動源又は冷却源	Са		
		一号	5	厅	障防止	関連資料	53-2 単線結線図 53-3 配置図	

東海第二発電所 SA 設備基準適合性 一覧表(常設)

第	53条 の損	:J 傷を	k素 と防	爆発による原子炉建屋等 止するための設備	原子炉建屋水素濃度	類型化区分	
	第1項	第 1 号	環	環境温度・湿度・圧力/ 屋外の天候/放射線	原子炉建屋原子炉棟内	В	
			、境条件における健全性	荷重	(有効に機能を発揮する)		
				海水	(海水を通水しない)	対象外	
				他設備からの影響	(周辺機器等からの悪影響により機能を失うおそれがない)		
				電磁波による影響	(電磁波により機能が損なわれない)	_	
				関連資料	53-3 配置図		
		第 2 号	操作性		(操作不要)	対象外	
			関連資料		_		
		第 3 号	試 成	験・検査(検査性,系統構 ・外部入力)	計測制御設備	J	
			関連資料		53-5 試験及び検査		
第 43 条		第	切	り替え性	当該設備の使用に当たり系統の切替操作が不要	Вb	
		4 号	関連資料		53-4 系統図		
		第5号 第6号	悪影	系統設計	<mark>他設備から独立</mark>	A c	
			響防	その他(飛散物)	対象外	対象外	
			⊥Ŀ.	関連資料	—		
			設置場所		(操作不要)	対象外	
			関連資料		_		
	第2項	第 1 号	常調	設SAの容量	重大事故等への対処を本来の目的として設置するもの	А	
			関連資料		53-3 配置図 53-6 容量設定根拠		
		第	共り	用の禁止	(共有しない設備)	対象外	
		2 号	関連資料		_		
		第 3 号	共通要	環境条件,自然現象, 外部人為事象,溢水, 火災	緩和設備又は防止でも緩和でもない設備一対象(同一目的の SA設備あり)	В	
			因故障防止	サポート系故障	対象(サポート系有り)―異なる駆動源又は冷却源	C a	
				関連資料	53-2 単線結線図 53-3 配置図		

東海第二発電所 SA 設備基準適合性 一覧表(常設)

第53条:水素爆発による原子炉 建屋等の損傷を防止するための 設備				≹発による原子炉 ≥防止するための ≿備	非常用ガス再循環系排風機	類型化 区分	非常用ガス処理系排風機	類型化 区分
	第1項	第1号	環境条	環境温度・湿度・ 圧力/屋外の天 候/放射線	原子炉建屋原子炉棟内	В	原子炉建屋原子炉棟内	В
			件	荷重	(有効に機能を発揮する)	_	(有効に機能を発揮する)	—
			における健全性	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外
				他設備からの影	(周辺機器等からの悪影響により機	_	(周辺機器等からの悪影響により機	_
				響	能を失うおそれがない)		能を失うおそれがない)	
				電磁波による影 響	(電磁波により機能が損なわれない)	対象外	(電磁波により機能が損なわれな い)	対象外
			IT.	関連資料	[配置図]53-3		[配置図]53-3	
		第 2	操作性		中央制御室操作	А	中央制御室操作	А
					(操作スイッチ操作)		(操作スイッチ操作)	
		号	関連	 重資料			—	
		笙	試影	検・検査(検査性,				
		3	系統構成·外部入		(機能・性能の確認か可能)	A	(機能・性能の確認が可能)	A
		号	刀)					
tata		第 4 号	関連貨科 切り抜き歴					
			90,	育た性	本米の用途として使用ー切替不要	Bb	本米の用途として使用ー切替不要	Bb
· 用			関連	重資料	—		—	
43 条		第 5 号	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad
			響	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外
			防止	関連資料	[系統図]53-4		[系統図]53-4	
		第	設置	置場所	中央制御室操作	В	中央制御室操作	В
		6 号	関連資料		_		_	
	第2項	第 1	常記	GSAの容量	DB施設の系統及び機器の容量が十 公	В	DB施設の系統及び機器の容量が十	В
		号	関連資料				_	
		第 2 号	共月	目の禁止	(共用しない設備)	対象外	 (共用しない設備)	対象外
			関連資料		_		_	
		, 第 3 号	拱	環境条件,自然	緩和設備又は防止でも緩和でもな		緩和設備又は防止でも緩和でもな	
			通	現象,外部人為	い設備-対象外(共通要因の考慮	対象外	い設備-対象外(共通要因の考慮	対象外
			要国	事象,溢水,火災	対象設備なし)		対象設備なし)	
			山故暗	サポート系故障	対象(サポート系有り)異なる駆 動源又は冷却源	Ca	対象(サポート系有り)異なる駆 動源又は冷却源	Ca
			防止	関連資料	[配置図]53-3		[配置図]53-3	

東海第二発電所 SA設備基準適合性一覧表(常設)
第53条:水素爆発による原子炉 建屋等の損傷を防止するための 設備		≹発による原子炉 ≥防止するための ≷備	非常用ガス再循環系フィルタユニ ット	類型化 区分	非常用ガス処理系フィルタユニッ ト	類型化 区分		
			環境条	環境温度・湿度・ 圧力/屋外の天 候/放射線	原子炉建屋原子炉棟内	В	原子炉建屋原子炉棟内	В
		倴	件	荷重	(有効に機能を発揮する)	—	(有効に機能を発揮する)	—
			にお	海水	(海水を通水しない)	対象外	(海水を通水しない)	対象外
		号	ける	他設備からの影 響	(周辺機器等からの悪影響により機 能を失うおそれがない)	_	(周辺機器等からの悪影響により機 能を失うおそれがない)	_
			健全性	電磁波による影 響	(電磁波により機能が損なわれな い)	対象外	(電磁波により機能が損なわれな い)	対象外
			IT.	関連資料	[配置図]53-3		[配置図]53-3	
		第	操作	乍性	(操作不要)	対象外	(操作不要)	対象外
		号	関連資料		_		_	
	第 1 項	第 3 号	試験・検査(検査性, 系統構成・外部入 力)		空調ユニット (機能・性能の確認が可能) (差圧確認が可能) (内部確認が可能)	Е	空調ユニット (機能・性能の確認が可能) (差圧確認が可能) (内部確認が可能)	Е
			関連資料		[試験及び検査]53-5		[試験及び検査]53-5	
		第	切り) 替え性	本来の用途として使用-切替不要	Bb	本来の用途として使用-切替不要	Bb
		4 号	関連資料		_		_	1
第 43 冬		第5号 第6	悪影	系統設計	DB施設と同じ系統構成	Ad	DB施設と同じ系統構成	Ad
			影響防	その他(飛散物)	(考慮対象なし)	対象外	(考慮対象なし)	対象外
			止	関連資料	[系統図]53-4		[系統図]53-4	
			設置場所		(操作不要)	対象外	(操作不要)	対象外
		。 号	関連資料		_		_	
		第 1	常設SAの容量		DB施設の系統及び機器の容量が十 分	В	DB施設の系統及び機器の容量が十分	В
		号	関連	重資料		r	_	
		第 ?	共月	用の禁止	(共用しない設備)	対象外	(共用しない設備)	対象外
	第	号	関連	車資料	_		_	
	項	第	共通要因	環境条件,自然 現象,外部人為 事象,溢水,火災	緩和設備又は防止でも緩和でもな い設備-対象外(共通要因の考慮 対象設備なし)	対象外	緩和設備又は防止でも緩和でもな い設備-対象外(共通要因の考慮 対象設備なし)	対象外
		3 号	故障	サポート系故障	対象(サポート系有り)異なる駆 動源又は冷却源	Ca	対象(サポート系有り)異なる駆 動源又は冷却源	Ca
			防止	関連資料	[配置図]53-3		[配置図]53-3	

東海第二発電所 SA設備基準適合性一覧表(常設)

53-2 単線結線図

53-3 配置図

第 53-3-1 図 静的触媒式水素再結合器配置図 (原子炉建屋原子炉棟 6 階)

第 53-3-2 図 水素濃度検出器配置図 (原子炉建屋原子炉棟 6 階)

第 53-3-3 図 水素濃度検出器配置図(原子炉建屋原子炉棟 2 階)

第53-3-4 図 水素濃度検出器配置図(原子炉建屋原子炉棟地下1 階)

第 53−3−5 図 原子炉建屋ガス処理系配置図(原子炉建屋原子炉棟 5 階)

53-4 系統図

1. 計装設備の系統概要図

静的触媒式水素再結合器動作監視装置,原子炉建屋水素濃度の系統概要図 を第 53-4-1 図及び第 53-4-2 図に示す。

第53-4-1図 静的触媒式水素再結合器動作監視装置の系統概要図

第 53-4-2 図 原子炉建屋水素濃度の系統概要図

<mark>第 53-4-3 図 原子炉建屋ガス処理系の系統概要図</mark>

53-5 試験及び検査

- ※PARハウジングの点検ハッチから触媒カートリッジを抜き取り,試験装置 に取り付ける。
- ※触媒カートリッジ単体に水素を含む試験ガスを供給し,再結合反応による温 度上昇を計測する。

第53-5-1図 静的触媒式水素再結合器の試験及び検査

第53-5-3図 原子炉建屋水素濃度の試験及び検査

第53-5-4図 原子炉建屋ガス処理系(非常用ガス再循環系)の試験及び検査

第53-5-5図 原子炉建屋ガス処理系(非常用ガス処理系)の試験及び検査

53-6 容量設定根拠

名称		静的触媒式水素再結合器
水素処理容量	kg/h/個	約0.5 (水素濃度4.0vo1%,100℃,大気圧において)
最高使用温度	°C	300
個数	個	24

【設定根拠】

静的触媒式水素再結合器は、常設重大事故等対処設備として設置する。

静的触媒式水素再結合器は、炉心の著しい損傷が発生した場合において、原子炉建 屋原子炉棟内の水素濃度上昇を抑制し、水素爆発を防止する機能を有する。この設備 は、触媒カートリッジ、ハウジング等の静的機器で構成し、運転員による起動操作を 行うことなく、格納容器から原子炉建屋原子炉棟に漏えいした水素と酸素を触媒反応 によって再結合させる。

1. 水素処理容量

東海第二発電所においては、触媒カートリッジが静的触媒式水素再結合器1個につ き22枚設置される静的触媒式水素再結合器-22タイプを採用する。メーカによる開発 試験を通じて、NIS社製静的触媒式水素再結合器の1個当たりの水素処理容量は、 水素濃度、雰囲気圧力、雰囲気温度に対して、以下の式で表される関係にあること が示されている。

静的触媒式水素再結合器の基本性能評価式

 $DR = A \times \left(\frac{C_{H2}}{100}\right)^{1.307} \times \frac{P}{T} \times 3600 \times SF$ ……式 (1) DR : 水素処理容量 (kg/h/個) A : 定数 C_{H2} : 静的触媒式水素再結合器入口水素濃度 (vol%) P : 圧力 (10⁵ Pa) T : 温度 (K) SF : スケールファクタ

スケールファクタSFについて、東海第二発電所は静的触媒式水素再結合器-22タイプを採用し、静的触媒式水素再結合器には各々22枚の触媒カートリッジが装荷されるため、SF=(22/88)となる。スケールファクタの妥当性については53-7の「別紙2 反応阻害物質ファクタについて」で示す。

これらに以下の条件を想定し,静的触媒式水素再結合器の水素処理容量を算出す る。

・水素濃度C_{H2}

水素の可燃限界濃度4vo1%未満に低減するため、4vo1%とする。

・圧力P

重大事故等時の原子炉建屋原子炉棟の圧力は格納容器からのガスの漏えい により大気圧よりわずかに高くなると考えられるが、保守的に大気圧 (101325Pa)とする。

温度T

保守的に100℃ (373.15K) とする。

以上により,静的触媒式水素再結合器1個当たりの水素処理容量は,0.5kg/h/個 (水素濃度4vo1%,大気圧=101325Pa,温度100℃=373.15K)となる。

2. 最高使用温度

静的触媒式水素再結合器の最高使用温度として300℃を設定する。

静的触媒式水素再結合器は水素再結合反応により発熱するため、雰囲気水素濃度 の上昇により温度も上昇する。静的触媒式水素再結合器の設置目的は原子炉建屋原 子炉棟の水素爆発防止であり、水素の可燃限界濃度である4vol%時における静的触 媒式水素再結合器の温度が300℃以下であるとの試験結果に基づき、最高使用温度を 300℃と設定する。

詳細は53-7の「別紙1 静的触媒式水素再結合器の性能確認試験について」で示す。

3. 個数

実機設計(静的触媒式水素再結合器の個数を踏まえた設計)においては,反応阻害物質ファクタを乗じた式(2)を用いる。反応阻害物質ファクタとは,重大事故等時に格納容器内に存在するガス状よう素による静的触媒式水素再結合器の性能低下を考慮したものであり,当社の設計条件においては,保守的に格納容器内のよう素濃度の条件で実施した試験結果に基づいて「0.5」とする。

実機設計における性能評価式

 $DR = A \times \left(\frac{C_{H2}}{100}\right)^{1.307} \times \frac{P}{T} \times 3600 \times SF \times F_{inhibit} \cdots \vec{T} (2)$ DR : 水素処理容量 (kg/h/個) $A : 定数 (
C_{H2} : 静的触媒式水素再結合器入口水素濃度 (vo1%))$ P : 圧力 (10⁵Pa) T : 温度 (K) SF : スケールファクタ $F_{inhibit} : 反応阻害物質ファクタ (-)$

1) 必要個数の計算

格納容器からの水素漏えい量を以下のように想定し、これと水素処理量が釣り合うように個数を設定する。なお、必要個数の評価に当たっては、静的触媒式水素再結合器の水素処理容量に重大事故等時の反応阻害物質ファクタとして0.5を乗じた水素処理量を用いる。

・水素の発生量:約1400kg (燃料有効部被覆管(AFC)100%に相当する水素発生

量)

- ・原子炉格納容器の漏えい率:10vol%/day
- ・反応阻害物質ファクタFinhibit=0.5
- ・水素処理量=0.5kg/h/個×0.5
 - =0.25kg/h/個
- ・必要個数=(約1400kg×10%/day)/(24h/day)/0.25kg/h/個
 =23.3個
- これより、静的触媒式水素再結合器の必要個数は24個以上を設置個数とする。
- 2) 水素濃度を可燃限界以下にできることの確認

上記水素処理容量及び個数により,原子炉建屋原子炉棟内の水素濃度を可燃限界 以下に抑制できることを,解析評価により確認している。詳細は53-7の「2.1.4 原 子炉建屋の水素挙動」で示す。

- ·静的触媒式水素再結合器動作監視装置
- (1) 設置目的

水素濃度制御設備として,原子炉建屋原子炉棟6階に静的触媒式水素再 結合器を設置し,重大事故等の発生時に格納容器から原子炉建屋原子炉棟 内に水素が漏えいした場合において,原子炉建屋原子炉棟内の水素濃度上 昇を抑制し,水素爆発を防止する設計とする。そのため,静的触媒式水素 再結合器の動作確認を行うことを目的に静的触媒式水素再結合器の入口側 及び出口側に温度計を設置し,中央制御室で監視可能な設計とする。

(2) 設備概要

静的触媒式水素再結合器動作監視装置は,重大事故等対処設備の機能を 有しており,静的触媒式水素再結合器動作監視装置の検出信号は,熱電対 にて温度を電気信号に変換した後,静的触媒式水素再結合器動作状態を中 央制御室及び緊急時対策所に指示し,記録する。(第53-6-1図「静的触媒 式水素再結合器動作監視装置の概略構成図」参照。)

第53-6-1図 静的触媒式水素再結合器動作監視装置の概略構成図

(3) 計測範囲

静的触媒式水素再結合器動作監視装置の仕様を第53-6-1表に,計測範囲 を第53-6-2表に示す。

第53-6-1表 静的触媒式水素再結合器動作監視装置の仕様

名称	検出器の種類	計測範囲	個数	取付箇所
静的触媒式水 素再結合器動 作監視装置	熱電対	0∼300°C	4**	原子炉建屋 原子炉棟6階

※:2個の静的触媒式水素再結合器に対して、出入口に1個設置

第53-6-2表 静的触媒式水素再結合器動作監視装置の計測範囲

			原子炉の状態*1と予			
名称	計測範囲	通常運転時	設計基準事故時	重大事故等時		計測範囲の設定に関す
			(運転時の異常な過 渡変化時を含む)	炉心損傷 前	炉心損傷 後	る考え方
静的触媒式水素 再結合器 動作監視装置	0∼300℃	_	_		300℃以下	重大事故等時におい て,静的触媒式水素再 結合器の最高使用温度 (300℃)を監視可能で ある。

※1:原子炉の状態の定義は、以下のとおり。

・通常運転時:計画的に行われる起動,停止,出力運転,高温停止,冷温停止,燃料取替等の原子 炉施設の運転であって,その運転状態が所定の制限内にあるもの。

 ・運転時の異常な過渡変化時:原子炉施設の寿命期間中に予想される機器の単一故障若しくは誤動 作又は運転員の単一の誤操作,及びこれらと類似の頻度で発生すると予想される外乱によって生 ずる異常な状態。

・設計基準事故時:「運転時の異常な過渡変化」を超える異常な状態であって、発生する頻度は希であるが、原子炉施設の安全設計の観点から想定されるもの。

・重大事故等時:原子炉施設の安全設計の観点から想定される事故を超える事故の発生により,発 電用原子炉の炉心の著しい損傷が発生するおそれがある状態又は炉心の著しい損傷が発生した状態。 ·原子炉建屋水素濃度

(1) 設置目的

原子炉建屋水素濃度は、炉心の著しい損傷時に水素濃度が変動する可能 性のある範囲で水素濃度を監視することを目的として原子炉建屋原子炉棟 内に検出器を設置し、水素濃度を測定する。

(2) 設備概要

原子炉建屋水素濃度は、重大事故等対処設備の機能を有しており、原子 炉建屋水素濃度の検出信号は、触媒式又は熱伝導式水素検出器にて水素濃 度を検出し、演算装置にて電気信号に変換することで、原子炉建屋水素濃 度を中央制御室に指示し、記録する。(第53-6-2図「原子炉建屋水素濃度 の概略構成図」)

第53-6-2図 原子炉建屋水素濃度の概略構成図

(3) 計測範囲

原子炉建屋水素濃度の仕様を第53-6-3表に,計測範囲を第53-6-4表に示す。

名称	検出器の種類	計測範囲	個数	取付箇所
医子后体日	触媒式	0~10vo1%	2	原子炉建屋原子炉棟6階
原于炉建屋 水素濃度	熱伝導式	0∼20vo1%	3	原子炉建屋原子炉棟2階:2個 原子炉建屋原子炉棟 地下1階:1個

第53-6-3表 原子炉建屋水素濃度の仕様

第53-6-4表 原子炉建屋水素濃度の計測範囲

			原子炉の状態*1と予			
名称	計測範囲	通告演起	設計基準事故時	重大事故等時		計測範囲の設定に関す
		時	(運転時の異常な過 渡変化時を含む)	炉心損傷 前	炉心損傷 後	る考え方
原子炉建屋 水素濃度	0∼10vol%, 0∼20vol%	_			4.0vol% 未満	重大事故等時におい て,水素と酸素の可燃 限界(水素濃度: 4vol%)を監視可能であ る。

※1:原子炉の状態の定義は、以下のとおり。

・通常運転時:計画的に行われる起動,停止,出力運転,高温停止,冷温停止,燃料取替等の原子 炉施設の運転であって,その運転状態が所定の制限内にあるもの。

 ・運転時の異常な過渡変化時:原子炉施設の寿命期間中に予想される機器の単一故障若しくは誤動 作又は運転員の単一の誤操作,及びこれらと類似の頻度で発生すると予想される外乱によって生 ずる異常な状態。

・設計基準事故時:「運転時の異常な過渡変化」を超える異常な状態であって、発生する頻度は希であるが、原子炉施設の安全設計の観点から想定されるもの。

 ・重大事故等時:原子炉施設の安全設計の観点から想定される事故を超える事故の発生により、発 電用原子炉の炉心の著しい損傷が発生するおそれがある状態又は炉心の著しい損傷が発生した状 態。 53-7 水素爆発による原子炉建屋等の損傷を防止するための設備について

目 次

1.	基本	、方針	$\frac{2}{2}$	1
1.	.1	要求	事項の整理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.	. 2	適合	のための設計方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	水素	₹爆≹	発による原子炉建屋等の損傷を防止するための設備・・・・・	4
2.	. 1	水素	濃度抑制設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
	2.1.	. 1	水素濃度抑制設備の主要仕様・・・・・・・・・・・・・・・・・・・・・・・	4
	2.1.	. 2	水素濃度抑制設備の設計方針・・・・・・・・・・・・・・・・・・・・・・・	7
	2.1.	. 3	水素濃度抑制設備の設計仕様・・・・・・・・・・・・・・・・・・・・・・・	10
	2.1.	. 4	原子炉建屋原子炉棟の水素挙動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
2.	. 2	原子	炉建屋水素濃度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
	2.2.	. 1	概要 · · · · · · · · · · · · · · · · · · ·	50
	2.2.	. 2	主要仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
2.	. 3	参考	·文献·····	58

別紙

別紙1	PARの性能確認試験について・・・・・ 55
別紙2	反応阻害物質ファクタについて・・・・・ 77
別紙3	PARの動作監視について・・・・・ 83
別紙4	PAR周辺機器に対する悪影響防止・・・・・・・・・・・・・・・ 89
別紙5	局所エリアの漏えいガスの滞留・・・・・ 92
別紙6	格納容器頂部注水系について・・・・・ 101
別紙7	格納容器頂部注水系の効果を考慮した水素挙動について・・・・・ 106
別紙8	小漏えい時の原子炉建屋原子炉棟6階における水素挙動・・・・・ 109 53-7-(ii)

別紙9	原子炉建屋水素濃度の適用性について・・・・・・・・・・・・・・	110
別紙10	PARの性能維持管理について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	114
別紙11	触媒基材(アルミナ)について・・・・・・・・・・・・・・・・・・・・・・	119
別紙12	原子炉建屋水素爆発防止対策・・・・・	121

参考資料

参考1	原子炉建屋原子炉棟6階大物搬入口ハッチについて・・・・・・	124
-----	-------------------------------	-----

- 参考2 原子炉建屋原子炉棟トップベントの設置について・・・・・ 126
- 参考3 原子炉建屋原子炉棟の水素挙動評価への
 - GOTHICコードの適用性・・・・・ 127
- 参考4 原子炉建屋ガス処理系の健全性について・・・・・・・・・・・ 151

<概 要>

 において、実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則(以下「設置許可基準規則」という。)、実用発電用原子炉及び その附属施設の技術基準に関する規則(以下「技術基準規則」という。)の要 求事項を明確化するとともに、それら要求に対する東海第二発電所における適 合性を示す。

2. において、水素爆発による原子炉建屋等の損傷を防止するための設備について、要求事項に対する適合性について説明する。

1. 基本方針

1.1 要求事項の整理

水素爆発による原子炉建屋等の損傷を防止するための設備に関する設置許 可基準規則第53条及び技術基準規則第68条の要求事項を第1-1表に示す。

第 1-1 表	設置許可基準規則第53	条及び技術基準規則第	68条の要求事項
$\pi 1 \mathbf{X}$	队旦日 了至于 <u>水</u> 月700	不及 0 这 而 坐 午 死 员 万	

設置許可基準規則	技術基準規則	
第53条(水素爆発による原子 炉建屋等の損傷を防止する ための設備)	第68条(水素爆発による原子 炉建屋等の損傷を防止する ための設備)	備考
発電用原子炉施設には、炉	発電用原子炉施設には、炉	_
心の著しい損傷が発生した場	心の著しい損傷が発生した場	
合において原子炉建屋その他	合において原子炉建屋その他	
の原子炉格納容器から漏えい	の原子炉格納容器から漏えい	
する気体状の放射性物質を格	する気体状の放射性物質を格	
納するための施設(以下「原	納するための施設(以下「原	
子炉建屋等」という。)の水	子炉建屋等」という。)の水	
素爆発による損傷を防止する	素爆発による損傷を防止する	
必要がある場合には、水素爆	必要がある場合には、水素爆	
発による当該原子炉建屋等の	発による当該原子炉建屋等の	
損傷を防止するために必要な	損傷を防止するために必要な	
設備を設けなければならな	設備を施設しなければならな	
<i>لان</i> ₀	<i>د</i> ن _ه	

1.2 適合のための設計方針

炉心の著しい損傷が発生した場合において,水素爆発による原子炉建屋原 子炉棟の損傷を防止するため,水素濃度制御設備及び水素濃度監視設備を設 ける。

(1) 水素濃度制御設備

水素濃度制御設備として静的触媒式水素再結合器(以下「PAR」とい う。)を設置し,原子炉建屋原子炉棟内の水素濃度の上昇を抑制できる設 計とする。PARは,触媒カートリッジ及びハウジングで構成し,駆動用 の電源及び起動操作を必要としない設備である。

PARには静的触媒式水素再結合器動作監視装置(以下「PAR動作監 視装置」という。)を設置する。PAR動作監視装置は、中央制御室等に て監視可能であり、代替電源設備から給電可能な設計とする。

(2) 水素濃度監視設備

原子炉建屋原子炉棟内の水素濃度監視設備として原子炉建屋水素濃度を 設置し,想定される事故時に水素濃度が変動する可能性のある範囲で測定 できる設計とする。原子炉建屋水素濃度は,中央制御室等にて監視可能で あり,代替電源設備から給電可能な設計とする。

上記の設備に加え,水素爆発による原子炉建屋原子炉棟の損傷を防止する ための自主対策設備として,格納容器頂部の過温破損を防止し,原子炉建屋 原子炉棟への水素漏えいを抑制するために格納容器頂部注水系を設置する。 格納容器頂部注水系には常設と可搬型がある。

格納容器頂部注水系(常設)は、重大事故等発生時に常設低圧代替注水系 ポンプにより、代替淡水貯槽を水源として原子炉ウェルに注水することで、 格納容器頂部を冷却できる設計とする。

格納容器頂部注水系(可搬型)は,重大事故等発生時に原子炉建屋外から 代替淡水貯槽を水源として可搬型代替注水大型ポンプにより原子炉ウェルに 注水することで,格納容器頂部を冷却できる設計とする。 2. 水素爆発による原子炉建屋等の損傷を防止するための設備

2.1 水素濃度制御設備

2.1.1 水素濃度制御設備の主要仕様

炉心の著しい損傷が発生した場合において、原子炉建屋原子炉棟の水素爆 発による損傷を防止するため、水素濃度制御設備としてPARを設置する。 なお、設置するPARは、国際的な性能試験の実績があり、欧米で納入実績 のあるNIS社製のPARを採用する。

PARは,触媒反応を用いて可燃性ガス(水素,酸素)を再結合させて, 雰囲気を可燃限界未満に維持する設備であり,触媒カートリッジ及びハウジ ングで構成する。

触媒カートリッジは、ステンレス鋼板で形成したフレームの中に触媒を充 填しており、空気と触媒を接触させるために多数の長穴が開けられている。 触媒にはパラジウムを使用しており、表面には疎水コーティングを施すこと により、高湿度な雰囲気から触媒を保護し、水素、酸素を触媒に接触し易く している。

ハウジングはステンレス鋼製であり,触媒カートリッジを内部に収納し, 触媒カートリッジを水素処理に適切な間隔に保持し,水素処理に適切なガス の流れとなるよう設計されている。

PARは、周囲の水素の濃度上昇に応じて結合反応を開始する。触媒反応 により水素と酸素を結合させ、その反応熱による上昇流により触媒表面のガ スの流れを促し、結合反応を維持する。触媒を通過したガス及び結合反応に より生じた水蒸気は、PARの上方の排気口より空間内に拡散する。

したがって、PARは電源及び起動操作を必要とせず,水素,酸素があれ ば自動的に反応を開始する設備である。

PAR主要仕様を第2.1.1-1表, PAR概要図を第2.1.1-1図に示す。

a. ハウジング

b. 触媒カートリッジ

c. 触媒

触媒基材	アルミナ
触媒	パラジウム

d. 水素処理容量 約0.50kg/h/個

(水素濃度4vo1%, 大気圧, 温度100℃において)

e. 最高使用温度 300℃

触媒カートリッジ (ハウジングに内蔵) ハウジング

触媒

第2.1.1-1図 PAR概要図

2.1.2 水素濃度制御設備の設計方針

PARは、炉心の著しい損傷が発生した場合において格納容器から、多量 の水素が原子炉建屋原子炉棟へ漏えいする過酷な状態を想定した場合におい て、原子炉建屋原子炉棟内の水素濃度が可燃限界未満となる設計とする。

水素の格納容器からの漏えい量は,事故シナリオに依存するが,有効性評価結果(格納容器への雰囲気圧力・温度による静的負荷が大きい「原子炉冷却材喪失(大LOCA)時に非常用炉心冷却系の機能及び全交流動力電源が 喪失する事故」を選定)を踏まえた条件において,原子炉建屋原子炉棟内の 水素濃度が可燃限界未満となることを必要条件とした上で,更に過酷な条件 を想定して,PARの設計を実施する。

水素漏えい条件

水素漏えい条件は,第2.1.2-1表に示すとおり,有効性評価結果を踏ま えた条件より十分保守的に設定している。

項目	PAR設計条件	【参考】有効性評価結果 (雰囲気圧力・温度による静 的負荷(格納容器過圧・過温 破損))
水素発生量	約1400kg (AFC (燃料有効部 被覆管) 100%相当)	約700kg (ジルコニウムー水反応,金 属腐食,水の放射線分解考 慮)
格納容器漏えい率	10%/day(一定)	約1.3%/day(最大)

第2.1.2-1表 PAR設計条件における水素漏えい条件

水素発生量について

有効性評価シナリオ(雰囲気圧力・温度による静的負荷(格納容器過

圧・過温破損))では、事象発生25分後に低圧代替注水系(常設)による原子炉注水を開始し、直ちに炉心は冷却されるため、発生水素量はジルコニウムー水反応、金属腐食及び水の放射線分解での水素発生量を考慮しても約700kgとなるが、更に過酷な条件として、約1400kg(AFC(燃料有効部被覆管)100%相当)が発生するものとしてPARを設計する。

② 格納容器漏えい率について

重大事故等発生時に格納容器圧力が設計圧力を超える場合の格納容器 漏えい率は以下のAEC (Atomic Energy Commission)の式から設定す る。重大事故等発生時は,格納容器圧力が設計圧力の2倍(以下「2Pd」 という。)を超えないよう運用するため,2Pdにおける格納容器漏えい 率が最大漏えい率となり,事故時条件として200℃,2Pd,AFC100% 相当の水素発生量を想定した場合におけるガス組成(水素:39%,窒 素:21%,水蒸気:40%)を踏まえるとAECの式から約1.4%/dayと なる。この値は有効性評価結果を包含した条件であるが,更に過酷な条 件として10%/dayの漏えい率を仮定し,PARを設計する。

(AECの式)

$$L = L_0 \cdot \sqrt{\frac{\left(P_t - P_a\right) \cdot R_t \cdot T_t}{\left(P_b - P_a\right) \cdot R_b \cdot T_b}}$$

- L:格納容器漏えい率
- Lo:設計漏えい率
- Pt:格納容器内圧力
- Pa:格納容器外圧力
- Pb:格納容器設計圧力

- Rt:事故時の気体定数
- Rb:空気の気体定数
- Tt:格納容器内温度
- Tb:格納容器設計温度

2.1.3 水素濃度制御設備の設計仕様

PAR設計方針に基づき設定したPARの設計仕様を第2.1.3-1表に示す。

第2.1.3-1表 PAR設計仕様

項目	仕様
水素処理容量	0.50kg/h/個
PAR設置個数	24個
設置箇所	原子炉建屋原子炉棟6階
	(オペレーティングフロア)

(1) 水素処理容量について

PARの水素処理容量は、以下の基本性能評価式によって表される。

式(2.1)は、メーカによる開発試験を通じて、温度、圧力、水素濃度 等の雰囲気条件をパラメータとした水素処理容量の相関式であり、水素処 理容量は、単位時間当たりPAR内部を通過し、酸素と結合し水蒸気にな

53 - 7 - 10

る水素の重量を示している。

スケールファクタは、触媒カートリッジの寸法及び間隔を開発当時と同 じとすることを前提とし、開発試験時に使用された触媒カートリッジ枚数 (88枚)に対して、実機で使用するPARの触媒カートリッジ枚数の比と して設定されている。東海第二発電所で使用するPARの触媒カートリッ ジ枚数は22枚であり、スケールファクタは「22/88(=0.25)」となる (別紙1)。

これらに第2.1.3-2表の条件を設定し、PAR1個当たりの水素処理容量は、0.50kg/h/個(水素濃度4vol%、大気圧、100℃)とする。

項目	設定根拠
水素濃度 C _{H2}	水素の可燃限界濃度4vo1%未満に低減するため、4vo1%と する。
圧力 P	重大事故 <mark>等</mark> 時の原子炉建屋原子炉棟の圧力は,格納容器からのガスの漏えいにより大気圧より僅かに高くなると考えられるが,保守的に大気圧(101325Pa)とする。
温度 T	保守的に100℃(373.15K)とする。

第2.1.3-2表 水素処理容量設定根拠

(2) PAR設置個数

PARの実機設計においては、PARの設置環境を踏まえ、式(2.1) に反応阻害物質ファクタ(Fi)を乗じた式(2.2)を用いる。

反応阻害物質ファクタとは、重大事故等時に格納容器内に存在するガス 状よう素によるPARの性能低下を考慮したものであり、東海第二発電所 の実機設計における水素処理容量は、PARの水素処理容量(0.50kg/h /個)に0.5を乗じた0.25kg/h/個とする(別紙2)。 これに第2.1.2-1表で設定したPAR設計条件を踏まえ,24個設置する。

個数=水素発生量×格納容器漏えい率/24(h/day)/設計水素処理容量

=1400 (kg) ×10 (%/day) /24 (h/day) /0.25 (kg/h/個) =23.3個

また, PARの設計方針として, 原子炉建屋原子炉棟内の水素濃度が, 可燃限界未満になるように設置することから, 上記で設定した個数に対し て, 評価を行った。

① 評価方法

原子炉建屋原子炉棟内に漏えいした水素は、比重の関係で原子炉建屋原 子炉棟6階まで上昇し、原子炉建屋原子炉棟6階に滞留することが予想さ れるため,原子炉建屋原子炉棟6階に対して,評価を実施する。なお,評価に用いるモデルは,第2.1.3-1図のとおり。評価対象の空間内は,均一に混合するものとして,質量,エネルギーバランスにより,水素濃度,温度の時間変化を評価する。

第2.1.3-1図 評価モデル

② 評価条件

・機能が要求される状態

重大事故<mark>等時</mark>で炉心の著しい損傷が発生した場合において,格納容器破 損を防止するための重大事故等対処設備により,炉心損傷後であっても格 納容器の健全性を維持するための措置を講じている。したがって,格納容器の健全性が維持されることにより,原子炉建屋原子炉棟への気体の漏えい率は格納容器設計漏えい率(0.5%/day)に維持されることになる。しかしながら,本設備の機能が要求される状態としては,重大事故等時で不測の事態を考慮し,格納容器設計漏えい率を大きく上回る格納容器漏えい率(10%/day)の状態で水素が原子炉建屋原子炉棟へ漏えいする事象を想定する。

・水素低減性能に関する評価条件

PARについては以下の条件で評価する。

- ・水素処理容量:0.5kg/h/個
- 個数:24

本評価に使用するその他の条件を第2.1.3-3表に示す。

分類	項目	単位	条件
格納容器条件	格納容器容積 想定格納容器漏えい率	m³ %∕day	9800 10
格納容器内雰囲気条 件	 圧力 温度 水素濃度 酸素濃度 窒素濃度 水蒸気濃度 	kPa[gage] °C vo1% vo1% vo1% vo1%	620 (2Pd) 200 39 0 21 40
建屋条件	空間容積(原子炉建屋原子炉棟6階) 初期温度 初期圧力(大気圧) 初期酸素濃度 初期窒素濃度 初期水蒸気濃度	m ³ °C kPa[gage] vo1% vo1% vo1%	$29800 \\ 40 \\ 0 \\ 19.47 \\ 73.24 \\ 7.29$
放熱条件	外気温 放熱面積 熱通過率	°C m² ₩∕m²∕K	$\begin{array}{c} 40\\ 5000\\ 6\end{array}$
PAR条件	起動水素濃度 起動酸素濃度 反応阻害物質ファクタ	vo1% vo1%	1.5 2.5 0.5

第2.1.3-3表 評価条件

③ 評価結果

第2.1.3-2図に原子炉建屋原子炉棟6階の水素濃度の時間変化,第2.1.3-3 図に原子炉建屋原子炉棟6階の雰囲気温度の時間変化,及び第2.1.3-4図に原 子炉建屋原子炉棟6階からのガスの流出量の時間変化を示す。

格納容器からのガスの漏えいにより雰囲気温度が上昇するが、外気への放 熱とのバランスにより、雰囲気温度は一時的に約41℃の一定値に近づく。格 納容器から漏えいする水素により、原子炉建屋原子炉棟6階雰囲気の水素濃 度は上昇するが、約6.3時間後に1.5vo1%に到達すると、PARによる水素 の再結合処理が開始し、水素の再結合による発熱で雰囲気温度が更に上昇す る。原子炉建屋原子炉棟6階からのガスの流出量は、雰囲気温度の上昇率に 応じて膨張した気体分だけ増加するが、雰囲気温度が一定値に近づくととも に、格納容器からのガスの漏えい量の約0.05kg/sに近づく結果となる。格 納容器からの漏えいエネルギー、水素の再結合による発熱及び外気への放熱 量のバランスにより、雰囲気温度は最終的に約58℃の一定値に近づく。一 方、格納容器からの水素の漏えい量、水素の再結合処理量、及び原子炉建屋 原子炉棟6階からの水素の流出量のバランスにより、雰囲気の水素濃度は最 大値3.1vo1%となった後、減少に転じる結果となっている。

以上より、PAR24個の設置により、本評価条件において原子炉建屋原子 炉棟6階の水素濃度を可燃限界である4vo1%未満に低減でき、原子炉建屋原 子炉棟の水素爆発を防止することができる。

第2.1.3-2図 原子炉建屋原子炉棟6階の水素濃度の時間変化

第2.1.3-3図 原子炉建屋原子炉棟6階の雰囲気温度の時間変化

第2.1.3-4図 原子炉建屋原子炉棟6階からのガス流出量の時間変化

(3) 設置箇所

炉心の著しい損傷が発生し,格納容器内に水素が蓄積した状態では,格 納容器のフランジ部等を通じて水素が原子炉建屋原子炉棟内に漏えいする 可能性がある。原子炉建屋原子炉棟内に漏えいした水素は,比重の関係で 原子炉建屋原子炉棟6階まで上昇し,原子炉建屋原子炉棟6階に滞留するこ とが予想される。

PARは水素が最も蓄積されると想定される原子炉建屋原子炉棟6階に 設置する。設置箇所の概略配置図を第2.1.3-5図に,設置概要図を第 2.1.3-6図に示す。

なお、PARの動作状況を監視することができるよう、PARに温度計 を設置する(別紙3)。

【考慮事項】

- ・耐震性確保のため、支持構造物に十分な強度をもって固定できる箇所に設置する。
- ・十分に性能を発揮できるよう、PARの給排気に十分な空間が確保で きる箇所に設置する。
- ・結合反応時に発生する熱の影響により、PARの周囲に安全機能を損なう設備がないことを確認する。
- ・定期検査等において,通行や点検作業の支障とならない箇所に設置する。

第2.1.3-5図 概略設置図

第2.1.3-6図 設置概要図

(4) PAR設置の設計フロー

PAR設置を検討する際,個数を設定し,現場取付作業性を考慮して設置 位置を設定するが,最終的にはこの配置で水素処理効果を評価して,「空間 水素濃度に偏りがないこと」,「可燃限界未満となること」を確認する。確 認の結果,性能要求が満足できない場合は,PARの配置変更,個数の再検 討を行い,再度水素処理効果を評価して設計の妥当性を確認する。PAR設 置の設計フローを第2.1.3-7図に示す。

第2.1.3-7図で示す「個数・配置決定」は、「2.1.3(2) PAR設置個数」 で示すとおり、原子炉建屋原子炉棟6階が可燃限界未満になるPAR必要個 数を決定し、「2.1.3 (3)設置箇所」で示すとおり、PARによる気流の撹 拌効果及び施工性を踏まえて配置を決定する。しかしながら、この時点では 原子炉建屋原子炉棟6階を1点のモデルとした簡易評価結果による個数、配 置決定であるため「仮決定」という位置付けとなる。これら仮決定結果をイ ンプット条件とし、流動解析により空間「空間水素濃度に偏りはないか」、 「水素/酸素濃度は可燃限界未満を維持できるか」を確認し、「個数・配置

決定」の仮決定結果が妥当であるかを示し、最終決定する設計フローとして いる。これら設置位置の妥当性については、「2.1.4 原子炉建屋原子炉棟 の水素挙動」でPARの設置位置をモデル化した解析で示す。

これらの検討の結果, PAR配置は, 「2.1.3(3)設置箇所」の第2.1.3-5 図, 第2.1.3-6 図と設計した。

第2.1.3-7図 PAR設置の設計フロー

2.1.4 原子炉建屋原子炉棟の水素挙動

PARの効果について,GOTHICコードによる解析により原子炉建屋 原子炉棟の水素挙動を確認する。

また,東海第二発電所では炉心損傷を判断した場合,中央制御室での被ば く線量低減の観点から原子炉建屋ガス処理系(以下「FRVS/SGTS」 という。)の効果に期待することとしており,より現実的な解析条件として, FRVS/SGTSが起動している場合の水素挙動を確認する。

解析条件を第2.1.4-1 表から第2.1.4-4 表に,原子炉建屋原子炉棟の解析 モデルを第2.1.4-1 図及び第2.1.4-2 図,解析モデルにおける原子炉建屋原 子炉棟6階のPARの配置を第2.1.4-3 図に示す。

PARを設置している6階においては,132個のサブボリュームに分割し, 設置位置に該当する各ボリュームにPARを模擬したモデルを設定してい る。

大物搬入口及び各階段領域については,自然対流を模擬するため幾つかの サブボリュームに分割している。

第2.1.4-1表 PARの解析条件

No	項目	説明	入力値
1	PAR の性能 (NIS 製 PAR-22) (1)水素処理容量 DR	$DR = A \cdot \left(\frac{C_{H2}}{100}\right)^{1.307} \times \frac{P}{T} \times 3600 \times SF$ DR : 水素処理容量 (kg / h / 個) A : 定数 (m ³ / h) C_{H2} : 水素濃度 (%) P : 圧力 (10 ⁻⁵ Pa) T : 温度 (K) SF : スケールファクタ	
	(2)反応阻害物質 ファクタ F _{inhibi}	製造上の性能のばらつき,プラント通常運転中及び事故時の劣化余裕を 考慮する。	0.5 (事故初 期より一 定)
	(3)低酸素ファク タ <i>F_{lowQ}</i>	低酸素ファクタは以下のとおりとする。ただし 1 以上の場合は全て 1 とし、0 未満の場合は全て 0 とする。 $F_{lowO2} = 0.7421 \left(\frac{C_{O2}}{C_{H2}}\right)^3 - 0.6090 \left(\frac{C_{O2}}{C_{H2}}\right)^2 + 0.7046 \left(\frac{C_{O2}}{C_{H2}}\right) - 0.026$ $C_{O2} : 酸素 濃度 (vo1\%)$	
	(4)起動水素濃度 <i>C_{H2on}</i>	国内試験で起動が確認されている範囲に余裕を見た値。	1.5vol%
	(5)起動酸素濃度 <i>C_{O2on}</i>	同上	2.5vo1%
	(6)起動遅れ	考慮しない	
2	PAR個数	実際の設置個数	24 個
3	PAR設置位置	第 2.1.4-3 図参照	

No	項目	入力値	備考
1	原子炉建屋原子炉棟の条 件		
	(1) 圧力(初期条件)	大気圧	6 階中心高さにおける圧力を 101.325kPa と し,他階は 6 階中心高さより空気の水頭差 を考慮した値とする
	(2)温度(初期条件)	40°C	想定される高めの温度として設定
	(3)組成(初期条件)	相対湿度 100%の空気	同上
	(4)空間容積(固定)	6 階:22,330m ³ 5 階(西側):2,070m ³ 5 階(東側):2,490m ³ 4 階(西側):2,570m ³ 4 階(東側):4,030m ³ 3 階(西側):3,260m ³ 3 階(西側):3,600m ³ 2 階(西側):1,870m ³ 2 階(西側):1,580m ³ 1 階(西側):1,580m ³ 1 階(東側):1,600m ³ 地下 1 階(西側):1,760m ³ 地下 1 階(東側):1,780m ³ 地下 2 階(西側):1,210m ³ 地下 2 階(北東側):390m ³ 地下 2 階(南東側):380m ³	入力値は, 容積×0.7とする。(躯体分, 機 器配管分を差し引いた値)
	(5)開口面積(固定)	第 2.1.4-3 表参照	垂直方向の開口として模擬する箇所は,大 物搬入口及び各階段とする
2	圧力境界条件		
	(1)圧力(固定)	101. 325kPa	大気圧
	(2)温度(固定)	40°C	想定される高めの温度として設定
	(3)酸素濃度(固定)	21vol%	乾燥空気の組成
	(4)窒素濃度(固定)	79vol%	同上
3	流出条件(外部への漏え い) (1)位置	6 階	

第2.1.4-2表 マルチノードモデルの解析条件 (1/2)

No	項目	入力値	備考
4	放熱条件 (1)內壁熱伝達率 (原子炉建屋燃料取替床 一壁面)	凝縮熱伝達及び自然対流 熱伝達を考慮	GOTHICコード内のモデルを使用 ・凝縮熱伝達モデル:DLM-FM ・自然対流熱伝達モデル:垂直平板(壁),水平 平板(天井)
	(2)壁厚さ(固定)	壁:nm 天井:nm	躯体図より算出
	(3)壁内熱伝導率(固定)	1.5W/m/K	コンクリートの物性
	(4)壁の比熱(固定)	1kJ∕kg∕K	同上
	(5)壁の密度(固定)	2,400kg/m ³	同上
	(6)外壁熱伝達率 (壁面-外気)	6₩∕m²∕K	建物内温度 200℃(流入気体温度),外気温 40℃ における自然対流熱伝達率を使用
	(7)外気温(固定)	40°C	同上
	(8)放熱面積(固定)	東西壁:1,579.3m ² 南北壁:1,475.2m ² 天井:1,933.8 m ²	躯体図より算出

第2.1.4-2表 マルチノードモデルの解析条件 (2/2)

第2.1.4-3表 開口面積

								(単	位:m ²)
フロア	大物 搬入口	北東部 階段	北西部 階段	西部 階段	西部 階段1	北部 階段	南西部 階段	東部 階段	南部 階段
6階床		·		1	r		T	1	
5階床									
4階床									
3階床									
2階床									
1階床									
地下1階 床									

フロア	FRVS吸込み(排気)流 量 [m ³ /h]	FRVS戻り(給気)流量 [m ³ /h]
6階	4, 250	4, 765
5階(西側)		497
5階(東側)		315
4階(西側)		664
4階(東側)		1, 152
3階(西側)		580
3階(東側)	4, 250	493
2階(西側)		1,024
2階(東側)	4, 250	935
1階(西側)		261
1階(東側)		261
地下1階(西側)		782
地下1階(東側)	4, 250	782
地下2階(西側)		445
地下2階(北東側)		335
地下2階(南東側)		141
合計※	17,000	13, 430

第2.1.4-4表 FRVS/SGTSの解析条件

※ FRVS吸込み流量と戻り流量の差分がSGTS単体の定格流量。(17,000 - 13,430 = 3,570m³/h)

第2.1.4-1 図 GOTHIC解析モデル ノーディング図

第2.1.4-2図 6階サブボリューム分割図

第 2.1.4-3 図 PAR設置箇所

2.1.4.1 解析条件

(1) 格納容器漏えい条件

格納容器から原子炉建屋原子炉棟への漏えい条件として,「a. 設計条件」,「b. 有効性評価シナリオ包絡条件(格納容器ベント使用時)」,「c. 有効性評価シナリオ包絡条件(代替循環冷却系使用時)」のいずれかを用いる。

a. 設計条件

格納容器からの漏えい条件を第2.1.4.1-1表に示す。格納容器ベント は想定せず,また,格納容器漏えい率10%/dayとする。漏えいするガ スの組成は,格納容器漏えい率に応じて時間とともに水素及び窒素が減 少し,その減少分は水蒸気に置き換わる条件とする。漏えいするガス組 成の時間変化を第2.1.4.1-1図に示す。

b. 有効性評価シナリオ包絡条件(格納容器ベント使用時)

格納容器からの漏えい条件を第2.1.4.1-2表に示す。漏えいするガス の圧力,温度,ガス組成(水蒸気分率,水素分率,窒素分率)は,第 2.1.4.1-2図から第2.1.4.1-5図に示す「雰囲気圧力・温度による静的 負荷(格納容器過圧・過温破損)」のシナリオにおける格納容器圧力逃 がし装置を用いた除熱を考慮した場合のMAAP解析結果の圧力,温 度,ガス濃度をそれぞれ保守側に包絡するように設定する。なお,格納 容器ベント実施により,非凝縮性ガスが格納容器外へ排出されるため, 格納容器内雰囲気はほぼ蒸気環境となり,建屋へ漏えいする気体も蒸気 となる。これを保守側に包絡するよう格納容器ベント実施時間について は,「事故発生30時間後」とし,格納容器ベント実施後は及び漏えい量 を少なく見積もる観点から,15.5kPa(0.05Pd)とする。 漏えい量については,格納容器圧力,格納容器温度及びガス濃度か ら,AECの式を用いて設定する。ガス濃度については,漏えい量を多 く見積もる観点から,水素以外の組成を水蒸気として取り扱う。なお, 事象初期は,これを包絡する1.5%/dayを設定する。

c. 有効性評価シナリオ包絡条件(代替循環冷却系使用時)

格納容器からの漏えい条件を第2.1.4.1-3表に示す。漏えいするガス の圧力,温度,ガス組成(水蒸気分率,水素分率,窒素分率)は,第 2.1.4.1-6回から第2.1.4.1-9回に示す「雰囲気圧力・温度による静的 負荷(格納容器過圧・過温破損)」のシナリオにおける代替循環冷却系 を用いた除熱を考慮した場合のMAAP解析結果の圧力,温度及びガス 濃度をそれぞれ保守側に包絡するように設定する。

漏えい量については,格納容器圧力,格納容器温度及びガス濃度か ら,AECの式を用いて設定する。ガス濃度については,漏えい量を多 く見積もる観点から,水素以外の組成を水蒸気として取り扱う。なお, 事象初期は,これを包絡する1.5%/dayを設定する。

項目	解析条件	備考
圧力[kPa[gage]]	620	
温度[℃]	200	
水素分率[vo1%]	39	格納容器漏えい率に応じて時間とともに
水蒸気分率[vo1%]	40	水素及び窒素が減少し,その減少分は全て
窒素分率[vo1%]	21	水蒸気に置き換わる条件とする。
格納容器漏えい率	10	
[%/day]	10	

第2.1.4.1-1 表 設計条件における漏えい条件

第2.1.4.1-2表 有効性評価シナリオ包絡条件

(格納容器ベント使用時)	における漏えい	い条件
--------------	---------	-----

та	ドライ	ウェル	サプレッション・チェンバ		
坦日	$0\sim\!30\mathrm{h}$	$30\mathrm{h}\sim$	$0\sim\!30\mathrm{h}$	$30\mathrm{h}\sim$	
	620	15.5	620	15.5	
上刀[kPa[gage]]	(2Pd)	(0.05Pd)	(2Pd)	(0.05Pd)	
温度[℃]	200	171	200	171	
水素分率[vo1%]	22	0	28	0	
水蒸気分率[vo1%]	78	100	72	100	
格納容器漏えい率	1 6	0.9	1 5	0.9	
[%/day]*	1. 5	0.2	1. 5	0.2	
備考	6 階, 2 階の漏えい条件		地下1階の漏えい条件		

※ 漏えい率はAECの式より算出

第2.1.4.1-3表 有効性評価シナリオ包絡条件

	D/W				W/W					
項目	$0\sim$	$18 \sim$	96~	120~	$0\sim$	$18 \sim$	$36\sim$	96 ~	$120 \sim$	
	18h	96h	120h	168h	18h	36h	96h	120h	168h	
	620	372		248	620	372			248	
庄刀[kPa[gage]]	(2Pd)	(1.2Pd)		(0.8Pd)	(2Pd)	(1.2Pd)			(0.8Pd)	
温度[℃]	(2Pd) (1. 2Pd) 200			171		200			171	
水素分率[vo1%]	21	l		25	29)		17		
水蒸気分率[vo1%]	79)		75	71	l		83		
格納容器漏えい率	1 5	1.5 1.2		1.0	1 5	1.0	1.0 1.0			
[%/day]*	1.5			2 1.0		1.2	1.0			
備考	6 階	,2階	の漏えい	い条件	地下1階の漏えい条件				件	

(代替循環冷却系使用時)における漏えい条件

※ 漏えい率はAECの式より算出

第2.1.4.1-2図 格納容器圧力(有効性評価シナリオ包絡条件)

(格納容器ベント使用時)

第2.1.4.1-3図 格納容器温度(有効性評価シナリオ包絡条件)

(格納容器ベント使用時)

第2.1.4.1-4 図 ドライウェル組成(有効性評価シナリオ包絡条件)

(格納容器ベント使用時)

第2.1.4.1-5 図 サプレッション・チェンバ組成(有効性評価シナリオ包絡条件)(格納容器ベント使用時)

第2.1.4.1-6図 格納容器圧力(有効性評価シナリオ包絡条件)

(代替循環冷却系使用時)

⁽代替循環冷却系使用時)

第2.1.4.1-8図 ドライウェル組成(有効性評価シナリオ包絡条件)

(代替循環冷却系使用時)

第2.1.4.1-9 図 サプレッション・チェンバ組成(有効性評価シナリオ包絡条 件)(代替循環冷却系使用時)

(2) 漏えい箇所

漏えい箇所は以下の格納容器主フランジ及び格納容器ハッチ類の貫通部 とする。

- ・格納容器主フランジ(原子炉建屋原子炉棟6階)
- ・ドライウェル機器ハッチ(原子炉建屋原子炉棟2階西側)
- ・CRD搬出ハッチ(原子炉建屋原子炉棟2階西側)
- ・所員用エアロック(原子炉建屋原子炉棟2階東側)
- ・サプレッション・チェンバアクセスハッチ(原子炉建屋原子炉棟地下 1階西側)

6階(格納容器主フランジ)のみから漏えいする条件又は複数フロアから漏えいする条件を使用する。複数フロアからの漏えいを想定する場合, 各フロアの漏えい量は、全漏えい量を各漏えい箇所の周長割合で分配して 計算する。水素漏えい量の分配条件を第2.1.4.1-4表に示す。

部屋の位置を第2.1.4.1-10図, 第2.1.4.1-11図に示す。

		漏えい箇所	口径 [mm]	周長 [mm] ※1	周長割合※2		漏えい量割合※3		
漏えいフ ロア	全 フロア				ウェル 注水 想定時	全 フロア	ウェル 注水 想定時	(病えいの対象とする小)部屋	
6 ß	皆	格納容器 主フランジ						-	_
2 階	西側	ドライウェ ル機器 ハッチ CRD 搬出 ハッチ							ドライウェ ル機器ハッ チ及び CRD 搬出ハッチ のある部屋
	東側	所員用 エアロック						-	所員用エア ロックのあ る部屋
地 下 1階	西側	サプレッシ ョン・チェ ンバ アクセ スハッチ						- -	サプレッシ ョン・チェ ンバ アク セスハッチ のある部屋

第2.1.4.1-4表 水素漏えい量の分配条件

※1 所員用エアロックの周長は、エアロック扉内側の矩形部分の周長とする。

その他の周長は、漏えい箇所の口径[mm]から周長[mm](口径[mm]×円周率)

を算出する。

- ※2 周長割合=漏えい箇所の周長/各漏えい箇所の周長合計値。
- ※3 各フロアの周長割合合計値を各フロアの漏えい量割合とする。全漏えい量 に漏えい量割合の数値を乗じた値を各フロアの漏えい量とする。また、6 階(格納容器主フランジ)からのみ漏えいする条件については、漏えい量 割合を1とする。

第 2.1.4.1-10 図 原子炉建屋原子炉棟 2 階

第2.1.4.1-11 図 原子炉建屋原子炉棟地下1 階
2.1.4.1 で示した解析条件の組合せから,第2.1.4.2-1 表に示す3ケースを 選定し,解析を行った。

	ケース 1 (格納容器ベント使用時の影 響確認)	ケース 2 (設計裕度の確認)	ケース3 (代替循環冷却系使用時の影 響確認)		
モデル	原子炉建屋原子炉棟 全階を模擬したモデル				
シナリオ	有効性評価シナリオ (格納容器ベント使用時)	設計条件	有効性評価シナリオ (代替循環冷却系使用時)		
漏えい箇所	6 階, 2 階,地下1 階	6 階	6 階, 2 階,地下1 階		
格納容器 漏えい率	<mark>AECの式から設定</mark>	10%⁄day	<mark>AECの式から設定</mark>		
FRVS/SGTS	2時間後から起動	停止	2時間後から起動		

第2.1.4.2-1 表 解析ケース

- ケース1:格納容器過圧・過温シナリオ(格納容器ベント使用時)において各 フロアに水素が漏えいした場合の建屋内挙動を確認するため,全漏 えい量を原子炉建屋原子炉棟6階及び下層階(2階,地下1階)に 分配した条件での水素濃度の時間変化を評価する。漏えい条件は, 第2.1.4.1-2表に示す有効性評価包絡条件とし,FRVS/SGT Sが事象発生2時間後から起動することを想定する。
- ケース2: PARの設計裕度の確認を行うため、ケース1のシナリオに対して +分保守的に設定したPAR設計条件(10%/day)を用いて、全 漏えい量が原子炉建屋原子炉棟6階から漏えいする場合の水素濃度 の時間変化を評価する。また、FRVS/SGTSの効果も期待し ない。
- ケース3:格納容器過圧・過温シナリオ(代替循環冷却系使用時)において各 フロアに水素が漏えいした場合の建屋内挙動を確認するため、ケー

ス1と同様に全漏えい量を原子炉建屋原子炉棟6階及び下層階(2 階,地下1階)に分配した条件で,水素濃度の時間変化を評価す る。漏えい条件は,第2.1.4.1-3表に示す代替循環冷却シナリオ包 絡条件とし,FRVS/SGTSが事象発生2時間後から起動する ことを想定する。 (1) ケース1

格納容器過圧・過温シナリオ(格納容器ベント使用時)において各フロ アに水素が漏えいした場合の建屋内挙動を確認するため,原子炉建屋原子 炉棟6階及び下層階からの漏えいした場合の水素濃度の時間変化を評価し た。解析結果を第2.1.4.2-1図に示す。

また,原子炉建屋原子炉棟6階における水素の成層化を確認するため, 原子炉建屋原子炉棟6階を132個のノードに区切ったサブボリューム別の 水素濃度の時間変化を第2.1.4.2-2図に示す。

第2.1.4.2-1図 ケース1 水素濃度の時間変化(原子炉建屋原子炉棟全域)

第2.1.4.2-2図 ケース1 水素濃度の時間変化(サブボリューム別)

下層階から漏えいした水素は、大物搬入口及び各階段を通じて原子炉建 屋原子炉棟全域で水素濃度が均一化することが確認できた。また、水素濃 度の最大値は、事象発生後約30時間後に格納容器ベントを実施すること で、格納容器からの漏えいが抑制され、PAR起動水素濃度である1.5% 未満となる結果となった。 (2) ケース 2

設計裕度の確認を行うため,格納容器過圧・過温シナリオ(格納容器ベント使用時)に対して十分保守的に設定した仮想的な条件であるPAR設計値(水素発生量AFC100%相当及び格納容器漏えい率10%/day)を 用いて評価した水素が全量PAR設置エリアである原子炉建屋原子炉棟6 階のみから漏えいするとして,水素濃度の時間変化を評価した。解析結果 を第2.1.4.2-3 図に示す。

また,サブボリューム別の水素濃度の時間変化を第2.1.4.2-4 図に示す。

第2.1.4.2-3 図 ケース2 水素濃度の時間変化(原子炉建屋原子炉棟全域)

第2.1.4.2-4 図 ケース2 水素濃度の時間変化(サブボリューム別)

設計条件の水素発生量に対してPARによる水素処理が効果を発揮し, 原子炉建屋原子炉棟内の水素濃度上昇が抑制されるものの,事象発生後約 150時間で原子炉建屋原子炉棟6階の酸素が欠乏し,PARの起動酸素濃 度を下回ることで処理が行われなくなり,水素濃度が上昇する結果となっ た。この状態においても,酸素濃度が可燃限界未満であることから,水素 燃焼が発生することはない。更に,第2.1.4.2-5図に示すとおり,原子炉 建屋水素濃度が2%に到達した場合,格納容器から異常な漏えいが発生し ているものと判断し,格納容器圧力逃がし装置による格納容器ベントを実 施する運用としており,格納容器ベント実施によって原子炉建屋水素濃度 を低減させることで,水素濃度が可燃限界に到達することはない。

また,第2.1.4.2-4 図に示すとおり,原子炉建屋原子炉棟6 階は均一化 されており,成層化しないことが確認された。

第2.1.4.2-5 図 建屋水素対策フロー

(3) ケース3

格納容器過圧・過温シナリオ(代替循環冷却系使用時)の影響確認を行 うため、ケース1の評価シナリオを代替循環冷却系シナリオに変更して、 水素濃度の時間変化を評価した。解析結果を第2.1.4.2-6図に示す。

また,サブボリューム別の水素濃度の時間変化を第2.1.4.2-4 図に示す。

第2.1.4.2-6図 ケース3 水素濃度の時間変化(原子炉建屋原子炉棟全

域)

第2.1.4.2-7図 ケース3 水素濃度の時間変化(サブボリューム別)

格納容器ベントを実施せず,設計漏えい率相当の水素が漏えいし続ける ケースにおいても,水素濃度はケース1と同様に原子炉建屋水素濃度はP AR起動水素濃度である1.5%に到達することはなく,可燃限界にも到達 しないことを確認した。 2.2 原子炉建屋水素濃度

2.2.1 概要

想定される事故時に原子炉建屋原子炉棟の水素濃度が変動する可能性 のある範囲で測定できる監視設備として水素濃度計を設置する。(別紙9 参照)

水素濃度は、中央制御室にて監視可能であり、代替電源設備から給電 可能である。

原子炉建屋原子炉棟内に漏えいした水素は、比重の関係で原子炉建屋 原子炉棟6階まで上昇し、滞留することが予想される。PARは水素を 処理する際の熱でガス温度が上昇するため、PARにより上昇気流が発 生し、原子炉建屋原子炉棟6階の水素は自然対流により拡散される。こ れらを考慮し、設置位置は、水素が最も蓄積されると想定される原子炉 建屋原子炉棟6階の天井付近とする。(第2.2-1図参照)。

なお,別紙5にて説明する局所エリアに漏えいした水素を早期検知及 び滞留状況を把握することは,水素爆発による原子炉建屋原子炉棟の損 傷を防止するために有益な情報になることから,局所エリアに漏えいし た水素を計測するため水素濃度計を設置し,事故時の監視性能を向上さ せる(第2.2-2図~第2.2-3図参照)。

これにより,格納容器内にて発生した水素が漏えいする可能性のある 箇所での水素濃度と,水素が最終的に滞留する原子炉建屋原子炉棟6階 での濃度の両方が監視できることとなり,原子炉建屋原子炉棟全体での 水素影響を把握することが可能となる。

- 2.2.2 主要仕様
 - (1) 機器仕様

①原子炉建屋水素濃度(6階)

種 類:触媒式水素検出器

計測範囲:0~10vo1%

- 個数:2個
- ②原子炉建屋水素濃度(2階,地下1階)

種 類:熱伝導式水素検出器

計測範囲:0~20vo1%

個数:3個

(2) 配置場所

水素濃度検出器の配置場所を第2.2-1図から第2.2-3に示す。

第2.2-1 図 原子炉建屋水素濃度検出器配置図(原子炉棟6階)

第2.2-2 図 原子炉建屋水素濃度検出器配置図(原子炉棟2 階)

第2.2-3 図 原子炉建屋水素濃度検出器配置図(原子炉棟地下1 階)

(3) システム構成

①原子炉建屋水素濃度

原子炉建屋水素濃度は、重大事故等対処設備の機能を有しており、原 子炉建屋水素濃度の検出信号は、触媒式水素検出器、熱伝導式水素検出 器にて水素濃度を検出し、演算装置にて電気信号へ変換する処理を行っ た後、原子炉建屋水素濃度を中央制御室及び緊急時対策所に指示し、記 録する。概略構成図を第2.2-4図に示す。

第2.2-4図 原子炉建屋水素濃度の概略構成図

Ĩ, 澎 代替電源設備から供給可能な設計 小行 建屋原子炉棟内の水素濃 承 R 通定 \cap \subset ている。 é Ś た 7] & (第3.2-5図, **沙** 寒 5 計器 Э 第 3. 電源 \sim

2.3 参考文献

- 1 Experimentelle Untersuchungen zum Verhalten des von NIS entwickelten Katalysator-Modellmoduls im 1:1 Masstab bei versuchiedenen Systemzustaenden im Model-Containment, Battele-Europe (1991)
- 2 Generic tests of Passive autocatalytic Recombiners(PARs) for combustible Gas Control in Nuclear Power Plants Vol.1 Test Data for NIS PARs, EPRI (1997)
- 3 Generic tests of Passive autocatalytic Recombiners(PARs) for combustible Gas Control in Nuclear Power Plants Vol. 2 Program Description, EPRI (1997)
- 4 Depletion Rate of NIS PAR Module, NIS (1999)
- 5 K. Fischer, "Qualification of a Passive Catalytic Module for Hydrogen Mitigation", Nuclear Technology vol.112, (1995)
- 6 OECD-NEA THAI Project Quick Look Report Hydrogen Recombiner Tests HR-14 to HR-16 October 2009
- 7 Effects of inhibitors and poisons on the Performance of Passive Autocatalytic Recombiners (PARs) for Combustible gas control in ALWRs, EPRI (1997)
- 8 Thomas K. Blanchat, Asimios C. Malliakos, "TESTING A PASSIVE AUTOCATALYTIC RECOMBINER IN THE SURTESY FACILITY", Nuclear Technology Vol.129 March 2000

PARの性能確認試験について

メーカによる開発試験によりPARの基本性能評価式が設定され、様々な環 境下でのPARの性能確認のため、国際的な実証試験が実施されている。以下 に性能評価式の導出、様々な環境下におけるPARの性能評価等を示す。

(1) 基本性能評価式の設定

基本性能評価式の設定, PAR設置位置の違いによる性能評価を目的とし, PAR開発試験として, Battelle MC試験が実施されている。

試験条件を第1表,試験体概要を第1図に示す。複数の部屋に区画された 試験装置内にPARを設置したのち,水素を注入し,各部屋での水素濃度 等を測定している。

第2図は、R5の部屋にPARを設置し、雰囲気を蒸気条件にしたのち にR5の部屋へ水素を注入したケースの試験概要を示している。この試験 ケースにおける各部屋の水素濃度変化を第3図に示す。触媒反応によって 生じる対流等の効果により、水素濃度分布はほぼ均一になっていることが 分かる。得られた試験結果をもとに、PARの入口・出口における水素濃 度の差より算出した再結合効率を第4図に示す。再結合効率は約85%

(0.846) となっている。

この試験を通じて基本性能評価式は設定されており、以下に導出過程を示す。

メーカにおいて、PARへの流入量と水素濃度の相関は以下の式で表されると仮定している。

 $Q = a \cdot \left(\frac{C_{H2}}{100}\right)^{b} \cdots \cdots \qquad 式①$ $Q : P A R \sim \mathcal{O} 流入量 (m³ / s)$ $C_{H2} : 水素濃度 (vo1\%)$ a : 定数 b : 定数

単位時間当たりの水素処理容量は、単位時間当たりにPARへ流入する 水素量とPARの性能を示す再結合効率により表され、以下となる。

> $DR = Q \cdot \left(\frac{C_{H2}}{100}\right) \cdot \gamma \cdot \eta \cdots \overrightarrow{x}$ DR:水素処理容量 (kg/s) γ :水素密度 (kg/m³)

> > η : 再結合効率

試験における測定値による水素処理容量は以下となる。

$$DR = \frac{dC_{H2}}{dt} \cdot V_{c} \cdot \gamma \cdots \exists ③$$

$$\frac{dC_{H2}}{dt} : 水素濃度変化率$$

$$Vc : 試験容器体積 (m3)$$

式②及び③より,試験におけるPARへの流入量は,水素濃度変化の測 定値から求まる。

$$Q = \frac{dC_{H2}}{dt} \cdot V_c / \left(\frac{C_{H2}}{100} \cdot \eta\right) \cdots \cdots \overrightarrow{\pi} (4)$$

式④による流入量と、その時の水素濃度のデータより、式①の定数a,b はフィッティングにより決定される。

式①, ②より水素処理速度は以下のように表される。

53 - 7 - 61

$$DR = a \cdot \left(\frac{C_{H2}}{100}\right)^{b+1} \cdot \gamma \cdot \eta \cdots \overrightarrow{r}(5)$$

ここで、水素密度は気体の状態方程式に従い、次式で表される。

$$\gamma = \frac{P}{T \cdot R_{H2}} \cdots \vec{t}$$
 式⑥
P: 圧力 (10⁵Pa)
T: 温度 (K)

R_{H2}:水素の気体定数(10⁵ J/kg・K)

式⑤,⑥により、PARの水素処理容量は次式で表される。

$$DR = \frac{a \cdot \eta}{R_{H2}} \cdot \left(\frac{C_{H2}}{100}\right)^{b+1} \cdot \frac{P}{T} \cdot \dots \cdot \overrightarrow{T}$$

$$\frac{\mathbf{a} \cdot \boldsymbol{\eta}}{\mathbf{R}_{\mathrm{H2}}} = \mathbf{A} = \boxed{\qquad} , \quad \mathbf{b} + \mathbf{1} = \boxed{\qquad}$$

式⑦にスケールファクタを乗じたものが式(2.1)に示すPARの基本 性能評価式となる。

試験名称		Battelle MC試験
試験体		[mm] (プロトタイプ)
試験条件 温度 圧力		85∼95°C
		1 bar
	水蒸気濃度	40~50 vo1%
	水素濃度	3~5 vol%, 9~10 vol%

第1表 試験条件

第1図 試験体概要図

第2図 試験概要

第3図 試験結果(各部屋の水素濃度変化)

第4図 試験結果 (再結合効率の算出)

(2) 雰囲気の違いによるPARの性能影響

EPRI(米国電力研究所)とEDFの合同により、CEA(フランス 原子力庁)のCadarache研究所のKALI施設を用い、圧力、温度、蒸気 等の雰囲気条件の違いによる影響の有無を確認するため、KALI試験が 実施されている。試験条件を第2表に、試験体の概要を第5図に、試験装置 の概要を第6図に示す。

試験名称		KALI試験
試験体		テストタイプ(試験用触媒カートリッジ5枚)
試験条件	温度	30∼115°C
圧力		1.3~4.0 bar
	水蒸気濃度	0∼50 vo1%
	水素濃度	2∼10 vo1%

第2表 試験条件

第5図 試験体概要

第6図 試験装置概要

蒸気環境下での影響

蒸気環境下での影響について確認した試験条件を第3表に,試験結果 を第7図に示す。ドライ条件下と比べて,水蒸気濃度50vo1%の条件下に おいて,PARの性能は同等であり,蒸気による影響はないと考えられ る。

試験ケース	温度	圧力	水素濃度	蒸気濃度
N8/2	30°C	3.25 bar	4 vol%	0 vol%
N9/2	114°C	3.25 bar	4 vol%	50 vol%

第3表 試験条件(蒸気環境による影響)

第7図 試験結果(蒸気環境下での影響)

水蒸気濃度 50vo1%において、PARの性能に影響がないことから、重 大事故等時の条件下で水蒸気濃度が 50vo1%に満たないことを確認する。 重大事故等時に格納容器から10%/dayでガスが原子炉建屋原子炉棟に漏 えいした場合の原子炉建屋原子炉棟の水蒸気濃度を第8図に示す。

第8図 原子炉建屋原子炉棟6階水蒸気濃度(10%/day漏えい条件)

第8図のとおり、重大事故<mark>等</mark>時において、水蒸気濃度は 50vo1%に達 することはなく、水蒸気による影響はないと考えられる。

また,使用済燃料プールの沸騰により大量の蒸気が発生した場合,蒸 気により水素は希釈され,原子炉建屋原子炉棟内の水素濃度及び酸素濃 度は低下し,可燃限界に達することはないと考える。 ② 低酸素環境下での影響

KALI試験において、低酸素濃度条件下での影響について確認され ており、試験条件を第4表に、試験結果を第9図に示す。試験条件として は、初期水素濃度及び酸素濃度以外は同じ雰囲気条件としており、第9 図に示すように、酸素濃度が低い場合、水素と酸素による再結合反応が 進まなくなることから、PARの性能が低下していることが分かる。ま た、N4/2の試験ケースで酸素が十分にあると想定して基本性能評価式 を用いて水素処理容量を算出した場合、N6/22及びN13/7の試験結果と 相違ないことからも、低酸素環境下ではPARの性能が低下するといえ る。

東海第二発電所の場合,水素発生量に比べて十分な酸素量を有してお り,酸素濃度による影響はない。

試験ケース	温度	圧力	初期水素濃度	初期酸素濃度
N4/2	30°C	1.3 bar	8 vol%	3.8 vo1%
N6/22	30°C	1.3 bar	4 vol%	20.1 vol%
N13/7	30°C	1.3 bar	5 vol%	20 vo1%

第4表 試験条件(酸素濃度による影響)

第9図 試験結果(酸素濃度による影響)

(3) スケールファクタの妥当性

触媒カートリッジ88枚相当の試験体(1/1スケール)を用いたBattelle MC試験結果に基づき基本性能評価式が設定され、その後、触媒カートリッ ジの寸法及び設置間隔を保ったままカートリッジ枚数が44枚(1/2スケー ル)、22枚(1/4スケール)、11枚(1/8スケール)である小型化された PARが開発された。

これらの小型PARは、単位流路面積当たりの触媒カートリッジ表面積 が同一となるよう、ハウジングの開口面積の比も1/2、1/4、1/8として いることから、水素処理容量がカートリッジ枚数に比例するものとして、 スケールファクタが設定されている。また、試験等のために触媒カートリ ッジの高さ以外の寸法を変更している場合でも、触媒カートリッジの設置 間隔を同じにすることで、同様にスケールファクタはハウジングの開口面 積の比で整理できる。基本性能評価式(式⑦)にこのスケールファクタを 乗じたものが小型PARの基本性能となる。

KALI試験では、小型PARよりも更に流路面積の小さい試験体で性 能が確認されている。試験結果とスケールファクタを考慮した基本性能評 価式との比較を第9図に示す。図中の点線は、基本性能評価式を用いて試 験条件及び水素濃度から算出し、スケールファクタ(1/40)を考慮した ものである。実機において使用される水素濃度の範囲において、試験結果 と基本性能評価式(点線)はよく合っており、スケールファクタが妥当で あることを示している。

Battelle MC試験, KALI試験及び東海第二発電所で使用するPAR の仕様の比較を第5表に示す。触媒カートリッジ部やチムニ部のハウジン グの高さは同じで,違いは触媒カートリッジ枚数又はハウジング開口面積 であることから,スケールファクタとしては0.025~1の範囲であれば適用 可能と考える。東海第二発電所で使用するPARは1/4スケールでこの範 囲内にあることから、スケールファクタ及び基本性能評価式は適用可能で ある。

第10図 KALI試験結果と基本性能評価式との比較

1	Battelle MC試験	KALI試験	東海第二	
PARモデル	PARモデル PAR-88		P A R -22	
触媒カートリッジ枚数 88枚		5枚(縮小)	22枚	
ハウジング開口面積	7568 cm ²	$190 \mathrm{cm}^2$	1892cm²	
スケールファクタ	1	0.025	0.25	
延長チムニの有無	なし (標準チムニ)	なし (標準チム ニ)	なし (標準チムニ)	

第5表 PARの仕様比較

(4) PARの反応開始遅れの影響

PARの結合反応の開始水素濃度について、NRC(米国原子力規制委員会)の委託によりSandia国立研究所(SNL)にて実施されたSNL試験にて確認されている。第6表に試験条件及び反応開始水素濃度を示す。 雰囲気条件の違いに関わらず、水素濃度1vo1%未満でPARによる結合反応を開始している。

GOTHICによる原子炉建屋原子炉棟の水素濃度解析においては、P ARによる反応開始水素濃度を1.5vo1%に設定しており、PARの起動に 対して余裕を持たせている。解析結果においても、原子炉建屋原子炉棟の 水素濃度を可燃限界未満に抑制していることから、PARの反応開始遅れ の影響はないと考える。

試験番号	圧力 (bar)	温度 (℃)	水蒸気濃 度 (%)	酸素濃度 (%)	反応開始水 素濃度 (mo1%)
PAR-1	2	22	0	21	0.3
PAR-2	2	22	0	21	0.15
PAR-3	2	102	52	10	0.4

第6表 SNL試験の試験条件及び反応開始水素濃度

(5) PARの最高使用温度

東海第二発電所で設置するPARハウジング部の最高使用温度は、TH AI試験の結果に基づき設定している。THAI試験は、OECD/NE AのTHAI PROJECTにて、各メーカのPARの性能確認のため実施され た試験である。試験装置及び試験体の概要を第11図に示す。

第12図に示すとおり、THAI試験ではPAR各部の温度を測定しており、PARの最高使用温度を設定するうえでは、PAR内部を通過するガス温度のうち、触媒の反応熱が加味される触媒通過後の排気温度を考慮する。

試験では,注入口から水素を供給して試験装置内の水素濃度を上昇させ た後,水素供給を停止して試験装置内の水素濃度を低下させ,PAR各部 の温度の時間変化を確認している。第13図はPAR入口水素濃度と各部温 度の時間変化を示したもので,第14図は各部の温度履歴をPAR入口水素 濃度に対して図示したものである。

試験開始から115~130分の水素濃度が一定の時は,発熱量は変わらず温 度は変化しない。水素濃度上昇時は反応熱が増加するが,各部の熱容量等 の影響により温度上昇は遅れ,水素濃度低下時は反応熱が低下するが,各 部の放熱速度等の影響により温度低下は遅れる傾向にある。

第13図及び第14図より,ガス温度の中でも高い温度で推移している測定 点(359 KTF gas2)でも,水素濃度4vo1%の温度は水素濃度低下時におい ても300℃を下回っていることが分かる。

したがって、東海第二発電所に設置するPARの最高使用温度を300℃ とすることは妥当と考えられる。 第11図 試験装置及び試験体の概要

第12図 試験体の温度計測点

第13図 温度及びPAR入口水素濃度の時間変化

第14図 温度及びPAR入口水素濃度の関係

(6) チムニの影響について

水素低減性能試験において、PARにチムニ(煙突)を取り付けることによ り、水素低減性能が大きくなることが確認されている。煙突が取り付けられ ていない場合、高さ500mmの煙突が取り付けられた場合、高さ1000mmの煙突 が取り付けられた場合の水素低減性能の係数について、製造メーカ社内の試 験プログラムの中で確認されており、煙突が取り付けられていない場合と比 較して高さ500mmの煙突が取り付けられた場合は1.15程度、高さ1000mmの煙 突が取り付けられた場合は1.25程度という数字が報告されている。

東海第二発電所に設置するPARの水素処理容量は,第5表に示すとおり,延長チムニなしと同じ条件であると設定している。このため,チムニの 影響がないことを確認している。

参考文献一覧

- 1 Experimentelle Untersuchungen zum Verhalten des von NIS entwickelten Katalysator-Modellmoduls im 1:1 Masstab bei versuchiedenen Systemzustaenden im Model-Containment, Battele-Europe (1991)
- 2 Generic tests of Passive autocatalytic Recombiners(PARs) for combustible Gas Control in Nuclear Power Plants Vol.1 Program Description, EPRI (1997)
- 3 Generic tests of Passive autocatalytic Recombiners(PARs) for combustible Gas Control in Nuclear Power Plants Vol.2 Test Data for NIS PARs, EPRI (1997)
- 4 Depletion Rate of NIS PAR Module, NIS (1999)
- 5 K. Fischer, "Qualification of a Passive Catalytic Module for Hydrogen Mitigation", Nuclear Technology vol.112, (1995)
- 6 OECD-NEA THAI Project Quick Look Report Hydrogen Recombiner Tests HR-14 to HR-16 October 2009
反応阻害物質ファクタについて

炉心損傷を伴う重大事故等時において、格納容器内によう化セシウム等の粒子状放射性物質、ガス状よう素、蒸気等が発生する。これらが原子炉建屋原子炉棟6階へ漏えいした場合、PARの性能に影響を与える可能性があるため、影響評価を行う必要がある。

粒子状放射性物質については,沈着や格納容器スプレイにより除去されるこ とから,原子炉建屋原子炉棟6階への漏えい量は十分小さく,影響はないと考 えられる。また,別紙1に示したように,蒸気環境下による性能への影響ない と考えられる。

したがって、影響因子としてはガス状よう素を対象とし、以下のとおりPA Rの性能への影響を評価する。

(1) ガス状よう素による影響

事故時に炉内に内蔵されるよう素元素量は約24.4kgであり、NUREG -1465に基づき,格納容器内へのよう素の放出割合を61%,Regulatory Guide 1.195に基づき,無機よう素生成割合を91%,有機よう素生成割合 を4%とする。また,格納容器内の自然沈着による除去効果については, CSEでの実験結果に基づきDF200を考慮する。

このとき,格納容器の漏えい率を一律10%/day,原子炉建屋原子炉棟6 階へ全量漏えいすると仮定した場合ガス状よう素は約21mg/m³となる。

よう素による影響を確認するために行われたBattelle MC試験の試験条件を第1表に,試験結果を第1図に示す。試験は,蒸気環境下において空間に対するよう素割合約300mg/m³で実施しており約25%性能低下している

ことが確認されている。

試験条件と比べて東海第二発電所で想定されるガス状よう素濃度は十分 に小さく,影響は小さいと考えるが,よう素環境下でのPARの性能低下 を考慮し,反応阻害物質ファクタとして「0.5」を設定する。

なお、反応阻害はよう素が触媒に付着することで起こるものであり、ス ケールファクタが変わっても、PAR内部の流速は一律であり、付着する よう素の割合は変わらないため、ガス状よう素による影響評価にスケール ファクタを考慮する必要はない。

第1表 試験条件(よう素の影響)

温度	圧力	初期水素濃度	蒸気濃度	よう素濃度
120°C	2 bar	4 vol%	50~70 vol%	300 mg/m^3

第1図 試験結果(よう素の影響)

本試験は、第1表に示す条件でよう素による触媒性能低下の影響を確認 しているが、本試験結果が実機条件に適用できるかを確認するために、本 試験結果における水蒸気濃度、温度、圧力の影響について示す。

触媒の被毒は、強力な化学吸着による触媒反応の阻害によって発生す る。したがって、よう素による被毒は、よう素によるパラジウム原子の物 理的な閉塞により発生する(第2図参照)。水蒸気濃度と圧力はパラジウ ム表面に結合しているよう素の状態を変えることができないため、基本的 には水蒸気濃度と圧力は、よう素による被毒効果に与える影響は無いと考 えられる。なお、水蒸気については、触媒に被膜ができること等による物 理的な触媒性能低下の影響が考えられるが、それについては「別紙1(2)① 蒸気環境下での影響」のとおり、有意な影響はないことを確認している。 更に、触媒粒には疎水コーティングが施されていることから、水蒸気によ る性能低下を防ぐ設計考慮がなされている。

また、本試験条件は、東海第二発電所の事故時に想定される環境と比較 し、よう素濃度、水蒸気濃度は保守的な条件となっている。これらを踏ま え、本試験結果における水蒸気濃度、圧力が与える大きな影響はない。

第2図 パラジウムへのよう素の結合の概略図

53-7-80

一方,温度については,触媒周りの温度が200℃付近の高温になると, 吸着されたパラジウムとよう素が分離し,パラジウムは触媒機能を回復す る知見が既往研究より確認されている(第3図参照)。これは温度が上がっ たことにより化学結合状態が壊れてパラジウムとよう素が分離する状況に なったことによるものと考えられる。

PARは再結合反応を始めると、触媒温度が上昇し触媒自体は200℃を 超える高温状態になる。NIS社製PAR触媒は、粒型の触媒粒をカート リッジに敷き詰めた構造になっており、被毒物質に全ての触媒が覆われる ことを防ぐことが設計上配慮されている。よって、被毒されていない部分 は再結合反応が始まり、それに伴い触媒粒の温度が上昇することで、被毒 された部分の吸着されたパラジウムとよう素が分離することで触媒機能が 回復する傾向になると考えられる。すなわち、よう素による被毒は再結合 反応開始時に影響するものであるが、反応が開始すると、触媒温度上昇が 支配的となり、試験条件としての温度は、影響を無視できるものと考えら れる。よって、本試験結果で示す触媒性能低下評価において、温度条件は 大きな影響を与えるものではない。

1 Effects of inhibitors and poisons on the Performance of Passive Autocatalytic Recombiners (PARs) for Combustible gas control in ALWRs, EPRI (1997)

PAR動作監視装置について

(1) 目的

PARは、原子炉建屋原子炉棟6階内の水素濃度上昇に伴い自動的に作動する装置であり、電源や運転員による操作が不要な装置である。

PARは, 触媒における再結合反応により水素を除去する装置であるため, 水素濃度の上昇に伴って装置の入口側と出口側の温度差が上昇する

(第1図,第2図参照)ことから,PARに温度計を設置することにより, 水素処理の状況を把握することができ,PARによる水素処理が行われて いることを確認することができれば,事故対処時の有効な情報となると考 えられる。

このことから、原子炉建屋原子炉棟内に設置されているPAR(2個) に熱電対を入口側と出口側に取付け、中央制御室にてPARの温度を確認 できるようにし、重大事故等対処時の監視情報の充実を図る。

第1図 SNLで行われた試験用PAR 概要

第2図 PAR温度と水素濃度の関係

(2) 設備概要

PAR2個に対し、入口側及び出口側に熱電対を取り付け、事故時のP ARの測定温度を中央制御室にて監視できるようにする。

熱電対の設置位置は、PAR入口及び出口近傍に熱電対シースを取り付け,ガス温度を測定できるようにする。

実験結果(第2図)において,触媒部での水素再結合反応に伴い,水素 濃度1.0vo1%程度でPAR入口と出口のガス温度差は約40K,水素濃度 4vo1%程度でPAR入口と出口のガス温度差は約170Kになっており,PA Rの入口側と出口側の温度差が明確であることから,PAR動作を把握で きる。

第3図 PARへの熱電対取付位置概要図

PARへの熱電対取付位置は、サポートとの干渉を考慮したPAR管体付近への取付性、固定性、保守性等を考慮してPAR入口側及び出口側のガス温度が測れる位置とする。(第3図参照)

熱電対シースは φ 3.2mmであり、 PARへの流路影響の観点から水素除

去性能へ影響を及ぼすものではない。

測定温度は、中央制御室及び緊急時対策所に指示及び記録される。 (第4図参照)

第1表 PAR動作監視装置の主要仕様

名称	種類	計測範囲	個数	取付箇所
PAR 動作監視装置	熱電対	0∼300°C	4 ^{**}	原子炉建屋原子炉 棟6階

※:2基のPARに対して、出入口に1個設置

第4図 PAR動作監視装置の概略構成図

(3) PAR動作監視装置の設置場所

PARは水素を処理する際の熱でガス温度が上昇するため, PAR装置 により上昇気流が発生する。したがって, 原子炉建屋原子炉棟6階の水素 ガスは自然対流により拡散されることから, 原子炉建屋原子炉棟6階の両 壁面に配置したPAR全体に水素ガスが行き渡り, 一様に触媒反応を起こ して温度が上昇すると想定している。 以上を考慮して、PAR動作監視装置の設置場所は、位置的分散を考慮 して、原子炉建屋原子炉棟6階の両壁面に配置したそれぞれ1個のPAR に設置する。(第5図参照)

第5図 PAR動作監視装置の概略構成図

1 Thomas K. Blanchat, Asimios C. Malliakos, "TESTING A PASSIVE AUTOCATALYTIC RECOMBINER IN THE SURTESY FACILITY", Nuclear Technology Vol.129 March 2000

別紙4

PAR周辺機器に対する悪影響防止について

PARは水素処理が始まると触媒温度が上昇するため、PARの温度上昇が 周辺機器に影響を与えないためのPARの設置方針を<mark>検討した。PARの温度 上昇が周辺機器に影響を与える項目としては「①PARハウジングからの熱輻 射による熱影響評価」と「②PAR排気ガスによる熱影響評価」があり、それ らの検討結果を以下に示す。</mark>

① **PARハウジングからの熱輻射による熱影響評価**

PARハウジングが最高使用温度である300℃の状況で、ハウジングからの熱輻射による温度と距離の関係を評価した。

周辺機器の温度は、原子炉建屋原子炉棟6階の熱伝達率により異なる。 熱伝達率は以下のユルゲスの式より計算する。

h=5.6+4.0u

ここで、u[m/s]は気流速度である。PARが起動する設計条件の10% /dayのケースにおける気流速度の最大値が約0.6 m/sであることを踏ま えて、想定する気流速度の範囲を0~1.5 m/sと仮定し、熱伝達率を計算 すると5.6~11.6 W/m²Kとなる。したがって熱伝達率は5.6 W/m²K及び 11.6 W/m²Kの2ケースで評価を行った。

評価結果を第1図に示す。いずれのケースもPARから0.1m離れると周 辺機器の表面温度は300℃を十分下回ることから、隣接するPARに対し て悪影響を与えることはない。また、評価結果の厳しい5.6 W/m²Kの場 合であっても、PARから0.8m離れたところで100℃を下回り、1mの地点 では83℃まで低下する。さらに2mの地点でPARの輻射熱の影響はほぼな くなることから,重大事故等の対処に重要な計器・機器に悪影響がないよ う, PAR周囲(排気口方面除く)には,2m以上の離隔距離を設けること とする。

第1図 周辺機器のPARからの距離と温度の関係

2について

PARの上方の排気口からは水素処理を行った高温の出口ガスが排気され るが、PARハウジング上部にはフードが設置されており、出口ガスの流れ 方向を変えており、PARの上方に位置する構築物に直接排熱の影響を与え ることはない。また、高温の出口ガスが排出される排気口からは、重大事故 等の対処に重要な計器・機器に悪影響がないよう3m以上の離隔距離を設ける こととする。

上気①、②の結果から、PAR配置検討にあたっては以下を考慮すること

としている。

<mark><PAR周辺機器への熱影響防止の方針></mark>

- ・PAR周囲(排気口方面を除く)に,熱影響により安全機能を損なう設備 がないことを,熱影響評価結果を踏まえて確認する。
- ・ PAR排気ロ方面には、高温ガスが流れることから、付近に安全機能を損 なう設備がないことを確認する。

以上により、原子炉建屋原子炉棟6階に設置する重大事故等対処設備についてはPARによる熱的な悪影響がないことを確認する方針としている。

水素濃度監視設備については,原子炉建屋原子炉棟6階天井付近に設置する こととしており, PAR設置位置から10m以上離れているため, PARの温度 上昇による水素濃度監視機能への悪影響はない。

局所エリアの漏えいガスの滞留

1. 評価方法

第1表に示す格納容器からの水素漏えいが想定される局所エリアにおい て、有効性評価シナリオ包絡条件(格納容器ベント使用時)及び有効性評価 シナリオ包絡条件(代替循環冷却系使用時)の水素濃度がそれぞれ可燃限界 未満であることを確認する。なお、シールドプラグが置かれた状態の原子炉 ウェル部についても、局所エリアとなる可能性があるが、シールドプラグに シール性がないこと及び上面に開口があることから、局所エリアから除外と した。

階数	漏えい箇所	エリア名称	空間容積(m ³)	
	ドライウェル機器ハッチ	ドライウェル機器ハ ッチ及び CRD 搬出い	49 1	
2. 陛	CRD 搬出ハッチ	ッチのある部屋	42.1	
2階 —	所員用エアロック	所員用エアロックの ある部屋	23.4	
地下1階	サプレッション・チェンバ アクセスハッチ	サプレッション・チ ェンバアクセスハッ チのある部屋	1557.7	

第1表 局所エリア

- 2. 解析条件
 - (1) 解析モデル

解析モデルを第1図に示す。漏えい箇所及び隣接するエリアでの水素濃 度を確認するため,解析モデルは,小部屋とその隣接エリアをそれぞれ1 ノードでモデル化し,流入境界条件を設けて格納容器からの漏えいを与え る。また,圧力境界条件を設けて外部への流出をモデル化する。 エリア内は断熱とし、構造物のヒートシンク、壁を介した隣接エリアの 伝熱はモデル化しない。伝熱による蒸気の凝縮だけ水素濃度が高くなると 考えられることから、保守的に評価するため、蒸気の100%凝縮を仮定し た漏えい条件を想定する。

また,隣接エリアを第2図~第7図に示す。

第1図 2ノードモデル

第2図 隣接エリア 原子炉建屋原子炉棟地下1階

第3図 隣接エリア 原子炉建屋原子炉棟1階

第4図 隣接エリア 原子炉建屋原子炉棟2階

第5図 隣接エリア 原子炉建屋原子炉棟3階

第6図 隣接エリア 原子炉建屋原子炉棟4階

第7図 隣接エリア 原子炉建屋原子炉棟5階

(2) 解析条件

2ノードモデルにおける解析条件を第2表に示す。

No	項目	解析条件	備考
1	原子炉建屋原子炉棟の 条件 (1) 圧力(初期条件) (2) 温度(初期条件) (3) 組成(初期条件) (4) 空間容積(固定)	101.325kPa 40℃ 相対湿度 100%の空気 第 1 表参照	大気圧 想定される高めの温度として設定 同上
2	 圧力境界条件 (外部への漏えい) (1)圧力(固定) (2)温度(固定) (3)酸素濃度(固定) (4)窒素濃度(固定) 	101. 325kPa 40℃ 21% 79%	大気圧 想定される高めの温度として設定 乾燥空気の組成 同上
3	流出条件 (外部への漏えい) (1)流出条件	圧力損失なし	

第2表 2ノードモデル解析条件

各小部屋の漏えい量は,全漏えい量を各漏えい箇所の周長割合で分配して計算する。漏えいの分配条件は第2.1.4.1-4表と同様である。

(3) 漏えい条件

有効性評価シナリオ包絡条件(格納容器ベント使用時)及び有効性評価 シナリオ包絡条件(代替循環冷却系使用時)における漏えい条件を第3表 及び第4表に示す。 第3表 有効性評価シナリオ包絡条件(格納容器ベント使用時)

тан	ドライ	ウェル	サプレッション・チェンバ		
	$0\sim\!30h$	$30h\sim$	0~30h	$30h\sim$	
圧力(kPa[gage])	620 (2Pd)		620 (2Pd)		
温度(℃) (上:格納容器内, 下:建屋への漏えい時 ^{※1})	200 100	流入なし	200 100	流入なし	
水素濃度 [vo1%] *1	100		100		
水蒸気濃度[vo1%]*1	0		0		
格納容器漏えい率[%/day] ^{※2}	0.33		0.42		
備考	6階,2階の漏えい条		地下1階の)漏えい条件	
	伯	:			

における漏えい条件

※1:水蒸気は局所エリアに漏えいした時点で全て凝縮することを想定

※2:漏えい率は第2.1.4.1-3表に示す漏えい条件から水素のみを考慮して算出

第4表 有効性評価シナリオ包絡条件(代替循環冷却系使用時)

における漏えい条件

		ドライ	ウェル		Ļ	トプレッ	ション・	・チェン	イバ
項目	0~	$18 \sim$	$96\sim$	120~	0~	18~	36~	96~	120~
	18h	96h	120h	168h	18h	36h	96h	120h	168h
	620	620 372		248	620	372			248
)上刀[kPa[gage]]	(2Pd)	(1.2	Pd)	(0.8Pd)	(2Pd)	((1.2Pd)		(0.8Pd)
温度[℃]									
(上:格納容器 内.	200		171	200			171		
下:建屋への漏え	100		100	100			100		
い時 ^{※1})									
水素濃度[%] *1	100				100				
水蒸気濃度[%] *1	0				0				
格納容器漏えい率	0.215	0.252	0.2	0.25	0 425	0.249		0 17	,
[%/day] ^{* 2}	0.315	0.232	0.5	0.20	0.430	0.348		0.17	
備考	6 階, 2 階の漏えい条件			条件	地下1階の漏えい条件			:	

※1:水蒸気は局所エリアに漏えいした時点で全て凝縮することを想定

※2:漏えい率は第2.1.4.1-3表に示す漏えい条件から水素のみを考慮して算出

3. 解析結果

各ケースの168h までの水素濃度最大値を第5表に示す。また、水素濃度の時間変化を第<mark>8</mark>図から第13図に示す。

ケース	格納容器漏え		水素濃度最大值[%]		
No	い条件	評価対象とする小部屋	評価対象とする 小部屋	隣接エリア	
1	有効性評価シ	ドライウェル機器ハッチ及び CRD 搬 出ハッチのある部屋 (原子炉建屋原子炉棟 2 階西側)	1.73	0.52	
2	ナリオ包絡条件(格納容器	所員用エアロックのある部屋 (原子炉建屋原子炉棟2階東側)	0.53	0.20	
3	 ベント使用 時) 	サプレッション・チェンバアクセス ハッチのある部屋 (原子炉建屋原子炉棟地下1階西 側)	0.91	0.91	
4	ナ共転転加い	ドライウェル機器ハッチ及び CRD 搬 出ハッチのある部屋 (原子炉建屋原子炉棟2階西側)	2. 22	1.53	
5	有効性評価シナリオ包絡条件(代替循環冷却系使用	所員用エアロックのある部屋 (原子炉建屋原子炉棟2階東側)	0.76	0.58	
6	時)	サプレッション・チェンバアクセス ハッチのある部屋 (原子炉建屋原子炉棟地下1階西 側)	1.83	1.83	

第5表 解析結果

第8図 有効性評価シナリオ包絡条件(格納容器ベント使用時)における 水素挙動(ドライウェル機器ハッチ及び CRD 搬出ハッチのある部屋)

第9図 有効性評価シナリオ包絡条件(格納容器ベント使用時)における 水素挙動(所員用エアロックのある部屋)

第 10 図 有効性評価シナリオ包絡条件(格納容器ベント使用時)における 水素挙動(サプレッション・チェンバアクセスハッチのある部屋)

第 11 図 有効性評価シナリオ包絡条件(代替循環冷却系使用時)における 水素挙動(ドライウェル機器ハッチ及び CRD 搬出ハッチのある部屋)

第 12 図 有効性評価シナリオ包絡条件(代替循環冷却系使用時)における 水素挙動(所員用エアロックのある部屋)

第 13 図 有効性評価シナリオ包絡条件(代替循環冷却系使用時)における 水素挙動(サプレッション・チェンバアクセスハッチのある部屋)

解析の結果から、有効性評価シナリオ包絡条件(格納容器ベント使用時)で は、水素濃度は格納容器からの漏えいにより上昇するが、ベントを想定した 30時間後で最大となる。その後は、水素濃度が低下すると同時に隣接エリア と水素濃度が均一化することから、可燃限界に到達することはない。

有効性評価シナリオ包絡条件(代替循環冷却系使用時)に期待するシナリオでは,水素濃度は全体的には上昇傾向となり,168時間後時点で最も高くなる ものの,可燃限界未満となる結果となった。

2ノードの解析において、小部屋と隣接エリアについては、それぞれ同等の レートで上昇し続ける結果となったが、2.1.4.2で示したケース1及び3にお いて、建屋全体の水素濃度が均一化されていることから、小部屋に漏えいした 水素は隣接エリアを介して原子炉建屋原子炉棟6階に流入するものと考えられ る。このことから小部屋に設置している水素濃度計は漏えいの早期発見に使用 し、格納容器ベント基準に用いる水素濃度計は、原子炉建屋原子炉棟6階天井 付近に設置している原子炉建屋水素濃度計とする。

格納容器頂部注水系について

格納容器頂部注水系は、炉心の著しい損傷が発生した場合において、格納 容器頂部を冷却することで格納容器外への水素漏えいを抑制し、原子炉建屋 原子炉棟の水素爆発を防止する機能を有するものであり、自主対策設備とし て設置する。格納容器頂部注水系は第1図、第2図に示すように、原子炉ウェ ルに水を注水することで、格納容器トップヘッドフランジを外側から冷却す ることができる。格納容器トップヘッドフランジは事故時の過温・過圧状態 に伴うフランジ開ロで、シール材が追従できない程の劣化があると、閉じ込 め機能を喪失する。このシール材は、以前はシリコンゴムを採用していた が、格納容器閉じ込め機能の強化のために耐熱性、耐蒸気性、耐放射線性に 優れた改良EPDM製シール材に変更し閉じ込め機能強化を図る。改良EP DM製シール材は200℃蒸気が7日間継続しても閉じ込め機能が確保できるこ とを確認しているが、シール材の温度が低くなると、熱劣化要因が低下し、 閉じ込め機能もより健全となり、原子炉建屋原子炉棟への水素漏えいを抑制 できる。

このことから,設置許可基準規則第53条(原子炉建屋水素爆発防止)に対 する自主対策設備として,重大事故時に原子炉ウェルに注水し,格納容器外 側からトップヘッドフランジシール材を冷却し水素漏えいを抑制することを 目的として,原子炉格納容器頂部注水系を設置する。

第2図 格納容器頂部注水系 (可搬型)

(1) 格納容器頂部注水系の設計方針について

格納容器頂部注水系(常設及び可搬型)は、原子炉ウェルに水を注水 し、格納容器トップヘッドフランジシール材を格納容器外部から冷却する ことを目的とした系統である。

格納容器頂部注水系(常設)は、常設低圧代替注水系ポンプ等で構成し ており、炉心の著しい損傷が発生した場合において、代替淡水貯槽を水源 として原子炉ウェルに注水し格納容器頂部を冷却することで、格納容器頂 部からの水素漏えいを抑制する設計とする。

また,格納容器頂部注水系(可搬型)は,可搬型代替注水大型ポンプ等 で構成しており,炉心の著しい損傷が発生した場合において,代替淡水貯 槽を水源として原子炉ウェルに注水し格納容器頂部を冷却することで,格 納容器頂部からの水素漏えいを抑制する設計とする。

第1表 格納容器頂部注水系主要仕様

	常設低圧代替注水系ポンプ	可搬型代替注水大型ポンプ
台数	1	1
容量	約200 m ³ /h	約1,320 m ³ /h (吐出圧力1.4MPaにおい て)

(2) 格納容器頂部注水系の効果について

重大事故等発生時における格納容器過温・過圧事象において、トップへ ッドフランジの閉じ込め機能を強化するために格納容器限界温度

(200℃)が7日間継続したとしても健全性が確認できる改良EPDM製シ ール材を取り付ける。

これにより、トップヘッドフランジからの水素漏えいポテンシャルは低

減しているが,格納容器頂部注水系により原子炉ウェルに常温の水を注水 することで冷却効果が得られるため,水素ガスの漏えいを更に抑制するこ とが可能である。よって,格納容器頂部注水系は,原子炉建屋原子炉棟の 水素爆発防止対策の1つとして効果的である。

(3) 格納容器頂部注水系による格納容器への影響について

格納容器頂部注水系は,格納容器温度が200℃のような過温状態で常温 の水を原子炉ウェルに注水することから,格納容器トップヘッドフランジ 部を急冷することにより格納容器閉じ込め機能に影響がないかについて評 価を行った。

(評価方法)

格納容器過温時に原子炉ウェルに注水することで,低温の水が格納容器 トップヘッドフランジに与える熱的影響を評価する。格納容器への影響と しては鋼材部の熱影響が考えられるため,影響する可能性がある部位とし てはトップヘッドフランジ及びトップヘッドフランジ締付ボルトが挙げら れる。このうち,体積が小さい方が水により温度影響を受けるため,評価 対象としてトップヘッドフランジボルトを選定し,トップヘッドフランジ 締付ボルトの急冷による熱的影響を評価する。

(評価結果)

格納容器頂部注水系によるトップヘッドフランジ締付ボルト冷却時の発 生応力について第2表に示す。評価結果から、ボルトが200℃から20℃まで 急冷された場合でも、応力値は降伏応力を下回っており、ボルトが破損す ることはない。

項目	記号	単位	値	備考
材料			SNCM439	トップヘッドフランジ締付
				ボルトの材料
ヤング率	Е	MPa	204000	
熱膨張率	α	1/K	1.27E-05	
温度差	ΔΤ	K	180	水温20℃とし,格納容器温
				度200℃時の温度差
ひずみ	8		2.29E-03	$\varepsilon = \alpha \cdot \Delta T$
応力	σ	MPa	466	$\sigma = \mathbf{E} \cdot \boldsymbol{\alpha} \cdot \boldsymbol{\bigtriangleup} \mathbf{T}$
設計降伏点	Sy	MPa	754	SNCM439(200°C)
設計引張応力	Su	MPa	865	SNCM439(200°C)

第2表 トップヘッドフランジ締付ボルトの熱収縮による応力評価結果

(まとめ)

上記の結果から,格納容器頂部注水による急冷により格納容器閉じ込め 機能に悪影響を与えることはない。また,低炭素鋼の脆性遷移温度は一般 的に約-10℃以下であり,水温はこの温度領域以上であるので脆性の影響 もないと考えられる。

(4) 格納容器頂部注水系の監視方法について

格納容器頂部注水系の使用時における監視は, D/Wヘッド雰囲気温度 計により行う。常設低圧代替注水系ポンプ又は可搬型代替注水大型ポンプ で原子炉ウェルに注水する注水流量を調整し, D/Wヘッド雰囲気温度計 の指示により格納容器頂部が冷却されていることを確認し, 格納容器頂部 注水系の効果を監視する。

別紙7

格納容器頂部注水系の効果を考慮した水素挙動について

格納容器頂部注水系は、炉心の著しい損傷が発生した場合において、格納容 器頂部を冷却することで格納容器外への水素漏えいを抑制し、原子炉建屋原子 炉棟の水素爆発を防止する機能を有している。

格納容器頂部注水系の効果によって,格納容器主フランジからの漏えいが無 くなり,原子炉建屋原子炉棟6階に直接水素が漏えいしなくなった場合の建屋 挙動を確認するため,漏えい箇所を下層階のみとしたケースの評価を実施し た。漏えい箇所以外の条件は第2.1.4.2-1表のケース1と同様である。第1図 に解析結果を示す。

(漏えい箇所:下層階のみ)

下層階のみから水素が漏えいした場合においても, FRVS/SGTSによ る混合効果によって, 各エリアの水素濃度が均一化され, 可燃限界を大きく下 回る結果となった。

また,格納容器頂部に注水した水が沸騰することで,原子炉建屋原子炉棟6 階に水蒸気が追加で発生及び滞留し,原子炉建屋原子炉棟6階への水素流入を 阻害するおそれがあるため,影響を評価した。

影響評価のため、FRVS/SGTSの稼働,停止による混合効果を確認する。FRVS/SGTSが稼働する場合の解析結果は、第2.1.4.2-1表のケース1と同様である。また、FRVS/SGTSが稼働しない場合の解析結果を 第2図に示す。

第2図 水素濃度の時間変化(原子炉建屋原子炉棟全域) (ケース1のFRVS/SGTSが停止している場合)

第2.1.4.2-1 図に示すケース1のFRVS/SGTS稼働時において,各エ リアの水素濃度は均等に上昇していることが確認されるが,第2図のFRVS /SGTS停止時では,各エリア水素濃度の均一化に時間を要している。よっ て,FRVS/SGTSの稼働による原子炉建屋原子炉棟内の混合効果は大き く,原子炉建屋原子炉棟6階で発生した水蒸気によって,水素の流入が阻害さ れることはない。 小漏えい時の原子炉建屋原子炉棟6階における水素挙動

格納容器から原子炉建屋原子炉棟へ漏えいする水素が少ない場合において, 水素が成層化しないことを解析により確認する。

格納容器ベントまでの漏えい率を,格納容器漏えい率を設計漏えい率相当で ある 0.5%/day とした。格納容器漏えい率以外の評価条件は,第2.1.4.2-1表 のケース 2 と同様である。水素濃度の解析結果を第1図に示す。

第1図 小漏えい時の原子炉建屋原子炉棟6階水素挙動(サブボリューム)

PAR起動前においてもサブボリュームごとの水素濃度の差はほとんどなく,漏えい量を小さくした場合でも成層化は起こらないことを確認した。
原子炉建屋水素濃度の適用性について

原子炉建屋水素濃度は、炉心の著しい損傷が発生した場合に、原子炉建屋原 子炉棟内に発生する水素を監視する目的で、水素濃度が変動する可能性のある 範囲で測定できる設計としている。

1. 計測範囲の考え方

炉心損傷時に格納容器内に発生する水素が原子炉建屋原子炉棟に漏え いした場合に, PARによる水素濃度低減(可燃性限界である 4vo1% 未満)をトレンドとして連続監視できることが主な役割であることか ら,これを計測可能な以下の範囲とする。

- ・原子炉建屋水素濃度(6階):0~10vo1%
- ・原子炉建屋水素濃度(2階,地下1階):0~20vo1%
- 2. 水素濃度計の測定原理

①原子炉建屋水素濃度(6階)

原子炉建屋原子炉棟6階に設置する水素濃度は,触媒式の検出器を用 いる。

触媒式の水素検出器は、検知素子と補償素子が第1図のようにホイー トストンブリッジ回路に組み込まれている。検知素子は触媒活性材でコ ーティングされており、水素が検知素子に触れると触媒反応により空気 中の酸素と結合し、発熱して検知素子温度が上昇する。検知素子温度が 上昇することにより、検知素子の抵抗値が変化するとブリッジ回路の平 衡がくずれ、信号出力が得られる。水素と酸素の結合による発熱量は水 素濃度に比例するため,検知素子の温度変化による抵抗値変化を水素濃 度として測定できる。

また,水素による検知素子の温度上昇と環境温度の上昇を区別するため,素子表面に触媒層を有さない補償素子により環境温度の変化による 検知素子の抵抗値変化は相殺される。

第1図 原子炉建屋水素濃度(6階)検出回路の概要図

②原子炉建屋水素濃度(2階,地下1階)

原子炉建屋原子炉棟2階,地下1階に設置する水素濃度は,水素濃度熱 伝導式のものを用いる。

熱伝導式水素検出器は、検知素子と補償素子が第2図のようにホイート ストンブリッジ回路に組み込まれている。検知素子側は、原子炉建屋内雰 囲気ガスが触れるようになっており、補償素子側は基準となる標準空気が 密閉され、測定ガスは直接接触しない構造になっている。このため、水素 が検知素子に接触することで、補償素子と接触している基準となる標準空 気との熱伝導度の違いから温度差が生じ,抵抗値が変化し,ブリッジ回路 の平衡がくずれ,信号出力が得られる。検知素子に接触するガスの熱伝導 度は水素濃度に比例するため、検知素子の温度変化による抵抗値変化を水 素濃度として測定できる。

また,補償素子の標準空気容器の外側には測定ガスが同様に流れ,温度 補償は考慮された構造となっている。

熱伝導式水素検出器は、標準空気に対する測定ガスの熱伝導率の差が大 きいことを利用しているものである。水素の熱伝導率は、約0.18W/(m・ k)at27℃である一方、酸素、窒素は、約0.02W/(m・K) at27℃と水素よ り1桁小さく、これらのガス成分の変動があっても水素濃度測に対する大 きな誤差にはならない。

第2図 原子炉建屋水素濃度(2階,地下1階)検出回路の概要図

3. 原子炉建屋水素濃度検出器の耐環境性について

水素濃度検出器の耐環境仕様は各設置場所で想定される温度,湿度及 び放射線量の環境を有している。第1表に想定される環境と水素濃度の 耐環境仕様を示す。

第1表 水素濃度検出器の設置場所の想定環境及び耐環境仕様

対象	項目	想定環境※	検出器の 耐環境仕様
原子炉建屋原子 炉棟6階水素濃 度	温 度 湿 度 積算放射線量	65.6℃ 100%RH 1.8kGy(7 日間)	
原子炉建屋原子 炉棟2階,地下1 階水素濃度	温 度 湿 度 積算放射線量	65.6℃ 100%RH 1.8kGy(7 日間)	

※想定環境は、詳細評価により今後見直す可能性がある。

PARの性能維持管理について

設置段階及び供用開始以降のPARの性能を維持するため、以下のような検 査及び点検を行う。

(1) PARの性能確保の考え方

PARの性能評価式は、PAR内部を通過する水素量(流量)と触媒に よる再結合効率(触媒反応)の関係から導出されたものであり、流量及び 触媒反応に影響を与える各パラメータについて、検査又は点検時に確認す ることでPARの性能を確保できる。第1表にPARの性能確保に必要と なるパラメータとその確認項目を示す。

性能因子	影響因子	確認項目
流量	水素濃度	対象外 (雰囲気条件)
	圧力,温度	対象外 (雰囲気条件)
	PARハウジング部の幾何学的構	
	造	・外観確認及び寸法確認
	・ハウジング構造	
触媒反応	触媒カートリッジの幾何学的仕様	
	・触媒カートリッジの枚数	·外観,員数確認
	・触媒カートリッジ寸法	・寸法確認
	触媒の品質管理	・製作時の仕様確認
		(材料確認含む)
	触媒の性能	
	・触媒の健全性	・機能確認
	・触媒の欠落	・外観確認
	・触媒の汚れ	

第1表 PARの性能確保に必要な確認項目

(2) 検査及び点検内容

(1)の考え方を踏まえ、以下に示す検査及び点検を実施することで、P ARの性能を確保する。設置段階における検査内容を第2表に、供用開始 以降の点検内容を第3表に示す。

対象部位	分類	検査内容
触媒	仕様確認	比表面積,直径,パラジウム含有量につ いて,管理値を満足することを確認す
		る。
	外観検査	有意な変形,傷等の有無について,目視
		により確認する。
触媒カートリッ	仕様確認	触媒充填量について、管理値を満足する
ジ		ことを確認する。
	外観検査	有意な変形、傷等の有無について、目視
		により確認する。員数についても確認す
		る。
	寸法検査	主要な寸法について、実測により確認す
		る。
	機能検査	健全性確認として、検査装置により結合
		反応時の温度上昇率を測定し、管理値を
		満足することを確認する。
本体(ハウジン	外観検査	有意な変形、傷等の有無について、目視
グ)		により確認する。
	寸法検査	主要な寸法について、実測により確認す
		る。
	材料検査	ミルシートにより確認する。

第2表 設置段階における検査内容

対象部位 分類 検査内容 触媒 有意な変形、傷等の有無について、目視 外観点検 により確認する。 触媒カートリッ 外観検査 有意な変形、傷等の有無について、目視 ジ により確認する。員数についても確認す る。 機能検査 健全性確認として,検査装置により結合 反応時の温度上昇率を測定し、管理値を 満足することを確認する。 本体(ハウジン 有意な変形、傷等の有無について、目視 外観検査 グ) により確認する。

第3表 供用開始以降の点検内容

(3) 触媒の品質管理

触媒は

で製作され,その触媒の比表面積,直径及びパラジウム含 有量について,第4表に示す管理値を満足していることを確認しているため, ロットで製作された触媒について,大きなばらつきはない。品質管理され た触媒を触媒カートリッジへ充填する際には,規定量が充填されているこ とを全ての触媒カートリッジに対して確認するため,同じロットで製作さ れた触媒が充填された触媒カートリッジの性能は同様である。

また,触媒カートリッジを試験装置にセットし,所定の水素濃度の試験 ガスを通気した際の結合反応による温度上昇率を確認することで,工場製 作時における触媒の健全性を担保することとしている。触媒の製作工程及 び所定の品質管理を行うことを踏まえると,触媒の健全性確認の抜き取り 数としては1ロット当たり触媒カートリッジ1枚を確認することで十分であ る。

対象	項目	管理値
触媒カートリッジ	触媒充填量	_
触媒	比表面積	_
	直径	
		-
	パラジウム含有量	
	健全性	水素を含む試験ガスを通気後
		20分以内に10℃以上上昇又は
		30分以内に20℃以上上昇

第4表 触媒製作段階における管理項目

(4) 触媒の健全性

工場製作時の品質管理の一つとして触媒の健全性確認を行うが、使用開 始前においてもPARの性能担保の観点から同様に健全性確認を実施する。 また、PARを設置する原子炉建屋原子炉棟6階の雰囲気環境は空気、室温 条件であり、化学薬剤等の触媒の活性を低下させるような要因はないこと から、触媒にとって良好な環境条件であるが、供用開始後の経年劣化の有 無を評価するため、触媒の健全性を確認する必要がある。

触媒カートリッジを試験装置にセットし,所定の水素濃度の試験ガスを 供給し,水素と酸素の結合反応による温度上昇率を測定することで、メー カ推奨の判定基準を満足していることを評価し,触媒の健全性を確認する。 工場製作時,使用開始前(現地据付時)及び供用開始以降の試験条件,判 定基準を第5表に,試験装置の概要を第1図に示す。

工場製作時においては、メーカ標準の試験条件として水素濃度3vo1%の 試験ガスを通気するが、国内で実施する使用開始前、供用開始後の健全性 確認は、国内で一般的に手配可能な水素ボンベ(水素濃度:1.3vo1%)を 用いて実施する。工場製作時に比べて,低い水素濃度条件で行うため,水 素処理能力が低く,温度上昇も小さい状態となるが,工場製作時と同じ判 定基準を用いるため,保守的な性能管理となる。

なお,使用開始前及び供用開始後の健全性確認試験の抜取り数について は,検査要領を定める際に適切に設定する。

	工場製作時	使用開始前	供用開始後
試験条件	水素濃度:3vo1%	水素濃度:1.3vol%	水素濃度:1.3vol%
	試験流量:1500L <mark>/</mark>	試験流量:1500L <mark>/</mark> h	試験流量:1500L <mark>/</mark> h
	h		
判定基準	10℃以上 <mark>/</mark> 20分	10℃以上 <mark>/</mark> 20分	10℃以上 <mark>/</mark> 20分
	又は	又は	又は
	20℃以上 <mark>/</mark> 30分	20℃以上 <mark>/</mark> 30分	20℃以上 <mark>/</mark> 30分

第5表 触媒の健全性確認試験条件

第1図 検査装置の概要図

触媒基材(アルミナ)について

NIS社製のPARは、触媒担体としてペレット状のアルミナを使用している。アルミナについては、熱水環境で水酸基をもつアルミナ(ベーマイト)に変化し、シリコン系のシール材に含まれる揮発性物質(シロキサン)とベーマイトの水酸基が化学結合することで、触媒表面にシロキサン重合物の膜を形成し、反応を阻害する知見*が得られている。

*「事対2147-002中部電力(株)浜岡原子力発電所4・5号機気体廃棄物処理系の水素濃度上昇 に伴う原子炉手動停止(平成21年7月7日経済産業省原子力安全・保安院)」

浜岡<mark>原子力発電所</mark>の事象では、触媒基材の製造工程において、SCC</mark>対策と して温水洗浄が実施されており、その際、アルミナの一部がベーマイト化した ことが確認されている(第1図参照)。

NIS社製のPARは、触媒基材の製造工程において温水洗浄のプロセスが ないこと、X線回折分析によりベーマイトがないことが確認されているため、 ベーマイト化による触媒の性能低下については対策済みである。また、シロキ サンによる影響は、密閉空間内でPAR触媒をシロキサン試薬に曝露し、曝露 後の再結合反応による温度上昇時間を確認することにより、水素処理性能への 影響を確認しており、有意な差はなく、シロキサンに対して、被毒による影響 がないことを確認している。

[出典]「事対2147-002中部電力(株)浜岡原子力発電所4・5号機気体廃棄物処理系の水素濃度上昇 に伴う原子炉手動停止(平成21年7月7日経済産業省原子力安全・保安院)」

第1図 浜岡原子力発電所気体廃棄物処理系触媒の事象発生前の製造工程

原子炉建屋水素爆発防止対策

1. 水素爆発による原子炉建屋等の損傷を防止する対策の基本方針

東海第二発電所の重大事故対策を含めた深層防護の第3層及び第4層のイ メージを第1図に示す。

第1図 重大事故対策を含めた深層防護第3層及び第4層のイメージ

東海第二発電所の重大事故時の水素爆発による原子炉建屋等の損傷を防止 する対策の基本方針として、まず水素の発生を防止する対策、次に格納容器 からの水素漏えいを防止する対策、更には格納容器から漏えいした水素によ る原子炉建屋での水素爆発防止する対策を実施することとしている。

深層防護の第3層として,設計基準対処設備により炉心損傷を防止する。 重大事故等が発生した場合においては,深層防護の第4層として,低圧代替 注水系等により炉心の著しい損傷を防止する。また,炉心の著しい損傷が発 生した場合には,代替格納容器スプレイ冷却系,格納容器圧力逃がし装置及 び格納容器頂部注水系等により格納容器破損を防止する。なお,格納容器頂 部注水系は,格納容器頂部の温度を低下させ,格納容器頂部からの水素漏え いを抑制する。

それでもなお,格納容器内で発生した水素が原子炉建屋原子炉棟に漏えい した場合には,PARにより水素を処理することで原子炉建屋原子炉棟の水 素爆発による損傷防止を図る。

2. PARによる原子炉建屋水素爆発防止対策

炉心の著しい損傷が発生した場合において,格納容器から原子炉建屋原子 炉棟へ漏えいが想定される箇所として,格納容器主フランジ及び格納容器ハ ッチ類がある。格納容器主フランジからの漏えいガスは原子炉建屋原子炉棟 6 階に上昇する。格納容器ハッチ類からの漏えいガスは,隣接する通路に流 出し,大物搬入ロハッチ等の開口部を通じて,原子炉建屋原子炉棟6階に上 昇する。原子炉建屋原子炉棟6階に上昇した水素は,PARにより処理する。

3. 格納容器から想定を超える水素漏えい時の対応

格納容器破損モードのうち、事象進展が早く格納容器圧力及び温度が高く

53-7-126

推移する「格納容器過圧・過温破損」では,原子炉建屋原子炉棟の水素濃度 はPAR起動水素濃度である 1.5vo1%未満で推移し,原子炉建屋原子炉棟が 水素爆発により損傷することはない。

また、何らかの理由により格納容器の健全性が損なわれ、格納容器から原 子炉建屋原子炉棟へ想定を超える水素漏えいが確認された場合には、格納容 器圧力を低下させることで漏えい箇所からの漏えい量を低減し、フィルタ装 置を介さない大気への放射性物質の放出を極力低減するためにベントを実施 することとしている。これにより、格納容器内の水素が格納容器ベントによ り排出され、原子炉建屋へ漏えいするガスは、ほぼ蒸気となるため、原子炉 建屋原子炉棟で水素爆発は発生しない。

格納容器から想定を超える水素漏えい時の対応フローを第2図に示す。

※格納容器から原子炉建屋への想定を超える漏えいの認知

第2図 格納容器からの想定を超える水素漏えい時の対応フロー

(格納容器圧力逃がし装置によるベント実施の判断フロー)

[・]格納容器からの水素漏えいを検知する手段として、水素濃度計があり、想定を超える水素漏 えいの判断は、「原子炉建屋水素濃度計指示値が2%に到達した場合」とする。

原子炉建屋原子炉棟6階大物搬入口ハッチについて

重大事故等発生時に格納容器から漏えいした水素を原子炉建屋原子炉棟6階 に導くために、通常運転時は原子炉建屋原子炉棟6階大物搬入ロハッチを開状 態に維持することとする。大物搬入ロハッチカバーは2分割の折り畳み式カバ ーであり、電動チェーンブロックにより開閉する。また、電動チェーンブロッ クにより全開状態で固定するとともに、開状態においてはストッパーピンを入 れておくことで、意図しない閉動作を防止する。(第1,2図参照)

なお、今後は必要に応じて固縛等を実施する。

第1図 大物搬入ロハッチの閉状態

第2図 大物搬入ロハッチの開状態

参考 2

原子炉建屋原子炉棟トップベント設備の設置について

原子炉建屋原子炉棟トップベント設備を設置し,仮に原子炉建屋原子炉 棟内の水素濃度が上昇した場合においても,原子炉建屋原子炉棟6階天井 部の水素を外部へ排出することで,水素の建屋内滞留を防止する設計とす る。

原子炉建屋原子炉棟トップベント設備としては,原子炉建屋原子炉棟屋 上に2個の弁を設置し,遠隔人力操作機構にて遠隔で操作が可能なものと する。

トップベントを開放する場合は,原子炉建屋原子炉棟外への放射性物質 の拡散を抑制するため,放水砲による原子炉建屋原子炉棟屋上への放水を 並行して実施することとする。なお,放水砲については「3.12工場等外へ の放射性物質の拡散を抑制するための設備(設置許可基準規則第55条に対 する設計方針を示す章)」で示す。

第1図 原子炉建屋原子炉棟トップベント設備 設備概要

原子炉建屋原子炉棟の水素挙動評価へのGOTHICコードの適用性

1. はじめに

原子炉建屋水素対策の有効性を評価するための熱流動解析において、米国 EPRI(Electric Power Research Institute)により開発された汎用熱流 動解析コード「GOTHIC(Generation of Thermal-Hydraulic Information for Containments)」を用いている。以下に本解析コードを用 いる妥当性を示す。

- 2. 本解析コードの特徴
 - (1) 概要

本解析コードは、気相、液体連続相、及び液体分散相(液滴)の3相について、各々、質量、運動量及びエネルギーの3保存式を解く、完全3流体(9保存式)解析コードである。

各相間の質量,運動量及びエネルギーの移動は構成式で表され,これに より,凝縮・沸騰現象や,凝縮した液体によって随伴される気相の流れ 等,複雑な混相流現象を模擬することができる。また,ファン・水素再結 合器等の機器モデルが組み込まれており,これらの機器の作動及び制御を 模擬できる。

このような基本構成により,原子炉建物内における気液混相の熱流動を 取り扱うことができる。

(2) 流体

前述のように、本解析コードは気相及び液相の熱流動を取り扱うことが できる。このうち気体については、蒸気だけでなく水素、窒素、酸素等の 様々なガスが混合した多成分ガスを取り扱うことができる。

(3) 伝熱

流体の各相間の伝熱(エネルギー移動)は,(1)で記述したように構成 式で表される。

流体と壁面等の構造体との間の伝熱は,壁面熱伝達モデルにより評価す る。壁面熱伝達モデルは,自然対流熱伝達及び強制対流熱伝達,凝縮熱伝 達等のモデルが組み込まれており,流体と構造物の間の熱伝達及び壁面近 傍の蒸気の凝縮等を考慮できる。また,構造物内部の熱伝導を考慮でき る。

(4) 形状モデル

本解析コードの形状モデル例を第1図に示す。本解析コードでは、区画 を複数ボリューム(サブボリューム分割)として扱う分布定数系モデル と、区画を1ボリュームとして扱う集中定数系モデルがあり、解析内容に 応じて適切にモデル化することが可能である。

このうち、分布定数系モデル(サブボリュームモデル)は、いわゆる直 交系の構造格子モデルであり、3次元の流体挙動が計算される。分布定数 系モデルにおいては、各サブボリュームの体積や高さ等、また、サブボリ ューム間の流路面積や水力等価直径等の形状パラメータを設定することに より、当該部の3次元形状をモデル化することが可能である。更に、乱流 モデル及び分子拡散モデルが組み込まれており、乱流拡散及び分子拡散に よる質量・運動量・エネルギーの移動を考慮可能である。また、壁面摩擦 モデルや局所圧力損失モデルにより、壁面と流体との相互作用や、流路内 の構造物を通過することによる運動量・エネルギーの損失を考慮可能であ る。更に,各相間の界面を通じた質量,運動量,エネルギーの移動が考慮 されている。各サブボリュームについて,これらのモデルを含む質量・運 動量・エネルギーの保存式を計算することにより,三次元熱流動を評価す る。

集中定数系においては、各区画・各相について質量とエネルギーの保存式 が計算される。一方、集中定数系の区画間の流れはフローパスモデルで模擬 する。フローパスは、各相について1次元の運動量の保存式が計算され、壁 面摩擦モデル、局所圧力損失モデル、各相間の界面を通じた運動量の移動等 が考慮されている。

また、区画と境界条件とを接続することにより、境界との流体の流入・流 出が計算される。フローパスは1次元の流れであるが、場合によって、これ らを複数設置することにより、区画間の循環流れ等も模擬することができ る。

形状モデルの例を第1図に示す。

第1図 形状モデル例

(5) 境界条件

流入境界から流入する流体の種類,流量,エネルギー等を設定できる。 また,圧力境界条件により,境界での流体の圧力等を設定できる。一方, 熱伝導体の境界においては,境界での熱流束,温度等を設定可能である。 (6) 機器モデル

ファンや水素再結合器等の機器を模擬できる。ファンモデルは、フローパスに流入・流出する流量を制御できる。水素再結合器モデルは、当該モ

ファンモデル及び水素再結合器モデルを組み合わせることにより、PA Rの試験データに基づく性能をモデル化することが可能である。

3. 本解析コードの妥当性確認

原子炉建屋水素対策の有効性を評価するための熱流動解析に本解析コードを 用いることの妥当性を確認するため,基本的な物理現象である3次元的な流動 によるガスの流動・拡散現象,ガスの熱流動と水素ガス濃度変化への影響が大 きい水蒸気の壁面熱伝達による凝縮及び構造体内部熱伝導,PARモデルに着 目する。

(1) 3次元流動解析への適用性

原子炉建屋内では,格納容器等から漏えいしたガスが拡散し混合する。 原子炉建屋水素対策の有効性評価では,オペレーティングフロアに対し て,複数ボリューム分割できる分布定数系モデルを適用することで,水素 や水蒸気等ガスのボリューム間の拡散・混合を解析可能である。

ガスの拡散・混合に関する代表的な総合効果試験としてNUPEC試験 がある(第2図参照)。NUPEC試験は,第1表及び第3図から第5図 に示すように,25の区画に分割された試験体系において,ガス放出の有 無,放出ガスの種類(水蒸気又は水素の代替としてのヘリウム)やスプレ イの有無等を考慮した試験が行われ,雰囲気圧力・温度やガス濃度分布が 測定されている。ここでは、水蒸気及び水素の代替としてのヘリウムの両 方を放出し、かつスプレイを想定しない点で、原子炉建物水素対策の想定 条件に近い試験ケース TestM-4-3 を対象に、解析の試験データとの比較を 行った。

TestM-4-3の試験条件を以下に示す。

- •初期圧力:101kPa[abs]
- 初期温度:28℃
- ・蒸気の放出条件:0.33kg/s(1,800秒で停止)
- ・ヘリウムの放出条件:0.03kg/s(1,800秒で停止)
- ・ガス放出区画:第4図参照

・スプレイ:なし

濃度のガスが放出するノード近傍のヘリウム濃度をプロットしていることから、解析の試験との差がやや大きい。ヘリウム濃度の成層化について、試験 データのガス放出区画とドーム部のヘリウム濃度は時間とともに均一化して おり、GOTHIC解析で再現できている。

以上より,格納容器漏えいによる水素や水蒸気の放出を想定して,ガス拡 散・混合を評価する原子炉建物水素流動解析に本解析コードを適用するのは 妥当である。

第1表	NUPE	C試験体系の内部区画	(出典:参考文献[1]Table3-2)
-----	------	------------	----------------------

ノード番号	区画	
1	炉内計装チェイス	
2	CV サンプ ポンプ室	
3	一般部(下部) C	
4	一般部(下部) D	
5	一般部(下部) A	
6	一般部(下部) B	
7	SG 基礎部 C	
8	SG 基礎部 D	
	(Test M-4-3 ガス放出区画)	
9	CV 冷却材 ドレンタンク	
10	SG 基礎部 A	
11	SG 基礎部 B	
12	一般部(上部) C,D	
13	一般部(上部) A,B	
14	SGループ室 C	
15	SGループ室 D	
16	加圧器室(下部)	
17	SGループ室 A	
18	SGループ室 B	
19	キャビティ	
20	SG 煙突部 C	
21	SG 煙突部 D	

236

HYDROGEN CONCENTRATION (vol. %)

第2図 水素濃度の範囲と試験スケール(出典:[1]Fig. 3-1)

第3図 NUPEC試験体系の概要(出典:[2]Fig. 17-1)

第4図 NUPEC試験体系における区画と開口部(出典:[2]Fig. 17-2)

第5図 NUPEC試験体系におけるヘリウム濃度及び圧力の計測点

(出典:[3]図 3.1.4)

第6図 NUPEC試験の解析モデル概要(出典:[2]Fig. 17-3)

第7図 NUPEC試験の解析モデルにおける分布定数系によるノード分割

(出典:[2]Fig.17-4)

第8図 格納容器圧力(出典:[2] Fig.17-16)

第9図 格納容器温度(出典:[2] Fig. 17-17)

第10図 ヘリウム濃度(出典:[2] Fig. 17-19)

(2) 水蒸気凝縮(壁面熱伝達)への適用性

凝縮熱伝達モデルとして, DLM-FMモデル (Diffusion Layer Model with enhancement due to Film roughening and Mist generation in the boundary layer) を使用した。本モデルは, 液膜の擾乱や壁面付 近での液滴発生を考慮した最適評価モデルである。

本モデルで評価した凝縮熱伝達について,個別効果試験データとの比較 を第11図に示す。また,比較する試験パラメータの範囲を以下に示す。

図に示すとおり,ほとんどの試験データに対して約20%以内で予測できている。想定されるパラメータ範囲は,以下に示すように試験パラメータの範囲を概ね満たすことから,本モデルを適用するのは妥当である。

第11図 DLM-FMモデルの試験データとの比較(出典:[2] Fig. 5-40)

(3) 構造体内部熱伝導

オペレーティングフロアの壁及び天井の構造体を熱伝導体とみなし,G OTHICコードに内蔵されている1次元熱伝導モデルを使用している。

円筒の熱伝導体において,熱伝導体の初期温度を 500F,熱伝導体周り の流体温度を 200F とした条件で,GOTHICコードで評価した円筒中 心の温度の時間変化と理論解との比較を第 12 図に示す。GOTHICコ ードは理論解とよく一致しており,原子炉建物水素対策の有効性評価の中 で,構造体内部熱伝導へ本モデルを適用することは妥当である。 第12図 円筒中心温度の1次元熱伝導モデルによる計算結果(変数名:TA3) と解析解(変数名:DC3T)との比較(出典:参考文献[2]Fig.4-11)

(4) PARモデル

オペレーティングフロアのような相対的に広大な空間に設置された PA Rによる水素再結合挙動を、本解析コードによって適切に行えるかについ ては、以下の2つの点に着目して検討する必要がある。

- ・本解析コードでモデル化するPARにおいて、本来、PAR内部で生じているような局所的な熱・流動影響を伴う水素・酸素再結合を取り扱えるか
- ・PARの大きさに対して、相対的に空間スケールの大きい「粗メッシ ュ」モデルによっても、適正なPAR流入気体条件(水素,酸素濃度, 気体温度,圧力)を与えることができるか

53-7-146

以下では、これらの観点に対しての考察・検討を示す。

a. PAR内の局所流動の扱い

PARの内部においては、カートリッジにおける水素・酸素の再結合 開始に伴い、カートリッジでの再結合熱の流入気体への伝熱、伝熱に伴 う気体の浮力による上昇流の発生、及び上昇流に対する流動抵抗の発生 等、複雑な熱流動が発生していると考えられる。

KALI試験^[4]でのPARの水素処理量の基本式についての妥当性検 証解析においては、

(第13図)より求めた 処理速度の実験値と,試験条件(温度,圧力は代表値)を相関式への入 力値として与えて算出した処理速度を比較しており,これによって相関 式の妥当性が確認された。すなわち,PAR内部の複雑な流動の結果と しての水素処理容量を,PARの入口において計測された水素濃度,気 体温度及び気体圧力の関数として整理して与えたものが,水素処理容量 相関式である。水素処理容量相関式はPAR内の浮力や流動抵抗等の局 所流動及び水素処理特性を内包しており,PAR入口条件として水素濃 度,気体圧力,気体温度を与えれば,これらのPAR内部の局所性を陰 に含んだ形で,当該PAR水素処理容量を得ることができるように配慮 されている。

第13図 KALI試験の計測位置

b. GOTHICにおけるPARのモデル化

GOTHICにおいては、NIS社製のPARによる水素処理相関式
を、機器モデルの一つである
で模擬している。G
OTHICにおけるPARの組込みロジックを第14図に示す。
を使用して, F i
s c h e r ^[5] の相関式に示されるPAR入口から自然に引き込まれる
を模擬している。次に,
を使用して,
PAR入口水素濃度等のパラメータから上記の相関式で計算
される水素処理量を模擬している。

c. GOTHICのオペレーティングフロア解析モデルとPARモデルの 関係

上記b.により,GOTHICコードにおいて,PARの水素処理容 量相関式を忠実にモデル化していることを示した。また,a.により, PAR入口の水素濃度,気体圧力,気体温度を与えれば,適正な水素処 理容量を計算できることを示した。

GOTHICによるPARの解析においては、オペレーティングフロ ア内のサブボリュームの大きさは、PARの大きさと比較して大きく、 PAR入口部を局所的にモデル化はしていない。すなわち、PARの水 素処理量を適正に評価するためには、PARの入口条件を適切に評価す る必要がある。これについて考察を行った。

PARモデルでは、フローパスの入口と出口を同じサブボリュームに 接続し、同サブボリュームの水素濃度・酸素濃度・温度をPAR入口の 条件として使用している。PARが設置される実機建屋体系では、作動 中のPAR排気は周囲雰囲気に比べて高温であるので、上方へ立ち昇っ て行き、PARの周囲に留まることはないと考えられるので、このよう にPAR設置ボリュームに排気を混合させるモデル化は、以下に示すと おり保守的な設定と考える。

水素濃度

PARで処理され水素濃度が低くなったガスが,フローパスの出口 より同サブボリュームに排出され混合する。そのため,同サブボリュ ームの水素濃度は,実際のPAR入口の水素濃度よりも低くなり,相 関式で計算した水素処理容量が小さくなるため保守的な設定と考え る。

・酸素濃度

PARで処理され酸素濃度が低くなったガスが,フローパスの出口 より同サブボリュームに排出され混合する。そのため,同サブボリュ ームの酸素濃度は,実際のPAR入口の酸素濃度よりも低くなり,P ARの起動の観点で保守的な設定と考える。ただし,東海第二発電所 の場合,水素発生量に比べて十分な酸素量を有しており,酸素濃度に よる影響はない。

·気体温度

GOTHICモデルにおいては、PARの水素・酸素再結合による 発生熱量が、サブノード内の気体全体を加熱するため、PAR出口温 度については、実際よりも低く評価され、浮力による上昇速度が実際 よりも小さくなる。これは、オペレーティングフロアの気体の混合性 を小さくする。水素濃度分布の局所化や成層化の観点からは、オペレ ーティングフロアの気体の混合性が促進されない方が一般に厳しい評 価となると考えられる。

また、PARに流入する気体温度の観点からは、実際よりも高温な 気体がPARに流入することになり、これはPARの水素処理速度を 実際よりも低下させる方向に作用する。

・気体圧力

解析においては、サブノード内の気体圧力は一定である。一方、実際の流動においては、圧力に分布がある。しかしながら、解析対象と しているような、解放空間における空間内の圧力差は小さく、圧力分 布を均一に扱っている影響は僅少と考えられる。

d. PAR設置状態における総合的な解析能力

3. (1)に示したNUPEC試験についての解析は、上記のa.から

c. が適合する状況で行われたものであり,この結果は,3.(1)で先述のように,GOTHICで適切なPAR解析を行い得ることを示している。

以上から, GOTHICコードによるPAR解析については,

- ・ PAR内の局所性については、 PAR入口条件に縮約された水素処 理容量相関式により、
- ・PAR周囲を比較的粗メッシュで扱っていることについては、その 設定がPARの水素処理量やオペレーティングフロア内のガス混合
 性を低く見積もる定性的傾向があることにより、

評価モデルとしては適正であることを示した。

また,総合的な評価能力については,3.(1)の実験解析により,適切 な解析能力があることを示した。

以上の検討から、GOTHICにおけるPARのモデル化、及び同モデ ルを用いての水素・酸素再結合解析は適正に実施できる。

参考文献一覧

- 1 NUPEC, "Final Comparison Reprot on ISP-35: NUPEC Hydrogen Mixing and Distoribution Test(Test M-7-1)", CSNI Report NEA/CSNI/R(94)29, December, 1994.
- 2 GOTHIC Thermal Hydraulic Analysis Package, Version 8.1(QA). EPRI, Palo Alto, CA: 2014.
- 3 独立行政法人原子力安全基盤機構,溶接部等熱影響部信頼性実証試験(原 子炉格納容器)に関する報告書(平成4年度),平成5年3月

- 4 EPRI and EDF, "Generic Tests of Passive Autocatalytic Recombiners (PARs) for Combustible Gas Control in Nuclear Power Plants", June 1997.
- 5 K. FISCHER, "QUALIFICATION OF A PASSIVE CATALYTIC MODULE FOR HYDROGEN MITIGATION", Nuclear Technology VOL.112, Oct. 1995

原子炉建屋ガス処理系の健全性について

(1) 原子炉建屋ガス処理系の水素爆発に対する考慮について

原子炉建屋ガス処理系は,非常用ガス再循環系と非常用ガス処理系から なり,非常用ガス再循環系は,フィルタユニット,排風機,ダクト及び弁 などから構成されており,原子炉建屋原子炉棟内でガスを再循環させ,放 射性物質を吸着除去する。非常用ガス処理系は,フィルタユニット,排風 機,ダクト及び弁などから構成されており,非常用ガス再循環系で処理し たガスの一部を再度処理した後,非常用ガス処理系排気筒から大気へ放出 させ,原子炉建屋原子炉棟を負圧に保つ。

原子炉建屋ガス処理系は、<mark>原子炉建屋原子炉棟内の水素を含む気体を排</mark> 出し、原子炉建屋原子炉棟内の水素濃度を可燃限界未満とすることで、原 子炉建屋原子炉棟及び原子炉建屋ガス処理系の水素濃度を防止する機能を 有している。

また,原子炉建屋ガス処理系は,系統内に水素が滞留しないよう非常用 ガス再循環系排風機及び非常用ガス処理系排風機により水素を含むガスを 屋外に排出する設計としている。

さらに,原子炉建屋ガス処理系は,原子炉建屋原子炉棟の水素濃度が可 燃限界未満の範囲において使用する。原子炉建屋ガス処理系運転中は原子 炉建屋原子炉棟の水素濃度を監視し,原子炉建屋原子炉棟の水素濃度が 2vo1%に到達した場合は,原子炉建屋ガス処理系を停止する。したがっ て,原子炉建屋ガス処理系は,系統内の水素濃度が可燃限界未満であるこ とから水素爆発することなく健全に運転継続可能である。 非常用ガス再循環系のフィルタユニットには、よう素用チャコールフィ ルタの性能を満足させるため電気ヒータを使用している。電気ヒータはフ ィン付の外装管内に収納されており非常用ガス再循環系の処理空気と直接 接触しない構造となっている。また、非常用ガス再循環系の処理空気温度 が105℃及び137℃以上となった場合に過熱防止用サーモスタットが動作す る設計となっており、水素ガスの着火温度である約500℃*に対して十分 低い温度での使用となる。よって、原子炉建屋ガス処理系は、水素爆発す ることなく健全に運転継続可能である。

この設計により、「電気設備に関する技術基準を定める省令」第六十九 条及び「工場電気設備防爆指針」で要求される防爆性雰囲気とはならない ため、原子炉建屋ガス処理系に設置される電気・計装品を防爆型とする必 要はなく、防爆を目的とした電気設備の接地の必要もない。ただし、電気 設備の必要な箇所には「原子力発電工作物に係る電気設備に関する技術基 準を定める省令」第十条、第十一条に基づく接地を施す設計とする。

※ 水素ガスの着火温度について(水素濃度等の依存性について)

水素ガスの着火温度(自然着火温度)は濃度,圧力等に依存性があるが,水素 と空気の混合気体の1気圧における最低着火温度として500℃であることが機械工 学便覧に示されている。

第1図に, NUREG/CR 2726「LIGHT WATER REACTOR HYDROGEN MANUAL June 1983」 及び Westinghouse Electric Corporation のレポート「Hydrogen Flammability Data and Application to PWR Loss-of-Coolant Accident, Report WAPD-SC-545」に示されている「水素濃度と水素着火温度の関係」を示す。第1図は圧力が 792kPaの場合でのデータであるが、水素着火温度は水素濃度、水蒸気濃度に依存 するものの500℃を下回らないことが分かる。 また,第2図に,同じNUREG/CR2726に示されている「水素の最低着火エネルギー と圧力の関係」を示す。第2図は,圧力が低くなるほど水素の最低着火エネルギー が大ききことを示していることから,圧力が低くなるほど水素の着火温度は高く なることが分かる。

第1図,第2図から,水素の着火温度は濃度,圧力に依存するが500℃を下回らないと考えられる。

第1図 水素着火温度と水素濃度の関係

第2図 水素の最低着火エネルギーと圧力の関係

53-8 その他設備

以下に,水素爆発による原子炉建屋等の損傷を防止するための自主設備の概 要を示す。

(1) 格納容器頂部注水系の設置

格納容器頂部注水系は、炉心の著しい損傷が発生した場合において、格 納容器頂部を冷却することで格納容器外への水素漏えいを抑制し、原子炉 建屋原子炉棟の水素爆発を防止する機能を有する。格納容器頂部注水系は 常設(第1図)及び可搬型(第2図)があり、原子炉ウェルに水を注水す ることで、格納容器トップヘッドフランジを外側から冷却することができ る。格納容器トップヘッドフランジは事故時の過温・過圧状態に伴うフラ ンジ開ロで、シール材が追従できない程の劣化があると、閉じ込め機能を 喪失する。このシール材は、以前はシリコンゴムを採用していたが、格納 容器閉じ込め機能の強化のために耐熱性、耐蒸気性、耐放射線性に優れた 改良EPDM製シール材に変更し、閉じ込め機能強化を図る。改良EPD M製シール材は200℃蒸気が7日間継続しても閉じ込め機能が確保できる ことを確認しているが、シール材の温度が低くなると、熱劣化要因が低下 し、閉じ込め機能もより健全となり、原子炉建屋原子炉棟への水素漏えい を抑制できる。

格納容器頂部注水系(常設)は、常設低圧代替注水<mark>系</mark>ポンプにより、重 大事故等発生時に代替淡水貯槽の水を格納容器頂部へ注水することで格納 容器頂部を冷却できる設計とする。

格納容器頂部注水系(可搬型)は,重大事故等発生時に可搬型代替注水 大型ポンプにより原子炉建屋外から淡水貯水池又は代替淡水貯槽の水,若 しくは海水を格納容器頂部へ注水することで格納容器頂部を冷却できる設 計とする。

(2) 原子炉建屋原子炉棟トップベント設備の設置

原子炉建屋原子炉棟トップベント設備を設置し,仮に原子炉建屋原子炉 棟内の水素濃度が上昇した場合においても,原子炉建屋原子炉棟6階天井 部の水素を外部へ排出することで,水素の建屋内滞留を防止する設計とす る。

原子炉建屋原子炉棟トップベント設備は,原子炉建屋原子炉棟屋上に 2 個の弁を設置し,遠隔人力操作機構にて遠隔で操作が可能なものとする。

トップベントを開放する場合は,原子炉建屋原子炉棟外への放射性物質 の拡散を抑制するため,放水砲による原子炉建屋原子炉棟屋上への放水を 並行して実施することとする。なお,放水砲については「3.12工場等外へ の放射性物質の拡散を抑制するための設備(設置許可基準規則第55条に対 する設計方針を示す章)」で示す。

第 53-7-3 図 原子炉建屋原子炉棟トップベント設備 設備概要