本資料のうち、枠囲みの内容
は、商業機密あるいは防護上
の観点から公開できません。

東海第二発電所工事計画審査資料			
資料番号	工認-065 改0		
提出月日	平成30年2月2日		

V-1-7-3 中央制御室の居住性に関する説明書

1.	根	我要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
2.	麦	5本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	中	P央制御室の居住性を確保するための防護措置 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	1	換気設備	1
3. 2	2	生体遮蔽装置	3
3. 3	3	可搬型照明	3
3.4	4	酸素濃度計及び二酸化炭素濃度計	3
3.	5	チェンジングエリア ・・・・・	3
4.	Î	設計基準事故時における中央制御室の居住性に係る被ばく評価 ・・・・・・・・・・・・	4
4.	1	判断基準	4
4.	2	想定事象	4
4.	3	被ばく形態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4.	4	解析のための前提条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.	5	大気拡散の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	•17
4.	6	運転員の実効線量評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	37
4.	7	判断基準への適合性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
5.	中	P央制御室(炉心の著しい損傷)の居住性に係る被ばく評価 ·····	69
5.	1	判断基準	69
5.2	2	想定事象	69
5.3	3	被ばく経路	70
5.4	4	被ばく評価期間 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
5.5	5	運転員の勤務形態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	70
5.0	6	大気中への放出量評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	73
5. ′	7	大気拡散の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	82
5.8	8	実効線量の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
5.9	9	判断基準への適合性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	128
5.	10	酸素濃度及び二酸化炭素濃度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	131
5.	11	中央制御室の居住性評価のまとめ	141
6.	索	A. 除去の検討 ·····	142
6.	1	中央制御室遮蔽壁入射線量の設定方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	142
6.2	2	温度上昇の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	142
6.3	3	温度上昇のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	142
7.		+算機コード概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	143
7.	1	QAD - CGGP2R	143

7.2	ANISN	146
7.3	G 3 3 - G P 2 R	148
7.4	ORIGEN2 ·····	151

1. 概要

本説明書は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基 準規則」という。)第38条及び第74条並びにそれらの「実用発電用原子炉及びその附属施設の 技術基準に関する規則の解釈」(以下「解釈」という。)に基づく中央制御室の居住性について、 居住性を確保するための基本方針、居住性に係る設備の設計方針、放射線防護措置の有効性を示 す評価等を含めて説明するものである。

2. 基本方針

中央制御室は、一次冷却系統に係る発電用原子炉施設の損壊その他の異常(以下「一次冷却材 喪失事故等」という。)が発生した場合に、発電用原子炉施設の安全性を確保するための措置を とるため、運転員が支障なく原子炉制御室に入り、又は一定期間とどまり、かつ、当該措置をと るための操作ができる設計とする。また、炉心の著しい損傷が発生した場合においても運転員が とどまるために必要な設備を施設する。

3. 中央制御室の居住性を確保するための防護措置

中央制御室の居住性を確保するための設備等の対策を以下のとおり講じる。

3.1 換気設備

中央制御室の換気設備は,通常時,中央制御室換気系空気調和機ファン及び中央制御室換気 系排気用ファンにより中央制御室の換気を行う設計とする。事故時は,外気を遮断し,中央制 御室換気系フィルタ系ファンによりフィルタを通した閉回路再循環運転とし,放射線被ばくか ら防護する設計とする。

格納容器ベント時の運転員の被ばくを低減する対策として,中央制御室内に中央制御室待避 室を設置する。ベント実施時には待避室内に待機可能とし,中央制御室待避室内は中央制御室 待避室空気ボンベユニット(空気ボンベ)により5時間加圧する設計とする。

中央制御室換気系設備は、外部電源が喪失した場合、非常用電源設備から給電される。また、 炉心の著しい損傷が発生した場合にも、常設代替交流電源設備である常設代替高圧電源装置又 は可搬型代替交流電源設備である可搬型代替低圧電源車から給電できる設計とする。その他、 設計基準事故対処設備である非常用交流電源設備の2C非常用ディーゼル発電機及び2D非常 用ディーゼル発電機を重大事故対処設備として使用する。

(1) 中央制御室換気系高性能粒子フィルタ

中央制御室換気系高性能粒子フィルタのろ材は、ガラス繊維をシート状にしたもので、 エアロゾルを含んだ空気がろ材を通過する際に、エアロゾルがガラス繊維に衝突・接触す ることにより捕集される。

中央制御室換気系高性能粒子フィルタによる微粒子の除去効率は,99.97 %となるよう 設計する。この除去効率(設計値)は,線量の評価に用いるため,適切に維持及び管理を 行う。 中央制御室換気系高性能粒子フィルタの除去効率が,中央制御室(炉心の著しい損傷) の居住性に係る被ばく評価条件下においても適用できることを以下に確認する。

a. 温度及び湿度条件

中央制御室は,格納容器から離れた位置にあるため,温度や湿度が通常時に比べて大 きく変わることはなく,フィルタの性能が低下するような環境にはならない。

b. 保持容量

中央制御室換気系高性能粒子フィルタの保持容量は約2250 g である。

格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」 で想定される事故シーケンス「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」 (全交流動力電源喪失の重畳を考慮)シナリオにおいて大気中へ放出され,中央制御室 内に流入する微粒子は約7.5×10⁻⁴gである。

これは、安定核種も踏まえて、保守的に格納容器圧力逃がし装置による除去効果を無 視して評価したものである。また、微粒子は格納容器圧力逃がし装置排気口及び原子炉 建屋から放出されるものとして、大気拡散効果を考慮し、中央制御室内に取り込まれた 微粒子は、全量がフィルタに捕集されるものとした。

以上のとおり、中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価条件下に おいても中央制御室換気系高性能粒子フィルタには、微粒子を十分に捕集できる容量が あるので、粒子状放射性物質に対するフィルタ除去効率 99 %は確保できる。

(2) 中央制御室換気系チャコールフィルタ

中央制御室換気系チャコールフィルタによるよう素除去効率は97%となるよう設計す

る。この除去効率(設計値)は、線量の評価に用いるため、適切に維持及び管理を行う。

上記の中央制御室換気系チャコールフィルタの除去効率は,中央制御室(炉心の著しい 損傷)の居住性に係る被ばく評価条件下においても適用できることを以下に確認する。

a. 温度及び湿度条件

中央制御室は,原子炉格納容器から離れた位置にあるため,温度や湿度が通常時に比べて大きく変わることはなく,フィルタの性能が低下するような環境にはならない。

b. 保持容量

中央制御室換気系チャコールフィルタの保持容量は約99gである。

格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」 で想定される事故シーケンス「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」 (全交流動力電源喪失の重畳を考慮)シナリオにおいて大気中へ放出され,中央制御室 内に流入するよう素は約1.4×10⁻¹gである。これは,「(1)中央制御室換気系高性 能粒子フィルタについて」と同様の評価手法で評価したものである。ただし,よう素の 化学形態はすべて無機よう素及び有機よう素とし,中央制御室内に取り込まれたよう素 は、全量が中央制御室換気系チャコールフィルタに捕集されるものとした。

2

以上のとおり、中央制御室(炉心の著しい損傷)居住性に係る被ばく評価条件下においても、中央制御室換気系チャコールフィルタには、よう素を十分に捕集できる容量があるので、フィルタ除去効率95%は確保できる。

3.2 生体遮蔽装置

中央制御室遮蔽は,設計基準事故が発生した場合においては事故後30日間,炉心の著しい 損傷が発生した場合においては事故後7日間とどまっても,中央制御室の建屋の気密性及び中 央制御室換気系の機能とあいまって,居住性に係る判断基準100 mSv を超えない設計とする。 中央制御室遮蔽の放射線の遮蔽及び熱除去の評価については,「6. 熱除去の検討」に示す。

3.3 可搬型照明

計測制御系統施設の可搬型照明(SA)により,炉心の著しい損傷が発生した場合に常設の 照明が使用できなくなった場合においても,中央制御室の制御盤での操作及び中央制御室チェ ンジングエリアでの身体の汚染検査,防護具の着替え等に必要な照度を確保する。

可搬型照明(SA)の詳細については,添付書類「V-1-1-12 非常用照明に関する説明書」 に示す。

3.4 酸素濃度計及び二酸化炭素濃度計

設計基準事故時及び炉心の著しい損傷が発生した場合の対応として、室内の酸素及び二酸化 炭素濃度を確認する乾電池等を電源とした携行式の酸素濃度計及び二酸化炭素濃度計を配備す る。

酸素濃度計及び二酸化炭素濃度計の詳細については、添付書類「V-1-5-4 中央制御室の機能に関する説明書」に示す。

3.5 チェンジングエリア

炉心の著しい損傷が発生し、中央制御室の外側が放射性物質により汚染した状況下において、 中央制御室への汚染の持ち込みを防止することができるよう身体の汚染検査,防護具の着替え 等を行うための区画(チェンジングエリア)を設けることができる設計とする。

チェンジングエリアの詳細については添付書類「V-1-7-2 管理区域の出入管理設備及び環 境試料分析装置に関する説明書」に示す。

- 4. 設計基準事故時における中央制御室の居住性に係る被ばく評価
- 4.1 判断基準

設計基準事故時における中央制御室の放射線業務従事者についての被ばく評価結果が,「核 原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」 第7条第1項における緊急時作業に係る線量限度100 mSv以下であることを確認する。被ばく 評価手法は,「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)」(以 下「被ばく評価手法(内規)」という。)に基づき実施する。

4.2 想定事象

原子炉施設の構造,特性及び安全上の諸対策を考慮して,放射性物質の放出の拡大の可能性 のある事故の対応として,格納容器内放出と格納容器外放出の2種類を考えるものとし,東海 第二発電所 原子炉設置変更許可申請書(原子炉施設の変更)(平成12年10月) 添付書類十 の「3.4 環境への放射性物質の異常な放出」及び「4. 重大事故及び仮想事故」で考慮され ている事故のうち,環境への放射性物質の放出量評価の観点から最も厳しい条件として,格納 容器内放出事故として原子炉冷却材喪失(仮想事故),格納容器外放出として主蒸気管破断 (仮想事故)をそれぞれ想定する。

4.3 被ばく形態

原子力発電所で事故が発生した場合、プラントから放射性物質が放出される可能性がある。

このとき,中央制御室内にいる運転員は,中央制御室内にとどまり,事故の状況を的確に把 握するとともに,事故の拡大の防止に努める。

このとき,大気中に放出された放射性物質が,中央制御室の換気系を通って中央制御室内に 流入し,中央制御室内に滞在している運転員は被ばくする。

さらに、事故が発生すると、通常時に滞在していた運転員を支援するため、他の運転員が外 部から入退域したり、事故が長期にわたると運転員の交替が必要となり中央制御室への入退域 が生じ、この入退域時にも運転員は被ばくする。

以上より、次の被ばく経路を考慮する(図4-1)。

- (1) 中央制御室内での被ばく
 - ① 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく
 - ② 大気中へ放出された放射性物質による被ばく
 - ③ 外気から取り込まれた放射性物質による中央制御室内での被ばく
- (2) 入退域での被ばく
 - ④ 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく
 - ⑤ 大気中へ放出された放射性物質による被ばく
- なお、各事故時における運転員の被ばく経路を図 4-2 及び図 4-3 に示す。

RO

吸入摂取 吸入摂取による 6 内部被ばく 大気中へ放出された放射性物質 밭 ガンマ線 直掖 6 掝 ÿ ガンマ線による \prec 外部被试く (中央制御室換気系フィルタユニットを通らない空気流入も考慮) 吸入摂取 取り込まれる放射性物質による被ばく 4 換気系を通じて中央制御室内に 吸入摂取による 直接ガンマ線 内部被ばく 0 + ł 建屋内の放射性物質 世 業 0 衎 スカイシャインガンマ線 () (-) Ł ガンマ線による 直接ガンマ線、 外部被ばく -141) Θ 被ぼく部位 線源 被ぼく経路

NT2 補② V-1-7-3 R0

5

: 大気中放射性物質によるもの

図4-1 設計基準事故時における中央制御室の運転員の被ばく経路

: 建屋内放射性物質によるもの

4.4 解析のための前提条件

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の中央制御室の運転員の 実効線量の計算は,次の前提条件に基づき行う。

- (1) 被ばく評価期間中央制御室の運転員に係る被ばく評価期間は、事故発生後30日間とする。
- (2) 事故時の放射性物質の放出量

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の建屋内の放射性物 質の存在量及び大気への放出量は,「発電用軽水型原子炉施設の安全評価に関する審査指 針(平成2年8月30日 原子力安全委員会決定,一部改訂 平成13年3月29日 原子力安 全委員会)」(以下「安全評価指針」という。)に基づき評価された,東海第二発電所 原子炉設置変更許可申請書(原子炉施設の変更)(平成12年10月)添付書類十の「4. 重大事故及び仮想事故」(以下「申請書添付十」という。)に基づくものとする。

a. 原子炉冷却材喪失(仮想事故)

放射性希ガス(以下「希ガス」という。)及び放射性よう素(以下「よう素」という。)の大気放出過程を図4-4及び図4-5に示す。放出経路における放射性物質の移行に関する条件を以下に示す。

- (a) 原子炉は事故発生直前まで定格出力の約 105 % (熱出力 3440 MW) で十分長時間 (2000 日) 運転していたものとする。
- (b) 事故発生後,格納容器内に放出される放射性物質の量は,炉心内蓄積量に対して希 ガス100%,よう素50%の割合とする。
- (c) 格納容器内に放出されたよう素のうち,有機よう素は10%とし,残りの90%は 無機よう素とする。
- (d) 格納容器内に放出されたよう素のうち、無機よう素は、50%が格納容器内及び同容器内の機器等に沈着し、格納容器から漏えいしないものとする。有機よう素及び希ガスについてはこの効果を無視するものとする。
- (e) 格納容器スプレイによりサプレッション・チェンバのプール水に無機よう素が溶解 する効果は、分配係数(気相濃度と液相濃度の比)で100とする。有機よう素及び希 ガスについてはこの効果を無視するものとする。
- (f) 格納容器内での放射性物質の崩壊を考慮する。
- (g) 通常運転時に作動している原子炉建屋の常用換気系は、原子炉水位低、ドライウェル圧力高又は原子炉建屋放射能高の信号により原子炉建屋ガス処理系に切り替えられる。原子炉建屋内の放射性物質については、床、壁等に沈着することによる除去効果は無視し、崩壊のみを考える。
- (h) 格納容器スプレイ冷却系の作動により、格納容器内圧力が低下するため格納容器から原子炉建屋内への希ガス及びよう素の漏えいは減少するが、評価上の漏えい率は、 設計上定められた最大値(0.5%/d)で一定とする。

なお,非常用炉心冷却系により格納容器外へ導かれたサプレッション・チェンバの プール水の漏えいによる放射性物質の放出量は,格納容器内気相部からの漏えいによ る放出量に比べて十分小さく,有意な寄与はないためその評価を省略する。

- (i) 非常用ガス再循環系よう素用チャコールフィルタの設計よう素除去効率は,90% 以上であるが、ここでは余裕をとり、よう素の除去効率を80%とする。
 - また,原子炉建屋原子炉棟から,非常用ガス再循環系及び非常用ガス処理系の2系統を通り大気中に放出されるよう素の除去効率については,この2系統のよう素用チャコールフィルタの設計よう素除去効率はそれぞれ 90%以上,97%以上であるが,ここでは余裕をとり90%とする。
- (j) 非常用ガス再循環系及び非常用ガス処理系の容量は、それぞれ設計で定められた値 (4.8 回/d 及び1回/d)とする。
- (k) 格納容器から原子炉建屋内に漏えいした放射性物質は,原子炉建屋ガス処理系で処理された後,排気筒から大気中へ放出されるものとする。
- b. 主蒸気管破断(仮想事故)
 希ガス及び放射性ハロゲン等(以下「ハロゲン等」という。)の大気放出過程を図4
 -6及び図4-7に示す。放出経路における放射性物質の移行に関する条件を以下に示す。
 - (a) 主蒸気隔離弁が全閉するまでに破断口を通して流出する蒸気及び水の量は,事故解 析により得られた次の値を使用する。

蒸 気 1.3×10⁴ kg

水 2.2×10^4 kg

(b) 液相として放出される冷却材中に含まれるハロゲン等の濃度は,運転上許容される I-131の最大濃度である 4.6×10³ Bq/g に相当するものとし,その組成を拡散組成 とする。

また、気相として放出される冷却材中に含まれるハロゲンの濃度は、液相中の濃度の1/50とする。

- (c) 原子炉圧力の低下に伴う燃料棒からの追加放出量は, I-131 については先行炉等 での実測データに基づく値に安全余裕を見込んで4.44×10¹⁴ Bq が冷却材中へ放出さ れるものとする。追加放出されるその他の放射性物質についてはその組成を平衡組成 として求め,希ガスについては,よう素の2倍の放出があるものとする。
- (d) 主蒸気隔離弁閉止前の燃料棒からの放射性物質の追加放出割合は,主蒸気隔離弁閉止前の原子炉圧力の低下割合に比例するとし,追加放出された放射性物質の1%が 破断口から放出されるものとする。
- (e) 主蒸気隔離弁閉止後の燃料棒からの放射性物質の追加放出に関しては,主蒸気隔離 弁閉止直後にこれらのすべての放射性物質が原子炉冷却材中に放出されるものとする。
- (f) 主蒸気隔離弁閉止後の主蒸気系からの漏えいは、120 %/dの漏えい率で事故評価 期間中一定と仮定する。
- (g) 主蒸気隔離弁閉止後,残留熱除去系,逃がし安全弁等を通じて崩壊熱相当の蒸気が サプレッション・チェンバのプール水中に移行するものとし,その蒸気流量は原子炉 圧力容器気相体積の100 倍/dとする。

この蒸気に含まれる放射性物質は被ばくには寄与しないものとする。

- (h) 燃料棒から追加放出される放射性物質のうち、希ガスはすべて瞬時に気相部へ移行するものと考える。放出されたよう素のうち、有機よう素の割合は10%とし、残りの90%は無機よう素とする。有機よう素のうち10%は瞬時に気相部へ移行するものとする。有機よう素が分解したよう素、無機よう素及びよう素以外のハロゲンが気相部にキャリーオーバーされる割合は2%とする。
- (i) 主蒸気隔離弁閉止前に破断口から放出された冷却材は,完全蒸発し,同時に放出さ れた放射性物質を均一に含む蒸気雲になるものと仮定する。

主蒸気隔離弁閉止後に主蒸気系から漏えいした放射性物質は、大気中に地上放散されるものとする。

非常用ガス処理系排気筒から放出

図 4-4 原子炉冷却材喪失(仮想事故)時の希ガスの大気放出過程

図 4-5 原子炉冷却材喪失(仮想事故)時のよう素の大気放出過程

図 4-6 主蒸気管破断(仮想事故)時の希ガスの大気放出過程

図 4-7 主蒸気管破断(仮想事故)時のハロゲン等の大気放出過程

- (3) 運転員の勤務形態 運転員の勤務形態としては5直2交替を仮定し、運転員一人当たりの評価期間中の平均 的な実効線量を評価する。
- (4) 直交替を考慮した場合の被ばく評価方法

直交替を考慮した場合の線量は,被ばく評価期間中の運転員一人当たりの平均的 な線量として評価する。直交替を考慮した場合の具体的な計算方法は,以下による。

入退域に要する時間は,非居住区域境界から中央制御室への建屋出入口までの運転 員の移動経路を考慮し,余裕をみて1直あたり片道15分を要するものとする。

なお,入退域時の評価地点は,中央制御室への建屋出入口とし,そこに15分間と どまるものと仮定する。

a. 室内作業時の被ばく評価方法

直交替を考慮した場合の室内作業時の実効線量は、中央制御室内に 30 日間連続滞在 した場合の線量を求め、その値に直交替による滞在時間割合を掛け合わせることにより 計算する。

30 日間の積算線量×直交替による滞在時間割合*

- 注記 *:実際の交替勤務(5直2交替)の30日間勤務での最大勤務直の滞在時間
 割合(約0.27222)を使用する。
- b. 入退域での被ばく評価方法

直交替を考慮した場合の入退域時の実効線量は、中央制御室内への建屋出入口に30 日間連続滞在した場合の線量を求め、その値に入退域所要時間割合を掛け合わせること により計算する。

30 日間の積算線量×入退域所要時間割合*

- 注記 *:実際の交替勤務(5直2交替)の30日間勤務での最大勤務直の滞在時間
 割合(約0.01111)を使用する。
- (5) よう素の線量換算係数及び呼吸率 実効線量の算出に用いるよう素の線量換算係数及び呼吸率は表 4-1 に示す値を用いる。

項目	数值等	出典
	よう素の吸入摂取に対して, 成人実効線量換算係数を使用	
線量換算係数	$I = 131 : 2.0 \times 10^{-8} \text{ Sv/Bq}$	
	$I = 132 : 3.1 \times 10^{-10} \text{ Sv/Bq}$	ICRP Publication 71*
	I −133 : 4.0×10 ⁻⁹ Sv/Bq	
	$I = 134 : 1.5 \times 10^{-10} \text{ Sv/Bq}$	
	$I - 135 : 9.2 \times 10^{-10} \text{ Sv/Bq}$	
呼 吸 率 (成人活動時の呼吸率)	$1.2 \text{ m}^3/\text{h}$	ICRP Publication 71*

表 4-1 評価に用いる線量換算係数及び呼吸率

注記 *:Age-dependent Doses to Members of the Public from Intake of Radionuclides:Part 4 Inhalation Dose Coefficients, ICRP Publication 71 (1995) 4.5 大気拡散の評価

設計基準事故時の中央制御室の居住性に係る被ばく評価に使用する相対濃度及び相対線量 は、「被ばく評価手法について(内規)」及び「発電用原子炉施設の安全解析に関する気象指 針(昭和57年1月28日 原子力安全委員会決定,一部改訂 平成13年3月29日 原子力安全委員 会)」(以下「気象指針」という。)に基づき評価する。

- (1) 放射性物質の大気拡散
 - a. 放射性物質の空気中の濃度は,放出源高さ及び気象条件に応じて,空間濃度 が正規分布になると仮定したガウスプルームモデルを適用して計算する。
 - b. 風向,風速,大気安定度及び降雨の観測項目は,現地において1年間(2005年 4月~2006年3月)観測して得られた気象資料を用いる。
 - c. 中央制御室の居住性評価で特徴的な放出点から近距離の建屋の影響を受ける 場合には、建屋による巻き込み現象を考慮した大気拡散による拡散パラメータ を用いる。
 - d. 原子炉建屋の建屋後流での巻き込みが生じる条件としては、放出点と巻き込みが生じる建屋及び評価点との位置関係について、次に示す条件すべてに該当した場合、放出点から放出された放射性物質は建屋の風下側で巻き込みの影響を受け拡散し、評価点に到達するものとする。
 - (a) 放出源の高さが建屋の高さの2.5倍に満たない場合
 - (b) 放出源と評価点を結んだ直線と平行で放出源を風上とした風向nについて,放出源の位置が風向nと建屋の投影形状に応じて定まる一定の範囲(領域An)の中にある場合

注: Lは風向に垂直な建屋又は建屋群の,投影面高さ又は投影幅の小さい方

(c) 評価点が、巻き込みを生じる建屋の風下側にある場合

上記の三つの条件のうちの一つでも該当しない場合には,建屋の影響はないものとして大気拡散評価を行うものとする。

中央制御室の居住性に係る被ばく評価においては,放射性物質の放出源と して原子炉建屋を仮定することから,建屋の影響があるものとして評価を行 う。

e. 中央制御室の居住性に係る被ばく評価では,建屋の風下後流側での広範囲に及ぶ 乱流混合域が顕著であることから,放射性物質濃度を計算する当該着目方位と しては,放出源と評価点を結ぶラインが含まれる1方位のみを対象とするので はなく,次の図に示すように,建屋の後流側の拡がりの影響が評価点に及ぶ可 能性のある複数の方位を対象とする。

- (2) 建屋による巻き込みの評価条件
 - a. 巻き込みを生じる代表建屋
 - (a) 原子炉建屋の近辺では, 隣接する複数の建屋の風下側で広く巻き込みによる拡散が 生じるものとする。
 - (b) 巻き込みを生じる建屋として,原子炉建屋,タービン建屋,サービス建屋及び廃棄 物処理建屋等,原則として放出源の近隣に存在するすべての建屋が対象となるが,巻 き込みの影響が最も大きいと考えられる一つの建屋を代表建屋とすることは,保守的 な結果を与える。
 - b. 放射性物質濃度の評価点
 - (a) 中央制御室内には,次のイ又はロによって,中央制御室が属する建屋の表面から放 射性物質が侵入するとする。

- イ. 事故時に外気取入を行う場合は、主に給気口を介しての外気取入及び室内への直 接流入
- ロ. 事故時に外気の取入れを遮断する場合は、室内への直接流入
- (b) 建屋による巻き込みの影響が生じる場合、中央制御室が属する建屋の近辺ではほぼ 全般にわたり、代表建屋による巻き込みによる拡散の効果が及んでいると考えられる。 このため、中央制御室換気系の非常時の運転モードに応じて、次のイ又はロによっ て、中央制御室が属する建屋の表面の濃度を計算する。
 - 評価期間中も給気口から外気を取入れることを前提とする場合は、給気口が設置 されている中央制御室が属する建屋の表面とする。
 - ロ. 評価期間中は外気を遮断することを前提とする場合は、中央制御室が属する建屋の表面(屋上面又は側面)のうちの代表面(代表評価面)を選定する。
- (c) 代表面における評価点
 - イ. 建屋の巻き込みの影響を受ける場合には、中央制御室の属する建屋表面での濃度 は風下距離の依存性は小さくほぼ一様と考えられるので、評価点は厳密に定める必 要はない。

屋上面を代表とする場合,例えば中央制御室の中心点を評価点とするのは妥当で ある。

- ロ. 代表評価面を、中央制御室が属する建屋の屋上面とすることは適切な選定である。
 また、中央制御室が屋上面から離れている場合は、中央制御室が属する建屋の側
 面を代表面として、それに対応する高さでの濃度を対で適用することも適切である。
- ハ. 屋上面を代表面とする場合は,評価点として中央制御室の中心点を選定し,対応 する風下距離から拡散パラメータを算出してもよい。

また, $\sigma_{y}=0$ 及び $\sigma_{z}=0$ として, σ_{y0} , σ_{z0} の値を適用してもよい。

- c. 着目方位
 - (a) 中央制御室の被ばく評価の計算では、代表建屋の風下後流側での広範囲に及ぶ乱流 混合域が顕著であることから、放射性物質濃度を計算する当該着目方位としては、放 出源と評価点とを結ぶラインが含まれる1方位のみを対象とするのではなく、(1)e項 の図に示すように、代表建屋の後流側の拡がり影響が評価点に及ぶ可能性のある複数 の方位を対象とする。

評価対象とする方位は、放出された放射性物質が建屋の影響を受けて拡散すること 及び建屋の影響を受けて拡散された放射性物質が評価点に届くことの両方に該当する 方位とする。

具体的には,全16方位について以下の三つの条件に該当する方位を選定し,すべての条件に該当する方位を評価対象とする。

イ. 放出点が評価点の風上にあること。

RO

 ・放出点から放出された放射性物質が、建屋の風下側に巻き込まれるような範囲に、 評価点が存在すること。この条件に該当する風向の方位m₁の選定には、次の図の ような方位を用いることができる。

本図の対象となる二つの風向の方位の範囲*m*₁₄, *m*₁₈のうち,放出点が評価点の 風上となるどちらか一方の範囲が評価の対象となる。放出点が建屋に接近し,0.5 *L* の拡散領域(次の図のハッチング部分)の内部にある場合は,風向の方位*m*₁は放 出点が評価点の風上となる180度が対象となる。

注: Lは風向に垂直な建屋の投影面の高さ又は投影面の幅のうちの小さい方

ハ. 建屋の風下側で巻き込まれた大気が評価点に到達すること。この条件に該当する 風向の方位m2の選定には、次の図に示す方法を用いることができる。評価点が建屋 に接近し、0.5 Lの拡散領域(次の図のハッチング部分)の内部にある場合は、風 向の方位m2は放出点が評価点の風上となる 180 度が対象となる。

注: Lは風向に垂直な建屋の投影面の高さ又は投影面の幅のうちの小さい方

上図は、断面が円筒形状の建屋を例として示しているが、断面形状が矩形の建屋 についても、同じ要領で評価対象の方位を決定することができる。

- d. 建屋投影面積
- (a) 下図に示すとおり,風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を 求めるために大気拡散式の入力とする。

- (b) 建屋の影響がある場合の多くは複数の風向を対象に計算する必要があるので、風向の方位ごとに垂直な投影面積を求める。ただし、対象となる複数の方位の投影面積の中で、最小面積を、すべての方位の計算の入力として共通に適用することは、合理的であり保守的である。
- (c) 風下側の地表面から上側の投影面積を求め大気拡散式の入力とする。方位によって 風下側の地表面の高さが異なる場合は、方位ごとに地表面高さから上側の面積を求め る。また、方位によって、代表建屋とは別の建屋が重なっている場合でも、原則地表 面から上側の代表建屋の投影面積を用いる。
- (3) 相対濃度及び相対線量の評価方法
 - a. 大気拡散の基本式 放射性物質の大気拡散の計算式は、気象指針に記載の計算式を適用する。
 - (a) 建屋の影響がない場合の基本拡散式

放射性物質の空気中濃度(χ)又は放出源における放出率で規格化した相対濃度(χ/ Q)は、放出源の高さ、風速、大気安定度に応じて、空間濃度分布が水平方向、鉛直方 向ともに正規分布になると仮定したガウスプルームモデルを適用して計算する。

$$\chi(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\mathbf{Q}}{2\pi \cdot \sigma_{\mathbf{y}} \cdot \sigma_{\mathbf{z}} \cdot \mathbf{U}} \cdot \exp\left(-\lambda \frac{\mathbf{x}}{\mathbf{U}}\right) \cdot \exp\left(-\frac{\mathbf{y}^{2}}{2\sigma_{\mathbf{y}}^{2}}\right) \\ \cdot \left[\exp\left\{-\frac{(z-\mathbf{H})^{2}}{2\sigma_{\mathbf{z}}^{2}}\right\} + \exp\left\{-\frac{(z+\mathbf{H})^{2}}{2\sigma_{\mathbf{z}}^{2}}\right\}\right] \quad (4.1)$$

ここで,

 $\chi(\mathbf{x},\mathbf{y},\mathbf{z})$: 点 $(\mathbf{x},\mathbf{y},\mathbf{z})$ における放射性物質の空気中濃度 (Bq/m^3)

Q: : 放射性物質の放出率 (Bq/s)

U :風速 (m/s)

λ : 放射性物質の崩壊定数 (1/s)

- H : 放出源の高さ(m)
- z :評価点の高さ(m)
- ^σy : 平地での濃度分布のy方向の拡がりパラメータ (m)
- **σ**_z : 平地での濃度分布の z 方向の拡がりパラメータ (m)

拡散式の座標は,放出源直下の地表を原点に,風下方向を x 軸,その直角方向を y 軸,鉛直方向を z 軸とする直角座標である。

ここで通常,放射性物質の放射性崩壊による減衰項は考慮しない。すなわち,(4.1) 式で,放射性崩壊による減衰項を次のとおりとする。

$$\exp(-\lambda \frac{\mathbf{x}}{\mathbf{U}}) = 1$$

以上より、放射性崩壊による減衰項を1とすると、(4.1)式は以下のようになる。

$$\chi(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{\mathbf{Q}}{2 \pi \cdot \sigma_{\mathbf{y}} \cdot \sigma_{\mathbf{z}} \cdot \mathbf{U}} \cdot \exp\left(-\frac{\mathbf{y}^{2}}{2 \sigma_{\mathbf{y}}^{2}}\right)$$
$$\cdot \left[\exp\left\{-\frac{(\mathbf{z}-\mathbf{H})^{2}}{2 \sigma_{\mathbf{z}}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{z}+\mathbf{H})^{2}}{2 \sigma_{\mathbf{z}}^{2}}\right\}\right] \cdot \cdot (4.2)$$

なお,濃度分布の拡がりパラメータ σ_y 及び σ_z は,気象指針のとおりとする。 (b) 建屋の影響がある場合の基本拡散式

建屋の影響がある場合には、放射性物質の空気中濃度(χ)又は放出源における放出 率で規格化した相対濃度(χ / Q)は、平地における大気拡散による拡がりパラメータ である σ_y 及び σ_z に、建屋の風下側の巻き込みによる初期拡散パラメータ σ_{y0} 及び σ_{z0} を加えた総合的な拡散パラメータである Σ_y 及び Σ_z を適用して計算する。

$$\begin{split} \chi(\mathbf{x},\mathbf{y},\mathbf{z}) &= \frac{\mathbf{Q}}{2\pi \cdot \Sigma_{\mathbf{y}} \cdot \Sigma_{\mathbf{z}} \cdot \mathbf{U}} \cdot \exp\left(-\lambda \frac{\mathbf{x}}{\mathbf{U}}\right) \cdot \exp\left(-\frac{\mathbf{y}^{2}}{2\Sigma_{\mathbf{y}}^{2}}\right) \\ &\cdot \left[\exp\left\{-\frac{(\mathbf{z}-\mathbf{H})^{2}}{2\Sigma_{\mathbf{z}}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{z}+\mathbf{H})^{2}}{2\Sigma_{\mathbf{z}}^{2}}\right\}\right] \cdot (4.3) \\ &\Sigma_{\mathbf{y}}^{2} &= \sigma_{\mathbf{y}0}^{2} + \sigma_{\mathbf{y}}^{2} \quad , \quad \Sigma_{\mathbf{z}}^{2} &= \sigma_{\mathbf{z}0}^{2} + \sigma_{\mathbf{z}}^{2} \\ &\sigma_{\mathbf{y}0}^{2} &= \sigma_{\mathbf{z}0}^{2} &= \frac{\mathbf{cA}}{\pi} \\ &\Xi & z : \\ \Sigma_{\mathbf{y}} \quad : \\ &E & z = \sigma \\ &\Sigma_{\mathbf{z}} \quad : \\ &E & z = \sigma \\ &\sum_{\mathbf{y}} \quad : \\ &E & z = \sigma \\ &E & z \\ &\sum_{\mathbf{y}} \quad : \\ &E & z \\ &E & z \\ &E & z \\ &\sum_{\mathbf{y}} \quad : \\ &E & z \\ &E$$

- A:建屋の風向方向の投影面積(m²)
- c :形状係数(-)

(m)

ここで,(4.1)式の場合と同様に,放射性崩壊による減衰項を1とすると,(4.3)式 は次のようになる。

$$\chi(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\mathbf{Q}}{2\pi \cdot \Sigma_{\mathbf{y}} \cdot \Sigma_{\mathbf{z}} \cdot \mathbf{U}} \cdot \exp\left(-\frac{\mathbf{y}^{2}}{2\Sigma_{\mathbf{y}}^{2}}\right)$$
$$\cdot \left[\exp\left\{-\frac{(\mathbf{z}-\mathbf{H})^{2}}{2\Sigma_{\mathbf{z}}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{z}+\mathbf{H})^{2}}{2\Sigma_{\mathbf{z}}^{2}}\right\}\right]$$
$$\cdot \cdot (4.4)$$

また,(4.4)式において,放出源と評価点での高度差による濃度の相違を考えないで, 保守的に鉛直方向の最大濃度で計算する場合は,次式を用いる。

$$\chi(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{\mathbf{Q}}{2\pi\cdot\Sigma_{\mathbf{y}}\cdot\Sigma_{\mathbf{z}}\cdot\mathbf{U}} \cdot \exp\left(-\frac{\mathbf{y}^2}{2\Sigma_{\mathbf{y}}^2}\right) \cdot \left[1 + \exp\left\{-\frac{(2\mathbf{H})^2}{2\Sigma_{\mathbf{z}}^2}\right\}\right] \quad (4.5)$$

(4.5)式は、(4.4)式で、z=Hとすれば得られる。

b. 相対濃度の計算方法

相対濃度(χ/Q)は、気象指針に基づき、次式により計算する。

$$\chi \neq Q = \frac{1}{T} \sum_{i=1}^{T} (\chi \neq Q)_{i \cdot_{d}} \delta_{i} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (4.6)$$

χ/C : 実効放出継続時間中の相対濃度 (s/m³)

T : 実効放出継続時間(h)

(χ/Q): 時刻 i における相対濃度 (s/m³)

$${}_{d}\delta_{i}$$
 : 時刻 i において風向が当該方位 d にあるとき ${}_{d}\delta_{i} = 1$
: 時刻 i において風向が他の方位にあるとき ${}_{d}\delta_{i} = 0$

この場合, $(\chi / Q)_i$ は, 実効放出継続時間の長短, 建屋等の影響の有無に応じて, 次により計算する。なお, 気象指針に基づき, 実効放出継続時間が8時間を超える場合 は長時間放出として取り扱う。

- (a) 建屋の影響がない場合の計算式
 - イ. 短時間放出の場合

短時間放出の場合、 (χ/Q) は、風向が方位内で一定であり、かつ、放出源から評価点を結ぶライン上が水平方向の濃度分布の最大値となると仮定して、次式により計算する。

$$(\chi \swarrow Q)_{i} = \frac{1}{2 \pi \cdot \sigma_{yi} \cdot \sigma_{zi} \cdot U_{i}} \cdot [\exp\{-\frac{(z-H)^{2}}{2 \sigma_{zi}^{2}}\} + \exp\{-\frac{(z+H)^{2}}{2 \sigma_{zi}^{2}}\}] \quad (4.7)$$
ここで,
 σ_{yi} : 時刻 i における濃度分布の y 方向の拡がりパラメータ (m)
 σ_{zi} : 時刻 i における濃度分布の z 方向の拡がりパラメータ (m)
 U_{i} : 時刻 i における風速 (m/s)
H :放出源の高さ (m)
z :評価点の高さ (m)

ロ. 長時間放出の場合

長時間放出の場合, $(\chi / Q)_1$ の計算にあたっては, 放射性物質の全量が一方位 内に一様に分布すると仮定して次式により計算する。

$$(\chi / Q)_{i} = \frac{2.032}{2\sigma_{zi} \cdot U_{i} \cdot x} \cdot [\exp\{-\frac{(z-H)^{2}}{2\sigma_{zi}^{2}}\} + \exp\{-\frac{(z+H)^{2}}{2\sigma_{zi}^{2}}\}] \quad (4.8)$$

ここで,
x :放出点から着目地点までの距離 (m)

(b) 建屋の影響がある場合の計算式

建屋の影響がある場合には,評価点を含む建屋の風下側では,放射性物質の濃度が 建屋の投影面積に応じた拡がりをもって分布するものとして計算する。

イ. 短時間放出の場合

建屋の影響がない場合と同様,短時間放出の計算の場合には保守的に水平濃度分 布の中心軸上に評価地点が存在し風向が一定であるものとして,次式によって濃度 分布の最大値を計算する。

$$(\chi / Q)_{i} = \frac{1}{2 \pi \cdot \Sigma_{yi} \cdot \Sigma_{zi} \cdot U_{i}} \cdot [\exp\{-\frac{(z-H)^{2}}{2 \Sigma_{zi}^{2}}\} + \exp\{-\frac{(z+H)^{2}}{2 \Sigma_{zi}^{2}}\}] \quad (4.9)$$

$$\Sigma_{yi} = \sqrt{\sigma_{yi}^{2} + \frac{cA}{\pi}} , \ \Sigma_{zi} = \sqrt{\sigma_{zi}^{2} + \frac{cA}{\pi}}$$

ここで,

- Σ_{yi}: 時刻 i における建屋の影響を加えた濃度分布の y 方向の拡がりパラ
 メータ (m)
- Σ_{zi}: 時刻 i における建屋の影響を加えた濃度分布の z 方向の拡がりパラ
 メータ (m)
- A:建屋の風向方向の投影面積(m²)
- c :形状係数(-)

なお,(4.9)式において,放出源と評価点での高度差による濃度の相違を考えない で,保守的に鉛直方向の最大濃度で計算する場合は,次式を用いる。

$$\left(\chi / Q\right)_{i} = \frac{1}{2\pi \cdot \Sigma_{yi} \cdot \Sigma_{zi} \cdot U_{i}} \cdot \left[1 + \exp\left\{-\frac{(2H)^{2}}{2\Sigma_{zi}^{2}}\right\}\right] \quad \cdots \quad (4.10)$$

(4.10)式は、(4.9)式で、z=Hとすれば得られる。

さらに,放出源高さが地表面と比較して十分高い場合,地表面からの反射による 濃度の寄与は小さくなるため,(4.10)式において地表面の反射効果を示す右辺の指 数減衰項を無視することができる。

よって、(4.10)式は、次式に簡素化することができる。

$$\left(\chi / Q\right)_{i} = \frac{1}{2 \pi \cdot \Sigma_{vi} \cdot \Sigma_{zi} \cdot U_{i}} \quad \dots \quad \dots \quad \dots \quad \dots \quad \dots \quad (4.11)$$

放出源の高さでの濃度を評価する場合には,建屋屋上面での評価を含め,下図に よって,具体的に減衰項が無視できることが確認できる。この減衰項は,地上面で の反射による影響である。

ロ. 長時間放出の場合

長時間放出の場合には,建屋の影響のない場合と同様に,1方位内で平均化した 濃度として求める。

ただし、建屋の影響による拡がりの幅が風向の1方位の幅よりも拡がり隣接の方 位にまで及ぶ場合には、建屋の影響がない場合の(4.8)式を用いて放射性物質の拡が りの全量を計算し1方位の幅で平均すると、短時間放出の(4.9)式で得られる最大濃 度より大きな値となり不合理な結果となることがある。

この場合,平均化処理を行うかわりに,保守的に長時間でも短時間の計算式によ る最大濃度として計算を行う。

c. 相対線量の計算方法

大気中に放出された放射性物質に起因する放射性雲からのガンマ線による全身に対す る線量を計算するために,空気カーマを用いた相対線量を計算する。

空気カーマから全身に対しての線量への換算係数は、1 Sv/Gy とする。 評価地点(x,y,0)における空気カーマ率は、次式によって計算する。

$$D = K_1 \cdot E \cdot \mu_{en} \int_{0}^{\infty} \int_{-\infty 0}^{\infty} \frac{e^{-\mu r}}{4 \pi r^2} B(\mu r) \chi(\mathbf{x}', \mathbf{y}', \mathbf{z}') d\mathbf{x}' d\mathbf{y}' d\mathbf{z}' \quad \cdots \quad \cdots \quad (4.12)$$

$$\Xi \subseteq \mathfrak{C},$$

D :評価地点(x,y,0)における空気カーマ率 (μGy/s)

$$K_1$$
: 空気カーマ率への換算係数 $\left(\frac{\text{dis} \cdot \text{m}^3 \cdot \mu \text{ Gy}}{\text{MeV} \cdot \text{Bq} \cdot \text{s}}\right)$ E: ガンマ線の実効エネルギ (MeV/dis) μ_{en} : 空気に対するガンマ線の線エネルギ吸収係数 (1/m) μ : 空気に対するガンマ線の線減衰係数 (1/m)r: (x', y', z')から(x, y, 0)までの距離 (m)B(μ r): 空気に対するガンマ線の再生係数 (-)B(μ r)= 1 + α (μ r) + β (μ r) ² + γ (μ r) ³

ただし、 μ_{en} 、 μ 、 α 、 β 、 γ については、0.5 MeV のガンマ線に対する値を用い、以下のとおりとする。

 $\mu_{\rm en} = 3.84 \times 10^{-3} ({\rm m}^{-1}), \qquad \mu = 1.05 \times 10^{-2} ({\rm m}^{-1})$ $\alpha = 1.000, \qquad \beta = 0.4492, \qquad \gamma = 0.0038$

χ(x',y',z'): 放射性雲中の点(x',y',z')における濃度 (Bq/m³)

なお、 $\chi(\mathbf{x',y',z'})$ は、(3)a. 項の大気拡散の基本式に示される「(a) 建屋の影響が ない場合の基本拡散式」の(4.2)式及び「(b) 建屋の影響がある場合の基本拡散式」の (4.4)式により計算する。

(4) 評価結果

設計基準事故時における中央制御室の居住性に係る被ばく評価に使用する大気拡散評価 条件を表 4-2 に示し,評価結果を表 4-3 に示す。

表 4-2 放射性物質の大気拡散評価条件(1/2)

項目	評価条件	備考
気象条件	 東海第二発電所の 2005 年 4 月~2006 年 3 月までの 1 年間の気象デ ータ (原子炉冷却材喪失) 排気筒付近の風を代表する標高約 148 mの風向,風速データを使用 (主蒸気管破断) 地上風を代表する標高 18 mの風向,風速データを使用 	_
放出源及び放出高さ	 (原子炉冷却材喪失) 非常用ガス処理系排気筒 有効高さ:95 m (主蒸気管破断) ブローアウトパネル 有効高さ:0 m 	_
実効放出継続時間	 (原子炉冷却材喪失) 希ガス:24時間 よう素:24時間 (主蒸気管破断) 希ガス及びハロゲン等:1時間 よう素:20時間 	_
建屋の影響	 (原子炉冷却材喪失) 考慮しない (主蒸気管破断) 考慮する 	 4.5(1)d.項に基づき,放 出源が排気筒の場合は, 放出源の高さが建屋の高 さの2.5倍以上となるこ とから建屋の影響を受け ないものとして評価す る。 放出源が建屋の場合に は,建屋の影響を受ける ものとして評価する。
大気拡散評価地点及び 評価距離	 (原子炉冷却材喪失) 中央制御室中心 評価距離:100 m サービス建屋入口 評価距離:110 m (主蒸気管破断) 中央制御室中心 評価距離:10 m サービス建屋入口 評価距離:15 m 	図 4-8 参照

	表 4-2	放射性物質の大気拡散評価条件	(2/2)
--	-------	----------------	-------

項目	評価条件	備考
着目方位	 (原子炉冷却材喪失) 中央制御室 W 方位(1 方位) サービス建屋入口 W 方位(1 方位) (主蒸気管破断) 中央制御室 S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位) サービス建屋入口 S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位) 	図 4-9~図 4-12 参照
 (原子炉冷却材喪失) 一 建屋の投影面積 (主蒸気管破断) 3000 m² (原子炉建屋,短手方向) 		図 4-13 参照
巻き込みを生じる建屋の 形状係数	1/2	気象指針より

被ばく 経路	評価点	項目		原子炉冷却材喪失 (仮想事故)	主蒸気管破断 (仮想事故)
室内 作業時	中央制御室 中心	D∕Q (Gy/Bq)	希ガス*	4.9 \times 10 ⁻²⁰	2. 9×10^{-18}
		$\frac{\chi \swarrow Q}{(s/m^3)}$	希ガス*	1.2×10^{-6}	8.3 $\times 10^{-4}$
			よう素	1.2×10^{-6}	4.9×10 ⁻⁴
入退域時	サービス建屋 入口	D∕Q (Gy/Bq)	希ガス*	5. 0×10^{-20}	2. 9×10^{-18}
		χ⁄Q (s/m³)	よう素	1.2×10^{-6}	4.9×10 ⁻⁴

表 4-3 設計基準事故時における中央制御室の居住性に係る被ばく評価に使用
 する相対濃度(χ/Q)及び相対線量(D/Q)評価結果

注記 *: 主蒸気管破断においては、希ガス及びハロゲン等を示す。

図 4-8 放射性物質の放出源と評価点の位置関係

図4-10 原子炉冷却材喪失時の入退城時の評価方位(サービス建屋入口)
図 4-11 主蒸気管破断時の室内作業時の評価方位(中央制御室中心)

NT2 補② V-1-7-3 R0

NT2 補② V-1-7-3 R0

図 4-13 原子炉建屋断面積(投影面積)

- 4.6 運転員の実効線量評価
 - 4.6.1 室内作業時の実効線量評価
 - (1) 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく 原子炉冷却材喪失(仮想事故)及び主蒸気管破断(仮想事故)を想定した場合の室内 作業時における,原子炉建屋内及びタービン建屋内に浮遊する放射性物質からの直接ガ ンマ線及びスカイシャインガンマ線による実効線量の評価条件及び結果を以下に示す。
 a. 評価条件
 - (a) 線源強度
 - イ. 原子炉冷却材喪失(仮想事故)

線源強度は、4.4節の解析のための前提条件の(2)a.項の原子炉冷却材喪失(仮 想事故)を基に、次のとおり求める。

- ① 事故時に炉心から格納容器内に放出された放射性物質は、格納容器から原子 炉建屋(二次格納施設)内に放出される。この二次格納施設内の放射性物質を 直接ガンマ線及びスカイシャインガンマ線の線源とする。
- ② 二次格納施設内の放射性物質は自由空間内に均一に分布するものとする。
- ③ 二次格納施設内の放射性物質量の計算にあたっては、放射性物質の崩壊による減衰及び非常用ガス処理系による除去効果を期待する。
- ④ 事故後 30 日間の積算線源強度は、二次格納施設内の放射性物質によるガンマ線を複数のガンマ線エネルギ範囲(エネルギ群)に区分して計算する。
- 口. 主蒸気管破断(仮想事故)

線源強度は、4.4節の解析のための前提条件の(2)b.項の主蒸気管破断(仮想事 故)を基に、次のとおり求める。

- ① 事故時主蒸気隔離弁閉止前に主蒸気管破断口から放出された放射性物質及び 主蒸気隔離弁閉止後に主蒸気隔離弁からの漏えいにより放出された放射性物質 は、全量がタービン建屋から漏えいすることなく、保守的にタービン建屋(管 理区域)内の自由空間内に均一に分布するものとする。このタービン建屋内の 放射性物質を直接ガンマ線及びスカイシャインガンマ線の線源とする。
- ② タービン建屋内の放射性物質の崩壊による減衰を考慮する。
- ③ タービン建屋内への放射性物質の放出量の計算は、大気中への放出量計算条件(4.4節の解析のための前提条件の(2)b.項の主蒸気管破断(仮想事故)参照)と同じとする。ただし、線源強度の計算にあたっては、保守的に建屋から放出されず、全量が建屋内にとどまるものとする。
- ④ 事故後 30 日間の積算線源強度は、タービン建屋内の放射性物質によるガンマ線を複数のガンマ線エネルギ範囲(エネルギ群)に区分して計算する。

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の直接ガン マ線及びスカイシャインガンマ線の評価に使用する線源強度を表 4-4 及び表 4 -5 に示す。

ガンマ線エネルギ群構造は評価済核データライブラリ JENDL-3.3^{*1}から作成した輸送計算用ライブラリ MATXSLIB-J33^{*2}の42 群とする。

注記 *1:K. Shibata, et al., "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3", J.Nucl.Sci.Technol., 39,1125 (2002)

- *2: K. Kosako, N. Yamano, T. Fukahori, K. Shibata and A. Hasegawa, "The Libraries FSXLIB and MATXSLIB based on JENDL-3.3", JAERI-Data/Code 2003-011 (2003)
- (b) 幾何条件
 - イ. 原子炉冷却材喪失(仮想事故)

中央制御室内での被ばく評価に係る直接ガンマ線及びスカイシャインガンマ線 の評価モデルをそれぞれ図4-14及び図4-15に示す。直接ガンマ線の線源範囲 は,原子炉建屋の地下1階以上*1とし,保守的に各階の二次格納施設の東西南北 最大幅をとることとする。スカイシャインガンマ線の線源範囲は,原子炉建屋運 転階のみ*2とする。

原子炉建屋は保守的に二次遮蔽及び中央制御室遮蔽を考慮する。二次遮蔽及び 中央制御室遮蔽において,評価で考慮する壁及び天井は,公称値からマイナス側 許容差(5 mm)を引いた値とする。

- 注記 *1:地下階は外壁厚さが厚く,地面にも遮られるため十分無視できる。 ただし,原子炉建屋に関しては,中央制御室が隣接するため保守 的に地下1階を考慮する。
 - *2:原子炉建屋運転階の床はコンクリート厚さが厚く,下層階からの 放射線を十分に遮蔽している。したがって,建屋天井から放射さ れるガンマ線を線源とするスカイシャインガンマ線の評価では, 下層階に存在する放射性物質からの放射線の影響は十分小さいた め、線源として無視できる。

口. 主蒸気管破断(仮想事故)

主蒸気管破断時における室内作業時の直接ガンマ線評価モデルを図4-16に示す。

直接ガンマ線の線源範囲は、タービン建屋の地上1階以上*とし、保守的に各 階の管理区域の東西・南北最大幅をとることとする。 中央制御室は中央制御室遮蔽を考慮し,タービン建屋は保守的に建屋の躯体を 考慮しない。

なお、中央制御室遮蔽は鉄筋コンクリートであるが、評価上コンクリートのみ とし、コンクリート密度は 2.0 g/cm³とする。また、評価で考慮する壁は、公称 値からマイナス側許容差(5 mm)を引いた値とする。

注記 *:地下階は外壁厚さが厚く,地面にも遮られるため十分無視できる。 (c) 評価点

原子炉冷却材喪失時における室内作業時の評価点は、図4-14に示すように中央 制御室内での線量が最大となる位置とする。

また,主蒸気管破断時における室内作業時の評価点は,図4-16に示すように中 央制御室内において線量が最大となる位置とする。

(d) 計算コード

直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャイン ガンマ線は、ANISN及びG33-GP2Rコードを用いる。

b. 評価結果

原子炉冷却材喪失(仮想事故)時における室内作業時の原子炉建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による実効線量評価結果を表4-6に示す。

また,主蒸気管破断(仮想事故)時における室内作業時のタービン建屋内放射性物 質からの直接ガンマ線による実効線量評価結果を表 4-7 に示す。

エネルギ ガンマ線積算線源強度 エネルギ ガンマ線積算線源強度 群 群 (-)(-)(MeV)(MeV) 1.2×10^{17} 1.5 \times 10¹⁹ 0.01 22 1.5 1 2.3 \times 10¹⁵ 5.5 \times 10¹⁸ 2 0.02 231.66 7.2 \times 10¹⁷ 2.0 4.5 \times 10¹⁸ 3 0.03 24 1.0×10^{-15} 2.6 \times 10¹⁹ 2.5 0.045 254 0.06 0.0 3.0 1.1 \times 10¹⁸ 5 26 2.9 \times 10¹⁶ 0.07 0.0 27 3.5 6 7 0.075 0.0 28 4.0 0.0 6. 2×10^{21} 0.1 29 0.0 8 4.5 4.6×10¹⁷ 5.0 0.0 9 0.15 30 4.8×10¹⁹ 0.2 5.5 0.0 10 31 0.3 4.9 \times 10²⁰ 6.0 0.0 11 32 1.5 \times 10²⁰ 6.5 0.0 120.4 33 7.7 \times 10¹⁸ 130.45 7.0 0.0 34 7.8 \times 10¹⁸ 14 0.51 35 7.5 0.0 7.0×10¹⁷ 15 0.512 36 8.0 0.0 6. 2×10^{-19} 16 0.6 37 10.0 0.0 1.8imes10²⁰ 0.7 12.0 0.0 1738 1.1 $\times 10^{\ 20}$ 0.8 14.0 0.0 18 39 19 1.0 4.5 \times 10¹⁹ 40 20.0 0.0 2.2 \times 10¹⁹ 20 1.33 30.0 0.0 41 4.8 $\times 10^{-16}$ 1.34 50.0 0.0 21 42

表 4-4 原子炉冷却材喪失(仮想事故)時の原子炉建屋内の放射性物質からのエネルギ群別 ガンマ線積算線源強度(30日間積算値)

表 4-5 主蒸気管破断(仮想事故)時のタービン建屋内の放射性物質からのエネルギ群別ガ

群	エネルギ (MeV)	ガンマ線積算線源強度 (-)	群	エネルギ (MeV)	ガンマ線積算線源強度 (-)
1	0.01	9. 0×10^{-14}	22	1.5	1.8 \times 10 ¹⁶
2	0.02	8.0×10 ¹³	23	1.66	3. 0×10^{-16}
3	0.03	3.6 \times 10 ¹⁵	24	2.0	2.8×10 ¹⁶
4	0.045	7.7 \times 10 ¹⁶	25	2.5	1.2×10^{-17}
5	0.06	0.0	26	3. 0	8.9 \times 10 ¹⁵
6	0.07	0.0	27	3. 5	3. 7 \times 10 ¹⁴
7	0.075	0.0	28	4.0	8. 2×10^{-13}
8	0.1	5.6 \times 10 ¹⁸	29	4.5	3. 1×10^{-12}
9	0.15	6. 3×10^{-16}	30	5.0	0.0
10	0.2	1.3 \times 10 ¹⁸	31	5.5	0.0
11	0.3	1.1 \times 10 ¹⁸	32	6.0	0.0
12	0.4	2. 0×10^{-18}	33	6.5	0.0
13	0. 45	4.6×10 16	34	7.0	0.0
14	0.51	1.2×10^{-16}	35	7.5	0.0
15	0.512	5. 4×10^{-15}	36	8.0	0.0
16	0.6	3. 1×10^{-17}	37	10.0	0.0
17	0. 7	2. 4×10^{-17}	38	12.0	0.0
18	0.8	2.5×10 ¹⁷	39	14.0	0.0
19	1.0	9.5×10 16	40	20.0	0.0
20	1.33	9.3×10 ¹⁶	41	30.0	0.0
21	1. 34	4.8×10 ¹⁴	42	50.0	0.0

ンマ線積算線源強度(30日間積算値)

表 4-6 原子炉冷却材喪失(仮想事故)時における原子炉建屋内の放射性物質からの直接ガ ンマ線及びスカイシャインガンマ線による実効線量評価結果(室内作業時)

項目	直接ガンマ線	スカイシャイン ガンマ線	合 計	備考
30 日間 積算値	5.8 × 10 ⁰	1. 4×10^{-3}	5.8 × 10 ⁰	—
直交替を考 慮した場合	1.6×10^{0}	3.9×10 ⁻⁴	1.6×10^{0}	30日間積算値に直交 替による滞在時間割 合(0.27222)*を掛け 合わせた値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく評価方法」の a.項の室内作業時の被ばく評価方法による。

表 4-7 主蒸気管破断(仮想事故)時におけるタービン建屋内の放射性物質からの直接ガンマ線 による実効線量評価結果(室内作業時)

	実効線量 (mSv)	,	
· 」 · 」 · 」 · 」 · 」 · 」 · 」 · 」 · 」 · 」	直接ガンマ線	備 考	
30 日間 積算値	1.6×10^{-2}	_	
直交替を考 慮した場合	4. 3×10^{-3}	30日間積算値に直交替によ る滞在時間割合(0.27222)*を 掛け合わせた値	

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の

被ばく評価方法」の a. 項の室内作業時の被ばく評価方法による。

図 4-14 原子炉冷却材喪失時の直接ガンマ線評価モデル(2/2)

NT2 補② V-1-7-3 R0

図 4-16 主蒸気管破断時の直接ガンマ線評価モデル(2/2)

(2) 大気中放射性物質による被ばく

建屋より大気中へ放出された放射性物質からの直接ガンマ線による運転員の中央制御 室内作業時の実効線量を以下に評価する。

a. 評価条件

評価条件は以下のとおりである。

(a) 放射性物質の放出量

事故時に大気中へ放出される放射性物質の放出量は、4.4節の解析のための前提 条件の「(2) 事故時の放射性物質の放出量」に基づくものとする。

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の30日間積算放出量を表4-8及び表4-9に示す。

(b) 大気拡散条件

線量評価に使用する相対線量(D/Q)は、4.5節の線量評価に使用する大気拡散 評価の「(4) 評価結果」に示した、室内作業時の評価結果を使用する。

評価対象事象	D∕Q (Gy/Bq)
原子炉冷却材喪失 (仮想事故)	4. 9×10^{-20}
主蒸気管破断 (仮想事故) (主蒸気隔離弁閉止後)	2. 9×10^{-18}

また,主蒸気管破断時の主蒸気隔離弁閉止前の線量評価に使用する大気拡散条件 は,申請書添付十の解析と同一条件として,以下とする。

項目	数 値
半球状雲の体積	3. $44 \times 10^6 \text{ m}^3$
半球状雲の直径	236 m
半球状雲の移動の評価のための風速	1 m/s

(c) 中央制御室遮蔽での減衰効果

中央制御室遮蔽での減衰効果は、以下の条件により求める。

項目	数 値	備考
コンクリート厚さ	40 cm*	図 4 14 会昭
コンクリート密度	2.0 g/cm ³	凶 4-14 参照
ガンマ線エネルギ	1.5 MeV	—

注記 *:評価で考慮する壁は、公称値からマイナス側許容差(5 mm)を引いた値とする。

- b. 評価方法
 - (a) 原子炉冷却材喪失時

原子炉冷却材喪失時の大気中放射性物質からの直接ガンマ線による中央制御室内 作業時の実効線量は,以下により評価する。

(30日間連続滞在の場合)

$$\mathbf{H}_{\gamma} = \int_{0}^{30 \, \text{H}} \mathbf{K} \cdot \mathbf{D} \neq \mathbf{Q} \cdot \mathbf{Q}_{\gamma}(t) \cdot \mathbf{F} \, dt$$

ここで,

H_{γ}	:希ガスのガンマ線の外部被ばくによる実効線量 (Sv)
Κ	:空気カーマから実効線量への換算係数(1 Sv/Gy)

D/Q :相対線量 (Gy/Bq)

- **Q**_ν(t) :時刻 t における大気への放射能放出率 (Bq/s)
 - (ガンマ線実効エネルギ 0.5 MeV 換算値)

(b) 主蒸気管破断時

主蒸気管破断時の大気中放射性物質からの直接ガンマ線による中央制御室内作業 時の実効線量は、以下により評価する。

イ. 主蒸気隔離弁閉止前

主蒸気隔離弁閉止前は,破断口から放出された蒸気雲が中央制御室外側を通過 する間の被ばくを考慮するものとし,以下により評価する。

$$H_{\gamma 1} = 6.2 \times 10^{-14} \cdot \frac{Q_{\gamma 1}}{V} \cdot E_{\gamma} \cdot \frac{\alpha}{u} \cdot \left\{ 1 - e^{-\mu \cdot \alpha/2} \right\} \cdot F$$

- ここで,
 - H_{γ1}:希ガス及びハロゲン等のガンマ線の外部被ばくによる実効線量
 (Sv) (ガンマ線実効エネルギ 0.5 MeV 換算値)

Q_{v1}:主蒸気隔離弁閉止前の半球状雲中の放射性物質量(Bq)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

- *α* : 半球状雲の直径 (m)
- u : 半球状雲の移動の評価のための風速 (1 m/s)

RO

μ : 空気に対するガンマ線のエネルギ吸収係数 (3.9×10⁻³ m⁻¹)

F : 中央制御室遮蔽厚さ (39.5 cm) における減衰率 (9.3×10⁻²)

口. 主蒸気隔離弁閉止後

主蒸気隔離弁閉止後の大気中放射性物質からの直接ガンマ線による中央制御室 内作業時の実効線量は、以下により評価する。

(30日間連続滞在の場合)

$$H_{\gamma 2} = \int_{0}^{30 \, \text{H}} K \cdot D/Q \cdot Q_{\gamma 2}(t) \cdot F \, \text{d}t$$

ここで,

H_{γ2}: 希ガス及びハロゲン等のガンマ線の外部被ばくによる実効線量
 (Sv) (ガンマ線実効エネルギ 0.5 MeV 換算値)

- D/Q :相対線量 (Gy/Bq)
- Q_{v2}(t) :時刻 t における大気への放射能放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

F : 中央制御室遮蔽厚さ (39.5 cm) における減衰率 (9.3×10⁻²)

c. 評価結果

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の中央制御室内 作業時の大気中放射性物質からの直接ガンマ線による運転員の実効線量を評価した結 果を表 4-10 及び表 4-11 に示す。 表 4-8 原子炉冷却材喪失(仮想事故)時の放射性物質の大気への放出量(30 日間積算値)

核分裂生成物	放出量 (Bq)	備考
希ガス (ガンマ線実効エネルギ 0.5 MeV 換算値)	2. 7×10^{16}	時々刻々の大気への 放出率を 30 日間積算 した値

表 4-9 主蒸気管破断(仮想事故)時の放射性物質の大気への放出量(30日間 積算値)

核分裂生成物	勿	放出量 (Bq)	備考
希ガス	主蒸気隔離弁 閉止前	6. 1×10^{13}	破断口からの放出量
(ガンマ線実効エネルギ 0.5 MeV 換算値)	主蒸気隔離弁 閉止後	1.2×10^{14}	時々刻々の大気への 放出率を 30 日間積 算した値

表 4-10 原子炉冷却材喪失(仮想事故)時の大気中放射性物質よる実効線量評 価結果(室内作業時)

項目	実効線量 (mSv)	備考
30日間積算値	1.2×10^{-1}	_
直交替を考慮した場合	3. 4×10^{-2}	30日間積算値に直交替に よる滞在時間割合 (0.27222)*を掛け合わせ た値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく評価方法」の a. 項の室内作業時の被ばく評価方法による。

表 4-11 主蒸気管破断(仮想事故)時の大気中放射性物質よる実効線量評価結 果(室内作業時)

項目		実効線量 (mSv)	備考	
	主蒸気隔離弁 閉止前	4. 4×10^{-3}	主蒸気隔離弁閉止前 については,蒸気雲 が中央制御室外側を1 m/sの速度で通過する	
30日間積算値	主蒸気隔離弁 閉止後	3. 2×10^{-2}		
	合 計	3.7×10 ⁻²	間の値を示す。	
	主蒸気隔離弁 閉止前	4. 4×10^{-3}	30 日間積算値に直交 替による滞在時間割	
直交替を考慮した場合	主蒸気隔離弁 閉止後	8.8×10 ⁻³	合(0.27222)*を掛け 合わせた値(ただし,	
	合 計	1.3×10^{-2}	主蒸気隔離弁閉止後 の値に対して)	

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく評価 方法」の a. 項の室内作業時の被ばく評価方法による。 (3) 大気中放射性物質の中央制御室内取込みによる被ばく

事故発生により大気中に放出された放射性物質の一部は、中央制御室換気系により中 央制御室内に取込まれ、その中央制御室内に取込まれた放射性物質により被ばくする。 a. 評価条件

(a) 中央制御室の換気設備条件

中央制御室換気設備条件を表 4-12 に示す。

中央制御室換気系は,事故検知後,通常運転時の排風機が停止し,中央制御室給 気隔離弁,中央制御室排気隔離弁及び排煙装置隔離弁が閉止する。その後,フィル タユニット入口隔離弁が開き,チャコールフィルタを介して中央制御室内の空気を 再循環する閉回路循環運転に切り替わる。

(b) 閉回路循環運転作動条件

原子炉冷却材喪失時においては,原子炉建屋放射能高の信号で,中央制御室の換 気設備の給気隔離弁,排気隔離弁及び排煙装置隔離弁が閉止され,フィルタユニッ トを介して室内空気を再循環する中央制御室換気系フィルタ系ファンが起動する設 計となっており,事故後運転員による外気取入れモード操作により給気隔離弁及び 排気隔離弁が開き,フィルタユニットを介して外気を取り込む設計となっている。

一方,主蒸気管破断時においては,事故後運転員が手動で中央制御室の換気設備 の給気隔離弁,排気隔離弁及び排煙装置隔離弁を閉止し,中央制御室換気系フィル タ系ファンを起動する。

以上より,中央制御室は,事故後速やかに隔離が可能であるが,被ばく評価上は, 保守的に運転員による手動隔離操作を仮定し,隔離操作に要する時間を十分に見込 んだ後に,閉回路循環運転に切り替わるものと仮定する。閉回路循環運転作動開始 時間は,運転員が事故を検知してから操作を開始するまでの時間的余裕(10分)を 見込んで事故発生後15分とし,その間は中央制御室換気系空気調和機ファンにより 閉回路循環運転に切り替えるものと仮定する。

(c) チャコールフィルタを通らない空気流入量

中央制御室へのチャコールフィルタを通らない空気流入量は,保守的に換気率換 算で1回/hを仮定して評価する。

(d) 大気拡散条件

線量評価に使用する相対濃度(χ/Q)は、4.5節の線量評価に使用する大気拡 散評価の「(4) 評価結果」に示した、室内作業時の評価結果を使用する。

評価対象事象	項目	χ / Q (s/m ³)
原子炉冷却材喪失	よう素	1.2×10^{-6}
(仮想事故)	希ガス	1.2×10^{-6}
主蒸気管破断	よう素	4.9 $\times 10^{-4}$
(仮想事故)	希ガス及びハロ	0.2×10^{-4}
(主蒸気隔離弁閉止後)	ゲン等	0. 3 × 10 -

また,主蒸気管破断時の主蒸気隔離弁閉止前の線量評価に使用する大気拡散条件 は,申請書添付十の解析と同一条件として,以下とする。

項目	数 値
半球状雲の体積	3. $44 \times 10^6 \text{ m}^3$
半球状雲の直径	236 m
半球状雲の移動の評価のための風速	1 m/s

b. 評価方法

事故発生により大気中に放出された放射性物質は,中央制御室換気系から中央制御 室内に取り込まれる。

中央制御室換気系は,事故検知後,通常時換気系の排風機が停止し,給気隔離弁, 排気隔離弁及び排煙装置隔離弁が閉止する。その後,フィルタユニット入口隔離弁が 開き,チャコールフィルタを介して中央制御室内の空気を再循環する閉回路循環運転 に切り替わる。

以下に、これらの中央制御室内放射能濃度及び線量評価方法を示す。

(a) 中央制御室内放射能濃度の評価評価モデルを以下に示す。

外気リークアウト量(f₂)

中央制御室内の放射能濃度は、次式により評価する。

$$\frac{\mathrm{d}(\mathbf{V} \cdot \mathbf{C}_{i}(\mathbf{t}))}{\mathrm{d}\mathbf{t}} = (1 - \eta) \cdot \mathbf{C}_{i}^{0}(\mathbf{t}) \cdot \mathbf{f}_{1} + \mathbf{C}_{i}^{0}(\mathbf{t}) \cdot \mathbf{f}_{2}$$
$$- \mathbf{C}_{i}(\mathbf{t}) \cdot (\mathbf{f}_{1} + \mathbf{f}_{2} + \eta \cdot \mathbf{F}_{F}) - \lambda_{i} \cdot \mathbf{V} \cdot \mathbf{C}_{i}(\mathbf{t})$$

ここで,

V	:中央制御室内容積(m ³)	
C _i (t)	:時刻 t における中央制御室内の核種 i の濃度($(\mathrm{Bq}/\mathrm{m}^3)$
η	: チャコールフィルタの除去効率(-)	

C⁰(t):時刻tにおける中央制御室換気系給気口での核種iの濃度

 (Bq/m^3)

$$C_{i}^{0}(t) = Q_{i}(t) \cdot \chi / Q$$

- Q_i(t) :時刻 t における大気への核種 i の放出率 (Bq/s)
- χ/Q :相対濃度 (s/m³)
- f₁:中央制御室への外気取込量(m³/s)
- f₂ : 中央制御室への外気リークイン量 (m³/s)
- **F**_F :再循環フィルタを通る流量(m³/s)
- λ_i : 核種 i の崩壊定数 (s⁻¹)

(b) 実効線量の評価

中央制御室内に取り込まれた放射性物質による運転員の実効線量は,次に述べる よう素の吸入による内部被ばく及び希ガス等のガンマ線による外部被ばくの和とし て計算する。

イ. よう素の吸入による内部被ばく

よう素の吸入による内部被ばくは、次式で評価する。

(30日間連続滞在の場合)

$$H_{I} = \int_{0}^{30 \, \text{H}} R \cdot H \infty \cdot C_{I}(t) \, dt$$

ここで,

- H_I : よう素の内部被ばくによる実効線量 (Sv)
- R :呼吸率(m³/s)
 4.4節の解析のための前提条件の「(5) よう素の線量換算係数及び呼吸率」の表 4-1 に示す成人活動時の呼吸率 1.2 m³/h を秒当りに換算して用いる。
- H∞ :よう素(I-131)を1 Bq吸入した場合の成人の実効線量
 (2.0×10⁻⁸ Sv/Bq)

4.4節の解析のための前提条件の「(5) よう素の線量換算係数及 び呼吸率」の表 4-1によう素の吸入摂取に対する成人実効線量換 算係数を示す。

C_I(t) : 時刻 t における中央制御室内の放射能濃度(Bq/m³)

(I-131 等価量-成人実効線量係数換算)

ロ. 希ガス等のガンマ線による外部被ばく

中央制御室は,容積が等価な半球状とし,半球の中心に運転員がいるものとする。中央制御室内に取り込まれた放射性物質のガンマ線による実効線量は,次式 で計算する。

(30日間連続滞在の場合)

$$H_{\gamma} = \int_{0}^{30\,\text{H}} 6.2 \times 10^{-14} \cdot E_{\gamma} \cdot \left\{ 1 - e^{-\mu r} \right\} \cdot C_{\gamma}(t) \,\text{d}t$$

ここで,

H_y: 希ガス等のガンマ線による実効線量 (Sv)

μ : 空気に対するガンマ線のエネルギ吸収係数 (3.9×10⁻³ m⁻¹)

r : 中央制御室内空間と等価な半球の半径 (m)

$$\mathbf{r} = \sqrt[3]{\frac{3 \cdot \mathbf{V}}{2 \cdot \pi}}$$

C_γ(t) :時刻 t における中央制御室内の放射能濃度(Bq/m³)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

なお,主蒸気管破断時の主蒸気隔離弁閉止前に破断口から放出された放射性物 質による被ばく評価モデルは,蒸気雲が中央制御室換気系給気口付近を風速1 m/sの速度で通過する間,中央制御室換気系を通して蒸気雲中の放射性物質を直 接中央制御室内に取り込むものと仮定し,この取込み空気による被ばくを考慮す る。この際,破断口から放出された蒸気雲が中央制御室換気系給気口付近まで移 動する際の放射性物質の減衰は保守的に無視するものとする。

c. 評価結果

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の中央制御室内に 取込まれる放射性物質による運転員の実効線量を評価した結果を表 4-13 及び表 4-14 に示す。

項目		原子炉冷却材喪失 (仮想事故)	主蒸気管破断 (仮想事故)	設定理由
事故時における外気取り込 み方法		外気間欠取込(27時間隔離,3時間取入)		実際の換気設備の系統に よる。
中央制御室内容積		280	0 m ³	計算値
閉回路循環運転流量	[通常時] 0 m³/h 環運転流量 [事故時] 5100 m³/h		設計値	
通常時		3400 m ³ /h		迎卦枯
外私取り込み里	事故時	3400	m ³ /h	回门百万
チャコールフィルタの除去 効率		90	%	フィルタ効率の設計値 97 %以上(単体)を保守 的に設定
外気リークイン量		2800 m³/h		空気流入率測定試験結果 の結果である中央制御室 内容積の 0.45 回/h に対 して保守的に 1 回/h と設 定
非常時運転モードへの切替 時間 15 分		分	運転員の運転操作に余裕 を見た値	

表 4-12 中央制御室の換気設備条件

表 4-13 原子炉冷却材喪失(仮想事故)時の大気中放射性物質取り込みによる実効線量 評価結果(室内作業時)

	項目	実効線量 (mSv)	備考
	希ガスのガンマ線によ る外部被ばく	4. 0×10^{-2}	
30 日間 積算値	よう素の吸入による内 部被ばく	6.9 × 10 ⁻¹	_
	合 計	7.3 × 10 ⁻¹	
	希ガスのガンマ線によ る外部被ばく	1.1×10^{-2}	30日間積算値に直交
直交替を考 慮した場合	よう素の吸入による内 部被ばく	1.9×10^{-1}	替による滞在時間割 合(0.27222)*を掛け
	合 計	2.0×10 ⁻¹	合わせた値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく 価方法」の a. 項の室内作業時の被ばく評価方法による。

	項目		実効線量 (mSv)	備考
	希ガス及びハロ	主蒸気隔離弁 閉止前	4. 6×10^{-3}	
	ゲン等のガンマ 線による外部被	主蒸気隔離弁 閉止後	1. 3×10^{-1}	主蒸気隔離弁閉止前
	ばく	小計	1. 3×10^{-1}	
30 日間 積算値		主蒸気隔離弁 閉止前	5. 7×10^{-1}	たついては, 烝気芸 が中央制御室外側を1
	よう素の吸入に よる内部被ばく	主蒸気隔離弁 閉止後	3. 2×10^{0}	間の値を示す。
		小計	3.7 $\times 10^{0}$	
	合	計 計	3.9 × 10 ⁰	
	希ガス及びハロ	主蒸気隔離弁 閉止前	4. 6×10^{-3}	
	ゲン等のガンマ 線による外部被	主蒸気隔離弁 閉止後	3. 5×10^{-2}	
	ばく	小計	3. 9×10^{-2}	30 日間積算値に直交 替による滞在時間割
直交替を考 慮した場合		主蒸気隔離弁 閉止前	5. 7×10^{-1}	合(0.27222)*を掛け 合わせた値(ただし,
	よう素の吸入に よる内部被ばく	主蒸気隔離弁 閉止後	8.6×10 ⁻¹	主蒸気隔離弁閉止後 の値に対して)
		小計	1. 4×10^{0}	
	合	1 1 1	1. $5 \times 10^{\circ}$	

表 4-14 主蒸気管破断(仮想事故)時の大気中放射性物質取り込みによる実効線量 評価結果(室内作業時)

注記 *:4.4 節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく評価方法」の a. 項の室内作業時の被ばく評価方法による。

4.6.2 入退域時の実効線量評価

事故が発生した場合,中央制御室内の運転員を支援するために他の運転員が中央制御室 に入室したり,あるいは,事故が長期にわたる場合,運転員の交替が考えられる。この場 合,運転員は入退域時の移動時に大気中の放射性物質により被ばくすることになる。評価 にあたっては,入退域は,1直あたり片道15分間×2を要するものとし,その間の線量は, 中央制御室への建屋入口の線量を適用する。

- (1) 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく 原子炉冷却材喪失(仮想事故)及び主蒸気管破断(仮想事故)を想定した場合の入退 域時における建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線によ る実効線量の評価条件及び結果を以下に示す。
 - (a) 評価条件
 - イ. 線源強度

線源強度は 4.6.1 項の室内作業時の実効線量評価と同一であり,原子炉冷却材喪 失(仮想事故)時,主蒸気管破断(仮想事故)時それぞれ表 4-4 及び表 4-5 に示 す。

口. 幾何条件

幾何形状は 4.6.1 項の室内作業時の実効線量評価と同一であり、図 4-14~図 4-16 に示す。

ただし、中央制御室遮蔽は考慮しない。

ハ. 評価点

原子炉冷却材喪失時及び主蒸気管破断時における入退域時の評価点は,図4-16 に示すようにサービス建屋出入口において通常人が立ち入る高さの範囲(一般に2 m)で線量が最大となる位置とする。

- 二. 計算コード

直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャイン ガンマ線は、ANISN及びG33-GP2Rコードを用いる。

(b) 評価結果

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時における入退域 時の建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による実効線 量評価結果を表 4-15 及び表 4-16 に示す。

表 4-15 原子炉冷却材喪失(仮想事故)時における原子炉建屋内の放射性物質から の直接ガンマ線及びスカイシャインガンマ線による実効線量評価結果(入 退域時)

		実効線量 (mSv)		
項目	直接ガンマ線	スカイシャイン ガンマ線	合 計	備考
30日間 積算値	8.1×10 ⁻¹	9.1×10 ¹	9.2×10 ¹	_
直交替を考 慮した場合	9.0×10 ⁻³	1.0×10 ⁰	1.0×10 ⁰	30日間積算値に入退 域所要時間割合 (0.01111)*を掛け合 わせた値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく 評価方法」の b. 項の入退域での被ばく評価方法による。

表4-16 主蒸気管破断(仮想事故)時におけるタービン建屋内の放射性物質から の直接ガンマ線及びスカイシャインガンマ線による実効線量評価結果

(入退域時)

項目	実効線量 (mSv)	備考
	直接ガンマ線	
30 日間 積算値	1.5×10 ¹	_
直交替を考 慮した場合 1.6×10 ⁻¹		30日間積算値に入退 域所要時間割合 (0.01111)*を掛け合 わせた値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく 評価方法」の b. 項の入退域での被ばく評価方法による。 (2) 大気中放射性物質による被ばく

原子炉冷却材喪失(仮想事故)及び主蒸気管破断(仮想事故)時において,建屋から 大気中へ放出された放射性物質による入退域時の運転員の実効線量を以下に評価する。

なお,主蒸気管破断時の主蒸気隔離弁閉止前に放出される放射性物質を含んだ蒸気雲 については,風速1 m/sの速度で発電所敷地内を移動するものと仮定すると,蒸気雲が 通過する時間は約4分程度(直径236 m/風速1 m/s=236 s≒約3.93分)と短いことか ら,これによる入退域時の被ばくはないものとする。

a. 評価条件

評価条件は以下のとおりである。

(a) 放射性物質の放出量

事故時の大気中へ放出される放射性物質の放出量は,4.4節の解析のための前提 条件の「(2) 事故時の放射性物質の放出量」に基づくものとする。

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の30日間積算 放出量を表4-17及び表4-18に示す。

(b) 大気拡散条件

線量評価に使用する相対濃度(χ/Q)及び相対線量(D/Q)は,4.5節の線 量評価に使用する大気拡散評価の「(4) 評価結果」に示した,入退域時の評価結果 を使用する。

評価対象事象	項目	χ/Q又はD/Q
原子炉冷却材喪失	χ / Q (s/m ³)	1.2×10^{-6}
(仮想事故)	D∕Q (Gy/Bq)	5. 0×10^{-20}
主蒸気管破断 (仮相事故)	χ / Q (s/m ³)	4.9 $\times 10^{-4}$
(主蒸気隔離弁閉止後)	D∕Q (Gy/Bq)	2. 9×10^{-18}

b. 評価方法

入退域時の大気中へ放出された放射性物質による運転員の実効線量は,次に述べる よう素の吸入による内部被ばく及び希ガス等のガンマ線による外部被ばくの和として 計算する。

(a) よう素の吸入による内部被ばく

よう素の吸入による内部被ばくは、次式で評価する。

(30日間連続滞在の場合)

$$H_{I} = \int_{0}^{30 \, \text{H}} R \cdot H \infty \cdot \chi / Q \cdot Q_{I}(t) \, dt$$

ここで,

- H_I : よう素の内部被ばくによる実効線量 (Sv)
- R :呼吸率 (m³/s)
 - 4.4節の解析のための前提条件の「(5) よう素の線量換算係数
 及び呼吸率」の表 4-1 に示す成人活動時の呼吸率 1.2 m³/h を秒
 当りに換算して用いる。

- χ/Q :相対濃度 (s/m³)
- Q_I(t) :時刻 t における大気への放射能放出率 (Bq/s)

(I-131 等価量-成人実効線量係数換算)

(b) 希ガス等のガンマ線による外部被ばく
 希ガス等のガンマ線による外部被ばくは、次式で評価する。
 (30日間連続滞在の場合)

$$H_{\gamma} = \int_{0}^{30\,\text{H}} K \cdot D/Q \cdot Q_{\gamma}(t) \,dt$$

ここで,

H_γ : 希ガス等の外部被ばくによる実効線量 (Sv)
 K : 空気カーマから実効線量への換算係数 (1 Sv/Gy)
 D/Q : 相対線量 (Gy/Bq)
 Q_γ(t) : 時刻 t における大気への放射能放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

c. 評価結果

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時の入退域時の大 気中放射性物質による運転員の実効線量を評価した結果を表 4-19 及び表 4-20 に示 す。

表 4-17 原子炉冷却材喪失(仮想事故)時の放射性物質の大気への放出量

(30日間積算値)

核分裂生成物	放出量(Bq)	備考
希ガス (ガンマ線実効エネルギ 0.5 MeV 換算値)	2. 7×10^{16}	時々刻々の大気への
よう素 (I-131 等価量-成人実効線 量係数換算)	2. 3×10^{14}	成山平を30 日間積算 した値

表 4-18 主蒸気管破断(仮想事故)時の放射性物質の大気への放出量 (30 日間積算値)

(主蒸気隔離弁閉止後)

核分裂生成物	放出量 (Bq)	備考
希ガス及びハロゲン等 (ガンマ線実効エネルギ 0.5 MeV 換算値)	1.2×10^{14}	時々刻々の大気への
よう素 (I-131 等価量-成人実効線 量係数換算)	2. 5×10^{12}	成山平を 30 日间積昇 した値

表 4-19 原子炉冷却材喪失(仮想事故)時の大気中放射性物質による実効線量評価結果 (入退域時)

	項目	実効線量 (mSv)	備考
	希ガスのガンマ線によ る外部被ばく	1.4×10 ⁰	
30 日間 積算値	よう素の吸入による内 部被ばく	1.8×10 ⁰	-
	合 計	3. $2 \times 10^{\circ}$	
	希ガスのガンマ線によ る外部被ばく	1.5 × 10 ⁻²	30日間積算値に入退
直交替を考 慮した場合	よう素の吸入による内 部被ばく	2. 0×10^{-2}	域所要時間割合 (0.01111)*を掛け合
	合 計	3.5 $\times 10^{-2}$	わせた値

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく 評価方法」のb.項の入退域での被ばく評価方法による。

表 4-20 主蒸気管破断(仮想事故)時の大気中放射性物質による実効線量評価結果 (入退域時)

	項目	実効線量 (mSv)	備考
30 日間 積算値	希ガス及びハロゲン等 のガンマ線による外部 被ばく	3.5×10 ⁻¹	
	よう素の吸入による内 部被ばく	8.1×10 ⁰	_
	合 計	8.5×10 ⁰	
直交替を考 慮した場合	希ガス及びハロゲン等 のガンマ線による外部 被ばく	3.8×10 ⁻³	30日間積算値に入退 域所要時間割合 (0.01111)*を掛け合 わせた値
	よう素の吸入による内 部被ばく	9. 0×10^{-2}	
	合 計	9. 4×10^{-2}	

注記 *:4.4節の解析のための前提条件の「(4) 直交替を考慮した場合の被ばく 評価方法」の b. 項の入退域での被ばく評価方法による。 4.6.3 実効線量評価結果のまとめ

原子炉冷却材喪失(仮想事故)時及び主蒸気管破断(仮想事故)時における中央制御室の運転員の実効線量の内訳を表 4-21 及び表 4-22 に示す。

4.7 判断基準への適合性

事故時における中央制御室の運転員の被ばく評価結果は、「核原料物質又は核燃料物質の製 錬の事業に関する規則等の規定に基づく線量限度等を定める告示」第7条第1項における緊急 時作業に係る線量限度100 mSv 以下であることを確認した。

事故時における中央制御室の 運転員の実効線量(mSv)			
原子炉冷却材喪失 (仮想事故)	主蒸気管破断 (仮想事故)		
2. 9×10^{0}	1.7×10^{0}		

NT2 補② V-1-7-3 R0

事故後30日まで5直2交替で 室内作業を行うものとす 事故後30日まで5直2交替で 入退域するものとする。入 退域所要時間は、片道15分 裄 を仮定する。 篖 $\overset{\circ}{\mathcal{N}}$ 3. 5 $\times 10^{-2}$ 3. 4×10^{-2} 2. 0 \times 10 $^{-1}$ $1.6 imes 10^{-0}$ $1.8 imes 10^{-0}$ $1.0\! imes\!10^{-0}$ 1. 1×10^{0} 2.9 \times 10⁰ 1111111 ⊲⊡ (mSv)よう素の吸入による 1. 9×10^{-1} 2. $0\!\times\!10^{-2}$ 2. 0×10^{-2} 2. 1×10^{-1} 1. 9×10^{-1} 内部被ばく ÚH) I 刹 欬 実 希ガスのガンマ線に よる外部被ばく 3. 4×10^{-2} 1. 1×10^{-2} 1.5×10^{-2} $1.6\! imes\!10^{-0}$ $1.0\! imes\!10^{-0}$ 1. 0×10^{-0} $1.6 imes 10^{\ 0}$ 2. 7 \times 10 0 マ線及びスカイシャインガンマ線による彼ばく マ線及びスカイシャインガンマ線による被ぼく 大気中へ放出された放射性物質に 室内に外気から取り込まれた放射 性物質による被ばく 大気中へ放出された放射性物質に よる被ばく 建屋内放射性物質からの直接ガン 建屋内放射性物質からの直接ガン 包 <u>_</u>1 1111⊡ 1111111 鹄 \sim 111111 H ć ć 袯 よる被ばく ⊲⊓ 怒 経 室内作業時 入退域時 \sim H 被

原子炉冷却材喪失(仮想事故)時における中央制御室の運転員の実効線量の内訳 表 4-21

NT2 補② V-1-7-3 R0

事故後30日まで5直2交替で 室内作業を行うものとす 事故後30日まで5直2交替で 入退域するものとする。入 退域所要時間は、片道15分 裄 を仮定する。 篖 ŝ 4. 3×10^{-3} 1.3×10^{-2} 9. 4×10^{-2} 1.6×10^{-1} 2. 6×10^{-1} 1. 5×10^{-0} 1. 5×10^{-0} 1. 7×10^{-0} 11111 ⊲□ (mSv)よう素の吸入による 9. 0×10^{-2} 9. 0×10^{-2} 1.4×10^{-0} $1.4\! imes\!10^{\ 0}$ 1. 5×10^{-0} 内部被ばく ∎¶ I I I 刹 效 実 希ガスのガンマ線に よる外部被ばく 4. 3×10^{-3} 1.3×10^{-2} 3. 9×10^{-2} 5. 7×10^{-2} 1. 6×10^{-1} 3. 8×10^{-3} 1. 7×10^{-1} 2. 2×10^{-1} マ線及びスカイシャインガンマ線による被ばく マ線及びスカイシャインガンマ線によ 大気中へ放出された放射性物質に よる被ばく 室内に外気から取り込まれた放射 性物質による被ばく 大気中へ放出された放射性物質に よる被ばく 建屋内放射性物質からの直接ガン 建屋内放射性物質からの直接ガン 臼 -<u>1</u> 1111⊡ 뼒 11111 くげ 11111 ć ć 袯 る被ばく ⊲⊡ 路 経 室内作業時 \sim 入退域時 H 被

主蒸気管破断(仮想事故)時における中央制御室の運転員の実効線量の内訳 表 4-22

- 5. 中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価
- 5.1 判断基準

中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価にあたっては,平成25年6月 19日 原規技発第13061918号 原子力規制委員会決定「実用発電用原子炉に係る重大事故時の 制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」(以下「審査ガイド」 という。)に基づき,評価を行う。判断基準は,解釈の第74条の規定のうち,以下の項目を 満足することを確認する。

第74条(運転員が原子炉制御室にとどまるための設備)

- 2 第74条に規定する「運転員がとどまるために必要な設備」とは、以下に掲げる措置
 又はこれらと同等以上の効果を有する措置を行うための設備をいう。
 b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性について、次の要件を満
 - たすものであること。
 - ① 設置許可基準規則解釈第37条の想定する格納容器破損モードのうち,原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば、炉心の著しい損傷の後、格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能した場合)を想定すること。
 - ② 運転員はマスクの着用を考慮してもよい。ただしその場合、実施のための体制を 整備すること。
 - ③ 交替要員体制を考慮してもよい。ただしその場合は、実施のための体制を整備す ること。
 - ④ 判断基準は,運転員の実効線量が7日間で100 mSv を超えないこと。

5.2 想定事象

「想定する格納容器破損モードのうち,中央制御室の運転員の被ばく低減の観点から結果が 最も厳しくなる事故収束に成功した事故シーケンス」として,格納容器破損モード「雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損)」に至る可能性のある事故シーケンスで ある「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」(全交流動力電源喪失の重畳 を考慮)を想定する。東海第二発電所では,本事故シーケンスにおいても,格納容器ベントの 実施を遅延することができるよう,代替循環冷却系を整備する。しかし,被ばく評価において は、中央制御室の居住性評価を厳しくする観点から,代替循環冷却系を使用できず,格納容器 ベントを実施した場合を想定する。
5.3 被ばく経路

中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価では、次の被ばく経路による被 ばく線量を評価する。図 5-1 に、中央制御室の居住性に係る被ばく経路を示す。

- (1) 中央制御室内での被ばく
 - 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による 外部被ばく
 - ② 放射性雲中の放射性物質からのガンマ線による外部被ばく(クラウドシャイン)
 - ③ 地表面に沈着した放射性物質からのガンマ線による外部被ばく(グランドシャイン)
 - ④ 中央制御室内へ外気から取り込まれた放射性物質からのガンマ線による外部被ばく
 及び放射性物質の吸入摂取による内部被ばく
- (2) 入退域時の被ばく
 - ⑤ 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による 外部被ばく
 - ⑥ 放射性雲中の放射性物質からのガンマ線による外部被ばく(クラウドシャイン)及び放射性物質の吸入摂取による内部被ばく
 - ⑦ 地表面に沈着した放射性物質からのガンマ線による外部被ばく(グランドシャイン)
- 5.4 被ばく評価期間

中央制御室の運転員に係る被ばく評価期間は、事故発生後7日間とする。

5.5 運転員の勤務形態

運転員勤務体系としては、5直2交替とし、被ばく線量が最も厳しくなる運転員の勤務体系 を踏まえて中央制御室の滞在期間及び入退域に要する時間を考慮して評価する。想定する勤務 体系を表 5-1 に示す。

なお、入退域に要する時間は片道15分とする。

表 5-1 想定する勤務体系

	中央制御室の滞在時間
1直	8:00~21:45
2 直	21:30~8:15

	1日目	2 日 目	3日目	4日目	5日目	6日目	7日目
A班*	1直						
B班			1直	1直		2直	2直
C班	2直				1直	1直	
D班		2 直	2 直				1直
E班*		1直		2直	2直		

注記 *:事故直後に中央制御室に滞在している班(A班)に代わり,被ばくの平準 化のため2日目以降は日勤勤務の班(E班)が滞在するものとする。

イベント 経過時間(h)	▽ 炉心損傷発生 0		▽格納容 19	系器ベント
時刻	8:00	21:30	3:00	8:00
1直				E班
2直			C班	

NT2 補② V-1-7-3 R0

図5-1 中央制御室(炉心の著しい損傷)の運転員の被ばく経路

5.6 大気中への放出量評価

大気中に放出される放射性物質の量は、審査ガイドに従い設定する。

(1) 事故直前の炉内蓄積量

事故直前の炉内蓄積量を表 5-2 に示す。

炉内蓄積量の計算には、燃焼計算コードORIGEN2コードを使用し、単位熱出力当たりの炉内蓄積量(Bq/MW)に定格熱出力(3,293MW)を乗じて算出している。

- (2) 大気中への放出量
 - a. 有効性評価におけるソースターム解析結果

有効性評価におけるソースターム解析結果として,5.2節の想定事象で示した事故シ ーケンス「大破断LOCA+高圧炉心冷却失敗+低圧炉心冷却失敗」(全交流動力電源 喪失の重畳を考慮)を想定し,格納容器から原子炉建屋への漏えい及び原子炉建屋から 大気中への放出を考慮して実施したMAAP解析結果を使用する。

有効性評価のMAAP解析結果の格納容器内圧力及び温度の変化を図 5-2 及び図 5-3 に示す。

被ばく評価においては、本評価から得られるMAAP解析結果の、格納容器への放出 割合、格納容器から原子炉建屋への漏えい割合及び格納容器圧力逃がし装置への放出割 合のトレンドを使用する。

有効性評価におけるMAAP解析結果として,表 5-3 に評価期間中(7日間)の格納 容器から漏えいして原子炉建屋から大気中へ放出される放射性物質の割合及び格納容器 ベント時にサプレッション・チェンバのベントラインから格納容器圧力逃がし装置へ放 出される放射性物質の割合を示す。

また、これらの結果を使用した放射性物質の大気放出過程を図 5-4~図 5-7 に示す。

b. よう素の化学形態

よう素の化学形態は、Regulatory Guide 1.195*1に基づき下記のとおり設定する。

	よう素の化学形態
有機よう素	4 %
無機よう素	91 %
粒子状よう素	5 %

注記 *1:Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors", May 2003

c. 原子炉格納容器内での自然沈着(無機よう素)

原子炉格納容器内の無機よう素の除去効果は, CSE 実験及び Standard Review Plan 6.5.2^{*2}に基づき,原子炉格納容器内での自然沈着率を 9×10⁻⁴ (1/s) (原子炉格納容器 内の最大存在量から 1/200 まで)と設定する。

注記 *2:Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007

- d. サプレッション・プールのスクラビングによる除去(無機よう素)
 サプレッション・プールのスクラビングによる無機よう素の除染効果は、Standard
 Review Plan 6.5.5^{*3}に基づき DF=10 と設定する。
 - 注記 *3:Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007

e. 格納容器圧力逃がし装置による除去性能

格納容器圧力逃がし装置による放射性物質の除染係数は、下記のとおり設定する。

	除染係数
エアロゾル	1000
無機よう素	100
有機よう素	50

上記により評価した,原子炉建屋から大気中への放出量及び格納容器圧力逃がし装置を 経由した放出量を表 5-4 に示す。

核種グループ	炉内蓄積量(Bq)
希ガス類	約 2.2×10 ¹⁹
よう素類	約 2.9×10 ¹⁹
C s OH類	約 1.2×10 ¹⁸
S b 類	約 1.3×10 ¹⁸
T e O ₂類	約 6.8×10 ¹⁸
S r O類	約 1.3×10 ¹⁹
B a O類	約 1.2×10 ¹⁹
M o O 2類	約 2.5×10 ¹⁹
CeO ₂ 類	約 7.5×10 ¹⁹
L a 2O3類	約 5.5×10 ¹⁹

表 5-2 放射性物質の炉内蓄積量

表 5-3 有効性評価におけるソースターム解析結果

核種グループ	原子炉建屋への 漏えい割合	格納容器圧力逃がし 装置への放出割合
希ガス類	約 4.3×10 ⁻³	約 9.5×10 ⁻¹
C s I 類	約 6.3×10 ⁻⁵	約 1.1×10 ⁻⁶
C s OH類	約 3.2×10 ⁻⁵	約4.0×10 ⁻⁷
S b 類	約 6.8×10 ⁻⁶	約 9.0×10 ⁻⁸
T e O ₂類	約 6.8×10 ⁻⁶	約 9.0×10 ⁻⁸
S r O類	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸
B a O類	約 2.7×10 ⁻⁶	約 3.6×10 ⁻⁸
M o O 2類	約 3.4×10 ⁻⁷	約 4.5×10 ⁻⁹
C e O ₂類	約 6.8×10 ⁻⁸	約 9.0×10 ⁻¹⁰
L a 2O3類	約 2.7×10 ⁻⁸	約 3.6×10 ⁻¹⁰

表 5-4 放射性物質の大気放出量(7日積算)

(単位:Bq)

核種グループ	原子炉建屋から 大気中へ放出	格納容器圧力逃がし 装置を経由した放出	合 計
希ガス類	約 3.6×10 ¹⁶	約 8.9×10 ¹⁸	約 9.0×10 ¹⁸
よう素類	約 2.8×10 ¹⁵	約 7.3×10 ¹⁵	約 1.0×10 ¹⁶
C s OH類	約 3.8×10 ¹³	約 5.0×10 ⁸	約 3.8×10 ¹³
S b 類	約4.5×10 ¹²	約 2.6×10 ⁷	約4.5×10 ¹²
T e O ₂類	約 3.7×10 ¹³	約 4.4×10 ⁸	約 3.7×10 ¹³
S r O類	約 2.0×10 ¹³	約 1.7×10 ⁸	約 2.0×10 ¹³
B a O類	約 2.0×10 ¹³	約 2.1×10 ⁸	約 2.0×10 ¹³
M o O 2類	約 6.9×10 ¹²	約 8.4×107	約 6.9×10 ¹²
C e O 2類	約 4.3×10 ¹²	約 5.5×107	約 4.3×10 ¹²
La ₂ O ₃ 類	約 1.2×10 ¹²	約 1.2×107	約 1.2×10 ¹²

図 5-3 格納容器内温度の変化

R0

図 5-4 希ガスの大気放出過程

図 5-5 よう素の大気放出過程

図 5-6 セシウムの大気放出過程

図 5-7 その他核種の大気放出過程

5.7 大気拡散の評価

中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する相対濃度及び相対線 量は,「被ばく評価手法について(内規)」及び「気象指針」に基づき評価する。

- (1) 放射性物質の大気拡散放射性物質の大気拡散は、4.5節の大気拡散の評価の(1)項と同じ。
- (2) 建屋による巻き込みの評価条件
 建屋による巻き込みの評価条件は、4.5節の大気拡散の評価の(2)項と同じ。
- (3) 相対濃度及び相対線量の評価方法 相対濃度及び相対線量の評価方法は、4.5節の大気拡散の評価の(3)項と同じ。
- (4) 評価結果 中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する大気拡散評価条 件を表 5-5 に示す。

中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する相対濃度(χ/ Q)及び相対線量(D/Q)の評価結果を表 5-6 に示す。

表 5-5 中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する大 気拡散評価条件(1/2)

項目	評価条件	備考
気象条件	 東海第二発電所の 2005 年 4 月~ 2006 年 3 月までの 1 年間の気象デ ータ (排気筒放出) 排気筒付近の風を代表する標高約 148 mの風向,風速データを使用 (地上放出) 地上風を代表する標高 18 m の風 向,風速データを使用 	_
放出源及び放出原高さ (有効高さ)	原子炉建屋漏えい(地上放出) :地上0m 非常用ガス処理系排気筒からの放 出(排気筒放出) :地上95m 格納容器圧力逃がし装置からの放 出(原子炉建屋屋上からの放出) :地上55m	_
実効放出継続時間	1 時間	_
建屋の影響	非常用ガス処理系排気筒からの放出 考慮しない 原子炉建屋からの漏えい及び格納容 器圧力逃がし装置からの放出 考慮する	 放出源が排気筒の場合 は、放出源の高さが建屋 の高さの2.5倍以上となることから建屋の影響を 受けないものとして評価する。 放出源が建屋の場合には、建屋の影響を受けるものとして評価する。
大気拡散評価地点及び 評価距離	原子炉建屋漏えい 中央制御室中心 評価距離:10 m 建屋入口 評価距離:15 m 非常用ガス処理系排気筒からの放出 中央制御室中心 評価距離:100 m 建屋入口 評価距離:110 m 格納容器圧力逃がし装置からの放出 中央制御室中心 評価距離:55 m 建屋入口 評価距離:45 m	図 5-8 参照

表 5-5 中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する大 気拡散評価条件(2/2)

項目	評価条件	備考
着目方位	原子炉建屋漏えい 中央制御室 S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位) 建屋入口 S, SSW, SW, WSW, W, WNW, NW, NNW, N (9 方位) 非常用ガス処理系排気筒からの放出 中央制御室 W (1 方位) 建屋入口 W (1 方位) 建屋入口 W (1 方位) 建屋入口 SW, WSW, W, WNW, NW, NNW, N, NNE, NE (9 方位) 建屋入口 SSW, SW, WSW, W, WNW, NW, NNW, N, NNE	図 5-9~図 5-14 参照
建屋の投影面積	3000 m ² (原子炉建屋, 短手方向)	図 5-15 参照
巻き込みを生じる建屋の 形状係数	1/2	気象指針より

放出位置		中央制御室中心	建屋入口
百二后建民	$\chi \swarrow \mathbf{Q}$ (s/m ³)	8. 3×10^{-4}	8. 2×10^{-4}
尿丁炉建座	D∕Q (Gy/Bq)	2.9 $\times 10^{-18}$	2.9 $\times 10^{-18}$
非常用ガス処理系	$\chi \swarrow \mathbf{Q}$ (s/m ³)	3. 0×10^{-6}	3. 0×10^{-6}
排気筒	D∕Q (Gy/Bq)	8.8×10 ⁻²⁰	9. 0×10^{-20}
格納容器圧力逃が	$\chi \swarrow \mathbf{Q}$ (s/m ³)	3. 7×10^{-4}	3. 7×10^{-4}
し装置排気筒	D⁄Q (Gy/Bq)	8.8×10 ⁻¹⁹	9. 4×10^{-19}

表 5-6 中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価に使用する 相対濃度(χ/Q)及び相対線量(D/Q)評価結果

図 5-8 炉心の著しい損傷が発生した場合における放出源と評価地点の位置関係(1/2)

図 5-8 炉心の著しい損傷が発生した場合における放出源と評価地点の位置関係(2/2)

88

図 5-12 非常用ガス処理系排気筒からの放出時の評価方位(評価点:建屋入口)

NT2 補② V-1-7-3 R0

東(西)面

南(北)面

図 5-15 原子炉建屋断面積(投影面積)

- 5.8 実効線量の評価
 - 5.8.1 室内作業時の被ばく
 - (1) 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく 炉心の著しい損傷が発生した場合に原子炉建屋内に浮遊する放射性物質からの直接ガ ンマ線及びスカイシャインガンマ線による運転員の実効線量は、施設の位置、建屋の配 置及び形状等から評価する。

以下,評価条件及び評価結果を示す。

- a. 評価条件
 - (a) 線源強度

線源強度は、5.6節の大気中への放出量評価により評価した原子炉建屋内の存在 量に基づき、次のとおり求める。

- ① 炉心の著しい損傷が発生した場合に炉心から格納容器内に放出された放射性 物質は、格納容器から原子炉建屋(二次格納施設)内に放出される。この二 次格納施設内の放射性物質を直接ガンマ線及びスカイシャインガンマ線の線 源とする。
- ② 二次格納施設内の放射性物質は自由空間内に均一に分布するものとする。

なお,評価に使用する積算線源強度は表 5-7 に示すように,5.5 節の運転員の勤務形態に基づき,7日間の各班の中央制御室内の滞在期間ごとに求める。

(b) 幾何条件

中央制御室内での被ばく評価に係る直接ガンマ線及びスカイシャインガンマ線の 評価モデルは図 4-14 及び図 4-15 と同一である。

(c) 評価点

評価点は図4-14と同一である。

- (d) 計算機コード
 直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャイン
 ガンマ線は、ANISN及びG33-GP2Rコードを用いる。
- b. 評価結果

以上の条件に基づき評価した原子炉建屋内の放射性物質からの直接ガンマ線及びス カイシャインガンマ線による実効線量の結果を表 5-8 に示す。

							~	ガンマ線積算後	泉源強度(-)						
	代表	1	Ш	0	Ш	n .	Ш	4	Ш	5	Ш	9	Ш	2	
栽	エネルギ	。 · ·	C班	E班	D班	B班		50,1	E班	C班 2011	<u> 王班</u>	C班	B班 	D班	B班
	(MeV)	0 P	13. 5 h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	24 h \sim	37. b h ~	48 h \sim	$\frac{1}{2}$ h \sim	\sim 4 Z J	85. 5 h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ao n ∞	109. 5 h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	120 h	133. 5 h ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	144 h \sim	n c./cl
		13.75 h	24.25 h	37.75 h	48.25 h	1 61.75 h	72.25 h	85.75 h	96. 25 h	109.75 h	120.25 h	133. 75 h	144.25 h	157.75 h	168 h
1	0.01	3. 6×10^{-18}	1.2×10^{-19}	1. 1×10^{-19}	4. 5×10^{-18}	3. 2×10^{-18}	1.4 $\times 10^{18}$	1.0×10^{-18}	4. 5×10^{-17}	3. 3×10^{-17}	1.5 $\times 10^{17}$	1.1×10^{17}	4. 7×10^{-16}	3.5 $\times 10^{-16}$	1. 5×10^{-16}
2	0.02	4. 0×10^{-18}	1. 4×10^{-19}	1.2×10^{-19}	5.0×10 ¹⁸	3. 6×10^{-18}	1. 6×10^{-18}	1.1×10^{-18}	5.0×10 ¹⁷	3. 7×10^{-17}	1. 6×10^{-17}	1.2×10^{-17}	5. 3×10^{-16}	3.9 $\times 10^{-16}$	1. 7×10^{-16}
3	0.03	4.9 $\times 10^{18}$	1. 6×10^{-19}	1.4×10^{-19}	5.7 $\times 10^{-18}$	4.0×10 ¹⁸	1. 7×10^{-18}	1.2×10^{-18}	5. 1×10^{-17}	3. 6×10^{-17}	1.5×10^{17}	1. 1×10^{-17}	4. 6×10^{-16}	3.3×10^{-16}	1. 4×10^{-16}
4	0.045	5. 7×10^{-19}	2. 6×10^{-20}	2.5 $\times 10^{20}$	1.1×10^{20}	8. 2×10^{-19}	3.6 $\times 10^{19}$	2.7 $\times 10^{-19}$	1.2×10^{-19}	8. 7×10^{-18}	3.9 $\times 10^{-18}$	2.8×10^{-18}	1.2×10^{-18}	9. 1×10^{-17}	3. 9×10^{-17}
5	0.06	2. 7×10^{17}	7.4 $\times 10^{17}$	5. 2×10^{17}	1.8×10^{17}	1. 1×10^{-17}	4. 3×10^{16}	3.0×10^{-16}	1.3×10^{16}	9. 3×10^{-15}	4. 1×10^{15}	3. 0×10^{-15}	1.3×10^{15}	9.5 $\times 10^{-14}$	4. 1×10^{-14}
9	0.07	1.8 $\times 10^{17}$	4.9 \times 10 ¹⁷	3.5 $\times 10^{17}$	1.2×10^{17}	7. 3×10^{-16}	2.9 $\times 10^{16}$	2.0×10^{-16}	8.6×10 ¹⁵	6. 2×10^{15}	2.8 $\times 10^{15}$	2.0 $\times 10^{15}$	8. 6×10^{-14}	6. 4×10^{-14}	2. 8×10^{-14}
7	0.075	8. 0×10^{-18}	3. 7×10^{-19}	3.6 $\times 10^{-19}$	1.6×10^{-19}	1. 2×10^{-19}	5.4 $\times 10^{18}$	4.0 $\times 10^{-18}$	1.8×10^{18}	1.3×10^{-18}	5.8 $\times 10^{17}$	4. 2×10^{17}	1.9×10^{17}	1.4×10^{17}	5. 9×10^{-16}
8	0.1	4. 0×10^{19}	1.8×10^{20}	1.8×10^{20}	8. 1×10^{-19}	6. 1×10^{-19}	2.7 $\times 10^{19}$	2.0×10^{-19}	8.8×10^{-18}	6.5×10^{-18}	2.9×10^{-18}	2. 1×10^{-18}	9. 3×10^{-17}	6.8×10^{-17}	2. 9×10^{17}
6	0.15	2. 7×10^{17}	4.9 × 10 ¹⁷	3.3×10^{17}	1. 1×10^{17}	6.8×10^{-16}	2.7 $\times 10^{-16}$	1.8×10^{-16}	7.7 $\times 10^{15}$	5. 4×10^{-15}	2.4×10^{15}	1.6×10^{15}	6.9×10^{-14}	5. 0×10^{-14}	2. 2×10^{-14}
10	0.2	2. 5×10^{-19}	8. 5×10^{-19}	4.9 $\times 10^{19}$	1. 1×10^{-19}	4. 1×10^{-18}	9. 0×10^{17}	3. 7×10^{-17}	9.8×10^{16}	5. 2×10^{-16}	1.9×10^{16}	1.2×10^{-16}	4. 5×10^{-15}	3. 3×10^{-15}	1. 4×10^{15}
11	0.3	4.9 $\times 10^{19}$	1.7×10^{20}	9.8 $\times 10^{19}$	2.2×10^{-19}	8. 2×10^{-18}	1.8×10^{18}	7.3×10^{17}	2.0×10^{17}	1.0×10^{17}	3.8×10^{-16}	2.4 $\times 10^{-16}$	9. 0×10^{-15}	6.5×10^{-15}	2. 8×10^{15}
12	0.4	3. 5×10^{-18}	8.8×10^{18}	7. 4×10^{-18}	3. 2×10^{-18}	2. 3×10^{-18}	1.0×10^{18}	7.6 $\times 10^{17}$	3. 4×10^{-17}	2. 5×10^{-17}	1.2×10^{17}	8. 2×10^{-16}	3. 1×10^{-16}	2.3 $\times 10^{-16}$	1. 0×10^{-16}
13	0.45	1.8 $\times 10^{18}$	4. 4×10^{-18}	3. 7×10^{-18}	1. 6×10^{-18}	1. 1×10^{-18}	5. 1×10^{-17}	3.8×10^{17}	1. 7×10^{-17}	1. 3×10^{-17}	5.8×10 ¹⁶	4. 1×10^{-16}	1. 6×10^{-16}	1.2×10^{-16}	5. 2×10^{-15}
14	0.51	5.8 $\times 10^{-18}$	1. 4×10^{-19}	$1.0 imes 10^{-19}$	3. 6×10^{-18}	2. 3×10^{-18}	9. 1×10^{-17}	6. 2×10^{-17}	2.6×10 ¹⁷	1. 7×10^{-17}	7.8 $\times 10^{-16}$	4. 7×10^{-16}	1.8×10 16	1.3×10^{-16}	5. 4×10^{-15}
15	0.512	1.9×10^{17}	4. 7×10^{-17}	3. 4×10^{-17}	1.2×10^{17}	7.7 $\times 10^{-16}$	3. 0×10^{-16}	2.1 \times 10 ¹⁶	8.5×10 ¹⁵	5.8×10 15	2.6×10^{15}	1.6×10^{-15}	6. 0×10^{-14}	4. 3×10^{-14}	1.8 $\times 10^{-14}$
16	0.6	8. 4×10^{-18}	2. 1×10^{-19}	1.5×10^{-19}	5. 3×10^{-18}	3. 4×10^{-18}	1. 3×10^{-18}	9.0 $\times 10^{17}$	3. 7×10^{-17}	2. 6×10^{-17}	1.1×10^{17}	6.8 $\times 10^{-16}$	2. 6×10^{-16}	1.9×10^{-16}	7. 9×10^{15}
17	0.7	9. 6×10^{18}	2. 4×10^{-19}	1.7×10^{-19}	6.0×10^{-18}	3.8 $\times 10^{18}$	1. 5×10^{18}	1.0×10^{-18}	4.3×10^{17}	2. 9×10^{-17}	1.3×10^{17}	7.8 $\times 10^{-16}$	3. 0×10^{-16}	2. 1×10^{-16}	8. 9×10^{15}
18	0.8	2.9 $\times 10^{18}$	6.9×10^{18}	5.8 $\times 10^{18}$	2. 4×10^{-18}	1. 7×10^{-18}	7.0×10 ¹⁷	4.9 $\times 10^{17}$	2. 1×10^{-17}	1. 4×10^{-17}	6.5×10^{-16}	3.9×10^{-16}	1.5 $\times 10^{-16}$	1.1×10^{-16}	4. 4×10^{15}
19	1.0	5.9 $\times 10^{18}$	1. 4×10^{-19}	1.2×10^{-19}	4.8 × 10 18	3. 3×10^{-18}	1. 4×10^{18}	9. 7×10^{17}	4. 1×10^{17}	2. 9×10^{-17}	1.3×10^{17}	7.7 $\times 10^{-16}$	3. 0×10^{-16}	2. 1×10^{-16}	8.8×10 ¹⁵
20	1.33	3. 1×10^{-18}	4.9 $\times 10^{18}$	3. 2×10^{-18}	1. 1×10^{-18}	7. 4×10^{-17}	3. 0×10^{-17}	2. 1×10^{-17}	8.8×10 ¹⁶	6. 1×10^{-16}	2. 7×10^{-16}	1.6 $\times 10^{-16}$	6. 2×10^{15}	4.4 $\times 10^{15}$	1. 8×10^{-15}
21	1.34	9. 2×10^{-16}	1. 5×10^{-17}	9.6 \times 10 ¹⁶	3. 4×10^{-16}	2. 3×10^{-16}	9. 2×10^{15}	6. 4×10^{-15}	2. 7×10^{-15}	1. 8×10^{15}	8. 3×10^{-14}	4.9 $\times 10^{-14}$	1.9 $\times 10^{-14}$	1.3×10^{-14}	5. 6×10^{-13}
22	1.5	1.5×10^{-18}	2. 4×10^{-18}	1.5×10^{-18}	5.5×10 17	3. 6×10^{-17}	1.5 $\times 10^{17}$	1. 0×10^{-17}	4. 3×10^{-16}	2. 9×10^{-16}	1.3×10^{-16}	7.8×10^{15}	3. 0×10^{-15}	2. 1×10^{15}	8. 9×10^{-14}
23	1.66	5. 2×10^{17}	5. 0×10^{-17}	2. 0×10^{-17}	5. 4×10^{-16}	3. 3×10^{-16}	1. 3×10^{-16}	9. 0×10^{-15}	3.8×10 ¹⁵	2. 6×10^{-15}	1.2×10^{15}	7.0 \times 10 ¹⁴	2.7 $\times 10^{-14}$	1.9 $\times 10^{-14}$	7.8×10 ¹³
24	2.0	1. 1×10^{18}	1. 1×10^{-18}	4. 2×10^{17}	1. 1×10^{-17}	6.9 $\times 10^{-16}$	2.8 $\times 10^{-16}$	1.9×10^{-16}	8. 0×10^{-15}	5. 6×10^{-15}	2.5×10^{15}	1.5 $\times 10^{15}$	5.7 $\times 10^{-14}$	4. 0×10^{-14}	1. 7×10^{-14}
25	2.5	3. 5×10^{-18}	2. $1\!\times\!10^{-18}$	4. 2×10^{17}	1. 1×10^{-17}	7.6×10 ¹⁶	3. 2×10^{-16}	2. 2×10^{-16}	9. 3×10^{-15}	6. 5×10^{-15}	3.0×10^{15}	1. 7×10^{-15}	$6.6 imes 10^{-14}$	4. 6×10^{-14}	1. 9×10^{-14}
26	3.0	1.2×10^{17}	2.9 × 10 ¹⁶	7.9 \times 10 ¹⁵	2. 6×10^{-15}	1.8 $\times 10^{15}$	7.7 $\times 10^{-14}$	5.4 $\times 10^{-14}$	2.3×10^{-14}	1. 6×10^{-14}	7. 3×10^{-13}	4. 3×10^{-13}	1. $6 imes 10^{-13}$	1.2×10^{-13}	4.8 × 10 ¹²
27	3.5	1. 4×10^{15}	3. 4×10^{-13}	3. 4×10^{11}	9. 2×10^{10}	7. 1×10^{-10}	3. 3×10^{-10}	2.6×10 ¹⁰	1.2×10^{-10}	9. 5×10^{-9}	4.5 $\times 10^{9}$	3. 7×10^{-9}	$1.9 imes 10^9$	1.6×10^{-9}	7.9 \times 10 ⁸
28	4.0	1. 4×10^{15}	3. 4×10^{-13}	3. 4×10^{11}	9. 2×10^{10}	7. 1×10^{-10}	3. 3×10^{-10}	2.6 $\times 10^{-10}$	1.2×10^{10}	9. 5×10^{-9}	4.5×10^{9}	3.7 $\times 10^{9}$	1.9×10^{9}	1.6×10^{-9}	7.9 $\times 10^{8}$
29	4.5	3.9×10^{5}	2.5 \times 10 ⁵	1.9×10^{5}	9. 3×10^{4}	7.3×10^{-4}	3.5 $\times 10^{-4}$	2.8×10^{-4}	1.3×10^{-4}	1. 1×10^{-4}	5.3×10^{-3}	4.4×10^{-3}	2.3×10^{-3}	2. 0×10^{-3}	1.0×10^{3}
30	5.0	3.9×10^{5}	2.5 $\times 10^{5}$	1.9×10^{5}	9.3 $\times 10^{4}$	7.3×10^{4}	3.5 $\times 10^{4}$	2.8×10^{4}	1.3×10^{-4}	1. 1×10^{-4}	5.3×10^{-3}	4.4×10^{-3}	2.3×10^{-3}	2. 0×10^{-3}	1.0×10^{3}
31	5.5	3.9 \times 10 ⁵	2.5 \times 10 ⁵	1.9×10^{5}	9. 3×10^{4}	7.3×10^{-4}	3.5 $\times 10^{-4}$	2.8×10^{-4}	1.3×10^{-4}	1. 1×10^{-4}	5.3×10^{-3}	4.4×10^{-3}	2.3×10^{-3}	2. 0×10^{-3}	1.0×10^{3}
32	6.0	3.9×10^{5}	2.5 \times 10 ⁵	1.9×10^{5}	9. 3×10^{4}	7.3×10^{-4}	3.5 $\times 10^{4}$	2.8×10^{4}	1.3×10^{4}	1. 1×10^{-4}	5.3×10^{-3}	4.4 $\times 10^{3}$	2. 3×10^{-3}	2. 0×10^{-3}	1.0×10^{3}
33	6.5	4. 5×10^{-4}	2.8 $\times 10^{-4}$	2. 2×10^{-4}	1. 1×10^{4}	8. 4×10^{-3}	4. 0×10^{-3}	3.2×10^{-3}	1.5×10^{-3}	1.2×10^{-3}	6.0×10^{2}	5. 0×10^{2}	$2.6 imes 10^2$	2. 3×10^{-2}	1.2×10^{2}
34	7.0	4. 5×10^{-4}	2.8 \times 10 ⁴	2. 2×10^{-4}	1.1×10^{-4}	8. 4×10^{-3}	4. 0×10^{-3}	3.2×10^{-3}	1.5×10^{-3}	1.2×10^{-3}	$6.0 imes 10^{-2}$	5.0 $\times 10^{2}$	2. 6×10^{-2}	2. 3×10^{-2}	1.2×10^{2}
35	7.5	4. 5×10^{-4}	2.8 \times 10 ⁴	2.2 \times 10 ⁴	1.1×10^{4}	8. 4×10^{-3}	4. 0×10^{-3}	3.2×10^{-3}	1.5×10^{-3}	1.2×10^{-3}	6.0×10^{-2}	5.0 $\times 10^{2}$	2.6×10^{-2}	2. 3×10^{-2}	1. 2×10^{2}
36	8.0	4. 5×10^{-4}	2.8 \times 10 ⁴	2.2 \times 10 ⁴	1. 1×10^{-4}	8. 4×10^{-3}	4. 0×10^{-3}	3.2×10^{-3}	1.5×10^{-3}	1.2×10^{-3}	$6.0 imes 10^{-2}$	5.0 $\times 10^{2}$	$2.6 imes 10^2$	2. 3×10^{-2}	1. 2×10^{2}
37	10.0	1. 4×10^{4}	8. 7×10^{-3}	6.9 $\times 10^{-3}$	3. 3×10^{-3}	2. 6×10^{-3}	1.2×10^{-3}	9.8 $\times 10^{-2}$	4.7 $\times 10^{2}$	3.8 $\times 10^{-2}$	1.9×10^{2}	1.5×10^{-2}	8. 0×10^{-1}	6.9 $\times 10^{-1}$	3. 6×10^{-1}
38	12.0	$6.9 imes 10^3$	4. 4×10^{-3}	3. 4×10^{-3}	1.6×10^{-3}	1.3×10^{-3}	6. 2×10^{2}	4.9×10^{-2}	2.4 $\times 10^{2}$	1. 9×10^{-2}	9. 3×10^{-1}	7. 7×10^{-1}	4. 0×10^{-1}	3. 5×10^{-1}	1.8 \times 10 ¹
39	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 5-7 直接ガンマ線及びスカイシャインガンマ線評価用線源強度(室内作業時)

RO
-7-3
V-1
補②
NT2

/									
/					実効線量	(mSv)			
		1 🗄	2 II	3日	4 B	5 H	6 ∃	日 2	습 랆
	直接ガンマ線	7.8 \times 10 ⁻¹							7.8 × 10 ⁻¹
A班	スカイシャインガンマ線	1. 4×10^{-4}							1. 4×10^{-4}
	合書	7.8 $\times 10^{-1}$							7.8 × 10 ⁻¹
	直接ガンマ線			4.9 $\times 10^{-2}$	1. 4×10^{-2}		4. 2×10^{-4}	1.2 \times 10 ⁻⁴	6. 3×10^{-2}
B班	スカイシャインガンマ線			3. 9×10^{-5}	1. 1×10^{-5}		3. 3×10^{-7}	9.8 $\times 10^{-8}$	5. 0×10^{-5}
	合計			4. 9×10^{-2}	1. 4×10^{-2}		4. 2×10^{-4}	1. 2×10^{-4}	6. 3×10^{-2}
	直接ガンマ線	6. 0×10^{-1}				4. 1×10^{-3}	1. 1×10^{-3}		6. 0×10^{-1}
C 班	スカイシャインガンマ線	2. 5×10^{-4}				3. 1×10^{-6}	8. 5×10^{-7}		2. 5×10^{-4}
	合計	6. 0×10^{-1}				4. 1×10^{-3}	1. 1×10^{-3}		6. 0×10^{-1}
	直接ガンマ線		7. 4×10^{-2}	2. 0×10^{-2}				2.9 $\times 10^{-4}$	9. 4×10^{-2}
D班	スカイシャインガンマ線		6. 0×10^{-5}	1. 6×10^{-5}				2. 3×10^{-7}	7. 6×10^{-5}
	合計		7. 4×10^{-2}	2. 0×10^{-2}				3. 0×10^{-4}	9. 4×10^{-2}
	直接ガンマ線		2. 3×10^{-1}		5. 9×10^{-3}	1. 8×10^{-3}			2. 3×10^{-1}
日班	スカイシャインガンマ線		1. 7×10^{-4}		4. 5×10^{-6}	1. 4×10^{-6}			1. 7×10^{-4}
	\ T T T T		2. 3×10^{-1}		5. 9×10^{-3}	1.8×10^{-3}			2. 3×10^{-1}

表 5-8 原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による実効線量(室内作業時)

(2) 放射性雲中の放射性物質のガンマ線による被ばく

大気中に放出された放射性物質からのガンマ線による中央制御室内での運転員の外部 被ばく線量を以下に評価する。

- a. 評価条件
 - (a) 放射性物質の放出量

放射性物質の大気中への放出量は、5.6節の大気中への放出量評価に基づくもの とする。

(b) 大気拡散条件

線量評価に使用する相対線量(D/Q)は, 5.7節の大気拡散の評価の「(4) 評価結果」に示した中央制御室中心における評価結果を使用する。

放出	箇所	D∕Q (Gy∕Bq)
原子炉建屋からの	原子炉建屋漏えい (地上放出)	2.9×10 ⁻¹⁸
放出	非常用ガス処理系排 気筒(排気筒放出)	8.8×10 ⁻²⁰
格納容器圧力逃 (建屋屋	がし装置排気口 上放出)	8.8×10 ⁻¹⁹

b. 評価方法

大気中に放出された放射性物質からのガンマ線による室内作業時の外部被ばく線量 は、大気中への放出量に相対線量を乗じて計算した値に、中央制御室遮蔽による減衰 効果を考慮して計算する。

(7日間連続滞在の場合)

$$H_{\gamma}^{i} = \int_{0}^{7 \exists} \mathbf{K} \cdot \mathbf{D} \swarrow \mathbf{Q} \cdot \mathbf{Q}_{i} \quad (t) \cdot \mathbf{F} \quad (\mathbf{x}) \quad dt$$

ここで,

- Hⁱ_v : 核種 i のガンマ線による外部被ばく線量 (Sv)
- K : 空気カーマから実効線量への換算係数(1 Sv/Gy)
- D/Q :相対線量 (Gy/Bq)
- Q.(t) :時刻 t における核種 i の大気中への放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

F (x) : 中央制御室遮蔽厚さxにおける減衰率(-)

ここで、中央制御室遮蔽厚さ(コンクリート 39.5 cm)における減衰率は、大気中 への放出量を線源として、QAD-CGGP2Rコードにより計算する。

	対象核種	原子炉建屋からの放出	格納容器圧力逃がし装 置からの放出
コンクリート	希ガス	4×10^{-2}	8×10^{-3}
の減衰率	希ガス以外	5×10^{-2}	4×10^{-2}

c. 評価結果

放射性雲中の放射性物質からのガンマ線による中央制御室内での実効線量を表 5-9 に示す。 NT2 補② V-1-7-3 R0

╞								
				実効線量	t (mSv)			
$1 \exists$		$2 \exists$	3 ⊟	$4 \exists$	5 ∃	6 ∃	7日	습랆
9. 6×10^{-1}								9. 6×10^{-1}
			2. 3×10^{-3}	6.3×10^{-4}		2. 6×10^{-5}	7.9 \times 10 ⁻⁶	3. 0×10^{-3}
1. 4×10^{-1}					1. 9×10^{-4}	$6.0 imes 10^{-5}$		1. 4×10^{-1}
3.	3.	7×10^{-3}	9. 2×10^{-4}				1.9 \times 10 ⁻⁵	4. 6×10^{-3}
1.	1.	0×10^{-2}		2. 7×10^{-4}	8. 3×10^{-5}			1. 1×10^{-2}

表 5-9 放射性雲中の放射性物質からのガンマ線による外部被ばく線量(室内作業時)

(3) 室内に外気から取り込まれた放射性物質による被ばく

評価期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内へ取り込まれる。中央制御室内に取り込まれた放射性物質のガンマ線による外部被ばく及び吸入 摂取による内部被ばくの合計値として実効線量を評価する。

- a. 評価条件
 - (a) 放射性物質の放出量

放射性物質の大気中への放出量は、5.6節大気中への放出量評価に基づくものと する。

(b) 大気拡散条件

線量評価に使用する相対濃度(χ/Q)は, 5.7節の大気拡散の評価の「(4) 評価 結果」に示した中央制御室中心における評価結果を使用する。

放出	箇所	$\chi \nearrow Q$ (s/m ³)
原子炉建屋からの	原子炉建屋漏えい (地上放出)	8.3 $\times 10^{-4}$
放出	非常用ガス処理系排 気筒(排気筒放出)	3. 0×10^{-6}
格納容器圧力逃 (建屋屋	がし装置排気口 上放出)	3. 7×10^{-4}

(c) 中央制御室換気系条件
 中央制御室換気系条件を表 5-10 に示す。

(d) 中央制御室待避室の効果

格納容器ベント時の運転員の被ばくを低減する対策として,中央制御室内に中央 制御室待避室(以下「待避室」という。)を設置する。ベント実施時には待避室内 に待避する。また,待避室内は空気ボンベにより5時間加圧する。

被ばく評価に使用する待避室による減衰率は、事故時の中央制御室バウンダリ内の最大放射能濃度を線源として、QAD-CGGP2Rコードにより計算する。

	対象核種	待避室 (コンクリート 39.5 cm)
浦幸家	希ガス	$6 imes 10^{-3}$
侧衣竿	希ガス以外	4×10^{-2}

(e) マスク着用の効果

中央制御室内ではマスク着用を考慮する。マスクの除染係数は50とし,着用期間 は事故直後から3時間とする。 b. 評価方法

事故発生により大気中に放出された放射性物質は,中央制御室換気系により室内に 取り込まれる。

以下に、これらの中央制御室内放射能濃度及び線量評価方法を示す。

(a) 室内放射能濃度の評価

室内の放射能濃度は、次式により評価する。

$$\frac{\mathrm{d}(\mathbf{V}\cdot\mathbf{C}_{i}(\mathbf{t}))}{\mathrm{d}\mathbf{t}} = (1-\eta)\cdot\mathbf{C}_{i}^{0}(\mathbf{t})\cdot\mathbf{f}_{1} + \mathbf{C}_{i}^{0}(\mathbf{t})\cdot\mathbf{f}_{2}$$
$$-\mathbf{C}_{i}(\mathbf{t})\cdot(\mathbf{f}_{1}+\mathbf{f}_{2}+\eta\cdot\mathbf{F}_{R}) - \lambda_{i}\cdot\mathbf{V}\cdot\mathbf{C}_{i}(\mathbf{t})$$

ここで,

- C_i(t) :時刻 t における中央制御室内の核種 i の濃度 (Bq/m³)
- V : 中央制御室換気系処理空間容積 (m³)
- η :非常用フィルタの除去効率 (-)
- $C_i^0(t)$:時刻 t における外気取入れ口での核種 i の濃度 (Bq/m³) $C_i^0(t) = Q_i(t) \cdot \chi / Q$
- f₁ :外気取り込み量 (m³/s)
- f₂ : 外気リークイン量 (m³/s)
- F_R :閉回路循環運転流量(m³/s)
- λ: :核種 i の崩壊定数 (s⁻¹)
- Q_i(t):時刻 t における大気中への核種 i の放出率 (Bq/s)

χ/Q :相対濃度 (s/m³)

(b) 実効線量の評価

室内に取り込まれた放射性物質による実効線量は、次に述べる吸入摂取による内 部被ばく及びガンマ線による外部被ばくの和として計算する。

イ. 放射性物質の吸入摂取による内部被ばく
 放射性物質の吸入摂取による内部被ばくは、次式で評価する。
 (7日間連続滞在の場合)

$$H_{I}^{i} = \int_{0}^{7_{H}} R \cdot H_{\infty}^{i} \cdot C_{i}(t) dt$$

ここで、
 $H_{I}^{i} : 核種 i の内部被ばくによる実効線量 (Sv)$
 $R : 呼吸率 (m3/s)$

(成人活動時の呼吸率 1.2 m³/h を秒当たりに換算して用いる。)

Hⁱ [∞] : 核種 i の吸入摂取に対する成人実効線量換算係数 (Sv/Bq)

 $C_i(t)$:時刻 t における核種 i の室内放射能濃度 (Bq/m³)

ロ. 放射性物質のガンマ線による外部被ばく

室内容積を等価な半球状とし、半球の中心に運転員がいるものとする。室内に 取り込まれた放射性物質のガンマ線による実効線量は、次式で計算する。

(7日間連続滞在の場合)

 $H_{\gamma}^{i} = \int_{0}^{7 \, \text{H}} 6.2 \times 10^{-14} \cdot E_{\gamma} \cdot \left\{ 1 - e^{-\mu \, \text{r}} \right\} \cdot C_{\gamma}^{i}(t) \, \text{dt}$

ここで,

Hⁱ: i 核種 i のガンマ線外部被ばくによる実効線量(Sv)

$$6.2 \times 10^{-14}$$
:サブマージョンモデルによる換算係数 $\left(\frac{\text{dis} \cdot \text{m}^3 \cdot \text{Gy}}{\text{MeV} \cdot \text{Bq} \cdot \text{s}}\right)$

E₁:ガンマ線エネルギ(0.5 MeV/dis)

r : 室内空間と等価な半球の半径 (m)

$$r = \sqrt[3]{\frac{3 \cdot V}{2 \cdot \pi}}$$

V : 中央制御室内容積 (m³)

 $C_{_{\gamma}}^{\,i}(t)$:時刻 t における核種 i の室内放射能濃度 (Bq/m³)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

c. 評価結果

外気から中央制御室内に取り込まれた放射性物質による実効線量を表 5-11 (マス ク着用あり)及び表 5-12 (マスク着用なし)に示す。

RO
-7-3
V^{-1}
補②
NT2

世
Ŵ
釆
K
換
\mathbb{H}
渔
壍
₽
₽
10
Ξ.
à
表

項目	条件	備
外気取り込み方法	間欠取り込み (27時間隔離,3時間取入)	閉回路循環運転が27時間継続した後に3時間の外 気取り込みを仮定。
中央制御室内容積	2800 m ³	設計値から保守的に設定
閉回路循環運転流量	$5100 \text{ m}^3/\text{h}$	設計値
外気取り込み量	$3400 \text{ m}^3/\text{h}$	設計値
チャコールフィングな	95 %	フィルタユニットの設計値(チャコールフィルカ・ 4.5 4.5 - 01.01.1. 言葉発酵アロ・1.5 - 2.5
ノイルタ刻率 高性能粒子 フィルタ	% 66	ター刻率:31 %以上,高性能松ナノイルタ: 99.97 %以上)から保守的に設定。
中央制御室バウンダリへの外 気の直接流入率	非常用換気系作動前: 2800 ^{m3} /h(1.0回/h) 非常用換気系作動後: 2800 ^{m3} /h(1.0回/h)	空気流入率測定試験結果である0.46回/hから保 守的に1回/hと設定。
事故時の非常用換気系作動開 始時間	事故後2時間	全交流動力電源喪失を考慮し、代替電源からの 電源供給開始時間から保守的に設定。

	5年21日 へ 行(44年				実効線量	責 (mSv)			
	(校14、77) 思	$1 \exists$	2日	3日	$4\mathrm{B}$	12	8∃	日上	냳 문
	外部被试く	5. 3×10^{-0}							5. 3×10^{-0}
AJE	内部破试く	4. 0×10^{-1}							4. 0×10^{-1}
	合	4. 6×10^{-1}							4. 6×10^{-1}
	外部被试く			1.9 $\times 10^{-3}$	4. 3×10^{-4}		3. 2×10^{-6}	1.1×10^{-6}	2. 3×10^{-3}
B班	内部破试く			6. 6×10^{-1}	1. 3×10^{-1}		6. 7×10^{-3}	2. 3×10^{-3}	8. 0×10^{-1}
	合青			6. 6×10^{-1}	1. 3×10^{-1}		6. 7×10^{-3}	2. 3×10^{-3}	8. 0×10^{-1}
	外部被试く	6. 1×10^{-0}				1. 3×10^{-4}	8. 5×10^{-6}		6. 1×10^{-0}
C班	内部破试く	7. 1×10^{-1}				4. 4×10^{-2}	1. 5×10^{-2}		7. 7×10^{-1}
	合	6.8×10^{-0}				4. 4×10^{-2}	1.5×10^{-2}		6.8×10^{-0}
	外部被试く		3. 1×10^{-3}	6. 0×10^{-4}				3. 2×10^{-6}	3. 7×10^{-3}
D班	内部被试く		1. 0×10^{-0}	2. 0×10^{-1}				5. 2×10^{-3}	1. 2×10^{-0}
	合青		1. $0 imes 10^{-0}$	2. 0×10^{-1}				5. 2×10^{-3}	1. 3×10^{-0}
	外部被试く		5. 2×10^{-0}		1. 5×10^{-4}	1. 2×10^{-4}			5. 2×10^{-0}
臣班	内部被试く		2. 8×10^{-0}		5. 9×10^{-2}	2. 0×10^{-2}			2. 9×10^{-0}
	合		8. 0×10^{-0}		5.9 $\times 10^{-2}$	2. 0×10^{-2}			8. 1×10^{-0}

表5-11 中央制御室内へ外気から取り込まれた放射性物質による被ばく(マスク着用あり)
表5-12 中央制御室内へ外気から取り込まれた放射性物質による被ばく (マスク着用なし)

	습류	5. 3×10^{-0}	1. 0×10^{-3}	1. 0×10^{-3}	2. 3×10^{-3}	8. 0×10^{-1}	8. 1×10^{-1}	6. 1 \times 10 0	7. 7×10^{-1}	6.8 $\times 10^{-0}$	3. 7×10^{-3}	1.2 \times 10 ⁰	1. 3×10^{-0}	5. 2×10^{-0}	2.9 $\times 10^{-0}$	8. 1×10^{-0}
	7日				1. 1×10^{-6}	2. 3×10^{-3}	2. 3×10^{-3}				3. 2×10^{-6}	5. 2×10^{-3}	5. 2×10^{-3}			
	6∃				3. 2×10^{-6}	6. 7×10^{-3}	6. 7×10^{-3}	8. 5×10^{-6}	1. 5×10^{-2}	1. 5×10^{-2}						
E (mSv)	$5 \exists$							1. 3×10^{-4}	4. 4×10^{-2}	4. 4×10^{-2}				1. 2×10^{-4}	2. 0×10^{-2}	2. 0×10^{-2}
実効線量	$4\square$				4. 3×10^{-4}	1.3×10^{-1}	1.3×10^{-1}							1.5×10^{-4}	5.9 \times 10 $^{-2}$	5.9 \times 10 $^{-2}$
	3日				1. 9×10^{-3}	6. 6×10^{-1}	6. 6×10^{-1}				6. 0×10^{-4}	2. 0×10^{-1}	2. 0×10^{-1}			
	$2 \exists$										3. 1×10^{-3}	1. $0\! imes\!10^{-0}$	$1.0\! imes\!10^{-0}$	$5.2\! imes\!10^{-0}$	$2.8\! imes\!10^{-0}$	8. 0×10^{-0}
	1日	5. 3×10^{-0}	1. 0×10^{-3}	1. 0×10^{-3}				6. 1 $ imes$ 10 0	7. 1×10^{-1}	6.8×10^{-0}						
対界ンエ イ ボイ444	伮はへ乃思	外部被ぼく	内部被ばく	合計	外部被ばく	内部被ばく	合計	外部被ばく	内部被ばく	습류	外部被ばく	内部被ばく	습류	外部被ばく	内部被ばく	습류
			AH			B班			C班			D班			臣班	

(4) 地表面に沈着した放射性物質のガンマ線による被ばく

大気中へ放出され地表面に沈着した放射性物質からのガンマ線(グランドシャイン) による,中央制御室内での運転員の実効線量は,評価期間中の大気中への放射性物質の 放出量を基に大気拡散効果,地表沈着効果及び中央制御室遮蔽による減衰効果を考慮し て評価する。

a. 放射性物質の地表沈着量

大気中へ放出された放射性物質の地表面への沈着量評価では,地表面への乾性沈着 及び降雨による湿性沈着を考慮して地表面沈着濃度を計算する。

(a) 放射性物質の放出量

放射性物質の大気中への放出量は、5.6節の大気中への放出量評価に基づくもの とする。

(b) 大気拡散条件

線量評価に使用する相対濃度(χ/Q)は、5.7節の大気拡散の評価の「(4) 評価結果」に示した中央制御室中心における評価結果を使用する。

放出	箇所	χ / Q (s/m ³)
原子炉建屋からの	原子炉建屋漏えい (地上放出)	8. 3×10^{-4}
放出	非常用ガス処理系排 気筒(排気筒放出)	3. 0×10^{-6}
格納容器圧力逃 (建屋屋	がし装置排気口 上放出)	3. 7×10^{-4}

(c) 地表面への沈着速度

放射性物質の地表面への沈着評価では,地表面への乾性沈着及び降雨による湿性 沈着を考慮して地表面沈着濃度を計算する。

沈着速度は、有機よう素はNRPB-R322*1を参考として 0.001 cm/s,有機よう素 以外は NUREG/CR-4551*2を参考として 0.3 cm/s と設定し、湿性沈着を考慮した沈 着速度は、線量目標値評価指針の記載(降水時における沈着率は乾燥時の 2~3 倍 大きい値となる。)を参考に、保守的に乾性沈着速度の 4 倍として、有機よう素は 0.004 cm/s、有機よう素以外は 1.2 cm/s を設定する。

- 注記 *1:NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99
 - *2:J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, NUREG/CR-4551 Vol.2 Rev.1 Part 7, 1990

(d) 地表面沈着濃度の評価

評価期間中の地表面沈着濃度は、以下により計算する。

$$S_{o}^{i}(t) = \frac{V_{G} \cdot \chi / Q \cdot f \cdot Q_{i}(t)}{\lambda_{i}} \cdot (1 - e^{-\lambda_{i} \cdot t})$$
$$G C_{T}^{i} = \int_{0}^{T} S_{o}^{i}(t) \cdot dt$$

ここで、 $S_o^i(t)$:事故後 t 時間における核種 i の地表面沈着濃度 (Bq/m²) GC_T^i :事故後 T 時間までの核種 i の地表面沈着濃度 (Bq/m²) V_G :沈着速度 (m/s) χ / Q :相対濃度 (s/m³) f:沈着した放射性物質のうち残存する割合 (1.0) $Q_i(t)$:時刻 t における核種 i の大気中への放出率 (Bq/s) λ_i :核種 i の崩壊定数 (s⁻¹) t:事故後の時間 (s)

- b. 実効線量評価条件
 - (a) 線源強度

炉心の著しい損傷が発生した場合に,大気中へ放出され地表面及び建屋屋上に沈 着した放射性物質を線源とし,線源は地表面及び建屋屋上に均一分布しているもの とする。

なお,評価に使用する積算線源強度は表 5-13 に示すように,5.5 節の運転員の 勤務形態に基づき,7日間の各班の中央制御室内の滞在期間ごとに求める。

(b) 幾何条件

グランドシャイン評価モデルを図 5-16 に示す。グランドシャインの線源は、中 央制御室と隣接建屋の屋上及び地表面に沈着した放射性物質である。この線源の大 きさは 800 m×800 m*とする。なお、地表面の線源は、建屋の床・天井・壁で自己 遮蔽され影響は小さいが、屋上面に線源が存在するものとして取り扱う。

中央制御室遮蔽で考慮する天井及び壁は,公称値からマイナス側許容差(5 mm) を引いた値とする。

注記 *: JAEA-Technology 2011-026「汚染土壌の除染領域と線量低減効果の検討」 において、評価点から 400 m 離れた位置の線源が及ぼす影響度は1% 以下である。これより、評価点から片側 400 m まで線源領域とし、全体 の線源領域として 800 m×800 m を設定した。

R0

- (c) 評価点評価点は、中央制御室内での線量が最大となる位置とする。
- (d) 計算機コードグランドシャインは、QAD-CGGP2Rコードを用い評価する。
- c. 評価結果

以上の条件に基づき評価したグランドシャインによる実効線量を表 5-14 に示す。

NT2 補② V-1-7-3 R0

	Ш	B 班	157.5 h	\sim 168 h	5.8×10 ⁷	6. 4×10^{7}	2.8 \times 10 ⁸	8. 1×10^{7}	2. 3×10^{7}	1. 5×10^{7}	1. 5×10^{7}	7. 4×10^{7}	2. 5×10^{-7}	1. 5×10^{8}	2.9 \times 10 ⁸	1. 7×10^{9}	8. 4×10^{8}	9.9 $\times 10^{8}$	3. 3×10^{7}	1. 4×10^{9}	1.6×10^{9}	8. 0×10^{8}	1. 6×10^{9}	3. 4×10^{8}	1. 0×10^{7}	1. 6×10^{8}	1. 3×10^{7}	2.8×10 ⁷	3. 3×10^{7}	8. 0×10^{5}	2. 2×10^{-1}	2. 2×10^{-1}	3. 3×10^{-4}	3. 3×10^{-4}	3. 3×10^{-4}	3. 3×10^{-4}	3. 8×10^{-5}	3. 8×10^{-5}	3. 8×10^{-5}	3. 8×10^{-5}	1. 2×10^{-5}	5.9×10 ⁻⁶	0.0	0.0	0.0	0
	7	D班	144 h	\sim 157.75 h	8. 2×10^{-7}	9. 1×10^{-7}	4. 0×10^{8}	1. 1×10^{8}	3. 3×10^{-7}	2. 2×10^{-7}	2. 0×10^{-7}	1.0×10^{8}	3. 6×10^{7}	2. 1×10^{8}	4. 1×10^{8}	2. 3×10^{9}	1. 1×10^{9}	1. 4×10^{9}	4. 7×10^{-7}	2. 1×10^{9}	2. 4×10^{9}	1. 2×10^{9}	2. 3×10^{9}	4.8 $\times 10^{8}$	1. 5×10^{-7}	2. 3×10^{-8}	1. 9×10^{-7}	4. 1×10^{-7}	4. 7×10^{-7}	1. 2×10^{6}	3. 6×10^{-1}	3. 6×10^{-1}	4. 4×10^{-4}	4. 4×10^{-4}	4.4×10 ⁻⁴	4. 4×10^{-4}	5. 0×10^{-5}	5. 0×10^{-5}	5. 0×10^{-5}	5. 0×10^{-5}	1. 5×10^{-5}	7. 7×10^{-6}	0.0	0.0	0.0	
	Ш	B班	133.5 h	\sim 144.25 h	6. 9×10^{-7}	7. 7 \times 10 7	3. 3×10^{-8}	9. 2×10^{-7}	2.8 $\times 10^{-7}$	1. 8×10^{-7}	1. 7×10^{-7}	8. 4×10^{-7}	3. 1×10^{-7}	1. 7×10^{-8}	3. 4×10^{-8}	1.9×10^{9}	9. 3×10^{-8}	1. 2×10^{9}	4. 0×10^{-7}	1.8×10^{-9}	2. 0×10^{-9}	9. 9×10^{8}	2. 0×10^{-9}	4. 2×10^{-8}	1. 3×10^{-7}	2. 0×10^{-8}	1. 7×10^{-7}	3. 5×10^{-7}	4. 1×10^{-7}	1. 0×10^{-6}	3. 4×10^{-1}	3. 4×10^{-1}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 9×10^{-5}	3. 9×10^{-5}	3. 9×10^{-5}	3. 9×10^{-5}	1.2×10^{-5}	6. 1×10^{-6}	0.0	0.0	0.0	0
	9	C 班	120 h	\sim 133. 75 h	9.6×10^{7}	1.1 $ imes$ 108	4.5 $\times 10^{8}$	1.2×10^{8}	3.9 $\times 10^{7}$	2.6×10^{7}	2.3 $\times 10^{7}$	1.1×10^{8}	4.4 $\times 10^{7}$	2.4×10^{8}	4.7 $\times 10^{8}$	2.5×10^{9}	1.3×10^{9}	1.7×10^{9}	5.7 $\times 10^{7}$	2.5×10^{9}	2.8×10^{9}	1.4×10^{9}	2.8 $\times 10^{9}$	5.9×10^{8}	1.8×10^{7}	2.9 $\times 10^{8}$	2.4 \times 10 ⁷	5.0×10 ⁷	5.9×10 ⁷	1.4 \times 10 ⁶	5.4 $\times 10^{-1}$	5.4 $\times 10^{-1}$	4.4 $\times 10^{-4}$	4.4×10^{-4}	4.4 $\times 10^{-4}$	4.4×10^{-4}	5.0×10 $^{-5}$	5.0 \times 10 $^{-5}$	5. 0×10^{-5}	5.0×10^{-5}	1.5×10^{-5}	7.7×10^{-6}	0.0	0.0	0.0	
	Е	日班	109.5 h	\sim 120.25 h	8. 2×10^{-7}	9. 1×10^{-7}	3. 8×10^{8}	1.0×10^{8}	3. 3×10^{-7}	2. 2×10^{-7}	1. 9×10^{-7}	9. 3×10^{-7}	3.8×10 ⁷	2. 0×10^{-8}	4. 0×10^{-8}	2. 0×10^{-9}	1.0×10^{9}	1. 5×10^{9}	4. 9×10^{-7}	2. 2×10^{-9}	2. 5×10^{-9}	1. 2×10^{-9}	2. 4×10^{-9}	5. 1×10^{8}	1. 5×10^{-7}	2. 5×10^{-8}	2. 1×10^{-7}	4. 4×10^{-7}	5. 1×10^{-7}	1. 3×10^{-6}	5. 2×10^{-1}	5. 2×10^{-1}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 9×10^{-5}	3. 9×10^{-5}	3. 9×10^{-5}	3. 9×10^{-5}	1.2×10^{-5}	6. 1×10^{-6}	0.0	0.0	0.0	0
1 ⁻²)	5	こ班	96 h	\sim 109.75 h	1. 1×10^{8}	1. 3×10^{8}	5. 2×10^{8}	1. 4×10^{8}	4. 6×10^{7}	3. 1×10^{7}	2. 5×10^{-7}	1.3×10^{8}	5. 5×10^{7}	2. 7×10^{8}	5. 5×10^{8}	2. 7×10^{9}	1. 4×10^{9}	2. 1×10^{9}	7. 0×10^{7}	3. 1×10^{9}	3. 5×10^{9}	1. 7×10^{9}	3. 4×10^{9}	7. 3×10^{8}	2. 2×10^{-7}	3. 5×10^{8}	2. 9×10^{-7}	6. 3×10^{-7}	7. 3×10^{-7}	1. 8×10^{6}	8. 2×10^{-1}	8. 2×10^{-1}	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	1.6×10^{-5}	7.8 \times 10 ⁻⁶	0.0	0.0	0.0	0
度(単位: cm	Е	日班	85.5 h	\sim 96. 25 h	9.8 $\times 10^{7}$	$1.1\! imes\!10^{8}$	4.4×10^{8}	1.2×10^{8}	4.0×10^{7}	2.6×10^{7}	2.1 × 10 ⁷	1.0×10^{8}	4.8×10 ⁷	2.3×10^{8}	4.6 $\times 10^{8}$	2.2×10^{9}	1.1×10^{9}	1.8×10^{9}	6.1 \times 10 ⁷	2.7×10^{9}	3.0×10^{9}	1.5×10^{9}	2.9×10^{9}	6.3×10^{8}	1.9×10^{7}	3. 1×10^{-8}	2.6 \times 10 ⁷	5.5×10^{-7}	6. 3×10^{-7}	$1.6\! imes\!10^{6}$	7.8 $\times10^{1}$	7.8 $\times 10^{-1}$	3. 4×10^{-4}	3.4×10^{-4}	3.4 $\times 10^{-4}$	3.4×10^{-4}	4. $0\!\times\!10^{-5}$	4.0×10^{-5}	4. 0×10^{-5}	4.0 \times 10 $^{-5}$	1.2×10^{-5}	6.1 \times 10 ⁻⁶	0.0	0.0	0.0	0 0
マ積算線源強	4	B班	72 h	\sim 85.75 h	1.4×10^{8}	$1.6\! imes\!10^{8}$	6.0 $\times 10^{8}$	1.6×10^8	5.6×10^{7}	3. 7×10^{-7}	2.8 $\times 10^{7}$	1.4×10^{8}	6.9×10^{-7}	3.2×10^{8}	6.4×10^{8}	3.0×10^{9}	1.5×10^{9}	2.6×10^{9}	8. 7×10^{7}	3.8×10^{9}	4.4×10^{9}	2. 1×10^{9}	4. 2×10^{9}	9.0 $\times 10^{8}$	2.7 $\times 10^{7}$	4.4×10^{8}	3. 7×10^{-7}	7.8 $\times10^{7}$	9.0 $\times10^{7}$	2.2 \times 10 ⁶	1.2×10^{2}	1.2×10^{2}	4.4×10^{-4}	4.4×10^{-4}	4.4×10^{-4}	4.4×10^{-4}	5. 1 \times 10 $^{-5}$	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	1.6×10^{-5}	7.8×10^{-6}	0.0	0.0	0.0	0 0
ガン	Ш	D班	61.5 h	\sim 72.25 h	1.2×10^{8}	1. 4×10^{8}	5. 1×10^{8}	1.3×10^{8}	4.9 $\times 10^{7}$	3. 2×10^{7}	2. 3×10^{7}	1. 2×10^{8}	6. 0×10^{-7}	2. 7×10^{8}	5. 4×10^{8}	2. 5×10^{9}	1.2×10^{9}	2. 3×10^{9}	7.7 $\times 10^{7}$	3. 4×10^{9}	3. 9×10^{9}	1.8×10^{9}	3. 6×10^{-9}	7.9 $\times 10^{8}$	2. 4×10^{7}	3. 9×10^{8}	3. 3×10^{-7}	6. 9×10^{-7}	7. 9×10^{7}	1. 9×10^{-6}	1. 2×10^{2}	1. 2×10^{2}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	1.2×10^{-5}	6. 1×10^{-6}	0.0	0.0	0.0	0 0
	3	B班	48 h	\sim 61.75 h	1. 8×10^{8}	2. 0×10^{-8}	7. 0×10^{-8}	1. 8×10^{8}	7. 0×10^{-7}	4. 6×10^{-7}	3. 2×10^{-7}	1.6×10^{8}	8.8 $\times 10^{7}$	3. 8×10^{8}	7. 5×10^{-8}	3.3×10^{9}	1.6×10^{-9}	3.4×10^{9}	1. 1×10^{-8}	5. 0×10^{9}	5. 7×10^{-9}	2. 6×10^{-9}	5. 2×10^{-9}	1.2×10^{9}	3. 5×10^{-7}	5. 6×10^{-8}	4. 9×10^{-7}	1. 0×10^{-8}	1. 1×10^{-8}	2. 7×10^{-6}	1. 9×10^{-2}	1. 9×10^{-2}	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	1.6×10^{-5}	7.8 \times 10 ⁻⁶	0.0	0.0	0.0	0.0
	В	D班	37.5 h	\sim 48. 25 h	1. 6×10^{8}	1. 8×10^{8}	6. 0×10^{8}	1. 6×10^{8}	6. 2×10^{7}	4. 1×10^{7}	2. 6×10^{7}	1.3×10^{8}	7.8×10 ⁷	3. 2×10^{8}	6. 4×10^{8}	2. 7×10^{9}	1.3×10^{9}	3. 1×10^{9}	1. 0×10^{8}	4. 5×10^{9}	5. 1×10^{9}	2. 2×10^{9}	4. 5×10^{9}	1. 1×10^{9}	3. 2×10^{-7}	5. 2×10^{8}	4. 9×10^{-7}	1. 0×10^{8}	1. 0×10^{8}	2. 4×10^{6}	1. $8 \times 10^{\ 2}$	1. 8×10^{2}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	1.2×10^{-5}	6. 1×10^{-6}	0.0	0.0	0.0	0.0
	2	日班	24 h	\sim 37.75 h	2. 4×10^{8}	2. 7×10^{8}	8. 3×10^{8}	2. 2×10^{8}	9. 0×10^{7}	6. 0×10^{-7}	3. 6×10^{-7}	1.8×10^{8}	1. 2×10^{8}	4. 6×10^{8}	9. 1×10^{8}	3.6×10^{9}	1.8×10^{9}	4. 6×10^{9}	1. 5×10^{8}	6. 7×10^{9}	7.7 $\times 10^{9}$	3. 2×10^{9}	6. 4×10^{9}	1. 8×10^{9}	5. 3×10^{-7}	8. 5×10^{8}	1. 0×10^{8}	2. 2×10^{-8}	1. 5×10^{8}	3. 4×10^{6}	2. 8×10^{-2}	2.8 $\times 10^{2}$	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	4. 4×10^{-4}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	5. 1×10^{-5}	1.6×10^{-5}	7.8×10 ⁻⁶	0.0	0.0	0.0	0.0
	Н	こ班	13.5 h	\sim 24.25 h	2. 2×10^{8}	2. 5×10^{8}	7. 0×10^{8}	1. 9×10^{8}	8. 2×10^{7}	5. 5×10^{-7}	3. 0×10^{-7}	1.5×10^{8}	1. 1×10^{8}	4. 1×10^{8}	8. 1×10^{8}	2. 9×10^{9}	1. 5×10^{9}	4. 1×10^{9}	1. 4×10^{8}	6. 1×10^{9}	6. 9×10^{9}	2.8×10 ⁹	5. 5×10^{9}	2. 0×10^{9}	6. 1×10^{-7}	9. 8×10^{8}	1. 6×10^{8}	3. 5×10^{-8}	1. 6×10^{8}	2. 8×10^{6}	3. 2×10^{-2}	3. 2×10^{2}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	3. 4×10^{-4}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	4. 0×10^{-5}	1.2×10^{-5}	6. 1×10^{-6}	0.0	0.0	0.0	0.0
	1	A班	0 h	\sim 13.75 h	3.5×10 ⁸	$3.8 imes 10^8$	9.0 $\times 10^{8}$	2.5×10^{8}	1.2×10^{8}	7.9 $\times 10^{7}$	3.9×10^{7}	1.9×10^{8}	1.9×10^{8}	6.0×10^{8}	1.2×10^{9}	3.6×10^{9}	1.8×10^{-9}	5.7 $\times 10^{9}$	1.9×10^{8}	8.4×10^{9}	9.5 $\times 10^{9}$	3.9×10^{9}	7.9 $\times 10^{9}$	4.6×10^{9}	1.4×10^{8}	2.2×10^{-9}	5. 2×10^{8}	$1.1 imes 10^9$	3.0 \times 10 ⁸	4.6×10^{6}	1.2×10^{4}	$1.2\! imes\!10^{4}$	4.0 \times 10 ⁻⁴	4. 0×10^{-4}	4.0×10^{-4}	4.0 \times 10 ⁻⁴	4. 6×10^{-5}	4. 6×10^{-5}	4. 6×10^{-5}	4.6 $\times 10^{-5}$	1.4×10^{-5}	7.1 \times 10 ⁻⁶	0.0	0.0	0.0	0.0
	代表	エネシギ	(MeV)		0.01	0.02	0.03	0.045	0.06	0.07	0.075	0.1	0.15	0.2	0.3	0.4	0.45	0.51	0.512	0.6	0.7	0.8	1.0	1.33	1.34	1.5	1.66	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	10.0	12.0	14.0	20.0	30.0	50.0
		粜	į		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42

表 5-13 グランドシャイン線評価用線源強度(室内作業時)

実効線量(mSv)	2日 3日 4日 5日 6日 7日 合計	4. 7×10^{-0}	1.9×10^{0} 1.5×10^{0} 7.1×10^{-1} 5.8×10^{-1} 4.7×10^{0}	$1.2 \times 10^{0} 1.0 \times 10^{0} 4.8 \times 10^{0}$	$1.7 \times 10^{0} 1.3 \times 10^{0} 3.8 \times 10^{0}$	$2, 6 \times 10^{0}$ $1, 1 \times 10^{0}$ $8, 6 \times 10^{-1}$ $4, 5 \times 10^{0}$
	3 ⊟		1.9×10^{0} 1.5		1.3×10^{-0}	
	2 H				1. 7×10^{-0}	2.6×10^{-0}
	1 🗄	4. 7×10^{-0}		2. 6×10^{-0}		
		A班	B班	C 班	D班	王 王 王

表5-14 大気中へ放出され地表面に沈着した放射性物質による被ばく(室内作業時)

図 5-16 中央制御室内被ばく評価時のグランドシャイン評価モデル(1/2)

図 5-16 中央制御室内被ばく評価時のグランドシャイン評価モデル(2/2)

- 5.8.2 入退域時の被ばく
 - (1) 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく 炉心の著しい損傷が発生した場合に原子炉建屋内に浮遊する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による入退域時の運転員の外部被ばくは、5.8.1節
 (1)項の建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ば くと同様な手法で実効線量を評価する。異なる評価条件を以下に示す。
 - 評価に使用する積算線源強度は表 5-15 に示すように、5.5 節の運転員の勤務形態に基づき、7 日間の各班の入退域期間ごとに求める。
 - ② 中央制御室の天井及び壁による直接ガンマ線とスカイシャインガンマ線の遮蔽効 果を期待しない。
 - ③ 入退域時の実効線量評価は,非居住区域境界から中央制御室出入口までの運転員の移動経路を対象とし,代表評価点は図4-14に示す建屋出入口とする。

以上の条件に基づき評価した入退域時の原子炉建屋内の放射性物質からの直接ガンマ 線及びスカイシャインガンマ線による実効線量を表 5-16 に示す。

		ş	2	「大」		-	<u> </u>	~ 急請管總酒	<u> </u>	CIRCUMUNA		/ [
	н Н	1	Н	5	2 H	ŝ	Ε	4	Ε	5	Н	9	Ш	7	Н
	★	A班	C班 13 25 h	日班 93 75 h	D班 37 95 h	B班 47 75 h	D班 61 95 h	B班 7175h	日班 85 25 h	C班 of 75 h	日班 109 25 h	C班 119 75 h	日班 133 25 h	D班 143 75 h	日班 157 25 h
輫	ネ			1	~	~	~ ~ ~	~	- ~	~	~ ~	~	~	~	~
	イギ	13.75 h	13.5 h 24.25 h	37.75 h	h 37.5 h 48.25 h	61.75 h	61.5 h 72.25 h	72 h 85.75 h	85.5 h 96.25 h	96 h 109.75 h	120.25 h	120 h 133.75 h	133.5 h 144.25 h	144 h 157.75 h	157.5 h
	(MeV) 退域	~ 14 h	∼ 24.5 h	~	48.5	~ 62. h	∼ 72.5 h	\sim 86 h	∼ 96.5 h	~ 110 h	\sim 120.5 h	~ 134 h	∼ 144.5 h	~ 158 h	I
-	0.01	1.8×10^{17}	4.4×10^{-17}	4.1×10^{17}	2.1×10^{17}	1.2×10^{-17}	6.7×10^{16}	3.9×10^{-16}	2.2×10^{-16}	1.3×10^{16}	7.0×10^{15}	4. 1×10^{15}	2.1×10^{15}	1.4×10^{15}	4. 5×10^{-14}
2	0.02	2. 0×10^{17}	4.9 \times 10 ¹⁷	4. 5×10^{17}	2. 4×10^{-17}	1.4×10^{-17}	7.4 $\times 10^{16}$	4.3×10^{-16}	2.4 $\times 10^{-16}$	1.4×10^{16}	7.8×10 ¹⁵	4. 5×10^{15}	2. 4×10^{-15}	1. 5×10^{15}	5. 0×10^{-14}
3	0.03	2. 4×10^{-17}	5.8×10^{-17}	5. 3×10^{-17}	2. 7×10^{-17}	1.5×10^{-17}	8. 1×10^{16}	4.5 $\times 10^{-16}$	2. 4×10^{-16}	1. 4×10^{16}	7.2 $\times 10^{15}$	4. 0×10^{15}	2. 1×10^{-15}	1. 2×10^{15}	4. 4×10^{-14}
4	0.045	3. 5×10^{-18}	9.2 \times 10 ¹⁸	9. 4×10^{-18}	5.3 $\times 10^{-18}$	3. 1×10^{-18}	1.7 $\times 10^{18}$	$1.0 imes 10^{-18}$	5.7×10 ¹⁷	3. 3×10^{17}	1.8×10^{-17}	1. 1×10^{17}	$5.6 imes 10^{-16}$	3. 6×10^{-16}	1. 2×10^{-16}
5	0.06	1.2×10^{16}	2.6×10^{-16}	2. 1×10^{16}	8. 6×10^{-15}	4.2×10^{-15}	2. 1×10^{15}	1.1×10^{15}	6.2×10^{-14}	3. 6×10^{-14}	2.0×10^{-14}	1. 1×10^{-14}	5.9×10^{-13}	3. 7×10^{-13}	1.2×10^{-13}
9	0.07	8. 0×10^{15}	1.7×10^{-16}	1. 4×10^{16}	5.8 $\times 10^{-15}$	2.8×10^{-15}	1. 4×10^{15}	7.7×10^{-14}	4.1 \times 10 ¹⁴	2. 4×10^{-14}	1.3×10^{-14}	7. 6×10^{13}	3.9×10^{-13}	2. 5×10^{13}	8. 2×10^{-12}
7	0.075	4.9×10^{17}	1.3×10^{-18}	1.4×10^{18}	7.7×10^{17}	4.6×10^{-17}	2. 6×10^{17}	1.5×10^{-17}	8.4 $\times 10^{-16}$	4.9 $\times 10^{16}$	2.7 $\times 10^{-16}$	1. 6×10^{16}	8.3×10^{-15}	5. 3×10^{15}	1.8×10^{15}
∞	0.1	2.5 $\times 10^{-18}$	6.6×10^{-18}	6.8 $\times 10^{18}$	3.9×10^{-18}	2.3×10^{-18}	1.3×10^{18}	7.5×10^{-17}	4.2×10^{-17}	2.5 $\times 10^{17}$	1.4×10^{-17}	8. 0×10^{-16}	4.2×10^{-16}	2. 7×10^{-16}	8.9 $\times 10^{15}$
6	0.15	9. 1×10^{15}	1.8×10^{-16}	1.3×10^{16}	5.4 $\times 10^{15}$	2.6×10^{-15}	1.3×10^{15}	6.9×10^{-14}	3.7×10^{-14}	2. 1×10^{-14}	1.2×10^{-14}	6.5 $\times 10^{13}$	3.2×10^{-13}	1.9×10^{13}	6. 0×10^{12}
10	0.2	1.4×10^{18}	2.8×10^{-18}	2. 0×10^{18}	5.6 $\times 10^{-17}$	1.8×10^{-17}	4.7 $\times 10^{16}$	1.6×10^{-16}	5.2×10^{15}	2. 1×10^{15}	1.1×10^{15}	4. 2×10^{-14}	2.2×10^{-14}	1.2×10^{-14}	4. 1×10^{-13}
11	0.3	2.8 $\times 10^{18}$	5.7 $\times 10^{-18}$	4. 1×10^{-18}	1.1×10^{18}	3.5×10^{-17}	9.3 $\times 10^{16}$	3.1×10^{-16}	1.0×10^{-16}	4. 2×10^{15}	2.2×10^{-15}	8. 4×10^{-14}	4.3×10^{-14}	2.5 $\times 10^{-14}$	8. 2×10^{13}
12	0.4	1.4×10^{17}	3.2×10^{-17}	2.8 $\times 10^{17}$	1.5×10^{-17}	8.7 $\times 10^{-16}$	4.9 $\times 10^{16}$	2.9×10^{-16}	1.6×10^{-16}	9.4 \times 10 ¹⁵	5.2×10^{15}	2. 9×10^{15}	1.5×10^{-15}	9. 3×10^{-14}	2.8 \times 10 ¹⁴
13	0.45	7. 2×10^{-16}	1.6×10^{-17}	1. 4×10^{17}	7.5 $\times 10^{-16}$	4.3×10^{-16}	2. 4×10^{-16}	1.4×10^{-16}	8. 0×10^{-15}	4. 7×10^{15}	2.6×10^{-15}	1. 5×10^{15}	7.5 \times 10 ¹⁴	4. 7×10^{-14}	1.4×10^{-14}
14	0.51	2. 5×10^{-17}	5.1 \times 10 ¹⁷	4. 0×10^{17}	1. 7×10^{-17}	8.9×10^{-16}	4. 4×10^{-16}	2.3×10^{-16}	1.2×10^{-16}	6.8×10^{15}	3.7 $\times 10^{15}$	2. 0×10^{15}	8.6 \times 10 ¹⁴	4. 4×10^{-14}	1. 5×10^{-14}
15	0.512	8. 2×10^{-15}	1.7×10^{-16}	1. 3×10^{-16}	5.8×10 15	3.0×10^{-15}	1. 5×10^{15}	7.8×10^{-14}	4. 1×10^{-14}	2. 3×10^{-14}	1.2×10^{-14}	6.8×10 ¹³	2.9×10^{-13}	1. 5×10^{13}	4.9 \times 10 ¹²
16	0.6	3. 6×10^{-17}	7.5 \times 10 ¹⁷	5. 9×10^{17}	2. 6×10^{-17}	1.3×10^{-17}	6. 4×10^{-16}	3.4 $\times 10^{-16}$	1.8×10^{-16}	9. 9×10^{15}	5.5×10^{-15}	3. 0×10^{15}	1.3×10^{-15}	6. 4×10^{-14}	2. 1×10^{-14}
17	0.7	4. 1×10^{17}	8.5 \times 10 ¹⁷	6. 7×10^{17}	2.9 \times 10 ¹⁷	1.5×10^{-17}	7. 3×10^{16}	3.9×10^{-16}	2. 0×10^{-16}	1. 1×10^{16}	6.2×10^{-15}	3. 4×10^{15}	1.4×10^{-15}	7. 3×10^{-14}	2. 4×10^{-14}
18	0.8	1. 1×10^{17}	2.5 \times 10 ¹⁷	2. 2×10^{17}	1.1×10^{17}	6.3×10^{-16}	3. 3×10^{-16}	1.8×10^{-16}	9.8×10^{15}	5.5×10 ¹⁵	3.1×10^{15}	1. 7×10^{15}	7.1 × 10 ¹⁴	3. 6×10^{-14}	1.2×10^{-14}
19	1.0	2. 3×10^{-17}	5.1×10 ¹⁷	4.4×10 ¹⁷	2.3×10^{-17}	1.3×10^{-17}	6.6×10 ¹⁶	3.6×10^{-16}	2.0×10^{-16}	1.1×10^{16}	6.2×10^{-15}	3. 4×10^{15}	1.4×10^{-15}	7. 2×10^{-14}	2. 4×10^{-14}
20	1.33	9.8×10 ¹⁶	1.8×10^{-17}	1. 3×10^{17}	5.5 $\times 10^{-16}$	2.9×10^{-16}	1. 5×10^{-16}	7.9×10^{15}	4. 2×10^{15}	2. 3×10^{15}	1.3×10^{15}	7. 1×10^{14}	3. 0×10^{-14}	1. 5×10^{-14}	5. 0×10^{-13}
21	1.34	3. 0×10^{-15}	5.5×10^{-15}	3.8×10 15	1. 7×10^{-15}	8. 7×10^{-14}	4.4×10 ¹⁴	2.4×10^{-14}	1.3×10^{-14}	7.1×10 ¹³	4.0 $\times 10^{-13}$	2. 2×10^{-13}	9.0 \times 10 12	4. 6×10^{12}	1.5×10^{12}
22	1.5	4. 7×10^{-16}	8.8 × 10 ¹⁶	6. 2×10^{-16}	2.7 $\times 10^{-16}$	1.4×10^{-16}	7. 0×10^{15}	3.8×10^{-15}	2.0×10^{-15}	1.1×10^{15}	6.4×10^{-14}	3. 5×10^{-14}	1.4×10^{-14}	7. 3×10^{-13}	2. 4×10^{-13}
23	1.66	1.3×10^{16}	2.0 × 10 ¹⁶	8. 9×10^{15}	2.7 $\times 10^{-15}$	1.3×10^{-15}	6. 2×10^{-14}	3.4 $\times 10^{-14}$	1.8×10^{-14}	1.0×10^{-14}	5.7 $\times 10^{-13}$	3. 1×10^{13}	1.3×10^{-13}	6. 4×10^{12}	2. 1×10^{-12}
24	2.0	2. 8×10^{-16}	4.2 $\times 10^{-16}$	1.9 $\times 10^{16}$	5. 7×10^{-15}	2.7×10^{-15}	1.3×10^{15}	7.1 × 10 ¹⁴	3.8×10^{-14}	2.2 \times 10 ¹⁴	1.2×10^{-14}	6. 6×10^{-13}	2.7 \times 10 ¹³	1. 4×10^{13}	4. 6×10^{-12}
25	2.5	7. 2×10^{-16}	9.0 × 10 16	2. 2×10^{-16}	5.5 $\times 10^{-15}$	2.9×10^{-15}	1. 5×10^{15}	8.3×10^{-14}	4.4×10^{-14}	2.5×10 ¹⁴	1.4×10^{-14}	7.7 $\times 10^{13}$	3. 1×10^{-13}	1. 6×10^{-13}	5. 2×10^{-12}
26	3.0	1. 1×10^{-15}	1.4×10^{-15}	3. 7×10^{-14}	1.3×10^{-14}	7.0×10 ¹³	3. 7×10^{13}	2.0×10^{-13}	1.1×10^{-13}	6. 2×10^{12}	3.5×10^{12}	1.9 $\times 10^{12}$	7.8×10^{11}	4. 0×10^{11}	1.3×10^{11}
27	3.5	2.9 $\times 10^{12}$	3.5×10^{12}	3. 0×10^{10}	4.3×10^{9}	2.7×10^{-9}	1.6×10^{9}	9.6×10^{-8}	5.7 $\times 10^{-8}$	3.5×10^{8}	2.2×10^{-8}	1.4×10^{8}	8.9×10^{-7}	6. 0×10^{-7}	2.3 \times 10 ⁷
28	4.0	2.9 $\times 10^{12}$	3.5 \times 10 ¹²	3. 0×10^{-10}	4.3 $\times 10^{9}$	2.7 \times 10 ⁹	1.6×10^{9}	9.6×10^{-8}	5.7 $\times 10^{8}$	3.5×10^{8}	2.2×10^{-8}	1.4×10^{8}	8.9×10^{-7}	6. 0×10^{7}	2.3 \times 10 ⁷
29	4.5	7.0×10^{3}	1.2×10^{-4}	7.3×10^{3}	4.4×10^{3}	2.7×10^{3}	1.6×10^{3}	1.0×10^{3}	6.3×10^{-2}	4.0×10^{2}	2.5×10^{-2}	1.6×10^{2}	1.1×10^{-2}	7.5×10^{-1}	2.9×10^{-1}
30	5.0	7.0×10^{-5}	1.2×10^{-4}	$7.3 \times 10^{\circ}$	$4.4 \times 10^{\circ}$	$2.7 \times 10^{\circ}$	$1.6 \times 10^{\circ}$	1.0×10^{-5}	6.3×10^{-2}	4.0×10^{-2}	2.5×10 ²	1.6×10^{2}	1.1×10^{-2}	7.5×10^{-1}	2.9×10^{-1}
31	0°.0	7. U×10°	1.2×10^{-2}	7.3×10°	$4.4 \times 10^{\circ}$	$2.7 \times 10^{\circ}$	$1.6 \times 10^{\circ}$	1.0×10°	6.3×10 ²	4.0×10^{-2}	2.5×10 ²	1.6×10 ²	1.1×10 ²	7.5×10^{-1}	2.9×10^{-1}
32	6.0	7.0×10^{-3}	1.2×10^{-4}	7.3×10^{-5}	4.4×10^{-3}	2.7×10^{-5}	1.6×10^{-5}	1.0×10^{-5}	6.3×10^{-2}	4.0×10^{2}	2.5×10^{-2}	1.6×10^{2}	1.1×10^{2}	7.5×10^{-1}	2.9×10^{-1}
33	6.5	8. 0×10 ²	$1.3 \times 10^{\circ}$	8.3×10 ²	5.0×10^{-2}	3.1×10^{-2}	1.9×10^{2}	1.2×10^{-2}	7.2×10^{-1}	4.6×10^{-1}	2.9×10^{-1}	1.9×10^{-1}	1.2×10^{-1}	8. $6 \times 10^{\circ}$	$3.3 \times 10^{\circ}$
34	7.0	8. 0×10 ⁴	$1.3 \times 10^{\circ}$	8.3×10 ⁴	5.0×10^{-6}	3.1×10 ⁴	1.9×10^{4}	1.2×10^{-4}	7.2×10^{-1}	4.6×10^{-1}	2.9×10^{-1}	1.9×10^{-1}	1.2×10^{-1}	8.6×10 ^v	$3.3 \times 10^{\circ}$
35	7.5	8. 0×10 ²	1.3×10^{-5}	8.3×10 ⁴	5.0×10^{-4}	3.1×10^{-4}	1.9×10^{4}	1.2×10 ²	7.2×10^{-1}	4.6×10^{-1}	2.9×10^{-1}	1.9×10^{-1}	1.2×10^{-1}	8.6×10 °	3. 3×10 °
36	8.0	8. 0×10^{2}	1.3×10^{-3}	8. 3×10^{2}	5.0 $\times 10^{2}$	3.1 \times 10 ²	1.9×10^{2}	1.2×10^{-2}	7.2×10^{-1}	4.6×10^{-1}	2.9×10^{-1}	1.9×10^{-1}	1.2×10^{-1}	8.6×10^{0}	3.3×10^{-0}
37	10.0	2.5 $\times 10^{2}$	4.1 \times 10 ²	2. 6×10^{2}	1.5×10^{-2}	9.7 $\times 10^{-1}$	5.8×10^{-1}	3.7×10^{-1}	2.2×10^{-1}	1.4×10^{1}	8.8×10^{-0}	5. 7×10^{-0}	3.8×10^{-0}	2. 6×10^{-0}	1.0×10^{-0}
38	12.0	1.2×10^{2}	2. 1×10^{-2}	1.3×10^{2}	7.7×10^{-1}	4.8×10^{-1}	2.9 $\times 10^{1}$	1.8×10^{-1}	1.1×10^{-1}	7. 0×10^{0}	4.4×10^{-0}	2. 9×10^{0}	1.9×10^{-0}	1.3×10^{0}	5. 1×10^{-1}
39	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41 42	50. 0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
-							2.1.2								

表 5-15 直接ガンマ線及びスカイシャインガンマ線評価用線源強度(入退域時)

NT2 補② V-1-7-3 R0

2. 4×10^{-3} 3. 4×10^{-4} 9. 2×10^{-2} 9. 2×10^{-2} 3. 5×10^{-3} 6. 5×10^{-4} 1.5×10^{-3} 2. 6×10^{-1} 1.9×10^{-1} 4. 2×10^{-1} 2. 6×10^{-1} 5. 4×10^{-1} 5.5 $\times 10^{-1}$ 1.9×10^{-1} 4. 3×10^{-1} -**1** 1111⊡ ⊲□ 1. 4×10^{-4} 1.4×10^{-4} 1. 4×10^{-6} 4. 3×10^{-4} 4. 3×10^{-4} 4.8 × 10 $^{-7}$ Ш ⊳ 2. 8×10^{-6} 7. 5×10^{-4} 6.8 $\times 10^{-6}$ 1. 6×10^{-3} 7. 5×10^{-4} 1. 6×10^{-3} Ш 9 2. 2×10^{-5} 5. 3×10^{-3} 1.2×10^{-5} 2. 9×10^{-3} 2. 9×10^{-3} 5. 3×10^{-3} л С (mSv) 実効線量 1.8×10^{-2} 9. 4×10^{-3} 9. 4×10^{-3} <u>ا</u>2 1.8×10^{-2} <u>ا</u>2 7.4×10 4.0×10 Ш 4 7. 3×10^{-2} 7. 3×10^{-2} 3. 4×10^{-2} 2. 7×10^{-4} 1.4×10^{-4} 3. 4×10^{-2} Ш က 5. 1×10^{-4} 1. 6×10^{-1} 1. 4×10^{-3} 4. 1×10^{-1} 4. 1×10^{-1} 1.6×10^{-1} Ш \sim 2. 4×10^{-3} 3. 5×10^{-3} 2. 6×10^{-1} 2. 6×10^{-1} 5. 3×10^{-1} 5. 4×10^{-1} 1 \square スカイシャインガンマ線 スカイシャインガンマ線 スカイシャインガンマ線 スカイシャインガンマ線 スカイシャインガンマ線 直接ガンマ線 直接ガンマ線 直接ガンマ線 直接ガンマ線 直接ガンマ線 <u>-</u>1 1111⊡ <u>-</u>1 1111⊡ -**1** 1111⊡ -<u></u>1 111⊡ -<u></u>1 111⊡ ⊲⊡ ⟨□ ⊲⊓ ⊲⊓ ⊲⊓ A班 B班 C 班 D班 日班

原子炉建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による実効線量(入退域時) 表 5-16 (2) 大気中に放出された放射性物質による被ばく

大気中に放出された放射性物質からのガンマ線による外部被ばく線量及び吸入摂取に よる内部被ばく線量を以下に評価する。

- a. 評価条件
 - (a) 放射性物質の放出量

放射性物質の大気中への放出量は,5.6節の大気中への放出量評価に基づくもの とする。

(b) 大気拡散条件

線量評価に使用する相対濃度 (χ /Q)及び相対線量 (D/Q) は, 5.7節の大 気拡散の評価の「(4) 評価結果」に示した建屋入口における評価結果を使用する。

お	女出箇 所	χ / Q (s/m ³)	D∕Q (Gy/Bq)
原子炉建屋から	原子炉建屋漏えい (地上放出)	8.2 $\times 10^{-4}$	2.9 \times 10 ⁻¹⁸
の放出	非常用ガス処理系排 気筒(排気筒放出)	3. 0×10^{-6}	9. 0×10^{-20}
格納容器圧力 (建屋]逃がし装置排気口 5屋上放出)	3.7 $\times 10^{-4}$	9. 4×10^{-19}

b. 評価方法

大気中へ放出された放射性物質による入退域時の運転員の実効線量は,次に述べる 吸入摂取による内部被ばく及びガンマ線による外部被ばくの和として計算する。

(a) 放射性物質の吸入摂取による内部被ばく
 放射性物質の吸入摂取による内部被ばくは、次式で評価する。
 (7日間連続滞在の場合)

$$H_{I}^{i} = \int_{0}^{7\Pi} R \cdot H_{\infty}^{i} \cdot \chi \swarrow Q \cdot Q_{i}(t) dt$$

ここで,

- Hⁱ: i 核種 i の内部被ばくによる実効線量 (Sv)
- R :呼吸率 (m³/s)
 (成人活動時の呼吸率 1.2 m³/h を秒当たりに換算して用いる。)
- Hⁱ:核種iの吸入摂取に対する成人実効線量換算係数(Sv/Bq)
- χ/Q :相対濃度 (s/m³)

Q_i(t) :時刻 t における核種 i の大気中への放出率 (Bq/s)

なお、入退域時においてはマスク着用の防護措置を講じるものとし、内部被ばく の低減を考慮する。この場合のマスクの除染係数は50を使用する。

(b) 放射性物質のガンマ線による外部被ばく

放射性物質のガンマ線による外部被ばくは,次式で評価する。 (7日間連続滞在の場合)

 $H_{\nu}^{i} = \int_{0}^{7\exists} K \cdot D \swarrow Q \cdot Q_{i}(t) dt$

ここで,

 H_{ν}^{i} :核種 i のガンマ線外部被ばくによる実効線量 (Sv)

- K:空気カーマから実効線量への換算係数(1 Sv/Gy)
- D/Q :相対線量 (Gy/Bq)
- Q_i(t) :時刻 t における核種 i の大気中への放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

c. 評価結果

大気中へ放出された放射性物質による入退域時の運転員の実効線量を表 5-17(マスク着用あり)及び表 5-18(マスク着用なし)に示す。

NT2 補② V-1-7-3 R0

	슈랆	5. 6×10^{-3}	1. 3×10^{-3}	6.9 × 10 ⁻³	2. 6×10^{-3}	1. 7×10^{-3}	4. 3×10^{-3}	1. 2×10^{-2}	5. 7×10^{-3}	1.8×10 $^{-2}$	5. 1×10^{-3}	3. 0×10^{-3}	8. 1×10^{-3}	1. 0×10^{-2}	6. 3×10^{-3}	1 G×10 ⁻²
	1日				5. 5×10^{-6}	4. 1×10^{-6}	9. 5×10^{-6}				1. 7×10^{-5}	1.1×10^{-5}	2. 8×10^{-5}			
	6 ∃				2. 8×10^{-5}	1. 8×10^{-5}	4. 6×10^{-5}	5. 3×10^{-5}	3. 1×10^{-5}	8. 4×10^{-5}						
E (mSv)	5 H							1. 7×10^{-4}	8. 8×10^{-5}	2. 6×10^{-4}				8. 8×10^{-5}	5. 1×10^{-5}	$1 4 \times 10^{-4}$
実効線量	4 E				5. 5×10^{-4}	2. 7×10^{-4}	8. 1×10^{-4}							2. 9×10^{-4}	1. 5×10^{-4}	$4 4 \times 10^{-4}$
	3日				2. 0×10^{-3}	1. 4×10^{-3}	3. 4×10^{-3}				1. 0×10^{-3}	5. 4×10^{-4}	1. 5×10^{-3}			
	$2 \exists$										4. 1×10^{-3}	2. 5×10^{-3}	6. 5×10^{-3}	9. 7×10^{-3}	6. 1×10^{-3}	$1 6 \times 10^{-2}$
	1 E	5. 6×10^{-3}	1. 3×10^{-3}	6. 9×10^{-3}				1. 2×10^{-2}	5. 6×10^{-3}	1. 8×10^{-2}						
	徴はくが聴	外部被ばく	内部被ばく	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	外部被ばく	内部被ばく	- - - - - -	外部被ばく	内部被ばく	- 1111- ∕□	外部被ばく	内部被ばく	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	外部被ばく	内部被ばく	- - - -
			A班	1		B班			C班			D班	<u> </u>		日班	

表5-17 大気中へ放出された放射性物質による実効線量(入退域時) (マスク着用あり)

119

RO
1^{-7-3}
- A
で し の 同
NT2

								()	
	ムヤンド・ヘード・キャー				実効線量	畫 (mSv)			
/	彼はく形態	$1 \exists$	$2 \exists$	3日	$4 \exists$	$\exists \ S$	6 ∃	ΗL	습랆
	外部被试く	5. 6×10^{-3}							5. 6×10^{-3}
A班	内部被试く	6. 3×10^{-2}							6. 3×10^{-2}
		6.8×10^{-2}							6.8×10^{-2}
	外部被试く			2. 0×10^{-3}	5. 5×10^{-4}		2. 8×10^{-5}	5. 5×10^{-6}	2. 6×10^{-3}
B班	内部被ばく			6.8×10^{-2}	1. 3×10^{-2}		8.8 $\times 10^{-4}$	2. 0×10^{-4}	8. 3×10^{-2}
	 ↓□ 			7. 0×10^{-2}	1. 4×10^{-2}		9. 1×10^{-4}	2. 1×10^{-4}	8. 5×10^{-2}
	外部被试く	1. 2×10^{-2}				1. 7×10^{-4}	5. 3×10^{-5}		1.2×10^{-2}
C班	内部被ばく	2.8×10 ⁻¹				4. 4×10^{-3}	1.5×10^{-3}		2.8 × 10 $^{-1}$
		2. 9×10^{-1}				4. 6×10^{-3}	$1.6 imes 10^{-3}$		3. 0×10^{-1}
	外部被试く		4. 1×10^{-3}	1.0×10^{-3}				1. 7×10^{-5}	5. 1×10^{-3}
D班	内部被ばく		1. 2×10^{-1}	2. 7×10^{-2}				5. 4×10^{-4}	1. 5×10^{-1}
	合		1. 3×10^{-1}	2.8×10 $^{-2}$				5. 5×10^{-4}	1. 6×10^{-1}
	外部被ばく		9. 7×10^{-3}		2. 9×10^{-4}	8. 8×10^{-5}			1. 0×10^{-2}
日班	内部被ばく		3. 1×10^{-1}		7. 5×10^{-3}	2. 5×10^{-3}			3. 2×10^{-1}
			3. 2×10^{-1}		7. 8×10^{-3}	2. 6×10^{-3}			3. 3×10^{-1}

表5-18 大気中へ放出された放射性物質による実効線量(入退域時)(マスク着用なし)

(3) 地表面に沈着した放射性物質のガンマ線による被ばく

大気中へ放出され地表面に沈着した放射性物質からのガンマ線(グランドシャイン) による入退域時の外部被ばくを以下に評価する。

a. 放射性物質の地表沈着量

地表面に沈着した放射性物質からの直接ガンマ線による入退域時の外部被ばくの評価に使用する地表面への放射性物質の沈着量評価条件及び評価方法は、下記の条件を除き、5.8.1節(4)項の地表面に沈着した放射性物質のガンマ線による被ばくと同じである。

(a) 大気拡散条件

線量評価に使用する相対濃度(χ/Q)は、5.7節の大気拡散の評価の「(4) 評価結果」に示した建屋入口における評価結果を使用する。

放出	箇所	χ / Q (s/m ³)
原子炉建屋からの	原子炉建屋漏えい (地上放出)	8. 2×10^{-4}
放出	非常用ガス処理系排 気筒(排気筒放出)	3. 0×10^{-6}
格納容器圧力逃 (建屋屋	がし装置排気口 上放出)	3. 7×10^{-4}

b. 実効線量評価条件

大気中へ放出され地表面に沈着した放射性物質からのガンマ線(グランドシャイン) による入退域時の外部被ばくは、下記評価条件を除き 5.8.1 節(4)項の地表面に沈着し た放射性物質のガンマ線による被ばくと同様とする。

 大気中へ放出され地表面に沈着した放射性物質を線源とし、線源は地表面に 均一分布しているものとする。

なお,評価に使用する積算線源強度は表 5-19 に示すように,5.5 節の運転 員の勤務形態に基づき,7日間の各班の入退域期間ごとに求める。

- ② 各建屋によるグランドシャインの遮蔽効果を期待しない。
- ③ 評価点は図 5-17 に示す線源領域の中心上とする。
- c. 評価結果

以上の条件に基づき評価した,入退域時のグランドシャインによる実効線量を表5-20に示す。

									-						
	₽ A	-	ш	0	ш	er.	ガンマ種	[算祿源強度] 4	(単位:cm [*])		ш	ų		7	ш
	表現	- Y班	」 C班	日班	D班	B班	D班	B班	日班	C班	互班	C班 。	」 B班	D班.	B班
が世	H 1		13.25 h	23.75 h	37.25 h	47.75 h	61.25 h	71.75 h	85. 25 h	95.75 h	109.25 h	119.75 h	133.25 h	143.75 h	157.25 h
#	イ イ 域		2 13.5 h	\sim 2.4 h	∼ 37.5 h	∼ 48 h	∼ 61.5 h	\sim 72 h	∼ 85.5 h	\sim 96 h	\sim 109.5 h	\sim 120 h	∼ 133.5 h	~ 144 h	\sim 157.5 h
	AT II. (AOM)	13.75 h	24.25 h	37.75 h	48.25 h	61.75 h	72. 25 h	85.75 h	96. 25 h	109.75 h	120.25 h	133. 75 h	144. 25 h	157.75 h	
	(Mev) 应则	2 14 h	\sim 24.5 h	\sim 38 h	~ 48.5 h	\sim 62 h	\sim 72.5 h	\sim 86 h	\sim 96.5 h	\sim 110 h	\sim 120.5 h	\sim 134 h	\sim 144.5 h	\sim 158 h	I
	0.01	5.6×10^{6}	1.0×10^{7}	8. 7×10^{-6}	7.4 \times 10 ⁶	6.4×10^{-6}	5.7 $\times 10^{-6}$	5. 1×10^{-6}	4. 6×10^{-6}	4. 1×10^{6}	3.8×10 ⁶	3.5 \times 10 ⁶	3. 2×10^{6}	3. 0×10^{-6}	1.4×10^{-6}
2	0.02	6. 2×10^{-6}	1. 2×10^{7}	9. 7×10^{-6}	8. 2×10^{-6}	7.1 \times 10 ⁶	6. 3×10^{-6}	5.6×10 ⁶	5. 1×10^{6}	4.6 $\times 10^{6}$	4. 2×10^{6}	3.9 $\times 10^{6}$	3.5 $\times 10^{6}$	3. 3×10^{-6}	1. 6×10^{-6}
3	0.03	1. 7×10^{-7}	3. 3×10^{-7}	3. 0×10^{-7}	2.8 $\times 10^{7}$	2. 5×10^{-7}	2. 4×10^{-7}	2. 2×10^{-7}	2. 0×10^{-7}	1.9×10^{7}	1.8×10^{7}	1.6×10^{7}	1.5×10^{7}	1. 4×10^{-7}	6.9 $\times 10^{-6}$
4	0.045	4.5 $\times 10^{6}$	8. 7×10^{-6}	7. 9×10^{6}	7.2×10^{6}	6.6×10^{6}	6.2×10^{-6}	5. 7×10^{-6}	5. 4×10^{-6}	5. 0×10^{-6}	4. 7×10^{-6}	4. 5×10^{-6}	4. 2×10^{6}	4. 0×10^{-6}	2. 0×10^{-6}
5	0.06	2. 0×10^{-6}	3.8×10 ⁶	3. 3×10^{6}	2.9×10 ⁶	2.5 \times 10 6	2. 3×10^{-6}	2. 0×10^{-6}	1.8×10^{6}	1.7 $\times 10^{-6}$	1.5×10^{6}	1. 4×10^{-6}	1.3×10^{6}	1.2×10^{-6}	5.6×10^{-5}
9	0.07	1.4×10^{-6}	2. 5×10^{-6}	2. 2×10^{-6}	1.9×10^{6}	1. 7×10^{-6}	1.5×10^{-6}	1.4×10^{6}	1.2×10^{6}	1.1×10^{6}	1.0×10^{-6}	9. 3×10^{-5}	8. 6×10^{-5}	7.9 $\times 10^{5}$	3.8 $\times 10^{-5}$
7	0.075	7. 1×10^{-5}	1. 4×10^{-6}	1. 3×10^{-6}	1. 2×10^{-6}	1. 1×10^{-6}	1. 1×10^{-6}	1.0×10^{-6}	9. 6×10^{5}	9. 1×10^{5}	8.6 $\times 10^{5}$	8. 2×10^{-5}	7.8 $\times 10^{5}$	7.4 $\times 10^{5}$	3. 6×10^{-5}
~	0.1	3.6×10^{6}	7. 0×10^{6}	6. 6×10^{-6}	6. 1×10^{-6}	5.7 $\times 10^{-6}$	5. 4×10^{-6}	5. 1×10^{-6}	4.8 $\times 10^{6}$	4. 5×10^{-6}	4. 3×10^{-6}	4. 1×10^{-6}	3.9×10^{6}	3. 7×10^{-6}	1.8×10^{-6}
6	0.15	2.7 $\times 10^{-6}$	5. 0×10^{6}	4. 2×10^{6}	3. 6×10^{-6}	3. 2×10^{-6}	2.8×10^{-6}	2.5 \times 10 ⁶	2. 2×10^{-6}	2. 0×10^{-6}	1.8 $\times 10^{-6}$	1.6×10^{6}	1.4×10^{6}	1.3×10^{-6}	$6.\ 2\times10^{-5}$
10	0.2	1.0×10^{7}	1.9 $\times 10^{7}$	1. 7×10^{-7}	1. 5×10^{-7}	1.4×10^{7}	1.2×10^{7}	1.2×10^{-7}	1. 1×10^{-7}	9.9 $\times 10^{6}$	9. 2×10^{-6}	8. 6×10^{-6}	8. 0×10^{-6}	7.4 $\times 10^{6}$	3.6×10^{-6}
11	0.3	2. 0×10^{-7}	3.8 $\times 10^{7}$	3. 3×10^{-7}	3. 0×10^{-7}	2. 7×10^{-7}	2.5 $\times 10^{-7}$	2. 3×10^{-7}	2. 1×10^{-7}	2. 0×10^{-7}	1.8×10^{7}	1. 7×10^{-7}	1.6×10^{7}	1. 5×10^{-7}	7. 2×10^{-6}
12	0.4	6.8×10^{-7}	1.4×10^{8}	1. 3×10^{8}	1.2×10^{8}	1.2×10^{-8}	1. 1×10^{-8}	1. 1×10^{-8}	1. 0×10^{-8}	9.9×10 ⁷	9. 5×10^{-7}	9. 0×10^{7}	8. 6×10^{-7}	8. 3×10^{-7}	4. 0×10^{-7}
13	0.45	3.4×10^{7}	6. 8×10^{-7}	6. 6×10^{-7}	6. 2×10^{7}	5.9 $\times 10^{7}$	5. 7×10^{-7}	5. 4×10^{7}	5. 2×10^{-7}	4.9 \times 10 ⁷	4. 7×10^{-7}	4. 5×10^{-7}	4. 3×10^{7}	4. 1×10^{-7}	2. 0×10^{-7}
14	0.51	1.0×10^{8}	1.9×10^{8}	1. 7×10^{8}	1.4×10^{8}	1.2×10^{8}	1.1×10^{8}	9. 5×10^{-7}	8. 5×10^{-7}	7.6 $\times 10^{7}$	6.8×10 ⁷	6. 2×10^{-7}	5. 6×10^{-7}	5. 1×10^{-7}	2. 4×10^{-7}
15	0.512	3.4×10^{6}	6. 4×10^{-6}	5. 6×10^{6}	4. 7×10^{-6}	4. 1×10^{6}	3.6×10^{6}	3. 2×10^{-6}	2.8×10 ⁶	2. 5×10^{-6}	2. 3×10^{-6}	2. 1×10^{-6}	1.9×10^{6}	1. 7×10^{-6}	8. 1×10^{-5}
16	0.6	1.5×10^{8}	2. 8×10^{8}	2. 4×10^{8}	2. 1×10^{8}	1.8×10^{8}	1.6×10^{8}	1. 4×10^{8}	1. 2×10^{8}	1. 1×10^{8}	1. 0×10^{-8}	9. 1×10^{7}	8. 2×10^{-7}	7. 5 \times 10 ⁷	3. 6×10^{-7}
17	0.7	$1.7 imes 10^8$	3. 2×10^{8}	2.8×10 ⁸	2.4 $\times 10^{8}$	2. 1×10^{-8}	1.8×10^{8}	1.6×10^{8}	1. 4×10^{8}	1.3×10^{8}	1.1×10^{8}	1.0×10^{-8}	9. 4×10^{7}	8. 5×10^{-7}	4. 0×10^{-7}
18	0.8	6.6×10^{-7}	1.3×10^{8}	1. 2×10^{8}	1.0×10^{8}	9. 3×10^{-7}	8. 4×10^{-7}	7.6 $\times 10^{7}$	6.8 $\times 10^{7}$	6. 2×10^{7}	5.6 $\times 10^{7}$	5.1 \times 10 ⁷	4. 6×10^{-7}	4. 2×10^{-7}	2. 0×10^{-7}
19	1.0	1.3×10^{-8}	2. 6×10^{-8}	2. 3×10^{-8}	2. 1×10^{-8}	1.9×10^{8}	1. 7×10^{-8}	1. 5×10^{-8}	1. 4×10^{-8}	1.2×10^{8}	1. 1×10^{-8}	1. 0×10^{-8}	9. 2×10^{-7}	8. 4×10^{-7}	4. 0×10^{-7}
20	1.33	5.8×10^{-7}	9. 7×10^{-7}	6. 6×10^{-7}	5.0 $\times 10^{7}$	4. 2×10^{-7}	3. 7×10^{-7}	3. 3×10^{-7}	2. 9×10^{7}	2.6 $\times 10^{7}$	2.4 \times 10 ⁷	2.1 \times 10 ⁷	1.9×10^{-7}	1.8×10^{7}	8. 3×10^{-6}
21	1.34	1.7×10^{-6}	2.9 $\times 10^{6}$	2. 0×10^{-6}	1. 5×10^{-6}	1.3×10^{-6}	1. 1×10^{-6}	9.9 × 10 5	8. 9×10^{5}	8. 0×10^{5}	7. 2×10^{5}	6.5×10^{5}	5.9 $\times 10^{-5}$	5. 3×10^{-5}	2. 5×10^{-5}
22	1.5	2.8 $\times 10^{-7}$	4. 7×10^{-7}	3. 2×10^{-7}	2. 4×10^{-7}	2. 0×10^{-7}	1.8×10^{-7}	1.6×10^{-7}	1. 4×10^{-7}	1.3×10^{7}	1. 1×10^{-7}	1.0×10^{7}	9.4×10^{-6}	8. 5×10^{-6}	4. 0×10^{-6}
23	1.66	5.4×10^{-6}	8. 2×10^{-6}	4. 0×10^{-6}	2. 3×10^{-6}	1.8×10^{-6}	1.5×10^{-6}	1.3×10^{6}	1. 2×10^{6}	1.1×10^{6}	9.6 $\times 10^{5}$	8.6 $\times 10^{5}$	7.7 $\times 10^{-5}$	6.9 $\times 10^{-5}$	3. 3×10^{-5}
24	2.0	1.1×10^{7}	1. 7×10^{-7}	8. 5×10^{-6}	5.0 \times 10 ⁶	3.8 $\times 10^{6}$	3. 2×10^{6}	2.8×10 ⁶	2. 5×10^{-6}	2. 3×10^{-6}	2. 0×10^{-6}	1.8 $\times 10^{-6}$	1.6×10^{6}	1. 5×10^{-6}	6.9×10^{-5}
25	2.5	4.2×10^{-6}	7. 4×10^{6}	5. 6×10^{-6}	4. 7×10^{-6}	4. 1×10^{-6}	3. 6×10^{-6}	3. 3×10^{-6}	2.9 \times 10 ⁶	2.6×10 ⁶	2.4 $\times 10^{6}$	2. 1×10^{-6}	1.9×10^{6}	1.7×10^{-6}	8. 1 \times 10 5
26	3.0	6. 7×10^{-4}	1.3×10^{5}	1. 2×10^{5}	1. 1×10^{5}	9.9 $\times 10^{-4}$	8.9×10 ⁴	8. 0×10^{-4}	7. 2×10^{4}	6.4 $\times 10^{4}$	5.8×10 ⁴	5. 2×10^{-4}	4. 7×10^{-4}	4. 2×10^{4}	2. 0×10^{-4}
27	3.5	1. 1×10^{-1}	1. 8×10^{-1}	1. 0×10^{-1}	8. 3×10^{-0}	6.8×10^{-0}	5.5 $\times 10^{-0}$	4. 5×10^{-0}	3. 6×10^{-0}	3. 0×10^{-0}	2. 4×10^{-0}	2.0×10^{-0}	$1.6 imes 10^{-0}$	1.3×10^{-0}	5. 7×10^{-1}
28	4.0	1.1×10^{-1}	1.8×10^{-1}	1. 0×10^{-1}	8. 3×10^{-0}	6.8×10^{-0}	5.5 $\times 10^{-0}$	4.5 $\times 10^{-0}$	3. 6×10^{-0}	3. 0×10^{-0}	2.4 \times 10 ⁰	2. 0×10^{-0}	1.6×10^{-0}	1.3×10^{-0}	5. 7×10^{-1}
29	4.5	8. 0×10^{-6}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1.6×10^{-5}	1.6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1.6×10^{-5}	1.6×10^{-5}	1.6×10^{-5}	7.9 \times 10 ⁻⁶
30	5.0	8. 0×10^{-6}	1. 6×10^{-5}	1. 6×10^{-5}	1.6×10^{-5}	1.6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	7.9 \times 10 ⁻⁶
31	5.5	8. 0×10^{-6}	1. 6×10^{-5}	1. 6×10^{-5}	1.6×10^{-5}	1.6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	7.9 \times 10 ⁻⁶
32	6.0	8. 0×10^{-6}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1.6×10^{-5}	1. $6 imes 10^{-5}$	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. 6×10^{-5}	1. $6 imes 10^{-5}$	1. $6 imes 10^{-5}$	1. 6×10^{-5}	7.9 $\times 10^{-6}$
33	6.5	9. 2×10^{-7}	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8×10^{-6}	1.8 \times 10 $^{-6}$	9. 1×10^{-7}
34	7.0	9. 2×10^{-7}	1. 8×10^{-6}	1. 8×10^{-6}	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 \times 10 $^{-6}$	1.8×10^{-6}	1.8 \times 10 $^{-6}$	9. 1×10^{-7}
35	7.5	9. 2×10^{-7}	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8 \times 10 $^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8 \times 10 $^{-6}$	1.8 \times 10 $^{-6}$	1.8 \times 10 $^{-6}$	9. 1×10^{-7}
36	8.0	9. 2×10^{-7}	1.8 $\times 10^{-6}$	1. 8×10^{-6}	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8×10^{-6}	1.8 $\times 10^{-6}$	1.8 $\times 10^{-6}$	1.8×10^{-6}	1.8×10^{-6}	1.8×10^{-6}	1.8 \times 10 $^{-6}$	1.8 \times 10 $^{-6}$	9. 1 \times 10 $^{-7}$
37	10.0	2.8×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5.6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	5. 6×10^{-7}	2. 8×10^{-7}
38	12.0	1.4×10^{-7}	2.8×10 ⁻⁷	2. 8×10^{-7}	2.8×10 $^{-7}$	2.8 \times 10 $^{-7}$	2.8×10 $^{-7}$	2.8×10 $^{-7}$	2.8×10 ⁻⁷	2.8×10 $^{-7}$	2.8×10 $^{-7}$	2.8 $\times 10^{-7}$	2.8 \times 10 ⁻⁷	2.8 $\times 10^{-7}$	1. 4×10^{-7}
39	14.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
40	20.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
41	30.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
42	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

表 5-19 グランドシャイン線評価用線源強度(入退域時)

	0 X			くくう とば とう	0. 6 J. W			
				実効線量	t (mSv)			
/	$1 \exists$	$2 \exists$	3 ⊟	日 わ	日 9	目 9	∃ L	₩ 1 1 1
A班	8. 0×10^{-0}							8. 0×10^{-0}
B班			9. 6×10^{-0}	7.7 $\times 10^{-0}$		4.8 $\times 10^{-0}$	2. 1×10^{-0}	2. 4×10^{-1}
C 班	1.5 $\times 10^{-1}$				6. 3×10^{-0}	5. 2×10^{-0}		2. 6×10^{-1}
D班		1. 1×10^{-1}	8. 5×10^{-0}				4.4 $\times 10^{-0}$	2. 4×10^{-1}
日班		1. 3×10^{-1}		6.9 $\times 10^{-0}$	5. 7×10^{-0}			2. 5×10^{-1}

表 5-20 地表面に沈着した放射性物質からのガンマ線による外部被ばく(入退城時)

図 5-17 入退域被ばく評価時のグランドシャイン評価モデル

5.8.3 評価結果のまとめ

各班の7日間の中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価結果を表5 -21(マスク着用あり)及び表5-22(マスク着用なし)に示す。

R0
7-3
\geq
補②
NT2

					実効線量	書 (mSv)			
			1日 2日	3 H	4 B	5 H	6 ∃	7 日	合計
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく	7.8×10^{-1}						7.8×10^{-1}
		大気中へ放出された放射性物質による被ぼく	9.6 $\times 10^{-1}$						9.6 $\times 10^{-1}$
	室内作業時	室内に外気から取り込まれた放射性物質による被ばく	4.6 $\times 10^{-1}$						4.6×10^{-1}
		大気中へ放出され地表面に沈着した放射性物質による被ばく	4. 7×10^{-0}						4.7 $\times 10^{-0}$
11 ×		「「「」」	5. 2×10^{-1}						5.2 $\times 10^{-1}$
A批		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	2.6×10^{-1}						2.6×10^{-1}
	7 047 н, г	大気中へ放出された放射性物質による被ばく	6.9×10^{-3}						6.9×10^{-3}
	人退现時	大気中へ放出され地表面に沈着した放射性物質による被ばく	8.0×10^{-0}						8.0×10^{-0}
		市	8.3×10^{-0}						8.3×10^{-0}
		नोन र ा	6.0×10^{-1}						6.0×10^{-1}
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく		4.9×10^{-2}	1.4×10^{-2}		4.2×10^{-4}	1.2×10^{-4}	6.3×10^{-2}
		大気中へ放出された放射性物質による被ぼく		2.3×10^{-3}	6.3×10^{-4}		2.6×10^{-5}	7.9×10^{-6}	3.0×10^{-3}
	室内作業時	室内に外気から取り込まれた放射性物質による被ぼく		6.6×10^{-1}	1.3×10^{-1}		6.7×10^{-3}	2.3×10^{-3}	8.0×10^{-1}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく		1.9×10^{0}	1.5×10^{-0}		7.1×10^{-1}	5.8×10^{-1}	4.7×10^{-0}
				2.6×10^{0}	1.6×10^{0}		7.2×10^{-1}	5.8×10^{-1}	5.5×10^{0}
B챞		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく		7.3×10^{-2}	1.8×10^{-2}		7.5×10^{-4}	1.4×10^{-4}	9. 2×10^{-2}
	+14-1 B, F	大気中へ放出された放射性物質による被ばく		3.4×10^{-3}	8. 1×10^{-4}		4.6×10^{-5}	9.5 $\times 10^{-6}$	4.3×10^{-3}
	人退现时	大気中へ放出され地表面に沈着した放射性物質による被ばく		9.6×10^{0}	7.7×10^{-0}		4.8×10^{-0}	2.1×10^{0}	2.4×10^{1}
		小 計		9.6×10^{0}	7.7×10^{-0}		4.8×10^{-0}	2.1×10^{0}	2.4×10^{-1}
		- 		1.2×10^{-1}	9.3×10^{-0}		5.5×10^{-0}	2.7×10^{0}	3.0×10^{-1}
		健屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	6.0×10^{-1}			4.1×10^{-3}	1.1×10^{-3}		6.0×10^{-1}
		大気中へ放出された放射性物質による被ばく	1.4×10 ¹			1.9×10^{-4}	6.0×10^{-5}		1.4×10^{1}
	室内作業時	室内に外気から取り込まれた放射性物質による被ぼく	6.8×10^{-0}			4.4×10^{-2}	1.5×10^{-2}		6.8×10^{-0}
	, , , ,	<u>- 大気中へ放出され地表面に沈着した放射性物質による被ぼく</u>	2.6×10^{-0}			1.2×10^{-0}	1.0×10^{0}		4.8×10^{0}
1			2.4×10 ¹			1.3×10^{-0}	1.0×10^{0}		2.7×10^{-1}
C斑		健民内的射性物質からの直接ガンマ線及パスカイシャインガンフ線による統定く	5 4×10 ⁻¹			5 3×10 -3	1.6×10^{-3}		5 5×10 ⁻¹
		生まれがおいたがたいかどに必べて、かべくのパイレント・パイン・かいてきを取る。 大気中へお日とれたお料料物館による被ぼく	1.8×10^{-2}			2.6×10^{-4}	8.4×10 -5		1.8×10^{-2}
	入退域時	大気中へ放出され地表面に沈着した放射性物質による被ぼく	1.5×10^{-1}			6.3×10^{-0}	5.2×10^{0}		2.6×10^{-1}
			1.6×10^{-1}			6.3×10^{0}	5.2×10^{0}		2.7×10^{-1}
			4.0×10^{-1}			7.5×10^{-0}	6.2×10^{-0}		5.4×10^{-1}
		律屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	7.4×10^{-2}	2.0×10^{-2}				3.0×10^{-4}	9.4×10^{-2}
		大気中へ放出された放射性物質による被ばく	3.7×10^{-3}	9.2×10^{-4}				1.9×10^{-5}	4.6×10^{-3}
	室内作業時	室内に外気から取り込まれた放射性物質による被ばく	1.0×10^{0}	2.0×10^{-1}				5.2×10^{-3}	1.3×10^{-0}
		大気中へ放出され地表面に沈着した放射性物質による被ばく	1.7×10^{-0}	1.3×10^{0}				8. 3×10^{-1}	3.8×10^{-0}
1 1 1 1 1		-提 小/	2.8×10^{0}	1.5×10^{0}				8. 3×10^{-1}	5.2×10^{-0}
лиц		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく	1.6×10^{-1}	3.4×10^{-2}				4. 3×10^{-4}	1.9×10^{-1}
	11.14世纪	大気中へ放出された放射性物質による被ぼく	6.5×10^{-3}	1.5×10^{-3}				2.8×10^{-5}	8. 1×10^{-3}
		大気中へ放出され地表面に沈着した放射性物質による被ばく	1.1×10^{-1}	8.5×10^{-0}				4.4×10^{-0}	2.4×10^{-1}
		小 計	1.1×10^{-1}	8.5 $\times 10^{-0}$				4.4×10^{-0}	2.4 $\times 10^{1}$
		合 計	1.4×10^{-1}	1.0×10^{1}				5. 2×10^{-0}	2.9×10^{-1}
L		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	2.3×10^{-1}		5.9×10^{-3}	1.8×10^{-3}			2. 3×10^{-1}
		大気中へ放出された放射性物質による被ぼく	1.0×10^{-2}		2.7 $\times 10^{-4}$	8.3×10^{-5}			1.1×10^{-2}
	室内作業時	室内に外気から取り込まれた放射性物質による被ぼく	8.0×10^{-0}		5.9×10^{-2}	2.0×10^{-2}			8. 1×10^{-0}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく	2.6×10^{-0}		1.1×10^{-0}	8.6×10^{-1}			4. 5×10^{-0}
비지 신		小 計	1.1×10^{-1}		1.1×10^{-0}	8.8×10^{-1}			1.3×10^{-1}
口別		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく	4.1×10^{-1}		9. 4×10^{-3}	2.9×10^{-3}			4.3×10^{-1}
	入退城時	大気中へ放出された放射性物質による被ばく	1.6×10^{-2}		4.4×10^{-4}	1.4×10^{-4}			1.6×10^{-2}
	,	大気中へ放出され地表面に沈着した放射性物質による被ばく	1.3×10^{1}		$6.9 \times 10^{\circ}$	5.7×10^{0}			2.5×10^{-1}
		小 計 :	1.3×10 -		$6.9 \times 10^{\circ}$	$5.7 \times 10^{\circ}$			2.6×10^{-1}
		合 計	2.4×10^{1}		8. 0×10^{-0}	6.6×10^{-0}			3.9×10^{1}

各班の7日間の央制御室の居住性(重大事故等時)に係る被ばく評価結果の内訳(マスク着用あり) 表 5-21

NT2 補② V-1-7-3 R0

						実効線量	載 (mSv)			
			1 🛛	2 H	3 H	4日	5 H	6 ∃	日 2	合計
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	7.8×10^{-1}							7.8 $\times 10^{-1}$
		大気中へ放出された放射性物質による被ぼく	9.6×10^{-1}							9.6×10^{-1}
	室内作業時	室内に外気から取り込まれた 放射性物質による被ぼく	1.0×10^{-3}							1.0×10^{-3}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく	4.7 $\times 10^{-0}$							4. 7×10^{-0}
A EIT		福小	1.0×10^{-3}							1.0×10^{3}
A M		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ぼく	2.6×10^{-1}							2. 6×10^{-1}
	147 8, 1	大気中へ放出された放射性物質による被ばく	6.8×10^{-2}							6.8×10^{-2}
	人词或臣	大気中へ放出され地表面に沈着した放射性物質による被ぼく	8.0×10^{-0}							8.0×10^{-0}
			8.3×10^{0}							8.3×10^{-0}
		◆ □	1.0×10^{-3}							1.0×10^{3}
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく			4.9×10^{-2}	1.4×10^{-2}		4.2×10^{-4}	1.2×10^{-4}	6.3×10^{-2}
		大信中へお用などをお料本物層に下くおぼく			2 3×10 -3	6.3×10^{-4}		9.6×10^{-5}	7 9×10 -6	3 0×10 ⁻³
	宝内作粪陆	人へ上、※出こ45/1~※311~約5月によう灰いなく 皮内にん信やて臣りはませた な財産施治 トス抜所く			6.6×10 ⁻¹	1 2 × 10 -1		6 7×10 -3	9 3×10 -3	8 0×10 ⁻¹
	MKLIT 1	五 1/// ///// ジ状ッグされ///////11日// 貞/によう図(はく) 十百十~廿日々と甚まだ」を第一を支配字稿をで、「とばいく			1 0 < 10 0	1 5 < 10 0		7 1 \ 10 -1	5 0 \ 10 -1	4 7 ~ 10 0
		人私中へ放出され地衣囲に洗着した放射性物真による彼はく			1.9×10°	1. 5 × 10 °		- 1×10 - 	5.8×10 -	4. / × 10 °
B					2.6 $\times 10^{\circ}$	$1.6 \times 10^{\circ}$		7.2×10^{-1}	5.8×10^{-1}	$5.5 \times 10^{\circ}$
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく			7.3×10^{-2}	1.8×10^{-2}		7.5 $\times 10^{-4}$	1.4×10^{-4}	9.2 $\times 10^{-2}$
	入语帖	大気中へ放出された放射性物質による被ぼく			7.0×10^{-2}	1.4×10^{-2}		9.1 \times 10 ⁻⁴	2.1 \times 10 ⁻⁴	8.5×10^{-2}
		大気中へ放出され地表面に沈着した放射性物質による被ばく			9.6 $\times 10^{-0}$	7.7 $\times 10^{0}$		4.8×10^{-0}	2.1 \times 10 ⁰	2.4 \times 10 ¹
		描く			9.7 $\times 10^{-0}$	7.7×10^{0}		4.8×10^{-0}	2.1×10^{-0}	2. 4×10^{-1}
		令			1.2×10^{-1}	9.3 $\times 10^{0}$		5.5×10^{-0}	2.7 $\times 10^{-0}$	3.0×10^{1}
		律屋内扮射性物質からの直接ガンマ線及びスカイシャインガンマ線によろ被げく	6.0×10^{-1}		1		4.1×10^{-3}	1.1×10^{-3}		6.0×10^{-1}
		在は「2003日20頁のションではなく、、約次のシント・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・シー・	0.0710 1 4 X 10 1				1 0×10 -4	6 0×10 -5		1.4×10^{1}
	安内方地民	人入口・次田 C 4 いし以が正初 貝によ つびばさく なんにゅん 白い たいち かいけい たいじょう ち お針 陸船 ディトス かいどく	1.4~10 6 0~10 0				1.3~10 4 4~10 -2	$1 E < 10^{-2}$		1.4×10^{-6}
	ヨトリー未可	至内にかべいり取り込まれに広が性物具による飲は、 七百十一44日々とゆまだいやましゃおむ中華席にてて捧ばく	0.0×10				$4.4 \wedge 10$	1 0 1 1 0 1		0.0×10
		大気中へ放出され地表面に洗着した放射性物質による彼はく	2. 6 × 10 °				$1.2 \times 10^{\circ}$	$1.0 \times 10^{\circ}$		$4.8 \times 10^{\circ}$
C 驻			2.4×10^{-1}				$1.3 \times 10^{\circ}$	$1.0 \times 10^{\circ}$		2.7×10^{-1}
1		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく	5.4×10^{-1}				5.3×10^{-3}	1.6×10^{-3}		5.5×10^{-1}
	入退城時	大気中へ放出された放射性物質による被ぼく	2.9×10^{-1}				4.6×10^{-3}	1.6×10^{-3}		3.0×10^{-1}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく	1.5×10^{-1}				6.3×10^{-0}	5.2 $\times 10^{-0}$		2. 6×10^{-1}
			1.6×10^{-1}				6.3×10^{-0}	5. 2×10^{-0}		2.7 $\times 10^{-1}$
		合 計	4.0 \times 10 ¹				7.6×10^{-0}	6.2×10^{-0}		5.4 $\times 10^{-1}$
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく		7.4×10^{-2}	2. 0×10^{-2}				3. 0×10^{-4}	9.4×10^{-2}
		大気中へ放出された放射性物質による被ぼく		3.7×10^{-3}	9. 2×10^{-4}				1.9 $\times 10^{-5}$	4. 6×10^{-3}
	室内作業時	室内に外気から取り込まれた放射性物質による被ぼく		$1.0 imes 10^{-0}$	2. 0×10^{-1}				5. 2×10^{-3}	1.3×10^{-0}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく		1.7×10^{-0}	1.3×10^{-0}				8. 3×10^{-1}	3.8×10^{-0}
		小 計		2.8×10^{-0}	1.5 $\times 10^{-0}$				8. 3×10^{-1}	5.2 $\times 10^{-0}$
The C		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく		$1.6 imes10^{-1}$	3. 4×10^{-2}				4. 3×10^{-4}	1.9×10^{-1}
	判 沖 仕: Y	大気中へ放出された放射性物質による被ばく		1.3×10^{-1}	2.8×10^{-2}				5.5×10^{-4}	1.6×10^{-1}
		大気中へ放出され地表面に沈着した放射性物質による被ばく		1.1×10^{-1}	8.5 $\times 10^{-0}$				4.4 $\times 10^{-0}$	2.4 \times 10 ¹
		小計		1.1×10^{-1}	8.6 $\times 10^{-0}$				4.4 $\times 10^{-0}$	2. 4×10^{-1}
		合 計		1.4×10^{-1}	1.0×10^{-1}				5. 2×10^{-0}	2.9 \times 10 ¹
		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく		2.3×10^{-1}		5.9×10^{-3}	1.8×10^{-3}			2.3×10^{-1}
		大気中へ放出された放射性物質による被ばく		1.0×10^{-2}		2.7 $\times 10^{-4}$	8.3×10^{-5}			1.1×10^{-2}
	室内作業時	室内に外気から取り込まれた放射性物質による被ばく		8.0×10^{-0}		5.9 $\times 10^{-2}$	2.0×10^{-2}			8. 1×10^{-0}
		大気中へ放出され地表面に沈着した放射性物質による被ぼく		2.6×10^{-0}		1.1×10^{0}	8.6×10^{-1}			4.5 $\times 10^{-0}$
t F		₩ 1 1 1 1 1 1 1 1 1 1 1 1 1		1.1×10^{-1}		1.1×10^{0}	8.8×10^{-1}			1.3×10^{-1}
口姓		建屋内放射性物質からの直接ガンマ線及びスカイシャインガンマ線による被ばく		4.1 $\times 10^{-1}$		9. 4×10^{-3}	2.9×10^{-3}			4.3×10^{-1}
	1) E 44:04	大気中へ放出された放射性物質による被ばく		3.2×10^{-1}		7.8 $\times 10^{-3}$	2.6×10^{-3}			3.3×10^{-1}
	へ遅歩す	大気中へ放出され地表面に沈着した放射性物質による被ぼく		1.3×10^{-1}		6.9×10^{0}	5.7×10^{-0}			2. 5×10^{-1}
		小 計		1.3×10^{-1}		6.9×10^{0}	5.7×10^{-0}			2. 6×10^{-1}
		合 書		2.4×10^{-1}		8.0×10^{0}	6.6×10^{-0}			3.9×10^{1}

表 5-22 各班の7日間の央制御室の居住性(重大事故等時)に係る被ばく評価結果の内訳(マスク着用なし)

5.9 判断基準への適合性

中央制御室(炉心の著しい損傷)の居住性に係る被ばく評価結果のまとめを下表に、内訳を 表 5-23(マスク着用あり)及び表 5-24(マスク着用なし)に示す。

これに示すように、重大事故等時の中央制御室の運転員に及ぼす実効線量は、マスク着用の 防護措置を講じる場合で約 60 mSv である。

したがって,評価結果は判断基準の「運転員の実効線量が7日間で100 mSv を超えないこと」 を満足している。

(マスク着用あり)

		実効線量 (mSv)						
\sim	1日	2日	3日	4日	5日	6日	7日	合計
A班	6.0 \times 10 ⁻¹							6. 0×10^{-1}
B班			1. 2×10^{-1}	9.3 \times 10 ⁰		5.5 \times 10 0	2.7 \times 10 0	3. 0×10^{-1}
C班	4.0 \times 10 ¹				7.5 \times 10 ⁰	6. 2×10^{-0}		5. 4×10^{-1}
D班		1. 4×10^{-1}	1. 0×10^{-1}				5. 2×10^{-0}	2.9 \times 10 ¹
E班		2. 4×10^{-1}		8.0×10 ⁰	6.6 \times 10 ⁰			3. 9×10^{-1}

(マスク着用なし)

\sim				実効線量	t (mSv)			
	1日	2日	3日	4 日	5日	6 日	7日	合計
A班	1.0 \times 10 ³							1. 0×10^{-3}
B班			1. 2×10^{-1}	9.3 \times 10 ⁰		5.5 \times 10 °	2.7 \times 10 0	3. 0×10^{-1}
C班	4. 0×10^{-1}				7.6 \times 10 ⁰	6. 2×10^{-0}		5. 4×10^{-1}
D班		1.4 \times 10 ¹	1. 0×10^{-1}				5. 2×10^{-0}	2.9 \times 10 ¹
E班		2. 4×10^{-1}		8.0 \times 10 ⁰	6.6 \times 10 ⁰			3.9 \times 10 ¹

NT2 補② V-1-7-3 R0

1. 1×10^{-2} 1. 6×10^{-2} °] 6. 3×10^{-3} 2. 3×10^{-1} 5. 2×10^{-0} 2.9 × 10⁰ 8. 1×10^{-0} 4.3×10 ⁻¹ 4. 5×10^{-0} 1.3×10^{-1} 2.5 $\times 10^{-1}$ 2. 6×10^{-2} 1.0×10 3.9×10 氏斑 9. 4×10^{-2} 4. 6×10^{-3} 3. 7×10^{-3} 5. 1×10^{-3} 3. 0×10^{-3} 8. 1×10^{-3} 1. 9×10^{-1} $1.2\! imes\!10^{\ 0}$ 1.3×10^{-0} 3.8 $\times10^{-0}$ 2. 4×10^{-1} 5. 2×10^{-0} 2. 4×10^{-1} 2.9 \times 10¹ D班 実効線量 (mSv/7日間) 1.8×10^{-2} 1. 2×10^{-2} 5. 7×10^{-3} 6.0×10^{-1} 7.7 $\times 10^{-1}$ 5.5 $\times 10^{-1}$ 6. 1×10^{-0} 6.8×10 0 4.8 $\times 10^{-0}$ 2. 6×10^{-1} 1.4×10^{-1} 2. 7×10^{-1} 2. 7×10^{-1} 5.4×10 C班 9.2 $\times 10^{-2}$ 6.3×10^{-2} 3. $0\!\times\!10^{-3}$ 2. 3×10^{-3} 2. 6×10^{-3} 4. 3×10^{-3} 8. 0×10^{-1} 8. 0 \times 10 $^{-1}$ 1. $7\!\times\!10^{-3}$ 2.4 $\times 10^{-1}$ 4. 7×10^{-0} 5.5×10^{-0} 2. 4×10^{-1} 3.0×10^{-1} B班 5. 6×10^{-3} 1.3×10^{-3} 6.9 \times 10 $^{-3}$ 7.8×10 $^{-1}$ 9. 6×10^{-1} 2. 6×10^{-1} 5. 3×10^{-0} 4.0×10^{-1} 4. 6×10^{-1} 4. 7×10^{-0} 5.2×10^{-1} 8. 0×10^{-0} 8. 3×10^{-0} 6. 0×10^{-1} A班 建屋内放射性物質からの直接ガンマ線及 びスカイシャインガンマ線による被ばく 大気中へ放出された放射性物質による被 ばく 大気中へ放出され地表面に沈着した放射 性物質による被ばく 建屋内放射性物質からの直接ガンマ線及 びスカイシャインガンマ線による被ばく 大気中へ放出され地表面に沈着した放射 性物質による被ばく (外部被ばく) (外部被ばく) (内部被ばく) (内部被ばく) 11111 1111 臼 <□ <⊡ \sim 1111111 11111 H 大気中へ放出された 放射性物質による被 ばく 室内に外気から取り F 込まれた放射性物質 による被ばく 被 11111 ć ć ⊲⊡ 郘 豀 室内作業時 \sim 入退域時 H 袯

の運転員に及ぼす実効線量の内訳(マスク着用あり) (炉心の著しい損傷) 中央制御室 表 5-23 NT2 補② V-1-7-3 R0

1. 0×10^{-2} 2. 3×10^{-1} 1. 1×10^{-2} 3. 2×10^{-1} 3. 3×10^{-1} 4. 3×10^{-1} 5. 2×10^{0} 2. 9×10^{0} 8. 1×10^{0} 4. 5×10^{0} 1. 3×10^{-1} 2. 5×10^{-1} 3. 9×10^{-1} 2. 6×10^{-1} 日班 9. 4×10^{-2} 4. 6×10^{-3} 3. 7×10^{-3} 5. 1×10^{-3} 1.9×10^{-1} 1.5×10^{-1} 1.6×10^{-1} 5. 2×10^{0} 1.2×10^{0} 1. 3×10^{0} 3.8×10⁰ 2. 4×10^{1} 2.4 $\times 10^{-10}$ 2.9 $\times 10$ D 班 (圖日2/ASm) 1. 2×10^{-2} 3. 0×10^{-1} 6. 0×10^{-1} 7. 7×10^{-1} 5×10^{-1} 2. 8×10^{-1} 6.8 \times 10 0 4. 8×10^{-0} 6. 1×10^{-0} 2. 7×10^{-1} 2. 6×10^{-1} 1. 4×10^{-1} 2. 7×10 5. 4×10 C 班 実効線量 ы. 8. 5×10^{-2} 6. 3×10^{-2} 3. 0×10^{-3} 2. 3×10^{-3} 8. 0×10^{-1} 9. 2×10^{-2} 2. 6×10^{-3} 8. 3×10^{-2} 8. 0×10^{-1} 4. 7×10^{-0} 5. 5×10^{-0} 2. 4×10^{-1} 2. 4×10^{-10} 3. 0×10 B班 5. 6×10^{-3} 6. 8×10^{-2} 7.8 × 10 $^{-1}$ 9. 6×10^{-1} 9 2. 6×10^{-1} 8. 0×10^{-0} 5. 3×10^{-0} 1.0×10^{-3} 1. 0×10^{-3} 4. 7×10^{-0} 1. 0×10^{-3} 8. 3×10^{-0} 1. 0×10^{-3} 6. 3×10^{-10} A班 ・・、wぃぃょつ飯はく |大気中へ放出された放射性物質による被| ばく 建屋内放射性物質からの直接ガンマ線及 びスカイシャインガンマ線による被ばく 大気中へ放出され地表面に沈着した放射 性物質による被ばく 建屋内放射性物質からの直接ガンマ線及 大気中へ放出され地表面に沈着した放射 性物質による被ばく びスカイシャインガンマ線による彼ばく (外部被ばく) (内部被ばく) (外部被ばく) (内部被ばく) 11111 11111 匂 语 <⊡ ₹□ \sim <u>_</u> 1111⊡ 11111111 H 室内に外気から取り F 込まれた放射性物質 による被ばく 大気中へ放出された 放射性物質による被 ばく 被 11111 ć ć ₹□ 路 絰 室内作業時 \sim 入退域時 H 祾

の運転員に及ぼす実効線量の内訳(マスク着用なし) (炉心の著しい損傷) 中央制御室 5 - 24表

130

- 5.10 酸素濃度及び二酸化炭素濃度評価
 - 5.10.1 炉心の著しい損傷が発生した場合の中央制御室内酸素及び二酸化炭素濃度評価方針
 - (1) 評価の概要

技術基準規則第74条の解釈に規定する「運転員がとどまるために必要な設備」として、 中央制御室換気系は、外気から遮断する閉回路循環運転とすることができる。

閉回路循環運転により,中央制御室への空気の取り込みを一時的に停止した場合の室 内の酸素濃度及び二酸化炭素濃度が,事故対策のための活動に支障がない濃度であるこ とを評価する。

本評価における滞在人数,容積,評価期間等は,被ばく評価条件を基に,保守的な結 果となるよう設定する。また,酸素消費量及び二酸化炭素吐出し量等は,換気系の使用 時における中央制御室内にとどまる要員の活動状況等を想定し,設定する。

(2) 酸素及び二酸化炭素許容濃度の設定

酸素及び二酸化炭素許容濃度は,表 5-25 に示すとおり,中央制御室内で想定される 労働環境における酸素濃度及び二酸化炭素濃度の許容基準に準拠する。

中央制御室は,高い気密性を持った室内という限られた環境であるため,同様に限ら れた環境下における労働環境を規定している「鉱山保安法施行規則」に定める酸素濃度 19%以上及び原子力発電所中央制御室運転員の事故時被ばくに関する規程(JEAC4 622-2009)(日本電気協会 原子力規格委員会 平成21年6月)が準拠することと している事務所衛生規則に定める二酸化炭素濃度0.5%以下を設計値とする。

表 5-25 中央制御室内酸素及び二酸化炭素許容濃度

項目	許容濃度	備考
酸素濃度	19% 以上	「鉱山保安法施行規則」を準拠 (鉱山労働者が作業し,又は通行する坑 内は,当該濃度以上とする通気の確保 を要求)
二酸化炭素濃度	0.5% 以下	「事務所衛生規則」を準拠 (事務作業に従事する労働者が主として 使用する室内は当該濃度以下とする換 気設備の性能を要求)

(炉心の著しい損傷が発生した場合)

(3) 酸素及び二酸化炭素許容濃度の計算

中央制御室内の事故時の滞在人数及び酸素消費量及び二酸化炭素吐出し量等は,中央制御室内にとどまる運転員の活動状況等を想定し,呼吸率等を踏まえ,中央制御室換気 系隔離時の酸素及び二酸化炭素濃度の評価を以下の原子力発電所中央制御室運転員の事 故時被ばくに関する規程(JEAC4622-2009)(日本電気協会 原子力規格委員 会 平成21年6月)の中央制御室の平衡状態における二酸化炭素濃度の計算式を基に, 中央制御室内の酸素濃度及び二酸化炭素濃度を計算する。中央制御室内の酸素濃度及び 二酸化炭素濃度の評価条件を表 5-26 に示す。評価式を以下に示す。

$$C_{\infty} = C + \frac{M}{N \cdot V}$$

М	: 室内二酸化炭素発生量	(m^3/h)
V	: 中央制御室内容積	(m ³)
$C \ \infty$: 平衡状態における二酸化炭素濃度	(-)
С	:2時間後の二酸化炭素濃度	(-)
Ν	: 空気流入率	(回/h)

M, C∞, Cについては, 酸素のとき, 二酸化炭素を酸素に置き換える。

また、Mは酸素の場合、負の値となり、酸素消費量と置き換える。

ただし、炉心の著しい損傷が発生した場合における評価においては、事故後2時間の ファンの停止を想定し、空気流入率ゼロにおける2時間後の中央制御室内の濃度バラン スを基に計算する。

中央制御室内の2時間後の酸素及び二酸化炭素濃度については,以下の計算式を基に 算出する。

$$\mathbf{C} = \left(\mathbf{V} \cdot \mathbf{C}_0 + \mathbf{M} \cdot 2\right) / \mathbf{V}$$

С	:2時間後の二酸化炭素濃度	(-)
М	: 室内二酸化炭素発生量	(m^3/h)
V	: 中央制御室内容積	(m^3)
C_0	: 外気の二酸化炭素濃度	(-)

C, M, C₀については, 酸素のとき, 二酸化炭素を酸素に置き換える。 また, Mは酸素の場合, 負の値となり, 酸素消費量と置き換える。

表 5-26 中央制御室内の酸素濃度及び二酸化炭素濃度計算条件

項目	評 価	条件	設定理由	備考
人数	11	人	事故等時に中央制御室にとどまる 要員数	_
容積	270	0 m^3	設計値から保守的に切り下げて設 定	図 5-20 参照
評価期間	7	日	炉心の著しい損傷が発生した場合 の被ばく評価期間	_
<u> </u>	~ 2 h	0 回/h	全交流動力電源喪失による ファン停止を想定	_
至风机八	2 h∼	1 回/h	空気流入率試験結果(約 0.45 回 /h)を基に設定	_
初期酸素濃度	20.9	95 %	「空気調和・衛生工学便覧」の乾き 空気の主な成分組成により引用	_
初期二酸化炭 素濃度	0.03	36 %	「空気調和・衛生工学便覧」の乾き 空気の主な成分組成により引用	_
酸素消費量	65.52 ¢/h		「空気調和・衛生工学便覧」より現 場作業に係る対応が考えられるた め「歩行」より引用	 1 人当たり の消費量
二酸化炭素吐 出し量	46	ℓ/h	「空気調和・衛生工学便覧」より現 場作業に係る対応が考えられるた め「中等作業」より引用	1 人当たり の吐出し量

(炉心の著しい損傷が発生した場合)

5.10.2 炉心の著しい損傷が発生した場合の中央制御室内酸素及び二酸化炭素濃度評価結果

- (1) 酸素濃度
 - a. 事故後2時間

計算の結果、2時間後の酸素濃度は、20.8%となる。

b. 2時間~7日間

計算の結果,中央制御室換気系閉回路循環運転時の被ばく評価上の使用期間における平衡状態の酸素濃度は20.9%となり,限られた労働環境における許容基準濃度である19%以上を満足しているため中央制御室での作業環境に影響を与えないと評価する。

- (2) 二酸化炭素濃度
 - a. 事故後2時間

計算の結果,2時間後の二酸化炭素濃度は,0.08%となる。

b. 2時間~7日間

計算の結果,中央制御室換気系隔離時の被ばく評価上の使用期間における平衡状態 の二酸化炭素濃度は0.06%となり,限られた労働環境における二酸化炭素濃度の許 容濃度である1%以下を満足しているため中央制御室での作業環境に影響を与えない と評価する。

- 5.10.3 炉心の著しい損傷が発生した場合の中央制御室待避室内酸素及び二酸化炭素濃度評価 方針
 - (1) 評価の概要

中央制御室待避室空気ボンベユニット(空気ボンベ)による加圧を実施した場合にお いて,中央制御室待避室内の酸素濃度及び二酸化炭素濃度が活動に支障がない濃度であ ることを評価する。

本評価における滞在人数,容積,評価期間等は,被ばく評価条件を基に,保守的な結 果となるよう設定する。また,酸素消費量及び二酸化炭素吐出し量等は,加圧設備の使 用時における待避室内にとどまる要員の活動状況等を想定し,設定する。

(2) 酸素及び二酸化炭素濃度許容濃度の設定

酸素及び二酸化炭素許容濃度は,表 5-27 に示すとおり,中央制御室待避室空気ボン ベユニット(空気ボンベ)使用時の環境に応じた,適切な労働環境における酸素濃度及 び二酸化炭素濃度の許容基準に準拠する。

中央制御室待避室空気ボンベユニット(空気ボンベ)による加圧は,希ガス等の放射 性物質を含む外気が待避室内に侵入しないように実施する防護措置であり,加圧時は, 中央制御室待避室内を密閉するという限られた環境である。このため,同様に限られた 環境下における労働環境を規定している「鉱山保安法施行規則」に定める酸素濃度19% 以上及び原子力発電所中央制御室運転員の事故時被ばくに関する規程(JEAC462 2-2009)(日本電気協会 原子力規格委員会 平成21年6月)が準拠することとして いる事務所衛生規則に定める二酸化炭素濃度0.5%以下を設計値とする。

> 表 5-27 待避室内 酸素及び二酸化炭素許容濃度 (炉心の著しい損傷が発生した場合)

項目	許容濃度	備考
酸素濃度	19 %以上	「鉱山保安法施行規則」を準拠 (鉱山労働者が作業し,又は通行する坑内 は,当該濃度以上とする通気の確保を要求)
二酸化炭素濃度	0.5 %以下	「事務所衛生規則」を準拠 (事務作業に従事する労働者が主として使用 する室内は当該濃度以下とする換気設備の性 能を要求)

RO

(3) 酸素濃度維持及び二酸化炭素濃度抑制に必要な流量の計算

中央制御室待避室内を加圧し、その圧力を維持するために必要な流量並びに中央制御 室待避室内の酸素濃度維持及び二酸化炭素濃度抑制に必要な流量を計算し、その結果か ら酸素濃度及び二酸化炭素濃度の評価を行う。待避室内の酸素濃度及び二酸化炭素濃度 計算条件を表 5-28 に示す。

なお,被ばく評価にて,格納容器フィルタベント使用開始から5時間までボンベにて 加圧した中央制御室待避室内に滞在することとしているため,加圧時間は5時間とする。

5時間連続で空気ボンベを加圧する場合において、中央制御室待避室内の圧力維持並 びに酸素濃度及び二酸化炭素濃度を維持・抑制するための条件を満足する必要がある。

表 5-28 中央制御室待避室内の酸素濃度及び二酸化炭素濃度計算条件

項目	評価条件	設定理由	備考
人数	3 人	待避室内にとどまる要員数	Ι
容積	16 m^3	待避室容積	Ι
評価期間	5 時間	被ばく評価上,中央制御室待避室 内にとどまる期間	Ι
初期酸素濃度	20.95 %	「空気調和・衛生工学便覧」の乾き 空気の主な成分組成により引用	_
初期二酸化炭素濃度	0.0336 %	「空気調和・衛生工学便覧」の乾き 空気の主な成分組成により引用	_
酸素消費量 (空気ボンベ使用時)	21.84 @/h	「空気調和・衛生工学便覧」より準 備を含む現場作業対応がないため 「静座」より引用	1 人当たり の消費量
二酸化炭素吐出し量 (空気ボンベ使用時)	22 Ø/h	「空気調和・衛生工学便覧」より準 備を含む現場作業対応がないため 「極軽作業」より引用	1 人当たり の吐出し量

(炉心の著しい損傷が発生した場合)

- a. 中央制御室待避室内の正圧維持
 - (a) 目標圧力の設定

中央制御室待避室は,配置上,風の影響を受けない中央制御室換気系の換気対象 エリア内に設置されているため,待避室内へのインリークは,隣接区画との温度差 によるものが考えられる。

炉心の著しい損傷が発生した場合の室内の温度を中央制御室の設計最高温度 48.9 ℃,隣接区画を外気の設計最低温度-12.7 ℃と仮定すると,中央制御室待避室 の天井高さは最大約2mであることから,温度の影響を無視できる圧力差を下式に より計算する。

△P={(-12.7 ℃の乾き空気の密度)-(+48.9 ℃の乾き空気の密度)}×(高低差) =(1.3555-1.0963)×2

 $=0.5184 \ (kg/m^2)$

 $\rightarrow 0.5184 \times 9.8$

≒5.1 (Pa)

計算の結果,温度の影響を無視できる圧力差は約5.1 Pa であるが,余裕を見込み, 目標圧力は10 Pa[gage]に設定する。

(b) 必要最低換気量

中央制御室待避室内を正圧(隣接区画+10 Pa)に維持するために必要な最低換気 流量は、加圧設備(空気ボンベ)からの実供給試験により設定する。

実供給試験の結果より,必要な最低換気流量は14.2 m³/h に設定するとともに, 14.2 m³/h の流量を流した場合,目標圧力に達し,正圧維持を可能とする設計とす る。

b. 中央制御室待避室内酸素濃度維持

酸素濃度を維持するために必要な最低換気流量を下式により計算する。

$$Q = \frac{k}{P_1 - P_0}$$

Q	: 必要換気流量	(m^3/h)
k	:酸素消費量	(m^3/h)
P_1	: 初期酸素濃度	(-)
Ρ ₀	: 許容酸素濃度	(-)

計算の結果,必要な最低換気流量は3.4 m³/hとなる。

c. 中央制御室待避室内二酸化炭素濃度抑制

二酸化炭素濃度の抑制に必要な最低換気流量を下式により計算する。

$$L = \frac{M}{C - C_0}$$

L	: 必要換気流量	(m^3/h)
М	: 二酸化炭素発生量	(m^3/h)
С	:許容二酸化炭素濃度	(-)
C_0	: 初期二酸化炭素濃度	(-)

計算の結果,必要な最低換気流量は6.9 m³/hとなる。

(4) 中央制御室待避室内酸素濃度及び二酸化炭素濃度

中央制御室待避室内空気の空気ボンベ使用時における酸素濃度及び二酸化炭素濃度は, 原子力発電所中央制御室運転員の事故時被ばくに関する規程(JEAC4622-2009) (日本電気協会 原子力規格委員会 平成21年6月)の中央制御室の二酸化炭素濃度計 算式①を展開した式②により計算する。

М	: 室内酸素消費量	(m ³ /h)
V	: 室内体積	(m^3)
С	: 室内空気酸素濃度	(-)
C 0	: 外気又は空気ボンベの酸素濃度	(-)
С'	 : 空気ボンベに切り替えた際の酸素 濃度 	(-)
Ν	: 空気流入率	(回/h)
L	: 換気量(=N×V)	(m^3/h)
t	:時間	(h)

M, C, C₀, C' については,二酸化炭素のとき,酸素を二酸化炭素に置き換える。 また,Mは酸素の場合,負の値となり,二酸化炭素の場合は,二酸化炭素発生量と置き 換える。

- 5.10.4 評価結果
 - (1) 酸素濃度維持及び二酸化炭素濃度抑制に必要な流量

空気ボンベからの流量を14.2 m³/h とすれば,空気ボンベによる加圧5時間後の酸素 濃度は20.4 %,二酸化炭素濃度は0.50 %となり,中央制御室待避室内の正圧維持並び に酸素濃度及び二酸化炭素濃度を維持・抑制するための条件を満たすことができ,被ば く評価上の放出継続時間である5時間において,限られた労働環境における酸素濃度及 び二酸化炭素濃度の許容濃度である19 %以上及び0.5 %以下をそれぞれ満足すること ができる。

(2) 必要空気ボンベ本数

5.11.3節の炉心の著しい損傷が発生した場合の中央制御室待避室内酸素及び二酸化炭 素濃度評価方針より,必要な空気ボンベ本数は、1本当たりの空気容量が7 Nm³のもので, 使用量を5.5 m³/本とした場合,約13本程度となる。なお、中央制御室待避室内を加圧 するために必要な容量を確保するだけでなく、故障時及び保守点検による待機除外を考 慮した予備を確保する。

図 5-19 中央制御室待避室空気ボンベユニット 系統図

図 5-20 中央制御室及び中央制御室待避室容積

5.11 中央制御室の居住性評価のまとめ

中央制御室の居住性を確保するための設備を考慮して被ばく評価並びに酸素濃度及び二酸 化炭素濃度評価を行い,その結果,それぞれ判断基準を満足していることから,中央制御室 の居住性を確保できると評価する。
熱除去の検討

熱除去の検討では、伝熱理論に基づいた解析手法により遮蔽体中の温度上昇が最も厳しい箇所 において評価する。

6.1 中央制御室遮蔽壁入射線量の設定方法

中央制御室遮蔽の表面に入射するガンマ線は,直接ガンマ線,スカイシャインガンマ線,ク ラウドシャイン及びグランドシャインがある。中央制御室遮蔽を透過するガンマ線はグランド シャインが支配的であることから,遮蔽体表面に入射するガンマ線としてグランドシャインの 入射線量を設定する。

評価点は入射線量が最大となる中央制御室中心の天井上面とする。

6.2 温度上昇の計算方法

遮蔽体は主にコンクリートで構成されており,評価上,コンクリートのみとして評価する。 炉心の著しい損傷が発生した場合における7日間積算のグランドシャイン線源に基づく,中 央制御室遮蔽壁への入射線量は約3.0 Gy であり,当該入射線量から中央制御室遮蔽壁表面の 7日間積算のガンマ発熱量を求めると,約6.0×10⁻⁶ kJ/cm³となる。これによる温度上昇は, 次式で算出する。

 $\Delta T = Q \times 1000 / (c \cdot \rho)$

 Δ T : 温度上昇(℃)

Q: 7日間積算のガンマ発熱量(約6.0×10⁻⁶ (kJ/cm³))

c : コンクリートの比熱 (1.05 (kJ/ (kg・℃))*)

 ρ : コンクリートの密度 (2.0 (g/cm³))

これにより、中央制御室遮蔽の外側及び内側表面の熱伝達を保守的に断熱状態としても、遮蔽体(コンクリート)の温度上昇は0.01 ℃以下となる。

注記 *: 2007 年制定 コンクリート標準示方書 構造性能照査編, 土木学会

6.3 温度上昇のまとめ

中央制御室のコンクリート遮蔽体表面でのガンマ線による温度上昇は0.01 ℃以下となり, コンクリートのガンマ線に対する温度制限値以下であることを確認した。

- 7. 計算機コード概要
- 7.1 QAD CGGP2R

このコード*は、点減衰核積分法に基づく高速中性子及びガンマ線に対する遮蔽計算用コードである。図7-1にQAD-CGGP2Rコードの計算体系を示す。

一般に点減衰核積分法では、線源領域を細かく分割し、細分化された各線源領域を点線源で 近似する。そして各点線源から計算点までの媒質の通過距離を計算して非散乱ガンマ線束を求 める。次に個々の点線源について求められた非散乱ガンマ線束にビルドアップ係数を掛け、こ れを線源領域全空間について積分した後、線量率換算係数を掛けて計算点での線量率を求める。 エネルギEのガンマ線を等方に放出する強度Sの線源による線量率は次式のとおりである。

$$D(\mathbf{r}) = \mathbf{F} \cdot \int_{V} \frac{\mathbf{S}(\mathbf{r}', \mathbf{E}) \cdot \mathbf{B}(\mu \cdot |\mathbf{r} - \mathbf{r}'|, \mathbf{E}) \cdot \mathbf{e}^{-\mu \cdot |\mathbf{r} - \mathbf{r}'|}}{4 \cdot \pi \cdot |\mathbf{r} - \mathbf{r}'|^{2}} d\mathbf{v} \qquad (6.1)$$

ここで,

r	:線量率を計算する位置
r ′	: 個々の点線源の位置
D(r)	: r 点での線量率
S(r', E)	: r′ 点におけるエネルギEのガンマ線源強度
μ	: エネルギEのガンマ線の線吸収係数
$B(\mu \cdot r - r' , E)$:エネルギEの線量ビルドアップ係数
V	:線源領域全空間
F	: エネルギEの線量率換算係数

注記 *: RIST NEWS No. 33 「実効線量評価のための遮蔽計算の現状」2002. 3. 31, (財) 高度情報科学技術研究機構

ビルドアップ係数は無限均質媒質中でのガンマ線の輸送に対する Eisenhauer の随伴モーメント法計算結果を基礎としており、このデータをGP法でフィットした近似式を使って計算している。

多項式近似式では、ビルドアップ係数として、水、コンクリート、鉄及び鉛に対するデータ を準備しており、これらのもので近似的にいろいろな物質を代表させている。

GP法による近似式は、以下のとおりである。

B(x,E)=1+(B-1)· $\frac{K^{x}-1}{K-1}$: K≠1のとき = 1+(B-1) : K=1のとき

ここで、Eはガンマ線エネルギであり、B及びKは減衰係数x(平均自由行程(mfp))で 決まる値であり、このときKは、次式で与えられる。

$$\begin{split} \mathbf{K} &= \mathbf{c} \cdot \mathbf{x}^{\mathbf{a}} + \mathbf{d} \cdot \frac{\tanh\left(\mathbf{x} / X_{\mathbf{k}} - 2\right) - \tanh\left(-2\right)}{1 - \tanh\left(-2\right)} & ; \ \mathbf{x} \leq 40 \\ &= 1 + \left(\mathbf{K}_{5} - 1\right) \left| \frac{\mathbf{K}_{40} - 1}{\mathbf{K}_{35} - 1} \right|^{\zeta \ (\mathbf{x})} & ; \ \mathbf{x} > 40 \ \cancel{h}_{2} \supset 0 < \left| \frac{\mathbf{K}_{40} - 1}{\mathbf{K}_{35} - 1} \right| < 1 \\ &= 1 + \mathbf{K}_{35} \cdot \left| \frac{\mathbf{K}_{40}}{\mathbf{K}_{35}} \right|^{\zeta \ (\mathbf{x})^{0.8}} & ; \ \mathbf{x} > 40 \ \cancel{h}_{2} \supset 0 < \left| \frac{\mathbf{K}_{40} - 1}{\mathbf{K}_{35} - 1} \right| < 1 \\ &= 1 + \mathbf{K}_{35} \cdot \left| \frac{\mathbf{K}_{40}}{\mathbf{K}_{35}} \right|^{\zeta \ (\mathbf{x})^{0.8}} & ; \ \mathbf{x} > 40 \ \cancel{h}_{2} \supset 0 < \left| \frac{\mathbf{K}_{40} - 1}{\mathbf{K}_{35} - 1} \right| < 1 \end{split}$$

K₃₅, K₄₀ : 減衰係数 x が 35 mfp 又は 40 mfp のときのパラメータKの値
 B : 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 c : 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 a : 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 X k : 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 d : 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 s 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ
 t 物質及びガンマ線エネルギ依存のビルドアップ係数を近似するパラメータ

$$\zeta (\mathbf{x}) = \frac{\left(\frac{X}{35}\right)^{0.1} - 1}{\left(\frac{X}{40}\right)^{0.1} - 1}$$

QAD-CGGP2Rコードでは、エネルギ第j群の線量率を求めるのに(6.1)式を近似的 に次式で計算する。

$$D_{j} = \sum_{i} F_{j} \cdot \frac{S_{ij}}{4 \cdot \pi \cdot R_{i}^{2}} \cdot e^{\left(-\sum_{k} \mu_{jk} \cdot t_{k}\right)} \cdot B_{ij}$$

ここで,

- j : エネルギ群番号
- i :線源点番号
- k : 領域番号
- F; :線量率換算係数
- S_{ij}: i 番目の線源点で代表される領域の体積で重みづけされたエネルギ j 群の点線 源強度
- R_i: i 番目の線源点と計算点の距離
- B_{ij} :ビルドアップ係数
- μ_{jk}: :領域kにおける,エネルギj群のガンマ線に対する線吸収係数
- t_k :領域kをガンマ線が透過する距離

このようにして求められた線量率D_jから、すべての線源エネルギ群について加えることに より全線量率が計算される。

図 7-1 QAD-CGGP2Rコードの計算体系

7.2 ANISN

ANISNコード⁽¹⁾は、米国オークリッジ国立研究所で開発された線型ボルツマン輸送方程 式を、Sn法を用いて解く計算プログラムである。本コードの計算形状は、一次元形状(無限 平板、球、無限円柱)であり、中性子、ガンマ線の輸送問題等を解くことができる。計算には 次のデータの入力が必要である。

① 線源データ

体積分布線源,境界線源,初回衝突線源の3つの形式で入力が可能。体積分布線源では, 各空間メッシュにおける中性子発生数を与える。方法としては,各メッシュ各エネルギ群ご とに発生個数を与える方法と,空間分布とエネルギスペクトルを分離して入力する方法があ る。

② 体系データ

空間メッシュ分割のデータであり、座標とともに領域番号の指定を通じて、各メッシュ点 での媒質が指定される。

- ③ 断面積データ(群定数) 断面積データは、評価済み核データより作成した群定数を用いる。
- ④ 角度分点
- ⑤ 計算条件

繰り返し計算の収束条件、境界条件等を指定する。

7.2.1 計算方法

中性子,ガンマ線の放射線束分布は,基本式であるボルツマンの輸送方程式を解くこと により求められる。

$$\begin{split} &\Omega \cdot \nabla \varphi(\mathbf{r}, \mathbf{E}, \Omega) + \Sigma_{t}(\mathbf{r}, \mathbf{E}) \cdot \varphi(\mathbf{r}, \mathbf{E}, \Omega) \\ &= \iint \Sigma_{s}(\mathbf{r}, \mathbf{E}' \rightarrow \mathbf{E}, \Omega' \rightarrow \Omega) \cdot \varphi(\mathbf{r}, \mathbf{E}', \Omega') \, \mathrm{d}\mathbf{E}' \, \mathrm{d}\,\Omega' + \mathrm{S}\left(\mathbf{r}, \mathbf{E}, \Omega\right) \end{split}$$

$$\phi(\mathbf{r},\mathbf{E}) = \int \varphi(\mathbf{r},\mathbf{E},\mathbf{\Omega}) \,\mathrm{d}\mathbf{\Omega}$$

- E : エネルギ (MeV)
- Ω :進行方向の単位ベクトル
- φ(r,E,Ω) : 中性子及びガンマ線の角度分布束(位置rで単位ベクトルΩ方向の単位立体角当たりに進むΩに垂直な面を単位時間に通過する粒子の数)
 (cm⁻²・s⁻¹)

$$\Sigma_{s}(\mathbf{r},\mathbf{E}' \to \mathbf{E},\Omega' \to \Omega) : \qquad \Sigma_{s}(\mathbf{r},\mathbf{E}' \to \mathbf{E},\Omega' \to \Omega)$$
$$= \sum_{i} N_{i}(\mathbf{r}) \cdot_{\sigma_{si}}(\mathbf{E}' \to \mathbf{E},\Omega' \to \Omega)$$

7.2.2 主要な出力

出力する主要なデータは、①線束及び角度依存線束、②領域ごとのバランス表である。 ①で出力された各メッシュ点での線束に線量率換算係数を乗じることで、各メッシュ点で の中性子、ガンマ線の線量率を算出することができる。

7.2.3 引用文献

 W. W. Engle, Jr., A USERS MANUAL FOR ANISN: A One Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering, K-1693 (1967) 7.3 G 3 3 – G P 2 R

G33-GP2Rコード⁽¹⁾は、Los Alamos Scientific Laboratory で開発されたガンマ線 多群散乱計算プログラムである。本コードは、点等方線源からの一回散乱を計算する。散乱は、 クラインー仁科の式に基づき計算する。散乱が起こる領域は直角、球、円筒座標により指定し、 遮蔽体は平板、球、円筒又は二次曲面により入力することができる。このコードには質量減衰 係数のライブラリが入っている。

出力として、評価点でのエネルギ別の直接ガンマ線及び散乱線による線量率が得られる。

7.3.1 計算方法

図 7-2 に、線源、散乱点、評価点により形成される三角形を示す。

(1) 直接ガンマ線

エネルギEのガンマ線を等方に放出する強度Sの線源による直接ガンマ線の線量率は次 式で与えられる。

$$D_1(E) = \frac{S(E)}{4\pi\rho_d^2} \cdot K(E) \cdot B(x, E) \cdot e^{-x}$$

ここで,

- D₁(E) :評価点での直接ガンマ線による線量率
- S(E) :線源強度
- ρ_d:線源から評価点までの距離
- K(E) :線量率換算係数
- B(x, E) : ビルドアップファクタ
- x : 実効透過距離(平均自由行程)

$$x = \sum_{m} \mu_{m} \cdot \rho_{m}$$

μ_m:物質 m の線減衰係数

ρ_m:物質 m の透過距離

(2) 散乱線

散乱点でのガンマ線束は、次式で与えられる。

$$\phi(E) = \frac{S(E)}{4\pi\rho^2} \cdot e^{-x}$$
ここで、

 $\phi(E)$: 散乱位置でのガンマ線束

 ρ : 線源から散乱点までの距離

散乱後、評価点に到達するガンマ線の線量率は次式で与えられる。

$$D_{2}(E) = \frac{\phi(E)}{\rho_{s}^{2}} \cdot K(E') \cdot B(x,E') \cdot N \cdot \frac{d\sigma}{d\Omega}(E,\theta) \cdot e^{-x}$$
ここで,

$$D_{2}(E) : 評価点での散乱線による線量率
\rho_{s} : 散乱点から評価点までの距離
K(E') : 散乱後のエネルギE'のガンマ線線量率換算係数
$$B(x,E') : ビルドアップファクタ$$
N : 散乱体の原子数密度

$$\frac{d\sigma}{d\Omega}(E,\theta) : 微分散乱断面積 (クライン-仁科の式)$$

$$\frac{d\sigma}{d\Omega}(E,\theta) = \frac{r_{0}^{2}}{2} \cdot \frac{(1+\cos^{2}\theta)}{[1+\alpha(1-\cos\theta)]^{2}} \left\{ 1 + \frac{\alpha^{2}(1-\cos\theta)^{2}}{(1+\cos^{2}\theta)[1+\alpha(1-\cos\theta)]} \right\}$$
r_{0}: 古典的電子半径
 θ : 散乱角度
 α : コンプトン波長の逆数$$

7.3.2 引用文献

(1) RIST NEWS No. 33 「実効線量評価のための遮蔽計算の現状」2002. 3. 31,
 (財)高度情報科学技術研究機構

図 7-2 G33-GP2Rの計算方法

- 7.4 ORIGEN2
- 7.4.1 概要

ORIGEN2コードは、米国のオークリッジ国立研究所(ORNL)で開発された汎 用計算プログラムで、多数の同位元素の崩壊チェーンを考慮した生成及び壊変量を計算で きる。ORIGEN2コードでは、同位元素の核特性データライブラリを用いて、中性子 スペクトル(1群近似)と断面積データから、当該核種の放射化及び核壊変による生成量 を計算する。このライブラリには、放射化生成物からのガンマ線放出率及び壊変に伴う発 熱量データが含まれ、被照射材の放射線源強度、発熱量の計算に用いることができる。

7.4.2 機能

ORIGEN2コードは、燃焼計算に際し以下の機能を有している。

- a. 燃料の炉内での燃焼計算,炉取り出し後の減衰計算により,冷却期間に対応した崩 壊熱,放射線の強度,各核種の初期蓄積量等が求められる。
- b. 原子炉の炉型と燃料の組合せに対し、中性子エネルギスペクトルの違いにより重み をつけた断面積ライブラリデータが内蔵されており、任意に選択できる。
- c. 計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
- d. 燃焼計算に必要な放射性核種のデータ(崩壊熱,ガンマ線のエネルギ分布,自発核 分裂と(α, n)反応により発生する中性子線源強度等)は、ライブラリデータとし てコードに内蔵されている。

7.4.3 計算フロー

ORIGEN2コードの計算フローを図7-3に示す。

7.4.4 引用文献

A.G.Croff, "A User's Manual for the ORIGEN2 Computer code", ORNL/TM-7175, Oak Ridge National Laboratory, (1980)

図 7-3 OR IGEN 2 コードの計算フロー図