東海第二発電所 審查資料		
資料番号	PD-2-10 改 23	
提出年月日	平成 29 年 10 月 23 日	

東海第二発電所

津波による損傷の防止

平成 29 年 10 月 日本原子力発電株式会社

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

目

次

- 第1部
 - 1. 基本方針
 - 1.1 要求事項の整理
 - 1.2 追加要求事項に対する適合性
 - (1) 位置,構造及び設備
 - (2) 安全設計方針
 - (3) 適合性説明
 - 1.3 気象等
 - 1.4 設備等
 - 1.5 手順等

第2部

- I. はじめに
- Ⅱ. 耐津波設計方針
- 1. 基本事項
- 1.1 設計基準対象施設の津波防護対象の選定
- 1.2 敷地及び敷地周辺における地形及び施設の配置等
- 1.3 基準津波による敷地周辺の遡上・浸水域
- 1.4 入力津波の設定
- 1.5 水位変動・地殻変動の評価
- 1.6 設計または評価に用いる入力津波
- 2. 設計基準対象施設の津波防護方針
- 2.1 敷地の特性に応じた津波防護の基本方針
- 2.2 敷地への浸水防止(外郭防護1)
- (1) 遡上波の地上部からの到達, 流入防止
- (2) 取水路, 放水路等の経路からの津波の流入防止
- 2.3 漏水による重要な安全機能への影響防止(外郭防護2)
- 2.4 重要な安全機能を有する施設の隔離(内郭防護)
 - (1) 浸水防護重点化範囲の設定
- (2) 浸水防護重点化範囲における浸水対策
- 2.5 水位変動に伴う取水性低下による重要な安全機能への影響防止
 - (1) 非常用海水冷却系の取水性
- (2) 津波の二次的な影響による非常用海水冷却系の機能保持確認
- 2.6 津波監視設備

- 3. 施設・設備の設計方針
- 3.1 津波防護施設の設計
- 3.2 浸水防止設備の設計
- <u>3.3 津波監視設備</u>
- 3.4 施設・設備の設計・評価に係る検討事項

下線部:今回提出資料

添付資料

- 1 設計基準対象施設の津波防護対象設備とその配置について
- 2 耐津波設計における現場確認プロセスについて
- 3 津波シミュレーションに用いる数値計算モデルについて
- 4 敷地内の遡上経路の沈下量算定評価について
- 5 管路解析のモデルについて
- 6 管路解析のパラメータスタディについて
- 7 港湾内の局所的な海面の励起について
- 8 入力津波に用いる潮位条件について
- 9 津波防護対策の設備の位置付けについて
- 10 常用海水ポンプ停止の運用手順について
- 11 残留熱除去系海水ポンプの水理実験結果について
- 12 貯留堰設置位置及び天端高さの決定の考え方について
- 13 基準津波に伴う砂移動評価
- 14 非常用海水ポンプ軸受の浮遊砂耐性について
- 15 漂流物の移動量算出の考え方
- 16 津波漂流物の調査要領について
- 17 津波の流況を踏まえた漂流物の津波防護施設等及び取水口への到 達可能性評価について
- 18 燃料等輸送船の係留索の耐力について
- 19 燃料等輸送船の喫水と津波高さの関係について
- 20 地震後の防波堤の津波による影響評価について
- 21 鋼製防護壁の設計方針について
- 22 鉄筋コンクリート防潮壁の設計方針について
- 23 鉄筋コンクリート防潮壁(放水路エリア)の設計方針について
- 24 鋼管杭鉄筋コンクリート防潮壁の設計方針について
- 25 防潮扉の設計と運用について
- 26 耐津波設計において考慮する荷重の組合せについて
- 27 防潮堤及び貯留堰における津波荷重の設定方針について
- 28 耐津波設計における余震荷重と津波荷重の組合せについて
- 29 各種基準類における衝突荷重の算定式及び衝突荷重について
- 30 放水路ゲートの設計と運用について
- 31 貯留堰継ぎ手部の漏水量評価について
- 32 貯留堰の構造及び仕様について
- 33 貫通部止水対策箇所について
- 34 隣接する日立港及び常陸那珂港区の防波堤の延長計画の有無につ

いて

- 35 防波堤の有無による敷地南側の津波高さについて
- 36 防潮堤設置に伴う隣接する周辺の原子炉施設への影響について
- 37 設計基準対象施設の安全重要度分類クラス3の設備の津波防護について
- 38 審査ガイドとの整合性(耐津波設計方針)

2.6 津波監視設備

【規制基準における要求事項等】

敷地への津波の繰り返しの襲来を察知し,津波防護施設,浸水防 止設備の機能を確実に確保するために,津波監視設備を設置するこ と。

【検討方針】

敷地への津波の繰り返しの襲来を察知し,津波防護施設及び浸水 防止設備の機能,取水口及び放水口を含む敷地東側の沿岸域,並び に敷地内外の状況を監視するために,津波監視設備として,津波・構 内監視カメラ,取水ピット水位計及び潮位計を基準津波の影響を受 けにくい位置に設置する。

【検討結果】

津波監視設備として以下の設備を設置し監視する設計としている。

- ・津波・構内監視カメラ
- ・取水ピット水位計
- · 潮位計

なお,本設備は,地震発生後,津波が発生した場合,その影響を俯 瞰的に把握するため設置する

a. 設置位置

津波監視設備は,津波の襲来状況,津波防護施設及び浸水防 止設備の機能,取水口及び放水口を含む敷地東側の沿岸域,並 びに敷地内外の状況を監視でき,かつ,基準津波の影響を受け にくい位置に設置する。 津波・構内監視カメラは原子炉建屋屋

5条 2.6-1

上T.P.約+64m,防潮堤上部T.P.約+18~約+20m,取水ピット水 位計は取水ピット上版T.P.約+3m,潮位計は取水路内T.P.約-5m(検出器)に設置する。第2.6-1図に津波監視設備の配置図を 示す。

第2.6-1図 津波監視設備配置図

5条 2.6-3

b. 仕様

津波・構内監視カメラは、津波の襲来状況、津波防護施設及び 浸水防止設備の機能、取水口及び放水口を含む敷地東側の沿岸 域、並びに敷地内外の状況を監視でき、昼夜に亘り中央制御室 及び緊急時対策所で監視可能な設計とする。

取水ピット水位計は,非常用海水ポンプの設置位置である取 水ピット水位を監視するものであり,計測範囲は取水ピット底 面付近から取水ピット上版下端付近に相当するT.P.-7.8m~ T.P.+2.3mを測定範囲とした設計とする。また,潮位計は,基準 津波による取水口周辺の潮位を監視するものであり,引き波時 の非常用海水ポンプの取水性を確保するために設置する貯留堰 の天端高さから敷地前面東側の防潮堤における上昇側入力津波 高さを包含するT.P.-5.0m~T.P.+20.0mを計測範囲とした設 計とする。

また,津波監視設備は耐震 S クラスとし,電源は所内常設直 流電源設備から受電することで,交流電源喪失時においても監 視が継続可能な設計とする。

第2.6-1表に津波・構内監視カメラの基本仕様,第2-6-2表に 取水ピット水位計及び潮位計の基本仕様を示す。

津波監視設備は発電長の指示により中央制御室で監視する。また,災害対策本部が確立した場合は災害対策本部長の指示により 緊急時対策所の災害対策本部で監視する。

項目	基本仕様
名称	津波・構内監視カメラ
耐震クラス	Sクラス
設 置 場 所	原子炉建屋屋上 防潮堤上部
監視場所	中央制御室, 緊急時対策所
個数	原子炉建屋屋上:3 防潮堤上部:4
夜間監視手段	赤外線
遠 隔 操 作	可能(上下左右)
電源	所内常設直流電源設備

第2.6-1表 津波・構内監視カメラの基本仕様

項目	基本	仕 様
名称	取水ピット水位計	潮位計
耐震クラス	Sクラス	Sクラス
設置場 所	取水ピット	取水路
監視場所	中央制御室,	中央制御室,
	緊急時対策所	緊急時対策所
個数	2	2
	T.P 7.8m	T.P. — 5.0m
計(則)車□	\sim T.P. + 2.3m	\sim T.P. + 20.0m
検出器の種類	電波式	圧力式
電源	所内常設直流電源設備	所内常設直流電源設備

第2.6-2表 取水ピット水位計及び潮位計の基本仕様

3.3 津波監視設備

【規制基準における要求事項等】

津波監視設備については、津波の影響(波力、漂流物の衝突等)に 対して、影響を受けにくい位置への設置、影響の防止策・緩和策等を 検討し、入力津波に対して津波監視機能が十分に保持できるよう設 計すること。

【検討方針】

津波監視設備については、津波の影響(波力、漂流物の衝突等)に 対して、影響を受けにくい位置への設置、影響の防止策・緩和策等を 検討し、入力津波に対して津波監視機能が十分に保持できるよう設 計する(【検討結果】参照)。

【検討結果】

津波監視設備として, 津波・構内監視カメラ, 取水ピット水位計及 び潮位計を設置する。以下に津波監視設備の津波による影響評価結 果及び津波監視設備の仕様を示す。また, 第3.3-1図に津波監視設備 の配置図を示す。

- (1) 津波監視設備の津波による影響評価
 - a. 津波による影響の有無
 - (a) 津波・構内監視カメラは、津波の襲来状況、津波防護施設及び浸水防止設備の機能、取水口及び放水口を含む敷地東側の沿岸域、並びに敷地内外の状況を監視するものであり、原子炉建屋の屋上T.P.約+64m、及び防潮堤上部T.P.約+18~約+20mの位置に設置する。このため、津波の遡上域になく基準

津波の影響は受けない。

- (b) 取水ピット水位計は、主として基準津波による引き波時の 取水ピットの下降側水位を監視するものである。取水ピット 水位計の設置位置は、防潮堤と海水ポンプ室間の取水ピット 上版コンクリート躯体内に設置するため、津波の遡上域にな いが、取水口から流入する津波の影響を考慮する必要がある。 このため、後述b項において津波による影響に対する防止策・ 緩和策等を示す。
- (c) 潮位計は、主として基準津波による寄せ波時の取水口前面の上昇側水位を監視するものであり、取水路内の側壁に設置するため、取水ピット水位計と同様に、取水口から流入する 津波の影響を考慮する必要がある。このため、後述b項において津波による影響に対する防止策・緩和策等を示す。

第3.3-1図 津波監視設備の配置図

b. 津波による影響に対する防止策・緩和策等

前述 a 項に示したとおり, 取水ピット水位計及び潮位計は, 取水口から流入する津波の影響が考えられるため, 津波の波 力及び漂流物の衝突に対する防止策・緩和策を検討した。

(a) 津波の波力に対する防止策・緩和策等

津波による波力に対して、取水ピット水位計は、「1.6 設 計又は評価に用いる入力津波」において示した取水ピットに おける潮位のばらつき及び入力津波の数値計算上のばらつき を考慮した津波高さT.P.+19.4mに、参照する裕度+0.65mを 含めたT.P.+22.0mの水頭を考慮した設計とするため、津波の 波力による影響は受けない。また、潮位計は、「1.6 設計又は 評価に用いる入力津波」において示した敷地前面における潮 位のばらつき及び入力津波の数値計算上のばらつきを考慮し た津波高さT.P.+17.9mに、参照する裕度+0.65mを含めたT.P. +20.0mの水頭を考慮した設計とするため、津波の波力による 影響は受けない。

(b) 津波による漂流物の衝突に対する防止策・緩和策等 津波による漂流物の衝突に対しては、「2.5項 水位変動に伴 う取水性低下による重要な安全機能への影響防止」において 示したとおり、取水口の上部高さT.P.+3.31mに対し、基準津 波による敷地前面における水位はT.P.+3.31mに対し、基準津 波による敷地前面における水位はT.P.+17.9mであることか ら、漂流物の選定において、取水口に向かう可能性が否定で きないと評価した作業台船及び漁船は、取水口の上部を通過 するものと考えられる。仮に取水口に漂流物が向かったとし ても、漂流物の寸法及び取水口呑口の寸法の関係から、取水

路内を大きな漂流物が逆流することは考え難いため,漂流物の影響は受けない。第3.3-1表に作業台船及び漁船の主要諸元, 第3.3-2図に取水口呑口部の構造を示す。

対象	重量	寸法	台数
作業台船	約 44t	長さ約 17m×幅約 8m	1
5t 級漁船 ^{※1} (総トン数)	約 15t ^{※ 2} (総トン数)	長さ 14m×幅約 3m	1 ^{** 3}

第3.3-1表 作業台船及び漁船の主要諸元

※1:漁港からの聞き取り調査結果に基づき設定

※2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会 平成 14年3月)より,総トン数3tを3倍し排水トン数を15tと設定

第3.3-2 図 取水口呑口部構造

上記のとおり,取水ピット水位計及び潮位計は,基準津波 による漂流物の影響は受けないと考えられるが,ここでは漂 流の可能性が否定できないと評価した漂流物以外の比較的寸 法の小さい漂流物を想定した場合の影響について評価すると ともに,防止策・緩和策等について検討した。

i) 取水ピット水位計

取水ピット水位計は,取水路奥の取水ピット上版のコン クリート躯体に設ける φ 400mmの貫通孔内に設置するため, 取水路内に流入した漂流物が取水ピット水位計に衝突する 可能性は極めて低いと考えられる。

このため、比較的寸法の小さい漂流物を想定しても、漂 流物の衝突による影響はないと考えるが、より安全側の対 策として、海水ポンプ室の北側及び南側にそれぞれ1個ずつ 計2個の取水ピット水位計を設置し、多重化を図ることとす る。第3.3-3図に取水ピット水位計の配置図、第3.3-4図に取 水ピット水位計の据付部の概略構造を示す。

第3.3-3図 取水ピット水位計配置図

第3.3-4 図 取水ピット水位計据付面概略構造

ii) 潮位計

潮位計は、取水口入口近傍の側壁に設置するが、検出器 及びケーブル・電線管は φ 400mm,厚さ10mmのステンレス製 の防波管内に収納することにより、取水路内に流入した漂 流物から保護できる設計としている。

このため、比較的寸法の小さい漂流物を想定しても、漂 流物の衝突による影響はないと考えるが、より安全側の対 策として、取水口の北側及び南側にそれぞれ1個ずつ計2個 の潮位計を設置し、多重化を図ることとする。第3.3-5図に 潮位計の配置図、第3.3-6図に潮位計の据付部の概略構造を 示す。

第3.3-5 図 潮位計配置図

第3.3-6図 潮位計据付部概略構造

以上の津波による影響に対する防止策・緩和策により,取 水ピット水位計及び潮位計は,津波に対して機能保持が可能 である。

- (2) 津波監視設備の仕様等
 - a. 津波・構内監視カメラ
 - (a) 仕様

津波・構内監視カメラ(直径178mm×高さ285mm,水平方向可 動域360°)は、原子炉建屋屋上T.P.約+64mに3台、防潮堤上部 T.P.約+18~約+20mに4台を設置する。各々の監視目的,範囲 を第3.3-2表の津波・構内監視カメラの監視目的と範囲に示す。 津波・構内監視カメラは赤外線撮像機能を有し、昼夜問わず監 視可能な仕様とし、画像は中央制御室及び緊急時対策所に設置 した監視設備に表示し、継続的に監視できる設計とする。

津波・構内監視カメラ本体及び監視設備の電源は所内常設直流電源設備受電することで交流電源喪失時においても監視が継続可能な設計とする。

第3.3-3表に<mark>津波・構内監視カメラ</mark>の基本仕様,第3.3-7図に 津波・構内監視カメラの設置位置と可視可能範囲,第3.3-8図 に<mark>津波・構内監視カメラ</mark>の映像イメージを示す。

第3.3-2表 <mark>津波・構内監視カメラ</mark>の監視目的と範囲

設置	場所	監視目的と範囲
原子炉	北東側	主に敷地前面東側海域及び敷地東側の津波襲来状況,防潮 堤東側,防潮扉(取水口東側),取水口,放水口,放水路 ゲートの周辺状況を高所から俯瞰的に監視
建屋屋上	北西側	主に敷地北側の津波襲来状況,防潮堤北側の周辺状況を高 所から俯瞰的に監視
	南東側	主に敷地南側の津波襲来状況,防潮堤南西側の周辺状況を 高所から俯瞰的に監視
	北西側	主に敷地北側の津波襲来状況,防潮堤北側,敷地北西側の 状況を監視
防潮堤	北東側	主に敷地前面東側海域及び敷地北東側の津波襲来状況,防 潮堤東側,防潮扉(海水ポンプ室),取水口,放水口,放 水路ゲートの状況を監視
上部南東側	主に敷地前面東側海域及び敷地南側の津波襲来状況,防潮 堤東側,取水口, SA用海水ピット開口部浸水防止蓋及び SA海水ピット取水塔周辺の状況を監視	
	南西側	主に敷地南側の津波襲来状況,防潮堤南側,防潮扉(南側), 敷地南側の状況を監視

項目	基本仕様
名 称	<mark>津波・構内監視カメラ</mark>
耐震クラス	Sクラス
設 置 場 所	原子炉建屋屋上 防潮堤上部
監視場所	中央制御室, 緊急時対策所
個 数	原子炉建屋屋上:3 防潮堤上部:4
夜間監視手段	赤外線
遠 隔 操 作	可能(上下左右)
電源	所内常設直流電源設備

第3.3-3表 <mark>津波・構内監視カメラ</mark>の基本仕様

5条 3.3-12

第 3.3-9 図

電線管

<mark>津波・構内監視カメラ</mark>設備構成概要

<mark>津波・構内監視カメラ</mark>設備構成概要については, 今後の詳細設計により,変更となる可能性がある。 (c) 構造・強度評価及び機能維持評価

津波・構内監視カメラが使用条件及び想定される自然条件下 において要求される機能を喪失しないことを確認する。

津波・構内監視カメラは、原子炉建屋屋上T.P.約+64m及び 防潮堤上部T.P.約+18~約+20mに設置することから津波の影響は考慮しない。また、避雷設備を近傍に設置することから、 落雷の影響は考慮しない。このため、想定される自然条件とし て考慮すべきものは、地震、積雪、降下火砕物、降雨及び風で ある。ここでは使用条件及び上記の自然条件に対する評価方針 を示す。

なお,自然条件のうち,津波については前述のとおり影響を 受けることはないため,荷重の組合せ等での考慮は要しない。 i) 評価対象

第3.3-4表に津波・構内監視カメラの構造・強度評価及び 機能維持評価対象を示す。

第3.3-4表 津波・構内監視カメラの構造・評価

及び機能維持評価対象

評価項目	評価対象	
構造・強度	<mark>津波・構内監視カメラ</mark> 設置用架台 <mark>津波・構内監視カメラ</mark> 取付ボルト 電線管	
機能維持	<mark>津波・構内監視カメラ</mark> 配線ボックス 監視設備(監視用PC等)	

ii) 評価方針

○構造·強度評価

津波・構内監視カメラは,基準地震動Ssに対して地震時に要求される機能を喪失しないことを確認する。

具体的には、 津波・構内監視カメラ 設置用架台、取付 ボルトについて、地震時に想定される評価荷重に基づき 応力評価を行い、裕度(=許容応力/発生応力)が1.0以 上であることを確認する。また、電線管については、電 線管布設において、もっとも厳しい条件にあるモデルに て評価し、最大許容支持間隔を求め、それに包絡される 条件で施工することで、耐震性を確保する。

○機能維持評価

機能維持の評価対象ついては,振動試験において,<mark>津</mark> 波・構内監視カメラ,配線ボックス,監視設備の電気的機 能の健全性を確認した加振波の最大加速度(以下「確認 済加速度」という。)に対し,取付箇所の最大応答加速度 (以下「評価加速度」という。)が下回っていることを確 認する。

iii) 荷重の組合せ

津波・構内監視カメラは、津波の影響を受けない場所に 設置するため、津波荷重の考慮は不要であり、常時荷重+ 余震荷重の組合せは、以下の組合せに包絡されるため、こ れらを適切に組合せて設計を行う。

· 常時荷重+地震荷重

また、設計に当たっては、自然現象との組合せを適切

に考慮する。

iv) 評価荷重

○固定荷重

自重等を考慮する。

○地震荷重

(第四条 基準地震動 S s)

基準地震動Ssを考慮する。

○積雪荷重

(第六条 設計基準積雪量 30cm)

屋外に設置される<mark>津波・構内監視カメラ</mark>設置用架台 及び電線管に対しては、堆積量30cmを考慮する。

○降下火砕物

(第六条 設計基準堆積量 50cm)

屋外に設置される<mark>津波・構内監視カメラ</mark>設置用架台 及び電線管に対しては,堆積量(<mark>50cm</mark>)を考慮する。

〇降雨荷重

(第六条 設計基準降水量 127.5 mm/ h)

降雨に対しては、津波・構内監視カメラは防水性能 IP66(あらゆる方向からのノズルによる強力なジェッ ト噴流水によっても有害な影響を及ぼしてはならない) に適合する設計とする。

○風荷重
(竜巻及び竜巻以外)

(第六条 竜巻:設計竜巻風速100m/s, 竜巻以外:建築基 準法 に準拠した東海村の基準風速である30m/s)

 設計竜巻風速100m/s及び「建築基準法(建設省告示
第1454 号)」に基づく発電所立地地域(東
海村)の基準風速30m/s相当の風荷重を受けた場合においても、 津波・構内監視カメラ 設置用架台及び電線管は

継続監視可能であることを確認する。

- b. 取水ピット水位計
- (a) 仕様

取水ピット水位計は,主として基準津波による引き波時の取 水ピットの下降側水位を監視するため設置するものである。

取水ピットにおける潮位のばらつき及び入力津波の数値計 算上のばらつきを考慮した入力津波高さは、上昇側でT.P.+ 19.4m、下降側でT.P.-5.2mである。このため、取水ピット水 位計の計測範囲については、下降側は取水ピット底部付近の T.P-7.8mとし、上昇側は取水ピット上版下端高さ付近のT.P. +2.3mまで計測できる設計とする。また、取水ピット水位計の 検出器は、取水ピットからの津波による圧力に十分に耐えられ る設計とする。取水ピット水位計本体及び監視設備の電源は、 所内常設直流電源設備から受電することで、交流電源喪失時に おいても監視が継続可能な設計とする。第3.3-5表に取水ピッ ト水位計の基本仕様を示す(取水ピット水位計の配置図は第 3.3-3図、据付面概略構造は第3.3-4図参照)。

項目	基本优様
名 称	取水ピット水位計
耐震クラス	Sクラス
設 置 場 所	取水ピット
監視場所	中央制御室, 緊急時対策所
個 数	2
計 測 範 囲	T. P. $-7.8 \text{m} \sim \text{T. P.} + 2.3 \text{m}$
検出器の種類	電波式
電源	所内常設直流電源設備

第3.3-5表 取水ピット水位計の基本仕様

(b) 設備構成

取水ピット水位計は,水位計本体,水位計取付座,監視設備, 電線管から構成されている。第3.3-10図に取水ピット水位計の 設備構成概要を示す。

第3.3-10図 取水ピット水位計設備構成概要

(c) 構造・強度評価及び機能維持評価

取水ピット水位計が使用条件及び想定される自然条件下に おいて要求される機能を喪失しないことを確認する。

取水ピット水位計は,取水ピット上版のコンクリート躯体内 に設置され,取水ピット水位計据付面の上部には閉止板を設置 する構造であるため,想定される自然条件として考慮すべきも のは地震及び津波である。このため,ここでは使用条件及び上 記の自然条件に対する評価方針を示す。

i) 評価対象

第3.3-6表に取水ピット水位計の構造・強度評価及び機能 維持評価対象を示す。

第3.3-6表 取水ピット水位計の構造・評価 及び機能維持評価対象

評価項目	評価対象
構造・強度	取水ピット水位計据付座 取水ピット水位計取付ボルト 電線管
機能維持	取水ピット水位計 監視設備(監視用 P C 等)

ii) 評価方針

○構造·強度評価

取水ピット水位計は,基準地震動 S_sに対して地震時に 要求される機能を喪失しないことを確認する。

具体的には,取水ピット水位計の据付座,取付ボルト について,地震時に想定される評価荷重に基づき応力評 価を行い,裕度(=許容応力/発生応力)が1.0以上であ ることを確認する。また,電線管については,電線管布 設において,もっとも厳しい条件にあるモデルにて評価 し,最大許容支持間隔を求め,それに包絡される条件で 施工することで,耐震性を確保する。

なお,建屋間相対変位が生じる箇所については,可と う電線管を適用する。

○機能維持評価

機能維持の評価対象ついては,振動試験において,取 水ピット水位計,監視設備の確認済加速度に対し,評価 加速度が下回っていることを確認する。

iii) 荷重の組合せ

取水ピット水位計の設計においては以下のとおり,常時 荷重,地震荷重,津波荷重,余震荷重を適切に組合せて設計 を行う。

- 常時荷重+地震荷重
- · 常時荷重+津波荷重
- 常時荷重+余震荷重+津波荷重

なお,取水ピット水位計は,前述「(1) b項 津波による 影響に対する防止策・緩和策等」に示したとおり,必要な防 止策・緩和策を講じることから,漂流物による荷重は考慮 しない。

iv) 評価荷重

○固定荷重

自重等を考慮する。

○地震荷重

基準地震動Ssを考慮する。

○津波荷重

潮位のばらつき及び入力津波の計算上のばらつきを考 慮した取水ピットにおける入力津波高さT.P.+19.4mに, 参照する裕度である+0.65mを含めても,十分に保守的な 値である津波荷重水位T.P.+22.0m(許容津波高さ)を考 慮する。第3.3-7表に取水ピット水位計の津波荷重の考え 方を示す。

第 3.3-7 表 取水ピット水位計に適用する 津波荷重の考え方

入力津波高さ (T.P.m)		参照する	合 計	津波荷重
設定水位*1	ばらつきを考慮 した水位 ^{※ 2}) (m)	(T.P.m)	(T.P.m)
+ 19.19	+ 19.4	0.65	+20.05	+22.0

※1:取水ピットにおいて算定された水位

※2:設定水位を安全側に評価した値であり,潮位のばらつき+0.18m, 入力津波の数値計算上のばらつきを考慮した水位

○余震荷重

余震による地震動を検討し,余震荷重を設定する。具体的には余震による地震動として弾性設計用地震動 S_d -D1を考慮し,これによる荷重を余震荷重として設定

する。

c. 潮位計

(a) 仕様

潮位計は,主として基準津波による寄せ波時の取水口前面の 上昇側水位を監視するため設置するものである。

潮位計の計測範囲は,引き波時の非常用海水ポンプの取水性 を確保するために設置する貯留堰の天端高さT.P.-4.9mから, 敷地前面東側の防潮堤における潮位のばらつき及び入力津波 の数値計算上のばらつきを考慮した入力津波高さT.P.+17.9m を包含するT.P.-5.0m~T.P.+20.0mまで計測できる設計とす る。また,潮位計の検出器は,取水路からの津波による圧力に 十分に耐えられる設計とする。潮位計本体及び監視設備の電源 は,所内常設直流電源設備から受電することで,交流電源喪失 時においても監視が継続可能な設計とする。第3.3-8表に潮位 計の基本仕様を示す(潮位計の配置図は第3.3-5図,据付部概 略構造は第3.3-6図参照)。

項目	基本仕様
名 称	潮位計
耐震クラス	Sクラス
設 置 場 所	取水路
監視場所	中央制御室, 緊急時対策所
個数	2
計 測 範 囲	T. P. $-5.0 \text{m} \sim \text{T. P.} + 20.0 \text{m}$
検出器の種類	圧力式
電源	所内常設直流電源設備

第3.3-8表 潮位計の基本仕様

(b) 設備構成

潮位計は,潮位計本体,潮位計取付サポート,監視設備,電線管から構成される。第3.3-11図に潮位計の設備構成概要を示す。

第 3.3-11 図 潮位計設備構成概要

(c) 構造・強度評価及び機能維持評価

潮位計が使用条件及び想定される自然条件下において要求 される機能を喪失しないことを確認する。

潮位計は,取水路内の側壁に設置されることから,想定され る自然条件として考慮すべきものは,地震及び津波である。こ のため,ここでは使用条件及び上記の自然条件に対する評価方 針を示す。

○ 評価対象

第3.3-9表に潮位計の構造・強度評価及び機能維持評価対象を示す。

評価項目	評価対象
構造・強度	潮位計用防波管取付サポート 潮位計取付ボルト 中継器盤取付ボルト 電線管
機能維持	潮位計 中継器 監視設備(監視用PC等)

第3.3-9表 潮位計の構造・評価及び機能維持評価対象

i) 評価方針

○ 構造 · 強度評価

潮位計は,基準地震動Ssに対して地震時に要求される機能を喪失しないことを確認する。

具体的には、潮位計の取付サポート、潮位計取付ボル トについて、地震時に想定される評価荷重に基づき応力 評価を行い、裕度(=許容応力/発生応力)が1.0以上で あることを確認する。また、電線管については、電線管 布設において、もっとも厳しい条件にあるモデルにて評 価し、最大許容支持間隔を求め、それに包絡される条件 で施工することで、耐震性を確保する。

なお,建屋間相対変位が生じる箇所については,可と う電線管を適用する。

○機能維持評価

機能維持の評価対象ついては,確認済加速度に対し, 取付箇所の評価加速度が下回っていることを確認する。

ii) 荷重の組合せ

潮位計の設計においては以下のとおり,常時荷重,地震荷重,津波荷重,余震荷重を適切に組合せて設計を行う。

常時荷重+地震荷重

- 常時荷重+津波荷重
- ·常時荷重+余震荷重+津波荷重

なお、潮位計は、上述「(1)② 津波による影響に対する 防止策・緩和策等」に示したとおり、必要な防止策・緩和策 を講じることから、漂流物による荷重は考慮しない。

- ⅲ) 評価荷重
 - ○固定荷重

自重等を考慮する。

○地震荷重

基準地震動Ssを考慮する。

○津波荷重

潮位のばらつき及び入力津波の計算上のばらつきを考 慮した敷地前面海域における入力津波高さT.P.+17.9m に,参照する裕度である+0.65mを含めても,十分に保守 的な値である津波荷重水位T.P.+20.0m(許容津波高さ) を考慮する。第3.3-10表に潮位計の津波荷重の考え方を 示す。

第3.3-10表 潮位計に適用する津波荷重の考え方
入力 (T	聿波高さ .P.m)	参照する	合 計	津波荷重
設定水位*1	ばらつきを考 慮した水位 ^{※2}) (m)	(T.P.m)	(T. P. m)
+ 17.7	+ 17.9	+0.65	+18.55	+20.0

※1:敷地前面海域において算定された水位

※2:設定水位を安全側に評価した値であり,潮位のばらつき+0.18m, 入力津波の数値計算上のばらつきを考慮した水位

○余震荷重

余震による地震動を検討し,余震荷重を設定する。具体的には余震による地震動として弾性設計用地震動 S_d - D1を考慮し,これによる荷重を余震荷重として設定 する。

添付資料21

鋼製防護壁の設計方針について

- 1. 鋼製防護壁の要求機能と設計方針について
 - (1) 鋼製防護壁に要求される機能
 - (2) 鋼製防護壁高さの設定方針
 - (3) 設計方針
 - 1) 構造概要
 - 2) 鋼製防護壁と地中連続壁基礎の構造概要
 - 3) 設計手順
 - 4) 設計荷重
 - 5) 地中連続壁基礎の設計方針
 - 6) 鋼製防護壁(上部工)の設計方針
 - 7) 接合部の設計
 - 8) 止水ジョイント部の設計方針
 - 9) 止水ジョイント部(底部止水機構)の設計方針

2. 施工実績

- 2.1 鋼製門型ラーメン構造
 - (1) 施工事例1: 鋼殻ブロックの施工事例(橋梁箱桁)
 - (2) 施工事例2:国道工事(国土交通省)
 - (3) 施工事例3: 高速道路工事(高速道路株式会社)
- 2.2 直接定着式アンカーボルトの実績
 - (1) 施工事例1:国道工事(国土交通省)
 - (2) 施工事例2:臨港道工事(国土交通省)
- 3. 地中連続壁基礎に関する設計基準類
 - (1) 道路橋示方書·同解説Ⅳ下部構造編(公社法人日本道路協会)
 - (2) 地中連続壁基礎工法施工指針(案)(地中連続壁基礎協会)
- 4. 参考資料

9)止水ジョイント部(底面止水機構)

止水機構は,上部工の鋼製防護壁の底面と既設取水路の応答変位の違い により相対変位が生じるため,止水性維持のために止水機構を設置する。 止水機構は止水板に水密ゴムを設置することで浸水を防ぐ構造としてい る。水密ゴムはダム,水門等において十分に実績のあるものを採用してい るが,基準津波を考慮して漏水試験にて性能を確認している。

止水機構の選定に当たっては,鋼製防護壁と取水路の相対変位による変 形量等を考慮し,軽量かつ追従性に優れた止水板を繋ぎ合わせた止水機構 を採用した。 (a) 設計条件

設計条件は以下のとおり。

- ·津波荷重:基準津波
- 地震荷重:基準地震動 S。
- ・止水機構の許容可動範囲:海側700mm,陸側500mm,上下±60mm

· 適用規格:

道路橋示方書・同解説II鉄鋼編(日本道路協会)(平成24年) 水門鉄管技術基準(電力土木技術協会)(平成28年) ダム・堰施設技術基準(案)(国土交通省)(平成28年)

(b)構造

鋼製防護壁と既設取水路間の止水構造は,津波による荷重,鋼製防護 壁と取水路の相対変位に対する追従性を確保する必要があることから, 止水板が可動できるよう止水板を押えて支持する構造とし,止水板の底 面と側面に設置した水密ゴムにて水密性を確保する構造とする。

また,止水板には漂流物による影響も考慮し保護プレートを設置し, さらに,止水板からの微少な漏えいも考慮し敷地内に浸水させないよう 陸側に止水膜を設置し,敷地内への浸水を防止する構造とする。

また,水密ゴムは,摩擦抵抗を低減し追従性を向上させるため,表面 にライニング(樹脂)を施工する方針とする。

第1-38図に止水機構の設置位置,第1-39図に止水機構の構造図,第 1-7表に止水機構に係る各部位の役割・機能を示す。

図 a-1 止水機構拡大図

第1-39図 止水機構の構造図

第1-7表 止水機構に係る各部位の役割・機能

各部位の役割・機能については以下のとおり。名称は下図に示す。

名称	役割・機能	材 料						
① 止水板押え	・止水板を支持する。	4 田 街山						
	・漂流物等から止水板を防護する。	判衣						
② 保護	・漂流物等から止水板を防護する。	4岡 街山						
プレート	・止水板への異物混入を防止する。	判衣						
 ③ 砂除け 	・底面戸当り面への砂等の異物混入を防止す	ナイワン						
	る。) 1 4 2						
④ 止水板	・止水機構の扉体の機能。	ステンレス						
	・底面及び側面の戸当りに面する部位に水密ゴ	(表面仕上げ						
	ムを設置し浸水を防止する。	No.1) *						
	・1枚あたりの主要仕様	+ +						
	寸法:横2000mm×幅100mm×高さ400mm	水密コム(P形ゴム)						
	重量:620kg							
⑤ 底面戸当り	・止水板の底面水密ゴムとのシール性を確保す	ステンレス						
	る。(真直度,平面度の管理)	(表面仕上げ						
	・床部より100mm嵩上げし異物混入を防止する。	No. 1) *						
⑥ 側面戸当り	・止水板の側面水密ゴムとのシール性を確保す	ステンレス						
	る。(真直度,平面度の管理)	(表面仕上け No.1) *						
⑦止水膜	・水密ゴムからの微少な漏えいを保持する。	nite L L						
	・陸側からの異物混入を防止する。	<u> </u>						
止水機構 鋼製防護 陸側 ①止水板押え ③砂除け ①止水板 違法 ③広面戸当り ① 上水機構の各名称								

※: JIS G 4304 熱間圧延ステンレス鋼板及び鋼帯 表面仕上げ より

(c) 止水機構の動作について

止水機構の鉛直方向の動作を第1-40図に示す。

<通常状態>

<地震時(鋼製防護壁が上がる状態)>

<通常状態>

- ・④止水板は、①止水板押えと鋼製防 護壁の間に設置しており、変位に追 従するため、固定はしていない。
- ・側面水密ゴムは,鋼製防護壁の⑥側 面戸当りに接触し水密ゴムへの面圧 を得ている。
- ・底面水密ゴムは,基準津波に対して ⑤底面戸当りと接触し水密ゴムへの 面圧を得ている。。
- <地震時(鋼製防護壁が下がる状態)>
- ・鋼製防護壁が下がる場合は、④止水板 は、鋼製防護壁に固定されていないた め、現状位置を保持する。
- ・側面水密ゴムは、⑥側面戸当りの上部 で密着する。
- ・底面水密ゴムは,現状位置と変わらない。

<地震時(鋼製防護壁が上がる状態)>

- ・鋼製防護壁が上がる場合は、④止水板 は、鋼製防護壁に固定されていないた め、現状位置を保持する。
- ・側面水密ゴムは、⑥側面戸当りの下部 で密着する。
- ・底面水密ゴムは、現状位置と変わらない。

第1-40図 止水機構の鉛直方向の動作について

(d) 止水板の追従性について

止水板は,鋼製防護壁の振動モードにより追従する必要があるため以 下の構造になっている。

止水板は,幅が約2mの鋼材を接続して鋼製防護壁の下部に設置され る。止水板は,止水板押えにより約1m間隔で2箇所支持される。ま た,止水板同士を接続する接続ゴムは,水密ゴム(平形)を採用し側 面,底面の水密ゴム(P形)と同じ材質のものを採用し水密性を確保し ている。

止水板接続ゴムは伸縮性に優れているため,鋼製防護壁の振動モード に対し水平,鉛直方向に追従することができる。鋼製防護壁全長にすると 水平方向に±約2m,鉛直方向に約0.6mの変位に追従することができる。第 1-41図に鋼製防護壁の止水板の追従イメージを示す。

第1-41図 鋼製防護壁の止水板の追従イメージ

⁵条 添付21-61

(e) 止水板の支持方法について

止水板は通常の状態において,側面戸当り及び底面戸当りとの隙間が 約3mmで調整され,水密ゴムのみで密着するよう止水板の位置は調整され ている。このため,通常の状態(地震時含む)には,止水板は水圧により 拘束されていないため,水密ゴムの摩擦抵抗だけで追従しやすい状態にあ る。

津波の襲来等の場合は、止水板に水圧がかかると、通常の状態に調整されている約3mmの隙間がなくなり、止水板は側面戸当り側に押し付けられ、水密ゴムの密着性がさらに高まる構造である。第1-42図に止水板の支持方法を示す。

通常の状態(地震時)

津波襲来等の状態

第1-42図 止水板の支持方法

(f) 止水板の挙動解析について

止水板の構造は、一般的に実積のあるものを採用しており、設計上の追従 性を確認している。しかしながら、止水機構の止水板のように地震時の挙動 を考慮した同等の採用実積がないことから、止水装置の止水板の挙動につい て二次元動的解析を実施し、データを拡充させ信頼性を更に高める。第1-43 図に解析モデル図を示す。本件の解析結果は、詳細設計段階でご説明する。

<評価条件>

- ・解析コード: MARC (大規模解析対応非線形解析)
- 地震動:基準地震動Ss
- ・解析ケース:3ケース 地震時,津波時,津波時+余震
- ・水密ゴム摩擦係数:

常時 : 0.2 (ダム・堰施設技術基準 (案)) (国土交通省) 劣化時の挙動把握 : 0.2~1.2

金属間摩擦係数

止水板(接触面アルミニウム)と戸当り(ステンレス):0.4

・評価対象部位:底面水密ゴム,側面水密ゴム,止水板,止水板押え,側

面戸当り

・許容応力:引張り強度,変形量(伸び)[水密ゴム]

弾性設計範囲内[止水板,その他の部材]

<二次元動的解析における摩擦係数の設定の考え方について>

以下に二次元動的解析に用いる摩擦係数の考え方について示す。

a. 摩擦係数の整理

①水密ゴムの物性値

・静摩擦係数は最大0.2(乾式),動摩擦係数は最大0.22(乾式)

・水密ゴム(ライニングなし)の場合は

 ① 摩耗試験の結果

(n)項の結果より水密ゴムに約20年間の移動量を与えても、水密ゴムのライニングの摩耗量は初期厚さ0.5mmに対して0.36mmであり、ライニングは0.14mm残存している結果であった。このため、供用後においても摩擦係数は物性値上の0.2を維持できると判断できる。

② ダム・堰施設技術基準(案)

水密ゴム (ライニングあり) とステンレスの摩擦係数は,0.2 (乾 式),0.1 (湿式) と記載がある。なお,水密ゴム (ライニングなし)の 場合は,1.2 (乾式),0.7 (湿式)

金属間の摩擦係数

止水板(接触面:アルミニウム)と底面戸当り(ステンレス)間は金 属間の摩擦であるため摩擦係数は0.4としている。

止水板の摩擦係数は、金属間の摩擦係数が0.4、水密ゴムが0.2(未使 用品)であることから、重量物(620kg)である止水板の摩擦係数が地震 時の挙動において支配的になる。 b. 二次元動的解析における摩擦係数の設定

①通常状態

二次元動的解析時における摩擦係数は,約20年相当の移動量に対して もライニングが維持できること,また,ライニングの維持管理を十分に 実施することから0.2を採用する。

②劣化時の挙動の把握

水密ゴムのライニングについては,通常の維持管理及び摩耗試験の結 果から急激に損傷等がないことを確認しているが,不測の事態を考慮し ライニングの一部が喪失した状態を想定した解析を行う。

そのため,解析に用いる摩擦係数は,通常の0.2から1.2(ライニング なし)までの間とし,水密ゴムが損傷する摩擦係数のしきい値の把握と 劣化状態のしきい値を超えた場合の挙動の把握を行い止水機構の挙動を 把握する。

c. 水密ゴムの維持管理方針

止水機構の水密ゴムの維持管理として,外観点検(摩耗の有無等)及び 定期的な硬度測定を実施し,水密ゴムの摩耗や劣化の兆候について傾向を 管理する。 (g)水密ゴムの選定について

止水機構に使用している水密ゴム(P形)は、一般的にダム・水門等に採 用実績があるものを採用している。水密ゴムは、低水圧~高水圧の領域に対 して適しており、鋼製防護壁の止水機構に適応している。水密ゴムは第1-8 表に示すダム・堰施設技術基準(案)(国土交通省)を適用する。

第1-8表 ダム・堰施設技術基準(案)(国土交通省)抜粋

表3.3.4-1 水密ゴムの硬さ等

項目	諸数値				
引張り強さ	14.7N/mm ² 以上				
硬 さ (ショア)	40°~80°				
吸水率(重量比)	5%以下				
破断時の伸び	300%以上				
比 重	1.1~1.6				

表3.3.4-3 水密ゴムの形状と特性

ゴム形状	P 形	L, Y 形	ケーソン形	平形		
使用箇所	側部および上部	側部	四方	底 部		
適用水深	低圧~高圧	低圧	高圧	低圧~高圧		
硬 さ (ショア)	50°~70°	50°~60°	50°~70°	50°~60°		

止水板に取り付ける水密ゴムについては、「(b) 構造」に示すとおり、ラ イニング(超高分子量ポリエチレン)を施すことにより摩擦係数の低減を図 っている。1-9表に水密ゴムの物性値、第1-10表に超高分子量ポリエチレン の物性値を示す。

	試験項目	物性値	規格値	試験条件 試験方法	備考
	硬さ(DURO-A型)	55	55 ± 5	JIS K6253	
通常	引張り強さ(MPa)	16.3	14.7以上		
	伸び (%)	500	300以上	JIS NO251	
劣化加速	硬さ(DURO-A型)	+1	+10以内	TIS VOE7	70° \times 70 hr
	引張り強さ変化率(%)	+2	-15以内	JIS NO257	$70 \text{C} \times 70 \text{hr}$
	伸び変化率(%)	-4	-25以内	JIS K6258	70℃×70hr

第1-9表 水密ゴム (クロロプレン系合成ゴム) の物性値

第1-10表 超高分子量ポリエチレンの物性値

項目	物性値
引張り強さ(MPa)	44
伸び (%)	450
高度 (Rスケール)	40
摩擦係数 (相手:ステンレス)	・静摩擦係数:0.10~0.20 <mark>*</mark> (乾式) ・動摩擦係数:0.07~0.22 <mark>*</mark> (乾式) 0.05~0.10(湿式)

※:動摩擦係数>静摩擦係数の現象について

一般的に摩擦係数は,動摩擦係数<静摩擦係数の関係であるが, 高分子材料のように,静摩擦係数と動摩擦係数の値に大きな差が生じ やすい場合に生じる「スティック・スリップ(付着すべり)」現象と 推定される。 (h) 漏水試験

設計圧力における漏水試験のため、止水機構の水密ゴム(P形)につ いて、試験装置を製作し、漏水試験により設計圧力に耐えることを確認 した。試験装置は、実機仕様(構造、寸法及び重量)と同じ止水板を使 用できるように制作し、底面水密ゴムも実機と同仕様のものを止水板の 底部に取り付けて事件を実施した。試験装置への止水板の据付は、実機 の据付状態を模擬するために、止水板の自重により設置する構造とし た。また、水密ゴムは、未使用のものに加え、劣化状況を想定して、摩 耗や砂の噛み込による状態での試験を実施した。なお、底面水密ゴムの 止水性能の確認が目的であるため、試験装置側面からの漏水の影響を受 けないために、漏えい検出範囲を中央部の1mの範囲とする。

漏水試験による許容漏水量は「ダム・堰施設技術基準(案)(国土交 通省)」より求める。

第1-11表の試験条件の一覧,第1-12表に試験装置の主要仕様,第1-44 図に試験装置概要を示す。

第1-11表 試験条件一覧表

項目	条件	備考
	試験体1	未使用品 (新品:水密ゴム単体の水密性能の確認)
	試験体2	未使用品(新品:水密ゴム単体の水密性能の確認)
水密コム	試験体3	劣化状態を仮定(劣化モードとして、Ss相当の加振 による摩耗及び底面戸当たりと水密間に砂をかみこ ませた状態での水密性能の確認)
	0.20MPa以上	保守的に,防潮堤天端高さ(T.P.+20m)から設置地 盤標高(T.P.+3m)を差し引かない値(試験体1及び 試験体2に対して実施)
試験圧力	0.17MPa以上	防潮堤天端高さ(T.P.+20m)から設置地盤標高(T.P. +3m)を差し引いた値(試験体3に対して実施)
	0.66MPa以上	第43条の敷地に遡上する津波高さ(T.P.+24m)時の 設計条件(約0.3MPa)の2倍の値(試験体3に対して 実施)
試験時間	10分保持	「ダム・堰施設技術基準(案)」より
	2.00/10分	試験圧力0.20MPaに対する許容漏えい量
許容漏えい量*	1.70/10分	試験圧力0.17MPaに対する許容漏えい量
	6.70/10分	試験圧力0.66MPaに対する許容漏えい量

*「ダム・堰施設技術基準(案)」で規定する保持時間及び許容漏えい量算定式に基づく1m 当たりの許容漏えい量

・許容漏えい量:W=10.2L×P

W:漏水量 (m@/min)

P:設計圧力

L:長辺の長さ(cm)

(試験装置の漏えい検出範囲長さ100cm)

I	頁目	仕様
	寸法	長さ約 2.3m×高さ約 0.7m×幅約 0.5m
試験装置	材質	鋼製
	設計圧力	0.7MPa
	士)注	長さ約 2m×幅 0.1m×高さ 0.4m(実機スケール 1/
		1)
止水板	材匠	止水板:ステンレス鋼
(試験用)		止圧板:高分子量ポリエチレン
	重量	620kg(実機と同じ)

第1-12表 試験装置主要仕様

堤外側 水圧部 ÷ 0 1 0 止水板 堤内側 [A-A 断面図] ¢ C Ħ 水圧部 А 海側 陸側 止水板 止水板 F . B 漏えい ġ С [C-C 断面図] [正面図(陸側から)] 陸側 海側 + + +] +] + + =] + + = + + +] + 止水板 止水板長さ 2m . . 漏えい検出範囲 底面水密ゴム $1 \mathrm{m}$ [B-B 断面図] [底面水密ゴム取付部拡大図]

第 1-44 図 試験装

[試験装置全景]

[止水板概要]

第1-44 図 試験装置概要図 5条 添付21-70 <試験結果>

止水板の底面に設置した水密ゴムからの漏えい量を測定した。第1-12表に示した漏水試験結果のとおり、いずれの試験結果においても、 ダム・堰施設技術基準(案)で規定する許容漏えい量算定式から求ま る許容漏えい量を下回っており、水密ゴムの止水性能に影響のないこ とを確認した。

また,劣化状態を仮定した漏水試験の結果について,許容漏えい量 の関係を高圧時と低圧時を比べて整理した。

高圧時の漏えい量は、低圧の時の漏えい量と同様に、少ない領域 (10/10分以下)であることから、低圧、高圧に係らず水密ゴムの性 能が維持できていることが確認された。

低圧時の漏えい量は、未使用品(新品)の場合には、許容漏えい量 に対し、十分に低い値であったが、劣化状態を仮定した漏えい量に は、わずかに漏えい量に幅があるが、許容漏えい量(未使用品の場 合)に対しては、十分に少ない値であり、水密ゴムの性能に影響のな い範囲であった。

第1-13表に漏水試験結果,第1-45図に試験時の状況,第1-46図に試 験圧力と漏えい量(高圧),第1-47図に試験圧力と漏えい量(低圧),

を示す。

第1-45図 試験時の状況(10分保持後)5条 添付21-71

許容 漏えい量*1 試験圧力 時間 区分 漏えい量 判定 (10分) (MPa) (分) (10分) 0.20 \bigcirc 試験体1 10 0.020 2.0 未使用品 試験体2 0.20 10 0.029 2.0 \bigcirc 1. 7^{*2} 0.17 10 0.039 \bigcirc 6. 7^{×2} 0.66 0.625 \bigcirc 劣化状態 10試験体3 を仮定 1.7^{*2} \bigcirc 0.17 0.440 10 0.66 6. 7^{*2} \bigcirc 10 0.525

第1-13表 漏水試驗結果

※1:漏えい量は1mあたり10分間漏えい量。

※2:未使用品(新品)の場合の許容漏えい量

第1-46図 試験圧力と漏えい量(高圧)

第1-47図 試験圧力と漏えい量(低圧)

【参考: 想定外の損傷ケース】

◆ケース①:止水板の水密ゴムが全体(100m)破損した場合

止水構造として,保護プレートや砂除けにて異物の混入を防ぐ設計をしてい る。ここでは,③砂除けの損傷を考慮し,砂,礫,小型植生等が到達し,底面 水密ゴムが損傷した場合を想定した評価を行う。止水板1枚あたり(2m幅)の 漏水量及び止水板全体(底面・側面水密ゴム(各50m)合計100m)の水密ゴム が損傷した場合の漏水量及び浸水量評価を行う。第1-48図に底面水密ゴムの損 傷想定位置と時刻歴波形(取水口前面)を示す。

<計算式>

 $Q = CA \sqrt{2gh}$ C:流入係数 (1.0) g:重力加速度 (9.8m/s²) A:通過面積m² (0.003×2=0.006m²) h:水頭 m (防潮堤天端高さ20m-3m設置レヘ・ル=17m) Q=1.0×0.006×√2×9.8×17==0.11m³/s

第1-48図 底面水密ゴムの損傷想定位置と時刻歴波形(取水口前面)

```
5条 添付21-73
```

計算の結果,1秒あたり約0.11m³の漏水量であった。基準津波による時刻歴波 形からT.P.+3mを超える時間は約10分であるため,漏水量は約66m³程度にな りT.P.+3m 盤の敷地に浸水した場合は約3cmの浸水深となった。また,止水板 全体(100m)に換算すると漏水量は3300m³/10分となりT.P.+3m 盤の敷地の場 合は,約1.2mの浸水深になった。

隣接する安全系ポンプの安全機能影響を与える浸水量ではなかった。

◆ケース②:止水板1枚(2m)の機能が喪失した場合

止水板1枚(2m)の機能が喪失した場合を想定し漏水量を評価した。

開口部は止水板がない場合の鋼製防護壁と底面の隙間部(最大 170mm)から想 定した。 第1-49 図に止水板が機能喪失した場合の漏水位置を示す。

第1-49図 止水板が機能喪失した場合の漏水位置

<計算式>

 $Q = CA\sqrt{2 g h}$ C: 流入係数 (1.0) g: 重力加速度 (9.8m/s2) A: 通過面積m2 (0.17×2=0.34m2) h: 水頭 m (防潮堤天端高さT.P. +20m-T.P. +3m設置レベル=17m) $Q=1.0×0.34×\sqrt{2×9.8×17}$ =6.17m3/s

計算の結果,1秒あたり約6.17m³の漏水量であった。基準津波による時刻 歴波形からT.P.+3mを超える時間は約10分であるため,漏水量は約3726m³ 程度になりT.P.+3m盤の敷地に浸水した場合は約1.6mの浸水深になった。

隣接する安全系ポンプの安全機能影響を与える浸水量ではなかった。

(i) 水密ゴムの維持管理について

止水機構の水密ゴムは,取替ができるよう構造設計を行う。このため,通 常の維持管理として外観点検及び定期的な硬度測定によるトレンド管理を実 施し,補修や取替等が必要な場合には取替等を実施する。

(i) 採用実績の例

止水機構の構造は,水門鉄管技術基準(水門鉄管協会)の角落し,ゲート 構造として整理できる。

止水機構と同様に扉体同士が水密ゴムにて繋がり止水している構造として は起伏ゲートや多段式ゲート,可動防潮堤で採用されている。起伏ゲート は、全長約30mのところに2箇所の継手で接続されており、継手は水密ゴムで 接続されている。また、多段式ゲートの扉体の場合も長さ約10mの扉体が4ブ ロックに分かれ各々が水密ゴムで接続されている。扉体の規模や条件により 接続部に違いはあるが、一般的に水密ゴムにて接続する構造は採用されてい る。

また,可動防潮堤については,継手部は水密ゴムの接続であり,更に電動 駆動等の駆動源を必要としない構造である。止水板は,津波の浮力により立 ち上り津波からシールする構造であることから,駆動源を持たない止水装置 としての採用実績がある。

止水板の構造については、規模や設計条件により違いはあるが、多くの採 用実績があり十分な実績があるといえる。第1-50図にゲート等の採用実績の 例を示す。

ゲート等の採用実績 (A社製2017年8月)

起伏ゲートの例

第1-50図 採用実績の例 (1/2)

【可動防潮堤③(陸上設置型長径間防潮堤)】 ・寸法:港湾などの長い距離に対応 ・材質:ステンレス鋼

可動防潮堤とは,無動力かつ人為操作なしに開口部閉塞を可能 とすることが特長の津波・高潮防災設備。

第1-50図 採用実績の例 (2/2)

(k) 止水機構の損傷モードにおける設計方針ついて

鋼製防護壁の止水機構の鋼製部材における損傷モードについて整理する とともに,損傷モードに対する設計方針を整理した設計方針を第1-14表,第 1-51図に鋼製防護壁の概要及び各構成部品の概要を示す。

鋼製防護壁の概要

図1-51 鋼製防護壁の概要と各構成部品の概要

製部材の設計 応力等		· · · · · · · · · · · · · · · · · · ·	····································	信頼性向上 のための設計
	よ 「 」 、 、 」	下段(●印):津波時	<u> 下段(〇印):津波時</u>	(詳細設計)
	新生どり材域ま件がいら域	◆鋼製防護壁との取合い部に応力が 発生し,損傷する。 ◆④止水板との接触により損傷する。	◆構造部材設計 鋼製防護壁との取付ボルトについて, 通期許容応力度以下になるよう設計する。 ◇二次元動的解析 動的解析を実施し④止水板の挙動について 確認する。	三次元動的解析を実施する。
	くる状態	●津波波力, 漂流物の衝突により損傷 する。	〇構造部材設計 津波荷重,漂流物の衝突荷重を考慮し,短 期許容応力度以下になるよう設計する。	
궤비 속 '	部 女 女 な 水 な か な か な か な か か う き う う 声	◆①止水板押えとの取合い部に応力 が発生し、損傷する。	◆構造部材設計 構造上1~1.5m間隔で①止水板押えにボル トにより固定している。取付ボルトについ て,短期許容応力度以下になるよう摂家す る。	
2 헐 入	「体」の「なって、など、など、など、など、など、ない、ない、ない、ない、ない、ない、ない、ない、ない、ない、ない、ない、ない、	●漂流物荷重の衝突により変形する。	○構造部材設計 構造上1~1.5m間隔で①止水板押えにボル トにより固定している。このため、保護プ レートが変形し,漂流物化することはない。	

第1-14表 止水機構の鋼製部材の損傷モードにおける設計方針(1/3)

第1-14表 止水機構の鋼製部材の損傷モードにおける設計方針(2/3)

信頼性向上	のための設計	(詳細設計)	三次元動的解 析 を 実 施 す る。	正大繊維の後 画化等や検討 する。							
設計方針	上段(今印):地震時	下段(〇印):津波時	◇構造部材設計 ①止水板押えから受ける荷重と⑥側面戸 当たりへの荷重について考慮し,短期許 容応力度以下になるよう設計する。 ◇二次元動的解析 動的解析を実施し④止水板の挙動につい て確認する。	○構造部材設計 ①本版押えの間隙部 (100㎜~160㎜)か らの大型の漂流物が入らないように設計 している。また, ③砂除けを設置してお り, ④砂の混入も防いでいる。④止水板 は,構造上,小型の漂流物にも耐えるよう 設計する。							
損傷要因	上段(◆印):地震時	下段(●印):津波時	 ◆①止水板押えとの接触により,止水板 が接触し,損傷する。 ◆地震時に④止水板が浮上り等により 固着し,水密性を損なう。 ◆①止水板の挙動により,戸当たりが損 傷し,水密性を損なう。 	●①止水板押えの間隙部(100mm~ 160mm)より漂流物が侵入し、止水板 に衝突する。							
1	損傷	モード	部性、材域、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、酸化、	を遡入は、様に、して、「な」の、「な」の、「な」の、「な」で、「な」で、「な」で、「な」で、「な」で、「な」で、「な」で、「な」で							
製部材の設	応力等	の状態	曲 で、 、	やく報							
銅	<i>半半 11</i> 苹 百 四步		(中国) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1								

信頼性向上	のための設計	(詳細設計)	三次元動的解	析を実施する。									止水機構の多	重化等を検討	する。								
設計方針	上段(今印):地震時	下段(〇印):津波時	◇構造部設計	水密ゴムにライニングを施し、摩擦抵抗を	低減させ,追従性を高める。	◇摩耗試験	実機に近い環境条件にて,約20年相当の摩	耗試験を実施し、ライニングの耐久性を確	認する。	◇二次元動的解析	動的解析を実施し、水密ゴム(側面・底面)	の挙動について確認する。	〇構造部設計	・①止水板押えの間隙部(100mm~160mm)から,	大型の漂流物が入らないよう設計している。	・漏水評価	水密ゴムが想定外の事象により、損傷した	場合の敷地内への漏水量評価を実施し、影	響のないことを確認する。	・通常の維持管理として、外観点検(摩耗の有	無等)及び定期的な硬度測定によるトレンド	管理を実施し、兆候について傾向を管理す	о° °
損傷要因	上段 (◆印): 地震時	下段 (●印):津波時	◆④止水板の挙動により水密ゴムが	損傷し、水密性を喪失するおそれ	がある。	◆水密ゴムの著しい摩耗							●④止水板押えの間隙部(100mm~)	160mm)より漂流物が侵入し、水密	ゴムに衝突する。	●劣化、摩耗、損傷、異物噛み込み	などによる止水性能の喪失						
 1+ 1-	損傷	モーズ	有意な漏	えいに至	る変形,引	張り																	
間製部材の設調	応力等	の状態	応力, 接触	面圧, 変形	重																		
争	な図 伸口 カワナナ	刺发前 20	底面水密	ゴム	側面水筋	ゴム																	

第1-14表 止水機構の鋼製部材の損傷モードにおける設計方針(3/3)

(1) 止水機構に対する漂流物による影響評価について

2.5 項において抽出した取水口へ向かう可能性が高い漂流物が鋼製防護壁 の止水機構へ与える影響を評価した。

止水機構には漂流物等から止水板を保護するために「①止水板押え」「② 保護プレート」が設置されているため、大型の漂流物はここで除外される。 なお、「①止水押え」は浚渫用作業台船(50t)を想定した衝突荷重を考慮し た設計としているため、強度上の問題はない。

「①止水板押え」「②保護プレート」から「⑤底面戸当り」を通過した場 合,到達できる漂流物の寸法は,約100mm~160mm幅のもので砂,礫,小型 植生(枝葉,樹皮),その他小物の異物であるが,地盤から「⑤底部戸当 り」を約100mm嵩上げするとともに,止水板前面に「③砂除け」を設置する ことにより,軽量・小型の異物混入を防止し基本的には通過しない構造であ る。第1-15表に止水機構の漂流物等からの防護機能の分類及び第1-52図に 止水機構の構成部品の寸法を示す。

しかしながら,漂流物による「③砂除け」の損傷を考慮して止水板設置位置に砂,礫,小型植生等が到達し,底面水密ゴムの機能を喪失させることを 想定し,(h)項の【参考:想定外の損傷ケース】において評価する。

なお,止水機構の状況については,日常点検及び悪天候後の点検等を実施 し止水機構の品質管理に努める。

構造部材	機能・用途	防護されるもの	通過の可能性が 高いもの
 ①止水板押え及び ②保護プレート ~ ⑤底面戸当りの隙間 (100mm~160mm) 	重量物・大型の漂流 物からの止水板の防 護及び止水板への漂 流物等の到達防止	船舶,タンク, サイロ,ボンベ類, 資機材類,建物外装板 カーテウォール, 大型植生(幹・枝)など	砂,礫,小型植生(枝 葉,樹皮),その他小 物の異物
③砂除けの設置 ⑤底面戸当りの嵩上げ (100mm)	軽量・小型の漂流物 及び異物の止水板へ の到達防止	砂,礫,小型植生(枝葉, 樹皮),その他小物の異物	基本的に通過しない

第1-15表 止水機構の漂流物等からの防護機能の分類

第1-52図 止水機構の構成部材の寸法

⁵条 添付21-84

(m) 止水板における漂流物の設計について

<目的>

止水機構は,鋼製防護壁の底面と既設取水路の応答変位の違いにより相 対変位が生じるため,①止水板押えと⑤底部戸当りの間に100~160mmの 隙間を考慮している。

小型の漂流物を想定すると上記の隙間に入り込む可能性があることか ら、小型の漂流物による④止水板への影響について評価する。

第1-53図に小型漂流物の流入経路を示す。

<止水板の漂流物の衝突荷重の考え方>

a. 止水板まで通過の可能性が高いもの

砂,礫,小型植生(枝葉,樹皮),その他小物の異物そのうち,小型の 植生及び石を選定した。

b. 小型植生の重量の算定

東海発電所北側の植生調査(H28 年度)より地震後の漂流物を想定し 間隔は100mm以下の植生とした。

・平均直径:<mark>0.12</mark>m ・平均樹高:<mark>12</mark>m

・重量の算定式(建築空間の緑化手法 1988 より)

 $W = \mathbf{k} \cdot \pi \cdot (\mathbf{d}/2)^2 \cdot \mathbf{H} \cdot \mathbf{w}(1+\mathbf{p})$

<mark>=89.5kg≒90kg</mark>

- d=目通直径 0.12m (平均直径)
- H=樹高 12m (8m+成長分 4m)

k =樹幹形状係数(概算の場合 0.5)

w=樹幹の単位体積重量(1100kg/m3)

p=枝葉の多少による割合(1.2)

 ・漂流物荷重の算定(道路橋示方書)

 $P = 0.1 \cdot W \cdot V$

 $= 0.1 \times \frac{90}{90} \times 9.8 \times 10 = \frac{0.89 \text{ k N}}{10}$

- P : 漂流物衝突荷重 (kN)
- ₩ : 漂流物の重量 (kg)
- V : 流速 (m/s)

c. 石の漂流物荷重の想定

第1-53 図 小型漂流物の流入経路
(n) 水密ゴムの摩耗試験について

<目的>

表面にライニングされた水密ゴムに対し,摩耗試験装置により供用後約 20年相当の移動量を与え,ライニングの摩耗量を計測することにより,ラ イニング残存状況を確認し,摩擦係数が維持できるか確認する。

<試験条件>

以下の条件にて水密ゴムの摩耗試験の条件を示す。

a. 加振条件

加振試験装置により,以下に示す移動量を加振し,水密ゴムを摩 耗させるための供用後約20年相当の移動量とする。第1図に摩耗試験 装置の概要を示す。第1-50図に試験装置の概要を示す。

- 温度変化による移動(道路橋示方書に準拠)
 - ・温度変化 : 1サイクル/日×365日×20年=7300回
- 地震加振による移動
 - ・震度3以上震度4まで : 41回*/年× (20年/5年)

= 164回+30(裕度)=194回

※:気象庁HPより 東海村実積2010.1~2015/1まで41回)

- ・地震の継続時間 50秒 × 194回 = 9700秒
- ③ 大規模地震加振による移動 (Ss相当,余震+津波荷重)
 - ・最大加速度× 1.5倍で加振

b. 環境条件

水密ゴム設置箇所の環境条件を考慮して、砂をかみこませた状態で加振 する。また、津波と余震の重畳を考慮して、(b)に示す水圧に相当する荷重 を固定冶具により加えた状態で加振する。第1-54図に水密ゴム摩耗試験装 置の概要、第1-55図に水密ゴム摩耗概要を示す

① 砂噛込み : 現地砂を使用

- ②水圧を考慮 : 0.17MPa^{*}
 - ※:防潮堤天端高さ(T.P.+20m)~設置地盤標高(T.P.+3m)を差引いた値

第1-54図 摩耗試験装置の概要

第1-55 図 水密ゴム摩耗概要 (余震時+津波荷重時)

<試験結果>

2つの供試体(水密ゴム)で摩耗試験を実施し,2回の試験とも水密ゴムの摩耗量は,最大で0.36mmであった。

このため、ライニングの初期厚さ0.5mmに対して、摩耗試験後においても 0.14mmライニングが残存しており、水密性の確保及び摩擦係数は維持でき る結果となった。 第1-56図に摩耗試験後の水密ゴムを示す。

(o) 止水機構の追加の設置について

<止水機構の追加設置>

止水機構の損傷又は保守に伴う一時的な機能喪失時においても、津波 に対する防護機能が維持できるよう、現状の止水機構(以下「1次止水 機構」という。)のバックアップとして、2次止水機構を設置する。 <2次止水機構の設計方針> (第1-57図参照)

- a. 2次止水機構の追加設置に当たっては、共通要因故障(止水板の追従
 性不良等)による同時機能喪が生じないよう多様性を図ることとし、
 1次止水機構の構造と異なる止水膜又はシートジョイントによる構造
 を採用する(第1-16表,第1-17表)。
- b.止水膜及びシートジョイントについては、想定する津波荷重に対して
 十分な耐性を有するものを採用するが、1次止水機構の取り外し時に
 津波の襲来を想定ると、漂流物が2次止水機構に到達する可能性があることから、2次止水機構前面に防衝板を設置し、漂流物による損傷を防止する設計とする。
- c. さらに,2次止水機構の後段には,2次止水機構からの漏水の可能性 を考慮し,漏水を収集・排水可能な排水溝を設置する設計とする。排 水は,構内排水路の防潮堤内側の集水枡に収集され,構内排水路逆流 防止設備を通して排水する。
- d. また,2次止水機構及び防衝板の点検・保守を考慮して,鋼殻内に点 検用マンホールを設置し,アクセス可能な設計とし,開口部に対して 止水処置を講じる。
- f. これら対策により,基準津波の遡上波の重要な安全機能を有する海水 ポンプが設置されたエリアへの到達,流入防止を確実なものとする。

5条 添付21-91

5条 添付21-92

<止水機構の損傷モードの整理>

止水板による1次止水機構に想定される主な損傷モードを抽出するととも に,抽出結果に基づき,2次止水機構の構造(多重性又は多様性)について 検討した。検討の結果,共通要因故障を考慮すると,2次止水機構は止水膜 又はシートジョイントによる多様性を図る方が,止水機構全体としての信頼 性に優れると判断した。

第1-16表に1次止水機構に想定される主な損傷モートの抽出結果及び2 次止水機構の構造選定検討結果を示す。また、合せて、第1-17表に2次止 水機構の多重性・多様性のメリット・デメリットについて整理した。

<止水機構の追加設置>

1次止水機構,2次止水機構及び防衝板並びに点検用マンホールの止水処 置の津波に対する防護区分について,それぞれの目的,機能要求に基づき設 定した。第1-18表参照。

第 1-16	表 1 次止水機構に想定される主な	な損傷モートの抽出結果及び2次止か	✓機構の構造選定検討結果
		〒☆ 2	水機構
1 伙止水機伸	土な垻湯ホート	止水板による止水機構	止水膜又はシートジョイント による止水機構
	地震時に止水板の追従性が失わ れ、止水性が喪失する。		
	地震時に止水板が水密ゴムの噛 み込み,止水性が喪失する。		(
	水密ゴムの摺動により亀裂,破損,摩耗が発生し,止水性が損失する。	× 同一構造のため,共通要因故障 により,同時に機能喪失に至る。	● 構造が異なるため,同時に 機能喪失しない。
止水板による 正水機構	地震時の止水板の浮き上がり, ガタにより戸当りが損傷し,止 水性を喪失する。		
		0 1 次止水機構がある場合は、漂流 止水機構までは到達到せず, 2 沙) 物は1次止水機構で留まり,2次 た止水機構の機能は保持される。
	漂流物が止水板に衝突し、止水性が喪失する。	× 1次止水機構の保守に伴う取り外 し時には、漂流物が2次止水機構 まで到達するため,2次止水機構 の機能喪失に至る。	1次止水機構の保守に伴う取り外 し時においても、防衝板があるた め、漂流物は2次止水機構まで到 達せず、2次止水機構の機能は維 持される。
評価		×	0

5条 添付21-94

5条 添付21-95

72

	備考		※二縷たし水し、後に、 、家をでした」としるので、 御水確の、 で で るでで、 で で の で が に を で が に を で が に が に を で が に か で や で や で め で か で か で か で の で や で か で か で の の で か で の の で か で の の で か で 物 の で か で 物 の の で 物 で の の の で う の の で う の の で う の で う の の で う の で う の の で う の で う の う つ う の で う の の う つ の の の う つ の の ひ う つ の の う つ の の つ つ の の つ つ つ の つ つ つ の の つ つ つ つ の つ	
<mark>等の津波に対する防護区分の検討結果</mark>	目的/機能要求	基準津波の遡上波の鋼製防護壁下部と取水路間の隙間から重要な安全機能を有する海水ポンプの設置されたエリアへの流入、到達を防止する。	二次止水機構は、一次止水機構からの漏えい を考慮して、重要な安全機能を有する高えい とプの設置されたエリアへの漏水を防止す る。また、安全機能への影響確認として、海 水ポンプ設置エリア(防護壁外側)への浸水 量評価を実施し、安全機能への影響がなして、海 たを確認する。 であ確認する。 での何かし時の漂流物の二次止水機構への到 離の可能性を考慮し、漂流物から二次止水機構への到 着を防護し、二次止水機構の機能を確保す る。	ー次止水機構からの漏えいを考慮して、鋼製 防護壁鋼設内への漏水を防止する。
<mark>表</mark> 止水機能∮	防護区分	外郭防護 1	外郭防護 2	外郭防護 2
<mark>第 1-18</mark>	施設·設備区分	浸水防止設備	浸水防止設備	浸水防止設備
	対策設備	一次止水機構	二次止水機構 (防衝板含む ^{**})	点検用マンホール

(p)止水機構の実機模大実証試験

a. 止水機構の実証試験の目的

止水機構が基準地震動S_sによる地震動を受けた時の止水板の挙動を 確認することにより,変位追従性,水密ゴムの健全性を確認することを 目的に実規模大の試験装置を用いた試験を実施する。

b. 実証試験装置の概要

<加振装置>

大型3軸加振台(場所:茨城県つくば市 第1-58図参照)

装置仕様:第1-19表のとおり。

第 1-19 表 大型 3 軸加振台基本仕様

項目		基本仕様				
加速度自	自由度	3軸6自由度				
最大積載	战質量	80tf				
テーブル	レ寸法	$6\mathrm{m} imes 4\mathrm{m}$				
	方向	X方向	Y方向	Z方向		
定格値	最大変位	± 300 mm	± 150 mm	± 100 mm		
	最大加速度	1 G	3 G	1 G		

第1-58図 大型3軸加振台鳥瞰図

<試験装置>(第1-59図参照)

・供試体:実機と同仕様の実規模サイズの供試体を製作

・模擬範囲:止水体2枚(各2m)を連結

5条 添付21-98

(p)2次止水機構の部材について

2次止水機構にて止水する部材は、止水膜とシートジョイントを使用す

る。 以下に止水膜及びシートジョイントについての仕様を示す。

a. 止水膜について

<止水膜の物性値>

止水膜の物性値は以下の通り(第 1-20 表)。

○主部材:ポリアリレート繊維

第 1-20 表 止水膜の物性値

項目	物性値
引張り強さ (N/3cm)	6200
伸 び (%)	8.3
密度 (本/ in c h)	22

<水圧試験の確認結果>

試験結果は、以下の通り。(第1-21表,第1-60図)

・試験規格: JIS L 1092 繊維製品の防水試験方法に基づく耐水試験

・使用水圧:170KPa以上(防潮堤天端高さ(T.P.+20m)から設置地盤

<mark>標高(T.P.+3m)を差し引いた値)</mark>

・試験圧力:500KPa 以上 (使用圧力の約3倍の試験圧力)

第 1-21 表 止水膜の水圧試験

止水膜材料	使用圧力	試験圧力	判定	備考
	170KPa	500KPa以上	0	5回実施

5条 添付21-99

(r)止水機構の漏水量評価

1 次止水機構の止水板 1 枚(2m)の機能が喪失+2 次止水機構の止水膜 が喪失を想定した場合の敷地の浸水深を評価する。(1 次止水機構の 170mm から評価した。)第 1-62 図に漏水位置を示す。

図 1-62 図 2 次止水機構の漏水位置(想定)

2 次止水機構の止水膜が喪失した場合でも1 次止水機構からの浸水量が 2 次止水を通り敷地内に浸水するため,(h)項漏水試験の記載内容と同 じ1秒あたり約 6.17m³の漏水量である。

基準津波による時刻歴波形から T.P. +3m を超える時間は約 10 分である ため,漏水量は約 3726m³程度になり T.P. +3m 盤の敷地に浸水した場合は 約 1.6m の浸水深になった。

隣接する安全系ポンプの安全機能影響を与える浸水量ではなかった。 に止水板が機能喪失した場合の漏水位置を示す(第1-63図参照)。

第1-63図 止水板が機能喪失した場合の漏水位置

```
5条 添付21-101
```

添付資料24

鋼管杭鉄筋コンクリート防潮壁の設計方針及び

構造成立性評価結果について

- 1. 防潮堤の要求機能と性能目標について
 - (1) 防潮堤に要求される機能
 - (2) 鋼管杭鉄筋コンクリート防潮堤高さの設定方針
 - (3) 設計方針
 - 1) 構造概要
 - 2) 上部工の構造概要
 - 3) 設計手順
 - 4) 設計荷重
 - 5) 鋼管杭及び鋼管杭基礎の設計方針
 - 6) 上部工の設計方針
 - 7)止水ジョイント部の設計方針
 - 8)防潮壁間の相互の支圧力に関する設計方針
 - 9) 地盤高さの嵩上げ(改良体)の設計方針
 - 10)表層地盤改良及びシートパイルの設定方針
 - 11) 防潮壁の地山寄り付き部における設定方針
 - 12)防潮壁底部の地盤根入れ長の設定方針
 - 13)構内排水路と防潮壁の交差部の設計方針
 - 14)海水引込み管と防潮壁の交差部の設定方針
 - 15) 東海発電所の取水路・放水路と防潮壁の交差部の設定方針
 - 16)構造物評価における地下水位の設定方針

2. 施工実績(本設杭構造)

- 3. 構造成立性評価
 - (1)代表断面の選定
 - (2) 代表地震波の選定
 - (3) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析)
 - (4) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析(<mark>断</mark> 面:地点③,横断・縦断方向))
 - (5) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析(岩 盤傾斜部))
 - (6) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析(岩 盤傾斜部,豊浦標準砂))
 - (7) 岩盤傾斜部における地震動の増幅特性及び振動特性による挙動
 - (8) 津波時及び重畳時における鋼管杭基礎の成立性検討結果(二次元フレー ム解析)
 - (9) 上部工の成立性検討結果(二次元梁バネモデル解析)
 - (10)上部工の成立性検討結果(静的三次元 FEM 解析)
 - (11) 地盤高さの嵩上げ部及び表層改良体の成立性検討結果
 - (12)止水ジョイント部の成立性検討結果
 - (13) まとめ

(参考資料1)部材の安全余裕について

(参考資料2)敷地内の地下水位の上昇を仮定した場合における防潮堤への影響 評価について 1. 防潮堤の要求機能と性能目標について

(1) 防潮堤に要求される機能

鋼管杭鉄筋コンクリート防潮壁の平面位置図を第1-1図に,鋼管杭鉄筋コン クリート防潮壁に関する要求機能と設計評価方針について第1-1表に,評価対 象部位を第1-2図に示す。

津波防護施設として防潮堤に求められる要求機能は,繰返しの襲来を想定 した遡上波に対して浸水を防止すること,基準地震動S_sに対して要求される 機能を損なう恐れがないよう,構造物全体としての変形能力に対し十分な構 造強度を有することである。

上記の機能を確保するための性能目標は, 遡上津波に対して余裕を考慮し た防潮堤高さを確保するとともに構造体の境界部等の止水性を維持し, 基準 地震動S_sに対して止水性を損なわない構造強度を有した構造物とすることで ある。

第1-1図 鋼管杭鉄筋コンクリート防潮壁位置図

第1-2図 鋼管杭鉄筋コンクリート防潮壁の評価対象部位

第1-1表 鋼管杭鉄筋コンクリート防潮壁に関する要求機能と設計評価方針

津政防護に関する施設は、津波の発生に伴い、津政防護対象設備がその安全性又は重大事故に対処するために必要な機能が損なわれるおそれがないような設計とする。「津政防護に関する施設の設計について」の要求機能、機能設計、構造独実設計を以下に示す。

	要求機能			機能設計	構造強度設計																																					
施設名	審査ガイド	要求機能	性能目標	機能設計方針	性能目標	構造強度設計 (評価方針)	Ē	評価対象	象部位	応力等の状 態	損傷モード	設計に用いる許容限界																														
	基準律波及び耐律波設計方針に係る審 査ガイド 5.1 律波防護施設の設計 津波防護施設については、その構造に 応じ、波力による侵食及び洗掘に対す る抵抗性並びにすべり及び転倒に対す	 ・鋼管杭鉄 ・鋼管 ・加 ・加 ・加 ・ <	 ・鋼管杭鉄筋コン クリート防潮壁 は、地震後の繰返 しの襲来を想定し た遡上波に対し、 余震、漂流物の衝 	・鋼管杭鉄筋コンクリート防潮 壁は,地震後の繰返しの襲来を 想定した遡上波に対し,余震, 漂流物の衝突,風及び積雪を考 慮した場合においても, ①想定される津波高さに余裕を	・鋼管杭鉄筋コンクリー ト防潮壁は、地震後の繰 返しの襲来を想定した津 波荷重、余震や漂流物の 衝突、風及び積雪を考慮 した荷重に対し、鋼製の	基準地震動Ssによる地震時荷重,地震後の繰返し の襲来を想定した津波荷重,余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,十分な支 持性能を有する地盤に支持される設計とするた め,作用する押し込み力や引抜力が許容支持力以 下に留まることを確認する。	T		基礎地盤	支持力	支持機能を喪失する 状態	「道路橋示方書・同解説(I共通編・IV 下部構造編)」を踏まえ,妥当な安全余 裕を考慮した極限支持力以下とする。																														
	る安定性を評価し、越流時の耐性にも 配慮した上で、入力津波に対する津波 防護機能が十分に保持できるよう設計 すること。 (1)要求事項に適合する設計方針であ ることを確認する。 (2)設計方針の確認に加え、入力津波 に対して津波防護機能が十分保持でき る設計がなされることの見通しを得る	 は、	突、風及び積雪をお くした場合においても、想定さい、 おした場定さい、 な考慮した防潮は 高さい防潮は たくない、 な考慮した防潮は たる、 な考慮した防潮は たる、 な考慮した防潮は たる、 な考慮した。 な考慮した。 な考慮した。 な考慮した。 なる、 など、 など、 など、 など、 など、 など、 など、 など、 など、 など	考慮した防潮堤高さ(浸水高さ T.P. +15.4m - T.P. +17.9m に余 裕を考慮した天端高さT.P. + 18.0m - T.P. +20.0m)の設定に より,敷地を取り囲むように設 置する設計とする。 ②防潮堤の上部工は,原則とし て5本の上部構造の天端から連 続する鋼製の杭を鉄筋コンクリ	杭,鉄筋コンクリートさの あ、鉄筋コンクリートさの 高上げ,セメント系の表 層改良体で構成し、津波 後の再使用性を考慮し、 主要な構造許する設計と し,十分な支持性能を割計と しするもとをに、 前面の地盤には、体で 常位の現盤では、体で に、御客 前面の地盤には、本建 し、か設置には、体を設置 し、ない設置には、体を設置 し、ない設置には、体を設置 し、ない設置には、などで し、ない設定するの性能目標 とする。 ・鋼管杭鉄(筋コン準地震動) Siによる地震時荷重に 対し、小型地震動 Siによる地震時荷重に 対し、非常的器量な見いをを なって 動気の表層で 成時の一般に ない設定する。 ・ 鋼管杭鉄(広) などするの たい、 ないたい、 ない、 なたる、 なたい なたる、 なたい なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なたる、 なた。 なたる、 なたる、 なたる、 なたる、 なたる、 なた。 なた。 なたる、 なた。 なた。 なたる、 なたる、 なたる、 なたる、 なた。 なた。 なた。 なた。 なた。 なた。 なた。 なた。	基準地震動Ssによる地震時荷重,地震後の繰返し の襲来を想定した津波荷重,余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,主要な構 造部材の構造健全性を保持する設計とするため に,構造部材である鋼管杭が,おおむね弾性状態 に留まることを確認する。	部工		鋼管杭	曲げ, せん断	部材が弾性域に留ま らず塑性域に入る状 態	【基準津波に対して】 「道路橋示方書・同解説(I共通編・IV 下部構造編)」を踏まえた短期許容応力 度以下とする。 【T.P.+24m 津波に対して】 「道路橋示方書・同解説(I共通編・IV 下部構造編)」に基づき降伏応力度・せ ん断強度以下とする。																														
	ため、以下の項目について、設定の考 え方を確認する。確認内容を以下に例 示する。 ① 荷重組合せ a)余震が考慮されていること。耐津波 設計における荷重組合せ:常時+津 波,常時+津波+地震(余震) ② 荷重の設定 a)津波による荷重(波圧,衝撃力)の 設定に関して 考慮すろ知見(例え		止水性を保持する ことを機能設計上 の性能目標とす る。 ・鋼管杭鉄筋コン クリート防潮壁 は、基準地震動S sに対し、主要な 構造部材の構造健	新士 ト・で一体化させた壁を構築 し、止水性を保持する設計とする。 ③防潮壁は、鉄筋コンクリート 2015 製の上部構造を上部構造の天端 から連続する鋼製の杭で、十分 から連続する鋼製の杭で、十分 2015 する設計とする。 5 する設計とする。 5 な支持性能を有する地盤に支持 する設計とする。 (④上部構造の内側の地盤高さを)		 とするとともに、主要な 構造体の境界部や防潮壁 前面の地盤には、止水ゴ ム等や表層な良体を設置 し、有意な漏えかを生じ ない設計とすることを構 造強度設計上の性能目標 とする。 ・鋼管抗鉄筋コンクリー ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭、鉄筋コンクリー ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭、業筋コンクリー ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の花、製飾 マクリート製の上部構 造し、有意な湯さの帯上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な 構造体の境界部や防潮壁 前面の地盤には、止水ゴ ム等や表層改良体を設置 し、有意な漏えいを生じ ない設計とすることを構 造強度設計上の性能目標 とする。 	する地盤に設置する設計 とするとともに、主要な 構造体の境界部や防潮壁 前面の地盤には、止水ゴ ム等や表層しは、止水ゴ し、有意な漏えいを生じ ない設計とすることを構 造強度設計とかせ能目標 とする。 ・鋼管杭鉄は、基準地質動 Ssによる地度時荷重に 対し、薄製の杭、鉄筋コンクリー ト防潮壁るの端上げ、 セメント系の表層改良体 で構造部材の構 造健全性を保持する設計	基準地震動S。による地震時荷重, 地震後の繰返し の襲来を想定した津波荷重, 余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,主要な構 造部材の構造健全性を保持する設計とするため に,構造部材である鉄筋コンクリートが,おおむ ね弾性状態に留まることを確認する。	ţ	鉄f ト リ	^{第コンクリー} (鉄筋コンク −ト梁壁)	曲げ, せん断	部材が弾性域に留ま らず塑性域に入る状 態	【基準津波に対して】 「道路橋示方書・同解説(I共通編・V 耐震設計編)」を踏まえた短期許容応力 度以下とする。(コンクリート標準示 方書【構造性能照査編】でも確認。) 【 <u>1</u> , 1 , 4 ,24m 津波に対して】 「道路橋示方書・同解説(I共通編・V 耐震設計編)」に基づき降伏応力度・せ ん断強度以下とする。																												
鋼管杭鉄筋コン	は、国交省の暫定指針等)及びそれら の適用性。 り余震による荷重として、サイト特性 (余震の震源、ハザード)が考慮され、合理的な頻度、荷重レベルが設定 される。 c)地震により周辺地盤に液状化が発生 する場合、防潮堤基礎杭に作用する側 方流動力等の可能性を考慮すること。 ③)許容限界	(をすべきない) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	とで、津波時の止 水性を保持するこ とを機能設計上の 性能目標とする。	保持する設計とする。 ⑤上部構造の施工境界部や異種 構造物間との境界部は,波圧に よる変形に追随する止水性を確 認した止水ゴム等を設置するこ とによる止水処置を講ずる設計 とする。 ⑥律波の波力による浸食や洗 掘,地盤内からの浸水に対して 両性を有する表層改良により。				ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の抗、鉄筋コ ンクリート製の上部構 造、地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する影響	ト防潮壁は、基準地震動 S。による地震時荷重に 対し、鋼製の杭、鉄筋コ ンクリート製の上部構 造,地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する認知 とするとともに	ト防潮壁は、基準地震動 S。による地震時荷重に 対し、鋼製の杭,鉄筋コ ンクリート製の上部構 造,地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する認知 とするとともに	ト防潮壁は、基準地震動 S。による地震時荷重に 対し、鋼製の杭、鉄筋コ ンクリート製の上部構 造、地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する数計	ト防潮壁は,基準地震動 Ssによる地震時荷重に 対し,鋼製の抗,鉄筋コ ンクリート製製の上部構 造,地盤高さの嵩上げ, セメント系の表層改良体 で構成し,津波時におい ても主要な構造部材の構 造健を性を保持する数構	ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の上部構 造、地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する設計 とするとともに、主要な	ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭、鉄筋コ ンクリート製の上部構 造,地盤高さの嵩上げ, セメント系の表層改良体 で構成し、建速時におい ても主要な構造部材の構 造健全性を保持する設計 とするとともに、主要な	ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭,鉄筋コ ンクリート製の上部構 造,地盤高さの嵩上げ, セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する設計 とするとともに、主要な	ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭、鉄筋コ ンクリート製の上部構 造、地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する設計 とするとともに、主要な	ト防潮壁は、基準地震動 Ssによる地震時荷重に 対し、鋼製の杭、鉄筋コ ンクリート製の上部構 造,地盤高さの嵩上げ、 セメント系の表層改良体 で構成し、津波時におい ても主要な構造部材の構 造健全性を保持する設計 とするとともに、主要な	基準地震動Ssによる地震時荷重, 地震後の繰返し の襲来を想定した津波荷重, 余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,主要な構 造部材の構造健全性を保持する設計とするため に,構造部材である鋼管杭が,おおむね弾性状態 に留まることを確認する。	上部工	(\$	鋼管杭 鋼管鉄筋コン クリート)	曲げ, せん断	部材が弾性域に留ま らず塑性域に入る状 態	【基準津波に対して】 「道路橋示方書・同解説(I共通編・IV 下部構造編)」及び「鉄骨鉄筋コンクリ ート造配筋指針・同解説」を踏まえた 短期許容応力度以下とする。 【 <u>T.P.+</u> 24m 津波に対して】 「道路橋示方書・同解説(I共通編・IV 下部構造編)」及び「鉄骨鉄筋コンクリ ート造配筋指針・同解説」を踏まえた 降伏応力度・せん断強度以下とする。																		
クリート防潮壁	③ 津波防護機能に対する機能保持限界 として、当該構造物全体の変形能力 (終局耐力時の変形)に対して十分な 余裕を有し、津波防護機能を保持する こと。(なお、機能損傷に至った場 合、補修にある程度の期間が必要とな ることから、地震、津波後の再使可性		長界 5 方 か る 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、		止水性を保持する設計とする。 ・鋼管杭鉄筋コンクリート防潮 壁は、基準地震動Ssに対し、 ⑦鋼製や鉄筋コンクリート製の 耐性のある部材を使用すること で止水性能を保持する設計とす		基準地震動S。による地震時荷重, 地震後の繰返し の襲来を想定した津波荷重, 余震や漂流物の衝 突, 風及び積雪を考慮した荷重に対し, 主要な構 造体の境界部に設置する部材を有意な漏えいを生 よかい恋形に図める記述レイスをか、様界でに記	,	止水ジ	止水ゴム 等	変形, 引張り	有意な漏えいに至る 変形,引張り	メーカー規格及び基準並びに必要に応 じて実施する性能試験を参考に定める 許容変形量及び許容引張り力以下とす る。																													
	に着目した許容限界にも留意する必要 がある。) 基準地震動及び耐震設計方針に係る審			る。 ⑧上部構造は、杭を梁で連結させる構造とすることで変位を抑 制し、鉄筋コンクリートによる 止水性を保持する設計とする。	 結 さ 結 さ を ふ 結 を か る ス 通 報 等 し と 設 を 診 さ お す す を る さ お す す を る た る る の の 指 																															でない変かに曲めるなうとうっため、残かかに改 置するゴムジョイント、シートジョイントが有意 な漏えいを生じない変形量以下であることを確認 する。 また、止水ゴム等が止水性能を保持するための接 使マンカーの短期に進かせば、わかたわ避地地能		ョイント部	鋼製 アンカー	引張り, せん断, 引抜き	部材が弾性域に留ま らず塑性域に入る状 態	「各種合成構造設計指針・同解説」を 踏まえた短期許容応力度以下とする。
	<u>査ガイド</u> 6.3 津波防護施設,浸水防止設備等 津波防護機能を有する施設,浸水防止 機能を有する設備及び敷地における津 波監視機能を有する設備のうち建物及			⑨上部構造の施工境界部や異種 構造物間との境界部は、試験等 により地震時の変形に追随し止 水性を確認した止水ゴム等を設 置することによる止水処置を講				続 / ン) 一で 到契約 載 前 付は、 おおむ 44 単 仕 小 感 に 留まることを確認する。			止水ゴム等 の鋼製防護 部材	曲げ, 引張り, せん断	部材が弾性域に留ま らず塑性域に入る状 態	「鋼構造設計基準」を踏まえた短期許 容応力度以下とする。																												
	び構築物は、常時作用している荷重及 び運転時に作用する荷重と基準地震動 による地震力の組合せに対して、当該 建物・構築物が構造物全体としての変 形能力(終局耐力時の変形)について 十分な余裕を有するとともに、その施 設に要求される機能(津波防護機能, 浸水防止機能)を保持すること			じる設計とする。 ⑩上部構造の内側の地盤高さの 嵩上げが地震時に滑動・内部す べりを起こさない幅や強度を確 保することで、津波時における 止水性を保持する設計とする。 ⑪表層改良は、セメント系の改 良体とすることで 地震防に損			基準地震動S。による地震時荷重, 地震後の繰返し の襲来を想定した津波荷重, 余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,地盤とし て滑動しない抵抗性を保持する設計とするため, 地盤高さの嵩上げ部底面が滑動しないこと及び受 働崩壊角にすべりが発生しないことを確認する。	地	盤高さ (改良	の嵩上げ き体)	せん断	地盤高さの嵩上げ部 の底面が滑動に至る 状態,上部構造背面 の地盤がすべりに至 る状態	「道路橋示方書・同解説(I共通編・Ⅳ 下部構造編)」及び「耐津波設計に係る 工認審査ガイド」を踏まえ,妥当な安 全余裕を考慮した受働せん断面方向等 のせん断耐力以内とする。																													
	マハビルエ1%HE/1を1%IT りること 尿体とりることで、地震時に損 壊しない設計とする。 ⑫シートパイルは、鋼材を連結 し連続する構造とし、ボイリン グによる地中からの止水性を保 持する設計とする。		基準地震動S。による地震時荷重, 地震後の繰返し の襲来を想定した津波荷重, 余震や漂流物の衝 突,風及び積雪を考慮した荷重に対し,洗掘防止 対策やボイリング対策としての機能を保持するた め,表層改良体にせん断破壊が生じないことを確 認する。	,	表層改	文良体	せん断	表層改良体がせん断 破壊に至る状態	妥当な安全余裕を考慮したせん断強度 以下とする。																																	
						基準地震動S _S による地震時荷重に対し、ボイリン グ対策としての機能を保持するため、シートバイ ルにせん断破壊が生じないことを確認する。	,	シート	パイル	せん断	部材がせん断破壊に 至る状態	妥当な安全余裕を考慮したせん断強度 以下とする。																														

赤字:荷重条件緑字:要求機能青字:対応方針

(2) 鋼管杭鉄筋コンクリート防潮堤高さの設定方針

鋼管杭鉄筋コンクリート防潮壁は、津波遡上高さに対して余裕 をもった防潮堤高さを設定している。入力津波高さと防潮堤高さ の関係を第 1-2 表に示す。

	敷地側面	敷地前面	敷地側面
	北側	東側	南側
入力津波高さ			
(潮位のばらつ	T.P. + 15.4m	T. P. + 17.9m	T.P. + 16.8m
き等考慮)			
防潮堤高さ	T.P. + 18.0m	T.P. + 20.0m	T.P. + 18.0m
設計裕度	2.6m	2.1m	1.2m

第1-2表 入力津波高さと防潮堤高さの関係

(3) 設計方針

1) 構造概要

鋼管杭鉄筋コンクリート防潮壁は,鋼管杭を地盤に対して一列 に打設し,上部工は鋼管杭と鉄筋コンクリートを連結させ設置す る。

上部工は、下部工の鋼管杭から上部工に連続する鋼管杭を鉄筋 コンクリートで被覆した部材と、堤外側に設置する鉄筋を密に配 置した鉄筋コンクリート梁壁部材で構成される。これら部材を鉄 筋で強固に一体化した鋼管杭5本を1ブロックとした壁体を連続 して設置する。このブロック間の境界には、止水性を確保するた めの止水ゴム等を設置する。

また,防潮壁の堤内側には,津波による波力低減を目的とした 改良体による地盤高さの嵩上げを行うとともに,洗掘防止対策や ボイリング対策として,堤内・外の表層部の地盤改良を実施する。 鋼管杭鉄筋コンクリート防潮壁の構造概要を第 1-3 図に,構成部材とその役割を第 1-3 表に示す。

なお,現在設定している材料の仕様については第 1-4 表のとお りであるが,今後の詳細設計で仕様変更が想定される。

注) 仕様については今後の検討で多少変更が想定される

第1-3図 鋼管杭鉄筋コンクリート防潮壁の構造概要図

(正面図及び断面図)

構造	5 部位	部位の役割
上部工	鉄 筋 コン クリート	外部からの地震・津波荷重, <mark>漂流物荷重</mark> 等を鋼管杭に確実に伝 達し,防潮壁としての機能を維持する。
	止 水 ジョ イント部	上部工の施工ブロック間に生じる変位に追従し,津波荷重に対 して十分な耐性を持ち,防潮壁としての機能を維持する。
上部工		鉄筋コンクリートから伝達される荷重を支持地盤に確実に伝達
下部工	鋼 管 杌	し、防潮壁としての機能を維持する。
地盤高さ (改良体)	: の 嵩 上 げ)	上部工から伝達される荷重に抵抗し,防潮壁の変位を抑制す る。
表層改良	体	防潮壁堤外側においては,津波荷重に対して十分な耐性を持ち 洗掘防止としての機能を維持する。防潮壁堤内側においては, 地震時における地盤高さの嵩上げ部の沈下を抑制し,防潮壁と しての機能を維持する。
シートパ	イル	津波時における堤外側の水位上昇を想定したボイリング対策と し,地中部から堤内側への浸水を防止する。

第1-3表構成部材と役割

第 1-4 表 材料仕様

	材料	仕様			
4	· · · · · · · · · · · · · · · · · · ·	敷地前面東側: 2,500mm,t=35mm,40mm(SM570)			
1	劃 巴 竹	敷地側面北·南側: 2,000mm,t=35mm(SM570)			
2	コンクリート	f _{ck} =40N/mm ²			
3	鉄筋	SD490			
4	頭 付 きスタッド	fy=235N/mm ² (JIS B 1198)			
5	ゴムジョイント	クロロプレンゴム			
6	シートジョイント	塩化 ビニルシート, 合 成 繊 維 織 布 (ポリエステル)			
7	アンカーボルト	SS400 , SUS304			
8	止水ゴム等の鋼製防護部材	SS400			
9	シートパイル (鋼 矢 板)	SY295			
10	表層改良体,地盤高さの嵩	セメント改良 q』= <mark>1,000kN/m²</mark>			
10	上げ(改良体)	浸 透 固 化 改 良 (原 地 盤 密 度 と同 じ)			

注)仕様については今後の検討で多少変更が想定される

2) 上部工の構造概要

鋼管杭鉄筋コンクリート防潮壁の上部工は、下部工の鋼管杭か ら上部工に連続する鋼管を被覆した①被覆型の鋼管コンクリート 構造の柱部材(以下,鋼管鉄筋コンクリートという)及びその構 造の堤外側に設置した②鉄筋コンクリート梁の主筋を密に配置し, せん断耐力筋で補強した壁部材(以下,鉄筋コンクリート梁壁と いう)から構成される。鋼管鉄筋コンクリート及び鉄筋コンクリ ート梁壁の範囲を第1-4図に示す。

鋼管鉄筋コンクリートと鉄筋コンクリート梁壁は,鉄筋を全部 材の外周にも配置することで一体として束ねられ,鋼管鉄筋コン クリート5本毎を1ブロックとして構成する。

津波や漂流物に対しては、堤外側の鉄筋コンクリート梁壁に津 波や漂流物の荷重が伝わり、鉄筋コンクリート梁構造として鋼管 鉄筋コンクリートを支点とした連続梁として抵抗する。その支点 反力が鋼管鉄筋コンクリートに伝わり、下部工の鋼管杭へ荷重伝 達される。また堤外側の鉄筋コンクリート梁壁により、1ブロッ ク内の止水性を確保するとともに、ブロック間は別途に止水ジョ イントを設けて止水する。

地震時に対しては、下部工の鋼管杭の応答変位により各杭間に 生じる相対変位から発生する荷重に対して、鋼管鉄筋コンクリー ト間を結んでいる鉄筋コンクリート梁壁により抵抗する。鉄筋コ ンクリート梁壁には、せん断耐力筋が密に配置されており、梁壁 のせん断抵抗力により構造物全体の健全性を確保することができ る。

第 1-4 図(2) 上部工上面図

注) 仕様については今後の検討で多少変更が想定される

第 1-4 図(3) 上部工詳細図

3) 設計手順

鋼管杭鉄筋コンクリート防潮壁の耐震・耐津波評価は、津波防 護施設であること、Sクラスの設計基準対象施設であることを踏 まえ、第1-5表の鋼管杭鉄筋コンクリート防潮壁の評価項 目 に従い、各構造部材の構造設計を行う。

鋼管杭鉄筋コンクリート防潮壁の構造健全性評価の検討フローを第 1-5 図に,解析評価に係る検討フローを第 1-6 図に示す。

評 恤 对 象 部 位		設計何里	応力等の状態	設計に用いる計谷限外	
下部上	基	碰地盤		支 持 力	「道路橋示方書・同解説(I共通編・IV 下部構造編)」を踏まえ,妥当な安全余 裕を考慮した極限支持力以下とする。
	ģ	鋼 管 杭		曲げ,せん断	【 基準津波に対して】 「道路橋示方書・同解説(I 共通編・Ⅳ 下部構造編)」を踏まえた短期許容応力 度以下とする。 【 <mark>I.P. +</mark> 24m津波に対して】 「道路橋示方書・同解説(I 共通編・Ⅳ 下部構造編)」に基づき降伏応力度・せ ん断強度以下とする。
鉄 筋 コンク リート (鉄 筋 コンク リー ト 梁 壁)		基準地震動	曲げ、せん断	【基準津波に対して】 「道路橋示方書・同解説(I共通編・V 耐震設計編)」を踏まえた短期許容応力 度以下とする。(コンクリート標準示 方書【構造性能照査編】でも確認。) 【 <u>T.P.+</u> 24m津波に対して】 「道路橋示方書・同解説(I共通編・V 耐震設計編)」に基づき降伏応力度・せ ん断強度以下とする。	
上部工	。 (鋼管 リ	鋼 管 杭 〕鉄 筋 コ ン ク ー ト)	地重の襲し重漂突積し 震,繰来た,流,雪た 時地返を津余物風を荷 荷震し想波震の及考重	曲げ、せん断	【 基準
	止水ゴム 米 等		止水ゴム等	変形,引張り	メーカー規格及び基準並びに必要に応 じて実施する性能試験を参考に定める 許容変形量及び許容引張り力以下とす る。
	, ョイント	鋼 製 アンカー		引張り, せん断, 引抜き	「各種合成構造設計指針・同解説」を 踏まえた短期許容応力度以下とする。
	部	止水ゴム等 の鋼製防護 部材		曲げ, 引張り, せん断	「鋼構造設計基準」を踏まえた短期許 容応力度以下とする。
地盤高さの嵩上げ (改良体)			せん断	「道路橋示方書・同解説(I共通編・IV 下部構造編)」及び「耐津波設計に係る 工認審査ガイド」を踏まえ, <mark>妥当な安</mark> 全余裕を考慮した受働せん断面方向等 のせん断耐力以内とする。	
表層改良体				せん断	妥当な安全余裕を考慮したせん断強度 以下とする。
	シート	パイル	基準地震動 S _s による地 震時荷重	せん断	妥当な安全余裕を考慮したせん断強度 以下とする。

第1-5表 鋼管杭鉄筋コンクリート防潮壁の評価項目

第1-6図 防潮壁の検討モデルと評価フロー

4) 設計荷重

設計に用いる荷重の組合せを以下に示す。

①常時荷重+地震荷重(Ss)

- ②常時荷重+津波荷重(動·波圧)
- ③常時荷重+津波荷重(動·波圧)+漂流物荷重
- ④常時荷重+津波荷重(動·波圧)+余震荷重

⑤常時荷重+T.P.+24m 津波荷重(動・波圧)+<mark>漂流物荷重</mark>

⑥常時荷重+T.P.+24m津波荷重(動・波圧)+余震荷重

5) 鋼管杭及び鋼管杭基礎の設計方針

鋼管杭鉄筋コンクリート防潮壁の基礎は,岩盤に鋼管杭の直 径程度以上を根入れする岩着支持杭とした。

鋼管杭は津波時及び地震時において各部位が十分な裕度を有することを確認する。

鋼管杭基礎の支持性能については,基礎に作用する地盤反力 が基礎地盤の極限支持力以下であることを照査する。

津波時及び重畳時(<mark>津波+余震時</mark>)は二次元静的フレーム解 析,地震時は液状化を精緻に評価するために有効応力解析を実 施し,基礎に発生する断面力を用いて応力照査を実施する。

① 耐震設計(有効応力解析)

設計対象構造物~地盤の連成系モデルによる二次元地震応答 解析を行い,地震時の鋼管杭基礎の構造健全性及び支持性能を 確認する。また,地盤の液状化の影響を緻密に反映するため, 有効応力の変化に伴う地盤挙動の変化を考慮することができる 有効応力法を用いることとし,地震応答解析により算定される

部材の発生応力度が短期許容応力度以下となるよう設計する。

液状化強度特性については, 平均-1 σの値を用いること で保守性を考慮する。さらに、地質分布の不確かさに着目 し、原地盤の液状化強度特性を適用した基準地震動Ssによる 解析結果のうち、最も厳しいケースにおいて、より一層保守 的な検討を目的に、液状化検討対象層である全ての砂層・礫 層に対して豊浦標準砂の液状化強度特性を与えることで、強 制的に液状化させる条件を仮定した解析モデルについても検 討する。

a. 解析モデルの作成

地質断面図を反映して解析モデルを作成する。鉛直方向は T.P.-130m までをモデル化する。鋼管杭は線形梁要素, 地盤 はマルチスプリング要素でモデル化し、地下水位以深につい ては間隙水圧要素を配置する。

鋼管杭と地盤との間には、杭と地盤の相互作用を適切に考 慮できる相互作用バネを配置する。解析モデルの一例を第1-7図に示す。

第 1-7 図 解析モデルの一例

b. 地震応答解析

有効応力解析により構造物及び地盤の応答値を算定する。 入力地震動は,東海第二発電所の解放基盤表面深度である T.P.-370mからT.P.-130mまでをモデル化した剥ぎ取り地 盤モデルを用いて,一次元波動論によりT.P.-130m位置で評 価した地震動(2E)を用いる。

c. 照查

地震応答解析により算定された鋼管杭の断面力を用いて, 曲げモーメント・軸力に対する照査, せん断に対する照査を 行い, 短期許容応力度以下であることを確認する。

基礎地盤の支持性能として,基礎に作用する地盤反力が極限支持力以下であることを確認する。

② 耐津波設計(二次元静的フレーム解析)

鋼管杭のみで津波に抵抗するため,鋼管杭のみを二次元フ レーム解析モデルで表現する。この鋼管杭をモデル化した梁 に地盤バネを接続したモデルで応答変位法による二次元静的 フレーム解析を行い,津波時と重畳時(津波+余震時)の鋼 管杭の構造健全性及び支持性能を確認する。死荷重及び積雪 の長期荷重,津波荷重と漂流物荷重,余震荷重等を外力とし て入力し,部材の発生応力度が短期許容応力度以下となるよ う設計する。津波や漂流物の荷重は,鉄筋コンクリートを通 じて上部工の鋼管に直接的に作用し,下部工の鋼管杭へ伝達 される。なお,津波時における漂流物荷重は,入力津波高さ

に作用するものとして考慮する。

基礎地盤の支持性能として,基礎に作用する地盤反力が極限支持力以下であることを確認する。

解析モデル概念図を第1-8図に示す。

第1-8図 解析モデル概念図

地盤バネは、「道路橋示方書・同解説(IV下部構造編)」に 基づき設定し、上限値を有するバイリニア型とする。余震時 の地盤バネの算定に用いる地盤の変形係数*Ep*は、以下の式に より算出する。

 $E_D = 2(1+\nu_d)G'$

E_D:地盤の変形係数(kN/m²)

 $\nu_d: 動ポアソン比$

G': 地盤の余震時の収束剛性(kN/m²)

地盤バネ定数及び地盤バネの上限値の算定内容を第1-6表 に示す。同表中の地盤バネ定数4種類と地盤バネの上限値4 種類を用いて,地盤の最も高い剛性と最も大きい強度の組合 せによる構成式及び地盤の最も低い剛性と最も小さい強度の 組合せによる構成式を地盤バネの設定で用いることにより, 各部位で安全側となる設計を行う。

第1-6表 地盤バネ定数及び地盤バネの上限値

荷重条件	地盤バネ定数	地盤バネ上限値
津波時 及び 津波 + 余震時	初期剛性より 余震時の収束剛性より <mark>地震時</mark> の収束剛性より 静弾性係数より	ピーク強度(平均) ピーク強度(-1σ低減) 残留強度(平均) 残留強度(-1σ低減)

余震時荷重としては、余震時の一次元地盤応答解析及び二 次元有効応力解析により算定される応答変位分布を強制変位 としてバネ端に載荷するとともに、地表面最大加速度より算 定する設計震度を慣性力として考慮する。 6) 上部工の設計方針

津波に対する止水性を確保し、津波荷重や<mark>漂流物荷重</mark>によるせん断力を全て受け持てるよう、「鋼管鉄筋コンクリート」の前面に一体化した「鉄筋コンクリート梁壁」を設置する。

二次元梁バネモデル解析では、上部工前面の「鉄筋コンク リート梁壁」(鉄筋コンクリート梁の主筋を密に配置し、せん 断耐力筋で補強した壁部材)のみをモデル化し、地震時、津 波時、重畳時(津波+余震時)の全てのケースにおいて、「鉄 筋コンクリート梁壁」のみで成立する構造とする(実際には 「鉄筋コンクリート梁壁」と背面にある「鋼管鉄筋コンクリ ート」との一体構造断面で抵抗することになる)。

上部工の検討においてモデル化を行わない「鋼管鉄筋コン クリート」(下部工の鋼管杭から上部工に連続する鋼管を被覆 した部材)には、コンクリート標準示方書に基づく必要鉄筋 量を配置する。

なお,二次元梁バネモデル解析で鉄筋コンクリート梁壁を モデル化して,上部工の設計を行うことを基本とするが,断 面力の確認のため,代表断面については静的三次元解析を実 施し,二次元梁バネモデルの妥当性についても検討する。

第1-9図に検討フローを示す。

第1-9図 上部工検討フロー

①モデル化方針

a. 二次元梁バネモデル

津波荷重,<mark>地震荷重</mark>,積雪荷重,風荷重及び<mark>漂流物荷重</mark>に 耐えうる構造である鉄筋コンクリート梁壁をビーム要素でモ デル化し,地盤抵抗を表現するため,地盤バネを配置する。 左右外側のバネには地盤のばらつきを考慮するため,
-1σあるいは+1σ物性のバネ値を与える。 二次元梁バネモデルの概要図を第1-10図に示す。

第 1-10 図 二次元梁バネモデル

b. 三次元 F E M モデル

上部工及び下部工を三次元FEMでモデル化し,防潮壁が 地震,津波及び津波+余震より受ける応力を精緻に評価す る。三次元FEMについては,傾斜部のモデル化も行い,地 震時の1ブロックにおけるねじれの検討も実施する。更に, 傾斜部については,固有値解析を実施して防潮壁の振動特性 を評価する。

解析モデルは上部工をソリッド要素でモデル化し、鋼管杭 をシェル要素でモデル化する。地盤の抵抗については、バネ で表現し、杭周り及び地盤高さの嵩上げの該当部分に付加す る。なお、地盤バネについては、鋼管杭のモデル化で二次元 静的フレーム解析の際に用いた地盤バネを用いる。ただし、 引張方向は No tension バネとする。

三次元 F E M モデルの概要を第 1-11 図に示す。

第 1-11 図(1) 三次元 F E M 解析モデル (一般部)

第1-11図(2) 三次元FEMモデル(傾斜部)

②地震時

a. 静的フレーム解析 (梁バネモデル)

地盤や杭の剛性を表現したバネに支持された鉄筋コンクリ ート梁壁を二次元梁バネモデルで表現し,地震時の静的挙動 を評価する。鉄筋コンクリート梁壁をビーム要素でモデル化 し,地盤抵抗を表現するため,地盤バネを配置する。左右外 側のバネには地盤のばらつきを考慮するため,-1σあるいは +1σ物性のバネ値を与える。

地震時の地盤変位についても,左右外側には±1σ物性を用いた一次元地震応答解析から算出した変位を入力する。

二次元梁バネモデルより算出された断面力を用いた鉄筋コ ンクリート梁壁の照査を行い,地震による慣性力を鉄筋コン クリート梁壁に作用させ,梁壁に生じる曲げ,せん断応力度 の照査を行い,短期許容応力度以下であることを確認する。 地震時の地盤変位入力概要を第1-12図に示す。

第1-12図 地震時二次元梁バネモデル概要

b. 三次元 F E M モデル

二次元梁バネモデルの保守性検討のため,三次元FEMモ デルを用いた解析を行う。三次元FEM解析のモデル概念図 を第1-13図に示す。

水平慣性力は、一次元地震応答解析及び二次元有効応力解 析で地表面の最大加速度を算定し、その加速度を杭と防潮壁 に対して堤外から堤内方向へ平均地盤の表面最大加速度の水 平慣性力を作用させる。一次元地震応答解析は各々の杭に対 して実施する。

鉛直慣性力は,一次元地震応答解析及び二次元有効応力解

析で地表面の最大加速度を求め、その加速度を杭と防潮壁に 平均地盤の表面最大加速度の下向き鉛直慣性力を作用する。

水平地盤変位は各杭先端からの最大相対変位とする。最大 変位の算出についても各々の杭に対して算出した結果を入力 する。

杭体には全ての節点に水平バネ(Y方向,X方向)を設定 し、水平方向バネは杭体と同様に圧縮方向が地盤反力度の上 限値を用いたバイリニア型,引張方向を No tension としてい る。地盤バネの特性図を第 1-14 図に示す。

第 1-13 図 三次元 F E M 解析の概念図

第1-14図 FEM解析に与える地盤バネの特性

② 津波時, 津波+余震時

津波時及び津波+余震時においても、二次元梁バネモデルで 評価し、代表断面については三次元FEMモデルで行う。

a. 津波時

鉄筋コンクリート梁壁モデルに,死荷重,積雪荷重,津波荷重 及び漂流物荷重を作用させ,鉄筋に生じる引張り,せん断応力度 及びコンクリートに生じる圧縮,せん断応力度の照査を行い,短 期許容応力度以下であることを確認する。なお,漂流物荷重は曲 げモーメントが最大となる位置に作用させる。

b. 津波 + 余震時

鉄筋コンクリート梁壁モデルに,死荷重,積雪荷重,津波荷重 並びに余震による慣性力及び動水圧を作用させ,鉄筋に生じる引 張り,せん断応力度及びコンクリートに生じる圧縮,せん断応力 度の照査を行い,短期許容応力度以下であることを確認する。な お,慣性力としての設計震度は,一次元地盤応答解析及び二次元 有効応力解析より算出される地表面の最大加速度を与える。

二次元梁バネモデルは地表面における最大変位を集約バネを介 して載荷する。三次元FEM解析については,深度なりの変位を

杭体にバネを介して載荷する。

④二次元梁バネモデルと三次元FEMモデルに対する保守性

二次元梁バネモデルは、上部工堤外側の鉄筋コンクリート梁 壁のみをモデル化し、評価においては、津波荷重が最も大きい 上部工底版の荷重や漂流物荷重が最も大きい上部工天端部の荷 重を入力しているが、三次元FEMモデルでは、現実的な荷重 分布を入力する。

また、二次元梁バネモデルは、荷重を5箇所の点で支持する モデルであるが、三次元FEMモデルでは、鉄筋コンクリート 梁壁の背後にある鋼管鉄筋コンクリートにより、荷重を面的に 支持するモデルとなっている。第1-15図に二次元梁バネモデル と三次元FEMモデルの相違点を示す。

項目	三次元 F E M 解析	二次元梁バネモデル
① 断面	鉄筋コンクリート梁と鋼管鉄筋コン	鉄筋コンクリート梁部分
	クリート部をモデル化(立体)	のみをモデル化 (梁)
② 支持条件	面での支持	点での支持
③ 荷重	津波荷重の深度方向分布を考慮	津波荷重の最大値を採用

第1-15図 二次元梁バネモデルと三次元FEMモデルの相違点

5条 添付24-29

なお、鉄筋照査等を行う断面計算は、軸力、曲げモーメント、せん断力を用いて曲げ応力度及びせん断応力度を算出して行う。応力計算は、面積と断面2次モーメントに依存するため、値が小さい方が応力度は大きくなる。

以上のことから、二次元梁バネモデルで用いる断面性能(断 面積、断面2次モーメント)と三次元FEMでモデル化される 断面性能は、二次元梁バネモデルの方が小さくなり、すなわち 発生応力度が大きくなることから、三次元FEMモデルと比較 して安全側の評価になる。第1-16図に両断面モデルにおける断 面性の比較を示す。

- 鉄筋の照査等を行う断面計算は、軸力、曲げモーメント、せん断力を用いて曲げ応力及びせん断応力を算出して行う。
- 応力計算は、面積と断面2次モーメントに依存するため、値が小さい方が応力は大きくなる。
 二次元梁バネモデルで用いる断面性能(断面積、断面2次モーメント)と三次元FEMでモデル化される断面性能は、二次元 梁バネモデルの方が小さくなり、発生応力度は大きくなる。

第1-16図 二次元梁バネモデルと三次元FEMモデルにおける断面性の比較図

⑤鋼管杭と鉄筋コンクリートの接合面の一体性確保

鋼管杭と鉄筋コンクリートの接合面の一体性を強固なものと するため、スタッドを適切な位置に所要の本数を配置して確実 な接合を行う方針とする。

杭の曲げ変形により,鋼管と鉄筋コンクリートの間のせん断 力に対して,ずれを生じさせないために必要なスタッドを配置 する。設計は,鋼・合成構造標準示方書(土木学会)及び道路 橋示方書・同解説(IV下部構造編)(日本道路協会)に基づき行 う。

せん断力は, 杭の曲げモーメント分布の勾配として求め, 各 区間の平均的なせん断力とする。

接合面に作用するせん断力の概念図を第 1-17 図に, せん断力の算出方法概念図を第 1-18 図に示す。

第1-17図 鋼管杭と鉄筋コンクリートの接合面に作用するせん断力

第1-18図 杭の曲げモーメント分布に基づくせん断力の算出方法

7)止水ジョイント部の設計方針

① 概要

鋼管杭鉄筋コンクリート防潮壁の施工ブロック間等には, 止水ジョイントを設置する。

止水ジョイントは、地震時やその後の津波や余震によって 生じる構造物間の相対変位に対して止水性を確保するため伸 縮性を有するものとする。

なお,堤外側の止水ジョイント部には,漂流物への対策として,止水ゴム等の鋼製防護部材を設置する。

③ 評価方針

止水ジョイント部の評価は、基準地震動Ssを用いた二次元 有効応力解析及び津波荷重を用いた二次元静的フレーム解析 により算出された変位量及び入力津波を用い津波波圧式より 算出した津波荷重に対し、止水ゴム等の止水性が維持できる ことを確認し、止水ゴム等の仕様を設定する。止水ジョイン ト部の設計フローを第1-19 図に示す。

止水ゴム等の仕様は,津波荷重に耐え,構造物間の相対変 位に追従して止水機能を維持できる材料を設定し,性能試験 によってこれらを確認する。

なお、止水ゴム等の取り付け部の鋼製アンカーに発生する 応力度が短期許容応力度以下であることを確認するとともに、 漂流物への対策として止水ゴム等の鋼製防護部材を設置し、 この部材に発生する応力度が短期許容応力度以下であること を確認する。

a. 相対変位の設定方針

防潮堤の標準部(直線部),隅角部,異種構造物間の位置を 第1-20図に示す(標準部は,異種構造物間,隅角部を除く区 間)。

第1-20図 防潮堤の各部(標準部,隅角部及び異種構造物間)位置図

b. 標準部の地震時相対変位量

鋼管杭鉄筋コンクリート防潮壁の標準部は,隣り合う防 潮壁同士が同一の挙動を示すと考えられるため,地震時に おいては,地盤のせん断波速度 Vs の平均物性,+1 σ物 性,-1 σ物性による地震時応答解析で得られる応答変位 に基づき相対変位を設定する。

地震時の設計用相対変位は,以下の式により水平 2 方向 (x 方向, y 方向)及び鉛直方向(z 方向)それぞれにつ いて算出する。

さらに、x方向、y方向及びz方向の相対変位から求め られる合成方向変位を算出する。ここで、地震時の相対変 位の概念図を第1-21図に示す。

x 方向の相対変位δx:

 $\delta x = \max[abs{\delta x(+1\sigma) - \delta x(平均)}, abs{\delta x(平均) - \delta x(-1\sigma)}]$ y 方向の相対変位 δy :

 $\delta y = \max[abs{\delta y(+1\sigma) - \delta y(平均)}, abs{\delta y(平均) - \delta y(-1\sigma)}]$ z 方向の相対変位 δz :

 $\delta z = \max[abs{\delta z(+1\sigma) - \delta z(平均)}, abs{\delta z(平均) - \delta z(-1\sigma)}]$ 合成方向変位(3方向合成) δ :

$$\delta = \sqrt{\delta_x^2 + \delta_y^2 + \delta_z^2}$$

第1-21図 地震時の相対変位の概念図

c.標準部の津波時相対変位量

津波時においては、地震時の残留変位を防潮壁ブロック 間の相対変位として設定する。

津波時の設計用相対変位は,以下の式により水平2方向 (x方向,y方向)及び鉛直方向(z方向)それぞれにつ いて算出する。

さらに, x 方向, y 方向及び z 方向の相対変位から求め られる合成方向変位を算出する。

なお,止水ジョイント部の設計で考慮する荷重は,津波 波圧式により算出した津波荷重を設計荷重とする。ここ

で、津波時の相対変位の概念図を第 1-22 図に示す。

x 方向の相対変位 $\delta x : \delta x = \delta x(B) - \delta x(A)$ y 方向の相対変位 $\delta y : \delta y = \delta y(B) - \delta y(A)$ z 方向の相対変位 $\delta z : \delta z = \delta z(B) - \delta z(A)$ 合成方向変位 (3 方向合成) $\delta : \delta = \sqrt{\delta_x^2 + \delta_y^2 + \delta_z^2}$ $\delta x(A), \delta x(B), \delta y(A), \delta y(B), \delta z(A), \delta z(B) : 地震時の残留変位$

第1-22図 津波時の相対変位の概念図

d. 標準部の重畳時(<mark>津波+余震時</mark>)相対変位量

重畳時(<mark>津波+余震時</mark>)においては,地震時の残留変位 と余震による応答変位を防潮壁ブロック間の相対変位とし て設定する。

重畳時(津波+余震時)の設計用相対変位は,以下の式 により水平2方向(x方向,y方向)及び鉛直方向(z方 向)それぞれについて算出する。さらに,x方向,y方向 及びz方向の相対変位から求められる合成方向変位を算出 する。

なお、止水ジョイント部の設計で考慮する荷重は、津波 波圧式により算出した津波荷重を設計荷重とする。また、 動水圧、防潮壁の横断方向と縦断方向の慣性力をブロック ごとの応答加速度に依存する設計荷重とする。ここで、重 畳時(津波+余震時)の相対変位の概念図を第1-23 図に 示す。

x 方向の相対変位 $\delta x : \delta x = \{\delta x(B) + \delta x'(B)\} - \{\delta x(A) + \delta x'(A)\}$ y 方向の相対変位 $\delta y : \delta y = \{\delta y(B) + \delta y'(B)\} - \{\delta y(A) + \delta y'(A)\}$ z 方向の相対変位 $\delta z : \delta y = \{\delta z(B) + \delta z'(B)\} - \{\delta z(A) + \delta z'(A)\}$ 合成方向変位 (3 方向合成) $\delta : \delta = \sqrt{\delta_x^2 + \delta_y^2 + \delta_z^2}$

 $\delta x(A), \delta x(B), y(A), \delta y(B), \delta z(A), \delta z(B): 地震時の残留変位
 \delta x'(A), δ x'(B), δ y'(A), δ y'(B), δ z'(A), δ z'(B): 余震による応答変位$

第1-23図 重畳時(津波+余震時)の相対変位の概念図

e. 隅角部及び異種構造物間の相対変位量

隅角部及び異種構造物間の変位量の設定は,標準部と同 様に最大変位量を設定する。

隅角部及び異種構造物間の相対変位 概念図を第 1-24 図 及び第 1-25 図に示す。

第1-24図 隅角部の相対変位 概念図

第1-25図 異種構造物間の相対変位 概念図

f. 止水ゴム等の適用方針

止水ゴム等は津波荷重に耐えうる材料を選定する。

また,止水ゴム等は構造物間に生じる相対変位に対し,そ の相対変位に追従可能な材料を選定することとする。

止水ゴム等は,変位量に応じゴムジョイント,シートジョ イントの使い分けを計画している。

g. 止水ゴム等の性能試験について

止水ジョイント部は,地震時に構造物間に生じる相対変位 と,その後の津波や余震により構造物間に生じる相対変位に 対して止水性を確保するため,伸縮性を有するものとし,堤 内側及び堤外側の両面に止水ゴム等を設置する。これを踏ま え,止水ゴム等の性能を確認するために耐圧試験等を実施す る。

ゴムジョイントの試験は、所定の変位を与えた上で津波荷 重相当の荷重での耐圧試験を実施する。

ゴムジョイントの耐候性については、メーカーによる試験 結果を確認した結果、ゴムジョイントに使用されるゴムの伸 びが半減する期間が約 38 年(気温条件:30℃)で、ゴムの伸 びが半減しても有意な硬化はなく、十分な変形性能(伸び率 225%)を有している。

シートジョイントの試験は,継続載荷試験,津波荷重相当 の荷重での耐圧試験及び母材の耐候性試験(紫外線を照射し, 初期値と照射後の引張強度の確認)を実施する。耐候性試験 は JIS L 1096 「織物及び編物の生地試験方法」に基づき,5

年,10年,及び15年に相当する耐候性を確認する(現在試験中)。今後,耐候性試験結果に基づき適切にシートジョイントの耐用年数を設定し,供用後の維持管理を行うと共に,必要に応じ更なる耐候性試験を実施し,耐用年数を見直していく。

止水ゴム等の耐圧試験例を第1-26図に示す。

第1-26図 止水ゴム等の耐圧試験例

8) 防潮壁間の相互の支圧力に関する設計方針

防潮壁境界部は空隙を設けない構造とすることから,隣接 する躯体同士が地震時の相互の支圧力に対して,鉄筋コンク リート壁体が損傷をしないことを確認する。

具体的には,以下の式により隣接する防潮壁躯体あるいは 鉄筋コンクリート防潮壁側の竪壁の慣性力を防潮壁側面に載 荷して,支圧応力度の照査を実施する。ここで,慣性力と防 潮壁側面の概念図を第1-27図に示す。

鉄筋コンクリート防潮壁側に働く慣性力 F:

F = ma

m:鉄筋コンクリート防潮壁側の慣性力

a:地震時加速度

防潮壁側支圧応力度 σ_{cv} :

$$\sigma_{cv} = \frac{F}{b \cdot h} \le \sigma_{ca}$$

b:防潮壁の幅

h:防潮壁高さ

σ_{ca}:支圧応力度の許容応力度

(道路橋示方書・同解説(IV下部構造編)に従う)

第1-27図 慣性力と防潮壁側面の概念図

9) 地盤高さの嵩上げ(改良体)の設計方針

地盤高さの嵩上げ(改良体)は、津波荷重等に対する上部工 の変位の抑制を目的としている。したがって、地盤高さの嵩上 げのせん断力が改良体のせん断強度以内であることを二次元有 効応力解析及び二次元フレーム解析にて確認する。

また,二次元有効応力解析で得られる地震時における地盤高 さの嵩上げの防潮壁境界部の離隔を確認するとともに,二次元 フレーム解析による津波時の防潮壁の変形量と比較し,津波時 の防潮壁の変形量を下回ることを確認する。

地盤高さの嵩上げの基本設定及び設計方針については,表層 改良体と共に第 1-29 図に示す。 10)表層地盤改良及びシートパイルの設定方針

鋼管杭鉄筋コンクリート防潮壁周りの表層付近の地盤において は、地震時における変形や津波による洗掘などに対して、浸水防 護をより確実なものとするために、地盤改良の実施及びシートパ イルの設置を行う。第 1-28 図に地盤改良及びシートパイルのイ メージ図を示す。

表層改良体の深さ方向の範囲は,表層地盤の過剰間隙水圧比が 比較的高い範囲や杭体に生じる断面力の低減等を考慮し設定する。 また,堤内側の表層改良体の幅は,地盤高さの嵩上げが地震時に 損傷に至らない範囲を考慮し設定する。堤外側の表層改良体の幅 は,地盤改良に係る指針類に基づき範囲を設定する。

地盤改良工法は,改良対象地盤の物性,地下水位,施工性など を考慮して選定する。また,地盤剛性の急変部により杭体に局所 的な応力を発生させないように,地盤剛性が上層から下層に向け て,やや大きめの剛性から原地盤に近い剛性に移行するような改 良仕様を設定する。地下水位以浅はセメント改良工法を,地下水 位以深は浸透固化工法を基本的に選定する。地盤高さの嵩上げ部 は,地盤内部のすべりに対する安全率を確保するためにセメント 改良工法を選定する。

地盤高さの嵩上げ及び表層改良体の基本設定方針及び評価方針 を第 1-29 図に示す。

第1-28図 地盤改良及びシートパイルのイメージ図

<mark>第 1-29 図</mark> 地盤高さの嵩上げ及び表層改良体の基本設定方針及び評価方針

① ボイリング,パイピング防止対策の検討方針

鋼管杭鉄筋コンクリート防潮壁には,津波時において堤外側と 堤内側の水位差による,堤外側から堤内側への浸透圧に対して, 堤外側にシートパイルの設置や堤内外の表層地盤改良により,堤 内側の地盤の有効重量が浸透圧よりも十分に大きくなるようにす ることで,安全性を確保する方針とする。第 1-30 図にボイリン グ,パイピング防止対策工の概念図を示す。

a. ボイリング防止対策

津波時において防潮堤の堤外側と堤内側の水位差による堤外側 から堤内側への浸透圧に対して,鋼管杭鉄筋コンクリート防潮壁 の堤外側にシートパイルを設置し,堤内側の地盤の有効重量が浸 透圧よりも十分に大きくなるようにすることで,安全性を確保す る方針とする。

ボイリングの検討は、堤内側の土の有効重量とシートパイル先端位置に作用する平均過剰間隙水圧との比を取って下式より照査 する。第1-31図にボイリング防止対策の説明図を示す。

$$F_s = \frac{w}{u}$$

ここに,

u:土止め壁先端に作用する平均過剰間隙水圧

W:土の有効重量

 $w = \gamma' l_d$

γ': 土の水中単位体積重量

l_d:土止め壁の根入れ深さ

なお,安全率(Fs)は,土木学会トンネル標準示方書,開削工法 編に準拠し,Fs≧1.5を確保する。

第1-31図 ボイリング防止対策の説明図

b. パイピング防止対策

津波時において防潮堤の堤外側と堤内側の水位差による堤外側 から堤内側への浸透圧に対して,鋼管杭鉄筋コンクリート防潮壁 の堤外側のシートパイルの設置や堤内外の表層改良体により,堤 内側の地盤の有効重量が浸透圧よりも十分に大きくなるようにす ることで,安全性を確保する方針とする。第1-32 図にパイピング 防止対策の説明図を示す。

パイピングに対する検討は浸透流路長と水位差の比を考慮した 下式により算出する。

l / h w \geq Fs

ここに, *l*:浸透流路長

h_w:水面から掘削底面までの高さ(水位差)

なお,安全率(Fs)は,土木学会トンネル標準示方書,開削工 法編に準拠し,Fs≧2.0を確保する。

第 1-32 図 パイピング防止対策の説明図

11)防潮壁の地山寄り付き部における設定方針

津波に対して、鋼管杭鉄筋コンクリート防潮壁の前面の洗掘防 止対策は、津波時において壁に作用する津波荷重に対して、防潮 壁前面の表層地盤強度が津波荷重よりも大きくなるように、十分 な安全余裕を持たせた地盤のせん断強度を確保する地盤改良強度 を設定する。

津波荷重 ≦ 防潮壁前面の表層地盤せん断強度

また、敷地南西部においては、防潮堤が南側丘陵地に寄り付く ことから、津波遡上解析結果により、寄り付き部には津波が到達 しないことを確認しているが、洗掘防止対策として、寄り付き部 の範囲を地盤改良する。地盤改良の対象は、du 層、D1g-1 層とし、 防潮堤の天端である T.P. + 18m に余裕を持たせて T.P. + 22m まで の範囲を対象とする。また、地盤改良幅は、隣接する防潮壁の幅 に余裕を持たせて 4m とし、縦断方向の改良範囲は地山高さに合 わせて適切に設定する。防潮壁寄り付き部の平面図を第1-33 図、 第1-34 図に、断面図を第1-35 図に示す。

第 1-33 図 防潮壁全体平面図

第1-34図 防潮壁寄り付き部拡大平面図

第1-35図 防潮壁寄り付き部断面図

12) 防潮壁底部の地盤根入れ長の設定方針

鋼管杭鉄筋コンクリート防潮壁の堤外側,堤内側には表層地盤 改良を実施しているため,地震による表層地盤の沈下は軽微であ ると判断するが,保守的に地下水位を原地表面高さとした有効応 力解析により残留沈下量を算出する。

鋼管杭鉄筋コンクリート防潮壁は,底部を地盤に十分に根入れ することで,津波による下部からの浸水を確実に防護する構造と する。

防潮壁底部の地盤根入れ長が,地震時に生じる地盤面の沈下量 以上であることを確認する。第 1-36 図に地震に伴う防潮壁の地 表面沈下量算定に関する概念図を示す。

鋼管杭鉄筋コンクリート防潮壁底部の地盤根入れ長

> 地震による地盤面沈下量 = ①+2+3

なお、考慮する地震時の沈下量は、以下の沈下量とする。

①不飽和土層の揺すり込み沈下量

②有効応力解析により算出した残留沈下量

③過剰間隙水圧の消散に伴う沈下量

揺すり込み沈下量は、「鉄道構造物等設計標準・同解説、土構 造編(平成25年編)、耐震設計編(平成24年改編)」に準じて 算出する。

また,有効応力解析結果より求められる防潮壁堤外側地盤の残 留鉛直変位量及び液状化検討対象層のせん断ひずみから算定され る地層ごとの過剰間隙水圧の消散に伴う沈下量を算出する。

地震時及び地震後

第1-36図 地震に伴う防潮壁の地表面沈下量算定に関する概念図

13)構内排水路と防潮壁の交差部の設計方針

防潮堤内の降雨等を想定した構内排水路については,第1-37図に示すとおり,複数箇所で防潮壁を横断して設置される。

構内排水路は直径 1m の鋼製の管路であり,鋼管杭鉄筋コンク リート防潮壁はこれを跨いで設置する。

第 1-37 図 構内排水路設置位置図

構内排水路交差部の鋼管杭鉄筋コンクリート防潮壁の鋼管杭は 第1-38 図に示す通り杭を一部重ねて配置した構造とする。

注) 仕様については今後の検討で多少変更が想定される

第1-38図 構内排水路と鋼管杭鉄筋コンクリート防潮壁

との交差部断面図

14)海水引込み管と防潮壁の交差部の設定方針

海水引込み管は,鋼管杭鉄筋コンクリート防潮壁の下部構造で ある鋼管杭先端よりも深い深度に設置される。第 1-39 図に海水 引込み管の位置図を,第 1-40 図に交差部の断面イメージ図を示 す。

鋼管杭の先端と海水引き込み管の天端の離隔距離は,『トンネ ル標準示方書 シールド工法編』を参考に,地震時応答解析に基 づいた確認を行った後,安全な離隔距離を設定する。

第1-39図 海水引込み管位置図

第1-40図 海水引込み管と鋼管杭の交差部断面イメージ図

⁵条 添付24-58
15) 東海発電所の取水路・放水路と防潮壁の交差部の設定方針

東海発電所 取水路・放水路は,鋼管杭鉄筋コンクリート防潮 壁の南東部で交差する。第 1-41 図に東海発電所 取水路・放水路 と防潮壁の交差位置図を示す。

鋼管杭鉄筋コンクリート防潮壁と干渉する取水路・放水路の範 囲は,基本的に撤去する。防潮壁の鋼管杭を設置する範囲の前後 においては,鉄筋コンクリートによる隔壁を設置して止水措置を 行うこととする。また,取水路・放水路の内空は,流動化処理土 等による埋め戻しを行うと共に地盤高さの嵩上げによる上載荷重 を支える構造とし,海側においてはコンクリートを充填した止水 措置とする。防潮壁横断部の取水路・放水路止水対策イメージ図 を第1-42 図に示す。

第1-41 図 東海発電所 取水路·放水路交差部位置図

【STEP②】ケーシング削孔~取水路・放水路撤去~鋼管抗設置

			35865
		<u></u>	
ß	<u>鋼管杭 Ø 2500設置</u>		

第1-42図 防潮壁横断部の取水路・放水路止水対策イメージ図

16)構造物評価における地下水位の設定方針

防潮堤の堤内側の水位については,洗掘防止等の目的で設置される表層部の地盤改良体により上昇する可能性が想定される。

このため、構造物評価時の地下水位は、保守的に地表面に設定 することとする。

ただし、有効応力解析での評価では、地表面まで水要素を配置 させると数値解析上不安定とならないよう、地表面から 1m 範囲 にはわずかな粘性を考慮できるよう全応力要素を設定する(粘着 力 c の設定は、平均-1 σ 残留強度物性とする)。解析評価時の地 下水位の設定図を第 1-43 図に示す。

第1-43図 地下水位の設定図

2. 施工実績(本設杭構造)

杭の最小中心間隔が 2.5D未満であり,かつ一列配置とした本設 構造物の実績について調査した結果を第 2-1 表に,施工事例写真を 第 2-1 図に示す。

	件数			
	国土交通	都道府県	民間	計
工事区分	省等		(高速道路,鉄	
			道,ガス等)	
河川護岸	10 件	115 件	1 件	126 件
海岸岸壁	39 件	47 件	1 件	87 件
道路(高速道路,橋梁,	13 件	55 件	26 件	94 件
トンネル等)				
造成	2 件	8 件	3 件	13 件
(擁壁,法面,改良等)				
その他	2 件	5 件	7 件	14 件

第 2-1 表 一列杭の本設構造物の実績

(2017年6月 日本原子力発電㈱調査)

なお,これら施工実績の中で,設計情報が確認できたものについて は,土圧算定や地盤反力係数の算定,液状化の判定など随所にわたっ て道路橋示方書が引用されていることを確認した。 3. 構造成立性評価

(1) 代表断面の選定

鋼管杭鉄筋コンクリート防潮壁は敷地の全域に渡り設置することから,岩 盤の深度や地質分布の不確かさを考慮し,種々の解析条件を設定し評価する。 また,敷地の地質・地質構造の特徴や遡上津波の特性等を踏まえ,考慮が必 要な着目点を抽出し,それらを網羅的に考慮した代表断面選定及び解析モデ ルの設定を行う。評価断面の選定フローを第 3-1 図に,代表断面の候補地点 を第 3-2 図に,代表断面選定における着眼点を第 3-1 表に示す。

第3-1図 評価断面の選定フロー

代表断面の候補地点は,防潮壁の上部工及び下部工の評価結果に影響を及ぼ すと考えられる地質的な特徴や津波荷重が大きくなる区間を考慮して抽出し, 粘土層(Ac層)の合計層厚が最小の地点①及び最大の地点②,地表面標高が 最も低く,岩盤が深部に存在する地点③,岩盤の傾斜角が最も大きな地点④

(岩盤上面の傾斜部が最も浅部で存在する箇所),基本的に水平成層である が,更新統が堆積し,浅部に存在する地点⑤とした。

第 3-2 図 代表断面の候補地点

第3-1表 代表断面選定における着眼点

着眼点	概要	抽出される地点
<mark>粘土層</mark> の層厚 の影響	防潮堤は敷地全域に渡り設置される が,地質調査は全てのエリアを十分に 網羅していない可能性を考え,地質分 布の不確かさを考慮して,特に <u>粘土層</u> の層厚の変化が地震応答解析へ与える <u>影響</u> を評価する。	<mark>粘土層</mark> が厚く分布している地 点,薄く分布している地点を選定 する。(地点①,地点②,地点③)
岩盤の深度 (下部工長さ)	敷地の岩盤上面深度は,敷地南部で は約T.P15mであり,北部では約T.P. -60mであることから,構造物の設置 位置により,構造物直下の <u>岩盤深度の</u> 差異が地震応答解析に与える影響を評 価する。	岩盤深度が深い地点及び浅い地 点を選定する。 岩盤深度が深い地点(地点①,地 点②,地点③) 岩盤深度が浅い地点(地点⑤)
岩盤の傾斜	敷地の第四系は概ね水平に堆積して いるが,岩盤上面の深度が変化する区 間が存在するため,岩盤の傾斜による 構造物への影響を検討する必要があ る。 <u>傾斜による地盤の差異が構造物へ影</u> 響を与える影響を評価する。	岩盤の傾斜が急であるほど,1 ユニット内における杭の応答の差 異及び上部工への影響の可能性が 考えられることから,傾斜角が最 も大きい地点を選定する。(地点 ④)

代表断面を選定するに当たっては、一次元応答解析を実施し、最大相対変位 量及び最大応答加速度の確認を行った。一次元応答解析結果を第 3-2 表に示す。

杭体においては地盤の変位が与える影響が厳しい条件となることから,地震時の下部工の評価としては,杭の根入れ長が最も長い地点③が選定される。また,地震時における上部工の評価としては,地盤の変位に加えて上部工に作用する慣性力を考慮し,杭の根入れ長が長く,地震時の加速度が大きい地点③が同様に選定される。

また,津波時においては,上部工高さが最も高く,津波荷重が最も大きく作 用する地点③が選定される。

なお,岩盤傾斜の影響評価については,防潮堤ルートの中で最も急勾配の地 点④を選定して実施する。

地点	最大相対変位量 (cm)	最大応答加速度 (cm/s ²)
1	20	500
2	20	500
3	20	600
4	7	750
5	5	800

第 3-2 表 一次元応答解析結果

- (2) 代表地震波の選定
 - 1)構造物への影響が大きい地震動について

基準地震動S_s全波による引上げ解析を行い、その解析結果を基に構造物 への影響が大きい地震動を確認する。

- 検討方針
- a. 基準地震動Ss全波による一次元地盤応答解析は、防潮堤置位置のうち、
 岩盤深度及び地質のバラツキによる影響を確認するために 5 地点を選定し、各地点の地質モデルを用いて実施する。
- b. 基準地震動Ss全波による一次元地盤応答解析結果として以下の項目を 出力し、これらの項目を総合的に評価することにより構造物に影響が 大きい地震動を確認する。
 - ·最大応答加速度
 - ・杭下端と地表面の最大相対変位
 - ・最大せん断応力

一次元地盤応答解析の実施位置を第3-3図,地質断面図を 第3-4図に示す。

地点	特長
地点①	粘土層(Ac層)の合計層厚が最小の箇所
地点②	粘土層(Ac層)の合計層厚が最大の箇所
地点③	地表面標高が最も低く, <mark>岩盤</mark> が深部に存在する箇所
地点④	岩盤上面の傾斜部が最も浅部に存在する箇所
地点⑤	基本的に水平成層であるが、更新統が堆積し、岩盤が浅部に存
	在する箇所

第3-3図 一次元地盤応答解析の実施位置

第3-4 図 地質断面図

② 検討用地震動

一次元地盤応答解析に用いる基準地震動S_sの一覧を第 3-3 表に,疑似速度 応答スペクトルを第 3-5 図に,加速度時刻歴波形を第 3-4 表に示す。

なお,構造物に対しては水平動の影響が支配的であることから,水平動で 検討する。

基準地震動		最大加速度 (cm/s ²)	
		NS 方向	EW 方向
S _s -D1	応答スペクトル手法による基準地震動	87	70
S _s -11	F1断層,北方陸域の断層,塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点1)	717	619
S _s -12	F1断層,北方陸域の断層,塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点2)	871	626
S _s -13	F1断層,北方陸域の断層,塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点3)	903	617
S _s -14	F1断層,北方陸域の断層,塩ノ平地震断層の連動による地震 (断層傾斜角の不確かさ,破壊開始点2)	586	482
S _s -21	2011年東北地方太平洋沖型地震 (短周期レベルの不確かさ)	901	887
$S_{s} - 22$	2011 年東北地方太平洋沖型地震 (SMGA 位置と短周期レベルの不確かさの重畳)	1,009	874
S _s -31	2004年北海道留萌支庁南部地震の検討結果に保守性を考慮し た地震動	61	10

第3-3表 基準地震動Ss

第3-4表 基準地震動Ssの加速度時刻歴波形 (1/2)

第3-4表 基準地震動Ssの加速度時刻歴波形 (2/2)

③一次元地盤応答解析結果

基準地震動S_sの引上げ解析による最大応答加速度分布,最大相対変位分布, 最大せん断応力分布,最大せん断ひずみ分布を以下に示す。

a.最大応答加速度分布

基準地震動 S_s の引上げ解析による最大応答加速度分布を第 3-6 図に示す。 地表面の最大応答加速度が大きくなる地震動は、 S_s -D1、 S_s -21、 S_s -22、 S_s -31である。

第3-6 図 最大応答加速度分布

基準地震動S_sの引上げ解析による最大相対変位分布を第 3-7 図に示す。 杭下端と地表面の最大相対変位が大きくなる地震動は、S_s-D1, S_s-31 である。

c.最大せん断応力分布

基準地震動 S_sの引上げ解析による最大せん断応力分布を第 3-8 図に示 す。最大せん断応力が大きくなる地震動は、 S_s-D1, S_s-31 である。

5条 添付24-84

d. 最大せん断ひずみ分布

基準地震動 S_s の引上げ解析による最大せん断ひずみ分布を第 3-9 図に 示す。最大せん断ひずみが大きくなる地震動は、 $S_s - D1$ 、 $S_s - 31$ であ る。

第3-9図 最大せん断ひずみ分布

④ まとめ

構造物に影響が大きい地震動を第3-5表に示す。

	影響が大きい地震動	備考
<mark>最大応答加速度</mark>	S _s -D1, S _s -21,	
	$S_{s} = -22, S_{s} = -31$	
最大相対変位	S _s -D1, S _s -31	杭下端と地表面の
		最大相対変位
最大せん断応力	S _s -D1, S _s -31	
最大せん断ひずみ	S _s -D1, S _s -31	

第3-5表 構造物に影響が大きい地震動

上記より,最大相対変位や最大せん断ひずみが大きくなるS_s-D1及びS_s-31が構造物に対して影響の大きい地震動であると考えられる。

また,液状化に対する影響が大きい地震動は,継続時間が長い地震動である S_s-D1(63.39秒)であると考えられる。

(3) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析)

鋼管杭の設計では,選定した代表断面において原地盤モデルでの評価に加 え,岩盤の深度や地質分布の不確かさを考慮し,保守的な解析条件での評価 を実施する。

地震時評価は有効応力解析を実施し、津波時及び余震との重畳時(津波+ 余震時)は静的フレーム解析を行い、杭体に発生する断面力を算定し、応力 照査を実施する。

1) 耐震設計(有効応力解析)

耐震評価では、二次元地震応答解析を行い、地震時の鋼管杭の構造健全性 について検討する。検討は、有効応力の変化に伴う地盤の挙動の変化を考慮 することができる有効応力解析を用いる。鋼管杭の構造成立性確認のための 耐震評価の検討フローを第 3-10 図に示す。

第3-10図 鋼管杭の構造成立性確認のための耐震評価の検討フロー

地震応答解析の基本条件

地震応答解析に用いる解析モデルは、地質断面図に基づき作成する。鉛直方 向は新第三系地盤である久米層(岩盤)が比較的浅い位置に存在する南側断面 では T.P. -80m,岩盤が深い位置に存在する北側断面については T.P. -130m ま でモデル化する。水平方向は杭位置を中心に左右 100m までモデル化する。杭は 梁要素でモデル化し線形要素とする。地盤はマルチスプリング要素でモデル化 した非線形要素と水位以深は間隙水圧要素を配置する。

入力地震動は,一次元波動論により,東海第二発電所の解放基盤表面深度で ある T. P. <mark>-</mark>370m~T. P. <mark>-</mark>80m あるいは T. P. -130m までをモデル化した剥ぎ取り 地盤モデルを用いて, T. P. -80m あるいは T. P. -130m 位置で評価した地震動 (2E)を用いる。

地震応答解析により算定された杭及び地盤の応答値を用いて,杭体の断面 力に対する,曲げモーメント・軸力及びせん断応力の照査を行い,許容限界以 下であることを確認する。

a. 曲げモーメント・軸力に対する照査

鋼管杭の曲げに対する許容限界は,道路橋示方書・同解説(IV下部構造編) に基づき,発生曲げモーメントが短期許容応力度以下であることを照査する。 なお,曲げに対する応力度照査は,以下の式で算出する。曲げモーメント・軸 力は,以下の式で算出する。

$\sigma = \frac{M}{Z} + \frac{N}{A}$

M:最大曲げモーメント (N・mm)
 Z:断面係数 (mm³)
 N:軸力 (N)
 A:有効断面積 (mm²)

b. せん断力に対する照査

鋼管杭のせん断に対する許容限界は,曲げと同様に道路橋示方書・同解説 (IV下部構造編)に基づき,発生せん断力が短期許容応力度以下であることを 照査する。なお,せん断に対する応力度照査は,以下の式で算出する。

$$\tau = \frac{S}{A}$$

S: せん断力 (N)

A: 有効断面積 (mm²)

c. 座屈に対する照査

座屈は<mark>以下の式</mark>で算出される座屈耐力と杭体に発生する最大軸力とを比較す る。

> $N_u = F\left(0.8 + 2.5\frac{t}{r}\right)A$ (0.01 < $t/r \le 0.08$) F:鋼材の基準強度 ($=\sigma_y$) (N/mm²) t:鋼管の厚さ (腐食代を考慮) (mm)

r:鋼管の半径 (mm)

A:鋼管の断面積(腐食代を考慮)(mm²)

d. 極限支持力

基礎地盤の支持性能に対する照査は、杭先端部分の要素の鉛直方向の時刻歴 最大値 σyと極限支持力を比較し、応答値が極限支持力を下回ることを確認する。 極限支持力の算出については、道路橋示方書・同解説(IV下部構造編、12.4 杭) に基づき算出する。

② 解析モデルの設定

解析モデルは,原地盤モデルでの評価に加え,岩盤の深度や地質分布の不確 かさに着目し,それらが杭の構造健全性に与える影響を評価できるよう保守的 な解析条件での評価を実施する。

敷地の北側の地層には、粘土層(Ac層)と砂層(As層)が互層となり概 ね水平成層で分布している。各地層の層厚にはバラツキがあることから、粘土 層の層厚が防潮堤に与える影響について把握することを目的として、敷地内の 地質データを整理し、粘土層の層厚が最も厚い地盤と、最も薄い地盤とした解 析モデルでその影響を確認する。

また,防潮堤直下には岩盤深度が変化する区間が存在するため,岩盤の傾斜 角が防潮堤に与える影響について検討を行う。また,敷地内の地質データを整 理し,傾斜角が最も大きい区間の解析モデルで,防潮堤1ユニットの内の応答 値の影響を確認する。

さらに,上記の解析ケースに加え,地質分布の不確かさに着目し,保守的な 検討として,液状化検討対象層である全ての砂層・砂礫層に対し,豊浦標準砂 の液状化強度特性を仮定することで強制的に液状化させる条件を与えた解析モ デルで検討する。

取水構造物より北側エリアの粘土層の層厚分布について第 3-11 図に,岩盤の 傾斜角のデータについて第 3-12 図に,岩盤の傾斜の違いによる断面のモデル化 について第 3-13 図に示す。

■粘土層(A c 層)の厚さについて

- ⑦ 非液状化層である
 粘土層
 (A c 層) が厚く 分布し、岩盤上限面高さが深い(T.P.約-57m~T.P.約-58m)の区間において検討す る。
- ⑦の区間において、非液状化層であるAc 層の合計層厚が最大となる断面を選定。
- ⑦の区間において、非液状化層であるAc 層の合計層厚が最小、すなわち液状化検討対 象層厚がほぼ最大となる断面を選定。

第3-11図 粘土層の層厚分布図(北側エリア)

【敷地の北側】

[※]全エリアのうち傾斜角10度以上をプロット

【敷地の南側】

※全エリアのうち傾斜角10度以上をプロット

第3-12図 岩盤の傾斜角整理図

第3-13図 岩盤の傾斜の違いによる断面のモデル化

(縦断方向断面及び横断方向断面)
- (4) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力解析(地点 ③,横断・縦断方向))
 - 1)検討ケース及び検討モデル

有効応力解析により, 粘土層の層厚の大小による評価及び豊浦標準砂の地 盤物性を用いて評価を実施した。解析検討ケース一覧表を第 3-6 表,検討モ デルを第 3-14 図に示す。

評価 ケース	断面方向	内容
1	横断面	原地盤の剛性と液状化強度特性を用いるモデル
2	横断面	豊浦標準砂の剛性と液状化強度特性を仮定したモデル
3	横断面	粘土層が最も厚い <mark>原地盤</mark> モデル
4	横断面	粘土層が最も厚く,豊浦標準砂の剛性と液状化強度特性を 仮定したモデル
5	横断面	粘土層が最も薄い原地盤モデル
6	横断面	粘土層が最も薄く,豊浦標準砂の剛性と液状化強度特性を 仮定したモデル
7	横断面	原地盤の剛性と液状化強度特性を用いるモデル <mark>(</mark> Ss-31 波(留萌波))
8	縦断面	原地盤モデル

第3-6表 解析検討ケース一覧表

(ケース2)

原地盤モデル

豊浦標準砂を仮定したモデル

(ケース 3) (ケース 4) 粘性土が最も厚い原地盤モデル 粘性土が最も厚く、豊浦 標準砂を仮定したモデル TTYIR SHO 154 11. TT-6.1 T-17.44 2 野浜(A) 2 野菜(A) 2 野菜(A) 0.17-19.9 TP-18.90s 7 17-41.60m - 17-47, 68 17-49.49 17 TF-49, 69a 7 17-57. 60 K S. B. THE MARKEN 0 17-130.0 800, Sec 86. fm 豊浦標準砂適用箇所

第 3-14 図(1) 検討モデル

(ケース7)

(ケース 8)

第 3-14 図(2) 検討モデル

2) 評価結果

杭の応力度照査結果及び基礎地盤の支持力度照査結果を第3-7表,各ケースの断面力分布図を第3-15図,残留変位量を第3-8表,過剰間隙比分布図を第 3-16図,最大せん断ひずみ分布図を第3-17図に示す。

第 3-7 表(1) 評価結果(曲げ・軸力に対する照査)

	発生応力度 σ(N/mm ²) (M/Z+N/A)	許容応力度 σ sa(N/mm ²) (SM570)	安全率 σ sa⁄σ	判定
ケース 1 ^{原地盤モデル}	229. 58	382.5	1.67	OK
ケース 2 豊浦標準砂を仮定したモ デル	240.76	382.5	1.59	OK
ケース 3 粘性土が最も厚い原地盤 モデル	223.64	382.5	1.71	OK
ケース 4 粘性土が最も厚く,豊浦 標準砂を仮定したモデル	280.69	382.5	1.36	OK
ケース 5 粘性土が最も薄い原地盤 モデル	224. 37	382.5	1.70	OK
ケース 6 粘性土が最も薄く,豊浦 標準砂を仮定したモデル	243. 23	382.5	1.57	OK
ケース 7 原地盤モデル Ss-31 波 (留萌波)	135.11	382.5	2.83	OK
ケース8 原地盤モデル(縦断面)	209.44	382.5	1.83	ОК

	発生応力度 τ (N/mm ²)	許容応力度 τ sa(N/mm²) (SM570)	安全率 τ sa/τ	判定
ケース 1 ^{原地盤モデル}	38.82	217.5	5.60	OK
ケース 2 豊浦標準砂を仮定したモ デル	38.94	217.5	5. 59	OK
ケース3 粘性土が最も厚い原地盤 モデル	39.37	217.5	5. 52	OK
ケース 4 粘性土が最も厚く,豊浦 標準砂を仮定したモデル	38.15	217.5	5. 70	OK
ケース 5 粘性土が最も薄い原地盤 モデル	38.03	217.5	5.72	OK
ケース 6 粘性土が最も薄く,豊浦 標準砂を仮定したモデル	38.89	217.5	5. 59	OK
ケース7 原地盤モデル Ss-31 波 (留萌波)	19. 17	217.5	11.34	OK
ケース 8 ^{原地盤モデル} (縦断面)	41.23	217.5	5.28	OK

第 3-7 表(2) 評価結果(せん断に対する照査)

55 60 65 2

As-Ac層

57.148秒

61 -15--345 387 -268 -354 561

0 5 9 0 ņ

57.148秒

20 5 2 0 9 ÷ -20 -25 30 33 40 45 -50

57.148秒

20 15 10 ŝ 0 , 15 20 -25 30 -35 40 -45 50

15 20

地表面

Ag2厝

0 Ϋ́ -10 -20 - 25 -35 -40

Ac層

Bub

ŝ

2 5 2 ង

25251 25251 26140 25756 25332 27088

460

35 50 50

5条 茶付24-103

	発生応力度	極限支持力度	安全率	当 守
	σy(kN∕m²)	qd(kN∕m²) (SM570)	qd∕ σy	(>1.2)
ケース 1 原地盤モデル	747.5	6,288	8.41	OK
ケース 2 豊浦標準砂を仮定したモ デル	813.0	6,288	7.73	ОК
ケース 3 粘性土が最も厚い原地盤 モデル	746.5	6,288	8.42	OK
ケース 4 粘性土が最も厚く,豊浦 標準砂を仮定したモデル	800.0	6,288	7.86	ОК
ケース 5 粘性土が最も薄い原地盤 モデル	756.5	6,288	8.31	OK
ケース 6 粘性土が最も薄く,豊浦 標準砂を仮定したモデル	819.0	6,288	7.68	ОК
ケース 7 原地盤モデル Ss-31 波 (留萌波)	600.0	6,288	10.48	ОК
ケース 8 原地盤モデル (縦断面)	573.0	6,288	10.97	ОК

第 3-7 表(3) 評価結果 (支持力照查)

	発生軸力	座屈耐力	安全率	
	N(kN)	Nu(kN) (SM570)	Nu 🖊 N	判定
ケース 1 原地盤モデル	10,290.9	102,802	9.99	OK
ケース 2 豊浦標準砂を仮定したモデ ル	10,585.4	102,802	9.71	OK
ケース 3 粘性土が最も厚い原地盤モ デル	9,663.4	102,802	10.64	ОК
ケース 4 粘性土が最も厚く,豊浦標 準砂を仮定したモデル	11,099.1	102,802	9.26	ОК
ケース 5 粘性土が最も薄い原地盤モ デル	10,347.3	102,802	9.94	ОК
ケース 6 粘性土が最も薄く,豊浦標 準砂を仮定したモデル	10,661.0	102,802	9.64	ОК
ケース 7 原地盤モデル Ss-31 波(留 萌波)	7,060.7	102,802	14.56	ОК
ケース 8 原地盤モデル (縦断面)	6,381.2	102,802	16.11	ОК

第 3-7 表(4) 評価結果(座屈耐力に対する照査)

水平変位 (m) 鉛直変位 (m) ケース1 -0.0607-0.0169原地盤モデル ケース2 -0.0922-0.0206豊浦標準砂を仮定したモ デル ケース3 -0.0551-0.0162粘性土が最も厚い原地盤 モデル ケース4 粘性土が最も厚く,豊浦 上部工天端~上 -0.0723-0.0199標準砂を仮定したモデル 部工下端の相対 ケース 5 変位量 -0.0620-0.0172粘性土が最も薄い原地盤 モデル ケース 6 -0.0956-0.0211粘性土が最も薄く,豊浦 標準砂を仮定したモデル ケース7 原地盤モデル Ss-31 波 -0.0293-0.0070(留萌波) ケース 8 0.0004 -0.0027原地盤モデル(縦断面)

第 3-8 表 残留変位量

以上の評価結果からいずれのケースにおいても,基準地震動 Ssに対して,杭の曲げ,せん断,座屈及び基礎地盤の支持力の 照査値は許容限界値以下であり,十分な構造強度を有している見 通しを得た。

次にケース1~ケース7の過剰間隙水圧比及び最大せん断ひず みより,石原チャートを適用して地震後の沈下量を算定した範囲 を第3-18図に示し,検討結果を第3-9表に示す。

第 3-9 表 地震後の地盤高さの嵩上げ部の沈下量

ケース名	FLIPより算 出された地盤 沈下量(m)	過剰間隙水 圧消散時 沈下量(m)	不飽和部ゆすり込み沈下量(m)	合計 沈下量 (m)
ケース 1:原地盤の剛性と液状化 強度特性を用いるモデル	0.090	0.029	0.000	<mark>0.119</mark>
ケース 2:豊浦標準砂の剛性と液 状化強度特性を仮定したモデル	0.110	0.064	0.000	0.174
ケース 3:粘土層が最も厚い原地 盤モデル	0.090	0.048	0.000	<mark>0. 138</mark>
ケース 4:粘土層が最も厚く,豊 浦標準砂の剛性と液状化強度特性 を仮定したモデル	0.090	0.053	0.000	0.143
ケース 5:粘土層が最も薄い原地 盤モデル	0.092	0.076	0.000	0.168
ケース 6:粘土層が最も薄く,豊 浦標準砂の剛性と液状化強度特性 を仮定したモデル	0.114	0.107	0.000	0.221
ケース 7:原地盤の剛性と液状化 強度特性を用いるモデル(Ss-31 波(留萌波))	0.007	0.000	0.000	0.007

⁵条 添付24-109

以上の評価結果から,沈下量は最大でも0.221mであることを 得た。よって,Ag2層を浸透固化工法で改良することにより,地 震時の大きなせん断ひずみを低下させることができ,地盤高さの 嵩上げ部の沈下を抑制することができる。

以下に横断方向の結果の概要について示す。

- ①曲げ軸力による杭体の応力度が最大となるのは、ケース4(Ac 層最大(液状化対象層を豊浦標準砂と仮定))であり、豊浦標 準砂を仮定したケースで安全率が小さくなる傾向にある。
- ②杭体で最大曲げモーメントが発生する位置は、G.L. 35m 付近の Ac 層と As 層(豊浦標準砂を仮定した場合も含む)か Ac 層と Ag1 層(豊浦標準砂を仮定した場合)との境目付近となる。
- ③Ss-31波(留萌波)の安全率はSs-D1波に対して十分に大きく なる。これは、地震動の繰返しが少ないため、過剰間隙水圧が 増加せず(有効応力が低下せずに)地盤の剛性も低下しないこ とによる。
- ④支持力,残留変位の最大値については、ケース6が最大となる。
- ⑤過剰間隙水圧比が 95%以上になるのは、豊浦標準砂を仮定した ケースのみであり、地表面付近の du 層(豊浦標準砂を仮定)、 Ag2 層(豊浦標準砂を仮定)、及び G.L. - 20m 付近の As 層(豊 浦標準砂を仮定)である。それ以深については、非液状化層と の界面に 95%以上となる個所が存在する。
- ⑥最大せん断ひずみ分布では、大きなせん断ひずみが生じるケースは存在しない。

⑦沈下量は石原チャートによる過剰間隙水圧の消散によるものを 考慮しても、最大でケース6の22cmである。 (5) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力 解析(岩盤傾斜部))

1)検討ケース及び検討モデル

有効応力解析により,岩盤傾斜部における岩盤への根入れ深さ 及び地層条件の違いによる評価を原地盤の物性値を用いて実施し た。解析検討ケース一覧表を第 3-10 表,検討モデルを第 3-19 図 に示す。

ケース名	岩盤への 根入れ深さ	内容	備考
①縦断	岩着杭 (T.P31.36m)	杭長一定	縦断モデル
②縦断_1 <mark>D</mark> 根入れ	岩着杭 (1 <mark>D</mark>)	杭長変更 (各杭根入れ長 1 <mark>D</mark>)	取 浅 • 取 保 部 机 照 査
③横断_Km 最浅部	岩着杭 (T.P31.36m)	Km 層最浅部(根入れ長最大)	
④横断_Km最深部	岩着杭 (T.P31.36m)	Km 層 最 深 部 (根 入 れ 長 最 小)	横断モデル
⑤横断_Km最浅部_1D	岩着杭 (T.P22.24m)	Km 層最浅部 (根入れ長 1 <mark>D</mark>)	

第 3-10 表 解析検討ケース一覧表

①縦断

②縦断_1<mark>D</mark>根入れ

第 3-19 図 検討モデル

2) 評価結果

杭の応力度照査結果及び基礎地盤の支持力度照査結果を第 3-11 表,残留変位量を第 3-12 表に示す。 第 3-20 図に照査対象位置図 を,第 3-21 図に断面力分布図を示す。

第 3-11 表(1) 評価結果(曲げ・軸力に対する照査)

	発生応力度	許容応力度	安全率	
	σ (N/mm ²)	$\sigma \operatorname{sa}(N / \operatorname{mm}^2)$	a 53 / a	判定
	$(M \angle Z + N \angle A)$	(SM570)	0.54/ 0	
① 縦 断 (最 浅 部 : 杭 先 端 T. P31.36m)	230.32	382.5	1.66	OK
①縦断(最深部: 杭先端 T.P31.36m)	178.68	382.5	2.14	OK
②縦断_1 <mark>D</mark> 根入れ(最浅 部:杭先端 T.P22.24m)	202.36	382.5	1.89	OK
②縦断_1 <mark>D</mark> 根入れ(最深 部:杭先端 T.P31.36m)	178.13	382.5	2.15	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	208.41	382.5	1.84	ОК
④横断_Km最深部 (杭先端 T.P31.36m)	254.75	382.5	1.50	ОК
⑤横断_Km最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	201.95	382.5	1.89	ОК

	発生応力度	許容応力度	安全率	
	τ (N/mm ²)	τ sa(N∕mm²) (SM570)	τsa/τ	判定
①縦断(最浅部: 杭先端 T.P31.36m)	21.53	217.5	10.10	OK
①縦断(最深部: 杭先端 T.P31.36m)	20.92	217.5	10.40	OK
②縦断_1 <mark>D</mark> 根入れ(最浅部: 杭先端 T.P22.24m)	33.49	217.5	6.50	OK
②縦断_1 <mark>D</mark> 根入れ(最深部: 杭先端 T.P31.36m)	20.42	217.5	10.65	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	17.56	217.5	12.39	OK
④横断_Km最深部 (杭先端 T.P31.36m)	22.72	217.5	9.57	OK
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	24.17	217.5	9.00	OK

第 3-11 表(2) 評価結果(せん断に対する照査)

々の最大応力発生時刻 $\widehat{\mathbb{A}}$ 断面力分布図 3-21 🖾 (2) 箫

68.80549

1342

15 10 ŝ

20

68.9054)

20 3

68.90589

15 10

15.00 10.00 5.00

20.00

68.32549

68.32549

20

0768

Ξų.

10

ŝ

20.044%

\$8

20 15

20.0449

20 15

20.0449

£

15.00

1035

15.00

5

70

69.05299

2 15

15.00

20.00

20.00

(423C.88

20.00

69.052#9

20

124

μ Кm 層最浅部 1D (祝先端 T.P.-22.24m)田げ軸刀照貨時刻時 第 3−21 図 (4) 断面力分布図

4) 断面力分布図(各々の最大応力発生時刻)

5条 茶付24-119

	発生応力度 σy(kN/m ²)	極限支持力度 qd(kN/m ²) (SM570)	安全率 qd∕ σ y	判定 (<mark>>1.2</mark>)
①縦断(最浅部: 杭先端 T.P31.36m)	375.0	5,673.0	15.1	OK
①縦断(最深部: 杭先端 T.P31.36m)	340.1	5,673.0	<mark>16.7</mark>	OK
②縦断_1 <mark>D</mark> 根入れ(最浅 部:杭先端 T.P22.24m)	346.2	5,484.0	<mark>15.8</mark>	OK
②縦断_1 <mark>D</mark> 根入れ(最深 部:杭先端 T.P31.36m)	344.9	5,673.0	<mark>16.8</mark>	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	479.0	5,673.0	<mark>11.8</mark>	OK
④横断_Km 最深部 (杭先端 T.P31.36m)	600.7	5,673.0	9.4	OK
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	483.9	5,484.0	<mark>11.3</mark>	OK

第 3-11 表(3) 評価結果(支持力照查)

	発生軸力	座屈耐力	安全率	
	N(kN)	Nu(kN) (SM570)	Nu⁄N	判定
①縦断(最浅部: 杭先端 T.P31.36m)	11,460	119,036	10.39	OK
①縦断(最深部: 杭先端 T.P31.36m)	11,180	119,036	10.65	OK
②縦断_1 <mark>D</mark> 根入れ(最浅部: 杭先端 T.P22.24m)	11,790	119,036	10.10	OK
②縦断_1 <mark>D</mark> 根入れ(最深部: 杭先端 T.P31.36m)	11,200	119,036	10.63	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	8,446	119,036	14.09	OK
④横断_Km最深部 (杭先端 T.P31.36m)	9,157	119,036	13.00	OK
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	8,311	119,036	14.32	OK

		水 平 変 位 (m)	鉛直変位 (m)
①縦断(最浅部: 杭先端 T.P31.36m)	上部工天端~ 上部工下端の 相対変位量	-0.0004	- 0.0043
①縦断(最深部: 杭先端 T.P31.36m)		-0.0004	-0.0039
②縦断_1 <mark>D</mark> 根入れ(最浅部: 杭先端 T.P22.24m)		-0.0004	-0.0044
②縦断_1 <mark>D</mark> 根入れ(最深部: 杭先端 T.P31.36m)		-0.0004	-0.0040
③横断_Km 最浅部 (杭先端 T.P31.36m)		- 0.0401	-0.0099
④横断_Km最深部 (杭先端 T.P31.36m)		-0.0422	-0.0132
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)		- 0. 0392	- 0. 0127

第 3-12 表 残留変位量

以上の評価結果からいずれのケースにおいても,基準地震動Ssに 対して,杭の曲げ,せん断及び基礎地盤の支持力の照査値は許容限界 値以下であり,十分な構造強度を有している見通しを得た。

次に,第3-22図に過剰間隙水圧比分布図及び第3-23図に最大せん 断ひずみ分布図を示す。

横断方向の解析から算出された,地盤高さの嵩上げ部中央位置 における沈下量(残留変位)を第 3-13 表に示す。

	変位	盛土上面中央 <mark>(m)</mark>
③横断 Km 層最浅部	水平変位	-0.0603
	鉛直変位	-0.0249
④横断 Km 層最深部	水平変位	-0.0724
	鉛直変位	-0.0300
⑤横断 Km 層最浅部 1 <mark>D</mark>	水平変位	-0.0632
	鉛直変位	-0.0280

第 3-13 表 地盤高さの嵩上げ部沈下量

傾斜部における地盤高さの嵩上げ部の地震時沈下量は 3cm 程度 であり、地震時の沈下量は小さいといえる。

次に,縦断方向のユニット間の相対変位を示す。出力概要図を 第3-24 図,時刻歴相対変位を第3-25 図,最大相対変位を第3-14 表に示す。

第 3-24 図 出力概要図

5条 添付24-124

第 3-25 図(1) ①縦断(T.P.-31.36m) 杭長一定ケース相対変位

第 3-25 図(2) ②縦断_1<mark>D</mark>根入れケース相対変位

	最大相対変位(m)
①縦断_杭長一定ケース	0.0141
②縦断_1 <mark>D</mark> 根入れケース	0.0141

第 3-14 表 ユニット間最大相対変位

ここで,水平方向相対変位は各ユニット間の水平変位の差を表 す。符号はユニット間が分かれる方向が正を示す。

検討の結果,縦断方向のユニット間の変形は 1.4cm であり,十 分に小さい結果を得た。

次にユニット間の衝突時の支圧応力度について,第 3-15 表に最 大値,第 3-26 図に最大値分布を示す。

	水平方向	コンクリートの	
	<mark>最大支圧応力度</mark>	<mark>許容支圧応力度</mark>	安全率
	(kN/m^2)	(kN/m^2)	
縦断	598	12,000	20.07
縦断1 <mark>D</mark>	535	12,000	22.43

第 3-15 表 上部工間の水平方向最大反力(最大支圧応力度)

5条 添付24-126

第 3-26 図(2) ②縦断_1D根入れ(各杭根入れ長1D))ケースバネ反力

縦断方向の最大支圧応力度は、コンクリートの許容支圧応力度よ りも十分に小さく、コンクリートが支圧破壊を生じることがないこ とを示した。

これまでに示した傾斜部現地盤物性を用いた検討から得られた結果の概要を以下に示す。

- ①横断方向に比べて縦断方向の方が,安全率が大きいことを確認した。
- ②岩盤最浅部の杭体の応力については、杭長を揃えたケースより も、岩盤へ1D根入れするケースの方が、杭体の安全率が大き くなることを確認した。杭の根入れ長が1Dの場合は、杭先端 がピン結合と類似する条件となるが、杭長を長く揃えた場合は 固定条件に近づくこととなり、岩盤直上の曲げモーメントが大 きくなるためと考えられる。

5条 添付24-127

- ④横断方向については、ケースによって異なるものの、As 層を挟んで Ag1 層及び Ag2 層との境界部に最大曲げ軸応力が発生する。
- ⑤残留変位は、横断方向に 4cm 程度生じ、鉛直方向は 1cm 程度 よの しる。
- ⑥全てのケースにおいて過剰間隙水圧比が95%を超える個所は無い(液状化は生じていない)。
- ⑦地盤高さの嵩上げ部における残留沈下量は 5cm 弱である。

 (6) 地震時における鋼管杭基礎の成立性検討結果(二次元有効応力 解析結果(岩盤傾斜部,豊浦標準砂を仮定))

1)評価結果

有効応力解析により,岩盤傾斜部における岩盤への根入れ深さ 及び地層条件の違いによる評価について,豊浦標準砂を仮定した 物性値を用いて実施した。

杭の応力度照査結果及び基礎地盤の支持力度照査結果を第 3-16 表,残留変位量を第 3-17 表に示す。第 3-27 図に断面力分布図を, 第 3-28 図に過剰間隙水圧比分布図,第 3-29 図に最大せん断ひず み分布図を示す。

	発生応力度	許容応力度	安全率	
	$\sigma (N \not mm^2) (M \not Z + N \not A)$	σsa(N∕mm <mark>²</mark>) (SM570)	σsa/σ	判定
①縦断(最浅部: 杭先端 T.P31.36m)	348.48	382.5	1.098	OK
①縦断(最深部: 杭先端 T.P31.36m)	234.37	382.5	1.632	OK
②縦断_1 <mark>D</mark> 根入れ(最浅 部:杭先端 T.P22.24m)	285.66	382.5	1.339	OK
②縦断_1 <mark>D</mark> 根入れ(最深 部:杭先端 T.P31.36m)	249.66	382.5	1.532	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	353.80	382.5	1.081	OK
④横断_Km最深部 (杭先端 T.P31.36m)	279.96	382.5	1.366	OK
⑤横断_Km最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	250.36	382.5	1.528	OK

第 3-16 表(1) 評価結果(曲げ・軸力に対する照査)

二方向の照査については,水平 x 方向,水平 y 方向,鉛直 z 方向の 断面力に対して 1.0:0.4:0.4 とする。以下に照査結果を示す。

ケース①とケース③の水平二方向照査
 √ {(1×61011/182)²+ (0.4×60401/182)²}+0.4×6809/301.3
 = 369.6N/mm2
 SF=382.5/369.6=1.03
 ケース②とケース⑤の水平二方向照査

 $\sqrt{\{(1 \times 48420/182)^2 + (0.4 \times 41589/182)^2\} + 0.4 \times 6074/301.3}$ = 289.4N/mm2

SF=382.5/289.4=1.32(1Dケース)

以上から両者とも二方向照査を行っても杭体は安全率を満足するが, 1Dケースの方が安全率は大きくなる。

		r		
	発生応力度	許容応力度	安全率	
	$\tau (N / mm^2)$	τ sa(N/mm ²) (SM570)	τsa/τ	判定
① 縦断(最浅部: 杭先端 T.P31.36m)	32.42	217.5	6.708	OK
① 縦断(最深部: 杭先端 T.P31.36m)	29.02	217.5	7.495	OK
②縦断_1 <mark>D</mark> 根入れ(最浅 部:杭先端 T.P22.24m)	48.33	217.5	4.501	OK
②縦断_1 <mark>D</mark> 根入れ(最深 部:杭先端 T.P31.36m)	27.28	217.5	7.974	OK
③横断_Km最浅部 (杭先端 T.P31.36m)	29.59	217.5	7.351	OK
④横断_Km最深部 (杭先端 T.P31.36m)	33.55	217.5	6.483	OK
⑤横断_Km最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	33.17	217.5	6.558	OK

第 3-16 表(2) 評価結果(せん断に対する照査)

5条 添付24-130

58.14560

58.145秒

58.14599

58.100%

04091.83

58.100%

X 断面力分布 3-27 🖾 (2) 箫

T. B. - 22.24m) 曲 げ軸力照査時刻時 部:杭先端 ケース(最浅 0 縦断

51.685#9

20 15 10

51.085%

20 2 10

20 15

> 15.00 00.01

20.00

9

(6858)

箫

幣 Km 層最深部(杭先瑞

橫

恤力(kN)

58.88699

ล

20

58.986PD

20 £. 10 ŝ c 'n

58.980%)

2 15 2

> 15.00 10.00 5.00 0.00 5.00

20.00

59.00899

(#8C0.68

ŝ

改良土

22

Ag2暦

15 9

	举生 広力度	極限支持力度	安全率	
	σy(kN/m ²)	$qd(kN/m^2)$ (SM570)	⊈⊥+ qd∕σy	判定 (<mark>>1.2</mark>)
①縦断(最浅部: 杭先端 T.P31.36m)	368.3	5,673.0	15.4	OK
① 縦 断 (最 深 部 : 杭 先 端 T. P31. 36m)	394.9	5,673.0	14.4	OK
② 縦 断 _1 <mark>D</mark> 根 入 れ (最 浅 部 : 杭先端 T.P22.24m)	419.9	5,484.0	<mark>13. 1</mark>	OK
② 縦 断 _1 <mark>D</mark> 根 入 れ (最 深 部 : 杭先端 T.P31.36m)	372.5	5,637.0	<mark>15.1</mark>	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	515.9	5,673.0	<mark>11.0</mark>	OK
④横断_Km 最深部 (杭先端 T.P31.36m)	605.7	5,673.0	<mark>9.4</mark>	OK
⑤横断_Km最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	536.2	5,484.0	<mark>10.2</mark>	ОК

第 3-16 表(3) 評価結果(支持力照査)

	発生軸力	座屈耐力	安全率	
	N(kN)	Nu(kN) (SM570)	Nu⁄N	判定
①縦断(最浅部: 杭先端 T.P31.36m)	10,740	119,036	11.08	OK
①縦断(最深部: 杭先端 T.P31.36m)	12,540	119,036	9.49	OK
②縦断_1 <mark>D</mark> 根入れ(最浅部: 杭先端 T.P22.24m)	12,530	119,036	9.50	OK
②縦断_1 <mark>D</mark> 根入れ(最深部: 杭先端 T.P31.36m)	14,160	119,036	8.41	OK
③横断_Km 最浅部 (杭先端 T.P31.36m)	9,602	119,036	12.40	OK
④横断_Km 最深部 (杭先端 T.P31.36m)	10,200	119,036	11.67	OK
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)	9,873	119,036	12.06	OK

第 3-16 表(4) 評価結果(座屈耐力に対する照査)

		水 平 変 位 (m)	鉛 直 変 位 (m)
①縦断(最浅部: 杭先端 T.P31.36m)		- 0.0014	-0.0049
①縦断(最深部: 杭先端 T.P31.36m)		<mark>- 0.0014</mark>	<mark>- 0. 0036</mark>
②縦断_1 <mark>D</mark> 根入れ(最浅部: 杭先端 T.P22.24m)		-0.0014	-0.0063
②縦断_1 <mark>D</mark> 根入れ(最深部: 杭先端 T.P31.36m)	上部 上 大 端 ~ 上部 工 下 端 の ね 対 恋 位 量	-0.0013	-0.0049
③横断_Km 最浅部 (杭先端 T.P31.36m)	竹刈发位里	-0.0555	- 0.0110
④横断_Km 最深部 (杭先端 T.P31.36m)		-0.0772	-0.0166
⑤横断_Km 最浅部_1 <mark>D</mark> (杭先端 T.P22.24m)		- 0. 0737	- 0.0164

第 3-17 表 残留変位量

横断方向の解析から算出された,地盤高さの嵩上げ部中央位置における沈下量(残留変位)を第 3-18 表に示す。

	変位	盛土上面中央 <mark>(m)</mark>
② 煹 断 Km 网 是 浅 刘	水平変位	-0.0939
③預例№Ⅲ層取伐司	鉛直変位	-0.0331
④ 携 斯 Km 网 是 深 如	水平変位	-0.1724
④ 傾 例 All 眉 取 休 司	鉛直変位	-0.0444
	水平変位	-0.1421
◎預啊 № 眉取伐計 1 <mark>D</mark>	鉛直変位	-0.0435

第 3-18 表 地盤高さ嵩上げ部沈下量

傾斜部における地盤高さの嵩上げ部の地震時沈下量は、豊浦標 準砂を仮定したケースでも4cm強程度であることを確認した。(余 盛1mを十分下回ることを確認した)

次に,縦断方向のユニット間の相対変位<mark>について,</mark>出力概要図 を第 3-<mark>30</mark>図,時刻歴相対変位を第 3-<mark>31</mark>図,最大相対変位を第 3-19表に示す。

第 3-31 図(1) ① 縦断(T.P.-31.36m) 杭長一定ケース相対変位

 最大相対変位(m)

 ①縦断_杭長一定ケース

 ②縦断_1

 D

 根入れケース

 0.0171

第 3-19 表 ユニット間最大相対変位

ここで,水平方向相対変位は各ユニット間の水平変位の差を表 す。符号はユニット間が分かれる方向が正を示す。

縦断方向の1ユニット間の変形量は,豊浦標準砂を仮定したケ ースであっても1.7cm程度であることを確認した。

次にユニット間の衝突時の支圧応力度について,第3-20表に最 大値,第3-32図に最大値分布を示す。

	水平方向	コンクリートの	
	<mark>最大支圧応力度</mark>	許容支圧応力度	安全率
	(kN/m^2)	(kN/m^2)	
縦断	576.05	12,000	20.83
縦断 1 <mark>D</mark>	596.20	12,000	20.13

第 3-20 表 上部工間の水平方向最大反力(最大支圧応力度)

第 3-32 図(1) ①縦断岩着杭(T.P.-31.36m) 杭長一定ケースバネ反力

縦断方向の最大支圧応力度は、コンクリートの許容支圧応力度より も十分に小さく、コンクリートが支圧破壊を生じることがないことを 示した。 以上の評価結果から豊浦標準砂を仮定したケースにおいても, 基準地震動Ssに対して,杭の曲げ,せん断及び基礎地盤の支 持力の照査値は許容限界値以下であり,十分な構造強度を有し ている見通しを得た。以下に結果の概要について記す。

- ①岩盤最浅部の杭体の応力は、横断方向,縦断方向共に安全率 が最小となったが、豊浦標準砂を仮定したケースでも許容限 界値以下であることを確認した。
- ②残留変位量については、縦断方向の水平変位が最大 0.14cm 程度、横断方向の水平変位が最大 7.7cm 程度生じ、横断方向 の鉛直方向は最大 1.7cm 程度であることを確認した。
- ③全てのケースにおいて過剰間隙水圧比は 95%を超える個所が 存在するが、地盤高さの嵩上げ部における残留沈下量は 4cm 強程度であり、余盛1mに対して十分小さいことを確認し た。
- ④1ユニット間の衝突が生じても、支圧強度に対して 20 倍以
 上の安全率を有していることを確認した。
- ⑤基準地震動 Ss の水平二方向照査においても、1 Dケースに おいて十分な安全率を有していることを確認した。

岩盤傾斜部の豊浦標準砂を仮定したモデルにおいても,基 準地震動 Ss に対して,杭の曲げ,せん断及び支持力の照査 値は許容限界値以下であり,十分な構造強度を有しているこ とを確認した。 (7) 岩盤傾斜部における地震動の増幅特性及び振動特性による挙動1) 地震動の増幅特性について(一次元地震応答解析)

海水ポンプ室南側の岩盤傾斜部において,岩盤深度の違いに対する 地震動の増幅特性を検証するため,該当箇所で一次元地震応答解析

(SHAKE)を実施した。検討箇所は岩盤傾斜部の岩盤深度に着目し, 最浅部と最深部を対象とした。Km層から地表面までの最大加速度分 布と地表面の応答加速度について比較する。対象とする地震動は,東 海第二発電所におけるSs地震動すべてとする。検討断面位置を第 3-33図に示す。

検討結果を第 3-34 図に示す。検討断面1及び検討断面2を比較す ると、両者で同様な最大応答加速度分布となった。加速度の増幅は地 表面付近のdu層とAg2層で顕著となり、それ以外の地層では増幅 が生じない。両地点のdu層とAg2層はほぼ成層となっていること から、大きな相違が生じないと判断される。

① 固有值解析

a. ケース1(杭長を同一としたケース)

杭長を同一としたモデルを用いて固有値解析を実施した。検討結 果として,固有モード図を第 3-<mark>35</mark>図に,固有値解析結果を第 3-<mark>21</mark>

表に示し,それぞれの検討断面における地表面の応答加速度と振動 数の関係を第 3-<mark>36</mark>図と第 3-<mark>37</mark>図に示す。

ねじり方向への最も低次のモードは4次モードとなり,固有振動 数は 21.45Hz となった。刺激係数や有効質量比は極めて小さく,ね じれ卓越モードにはならないことを確認した。また,一次元地震応 答解析による地表面の応答加速度と固有値解析結果を比較した結果, ねじれのモードが発生する振動数と地表面の最大応答加速度は一致 せず,共振倍率が極めて小さいことを確認した。なお,防潮壁の強 軸,弱軸方向とも卓越振動数と応答加速度の最大振動数とは一致し ない結果となり,共振による影響はないものと判断される。

第 3-	21	表	ケース	1	固有值解析結果	褁

	固有		X方向			Y方向			Z方向		
次数	振動数	刺激	モーダル	有効質量	刺激	モーダル	有効質量	刺激	モーダル	有効質量	備考
	f(Hz)	係数	(tf)	比率	係数	(tf)	比率	係数	(tf)	比率	
1	7.81	-24.189	585.1	41.0%	0.002	0.0	0.0%	0.035	0.0	0.0%	X方向1次
2	9.46	-0.004	0.0	0.0%	-24.470	598.8	42.0%	-2.439	5.9	0.4%	Y方向1次
3	13 42	0 025	0 0	0.0%	-1 672	2.8	0.2%	35 557	1264 3	88 7%	7方向1次
4	21.45	-0.872	0.8	0.1%	0.000	0.0	0.0%	-0.001	0.0	0.0%	ねじれ1次
5	29.63	0.000	0.0	0.0%	0.102	0.0	0.0%	-0.007	0.0	0.0%	
6	29.65	-0.141	0.0	0.0%	0.000	0.0	0.0%	0.000	0.0	0.0%	
7	29.76	-0.029	0.0	0.0%	0.000	0.0	0.0%	0.000	0.0	0.0%	
8	29.77	0.000	0.0	0.0%	-0.026	0.0	0.0%	0.000	0.0	0.0%	
9	29.78	-0.093	0.0	0.0%	0.000	0.0	0.0%	0.000	0.0	0.0%	
10	47.00	-18.072	326.6	22.9%	0.001	0.0	0.0%	0.000	0.0	0.0%	
11	51.40	0.002	0.0	0.0%	5.159	26.6	1.9%	-0.278	0.1	0.0%	
12	55.77	-0.003	0.0	0.0%	-12.454	155.1	10.9%	0.795	0.6	0.0%	
13	62.36	0.098	0.0	0.0%	0.078	0.0	0.0%	0.094	0.0	0.0%	
14	63.23	2.693	7.2	0.5%	-0.028	0.0	0.0%	-0.152	0.0	0.0%	
15	63.68	0.713	0.5	0.0%	0.003	0.0	0.0%	0.013	0.0	0.0%	
16	64.08	-1.850	3.4	0.2%	0.017	0.0	0.0%	0.109	0.0	0.0%	
17	64.15	0.107	0.0	0.0%	0.011	0.0	0.0%	0.091	0.0	0.0%	
18	64.32	0.001	0.0	0.0%	-0.048	0.0	0.0%	0.047	0.0	0.0%	
19	64.57	-0.487	0.2	0.0%	0.006	0.0	0.0%	0.043	0.0	0.0%	
20	64.60	-0.245	0.1	0.0%	0.003	0.0	0.0%	0.024	0.0	0.0%	

第3-36図 検討断面1の地表面の応答加速度と振動数の関係

第 3-37 図 検討断面 2 の地表面の応答加速度と振動数の関係

b. ケース2(岩盤への根入れを1Dとしたケース)

岩盤への根入れを1 Dとしたモデルを用いて固有値解析を実施した。検討結果として,固有モード図を第 3-38 図に,固有値解析結果を第 3-22 表に示し,それぞれの検討断面における地表面の応答加速度と振動数の関係を第 3-39 図と第 3-40 図に示す。

ねじり方向への最も低次のモードは4次モードとなり,固有 振動数は 21.46Hz となった。刺激係数や有効質量比は極めて小さく, ねじれ卓越モードにはならないことを確認した。また,一次元地震 応答解析による地表面の応答加速度と固有値解析結果を比較した結 果,ねじれのモードが発生する振動数と地表面の最大応答加速度は 一致せず,共振倍率が極めて小さいことを確認した。なお,防潮壁 の強軸,弱軸方向とも卓越振動数と応答加速度の最大振動数とは一 致しない結果となり,共振による影響はないと判断される。

第	3- <mark>38</mark>	凶	ケー	ス 1	固有	モー	ド図

第	3-	22	表	ケー	ス	2	固有	値	解析	結	果
---	----	----	---	----	---	---	----	---	----	---	---

	固有		X方向			Y方向			Z方向		
次数	振動数	刺激	モーダル	有効質量	刺激	モーダル	有効質量	刺激	モーダル	有効質量	備考
	f(Hz)	係数	(tf)	比率	係数	(tf)	比率	係数	(tf)	比率	
1	8.11	24.221	586.7	42.8%	-0.153	0.0	0.0%	-2.400	5.8	0.4%	X方向1次
2	9.46	-0.248	0.1	0.0%	-24.482	599.4	43.8%	-2.112	4.5	0.3%	Y方向1次
3	14.43	1.700	2.9	0.2%	-1.466	2.2	0.2%	34 929	1220.0	89.1%	7.方向1次
4	21.46	-0.908	0.8	0.1%	0.002	0.0	0.0%	-0.086	0.0	0.0%	ねじれ1次
5	29.64	0.088	0.0	0.0%	0.070	0.0	0.0%	-0.009	0.0	0.0%	
6	31.27	-0.080	0.0	0.0%	-0.030	0.0	0.0%	0.003	0.0	0.0%	
7	32.96	-0.098	0.0	0.0%	0.000	0.0	0.0%	0.002	0.0	0.0%	
8	34.84	0.142	0.0	0.0%	-0.041	0.0	0.0%	0.000	0.0	0.0%	
9	36.78	0.253	0.1	0.0%	-0.102	0.0	0.0%	0.005	0.0	0.0%	
10	47.47	-18.095	327.4	23.9%	0.051	0.0	0.0%	-0.273	0.1	0.0%	
11	51.44	-0.087	0.0	0.0%	-5.179	26.8	2.0%	0.232	0.1	0.0%	
12	55.79	0.144	0.0	0.0%	12.476	155.6	11.4%	-0.566	0.3	0.0%	
13	63.34	1.679	2.8	0.2%	-0.467	0.2	0.0%	-3.139	9.9	0.7%	
14	64.19	0.495	0.2	0.0%	-0.075	0.0	0.0%	-0.280	0.1	0.0%	
15	67.00	-0.177	0.0	0.0%	0.175	0.0	0.0%	1.431	2.0	0.1%	
16	67.83	1.633	2.7	0.2%	-0.412	0.2	0.0%	-3.647	13.3	1.0%	
17	68.44	-0.279	0.1	0.0%	0.063	0.0	0.0%	0.724	0.5	0.0%	
18	71.53	0.065	0.0	0.0%	-0.351	0.1	0.0%	-3.898	15.2	1.1%	
19	72.51	0.092	0.0	0.0%	0.002	0.0	0.0%	0.027	0.0	0.0%	
20	76.59	0.960	0.9	0.1%	0.314	0.1	0.0%	4,558	20.8	1.5%	

第3-39図 検討断面1の地表面の応答加速度と振動数の関係

第3-40図 検討断面2の地表面の応答加速度と振動数の関係

以下に岩盤傾斜部の振動特性による防潮壁の挙動の結果を要約する。 ①一次元地震応答解析の結果, Ag1 層及び As 層の厚さに依存する 増幅特性はなく,主に地表面付近で加速度が増幅する傾向を確 認した。したがって,岩盤傾斜部の影響による地震波の増幅の 影響は小さいと判断される。

- ②岩盤傾斜部の傾斜角が最も大きい範囲をモデル化して、固有値 解析を実施した結果、抗長を同一としたケースと岩盤への根入 れを 1Dとして1ユニットで異なる杭長としたケース共に、同 様の振動特性であることを確認した。
- ③固有値解析の結果,ねじれのような振動モードが生じる可能性 がないことを確認した。

④一次元地震応答解析による地表面の応答加速度と固有値解析結果を比較した結果、ねじれのモードが生じる可能性はないものと判断される。なお、防潮壁の横断、縦断方向への振動は地震動の卓越周期と一致せず、共振による影響はないものと判断される。

以上から,岩盤傾斜部では地震動の増幅が生じる影響は小さく, ねじれのようなモードが生じることはないことを確認した。

- (8) 津波時及び重畳時における鋼管杭基礎の成立性検討結果(二次 元フレーム解析)
 - 1) 解析モデル

モデル化を行う条件を以下に要約する。

- 杭体は、はり要素(線形)を用いて、地盤は杭体に付加する地盤バネで表現する。この時、地盤バネは上限値を考慮したバイリニア型とする。
- 被覆コンクリートは剛性を考慮せず荷重のみを節点荷重とする。
- 鋼管内は地表面より上は空洞,地表面より下は周辺地盤が詰まっているものとし、その剛性は考慮しない。
- 杭先端の境界条件は、鉛直方向固定とする。
- ・ 杭間は 2.8m とする。
- ・ 地下水位は地表面とする。
- 地盤定数は CU 条件とし、せん断抵抗角 φ は全層 φ =0°とする。
- ・ 現地盤面を T.P.+4.0m, 躯体天端高を T.P.+20.0m とする。
- ・ 設計では地盤高さの嵩上げを T.P.+9.0m とし、二次元静的フレーム解析上では 1.0m の沈下を考量の上、解析モデルでの盛土高さを T.P.+8.0m に設定する。

鋼管<mark>杭</mark>物性値を第 3-<mark>23</mark>表に,荷重図表を第 3-24 表に,解析モデル 図を第 3-41</mark>図に示す。

鋼管杭	了厚 <mark>,</mark> t=	·35mm <mark>,</mark> SM570 <mark>,</mark> 腐食	E代 1mm	
断面積	A=	2.63E+5 mm^2	0.26319 m^2	
断面係数	Zp=	$1.60E+8 mm^3$	0.15995 m^3	
断面二次モーメント	Ip=	2.00E+11 mm^4	0.19978 m^4	
ヤング係数	E=	200,000 N/mm^2	2.00E+8 kN/m ²	

第 3-24 表 荷重図表

基準津波時+漂流物

T.P.+24m津波時+漂流物

基準津波+余震時

T.P.+24m津波+余震時

a. 死荷重

・被覆コンクリート重量

被覆コンクリート天端の重量を頂部の節点に設定する。天端より 下の重量は,支配長さに応じた節点重量を設定する。

第 3-25 表 被覆コンクリートの重量

	単位体積 <mark>重量</mark> (kN/m ³)	面積 (m²)	長さ (m)	重量 (kN)
天端	24.5	3.5 \times 2.8	0.5	120.05
天端より下	24.5	3. 5×2. 8- π ×2. 5 ² /4	16.0	1,917.44

·鋼管杭重量

鋼管杭重量は節点の支配長さに応じた節点重量を設定する。

第 3-<mark>26</mark>表 鋼管<mark>杭</mark>の重量

単位体積重量	長さ	重量
(kN/m ³)	(m)	(kN)
77	80.5	1,631.74

・杭体内の土の重量

杭体内の土の重量はT.P.+4.0mより以深を考慮するものとし、節 点の支配長さに応じた重量を設定する。

du 層	$(2.5-0.035 \times 2)^2 \times \pi / 4 \times 17.85 =$	82.78kN/m
Ag2 層	$(2.5-0.035\times2)^2 \times \pi / 4 \times 19.71=$	91.41kN/m
Ac 層	$(2.5-0.035\times2)^2 \times \pi / 4 \times 16.18=$	75.04kN/m
As 層	$(2.5-0.035\times2)^2 \times \pi / 4 \times 17.06=$	79.12kN/m
Ag1 層	$(2.5-0.035\times2)^2 \times \pi / 4 \times 19.71=$	90.66kN/m
Km 層	$(2.5-0.035 \times 2)^2 \times \pi / 4 \times 16.93 =$	77.87kN/m

第 3-27 表 杭体内の土の重量(1m 当り)

b. 積雪

積雪は建築基準法施行令(東海村の設定値)により算出する。積 雪は被覆コンクリートの水平面に作用するものとし,天端の節点の 節点荷重とする。

 単位重量
 高さ
 面積
 係数
 重量

 $(N/cm/m^2)$ (cm) (m^2) (KN)

 20.0
 30.0
 9.8
 1.0
 5.88

第 3-28 表 積雪の重量

c. 津波荷重

作用する津波荷重は浸水深に基づき算定式により算出する。堤外 側から堤内側へ作用するものとする。<mark>第 3-42 図に計算概要を示す。</mark>

最大波圧(kN/m²)

 $p_{nl} = 3\rho g \eta_{max}$

壁天端波圧(kN/m²)

$$p_{n2} = 3\rho_g \eta_{\text{max}} \times (3\eta_{\text{max}} - H) / 3\eta_{\text{max}}$$
$$= \rho_g (3\eta_{\text{max}} - H)$$

ここで、 η_{\max} は設計用浸水深を用いる。

第 3-42図 津波波力の計算概要

<mark>d</mark>. 応答変位法による慣性力及び相対変位

一次元地震応答解析により求めた杭下端-地表位置の相対変位 及び地表位置での最大加速度(水平・鉛直)より求まる震度を与条 件として 2 次元フレーム解析を行う。なお、一次元地震応答解析 に用いる入力地震動は余震として、第 3-43 図に示す、Sd-D1 波を 用いる。

震度(水平・鉛直)	相対変位
杭位置の地表面での最大加速度より算出	杭下端と地表面の最大相対変位

Sd-D1波:鉛直方向入力地震動

第 3-43図 余震時の解析に用いた地震波

<mark>e</mark>. 動水圧

動水圧は以下に示す港湾の施設の技術上の基準・同解説(2007年版) に基づき算出する。余震が発生したときの各節点に作用する動水圧を 以下の式で求めるものとする。

$$P = \frac{7}{8} W_o K_h \sqrt{HhA}$$

W_。: 海水の単位体積重量(kN/m³)

K_h: 設計水平加速度 (Sd-D1 波 K_h=0.2726)

H: 津波遡上高さ(m)

h: 節点の水深(m)

A: その節点の支配面積(m)

4)静的地盤バネ

二次元静的フレーム解析に用いる地盤<mark>バネは「道路橋示方書・同 解説(IV下部構造編)」に基づき水平方向地盤反力係数を求め、上 限値を設定するバイリニア型とする。また、杭間隔が小さいため水 平方向地盤反力係数に対する補正係数を考慮する。</mark>

静的フレーム解析では津波荷重及び<mark>漂流物荷重</mark>を主たる荷重とし て扱うため、地盤高さの嵩上げ部による地盤抵抗を期待するものと する。地盤バネは地盤高さの嵩上げ上面から杭先端までの範囲で考 慮し、設計上の地盤面は地盤高さの嵩上げ部上面とする。

a. 水平方向地盤バネ

 $k_{\lambda} = \mu \eta_k \alpha_k k_H D H$

ここに,

k_h:水平方向地盤<mark>バネ</mark>定数(kN/m)

η_k: 群杭効果を考慮した補正係数

α_k:単杭における補正係数

 η_k , α_k は以下の値を用いる

第 3-30 表 α_k , η_k の値表

対象	ηk	αk
粘性土地盤	2/3	1.5
砂質土地盤	2/3	1.5

(道路橋示方書・同解説 (Ⅳ下部構造編))

k_H:水平方向地盤反力係数(kN/m³)

$$k_H = k_{H0} \left(\frac{B_H}{0.3}\right)^{-\frac{3}{4}}$$

k_{H0}: 直径 0.3m 剛体円板による水平載荷試験の値に相当する水平 方向地盤反力係数(kN/m³)

$$k_{H0} = \frac{1}{0.3} \alpha E_0$$

α:地盤反力係数の換算係数

第 3-<mark>31</mark>表 αの値

対象	α(常時)	α (地震時)
全層	4	8

(道路橋示方書・同解説(IV下部構造編))

E₀: 地盤の変形係数(kN/m²)

Km 層以外は有効上載圧との関係式より求まる静弾性係数, Km 層は 標高(T.P.)との関係式から求まる静弾性係数を用いる。

地震時の地盤バネは、一次元地震応答解析から算出された各深度 における<mark>収束剛性</mark>から設定する。<mark>収束剛性</mark>から動ポアソン比を用い て地震後の地盤の変形係数を用いて、水平方向地盤反力係数を算出

する。

 $E_D = 2(1 + \nu_d)G_{eq}$:地震後の剛性低下を考慮した変形係数(kN/m²) ここに、 ν_d は動ポアソン比、 G_{eq} は一次元地震応答解析より求まる 収束剛性を示す。

μ:水平地盤反力係数の補正係数

$$\mu = 1 - 0.2 \left(2.5 - \frac{L}{D} \right) \left[L < 2.5D \right]$$

- L: 杭中心間隔
- D: 杭径
- B_H:荷重作用方向に直交する基礎の換算載荷幅(m)で杭基礎の場合の以下の式を用いる。

$$B_H = \sqrt{D/\beta}$$

 β : 杭基礎の特性値(m⁻¹)

$$\beta = \sqrt[4]{\frac{k_H D}{4EI}}$$

L:杭中心間隔

D:荷重作用方向に直交する基礎の載荷幅 = 杭径

H:分担長さ(m)

EI: 杭の曲げ剛性(kN・m²)

・群杭の影響による水平地盤反力係数の低減

杭中心間隔 L が 2.5D 未満であるため,道路橋示方書・同解説 (IV下部構造編)に基づき,水平平地盤反力係数 k_Hに補正係数 μ を乗じる。

(2) 群杭が水平力を受ける場合には、杭	相互の干渉により、各杭の荷重分担が相違し、全
体としての効率も単杭の場合に比べて	低下する。荷重分担,群杭効果とも地盤の種類,
杭の施工法,杭本数等によって異なるカ	ハ, 一般に杭の中心間隔が 5D(D は杭径)以下に
なると群杭の影響が現れ,荷重方向に対	すし,前列の杭から後列にいくほど,両側面の杭
から中央にいくほど荷重の分担が小さ。	くなる。また,杭中心間隔が小さくなるほど単杭
に対する効率低下が著しくなる。	
現実の地盤条件の複雑さを考えると,	群杭の効率低下に及ぼす各種要因の影響を分離
して扱うには、まだ実験データの蓄積が	ド十分でなく,また,各杭の荷重分担の相違も設
計上の安全率の範囲内にあるとみなされ	いる。群杭の水平抵抗について,特に設計上考慮
しなければならないのは,杭中心間隔に	こ応じた効率の低下であるが、これについても従
来, 杭中心間隔が 2.5D 程度であれば, 単	杭の水平方向地盤反力係数をそのまま使っても,
実用上差し支えないとして扱ってきた。	
これは、水平方向地盤反力係数の多少	▶の差は,応力的にはそれほど大きな影響を与え
ないこと等を考慮したものである。した	いし,やむを得ず杭中心間隔をさらに小さくする
場合は、設計上水平方向地盤反力係数の	の低下を考慮する必要がある。
低減の方法としては, 12.5 で求めた	水平方向地盤反力係数に式(解 12.4.10)により
算出した補正係数μを乗じればよい。	
$\mu = 1 - 0.2 \left(2.5 - \frac{L}{D} \right) \qquad [L < 2.5]$	0] ・・・・・(解 12.4.10)
ここに,	
L:杭中心間隔(m)	
D:杭径(m)	
鋼管ソイルセメント杭の場合	は、ソイルセメント柱径とする。

(道路橋示方書・同解説 (IV下部構造編))

b. 上限值

$$P_h = P_{HU}DH$$

ここで,

P_{HU}: 受働土圧強度(kN/m²)

 $P_{HU} = \eta_{\rm p} \alpha_{\rm p} p_{\rm u}$

η_p: 群杭効果を考慮した水平方向反力の上限値の補正係数α_p: 単杭における水平地盤反力度の上限値の補正係数

対象	η _р α _р
粘性土地盤 (N>2)	1.5^{*1}
粘性土地盤 (N≦2)	1.0^{*1}
砂質土地盤	1.15^{*2}

第 3-<mark>32</mark>表 η_pα_pの値

※1:粘性土の値 η_p =1.0, α_p =1.5 (N≤2 の粘性土地盤で

は, $\alpha_{p} = 1.0 とする)$

※2:砂質土の式η_pα_p = L/D

L: 杭中心間隔 2.8(m)

D:杭径 2.5(m)

p_u: 地震時<mark>受働</mark>土圧強度(kN/m²)

 $p_{u} = K_{EPi}\gamma_{i}h_{i} + 2C_{i}\sqrt{K_{EPi}} + K_{EPi}q_{i}$ $K_{EPi} = \frac{\cos^{2}\varphi_{i}}{\cos\delta_{E}\left(1 - \left[\frac{\sin(\varphi_{i} - \delta_{E})\sin(\varphi_{i} + \alpha)}{\cos\delta_{F}\cos\alpha}\right]^{2}}$

γ_i:対象層の単位積重量(kN/m³)

h_i:対象層の厚さ(m)

C_i:対象層のせん断強度(kN/m²)

 $q_i: 対象層の上層までの有効上載圧(kN/m²)$ K_{EPi}: 対象層の地震時<mark>受働</mark>土圧係数 $<math>\varphi_i: 対象層の内部摩擦角(°)$ $\delta_E: 壁面と土の摩擦角(°)で-<math>\phi/6$ とする

α:地表面と水平面のなす角(°)で0とする

5) 照查

①鋼管壁(杭体)の照査

a. 応力度照查

杭の応力度照査は,曲げモーメント・軸力に対する照査,せん 断に対する照査を実施する。

・曲げモーメント・軸力に対する照査

鋼管杭の曲げに対する許容限界は,道路橋示方書・同解説(IV 下部構造編)に基づき,発生曲げモーメントが短期許容応力度以 下であることを照査する。なお,曲げに対する応力度照査は,以 下の式で算出する。

$$\sigma = \frac{N}{A} + \frac{M}{Z}$$

M:最大曲げモーメント

Z:断面係数

N: 軸力

A:有効断面積

・せん断に対する照査

鋼管杭のせん断に対する許容限界は,曲げと同様に道路橋示方書・同解説(IV下部構造編)に基づき,発生せん断力が短期許容応

カ度以下であることを照査する。なお, せん断に対する応力度照査 は, 以下の式で算出する。

$$\tau = \frac{S}{A}$$

S:せん断力
A:有効断面積

・座屈に対する照査

鋼管杭の座屈に対しては,道路橋示方書・同解説(IV下部構造編) では,全長が地中に埋め込まれた杭では,一般に座屈の影響を考慮 しなくてもよいとされるが,建築基礎構造設計指針によれば,終局 耐力の項に座屈に対する記述があることからこれを適用する。圧縮 あるいは引張力が単独で作用するときの鋼管杭の終局限界圧縮耐力 Nu(N)は,以下の式で算出する。

 $N_u = F\left(0.8 + 2.5\frac{t}{r}\right)A \quad (0.01 < t/r \le 0.08)$

ここに、Fは鋼材の基準強度 (= σ_y) (N/mm²)、t:鋼管の厚さ(腐 食代を考慮) (mm)、r:鋼管の半径 (mm)、A:鋼管の断面積(腐食 代を考慮) (mm²) である。

· 許容応力度

杭の照査は,検討ケースに応じて道路橋示方書・同解説(W下部 構造編)の許容値を用いる。ただし,T.P.+24m 津波時の評価におい ては,降伏応力による照査とする。 6) 評価結果

照査結果一覧を第 3-33 表~第 3-38 表に示す。津波時及び津波+余 震時の杭の曲げ, せん断, 座屈に対する評価結果及び地盤の支持力に 対する評価結果について, いずれも許容限界値以下であることを確認 した。また, 地盤の強度や剛性をパラスタし, 地盤バネ定数や上限値 を変更した結果についても同様に許容限界値以下となることを確認し た。

	発生応力度 σ(N/mm ²) (M/Z+ <mark>N</mark> /A)	許容応力度 σ _{sa} (N/mm ²) (SM570)	安全率 σ _{sa} /σ	判定
津波時	178.6	382.5	2.14	ОК
津波+余震時	175.7	382.5	2.18	ОК
<mark>T.P.</mark> +24m 津波時+漂流物	361.9	433.5	1.20	OK
T.P.+24m <mark>津波+余震時</mark>	340.8	433.5	1.27	ОК

第 3-33 表 曲げ・軸力に対する照査 (<mark>バネ</mark>値その1の場合)

第 3-<mark>34</mark>表 せん断に対する照査(<mark>バネ</mark>値その1の場合)

	発生応力度 τ (N/mm ²) (S/A)	許容応力度 τ _{sa} (N/mm ²) (SM570)	安全率 _{て sa} / τ	判定
津波時	25.4	217.5	8.57	OK
津波 + 余震時	25.6	217.5	8.51	OK
T.P.+24m 津波時+漂流物	47.8	246.5	5.15	OK
T.P.+24m <mark>津波+余震時</mark>	46.0	246.5	5.36	OK
	発生応力度 σ(N/mm ²) (M/Z+ <mark>N</mark> /A)	許容応力度 σ _{sa} (N/mm ²) (SM570)	安全率 σ _{sa} /σ	判定
------------------------------	--	--	---------------------------	----
津波時	178.6	382.5	2.14	ОК
津波+余震時	175.7	382.5	2.18	ОК
T.P.+24m 津波時+漂流物	361.9	433.5	1.20	ОК
T.P.+24m <mark>津波+余震時</mark>	340.8	433.5	1.27	ОК

第 3-<mark>35</mark>表 曲げ・軸力に対する照査 (<mark>バネ</mark>値その 2 の場合)

第 3-<mark>36</mark>表 せん断に対する照査(<mark>バネ</mark>値その1の場合)

	発生応力度 τ (N/mm ²) (S/A)	許容応力度 τ _{sa} (N/mm ²) (SM570)	安全率 _{て sa} / τ	判定
津波時	15.0	217.5	14.5	ОК
津波 + 余震時	16.2	217.5	13.4	ОК
<mark>T.P.</mark> +24m 津波時+漂流物	29.7	246.5	8.31	ОК
T.P.+24m <mark>津波+余震時</mark>	29.7	246.5	8.31	ОК

次頁以降に各ケースにおける曲げモーメント図等を<mark>第 3-44 図〜第 3-</mark> 59 図に示す。

第 3-44 図 曲げ・せん断照査値 (基準津波時+漂流物)(その1のバネ)

第 3-45 図 曲げモーメント・せん断力及び反力
 (基準津波時+漂流物)(その1のバネ)

第 3-<mark>52</mark>図 曲げ・せん断照査値

(基準津波時+漂流物)(その2のバネ)

(基準津波時+漂流物)(その2のバネ)

(基準津波+余震時)(その2のバネ)

(基準津波+余震時)(その2のバネ)

(T.P.+24m 津波時+漂流物)(その2のバネ)

(T.P.+24m 津波+余震<mark>時</mark>)(その2のバネ)

	発生軸力 <mark>(kN)</mark>	極限支持力 (kN)	安全率	判定 <mark>(>1.2)</mark>
津波時	8,105	28,936	3.57	OK
津 波 + 余 震 <mark>時</mark>	10,182	28,936	2.84	OK
T.P.+24m 津波時+漂流物	8,105	28,936	3.57	OK
T.P.+24m <mark>津波+余震時</mark>	10,182	28,936	2.84	ОК

第 3-<mark>37</mark>表 支持力に対する照査

第 3-<mark>38</mark>表 座屈耐力に対する照査

	発生軸力 <mark>(kN)</mark>	座屈耐力 <mark>(kN)</mark> (SM570)	安全率	判定
津波時	8,898	103,039	11.58	OK
津波 + 余震 <mark>時</mark>	11,185	103,039	9.21	OK
T.P.+24m 津波時+漂流物	8,898	103,039	11.58	ОК
T.P.+24m <mark>津波+余震時</mark>	11,185	103,039	9.21	ОК

以降に二次元フレーム解析結果の要約を示す。

- ①断面の決定は杭体に発生する曲げモーメントであり、曲げモー メントが最も大きいのは T.P. + 24m 津波時+漂流物のケースで ある。
- ②地盤バネの設定について、地盤の剛性が大きく、受働土圧強度の上限値が大きくなる「初期剛性+ピーク強度(平均値)」のケースの安全率が小さくなることを確認した。変形が抑えられる分、杭体に加わる荷重が大きくなることによるものと考えられる。
- ③支持力については、岩盤のみの支持力で照査し、全てのケース で 2.5 倍以上の安全率を有することを確認した。
- ④座屈については,9倍以上の裕度があり,T.P.+24.0m 津波時も 影響はないことを確認した。
- ⑤杭体の断面決定については、地震時の二次元有効応力解析の結 果を参照して安全率の小さい方で決定する。

二次元フレーム解析による杭体の照査結果では,基準津波や T.P.+24m 津波に対して,杭の曲げ,せん断及び支持力の照査値は許 容限界値以下であり,十分な構造強度を有していることを確認した。

- (9)上部工の成立性検討結果(二次元梁バネモデル解析)
 - 1) モデル化方針(梁バネモデル)
 - 構造部材

鉄筋コンクリート梁壁はビーム要素でモデル化し、杭をバネで 表現する。

地盤

地盤は,集約バネを杭位置に配置する。ここで,付加するバネは鉛直バネ Kv と水平バネ K1 を与える。

・地震動の入力

一次元地震応答解析及び二次元有効応力解析より算出された、
 地表面変位を解析モデルに載荷する。この時、地盤のばらつき
 を考慮するために、モデル左右に-1σ物性、+1σ物性によるものをそれぞれ載荷する。

- ・津波荷重
 津波荷重は鉄筋コンクリート躯体下端の最大波圧を解析モデル
 に載荷する。
- ・解析モデル
 解析モデルを第 3-60 図に示す。

幅 B=0.70m, 断面積 A=11.55m², E=3.1E+07kN/m²

第 3-60図 解析モデル(二次元梁バネモデル)

2) 地盤バネの設定(地震時)

地震時の地盤バネは,以下の式により設定する。バネ値の算出に 用いる変形係数に,地震後の剛性低下を考慮する。

 $E_D = 2(1 + \nu_d)G_{eq}$

Geg:地震後の剛性低下を考慮した変形係数 (kN/m²)

ここに、v_dは動ポアソン比、G_{eq}は地震応答解析より求まる<mark>収束剛</mark> <mark>性</mark>を示す。

$$K_1 = \frac{3EI\beta^3}{(1+\beta h)^3} = 113962 \,(\text{kN/m})$$

 $\zeta \subset \zeta \subset \zeta$

EI:杭の曲げ剛性

$$\beta$$
: 杭基礎の特性値(m⁻¹), $\beta = \sqrt[4]{\frac{k_H D}{4EI}}$

h: 杭の軸方向長さ(m)

 k_{H} : 水平方向地盤反力係数 (kN/m³) $k_{H} = k_{H0} \left(\frac{B_{H}}{0.3} \right)^{-\frac{3}{4}}$

k_{H0}: 直径 0.3m 剛体円板による水平載荷試験の値に相当する水平

方向地盤反力係数(kN/m³) $k_{H0} = \frac{1}{0.3} \alpha E_0$

α:地盤反力係数の換算係数(第 3-40 表)

第 3-<mark>39</mark>表 αの値

対象	α(常時)	α(地震時)
全層	4	8

*E*₀: 地盤の変形係数(kN/m²)

b. 鉛直方向地盤バネ(集約バネ)

$$K_v = a \frac{A_p E_p}{L} = 753985(kN/m)$$

ここに,
 A_p : 杭の純断面積(mm²)
 E_p : 杭のヤング係数(kN/mm²)
 L : 杭長(m)

3) 地盤バネの設定(津波時)

津波時の地盤バネは、以下の式により設定する。ばらつきを考慮 するため、VsよりGを求め、以下の式により変形係数を算出する。

 $E_D = 2(1 + \nu_d)G_{eq}$

ここに、v_dは動ポアソン比、G_{eq}は地震応答解析より求まる<mark>収束剛</mark> <mark>性</mark>を示す。

a. 水平方向地盤バネ(集約バネ)

$$K_1 = \frac{3EI\beta^3}{(1+\beta h)^3} = 181970 \,(\text{kN/m})$$

 $\Xi \subseteq 12$,

EI:杭の曲げ剛性

$$\beta$$
: 杭基礎の特性値(m⁻¹), $\beta = \sqrt[4]{\frac{k_H D}{4EI}}$

h: 杭の軸方向長さ(m)

 k_{H} : 水平方向地盤反力係数(kN/m³) $k_{H} = k_{H0} \left(\frac{B_{H}}{0.3} \right)^{-\frac{3}{4}}$

 $k_{H0}:$ 直径 0.3m 剛体円板による水平載荷試験の値に相当する水平 方向地盤反力係数(kN/m³) $k_{H0} = \frac{1}{0.3} \alpha E_0$

α:地盤反力係数の換算係数(第3-40表)

 E_0 : 地盤の変形係数(kN/m²)

b. 鉛直方向地盤バネ(集約バネ)

$$K_v = a \frac{A_p E_p}{L} = 753985(kN/m)$$

ここに,
 A_p : 杭の純断面積(mm²)
 E_p : 杭のヤング係数(kN/mm²)
 L : 杭長(m)

4) 地震荷重

考慮する地震荷重は以下の通りとする。

 ・地震荷重は、梁バネモデルは一次元地震応答解析及び二次元有 効応力

<mark>解析</mark>によって引き上げられた地表面変位を<mark>第 3-61 図に示す</mark>モデ ルに載荷する。

構造物に載荷する慣性力については、一次元地震応答解析及び
 二次元

<mark>有効応力解析</mark>より引き上げられた地表面における最大加速度を地 震時慣性力としてモデルに載荷する。<mark>第 3-62 図に地中変位を示</mark> す。

第 3-61 図 モデル図

第 3-62 図 地中変位

第 3-40 表 考慮する加速度

最大水平加速度	0.430G
最大鉛直加速度	0.483G

5) 地震時の載荷図

地震時に載荷した荷重図を第 3-63 図~第 3-66 図に示す。

第3-63図 死荷重+積雪荷重(鉛直)

第 3-64 図 地震時慣性力(鉛直)

第 3-<mark>65</mark>図 地震時慣性力(水平)

6) 津波荷重図

考慮する津波荷重は以下の通りとする。

- ・梁バネモデルに載荷する津波荷重は、鉄筋コンクリート壁下端の最大波圧を解析モデルに付加する。第3-67図に考慮する津波荷重を、第3-68図に漂流物荷重の位置と曲げモーメント図・せん断力図の関係を示す。
- · 漂流物荷重については、最も曲げモーメントが大きくなる、壁端に載荷する。

第 3-67 図 考慮する津波荷重

第 3-<mark>68</mark>図 <mark>漂流物荷重</mark>の位置と曲げモーメント図・せん断力図の関 係

津波時に載荷した荷重図を第 3-69 図~第 3-71 図に示す。

第 3-71 図 死荷重+積雪荷重(鉛直)

8) 二次元梁バネモデル解析結果

評価結果一覧を第 3-41 表~第 3-43 表に示す。地震時,津波時及 び津波+余震時の上部工(鉄筋コンクリート)の圧縮,引張り,せ ん断に対する評価結果について,いずれも許容限界値以下であるこ とを確認した。

		発生応力度 σ。(N/mm ²)	許容応力度 σ _{ca} (N/mm ²) (σ _{ck} =40N/mm ²)	安全率 σ _{ca} /	判定
	地震時(一次元応答解析)	0.66	21	31.82	OK
一般部	地震時(二次元有効応力解析)	13.84	21	1.52	ОК
	津波時	9.58	21	2.19	OK
	津波+余震時	14.62	21	1.44	OK
	T.P.+24m 津波時+漂流物	15.49	28	1.81	OK
	T.P.+24m 津波+余震時	13.49	28	2.08	OK
斜面部	地震時(二次元有効応力 解析,原地盤)	6.80	21	3.09	OK
	地震時(二次元解析,豊浦 標準砂を仮定した地盤)	4.95	21	4.24	OK

<mark>第 3-41 表</mark> 圧縮に対する照査結果

第	3-42	表	
<u>~I</u> •	0 1 2	1	

引張に対する照査結果

		発生応力度 σ _s (N/mm ²)	許容応力度 σ _{sa} (N/mm ²) (SD490)	安全率 σ _{sa} / σ _s	判定
	地震時(一次元応答解析)	12.62	435	34.47	ОК
	地震時(二次元有効応力解析)	263.0	435	1.65	ОК
	津波時	182.06	435	2.39	ОК
一版部	津波+余震時	277.91	435	1.57	ОК
	T.P.+24m 津波時+漂流物	294.51	478	1.62	ОК
	T.P.+24m 津波+余震時	256.34	478	1.86	OK
斜面部	地震時(二次元有効応力 解析,原地盤)	1502	435	2.90	OK
	地震時(二次元解析,豊 浦標準砂を仮定した地盤)	94.0	435	4.63	OK

		発生せん断 力 V(kN)	許容せん断 耐力 Va(kN) (Va=Vc+Vs)	安全率 V _a /V	判定
	地震時(一次元応答解析)	54.73	1,508.82	27.57	OK
	地震時(二次元有効応力 解析)	503.15	1,508.82	3.00	ОК
一般部	津波時	428.48	1,508.82	3.52	OK
	津波+余震時	487.33	1,508.82	3.10	ОК
	T.P.+24m 津波時+漂流物	733.58	1,703.35	2.32	ОК
	T.P.+24m 津波+余震時	606.66	1,703.35	2.81	ОК
斜面部	地震時(二次元有効応力 解析,原地盤)	353.00	1,508.82	4.27	OK
	地震時(二次元解析,豊 浦標準砂を仮定した地盤)	291.67	1,508.82	5.17	ОК

<mark>第 3-43 表</mark> せん断に対する照査結果

以降に二次元梁バネモデルによる解析結果の要約を示す。

①二次元梁バネモデルによる評価の結果、圧縮に対する照査及び 引張に対する照査では津波+余震時が最も安全率が最小になり、 せん断については、T.P.+24m 津波時+漂流物のケースが最小 となる。

②三次元 FEM 解析結果と比較すると、二次元梁バネモデルは、鉄 筋コンクリート梁壁のみのモデル化となるため、断面積や断面 2 次モーメントなどの断面性能が小さくなり,発生応力度が大 きくなるため、三次元 FEM 解析結果より保守的な断面力が生じ る結果となることを確認した。

③上部工の鉄筋コンクリート梁壁をモデル化した二次元梁バネモ デルでは、一次元応答解析(SHAKE)に基づく両端杭位置の地 表面相対変位及び二次元有効応力解析(FLIP)による時刻 歴変位差の絶対値の最大値発生時刻における変位を作用させる

評価も実施し、上部工について、SHAKE を適用した場合の梁バ ネモデルによる評価結果と比較して、保守側の結果を採用する。 二次元梁バネモデルによる照査結果では、基準津波や T.P.+24m 津波に対して、鉄筋コンクリート梁壁の照査値は許容限界値以下 であり、十分な構造強度を有していることを確認した。 (10)上部工の成立性検討結果(静的三次元 FEM 解析)

1) モデル化方針(三次元 FEM 解析)

· 構造部材

鋼管は,線形弾性とし,三次元シェル要素でモデル化する。 コンクリート躯体は,線形弾性とし,三次元ソリッド要素でモ デル化する。

地盤

地盤は、水平方向地盤反力度の上限値を考慮した、地盤バネを 鋼管に配置することで表現する。この時、引張側は No tension とする。なお、地盤高さの嵩上げ工についてもバネで水平抵抗 を考慮する。 第3-72 図に水平方向バネ特性の説明図を示す。 以下に解析で用いたバネの設定を示す。

第 3-72図 水平方向バネ特性(杭及び壁バネ)

解析ケース	地盤バネ定数	上限值
津波時	静弹性係数	残留強度(-1σ低減值)
地震時	地震時収束剛性	残留強度(-1σ低減值)
津波+余震時	余震時収束剛性	残留強度(-1σ低減值)

第 3-44 表 地盤バネの設定に用いる地盤剛性及び上限値

・地震動の入力

応答変位法による照査を基本とする。解析モデルに入力する地 中変位及び地表面の最大加速度は一次元の地震応答解析より算 出し,変位についてはバネを返して杭体に入力する。

2) 荷重及び荷重の組合せ

三次元 FEM 解析に用いる荷重の組み合わせを第 3-45 表に示す。

留垢 告重の				御佐市の	短期荷重 長期荷重		短期荷重	
 所	何里の 老 盧 方法	方向	鋼管	判官内の	自重(鉄筋コ	積	圃	洒
1至 70					ンクリート壁	雪	/114	
地電	亡女	水平	単位体積	単位体積	0	\bigcirc	\bigcirc	-
地辰	応 合 亦 伝 注	(約) 古	重量で	重量で	\bigcirc	\bigcirc		
н-Д	发怔齿	亚世	考慮	考慮	U	0	_	_
净址	分布荷重		単位体積	単位体積				
伴仮	及び	水平	重量で	重量で	\bigcirc	\bigcirc	-	0
н4.	集中荷重		考慮	考慮				

第 3-45 表 三次元 FEM 解析に用いる荷重の組み合わせ

※積雪荷重については、0.35倍した値を用いるものとする。

風荷重は道路橋示方書の以下の式より算出する。

 $p = 0.5 \rho U_d^2 C_d G$

p: 単位面積当たりの風荷重(N/m²)

 ρ :空気密度(1.23kg/m³)

 U_d : 風速(m/s) = 30.0m/s

 C_d : 抗力係数 = 1.6(一般值)

G: ガスト応答係数 = 1.9(一般値)

風は地表面より上の被覆コンクリート面に垂直に当たるものと する。 第 3-76 図に考慮する津波荷重及び漂流物荷重を示す。

津波荷重は以下の式により算出する。

P = 3 ρ gh
P:津波波圧(kN/m²)
ρ:海水の密度(Mg/m³), W=1.03(Mg/m³)
g:重力加速度(m/s²)
h:津波高さ(遡上高さ T.P.+17.9-設置盤高さ)/2

- 3) 解析モデル
 - ・解析モデル

鋼管を三次元シェル要素, コンクリート壁を三次元ソリッド要素でモデル化した三次元モデルを作成する。この時, 鋼管とコ ンクリート壁は連続体としてモデル化する。地盤については, 水平地盤反力度の上限値を考慮したバネによって表現する。

· 境界条件

境界条件を第3-46表に示す。

境界	地震時応答解析		
鋼管底面	鉛直方向固定,水平方向バネ(上限 値考慮),鉛直軸回転方向固定		
鉄筋コンクリート壁と地盤高さの 嵩上げ工間	水平方向バネ(上限値考慮)		
鋼管周面	水平方向バネ(上限値考慮)		

第 3-46 表 境界条件

·材料定数

材料定数を第3-47表,第3-48表に示す。

第 3-47 表 材料定数(コンクリート)

設計基準強度	弾性係数	ポマソンド	単位体積重量	
σ _{ck}	Е	ホノノンに	γс	
(N/mm^2)	(N/mm^2)	v	(kN/m^3)	
40	31,000	0.2	24.5	

第 3-48 表 材料定数 (鋼管杭)

杭 直径 D (mm)	厚さ t (mm)	腐食 代 (mm)	断面積 A (m ²)	断面 2 次 モーメント I (m ⁴)	弾性係数 E (N/mm ²)	ポアソン 比 v	密度 ρ (Mg/m ³)
2,500	35	1	0.2632	0.1997761	200,000	0.30	7.93 [*]

※鋼材の腐食代分を換算

4-1) 解析モデル (一般部)

杭体に付加する地盤バネは第 3-74 図に示す方針とする。

4-2) 解析モデル (傾斜部)

斜面部の三次元モデルは杭長を同一にしたケースと Km 層に 1D根 入れした杭長とするケースの 2ケース実施する。

杭体に付加する地盤バネは平均物性から算出したバネを用いた。 この時,上限値については,残留強度-1σ物性を適用した。

5条 添付24-196

5) 地震時荷重の考え方

地震時の荷重は以下の方針とする。

- 積雪荷重:常時積雪荷重×0.35
- ・水平慣性力:SHAKEによる一次元地震応答解析で地表面の最大加 速度を求める。その加速度を杭と防潮壁に対して 堤外→堤内方向へ平均地盤の表面最大加速度の水 平慣性力を作用する。
- ・鉛直慣性力:SHAKEによる一次元地震応答解析で地表面の最大加 速度を求める。その加速度を杭と防潮壁に平均地 盤の表面最大加速度の下向き鉛直慣性力を作用す る。
- 応答変位:水平地盤変位は各杭先端からの最大相対変位とする。
- 杭1,杭3,杭5の応答変位は-1σ地盤,平均地盤,+1σ地盤の SHAKEの変位とし,杭2の変位は杭1と杭3の補間変位,杭4 の変位は杭3と杭5の補間変位で設定する。
- 防潮堤における内側盛土の応答変位は杭1 中心位置の地表面応
 答変位から杭3 中心位置の地表面応答変位及び杭5 への中心位置の地表面応答変位で線形補間とする。

解析モデルに載荷した地震時の地中変位分布及び地表面最大加速度を第 3-76図,第 3-77図に示す。

第 3-77図 地中変位分布及び地表面最大加速度

(地震時・Km層傾斜部, 地点④)

6) 三次元 FEM モデルの解析結果

地震時,津波時,津波+余震時及び地震時(岩盤傾斜モデル)の 解析結果を第 3-78図~第 3-87図に,照査結果一覧を第 3-49表~第 3-51表に示す。

評価の結果,地震時,津波時,津波+余震時のいずれにおいても, 発生する最小主応力はコンクリートの圧縮強度 40N/mm²(40,000kN /m²)あるいは許容応力度 (21N/mm²(21,000kN/m²)を十分下回ること, 発生する最大主ひずみは鉄筋の許容引張応力度のひずみ以下である ことから,上部工の構造成立性に問題がないことを確認した。なお, ひび割れ幅は 0.2mm 以下であり止水性が確保される。(2012 年制定 コンクリート標準示方書によれば,ひび割れ幅が 0.2mm 以下であれ ば,水密性が確保されると記述してある。)

また,岩盤の傾斜を考慮したモデルにおいても,上部工の構造成 立性に問題がないことを確認した。

以上のことから,地震時,津波時,津波+余震時のいずれにお いても,上部工は弾性状態であり構造成立性が確保されることか ら、止水性能は保持されることを確認した。

第3-81図 津波時の解析結果(最大主ひずみ分布)

5条 添付24-205

(最小主応力分布)

(取八土ひりの刀仰)

5条 添付24-209

7) 三次元 FEM モデルの解析結果

照査結果一覧を第 3-49 表~第 3-51 表に示す。地震時,津波時及 び津波+余震時の上部工(鉄筋コンクリート)の圧縮,曲げ,せん 断に対する評価結果について,いずれも許容限界値以下であること を確認した。

	発生応力度 σ。(N/mm ²)	許容応力度 σ _{ca} (N/mm ²) (σ _{ck} =40N/mm ²)	安全率 σ ca/σ c	判定
地震時	0.39	21	53.85	OK
津波時	1.61	21	13.04	OK
津波+余震時	1.21	21	17.36	OK
地震時(岩盤傾 斜モデル,同一 杭長モデル)	0.60	21	35.00	OK
地震時(岩盤傾 斜モデル,1 <mark>D</mark> モ デル)	0.61	21	34.43	OK

第 3-49 表 圧縮に対する照査結果

第	3-	5	0
퐈	3-	<mark>O</mark>	U

)表 引張に対する照査結果

	発生応力度 σ _s (N/mm ²)	許容応力度 σ _{sa} (N/mm ²) (SD490)	安全率 σ sa/σ s	判定
地震時	24.42	435	17.81	OK
津波時	36.92	435	11.78	OK
津波+余震時	47.47	435	9.16	OK
地震時(岩盤傾 斜モデル,同一 杭長モデル)	17.68	435	24.60	OK
地震時(岩盤傾 斜モデル,1 <mark>D</mark> モ デル)	19.59	435	22.21	OK

	発生せん断力 V(kN)	許容せん断 耐力 V _a (kN) (V _a =V _c +V _s)	安全率 Va/V	判定
地震時	0.41	0.83*	2.02	OK
津波時	0.67	0.83*	1.24	OK
津波+余震時	237.28^{*1}	435^{*2}	1.83	ОК
地震時(岩盤傾 斜モデル,同一 杭長モデル)	0.55	0.83*	1.51	OK
地震時(岩盤傾 斜モデル,1 <mark>D</mark> モ デル)	0.62	0.83*	1.34	ОК

第 3-51 表 せん断に対する照査結果

※コンクリートのみの許容せん断応力度

8) 梁バネモデルと三次元 FEM モデルの応力比較

地震時及び津波時の梁バネモデルと三次元 FEM モデルでの照査結果 を第 3-52 表と第 3-53 表に示す。

梁バネモデルの安全率が低くなる傾向があることから,梁バネモ デルによる照査結果は安全側となっていると判断される。

第 3-52 表 地震時の梁バネモデルと三次元 FEM モデルの比較

		梁バネモデル	三次元 FEM モデル
圧縮応力度	発生応力	0.66(31.82)	0.14(150.00)
σ _c (N/mm²)	許容応力度	21.0	21.0
引張応力度	発生応力	12.62(34.47)	9.15(47.54)
<mark>σ_s(N∕mm²)</mark>	許容応力度	435	435
せん断応力*	発生せん断応力	0.12(6.92)	0.12(6.92)
τ (N/mm ²)	許容せん断応力	0.83	0.83

※コンクリートのみの許容せん断応力度

() 値は安全率を示す。

第3-	53 表	(1) 津波時o	D 梁 バネ	ヽモデル	と三次	元 FEM	モデル	の比較
-----	-------------	----	--------	--------	------	-----	-------	-----	-----

		梁バネモデル	三次元 FEM モデル
圧 縮応力度	発生応力	9.58(2.19)	0.85(24.71)
σ _c (N/mm ²)	許容応力度	21.0	21.0
引張応力度	発生応力	182.06(2.39)	36.92(11.78)
σ _s (N/mm ²)	許容応力度	435	435
せん断耐力	発生せん断力	428.48(3.52)	160.99(9.37)
τ (kN)	許容せん断耐力	1,509	1,509

第 3-53 表(2) 津波+余震時の梁バネモデル

		梁バネモデル	三次元 FEM モデル
<u></u>	発生応力	14.62(1.44)	0.79(26.58)
$\sigma_{\rm c}$ (N/mm ²)	許容応力度	21.0	21.0
引張応力度	発生応力	277.91(1.57)	43.69(9.96)
<mark>σ_s</mark> (N∕mm²)	許容応力度	435	435
せん断耐力	発生せん断力	487.33(3.10)	228.78(6.60)
τ (kN)	許容せん断耐力	1,509	1,509

と三次元 FEM モデルの比較

() 値は安全率を示す。

以下に静的三次元 FEM による解析結果の要約を示す。

1	地	震日	時↓	2:	おい	0	て	,	上	部	工	は	全	て	の	位	置	で	コ	ン	ク	IJ	<u> </u>	\mathbb{P}	の	引	張	強
	度.	以-	۲ -	で ä	あ	り _:	,	ひ	び	割	れ	は	生	じ	な	い	٢	と	を	確	認	L	た	0	ま	た	,	圧
	縮	側(の <u>=</u>	È	志,	力	で	あ	る	最	小	主	応	力	分	布	か	B	全	て	コ	ン	ク	IJ	<u> </u>	\mathbb{P}	の	許
	容」	王刹	宿引	<mark>隹</mark>	€≀	<u>ر</u> ک	対	l	τ [.]	╊	分	な	裕	度〉	がる	あ	33	- (とそ	上石	隺言	忍し	_ 7	き。				
2	津	波日	侍 ⁻	でし	は,		圧	縮	側	の	主	応	力	で	あ	る	最	小	主	応	力	分	布	か	B	全	て	コ
		ク	<mark>י ש</mark>	_	<u>ጉ</u> (の	許	容	圧	縮	強	度	に	対	L	て	ᆉ	分	な	裕	度	が	あ	る	٢	と	を	確
	認	L7	た。	Ī	引到	脹	に	お	い	て	は	,	発	生	す	る	ひ	ず	み	は	鉄	筋	の	許	容	応	力	度
	に	対「	L	C -	┢᠀	うし	こ,	小	さ	レン	値	で	あ	る	2	とそ	をす	雀 言	忍し	_ †	م گ							
3	梁	バン	ネ -	E :	デノ	レ	で	照	査	l	な	い	鉄	筋	コ	ン	ク	IJ	<u> </u>	\mathbb{F}	梁	壁	背	面	の	鋼	管	鉄
	筋	コ :		7	ש- U		\mathbb{P}	に	つ	い.	て	も	, .	Ξì	次	元	FE	M	解	析	の	結	果	,	全 全	て	許	容
	限。	界亻	直上	ス ⁻	下 -	で	あ	ŋ	,	有	意	な	せ	h	断	破	壊	等	は	生	じ	る	恐	れ	が	な	い	٢
	<mark>ا ح</mark>	を そ	雀 言	刃	L7	<mark>ہر</mark> د	,																					
(4)	梁	バン	ネ -	E 3	<i>ب</i> آر	レ	こう	対	l	T	静	的	Ξi	次	元	FE	EM	解	析	で	は	奥	行	き	方	向	t	モ

④梁バネモデルに対して静的三次元 FEM 解析では奥行き方向もモ デル化され,断面性能が大きくなり,応力の流れが面的に広が ることから,梁バネモデルよりも精緻なモデル化ができるため,

発生する応力が小さくなることを確認した。

⑤ねじれに対する影響については、三次元 FEM 解析により、鋼管 周りのコンクリートに発生するせん断応力がコンクリートのみ の許容せん断応力あるいはせん断補強筋によって十分に抵抗で きることを確認した。

静的三次元 FEM 解析の結果,津波荷重や地震荷重に対して,鉄筋コンクリート梁壁のみならず,鋼管鉄筋コンクリート部分もす べて照査値は許容限界値以下であり,十分な構造強度を有してい ることを確認した。さらに,梁バネの方が保守的である結果を示 した。

また、コンクリートは弾性範囲内であることから、貫通ひび割れが生じることはなく、止水性について問題ないことを確認した。

(11) 地盤高さの嵩上げ部及び表層改良体の成立性検討結果

地盤高さの嵩上げ部及び表層改良体のせん断力が改良体のせん断 耐力以内であることを有効応力解析及び二次元フレーム解析にて確 認する。

表層地盤改良の深さ方向の範囲は,表層地盤の過剰間隙水圧比が 比較的高い範囲や杭体に生じる断面力の低減等を考慮し設定する。 また,堤内側の表層地盤改良の幅は,地盤高さの嵩上げが地震時に 損傷に至らない範囲を考慮し設定する。堤外側の表層地盤改良の幅 は,地盤改良に係る指針類に基づき範囲を設定する。

地盤改良工法は,改良対象地盤の物性,地下水位,施工性などを 考慮して選定する。また,地盤剛性の急変部により杭体に局所的な 応力を発生させないように,地盤剛性が上層から下層に向けて,や や大きめの剛性から原地盤に近い剛性に移行するような改良仕様を 設定する。

地盤高さの嵩上げ部及び表層改良体のせん断力が改良体のせん断 耐力以内であることを確認するため,地盤高さの嵩上げ及び表層改 良体のせん断力が,改良体の「滑り線に生じるせん断耐力」に対し て安全率 1.2以上であることを確認する。 1)評価結果

①津波時,津波+余震時,T.P.+24m 津波時及び T.P.+24m 津波+余

 震時の結果

地盤の嵩上げ及び表層改良体の二次元フレーム解析による検討について,滑り線の模式図を第3-88図に示す。

<mark>第 3-88 図(1)</mark> 滑り線の模式図(津波時,T.P.+24m 津波時)

<mark>第 3-88 図 (2)</mark>滑り線の模式図(津波+余震時, T.P.+24m 津波+余震時)

地盤高さの嵩上げ及び表層改良体の検討結果について、津波時及 び T.P. + 24m 津波時の結果を第 3-54 表に, 津波+余震時及び T.P. + 24m 津波+余震時の結果を第 3-55 表に示す。

全ての滑り線において安全率が 1.2 以上であり、地盤の嵩上げ及 び表層改良体の健全性を確認した。

滑り線	検討位置	杭反力	滑り抵抗	安全率
1	T.P.+8.0	946.7	22,400	23.7
2	T.P.+7.0	4,788.7	23,800	4.97
3	T.P.+6.0	8,704.7	25,200	2.89
4	T.P.+5.0	12,693.7	26,600	2.10
5	T.P.+3.5	12,338.6	28,700	2.33

第3-54表(1) 地盤高さの嵩上げの滑り照査(津波時)

<mark>第 3-54 表 (2)</mark> 表層改良体の滑り照査(津波時)

滑り線	検討位置	杭反力	滑り抵抗	安全率
1	T.P.+3.0	11, 510. 7	33,718	2.93
2	T.P.+2.5	10,592.9	32,475	3.07
3	T.P.+2.0	9,656.3	33,743	3.49
4	T.P.+1.5	8,685.3	35,023	4.03
5	T.P.+1.0	7,613.3	36,312	4.77

– 4	+	(Ω)
-54	ন্থ	(3)
	-54	-54 表

地盤高さの嵩上げの滑り照査(T.P.+24m 津波時)

滑り線	検討位置	杭反力	滑り抵抗	安全率
1	T.P.+8.0	946.7	22,400	23.7
2	T.P.+7.0	4,788.7	23,800	4.97
3	T.P.+6.0	8,704.7	25,200	2.89
4	T.P.+5.0	12,693.7	26,600	2.10
5	T.P.+3.5	17,545.7	28,700	1.64

<mark>第 3-54 表(4)</mark> 表層改良体の滑り照査(T.P.+24m 津波時)

滑り線	検討位置	杭反力	滑り抵抗	安全率
1	T.P.+3.0	19,446.7	33,718	1.73
2	T.P.+2.5	21,359.7	32,475	1.52
3	T.P.+2.0	23, 283. 7	33,743	1.45
4	T.P.+1.5	22,643.7	35,023	1.55
5	T.P.+1.0	20,735.7	36,312	1.75

滑り線	検討位置	杭反力	慣性力	滑り抵抗	安全率
1	T. P. +8.0 871.0		0.0	22,400	25.7
2	T.P.+7.0	4,406.0	255.0	23,800	5.11
3	T.P.+6.0	8,008.0	525.5	25,200	2.95
4	T.P.+5.0	11,678.0	811.4	26,600	2.13
5	T.P.+3.5	15,416.0	1,269.3	28,700	1.72

第 3-<mark>55</mark>表(1) 地盤高さの嵩上げの滑り照査(<mark>津波+余震時</mark>)

滑り線	検討位置	杭反力	慣性力	滑り抵抗	安全率
1	T.P.+3.0	15,871.0	1,441.7	33,718	1.95
2	T.P.+2.0	14,870.0	1,786.3	33,743	2.03
3	T.P.+1.5	14,056.2	1,958.7	35,023	2.19
4	T.P.+1.0	13,292.3	2,131.0	36,312	2.35
5	T.P.+0.0	12,058.2	2,475.7	38,909	2.68
6	T.P0.48	11,538.6	2,641.1	38,417	2.71

第 3-55 表(2) 表層改良体の滑り照査(津波+余震時)

<mark>第 3-55 表(3)</mark> 地盤高さの嵩上げの滑り照査(T.P.+24m 津波+余震時)

滑り線	検討位置	贪討位置 杭反力		滑り抵抗	安全率
1	T.P.+8.0	946.7	0.0	22,400	23.7
2	T.P.+7.0	4,788.7	255.0	23,800	4.72
3	T.P.+6.0	8,704.7	525.5	25,200	2.73
4	T.P.+5.0	12,693.7	811.4	26,600	1.97
5	T.P.+3.5	16,601.2	1,269.3	28,700	1.61

第 3-55 表 (4)	表層改良体の滑り照	

滑り線	検討位置	検討位置 杭反力		滑り抵抗	安全率
1	T.P.+3.0	20, 403. 2	1,441.7	33,718	1.54
2	T.P.+2.0	22,703.7	1,786.3	33,743	1.38
3	T.P.+1.5	20,767.7	1,958.7	35,023	1.54
4	T.P.+1.0	18,859.7	2,131.0	36,312	1.73
5	T.P.+0.0	16,948.0	2,475.7	38,857	2.00

②地震時の結果

地震時の有効応力解析による結果より,地盤高さの嵩上げ部及び 表層改良体の最大せん断応力が,改良体のせん断強度以下であるこ とを確認する。

有効応力解析の解析モデルを第 3-89 図に,地盤高さの嵩上げ部 及び表層改良体メッシュ図を第 3-90 図に示す。また,地震時の時 刻歴最大の局所のせん断応力の算出結果を第 3-91 図に示す。これ ら要素から算出される時刻歴最大の局所のせん断応力がせん断強度 以下であり,滑り線となる連続した応力分布を形成していないこと から,改良体に滑りが発生しないことを確認した。

第 3-89図 二次元有効応力解析モデル

時刻歴最大のせん断応力図

③結果のまとめ

津波時, 津波+余震時, T.P.+24m 津波時, T.P.+24m 津波+余震時 及び地震時の検討結果について, 第 3-56 表及び第 3-57 表に示す。こ れより地盤高さの嵩上げ及び表層改良体は、いずれのケースの照査値 も許容限界値以下であることを確認した。

	発生せん断力	せん断耐力	安全率	判定			
津波時	12,694	26,600	2.10 > 1.2	ОК			
津波+余震時	16,685	28,700	1.72 > 1.2	ОК			
T.P.+24m 津波時	17,546	28,700	1.64 > 1.2	ОК			
T.P.+24m 津波+余震時	17,871	28,700	1.61 > 1.2	ОК			
地震時	τ max =	$\tau a =$	1 98 > 1 2	0 K			
(豊浦標準砂を仮定)	253N/mm2	500N/mm2	1. 50 / 1. 2	ΟN			

<mark>第 3-56 表</mark> 地盤の嵩上げ部に対する検討結果 (単位:kN)

<mark>第 3-57 表</mark> 表層改良体に対する検討結果 (単位:kN)

	発生せん断力	せん断耐力	安全率	判定
津波時	11,511	33,718	2.93 > 1.2	ОК
津波+余震時	17,313	33,718	1.95 > 1.2	OK
T.P.+24m 津波時	23, 284	33,743	1.45 > 1.2	ОК
T.P.+24m 津波+余震時	24,490	33,743	1.38 > 1.2	OK
地震時 (豊浦標準砂を仮定)	$ au$ max = $352 \mathrm{N/mm^2}$	$\tau a = 500 \text{N/mm}^2$	1.42 > 1.2	ОК

(12)止水ジョイント部の成立性検討結果

1) 検討結果

鋼管コンクリート防潮壁について,標準部,隅角部及び異種構造物 間の止水ジョイントの変位量の設定について検討した。

隅角部及び異種構造物間(シートジョイント部)は,全 13 カ所の うち,代表的な①~⑦の7カ所について検討した。代表的な隅角部の 止水ジョイントの位置を第3-92図に示す。

第 3-92 図 代表的な止水ジョイントの位置

a. 標準部の止水ジョイントの検討結果

標準部の止水ジョイントに対する検討について,地震時の検討結果 を第 3-58 表に,津波+余震時の検討結果を第 3-59 表に示す。いずれ の結果も 20cm 以内であり,ゴムジョイントの適用性が確認できる。

第 3-58 表標準部の止水ジョイントに対する検討結果(地震時)

	立四 (士	ľ	N側構造物	勿	S	側構造物	Ŋ	発生変位量
	.11 이국	δ_{xN}	δ_{yN}	δ_{zN}	δ _{xS}	δ _{yS}	δ_{zS}	$ \sqrt{(0 x^{2} + 0)} $ $ y^{2} + \delta z^{2} $
標 準 部	断面 A 付近	0.482	0.482	0.023	0.395	0.395	0.000	0.125

* 杭先端と杭天端の相対変位より算定(単位:m)

*本検討結果は、横断方向の結果を縦断方向の結果にも適用した暫定値である。

第3-59表標準部の止水ジョイントに対する検討結果(津波+余震時)

	立77 六十	1	N側構造物	勿	S側構造物		S侧構造物	
	前位	δ_{xN}	δ_{yN}	δ_{zN}	δ_{xS}	δ _{yS}	δ_{zS}	$\sqrt{(0 x + 0)}$ $y^2 + \delta z^2$
標準部	断面 A 付近	0.338	0.259	0.034	0.388	0.289	0.014	0.093

* 杭先端と杭天端の相対変位より算定(単位:m)

*本検討結果は,津波+余震時は,地震時の残留変位及び地震時/2の変位量により安全側に算出した結果とした。

b. 隅角部・異種構造物間の止水ジョイントの検討結果

隅角部・異種構造物間の止水ジョイントに対する検討について、地 震時の検討結果を第 3-60 表に、津波+余震時の検討結果を第 3-61 表 に示す。いずれの結果も 2m 以内であり、シートジョイントの適用性 が確認できる。

第3-60表 隅角部・異種構造物間の止水ジョイントに対する検討結果

动动	堤内	N	↓側構造物	1	S	発生変位 量		
리아 11포	角度	×N	уN	z N	xS	y S	zS	(x ² + y ² + z ²)
隅角部	192.7	-0.464	-0.368	-0.028	-0.533	-0.257	0	0.134
隅角部	121.0	-0.463	-0.371	-0.027	0.079	-0.588	0	0.585
隅角部	133.2	-0.463	-0.371	-0.027	-0.047	-0.591	0	0.472
異種構 造物間	90.0	-0.463	-0.371	-0.027	0.371	-0.463	0	<u>0.839</u>
隅角部	138.0	0.403	0.075	-0.008	0.250	0.325	0	0.294
隅角部	226.5	0.403	0.075	-0.008	0.332	-0.241	0	0.324
隅角部	90.2	0.403	0.075	-0.008	-0.073	0.403	0	0.579

(地震時)

(単位:m)

第 3-61 表 隅角部・異種構造物間の止水ジョイントの検討結果

	部位	堤内	N 側構造物			S 側 構 造 物			発 生 変 位 量
		角度	хN	уN	zN	xS	уS	zS	$(x^{2}+y^{2}+z^{2})$
	隅角部	192.7	-0.340	-0.259	-0.034	-0.389	-0.178	0	0.105
	隅角部	121.0	-0.340	-0.259	-0.034	0.047	-0.425	0	0.437
	隅角部	133.2	-0.340	-0.259	-0.034	-0.044	-0.426	0	0.353
	異種構 造物間	90.0	-0.340	-0.259	-0.034	0.259	-0.340	0	<u>0.626</u>
	隅角部	138.0	-0.338	-0.254	-0.030	-0.081	-0.415	0	0.316
	隅角部	226.5	-0.338	-0.254	-0.030	-0.417	0.070	0	0.348
	隅角部	90.2	-0.338	-0.254	-0.030	0.253	-0.339	0	0.620

(津波+余震時)

(単位:m)

c. 性能確認試験結果

引張り試験,耐圧試験等の結果を第3-62表に示す。

使用を計画している材料(ゴムジョイント,シートジョイント)に ついては、当該地点の設計津波荷重以上の耐圧性能を保持することが 確認され、また、地震時の変位量を考慮しても津波荷重に対して漏水 等の発生がないことを確認した。

止水 ジョイント	試験内容				
	I 引張試験・耐圧試験 (0.26MPa, 1hr, 伸び 250mm)				
	I 引張試験・耐圧試験 (0.26MPa, 1hr, 剪断 300mm)	良			
ゴム	I 引張試験・耐圧試験 (0.26MPa, 1hr, 伸び 125mm, 剪断 150mm)	良			
ジョイント	I 引張試験・耐圧試験 (0.55MPa, 1hr, 伸び 250mm)	良			
	I 引張試験・耐圧試験 (0.55MPa, 1hr, 剪断 300mm)	良			
	I 引張試験・耐圧試験 (0.55MPa, 1hr, 伸び 125mm, 剪断 150mm)	良			
	Ⅱ-1 耐圧試験(0.26MPa, 1hr)	良			
	Ⅱ-1 耐圧試験(0.55MPa, 1hr)	良			
	 Ⅱ - 2 繰返載荷試験 (56.45KN/30cm, 10回, 取付角0°) 	良			
シート	 Ⅱ - 2 繰返載荷試験 (56.45KN/30cm, 10回, 取付角 45°) 				
ジョイント	Ⅱ-3 継続載荷試験 (56.45KN/30cm, 10回後 10分継続, 取付角 0°)				
	Ⅱ-3 継続載荷試験 (56.45KN/30cm, 10回後10分継続, 取付角45°)	良			
	耐候性試験 (5年相当,10年相当,15年相当 その後引張試験 を実施予定)	試験 中			

第 3-62 表 性能試験結果一覧表

(13) まとめ

設置許可段階において,鋼管杭鉄筋コンクリート防潮壁の基準地震動Ss及び基準津波,T.P.+24m津波等に対する構造成立性について確認した。

鋼管杭鉄筋コンクリート防潮壁の杭体については,地震応答解析 (有効応力解析)の結果,基準地震動Ssに対して,杭の曲げ,せん 断及び支持力が許容限界値以下であり,十分な構造強度を有している ことを確認した。また,二次元フレーム解析の結果,基準津波及び T.P.+24m 津波に対しても,杭の曲げ,せん断及び支持力が許容限界値 以下であり,同様に十分な構造強度を有していることを確認した。

上部工である鉄筋コンクリートについては、二次元梁バネモデルに よる解析結果が、静的三次元 FEM 解析結果よりも保守的な評価となる ことを確認した(発生断面力が大きく評価される)。その結果におい ても、上部工のコンクリート及び鉄筋に生じる断面力が許容限界値以 下であり、十分な構造強度を有していることを確認した。

地盤高さの嵩上げ部や表層改良体については, 地震時, 津波時にお けるすべりに対して十分な安全率を有していることを確認した。

止水ジョイント部については,地震時の変位量により止水ゴムまた は止水シートの使い分けを行うこととし,性能試験結果においても, これら材料が津波荷重に対して十分な耐性があることを確認した。

以上より,鋼管杭鉄筋コンクリート防潮壁に必要な構造強度や止水 性能について,概ね見通しが得られたものと考える

(参考資料1)

部材の安全余裕について

第1表に示す下部工については,鋼管杭の板厚はt=100mm程度ま で厚くする対応が可能であるが,杭の納入期間や施工効率を考慮した 場合,工期内に工事を完了するための現実的な最大板厚はt=35mm~ 40mm程度と考えている。

照査 項目	安全率最小のケース	応答値	許容値 (SM570)	安全率	判定
曲 げ ・ 軸 力	地 点 ④ ・ 岩 盤 傾 斜 部 ・豊 浦 標 準 砂 を 仮 定 した モ デ ル ③ 横 断 Km 層 最 浅 部 (TP-31.36m)	353.80 (N/mm²)	382.5 (N/mm^2)	1.08 <mark>(水平2方向</mark> 考慮 1.03)	OK
せん断	地点④・岩盤傾斜 部・豊浦標準砂を仮 定したモデル ②縦断1 <mark>D</mark> ケース(最 浅部:杭先端 TP- 22.24m)	48.33 (N/mm^2)	217.5 (N/mm²)	4.50	ОК
支持力	地点③・粘土層が最 も薄く豊浦標準砂を 仮定したモデル	<mark>819</mark> (kN)	<mark>6,288</mark> (kN)	7.68	OK (>1.2)
座屈耐力	地 点 ④ ・ 岩 盤 傾 斜 部 ・豊浦 標 準 砂 を 仮 定したモデル ② 縦断 1 <mark>D</mark> ケース(最 深 部 : 杭 先 端 TP- 31.36m)	<mark>14,160</mark> (kN)	<mark>102,802</mark> (kN)	8.41	ОК

第1表 鋼管杭最小安全率

第2表に示す上部工については、コンクリートと鉄筋に関しては次 のようになる。コンクリートの圧縮に関して、設計強度を上げる場合、 ひび割れ発生を考慮した品質確保の観点では、現状設定している 40N/ mm 2 が最適な配合と考える。但し、材料及び施工方法の対策を講じる ことにより、ひび割れ発生を低減することが可能と考える。鉄筋に関

して、材料強度を上げる場合(D51を使用する場合)、現状の配筋量を 考慮すると躯体の隅角部での鉄筋組立てが困難となるため、隅角部に おいては施工可能な材料等について検討する必要がある

照查項目	安全率最小 のケース	応答値	許容値	安全率	判定
圧縮 (コンク リート)	二次元梁バ ネモデル 津波+余震	14.62 (N/mm²)	21 (N/mm²)	1.44	ОК
引 張 (鉄 筋)	二次元梁バ ネモデル 津波+余震	277.91 (N/mm²)	435 (N/mm²)	1.57	OK
せん断	静的三次元 FEM モデル 津波+余震	237.28 (N/mm ²) ^{** 1}	435 $(N/mm^2) * 2$	1.83	OK

第2表 上部工最小安全率

※1: せん断補強鉄筋に作用する応力度

※2: せん断補強鉄筋の許容せん断応力度

敷地内の地下水位の上昇を仮定した場合における

防潮堤への影響評価について

1. 目的

防潮堤は岩着杭形式の構造であり,杭間距離が小さいこと及び防潮 堤周りの表層地盤に地盤改良を行うことから,防潮堤内の地下水位が 上昇する可能性がある。

したがって,防潮堤内の地下水位上昇が地盤や防潮堤の杭や表層改 良体に及ぼす影響の有無について評価した。

2. 敷地内の地下水位観測データ

過去の地下水位観測データを第1表,観測最高地下水位コンター図 を第1図に示す。

観測孔名	計測期間	最高水位 (T.P.+m)	最高水位 計測時期
а	$1995 \sim 1999$	3.49	1998年10月8日
b	$1995 \sim 1999$	2.52	1998年9月25日
С	$1995 \sim 1999$	2.53	1998年9月22日
d	$1995 \sim 1999$	2.28	1998年9月22日
a-1	$1995 \sim 1999, 2004 \sim 2009$	15.42	2006年8月7日
a-2	$2004 \sim 2009$	13.60	2006年7月28日
b-2	$2004 \sim 2009$	9.06	2006年7月30日
c-0	$1995 \sim 1999, 2004 \sim 2009$	2.05	1998年9月19日
c-2	$1995 \sim 1999, 2004 \sim 2017$	2.58	2012年7月7日
c-3	$2004 \sim 2017$	2.49	2012年7月7日
c-4	$2004 \sim 2017$	2.00	2012年6月25日
d-1	$1995 \sim 1999, 2004 \sim 2009$	1.50	1998年9月18日
d-3	$2004 \sim 2017$	1.44	2013年10月27日
d-6	$2004 \sim 2017$	1.58	2013年10月28日
e-2	$2004 \sim 2017$	1.38	2006年10月8日
e-3	$2004 \sim 2017$	1.50	2013年10月16日
e-5	$2004 \sim 2017$	1.30	2013年10月21日
e-6	$2004 \sim 2017$	1.26	2013年10月21日

第1表 過去の地下水位観測データ (その1)

			i
観測孔名	計測期間	最高水位 (T.P.+m)	最高水位 計測時期
B-1	$2005 \sim 2017$	2.90	2006年7月30日
B-2	$2005 \sim 2017$	3.09	2006年7月30日
B-4	$2005 \sim 2017$	3.56	2006年7月31日
B-6	$2005 \sim 2017$	5.51	2006年8月17日
C-4	$2005 \sim 2017$	3.17	2012年6月27日
C-7	$2005 \sim 2017$	4.99	2006年8月18日
D-0	$2006 \sim 2017$	2.37	2012年6月22日
D-3	$2005 \sim 2017$	2.88	2006年10月7日
D-4	$2006 \sim 2017$	2.76	2012年6月25日
D-5	$2006 \sim 2017$	2.54	2012年7月16日
E-4	$2006 \sim 2017$	2.26	2012年6月25日
F-2	$2005 \sim 2015$	1.74	2013年10月30日
F-4	$2005 \sim 2017$	1.55	2013年10月27日
F-6	$2005 \sim 2017$	1.77	2012年6月24日
G-5	$2005 \sim 2017$	1.53	2013年10月27日
H-4	$2006 \sim 2017$	2.13	2013年10月16日
H-7	$2005 \sim 2017$	1.33	2013年10月27日

第1表 過去の地下水位観測データ (その2)

第1図 観測最高地下水位コンター図

3. 防潮堤を考慮した地下水位の設定

防潮堤の設置により地下水位が上昇する可能性を考慮し,地下水 位の設定について以下の検討を行った。

(1)敷地近傍陸域の地形

第2図に敷地近傍陸域の地形図を示す。

敷地近傍陸域の地形は、台地、低地及び海岸砂丘からなる。敷 地の南西方の高台エリアは台地東方部に位置し、海岸砂丘との境 界に当たる。高台エリアの北方には海岸砂丘と低地の境界が分布 しており、その西方には台地と低地(T.P.+5m以下)の境界が分 布している。このような地形的状況から、高台エリアへの流入地 下水は、高台エリアから西方に続く台地より流入しているものと 考えられる。なお、高台エリアの西端の標高とその西方の台地の 標高に大きな差はない。

第2図 敷地近傍陸域の地形図

(2)防潮堤に囲われた範囲の地下水位の検討

防潮堤の設置に伴い地下水位の上昇の可能性を踏まえ,施設設計の保守性を考慮し,防潮堤に囲われた第3図に示す範囲については,地下水位を地表面に設定することを基本とする。

第3図 地下水位設定

(3)地下水位の上昇によるその他の影響

防潮堤で囲われた範囲について地下水位の上昇を考慮した際の, 周辺の領域の地下水の流速の変化及びそれに伴う影響(地盤中の 砂の流出)の有無について検討する。地盤への影響の検討は,設 定した地下水位から想定される地下水の流速と,現地の土質材料 から想定される多粒子限界流速を比較することにより行う。

検討は,地下水位の高低差が大きくなる敷地南側の境界部を対 象とした。敷地南側の防潮堤で境される敷地南側の高台について は,T.P.+18m までは防潮堤が設置されるため,防潮堤を境に北側, 南側で水位差が発生することになるが,防潮堤の南西終端部より 以西は地下水位を区分けする構造物がないことから,北側(敷地 側)の地下水位上昇により相対的に地下水位が低くなる南側に地 下水位が流れることが想定される。この流れについて,設計で考 慮する条件(地下水位を地表面とする)における防潮堤の外側の 地下水の流れについて検討を行う。

第4回に検討位置を,第5回に検討イメージ図を,第2表に各 地層の透水係数を示す。

第4図 検討位置図

第5図 検討イメージ図

防潮堤に囲われた範囲の地下水位は地表面に設定していることから,地下水位の最高点として地表の最も高い位置 h1 (T.P.+29m)を,また,下流側は既往の観測記録のコンターに地下水位が摺りつくと仮定し,保守的に地下水位がなだらかになる手前の点 h2
(地下水位 T.P.+2.5m)を選定し,両者の水位差と水平距離及び 透水係数から,地盤中に流れる地下水の流速をダルシー則で求め た。なお,透水係数は当該箇所に分布する地層で最も大きい透水 係数である du層の透水係数を採用した。

> $\triangle h = h1 - h2 = T. P. +29m - T. P. +2.5m = 26.5m$ $\triangle L = 150m$ $k = 3.23 \times 10^{-2} \text{ cm/s}$ $v = k \times i = 3.23 \times 10^{-2} \text{ [cm/s]} \times 26.5m \text{ / 150m}$ $= 5.71 \times 10^{-3} \text{ [cm/s]}$

地層	透水係数	備考
du 層	$3.23 \times 10^{-2} \text{ cm/s}$	採用
D2g-3 層	$1.87 \times 10^{-2} \text{ cm/s}$	
D2s-3 層(細砂)	6.31×10 ⁻³ cm/s	
D2s-3 層(粗砂)	3.16×10 ⁻² cm/s	

第2表 各地層の透水係数

一方,多粒子限界流速^{**1}により,du層の平均粒径 D50 及び 20% 粒径 D20 に対する限界流速を求めた。多粒子限界流速の算定フロ ーを第6回に、計算に用いたパラメータを第3表に示す。

第6図 多粒子限界流速の算定フロー

項目		設定値
Gs	土粒子の比重	2.71
n	間隙率	42.86%
η	流体の動粘性係数	$0.011 \mathrm{cm^2/s}$
	(地下水温 15~20℃を想定し設定)	
S	$G_{S} = 1$	1.71
d	土粒子径(平均粒径 D50 検討時)	0.0384 cm
	土粒子径(20%粒径 D20 検討時)	0.01 cm

第3表 多粒子限界流速の算出に用いた計算パラメータ(du 層)

5条 添付24-240

du 層の平均粒径 D50 に対する多粒子限界流速は 2.99×10⁻¹cm/s, 20%粒径に対する多粒子限界流速は 1.63×10⁻²cm/s であり,前述 の地盤中に流れる地下水の流速 5.71×10⁻³ cm/s は多粒子限界流速 を下回っていることから,粒子の移動は発生せず,これらの地下 水の流れが地盤に影響を及ぼすものではないことを確認した。

地下水の流れが地盤に影響を及ぼさないことから,防潮堤の杭 や表層改良体についても,地下水の流れによる影響はない。

4. 結論

敷地内の地下水位の上昇を仮定した場合における防潮堤等への 影響の有無を確認するため、多粒子限界流速式を用いて、地下水 位の仮定した上昇量に伴う流速の変化を算定した。その結果、土 粒子の移動が発生しない程度の遅い流速となり、これに伴う地下 水の流れは防潮堤の杭や表層改良体に影響を及ぼすものではない ことを確認した。

※1:浸透破壊における粒子群を考慮した限界流速(1997, 杉井, 宇野, 山田ら, 地下水技術 Vol. 39, No. 8, pp28~35)