東海第二発電所 審査資料								
資料番号	PS-C-1 改72							
提出年月日	平成 30 年 1 月 16 日							

東海第二発電所

重大事故等対策の有効性評価

平成 30 年 1 月 日本原子力発電株式会社

本資料のうち、 は商業機密又は核物質防護上の観点から公開できません。

下線部:今回提出範囲

目 次

- 1. 重大事故等への対処に係る措置の有効性評価の基本的考え方
 - 1.1 概要
 - 1.2 評価対象の整理及び評価項目の設定
 - 1.3 評価に当たって考慮する事項
 - 1.4 有効性評価に使用する計算プログラム
 - 1.5 有効性評価における解析の条件設定の方針
 - 1.6 解析の実施方針
 - 1.7 解析コード及び解析条件の不確かさの影響評価方針
 - 1.8 必要な要員及び資源の評価方針
 - 付録1 事故シーケンスグループの抽出及び重要事故シーケンスの選定について
 - 付録2 原子炉格納容器の温度及び圧力に関する評価
 - 付録3 重大事故等対策の有効性評価に係るシビアアクシデント解析コード について
- 2. 運転中の原子炉における重大事故に至るおそれがある事故
 - 2.1 高圧·低圧注水機能喪失
 - 2.2 高圧注水·減圧機能喪失
 - 2.3 全交流動力電源喪失
 - 2.3.1 全交流動力電源喪失(長期TB)
 - 2.3.2 全交流動力電源喪失(TBD, TBU)
 - 2.3.3 全交流動力電源喪失 (TBP)

- 2.4 崩壊熱除去機能喪失
 - 2.4.1 取水機能が喪失した場合
 - 2.4.2 残留熱除去系が故障した場合
- 2.5 原子炉停止機能喪失
- 2.6 LOCA時注水機能喪失
- 2.7 格納容器バイパス (インターフェイスシステムLOCA)
- 2.8 津波浸水による注水機能喪失

3. 重大事故

- 3.1 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)
 - 3.1.1 格納容器破損モードの特徴,格納容器破損防止対策
 - 3.1.2 代替循環冷却系を使用する場合
 - 3.1.3 代替循環冷却系を使用できない場合
- 3.2 高圧溶融物放出/格納容器雰囲気直接加熱
- 3.3 原子炉圧力容器外の溶融燃料-冷却材相互作用
- 3.4 水素燃焼
- 3.5 溶融炉心・コンクリート相互作用
- 4. 使用済燃料プールにおける重大事故に至るおそれがある事故
 - 4.1 想定事故1
 - 4.2 想定事故2
- 5. 運転停止中の原子炉における重大事故に至るおそれがある事故
 - 5.1 崩壊熱除去機能喪失 (残留熱除去系の故障による停止時冷却機能喪失)
 - 5.2 全交流動力電源喪失

- 5.3 原子炉冷却材の流出
- 5.4 反応度の誤投入
- 6. 必要な要員及び資源の評価
 - 6.1 必要な要員及び資源の評価条件
 - 6.2 重大事故等対策時に必要な要員の評価結果
 - 6.3 重大事故等対策時に必要な水源,燃料及び電源の評価結果

壊熱除去機能喪失)

- 添付資料5.1.9 7日間における燃料の対応について(運転停止中 崩壊熱 除去機能喪失)
- 添付資料5.1.10 常設代替交流電源設備の負荷(運転停止中 崩壊熱除去機 能喪失)
- 添付資料5.2.1 安定停止状態について(運転停止中 全交流動力電源喪失)
- 添付資料5.2.2 評価条件の不確かさの影響評価について(運転停止中 全 交流動力電源喪失)
- 添付資料5.2.3 運転停止中の全交流動力電源喪失時におけるサプレッション・プール水への影響について
- 添付資料5.2.4 7日間における水源の対応について(運転停止中 全交流 動力電源喪失)
- 添付資料5.2.5 7日間における燃料の対応について(運転停止中 全交流動力電源喪失)
- 添付資料5.2.6 常設代替交流電源設備の負荷(運転停止中 全交流動力電源喪失)
- 添付資料5.3.1 原子炉圧力容器開放時における運転停止中の線量評価について
- 添付資料5.3.2 「原子炉冷却材の流出」におけるプラント状態選定の考え <u>方</u>
- 添付資料5.3.3 安定停止状態について(運転停止中 原子炉冷却材の流出)
- 添付資料5.3.4 評価条件の不確かさの影響評価について(運転停止中 原 子炉冷却材の流出)

「1. 重大事故等への対処に係る措置の有効性評価の基本的考え方」より抜粋

(3) 重要事故シーケンスの選定

事故シーケンスグループごとに、有効性評価の対象とする重要事故シーケンスを選定する。同じ事故シーケンスグループに複数の事故シーケンスが含まれる場合には、共通原因故障又は系統間の機能の依存性、炉心損傷防止対策の実施に対する時間余裕、炉心損傷防止に必要な設備容量及び事故シーケンスグループ内の代表性を考慮し選定する。

重要事故シーケンスの選定結果は以下のとおりである。

a. 高圧·低圧注水機能喪失

起因事象発生後の事象進展が早いと考えられる過渡事象及びサポート系喪失(自動停止)を起因とする事故シーケンスのうち、逃がし安全弁の再閉鎖に成功する「過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗」が代表性を有しているため、この事故シーケンスを重要事故シーケンスとして選定する。ここで、起因事象発生後の事象進展が早いと考えられる過渡事象として、原子炉水位低下の観点で厳しい給水流量の全喪失を選定する。

なお, サポート系喪失(自動停止)を起因とする事故シーケンスはサポート系1区分の喪失を起因としているが,他の区分は健全であるため, 対応手段が著しく制限される状態にない。

また,逃がし安全弁の再閉鎖に失敗する事故シーケンスは,代替注水の開始時点で原子炉が一定程度減圧されているため,低圧代替注水系の設備容量(揚程)は再閉鎖成功時の方が厳しくなる。本事故シーケンスグループに含まれる各事故シーケンスは主な炉心損傷防止対策に差異がないため,起因事象発生後の事象進展が早い過渡事象を起因として選定した重要事故シーケンスは他の事故シーケンスに対して包絡性を有している。

b. 高圧注水·減圧機能喪失

起因事象発生後の事象進展が早いと考えられる過渡事象及びサポート系喪失(自動停止)を起因とする事故シーケンスのうち、代表性の観点から「過渡事象+高圧炉心冷却失敗+原子炉減圧失敗」を重要事故シーケンスとして選定する。ここで、起因事象発生後の事象進展が早いと考えられる過渡事象として、原子炉水位低下の観点で厳しい給水流量の全喪失を選定する。

なお、サポート系喪失(自動停止)を起因とする事故シーケンスはサポート系1区分の喪失を起因としているが、他の区分は健全であるため、対応手段が著しく制限される状態にない。

また、本事故シーケンスグループに含まれる各事故シーケンスは主な 炉心損傷防止対策に差異がないため、起因事象発生後の事象進展が早い 過渡事象を起因として選定した重要事故シーケンスは他の事故シーケン スに対して包絡性を有している。

c. 全交流動力電源喪失

本事故シーケンスグループからは、安全機能の喪失状況が異なる事故シーケンスが抽出されたため、原子炉圧力、時間余裕及び対応する主な炉心損傷防止対策に着目して事故シーケンスグループを以下の3つに細分化し、それぞれの事故シーケンスグループから重要事故シーケンスを選定する。

(a) 長期 T B

本事故シーケンスグループは、外部電源喪失の発生後、非常用ディーゼル発電機の故障により全交流動力電源喪失が発生するとともに、 高圧炉心スプレイ系による炉心冷却にも失敗し、原子炉隔離時冷却系による炉心冷却に成功するが、蓄電池が枯渇することにより原子炉隔 離時冷却系の運転継続が不能となり、炉心の冷却が十分に行われずに 原子炉圧力が高圧状態で炉心損傷に至る事故シーケンスグループであ る。

本事故シーケンスグループに含まれる各事故シーケンスは、外部電源要失を起因とするものと片区分の直流電源故障を起因とするものがあるが、共通原因故障又は系統間の機能の依存性、原子炉注水の実施に対する時間余裕及び代替注水設備の設備容量の観点からは差異がないことから、代表性の観点から「外部電源喪失+DG失敗+HPCS失敗(RCIC成功)」を重要事故シーケンスとして選定する。

(b) TBD, TBU

本事故シーケンスグループは、外部電源喪失の発生後、直流又は非常用ディーゼル発電機の故障により全交流動力電源喪失が発生し、高圧炉心冷却にも失敗することにより、炉心の冷却が十分に行われずに原子炉が高圧状態で炉心損傷に至る事故シーケンスグループである。

本事故シーケンスグループに係る事故シーケンスは、外部電源喪失を起因とし、直流電源に失敗し高圧炉心冷却に失敗する事故シーケンス(TBD)と、外部電源喪失又は直流電源故障を起因とし、非常用ディーゼル発電機及び高圧炉心冷却系に失敗する事故シーケンス(TBU)からなるが、これらの事故シーケンスに対する炉心損傷防止対策が同じであることから、1つの事故シーケンスグループとして取り扱う。

また、本事故シーケンスグループに含まれる各事故シーケンスは、 共通原因故障又は系統間の機能の依存性、原子炉注水の実施に対する 時間余裕及び代替注水設備の設備容量の観点からは差異がないが、代 替直流電源設備の必要容量及び代表性の観点から、直流電源が喪失す る事故シーケンスである「外部電源喪失+直流電源失敗+高圧炉心冷 却失敗 (TBD)」を重要事故シーケンスとして選定する。

(c) T B P

本事故シーケンスグループは、外部電源喪失の発生後、非常用ディーゼル発電機の故障により全交流動力電源喪失が発生し、高圧炉心スプレイ系に失敗するとともに逃がし安全弁1弁の再閉鎖失敗により原子炉圧力が徐々に低下することで、原子炉隔離時冷却系が運転不能となることにより、炉心の冷却が十分に行われずに、原子炉が低圧状態で炉心損傷に至る事故シーケンスグループである。

本事故シーケンスグループに含まれる各事故シーケンスは、外部電源喪失を起因とするものと片区分の直流電源故障を起因とするものがあるが、共通原因故障又は系統間の機能の依存性、原子炉注水の実施に対する時間余裕及び代替注水設備の設備容量の観点からは差異がないことから、代表性の観点から「外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+HPCS失敗」を重要事故シーケンスとして選定する。

d. 崩壊熱除去機能喪失

本事故シーケンスグループに含まれる各事故シーケンスは、格納容器の過圧破損の防止に対する時間余裕及び代替除熱設備の設備容量の観点からは差異がないことから、代表性の観点から「過渡事象+RHR失敗」を重要事故シーケンスとして選定する。ここで、起因事象発生後の事象進展が早いと考えられる過渡事象として、原子炉水位低下の観点で厳しい給水流量の全喪失を選定する。また、崩壊熱除去機能が喪失する要因が残留熱除去系の故障の場合と取水機能が喪失する場合で炉心損傷防止対策が異なることを踏まえ、「過渡事象+RHR失敗(RHR故障時)」

及び「過渡事象+RHR失敗(取水機能喪失時)」<mark>**</mark>を重要事故シーケンスとする。

取水機能喪失時(RHRS喪失時)は低圧ECCSが従属的に機能喪失する。そのため、高圧注水系に成功している場合は崩壊熱除去機能喪失の事故シーケンスグループで取り扱うが、高圧注水系に失敗した場合は他の事故シーケンスグループ等(高圧・低圧注水機能喪失、全交流動力電源喪失、LOCA時注水機能喪失、雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損))で重大事故対策の有効性を確認する。

なお、サポート系喪失(自動停止)を起因とする事故シーケンスはサポート系1区分の喪失を起因としているが、他の区分は健全であるため、対応手段が著しく制限される状態にない。また、外部電源喪失及びサポート系喪失(直流電源故障)を起因とする事故シーケンスは交流動力電源の喪失により崩壊熱除去機能が喪失する事故シーケンスであるが、代替電源により崩壊熱除去機能の回復が可能であることから、対応手段が著しく制限される状態ではない。LOCAを起因とする事故シーケンスについては、中長期的な格納容器の過圧・過温の観点では、崩壊熱が支配要因となることから、LOCAを起因とする事故シーケンスも過渡事象を起因とする事故シーケンスと同等となり、崩壊熱除去機能喪失に対する重大事故等対策にも違いはない。このため、代表性の観点で炉心損傷頻度の高い、過渡事象を起因とする事故シーケンスを重要事故シーケンスとしている。

また、本事故シーケンスグループに対する主な炉心損傷防止対策の電源を代替電源とすることにより、本事故シーケンスグループに含まれる各事故シーケンスは主な炉心損傷防止対策に差異がないため、起因事象発生後の事象進展が早い過渡事象を起因として選定した重要事故シーケ

ンスは他の事故シーケンスに対して包絡性を有している。

e. 原子炉停止機能喪失

原子炉の反応度制御に対する時間余裕及び代替反応度制御設備の設備容量の観点から厳しくなる,過渡事象及びサポート系喪失(自動停止)を起因とする事故シーケンスのうち,「過渡事象+原子炉停止失敗」が代表性を有しているため、この事故シーケンスを重要事故シーケンスとして選定する。ここで、起因事象発生後の原子炉圧力の上昇が大きく、反応度の観点で厳しい過渡事象として、主蒸気隔離弁閉を起因事象として選定する。

なお、サポート系喪失(自動停止)を起因とする事故シーケンスはサポート系1区分の喪失を起因としているが、他の区分は健全であるため、対応手段が著しく制限される状態にない。また、LOCAを起因とする事故シーケンスについては、ほう酸水注入系が有効に機能しないことも考えられるが、代替制御棒挿入機能に期待することに対応可能であり、炉心損傷頻度も極めて小さい。

f. LOCA時注水機能喪失

本事故シーケンスグループに含まれる各事故シーケンスは、共通原因故障又は系統間の機能の依存性、及び原子炉注水の実施に対する時間余裕の観点からは差異がない。設備容量の観点からは、原子炉減圧に用いる逃がし安全弁は十分な台数が設置されているが、低圧の代替注水設備の設備容量は低圧ECCSよりも少ないことを考慮し「中小破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」を重要事故シーケンスとして選定する。

なお,本事故シーケンスグループに含まれる各事故シーケンスは主な 炉心損傷防止対策に差異がないため,選定した重要事故シーケンスは他 の事故シーケンスに対して包絡性を有している。

g. 格納容器バイパス (インターフェイスシステムLOCA)

本事故シーケンスグループに含まれる事故シーケンスは、「インターフェイスシステムLOCA」のみであることから、これを重要事故シーケンスとして選定する。なお、格納容器バイパスとしては原子炉冷却材浄化系等の高圧設計の配管が格納容器外で破断する事象も想定できるが、これはPRAの検討の中で高圧設計の配管の破損頻度が低圧設計の配管の破損頻度に比べて小さい傾向にあることを理由に、考慮の対象から除外している。

h. 津波浸水による注水機能喪失

本事故シーケンスグループは、津波浸水により複数の緩和機能が失われることによって炉心損傷に至る事故シーケンスグループである。このため、本事故シーケンスグループに対しては、敷地に遡上する津波に対する防護対策を実施した重大事故等対処設備の有効性を確認することとする。

本事故シーケンスグループに含まれる事故シーケンスのうち、共通原因故障又は系統間の機能の依存性、原子炉注水の実施に対する時間余裕、及び津波防護対策に要求される防護高さの観点で厳しくなる「原子炉建屋内浸水による複数の緩和機能喪失」を重要事故シーケンスとして選定する。

なお、本事故シーケンスグループは外部電源喪失が重畳すると全交流動力電源喪失が発生するため、本事故シーケンスグループの主な炉心損傷防止対策は津波防護対策に加えて全交流動力電源喪失の事故シーケンスグループと同様となる。また、本事故シーケンスグループに含まれる各事故シーケンスの炉心損傷防止対策に差異がないため、選定した重要

事故シーケンスは他の事故シーケンスに対して包絡性を有している。

なお、国内外の先進的な対策を講じた場合であっても、全ての状況に対応できるような炉心損傷防止対策を講じることが困難な事故シーケンスとしては、以下の事故シーケンスが抽出されている。

- ①大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗
- ②直流電源喪失+原子炉停止失敗
- ③交流電源喪失+原子炉停止失敗
- ①の事故シーケンスについては、格納容器破損防止対策の有効性評価の対象とすることとしており、格納容器の閉じ込め機能に期待できることを確認していることから、これを除く事故シーケンスを対象に、重要事故シーケンスの選定を実施している。
- ②、③の事故シーケンスは地震レベル1PRAから抽出された事故シーケンスであり、炉心損傷防止対策を講じることが困難な事故シーケンスであるが、喪失する安全機能が明確であることから炉心損傷に直結する事故シーケンスとはしていない。これらの事故シーケンスは、炉内構造物等の損傷による原子炉停止機能喪失と、直流電源喪失又は全交流動力電源喪失が重畳する事故シーケンスであり、代替の原子炉停止手段であるほう酸水注入系が機能喪失することから、炉心損傷を防止することができない。これらの事故シーケンスを抽出した地震レベル1PRAでは、炉内構造物等が地震発生と同時に最大加速度を受けるものとして評価しているが、実機のスクラム信号「地震加速度大」は、最大加速度よりも十分小さな加速度で発信し、炉内構造物等が損傷する前に制御棒の挿入が完了すると考えられる。このため、現実的にはこれらの事故シーケンスは発生し難いと考えられ、炉心損傷防止対策の有効性を確認する事故シーケンスとしては取り

第1-4表 重要事故シーケンス等の選定 (1/2)

□ 日本語書を表示であるの表現を出口である。	事故シーケンス グループ		事故シーケンス		対応する主要な炉心損傷防止対策		着眼点との関係と重要事故シーケンスの選定の考え方				選定した重要事故
## 1 日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日				T 194 / Y / Y	パルリジエ女は片心倶勝約止刈束		a b c d		d	備考 (a:共通原因故障・系統間機能依存性, b:余裕時間, c:設備容量, d:代表性)	シーケンスと選定理由
□ 動物音像を表示していた。対す物質を成体・自動性への対対を対す。			0	①過渡事象+高圧炉心冷却失敗+低圧炉心冷却失敗	 低圧代替注水系(常設) 代替格納容器スプレイ冷却系(常設) 格納容器圧力逃がし装置又は耐圧強化ベント 常設代替高圧電源装置 	低	高	高	高		
□ 「			-	②過渡事象+遂がし安全弁再閉鎖失敗+高圧炉心冷却失敗+低 圧炉心冷却失敗		低	高	中	低	の設備が機能喪失することから「中」とした。 b. 原子炉が自動停止する過渡事象及びサポート系喪失(自動停止)を起因としている事故 ジーケンスにのいては事效過度が見いことから「高」レーを「四子匠が通常体ルさせるモーが	
#### 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		汪注水	-				低	低	低		①、②、③、⑥を抽出した。 c。の着眼点について「高」と考えた事故シーケンスとし ①、⑤を抽出した。 d、頻度の観点では①が支配的となった。 以上より、①を重要事故シーケンスとして選定した。
□ かポート 高海 矢 (1 動作と) + 高江 FP の南井 大田 作成 FP の 内 中央 大田 大田		喪失					低	低	低		
□ 中ボート 名表性、(自動を由) - 走出り安全を有限根末的 - 長田 日本 日本 日本 日本 日本 日本 日本 日			_			中	高	高	低		F象発生後の事象進展が早いと考えられる過渡事象を こした①の事故シーケンスは、②~⑥の事故シーケン
□ ① ② 信養事業 + 表に呼の冷却を敗り # 五子呼級氏夫牧 □ ② 小田 信養事業 + 表に呼の冷却を敗り # 五天 所 のどの計場をである。 ■ 本 大田 子 の			_				高	ф	低	V 7 F TO TRAIS & O'FEE	
□ 日本				①過渡事象+高圧炉心冷却失败+原子炉減圧失敗		低	高	高	高	数の設備が機能要失することから「中」とした。 b、原子炉が自動停止する過渡事象及びサポート系喪失(自動停止)を起因としている事故 シーケンスについては事象進展が早いことから「高」とし、原子炉を通常停止させる手動 b、	.c. の着眼点について、「高」と考えた事故シーケン
□ ①サポート系表失 (自動停止) + 返担型心治却失敗 + 原子型減	43 全交流動力 電源喪失		-		過渡時自動減圧機能	中	低	低	低	した。 ・ 事象進展が早く余裕時間が短い場合、崩壊熱が高く原子炉減圧に必要な設備容量が大きく なることから、着眼点b.と同様に、過渡事象及びサポート系喪失(自動停止)を起因とし 以	d. 頻度の観点では⊕が支配的となった。 以上より,⊕を重要事故シーケンスとして選定した。
● ① 外部電源喪失+DG失敗+HPCS失敗 (RCIC成功) - 作品製匠 - 空サポート系喪失 (直流電源故障) (外部電源喪失) + DG 会			-				高	高	低	ている事故シーケンスについては「低」とした。 d. 事故シーケンスグループの中で最もCDFの高いドミナントシーケンスを「高」, 事故 シーケンスグループ別CDFに対して1%以上の事故シーケンスを「中」, 1%未満の事故 と	にお、有効と考えられる主な対策に差異がないため、 F象発生後の事象進展が早いと考えられる過渡事象を とした①の事故シーケンスは、②~③の事故シーケン けして包絡性を有しているものと考える。
□ ・			0	①外部電源喪失+DG失敗+HPCS失敗(RCIC成功)	・手動減圧 ・低圧代替注水系 (可搬型)	高	低	低	高	 お、いすれの争取シーケンへも主文流動が用紙がまたにより、電磁を必要とする多くの政権が依 能喪失することから「高」とした。 b、いずれの事故シーケンスにおいても原子炉隔壁時冷却系による炉心への注水に成功している。 ス・といる。事命事権が採出されば、指係した。 	. 頻度の観点では①が支配的となった。
● ② ③外部電源喪失+直流電源失敗+高圧炉心冷却失敗 (TBD)		長期TB	_		型) ・残留熱除去系 ・常設代替高圧電源装置	高	低	低	中	 いずれの事故シーケンスにおいても原子好隔離時冷却系による炉心への往水に成功しており、原子停注水に必要な破損害量が大きくないため「低」とした。 長期TBの中で長もCDFの高いドミナントシーケンスを「高」」1%以上の事故シーケ事がした。 	以上より, ①を重要事故シーケンスとして選定した。 はお, 有効と考えられる主な対策に差異がないため, ほ故シーケンスは, ②の事故シーケンスに対して包給 官しているものと考える。
全交流動力 電源喪失 TBD TBD TBD TBD TBD TBD TBD TB		TBU	0	②外部電源喪失+直流電源失敗+高圧炉心冷却失敗 (TBD)	- 高压代替注水系 (可樂型) - 手動域圧 - 低压代替注水系 (可樂型) - 代替格納容器 スプレイ冷却系 (可樂型) - 現留熱除去系 (東亞代替高圧電振速 (東亞代替高圧電振速 (東亞代替高度)	高	高	高	高	a. いずれの事故シーケンスも全交流動力電源喪失に至り、電源を必要とする多くの設備が機 め 能喪失することから「高」とした。	.b. の着眼点について、全事故シーケンスに共通であ b、選定理由から除外した。 .の着眼点について「高」と考えた事故シーケンスと
一			_	④外部電源喪失+DG失敗+高圧炉心冷却失敗 (TBU)		高	高	ф	ф	展が早く余裕時間が短いため「高」とした。 に、いずれの事故シーケンスも事象初期から原子炉への注水に失敗しており、崩壊熱が高く原 子炉注水に必要な設備容量に差はないものの、代替直流電源の必要容量は直流電源が喪失 以	. 頻度の観点では③が支配的となった。
● の外部電源要失+DG失敗+遂がし安全弁再閉鎖失敗+HPC S失敗			_			高	高	ф	低	「高」、それ以外の事故シーケンスを「中」とした。 d、TBD及びTBUの中で最もCDFの高いドミナントシーケンスを「高」、1%以上の事 故シーケンスを「中」、1%未満の事故シーケンスを「低」とした。	なお、有効と考えられる主な対策に差異はないため、 体故シーケンスは緊急用蓄電池への直流電源の切替操 必要となることから、④、⑤の事故シーケンスに対し 各性を有しているものと考える。
型型 では、いずれの事故シーケンスも原子炉圧力の低下により原子炉隔離時冷却系が使用不能となる。 **投留熱除去系・ ** 一 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中 中			0		・手動減圧 ・低圧代替注水系 (可搬型)	高	ф	中	高	能喪失することから「高」とした。 b. いずれの事故シーケンスも原子炉圧力の低下により原子炉隔離時冷却系が使用不能となる までの余裕時間は、初期の原子炉注水に失敗している事故シーケンスに比べて長いことか た	. ~c. の着眼点について,全事故シーケンスに共通で が,d. の頻度の観点では⑦に比べて⑥の方が支配的と と。
			-		型) ·残留熱除去系 ·常設代替高圧電源装置	高	ф	中	中	c. いずれの事故シーケンスも原子炉圧力の低下により原子炉隔離時冷却系が使用不能となる までに崩壊熱がある程度低下することから、原子炉注水に必要な設備容量は事象初期に注 水に失敗する事故シーケンスに比べて小さいと考えられることから「中」とした。 d. TBPの中で最もCDFの高いドミナントシーケンスを「高」,1%以上の事故シーケン	以上より,⑥を重要事故シーケンスとして選定した。 はお,有効と考えられる主な対策に差異がないため, は故シーケンスは,⑦の事故シーケンスに対して包倉 ほしているものと考える。

◎ 重要事故シーケンスとして選定した事故シーケンス

審査ガイドの着眼点a~dに対する影響度の観点から、厳しい順に「高」、「中」、「低」とした。

第1-4表 重要事故シーケンス等の選定 (2/2)

事故シーケンス グループ		事故シーケンス 対応する主要な炉心損傷防止対策		着眼点との関係と重要事故シーケンスの適定の考え方					選定した重要事故 シーケンスと選定理由	
		①過渡事象+RHR失敗		a 低	b 低	低低	高	備考(a:共通原因故障・系統間機能依存性, b:余裕時間, c:設備容量, d:代表性)	711 6826	
		②満渡事象+迷がし安全弁再閉鎖失敗+RHR失敗		低	低	低	低		a.の着根点について、⑥~⑥はサポート系1区分の喪失を 起因としているが、他の区分は健全であるため、対応手段 が著しく制限される状態ではない。また、②、④、⑤、 ⑤、⑩は電源の喪失により崩壊熱除去機能が喪失している 当しのの、代替電源により崩壊熱除去機能の痩失いをである。	
	_	②外部電源喪失 + D G 失敗 (HPCS成功) ④外部電源喪失 + D G 失敗 + 逃がし安全弁再閉鎖失敗 (HPC	[RHR故障時] ・原子炉隔離時冷却系	高	低	低	中			
	-		・原子が帰継呼がおれた。 ・高圧炉心スプレイ系 ・手動減圧 ・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設)	高	低	III-	低			
		S成功) (5)外部電源喪失+直流電源失敗 (HPCS成功)		ntr.	低	tet.	低低	a. 外部電源喪失及びサポート系喪失(直流電源故障)を起因とする事故シーケンスは、いずれも全交流動力電源喪失に至る事故シーケンスであり、電源を必要とする多くの設備が機	ることから、対応手段が著しく制限される状態ではない。	
		- ⑥手動停止/サポート系喪失 (手動停止) + R H R 失敗 ②手動停止/サポート系喪失 (手動停止) + 遂がし安全弁再開 顔失敗+R H R 失敗	格納容器圧力逃がし装置又は耐圧強化	(m)	~		中	能喪失することから「高」とした。また、サポート系喪失を起因とする事故シーケンス は、系統間機能依存性によって同区分の複数の設備が機能喪失することから「中」とし	b.c.の書眼点について、全シーケンスに共通であるため、 速定理由から除外した。なお、中長期的な格特容器の過圧 の観点では、崩壊熱が支配要因となることから、LOCA を起因とする事故シーケンスも過減事象を起因とする事故 シーケンスと同等の事象進展となる。 4 頻度の観点ではのが支配的となった。 以上より、①を重要事故シーケンスとして選定した。	
崩壊執除去			ペント ・常設代替高圧電源装置 ・常設代替直流電源設備	中	低	低	_	た。 b. いずれの事故シーケンスも格納容器が過圧により破損するまでの事象進展が遅いことから		
機能喪失	_			中	低	低	1EX	「低」とした。 c. いずれの事故シーケンスも格納容器の過圧破損に必要な設備容量に差異はないため「低」		
	_	⑧サポート系喪失(自動停止)+RHR失敗	[取水機能喪失時] [※] ・原子炉隔離時冷却系	中	低	低	44	と、いうれの争取シーケンへも智利を命の地圧取損に必要な政制を重に差異はないたの「版」 とした。 d. 事故シーケンスグループの中で最もCDFの高いドミナントシーケンスを「高」、事故		
		⑨サポート系喪失(自動停止)+逃がし安全弁再閉鎖失敗+R HR失敗	・手動減圧 ・低圧代替注水系 (常設)	中	低	低	低	シーケンスグループ別CDFに対して1%以上の事故シーケンスを「中」、1%未満の事故	なお、交流電源の喪失により崩壊熱除去機能が喪失してい	
		⑩サポート系喪失(直流電源故障) (外部電源喪失) +DG失 敗(HPCS成功)	 残留熱除去系 緊急用海水系 	高	低	低	中	シーケンスを「低」とした。	る事故シーケンスが含まれるものの,主要な炉心損傷防止 対策の電源を代替電源とする場合,有効と考えられる主な	
		①サポート系喪失(直流電源故障) (外部電源喪失) +DG失 敗+逃がし安全弁再閉鎖失敗(HPCS成功)	·常設代替高圧電源装置 ·常設代替直流電源設備	高	低低低低	低		対策に差異がないため、過渡事象を起因とした①の事故 シーケンスは、②~③の事故シーケンスに対して包絡性を		
	-	②中小破断 L O C A + R H R 失敗	THE TAME IN THE PARTY OF THE PA	低	低	低	低		シーケンスは、個や国の事故シーケンスに対して西韓性を 有しているものと考える。	
	-	⑩大破断LOCA+RHR失敗		低	低	低	低			
							-to		a. の着眼点について、②はサポート系1区分の喪失を起因	
	0	①過渡事象+原子炉停止失敗	・ 代替制御棒挿入機能 ・ 代替原子炉再循環ポンプトリップ ・ ほう酸水注入系	低	高	高	高	a. サポート系喪失を起因とする事故シーケンスは、系統間機能依存性によって当該区分の複数の設備が機能喪失することから「中」とした。	としているが、他の区分は健全であるため、対応手段が著 しく制限される状態ではない。	
								b. 主意気隔離作用が開動する、過減事象及びサポート系表失 (自動停止) に起因する事故 シーケンスは、原子伊正力手程による反応自加の機なた態しく事象無効ドル・ことから 「高」とした。また大破断LOCAを起因とする事故シーケンスは、原子伊の減圧に伴い 反応度が抑制されることから「低」とし、中小破断LOCAを起因とする事故シーケンス」 は「中」とした「開動する、過減事象及びサポート系表失(自動停止)に起因する事故 シーケンスは、原子伊正力上昇による反応度印加の観点で戦しく出力抑制に必要な設備を 量が大きいことから「高」とした。また大破断LOCAを起因とする事故シーケンスは原 子伊の減圧に伴い反応度が抑制されることから「低」とし、中小破断LOCAを起因とする事故シーケンスは原 子伊の減圧に伴い反応度が抑制されることから「低」とし、中小破断LOCAを起因とする。	b.c.の着眼点について、「高」と考えた事故シーケンスと して①、②を抽出した。 d. 頻度の観点では①が支配的となった。なお、LOCAと	
	_	②サポート系喪失(自動停止)+原子炉停止失敗		中	高	高	低			
原子炉停止									10 ⁻¹⁰ /炉年未満であり、極めて小さい。	
機能喪失			_						以上より、①を重要事故シーケンスとして選定した。	
	-	③中小破断 L O C A + 原子炉停止失敗		低	中	中	低		なお、LOCAを起因とする場合、ほう酸水注入系が有効	
							4	る事故シーケンスは「中」とした。 d. 事故シーケンスグループの中で最もCDFの高いドミナントシーケンスを「高」,事故	に機能しないことも考えられるが、代替制御棒挿入機能に 期待することにより対応可能であり、そのCDFは極めて	
		④大破断 L O C A + 原子炉停止失敗		低	低	Ict.	低低	シーケンスグループ別CDFに対して1%以上の事故シーケンスを「中」, 1%未満の事故 シーケンスを「低」とした。	起因とする①の事故シーケンスは、本事故シーケンスグ	
	_	⊕入吸断LOCA+原于炉停止大取		105	163	162	162		ループにおいて代表性を有しているものと考える。	
	0	①中小破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗 - 手動減圧 - 低圧化替注水系 (常設) - (対格納容器フンレイ冷却系 (常設) - 総輪容器圧力差化 装置 又工制圧強	・低圧代替注水系(常設)	let.	-			a. 中小破断LOCAを起因とする事故シーケンスは、系統間機能依存性がないことから、全て「低」とした。	の, 悪圧理田から除外した。	
				低i	高	高	高	b. 中小破断LOCAを起因とする事故シーケンスは、事象進展が早いことから全て「高」とした。	c. の着眼点について、「高」と考えた事故シーケンスとして①を抽出した。	
LOC A時注水							 た。原子炉液圧に用いる迷がし安全弁は十分な台数が設置されているが、低圧の代替注水設備の設備容量は低圧ECCSより少ない。このため、低圧炉心冷却失敗を含む事故シーケン 	d. 頻度の観点では①が支配的となった。		
機能喪失			ベント ・常設代替高圧電源装置 (************************************					スを「高」とし、原子炉減圧失敗を含む事故シーケンスを「低」とした。 4. 事故シーケンスグループの中で最もCDFの高いドミナントシーケンスを「高」, 事故 シーケンスグループ別CDFに対して1%以上の事故シーケンスを「中」, 19%未満の事故	以上より、①を重要事故シーケンスとして選定した。	
	_	②中小破断LOCA+高圧炉心冷却失敗+原子炉減圧失敗		低	高	低	中		なお、有効と考えられる主な対策に差異がないため、①の 事故シーケンスは、②の事故シーケンスに対して包絡性を	
								シーケンスを「低」とした。	有しているものと考える。	
			 手動減圧 							
格納容器バイバス	0	①インターフェイスシステム LOCA	・ 破損系統を除く原子炉注水機能 ・破損系統の隔離 ・ 密設代轄高圧電源装置 ・ 密設代等高度電源設備		. –	- -	_	抽出された事故シーケンスが1つであることから着眼点に照らした整理は行わず,全ての着眼点について「-」とした。	①を重要事故シーケンスとして選定した。	
							ľ	点について「一」とした。		
津波浸水による 注水機能喪失	0		TO BALL OF HIS POPULATION AND AND AND AND AND AND AND AND AND AN				фа	a. 原子炉建園内浸水を起因とする事故シーケンスでは、建園内の多くの設備が機能喪失する ことから「高」とした。最終ヒートシンク喪失を起因とする事故シーケンスでは、除熟を 必要とする設備が機能喪失することから「中」とした。 事象別期から原子炉への注水に乗助している事故シーケンスについては「高」、原子炉隔 輝坊角却系による原子炉注水に成功している事故シーケンスについては、「低」とした。 送添りと安全弁門御供実版にあり、伊石福備村系が機能喪失する事故シーケンスは、原	a. の着眼点について、「高」と考えた事故シーケンスとし	
		①原子炉建屋内浸水による複数の緩和機能喪失		高	高	高			を抽出した。	
		- 津波防護対策	津波防護対策						b. の着眼点について、「高」と考えた事故シーケンスとして①、②を抽出した。	
	-	②最終ヒートシンク喪失 (RCIC成功)	・原子炉隔離時冷却系 ・手動減圧	中	低	中	高			
	\vdash		 吊政气管向圧电原装直 					子炉隔離時冷却系が動作できない範囲に原子炉圧力が低下するまで炉心への注水が継続さ れるため、事象初期から注水に失敗している事故シーケンスと比較して、事象進展が遅い		
	-	③最終ヒートシンク喪失+高圧炉心冷却失敗		中	高	中	低	ため「中」とした。 c. 原子炉建屋内浸水を起因とする事故シーケンスは、津波防護対策に要求される防護高さも	以上より、①を重要事故シーケンスとして選定。なお、② は頻度の観点では支配的となるが、津波防護対策に要求さ	
			· 常設代替直流電源設備				_	高くなっことから「高」とし、最終ヒートシンク喪失を起因とする事故シーケンスは 「中」とした。	れる防護高さは津波高さが高くなる①に包絡される。	
		①最終と一トシンク豪生+冰が1安全金正関絡生助	ヒートシンク喪失+逃がし安全弁再閉鎖失敗	ф	ф	ф	低	・ Tr」 こした。 は、最もCDFの高いドミナントシーケンスを「高」,事故シーケンスグループ別CDFに対 して1%以上の事故シーケンスを「中」,1%未満の事故シーケンスを「低」とした。		
		WARN C IVY DEATH CALIFFORNIA CR				1		して170以上の争取ノーケン人を「甲」,170不満の争放シーケン人を「怯」とした。	事故シーケンスは②~④の事故シーケンスに対して包絡性 を有しているものと考える。	
•	◎ 重要事故シーケンスとして選定した事故シーケンス					の着	艮点a	a~dに対する影響度の観点から、厳しい順に「高」、「中」、「低」とした。	+	

② 重要事故シーケンスとして選定した事故シーケンス 事並ガイドの希腊点a→4に対する影響度つ離点から、戦しい順に「喬」、「申」、「佐」とした。 ※ 取木機能疾失時(RHRS喪失時)は低圧ECCSが従属的に機能喪失する。そのため、高圧注水系に成功している場合は地路験に其機能疾失の事故シーケンスグループで取り扱うが、高圧注水系に失敗した場合は他の事故シーケンスグループ等 (①、②、⑥へ②:高圧・低圧注水機能喪失、②へ③、④、①・全交流動力電源喪失、⑥LOCA時注水機能喪失、母雰囲気圧力・温度による静的負荷(格納容器適圧・適温破損))で重大事故対策の有効性を確認する。

「5.1 崩壊熱除去機能喪失 (残留熱除去系の故障による停止時冷却機能喪失)」より抜粋

- ・残留熱除去系 (B): 低圧注水系の状態で待機中
- ・残留熱除去系 (C): 点検に伴い待機除外中

b. 事故条件

(a) 起因事象

起因事象として,運転中の残留熱除去系(原子炉停止時冷却系)の故障によって,崩壊熱除去機能が喪失するものとする。

(b) 安全機能の喪失に対する仮定

起因事象の想定により,運転中の残留熱除去系(原子炉停止時冷却系)の崩壊熱除去機能が喪失するものとする。

(c) 外部電源

外部電源は事象発生1時間後に喪失するものと仮定する。

ここで、事象発生と同時に外部電源が喪失することを想定した場合、運転中の残留熱除去系ポンプが停止するとともに、原子炉保護系電源の喪失により格納容器隔離信号が発信することで残留熱除去系(原子炉停止時冷却系)のポンプ吸込ラインの格納容器隔離弁が自動閉となる。その後、非常用ディーゼル発電機が起動し非常用母線の電源が回復した場合でも、残留熱除去系(原子炉停止時冷却系)のポンプ吸込ラインの格納容器隔離弁が閉の状態ではインターロックにより残留熱除去系ポンプを残留熱除去系(原子炉停止時冷却系)として起動することはできないため、運転員は事象発生後速やかに崩壊熱除去機能の喪失を認知することができる。このため、本評価においては、運転員による対応操作を厳しく評価する観点から、事象発生1時間後(1時間毎の中央制御室の巡視により事象を認知する時刻)までは、外部電源がある場合を想定する。

事象発生1時間以降は、外部電源の有無によらず事象進展は同様であるが、格納容器隔離信号をリセットするために必要な原子炉保護系母線の受電操作、及び資源の評価の観点から厳しくなる、外部電源がない場合を想定する。

(添付資料 1.3.2, 5.1.8)

- c. 重大事故等対策に関連する機器条件
- (a) 残留熱除去系(低圧注水系)による原子炉注水流量 残留熱除去系(低圧注水系)による原子炉注水流量は 1,605m³/h とする。
- (b) 残留熱除去系 (原子炉停止時冷却系) の伝熱容量 伝熱容量は,熱交換器の設計性能に基づき 1 基当たり約 43MW (原子 炉冷却材温度 100℃,海水温度 32℃において)とする。
- d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対する仮定」に示す分類に従って以下のとおり設定する。

- (a) 崩壊熱除去機能喪失は,事象発生から1時間後の中央制御室の巡視において認知するものとする。なお,運転中の残留熱除去系(原子炉停止時冷却系)が故障した場合は,警報等により速やかに事象発生を認知できるが,運転員による対応操作の時間余裕を厳しく評価する観点から,本評価では警報による認知には期待せず,1時間毎の中央制御室の巡視により残留熱除去系(原子炉停止時冷却系)が停止していることを認知するものとしている。
- (b) 待機中の残留熱除去系(低圧注水系)による原子炉注水は、残留熱

「5.2 全交流動力電源喪失」より抜粋

(a) 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による 原子炉注水流量

常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)による原子炉注水流量は、崩壊熱による原子炉冷却材の蒸散を補うために必要な注水流量として、27m³/hを設定するものとする。

(b) 緊急用海水系を用いた残留熱除去系(原子炉停止時冷却系) 残留熱除去系海水系への海水通水時の伝熱容量は、熱交換器の設計 性能に基づき1基当たり約24MW(原子炉冷却材温度100℃,海水温度 32℃において)とする。

d. 重大事故等対策に関連する操作条件

運転員等操作に関する条件として,「1.3.5 運転員等の操作時間に対する仮定」に示す分類に従って以下のとおり設定する。

- (a) 常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)の起動操作は、常設代替高圧電源装置による緊急用母線の受電操作の完了後、常設低圧代替注水系ポンプを用いた低圧代替注水系(常設)の起動操作に要する時間を考慮して事象発生25分後に完了し、原子炉水位の低下を確認後、注水を開始する。
- (b) 緊急用海水系を用いた残留熱除去系 (原子炉停止時冷却系) 復旧後の原子炉除熱操作は,非常用母線及び原子炉保護系母線の受電操作の完了後に残留熱除去系の起動操作に要する時間を考慮して,事象発生から 4 時間 55 分後に実施する。

(3) 有効性評価の結果

本重要事故シーケンスの原子炉水位の推移を第 5.2-4 図に,原子炉水位と線量率の関係を第 5.2-5 図に示す。

カース 然付頂易よくの示情時間									
事故シーケンス	POS	原子炉水位	燃料損傷に至るまで	冷却材流出流量	燃料損傷までの				
1, 20	1 0 0	//11 1 // /11 124	の保有水量(m³)※ <mark>1</mark>	(m ³ /h)	余裕時間(h)				
RHR切替時	В	原子炉ウェル満水	1, 056	47	22. 7				
O L O C A	A, C, D	通常水位	157	45	3.5				
CUWブロー時	C D	`圣世·小·七 <u>※</u> 2	1.57	45	0. 5				
O L O C A	C, D	通常水位 <mark>**2</mark>	157	45	3. 5				
CRD点検時	D	医乙烷克 九进业	1 050	204					
O L O C A	В	原子炉ウェル満水	1, 056	204	5. 5				
LPRM点検時	D	医乙烷克 立洪县	1 050	93	10.1				
のLOCA	В	原子炉ウェル満水	1, 056		12. 1				

第1表 燃料損傷までの余裕時間

- ※1 原子炉ウェル満水状態における保有水量は、原子炉側のみの水量を考慮(プールゲートが閉止状態であることを想 定し、使用済燃料プールの保有水量を含めない。)。
- ※2 CUWブローは原子炉水位が通常水位より高い状態において、原子炉冷却材を放射性廃棄物処理施設等へブローすることにより、原子炉水位を通常水位とするための操作である。CUWブロー時のLOCAは、原子炉水位が通常水位に到達した際にCUWブローの停止操作に失敗することにより原子炉冷却材の流出が継続し、燃料損傷に至る事故シーケンスであるため、燃料損傷に至るまでの余裕時間は原子炉水位が通常水位の場合の保有水量を用いて評価している。