東海第二発電所

鋼管杭鉄筋コンクリート防潮壁の構造成立性について

第520回審査会合(平成29年10月17日)時の 指摘事項に対する回答

平成29年10月23日

日本原子力発電株式会社

	指摘事項	説明頁
3 3	FLIPの相対変位を強制変位として用いる構造成立性評価の方法を説明し, 実施結果を示すこと。また,豊浦標準砂による強制的な液状化を仮定した場 合の岩盤傾斜部の相対変位量を示すこと。	1 ~ 6
3 4	FLIPによる二次元動的解析結果の杭の断面力とFLIP及びSHAKEを用いた 応答変位法による杭の断面力を比較すること。	7 ~ 16

【指摘事項】第520回審査会合(H29.10.17)

FLIPの相対変位を強制変位として用いる構造成立性評価の方法を説明し,実施結果を示すこと。また,豊浦 標準砂による強制的な液状化を仮定した場合の岩盤傾斜部の相対変位量を示すこと。

【回答概要】

- 岩盤傾斜部の防潮壁1ユニット両端杭位置における2つの横断面の二次元有効応力解析(FLIP)による時刻歴変位差の絶対値の最大値発生
 時刻に対応する変位を二次元梁バネモデルに作用させる。
- 豊浦標準砂の液状化強度特性により強制的に液状化させることを仮定した場合の岩盤傾斜部の防潮壁1ユニット両端杭位置における2つの 横断面の有効応力解析(FLIP)結果より,両端杭位置の変位時刻歴を比較した結果,変位が大きい経過時間における逆位相変位挙動は認め られないことから,岩盤傾斜部の防潮壁に有意なねじれ挙動が生じないことを確認した。なお,原地盤の液状化強度特性を用いた有効応力解 析(FLIP)でも,同様に,岩盤傾斜部の防潮壁1ユニットに有意なねじれ挙動が生じないことを確認した。
- 岩盤傾斜部の防潮壁1ユニット両端杭位置における2つの横断面の二次元有効応力解析(FLIP)による時刻歴変位差の絶対値の最大値発生 時刻における変位を二次元梁バネモデルに作用させた解析の結果,発生応力が許容限界値以下であることを確認した。今後,上部工の鉄筋 コンクリート梁壁をモデル化した二次元梁バネモデルでは,上記と同様に,二次元有効応力解析(FLIP)による時刻歴変位差の絶対値の最大 値発生時刻における変位を作用させる評価も実施し,上部工について,SHAKEを適用した場合の梁バネモデルによる評価結果と比較して,保 守側の結果を採用する。

指摘事項30への回答においては、「二次元梁バネモデルに用いる応答加速度および相対変位量については、一次元応答解析(SHAKE)及び二次元 有効応力解析(FLIP)によって抽出されるものを用いて断面力を比較し、大きい方を採用して部材照査を行う。」という方針を示した。

前回示した上記方針に関連し,今回は,指摘事項33への回答として,豊浦標準砂の液状化強度特性により強制的に液状化させることを仮定した傾斜 部両端杭位置の二次元有効応力解析(FLIP)による時刻歴変位差の絶対値の最大値発生時刻の変位を入力した梁バネモデル解析の実施内容と結果 も示し,照査結果が許容限界値以内であることを確認した。

指摘事項30

上部工・下部工のそれぞれの部位における岩盤傾斜を模擬した解析を含むすべての検討について、荷重伝達を踏まえた荷重の受け渡しや検討条件の整合性又は包絡性について、体系的に整理するとともに、部位について厳しい条件となっているか示すこと。

岩盤傾斜部の防潮壁1ユニット両端杭位置における2つの横断面の二次元有効応力解析(FLIP)による時刻歴変位差の絶対値の最大値発生時刻に対応する変位を二次元梁バネモデルに作用させる。

👍 げんてん

両端杭位置の地表面変位差時刻歴

1ユニット両端杭位置の変位時刻歴を比較した結果,最大変位発生時刻まで両端杭位置の変位はほぼ同様の挙動を呈し,最大変位発生時刻以降に時刻歴変位差が最大となる。その後,地震動の入力の減少とともに時刻歴変 位差も小さくなることを確認した。

岩盤傾斜部の防潮壁1ユニット両端杭位置における2つの横断面の有効応力解析(FLIP)結果より,両端杭位置の 変位時刻歴を比較した結果,変位が大きい経過時間における逆位相変位挙動は認められないことから,岩盤傾斜 部の防潮壁に有意なねじれ挙動が生じないことを確認した。

両端杭位置の地表面変位差時刻歴

岩盤傾斜部について,防潮壁1ユニット両端杭位置の変位差時刻歴が最大値となる時点の変位を二次元梁バネモデルに入力する検討を行う。

IFhTh

一次元応答解析と二次元有効応力解析の地表面応答加速度の結果

岩盤傾斜部で地表面応答加速度を比較した結果,二次元有効応力解析(FLIP)より一次元応答解析(SHAKE)の方が大きくなることを確認した。

	時間(s)	加速度(m/s²)
SHAKE	53.86	5.87
FLIP	20.38	-2.41

	時間(s)	加速度(m/s²)
SHAKE	53.88	5.88
FLIP	20.42	-2.15

岩盤傾斜部 (地点 ,<u>豊浦標準砂を仮定したモデル</u>,最深部)

	時間(s)	加速度(m/s²)
FLIP	7.89	-0.698

岩盤傾斜部で豊浦標準砂を仮定したモデ ルでは、一次元応答解析(SHAKE)におけ る等価線形化が適切に収束する結果が得 られなかった。これは基準地震動Ssに対し て,敷地に存在しない極めて軟弱な豊浦標 準砂の地盤物性をSHAKEで仮定した結果, 豊浦標準砂を仮定したSHAKE地盤モデル に計算上の大きなひずみが局所に集中し, SHAKEの等価線形化法の収束可能な適用 限界を超えていることに起因している。

ShTh

二次元梁バネモデルによる地震時の検討 (二次元有効応力解析の変位差時刻歴を入力したケース(岩盤傾斜部))

二次元有効応力解析より抽出した岩盤傾斜部の1ユニット両端杭位置の変位差時刻歴(最大値)を用いて二次元 梁バネモデルで解析を実施した結果,十分な安全率を有していることを確認した。

圧縮に対する照査

	発生応力度 c(N / mm²)	許容応力度	安全率 ca / c	判定
原地盤の岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	6.80	21	3.09	ОК
豊浦標準砂を仮定した岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	4.95	21	4.24	ОК

引張に対する照査

	発生応力度 s(N / mm²)	許容応力度 sa(N / mm²) (SD490)	安全率 sa / s	判定
原地盤の岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	150.2	435	2.90	ОК
豊浦標準砂を仮定した岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	94.0	435	4.63	ОК

せん断に対する照査

	発生応力度 c(N / mm²)	許容応力度	安全率 ca / c	判定
原地盤の岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	0.36	0.83	2.29	ОК
豊浦標準砂を仮定した岩盤傾斜部モデル (FLIPに基づく変位差時刻歴入力)	0.25	0.83	3.32	ОК

【指摘事項】第520回審査会合(H29.10.17)

FLIPによる二次元動的解析結果の杭の断面力とFLIP及びSHAKEを用いた応答変位法による杭の断面力を比較すること。

【回答概要】

 SHAKEを用いた応答変位法による杭の発生断面力及びFLIPを用いた応答変位法による杭の発生断面 力並びに地盤と杭の連成解析FLIPにより直接得られる杭の断面力を比較した結果,二次元有効応力解析 により抽出した杭の断面力が最も大きいことを確認した。

SHAKEを用いた応答変位法による解析結果(断面:地点 ,原地盤モデル)

IFhTh

SHAKEを用いた応答変位法により得られた杭の断面力は以下のとおり 【バネ値その1(バネ定数:初期剛性,バネ上限値:ピーク強度(平均値))】

曲げ・軸力に対する照査(バネ値その1の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	137.9	382.5	2.77	ОК

せん断に対する照査(バネ値その1の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	30.4	217.5	7.15	ОК

SHAKEを用いた応答変位法により得られた杭の断面力は以下のとおり 【バネ値その2(バネ定数:静弾性係数,バネ上限値:残留強度(-1 低減値))】

曲げ・軸力に対する照査(バネ値その2の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	106.3	382.5	3.60	ОК

せん断に対する照査(バネ値その2の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	10.6	217.5	20.57	ОК

FLIPを用いた応答変位法による解析結果(断面:地点 ,原地盤モデル)

FLIPを用いた応答変位法により得られた杭の断面力は以下のとおり 【FLIPの最大相対変位発生時間断面での杭の相対変位分布を,地盤バネを介さずに応答変位法モデルの杭に強制変位入力】

曲げ・軸力に対する照査(上限値その1の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	192.6	382.5	1.99	ОК

せん断に対する照査(上限値その1の場合)

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	54.7	217.5	3.97	ОК

二次元有効応力解析FLIP結果(断面:地点,横断面方向,原地盤モデル)

二次元有効応力解析(FLIP,<u>原地盤モデル)</u>により得られた鋼管杭の断面力分布図と照査結果を以下に示す。

ケース1:原地盤モデル 曲げ軸力照査時刻

ケース1:原地盤モデル せん断照査時刻

TT+0.02

C 17-19.97a

- IP-31.0h

U 1P-65 20

7 77-53.554

曲げ・軸力に対する照査

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	229.58	382.5	1.67	ОК

- TP+12.50m

110

an:

IFhTh

17+4.00h

7 P41.00

17 IF-17.49a

0 17 22 Xa

7 17-61.30a

- 2-130.00

S Par States

せん断に対する照査

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	38.82	217.5	5.60	ОК

二次元有効応力解析FLIP結果(断面:地点, 横断面方向,

豊浦標準砂を仮定した地盤モデル)

二次元有効応力解析(FLIP,<u>豊浦標準砂を仮定した地盤モデル</u>)により得られた鋼管杭の断面力分布図と照査結 果を以下に示す。

ケース2:豊浦標準砂を仮定した地盤モデル 曲げ軸力照査時刻

曲げ・軸力に対する照査

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	240.8	382.5	1.59	ОК

せん断に対する照査

	発生応力度 (N / mm²)	許容応力度 sa(N / mm²) (SM570)	安全率 sa /	判定
地震時	38.9	217.5	5.59	ОК

ケース2:豊浦標準砂を仮定した地盤モデル せん断照査時刻

これまで基礎杭の設計に適用してきた手法の通り,杭と地盤の動的な相互作用を考慮する二次元有効応力解析 (FLIP)により直接的に杭の発生断面力を評価する手法が鋼管杭(特に下部構造)にとって最も厳しい条件となるこ とを再確認した。

曲げ・軸力に対する照査

	発生応力度 (N/mm²)	許容応力度 sa(N/mm²) (SM570)	安全率 sa/	判定
SHAKEを用いた応答変位法による杭の断面力(バネ1)	137.9	382.5	2.77	OK
SHAKEを用いた応答変位法による杭の断面力(バネ2)	106.3	382.5	3.60	OK
FLIPを用いた応答変位法による杭の断面力	192.6	382.5	1.99	OK
地盤と杭の連成解析FLIPにより直接得られる杭の断面力 (原地盤モデル)	229.6	382.5	1.67	ОК
地盤と杭の連成解析FLIPにより直接得られる杭の断面力 (豊浦標準砂を仮定した地盤モデル)	240.8	382.5	1.59	ОК

せん断に対する照査

	発生応力度 (N/mm²)	許容応力度 sa(N/mm²) (SM570)	安全率 sa/	判定
SHAKEを用いた応答変位法による杭の断面力(バネ1)	30.4	217.5	7.15	OK
SHAKEを用いた応答変位法による杭の断面力(バネ2)	10.6	217.5	20.57	OK
FLIPを用いた応答変位法による杭の断面力	54.7	217.5	3.97	OK
地盤と杭の連成解析FLIPにより直接得られる杭の断面力 (原地盤モデル)	38.8	217.5	5.60	ОК
地盤と杭の連成解析FLIPにより直接得られる杭の断面力 (豊浦標準砂を仮定した地盤モデル)	38.9	217.5	5.59	ОК

応答変位法と連成解析FLIPによる評価結果の比較(断面:地点 , 横断面方向) **ペーンザルアル** 【曲げモーメント図の比較】

■ 杭体の断面は,曲げ及び軸力によって発生する曲げ軸力で決定していることから,曲げモーメント及び軸力分布図を比較した。

■ 二次元有効応力解析(FLIP)で,曲げモーメントが最大となることを確認した。

応答変位法と連成解析FLIPによる評価結果の比較(断面:地点 ,横断面方向) 【曲げ軸力による応力度図の比較】

IFhT h

防潮堤の設計に用いる解析モデルと保守性

防潮堤の各部位の照査に使用する解析手法と構造全体の保守的設計

-Frith Th

