東海第二発電所 審査資料		
資料番号	PD-C-1 改 120	
提出年月日	平成 30 年 3 月 5 日	

東海第二発電所

設計基準対象施設について

平成 30 年 3 月 日本原子力発電株式会社

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

- 目 次
- 4条 地震による損傷の防止
- 5条 津波による損傷の防止
- 6条 外部からの衝撃による損傷の防止(その他外部事象)
- 6条 外部からの衝撃による損傷の防止(竜巻)
- 6条 外部からの衝撃による損傷の防止(外部火災)
- 6条 外部からの衝撃による損傷の防止(火山)
- 7条 発電用原子炉施設への人の不法な侵入等の防止
- 8条 火災による損傷の防止
- 9条 溢水による損傷の防止等
- 10条 誤操作の防止
- 11条 安全避難通路等
- 12条 安全施設
- 14条 全交流動力電源喪失対策設備
- 16条 燃料体等の取扱施設及び貯蔵施設
- 17条 原子炉冷却材圧力バウンダリ
- 23条 計測制御系統施設(第16条に含む)
- 24条 安全保護回路
- 26条 原子炉制御室等
- 31条 監視設備
- 33条 保安電源設備
- 34条 緊急時対策所
- 35条 通信連絡設備

その他関連資料

- ・原子力事業者の技術的能力に関する審査指針への適合性について
- ・周辺監視区域,気象資料等の変更に伴う東海第二発電所原子炉設置許可申請 書の変更について
- ・休止状態設備の撤去による廃棄物処理及び貯蔵への影響について

東海第二発電所

地震による損傷の防止

本資料のうち, は商業機密又は核物質防護上の観点から公開できません。

```
目 次
```

第1部

- 1. 基本方針
- 1.1 要求事項の整理
- 1.2 追加要求事項に対する適合性
 - (1) 位置,構造及び設備
 - (2) 安全設計方針
 - (3) 適合性説明
- 1.3 気象等
- 1.4 設備等
- 1.5 手順等

第2部

- 1. 耐震設計の基本方針
- 1.1 基本方針
- 1.2 適用規格
- 2. 耐震設計上の重要度分類
- 2.1 重要度分類の基本方針
- 2.2 耐震重要度分類
- 3. 設計用地震力
- 3.1 地震力の算定法
- 3.2 設計用地震力
- 4. 荷重の組合せと許容限界
- 4.1 基本方針
- 5. 地震応答解析の方針
- 5.1 建物·構築物
- 5.2 機器·配管系
- 5.3 屋外重要土木構造物
- 5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備 又は津波監視設備が設置された建物・構築物
- 6. 設計用減衰定数
- 7. 耐震重要施設の安全機能への下位クラス施設の波及的影響
- 8. 水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
- 9. 構造計画と配置計画

- (別 添)
 - 別添-1 設計用地震力
 - 別添-2 動的機能維持の評価
 - 別添-3 弾性設計用地震動 S_d・静的地震力による評価
 - 別添-4 上位クラス施設の安全機能への下位クラス施設の波及的影響の 検討について
 - 別添-5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
 - 別添-6 屋外重要土木構造物の耐震評価における断面選定の考え方
 - 別添-7 主要建屋の構造概要について
 - 別添-8 地震応答解析に用いる地質断面図の作成例及び地盤の速度構造
- (別 紙)
- 別紙-1 既工認との手法の相違点の整理について(設置変更許可申請段階 での整理)
- 別紙-2 原子炉建屋の地震応答解析モデルについて
- 別紙-3 原子炉建屋屋根トラス評価モデルへの弾塑性解析適用について
- 別紙-4 土木構造物の解析手法及び解析モデルの精緻化について
- 別紙-5 機器・配管系における手法の変更点について
- 別紙-6 下位クラス施設の波及的影響の検討について
- 別紙-7 水平2方向及び鉛直方向地震力の適切な組合せに関する検討について
- 別紙-8 屋外重要土木構造物の耐震評価における断面選定について
- 別紙-9 使用済燃料乾式貯蔵建屋の評価方針について
- 別紙-10 液状化影響の検討方針について
- 別紙-11 屋外二重管の基礎構造の設計方針について
- 別紙-12 既設設備に対する耐震補強等について
- 別紙-13 動的機能維持評価の検討方針について
- 別紙-14 鋼管杭鉄筋コンクリート防潮壁の構造の変遷について

<概 要>

第1部において,設計基準対象施設の設置許可基準規則,技術基準規則の追加要求事項を明確化するとともに,それら要求に対する東海第二発電所における適合性を示す。

第2部において,設計基準対象施設について,追加要求事項に適合するため に必要となる機能を達成するための設備または運用等について説明する。 第1部

1. 基本方針

1.1 要求事項の整理

地震による損傷の防止について,設置許可基準規則第4条及び技術基準規 則第5条において,追加要求事項を明確化する(表1)。

表 1 設置許可基準規則。	第4条及び技術基準規則第5条 要求事項	
設置許可基準規則	技術基準規則	市
第4条(地震による損傷の防止)	第5条(地震による損傷の防止)	運
設計基準対象施設は、地震力に十分に耐えるこ	設計基準対象施設は、これに作用する地震力	追加要求事項
とができるものでなければならない。	(設置許可基準規則第四条第二項の規定により)	
	算定する地震力をいう。) による損壊により公衆	
2 前項の地震力は、地震の発生によって生ずる	に放射線障害を及ぼさないように施設しなけれ	
おそれがある設計基準対象施設の安全機能の喪	ばならない。	
失に起因する放射線による公衆への影響の程度		
に応じて算定しなければならない。	2 耐震重要施設(設置許可基準規則第三条第一	
	項に規定する耐震重要施設をいう。以下同じ。)	
3 耐震重要施設は、その供用中に当該耐震重要	は、基準地震動による地震力(設置許可基準規	
施設に大きな影響を及ぼすおそれがある地震に	則第四条第三項に規定する基準地震動による地	
よる加速度によって作用する地震力(以下「基	震力をいう。以下同じ。) に対してその安全性が	
準地震動による地震力」という。) に対して安全	損なわれるおそれがないように施設しなければ	
機能が損なわれるおそれがないものでなければ	ならない。	
ならない。		
	3 耐震重要施設が設置許可基準規則第四条第三	
4 耐震重要施設は,前項の地震の発生によって	項の地震により生ずる斜面の崩壊によりその安	
生ずるおそれがある斜面の崩壊に対して安全機	全性が損なわれるおそれがないよう、防護措置	
能が損なわれるおそれがないものでなければな	その他の適切な措置を講じなければならない。	
らない。		

- 1.2 追加要求事項に対する適合性
 - (1) 位置,構造及び設備
 - ロ 発電用原子炉施設の一般構造
 - (1) 耐震構造

本発電用原子炉施設は、次の方針に基づき耐震設計を行い、「実用発 電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」 に適合するように設計する。

(i) 設計基準対象施設の耐震設計

設計基準対象施設については,耐震重要度分類に応じて,適用する 地震力に対して,以下の項目に従って耐震設計を行う。

- a. 耐震重要施設は,基準地震動Ssによる地震力に対して,安全機 能が損なわれるおそれがないように設計する。
- b. 設計基準対象施設は、地震により発生するおそれがある安全機能の喪失及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度に応じて、耐震重要度分類を以下のとおり、Sクラス、Bクラス又はCクラスに分類し、それぞれに応じた地震力に十分に耐えられるように設計する。
 - Sクラス 地震により発生するおそれがある事象に対して,原子 炉を停止し,炉心を冷却するために必要な機能を持 つ施設,自ら放射性物質を内蔵している施設,当該 施設に直接関係しておりその機能喪失により放射性 物質を外部に拡散する可能性のある施設,これらの 施設の機能喪失により事故に至った場合の影響を緩 和し,放射線による公衆への影響を軽減するために

必要な機能を持つ施設及びこれらの重要な安全機能 を支援するために必要となる施設,並びに地震に伴 って発生するおそれがある津波による安全機能の喪 失を防止するために必要となる施設であって,その 影響が大きいもの

- Bクラス 安全機能を有する施設のうち,機能喪失した場合の影響がSクラス施設と比べ小さい施設
- Cクラス Sクラスに属する施設及びBクラスに属する施設以外 の一般産業施設又は公共施設と同等の安全性が要求 される施設

【説明資料(1.1(2):P4条-73)(2.1:P4条-78)】 c. Sクラスの施設(e.に記載のもののうち,津波防護機能を有する 設備(以下「津波防護施設」という。),浸水防止機能を有する設 備(以下「浸水防止設備」という。)及び敷地における津波監視機 能を有する施設(以下「津波監視設備」という。)を除く。), Bク ラス及びCクラスの施設は,建物・構築物については,地震層せ ん断力係数C_iに,それぞれ 3.0, 1.5 及び 1.0 を乗じて求められ る水平地震力,機器・配管系については,それぞれ 3.6, 1.8 及び 1.2 を乗じた水平震度から求められる水平地震力に十分に耐えら れるように設計する。建物・構築物及び機器・配管系ともに,お おむね弾性状態に留まる範囲で耐えられるように設計する。

ここで、地震層せん断力係数C_iは、標準せん断力係数C₀を 0.2 以上とし、建物・構築物の振動特性、地盤の種類等を考慮して求 められる値とする。

ただし、土木構造物の静的地震力は、Cクラスに適用される静的

地震力を適用する。

Sクラスの施設(e.に記載のもののうち,津波防護施設,浸水防 止設備及び津波監視設備を除く。)については,水平地震力と鉛直 地震力が同時に不利な方向の組合せで作用するものとする。鉛直 地震力は,建物・構築物については,震度 0.3 以上を基準とし, 建物・構築物の振動特性,地盤の種類等を考慮して求められる鉛 直震度,機器・配管系については,これを 1.2 倍した鉛直震度よ り算定する。ただし,鉛直震度は高さ方向に一定とする。

d. Sクラスの施設(e.に記載のもののうち、津波防護施設、浸水防 止設備及び津波監視設備を除く。)は、基準地震動Ssによる地震 力に対して安全機能が保持できるように設計する。建物・構築物 については、構造物全体としての変形能力(終局耐力時の変形) について十分な余裕を有し、建物・構築物の終局耐力に対し妥当 な安全余裕を有するように設計する。機器・配管系については、 その施設に要求される機能を保持するように設計し、塑性ひずみ が生じる場合であっても、その量が小さなレベルに留まって破断 延性限界に十分な余裕を有し、その施設に要求される機能に影響 を及ぼさないように、また、動的機器等については、基準地震動 Ssによる応答に対して、その設備に要求される機能を保持するように設計する。

また,弾性設計用地震動 S_dによる地震力又は静的地震力のいず れか大きい方の地震力に対しておおむね弾性状態に留まる範囲で 耐えられるように設計する。建物・構築物については,発生する 応力に対して,建築基準法等の安全上適切と認められる規格及び 基準による許容応力度を許容限界とする。機器・配管系について

は、応答が全体的におおむね弾性状態に留まるように設計する。

なお,基準地震動S_s及び弾性設計用地震動S_dによる地震力は, 水平2方向及び鉛直方向について適切に組み合わせて算定するも のとする。

基準地震動S_sは,敷地ごとに震源を特定して策定する地震動及 び震源を特定せず策定する地震動について,敷地の解放基盤表面 における水平方向及び鉛直方向の地震動としてそれぞれ策定する。 策定した基準地震動S_sの応答スペクトルを第1図~第3図に,基 準地震動S_sの時刻歴波形を第4図~第11図に示す。

原子炉建屋設置位置付近は,地盤調査の結果,新第三系鮮新統~ 第四系下部更新統の久米層が分布し,EL.-370m以深ではS波速度 が 0.7km/s以上で著しい高低差がなく拡がりを持って分布してい ることが確認されている。したがって,EL.-370mの位置を解放基 盤表面として設定する。なお,入力地震動の評価においては,解 放基盤表面以浅の影響を適切に考慮する。

また,弾性設計用地震動S_aは,基準地震動S_sとの応答スペク トルの比率が目安として 0.5 を下回らない値とし,さらに応答ス ペクトルに基づく地震動評価による基準地震動S_s-D1に対して は,「発電用原子炉施設に関する耐震設計審査指針(昭和 56 年 7 月 20 日原子力安全委員会決定,平成 13 年 3 月 29 日一部改訂)」 に基づいた「原子炉設置変更許可申請書(平成 11 年 3 月 10 日許 可/平成 09・09・18 資第 5 号)」の「添付書類六 変更後に係る 原子炉施設の場所に関する気象,地盤,水理,地震,社会環境等 の状況に関する説明書 3.2.6.3 基準地震動」における基準地震 動S₁を踏まえて設定する。具体的には,工学的判断より基準地震

動S_s-11,12,13,14,21,22,31に係数0.5を 乗じた地震動,基準地震動S_s-D1に対しては,基準地震動S₁ も踏まえて設定した係数 0.5 を乗じた地震動を弾性設計用地震動 S_dとして設定する。

【説明資料(3.1(2): P4条-80)】

なお, Bクラスの施設のうち, 共振のおそれのある施設について は, 弾性設計用地震動S_dに2分の1を乗じた地震動によりその影 響についての検討を行う。建物・構築物及び機器・配管系ともに, おおむね弾性状態に留まる範囲で耐えられるように設計する。

【説明資料(3.1(2): P4条-80)】

e. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物は,基準地震動Ssによる地震力に対して,それぞれの施設及び設備に要求される機能が保持できるように設計する。

【説明資料 (1.1(6): P4条-76) (4.1(3): P4条-85) (4.1(4): P4条-87)】

f. 耐震重要施設は、耐震重要度分類の下位のクラスに属する施設の 波及的影響によって、その安全機能を損なわないように設計する。 波及的影響の評価に当たっては、敷地全体を俯瞰した調査・検討 を行い、事象選定及び影響評価を行う。なお、影響評価において は、耐震重要施設の設計に用いる地震動又は地震力を適用する。

【説明資料(1.1(9): P4条-74)(7: P4条-98)】

第2図 基準地震動Ssの応答スペクトル(EW方向)

第3図 基準地震動Ssの応答スペクトル(UD方向)

第4図 応答スペクトルに基づく手法による基準地震動Ssの時刻歴波形
 (Ss-D1)

第5図 断層モデルを用いた手法による基準地震動Ssの時刻歴波形

 $⁽S_{s} - 1 1)$

第6図 断層モデルを用いた手法による基準地震動S_sの時刻歴波形
 (S_s-12)

第7図 断層モデルを用いた手法による基準地震動Ssの時刻歴波形

 $(S_{s} - 1 3)$

第8図 断層モデルを用いた手法による基準地震動S_sの時刻歴波形 (S_s-14)

第9図 断層モデルを用いた手法による基準地震動Ssの時刻歴波形

 $(S_{s} - 2 1)$

第10図 断層モデルを用いた手法による基準地震動Ssの時刻歴波形

 $(S_{s} - 2 2)$

第11図 震源を特定せず策定する地震動による基準地震動Ssの時刻歴波形

(S_s-31)

- (2) 安全設計方針
- 1.3 耐震設計

発電用原子炉施設の耐震設計は,「設置許可基準規則」に適合するよう に,「1.3.1 設計基準対象施設の耐震設計」,「1.3.2 重大事故等対処施 設の耐震設計」,「1.3.3 主要施設の耐震構造」及び「1.3.4 地震検知 による耐震安全性の確保」に従って行う。

- 1.3.1 設計基準対象施設の耐震設計
- 1.3.1.1 設計基準対象施設の耐震設計の基本方針

設計基準対象施設の耐震設計は、以下の項目に従って行う。

- (1) 地震により生ずるおそれがあるその安全機能の喪失に起因する放射 線による公衆への影響の程度が特に大きいもの(以下「耐震重要施設」 という。)は、その供用中に当該耐震重要施設に大きな影響を及ぼす おそれがある地震による加速度によって作用する地震力に対して、そ の安全機能が損なわれるおそれがないように設計する。
- (2)設計基準対象施設は、地震により発生するおそれがある安全機能の 喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等 による安全機能の喪失を含む。)及びそれに続く放射線による公衆へ の影響を防止する観点から、各施設の安全機能が喪失した場合の影響 の相対的な程度(以下「耐震重要度」という。)に応じて、耐震重要 度分類をSクラス、Bクラス又はCクラスに分類し、それぞれに応じ た地震力に十分耐えられるように設計する。
- (3)建物・構築物については、耐震重要度分類の各クラスに応じて算定 する地震力が作用した場合においても、接地圧に対する十分な支持力 を有する地盤に設置する。

なお,建物・構築物とは,建物,構築物及び土木構造物(屋外重要 土木構造物及びその他の土木構造物)の総称とする。

また,屋外重要土木構造物とは,耐震安全上重要な機器・配管系の 間接支持機能,若しくは非常時における海水の通水機能を求められる 土木構造物をいう。

(4) Sクラスの施設((6)に記載のもののうち,津波防護機能を有する 設備(以下「津波防護施設」という。),浸水防止機能を有する設 備(以下「浸水防止設備」という。)及び敷地における津波監視機 能を有する施設(以下「津波監視設備」という。)を除く。)は,基 準地震動Ssによる地震力に対して,その安全機能が保持できるよう に設計する。

また,弾性設計用地震動 S_dによる地震力又は静的地震力のいずれ か大きい方の地震力に対しておおむね弾性状態に留まる範囲で耐えら れる設計とする。

(5) Sクラスの施設((6)に記載のもののうち,津波防護施設,浸水防止設備及び津波監視設備を除く。)について,静的地震力は,水平地 震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。

また,基準地震動S_s及び弾性設計用地震動S_dによる地震力は,水 平2方向及び鉛直方向について適切に組み合わせて算定するものとす る。なお,水平2方向及び鉛直方向の地震力が同時に作用し,影響が 考えられる施設,設備については許容限界の範囲内に留まることを確 認する。

(6) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物は,基準地震動S_s による地震力に対して,構造物全体として変形能力(終局耐力時の変

形)について十分な余裕を有するとともに、それぞれの施設及び設備 に要求される機能が保持できるように設計する。なお、基準地震動S sの水平2方向及び鉛直方向の地震力の組合せについては、上記(5)と 同様とする。

また,重大事故等対処施設を津波から防護するための津波防護施設, 浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建 物・構築物についても同様の設計方針とする。

(7) Bクラスの施設は,静的地震力に対しておおむね弾性状態に留まる 範囲で耐えられるように設計する。

また,共振のおそれのある施設については,その影響についての検 討を行う。その場合,検討に用いる地震動は,弾性設計用地震動S_d に2分の1を乗じたものとする。なお,当該地震動による地震力は, 水平2方向及び鉛直方向について適切に組み合わせて算定するものと し、Sクラス施設と同様に許容限界の範囲内に留まることを確認する。

- (8) Cクラスの施設は,静的地震力に対しておおむね弾性状態に留まる 範囲で耐えられるように設計する。
- (9) 耐震重要施設は,耐震重要度分類の下位のクラスに属するものの波 及的影響によって,その安全機能を損なわないように設計する。
- (10) 設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が低減されるように考慮する。

【説明資料(1.1:P4条-73)】

1.3.1.2 耐震重要度分類

設計基準対象施設の耐震重要度を、次のように分類する。

(1) Sクラスの施設

地震により発生するおそれがある事象に対して,原子炉を停止し,

炉心を冷却するために必要な機能を持つ施設,自ら放射性物質を内蔵している施設,当該施設に直接関係しておりその機能喪失により 放射性物質を外部に拡散する可能性のある施設,これらの施設の機能喪失により事故に至った場合の影響を緩和し,放射線による公衆への影響を軽減するために必要な機能を持つ施設及びこれらの重要な安全機能を支援するために必要となる施設,並びに地震に伴って発生するおそれがある津波による安全機能の喪失を防止するために必要となる施設であって,その影響が大きいものであり,次の施設を含む。

- ・原子炉冷却材圧力バウンダリを構成する機器・配管系
- ・使用済燃料を貯蔵するための施設
- ・原子炉の緊急停止のために急激に負の反応度を付加するための施設
 設,及び原子炉の停止状態を維持するための施設
- ・原子炉停止後、炉心から崩壊熱を除去するための施設
- ・原子炉冷却材圧力バウンダリ破損事故後,炉心から崩壊熱を除去 するための施設
- ・原子炉冷却材圧力バウンダリ破損事故の際に,圧力障壁となり放 射性物質の放散を直接防ぐための施設
- ・放射性物質の放出を伴うような事故の際に、その外部放散を抑制 するための施設であり、上記の「放射性物質の放散を直接防ぐ ための施設」以外の施設
- ・津波防護施設及び浸水防止設備
- · 津波監視設備

【説明資料(2.1(1): P4条-78)】

(2) Bクラスの施設

安全機能を有する施設のうち,機能喪失した場合の影響が S クラス 施設と比べ小さい施設であり,次の施設を含む。

- ・原子炉冷却材圧力バウンダリに直接接続されていて、1次冷却材 を内蔵しているか又は内蔵し得る施設
- ・放射性廃棄物を内蔵している施設(ただし,内蔵量が少ない又は 貯蔵方式により,その破損により公衆に与える放射線の影響が 「実用発電用原子炉の設置,運転等に関する規則(昭和 53 年通 商産業省令第 77 号)」第2条第2項第6号に規定する「周辺監 視区域」外における年間の線量限度に比べ十分小さいものは除 く)
- ・放射性廃棄物以外の放射性物質に関連した施設で、その破損により、公衆及び従事者に過大な放射線被ばくを与える可能性のある施設
- ・使用済燃料を冷却するための施設
- ・放射性物質の放出を伴うような場合に、その外部放散を抑制する ための施設で、Sクラスに属さない施設

【説明資料(2.1(2): P4条-78)】

(3) Cクラスの施設

Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設である。

【説明資料(2.1(3): P4条-78)】 上記に基づくクラス別施設を第1.3-1表に示す。

なお,同表には当該施設を支持する構造物の支持機能が維持されるこ とを確認する地震動及び波及的影響を考慮すべき施設に適用する地震 動についても併記する。

1.3.1.3 地震力の算定法

設計基準対象施設の耐震設計に用いる地震力の算定は以下の方法による。

(1) 静的地震力

静的地震力は、Sクラスの施設(津波防護施設,浸水防止設備及び 津波監視設備を除く。), Bクラス及びCクラスの施設に適用するこ ととし、それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C₁及び震度に基づき算定する。

a. 建物·構築物

水平地震力は,地震層せん断力係数C_iに,次に示す施設の耐震重 要度分類に応じた係数を乗じ,さらに当該層以上の重量を乗じて算定 するものとする。

Sクラス	3.0
Bクラス	1.5
Cクラス	1.0

ここで、地震層せん断力係数C_iは、標準せん断力係数C₀を 0.2 以上とし、建物・構築物の振動特性、地盤の種類等を考慮して求め られる値とする。

また,必要保有水平耐力の算定においては,地震層せん断力係数C iに乗じる施設の耐震重要度分類に応じた係数は,Sクラス,Bクラ ス及びCクラスともに 1.0 とし,その際に用いる標準せん断力係数 C₀は 1.0 以上とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利 な方向の組合せで作用するものとする。鉛直地震力は、震度 0.3 以 上を基準とし、建物・構築物の振動特性、地盤の種類等を考慮し、

高さ方向に一定として求めた鉛直震度より算定するものとする。

ただし、土木構造物の静的地震力は、安全上適切と認められる規格 及び基準を参考に、Cクラスに適用される静的地震力を適用する。

b. 機器 · 配管系

静的地震力は、上記a. に示す地震層せん断力係数C_iに施設の耐 震重要度分類に応じた係数を乗じたものを水平震度として、当該水平 震度及び上記a. の鉛直震度をそれぞれ 20%増しとした震度より求 めるものとする。

なお、Sクラスの施設については、水平地震力と鉛直地震力は同時 に不利な方向の組合せで作用するものとする。ただし、鉛直震度は高 さ方向に一定とする。

上記a.及びb.の標準せん断力係数C。等の割増し係数の適用については,耐震性向上の観点から,一般産業施設,公共施設等の耐震基準 との関係を考慮して設定する。

【説明資料(3.1(1): P4条-79)】

(2) 動的地震力

動的地震力は、Sクラスの施設、屋外重要土木構造物及びBクラス の施設のうち共振のおそれのあるものに適用することとし、基準地 震動S_s及び弾性設計用地震動S_dから定める入力地震動を入力とし て、動的解析により水平2方向及び鉛直方向について適切に組み合 わせて算定する。なお、構造特性から水平2方向及び鉛直方向の地 震力の影響が考えられる施設、設備については、水平2方向及び鉛 直方向の地震力の組合せに対して、許容限界の範囲内に留まること を確認する。

Bクラスの施設のうち共振のおそれのあるものについては、弾性設

計用地震動 S_dから定める入力地震動の振幅を 2 分の 1 にしたものに よる地震力を適用する。

屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設 備並びに浸水防止設備又は津波監視設備が設置された建物・構築物 については,基準地震動Ssによる地震力を適用する。

添付書類六「3. 地震」に示す基準地震動S_sは,「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」 について,解放基盤表面における水平方向及び鉛直方向の地震動としてそれぞれ策定し,年超過確率は,10⁻⁴から10⁻⁶程度である。

また,弾性設計用地震動 S_aは,基準地震動 S_sとの応答スペクト ルの比率が目安として 0.5 を下回らないよう基準地震動S。に係数 0.5 を乗じて設定する。ここで、係数 0.5 は工学的判断として、原子 炉施設の安全機能限界と弾性限界に対する入力荷重の比率が 0.5 程度 であるという知見(1)を踏まえ、さらに応答スペクトルに基づく地 震動評価による基準地震動 S_s-D1に対しては、「発電用原子炉 施設に関する耐震設計審査指針(昭和56年7月20日原子力安全 委員会決定, 平成 13 年 3 月 29 日一部改訂) | に基づいた「原子 炉設置変更許可申請書(平成 11 年 3 月 10 日許可/平成 09・ 09・18 資第5号) |の「添付書類六 変更後に係る原子炉施設の 場所に関する気象,地盤,水理,地震,社会環境等の状況に関す る説明書 3.2.6.3 基準地震動」における基準地震動 S₁の応答 スペクトルをおおむね下回らないよう配慮した値とする。また、建 物・構築物及び機器・配管系ともに 0.5 を採用することで、弾性設計 用地震動Saに対する設計に一貫性をとる。なお、弾性設計用地震動 S」の年超過確率は、10⁻³~10⁻⁵程度である。弾性設計用地震動S」

の応答スペクトルを第1.3-1 図~第1.3-3 図に,弾性設計用地震動 S_dの時刻歴波形を第1.3-4 図~第1.3-11 図に,弾性設計用地震 動S_dと基準地震動S₁の応答スペクトルの比較を第1.3-12 図及び 第1.3-13 図に,弾性設計用地震動S_dと解放基盤表面における地震 動の一様ハザードスペクトルの比較を第1.3-14 図及び第1.3-15 図 に示す。

【説明資料(3.1(2): P4条-80)】

a. 入力地震動

原子炉建屋設置位置付近は,地盤調査の結果,新第三系鮮新統~ 第四系下部更新統の久米層が分布し,EL.-370m 以深ではS波速度 が 0.7km/s 以上であることが確認されている。したがって,EL.-370mの位置を解放基盤表面として設定する。

建物・構築物の地震応答解析における入力地震動は,解放基盤表面 で定義される基準地震動S_s及び弾性設計用地震動S_dを基に,対象 建物・構築物の地盤条件を適切に考慮したうえで,必要に応じ2次 元FEM解析又は1次元波動論により,地震応答解析モデルの入力 位置で評価した入力地震動を設定する。地盤条件を考慮する場合に は,地震動評価で考慮した敷地全体の地下構造との関係にも留意し, 地盤の非線形応答に関する動的変形特性を考慮する。また,必要に 応じ敷地における観測記録による検証や最新の科学的・技術的知見 を踏まえ設定する。

b. 地震応答解析

(a) 動的解析法

i 建物·構築物

動的解析による地震力の算定に当たっては、地震応答解析手法の

適用性,適用限界等を考慮のうえ,適切な解析法を選定するととも に,建物・構築物に応じた適切な解析条件を設定する。動的解析は, 時刻歴応答解析法による。また,3次元応答性状等の評価は,線形 解析に適用可能な周波数応答解析法による。

建物・構築物の動的解析に当たっては,建物・構築物の剛性はそ れらの形状,構造特性等を十分考慮して評価し,集中質点系等に置 換した解析モデルを設定する。

動的解析には,建物・構築物と地盤との相互作用を考慮するもの とし,解析モデルの地盤のばね定数は,基礎版の平面形状,地盤の 剛性等を考慮して定める。設計用地盤定数は,原則として,弾性波 試験によるものを用いる。

地盤-建物・構築物連成系の減衰定数は,振動エネルギの地下逸 散及び地震応答における各部のひずみレベルを考慮して定める。

基準地震動S_s及び弾性設計用地震動S_dに対する応答解析にお いて,主要構造要素がある程度以上弾性範囲を超える場合には,実 験等の結果に基づき,該当する建物部分の構造特性に応じて,その 弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行う。

また, Sクラスの施設を支持する建物・構築物の支持機能を検討 するための動的解析において,施設を支持する建物・構築物の主要 構造要素がある程度以上弾性範囲を超える場合には,その弾塑性挙 動を適切に模擬した復元力特性を考慮した応答解析を行う。

応答解析に用いる材料定数については,地盤の諸定数も含めて材 料のばらつきによる変動幅を適切に考慮する。また,必要に応じて 建物・構築物及び機器・配管系の設計用地震力に及ぼす影響を検討 する。 建物・構築物の動的解析において,地震時における地盤の有 効応力の変化に伴う影響を考慮する場合には,有効応力解析を 実施する。有効応力解析に用いる液状化強度特性は,敷地の原 地盤における代表性及び網羅性を踏まえた上で保守性を考慮し て設定することを基本とする。保守的な配慮として地盤を強制 的に液状化させることを仮定した影響を考慮する場合には,原 地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊 浦標準砂に基づく液状化強度特性)を設定する。

原子炉建屋については、3次元FEM解析等から、建物・構築物の3次元応答性状及びそれによる機器・配管系への影響を評価する。

屋外重要土木構造物の動的解析は,構造物と地盤の相互作用を考 慮できる連成系の地震応答解析手法とし,地盤及び構造物の地震時 における非線形挙動の有無や程度に応じて,線形,等価線形,非線 形解析のいずれかにて行う。

なお,地震力については,水平2方向及び鉛直方向について適切 に組み合わせて算定する。

【説明資料(5.1:P4条-92)(5.3:P4条-96)】 ii 機器・配管系

動的解析による地震力の算定に当たっては、地震応答解析手法の適 用性,適用限界等を考慮のうえ、適切な解析法を選定するとともに、 解析条件として考慮すべき減衰定数、剛性等の各種物性値は、適切 な規格及び基準又は実験等の結果に基づき設定する。

機器の解析に当たっては,形状,構造特性等を考慮して,代表的な 振動モードを適切に表現できるよう質点系モデル,有限要素モデル 等に置換し,設計用床応答曲線を用いたスペクトルモーダル解析法

又は時刻歴応答解析法により応答を求める。配管系については,振 動モードを適切に表現できるモデルを作成し,設計用床応答曲線を 用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答 を求める。スペクトルモーダル解析法及び時刻歴応答解析法の選択 に当たっては,衝突・すべり等の非線形現象を模擬する観点又は既 往研究の知見を取り入れ実機の挙動を模擬する観点で,建物・構築 物の剛性及び地盤物性のばらつき等への配慮をしつつ時刻歴応答解 析法を用いる等,解析対象とする現象,対象設備の振動特性・構造 特性等を考慮し適切に選定する。

また,設備の3次元的な広がりを踏まえ,適切に応答を評価できる モデルを用い,水平2方向及び鉛直方向の応答成分について適切に 組み合わせるものとする。

なお,剛性の高い機器は,その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて地震力を算定する。

【説明資料(5.2:P4条-94)】

(3) 設計用減衰定数

応答解析に用いる減衰定数は,安全上適切と認められる規格及び基 準,既往の振動実験,地震観測の調査結果等を考慮して適切な値を定 める。

なお,建物・構築物の応答解析に用いる鉄筋コンクリートの減衰定 数の設定については,既往の知見に加え,既設施設の地震観測記録等 により,その妥当性を検討する。

また,地盤と屋外重要土木構造物の連成系地震応答解析モデルの減 衰定数については,地中構造物としての特徴,同モデルの振動特性を 考慮して適切に設定する。

1.3.1.4 荷重の組合せと許容限界

設計基準対象施設の耐震設計における荷重の組合せと許容限界は以下 による。

(1) 耐震設計上考慮する状態

地震以外に設計上考慮する状態を次に示す。

- a. 建物·構築物
- (a) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の自然条件下におか れている状態。

ただし,運転状態には通常運転時,運転時の異常な過渡変化時 を含むものとする。

(b) 設計基準事故時の状態

発電用原子炉施設が設計基準事故時にある状態。

(c) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)。

- b. 機器 · 配管系
- (a) 通常運転時の状態

発電用原子炉の起動,停止,出力運転,高温待機,燃料取替え 等が計画的又は頻繁に行われた場合であって運転条件が所定の 制限値以内にある運転状態。

(b) 運転時の異常な過渡変化時の状態

通常運転時に予想される機械又は器具の単一の故障若しくはその の誤作動又は運転員の単一の誤操作及びこれらと類似の頻度で

発生すると予想される外乱によって発生する異常な状態であっ て、当該状態が継続した場合には炉心又は原子炉冷却材圧力バ ウンダリの著しい損傷が生じるおそれがあるものとして安全設 計上想定すべき事象が発生した状態。

(c) 設計基準事故時の状態

発生頻度が運転時の異常な過渡変化より低い異常な状態であっ て、当該状態が発生した場合には発電用原子炉施設から多量の 放射性物質が放出するおそれがあるものとして安全設計上想定 すべき事象が発生した状態。

(d) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)。

【説明資料(4.1(1): P4条-82)】

- (2) 荷重の種類
 - a. 建物·構築物
 - (a) 発電用原子炉のおかれている状態にかかわらず常時作用している荷重、すなわち固定荷重、積載荷重、土圧、水圧及び通常の気象条件による荷重
 - (b) 運転時の状態で施設に作用する荷重
 - (c) 設計基準事故時の状態で施設に作用する荷重
 - (d) 地震力, 風荷重, 積雪荷重等

ただし,運転時の状態及び設計基準事故時の状態での荷重には, 機器・配管系から作用する荷重が含まれるものとし,地震力には, 地震時土圧,機器・配管系からの反力,スロッシング等による荷 重が含まれるものとする。
- b. 機器 · 配管系
- (a) 通常運転時の状態で施設に作用する荷重
- (b) 運転時の異常な過渡変化時の状態で施設に作用する荷重
- (c) 設計基準事故時の状態で施設に作用する荷重
- (d) 地震力,風荷重,積雪荷重等

【説明資料(4.1(2): P4条-84)】

(3) 荷重の組合せ

地震力と他の荷重との組合せは次による。

- a. 建物・構築物 (c. に記載のものを除く。)
- (a) Sクラスの建物・構築物については、常時作用している荷重及 び運転時(通常運転時又は運転時の異常な過渡変化時)の状態 で施設に作用する荷重と地震力とを組み合わせる。
- (b) Sクラスの建物・構築物については、常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のうちの長時間その作用が続く荷重と弾性設計用地震動S_dによる地震力又は静的地震力とを組み合わせる。
- (c) Bクラス及びCクラスの建物・構築物については、常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合わせる。
- b. 機器・配管系(c. に記載のものを除く。)
 - (a) Sクラスの機器・配管系については,通常運転時の状態で作用 する荷重と地震力とを組み合わせる。
 - (b) Sクラスの機器・配管系については、運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのある事象によって施設に作用する荷重と地震

力とを組み合わせる。

- (c) Sクラスの機器・配管系については、運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのない事象であっても、いったん事故が発生した場合、長時間継続する事象による荷重は、その事故事象の発生確率、継続時間及び地震動の年超過確率の関係を踏まえ、適切な地震力と組み合わせる。
- (d) Bクラス及びCクラスの機器・配管系については、通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と、動的地震力又は静的地震力とを組み合わせる。
- c. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物
- (a) 津波防護施設及び浸水防止設備が設置された建物・構築物については、常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動Ssによる地震力とを組み合わせる。
- (b) 浸水防止設備及び津波監視設備については、常時作用している 荷重及び運転時の状態で施設に作用する荷重と基準地震動Ssに よる地震力とを組み合わせる

なお、上記 c. (a), (b)については、地震と津波が同時に作用 する可能性について検討し、必要に応じて基準地震動 S_sによる地 震力と津波による荷重の組合せを考慮する。また、津波以外によ る荷重については、「(2)荷重の種類」に準じるものとする。

- d. 荷重の組合せ上の留意事項
 - (a) Sクラスの施設に作用する地震力のうち動的地震力については,

水平2方向と鉛直方向の地震力とを適切に組み合わせ算定する ものとする。

- (b) ある荷重の組合せ状態での評価が明らかに厳しいことが判明し ている場合には、その他の荷重の組合せ状態での評価は行わな いことがある。
- (c) 複数の荷重が同時に作用する場合、それらの荷重による応力の 各ピークの生起時刻に明らかなずれがあることが判明している ならば、必ずしもそれぞれの応力のピーク値を重ねなくてもよ いものとする。
- (d) 上位の耐震重要度分類の施設を支持する建物・構築物の当該部 分の支持機能を確認する場合においては、支持される施設の耐 震重要度分類に応じた地震力と常時作用している荷重、運転時 の状態で施設に作用する荷重及びその他必要な荷重とを組み合 わせる。

なお,第 1.3-1 表に対象となる建物・構築物及びその支持機 能が維持されていることを検討すべき地震動等について記載す る。

(e) 地震と組み合わせる自然条件として、風及び積雪を考慮し、風荷重及び積雪荷重については、施設の設置場所、構造等を考慮して、地震荷重と組み合わせる。

【説明資料(4.1(3): P4条-85)】

(4) 許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界 は次のとおりとし,安全上適切と認められる規格及び基準又は試験 等で妥当性が確認されている許容応力等を用いる。

- a. 建物・構築物 (c. に記載のものを除く。)
 - (a) Sクラスの建物・構築物
 - i) 弾性設計用地震動S_dによる地震力又は静的地震力との組合
 せに対する許容限界

建築基準法等の安全上適切と認められる規格及び基準による 許容応力度を許容限界とする。

ただし、冷却材喪失事故時に作用する荷重との組合せ(原子 炉格納容器バウンダリにおける長期的荷重との組合せを除く。) に対しては、下記ii)に示す許容限界を適用する。

 ii) 基準地震動S_sによる地震力との組合せに対する許容限界
 構造物全体としての変形能力(終局耐力時の変形)について
 十分な余裕を有し,建物・構築物の終局耐力に対し妥当な安
 全余裕を持たせることとする(評価項目はせん断ひずみ,応 力等)。

なお,終局耐力は,建物・構築物に対する荷重又は応力を漸 次増大していくとき,その変形又はひずみが著しく増加する に至る限界の最大耐力とし,既往の実験式等に基づき適切に 定めるものとする。

(b) Bクラス及びCクラスの建物・構築物((e)及び(f)に記載のものを除く。)

上記(a) i) による許容応力度を許容限界とする。

(c) 耐震重要度分類の異なる施設を支持する建物・構築物((e)及び(f)に記載のものを除く。)

上記(a) ii)を適用するほか,耐震重要度分類の異なる施設を 支持する建物・構築物が,変形等に対してその支持機能を損な

われないものとする。

なお、当該施設を支持する建物・構築物の支持機能を損なわな いことを確認する際の地震動は、支持される施設に適用される 地震動とする。

(d) 建物・構築物の保有水平耐力((e)及び(f)に記載のものを除く。)

建物・構築物については,当該建物・構築物の保有水平耐力が 必要保有水平耐力に対して耐震重要度分類に応じた安全余裕を 有していることを確認する。

- (e) 屋外重要土木構造物
 - i)静的地震力との組合せに対する許容限界
 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。
 - ii)基準地震動Ssによる地震力との組合せに対する許容限界 構造部材のうち,鉄筋コンクリートの曲げについては限 界層間変形角,終局曲率又は許容応力度,せん断について はせん断耐力又は許容せん断応力度を許容限界とする。構 造部材のうち,鋼材の曲げについては終局曲率又は許容応 力度,せん断についてはせん断耐力又は許容せん断応力度 を許容限界とする。

なお,限界層間変形角,終局曲率及びせん断耐力に対して は妥当な安全余裕を持たせた許容限界とし,それぞれの安全 余裕については各施設の機能要求等を踏まえ設定する。構造 部材の曲げについては限界層間変形角及び終局曲率又は許 容応力度,構造部材のせん断についてはせん断耐力又は許

容せん断応力度を許容限界とする。

(f) その他の土木構造物

安全上適切と認められる規格及び基準による許容応力度を許容 限界とする。

- b. 機器・配管系 (c. に記載のものを除く。)
- (a) Sクラスの機器・配管系
- i) 弾性設計用地震動 S_dによる地震力又は静的地震力との組合
 せに対する許容限界

応答が全体的におおむね弾性状態に留まることとする(評価項 目は応力等)。

ただし、冷却材喪失事故時の作用する荷重との組合せ(原子炉 格納容器バウンダリを構成する設備、非常用炉心冷却設備等に おける長期的荷重との組合せを除く。)に対しては、下記(a) ii) に示す許容限界を適用する。

 ii) 基準地震動S_sによる地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても、その量が小さなレベルに 留まって破断延性限界に十分な余裕を有し、その施設に要求さ れる機能に影響を及ぼさないように応力、荷重等を制限する値 を許容限界とする。

また,地震時又は地震後に動的機能が要求される機器等については,基準地震動 S_sによる応答に対して,実証試験等により確認されている機能確認済加速度等を許容限界とする。

(b) Bクラス及びCクラスの機器・配管系

応答が全体的におおむね弾性状態に留まることとする(評価項 目は応力等)。

(c) チャンネル・ボックス

地震時に作用する荷重に対して,燃料集合体の冷却材流路を維持できること及び過大な変形や破損を生ずることにより制御棒 の挿入が阻害されることがないことを確認する。

c. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物

津波防護施設及び浸水防止設備が設置された建物・構築物については、当該施設及び建物・構築物が構造物全体としての変形能力 (終局耐力時の変形)について十分な余裕を有するとともに、その施設に要求される機能(津波防護機能及び浸水防止機能)が保持できることを確認する(評価項目はせん断ひずみ、応力等)。

浸水防止設備及び津波監視設備については、その設備に要求される機能(浸水防止機能及び津波監視機能)が保持できることを確認する。

- d. 基礎地盤の支持性能
- (a) Sクラスの建物・構築物及びSクラスの機器・配管系(津波防
 護施設,浸水防止設備及び津波監視設備を除く。)の基礎地盤
- i) 弾性設計用地震動 S_dによる地震力又は静的地震力との組合
 せに対する許容限界

接地圧に対して、安全上適切と認められる規格及び基準等に よる地盤の短期許容支持力度を許容限界とする。

- ii) 基準地震動Ssによる地震力との組合せに対する許容限界
 接地圧が、安全上適切と認められる規格及び基準等による地
 盤の極限支持力度に対して妥当な余裕を有することを確認する。
- (b) 屋外重要土木構造物, 津波防護施設及び浸水防止設備並びに浸

水防止設備又は津波監視設備が設置された建物・構築物の基礎 地盤

- i) 基準地震動Ssによる地震力との組合せに対する許容限界
 接地圧が、安全上適切と認められる規格及び基準等による地
 盤の極限支持力度に対して妥当な余裕を有することを確認する。
- (c) Bクラス及びCクラスの建物・構築物, Bクラス及びCクラスの機器・配管系並びにその他の土木構造物の基礎地盤

上記(a) i) による許容支持力度を許容限界とする。

【説明資料(4.1(4): P4条-87)】

1.3.1.5 設計における留意事項

耐震重要施設は,耐震重要度分類の下位のクラスに属する施設(以下 「下位クラス施設」という。)の波及的影響によって,その安全機能を 損なわないように設計する。

波及的影響については,耐震重要施設の設計に用いる地震動又は地震 力を適用して評価を行う。なお,地震動又は地震力の選定に当たって は,施設の配置状況,使用時間等を踏まえて適切に設定する。また, 波及的影響においては水平2方向及び鉛直方向の地震力が同時に作用 する場合に影響を及ぼす可能性のある施設,設備を選定し評価する。

波及的影響の評価に当たっては,以下(1)~(4)をもとに,敷地全体を 俯瞰した調査・検討を行い,耐震重要施設の安全機能への影響がない ことを確認する。

なお、原子力発電所の地震被害情報をもとに、以下(1)~(4)以外に検 討すべき事項がないかを確認し、新たな検討事項が抽出された場合に は、その観点を追加する。

(1) 設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位

による影響

a. 不等沈下

耐震重要施設の設計に用いる地震動又は地震力に対して不等沈下により,耐震重要施設の安全機能へ影響がないことを確認する。

b. 相対変位

耐震重要施設の設計に用いる地震動又は地震力による下位クラス施 設と耐震重要施設の相対変位により,耐震重要施設の安全機能へ影響 がないことを確認する。

(2) 耐震重要施設と下位クラス施設との接続部における相互影響

耐震重要施設の設計に用いる地震動又は地震力に対して,耐震重要 施設に接続する下位クラス施設の損傷により,耐震重要施設の安全機 能へ影響がないことを確認する。

(3) 建屋内における下位クラス施設の損傷,転倒及び落下等による耐震重 要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に対して,建屋内の 下位クラス施設の損傷,転倒及び落下等により,耐震重要施設の安全 機能へ影響がないことを確認する。

(4) 建屋外における下位クラス施設の損傷,転倒及び落下等による耐震重 要施設への影響

a. 耐震重要施設の設計に用いる地震動又は地震力に対して, 建屋外の下位クラス施設の損傷, 転倒及び落下等により, 耐震重要施設の安全機能へ影響がないことを確認する。

b. 耐震重要施設の設計に用いる地震動又は地震力に対して, 耐震重 要施設の周辺斜面が崩壊しないことを確認する。

なお、上記(1)~(4)の検討に当たっては、溢水及び火災の観点からも

波及的影響がないことを確認する。(火災については「東海第二発電所 設計基準対象施設について」のうち「第8条火災による損傷の防止」 に,溢水については「東海第二発電所設計基準対象施設について」の うち「第9条溢水による損傷の防止等」に記載)

上記の観点で検討した波及的影響を考慮する施設を,第 1.3-1 表中 に「波及的影響を考慮すべき施設」として記載する。

【説明資料(7:P4条-98)】

1.3.1.6 構造計画と配置計画

設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が 低減されるように考慮する。

建物・構築物は,原則として剛構造とし,重要な建物・構築物は,地 震力に対し十分な支持性能を有する地盤に支持させる。剛構造としな い建物・構築物は,剛構造と同等又はそれを上回る耐震安全性を確保 する。

機器・配管系は,応答性状を適切に評価し,適用する地震力に対して 構造強度を有する設計とする。配置に自由度のあるものは,耐震上の 観点からできる限り重心位置を低くし,かつ,安定性のよい据付け状 態になるよう配置する。

また,建物・構築物の建屋間相対変位を考慮しても,建物・構築物及 び機器・配管系の耐震安全性を確保する設計とする。

下位クラス施設は原則,耐震重要施設に対して離隔をとり配置する若 しくは,基準地震動 S_sに対し構造強度を保つようにし,耐震重要施設 の安全機能を損なわない設計とする。

【説明資料(9:P4条-102)】

1.3.3 主要施設の耐震構造

1.3.3.1 原子炉建屋

原子炉建屋は,地上6階,地下2階建で,平面が約67m(南北方向) ×約67m(東西方向)の鉄筋コンクリート造(一部鉄骨造)の建物である。

最下階床面からの高さは約68mで地上高さは約56mである。

建物中央部には一次格納容器を囲む円型の一次遮蔽壁があり,その外側に 二次格納施設である原子炉棟の外壁及び原子炉建屋付属棟(以下,「付属 棟」という。)の外壁がある。

これらは原子炉建屋の主要な耐震壁を構成している。

これらの耐震壁間を床が一体に連絡し、全体として剛な構造としている。

原子炉建屋の基礎は、平面が約67m(南北方向)×約67m(東西方向)、厚 さ約5mのべた基礎で、人工岩盤を介して、砂質泥岩である久米層に岩着し ている。

1.3.3.2 タービン建屋

タービン建屋は、地上2階、地下1階建で、平面が約70m(南北方向) ×約105m(東西方向)の鉄筋コンクリート造(一部鉄骨造)の建物で あり、適切に配置された耐震壁で構成された剛な構造としている。

タービン建屋の基礎は,平面が約 70m(南北方向) ×約 105m(東西 方向),厚さ約 1.9m で,杭及びケーソンを介して,砂質泥岩である久 米層に岩着している。

1.3.3.3 廃棄物処理建屋

廃棄物処理建屋は,地上4階,地下3階建で,平面は約41m(南北方向) ×約69m(東西方向)の鉄筋コンクリート造の建物であり,適切に配置され た耐震壁で構成された剛な構造としている。

廃棄物処理建屋の基礎は,平面が約41m(南北方向)×約69m(東西方 向),厚さ約2.5mのべた基礎で,人工岩盤を介して,砂質泥岩である久米 層に岩着している。

1.3.3.4 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋は,地上1階建で平面が約52m(南北方向) ×約24m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリー ト造及び鉄骨造)の建物であり,適切に配置された耐震壁で構成され た剛な構造としている。

使用済燃料乾式貯蔵建屋の基礎は,平面が約 60m(南北方向)×約 33m(東西方向),厚さ約 2.5m(一部約 2.0m)で,鋼管杭を介して, 砂質泥岩である久米層に岩着している。

1.3.3.5 防潮提及び防潮扉

防潮堤は,鋼管杭鉄筋コンクリート防潮壁,鋼製防護壁及び鉄筋コンクリ ート防潮壁の3種類の構造形式に区分され,敷地を取り囲む形で設置する。 また,防潮堤のうち,敷地側面南側の鋼管杭鉄筋コンクリート防潮壁及び敷 地前面東側の鉄筋コンクリート防潮壁には,それぞれ1箇所ずつ防潮扉を設 置する。

鋼管杭鉄筋コンクリート防潮壁は,延長約 1.5km,直径約 2m 及び約 2.5m の複数の鋼管杭を鉄筋コンクリートで巻き立てた天端高さ T.P. +18m 及び T.P. +20m の鉄筋コンクリート梁壁と鋼管鉄筋コンクリートとを一体とした 剛な構造物であり,鋼管杭を介して,砂質泥岩である久米層に岩着している。

鋼製防護壁は,延長約80m,天端高さT.P.+20m,奥行約5m~約16mの鋼 設構造であり,適切に配置された鋼板を溶接及び高力ボルトで接合した剛な 構造である。鋼製防護壁は,幅約50mの取水構造物を横断し,取水構造物の 側方に位置する地中連続壁基礎を介して,砂質泥岩である久米層に岩着して

いる。

鉄筋コンクリート防潮壁は,延長約 160m,天端高さ T.P.+20m,奥行約 10m~約 23m の鉄筋コンクリート造の剛な構造物であり,地中連続壁基礎を 介して,砂質泥岩である久米層に岩着している。

鋼管杭鉄筋コンクリート防潮壁及び鉄筋コンクリート防潮壁に設置する防 潮扉は上下スライド式の鋼製扉であり,それぞれ杭又は地中連続壁基礎を介 して,砂質泥岩である久米層に岩着している。

1.3.3.6 原子炉格納容器

原子炉格納容器は、内径約 26m、高さ約 16m、厚さ約 3.2cm~約 3.8cm の 鋼製円筒殻と底部内径約 26m、頂部内径約 12m、高さ約 24m、厚さ約 2.8cm ~約 3.8cm の鋼製円錘殻、底部内径約 12m、頂部内径約 9.7m、高さ約 2m の 鋼製円錘殻、その上に載る格納容器ヘッド及び底部コンクリートスラブよ り構成され全体の高さは約 48m である。

円筒殻と底部コンクリートスラブとの接続にはアンカーボルトを用いる。 円筒殻と円錘殻の接続部の高さに,原子炉格納容器を上下に分けるダイ ヤフラム・フロアがあり,下部はサプレッション・チェンバになっている。

円錘殻頂部付近には上部シアラグ及びスタビライザがあり,原子炉圧力 容器より原子炉格納容器に伝えられる水平力及び原子炉格納容器にかかる 水平力の一部を周囲の一次遮蔽壁に伝える構造となっている。

1.3.3.7 原子炉圧力容器

原子炉圧力容器は内径約 6.4m, 高さ約 23m, 重量は原子炉圧力容器内部 構造物, 原子炉冷却材及び燃料集合体を含めて約 1,600 t である。

この容器は底部の鋼製スカートで支持され,スカートは鉄筋コンクリート 造円筒形の原子炉本体の基礎に固定されたベヤリングプレートにボルトで 接続されている。

原子炉圧力容器は、その外周の原子炉遮蔽頂部で原子炉圧力容器スタビ ライザによって水平方向に支持されて、原子炉遮蔽の頂部は原子炉格納容 器スタビライザによって原子炉格納容器に結合されている。原子炉圧力容 器スタビライザは地震力に対し原子炉圧力容器の上部を横方向に支持して いる。

したがって,水平力に対して原子炉圧力容器はスカートで下端固定,原 子炉圧力容器スタビライザで上部ピン支持となっている。

1.3.3.8 原子炉圧力容器内部構造物

炉心に作用する水平力は、ステンレス鋼の炉心シュラウドによって支持 されている。炉心シュラウドは、円筒形をした構造で原子炉圧力容器の下 部に溶接されている。

燃料集合体に作用する水平力は、上部格子板及び炉心支持板を通して炉 心シュラウドに伝えられ、燃料集合体はジルカロイ製の細長いチャンネ ル・ボックスに納められている。燃料棒は、過度の変形を生ずることがな いように、燃料集合体頂部と底部のタイプレートで押さえ、中間部もスペ ーサによって押さえられている。

スタンドパイプと気水分離器は溶接によって一体となっている。蒸気乾燥器は原子炉圧力容器につけたブラケットによって支持されている。ジェ ットポンプは炉心シュラウドの外周に配置されている。ライザは原子炉圧 力容器を貫通して立上り、上部において原子炉圧力容器に支持され、ジェ ットポンプは上部においてライザに結合されている。

ジェットポンプの下部はシュラウドサポートプレートに溶接されている。 この機構によってジェットポンプは熱膨脹を拘束されずに振動を防止でき る構造となっている。制御棒駆動機構ハウジングは、上部は原子炉圧力容器 底部に溶接されており、地震荷重に対しても十分な強度を持つように設計

する。

1.3.3.9 再循環系

再循環ループは 2 ループあって,外径約 610mm のステンレス鋼管で原子 炉圧力容器から下方に伸び,その最下部に再循環系ポンプを設け,持ち再 び立ち上げてヘッダに入り,そこから 5 本の外径約 320mm のステンレス鋼 管に分れ,原子炉圧力容器に接続される。この系の支持方法は,熱膨脹に よる動きを拘束せず,できる限り剛な系になるように,適切なスプリング ハンガ,スナッバ等を採用する。再循環系ポンプは,ケーシングに取り付 けられたコンスタントハンガ,スナッバ等によって支持される。

1.3.3.10 その他

その他の機器・配管系については,運転荷重,地震荷重,熱膨張に よる荷重を考慮して,必要に応じてスナッバ,ハンガ,その他の支持 装置を使用して耐震性に対しても熱的にも安全な設計とする。

- 1.3.4 地震検知による耐震安全性の確保
- (1) 地震検出計

安全保護系の一つとして地震検出計を設け,ある程度以上の地震 が起こった場合に原子炉を自動的に停止させる。スクラム設定値は, 弾性設計用地震動 S_dの加速度レベルに余裕を持たせた値とする。安 全保護系は,フェイル・セーフ設備とするが,地震以外のショック によって原子炉をスクラムさせないよう配慮する。

地震検出計は,基盤の地震動をできるだけ直接的に検出するため 建屋基礎版の位置,また主要な機器が配置されている代表的な床面 に設置する。なお,設置に当たっては試験及び保守管理が可能な原 子炉建屋の適切な場所に設置する。

(2) 地震観測等による耐震性の確認

発電用原子炉施設のうち安全上特に重要なものに対しては,地震 観測網を適切に設置し,地震観測等により振動性状の把握を行い, それらの測定結果に基づく解析等により,施設の機能に支障のない ことを確認していくものとする。

地震観測を継続して実施するために,地震観測網の適切な維持管 理を行う。

1.3.5 参考文献

(1)「静的地震力の見直し(建築編)に関する調査報告書(概要)」社団法
 人日本電気協会電気技術基準調査委員会原子力発電耐震設計特別調査委員会建築部会(平成6年3月)

第1.3-1表 耐震重要度分類表

12)	検討用 地震動 ^(注6)	S S S S S S S S S S S S S S S S S S S	s s s s s s	0 0 0 0 0 0 0 0 0 0	N N N N N N	S S S S S S S S S S S S S S S S S S S				S S S S S S S S S S S S S S S S S S S			
波及的影響を 考慮すべき施設 ⁽³⁾	適 用 範 囲	・原子炉遮蔽壁 ・タービン建屋 ・廃棄物処理建屋 ・その他	・原子炉建屋クレーン ・燃料取替機 ・体田済鉄約式貯蔵	建屋天井グレーン ・タービン建屋 ・廃棄物処理建屋 ・その他	・タービン建屋 ・廃棄物処理建屋 ・その他	・タービン建屋 ・廃棄物処理建屋 ・その他				・タービン建屋 ・廃棄物処理建屋 ・その他			
É4)	検討用 地震動 ^(注6)	S s s	° °	S	N N N	S_s	S_s			S s s	${\rm s}^{\rm o}$		
間接支持構造物(注	適 用 範 囲	・原子炉本体の基礎 ・原子炉建屋	・原子炉建屋 ・使用済燃料乾式貯蔵 建屋	・ディーゼル発電機の 燃料油系を支持する 構造物	・原子炉建屋 ・原子炉本体の基礎	・原子炉建屋 ・海水ポンプ基礎等の 海水系を支持する構 注価	」での ・ディーゼル発電機の 燃料油系を支持する 構造物			 ・原子炉建屋 ・海水ボンプ基礎等の ・海水系を支持する構 造物 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・ティーセル発電機の 燃料油糸を支持する 構造物		
<u>:</u> 3)	耐 慶 クラス	S S	S		S	S				S			
直接支持構造物(科	適 用 範 囲	・原子炉圧力容器スカ ート ・機器・配管,電気計 装設備等の支持構造 物	・機器・配管、電気計 装設備等の支持構造 物	2	• 機器・配管, 電気計 装設備等の支持構造 物	・機器・配管,電気計 装設備等の支持構造 物				・機器・配管, 電気計 装設備等の支持構造 物			
Ē2)	耐 慶 クラス	S	S	S	ຑຑຑ	sss	v,)	S	SS	S	S	S
補助設備(適用範囲	・隔離弁を閉とするた めに必要な電気計装 設備	・使用済燃料ブール水 補給設備(残留熟除 去系)	・非常用電源及び計装 設備(非常用ディー ゼル発電機及びその 冷却系・補助施設を 含む)	・炉心支持構造物 ・電気計装設備 ・チャンネル・ボック ス	・残留熟除去系海水系 ・炉心支持構造物 ・高圧炉心スプレイ系 マノーオル双電域の	ノイ といれ 国政人 びその冷却系・補助 施設 ・非営田雪源及18計場	が備い 設備の に また が、 に また の い い い い い い い い い い い い い	・当該施設の機能維持に必要な空調設備	・残留熟除去系佈水系 ・高圧炉心スプレイ系 ディーゼル発電機及 びその冷却系・補助	施設 ・中央制御室の遮蔽と 空調設備	・非常用電源及び計装 設備(非常用ディー ゼル発電機及びその 冷却系・補助施設を	宮む) ・当該施設の機能維持 に必要な空調設備
E1)	耐 慶 クラス	SS	ss	S	S	SSS	S			S		S	
主要設備	適 用 範 囲	・原子炉圧力容器 ・原子炉冷却材圧力バ ウンダリに属する容 器・配管・ポンプ・ 弁	・使用済燃料プール ・使用済燃料貯蔵ラッ カ	• 使用済燃料乾式貯蔵 容器	・制御釋、制御棒感動 機構及び制御棒感動 水圧系(スクラム機 能に関する部分)	・原子炉隔離時冷却系 ・高圧炉心スプレイ系 ・残留熱除去系(原子 に追い時冷却エード	が存出時間は、「 運転に必要な設備) ・冷却水源としてのサ プレッション・プー			・非常用炉心や却条 1) 高圧炉心スプレイ 系 2) 低圧炉心スプレイ	糸 3) 残留熱除去系(低 正注 入 キー ド運転	に必要な設備) に必要な設備) 4) 自動減圧系 ・ 希却水源としてのサ プワッツョン・プー	7
機能別分類		(i)原子炉冷却附圧 カバウンダリを構成 成する機器・配管 系	(三)使用済燃料を貯 蔵するための施設		(Ⅲ)原子炉の緊急停 止のために急激に 負の反応度を付加 するための施設、 及び原子炉の停止 状態を維持するた めの施設	(iv) 原子炉停止後, 炉心から崩壊熱を 除去するための施 部	ž			(v)原子炉冷却附压 力バウンダリ破損 事故後、炉心から 崩壊熱を除去する	ための施設		
耐震重要度 分 類		Sクラス											

主5)	検討用 地震動 ^(注6)	°°°°°°°°	လူလူလူ	လလလ	° ° ° °	° ° ° ° °
波及的影響を 考慮すべき施設(?	適用範囲	・原子炉ウェル用遮 蔽ブロック ・タービン建屋 ・廃棄物処理建屋 ・その他	・タービン建屋 ・廃棄物処理建屋 ・その他	 ・タービン建屋 ・廃棄物処理建屋 ・その他 	・タービン建屋 ・廃棄物処理建屋 ・その他	・タービン建屋 ・廃棄物処理建屋 ・その他
E4)	検討用 地震動 ^(注6)	N N	လိုလ္ လို လိုလ္ရွိ	s s s s	s ss s	° ° ° °
間接支持構造物(適 用 範 囲	・原子炉建屋	- 原子炉建屋 - 原子炉建屋 - 原子炉本体の基礎 (注1) - 海大ポンプ基礎等の 道物 - 市大シン基礎 - 市大の 一 一 たの - ディー た の - ディー た の - ディー た の - ディー た の - ディー た の - ディー た の - デ - デ - デ - デ - デ - デ - デ - デ - デ - デ	・原子炉建屋 ・当該の屋外設備を支持する構造物 持する構造物 ・ディーセル発電機の 燃料油系を支持する 構造物	・原子炉建屋 ・当該の屋外設備を支 持する構造物 ・ディーゼル発電機の 燃料油系を支持する 構造物	・原子炉建屋 ・原子炉本体の基礎 ・ディーゼル発電機の 燃料油系を支持する 構造物
主3)	更 タラス	S	ν	v	S	o v
直接支持構造物(適 用 範 囲	・機器・配管,電気計 装設備等の支持構造 物	・機器・配管, 電気計 装設備等の支持構造 物	・機器・配管, 電気計 装設備等の支持構造 物	・機器・配管、電気計 装設備等の支持構造 物	・機器・配管、電気計 装設備等の支持構造 物 ・原子炉圧力容器
主2)	耐 慶 クラス	S	n n n	v	S	S
補助設備	適 用 範 囲	・隔離弁を閉とする ために必要な電気計 装設備	 ・残留熱除去系海水 ・発留熱除去系海水 ・非常用電源及び計 ・セルン発電機及びそく の合却系、補助施設 を含む) ・当該施設の機能維 ・当該施設の機能維 	・非常用電源及び計 装設備(非常用ディ 一ゼル発電機及びそ の冷却系・補助施設 を含む)	・非常用電源及び計 装設備(非常用ディ ーゼル発電機及びそ の冷却系・補助施設 を含む)	・非常用電源及び計 装設備(非常用ディ ーゼル発電機及びそ の冷却系・補助施設 を含む)
主1)	副 クラス	w w	<u>ര്യായായ</u> സ	ແມ່ນ ແມ່ນ	ννν	s s
主要設備	麗 皷 峀 鄭	・原子炉格納容器 ・原子炉格納容器べウ ンダリに属する配 管・弁	 ・残留熱除去糸(格納 容器スプレイ冷却ホート、運転に必要な設 一、運転に必要な設 通。 ・回然性ガス濃度制値 ・回然性ガス濃度制値 ・県北部用ガス処理保病 ・非常用ガスの構築、 ・県北部用ガスの構築、 ・県市ガス処理保護 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 防潮堤 防潮県 防湖福 防水路ゲート 横内排水路逆流防止影備 県谷豚い 整 浸水防止 整 浸水防止 整 	・取水ピット水位計 ・潮位計 ・津波・構内監視カメラ	・ほう酸水注入系 (注8) ・圧力容器内部構造物 (注9)
	機能別分類	 (vi)原子炉冷却材圧 カバウンダリ破損 事故の際に、圧力 障壁となり放射性 物質の放散を直接 防ぐための施設 	(vii) 放射性物質の放 出を伴うような事 故の際に、その外 部放散を拍前する ための設備であ り, (vi)以外の施 設	(viii) 津波防護機能を 有する設備及び浸 水防止機能を有す る設備 る設備	(ix)敷地における津 波監視機能を有す る施設	(x) その 伯
动震重要度 分 類		SDJA				

~	検討用 地震動 ^(注6)	N a	ນັ້ນ ແນ	N N N N	<u>ພ</u> ພ ພ ພ
間接支持構造物 (注4	適 用 範 囲	・原子炉建屋 ・タービン建屋(外側主蒸 気隔離かより主塞止弁ま での配管・弁を支持する 部分)	・原子炉建屋 ・原子炉建屋 ・カービン油屋	- メートノ陸居 - 原子灯建居 - 廃棄物処理建居	・原子炉建屋 - タービン建屋 - 廃棄物処理建屋 - 使用済燃料乾式貯蔵建屋
	耐 震 クラス	В	B B	ы	Ы
直接支持構造物(注3)	適 用 範 囲	・機器・配管等の支持構造 物	・機器・配管等の支持構造 物 ・機器・配管等の支持構造	物・配管等の支持構造物	・機器・配管等の支持構造物
	更 して して して して	I		I	I
補助設備(注2)	適 用 範 囲	1	1 1	I	I
(1)	更 感 クラス	B (注10)	B (注11) B B	<u>а</u> щ	
主要設備(注	適 用 範 囲	・主蒸気系(外側主蒸気 隔離弁より主塞止弁ま で)	・主蒸気逃がし安全弁排 気管 ・主蒸気系及び給水系	・ 原士 が- Gaund Jar Law ・ 放射性廃棄物処理施設 (C ク ラスに属するも のは除く) のは除く)	 ・タービン、復水器、給 水加熱器及びその主要 配管 ・復水貯塩装置 ・復水貯蔵タンク ・適款 ・必聴報 ・必聴報 ・必聴報 ・必聴報 ・必聴報 ・必聴 ・必聴 ・必聴 ・必要 ・必要 ・必要 ・の ・ <li< td=""></li<>
機能別分類		 (i)原子炉冷却材圧力 、ウンダリに直接接 続されていて、一次 冷却材を内蔵してい るか又は内蔵し得る 	施設	(ii) 放射性廃棄物を内 蔵している施設(た だし、内蔵量が少な い又は貯蔵方式によ り、その破損による 公衆に与える放射線 の影響が周辺監視区 成外における年間の 線量限度に比べ十分 小さいものは除く)	 (ⅲ) 放射性廃棄物以外の放射性物質に関 した施設で、そ 連した施設で、その破損により、公 来及び従事者に適 たな放射線被ばく を与える可能性の ある施設
耐震重要度 分 類		Bクラス			

中田市御村		主要設備(注	1)	補助設備(注2)		直接支持構造物(注3)		間接支持構造物(注4	
的原里安皮 分 類	機能別分類	適 用 範 囲	副 ゆうス	適 用 範 囲	副 「 う ラス	適 用 範 囲	討 凄 クラス	適 用 範 囲	検討用 地震動 ^(注5)
Bクラス	(iv)使用済燃料を冷 却するための施設	・燃料プール冷却浄化系	В	,原子炉補機冷却系 • 補機冷却確水系 • 電気計装設備	вва	・機器・配管、電気計装設 備等の支持構造物	В	・原子炉建屋 ・施水ポンプ基礎等の海水 系を支持する構造物	° N N N N N N N N N N N N N N N N N N N
	(v) 放射性物質の放出 を伴うような場合 に、その外部放散を 抑制するための施設 で、Sクラスに属さ ない施設	Ι	I	1	I	1	I	1	I
C 2 7 X	(i) 原子炉の反応度を 制御するための施設 でSクラス及びBク ラスに属さない施設	・再循環流量制御系 ・制御棒駆動水圧系(S クラス及びBクラスに 属さない部分)	с с С	I	I	・機器・配管、電気計装設 備等の支持構造物	C	・原子炉建屋	Sc
	(ii) 放射性物質を内蔵 しているか、又はこ れに関連した施設で Sクラス及びBクラ スに属さない施設 スに属さない施設	 ・試料採取系 ・洗濯廃液処理系 ・防濯廃液処理系 ・固化装置より下流の固体廃棄物処理系(貯蔵庫を含む) ・ 維固体減容処理設備 ・ 放射性廃棄物処理施設 のうち濃縮装置の簸縮水側 ・ 水側 ・ 老の他 	000 00 00	I	I	•機器・配管, 電気計装設 備等の支持構造物	O	- 原子/戸建屋 - タービン建屋 - 廃棄物/D理建屋 - 固体廃棄物庁蔵庫 - 固体廃棄物作業建屋	8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9

主4)	検討用 地震動 ^(注6)	ວິວິວີ ວິ ວິ	を し り ち ら ち ら か う い う の ち ら う う り ち う う 気 気 う う し う う う う む う に う む む い ひ い ひ む む い ひ む む む ひ む い ひ む か か か か か か か か か か か か か か か か か か
間接支持構造物(適 用 範	・原子炉建屋 ・タービン建屋 ・廃棄物処理建屋 ・その他	9に受ける支持構造物。 9影響を及ぼすおそれの 1となる機能を有する。 た場合、放出された また、排気管がドラ
	声 ゆうス	υ	を にす 王 で認て直 波る 力 破す凝壊及。 掲 増る縮・10%
直接支持構造物 (注3	適 用 範 囲	・機器・配管、電気計装 設備等の支持構造物	。 はにたらの設備の単価 「なくせんの設備の単価 「なくしくんに属する で、「 たった」 で、 たっ、 たっ、 で、 に に に た で に に に た で に に た し た に に に に に に し た し に に に に に に に し に に に に に に に に に に に に に
	町 タラス	I	「備」建よ討 サ をメのチを者物っを プ 行ン排ェン・て踏 レ うョ気ン・ううます シ ううまう
補助設備(注2	適 用 範 囲	I	いい。 備の 着の 都 の さ た の た の た る 市 の 市 の た の 市 し た し た い た の 市 か た の 市 市 か た の む む む む む む む む む む か か か か か か が か か か か か か か か か か か か か
1)	売 タラス	000 00000 0	設主直達震設 りぬ震的の気質にドイト競車接きタ計 震力地機で性対にて小舗要接さタ計 震力地機で性対すす管を設取れうに 力 意能、かし気プを
主要設備(注)	適 用 範 囲	・循環水系 シタービン補緩冷却系 所内ボイラ及び所内蒸 気系 消火系 主発電機・変圧器 主発電機・変圧器 空調設備 空調設備 ケーン 所内用空気系及び計器 用空気系	(能に直接的に関連する (能に直接的に関連する (能に間接的に関連する) 直接文特構造物から存 直接文特構造物から存 いたりにはる地震) を ままして「1.3.1.5 と sにより定まる地震 式 施設に適用される 一 方 合 に より に より に よ の 信 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (1.3.1.5 の 言 (二 の 言 (二 の 言 (二 の 言 (二 の 言 の 言 (二 の 言 の 言 (二 の 言 の 言 の に に 、 一 の 信 の 言 の に よ の に に の に の に の に 、 3 に よ の に に の に 3 に こ の に の に の に の に の の に の に の に の に の
	機能別分類	(Ⅲ) 原子炉施設では あるが、放射線安 全に関係しない施 設	 一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、
耐震重要度 分 類		C 7 7 X	(第11) (第22) (第23) (第4) (第55) (第4) (第77) (第10) (第110)

第1.3-1図 弾性設計用地震動S_dの応答スペクトル(NS方向)

第1.3-2図 弾性設計用地震動S_dの応答スペクトル(EW方向)

第1.3-3図 弾性設計用地震動S_dの応答スペクトル(UD方向)

第1.3-4図 弾性設計用地震動S_d-D1の時刻歴波形

第1.3-5図 弾性設計用地震動S_d-11の時刻歴波形

第1.3-6図 弾性設計用地震動S_d-12の時刻歴波形

第1.3-7図 弾性設計用地震動S_d-13の時刻歴波形

第1.3-8図 弾性設計用地震動S_d-14の時刻歴波形

第1.3-9図 弾性設計用地震動S_d-21の時刻歴波形

第1.3-10図 弾性設計用地震動S_d-22の時刻歴波形

第1.3-11図 弾性設計用地震動 S_d-31の時刻歴波形

第1.3-12図 弾性設計用地震動S_aと基準地震動S₁の応答スペクトルの比較(NS方向)

第1.3-13図 弾性設計用地震動S_dと基準地震動S₁の応答スペクトルの比

較(EW方向)

第1.3-14図 一様ハザードスペクトルと弾性設計用地震動S_dの応答スペク

トルの比較(水平方向)

第1.3-15図 一様ハザードスペクトルと弾性設計用地震動 S_dの応答スペクトルの比較(鉛直方向)

(3) 適合性説明

第四条 地震による損傷の防止

- 1 設計基準対象施設は、地震力に十分に耐えることができるものでなければならない。
- 2 前項の地震力は、地震の発生によって生ずるおそれがある設計基準対象施設の安全機能の喪失に起因する放射線による公衆への影響の程度に応じて算定しなければならない。
- 3 耐震重要施設は、その供用中に当該耐震重要施設に大きな影響を及ぼ すおそれがある地震による加速度によって作用する地震力(以下「基 準地震動による地震力」という。)に対して安全機能が損なわれるお それがないものでなければならない。
- 4 耐震重要施設は、前項の地震の発生によって生ずるおそれがある斜面の崩壊に対して安全機能が損なわれるおそれがないものでなければならない。

適合のための設計方針

第1項について

設計基準対象施設は、耐震重要度分類をSクラス、Bクラス又はCクラス に分類し、それぞれに応じて設定した地震力に対しておおむね弾性範囲の設 計を行う。

なお,耐震重要度分類及び地震力については,「第2項について」に示す とおりである。

【説明資料(1.1(2): P4条-73)】

第2項について

設計基準対象施設は、地震により発生するおそれがある安全機能の喪失 (地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全 機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する 観点から、各施設の安全機能が喪失した場合の影響の相対的な程度に応じて、 以下のとおり、耐震重要度分類をSクラス、Bクラス又はCクラスに分類し、 それぞれに応じた地震力を算定する。

【説明資料(1.1(1):P4条-73)(1.1(2):P4条-73)】 (1) 耐震重要度分類

Sクラス:地震により発生するおそれがある事象に対して,原子炉を停 止し,炉心を冷却するために必要な機能を持つ施設,自ら 放射性物質を内蔵している施設,当該施設に直接関係して おりその機能喪失により放射性物質を外部に拡散する可能 性のある施設,これらの施設の機能喪失により事故に至っ た場合の影響を緩和し,放射線による公衆への影響を軽減 するために必要な機能を持つ施設及びこれらの重要な安全 機能を支援するために必要となる施設,並びに地震に伴っ て発生するおそれがある津波による安全機能の喪失を防止 するために必要となる施設であって,その影響が大きいも の

【説明資料(2.1(1): P4条-78)】

Bクラス:安全機能を有する施設のうち,機能喪失した場合の影響がS クラスの施設と比べ小さい施設

【説明資料(2.1(2): P4条-78)】
Cクラス: Sクラスに属する施設及びBクラスに属する施設以外の一般 産業施設又は公共施設と同等の安全性が要求される施設

【説明資料(2.1(3): P4条-78)】

(2) 地震力

上記(1)のSクラスの施設(津波防護施設,浸水防止設備及び津波監視 設備を除く。), Bクラス及びCクラスの施設に適用する地震力は以下の とおり算定する。

なお, Sクラスの施設については, 弾性設計用地震動 S_dによる地震力 又は静的地震力のいずれか大きい方の地震力を適用する。

a. 静的地震力

静的地震力は、Sクラス、Bクラス及びCクラスの施設に適用することとし、それぞれ耐震重要度分類に応じて次の地震層せん断力係数C_i及び震度に基づき算定する。

(a) 建物・構築物

水平地震力は,地震層せん断力係数C_iに,次に示す施設の耐震重 要度分類に応じた係数を乗じ,さらに当該層以上の重量を乗じて算 定するものとする。

Sクラス 3.0

Bクラス 1.5

Cクラス 1.0

ここで、地震層せん断力係数C_iは、標準せん断力係数C₀を 0.2 以上とし、建物・構築物の振動特性、地盤の種類等を考慮して求め られる値とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利 な方向の組合せで作用するものとする。鉛直地震力は、震度 0.3 以

上を基準とし,建物・構築物の振動特性,地盤の種類等を考慮して 求めた鉛直震度より算定するものとする。ただし,鉛直震度は高さ 方向に一定とする。

(b) 機器・配管系

耐震重要度分類の各クラスの地震力は、上記(a)に示す地震層せん 断力係数C_iに施設の耐震重要度分類に応じた係数を乗じたものを水 平震度とし、当該水平震度及び上記(a)の鉛直震度をそれぞれ 20%増 しとした震度より求めるものとする。

なお、Sクラスの施設については、水平地震力と鉛直地震力は同時 に不利な方向の組合せで作用するものとする。ただし、鉛直震度は高 さ方向に一定とする。

【説明資料(3.1(1): P4条-79)】

b. 弾性設計用地震動 S_dによる地震力

弾性設計用地震動 S_dによる地震力は, Sクラスの施設に適用する。 弾性設計用地震動 S_dは,「添付書類六 3. 地震」に示す基準地震動 S_sに工学的判断から求められる係数 0.5 を乗じて設定する。

また,弾性設計用地震動 S_dによる地震力は,水平 2 方向及び鉛直方 向について適切に組み合わせたものとして算定する。

なお、Bクラスの施設のうち、共振のおそれのある施設については、 弾性設計用地震動S_dに2分の1を乗じた地震動によりその影響につい ての検討を行う。当該地震動による地震力は、水平2方向及び鉛直方 向について適切に組み合わせて算定するものとする。

【説明資料(3.1(2): P4条-79)】

第3項について

耐震重要施設(津波防護施設,浸水防止設備及び津波監視設備を除く。)

については,最新の科学的・技術的知見を踏まえ,敷地及び敷地周辺の地 質・地質構造,地盤構造並びに地震活動性等の地震学及び地震工学的見地か ら想定することが適切な地震動,すなわち「添付書類六 3. 地震」に示す基 準地震動Ssによる地震力に対して,安全機能が損なわれるおそれがないよ うに設計する。

【説明資料(1.1(5): P4条-74)】

また,屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物については,基準地震動Ssによる地震力に対して,それぞれの施設及び設備に要求される機能が保持できるように設計する。

【説明資料(1.1(6): P4条-74)】

基準地震動S_sによる地震力は、基準地震動S_sを用いて、水平2方向及 び鉛直方向について適切に組み合わせたものとして算定する。

【説明資料(1.1(5):P4条-74)(1.1(6):P4条-74)】

なお,耐震重要施設は,耐震重要度分類の下位のクラスに属する施設の波 及的影響によって,その安全機能を損なわないように設計する。

【説明資料(1.1(9): P4条-76)】

第4項について

耐震重要施設については、基準地震動Ssによる地震力によって生じるお それがある周辺の斜面の崩壊に対して、その安全機能が損なわれるおそれが ない場所に設置する。

【説明資料(7(4): P4条-98)】

1.3 気象等 該当なし

1.4 設備等

該当なし

1.5 手順等

該当なし

第4条:地震による損傷の防止

<目 次>

第2部

- 1. 耐震設計の基本方針
- 1.1 基本方針
- 1.2 適用規格
- 2. 耐震設計上の重要度分類
- 2.1 重要度分類の基本方針
- 2.2 耐震重要度分類
- 3. 設計用地震力
- 3.1 地震力の算定法
- 3.2 設計用地震力
- 4. 荷重の組合せと許容限界
- 4.1 基本方針
- 5. 地震応答解析の方針
- 5.1 建物·構築物
- 5.2 機器·配管系
- 5.3 屋外重要土木構造物
- 5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備 又は津波監視設備が設置された建物・構築物
- 6. 設計用減衰定数
- 7. 耐震重要施設の安全機能への下位クラス施設の波及的影響
- 8. 水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
- 9. 構造計画と配置計画

(別 添)

- 別添-1 設計用地震力
- 別添-2 動的機能維持の評価
- 別添-3 弾性設計用地震動 S_d・静的地震力による評価
- 別添-4 上位クラス施設の安全機能への下位クラス施設の波及的影響の 検討について
- 別添-5 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針
- 別添-6 屋外重要土木構造物の耐震評価における断面選定の考え方
- 別添-7 主要建屋の構造概要について
- 別添-8 地震応答解析に用いる地質断面図の作成例及び地盤の速度構造

第2部

1. 耐震設計の基本方針

東海第二発電所の設計基準対象施設の耐震設計方針について説明する。 1.1 基本方針

発電用原子炉施設の耐震設計は,「実用発電用原子炉及びその附属施設の 位置,構造及び設備の基準に関する規則(平成25年6月28日原子力規制委 員会規則第5号)」及び「実用発電用原子炉及びその附属施設の技術基準に 関する規則(平成25年6月28日原子力規制委員会規則第6号)」に適合す るよう以下の項目に従って行う。

- (1) 地震により生ずるおそれがあるその安全機能の喪失に起因する放射 線による公衆への影響の程度が特に大きいもの(以下「耐震重要施設」 という。)は、その供用中に当該耐震重要施設に大きな影響を及ぼす おそれがある地震による加速度によって作用する地震力に対して、そ の安全機能が損なわれるおそれがない設計する。
- (2) 地震により発生するおそれがある安全機能の喪失(地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。)及びそれに続く放射線による公衆への影響を防止する観点から、各施設の安全機能が喪失した場合の影響の相対的な程度(以下「耐震重要度」という。)に応じて、耐震重要度分類をSクラス、Bクラス又はCクラスに分類(以下「耐震重要度分類」という。)し、それぞれに応じた地震力に十分耐えられる設計する。
- (3) 建物・構築物及び土木構造物(屋外重要土木構造物及びその他の土 木構造物)については,耐震重要度分類の各クラスに応じて算定する 地震力が作用した場合においても,接地圧に対する十分な支持力を有 する地盤に設置する。

- (4) Sクラスの施設((6)に記載のもののうち,津波防護機能を有する 設備(以下「津波防護施設」という。),浸水防止機能を有する設 備(以下「浸水防止設備」という。)及び敷地における津波監視 機能を有する施設(以下「津波監視設備」という。)を除く。)に ついて,静的地震力は,水平地震力と鉛直地震力が同時に不利な方向 の組合せで作用するものとする。
- (5) Sクラスの施設((6)に記載のもののうち,津波防護施設,浸水防止 設備及び津波監視設備を除く。)は、基準地震動Ssによる地震力に対 してその安全機能が保持できる設計とする。建物・構築物は、基準地 震動Ssによる地震力に対して、構造物全体として変形能力(終局耐力 時の変形)について十分な余裕を有するように、機器・配管系につい ては、塑性ひずみが生じる場合であっても、その量が小さなレベルに 留まって破断延性限界に十分な余裕を有し、その施設の機能を保持で きるように設計する。

また,弾性設計用地震動 S_dによる地震力又は静的地震力のいずれ か大きい方の地震力に対しておおむね弾性状態に留まる範囲で耐えら れる設計とする。

(6) 屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物・構築物は, 基準地震動Ssによる地震力に対して,それぞれの施設に要求される機能が保持できる設計とする。

新設屋外重要土木構造物の構造部材の曲げについては許容応力 度,構造部材のせん断については許容せん断応力度を許容限界の 基本とするが,構造部材のうち,鉄筋コンクリートの曲げについ ては限界層間変形角又は終局曲率,鋼材の曲げについては終局曲

率,鉄筋コンクリート及び鋼材のせん断についてはせん断耐力を 許容限界とする場合もある。既設屋外重要土木構造物の構造部材 のうち,鉄筋コンクリートの曲げについては限界層間変形角又は 終局曲率,鋼材の曲げについては終局曲率,鉄筋コンクリート及 び鋼材ののせん断についてはせん断耐力を許容限界とする。

なお,限界層間変形角,終局曲率及びせん断耐力に対しては妥 当な安全余裕を持たせた許容限界とし,それぞれの安全余裕につ いては各施設の機能要求等を踏まえ設定する。

津波防護施設及び浸水防止設備が設置された建物・構築物については、当該施設及び建物・構築物が構造物全体として変形能力及び安定性について十分な余裕を有するとともに、その施設に要求される機能が保持できるものとする。浸水防止設備及び津波監視設備については、その施設に要求される機能が保持できるものとする。

基準地震動S_sによる地震力は,水平2方向及び鉛直方向について適切に組み合わせて算定するものとする。

また,重大事故等対処施設を津波から防護するための津波防護施設, 浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建 物・構築物についても同様の設計方針とする。

(7) Bクラスの施設は,静的地震力に対しておおむね弾性状態に留まる 範囲で耐えられる設計とする。

また,共振のおそれのあるものについては,その影響についての検 討を行う。その場合,検討に用いる地震動は,弾性設計用地震動S_d に2分の1を乗じたものとする。当該地震動による地震力は,水平2 方向及び鉛直方向について適切に組み合わせて算定するものとし,S

クラス施設と同様に許容限界の範囲内に留まることを確認する。

- (8) Cクラスの施設は,静的地震力に対しておおむね弾性状態に留まる 範囲で耐えられる設計とする。
- (9) 耐震重要施設は、耐震重要度分類の下位のクラスに属するもの(資 機材等含む)の波及的影響によって、その安全機能を損なわない設計 とする。
- (10) 設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が低減されるように考慮する。
- 1.2 適用規格

適用する規格としては、既往工認で適用実績がある規格のほか、最新の規 格基準についても技術的妥当性及び適用性を示したうえで適用可能とする。

なお,規格基準に規定のない評価手法等を用いる場合は,既往研究等にお いて試験,研究等により妥当性が確認されている手法,設定等について,適 用条件,適用範囲に留意し,その適用性を確認した上で用いる。

既往工認で実績のある適用規格を以下に示す。

- ・「原子力発電所耐震設計技術指針 JEAG4601-1987」(社)日本電気協会
- ・「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG
 4601・補 1984」(社)日本電気協会
- ・「原子力発電所耐震設計技術指針 JEAG4601-1991 追補版」(社)日本電気協会(以降,「JEAG4601」と記載しているものは上記3指針を指す。)
- ・建築基準法・同施行令
- ・鉄筋コンクリート構造計算規準・同解説 許容応力度設計法- ((社)

日本建築学会, 1999 改定)

- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学 会,2005 制定)
- ・鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005 改定)
- ・鉄骨鉄筋コンクリート構造計算基準・同解説-許容応力度設計と保有 水平耐力-((社)日本建築学会,2001改定)
- ・建築耐震設計における保有耐力と変形性能((社)日本建築学会,1990 改定)
- ・建築基礎構造設計指針((社)日本建築学会,2001改定)
- ・各種合成構造設計指針・同解説((社)日本建築学会 2010)
- ・発電用原子力設備規格 コンクリート製原子炉格納容器規格((社)日本機械学会,2003)
- ・コンクリート標準示方書 [構造性能照査編]((社) 土木学会, 2002 年 制定)
- ・道路橋示方書(Ⅰ 共通編・Ⅳ 下部構造編)・同解説(社)日本道路協会,平成14年3月)
- ・道路橋示方書(V 耐震設計編)・同解説(社)日本道路協会,平成 14
 年3月)
- ·水道施設耐震工法指針·解説((社)日本水道協会,1997年版)
- ・地盤工学会基準(JGS1521-2003)地盤の平板載荷試験方法
- ・地盤工学会基準(JGS3521-2004) 剛体載荷板による岩盤の平板載荷試 験方法

ただし、JEAG4601 に記載されている A_s クラスを含むAクラスの施設 をSクラスの施設とした上で、基準地震動 S_2 、 S_1 をそれぞれ基準地震動

S_s,弾性設計用地震動 S_dと読み替える。

なお、Aクラスの施設をSクラスと読み替える際には基準地震動S_s及び 弾性設計用地震動S_dを適用するものとする。

また、「発電用原子力設備に関する構造等の技術基準」(昭和 55 年通商産 業省告示第 501 号,最終改正平成 15 年 7 月 29 日経済産業省告示第 277 号) に関する内容については、「発電用原子力設備規格 設計・建設規格(2005 年 版(2007 年追補版を含む))〈第 I 編 軽水炉規格〉JSME S NC1-2005/2007」 (日本機械学会)に従うものとする。

- 2. 耐震設計上の重要度分類
- 2.1 重要度分類の基本方針

設計基準対象施設の耐震設計上の重要度を次のように分類する。

(1) Sクラスの施設

地震により発生するおそれがある事象に対して,原子炉を停止し,炉心 を冷却するために必要な機能を持つ施設,自ら放射性物質を内蔵してい る施設,当該施設に直接関係しておりその機能喪失により放射性物質を 外部に拡散する可能性のある施設,これらの施設の機能喪失により事故 に至った場合の影響を緩和し,放射線による公衆への影響を軽減するた めに必要な機能を持つ施設及びこれらの重要な安全機能を支援するため に必要となる施設,並びに地震に伴って発生するおそれがある津波によ る安全機能の喪失を防止するために必要となる施設であって,その影響 が大きい施設

Bクラスの施設

安全機能を有する施設のうち,機能喪失した場合の影響が S クラスの施 設と比べ小さい施設

(3) Cクラスの施設

Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又 は公共施設と同等の安全性が要求される施設

2.2 耐震重要度分類

耐震重要度分類について第1部第 1.3-1 表に示す。なお、同表には当該 施設を支持する構造物の支持機能が維持されることを確認する地震動及び波 及的影響を考慮すべき施設に適用する地震動についても併記する。

- 3. 設計用地震力
- 3.1 地震力の算定法

耐震設計に用いる地震力の算定は以下の方法による。

(1) 静的地震力

静的地震力は、Sクラスの施設(津波防護施設,浸水防止設備及び津波 監視設備を除く)、Bクラス及びCクラスの施設に適用することとし、そ れぞれ耐震重要度分類に応じて、以下の地震層せん断力係数C_i及び震度 に基づき算定するものとする。

a. 建物·構築物

水平地震力は,地震層せん断力係数C_iに,次に示す施設の耐震重要度 分類に応じた係数を乗じ,さらに当該層以上の重量を乗じて算定するもの とする。

Sクラス 3.0

Bクラス 1.5

Cクラス 1.0

ここで、地震層せん断力係数C_iは、標準せん断力係数C₀を0.2以上とし、建物・構築物の振動特性、地盤の種類等を考慮して求められる値とする。

また、必要保有水平耐力の算定においては、地震層せん断力係数C_iに 乗じる施設の耐震重要度分類に応じた係数は、Sクラス、Bクラス及び Cクラスともに 1.0 とし、その際に用いる標準せん断力係数C₀は 1.0 以 上とする。

Sクラスの施設については、水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。鉛直地震力は、震度0.3以上を基準とし、建物・構築物の振動特性、地盤の種類等を考慮し、高さ方向に一定として求めた鉛直震度より算定するものとする。

b. 機器 · 配管系

静的地震力は,上記 a. に示す地震層せん断力係数C_iに施設の耐震重要 度分類に応じた係数を乗じたものを水平震度として,当該水平震度及び上 記 a. の鉛直震度をそれぞれ 20%増しとした震度より求めるものとする。

Sクラスの施設については、水平地震力と鉛直地震力は同時に不利な方 向の組合せで作用するものとする。ただし、鉛直震度は高さ方向に一定と する。

c. 土木構造物(屋外重要土木構造物及びその他の土木構造物)

土木構造物の静的地震力は,JEAG4601の規定を参考に,Cクラスの建物・構築物に適用される静的地震力を考慮する。

上記 a. 及び b. 並びに c. の標準せん断力係数C。等の割増し係数の適用に ついては,耐震性向上の観点から,一般産業施設及び公共施設等の耐震基準 との関係を考慮して決定する。

(2) 動的地震力

動的地震力は、Sクラスの施設,屋外重要土木構造物及びBクラスの施 設のうち共振のおそれのあるものに適用する。Sクラスの施設(津波防 護施設,浸水防止設備及び津波監視設備を除く。)については,基準地震

動Ss及び弾性設計用地震動Saから定める入力地震動を適用する。

基準地震動Ssは、敷地ごとに震源を特定して策定する地震動及び震源 を特定せず策定する地震動について、敷地の解放基盤表面における水平方 向及び鉛直方向の地震動としてそれぞれ策定する。また、弾性設計用地震 動S_dは,基準地震動S_sとの応答スペクトルの比率が目安として 0.5 を下 回らない値とし、さらに応答スペクトルに基づく地震動評価による基準地 震動S_s-D1に対しては、「発電用原子炉施設に関する耐震設計審査指針 (昭和 56 年 7 月 20 日原子力安全委員会決定, 平成 13 年 3 月 29 日一部改 訂)」に基づいた「原子炉設置変更許可申請書(平成 11 年 3 月 10 日許可 /平成 09・09・18 資第 5 号)」の「添付書類六 変更後に係る原子炉施設 の場所に関する気象、地盤、水理、地震、社会環境等の状況に関する説明 3.2.6.3 基準地震動」における基準地震動S₁を踏まえて設定する。 書 具体的には、工学的判断より基準地震動S_s-11,12,13,14, 21, 22, 31に係数 0.5 を乗じた地震動, 基準地震動 S_s-D1に対 しては、基準地震動S1も踏まえて設定した係数 0.5 を乗じた地震動を弾 性設計用地震動S。として設定する。基準地震動S。及び弾性設計用地震 動S_dの最大加速度等を第1表及び第2表に示すとともに、基準地震動S_s の設計用応答スペクトルを第1図~第3図に,弾性設計用地震動Saの設 計用応答スペクトルを第4図~第6図に示す。

Bクラスの施設のうち共振のおそれのあるものについては,弾性設計用 地震動 S_dから定める入力地震動の振幅を2分の1にしたものによる地震 力を適用する。

屋外重要土木構造物,津波防護施設,浸水防止設備及び津波監視設備並 びに浸水防止設備又は津波監視設備が設置された建物・構築物について は,基準地震動 S_sによる地震力を適用する。

動的解析においては、地盤の諸定数も含めて材料のばらつきによる変動 幅を適切に考慮する。

3.2 設計用地震力

設計用地震力については別添-1に示す。

- 4. 荷重の組合せと許容限界
- 4.1 基本方針

耐震設計における荷重の組合せと許容限界は以下による。

(1) 耐震設計上考慮する状態

地震以外に設計上考慮する状態を以下に示す。

a. 建物·構築物

以下の(a)~(c)の状態を考慮する。

(a) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の自然条件下におかれて いる状態。

ただし,運転状態には通常運転時,運転時の異常な過渡変化時を含 むものとする。

(b) 設計基準事故時の状態

発電用原子炉施設が設計基準事故時にある状態。

(c) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)。

b. 機器 · 配管系

以下の(a)~(d)の状態を考慮する。

(a) 通常運転時の状態

発電用原子炉の起動,停止,出力運転,高温待機及び燃料取替等 が計画的又は頻繁に行われた場合であって,運転条件が所定の制限 値以内にある運転状態。

(b) 運転時の異常な過渡変化時の状態

通常運転時に予想される機械又は器具の単一の故障若しくはその誤 作動又は運転員の単一の誤操作及びこれらと類似の頻度で発生する と予想される外乱によって発生する異常な状態であって,当該状態 が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい 損傷が生ずるおそれがあるものとして安全設計上想定すべき事象が 発生した状態。

(c) 設計基準事故時の状態

発生頻度が運転時の異常な過渡変化より低い異常な状態であって, 当該状態が発生した場合には発電用原子炉施設から多量の放射性物 質が放出するおそれがあるものとして安全設計上想定すべき事象が 発生した状態。

(d) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)。

c. 土木構造物

以下の(a)~(c)の状態を考慮する。

(a) 運転時の状態

発電用原子炉施設が運転状態にあり,通常の自然条件下におかれて いる状態。

ただし,運転状態には通常運転時,運転時の異常な過渡変化時を含 むものとする。

(b) 設計基準事故時の状態

発電用原子炉施設が設計基準事故時にある状態。

(c) 設計用自然条件

設計上基本的に考慮しなければならない自然条件(風,積雪等)。

- (2) 荷重の種類
- a. 建物·構築物

以下の(a)~(d)の荷重とする。

- (a)発電用原子炉のおかれている状態にかかわらず常時作用している荷 重,すなわち固定荷重,積載荷重,土圧,水圧及び通常の気象条件 による荷重
- (b) 運転時の状態で施設に作用する荷重
- (c) 設計基準事故時の状態で施設に作用する荷重
- (d) 地震力, 風荷重, 積雪荷重等

ただし,運転時の状態及び設計基準事故時の状態での荷重には,機 器・配管系から作用する荷重が含まれるものとし,地震力には地震 時の土圧,機器・配管系からの反力,スロッシング等による荷重が 含まれるものとする。

b. 機器 · 配管系

以下の(a)~(d)の荷重とする。

- (a) 通常運転時の状態で施設に作用する荷重。
- (b) 運転時の異常な過渡変化時の状態で施設に作用する荷重。
- (c) 設計基準事故時の状態で施設に作用する荷重。
- (d) 地震力, 風荷重, 積雪荷重等。
- c. 土木構造物

以下の(a)~(d)の荷重とする。

(a) 発電用原子炉のおかれている状態にかかわらず常時作用している荷

- 重, すなわち固定荷重, 積載荷重, 土圧, 水圧及び通常の気象条件 による荷重。
- (b) 運転時の状態で施設に作用する荷重。
- (c) 設計基準事故時の状態で施設に作用する荷重。
- (d) 地震力, 風荷重, 積雪荷重等。

ただし,運転時の状態及び設計基準事故時の状態での荷重には,機 器・配管系から作用する荷重が含まれるものとし,地震力には地震 時の土圧,機器・配管系からの反力,スロッシング等による荷重が 含まれるものとする。

(3) 荷重の組合せ

(2)で定めた地震力と他の荷重との組合せは以下による。

- a. 建物・構築物(d. に記載のものを除く。)
 - (a) Sクラスの建物・構築物については、常時作用している荷重及び運転時(通常運転時又は運転時の異常な過渡変化時)に施設に作用する荷重と地震力とを組み合わせる。
 - (b) Sクラスの建物・構築物については、常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のうち長時間その作用が続く荷重と弾性設計用地震動S_dによる地震力又は静的地震力とを組み合わせる。
 - (c) Bクラス及びCクラスの建物・構築物については、常時作用している荷重及び運転時の状態で施設に作用する荷重と、動的地震力又は静的地震力とを組み合わせる。
- b. 機器・配管系(d.に記載のものを除く。)
 - (a) Sクラスの機器・配管系については,通常運転時の状態で施設に作 用する荷重と地震力とを組み合わせる。

- (b) Sクラスの機器・配管系については、運転時の異常な過渡変化時の 状態及び設計基準事故時の状態のうち地震によって引き起こされる おそれのある事象によって作用する荷重と地震力とを組み合わせる。
- (c) Sクラスの機器・配管系については、運転時の異常な過渡変化時の 状態及び設計基準事故時の状態のうち地震によって引き起こされる おそれのない事象であっても、いったん事故が発生した場合、長時 間継続する事象による荷重は、その事故事象の発生確率、継続時間 及び地震動の年超過確率の関係を踏まえ、適切な地震力と組み合わ せる。
- (d) Bクラス及びCクラスの機器・配管系については、通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で作用する荷重と、動的地震力又は静的地震力を組み合わせる。
- c. 土木構造物
 - (a) 屋外重要土木構造物については、常時作用している荷重及び運転時
 (通常運転時又は運転時の異常な過渡変化時)の状態で施設に作用
 する荷重と地震力とを組み合わせる。
 - (b) その他の土木構造物については,常時作用している荷重及び運転時の状態で施設に作用する荷重と,動的地震力又は静的地震力を組み合わせる。
- d. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が
 設置された建物・構築物
 - (a) 津波防護施設及び浸水防止設備が設置された建物・構築物については、常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動Ssによる地震力とを組み合わせる。
 - (b) 浸水防止設備及び津波監視設備については、常時作用している荷重

及び運転時の状態で施設に作用する荷重等と基準地震動S_sによる地 震力とを組み合わせる。

なお,上記 d. (a),(b)については,地震と津波が同時に作用する可 能性について検討し,必要に応じて基準地震動Ssによる地震力と津波 による荷重の組合せを考慮する。また,津波以外による荷重について は,「(2)荷重の種類」に準じるものとする。

- e. 荷重の組合せ上の留意事項
 - (a)動的地震力については、水平2方向と鉛直方向の地震力とを適切に 組み合わせて算定するものとする。
 - (b) ある荷重の組合せ状態での評価が明らかに厳しい場合には、その妥 当性を示した上で、その他の荷重の組合せ状態での評価は行わない ものとする。
 - (c) 複数の荷重が同時に作用し、それらの荷重による応力の各ピークの 生起時刻に明らかなずれがある場合には、その妥当性を示した上で、 必ずしもそれぞれの応力のピーク値を重ねなくてもよいものとする。
 - (d)上位の耐震クラスの施設を支持する建物・構築物の当該部分の支持 機能を確認する場合においては、支持される施設の耐震重要度分類 に応じた地震力と、常時作用している荷重、運転時の状態で施設に 作用する荷重及びその他必要な荷重とを組み合わせる。

第1部第 1.3-1 表に対象となる建物・構築物及びその支持機能が 維持されていることを検討すべき地震動等について記載する。

- (e) 地震と組み合わせる自然荷重として、風及び積雪を考慮し、風荷重 及び積雪荷重については、施設の設置場所、構造等を考慮して、地 震荷重と組み合わせる。
- (4) 許容限界

各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は以下のとおりとし、JEAG4601等の安全上適切と認められる規格及び基準又は試験等で妥当性が確認されている値を用いる。

- a. 建物・構築物(d. に記載のものを除く。)
 - (a) Sクラスの建物・構築物
 - イ.弾性設計用地震動 S_dによる地震力又は静的地震力との組合せに対 する許容限界

建築基準法等の安全上適切と認められる規格及び基準による許容応 力度を許容限界とする。

ただし,冷却材喪失事故時に作用する荷重との組合せ(原子炉格納 容器バウンダリを構成する施設における長期的荷重との組合せを除 く。)に対しては,下記ロ.に示す許容限界を適用する。

ロ. 基準地震動 S_sによる地震力との組合せに対する許容限界

建物・構築物が構造物全体としての変形能力(終局耐力時の変形) について十分な余裕を有し,終局耐力に対して妥当な安全余裕をも たせることとする。なお,終局耐力は,建物・構築物に対する荷重 又は応力を漸次増大していくとき,その変形又はひずみが著しく増 加するに至る限界の最大耐力とし,既往の実験式等に基づき適切に 定めるものとする。

(b) Bクラス及びCクラスの建物・構築物

上記(a)イ.による許容応力度を許容限界とする。

(c) 耐震重要度の異なる施設を支持する建物・構築物

上記(a) ロ.の項を適用するほか,耐震重要度の異なる施設がそれを 支持する建物・構築物が,変形等に対して,その支持機能が損なわ ないものとする。なお,当該施設を支持する建物・構築物の支持機 能が維持されることを確認する際の地震動は、支持される施設に適 用される地震動とする。

(d) 建物・構築物の保有水平耐力

建物・構築物については、当該建物・構築物の保有水平耐力が必要 保有水平耐力に対して耐震重要度分類に応じた安全余裕を有してい ることを確認する。

- b. 機器・配管系(d. に記載のものを除く)
 - (a) Sクラスの機器・配管系
 - イ. 弾性設計用地震動 S_dによる地震力又は静的地震力との組合せに 対する許容限界

応答が全体的におおむね弾性状態に留まることとする。

ただし、冷却材喪失事故時に作用する荷重との組合せ(原子炉格納容器バウンダリを構成する設備及び非常用炉心冷却設備等における長期的荷重との組合せを除く。)に対しては、下記(a)ロ.に示す許容限界を適用する。

 ・ 基準地震動Ssによる地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても、その量が微小なレベルに留 まって破断延性限界に十分な余裕を有し、その施設に要求される 機能に影響を及ぼすことがない限度に応力、荷重等を制限する。 また、地震時又は地震後に動的機能が要求される機器等について は、基準地震動Ssに対する応答に対して、実証試験等により確認

されている機能維持加速度等を許容限界とする。動的機能維持の 評価については別添-2に示す。

(b) Bクラス及びCクラスの機器・配管系

応答が全体的におおむね弾性状態に留まることとする。

(c) チャンネル・ボックス

地震時に作用する荷重に対して,燃料集合体の冷却材流路を維持で きること及び過大な変形や破損を生ずることにより制御棒の挿入が 阻害されることがないこととする。

- c. 土木構造物
 - (a) 屋外重要土木構造物
 - イ. 静的地震力との組合せに対する許容限界

安全上適切と認められる規格及び基準による許容応力度を許容限 界とする。

ロ. 基準地震動Ssによる地震力との組合せに対する許容限界

新設屋外重要土木構造物の構造部材の曲げについては許容応 力度,構造部材のせん断については許容せん断応力度を許容限 界の基本とするが,構造部材のうち,鉄筋コンクリートの曲げ については限界層間変形角又は終局曲率,鋼材の曲げについて は終局曲率,鉄筋コンクリート及び鋼材のせん断についてはせ ん断耐力を許容限界とする場合もある。既設屋外重要土木構造 物の構造部材のうち,鉄筋コンクリートの曲げについては限界 層間変形角又は終局曲率,鋼材の曲げについては終局曲率,鉄 筋コンクリート及び鋼材ののせん断についてはせん断耐力を許 容限界とする。

なお,限界層間変形角,終局曲率及びせん断耐力に対しては 妥当な安全余裕を持たせた許容限界とし,それぞれの安全余裕 については各施設の機能要求等を踏まえ設定する。

(b) その他の土木構造物

安全上適切と認められる規格及び基準による許容応力度を許容限界

とする。

d. 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物・構築物

津波防護施設及び浸水防止設備が設置された建物・構築物については、 当該施設及び建物・構築物が構造物全体として変形能力(終局耐力時 の変形)及び安定性について十分な余裕を有するとともに、その施設 に要求される機能(津波防護機能及び浸水防止機能)が保持できるものとする。

浸水防止設備及び津波監視設備については、その施設に要求される機能(浸水防止機能及び津波監視機能)が保持できるものとする。

- e. 基礎地盤の支持性能
 - (a) Sクラスの建物・構築物及びSクラスの機器・配管系(津波防護施設,浸水防止設備及び津波監視設備を除く。)の基礎地盤
 - イ. 弾性設計用地震動 S d による地震力又は静的地震力との組合せに 対する許容限界

接地圧に対して,安全上適切と認められる規格及び基準等による 地盤の短期許容支持力度を許容限界とする。

- ロ. 基準地震動Ssによる地震力との組合せに対する許容限界
 接地圧が、安全上適切と認められる規格及び基準等による地盤の
 極限支持力度に対して妥当な余裕を有することを確認する。
- (b) 屋外重要土木構造物,津波防護施設及び浸水防止設備並びに浸水防止設備又は津波監視設備が設置された建物・構築物の基礎地盤
 - イ. 基準地震動Ssによる地震力との組合せに対する許容限界
 上記(a)ロ.による許容支持力度を許容限界とする。
- (c) Bクラス及びCクラスの建物・構築物, Bクラス及びCクラスの機

器・配管系及びその他の土木構造物を支持する基礎地盤

上記(a)イ.による許容支持力度を許容限界とする。

- 5. 地震応答解析の方針
- 5.1 建物·構築物
 - (1) 入力地震動

原子炉建屋設置位置付近は,地盤調査の結果,新第三紀の砂質泥岩から なる久米層が分布している。ボーリング孔で実施したPS検層から得られ た EL. -400m までの久米層のS波速度は,深度方向に増大する傾向を示し 平均 0.38km/s~0.79km/sであり,EL. -370m 以深ではS波速度が 0.7km /s 以上であることが確認されている。したがって,EL. -370m の位置を 解放基盤表面として設定する。なお,S波速度と標高についての関係を第 7 図に示す。S波速度Vs (km/s)と標高Z (m)との関係は次式で近似 される。

V s = 0. 433 - 7. 71 $\times 10^{-4}$ · Z

解析に用いる解放基盤のS波速度は、標高ZをEL.-370mとして算定される 0.718km/sとする。

建物・構築物の地震応答解析における入力地震動は,解放基盤表面で定 義される基準地震動S_s及び弾性設計用地震動S_dを基に,対象建物・構 築物の地盤条件を適切に考慮したうえで,必要に応じ2次元FEM解析ま たは1次元波動論により,地震応答解析モデルの入力位置で評価した入力 地震動を設定する。地盤条件を考慮する場合には,地震動評価で考慮した 敷地全体の地下構造との関係や対象建物・構築物位置と炉心位置での地 質・速度構造の違いにも留意し,地盤の非線形応答に関する動的変形特性 を考慮する。また,必要に応じ敷地における観測記録による検証や最新の

科学的・技術的知見を踏まえ設定する。特に杭を介して岩盤に支持された 建物・構築物については杭の拘束効果についても適切に考慮する。弾性設 計用地震動 S_d及び静的地震力による評価については別添-3に示す。

また,耐震Bクラスの建物・構築物のうち共振のおそれがあり,動的解 析が必要なものに対しては,弾性設計用地震動S_dを1/2倍したものを用 いる。

(2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては,地震応答解析手法の適用性 及び適用限界等を考慮のうえ,適切な解析法を選定するとともに,建 物・構築物に応じた適切な解析条件を設定する。また,原則として,建 物・構築物の地震応答解析及び床応答曲線の策定は,線形解析及び非線 形解析に適用可能な時刻歴応答解析法による。

建物・構築物の動的解析において,地震時における地盤の有効応力 の変化に伴う影響を考慮する場合には,有効応力解析を実施する。 有効応力解析に用いる液状化強度特性は,敷地の原地盤における代 表性及び網羅性を踏まえた上で保守性を考慮して設定することを基 本とする。保守的な配慮として地盤を強制的に液状化させることを 仮定した影響を考慮する場合には,原地盤よりも十分に小さい液状 化強度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性) を設定する。

建物・構築物の地震応答解析に当たっては,建物・構築物の剛性はそれ らの形状,構造特性等を十分考慮して評価し,集中質点系等に置換した 解析モデルを設定する。

動的解析には,建物・構築物と地盤との相互作用を考慮するものとし, 解析モデルの地盤のばね定数は,基礎版の平面形状,基礎側面と地盤の

接触状況及び地盤の剛性等を考慮して定める。各入力地震動が接地率に 与える影響を踏まえて、地盤ばねには必要に応じて、基礎浮上りによる 非線形性又は誘発上下動を考慮できる浮上り非線形性を考慮するものと する。設計用地盤定数は、原則として、弾性波試験によるものを用いる。

地震応答解析に用いる材料定数については,地盤の諸定数も含めて材料 のばらつきによる変動幅を適切に考慮する。また,材料のばらつきによ る変動が建物・構築物の振動性状や応答性状に及ぼす影響として考慮す べき要因を選定した上で,選定された要因を考慮した動的解析により設 計用地震力を設定する。

建物・構築物の3次元応答性状及びそれによる機器・配管系への影響に ついては,建物・構築物の3次元FEMモデルによる解析に基づき,施 設の重要性,建屋規模,構造特性を考慮して評価する。3次元応答性状 等の評価は,周波数応答解析法による。

5.2 機器·配管系

(1) 入力地震動又は入力地震力

機器・配管系の地震応答解析における入力地震動又は入力地震力は,基準地震動S_s及び弾性設計用地震動S_d,又は当該機器・配管系の設置床における設計用床応答曲線又は時刻歴応答波とする。弾性設計用地震動S_dによる評価については別添-3に示す。

また,耐震Bクラスの機器・配管系のうち共振のおそれがあり,動的解 析が必要なものに対しては,弾性設計用地震動S_dを基に作成した設計用 床応答曲線の応答加速度を1/2倍したものを用いる。

(2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては、地震応答解析手法の適用性

及び適用限界等を考慮のうえ,適切な解析法を選定するとともに解析条件として考慮すべき減衰定数,剛性等の各物性値は適切な規格・基準, あるいは実験等の結果に基づき設定する。

また,評価に当たっては建物・構築物の剛性及び地盤物性のばらつき等 を適切に考慮する。

機器の解析に当たっては,形状,構造特性等を考慮して,代表的な振動 モードを適切に表現できるよう1質点系モデル,多質点系モデル等に置 換し,設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴 応答解析法により応答を求める。配管系については,振動モードを適切 に表現できるモデルを作成し,設計用床応答曲線を用いたスペクトルモ ーダル解析法又は時刻歴応答解析法により応答を求める。

スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たっては, 衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り 入れ実機の挙動を模擬する観点で,建物・構築物の剛性及び地盤物性の ばらつき等への配慮を考慮しつつ時刻歴応答解析法を用いる等,解析対 象とする現象,対象設備の振動特性・構造特性等を考慮し適切に選定す る。

また、応答解析モデルは設備の3次元的な広がり及び当該設備の対称性 を踏まえ、応答を適切に評価できる場合は1次元モデルや2次元モデル を用い、3次元的な応答性状を把握する必要がある場合は3次元的な配 置をモデル化する等、その応答を適切に評価できるモデルを用いること とし、水平2方向及び鉛直方向の応答成分について適切に組み合わせる ものとする。

なお,剛性の高い機器は,その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定

する。

5.3 屋外重要土木構造物

(1) 入力地震動

屋外重要土木構造物の地震応答解析における入力地震動は,解放基盤表 面で定義される基準地震動Ssを基に,対象構造物の地盤条件を適切に考 慮したうえで,必要に応じ2次元FEM解析または1次元波動論により, 地震応答解析モデルの入力位置で評価した入力地震動を設定する。地盤 条件を考慮する場合には,地震動評価で考慮した敷地全体の地下構造と の関係にも留意し,地盤の非線形応答に関する動的変形特性を考慮する。

また,必要に応じ敷地における観測記録による検証や最新の科学的・技術的知見を踏まえ設定する。静的地震力による評価については別添-3 を参照。

(2) 解析方法及び解析モデル

動的解析による地震力の算定に当たっては、地震応答解析手法の適用性 及び適用限界等を考慮のうえ、適切な解析法を選定するとともに、各構 造物に応じた適切な解析条件を設定する。地震応答解析は、構造物と地 盤の相互作用を考慮できる連成系の地震応答解析手法とし、地盤及び構 造物の地震時における非線形挙動の有無や程度に応じて、線形、等価線 形、非線形解析のいずれかにて行う。地震時における地盤の有効応力の 変化に伴う影響を考慮する場合には、有効応力解析を実施する。有 効応力解析に用いる液状化強度特性は、敷地の原地盤における代表 性及び網羅性を踏まえた上で保守性を考慮して設定することを基本 とする。保守的な配慮として地盤を強制的に液状化させることを仮 定した影響を考慮する場合には、原地盤よりも十分に小さい液状化 強度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性)

を設定する。なお、地震応答解析では、水平地震動と鉛直地震動の同時 加振を基本とするが、構造物の応答特性により水平2方向の同時性を考 慮する必要がある場合は、水平2方向の組合せについて適切に評価する。 (3)評価対象断面

屋外重要土木構造物の評価対象断面については,構造物の形状・配置等 により耐震上の弱軸,強軸が明確である場合,構造の安定性に支配的で ある弱軸方向を対象とする。

また,評価対象断面位置については,構造物の配置や荷重条件等を考慮 し,耐震評価上最も厳しくなると考えられる位置を評価対象とする。

屋外重要土木構造物の耐震評価における評価断面選定の考え方を別添-6に示す。

5.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津 波監視設備が設置された建物・構築物

(1) 入力地震動

津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物の地震応答解析における入力地震 動は,解放基盤表面で定義される基準地震動Ssを基に,構造物の基礎地 盤条件等を考慮し設定する。なお,敷地内の詳細な地盤条件を考慮する場 合には,地震動評価で考慮した敷地全体の地下構造との関係にも留意する。

動的解析による地震力の算定については、5.1(2)、5.2(2)及び 5.3(2) によるものとする。 6. 設計用減衰定数

応答解析に用いる減衰定数は,JEAG4601 に記載されている減衰定数を 設備の種類,構造等により適切に選定するとともに,試験等で妥当性が確認 された値も用いる。

なお,建物・構築物の地震応答解析に用いる鉄筋コンクリートの減衰定数 の設定については,既往の知見に加え,既設施設の地震観測記録等により, その妥当性について検討する。

地盤と屋外重要土木構造物の連成系地震応答解析モデルの減衰定数につい ては,地中構造物としての特徴,同モデルの振動特性を考慮して適切に設定 する。

7. 耐震重要施設の安全機能への下位クラス施設の波及的影響

耐震重要施設は,耐震重要度分類の下位のクラスに属する施設(以下「下 位クラス施設」という。)の波及的影響によって,その安全機能を損なわな いように設計する。

波及的影響については,耐震重要施設の設計に用いる地震動又は地震 力を適用して評価を行う。なお,地震動又は地震力の選定に当たっては, 施設の配置状況,使用時間等を踏まえて適切に設定する。また,波及的 影響においては水平 2 方向及び鉛直方向の地震力が同時に作用する場合 に影響を及ぼす可能性のある施設を選定し評価する。

波及的影響については,以下に示す(1)~(4)の4つの事項について検討を行う。

また,原子力発電所の地震被害情報等から新たに検討すべき事項が抽出さ れた場合は,これを追加する。

(1) 設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位に

よる影響

a.不等沈下

耐震重要施設の設計に用いる地震動又は地震力に伴う不等沈下による耐 震重要施設の安全機能への影響

b. 相対変位

耐震重要施設の設計に用いる地震動又は地震力に伴う下位クラス施設と 耐震重要施設の相対変位による耐震重要施設の安全機能への影響

- (2) 耐震重要施設と下位のクラスの施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に伴う耐震重要施設に接 続する下位クラス施設の損傷による耐震重要施設の安全機能への影響
- (3) 建屋内における下位のクラスの施設の損傷,転倒及び落下等による耐震 重要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に伴う建屋内の下位クラ ス施設の損傷,転倒及び落下等による耐震重要施設の安全機能への影響

(4) 建屋外における下位のクラスの施設の損傷,転倒及び落下等による耐震 重要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に伴う建屋外の下位クラ ス施設の損傷,転倒及び落下等による耐震重要施設の安全機能への影響

なお、上記(1)~(4)の検討に当たっては、地震に起因する溢水及び火災の 観点からも波及的影響がないことを確認する。

上記観点で抽出した下位クラス施設について,抽出した過程と結果を別添 -4に示す。

水平2方向及び鉛直方向の地震力の組合せに関する影響評価方針
 水平2方向及び鉛直方向の地震力の組合せについて、従来の設計手法にお

ける水平1方向及び鉛直方向地震力を組み合わせた耐震計算に対して,施設 の構造特性から水平2方向及び鉛直方向地震力の組合せによる影響の可能性 があるものを抽出し,施設が有する耐震性に及ぼす影響を評価する。

評価に当たっては、施設の構造特性から水平2方向及び鉛直方向地震力の 組合せの影響を受ける部位を抽出し、その部位について水平2方向及び鉛直 方向の荷重や応力を算出し、施設が有する耐震性への影響を確認する。な お、本方針の詳細を別添-5に示す。

- (1) 建物・構築物
 - ・建物・構築物における耐震評価上の構成部位を整理し,各建屋において,該当する耐震評価上の構成部位を網羅的に確認する。
 - ・建物・構築物における耐震評価上の構成部位について,水平2方向及び 鉛直方向地震力の組合せの影響が想定される応答特性を整理する。
 - ・整理した耐震評価上の構成部位について、水平2方向及び鉛直方向地震力の組合せの影響が想定される応答特性のうち、荷重の組合せによる応答特性を検討する。水平2方向及び鉛直方向地震力に対し、荷重の組合せによる応答特性により、有する耐震性への影響が想定される部位を抽出する。
 - ・3次元的な応答特性が想定される部位として抽出された部位について、
 3次元FEMモデルを用いた精査を実施し、水平2方向及び鉛直方向地
 震力により、有する耐震性への影響が想定される部位を抽出する。
 - ・上記で抽出されなかった部位についても、局所応答の観点から、3次元
 FEMモデルによる精査を実施し、水平2方向及び鉛直方向地震力により、有する耐震性への影響が想定される部位を抽出する。
 - ・評価対象として抽出した耐震評価上の構成部位について,構造部材の発 生応力等を適切に組み合わせることで,各部位の設計上の許容値に対す

る評価を実施し、各部位が有する耐震性への影響を評価する。

- (2) 機器・配管系
 - ・基準地震動Ssで評価を行う各設備を代表的な機種ごとに分類し、構造上の特徴から水平2方向の地震力が重複する観点、若しくは応答軸方向以外の振動モード(ねじれ振動等)が生じる観点にて検討を行い、水平2方向の地震力による影響の可能性がある設備を抽出する。
 - ・抽出された設備に対して、水平2方向及び鉛直方向に地震力が入力された場合の荷重や応力等を求め、従来の設計手法による設計上の配慮を踏まえて影響を検討する。
- (3) 屋外重要土木構造物
 - ・屋外重要土木構造物について,各構造物の構造上の特徴を踏まえ,構造 形式ごとに大別する。
 - ・従来設計手法における評価対象断面に対して直交する荷重を抽出する。
 - ・屋外重要土木構造物は、地中に埋設された構造であり、周辺地盤からの 土圧が耐震上支配的な荷重となることから、評価対象断面に対して直交 方向に作用する土圧により水平2方向及び鉛直方向の地震力による影響 程度が決定される。したがって、地盤からの土圧が直接作用する部材に ついて影響検討を行う。
 - ・影響検討に当たっては,評価対象断面(弱軸方向)と評価対象断面に直交 する縦断方向(強軸方向)の部材照査に与える影響を検討する。
- (4) 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物
 - ・津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は
 津波監視設備が設置された建物・構築物について,各構造物の構造上の
 特徴を踏まえ,構造型式ごとに8.(1),8.(2)及び8.(3)により影響を検

9. 構造計画と配置計画

設計基準対象施設の構造計画及び配置計画に際しては、地震の影響が低減 されるように考慮する。

建物・構築物は,原則として剛構造とし,重要な建物・構築物は,地震力 に対し十分な支持性能を有する地盤に支持させる。剛構造としない建物・構 築物は,剛構造と同等又はそれを上回る耐震安全性を確保する。主要建屋の 平面図,断面図を別添-7に示す。

機器・配管系は,応答性状を適切に評価し,適用する地震力に対して構造 強度を有する設計とする。配置に自由度のあるものは,耐震上の観点から出 来る限り重心位置を低くし,かつ,安定性のよい据え付け状態になるよう配 置する。

また,建物・構築物の建屋間相対変位を考慮しても,建物・構築物及び機器・配管系の耐震安全性を確保する設計とする。

下位クラス施設は原則,耐震重要施設に対して離隔をとり配置するか,耐 震重要施設の設計に用いる地震動又は地震力に対して耐震性を保持するか若 しくは,下位クラス施設の波及的影響を想定しても耐震重要施設の有する機 能を保持する設計とする。
第1表 基準地震動S_sの最大加速度一覧

	甘瀬は見ら	最大力	加速度(cm/	3 ²)
	选择 出版 割 O S	NS方向	EW方向	UD方向
S _s – D 1	応答スペクトル手法による基準地震動	87	0,	560
S _s - 1 1	F1 断層〜北方陸域の断層〜塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点 1)	717	619	579
$S_{s} - 1 2$	F1 断層〜北方陸域の断層〜塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点2)	871	929	602
$S_{s} - 1 \ 3$	F1 断層〜北方陸域の断層〜塩ノ平地震断層の連動による地震 (短周期レベルの不確かさ,破壊開始点3)	903	219	599
S _s – 1 4	F1 断層〜北方陸域の断層〜塩ノ平地震断層の連動による地震 (断層傾斜角の不確かさ,破壊開始点2)	586	482	451
$S_{s} - 2 1$	2011 年東北地方太平洋沖型地震 (短周期レベルの不確かさ)	901	288	620
$S_{s} - 2 2$	2011 年東北地方太平洋沖型地震 (SMGA 位置と短周期レベルの不確かさの重畳)	1009	874	736
S _s -31	2004年北海道留萌支庁南部地震の検討結果に保守性を考慮した地震	61	0	280

4条-103

	民日日店反對しる	2.我人叫还反 見	_
이 世界 建分析 田 Tệ 대는 네' 명리	<u>шщ</u>	最大加速度 (cm/	(s ²)
猈性政訂出地震剿 S d	N S 方向	EW方向	UD方向
S $_{\rm d}$ $-$ D 1	438	2	280
$ m S~_{d}-1~1$	359	309	290
$ m S~_{d}-1~2$	435	313	301
$ m S_{~d}-1~3$	452	309	300
$ m S~{}^{q}-1~4$	293	241	226
$ m S~_{d}-2~1$	451	443	310
S $_{ m d}-2$ Z	505	437	368
$ m S~_{d} - 3~1$	306	5	140

第2表 弹性設計用地震動Saの最大加速度一覧

4条-107

第4図 弾性設計用地震動S_dの応答スペクトル(NS方向)

第5図 弾性設計用地震動S_dの応答スペクトル(EW方向)

第6図 弾性設計用地震動S_dの応答スペクトル(UD方向)

4条-111

別添-1

東海第二発電所

設計用地震力 (耐震)

1. 静的地震力

静的地震力は、以下の地震層せん断力係数及び震度に基づき算定する。

待即	耐震クラス	地震層せん断力係数	扒古雲 亩 ^(注2)
		及び水平震度 (注1)	如但辰皮
	S	3.0C i	$1.0 \mathrm{C}_{\mathrm{V}}$ (0.240)
建物・構築物	В	1.5C i	_
	С	1.0C i	_
	S	3.6C i	1.2C _V (0.288)
機器・配管系	В	1.8C i	_
	С	1.2C i	_
土木構造物	С	1.0C i	_

(注1) C_i:標準せん断力係数を 0.2 とし,建物・構築物の振動特性, 地盤の種類等を考慮して求められる値で次式に基づく。

 $C_i = R_t \cdot A_i \cdot C_0$

R_t:振動特性係数 0.8

A_i:C_iの分布係数

C₀:標準せん断力係数 0.2

(注2) C_v: 震度 0.3 を基準とし,建物・構築物の振動特性,地盤 の種類等を考慮し,高さ方向に一定とする。また次式より 求めた値を表に記載した。

 $C_{v} = 0.3 \cdot R_{v}$

R_v: 振動特性係数 0.8

2. 動的地震力

動的地震力は、以下の入力地震動に基づき算定する。

種別		耐震クラス	入力地震動 (注1)		
			水平	鉛直	
建物・構築物		S	弾性設計用地震動 S _d	弾性設計用地震動 S _d	
			基準地震動 S _s	基準地震動 S _s	
		В	弾性設計用地震動S _d × 弾性設計用地震動 1/2 1/2		
津波防護施設 浸水防止設備 津波監視設備		S	設計用床応答曲線 S _s 又は 基準地震動 S _s	設計用床応答曲線 S _s 又は 基準地震動 S _s	
機器・配管系		S	設計用床応答曲線 S _d 又は 弾性設計用地震動 S _d 設計用床応答曲線 S _s 又は 基準地震動 S _s	設計用床応答曲線 S _d 又は 弾性設計用地震動 S _d 設計用床応答曲線 S _s 又は 基準地震動 S _s	
		В	(注2) 設計用床応答曲線 S _d ×1∕2	(注2) 設計用床応答曲線 S _d ×1/2	
土木 構造物	屋外重要 土木 構造物	С	基準地震動 S _s	基準地震動 S _s	

(注1) 設計用床応答曲線は,弾性設計用地震動 S_d及び基準地震動 S_sに 基づき作成した設計用床応答曲線とする。

(注2)水平及び鉛直方向の地震動に対して共振のおそれのある施設に適 用する。

3. 設計用地震力

設計用地震力について,下表に整理した。なお,動的地震力は,地震力 算定に用いる地震動を記載した。

種別	耐震 クラス	水平	鉛 直	摘要
建物・ ^{健11)} 構築物	S	地震層 せん断力係数 3.0C _i	静的震度 1.0C _v	荷重の組合せは、水平方向及び 鉛直方向が静的地震力の場合は 同時に不利な方向に作用するも
		弾性設計用 地震動Sd	弾性設計用 地震動Sa	いとする。 水平方向及び鉛直方向が動的地 震力の場合は、組合せ係数法に よる。
		基準地震動Ss	基準地震動Ss	荷重の組合せは,組合せ係数法 による。
	P	地震層 せん断力係数 1.5C _i	_	静的地震力とする。
	D	弾性設計用地震動 S d×1/2 ^(注2)	弾性設計用地震動 S d×1/2 ^(注2)	水平方向及び鉛直方向が動的地 震力の場合は組合せ係数法によ る。
	С	地震層 せん断力係数 1.0C i	_	静的地震力とする。
津波防護施設 浸水防止設備 津波監視設備	S	設計用床応答 曲線 S _s 又は 基準地震動 S _s	設計用床応答 曲線 S _s 又は 基準地震動 S _s	荷重の組合せは,組合せ係数法 又は二乗和平方根 (SRSS) 法に よる。

種	重 別	耐震 クラス	水 平	鉛 直	摘要
			静的震度 3.6C _i	静的震度 1.2C _V	(注3)(注4) 荷重の組合せは、水平方向及び 鉛直方向が静的地震力の場合は 同時に不利た方向に作用するも
		S	設計用床応答 曲線 S _d 又は 弾性設計用 地震動 S _d	設計用床応答 曲線 S _d 又は 弾性設計用 地震動 S _d	のとする。 水平方向及び鉛直方向が動的地 震力の場合は二乗和平方根 (SRSS)法による。
榜西	総器・ 己管系		設計用床応答 曲線 S s 又は 基準地震動 S s	設計用床応答 曲線 S s 又は 基準地震動 S s	^(注4) 荷重の組合せは、二乗和平方根 (SRSS) 法による。
		静的震度 1.8C i	—	(注4)(注5) 水平方向及び鉛直方向が動的地 電力の場合は 一乗和平方根	
	В	弾性設計用地震動 S _d ×1/2 ^{@20}	弾性設計用地震動 S d×1∕2 ^(注2)	(SRSS) 法による。	
		С	静的震度 1.2C _i	_	静的地震力とする。
	屋外		静的震度 1.0C _i	_	静的地震力とする。
土木 構造物	重要土木 構造物	С	基準地震動Ss	基準地震動Ss	動的地震力とする。 鉛直地震力は、水平地震力と同 時に作用するものとする。
	その他の 土木 構造物	С	静的震度 1.0C _i	_	静的地震力とする。

- (注1)建物・構築物の保有水平耐力は、必要保有水平耐力に対して、施設の耐震重 要度分類に応じた妥当な安全余裕を有していることを確認する。必要保有水 平耐力の算定においては、地震層せん断力係数に乗じる施設の耐震重要度分 類に応じた係数はSクラス、Bクラス及びCクラスともに 1.0 とし、その際 に用いる標準せん断力係数Coは1.0以上とする。
- (注2) 水平及び鉛直方向の地震動に対して共振のおそれのある施設に適用する。
- (注3) 水平における動的と静的の大きい方の地震力と,鉛直における動的と静的の 大きい方の地震力とを,絶対値和法で組み合わせてもよいものとする。
- (注4)絶対値和法で組み合わせてもよいものとする。
- (注5) 水平における動的と静的の大きい方の地震力と,鉛直における動的地震力と を,絶対値和法で組み合わせても良いものとする。

別添-2

東海第二発電所

動的機能維持の評価 (耐震)

動的機能維持の評価

動的機能維持に関する評価は、以下に示す機能確認済加速度等との比較によ り実施する。

動的機能維持評価の手順を第2-1図に示す。

1. 機能確認済加速度との比較

基準地震動S_sによる評価対象機器の応答加速度を求め、その加速度が機 能確認済加速度以下であることを確認する。なお、機能確認済加速度とは、 立形ポンプ、横型ポンプ及びポンプ駆動用タービン等、機種毎に試験あるい は解析により動的機能維持が確認された加速度である。

制御棒の地震時挿入性の評価については, 炉心を模擬した実物大の部分モ デルによる加振時制御棒挿入試験結果から挿入機能に支障を与えない最大燃 料集合体変位を求め, 地震応答解析結果から求めた燃料集合体変位がその最 大燃料集合体変位を下回ることを確認する。

2. 詳細評価

機能維持確認済加速度の設定されていない機器,基準地震動S_sによる応 答加速度が機能確認済加速度を上回る機器については,「原子力発電所耐震 設計技術指針JEAG4601-1991 追補版」等を参考に,動的機能維持を確 認する上で評価が必要となる項目を抽出し,対象部位ごとの構造強度評価又 は動的機能維持評価を行い,発生値が評価基準値を満足していることを確認 する。

- *1 制御棒の地震時挿入性の評価については、炉心を模擬した実物大の部分モデルによる加振時制 御棒挿入試験結果から挿入機能に支障を与えない最大燃料集合体変位を求め、地震応答解析か ら求めた燃料集合体変位がその最大燃料集合体変位を下回ることを確認する。
- *2 解析,試験等による検討。

第2-1図 動的機能維持の評価手順

4条--別添2-4

別添-3

東海第二発電所

弾性設計用地震動 S_d・静的地震力 による評価 (耐震)

弾性設計用地震動Sa・静的地震力による評価

建物・構築物

弾性設計用地震動S_d・静的地震力による評価は、既設も含め、建物・構築物が、弾性設計用地震動S_dによる地震力又は静的地震力のいずれか大きい方の地震力に対して評価結果が、概ね弾性状態であること及び地震時の最大接地圧が、基礎地盤の短期許容応力度に対して安全余裕を有することを確認する。

また,建物・構築物の保有水平耐力が必要保有水平耐力に対して安全余裕 を有していることを確認する。

- 2. 機器·配管
 - (1) 弾性設計用地震動 S d による評価

評価対象設備が弾性設計用地震動S_dに対しておおむね弾性状態にあることを確認するために、以下の手順にて評価を実施する。評価手順を第3-1 図に示す。

① 基準地震動Ssによる発生値と許容限界(Ⅲ,S)の比較

評価対象設備の基準地震動S_sによる発生値が弾性設計用の許容限界 (許容応力状態Ⅲ_AS)以下であることを確認する。

弾性設計用地震動S_dは基準地震動S_sの係数倍にて定義していることから,設備の基準地震動S_sによる発生値が,許容限界(許容応力状態Ⅲ_AS)以下であれば,弾性設計用地震動S_dによる発生値についても,許容限界(許容応力状態Ⅲ_AS)以下となる。

ただし、基準地震動S_s評価では考慮しない事故時荷重(LOCA 時荷重 など)を考慮する必要がある評価ケースは、弾性設計用地震動S_dと組

4条一別添3-2

み合わせるべき事故時荷重を考慮した評価を行い,発生値に考慮する。 ② 弾性設計用地震動 S d による発生値と許容限界(Ⅲ S)の比較

①項にて,評価対象設備の基準地震動S_sによる発生値が,許容限界 (許容応力状態Ⅲ_AS)を上回った設備については,弾性設計用地震動S dによる発生値を詳細評価により算定し,その算定した発生値が許容限 界(許容応力状態Ⅲ_AS)以下であることを確認する。

a. 弾性設計用地震動 S_dによる評価において、1次+2次応力評価の省
 略について

弾性設計用地震動 S_dによる評価において, 1次+2次応力評価を省 略する理由について以下に示す。

1次+2次応力評価については、JEAG4601・補-1984 許容応力編に規 定されている許容応力状態IV_AS と III_A S の許容値は同一となる。許容値が 同じであれば、弾性設計用地震動S_dより大きな地震動である基準地震 動S_sで評価した結果の方が厳しいことは明らかであることから、基準 地震動S_sの評価を実施することで、弾性設計用地震動S_dによる評価 は省略した。

ただし、支持構造物(ボルト以外)のうち、「支圧」に対しては、許 容応力状態Ⅳ_ASとⅢ_ASで許容値が異なるケースが存在するため、個別確 認を実施する。

第3-1図 機器・配管の弾性設計用地震動S_dに対する評価手順

(2) 静的地震力による評価

既設の設備については、旧建築基準法(1970年改正)に基づく静的震度(C₀)により耐震設計を行っており、設備が「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6月28日原子力規制委員 会規則第6号)」等に規定される静的震度(C_i)においても影響のないこと を確認する。

4条-別添3-4

静的震度(C_i)に対する評価は,以下の関係を踏まえ,明らかに許 容限界を満足する設備を,以下の①~⑤の手順により,既往評価結果に 基づき許容限界を満足するとして詳細設計対象から除外し,詳細評価対 象設備を絞り込み,⑥にて詳細評価を実施する。なお,耐震裕度を算出 する際の応答加速度は,1.2 倍した値を用いる。評価手順を第 3-2 図 に示す。

○耐震評価における関係性

- ・3.6C₁, 3.6C₀に対する許容限界=設計用地震, S_dに対する許容限界
- ・建設時の3.6C₀による発生値≦許容限界を確認済み
- ・今回工認でのS_dによる発生値≦許容限界を確認済み

○評価手順

- ① 建設工認時の静的震度 C_0 と静的震度 C_i を比較し、 $C_0 \ge C_i$ となる設備 は除外。
- ② 基準地震動 S_s による動的地震力と静的震度 $3.6C_i$ による静的地震力を比較し*, $S_s \ge 3.6C_i$ となる設備は除外。 ただし、弾性設計用地震動 S_d に対する評価において、基準地震動 S_s に

よる発生値を用いている場合のみ適用可能。

- ③ 弾性設計用地震動 S_dによる動的地震力と静的震度 3.6C_iによる静的地震力を比較し^{*}, S_d \geq 3.6C_iとなる設備を除外
- ④ 弾性設計用地震動S_dに対する評価結果に基づく耐震裕度(Ⅲ_AS 許容限界 値/発生値)(以下「S_d裕度」という。)と必要裕度(3.6C_i/S_d比)を 比較し、S_d裕度≧必要裕度となる設備は除外
- ⑤ 既工認における 3.6C₀及び設計用地震に対する評価結果に基づく耐震裕

4条-別添3-5

度(Π_AS 許容限界値/発生値)(以下「既工認における裕度」という。)と C_i/C_o比を比較し、既工認おける裕度 \geq C_i/C_o比となる設備は除外

⑥ 3.6C_iに対する詳細検討を実施

【⑤の補足】

3.6C_i(3.6C₀)に対する裕度= Ⅲ_AS 許容限界値/3.6C_i(3.6C₀)によ る発生値であり,発生値は静的震度に比例することから,次式のような関 係となる。

3.6C_iに対する裕度= 3.6C₀に対する裕度÷(C_i/C₀)

また,既工認における裕度は,3.6C₀及び設計用地震に対する裕度の小 さい方であることから,静的震度比C_i/C₀で除したものは,次式のよう な関係となる。

3.6C_iに対する裕度 \ge 既工認における裕度 \div (C_i/C₀) よって,既工認における裕度 \ge C_i/C₀であれば, 3.6C_iに対する裕度 は1以上となる。

^{*} 水平と鉛直方向の組合せについては、S_s、S_dはSRSS法による 組み合わせ、水平方向静的震度 3.6C_iは鉛直方向静的震度 0.288 と 絶対値和による組合せを行っている。

- *1 S d評価において、S sにおける発生値を用いている場合
- *2 必要裕度は3.6C_i(絶対和)/S_d(SRSS)の比
- *3 S_dを用いた動的解析による裕度により判定
- *4 水平・鉛直方向の組合せについては、S_s、S_dはSRSS法による組合せ、 水平方向静的震度3.6Ciは鉛直方向静的震度(0.288)と絶対値和による組合せを行っている。

第3-2図静的震度に対する評価手順

4条--別添3-7

3. 屋外重要土木構造物

従前より屋外重要土木構造物として取り扱われている構造物については,既工認に おいて,土木構造物として求められているCクラス相当の静的地震力よりも大きなA クラス又はBクラス相当の静的地震力に対して,許容応力度法による耐震評価を実施 している。第3-1表に既工認における構築物の静的地震力(静的基準震度)を示す。

したがって、今回工認においては、現在の基準により設定される荷重条件や、許容 限界等の諸条件が、既工認における諸条件と同等であることを確認することで、静的 地震力に対する耐震評価が今回工認にて満足されることを確認する。

	クラス別	静的基準震度	
		水平	鉛直
構築物	A_s	3 C ₀	0. 24
	А		
	В	1.5 C $_{0}$	_
	С	0.9C ₀	_

第3-1表 既工認における構築物の静的地震力(静的基準震度)

別添-4

東海第二発電所

上位クラス施設の安全機能への下位クラス 施設の波及的影響の検討について (耐震)

1. 概要

本資料は,設計基準対象施設及び重大事故等対処施設の設計を行うに際して,波及的影響を考慮した設計の基本的な考え方を説明するものである。 本資料の適用範囲は,設計基準対象施設及び重大事故等対処施設である。

2. 基本方針

設計基準対象施設のうち耐震重要度分類のSクラスに属する施設(以下 「Sクラス施設」という。),重大事故等対処施設のうち常設耐震重要重大事 故防止設備及び常設重大事故緩和設備並びにこれらが設置される常設重大 事故等対処施設(以下「SA施設」という。)は、下位クラス施設の波及的 影響によって,それぞれその安全機能及び重大事故等に対処するために必要 な機能を損なわないように設計する。

- 3. 波及的影響を考慮した施設の設計方針
- 3.1 設置許可基準規則に例示された事項に基づく事例の検討

Sクラス施設の設計においては、「設置許可基準規則の解釈別記2」(以下 「別記2」という。)に記載の以下の4つの観点で実施する。

SA施設の設計においては、別記2における「耐震重要施設」を「SA施設」に、「安全機能」を「重大事故等に対処するために必要な機能」に読み 替て適用する。

- 設置地盤及び地震応答性状の相違等に起因する相対変位又は不等沈下 による影響
- ② 耐震重要施設と下位のクラスの施設との接続部における相互影響
- ③ 建屋内における下位のクラスの施設の損傷,転倒及び落下等による耐 震重要施設への影響

4条一別添4-2

- ④ 建屋外における下位のクラスの施設の損傷,転倒及び落下等による耐 震重要施設への影響
- 3.2 地震被害事例に基づく事象の検討

上記の別記2に例示された事項の他に考慮すべき事項が抜け落ちているものがないかを確認する観点で,原子力施設情報公開ライブラリー(NUC I

A) に登録された以下の地震を対象に被害情報を確認する。

(対象とした情報)

- ・宮城県沖地震(女川原子力発電所:平成17年8月)
- ・能登半島地震(志賀原子力発電所:平成19年3月)
- ・新潟県中越沖地震(柏崎刈羽原子力発電所:平成19年7月)
- ・駿河湾地震(浜岡原子力発電所:平成21年8月)
- ・東北地方太平洋沖地震(女川原子力発電所,東海第二発電所※:平成2 3年3月)

※NUCIA最終報告となっているものを対象とした。

その結果,これらの地震の被害要因のうち,3.1の検討事象に整理できないものとして,津波や警報発信等の設備損傷以外の要因が挙げられた。

津波については、別途「津波による損傷の防止」への適合性評価を実施する。津波の影響評価では、基準地震動Ssに伴う津波を超える高さの津波を 基準津波として設定して、施設の安全機能への影響評価を実施することから、 基準地震動Ssに伴う津波による影響については、これらの適合性評価に包 絡されるため、ここでは検討の対象外とする。

また,警報発信等については,設備損傷以外の要因による不適合事象であ ることから,波及的影響の観点で考慮すべき事象に当たらないと判断した。

以上のことから,原子力発電所の地震被害情報から確認された損傷要因を 踏まえても,3.1で整理した波及的影響の具体的な検討事象に追加考慮すべ き事項がないことを確認した。

以上の①~④の具体的な設計方法を以下に示す。

3.3 不等沈下又は相対変位の観点による設計

建屋外に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2①「設置地盤及び地震応答性状の相違等に起因する相対変位又は不等沈 下による影響」の観点で,上位クラス施設の安全機能及び重大事故等に対処 するために必要な機能を損なわないよう下位クラス施設を設計する。

地盤の不等沈下による影響

下位クラス施設が設置される地盤の不等沈下により,上位クラス施設の 安全機能及び重大事故等に対処するために必要な機能が損なわないよう, 以下のとおり設計する。

離隔による防護を講じて設計する場合には、下位クラス施設の不等沈下 を想定しても上位クラス施設に衝突しない程度に十分な距離をとって配 置するか、下位クラス施設と上位クラス施設の間に波及的影響を防止する ために、衝突に対する強度を有する障壁を設置する。下位クラス施設を上 位クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合 には、下位クラス施設を上位クラス施設と同等の支持性能を持つ地盤に、 同等の基礎を設けて設置する。支持性能が十分でない地盤に下位クラス施 設を設置する場合は、基礎の補強や周辺の地盤改良を行った上で、同等の 支持性能を確保する。

上記の方針で設計しない場合は,下位クラス施設が設置される地盤の不 等沈下を想定し,上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち,不等沈下を想定し,上位クラス施設の有する機能を保持するよう設計する下位クラス施設を「4. 波及的影響の設計対象とする下位クラス施設」に,その設計方針を「5. 波及的影響の設計対象とす

4条--別添4-4

る下位クラス施設の耐震設計方針」に示す。

(2) 建屋間の相対変位による影響

下位クラス施設と上位クラス施設との相対変位により,上位クラス施設 の安全機能及び重大事故等に対処するために必要な機能を損なわないよ う,以下のとおり設計する。

離隔による防護を講じて設計する場合には、下位クラス施設と上位クラ ス施設との相対変位を想定しても、下位クラス施設が上位クラス施設に衝 突しない程度に十分な距離をとって配置するか、下位クラス施設と上位ク ラス施設との間に波及的影響を防止するために、衝突に対する強度を有す る障壁を設置する。下位クラス施設と上位クラス施設の相対変位により、 下位クラス施設が上位クラス施設に衝突する位置にある場合には、衝突部 分の接触状況の確認、建屋全体評価又は局部評価を実施し、衝突に伴い、 上位クラス施設について、それぞれその安全機能及び重大事故等に対処す るために必要な機能が損なわれるおそれのないよう設計する。

以上の設計方針のうち,建屋全体評価又は局部評価を実施して設計する 下位クラス施設を「4. 波及的影響の設計対象とする下位クラス施設」に, その設計方針を「5. 波及的影響の設計対象とする下位クラス施設の耐震設 計方針」に示す。

3.4 接続部の観点による設計

建屋内外に設置する設計基準対象施設及び重大事故等対処施設を対象に, 別記 2②「上位クラス施設と下位のクラスの施設との接続部における相互影響」の観点で,上位クラス施設の安全機能及び重大事故等に対処するために 必要な機能を損なわないよう下位クラス施設を設計する。

上位クラス施設と下位クラス施設との接続部には,原則,上位クラスの隔 離弁等を設置することにより分離し,事故時等に隔離されるよう設計する。

4条一別添4-5

隔離されない接続部以降の下位クラス施設については,下位クラス施設が 上位クラス施設の設計に用いる地震動又は地震力に対して,内部流体の内包 機能,機器の動的機能,構造強度等を確保するよう設計する。又は,これら が維持されなくなる可能性がある場合は,下位クラス施設の損傷と隔離によ るプロセス変化により,上位クラス施設の内部流体の温度,圧力に影響を与 えても,支持構造物を含めて系統としての機能が設計の想定範囲内に維持さ れるよう設計する。

以上の設計方針のうち,内部流体の内包機能,機器の動的機能,構造強度 を確保するよう設計する下位クラス施設を「4.波及的影響の設計対象とする 下位クラス施設」に,その設計方針を「5.波及的影響の設計対象とする下位 クラス施設の耐震設計方針」に示す。

3.5 損傷,転倒及び落下等の観点による建屋内施設の設計

建屋内に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2③「建屋内における下位のクラスの施設の損傷,転倒及び落下等による 耐震重要施設への影響」の観点で,上位クラス施設の安全機能及び重大事故 等に対処するために必要な機能を損なわないよう下位クラス施設を設計す る。

離隔による防護を講じて設計する場合には、下位クラス施設の損傷、転倒 及び落下等を想定しても上位クラス施設に衝突しない程度に十分な距離を とって配置するか、下位クラス施設と上位クラス施設の間に波及的影響を防 止するために衝突に対する強度を有する障壁を設置する。下位クラス施設を 上位クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合 には、下位クラス施設が上位クラス施設の設計に用いる地震動又は地震力に 対して、下位クラス施設が損傷、転倒及び落下等に至らないよう構造強度設 計を行う。

4条-別添4-6

上記の方針で設計しない場合は、下位クラス施設の損傷,転倒及び落下等 を想定し、上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち,構造強度設計を行う,又は下位クラス施設の損傷, 転倒及び落下等を想定し,上位クラス施設の有する機能を保持するよう設計 する下位クラス施設を「4.波及的影響の設計対象とする下位クラス施設」に, その設計方針を「5.波及的影響の設計対象とする下位クラス施設の耐震設計 方針」に示す。

3.6 損傷,転倒及び落下等の観点による建屋外施設の設計

建屋外に設置する設計基準対象施設及び重大事故等対処施設を対象に,別 記2④「建屋外における下位のクラスの施設の損傷,転倒及び落下等による 耐震重要施設への影響」の観点で,上位クラス施設の安全機能及び重大事故 等に対処するために必要な機能を損なわないよう下位クラス施設を設計す る。

離隔による防護を講じて設計する場合には、下位クラス施設の損傷、転倒 及び落下等を想定しても上位クラス施設に衝突しない程度に十分な距離を とって配置するか、下位クラス施設と上位クラス施設の間に波及的影響を防 止するために衝突に対する強度を有する障壁を設置する。下位クラス施設を 上位クラス施設への波及的影響を及ぼす可能性がある位置に設置する場合 には、下位クラス施設が上位クラス施設の設計に用いる地震動又は地震力に 対して、下位クラス施設が損傷、転倒及び落下等に至らないよう構造強度設 計を行う。

上記の方針で設計しない場合は、下位クラス施設の損傷,転倒及び落下等 を想定し、上位クラス施設の有する機能を保持するよう設計する。

以上の設計方針のうち,構造強度設計を行う,又は下位クラス施設の損傷, 転倒及び落下等を想定し,上位クラス施設の有する機能を保持するよう設計

4条--別添4-7

する下位クラス施設を「4. 波及的影響の設計対象とする下位クラス施設」に、 その設計方針を「5. 波及的影響の設計対象とする下位クラス施設の耐震設計 方針」に示す。

4. 波及的影響の設計対象とする下位クラス施設

「3. 波及的影響を考慮した施設の設計方針」に基づき,構造強度等を確保 するよう設計するものとして選定した下位クラス施設を以下に示す。

- 4.1 不等沈下又は相対変位の観点
 - (1) 地盤の不等沈下による影響
 - a. タービン建屋, サービス建屋, ベーラ建屋, サンプルタンク室, ヘパ フィルター室, 大物搬入口及び連絡通路

下位クラス施設であるタービン建屋,サービス建屋,ベーラ建屋,サ ンプルタンク室,ヘパフィルター室,大物搬入口及び連絡通路は,上位 クラス施設である原子炉建屋に隣接しており,不等沈下による衝突影響 の観点で波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の不等沈 下により,波及的影響を受けるおそれのある上位クラス施設を第4-1表 に示す。

波及的影響を受けるおそれのある	波及的影響の設計対象とする下
上位クラス施設	位クラス施設
原子炉建屋	タービン建屋
	サービス建屋
	ベーラ建屋
	サンプルタンク室
	ヘパフィルター室
	大物搬入口
	連絡通路

第4-1表 波及的影響の設計対象とする下位クラス施設(不等沈下)

(注) 詳細設計の段階で変更の可能性有り。

- (2) 建屋間の相対変位による影響
 - a.タービン建屋、サービス建屋、ベーラ建屋、大物搬入口及び連絡通路
 下位クラス施設であるタービン建屋、サービス建屋、ベーラ建屋、大
 物搬入口及び連絡通路は、上位クラス施設である原子炉建屋に隣接して
 いることから、上位クラス施設の設計に適用する地震動又は地震力に伴
 う相対変位により衝突して、原子炉建屋に対して波及的影響を及ぼすお
 それが否定できない。このため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の相対変 位により,波及的影響を受けるおそれのある上位クラス施設を第4-2表 に示す。

波及的影響を受けるおそれのある	波及的影響の設計対象とする下
上位クラス施設	位クラス施設
原子炉建屋	タービン建屋
	サービス建屋
	ベーラ建屋
	大物搬入口
	連絡通路

第4-2表 波及的影響の設計対象とする下位クラス施設(相対変位)

(注) 詳細設計の段階で変更の可能性有り。

- 4.2 接続部の観点
 - a. ウォーターレグシールライン(残留熱除去系)

上位クラス施設である残留熱除去系配管に系統上接続されている下 位クラス施設のウォーターレグシールラインは、下位クラス施設のウォ ーターレグシールラインの損傷により、上位クラス施設の残留熱除去系 配管のバウンダリ機能の喪失の可能性が否定できない。このため、上位 クラス施設の残留熱除去系配管と系統上接続されている下位クラス施 設のウォーターレグシールラインを波及的影響の設計対象とした。

b. ウォーターレグシールライン(高圧炉心スプレイ系)

上位クラス施設である高圧炉心スプレイ系配管に系統上接続されて いる下位クラス施設のウォーターレグシールラインは、下位クラス施設 のウォーターレグシールラインの損傷により、上位クラス施設の高圧炉 心スプレイ系配管のバウンダリ機能の喪失の可能性が否定できない。こ のため、上位クラス施設の高圧炉心スプレイ系配管と系統上接続されて いる下位クラス施設のウォーターレグシールラインを波及的影響の設 計対象とした。

c. ウォーターレグシールライン(低圧炉心スプレイ系)

4条-別添4-10
上位クラス施設である低圧炉心スプレイ系配管に系統上接続されて いる下位クラス施設のウォーターレグシールラインは、下位クラス施設 のウォーターレグシールラインの損傷により、上位クラス施設の低圧炉 心スプレイ系配管のバウンダリ機能の喪失の可能性が否定できない。こ のため、上位クラス施設の低圧炉心スプレイ系配管と系統上接続されて いる下位クラス施設のウォーターレグシールラインを波及的影響の設 計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設との接続 部の観点により,波及的影響を受けるおそれのある上位クラス施設を第4 -3表に示す。

波及的影響を受けるおそれのある	波及的影響の設計対象とする下
上位クラス施設	位クラス施設
残留熱除去系配管	ウォーターレグシールライン
高圧炉心スプレイ系配管	ウォーターレグシールライン
低圧炉心スプレイ系配管	ウォーターレグシールライン

第4-3表 波及的影響の設計対象とする下位クラス施設(接続部)

(注) 詳細設計の段階で変更の可能性有り。

- 4.3 建屋内施設の損傷,転倒及び落下等の観点
 - (1) 施設の損傷,転倒及び落下等による影響
 - a. 原子炉遮蔽壁

下位クラス施設である原子炉遮蔽壁は,上位クラス施設である原子炉 圧力容器に隣接していることから,上位クラス施設の設計に適用する地 震動又は地震力に伴う転倒により,原子炉圧力容器に衝突し波及的影響

を及ぼすおそれが否定できない。このため波及的影響の設計対象とした。 b. 原子炉建屋クレーン

下位クラス施設である原子炉建屋クレーンは、上位クラス施設である 使用済燃料プール、使用済燃料貯蔵ラック等の上部に設置していること から、上位クラス施設の設計に適用する地震動又は地震力に伴う転倒ま たは落下により、使用済燃料プール、使用済燃料貯蔵ラック等に衝突し 波及的影響を及ぼすおそれが否定できない。このため波及的影響の設計 対象とした。

c. 燃料取替機

下位クラス施設である燃料取替機は,上位クラス施設である使用済燃 料プール及び使用済燃料貯蔵ラックの上部に設置していることから,上 位クラス施設の設計に適用する地震動又は地震力に伴う転倒または落 下により,使用済燃料プール及び使用済燃料貯蔵ラックに衝突し波及的 影響を及ぼすおそれが否定できない。このため波及的影響の設計対象と した。

d. 制御棒貯蔵ラック及び制御棒貯蔵ハンガ

下位クラス施設である制御棒貯蔵ランク及び制御棒貯蔵ハンガは,上 位クラス施設である使用済燃料プール及び使用済燃料貯蔵ラックの上 部又は隣接して設置していることから,上位クラス施設の設計に適用す る地震動又は地震力に伴う転倒または落下により,使用済燃料プール及 び使用済燃料貯蔵ラックに衝突し波及的影響を及ぼすおそれが否定で きない。このため波及的影響の設計対象とした。

e. 使用済燃料乾式貯蔵建屋クレーン

下位クラス施設である使用済燃料乾式貯蔵建屋クレーンは、上位クラス施設である使用済燃料乾式貯蔵容器の上部に設置していることから、

上位クラス施設の設計に適用する地震動又は地震力に伴う転倒または 落下により,使用済燃料乾式貯蔵容器に衝突し波及的影響を及ぼすおそ れが否定できない。このため波及的影響の設計対象とした。

f. 原子炉ウェル遮蔽ブロック

下位クラス施設である原子炉ウェル遮蔽ブロックは,上位クラス施設 である原子炉格納容器の上部に設置していることから,上位クラス施設 の設計に適用する地震動又は地震力に伴う落下により,格納容器に衝突 し波及的影響を及ぼすおそれが否定できない。このため波及的影響の設 計対象とした。

g. 中央制御室用天井照明

下位クラス施設ある中央制御室用天井照明は,上位クラス施設である 緊急時炉心冷却系操作盤,原子炉補機操作盤等の上部に設置しているこ とから,上位クラス施設の設計に適用する地震動又は地震力に伴う落下 により,緊急時炉心冷却系操作盤,原子炉補機操作盤等に衝突し波及的 影響を及ぼすおそれが否定できない。このため波及的影響の設計対象と した。

ここで選定した波及的影響の設計対象とする下位クラス施設の損傷,転 倒及び落下等により波及的影響を受けるおそれのある上位クラス施設を 第4-4表に示す。 第4-4表 波及的影響の設計対象とする下位クラス施設(損傷,転倒及び落下

等)

波及的影響を受けるおそれのある	波及的影響の設計対象とする下
上位クラス施設	位クラス施設
原子炉圧力容器	原子炉遮蔽壁
使用済燃料プール	原子炉建屋クレーン
使用済燃料ラック	
原子炉建屋換気系放射線モニタ	
使用済燃料プール	燃料取替機
使用済燃料ラック	
原子炉建屋換気系放射線モニタ	
使用済燃料プール	制御棒貯蔵ラック
使用済燃料ラック	制御棒貯蔵ハンガ
使用済燃料乾式貯蔵容器	使用済燃料乾式貯蔵建屋クレー
格納容器	原子炉ウエル遮蔽ブロック
緊急時炉心冷却系操作盤	中央制御室用天井照明
原子炉補機操作盤	
原子炉制御操作盤	
所内電源操作盤	

(注) 詳細設計の段階で変更の可能性有り。

- 4.4 建屋外施設の損傷,転倒及び落下等の観点
 - (1) 施設の損傷,転倒及び落下等による影響
 - a. 海水ポンプ室防護壁及び循環水ポンプクレーン

下位クラス施設である海水ポンプ室防護壁は,上位クラス施設である 残留熱除去系海水ポンプ,残留熱除去系海水ストレーナ等の上部に設置 していることから,上位クラス施設の設計に適用する地震動又は地震力 に伴う落下により,残留熱除去系海水ポンプ,残留熱除去系海水ストレ ーナ等に衝突し,波及的影響を及ぼすおそれが否定できない。このため 波及的影響の設計対象とした。

b. 固定バースクリーン,回転レイキ付バースクリーン及びトラベリング スクリーン

下位クラス施設である固定バースクリーン,回転レイキ付バースクリ ーン及びトラベリングスクリーンは,上位クラス施設である残留熱除去 系海水ポンプ,非常用ディーゼル発電機用海水ポンプ等の水路上流側に 設置していることから,上位クラス施設の設計に適用する地震動又は地 震力に伴う損傷により,残留熱除去系海水ポンプ,非常用ディーゼル発 電機用海水ポンプ等に衝突し,波及的影響を及ぼすおそれが否定できな い。このため波及的影響の設計対象とした。

c. タービン建屋, サービス建屋, ベーラ建屋, サンプルタンク室, ヘパ フィルター室, 連絡通路及び大物搬入口

下位クラス施設であるタービン建屋,サービス建屋,ベーラ建屋,サ ンプルタンク室,ヘパフィルター室,連絡通路及び大物搬入口は,上位 クラス施設である原子炉建屋に隣接していることから,上位クラス施設 の設計に適用する地震動又は地震力に伴う転倒により,原子炉建屋に衝 突し,波及的影響を及ぼすおそれが否定できない。このため波及的影響 の設計対象とした。

d. 廃棄物処理建屋

下位クラス施設である廃棄物処理建屋は,上位クラス施設である原子 炉建屋,非常用ガス処理系配管等に隣接していることから,上位クラス 施設の設計に適用する地震動又は地震力に伴う転倒により,原子炉建屋, 非常用ガス処理系配管等に衝突し,波及的影響を及ぼすおそれが否定で きない。このため波及的影響の設計対象とした。

ここで選定した波及的影響の設計対象とする下位クラス施設の損傷,転

倒及び落下等により波及的影響を受けるおそれのある上位クラス施設を 第4-5表に示す。 第4-5表 波及的影響の設計対象とする下位クラス施設(損傷,転倒及び落

波及的影響を受けるおそれのある	波及的影響の設計対象とする下
上位クラス施設	位クラス施設
残留熱除去系海水ポンプ	海水ポンプ室防護壁
残留熱除去系海水ストレーナ	
残留熱除去系海水配管	
非常用ディーゼル発電機用海水ポ	
ンプ	
非常用ディーゼル発電機用海水ス	
トレーナ	
非常用ディーゼル発電機用海水配	
管	
高圧炉心スプレイ系ディーゼル発	
電機用海水ポンプ	
高圧炉心スプレイ系ディーゼル発	
電機用海水ストレーナ	
高圧炉心スプレイ系ディーゼル発	
電機用海水配管 等	
残留熱除去系海水ポンプ	固定バースクリーン
非常用ディーゼル発電機用海水ポ	回転レイキ付バースクリーン
ンプ	トラベリングスクリーン
高圧炉心スプレイ系ディーゼル発	
電機用海水ポンプ	
原子炉建屋	タービン建屋
	サービス建屋
	ベーラ建屋
	サンプルタンク室
	ヘパフィルター室
	連絡通路
	大物搬入口
原子炉建屋	廃棄物処理建屋
非常用ガス処理系配管	

下等)

(注) 詳細設計の段階で変更の可能性有り。

非常用ガス処理系配管支持構造物

(排気筒,支持架構)

5. 波及的影響の設計対象とする下位クラス施設の耐震設計方針

「4. 波及的影響の設計対象とする下位クラス施設」で選定した施設の耐震 設計方針を以下に示す。

5.1 耐震評価部位

波及的影響の設計対象とする下位クラス施設の評価対象部位は,それぞれ の損傷モードに応じて選定する。すなわち,評価対象下位クラス施設の不等 沈下,相対変位,接続部における相互影響,損傷,転倒及び落下等を防止す るよう,主要構造部材,支持部及び固定部等を対象とする。

また,地盤の不等沈下又は下位クラス施設の転倒を想定して設計する施設 については,上位クラス施設の機能に影響がないよう評価部位を選定する。

5.2 地震応答解析

波及的影響の設計対象とする下位クラス施設の耐震設計において実施す る地震応答解析については,既工認で実績があり,かつ最新の知見に照らし ても妥当な手法及び条件を基本として行う。

5.3 設計用地震動又は地震力

波及的影響の設計対象とする下位クラス施設においては,上位クラス施設 の設計に用いる地震動又は地震力を適用する。

5.4 荷重の種類及び荷重の組合せ

波及的影響の防止を目的とした設計において用いる荷重の種類及び荷重 の組合せについては,波及的影響を受けるおそれのある上位クラス施設と同 じ運転状態において下位クラス施設に発生する荷重を組み合わせる。

また,地盤の不等沈下又は転倒を想定し,上位クラス施設の機能に影響が ない設計とする場合は、転倒等に伴い発生する荷重を組み合わせる。

荷重の設定においては,実運用・実事象上定まる範囲を考慮して設定する。 5.5 許容限界

波及的影響の設計対象とする下位クラス施設の評価に用いる許容限界設 定の考え方を,以下建物・構築物,機器・配管系及び土木構造物に分けて示 す。

5.5.1 建物·構築物

建物・構築物について,隔離による防護を講じることで,下位クラス施設 の相対変位等による波及的影響を防止する場合は,下位クラス施設と上位ク ラス施設との距離を基本として許容限界を設定する。

また,施設の構造を保つことで,下位クラス施設の損傷,転倒及び落下等 を防止する場合は,部材に発生する応力に対して終局耐力又は「建築基準法 及び同施行令」に基づく層間変形角の評価基準値を基本として許容限界を設 定する。

5.5.2 機器·配管系

機器・配管系について,施設の構造を保つことで,下位クラス施設の接続 部における相互影響及び損傷,転倒及び落下等を防止する場合は,許容限界 として,評価部位に塑性ひずみが生じる場合であっても,その量が小さなレ ベルに留まって破断延性限界に十分な余裕を有していることに相当する許 容限界を設定する。機器の動的機能維持を確保することで,下位クラス施設 の接続部における相互影響を防止する場合は,許容限界として動的機能確認 済加速度を設定する。

また,地盤の不等沈下又は転倒を想定する場合は,下位クラスの施設の転 倒等に伴い発生する荷重により,上位クラス施設の評価部位に塑性ひずみが 生じる場合であっても,その量が小さなレベルに留まって破断延性限界に十 分な余裕を有していること,また転倒した下位クラス施設と上位クラス施設 との距離を許容限界として設定する。

5.5.3 土木構造物

土木構造物について,施設の構造を保つことで,下位クラス施設の損傷, 転倒及び落下等を防止する場合は,構造部材の終局耐力や基礎地盤の極限支 持力度に対し妥当な安全余裕を考慮することを基本として許容限界を設定 する。

また,構造物の安定性や変形により上位クラス施設の機能に影響がないよ う設計する場合は,構造物のすべりや変形量に対し妥当な安全余裕を考慮す ることを基本として許容限界を設定する。

6. 工事段階における下位クラス施設の調査・検討

工事段階においても,設計基準対象施設及び重大事故等対処施設の設計段 階の際に検討した配置・補強等が設計どおりに施されていることを,敷地全 体を俯瞰した調査・検討を行うことで確認する。また,仮置資材等,現場の 配置状況等の確認を必要とする下位クラス施設についても合わせて確認す る。

工事段階における検討は、別記2の4つの観点のうち、③及び④の観点、 すなわち下位クラス施設の損傷、転倒及び落下等による影響について、プラ ントウォークダウンにより実施する。

確認事項としては,設計段階において検討した離隔による防護の観点で行 う。すなわち,施設の損傷,転倒及び落下等を想定した場合に上位クラス施 設に衝突するおそれのある範囲内に下位クラス施設がないこと,又は間に衝 撃に耐えうる障壁,緩衝物等が設置されていること,仮置資材等については 固縛など,転倒及び落下を防止する措置が適切に講じられていることを確認 する。

ただし,仮置資材等の下位クラス施設自体が,明らかに影響を及ぼさない 程度の大きさ,重量等の場合は対象としない。

以上を踏まえて,損傷,転倒及び落下等により,上位クラス施設に波及的 影響を及ぼす可能性がある下位クラス施設が抽出されれば,必要に応じて, 上記の確認事項と同じ観点で対策・検討したり,固縛等の転倒・落下防止措 置等を講じたりすることで対策・検討を行う。すなわち,下位クラス施設の 配置を変更したり,間に緩衝物等を設置したり,固縛等の転倒・落下防止措 置等を講じたりすることで対策・検討を行う。

また,工事段階における確認の後も,波及的影響を防止するように現場を 保持するため,保安規定に機器設置時の配慮事項等を定めて管理する。

別添-5

東海第二発電所

水平2方向及び鉛直方向地震力の組合せに 関する影響評価方針 (耐震)

水平2方向及び鉛直方向地震力の組合せに関する影響評価方針

1. 概要

本資料は,水平2方向及び鉛直方向地震力の組合せに関する影響評価の方 針について説明するものである。

2. 基本方針

施設の耐震設計では,施設の構造から地震力の方向に対して弱軸及び強軸 を明確にし,地震力に対して配慮した構造としている。

今回,水平2方向及び鉛直方向地震力の組合せによる耐震設計に係る技術 基準が制定されたことから,従来の設計手法における水平1方向及び鉛直方 向地震力を組み合わせた耐震計算に対して,施設の構造特性から水平2方向 及び鉛直方向地震力の組合せによる影響の可能性があるものを抽出し,施設 が有する耐震性に及ぼす影響を評価する。

評価対象は「実用発電用原子炉及びその附属施設の技術基準に関する規則 (平成25年6月28日原子力規制委員会規則第6号)」の第5条及び第50条に規 定されている耐震重要施設及びその間接支持構造物,常設耐震重要重大事故 防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設,並び にこれらの施設への波及的影響防止のために耐震評価を実施する施設とする。 耐震 B クラスの施設については、共振のおそれのあるものを評価対象とする。

評価に当たっては,施設の構造特性から水平2方向及び鉛直方向地震力の 組合せの影響を受ける部位を抽出し,その部位について水平2方向及び鉛直 方向の荷重や応力を算出し,施設が有する耐震性への影響を確認する。

施設が有する耐震性への影響が確認された場合は,詳細な手法を用いた検 討等,新たに設計上の対応策を講じる。

4条一別添5-2

水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動
 水平2方向及び鉛直方向地震力の組合せによる影響評価には、基準地震動
 Ssを用いる。

ここで,水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる 基準地震動S_sは,複数の基準地震動S_sにおける地震動の特性及び包絡関係 を,施設の特性による影響も考慮した上で確認し,本影響評価に用いる。

4. 各施設における水平2方向及び鉛直方向地震力の組合せの影響評価方針

4.1 建物·構築物

4.1.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

従来の設計手法では,建物・構築物の地震応答解析において,水平方向及 び鉛直方向の地震動を質点系モデルにそれぞれ方向ごとに入力し,解析を行 っている。また,原子炉施設における建物・構築物は,全体形状及び平面レ イアウトから,地震力を主に耐震壁で負担する構造であり,剛性の高い設計 としている。

水平方向の地震力に対しては、せん断力について評価することを基本とし、 建物・構築物に生じるせん断力は、地震時の力の流れが明解となるように、 直交する2方向に釣合いよく配置された鉄筋コンクリート造耐震壁を主な耐 震要素として構造計画を行う。地震応答解析は、水平2方向の耐震壁に対し て、それぞれ剛性を評価し、各水平方向に対して解析を実施している。した がって、建物・構築物に対し、水平2方向の入力がある場合、各方向から作 用するせん断力を負担する部位が異なるため、水平2方向の入力がある場合 の評価は、水平1方向にのみ入力がある場合と同等な評価となる。

鉛直方向の地震力に対しては、軸力について評価することを基本としている。建物・構築物に生じる軸力は、鉄筋コンクリート造耐震壁を主な耐震要 4条-別添5-3 素として構造計画を行う。

入力方向ごとの耐震要素について、第4-1-1図に示す。

(a) 水平方向

(b) 鉛直方向

第4-1-1図 入力方向ごとの耐震要素

4.1.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

建物・構築物において,水平2方向及び鉛直方向地震力の組合せを考慮し た場合に影響を受ける可能性がある部位の評価を行う。

評価対象は,耐震重要施設及びその間接支持構造物,常設耐震重要重大事 故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設並び にこれらの施設への波及的影響防止のために耐震評価を実施する施設の部位 とする。

対象とする部位について,水平2方向及び鉛直方向地震力の組合せによる 影響が想定される応答特性から水平2方向及び鉛直方向地震力の組合せによ

4条-別添5-4

る影響を受ける可能性がある部位を抽出する。

応答特性から抽出された水平2方向及び鉛直方向地震力による影響を受け る可能性がある部位は、従来の評価結果の荷重又は応力の算出結果を水平2 方向及び鉛直方向に組み合わせ、各部位に発生する荷重や応力を算出し、各 部位が有する耐震性への影響を確認する。

各部位が有する耐震性への影響が確認された場合は,詳細な手法を用いた 検討等,新たに設計上の対応策を講じる。

4.1.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

建物・構築物において,水平1方向及び鉛直方向地震力を組み合わせた従 来の設計手法に対して,水平2方向及び鉛直方向地震力の組合せによる影響 の可能性がある耐震評価上の構成部位について,応答特性から抽出し,影響 を評価する。影響評価のフローを第4-1-2図に示す。

- (1) 影響評価部位の抽出
 - 耐震評価上の構成部位の整理

建物・構築物における耐震評価上の構成部位を整理し,該当する耐震 評価上の構成部位を網羅的に確認する。

② 応答特性の整理

建物・構築物における耐震評価上の構成部位について,水平2方向及 び鉛直方向地震力の組合せの影響が想定される応答特性を整理する。

③ 荷重の組合せによる応答特性が想定される部位の抽出

整理した耐震評価上の構成部位について,水平2方向及び鉛直方向地 震力の組合せによる影響が想定される応答特性のうち,荷重の組合せに よる応答特性を検討する。水平2方向及び鉛直方向地震力に対し,荷重 の組合せによる応答特性により,有する耐震性への影響が想定される部 4条-別添5-5 位を抽出する。

④ 3次元的な応答特性が想定される部位の抽出

荷重の組合せによる応答特性が想定される部位として抽出されなかっ た部位のうち、3次元的な応答特性が想定される部位を検討する。水平 2方向及び鉛直方向地震力の組合せに対し、3次元的な応答特性により、 有する耐震性への影響が想定される部位を抽出する。

5 3次元モデルによる精査

3次元的な応答特性が想定される部位として抽出された部位について, 3次元モデルを用いた精査を実施し,水平2方向及び鉛直方向地震力の 組合せにより,有する耐震性への影響が想定される部位を抽出する。

また,3次元的な応答特性が想定される部位として抽出されなかった 部位についても,局所応答の観点から,3次元モデルによる精査を実施 し,水平2方向及び鉛直方向地震力の組合せにより,有する耐震性への 影響が想定される部位を抽出する。

局所応答に対する3次元モデルによる精査は、施設の重要性、建屋規 模及び構造特性を考慮し、原子炉建屋について、地震応答解析を行う。

- (2) 影響評価手法
 - ⑥ 水平2方向及び鉛直方向地震力の組合せによる影響評価

水平2方向及び鉛直方向同時入力による評価を行わない部位における 水平2方向及び鉛直方向地震力の組合せによる影響評価においては,水 平1方向及び鉛直方向地震力の組合せによる局部評価の荷重又は応力の 算出結果を用い,水平2方向及び鉛直方向地震力を組み合わせる方法と して,米国Regulatory Guide 1.92(注)の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考とし て,組合せ係数法(1.0:0.4:0.4)に基づいて地震力を設定する。

4条-別添5-6

評価対象として抽出した耐震評価上の構成部位について,構造部材の 発生応力等を適切に組み合わせることで,各部位の設計上の許容値に対 する評価を実施し,各部位が有する耐震性への影響を評価する。

⑦ 機器・配管系への影響検討

評価対象として抽出された部位が,耐震重要施設,常設耐震重要重大 事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施 設の機器・配管系の間接支持機能を有する場合には,水平2方向及び鉛 直方向地震力の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認 された場合,機器・配管系の影響評価に反映する。

なお,3次元モデルによる精査にて,建物・構築物の影響の観点から 抽出されなかった部位であっても,機器・配管系への影響の可能性が想 定される部位について検討対象として抽出する。

(注) Regulatory Guide (RG) 1.92 "Combining modal responses and Spatial components in seismic response analysis"

第4-1-2図 水平2方向及び鉛直方向地震力による影響評価のフロー

4.2 機器·配管系

4.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方

機器・配管系における従来の水平方向及び鉛直方向地震力の組合せによる 設計手法では,建物・構築物の振動特性を考慮し,変形するモードが支配的 となり応答が大きくなる方向(応答軸方向)に基準地震動S_sを入力して得 られる各方向の地震力(床応答)を用いている。

応答軸(強軸・弱軸)が明確となっている設備の耐震評価においては,水 平各方向の地震力を包絡し,変形モードが支配的となる応答軸方向に入力す るなど,従来評価において保守的な取り扱いを基本としている。

一方,応答軸が明確となっていない設備で3次元的な広がりを持つ設備の 耐震評価においては,基本的に3次元のモデル化を行っており,建物・構築 物の応答軸方向の地震力をそれぞれ入力し,この入力により算定される荷重 や応力のうち大きい方を用いて評価を実施している。

さらに,応答軸以外の振動モードが生じ難い構造の採用,応答軸以外の振 動モードが生じ難いサポート設計の採用といった構造上の配慮など,水平方 向の入力に対して配慮した設計としている。

4.2.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

機器・配管系において,水平2方向及び鉛直方向地震力の組合せを考慮し た場合に,影響を受ける可能性がある設備(部位)の評価を行う。

評価対象は,耐震重要施設,常設耐震重要重大事故防止設備又は常設重大 事故緩和設備が設置される重大事故等対処施設の機器・配管系並びにこれら の施設への波及的影響防止のために耐震評価を実施する設備とする。

対象とする設備を機種ごとに分類し、それぞれの構造上の特徴により荷重 の伝達方向、その荷重を受ける構造部材の配置及び構成等により水平2方向 4条-別添5-9 の地震力による影響を受ける可能性がある設備(部位)を抽出する。

構造上の特徴により影響の可能性がある設備(部位)は,水平2方向及び 鉛直方向地震力の組合せによる影響の検討を実施する。水平各方向の地震力 が1:1で入力された場合の発生値を従来の評価結果の荷重又は算出応力等 を水平2方向及び鉛直方向に整理して組み合わせる又は新たな解析等により 高度化した手法を用いる等により,水平2方向の地震力による設備(部位) に発生する荷重や応力を算出する。

これらの検討により,水平2方向及び鉛直方向地震力を組み合わせた荷重 や応力の結果が従来の発生値と同等である場合は影響のない設備として抽出 し,従来の発生値を超えて耐震性への影響が懸念される場合は,設備が有す る耐震性への影響を確認する。

設備が有する耐震性への影響が確認された場合は,詳細な手法を用いた検 討等,新たに設計上の対応策を講じる。

4.2.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

機器・配管系において,水平2方向及び鉛直方向地震力の影響を受ける可 能性があり,水平1方向及び鉛直方向地震力の従来評価に加え,更なる設計 上の配慮が必要な設備について,構造及び発生値の増分の観点から抽出し, 影響を評価する。影響評価は従来設計で用いている質点系モデルによる評価 結果を用いて行うことを基本とする。影響評価のフローを第4-2-1 図に示 す。

なお、耐震評価は基本的におおむね弾性範囲でとどまる体系であることに 加え、国内と海外の機器の耐震解析は、基本的に線形モデルにて実施してい る等類似であり、水平2方向及び鉛直方向の位相差は機器の応答にも現れる ことから、米国Regulatory Guide 1.92の「2. Combining Effects Caused 4条-別添5-10 by Three Spatial Components of an Earthquake」を参考として,水平2方 向及び鉛直方向地震力の組合せの影響を検討する際は,地震時に水平2方向 及び鉛直方向それぞれの最大応答が同時に発生する可能性は極めて低いとし た考え方であるSquare-Root-of-the-Sum-of-the-Squares 法(以下「最大応 答の非同時性を考慮したSRSS法」という。)又は組合せ係数法(1.0:0.4: 0.4)を適用し,各方向からの地震入力による各方向の応答を組み合わせる。

評価対象となる設備の整理

耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和 設備が設置される重大事故等対処施設の機器・配管系並びにこれらの施 設への波及的影響防止のために耐震評価を実施する設備,共振のおそれ のある耐震 B クラスを評価対象とし,代表的な機種ごとに分類し整理す る。(第4-2-1図①)

構造上の特徴による抽出

機種ごとに構造上の特徴から水平2方向の地震力が重複する観点,も しくは応答軸方向以外の振動モード(ねじれ振動等)が生じる観点にて 検討を行い,水平2方向の地震力による影響の可能性がある設備を抽出 する。(第4-2-1図②)

発生値の増分による抽出

水平2方向の地震力による影響の可能性がある設備に対して,水平2 方向の地震力が各方向1:1で入力された場合に各部にかかる荷重や応 力を求め,従来の水平1方向及び鉛直方向地震力の組合せによる設計に 対して,水平2方向及び鉛直方向地震力を考慮した発生値の増分を用い て影響を検討し,耐震性への影響が懸念される設備を抽出する。

また,建物・構築物及び屋外重要土木構造物の検討により,機器・配 4条-別添5-11 管系への影響の可能性がある部位が抽出された場合は、機器・配管系への影響を評価し、耐震性への影響が懸念される設備を抽出する。

影響の検討は、機種ごとの分類に対して地震力の寄与度に配慮し耐震 裕度が小さい設備(部位)を対象とする。(第4-2-1図③)

④ 水平2方向及び鉛直方向地震力の影響評価

③の検討において算出された荷重や応力を用いて,設備が有する耐震 性への影響を確認する。(第4-2-1図④)

第4-2-1図 水平2方向及び鉛直方向地震力による影響評価フロー

4.3 屋外重要土木構造物

4.3.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方
 従来設計手法の考え方について、RC構造物である取水構造物を例に第4-3
 -1表に示す。

一般的な地上構造物では, 躯体の慣性力が主たる荷重であるのに対し, 屋 外重要土木構造物は, 概ね地中に埋設されているため, 動土圧や動水圧等の 外力が主たる荷重となる。また, 屋外重要土木構造物は, 比較的単純な構造 部材の配置で構成され, ほぼ同一の断面が奥行き方向に連続する構造的特徴 を有することから, 3次元的な応答の影響は小さいため, 2次元断面での耐 震評価を行っている。

屋外重要土木構造物は,主に海水の通水機能や配管等の間接支持機能を維 持するため,通水方向や管軸方向に対して空間を保持できるように構造部材 が配置されることから,構造上の特徴として,明確な弱軸,強軸を有する。

強軸方向の地震時挙動は,弱軸方向に対して顕著な影響を及ぼさないこと から,従来設計手法では,弱軸方向を評価対象断面として,耐震設計上求め られる水平1方向及び鉛直方向の地震力による耐震評価を実施している。 第4-3-1図に示すとおり,従来設計手法では,屋外重要土木構造物の構造 上の特徴から,弱軸方向の地震荷重に対して保守的に加振方向に平行な壁部 材を見込まず,垂直に配置された構造部材のみで受けもつよう設計している。

なお,屋外重要土木構造物のうち,既設構造物は取水構造物と屋外二重管 (基礎部除く)であり,それ以外の構造物は新設構造物である。ここでは, 既設構造物,新設構造物の両方について検討を行う。

第4-3-1表 従来設計における評価対象断面の考え方(取水構造物の例)

第4-3-1図 従来設計手法の考え方

4.3.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

屋外重要土木構造物において,水平2方向及び鉛直方向地震力を考慮した 場合に影響を受ける可能性がある構造物の評価を行う。

評価対象は、屋外重要土木構造物である、取水構造物及び屋外二重管並び に波及影響防止のために耐震評価する土木構造物とする。また、常設耐震重 要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処 施設の間接支持構造物のうち常設代替高圧電源装置置場、常設代替高圧電源 装置用カルバート、代替淡水貯槽、常設低圧代替注水系ポンプ室、常設低圧 代替注水系配管カルバート、緊急用海水ポンプピット、格納容器圧力逃がし 装置用配管カルバート、緊急時対策所用発電機燃料油貯蔵タンク基礎及び可 搬型設備用軽油タンク基礎並びに重大事故時における海水の通水構造物のう ちSA用海水ピット取水塔、海水引込み管、SA用海水ピット及び緊急用海 水取水管も本評価では屋外重要土木構造物として扱うこととし、評価対象に 含める。

屋外重要土木構造物を構造形式ごとに分類し、構造形式ごとに作用すると 考えられる荷重を整理し、荷重が作用する構造部材の配置等から水平2方向 及び鉛直方向地震力による影響を受ける可能性のある構造物を抽出する。

抽出された構造物については,従来設計手法での評価対象断面(弱軸方向) の地震応答解析に基づく構造部材の照査において,評価対象断面(弱軸方向) に直交する断面(強軸方向)の地震応答解析に基づく構造部材の発生応力等 を適切に組み合わせることで,水平2方向及び鉛直方向地震力による構造部 材の発生応力を算出し,構造物が有する耐震性への影響を確認する。

構造物が有する耐震性への影響が確認された場合は詳細な手法を用いた検 討等,新たに設計上の対応策を講じる。

4条--別添5-16

4.3.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

屋外重要土木構造物において、水平2方向及び鉛直方向地震力の組合せの 影響を受ける可能性があり、水平1方向及び鉛直方向の従来評価に加え、更 なる設計上の配慮が必要な構造物について、構造形式及び作用荷重の観点か ら影響評価の対象とする構造物を抽出し、構造物が有する耐震性への影響を 評価する。影響評価のフローを第4-3-2図に示す。

- (1) 影響評価対象構造物の抽出
- 構造形式の分類

評価対象構築物について,各構造物の構造上の特徴や従来設計手法の考 え方を踏まえ,構造形式ごとに大別する。

- ② 従来設計手法における評価対象断面に対して直交する荷重の整理
 従来設計手法における評価対象断面に対して直交する荷重を抽出する。
- ③ 荷重の組合せによる応答特性が想定される構造物形式の抽出
 ②で整理した荷重に対して、構造形式ごとにどのように作用するかを整理し、耐震性に与える影響程度を検討した上で、水平2方向及び鉛直方向
 地震力の影響が想定される構造形式を抽出する。
- ④ 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽出

③で抽出されなかった構造形式について,従来設計手法における評価対象断面以外の箇所で,水平2方向及び鉛直方向地震力の影響により3次元的な応答が想定される箇所を抽出する。

⑤ 従来設計手法の妥当性の確認

④で抽出された箇所が,水平2方向及び鉛直方向地震力の組合せに対し て,従来設計手法における評価対象断面の耐震評価で満足できるか検討を 行う。

- (2) 影響評価手法
- ⑥ 水平2方向及び鉛直方向地震力の影響評価

評価対象として抽出された構造物について,従来設計手法での評価対象 断面(弱軸方向)の地震応答解析に基づく構造部材の照査において,評価 対象断面(弱軸方向)に直交する断面(強軸方向)の地震応答解析に基づ く構造部材の発生応力等を適切に組合せることで,水平2方向及び鉛直方 向地震力による構造部材の発生応力を算出し,構造物が有する耐震性への 影響を確認する。

評価対象部位については,屋外重要土木構造物が明確な弱軸・強軸を示 し,地震時における構造物のせん断変形方向が明確であることを考慮し, 従来設計手法における評価対象断面(弱軸方向)における構造部材の耐震 評価結果及び水平2方向の影響の程度を踏まえて選定する。

機器・配管系への影響検討

評価対象として抽出された構造物が,耐震重要施設,常設耐震重要重大 事故防止設備又は常設重大緩和設備が設置される重大事故等対処施設の機 器・配管系の間接支持構造物である場合,水平2方向及び鉛直方向地震力 の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認さ れた場合,機器・配管系の影響評価に反映する。

なお、④及び⑤の精査にて、屋外重要土木構造物の影響の観点から抽出 されなかった部位であっても、地震応答解析結果から機器・配管系への影 響の可能性が想定される部位については検討対象として抽出する。

第4-3-2図 水平2方向及び鉛直方向地震力による影響評価のフロー

4.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物

4.4.1 水平2方向及び鉛直方向地震力の組合せの評価方針

津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津波 監視設備が設置された建物・構築物は「建物・構築物」,「機器・配管系」又 は「屋外重要土木構造物」に区分し設計をしていることから,水平2方向及び 鉛直方向地震力の組合せの影響評価は,施設,設備の区分に応じて「4.1 建 物・構築物」,「4.2 機器・配管系」又は「4.3 屋外重要土木構造物」の方針 に基づいて実施する。

別添-6

東海第二発電所

屋外重要土木構造物の耐震評価における 断面選定の考え方について (耐震)

1. 方針

本資料では,屋外重要土木構造物,「常設耐震重要重大事故防止設備又は 常設重大事故緩和設備」及び「常設耐震重要重大事故防止設備又は常設重大 事故緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設を 除く)(以後,「常設重大事故等対処施設」という。)」の耐震評価における断 面選定の考え方について示す。

本資料で記載する屋外重要土木構造物等及びこれに設置される主要設備の 一覧表を第1表に,全体配置図を第1図に示す。

耐震評価においては、構造物の配置、構造形状、周辺の地質構造等を考慮 し、耐震評価上最も厳しくなると考えられる位置を評価対象断面とする。

上記を考慮した屋外重要土木構造物等の断面選定の考え方を第2表の通り 整理する。

個々の施設の断面選定においては、上記の考え方に加え、可とう管及び杭 基礎等に着目した影響並びに周辺施設の影響及び上載する機器・配管等への 影響についても考慮する。 耐震重要施設等に設置される主要設備一覧表 第1表

	屋外重要土木構造物等	1.4				主要設備(全てを網羅していないの	で注意)		
	名 蔡	屋外重要 土木構造物	津波防護 施設	常設SA 設備	常設SA 施設	名 蔡	耐震	津波	常設SA 設備
						残留熟除去系海水ポンプ	0	Ι	0
		(((非常用ディーゼル発電機用海水ポンプ	0	Ι	0
	3人小行用, 1回 140)	I))	高圧炉心スプレイ系ディーゼル発電機用海水ポンプ	0	Ι	0
						潮位計, 取水ピット水位計	Ι	0	_ 注1
						残留熟除去系海水系配管	0	Ι	0
	屋外二重管	0	I	I	0	非常用ディーゼル発電機用海水系配管	0	I	0
-						高圧炉心スプレイ系ディーゼル発電機用海水系配管	0	I	0
⊮ ⇔	貯留堰	0	0	0	I	-	Ι	Ι	I
讏			(1.		津波・構内監視カメラ (4台)	Ι	0	_注1
	22)潮速(調官では飲助コノクリート201剤室)	I)		I	防潮扉	I	0	1世
	防潮堤 (鉄筋コンクリート防潮壁)	Ι	0	_ ^{注1}	-	防潮扉	-	0	_注1
	防潮堤(鋼製防護壁)	Ι	0	一注1	Ι	1	I	I	I
	鉄筋コンクリート防潮壁(放水路エリア)	Ι	0	_ ^{注1}	-	放水路ゲート	-	0	一注1
	常設代替高圧電源装置置場	(((軽油貯蔵タンク	0	Ι	0
	(西側淡水貯水設備)	2	I))	常設代替高圧電源装置他	I	Ι	0
	常設代替高圧電源装置用カルバート(トンネル部)					軽油移送配管	0	I	0
	常設代替高圧電源装置用カルバート(立坑部)	0	I	Ι	0				
	常設代替高圧電源装置用カルバート(カルバート部)					常設代替高圧電源装置電路	I	I	0
	代替淡水貯槽	Ι	Ι	0	-				
	常設低圧代替注水系ポンプ室	Ι	Ι	Ι	0	常設低圧代替注水系ポンプ	I	Ι	0
	常設低圧代替注水系配管カルバート	Ι	Ι	Ι	0	常設低圧代替注水系配管	I	Ι	0
	緊急用海水ボンプピット	Ι	Ι	0	0	緊急用海水ポンプ	I	Ι	0
	格納容器圧力逃がし装置用配管カルバート	I	I	I	0	格納容器圧力逃がし装置用配管	I	I	0
策。	緊急用海水取水管	Ι	Ι	0	Ι	-	I	Ι	I
っ争	SA用海水ピット	I	I	0	I	1	I	Ι	I
	海水引込み管	I	I	0	I	I	I	I	I
	SA用海水ピット取水塔	I	I	0	I	I	I	I	I
	緊急時対策所用発電機燃料油貯蔵タンク基礎(A, B)	I	I	I	0	緊急時対策所用発電機燃料油貯蔵タンク (A, B)	I	I	0
	可搬型設備用軽油タンク基礎(西側)	I	I	I	0	可搬型設備用軽油タンク(西側)	I	I	0
	可搬型設備用軽油タンク基礎(南側)	I	I	I	0	可搬型設備用軽油タンク(南側)	I	I	0

常設SA設備 : 常設耐震重要重大事故防止設備又は常設重大事故緩和設備 常設SA施設 : 常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 耐震 : 耐震重要施設(津波防護施設,浸水防止設備,津波監視設備る除く) 津波 : 津波防護施設,浸水防止設備,津波監視設備

			新面選定 <i>0</i>	の基本方針	
	名 称	A: 構造形状、周辺の地質構造等 の条件が比較的単純であり、 耐震評価上厳しい断面が定性 的に定まるもの	B: 比較的長いトンネル又は鋼管であり、複数個所にて一次元 波動論等による地震応答解析 を実施し、耐震評価上厳しい 断面を選定するもの	<u> </u>	二、「本学校会会」、「「本学校会会」」、「本学校会会」、「本学校会会」、「本学校会会」、「「本学校会会」、「「「「「一」、「「一」、「一」、「一」、「一」、「一」、「一」、「「一」、「「「」、「「」、
	取水構造物				0
牵	屋外二重管				0
01.8	貯留堰				0
∎ł	防潮堤(鋼管抗鉄筋コンクリート防潮壁)				
-	防潮堤(鉄筋コンクリート防潮壁)				0
	防潮堤(鋼製防護壁)				
-	鉄筋コンクリート防潮壁(放水路エリア)	0			
-	常設代替高圧電源装置置場	0			
	常設代替高圧電源装置用カルバート (トンネル,立坑,カルバート)	〇 (立坑, カルバート)	0 (トンネル)		
	代替淡水貯槽	0			
-	常設低圧代替注水系ポンプ室	0			
-	常設低圧代替注水系配管カルバート	0			
-	緊急用海水ポンプピット	0			
	格納容器圧力逃がし装置用配管カルバート			0	0
ta⊵ o	緊急用海水取水管		0		
o łmł	SA用海水ピット	0			
	海水引込み管		0		
	SA用海水ピット取水塔	0			
	緊急時対策所用発電機燃料油貯蔵タンク基礎 (A, B)	0			
-	可搬型設備用軽油タンク基礎(西側)	0			
-	可搬型設備用軽油タンク基礎(南側)	0			

第2表 屋外重要土木構造物等の断面選定の考え方

4条--別添6-4

第1図 全体配置図
- 2. 屋外重要土木構造物の耐震評価における断面選定の考え方
- 2.1 各施設の配置

本章では屋外重要土木構造物である,取水構造物,屋外二重管,常設代替 高圧電源装置置場及び常設代替高圧電源装置用カルバート,津波防護施設で ある防潮堤(放水路エリアを含む)及び貯留堰の断面選定の考え方を示す。

第2.1-1図に屋外重要土木構造物及び津波防護施設の平面配置図を示す。

第2.1-1図 屋外重要土木構造物及び津波防護施設の平面配置図

2.2 取水構造物の断面選定の考え方

取水構造物の平面図を第2.2-1図に,縦断面図を第2.2-2図に,横断面 図を第2.2-3図に示す。

取水構造物は、Sクラス機器である残留熱除去系海水ポンプ,非常用ディ ーゼル発電機用海水ポンプ等の間接支持機能を有する。取水構造物は非常用 取水設備であり,通水性能及び貯水性能が要求される。

取水構造物は, 延長約 56m, 幅約 43m, 高さ約 12m の鉄筋コンクリート造の地中構造物であり, 取水方向に対して複数の断面形状を示すが, 基本的には取水路は8連のラーメン構造にて, 取水ピットは5連のラーメン構造にて 構成され, 杭を介して十分な支持性能を有する岩盤に設置される。

取水構造物の縦断方向(通水方向)は、加振方向と平行に配置される側壁 又は隔壁を耐震設計上見込むことができるため、強軸方向となる。一方、横 断方向(通水方向に対し直交する方向)は、通水機能を確保するため、加振 方向と平行に配置される構造部材が少ないことから、弱軸方向となる。

耐震評価では,構造の安全性に支配的な弱軸方向である横断方向を評価対 象の断面の方向とする。

取水路である8連のボックスカルバート構造の区間(以下,「取水路区 間」という。)においては, 頂版には取水方向に概ね規則的に開口が存在す る。このため, 耐震評価においては, 同区間の取水方向全長で開口を含めた 平均的な剛性及び上載荷重を考慮した断面を設定する。

取水構造物は,上述のとおり取水方向に対し複数の断面形状を示すこと, 杭による支持形式であることから,周辺の地質構造,隣接する構造物の状況 を踏まえ,杭への影響についても考慮し,上述の断面を含めた複数の断面を 耐震評価候補断面として整理し,耐震安全上最も厳しくなる断面にて基準地 震動 S_sによる耐震評価を実施する。

4条一別添6-7

なお,取水ピットである5連のボックスカルバート形状の区間(以下, 「取水ピット区間」という。)においては,循環水ポンプ,残留熱除去系海 水ポンプ等の非常用ポンプなどの重量物が設置される。このため,機器・配 管系を評価する床応答の観点から,機器への影響を踏まえ,開口を含めた平 均的な剛性及び上載荷重を考慮した断面を選定し,地震応答解析を実施す る。

第2.2-1 図 取水構造物 平面図

第2.2-2 図 取水構造物 縦断面図 (A-A断面)

第2.2-3(1) 図 取水構造物 横断面図(B-B断面:取水路)

第2.2-3(2)図 取水構造物 横断面図(C-C断面:取水ピット)

2.3 屋外二重管の断面選定の考え方

屋外二重管は, Sクラス機器である残留熱除去系海水系配管, 非常用ディ ーゼル発電機用海水系配管等の間接支持機能を有する。

屋外二重管は,延長約215m,内径2.0m及び1.8mの2本の鋼管の地中構造物である。構造物直下には液状化検討対象層であるAs層,Ag1層及びAg2層が分布している。なお,指針改訂に伴う耐震裕度向上工事として,平成21年にAg2層を対象とした地盤改良を実施している。

設置許可基準規則第3条第1項への適合性の観点から,本構造物は杭等を 介して岩盤で支持する構造とする。

屋外二重管の平面図を第2.3-1図に,縦断面図を第2.3-2図に,横断図 を第2.3-3図に示す。

主な範囲においては,屋外二重管の直下に沈下防止を目的とした鋼製粱を 設置して,鋼管杭を介して岩盤で支持させる。また,原子炉建屋近傍で,移 設不可能な既設構造物(排気筒基礎等)や埋設物との干渉によって鋼管杭の 打設が困難な箇所については,屋外二重管直下を地盤改良(セメント固化工 法等)することにより補強する地盤に支持させる検討を行う。屋外二重管の 基礎構造概要図を第2.3-4 図に示す。

屋外二重管のうち二重管部分は管軸方向に対して一様の断面形状を示す線 状の構造物であり、横断方向(管周方向)が弱軸方向である。また、一般的 な地中埋設管路の設計では管軸方向が弱軸として設計されることを考慮し、 管軸方向断面についても評価対象とする。なお、延長上の複数箇所に可とう 管を設置することから、管軸方向の評価においては、可とう管の配置を踏ま えた検討を実施する。

屋外二重管の耐震評価では、上述の構造的特徴があること、周辺の地盤構 造、隣接する構造物の状況を踏まえ、可とう管及び杭基礎部分への影響につ

いても考慮し,耐震安全上最も厳しくなる断面にて基準地震動 S_sによる耐 震評価を実施する。

また,屋外二重管には残留熱除去系海水系配管,非常用ディーゼル発電機 用海水系配管等が設置されることから,これら配管系への影響も踏まえた断 面を選定し,地震応答解析を実施する。

第2.3-1 図 屋外二重管 平面図

第2.3-2図 屋外二重管 縦断面図 (A-A断面)

第2.3-3 図 屋外二重管 横断面図(B-B断面)

第2.3-4(1) 図 基礎構造概要図(断面図)

第2.3-4(2) 基礎構造概要図(平面図)

2.4 貯留堰の断面選定の考え方

貯留堰の平面図を第2.4-1図に、断面図を第2.4-2図に示す。

貯留堰は非常用取水設備であり, 貯水性能が要求される。

貯留堰は,延長約110mの海底面から約2m突出した鋼管矢板を連結した構造物であり,取水口護岸に接続する。鋼管矢板は十分な支持性能を有する岩盤に直接設置される。

貯留堰の縦断方向(軸方向)は,加振方向に隣接する鋼管矢板を耐震設計 上見込むことができるため,強軸方向となる。一方,横断方向(軸方向に対 して直交する方向)は,加振方向に隣接する鋼管矢板がないことから,弱軸 方向となる。

貯留堰は,上述のとおり縦断方向に対し一様な設備形状であるが,鋼管矢板の周辺に第四系地盤が分布していることから,耐震評価では,周辺地盤の 影響が支配的と考えられる。

S-1 断面から,貯留堰の設置位置については,北に向かって堆積層の基底面が深くなっていることから,貯留堰の本体に着目した検討断面として, EW-2 断面を選定する。また,護岸との接続部については,北側の接続部に着目した検討断面として, EW-1 断面及び NS-1 断面を選定する。

今後,上述の断面を含めた複数の断面を耐震評価候補断面として整理し, 耐震安全上最も厳しくなる断面にて基準地震動S_sによる耐震評価を実施す る。

第2.4-1 図 貯留堰 平面図

第2.4-2(1)図 貯留堰 断面図(EW-1断面)

第2.4-2(2)図 貯留堰 断面図(EW-2断面)

第2.4-2(3) 図 貯留堰 断面図 (NS-1 断面)

2.5 防潮堤の断面選定の考え方

防潮堤の平面図を第2.5-1 図に示す。防潮堤は,鋼管杭鉄筋コンクリー ト防潮壁,鋼製防護壁及び鉄筋コンクリート防潮壁に区分され,総延長は約 2.3km,天端高さはT.P.+20m(敷地前面東側)又はT.P+18m(敷地側面北 側及び敷地側面南側)からなる。以下に,それぞれの断面選定の考え方を示 す。

第2.5-1 図 防潮堤 平面図

2.5.1 鋼管杭鉄筋コンクリート防潮壁

鋼管杭鉄筋コンクリート防潮壁の平面図を第2.5-2図に,正面図 及び断 面図を第2.5-3図に,横断面図を第2.5-4~5図に示す。

鋼管杭鉄筋コンクリート防潮壁は,延長約 2km,直径 2~2.5m の複数の鋼 管杭を鉄筋コンクリートで巻き立てた鉄筋コンクリート造の防潮壁を1つの ブロックとした構造物であり,鋼管杭を介して十分な支持性能を有する岩盤 に設置される。

鋼管杭鉄筋コンクリート防潮壁の縦断方向は,加振方向と平行に配置され る躯体及び杭基礎を耐震設計上見込むことができるため強軸方向となる。一 方,横断方向は,加振方向と平行に躯体及び杭基礎が配置されないことから, 弱軸方向となる。

耐震評価では、構造物の構造的特徴や周辺の地盤条件も考慮して、構造の 安全性に支配的な弱軸方向である横断方向の断面について、基準地震動 S_s による耐震評価を実施する。

なお、鋼管杭鉄筋コンクリート防潮壁は敷地の全域に渡り設置することから、敷地の地質・地質構造の特徴や遡上津波の特性等を踏まえ、それらを網 羅的に考慮した検討断面を第2.5-1表、第2.5-6図、第2.5-2表、第2.5 -7図に基づき選定した(①断面~⑥断面)。

第2.5-2図 鋼管杭鉄筋コンクリート防潮壁 平面図

第2.5-3 図 鋼管杭鉄筋コンクリート防潮壁 正面図及び断面図

第2.5-4図 鋼管杭鉄筋コンクリート防潮壁 横断面図(③断面)

第2.5-5図 鋼管杭鉄筋コンクリート防潮壁 横断面図(⑥断面)

検討	地質的特徴	区間名	治守理由
断面		(防潮堤天端高さ)	进行进口 进行进行
くは④断面 もし	岩盤が傾斜す る。	岩盤傾斜区間	岩盤の傾斜角が最も大きい
		(T.P.+18m もしくは	箇所
		T.P.+20m)	
② 断 面	岩盤標高が低い (第四系の層厚・ が厚い)	I区間	粘土層が最も厚く堆積する
		$T \to 10m$	箇所(区間内で第四系の層
		(1. F. +10m)	厚はほぼ一定)
③ 断 面		Ⅱ区間 (T.P.+20m)	全区間で防潮壁の壁高さが
			最も高い箇所(全区間で津
			波荷重が最も大きい箇所)
⑤ 断 面		Ⅲ区間 (T.P.+20m)	当該区間で第四系の層厚が
	岩盤標高が高い		最も厚い箇所
	(第四系の層厚		
 ⑥ 断 面	が薄い) 更新統が存在す		当該区間で第四系の層層が
		Ⅳ区間	
	る。	(T.P.+18m)	収 U/子 V · 回 <i>门</i>

第2.5-1表 検討断面選定理由

第2.5-6図 鋼管杭鉄筋コンクリート防潮壁の区間割図

凡例	区間	鋼管杭径	第四系の層厚(岩盤の出現深さ)
	岩盤傾斜 区間	φ2,000 or φ2,500	薄い~厚い(傾斜)
	I 区間	φ 2,000	一定の厚さで薄い(浅い)
	Ⅱ区間	φ2,500	一定の厚さで薄い(浅い)
	Ⅲ区間	φ 2, 500	一定の厚さで厚い(深い)
	IV区間	φ 2,000	一定の厚さで厚い(深い)

第2.5-2表 区間別の第四系層厚

第2.5-7図 検討断面位置図

2.5.2 鋼製防護壁

鋼製防護壁の平面図を第2.5-8 図に,正面図を第2.5-9 図に,断面図を 第2.5-10 図に示す。

鋼製防護壁は,幅約81m,高さ約17m,奥行約5mの鋼製の構造物であり, 幅約50mの取水構造物を横断し,取水構造物の側方の地中連続壁基礎を介し て十分な支持性能を有する岩盤に設置される。鋼製防護壁周辺の地盤は新第 三系の岩盤上面が南側から北側に傾斜し,その上部に第四系の地層が堆積し ているため,第四系の地層は北側で厚く分布している。

鋼製防護壁は,上部工では相対的に断面係数が大きい縦断方向が強軸方向 となる。一方,鋼製防護壁の基礎は取水構造物を挟んで南北に分離されてお り,平面形状が正方形であり,構造全体としての挙動を考慮すると縦断方向 を強軸方向とは見なせない。また,北側と南側で基礎の延長や地盤条件が異 なるため,複雑な挙動が考えられる。

耐震評価では、構造物の構造的特徴や周辺の地盤条件を考慮して、縦断方向1 断面及び南北基礎の横断方向(堤軸に対して直交する方向)2 断面について、基準地震動Ssによる耐震評価を実施する。

第2.5-8 図 鋼製防護壁 平面図

第2.5-9図 鋼製防護壁 正面図 (A-A断面)

第2.5-10(1)図 鋼製防護壁 断面図(B-B断面)

第2.5-10(2)図 鋼製防護壁 断面図(C-C断面)

2.5.3 鉄筋コンクリート防潮壁(放水路エリアを除く)

鉄筋コンクリート防潮壁(放水路エリアを除く)の平面図を第 2.5-11 図に、断面図を第 2.5-12 図に示す。

鉄筋コンクリート防潮壁は,幅 11m~20m 程度,高さ約 22m,奥行約 10mの 鉄筋コンクリート造の構造物であり,ブロック間は止水ジョイントを施した 構造である。鉄筋コンクリート防潮壁は,地中連続壁基礎を介して十分な支 持性能を有する岩盤に設置される。

鉄筋コンクリート防潮壁の縦断方向は,加振方向と平行に配置される躯体 を耐震設計上見込むことができるため強軸方向となる。横断方向(堤軸に対 して直交する方向)は,加振方向と平行に躯体が配置されないことから,弱 軸方向となる。一方,地中連続壁基礎に着目すると防潮堤の縦断方向は加振 方向と平行に配置される部材が少ないことから弱軸方向となる。

鉄筋コンクリート防潮壁周辺の地盤は新第三系の岩盤上面が南側から北側 に傾斜し,その上部に第四系の地層が堆積しているため,第四系の地層は北 側で厚く分布している。第四系の地層は,南側の東西方向では起伏に富み, 北側の東西方向はほぼ水平に層をなしている。

耐震評価では、構造物の構造的特徴や周辺の地盤条件を考慮して、上部工 については構造の安全性に支配的な弱軸方向である横断方向の4断面、基礎 部については構造の安全性に支配的な弱軸方向である縦断方向の4断面を耐 震評価候補断面として整理し、耐震安全上もっとも厳しくなる断面にて基準 地震動Ssによる耐震評価を実施する。

第2.5-11図 鉄筋コンクリート防潮壁 平面図

第2.5-12(1)図 鉄筋コンクリート防潮壁 断面図(D-D断面)

4条--別添6-29

第2.5-12(2)図 鉄筋コンクリート防潮壁 断面図(E-E断面)

第2.5-12(3)図 鉄筋コンクリート防潮壁 断面図(F-F断面)

第2.5-12(4)図 鉄筋コンクリート防潮壁 断面図(G-G断面)

第2.5-12(5)図 鉄筋コンクリート防潮壁 断面図(H-H断面)

4条一別添6-31

第2.5-12(7)図 鉄筋コンクリート防潮壁 断面図(J-J断面)

第2.5-12(8)図 鉄筋コンクリート防潮壁 断面図(K-K断面)

2.5.4 鉄筋コンクリート防潮壁(放水路エリア)

鉄筋コンクリート防潮壁のうち放水路横断部の平面図を第 2.5-13 図に, 断面図を第 2.5-14 図に示す。

鉄筋コンクリート防潮壁は,縦断方向約 20m,高さ約 17m,横断方向約 23m の鉄筋コンクリート造の構造物であり,放水路,地中連続壁基礎を介して十 分な支持性能を有する岩盤に設置される。

鉄筋コンクリート防潮壁の縦断方向では,防潮壁部は加振方向と平行に配置される躯体を耐震設計上見込むことができるため強軸方向となり,防水路部及び放水路ゲート部は加振方向と平行に躯体が配置されないことから,弱軸方向となる。

鉄筋コンクリート防潮壁周辺の第四系の地層はほぼ水平な層をなし,Ac 層 が厚く分布する。

耐震評価では、構造物の構造的特徴や周辺の地盤条件を考慮して、縦断方向2 断面及び横断方向1 断面について、基準地震動Ssによる耐震評価を実施する。縦断方向の断面位置は防潮壁部と放水路ゲート部に設定する。横断方向の断面位置は構造物の中心線位置とする。

第2.5-14(1)図 鉄筋コンクリート防潮壁(放水路エリア)

断面図(A-A断面)(防潮壁部)

第2.5-14(2)図 鉄筋コンクリート防潮壁(放水路エリア)断面図 (B-B断面)(放水路ゲート部)

第2.5-14(3)図 鉄筋コンクリート防潮壁(放水路エリア)断面図 (C-C断面)

2.6 常設代替高圧電源装置置場の断面選定の考え方

常設代替高圧電源装置置場の平面図を第2.6-1図に、断面図を第2.6-2図に示す。

常設代替高圧電源装置置場は常設重大事故等対処施設である常設代替高圧 電源装置等を内包すると共に,Sクラス施設である軽油貯蔵タンクを間接支 持する機能を有する。また,施設の下部を,常設代替高圧電源装置等である 西側淡水貯水設備として使用する。

常設代替高圧電源装置置場は,幅約46m(南北方向)×約56m(東西方 向),高さ約47mの多層ラーメン構造の鉄筋コンクリート造の地中構造物で あり,十分な支持性能を有する岩盤に直接設置される。

常設代替高圧電源装置置場では内包する常設代替高圧電源装置や間接支持 するSクラス施設が縦断方向(東西方向)に一様に設置されているため、機 器・配管の設置位置による影響を考慮する必要はない。

常設代替高圧電源装置置場の東西方向は加振と平行に配置される側壁又は 隔壁を耐震設計上見込むことが出来るため,強軸方向となる。一方,南北方 向は,設備の配置などから加振方向と平行に配置される構造部材が少ないこ とから弱軸方向となる。

常設代替高圧電源装置置場は,弱軸方向にほぼ一様な構造であること,周辺の地質構造は施設の縦断方向について一様であることから,耐震評価では,構造の安全性に支配的な弱軸方向である南北方向の断面を選定し,基準 地震動S_sによる耐震評価を実施する。

第2.6-1 図 常設代替高圧電源装置置場 平面図

第2.6-2(1)図 常設代替高圧電源装置置場 断面図(東西断面)

第2.6-2(2)図 常設代替高圧電源装置置場 断面図(南北断面)

2.7 常設代替高圧電源装置用カルバートの断面選定の考え方

常設代替高圧電源装置用カルバートの平面図を第2.7-1図に示す。

常設代替高圧電源装置用カルバートは,鉄筋コンクリート造の地中構造物 であり,トンネル部,立坑部及びカルバート部に区分される。以下にそれぞ れの断面選定の考え方を示す。

第2.7-1図 常設代替高圧電源装置用カルバート 平面図

2.7.1 トンネル部

常設代替高圧電源装置用カルバートのうちトンネル部の縦断面図を第2.7 -2 図に,横断面図を第2.7-3 図に示す。

常設代替高圧電源装置用カルバート(トンネル部,立坑部,カルバート 部)は常設重大事故等対処施設である常設代替高圧電源装置電路等を内包す ると共に,Sクラス施設である軽油移送配管を間接支持する機能を有する。

トンネル部は,延長約150m,内径約5mの鉄筋コンクリート造の地中構造物であり,トンネルの軸方向(配管方向)に対して内空寸法が一様で,十分な支持性能を有する岩盤に設置される。トンネル部は全線にわたり一定区間でブロック割されている。

トンネルの縦断方向(軸方向)は、加振方向と平行に配置される側壁を耐 震設計上見込むことができるため、強軸方向となる。また、前述のとおりト ンネル部は全線にわたり一定区間でブロック割されており、トンネル縦断方 向の応力は区間毎に解放されると考えられる。縦断方向のブロック毎の相対 変位に対しては、岩盤に設置されているため小さいと考えられる。一方、横 断方向(軸方向に対し直交する方向)は、配管が一様に配置されるため、加 振方向と平行に配置される構造部材がないことから、弱軸方向となる。

トンネル部は、全長を岩盤に設置されており、周辺の地盤が構造物に与え る影響はどの断面でも大きな差はなく、上載荷重の影響が支配的であると考 えられることから、耐震評価では、構造の安全性に支配的な弱軸方向である 横断方向(配管方向と直交する断面)のうち、土被りが最も大きくなるA-A断面を選定し、基準地震動S_sによる耐震評価を実施する。なお、周辺地 質状況の相違による影響を確認するため、トンネル縦断方向における複数地 点にて一次元波動論における地震応答解析を実施し、トンネルの上端と下端 の相対変位を確認する。

第2.7-2図 常設代替高圧電源装置用カルバート(トンネル部)縦断面図

第2.7-3図 常設代替高圧電源装置用カルバート(トンネル部)横断面図

2.7.2 立坑部

常設代替高圧電源装置用カルバートのうち立坑部の断面図を第2.7-4図に示す。

立坑部は,幅約15m(東西方向)×約11m(南北方向),高さ約39mの多層 ラーメン構造の鉄筋コンクリート造の地中構造物であり,十分な支持性能を 有する岩盤に直接設置される。

立坑部は,角筒形の鉄筋コンクリート構造物であり,互いに直交する荷重 はそれぞれ異なる構造部材で受け持つ設計とすることから,耐震評価では, 立坑部の南北方向及び東西方向の2断面を選定し,基準地震動Ssによる耐 震評価を実施する。

第2.7-4(1)図 常設代替高圧電源装置用カルバート(立坑部)断面図 (東西断面)

第2.7-4(2)図 常設代替高圧電源装置用カルバート(立坑部)断面図 (南北断面)

2.7.3 カルバート部

常設代替高圧電源装置用カルバートのうちカルバート部の平面図を第2.7 -5 図に,断面図を第2.7-6 図に示す。

カルバート部は,延長約29m,内空幅約12m,内空高さ約3m及び延長約 6m,内空幅約2m,内空高さ約3mの鉄筋コンクリート造の地中構造物であ り,カルバートの軸方向(配管方向)に対して内空寸法がほぼ一様で,杭を 介して十分な支持性能を有する岩盤に設置される。

カルバートの縦断方向(軸方向)は、加振方向と平行に配置される側壁を 耐震設計上見込むことができるため、強軸方向となる。一方、横断方向(軸 方向に対し直交する方向)は、配管が一様に配置されるため、加振方向と平 行に配置される構造部材がないことから、弱軸方向となる。

耐震評価では、構造の安全性に支配的な弱軸方向である横断方向の断面 (配管方向と直交する断面)を選定し、基準地震動Ssによる耐震評価を実施する。

第2.7-5図 常設代替高圧電源装置用カルバート(カルバート部)平面図

第2.7-6 図 常設代替高圧電源装置用カルバート(カルバート部) 断面図(①-①'断面)

3. 常設重大事故等対処施設等の耐震評価における断面選定の考え方

3.1 各施設の配置

本章では常設重大事故等対処施設である,代替淡水貯槽,常設低圧代替注 水系ポンプ室,常設低圧代替注水系配管カルバート,緊急用海水ポンプピッ ト,格納容器圧力逃がし装置用配管カルバート,緊急用海水取水管,SA用 海水ピット,海水引込み管,SA用海水ピット取水塔,緊急時対策所用発電 機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク基礎の断面選定の考え 方を示す。各施設の平面配置図を第3.1-1 図に示す。

第3.1-1図 常設重大事故等対処施設の土木構造物 平面配置図

3.2 代替淡水貯槽の断面選定の考え方

代替淡水貯槽の平面図を第3.2-1図に、断面図を第3.2-2図に示す。

代替淡水貯槽は常設重大事故等対処施設である。

代替淡水貯槽は、内径約 20m、内空高さ約 22m の鉄筋コンクリート造の円 筒形の地中構造物であり、十分な支持性能を有する岩盤に直接設置される。

代替淡水貯槽は、円筒形の鉄筋コンクリート構造物であり、明確な弱軸方 向がないことから、東西及び南北方向の2断面を選定し、両者から得られた 地震力による断面力を組み合わせ、基準地震動Ssによる耐震評価を実施す る。

第3.2-1 図 代替淡水貯槽 平面図

第3.2-2(1) 図 代替淡水貯槽 断面図(東西断面)

3.3 常設低圧代替注水系ポンプ室の断面選定の考え方

常設低圧代替注水系ポンプ室の平面図を第3.3-1図に,断面図を第3.3-2図に示す。

常設低圧代替注水系ポンプ室は常設重大事故等対処施設であり,常設低圧 代替注水系ポンプ等を内包する。

常設低圧代替注水ポンプ室は,内空幅約11m(東西方向)×約7m(南北方 向),内空高さ約26mの多層ラーメン構造の鉄筋コンクリート造の地中構造 物であり,十分な支持性能を有する岩盤に直接設置される。また,代替淡水 貯槽と接続する配管を支持する内空幅約2m,内空高さ約2mの張出し部を2 箇所有する。

常設低圧代替注水系ポンプ室は,角筒形の鉄筋コンクリート構造物であ り,互いに直交する荷重はそれぞれ異なる構造部材で受け持つ設計とするこ とから,耐震評価では,常設低圧代替注水系ポンプ室の東西方向及び南北方 向の2断面を選定し,基準地震動Ssによる耐震評価を実施する。また,南 北断面においては,東西方向の幅で張出し部を含めた剛性及び上載荷重を考 慮する。

第3.3-1図 常設低圧代替注水系ポンプ室 平面図

第3.3-2(1)図 常設低圧代替注水系ポンプ室 断面図(東西断面)

第3.3-2(2)図 常設低圧代替注水系ポンプ室 断面図(南北断面)

3.4 常設低圧代替注水系配管カルバートの断面選定の考え方

常設低圧代替注水系配管カルバートの平面図を第3.4-1図に,断面図を 第3.4-2図に示す。

常設低圧代替注水系配管カルバートは常設重大事故等対処施設であり、常設低圧代替注水系配管を内包する。

常設低圧代替注水系配管カルバートは,延長約22m,内空幅約2m,内空高 さ約2mの鉄筋コンクリート造の地中構造物であり,軸方向(配管方向)に 対して内空寸法が一様で,人工岩盤を介して十分な支持性能を有する岩盤に 設置される。

常設低圧代替注水系配管カルバートの縦断方向(軸方向)は,加振方向と 平行に配置される側壁を耐震設計上見込むことができるため,強軸方向とな る。一方,横断方向(軸方向に対し直交する方向)は,配管が配置されるた め,加振方向と平行に配置される構造部材がないことから,弱軸方向とな る。

常設低圧代替注水系配管カルバートは全区間同一断面であり、周辺地盤も 同じ構成であることから、耐震評価では、構造の安全性に支配的な弱軸方向 である横断方向の断面を選定し、基準地震動Ssによる耐震評価を実施す る。

第3.4-1図 常設低圧代替注水系配管カルバート 平面図

第3.4-2図 常設低圧代替注水系配管カルバート 断面図(東西断面)

4条--別添6-54

3.5 緊急用海水ポンプピットの断面選定の考え方

緊急用海水ポンプピットの平面図を第 3.5-1 図に, 断面図を第 3.5-2 図 に示す。

緊急用海水ポンプピットは常設重大事故等対処施設であり、緊急用

海水ポンプ等を内包する。

SA用海水ポンプピットは非常用取水設備であり,通水性能及び貯水性能が要求される。

緊急用海水ポンプピットは,幅約 12m (東西方向)×約 12m (南北方向), 高さ約 36m の多層ラーメン構造の鉄筋コンクリート造の地中構造物であり, 十分な支持性能を有する岩盤に直接設置される。また,原子炉建屋内へ接続 する配管を間接支持する内空幅約 3m,内空高さ約 2m の張出し部を有する。

緊急用海水ポンプピットは,角筒形の鉄筋コンクリート構造物であり,互 いに直交する荷重はそれぞれ異なる構造部材で受け持つ設計とすることか ら,耐震評価では,緊急用海水ポンプピットの東西方向及び南北方向の2断 面を選定し,基準地震動Ssによる耐震評価を実施する。また,東西断面に おいては,南北方向の幅で張出し部を含めた剛性及び上載荷重を考慮する。

第3.5-1図 緊急用海水ポンプピット 平面図

第3.5-2(1)図 緊急用海水ポンプピット 断面図(東西断面)

第3.5-2(2)図 緊急用海水ポンプピット 断面図(南北断面)

3.6 格納容器圧力逃がし装置用配管カルバートの断面選定の考え方

格納容器圧力逃がし装置用配管カルバートの平面図を第3.6-1 図に,縦 断面図を第3.6-2 図に,横断面図を第3.6-3 図に示す。

格納容器圧力逃がし装置用配管カルバートは常設重大事故等対処施設であ り,格納容器圧力逃がし装置用配管を内包する。

格納容器圧力逃がし装置用配管カルバートは,延長約37m,内空幅約3m (一部約5m及び約9m),内空高さ約8mの鉄筋コンクリート造の地中構造物 であり,人工岩盤を介して十分な支持性能を有する岩盤に設置される。

格納容器圧力逃がし装置用配管カルバートの縦断方向(軸方向)は,加振 方向と平行に配置される側壁を耐震設計上見込むことができるため,強軸方 向となる。一方,横断方向(軸方向に対し直交する方向)は,配管が一様に 配置されるため,加振方向と平行に配置される構造部材が少ないことから, 弱軸方向となる。

格納容器圧力逃がし装置用配管カルバート周辺の地質構造は縦断方向に対 して一様であるが,格納容器圧力逃がし装置用配管カルバートは縦断方向に 対して複数の断面形状を示すことから,上述の断面を含めた複数の断面を耐 震評価候補断面として整理し,耐震安全上最も厳しくなる断面にて基準地震 動S_sによる耐震評価を実施する。

第3.6-1図 格納容器圧力逃がし装置用配管カルバート 平面図

第3.6-2図 格納容器圧力逃がし装置用配管カルバート 縦断面図

(A-A断面)

第3.6-3(1)図 格納容器圧力逃がし装置用配管カルバート 横断面図 (B-B断面)

第3.6-3(2)図 格納容器圧力逃がし装置用配管カルバート 横断面図 (C-C断面)

3.7 緊急用海水取水管の断面選定の考え方

緊急用海水取水管の平面図を第3.7-1 図に,縦断面図を第3.7-2 図に, 横断面図を第3.7-3 図に示す。

緊急用海水取水管は常設重大事故等対処施設である。また,非常用取水 設備であり,通水性能が要求される。

緊急用海水取水管は、SA用海水ピットと緊急用海水ポンプピットを接続する延長約168mで内径1.2mの鋼管の地中構造物であり、十分な支持性能を有する岩盤に設置される。

緊急用海水取水管は管軸方向に対して一様の断面形状を示す線状の構造 物であり、横断方向(管周方向)が弱軸方向である。また、一般的な地中 埋設管路の設計では管軸方向を弱軸として設計されることを考慮し、管軸 方向断面についても評価対象断面とする。なお、延長上の複数箇所に可と う管を設置することから、管軸方向の評価においては、可とう管の配置を 踏まえた検討を実施する。

緊急用海水取水管は,全長を岩盤に設置されており,周辺の地盤が構造 物に与える影響はどの断面でも大きな差はなく,上載荷重の影響が支配的 であると考えられることから,耐震評価では,構造の安全性に支配的な弱 軸方向である横断方向のうち,土被りが最も大きくなるA-A断面を選定 し,基準地震動S_sによる耐震評価を実施する。

なお,周辺地質状況の相違による影響を確認するため,管軸方向におけ る複数地点にて一次元波動論における地震応答解析を実施し,管路の上端 と下端の相対変位を確認する。

第3.7-2 図 緊急用海水取水管 縦断面図

第3.7-3 図 緊急用海水取水管 横断面図 (A-A断面)

3.8 SA用海水ピットの断面選定の考え方

SA用海水ピットの平面図を第3.8-1図に,断面図を第3.8-2図に示す。

SA用海水ピットは常設重大事故等対処施設である。また,非常用取水設備であり,通水性能及び貯水性能が要求される。

SA用海水ピットは、内径約10m、内空高さ約28mの円筒形の鉄筋コンク リート造の地中構造物であり、十分な支持性能を有する岩盤に直接設置され る。また、SA用海水ピットは、十分な支持性能を有する地盤内で海水引込 み管及び緊急用海水取水管が接続する構造で、双方の管路はSA用海水ピッ トへ直交して接続される。

SA用海水ピットは、円筒形の鉄筋コンクリート構造物であり、明確な弱 軸方向がないことから、SA用海水ピットに接続する海水引込み管及び緊急 用海水取水管に着目し、直交する両管路の縦断方向の2断面を選定し、両者 から得られた地震力による断面力を組み合わせ、基準地震動Ssによる耐震 評価を実施する。

第3.8-1図 SA用海水ピット 平面図

第3.8-2(1)図 SA用海水ピット 断面図(①-①断面)

第3.8-2(2)図 SA用海水ピット 断面図(2-2)断面)

3.9 海水引込み管の断面選定の考え方

海水引込み管の平面図を第3.9-1図に,縦断面図を第3.9-2図に,横断 面図を第3.9-3図に示す。

海水引込み管は常設重大事故等対処施設である。また,非常用取水設備で あり,通水性能が要求される。

海水引込み管は、SA用海水ピット取水塔とSA用海水ピットを接続する 延長約 154m, 内径 1.2m の鋼管の地中構造物であり、十分な支持性能を有する 岩盤に設置される。

海水引込み管は管軸方向に対して一様の断面形状を示す線状の構造物であ り、横断方向(管周方向)が弱軸方向である。また、一般的な地中埋設管路 の設計では管軸方向を弱軸として設計されることを考慮し、管軸方向断面に ついても評価対象断面とする。なお、延長上の複数箇所に可とう管を設置す ることから、管軸方向の評価においては、可とう管の配置を踏まえた検討を 実施する。

海水引込み管は、全長とも岩盤に設置されており、周辺の地盤が構造物に 与える影響はどの断面でも大きな差はなく、上載荷重の影響が支配的である と考えられることから、耐震評価では、構造の安全性に支配的な弱軸方向で ある横断方向のうち、土被りが最も大きくなるA-A断面を選定し、基準地 震動S₅による耐震評価を実施する。

なお,周辺地質状況の相違による影響を確認するため,管軸方向における 複数地点にて一次元波動論における地震応答解析を実施し,管路の上端と下 端の相対変位を確認する。

第3.9-1図 海水引込み管 平面図

第3.9-2図 海水引込み管 縦断面図

第3.9-3 図 海水引込み管 横断面図 (A-A断面)

4条--別添6-68

3.10 SA用海水ピット取水塔の断面選定の考え方

SA用海水ピット取水塔の平面図を第3.10-1図に,断面図を第3.10-2 図に示す。

SA用海水ピット取水塔は常設重大事故等対処施設である。また,非常用 取水設備であり,通水性能が要求される。

SA用海水ピット取水塔は、内径約4m、内空高さ約18mの円筒形の鉄筋コ ンクリート造の地中構造物であり、十分な支持性能を有する岩盤に直接設置 される。また、SA用海水ピット取水塔は、十分な支持性能を有する地盤内 で海水引込み管が接続する構造で、管路はSA用海水ピット取水塔へ直交し て接続される。

SA用海水ピット取水塔は、円筒形の鉄筋コンクリート構造物であり明確 な弱軸方向がないことから、SA用海水ピット取水塔に接続される海水引込 み管に着目し、海水引込み管を縦断する断面とこれに直交する断面の2断面 を選定し、両者から得られた地震力による断面力を組み合わせ、基準地震動 S_sによる耐震評価を実施する。

第3.10-1図 SA用海水ピット取水塔 平面図

第3.10-2(2)図 SA用海水ピット取水塔 断面図(②-②断面)

4条一別添6-70

3.11 緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タン

ク基礎

緊急時対策所用発電機燃料油貯蔵タンク基礎の平面図を第3.11-1図に, 断面図を第3.11-2図に示す。また,可搬型設備用軽油タンク基礎の平面図 を第3.11-3図に,断面図を第3.11-4図に示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも常設重大事故等対処施設であり,対応するタンク(緊急時対 策所用発電機燃料油貯蔵タンク及び可搬型設備用軽油タンク)を内包する。

緊急時対策所用発電機燃料油貯蔵タンク基礎は内空幅約9m(タンク軸方 向)×約5m(タンク横断方向),内空高さ約4m,可搬型設備用軽油タンク基 礎は内空幅約11m(タンク軸方向)×約13m(タンク横断方向),内空高さ約 4mの鉄筋コンクリート造の地中構造物であり,杭を介して十分な支持性能を 有する岩盤に設置される。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも比較的単純な箱型構造物であり,縦断方向(タンクの軸方 向)にほぼ一様な断面である。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも内包するタンクが縦断方向に一様に設置されているため,機 器・配管の設置位置による影響を考慮する必要はない。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎の縦断方向は、加振方向と平行に配置される側壁又は隔壁を耐震設計上 見込むことができるため、強軸方向となる。一方、横断方向(タンクの軸方 向に対し直交する方向)は、タンクを格納するため、加振方向と平行に配置 される構造部材がないことから、弱軸方向となる。

耐震評価では、構造の安全性に支配的な弱軸方向である横断方向(タンク

4条一別添6-71

の軸方向に対し直交する方向)の断面を選定し,基準地震動 S_sによる耐震 評価を実施する。

第3.11-1図 緊急時対策所用発電機燃料油貯蔵タンク基礎 平面図

第3.11-2図 緊急時対策所用発電機燃料油貯蔵タンク基礎 断面図

第3.11-3図 可搬型設備用軽油タンク基礎 平面図

第3.11-4(1)図 可搬型設備用軽油タンク基礎(西側) 断面図

⁴条--別添6-74

第3.11-4図(2) 可搬型設備用軽油タンク基礎(南側) 断面図

別添-7

東海第二発電所

主要建屋の構造概要について (耐震)

主要建屋の構造概要について

1. はじめに

本資料は,東海第二発電所の既工認の認可を受けた主要建屋のうち,耐震 重要施設及びその間接支持構造物,常設耐震重要重大事故防止設備又は常設 重大事故緩和設備が設置される重大事故等対処施設並びにこれらの施設への 波及的影響防止のために評価を実施する建屋の構造と評価概要について纏め たものである。

なお、新設建屋については、工事計画認可申請図書にて記載する。

(1) 原子炉建屋

原子炉建屋は,地上6階,地下2階建で,平面が約67m(南北方向)×約67m(東西方向)の鉄筋コンクリート造(一部鉄骨造)の建物である。

最下階床面からの高さは約68 mで地上高さは約56 mである。

建物中央部には一次格納容器を囲む円型の一次遮蔽壁があり,その外側に 二次格納施設である原子炉建屋(以下,「原子炉棟」という。)の外壁及び 原子炉建屋付属棟(以下,「付属棟」という。)の外壁がある。

これらは原子炉建屋の主要な耐震壁を構成している。

これらの耐震壁間を床が一体に連絡し、全体として剛な構造としている。

原子炉建屋の基礎は、平面が約67m(南北方向)×約67m(東西方 向),厚さ約5mのべた基礎で、人工岩盤を介して、砂質泥岩である久米層 に岩着している。

二次格納施設である原子炉棟は耐震重要度分類Sクラスであり,弾性設計 用地震動S_dによる地震力又はSクラスに適用される静的地震力いずれか大 きい方の地震力に対しておおむね弾性状態に留まる範囲で耐えられる設計と する。また,基準地震動S_sに対しては,安全機能が保持できるように設計

4条--別添7-2
する。付属棟は耐震重要度分類Sクラスの設備の間接支持構造物であり、基準地震動Ssに対して、安全機能が保持できるように設計する。

(2) 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋は,地上1階建で平面が約52m(南北方向)×約 24m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造及び 鉄骨造)の建物であり,適切に配置された耐震壁で構成された剛な構造とし ている。

使用済燃料乾式貯蔵建屋の基礎は,平面が約60m(南北方向)×約33m (東西方向),厚さ約2.5m(一部約2.0m)で,鋼管杭を介して,砂質泥 岩である久米層に岩着している。

使用済燃料乾式貯蔵建屋は耐震重要度分類Cクラスの建屋であるが、基礎は、Sクラスの使用済燃料乾式貯蔵容器の間接支持構造物に該当するため、 基準地震動Ssに対して、安全機能が保持できるように設計する。

(3) タービン建屋

タービン建屋は,地上2階,地下1階建で,平面が約70m(南北方向) ×約105m(東西方向)の鉄筋コンクリート造(一部鉄骨造)の建物であ り,適切に配置された耐震壁で構成された剛な構造としている。

タービン建屋の基礎は、平面が約70m(南北方向)×約105m(東西方 向)、厚さ約1.9mで、杭及びケーソンを介して、砂質泥岩である久米層に 岩着している。

タービン建屋は耐震重要度分類Cクラスの建屋ではあるが, Bクラスの機 器を内包しているためBクラスに適用される静的地震力に対しておおむね弾 性状態に留まる範囲で耐えられるように設計されている。タービン建屋は原 子炉建屋に隣接しているため, 原子炉建屋への波及的影響評価を行う。

4条一別添7-3

(4) 廃棄物処理建屋

廃棄物処理建屋は,地上4階,地下3階建で,平面は約41m(南北方向) ×約69m(東西方向)の鉄筋コンクリート造の建物であり,適切に配置され た耐震壁で構成された剛な構造としている。

廃棄物処理建屋の基礎は、平面が約41m(南北方向)×約69m(東西方 向)、厚さ約2.5mのべた基礎で、人工岩盤を介して、砂質泥岩である久米 層に岩着している。

廃棄物処理建屋は耐震重要度分類Cクラスの建屋ではあるが、Bクラスの 機器を内包しているためBクラスに適用される静的地震力に対しておおむね 弾性状態に留まる範囲で耐えられるように設計されている。廃棄物処理建屋 は原子炉建屋に隣接しているため、原子炉建屋への波及的影響評価を行う。

(5) サービス建屋

サービス建屋は,地上3階建で平面が約40m(南北方向)×約33m(東 西方向)の鉄筋コンクリート造(一部鉄骨造)の建物である。

サービス建屋の基礎は,鉄筋コンクリート杭を介して,一部を除いて砂質 泥岩である久米層に岩着している。

サービス建屋は耐震重要度分類Cクラスの建屋であり,原子炉建屋に隣接 しているため,原子炉建屋への波及的影響評価を行う。

主要建屋の配置図を第1-1図に示す。また,各建屋の概略平面図及び断面図を第1-2図~第1-11図に示す。

第1-1図 主要建屋の配置図

(EL. -4.0 m)

第1-2図 原子炉建屋 概略平面図

4条--別添7-7

(EL. +8.3 m)

第1-4 図 使用済燃料乾式貯蔵建屋 概略平面図

(NS方向, A-A断面)

(EW方向, B-B断面)

第1-5図 使用済燃料乾式貯蔵建屋 断面図

(EL. + 8.2 m)

EL. 40. 45m.

(NS方向, A-A断面)

第1-7図 タービン建屋 断面図

4条--別添7-10

(EL. -10.7 m)

⁽EW方向, А-А断面)

4条一別添7-11

第1-10図 サービス建屋 概略平面図

(EW方向, A-A断面)

第1-11図 サービス建屋 断面図

4条一別添7-12

ダイヤフラムフロアの耐震クラスについて

ダイヤフラムフロアの構造概要図を第1図に、ダイヤフラムフロアの各部材 の耐震クラスを第1表に示す。ダイヤフラムフロアは格納容器内のドライウェ ルとウェットウェルとを区分する圧力低減設備としての機能を有するため、全 ての構造部材は耐震Sクラスとなる。

第1図 ダイヤフラムフロア構造概要図

第1表 ダイヤフラムフロアの耐震クラス

構造部材	耐震クラス
鉄骨梁	Sクラス
構造用スラブ	
断熱層(コンクリート)	
シヤーコネクタ(スタッド)	
柱	

別添-8

東海第二発電所

地震応答解析に用いる地質断面図の作成例及び 地盤の速度構造 (耐震)

地震応答解析に用いる地質断面図の作成例及び地盤の速度構造

1. 地質断面図

地震応答解析に用いる地質断面図は,評価対象地点近傍のボーリング調 査等の結果に基づき,岩盤,堆積物及び埋戻土の分布を設定し作成する。 第1-1 図に敷地内で実施したボーリング調査位置図を示す。

代表例として,第1-1図に示す断面位置の地質断面図を第1-2図及び 第1-3図に示す。

第1-1図 ボーリング調査位置図

第1-2 図 地質断面図 (EW 断面)

第1-3 図 地質断面図 (NS 断面)

- 2. 地盤の速度構造
- 2.1 入力地震動策定に用いる地下構造モデル

入力地震動の策定に用いる地下構造モデルについては,評価対象地点の 地層構成に基づき,解放基盤表面(EL.-370 m)から解析モデル入力位置 までをモデル化する。地下構造モデルの概要を第2-1表に示す。なお,本 モデルに適用する新第三系(Km 層)の地盤物性の詳細については,「添付書 類六 1. 地盤」に示す。

地層	新第三系 (Km層)	基盤
標高	解析モデル入力位置 ~ EL370 m	EL370 m以深
P波速度 Vp (m/s)	$Vp = Vs \sqrt{\frac{2(1 - \nu_d)}{1 - 2\nu_d}}$	1988 (z=-370m)
S波速度 Vs (m/s)	Vs=433-0.771・z z:標高(m)	718 (z=-370m)
動ポアソン比 v _d	ν _d =0.463+1.03×10 ⁻⁴ ・z z:標高(m)	0.425 (z=-370m)
密度 ρ (g/cm ³)	ρ=1.72-1.03×10 ⁻⁴ ・z z:標高(m)	1.76 (z=-370m)
せん断剛性の ひずみ依存性 G/G ₀ ~γ	<u>1</u> 1+107γ ^{0.824} γ:せん断ひずみ(一)	_
減衰定数 h~ γ	γ (4.41γ+0.0494) +0.0184 γ : せん断ひずみ (-)	0.03

第2-1表 入力地震動の策定に用いる地下構造モデル

2.2 地震応答解析に用いる浅部地盤の解析モデル

「1. 地質断面図 第1-1 図」に示すボーリング孔を利用して実施した PS 険層の結果から設定した,地層ごとの P 波速度及び S 波速度を第2-2表 に示す。

地震応答解析に用いる浅部地盤の解析モデルの作成に当たっては、「1. 地質断面図」において作成した地質図を基に、浅部地盤の速度構造を適切 に反映できる深度までモデル化する。

	李函		平均	匀值	平均有効主応力依存式 Vs=A×(σ'm) ^{0.25}
	地層		Vs (m/s)	Vp (m/s)	係数A
		不飽和	910	482	82.860
	uu)皆	飽和	210	1,850	82.241
	\~2座	不飽和	240	446	71.527
	Ag2)官	飽和	240	1,801	78.772
	Ac層	飽和	163-1.54 • z	1,240-1.93 • z	58.062
	As層	飽和	211-1.19 • z	1,360-1.78 • z	65.101
第四系	Ag1層	飽和	350	1,950	82.698
	D2c-3層	飽和	270	1,770	78.156
	D2s-3層	飽和	360	1,400	104. 425
	D2g-3層	飽和	500	1, 879	136. 169
	1m層	不飽和	130	1,160	40.950
	D1c-1層	飽和	280	1,730	_
	D1~_1 屋	不飽和	200	903	110. 636
	D18-1唱	飽和	290	1, 757	107.033
新第三系	Km層	飽和	433-0.771 • z	1,650-0.910 • z	_

第2-2表 PS 検層結果

z:標高 (m)

σ[,]_m:平均有効主応力(kN/m²)

"A:最小二乗法の回帰係数

別紙-1

東海第二発電所

既工認との手法の相違点の整理について (設置変更許可申請段階での整理) (耐震)

1. はじめに

本資料は,設置変更許可審査段階におけるプラントの耐震成立性確認を目 的として,今後提出する東海第二発電所の補正工認(以下「今回工認」とい う。)で採用する予定の評価手法のうち,当該発電所の既工認(以下「既工 認」という。)の評価手法と相違があり,他社のプラントの既工認(以下「他 プラント既工認」という。)で採用実績のないものを網羅的に整理する方針 について示すものである。

なお,原子炉建屋における今回工認の応答加速度と建設工認時との応答加 速度等の比較について,添付1に示す。

- 2. 整理方針
 - (1) 整理対象

プラントの耐震成立性を確認するための重要な耐震Sクラス設備,耐震 Sクラス設備に波及的影響を及ぼすおそれのある設備及び耐震Sクラス設 備を支持する施設を対象とする。ただし,波及的影響を及ぼすおそれのあ る設備については,既工認で耐震計算書を有するクレーン類を対象とする。 (2) 整理方針

既工認の手法と今回工認の手法の差異を整理するとともに,他プラント 既工認での採用実績の有無を整理する。これらから,既工認又は他プラン ト既工認での採用実績がないものを抽出する。

さらに、東海第二発電所は、原子力発電所耐震設計技術指針JEAG 4601-1987 等の規格基準制定前に建設されたプラントであることを踏まえ、 既工認の手法と今回工認の手法に相違が無くても、規格基準に沿った手法 で耐震評価がされているかを確認する。なお抽出された設備において、他 プラント既工認での適用実績がない場合は、適用例のない手法として整理

する。

(3) 既工認の手法と今回工認の手法の相違点の整理フロー

既工認の手法と今回工認の手法の相違点の整理フローについて,第1図 に示すとともに,整理フローの検討内容を下記に示す。

a. 既工認と今回工認との比較のための整理

整理対象として抽出した設備について,既工認と今回工認時との比較を 行うために,解析手法,解析モデル,減衰定数及びその他(評価条件の変 更等)に対して,既工認の手法及び今回工認の手法について設備ごとに内 容を整理する。

b. 既工認と今回工認との整理結果から適用例の無い手法の抽出

a. にて整理した結果に対して,既工認の手法と今回工認の手法について以下項目における相違の有無を確認する。

(a) 解析手法

解析種別として応答解析及び応力解析に適用する解析手法に対して, 時刻歴解析,スペクトルモーダル解析,公式等による評価等の相違の 有無を確認する。

(b) 解析モデル

解析種別として応答解析及び応力解析に適用する解析モデルに対し て、1質点系モデル、多質点系モデル、FEMモデル等の相違の有無 を確認する。

(c) 減衰定数

解析種別として応答解析及び応力解析に適用する減衰定数に対して, 相違の有無を確認する。

(d) その他(評価条件の変更等)

(a) ~ (c) 以外の評価条件の変更について相違の有無を確認する。

相違が有れば,他プラントの既工認での適用実績の確認を行う。適用実 績の確認は,基本は他プラント既工認での同等設備での確認とするが,同 等設備での適用実績がない場合は,その参照した設備を整理した上で,適 用実績が無い場合は,適用例の無い手法として整理する。他プラントの既 工認での適用実績が有る場合において,東海第二発電所として適用性を確 認することとし,適用性に際して特に留意すべき設備については,添付2 にて個別に整理する。

c. 規格基準に沿った手法であることの確認

既工認の手法と今回工認の手法とに相違が無いことが確認された場合に おいても、今回工認の手法が既往工認で適用実績がある規格基準に沿った 手法であることを確認する。

規格基準に沿った手法でない場合においては,②の手順に従って適用例 の無い手法として整理するかを判断する。

第1図 既工認の手法と今回工認の手法の相違点の整理フロー

3. 既工認の手法と今回工認の手法の相違点の整理結果

第1図の相違点の整理フローに基づき,既工認の手法と今回工認の手法の 比較を行うために,解析手法,解析モデル,減衰定数及びその他(評価条件 の変更等)の相違点について,設備ごとに整理した。整理した結果として建 物・構築物を別表1に,屋外重要土木構造物を別表2に,機器・配管系を別 表3に示す。

既工認の手法と今回工認の手法に相違が有ったものについては,建物・構築物,屋外重要土木構造物,機器・配管系ごとにその適用性等を以下別紙に て示す。

【建物・構築物】

- 別紙-2 原子炉建屋の地震応答解析モデルについて
- 別紙-3 原子炉建屋屋根トラス評価モデルへの弾塑性解析の適用について
- 別紙-9 使用済燃料乾式貯蔵建屋の評価方針について

【屋外重要土木構造物】

別紙-4 土木構造物の解析手法及び解析モデルの精緻化について

【機器・配管系】

別紙-5 機器・配管系における手法の変更点について

上記の結果,建物・構築物及び屋外重要土木構造物については,既工認の 手法と今回工認の手法との比較において全ての施設に対して相違有り(既工 認と異なる手法)と整理された。

一方で機器・配管系の一部施設については,既工認の手法と今回工認の手法との比較において相違無し(既工認と同じ手法)と整理された。このため, 既工認と同じ手法を用いると整理された当該施設に対して,JEAG 4601-1987 等の制定前に建設されたプラントであることを踏まえ,4.項にて 規格基準に沿った手法かの確認を行う。

今回工認の手法が既工認と同じ手法を用いる施設に対する規格基準に沿った手法かの確認

機器・配管系において、今回工認の手法が既工認と同じ手法を用いると整理された施設に対して、規格基準に沿った手法であることの確認を第4-1表に記載するとともに、以下のとおり整理した。

(1) 原子炉圧力容器スタビライザ

評価に用いる手法は,大型機器系連成解析モデルを用いた地震応答解析 結果から得られる原子炉圧力容器スタビライザの各部材に発生する荷重に 対して,荷重が受け持つ部材の断面積から応力を算出する一般的な材料力 学の計算式であり,許認可実績を有する手法である。

(2) 建設工認以降に設置又は取り替えた設備

建設以降に設置又は取り替えた設備として、使用済燃料貯蔵ラック、使 用済燃料乾式貯蔵容器及び放射線モニタについては、設置又は取替時の工 事計画認可申請において、JEAG4601-1987等に基づく耐震計算を実施 しており、今回工認でも同様の評価を実施する計画である。

(3) ポンプ,タンク類の一般機器

ポンプ,タンク類の一般機器については,既工認ではJEAG4601-1987 等に則っていない計算式にて応力算出を実施していたが、今回工認におい ては,各構造タイプに応じてJEAG4601-1987等に基づく規格基準に従 った手法で評価を実施する。

以上のとおり,機器・配管系における評価対象設備において規格基準に沿 った手法の適用等の採用により,適用例のない手法と整理されるものが無い ことが確認できた。

5. まとめ

設置変更許可審査段階における既工認との手法の相違点の検討として、東

海第二発電所の今回工認で採用する予定の評価手法において,他プラント既 工認で採用実績を有する手法を採用すること,また現行の規格基準に沿った 手法を採用することを確認した。

4.項 の項目	規格基準に沿った手法 であるのか等の確認	対象設備
(1)	荷重が受け持つ部材の断面積から応 力を算出する一般的な材料力学の計 算式であり,許認可実績を有する手 法で評価を実施する。	原子炉圧力容器スタビライザ
(2)	既工認の手法が,設置又は取替によ りJEAG4601-1987 等に従った手 法で実施しているため,今回工認に おいても同様の手法で評価を実施す る。	使用済燃料貯蔵ラック 使用済燃料乾式貯蔵容器 放射線モニタ
(3)	 め。 既工認は,独自の規格計算式により がってはJEAG4601-1987のその他 機器(ポンプ,ブロアー類)の評価 はに基づき評価を実施する。 既工認は,独自の規格計算式により 既工認は,独自の規格計算式により 評価を実施していが,今回工認にお がってはJEAG4601-1987の平底た て置円筒形の評価法に基づき評価を 	原子炉隔離時冷却系ポンプ 原子炉隔離時冷却系ポンプ駆動用ター ビン 残留熱除去系海水ストレーナ 非常用ディーゼル発電機用海水ストレ ーナ 高圧炉心スプレイ系ディーゼル発電機 用海水ストレーナ ほう酸水注入系ポンプ 放射線モニタ 中央制御室換気系送風機 中央制御室換気系ブイルタユニット 非常用ガス再循環系排風機非常用ガス 再循環系フィルタトレイン 非常用ガス処理系排風機 非常用ガス処理系フィルタトレイン 再結合装置 ディーゼル機関 発電機 その他電源装置 (交流電源装置,蓄電池) ほう酸水貯蔵タンク
	既工認は, 独自の規格計算式により 評価を実施していが, 今回工認にお いては J E A G 4601-1987 の電気計 装機器の構造健全性評価法に基づき 評価を実施する。	電気盤 (ベンチ盤,直立盤,現場盤)

第4-1表 機器・配管系における今回工認に用いる手法の適用性の整理

別表1 既設DB施設の耐震評価条件整理一覧表(建物・構築物)

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								既工認と今回工認時との比較										他プラントを含めた既工認での	り適用例	
		(公式等に。	こる評価, ジ	解析ヨ スペクトル	F法 モーダル解析,時刻歴解析他)			解析モデル			減衰定数			その他 (評価条件の3	変更等)	備考	(***			既工認と今回工認の手法 減衰定数の実績 に相違
	評恤对象設備	O:同じ		1	相違內容	〇:同じ		相違內容	〇:同じ		相違	內 容	〇:同じ	相	違 内 容	- (左欄にて比較した自 プラント既工認)	(※1) ○:共通適用例あり □:個別適用例あり	内容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり 一:相違あり ○:相違なし
		●:異なる -:該当なし	工認	解析種別	内容	●:異なる -:該当なし	工認 解析種別 方	向 內容	●:異なる -:該当なし	工認	解析種別 方向	内 容	●:異なる -:該当なし	工認	内 容	-	×:適用例なし			理由も記載)
			既工認	応答解析	時刻歷応答解析		既工認 応答解析	【建屋モデル】 平 木平:1軸多賀点系モデル 約直:応答解析を実施せず 【相互作用】 S Rモデル 〇水平方向 基礎底面:Timoshenko, Barkan等の式に基づき底 面ばね(水平,回転)を評価		既工認	水平 応答解析	コンクリート: 5% 基礎底面ばね: 5%		既工認 •	線形解析		(解析手法)	(解析手法) 時刻歴応答解析は、高浜3,4号機工認で共 通適用例のある手法		
原子炉建屋	耐樂壁	0	今回工認	応答解析	時刻歷此答解析	•	今回工認 応答解析 ————————————————————————————————————	【建物モデル】 水平:1軸多質点系モデル 外面:1軸参質点系モデル 平 【相互作用】 理込みSRモデル 〇水平方向 例面:NOVAKの側面はね(水平)を近似法に より評価 基礎距面:振動アドミッタンス理論に基づき底面 はな(水平,回転)を近似法により評価 〇経直方向 基礎底面:振動アドミッタンス理論に基づき底面 はね(鉛直)を近似法により評価	•	今回工語	8 応答解析 	コンクリート:5% 側面ばね:NOVAKば ねに基づきJEAG4601- 1991の近似法で評価 基礎底面はな:接動アド ミックンス理論に基づ き、JEAG4601-1991の 近似法で評価	•	今回工認	非線形解析 (復元力特性を設定)	建設工認 第1回 添付書類Ⅲ-1-4「原子 炉建屋の地震応答計算 書」	○ (解析モデル) (減衰定数) ○ (その他) ○	(弊析・テアル) 多質点系モデルは、高浜3,4号機工認で共 通通用例のある手法 (減貨定数) 減資定数(よ、高浜3,4号機工認で共通適用 例のある手法 (その他) 復元力特性は、高浜3,4号機工認で共通適 用例のある手法	同じ設備及び高浜 3,4号機を参照	_
			既工認	応力解析	静的応力解析		既工認 応力解析 分	平 2次元フレームモデル 直		既工認				既工認	_	建設工認 第1回	(解析手法) ○ (解析モデル)	(解析手法) 解析手法は、川内1,2号機工認で共通適用 例のある手法 (解析モデル) 解析モデルは、川内2号機のタービン建屋で 20日回のもエモナ	111 1* 30.46 12 × 111 -1-1	
耐震 S クラス 施設	屋根トラス	•	今回工認	応答解析 応力解析	弹塑性解析	•	今回工認 応答解析 応力解析 鉛	平 3次元フレームモデル 直	•	今回工業	水平 © 応答解析 	コンクリート:5% 鋼材:2%	•	・ 今回工認 単 が あ が あ う の 、 お ら の 、 お 、 あ 、 あ 、 、 あ 、 、 あ 、 、 、 、 、 、 、 、 、 、 、 、 、	非線形解析 些準地震動Ssに対して た、材料(鉄骨)の非 形特性を考慮した弾 型性解析を実施 屋根トラス部の耐震 発度向上工事の内容を て映	添付書類 Ⅲ -5「原子炉 建屋の強度計算書」	(減衰定数) ○ (その他) ○	通用例のある手法 (減資定数) 減資定数は、川内1,2号機工認で共通適用 例のある手法 (その他) 非線形物性は、川内2号機のタービン建屋で 適用例のある手法	回し故順及(5)川内 1,2号機を参照	-
	原子炉格納施設の基礎	0	既工認	応力解析	原子炉建屋の地震応答解析結果 を用いた静的応力解析	- •	既工認 応力解析 外 鉛	平 3次元FEMモデル(構造的にほぼ対称であるこ とから半分のみをモデル化)		既工認			0	既工認 ·	線形解析	建設工認 第1回 添付書類Ⅲ-3-3-14 - 「原子炉格納容器底部 コンクリートママント端	(解析手法) ○ (解析モデル) ○ (滅衰定数)	(解析手法) 静的広力解析は、高浜3,4号機工認で共通 適用例のある手法 (解析モデル) 解析モデルは、高浜3,4号機工認で共通適 用例のある手法	同じ設備及び高浜 3,4号機を参照	
原子			今回工認	応力解析	原子炉建屋の地震応答解析結果 を用いた静的応力解析		今回工認 応力解析 鉛	平 		今回工談	g			今回工認・	線形解析	度計算書」	 (その他) ○	(減衰定数) − (その他) 線形解析は、既工認で適用例のある手法 線形解析は、既工認で適用例のある手法		
	使用済燃料プール	•	既工認	_	_	- •	既工認	- - -	•	既工認			•	既工認	_	- 記載なし	(解析手法) ○ (解析モデル) ○ (減衰定数)	(解析手法) 静的応力解析は、高浜3,4号機工認で共通 適用例のある手法 (解析モデル) 解析モデルは、高浜3,4号機工認で共通適 用例のある手法 (確実定数)	高浜 3 , 4 号機を参照	
	1		今回工認	応力解析	原子炉建屋の地震応答解析結果 を用いた静的応力解析		今回工認 応力解析 小 鉛	平 3次元FEMモデル 直		今回工講	3			今回工認・	線形解析		_ (その他) ○	(1982年2007) 一 (その他) 線形解析は、高浜3,4号機工認で共通適用 例のある手法		
耐震Sクラス設備の間接支持構造物			既工認	応答解析	時刻歷応答解析		水 既工認 応答解析 — -	【 建物モデル】 平 水平:1軸多質点系モデル 約酒:に落解析を実施せず 【相互作用】 SRモデル ○水平方向 二 基礎底面:3次元薄層要素法による杭と地盤のイ ンビーダンス (水平,回転)を近似法により評価		既工認	水平 応答解析	コンクリート:5% 基礎底面ばね:3次元薄層 要素法により杭と地盤の インビーダンスを求め, JEAG4601-1991の近似 法で評価		既工認 ·	線形解析		(解析手法) 〇	(解析手法) 時刻歴応客解析は,既工認で適用例のある手 法:		
	耐粪壁	0	今回工認	応答解析	時刻歷応答解析	•	今回工認 応答解析 ——	【建物モデル】 本平:1軸多質点系モデル(NS方向)、 2軸多質点系モデル(EW方向) 5倍:1:軸多質点系モデル 【相互作用】 5Rモデル ○水形方向 基礎低面:3次元薄層要素法による杭と地盤のイ ンビータンス(水平,回転)を近似法により評価 基礎低面:3次元薄層要素法による杭と地盤のイ ンビーダンス(始直)を近似法により評価	0	今回工業	水平 8. 応答解析 ————————————————————————————————————	コンクリート:5% 基礎底面は4:3次元薄層 要素結にもりもた地盤の インビーダンスを求め、 J E A C 4601-1991の近似 法で評価	•	今回工認 ·	非線形解析 (復元力特性を設定)	発管後第63号 添付書類IV-2-3「使用 済然料乾式IPi廠建屋の 新展性についての計算 書」	(解析モデル) ○ (減衰定数) ○ (その他) ○	(弊所モテル) 多軸多質点系モデルは、高浜3、4号機で共 通適用例のある手法 (減衰定数) 減衰定数は、既工設で適用例のある手法 (その他) 復元力料性は、高浜3、4号機工認で共通適 用例のある手法	同じ設備及び高浜 3,4号機を参照	
	基礎	0	既工認	応力解析	静的応力解析	0	既工認 応力解析 水 鉛	平 3次元FEMモデル 直		既工認			0	既工認 ·	線形解析	発管発第63号 添付書類IV-2-3「使用 済燃料乾式貯蔵建屋の	(解析手法) ○ (解析モデル) ○	(解析手法:) 解析手法は、既工設で適用例のある手法 (解析モデル) 解析モデルは、既工設で適用例のある手法	同じ設備を参照	_
			今回工認	応力解析	静的応力解析		今回工認 応力解析 鉛	平 3次元FEMモデル 直		今回工業	g			今回工認 ·	線形解析	耐震性についての計算 書」	(戦衰疋数) - (その他) ○	(₍₍₎₎₍₍₎₎ (()) ー (その他) 線形解析は、既工認で適用例のある手法		

別表2 既設DB施設の耐震評価条件整理一覧表(屋外重要土木構造物)

										()	※1)共通	適用あり:規格	・基準類等	に基づきプラン	・トの仕様等(こよらず適用性が確認さ	されたプラント共通の適	用例がある手法	個別適用例あり:プラント個別に適用性	が確認されたプラン	ト個別の適用例がある手	法
							既工認	8と今回工認時との比	較										他プラントを含めた既工	認での適用例		
	亚研分免疫情	(公式等による	る評価,ス	解析手法 ペクトルモーダル解析,時刻歴解析他)			解析モデル				減衰定数	[その (評価条件の	他)変更等)	- 備考 (左欄にて比較した)	(※1) ○・±通適用例あ			減衰定数の実績	既工認と今回工認の手法 に相違
	計Ⅲ对豕砹加	 ○:同じ ●・異かろ 		相違內容	 ○:同じ ●・異かろ 		相違内容	²²	 ○:同じ ●・異かろ 		相	違 内 容		 ○:同じ ●:異なろ 	ħ	目 違 内 容	プラント既工認)	り □:個別適用例あ り	内容	参照した設備名称	 :構造上の差異なし :構造上の差異あり (適用可能であること) (適用可能であること) 	ー:相違あり ○:相違なし
		 - :該当なし 	工認	解析種別内容	 - :該当なし 	工認	解析種別 方向	內 容	 -:該当なし 	工認	解析種別	」 方向 内] 容	 -:該当なし 	工認	内 容		× : 適用例なし				
	15. J. 18. 'H 42.		既工認	応答解析 時刻歴モーダル解析		既工認	応答解析 <u> お直</u> -	÷デル		既工認	応答解析	水平 コンク - 鉛直	·リート:5%		既工認	許容応力度法	建設工認 第7回 添付書類Ⅲ-2-1「申 設備にかかわる耐震 計の基本方針」	青 (解析手法) と ○ (解析モデル)	(解析手法) 解析手法は、高浜3,4号機工認で共 通適用例がある。 (解析モデルは、高浜3,4号機工認で 共通適用例がある。	 (高浜3,4号 機) 海水ボンブ室等 		
耐震Sクラス施	µ又水•稱:迫物	•	今回 工認	応答解析 時刻歷解析	-	今回 工認	応答解析 水平 地質デー 労政 分面 同上	-タに基づくFEMモ	-	今回 工認	応答解析	水平 コンク あ 1%+) 鉛直	リート : 5%, ,るいは 履歴減衰		今回 工認	非線形解析 限界状態設計法	添付資料Ⅲ-3-1「残船 熱除去系海水系ボンフ の基礎に関する説明 書」	g ⑦ (減衰定数) ○	(減衰定数) ・緑形での減衰定数は、高浜3,4号 横工設で共通適用例がある。 ・履歴モデルにより構造物の履歴減衰 を用いる場合の減衰定数については、 柏崎6,7号機で共通適用例がある。	(柏崎6,7号機)スクリーン室等	0	_
へ施設の間境			町丁切	応答解析 波動理論		眶丁切	水平 地質デー 応答解析 4 鉛直 -	-タに基づく地盤モデ	_	町丁切	応答解析	水平 	-	_	町丁辺	如穷亡力産法						
接支持構造			94. <u>–</u> BD	応力解析 公式等による評価		976 工 810	応力解析 水平 - 鉛直 - -		_	by Tap	応力解析	水平 鉛直	-	_	火 二-100	11 47 <i>9</i> 0777242	建設工認 第8回 添付書類Ⅲ-2-1「申請	f (解析手法)	(解析手法) 解析手法は,高浜3,4号機工認及び 玄海3,4号機工認で共通適用例があ る。	(高浜3,4号 機)		
構造物	屋外二重管	(応答解析) ● (応力解析)	今回工認	応答解析 時刻歷解析	(応答解析) ● (応力解析) -	今回 工認	水平 地質デー デル デル 鉛直 同上	-タに基づく F E Mモ	(応答解析) ● (応力解析) -) 今回 工認	応答解析	水平 鋼 あ 1 ^{%+)} 鉛直	材:3% るいは 履歴減衰	0	今回 工認	許容応力度法	設備に係る耐震設計 本方針」 添付資料Ⅲ-2-4「屋夕 海水配水配管用外管の 耐震性についての計算 書」	 ▲ ● ●<td>(時時モアル) 解析モデルは、高浜3,4号機工認で 共通適用例がある。 (滅衰定数) ・線形での減衰定数は、高浜3,4号 機工認で共通適用例がある。 ・履歴モデルにより構造物の履歴減衰 を用いる場合の減衰定数については、 拍崎6,7号機で共通適用例がある。</td><td>m×ホンン至等 (柏崎6,7号 機) スクリーン室等 (玄海3,4号 機) 取水管路</td><td>0</td><td>_</td>	(時時モアル) 解析モデルは、高浜3,4号機工認で 共通適用例がある。 (滅衰定数) ・線形での減衰定数は、高浜3,4号 機工認で共通適用例がある。 ・履歴モデルにより構造物の履歴減衰 を用いる場合の減衰定数については、 拍崎6,7号機で共通適用例がある。	m×ホンン至等 (柏崎6,7号 機) スクリーン室等 (玄海3,4号 機) 取水管路	0	_
				応答変位法及び公式等による			水平 -				応力解析	水平	_									
				67°100			鉛直一					鉛直	-									

|--|

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

							Į	既工認と今回工認時との比較							他プラントを含めた既工認での適用	例	
	亚研究免疫情	(4	式等によ	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)			角	解析モデル		減衰定数		その他 (評価条件の変更等)	備 考 (左欄にて比較1 た白	(%1)			既工認と今回工認の手法 減衰定数の実績
	計画列家以開	〇:同じ		相 違 内 容	〇:同じ			相 違 内 容	〇:同じ	相 違 内 容	〇:同じ	相 違 内 容	プラント既工認)	 ○:共通適用例あり □:個別適用例あり ×:適田例な! 	内容参	照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの ○:相違なし
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認 解析種別	則 方向	月 内容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認 内容					理由も記載)
		(応答解析)	既工認	応答解析 時刻歴解析 3 応力解析 FEM解析及び公式等による評価	(応答解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 松平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) [Z FEMモデル (FEMモデル 	(応答解析)	応答解析 水平 1.0% 施工認 - 約直 - 応力解析 松平 - -		既工認 (応力解析) 解析コード:ASSAL	建設工認 第21回 添付書類Ⅲ-2-1「申請 診儘になる副電設計方	(解析手法) 応力解析:○ (解析:デル)			
	シュラウド	(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応力解析)	応答解析 今回 工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) ξ 多質点系モデル(建屋-機器連成解析モデル) ζ - ζ - 	(応力解析)	今回 工認 応答解析 水平 1.0% 分面 1.0% 約直 1.0% 成力解析 水平 - 約直 -	_	今回 _ 工認 _	当 添付書類Ⅲ-2-3「炉心 構造物の耐震性につい ての計算書」	応答解析:○ 応力解析:○ (滅衰定数) 応答解析:○			0 –
	シュラウドサポート	(応答解析) 〇 (広ち報任)	既工認	応答解析 時刻歴解析 3 応力解析 FEM解析及び公式等による評価	(応答解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) [- Z FEMモデル [FEMモデル 	(応答解析) (広告報析)	成容解析 水平 1.0% 廃工記 - 応力解析 小平 - 分前直 -	•	既工認 ^(は力解析) 解析コード:ASSAL	建設工認 第21回 添付言類Ⅲ-2-1「申請 設備に係る耐震設計方 針」	(解析モデル) 応答解析:○ (減減定数) た答解析:○	-		0 -
			今回 工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価	(UC)/J#+0T)	今回 工認 広答解析 広力解析	水平 鉛直 水平 鉛直 小平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) [多質点系モデル(建屋-機器連成解析モデル) Z FEMモデル [FEMモデル 		今回 応答解析 水平 1.0% 工部 応方解析 糸平 - 応力解析 航直 -		今回 (応力解析) 工認 解析コード:ASHSD2	添付書類Ⅲ-2-4「シュ ラウドサポートの耐震 性についての計算書」	応合野竹:○ (その他) 解析⊐ード:○			
原子炉	上部格子板	(応答解析) ○ (応力解析)	既工認	応答解析 時刻歴解析 3 応力解析 公式等による評価	(応答解析) ● (応力解析)	成答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	Z 多質点系モデル(建屋-機器連成解析モデル) I - Z - I - I - I -	 (応答解析) ● (応力解析)	成空解析 水平 1.0% 既工記	_	既工認 —	建設工認 第21回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計方 -針」 添付書類Ⅲ-2-3「伝入	(解析モデル) 応答解析:○ (減衰定数)			0 -
		0	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	_	今回 工認 応力解析	ボー 鉛直 水平 鉛直 鉛直	 	-	今回 二 次答解析 新直 1.0% 工部 広方解析 糸平 - 水平 - 約直 - 分解析 糸車 -		今回 工部 -	総1) 春瀬田 (15) かん 構造物の耐震性につい ての計算書」	応答解析:〇			
本 体 造 物	炉心支持板	(応答解析) ○ (応力解析)	既工認	応答解析 時刻歴解析 3 応力解析 公式等による評価	(応答解析) ● (応力解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 2 多質点系モデル(建屋-機器連成解析モデル) [- [- [- [- 	(応答解析) ● (応力解析)	成本平 1.0% 施方解析 糸車 - 応力解析 木平 - 公用新 小平 -		既工認 -	建設工認 第21回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計方 -針」	 (解析モデル) 応答解析:○ (減衰定数) 			0 -
		0	今回工認	応答解析 時刻歴解析 応力解析 公式等による評価	_	応答解析 今回 工認 応力解析	水平 鉛直 水平 台直 小平 鉛直	 2 多質点系モデル(建屋-機器連成解析モデル) ፤ 多質点系モデル(建屋-機器連成解析モデル) Z - I - 		今回 応容解析 糸平 1.0% 介面 1.0% 約直 1.0% 定方解析 水平 - 水中 - 公司 -		수미 工彩 -	除11 書類Ⅲ22-3「炉心 構造物の耐震性につい ての計算書」	応答解析:〇	-		
	燃料支持金具	(応答解析)	既工認	応答解析 - 3 - 応力解析 -	(応答解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	Z Z Z	 (応答解析) (たち叙fú)	成工業 水平 - 成工業 小平 - - 応力解析 水平 - - 約直 - - - 約直 - - -	_	既工認 —		 (解析手法) 広答解析:○ 応力解析:○ (解析モデル) 			0 -
		(心刀用年句T) 一	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	(心力理(か7) 	応答解析 今回 工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) ξ 多質点系モデル(建屋-機器連成解析モデル) ζ - ζ - 	(心力解析) 	今回 応答解析 水平 1.0% 工認 応方解析 輸車 1.0% 成力解析 水平 - 約直 -		今回 工認 -		応答解析:○ (減衰定数) 応答解析:○			
	制鋼棒案内管	(応答解析) 〇	既工認	応答解析 時刻歴解析 3 応力解析 公式等による評価	(応答解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 Z 多質点系モデル(建屋-機器連成解析モデル) [- - - - - 	(応答解析)	成答解析 水平 1.0% 施工総 - 約直 - 応力解析 水平 - 約6 -	_	既工認 -	建設工認 第21回 添付言類Ⅲ-2-1「申請 設備に係る耐震設計方 4約」	(解析モデル) 応答解析モン (域音学型)		-	0 -
		(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応力解析)	応答解析 今回 工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 ² 多質点系モデル(建屋-機器連成解析モデル) [多質点系モデル(建屋-機器連成解析モデル) ² - ⁴ - ⁵ - 	(応力解析) 	空智 水平 1.0% 工部		今回 工設 -	流行書類Ⅲ-2-7「制御 棒案内管の耐震性につ いての計算書」	(頑我定数) 応答解析:○			~

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

							既	E工認と今回工認時との比較							他プラントを含めた既工認での:	適用例		
	マボ ノエートー 合わ 当ち 月本	(注	式等による	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)			角军	折モデル		減衰定数		その他 (評価条件の変更等)	備考	(*1)			減衰定数の実績	既工認と今回工認の手法 に相違
	計個列來說加	0:同じ		相 違 内 容	0:同じ			相違內容	〇:同じ	相違內容	O:同じ	相違內容	- (左欄にて比較した自 プラント既工認)	 (№ 1) ○:共通適用例あり □:個別適用例あり 	内容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの) 	ー : 相違あり ○ : 相違なし
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認 解析種	別 方向	内容	● : 異なる - : 該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認 内 容		×:適用例なし			理由も記載)	
	rn 8% 84	(応答解析)	既工認	応答解析 時刻歴解析 3 応力解析 FEM解析及び公式等による評価	(応答解析)	成答解 既工認 応 応 容解 に な 容解 に な 容解 に な る の の す れ の の の の の の の の の の の の の	水平 鉛直 水平 鉛直 小平 鉛直	 多質点系モデル(建屋一機器連成解析モデル) - FEMモデル FEMモデル 	 (応答解析) ●	成正部 応答解析 水平 1.0% 所正 小面 広力解析 水平 - 知道 -		既工認 解析コード:ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方	(解析モデル) 応答解析:○ (減衰定数)			0	
	PM (F1) [71]	(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価	(応力解析)	応答解4 今回 工認 応力解4	水平 鉛直 水平 公司 小平 鉛直	多質点系モデル(建屋ー機器連成解析モデル) 多質点系モデル(建屋ー機器連成解析モデル) FEMモデル	(応力解析) 	応答解析 水平 1.0% 今回 工部 近の解析 第二 1.0% 成力解析 水平 - 約直 -	•	今回 (応力解析) 工認 解析コード:ASHSD2	rr] 添付書類Ⅲ-2-2「炉心 回り円筒胴の強度計算 書」	応答解析:○ (その他) 解析ヨード:○			0	_
	下鏡	(応答解析) ○ (応力解析)	既工認	応答解析 時刻歴解析 3 応力解析 FEM解析及び公式等による評価	(応答解析) (応力解析)	応答解析 既工認 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	 多質点系モデル(建屋一機器連成解析モデル) - F E Mモデル F E Mモデル 	(応答解析) (応力解析)	成容解析 水平 1.0% 施立 - 応力解析 水平 - 知道 - 公司解析 水平 -	•	既工認 解析コード:ASSAL,FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 -針」	(解析モデル) 応答解析:○ (減衰定数) 応答解析:○			0	_
		0	今回 工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価		応答解析 今回 工認 応力解析	が平 鉛直 水平 街 面 約直	 	_	今回 応答解析 水平 1.0% 工認 応力解析 松平 - 応力解析 松正 - 鉛直 -		今回 (応力解析) 工認 解析コード:ASHSD2	添行書類Ⅲ-2-4 「ト競 板および支持スカート の強度計算書」	(その他) 解析コード:○				
原子炉本	削御棒駆動機構 ハウジング賞通部	(応答解析) ○ (応力解析)	既工認	応答解析 時刻歴解析 	(応答解析) (応力解析) (の力解析)	成答解 既工認 応 応 な が が 和 利	水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直	多質点系モデル(建屋-機器連成解析モデル) - FEMモデル FEMモデル 多質点系モデル(建屋-機器連成解析モデル)	(応答解析) (応う解析)	応容解析 水平 1.0% 鈴直 - 応力解析 水平 - 公前 - - 公式の解析 小平 1.0%	•	既工認 解析コード:ASSAL,FEMR	建設工認 第17回 添付書類Ⅲ-1-1 [申請 設備に係る耐震設計方 好] 添付書類Ⅲ-2-5 [制御 漆塚軌線報と1 / rtot+4	(解析モデル) 応答解析:○ (減衰定数) 応答解析:○ (その他)			0	_
	1 1 1 2 2		今回工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価		今回 工認 応力解析	折 鉛直 水平 鉛直 水平 鉛直 水平	 多質点系モデル(建屋-機器連成解析モデル) F E Mモデル F E Mモデル 多質点系モデル(建屋-機器連成解析モデル) 		応答解析 工器 新直 1.0% 次力解析 水平 - 第6 - 水平 1.0% 水車 - 水車 - 水車 - 水車 - 水車 - 水車 1.0%		今回 (応力解析) 工認 解析コード:ASHSD2	子計測ハウジング貫通部の強度計算書」	解析コード:〇	_			
14 益 本 体	・ 、 中性子計測 ハウジング賞通部	(応答解析) ○ (応力解析) ○	既工認	応答解析 時刻歴解析	(応答解析) ● (応力解析) ○	応答解4 既工認 応力解析 応答解4	析 鉛直 水平 鉛直 析 析	- F E Mモデル F E Mモデル 多質点系モデル(建屋-機器連成解析モデル)	(応答解析) ● (応力解析) -	応答解析 鉛直 - 成力解析 丸平 - 成方解析 糸草 - 次客解析 水平 1.0%	_	既工認 —	発管業発144号 添付書類2-2-2「中性 子計測ハウジング貫通 部の応力計算書」	 (解析モデル) 応答解析:○ (減衰定数) 応答解析:○ 			0	_
			今回工認	応力解析 FEM解析及び公式等による評価		今回 工認 応力解析	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	 多質点系モデル(建屋ー機器連成解析モデル) F E Mモデル F E Mモデル 3次元はりモデル 	_	中回 工部 分面 1.0% 応力解析 水平 - 分面 - 水平 0.5%		今回 工認 -						
	再循環水出口ノズル (N 1)	(応答解析) ○ (応力解析)	既工認	 	(応答解析) 〇 (応力解析)	応音解4 既工認 応力解析	HT 鉛直 水平 鉛直 鉛直	3次元はりモデル FEMモデル FEMモデル 3巻〒けりエデル	(応答解析) ● (応力解析)	応合解析 新直 - 原工部 次力解析 水平 - 応力解析 鉛直 - 公式 水平 2.5%	•	(応力解析) 解析コード:ASSAL,FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 計」 添付書類Ⅲ-2-6「再循	(減衰定数) 応答解析:○ (その他) なぜたっとう○			0	_
		0	今回 工認	応答解析 スペクトルモーダル解析 (配管反力) 応力解析 FEM解析及び公式等による評価		応答解 今回 工認 応力解 応 応 な な な な な な な な な な れ の し 、 の の し 、 の の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の し 、 の の し 、 の の し の の の し の の の の し の し の の の し の し の の の し の の の の の の の の の の の の の	新 新 新 新 新 一 新 部 直 新 平 新 新 正 新 新 正 新 新 正 新 二 新 二 新 正 新 正 新 正 新 正 新 正 新 二 新 二 新 二 二 二 二 二 二 二 二 二 二 二 二 二	3次元はりモデル FEMモデル FEMモデル		応答解析 水干 2.08 今回 工認 売力解析 糸平 - 応力解析 水平 - 鉛直 -		今回 (応力解析) 工認 解析コード:ASHSD2	環水出口ノズルの強度 計算書」	那 初 → ド : ()	_			
	再循環水入口ノズル	(応答解析)	既工認	応答解析 スペクトルモーダル解析 (配管反力)	(応答解析)	応答解析 既工認 応力解析	水平 鉛直 水平 小平 鉛直	3次元はりモデル 3次元はりモデル FEMモデル FEMモデル	(応答解析)	成ご答解析 水平 0.5% 販工認 - 応力解析 水平 - 労産 -		低力解析) 解析コード:ASSAL,FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方	(減衰定数) 応答解析:○				
	(N 2)	(応力解析)	今回工認	応答解析 スペクトルモーダル解析 (配管反力) 応力解析 FEM解析及び公式等による評価	(応力解析) 〇	今回 工認 応答解析 応方解析 応力解析	水平 鉛直 水平 鉛直 小平 鉛直	3次元はりモデル 3次元はりモデル FEMモデル FEMモデル	(応力解析)	応答解析 水平 2.5% 介回 工認 近方解析 新重 2.5% 放力解析 水平 - 約直 - 約直 -	•	今回 (応力解析) 工認 解析コード:ASHSD2	針] 添付書類Ⅲ-2-7「再循 環水入口ノズルの強度 計算書」	(その他) 解析コード:〇			0	_

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

									g	恩と今回工認時との比較									他プラントを含めた既工認での	適用例		
	河江小山北北	(公	式等による	評価, ス^	解析手法 ペクトルモーダル解析,時刻歴解析他)				解	デル		減	衰定数		その他 (評価条件の変更	(等)	備考	(*1)			減衰定数の実績	- 既工認と今回工認の手法 に相違
	計画对承認開	〇:同じ			相 違 内 容	〇:同じ				相 違 内 容	〇:同じ		相 違 内 容	〇:同じ	相道	塵 内 容	プラント既工認)	 ○:共通適用例あり □:個別適用例あり ×:適用例ね! 	內 容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの) 	ー : 相違あり ○ : 相違なし
		●:異なる -:該当なし	工認	解析種別	内容	●:異なる -:該当なし	工認	解析種別	則 方向	内容	●:異なる -:該当なし	工認	解析種別 方向 内 窄	●:異なる -:該当なし	工認	内 容		へ : 週川内なし			理由も記載)	
			既工認	応答解析	スペクトルモーダル解析 (配管反力)		既工認	応答解析	水平 行 鉛直	元はりモデル 元はりモデル		既工認	応答解析 <u> 応答解析</u> <u> か平</u> 0.5% <u> </u> 鉛直 -	-	既工認 (応	力解析)						
	蒸気出口ノズル (N 3)	(応答解析) 〇 (広力解析)		応力解析	FEM解析及び公式等による評価	(応答解析) 〇 (広力解析)		応力解析	水平 行 鉛直	Mモデル Mモデル	(応答解析) ● (広力解析)		応力解析 松平 - 鉛直 -	-	992—142 月¥初1	·⊐ — F∶ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	 (減衰定数) 応答解析:○ (その他) 			0	_
	(143)		今回 丁級	応答解析	スペクトルモーダル解析(配管反力)	(#LX7) HT (1)	今回 丁認	応答解析	水平	元はりモデル 元はりモデル		今回 丁認	応答解析 始直 3.0%	-	今回 (応 丁認 解析	:力解析) コード・ASHSD2	添付書類Ⅲ-2-8「蒸気 出口ノズルの強度計算 書」	解析コード:〇				
				応力解析	FEM解析及び公式等による評価			応力解析	水平 f 鉛直	Mモデル Mモデル			応力解析 松平 - 鉛直 -	-								
			既工認	応答解析	スペクトルモーダル解析 (配管反力)		既工認	応答解析	水平 鉛直	元はりモデル 元はりモデル		既工認	水平 0.5% 鉛直 -	-	既工認 (応	(力解析)			-	-		
	給水ノズル	(応答解析) 〇		応力解析	F E M解析及び公式等による評価	(応答解析) ○		応力解析	水平	Mモデル Mモデル	(応答解析)		応力解析 水平 - 鉛直 -		Л+1/I	- P . ASSAL, FEBR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方	(減衰定数)応答解析:○			0	
	(N 4)	(応力解析) 〇	今回	応答解析	スペクトルモーダル解析 (配管反力)	(応力解析) 〇	今回	応答解析	水平 行 鉛直	元はりモデル 元はりモデル	(応力解析)	今回	水平 2.0% 応答解析 鉛直 2.0%	-	今回 (応	:力解析)	針」 添付書類Ⅲ-2-9「給水 ノズルの強度計算書」	(その他) 解析コード:○			0	
			工認	応力解析	FEM解析及び公式等による評価		工認	応力解析	水平 行 鉛直	Mモデル Mモデル		工認	応力解析 松平 - 鉛直 -	-	工認解析	コード:ASHSD2			-			
			既工認	応答解析	スペクトルモーダル解析 (配管反力)		既工認	応答解析	水平	元はりモデル 元はりモデル		既工認	水平 0.5% 鉛直 -	-	既工認 (応	(力解析)						
	低圧炉心スプレイノズ/ (N 5 A)	(応答解析) ル ○ (広力解析)		応力解析	FEM解析及び公式等による評価	(応答解析) 〇 (広力解析)		応力解析	水平	Mモデル Mモデル	 (応答解析) ● (応力解析) 		応力解析 松平 - 鉛直 -	-	月中位丁	F -ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	 (減衰定数) 応答解析:○ (その他) 			0	_
	原	0	今回 丁認	応答解析	スペクトルモーダル解析 (配管反力)	0	今回 丁認	応答解析	水平 行 鉛直	元はりモデル 元はりモデル		今回 工認	水平 2.0% 公答解析 鉛直 2.0%	-	今回 (応 工認 解析	:力解析) :コード:ASHSD2	添付書類 Ⅲ -2-10「炉 心スプレイノズル(N 5)の強度計算書」	解析コード:〇				
原子炉	子 炉 王 力			応力解析	FEM解析及び公式等による評価			応力解析	水平 f 鉛直	Mモデル Mモデル			応力解析 松平 - 鉛直 -	_		-			-			
本体	容 器 本 体		既工認	応答解析	スペクトルモーダル解析(配管反力)		既工認	応答解析	水平 行 鉛直	元はりモデル 元はりモデル	_	既工認	水平 0.5% 鉛直 -	-	既工認 (応	力解析)						
	高圧炉心スプレイノズ/	(応答解析)		応力解析	F E M解析及び公式等による評価	(応答解析) 〇 (広力留伝)		応力解析	水平	Mモデル Mモデル	(応答解析)		水平 - 応力解析 鉛直 -	-		·⊐ — F∶ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	(減衰定数) 応答解析:○			0	_
	(1036)		今回 丁級	応答解析	スペクトルモーダル解析 (配管反力)	(ALI 2) AFT()	今回 丁認	応答解析	水平	元はりモデル 元はりモデル		今回	応答解析 松平 2.0% 鉛直 2.0%	-	今回 (応 工級 解析	:力解析) コード・ASHSD2	添付書類Ⅲ-2-10「炉 心スプレイノズル(N 5)の強度計算書」	(その他) 解析コード:○				
				応力解析	FEM解析及び公式等による評価			応力解析	水平 鉛直	Mモデル Mモデル	_		水平 - 応力解析 鉛直 -	-					-			
			既工認	応答解析	スペクトルモーダル解析(配管反力)		既工認	応答解析	水平 f 鉛直	元はりモデル	_	既工認	応答解析 松直 -	-	既工認 (応 解析	:力解析) コード:ASSAL,FEMR						
	低圧注水ノズル (N17)	(応答解析) ○ (応力解析)		応力解析	F E M解析及び公式等による評価	(応答解析) ○ (応力解析)		応力解析	水平	Mモデル Mモデル	 (応答解析) ● (応力解析) 		応力解析 水平 - 鉛直 - -	•			建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	(減衰定数)応答解析:○(その他)			0	_
		0	今回 工認	応答解析	スペクトルモーダル解析 (配管反力)	O	今回 工認	応答解析	水平 鉛直	元はりモデル 元はりモデル		今回 工認	応答解析 松芭 2.0%	-	今回 (応 工認 解析	:力解析) ニード:ASHSD2	正注水ノズルの強度計 算書」	解析コード:○				
				応力解析	FEM解析及び公式等による評価			応力解析	小平 鉛直	- Mモデル 			応力解析 - 鉛直 -									
			既工認	応答解析	スペクトルモーダル解析 (配管反力)		既工認	応答解析	小平 鉛直 水平	元はりモデル 元はりモデル Mモデル	_	既工認	応答解析 松直 - 水平 -	-	既工認 (応 解析	:力解析) :コード:ASSAL,FEMR	75-80					
	上鏡スプレイノズル (N 6)	(応答解析) ○ (応力解析)		応力解析	FEM解析及び公式等による評価	(応答解析) ○ (応力解析)		応力解析	f 鉛直	Mモデル	(応答解析) ● (応力解析)		応力解析 鉛直 -	-			² 座収上砂 第1/回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	(減衰定数)応答解析:○(その他)			0	_
		0	今回 工認	応答解析	スペクトルモーダル解析(配管反力)	0	今回 工認	応答解析	水平	元はりモデル		今回 工認	応答解析 松平 3.0% 鉛直 3.0%	-	今回 工認 解析	:力解析) コード:ASHSD2	^{(AN17} 青類Ⅲ-2-14 上 鏡スプレイノズル(N 6 A)の強度計算書」	解析コード:〇				
				応力解析	FEM解析及び公式等による評価			応力解析	水平 f 鉛直	Mモデル Mモデル			応力解析 応力解析 始直 -	_	100 M							

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								既工認と今回工認時との比較								他プラントを含めた既工認での	適用例		
		(公	式等による	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)				解析モデル		減衰定数		その他 (評価条件の変	(更等)	備考	(**1)			減衰定数の実績	既工認と今回工認の手法 に相違
	計個內家試備	0:同じ		相 違 内 容	〇:同じ			相 違 内 容	〇:同じ	相 達 内 容	〇:同じ	相	違 内 容	(左欄にて比較した自 プラント既工認)	 (※1) ○:共通適用例あり □:個別適用例あり ×:適用例た1. 	内 容	参照した設備名称	 :構造上の差異なし :構造上の差異あり (適用可能であることの) 	ー : 相違あり ○ : 相違なし
		●:異なる -:該当なし	工認	解析種別 内 容	●:異なる -:該当なし	工認	解析種別	別 方向 内容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認	内容					理由も記載)	
			既工認	応答解析 スペクトルモーダル解析 (配管反力)		既工認	応答解析	 ケーズを示す。 ケーズを引きため、 ケーズを引きため、 ケーズを引きため、 ケーズの <		応答解析 水平 0.5% 既工認		既工認 ()	応力解析)						
	ベントノズル	(応答解析) 〇		応力解析 FEM解析及び公式等による評価	(応答解析) 〇		応力解析	 水平 FEMモデル 新直 FEMモデル 	(応答解析)	応力解析 松平 - 鉛直 -	•	<u>л</u> +	₩ ⊐ — F . ASSAL, FEAR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	(減衰定数) 応答解析:○			0	_
	(N 7)	(応力解析) 〇	今回	応答解析 スペクトルモーダル解析 (配管反力)	(応力解析) 〇	今回	応答解析	水平 3次元はりモデル 新直 3次元はりモデル	(応力解析) 	水平 2.0% 今回 鉛直 2.0%		今回 ()	応力解析)	添付書類Ⅲ-2-16「ベ ントノズル(N 7)の強 度計算書」	(その他) 解析コード:○			Ŭ	
			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	r f f f f f f f F E Mモデル f F E Mモデル	_	工認 応力解析 水平 - 鉛直 -		工認解	析コード : ASHSD2						
			105.77.20	応答解析 スペクトルモーダル解析 (配管反力)		105 77 250	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	_	応答解析 水平 0.5% 始直 -		HELT #81 ()	応力解析)						
	ジェットポンプ計測管	(応答解析) 〇	成工部	応力解析 FEM解析及び公式等による評価	(応答解析)	成工部	応力解析	水平 FEMモデル 鉛直 FEMモデル	(応答解析)	成上記 応力解析 <u> 称平</u> - <u> 鉛直</u> -		解	析コード:ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	 (減衰定数) 応答解析:○ 				
	員通節ノスル (N 8)	(応力解析) 〇	今回	応答解析 スペクトルモーダル解析 (配管反力)	(応力解析)	今回	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	(応力解析) 一	応答解析 水平 2.0% 今回 約直 2.0%	•	今回 ()	応力解析)	添付書類Ⅲ-2-17 「ジェットポンプ計測 ノズル(N8)の強度計 算書」	(その他) 解析コード:○			0	_
			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	水平 FEMモデル 新直 FEMモデル	_	工認 応力解析 <u> 応力</u> 解析 <u> 小平</u> - <u> </u> <u> </u>		工認解	析コード : ASHSD2						
				応答解析 スペクトルモーダル解析 (配管反力)			応答解析	水平 3次元はりモデル 新直 3次元はりモデル	_	応答解析 水平 0.5% 鉛直 -	-		応力解析)			-			
	液体ポイズン及び炉心差	(応答解析) ○	耽工部	応力解析 FEM解析及び公式等による評価	(応答解析)	耽工認	応力解析	水平 FEMモデル 鉛直 FEMモデル	(応答解析)			成工部 解	析コード:ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」	 (減衰定数) 応答解析:○ 			_	
	注計詞/スル (N10)	(応力解析) ○	今回	応答解析 スペクトルモーダル解析 (配管反力)	(応力解析) 〇	今回	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	(応力解析) 	応答解析 水平 2.0% 今回 約直 2.0%	•	今回 ()	応力解析)	添付書類Ⅲ-2-12「液 体ポイズンおよび炉心 差圧計測ノズルの強度 計算書」	(その他) 解析コード:○			0	_
原子 炉 圧 由			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	水平 FEMモデル 鉛直 FEMモデル	_	工認 応力解析 水平 - 鉛直 -		工認解	析コード : ASHSD2						
炉 万容器体 本体			00"	応答解析 スペクトルモーダル解析 (配管反力)		00 40	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	_	応答解析 水平 0.5% 約直 -			応力解析)						
	円筒胴計測ノズル	(応答解析) ○	耽工部	応力解析 FEM解析及び公式等による評価	(応答解析)	耽工認	応力解析	水平 FEMモデル 鉛直 FEMモデル	(応答解析)			成工部 解	析コード:ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方	 (減衰定数) 応答解析:○ 			_	
	(N11, N12, N16)	(応力解析) ○	今回	応答解析 スペクトルモーダル解析 (配管反力)	(応力解析)	今回	応答解析	水平 3次元はりモデル 新直 3次元はりモデル	(応力解析) 	応答解析 水平 2.0% 今回 約直 2.0%	•	今回 ()	応力解析)	- #「」 添付書類Ⅲ-2-18「円 筒胴計測ノズルの強度 計算書」	(その他) 解析コード:○			0	_
			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	水平 FEMモデル 鉛直 FEMモデル	-	工認 水平 - 応力解析		工認解	析コード : ASHSD2						
			101	応答解析 スペクトルモーダル解析 (配管反力)		80' 40	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	_	応答解析 水平 0.5% 鉛直 -		BT T 40	応力解析)						
	ドレンノズル	(応答解析) ○	56-1-80	応力解析 FEM解析及び公式等による評価	(応答解析)	56.1.80	応力解析	F K平 FEMモデル 给直 FEMモデル	(応答解析)	成上記 応力解析 <u>林平</u> - 鉛直 -		^{51_105} 解	析コード:ASSAL, FEMR	建設工認 第17回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方	 (減衰定数) 応答解析:○ 			_	
	(N 1 5)	(応力解析) 〇	今回	応答解析 スペクトルモーダル解析 (配管反力)	(応力解析) 〇	今回	応答解析	水平 3次元はりモデル 鉛直 3次元はりモデル	(応力解析) 	応答解析 水平 2.0% 今回 鉛直 2.0%		今回 ()	応力解析)	[■] 「」 添付書類Ⅲ-2-19「ド レンノズルの強度計算 書」	(その他) 解析コード:○			0	
			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	r f f f f f f EMモデル f f f f F EMモデル	_	工認 応力解析 水平 - 鉛直 -		工認解	析コード : ASHSD2						
			医丁级	応答解析 時刻歷解析		医丁级	応答解析	水平 多質点系モデル(建屋-機器連成解析モデル) 新直 -	_	□ 広答解析 水平 1.0% □ 小平 1.0% ○ からい		两丁级 —							
	ブラケット類	(応答解析)	,yu-1-80	応力解析 公式等による評価	(応答解析)	.,70-1-80	応力解析	大平 - 好道 -	(応答解析)	応力解析 水平 - 鉛直 -	_	~~~~HE2		建設工認 第17回 添付書類Ⅲ-2-20「ス	(解析モデル) 応答解析:○			0	_
ブラケット類	API	(応力解析) 〇	今回	応答解析 時刻歷解析	(応力解析) -	今回	応答解析	水平 多質点系モデル(建屋-機器連成解析モデル) 新直 多質点系モデル(建屋-機器連成解析モデル)	(応力解析) 	小平 1.0% 今回 新直 1.0%		今回		タビライザブラケット の強度計算書」	(減衰定数) 応答解析:○				
		工認	応力解析 公式等による評価		工認	応力解析	☆平 − 前直 −	_	上認 応力解析 <u>水平 -</u> 鉛直 -		工認								

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用

							既工認と今回工認時との比較							他プラントを含めた既工認での適用例		
	亚血外和恐怖	(公	式等によ	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)			解析モデル		減衰定数	そ((評価条件	D他 の変更等)	備 考 (左鯽!! て 比較 1 た 白	(※1)		減衰定数の実績	既工認と今回工認の手法 に相違
	可加力或以加	○:同じ		相違内容	〇:同じ		相 違 内 容	○:同じ	相違内容 ():同じ		相違內容	プラント既工認)	 ○:共通適用例あり □:個別適用例あり ×:適用例なし 	内 容 参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの 	ー : 相違あり ○ : 相違なし
		●: 乗なる - : 該当なし	工認	解析種別 内 容	●: _英 なる -: 該当なし	工認	解析種別方向内容	●: 乗なる - : 該当なし	工認 解析種別 方向 内 容 → : 該当な → : 該当な → : 該当な → : : 該当な	s なし 工認	内容				理田も記載)	
	支持スカート	(応答解析)	既工語	応答解析 時刻壓解析 3 応力解析 FEM解析及び公式等による評価	(応答解析)	既工認	応答解析 水平 多員点ホモテル(建風一機畜運成時近モデル) 鉛直 - 応力解析 水平 FEMモデル 鉛直 FEMモデル	(応答解析)	成答解析 小平 1.0% 販工部 鉛直 - 応力解析 水平 - 約直 -	既工認	(応力解析) 解析コード: ASSAL, FEM	R 建設工認 第17回 添付書類III-1-1「申請 設備に係る耐震設計方 41	 (解析モデル) 応答解析:○ (減衰定数) 		0	_
原子炉圧力容		(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価	(応力解析)	今回 工認	水平 多質点系モデル(建屋-機器連成解析モデル) 給直 多質点系モデル(建屋-機器連成解析モデル) 水平 序EMモデル 応力解析 糸平 FEMモデル 約面 FEMモデル	(応力解析) 	$\begin{array}{c} & \frac{1}{1000} $	今回 工認	(応力解析) 解析コード:ASHSD2	(2) 添付書類Ⅲ-2-4「下鏡 板と支持スカートの強 度計算書」	応答解析:○ (その他) 解析コード:○			
器支持構造物			既工語	応答解析 時刻歴解析 3	_	既工認	応答解析 水平 多質点系モデル(建屋ー機器連成解析モデル) 始直 - 水平 - 水平 -	-	成容解析 水平 1.0% 成工記 600 - 水平 - -	既工認	-	建設工認 第7回 添付書類Ⅲ-2-1「申請				
	原子炉圧力容器 基礎ボルト	(応答解析) ○ (応力解析) ○	今回工認	応答解析 時刻歷解析	(応答解析) ● (応力解析)	今回工認	必直 応答解析 水平 多質点系モデル(建屋一機器連成解析モデル) 分直 多質点系モデル(建屋一機器連成解析モデル) 分直 多質点系モデル(建屋一機器連成解析モデル)	(応答解析) ● (応力解析) -	公式所行 鉛直 一 鈴直 小平 1.0% 小平 1.0% 小平 1.0% 小平 1.0%	今回 工認	_	設備に係る耐震設計方 針」 添付書類Ⅲ-2-2「原子 炉圧力容器基礎ボルト の耐震性についての計 算書」	 (解析モデル) 応答解析:○ (減衰定数) 応答解析:○ 		0	_
				応力解析 公式等による評価			水平 一 約面 - 水平 多面点系モデル(建屋ー機器連成解析モデル)		応力解析 水平 - 鉛直 - 水平 1.0%							
	原子炉圧力容器	(応答解析)	既工語	応答解析 時刻歴解析 g 応力解析 公式等による評価	 (応答解析) 〇	既工認	応答解析 水平 - 応力解析 松平 - 約直 - -	- (応答解析) ○	応答解析 A 田 既工認 応力解析 水平 応力解析 約直	既工認	-	建設工認 第17回 添付書類III-1-1「申請 設備に係る耐震設計方	_			0
原子	スタビライザ	(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応力解析)	今回 工認	水平 多質点系モデル(建垦-機器連成解析モデル) 約直 - 応力解析 水平	(応力解析)	中国 応答解析 水平 1.0% 今回 新直 工認 応力解析 水平	今回 工認	-	*12 添付書類Ⅲ-2-22「ス タビライザの強度計算 書」				
炉本体			既工語	応答解析 時刻歴解析 8 応力解析	_	既工認	水平 多質点系モデル(建屋ー機器連成解析モデル) 応答解析 糸平 多質点系モデル(建屋ー機器連成解析モデル) 約直 - 応力解析 水平	-	成本平 1.0% 成本平 1.0% 公正 公元 成次所研 水平	既工認	_	建設工認 第17回 添付書類Ⅲ-1-1「由請				
原子炉	格納容器 スタビライザ	 (応答解析) ○ (応力解析) ○ 	今回工認	応答解析 時刻歷解析	(応答解析) ● (応力解析) -	今回工認	約直 - 応答解析 水平 多質点系モデル(建屋ー機器連成解析モデル) 約直 多質点系モデル(建屋ー機器連成解析モデル) 水平 -	(応答解析) ● (応力解析) -	公面 - 今回 工認 広客解析 約面 水平 1.0% 水平 - -	今回工認	_	 設備に係る耐震設計方 針」 (新行書類Ⅲ-2-22「スタビライザの強度計算 	(解析モデル) 応答解析:○ (減衰定数) 応答解析:○		0	_
庄 力容器 付 属 構 造			既工語	応力解析 公式等による評価 応答解析 時刻歴解析 3		既工認	応力解析 <u> 約直</u> - 水平 多質点系モデル(建屋-機器連成解析モデル) 約直 - 約直 -	-	応力解析 <u> 応答解析</u> 近乙酸析 近乙酸 - <u> 水平 1.0%</u> <u> 分直 -</u> <u> 分直 -</u> <u> 小正 1.0%</u> <u> 分直 -</u>	既工認	_					
物	制御棒駆動機構ハウジン グ支持金具	(応答解析) ○ (応力解析)		応力解析 公式等による評価	(応答解析) ● (応力解析)		応力解析 水平 - 約直 - -	(応答解析) ● (応力解析)	応力解析 水平 - 約直 - -			建設工認 第20回 添付書類Ⅲ-1-1「申請 設備に係る耐震設計方 針」 添付書類Ⅲ-2-3「制御	(解析モデル)応答解析:○(減衰定数)		0	_
		0	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	_	今回 工認	水平 多質点系モデル(建屋-機器連成解析モデル) 鉛直 多質点系モデル(建屋-機器連成解析モデル) 松平 - 応力解析 糸平 小平 - 約直 -	-	$\begin{array}{c} & \frac{\pi - 2}{2} \\ \frac{1}{2} \\ 1$	今回 工認	_	棒駆動機構ハウジング 支持金具の強度計算 書」	応答解析:〇			
		(応答解析)	既工語	応答解析 スペクトルモーダル解析 g 応力解析	(応答解析)	既工認	応答解析 水平 多質点系モデル 始直 多質点系モデル 応力解析 水平 - 約直 -	(応答解析)	成正報 応容解析 応力解析 水平 不明 成力解析 水平 - 約直 - -	既工認	(応答解析) 解析コード:EBASCO社 構造解析コード	- 建設工認 第21回 添付書類Ⅲ-2-1「申請 設備に係る耐興設計方	(減衰定数)			
	差圧検出・ほう酸水注入 配管	○ (応力解析) ○	A 17	応答解析 スペクトルモーダル解析	 (応力解析) 		水平 多質点系モデル 応答解析 新直 多質点系モデル	● (応力解析) -	□ □ □ □ □ □ □ ● □ 応答解析 水平 1.0% ●		(片:安都七)	針」 添付書類Ⅲ-2-5「炉内 配管およびスパージャ の耐震性についての計 算書」	応答解析:○ (その他) 解析コード:○		0	_
			二四工記	応力解析 公式等による評価		工認	水平 - 応力解析 糸直		工部 水平 - 応力解析	二部	いい (1979年1117) 解析コード:NSTRAN					

箇用例あり:プラント個別に適用性が確認され	hたプラント個別の適用例がある手法

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

			既工認と今回工認時との比較													他プラントを含めた既工認での適用例				
評価対象設備 ● ●		(公	式等による	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)	解析モデル						減衰定数 その他 (評価条件の変更等)			備考	(201)			減衰定数の実績	既工認と今回工認の手法 に相違	
		〇:同じ		相 違 內 容	〇:同じ				相 違 內 容	〇:同じ	相違内容		〇:同じ	相 違 内 容	 (左欄にて比較した自	 (※1) ○:共通適用例あり □:個別適用例あり 	内 容 参照した設備名 ³	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの) 	ー : 相違あり ○ : 相違なし
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工設	解析種別	別 方向	内容	●:異なる -:該当なし		工認 解析種別 方向 内 容 [●] :異な	●:異なる -:該当なし	工認 内 容		人:週用例なし			理由も記載)	
原子炉本体原子炉压力容器内部構造物		(広筌解析)	既工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応答解析) (応力解析)	既工認	応答解析 応力解析	水平 多質点系モデル(建屋-機器連成解析モデル) 折 新直 小平 - 折 -	 (応答解析)	成容解析 水平 1.0% 既工認 応方解析 新道 - 応力解析 水平 - -	-	既工認 —	建設工認 第21回 添付書類Ⅲ-2-1「申請 9.6/15/07.51=59:021-5	(飯町千千デル)						
	蒸気乾燥器	○ (応力解析) ○	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価		今回工認	応答解析応	水平 鉛直 水平 鉛直 水平 鉛直	多質点系モデル(建屋一機器連成解析モデル) 多質点系モデル(建屋一機器連成解析モデル) - - -	(応力解析) 	小解析) 応答解析 水平 1.0% 今回 工部 応答解析 株平 1.0% 成力解析 水平 -		今回 工認 -	 (株) (株) (株) (株) (株) (株) (株) (株) (株) (株)	応答解析:○ (滅衰定数) 応答解析:○			0	-	
		(応答解析) 〇 (応力解析)	既工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応答解析) (応力解析)	既工認	応答解析応	水平 分直 水平 公直	多質点系モデル(建屋ー機器速成解析モデル) - - - - -	(応答解析)	既工認	水平 1.0% 応答解析 新道 応力解析 水平 小声 小声	既工認 -	建設工認 第21回 添付書類Ⅲ-2-1「申請 30億に成まま電気10	 請 (解析手法) 広力解析:○ (解析モデル) (解析モデル) 心 心 心 (減定数) (減定数) (減定数) (該答解析:○ 					
	気水分離器及びスタンド バイプ		今回 工認	応答解析 時刻歷解析 応力解析 FEM解析		今回 工認	応答解析	水平 行 鉛直 示	多質点系モデル(建屋一機器連成解析モデル) 多質点系モデル(建屋一機器連成解析モデル) 3次元FEMモデル	(応力解析) 	解析) 上部 本学解析 本学解析 本学 1.0% 約直 1.0% 水平 一	-	今回 工記	武師に下の前承載は1万 封丁 添付書類Ⅲ-2-3「炉心 構造物の耐震性につい ての計算書」			0	_		
		(応答解析) 〇 (応力解析)	既工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価	(応答解析) (応力)解析)	既工認	応答解析	鉛直 水平 鉛直 水平 鉛直 水平 鉛直 水平 小平 ホ平	3 次元FEMモデル 多質点系モデル(建屋-機器連成解析モデル) - 2次元輪対象モデル	-	公面 公面 公面 公面 飛工記 飛花部 水平 1.0% 次方解析 小平 大方解析 水平 合四 水平 1.0% 小方解析 水平 1.0% 大力解析 水平 1.0% 大力解析 水平 1.0% 大力解析 水平 1.0%	· · · · · · · · · · · · · · · · · · ·	既工認 —	建設工設 第21回	(解析手法) 応力解析:○ (解析モデル) 応答解析:○ (滅衰定数) 応答解析:○	-	-			
	シュラウドヘッド		今回工認	応答解析 時刻歴解析 応力解析 公式等による評価		今回工認	応答解析応力解析		- 多質点系モデル(建屋ー機器連成解析モデル) 多質点系モデル(建屋ー機器連成解析モデル) -	(応答解析) ● (応力解析) -			今回 工認 -	部内管理(Ⅲ-2-1)中時 設備に係る耐震設計方 針」 能付書類Ⅲ-2-3「炉心 構造物の耐震性につい ての計算書」			0	-		
		(応答解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	2 (広答解析) (広力解析) 2	既工認	応答解析応力解析		水平 多質点モデル 鈴直 一 松平 山田 幼直	(応答解析)	(応答解析) (応答解析) (応力解析) (応力解析) (応力解析) (応力解析) (応力解析)	(応答解析) 水平 - (広方解析) 振工部 応ろ解析 糸平 - (広方解析) 小平 - か回 小平 (広方解析) 小平 - (広方解析) 小平 - (広方解析) 小田 小田 (広方解析) 小田 小田 (広方解析) 小田 (広方解析) 小田 (広方解析) (広方解析) (広方解析)	-	厩工認 —	建設工認 第21回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計方 44	(解析手法) た答解析:		-		
	ジェットボンブ	(応力解析)	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価		今回工認	応答解析 応力解析	水平 鉛直 水平 鉛直 水平 鉛直	 多質点モデル 多質点モデル - - 	(応力解析) 			(応力解析) - - - - - - - - - -	応答解析 水平 - 鉛直 - 応力解析 水平 - 鉛直 - - 約直 - -	今回 工認 -	^µ 1] 添付書類Ⅲ-2-6 「ジェットポンプの耐 戊 廃性についての計算 書」	(毎杯日デル) 応答解析:○		_	0
	給水スパージャ	(応答解析) 〇 (は)を解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	- ○○ (応売解析) - - - -	既工認	応答解析 応力解析	水平 鉛直 水平 鉛直 水平 鉛直	 多質点モデル 多質点モデル - - 	(応答解析) 	$(\dot{\kappa}$ $\dot{\kappa}$ \dot{n}	水平 - 応答解析 鉛直 - 応力解析 水平 - 始直 - - 協直 - -		(応答解析) 既工認 解析コード: EBASCO 構造解析コード	社 建設工認 第21回 添付書類Ⅲ-2-1「申書 設備に係る耐震設計プ 針」	(その他)			0	_
		(応力解析)	今回 工認	今回 工部 応答解析 各設備の固有周期に基づく応答加速度による評 価 広力解析 公式等による評価		今回 工認	応答解析 応力解析	水平 鉛直 水平 台直 小平 鉛直	 多賀点モデル 多賀点モデル - - 	(応力解析) 		水平 - 松直 - 松市 - 広力解析 水平 - 鉛直 - -		今回 (応答解析) 工認 解析コード:NSTRAN	漆付書類Ⅲ-2-5 / 炉内 配管およびスパージャ の耐震性についての計 算書」	¶解析⊐−ド:○ +	-	_	-	
	炉心スプレイスパージャ	(応答解析) 〇 (広力報知5)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	(応答解析)	応 既工認 応	応答解析	水平 鉛直 水平 鉛直 松平 鉛直 鉛直		(応答解析) (広・力報知知)	既工認	水平 - 始直 - 応力解析 水平 - 労直 - - 労直 - -		既工認 -	建設工認 第21回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計力 針」 添付書幣Ⅲ-2-2「結55	(解析モデル) 広気解析・〇		-	0	_
		(応力解析)	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	(心刀解析) 一	今回 工認	応答解析	水平 多質点モデル 鉛直 多質点モデル 水平 - 鉛直 -	 多質点モデル 多質点モデル - - 	(心刀解析) 	り解析) 	水平 - 始直 - 応力解析 水平 - 分直 - - 成力解析 4 - 分直 - -	_	今回 工認 —	孫付書類Ⅲ-2-5 「炉内 配管およびスパージャ の耐景性についての計 算書」	応答解析:〇		U		

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

1			既工認と今回工認時との比較												他プラントを含めた既工認での適用例				
評価対象設備 【 ■		(公:	式等による	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)				解析モデル		減衰定数	その他 (評価条件の変更等)			(*1))手法	
		〇:同じ		相 違 内 容	〇:同じ			相 違 內 容	〇:同じ	相違內容	〇 : 同じ	相違內容	- (左欄にて比較した自 プラント既工認)	(※1) ○:共通適用例あり □:個別適用例あり	内容参照した設備名利	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの ○:相違なし 	: 相違あり : 相違なし	
		●:異なる -:該当なし	工認	解析種別 内 容	●:異なる -:該当なし	工認	解析種別	方向 内容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認 内 容		× :)適用1例なし			理由も記載)		
原子炉圧力容器内部構造物			既工認	応答解析 — 応力解析 —	_	既工認	応答解析	 水平 - 鉛直 - 水平 - 	(応答解析) (応力解析) - (応力解析) - (応効解析) (応力解析)	廃ご部 水平 - 廃ご部 応 - 廃ごの解析 水平 - かの解析 水平 - 今回 工部 た 水平 - かの解析 水平 - かのの 水平 - 第400 た - 小田 た - 小田 た - 小田 た - 小田 た - 市 市 - 市 市 - 市 市 - 市 市 - 市 市 - 市 市 - 市 市 - 市 市 - 中 市 - 中 市 - 市 - - 中 - - 市 市 - 市 - -	-	既工認 —	 建設工設第21回 添付書類Ⅲ-2-1 申請 設備に係る耐震設計方 針1 添付書類Ⅲ-2-5 「炉内 配管およびスパージャ の耐震性についての計 算書」 	(解析手法) 応答解析:○ 応方解析:○ (解析モデル) 応答解析:○ 応力解析:○ 応力解析:○ (減衰定数) 応答解析:○ (その他) 解析:□-ド:○					
	残留熱除去系配管(原子 炉圧力容器内)	(応答解析) - (応力解析) -	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評 価	(応力解析) (応力解析)	今回 工認	応答解析	鉛直 - 水平 多質点モデル 鉛直 多質点モデル 水平 -			-	今回 工認 -					0 -		
				応力解析 公式等による評価 応答解析 スペクトルモーダル解析			応力解析	鉛直 - 水平 多質点モデル			-								
	炉心スプレイ系配管(原 子 何正力容毀内)	(応答解析) 〇 (応力解析) 〇	既工認	応力解析 公式等による評価	 (応答解析) ○ (応力解析)	既工認 ?)	応力解析	知道 数項点モテル 水平 - 鉛直 -			•	(応答解析) 既工認 解析コード:EBASCO社 構造解析コード					0 -	_	
			今回 工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価		今回 工認	応答解析	水平 多質点モデル 勤直 多質点モデル 水平 -				今回 (応答解析) 工認 解析コード:NSTRAN							
	差圧検出・ほう酸水注入 系配管 (原子炉圧力容器 内)	(応答解析) 〇 (応力解析) 〇	既工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応答解析) (応力解析)	既工認	応答解析	 鉛直 - 木平 多質点系モデル 鉛直 - 木平 - 松声 - 	(応答解析) (応方解析) 	納面 午 原田田 応答解析 糸平 不明 原本 元 小平 プ解析) 正 元 小平 小麻析 小平 小麻析 小平 小麻析 小平 1.0% 小田 工 二 小田 工 二 小田 工 二	•	(応答解析) 既工認 解析コード:EBASCO社 構造解析コード	建設工認第21回 添付書類 II-2-1 「申請 設備に係る耐濃設計 が付書類 III-2-5 「炉内 配管なよびスパージャ の耐震性についての計 算書」	(解析モデル) 応答解析: (減衰症数) 応答解析:○ (その他) 解析コード:○					
			今回 工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価		今回 工認	応答解析応力解析	水平 多質点系モデル 鉛直 多質点系モデル 水平 - 鉛直 -				今回 (応答解析) 工認 解析コード:NSTRAN					0 –	_	
	中性子計測案内管	(応答解析) 〇〇	既工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応答解析)	既工認	応答解析 応力解析	水平 多質点モデル 鈴直 - 麻麻 水平 - 麻酢 ホ平 - 鈴直 - -	(応答解析) (応力解析)	応答解析 水平 1.0% 成次解析 応答解析 糸平 - 応力解析 一 小平 - 広力解析 小平 - - 今回 工部 応力解析 水平 1.0% 水平 - - - 小平 - - -		厩工認 -	発管発144号 添付書類IV-1-2「中性 子計測楽内管の耐震性 についての計算書」	(解析モデル) 応答解析:○ (滅衰定数) 応答解析:○			0 -		
		(応力解析)	今回 工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(AGY/J P\$49T) —	今回 工認	応答解析 応力解析	水平 多賀点モデル 鉛直 多賀点モデル 水平 -				今回 工設 -							
原子炉本体の基礎			既工認	応答解析 時刻歷解析	_	成. 成	応答解析	鉛直 - 水平 多質点系モデル(建屋-機器連成解析モデル) 鉛直 - 水平 シェルモデル	_	鉛直 一 応答解析 水平 5.0% 炉正認 小平 - 水平 - 小平	-	既工認 —	律設丁認 第2回						
	円筒部	(応答解析) ○ (応力解析) ○	応力解析 F E M解析 応答解析 時刻歷解析 今回	(応答解析) ● (応力解析) ○	今回	応方解析	鉛直 シェルモデル 水平 多質点系モデル(建屋-機器連成解析モデル) 鉛直 多質点系モデル(建屋-機器連成解析モデル)	(応答解析) ● (応力解析) -	応力解析 小 鈴直 - 広答解析 水平 5.0% 今回 鉛直 5.0%		今回 _	本(本記) 小の口 申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-4「原子炉 本体の基礎に関する説 明書」	 (解析モデル) 応答解析:○ (減衰定数) 応答解析:○ 			0 -			
			工認			工認	応力解析	水平 シェルモデル 鉛直 シェルモデル 水平 多質点系モデル(建屋-機器連成解析モデル)	_	工認 水平 - 応力解析 鉛直 - 鉛直 - 水平 5.0%	_	工認							
	マンカ部	(応答解析)	既工認 応力解析 FEM解析及び公式等による評価	(応答解析)	既工認	応力解析	鉛直 - 水平 シェルモデル 鉛直 シェルモデル	(応答解析)	既工認 ¹⁰⁻¹³⁻¹⁹⁺¹⁰ 鉛直 - 応力解析 水平 - 始直 -		既工認 —	建設工認 第3回 添付書類Ⅲ-3-1「申請 設備に係る耐震設計の	(解析手法) 応力解析:〇 (解析:二〇)						
	/	(応力解析)	今回 工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応力解析) 	今回 工認	応答解析 応力解析	平 多質点系モデル(建量-機器連成解析モデル) 直 多質点系モデル(建量-機器連成解析モデル) :平 - :市 -	(応力解析)) 今回 工器 本平 5.0% 鉛直 5.0% 公式 本平 - 公式 公式 本平 -	-	今回 工認 —	☆デルギリ 添付書類Ⅲ-4「原子炉 本体の基礎に関する説 明書」	応答解析:○ (減衰定数) 応答解析:○					
(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適

									既工認と今回工認時との比較							他プラントを含めた既工認で	の適用例		
	亚体计数的描		(公式)	等による	解析手法 評価,スペクトルモーダル解析,時刻歴解析他)				解析モデル		減衰定数		その他 (評価条件の変更等)	備 考 (左躙にて比較) た白	(※1)			減衰定数の実績	既工認と今回工認の手法 に相違
	計個內承試開	0:1	同じ		相 違 內 容	〇:同じ			相 違 内 容	〇:同じ	相違內容	〇:同じ	相違內容	プラント既工認)	 ○:共通適用例あり □:個別適用例あり 	内容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの) 	- : 相違あり ○ : 相違なし
		• : : - : :	異なる 該当なし	工認	解析種別 内 容	●:異なる -:該当なし	工認	解析種別	方向 内 容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認内容		× : 適用例なし			理由も記載)	
		(山)	古祭解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 FEM解析及び公式等による評価	(広答解析)	既工認	応答解析	 水平 シェルモデル 鉛直 シェルモデル 水平 シェルモデル マニュー 	(広答解析)	成容解析 水平 1.0% 所工認 約直 - 成力解析 水平 - -		厩工認 —	発管業発274号 添付書類2-1「申請設					
作月初	使用済燃料貯蔵ラ 更 月 斉	ラック (応	○ ぶ力解析) ○	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 FEM解析及び公式等による評価	○ (応力解析) ○	今回 工認	応答解析応力解析	新進 ジェルモデル 水平 ジェルモデル 鉛直 ジェルモデル	(応力解析) (応力解析)	空空間 近部 - 小平 1.0% 公室解析 糸平 1.0% 小市 小市 小市 水平 - -	_	今回 _ 工認	備に保る耐疾設計の基 本方針」 添付書類2-2-1「使用 済燃料貯蔵設備の耐養 性についての計算書」	_	_	-	_	0
外来貝庫能信	然 科 拧 蔵 役 備			既工認	応答解析 各設備の固有周期に基づく応答加速度による評価	-	既工認	応答解析	鉛直 シェルモデル 水平 - 鉛直 - 水平 シェルモデル		公式 公式 公式 公式 公式		既工認 —	発管発435号					
	使用済燃料乾式財	(応 庁蔵容器 (応	芯答解析) ○ ○ ○ ○	今回 工認	応力解析 F E M解析及び公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価	(応答解析) (応力解析) 〇	今回 工認	応力解析	 鉛直 シェルモデル 木平 − 鉛直 − 木平 シェルモデル 	(応答解析) (応力解析) (応力解析)	応力解析 分直 一 本 人水平 - 公室解析 分直 - 工認 水平 - 水平 -		今回 工题 -	(4)1音規W2-11甲請 設備に係る耐震設計の 基本方針」 添約料容式貯蔵容器の 耐震性についての計算 書」	_	-	_	_	0
核燃料				007	応力解析 FEN解析及び公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価			応力解析	始直 シェルモデル 水平 - 知直 -		応力解析 新直 - 鉛直 - - 広答解析 水平 - 鉛直 - -								
物質の取扱施設	燃料取替機	(定 (定	芯答解析) ● 応力解析) ○	既上認	応力解析 公式等による評価 広英解析 スペクトルモーダル解析	(応答解析) ● (応力解析) 一	既上認	応力解析	 木平 ー 新直 ホ平 はりモデル 	(応答解析) ● (応力解析) 一		_		発発発第18号 1-1 「燃料取扱装置燃 料取替機の耐震性につ いての計算書」	(解析手法) 応答解析:○ (解析モデル) 応力解析:○ (減衰定数) 応答解析:○			-	-
及び貯蔵施設				今回 工認	応力解析 公式等による評価	-	今回 工認	応力解析	鉛直 はりモデル 水平 - 鉛直 -		今回 工認 公司派討 鉛直 2.0% 応力解析 水平 - 始直 -		今回 工認 -			-			
炉来	然	(17)	大祭解析)	既工認	 応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価 	(広答解析)	既工認	応答解析 応力解析	水平 - 約直 - 水平 -	(広答解析)	成正認 水平 - 成立角解析 分直 - 成立角解析 水平 -		既工認 —	発管業発第312号 1-1 「届出設備に係ろ	(解析手法) 応答解析:〇				
耳 技 装 置	取 取 服子炉建屋クレー 装 置	-ン (応	● あ あ あ か が う が う の 、 の の の の の の の の の の の の の	今回 工認	応答解析 時刻歷解析	(応力解析) -	今回工認	応答解析	新直 – 木平 多質点モデル 新直 多質点モデル 木平 –	(応力解析)	公面 一 今回 工認 広答解析 約直 2.0% 水平 2.0% 水平 2.0%	_	今回 工题	耐震設計の基本方針」 1-2-1 「原子炉建屋ク レーンの耐震性につい ての計算書」	 (解析モデル) 応答解析:○ (減衰定数) 応答解析:○ 			-	_
					応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価			応力解析応答解析	新闻		応力解析 鉛直 - 応答解析 水平 - 分直 - -					-			
	使用済燃料乾式則 天井クレーン	(応 庁蔵建屋 (応	芯答解析) ● 応力解析) ○	既工認	応力解析 公式等による評価	(応答解析) ● (応力解析) -	既工認	応力解析	 木平 - 36直 - 本平 9資意モデル 	(応答解析) ● (応力解析)	既工認 水平 - 応力解析 糸直 - 鉛直 - 水平 2.0%	_	既工認 —	発管発第63号 添付書類IV-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類IV-2-4「天井	(解析手法) 応答解析:○ (解析モデル) 応答解析:○ (成衰定数) (成衰定数)			_	_
				今回 工認	応答解析 時刻虚解析 応力解析 公式等による評価	-	今回 工認	応 合 解 析	知直 多質点モデル 水平 - 幼直 -		今回 工認 応答解析 鈴直 2.0% 成力解析 鉛直 水平 - 約直 - 約直		今回 _ 工認 _	いての計算書」	心音府印,〇	-			
原子炉冷却	主	全弁逃が(応	芯答解析) _	既工認	応答解析 —	(応答解析) 	既工認	応答解析 応力解析	xx - Static - xx - Static -	(応答解析)	成ご認知 応答解析 水平 - 第二章 第二章 第二章 - 成力解析 水平 - - 第二章 小平 - -		厩工認 —		(解析手法) 応答解析:○				
叫系統施設	気 し 州機能用 アキ <i>=</i> 系 タ	(店	芯力解析) 	今回 工認	応答解析 価 応力解析 公式等による評価	(応力解析) 一	今回 工認	応答解析 応力解析	水平 - 鉛直 - 水平 - 鉛直 -	(応力解析) 	応答解析 水平 - 介回 工認 近方解析 水平 - 応力解析 水平 - 知道 - -	· —	今回 工認 -		応力解析:○			_	_

箇用例あり:ブ	プラント個別に適用性が確認さ	れたプラント個別の適用例があ	る手法
			_

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								既工認と今回工認時との比較								他プラントを含めた既工認での適用例	4	
	272 Per - 1 - 64-20, Mr	(公	式等による	解析手法 3評価,スペクトルモーダル解析,時刻歴解析他)				解析モデル		減衰定	E数		その他 (評価条件の変更等)	備考	(¥1)			
	評価対象設備	〇:同じ		相 違 内 容	〇:同じ			相 違 内 容	〇:同じ	杓	泪 違 内 容	〇:同じ	相 違 内 容	 (左欄にて比較した目 プラント既工認) 	 (※1) ○:共通適用例あり □:個別適用例あり ×:適田例た1 	内容参照	した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの ○:相違なし
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認角	解析種別	方向 内容	● : 異なる - : 該当なし	工認 角	解析種別 方向 内 容	●:異なる -:該当なし	工認 内 容		へ . 適用内なし			理由も記載)
i	三主蒸気逃がし安全弁自動	(応答解析)	既工認	応答解析 - 応力解析 -	(応答解析)	成 既工認 応	5答解析 55力解析	 火平 - 小 ・ ・ ・ ・ 	(応答解析)	成 既工認 応	水平 - 公答解析 公面 - 公面 - - 公方解析 水平 - 公方解析 公面 -	-	既工認 —		(解析手法) 它答题后,〇			
· (5) 37	、減圧機能用アキュムレー タ	(応力解析) 一	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 公式等による評価	(応力解析) 一	応 今回 工認 応	5答解析 55力解析	 株平 一 株平 - - - 	(応力解析) 	応 今回 工認 応	水平 - 鉛直 - 公方解析 水平 - 小声 - -	-	今回 工設 -		≈方解析:○			
			既工認	応答解析 協 応 二 応 合設価の固有周期に基づく応答加速度による評 価 応 力解析 公式等による評価		成 成 成 成 成 成 成 成 成 の の の の の の の の の の の の の	5答解析 -	ны – – – – – – – – – – – – – – – – – – –		成 成 成 成 成 成 成 の 成 の の の の の の の の の の の の の	所直 一 次答解析 水平 - 鉛直 - S5力解析 水平 -	-	既工認 —	建設工認 第8回 添付書類 (二) (甲請	(解析手法)			
	残留熱除去系熱交換器	(応召解析)) ● (応力解析) ○	今回工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応力解析) — (応力解析)	応 今回 工認 応	5答解析 -	船直 – 水平 多質点モデル 船直 多質点モデル 水平 –	(応方解析) (応力解析) 	応 今回 工認 応	鉛直 - 次答解析 水平 1.0% 纷直 1.0% 公答解析 水平 - 次方解析 水平 -		今回 工認	 	№ 音解析1:デル) (解析モデル) 応答解析:○ (減衰定数) 応答解析:○			0 -
列音	k q		既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 価 応力解析 公式等による評価	-	成工認 一応	5答解析 5.力解析	船直 - 水平 多質点モデル 船直 - ・ -		応 既工認 応	鉛直 - 次答解析 小平 - 鉛直 - - 公答解析 水平 - 公式の解析 水平 -	-	既工起 —	建設工認 第9回 添付書類11-2-1「自請	(解析手法)	-	-	
素限支設保	A ネ 残留熱除去系ボンプ え 3 5	(応答解析) ●● (応力解析) ○	今回工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応答解析) ● (応力解析) -	応 今回 工認 応	5答解析 5.力解析	船直 - 水平 多質点モデル 船直 多質点モデル 水平 -	(応答解析) (応力解析) (応力解析)	応 今回 工認 応	鉛直 - 水平 1.0% 粉直 1.0% 粉直 1.0% 次方解析 水平 松声 -		今回 工認 —	設備に係る耐震設計基 本方針」 添付書類 Ⅲ- 2-4「残留 熟除去系ポンプの耐震 性についての計算書」	応答解析:○ (解析モデル) 応答解析:○ (減衰定数) 応答解析:○			0 -
: 却系統施設		(応答解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 価 応力解析 FEM解析	(応答解析)	成 成 工 認 応	5答解析 55力解析	 水平 - 6.6 二 水平 ジェルモデル 6.6 ゴンエルモデル 	(応答解析)	成 既工認 応	水平 - 鉛直 - 鉛直 - 次力解析 小平 - 鉛直 - -	-	既工認 -	発室発 622号 該付書類N-1-1「申請 設備に係る新選設計の 基本方針	 (解析モデル) 応答解析: 	-		
		(応力解析)	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 FEM解析	(応力解析)	応 今回 工認 応	5答解析 55力解析 -	 株平 ビームモデル 鉛直 ビームモデル 株平 シェルモデル 約直 シェルモデル 	(応力解析) 	応 今回 工認 応	水平 1.0% 鉛直 1.0% 公方解析 水平 - 公方解析 鉛直 -	-	今回 工認 —	添付書類W-1-2-1「残 留熱除去系ストレーナ の耐震性についての計 算書」	(國政定政/ 応答解析:〇	-		
	高圧炉心スプレイ系ポン マ	(応答解析) ● (広答解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	(応答解析) (広告解析)	成 既工認 — 応	5答解析 ·	 株平 多質点モデル 始直 - ・ ・ ・ ・ 	(応答解析) (広答解析)	成 既工認 — 応	水平 1.0% 約直 次力解析 水平 - 約直		既工認 —	建設工認第9回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計基 本方針」 ※付書類Ⅲ-2-2「宮田	 (解析手法) 応答解析:○ (解析モデル) (ドガモデル) 			0 -
番目炒心フ		0	今回 工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価		応 今回 工認 応	5答解析 5.力解析	 水平 多質点モデル 鉛直 多質点モデル 水平 - 		応 今回 工認 応	水平 1.0% 公答解析 分直 公方解析 水平 - 公方解析 分直 -	-	今回	(A) 1 音東田 2-1 (M) 炉心スプレイ系ンプレイ系ンプ の耐震性についての計 算書」	№音解析:② (減衰定数) 応答解析:○	-		
/ フレ イ 済	・ 、 高圧炉心スプレイ系スト	(応答解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 FEM解析	(応答解析)	応 既工認 応	5答解析 55力解析	 水平 – h直 – 水平 シェルモデル h直 シェルモデル 	(応答解析)	応 既工認 応	水平 - 鈴直 - 坊方解析 小平 - 鈴直 - -	-	既工認 -	発室発 623号 添付書類W-1-1「申請 設備に係る耐震設計の 基本方針」	 (解析モデル) 応答解析:〇 (減衰定数) 			0 -
	レーナ	(応力解析)	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 FEM解析	(応力解析)	応 今回 工認 応	5答解析 55力解析	 水平 ビームモデル 沿直 ビームモデル 水平 シェルモデル 沿直 シェルモデル 	(応力解析) 	応 今回 工認 応	水平 1.0% 公答解析 鉛直 1.0% 公式力解析 水平 - 鈴直 -	-	今回 工認 -	部付書類W-1-4-1「高 圧炉心スプレイ系スト レーナの耐震性につい ての計算書」	応答解析:〇			

(※1)共通適用あり:規格・基準頻等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用

									既工認と今回工認時との比較							他プラントを含めた既工認で	の適用例		
			(公:	式等による	解析手法 5評価,スペクトルモーダル解析,時刻歴解析他)			角	岸折モデル		減衰定数		その他 (評価条件の変更等)	備考	(***)			減衰定数の実績	
	評価対象設備	(〇:同じ		相 違 内 容	〇:同じ			相違內容	〇:同じ	相違內容	〇:同じ	相違內容	 (左欄にて比較した目 プラント既工認) 	 (※1) ○:共通適用例あり □:個別適用例あり ※ 第四回ね! 	內 容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であること) 	 −:相違あり ○:相違なし
		-	●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認 解析種	重別 方向	」 内容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認 内 容		×:適用例なし			理由も記載)	
			(応答解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 広力解析 公式等による評価	(応答解析)	応答角 既工認 応力角	水平 鉛直 水平 公司 水平 公司 水平 公司 公司	- 多賀点モデル 	(応答解析)	成正認 応答解析 水平 - 協直 -	-	既工認 —	建設工認 第9回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計基 本古44・	(解析手法) 応答解析:○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		1		
	低圧炉心スプ 低 王 炉 心	レイポンプ	(応力解析) ○	今回 工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応力解析) 一	応答角 今回 工認 応力角	本平 金直 本平 条析 水平 条析 公司	: 多賀点モデル : - : -	(応力解析) 	水平 1.0% 介回 近 近 1.0% 近 小平 1.0% 1.0% 水平 小平 1.0% 1.0% 水平 小平 1.0% 1.0% 水平 小平 1.0% 1.0%		今回 工認 -	※付書類Ⅲ-2-5「低圧 炉心スプレイ系ポンプ の耐震性についての計 算書」	応答解析:○ (減衰定数) 応答解析:○			0	_
	ス プ レ イ 系 低圧炉心スプ	レイ系スト	(応答解析) ○	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 F E M解析	(応答解析)	応答角 既工認 応力角	水平 な平 鉛直 水平 公式 案析 公式 公式 公式 第	 - シェルモデル - シェルモデル	(応答解析)	成正認 応答解析 水平 - 応力解析 水平 - 応力解析 小平 -	-	既工認 -	発室発 623号 添付書類IV-1-1「申請 設備に係る耐賞設計の 基本方参1	(解析モデル) 応答解析: ()	-			
	レーナ		(応力解析) 〇	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 FEM解析	(応力解析)	応答角 今回 工認 応力角	水平 公司 公司 水平 公司 水平 小平 水平 公司 水平 公司 公司 水平 公司 公司 水平 公司 公司 公司	- ビームモデル : ビームモデル - シェルモデル : シェルモデル	(応力解析) 	空管解析 水平 1.0% 介回		今回 工認 -	添付書類IV-1-3-1「高 圧炉心スプレイ系スト レーナの耐震性につい ての計算書」	(政策定数) 応答解析:〇			0	
	原子炉隔離時の	令却系ポン	(応答解析) 〇 (応力解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 価 応力解析 公式等による評価	(応答解析) (広力解析)	既工認 応答角	水平 鉛直 水平 分面 水平 鉛面 小平 鉛面	 - - - - 	(応答解析) (応力解析)	応答解析 水平 - 応力解析 小平 - 応力解析 水平 - 公司和 小平 -	-	既工認 -	建設工認 第9回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計基 本方針」 添付書類Ⅲ-2-2「原子	-	-	_	_	0
原子炉冷却系	原 子 炉 隔 雛		0	今回 工認	 応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価 	_	応答角 今回 工認 応力角	水平 容析 鉛直 水平 公式 水平 公式 水平 公式 水平 公式 公式 公式 水平 公式 公式	 - - - - 		今回 工認 水平 - か方所所 新選 - 協直 - - 協直 - - 台口 - -	-	今回 工認 —	炉隔離時冷却系ポンプ の耐震性についての計 算書」					
統施設	 ネ 原子炉隔離時 プ駆動用蒸気: 	令却系ポン タービン	 (応答解析) ○ (応力解析) 	既工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 公式等による評価	(応答解析) 	応答角 既工認 応力角	茶析 分直 水平 な平 約直 水平 分直	 - - - - - - - 	(応答解析) (応力解析)	$\kappa^{\pi +}$ $ \kappa^{\pi +}$ $-$	-	既工認 -	建設工認 第9回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計基 本方針〕 添付書類Ⅲ-2-2「原子	_	-	_	_	0
			0	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評 価 応力解析 公式等による評価	_	今回 工認 応方角	茶析 鉛直 水平 4 約直 約直		-	本 - ·	-	今回 工認 —	炉隔離時冷却系ボンブ の耐震性についての計 算書」					
	残留熱除去系	毎水ポンプ	(応答解析) ○ (応力解析)	既工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価	(応答解析) ● (応力解析)	応答角 既工認 応力角	森析 新直 水平 公直 本平 鉛直 公正	 タ製品でアル - - 	(応答解析) (応方解析)	既工認 応答解析 応力解析 本平 1.05 知道 - 公立解析 本平 - 公道 - - 公道 - - - 公道 - - - - - - - - - -		既工認 —	発室発149号 添付書類IV-1-1「申請 設備に係る耐震設計の 基本方針」 添付書類IV-1-2-1「残	(解析モデル) 応答解析:○			0	-
	残 留 照 条 去		0	今回 工認	応答解析		今回 工認 応力角	水平 公司 第40 小平 第40 水平 第40 小平 第40	 - 多賀点モデル 		水平 1.0% 介印 新道 - 水平 九部 - 水平 九部 - 水平 九部 - 小部 和単 -	-	今回 工認 -	留熱除去系海水系ボン ブの耐震性についての 計算書」					
	系 毎 水 系	毎水スト	(応答解析) ○ (応力解析)	既工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	(応答解析) 	応答角 既工認 応力角	水平 鉛直 水平 公司 水平 公司 水平 公司 水平 公司 水平 公司 公司	 - - - - - 	(応答解析) (応力解析)	成容解析 水平 - 施ごの解析 分道 - 応力解析 水平 - 公式の解析 小平 -	-	既工起 —	建設工認 第14回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計基 本方針」 添付書類Ⅲ-2-3「残留	-	-	_	_	0
			0	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価		応答角 今回 工認 応力角	水平 ¥析 鉛直 水平 新市 松平 分面 水平 分面	<		空容解析 水平 - 公回 近客解析 知道 - 広力解析 私平 - 鉛直 -	-	今回	熟除去系海水系機器 配管の耐震性について の計算書」					

i用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法	
	_

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

						既工認と今回工認時との比較				1) 200	a/10/7.767	910 <u>8</u> 727		7 JE/11 L// 16880 C 4 0/C 7 7 9 1 75	1100 MENIPHONE 11	他プラントを含めた既工認での)適用例	AFT 6.70-0111/BF(2910)	
	277 /m² 1 An 201 /Hz	(2	\式等によ	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)		解析モデル		減	载衰定数			その (評価条件の	他 の変更等)	備考				減衰定数の実績	既工認と今回工認の手法 に相違
	評価対象設備	○:同じ ●:異なる -:該当なし	工認	相 違 内 容 解析種別 内 容	 ○:同じ ●:異なる -:該当なし 	工認 解析種別 方向 内容	 ○:同じ ●:異なる -:該当なし 	工設	相違	内容	 ○:同じ ●:異なる -:該当なし 	工認	相違內容	- (左欄にて比較した自 (※1 プラント既工認) ○:共 □:個 ×:適	L) 転通適用例あり 間別適用例あり 適用例なし	内 容	参照した設備名称	 (ご構造上の差異なし ※:構造上の差異あり (適用可能であることの 理由も記載) 	ー : 相違あり ○ : 相違なし
非常	非常用ディーゼル発電機 用海水ボンプ	(応答解析) 〇 (応力解析) 〇	既工認	応答解析 スペクトルモーダル解析 応力解析 公式等による評価 応答解析 スペクトルモーダル解析	(応答解析) ● (応力解析) 一	庚工記 応容解析 応方解析 水平 多質点モデル 0 応方解析 応方解析 水平 - 水平 今夏点モデル 新道 - 小田 水平 - - 小田 水平 - - 小田 公宮解析 水平 > 小直 多質点モデル -	(応答解析) 	既工語	応答解析 応方解析 応方解析 応答解析	水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直 小平 鉛直 小平 鉛直	1.0% - - 1.0% -	既工認	-	発室発574号 添付書類IV-1-5「申請 設備(ポンプ)に係る 耐震設計の基本方針」 添付書類IV-1-7-1 排 (解析 用海水ボンプ及び高度に スプレイ系ディーゼル 発電機用海水ボンプの 断電性についての計算	fモデル) ¥析:○			o	_
パラィーモル新聞税用			「一一」	応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価		工記 応方解析 所工記 販工記		今回 工認 既工認	応力解析 応答解析	水平 鉛直 水平 鉛直 小平 鉛直	-		_						
原子炉	非常用ディーゼル発電機 用海水ストレーナ	(応答解析) 〇 (応力解析) 〇	今回工認	応力解析 公式等による評価 応答解析 協加の固有周期に基づく応答加速度による評 低 応力解析 公式等による評価	(応答解析) (応力解析) 	応力解析 水平 - 分面 小平 小正記 小平 小正記 小平 小平 -	(応答解析) 	今回工認	応力解析 応答解析 応力解析	水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直	- - - -	今回工認	_	全い者類町-2-1「申請 設備ご係る耐震設計の 基本方針) 活付音類町-2-10「非 常用予備発電装置内機 機関冷却水設備機器・ 配管の耐震性について の計算書」	-		-	-	0
冷却系統施設 百日炊	 高圧炉心スプレイ系 ディーゼル発電機用海水 ポンプ 	(応答解析) ○ (応力解析) ○	既工認	応答解析 スペクトルモーダル解析 3 応力解析 公式等による評価	(応答解析) ● (応力解析)	所正 新	(応答解析) (応力解析) 	既工認	応答解析 3 応力解析	鉛直 水平 鉛直 小平 鉛直 水平 小平 鉛直 水平		既工認	_	発室発574号 添付書類IV-1-5「申請 設備(ボンブ)に係る 耐霜設計の基本方針) 添付書類IV-1-7-1「非 常用ディーゼル発電機 応答解 用海水ボンブ及び高圧	「モデル) ¥析:〇			0	_
ルフラレイ 弄 ライー セ	а а		今回工認	応答解析 応力解析 応力解析 公式等による評価 応答解析 6 6 6 6 6 6 6 6 7 5 7 5 7 6 7 5 7 6 7 5 7 7 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 7 7 7 7 7 7 7 7 7 7 7 7		応答解析 分回 加直 多質点モデル 北部 水平 - 応力解析 約直 - 約直 - - 水平 - - 広答解析 水平 -		今回工認	応答解析 応力解析 応答解析	出 新直 新車 水平 当 小平 小平 小平	-	今回工認	-	スプレイネティーゼル 発電機制体ボンブの 耐発性についての計算 書」					
ノ系電検月済オテ	高圧炉心スプレイ系 ディーゼル発電機用海水 ストレーナ	(応答解析) ○ (応力解析) ○	既工認	応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評価	(応答解析) 	既工器 鉛直 一 応力解析 水平 - 分面 - - か適 - - 今回 応答解析 水平 - 労適 - - -	(応答解析) (応力解析) 	既工認 今回	志力解析 応答解析	鉛直 水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直	- - - -	既工認	_	 建設工器第16回 総付書類Ⅲ-2-1「申請 設備に係る新鉄設計の 基本方針! 添付書類Ⅲ-2-10「非 常用予備発電装置乃燃 機関冷却水設備機器・ 配管の耐発性についての計算書」 	_		_	_	0
			工認	応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価		工記 水平 - 応力解析 小平 - 鉛直 - - 水平 多質点モデル 鉛直 -	_	工認	応力解析 応答解析	水平 鉛直 水平 鉛直 水平 鉛直	-		(応答解析) (称:答解析)						
非 谷林開重支置 14	」 8 6 7 7 8 7 8	(応答解析) 〇 (応力解析) 〇		応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評 価	(応答解析) ● (応力解析) 一	の 応力解析 水平 -)) 方 近 新道 - () 水平 多質点モデル () 工器 小平 多質点モデル	(応答解析) (応力解析) 		。 応力解析 応答解析	水平 鉛直 水平 鉛直 小平 鉛直	- - - -	今回 工認	(応答解析) 解近コード: SAP-IV	建設工認第18回 派付書類Ⅲ-2-1「申請 設備に係る前業設計基 (解析 次答解 流付書類Ⅲ-2-3「制御 (その 棒駆動水圧系機器配管 の耐震性についての計 算書」	fモデル) ≇析:○ D他) コード:○			0	-
副制御系統施設			既工認	応力解析 公式等による評価 応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価		応力解析 水平 - 鉛直 - </td <td></td> <td>既工認</td> <td>応力解析 応答解析 応力解析</td> <td>水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直</td> <td>- - - -</td> <td>既工認</td> <td>_</td> <td>建設工認 第18回 添付書類Ⅲ-2-1「申請</td> <td></td> <td></td> <td></td> <td></td> <td></td>		既工認	応力解析 応答解析 応力解析	水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直	- - - -	既工認	_	建設工認 第18回 添付書類Ⅲ-2-1「申請					
「敵対注ノ所	(ほう酸水注入系ポンプ	(応答解析) ○ (応力解析) ○	今回工認	応答解析 各設備の固有周期に基づく応答加速度による評価 応力解析 公式等による評価	(応答解析) (応力解析)) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	(応答解析) (応力解析) 	今回 工認	応答解析 応力解析	鉛直 水平 鉛直 水平 鉛直 水平 鉛直 水平 鉛直	- - - -	今回工認	_	設備に係る新築設計基 本方針: - 浜行着類 <u>Ⅲ-2-4</u> 「ほう 酸水注入系機器配管の 耐震性についての計算 書」	_		_	_	0

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								既工認と今回	工認時との比較								他プラントを含めた既工認での	の適用例		
	評価対象設備	(公	式等による	評価, スイ	解析手法 ペクトルモーダル解析,時刻歴解析他)		1	解析モデル			減	衰定数			その他 (評価条件の変更等)	備 考 (左欄にて比較した自 (※1)			減衰定数の実績 へ・増洗 トの美田 ない	既工認と今回工認の手法 に相違
		○:同じ ●:異なる -:該当なし	工認	解析種別	相 達 内 容	 ○:同じ ●:異なる -:該当なし 	工認	相 達 解析種別 方向	内容	○:同じ ●:異なる -:該当なし	工部	相 違 解析種別	内 容	 ○:同じ ●:異なる -:該当なし 	相 違 内 容 工認 内 容	プラント既工認) □:個別適用例あり - :適用例なし	内 容	参照した設備名称	 い、構造上の差異あり (適用可能であることの 理由も記載) 	ー : 相違あり ○ : 相違なし
			既工認	応答解析	各設備の固有周期に基づく応答加速度による評 価	_	既工認	応答解析 林平 - <u> </u> <u> </u>		-	既工認	応答解析	水平 鉛直	-	既工認 —	the first at oral				
ほう酸水注入	ほう酸水貯蔵タンク	(応答解析) ○ (応力解析) ○		応力解析	公式等による評価 各設備の固有周期に基づく応答加速度による評	(応答解析) (応力解析) 		応力解析 水平 – 鉛直 – 大平 –		(応答解析) (応力解析) 		応力解析	水平 鉛直 水平			歴 政 1.82 第18回 添付書第四2-1「申請 設備に係る耐実設計基 本方針」 添付書第囲-2-4「ほう 酸水注入系機器配管の	_	_	_	0
ž			今回 工認	応合麻朳	価 公式等による評価	_	今回 工認	<u> 応 合 時 析 新 直 ホ 平 ・ ・ ・ ・ ・ ・ ・ ・ ・ </u>		-	今回 工認	応合解析	鉛直 水平	-	今回 _ 工認	耐廃性についての計算 書」				
			呼丁叔	応答解析	スペクトルモーダル解析		呼丁級	加區 一 広答解析 水平 多質点モデ 鉛直 -	IL	_	呼丁級	応答解析	<u></u> 水平 鉛直	1.0% 	■ (応答解析)					
	起動領域計装ドライ チューブ	(応答解析) 〇 (応力解析)	1910-140°	応力解析	公式等による評価	(応答解析) ○ (応力解析)	190-1140	応力解析 水平 – 鉛直 – 水平 多留点モデ	n	(応答解析) 〇 (応力解析)	970-340°	応力解析	水平 鉛直 水平	- -	解析コード:HISAC	発管業発第58号 1-1 届出設備に係る耐 度設計の基本方針 (その他) 1-2-1 起動類成計读(ド 解析コード:○			0	_
			今回 工認	応答解析	スペクトルモーダル解析		今回 工認	応答解析 <u> </u>			今回 工認	応答解析	鉛直 水平		今回 (応答解析) 工認 解析コード:SAP-IV	ノイソ ユーン 前液圧に ついての計算書				
				応答解析	各設備の固有周期に基づく応答加速度による評 価			鉛直 一 応答解析 水平 - 鉛直 - -		_		応答解析	鉛直 水平 鉛直	-			-		-	
	出力領域計装検出器集合 体	(応答解析) ● (応力解析)	既工認	応力解析	公式等による評価	(応答解析) ● (応力解析)	既工認	応力解析 旅力解析 <u> 水平</u> - <u> 鉛直</u> -	-	(応答解析) ● (応力解析)	既工認	応力解析	水平 鉛直		既工認 -	推設工認 第21回 旅付書類Ⅲ-2-1「申請 設備に係る耐震設計畫 本方針」 本方針」 た名参照 2-1 「申請 広名解析:○ (解析モデル) (解析モデル)			0	_
計測		0	今回 工認	応答解析	スペクトルモーダル解析	_	今回 工認	水平 多質点モデ 応答解析 約直 – 広力解析 水平 –	<i>I</i> .		今回 工認	応答解析	水平 鉛直 水平		今回 工認 -	(議会の部務課任につい) (議会で数) ての計算書」				
制御系統					各設備の固有周期に基づく応答加速度による評			<u>船のの時間</u> 鉛直 - 水平 -					鉛直 水平	-					<u> </u>	
設計		(応答解析)	既工認	応古解析	価 公式等による評価	(応答解析)	既工認	<u> 応力解析</u> <u> 給直</u> - 応力解析 <u> 松声</u> -		(応答解析)	既工認	応合解析	鉛直 水平 鉛直	-	既工認 —	建設工認 第11回 添付書類Ⅲ-2-1「申請				
測装置	ベンチ盤	○ (応力解析) ○	今回	応答解析	各設備の固有周期に基づく応答加速度による評 価	 (応力解析) 	今回	広答解析 水平 - 6 4 4 -		 (応力解析) 	今回	応答解析	<u>水平</u> 鉛直		今回 	設備に係る耐発設計の 基本方針: 続付書類III-2-4「盤に 関する耐発計算書」	-	-	_	0
			1.80	応力解析	公式等による評価		1.80	応力解析 松平 - 鉛直 -		_	190	応力解析	水平 鉛直	-						
		(15 笑恕托)	既工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価 価 公式等による評価	(广次敏托)	既工認	水平 - 応答解析 新直 - 航直 - - 応力解析 - -		- (r*交報形)	既工認	応答解析	水平 鉛直 水平	-	既工認 —	建設工認 第11回 近付素約Ⅲ-2-1「由装				
	直立盤	(応力解析) 〇	今回	応答解析	各設備の固有周期に基づく応答加速度による評 価	(応力解析) (応力解析) 一	今回	鉛直 一 広答解析 水平 - 鉛直 -		(応力解析) 	今回	応答解析	 鉛直 水平 鉛直 		今回 _	1411 (1974) (11-211-144) 設備に係る耐震設計の 基本方針1 添付書範囲-2-4「整に 関する耐震計算書」	-	_	_	0
			工認	応力解析	公式等による評価		工認	応力解析 水平 - 鉛直 - - 水平 - -		-	工認	応力解析	水平 鉛直 水平	-	上記					
			既工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価 公式等による評価	_	既工認	応答解析 <u>鉛直</u> - 応力解析			既工認	応答解析	鉛直水平	-	既工認 —	建設工認 第11回				
	現場盤	(心答解析) ○ (応力解析) ○	今回	応答解析	各設備の固有周期に基づく応答加速度による評 価	(心答解析) (応力解析) 		鉛直 一 応答解析 水平 - 鈴直 - -		(心答解析) (応力解析) 	合同	応答解析	<u>鉛直</u> 水平 鉛直			(約1) 音類田-2-1 「申請 設備に係る耐築設計の」 基本方針」 添付書類田-2-4 「盤に 関する耐発計算書」		_	-	0
			工認	応力解析	公式等による評価		工認	応力解析 松平 - 鉛直 -		-	「世工記	応力解析	水平 鉛直	-	「 工設 - 二記					

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

									ų	工認と今回工認時との比較			(承主) 旁边通行的 / /	<u>. Atm 254-78</u>	CE JEJ JUT OLIMPICAD	7 JEE/1112/7 HEBD C 4 0/C 2 .		他プラントを含めた既工認で	の適用例	ALL C. C. NULLER C. NULLER	
	亚価対象設備	(公	式等による	5評価,ス	解析手法 ペクトルモーダル解析,時刻歴解析他)				解	 折モデル		減衰	定数		その他 (評価条件の変更等)	備考 (左欄にて比較1た自	(**1)			減衰定数の実績	既工認と今回工認の手法 に相違
	µT Ⅲ[[八] ≪ 4X (明	○ : 同じ ● : 異なる			相 違 內 容	 ○:同じ ●:異なる 				相違內容	○:同じ ●:異なる		相違內容	○ : 同じ ● : 異なる	相違內容	プラント既工認)	 ○: 共通適用例あり □: 個別適用例あり ×: 適用例なし 	内 容	参照した設備名称	 (・ ・ ・	- : 相違あり ○ : 相違なし
		- : 該当なし	工認	解析種別	」 内 容	- : 該当なし	工認	解析種	別 方向	内容	-:該当なし	工認	解析種別 方向 内 容	- : 該当なし	工認 内容						
		(応答解析)	既工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評 価 公式等による評価	(応答解析)	既工認	応答解 応力解	水平 鉛直 水平 鉛直 小平 鉛直		(応答解析)	既工認	水平 - 応答解析 鉛直 - 応力解析 水平 - 鉛直 -	-	既工認 —	発管業発第105号 添付書類1-1「届出設 備に係る耐震設計の基					
プロセスモー	主蒸気管放射線モニタ	(応力解析)	今回 工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価	(応力解析) 	今回 工認	応答解 応力解	水平 鉛直 木平 鉛直 小平 鉛直		(応力解析)	今回 工認	応答解析 松平 - 鉛直 - 水平 - 水平 - 松可解析 鉛直 -	-	今回 — 工認 —	ー本方針」 添付書類1-2「放射線 管理設備の耐震性につ いての計算書」			_	_	0
ータリング設備			既工認	応答解析	各設備の固有周期に基づく応答加速度による評価	_	既工認	応答解	水平 鉛直 水平			既工認	水平 - 応答解析 鉛直 - 3約直 - - 水平 - -	-	既工認 —	発管業発第105 号					
	原子炉建屋放射線モニタ	 (応答解析) ○ (応力解析) ○ 	今回	応方解析	公式等による評価 各設備の固有周期に基づく応答加速度による評 価	(応答解析) (応力解析) 	今回	応力解 応答解	所 鉛直 水平 釿 鉛直		(応答解析) (応力解析) 	今回	応力解析 鉛直 - 応答解析 松平 - 鉛直 -		今回	添付書類1-1「届出設 備に係る耐震設計の基 本方針」 添付書類1-2「放射線 管理設備の耐震性につ いての計算書」			-	_	0
			工認	応力解析	公式等による評価		工認	応力解	水平	-		工認	応力解析 水平 - 鉛直 -	-	工認						
			既工認	応答解析	各設備の固有周期に基づく応答加速度による評 価	_	既工認	応答解	水平 鉛直	-		既工認	応答解析 松平 - 鉛直 -	-	既工認 —						
	中央制御室换気系送風機	(応答解析) 〇 (応力解析)		応力解析	公式等による評価	(応答解析) - (応力解析)		応力解	水平 好直 水平	-	(応答解析) - (応力解析)		水平 - 応力解析 鉛直 - * 平 -			建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-4「捧気			_	_	0
放射線		0	今回 工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価 価 公式等による評価	_	今回 工認	応答解 応力解	所 分 が 子 が 子 の む の で の で り の で の の の の の の の の の の の の の		_	今回 工認	応答解析 <u> </u>	-	今回	系機器の耐震性についての計算書」					
管理施設中央制			既工認	応答解析	各設備の固有周期に基づく応答加速度による評価 公式等による評価	_	既工認	応答解 応力解	水平 鉛直 水平 小平	-		既工認	応答解析 <u>応</u> 答解析 <u>称</u> 平 - <u></u> 水平 - <u></u> 水平 -	-	既工認 —	建設工認 第13回 添付書類Ⅲ-2-1「申請					
司御室換 気系	中央制御室非常用排風機	(応合所析) 〇 (応力解析) 〇	今回工認	応答解析	各設備の固有周期に基づく応答加速度による評価	(応合所析) 	今回 工認	応答解	鉛直 水平 鉛直 松車 公司 水平 公司 水平 公司 水平		(応合所析) - (応力解析) -	今回 工認	鉛直 - 応答解析 水平 - 鉛直 - 公面 - 水平 - 水平 - 水平 -		今回 工認 —	設備に係る耐震設計の 基本方針〕 添付書類Ⅲ-2-4「換気 系機器の耐震性につい ての計算書」			_	_	0
			既工認	応答解析	公式(等による計画 各設備の固有周期に基づく応答加速度による評 価	_	既工認	応答解	鉛直 水平 鉛直 鉛直	-		既工認	ルンJAPH 1 <u> 鉛直 -</u> 水平 - <u> 鉛直 -</u> 鉛直 -	-	既工認 -						
	中央制御室換気系フィル タユニット	(応答解析) 〇 (応力解析)		応力解析	公式等による評価	(応答解析) - (応力解析)		応力解	水平 好直 水平	-	(応答解析) - (応力解析)		水平 - 応力解析 鉛直 - オーズ -			建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-4「換気			_	_	0
		0	今回 工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価 価 公式等による評価	_	今回 工認	応答解 応力解	小平 鉛直 水平 鉛直 鉛直		_	今回 工認	応答解析 <u> 応答解析</u> <u> 給直</u> - 水平 - <u> 応力解析</u> <u> 給直</u> -	-	今回	系機器の耐震性についての計算書」					
原子炉建		(応答解析)	既工認	応答解析 応力解析	各設備の固有周期に基づく応答加速度による評価 公式等による評価	(応答解析)	既工認	応答解:	水平 鉛直 水平 小平 小平	-	(応答解析)	既工認	応答解析 <u> 応答解析</u> <u> 始直</u> - 水平 - 水平 - 水平 -	-	既工認 —	建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の					
子炉建屋ガス処理系	非常用ガス再循環系排風 機	○ (応力解析) ○	今回 丁級	応答解析	各設備の固有周期に基づく応答加速度による評価	 (応力解析) 	今回	応答解	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	-	 (応力解析) 	今回	町止 一 応答解析 水平 - 鉛直 - -		今回 - T 親 -	基本方針」 添付書類Ⅲ-2-3「非常 用ガス再循環系排風機 の耐震性についての計 算書」			_	-	0
			80	応力解析	公式等による評価			応力解	水平 新 鉛直	-			応力解析 松平 - 鉛直 -	-	(KC,						

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

					既工認と今回工認時との)比較			(// 1	·/ / //////////////////////////////////	2/11 07 7 7 AUTO 2454-7		7 JET 11 11 17 YEBBU C 4 01 C 7			他プラントを含めた.	既工認での適用例	✓ / ♥ 1 回加加(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(
		(公	解析手法 公式等による評価,スペクトルモーダル解析,時刻歴解析他)		解析モデル			減到	度定数			その他 (評価条件の変更等)	備 考	(14.4.)				減衰定数の実績	既工認と今回工認の手法 に相違
	評価対象設備	〇:同じ	相 違 内 容	〇:同じ	相 違 内 容		〇:同じ		相違	内容	〇:同じ	相違內容	 (左欄にて比較した自 プラント既工認) 	 (※1) ○:共通適用例あり □:個別適用例あり ×:適田例な! 	1	內 容	参照した設備	 (二構造上の差異な) (二構造上の差異な) (適用可能であるこ 	し り − : 相違あり との ○ : 相違なし
		●:異なる -:該当なし	工認 解析種別 内 容	●:異なる -:該当なし	工認 解析種別 方向 P	日 容	●:異なる -:該当なし	工認	解析種別	方向 卢	●:異なる -:該当なし 内容	工認内容	_	∧ : 適用例なし	1			理由も記載)	
			既工認 応答解析 価 各設備の固有周期に基づく応答加速度による評	_	成容解析 水平 - 航直 - - 水平 - -			既工認	応答解析	水平 鉛直 水平	-	既工認 —	建設工認 第13回						
	非常用ガス再循環系フィ ルタトレイン	(応答解析) 〇 (応力解析)	応力解析 公式等による評価	(応答解析) (応力解析)	応力解析		(応答解析) - (応力解析)		応力解析	鉛直			添付書類Ⅲ-2-1 甲請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-4「非常	_	_		_	_	0
		0	応答解析 各設備の固有周期に基づく応答加速度による評価 中回 工部 応力解析 公式等による評価 公式等による評価	_	今回 応答解析 新宣 - 工認 応力解析 水平 -		_	今回 工認	応答解析 応力解析	小平 鉛直 水平	-	今回 工認 -	用ガス再循環系フィル タトレインの耐震性に ついての計算書」						
					約直 - 広窓解析 水平 -				広签解析	鉛直 水平	-								
ルー 放射 線	70- 	(応答解析)	既工認 応力解析 応力解析 公式等による評価	(応答解析)	既工認 成 工 部		(応答解析)	既工認	応力解析	鉛直 水平 鉛直	_	既工認 —	建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の		1				
「管理施設	⁸ f f t t t t t t t t t t t t t t t t t	● (応力解析) ○	今回 応答解析 各設備の固有周期に基づく応答加速度による評価	 (応力解析) 	今回 応答解析 水平 - 1 - </td <td></td> <td> (応力解析) </td> <td>今回</td> <td>応答解析</td> <td>水平 鉛直</td> <td></td> <td>今回 </td> <td>基本方針」 添付書類Ⅲ-2-6「非常 用ガス処理系排風機の 耐震性についての計算 書」</td> <td>_</td> <td>_</td> <td></td> <td>_</td> <td>_</td> <td>0</td>		 (応力解析) 	今回	応答解析	水平 鉛直		今回 	基本方針」 添付書類Ⅲ-2-6「非常 用ガス処理系排風機の 耐震性についての計算 書」	_	_		_	_	0
					上記 応力解析 木平 - 和直 和直 ホ平 - 和直 木平 -			180	応力解析	水平 鉛直 水平		2.82							
			応答解析 各設備の固有周期に基づく応答加速度による評価 既工認	_	応答解析 			既工認	応答解析	鉛直	-	既工認 一			1				
	非常用ガス処理系フィハ	(応答解析)	応力解析 公式等による評価	(応答解析)	応力解析 <u> </u>		(応答解析) 		応力解析	水平 鉛直	-		建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」	_	-		_	_	0
	× F V 1 V	(\G)/#+0T) O	応答解析 各設備の固有周期に基づく応答加速度による評	(心刀)時付丁)	今回 水平 - 分回 300		(心力)所称()	今回	応答解析	水平 鉛直	_	今回 _	協利者類Ⅲ-2-7「非常 用ガス処理系フィルタ トレインの耐震性につ いての計算書」		1				
			工部 応力解析 公式等による評価		エ認 応力解析 <u>水平</u> - <u></u> <u> </u>			工認	応力解析	水平 鉛直	-	132							
			応答解析 時刻歷解析 既工器		応答解析 水平 多賀点系モデル(建国) 既工認 - -	- 機器連成解析モデル)		既工認	応答解析	水平 鉛直	1.0% 	既工認 解析コード:ASSAL					I		
	ドライウエル	 (応答解析) (応力解析) 	応力解析 FEM解析及び公式等による評価	 (応答解析) ● (応力解析) 	応力解析 応力解析 鉛直 シェルモデル		 (応答解析) ● (広力解析) 		応力解析	水平 鉛直	-		建設工認 第1回 添付書類Ⅲ-1-1「耐震 設計の基本方針」 添付書類Ⅲ-2-3「同子	 (解析モデル) 応答解析:○ (減衰定数) 応答解析:○ 				0	_
		(ALL 7) /## (ALL 7)	応答解析 時刻歷解析 今回		応答解析 水平 多質点系モデル(建国 今回 二認 水平 多質点系モデル(建国	ー機器連成解析モデル) 機器連成解析モデル)		今回 工認	応答解析	水平 鉛直 水平	1.0%	今回 (応力解析) 工認 解析コード:NASTRAN	除门書知Ⅲ-3-3 「原丁 炉格納容器強度計算 書」	^{心谷舟} 机:○ (その他) 解析コード:○					
			応力解析 FEM解析及び公式等による評価		応力解析 松直 シェルモデル				応力解析	鉛直	_				F				
			応答解析 時刻歷解析 既工認	_	応答解析 水平 多質点系モデル(建居 既工認	- 機器連成解析モデル)		既工認	応答解析	水平 鉛直	-	(応力解析) 既工認 解析コード・ASSAI							
原 月 二 炉 格	[- - - - - - - - - - - - - - - - - - -	(応答解析)	応力解析 FEM解析及び公式等による評価	(応答解析)	応力解析 応力解析 <u>お</u> 値 ジェルモデル		(応答解析)		応力解析	水平 鉛直	-)/T 01 · · · · · · · · · · · · · · · · · ·	建設工認 第1回 添付書類Ⅲ-1-1「耐震 設計の基本方針」	(解析モデル) 応答解析:○ (減衰定数)				0	_
納維殺	- ty F ₽	(応力解析)	応答解析 時刻歷解析 今回 工設	(応力解析)	応答解析 水平 多質点系モデル(建居 今回 <td>-機器連成解析モデル) -機器連成解析モデル)</td> <td>(応力解析)</td> <td>今回 工認</td> <td>応答解析</td> <td>水平 鉛直</td> <td>1.0%</td> <td>今回 (応力解析) 工認 解析コード:NASTRAN</td> <td>添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」</td> <td>応答解析:() (その他) 解析コード:()</td> <td></td> <td></td> <td></td> <td></td> <td></td>	-機器連成解析モデル) -機器連成解析モデル)	(応力解析)	今回 工認	応答解析	水平 鉛直	1.0%	今回 (応力解析) 工認 解析コード:NASTRAN	添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」	応答解析:() (その他) 解析コード:()					
			応力解析 FEM解析及び公式等による評価		応力解析 応力解析 鉛直 シェルモデル				応力解析	水平 鉛直	-								
			応答解析 時刻歷解析 医丁黎		応答解析 水平 多質点系モデル(建国) 所下認 </td <td>-機器連成解析モデル)</td> <td></td> <td>博丁 39</td> <td>応答解析</td> <td>水平 鉛直</td> <td>1.0%</td> <td>·────────────────────────────────────</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-機器連成解析モデル)		博丁 39	応答解析	水平 鉛直	1.0%	·────────────────────────────────────							
	上部シアラグ及びスタヒ	(応答解析)	応力解析 公式等による評価	(応答解析)	<u> 応力解析</u> <u> 水平 -</u> <u> 鉛直 -</u>		(応答解析)	兆二郎	応力解析	水平 鉛直	_	90L-L-BU ²	建設工認 第1回 添付書類Ⅲ-1-1「耐震 設計の基本方針」	 (解析手法) 応力解析:○ (解析モデル) 					
	ライザ	(応力解析)		(応力解析) ●	水平 多賀点系モデル(建国 今回 6 6 9 第 第 7 1 <	- 機器連成解析モデル) - 機器連成解析モデル)	(応力解析) 一	今回	応答解析	水平 鉛直	1.0%	今回	添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」	 ^{心合胖}ff:○ 応力解析:○ (減衰定数) 応答解析:○ 					
			上認 応力解析 FEM解析及び公式等による評価		上認 水平 シェルモデル 応力解析 鉛直 シェルモデル			工認	応力解析	水平 鉛直	-	上認							

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								Ę	既工認と今回工認時との比較								他プラントを含めた既工認での適用	丮例		
	→亚 / エ → - 4a =16 / 株	(公	式等による	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)				解	発析モデル		減衰2	主教		その他 (評価条件の変更等)	備考	(※1)			減衰定数の実績	既工認と今回工認の手法 に相違
	評恤对象設備	〇:同じ		相 違 內 容	〇:同じ				相違內容	〇:同じ	1	相 違 内 容	〇:同じ	相 違 内 容	(左欄にて比較した目 プラント既工認)	 (※1) ○:共通適用例あり □:個別適用例あり ×:適田例な1 	内容	診照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの 	− : 相違あり ○ : 相違なし
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認	解析種別	刂 方向	内 容	●:異なる -:該当なし	工認 対	解析種別 方向 内 容	●:異なる -:該当なし	工認 内 容		へ . 適用内なし			理由も記載)	
		(古茶報析)	既工認	応答解析 時刻歴解析 応力解析 公式等による評価	(広答解析)	既工認	応答解析 応力解析	水平 鉛直 水平 小平	多賀点系モデル (建屋-機器連成解析モデル) - -	(広気観析)	既工認	水平 1.0% 労産 - 公力解析 水平	-	既工認 —	建設工認 第1回 近付書類11-11「耐留	(解析手法) 応力解析:○				
	下部シアラグとダイヤフ ラムブラケット	(応力解析)	今回	応答解析 時刻歷解析	(応力解析)	今回	応答解析	鉛直 水平 鉛直	- 多質点系モデル (建屋一機器連成解析モデル) 多質点系モデル (建屋一機器連成解析モデル)	(応力解析)	今回	鉛直 - 次容解析 水平 1.0% 鉛直 1.0%		今回 _	設計の基本方針」 添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」	 (解析モデル) 応答解析:○ 応力解析:○ (減衰定数) 応答解析:○ 			0	-
			工認	応力解析 FEM解析及び公式等による評価		工認	応力解析	水平	シェルモデル シェルモデル	_	工認	芯力解析 松平 - 鉛直 -	-	工認			-	-		
			既工認	応答解析 時刻歷解析	-	既工認	応答解析	水平 鉛直 水平	 多質点系モデル(建屋-機器速成解析モデル) - 	-	既工認 —	水平 1.0% 鉛直 - 水平 -	-	既工認 —						
	胴アンカー部	(応答解析) ○ (応力解析) ○		応力解析 公式等による評価 応答解析 時刻歴解析	(応答解析) ● (応力解析)		応力解析応答解析	f 鉛直 水平 f	- 多質点系モデル (建屋-機器連成解析モデル)	(応答解析) ● (応力解析) -	م م	な力解析 鉛直 - 水平 1.0%			建設工設 第1回 添付書類Ⅲ-1-1「耐票 設計の基本方針」 設計の基本方針」 添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」	(解析モデル) 応答解析:○ (減衰定数) 応答解析:○			0	_
			今回 工認	応力解析 公式等による評価	-	今回 工認	応力解析	鉛直 水平 鉛直	 多質点系モデル(建屋-機器連成解析モデル) - 	-	今回 工認	鉛直 1.0% 水平 - 公力解析 鉛直 -	-	今回 — 工認 —						
			既工認	応答解析 各設備の固有周期に基づく応答加速度による評 価	-	既工認	応答解析	水平	-	_	既工認	水平 - 公答解析 鉛直 -	-	既工認 —			-	-		
	イクイプメントハッチ	(応答解析) ○ (応力解析)		応力解析 公式等による評価	(応答解析) - (応力解析)		応力解析	水平 鉛直	-	(応答解析) - (応力解析)	Ļ	水平 - 公力解析 鉛直 -			建設工認 第1回 添付書類Ⅲ-1-1「耐震 設計の基本方針」 添付書類Ⅲ-3-3「原子	(解析手法) 応力解析:○ (解析モデル)			0	_
原原	ε	•	今回 工認	応答解析 各設備の固有周期に基づく応答加速度による評価 価	•	今回 工認	応答解析	小平 鉛直 水平	ー ジェルモデル	-	今回 工認	次容解析 鉛直 - 鉛直 - 水平 -	-	今回	炉格納容器强度計算 書」	応力解析:〇				
子炉格納施容	- - - - - 			応力解析 FEM解析及び公式等による評価			応方解析	f 鉛直 水平	シェルモデル -		تر د	芯力解析 鉛直 – 水平 –					-	-		
設器	2 	(広答解析)	既工認	 応力解析 公式等による評価 	(広答解析)	既工認	応力解析	鉛直 水平 f	-	(広答解析)	既工認 -	鉛直 - 松直 - 水平 -	-	既工認 —	建設工認 第1回 添付書類Ⅲ-1-1「耐霉	(解析手注)				
	パーソナルエアロック	(応力解析) ●	今回	応答解析 各設備の固有周期に基づく応答加速度による評価。	(応力解析)	今回	応答解析	鉛直 水平 台直	- - -	(応力解析)	今回	知直 一 水平 - 公答解析 公面 鉛直 -		今回	設計の基本方針」 添付書類Ⅲ-3-3「原子 炉格納容器強度計算 書」	応力解析:〇 (解析モデル) 応力解析:〇			0	-
			工認	応力解析 FEM解析及び公式等による評価	-	工認	応力解析	水平	シェルモデル シェルモデル	-	工認	芯力解析 水平 - 鉛直 -	-				-	-		
			既工認	応答解析 各設備の固有周期に基づく応答加速度による評価	-	既工認	応答解析	水平 鉛直 水平	-	-	既工認	水平 - 公答解析 鉛直 - 公面 - -	-	既工認 —						
	サプレッションチェンバ アクセスハッチ	(応答解析) ○ (応力解析)		応力解析 公式等による評価 	(応答解析) - (応力解析) ●		応力解析	f 鉛直 水平		(応答解析) - (応力解析) -	ji I	な力解析 <u> 鉛直</u> - 水平 -			建設工認 第1回 添付書類Ⅲ-1-1「耐震 設計の基本方針」 添付書類Ⅲ-3-3「原子 炉格納容器強度計算	 (解析手法) 応力解析:○ (解析モデル) 応力解析:○ 			0	_
			今回 工認	¹²⁻²⁶ 群fff 価 応力解析 FEM解析及び公式等による評価	-	今回 工認	応力解析	f 鉛直 水平 鉛直	- シェルモデル シェルモデル	-	今回 工認	^{心否解析} 鉛直 - 水平 - 鉛直 - 外正	-	今回 _ 工認 -	書」					
			既工認	応答解析 スペクトルモーダル解析	-	既工認	応答解析	水平 鉛直	3次元はりモデル 3次元はりモデル	_	既工認	水平 0.5% 鉛直 -	-	既工認 —				-		
	配管貫通部	(応答解析) 〇 (応力解析)		応力解析 公式等による評価	(応答解析) 〇 (応力解析)		応力解析	水平 鉛直 水亚	- - 3次元けりエデル	(応答解析) ● (応力解析)	۵.	水平 - 鉛直 - _{水亚} 0.5%~			建設工認 第20回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-6「柊쇄	 (解析手法) 応力解析:○ (解析モデル) 応力解析:○ (対解析:○ 			0	-
		•	今回 工認	応答解析	•	今回 工認	応答解析 応力解析	小平 鉛直 水平 鉛直	3次元はりモデル シェルモデル シェルモデル	-	「 今回 工認	ホー 3.0% 分直 0.5%~ 3.0% ホ平 - 約直 -	-	今回	容器賃通部の耐震性についての計算書」	(평衰定数) 応答解析:○				

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適

<th black="" black<="" colsage:="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>既工認と今回工認時との比較</th><th></th><th></th><th></th><th></th><th></th><th></th><th>他プラントを含めた既工認での適</th><th>月例</th><th></th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>既工認と今回工認時との比較</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>他プラントを含めた既工認での適</th> <th>月例</th> <th></th>									既工認と今回工認時との比較							他プラントを含めた既工認での適	月例	
<			(2	公式等によ	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)				解析モデル		減衰定数		その他 (評価条件の変更等)	備考	(*1)			既工認と今回工認の手法 減衰定数の実績 に相違	
VertVer		計画对象說備	〇:同じ		相 違 内 容	〇:同じ			相 違 内 容	〇:同じ	相 違 内 容	〇:同じ	相違內容	プラント既工認)	 ○:共通適用例あり □:個別適用例あり ×:適用例なし 	内容。	診照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの ○:相違なし 	
			●: 異なる - : 該当なし	工認	解析種別内容	●:異なる -:該当なし	工認	解析種別	方向 内 容	●:異なる -:該当なし	工認 解析種別 方向 内 容 水平 -	●:異なる -:該当なし	工認内容					理由も記載)	
Normal Normal <td>原子炉</td> <td>[- - </td> <td>(応答解析)</td> <td>既工認</td> <td>応答解析 — 応力解析 —</td> <td>(応答解析)</td> <td>既工認</td> <td>応答解析</td> <td>3ú直 − 水平 − 約直 −</td> <td>(応答解析)</td> <td>成答解析 - 販工認 - 応力解析 - 公介解析 - 約直 - 約直 -</td> <td>-</td> <td>既工認 —</td> <td></td> <td> (解析手法) 応答解析:○ 広力解析:○ (解析モデル) </td> <td></td> <td></td> <td></td>	原子炉	[- - 	(応答解析)	既工認	応答解析 — 応力解析 —	(応答解析)	既工認	応答解析	3ú直 − 水平 − 約直 −	(応答解析)	成答解析 - 販工認 - 応力解析 - 公介解析 - 約直 - 約直 -	-	既工認 —		 (解析手法) 応答解析:○ 広力解析:○ (解析モデル) 				
Image: state st	新容器		(応力解析) 一	今回 工認	応答解析 スペクトルモーダル解析	(応力解析) -	今回 工認	応答解析	水平 ビームモデル 鉛直 ビームモデル オア シェルモデル	(応力解析) 	内回 水平 1.0% 工認 大平 -	-	今回 工認		応答解析:○ 応力解析:○ (減衰定数) 応答解析:○				
< <tr></tr>					応力解析 FEM解析	 		応力解析	ホーマン・ハーマン・ハーマン・ハーマン・ハーマン・ハーマン・ハーマン・ハーマン・ハ	_	応力解析 応力解析 鉛直 - 水平 5.0%	-				-	-		
			(応答解析)	既工認	応答解析 時刻歴解析 応力解析 FEM解析及び公式等による評価	(応答解析)	既工認	応答解析	<u>新直</u> 本平 FEMモデル (***)	- - (広答解析)	成 応 一 既工認 次 小平 - 応力解析 (***) (***) (***)	-	既工認 —	建設工認 第3回 添付書類Ⅲ-3-1「申請	(解析モデル)				
		ダイヤフラムフロア	○ (応力解析) ○	今回	応答解析 時刻歷解析	● (応力解析) ○	今回	応答解析	新田 FEM-モアル 水平 多質点系モデル(建量-機器連成解析モデル) 鉛直 多質点系モデル(建量-機器連成解析モデル)	● (応力解析) 	空間 空間 水平 5.0% 小平 60 5.0% 300 5.0%		今回 	設備に係る耐震設計の 基本方針」 添付書類Ⅲ-3-2「申請 設備の耐震性について の計算書」	応答解析:○ (減衰定数) 応答解析:○			0 –	
< <tr></tr>				1.86	応力解析 FEM解析及び公式等による評価		180	応力解析	 水平 FEMモデル 鉛直 FEMモデル 水平 多質点系モデル 	_	<u> 上記 応力解析 水平 - 鉛直 - 水平 0.5%</u>	-				-	_		
Image: space sp	圧力 低 減 装 置	三丁云灾险	(応答解析)	既工認	応答解析 時刻歴解析 応力解析 公式等による評価	(応答解析)	既工認	応答解析	 ら直 	(応答解析)	既工認 応答解析 鉛直 一 成力解析 水平 - 応力解析 公亩 -	-	既工認 —	建設工認 第3回 添付書類Ⅲ-3-1「申請 設備になる計写設計の	(解析手法) 内容解析:				
0 0	その他の安全	- - - - - - - - - - - - - - - - - - -	(応力解析)	今回工認	応答解析 スペクトルモーダル解析	● (応力解析) _	今回工認	応答解析	 水平 ビームモデル 鉛直 ー 	○ (応力解析) -	今回 工器 応答解析 430 水平 0.5%		今回 _ 工認	基本方針」 添付書類Ⅲ-3-2「申請 設備の耐震性について の計算書」	(解析モデル) (解析モデル) 応答解析:○			0 -	
• ····································	原 設 子 ゲ 格 納	之 荀 			応力解析 公式等による評価			応力解析			応力解析 ホ平	-				-	-		
$ \left $	施設			既工認	応答解析 スペクトルモーダル解析	-	既工認	応答解析	30日 ビームモデル 水平	-	成答解析 小十 0.5% 既工認 小平 -	-	既工認 —	建設丁認 第3回					
N N N N N <		格納容器スプレイヘッ	(応答解析) ○ (応力解析) ○		応力解析 公式等による評価 広落解析 スペクトルモーダル解析	(応答解析) ● (応力解析) 一		応力解析	鉛直	(応答解析) ● (応力解析) 一	応 応 応 答 解析 か 平 0.5%			添付書類Ⅲ-3-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-3-2「申請 設備の耐震性について	(減衰定数) 応答解析:○			0 –	
$ 1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				今回 工認	応力解析 公式等による評価	-	今回 工認	応力解析	鉛直 ビームモデル 水平 - 鉛直 -	_	今回 工認 鉛直 0.5% 応力解析 水平 - 鉛直 -	-	今回 — 工認 —	の計算書」					
$ \left[$				既工認	応答解析 各設備の固有周期に基づく応答加速度による評価	-	既工認	応答解析	水平 - 鉛直 -	_	成答解析 水平 - 既工認	-	既工認 —						
$ \left[$		再結合装置ブロア	(応答解析) ○ (応力解析)		応力解析 公式等による評価	(応答解析) (応力解析)		応力解析	<u> 水平</u> - 鉛直 - 水平 -	(応答解析) - (応力解析)	応力解析 水平 - 鉛直 - - 水平 - -			(建設上認 第24回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-3「可燃 株式ス違席判測変谱四	_			- 0	
A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C A C C A C C A C C A C C A C C A C	可燃性力	丁 た 王 チ	0	今回 工認	応答解析 各設価の固有周期に基づく応答加速度による評価 応力解析 公式等による評価		今回 工認	応答解析	新闻		小田 小田 小田 今回 <	-	今回 _ 工認 _	11:27 へ級及前脚示機器 配管の耐震性について の計算書」					
N N	ス濃度制御系	○ 巻 臣 日 目 長		既工認	応答解析 各設備の固有周期に基づく応答加速度による評 価		既工認	応答解析	 水平 - - - 	_	既工認 応答解析 水平 -	-	既工認 —						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		再結合装置	(応答解析) 〇 (応力解析)		応力解析 公式等による評価	(応答解析) (応力解析)		応力解析	水平 - 鉛直 - 水平 -	(応答解析) - (応力解析)	応力解析 旅力解析 新直 * 亚 -			建設工認 第24回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-3「可燃	_			- 0	
				今回 工認	応答解析 奋 応力解析 公式等による評価	-	今回 工認	応答解析 応力解析	第直 - ホア - ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		今回 応答解析 初直 - 工認 応力解析 水平 -	-	今回 工認 -	レニッ へ (転及時) 即示機器 配管の耐震性について の計算書」					

	適用例あり:プラン	・ト個別に適用性が確認されたプラン	ト個別の適用例がある手法
--	-----------	-------------------	--------------

(※1)共通適用あり:規格・基準類等に基づきプラントの仕様等によらず適用性が確認されたプラント共通の適用例がある手法 個別適用例あり:プラント個別に適用性が確認されたプラント個別の適用例がある手法

								既工認と今回:	工認時との比較				0.00	7 7 1943					他プラントを含めた既工認で	の適用例		
		(公)	式等による評価,	解析手法 ,スペクトルモーダル解析,時刻歴解析他)				解析モデル				減衰	更定数			その (評価条件	0他 の変更等)	備考(1)(※1)			減衰定数の実績	既工認と今回工認の手法 に相違
	計画対象式開	○:同じ ●:異なる -:該当なし	工認解析	相 違 内 容 1種別 内 容	○:同じ ●:異なる -:該当なし	工認	解析種別 方	相違 :	内容 内容	-): 同じ) : 異なる - : 該当なし	工認	相 違 解析種別	内 容 方向 F	 ○:同じ ●:異なる -:該当な 	·L 工認	相違內容	(左欄に CLW UCE 1 (※1) ブラント既工認) ○: 共通適用例あり □: 個別適用例あり ×:適用例なし	内 容	参照した設備名称	 (:構造上の差異なし ×:構造上の差異あり (適用可能であることの 理由も記載) 	- : 相違あり ○ : 相違なし
	ディーゼル機関	(応答解析) ○ (応力解析) ○	成答f 既工認 応力f	解析 各設備の固有周期に基づく応答加速度による評価 解析 公式等による評価 :解析 各設備の固有周期に基づく応答加速度による評価	(応答解析) 一 (応力解析)	既工認	芯答解析 水: 広答解析 水 広 小 広 小 広 小	Ψ − ₫ − Ψ − ἰ − ἰ − Ψ −			(応答解析) (応力解析) 	既工認	応答解析 応力解析 応答解析	水平 鉛直 水平 鉛直 水平 鉛直 水平	- - - - -	既工認	_	建設工認 第13回 添付書類III-2-1「申請 設備に係る耐震設計の 基本方對1 - 添付書類III-2-5「非常 用予備発電装置に関す る耐震計算書」	-	-	-	0
			今回 工認 応力(解析 公式等による評価		今回 工認	志力解析 公力解析	型 平 - 直 -				今回 工認	応力解析	<u></u> 水平 鉛直	-	今回工認	-					
			応答f 既工認	解析 毎 毎		既工認	た答解析 公答解析 鉛	平 — 直 —				既工認	応答解析	水平 鉛直	-	既工認	_			1		
非	始動空気だめ	(応答解析) ○ (応力解析) ●	応力(応答) 今回	解析 公式等による評価 解析 各設備の固有周期に基づく応答加速度による評価	(応答解析) - (応力解析) ●	今回					(応答解析) (応力解析) 	応 今回 工認 応 応	応力解析 応答解析	水平 鉛直 水平 鉛直		今回	_	健設工認 第13回 旅付書類Ⅲ2-2-1 「韓新 設備に係る耐葉設計の 忘力解析:○ 忘力解析:○ 保析モデル) 応力解析:○ 保析モデル 応力解析:○ る耐震計算書」	(-	_
常用 ディー ゼル 発			工認 応力(応答)	 解析 FEM解析 各設備の固有周期に基づく応答加速度による評価 		工認	広力解析 水: 協調 公 応答解析 へ	平 FEMモデル 直 FEMモデル 平 -	r r			工認	応力解析 応答解析	水平 鉛直 水平		二部			-			
電機	燃料油デイタンク	(応答解析) ○ (応力解析)	既工認 応力f	解析 公式等による評価 を設備の限者問題に払うくた気加速度によろ発	(応答解析) - (応力解析)	既工認	公司 公司 小 小 公力解析 小 公司 小 公司 小 小 小	直 — 平 — 直 — 平 —			(応答解析) (応力解析) 	既工認	応力解析	鉛直 水平 鉛直 水平		既工認	_	雄設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 添た方針」 添付書類Ⅲ-2-5「非常 常の市モデル) (解析手法) 広方解析:○ (解析手法) に方解析:○	(-	_
非常用電			応答) 今回 工認 応力)	解析 価 " 5 8 11 7 7 7 1 5 8 7 7 2 8 7 1 2 2 8 5 1 1 1 1 1 2 1 1 2 2 8 5 5 1 1 1 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 1 2 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1		今回工認	5答解析 鉛i 芯力解析 鉛	直 平 FEMモデハ 直 FEMモデハ	r. r.			今回 工認	応答解析	鉛直 水平 鉛直	- - -	今回 工認	-	カゴ _{開死电衣車に防} す る耐震計算書」		1		
源設備		(応答解析)	応答f 既工認 応力f	 解析 各設備の固有周期に基づく応答加速度による評価 解析 公式等による評価 	(応答解析)	既工認	応答解析 か: 公答解析 か: 公答解析 か: か: か: か: か: か: か: か: か: か:	Ψ - <u> </u> <u> </u>			(応答解析)	既工認	応答解析 応力解析	水平 鉛直 水平 鉛直	-	既工認	-	建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐美設計の				
	発電機	(応力解析)	応答 今回 工認 応力	解析 価 の固有周期に基づく応答加速度による評 価 解析 公式等による評価	(応力解析) 一	今回 工認		平 — 直 — 平 —				今回 工認	応答解析	水平 鉛直 水平		今回 工認	_	ぶ付書類Ⅲ-2-5「非常 用子備発電装置に関す る耐薬計算書」	基本方針」 — — — — — — — — — — — — — — — — — — —	_	_	0
		(4000000	応答f 既工認 応力f	 解析 各設備の固有周期に基づく応答加速度による評価 解析 公式等による評価 	(古答範折)	既工認	芯答解析 水: 芯答解析 鉛 応力解析 水	ビー 平 ー 直 ー 平 ー			(広気配新)	KTR KTR $ KTR$ $ KTR$ KTR $ KTR$ KTR										
高圧炉心スプレイマ	ディーゼル機関	(応力解析) 〇 〇	今回 工認 応力f	2解析 各設備の固有周期に基づく応答加速度による評 価 が研 、 公式等による評価	(応答解析) (応力解析) 	今回工認	公答解析 水: 公答解析 鉛 公 小 応力解析 小	<u>е</u> – <u> </u>			(応力解析) -	(応答解析) 	応答解析	鉛直 水平 鉛直 水平		今回工認	_	設備に係る耐震設計の 基本方針」 一 添付書類III-2-5「非常 用子備発電装置に関す る耐震計算書」		-	0	
※非常用ディー ゼル 発		(応答解析)	応答 「 既工認 応 応 応 方 が	解析 各設備の固有周期に基づく応答加速度による評価 解析 公式等による評価	(応答解析)	既工認 -	公 公 小 小 次 公 小 小 小 小	<u>е</u> – <u></u>			(応答解析)	既工認	応答解析 応力解析	 鉛直 水平 鉛直 水平 鉛直 	- - -	既工認	_	建設工認 第13回 添付書類Ⅲ-2-1 [申請 評価信(係 5 mi電約94 の)				
イーゼル発電機	始動空気だめ	(応力解析)	応答 今回 工部 応力	 解析 各設備の固有周期に基づく応答加速度による評価 解析 F E M解析 	 (応力解析) ●	今回 工認	芯答解析 水: 芯答解析 鉛i 広 水 広 小 広 小 公 小 公 小 公 小 公 小 公 小 公 小 公 小	平 ー 直 ー 平 FEMモデバ 直 FEMモデバ	n. N		(応力解析) 	今回 工認	応答解析	水平 鉛直 水平 鉛直 水平 鉛直		今回工認	_	基本方針」 添付書類Ⅲ-2-5「非常 用予備電装置に関す る耐震計算書」			_	_

(※1) 共通適用あり:規格・基準類等に基づきプラントの仕様等によらず	適用性が確認されたプラント共	共通の適用例がある手法	個別適用例あり:プラント個別に適用性が確認されたプラン	ト個別の適用例がある手法
			ゆデニントた会社を開て知るの英田回	

							既工認と今回工認時とのよ	比較								他プラントを含めた既工認での適用例			
		(公:	式等によ	解析手法 る評価,スペクトルモーダル解析,時刻歴解析他)			解析モデル		減衰定数			その他 (評価条件の3	<u>l</u> 変更等)	備考	自 (※1)			減衰定数の実績	- 既工認と今回工認の手法 に相違
	計個对象試開	〇:同じ		相 違 内 容	〇:同じ	相逢内容		○:同じ 相 違 内 容		〇:同じ	相	違 内 容	プラント既工認)	 (※1) ○:共通適用例あり □:個別適用例あり ※ 第日回ね! 	内容	参照した設備名称	 ○:構造上の差異なし ×:構造上の差異あり (適用可能であることの) 	−:相違あり ○:相違なし	
		●:異なる -:該当なし	工認	解析種別 内容	●:異なる -:該当なし	工認 解析種別 方	句 内	容	●:異なる -:該当なし	工認 解析種別 方向 内 容	●:異なる -:該当なし	工認	内 容	_	× :)適用1例なし			理由も記載)	
			既工語	応答解析 各設備の固有周期に基づく応答加速度による評価			Р — <u>а</u> — Ч —		-	成答解析 水平 - 販工器 公面 - - 成正器 水平 - -		既工認 -	-	本部,工作 统计公司			Ι		
高圧	燃料油デイタンク	(応答解析) 〇 (広力解析)		応力解析 公式等による評価	(応答解析) - (応力解析)	応力解析			(応答解析) - (広力解析)	応力解析	_			建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」	(解析手法) 応力解析:○ (解析エデル)			-	_
仁炉心スプ		()(G) /) // // // ()(G) // ()(今回 丁認	応答解析 各設備の固有周期に基づく応答加速度による評価		応答解析 水 今回 工認	<u> </u>		(心)////////////////////////////////////	水平 - 小平 - 今回 新直 -		今回 	-	添付書類Ⅲ-2-5「非常 用予備発電装置に関す る耐震計算書」	(時がモデル) 応力解析:〇				
レ イ 系 非				応力解析 FEM解析		応力解析 鉛	F F E Mモデル 直 F E Mモデル		-	応力解析 応力解析 鉛直 -									
常 用 ディー			医丁酸	応答解析 各設備の固有周期に基づく応答加速度による評 価 2		応答解析 4	<u> </u>		-	広答解析 水平 - 所丁認 か直 - か直 -		呼丁級 -	_						
- ゼル 発電	茶雷機	(応答解析) 〇	90-1-80	。 応力解析 公式等による評価	(応答解析) 	応力解析 本	<u>Р</u> — <u>а</u> —		(応答解析) -	成二部 水平 - 応力解析 始直 -	_	94.140		建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」	_	_	_	_	0
機		(応力解析)	今回	応答解析	(応力解析) 一	応答解析 今回	Р — <u>а</u> —		(応力解析) 	応答解析 水平 - 今回 鉛直 -		今回	-	添付書類Ⅲ-2-5「非常 用予備発電装置に関す る耐震計算書」					
非常用電源設備			工認	応力解析 公式等による評価		工認 応力解析 鉛	<u>Р</u> — ā —		-	工認 応力解析 始直 -		工認							
	ベイタル交流電源	(応答解析) ○ (応力解析) ○	呼丁雪	応答解析 各設備の固有周期に基づく応答加速度による評価		応答解析 4	<u>Р</u> — ā —		$ \begin{bmatrix} & & & & & & & \\ & & & & & \\ & & & & &$	応答解析 水平 - 鉛直 -		呼丁切 -	_						
			90-1-80	。 応力解析 公式等による評価	(応答解析) (応力解析) 	応力解析 4	<u>Р</u> — ā —			応力解析) 応力解析 水平 - (応答解析) 小平 - (応入解析) ・ ・ ・	_	94,740		建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の 基本方針」 添付書類Ⅲ-2-6「その	_	_	_	_	0
			今回	応答解析 価		応答解析 今回	平 — 直 —			(応力解析) 		今回		^{金平力} 町」 添付書類Ⅲ-2-6「その 他の発電装置に関する 耐震計算書」					
その他の			工認	応力解析 公式等による評価		工認 応力解析	平 — 直 —				工認								
電源装置			瓜 丁ઝ	広答解析 各設備の固有周期に基づく応答加速度による評価		応答解析 4	平 — 直 —		<u>-</u> - 応答解析 - 協直 - - - - - - - - - -		III. T 20								
		(応答解析)	成工業	。 応力解析 公式等による評価	(応答解析) 	応力解析 松 鉛	<u> </u>		(応答解析) -	成二部 応力解析 <u> 水平</u> - 鉛直 -		BC 188 -	-	建設工認 第13回 添付書類Ⅲ-2-1「申請 設備に係る耐震設計の					
	治 电池	(応力解析)	今回	応答解析 価の固有周期に基づく応答加速度による評 価	(応力解析) 一	応答解析 合同 本	<u>ド</u> ー 直 —		(応力解析) 	応答解析 水平 - 公回 鉛直 -	-	今回		 本や方針」 ぶ付書類Ⅲ-2-6「その 他の発電装置に関する 耐震計算書」 	_	_			0
			工認	応力解析 公式等による評価		工認 応力解析 水	<u>Р</u> – 			工認 応力解析 <u>松</u> 正 - <u></u> <u></u>		」11 - 工認 -	-						

今回工認と建設工認時との応答加速度等の比較

今回工認と建設工認時との評価用地震動に対する応答の比較を整理する。第 1表に,建設工認及び今回工認における評価用地震動の比較を示す。

原子炉建屋における基準地震動S_s及び弾性設計用地震動S_dに基づく今回 工認モデルによる最大応答加速度と建設工認時の設計波に基づく最大応答加速 度及び静的地震力による震度との比較を第1図に,最大応答せん断力について の比較を第2図に示す。また,床応答曲線について,基準地震動S_s及び弾性 設計用地震動S_dと,建設工認時の評価条件及び格納容器,制御棒駆動装置等 一部設備に適用した1.5倍した評価条件との比較を第3図に示す。

設計方針	建設工認	今回工認
弾性状態に 留まる設計	EL CENTRO 波(1940/3/18) * ¹ TAFT 波(1952/7/21) IBARGI 波(1963/5/8)	弹性設計用地震動 S _d
機能維持に 対する設計	上記応答を 1.5 倍	基準地震動 S _s

第1表 建設工認及び今回工認における評価用地震動の比較

*1:床応答曲線(第3図)の作成において,機器・配管系評価の影響を踏ま えて EL CENTRO 波及び TAFT 波の2波を選定している。

第1図 原子炉建屋における最大応答加速度の比較

静的地震力:建設工認における静的地震力

第2図 原子炉建屋における最大応答せん断力の比較

第3図(1) 床応答曲線の比較(原子炉建屋 EL.+46.5m)

第3図(2) 床応答曲線の比較(原子炉建屋 EL. +34.7m)

4条-別紙1-添付1-4

第3図(4) 床応答曲線の比較(原子炉建屋 EL. +8.2m)

4条-別紙1-添付1-5

第3図(5) 床応答曲線の比較(原子炉建屋 EL.-4.0m)

既工認での適用例を確認する他プラントについて

1. はじめに

既工認との手法の相違点の整理において、今回工認に適用する評価手法が 既工認で適用した評価手法と異なる場合、他プラント既工認での適用実績を 確認することとし、東海第二発電所(以下本項では「東海第二」と略す。) では、以下に示す項目を除いて基本的にH18年9月の耐震設計審査指針改 訂後のプラントとして大間1号炉を比較対象としている。

一方で、大間1号炉はABWRであり、炉型として大きく異なる原子炉格 納容器及びその他関連設備については、その参照を適切に考慮する必要があ る。このため、既工認での適用例を参照するプラントについて整理する。

2. 他プラントでの適用例を参照するプラント及びその説明

原子炉格納容器及びその他関連設備について,東海第二における既工認の 手法と今回工認の手法との相違点に対して,他プラントでの適用例を参考と する項目を記載するとともに,参照するプラント名及びその説明を第1表に 整理した。 原子炉格納容器及びその他関連設備において参照するプラント及びその説明 第1表

No.	評価対象項目	他プランを参考	トでの適用例 『する項目	参照する プラント	説明
原子炉	格納容器				
1	ドライウェル	応答解析	解析モデル	美浜3号	東海第二の鉛直方向の原子炉格納容器本体(ドライウェル部)の地震力を
			(鉛直)		算定するにあたって、原子炉格納容器を多質点系モデルにモデル化し、建屋
					と大型機器系を連成させた地震応答解析(以下「建屋-機器連成解析」とい
					う。)を実施する。
					参照するプラントとしては、東海第二と同様に鋼製格納容器を多質点系モ
					デルにモデル化している美浜3号としている。
			减衰定数	美浜3号	東海第二の建屋-機器連成解析に用いる原子炉格納容器の鉛直方向の減衰
			(鉛直)		定数として, 溶接構造物の1%を適用する。
					参照するプラントとしては,東海第二と同様に鋼製格納容器であり鉛直方
					向の減衰定数として、1%を適用している美浜3号としている。
		応力解析	I		
2	サプレッション・チェンバ	応答解析	解析モデル	美浜3号	東海第二の鉛直方向の原子炉格納容器本体(サプレッション・チェンバ部)
			(鉛直)		の地震力を算定するにあたって、原子炉格納容器を多質点系モデルにモデル
					化し、建屋ー機器連成解析を実施する。
					参照するプラントとしては、東海第二と同様に鋼製格納容器を多質点系モ
					デルにモデル化している美浜3号としている。
			减衰定数	美浜3号	東海第二の建屋-機器連成解析に用いる原子炉格納容器の鉛直方向の減衰
			(鉛直)		定数として, 溶接構造物の1%を適用する。
					参照するプラントとしては、東海第二と同様の鋼製格納容器であり鉛直方
					向の減衰定数として、1%を適用している美浜3号としている。
		応力解析			

説明	第二の上部シアラグが取り付く原子炉格納容器本体の評価に際して、 所の鉛直方向の地震力を算定する。地震力の算定にあたっては、原子 容器を多質点系モデルにモデル化し、建屋-機器連成解析を実施する。 するプラントとしては、東海第二と同様に鋼製格納容器を多質点系モ モデル化している美浜3号としている。	第二の建屋 – 機器連成解析に用いる原子炉格納容器の鉛直方向の減衰して、溶接構造物の1%を適用する。 するプラントとしては、東海第二と同様の鋼製格納容器であり鉛直方 衰定数として、1%を適用している美浜3号としている。	器構造(MARK-Ⅱ型)が同じ柏崎刈羽5号を参照する。		第二の下部シアラグが取り付く原子炉格納容器本体の評価に際して、 所の鉛直方向の地震力を算定する。地震力の算定にあたっては、原子 容器を多質点系モデルにモデル化し、建屋一機器連成解析を実施する。 するプラントとしては、東海第二と同様に鋼製格納容器を多質点系モ モデル化している美浜3号機としている。	第二の建屋 – 機器連成解析に用いる原子炉格納容器の鉛直方向の減衰 して、溶接構造物の1%を適用する。 するプラントとしては、東海第二と同様の鋼製格納容器であり鉛直方 衰定数として、1%を適用している美浜3号としている。	器構造(MARK-Ⅱ型)が同じ柏崎刈羽5号を参照する。	
	当炉 デ東該格参ル	東教参の海と照滅	格納容	비	当炉 デ東該格参ル、海衢納照に	東教参向後と照滅	格納容	기 틸
参照する プラント	美浜3号	美浜3号	柏崎刈辺 5 号	柏崎刈羽 5 号	美浜3号	美浜3号	柏崎刈辺 5 号	柏崎刈羽 5 号
トでの適用例 する項目	解析モデル(鉛直)	减衰定数 (鉛直)	解析手法	解析モデル	解析モデル(鉛直)	减衰定数 (鉛直)	解析手法	解析モデル
他プラン	応答解析		応力解析		示答解 析		応力解析	
評価対象項目	上部シアラグ及びスラビライザ				下部シアラグとダイヤフラムフラケット			
No.	m				4			

No.	評価対象項目	色プランを参考	トでの適用例 ぎする項目	参照する プラント	66 22
വ	胴アンカー部	动 御 恭 恭	解析モデル (鉛直)	美浜3号	東海第二の鉛直方向の原子炉格納容器本体底部の地震力を算定するにあたって、原子炉格納容器を多質点系モデルにモデル化し、建屋と大型機器系を連成させた地震応答解析(以下「建屋-機器連成解析」という。)を実施する。参照するプラントとしては、東海第二と同様に鋼製格納容器を多質点系モデルにモデル化している美浜3号としている。
			减衰定数 (鉛直)	美浜3号	東海第二の建屋 - 機器連成解析に用いる原子炉格納容器の鉛直方向の減衰 定数として,溶接構造物の1%を適用する。 参照するプラントとしては,東海第二と同様の鋼製格納容器であり鉛直方 向の減衰定数として, 1%を適用している美浜3号としている。
		応力解析			
9	イクイプメントハッチ	応答解析	1	1	1
		応力解析	解析手法	大間1号	鋼製円筒状である基本構造は同じであることから、大間1号を参照する。 また、大間1号はコンクリート製格納容器であるが、鋼板を介してハッチを 取り付けており、東海第二発電所と同様の形状を有している。
			解析モデル	大間1号	子道
2	パーソナルエアロック	応答解析			
		応力解析	解析手法	大間1号	鋼製円筒状である基本構造は同じであることから、大間1号を参照する。 また、大間1号はコンクリート製格納容器であるが、鋼板を介してエアロ ックを取り付けており、東海第二発電所と同様の形状を有している。
			解析モデル	大間1号	于国
∞	サプレッションチェンバア	応答解析	1	1	
	クセスハッチ	応力解析	解析手法	大間1号	鋼製円筒状である基本構造は同じであることから,大間1号を参照する。 ただし,大間1号炉のサプレッションチェンバ用のアクセスハッチはコン クリート構造物に直接取り付く構造であるため,当該部の評価は,類似設備 として機器輸入用のハッチを参照する。
			解析モデル	大間1号	子道

9 配管貫通部 応答解析 減衰定数 大間1号 配管貫通部に発生する反力を算定するための配管解析であり,配管級 応力解析 配管页力) 電管反力 原型に関係なく同様にあるため大間1号を参照する。 応力解析 解析手法 東通1号 高管貫通部の構造は、調製格納容器プラントでは同一構造であるため 10 電気配線貫通部 第ゴラントである東通1号を参照する。 11 一 第第一日 高管貫通部の構造は、調製格納容器プラントでは同一構造であるため 11 電気配線貫通部 第ゴ号 高音第一4号 東海第二号電部たし同手法*を適用した実績を有する当該プラントを参 11 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 第 第 第 11 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 第 第 第 11 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 1 1 1 11 第 第 第 1 1 11 第 1 1 1 1 1 11 1	No.	評価対象項目	他プラン を参考	トでの適用例 ける項目	参照する プラント	説 明
応力解析 解析手法 東通1号 配管貫通部の構造は、鋼製格納容器プラントでは同一構造であるため、 10<	6	配管貫通部	応答解析	减衰定数 (配管反力)	大間1号	配管貫通部に発生する反力を算定するための配管解析であり, 配管設計は 炉型に関係なく同様にあるため大間1号を参照する。
10 電気配線貫通部 解析モデル 東通1号 同上 10 電気配線貫通部 応答解析 解析モデル 電島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参加 11 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 63 * * 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 11 福析モデル 福島第一4号 同上 *			応力解析	解析手法	東通1号	配管貫通部の構造は、鋼製格納容器プラントでは同一構造であるため、最 新プラントである東通1号を参照する。
10 電気配線貫通部 応答解析 幅析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 20 福和モデレ (122 年改造工器) 50 * * * * * 第 # 第				解析モデル	東通1号	子国
(H22年改造工認) 5。 解析モデル 福島第一4号 * 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 解析モデル 福島第一4号 同上 (H22年改造工認) 日二 (H22年改造工認) 成力解析 解析手法 福島第一4号 (H22年改造工認) る。 解析モデル 福島第一4号 (H22年改造工認) 人 (H22年改造工器) 高 (H22年改造工器) 「日2<	10	電気配線貫通部	応答解析	解析手法	福島第一4号	東海第二発電所と同手法*を適用した実績を有する当該プラントを参照す
株 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 解析モデル 福島第一4号 同上 確却 (H22年改造工器) 自二 成力解析 解析手法 福島第一4号 同上 応力解析 解析手法 福島第一4号 同上 応力解析 解析手法 福島第一4号 同二 応力解析 解析手法 福島第一4号 同二 応力解析 解析手法 (H22年改造工器) 応力解析 解析手法 東海第二発電所と同手法*を適用した実績を有する当該プラントを参加 府千子 東海第二発電所と同手法*を適用した実績を有する当該プラントを参加 解析モデル 福島第一4号 東海第二発電所の置かた手術 施力 (H22年改造工器) る。 解析モデル 福島第一4号 東海第二発電所と同手法*を適用したたEM解析の実施 市 (H22年改造工器) る。 解析モデル 福島第一4号 同上					(H22年改造工認)	ର ଜ
解析モデル 福島第一4号 同上 (H22年改造工認) (H22年改造工認) 減衰定数 福島第一4号 同上 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 席 (H22年改造工認) る。 解析モデル 福島第一4号 東海第二発電航貨通部に発生する地震外力を用いたFEM解析の実施 解析モデル 福島第一4号 同上						* 電気配線貫通部に発生する地震外力を用いたFEM解析の実施
(H22年改造工認) (H22年改造工認) 減衰定数 福島第一4号 同上 応力解析 解析手法 福島第一4号 同二 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 府 (H22年改造工認) る。 解析モデル 福島第一4号 同二 解析モデル 福島第一4号 同二 (H22年改造工認) る。 解析モデル 福島第一4号 同二				解析モデル	福島第一4号	子国
減衰定数 福島第一4号 同上 応力解析 解析手法 (H22年改造工認) 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 (H22年改造工認) る。 * 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 解析モデル 福島第一4号 同上 解析モデル 福島第一4号 同上 (H22年改造工認) 6					(H22 年改造工認)	
(H22年改造工認) 応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参、 (H22年改造工認) る。 (H22年改造工認) る。 解析モデル 福島第一4号 市 解析モデル 福島第一4号 同上 (H22年改造工認) (H22年改造工認)				减衰定数	福島第一4号	子道
応力解析 解析手法 福島第一4号 東海第二発電所と同手法*を適用した実績を有する当該プラントを参 (H22年改造工認) る。 (H22年改造工認) る。 解析モデル 福島第一4号 (H22年改造工認) 高 (H22年改造工認) 6					(H22 年改造工認)	
(H22 年改造工認) る。 (H22 年改造工認) 本 電気配線貫通部に発生する地震外力を用いたFEM解析の実施 解析モデル 福島第一4号 同上 (H22 年改造工認) (H22 年改造工認)			応力解析	解析手法	福島第一4号	東海第二発電所と同手法*を適用した実績を有する当該プラントを参照す
解析モデル 福島第一4号 同上 (H22 年改造工認) (H22 年改造工認)					(H22年改造工認)	ର ଜ
解析モデル 福島第一4号 同上 (H22年改造工認) (H22年改造工認)						* 電気配線貫通部に発生する地震外力を用いたFEM解析の実施
(H22 年改造工認)				解析モデル	福島第一4号	子自
					(H22 年改造工認)	

No.	評価対象項目	缶プランを参考	トでの適用例 ぎする項目	参照する プラント	説明
圧力但	玉減装置その他関連の安全設備				
11	ダイヤフラムフロア	心 御 御	離 和 御 同 (御 同 (二 (一 (の 一 (の に (の に の に の に の に の に の に の に の に の に の に の で で い で の で で い で の で で い で で で い で で い で で で 一 一 で で つ 一 一 で か 合 一 一 一 一 一 一 一 一 一 一 一 一 一	大飯3,4号 大飯3,4号	東海第二のダイヤフラムフロアの評価に際しては、当該設備の設置位置と して原子炉本体の基礎及び原子炉建屋基礎版上の鉛直方向加速度を用いる。 原子炉本体の基礎の鉛直方向加速度の算定にあたっては、多質点系モデルに モデル化し、建屋 – 機器連成解析を実施する。なお、原子炉建屋基礎版上の 鉛直方向加速度は、原子炉建屋の地震応答解析結果を用いる(別途整理済み)。 参照するプラントとしては、東海第二と同様の鉄筋コンクリートを多質点 系モデルにモデル化している大飯3、4号としている。 東海第二の建屋 – 機器連成解析に用いる原子炉本体の基礎の鉛直方向の減 衰定数として、鉄筋コンクリートの5%を適用する。 参照するプラントとしては、東海第二と同様の鉄筋コンクリートの鉛直方
		応力解析	I	I	向の減衰定数として, 5 %を適用している大飯 3 , 4 号としている。 -
12	ベント値	応答解 析	解析手法解析モデル	柏崎刈羽 5 号 柏崎刈羽 5 号	格納容器構造(MARK-II型)が同じ柏崎刈羽5号を参照する。 同上
		応力解析	Ι	,	1
13	格納容器スプレイヘッダ	応答解析	减衰定数 (鉛直)	大間1号	一般的な配管解析であるため,大間1号を参照する。
		応力解析		-	Ι

別紙-2

東海第二発電所

原子炉建屋の地震応答解析モデルについて (耐震)

1. はじめに

本資料は、今後申請する東海第二発電所の補正工認(以下「今回工認」とい う。)に提出する予定の原子炉建屋の地震応答解析について纏めたものである。 まず、東北地方太平洋沖地震のシミュレーション解析の結果を踏まえて今回 工認に用いる地震応答解析モデルを設定し、次に設定したモデルを用いた基準

地震動S_sに対する地震応答解析結果を示し,原子炉建屋の耐震健全性を説明

するものである。

- 2. 原子炉建屋の概要
- 2.1 原子炉建屋の概要

原子炉建屋は、地下2階、地上6階の鉄筋コンクリート造の建物である。

建物の中央部には原子炉格納容器を収納する原子炉棟があり、その周囲に 付属棟を配置している。原子炉建屋の概要を第2-1図及び第2-2図に、使 用材料を第2-1表に示す。

原子炉棟と付属棟とは同一基礎スラブ上に設置した一体構造であり,原子 炉建屋の平面は,地下部分は約 67 m×約 67 m,地上部分は一部を除き約 41 m ×約 44 mの矩形をしている。基礎底面からの高さは約 73 m であり,地上高 さは約 56 m である。

原子炉建屋の基礎は,平面が約67m×約67m,厚さ5mのべた基礎で,人 工岩盤を介して,砂質泥岩である久米層に岩着している。

(EL. -4.0 m)

第2-1図 原子炉建屋の概要(平面図)

(EW方向, B-B断面)

第2-2図 原子炉建屋の概要(断面図)

4条-別紙2-5

立てた	設計基	準強度	単位容積 重量	ポアソン比	ヤング係数	せん断 弾性係数
的卫生	Fc	F c ^{* 2}	γ	ν	E N (²	G
	kgt∕cm²	N/mm²	kN∕m°		N/mm²	N/mm²
建屋	225	22.1	24.0	0.2	2. 21×10^{4}	9. 21×10^{3}
人工岩盤	140	13.7	23.0	0.2	1.88 \times 10 ⁴	7.83 \times 10 ³
鋼材	_	_	77.1	0.3	2. 05×10^{5}	7.9 $\times 10^4$

第2-1表 原子炉建屋の使用材料*1

※1 使用材料については、「鉄筋コンクリート構造計算規準・同解説 - 許容応力度設計法-(1999)」、「原子力施設鉄筋コンクリート構造計算規準・同解説(2005)」及び「鋼構造設計規準 - 許容応力度設計法-(2005)」に準拠した。

※2 F c は 9.80665 m/s²を用いて換算した。

2.2 原子炉建屋の位置

第2-3図の構内配置図に原子炉建屋の位置を示す。

第2-3図 構内配置図

2.3 設置地盤の状況

原子炉建屋はコンクリート造の人工岩盤を介して,砂質泥岩である久米層 に岩着している。原子炉建屋の設置状況及び埋込み状況を第2-4図の原子炉 建屋設置地盤断面図に示す。

(NS方向)

(EW方向)

第2-4図 原子炉建屋設置地盤断面図

3. 原子炉建屋の地震応答解析モデルの設定

3.1 目的

今回工認に用いる原子炉建屋の地震応答解析モデルについて検討する。

東海第二発電所原子炉建屋の基礎はコンクリート造の人工岩盤を介して支 持地盤である久米層に設置している。また,原子炉建屋の基礎下端はEL. -9 mであり,地表面(EL.+8 m)から17 m地中に埋め込まれている。

建設当時の工認(以下「既工認」という。)では,原子力発電所耐震設計技 術指針JEAG4601-1987[社団法人日本電気協会](以下「JEAG4601-1987」 という。)制定前であったため,解放基盤表面という概念が無く,地盤応答解 析を介さずに人工岩盤下端に設計波を直接入力していた。そのため人工岩盤 を建屋モデル側にモデル化し,建屋と側面地盤の相互作用は考慮していなか った。

今回工認の地震応答解析モデルを検討するにあたり,「JEAG4601-1987」 及び原子力発電所耐震設計技術指針JEAG4601-1991追補版〔社団法人日 本電気協会〕(以下「JEAG4601-1991追補版」という。)には,基礎底面 の人工岩盤のモデル化方法及び側面回転地盤ばねの扱いについて明確に表記 されていないため,2011年3月11日東北地方太平洋沖地震(以下「東北地 方太平洋沖地震」という。)時の観測記録を用いたシミュレーション解析を行 い,人工岩盤のモデル化の影響と建屋と側面地盤との相互作用の影響評価を 行い,これらの工認上の扱いを検討する。 3.2 原子炉建屋内の地震計設置位置

原子炉建屋には、地震時の基本的な振動性状を把握する目的で偶数階に各階1台の地震計を設置している。また、基礎上(地下2階)には更に4台の地 震計を設置している。

原子炉建屋の地震計設置位置を第3-1図に示す。

第3-1図 原子炉建屋の地震計設置位置

3.3 建屋-地盤動的相互作用の評価法について

既工認では、埋込み効果を無視した、スウェイ・ロッキングモデル(以下 「SRモデル」という。)として、建屋と地盤の相互作用を考慮している。

本資料では、はじめに、既工認に用いたSRモデルと側面地盤による回転 拘束を含む埋込み効果を考慮した埋込みSRモデルを用いて東北地方太平洋 沖地震のシミュレーション解析を行い、建屋の振動性状を比較した。解析に 用いたSRモデルによる地震応答解析の概要を第3-2図に、埋込みSRモデ ルによる地震応答解析の概要を第3-3図に示す。

東北地方太平洋沖地震のシミュレーション解析結果として、両者の最大応 答加速度分布の比較を第3-4図及び第3-5図に、床応答スペクトルの比較 を第3-6図及び第3-7図に示す。これらの解析結果より埋込みSRモデル を用いた方が、SRモデルを用いた場合に比べ、観測記録との整合が改善し ており、より実状に近い建屋の振動性状を評価できているものと考えられる。

第3-2図 SRモデルによる地震応答解析の概要

第3-3図 埋込みSRモデルによる地震応答解析の概要

第3-4図 最大応答加速度分布の比較(NS方向)

第3-5図 最大応答加速度分布の比較(EW方向)

h = 1%

地下2階

第3-6図(1/4) 床応答スペクトルの比較(NS方向)

h = 1%

2階

第3-6図(2/4) 床応答スペクトルの比較(NS方向)

h = 1%

4階

第3-6図(3/4) 床応答スペクトルの比較(NS方向)

h = 1%

6 階

第3-6図(4/4) 床応答スペクトルの比較(NS方向)

h = 1%

地下2階

第3-7図(1/4) 床応答スペクトルの比較(EW方向)

h = 1%

2 階

第3-7図(2/4) 床応答スペクトルの比較(EW方向)

h = 1%

4階

第3-7図(3/4) 床応答スペクトルの比較(EW方向)

h = 1%

6 階

第3-7図(4/4) 床応答スペクトルの比較(EW方向)

3.4 工認上の人工岩盤のモデル化について

既工認では、人工岩盤を建屋モデル側にモデル化し、地震応答解析を行っていたが、ここでは、人工岩盤を地盤モデル側に岩盤としてモデル化した場合の建屋応答への影響について検討した。

人工岩盤を岩盤としてモデル化した場合の地震応答解析の概要を第3-8 図に示す。ここで、基礎底面の地盤ばね及び入力動の算定に用いる地盤モデ ルは、基礎底面レベルである EL. -9.0mまで砂質泥岩である久米層の物性と 同等として設定した。また、比較検討には、前章にも用いた実状に近い建屋 の振動性状を評価できている埋込みSRモデルを用いた。

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度 分布の比較を第3-9図及び第3-10図に,床応答スペクトルの比較を第3-11図及び第3-12図に示す。人工岩盤を地盤モデル側に岩盤としてモデル化 した場合は,建屋モデル側にモデル化した場合の応答に比べ,概ね同程度で あるか一部の周期帯では若干大きくなることが確認できた。そのため今回の 工認では,保守的に人工岩盤を地盤モデル側に岩盤としてモデル化する方針 とした。

第3-8図 人工岩盤を岩盤としてモデル化した場合の地震応答解析の概要

第3-9図 最大応答加速度分布の比較(NS方向)

第3-10図 最大応答加速度分布の比較(EW方向)

h = 1%

h = 5%

地下2階

第3-11図(1/4) 床応答スペクトルの比較(NS方向)

h=1%

2 階

第3-11図(2/4) 床応答スペクトルの比較(NS方向)

h = 1%

4階

第3-11図(3/4) 床応答スペクトルの比較(NS方向)

6 階

第3-11図(4/4) 床応答スペクトルの比較(NS方向)

h=1%

h = 5%

地下2階

第3-12図(1/4) 床応答スペクトルの比較(EW方向)

h = 1%

2 階

第3-12図(2/4) 床応答スペクトルの比較(EW方向)

h = 1%

4階

第3-12図(3/4) 床応答スペクトルの比較(EW方向)

h = 1%

6 階

第3-12図(4/4) 床応答スペクトルの比較(EW方向)

3.5 工認上の側面回転ばねの扱いについて

建屋側面地盤の埋込み効果を考慮するにあたり,側面地盤を水平ばね及び 回転ばねとして評価してきた。ここでは,側面回転ばねを考慮しない場合の 建屋応答への影響について検討した。

側面回転ばねを考慮しない場合の地震応答解析の概要を第3-13図に示す。

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度 分布の比較を第3-14図及び第3-15図に,床応答スペクトルの比較を第3 -16図及び第3-17図に示す。側面回転ばねを考慮しない場合の解析結果は, 側面回転ばねを考慮する場合の応答に比べ,概ね同程度であるか一部の周期 帯では若干大きくなることが確認できた。

「3.3 建屋-地盤動的相互作用の評価法について」において示したように、 埋込み効果として、側面地盤の水平ばね及び回転ばねを考慮した場合に、よ り実状に近い建屋の振動性状を評価できているものと考えられるが、今回工 認において、当プラントでは保守的に側面回転ばねを採用しない方針とした。

第3-13図 側面回転ばねを考慮しない場合の地震応答解析の概要

第3-14図 最大応答加速度分布の比較(NS方向)

第3-15図 最大応答加速度分布の比較(EW方向)

h = 1%

h = 5%

地下2階

第3-16図(1/4) 床応答スペクトルの比較(NS方向)

h = 1%

2 階

第3-16図(2/4) 床応答スペクトルの比較(NS方向)

h = 1%

4階

第3-16図(3/4) 床応答スペクトルの比較(NS方向)

h = 1%

6階

第3-16図(4/4) 床応答スペクトルの比較(NS方向)

h = 1%

地下2階

第3-17図(1/4) 床応答スペクトルの比較(EW方向)

h = 1%

2 階

第3-17図(2/4) 床応答スペクトルの比較(EW方向)

h = 1%

4階

第3-17図(3/4) 床応答スペクトルの比較(EW方向)

h = 1%

6階

第3-17図(4/4) 床応答スペクトルの比較(EW方向)

3.6 工認に用いる地震応答解析モデルについて

東海第二発電所原子炉建屋の地震応答解析モデルについて,東北地方太平 洋沖地震のシミュレーション解析結果の比較から,人工岩盤のモデル化及び 側面回転ばねの工認上の扱いについて検討した。

既工認ではSRモデルとしていたが、側面地盤の埋込み効果を考慮した埋 込みSRモデルとした場合、より実状に近い建屋の振動性状を評価できるこ とを確認した。また、人工岩盤は岩盤として地盤モデル側にモデル化し、側 面回転ばねを考慮しないモデルとする方が、応答を保守側に評価することを 確認した。

以上の結果から、今回工認に用いる地震応答解析モデルは、人工岩盤を地 盤モデル側に岩盤としてモデル化し、側面回転ばねを考慮しない埋込みSR モデルとする。また、今回の検討で確認した地震観測記録の床応答スペクト ルとシミュレーション解析結果との差異については、詳細設計においてその 要因について考察を行うとともに、機器の耐震性評価に適切に考慮する。
4. 既工認との比較

「3. 原子炉建屋の地震応答解析モデルの設定」で示したように、今回工 認において、地震応答解析モデルを一部見直している。地震応答解析モデル の主要な変更点を第4-1表に示す。

項目	既工認	今回工認
	SRモデル	埋込みSRモデル
<u> </u>	地盤ばねは Timoshenko,	地盤ばねは NOVAK の方法
作业作用	Barkan 等の式に基づき	及び振動アドミッタンス
	評価	理論に基づき評価
神民エジル	線形としてモデル化	せん断及び曲げの非線形
建産モナル		性を考慮
スカ地震動	設計用地震動を直接入力	基準地震動 S _s を一次元
八刀地展剿		波動論により算定

第4-1表 地震応答解析モデルの主要な変更点

- 5. 基準地震動 S_sに対する耐震安全性評価
- 5.1 評価方針

原子炉建屋の耐震安全性評価は、地震応答解析結果を基に実施する。建屋の耐震安全性については、基準地震動S_sにより耐震壁に生じるせん断ひず みが評価基準値(2.0×10⁻³)を超えないことを確認する。

5.2 基準地震動 S_s

原子炉建屋の耐震安全性評価に用いる地震動は解放基盤表面で定義された 基準地震動S_sとする。基準地震動S_sの一覧を第5-1表に示し、加速度波 形及び加速度応答スペクトルを第5-1図~第5-8図に示す。

No.	名称	継続時間 (s)	方 向	加速度最大値 (cm/s ²)
1	S D 1	120 22	水平	870
1	$S_{s} - D_{1}$	139.28	鉛直	560
			N S	717
2	$S_{s} - 1 1$	194.03	ΕW	619
			UD	579
			N S	871
3	$S_{s} - 1 2$	173.18	ΕW	626
			UD	602
			N S	903
4	$S_{s} - 1 3$	179.22	ΕW	617
			UD	599
			N S	586
5	$S_{s} - 1 4$	174.46	ΕW	482
			UD	451
			N S	901
6	$S_s - 2_1$	287.83	ΕW	887
			UD	620
			N S	1,009
7	$S_{s} - 22$	287.59	ΕW	874
			UD	736
Q	S — 2 1	20 00	水平	610
0	5 ₅ -51	20.00	鉛直	280

第5-1表 基準地震動S_sの一覧

注:いずれも時間刻みは 0.01 s

(a) 水平方向

第5-1図(1/2) 加速度波形及び加速度応答スペクトル(S_s-D1)

第5-1図(2/2) 加速度波形及び加速度応答スペクトル(S_s-D1)

(a) NS方向

第5-2図(1/3) 加速度波形及び加速度応答スペクトル(S_s-11)

(b) EW方向

第5-2図(2/3) 加速度波形及び加速度応答スペクトル(S_s-11)

(c) UD方向

第5-2図(3/3) 加速度波形及び加速度応答スペクトル(S_s-11)

(a) NS方向

第5-3図(1/3) 加速度波形及び加速度応答スペクトル(S_s-12)

(b) EW方向

第5-3図(2/3) 加速度波形及び加速度応答スペクトル(S_s-12)

(c) UD方向

第5-3図(3/3) 加速度波形及び加速度応答スペクトル(S_s-12)

(a) NS方向

第5-4図(1/3) 加速度波形及び加速度応答スペクトル(S_s-13)

(b) EW方向

第5-4図(2/3) 加速度波形及び加速度応答スペクトル(S_s-13)

(c) UD方向

第5-4図(3/3) 加速度波形及び加速度応答スペクトル(S_s-13)

(a) NS方向

第5-5図(1/3) 加速度波形及び加速度応答スペクトル(S_s-14)

(b) EW方向

第5-5図(2/3) 加速度波形及び加速度応答スペクトル(S_s-14)

(c) UD方向

第5-5図(3/3) 加速度波形及び加速度応答スペクトル(S_s-14)

(a) NS方向

第5-6図(1/3) 加速度波形及び加速度応答スペクトル(S_s-21)

第5-6図(2/3) 加速度波形及び加速度応答スペクトル(S_s-21)

(c) UD方向

第5-6図(3/3) 加速度波形及び加速度応答スペクトル(S_s-21)

(a) NS方向

第5-7図(1/3) 加速度波形及び加速度応答スペクトル(S_s-22)

(b) EW方向

第5-7図(2/3) 加速度波形及び加速度応答スペクトル(S_s-22)

(c) UD方向

第5-7図(3/3) 加速度波形及び加速度応答スペクトル(S_s-22)

(a) 水平方向

第5-8図(1/2) 加速度波形及び加速度応答スペクトル(S_s-31)

(b) 鉛直方向

第5-8図(2/2) 加速度波形及び加速度応答スペクトル(S_s-31)

5.3 地盤応答解析による入力地震動の算定

水平方向及び鉛直方向の解析概要を第5-9図及び第5-10図に示す。

水平方向の入力地震動は、解放基盤表面(EL. -370m, Vs $\Rightarrow 700 m/s$)で定 義される基準地震動S_s(2E_o)を用いて、一次元波動論により算定した基 礎版下端及び側面地盤ばね位置での応答波(E+F)とする。

算定に用いる地盤モデルは、当該敷地の地層等を考慮して設定された水平 成層地盤とし、等価線形化法により地盤の非線形を考慮した物性値を用いる。

鉛直方向の入力地震動は,解放基盤表面(EL. -370m, Vs≒700 m/s)で定 義される基準地震動S_s(2E₀)を用いて,一次元波動論により算定した基 礎版下端位置での応答波(2E)とする。

算定に用いる地盤モデルには,水平方向の入力地震動算定に用いた地盤モ デルの等価せん断波速度と体積弾性係数より求めた疎密波速度を用い,基礎 版下端位置より上部を剥ぎ取った地盤モデルを用いる。

第5-10 図 鉛直方向解析概要

5.4 地震応答解析モデル

水平方向の地震応答解析に用いる建屋解析モデル及びその振動諸元を第5 -2表に示す。また,鉛直方向地震応答解析に用いる建屋解析モデル及びそ の振動諸元を第5-3表に示す。

水平方向の地震応答解析モデルは,耐震壁を曲げせん断要素でモデル化し, 建屋-地盤の相互作用を考慮するため基礎版下端に水平及び回転地盤ばねを 設けている。また,建屋埋め込み部分にも側面地盤ばねを設け,地盤への埋 め込み効果を考慮している。基礎版下端の底面地盤ばねは,振動アドミッタ ンス理論に基づき求め,建屋埋め込み部の側面地盤ばねは,NOVAKの方 法により算定している。これら振動数依存の複素ばねを「JEAG4601-1991 追補版」に基づき近似したものを解析に用いており,底面地盤ばねの剛性は 静的理論解を用いて振動数に対して一定値とし,底面地盤ばねの減衰は円振 動数ωの一次式の形で示し,地盤ー建屋連成系の一次固有円振動数ω1で虚部 の値と一致するように設定している。側面地盤ばねの剛性については理論解 の極大値を用いて振動数に対して一定値とし,側面地盤ばねの減衰は底面地 盤ばねと同様に近似設定している。地盤ばねの近似法を第5-11図に示す。

鉛直方向の地震応答解析モデルは,耐震壁の軸剛性を考慮した質点系モデ ルとし,建屋-地盤の相互作用を考慮するため,基礎版下端に鉛直地盤ばね を設けている。

建屋の減衰定数は,鉄筋コンクリート部を5%,鉄骨部を2%とし,モード 減衰として与えている。各次のモード減衰定数は,建屋各部のひずみエネル ギに比例した値として算定している。

地震波ごとの地盤ばね算定結果は,第5-4表~第5-11表に示す通りである。

建物の非線形性については、耐震壁について設定しており、「JEAG

4601-1991 追補版」に基づき、トリリニア形スケルトン曲線としている。また、せん断力の履歴特性は最大点指向型としている。曲げモーメントの履歴 特性は第2折点までは最大点指向型、それ以上ではディグレイディングトリ リニア型としている。復元力特性のスケルトン曲線を第5-12図に、履歴特 性を第5-13図に示す。原子炉建屋について算定したせん断及び曲げスケル トン曲線の諸数値を第5-12表及び第5-13表に示す。

							1932940	d#	総重
o :F101	T .070T	7 I N	0 10F	/11/	1073.5	1081.4	275090	12	9.00
1814 8	1828 1	4675	4675	(11)	1.112.1	1724.0	439290	11	4. UU
208.9	218.8	454	464	(10)		F .700		2	
2007	210.4	404	404	(@)	830.7	839 4	990710	10	00 6
000	910 4	15.1	161	(0)	880.8	893.0	1992661	ы	8.20
147.4	1/8.5	345	394	8		000	10000	c	
V 2.V F	170 5	9.46	100	(0)	119.0	120.8	234050	ά	4. 00
11.0	80.3	224	242	0	9 044	0 002	094660	a	00
	000	004	010	(1)	543.9	488.7	161820	2	0.30
72.9	77.6	237	218	(9)				o i	
38.1	40.4	100	143	(c)	950 5	0 010	199970	u	00 0
L OC		011	110	Ĺ,	68.7	113.0	83270	വ	4.70
37.3	45.0	141	133	(4)		0.101	001-0	۲ H	
34.7	64.4	154	212	(3)	000	0 101	00120	-	00 0
	č	L		(0)	104.7	120.3	67320	e C	6.50
18.4	20.4	25.5	27.3	(2)	- L	7.10		3 0	
10.4	20.4	c . c 2	6.12	(T)	- V V	51.0	16160	c	7 00
101	V 00	96 6	6 20	3	31.5	35.7	15870	1	3.65
						L		,	L
EW方向	NS方向	EW方向	NS方向	御力	EW方向	NS方向	(KIN)	御力	(1
$0^{3}m^{4})$	$(\times 1)$	1 ²)	(n	要要	kN•m ²)	$(\times 10^5$	((() () () () () () () () () () () ()	<u> </u>	;
たモーメント	断面2%	断面積	せん断	4 	性重量	回転慣	田 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	1	恒

2	せん断断面積 (×10 ⁻² m ²)		5.68	2.68	8.50	11.49									
ラス市	壊 権 忠		(24)	(23)	(22)	(21)	-1								
屋根卜	質点重量 (kN)	1120	2240	2240	2240										
	質 番号	25	24	23	22	-	た	/rad							
	ス ^{ハ。} ソ方向 (m)	20.55	15.41	10.27	5.13	0.00	然 回 転 始 击	× 10 ⁶ kN·m							
	海 (n) (n)			63.65			トリス語言	$K_{\theta} = 5.62$							
	軸断面積 (m ²)		52.4	58.8	331	243	297	451	461	121	006	006	4675		
部	要素品		(1)	(2)	(3)	(4)	(2)	(9)	9 3	(8)	(6)	(10)	(11)		
産・シェル壁	質点重量 (kN)	8030	16160	67320	97130	83270	122370	161820	234650	199260	220710	439290	275090	1932940	
外長	衝 地 市	1	2	3	4	5	6	7	∞	6	10	11	12	-121	
	標 EL. (n)	63.65	57.00	46.50	38.80	34.70	29.00	20.30	14.00	8.20	2.00	-4.00	-9.00	総重量	
ト壁・ 一番相 トラス部	$\gamma = \Lambda$ · 壁部 $1^{(21)}$ $2^{(22)}$ $2^{(23)}$ $2^{(24)}$ $2^{(24)}$ $2^{(25)}$ $2^{(24)}$ $2^{(24)}$		$\bigoplus_{i=1}^{3} (2) \qquad \qquad$	(3) 対称条件による 4 回転拘击	5 (4)	6 (5)		8 (7)	(8)	(6) 10	(10)		→ 地盤ばね K1		· 数字は質点番号を示す。 /) 中は亜素亜目を三十

第5-3表 鉛直方向解析モデル及び振動諸元

(a) 底面地盤ばね

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	5. 46×10^5	2. 50×10^5
K2	10	側面·並進	1.22×10^{6}	4. 18×10^5
K3	11	側面·並進	6.64 $\times 10^{6}$	9. 11×10^5
K4	12	側面·並進	1.92×10^{7}	8. 70×10^5
K5	12	底面・並進	6. 41×10^7	3. 45×10^{6}
K6	12	底面・回転	9. 26×10^{10}	1.59×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	5. 46×10^5	2. 49×10^5
K2	10	側面·並進	1.22×10^{6}	4. 19×10^5
K3	11	側面·並進	6.64 $\times 10^{6}$	9.09 $\times 10^{5}$
K4	12	側面·並進	1.92×10^{7}	8.69 $\times 10^{5}$
K5	12	底面・並進	6. 42×10^7	3. 45×10^{6}
K6	12	底面・回転	9. 17×10^{10}	1.57×10^{9}

*1:K1~K5 は kN/m, K6 は kN·m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.08×10^{8}	8. 21×10^{6}

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	6. 46×10^5	2. 88×10^5
K2	10	側面·並進	1.75 $\times 10^{6}$	6. 72×10^5
K3	11	側面·並進	8.96 $\times 10^{6}$	9.99 $\times 10^{5}$
K4	12	側面·並進	2. 20×10^7	9.69 $\times 10^{5}$
K5	12	底面・並進	7. 04×10^{7}	3. 61×10^{6}
K6	12	底面・回転	1.01×10^{11}	1.65×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ば 番号	質 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	6. 46×10^5	2.90 × 10 ⁵
K2	10	側面·並進	1.75×10^{6}	6. 64×10^5
K3	11	側面·並進	8.96 $\times 10^{6}$	1.00×10^{6}
K4	12	側面·並進	2. 20×10^7	9.69×10 ⁵
K5	12	底面・並進	7. 05×10^{7}	3. 61×10^{6}
K6	12	底面・回転	1.00×10^{11}	1.63×10^{9}

*1:K1~K5 は kN/m, K6 は kN·m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.16×10^{8}	8.50 × 10 ⁶

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	6. 46×10^5	2. 93×10^5
K2	10	側面·並進	1.74×10^{6}	6. 59 $\times 10^{5}$
K3	11	側面·並進	8.66 $\times 10^{6}$	9.81×10 ⁵
K4	12	側面·並進	2. 16×10^7	9. 56 $\times 10^{5}$
K5	12	底面・並進	6.80 × 10 ⁷	3. 54×10^{6}
K6	12	底面・回転	9. 69×10^{10}	1.62×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ば 番号	質 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	6. 46×10^5	2.95 $\times 10^{5}$
K2	10	側面·並進	1.74×10^{6}	6. 54×10^5
K3	11	側面·並進	8.66 $\times 10^{6}$	9.83 $\times 10^{5}$
K4	12	側面·並進	2. 16×10^7	9. 55×10^5
K5	12	底面・並進	6.80 × 10 ⁷	3. 55×10^{6}
K6	12	底面・回転	9.64 $\times 10^{10}$	1.60×10^{9}

*1:K1~K5はkN/m, K6はkN・m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.11×10^{8}	8. 31×10^{6}

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	6. 39×10^5	2.85 $\times 10^{5}$
K2	10	側面·並進	1.71×10^{6}	6. 67×10^5
KЗ	11	側面·並進	8.60×10 ⁶	9. 78×10^5
K4	12	側面·並進	2. 16×10^7	9. 56 $\times 10^{5}$
K5	12	底面・並進	6.83 $\times 10^{7}$	3. 55×10^{6}
K6	12	底面・回転	9. 78×10^{10}	1.63×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	6. 39×10^5	2.87 $\times 10^{5}$
K2	10	側面·並進	1.71×10^{6}	6. 64×10^5
K3	11	側面·並進	8.60 $\times 10^{6}$	9.80 × 10 ⁵
K4	12	側面·並進	2. 16×10^7	9. 56 $\times 10^{5}$
K5	12	底面・並進	6.83 $\times 10^{7}$	3. 55×10^{6}
K6	12	底面・回転	9.73×10 ¹⁰	1.61×10^{9}

*1:K1~K5はkN/m, K6はkN・m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.12×10^{8}	8.35 $\times 10^{6}$
ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
----------	----------	-------------	--------------------------	--------------------------------------
K1	9	側面·並進	6. 78×10^5	3. 18×10^5
K2	10	側面·並進	1.83×10^{6}	6. 42×10^5
K3	11	側面·並進	9. 11×10^{6}	1.00×10^{6}
K4	12	側面·並進	2. 22×10^7	9. 68×10^5
K5	12	底面・並進	6. 92×10^7	3. 58×10^{6}
K6	12	底面・回転	9. 92 $\times 10^{10}$	1.64×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ば 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	6. 78×10^5	3. 21×10^5
K2	10	側面·並進	1.83×10^{6}	6. 36×10^5
K3	11	側面·並進	9. 11×10^{6}	1.01×10^{6}
K4	12	側面·並進	2. 22×10^7	9.68×10 ⁵
K5	12	底面・並進	6.92 $\times 10^{7}$	3. 58×10^{6}
K6	12	底面・回転	9.87 $\times 10^{10}$	1.62×10^{9}

*1:K1~K5はkN/m, K6はkN・m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.13×10^{8}	8. 40×10^{6}

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _C	減衰係数 ^{*2} C _c
K1	9	側面·並進	5. 54 $\times 10^{5}$	2. 58×10^5
K2	10	側面·並進	1.38×10^{6}	4. 38×10^5
K3	11	側面·並進	7.62 $\times 10^{6}$	9. 47×10^{5}
K4	12	側面·並進	2. 08×10^7	9. 30×10^5
K5	12	底面・並進	6.80 × 10 ⁷	3. 55×10^{6}
K6	12	底面・回転	9. 76×10^{10}	1.62×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	5. 54 $\times 10^{5}$	2. 57 $\times 10^{5}$
K2	10	側面·並進	1.38×10^{6}	4. 42×10^5
K3	11	側面·並進	7.62 $\times 10^{6}$	9. 43×10^5
K4	12	側面·並進	2. 08×10^7	9. 29×10^5
K5	12	底面・並進	6.80 × 10 ⁷	3. 55×10^{6}
K6	12	底面・回転	9.70×10 ¹⁰	1.60×10^{9}

*1:K1~K5はkN/m, K6はkN・m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.14×10^{8}	8. 42×10^{6}

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	5. 39×10^5	2. 61×10^5
K2	10	側面·並進	1.28×10^{6}	4. 08×10^5
K3	11	側面·並進	7.22 $\times 10^{6}$	9. 49×10^5
K4	12	側面·並進	2.03 $\times 10^{7}$	9. 10×10^{5}
K5	12	底面・並進	6.80 × 10 ⁷	3. 55×10^{6}
K6	12	底面・回転	9.80 $\times 10^{10}$	1.62×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	5. 39×10^5	2. 59 $\times 10^{5}$
K2	10	側面·並進	1.28×10^{6}	4. 10×10^5
K3	11	側面·並進	7.22 $\times 10^{6}$	9. 46×10^5
K4	12	側面·並進	2. 03×10^7	9.09 $\times 10^{5}$
K5	12	底面・並進	6.80 × 10 ⁷	3. 55×10^{6}
K6	12	底面・回転	9.75×10 ¹⁰	1.60×10^{9}

*1:K1~K5はkN/m, K6はkN・m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.14×10^{8}	8. 43×10^{6}

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数 ^{*2} C _c
K1	9	側面·並進	5. 39×10^5	2. 46×10^5
K2	10	側面·並進	1.18×10^{6}	4. 01×10^5
KЗ	11	側面·並進	5. 24×10^{6}	8.98 $\times 10^{5}$
K4	12	側面·並進	1.86×10^{7}	8. 58 $\times 10^{5}$
K5	12	底面・並進	6. 26×10^7	3. 41×10^{6}
K6	12	底面・回転	8.96 $\times 10^{10}$	1.57×10^{9}

(a) NS方向

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(b) EW方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数*1 K _c	減衰係数*2 C _c
K1	9	側面·並進	5. 39×10^5	2. 45×10^5
K2	10	側面·並進	1.18×10^{6}	4. 00×10^{5}
K3	11	側面·並進	5. 24×10^{6}	8.97 $\times 10^{5}$
K4	12	側面·並進	1.86×10^{7}	8. 57 $\times 10^{5}$
K5	12	底面・並進	6. 27×10^{7}	3. 41×10^{6}
K6	12	底面・回転	8.91×10 ¹⁰	1.55×10^{9}

*1:K1~K5 は kN/m, K6 は kN·m/rad

*2:K1~K5はkN・s/m, K6はkN・m・s/rad

(c) UD方向

ばね 番号	質点 番号	地盤ばね 成 分	ばね定数 K _c kN/m	減衰係数 C _c kN・s/m
K1	12	底面・鉛直	1.06×10^{8}	8. 14×10^{6}

第5-12図 復元力特性のスケルトン曲線

(a) 最大点指向型

(b) ディグレイディングトリリニア型第5-13図 復元力特性の履歴特性

第5-12表 せん断スケルトン数値表

EL.	要素	$ au_{1}$	$ au$ $_2$	$ au_{3}$	γ_{1}	γ_2	γ_{3}
m	番号	N/mm^2	N/mm^2	N/mm^2	$ imes 10^{-3}$	$ imes 10^{-3}$	$ imes 10^{-3}$
$63.65 \sim 57.00$	1	1.60	2.16	4.54	0.174	0.522	4.0
57.00 \sim 46.50	2	1.71	2.31	4.63	0.185	0.555	4.0
46.50 \sim 38.80	3	1.59	2.15	4.38	0.173	0.519	4.0
$38.80 \sim 34.70$	4	1.34	1.81	4.17	0.145	0.435	4.0
34.70 \sim 29.00	5	1.28	1.73	3.91	0.139	0.417	4.0
29.00 \sim 20.30	6	1.47	1.98	4.26	0.159	0.477	4.0
20.30 \sim 14.00	7	1.61	2.17	4.87	0.174	0.522	4.0
14.00 \sim 8.20	8	1.68	2.27	4.27	0.183	0.549	4.0
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.192	0.576	4.0
2.00 ~ -4.00	10	1.85	2.50	5.84	0.201	0.603	4.0

(a) NS方向

(b) EW方向

EL.	要素番号	τ_1 N/mm ²	$ au_2$ N/mm ²	τ_3 N/mm ²	$\gamma_{1} \times 10^{-3}$	$\gamma_2 \times 10^{-3}$	$\gamma_{3} \times 10^{-3}$
$63.65 \sim 57.00$	1	1.60	2.16	4. 54	0.174	0. 522	4.0
$57.00 \sim 46.50$	2	1.71	2.31	4.63	0.185	0.555	4.0
46.50 \sim 38.80	3	1.60	2.16	4.63	0.173	0.519	4.0
$38.80 \sim 34.70$	4	1.49	2.01	4.40	0.162	0.486	4.0
34.70 \sim 29.00	5	1.39	1.88	4.01	0.151	0.453	4.0
29.00 \sim 20.30	6	1.31	1.77	3.72	0.143	0.429	4.0
20.30 \sim 14.00	7	1.59	2.15	4.57	0.172	0.516	4.0
14.00 \sim 8.20	8	1.68	2.27	4.52	0.182	0.546	4.0
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.192	0.576	4.0
$2.00 \sim -4.00$	10	1.85	2.50	5.77	0.201	0.603	4.0

第5-13表 曲げスケルトン数値表

EL.	要素	M_1	M_2	M_3	ϕ_1	ϕ_2	ϕ_3
m	番号	$ imes 10^6 { m kN}$ · m	$ imes 10^6 { m kN}$ · m	$ imes 10^6 { m kN}$ \cdot m	$ imes 10^{-5} 1/m$	$ imes 10^{\text{-5}} 1/\text{m}$	$ imes 10^{-5} 1/{ m m}$
$63.65 \sim 57.00$	1	1.85	3.23	4.18	0.410	4.87	97.4
57.00 \sim 46.50	2	2.06	3.49	4.48	0.457	4.97	99.4
46.50 \sim 38.80	3	5.75	12.6	18.7	0.404	5.28	57.1
$38.80 \sim 34.70$	4	4.87	12.7	16.1	0.490	8.14	102
34.70 \sim 29.00	5	5.12	13.0	16.5	0.510	8.12	102
29.00 \sim 20.30	6	7.47	19.5	22.5	0.436	5.90	33.9
$20.30 \sim 14.00$	7	10.3	27.0	31.1	0.540	6.02	36.6
14.00 \sim 8.20	8	14.5	42.2	50.3	0.368	4.81	47.5
$8.20 \sim 2.00$	9	21.7	62.6	79.2	0.450	5.46	41.8
2.00 \sim -4.00	10	24.7	80.9	101	0.511	6.35	36.9

(a) NS方向

(b) EW方向

EL.	要素	M ₁	M ₂	M ₃	ϕ_1	ϕ_2	ϕ_3
m	番号	$\times 10^{\circ} \text{kN} \cdot \text{m}$	$\times 10^{\circ} \mathrm{kN} \cdot \mathrm{m}$	$\times 10^{\circ} \mathrm{kN} \cdot \mathrm{m}$	$\times 10^{-3}$ l/m	$\times 10^{-3}$ l/m	$\times 10^{-3}$ l/m
$63.65 \sim 57.00$	1	1.77	3.03	3.86	0.435	5.15	103
57.00 \sim 46.50	2	2.23	3.35	4.19	0.548	5.83	116
46.50 \sim 38.80	3	3.57	6.61	8.98	0.466	8.83	108
$38.80 \sim 34.70$	4	4.87	12.5	16.1	0.591	9.58	123
34.70 \sim 29.00	5	5.12	12.8	16.6	0.599	9.28	120
29.00 \sim 20.30	6	6.80	17.6	21.1	0.422	5.67	53.5
20.30 \sim 14.00	7	8.95	22.4	26.0	0.522	5.80	47.3
14.00 \sim 8.20	8	12.7	38.2	46.2	0.390	5.23	53.0
$8.20 \sim 2.00$	9	20.9	61.2	77.3	0.454	5.56	42.0
$2.00 \sim -4.00$	10	23.7	77.8	96.5	0.513	6.48	39.8

5.5 地震応答解析結果

(1) 地震応答解析法

ここで,

地震応答解析は、水平方向については耐震壁の非線形性を考慮した弾塑性 時刻歴応答解析によるものとし、鉛直方向は弾性時刻歴解析によるものとす る。

地震応答解析モデルについて運動方程式は次のとおりである。なお、地盤 ばねを考慮する質点を添字Cで、それ以外の質点を添字Sで表す。

$$\begin{bmatrix} M_{s} & 0\\ 0 & M_{c} \end{bmatrix} \begin{bmatrix} \ddot{u}_{s}\\ \ddot{u}_{c} \end{bmatrix} + \begin{bmatrix} C_{ss} & C_{sc}\\ C_{cs} & C_{cc} + C_{c} \end{bmatrix} \begin{bmatrix} \dot{u}_{s}\\ \dot{u}_{c} \end{bmatrix} + \begin{bmatrix} K_{ss} & K_{sc}\\ K_{cs} & K_{cc} + K_{c} \end{bmatrix} \begin{bmatrix} u_{s}\\ u_{c} \end{bmatrix} = -\begin{bmatrix} M_{s} & 0\\ 0 & M_{c} \end{bmatrix} \{\alpha\} \ddot{u}_{0} + \begin{bmatrix} 0\\ f_{c} \end{bmatrix}$$
(5-1)

$$\begin{bmatrix} M_s & 0 \\ 0 & M_c \end{bmatrix} : 質量マトリクス$$

$$\begin{bmatrix} C_{ss} & C_{sc} \\ C_{cs} & C_{cc} + C_c \end{bmatrix} : 減衰マトリクス$$

$$\begin{bmatrix} K_{ss} & K_{sc} \\ K_{cs} & K_{cc} + K_{c} \end{bmatrix} : 剛性マトリクス$$

[K_c], [C_c] : 地盤の剛性及び減衰マトリクス

$$\begin{cases} u_s \\ u_c \end{cases}$$
 :変位ベクトル

- *{α}*:入力ベクトル
- *ü*₀ :入力加速度

(基礎版下端位置における自由地盤の応答加速度)

また、地盤からの力 $\{f_c\}$ は下式で表される。なお、鉛直方向では埋込みを 考慮しないので、 $\{f_c\}=0$ である。

$$\{f_c\} = [K_c] \{\tilde{u}_c\} + [C_c] \{\tilde{u}_c\} + \{\tilde{p}_c\}$$
 (5-2)
ここで、
 $\{\tilde{u}_c\}, \{\tilde{u}_c\} : - 次元波動解析における基礎版下端位置に対する地盤の$
相対変位及び相対速度ベクトル

固有円振動数と固有モードベクトルは、(5-1)式の外力項を0とし、減衰 項を無視すれば、次式より求まる。

$$\left(\begin{bmatrix} K_{ss} & K_{sc} \\ K_{cs} & K_{cc} + K_{c} \end{bmatrix} - \omega_{i}^{2} \begin{bmatrix} M_{s} & 0 \\ 0 & M_{c} \end{bmatrix}\right) \{\phi_{i}\} = \{0\}$$

$$(5-3)$$

ここで,

ω:: i 次の固有円振動数

{\phi_i}: i 次の固有モードベクトル

時刻歴解析では、(5-1)式をその各項の積分刻み時間における増分につい ての方程式に変換し、これに対し直接積分法(Newmark-β法)を適用して時刻 歴応答を求める。

このときの減衰マトリクスは以下の方法により求める。

地盤ばねに与える減衰を除いた建屋のモード減衰定数は, i 次振動モード における各部材のひずみエネルギに比例するものとして次式により求める。

$$h_{i} = \frac{\sum_{j} h_{0}^{j} E_{i}^{j}}{\sum_{j} E_{i}^{j}}$$
(5-4)

ここで, h₀^j: j部材の減衰定数

$$E_i^j = \frac{1}{2} \left\{ \phi_i^j \right\}^T \left[k^j \right] \left\{ \phi_i^j \right\}$$

ただし,

 $\begin{bmatrix} k^{j} \end{bmatrix}$: j 部材の剛性マトリクス $\{ \phi_{i}^{j} \}$: i 次振動モードにおける j 部材の材端変位ベクトル

したがって、構造物の減衰マトリクスは、(5-4)式による各次モード減衰 定数と固有モードベクトルにより次式で求める。

$$\begin{bmatrix} C_{ss} & C_{sc} \\ C_{cs} & C_{cc} \end{bmatrix} = \begin{bmatrix} M_s & 0 \\ 0 & M_c \end{bmatrix} \left(\sum_i \{\phi_i\} \eta_i \{\phi_i\}^T \right) \begin{bmatrix} M_s & 0 \\ 0 & M_c \end{bmatrix}$$
(5-5)
$$\Xi \subset \mathfrak{C},$$
$$\eta_i = \frac{2h_i \omega_i}{\{\phi_i\}^T \begin{bmatrix} M_s & 0 \\ 0 & M_c \end{bmatrix} \{\phi_i\}}$$

なお、地盤ばねの減衰はC_cで表される内部粘性減衰として与えられるので、 建屋-地盤連成モデルの減衰マトリクスは、次式で求められる。

$$\begin{bmatrix} c \end{bmatrix} = \begin{bmatrix} C_{ss} & C_{sc} \\ C_{cs} & C_{cc} + C_{c} \end{bmatrix}$$
(5-6)

また,弾塑性解析は,各部材の復元力特性上の状態を判定しつつ,その状 態での剛性勾配を用いた剛性マトリクスを作成する方法により行う。

(2) 固有值

固有値解析結果として,主要な固有値を第5-14表~第5-21表に,刺激 関数を第5-14図~第5-21図に示す。

なお、刺激係数は、次数ごとに固有ベクトルの最大値を1に規準化して得 られた値としている。

(a)	Ν	S	方	向
(~~)	- ·	~	/ /	

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.409	2.44	1.916
2	0.202	4.96	-1.154
3	0.104	9.60	0.163
4	0.085	11.77	0.194
5	0.064	15.65	-0.145
6	0.052	19.15	0.016

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.411	2.43	1.941
2	0.202	4.96	-1.213
3	0.107	9.32	0.216
4	0.086	11.59	0.172
5	0.064	15.53	-0.140
6	0.051	19.76	0.013

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.50	2.516
2	0.274	3.65	-1.596
3	0.093	10.79	0.129
4	0.060	16.72	-0.251
5	0.057	17.64	0.220
6	0.048	20.70	0.043

(a) NS方向

第 5−14 図(1/3) 刺激関数(S_s−D1)

EW方向

刺激関数 (S_s-D1) 第5-14図 (2/3)

第 5−14 図 (3/3) 刺激関数 (S_s−D1)

(a) NS方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.392	2.55	1.938
2	0.193	5.18	-1.213
3	0.103	9.70	0.197
4	0.085	11.81	0.214
5	0.064	15.67	-0.164
6	0.052	19.18	0.018

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.395	2.53	1.964
2	0.193	5.18	-1.281
3	0.106	9.42	0.261
4	0.086	11.64	0.187
5	0.064	15.55	-0.158
6	0.051	19.79	0.014

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.379
2	0.265	3. 78	-1.465
3	0.093	10.79	0.139
4	0.060	16.74	-0.274
5	0.057	17.65	0.241
6	0.048	20.70	0.046

(a) NS方向

第 5−15 図(1/3) 刺激関数(S_s−1 1)

第 5−15 図(2/3) 刺激関数(S_s−1 1)

4条一別紙2-104

(c) UD方向

刺激関数(S_s-11) 第5-15図(3/3)

(a) NS方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.398	2.51	1.931
2	0.196	5.11	-1.194
3	0.104	9.65	0.184
4	0.085	11.80	0.211
5	0.064	15.67	-0.159
6	0.052	19.17	0.018

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.400	2.50	1.957
2	0.195	5.12	-1.260
3	0.107	9.38	0.245
4	0.086	11.62	0.185
5	0.064	15.54	-0.153
6	0.051	19.77	0.014

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.461
2	0.270	3.70	-1.543
3	0.093	10.79	0.133
4	0.060	16.72	-0.259
5	0.057	17.65	0.228
6	0.048	20.70	0.044

(a) NS方向

第 5−16 図(1/3) 刺激関数(S_s−1 2)

(b) EW方向

第 5−16 図(2/3) 刺激関数(S_s−1 2)

(c) UD方向

第 5−16 図(3/3) 刺激関数(S_s−1 2)

(a)	Ν	S	方	向
()	- ·	~	/ /	

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.397	2.52	1.932
2	0.195	5.12	-1.197
3	0.103	9.66	0.186
4	0.085	11.80	0.211
5	0.064	15.67	-0.159
6	0.052	19.17	0.018

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	1.958
2	0.195	5.12	-1.263
3	0.107	9.39	0.248
4	0.086	11.62	0.184
5	0.064	15. 54	-0.154
6	0.051	19.78	0.014

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.444
2	0.269	3.72	-1.526
3	0.093	10.79	0.134
4	0.060	16.73	-0.262
5	0.057	17.65	0.231
6	0.048	20.70	0.045

(a) NS方向

第 5−17 図(1/3) 刺激関数(S_s−1 3)

(b) EW方向

第 5−17 図(2/3) 刺激関数(S_s−1 3)

4条一別紙2-112

(c) UD方向

第 5−17 図(3/3) 刺激関数(S_s−1 3)

(a) NS方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.394	2.54	1.936
2	0.194	5.16	-1.207
3	0.103	9.68	0.192
4	0.085	11.80	0.215
5	0.064	15.67	-0.163
6	0.052	19.18	0.018

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.396	2.53	1.962
2	0.194	5.16	-1.274
3	0.106	9.41	0.255
4	0.086	11.63	0.187
5	0.064	15.55	-0.157
6	0.051	19.78	0.014

(c) UD方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.427
2	0.268	3.73	-1.510
3	0.093	10.79	0.136
4	0.060	16.73	-0.265
5	0.057	17.65	0.233
6	0.048	20.70	0.045

(a) NS方向

第 5−18 図(1/3) 刺激関数(S_s−1 4)

4条一別紙2-115

(b) EW方向

第 5−18 図(2/3) 刺激関数(S_s−1 4)

4条一別紙2-116

(c) UD方向

刺激関数 (S_s-14) 第5-18図 (3/3)

(a) NS方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.50	1.929
2	0.196	5.09	-1.188
3	0.104	9.66	0.183
4	0.085	11.79	0.205
5	0.064	15.67	-0.156
6	0.052	19.17	0.017

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.401	2.49	1.954
2	0.196	5.09	-1.252
3	0.107	9.38	0.243
4	0.086	11.62	0.179
5	0.064	15.54	-0.150
6	0.051	19.78	0.014

(c) UD方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.410
2	0.267	3.75	-1.495
3	0.093	10.79	0.137
4	0.060	16.73	-0.268
5	0.057	17.65	0.236
6	0.048	20.70	0.046

第 5−19 図(1/3) 刺激関数(S_s-21)

4条一別紙2-119

EW方向

第5-19図(2/3) 刺激関数(S_s-21)

第 5−19 図(3/3) 刺激関数(S_s−2 1)
(a)	Ν	S	方	向
(~~)	- ·	~	/ /	

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.400	2.50	1.928
2	0.197	5.08	-1.185
3	0.103	9.66	0.183
4	0.085	11.79	0.202
5	0.064	15.66	-0.155
6	0.052	19.17	0.017

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.402	2.49	1.953
2	0.197	5.08	-1.249
3	0.107	9.39	0.243
4	0.086	11.62	0.176
5	0.064	15.54	-0.149
6	0.051	19.78	0.013

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.51	2.410
2	0.267	3.75	-1.495
3	0.093	10.79	0.137
4	0.060	16.73	-0.268
5	0.057	17.65	0.236
6	0.048	20.70	0.046

(a) NS方向

第 5−20 図(1/3) 刺激関数(S_s−2 2)

(b) EW方向

第 5−20 図(2/3) 刺激関数(S_s−2 2)

4条一別紙2-124

(c)UD方向

刺激関数 (S_s-22) 第5-20図 (3/3)

(a) NS方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.415	2.41	1.909
2	0.205	4.89	-1.135
3	0.105	9.56	0.154
4	0.085	11.76	0.188
5	0.064	15.65	-0.139
6	0.052	19.13	0.015

(b) EW方向

次 数	固有周期(s)	振動数(Hz)	刺激係数
1	0.417	2.40	1.933
2	0.205	4.89	-1.193
3	0.108	9.29	0.204
4	0.086	11.57	0.167
5	0.064	15.52	-0.134
6	0.051	19.75	0.012

(c) UD方向

次数	固有周期(s)	振動数(Hz)	刺激係数
1	0.399	2.50	2.557
2	0.276	3.62	-1.635
3	0.093	10.79	0.127
4	0.060	16.71	-0.245
5	0.057	17.64	0.215
6	0.048	20.70	0.042

(a) NS方向

第 5−21 図(1/3) 刺激関数(S_s−3 1)

(b) EW方向

第5-21図(2/3) 刺激関数(S_s-31)

4条一別紙2-128

第 5−21 図(3/3) 刺激関数(S_s−3 1)

(3) 最大応答値

地震応答解析結果として,各質点位置の最大応答を第 5-22 図~第 5-29 図に示す。

(単位:cm/s²)

Ss-31

Ss-22

Ss-21

第5-22図

最大応答加速度(NS方向)

第5-23 図 最大応答水平変位(NS方向)

4条一別紙2-131

Ss=D1 Ss=11 Ss=12 Ss=13 Ss=14 Ss=21 Ss=22 S 1, 66 1, 31 1, 54 1, 51 0, 871 2, 12 2, 05 5	s-31 1.84
1.66 1.31 1.54 1.51 0.871 2.12 2.05	1.84
3. 13 2. 31 2. 78 2. 72 1. 63 3. 96 3. 85	3.52
8. 21 4. 05 5. 11 4. 92 3. 75 9. 54 9. 36	9.89
15.2 6.16 7.69 7.81 6.17 16.7 16.3	18.3
20.9 7.89 10.0 10.2 7.90 22.0 21.4 2	25.0
27.5 9.58 13.0 13.1 10.3 26.8 27.5 3	35.4
35.3 11.6 16.3 16.0 13.4 33.4 34.6	46.3
45.4 16.2 21.0 20.4 17.7 40.6 44.1	59.6
54. 2 19. 5 25. 4 27. 7 22. 6 47. 7 49. 3 6	37.7
65.3 27.5 32.0 34.7 28.5 57.1 54.2 7	75.7
82.7 35.7 40.8 44.5 36.6 70.3 62.7 9	92.3

第5-24図 最大応答せん断力(NS方向)

第5-25図 最大応答曲げモーメント(NS方向)

						(単	位:cm/s²)
Ss-D1	Ss-11	Ss-12	Ss-13	Ss-14	Ss-21	Ss-22	Ss-31
1,054	770	604	614	592	1,089	1, 328	1,264
931	619	491	499	486	858	1, 119	1, 112
818	336	347	347	272	410	699	932
744	309	322	323	250	340	564	904
685	289	311	323	243	315	511	889
615	257	314	324	245	281	437	833
535	285	306	314	230	301	407	726
482	295	282	290	218	297	355	610
466	290	256	264	209	293	331	596
455	275	227	234	192	280	320	516
442	256	207	223	188	272	302	450
438	258	210	228	196	278	308	425

最大応答加速度(EW方向)

							(単位:cm)
Ss-D1	Ss-11	Ss-12	Ss-13	Ss-14	Ss-21	Ss-22	Ss-31
3.47	1.42	1.54	1.59	1.18	1.69	2.66	4.66
3.16	1.30	1.40	1.45	1.07	1.52	2.38	4.28
2.61	1.08	1.18	1.21	0.88	1.20	1.85	3.65
2.27	0.94	1.03	1.06	0.77	1.02	1.57	3.23
2.07	0.85	0.94	0.97	0.70	0.92	1.40	2.98
1. 78	0.73	0.81	0.83	0.60	0.77	1.16	2.54
1.37	0.56	0.63	0.64	0.46	0.58	0.86	1.94
1.06	0.45	0.48	0.50	0.36	0.45	0.65	1.38
0, 81	0, 36	0, 36	0.37	0.27	0, 33	0, 49	1.03
0.56	0.27	0.25	0.26	0.19	0.24	0.34	0.74
0.00	0.21	0.20	0.20	0.19	0.24	0.34	0.74
0.34	0.17	0.16	0.16	0.12	0.19	0.25	0.49
0.27	0.13	0.14	0.13	0.10	0.17	0.21	0.37

第5-27図 最大応答水平変位(EW方向)

4条一別紙2-133

						(単位	$: \times 10^4$ kN)
Ss-D1	Ss-11	Ss-12	Ss-13	Ss-14	Ss-21	Ss-22	Ss-31
1.72	1.26	0.969	0. 987	0.966	1.76	2.14	2.05
3.26	2. 28	1. 77	1.80	1.77	3.17	3.98	3. 88
8.30	4.33	3.70	3.80	3.52	5.81	8.74	9.89
15.6	6.69	6.72	6.68	5.41	8.47	14.0	17.9
21.5	8.85	9.29	9.17	7.03	10.8	17.9	25.3
28.7	12. 1	12.7	13.0	9.69	13.9	22.6	35.6
36.6	15.7	17.5	18.2	13.3	17.3	27.2	46.3
46.1	20.5	24.3	25.1	18.3	21.8	32.5	60.7
54.4	26.8	28.9	29.8	21.2	26.8	36.9	68.3
65.4	34.7	32.0	32.9	23.7	32.2	43.9	77.1
82.6	44.6	38.4	39.4	28.7	41.3	54.5	93.0

第5-28図 最大応答せん断力(EW方向)

第5-29図 最大応答曲げモーメント(EW方向)

(4) 接地率

建物の接地率を地震応答解析結果から得られた底面地盤回転ばねの回転角 最大時の転倒モーメントより算出し,第5-22表に示す。

接地率は,基礎浮き上がりを線形とした地震応答解析結果を用いることが できる 75%以上である。

		NS方向	EW方向	
総重 W(k	量 N)	1,932,940		
基礎 L(n	幅 n)	68.50	68.25	
浮き上がり限界転倒モーメント M_0 (×10 ⁶ kN・m)		22.0 21.9		
	$S_s - D_1$	23.5	23.7	
	S _s -11	7.27	9.88	
	S _s -12	10.0	10.9	
最大転倒モーメント	S _s -13	10.1	11.3	
$\begin{array}{c} M_{\rm max} \\ (\times 10^6 \text{ kN} \cdot \text{m}) \end{array}$	$S_{s} - 1 4$	8.41	8.30	
	$S_{s} - 2 1$	22.4	11.2	
	$S_{s} - 22$	22.3	17.7	
	S _s – 3 1	29.6	29.7	
	$S_s - D_1$	96.8	96.1	
	S _s -11	100. 0	100. 0	
	$S_{s} - 1 2$	100. 0	100. 0	
接地率	S _s -13	100.0	100. 0	
η (%)	$S_{s} - 1 4$	100. 0	100. 0	
	$S_{s} - 2 1$	99. 2	100. 0	
	S _s -22	99. 5	100. 0	
	S _s - 3 1	82.9	82.5	

第5-22表 接地率(原子炉建屋,基準地震動S_s)

5.6 評価結果

基準地震動S_sによる耐震壁の最大応答せん断ひずみを評価基準値と比較 して第5-23表に,最大応答値をせん断スケルトン曲線上にプロットして第 5-30図~第5-37図に示す。

耐震壁のせん断ひずみは最大で 0.47×10⁻³ (S_s-31, EW方向, 2階) であり、評価基準値 (2.0×10⁻³) に対して十分な余裕がある。

基準地震動 S _s	方向	発生部位	発生値	評価基準値
S _s -D1	N S	4 階 要素番号(5)	0.25×10^{-3}	2. 0×10^{-3}
S _s – 1 1	ΕW	6 階 要素番号(2)	0. 10×10^{-3}	
S _s -12	N S	6 階 要素番号(2)	0. 11×10^{-3}	
S _s -13	N S	6 階 要素番号(2)	0. 11×10^{-3}	
S _s -14	ΕW	6 階 要素番号(2)	0. 08×10^{-3}	
S _s – 2 1	N S	4 階 要素番号(5)	0. 30×10^{-3}	
S _s -22	N S	4 階 要素番号(5)	0. 27×10^{-3}	
S _s -31	EW	2 階 要素番号(7)	0. 47×10^{-3}	

4条一別紙2-138

 $^+$

4条-別紙2-139

4条一別紙2-140

4条一別紙2-141

4条一別紙2-142

4条一別紙2-143

4条一別紙2-144

4条一別紙2-146

6. まとめ

原子炉建屋耐震壁のせん断ひずみは最大で 0.47×10⁻³であり,評価基準値で ある 2.0×10⁻³に対して十分な余裕がある。

今後,地盤等のばらつきを考慮した地震応答解析を実施する予定である。本 検討結果からばらつきを考慮した場合においても評価基準値を超える可能性は 小さいと考察される。

別紙-3

東海第二発電所

原子炉建屋屋根トラス評価モデルへの 弾塑性解析適用について (耐震)

1. はじめに

本資料は、東海第二発電所の建物・構築物のうち、鉄骨構造部の詳細評価モ デルを構築して評価を実施する原子炉建屋屋根トラスの地震応答解析モデルに 弾塑性解析を適用する目的とその適用性について説明するものである。 2. 原子炉建屋屋根トラスについて

2.1 原子炉建屋屋根トラスの概要

二次格納施設である原子炉棟の屋根は,鉄筋コンクリート造の屋根スラブ と屋根トラスで構成されている。屋根トラスの平面は,45.5 m (南北) ×42.5 m (東西)のほぼ正方形をなしており,燃料取替床レベル(EL.46.5 m)から の高さは約17.0 m である。屋根トラスの概要を第3-2-1 図に示す。

屋根トラスは,屋根面に作用する鉛直荷重を上弦面つなぎ梁,母屋及び主 トラスで負担し,水平荷重については上弦面水平ブレースで両側の耐震壁に 伝達する。

(屋根伏図)

第3-2-1図(1/3) 原子炉建屋屋根トラスの概要

(A-A断面図)

第3-2-1図(2/3) 原子炉建屋屋根トラスの概要

(B-B断面図)

第3-2-1図(3/3) 原子炉建屋屋根トラスの概要

2.2 原子炉建屋屋根トラスの地震応答解析モデル

原子炉建屋屋根トラスは,鉛直方向の地震動の影響を受けやすいと考えら れるため,水平2方向及び鉛直方向地震動の同時入力による評価を行うこと ができる3次元モデルによる地震応答解析を採用する。

地震応答解析モデルは、燃料取替床レベル(EL.46.5 m)より上部の鉄筋コ ンクリート造の柱、梁、壁及び鉄骨造の屋根トラスを線材、面材により立体 的にモデル化した3次元フレームモデルとし、部材に発生する応力を地震応 答解析によって直接評価できるモデルとする。解析評価モデルの概要を第3 -2-2図に示す。

屋根トラス部は,主トラス,上下弦面つなぎ梁,上下弦面水平ブレース, 鉛直ブレース及び母屋をモデル化する。各鉄骨部材は軸,曲げ変形を考慮し た梁要素(主トラスの上下弦材,上下弦面つなぎ梁及び母屋)と軸変形のみ を考慮したトラス要素(上下弦面水平ブレース,主トラスの斜材及び束材, 鉛直ブレース)としてモデル化する。また,耐震壁及び外周梁は,各々シェ ル要素及び軸,曲げ変形を考慮した梁要素としてモデル化する。なお,柱脚 の条件は固定とする。

基準地震動S_sに対する評価を実施する際,トラス要素としてモデル化した引張材の一部については,圧縮側で弾性範囲を超えることが考えられるため,部材座屈後の挙動を模擬できる手法(修正若林モデル)に基づく弾塑性特性を考慮する。考慮した弾塑性特性の詳細については,「2.3 弾塑性解析の採用について」で示すこととする。

解析モデルへの入力地震動は,原子炉建屋の質点系モデルによる地震応答 解析結果から得られる燃料取替床レベル(EL.46.5m)の応答結果(水平,鉛 直及び回転成分)を用いることとし,燃料取替床位置を固定として,水平 2 方向及び鉛直方向地震動の同時入力による地震応答解析を実施する。

4条-別紙3-7

第3-2-2図 屋根トラスの解析評価モデルの概要

4条一別紙3-8

2.3 弾塑性解析の採用について

2.3.1 弾塑性解析を採用することの目的

原子炉建屋屋根トラスについては,基準地震動S_sによる地震動の増大に 伴い,トラスを構成する引張材の一部が圧縮側で塑性領域に入ると考えられ るが,弾性解析では,当該部材の塑性化による影響を考慮できないため,解 析と実現象に乖離が生じることになる。そこで今回工認では,原子炉建屋屋 根トラスの弾塑性挙動を適切に評価することを目的として,部材の弾塑性特 性を考慮した地震応答解析を採用する予定としている。

原子炉建屋屋根トラスの応力解析に弾塑性解析を取り入れることにより, 部材の塑性化に伴う応力分布の変化を考慮することができるため,大入力時 の挙動を精緻に評価することができる。

原子炉建屋の弾塑性挙動を適切に評価するにあたっては,部材の弾塑性特 性を適切に設定し解析を実施する必要がある。

今回工認では,原子炉建屋屋根トラス部材の弾塑性特性として,修正若林 モデルを採用する予定である。

以下では,修正若林モデルの概要を確認した上で,原子炉建屋屋根トラス 部材への適用性を検討する。また,修正若林モデルを用いた弾塑性解析を実 施することにより,一部引張材の座屈を考慮することとなるため,当該部材 の繰り返し座屈による影響がないことについても検討する。 2.3.2 弾塑性特性の設定の妥当性・適用性について

(1) 今回工認で採用予定の弾塑性特性(修正若林モデル)の概要

原子炉建屋屋根トラスを構成する部材に,弾塑性特性として修正若林モ デルを使用する。

修正若林モデルは,原子力発電所建屋(実機)を対象として実施された 谷口らの研究^[1]に示される部材レベルの弾塑性特性である。修正若林モ デルは,若林モデル^[2]を基本としているが,谷口らの研究^[1]で実施され た実験のシミュレーション解析を踏まえて,繰り返し載荷による初期座屈 以降の耐力低下を累積塑性歪の関数で表現し,実験との対応度を向上させ た手法であり,式(3-2-1)により評価される。

$$n/n_0 = 1/(\overline{\zeta} - Pn)^{1/6} \leq 1$$
 (3-2-1)
 $n = N/Ny$ N:軸力 Ny:降伏軸力
 $n_0: 無次元化初期座屈耐力$
 $\overline{\zeta}: 無次元化圧縮側累積塑性歪$
 $Pn = (n_E^2/4) - 5$ $n_E = \pi^2 E/(\lambda e^2 \sigma y)$ $\lambda e: 有効細長比$

修正若林モデルの弾塑性特性を第3-2-3図に示す。

谷口らの研究^[1]においては、実機の特徴を反映したX型ブレース架構 の静的繰り返し実験を実施している。また、修正若林モデルの妥当性を確 認するにあたって、ブレース部材の弾塑性特性として修正モデルを適用し た解析モデルによる実験のシミュレーション解析を実施しており、解析結 果は実験結果をおおむねよく捉えているとしている。試験体の概要を第3 -2-4 図、解析モデルを第3-2-5 図、解析結果と実験結果の比較を第3 -2-6 図に示す。

4条-別紙3-10

第3-2-3図 修正若林モデルの弾塑性特性([1]より引用)

第3-2-6図 解析結果と実験結果の比較([1]より引用)

4条-別紙3-11

(2) 原子炉建屋屋根トラスに対する検証例

谷口らの研究^[1]は、X型ブレース架構を対象としたものであった。原 子炉建屋屋根トラスに対して本弾塑性特性を適用した検討例としては、鈴 木らの研究^[3]がある。

この研究は,原子炉建屋屋根トラスの終局耐力について検討したもので あるが,実験結果を高精度にシミュレーションするために構築したモデル の中で本弾塑性特性が適用されている。

鈴木らの研究^[3]では,終局耐力を検討するにあたり原子炉建屋屋根ト ラスを模擬した縮小試験体を製作し,トラスの崩壊挙動に与える影響が大 きい鉛直動的荷重を模擬した静的載荷試験により,その弾塑性挙動を確認 している。なお,試験にあたっては,原子力発電所鉄骨屋根トラスがプラ ット形とワーレン形の2種類に分類されることを踏まえ,この2種類のト ラス形式についての試験体を製作している。東海第二発電所原子炉建屋屋 根トラスは,このうちプラット形に該当する。試験体の概要を第 3-2-7 図に示す。

実験のシミュレーション解析においては、トラス要素としてモデル化した部材の弾塑性特性として修正若林モデルが適用されており、実験結果とシミュレーション解析を比較し、精度良く実験結果を追跡できているとしている。結果の比較を第3-2-8図に示す。

以上のように修正若林モデルは,提案当初のX型ブレース材に加えて, ワーレン形,プラット形の鉄骨トラスでも実験結果を精度良く追跡できて おり,幅広い鉄骨架構形式において,軸力のみを負担する部材の弾塑性特 性として適用可能であると考えられる。

第3-2-7図 試験体の概要([3]より引用)

第3-2-8図 実験のシミュレーション解析結果([3]より引用)

(3) 原子炉建屋屋根トラスへの適用性

今回弾塑性解析モデルとして採用を予定している修正若林モデルは,提 案当初より,原子力発電所建屋(実機)を対象として実施された実験によ り妥当性が検証されており,また,原子炉建屋屋根トラスを模擬した加力 実験のシミュレーション解析においてもその適用性・妥当性が検証されて いる。これより,原子炉建屋屋根トラスの鉄骨部材のうち,トラス要素と してモデル化した部材の弾塑性特性として,修正若林モデルを採用するこ とは妥当であると考えられる。 2.3.3 各部材のクライテリアについて

入力地震動の増大に伴い鉄骨部材の一部が塑性領域に入ると考えられるこ とから、今回工認の原子炉建屋屋根トラスの地震応答解析モデルについて は、弾塑性解析による評価を実施することとし、気密バウンダリである屋根 スラブに過大な変形を生じさせないよう余裕を持たせた設計とする。鉛直荷 重を負担する主トラス(上下弦材,斜材及び束材),母屋並びに上弦面つな ぎ梁については、地震後にも長期荷重を負担する必要があるため弾性範囲に 留める設計とする。ここで弾性範囲とは、弾塑性解析において鋼材の材料強 度(短期許容応力度の1.1倍の値とする)に基づき設定した弾性限の折れ点 までの範囲を指す。

さらに、主トラスの横座屈を防止する下弦面つなぎ梁についても弾性範囲 に留める設計とする。水平荷重を負担する上弦面水平ブレース並びに下弦面 の振れ止めとなる下弦面水平ブレース及び鉛直ブレースの斜材は、引張材と して地震時に荷重を負担するが、地震時の過大な変形を抑制するために引張 側を弾性範囲に留めることとし、圧縮側の繰返し座屈により累積した塑性ひ ずみが引張材としての機能に影響を及ぼさないことを確認する。なお、鉛直 ブレースの鉛直材については弾性範囲に留めることとする。第3-2-1表に 各部材のクライテリアを示す。また、屋根スラブについてはその要求機能が 担保されていることを確認するものとする。

評価部位		評価方法	
	上弦材		
ナトラフ	下弦材		
エトワス	斜材		
	束 材		
つなぎ梁	上弦面	- 弾性範囲内であることを確認	
	下弦面		
水平ブレース	上弦面	弾性範囲内であることを確認(引張側)	
	下弦面	弾性範囲内であることを確認(引張側)	
鉛直ブレース	斜材	弾性範囲内であることを確認(引張側)	
	鉛直材	弾性範囲内であることを確認	

第3-2-1表 原子炉建屋屋根トラス各部材のクライテリア

2.4 原子炉建屋屋根トラス評価の弾塑性解析採用についてのまとめ

原子炉建屋屋根トラスは,鉛直方向の地震動の影響を受けやすいと考えら れるため,水平2方向及び鉛直方向地震動の同時入力による評価を行うこと ができる3次元モデルによる地震応答解析を採用する。

今回工認では,原子炉建屋屋根トラスの評価にあたって,3次元フレーム モデルによる弾塑性解析(弾塑性特性としては修正若林モデルを考慮)を採 用する予定である。修正若林モデルは,先行審査で採用実績のある弾塑性特 性であるが,X型ブレースを対象として検討されたものであったため,本検 討においては,修正若林モデルの原子炉建屋屋根トラスへの適用性を検討す る必要があると判断した。既往文献(原子炉建屋鉄骨屋根トラスを模擬した 加力実験のシミュレーション解析)を参照し,その適用性・妥当性が検証さ れていることを確認した。

以上より,今回工認において東海第二発電所原子炉建屋屋根トラスの評価 に弾塑性解析を採用することは妥当であると考える。 【参考文献】

- [1] 谷口ほか:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学 会構造工学論文集 Vol. 37B 号,1991 年 3 月,pp. 303-316
- [2] 柴田ほか:鉄骨筋違の履歴特性の定式化,日本建築学会論文報告集第 316
 号,昭和 57 年 6 月, pp. 18-24
- [3] 鈴木ほか:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 Vol. 76 No. 661, 2011 年 3 月, pp. 571-580
- [4] 中込ほか:繰返し力を受ける SM490 鋼の疲労性に関する研究,日本建築学 会構造系論文集 No. 469, 1995 年 3 月, pp. 127-136

別紙-4

東海第二発電所

土木構造物の解析手法及び解析モデルの 精緻化について (耐震)

1. 屋外重要土木構造物の評価手法の概要

屋外重要土木構造物の耐震評価について、今回申請では、屋外重要土木 構造物の変位や変形をより実状に近い応答に適正化することを目的に、評 価手法の高度化として、解析手法と減衰定数の変更を予定している。ここ で、既工認は、東海第二発電所の工事計画認可(昭和 49 年 7 月 22 日及び 昭和 49 年 10 月 30 日)をいう。既工認と今回工認との手法の比較を第 4-1 表に示す。

既工認との相違点のうち,解析手法として適用している「時刻歴応答解 析,限界状態設計法」は,新規制基準対応工認にて適用例がある手法であ る。

なお、土木構造物の地震時の挙動は、地盤の影響を受けることを踏まえ ると、地盤特性を適切にモデル化することにより、実応答に近い形で評価 できるものと考えられる。このため、コンクリート強度は、既工認と同じ く設計基準強度を採用する方針とする。

	解析手法	解析モデル	減衰定数	コンクリート強度
既工認	時刻歴モーダル解析 許容応力度法	質点系モデル	コンクリート:5%	設計基準強度
今回工認	時刻歷応答解析 限界状態設計法	地質データに基づく FEMモデル	コンクリート:5% あるいは 1%+履歴減 衰	設計基準強度
比較結果	●異なる	●異なる	●異なる	○同じ
適用例	○あり	○あり	○あり	○あり

第4-1(1)表 既工認と今回工認の手法との比較(取水構造物)

	解析手法	解析モデル	減衰定数	鋼管の許容限界	
町丁志	波動論	地質データに基づく			
坎 丄認	許容応力度法	地盤モデル	—	計谷応刀度	
今回工認	時刻歴応答解析	地質データに基づく	鋼材:3%	許容応力度	
	許容応力度法	FEMモデル	あるいは1%+履歴減衰		
比較結果	●異なる	●異なる	●異なる	○同じ	
適用例	○あり	○あり	○あり	○あり	

第4-1(2)表 既工認と今回工認との手法の比較(屋外二重管)

2. 解析手法

取水構造物の耐震安全性評価については,既工認では,地震応答解析手 法として時刻歴モーダル解析を採用し,許容応力度法による設計として, 壁のせん断については許容応力度,杭については設計水平力に対して妥当 な安全余裕を持つことを確認することを基本としていた。また,屋外二重 管の耐震安全性評価については,既工認では,地震応答解析手法として波 動論を採用し,許容応力度法による設計として,管の円周方向応力及び軸 方向応力について許容応力度に対して妥当な安全余裕を持つことを確認し ていた。

今回工認では,屋外重要土木構造物の地震応答解析手法に時刻歴応答解 析を適用した,限界状態設計法による設計を採用する。減衰定数は,構造 物を線形で扱う場合は,コンクリートは5%,鋼材は3%,履歴モデルによ り構造物の履歴減衰を用いる場合は1%とする。コンクリートの構造部材 の曲げについては限界層間変形角又は終局曲率,せん断についてはせん断 耐力,鋼管杭の曲げについては終局曲率,せん断についてはせん断耐力を 許容限界とし,妥当な安全余裕を持たせることとする。また,各設備の要 求性能(支持性能,通水性能,貯水性能)及び構造物が間接支持する機 器・配管の機能維持のための与条件(変位や傾斜等)を踏まえて照査項 目・内容を追加する。

屋外二重管の今回工認での耐震評価は,地震応答解析モデルに当該鋼管 をモデル化し,地震応答解析結果から得られた地震力を用いた許容応力度 法による設計として,管の円周方向応力及び軸方向応力について許容応力 度を許容限界とする。

以下では、今回工認で採用する限界状態設計法のうち、コンクリートの 構造部材の曲げ照査に係る土木学会マニュアルの適用性及びせん断照査に

4条-別紙4-4

係る土木学会マニュアルの適用性について検討を行う。

2.1 曲げ照査に係る土木学会マニュアルの適用性について

今回工認申請における曲げに対する照査は、「原子力発電所屋外重要土 木構造物の耐震性能照査指針・マニュアル(土木学会、2005)」(以下、

「土木学会マニュアル」という。)に基づき,照査用層間変形角が限界層 間変形角を超えないことを確認する。

コンクリート標準示方書では、構造部材の終局変位は、部材の荷重-変位関係の骨格曲線において、荷重が降伏荷重を下回らない最大の変位 として求めてよいとしている。コンクリート標準示方書による構造部材 の終局変位の考え方を第4-2-1図に示す。

一方、土木学会マニュアルでは、以下の考え方に基づいている。

屋外重要土木構造物を模したラーメン構造の破壊実験の結果より,か ぶりコンクリートが剥落すると荷重が低下し始める。層間変形角 1/100 に至る状態は,かぶりコンクリートの剥落が発生する前の状態であるこ とを確認しており^{(1),(2)},荷重が低下しない範囲にある。当該限界値を 限界状態とすることで,構造全体としての安定性が確保できるものとし て設定されたものである。ラーメン構造の破壊実験の例を第 4-2-2 図 に示す。

従って,土木学会マニュアルによる曲げ照査手法は,コンクリート標 準示方書による照査よりも安全側の評価を与えるため,適用性を有して いる。

更に, 土木学会マニュアルでは, 日本建築学会「鉄筋コンクリート造 建物の靭性保証型耐震設計指針(案)・同解説(1997)」にて記載されて いる設計限界変形 1/100, 終局限界変形 1/80 等を基準値として参照し ている。

対象は同じラーメン構造であり、軸力比(軸応力度/コンクリート圧

4条-別紙4-6

縮強度比)は建築物よりも屋外重要土木構造物の方が小さいと考えられ ることから,変形性能がより大きくなる傾向にあり,層間変形角 1/100 は安全側であると考える。機能維持確保の観点からも耐荷性能が確保さ れることが担保できるため限界値として適切である。

参考に,建築学会における曲げ降伏先行型の部材について,復元力特 性と限界状態(損傷度)の関係の概念図を第4-2-3 図に,土木学会マ ニュアルにおける鉄筋コンクリートはり部材の荷重変位関係と損傷状態 に対する概念図を第4-2-4 図に示す。建築学会と土木学会マニュアル において概ね対応が取れており,土木学会マニュアルの各損傷状態の設 定は妥当であると考えられる。第4-2-4 図において層間変形角1/100 は第4折れ点よりも手前にあり,屋外重要土木構造物の限界状態に至っ ていないと考えられる。また,第3折れ点は層間変形角1/100よりもさ らに手前にある。

耐震安全性評価では、当該許容限界値に対して、妥当な安全裕度を確 保するため、構造部材の照査の過程において複数の安全係数を考慮する。 安全係数は、材料係数、部材係数、荷重係数、構造解析係数及び構造物 係数の5種に分けられる。それぞれの安全係数の考え方を第4-2-5図 に示す。

曲げに対する照査において考慮している安全係数は第4-2-1表に示 すとおり,材料係数,部材係数,荷重係数,構造解析係数,構造物係数 がある。これらの安全係数は土木学会マニュアルにおいて以下の考えに より定められている。 (1) 材料係数

コンクリート強度の特性値は,製造において,その値を下回る強度が 発現する確率が5%以内となるように設定する。また,鉄筋の機械的性質 の特性値に関しても,日本工業規格(JIS)の規格範囲の下限値を設定し てよいとしている。このように,双方とも特性値の段階で実強度に対し て小さい値を設定しており,応答値・限界値ともに安全側の照査がなさ れているため,材料係数は1.0としている。

(2) 部材係数

安全側に配慮した設定を行っていることから,部材係数は 1.0 としてい。

(3) 荷重係数

地震の影響以外の荷重の評価精度は、かなり高いものと考えられ、地 震の影響については入力地震動そのものが最近の研究成果に基づいて設 定されるため、荷重係数は1.0としている。

(4) 構造解析係数

限られた条件での実験であること,地盤パラメータの設定が応答解析 結果に及ぼす影響などを考え併せて,構造解析係数は 1.2 以上を標準と している。

(5) 構造物係数

屋外重要土木構造物は重要度ごとに適切な地震動が設定される。従っ て、構造物係数によりさらに構造物の重要性を考慮する必要はなく、耐 震性能照査における構造係数は1.0としている。

以上のことから,土木学会マニュアルによる曲げ照査手法は,コンク リート標準示方書による照査よりも安全側の評価を与えるため,技術的

4条-別紙4-8

妥当性及び適用性を有するとともに適切な余裕が確保されていると判断 できる。

安全係数		曲げ照査	
		応答値算定	限界値算定
材料係数	コンクリート	1.0	1.0
	鉄筋	1.0	1.0
	地盤	1.0	_
部材係数		_	1.0
荷重係数		1.0	_
構造解析係数		1.2	_
構造物係数		1.0	

第4-2-1表 曲げ評価において考慮している安全係数

第4-2-1図 コンクリート標準示方書による構造部材の終局変位の考え方

第4-2-2図 鉄筋コンクリート製ラーメン構造の破壊実験^{(1),(2)}

第4-2-3図 曲げ降伏先行型の部材の復元力特性と限界状態(損傷度)の 関係の概念図(建築学会)

第4-2-4図 鉄筋コンクリートはり部材の荷重変位関係と損傷状態に 対する概念図(土木学会マニュアル)

第4-2-5図 安全係数の考え方

2.2 せん断照査に係る土木学会マニュアルの適用性について

今回工認申請におけるせん断に対する照査は、土木学会マニュアルに 基づき、照査用せん断力が、せん断耐力を下回ることを確認する。

コンクリート標準示方書では、棒部材及びディープビームについて第4 -2-2 表に示すとおりのせん断耐力式を定義している。このうち、ディ ープビームについては、コンクリート標準示方書及び土木学会マニュア ルにおいて同様の評価式となっている。

土木学会マニュアルでは、コンクリート標準示方書におけるせん断耐 力式のうち棒部材式において、等価せん断スパンにより設定可能な係数 βaを考慮している。これは屋外重要土木構造物が地中に埋設されたラー メン構造で、土圧、水圧、地震時慣性力等の多数の分布荷重が作用して いることによる分布荷重が卓越し、スパン内に反曲点が存在する等の載 荷形態にある条件下では、せん断耐力が増大するという実験的知見を踏 まえ、より合理的なせん断耐力を与えるよう、コンクリート標準示方書 のせん断耐力式を精緻化したものである。当該せん断耐力式は、第4-2 -6図に示すとおり、屋外重要土木構造物を模した破壊試験より得られる せん断耐力と整合的であり、合理的な評価が可能であることを確認され ている^{(3), (4)}。

また、これら多数の荷重の複合作用を個々に分解することは困難であ ることから、せん断耐力の算定時に個々の荷重作用を区分せず最終的な 設計用断面力分布を用いて合理的なせん断耐力を算定することとしてい る⁽³⁾。

せん断に対する照査において考慮している安全係数は第 4-2-3 表に 示すとおり,材料係数,部材係数,荷重係数,構造解析係数,構造物係 数がある。これらの安全係数は土木学会マニュアルにおいて以下の考え

4条-別紙4-12

により定められている。

(1) 材料係数

限界値算定時に適用する材料係数はコンクリート標準示方書に準拠し て、コンクリートに対して1.3、鉄筋に対して1.0としている。応答値算 定時に適用する材料係数は、コンクリートと鉄筋の物性値が、特性値の 段階で実強度に対して小さい値を設定していることから安全側の照査が なされているため、材料係数は1.0としている。

(2) 部材係数

コンクリート標準示方書に準拠して、コンクリート寄与分に対して1.3, 鉄筋寄与分に対して1.1としている。

(3) 荷重係数

地震の影響以外の荷重の評価精度は、かなり高いものと考えられ、地 震の影響については入力地震動そのものが最近の研究成果に基づいて設 定されるため、荷重係数は1.0としている。

(4) 構造解析係数

変形に関する応答値の評価精度に比較して、断面力に関する応答値の 評価精度は高いと考えられることから、変形照査の場合より低減させて 1.05 としている。

(5) 構造物係数

基準地震動は地点ごとにサイト特性を考慮して設定され,重要度分類 に対応して入力地震動が選定される。従って,構造物係数よりさらに構 造物の重要性を考慮する必要はなく,耐震性能照査における構造係数は 1.0としている。

以上のことから,土木学会マニュアルによるせん断照査手法は,屋外 重要土木構造物の構造的特徴を踏まえ設定された手法であるため,技術

4条-別紙4-14

	コンクリート標準示方書	土木学会マニュアル	
	$V_{yd} = V_{cd} + V_{sd}$	$V_{yd} = V_{cd} + V_{sd}$	
	V _{yd} : せん断耐力	V _{yd} : せん断耐力	
	<i>V_{cd}</i> : コンクリート負担	V _{cd} :コンクリート負担	
	<i>V_{sd}</i> : せん断補強筋負担	V _{sd} : せん断補強筋負担	
	$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot f_{vcd} \cdot b_w \cdot d \neq \gamma_b$	$V_{cd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot \beta_a \cdot f_{vcd} \cdot b_w \cdot d \neq \gamma_b$	
	eta_{d} , eta_{p} :構造寸法や鉄筋量で決まる係数	eta_{d} , eta_{p} :構造寸法や鉄筋量で決まる係数	
	eta_n :発生曲げモーメントで決まる係数	eta_n :発生曲げモーメントで決まる係数	
	fvcd:設計基準強度,安全係数等で決ま	$\beta_{a} = 0.75 + \frac{1.4}{2}$	
棒	3	a∕d	
部材	<i>b</i> w :腹部の幅	a : せん断スパン長	
LAL.	<i>d</i> : 有効高さ	f _{vcd} :設計基準強度,安全係数等で決ま	
	γ _b : 安全係数	3	
		b _w :腹部の幅	
		d : 有効高さ	
		γ _b : 安全係数	
	せん断スパンより設定され	る係数を考慮し, せん断耐力式を精緻化	
	コンクリート標準示方書の		
	$V_{ydd} = V_{cdd} + V_{sdd}$	$V_{ydd} = V_{cdd} + V_{sdd}$	
	V _{ydd} : せん断耐力	V _{yda} : せん断耐力	
	<i>V_{cdd}</i> : コンクリート負担	<i>V_{cdd}</i> : コンクリート負担	
	V _{sdd} : せん断補強筋負担	V _{sdd} : せん断補強筋負担	
デ	$V_{cdd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot \beta_a \cdot f_{dd} \cdot b_w \cdot d \neq \gamma_b$	$V_{cdd} = \beta_d \cdot \beta_p \cdot \beta_n \cdot \beta_a \cdot f_{dd} \cdot b_w \cdot d \swarrow \gamma_b$	
イ	$\beta_a = \frac{5}{1 + (a_r \swarrow d)^2}$	$\beta_a = \frac{5}{1 + (a_x \neq d)^2}$	
プ		サチルロトン シナスギアナイ の ビ	
ビー	a _v :何里作用品から文承則面よぐの距	av : 荷車作用点から文承則面までの距離 離 f _{dd} f _{dd} : 設計基準強度,安全係数等で決ま	
4			
	Jad : 設計基準強度, 女主係数等で決ま		
	2	\$	
	コンクリート標準示方書と土木学会マニコ	- アルにおいて同一の評価式となっている	

第4-2-2表 せん断耐力式の比較表

安全係数		せん断照査	
		応答値算定	限界値算定
材料係数	コンクリート	1.0	1.3
	鉄筋	1.0	1.0
	地盤	1.0	_
部材係数	コンクリート	_	1.3
	鉄筋	_	1.1
荷重係数		1.0	—
構造解析係数		1.05	—
構造物係数		1.0	

第4-2-3表 せん断耐力評価において考慮している安全係数

第4-2-6図 せん断耐力算定法の妥当性の検証

- 3. 屋外重要土木構造物の減衰定数
- 3.1 減衰定数の設定について

今回工認で採用している時刻歴応答解析において,地盤及び構造物の 減衰定数は,粘性減衰と履歴減衰とで考慮している。

粘性減衰は、固有値解析にて求められる固有周期及び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下のRayleigh減衰にて与える。

 $[C] = \alpha [M] + \beta [K]$

- [C]: 減衰係数マトリックス, [M]: 質量マトリックス,
- $[K]: 剛性マトリックス, \alpha, \beta: 係数$

係数α, βは以下のように求めている。

構造体を線形要素でモデル化する場合は,固有値解析により求められ た一次固有振動数,二次固有振動数の2点で Rayleigh 減衰がコンクリー ト部材については5%に,鋼構造部材については3%に一致するα,βを 設定する。履歴モデルにより構造物の履歴減衰を用いる場合は,固有値 解析により求められた一次固有振動数,二次固有振動数の2点で Rayleigh 減衰が1%に一致するα,βを設定する。 3.2 既工認と今回工認の相違について

今回の工認における構造物の粘性減衰は,履歴モデルにより構造物の 履歴減衰を用いる場合は,履歴減衰が生じない状態等における解析上の 安定のためになるべく小さい値として一次固有振動数及び二次固有振動 数に対して 1%となる Rayleigh 減衰を採用している。

既工認では、時刻歴モーダル解析におけるコンクリート構造物の減衰 定数として 5%を採用した。

時刻歴非線形解析における粘性減衰の値は,道路橋示方書・同解説 V耐震設計編(平成14年)⁽⁵⁾において,構造部材の非線形性として履歴 モデルを用いる場合には,この部材の履歴減衰は履歴モデルによって自 動的に解析に取り入れられるため,履歴モデルにより構造物の履歴減衰 を用いる場合には,コンクリート部材は2%(0.02)程度,鋼構造部材 は1%(0.01)程度とするのがよいとされている。

最新の道路橋示方書・同解説(平成24年)⁽⁶⁾においても,履歴モデ ルにより構造物の履歴減衰を用いる場合の粘性減衰について,鉄筋コン クリート橋脚は2%(0.02)とされている。

以上のように、粘性減衰は、履歴減衰が生じない状態等における解析 上の安定のために設定される値であるため、履歴減衰を用いる場合にお いては、なるべく小さい値として1%を採用している。 4. 参考文献

- (1) 松尾ら:コンクリート製地中構造物の合理的な耐震性能評価指標に関 する検討,土木学会地震工学論文集,2003
- (2) 石川ら:鉄筋コンクリート製地中構造物の変形性状と損傷状態に関わる実験的考察,第26回地震工学研究発表会講演論文集,pp885-888
- (3) 原子力土木委員会・限界状態設計部会:原子力発電所・鉄筋コンクリート製屋外重要土木構造物への限界状態設計法の適用・安全性照査マニュアルの提案,土木学会論文集 No.442/V-16
- (4) 遠藤ら:鉄筋コンクリート製地中構造物の限界状態に用いるせん断耐
 力評価法,電力中央研究所報告
- (5) 日本道路協会:道路橋示方書·同解説 V耐震設計編 平成14年3月
- (6) 日本道路協会:道路橋示方書·同解説 V耐震設計編 平成24年3月

別紙-5

東海第二発電所

機器・配管系における手法の変更点について (耐震)

1. はじめに

今回工認における機器・配管系の耐震評価において,既工認から評価手法 を変更するものについて,「別紙1 既工認との手法の相違点の整理につい て(設置変更許可申請段階での整理)」の整理結果を踏まえ,以下に結果を 示すものである。

- 手法の相違点
 - (1) 原子炉建屋クレーンへの非線形時刻歴応答解析の適用

原子炉建屋クレーンの解析では、より詳細な手法を用いる観点から、すべ り及び浮き上がりの条件を考慮した非線形時刻歴応答解析にて評価を実施 する。原子炉建屋クレーンの非線形時刻歴応答解析の適用については、他プ ラントを含む既工認において適用実績がある手法である(詳細は添付資料1 参照)。

(2) ポンプ等の解析モデルの精緻化

最新の工認実績等を踏まえ、ポンプ等の一部設備に対して解析モデルの質 点数の変更、設備の支持構造に沿った解析モデルの精緻化を行う。多質点モ デルによる地震応答解析モデルの適用は、他プラントを含む既工認において 適用実績がある手法である(詳細は添付資料2参照)。

(3) 容器等の応力解析へのFEMモデルの適用

既工認において,公式等による評価にて耐震計算を実施していた設備について、3次元FEMモデル、多質点モデルを適用した耐震評価を実施する。 FEMモデルを用いて応力解析を行う手法は、他プラントを含む既工認において適用実績がある手法である(詳細は添付資料3参照)。

(4) 解析コードの変更

今回工認における格納容器,原子炉圧力容器等の主要設備の耐震評価に適 4条-別紙5-2

用する解析コードについては,建設時に適用した解析コードから他プラント を含む既工認において適用実績がある解析コードに変更する(詳細は添付資 料4参照)。

(5) 最新知見として得られた減衰定数の採用

最新知見として得られた減衰定数を採用する設備は以下のとおりであり, その値は,振動試験結果等を踏まえ,設計評価用として安全側に設定した減 衰定数を採用したものである。

また,鉛直方向の動的地震力を適用することに伴い,鉛直方向の設計用減 衰定数についても新たに設定している。

天井クレーン,燃料取替機及び配管系の減衰定数並びに鉛直方向の設計用 減衰定数は他プラントを含む既工認において適用実績がある(詳細は添付資 料5参照)。

① 天井クレーンの減衰定数

2 燃料取替機の減衰定数

③ 配管系の減衰定数

(6) 水平方向と鉛直方向の動的地震力の二乗和平方根法による組合せ

今回工認の評価では、鉛直方向の動的地震力が導入されたことから、水平 方向と鉛直方向の地震力の組み合わせとして、既往の研究等に基づき二乗和 平方根(以下「SRSS」という。)法を用いる。SRSS法による荷重の 組み合わせは、他プラントを含む既工認において適用実績がある手法である (詳細は添付資料6参照)。

(7) 鉛直方向応答解析モデルの追加

今回工認では,鉛直方向に動的地震動が導入されたことから,原子炉本体 及び炉内構造物について,鉛直方向の応答を適切に評価する観点で,水平方 向応答解析モデルとは別に鉛直方向応答解析モデルを新たに採用し鉛直地 4条-別紙5-3 震動に対する評価を実施する。鉛直方向応答解析モデルは他プラントを含む 既工認にて適用実績があるモデルである。(詳細は添付資料7参照)。

(8) 炉内構造物への極限解析による評価の適用

既工認において,公式等による評価にて耐震計算を実施していた炉内構造 物について,3次元FEMモデルを適用した極限解析による評価を実施する。 極限解析による評価は,規格基準に基づく手法であり,他プラントでの既工 認において適用実績がある手法である(詳細は添付資料8参照)。

3. 手法の変更項目に対する東海第二発電所への適用性

手法の変更点について,以下に示す3項目に分別した上で,東海第二発電 所としての適用性を示す。

(1) 先行プラントの知見反映を基本として変更する手法

先行プラントで適用されている知見を反映する目的の変更項目について は、従来からの耐震設計手法に基づき、評価対象施設を質点系モデル、有限 要素法モデルに置換し、地震応答解析を実施することにより評価は可能であ るため、東海第二発電所への適用に際して問題となることはない。

- ・クレーンの時刻歴応答解析の適用
- ・ポンプ等の応答解析モデルの精緻化
- ・容器等の応力解析へのFEMモデルの適用
- ・解析コードの変更
- (2) 鉛直方向地震の動的な取扱いを踏まえて適用する手法

平成18年9月の耐震設計審査指針改訂から鉛直方向地震力に対する動的 に取扱いがされており、大間1号炉及び新規制基準での工認においてPWR プラントで適用実績があり、東海第二発電所への適用に際して問題となるこ とはない。

- 水平方向と鉛直方向の動的地震力の二乗和平方根による組合せ
- ・鉛直方向応答解析モデルの追加
- (3) より現実的な応答を模擬する観点から採用する手法
- a. 最新知見として得られた減衰定数の採用

今回工認においては,配管系,天井クレーン及び燃料取替機の減衰定数 は,振動試験結果等を踏まえて設定した減衰定数を採用する。

配管系においては,新規制基準でのPWRプラントでの適用実績があり, また炉型,プラントごとによる設計方針について大きな差はない。また, 最新知見として採用する減衰定数の設定の検討に際して,BWRプラント の配管系を踏まえた検討も実施しており,適用に際して問題となることは ない。

天井クレーン及び燃料取替機の減衰定数の設定に際しては,振動試験を 用いた検討を実施している。振動試験の試験体は,実機と同等の振動特性 である試験体を用いることにより,減衰定数のデータを採取している。東 海第二発電所として適用する天井クレーン及び燃料取替機について,振動 試験に用いた試験体と同等の構造仕様であることを確認しており,最新知 見として得られた減衰定数の適用に際して問題となることはない(試験等 の詳細は,添付資料5に記載)。なお,本減衰定数の適用は,大間1号炉 及び天井クレーンに対しては新規制基準での工認においてPWRプラン トで適用実績がある。

b. 極限解析による評価の適用

極限解析による評価については,JEAG4601及びJSME設計・建 設規格で規定されており適用に際して問題となることはない。ただし,他 の手法に比べて適用実績及び審査実績が少ないことを踏まえて,極限解析 による評価の妥当性の確認を行う。

4条-別紙5-5

- 4. 添付資料
 - (1) 原子炉建屋クレーンへの非線形時刻歴応答解析の適用について
 - (2) ポンプ等の解析モデルの精緻化について
 - (3) 容器等の応力解析へのFEMモデルの適用について
 - (4) 解析コードの変更について
 - (5) 最新知見として得られた減衰定数の採用について
 - (6) 水平方向と鉛直方向の動的地震力の二乗和平方根法による組合せについ て
 - (7) 鉛直方向応答解析モデルの追加について
 - (8) 炉内構造物への極限解析による評価の適用について

原子炉建屋クレーンへの非線形時刻歴応答解析の適用について

1. 概要

原子炉建屋クレーン(第1-1図)の耐震評価は,既工認では鉛直方向は静 的地震力のみであったことから簡便に手計算により実施していた。

今回工認では,鉛直方向の動的地震力を考慮する必要があること及びクレ ーンの車輪部がレール上に固定されていないという構造上の特徴を踏まえ, 鉛直方向の地震力に対する車輪部の浮き上がり挙動を考慮した解析モデル

(第1-2図)を用いた非線形時刻歴応答解析により評価を実施する。

なお、本モデル及び評価手法は大間1号炉の既工認にて適用例があり、大間1号炉と東海第二発電所の原子炉建屋クレーンは類似構造であることから、 東海第二発電所の原子炉建屋クレーンにも適用可能である。

第1-1図 原子炉建屋クレーン構造概要図

4条-別紙5-7

2. 原子炉建屋クレーンの構造

大間1号炉と東海第二発電所の原子炉建屋クレーンは,第1-3図に示すと おり原子炉建屋に設置された走行レール上をガーダ及びサドルが走行し,ガ ーダ上に設置された横行レールをトロリが横行する構造であり,いずれも同 様の構造(別紙1参照)となっており,地震力に対し以下の挙動を示す。

- (1) 走行方向の水平力
 - a. クレーンは走行レール上に乗っているだけで固定されていないため、走 行方向の水平力がクレーンに加わっても、クレーンはレール上をすべる だけで、クレーン自身にはレールと走行車輪間の最大静止摩擦力以上の 水平力は加わらない。
 - b. クレーンの走行車輪は、駆動輪又は従動輪である。
 - c. 駆動輪は,電動機及び減速機等の回転部分と連結されているため,地震 の加速度が車輪部に加わると回転部分が追随できず,最大静止摩擦力以 上の力が加わればレール上をすべる。
- (2) 横行方向の水平力
- a. ガーダ関係
 - (a) 横行方向は,走行レールに対して直角方向であるため,ガーダは建 屋と固定されているものとし,水平力がそのままガーダに作用する。
- b. トロリ関係
 - (a) トロリはガーダの上に乗っているだけでガーダとは固定されていないため、水平力がトロリに加わっても、トロリはレール上をすべるだけで、トロリ自身にはレールと横行車輪間の最大静止摩擦力以上の水平力は加わらない。
 - (b) トロリの横行車輪は,駆動輪又は従動輪である。

4条-別紙5-8
- (c) トロリの駆動輪は、電動機及び減速機等の回転部分と連結されているため、地震の加速度が車輪部に加わると回転部分が追随できず、最大静止摩擦力以上の力が加わればレール上をすべる。
- (3) 鉛直力

ガーダ及びトロリは、レールと固定されていないことから、鉛直方向の 地震力によってレールから浮き上がる可能性がある。

また、東海第二発電所の原子炉建屋クレーンは、今後実施する耐震補強工 事により、大間1号炉のトロリストッパ及び脱線防止ラグと同様な構造変更 を行うことにより、車輪まわりのトロリストッパ及び落下防止金具とレール の間の取り合い構造は、認可実績のある大間1号炉の原子炉建屋クレーンと 同様の構造となることから、車輪まわりを含めた地震応答解析モデルは大間 1号炉と同様にモデル化することができる(構造変更の概要は別紙2参照)。

第1-3図 車輪まわりの構造比較

- 3. 解析評価方針
 - (1) 評価方法

既工認と今回工認の評価方法を第 1-1 表に示す。今回工認では,鉛直方向 の動的地震力を考慮する必要があること及びクレーンの車輪部の構造を変更 しておりレール上に固定されていないという構造上の特徴を踏まえ,鉛直方 向の地震力に対する車輪部の浮き上がり,衝突の挙動を考慮した 3 次元FE M解析モデルを用いた非線形時刻歴応答解析により評価を実施する。

項目		東海第	第二発電所		
		既工認	今回工認	│	
		公式等による	非線形時刻歴	同七	
月年少	于伝	評価	応答解析	回左	
御社	エデル		3 次元 F E M	同七	
丹午171			解析モデル	问工	
車輪-レール間の境		ナベル夹虐	すべり,浮き上が		
界	条件	りてりろ思	り、衝突考慮	问上	
业金士	水平	動的地震力	動的地震力	同左	
地宸刀	鉛直	静的地震力	<u> </u>	同左	
減衰	水平	* 1	0 0 0/ *2	同左	
定数 鉛直		_	2.0 %***	同左	
解析プログラム			Abaqus		
			(Ver. 6. 5-4)	回左	

第1-1表 既工認と今回工認の評価方法の比較

※1:既工認では剛として耐震評価を実施しているため減衰定数は使用していない。

※2:添付資料5にて適用性を説明。

(2) 地震応答解析モデル

クレーンを構成する主要部材をビーム要素でモデル化し、車輪部はレー ル上に乗っており固定されておらず、すべり、浮き上がり及び衝突の挙動を 示す構造であることから、ギャップ要素、ばね要素及び減衰要素でモデル化 する。クレーンの解析モデルを第1-4 図に示す。

なお、今回工認の原子炉建屋クレーンのモデル化は、大間1号炉と同一 の設定方法とする(車輪部の非線形要素については別紙3参照)。

第1-4図 原子炉建屋クレーン地震応答解析モデル

⁴条-別紙5-12

(3) 地盤物性等の不確かさに対する検討方針

スペクトルモーダル解析等では,床応答加速度は地盤物性等の不確かさに よる固有周期のシフトを考慮して周期方向に±10%拡幅したものを用いて いる。

本評価では設計用床応答スペクトルを用いない時刻歴応答解析を採用す ることから,地盤物性等の不確かさに対する考慮を適切に考慮した上で,評 価を行う。

なお、今回工認では地盤物性等の不確かさによる建屋固有周期のシフトの 影響も考慮し、機器評価への影響が大きい地震動に対しASME Boiler Pressure Vessel Code SECTION III, DIVISION1-NONMANDATORY APPENDIX N-1222.3 Time History Broadening に規定された設計用床応答スペクトルで 考慮されている拡幅±10 %に相当するゆらぎを仮定する手法による検討を 行う予定である。また、ゆらぎを考慮した設計用床応答スペクトルの谷間に クレーンの固有周期が存在する場合は、ASMEの規程に基づきピーク位置 が固有周期にあたるようにゆらぎを考慮した評価も行う。本検討方針に対す る東海第二発電所の原子炉建屋クレーンへの適用性については詳細設計段 階で説明する。

4. 別紙

- (1) 原子炉建屋クレーンの主要諸元
- (2) 原子炉建屋クレーンの耐震補強工事による構造変更
- (3) クレーン車輪部の非線形要素(摩擦・接触・減衰)
- (4) 原子炉建屋クレーンの地震時挙動に関する補足説明

- 5. 参考文献
 - (1) 平成 19 年度 原子力施設等の耐震性評価技術に関する試験及び調査
 動的上下動耐震試験(クレーン類)に関わる報告書(08 耐部報-0021,(独)
 原子力安全基盤機構)
 - (2) 平成 20 年度 原子力施設等の耐震性評価技術に関する試験及び調査
 動的上下動耐震試験(クレーン類)に関わる報告書(08 耐部報-0021,(独)
 原子力安全基盤機構)

別紙1 原子炉建屋クレーンの主要諸元

H H L 1 h L 1 h H H H H H H H H H H H H H H H H H H					
仕	様	大間1号炉	東海第二発電所		
トロリ	質量 W t (ton)	80.0	48.0		
	高さ h(m)	2.815	2.280		
	スパン l 1 (m)	7.7	5.6		
	スパン 1 2 (m)	4.6	4.1		
ガーダ	質量 Wg(ton)	190	118.0		
	高さ H(m)	2.5	1.915		
	スパン L 1 (m)	34.9	39.5		
	スパン L 2 (m)	9. 38	6.2		
総質量	W(ton)	270.0	166.0		

別紙3 クレーン車輪部の非線形要素(摩擦・接触・減衰)

クレーン車輪部のモデル化では、すべり、浮き上がり及び衝突の挙動を模擬 するためギャップ要素を用いる。また、接触部位の局所変形による接触剛性を バネ要素で、衝突による減衰効果を減衰要素で模擬し、別図 1-1 に示すように、 ギャップ要素と直列に配置する。

別図 1-1 車輪部の非線形要素

1. 車輪とレール間の摩擦特性

クレーンの車輪には電動機,減速機等の回転部分と連結された駆動輪と, 回転部分と連結されている従動輪の2種類がある(別図1-2参照)。このう ち駆動輪は回転が拘束されているため,地震の加速度が車輪部に入力される と回転部分が追随できず,最大静止摩擦力以上の力が加わればレール上をす べる。ここで,摩擦係数は既工認と同様の0.3を用いる。天井クレーンの車 輪とレール間の摩擦係数0.3を適用し設計震度として算定することについて は、クレーン耐震設計指針(日本クレーン協会規格JCAS1101-2008)に定め られている。また「天井クレーンのすべりを伴う地震時挙動試験(火力原子 力発電 Vol.40 NO.6 1989)」にて,地震波による加振試験において,摩擦係 数の平均値として0.14の結果が得られている。

別図 1-2 概要図

2. 車輪とレールの接触剛性

接触剛性は,「平成 20 年度 原子力施設等の耐震性評価技術に関する 試験及び調査 動的上下動耐震試験(クレーン試験)に関わる報告書(09 耐部報-0008,(独)原子力安全基盤機構)」^(参2)を参照し,車輪とレール の衝突時の剛性を模擬するものとして接触剛性を考慮したばね要素とク レーン質量で構成される1自由度系の固有振動数が 20 Hz 相当になるよ う設定する。

3. 車輪とレールの衝突による減衰

衝突による減衰は、「平成 19 年度 原子力施設等の耐震性評価技術に 関する試験及び調査 動的上下動耐震試験(クレーン類)に関わる報告 書(08 耐部報-0021、(独)原子力安全基盤機構)」^(参1)にて実施した要素 試験のうちの車輪反発係数試験結果から評価した反発係数から換算する。 なお、減衰比と反発係数の関係式には次式を用いる。

$$e = exp\left(-\frac{h\pi}{\sqrt{1-h^2}}\right)$$

ここで, e は反発係数, h は減衰比である。別図 1-3 に, 上記の式で表 される反発係数と減衰比の関係を示す。

別図 1-3 反発係数と減衰比の関係

別紙4 原子炉建屋クレーンの地震時挙動に関する補足説明

 車輪とレールとの摩擦力及び落下防止部材との接触による摩擦力の考慮に ついて

クレーンは、レール上を車輪で移動する構造であるため、建屋に固定され ておらず、地震時にはレールに沿う方向にはすべりが発生し、摩擦力以上の 荷重を受けない構造である。

クレーン本体とランウエイガーダ間の取り合い部を例とすると、すべりを 想定する面としては、鉛直方向(車輪からレール間)と水平方向(落下防止 金具からランウエイガーダ間)が挙げられる(別図 1-4 参照)。

鉛直方向には,自重が常時下向きに加わっており,地震による鉛直方向加速度が1Gを上回りクレーン本体が浮き上がりの挙動を示すごく僅かな時間帯を除き,常に車輪はレール上面に接触し垂直抗力Nが発生する状態であることから,摩擦係数 μ (=0.30)一定の条件の下,垂直抗力Nを時々刻々変化させた摩擦力f (= μ N)を考慮している。

これに対して,水平方向には常時作用する荷重が無く,水平方向(横行方 向)の地震力が作用し落下防止金具がランウエイガーダ側面に接触する際に のみ水平抗力Rが発生する。しかしながら,地震力は交番荷重であること及 び接触後も部材間の跳ね返りが発生することから,側面の接触時間はごく僅 かな時間となる。また,大きな摩擦力が発生するためには,横行方向の地震 力により瞬間的に水平抗力Rが発生する間に,走行方向の大きな地震力が同 時に作用することが必要であることから,各方向地震動の非同時性を考慮し, 側面の接触による摩擦力は考慮していない。

なお、基準地震動S_sによる地震力に対して、駆動輪に接続される電動機 及び減速機等の回転部分が破損し駆動輪が自由に回転する可能性も考えられ

るが,その場合は駆動輪が回転することにより摩擦力は低減することから, 上記のように摩擦力を考慮した評価を行うことで保守的な評価となると言え る。

別図 1-4 鉛直方向と水平方向との接触面

2. レール等の破損による解析条件への影響について

クレーンのモデル化にあたっては、車輪がレール上にあり、レール直角方 向に対しては落下防止金具又はトロリストッパが接触して機能することを前 提としている。

ここでは、地震応答解析モデルの前提としている「レール上に車輪が乗っ ていること」が落下防止金具又はトロリストッパの健全性を確認することで 満足されることを、クレーン本体とランウエイガーダ間の取り合い部を例と して示す。

クレーン横行方向に地震力が作用する際は,車輪がレール上に乗り上がる 挙動が想定されるが,落下防止金具がランウエイガーダに接触することで, 横行方向の移動量は制限される。落下防止金具は構造強度部材として基準地 震動 S_sによって生じる地震力に対して,許容応力を満足する設計としてお り,地震で破損することは無いため,落下防止金具とランウエイガーダ間の

ギャップ量に相当する移動量となった場合であっても、構造上車輪はレール 上から落ちることは無い(別図 1-5 参照)。

本体ガーダとトロリストッパの寸法も同様の関係となっている。

また,落下防止金具とランウエイガーダが接触するより前に,車輪からレ ールに荷重が伝わることとなるが,車輪のつばとレールが接触(移動量12.5 mm)してから落下防止金具とランウエイガーダが接触(移動量35 mm)し移 動が制限されるまでの移動量は22.5 mm (=35 mm-12.5 mm)程度であるこ とから,落下防止金具が接触して機能する前に鋼製部材であるレールが大き く破損することは無いと考えられる。このように,車輪のつばの有無によら ず構造強度部材である落下防止金具が機能することで車輪がレール上にとど まる設計であることから,車輪のつばは地震応答解析の前提条件に影響する ものでは無い。

以上より,地震時に落下防止金具がランウエイガーダに接触して機能する 前に,車輪がすべり面であるレールから落下することや,レールが大きく破 損することが無いことから,落下防止金具が機能する前に地震応答解析モデ ルの前提を満足しなくなるおそれは無いと言える。

(c) 水平方向地震力により落下防止金具とランウエイガーダが接触 (水平移動量 35 mm)

(本図は車輪がレールから外されないことを示すための概念図であり,構造物の 大きさや間隙については実物とは異なる。)

別図 1-5 概念図

ポンプ等の解析モデルの精緻化について

1. 立形ポンプの解析モデルの精緻化

既工認における高圧炉心スプレイポンプ,低圧炉心スプレイポンプ及び残 留熱除去系ポンプの解析モデルは,立形ポンプの構造を模擬したバレル部及 びポンプケーシングによる質点系モデルを構築していた。今回工認では,最 新の知見によるモデル化を行う観点から,JEAG4601-1981 追補版に基づ き,モデルの精緻化を行う(第2-1 図参照)。

なお、本解析モデルは大間1号炉の既工認及び東海第二発電所の立形ポン プのうち、非常用ディーゼル発電機海水ポンプ及び残留熱熱除去系海水ポン プの既工認にて適用実績がある(第2-2図参照)。

 構造概要図
 今回工認の解析モデル
 既工認の解析モデル

 第 2-1 図
 立形ポンプの解析モデル図

(高圧炉心スプレイポンプ解析モデルの例)

2. 残留熱除去系熱交換器の解析モデルの精緻化

残留熱除去系熱交換器の支持構造概要図を第2-3 図に示す。残留熱除去系 熱交換器は,原子炉建屋床面に設置された架台を介して支持する構造である。 既工認における応力評価は,架台部の1次固有周期に対して設計用床応答ス ペクトルから算出される加速度を入力として,規格計算式によって熱交換器 本体の評価を実施していた。

今回工認においては、架台及び熱交換器本体との相互影響を精緻に評価す

る観点から,第2-4図に示す多質点系のはりモデルを用いた地震応答解析により評価を行う。

なお,多質点系のはりモデルを用いた地震応答解析については,大間1号 炉においての既工認にて適用実績がある。

第 2-3 図 残留熱除去系熱交換器支持構造概要図

第2-4図 残留熱除去系熱交換器解析モデル図

3. 格納容器ベント管の解析モデルの精緻化

格納容器のベント管の支持構造図を第2-5図に示す。ベント管はダイヤフ ラムフロアにより支持され、ブレージングにて水平方向を拘束されている。

第2-6 図にベント管の解析モデル図を示す。今回工認においては,柏崎刈 羽5号の既工認実績を踏まえて,集中質量を用いる質点モデルから等分布質 量としたビーム要素に変更した解析モデルを用いた地震応答解析により評 価を行う。

第 2-5 図 ベント管概要図

今回工認の解析モデル 既工認の解析モデル

第2-6図 ベント管解析モデル図

容器等の応力解析へのFEMモデルの適用について

既工認において,公式等による評価にて耐震計算を実施していた設備について,至近の既工認の適用実績を踏まえて,3次元FEMモデル,多質点モデル を適用した耐震評価を実施する。FEMモデルを用いる手法等は,大間1号炉 を含めて他BWRでの適用実績がある手法である。

1. 容器へのFEMモデルの適用

パーソナルエアロック、サプレッションチェンバ、アクセスハッチ等の格 納容器本体に取付く各構造物並びにディーゼル発電機の付属設備である始 動用空気だめ及び燃料油デイタンクについて、実機の形状をシェル要素にて 模擬し、JSME等に基づく材料諸元を与えてモデル化することにより、応 答解析を行う。応答解析に用いる解析モデル図の例を第 3-1 図に示すととも に第 3-1 表及び第 3-2 表に解析概要を示す。

第 3-1 図 格納容器のFEMモデル図

(パーソナルエアロックのFEMモデルの例)

項目	内容		
適用部位	パーソナルエアロック取付部		
	サプレッションチェンバアクセスハッ		
	チ取付部		
	イクイプメントハッチ取付部		
	配管貫通部取付部		
	電気配線貫通部取付部		
	上部シアラグ取付部		
	下部シアラグ取付部		
解析コード	NASTRAN		
地震条件	別途実施する地震応答解析から得られ		
	る地震力(荷重,加速度)を入力とす		
	る。		

第 3-1 表 格納容器のFEM解析概要

第 3-2 表 DG用補機類容器のFEM解析概要

項目	内容
適用部位	非常用ディーゼル発電機用始動空気だ
	め及び燃料油デイタンク
	高圧炉心スプレイ系ディーゼル発電機
	用始動空気だめ及び燃料油デイタンク
解析コード	Abaqus
地震条件	別途実施する原子炉建屋地震応答解析
	から得られる加速度を入力とする。

2. 原子炉圧力容器内構造物への多質点モデルの適用

原子炉圧力容器内構造物であるジェットポンプ,炉心スプレイスパージャ 及び出力領域計装検出器(LPRM)について,実機形状を質点とはり要素 に置き換えた多質点モデルにて応答解析を行う。応答解析に用いる解析モデ ル図の例を第 3-2 図に示すとともに第 3-3 表に解析概要を示す。

第 3-2 図 原子炉圧力容器内構造物の多質点モデル図

(出力領域計装検出器の多質点モデルの例)

項目	内容
適用部位	ジェットポンプ*1
	高圧炉心スプレイスパージャ*1
	低圧炉心スプレイスパージャ*1
	出力領域計装検出器*2
解析コード	NASTRAN(*1に適用)
	SAP-IV(*2に適用)
地震条件	別途実施する地震応答解析から得られ
	る加速度を入力とする。

第 3-3 表 原子炉圧力容器内構造物解析概要

今回工認における格納容器,原子炉圧力容器等の主要設備の耐震評価に適用 する解析コードについては,既工認時に適用した解析コードから第4-1表に示 す大間1号炉の既工認において適用実績がある解析コードに変更する。各評価 対象設備の解析モデルの設定の妥当性については,工事計画認可申請の耐震計 算書において説明するものとする。

第 4-1 表	格納容器,	原子炉圧力容器等の解析コー	ドの変更	(1/2)
//	тнита на та т			(- / - /

苏尔马名凯供		解析=		
	計 恤 刈 豕 設 加		今回工認	適用美績
格納容器	 ・ドライウエル ・サプレッションチェンバ ・ベント管 ・格納容器スプレイヘッダ 	ASSAL	NASTRAN	大間1号炉 既工認
原子炉圧力 容器	 ・円筒胴 ・下鏡 ・制御棒駆動機構ハウジング 貫通部 ・再循環水出口ノズル ・再循環水入口ノズル ・蒸気出口ノズル ・蒸気出口ノズル ・益水ノズル ・低圧炉心スプレイノズル ・高圧炉心スプレイノズル ・上鏡スプレイノズル ・上鏡スプレイノズル ・上鏡スプレイノズル ・上鏡スプレイノズル ・上鏡スプレイノズル ・上鏡スプレイノズル ・「三次小 ・液体ポイズン及び炉心計測 ノズル ・ドレンノズル ・支持スカート 	ASSAL 及び FEMR	ASHSD2	大間1号炉 既工認
	・差圧検出・ほう酸水注入配 管	EBASCO 社 構造解析コード	NASTRAN	大間1号炉 既工認

		解析二		
設備名	評価対象項目	既工認	今回工認	適用美績
炉心支持構	・シュラウドサポート	ASSAL	ASHSD2	大間1号炉
造物				既工認
(圧力容器	・給水スパージャ	EBASCO 社	NASTRAN	大間1号炉
内構造物を	・炉心スプレイ系配管(原子	構造解析コード		既工認
含む)	炉圧力容器内)			
	・差圧検出・ほう酸水注入系			
	配管(原子炉圧力容器内)			
	・起動領域計装	HISAC	SAP-IV	大間1号炉
				既工認
その他機器	・水圧制御ユニット	EBASCO 社	SAP-IV	大間1号炉
類		構造解析コード		既工認

第4-1表 格納容器,原子炉圧力容器等の解析コードの変更(2/2)

最新知見として得られた減衰定数の採用について

1. 概要

今回工認では,以下の設備について最新知見として得られた減衰定数を採 用する。これらの変更は,振動試験結果を踏まえ設計評価用として安全側に 設定した減衰定数を最新知見として反映したものであり,大間1号炉の建設 工認並びに配管及び建屋クレーンについては新規制工認におけるPWRプラ ントでの適用実績がある。

- 原子炉建屋クレーン及び使用済燃料乾式貯蔵建屋クレーン(以下「建屋クレーン」という。)の減衰定数^{*1}
- ② 燃料取替機の減衰定数^{*1}
- ③ 配管系の減衰定数^{*1,*2}
- ※1 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に関する研究(H7 ~H10)」
- ※2 電力共通研究「機器・配管系に対する合理的耐震評価手法に関する研究 (H12~H13)」

なお、本資料に記載する①~③の内容については、「大間原子力発電所1号 機の工事計画認可申請に関わる意見聴取会」において聴取されたものである。

また,鉛直方向の動的地震力を適用することに伴い,鉛直方向の設計用減 衰定数についても大間1号炉と同様に新たに設定している。 2. 今回の評価で用いた設計用減衰定数

最新知見として反映した建屋クレーン,燃料取替機及び配管系の設計用減 衰定数を第5-1表及び第5-2表に示す。

第5-1表 建屋クレーン及び燃料取替機の設計用減衰定数

	設計用減衰定数(%)					
設 備	水平方向		鉛直方向			
	J E A G 4601 ^{* 1}	東海第二*2	J E A G 4601 ^{* 1}	東海第二*2		
建屋クレーン	1.0	2.0	_	2.0		
燃料取替機	1.0	2.0	_	1.5 (2.0) ^{*3}		

注記*1:原子力発電所耐震設計技術指針JEAG4601-1991追補版(社団法人日本電 気協会)に定まる設計用減衰定数

*2:東海第二発電所にて適用する設計用減衰定数

*3:()外は、燃料取替機のトロリ位置が端部にある場合

()内は、燃料取替機のトロリ位置が中央部にある場合

____: 新たに設定したもの

: JEAG4601 から見直したもの

		設計用減衰定数*1(%)			
		保温材無		保温杉	才有 ^{* 2}
		JEAG	東海	JEAG	東海
		4601 ^{* 3}	第二*4	4601 ^{* 3}	第二*4
T	スナッバ及び架構レストレイント支持主体の				
1	配管系で,支持具(スナッバ又は架構レストレ	2.0	同左	2.5	3.0
	イント)の数が4個以上のもの				
п	スナッバ,架構レストレイント,ロッドレス				
-	トレイント、ハンガ等を有する配管系で、ア	1.0	同左	15	2.0
	ンカ及びUボルトを除いた支持具の数が4個	1.0		1. 0	2.0
	以上であり、配管区分Iに属さないもの				
ш	Uボルトを有する配管系で,架構で水平配管				
ш	の自重を受けるUボルトの数が4個以上のも	—	2.0	—	3.0
	\mathcal{O}^{*5}				
IV	配管区分Ⅰ、Ⅱ及びⅢに属さないもの	0.5	同左	1.0	1.5
L				1	

第 5-2表 配管系の設計用減衰定数

: 新たに設定したもの

: JEAG4601 から見直したもの

- *1:水平方向及び鉛直方向の設計用減衰定数は同じ値を使用。
- *2:保温材による付加減衰定数は、配管全長に対する金属保温材使用割合が40%以下の場合1.0%を適用するが、金属保温材使用割合が40%を超える場合は、0.5%とする。
- *3:原子力発電所耐震設計技術指針 JEAG4601-1991 追補版(社団法人 日本電気 協会)に定まる設計用減衰定数。
- *4:東海第二発電所にて適用する設計用減衰定数。
- *5:区分Ⅲ(Uボルトを有する配管系)については,新たに設定したものであり,現 状JEAG4601では区分Ⅳに含まれる。

(適用条件)

- a. 適用対象がアンカからアンカまでの独立した振動系であること。 大口径管から分岐する小口径管は、その口径が大口径管の口径の1/2倍以下であ る場合、その分岐部をアンカ相当とする独立の振動系とみなしてよい。
- b. 配管系全体として,配管系支持具の位置及び方向が局所的に集中していないこと。
- c. 配管系の支持点間の間隔が次の条件を満たすこと。 配管系全長/(配管区分ごとに定められた支持具の支持点数)≦15(m/支持点) ここで、支持点とは、支持具が取付けられている配管節点をいい、複数の支持具 が取付けられている場合も1支持点とする。
- d. 配管と支持構造物の間のガタの状態等が施工管理規程に基づき管理されていること。ここで、施工管理規程とは、支持装置の設計仕様に要求される内容を反映した施工要領等をいう。

- 3. 設計用減衰定数の考え方
 - (1) 建屋クレーン及び燃料取替機の設計用減衰定数
 - a. 原子力発電所耐震設計技術指針 J E A G 4601-1991 追補版(以下「J E A G 4601」という。) に基づく設計用減衰定数

JEAG4601 において建屋クレーン及び燃料取替機は溶接構造物として分類されているため、設計用減衰定数は1.0%が適用される。

b. 設計用減衰定数の見直し

建屋クレーン及び燃料取替機の減衰定数に寄与する要素には,材料減 衰と部材間に生じる構造減衰に加え,車輪とレール間のガタや摩擦によ る減衰があり,溶接構造物としての 1.0%より大きな減衰定数を有すると 考えられることから,実機を試験体とした振動試験が実施された。

振動試験の結果,建屋クレーンの減衰定数については水平2.0%,鉛直 2.0%が得られた。また,燃料取替機の減衰定数については水平2.0%,鉛 直 1.5% (燃料取替機のトロリ位置が端部にある場合),2.0% (燃料取替 機のトロリ位置が中央部にある場合)が得られた。

c. 東海第二発電所への適用性

振動試験の概要並びに振動試験における試験体,東海第二発電所の実 機及び先行認可実績のある大間1号炉の実機との仕様の比較を参考資料 1及び参考資料2に示す。

東海第二発電所における建屋クレーン及び燃料取替機については,試 験結果の適用性が確認されている大間1号炉の原子炉建屋クレーン及び 燃料取替機と同等の基本仕様を有する。従って,今回の評価における建 屋クレーンの減衰定数については水平2.0%,鉛直2.0%を用いる。また, 燃料取替機の減衰定数については水平1.5%(燃料取替機のトロリ位置が 端部にある場合),2.0%(燃料取替機のトロリ位置が中央部にある場合) を用いる。

- (2) 配管系の設計用減衰定数
 - a. JEAG4601 に基づく設計用減衰定数

JEAG4601 における配管系の設計用減衰定数は,配管支持装置の種類や個数によって3区分に分類されており,さらに保温材を設置した場合の設計用減衰定数が規定されている。

b. 今回の評価で用いる設計用減衰定数

以下,(a),(b)に示す項目については,配管系の振動試験の研究成果 に基づき,JEAG4601に規定する値を見直し設定する。

(a) Uボルト支持の配管系

JEAG4601 におけるUボルト支持配管系の設計用減衰定数は, 0.5 %と規定されている。

Uボルト支持の配管系の減衰に寄与する要素には,主に配管支持部に おける摩擦があり,架構レストレイントを支持具とする配管系と同程度 の減衰定数を有すると考えられることから,振動試験等が実施され,減 衰定数2.0%が得られた。

振動試験で用いられたUボルトについては,原子力発電所で採用され ている代表的なものを用いていることから,振動試験等により得られた 減衰定数を適用できると判断し,今回の評価におけるUボルト支持配管 系の設計用減衰定数は,振動試験結果から得られた減衰定数 2.0 %を設 定する。

なお,参考として振動試験結果の概略を参考資料3に示す。

(b) 保温材を設置した配管系

JEAG4601 における保温材を設置した設計用減衰定数は、振動試験の結果に基づき、保温材を設置していない配管系に比べ設計用減衰定

4条一別紙5-38

数を 0.5%付加できることが規定されている。

その後,保温材の有無に関する減衰定数の試験データが拡充され,保 温材を設置した場合に付加できる設計用減衰定数を見直すための検討 が行われた。

今回の評価における保温材を設置した場合に付加する設計用付加減 衰定数は、振動試験結果から得られた減衰定数 1.0 %を、保温材無の場 合に比べて付加することとする。

なお,振動試験結果の概略を参考資料4に示す。

c. 東海第二発電所への適用性

減衰定数の検討においては,要素試験結果から減衰定数を算出するた めの評価式を求め,その上で,実機配管系の解析を行い,減衰定数を求 めている。

要素試験においては,原子力発電所で採用されている代表的な4タイ プ(参考資料3補足参照)を選定しており,東海第二発電所においても, この4タイプのUボルトを採用している。また,実機配管系の解析対象 とした28モデルには,BWRプラントの実機配管も含まれており,配 管仕様(口径,肉厚,材質),支持間隔・配管ルートについては,様々 な配管剛性や振動モードに対応した検討を実施している。(参考資料3 参照)

従って,今回検討した設計用減衰定数は東海第二発電所へ適用可能で あり,東海第二発電所における配管の設計用減衰定数として設定する。 4. 鉛直方向の設計用減衰定数について

今回工認では、鉛直方向の動的地震力を適用することに伴い、鉛直方向の 設計用減衰定数を新たに設定している。今回工認で適用する設計用減衰定数 について、JEAG4601に規定されている設計用減衰定数との比較を第 5-3 表に示す。

鉛直方向の設計用減衰定数は,基本的に水平方向と同様とするが電気盤や 燃料集合体等の鉛直地震動に対し剛体挙動する設備は 1.0%とする。また, 建屋クレーン,燃料取替機及び配管系については,既往の試験等により確認 されている値を用いる。

なお,これらの設計用減衰定数は,大間1号炉の建設工認にて適用例がある。

	/#	設計用減衰定数(%)				
⇒几		水平方向		鉛直方向		
戓	り用	JEAG	今回工認	JEAG	今回工認	
		4601		4601		
溶接構造物		1.0	同左	_	1.0	
ボルト及びリベッ	ト構造物	2.0	同左		2.0	
ポンプ・ファン等	の機械装置	1.0	同左	_	1.0	
燃料集合体		7.0	同左	_	1.0	
制御棒駆動機構		3.5	同左	_	1.0	
電気盤		4.0	同左		1.0	
建屋クレーン		1.0	2.0	_	2.0	
燃料取替機		1.0	2.0	_	1.5 (2.0) *	
配管系		0.5~2.0	0.5~3.0	_	0.5~3.0	

第 5-3 表 機器・配管系の設計用減衰定数

注記 *:()外は、燃料取替機のトロリ位置が端部にある場合

()内は、燃料取替機のトロリ位置が中央部にある場合

15.00 水平方向の減衰比は、応答振幅 4.7 mm において 5.2 %という 水平方向の減衰比は、応答振幅レベル4.7 mm において5%程 度の減衰比が得られているが、データ点数が少ない(設計応答 퉳幅 8.9 mm に達していない)ため、鉛直方向と同じ 2.0 %を 参考資料-1 (1/2) 天井クレーンの演奏比と応答振幅の関係(水平方向) × 伝因に示した鉛直方向の結果を参考として記載 10.00 (mm) 测量4:21 × >08 水平方向の設計用減衰定数と設定した。 ○ 水平方向碱竟比Fruy中央部 【設計用減衰定数(水平方向)】 5.00 0 ž × 【試験結果(水平方向)】 鉛直方向减衰比 以後休 No.1-No.3 設計用減衰定数の検討を行った。 結果が得られた。 [R. [9] [K]][K No.2 振動試験で得られた自由振動波形から減衰比を算定 8 0.0 5.0 4.0 3.0 6.0 0 1.0 N (%) 江客池 **建屋クレーンの振動試験〜減衰比の検討〜設計用減衰定数の設定** * トロリ主1/4 値1/4, A 値
 ■ トニリ主1/4 値1/4, B 値
 + トロリ主動領域。A 値
 田 トロリ主動通識。A 値
 田 トロリ主動通識。B 値 芯答振嗣に対する減衰比の傾向は、 応答振幅が比較的小さい場 合には減衰比のばらつきが大きいが、応答振幅が大きくなる と,減夷比の発生源となる構造蔵衰が増加し,減痩比が徐々に 増加するとともに,そのばらつきが小さくなる。 応答振幅の増加に伴い減衰比は増加傾向にあり、設計応答振幅 (トロリ位置中央部 15.5 mm, 端部 6.0 mm) レベルで減衰比 2.0 %以上となっていることから,設計用減衰定数2.0 %と設 Cガーダ 胎社が同一たタイプ> 15.0 天井ケレーンの減衰比と応容振幅の関係(始直方向) ■ トロリ主中編中, B 個 × hrs9主中捕中。A 的 天井クレーンの減衰比と応答振幅の関係 (鉛直方向) 減費比の構造価(回帰分析の結果による) 芯答振幅 2.0 mm で減衰比 2.0 %以上が得られた。 风景深 No. 10.0 実機を試験体とした振動試験から得られた天井クレーン構造の減衰特性に基づき (mm) 開閉袋(2) 設計用減衰定数の設定 【設計用減衰定数(鉛直方向)】 計測データの処理 (同一・タイプ 2機で試験を実施) 0.5 ▲(◆) ト==リ 1/4, 走行ギヤ-△(○) ト==リ 1/4, 架線備 < ガーダ形状が異たるタイプ ●(■) トロリ中央。並指本ヤ 以映体 No.1 (以映体 No.2) (□) hull中央, 架線側 |試験結果 (鉛直方向) | 0.0 R B 定した。 . ო (%) 出資制 . T 1111 1 ダの断面形状が同じタイプの試験体No3を使用し、合計3 ダ形状の相違の影響を確認するために、ガーダの断面形 状が異なるタイプの同一仕様の試験体No1, No2 及びガー -般用天井クレーンを代表試験体とし、個体差及びガー 原子炉建屋天井クレーン8タイプ,一般用2タイプの 各クレーンの、構成要素・基本構造、減衰に影響を与 えると考えられるクレーン全重量とトロリ重量の比及 天井クレーンの基本仕様(トロリ及びガーダの重量。 Q. arread り振動特性が同等であることを確認 急停 上げた後、最大速度で下降させて床 止することにより、自由振動を計測 吊荷を床から 50 mm 程度まで持ち に着地させ, この時の自由振動を計 クレーンを1 m程度走行させ, 1. 代表試験体の選定 高さ, スパン) を調査 水平方向の加振方法】 鉛直方向の加振方法】 機の試験体で実施 振動試験 測する。 43°

参考資料-1 (2/2)

○ 建屋クレーンの試験体と実機との仕様比較

建屋クレーンは、ガーダ2本上にトロリが設置されている構造である。表2-1に天井クレーン試験体、東海第二発電所及び大間1号炉の建屋クレーンの主要な仕様を示 ť

比較	
ま屋クレーン仕様の	
ーン試験体,実機通	
長2-1 天井クレ	
Ę	試験体

鍵星クレーン	大間1号機 横 考 済燃料 原子炉建屋 介蔵 クレーン		0.0 80.0 975 2.815 975 2.815 10 7.7 110 7.7 3.6 4.6 7.0 190 7.0 1915 0.4 34.9 0.4 34.9 7.6 9.38 7.0 270.0									0.309 0.298
実	東海第二	原子炉建屋 クレーン	48. 0	2. 280	5.6	4.1	118.0	2.5	39.5	6.2	166.0	0. 289
試験体 一般用天井クァーン	討境術本 記職術本 No1,2 No3		71.0	3.0	6.8	3(主巻用) 2.5(補助巻用)	191. 5	2.3	33.0	8.9	262. 5	0.270
			43. 5	2. 265	5.8	4.1	104.5	1.32	33. 0	7.06	148.0	0. 294
		XEL	重量 W _t (ton)	<u> </u>	スノペン 1」 (m)	スパン 1_2 (m)	重量 Wg (ton)	imみH (m)	スノペン L」 (m)	スパン L_2 (m)	W_{T} (ton)	Wt
	4	Ţ	л ц л				Д.—У.				総重量	トロリ重量と 総重量の比

減衰比は、一般的に振動エネルギと消散エネルギの比で表される。消散エネルギはガーダ等の構造部材の材料減衰、 トロリ、ガーダ等のガタや摩擦による構造減衰により発生すると考えら れ、天井クレーン構造の建屋クレーンにおいては、ガーダ、トロリは固定構造ではなく、レールと車輪間にすべりが発生する構造であることから、トロリとガーダとの微小な相対運動による エネルギの消散が減衰特性に最も影響が大きい因子と考えられる。

ここで、トロリの相対運動による消散エネルギはトロリ質量に比例し、振動エネルギはクレーンの振動質量に比例する。建屋クレーンは建屋に対して走行車輪部のみで支持された両端支持 まりの構造をしており,地震時の振動モードは上下・水平方向共にガーダ中央のたわみが最大となる1次モードが支配的となる。そのため,振動質量はクレーンの総質量に比例し,減衰比は トロリ質量とクレーンの総重量の比に影響を受けることになる。

上表のとおり,東海第二発電所の建屋クレーンのトロリ重量と総重量の比は,試験体及び大間1号炉の実機と同程度になることを確認している。

以上から,建屋クレーンの設計用減衰定数として水平 2.0 %,鉛直 2.0 %を適用する。

参考資料-2(1/

(2)

燃料取替機の振動試験へ減衰比の検討へ設計用減衰定数の設定

○ 燃料取替機の試験体と実機との仕様比較

燃料取替機は、フレーム構造のブリッジ上にトロリが設置されている構造である。表 3-1 に燃料取替機試験体、東海第二発電所及び大間1号炉の燃料取替機の主要な 仕様を示す。

替機仕様の比較	
実機燃料取春	
燃料取替機試験体,	
表 3-1	

備考		W HINT OF A LONG AND A									
実機	制大	27.0	5.795	3.0	3.0	40.0	2.075	15.16	4.43	0.75	
	東海第二	15.0	4. 533	2.5	2.6	36. 0	2.415	13. 36	4.6	51.0	
討時休		15.5	4.795	3.0	2.6	23. 6	2.005	12.46	4.6	39. 1	
仕様		質量Wt (ton)	高さh (m)	スパン 1_1 (m)	スノペン 1 ₂ (m)	質量Wg (ton)	高さH (m)	スノペン L1 (m)	スノペン L2 (m)	W_T (ton)	
		ц ц ч					総質量				

○ 試験体と実機の比較の考え方

トロリの構造 載寂はトロリ位置によって異なる。試験で得られた減衰比データとしては,ブリッジ中央にトロリがある場合,ブリッジの端部にトロリのある場合の 2 種類ある。鉛直 燃料取替機については、ブリッジ等の骨組み構造の材料減衰、トロリ、ブリッジ等のガタや摩擦による構造減衰が減衰比に影響を与えると考えられる。 **5**向に関しては、ブリッジの中央にトロリがある場合の方が、ブリッジの端部にトロリがある場合に比べて,減衰比は高くなっている。

ブリッジ中央にトロリがある場合、鉛直方向に関しては、応答振幅の増加に伴い減衰比は増加傾向にあり、応答振幅レベル 0.40 mm で減衰比 2.0 %以上となっている ことから,設計用減衰定数を2.0%とする。水平方向の減衰比は,応答振幅レベル0.07 mm で3.6%の減衰比が得られているが,データ点数が少ないため,鉛直方向と同 じ2.0%を水平方向の設計用減衰定数とした。

ブリッジ端部にトロリがある場合,鉛直方向に関しては,応答振幅に係らず1.5 %程度の減衰比が得られていることから,設計用減衰定数1.5 %とした。水平方向の減 実機への適用性の観点では,上表の試験体と東海第二発電所における燃料取替機の構造の比較から,ブリッジスパン,質量は同等以上となっており,振動特性として <u>庭比は,応答振幅レベル0.07 ■ で3.1 %の減衰比が得られているが,データ点数が少ないため,鉛直方向と同じ2.0 %を水平方向の設計用減衰定数とした。</u>

芯答は大きくなる傾向にあると考えられる。また,試験では低加速度レベル(水平約 100 Gal,鉛直約 200 Gal)にて実施されているが,実際の基準地震動Ssはそれよ りも大きな加速度レベルとなる。試験結果から,応答の増加に伴い減衰比も増加傾向にあるため,上記の試験結果より得られた減衰比は適用可能と考えられる。

以上から,燃料取替機の設計用減衰定数として水平 2.0 %,鉛直 1.5 %(燃料取替機のトロリ位置が端部にある場合),2.0 %(燃料取替機のトロリ位置が中央部にある 場合)を適用する。

4条一別紙5-45

参考資料-3(4/8)

【補足】要素試験に用いたUボルト支持構造物のタイプ

試験に用いたUボルトは,原子力発電所で採用されている代表的な4タイプを選定した。

【解析を行った配管仕様】

・口径:20A~400A

・材質:ステンレス鋼,炭素鋼

上記のうちBWR実機配管

	系統	口径
b配管	C R D	32A
e 配管	AC	50A
o配管	RHR	150A
p配管	FΡC	40A
q 配管	MUWC	100A
r 配管	MUWC	150A, 80A
s 配管	RCW	200A
t 配管	RCW	200A, 80A
u配管	C R D	32A

参考資料-4

設計用減衰定数の検討を行った。 試験体を使用した振動試験から得られた配管系の保温材による付加減衰定数に基づき、 配管系の保温材による付加減衰定数

水平方向と鉛直方向の動的地震力の二乗和平方根法による組合せについて

1. 概要

今回工認の耐震設計では、これまで静的な取扱いのみであった鉛直方向の 地震力について、動的な地震力を考慮することとなるとともに、水平方向及 び鉛直方向の動的な地震力による荷重を適切に組み合わせることが必要と なる。

従来の水平方向及び鉛直方向の荷重の組合せは,静的な地震力による鉛直 方向の荷重には地震継続時間や最大加速度の生起時刻のような時間の概念 がなかったことから,水平方向及び鉛直方向の地震力による荷重の最大値同 士の絶対値の和としていた(以下「絶対値和法」という。)。

一方,水平方向及び鉛直方向の両者がともに動的な地震力である場合,両 者の最大加速度の生起時刻に差があるという実挙動を踏まえると,従来と同 じように絶対値和法を用いるのではなく,時間的な概念を取り入れた荷重の 組み合わせ法を検討する必要がある。

本資料では、水平方向及び鉛直方向の動的地震力の組合せに関する既往研究⁽¹⁾をもとに、二乗和平方根法(以下「SRSS法(Square Root of the Sum of the Squares)」という。)による組合せ法の妥当性を説明するものである。

なお, SRSS法による組合せは,大間1号炉の既工認において適用実績 のある手法である。

2. 東海第二発電所で用いる荷重の組合せ法

東海第二発電所では,静的な地震力による荷重の組合せについては,従来 どおり絶対値和法を用いて評価を行う。また,動的な地震力による荷重の組

合せについては、既往知見に基づき、SRSS法を用いて評価を行う。

- 水平方向及び鉛直方向の地震力による荷重の組合せ法に関する研究の成果
- 3.1 荷重の組合せ法の概要

絶対値和法とSRS法の概要を以下に示す。

(1) 絶対値和法

本手法は,水平方向及び鉛直方向の地震力による最大荷重(又は応力)* を絶対値和で組み合わせる方法である。

この方法は,水平方向及び鉛直方向の地震力による最大荷重が同時刻に 同位相で生じることを仮定しており,組合せ法の中で最も大きな荷重を与 える。本手法は,主に地震力について時間の概念がない静的地震力による 荷重の組合せに使用する。

組合せ荷重(又は応力) = $|M_H| \max + |M_V| \max$

M_H:水平方向地震力による荷重(又は応力) M_V:鉛直方向地震力による荷重(又は応力)

(2) SRSS法

本手法は、水平方向及び鉛直方向の地震力による最大荷重(又は応力)* を二乗和平方根で組み合わせる方法である。

この方法は、水平方向及び鉛直方向の地震力による最大荷重の生起時刻 に時間的なずれがあるという実挙動を考慮しており、水平方向及び鉛直方 向地震動の同時入力による時刻歴応答解析との比較において平均的な荷 重を与える。本手法は、動的な地震力による荷重の組合せに使用する。 組合せ荷重(又は応力) = $\sqrt{(M_H) \max^2 + (M_V) \max^2}$

M_H:水平方向地震力による荷重(又は応力)

M_v:鉛直方向地震力による荷重(又は応力)

※:荷重の段階で組み合わせる場合と、荷重による発生した応力の段階で組み合わせる場合がある。応力の段階で組み合わせる場合は、その妥当性を確認した上で用いる。

(補足)荷重または応力による組合せについて

水平方向及び鉛直方向の動的地震力をSRSS法で組み合わせる際,評価対 象の機器の形状や部位に応じて荷重の段階で組み合わせる場合と,荷重により 発生した応力の段階で組み合わせる場合がある。ここでは,その使い分けにつ いて具体例を用いて説明する。

A. 荷重の段階で組合せを行う場合

横形ポンプの基礎ボルトの引張応力の評価を例とすると、以下の式で示す ように水平方向地震力と鉛直方向地震力の組合せは、荷重である水平方向地 震力によるモーメント($m \cdot g \cdot C_H \cdot h$)と鉛直方向地震力によるモーメント($m \cdot g \cdot C_V \cdot 1_1$)を組み合わせる。

本手法については、非同時性を考慮する地震荷重についてのみSRSSしており、実績のある妥当な手法である。

【絶対値和法】

 $Fb = \frac{1}{L} \{ m g (C_{H}h + C_{V}l_{1}) + m g C_{P}(h+l_{2}) + M_{P} - m_{g}l_{1} \}$

【SRSS法】

 $Fb = \frac{1}{L} \{ m g \sqrt{(C_H h)^2 + (C_V l_1)^2} + m g Cp (h+l_2) + Mp - mg l_1 \}$

B. 応力による組合せを行う場合

横置円筒形容器の脚部の組合せ応力の評価を例とすると、脚部には水平方 向地震力による曲げモーメント M₁₁及び鉛直方向荷重 P₁,鉛直方向地震力に よる鉛直荷重(R₁+m_{a1}g)C_vが作用する。(図B-1)

水平方向地震力による応力 σ_{s2} 及び鉛直方向地震力による応力 σ_{s4} は式 B-1及び式B-2で表され、脚部の組合せ応力の評価の際は、これらの応 力をSRSS法により組み合わせて式B-4を用いて評価を行う。

$\sigma_{S2} = \frac{M_{11}}{Z_{Sy}} + \frac{P_1}{A_s} \cdots (\vec{x} B - 1)$	 σ_{S2}:水平方向地震により脚部に生じる 曲げ及び圧縮応力の和 M₁₁:水平方向地震力により脚底面に作 用する曲げモーメント P₁:水平方向地震力により胴の脚付け
$R_1 + m_{s,1}g$	根部に作用する鉛直方向荷重 Z _{sy} :脚部の断面係数 A _s :脚部の断面積
$\sigma_{S4} = \frac{1}{A_s} C_v \cdots (\Xi B - 2)$	 σ_{S4}:鉛直方向地震力により生じる圧縮 応力 R₁:脚部が受ける自重による荷重 m_{a1}:脚部の質量

$$\sigma_{s_1} = \sqrt{(\sigma_{s_1} + \sigma_{s_2} + \sigma_{s_4})^2 + 3\tau_{s_2}^2} \cdots (\exists B - 3)$$

【SRSS法】

【絶対値和法】

$$\sigma_{s_1} = \sqrt{(\sigma_{s_1} + \sqrt{(\sigma_{s_2}^2 + \sigma_{s_4}^2)})^2 + (3\tau_{s_2}^2)} \cdots (\exists B - 4)$$

σ _{s1} :水平方向地震力及び鉛直方向地震
力が作用した場合の脚部の組合せ
応力
σ _{s1} :運転時質量により脚部に生じる圧
縮応力
τ _{s2} :水平方向地震力により脚に生じる
せん断応力

ここで、水平方向地震力による応力 σ_{s2} 及び鉛直方向地震力による圧縮応 力 σ_{s4} は図B-2の示すように、ともに脚部の外表面の応力を表すものであ り、脚部の同一評価点、同一応力成分であることから、これらの組合せをS RSS法により行うことは妥当である。

(ア)曲げによる応力 (イ) 圧縮による応力 (ウ)曲げ+圧縮による応力(a) 水平地震力による応力評価点の応力

(b) 鉛直地震力による応力評価点の応力

図B-2 横置円筒形容器の脚部に作用する地震力による応力概念図

3.2 SRSS法の妥当性

既往研究では、実機配管系に対して、水平及び鉛直地震動による最大荷重 をSRSS法により組み合わせた場合と水平及び鉛直方向地震動の同時入力 による時刻歴応答解析法により組み合わせた場合との比較検討を以下の通り 行っている。

(1) 解析対象配管系モデル

解析対象とした配管は、代表プラントにおける格納容器内の配管系で給 水系(FDW)×2本、残留熱除去系(RHR)及び主蒸気系(MS)の 計4本の配管モデルである。当該配管系は、耐震Sクラスに分類されるも のである。

(2) 入力地震

解析に用いた入力地震動は、地震動の違いによる影響を確認するため、 兵庫県南部地震(松村組観測波)、人工波及びエルセントロ波の3波を用 いた。機器・配管系への入力地震動となる原子炉建屋中間階の応答波の例 を第6-1図から第6-3図に示す。

(3) 解析結果

解析結果を第6-4 図から第6-7 図に示す。第6-4 図から第6-7 図は,水 平方向及び鉛直方向の応力に対して,同時入力による時刻歴応答解析法及 びSRSS法により組み合わせた結果をまとめたものであり,参考までに 絶対値和法による結果も併記した。

第6-4 図から第6-7 図より,いずれの配管系においても最大応力発生点 においては,時刻歴応答解析法に対してSRSS法の方が約1.1 倍から約 1.4 倍の比率で上回る結果となった。最大応力発生点におけるSRSS法 と同時入力による時刻歴応答解析との評価結果の比較を第6-1表に示す。 また,最大応力発生点の部位を第6-8 図から第6-11 図に示す。

4条一別紙5-60

さらに,配管系全体の傾向を確認するため,配管系の主要な部位におけ る発生応力の比較を第6-12図に示す。第6-12図は,第6-4図から第6-7 図に基づき,各配管モデルの節点の応力値をプロットしたものである。第 6-12図より,SRSS法は発生応力の低い領域では同時入力による時刻歴 応答解析法に対して平均的な結果を与え,発生応力の増加に伴い保守的な 結果を与える傾向にあることが確認できる。

4条-別紙5-63

機器・配管系への入力地震動 (エルセントロ波)

4条-別紙5-64

エルセントロ波

第 6-4 図 主要な部位における発生応力(FDW-001 Aプラント) 4条-別紙 5-65

エルセントロ波 第6-5図 主要な部位における発生応力(MS-001 Aプラント) 4条-別紙5-66

第 6-6 図 主要な部位における発生応力(RHR-001 Aプラント) 4 条 - 別紙 5 - 67

第6-7図 主要な部位における発生応力(FDW-001 Bプラント)

解析対象配管	入力地震波	最大応力発生点	SRSS/同時入力
FDW-001	松村組観測波	分岐部(節点 No26)	1.08
(Aプラント)	人工波	分岐部(節点 No26)	1.08
	エルセントロ波	分岐部(節点 No26)	1.08
MS-001	松村組観測波	分岐部(節点 No10)	1.15
(Aプラント)	人工波	分岐部(節点 No10)	1.20
	エルセントロ波	分岐部(節点 No10)	1.18
RHR-001	松村組観測波	拘束点(節点 No28)	1.15
(Aプラント)	人工波	拘束点(節点 No28)	1.15
	エルセントロ波	拘束点(節点 No28)	1.18
FDW-001	松村組観測波	拘束点(節点 No18)	1.35
(Bプラント)	人工波	拘束点(節点 No18)	1.37
	エルセントロ波	拘束点(節点 No18)	1.34

第6-1表 SRSS法と同時入力による時刻歴応答解析法との比較(最大応力発生点)

FDW:給水系配管

MS:主蒸気系配管

RHR:残留熱除去系配管

第6-12図 SRSS法による応力と時刻歴応答解析による応力の比較(主要部位)

東海第二発電所における水平方向及び鉛直方向の最大応答値の生起時刻
 の差について

東海第二発電所における水平方向及び鉛直方向の最大応答値の生起時刻 の差について、原子炉建屋を例に、原子炉建屋の施設の耐震性評価において 主要な地震動である基準地震動S_s-D,S_s-21及びS_s-22に対する水平 方向及び鉛直方向の最大応答値の生起時刻の差を確認した。ここで、機器・ 配管系の耐震評価に用いる水平方向の設計用震度は、全ての地震動に対する 南北方向と東西方向の最大応答加速度を包絡した値を用いることを踏まえ、 水平方向の最大応答値の生起時刻については、基準地震動S_s-D,S_s-21 及びS_s-22における南北方向及び東西方向を通じた最大応答加速度の生起 時刻を用いた。なお、基準地震動S_s-31は、水平方向に卓越する応答を示 すものの、他検討に用いる基準地震動S_sに比べて地震継続時間が短く、鉛 直方向の最大応答値の生起時刻との差が開く方向になるため、本検討には用

第 6-13 図及び第 6-2 表に示すように,水平方向及び鉛直方向の最大応答値 の生起時刻には約 0.9 秒~約 41 秒の差があり,東海第二発電所においても水 平方向及び鉛直方向の最大応答値の生起時刻には差があることを確認した。

原子炉建屋モデル

(鉛直方向)

第 6-13 図 原子炉建屋の応答値 (EL.-4.0 mの例)

位置 (m)	最大応答値の生		
	水平方向	鉛直方向	生起時刻の差(秒)
63.65	73.0	68.6	4.4
57.00	61.9	68.6	6.7
46.50	61.9	61.0	0.9
38.80	19.9	61.0	41.1
34.70	73.0	61.0	12.0
29.00	20.0	61.0	41.0
20.30	63.3	68.7	5.4
14.00	63.3	68.7	5.4
8.20	53.8	74.5	20.7
2.00	53.8	74.5	20.7
-4.00	53.8	69.4	15.6
-9.00	53.8	69.4	15.6

第 6-2 表 最大応答値の生起時刻の差

5. まとめ

以上から,東海第二発電所では,水平方向及び鉛直方向の動的な地震力の 荷重の組合せ法としてSRSS法を用いることとする。

- 6. 参考文献
 - (1) 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に関する研究(ス テップ2)」(平成7年~平成10年)
- 7. 別紙
 - 別紙1 東北地方太平洋沖地震による東海第二発電所の水平方向及び鉛直方 向の最大応答値の生起時刻の差について
 - 別紙2 東海第二発電所における水平方向及び鉛直方向の最大応答値の生起 時刻の差について(補足説明)

東北地方太平洋沖地震による東海第二発電所の水平方向及び鉛直方向の最大応 答値の生起時刻の差について

1. はじめに

東海第二発電所では、平成23年3月11日に東北地方太平洋沖地震による 観測記録が得られている。本資料では、東北地方太平洋沖地震による東海第 二発電所の水平方向及び鉛直方向の最大応答値の生起時刻の差について参 考として確認する。

2. 確認結果

別表 6-1 に示すように,東海第二発電所において観測された実地震につい ても,水平方向及び鉛直方向の最大応答値の生起時刻には 0.6 秒及び 4.2 秒 の差があることが確認された(地震計の設置位置を別図 6-1 に,観測された 加速度時刻歴波形を別図 6-2 に示す。)。また,最大応答値の生起時刻の差が 比較的小さな EW-UD の生起時刻の差 0.6 秒について,別図 6-3 にて水平方向 及び鉛直方向の最大応答値の生起時刻には差があることを確認した。

	最大応答値の生起時刻(秒)			生起時刻の差(秒)	
位置(m)	南北方向	東西方向	鉛直方向	NC UD	
	(NS)	(EW)	(UD)	N2-0D	Ew-UD
-4.0 (RB01)	87.0	91.8	91.2	4.2	0.6

加茲 0 1 木札地力 本十件地展の観測 印象における取入心音 直の工虐时刻の	別表 6-1 東ニ	北地方太平沖地震。	の観測記録におけ	る最大応答値の)生起時刻の휨
---	-----------	-----------	----------	---------	---------

別図 6-1 原子炉建屋基礎上(EL.-4.0 m) 地震計設置位置

別図 6-2 原子炉建屋基礎上(EL.-4.0 m) RB01の観測記録加速度時刻歴波形

原子炉建屋基礎上(EL. -4.0 m) RB01の観測記録加速度時刻歴波形(91秒から92秒)

別図 6-3 最大応答値(EW-UD)における生起時刻の差

東海第二発電所における水平方向及び鉛直方向の最大応答値の生起時刻の差に ついて(補足説明)

本資料では東海第二発電所における水平方向及び鉛直方向の最大応答値の 生起時刻の差について、4項で選定した基準地震動S_s-D, S_s-21及び S_s-22の3波に加えて、基準地震動S_s-31も加えた場合の水平方向及び 鉛直方向の生起時刻の差について説明する。

4項で示した同様の手法にて水平方向と鉛直方向の最大応答値の生起時刻 の差を別図 6-4 及び別表 6-2 に示す。別表 6-2 には4項で整理した基準地震 動 S_s - D, S_s - 21 及び S_s - 22 の 3 波で整理した生起時刻の差についても 記載した。

別図 6-4 に示すとおり S_s -31 は、地震継続時間が短く、水平方向の最大 応答値の生起時刻は約 9 秒となり、他 S_s よりも早い時刻で最大応答値の生 起時刻が生じる。また S_s -31 の鉛直方向については、他の S_s の応答加速 度値と比べても小さな傾向を示す。このため S_s -31 の水平方向の最大応答 値の生起時刻 9 秒と他 S_s の鉛直方向の最大応答値の生起時間を用いて評価 すると、生起時刻の差として大きくなる傾向となる。

原子炉建屋モデル

(鉛直方向)

別図 6-4 原子炉建屋の応答値 (EL. -4.0mの例)

	S _s	-31 考慮時の検	討	
位置 (m)	最大応 生起時刻	答値の 11 (秒)	生起時刻	S _s 3波時の 生起時刻
	水平方向	鉛直方向	の差(秒)	の左(秒)
63.65	73.0	68.6	4.4	4.4
57.00	61.9	68.6	6.7	6.7
46.50	8.6	61.0	52.4	0.9
38.80	8.7	61.0	52.3	41.1
34.70	8.7	61.0	52.3	12.0
29.00	8.7	61.0	52.3	41.0
20.30	8.6	68.7	60.1	5.4
14.00	8.7	68.7	60.0	5.4
8.20	8.6	74.5	65.9	20.7
2.00	8.6	74.5	65.9	20.7
-4.00	8.6	69.4	60.8	15.6
-9.00	8.6	69.4	60.8	15.6

別表 6-2 S_s-31 考慮時の最大応答値の生起時刻の差

鉛直方向応答解析モデルの追加について

1. 概要

今回工認では,鉛直方向の地震動及び地震力に対して動的な取扱いが必要 となるため,鉛直方向の応答に対して動的な取扱いが必要となる設備につい ては,応答を適切に模擬できる解析モデルを適用したうえで評価を行う。

また,鉛直方向の応答解析モデルの代表例として,原子炉建屋-炉内構造 物系連成の地震応答解析モデルの適用方針を示す。

2. 原子炉建屋-炉内構造物系連成の地震応答解析モデルの適用方針

格納容器内の原子炉圧力容器等の大型機器は,一般機器や配管等に比べて 質量が大きく,原子炉建屋との相互作用を考慮した地震応答の算定が必要で ある。そのため,既工認において,原子炉圧力容器(炉心支持構造物及び炉 内構造物含む),原子炉遮蔽壁及び原子炉本体基礎等の大型機器・構造物の 耐震設計では,水平方向の動的地震力については原子炉建屋と大型機器を連 成させた多質点モデルによる時刻歴応答解析を行うことで動的地震力を算 定し,鉛直方向については静的震度による地震荷重を算定していた。

今回工認においては,新たに鉛直方向の動的地震力に対する考慮が必要と なったことから,鉛直方向についても水平方向と同様に動的地震力の算定を 行う。鉛直方向の地震応答解析モデルについては,鉛直方向の各応力評価点 における軸力を算定するため,従来の水平方向モデルをベースに新たに多質 点モデルを作成する。

なお,鉛直方向の地震応答解析モデルは,大間1号炉の建設工認において 適用例がある。

4条一別紙5-86

3. 地震応答解析モデルについて

原子炉建屋,格納容器の概略断面図を第7-1図,原子炉圧力容器内部構造物の構造図を第7-2図に示す。

水平方向の解析モデルにおいては,原子炉圧力容器,原子炉遮蔽壁,原子 炉本体基礎は第7-3回に示すような多質点モデルにてモデル化する。原子炉 圧力容器は原子炉圧力容器スタビライザと等価なばねで原子遮蔽壁と結ば れ,原子炉本体基礎と剛に結合される。原子炉本体基礎は,その下端におい て原子炉建屋基礎版上端と剛に結合され,さらにダイヤフラムフロアの剛性 と等価なばねにより原子炉格納容器を介して原子炉建屋に支持される。

鉛直方向の解析モデルにおいても水平方向の解析モデルと同様に第7-4図 に示すような多質点モデルにてモデル化する。原子炉圧力容器は、原子炉本 体基礎と剛に結合される。原子炉本体基礎は、その下端において原子炉建屋 基礎版上端と剛に結合され、原子炉建屋に支持される。

第7-1 図 原子炉建屋,格納容器 概略断面図

第7-2図 原子炉圧力容器内部構造物 構造図

4条一別紙5-88

第7-3 図 原子炉建屋-炉内構造物系連成 地震応答解析モデル (水平方向)

第7-4図 原子炉建屋-炉内構造物系連成 地震応答解析モデル(鉛直方向)

4条-別紙5-89

炉内構造物への極限解析による評価の適用について

1. 概要

既工認においては、炉内構造物として公式等を用いた評価を行っていたが、 今回工認では、機能限界を踏まえた許容限界をより現実的に示す観点で、J EAG4601、JSME設計・建設規格で定められた極限解析による評価(以 下「極限解析」という。)を採用する。極限解析については、規格基準に基づ く手法であり、また新規制基準での工認における高浜1、2号炉、美浜3号 炉で適用実績のある手法である。

- 2. 炉内構造物への極限解析の適用
 - (1) 規格基準における扱い及び炉内構造物への適用

JEAG4601, JSME設計・建設規格の炉心支持構造物に関する抜粋を 第8-1 図~第8-3 図に示す。極限解析は, JEAG4601, JSME設計・建 設規格において, 炉心支持構造物に適用可能な設計手法として規定されてい る。また, JEAG4601 において, 炉内構造物の許容応力は炉心支持構造物 の許容応力を準用することができることを定めている。整理結果を第8-1 表 に示す。

東海第二発電所の今回工認における炉内構造物の極限解析の適用に際して 炉心支持構造物の規定を準用することになるため、極限解析の具体的な評価 手法が規定されているJSME設計・建設規格の炉心支持構造物の規格に定 められた要求事項を満足することを確認する。

炉心支持構造物の規格要求事項に対して,極限解析を適用するスタンドパ イプの適合性確認に対する要求の整理結果を第 8-2 表に示す。材料及び完了 検査については建設時の記録から要求事項を満足していることを確認した。

4条-別紙5-90

設計に対する要求については、スタンドパイプは炉内にあり、地震時以外で は、圧力・温度差等による応力は有意なものではないため、満足すると考え られる。しかしながら、これを確認するため詳細設計段階にて設計に対する 要求を満足することを確認する。

また,評価範囲であるスタンドパイプとシュラウドヘッドの取付部の溶接 施工管理については炉心支持構造物と同様の施工管理を実施している。

規格基準	適用範囲	備考
J E A G 4601	炉心支持構造物	・炉内構造物は炉心支
	炉内構造物	持構造物を準用
		・具体的な手法として
		JSME設計・建設規格
		を読み込み(JEAG では
		告示 501 号を読み込み)

第8-1表 極限解析の規格基準における扱い

炉心支持構造物の規格に対するスタンドパイプの適合性確認整理結果 設計·建設規格 J SME 第 8-2 表

CSS-1000:一般要求事項

規格番号	規格名称	規格内容(概要)	炉内構造物として の確認の要否	「否」の理由	確認結果
CSS-2100	炉心支持構造物に使 用可能な材料	I			I
CSS-2110	炉心支持構造物に使 用可能な材料の規定	付録材料表 Part1 の炉心 支持構造物の規格に適合 する又はこれと同等以上 の化学成分及び機械的強 度を有するものを使用す ることを定めている。	承	I	使用材料は SUS304TP 相当 (ASME SA-312 Gr.TP304)であり、適合 している。
CSS-2120	材料の熱処理に関す る部分の特例規定	CSS-5120 の規定にかかわ らない熱処理に関する特 例規定を設けている。	Ł	特例規定を適用し ないため。	-
CSS-2130	機械試験に関する要 求事項	CSS-2110 及び CSS-2300 に 規定する試験を行う場合 は PVB-2200 及び 2300 の 規定を準用する。	Κī	本要求はフェライト系材料に対しての要求であり、使用材料である。他用材料であるオーステナイであるオーステナイト系ステンレス鋼に対する要求はないため。	
CSS-2300	破壞靱性試験要求	-	—		
CSS-2310	破壊靭性不要となる 規定	使用する材料は破壊靱性試験を行い、適合するにとを定めている。ただし、形状、して、ことでで、し、形状、材料によっては破壊靭性試験を要しない。	Κī	使用枯苓はオーステ ナイト系ステーステ 劉心あり, CSS-2310 に記載される破壊勤 在試験は不暇の条件 め。	

CSS-2000: 炉心支持構造物に使用する材料

規格番号	規格名称	規格内容(概要)	炉内構造物として の確認の要否	甲敮の「彔」	確認結果
CSS-2320	破壊靭性試験におけ る試験片数と組数	破壊靭性試験における試 験片数と組数について定 めている。	Ŕ	CSS-2310を満足して おり、破壊靭性試験 を行わないため。	
CSS-2330	破壊靭性試験の方法 および判定基準	破壊靭性試験の方法及び 判定基準を定めている。	Ŕī	CSS-2310 を満足して おり,破壊靭性試験 を行わないため。	
CSS-2400	非破壞試驗要求		I	I	1
CSS-2410	各材料に適用する非 破壊試験	使用する材料は DNB-2411 に規定する非破壊試験を 実施し, CSS-2430 に合格 することを定めている。	瘷	I	PVB-2411 に規定する斜角法 による超音波探傷試験及び 浸透探傷試験を実施し, CSS-2430 に合格している。
CSS-2420	溶接による補修	CSS-2410 に規定に合格 し ないものに対して溶接に よる補修について定めて いる。	迅	CSS-2410 の試験に合格しており,溶接による補修を実施して よる補修を実施して いないため。	I
CSS-2430	非破壊試験の判定基 準	非破壊試験の判定基準を 定めている。	瘷	I	PVB-2422 に定められる超 音波探傷試験の判定基準 及び PVB-2426 に定められ る浸透探傷試験の判定基 準を満足している。
CSS-2500	溶接材料	—	-	—	
CSS-2510	溶接に用いる材料	溶接に用いる材料は,溶 接規格 N-1040 に適合する ことを定めている。	承	l	溶接に用いる材料は、母材と同等の強度を有する 材と同等の強度を有する ものを使用しており、溶 接規格 N-1040 に適合して いる。

4条-別紙5-94

要求事項に対する 対応方針	考慮すべき荷重をとして、冷却材による差圧,自重,地震荷重を設計に用いる。	(1)減肉は考慮しない (2)原則として公称寸法を 使用する。	-	I	各供用状態における一次 応力強さが規定を満足す ることを詳細設計段階で 確認する。	1
「否」の理由	I	I	Ι	I	I	プロトタイプまたは モデル試験による評 価は適用しないた め。
炉内構造物として の確認の要否	承	承	-	I	廒	Kī
規格内容 (概要)	設計に考慮すべき荷重を考 慮することを定めている。	 (1)減肉が考えられる部材 は減肉を考慮すること。 (2)応力評価は公称寸法を 使用してもよい。 を定めている。 	-	l	設計条件及び各供用状態において生じる応力解析による一次応力評価は(1)~(4)の規定(一次一般膜応力強にすの規定(少の地ですの制限)を満足さ等に対する制限)を満足すること。	CSS-3111 の応力評価の代わ りにプロトタイプまたはモ デル試験を実施する場合 は,最大荷重 Leを求め, 実際の荷重が許容荷重値を 超々ないこと。
規格名称	考慮すべき荷重	考慮すべき事項	材料の応力強さの限 界および許容応力	ボルト等縮付部材以 外の応力評価	各供用状態における 一次応力評価	プロトタイプまたは モデル試験による評 庙
規格番号	CSS-3010	CSS-3020	CSS-3100	CSS-3110	CSS-3111	CSS-3111.1

CSS-3000:炉心支持構造物の設計

要求事項に対する 対応方針	供用状態A, Bにおいて 生じる一次応力と二次応 力の最大値と最小値の荒 が規定を満足することを 詳袖設計段階で確認す る。	CSS-3130 を満足すること を詳細設計段階で確認す る。	純せん断応力を生じる部 分がないことを詳細設計 段階で確認する。	支圧応力を生じる部分が ないことを詳細設計段階 で確認する。		軸圧縮荷重が自重のみであり、軸圧縮応力が小さいことを詳細設計段階で確認する。	軸圧縮荷重が自重のみであり、軸圧縮応力が小さいことを詳細設計段階で確認する。	I	Ι
甲証の「显」	I	I	I	I	-	I	Ι	中空円断面であり, 中実円断面ではない ため。	ポルト等締結部材 はないため。
炉内構造物として の確認の要否	廒	承	庚	承	Ι	承	遙	ᆚ	见
規格內容 (概要)	供用状態A及びBにおいて 生じる一次応力と二次応力 の応力強さのサイクルの最 大値と最小値の差は3Sm を超えないこと。	供用状態 A 及び B における 疲労累積係数は 1 を超えな いこと。	維せん断荷重を受ける部分に生じる平均せん断応力は許容値を満足すること。	支圧荷重を受ける部分に生じる平均支圧応力は許容値を満足すること。	—	軸方向に圧縮荷重を受ける 円筒形の胴に生じる圧縮応 力は許容値を満足すること。	軸方向に圧縮荷重を受ける 柱形の胴に生じる圧縮応力 は許容値を満足すること。	ねじり荷重を受ける中実円断面の形状に生じる圧縮応力は許容値を満足すること。	ボルト等の支持構造物につ いての各供用状態における 許容値を満足すること。
規格名称	供用状態A, Bにお ける一次+二次応力 評価	疲労評価(供用状態 A, B)	純せん断応力評価	支圧応力評価	軸圧縮応力の評価	軸方向に圧縮荷重を 受ける円筒形の胴の 圧縮応力の評価	軸方向に圧縮荷重を 受ける柱状の部材の 圧縮応力の評価	ねじりせん断応力の 評価	ポルト等締付部材の 応力評価
規格番号	CSS-3112	CSS-3113	CSS-3114	CSS-3115	CSS-3116	CSS-3116.1	CSS-3116.2	CSS-3117	CSS-3120

要求事項に対する 対応方針	疲労評価不要の各条件を 満足することを詳細設計 段階で確認する。	疲労解析には応力集中係 数を考慮する。	溶接方法の区分に応じた 継手効率を考慮する。	地震時以外は適用しな い。	I		I	I
甲証の「显」	I	I	I	I	I	各供用状態におい イ あおらにもらせ	く, 19回い圧ルシック が外面の圧力より高 いため。	円筒形であり、球形でないため。また、 でないため。また、 各供用状態におい て、内面の圧力の方 が外面の圧力より高 いため。
炉内構造物として の確認の要否	承	承	駇	廒	l	Ŕū		Y
規格內容(概要)	繰り返し荷重が(1)~(4)に 適合する場合は疲労解析を 行うことを要しない。	疲労解析に使用する疲労強 度低減係数または応力集中 係数について定めている。	溶接部の許容応力等に対し て継手効率を考慮すること を定めている。(CSS- 3111.1,3160,3113,3116.2 除く)	極限解析による評価につい て定めている。これを満足 する場合は CSS-3111 の規 定を満足しなくてよい,	l	外面に圧力を受ける炉心支 持構造物の胴の形状につい て定めている。	円筒形または円すい形の胴 において外面に受ける圧力 対する許容値を定めてい る。	球形の胴において外面に受 ける圧力に対する許容値を 定めている。
規格名称	疲労解析不要の条件	疲労強度低減係数ま たは応力集中係数	溶接部継手劾率	極限解析による評価	外面に圧力を受ける 炉心支持構造物の評 価	外面に圧力を受ける 炉心支持構造物の形 状	円筒形または円すい 形の胴における許容 圧力(外圧)	球形の胴における許 容応力
規格番号	CSS-3130	CSS-3140	CSS-3150	CSS-3160	CSS-3200	CSS-3210	CSS-3220	CSS-3230

要求事項に対する 対応方針	I	CSS-3112 を満足すること を確認する。	Ι
甲証の「呈」	強め輪は設けてい ないため。	I	クラッド構造では ないため。
炉内構造物として の確認の要否	КП	承	Ŕī
規格內容 (概要)	円筒形において外面に受ける圧力に対する許容値 を定めている。	CSS-3112 で一次+二次応 力強さが 3 S mを超えた 場合の規定を定めてい る。	クラッド構造の炉心支持 構造物の応力解析、疲労 評価への考慮について定 めている。
規格名称	外面に圧力を受ける円筒形の炉心支ま構造物に強め輪を設ける場合	儱易弹塑性解析	クラッド構造の炉 心支持構造物に対 する強度評価上の 現成いについての 規定
規格番号	CSS-3240	CSS-3300	CSS-3400

CSS-5000:完了検査

確認結果	完成後、要求事項に従 い、外観検査、寸法検査 を行い、満足している。
「」の理由	Ι
炉内構造物として の確認の要否	瘷
規格內容(概要)	設計仕様書に定めれらた 要求事項に従って,完了 検査を満足すること。
規格名称	炉心支持構造物の完 成検査
規格番号	CSS-5010

第8-1図 JEAG4601 炉心支持構造物と炉内構造物の分類に関する抜粋

2.5 炉心支持構造物の許容応力

2.5.1. 炉心支持構造物 (ボルト等を除く) の許容応力

炉心支持構造物(ボルト等を除く)の許容応力を次に示す。

	応力分類		1次一般膜応力		1次+2次	特	別な応力関	艮 界
	許容 応力状態	1次一般膜応力	+1次曲げ応力	1次+2次応力	+ ピーク応力	純せん 断応力	支 匠 応 力	ねじり 応 力
	設計条件	(1) S m	(1) 左欄の1.5倍の値					
	IA			, 3 S ⁽²⁾	(3) 運転状態 I 及び Ⅱにおける荷重 の組合せについ て疲わ解析を行	(4) 0.6 m	(1.5 S _y)	(7) 0.8 S _m
	II A		_	0.0 m	て返れ時初を行 い疲れ累積係数 が 1.0 以下であ ること。	$0.6 {\rm S}_{\rm m}^{(4)}$	$(1.5 S_{y}^{(5)})$	0.8 S _m ⁽⁷⁾
	ША	(1) 1.5 S m	⁽¹⁾ 左欄の1.5倍の値			$0.9 S_{m}^{(4)}$	(5) 1.5 S y (2.25 Sy)	$1.2 {\rm S}_{\rm m}^{(7)}$
	IV _A	(1) 2/3 S _u 。ただし オーステナイト 系ステンレス鋼 及び高ニッケル 合金については 2/3 S _u と 2.4 S _m の小さい方。	⁽¹⁾ 左欄の1.5倍の値		_	(4) 1.2 S m	(5) 2 S y (3 S y)	(7) 1.6S m
	∎ _A S	1.5 S m ⁽¹⁾	⁽¹⁾ 左欄の1.5倍の値			0.9 S _m	(6) 1.5 S y (2.25 Sy)	1.2 S _m
	IV _A S	(1) 2/3 S _u 。ただし オーステナイト 系ステンレス鋼 及び高ニッケル 合金については 2/3 S _u と 2.4 S _m の小さい方。	⁽¹⁾ 左欄の1.5倍の値		_	1.2 S m	2 S y (3 S y)	1.6 S m
* 	注:(1)	告示第96条第1 イ,Ⅲ _A 及びⅢ	項第一号の崩壊石 ASについては同一	苛重の下限に基づ 号ロ,Ⅳ _A 及びⅣ	く評価(ただし, S については同	設計条件 号ハの評	牛について 価) を適用	 は同号 する場
١.	<u>-</u>	<u>合は、この限り</u> 35 ち招きて	ではない。	ターニーニー				
	(2)	50m を起える 告示第96条第1	」こさは 日小 第913 項第三号を満たす	*の理空性解析を よときは、疲れ解	用いることかでき 析を行うことを	きる。 要しない。		
	(4)	告示第96条第1	項第一号へによる	5 0		0		
	(5)	告示第96条第1 が支圧 ちまの作	項第一号トによる	る。()内の値 島への値	は支圧荷重の作用	用端から自	自由端まで	の距離
	(6)	()内の値は	, 支圧荷重の作用	あつの但 月端から自由端ま	での距離が支圧な	奇重の作 用	月幅より大	きい場
		合の値						

(7) 告示第96条第1項第一号リによる。

る抜粋

第8-2図 JEAG4601 炉心支持構造物(ボルト等を除く)の許容値に関す

「応力の	一次		二次応力	19 2 24	
分類	一般膜応力	曲げ応力	膜応力と曲げ応力	ヒーク応力	特別な応力限界
状態	P _m	Pb	Q	F	
設計条件	▶ P ₀	▼ P _a +P _b ↓ 1.5 算性 5 解析 または ↓ 2/3 解析 上 5 上 5 一 年 5 一 5 - 5 - 5 - 5 - 5 - - - - - - - - - - - - -	評価不要	評価不要	
供用状態A およびB	↓	L	▶ P _n +P _b +Q 3S _n 弾性 解析 または	P _x +P _b +Q+F Sa 疲労解析 P _u +P _b +Q+F Sa 彈塑性解析	支圧荷重
供用状態C	Pn 確性 1.5 第解析 または 欠 なたは 解析 または 算法 したし (注 1) または (注 1) または (注 1) または (注 1)	P _n +P _b 2.25 弾性 5 解析 または 極限 Pcr 解析 または L _c (注 5)	評価不要	評価不要	供用状態 A および B の 1.5 倍
供用状態D	P ₁ 注 2 2.45m (注 2) 2/35m 弾性 第析 (注 4) 第たは 獨限 0.9 解析 または 高限 0.9 解析 0.9 解析 0.9 解析 0.1 解析 または (注 1) または し。	Pn+Pb 注 2 3.65n 注 3 Su 弾性 解析 (注 4) または 9 解析 または 0.9 解析 または 0.8 試験 し。 (注 5)	評価不要	評価不要	供用状態A およびB の 2 倍
·) 供用状態 D 以外 ある。供用状態 荷重の下限であ 荷重のうちのい オーステナイト オーステナイト 〕 オースプロトタイ 〕 実線は応力に基 	 の Pcr は 1.5 Sm D の Pcr は MIN[2 う。 ずれか小さい方の 系ステンレス鋼ま プまたはモデル語 づく評価、破線に 	の値を降伏点とし ?. 3S _m 0. 7Su]の値 し値をとる。 らよび高ニッケル さよび高ニッケル 試験により評価を は荷重に基づく評	レて計算した崩壊 直を降伏点として 合金に適用する。 合金以外の材料に 行う場合の最大荷 価を示す。	└───── 荷重の下限で 計算した崩壊 ────── 適用する。 運である。

表 CSS-3110-1 応力強さの限界(ボルト等を除く)

第8-3 図 JSME 設計・建設規格 炉心支持構造物(ボルト等を除く)の許

容値に関する抜粋

(2) 極限解析による評価

極限解析は、3次元FEMモデルを用いて、弾完全塑性体の物性値を入力 した解析により崩壊荷重の下限を求め、求めた崩壊荷重の下限から許容荷重 設定するものである。極限解析フローを第8-4図に示す。

第8-4図 極限解析フロー

① 解析モデルの作成

気水分離器及びスタンドパイプは,第8-5 図に示すとおり,シュラウド ヘッド穴部に差し込まれ内外面を溶接にて取り付けている。気水分離器に 作用する地震時の荷重は,スタンドパイプを介してシュラウドヘッドへ伝 達される構造となっている。各スタンドパイプは同一断面形状で曲げ剛性 は等しいこと,及び補強板で連結されていることから,各スタンドパイプ の地震時の応答変位は等しくなるため,解析においては,1本のスタンド パイプに着目してソリッド要素にてモデル化することとする。モデル図を 第8-6 図に示す。

また,解析モデルはスタンドパイプがシュラウドヘッドに対して平面に 4条-別紙5-102

取り付く中央位置及び斜めに取り付く最外周位置の2種類のモデルとする。

第8-5図 炉内構造物(気水分離器及びスタンドパイプ)構造概要図(1/2)

D部詳細図

第8-5図 炉内構造物(気水分離器及びスタンドパイプ)構造概要図(2/2)

第8-6図 極限解析に用いる解析モデル概要図(中央位置)

境界条件及び物性値

解析モデルの境界条件を第8-7図に示す。境界条件として、モデル化したシュラウドヘッドの端部を完全固定としている。

第8-7図 解析モデルの境界条件

解析モデルの物性値は,許容応力状態IV_AS における許容荷重を求める際 には,JSME設計・建設規格 CSS-3160 に規定されているとおり,2.3Sm と 0.7Su の小さい方を材料の降伏点とした弾完全塑性体を入力する(第 8-8 図 参照)。なお,許容応力状態Ⅲ_AS における許容荷重を求める際には, 同じく,1.5Sm を材料の降伏点とした弾完全塑性体を入力する。また,シ ュラウドヘッドとスタンドパイプは溶接にて取り付けられており,溶接部 は母材と同等の強度を有しているため,物性値は母材と同じとしている。

第8-8図 弾完全塑性体として応力とひずみの関係

4条-別紙5-106

 ③ 荷重の負荷

第8-9 図に示すように,スタンドパイプ上部端面に荷重を負荷すること により,スタンドパイプの変位(上端部中心位置)を求める。また,地震 と組み合わせる荷重として,自重による荷重及びスタンドパイプ内外の圧 力差による応力を初期荷重として入力している。

スタンドパイプ上部端面に負荷する荷重はS_s地震動及びS_d地震動の 地震応答解析にて得られたスタンドパイプ取付部の地震荷重をスタンドパ イプの総本数(225本)で除して,1本当たりに発生する地震荷重(鉛直荷 重,水平荷重,モーメント)を算出し,上部端面に負荷することで取付部 に発生する荷重(モーメント)を除いた荷重を倍率して付与することで, 荷重出力位置での各荷重が地震荷重に同じ倍率付与したものと等しくなる ようにする。

また,地震応答解析にて得られた地震荷重を1本当たりの平均地震荷重 による荷重を負荷しているが,補強板の影響及び各スタンドパイプ長さが 異なることの影響から各スタンドパイプ取付部での最大荷重負荷が平均地 震荷重より大きくなる場合には,それを反映した入力荷重とすることとす る(別紙1)。

入力荷重と出力荷重の関係

入力荷重成分		S s 地震時	
鉛直荷重	$F_{Z(IN)}$	-1819.26[N]	
水平荷重	$F_{\rm Y(IN)}$	10251.9[N]	
モーメント	$M_{X(IN)}$ *	-1.91312×10^{7} [N·mm]	

S_s地震時の1本に対する入力荷重(倍率1.0倍)

※スタンドパイプ取付部に地震荷重(モーメント)M_{MX}を発生させるため,水 平荷重F_Yによってスタンドパイプ取付部に発生するモーメント(F_Y・L)を 地震荷重から除いた値としている。

入力荷重と出力荷重の関係

 \mid M_{X (OUT)} \mid = \mid M_{X (IN)} \mid + \mid F_Y · L \mid = \mid M_{MX} \mid

M_{MX} : 地震応答解析にて得られて1本当たりの地震荷重(モーメント)
 M_{X (OUT)} : 出力荷重(モーメント)

F_Y・L:取付部までの距離(L)により取付部に発生する荷重(モーメント)

Ss地展時のI本に対する山刀拘重(信半1.0倍				
出力荷重成分		S s 地震時		
鉛直荷重	F Z (OUT)	-1819.26[N]		
水平荷重	F Y (OUT)	10251.9[N]		
モーメント	M _X (OUT)	$-2.93831 \times 10^{7} [N \cdot mm]$		

S_s地震時の1本に対する出力荷重(倍率1.0倍)

第8-9図 荷重の負荷

4条-別紙5-108

④ 荷重変位曲線の作成

上端部に入力した負荷荷重からFEM解析により最大荷重点(スタンド パイプ付け根部)を求める。その後,負荷荷重の倍率を増加して荷重を負 荷し,その時の最大荷重と変位(上端部中心位置)をプロットし,荷重-変位曲線を作成する(第8-10図参照)。

なお,荷重-変位曲線の荷重は入力したS_s地震荷重又はS_d地震荷重で 除した各地震荷重に対する荷重倍率で示す。

第8-10図 荷重変位曲線の作成(S_s地震時,中心位置の場合)

⑤ 崩壊荷重の下限 (Pcr) の算定

④にて作成した荷重変位曲線を基に崩壊荷重の下限(Pcr)を算定する。
 S_s地震時及びS_d地震時の崩壊荷重の下限(Pcr)の算定結果を第 8-11
 図に示す。

ここで、崩壊荷重の下限は、JSME設計・建設規格CSS-3160から「荷 重とそれによる変形量の関係直線に対して、弾性範囲の関係曲線の勾配の 2倍の勾配を有する直線が交わる点に相当する荷重」と定義されている(第 8-12 図参照)。崩壊荷重とは、ひずみ硬化を含まない理想的な弾完全塑性 体の材料からなる構造物が荷重を受けて、全断面降伏又は座屈限界に達し、 これ以上の荷重を加えると構造物が不安定になって変形が際限なく増加す るときの荷重をいう。

今回の極限解析では最大荷重点である付け根部に局所応力の影響を受け ないようシュラウドヘッドからの距離を十分に取る観点から,スタンドパ イプ長さを1000 mmとし,荷重を負荷し,その位置での変位を変位出力位 置としている。スタンドパイプ長さを変化させた場合,最大荷重点である 付け根部に発生する荷重は上端面からの入力荷重にスタンドパイプ長さが 変わることで生じる水平荷重によるモーメントの影響を考慮していること から変化しない。また,スタンドパイプ長さを変化させた場合,上部端面 に入力する荷重(モーメント)は長さが変わることで水平荷重によるモー メントを考慮するため変化するが,変位出力位置が変わらなければ,変位 出力位置での荷重は同じであるため,変位挙動は同じとなる(第8-13 図参 照)。このため,スタンドパイプ長さを変化しても,崩壊荷重の下限(Pcr) は同じとなる。

崩壊荷重の下限(Pcr)での応力・ひずみ分布図を第8-14図に示す。ス タンドパイプとシュラウドヘッドの付根部に最大応力・ひずみが発生し,

4条一別紙5-110

約7%の相当塑性ひずみが断面内の極一部で発生しているが、断面及び平面 全体としては塑性域が広がっておらず、塑性崩壊は起きていない。

また,スタンドパイプの材料であるオーステナイト系ステンレス鋼は延 性材料であり,材料の伸びの規格値は34%である。今回の最大ひずみが生 じている箇所は溶接部であるが,これに比べても十分に小さい。極限解析 は,規格に基づき弾完全塑性体としてモデル化し評価を実施しているため, 本評価体系においても保守性を有している。以上から局所的に生じている 約7%相当のひずみにより崩壊は至らないものと考える。

シュラウドヘッドに差し込まれたスタンドパイプとシュラウドヘッドと の間の変位は微小であり,スタンドパイプとシュラウドヘッドが接触して いないことを確認している。これは,シュラウドヘッドに差し込まれたス タンドパイプは両端を溶接で固定することで,変位が微小になったものと 考える。

注: S s 地震荷重の許容値は 0.9 · Pcr であるため,裕度は 1.53 である。

S d 地震時の荷重-変位曲線(中心位置) 注: S d 地震荷重の許容値は Pcr である ため,裕度は同じである。

第8-11図 Ss地震時及びSd地震時の崩壊荷重の下限の算定結果

4条一別紙5-112

第8-12図 崩壊荷重の下限 (Pcr) の定義

第8-13図 スタンドパイプ長さを変化させた場合の影響(概略図)

応力分布図

第8-14図 崩壊荷重の下限 (Pcr) での応力・ひずみ分布図 (1/5)

応力分布図(平面図)最大ひずみ発生位置高さ

応力分布図(平面図)(隅肉溶接上端を含む位置)

第8-14図 崩壊荷重の下限 (Pcr) での応力・ひずみ分布図 (2/5)

180°位置

0°位置

断面図

ひずみ分布図

第8-14図 崩壊荷重の下限 (Pcr) での応力・ひずみ分布図 (3/5)

270°位置

90°位置

第8-14図 崩壊荷重の下限 (Pcr) での応力・ひずみ分布図 (4/5)

ひずみ分布図(平面図)隅肉溶接上端を含む位置

第8-14図 崩壊荷重の下限 (Pcr) での応力・ひずみ分布図 (5/5)

(3) 極限解析に対する試験による確認

スタンドパイプにおける今回工認の申請は,極限解析を用いてスタンドパ イプ部の有する耐力が地震荷重以上であることを確認することで,地震時に おける健全性を評価する。極限解析は,これまでの工認での適用例としてP WRの炉内構造物での適用実績はあるが,第8-3表に示すように,適用範囲 及び解析手法は同じであるものの,適用部位が異なる。なお,先行PWRと 同様に東海第二発電所のスタンドパイプへの極限解析の結果が保守性を有す ることを補足的に確認する観点から,縮尺の試験体を用いた試験を行う。

	先行PWR	東海第二
適用範囲	炉内構造物	同左
適用部位	ラジアルサポート	スタンドパイプ
海田坦枚	JSME設計・建設規格	司七
過用規俗	CSS-3160	juj 在
韶托手注	3次元FEMによる	司右
四年7月十亿	弹塑性解析	ШД

第8-3表 先行実績と東海第二との比較

3. 試験による検証について

(1) 試験目的

試験は、スタンドパイプとシュラウドヘッド部を模擬した縮小試験体に荷 重(モーメント)を作用させる試験を実施し、スケール則を考慮してスタン ドパイプが負担することができる最大の荷重(以下,「限界荷重」という。) を求める。

試験にて得られた限界荷重が極限解析にて得られた崩壊荷重の下限(Pcr) より大きいことを確認することで、極限解析の保守性を確認する。

(2) 試験体

地震による荷重は鉛直荷重,水平荷重及びモーメントが発生するが,モー メントが支配的な荷重であるため,モーメントを負荷できる試験体とする。

試験体は、スタンドパイプの構造を模擬した縮小モデルとし、試験体のサ イズは、試験機が具備する恒温槽の寸法制限を考慮して、外径及びスタンド パイプ板厚で1/3 スケールとする。試験体の材料は実機と同等のものを使 用する。試験体の仕様を第8-4表に示す。また、試験体の概略図を第8-15 図 に、試験装置の概略図を第8-16 図に示す。試験体は、試験装置の荷重負荷を 考慮して、シュラウドヘッドを模擬した鋼板に2本のスタンドパイプを模擬 した管を溶接にて取付け、下側のスタンドパイプを試験機に固定し、上側の スタンドパイプを上方へ引っ張ることにより、スタンドパイプ付根にモーメ ントを作用させる。

なお、シュラウドヘッドは固定しておらず、また、シュラウドヘッドは試 験結果への影響が軽微と考え、厚い平板で模擬している。

(3) 試験方法

試験は,恒温槽を具備した試験機に試験体を取り付け,301℃(運転状態I, IIの最高温度)の高温状態にて,試験体に上方へ荷重を負荷しながら変位を

4条一別紙5-120

計測することにより行う。なお,変位については2本のスタンドパイプの変 位であることから,変位に1/2を乗ずることにより1本のスタンドパイプの 変位とする。

(4) 試験結果の評価

試験により求められた荷重-変位曲線から,スケール則を考慮して実寸法 における荷重-変位曲線を作成し,極限解析結果と比較評価する。スケール 則は荷重(モーメント)に対して塑性断面係数の比を乗じ,変位に対しては 長さ及び断面二次モーメントを考慮して求めた弾性状態での変位比を乗ずる ことにより,実機寸法における曲線を作成する。

本試験は限界荷重が極限解析にて得られた崩壊荷重の下限(Pcr)より大き いことを確認するものであり,試験での崩壊荷重を塑性断面係数の比を乗じ て実機寸法における崩壊荷重(限界荷重)を算出することで,荷重の比較は 可能であると考える。

	項目		試験体仕様	実機仕様
ス	タンドパイ	プ		
	寸法	外径	56.10 mm	168.3 mm
			(1/3 スケール)	
		板厚	2.37 mm	7.11 mm
			(1/3 スケール)	
	材料		SUS304TP	SUS304TP 相当
				(ASME SA-312 Gr. TP304)
シ	ュラウドヘ	ッド鏡板		
	寸法	板厚	32 mm	50.8 mm
	材料		SUS304	SUS304 相当
				(ASME SA-240 TYPE304)
変	立測定位置		鏡板表面から148 mm	鏡板表面から1000 mm
				(極限解析の変位出力位
				置)

第8-4表 縮小モデル試験体の仕様

平面図

断面図

第8-15図 試験体の概略図

第8-16図 試験装置の概略図

4条一別紙5-123

スタンドパイプの長さが異なること等の影響について

極限解析での負荷荷重は,225本のスタンドパイプを1本とした建屋機器 連成モデルでの地震応答解析にて得られた地震荷重をスタンドパイプ総本数 (225本)にて除した1本あたりの平均地震荷重を入力しているが,実際の スタンドパイプはシュラウドヘッドに取り付けられており,設置位置により スタンドパイプの長さが異なること及び小補強板並びに大補強板で連結され ることにより各スタンドパイプが受け持つ地震荷重(モーメント)は異なる と考えられる。

また、地震応答解析でスタンドパイプを1本として算出したスタンドパイ プ全体のモーメントと比較して、実際に発生するモーメントは、補強板で連 結されることにより変形挙動が同じになることで軸方向に変位が生じ、これ により発生する軸方向荷重によるモーメント分だけ低下すると考えられる (別図1参照)。

これらを踏まえて、建屋機器連成モデルから得られた荷重に対して、225 本のスタンドパイプをはり要素にモデル化し、解析を行うことで、各スタン ドパイプに発生する地震荷重を算出する。各スタンドパイプの荷重の算出に ついては、補強板等を考慮したスタンドパイプ 225 本とシュラウドヘッドを はり要素及びシェル要素でモデル化し、建屋機器地震応答解析から得られた モーメントとのつり合いを考慮した静的解析を実施することにより、スタン ドパイプに発生する最大荷重を算出する。

また,スタンドパイプが受け持つ許容値(荷重)には1本のスタンドパイ プをソリッド要素にてモデル化したFEMを用いて極限解析を行い,許容荷 重が地震荷重を上回ることを確認することで,スタンドパイプの健全性を確 認する。現状の極限解析ではスタンドパイプ付け根部に平均地震荷重の倍率

4条一別紙5-124

を負荷することで崩壊荷重の下限(Pcr)を求めているが,はり要素にてモ デル化して得られたスタンドパイプに発生する最大荷重が平均地震荷重を上 回る場合には,最大荷重をスタンドパイプ付け根部に負荷し,極限解析を実 施する。

別図1 変位に伴い発生する荷重挙動の概略図

別紙-6

東海第二発電所

下位クラス施設の波及的影響の検討について (耐震)

- 1. 概 要
- 2. 波及的影響に関する評価方針
 - 2.1 基本方針
 - 2.2 下位クラス施設の抽出方法
 - 2.3 影響評価方法
 - 2.4 プラント運転状態による評価対象の考え方
- 3. 事象検討
 - 3.1 別記2に記載された事項に基づく事象検討
 - 3.2 地震被害事例に基づく事象の検討
 - 3.3 津波,火災,溢水による影響評価
 - 3.4 周辺斜面の崩壊による影響評価
- 4. 上位クラス施設の確認
- 5. 下位クラス施設の抽出及び影響評価方法
 - 5.1 不等沈下又は相対変位による影響
 - 5.2 接続部における相互影響
 - 5.3 建屋内における損傷,転倒及び落下等による影響
 - 5.4 建屋外における損傷,転倒及び落下等による影響
- 6. 下位クラス施設の検討結果
 - 6.1 不等沈下又は相対変位による影響検討結果
 - 6.2 接続部における相互影響検討結果
 - 6.3 建屋内における損傷,転倒及び落下等による影響検討結果6.4 建屋外における損傷,転倒及び落下等による影響検討結果

4条一別紙6-2

添付資料

- 添付資料 1-1 波及的影響評価に係る現場調査の実施要領
- 添付資料 1-2 波及的影響評価に係る現場調査記録
- 添付資料 2-1 発電所における地震被害事例の要因整理
- 添付資料 2-2 東海第二発電所における地震被害事例の要因整理
- 添付資料3 設置予定施設に対する波及的評価手法について
- 添付資料4 上位クラス施設に隣接する下位クラス施設の接地状況について

1. 概 要

設計基準対象施設のうち耐震重要度分類のSクラスに属する施設,その間 接支持構造物及び屋外重要土木構造物(以下「Sクラス施設等」という。)が 下位クラス施設の波及的影響によって,その安全機能を損なわないことにつ いて,また,重大事故等対処施設のうち常設耐震重要重大事故防止設備及び 常設重大事故緩和設備並びにこれらが設置される常設重大事故等対処施設

(以下「重要SA施設」という。)が,下位クラス施設の波及的影響によって, 重大事故等に対処するために必要な機能を損なわないことについて,設計図 書類を用いた机上検討及び現場調査(プラントウォークダウン)による敷地 全体を俯瞰した調査・検討を行い,評価を実施する。

ここで、Sクラス施設等と重要SA施設を合わせて「上位クラス施設」と 定義し、Sクラス施設等の安全機能と重要SA施設の重大事故等に対処する ために必要な機能を合わせて「上位クラス施設の有する機能」と定義する。 また、上位クラス施設に対する波及的影響の検討対象とする「下位クラス施 設」とは、上位クラス施設以外の発電所内にある施設(資機材等含む。)をい う。

- 2. 波及的影響に関する評価方針
- 2.1 基本方針

波及的影響評価は以下に示す方針に基づき実施する。

- (1)「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」の別記2(以下「別記2」という。)に記載された4つの事項をもとに,検討すべき事象を整理する。また,原子力発電所の地震被害情報をもとに,別記2の4つの事項意外に検討すべき事象の有無を確認する。
- (2) (1)で整理した検討事項をもとに,上位クラス施設に対して波及的影響を 及ぼすおそれのある下位クラス施設を抽出する。
- (3) (2)で抽出された下位クラス施設について,配置,設計,運用上の観点か ら上位クラス施設への影響評価を実施する。

また、波及的影響評価に係る検討フローを第2-1図に示す。

第2-1図 波及的影響評価に係る検討フロー

2.2 下位クラス施設の抽出方法

上位クラス施設に対して波及的影響を及ぼすおそれのある下位クラス施設の 抽出は,設計図書類を用いた机上検討及び現場調査(プラントウォークダウン) による敷地全体を俯瞰した調査・検討により実施する。

(1) 机上検討

発電所配置図,機器配置図,系統図等の設計図書類を用いて,屋外及び 屋内の上位クラス施設を抽出し,その配置状況を確認する。

次に設計図書類を用いて、上位クラス施設周辺に位置する下位クラス施 設、又は上位クラス施設に接続されている下位クラス施設のうち、波及的 影響を及ぼすおそれのあるものを抽出する。

(2) 現場調査

机上検討で抽出された下位クラス施設の詳細な設置状況又は配置状況を 確認すること,また,設計図書類では判別できない仮設設備,資機材等が 影響防止対策を施工していない状態で上位クラス施設周辺に配置されて いないことを確認することを目的として,屋内外の上位クラス施設を対象 として現場調査を実施する。

現場調査の実施要領を添付資料1-1に示す。また,現場調査記録の例を 添付資料1-2に示す。

2.3 影響評価方法

波及的影響を及ぼすおそれがあるとして抽出された下位クラス施設につい て,影響評価により上位クラス施設の機能を損なわないことを確認する。

影響評価において、抽出された下位クラス施設が耐震性を有していることの確認によって上位クラス施設の機能を損なわないことを確認する場合、適用する地震動は、基準地震動Ssとする。

2.4 プラント運転状態による評価対象の考え方

プラントの運転状態としては,通常運転時,事故対処時,定期検査時があ り,各運転状態において要求される上位クラス施設の機能を考慮して波及的 影響評価を実施する。

通常運転時は,ほぼ全ての上位クラス施設が供用状態(運転又は待機状態) にあり、下位クラス施設の波及的影響も考慮した上で、基準地震動Ssに対 して安全機能を損なわないことを確認する。また、事故対処時においても、 通常運転時と同様である。

定期検査時は、工程に伴い、上位クラス施設の供用状態は除外され、系統 も隔離される。その状態では当該施設の安全機能は期待しないことから、波 及的影響評価の対象から除外する。なお、定期検査時においても電源系や海 水系等の一部の施設は供用状態にあるため、これらの施設(作業用クレーン、 取扱い治具等含む)については波及的影響評価の対象となる。

- 3. 事象検討
- 3.1 別記2に記載された事項に基づく事象検討

別記2に記載された4つの事項をもとに、具体的な検討事象を整理する。

- 設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位に よる影響
 - (1) 地盤の不等沈下による影響
 - ・地盤の不等沈下による下位クラス施設の傾きや倒壊に伴う隣接した
 上位クラス施設への衝突
 - (2) 建屋の相対変位による影響
 - ・上位クラス施設と下位クラス施設の建屋の相対変位による隣接した
 上位クラス施設への衝突
- ② 上位クラス施設と下位クラス施設との接続部における相互影響

- ・機器・配管系において接続する下位クラス施設の損傷と隔離に伴う上 位クラス施設側の系統のプロセス変化
- ・電気計装設備において接続する下位クラス施設の損傷に伴う電気回路,
 信号伝送回路を介した悪影響
- ③ 建屋内における下位クラス施設の損傷,転倒及び落下等による上位クラス 施設への影響
 - ・下位クラス施設の転倒,落下,倒壊に伴う上位クラス施設への衝突
 - ・可燃物を内包した下位クラス施設の損傷に伴う火災
 - ・水・蒸気を内包した下位クラス施設の損傷に伴う溢水
- ④ 建屋外における下位クラス施設の損傷,転倒及び落下等による上位クラス 施設への影響
 - (1) 施設の損傷,転倒及び落下等による影響
 - 下位クラス施設の転倒、落下、倒壊に伴う上位クラス施設への衝突
 - ・可燃物を内包した下位クラス施設の損傷に伴う火災
 - ・水・蒸気を内包した下位クラス施設の損傷に伴う溢水
 - (2) 周辺斜面の崩壊による影響
 - ・周辺斜面の崩壊による土塊の衝突
- 3.2 地震被害事例に基づく事象の検討
- 3.2.1 被害事例とその要因の整理

別記2に記載された事項の他に考慮すべき事項がないかを確認するため, 原子力施設情報公開ライブラリ(NUCIA:ニューシア)から,同公開ライブラ リに登録された以下の地震を対象に,原子力発電所の被害情報を抽出した。

これまでの被害事例において、下位クラス施設の破損等による波及的影響 を含めて上位クラス施設の安全機能が損なわれる事象は確認されていないた め、被害事例は全て上位クラス施設以外のものとなるが、これらの地震被害

の発生要因(原因)を整理し、3.1 項で検討した波及的影響の具体的な検討 事象に加えるべき新たな被害要因が無いかを検討した。

被害事例とその要因を整理した結果を添付資料 2-1 及び添付資料 2-2 に示す。

(対象とした情報)

- ・宮城県沖地震(女川原子力発電所:平成17年8月)
- ・能登半島地震(志賀原子力発電所:平成19年3月)
- 新潟県中越沖地震(柏崎刈羽原子力発電所:平成19年7月)
- ・駿河湾地震(浜岡原子力発電所:平成21年8月)
- ・東北地方太平洋沖地震(福島第二原子力発電所,女川原子力発電所,東海
 第二発電所:平成23年3月)

※NUCIA 最終報告を対象とした。

添付資料 2-1 及び添付資料 2-2 の整理の結果,地震被害の発生要因は以下の I ~Ⅵに分類された。

[地震被害発生要因]

- I: 地盤の不等沈下による損傷
- Ⅱ:建屋間の相対変位による損傷
- Ⅲ:地震の揺れによる施設の損傷・転倒・落下等
- Ⅳ:周辺斜面の崩壊
- V:使用済燃料プールのスロッシングによる溢水
- Ⅵ:その他(地震の揺れによる警報発信等,施設の損傷を伴わない I ~ V以 外の要因等)
- 3.2.2 追加考慮すべき事象の検討

上記 I ~ VIの要因が 3.1 項で整理した①~④の検討事項の対象となっているかを第 3-1 表に整理した。

第3-1表に示す通り、I ~Vの要因は①~④の検討事項に分類されており、 いずれの検討事項にも分類されなかった要因は、「VI:その他(地震の揺れに よる警報発信等,施設の損傷を伴わない I ~V以外の要因等)」であった。

要因VIについては、地震の揺れによる警報発信、機器の誤動作、避圧弁の 動作等の要因、並びに地震に起因する津波、火災、溢水による要因である。 このうち警報発信、機器の誤動作、避圧弁の動作等については施設の損傷を 伴わない要因であることから、波及的影響の観点で考慮すべき検討事項には 当たらないと判断した。また、津波、火災、溢水による影響については、3.3 項に示す通り別途影響評価を実施していることから、ここでは検討の対象外 とする。

以上のことから,波及的影響評価における検討事項①~④について,地震 による原子力発電所の被害情報から確認された被害要因を踏まえても,特に 追加すべき事項がないことが確認された。

	波及的影響の分類	具体的な検討事象	対象と なる要因
	設置地盤及び地震応答性状の相違等に起因	地盤の不等沈下による	Ι
	する相対変位又は不等沈下による影響	影響	
		建屋の相対変位による	Π
		影響	
2	上位クラス施設と下位のクラスの施設との	接続部における相互影	Ⅱ, Ⅲ
	接続部における相互影響	響	
3	建屋内における下位のクラスの施設の損傷,	施設の損傷, 転倒及び落	III, V
	転倒及び落下等による上位クラス施設への	下等による影響	
	影響		
4	建屋外における下位のクラスの施設の損傷,	施設の損傷,転倒及び落	I, III
	転倒及び落下等による上位クラス施設への	下等による影響	
	影響		
		周辺斜面の崩壊による	IV
		影響	

第3-1表 地震被害事例の要因と検討事象の整理

3.3 津波,火災,溢水による影響評価

地震に起因する津波,火災,溢水による安全機能又は重大事故等に対処す るために必要な機能を有する施設への影響については,それぞれ津波側,火 災側,及び溢水側の説明書の中で影響評価を実施する。

津波の影響評価では、必要な津波防護対策(Sクラス)を講じることによ り、基準津波に対して施設の安全機能又は重大事故等に対処するために必要 な機能が損なわれるおそれがない設計としている。火災の影響評価では、地 震による損傷の有無に関わらず、可燃物を内包している機器・配管系の全て が火災源となることを想定して、施設の安全機能への影響評価を実施してい る。また、溢水の影響評価では、水又は蒸気を内包している下位クラスの機 器・配管系について、基準地震動Ssに対する耐震性を確認できないものが 溢水源となることを想定して、施設の安全機能への影響評価を実施している。 以上より、地震に起因する津波、火災、溢水による波及的影響については、 これらの影響評価に包絡される。

3.4 周辺斜面の崩壊による影響評価

東海第二発電所の上位クラス施設の周辺には、地震の発生によって安全機 能に影響を与えるおそれのある斜面は存在しない。本検討は、「東海第二発 電所 耐震重要施設及び常設重大事故等対処施設の基礎地盤及び周辺斜面の 安定性評価について」において実施している。

4. 上位クラス施設の確認

波及的影響評価を実施するに当たって,防護対象となる上位クラス施設は 以下のとおりとする。

(1) 設計基準対象施設のうち,耐震Sクラス施設(津波防護施設,浸水防止 設備及び津波監視設備を含む。)

- (2) (1)の間接支持構造物である建物・構築物
- (3) 屋外重要土木構造物
- (4) 重大事故等対処施設のうち,常設耐震重要重大事故防止設備及び常設重 大事故緩和設備
- (5) (4) が設置される常設重大事故等対処施設の間接支持構造物である建 物・構築物

屋外に設置されている上位クラス施設一覧を第 4-1 表に屋内の上位クラス施設一覧を第 4-2 表に示す。表中では,原子炉建屋を R/B と使用済燃料乾 式貯蔵建屋を DC/B と表記する。

第4-1表 建屋外上位クラス施設一覧

番号	建屋外上位クラス施設	設置 場所	区分
A001	残留熱除去系海水ポンプ	屋外	Sクラス SA施設
A002	残留熱除去系海水ストレーナ	屋外	Sクラス SA施設
A003	残留熱除去系海水配管	屋外	Sクラス SA施設
A004	非常用ディーゼル発電機用海水ポンプ	屋外	Sグラス SA施設
A005	非常用ディーゼル発電機用海水ストレーナ	屋外	Sクラス SA施設
A006	非常用ディーゼル発電機用海水配管	屋外	Sクラス SA施設
A007	高圧炉心スプレイ系ディーゼル発電機用海水ポ ンプ	屋外	Sクラス SA施設
A008	高圧炉心スプレイ系ディーゼル発電機用海水ス トレーナ	屋外	Sクラス SA施設
A009	高圧炉心スプレイ系ディーゼル発電機用海水配 管	屋外	Sクラス SA施設
A010	非常用ガス処理系配管	屋外	Sクラス SA施設
A011	原子炉建屋	屋外	Sクラス及びSA施設 間接支持構造物
A012	使用済燃料乾式貯蔵建屋	屋外	Sクラス 間接支持構造物
A013	取水構造物	屋外	屋外重要度土木構造物 SA施設
A014	屋外二重管	屋外	Sクラス及びSA施設 間接支持構造物
A015	非常用ガス処理系配管支持構造(排気筒、支持 架構)	屋外	Sクラス及びSA施設 間接支持構造物
A016	常設代替高圧電源装置置場	屋外	Sクラス及びSA施設 間接支持構造物
A017	常設代替高圧電源装置用カルバート	屋外	Sクラス及びSA施設 間接支持構造物
A018	緊急時対策所	屋外	SA施設 間接支持構造物
A019	緊急時対策所用発電機燃料油貯蔵タンク基礎	屋外	SA施設 間接支持構造物
A020	代替淡水貯槽	屋外	SA施設
A021	常設低圧代替注水系ポンプ室	屋外	SA施設 間接支持構造物
A022	常設低圧代替注水系配管カルバート	屋外	SA施設 間接支持構造物
A023	格納容器圧力逃がし装置格納槽	屋外	SA施設 間接支持構造物
A024	格納容器圧力逃がし装置用配管カルバート	屋外	SA施設 間接支持構造物
A025	SA用海水ピット	屋外	SA施設
A026	SA用海水ピット取水塔	屋外	SA施設
A027	海水引込み管	屋外	SA施設
A028	緊急用海水ポンプピット	屋外	SA施設
A029	緊急用海水配管カルバート	屋外	SA施設 間接支持構造物
A030	緊急用海水取水管	屋外	SA施設
A031	可搬型設備用軽油タンク基礎	屋外	SA施設
A032	防潮堤及び防潮扉(防潮堤道路横断部に設置)	屋外	Sグラス
A033	放水路ゲート	屋外	Sグラス
A034	構内排水路逆流防止設備	屋外	Sグラス
A035	貯留堰	屋外	Sクラス及びSA施設
A036	取水路点検用開口部浸水防止蓋	屋外	S/777
A037	海水ポンプグランドドレン排出口逆止弁	屋外	S//77
A038	取水ピット空気抜き配管逆止弁	屋外	S/777
A039	海水ポンプ室ケーブル点検口浸水防止蓋	屋外	Sグラス

番号	建屋外上位クラス施設	設置 場所	区分
A040	放水路ゲート点検用開口部浸水防止蓋	屋外	SŹŦX
A041	SA用海水ピット開口部浸水防止蓋	屋外	SŹŦX
A042	緊急用海水ポンプピット点検用開口部浸水防止 蓋	屋外	Sグラス
A043	緊急用海水ポンプグランドドレン排出口逆止弁	屋外	SŹŦX
A044	緊急用海水ポンプ室床ドレン排出口逆止弁	屋外	Sグラス
A045	貫通部止水処置	屋外	SŹŦX
A046	津波監視カメラ	屋外	Sグラス
A047	取水ピット水位計	屋外	SŹŦX
A048	潮位計	屋外	Sグラス
A049	残留熱除去海水系ポンプD逆止弁	屋外	Sグラス
A050	残留熱除去海水系ポンプB逆止弁	屋外	Sグラス
A051	残留熱除去海水系ポンプA逆止弁	屋外	SŹŦX
A052	残留熱除去海水系ポンプC逆止弁	屋外	Sグラス
A053	非常用ディーゼル発電機2C海水ポンプ出口逆止弁	屋外	SŹŦX
A054	非常用ディーゼル発電機 2 D海水ポンプ出口逆止弁	屋外	S/77X
A055	高圧炉心スプレイディーゼル冷却系海水系ポンプ出 口逆止弁	屋外	S/77

第4-2表 建屋内上位クラス施設一覧 (1/8)

				施 (第	安配置図 6-3-1図)					施 (第	9配置図 6-3-1図)
番号	建屋内上位クラス施設	区分	設置場所	SHT No.	エリア 番号	番号	建屋内上位クラス施設	区分	設置場所	SHT No.	エリア 番号
B001	原子炉圧力容器	Sクラス SA施設	R/B	6	4-L	B039	中央制御室換気系フィルターユニット	Sクラス SA施設	R/B	5	3-R
B002	炉心支持構造物	Sグラス	R/B	6	4-L	B040	中央制御室換気系 制御室内ダクト	Sクラス SA施設	R/B	-	-
B003	原子炉圧力容器内部構造物	Sグラス	R/B	6	4-L	B041	非常用ガス処理系/再循環系配管	Sクラス SA施設	R/B	-	-
B004	原子炉圧力容器支持構造物	Sクラス SA施設	R/B	5	3-Н	B042	非常用ガス処理系排風機	Sクラス SA施設	R/B	6	5-B
B005	主蒸気系配管	Sクラス SA施設	R/B	-	-	B043	非常用ガス処理系フィルタートレイン	Sクラス SA施設	R/B	6	5-B
B006	主蒸気隔離弁制御用アキュムレータ	Sクラス SA施設	R/B	4	2-Е, Ј	B044	非常用ガス再循環系排風機	Sクラス SA施設	R/B	6	5-B
B007	逃がし安全弁自動減圧機能用アキュムレータ	Sクラス SA施設	R/B	5	3-Н	B045	非常用ガス再循環系フィルタートレイン	Sクラス SA施設	R/B	6	5-B
B009	給水系配管	Sクラス SA施設	R/B	-	-	B046	ダクト(原子炉建屋換気系)	Sグラス	R/B	5	3-R, P, K, L
B010	主蒸気隔離弁漏えい抑制系配管	Sグラス	R/B	-	-	B047	ダクト(DG換気系)	Sグラス	R/B	2	B1-Н, Ј, К
B011	低圧マニュホールド (主蒸気隔離弁漏えい抑制系)	Sグラス	R/B	5	3-A	B048	鋼板ダクト本体及びダクト(空調ユニット系)	Sグラス	R/B	1	B2-B, D, E, G, H, J
B012	プロワ (主蒸気隔離弁漏えい抑制系)	Sグラス	R/B	5	3-A	B049	原子炉建屋換気系給気隔離弁用アキュムレータ	Sグラス	R/B	5	3-R, P
B013	再循環系配管	Sクラス SA施設	R/B	-	-	B050	原子炉建屋換気系排気隔離弁用アキュムレータ	Sグラス	R/B	5	3-K, L
B014	再循環ポンプ	Sグラス	R/B	4	2-J	B051	HPCSポンプ室空調ユニット	Sグラス	R/B	1	B2-E
B015	原子炉冷却材浄化系配管	Sクラス SA施設	R/B	-	-	B052	LPCSポンプ室空調ユニット	Sグラス	R/B	1	B2-D
B016	残留熱除去系配管	Sクラス SA施設	R/B	-	-	B053	RCICポンプ室空調ユニット	Sグラス	R/B	1	B2-B
B016	残留熱除去系熱交換器	Sクラス SA施設	R/B	1 2	B2–K, L B1–E, F	B054	RHRポンプ室空調ユニット	Sグラス	R/B	1	B2-G, H, J
B017	残留熱除去系ポンプ	Sクラス SA施設	R/B	1	B2-G, H, J	B055	非常用DG室排気ファン	Sグラス	R/B	3	1–N, R
B018	残留熱除去海水系配管	Sクラス SA施設	R/B	-	-	B056	HPCS用DG室排気ファン	Sグラス	R/B	3	1-P
B019	原子炉隔離時冷却系配管	Sクラス SA施設	R/B	-	-	B057	バッテリー室給排気ファン	Sグラス	R/B	4	2-R
B020	原子炉隔離時冷却系ポンプ	Sクラス SA施設	R/B	1	B2-B	B058	中央制御室空調用冷水ポンプ	Sグラス	R/B	5	3-R
B021	高圧炉心スプレイ系配管	Sクラス SA施設	R/B	-	-	B059	中央制御室空調ユニット	Sグラス	R/B	5	3-R
B022	高圧炉心スプレイ系ポンプ	Sグラス SA施設	R/B	1	B2-E	B060	格納容器(ドライウエル部)	Sクラス SA施設	R/B	6	4-L
B023	低圧炉心スプレイ系配管	Sクラス SA施設	R/B	-	-	B061	格納容器(サプレッションチェンバ部)	Sクラス SA施設	R/B	1	2B-M
B024	低圧炉心スプレイ系ポンプ	Sクラス SA施設	R/B	1	B2-D	B062	ペデスタル (原子炉本体の基礎)	Sクラス及び SA施設 間接支持	R/B	1	2B-M
B025	液体廃棄物処理系配管(PCVバウンダリ)	Sグラス SA施設	R/B	-	-	B063	格納容器配管貫通部	Sクラス SA施設	R/B	_	-
B026	制御棒駆動機構	Sグラス SA施設	R/B	4	2-J	B064	格納容器電気配線貫通部	Sクラス SA施設	R/B	_	-
B027	制御棒駆動水圧系配管	Sクラス SA施設	R/B	-	-	B065	可燃性ガス濃度制御系再結合装置	Sグラス	R/B	5	3-В, С
B028	制御棒駆動水圧系制御ユニット	Sクラス SA施設	R/B	5	3–E, F	B066	可燃性ガス濃度制御系配管	Sグラス	R/B	-	-
B029	ほう酸水注入系配管	Sグラス SA施設	R/B	-	-	B067	不活性ガス系配管	Sクラス SA施設	R/B	_	-
B030	ほう酸水注入系ポンプ	Sクラス SA施設	R/B	6	5-C	B068	内燃機関 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-Н, К
B031	ほう酸水貯蔵タンク	Sクラス SA施設	R/B	6	5-C	B069	発電機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-Н, К
B032	使用済燃料貯蔵ラック	Sグラス	R/B	7	6-A	B070	関連配管 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	-
B033	使用済燃料プール	Sクラス SA施設	R/B	7	6-A	B071	始動空気圧縮機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, X
B034	使用済燃料乾式貯蔵容器	Sグラス	DC/B	8	-	B072	始動空気だめ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х
B035	原子炉建屋換気系放射線モニタ	Sグラス	R/B	7	6-A	B073	潤滑油プライミングポンプ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х
B036	原子炉建屋排気筒モニタ	Sグラス	R/B	5	3-К	B074	温水循環ポンプ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	В1-Н, К
B037	中央制御室換気系送風機	Sクラス SA施設	R/B	5	3-R	B075	潤清油冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х
B038	中央制御室換気系排風機	Sクラス SA施設	R/B	5	3-R	B076	清水冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х

第4-2表 建屋内上位クラス施設一覧 (2/8)

				施a (第	世界 2 2 2 6 -3 -1 図)	Ĺ				施記 (第	5 6-3-1図)
番号	建屋内上位クラス施設	区分	設置場所	SHT No.	エリア 番号	番号	建屋内上位クラス施設	区分	設置場所	SHT No.	エリア 番号
B077	燃料弁冷却油冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	В1-Н, К	B115	低圧代替注水系配管	SA施設	-	_	-
B078	潤滑油ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х	B116	代替燃料プール注水系配管	SA施設	-	-	-
B079	清水ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	В1-Н, К	B117	常設低圧代替注水系ポンプ	SA施設	-	-	-
B080	潤滑油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, Х	B118	代替燃料プール冷却系ポンプ	SA施設	-	-	_
B081	燃料油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	В1-Н, К	B119	緊急用海水ポンプ	SA施設	-	_	-
B082	清水膨張タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-Н, К	B120	代替燃料プール冷却系熱交換器	SA施設	-	_	-
B083	シリンダ注油タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-Н, К	B121	緊急用海水系配管	SA施設	-	_	-
B084	潤滑油サンプタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-V, X	B122	常設高圧代替注水系ポンプ	SA施設	-	-	-
B085	燃料油デイタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-Н, К	B123	高圧代替注水系配管	SA施設	-	-	-
B086	内燃機関 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B124	衛星電話設備(固定型)	SA施設	-	-	-
B087	発電機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B125	フィルタ装置出口放射線モニタ(高レンジ・低 レンジ)	SA施設	-	-	-
B088	関連配管 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	-	B126	フィルタ装置出口放射線モニタ(高レンジ・低 レンジ)	SA施設	-	-	-
B089	始動空気圧縮機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B127	耐圧強化ベント系放射線モニタ	SA施設	-	-	-
B090	始動空気だめ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B128	使用済燃料プールエリア放射線モニタ(高レン ジ・低レンジ)	SA施設	-	-	-
B091	潤滑油プライミングポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B129	中央制御室待避室遮蔽	SA施設	-	-	-
B092	温水循環ポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B130	中央制御室待避室空気ボンベユニット(配管・ 弁)	SA施設	-	-	-
B093	潤滑油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B131	耐圧強化ベント系配管	SA施設	-	-	-
B094	清水冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B132	遠隔人力操作機構	SA施設	-	-	-
B095	燃料弁冷却油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B133	フィルタ装置(格納容器圧力逃がし装置)	SA施設	-	-	-
B096	潤滑油ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B134	移送ポンプ(格納容器圧力逃がし装置)	SA施設	-	-	-
B097	清水ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B135	遠隔人力操作機構(格納容器圧力逃がし装置)	SA施設	-	-	-
B098	潤滑油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B136	圧力開放板(格納容器圧力逃がし装置)	SA施設	-	-	-
B099	燃料油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B137	フィルタ装置遮蔽(格納容器圧力逃がし装置)	SA施設	-	-	-
B100	清水膨張タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B138	配管遮蔽(格納容器圧力逃がし装置)	SA施設	-	-	-
B101	シリンダ注油タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B139	二次隔離弁操作室遮蔽(格納容器圧力逃がし装 置)	SA施設	-	-	-
B102	潤滑油サンプタンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	1	B2-W	B140	二次隔離弁操作室 空気ボンベユニット(配 管・弁)	SA施設	-	-	-
B103	燃料油デイタンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	2	B1-J	B141	(格納容器圧力逃がし装置)	SA施設	-	-	-
B104	250V系 蓄電池	Sクラス	R/B	3	1-V	B142	代替循環冷却系ポンプ	SA施設	-	-	-
B105	250V系 充電器	Sクラス	R/B	3	1-S	B143	代替循環冷却系配管	SA施設	-	-	-
B106	125V系 蓄電池	Sクラス SA施設	R/B	3	1-T 1-U	B144	静的触媒式水素再結合器	SA施設	-	-	-
B107	125V系 充電器	Sクラス	R/B	3	1-S	B145	静的触媒式水素再結合器 動作監視装置	SA施設	-	-	-
B108	125V HPCS蓄電池	Sクラス SA施設	R/B	3	1-V	B146	常設代替高圧電源装置	SA施設	-	-	-
B109	125V HPCS充電器	Sグラス	R/B	3	1-S	B147	常設代替高圧電源装置用燃料移送ポンプ	SA施設	-	-	_
B110	緊急用125V蓄電池	SA施設	R/B	5	3-R	B148	常設代替交流電源装置用燃料移送系配管	SA施設	-	-	-
B111	直流±24V蓄電池	Sクラス SA施設	R/B	3	1-T 1-U	B149	緊急時対策所用発電機	SA施設	-	-	_
B112	直流土24V充電器	Sクラス SA施設	R/B	3	1-S	B150	緊急時対策所用発電機燃料油貯蔵タンク	SA施設	-	-	_
B113	バイタル交流電源装置	Sグラス	R/B	3	1-S	B151	緊急時対策所用発電機給油ポンプ	SA施設	_	_	_
B114	常設スプレイヘッダ	SA施設	-	-	-	B152	緊急時対策所遮蔽	SA施設	-	-	-

	>I• = =						
			設置	施設配置図 (第6-3-1図)			
番号	建屋内上位クラス施設	区分	場所	SHT No.	エリア 番号		
B153	緊急時対策所非常用給気ファン	SA施設	-	I	-		
B154	緊急時対策所排気ファン	SA施設	-	-	-		
B155	緊急時対策所非常用空気浄化フィルタユニット	SA施設	_	-	-		

第4-2表 建屋内上位クラス施設一覧 (3/8)

第4-2表 建屋内上位クラス施設一覧 (4/8)

		210		\$74.898.	施 記 (第	役配置図 6-3-1図)				区分設置	20. BB	施設配置図 (第6-3-1図)		
番 号		建屋内上位クラス施設	区分	設 <u>画</u> 場所	SHT No.	エリア 番号	番号		建屋内上位クラス施設	区分	設直 場所	SHT No.	エリア 番号	
C001	B22-F022A	主蒸気隔離弁第1弁A	S/77X	R/B	4	2-J	C039	B22-F065A	原子炉給水元弁	Sグラス	R/B	4	2-E	
C002	B22-F022B	主蒸気隔離弁第1 弁B	Sグラス	R/B	4	2-J	C040	B22-F065B	原子炉給水元弁	Sグラス	R/B	4	2-E	
C003	B22-F022C	主蒸気隔離弁第1弁C	Sグラス	R/B	4	2-J	C041	E32-F002A	主蒸気隔離弁ブリードライン(A)入口 弁	S/77X	R/B	4	2-Е	
C004	B22-F022D	主蒸気隔離弁第1弁D	Sグラス	R/B	4	2-J	C042	E32-F002B	主蒸気隔離弁ブリードライン(B)入口 弁	SØĪX	R/B	4	2-Е	
C005	B22-F028A	主蒸気隔離弁第2 弁 A	Sクラス	R/B	4	2-Е	C043	E32-F002C	主蒸気隔離弁ブリードライン(C)入口 弁	Sグラス	R/B	4	2-Е	
C006	B22-F028B	主蒸気隔離弁第2 弁 B	Sグラス	R/B	4	2-E	C044	E32-F002D	主蒸気隔離弁ブリードライン(D)入口 弁	Sグラス	R/B	4	2-Е	
C007	B22-F028C	主蒸気隔離弁第2弁C	Sグラス	R/B	4	2-E	C045	E32-F002E	主蒸気隔離弁ブリードライン(E)入口 弁	Sグラス	R/B	4	2-Е	
C008	B22-F028D	主蒸気隔離弁第2 弁D	Sクラス	R/B	4	2-Е	C046	E32-F002F	主蒸気隔離弁ブリードライン(F)入口 弁	Sグラス	R/B	4	2-Е	
C009	B22-F098A	主蒸気隔離弁第3 弁 A	Sグラス	R/B	4	2-Е	C047	E32-F002G	主蒸気隔離弁ブリードライン(G)入口 弁	Sグラス	R/B	4	2-Е	
C010	B22-F098B	主蒸気隔離弁第3 弁 B	Sグラス	R/B	4	2-Е	C048	E32-F002H	主蒸気隔離弁ブリードライン (H) 入口 弁	Sグラス	R/B	4	2-Е	
C011	B22-F098C	主蒸気隔離弁第3弁C	Sグラス	R/B	4	2-Е	C049	E32-F004A	主蒸気隔離弁ブリードライン (A) ベン ト元弁	Sグラス	R/B	4	2-Е	
C012	B22-F098D	主蒸気隔離弁第3弁D	Sグラス	R/B	4	2-E	C050	E32-F004B	主蒸気隔離弁ブリードライン (B) ベン ト元弁	Sグラス	R/B	4	2-Е	
C013	B22-F013A	主蒸気逃がし安全弁A	Sクラス SA施設	R/B	5	3-Н	C051	E32-F004C	主蒸気隔離弁ブリードライン(C)ベン ト元弁	Sグラス	R/B	4	2-E	
C014	B22-F013B	主蒸気逃がし安全弁B	Sクラス SA施設	R/B	5	3-Н	C052	E32-F004D	主蒸気隔離弁ブリードライン (D) ベン ト元弁	Sグラス	R/B	4	2-Е	
C015	B22-F013C	主蒸気逃がし安全弁C	Sクラス SA施設	R/B	5	3-Н	C053	E32-F004E	主蒸気隔離弁ブリードライン(E)ベン ト元弁	Sグラス	R/B	4	2-E	
C016	B22-F013D	主蒸気逃がし安全弁D	Sクラス SA施設	R/B	5	3-Н	C054	E32-F004F	主蒸気隔離弁ブリードライン (F) ベン ト元弁	Sグラス	R/B	4	2-E	
C017	B22-F013E	主蒸気逃がし安全弁E	Sクラス SA施設	R/B	5	3-Н	C055	E32-F004G	主蒸気隔離弁ブリードライン(G)ベン ト元弁	Sグラス	R/B	4	2-E	
C018	B22-F013F	主蒸気逃がし安全弁F	Sクラス SA施設	R/B	5	3-Н	C056	E32-F004H	主蒸気隔離弁ブリードライン(H)ベン ト元弁	Sグラス	R/B	4	2-E	
C019	B22-F013G	主蒸気逃がし安全弁G	Sグラス SA施設	R/B	5	3-Н	C057	G33-F001	原子炉冷却材浄化系内側隔離弁	Sグラス	R/B	4	2-J	
C020	B22-F013H	主蒸気逃がし安全弁H	Sクラス SA施設	R/B	5	3-Н	C058	G33-F004	原子炉冷却材浄化系外側隔離弁	Sグラス	R/B	4	2-G	
C021	B22-F013J	主蒸気逃がし安全弁J	Sグラス SA施設	R/B	5	3-Н	C059	E12-F003B	残留熱除去系熱交換器B出口弁	Sグラス	R/B	2	B1-F	
C022	B22-F013K	主蒸気逃がし安全弁K	Sクラス SA施設	R/B	5	3-Н	C060	E12-F004B	残留熱除去系ポンプB入口弁	Sグラス	R/B	1	B2-H	
C023	B22-F013L	主蒸気逃がし安全弁L	Sグラス SA施設	R/B	5	3-Н	C061	E12-F004C	残留熱除去系ポンプC入口弁	Sグラス	R/B	1	B2-J	
C024	B22-F013M	主蒸気逃がし安全弁M	Sクラス SA施設	R/B	5	3-Н	C062	E12-F006B	残留熱除去系ポンプB停止時冷却ライン 入口弁	Sグラス	R/B	1	B2-H	
C025	B22-F013N	主蒸気逃がし安全弁N	Sクラス SA施設	R/B	5	3-Н	C063	E12-F016B	残留熱除去系B系格納容器スプレイ弁	Sグラス	R/B	4	2-C	
C026	B22-F013P	主蒸気逃がし安全弁P	Sクラス SA施設	R/B	5	3-Н	C064	E12-F017B	残留熱除去系B系格納容器スプレイ弁	Sグラス	R/B	4	2-C	
C027	B22-F013R	主蒸気逃がし安全弁R	Sクラス SA施設	R/B	5	3-Н	C065	E12-F024B	残留熱除去系B系テストライン弁	Sグラス	R/B	5	3-A	
C028	B22-F013S	主蒸気逃がし安全弁S	Sクラス SA施設	R/B	5	3-Н	C066	E12-F027B	残留熱除去系B系サプレッションプール スプレイ弁	Sグラス	R/B	3	1-C	
C029	B22-F013U	主蒸気逃がし安全弁U	Sクラス SA施設	R/B	5	3-Н	C067	E12-F031B	残留熱除去系ポンプB出口逆止弁	Sグラス	R/B	1	B2-H	
C030	B22-F013V	主蒸気逃がし安全弁V	Sクラス SA施設	R/B	5	3-Н	C068	E12-F031C	残留熱除去系ポンプC出口逆止弁	Sグラス	R/B	1	B2-J	
C031	B22-F016	主蒸気ドレン弁(内側隔離弁)	Sグラス	R/B	4	2-J	C069	E12-F041B	残留熱除去系B系注入ラインテスト逆止 弁	Sグラス	R/B	5	3-Н	
C032	B22-F019	主蒸気ドレン弁(外側隔離弁)	Sグラス	R/B	4	2-E	C070	E12-F041C	残留熱除去系C系注入ラインテスト逆止 弁	Sグラス	R/B	5	3-Н	
C033	B22-F037	主蒸気逃がし安全弁排気管真空破壊弁	Sグラス	R/B	4	2-J	C071	E12-F042B	残留熟除去系B系注入弁	S/77	R/B	5	3-G	
C034	B22-F078	主蒸気逃がし安全弁排気管真空破壊弁	Sグラス	R/B	4	2-J	C072	E12-F042C	残留熱除去系C系注入弁	S/77X	R/B	5	3-G	
C035	B22-F010A	原子炉給水逆止弁	Sグラス	R/B	4	2-J	C073	E12-F046B	残留熱除去系B系ミニフローライン逆止 弁	S/77	R/B	2	B1-D	
C036	B22-F010B	原子炉給水逆止弁	S/177	R/B	4	2-J	C074	E12-F046C	残留熱除去系C系ミニフローライン逆止 弁	Sグラス	R/B	2	B1-A	
C037	B22-F032A	原子炉給水逆止弁	Sグラス	R/B	4	2-E	C075	E12-F047B	残留熱除去系熱交換器B入口弁	S/77	R/B	3	1-F	
C038	B22-F032B	原子炉給水逆止弁	S#7%	R/B	4	2-E	C076	E12-F048B	残留熱除去系熱交換器Bバイパス弁	S/77X	R/B	2	B1-F	

第4-2表	建屋内上位ク	ラス施設-	·覧	(5/	8)

				設置	施語 (第	役配置図 6−3−1図)					設置	施語 (第	役配置図 6−3−1図)
番号	-	建屋内上位クラス施設	区分	場所	SHT No.	エリア 番号	番号		建屋内上位クラス施設	区分	場所	SHT No.	エリア 番号
C077	E12-F050B	残留熱除去系B系停止時冷却ラインテス ト逆止弁	Sグラス	R/B	4	2-J	C115	E51-F044	原子炉隔離時冷却系真空タンク復水ポン プ出口逆止弁	\$17x	R/B	1	B2-B
C078	E12-F053B	残留熱除去系B系シャットダウン注入弁	Sグラス	R/B	4	2-D	C116	E51-F045	原子炉隔離時冷却系蒸気供給弁	Sクラス	R/B	1	B2-B
C079	E12-F064B	残留熱除去系B系ミニフロー弁	Sグラス	R/B	2	B1-D	C117	E51-F046	原子炉隔離時冷却系潤滑油クーラー冷却 水供給弁	\$27X	R/B	1	B2-B
C080	E12-F064C	残留熱除去系C系ミニフロー弁	Sグラス	R/B	2	B1-A	C118	E51-F047	原子炉隔離時冷却系真空タンク復水戻り 逆止弁	\$25x	R/B	1	B2-B
C081	E12-F003A	残留熱除去系熱交換器A出口弁	Sグラス	R/B	2	B1-E	C119	E51-F063	原子炉隔離時冷却系内側隔離弁	Sクラス	R/B	5	3-Н
C082	E12-F004A	残留熱除去系ポンプA入口弁	Sグラス	R/B	1	B2-G	C120	E51-F064	原子炉隔離時冷却系外側隔離弁	S27X	R/B	5	3-В
C083	E12-F006A	残留熱除去系ボンプA停止時冷却ライン 入口弁	Sグラス	R/B	1	B2-G	C121	E51-F065	原子炉隔離時冷却系外側テスト逆止弁	S27X	R/B	6	4-B
C084	E12-F008	残留熱除去系シャットダウンライン隔離 弁(外側)	Sグラス	R/B	4	2-C	C122	E51-F066	原子炉隔離時冷却系内側テスト逆止弁	S27X	R/B	6	5-Н
C085	E12-F009	残留熱除去系シャットダウンライン隔離 弁(内側)	Sグラス	R/B	4	2-J	C123	E51-F068	原子炉隔離時冷却系タービン排気弁	\$ <i>1</i> 77	R/B	2	В1-В
C086	E12-F016A	残留熱除去系A系格納容器スプレイ弁	Sグラス	R/B	6	4-A	C124	E51-F069	原子炉隔離時冷却系真空ポンプ出口弁	S77X	R/B	2	B1-A
C087	E12-F017A	残留熱除去系A系格納容器スプレイ弁	Sグラス	R/B	6	4-A	C125	E51-FF006 -201	原子炉隔離時冷却系タービン排気ライン 真空破壊弁	Sクラス	R/B	2	B1-G
C088	E12-F024A	残留熱除去系A系テストライン弁	Sグラス	R/B	3	1-А	C126	E51-FF006 -202	原子炉隔離時冷却系タービン排気ライン 真空破壊弁	S/7X	R/B	2	B1-G
C089	E12-F027A	残留熱除去系A系サプレッションプール スプレイ弁	Sグラス	R/B	3	1-A	C127	E22-F001	高圧炉心スプレイ系ポンプ入口弁 (CS T側)	Sクラス	R/B	2	B1-A
C090	E12-F031A	残留熱除去系ポンプA出口逆止弁	Sグラス	R/B	1	B2-G	C128	E22-F002	高圧炉心スプレイ系入口逆止弁(CST 側)	Sグラス	R/B	1	B2-E
C091	E12-F041A	残留熱除去系A系注入ラインテスト逆止 弁	Sグラス	R/B	5	3-Н	C129	E22-F004	高圧炉心スプレイ系注入弁	Sクラス	R/B	5	3-C
C092	E12-F042A	残留熟除去系A系注入弁	Sグラス	R/B	5	3-В	C130	E22-F005	高圧炉心スプレイ系テスタブル逆止弁	Sクラス	R/B	5	3-Н
C093	E12-F046A	残留熱除去系A系ミニフローライン逆止 弁	Sグラス	R/B	2	B1-A	C131	E22-F012	高圧炉心スプレイ系ミニフロー弁	S27X	R/B	1	B2-E
C094	E12-F047A	残留熟除去系熱交換器A入口弁	Sグラス	R/B	3	1-E	C132	E22-F015	高圧炉心スプレイ系ポンプ入口弁 (S/ P側)	Sクラス	R/B	1	B2-E
C095	E12-F048A	残留熱除去系熱交換器Aバイバス弁	Sグラス	R/B	2	В1-Е	C133	E22-F016	高圧炉心スプレイ系入口逆止弁 (S/P 側)	Sクラス	R/B	1	B2-E
C096	E12-F050A	残留熱除去系A系停止時冷却ラインテス ト逆止弁	Sグラス	R/B	4	2-J	C134	E22-F024	高圧炉心スプレイ系入口逆止弁	Sクラス	R/B	1	B2-E
C097	E12-F053A	残留熱除去系A系シャットダウン注入弁	Sグラス	R/B	4	2-B	C135	E21-F001	低圧炉心スプレイ系ポンプ入口弁	S27X	R/B	1	B2-D
C098	E12-F064A	残留熱除去系A系ミニフロー弁	Sグラス	R/B	2	B1-A	C136	E21-F003	低圧炉心スプレイ系出口逆止弁	Sクラス	R/B	1	B2-D
C099	2-16V12A	ドライウェルN2供給弁	Sグラス	R/B	3F	3-A	C137	E21-F005	低圧炉心スプレイ系注入弁	Sクラス	R/B	5	3-В
C100	2-16V12B	ドライウェルN2供給弁	Sグラス	R/B	3F	3-D	C138	E21-F006	低圧炉心スプレイ系テスト逆止弁	S77X	R/B	5	3-Н
C101	2-16V13A	ドライウェルN2ボトルガス供給弁	Sグラス	R/B	3F	3-А	C139	E21-F011	低圧炉心スプレイ系ミニフロー弁	S27X	R/B	1	B2-D
C102	2-16V13B	ドライウェルN2ボトルガス供給弁	Sグラス	R/B	3F	3-D	C140 -1	C12-117	スクラム弁用空気三方電磁弁	S77X	R/B	5	3-Е
C103	E12-F068A	残留熱除去系熱交換器A海水出口流量調 整弁	Sグラス	R/B	2	B1-E	C140 -2			S77X	R/B	5	3-F
C104	E12-F068B	残留熱除去系熱交換器B海水出口流量調 整弁	Sグラス	R/B	2	B1-F	C141 -1	C12-118	スクラム弁用空気三方電磁弁	S77X	R/B	5	3-Е
C105	E51-F010	原子炉隔離時冷却系復水貯蔵タンク水供 給弁	Sグラス	R/B	1	B2-A	C141 -2			S77X	R/B	5	3-F
C106	E51-F011	原子炉隔離時冷却系ポンプ復水貯蔵タン ク水供給逆止弁	Sグラス	R/B	1	B2-B	C142 -1	C12-126	スクラム弁 (加圧・流入側)	S27X	R/B	5	3-Е
C107	E51-F012	原子炉隔離時冷却系ポンプ出口弁	Sグラス	R/B	1	B2-B	C142 -2			Sクラス	R/B	5	3-F
C108	E51-F013	原子炉隔離時冷却系注入弁	Sグラス	R/B	6	4-B	C143 -1	C12-127	スクラム弁 (排出側)	Sグラス	R/B	5	3-Е
C109	E51-F015	原子炉隔離時冷却系潤滑油クーラー冷却 水圧力調整弁	Sグラス	R/B	1	B2-B	C143 -2	1		\$17x	R/B	5	3-F
C110	E51-F019	原子炉隔離時冷却系ミニフロー弁	Sグラス	R/B	1	B2-B	C144	SB2-4A	FRVS SGTS 系入口ダンパ	\$27x	R/B	6	5-A
C111	E51-F028	原子炉隔離時冷却系真空ポンプ出口逆止 弁	Sグラス	R/B	2	B1-A	C145	SB2-4B	FRVS SGTS 系入口ダンパ	S/77X	R/B	6	5-A
C112	E51-F030	原子炉隔離時冷却系サプレッションプー ル水供給ライン逆止弁	Sグラス	R/B	1	B2-B	C146	SB2-5A	非常用ガス再循環系トレインA入口ダン パ	\$17x	R/B	6	5-B
C113	E51-F031	原子炉隔離時冷却系ポンプサプレッショ ンプール水供給弁	Sグラス	R/B	1	B2-B	C147	SB2-5B	非常用ガス再循環系トレインB入口ダン パ	S/177	R/B	6	5-B
C114	E51-F040	原子炉隔離時冷却系タービン排気逆止弁	Sグラス	R/B	2	B1-B	C148	SB2-6	F R V S トレイン連結弁	S27X	R/B	6	5-B

				07.001	施a (第	2配置図 6-3-1図)					07, 191	施設 (第)	≹配置図 6−3−1図)
番号	-	建屋内上位クラス施設	区分	設直 場所	SHT No.	エリア 番号	番号		建屋内上位クラス施設	区分	設直 場所	SHT No.	エリア 番号
C149	SB2-7A	非常用ガス再循環系トレインA出口ダン パ	Sグラス	R/B	6	5-B	C187	2-26B4	AC系・真空破壊逆止弁止め弁	S/77	R/B	3	1-A
C150	SB2-7B	非常用ガス再循環系トレインB出口ダン パ	Sグラス	R/B	6	5-B	C188	SB2- 1A/1B/1C/1 D	C/S給気隔離ダンパ	Sグラス	R/B	5	3-R, P
C151	SB2-13A	非常用ガス再循環系循環ダンパ	Sグラス	R/B	6	5-B	C189	SB2– 2A/2B/2C/D	C/S排気隔離ダンパ	S77X	R/B	5	3-K, L
C152	SB2-13B	非常用ガス再循環系循環ダンパ	Sグラス	R/B	6	5-B	C190	3-13V24	非常用ディーゼル発電機 2 D海水系出口 逆止弁	Sクラス	R/B	2	B1-K
C153	SB2-9A	非常用ガス処理系トレインA入口ダンバ	S/77	R/B	6	5-B	C191	3-13V26	非常用ディーゼル発電機2C海水系出口 逆止弁	S97X	R/B	2	B1-H
C154	SB2-9B	非常用ガス処理系トレインB入口ダンバ	Sグラス	R/B	6	5-B	C192	2-16V11	ドライウェル制御用空気供給元	Sクラス	R/B	4	2-B
C155	SB2-10	SGTSトレイン連結弁	S/77	R/B	6	5-B	C193	3-13V25	高圧炉心スプレイディーゼル冷却系海水 系出口逆止弁	S97X	R/B	2	B1-J
C156	SB2-11A	非常用ガス処理系トレインA出口ダンパ	Sグラス	R/B	6	5-B	C194	2-9V33	ドライウェル内機器原子炉補機冷却水戻 り弁	Sグラス	R/B	4	2-A
C157	SB2-11B	非常用ガス処理系トレインB出口ダンバ	Sグラス	R/B	6	5-B	C195	2-9V30	ドライウェル内機器原子炉補機冷却水隔 離弁	Sクラス	R/B	4	2-A
C158	2-43V1A	可燃性ガス濃度制御系A系入口管隔離弁	S/77	R/B	4	2-B	C196	SB2-18A	中央制御室給気隔離弁	SA施設	R/B	5	3-Р
C159	2-43V1B	可燃性ガス濃度制御系B系入口管隔離弁	Sグラス	R/B	4	2-C	C197	SB2-18B	中央制御室給気隔離弁	SA施設	R/B	5	3-P
C160	FV-1A	可燃性ガス濃度制御系入口制御弁	Sグラス	R/B	5	3-В	C198	SB2-19A	中央制御室給気隔離弁	SA施設	R/B	5	3-R
C161	FV-1B	可燃性ガス濃度制御系入口制御弁	Sグラス	R/B	5	3-C	C199	SB2-19B	中央制御室給気隔離弁	SA施設	R/B	5	3-R
C162	2-43V2A	可燃性ガス濃度制御系A系出口弁	S/77	R/B	3	1-B	C200	SB2-20A	中央制御室排気隔離弁	SA施設	R/B	5	3-R
C163	2-43V2B	可燃性ガス濃度制御系B系出口弁	Sグラス	R/B	3	1-C	C201	SB2-20B	中央制御室排気隔離弁	SA施設	R/B	5	3-R
C164	2-43V3A	可燃性ガス濃度制御系A系出口管隔離弁	Sグラス	R/B	3	1-B							
C165	2-43V3B	可燃性ガス濃度制御系B系出口管隔離弁	Sグラス	R/B	3	1-C							
C166	FV-2A	可燃性ガス濃度制御系再循環制御弁	Sグラス	R/B	5	3-В							
C167	FV-2B	可燃性ガス濃度制御系再循環制御弁	Sグラス	R/B	5	3-С							
C168	MV-10A	可燃性ガス濃度制御系冷却器冷却水入口 弁	Sグラス	R/B	5	3-В							
C169	MV-10B	可燃性ガス濃度制御系冷却器冷却水入口 弁	Sグラス	R/B	5	3-С							
C170	2-26V-40	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C171	2-26V-41	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C172	2-26V-42	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C173	2-26V-43	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C174	2-26V-44	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C175	2-26V-45	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C176	2-26V-46	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C177	2-26V-47	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C178	2-26V-48	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C179	2-26V-49	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C180	2-26V-56	ドライウェル真空破壊弁	Sクラス SA施設	R/B	1	B2-M							
C181	2-26B-10	サプレッション・チェンバベント弁	Sグラス	R/B	3	1-C							
C182	2-26B-12	格納容器ベント弁	Sグラス	R/B	6	4-A							
C183	2-26B-90	PCV SGTS 排気弁	Sグラス	R/B	6	5-B							
C184	2-26V1	サプレッションチェンバ真空破壊弁	Sグラス	R/B	3	1-A							
C185	2-26V2	サプレッションチェンバ真空破壊弁	Sグラス	R/B	3	1-A							
C186	2-26B3	AC系・真空破壊逆止弁止め弁	Sグラス	R/B	3	1-A	1						

第4-2表 建屋内上位クラス施設一覧(6/8)

第4-2表 建屋内上位クラス施設一覧 (7/8)

番号	建屋内上位クラス施設	区分	設置場所	施設配置図 (第6-3-1図)					27, 191	施設配置図 (第6-3-1図)	
				SHT No.	エリア 番号	番号	建屋内上位クラス施設	区分	場所	SHT No.	エリア 番号
D001	緊急時炉心冷却系操作盤	Sクラス SA施設	R/B	4	2-S	D039	RCICタービン制御盤	Sグラス SA施設	R/B	5	3-P
D002	原子炉補機操作盤	Sクラス SA施設	R/B	4	2-S	D040	非常用メタクラ 2C	Sクラス SA施設	R/B	1	В2-Ү
D003	原子炉制御操作盤	Sクラス SA施設	R/B	4	2-S	D041	非常用メタクラ 2D	Sクラス SA施設	R/B	2	B1-L
D004	プロセス放射線モニタ計装盤	Sグラス	R/B	4	2-S	D042	非常用メタクラ HPCS	Sクラス SA施設	R/B	1	B2-Y
D005	原子炉保護系(A)継電器盤	Sグラス	R/B	4	2-S	D043	非常用パワーセンタ 2C	Sクラス SA施設	R/B	1	B2-Y
D006	原子炉保護系 (B) 継電器盤	Sグラス	R/B	4	2-S	D044	非常用パワーセンタ 2D	Sクラス SA施設	R/B	2	B1-L
D007	プロセス計装盤(H13-P613)	Sクラス SA施設	R/B	4	2-S	D045	MCC 2C-3	Sクラス SA施設	R/B	2	B1-B
D008	プロセス計装盤(H13-P617)	Sクラス SA施設	R/B	4	2-S	D046	MCC 2C-4	Sクラス SA施設	R/B	2	В1-Н
D009	残留熱除去系(B),(C)補助継電器盤	Sクラス SA施設	R/B	4	2-S	D047	MCC 2C-5	Sクラス SA施設	R/B	2	B1-B
D010	原子炉隔離時冷却系継電器盤	Sクラス SA施設	R/B	4	2-S	D048	MCC 2C-6	Sクラス SA施設	R/B	3	1-S
D011	原子炉格納容器內側隔離系継電器盤	Sグラス	R/B	4	2-S	D049	MCC 2C-8	Sクラス SA施設	R/B	5	3-A
D012	原子炉格納容器外側隔離系継電器盤	Sグラス	R/B	4	2-S	D050	MCC 2C-9	Sクラス SA施設	R/B	6	4-A
D013	高圧炉心スプレイ系継電器盤	Sクラス SA施設	R/B	4	2-S	D051	MCC 2D-3	Sクラス SA施設	R/B	2	B1-C
D014	自動減圧系(A)継電器盤	Sクラス SA施設	R/B	4	2-S	D052	MCC 2D-4	Sクラス SA施設	R/B	2	B1-K
D015	低圧炉心スプレイ系,残留熱除去系(A)補助継 電器盤	Sクラス SA施設	R/B	4	2-S	D053	MCC 2D-5	Sクラス SA施設	R/B	2	B1-C
D016	自動減圧系 (B) 継電器盤	Sクラス SA施設	R/B	4	2-S	D054	MCC 2D-6	Sクラス SA施設	R/B	3	1-S
D017	漏えい検出系操作盤(H13-P632)	Sグラス	R/B	4	2-S	D055	MCC 2D-8	Sクラス SA施設	R/B	5	3-C
D018	プロセス放射線モニタ,起動時領域モニタ(A) 操作盤	Sクラス SA施設	R/B	4	2-S	D056	MCC 2D-9	Sクラス SA施設	R/B	6	4-C
D019	プロセス放射線モニタ,起動時領域モニタ (B) 操作盤	Sクラス SA施設	R/B	4	2-S	D057	MCC HPCS	Sクラス SA施設	R/B	2	B1-J
D020	漏えい検出系操作盤(H13-P642)	Sグラス	R/B	4	2-S	D058	直流125V分電盤2A-1	Sクラス SA施設	R/B	3	1-S
D021	アクシデントマネージメント盤	Sグラス	R/B	4	2-S	D059	直流125V分電盤2A-2-1	Sクラス SA施設	R/B	1	B2-Y
D022	サプレッションプール温度記録計盤(A)	Sクラス SA施設	R/B	4	2-S	D060	直流125V分電盤2A-2	Sクラス SA施設	R/B	3	1-S
D023	サプレッションプール温度記録計盤(B)	Sクラス SA施設	R/B	4	2-S	D061	直流125V分電盤2B-1	Sクラス SA施設	R/B	3	1-S
D024	原子炉保護系(1A)トリップユニット盤	Sグラス	R/B	4	2-S	D062	直流125V分電盤2B-2-1	Sクラス SA施設	R/B	3	1-S
D025	原子炉保護系(1B)トリップユニット盤	Sグラス	R/B	4	2-S	D063	直流125V分電盤2B-2	Sクラス SA施設	R/B	3	1-S
D026	原子炉保護系(2A)トリップユニット盤	Sグラス	R/B	4	2-S	D064	直流125V分電盤HPCS	Sクラス SA施設	R/B	3	1-S
D027	原子炉保護系(2B)トリップユニット盤	Sグラス	R/B	4	2-S	D065	直流125V配電盤2A	Sクラス SA施設	R/B	3	1-S
D028	緊急時炉心冷却系(DIV-I-1)トリップユニット盤	Sクラス SA施設	R/B	4	2-S	D066	直流125V配電盤2B	Sクラス SA施設	R/B	3	1-S
D029	緊急時炉心冷却系(DIV-Ⅱ-1)トリップユニット盤	Sクラス SA施設	R/B	4	2-S	D067	直流125V配電盤HPCS	Sクラス SA施設	R/B	3	1-S
D030	緊急時炉心冷却系(DIV-I-2)トリップユニット盤	Sクラス SA施設	R/B	4	2-S	D068	中央制御室120V交流計装用分電盤2A-1	Sクラス SA施設	R/B	4	2-S
D031	高圧炉心スプレイ系トリップユニット盤	Sクラス SA施設	R/B	4	2-S	D069	中央制御室120V交流計装用分電盤2A-2	Sクラス SA施設	R/B	4	2-S
D032	所內電気操作盤	Sクラス SA施設	R/B	4	2-S	D070	中央制御室120V交流計装用分電盤2B-1	Sクラス SA施設	R/B	4	2-S
D033	タービン補機盤 (CP-4)	Sグラス	R/B	4	2-S	D071	中央制御室120V交流計装用分電盤2B-2	Sクラス SA施設	R/B	4	2-S
D034	窒素置換-空調換気制御盤	Sクラス SA施設	R/B	4	2-S	D072	120V交流計装用分電盤HPCS	Sクラス SA施設	R/B	3	1-S
D035	非常用ガス処理系,非常用ガス循環系(A)操作 盤	Sクラス SA施設	R/B	4	2-S	D073	直流125V MCC 2A-1	Sクラス SA施設	R/B	2	B1-A
D036	非常用ガス処理系,非常用ガス循環系 (B) 操作 盤	Sクラス SA施設	R/B	4	2-S	D074	直流125V MCC 2A-2	Sクラス SA施設	R/B	6	4-A
D037	タービン補機盤 (CP-9)	Sグラス	R/B	4	2-S	D075	直流±24V分電盤2A	Sクラス SA施設	R/B	3	1-S
D038	タービン補機盤 (CP-11)	Sグラス	R/B	4	2-S	D076	直流±24V分電盤2B	Sクラス SA施設	R/B	3	1-S

第4-2表 建屋内上位クラス施設一覧 (8/8)

	建屋内上位クラス施設	区分	設置 場所	施設配置図 (第6-3-1図)				EA	設置	施記 (第	5配置図 6−3−1図)
畨号				SHT No.	エリア 番号	番号	建屋内上位クラス施設	区分	場所	SHT No.	エリア 番号
D077	可搬型整流器用変圧器	SA施設	_	-	-	D127	低圧代替注水系格納容器スプレイ流量	SA施設	_	-	-
D078	可搬型代替直流電源設備用電源切替盤	SA施設	-	-	-	D128	低圧代替注水系格納容器下部注水流量	SA施設	-	-	-
D079	緊急用断路器	SA施設	-	-	-	D129	ドライウェル雰囲気温度	SA施設	-	-	-
D080	緊急用M∕C	SA施設	-	-	-	D130	サプレッション・チェンバ雰囲気温度	SA施設	_	-	-
D081	緊急用動力変圧器	SA施設	-	-	-	D131	格納容器下部水位	Sクラス SA施設	-	-	-
D082	緊急用P/C	SA施設	-	-	-	D132	フィルタ装置水位	SA施設	-	-	-
D083	緊急用MCC	SA施設	-	-	-	D133	フィルタ装置圧力	SA施設	-	-	-
D084	緊急用電源切替盤	SA施設	-	-	-	D134	フィルタ装置スクラビング水温度	SA施設	-	-	-
D085	可搬型代替低圧電源車接続盤	SA施設	-	-	-	D135	フィルタ装置入口水素濃度	SA施設	-	-	-
D086	緊急用直流125V配電盤	SA施設	-	-	-	D136	代替循環冷却系ポンプ入口温度	SA施設	-	-	-
D087	緊急時対策所用M/C	SA施設	-	-	-	D137	代替循環冷却系格納容器スプレイ流量	SA施設	-	-	-
D101	原子炉圧力	Sクラス SA施設	R/B	5	3-A, B, C, D	D138	緊急用海水系流量(残留熱除去系熱交換器)	SA施設	-	-	-
D102	原子炉水位	Sクラス SA施設	R/B	4 5	2-В 3-А, С	D139	緊急用海水系流量(残留熱除去系補機)	SA施設	-	-	-
D103	原子炉隔離時冷却系系統流量	Sクラス SA施設	R/B	2	B1-B	D140	代替淡水貯槽水位	SA施設	-	-	-
D104	高圧炉心スプレイ系系統流量	Sクラス SA施設	R/B	2	B1-C	D141	常設高圧代替注水系ポンプ吐出圧力	SA施設	-	-	-
D105	残留熱除去系系統流量	Sクラス SA施設	R/B	2	B1-B, D	D142	常設低圧代替注水系ポンプ吐出圧力	SA施設	-	-	-
D106	低圧炉心スプレイ系系統流量	Sクラス SA施設	R/B	2	B1-B	D143	代替循環冷却系ポンプ吐出圧力	SA施設	-	-	-
D107	残留熱除去系熱交換器入口温度	Sクラス SA施設	R/B	2	B1–E, F	D144	原子炉建屋水素濃度	SA施設	-	-	-
D108	残留熱除去系熱交換器出口温度	Sクラス SA施設	R/B	2	B1–E, F						
D109	残留熱除去系海水系系統流量	Sクラス SA施設	R/B	1	B2-P, S						
D110	原子炉隔離時冷却系ポンプ吐出圧力	Sクラス SA施設	R/B	2	B1-B						
D111	高圧炉心スプレイ系ポンプ吐出圧力	Sクラス SA施設	R/B	2	B1-C						
D112	残留熱除去系ポンプ吐出圧力	Sクラス SA施設	R/B	2	B1-B, D						
D113	低圧炉心スプレイ系ポンプ吐出圧力	Sクラス SA施設	R/B	2	B1-B						
D114	原子炉圧力(SA)	SA施設	R/B	5	3-В, С						
D115	サプレッション・プール水温度	Sクラス SA施設	R/B	1	B2-M						
D116	ドライウェル圧力	Sクラス SA施設	R/B	5 6	3-C, D 4-A						
D117	サプレッション・チェンバ圧力	Sクラス SA施設	R/B	3	1-C						
D118	サプレッション・プール水位	Sクラス SA施設	R/B	1	B2-D. J						
D119	格納容器内水素濃度	Sクラス SA施設	R/B	5 6	3-B 4-D						
D120	格納容器内酸素濃度	Sクラス SA施設	R/B	5 6	3-B 4-D						
D121	主蒸気系流量	Sグラス	R/B	4	2-A, D						
D122	原子炉圧力容器温度	SA施設	R/B	6	4-L						
D123	格納容器雰囲気放射線モニタ	SA施設	R/B	2 5	B1-G 3-H						
D123	原子炉水位(SA広帯域・SA燃料域)	SA施設	-	-	-						
D124	高圧代替注水系系統流量	SA施設	-	-	-						
D125	低圧代替注水系原子炉注水流量	SA施設	-	-	-						
D126	代替循環冷却系原子炉注水流量	SA施設	-	-	-						

5. 下位クラス施設の抽出及び影響評価方法

3.項で整理した各検討事象をもとに、上位クラス施設への波及的影響を及 ぼすおそれのある下位クラス施設の抽出及び評価フローを作成し、当該フロ ーに基づき、影響評価を実施する。なお、将来設置する上位クラス施設につ いては、各項の検討が可能になった段階で波及的影響の検討を実施する(添 付資料3参照)。

- 5.1 不等沈下又は相対変位による影響
 - (1) 地盤の不等沈下による影響

第5-1-1図のフローに従い,上位クラス施設及びそれらの間接支持構造物である建物・構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し,波及的影響の有無を検討する。

a. 下位クラス施設の抽出

地盤の不等沈下による下位クラス施設の傾きや倒壊を想定しても上位 クラス施設に衝突しない程度の十分な離隔距離をとって配置されてい ることを確認し,離隔距離が十分でない下位クラス施設を抽出する。

b. 耐震性の確認

a. で抽出した下位クラス施設について,基準地震動Ssに対して, 十分な支持性能を有する地盤に設置されることの確認により,不等沈下 しないことを確認する。

c. 不等沈下に伴う波及的影響の評価

b. で地盤の不等沈下のおそれが否定できない下位クラス施設につい ては, 傾きや倒壊を想定し, これらによる上位クラス施設への影響を確 認し, 上位クラス施設の有する機能を損なわないことを確認する。

d. 対策検討

c. で上位クラス施設の機能を損なうおそれが否定できない下位クラ ス施設に対して,支持地盤の補強や周辺の地盤改良等を行い,不等沈下

4条一別紙6-23

による下位クラス施設の波及的影響を防止する。

※フロー中①, ②, ④~⑦の数字は第2-1図中の①, ②, ④~⑦に対応する。

第5-1-1図 不等沈下により建屋外上位クラス施設へ影響を及ぼす可能性の ある下位クラス施設の抽出及び評価フロー

(2) 建屋間の相対変位による影響

第5-1-2図のフローに従い,上位クラス施設及びそれらの間接支持構造物である建物・構築物の周辺に位置する波及的影響を及ぼすおそれのある下位クラス施設を抽出し,波及的影響の有無を検討する。

a. 下位クラス施設の抽出

地震による建屋の相対変位を想定しても上位クラス施設に衝突しない 程度の十分な離隔距離をとって配置されていることを確認し,離隔距離 が十分でない下位クラス施設を抽出する。

b. 耐震性の確認

a. で抽出した下位クラス施設について、上位クラス施設の設計に用いる地震動又は地震力に対して、建屋の相対変位による上位クラス施設への衝突がないことを確認する。

c. 相対変位に伴う波及的影響の評価

b. で衝突のおそれが否定できない下位クラス施設について, 衝突部 分の接触状況を確認し, 建屋全体又は局部評価を実施し, 衝突に伴い, 上位クラス施設の機能を損なうおそれがないことを確認する。

d. 対策検討

c. で上位クラス施設の機能を損なうおそれが否定できない下位クラス施設に対して, 建屋の補強等を行い, 建屋の相対変位等による下位クラス施設の波及的影響を防止する。

※フロー中①, ②, ④~⑦の数字は第2-1図中の①, ②, ④~⑦に対応する。

第5-1-2図 相対変位により建屋外上位クラス施設へ影響を及ぼすおそれの ある下位クラス施設の抽出及び評価フロー
5.2 接続部における相互影響

第5-2図のフローに従い,上位クラス施設と接続する下位クラス施設を抽 出し,波及的影響を検討する。

a. 接続部の影響検討を要する上位クラス施設の抽出

接続部の影響検討を要する上位クラス施設を抽出する。ここで,上位 クラス施設と下位クラス施設との設計上の考慮をしている電気設備,計 装設備,格納容器貫通部,空気駆動弁(以下「A0弁」という。)駆動用 空気供給配管接続部及び弁グランド部漏えい検出配管接続部について は抽出の対象外とし,機器・配管及びダクトを対象とする。

(a) 電気設備

受電系統について,上位クラス施設と下位クラス施設は基本的には 系統的に分離した設計としているが,受電系統概念図にあるように一 部の受電系統において上位クラス施設と下位クラス施設との接続があ る。このため,上位クラス施設と下位クラス施設との接続するパター ンを下記のように整理した。

受電系統概念図

<パターン1>

受電系統概念図のパターン1のように上位クラス電源盤と下位クラス施設 が接続し、上位クラス電源盤から下位クラス施設に給電する場合、上位クラ ス電源盤と下位クラス施設は遮断器を介して接続されており、下位クラス施 設の故障が生じた場合においても、上位クラス電源盤の遮断器が動作するこ とで事故範囲を隔離し、上位クラス電源盤の機能に影響を与えない設計とし ている。

<パターン2>

受電系統概念図のパターン2のように上位クラス施設である非常用高圧母 線と下位クラス施設が接続し,下位クラス施設から非常用高圧母線に給電す る場合,上位クラス電源盤と下位クラス施設は遮断器を介して接続されてお り,下位クラス設備の故障が生じた場合には,上位クラス電源盤の遮断器が 動作することにより事故範囲を隔離する。この際,非常用高圧母線が停電す るが非常用ディーゼル発電機が自動起動し非常用高圧母線に給電するため, 上位クラス施設である非常用高圧母線が機能喪失しない設計としている。 <パターン3>

パターン1,2以外に考えられる上位クラス施設と下位クラス施設が接続 する組合せとして、下位クラス電源盤から上位クラス施設に給電するパター ンが挙げられる。この場合、下位クラス電源盤が故障により上位クラス施設 が機能喪失することとなるが、東海第二発電所においてはこのようなパター ンのものはない。

以上より,電気設備については上位クラス施設に接続する下位クラス施設の 故障が上位クラス施設に波及することがない設計としている。

(b) 計装設備

計測制御設備について,安全系(上位クラス施設)と常用系(下位ク ラス施設)は原則物理的に分離しているが,制御信号および計装配管の 一部に上位クラス施設と下位クラス施設との接続部がある。このため, 上位クラス施設と下位クラス施設との接続するパターンを下記のよう に整理した。

i) 制御信号

制御信号について,上位クラス施設と下位クラス施設との接続部とし て存在する可能性が考えられるパターンとして,下記の2つがある。 ①安全系(上位クラス)から常用系(下位クラス)に伝送する ②常用系(下位クラス)から安全系(上位クラス)に伝送する

このうち,②のパターンは東海第二発電所においては存在しない。① の信号を安全系(上位クラス)から常用系(下位クラス)に伝送するラ インについては,信号伝送における分離概念図に示すとおり,フォトカ プラやリレー回路などの隔離装置を介することにより,電気的に分離さ れており,常用系の故障が安全系に波及することがない設計としている。

信号伝送における分離概念図

⁴条-別紙6-30

ii)計装配管

計装配管について,上位クラス施設と下位クラス施設との接続部とし て存在する可能性が考えられるパターンとして,下記の2つがある。 ①上位クラスの機器に下位クラス計器の計装配管が接続されている ②下位クラスの機器に上位クラス計器の計装配管が接続されている

このうち,②のパターンは東海第二発電所においては存在しない。① については,上位クラスの計器と下位クラスの計器が接続されているパ ターンと上位クラスの機器(原子炉圧力容器)の計測装置として下位ク ラスの計器が接続されているパターンがあるため,それぞれパターン① -1,①-2と分類して下記の通り検討した。 <パターン①-1>

上位クラスと下位クラスの計装配管が接続部を有している場合,下記の 概念図に示すとおり,計装配管の耐震設計は上位クラスの設計に合わせて いるため,波及的影響はない。

計装配管の耐震設計概念図

 $< \beta - \gamma = 2 >$

原子炉圧力容器(上位クラス)に接続されている下位クラス計器につい ては、原子炉圧力容器からの計装ライン構成概念図に示すとおり、過流量 阻止弁の下流側は下位クラスの設計としている。ただし、原子炉圧力容器 に接続されている計装配管には、原子炉格納容器内側に流量制限オリフィ スを設けると共に、原子炉格納容器外側には過流量阻止弁を設置しており、 万一、過流量阻止弁~計器間の計装配管が破断した際においても、差圧大 で瞬時に過流量阻止弁が閉となるため、波及的影響はない。

原子炉圧力容器からの計装ライン構成概念図

以上より,計装設備については上位クラス施設に接続する下位クラス施設 の故障が上位クラス施設に波及することがない設計としている。

(c) 格納容器貫通部

格納容器貫通部については,前後の隔離弁を含めて上位クラス設計で あり,接続する下位クラス配管が破損した場合においても隔離弁の健全 性を保つ構造としており,格納容器バウンダリとしての貫通部の機能に 波及的影響を及ぼすことがない設計としている。

(d) A0 弁駆動用空気供給配管接続部

上位クラス配管に設置される AO 弁駆動用の空気供給配管は上位クラ ス設計ではないが、仮に空気供給配管が破損した場合でも、弁はフェイ ルセーフ側に動作するため、上位クラス施設の安全機能は喪失しないこ とから、抽出の対象外としている。なお、空気供給配管の供給側(下図 青色部)で閉塞が発生したとしても AO 弁はフェイルセーフ側に動作しな いが、動作要求信号が発生すれば三方弁から支障なく排気されることか ら AO 弁の機能に影響を与えない。また、空気供給配管の AO 弁側(下図 赤色部)については上位クラスの AO 弁とあわせて動的機能維持を確認し ている範囲であるためそもそも閉塞しないと考えられる。

----- 上位クラスとして動的機能維持を確認している範囲

A0 弁概念図

(e) 弁グランド部漏えい検出配管接続部

上位クラス配管に設置される弁のグランド部に接続されるグランドリ ーク検出ラインについては、上位クラス設計ではないが、仮にグランド リーク検出ラインが破損した場合でも、上位設備である弁の機能に影響 が無いことから、抽出の対象外としている。

b. 接続部の抽出

機器・配管及びダクトを対象として上位クラス施設に下位クラス施設 が直接接続している箇所を抽出する。

c. 影響評価対象の選定

b. で抽出した接続部のうち,上位クラス設計の弁又はダンパにより 常時閉隔離されているものは,接続する下位クラス配管が破損した場合 においても健全性は確保されるため,評価対象外とする。

d. 影響評価

c. で抽出した下位クラス施設について、下位クラス施設が損傷した 場合の系統隔離等に伴うプロセス変化により、上位クラス施設の過渡条 件が設計の想定範囲内であることを確認する。ここで、下位クラス施設 の損傷には破損と閉塞が考えられる。閉塞は配管等が相対変位による軸 直交方向の大きな荷重を受けることによって折れ曲がり、流路を完全に 遮断することで発生する。しかしながら、下位クラス施設が上位クラス 施設と同一の間接支持構造物に支持されていれば、間接支持構造物の相 対変位及び不等沈下による影響を受けないことから、閉塞はしないと考 えられる。以上より、上位クラス施設と隔離されずに接続する下位クラ ス施設の支持状況を確認し、同一の間接支持構造物に支持されていない 場合は閉塞の影響について個別に検討する。

e. 耐震性の確認

d. で設計の想定範囲を超えるものについて,基準地震動S_sに対して,構造健全性が維持され,内部流体の内包機能等の必要な機能を維持できることを確認する。

f. 対策検討

e. で上位クラス施設の機能を損なうおそれが否定できない下位クラス施設について,基準地震動Ssに対して健全性を維持できるように構造の改造,接続部から上位クラス施設の配管・ダクト側に同じく健全性を維持できる隔離弁の設置等により,波及的影響を防止する。

※フロー中①, ②, ④~⑦の数字は第2-1図中の①, ②, ④~⑦に対応する。

第5-2図 上位クラス施設と接続する下位クラス施設の抽出及び評価フロー

5.3 建屋内における損傷,転倒及び落下等による影響

第5-3図のフローに従い,建屋内の上位クラス施設の周辺に位置する波及 的影響を及ぼすおそれのある下位クラス施設を抽出し,波及的影響の有無を 検討する。

a. 下位クラス施設の抽出

下位クラス施設の抽出にあたって,下位クラス施設の損傷,転倒及び 落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をと って配置されていることを確認する。離隔距離が十分でない場合には, 落下防止措置等の対策を適切に実施していることを確認する。

また,以上の確認ができなかった下位クラス施設について,構造上の 特徴,上位クラス施設との位置関係,重量等を踏まえて,損傷,転倒及 び落下等を想定した場合の上位クラス施設への影響を評価し,上位クラ ス施設の機能を損なうおそれがないことを確認する。

b. 耐震性の確認

a. で損傷,転倒及び落下等を想定した場合に上位クラス施設の機能 への影響が否定できない下位クラス施設について,基準地震動Ssに対 して,損傷,転倒及び落下等が生じないように,構造健全性が維持でき ることを確認する。

c. 対策検討

b.で構造健全性の維持を確認できなかった下位クラス施設について, 基準地震動Ssに対して健全性を維持できるように構造の改造,上位ク ラス施設と下位クラス施設との間に衝撃に耐えうる緩衝体の設置,下位 クラス施設の移設等により波及的影響を防止する。

※フロー中①~⑦の数字は第2-1図中の①~⑦に対応する。

第5-3図 損傷,転倒及び落下により建屋内上位クラス施設へ影響を及ぼす おそれのある下位クラス施設の抽出及び評価フロー

5.4 建屋外における損傷,転倒及び落下等による影響

第5-4図のフローに従い,建屋外の上位クラス施設の周辺に位置する波及 的影響を及ぼすおそれのある下位クラス施設を抽出し,波及的影響の有無を 検討する。

a. 下位クラス施設の抽出

下位クラス施設の抽出にあたって,下位クラス施設の損傷,転倒及び 落下等を想定しても上位クラス施設に衝突しない程度の十分な距離をと って配置されていることを確認する。離隔距離が十分でない場合には, 落下防止措置等の対策を適切に実施していることを確認する。

また,以上の確認ができなかった下位クラス施設について,構造上の 特徴,上位クラス施設との位置関係,重量等を踏まえて,損傷,転倒及 び落下等を想定した場合の上位クラス施設への影響を評価し,上位クラ ス施設の機能を損なうおそれがないことを確認する。

b. 耐震性の確認

a. で損傷,転倒及び落下等を想定した場合に上位クラス施設の機能 への影響が否定できない下位クラス施設について,基準地震動Ssに対 して,損傷,転倒及び落下等が生じないように,構造健全性が維持でき ることを確認する。

c. 対策検討

b.で構造健全性の維持を確認できなかった下位クラス施設について, 基準地震動Ssに対して健全性を維持できるように構造の改造,上位ク ラス施設と下位クラス施設との間に衝撃に耐えうる緩衝体の設置,下位 クラス施設の移設等により波及的影響を防止する。

※フロー中①~⑦の数字は第2-1図中の①~⑦に対応する。

第5-4図 損傷,転倒及び落下により建屋外上位クラス施設へ影響を及ぼす おそれのある下位クラス施設の抽出及び評価フロー

6. 下位クラス施設の検討結果

5項で示したフローに基づき、上位クラス施設への波及的影響を及ぼすお それのある下位クラス施設を抽出する。

- 6.1 不等沈下又は相対変位による影響評価結果
- 6.1.1 抽出手順
 - (1) 地盤の不等沈下による影響

机上検討をもとに、上位クラス施設及び上位クラス施設の間接支持構造 物である建物・構築物に対して、地盤の不等沈下により波及的影響を及ぼ すおそれがある下位クラス施設を抽出する。

(2) 建屋の相対変位による影響

机上検討をもとに,上位クラス施設及び上位クラス施設の間接支持構造 物である建屋に対して,建屋の相対変位により波及的影響を及ぼすおそれ がある下位クラス施設を抽出する。

6.1.2 下位クラス施設の抽出結果

第5-1-1 図及び第5-1-2 図のフローの a に基づいて影響を及ぼすお それのある下位クラス施設を抽出した結果を第6-1-1 図及び第6-1-1 表に示す(配置図上の番号は第4-1表の整理番号に該当する)。

6.1.3 影響評価方針

6.1.2 で抽出した波及的影響を及ぼすおそれのある下位クラス施設の評価方針又は評価結果を第6-1-2表及び第6-1-3表に示す。

上記方針に基づいた検討結果は工事計画認可申請書において確認し,必要に応じて不等沈下または相対変位による影響を評価(第5-1-1図及び 第5-1-2図のフローのcに該当)する。

:波及的影響を及ぼす可能性のある 下位クラス施設

第6-1-1図 建屋外上位クラス配置図 (1/2)

原子炉建屋周辺詳細

	目が上位からったの	設置	EA	波及的影響を ある下位 (-:	及ぼすおそれの クラス施設 : なし)	波及的影響 (○:あり,	のおそれ × : なし)	144 - 54
宙方	産外上位クラス 肥設	場所	区方	不等沈下	相対変位	不等沈下	相対変位	111-4
A001	残留熱除去系海水系ポンプ	屋外	Sクラス SA施設	_	_	×	×	
A002	残留熱除去系海水系ストレーナ	屋外	Sグラス SA施設	_	_	×	×	
A003	残留熱除去系海水系配管	屋外	Sクラス SA施設	-	_	×	×	
A004	非常用ディーゼル発電機海水ポンプ	屋外	Sクラス SA施設	-	_	×	×	
A005	非常用ディーゼル発電機海水系ストレーナ	屋外	Sクラス SA施設	-	_	×	×	
A006	非常用ディーゼル発電機海水系配管	屋外	Sグラス SA施設	-	_	×	×	
A007	高圧炉心スプレイ系ディーゼル発電機海水ポン プ	屋外	Sクラス SA施設	-	-	×	×	
A008	高圧炉心スプレイ系ディーゼル発電機海水系ス トレーナ	屋外	Sクラス SA施設	-	_	×	×	
A009	高圧炉心スプレイ系ディーゼル発電機海水系配 管	屋外	Sグラス SA施設	-	_	×	×	
A010	非常用ガス処理系配管	屋外	Sグラス SA施設	_	_	×	×	
A011	原子炉建屋	屋外	S77x及USA施設 間接支持構造物	タービン建屋 サービン建屋 サーラ建屋 サンプルタンク室 へバフィルター 室 裕通路 大物搬入口	 タービン建屋 サービス建屋 ペーラ建屋 連絡通路 大物搬入口 	0	0	
A012	使用済燃料乾式貯藏建屋	屋外	Sクラス 間接支持構造物	-	_	×	×	
A013	取水構造物	屋外	屋外重要度土木構造物 SA施設	-	_	×	×	
A014	屋外二重管	屋外	Sクラス及びSA施設 間接支持構造物	-	_	×	×	
A015	非常用ガス処理系配管支持構造(排気筒、支持 架構)	屋外	Sクラス及びSA施設 間接支持構造物	_	_	×	×	
A016	常設代替高圧電源装置置場	屋外	Sクラス及びSA施設 間接支持構造物	-	_	-	-	設置予定施設 ^{※1}
A017	常設代替高圧電源装置用カルバート	屋外	Sクラス及びSA施設 間接支持構造物	-	_	-	-	設置予定施設 ^{※1}
A018	緊急時対策所	屋外	SA施設 間接支持構造物	-	_	-	-	設置予定施設*1
A019	緊急時対策所用発電機燃料油貯蔵タンク基礎	屋外	SA施設 間接支持構造物	-	_	-	-	設置予定施設 ^{※1}
A020	代替淡水貯槽	屋外	SA施設	_	_	_	-	設置予定施設 ^{※1}
A021	常設低圧代替注水系ポンプ室	屋外	SA施設 間接支持構造物	-	_	-	-	設置予定施設 ^{※1}
A022	常設低圧代替注水系配管カルバート	屋外	SA施設 間接支持構造物	_	_	_	-	設置予定施設 ^{※1}
A023	格納容器圧力逃がし装置格納槽	屋外	SA施設 間接支持構造物	-	_	-	-	設置予定施設 ^{※1}
A024	格納容器圧力逃がし装置用配管カルバート	屋外	SA施設 間接支持構造物	_	_	_	_	設置予定施設※1
A025	SA用海水ピット	屋外	SA施設	_	_	_	_	設置予定施設 ^{※1}
A026	SA用海水ピット取水塔	屋外	SA施設	-	-	-	-	設置予定施設*1
A027	海水引込み管	屋外	SA施設	-	-	-	-	設置予定施設 ^{※1}
A028	緊急用海水ポンプピット	屋外	SA施設	-	_	_	_	設置予定施設※1

第6-1-1表 建屋外上位クラス施設への波及的影響(相対変位及び不等沈下) を及ぼすおそれのある下位クラス施設(1/2)

※1 当該施設を設置する段階で、5.1項に示す影響検討を実施する(添付資料3)。

番号	屋外上位クラス施設	設置	区分	波及的影響を ある下位 (-:	及ぼすおそれの クラス施設 なし)	波及的影響 (○:あり,	■のおそれ ×:なし)	備老
ш.у		場所		不等沈下	相対変位	不等沈下	相対変位	
A029	緊急用海水配管カルバート	屋外	SA施設 間接支持構造物	-	_	I	-	設置予定施設※1
A030	緊急用海水取水管	屋外	SA施設	-	_	Ι	-	設置予定施設 ^{※1}
A031	防潮堤及び防潮扉(防潮堤道路横断部に設置)	屋外	Sグラス	-	-	-	-	設置予定施設 ^{※1}
A032	放水路ゲート	屋外	Sグラス	-	-	-	-	設置予定施設 ^{※1}
A033	構内排水路逆流防止設備	屋外	Sグラス	-	_	-	-	設置予定施設*1
A034	貯留堰	屋外	S/ラス SA施設	-	_	-	-	設置予定施設 ^{※1}
A035	取水路点検用開口部浸水防止蓋	屋外	Sグラス	-	_	I	-	設置予定施設 ^{※1}
A036	海水ポンプグランドドレン排出口逆止弁	屋外	Sグラス	_	_	-	-	設置予定施設※1
A037	取水ピット空気抜き配管逆止弁	屋外	Sグラス	-	_	I	-	設置予定施設 ^{※1}
A038	海水ポンプ室ケーブル点検口浸水防止蓋	屋外	Sグラス	-	_	-	-	設置予定施設 ^{※1}
A039	放水路ゲート点検用開口部浸水防止蓋	屋外	Sグラス	-	_	-	-	設置予定施設 ^{※1}
A040	SA用海水ピット開口部浸水防止蓋	屋外	Sグラス	_	_	-	-	設置予定施設※1
A041	緊急用海水ポンプピット点検用開口部浸水防止 蓋	屋外	Sグラス	-	_	I	-	設置予定施設 ^{※1}
A042	緊急用海水ポンプグランドドレン排出口逆止弁	屋外	Sグラス	_	_	-	-	設置予定施設※1
A043	緊急用海水ポンプ室床ドレン排出口逆止弁	屋外	Sグラス	-	_	-	-	設置予定施設 ^{※1}
A044	貫通部止水処置	屋外	Sグラス	-	_	-	-	設置予定施設 ^{※1}
A045	津波監視カメラ	屋外	Sグラス	-	—	_	-	設置予定施設 ^{※1}
A046	取水ピット水位計	屋外	Sグラス	-	_	-	-	設置予定施設 ^{※1}
A047	潮位計	屋外	Sグラス	-	_	I	-	設置予定施設 ^{※1}
A048	残留熱除去海水系ポンプD逆止弁	屋外	Sグラス	-	_	×	×	
A049	残留熱除去海水系ポンプB逆止弁	屋外	Sグラス	-	—	×	×	
A050	残留熱除去海水系ポンプA逆止弁	屋外	Sグラス	-	_	×	×	
A051	残留熱除去海水系ポンプC逆止弁	屋外	Sグラス	-	_	×	×	
A052	非常用ディーゼル発電機 2 C 海水ポンプ出口逆止弁	屋外	Sグラス	-	-	×	×	
A053	非常用ディーゼル発電機2D海水ポンプ出口逆止弁	屋外	Sグラス	_	-	×	×	
A054	高圧炉心スプレイディーゼル冷却系海水系ポンプ出口 逆止弁	屋外	Sグラス	-	-	×	×	

第6-1-1表 建屋外上位クラス施設への波及的影響(相対変位及び不等沈下) を及ぼすおそれのある下位クラス施設(2/2)

※1 当該施設を設置する段階で、5.1項に示す影響検討を実施する(添付資料3)。

第6-1-2表 建屋外施設の評価結果(地盤の不等沈下による影響)

建屋外上位クラス施設	波及的影響を及ぼすおそれのある 下位カラス施設	評価方針又は評価結果	備考
百乙后单民	「「」、「」」、「」」、「」」、「」」、「」」、「」、「」、「」、「」、「」、「	同之后律堅、と注ちを製業報調し」と 万分カルン 株	オオポンシャキ
尿丁炉建 度	シートノ津圧	尿丁が注度、い夜及りむ脊椎酸として、「セン ノろ施 	大好神道にころうで
	サービス建屋	設が設置された地盤が不等沈下しないことの確認又	添付資料 4 参照
	ベーラ建屋	は不等沈下した場合でも離隔距離が十分であること	大物搬入口建屋の耐
	サンプルタンク室	を確認する。	震重要度分類を含め
	ヘパフィルター室	また、原子炉建屋に対して建屋規模から小さい施設に	た取扱いは添付資料
	大物搬入口建屋	ついては,接触したとしても原子炉建屋の耐震性を損	5 参照
	連絡通路	なわないことを確認する。	

単 元女 しかろう 弦響	波及的影響を及ぼすおそれのある	郭 (元 남 44 전) 귀部 (元 4年 田	市
建産汁上他ツノヘル政	下位クラス施設	計画ンダI 入(A.計-YIII)府 天	∭ ← ←
原子炉建屋	タービン建屋	原子炉建屋とサービス建屋及びタービン建屋との最	
	サービス建屋	小となる離隔距離は約 50mm と小さく,建屋間相対変	
		位によって建屋同士が接触する可能性がある。このた	
		め, 基準地震動Ssに対する地震応答解析により, 影	
		響を確認する。	
	ベーラ建屋	原子炉建屋に対して各建屋の規模が小さく軽量であ	
	大物搬入口建屋	ることから,建屋同士が接触したとしても影響は軽微	
	連絡通路	であり建屋の耐震性を損なうことがないことを確認	
		する。	

第6-1-3表 建屋外施設の評価結果(相対変位による影響)

6.2 接続部における相互影響検討結果

6.2.1 抽出手順

机上検討をもとに、上位クラス施設と接続する下位クラス施設のうち、下 位クラス施設の損傷または隔離によるプロセス変更により上位クラス施設に 影響を及ぼす可能性がある下位クラス施設を抽出する。なお、Sクラス施設 等と重要SA施設の接続部は上位クラス同士であるため、上位クラス施設と 下位クラス施設との接続部として抽出していない。

接続部については,改造工事の際の設計図書類から系統図の変更を行って いることから,本抽出において系統図を用いた机上検討による評価対象の抽 出が可能である。

Sクラス施設等と重要SA施設の接続部例

6.2.2 接続部の抽出及び影響評価対象の選定結果

第5-2図のフローのa, b及びcに基づいて抽出された評価対象接続部に ついて整理したものを第6-2-1表に示す。

6.2.3 影響評価方針

6.2.2で抽出した上位クラス施設と下位クラス施設との接続部について,評価結果又は評価方針を第6-2-2表に示す。

第6-2-2表に記載した方針に基づき、基準地震動Ssにて健全性確認を行

う必要がある設備については工事計画認可申請書において影響評価を行う

(第5-2図のフローの e に該当)。

第6-2-1表 上位クラス施設と下位クラス施設との接続部一覧表(1/6)

番号	屋内上位クラス施設	区分	設置 場所	下位クラスとの接続 (有:○, 無:×)	評価対象 (対象:○,対象外:×)	接続配管等	備考
A001	残留熱除去系海水ポンプ	Sクラス SA施設	屋外	×	-		
A002	残留熱除去系海水ストレーナ	Sクラス SA施設	屋外	×	-		
A003	残留熱除去系海水配管	Sクラス SA施設	屋外 SA施設	0	0	海水系放出ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
					×	RHRS加圧ライン	パ 逆止弁を介して接続され ているため評価対象外
A004	非常用ディーゼル発電機用海水ポンプ	S/ラス SA施設	屋外	×	_		
A005	非常用ディーゼル発電機海水ストレーナ	Sクラス SA施設	屋外	×	_		
A006	非常用ディーゼル発電機海水配管	Sグラス SA施設	屋外	0	0	海水系放出ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
					×	DGS封水ライン	逆止弁を介して接続され ているため評価対象外
A007	高圧炉心スプレイ系ディーゼル発電機用海水ポ ンプ	Sクラス SA施設	屋外	×	-		
A008	高圧炉心スプレイ系ディーゼル発電機用海水ス トレーナ	Sクラス SA施設	屋外	×	_		
A009	高圧炉心スプレイ系ディーゼル発電機用海水配 管	Sクラス SA施設	屋外	0	0	海水系放出ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
					×	DGS封水ライン	逆止弁を介して接続され ているため評価対象外
A010	非常用ガス処理系配管	Sクラス SA施設	屋外	×	-		
B001	原子炉圧力容器	Sクラス SA施設	R/B	0	0	RPV漏えい検出ライン	
					×	RPVベントライン	通常閉の弁を介して接続 されているため評価対象 外
B005	主蒸気系配管	Sクラス SA施設	R/B	0	0	主蒸気ライン	
					0	主蒸気ドレンライン	
					×	N2供給ライン	逆止弁を介して接続され ているため評価対象外
					×	テストライン	通常閉の弁を介して接続 されているため評価対象 <u>外</u>
					×	ベント/ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B006	主蒸気隔離弁制御用アキュムレータ	Sクラス SA施設	R/B	×	-		
B007	逃がし安全弁自動減圧機能用アキュムレータ	Sクラス SA施設	R/B	×	-		
B009	給水系配管	Sクラス SA施設	R/B	0	×	給水ライン	逆止弁を介して接続され ているため評価対象外
					×	原子炉冷却材浄化系ライ ン	逆止弁を介して接続され ているため評価対象外
					×	貴金属注入ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	テストライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレン/ベントライン	逆止弁を介して接続され ているため評価対象外
B010	主蒸気隔離弁漏えい抑制系配管	S/77	R/B	0	×	復水移送ライン	逆止弁を介して接続され ているため評価対象外
					×	ドレン/ベントライン	逆止弁を介して接続され ているため評価対象外
B011	低圧マニュホールド (主蒸気隔離弁漏えい抑制系)	S/7ス	R/B	×	_		
B012	プロワ (主蒸気隔離弁漏えい抑制系)	Sグブス	R/B	×	_		NZ MARIA A A A A A A A A A A A A A A A A A A
B013	再循環系配管	S/ラス SA施設	R/B	0	×	サンプルライン	 ・ ・ ・ ・
					×	ドレン/ベントライン	迪常閉の弁を介して接続 されているため評価対象 外

第6-2-1表 上位クラス施設と下位クラス施設との接続部一覧表 (2/6)

番号	屋内上位クラス施設	区分	設置 場所	下位クラスとの接続 (有:○, 無:×)	評価対象 (対象:○,対象外:×)	接続配管等	備考
B014	再循環ポンプ	Sクラス SA施設	R/B	0	0	シールリークドレンライ ン	
					×	シールパージライン	逆止弁を介して接続され ているため評価対象外
					×	ベントライン	通常閉の弁を介して接続 されているため評価対象
B015	原子炉冷却材浄化系配管	Sクラス SA施設	R/B	0	×	テストライン	小 通常閉の弁を介して接続 されているため評価対象
B016	残留熱除去系配管	Sクラス SA施設	R/B	0	×	復水移送ライン	/「 通常閉の弁を介して接続 されているため評価対象
					×	消火系ライン	通常閉の弁を介して接続 されているため評価対象
					×	テストライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
					×	サンプリングライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ケミカルタンクライン	通常閉の弁を介して接続 されているため評価対象 外
					×	FPC系ライン	通常閉の弁を介して接続 されているため評価対象 外
					0	ウォーターレグシールラ イン	
B016	残留熱除去系熱交換器	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B017	残留熱除去系ポンプ	Sクラス SA施設	R/B	0	0	メカニカルシールドレン ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B018	残留熟除去海水系配管	Sクラス SA施設	R/B	0	×	消火系ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B019	原子炉隔離時冷却系配管	Sクラス SA施設	R/B	0	×	復水移送ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	蒸気ドレン排出ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	テストライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ラプチャディスク設置ラ イン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B020	原子炉隔離時冷却系ポンプ	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B021	高圧炉心スプレイ系配管	Sクラス SA施設	R/B	0	0	ウォータレグシールライ ン	
					×	サンプリングライン	通常閉の弁を介して接続 されているため評価対象 外
					×	テストライン	通常閉の弁を介して接続 されているため評価対象 <u>外</u>
					×	ドレン/ベントライン	 通常閉の弁を介して接続 されているため評価対象 外
					×	RHRドレンフラッシン グライン	通常閉の弁を介して接続 されているため評価対象 外
B022	高圧炉心スプレイ系ポンプ	Sクラス SA施設	R/B	0	0	メカニカルシールドレン ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B023	低圧炉心スプレイ系配管	Sクラス SA施設	R/B	0	×	復水移送ライン	 ・一面常閉の弁を介して接続 されているため評価対象 外 A
					×	サンプリングライン	 通前閉の开を介して後続 されているため評価対象 外
					×	消火系ライン	 地市団の开を介して接続 されているため評価対象 外 (水) 一切(1)
					×	ドレン/ベントライン	 一届常期の弁を介して接続 されているため評価対象
					×	RHRドレンフラッシン グライン	画冨閉の开を介して接続 されているため評価対象 外
					0	ウォーターレグシールラ イン	

第6-2-1表 上位クラス施設と下位クラス施設との接続部一覧表 (3/6)

番号	屋内上位クラス施設	区分	設置 場所	下位クラスとの接続 (有:○, 無:×)	評価対象 (対象:〇,対象外:×)	接続配管等	備考
B024	低圧炉心スプレイ系ポンプ	Sクラス SA施設	R/B	0	0	メカニカルシールドレン ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B027	制御棒駆動水圧系配管	Sグラス SA施設	R/B	0	×	スクラム排出水ライン	逆止弁を介して接続され ているため評価対象外
					×	充てん水ライン	通常閉の弁を介して接続 されているため評価対象
					×	冷却水入口ライン	通常閉の弁を介して接続 されているため評価対象
					×	駆動水入口ライン	逆止弁を介して接続され ているため評価対象外
					×	駆動水排出ライン	通常閉の弁を介して接続 されているため評価対象
					×	ドレンライン	通常閉の弁を介して接続 されているため評価対象
B028	制御棒駆動水圧系制御ユニット	Sクラス SA施設	R/B	×	-		
B029	ほう酸水注入系配管	Sクラス SA施設	R/B	0	×	テストライン	通常閉の弁を介して接続 されているため評価対象
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
B030	ほう酸水注入系ポンプ	Sクラス SA施設	R/B	×	_		21
B031	ほう酸水貯蔵タンク	Sクラス SA施設	R/B	0	0	復水移送ライン	
					0	オーバフローライン	
					0	ベントライン	
B032	使用済燃料貯蔵ラック	SØŸX	R/B	×	-		
B033	使用済燃料プール	Sクラス SA施設	R/B	×	-		
B034	使用済燃料載式貯蔵容器	SØŸX	D/C	×	-		
B035	原子炉建屋換気系放射線モニタ	Sグブス	R/B	×	-		
B036	原子炉建屋排気筒モニタ	Sグブス	R/B	×	-		
B037	中央制御室換気系送風機	Sクラス SA施設	R/B	×	_		
B038	中央制御室換気系排風機	Sグラス SA施設	R/B	×	_		
B039	中央制御室換気系フィルターユニット	Sクラス SA施設	R/B	×	_		
B040	中央制御室換気系 制御室内ダクト	Sクラス SA施設	R/B	×	_		
B041	非常用ガス処理系/再循環系配管	Sクラス SA施設	R/B	0	×	通常換気系ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	復水移送ライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B042	非常用ガス処理系排風機	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B043	非常用ガス処理系フィルタートレイン	Sクラス SA施設	R/B	0	×	テストライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B044	非常用ガス再循環系排風機	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B045	非常用ガス再循環系フィルタートレイン	Sクラス SA施設	R/B	0	×	テストライン	通常閉の弁を介して接続 されているため評価対象 外
					×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B046	ダクト(原子炉建屋換気系)	S/77	R/B	0	0	原子炉建屋給排気ダクト	
B047	ダクト(DG換気系)	Sグラス	R/B	×	_		

第6-2-1表 上位クラス施設と下位クラス施設との接続部−	一覧表	(4/6)
-------------------------------	-----	-------

番号	屋内上位クラス施設	区分	設置 場所	下位クラスとの接続 (有:○, 無:×)	評価対象 (対象:○,対象外:×)	接続配管等	備考
B048	鋼板ダクト本体及びダクト(空調ユニット系)	Sクラス SA施設	R/B	×	_		
B049	原子炉建屋換気系給気隔離弁用アキュムレータ	Sクラス SA施設	R/B	×	_		
B050	原子炉建屋換気系排気隔離弁用アキュムレータ	Sクラス SA施設	R/B	×	_		
3051	HPCSポンプ室空調ユニット	SØŽA	R/B	×	_		
B052	LPCSポンプ室空調ユニット	Sグラス	R/B	×	_		
053	RCICポンプ室空調ユニット	SØŽA	R/B	×	_		
054	RHRポンプ室空調ユニット	SØŽA	R/B	×	-		
055	非常用DG室排気ファン	SØŽA	R/B	×	-		
056	HPCS用DG室排気ファン	Sクラス	R/B	×	_		
057	バッテリー室給排気ファン	S/77X	R/B	×	-		
058	中央制御室空調用冷水ポンプ	Sクラス	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象
059	中央制御室空調ユニット	S/77X	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
060	格納容器 (ドライウエル部)	Sクラス SA施設	R/B	×	_		2r
061	格納容器(サプレッションチェンバ部)	Sクラス SA施設	R/B	×	_		
062	ペデスタル (原子炉本体の基礎)	Sクラス及びSA施設 間接支持構造物	R/B	×	-		
065	可燃性ガス濃度制御系再結合装置	Sクラス SA施設	R/B	×	_		
066	可燃性ガス濃度制御系配管	Sクラス SA施設	R/B	0	×	復水移送ライン	通常閉の弁を介して接続 されているため評価対象
					×	テストライン	外 通常閉の弁を介して接続 されているため評価対象
067	不活性ガス系配管	Sクラス SA施設	R/B	0	×	通常換気系ライン	外 通常閉の弁を介して接続 されているため評価対象
					×	N2パージライン	通常閉の弁を介して接続 されているため評価対象
					×	N2供給ライン	通常閉の弁を介して接続 されているため評価対象
					×	テストライン	外 通常閉の弁を介して接続 されているため評価対象
068	内燃機関 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	0	燃料ポンプドレンライン	25
					0	ローラガイドドレンライ ン	
					0	冷却水ドレンライン	
					0	始動空気ドレンライン	
					×	排気管	同一の間接構造物に支持 されているため流路を完
069	発電機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		主に陸削することはない
070	関連配管 (非常用ディーゼル発電装置用)	Sグラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
071	始動空気圧縮機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		2 F
072		S/テス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象
073	 潤滑油プライミングポンプ (非常用ディーゼル発電装置用)	Sグラス SA施設	R/B	×	_		21
074	温水循環ポンプ (非常用ディーゼル発電装置用)	Sグラス SA施設	R/B	×	_		
3075	潤滑油冷却器 (非常用ディーゼル発電装置用)	S/ラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
B076	清水冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	 通常閉の弁を介して接続 されているため評価対象

第6-2-1表 上位クフス施設と下位クフス施設との接続部一覧表(5

番号	屋内上位クラス施設	区分	設置 場所	下位クラスとの接続 (有:○, 無:×)	評価対象 (対象:〇,対象外:×)	接続配管等	備考
B077	燃料弁冷却油冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象
B078	潤滑油ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B079	清水ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
B080	潤滑油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
B081	燃料油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
B082	清水膨張タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	0	復水移送ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
3083	シリンダ注油タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
					0	ミスト排出ライン	
3084	潤滑油サンプタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
					0	ミスト排出ライン	
085	燃料油デイタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	0	0	ミスト排出ライン	
					0	オーバーフローライン	
					×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
086	内燃機関 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	0	燃料ポンプドレンライン	
					0	ローラガイドドレンライ ン	
					0	冷却水ドレンライン	
					0	始動空気ドレンライン	
					×	排気管	同一の間接構造物に支持 されているため流路を9 全に遮断することはない
087	発電機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
088	関連配管 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
089	始動空気圧縮機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
090	始動空気だめ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
091	潤滑油プライミングポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
092	温水循環ポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
093	潤滑油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
094	清水冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
095	燃料弁冷却油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
096	潤滑油ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
097	清水ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
098	潤滑油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接続 されているため評価対象 外
099	燃料油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	×	_		
3100	清水膨張タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	0	復水移送ライン	
					×	ドレン/ベントライン	通常閉の弁を介して接続 されているため評価対象 外
3101	シリンダ注油タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	0	×	ドレンライン	通常閉の弁を介して接約 されているため評価対象 外
					0	ミスト排出ライン	

評価対象 (対象:〇,対象外:×) 下位クラスとの接続 (有:○, 無:×) 設置 場所 屋内上位クラス施設 区分 接続配管等 備考 番号 通常閉の弁を介して接続 されているため評価対象 潤滑油サンプタンク (高圧炉心スプレイ系ディーゼル発電装置用) Sクラス SA施設 R/B 0 \times ドレンライン B102 0 ミスト排出ライン 燃料油デイタンク (高圧炉心スプレイ系ディーゼル発電装置用) Sクラス SA施設 B103 R/B ミスト排出ライン 0 オーバーフロー配管 通常閉の弁を介して接続 されているため評価対象 \times ドレンライン Sクラス SA施設 D119 格納容器内水素濃度 R/B × _ Sクラス SA施設 × _ D120 格納容器内酸素濃度 R/B

第6-2-1表 上位クラス施設と下位クラス施設との接続部一覧表(6/6)

上位クラス施設 (建屋外施設)	波及的影響を及ぼすおそれのある 下位クラス接続配管等	評価結果	贏
熱除去系海水配管	 	海水系放出ラインの配管が破損した場合において,敷地内に放出されることになるが,上位クラス施設に影	
5 用ディーゼル発電機用	海水系放出 ライン【C】	響を与えない。 海水系放出ラインの配管が破損した場合において, 敷	
<配管		地内に放出されることになるが,上位クラス施設に影響を与えない。	
5炉心スプレイ系ディー >発電機用海水配管	海水系放出ライン【C】	海水系放出ラインの配管が破損した場合において,敷 地内に放出されることになるが,上位クラス施設に影 **** トンシン	

上位クラス施設と下位クラス施設との接続部の評価結果(1/7) 第6-2-2表

筆		
評価結果	当該ラインは, K P V フランジからの漏えいを検出するために, シール外側に設置されていることから, 損傷が生じたとしても原子炉圧力容器のバウンダリ機能に影響を及ぼすことはない。	第二主蒸気隔離弁の下流側で主蒸気系配管が損傷した場合、破断口からは、破断管及び主蒸気ヘッダを介した健全管より冷却材が外部に流出する。 冷却材の流出量は原子炉圧力容器ノズル下流の流量 制限器により、破断した配管の本数に係わらず定格 蒸気流量の 200%に制限される。その際に、主蒸気流 量大信号により主蒸気隔離弁が 5 秒で全閉し、流出は 食い止められるが、事故解析においては、この間に流 出した冷却材によって原子炉圧力容器内の水位が炉 心面部よりも低下することはないことが確認されて いる。 このことから、波及的影響により第二主蒸気隔離弁の 下流側配管が破損した場合の影響に、原子炉格納容器 外で主蒸気系配管の破断を想定した場合の事故解析 結果に包絡される。
 波及的影響を及ぼすおそれのある 下位クラス接続配管等 【】: 耐震クラス 	R P V漏えい検出ライン【C】	主 蒸 気 ラ イ ン 【 B 】
上位クラス施設 (建屋内施設)	原子炉圧力容器	法

上位クラス施設と下位クラス施設との接続部の評価結果(2/1) 第6-2-2表

備兆			工認耐震計算書 添付予定		工認耐震計算書 添付予定
評価結果	当該ラインが破損しても、MSトンネル室内の漏えい検知により隔離弁で隔離できることから、上位の施設の機能(原子炉圧力容器バウンダリ)に影響は与えない。	当該ラインは,軸封部からのリーク水を廃棄物処理系のサンプに導く配管であるため,損傷が生じたとしても再循環ポンプのバウンダリ機能に影響を及ぼすことはない。	当該ラインの破損により,残留熱除去系配管のバウンダリ機能を喪失する可能性があるため,基準地震動Ssでの健全性確認を行う。	当該ラインは,軸封部からのリーク水を建屋ファンネルに導く配管であるため,損傷が生じたとしても残留熟除去系ポンプの機能に影響を及ぼすことはない。	当該ラインの破損により,高圧炉心スプレイ系配管の バウンダリ機能を喪失する可能性があるため,基準地 震動 S sでの健全性確認を行う。
波及的影響を及ぼすおそれのある 下位クラス接続配管等 【】: 耐震クラス	主蒸気ドレンライン【B】	シールリークドレンライン【B】	ウォーターレグシールライン【B】	メカニカルシールドレンライン【C】	ウォーターレグシールライン【B】
上位クラス施設 (建屋内施設)	主蒸気系配管	再循環ポンプ	残留熱除去系配管	残留熱除去系ポンプ	高圧炉心スプレイ糸配管

上位クラス施設と下位クラス施設との接続部の評価結果(3/7) 第6-2-2表

諵		工認耐震計算書 添付予定				
評価結果	当該ラインは,軸封部からのリーク水を建屋ファンネルに導く配管であるため,損傷が生じたとしても高圧炉心スプレイ系ポンプの機能に影響を及ぼすことはない。	当該ラインの破損により,低圧炉心スプレイ系配管の バウンダリ機能を喪失する可能性があるため,基準地 震動 S sでの健全性確認を行う。	当該ラインは,軸封部からのリーク水を建屋ファンネルに導く配管であるため,損傷が生じたとしても低圧炉心スプレイ系ポンプの機能に影響を及ぼすことはない。	当該ラインは,通常水位より上部に接続されているため,破損した場合でも,ほう酸水貯蔵タンクから内部水が流出することは無い。	当該ラインは,通常水位より上部に接続されているため,破損した場合でも,ほう酸水貯蔵タンクから内部水が流出することは無い。	当該ラインは,通常水位より上部に接続されているため,破損した場合でも,ほう酸水貯蔵タンクから内部水が流出することは無い。
 波及的影響を及ぼすおそれのある 下位クラス接続配管等 「】: 耐震クラス 	メカニカルシールドレンライン 【C】	ウォーターレグシールライン【B】	メカニカルシールドレンライン【C】	復水移送ライン【B】	オーバーフローライン【B】	ベントライン【C】
上位クラス施設 (建屋内施設)	高圧炉心スプレイ系ポンプ	低圧炉心スプレイ系配管	低圧炉心スプレイ系ポンプ	ほう酸水貯蔵タンク		

上位クラス施設と下位クラス施設との接続部の評価結果(4/7) 第6-2-2表

上位クラス施設 (建屋内施設)	 波及的影響を及ぼすおそれのある 下位クラス接続配管等 「】: 耐震クラス 	評価結果	贏
ダクト (原子炉建屋換気系)	原子炉建屋給排気ダクト【C】	原子炉建屋給排気ダクトが破損したとしても,原子炉建屋換気系給排気隔離弁により二次格納施設は隔離されるため,二次格納施設のバウンダリ機能に影響は無い。	
内燃機関 (非常用ディーゼル発電装 置用)	燃料ポンプドレンライン【C】 ローラガイ ドドレンライン【C】	当該ラインが破損しても,油の排出機能を損なうことがないことから,ディーゼル機関の機能に影響を及ぼすことは無い。	
	冷却水ドレンライン【C】	当該ラインが破損しても,冷却水の排出機能を損なうことがないことから,ディーゼル機関の機能に影響を及ぼすことは無い。	
	始動空気ドレンライン【C】	当該ラインが破損しても,空気の排出機能を損なうことがないことから,ディーゼル機関の機能に影響を及ぼすことは無い。	
清水膨張タンク (非常用ディーゼル発電装 置用)	復水移送ライン【B】	当該ラインは,通常水位より上部に接続されているため,破損した場合でも,清水膨張タンクから内部水が流出することは無い。	
シリンダ注油タンク (非常用ディーゼル発電装 置用)	ミスト排出ライン【C】	当該ラインは、タンク上部の気相部に接続されているため、破損した場合でも内部液体が流出することは無く、オイルミストの排出機能及びベント機能を損なうことが無い。	

上位クラス施設と下位クラス施設との接続部の評価結果(5/7) 第6-2-2表

 波及的影響を及ぼすおそれのある 下位クラス接続配管等 「1:耐震クラス ミスト排出ライン【C】 読スト排出ライン【C】 ミスト排出ライン【C】 	5 評価結果 当該ラインは、タンク上部の気相部に接続されている 当該ラインは、タンク上部の気相部に接続されている ため、破損した場合でも内部液体が流出することは無 く、オイルミストの排出機能及びベント機能を損なう ことが無い。 当該ラインは、タンク上部の気相部に接続されている ため、破損した場合でも内部液体が流出することは無 ため、破損した場合でも内部液体が流出することは無
-バーフローライン【C】	、シューシーン・シューション・ロース にん にっぽっ よう ことが無い。 ことが無い。 当該ラインは,通常水位より上部に接続されているため,破損した場合でも,燃料油デイタンクから内部油が流出することは無い。
ポンプドレンライン【C】 ・ラガイドドレンライン【C】	当該ラインが破損しても、油の排出機能を損なうことがないことから、ディーゼル機関の機能に影響を及ぼすことは無い。
水ドレンライン【C】	当該ラインが破損しても, 冷却水の排出機能を損なう ことがないことから, ディーゼル機関の機能に影響を 及ぼすことは無い。
空気ドレンライン【C】	当該ラインが破損しても, 空気の排出機能を損なうことがないことから, ディーゼル機関の機能に影響を及ぼすことは無い。

上位クラス施設と下位クラス施設との接続部の評価結果(6/7) 第6-2-2表

顓	ているたう部大が	こている - とは無 : 歯ない	いている 5 とは無 ざ損なう	いている ことは無 ご損なう	い い の 記 油 の
評価結果	当該ラインは,通常水位より上部に接続されてめ,破損した場合でも,清水膨張タンクから内流出することは無い。	当該ラインは、タンク上部の気相部に接続されため、破損した場合でも内部液体が流出するこく、オイルミストの排出機能及びベント機能をことが無い。	当該ラインは、タンク上部の気相部に接続されため、破損した場合でも内部液体が流出するこく、オイルミストの排出機能及びベント機能をことが無い。	当該ラインは,タンク上部の気相部に接続されため,破損した場合でも内部液体が流出するこく,オイルミストの排出機能及びベント機能をことが無い。	当該ラインは,通常水位より上部に接続されてめ,破損した場合でも, 燃料油デイタンクから
波及的影響を及ぼすおそれのある 下位クラス接続配管等 【 】: 耐震クラス	復水移送ライン【B】	ミスト排出ライン【C】	ミスト排出ライン【C】	ミスト排出ライン【C】	オーバーフローライン【C】
上位クラス施設 (建屋内施設)	清水膨張タンク (高圧炉心スプレイ系ディ ーゼル発電装置用)	シリンダ注油タンク (高圧炉心スプレイ系ディ ーゼル発電装置用)	潤滑油サンプタンク (高圧炉心スプレイ系ディ ーゼル発電装置用)	燃料油デイタンク (非常用ディーゼル発電装 置用)	

上位クラス施設と下位クラス施設との接続部の評価結果(7/7) 第6-2-2表
6.3 建屋内における損傷,転倒及び落下等による影響検討結果

6.3.1 抽出作業

机上検討及び現場調査をもとに,建屋内上位クラス施設に対して,損傷, 転倒及び落下等により影響を及ぼす可能性のある下位クラス施設を抽出する。 建屋内上位クラス施設の配置図を第6-3-1図に示す。なお,配置図の番号は 第4-2表の整理番号に該当する。また,原子炉建屋内設備の波及的影響設備 位置関係図を第6-3-2図に,使用済燃料乾式貯蔵建屋の波及的影響設備位置 関係図を第6-3-3図に示す。

6.3.2 下位クラス施設の抽出結果

第5-3図のフローの a に基づいて抽出された下位クラス施設について抽出 したものを第6-3-1表に示す。

6.3.3 耐震評価方針

6.3.2で抽出した建屋内下位クラス施設の評価方針について,第6-3-2表 に示す。

第6-3-1図 建屋内上位クラス施設配置図(No.1)

<u>原子炉建屋地下2階</u>

4条-別紙6-65

第6-3-1図 建屋内上位クラス施設配置図(No.2)

4条-別紙6-66

<u>原子炉建屋地下1階</u>

- ・・・番号D***(電気制御品)
- ・・・番号C***(弁)
- ・・・番号B***(機器配管)

原子炉建屋1階

4条-別紙6-68

原子炉建屋2階

第6-3-1図 建屋内上位クラス施設配置図(No.5)

4条-別紙6-69

原子炉建屋3階

原子炉建屋4階

原子炉建屋5階

4条-別紙6-70

第6-3-1図 建屋内上位クラス施設配置図(No.7)

4条-別紙6-71

[凡例]		
•	•	・番号B***(機器配管)
•	•	・番号C***(弁)
•	•	・番号D***(電気制御品)

使用済燃料乾式貯蔵建屋 1階

第6-3-1図 建屋内上位クラス施設配置図(No.8)

第6-3-2図 原子炉建屋内設備の位置関係概要図 (1/2)

第6-3-2図 原子炉建屋内設備の位置関係概要図 (2/2)

第6-3-3図 使用済燃料乾式貯蔵建屋の位置関係概要図

番号	建屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	波及的影響のおそれ (○:あり,×:なし) 損傷・転倒・落下	備考
B001	原子炉圧力容器	Sクラス SA施設	R/B	原子炉遮蔽壁	0	
B002	炉心支持構造物	S/77	R/B	_	×	
B003	原子炉圧力容器内部構造物	Sクラス	R/B	_	×	
B004	原子炉圧力容器支持構造物	Sクラス SA施設	R/B	-	×	
B005	主蒸気系配管	Sクラス SA施設	R/B	_	×	
B006	主蒸気隔離弁制御用アキュムレータ	Sクラス SA施設	R/B	_	×	
B007	逃がし安全弁自動減圧機能用アキュムレータ	Sクラス SA施設	R/B	_	×	
B008	給水系配管	Sクラス SA施設	R/B	_	×	
B009	主蒸気隔離弁漏えい抑制系配管	Sクラス	R/B	_	×	
B010	低圧マニュホールド (主蒸気隔離弁漏えい抑制系)	Sクラス	R/B	-	×	
B011	プロワ (主蒸気隔離弁漏えい抑制系)	Sクラス	R/B	揚重設備(チェーンブロック) 照明器具(カバー無し)	0	
B012	再循環系配管	Sクラス SA施設	R/B	-	×	
B013	再循環ポンプ	Sクラス	R/B	揚重設備(ホイスト)	0	
B014	原子炉冷却材浄化系配管	Sクラス SA施設	R/B	-	×	
B015	残留熱除去系配管	Sクラス SA施設	R/B	-	×	
B016	残留熱除去系熱交換器	Sクラス SA施設	R/B	_	×	
B017	残留熱除去系ポンプ	Sクラス SA施設	R/B	照明器具(カバー無し)	0	
B018	残留熱除去海水系配管	Sクラス SA施設	R/B	-	×	
B019	原子炉隔離時冷却系配管	Sクラス SA施設	R/B	-	×	
B020	原子炉隔離時冷却系ポンプ	Sクラス SA施設	R/B	揚重設備(ホイスト)	0	
B021	高圧炉心スプレイ系配管	Sクラス SA施設	R/B	-	×	
B022	高圧炉心スプレイ系ポンプ	Sクラス SA施設	R/B	_	×	
B023	低圧炉心スプレイ系配管	Sクラス SA施設	R/B	-	×	
B024	低圧炉心スプレイ系ポンプ	Sクラス SA施設	R/B	照明器具(カバー無し)	0	
B025	液体廃棄物処理系配管(PCVバウンダリ)	Sクラス SA施設	R/B	_	×	
B026	制御棒駆動機構	S/ラス SA施設	R/B	_	×	
B027	制御棒駆動水圧系配管	Sクラス SA施設	R/B	_	×	
B028	制御棒駆動水圧系制御ユニット	Sクラス SA施設	R/B	揚重設備(チェーンブロック)	0	
B029	ほう酸水注入系配管	Sクラス SA施設	R/B	_	×	
B030	ほう酸水注入系ポンプ	Sクラス SA施設	R/B	揚重設備(チェーンプロック) 照明器具(カバー無し)	0	
B031	ほう酸水貯蔵タンク	Sクラス SA施設	R/B	_	×	
B032	使用済燃料貯蔵ラック	Sクラス	R/B	原子炉建屋クレーン 燃料取替機 制御棒貯蔵ラック,ハンガ	0	
B033	使用済燃料プール	Sクラス SA施設	R/B	原子炉建屋クレーン 燃料取替機	0	
B034	使用済燃料乾式貯蔵容器	Sクラス	D/C	使用済燃料乾式貯蔵建屋クレーン	0	
B035	原子炉建屋換気系放射線モニタ	Sクラス	R/B	_	×	
B036	原子炉建屋排気モニタ	SŹŻŻ	R/B	-	×	
B037	中央制御室換気系送風機	Sクラス SA施設	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(1/14)

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(2/14)

番号	建屋内上位クラス施設	区分	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	備考
			場所	める下位クラス施設	損傷・転倒・落下	
B038	中央制御室換気系排風機	Sクラス SA施設	R/B	_	×	
B039	中央制御室換気系フィルターユニット	Sクラス SA施設	R/B	-	×	
B040	中央制御室換気系 制御室内ダクト	Sクラス SA施設	R/B	-	×	
B041	非常用ガス処理系/再循環系配管	Sクラス SA施設	R/B	-	×	
B042	非常用ガス処理系排風機	Sクラス SA施設	R/B	照明器具(カバー無し)	0	
B043	非常用ガス処理系フィルタートレイン	Sクラス SA施設	R/B	-	×	
B044	非常用ガス再循環系排風機	Sクラス SA施設	R/B	_	×	
B045	非常用ガス再循環系フィルタートレイン	Sクラス SA施設	R/B	-	×	
B046	ダクト(原子炉建屋換気系)	Sクラス	R/B	_	×	
B047	ダクト (DG換気系)	Sクラス	R/B	_	×	
B048	鋼板ダクト本体及びダクト(空調ユニット系)	Sクラス	R/B	-	×	
B049	原子炉建屋換気系給気隔離弁用アキュムレータ	Sクラス	R/B	-	×	
B050	原子炉建屋換気系排気隔離弁用アキュムレータ	Sクラス	R/B	_	×	
B051	HPCSポンプ室空調ユニット	Sグラス	R/B	照明器具(カバー無し)	0	
B052	LPCSポンプ室空調ユニット	Sクラス	R/B	_	×	
B053	RCICポンプ室空調ユニット	Sクラス	R/B	_	×	
B054	RHRポンプ室空調ユニット	Sクラス	R/B	照明器具(カバー無し)	0	
B055	非常用DG室排気ファン	Sクラス	R/B	_	×	
B056	HPCS用DG室排気ファン	Sクラス	R/B	_	×	
B057	バッテリー室給排気ファン	Sクラス	R/B	_	×	
B058	中央制御室空調用冷水ポンプ	Sクラス	R/B	_	×	
B059	中央制御室空調ユニット	Sクラス	R/B	-	×	
B060	格納容器(ドライウエル部)	Sクラス SA施設	R/B	-	×	
B061	格納容器(サプレッションチェンバ部)	Sクラス SA施設	R/B	_	×	
B062	ペデスタル (原子炉本体の基礎)	Sクラス及びSA施 設 間接支持構造	R/B	_	×	
B063	格納容器配管貫通部	Sクラス SA施設	R/B	_	×	
B064	格納容器電気配線貫通部	Sクラス SA施設	R/B	_	×	
B065	可燃性ガス濃度制御系再結合装置	Sクラス	R/B	_	×	
B066	可燃性ガス濃度制御系配管	Sクラス	R/B	-	×	
B067	不活性ガス系配管	Sクラス SA施設	R/B	-	×	
B068	内燃機関 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	揚重設備 (ホイスト, チェーンプロック)	0	
B069	発電機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	揚重設備(ホイスト)	0	
B070	関連配管 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B071	始動空気圧縮機 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B072	始動空気だめ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B073	潤滑油プライミングポンプ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B074	温水循環ポンプ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	照明器具(カバー無し)	0	

第6-3-1表	建屋内上位クラス施設に波及的影響	(損傷,転倒及び落下等)を
	及ぼすおそれのある下位クラス施設	(3/14)

番号	建屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	波及的影響のおそれ (○:あり,×:なし) 損傷・転倒・落下	備考
B075	潤滑油冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B076	清水冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B077	燃料弁冷却油冷却器 (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B078	潤滑油ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B079	清水ヒータ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B080	潤滑油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B081	燃料油フィルタ (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B082	清水膨張タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B083	シリンダ注油タンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B084	潤滑油サンプタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B085	燃料油デイタンク (非常用ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B086	内燃機関 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	揚重設備(ホイスト、チェーンプロック)	0	
B087	発電機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	揚重設備(ホイスト)	0	
B088	関連配管 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B089	始動空気圧縮機 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B090	始動空気だめ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B091	潤滑油プライミングポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B092	温水循環ポンプ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	照明器具 (カバー無し)	0	
B093	潤滑油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B094	清水冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B095	燃料弁冷却油冷却器 (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B096	潤滑油ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B097	清水ヒータ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B098	潤滑油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B099	燃料油フィルタ (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B100	清水膨張タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	-	×	
B101	シリンダ注油タンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B102	潤滑油サンプタンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B103	燃料油デイタンク (高圧炉心スプレイ系ディーゼル発電装置用)	Sクラス SA施設	R/B	_	×	
B104	250V系 蓄電池	Sクラス	R/B	-	×	
B105	250V系 充電器	SŹŹŻ	R/B	-	×	
B106	125V系 蓄電池	Sクラス SA施設	R/B	-	×	
B107	125V系 充電器	SZZZ	R/B	-	×	
B108	125V HPCS蓄電池	Sクラス SA施設	R/B	-	×	
B109	125V HPCS充電器	SŹŻŻ	R/B	-	×	
B110	緊急用125V蓄電池	SA施設	R/B	-	×	
B111	直流±24V蓄電池	Sクラス SA施設	R/B	-	×	

悉号	建屋内上位クラス施設	区分	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	備老
ш /у	定注17上位/ / / ///////////////////////////////	22	場所	ある下位クラス施設	損傷・転倒・落下	C
B112	直流±24V充電器	Sクラス SA施設	R/B	_	×	
B113	バイタル交流電源装置	Sグラス	R/B	_	×	
B114	常設スプレイヘッダ	SA施設	_	_	-	設置予定施設※1
B115	低圧代替注水系配管	SA施設	_	_	-	設置予定施設※1
B116	代替燃料プール注水系配管	SA施設	_	_	-	設置予定施設※1
B117	常設低圧代替注水系ポンプ	SA施設	-	_	-	設置予定施設※1
B118	代替燃料プール冷却系ポンプ	SA施設	_	_	-	設置予定施設※1
B119	緊急用海水ポンプ	SA施設	_	-	-	設置予定施設※1
B120	代替燃料プール冷却系熱交換器	SA施設	_	_	_	設置予定施設※1
B121	緊急用海水系配管	SA施設	_	-	-	設置予定施設※1
B122	常設高圧代替注水系ポンプ	SA施設	_	-	-	設置予定施設※1
B123	高圧代替注水系配管	SA施設	_	_	-	設置予定施設※1
B124	衛星電話設備(固定型)	SA施設	_	_	-	設置予定施設※1
B125	フィルタ装置出口放射線モニタ(高レンジ・低 レンジ)	SA施設	_	_	-	設置予定施設※1
B126	フィルタ装置出口放射線モニタ(高レンジ・低 レンジ)	SA施設	_	-	-	設置予定施設※1
B127	耐圧強化ベント系放射線モニタ	SA施設	_	-	_	設置予定施設※1
B128	使用済燃料プールエリア放射線モニタ(高レン ジ・低レンジ)	SA施設	_	-	-	設置予定施設※1
B129	中央制御室待避室遮蔽	SA施設	_	-	-	設置予定施設※1
B130	中央制御室待避室空気ボンベユニット(配管・ 弁)	SA施設	_	-	-	設置予定施設※1
B131	耐圧強化ベント系配管	SA施設	_	-	_	設置予定施設※1
B132	遠隔人力操作機構	SA施設	_	-	-	設置予定施設※1
B133	フィルタ装置(格納容器圧力逃がし装置)	SA施設	_	-	-	設置予定施設※1
B134	移送ポンプ(格納容器圧力逃がし装置)	SA施設	_	-	-	設置予定施設※1
B135	遠隔人力操作機構(格納容器圧力逃がし装置)	SA施設	_	-	-	設置予定施設※1
B136	圧力開放板(格納容器圧力逃がし装置)	SA施設	_	-	-	設置予定施設※1
B137	フィルタ装置遮蔽(格納容器圧力逃がし装置)	SA施設	_	-	-	設置予定施設※1
B138	配管遮蔽(格納容器圧力逃がし装置)	SA施設	_	_	-	設置予定施設※1
B139	二次隔離弁操作室遮蔽(格納容器圧力逃がし装 置)	SA施設	_	-	-	設置予定施設※1
B140	二次隔離弁操作室 空気ボンベユニット(配 管・弁)	SA施設	_	-	-	設置予定施設※1
B141	(格納容器圧力逃がし装置)	SA施設	_	_	-	設置予定施設※1
B142	代替循環冷却系ポンプ	SA施設	_	-	-	設置予定施設※1
B143	代替循環冷却系配管	SA施設	-	-	-	設置予定施設※1
B144	静的触媒式水素再結合器	SA施設	-	_	_	設置予定施設※1
B145	静的触媒式水素再結合器 動作監視装置	SA施設	-	_	_	設置予定施設※1
B146	常設代替高圧電源装置	SA施設	-	-	_	設置予定施設※1
B147	常設代替高圧電源装置用燃料移送ポンプ	SA施設	-	_	_	設置予定施設※1
B148	常設代替交流電源装置用燃料移送系配管	SA施設	-	_	_	設置予定施設※1

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(4/14)

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(5/14)

番号	建屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	 波及的影響のおそれ (○:あり,×:なし) 損傷・転倒・落下 	備考
B149	緊急時対策所用発電機	SA施設	_	_	-	設置予定施設※1
B150	緊急時対策所用発電機燃料油貯蔵タンク	SA施設	_	_	-	設置予定施設※1
B151	緊急時対策所用発電機給油ポンプ	SA施設	_	-	-	設置予定施設※1
B152	緊急時対策所遮蔽	SA施設	—	_	_	設置予定施設※1
B153	緊急時対策所非常用給気ファン	SA施設	_	-	-	設置予定施設※1
B154	緊急時対策所排気ファン	SA施設	_	-	-	設置予定施設※1
B155	緊急時対策所非常用空気浄化フィルタユニット	SA施設	_	-	-	設置予定施設※1

				設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	111-14
番 号	复	『屋内上位クラス施設	区分	場所	ある下位クラス施設	損傷,転倒,落下	備考
C001	B22-F022A	主蒸気隔離弁第1弁A	S75X	R/B	揚重設備(チェーンブロック)	0	
C002	B22-F022B	主蒸気隔離弁第1 弁 B	Sグラス	R/B	-	×	
C003	B22-F022C	主蒸気隔離弁第1 弁C	SŹŦX	R/B	_	×	
C004	B22-F022D	主蒸気隔離弁第1弁D	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C005	B22-F028A	主蒸気隔離弁第2弁A	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C006	B22-F028B	主蒸気隔離弁第2弁B	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C007	B22-F028C	主蒸気隔離弁第2弁C	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C008	B22-F028D	主蒸気隔離弁第2弁D	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C009	B22-F098A	主蒸気隔離弁第3弁A	Sグラス	R/B	_	×	
C010	B22-F098B	主蒸気隔離弁第3弁B	Sグラス	R/B	_	×	
C011	B22-F098C	主蒸気隔離弁第3弁C	Sグラス	R/B	-	×	
C012	B22-F098D	主蒸気隔離弁第3弁D	Sグラス	R/B	-	×	
C013	B22-F013A	主蒸気逃がし安全弁A	Sグラス SA施設	R/B	揚重設備(チェーンブロック)	0	
C014	B22-F013B	主蒸気逃がし安全弁B	SA施設	R/B	揚重設備(チェーンブロック)	0	
C015	B22-F013C	主蒸気逃がし安全弁C	SA施設	R/B	揚重設備(チェーンブロック)	0	
C016	B22-F013D	主蒸気逃がし安全弁D	SA施設	R/B	揚重設備(チェーンブロック)	0	
C017	B22-F013E	主蒸気逃がし安全弁E	SA施設	R/B	揚重設備(チェーンブロック)	0	
C018	B22-F013F	主蒸気逃がし安全弁F	SA 施設	R/B	揚重設備(チェーンブロック)	0	
C019	B22-F013G	主蒸気逃がし安全弁G	SAFA SA 施型	R/B	揚重設備(チェーンブロック)	0	
C020	B22-F013H	主蒸気逃がし安全弁日	SAFA SA 施型	R/B	揚重設備(チェーンブロック)	0	
C021	B22-F013J	主蒸気逃がし安全弁J	SA加速 SA加設	R/B	揚重設備(チェーンブロック)	0	
C022	B22-F013K	主蒸気逃がし安全弁K	SAFA SA 施型	R/B	揚重設備(チェーンブロック)	0	
C023	B22-F013L	主蒸気逃がし安全弁L	SA施設	R/B	揚重設備(チェーンブロック)	0	
C024	B22-F013M	主蒸気逃がし安全弁M	SA加速 SA加設	R/B	揚重設備(チェーンブロック)	0	
C025	B22-F013N	主蒸気逃がし安全弁N	SA施設	R/B	揚重設備(チェーンブロック)	0	
C026	B22-F013P	主蒸気逃がし安全弁P	SA施設	R/B	揚重設備(チェーンブロック)	0	
C027	B22-F013R	主蒸気逃がし安全弁R	SA施設	R/B	揚重設備(チェーンブロック)	0	
C028	B22-F013S	主蒸気逃がし安全弁S	SA加速 SA加設	R/B	揚重設備(チェーンブロック)	0	
C029	B22-F013U	主蒸気逃がし安全弁U	SA 施設	R/B	揚重設備(チェーンブロック)	0	
C030	B22-F013V	主蒸気逃がし安全弁V	SA施設	R/B	揚重設備(チェーンブロック)	0	
C031	B22-F016	主蒸気ドレン弁(内側隔離弁)	SAPA	R/B	-	×	
C032	B22-F019	主蒸気ドレン弁(外側隔離弁)	Sグラス	R/B	-	×	
C033	B22-F037	主蒸気逃がし安全弁排気管真空破壊弁	Sグラス	R/B	-	×	
C034	B22-F078	主蒸気逃がし安全弁排気管真空破壊弁	SŹŦX	R/B	_	×	
C035	B22-F010A	原子炉給水逆止弁	Sグラス	R/B	-	×	
C036	B22-F010B	原子炉給水逆止弁	Sグラス	R/B	-	×	
C037	B22-F032A	原子炉給水逆止弁	SŹŦX	R/B	揚重設備(チェーンブロック)	0	
C038	B22-F032B	原子炉給水逆止弁	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C039	B22-F065A	原子炉給水元弁	Sグラス	R/B	-	×	
C040	B22-F065B	原子炉給水元弁	Sグラス	R/B	-	×	
C041	E32-F002A	主蒸気隔離弁ブリードライン(A)入 口弁	Sグラス	R/B	-	×	
C042	E32-F002B	 主蒸気隔離弁ブリードライン(B)入 □弁 	Sグラス	R/B	-	×	
C043	E32-F002C	 主蒸気隔離弁ブリードライン (C) 入 	Sグラス	R/B	_	×	
C044	E32-F002D	 主蒸気隔離弁ブリードライン(D)入 ロ弁 	Sグラス	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(6/14)

番 号	建	韓屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	 波及的影響のおそれ (○:あり,×:なし) 損傷、転倒、落下 	備考
C045	E32-F002E	主蒸気隔離弁ブリードライン(E)入 口弁	Sグラス	R/B	_	×	
C046	E32-F002F	主蒸気隔離弁ブリードライン(F)入 口弁	Sグラス	R/B	-	×	
C047	E32-F002G	主蒸気隔離弁ブリードライン(G)入 口弁	Sクラス	R/B	-	×	
C048	E32-F002H	 主蒸気隔離弁ブリードライン(H)入 	Sグラス	R/B	-	×	
C049	E32-F004A	主蒸気隔離弁ブリードライン (A) ベ ント元弁	Sグラス	R/B	_	×	
C050	E32-F004B	主蒸気隔離弁ブリードライン (B) ベ ント元弁	Sグラス	R/B	-	×	
C051	E32-F004C	主蒸気隔離弁ブリードライン (C) ベ ント元弁	Sグラス	R/B	-	×	
C052	E32-F004D	主蒸気隔離弁ブリードライン (D) ベ ント元弁	Sグラス	R/B	-	×	
C053	E32-F004E	主蒸気隔離弁ブリードライン(E)ベ ント元弁	Sグラス	R/B	_	×	
C054	E32-F004F	主蒸気隔離弁ブリードライン(F)ベ ント元弁	Sグラス	R/B	-	×	
C055	E32-F004G	主蒸気隔離弁ブリードライン (G) ベ ント元弁	Sグラス	R/B	_	×	
C056	E32-F004H	主蒸気隔離弁ブリードライン (H) ベ ント元弁	Sグラス	R/B	_	×	
C057	G33-F001	原子炉冷却材浄化系内側隔離弁	Sグラス	R/B	_	×	
C058	G33-F004	原子炉冷却材浄化系外側隔離弁	Sグラス	R/B	_	×	
C059	E12-F003B	残留熱除去系熱交換器B出口弁	Sグラス	R/B	-	×	
C060	E12-F004B	残留熱除去系ポンプB入口弁	Sグラス	R/B	-	×	
C061	E12-F004C	残留熱除去系ポンプC入口弁	Sグラス	R/B	-	×	
C062	E12-F006B	残留熱除去系ポンプB停止時冷却ライ ン入口弁	Sグラス	R/B	-	×	
C063	E12-F016B	残留熱除去系B系格納容器スプレイ弁	Sグラス	R/B	-	×	
C064	E12-F017B	残留熱除去系B系格納容器スプレイ弁	Sグラス	R/B	_	×	
C065	E12-F024B	残留熱除去系B系テストライン弁	Sグラス	R/B	-	×	
C066	E12-F027B	残留熱除去系 B 系サプレッションプー ルスプレイ弁	Sクラス	R/B	-	×	
C067	E12-F031B	残留熱除去系ポンプB出口逆止弁	Sクラス	R/B	-	×	
C068	E12-F031C	残留熱除去系ポンプC出口逆止弁	Sクラス	R/B	-	×	
C069	E12-F041B	残留熱除去系B系注入ラインテスト逆 止弁	Sクラス	R/B	-	×	
C070	E12-F041C	残留熱除去系C系注入ラインテスト逆 止弁	Sクラス	R/B	-	×	
C071	E12-F042B	残留熱除去系B系注入弁	Sクラス	R/B	-	×	
C072	E12-F042C	残留熱除去系C系注入弁	Sクラス	R/B	_	×	
C073	E12-F046B	残留熱除去系 B 系ミニフローライン逆 止弁	Sグラス	R/B	-	×	
C074	E12-F046C	残留熱除去系C系ミニフローライン逆 止弁	Sグラス	R/B	-	×	
C075	E12-F047B	残留熱除去系熱交換器B入口弁	Sクラス	R/B	揚重設備(チェーンブロック)	0	
C076	E12-F048B	残留熱除去系熱交換器Bバイパス弁	Sクラス	R/B	_	×	
C077	E12-F050B	残留熱除去系B系停止時冷却ラインテ スト逆止弁	Sグラス	R/B	-	×	
C078	E12-F053B	残留熱除去系B系シャットダウン注入 弁	Sクラス	R/B	-	×	
C079	E12-F064B	残留熱除去系B系ミニフロー弁	Sクラス	R/B	-	×	
C080	E12-F064C	残留熱除去系C系ミニフロー弁	Sグラス	R/B	-	×	
C081	E12-F003A	残留熱除去系熱交換器A出口弁	Sグラス	R/B	-	×	
C082	E12-F004A	残留熱除去系ポンプA入口弁	Sグラス	R/B	-	×	
C083	E12-F006A	残留熱除去系ポンプA停止時冷却ライ ン入口弁	Sグラス	R/B	-	×	
C084	E12-F008	残留熱除去系シャットダウンライン隔 離弁(外側)	Sグラス	R/B	-	×	
C085	E12-F009	残留熱除去系シャットダウンライン隔 離弁(内側)	Sグラス	R/B	-	×	
C086	E12-F016A	残留熱除去系A系格納容器スプレイ弁	Sグラス	R/B	-	×	
C087	E12-F017A	残留熱除去系A系格納容器スプレイ弁	Sグラス	R/B	-	×	
C088	E12-F024A	残留熱除去系A系テストライン弁	Sクラス	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(7/14)

番 号	建	星屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	 波及的影響のおそれ (○:あり,×:なし) 損傷,転倒,落下 	備考
C089	E12-F027A	残留熱除去系A系サプレッションプー ルスプレイ弁	Sグラス	R/B	_	×	
C090	E12-F031A	残留熱除去系ポンプA出口逆止弁	Sグラス	R/B	_	×	
C091	E12-F041A	残留熱除去系A系注入ラインテスト逆 止弁	Sグラス	R/B	_	×	
C092	E12-F042A	残留熱除去系A系注入弁	Sクラス	R/B	_	×	
C093	E12-F046A	残留熱除去系A系ミニフローライン逆 止弁	Sグラス	R/B	_	×	
C094	E12-F047A	残留熱除去系熱交換器A入口弁	Sグラス	R/B	_	×	
C095	E12-F048A	残留熱除去系熱交換器Aバイパス弁	Sグラス	R/B	_	×	
C096	E12-F050A	残留熱除去系A系停止時冷却ラインテ スト逆止弁	Sグラス	R/B	_	×	
C097	E12-F053A	残留熱除去系A系シャットダウン注入 弁	Sグラス	R/B	_	×	
C098	E12-F064A	残留熱除去系A系ミニフロー弁	Sグラス	R/B	-	×	
C099	2-16V12A	ドライウェルN 2 供給弁	Sグラス	R/B	-	×	
C100	2-16V12B	ドライウェルN 2 供給弁	Sグラス	R/B	_	×	
C101	2-16V13A	ドライウェルN 2 ボトルガス供給弁	Sグラス	R/B	_	×	
C102	2-16V13B	ドライウェルN2ボトルガス供給弁	Sクラス	R/B	-	×	
C103	E12-F068A	残留熱除去系熱交換器A海水出口流量 調整弁	Sグラス	R/B	_	×	
C104	E12-F068B	残留熱除去系熱交換器B海水出口流量 調整弁	Sグラス	R/B	_	×	
C105	E51-F010	原子炉隔離時冷却系復水貯蔵タンク水 供給弁	Sグラス	R/B	_	×	
C106	E51-F011	原子炉隔離時冷却系ポンプ復水貯蔵タ ンク水供給逆止弁	Sグラス	R/B	_	×	
C107	E51-F012	原子炉隔離時冷却系ポンプ出口弁	Sグラス	R/B	_	×	
C108	E51-F013	原子炉隔離時冷却系注入弁	Sグラス	R/B	_	×	
C109	E51-F015	原子炉隔離時冷却系潤滑油クーラー冷 却水圧力調整弁	Sグラス	R/B	揚重設備(ホイスト)	0	
C110	E51-F019	原子炉隔離時冷却系ミニフロー弁	Sグラス	R/B	揚重設備(ホイスト)	0	
C111	E51-F028	原子炉隔離時冷却系真空ポンプ出口逆 止弁	Sグラス	R/B	-	×	
C112	E51-F030	原子炉隔離時冷却系サプレッション プール水供給ライン逆止弁	Sグラス	R/B	_	×	
C113	E51-F031	原子炉隔離時冷却系ポンプサプレッ ションプール水供給弁	Sグラス	R/B	_	×	
C114	E51-F040	原子炉隔離時冷却系タービン排気逆止 弁	Sグラス	R/B	_	×	
C115	E51-F044	原子炉隔離時冷却系真空タンク復水ポ ンプ出口逆止弁	Sグラス	R/B	揚重設備(ホイスト)	0	
C116	E51-F045	原子炉隔離時冷却系蒸気供給弁	Sグラス	R/B	-	×	
C117	E51-F046	原子炉隔離時冷却系潤滑油クーラー冷 却水供給弁	Sグラス	R/B	揚重設備(ホイスト)	0	
C118	E51-F047	原子炉隔離時冷却系真空タンク復水戻 り逆止弁	Sグラス	R/B	揚重設備(ホイスト)	0	
C119	E51-F063	原子炉隔離時冷却系内側隔離弁	Sクラス	R/B	-	×	
C120	E51-F064	原子炉隔離時冷却系外側隔離弁	Sグラス	R/B	-	×	
C121	E51-F065	原子炉隔離時冷却系外側テスト逆止弁	Sクラス	R/B	-	×	
C122	E51-F066	原子炉隔離時冷却系内側テスト逆止弁	Sクラス	R/B	-	×	
C123	E51-F068	原子炉隔離時冷却系タービン排気弁	Sグラス	R/B	-	×	
C124	E51-F069	原子炉隔離時冷却系真空ポンプ出口弁	Sクラス	R/B	-	×	
C125	E51-FF006-201	原子炉隔離時冷却系タービン排気ライ ン真空破壊弁	Sグラス	R/B	-	×	
C126	E51-FF006-202	原子炉隔離時冷却系タービン排気ライ ン真空破壊弁	Sグラス	R/B	_	×	
C127	E22-F001	高圧炉心スプレイ系ポンプ入口弁(C ST側)	Sグラス	R/B	-	×	
C128	E22-F002	高圧炉心スプレイ系入口逆止弁(CS T側)	Sグラス	R/B	-	×	
C129	E22-F004	高圧炉心スプレイ系注入弁	Sグラス	R/B	_	×	
C130	E22-F005	高圧炉心スプレイ系テスタブル逆止弁	Sグラス	R/B	-	×	
C131	E22-F012	高圧炉心スプレイ系ミニフロー弁	Sグラス	R/B	-	×	
C132	E22-F015	高圧炉心スプレイ系ポンプ入口弁(S /P側)	Sグラス	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(8/14)

番 号	建	#屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	波及的影響のおそれ (○:あり,×:なし) 損傷,転倒,落下	備考
C133	E22-F016	高圧炉心スプレイ系入口逆止弁(S/ P側)	Sグラス	R/B	-	×	
C134	E22-F024	高圧炉心スプレイ系入口逆止弁	Sグラス	R/B	-	×	
C135	E21-F001	低圧炉心スプレイ系ポンプ入口弁	Sグラス	R/B	-	×	
C136	E21-F003	低圧炉心スプレイ系出口逆止弁	Sグラス	R/B	_	×	
C137	E21-F005	低圧炉心スプレイ系注入弁	Sグラス	R/B	-	×	
C138	E21-F006	低圧炉心スプレイ系テスト逆止弁	Sグラス	R/B	_	×	
C139	E21-F011	低圧炉心スプレイ系ミニフロー弁	Sグラス	R/B	-	×	
C140-1	C12-117	スクラム弁用空気三方電磁弁	Sグラス	R/B	揚重設備 (チェーンブロック)	0	
C140-2	-		Sグラス	R/B	揚重設備(チェーンブロック)	0	
C141-1	C12-118	スクラム弁用空気三方電磁弁	Sクラス	R/B	揚重設備(チェーンブロック)	0	
C141-2	-		Sグラス	R/B	揚重設備(チェーンブロック)	0	
C142-1	C12-126	スクラム弁 (加圧・流入側)	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C142-2			Sグラス	R/B	揚重設備(チェーンブロック)	0	
C143-1	C12-127	スクラム弁 (排出側)	Sグラス	R/B	揚重設備(チェーンブロック)	0	
C143-2			Sグラス	R/B	揚重設備(チェーンブロック)	0	
C144	SB2-4A	FRVS SGTS 系入口ダンパ	Sグラス	R/B	-	×	
C145	SB2-4B	FRVS SGTS 系入口ダンパ	Sグラス	R/B	-	×	
C146	SB2-5A	非常用ガス再循環系トレインA入口ダ ンパ	Sグラス	R/B	-	×	
C147	SB2-5B	非常用ガス再循環系トレインB入口ダ ンパ	Sグラス	R/B	-	×	
C148	SB2-6	FRVSトレイン連結弁	Sクラス	R/B	-	×	
C149	SB2-7A	非常用ガス再循環系トレインA出口ダ ンパ	Sグラス	R/B	-	×	
C150	SB2-7B	非常用ガス再循環系トレインB出口ダ ンパ	Sグラス	R/B	-	×	
C151	SB2-13A	非常用ガス再循環系循環ダンパ	Sクラス	R/B	-	×	
C152	SB2-13B	非常用ガス再循環系循環ダンパ	Sグラス	R/B	-	×	
C153	SB2-9A	非常用ガス処理系トレインA入口ダン パ	Sグラス	R/B	-	×	
C154	SB2-9B	非常用ガス処理系トレインB入口ダン パ	Sグラス	R/B	-	×	
C155	SB2-10	SGTSトレイン連結弁	Sグラス	R/B	-	×	
C156	SB2-11A	非常用ガス処理系トレインA出口ダン パ	Sグラス	R/B	-	×	
C157	SB2-11B	非常用ガス処理系トレインB出口ダン パ	Sグラス	R/B	-	×	
C158	2-43V1A	可燃性ガス濃度制御系A系入口管隔離 弁	Sグラス	R/B	_	×	
C159	2-43V1B	可燃性ガス濃度制御系 B 系入口管隔離 弁	Sグラス	R/B	_	×	
C160	FV-1A	可燃性ガス濃度制御系入口制御弁	Sグラス	R/B	_	×	
C161	FV-1B	可燃性ガス濃度制御系入口制御弁	Sグラス	R/B	_	×	
C162	2-43V2A	可燃性ガス濃度制御系A系出口弁	Sグラス	R/B	_	×	
C163	2-43V2B	可燃性ガス濃度制御系B系出口弁	Sグラス	R/B	-	×	
C164	2-43V3A	可燃性ガス濃度制御系A系出口管隔離 弁	Sグラス	R/B	_	×	
C165	2-43V3B	可燃性ガス濃度制御系 B 系出口管隔離 弁	Sグラス	R/B	-	×	
C166	FV-2A	可燃性ガス濃度制御系再循環制御弁	Sグラス	R/B	-	×	
C167	FV-2B	可燃性ガス濃度制御系再循環制御弁	Sグラス	R/B	-	×	
C168	MV-10A	可燃性ガス濃度制御系冷却器冷却水入 口弁	Sグラス	R/B	-	×	
C169	MV-10B	可燃性ガス濃度制御系冷却器冷却水入 口弁	Sグラス	R/B	-	×	
C170	2-26V-40	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C171	2-26V-41	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C172	2-26V-42	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(9/14)

37. F.	妥 旦 御屋内上位カラマ佐乳		ロハ	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	備老
宙方	X	単生的工业/ ノス加設	区刀	場所	ある下位クラス施設	損傷,転倒,落下	加巧
C173	2-26V-43	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C174	2-26V-44	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C175	2-26V-45	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C176	2-26V-46	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C177	2-26V-47	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C178	2-26V-48	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C179	2-26V-49	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C180	2-26V-56	ドライウェル真空破壊弁	Sクラス SA施設	R/B	-	×	
C181	2-26B-10	サプレッション・チェンバベント弁	Sグラス	R/B	-	×	
C182	2-26B-12	格納容器ベント弁	Sグラス	R/B	-	×	
C183	2-26B-90	PCV SGTS 排気弁	Sグラス	R/B	-	×	
C184	2-26V1	サプレッションチェンバ真空破壊弁	Sグラス	R/B	照明器具(カバー無し)	0	
C185	2-26V2	サプレッションチェンバ真空破壊弁	Sグラス	R/B	-	×	
C186	2-26B3	AC系・真空破壊逆止弁止め弁	Sグラス	R/B	-	×	
C187	2-26B4	AC系・真空破壊逆止弁止め弁	Sグラス	R/B	-	×	
C188	SB2- 1A/1B/1C/1D	C/S給気隔離ダンパ	Sグラス	R/B	-	×	
C189	SB2- 2A/2B/2C/D	原子炉建屋换気系給気隔離弁	Sグラス	R/B	-	×	
C190	3-13V24	非常用ディーゼル発電機2D海水系出 口逆止弁	Sグラス	R/B	-	×	
C191	3-13V26	非常用ディーゼル発電機2C海水系出 口逆止弁	Sグラス	R/B	-	×	
C192	2-16V11	ドライウェル制御用空気供給元	Sグラス	R/B	-	×	
C193	3-13V25	高圧炉心スプレイディーゼル冷却系海 水系出口逆止弁	Sグラス	R/B	-	×	
C194	2-9V33	ドライウェル内機器原子炉補機冷却水 戻り弁	Sグラス	R/B	-	×	
C195	2-9V30	ドライウェル内機器原子炉補機冷却水 隔離弁	Sグラス	R/B	-	×	
C196	SB2-18A	中央制御室給気隔離弁	SA施設	R/B	_	×	
C197	SB2-18B	中央制御室給気隔離弁	SA施設	R/B	-	×	
C198	SB2-19A	中央制御室給気隔離弁	SA施設	R/B	_	×	
C199	SB2-19B	中央制御室給気隔離弁	SA施設	R/B	-	×	
C200	SB2-20A	中央制御室排気隔離弁	SA施設	R/B	-	×	
C201	SB2-20B	中央制御室排気隔離弁	SA施設	R/B	-	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(10/14)

			1			
悉号	建屋内上位クラス施設	区分	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	備老
軍々	モニドリエリエン ノ ハ肥収	<u>ыл</u>	場所	ある下位クラス施設	損傷,転倒,落下	دہ سر
D001	緊急時炉心冷却系操作盤	Sクラス SA施設	R/B	天井照明	0	
D002	原子炉補機操作盤	S/ラス SA施設	R/B	天井照明	0	
D003	原子炉制御操作盤	Sクラス SA施設	R/B	天井照明	0	
D004	プロセス放射線モニタ計装盤	Sクラス	R/B	_	×	
D005	原子炉保護系 (A) 継電器盤	Sクラス SA施設	R/B	_	×	
D006	原子炉保護系(B)継電器盤	Sクラス	R/B	_	×	
D007	プロセス計装盤(H13-P613)	Sクラス SA施設	R/B	-	×	
D008	プロセス計装盤(H13-P617)	Sクラス SA施設	R/B	-	×	
D009	残留熱除去系(B),(C)補助継電器盤	Sクラス SA施設	R/B	_	×	
D010	原子炉隔離時冷却系継電器盤	Sクラス SA施設	R/B	_	×	
D011	原子炉格納容器内側隔離系継電器盤	SźŻŻ	R/B	-	×	
D012	原子炉格納容器外側隔離系継電器盤	SźŻŻ	R/B	-	×	
D013	高圧炉心スプレイ系継電器盤	Sクラス SA施設	R/B	-	×	
D014	自動減圧系(A)継電器盤	Sクラス SA施設	R/B	-	×	
D015	低圧炉心スプレイ系,残留熱除去系(A)補助継 電器盤	Sクラス SA施設	R/B	-	×	
D016	自動減圧系(B)継電器盤	Sクラス SA施設	R/B	-	×	
D017	漏えい検出系操作盤(H13-P632)	Sグラス	R/B	-	×	
D018	プロセス放射線モニタ,起動時領域モニタ (A) 操作盤	Sクラス SA施設	R/B	-	×	
D019	プロセス放射線モニタ,起動時領域モニタ (B) 操作盤	Sクラス SA施設	R/B	-	×	
D020	漏えい検出系操作盤(H13-P642)	Sグラス	R/B	-	×	
D021	アクシデントマネージメント盤	Sグラス	R/B	-	×	
D022	サプレッションプール温度記録計盤(A)	Sクラス SA施設	R/B	-	×	
D023	サプレッションプール温度記録計盤(B)	Sクラス SA施設	R/B	-	×	
D024	原子炉保護系(1A)トリップユニット盤	Sグラス	R/B	-	×	
D025	原子炉保護系(1B)トリップユニット盤	Sクラス	R/B	-	×	
D026	原子炉保護系(2A)トリップユニット盤	Sクラス	R/B	-	×	
D027	原子炉保護系(2B)トリップユニット盤	Sクラス	R/B	_	×	
D028	緊急時炉心冷却系(DIV-I-1)トリップユニット 盤	Sクラス SA施設	R/B	_	×	
D029	緊急時炉心冷却系(DIV-Ⅱ-1)トリップユニット 盤	Sクラス SA施設	R/B	-	×	
D030	緊急時炉心冷却系(DIV-I-2)トリップユニット 盤	Sクラス SA施設	R/B	_	×	
D031	高圧炉心スプレイ系トリップユニット盤	Sクラス SA施設	R/B	_	×	
D032	所内電気操作盤	Sクラス SA施設	R/B	天井照明	0	
D033	タービン補機盤 (CP-4)	Sクラス SA施設	R/B	-	×	
D034	窒素置換-空調換気制御盤	Sクラス SA施設	R/B	_	×	
D035	非常用ガス処理系,非常用ガス循環系 (A) 操作 盤	Sクラス SA施設	R/B	_	×	
D036	非常用ガス処理系,非常用ガス循環系 (B) 操作 盤	Sクラス SA施設	R/B	-	×	
D037	タービン補機盤 (CP-9)	Sクラス	R/B	-	×	
D038	タービン補機盤 (CP-11)	Sクラス	R/B	-	×	
D039	RCICタービン制御盤	Sクラス SA施設	R/B	-	×	
D040	非常用メタクラ 2C	Sクラス	R/B	-	×	
D041	非常用メタクラ 2D	Sクラス	R/B	-	×	
D042	非常用メタクラ HPCS	Sクラス	R/B	_	×	
D043	非常用パワーセンタ 2C	Sクラス	R/B	_	×	

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(11/14)

	75-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	E ()	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	/## ##		
番号	運産内上位クラス施設	区分	場所	ある下位クラス施設	損傷,転倒,落下	偏考		
D044	非常用パワーセンタ 2D	Sクラス	R/B	_	×			
D045	MCC 2C-3	Sクラス	R/B	_	×			
D046	MCC 2C-4	Sクラス	R/B	_	×			
D047	MCC 2C-5	Sクラス	R/B	_	×			
D048	MCC 2C-6	Sクラス	R/B	_	×			
D049	MCC 2C-8	Sクラス	R/B	-	×			
D050	MCC 2C-9	Sクラス	R/B	_	×			
D051	MCC 2D-3	Sクラス	R/B	_	×			
D052	MCC 2D-4	Sクラス	R/B	_	×			
D053	MCC 2D-5	Sクラス	R/B	_	×			
D054	MCC 2D-6	Sクラス	R/B	_	×			
D055	MCC 2D-8	Sクラス	R/B	_	×			
D056	MCC 2D-9	Sクラス	R/B	_	×			
D057	MCC HPCS	Sクラス	R/B	_	×			
D058	直流125V分電盤2A-1	Sクラス	R/B	_	×			
D059	直流125V分電盤2A-2-1	Sクラス	R/B	_	×			
D060	直流125V分電盤2A-2	Sクラス	R/B	_	×			
D061	直流125V分電盤2B-1	Sクラス	R/B	_	×			
D062	直流125V分電盤2B-2-1	Sクラス	R/B	_	×			
D063	直流125V分電盤2B-2	Sクラス	R/B	_	×			
D064	直流125V分電盤HPCS	Sクラス	R/B	_	×			
D065	直流125V配電盤2A	Sクラス	R/B	_	×			
D066	直流125V配電盤2B	Sクラス	R/B	_	×			
D067	直流125V配電盤HPCS	Sクラス	R/B	_	×			
D068	中央制御室120V交流計装用分電盤2A-1	Sクラス	R/B	_	×			
D069	中央制御室120V交流計装用分電盤2A-2	Sクラス	R/B	_	×			
D070	中央制御室120V交流計装用分電盤2B-1	Sクラス	R/B	_	×			
D071	中央制御室120V交流計装用分電盤2B-2	Sクラス	R/B	_	×			
D072	120V交流計装用分電盤HPCS	Sクラス	R/B	_	×			
D073	直流125V MCC 2A-1	Sクラス	R/B	_	×			
D074	直流125V MCC 2A-2	Sクラス	R/B	_	×			
D075	直流±24V分電盤2A	Sクラス	R/B	_	×			
D076	直流±24V分電盤2B	Sクラス	R/B	_	×			
D077	可搬型整流器用変圧器	SA施設		_	_	設置予定施設※1		
D078	可搬型代替直流電源設備用電源切替盤	SA施設		_	_	設置予定施設※1		
D079	緊急用断路器	SA施設		_	-	設置予定施設※1		
D080	緊急用M∕C	SA施設		_	_	設置予定施設※1		
D081	緊急用動力変圧器	SA施設		_	_	設置予定施設※1		
D082	緊急用 P / C	SA施設		_	_	設置予定施設※1		
D083	緊急用MCC	SA施設		_	_	設置予定施設※1		
D084	緊急用電源切替盤	SA施設		_	_	設置予定施設※1		
D085	可搬型代替低圧電源車接続盤	SA施設		_	_	設置予定施設※1		
D086	緊急用直流125V配電盤	SA施設		_	_	設置予定施設※1		

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(12/14)

34 日.	神民中したカミュ状況	EA	設置	波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり,×:なし)	/# #
留万	建産的工化クラス胞族	区方	場所	ある下位クラス施設	損傷,転倒,落下	- 1冊 今
D087	緊急時対策所用M/C	SA施設		_	_	設置予定施設※1
D101	原子炉圧力	Sクラス SA施設	R/B	-	×	
D102	原子炉水位	Sクラス SA施設	R/B	_	×	
D103	原子炉隔離時冷却系系統流量	Sクラス SA施設	R/B	_	×	
D104	高圧炉心スプレイ系系統流量	Sクラス SA施設	R/B	-	×	
D105	残留熱除去系系統流量	Sクラス SA施設	R/B	-	×	
D106	低圧炉心スプレイ系系統流量	Sクラス SA施設	R/B	_	×	
D107	残留熱除去系熱交換器入口温度	Sクラス SA施設	R/B	_	×	
D108	残留熱除去系熱交換器出口温度	Sクラス SA施設	R/B	_	×	
D109	残留熱除去系海水系系統流量	Sクラス SA施設	R/B	-	×	
D110	原子炉隔離時冷却系ポンプ吐出圧力	Sクラス SA施設	R/B	-	×	
D111	高圧炉心スプレイ系ポンプ吐出圧力	Sクラス SA施設	R/B	-	×	
D112	残留熱除去系ポンプ吐出圧力	Sクラス SA施設	R/B	-	×	
D113	低圧炉心スプレイ系ポンプ吐出圧力	Sクラス SA施設	R/B	-	×	
D114	原子炉圧力 (SA)	SA施設	R/B	_	×	
D115	サプレッション・プール水温度	Sクラス SA施設	R/B	_	×	
D116	ドライウェル圧力	SA施設	R/B	-	×	
D117	サプレッション・チェンバ圧力	SA施設	R/B	-	×	
D118	サプレッション・プール水位	Sクラス SA施設	R/B	_	×	
D119	格納容器内水素濃度	Sクラス SA施設	R/B	揚重設備(ホイスト)	0	
D120	格納容器内酸素濃度	Sクラス SA施設	R/B	揚重設備(ホイスト)	0	
D121	主蒸気系流量	Sźźz	R/B	-	×	
D122	原子炉圧力容器温度	SA施設	R/B	-	×	
D123	格納容器雰囲気放射線モニタ	Sクラス SA施設	R/B	_	×	
D124	原子炉水位(SA広帯域・SA燃料域)	SA施設		_	_	設置予定施設※1
D125	高圧代替注水系系統流量	SA施設		_	_	設置予定施設※1
D126	低圧代替注水系原子炉注水流量	SA施設		-	_	設置予定施設※1
D127	代替循環冷却系原子炉注水流量	SA施設		_	_	設置予定施設※1
D128	低圧代替注水系格納容器スプレイ流量	SA施設		_	_	設置予定施設※1
D129	低圧代替注水系格納容器下部注水流量	SA施設		-	_	設置予定施設※1
D130	ドライウェル雰囲気温度	SA施設		_	_	設置予定施設※1
D131	サプレッション・チェンバ雰囲気温度	SA施設		-	_	設置予定施設※1
D132	格納容器下部水位	Sクラス SA施設		-	_	設置予定施設※1
D133	フィルタ装置水位	SA施設		_	_	設置予定施設※1
D134	フィルタ装置圧力	SA施設		-	_	設置予定施設※1
D135	フィルタ装置スクラビング水温度	SA施設		-	_	設置予定施設※1
D136	フィルタ装置入口水素濃度	SA施設		_	_	設置予定施設※1
D137	代替循環冷却系ポンプ入口温度	SA施設		-		設置予定施設※1
D138	代替循環冷却系格納容器スプレイ流量	SA施設		_	_	設置予定施設※1
D139	緊急用海水系流量 (残留熱除去系熱交換器)	SA施設		-	_	設置予定施設※1
D140	緊急用海水系流量(残留熱除去系補機)	SA施設		-	_	設置予定施設※1
D141	代替淡水貯槽水位	SA施設		-	_	設置予定施設※1
D142	常設高圧代替注水系ポンプ吐出圧力	SA施設		-	_	設置予定施設※1

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(13/14)

第6-3-1表 建屋内上位クラス施設に波及的影響(損傷,転倒及び落下等)を 及ぼすおそれのある下位クラス施設(14/14)

番号	建屋内上位クラス施設	区分	設置 場所	波及的影響を及ぼすおそれの ある下位クラス施設	 波及的影響のおそれ (○:あり,×:なし) 損傷 転倒 茲下 	備考
D143	党設任正代基注水系ポンプ吐出正力	SA施設				設置予定協設※1
D143	市政政圧代替在水米がシノ・圧山圧力	SAMER				以直了 ////////////////////////////////////
D144	代替循環冷却系ポンプ吐出圧力	SA施設		_	_	設置予定施設※1
D145	原子炉建屋水素濃度	SA施設		-	-	設置予定施設※1

備		り,原子 工認耐震計算書	響を及 添付予定		9,原子 工認耐震計算書	及的影 添付予定			9, 燃料 工認耐震計算書	を及ぼ 添付予定			9,制御 工認耐震計算書	ラス施 添付予定	認する。	9,使用 工認耐震計算書	設に対 添付予定	0	9,原子 工認耐震計算書	して波 添付予定	
評価 方針		基準地震動Ssに対する構造健全性評価により	炉遮蔽壁が上位クラス施設に対して波及的影	ぼさないことを確認する。	基準地震動Ssに対する構造健全性評価により	炉建屋クレーンが上位クラス施設に対して波	響を及ぼさないことを確認する。		基準地震動Ssに対する構造健全性評価により	取替機が上位クラス施設に対して波及的影響	さないことを確認する。		基準地震動Ssに対する構造健全性評価により	棒貯蔵ラック及び制御棒貯蔵ハンガが上位ク	設に対して波及的影響を及ぼさないことを確	基準地震動Ssに対する構造健全性評価により	済燃料乾式貯蔵建屋クレーンが上位クラス施	して波及的影響を及ぼさないことを確認する	基準地震動Ssに対する構造健全性評価により	炉ウェル遮蔽ブロックが上位クラス施設に対	
波及的影響を及ぼすおそれのある	下位クラス施設	原子炉遮蔽壁			原子炉建屋クレーン				燃料取替機				制御棒貯蔵ラック	制御棒貯蔵ハンガ		使用済燃料乾式貯蔵建屋クレーン			原子炉ウェル遮蔽ブロック		
上位クラス施設	(建屋内施設)	原子炉圧力容器			使用済燃料プール	使用済燃料ラック	原子炉建屋换気系放射線モ	- 4	使用済燃料プール	使用済燃料ラック	原子炉建屋换気系放射線モ	ニタ	使用済燃料プール	使用済燃料ラック		使用済燃料乾式貯蔵容器			格納容器		

転倒及び落下等による影響)(1/2) 建屋内施設の評価方針(掲傷. 第6-3-2表

4条-別紙6-90

上位クラス施設	波及的影響を及ぼすおそれのある	型 佰 七 44	備
(建屋内施設)	下位クラス施設		
緊急時炉心冷却系操作盤	中央制御室用天井照明	基準地震動Ssに対する構造健全性評価により、中央	工認耐震計算書
原子炉補機操作盤		制御室用天井照明が上位クラス施設に対して波及的	添付予定
原子炉制御操作盤		影響を及ぼさないことを確認する。	
所内電源操作盤			
上位クラス施設	揚重設備(ホイスト, チェーンブ	通常運転開始までに落下防止等の措置を講じる。	
	ロック)		
上位クラス施設	照明器具(カバー無し)	通常運転開始までに落下防止等の措置を講じる。	

転倒及び落下等による影響) (2/2) 建屋内施設の評価方針(損傷. 第6-3-2表 6.4 建屋外における損傷,転倒及び落下等による影響検討結果

6.4.1 抽出作業

机上検討及び現場調査をもとに,建屋外上位クラス施設及び建屋外上位ク ラス施設の間接支持構造物である建物・構築物に対して,損傷,転倒及び落 下等により影響を及ぼす可能性のある下位クラス施設を抽出した。

6.4.2 下位クラス施設の抽出結果

第 5-4 図のフローの a に基づいて抽出された下位クラス施設について抽出したものを第 6-4-1 図及び第 6-4-1 表に示す。

6.4.3 耐震評価を実施する施設

6.4.2 で抽出した建屋外下位クラス施設の評価方針について,第 6-4-2 表に示す。

第6-4-1図 建屋外上位クラス配置図 (1/3)

<u>原子炉建屋周辺詳細</u> <u>原子炉建屋周辺詳細</u> … <u>・</u> 上位クラス施設 ・ 波及的影響を及ぼす可能性のある 下位クラス施設

第6-4-1図 建屋外上位クラス配置図 (2/3)

取水構造物平面図

第6-4-1図 建屋外上位クラス配置図 (3/3)

第6-4-1表 建屋外上位クラス施設に波及的影響(損傷,転倒及び落下等)を及ぼす おそれのある下位クラス施設(1/2)

		設置		波及的影響を及ぼすおそれの	波及的影響のおそれ (○:あり, ×:なし)	
番号	屋外上位クラス施設	場所	区分	ある下位クラス施設	損傷・転倒・ 落下	備考
A001	残留熱除去系海水ポンプ	屋外	Sクラス SA施設	海水ボンプ室防護壁 循環水ボンプクレーン 固定バースクリーン 回転レイキ付きバースクリーン トラベリングスクリーン	0	
A002	残留熱除去系海水ストレーナ	屋外	Sグラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A003	残留熱除去系海水配管	屋外	Sグラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A004	非常用ディーゼル発電機用海水ボンプ	屋外	Sクラス SA施設	海水ボンプ室防護壁 循環水ボンブクレーン 固だバースクリーン 回転レイキ付きバースクリーン トラベリングスクリーン	0	
A005	非常用ディーゼル発電機用海水ストレーナ	屋外	Sグラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A006	非常用ディーゼル発電機用海水配管	屋外	Sグラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A007	高圧炉心スプレイ系ディーゼル発電機用海水ポ ンプ	炉心スプレイ系ディーゼル発電機用海水ボ 屋外		海水ボンプ室防護壁 循環水ボンブクレーン 固定バースクリーン 回転レイキ付きパースクリーン トラベリングスクリーン	0	
A008	高圧炉心スプレイ系ディーゼル発電機用海水ス トレーナ	屋外	Sクラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A009	高圧炉心スプレイ系ディーゼル発電機用海水配 管	屋外	S/ラス SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A010	非常用ガス処理系配管	屋外	Sグラス SA施設	廃棄物処理建屋	0	
A011	原子炉建量	(用力不处理示配官) 重开 至炉建屋 量外		タービン連屈 サービス建屈 サンプルタンタ重 サンプルタンタ重 連絡通路 連絡和外 展 案物処見ゆ 展 案物処理違屈	0	
A012	使用済燃料乾式貯蔵建屋	屋外	Sクラス 間接支持構造物	_	×	
A013	取水構造物	屋外	屋外重要度土木構造物 SA施設	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A014	屋外二重管	屋外	Sクラス及びSA施設 間接支持構造物	-	×	
A015	非常用ガス処理系配管支持構造(排気筒、支持 架構)	屋外	Sクラス及びSA施設 間接支持構造物	廃棄物処理建屋	0	
A016	常設代替高圧電源装置置場	屋外	Sクラス及びSA施設 間接支持構造物	-	-	設置予定施設※1
A017	常設代替高圧電源装置用カルバート	屋外	Sクラス及びSA施設 間接支持構造物	_	_	設置予定施設※1
A018	緊急時対策所	屋外	SA施設 間接支持構造物	_	_	設置予定施設※1
A019	緊急時対策所用発電機燃料油貯蔵タンク基礎	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A020	代替淡水貯槽	屋外	SA施設	-	_	設置予定施設※1
A021	常設低圧代替注水系ポンプ室	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A022	常設低圧代替注水系配管カルバート	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A023	格納容器圧力逃がし装置格納槽	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A024	格納容器圧力逃がし装置用配管カルバート	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A025	SA用海水ピット	屋外	SA施設	_	_	設置予定施設※1
A026	SA用海水ピット取水塔	屋外	SA施設	-	_	設置予定施設※1
A027	海水引込み管	屋外	SA施設	-	_	設置予定施設※1
A028	緊急用海水ポンプピット	屋外	SA施設	_	_	設置予定施設※1
A029	緊急用海水配管カルバート	屋外	SA施設 間接支持構造物	-	_	設置予定施設※1
A030	緊急用海水取水管	屋外	SA施設	-	-	設置予定施設※1
A031	可搬型設備用軽油タンク基礎	屋外	SA施設	-	_	設置予定施設※1
A032	防潮堤及び防潮扉(防潮堤道路横断部に設置)	屋外	Sグラス	-	_	設置予定施設※1
A033	放水路ゲート	屋外	S77X	-	-	設置予定施設※1
A034	構內排水路逆流防止設備	屋外	Sグラス	-	_	設置予定施設※1
A035	貯留堰	屋外	Sクラス及びSA施設	-	_	設置予定施設※1

※1 当該施設を設置する段階で、5.4項こ示す影響機能実施する(統計資料3)。

第6-4-1表	建屋外上位クラス施設に波及的影響	(損傷,	転倒及び落下等)	を及ぼす
	おそれのある下位クラス施設(2/2)			

番号	屋外上位クラス施設	設置 場所	区分	波及的影響を及ぼすおそれの ある下位クラス施設	 波及的影響のおそれ (○:あり,×:なし) 損傷・転倒・ 落下 	備考
A036	取水路点検用開口部浸水防止蓋	屋外	Sグラス	_	_	設置予定施設※1
A037	海水ポンプグランドドレン排出口逆止弁	屋外	Sグラス	_	_	設置予定施設※1
A038	取水ピット空気抜き配管逆止弁	屋外	Sグラス	_	_	設置予定施設※1
A039	海水ポンプ室ケーブル点検口浸水防止蓋	屋外	Sグラス	_	_	設置予定施設※1
A040	放水路ゲート点検用開口部浸水防止蓋	屋外	Sグラス	_	_	設置予定施設※1
A041	SA用海水ピット開口部浸水防止蓋	屋外	Sグラス	_	_	設置予定施設※1
A042	緊急用海水ポンプピット点検用開口部浸水防止 蓋	屋外	Sグラス	_	_	設置予定施設※1
A043	緊急用海水ポンプグランドドレン排出口逆止弁	屋外	Sグラス	_	_	設置予定施設※1
A044	緊急用海水ポンプ室床ドレン排出口逆止弁	屋外	Sグラス	_	_	設置予定施設※1
A045	貫通部止水処置		Sグラス	-	-	設置予定施設※1
A046	津波監視カメラ	屋外	Sグラス	_	_	設置予定施設※1
A047	取水ピット水位計	屋外	Sグラス	-	-	設置予定施設※1
A048	潮位計	屋外	Sグラス	_	_	設置予定施設※1
A049	残留熱除去海水系ポンプD逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A050	残留熱除去海水系ポンプB逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A051	残留熱除去海水系ポンプA逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A052	残留熱除去海水系ポンプC逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A053	非常用ディーゼル発電機2C海水ポンプ出口逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A054	非常用ディーゼル発電機2D海水ポンプ出口逆止弁		Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	
A055	高圧炉心スプレイディーゼル冷却系海水系ポンプ出口 逆止弁	屋外	Sグラス	海水ポンプ室防護壁 循環水ポンプクレーン	0	

※1 当該施設を設置する段階で、5.47項に示す影響解決を実施する(新+資料3)。

上位クラス施設	波及的影響を及ぼすおそれのある	11や十 五/ 45	~ 梨
(建屋外施設)	下位クラス施設	ē∓1Ⅲ /J 並T	1月 今
残留熱除去系海水ポンプ	海水ポンプ室防護壁	基準地震動 S sに対する構造健全性評価により、海水	工認耐震計算書
残留熱除去系海水ストレー	循環水ポンプクレーン	ポンプピット室防護壁が上位クラス施設に対して波	孫付予定
Ť		及的影響を及ぼさないことを確認する。	
残留熟除去系海水配管		なお,循環水ポンプクレーンについては撤去する方針	
非常用ディーゼル発電機用		としている。	
海水ポンプ			
非常用ディーゼル発電機用			
海水ストレーナ			
非常用ディーゼル発電機用			
海水配管			
高圧炉心スプレイ系ディー			
ゼル発電機用海水ポンプ			
高圧炉心スプレイ系ディー			
ゼル発電機用海水ストレー			
÷			
高圧炉心スプレイ系ディー			
ゼル発電機用海水配管 他			

転倒及び落下等による影響)(1/2) 建屋外施設の評価方針(損傷、 第6-4-2表

4条-別紙6-98

筆	2 114	工認耐震計算書	又は工事計画に	係る補足説明資	料に記載予定		工認耐震計算書	添付予定		工事計画に係る補	足説明資料に記載	予定			工認耐震計算書	添付予定		
評価方針		基準地震動 Ssに対する構造健全性評価により,固定	バースクリーン,回転レイキ付バースクリーン及びト	ラベリングスクリーンが上位クラス施設に対して波	及的影響を及ぼさないことを確認する。		基準地震動 Ssに対する構造健全性評価により、ター	ビン建屋及びサービス建屋が上位クラス施設に対し	て波及的影響を及ぼさないことを確認する。	原子炉建屋に対して各建屋の規模が小さく軽量であ	ることから,建屋同士が接触したとしても影響は軽微	であり建屋の耐震性を損なうことがないことを確認	75°		基準地震動 Ssに対する構造健全性評価により, 廃棄	物処理建屋が上位クラス施設に対して波及的影響を	及ぼさないことを確認する。	
波及的影響を及ぼすおそれのある	下位クラス施設	固定バースクリーン	回転レイキ付バースクリーン	トラベリングスクリーン			タービン建屋	サービス建屋		ベーラ建屋	サンプルタンク室	へパフィルター室	連絡通路	大物搬入口	廃棄物処理建屋			
上位クラス施設	(建屋外施設)	残留熱除去系海水ポンプ	非常用ディーゼル発電機用	海水ポンプ	高圧炉心スプレイ系ディー	ゼル発電機用海水ポンプ	原子炉建屋								原子炉建屋	非常用ガス処理系配管	非常用ガス処理系配管支持	構造物(排気筒,支持架構)

転倒及び落下等による影響) (2/2) 建屋外施設の評価方針(損傷、 第6-4-2表
波及的影響評価に係る現場調査の実施要領

1. 目的

建屋内外の上位クラス施設への下位クラス施設の波及的影響評価のため,現 場調査を実施し,上位クラス施設周辺の下位クラス施設の位置,構造及び影響 防止措置等の状況を確認し,下位クラス施設による波及的影響のおそれの有無 等を調査する。

- 2. 調查対象
- 2.1 調查対象施設

以下に示す上位クラス施設を現場調査の対象とする。

- (1) 設計基準対象施設のうち,耐震Sクラス施設(津波防護施設,浸水防止 設備及び津波監視設備を含む。)
- (2)重大事故等対処施設のうち,常設耐震重要重大事故防止設備及び常設重 大事故緩和設備

なお,狭暗部,内部構造物等機器の内部,コンクリート埋設,地下,高所及 び水中については,現場調査が困難な範囲があるが,確認可能な部位との取り 合い部まで現地調査を行い,機器配置図等を用いて波及的影響の確認を行う。

狭暗部(原子炉圧力容器支持構造物等)については,外部から閉ざされた区 域にあり,元々耐震Sクラス施設しかないこと,内部構造物等機器の内部(原 子炉圧力容器内部構造物等)はその物全体が上位クラス施設であること,コン クリート埋設,地下については,周囲に波及的影響を与えるものはないことか ら,確認可能な部位との取り合い部まで現地調査を行い,機器配置図等を用い て波及的影響の確認を行う。

高所については,施設下方から周辺機器の位置関係を俯瞰的に見ることで波 及的影響の有無を確認する。高所に設置されたケーブルトレイ及び電線管につ いても同様である。

4条-別紙6-添付1-1

水中については,対象上位クラス施設として使用済燃料プール,使用済燃料 貯蔵ラックが該当するが,使用済燃料プール内に設置されている下位クラス施 設は設計図書類で網羅的に確認できることから,現場調査では使用済燃料貯蔵 プール等の上部を俯瞰的に見ることで波及的影響の有無を確認する。

海水ポンプ等の耐震Sクラスが設置される取水構造物については、機器配置 図にて位置関係を確認し、波及的影響の有無を確認する。

2.2 現場調査にて確認する検討事象

別記2に記載された事項に基づく検討事象に対する現場調査による確認項 目を第1表に示す。

第1表 別記2に記載された事項に基づく検討事象に対する現場調査による確認 項目

泗木 計	 	N tkz∋r	接続部	建屋内施設
前宜刈豕旭苡	建度外胞酸		(建屋内外)	
検討事象	別記 2①	別記 2④	別記 2②	別記 2③
現場調査によ	× *1		✓ *2	0
る確認項目			~	

※1 不等沈下又は相対変位の観点として、上位クラス施設の建物・構築物と下 位クラス施設の位置関係が机上検討で確認した通りであることを現地で確 認。

- ※2 接続部については、系統図等により網羅的に確認が可能であり、プラント 建設時及び改造工事の際は、施工に伴う確認、系統図作成時における現場 確認、使用前検査、試運転等から接続部が設計図書どおりであることを確 認していることから、接続部の波及的影響については、机上検討により評 価対象の抽出が可能である。
- 3. 調査要員

調査要員の要件は、以下のとおりとする。下記(1)または(2)の要件に該当

4条-別紙6-添付1-2

する者の複数名でチームを編成し、現場調査を実施する。

- (1) 耐震設計,構造設計又は機械・電気計装設計等に関する専門的な知 識・技能及び経験を有する者。
- (2) 施設の構造,機能及び特性等に関する専門的な知識・技能及び経験を 有する者。
- 4. 現場調查実施日

平成 27 年 12 月 7 日~平成 28 年 3 月 25 日

平成 29 年 5 月 18 日

- 5. 調査方法
- 5.1 調査手順

調査対象施設について,別紙1の「東海第二発電所上位クラス施設への波 及的影響調査記録シート」に従い,周辺の下位クラス施設の位置,構造及び 影響防止措置(落下防止措置,固縛措置等)等の状況から,波及的影響のお それの有無を確認する。なお,H29年11月1日以降は,下位クラス施設の転 倒・落下に対する影響について,記載をより明確化させた別紙2「東海第二 発電所上位クラス施設への波及的影響調査記録シート」を用いる。

5.2 確認項目及び判断基準

各確認項目に対する波及的影響のおそれの有無の判断基準を第2表に示 す。

なお,対象となる上位クラス施設に対して,下位クラス施設が明らかに影響を及ぼさない程度の大きさ,重量等である場合(小口径配管,照明器具等) は影響無しと判断する。

確認項目	判断基準
○下位クラス施設との十分な離隔距離	・周辺の下位クラス施設の転倒・落下
をとる等により、当該設備に与える影	を想定した場合にも上位クラス施設に
響はない。	衝突しないだけの離隔距離をとって配
	置・保管されていること。
○周辺に作業用ホイスト・レール、グ	・作業用ホイスト・レール、グレーチ
レーチング、手すり等がある場合、落	ング、手すり等について、離隔距離が
下防止措置等により、当該設備に与え	+分でない場合は, 適切な落下防止措
る影響はない。	置等が講じられていること。
	・離隔距離をとっていても地震により
	移動する可能性があるもの(チェーン
	ブロック等)は移動防止措置が講じら
	れていること。
○周辺に仮置き機器がある場合,固縛	・仮置き機器について、離隔距離が十
措置等により、当該設備に与える影響	分でない場合は,固縛措置等により落
はない。	下防止または移動防止措置が講じられ
	ていること。
○上部に照明器具がある場合,落下防	・照明器具について、離隔距離が十分
止措置等により、当該設備に与える影	ではない場合は, 適切な落下防止措置
響はない。	等が講じられていること。

第2表 確認項目及び判断基準

東海第二発電所 上位クラス施設への波及的影響調査 記録シート (1/2)

施設(機器)名称	施設(機器)番号
設置建屋	設置場所

Y:YES N:NO U:調査不可 N/A:該当なし

No.	調査項目	Y	N	υ	N/A
1	調査対象施設の上部または近傍に下位クラス施設の有無				/
2	下位クラス施設等との十分な離隔距離が有り、当該施設に影 響を与えない。				
3	周辺に影響を及ぼしうる揚重設備、レール、グレーチング手 摺等がある場合、転倒及び落下により当該設備に影響を与え ない。				
4	周辺に点検用機材等の物置場がある場合、固縛措置等により 当該設備に影響を与えない。				
5	上部に照明器具、天井・壁の簡易建築材がある場合、落下防 止措置等により当該設備に影響を与えない。				
6	対象設備と支持構造物との接合部に外観上の異常(ボルトの 緩み、腐食・き裂等)の有無				
7	その他 ()				

所見	(施設周辺の状況について記載)	
-		

<u>調査実施日平成年月日</u> 調査者

別紙1 (2/2)

東海第二発電所 上位クラス施設への波及的影響調査 記録シート(2/2)

施設(機器)名称	施設(機器)番号	
設置建屋	設置場所	

現場調査記録(写真等)	

東海第二発電所 上位クラス施設への波及的影響調査 記録シート (1/2)

施設(機器)名称	施設(機器)番号
設置建屋	設置場所

Y:YES N:NO U:調査不可 N/A:該当なし

No.	調査項目	Y	N	υ	N/A
ĩ	調査対象施設の上部または近傍に下位クラス施設の有無				/
2	下位クラス施設の転倒・落下を想定したとしても十分な離隔 距離が有り、当該施設に影響を与えない。				
3	周辺に影響を及ぼしうる揚重設備、レール、グレーチング手 摺等がある場合、転倒及び落下により当該設備に影響を与え ない。				
4	周辺に点検用機材等の物置場がある場合、固縛措置等により 当該設備に影響を与えない。				
5	上部に照明器具、天井・壁の簡易建築材がある場合、落下防 止措置等により当該設備に影響を与えない。				
6	対象設備と支持構造物との接合部に外観上の異常(ボルトの 緩み、腐食・き裂等)の有無				
7	その他 ()				

所見	(施設周辺の状況について記載)	

調査実施日平成年月日調査者

別紙2(2/2)

東海第二発電所 上位クラス施設への波及的影響調査 記録シート(2/2)

施設(機器)名称	施設(機器)番号	
設置建屋	設置場所	

現場調査記録(写真等)	

波及的影響評価に係る現地調査記録

施討	と(機器)名称	原子炉隔離時冷却系ポンプ	施設(機器)番号		B02	0	
	設置建屋	R/B	設置場所 (エリア)	B2F R	CIC 7 (B2-	ドンフ B)	「室
	1		Y:YES N:NO U:調査	不可	N/A:	該当	な
No.		調査項目		Y	N	υ	N//
1	調査対象施設 ラス施設はな	gの上部または近傍に影響 い。	を及ぼしうる下位ク		0		
2	下位クラス旅 影響を与えな	◎設等との十分な離隔距離; ⊱い。	が有り、当該施設に	0			
3	周辺に影響を及ぼしうる揚重設備、レール、グレーチング 手摺等がある場合、転倒及び落下により当該設備に影響を ちまない						
4	周辺に点検用 り当該設備に	0					
5	上部に天井・ により当該該	0					
6	対象設備と支 の緩み、腐食	を持構造物との接合部に外 を・き裂等)はない。	観上の異常(ボルト	0			
7	その他 (下記所見参	▶照)					
所見子設を	(施設周辺の約 炉隔離時冷却 破損させる恐れ	犬況について記載) 系ポンプの上部にある揚重 れがある。	設備(ホイスト)の	落下に	:より	り当書	亥施

4条-別紙6-添付1-9

東海第二発電所 上位クラス施設への波及的影響調査 記録シート (2/2)

施設(機器)名称	原子炉隔離時冷却系ポンプ	施設(機器)番号	B020
設置建屋	R/B	設置場所 (エリア)	B2F RCICポンプ室 (B2-B)

現場調査記録(写真等)	

東海第二発電所 上位クラス施設への波及的影響調査 記録シート(1/2)

施設(機器)名称	エリア (B2-B)	施設(機器)番号	
設置建屋	R/B	設置場所 (エリア)	B2F RCIC ポンブ室 (B2-B)

Y:YES N:NO U:調査不可 N/A:該当なし

No.	調査項目	Y	N	U	N/A
1	調査対象施設の上部または近傍に影響を及ぼしうる下位ク ラス施設はない。		0		
2	下位クラス施設等との十分な離隔距離が有り、当該施設に 影響を与えない。	0			
3	周辺に影響を及ぼしうる揚重設備、レール、グレーチング 手摺等がある場合、転倒及び落下により当該設備に影響を 与えない。		0		
4	周辺に点検用機材等の物置場がある場合、固縛措置等により当該設備に影響を与えない。	0			
5	上部に天井・壁の簡易建築材がある場合、落下防止措置等 により当該設備に影響を与えない。	0			
6	対象設備と支持構造物との接合部に外観上の異常(ボルト の緩み、腐食・き裂等)はない。	0			
7	その他 ()				

所見(施設周辺の状況について記載)

①上部にある揚重設備(ホイスト)の落下により配管系、弁を破損させる恐れが ある。(RCIC系/RHR系)

②当該エリアにおけるその他全ての施設(Sクラス施設を含む)への波及的影響は無いことを確認した。

・配管系、弁、貫通部

・ダクト

・ケーブルトレイ

調査実施日 平成28年02月01日

調 査 者

東海第二発電所	上位クラス施設への	波及的影響調查記録	禄シート(2/2)
施設(機器)名称	エリア (B2-B)	施設(機器)番号	-
設置建屋	R/B	設置場所 (エリア)	B2F RCIC ポンプ室 (B2-B)
用提調本記録 (它直	生)	gi inclusionerianis N	2014-21200 1
兄场調宜記錸〔与具〕	守)		
			1
			T

添付資料2-1

原子力発電所における地震被害事例の要因整理

地震被害に関するNUCIA情報の検討内容								
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因			
地震	被害発生要因 I		i	※下線は要	夏因 I 相当箇所			
1	宮城県沖 (女川)	8・1 6宮城地震による女川原子力発電所全プラン ト停止について	1号機 2号機 3号機	地震による安全上重要となる被害なし。以下の軽微な被害が発生。 ○女川19機 ・主変圧器、起動用変圧器の避圧弁動作 ・サイトバン力建屋ブールに水銀灯落下 ○女川2号機 ・主変圧器、起動用変圧器,補助ボイラー変圧器(A)(B)の避圧弁動作 ○女川3号機 ・実定望基内見学者用ギャラリー室のガラスのひび ・主変圧器の避圧弁動作 ○その他構内 ・環境放射能測定センターの希磁酸(5%濃度)貯蔵施設が漏えいおよび苛性ソーダの一 部満下 ・建屋エレベータ停止 ・排気筒航空障害灯レンズカバー破損 ・構成道質ススファルト亀裂・波うち・段差発生	<u>т</u> , ш, vi			
2	中越沖 (柏崎)	【中越沖地震】HTr3B火災発生	3号機	・変圧器と周期の基礎沈下により、沈下量に差が発生し、二次側接続部ダクトが変圧器側 接続部より落下して変圧器二次ブッシング端子部に接触。 この際の薄板及び二次側接続母線側導体の変位により変圧器ブッシング碍管が損傷し漏 油が発生。 二次間接続母線部ダクトが落下し、ブッシング端子部と接触し三相地絡・短絡を引き起 こし、大電力のアーク放電により変圧器火災が発生。 変圧器ご次側と二次側接続母線部ダクトの接続部が損傷開口し、着火した絶縁油が基礎 面上に流出し、延焼。	I			
3		【中越沖地震】スタックへのダクト配管ズレ	1号機					
4		【中越沖地震】スタックへのダクト配管ズレ	2号機					
5	中越沖 (柏崎)	【中越沖地震】スタックへのダクト配管ズレ	3号機	周辺地盤及びダクト基礎部の沈下による主排気ダクトのズレ(ベローズの変形)。	Ι			
6		【中越沖地震】スタックへのダクト配管ズレ	4号機					
7		【中越沖地震】スタックと主排気ダクトカバーのゆ がみ確認	5号機					
8	中越沖 (柏崎)	【中越沖地震】K3励磁用変圧器基礎ボルト切断・ 相非分割母線沈下有り	3号機	地震の揺れによる変圧器及び励磁電源用変圧器の基礎ボルトの切断, <u>相非分割母線基礎の 江下。</u>	<u>т</u> , ш			
9	中越沖 (柏崎)	【中越沖地震】C/S B5F浸水及びMUWC全停	1号機	・建置周辺の地盤沈下等の要因による地中埋設の消火配管の損傷,それに伴う深さ約40cm の浸水。 ・浸水によるMUWCの全停	I			
10	中越沖 (柏崎)	【中越沖地震】軽油タンクB前の消火配管破断し水 漏れ	1号機					
11	中越沖 (柏崎)	【中越沖地震】1 S/B北側屋外消火配管が破断し 漏水	その他	不等沈下により消火配管が破断したことによる漏水。なお、当該不等沈下は波状化による	T			
12	中越沖 (柏崎)	【中越沖地震】消火設備4箇所配管損傷·漏水	その他	影響を否定できない。				
13	中越沖 (柏崎)	【中越沖地震】軽油タンク前他屋外消火配管が破断 し漏水	その他					
14	中越沖 (柏崎)	【中越沖地震】500kV新新潟線2Lしゃ断器付近のエ アリーク	その他	地盤沈下により当該回線の現場操作盤の基礎が傾斜したことによるしゃ断器操作用の配管 からの空気漏れ。	Ι			
15	中越沖 (柏崎)	【中越沖地震】取水設備スクリーン洗浄ポンプA吐出 フランジ連続滴下・配管サポート変形	5号機	地葉の影響により地盤が変形したことによる配管及びサポートの変形。	I			
16	中越沖 (柏崎)	【中越沖地震】RW/B R/W制御室制御盤各系制 御電源喪失	RW設備	 ・建国周辺の地盤沈下等の要因による地中埋設の消火配管の損傷,それに伴う深さ約40cmの浸水。 ・浸水による低電導度廃液系等の制御電源喪失 	Ι			
17	中越沖 (柏崎)	【中越沖地震】1号機 変圧器防油堤の沈下・傾き, コンクリートのひび割れ・はく離,目地部の開き	1号機		Ι			
18	中越沖 (柏崎)	【中越沖地震】2号機 変圧器防油堤の沈下, 横ズレ	2号機	地震による変圧器防油堤の被害は以下のとおり。 ・ 1 号機 达丁・幌き、コンクリートのひび割れ・はく離、目地部の開き	I			
19	中越沖 (柏崎)	【中越沖地震】3号機 変圧器防油堤のひび割れ,段 差	3号機	* 2 70% 沈下,横ずれ * 3 号機 ひび割れ, 段差発生	Ι			
20	中越沖 (柏崎)	【中越沖地震】4号機 変圧器防油堤の沈下,大きな 傾斜 (一部目地部の開き)	4号機	 4 長機 ・ 4 長機 ・ 大きな傾斜(一部目地部の開き) ・ 5 号機 	I			
21	中越沖 (柏崎)	【中越沖地震】5号機 変圧器防油堤のひび割れ	5号機	Linuxmのパワの計(1, 日地部の)用さ, Maix 7 号機 沈下, 外側への開き, 目地部のズレ, 目地部の開き, 目地部の段差	Ι			
22	中越沖 (柏崎)	【中越沖地震】7号機 変圧器防油堤の沈下,外側へ の開き,目地部のズレ,目地部の開き,目地部の段 差	7号機		I			
23	駿河湾 (浜岡)	【駿河湾の地震】取水槽まわりの地盤沈下等	1号機	地震により、 <u>取水槽まわりに地盤沈下(30m×20m, 最大15cm程度), 陸起(35m×15m, 最大20cm程度)</u> および法面波打ち(30m×5m, 最大10cm程度)が発生。	<u> </u>			
24	駿河湾 (浜岡)	【駿河湾の地震】道路および法面のひび割れ	その他	地震により以下の被害が発生。 ①5号見時台道路を裂 ②F平山周辺よう壁目開き、 <u>道路を裂</u> ③F平山アゴ基地を設現 0.5号放木ロモータ室東側よう壁(ブロック積み)を裂 ③B低廃棄物貯蔵庫(第2棟)周辺よう壁(ブロック積み)および <u>道路のき裂</u> ③発電所東側点検ヤード舗装を裂 ⑦発電所東側海岸道路を裂	I, IV			

地糞被害発生要因: I : 地震の不等沈下による損傷 Ⅱ : 建物間の相対変位による損傷 Ⅲ : 地震の揺れによる施設の損傷・転倒・落下等 Ⅳ : 周辺斜面の崩落 V : 使用済燃料ビットスロッシングによる溢水 Ⅵ : その他(地震の揺れによる警報発信等,施設の損傷を伴わない I ~V以外の要因等)

	地震被害に関するNUCIA情報の検討内容							
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因			
25	駿河湾 (浜岡)	【駿河湾の地震】御前崎漁港の当社専用岸壁に段差 (40cm×2cm,最大3cm程度の段差)	その他	地震による岸壁の段差。	Ι			
26	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋の東側屋外エリアの 地盤沈下	5号機	地震によるタービン建屋の東側屋外エリアに地盤沈下(15m×15m, 10cm程度)。	Ι			
27	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】ランドリーボイラ重油タンク 油漏れ	_	地震によりランドリーボイラ用重油タンクの基礎が沈下したことによる接続配管ユニオン 部からの油漏れ。	Ι			

	地展板否に例するNUCIA情報の使詞内容								
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因				
地震	被害発生要因Ⅱ			下線は要	因Ⅱ相当箇所				
28	中越沖 (柏崎)	【中越沖地震】固体廃棄物貯蔵庫地下1階管理棟- 第1棟接続部通路部付近漏水	その他	地震により接続部エキスパンションとドレンビットが破損し、建鼠内に湧水が発生。	<u>п</u> , Ш				
29	中越沖 (柏崎)	【中越沖地震】柏崎刈羽原子力発電所1,3号機に おける排気筒モニタサンプリングラインの損傷につ いて	1号機 3号機	 ・地震の揺れによる主排気筒放射線モニタサンプリング配管の破損。 ・地震の影響でモニタ建量と配管(屋外)の位置がずれたことによる当該配管接続部のズレム。 	<u>п</u> , Ш				
30	駿河湾 (浜岡)	【駿河湾の地震】補助建屋東側雨樋の亀裂	5号機	補助建量と風除室屋上の地震による揺れの違いによる,補助建量と風除室量上で固定され た雨樋の亀裂。	п				

原子力発電所における地震被害事例の要因整理
地震被害に関するNUCIA情報の検討内容

٦

地震被害に関するNUCIA情報の検討内容								
No. 地震	対象地震 (発電所) 被害発生要因Ⅲ	件名	号機	地震被害事象および発生要因の概要 ※下線は要	地震被害 発生要因 因Ⅲ相当箇所			
31	宫城県沖 (女川)	8・16宮城地震による女川原子力発電所全プラン ト停止について	1号機 2号機 3号機	 地震による安全上重要となる被害なし。以下の軽微な被害が発生。 ○女川1 号機 ・主変圧器,起動用変圧器の避圧弁動作 ・サイトバン力建屋ブールに水銀灯落下 ○女川2 号機 ・主変圧器,起動用変圧器,補助ポイラー変圧器(A)(B)の避圧弁動作 ○女川3 号機 ・風子が達屋内見学者用ギャラリー室のガラスのひび ・主変圧器の避圧弁動作 ○その連構内 ・環境放射能測定センターの希磁酸(5%濃度)貯蔵施設が漏えいおよび苛性ソーダの一 ・建気留加支配者生ンターの希磁酸(5%濃度)貯蔵施設が漏えいおよび苛性ソーダの一 ・建気割の運営生ソンズのバー破損 ・構内道路アスファルト亀裂・波うち・段差発生 	I, <u>m</u> , VI			
32	能登半島沖 (志賀)	能登半島地震に伴う低圧タービン組み立て中のター ビンロータの位置ずれ	2号機	地震による低圧タービンの被害は以下のとおり ・組み立て中の低圧タービンロータを仮止めしていた治具の変形によるロータのわずかな 位置すれ、 ・動翼の微小な接触度	ш			
33	能登半島沖 (志賀)	能登半島地震に伴う水銀灯の落下	1号機 2号機	地震時の振動による水銀灯の損傷・落下	ш			
34	中越沖 (柏崎)	【中越沖地震】R/Bオペフロ R/B天井クレーン ユニバーサルジョイントに破損確認	6号機	走行車輪にプレーキが掛かった状態で、地震により強制的にクレーンの走行方向(東西方 向)の力が発生したため、走行車輪と電動機の間に位置するユニバーサルジョイントに過 大なトルクが発生し、クロスビンが破損する事象が発生した。	Ш			
35	中越沖 (柏崎)	【中越沖地震】所内変圧器1Aと相分離母線のずれ による基礎ボルトの切断	1号機	地震による振動により,所内変圧器と相分離母線接続部がずれたことによる基礎ボルトの 切断。	Ш			
36	中越沖 (柏崎)	【中越沖地震】励磁変圧器からの油漏れ及び基礎 ベースからのズレ	1号機	地震の振動により,一次ブッシング碍子が損傷したこによる漏油。 地震の振動による変圧器本体の基礎ペースからのズレ。	Ш			
37	中越沖 (柏崎)	【中越沖地震】主変圧器基礎ボルト折損及びクー ラー母管と本体間からの油リーク	2号機	地震による振動により主変圧器基礎ボルトが折損し、クーラー母管と本体間が破損したこ とによる油流出。	ш			
38	中越沖 (柏崎)	【中越沖地震】励磁用変圧器基礎部・パスダクト横 ずれ	2号機	地震による振動による励磁用変圧器の基礎部およびパスダクトの横ずれ。	ш			
39	中越沖 (柏崎)	【中越沖地震】K3励磁用変圧器基礎ボルト切断・ 相非分割母線沈下有り	3号機	地震の福れによる主変圧器及び励磁電源用変圧器の基礎ボルトの切断,相非分割母線基礎 の沈下。	I, <u>III</u>			
40	中越沖 (柏崎)	【中越沖地震】No. 4ろ過水タンク配管破断	5号機	地震の振動によりタンク配管の伸縮継手部の損傷。	ш			
41	中越沖 (柏崎)	【中越沖地震】R/B使用済燃料プール内ワーキン グテーブル燃料上に落下	4号機	地震による使用済燃料ブールの被害は以下のとおり。				
42	中越沖 (柏崎)	【中越沖地震】R/B 使用済燃料プール内ワーキン グテーブルがラック上(燃料あり)に落下	7号機	 ・4号炉,7号炉 使用済燃料貯蔵プール内に取り付けられている水中作業台が外れ,使用済燃料上に落 下。 	ш			
43	中越沖 (柏崎)	【中越沖地震】6号機 使用済み燃料プール内の水中 作業台の固定位置からのはずれ	6号機	水中作業台の固定位置からの外れ。				
44	中越沖 (柏崎)	【中越沖地震】C/S BIFL D/G-A 北側付近「RW固 化エリア」扉S1-15Dから漏水	1号機	地震による屋外消火配管の損傷により発生した水が,原子炉複合建屋の電線管貫通口を経 て流入したことによる漏水	ш			
45	中越沖 (柏崎)	【中越沖地震】T/B復水器水室B1-B2連絡弁 フランジ部漏えい・エキスパンション亀裂	4号機	地震による復水器水室間の過大な変位による伸縮継手の損傷・漏えい。	ш			
46	中越沖 (柏崎)	【中越沖地震】500kV南新潟線2L黒相ブッシング油 漏れによる南新潟線2L停止	その他	地震により送電線引込架線が上下に扱れ、ブッシング端子部のフランジ面が変形したこと による漏油。	Ш			
47	中越沖 (柏崎)	【中越沖地震】Hx/B B1F FP-40ラインから 漏水	2号機	地震の振動により、熱交換器建屋の消火配管引き込み部ラバーブーツが損傷したことによ る漏水。	ш			
48	中越沖 (柏崎)	【中越沖地震】荒浜側避雷鉄塔の斜材が5本破断	その他	地震の振動による斜材の破断。	ш			
49	中越沖 (柏崎)	【中越沖地震】固体廃棄物貯蔵庫内のドラム缶数百 本が転倒し、内数十本のドラム缶の蓋が開いてるこ とを確認	その他	地震の影響によりドラム缶が転倒したことによる蓋の解放。	ш			
50	中越沖 (柏崎)	【中越沖地震】事務本館常用電源断,緊急時対策室 電源等は非常用電源より供給	その他	地震の影響により、常用系の高圧受変電盤とチャンネルベースをとめているボルトが切断 し、高圧受変電盤が移動したため常用系電源が断となったことによる非常用電源への切 替。	ш			
51	中越沖 (柏崎)	【中越沖地震】ヤード T/BサブドレンNo. 8 流入水油混入およびK1~4 放水庭に微量の油膜確 認について	1号機	地震の振動で変圧器防油提が損傷したことによる,変圧器から絶縁油の流出。	ш			
52	中越沖 (柏崎)	【中越沖地震】7号原子炉ウェルライナーからの漏 洩について	7号機	建設時に原子炉ウェルライナーの溶接余盛り部を平滑化するためにグラインダで除去して いたため、残存板厚が薄くなっており、 <u>地震により残存板厚が薄くなっていた部分に過大</u> な密電がかかり貫通したことによる漏えい。	<u>III</u> , VI			
53	中越沖 (柏崎)	【中越沖地震】T/Bブローアウトパネル破損	2号機					
54	中越沖 (柏崎)	【中越沖地震】R/Bブローアウトパネル破損	3号機	地震によるブローアウトバネルを固定する止め板の変形・外れ。	ш			
55	中越沖 (柏崎)	【中越沖地震】T/B海側・山側プローアウトパネ ル外れ・脱落	3号機					
56	中越沖 (柏崎)	【中越沖地震】スクリーン起動不可	2号機	地震によりケーブルトレイが脱落し、ケーブルが損傷して地絡したことによる起動不可。	Ш			
57	中越沖 (柏崎)	【中越沖地震】K1 S/B環境ミニコン県テレメータ等 伝送不能	その他	地震時の振動により中央処理装置とディスクアレイを繋ぐケーブルコネクタに接触不良が 発生したことによる中央処理装置の停止。	ш			
58	中越沖 (柏崎)	【中越沖地震】重油タンク防油堤での目地の開き (貫通)	その他	地震による目地部の開き。	Ш			
59	中越沖 (柏崎)	【中越沖地震】重油タンク用泡消火設備の現場盤損 傷	その他	地震による現場盤の支柱と盤BOXの接合部分の破断。	ш			

地糞被害発生要因: I : 地震の不等沈下による損傷 Ⅱ : 建物間の相対変位による損傷 Ⅲ : 地震の揺れによる施設の損傷・転倒・落下等 Ⅳ : 周辺斜面の崩落 V : 使用済燃料ビットスロッシングによる溢水 Ⅵ : その他(地震の揺れによる警報発信等,施設の損傷を伴わない I ~V以外の要因等)

原子力発電所における地震被害事例の要因整理 地震被害に関するNUCIA情報の検討内容

		İ	也震破害に	関するNUCIA情報の検討内容	
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因
60	中越沖 (柏崎)	【中越沖地震】Ax/B B1F 北西側壁面亀裂部 より雨水漏えい	その他	地震の影響により,連絡通路が建屋と衝突し,建屋の壁面に亀裂が生じたことによる雨水 の流入。	ш
61	中越沖 (柏崎)	【中越冲地震】固体廃棄物貯蔵庫 地下1階管理棟- 第1棟接続部通路部付近漏水	その他	地震による接続部エキスパンションとドレンピットが破損し、建屋内に湧水が発生したこ とによる漏水。	П, <u>Ш</u>
62	中越沖 (柏崎)	【中越沖地震】C/B 2F 中操天井の地震による 脱落・ひび割れ・非常灯ずれ・点検ロ開放を確認に ついて	7号機	地震の振動による飾り照明の落下,天井化粧板の脱落・ひび,非常灯ズレ,点検ロ開放。	ш
63	中越沖 (柏崎)	【中越沖地震】R/B オペフロ スタッドテンショナー 除染パン内油漏れ・油圧制御ホース切断について	4号機	地範の揺れにより、スタッドテンショナーと構造フレームとの間に油圧ホースが挟まれ切 断されことによる油漏れ。	ш
64	中越沖 (柏崎)	【中越沖地震】R/B2F南東壁(SFP側)より の水漏れ	7号機	地震による原子伊建屋管理区域内2階のエレベータ付近の壁面の鉄筋コンクリート継ぎ目 部に生じた機種なひびからの水のにじみ_	ⅢまたはV
65	中越沖 (柏崎)	【中越沖地震】R/B3FISI試験片室前壁から の水漏れ	7号機	地震による原子伊建屋管理区城内3階北側の床面コンクリート継ぎ目部からのわずかな水 のしみ出し	ⅢまたはV
66	中越沖 (柏崎)	【中越沖地震】平均出力領域モニタ制御盤の電源装 置の位置ずれについて	4号機	地震水平力による当該電源装置の位置ずれ	ш
67	中越沖 (柏崎)	【中越沖地震】原子炉建屋 原子炉ウェルライニング 面(ウェルカバー着座面)のすり傷について	7号機	地震によりウェルカバーが動いたことによる着座面のすり傷	ш
68	中越沖 (柏崎)	【中越沖地震】柏崎刈羽原子力発電所1,3号機に おける排気筒モニタサンプリングラインの損傷につ いて	1号機 3号機	 地震の揺れによる主排気筒放射線モニタサンブリング配管の破損。 ・地震の影響でモニタ建屋と配管(屋外)の位置がずれたことによる当該配管接続部のズレ。 	I, <u>III</u>
69	中越沖 (柏崎)	【中越沖地震】各サービス建屋退域モニタ故障につ いて	全号機	地震の振動による各サービス建屋の退域モニタ検出器のズレ,および駆動部の故障	ш
70	中越沖 (柏崎)	【中越沖地震】3号機原子炉建屋地下2階SLC系 注入ライン配管(格納容器外側貫通部)板金保温へ こみについて	3号機	地震により点検機材(ISI用RPV模擬ノズル)が移動し,当該配管の板金保温材に接触した ことによるへこみ	ш
71	中越沖 (柏崎)	【中越沖地震】3号機原子炉圧力容器遮へい体の地 震による移動について	3号機	 ・スライド式達へい体が正規位置に取り付けられておらず、<u>地震により移動して接触した ことによるRPV水位計装配管の保温材の変形。</u> ・スライド式達へい体のストッパーが取り付けられておらず、<u>地震によりスライド式進へ</u>い体が移動して達へいブロックが崩れたことによるRPV水位計配管への接触。 	<u>III</u> , VI
72	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋1階(放射線管理区域 外)の扉の閉不能	1号機	地震の揺れにより扉枠が干渉したことによる閉止不能	ш
73	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋1階(放射線管理区 域内)の扉金具の落下(1箇所)	1号機	地震の揺れによるドアクローザー付属の温度ヒューズの破損・落下。	ш
74	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋2階(放射線管理区域 内)コンクリート片(親指大)確認	2号機	地震の揺れによるタービン建屋側躯体とタービン建屋ペデスタル躯体間の境界部のコンク リートの表面破損。	ш
75	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機(A)排気消音器の吸音材カバー固定金具の外れ	2号機	地震の揺れによる非常用ディーゼル発電機(A)排気消音器の吸音材カバー固定金具の一部外 れ。	ш
76	駿河湾 (浜岡)	【駿河湾の地震】源水タンクまわりの構内配電線電 柱の支線外れ (1箇所)	その他	地震により支線と支線アンカーを接続するターンバックルが破損したころによる支線の外 れ。	ш
77	駿河湾 (浜岡)	【駿河湾の地震】275kV開閉所壁面の鉄骨耐火被覆材 のひび割れ	その他	地震の揺れによる275kV開閉所壁面の鉄骨耐火被覆材のひび割れ。	ш
78	駿河湾 (浜岡)	【駿河湾の地震】275kV開閉所内の構内放送用スピー カーの脱落	その他	地震の揺れにより留め具が破損したことによる構内放送用スピーカの脱落。	ш
79	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機の排気消 音器の吸音材カバー固定金具の外れおよび台座シー ル材の劣化	3号機	量外の塩害環境による固定金具の腐食と <u>地震の揺れによる影響により、非常用ディーゼル</u> 発電機(い <u>排気消音器の吸音材力/(固定金具の一部外れ</u> 、及び非常用ディーゼル発電機(B) の排気消音器台座ジール材の劣化	<u>III</u> , VI
80	駿河湾 (浜岡)	【駿河湾の地震】タービン系配管の保温材のずれ	4号機	地震の揺れによるタービン系配管の保温材のずれ。	ш
81	駿河湾 (浜岡)	【駿河湾の地震】低圧タービン軸の接触痕	4号機	地震の揺れによる低圧タービン(A)~~輪の軸受油切り部との接触度。	ш
82	駿河湾 (浜岡)	【駿河湾の地震】組合せ中間弁(C)室内の間仕切板の 脱落	4号機	地震の揺れによるタービン建屋3階(放射線管理区域内)の組合せ中間弁(C)室内の間仕 切板の一部脱落。	ш
83	駿河湾 (浜岡)	【駿河湾の地震】発電機励磁電源用バスダクト支持 部材の接続板の亀裂	4号機	地震の揺れによるタービン建屋屋外(放射線管理区域外)の発電機励磁電源用バスダクト の支持部材とバスダクトをつなぐ接続板の亀裂。	ш
84	駿河湾 (浜岡)	【駿河湾の地震】空調ダクトからの空気の微小な漏 れ	4号機	地震の揺れによる空調ダクト(フランジ部)からの空気の微小な漏れ。	ш
85	駿河湾 (浜岡)	【駿河湾の地震】発電機プラシホルダの接触痕につ いて	4号機	地震の揺れによる、発電機ブラシホルダの一部とコレクタリング(集電環)との軽微な接 触痕、及びコレクタリング表面に茶色の変色。	ш
86	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機(A)排気消 音器の吸音材カバー固定金具等の外れ	4号機	屋外の塩害環境による固定金具の腐食と <u>地震の溢れによる影響により、非常用ディーゼル</u> 発電機(A)排気消音器の吸音材カバー固定金具の一部外れ、及び一部カバーの外れ。	<u>III</u> , VI
87	駿河湾 (浜岡)	【駿河湾の地震】主タービンスラスト軸受摩耗ト リップ警報点灯	5号機	地震の揺れによる主タービンの被害は以下のとおり。 ・タービン基礎の揺れに伴う中間軸受箱取付ボルトの損傷。 ・中間軸受箱取付ボルトの損傷による、中間軸受箱の軸方向固定キーの傾き及びキー溝の 変形。 ・中間軸受箱の振動により、スラスト軸受の振動タービンロータの軸方向移動、及び低圧 内部車室のスラストキー部の変形による動翼(回転体)とダイヤフラム(静止体)の接触、及 びロータと油切り等の接 や、中間軸受箱の揺動、及びタービンロータの軸受方向移動によるスラスト保護装置の動作 (「主タービンスラスト軸受摩耗トリップ」信号発信)	ш
88	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋3階タービンスラスト 装置まわりのデッキプレート取り付け用ネジ折損	5号機	地震の福れによる、タービンスラスト保護装置まわりの作業床用デッキブレートの取り付 け用ネジの折損。	ш
89	駿河湾 (浜岡)	【駿河湾の地震】発電機回転数検出装置の摺動痕	5号機	地震の揺れによる、発電機回転数検出装置歯車と検出器の接触による摺動痕。	ш

地糞被害発生要因: I : 地震の不等沈下による損傷 Ⅱ : 建物間の相対変位による損傷 Ⅲ : 地震の揺れによる施設の損傷・転倒・落下等 Ⅳ : 周辺斜面の崩落 V : 使用済燃料ビットスロッシングによる溢水 Ⅵ : その他(地震の揺れによる警報発信等,施設の損傷を伴わない I ~V以外の要因等)

	地震被害に関するNUCIA情報の検討内容				
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因
90	駿河湾 (浜岡)	【駿河湾の地震】原子炉格納容器の機器搬入口遮へ い扉の固定金具破損	5号機	地震の福れによる,原子炉格納容器の機器搬入口に設置されている金属製進へい扉の固定 用金具アンカー部(床面)の破損。	ш
91	駿河湾 (浜岡)	【駿河湾の地震】No. 3脱塩水タンク基礎部の防食 テープの剥れ	5号機	地震によりタンク端部が一時的に浮き上がったことによる、タンク基礎部の防食テープの 一部剥離。	ш
92	駿河湾 (浜岡)	【駿河湾の地震】タービン振動位相角計の損傷	5号機	地震の揺れの影響により、ロータが接触したことによる振動位相角計の先端の欠損。	ш
93	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋2階(放射線管理区域 内)東側壁面の仕上げモルタルの剥がれと浮き (30cm×5cm程度)	5号機	地震の揺れによる仕上げモルタルの剥がれと浮き。	ш
94	駿河湾 (浜岡)	【 駿河湾の地震】タービン建屋2階(放射線管理区域 内) 高圧第2ヒータまわり床面に,配管賞通部に詰め られていた仕上げモルタルの一部の剥がれ(5cm× 5cm程度)	5号機	地震の揺れによる仕上げモルタル表面の剥がれ。	ш
95	駿河湾 (浜岡)	【駿河湾の地震】化学分析室内の放射能測定装置の 固定ボルトの浮き上がり	5号機	地震の揺れによる、化学分析室内に設置している放射能測定装置(波高分析装置)の固定用 アンカーボルトの浮き上がり。	ш
96	駿河湾 (浜岡)	【駿河湾の地震】発電機プラシホルダ等の接触痕に ついて	5号機	地震の揺れによる、発電機ブラシホルダの一部とコレクタリングとの軽微な接触度、コレ クタリング表面の茶色の変色、及び回転子とコレクタハウジングとの軽微な接触度。	ш
97	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋内の蛍光灯不点につ いて	5号機	地震による蛍光管とソケット部の接触不良。	ш
98	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機(B)排気消 音器の吸音材カバー固定金具等の外れ	5号機	屋外の塩害環境による固定金具の腐食と地震 <u>の福れによる影響による、非常用ディーゼル</u> 発電機(B)排気消音器の吸音材カバー固定金具の一部外れ、及び一部カバーのずれ。	<u>III</u> , VI
99	駿河湾 (浜岡)	【駿河湾の地震】タービン建屋内でのビス(5個)の 発見	5号機	地震の揺れによる,照明器具用電線管つなぎ部固定用及び配管保温材の外装板用のビスの 落下。	ш
100	駿河湾 (浜岡)	【駿河湾の地震】変圧器消火配管建屋貫通部のシー ル材の一部損傷	5号機	地震の揺れによる,屋外(放射線管理区域外)連絡ダクト貫通部付近の変圧器消火配管貫通 部シール材の一部損傷,及びフランジ部からの微少なリーク。	Ш
101	駿河湾 (浜岡)	【駿河湾の地震】原子炉格納容器内の点検結果	5号機	地震の揺れによる原子炉格納容器内(放射線管理区域内)の被害は以下のとおり。 ・主蒸気适し安全弁排気管のバネ式支持構造物の動作(措動痕)。 ・作業用ターンテーブルの車軸位置ずれ。 ・空調ダクト接合部の位置ずれ。	ш
102	駿河湾 (浜岡)	【駿河湾の地震】発電機固定子固定キーの隙間の拡 大	5号機	地震による発電機の被害は以下のとおり。 ・発電機固定子固定キーの両サイドの隙間の拡大。 ・ベースボルトの部塗装剥がれ。 ・発電機固定子固定キーの軽微な傷。 ・発電機固定子固定キーとの接触による発電機本体脚部及びベースのへこみ・段差。 	Ш
103	駿河湾 (浜岡)	【駿河湾の地震】タービン開放点検の結果	5号機	地震の揺れによる主タービンの被害は以下のとおり。 ・ タービン基礎の揺れに伴う中間軸受箱取付ボルトの損傷。 ・ 中間軸受箱取付ボルトの損傷による、中間軸受箱の軸方向固定キーの傾き及びキー溝の 変形。 ・ 中間軸受箱の振動により、スラスト軸受の振動タービンロータの軸方向移動、及び低圧 内部単定のスラストキー部の変形による動翼(回転体)とダイヤフラム(静止体)の接触、及 びロータと油切り等の接触。	ш
104	駿河湾 (浜岡)	【駿河湾の地震】主要変圧器上部グレーチングと相 分離母線箱との接触痕	5号機	地震の幅れによる、屋外(放射線管理区域外)主要変圧器用の相分離母線箱と点検用のグ レーチングの手すりボルト部分との接触痕。	Ш
105	駿河湾 (浜岡)	【駿河湾の地震】原子炉格納容器内作業用ターン テーブルの点検結果	5号機	地震の揺れによる,作業用ターンテーブルの車軸位置ずれ,車軸カバーの一部割れ,及び 回転角検出装置歯車のレールからの外れ。	ш
106	駿河湾 (浜岡)	【駿河湾の地震】原子炉機器冷却水系の配管支持構 造物の摺動痕	5号機	地震の揺れによる,原子炉機器冷却水系配管(海木熱交換器建屋から原子炉機器冷却水系連 絡ダクト間)の支持構造物の指動痕(塗装の剥離)。	Ш
107	駿河湾 (浜岡)	【駿河湾の地震】タービン駆動給水ポンプデータ ベース部のライナーシム変形	5号機	地震の揺れによる、タービン駆動給水ボンブ(A)(B)ボンブのベース部に取り付けられてい るライナーシムの変形。	Ш
108	駿河湾 (浜岡)	【験河湾の地震】原子炉建屋内の主蒸気系配管,給 水系配管および配管支持構造物の点検結果	5号機	地震の揺れによる原子炉建屋内の主蒸気配管及び給水配管の被害は以下のとおり。 ・配管支持構造物の配管自重受け部のわずかな隙間。 ・結木配管の墜貫通部の養生用のラバーブーツと保温外装板の一部ずれ。 ・主蒸気配管の配管ラグの潜動痕。	Ш
109	駿河湾 (浜岡)	【駿河湾の地震】発電機シールリング油切りの摺動 痕	5号機	地震の揺れによる第9,10 軸受のシールリング油切りと発電機ロータの軽微な摺動度。	ш
110	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】タービン建屋地下1階高圧電 源盤火災	1号機	地震による振動により、タービン建屋地下1 階の高圧電源盤内のしや断器(吊り下げ設置 型)が大きく揺れ、当該しゃ断器の断路部が破損し、高圧電源盤内で周知の構造物と接触し て短続等がまじ、ケーブルの絶縁披覆が溶けたことによる発煙。	ш
111	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】牡鹿幹線2号線避雷器の一部 損傷	その他	地震による大きな揺れにより,避雷器内部に部分放電が発生したことによる牡鹿幹線2 号 線遊雷器の一部損傷。	ш
112	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】 牡鹿1号線避雷器の損傷	その他	地震による大きな揺れにより,避雷器内部に部分放電が発生したことによる牡鹿幹線1 号 線避雷器の一部損傷。	ш
113	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】蒸気タービン中間軸受箱の浮 き上がり	3号機	地震の揺れにより、タービン主軸が移動して中間軸受箱に力が加わったことによる、蒸気 タービン中間軸受箱の浮き上がり、及び締付けボルトの変形。	ш
114	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】蒸気タービン中間軸受基礎部 の損傷	2号機	地震の揺れにより、タービン主軸が移動して中間軸受箱及びソールブレート(中間軸受箱 を設置する平极)に力が加わり、ソールブレートが動いたことによる、蒸気タービン中間 軸受着の基礎語の損傷。	ш
115	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】 制御棒駆動系ハウジング支持 金具サポートバーのずれ	1号機 2号機 3号機	地震の影響による,制御棒駆動機構ハウジングのハウジング支持金具(グリッド)のずれ。	ш
116	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】使用済燃料プールにおける ゲート押さえの脱落	3号機	地震の揺れによる、使用済燃料ブールのゲート押さえ金具のスイングボルトの外れ。	ш
117	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】使用済燃料キャスクピットに おけるゲート押さえの一部脱落	3号機	地震の揺れによる、使用済燃料キャスクピットのゲート押さえ金具のスイングボルトの外 れ。	ш
118	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】当社モニタリングステーショ ン(4局)の停電および伝送回線停止に伴う欠測	その他	地震・津波の影響により、 <u>牡鹿半島周辺の配電設備および伝送回線が損傷したことによ</u> <u>る、モニタリングステーション(4 局)の欠測。</u>	<u>III</u> , VI

地震被害発生要因: I:地震の不等沈下による損傷 Ⅱ:建物間の相対変位による損傷 Ⅲ:地震の揺れによる施設の損傷・転倒・落下等 Ⅳ:周辺斜面の崩落 V:使用済燃料ビットスロッシングによる溢水 Ⅵ:その他(地震の揺れによる警報発信等,施設の損傷を伴わないI~V以外の要因等)

地震被害に関するNUCIA情報の検討内容					
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因
119	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】高圧電源盤しゃ断器の投入不 可	1号機	地震の振動により、高圧電源盤内のしゃ断器が傾いたことによる、インターロックロー ラーの正常位置からの外れ。	ш
120	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】燃料交換機制御室内の地上操 作装置落下	3号機	地震の影響による,燃料交換機制御室内の地上操作装置の机上から床面に落下したことに よる,端子部の破損。	ш
121	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】燃料交換機の配線ケーブルの 脱線	3号機	地震の揺れによる,燃料交換機ブリッジ給電装置のケーブル支持具のガードレールからの 外れ。	ш
122	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】地下1階電動ステップパック 遮へい扉の施錠装置の破損	2号機	地震の影響による,電動ステップバック遮へい扉の施錠装置の破損。	ш
123	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】モニタリングポスト(チャン ネル6)信号変換器の故障に伴う指示不良	その他	地震により、ケーブルコネクタのロック部分が破損してケーブルコネクタが緩んだことに よる、モニタリングポストのチャンネル6 指示値の一時的変動。	ш
124	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】燃料交換機入出力装置の破損	1号機	地震により,燃料交換機入出力装置盤内の表示装置及びキーボード各運転状態表示,手順 データの入力および編集作業)がラックから落下したことによる,燃料交換機入出力装置の 故障。	ш
125	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】主蒸気逃し安全弁(C) リ ミットスイッチの接点不良	1号機	地震の揺れによる,主蒸気逃がし安全弁(C)の位置検出スイッチの位置ズレによる接点不良。	ш
126	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】原子炉格納容器内遮へい扉 留 め具の外れ	1号機	地震の揺れにより、原子炉格納容器内原子炉遮へい開口部扉と遮へいカーテンの押さえ板 が接触したことによる、遮へい材カーテンの押さえ板の変形。	ш
127	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】原子炉格納容器内遮へい扉 留め具の変形	2号機 3号機	地震の揺れにより,原子炉格納容器内原子炉遮へい壁の開口部扉の留め具のパーとステー が接触したことによる,開口部扉の留め具の変形。	ш
128	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】補助ボイラー(A)蒸気だめ 基礎部の損傷	2号機	地葉による荷重により,補助ボイラー(A)蒸気だめがわずかに移動したことによる,蒸気だめ基礎部の損傷。	ш
129	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】蒸気タービン中間軸受箱の基 礎ボルト曲がり	2号機	地震の揺れにより、タービン主軸が移動して中間軸受箱及びソールブレート(中間軸受箱 に設置する平板)に力が加わったことによる、ソールブレートの基礎ボルトの曲がり。	ш
130	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】起動用変圧器放熱器油漏れ	2号機	地震による、起動用変圧器放熱器の数ミリ程度のき裂による絶縁油の漏れ。	ш
131	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】天井クレーン運転席鋼材等の 損傷	2号機	地震の影響により,原子炉建屋天井クレーンの運転席の鋼材溶接部の一部損傷。	ш
132	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】天井クレーン走行部等のすり 傷	3号機	地震の影響により、原子炉建屋天井クレーンの走行レール上の車輪が揺れたことによる、 走行レールと走行車輪の接触面の局部的なすり傷。	ш
133	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】原子炉格納容器機器ハッチ遮 へい扉止め金具破損	_	地震による原子炉格納容器機器ハッチ進へい扉の止め金具(スライド固定)の破損。	ш
134	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】格納容器雰囲気計測系サンプ ル 昇圧ボンブB異音	_	地震による,格納容器雰囲気計測系(CAMS)のサンプル昇圧ポンプのモータとポンプの芯ず れ。	ш
135	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】使用済燃料プール小ゲート取 付けボルトの位置ズレ	_	地震の揺れによる,使用済燃料ブール小ゲートの取付けボルトの位置ズレ。	ш
136	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】地震による水処理建屋構造材 の損傷	_	地震の影響による,水処理建屋のブレース(筋交い)の切断。	ш
137	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】津波による取水口電気室建屋 の損傷	_	<u>地震・</u> 津波による, <u>取水口電気室の建具(恋,シャッター)の割れ・蚕み。</u>	<u>III</u> , VI

	地震被害に関するNUCIA情報の検討内容						
No.	対象地震 (発電所)	件名	号機	号機 地震被害事象および発生要因の概要			
地震	被害発生要因IV			※下線は要	因IV相当箇所		
138	中越沖 (柏崎)	【中越沖地震】土捨て場一部崩落(北側斜面)等	その他	地震の振動よる土捨て場北側斜面の一部崩落。	IV		
139	中越沖 (柏崎)	【中越沖地震】開閉所東側法面一部滑り出し	その他	地震の振動のよる開閉所東側法面の一部滑り出し,及び約10cm のひび割れ。	IV		
140	駿河湾 (浜岡)	【中越沖地震】取水槽まわりの地盤沈下等	1号機	地震により、取水槽まわりに地盤沈下(30m×20m,最大15cm 程度),隆起(35m×15m,最大 20cm 程度)及び <u>法面波打ち(30m×5m,最大10cm 程度)が発生。</u>	I, <u>IV</u>		
141	駿河湾 (浜岡)	【駿河湾の地震】道路および法面のひび割れ	その他	地震により以下の被害が発生。 05 号見晴台道路き裂 <u>05 年山国辺よう韓目開き、道路き裂</u> ③ <u>F中4</u> 山町辺 <u>よう韓目開き、道路き裂</u> ③ <u>の 号放た日モニタ室東側よう壁(ブロック積み)き裂</u> <u>⑤固体廃棄物貯蔵庫(第2,種)周辺よう壁(ブロック積み)および道路のき裂</u> <u>⑥冤宿所東側海岸道路き裂</u>	I, <u>IV</u>		

		地震被害に関するNUCIA情報の検討内容						
ĺ	No.	対象地震 (発電所) 件 名 号機 地震被害事象および発生要因の概要		地震被害事象および発生要因の概要	地震被害 発生要因			
ĺ	地震袖	波害発生要因 V			※下線は要	医V相当箇所		
	142		【中越沖地震】R/B 3Fオペフロ全域水浸し	1号機				
	143		【中越沖地震】R/B使用済燃料プール水飛散	2号機				
	144		【中越沖地震】R/Bオペフロ床への使用済燃料 プール水飛散	3号機				
	145	中越沖 (柏崎)	【中越沖地震】R/B使用済燃料プール水散逸によるR/Bオペプロ水浸し・SFP混濁不可視	4号機	地葉による使用済燃料ブールのスロッシングによる溢水。	v		
	146		【中越沖地震】R/Bオペフロほぼ全域への使用済み燃 料プール水飛散	5号機				
	147		【中越沖地震】R/B(管理)オペフロほぼ全域への使 用済燃料プール水飛散	6号機				
	148		【中越沖地震】 R / B 4 F オペフロ全域水たまり有 り	7号機				
	149	中越沖 (柏崎)	【中越沖地震】R/B3階,中3階の非管理区域への放 射能含む水の漏えい・海への放射能放出	6号機	地震による使用溶燃料ブールのスロッシングによる被害は以下のとおり。 ・原子伊建塩工能ナベレーティングフロブ(管理区域)への違水。 ・上記溢木が燃料交換機給電ボックスへ流入し、設計上の考慮不足あるいは施工不良によ る当該給電ボックス内電線員通部のシール材の隙間を通り電線管へ流入。 ・当該電線管へ流入した水が原子伊建型3階(非管理区域)への満下。 ・通下した木が床面の視水れのを通じて見子伊建型3階(非管理区域)への満下。 集)と水が床面の視水れのを通じて見子伊建型4世形1路(非管理区域)の非放射性排水収 集タンクに流入し排水ボンブにより海に放出。	<u>v</u> , vi		
	150	中越沖 (柏崎)	【中越沖地震】1号機 使用済燃料プールの水位低に よる運転上制限の逸脱及び復帰	1号機				
	151	中越沖 (柏崎)	【中越沖地震】2 号機 使用済燃料プールの水位低に よる運転上制限の逸脱及び復帰	2号機	地震によるスロッシングにより溢水したことによる使用済燃料プールの水位低下。	v		
	152	中越沖 (柏崎)	【中越沖地震】3号機 使用済燃料プールの水位低に よる運転上制限の逸脱及び復帰	3号機				
	153	中越沖 (柏崎)	【中越沖地震】R/B2F南東壁(SFP側)より の水漏れ	7号機	地震によ <u>る、原子炉建屋管理区域内2</u> 階のエレベータ付近の壁面の鉄筋コンクリートの継 芝目部に生じた微細なひびからの水のにじみ <u>、</u>	Ⅲまたは <u>V</u>		
	154	中越沖 (柏崎)	【中越沖地震】R/B3FISI試験片室前壁から の水漏れ	7号機	地震による、原子炉建屋管理区域内3 路北側の床面コンクリート継ぎ目部からのわずかな 太のしみ出し。	Ⅲまたは <u>∨</u>		
	155	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】東海第二発電所 使用済燃料 プール水飛散	_	地震による使用済燃料ブールのスロッシングにより、ブール木が侵入して制御棒位置指示 系信号コネクタ部が絶縁低下したことによる、制御棒位置指示表示の不良。	v		

		1	四度成古仁		1
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因
地震	被害発生要因V		1	※下線は要	氢因VI相当箇所
156	宮城県沖 (女川)	8 • 1 6 宮城地震による女川原子力発電所全ブラン ト停止について	1号機 2号機 3号機	地震による安全上需要となる被害なし。以下の軽微な被害が発生。 ○女川1 号炉 <u>+ 主変圧器</u> <u>起動用変圧器の避圧弁動作</u> ○女川2 号炉 <u>+ 支寒圧器</u> <u>起動用変圧器</u> <u>補助ポイラー変圧器(A)(B)の避圧弁動作</u> ○女川3 号炉 <u>+ 変圧器</u> <u>起動用変圧器</u> <u>補助ポイラー変圧器(A)(B)の避圧弁動作</u> ○女川3 号炉 <u>- 生変圧器の避圧弁動作</u> ○女川3 号炉 <u>- 非変に置の避圧弁動作</u> ○その地構内 <u>- 建塩広料能測定センターの希硫酸(5%濃度)貯蔵施設が漏えい及び苛性ソーダの一部演下 <u>- 建塩気料能測定センターの希硫酸(5%濃度)貯蔵施設が漏えい及び苛性ソーダの一部演下</u> <u>- 建気筒気空障害等レンズカバー破損</u> - 構内道路アスファルトき裂・波打ち・段差発生</u>	I, Ш, <u>V</u> I
157	能登半島沖 (志賀)	能登半島地震観測データ波形記録の一部消失につい て	1号機	短時間に多くの余震を連続して収録したこと、及び地震観測用強度計の収録装置の容量が 少なかったことから、一旦保存した本震記録等をサーバーに転送する前に、新たな余震記 録により上書きされたもの。	VI
158	中越沖 (柏崎)	【中越沖地震】R/B3階,中3階の非管理区域への放 射能含む水の漏えい・海への放射能放出	6号機	地震による使用済燃料ブールのスロッシングによる被害は以下のとおり。 ・原子伊建屋4 陸オペレーティングフロア「管理区域)への溢水。 ・上記溢水が燃料交換機給電ボックスへ流し、 <u>設計上の考慮不足もろいは施工不良によ ろ当該給電ボックス内電線貫通部のシール部の隙間を通り電線管へ流入。</u> ・当該電線管へ流入した木が原子伊建屋3 階(非管理区域)へ満下。 ・当時電線管へ流入した木が原子伊建屋3 階(非管理区域)の非放射性排水取 集タンクに流入し、排水ボンプにより海へ放出。	V, <u>VI</u>
159	中越沖 (柏崎)	【中越沖地震】低起動変圧器3SB「放圧装置動 作」及び放圧装置油リーク	3号機	地震の揺れにより放圧装置が動作したことによる噴油。	VI
160	中越沖 (柏崎)	【中越沖地震】低起動変圧器6SB放圧装置油リー クによる低起動変圧器6SB停止	6号機	地震の揺れにより放圧装置が動作したことによる噴油。	VI
161	中越沖 (柏崎)	【中越沖地震】T/B RFP-T主油タンク(B) タンク室床に油たまり	2号機	地震の影響によりRFP-T(B)油ブースターボンブの電源が喪失したことによる, RFP-T(B)油 ダンクのオーバーフロー。	VI
162	中越沖 (柏崎)	【中越沖地震】地震記録装置データ上書き	その他	短時間に多くの余震が連続して発生したこと等により、観測装置内に記録・保存されてい た本震の記録等を転送する前に,新たな余震記録により本震記録が上書きされたもの。	VI
163	中越沖 (柏崎)	【中越沖地震】主排気筒の定期測定(1回/週)に おいてヨウ素及び粒子状放射性物質(クロム51,コ バルト60)の検出について	7号機	地震スクラム後の原子炉の冷温停止操作が輻輳し、タービンランド蒸気排風機の手動停止 操作が遅れたことによる,復水器内の放射性ヨウ素及び粒子状放射性物質の放出。	VI
164	中越沖 (柏崎)	【中越沖地震】6号機R/Bより海に放出された放 射線量の評価・通報連絡の遅延	6号機	管理区域に隣接する非管理区域における放射性物質を含む水の漏えいのリスクを考慮した 放射線管理プロセスが構築されておらず、原子伊建屋非放射性ストームドレンサンプの起 動阻止が遅れたことによる、サンプに流入した放射能を含む水の放出等。	VI
165	中越沖 (柏崎)	【中越沖地震】7号原子炉ウェルライナーからの漏 洩について	7号機	建設時に原子炉ウェルライナーの溶接余盛り部を平谱化するためにグラインダで除去して いたため、残存板厚が薄くなっており、地震により残存板厚が薄くなっていた部分に過大 な荷重がかかり貫通したことによる漏えい。	Ш, <u>VI</u>
166	中越沖 (柏崎)	【中越沖地震】R/B 1F北西側二重扉電源喪失の ため内外開放中	1号機	二重原の電源である「MCCISA-1-1」に漏えいした水がかかっていたため,当直員がMCC を 停止させた等による,二重屏動作不能。	VI
167	中越沖 (柏崎)	【中越沖地震】R/Bオペフロ 原子炉ウェル内バルク ヘッド上に赤靴を確認	1号機	使用済燃料プール及び原子炉ウェルから溢れた水による、ウェル開口部付近にあったC 靴 の移動。	VI
168	中越沖 (柏崎)	【中越沖地震】「6号機の放射性物質の漏えいにつ いて」における海に放出された放射能量の訂正につ いて	6号機	放射能の測定結果を記録した帳票において記載された合計値がすべての放射性核種の湿度 の合計値と誤解したことによる、海に放出された水の放射線量の計算の誤り。	VI
169	中越沖 (柏崎)	【中越沖地震】T/B B 2 F T/BHCWサンプ(B)・LPCP(A) ~ (C) 室雨水流入	1号機	タービン建屋〜海水熱交換器建屋・補助ボイラ建屋・ランドリー建屋・ランドリー建屋 クトで発生した濁水が近傍のファンネルへ大量に流入し、目詰まりを起こして高電導度廃 液サンプに流入したことによるサンプからの溢水。	VI
170	中越沖 (柏崎)	【中越沖地震】T/BT/BB1F(管) 南側壁上 部5m(ヤードHTr奥ノンセグ室)より雨水流入	3号機	タービン建屋に隣接したビットに水がたまり、電線管貫通部を通ってタービン建屋内に流入。	VI
171	中越沖 (柏崎)	【中越沖地震】5 号機 燃料取替機荷重異常発生に伴 う自動除外	5号機	燃料を機構め不適切な設定座標により、燃料集合体の下部先端が燃料支持金具の外側に乗 り上げた状態であったため、地震により燃料集合体が燃料支持金具からさらに外れたこと によるもの。	VI
172	中越沖 (柏崎)	【中越沖地雲】3号機原子炉圧力容器遮へい体の地 震による移動について	3号機	 ・<u>スライド式進へい体が正規位置に取り付けられておらず</u>,地震により移動して接触した ことによる、RPV 水位計装配管の保温材の変形。 ・スライド式進へい体のストッパーが取り付けられておらず,地震によりスライド式進へ い体のストッパーが取り付けられておらず,地震によりスライド式進へ い体が移動して進へいプロックが崩れたことによる,進へいプロックのRPV 水位計装配管 への接触。 	Ш, <u>VI</u>
173	駿河湾 (浜岡)	【駿河湾の地震】廃棄物減容処理建屋「復水バッチ タンク水位高高」警報点灯	2号機	地震により復水パッチタンク水位が変動し、補給水系統からタンクへの自動補給が行われ たことにより水位が上昇したことによる水位高高警報の発信。	VI
174	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋3階(放射線管理区域 内)燃料プール冷却浄化系ポンプ室の放射線モニタ 指示の上昇	2号機	地震の揺れにより、燃料集合体表面の放射性物質を含んだ鉄錆び等が燃料プールに遊離し たことによる、燃料プール水の放射能の上昇。	VI
175	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機の排気消 音器の吸音材カバー固定金具の外れおよび台座シー ル材の劣化	3号機	<u>国外の短宝環境による固定金具の密査と</u> 地震の揺れによる影響による。非常用ディーゼル 発電機(A)排気消音器の吸音材力バー固定金具の一部外れ、及び非常用ディーゼ (B)の排気消音器台座シール材の劣化。	Ш, <u>VI</u>
176	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機(A)排気消 音器の吸音材カバー固定金具等の外れ	4号機	<u>最外の塩害環境による固定金具の腐食</u> と地震の揺れによる影響による、非常用ディーゼル 発電機(A)排気消音器の吸音材カバー固定金具の一部外れ、及び一部カバーずれ。	Ш, <u>VI</u>
177	駿河湾 (浜岡)	【駿河湾の地震】補助変圧器過電流トリップ	5号機	地震の振動でトリップ接点が接触したことによる保護継電器の誤作動。	VI
178	駿河湾 (浜岡)	【駿河湾の地震】制御棒駆動機構モータ制御ユニットの故障警報点灯について	5号機	上記,補助変圧器過電流トリップ事象により,制御棒駆動機構モータ制御装置が一時停止 したことによる警報発信。	VI
179	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋管理区域区分の変更	5号機	地震の確れで原子伊建屋5 階オペフロ高所に蓄積していた放射性物質が落下し,原子伊建 居全体に拡散したことによる,燃料交換エリア床面の放射性物質密度上昇に伴う放射線管 理区分の変更。	VI

Γ

地震被害発生要因: I : 地震の不等沈下による損傷 Ⅱ: 建物間の相対変位による損傷 Ⅲ: 地震の揺れによる施設の損傷・転倒・落下等 Ⅳ: 周辺斜面の崩落 V:使用済燃料ビットスロッシングによる溢水 Ⅵ: その他(地震の揺れによる警報発信等,施設の損傷を伴わないI ~ V以外の要因等)

		h	也震被害に	関するNUCIA情報の検討内容	
No.	対象地震 (発電所)	件名	号機	地震被害事象および発生要因の概要	地震被害 発生要因
180	駿河湾 (浜岡)	【駿河湾の地震】計測制御系定電圧定周波数電源装置のインバーター過電流による電源切替(通常→予備)	5号機	地震により4,5号炉が原子炉スクラムした瞬間の発電機出力低下を5号炉の系統安定化装 置が検知し、発電機電圧を上昇させた際の過渡的な電圧上昇及び過電流による、計測制御 系定電圧定周波数電源装置の電源切替。	VI
181	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋5階(放射線管理区域 内)燃料交換エリア換気放射線モニタ指示の一時的 な上昇	5号機		VI
182	駿河湾 (浜岡)	【駿河湾の地震】燃料プール水の放射能の上昇	5号機	地震の揺れにより,燃料集合体表面の放射性物質を含んだ鉄錆び等が燃料プール水に遊離 したことによる,プール表面からの放射線線量率の上昇。	VI
183	駿河湾 (浜岡)	【駿河湾の地震】原子炉建屋3階(放射線管理区域 内)燃料プール冷却浄化系ポンプ室の放射線モニタ 指示の上昇	5号機		VI
184	駿河湾 (浜岡)	【駿河湾の地震】非常用ガス処理系(B)放射線モニタ 下限点灯	5号機	地震の振動による補助変圧器トリップに伴う,電圧の一時的な低下によるモニタ指示値の 一時的な低下。	VI
185	駿河湾 (浜岡)	【駿河湾の地震】非常用ディーゼル発電機(B)排気消 音器の吸音材カバー固定金具等の外れ	5号機	<u>屋外の塩害環境による固定金具の腐食</u> と地震の揺れによる影響による、非常用ディーゼル 発電機(B)排気消音器の吸音材カバー固定金具の一部外れ、及び一部カバーのずれ。	Ш, <u>VI</u>
186	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】屋外重油タンクの倒壊	1号機	津波の影響による,補助ボイラー用重油タンクの倒壊,重油移送ボンプの浸水及び油輸送 管の損傷。	VI
187	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】原子炉補機冷却水系熱交換器 (B)室,高圧炉心スプレイ補機冷却水系熱交換器 室および海水ボンブ室への浸水	2号機	津波の影響による,原子炉建屋地下3 階の非管理区域のRCW 熱交換器(A)(B)室,HPCW 熱交 換器室,エレベータエリアにアクセスする階段室及び海水ボンブ室への海水の流入,RCW ボンブ(B),(D)及UNPCW ボンブの浸水。	VI
188	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】1,2,3号機放水ロモニター の津波による浸水および破損	1号機 2号機 3号機	津波による、放水ロモニターの測定・データ伝送設備の水没・破損。	VI
189	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】当社モニタリングステーショ ン(4局)の停電および伝送回線停止に伴う欠測	その他	地震・津波の影響により、牡鹿半島周辺の配電設備および伝送回線が損壊したことによる 全局公測。	Ш, <u>VI</u>
190	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】海水温度モニタリング装置の 津波による破損に伴う全局欠測	その他	洋波により,海水温度モニタリング装置のデータ伝送設備が冠水し破損したことによる全 局欠測。	VI
191	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】母連しや断器の制御電源喪失	1号機	地震により火災が発生した高圧電源盤の制御電源回路の溶損による地絡及び短絡の影響に より、母達しゃ断器用制御電源回路の電圧が変動したことによる、リレーの動作及び「制 鋼電源喪失」警報発信。	VI
192	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】変圧器避圧弁の油面変動に伴 う動作	1号機	地震の揺れにより、主変圧器、起動用変圧器及び所内用変圧器内の絶縁油の油面が変動し て内部圧力が上昇したことによる,避圧弁の動作。	VI
193	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】燃料取替エリア放射線モニタ (A) 記録計の指示不良	3号機	指示不良による,燃料取替エリア放射線モニタ(A)記録計の指示値の一時的な変動。	VI
194	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】変圧器避圧弁の油面変動に伴 う動作	3号機	地震の揺れにより、主変圧器及び所内変圧器内の絶縁油の油面が変動して内部圧力が上昇 したことによる,避圧弁の動作。	VI
195	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】125V直流主母線盤の地絡 (計2件発見)	1号機	火災により配線が地絡したことによる, 125V 直流分電盤の地絡警報発信。	VI
196	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】125V直流主母線盤の地絡 (計4件発見)	3号機	津波により,除塵装置制御盤が水没して地絡したことによる,125V 直流電源設備の地格警 報発信。	VI
197	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】ほう酸水貯蔵タンク水位指示 回路不良	1号機	火災による高圧電源盤の地絡電流により,電源フューズが断線して電源がなくなったこと による,ほう酸水貯蔵タンク水位指示計のスケールダウン。	VI
198	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】変圧器避圧弁の油面変動に伴 う動作(計7件発見)	2号機	地震の揺れにより、主変圧器、起動変圧器、所内変圧器及び補助ボイラー用変圧器内の絶 縁油の油面が変動して内部圧力が上昇したことによる、避圧弁の動作。	VI
199	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】125V直流主母線盤の地絡	2号機	推設により、原子伊維機合担系/原子伊維機合担衛水系(B)制御回路の電動弁、非放射性ド レン移送系のサンプボン増換作額、及び除塵装置制御盤が水没して地絡したことによる、 1257 直流電源設備の地格警報発信。	VI
200	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】非常用ディーゼル発電機 (A)界磁回路の損傷	1号機	A欠災により、同期後出継電器と接続している制御ケーブルが溶損して地絡し、地絡に伴い DG(A)しゃ断器が自動投入されたため界磁過電圧が生じたことによる、バリスタの損傷、断 線及びダイオードの短絡。	VI
201	東北地方 太平洋沖地震 (女川)	【東日本大震災関連】高圧炉心スプレイ系圧力抑制 室吸込弁 自動での全開動作不能	3号機	地震により,高圧炉心スプレイ系圧力抑制室吸込弁の開閉指示を行うスイッチ等が誤作動 したことによる自動での全開動作不能。	VI
202	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】非常用ディーゼル発電機2C 用海水ポンプの自動停止について	—	波により、非常用ディーゼル発電機2C 用海木ボンブ電動機が水没したことによる、当該海 木ボンブの自動停止。	VI
203	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】125V蓄電池2B室におけ る溢水について	_	実験室サンプ(管理区域内)と125V 蓄電池2B 室(非管理区域内)のドレンファンネルを接続 する配管が存在していたこと,及び当該ファンネルに高低差がな、逆流防止処置が講じら れていなかったことにより、当該サンプ水が当該ファンネルへ流入したことによる,125V 蓄電池2B 室における溢水。	VI
204	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】東海第二発電所 固体廃棄物貯 蔵用サイ トパンカプール水飛散	_	地震による、廃棄物処理建屋固体廃棄物貯蔵用サイトバンカプールの溢水。	VI
205	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】D/W床及び機器ドレンサンプレ ベルスイッチの地絡	_	流入水による,床ドレン及び機器ドレンサンプレベルスイッチが被水したことによる,当 該サンプレベルスイッチ回路の地絡。	VI
206	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】T/B機器ドレンサンプBからの 水漏れ	_	サンプ電源喪失中における、電動機駆動原子炉給水ポンプシール水の流入による、タービ ン建屋機器ドレンサンプ(B)からの水漏れ。	VI
207	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】主変圧器,起動変圧器(2A, 2B)放圧管からの絶縁油漏えい	_	地震動により、主変圧器及び起動変圧器(2A, 2B)内の絶縁油の油面が変動して放圧板に漏 れが生じたことによる,放圧管からの絶縁油の漏えい。	VI
208	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】津波による屋外機器の被水 (安重設備以外)		律波による, CWP 潤滑水ボンブ等の屋外機器の被水。	VI
209	東北地方 太平洋沖地震 (東海第二)	【東日本大震災関連】津波による取水口電気室建屋 の損傷	_	地震・津波による, 取木口電気室の建具(窓, シャッター)の割れ・盃み。	ш, <u>vi</u>

地糞被害発生要因: I : 地震の不等沈下による損傷 Ⅱ : 建物間の相対変位による損傷 Ⅲ : 地震の揺れによる施設の損傷・転倒・落下等 Ⅳ : 周辺斜面の崩落 V : 使用済燃料ビットスロッシングによる溢水 Ⅵ : その他(地震の揺れによる警報発信等,施設の損傷を伴わない I ~V以外の要因等)

添付資料2-2

I

	東海第二発電所における地震被害事例の要因整理							
No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因					
地震	w害発生要因 I							
1	154kV開閉所 消火系配管架台ずれ	154x閉閉所 消火系配管架台ずれ エリア:屋外,海回り他	Ι					
2	R/Wセメントドラム搬出入口建屋沈下	廃棄物処理施設セメントドラム搬出入口建屋沈下 エリア:屋外,海回り他	Ι					
3	H2メーキャップ室建屋沈下	室素供給建屋北下 エリア:屋外,海回り他	Ι					
4	主変圧器廻り通路地盤沈下	主変圧器廻り通路地盤沈下 エリア:屋外,海回り他	I					
5	検溯小屋沈下	検測小屋辻下 エリア:屋外,海回り他	Ι					
6	ASWカルバート沈下	補助海水系カルバート沈下 エリア:屋外,海回り他	I					
7	周辺防護区域内地盤沈下による建屋廻り段差、陥没	周辺防護区域内地盤法下による建屋廻り段差、陥没 エリア:屋外,海回り他	Ι					
8	CWP基礎及び仕切り壁基礎下部の地盤沈下	CIP基礎及び仕切り壁基礎下部の地盤沈下 エリア:屋外,海回り他	I					
9	水処理 混合用空気貯槽 基礎部ずれ	水処理 混合用空気防槽 基礎部ずれ エリア:屋外,海回り他	Ι					
10	残留熱除去海水系放出配管(A系)芯ズレについて	残留熟除去海水系放出配管(A系)芯ズレについて エリア:屋外,海回り他	Ι					

循環水配管下地盤沈下 エリア:屋外

11

循環水配管下地盤沈下

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因			
地農被害発生要因Ⅱ						
12	R/W・増強R/W連絡通路(1F、2F)接続部亀裂	R/W・増強R/W連絡通路(1F、2F)接統部亀裂 エリア:廃棄物処理増強建屋	П			

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因
地震	被害発生要因Ⅲ		T
13	ほう酸水貯蔵タンク水位計オーバースケール	ほう酸水貯蔵タンク水位計オーバースケール エリア:原子炉建屋	ш
14	H13-P601 ポストアクシデントレコーダB 指示不良	H13-P601 ポストアクシデントレコーダB 指示不良 エリア:原子炉建屋	Ш
15	制御棒54-43及び58-43位置指示不良	制御棒54-43及び58-43位置指示不良 エリア:原子炉建屋	ш
16	R/B 6F 燃交台車制御室 窓ガラス一部破損	R/B 6F 燃交台車制御室 窓ガラス一部破損 エリア : 原子炉建屋	ш
17	R/B 2F 格納容器機器ハッチ留め金具破損	R/B 2F 格納容器機器ハッチ留め金具破損 エリア:原子伊建園	ш
18	現場照明器具かさ落下	現場照明器具かさ落下 エリア:原子炉建屋, タービン建屋	ш
19	R/B B1F計装用空気入口配管RASH007フランジ部微少リーク	R/B BIF計装用空気入口配管RASH007フランジ部微少リーク エリア:原子炉建屋	Ш
20	CAMS (B) 昇圧ポンプ異音	CAMS (B) 昇圧ポンプ異音 エリア : 原子炉建屋	ш
21	T/B 3F OPERATING FLOOR壁面亀裂及び鉄板部歪み	T/B 3F OPERATING FLOOR壁面亀裂及び鉄板部盃み エリア:タービン建屋	Ш
22	増強R/W雑固体減容処理設備 苛性ソーダポンプA 苛性ソーダ微少 リーク(結晶)	増強R/W雑固体減容処理設備 苛性ソーダボンプA 苛性ソーダ微少リーク(結晶) エリア:廃棄物処理増強建屋	ш
23	T/B 3F C/S送風機室内壁面プロック落下	T/B 3F C/S送風機室内壁面ブロック落下 エリア:タービン建屋	ш
24	制御棒50-47位置指示不良	制御棒50-47位置指示不良 エリア:原子炉建置	ш
25	MCRバイパスフィルタファン E2-14B起動不調	MCRバイバスフィルタファン E2-14B起動不調 エリア:タービン建屋	ш
26	ASWストレーナA差圧計指示不良	ASWストレーナA差圧計指示不良 エリア:屋外,海回り他	ш
27	MCR H13-P602「D/W FD SUMP LEVEL HIGH」 警報回路地絡	MCR H13-P602「D/W FD SUMP LEVEL HIGH」警報回路地絡 エリア:原子炉建屋	ш
28	原子炉建屋大物搬入口扉(外側)ゆがみ	原子炉建屋大物搬入口扉(外側)ゆがみ エリア:原子炉建屋	ш
29	R/W FDSaT・DISTSaT室東側壁雨水浸入	R/W FDSaT・DISTSaT室東側壁雨水浸入 エリア:屋外,海回り他	ш
30	T/B 1F MD RFP(B)付近 東側壁面からの雨漏れ	T/B IF MD RFP(B)付近 東側壁面からの雨漏れ エリア : タービン建屋	ш
31	オフガスプレヒータ(A)入口弁6-23V5電磁弁連続排気	オフガスプレヒータ(A)入口弁6-23V5電磁弁連続排気 エリア:タービン建屋	ш
32	MCR H13-P601 ドライウェル真空破壊弁2-26V-41表示灯両 点	MCR H13-P601 ドライウェル真空破壊弁2-26V-41表示灯両点 エリア:原子炉建屋	ш
33	MCR H13-P602「FUEL POOL LEVEL HI/L0」警報用レベルスイッ チ不良	WCR H13-P602「FUEL POOL LEVEL HI/LO」警報用レベルスイッチ不良 エリア:原子炉建屋	ш
34	R/B 3F RPV SKIN TEMP記録計(B22-R006) 打点4 指示不良	R/B 3F RPV SKIN TEUP記録計(B22-R006) 打点4 指示不良 エリア : 原子炉建量	ш
35	CRD ドライブフィルタAベント・ドレンラインユニオン継ぎ手部 リーク	CRD ドライブフィルタAベント・ドレンラインユニオン継ぎ手部リーク エリア:原子炉建屋	ш
36	L/B NO.3オイルサービスタンク出口配管ユニオン部リーク	L/B NO.3オイルサービスタンク出口配管ユニオン部リーク エリア:タービン建屋	ш
37	DG 2C SEA WATER PUMPトリップ	DG 2C SEA WATER PUMPトリップ エリア:屋外,海回り他	ш
38	プロセス計算機 タービンNo. 10軸受温度指示不調	プロセス計算機 タービンNo. 10軸受温度指示不調 エリア:タービン建屋	ш
39	水処理 NO.2活性炭ろ過器洗浄水出口配管リーク	木処理 №.2活性炭ろ過器洗浄水出口配管リーク エリア:屋外,海回り他	ш
40	構内消火設備(屋外)からの漏えい	構内消火設備(屋外)からの漏えい エリア:屋外,海回り他	Ш
41	東北関東大震災による保管鉄箱の転倒、落下	東北関東大震災による保管鉄箱の転倒、落下 エリア:屋外,海回り他	ш
42	SFP小ゲート取付けボルト不良	SFP小ゲート取付けボルト不良 エリア:原子炉建屋	ш
43	MCR CP-3「IA PRESS LOW」警報発報	MCR CP-3「IA PRESS LOW」警報発報 エリア:原子炉建屋	ш
44	MCR CP-31「0/G CONDENSER A DISCH TEMP HIGH」警報発報	MCR CP-31「0/G CONDENSER A DISCH TEMP HIGH」警報発報 エリア:原子炉建磁	ш
45	主復水器 (B) エキスパンションジョイントシール漏洩	主復木器(B)エキスパンションジョイントシール漏洩 エリア:タービン建屋	ш
46	屋外発電機機内ガス系配管曲がり	屋外発電機機内ガス系配管曲がり エリア:屋外,海回り他	ш

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因
47	増強R/W減容固化系循環ポンプB起動不可	増強化/W減容固化系循環ポンプB起動不可 エリア:廃棄物処理増強建屋	Ш
48	T/B 北側壁面雨水配管接続部不良	T/B 北側壁面雨木配管接統部不良 エリア:タービン建屋	Ш
49	主変圧器及び起動用変圧器放圧管からの漏油について	主変圧器及び起動用変圧器放圧管からの漏油について エリア:屋外、海回り他	Ш
50	主変圧器消火系ノズル破損	主変圧器消火系ノズル破損 エリア:屋外,海回り他	ш
51	主変圧器作業用電源電線管外れ	主変圧器作業用電源電線管外れ エリア:屋外,海回り他	Ш
52	構内一般焼却炉用電源の停止	構内一般焼却炉用電源の停止 エリア:屋外,海回り他	Ш
53	チェックポイント建屋1階天井からの水滴落下	チェックポイント建屋1階天井からの水滴落下 エリア:屋外,海回り他	Ш
54	東日本大震災によるランドリーポイラー不具合	- 東日本大震災によるランドリーボイラー不具合 エリア : サービス建屋	Ш
55	L/Bオイルサービスタンク ベント管からの漏えい	L/Bオイルサービスタンク ベント管からの漏えい エリア : サービス建屋	Ш
56	T/B機器ドレンサンプB 漏洩	T/B機器ドレンサンプB 漏洩 エリア:タービン建屋	Ш
57	T/B 1F 電動駆動原子炉給水ポンプ(A)及び(B)シール部蒸気漏洩	T/B IF 電動駆動原子炉給水ポンプ(A)及び(B)シール部蒸気漏洩 エリア:原子炉建屋	Ш
58	HCU 50-47 スクラム弁(126)グランド部微少漏えい	HCU 50-47 スクラム弁(126)グランド部徴少漏えい エリア:原子炉建屋	Ш
59	オフガスリコンバイナA出口弁(A0-4-23V30)表示不良	オフガスリコンパイナA出口弁(A0-4-23V30)表示不良 エリア:タービン建屋	Ш
60	増強R/W雑固体減容処理設備アンモニア噴霧ノズル供給弁からの滴 下	増強ル/W雑固体減容処理設備アンモニア噴霧ノズル供給弁からの滴下 エリア:廃棄物処理増強建屋	Ш
61	R/B3F HCUスクラム弁126(加圧、流入側)グランド微少リーク	R/B3F HCUスクラム弁126(加圧、流入側)グランド微少リーク エリア:原子炉建屋	Ш
62	T∕B SD SUMP A LEVEL HI−HI警報発報	T/B SD SUMP A LEVEL HI−HI警報発報 エリア:タービン連屋	ш
63	屋外モルタル建屋 モルタル混和剤ポット吊ワイヤー切損	屋外モルタル建屋 モルタル混和剤ボット吊ワイヤー切損 エリア:屋外, 海回り他	ш
64	R/W 2F SRVアクチュエータ転倒	R/W 2F SRVアクチュエータ転倒 エリア:原子炉建屋	ш
65	増強R/W B2F 減容固化体移送装置室入口遮蔽扉倒れ	増強K/W B2F 減容固化体移送装置室入口達蔵扉倒れ エリア:廃棄物処理増強速量	ш
66	増強R/W 建屋排気系フィルタユニットQ上部換気ロルーバー脱落	増強R/W 建屋排気系フィルタユニットQ上部換気ロルーバー脱落 エリア:廃棄物処理増強速屋	ш
67	SGTS HI-RANGE MON RAD HI (A系) 警報発報	SGTS HI-RANCE MON RAD HI(A系)警線発線 エリア:原子炉速量	ш
68	R/B 3F HCU 50-43 スクラム弁126(加圧、流入側) グランド部リーク	R/B 3F HCU 50-43 スクラム弁126(加圧、流入側)グランド部リーク エリア:原子炉建屋	ш
69	T/B 1F 及び B1F床面・壁面亀裂	T/B IF 及び BIF床面・壁面亀裂 エリア : タービン建屋	ш
70	水処理前処理装置配管及びモノスコアフィルター底部からの漏えい	木処理前処理装置配管及びモノスコアフィルター底部からの漏えい エリア:屋外,海回り他	ш
71	プロセスコンピュータ ANNタイパ印字不良	プロセスコンビュータ ANNタイパ印字不良 エリア:原子炉建屋	ш
72	水処理 ポンプ及びタンク等の基礎コンクリートひび割れ	木処理 ボンブ及びタンク等の基礎コンクリートひび割れ エリア:屋外,海回り他	ш
73	水処理純水貯蔵タンク基礎防水加工部剥離	水処理純木貯蔵タンク基礎防木加工部剥離 エリア:屋外,海回り他	ш
74	水処理排水処理系第一PH調整槽PAC注入ライン配管サポート部損傷	木処理排水処理系第一Hi調整槽PAC注入ライン配管サポート部損傷 エリア:屋外,海回り他	ш
75	水処理排水処理装置第一及び第二PH調整槽入口配管等破損	水処理排水処理装置第一及び第二PH調整槽入口配管等破損 エリア:屋外,海回り他	ш
76	屋外 発電機ガスボンベ庫前エリア配管サポート部等損傷	屋外 発電機ガスボンベ庫前エリア配管サポート部等損傷 エリア:屋外,海回り他	ш
77	02注入系ボンベ室壁面破損	02注入系ボンベ室壁面破損 エリア:屋外,海回り他	ш
78	水処理原水タンク基礎防水加工部ひび	水処理原木タンク基礎防水加工部ひび エリア:屋外,海回り他	ш
79	取水口潮位計カメラ動作不良	取水口潮位計カメラ動作不良 エリア:屋外,海回り他	ш
80	使用済燃料乾式貯藏建屋 電気室カメラ動作不良	使用済燃料乾式貯蔵建屋 電気室カメラ動作不良 エリア:使用済燃料乾式貯蔵建屋	ш

地雷地生水开西口	I、地震のて効めてたとて担伤	Π. 7年齢間の担対応(と)アトア	担信 III、地震の振わたトアセ	30の相俟 おぬ 英て炊 BU 田 のとま
121	: 1 : 地展の小寺仏下による損湯	Ⅱ:建物间の相対変位による)損湯 Ⅲ:地震の伍和による爬	畝の損傷・転倒・洛下寺 Ⅳ:同辺府囲の朋洛
	V・信田这礎結ビットフロッシン	ノガビトス淡水 U・その仲	(地震の採わに上る数起発信室)	歯恐の掲進な伴わない I ~ V PDAの亜田空)
	V. 使用仍然作しファハロソン。	インによる症が ハ1・この心心	(地震の)市40による言報光に守,	肥成以頂筋を干4/ない1 「 いめ/いう女凶守/

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因
81	CP-33 取水、放水温度記録計指示不良	CP-33 取木、放水温度記録計指示不良 エリア: 屋外,海回り他	Ш
82	水素酸素発生装置電気品室 壁面剥離	水素酸素発生装置電気品室 壁面刹離 エリア:屋外,海回り他	Ш
83	屋外第二電気室 壁面亀裂・破損	屋外第二電気室 壁面亀裂・破損 エリア:屋外,海回り他	Ш
84	增強R/W 雜固体減容処理設備投入容器自動倉庫內容器位置不良	増強化/軍 雑固体減容処理設備投入容器自動倉庫内容器位置不良 エリア:廃棄物処理増強建屋	ш
85	プロセス計算機 RHRポンプA吐出圧力確立指示不良	プロセス計算機 RHRポンプA吐出圧力確立指示不良 エリア:原子炉建屋	Ш
86	154kV開閉所入口フェンスずれ	154k7開閉所入口フェンスずれ エリア:屋外,海回り他	Ш
87	放水ロモニタ室入口扉キーシリンダ不調	放水ロモニタ室入口扉キーシリンダ不調 エリア:屋外,海回り他	ш
88	SRNM ch.D指示変動	SRVM ch.D指示変動 エリア:原子炉建屋	ш
89	東海第二発電所 排気筒弾塑性ダンパの変形について	東海第二発電所 排気筒準塑性ダンパの変形について エリア:屋外,海回り他	ш
90	CRD46-15フランジ部より滴下	CRD46-15フランジ部より滴下 エリア:原子炉建屋	ш
91	サービス建屋3階 A階段室床面亀裂	サービス建屋3階 A階段室床面亀裂 エリア:サービス建屋	ш
92	サービス給湯系統 W-V10上流側配管ピンホール	サービス給湯系統 W-V10上流側配管ビンホール エリア:サービス建屋	ш
93	放水ロモニタ室行き飲料水配管微少リーク	放水ロモニタ室行き飲料水配管微少リーク エリア:屋外,海回り他	ш
94	水処理NO. 1 MB-P塔空気抜き配管破断	木処理NO.1 MB−P塔空気抜き配管破断 エリア:屋外,海回り他	ш
95	原子炉隔離時冷却系テストバイパス弁開動作不良	原子炉隔離時治却系テストバイバス弁開動作不良 エリア:原子炉建屋	ш
96	S/B 3F MCR控室流し台排水配管接続部微少リーク	S/B 3F MCR控室流し台排水配管接続部微少リーク エリア : サービス建屋	ш
97	T/B BIF ヒータールーム照明器具かさ落下	T/B BIF ヒータールーム照明器具かさ落下 エリア:タービン建屋	ш
98	R/W 1F 0/Gへパフィルター出口配管貫通部微少リーク	R/W IF 0/Gヘバフィルター出口配管貫通部微少リーク エリア:原子炉建屋	ш
99	東北地方太平洋沖地震の影響に伴うPCV内機器保温材外れの件	東北地方太平洋沖地震の影響に伴うPCV内機器保温材外れの件 エリア:原子炉建屋	ш
100	増強R/W 4F 主排気系排風機室内 蛍光灯架台シャフト外れ	増強K/W 4F 主排気系排風機室内 蛍光灯架台2+7ト外れ エリア:廃棄物処理増強建屋	ш
101	MCR視聴覚室間口床面破損	₩CR視聴覚室間口床面破損 エリア:サービス建屋	ш
102	NR/W主排気系ダンパNR31-ID010シート不良	NR/W主排気系ダンパNR31-ID010シート不良 エリア:廃棄物処理増強建屋	ш
103	T/B 1F ヒータールーム 湿分分離器 (B) サポート折損	T/B 1F ヒータールーム 湿分分離器 (B) サポート折損 エリア:タービン建屋	ш
104	MCR CP-3「ASW PUMP DISCH HDR PRESS LOW」警報発報	MCR CP-3「ASW PUMP DISCH HDR PRESS LOW」警報発報 エリア:原子炉建屋	ш
105	D/G HPCSストームドレンサンブピット堰境界部からの水漏れについて	D/G HPCSパームドレッセット駆発界部からの水漏れについて エリア:原子炉建屋	ш
106	メインスタック南側外灯ガラス部破損	メインスタック南側外灯ガラス部破損 エリア:屋外,海回り他	ш
107	ICOS WALL建屋 (西側) 北東外壁基礎部コンクリート剥離	ICOS WALL建屋 (西側) 北東外壁基礎部コンクリート剥離 エリア:屋外,海回り他	ш
108	屋内開閉所遮風壁ひび割れ	屋内開閉所進風壁ひび刺れ エリア:屋外,海回り他	ш
109	取水口構造物損傷	取水口構造物損傷 エリア:屋外,海回り他	ш
110	取水口電気室建屋損傷	取水口電気室建屋損傷 エリア:屋外,海回り他	ш
111	ドラムヤードB棟2階アクセススロープ段差	ドラムヤードB棟2階アクセススロープ段差 エリア:屋外,海回り他	ш
112	増強R/F雑 固体減容処理設備 苛性ソーダポンプA 苛性ソーダ微 少リーク	増強化/W雑国体減容処理設備 苛性ソーダボンプA 苛性ソーダ微少リーク エリア:廃棄物処理増強建屋	ш
113		T/B オペフロ天井照明かさ破損 エリア:タービン建屋	ш
114	Ex,HFG油切り損傷の件	Ex, HFG油切り損傷の件 エリア:タービン建屋	ш

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因
115	給水処理建屋鉄骨筋交い破断	給木処理建屋鉄骨筋交い破断 エリア:屋外、海回り他	ш
116	監視計器(位相角検出器)損傷の件	監視計器(位相角検出器)損傷の件 エリア:タービン建屋	ш
117	制御棒42-47動作不良	制御棒42-47動作不良 エリア:原子炉建屋	ш
118	制御棒26-47引抜き動作不可	制御榛26-47引抜き動作不可 エリア:原子炉建屋	ш
119	低圧A・Cロータ 動翼損傷の件	低圧A・Cロータ 動業損傷の件 エリア:タービン建屋	ш
120	タービン電気室入口扉前ページング・構内電話収納ボックス歪み	タービン電気室入口扉前ページング・構内電話収納ボックス歪み エリア:タービン建屋	ш
121	監視計器(スラスト摩耗検出器)摺動痕の件	監視計器(スラスト摩耗検出器) 摺動度の件 エリア:タービン建屋	ш
122	油切り(#2 GEN・#T-G間 TB・GEN側)	油切り (#2 GEN・#T-G間 TB・GEN側) エリア:タービン建屋	ш
123	非常用変電所2号配電盤変圧器 巻線支持材ズレ	非常用変電所 2 号配電盤変圧器 巻線支持材ズレ エリア:屋外,海回り他	ш
124	防波堤埋設ケーブルの断線	防波堤埋設ケーブルの断線 エリア:屋外,海回り他	ш
125	R/B建屋周りの湧水上昇	R/B建屋周りの湧水上昇 エリア:屋外,海回り他	ш
126	PLRポンプ用 (B)電動機上部プラケット機内側油切り寸法外れ	PLRポンプ用 (B) 電動機上部プラケット機内側油切り寸法外れ エリア:原子炉建屋	ш
127	H/B プロパンボンベ室歪み	H/B プロパンボンベ室歪み エリア:屋外,海回り他	ш
128	原子炉建屋 1F大物搬入口内西侧壁雨水侵入	原子炉建量 1F大物搬入口内西側壁雨水侵入 エリア:原子炉建量	ш
129	増強R/W建屋屋上外灯取付部劣化	増強R/W建屋屋上外灯取付部劣化 エリア:廃棄物処理増強建屋	ш
130	主タービン ISV 廻り LVDT 鉄芯曲がりの件	主タービンISV週りLVDT鉄芯曲がりの件 エリア:タービン建屋	Ш

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因		
地震被害発生要因IV					
_	該当なし				

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因				
地震袖	地震被害発生要因V						
131	R/B 6F 使用済燃料プールスロッシングによる溢水	R/B 6F 使用済燃料プールスロッシングによる溢水 エリア:原子炉建屋	V				
132	増強R/W 2F サイトベンカブールスロッシングによる溢水	増強R/W 2F サイトベンカブールスロッンンブによる溢水 エリア:廃棄物処理増強建屋	v				
133	電気ベネトレーションX-104A他被水	電気ペネトーションX-104A他被水 エリア:原子炉建屋	V				

No.	件名	地震被害事象および発生要因の概要	地震被害 発生要因
地震袖	要害発生要因VI		
134	MCR H13-P603 「LPRM UPSCALE」警報発報	MCR H13-P603 「LPRM UPSCALE」警報発報 エリア:原子炉建屋	VI
135	1 2 5 V 蓄電池 2 B 室 ドレンファンネル逆流	1 2 5 V蓄電池 2 B室ドレンファンネル逆流 エリア:原子炉建屋	VI
136	取水口除塵装置海水被水	取水口除塵装置海水被水 エリア:屋外,海回り他	VI
137	海水電解装置海水被水	海木電解装置海木披水 エリア:屋外,海回り他	VI
138	CWP潤滑水ポンプА, B海水被水	CWP潤滑水ボンブA, B海水被水 エリア:屋外,海回り他	VI
139	取水口薬液注入装置海水被水	取水口薬液注入装置海水被水 エリア:屋外,海回り他	VI
140	取水口潮位計設備海水被水	取木口潮位計設備海水被水 エリア:屋外,海回り他	VI
141	取水口電気室 P/C 2B-4被水	取水口電気室 P/C 2B-4被水 エリア:屋外,海回り他	VI
142	取水口エリア 海水系電動機 水没	取水ロエリア 海水系電動機 水没 エリア:屋外,海回り他	VI
143	T/B B1F給水加熱器ドレンポンプ室床面水溜り	T/B BIF給水加熱器ドレンボンプ室床面水溜り エリア:タービン建屋	VI
144	T/B B1F低圧復水ポンプ室バレル内水溜り	T/B BIF低圧復水ポンプ室バレル内水溜り エリア:タービン建屋	VI
145	MCR H13-P602「D/W ED SUMP LEVEL HIGH」 警報回路地絡	MCR H13-P602「D/W ED SUMP LEVEL HIGH」警報回路地絡 エリア:原子炉建屋	VI
146	放水ロモニタ室被水	放水ロモニタ室被水 エリア:屋外,海回り他	VI
147	取水口設備被水	取水口設備被水 エリア:屋外,海回り他	VI
148	増強R/W床ドレンサンプ溢水	増強R/W床ドレンサンプ溢水 エリア:廃棄物処理増強速屋	VI
149	PCV内サンプ設備浸水事象について	PCV内サンプ設備浸水事象について エリア:原子炉建屋	VI
150	増強R/W 減容固化容器移送装置制御盤 シーケンスコントローラ異 常警報発報	増強R/W 減容固化容器移送装置制御盤 シーケンスコントローラ異常警報発報 エリア:廃棄物処理増強速屋	VI
151	スクリーン設備不具合について	スクリーン設備不具合について エリア:屋外,海回り他	VI
152	R/B大物搬入口庇歪み		VI
153	ASWストレーナB詰まり	ASWストレーナB語まり エリア:屋外,海回り他	VI
154	ASWポンプ(A)性能低下		VI
155	RHRS(C)電動機浸水の件		VI

設置予定施設に対する波及的影響評価手法について

設置予定施設における既設下位クラス施設から受ける波及的影響,及び既設 上位クラス施設に与える波及的評価の手法については,以下のとおり実施する ものとする。

1. 設置予定施設が上位クラス施設の場合

設置予定施設が上位クラス施設の場合には,当該施設に対して波及的影響 を及ぼすおそれのある下位クラス施設を抽出した上で,影響評価を実施する。 抽出された下位クラス施設については,「5.下位クラス施設の抽出及び影 響評価方法」に基づき,相対変位又は不等沈下による影響,接続部による影 響,建屋内及び建屋外における損傷,転倒及び落下等による影響の観点から, 設置予定施設が機能を損なうおそれの有無を確認する。

その結果,設置予定施設が波及的影響により機能を損なうおそれがある場 合には,設置予定施設に対して配置の見直し,構造変更等の設計の見直しを 行う。設置予定施設の設計にて波及的影響を回避できない場合には,波及的 影響を及ぼすおそれのある下位クラス施設に対して耐震強化や移設等の対 策を実施する。

2. 設置予定施設が下位クラス施設の場合

設置予定施設が下位クラス施設の場合には、1. 同様の観点から当該施設 が既設上位クラス施設に対して波及的影響を及ぼすおそれの有無を確認す る。

その結果,設置予定施設による波及的影響によって既設上位クラス施設の 機能を損なうおそれがある場合には,設置予定施設に対して配置の見直し, 耐震性の確保等の設計の見直しを行う。 上位クラス施設に隣接する下位クラス施設の設置状況について

本資料では、上位クラス施設に隣接する下位クラス施設の設置状況を示す。 原子炉建屋周辺の全体配置図を第4-1図に、波及的影響設備として抽出した施 設の設置状況の概念図を第4-1図~第4-6図について示す。

: 上位クラス施設
 : 下位クラス施設

第4-1図 原子炉建屋周辺における下位クラス施設配置図

4条--別紙6-添付4-1

第4-1図 原子炉建屋及びタービン建屋設置状況概念図

4条-別紙6-添付4-3

4条-別紙6-添付4-4

大物搬入口建屋の耐震重要度分類について

1. はじめに

東海第二発電所の二次格納施設の範囲を示した原子炉建屋概略平面図 を第1図に示す。東海第二発電所では、一時的な機器搬出入時を除いて 閉止状態とする機器搬入口内側扉(以下「内側扉」という。)までを二次 格納施設として扱い耐震Sクラスとしており、一方、大物搬入口建屋を 含めた機器搬入口外側扉(以下「外側扉」という。)までを耐震Cクラス としている。以下では、二次格納施設及び大物搬入口建屋に係る要求を 踏まえ、大物搬入口建屋の耐震重要度分類について整理した。

- 2. 二次格納施設の範囲,気密性に係る要求及びその取扱いについて
- (1) 二次格納施設の範囲及び気密性に係る要求について

二次格納施設を負圧に維持するため,内側扉又は外側扉のどちらか 一方の扉は閉止状態であることが要求される。これは,通常運転時に 二次格納施設を負圧に維持するとともに,設計基準事故(原子炉冷却 材喪失(以下「LOCA」という。),燃料集合体の落下)が発生した 際に,原子炉建屋ガス処理系(非常用ガス処理系,非常用ガス再循環 系)により二次格納施設内のガスを処理し,二次格納施設を負圧に維 持するための「気密性に係る要求」である。

実運用としては,原則,内側扉及び外側扉ともに閉止状態としてい る。また,機器の搬出入等に伴い一時的に内側扉又は外側扉を開放す る場合は,もう一方の扉は閉止状態を維持し,二次格納施設の気密性 を確保することとしている。

(2) 二次格納施設の気密性に係る要求の取扱い

二次格納施設の気密性に係る要求として、原子炉施設保安規定(以

下「保安規定」という。)において,内側扉又は外側扉の何れか一方の 扉が閉止状態であることを定めている。これを満足しない場合は,二 次格納施設を負圧に保つための措置を4時間以内に講じることが要求 され,さらにこの要求を満足できない場合には,プラント停止等の必 要な措置を決められた時間内に実施することが要求される。

3. 耐震重要度分類の整理

以下に,出力運転時(通常運転時),出力運転時にLOCA及び地震 の発生を想定した場合,定期検査時に分けて,大物搬入口建屋を含め 外側扉を耐震Cクラスとしている妥当性について整理する。

- 3.1 出力運転時(通常運転時)
 - (1) 内側扉を閉じて運転している場合

上記 2. (1)のとおり,出力運転時(通常運転時)は,原則,内 側扉及び外側扉を閉じて運転しており,地震発生により大物搬入 口建屋を含む外側扉の気密性が確保されない場合でも,耐震 S ク ラスとした内側扉にて二次格納施設の気密性は確保可能である。

(2) 内側扉を開放し外側扉で気密性を確保している場合

内側扉開放時に耐震Cクラスである外側扉を含む大物搬入口建 屋が損傷に至ると,保安規定で要求される内側扉又は外側扉の閉 止状態の確保を満足していない状態となるため,二次格納施設を 負圧に保つための措置として,4 時間以内に内側扉を閉止する必 要がある。過去の作業実績から内側扉の閉止作業時間は約1時間 であるが,保守的に4時間開放されるものとして平常時被ばく評 価への影響を確認した。

出力運転時(通常運転時)においては,放射性物質が換気系を 通して排気筒から放出されるが,内側扉が開放される場合は,気 密性が失われ,二次格納施設内から直接地上放出すると仮定し, 通常運転している換気系から年間放出量のうち,内側扉が開放さ れる4時間に当たる放出量が地上から放出すると想定し,平常時 の被ばく評価を行った。第1表に被ばく評価に使用した放出量を 示す。その結果,人の居住を考慮した実効線量は,わずかに増加 するものの添付書類九の記載値の約8.4µSv/年から変動はなく,

平常時被ばく評価への影響は小さいことを確認した。また,この 値は線量目標値である 50 µ Sv/年を十分下回る。

	内側扉開放を考慮した場合		通常運転時の場 合
	地上放出 (4時間放出)	排気筒放出	排気筒放出
希ガス	2. 2×10^{1}	1. 4×10^{1} ⁵	1. 4×10^{1} ⁵
I -131	1.5 \times 10 ⁷	5. 9×10^{10}	5.9×10 ¹⁰
I -133	4. 1×10^{7}	9. 4×10^{10}	9. 4×10^{10}

第1表 被ばく評価に使用した放出量

(Bq∕y)

3.2 出力運転時にLOCA及び地震の発生を想定した場合

(1) 内側扉及び外側扉を閉じて運転している場合

内側扉及び外側扉を閉じて運転している場合,LOCAが発生 した上に,地震発生により大物搬入口建屋を含む外側扉の気密性 が確保されない場合でも,耐震Sクラスとした内側扉が閉止して いることから,原子炉建屋ガス処理系による二次格納施設の気密 性は確保可能である。

(2) 内側扉を開放し外側扉で気密性を確保している場合

出力運転時には,新燃料の受入れ,使用済燃料の移送等計画的 に内側扉を開放する作業がある。当該作業は1回当たりの作業時 間として最長3時間程度であり,年間の合計時間としては約90時 間と限定的であるが,万一この開放時間にLOCAが発生したと しても,大物搬入口建屋を含む外側扉にて気密性の確保は可能で ある。さらには,内側扉開放時にLOCAが発生した場合は,速 やかに内側扉を閉める運用とすることで,LOCA発生時は内側

扉によっても気密性を確保することができる。なお,年間約90時 間の開放時間は,過去の作業時間を参考に算定したものであり, 今後の内側扉の開放作業に際しては計画的に作業効率化を図るこ とにより,内側扉の開放時間を極力抑えることとする。

一方,内側扉開放時にLOCAが発生した上に,地震発生により大物搬入口建屋が損傷する可能性も想定し,この場合でも内側扉の閉止作業が可能であること及び内側扉の閉止までの間の被ばく影響が小さいことについて,以下に整理する。

i) 地震発生後の内側扉閉止作業について

内側扉の開放時に,大物搬入口建屋の気密性が損なわれる可能 性のある地震又はLOCAのどちらか一方の事象が発生した場 合には,速やかに内側扉の閉止作業を行う運用とする。万一,耐 震Cクラスである大物搬入口建屋の損傷に至る基準地震動Ssま での地震が発生した場合でも,大物搬入口建屋と内側扉の間は原 子炉建屋付属棟であり基準地震動Ssに対する健全性を有するこ と,大物搬入口建屋から内側扉までの離隔距離として13m有して おり,大物搬入口建屋が地震で損傷した場合でも,その影響が内 側扉に及ぶことはないことから,内側扉の機能は健全である。ま た,内側扉開放時には,当該作業に係る作業員が常時待機してい ること,内側扉の駆動用電源は非常用電源から供給され地震時に おいても電源が確保可能であることから,閉止作業についても速 やかに対応可能である。

なお、内側扉閉止までに時間を要する状態として、大物搬入口 建屋に進入する大型車両である使用済燃料の輸送のためのキャ スクトレーラが原子炉建屋付属棟及び二次格納施設にかけて配 置されている場合が考えられる。年間約 90 時間の内側扉開放時

間のうち、このような状態となる時間は更に限定されるが、第2 図のとおりキャスクトレーラを原子炉建屋付属棟側に移動する ことで、内側扉は閉止可能である。

第2図 キャスクトレーラと大物搬入口内寸法との関係

また,耐震Cクラスである大物搬入口建屋が損傷に至る基準地 震動Ssまでの地震を想定した場合においても,キャスクトレー ラを第2図に示す内側扉の閉止が可能な位置まで移動させるこ とを妨げるものでないことを補足1に示す。

ii) 被ばくに対する検討

i)に記載のとおり,内側扉の開放時に,大物搬入口建屋の気 密性が損なわれる可能性のある地震又はLOCAのどちらか一 方の事象が発生した場合には,速やかに内側扉の閉止作業を行う 運用とする。ここで,地震の発生により二次格納施設の気密性が 損なわれた場合,LOCA時に内側扉を閉止するまでの間は,格 納容器から原子炉建屋を介して大気へ放出される放射性物質に よる内側扉を閉止する作業員及び外部への被ばく影響が想定さ

れるため,その被ばく影響について評価した結果を以下に記載す る。

① 内側扉閉止時における作業員の被ばく評価

内側扉開放時にLOCA及び地震が発生した場合の内側扉 を閉止する作業員への被ばく影響を第2表に示す条件により 評価した。その結果,第3表に示すとおり,作業員の滞在時間 を無限期間に想定するなど保守的な条件下においても,作業員 の実効線量は約2.6mSvとなり,「原子力発電所中央制御室の居 住性に係る被ばく評価手法について(内規)」の判断基準であ る「1 人あたりの被ばく経路ごとの実効線量の合算値が, 100mSv を超えない」ことに照らしても,作業環境を十分に有 していることを確認した。

② 非居住区域境界外での実効線量評価

内側扉開放時にLOCA及び地震が発生した場合の外部への被ばく影響を第2表に示す条件により評価した。その結果, 第3表に示すとおり,内側扉が無限期間開放した条件を想定す るなど保守的な条件下においても,非居住区域境界外での実効 線量は約2.1×10⁻¹mSv となり,本事故による周辺の公衆に与 える放射線被ばくのリスクは十分小さい^{※1}ことを確認した。

※1 発電用軽水型原子炉施設の安全評価に関する審査指針に基づき,敷 地境界外での実効線量が発生事故当たり 5mSv を判断基準とした。

第2表 評価条件

	評価条件 (内側扉開放時の影響評価)	原子炉冷却材喪失 時の核分裂生成物 の放出量及び線量 の評価との相違
冷却材中に存在する よう素	約 6.0×10 ^{1 3} Bq	無
燃料棒から追加放出 されるよう素	約 2.2×10 ¹⁵ Bq	無
燃料棒から追加放出さ れる希ガス (γ線実効エネルギ 0.5MeV換算値)	約 4.5×10 ¹⁵ Bq (約 6.0×10 ¹⁵ Bq)	無
格納容器内への 放出割合	100%	無
燃料棒から格納容器内 に放出されたよう素の 化学組成	有機よう素:4% 無機よう素:96%	無
格納容器内の沈着率	無機よう素:50% 有機よう素:考慮しない 希ガス:考慮しない	無
格納容器スプレイ水 又はサプレッション・ チャンバのプール水に 溶解する割合	無機よう素:分配係数 100 有機よう素:考慮しない 希ガス:考慮しない	無
格納容器内における核 分裂生成物の自然崩壊	考慮する	無
格納容器内の漏えい率	0.5%∕d	無
原子炉建屋ガス処理系 の機能	考慮しない (保守的に原子炉建屋ガス処理 系の換気率及びフィルタ機能 を考慮しない条件を設定)	有
原子炉建屋における 床,壁等の沈着効果	考慮しない	無
事故の評価期間 (被ばく評価期間)	無限期間	無
作業員の被ばく評価 条件	格納容器内から漏えいした核分 裂生成物が内側扉の設置エリア である原子炉建屋1階に全て内 包され均一に分布し,当該エリ アに存在し続けるものとする	_
非居住区域境界外 の評価条件	作業員の被ばく評価条件とは異 なり,格納容器内から漏えいし た核分裂生成物が原子炉建屋に 保持されず全て地上放出される ものとする	有

	評価結果 (内側扉開放時の影響評価)	(参考) 原子炉冷却材喪失時 の評価結果
内側扉閉止時における 作業員の被ばく評価	約 2.6mSv	_
非居住区域境界外での 実効線量評価	約 2.1×10 ⁻¹ mSv	約 2.7×10 ⁻⁴ mSv

第3表 評価結果

上記 i)及び ii) については,内側扉開放時にLOCAが発生し た上に,地震発生により大物搬入口建屋が損傷する場合を想定し, この場合の内側扉の閉止作業の可能性及び内側扉の閉止作業の間, 外部への被ばく影響が小さいことについて整理したが,このよう な事象が起きる可能性は十分に小さい(補足 2 参照)。

3.3 定期検査時

定期検査時は,燃料集合体落下の可能性を有する作業として燃料集 合体の取替作業(以下「燃料取替作業」という。)が存在する。

この燃料取替作業時には内側扉の開放作業を計画的に実施しない 運用とすること,また燃料取替作業時に内側扉の開放の必要が生じた ときには燃料集合体を取り扱う作業を一時的に中断する運用とする ことにより,内側扉が開放された状態での燃料取替作業時における燃 料集合体の落下を防止することとする。

4. まとめ

東海第二発電所では、内側扉を耐震Sクラスとし、大物搬入口建屋 を含む外側扉までを耐震Cクラスとして扱うこととしており、その妥 当性を以下のとおり整理した。

 ・出力運転時(通常運転時)には、原則、内側扉及び外側扉を閉じて運転しており、仮に両扉の開放状態を仮定した場合でも平常時 4条-別紙6-添付5-9 被ばく評価への影響が小さいこと

- ・出力運転時にLOCA及び地震の発生を想定した場合でも、内側 扉の閉止作業が可能であり、閉止までの間の被ばく影響が小さい こと
- ・定期検査時の燃料取替作業時における内側扉の開放作業を実施しないこと

大物搬入口建屋の損傷による耐震 S クラスの設備への波及的影響と して,詳細設計段階で大物搬入口建屋に隣接する原子炉建屋の耐震性 を損なわないことの確認,使用済燃料輸送中のキャスクへの衝突等に 至ったとしても,キャスクの機能に影響を与えないことの確認を行う。

また,大物搬入口建屋が損傷に至る基準地震動Ssまでの地震によって,原子炉建屋付属棟へのキャスクトレーラの移動を妨げずに内側扉の閉止が可能な位置まで移動させることを詳細設計段階で示す。

補足1

大物搬入口建屋の損傷による原子炉建屋内部への影響

1. 概要

本資料では,大物搬入口建屋の損傷が原子炉建屋付属棟(以下「付属 棟」という。)でのキャスクトレーラの移動の支障となることがないこと を示す。

2. 構造概要

大物搬入口建屋は,地上1階建で,平面が約14 m(南北方向)×約 8.5 m(東西方向),高さが約8 m(一部約6.5 m)の鉄骨造の建物であ り,大物搬入口建屋と付属棟のクリアランスは約50 mm ある。

大物搬入口建屋の屋根及び壁はPC鋼線入りのコンクリート板(厚さ 100mm)で構成されており,柱,梁及びブレースの外側に取り付けられて いる。また,大物搬入口建屋の南側には扉の風除けのための壁を設置し ており,この風除壁部は構造上独立している。

第3図~第6図に大物搬入口建屋の平面図,立面図,軸組図,天井伏 図を示す。

3. 大物搬入口建屋の損傷による付属棟内部への影響

大物搬入口建屋の損傷モードとして倒壊と部材(コンクリート板,ブ レース等)の落下が想定される。東西南北の各方向の地震力に対して生 じる各損傷モードについて,付属棟内部に及ぼす影響を整理し第4表に 示す。同表に示すとおり,各方向の地震力に対し,付属棟内部への大物 搬入口建屋の倒壊及び部材の落下は想定されない。したがって,大物搬 入口建屋の損傷が付属棟でのキャスクトレーラの移動の支障となること はない。

第3図 大物搬入口建屋の平面図

第4図 大物搬入口建屋の立面図

第5図 大物搬入口建屋の軸組図

第6図 大物搬入口建屋の天井伏図

第4表 大物搬入口建屋の地震時の損傷モード及び付属棟内部への影響

地震力 の方向	大物搬入口建屋の損傷モード			付属棟内部 への影響
東	倒壊	東側に倒壊する。	原子炉楝	影響は
同き	部材の 落下	大物搬入口建 屋内,又は東 側,南側に落 下する。	東側	ない。
	倒壞	西側に倒壊する。		
西 向 き	部材の 落下	大物搬入口建 屋内,又は西 側,南側に落 下する。	原子炉楝 中盛力の方向 西 下梅 西側	影響はない。

(1 / 2)

第4表 大物搬入口建屋の地震時の損傷モード及び付属棟内部への影響

(2/2)

地震力	大物搬入口建屋の損傷モード			付属棟内部
の方向				への影響
南	倒壊	南 側 に 倒 壊 す る。		影響は
き	部材の 落下	大物搬入口建 屋内,又は東 側,西側,南側 に落下する。	原子炉棟 一 定 一 定 一 一 一 一 一 一 一 一 一 一 一 一 一	ない。
北向	倒壊	北側には付属 棟の開口周囲 の壁があるた め,倒壊しな い。※1		影響は
き	部材の 落下	大物搬入口建 屋内,又は東 側,西側,南側 に落下する。	原子但權 付属键 单位 有偿	ない。

※1:付属棟との取合部における大物搬入口建屋の架構は付属棟の開口 寸法より大きいため、大物搬入口建屋が北側に変位すると付属棟 の開口周囲の壁に接することとなり、それ以上の変位が制限され るため、北側に倒壊することはない。

内側扉開放時に地震起因によるLOCAの発生する確率並びに地震及び LOCAの同時発生する確率について

1. 内側扉開放時の地震起因によるLOCAの発生について

二次格納施設の気密性の要求は,原子炉建屋ガス処理系の起動が必要 となる設計基準事故(LOCA,燃料集合体の落下)に備えたものであ るが,原子炉冷却材圧力バウンダリは耐震Sクラスとしており,基準地 震動SsによるLOCAの発生はない。なお,燃料交換機は,基準地震 動Ssによっても,吊り上げた燃料を落下させることはなく,燃料集合 体の落下は発生しない。

また、地震 P R A では、地震の年超過確率、各設備が有する設計上の 耐震裕度から地震時における L O C A の発生確率を求めている。地震 P R A において基準地震動 S_s相当である 1.03 G を包絡する地震加速度 1.10 G までの L O C A の発生確率は約 1×10^{-11} / 炉年であり、内側扉の 開閉状態に関係なく、基準地震動 S_sにより L O C A が発生する確率は十 分小さい。さらに、1 年間のうち内側扉を開放している時間は約 90 時間 であり、内側扉の開放割合は年間 1.1×10⁻² (≒90 時間/8,760 時間) で あることを考慮すれば、確率的に更に小さくなる。

以上より, 地震起因によりLOCAが発生する可能性は十分に小さい。

2. 内側扉開放時の地震及びLOCAの同時発生について

1年間のうち内側扉が開放している時間は約90時間であり、1年間当たりの割合としては 1.1×10⁻²となる。LOCAの発生確率は、内部事象PRAの算定結果から 5.2×10⁻⁴/炉年であり、また、地震の発生確率は JEAG4601・補-1984 に記載されている基準地震動S₂及びS₁の発生 確率を基準地震動S₅及び弾性設計用地震動S_dの超過確率に読み替え

ることにより,基準地震動S_sの発生確率は 5×10^{-4} /年,弾性設計用地 震動S_dの発生確率は 10^{-2} /年となる。これらの結果から,内側扉開放 時にLOCAが発生し,その状態が1年間継続している間に地震が発生 する確率は,基準地震動S_sの場合は約 2.9×10^{-9} /炉年,弾性設計用地 震動S_dの場合は約 5.8×10^{-8} /炉年となり,確率は十分に小さい。

別紙-7

東海第二発電所

水平2方向及び鉛直方向地震力の適切な組合せ に関する検討について (耐震)

- 1. はじめに
- 水平2方向及び鉛直方向地震力による影響評価に用いる地震動
- 2.1 東海第二発電所の基準地震動Ss
- 2.2 水平2方向及び鉛直方向地震力による影響評価に用いる地震動
- 3. 各施設における水平2方向及び鉛直方向地震力の影響評価

3.1 建物·構築物

- 3.1.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方
- 3.1.2 水平2方向及び鉛直方向地震力の組合せの影響評価方法
- 3.1.3 水平2方向及び鉛直方向地震力の組合せの影響評価部位の抽出方針
- 3.1.4 水平2方向及び鉛直方向地震力の組合せの影響評価方針
- 3.2 機器·配管系
- 3.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方
- 3.2.2 水平2方向及び鉛直方向地震力の組合せの評価方針
- 3.2.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法
- 3.2.4 水平2方向及び鉛直方向地震力の組合せの評価設備(部位)の抽出
- 3.2.5 水平 2 方向及び鉛直方向地震力の組合せの抽出結果及び今後の評価方
 - 針
- 3.3 屋外重要土木構造物
- 3.3.1 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方
- 3.3.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針
- 3.3.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法
- 3.3.4 水平 2 方向及び鉛直方向地震力の組合せの評価対象構造物の抽出
- 3.3.5 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果

- 3.4 津波防護施設,浸水防止設備及び津波監視設備
- 3.4.1 津波防護施設,浸水防止設備及び津波監視設備における評価対象構造 物の抽出及び整理
- 3.4.2 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方
- 3.4.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法
- 3.4.4 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出
- 別紙-1 機器・配管系に関する説明資料
- 参考資料-1 方向性を考慮していない水平方向地震動における模擬地震波の 作成方針

1. はじめに

今回,新たに水平2方向及び鉛直方向地震力の組み合わせによる耐震設計 に係る技術基準が制定されたことから,従来の設計手法における水平1方向 及び鉛直方向地震力を組み合わせた耐震設計に対して,施設の構造特性から 水平2方向及び鉛直方向地震力の組合せによる影響の可能性があるものを抽 出し,施設が有する耐震性に及ぼす影響を評価する。本資料は,検討対象施 設における評価対象部位の抽出方法と抽出結果,並びに影響評価の方針につ いて記すものである。

- 2. 水平2方向及び鉛直方向地震力による影響評価に用いる地震動
- 2.1 東海第二発電所の基準地震動S_s

東海第二発電所の基準地震動S_sは、「敷地ごとに震源を特定して策定する 地震動」及び「震源を特定せず策定する地震動」を評価して、これらの評価 結果に基づき策定している。「敷地ごとに震源を特定して策定する地震動」 としては、応答スペクトルに基づく地震動評価及び断層モデルを用いた手法 による地震動評価を実施し、その結果を踏まえ、応答スペクトルに基づく地 震動として基準地震動S_s-D1、断層モデルを用いた地震動としてS_s-1 $1 \sim S_s - 14$, $S_s - 21$, $S_s - 22 \epsilon$ 策定している。また、「震源を特定 せず策定する地震動」として基準地震動S_s-31を策定している。

基準地震動 S_sの水平方向のスペクトル図を第 2-1 図に,鉛直方向のスペクトル図を第 2-2 図に示す。

4条-別紙7-6

第2-2図 基準地震動Ssの応答スペクトル(鉛直方向)

2.2 水平2方向及び鉛直方向地震力による影響評価に用いる地震動 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる 基準地震動は、複数の基準地震動Ssにおける地震動の特性及び包 絡関係と施設の特性による影響も考慮した上で選定し、本影響評価 に用いる。 3. 各施設における水平2方向及び鉛直方向地震力の影響評価

3.1 建物·構築物

3.1.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

従来の設計手法では,建物・構築物の地震応答解析において,水平方向及 び鉛直方向の地震動を質点系モデルに方向ごとに入力し,解析を行っている。 また,原子炉施設における建物・構築物は,全体形状及び平面レイアウトか ら,地震力を主に耐震壁で負担する構造であり,剛性の高い設計としている。

水平方向の地震力に対しては, せん断力について評価することを基本とし, 建物・構築物に生じるせん断力に対して, 地震時の力の流れが明解となるよ うに, 直交する2方向に釣合いよく配置された鉄筋コンクリート造耐震壁を 主な耐震要素として構造計画を行う。地震応答解析は, 水平2方向の耐震壁 に対して, それぞれ剛性を評価し, 各水平方向に対して解析を実施している。 したがって, 建物・構築物に対し, 水平2方向の入力がある場合, 各方向か ら作用するせん断力を負担する部位が異なるため, 水平2方向の入力がある 場合の評価は, 水平1方向にのみ入力がある場合と同等な評価となる。

鉛直方向の地震力に対しては,軸力について評価することを基本としてい る。建物・構築物に生じる軸力に対して,鉄筋コンクリート造耐震壁を主な 耐震要素として構造計画を行う。

入力方向ごとの耐震要素について、第3-1-1図及び第3-1-2図に示す。

従来設計手法における建物・構築物の応力解析による評価は、上記の考え 方を踏まえた地震応答解析により算出された応答を、水平1方向及び鉛直方 向に組み合わせて行っている。

(a) 水平方向

(b) 鉛直方向

第3-1-1図 入力方向ごとの耐震要素(矩形)

(a) 水平方向

(b) 鉛直方向

第3-1-2図 入力方向ごとの耐震要素(円筒形)

4条一別紙7-10

3.1.2 水平2方向及び鉛直方向地震力の組合せの影響評価方法

建物・構築物において,従来設計手法に対して水平2方向及び鉛直方向地 震力を考慮した場合に影響を受ける可能性がある部位の評価を行う。

評価対象は,耐震重要施設及びその間接支持構造物,常設耐震重要重大事 故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設並び にこれらの施設への波及的影響防止のために耐震評価を実施する部位とする。

対象とする部位について,水平2方向及び鉛直方向地震力の組合せによる 影響が想定される応答特性から,水平2方向及び鉛直方向地震力の組合せに よる影響を受ける可能性のある部位を抽出する。

応答特性から抽出された水平2方向及び鉛直方向地震力の組合せによる影響を受ける可能性のある部位は,既往の評価結果の荷重又は応力の算出結果 を水平2方向及び鉛直方向に組み合わせ,各部位に発生する荷重や応力を算 出し,各部位が有する耐震性への影響を確認する。

各部位が有する耐震性への影響があると確認された場合は,詳細な手法を 用いた検討等,新たに設計上の対応策を講じる。

影響評価のフローを第3-1-3図に示す。

(1) 耐震評価上の構成部位の整理

建物・構築物における耐震評価上の構成部位を整理し,該当する耐震評 価上の構成部位を網羅的に確認する。

(2) 応答特性の整理

建物・構築物における耐震評価上の構成部位について,水平2方向及び 鉛直方向地震力の組合せによる影響が想定される応答特性を整理する。応 答特性は,荷重の組合せによる影響が想定されるもの及び3次元的な挙動 から影響が想定されるものに分けて整理する。

(3) 荷重の組合せによる応答特性が想定される部位の抽出

4条-別紙7-11

整理した耐震評価上の構成部位について,水平2方向及び鉛直方向地震 力の組合せによる影響が想定される応答特性のうち,荷重の組合せによる 応答特性により,耐震性への影響が想定される部位を抽出する。

(4) 3 次元的な応答特性が想定される部位の抽出

従来設計手法における応答特性が想定される部位として抽出されなかっ た部位について,水平2方向及び鉛直方向地震力の組合せに対し,3次元 的な応答特性により,耐震性への影響が想定される部位を抽出する。

(5) 3次元モデルによる精査

3 次元的な応答特性が想定される部位として抽出された部位について、
3 次元モデルを用いた精査を実施し、水平 2 方向及び鉛直方向地震力の組合せにより、耐震性への影響が想定される部位を抽出する。

また,3次元的な応答特性が想定される部位として抽出されなかった部 位についても,局所応答の観点から,3次元モデルによる精査を実施し, 水平2方向及び鉛直方向地震力の組合せにより,耐震性への影響が想定さ れる部位を抽出する。

局所応答に対する3次元モデルによる精査を行う建物・構築物は、その 重要性、規模、構造特性及び機器評価確認への適用性を考慮し、代表施設 を選定する。原子炉建屋は、耐震Sクラスの原子炉棟を含み、建屋規模も 大きいため多くの重要機器を内包している。そのため、3次元モデルによ る精査は、原子炉建屋を代表として行うこととする。

(6) 水平2方向及び鉛直方向地震力の組合せによる影響評価

水平2方向及び鉛直方向地震力の組合せによる影響評価においては,従 来設計手法の水平1方向及び鉛直方向地震力の組合せによる局部評価の荷 重又は応力の算出結果を用いて評価を行う。水平2方向及び鉛直方向地震 力を組合せる方法として,米国 REGULATORY GUIDE 1.92(注)の「2.

4条-別紙7-12

Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として,組合せ係数法(1.0:0.4:0.4)に基づいて地 震力を設定する。

評価対象として抽出した耐震評価上の構成部位について,構造部材の発 生応力を適切に組み合わせることで,各部位の設計上の許容値に対する評 価を実施し,各部位の耐震性への影響を評価する。

(注)REGULATORY GUIDE (RG) 1.92 "COMBINING MODAL RESPONSES AND SPATIAL COMPONENTS IN SEISMIC RESPONSE ANALYSIS"

(7) 機器・配管系への影響検討

評価対象として抽出された部位が,耐震重要施設,常設耐震重要重大事 故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 の機器・配管系の間接支持機能を有する場合,原子炉建屋の3次元モデル による精査結果から,水平2方向及び鉛直方向入力時と水平1方向入力時 の加速度応答スペクトルを比較し,その傾向から機器・配管系に対する応 答値への影響を確認する。

第3-1-3図 水平2方向及び鉛直方向地震力による影響評価のフロー

3.1.3 水平2方向及び鉛直方向地震力の組合せの影響評価部位の抽出方針

(1) 耐震評価上の構成部位の整理

建物・構築物の耐震評価上の構成部位を整理し,該当する耐震評価上の 構成部位を網羅的に確認する。

(2) 応答特性の整理

建物・構築物における耐震性評価部位について,水平2方向及び鉛直方向 地震力の影響が想定される応答特性を整理した。応答特性は,荷重の組合せ による影響が想定されるもの及び3次元的な挙動から影響が想定されるもの に分けて整理した。整理した結果を第3-1-1表及び第3-1-2表に示す。 また,応答特性を踏まえ,耐震評価上の構成部位に対する水平2方向入力に よる影響の考え方を第3-1-3表に示す。

なお、本資料は、一般的に想定される形状を前提として記載しているもの であり、詳細設計においては、構造図に基づき各建物・構築物の部位の実状 を踏まえ検討を行う。
第3-1-1表 水平2方向及び鉛直方向地震力の影響が想定される応答特性

(荷重の組合せによる応答特性)

第3-1-2表 水平2方向及び鉛直方向地震力の影響が想定される応答特性

⁽³次元的な応答特性)

第3-1-3表 耐震評価上の構成部位に対する水平2方向入力による影響

耐震評価上 の構成部位		水平2方向入力の影響			
	一般部	耐震壁付構造の場合、水平入力による影響は小さい。			
柱	隅部 (端部を 含む)	独立した隅柱は, 直交する地震荷 重が同時に作用する。ただし, 耐 震壁付きの隅柱は, 軸力が耐震壁 に分散されることで影響は小さ い。 【平面図】 【立面図】			
	地下部	地下外周柱は面内方向の荷重を負担しつつ 面外方向(土圧)の荷重が作用する。ただし、 外周部耐震壁付のため、水平入力による影響 は小さい。また、土圧が作用する方向にある 梁及び壁が応力を負担することで、水平面外 入力による影響は小さい。			
梁	一般部	大スパン又は吹抜け部では面内方向の 荷重に加え,面外慣性力が作用する。 ただし,1方向のみ地震荷重を負担す ることが基本であり,また,床及び壁 の拘束により面外地震荷重負担による 影響は小さい。			
	地下部	地下外周梁は面内方向の荷重を負担しつつ面外方向(土圧)の荷重が 作用する。ただし、1方向のみ地震荷重を負担することが基本であ り、また、床及び壁の拘束により面外地震荷重負担による影響は小さ い。			
	鉄骨 トラス	大スパン又は吹抜け部では面内方向の 荷重に加え、面外慣性力が作用する。 ただし、1方向のみ地震荷重を負担す ることが基本であり、また、床による 拘束があるため、面外地震荷重負担に よる影響は小さい。			

の考え方 (1/2)

第3-1-3表 耐震評価上の構成部位に対する水平2方向入力による影響

耐震評価上 の構成部位		水平2方向入力の影響			
壁	一般部	 1 方向のみ地震荷重を負担することが 基本である。 円筒壁は直交する水平2方向の地震力 により,集中応力が作用する。 荷重 → ボ (円筒壁) 			
	地下部 プール壁	地下部分の耐震壁は,直交する方 ^{面内荷重} 向からの地震時面外土圧荷重も受 ける。同様にプール部の壁につい y ては水圧を面外方向から受ける。 ↓ x (水圧・土圧)			
	鉄骨 ブレース	1 方向のみ地震荷重を負担することが基本であり、ねじれによる荷重 増分は軽微と考えられ影響は小さい。			
床・屋根	一般部	スラブは四辺が壁及び梁で拘束 されており、水平方向に変形し にくい構造となっており、水平 地震力の影響は小さい。			
基礎	矩形 杭基礎	直交する水平2方向の 地震力により,集中応 力が作用する。			

の考え方(2/2)

(3) 荷重の組合せによる応答特性が想定される部位の抽出方針

耐震評価上の構成部位のうち,第3-1-1表に示す荷重の組合せによる 応答特性により,水平2方向及び鉛直方向地震力の組合せによる影響が想 定される部位か否かの考えを纏め,影響が想定される部位の抽出方針を示 す。

a. 柱

建物・構築物の隅柱は、①-1「直交する水平2方向の荷重が、応力と して集中」の部位として抽出した。ただし、耐震壁付隅柱の場合、軸力 が耐震壁に分散されることから該当しない。

①-2「面内方向の荷重を負担しつつ,面外方向の荷重が作用」の部位 としては、土圧が作用する地下外周柱が考えられるが、通常は耐震壁に 囲まれており、耐震壁が面内の荷重を負担するため、地下外周柱は面内 の荷重を負担しないため、該当しない。

b. 梁

梁の一般部及び鉄骨トラス部については、地震力の負担について方向 性を持っており、①-1「直交する水平 2 方向の荷重が、応力として集 中」の部位に該当しない。

①-2「面内方向の荷重を負担しつつ,面外方向の荷重が作用」の部位 としては,土圧が作用する地下外周梁が考えられるが,通常は直交する 床及び壁が存在し,これらによる面外方向の拘束があるため,該当しな い。

c. 壁

矩形の壁は、地震力の負担について方向性を持っており、①-1「直交 する水平2方向の荷重が、応力として集中」の部位は存在しない。独立 した円筒壁は応力の集中が考えられる。ただし、原子炉建屋の一次格納

4条一別紙7-20

容器を囲む円型遮蔽壁の様に,建屋の中央付近に位置し,その外側にあるボックス型の壁とスラブで一体化されている場合は,①-1「直交する水平2方向の荷重が,応力として集中」の部位に該当しない。

①-2「面内方向の荷重を負担しつつ,面外方向の荷重が作用」の部位 としては、土圧や水圧が作用するプール部や地下部が考えられ、建物・ 構築物の地下外壁及びプール側壁を、①-2 に該当するものとして抽出 する。

なお,隣接する上位クラス建物・構築物への波及的影響防止のための 建物・構築物の評価は,上位クラスの建物・構築物との相対変位による 衝突可否判断が基本となる。

そのため、せん断及び曲げ変形評価を行うこととなり、壁式構造では 耐震壁(ラーメン構造では柱、梁)を主たる評価対象部位とし、その他 の構成部位については抽出対象に該当しない。

d. 床及び屋根

床及び屋根については、通常、四辺が壁又は梁で拘束されているため に地震力の負担について方向性を持っており、①-1「直交する水平2方 向の荷重が、応力として集中」及び①-2「面内方向の荷重を負担しつつ、 面外方向の荷重が作用」の部位に該当しない。

e. 基礎

①-1「直交する水平2方向の荷重が,応力として集中」の部位としては、矩形の基礎板及び杭基礎が考えられる。

矩形の基礎板については、隅部への応力集中が考えられるため、①-1に該当するものとして抽出する。また、杭基礎についても、①-1に該 当するものとして抽出する。

また、①-2「面内方向の荷重を負担しつつ、面外方向の荷重が作用」

4条一別紙7-21

の部位としては、基礎は該当しない。

(4) 3次元的な応答特性が想定される部位の抽出

耐震評価上の構成部位のうち,荷重の組合せによる応答特性が想定され る部位として抽出されない部位についても,第3-1-3表に示す3次元的 な応答特性により水平2方向及び鉛直方向地震力の組合せによる影響が想 定される部位か否かの考えを纏め,影響が想定される部位の抽出方針を示 す。

a. 柱

(3)で抽出されている以外の柱は当然両方向に対して断面算定が実施 されている。そのため、面外慣性力の影響も考慮されており、②-1「面 内方向の荷重に加え、面外慣性力の影響が大きい」の部位には該当しな い。

建物・構築物は,鉄筋コンクリート造耐震壁又は鉄骨造ブレースを主 な耐震要素として扱っており,地震力のほとんどを耐震壁又はブレース が負担する。ねじれ振動の影響が想定される部位が存在したとしても, その場合には,通常,ねじれを加味した構造計画を行っており,②-2「加 振方向以外の方向に励起される振動」の部位にも該当しない。

b. 梁

梁一般部及び地下部は,通常,剛性の高い床や耐震壁が付帯し,面外 方向の変形を抑制することから,②-1「面内方向の荷重に加え,面外慣 性力の影響が大きい」及び②-2「加振方向以外の方向に励起される振動」 の部位には該当しない。

鉄骨トラス部は、1方向トラスの場合には、面内方向の荷重に加え、 面外慣性力の影響が大きいと考えられるが、通常、直交方向にトラスや 繋ぎ梁が存在し、面外慣性力を負担する。1方向にしかトラスが存在し

ない場合, ②-1「面内方向の荷重に加え, 面外慣性力の影響が大きい」 の部位に該当するものとして抽出する。また, 塔状構造物の水平材につ いては, ねじれ挙動が想定されることから, ②-2「加振方向以外の方向 に励起される振動」の部位に該当するものとして抽出する。

c. 壁

(3)で抽出されている以外の壁については,通常,直交方向に壁又は大梁を配置した設計がなされ,また,ねじれのない構造設計がなされるため, 2-1「面内方向の荷重に加え,面外慣性力の影響が大きい」及び2-2「加振方向以外の方向に励起される振動」の部位に該当しない。

塔状構造物の斜材については,ねじれ挙動が想定されるため,②-2「加 振方向以外の方向に励起される振動」の部位に該当するものとして抽出 する。

なお、隣接する上位クラス建物・構築物への波及的影響防止のための 建物・構築物の評価は、上位クラスの建物・構築物との相対変位による 衝突可否判断が基本となる。

そのため、せん断及び曲げ変形評価を行うこととなり、壁式構造では 耐震壁(ラーメン構造では柱、梁)を主たる評価対象部位とし、その他 の構成部位については抽出対象に該当しない。

d. 床及び屋根

床及び屋根については、通常、釣合いよく壁を配置した設計がなされ るため、②-1「面内方向の荷重に加え、面外慣性力の影響が大きい」及 び②-2「加振方向以外の方向に励起される振動」の部位に該当しない。

e. 基礎

矩形の基礎及び杭基礎は、(3)の荷重の組合せによる応答特性を踏まえ たスクリーニングで既に抽出されている。

4条一別紙7-23

(5) 3次元モデルによる精査の方針

3 次元的な応答特性が想定される部位として抽出された評価部位については,代表評価部位にて3次元モデルによる精査を行う。

3 次元モデルを用いた精査は,水平 2 方向及び鉛直方向を同時入力時の 応答の水平1方向入力時の応答に対する増分を確認することとする。

局所応答に対する3次元モデルによる精査を行う建物・構築物は,その 重要性,規模,構造特性及び機器評価確認への適用性を考慮し,原子炉建 屋とする。原子炉建屋は,耐震Sクラスの原子炉棟を含み,建屋規模も大 きいため多くの重要機器を内包しているため代表施設として選定した。評 価に用いる地震動については,「2.2 水平2方向及び鉛直方向地震力によ る影響評価に用いる地震動」に基づき,複数の基準地震動Ssにおける地震 動の特性及び包絡関係と施設の特性による影響も考慮した上で選定し,本 影響評価に用いる。 3.1.4 水平2方向及び鉛直方向地震力の組合せの影響評価方針

水平2方向及び鉛直方向地震力の組合せによる影響評価部位として抽出さ れた部位で、水平2方向及び鉛直方向の同時入力による評価を行わない部位 については、建物・構築物の重要性、規模及び構造特性の観点から代表評価 部位を選定し、基準地震動Ssを用い、水平2方向及び鉛直方向地震力の組 合せの影響を評価する。評価にあたっては、従来設計手法による各部位の解 析モデル及び鉛直方向地震力の組合せによる評価結果を用いることとする。

また,影響評価は水平2方向及び鉛直方向を同時に入力する時刻歴応答解 析による評価又は基準地震動S_sの各方向地震成分により,個別に計算した 最大応答値を用い,水平2方向及び鉛直方向地震力を組合せる方法として, 米国 REGURATORY GUIDE1.92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考に,組合せ係数法(1.0:0.4: 0.4) に基づいた評価により実施する。

組合せ係数法の妥当性については、念のため代表施設において水平2方向 及び鉛直方向同時入力との応力比較を実施する。 3.2 機器·配管系

3.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方

機器・配管系における従来の水平方向及び鉛直方向の組合せによる設計手 法では,建物・構築物の振動特性を考慮し,変形するモードが支配的となり 応答が大きくなる方向(応答軸方向)に基準地震動Ssを入力して得られる各 方向の地震力(床応答)を用いている。

応答軸(強軸・弱軸)が明確となっている設備の耐震評価においては,水 平各方向の地震力を包絡し,変形モードが支配的となる応答軸方向に入力す るなど,従来評価において保守的な取り扱いを基本としている。

一方,応答軸が明確となっていない設備で3次元的な広がりを持つ設備の 耐震評価においては,基本的に3次元のモデル化を行っており,建物・構築 物の応答軸方向の地震力をそれぞれ入力し,この入力により算定される荷重 や応力のうち大きい方を用いて評価を実施している。

さらに、応答軸以外の振動モードが生じ難い構造の採用、応答軸以外の振 動モードが生じ難いサポート設計の採用といった構造上の配慮など、水平方 向の入力に対して配慮した設計としている。

3.2.2 水平方向及び鉛直方向地震力の組合せの評価方針

機器・配管系において,水平2方向及び鉛直方向地震力を考慮した場合に 影響を受ける可能性がある設備(部位)の評価を行う。

評価対象は,耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故対処施設の機器・配管系並びにこれらの 施設への波及的影響防止のために耐震評価を実施する設備とする。また,耐 震Bクラス設備については共振のおそれのあるものを評価対象とする。

対象とする設備を機種ごとに分類し、それぞれの構造上の特徴により荷重 の伝達方向、その荷重を受ける構造部材の配置及び構成等により水平2方向 の地震力による影響を受ける可能性のある設備(部位)を抽出する。

構造上の特徴により影響の可能性がある設備(部位)は,水平2方向及び 鉛直方向地震力による影響の検討を実施する。水平各方向の地震力が1:1 で入力された場合の発生値を従来の評価結果の荷重又は算出応力等を水平2 方向及び鉛直方向に整理して組み合わせる又は新たな解析等により高度化し た手法を用いる等により,水平2方向の地震力による設備(部位)に発生す る荷重や応力を算出する。

これらの検討により,水平2方向及び鉛直方向地震力を組み合せた荷重や 応力の結果が従来の発生値と同等である場合は影響がある設備として抽出せ ず,従来の発生値を超えて耐震性への影響が懸念される場合は,設備が有す る耐震性への影響を確認する。

設備が有する耐震性への影響が確認された場合は,詳細な手法を用いた検 討等,新たに設計上の対応策を講じる。

水平2方向及び鉛直方向地震力による影響評価は,基準地震動S_sを対象 とするが,複数の基準地震動S_sにおける地震動の特性及び包絡関係,地震 力の包絡関係を確認し,代表可能である場合は代表の基準地震動S_sにて評 価する。また,水平各方向の地震動は,それぞれの位相を変えた地震動を用 いることを基本とするが,保守的な手法を用いる場合もある。

3.2.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

機器・配管系において,水平2方向及び鉛直方向地震力の影響を受ける可 能性があり,水平1方向及び鉛直方向の従来評価に加え,更なる設計上の配

慮が必要な設備について、構造及び発生値の増分の観点から抽出し、影響を 評価する。影響評価は従来設計で用いている質点系モデルによる評価結果を 用いて行うことを基本とする。影響評価のフローを第3-2-1図に示す。

なお、耐震評価は基本的におおむね弾性範囲でとどまる体系であることに 加え、国内と海外の機器の耐震解析は、基本的に線形モデルにて実施してい る等類似であり、水平2方向及び鉛直方向の位相差は機器の応答にも現れるこ とから、米国Regulatory Guide 1.92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として、水平2方向及び鉛直 方向地震力の組合せの影響を検討する際は、地震時に水平2方向及び鉛直方向 それぞれの最大応答が同時に発生する可能性は極めて低いとした考え方であ るSquare-Root-of-the-Sum-of-the-Squares法(以下「最大応答の非同時性を 考慮したSRSS法」という。)又は組合せ係数法(1.0:0.4:0.4)を適用し、 各方向からの地震入力による各方向の応答を組み合わせる。

評価対象となる設備の整理

耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設の機器・配管系並びにこれらの施設への波及的影響防止のために耐震評価を実施する設備,共振のおそれのある耐震 B クラス施設を評価対象とし,代表的な機種ごとに分類し整理する(第 3-2-1 図①)。

(2) 構造上の特徴による抽出

機種ごとに構造上の特徴から水平2方向の地震力が重複する観点,もし くは応答軸方向以外の振動モード(ねじれ振動等)が生じる観点にて検討 を行い,水平2方向の地震力による影響の可能性がある設備を抽出する(第 3-2-1図②)。

4条一別紙7-28

3 発生値の増分による抽出

水平2方向の地震力による影響の可能性がある設備に対して,水平2方 向の地震力が各方向1:1で入力された場合に各部にかかる荷重や応力を求 め,従来の水平1方向及び鉛直方向地震力の組合せによる設計に対して, 水平2方向及び鉛直方向地震力を考慮した発生値の増分を用いて影響を検 討し,耐震性への影響が懸念される設備を抽出する。

また,建物・構築物及び屋外重要土木構築物の検討により,機器・配管 系への影響の可能性がある部位が抽出された場合は,機器・配管系への影響を評価し,耐震性への影響が懸念される設備を抽出する。

影響の検討は、機種ごとの分類に対して地震力の寄与度に配慮し耐震裕 度が小さい設備(部位)を対象とする(第3-2-1図③)。

④ 水平2方向及び鉛直方向地震力の影響評価

③の検討において算出された荷重や応力を用いて,設備の耐震性への影響を確認する(第3-2-1図④)。

なお,現時点においては,各機器の耐震性に関する詳細検討が完了してい ないことから,上記①及び②を実施し,今後,詳細検討の進捗に伴い③及び ④を実施することとする。

第3-2-1図 水平2方向及び鉛直方向地震力を考慮した影響評価フロー

3.2.4 水平2方向及び鉛直方向地震力の組合せの評価設備(部位)の抽出

評価対象設備を機種ごとに分類した結果を,第3-2-1表に示す。機種ご とに分類した設備の各評価部位,応力分類に対し構造上の特徴から水平2方 向の地震力による影響を水平2方向の地震力が重複する観点より検討し,影 響の可能性がある設備を抽出した。

(1) 水平2方向の地震力が重複する観点

水平1方向の地震力に加えて, さらに水平直交方向に地震力が重複した場 合,水平2方向の地震力による影響を検討し,影響が軽微な設備以外の影響 検討が必要となる可能性があるものを抽出する。以下の場合は,水平2方向 の地震力により影響が軽微な設備であると整理した。なお,ここでの影響が 軽微な設備とは,構造上の観点から発生応力への影響に着目し,その増分が 1割程度以下となる機器を分類しているが,今後詳細検討においては水平1 方向地震力による裕度(許容応力/発生応力)が1.1未満の機器については 個別に検討を行うこととする。

a. 水平2方向の地震力を受けた場合でも、その構造により水平1方向の 地震力しか負担しないもの

横置きの容器等は、水平2方向の地震力を想定した場合、水平1方 向を拘束する構造であることや水平各方向で振動特性及び荷重の負担 断面が異なる構造であることにより、特定の方向の地震力の影響を受け る部位であるため、水平1方向の地震力しか負担しないものとして分類 した(別紙1参照)。

b. 水平2方向の地震力を受けた場合,その構造により最大応力の発生箇

所が異なるもの

一様断面を有する容器類の胴板等は,水平2方向の地震力を想定し た場合,それぞれの水平方向地震力に応じて応力が最大となる箇所があ ることから,最大応力の発生箇所が異なり,水平2方向の地震力を組み 合わせても影響が軽微であるものとして分類した。その他の設備につい ても同様の理由から最大応力の発生箇所が異なり,水平2方向の地震力 を組み合わせても影響が軽微であるものとして分類した(別紙1参照)。

c. 水平2方向の地震力を組み合わせても水平1方向の地震による応力と 同等と言えるもの

原子炉圧力容器スタビライザ及び格納容器スタビライザは,周方向8 箇所を支持する構造で配置されており,水平1方向の地震力を6体で支 持する設計としており,水平2方向の地震力を想定した場合,地震力を 負担する部位が増え,また,最大反力を受けもつ部位が異なることで, 水平1方向の地震力による荷重と水平2方向の地震力を想定した場合に おける荷重が同等になるものであり,水平2方向の地震を組み合わせて も1方向の地震による応力と同等のものと分類した。

スタビライザと同様の支持方式を有するその他の設備についても、 同様の理由から水平2方向の地震を組み合わせても1方向の地震による 応力と同様のものと分類した(別紙1参照)。

d. 従来評価において, 水平2方向の考慮をした評価を行っているもの

蒸気乾燥器支持ブラケット等は,従来評価において,水平2方向地 震を考慮した評価を行っているため,水平2方向の影響を考慮しても影

響がないものとして分類した。

(2)水平方向とその直交方向が相関する振動モード(ねじれ振動等)が生じる 観点

水平方向とその直交方向が相関する振動モードが生じることで優位な影響が生じる可能性のある設備を抽出する。

機器・配管系設備のうち,水平方向の各軸方向に対して均等な構造となっ ている機器は,評価上有意なねじれ振動は生じない。

一方,3次元的な広がりを持つ配管系等は,系全体として考えた場合,有 意なねじれ振動が発生する可能性がある。しかし,水平方向とその直交方向 が相関する振動が想定される設備は,従来設計より3次元のモデル化を行っ ており,その振動モードは適切に考慮した評価としているため,この観点か ら抽出される機器は無かった。

3.2.5 水平2方向及び鉛直方向地震力の評価部位の抽出結果及び今後の評価 方針

3.2.4 で抽出した結果を別紙1に示す。これらの設備に関して、今後3.2.3 ③「発生値の増分等による抽出」に記載の方法に従い発生値の増分から評価 対象部位の抽出を行った上で、水平2方向及び鉛直方向地震力の組合せによ る影響評価を行う。また、建物・構築物及び屋外重要土木構造物の検討結果 より機器・配管系の耐震性への影響を与えると判断された設備についても同 様に発生値の増分の観点から評価対象部位の抽出を行った上で、水平2方向 及び鉛直方向地震力の組合せによる影響評価を行う。

設備		部位	応力分類				
			一次一般膜応力				
	炉心シュラウド	下部胴	次膜応力+次曲げ応力				
			支圧応力				
			一次一般膜応力				
		レグ	一次膜応力+一次曲げ応力				
	シュラウドサポート		軸圧縮応力				
		シリンダプレート	一次一般膜応力				
		下部胴	一次膜応力+一次曲げ応力				
炉心文持構造物			一次一般膜応力				
	上部格士板	クリッドフレート	一次膜応力+一次曲げ応力				
		補強ビーム	一次一般膜応力				
	炉心文持板	支持板	一次膜応力+一次曲げ応力				
	(体化) させん 目	中央燃料支持金具	一次一般膜応力				
	<u> </u>	周辺燃料支持金具	一次膜応力+一次曲げ応力				
	制御持安古笠	- T - カロ 3次 + か カロ	一次一般膜応力				
	前仰俸杀的官	1, 即恨我到	一次膜応力+一次曲げ応力				
		信心回れ田笠服	一次一般膜応力				
	円筒胴	炉心回り円同胴 下鏡	一次膜応力+一次曲げ応力				
	下鏡	下鏡と胴板の接合部	一次+二次応力				
		「現とスカートの接合部	一次+二次+ピーク応力				
			一次一般膜応力				
			一次膜応力+一次曲げ応力				
	制御棒駆動機構ハウジング貫 通部	スタフテューフ ハウジング	一次+二次応力				
			一次+二次+ピーク応力				
			座屈 (軸圧縮)				
			一次一般膜応力				
	中性子計測ハウジング貫通部	ハウジング	一次膜応力+一次曲げ応力				
	中住丁可例ハリンシン員通師		一次+二次応力				
原子炉圧力容器			一次+二次+ピーク応力				
			一次一般膜応力				
	ノズル	各部位	一次膜応力+一次曲げ応力				
			一次+二次応力				
			一次+二次+ピーク応力				
		原子炉圧力容器スタビライザブラ	一次一般膜応力				
		クット 	一次膜応力+一次曲げ応力				
		蒸気乾燥器支持ブラケット	一次一般膜心力				
	ブラケット箱		一次展応力十一次曲り応力				
		炉心スプレイブラケット	び 履展心力 一次 聴応 カキー 次曲 げ 応 カ				
			一次一般膜応力				
		給水スパージャブラケット	一次膜応力+一次曲げ応力				
			純せん断応力				
			一次一般膜応力				
	支持スカート		一次膜応力+一次曲げ応力				
		スカート	一次+二次応力				
原子炉圧力容器			一次+二次+ピーク応力				
支持構造物			座屈 (軸圧縮)				
		# 7# 1% , 1	引張応力				
	原子炉圧力容器基礎ボルト	基礎ホルト	せん断応力				
			組合せ応力				

第3-2-1表 水平2方向入力の影響検討対象設備

※1 本表は、詳細設計時等の進捗に応じて見直しを行う。

設備		部位	応力分類			
			引張応力			
		トラス	せん断応力			
	格納容器スタビライザ 原子炉圧力容器スタビライザ	ロッド ディスクスプリング支持板	圧縮応力			
原子炉圧力容器	赤」		曲げ応力			
付属構造物			組合せ応力			
			せん断応力			
	制御棒駆動機構ハワシンクレ ストレイントビーム	レストレイントビーム	圧縮応力			
			曲げ応力			
			一次一般膜応力			
	蒸気乾燥器ユニット		一次膜応力+一次曲げ応力			
		耐震用ブロック	せん断応力			
原子炉 上 刀 谷 器 内 部 構 造 物	気水分離器及びスタンドパイ プ	冬部位	一次一般膜応力			
	シ シュラウドヘッド	고 데 타 그	一次膜応力+一次曲げ応力			
	スパージャ	冬部位	一次一般膜応力			
	炉内配管	고 데 타 그	次膜応力+次曲げ応力			
			引張応力			
		ラック部材	せん断応力			
使用済燃料貯蔵ラッ	ック		組合せ応力			
(共通ベース含む)		#7#_¥, 1	引張応力			
		基礎ホルト ラック取付ボルト	せん断応力			
			組合せ応力			
			一次一般膜応力			
		胴板	一次膜応力+一次曲げ応力			
			一次+二次応力			
四脚たて置き円筒形容器		脚	組合せ応力			
			引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			
			一次一般膜応力			
		胴板	一次膜応力+一次曲げ応力			
			一次+二次応力			
橫置円筒形容器		脚	組合せ応力			
			引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			
		コラムパイプ バレルケーシング	一次一般膜応力			
立形ポンプ			引張応力			
		奉曜ハルト 取付ボルト	せん断応力			
			組合せ応力			
ECCSストレーナ		各部位(ボルト以外)	一次膜応力+一次曲げ応力			
· · ·		ボルト	引張応力			
横形ポンプ ポンプ駆動用ターヒ			引張応力			
海水ストレーナ 空調ファン		基礎ボルト 取付ボルト	せん断応力			
空調ユーツト 空気圧縮機			組合せ応力			

	設備	部一位	応力分類			
			引張応力			
			せん断応力			
		フレーム	圧縮応力			
			曲げ応力			
水圧制御ユニット			組合せ応力			
			引張応力			
		取付ボルト	せん断応力			
			組合せ応力			
			一次一般膜応力			
		胴板	一次十二次応力			
平底たて置円筒容器	1		引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			
			一次一般 腊 広 力			
核計装設備		各部位				
			引張広力			
仁光明 (陸坦)		取付ざれし	り成心力			
(広広部 (壁))			モル断応力			
			組合せ応力			
伝送器(円形壁掛)		取付ホルト	引張心力			
伝送器(円形吊下)		取付ボルト	引張応力			
			引張応力			
制御盤		取付ボルト	せん断応力			
	1		組合せ応力			
	サプレッションチェンバ底部 ライナ ドライウェルトップヘッド	ライナプレート	圧縮ひずみ			
		リングガータ部	引張ひずみ			
		頂部	一次一般膜応力			
		不連続部	一次膜応力+一次曲げ応力			
		フランジ付根部	一次+二次応力			
	ドライウエル円錐部及びサプ		一次一般膜応力			
	レッションチェンバ円筒部	各部位				
	ンゴン部及びリントクリンゴ		一次+二次応力			
	ドライウエルビームシート		引張応力			
			せん断応力			
		各部位	正 縮広力			
			曲げ広力			
			組合社内力			
原子炉格納容器		ビームシート				
			以下二次心力 引進広力			
	ドライウェルト郊シアラグ及	各部位				
	びスタビライザ		曲け応力			
	ドライウエル下部シアラグ及	ト部シアラガレ故納容哭胴との接合	組合せ応刀			
	ひスタヒライ サ	エージノノノンに招給存益加との後日 部 下部シアラグと核納容器胴との接合	一次膜応力+一次曲げ応力			
		部 部	一次+二次応力			
	ドライウェルフプレイヘッゲ	案内管直管部	一次膜応力+一次曲げ応力			
		案内管エルボ部	一次+二次応力			
	パーソナルエアロック イクイプメントハッチ	パーソナルエアロック(イクイプメ ントハッチ,サプレッションチェン バアクセスハッチ)本体と補強板と	一次膜応力+一次曲げ応力			
	サプレッションチェンバ・ア クセスハッチ	の接合部 補強板と格納容器胴一般部との接合 部	一次+二次応力			

	設備	部位	応力分類			
			引張応力			
			曲げ応力			
	原子炉格納容器胴アンカー部	各部位	圧縮応力			
			組合せ応力			
原子炉格納容器		コンクリート	せん断応力度			
			一次膜応力+一次曲げ応力			
	原子炉格納容器配管貫通部	原子炉格納容器胴とスリーブ接合部	一次+二次応力			
	原子炬格納容器雷気配線貫通	スリーブ付根部				
	部	補強板付根部	一次+二次応力			
			引張応力度			
		構造用スラブ	 せん断応力度			
			圧縮応力度			
ダイヤフラムフロア	,	大げり	曲げ応力			
		小ばり	せん断応力			
		柱				
		シヤーコネクタ	せん断応力			
			一次膜応力+一次曲げ応力			
ベント管		ブレージング部	一次+二次応力			
		スプレイ管部	一次膜応力+一次曲げ応力			
格納容器スプレイヘ	ヽ ッダ	ティー部 家内管部	一次十二次応力			
		ブレース				
			引張応力			
		ベース取付溶接部	<u></u> せん断応力			
可燃性ガス濃度制徒	『系再結合装置ブロワ		引張応力			
		基礎ボルト	せん断応力			
		取付ホルト	組合せ応力			
			引張応力			
非常用ディーゼル発	修電機	基礎ボルト	せん断応力			
		取付ホルト	組合せ応力			
			一次一般膜応力			
		胴板	一次十二次応力			
			組合せ応力			
スカート支持たて置	目前形容器	スカート	座屈			
			引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			
			一次一般膜応力			
		側板	一次膜応力+一次曲げ応力			
			一次+二次応力			
プレート式熱交換器	- -	脚	組合せ応力			
			引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			
			一次一般膜応力			
		胴板	一次膜応力+一次曲げ応力			
			一次+二次応力			
ラグ支持たて置き円	目筒形容器	ラグ	組合せ応力			
			引張応力			
		基礎ボルト	せん断応力			
			組合せ応力			

設備	部位	応力分類				
		引張応力				
その他電源設備	取付ボルト	せん断応力				
		組合せ応力				
	π [−] 1 64+ 11 10 1	一次応力				
配管本体, サホート(多賀点楽モアル解析)	配管, サホート	一次+二次応力				
矩形構造の架構設備(静的触媒式水素再結合装 置,架台を含む)	各部位	各応力分類				
		引張応力				
通信連絡設備(アンテナ)	ボルト	せん断応力				
		組合せ応力				
		引張応力				
水位計	取付ボルト	せん断応力				
		組合せ応力				
		引張応力				
影相カメラ	取付ボルト	せん断応力				
		組合せ応力				
	据付部材	組合せ応力				
貫通部止水処置	シール材	シールに生じる変位				
		曲げ応力				
ヨートローム	蓋	せん断応力				
反小的正盖		組合せ応力				
	基礎ボルト	せん断応力				
逆流防止逆止弁	各部位	各応力分類				
原子炉ウェル遮へいプラグ	本体	せん断応力度				
		引張応力度				
	円筒部 中間スラブ	圧縮応力度				
「 万 フ 后 ナ 仕 の 甘 珠		せん断応力度				
原于炉本体仍基礎		引張応力度				
	下層円筒基部	せん断応力度				
		曲げ応力度				
	燃料取替機構造物フレーム ブリッジ脱線防止ラグ(木体)	引張応力				
	トロリ脱線防止ラグ(本体)	せん断応力				
燃料取替機	走11 レール 横行レール	組合せ応力				
	ブリッジ脱線防止ラグ(取付ボルト) トロリ脱線防止ラグ(取付ボルト)	せん断応力				
	吊具	吊具荷重				
		せん断応力				
	クレーン本体ガーダ	曲げ応力				
		浮上り量				
	落下防止金具	圧縮応力				
建屋クレーン		圧縮応力				
	トロリストッパ	曲げ応力				
		組合せ応力				
	トロリ	浮上り量				
	吊具	吊具荷重				
		せん断応力				
原子炉遮へい膵	一般胴部	圧縮応力				
	開口集中部	曲げ応力				
		組合せ応力				

3.3 屋外重要土木構造物

3.3.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方
 従来設計手法の考え方について、RC構造物である取水構造物を例に第3-3
 -1表に示す。

一般的な地上構造物では, 躯体の慣性力が主たる荷重であるのに対し, 屋 外重要土木構造物は, 概ね地中に埋設されているため, 動土圧や動水圧等の 外力が主たる荷重となる。また, 屋外重要土木構造物は, 比較的単純な構造 部材の配置で構成され, ほぼ同一の断面が奥行き方向に連続する構造的特徴 を有することから, 3次元的な応答の影響は小さいため, 2次元断面での耐震 評価を行っている。

屋外重要土木構造物は,主に海水の通水機能や配管等の間接支持機能を維 持するため,通水方向や管軸方向に対して空間を保持できるように構造部材 が配置されることから,構造上の特徴として,明確な弱軸,強軸を有する。

強軸方向の地震時挙動は,弱軸方向に対して顕著な影響を及ぼさないこと から,従来設計手法では,弱軸方向を評価対象断面として,耐震設計上求め られる水平1方向及び鉛直方向地震力による耐震評価を実施している。

第3-3-1図に示すとおり,従来設計手法では,屋外重要土木構造物の構造上の特徴から,弱軸方向の地震荷重に対して保守的に加振方向に平行な壁部材を見込まず,垂直に配置された構造部材のみで受けもつよう設計している。

なお,屋外重要土木構造物のうち,既設構造物は取水構造物と屋外二重管 (基礎部除く)であり,それ以外の構造物は新設構造物である。ここでは, 既設構造物,新設構造物の両方について検討を行う。

第3-3-1表 従来設計における評価対象断面の考え方(取水構造物の例)

第3-3-1図 従来設計手法の考え方

3.3.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

屋外重要土木構造物において,水平2方向及び鉛直方向地震力を考慮した 場合に影響を受ける可能性がある構造物の評価を行う。

評価対象は,屋外重要土木構造物である,取水構造物及び屋外二重管並び に波及影響防止のために耐震評価する土木構造物とする。また,常設耐震重 要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処 施設の間接支持構造物のうち常設代替高圧電源装置置場,常設代替高圧電源 装置用カルバート,代替淡水貯槽,常設低圧代替注水系ポンプ室,常設低圧 代替注水系配管カルバート,緊急用海水ポンプピット,格納容器圧力逃がし 装置用配管カルバート,緊急時対策所用発電機燃料油貯蔵タンク基礎及び可 搬型設備用軽油タンク基礎並びに重大事故時における海水の通水構造物のう ちSA用海水ピット取水塔,海水引込み管,SA用海水ピット及び緊急用海 水取水管も本評価では屋外重要土木構造物として扱うこととし,評価対象に 含める。

屋外重要土木構造物を構造形式ごとに分類し、構造形式ごとに作用すると 考えられる荷重を整理し、荷重が作用する構造部材の配置等から水平2方向 及び鉛直方向地震力による影響を受ける可能性のある構造物を抽出する。

抽出された構造物については、従来設計手法での評価対象断面の地震応答 解析に基づく構造部材の照査において、評価対象断面に直交する断面の地震 応答解析に基づく構造部材の発生応力等を評価し、適切に組み合わせること で、水平2方向及び鉛直方向地震力による構造部材の発生応力を算出し、構 造物が有する耐震性への影響を確認する。

構造物が有する耐震性への影響が確認された場合は,詳細な手法を用いた 検討等,新たに設計上の対応策を講じる。

3.3.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

屋外重要土木構造物において、水平2方向及び鉛直方向地震力の組合せの 影響を受ける可能性があり、水平1方向及び鉛直方向の従来評価に加え、更 なる設計上の配慮が必要な構造物について、構造形式及び作用荷重の観点か ら影響評価の対象とする構造物を抽出し、構造物が有する耐震性への影響を 評価する。影響評価のフローを第3-3-2図に示す。

- (1) 影響評価対象構造物の抽出
- 構造形式の分類

評価対象構築物について,各構造物の構造上の特徴や従来設計手法の考 え方を踏まえ,構造形式ごとに大別する。

- 従来設計手法における評価対象断面に対して直交する荷重の整理
 従来設計手法における評価対象断面に対して直交する荷重を抽出する。
- ③ 荷重の組合せによる応答特性が想定される構造物形式の抽出
 ②で整理した荷重に対して,構造形式ごとにどのように作用するかを整理し,耐震性に与える影響程度を検討した上で,水平2方向及び鉛直方向
 地震力の影響が想定される構造形式を抽出する。
- ④ 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽出

③で抽出されなかった構造形式について,従来設計手法における評価対象断面以外の箇所で,水平2方向及び鉛直方向地震力の影響により3次元的な応答が想定される箇所を抽出する。

⑤ 従来設計手法の妥当性の確認

④で抽出された箇所が,水平2方向及び鉛直方向地震力の組合せに対し て,従来設計手法における評価対象断面の耐震評価で満足できるか検討を 行う。

- (2) 影響評価手法
- ⑥ 水平2方向及び鉛直方向地震力の影響評価

評価対象として抽出された構造物について,従来設計手法での評価対象 断面の地震応答解析に基づく構造部材の照査において,評価対象断面に直 交する断面の地震応答解析に基づく構造部材の発生応力等を評価し,適切 に組合せることで,水平2方向及び鉛直方向地震力による構造部材の発生 応力を算出し,構造物が有する耐震性への影響を確認する。

評価手法については、評価対象構造物の構造形式を考慮し選定する。

機器・配管系への影響検討

評価対象として抽出された構造物が,耐震重要施設,常設耐震重要重大 事故防止設備又は常設重大緩和設備が設置される重大事故等対処施設の機 器・配管系の間接支持構造物である場合,水平2方向及び鉛直方向地震力 の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認さ れた場合,機器・配管系の影響評価に反映する。

なお、④及び⑤の精査にて、屋外重要土木構造物の影響の観点から抽出 されなかった部位であっても、地震応答解析結果から機器・配管系への影 響の可能性が想定される部位については検討対象として抽出する。

第3-3-2図 水平2方向及び鉛直方向地震力による影響評価のフロー

3.3.4 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出

(1) 構造形式の分類

第3-3-3図に屋外重要土木構造物の配置図を示す。

屋外重要土木構造物は、その構造形式より1)取水構造物、常設代替高 圧電源装置置場、常設代替高圧電源装置用カルバート(立坑部),常設低 圧代替注水系ポンプ室,緊急用海水ポンプピット,緊急時対策所用発電機 燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク基礎のような箱型構造 物、2)常設代替高圧電源装置用カルバート(トンネル部、カルバート 部),常設低圧代替注水系配管カルバート及び格納容器圧力逃がし装置用 配管カルバートのような線状構造物、3)代替淡水貯槽、SA用海水ピット 取水塔及びSA用海水ピットのような円筒状構造物,4)屋外二重管基礎 コンクリートのような梁状構造物、5)取水構造物,屋外二重管,緊急時対 策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク基礎の鋼 管杭基礎,並びに6)屋外二重管,海水引込み管及び緊急用海水取水管の ような管路構造物の6つに大別される。

第3-3-3図 屋外重要土木構造物配置図

(2) 従来設計手法における評価対象断面に対して直交する荷重の整理

第3-3-2表に,従来設計手法における評価対象断面に対して直交する 荷重を示す。

従来設計手法における評価対象断面に対して直交する荷重として,動土 圧及び動水圧,摩擦力,慣性力が挙げられる。

第3-3-2表 従来設計手法における評価対象断面に対して直交する荷重

	作用荷重	作用荷重のイメージ ^(注)
	従来設計手法における	▲ ↓ 従来設計手法の評価対象断面
⑦動土圧	評価対象断面に対し	
及び動水	て,平行に配置される	▲ ① □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
圧	構造部材に作用する動	
	土圧及び動水圧	動土圧・動水圧
⑦摩擦力	周辺の埋戻土と躯体間 で生じる相対変位に伴 い発生する摩擦力	◆
⑦慣性力	躯体に作用する慣性力	◆

(注) 作用荷重のイメージ図は平面図を示す。

(3) 荷重の組合せによる応答特性が想定される構造形式の抽出

第3-3-3表に, 3.3.4(1)で整理した構造形式毎に, 3.3.4(2)で整理した荷重作用による影響程度を示す。

評価対象構造物の地震時の挙動は, 躯体が主に地中に埋設されることか ら, 周辺地盤の挙動に大きく影響される。3.3.4(2)で整理した荷重のうち ⑦摩擦力や⑦慣性力は, ⑦動土圧及び動水圧と比較するとその影響は小さ いことから, 水平2方向及び鉛直方向地震力の組合せの影響検討の対象と する構造物の抽出では, ⑦動土圧及び動水圧による影響を考慮する。

線状構造物については、その構造上の特徴として、妻壁(評価対象断面 に対して平行に配置される壁部材)等を有さない若しくは妻側(小口)の 面積が小さいことから、従来設計手法における評価対象断面に対して直交 する⑦動土圧及び動水圧は作用しない。

箱型構造物は、妻壁等を有することから、従来設計手法における評価対 象断面に対して直交する⑦動土圧及び動水圧が作用する。

同様に,梁状構造物は,従来設計手法における評価対象断面に対して直 交する⑦動土圧及び動水圧が構造物側面に作用する。

円筒状構造物及び鋼管杭基礎は,第3-3-4図に示すように水平2方向 入力による応力の集中が考えられる。

管路構造物については,従来設計手法において管軸方向と管軸直角方向 の応力を合成した応力評価を実施しており,水平2方向及び鉛直方向の地 震力を同時に作用させて評価を行っている。

第3-3-4図 円筒状構造物・鋼管杭基礎に係る応答特性

以上のことから,荷重の組合せによる応答特性が想定される構造形式と して,従来評価手法における評価対象断面に対して直交する⑦動土圧及び 動水圧が作用する箱型構造物及び梁状構造物ならびに水平2方向入力によ る応力の集中が考えられる円筒状構造物,鋼管杭基礎及び管路構造物を抽 出する。

)線伏構造物 注水系配管カルバート等)			注)の慣性力はすべての構造部材に作用	作用しない	側壁、頂版に作用	全ての部材に作用	町対象断面に対して平行に配置され	土圧及び動水圧による荷重が作用し		×		
2)	(常設低圧代替)	従来設計手法に2517る評		(j	⑦動土圧及び動水圧	④摩擦力	の慣性力	(狭来設計手法における新) 「横つずさする() 「	ないため影響小			
1) 箱型構造物)相当時10%) 文水構造物等) 評価対象態面 (3軸に平行が断面)		(注)砂漬性力はすべての構造部材に作用	主に妻壁に作用	側壁に作用	全ての部材に作用	呼価対象断面に対して平行に配置され	「し、の動土圧及び動水圧による荷重		C)	
0 () () () () () () () () () () () () ()		⑦動土圧及び動水圧	①摩擦力	の慣性力	従来設計手法における	る構造部材(妻壁)をす	が作用するため影響大					
3.3.4(1)で整理した構	造形式の分類		3.3.4(2)で整理した荷重 の作用状況					従来設計手法における評	価対象断面に対して直交	する荷重の影響程度	推出結果	(〇:影響検討実施)
	3.3.4(1) で整理した構 2) 箱型構造物 2) 線状構造物 2) 線状構造物	3.3.4 (1) で整理した構 1)箱型構造物 2)線状構造物 道形式の分類 (東水構造物等) (常設低圧代替注水系配管カルバート等)	3.3.4 (1) で整理した構 1)箱型構造物 2)線状構造物 造形式の分類 (取水構造物等) (常設低圧代替注水系配管カルバート等) 一・従来設計手法における評価対象物面 (原軸に平行が) (**設計手法における評価対象物面 (原軸に平行が) (**設計手法における評価対象物面 (原軸に平行が)	3.3.4 (1) で整理した構 1)箱型構造物 2)線状構造物 造形式の分類 (取水構造物等) (取水構造物等) (第設低圧代替注水系配管カルバート等) 造形式の分類 (取水構造物等) (一、総設計主法における評価) (一、総設計主法における評価) 13.3.4(2)で整理した荷重 (1) (1) (1) 0/6用状況 (1) (1) (1) (1) 0/6用状況 (1) (1) (1) (1) (1)	3.3.4 (1) で整理した構 1) 箱理構造物 2) 線快構造物 造形さいの分類 (取水構造物等) (取水構造物等) (常設低圧代替治土水系配管カハンや上等) 造形さいの分類 (取水構造物等) (電設低圧代替治土水系配管カハンや上等) 造形さいの指した (電池市広市市 (電池市広市市 (電池市西山市市 3.3.4 (2) で整理した市 (電池市広市市 (電池市広市市 (電池市広市市 3.3.4 (2) で整理した市 (回加出力はすっての構造的な) (回加出力はすっての構造的れた) (回加出力は中へての構造的れた) 3.3.4 (2) で整理した市 (回加出力はすっての構造的な) (回加出力はすっての構造的れた) (回加出力は中へての構造的れた)	3.3.4 (1) で整理した構 1)指型構造物 2)線状構造物 造形むの分類 (I) 化械造物等) (I) 化械造物等) 造形むの分類 (I) 水晶 (II) 化酸田化合 一球酸中干油におりる解血が働加 (III) 化 (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	3.3.4 (1) で整理した構 1)箱型構造物 2)線状構造物 造形式の分類 (正水構造物等) (常設低圧代替注水系配管カル・ト、等) 造形式の分類 (主総計+生はこおける解価を) (市 道形式の分類 (主総計+生はこおける解価を) (市 3.3.4 (2) で整理した荷量 (主総計+たはこおける解価を) (市 3.3.4 (2) で整理した荷量 (市 (市 0 (市 (市 (市 3.3.4 (2) で整理した荷量 (市 (市 (市 0 (市 (市 (市 (市 3.3.4 (2) で整理した荷量 (市 (市) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	3.3.4 (1) で態理した構 1)希型構造物 2)線状構造物 造販売の劣類 (取) (取) (1)希望情報 造販売の劣類 (1)希望情報 (1)希望情報 (1)希望信報 ご販売した構 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3.3.4 (1) で整理した構 1)箱型構造物 2)線状構造物 道形式の分類 (1) 補助 2)線状構造物 道形式の分類 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	3.3.4 (1) で難犯した 」希望情報 「常設低田代香油入系通管力ルトト第 「常設低田代香油入系通管力ルトト第 「常設低田代香油入系通管力ルトト第 「常設低田代香油入系通管力ルトト第 「 「「常設低田代香油入系通管力ルトト第 「 「「常設低田代香油」 「「「書」 「「「書」 「「「書」 「「「書」 「「「書」 「 「「「書」 「「「書」 「 「「「書」 「「「書」 「「「書」 「「「書」 「「「書」 「「「書」 「 「「「書」 「「「書」 「 「 「「「書」 「「言」 「「言」 「 「「言」 「 「「言」 「 「「言」 「 「 「「言」 「「言」 「 「「言」 「「言」 「 「「言」 「 「「言」 「 「 「「言」 「「言」 「 「「言」 「「言」 [」 [] 」 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 (「 (」 (」 <td>3.3.4 (1) Torent Length 1) figuration 1) figuration 2) #Witkingen identify interval (11.1 the interval interv</td> <td>3.3.4 (1) で整理した構 進形式の分類 1希望性能的 2.0歳化構造的 2.0歳化構造的 進形式の分類 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 道市式の分類 一 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 1 一 (Ix)未得出 (Ix)本構造的 (Ix)本構造的 3.3.4(2) で範囲した情量 一 (Ix)計量は (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した的 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲したの (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix</td>	3.3.4 (1) Torent Length 1) figuration 1) figuration 2) #Witkingen identify interval (11.1 the interval interv	3.3.4 (1) で整理した構 進形式の分類 1希望性能的 2.0歳化構造的 2.0歳化構造的 進形式の分類 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 道市式の分類 一 (Ix)本構造的 (Ix)本構造的 (Ix)本構造的 1 一 (Ix)未得出 (Ix)本構造的 (Ix)本構造的 3.3.4(2) で範囲した情量 一 (Ix)計量は (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した情量 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲した的 (Ix) (Ix) (Ix) (Ix) 3.3.4(2) で範囲したの (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix) 0 (Ix) (Ix) (Ix) (Ix) (Ix) (Ix

餁	3-3-3-3表 水平2	方向及び鉛直方向地震力の組	合せの評価対象構造物の抽出(3/3)
3.3.4 (1) で整理した	(2)	鋼管杭基礎	6)管路構造物
構造形式の分類	(取水構	造物等の抗基礎)	(屋外二重管等)
	従来設計手法にお	ナる評価対象断面	
	加振力向	1	管軸方向と管軸直角方向の応力を合成した応力評価を
			実施しており, 従来設計手法において水平2 方向及び
			鉛直方向の地震力の組合せが考慮されている
		\odot	
3.3.4 (2) で整理した	\mathbf{P}		管軸方向
荷重の作用状況			Ĵ
	(注) ③閏	ま力はすべての構造部材に作用	\supset
	⑦動土圧及び動水圧	主に調体部に作用	
	④摩擦力	主に調体部に作用	管軸直角方向
	の慣性力	全ての部材に作用	
従来設計手法における 評価対象断面に対して 直交する荷重の影響度	胴体部において、②動 び上部エからの荷重が	1土圧及び動水圧による荷重,及 作用するため影響大。	
抽出結果		C	(
(〇:影響検討実施))

(4) 従来設計手法における評価対象断面以外の3次元的な応答特性 が想定される箇所の抽出

(3)で抽出しなかった構造形式である線状構造物について、構造物ごとの平面・断面図を以下に示す。各構造物の構造、地盤条件等を考慮した上で、従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所を抽出する。

a)常設代替高圧電源装置用カルバート(トンネル部)

【線状構造物】

第3-3-5図に常設代替高圧電源装置用カルバートの配置図, 第3-3-6図及び第3-3-7図に常設代替高圧電源装置用カルバ ート(トンネル部)の断面図を示す。

当該トンネルは、断面変化がほとんどないが、緩やかな曲線部 が計画されている。第3-3-8図(施工目地の割り付け概念図) に示すように、適切な間隔で施工目地を設けることにより、構造 物に応力集中が発生しないような設計方針とする。なお、施工目 地の間隔は、トンネルの適用事例が多い「トンネル標準示方書: 土木学会」に基づき決定する。

第3-3-5図 常設代替高圧電源装置用カルバート配置図

第3-3-6図 常設代替高圧電源装置用カルバート(トンネル部) 縦断面図

第3-3-7図 常設代替高圧電源装置用カルバート(トンネル部) 横断面図

第3-3-8図 常設代替高圧電源装置用カルバート(トンネル部) 施工目地の割り付け概念図

b)常設代替高圧電源装置用カルバート(カルバート部)

【線状構造物】

第3-3-9図に常設代替高圧電源装置用カルバートの配置図, 第3-3-10図及び第3-3-11図に常設代替高圧電源装置用カル バート(カルバート部)の平面図及び断面図を示す。

内空幅約2m,内空高さ約3mのカルバート部【A部】は、断面変 化もほとんどなく直線である。また、マンメイドロックを介して 十分な支持性能を有する岩盤に設置されるため、強軸方向の曲げ の影響をほとんど受けない。一方、内空幅約12m,内空高さ約3m のカルバート部【B部】は、内空寸法はほぼ一様であるが屈曲部 (隅角部)を有するため、水平2方向及び鉛直方向地震力の組合 せの影響として、弱軸方向のせん断変形や強軸方向の曲げ変形へ

の影響が想定される。

第3-3-9図 常設代替高圧電源装置用カルバート配置図

4条-別紙7-57

第3-3-10図 常設代替高圧電源装置用カルバート (カルバート部)平面図

c)常設低圧代替注水系配管カルバート【線状構造物】

第3-3-12図及び第3-3-13図に常設低圧代替注水系配管カ ルバートの平面図及び断面図を示す。

当該構造物は、断面変化もほとんどなく直線である。また、マン メイドロックを介して十分な支持性能を有する岩盤に設置されるた め、強軸方向の曲げの影響をほとんど受けない。

第 3-3-12 図 常設低圧代替注水系配管カルバート 平面図 ■ E

第3-3-13 図 常設低圧代替注水系配管カルバート 断面図(東西断面)

4条-別紙7-59

d)格納容器圧力逃がし装置用配管カルバート(上部工)

【線状構造物】

第3-3-14図,第3-3-15図及び第3-3-16図に格納容器圧 力逃がし装置用配管カルバートの平面図及び断面図を示す。

当該構造物は、断面変化があり屈曲部を有するため、水平2方 向及び鉛直方向地震力の組合せの影響として、弱軸方向のせん断 変形や強軸方向の曲げ変形への影響が想定される。

第3-3-14図 格納容器圧力逃がし装置用配管カルバート平面図

第3-3-15図 格納容器圧力逃がし装置用配管カルバート 断面図(A-A断面)

第3-3-16図 格納容器圧力逃がし装置用配管カルバート 断面図(B-B断面)

線状構造物として大別した常設代替高圧電源装置用カルバート (カルバート部)及び格納容器圧力逃がし装置用配管カルバート は,構造物の配置上,屈曲部を有する。線状構造物の屈曲部で は,水平2方向及び鉛直方向地震力の組合せの影響として,弱軸 方向のせん断変形や強軸方向の曲げ変形への影響が想定される。

以上のことから,常設代替高圧電源装置用カルバート(カルバ ート部)及び格納容器圧力逃がし装置用配管カルバートの屈曲部 について水平2方向及び鉛直方向地震力の組合せの影響を検討す る。

- (5) 従来設計手法の妥当性の確認
 - i)常設代替高圧電源装置用カルバート(カルバート部)

常設代替高圧電源装置用カルバート(カルバート部)【B部】 の従来設計では、第3-3-4表に示す通り、屈曲部における3次 元的な拘束効果(評価対象断面のせん断変形を抑制する箇所や構 造部材)を期待せず、保守的に評価対象断面に直交する部材のみ で荷重を受け持たせる設計となっている。また、常設代替高圧電 源装置用カルバート(カルバート部)は、マンメイドロックを介 して十分な支持性能を有する岩盤に設置されるため、躯体が底面 で拘束されていることから、屈曲部における強軸方向の曲げの影 響もほとんど受けない。

以上のことから,常設代替高圧電源装置用カルバート(カルバ ート部)における屈曲部での水平2方向及び鉛直方向地震力の組 合せの影響は,従来設計手法における評価対象断面での耐震評価 で担保される。

第3-3-4表 屈曲部における3次元的な拘束効果 (常設代替高圧電源装置用カルバート)

ii)格納容器圧力逃がし装置用配管カルバート

格納容器圧力逃がし装置用配管カルバートの従来設計では,第 3-3-5表に示す通り,屈曲部における3次元的な拘束効果(評 価対象断面のせん断変形を抑制する箇所や構造部材)を期待せ ず,保守的に評価対象断面に直交する部材のみで荷重を受け持た せる設計となっている。また,格納容器圧力逃がし装置用配管カ ルバートは,マンメイドロックを介して十分な支持性能を有する 岩盤に設置されるため,躯体が底面で拘束されていることから, 屈曲部における強軸方向の曲げの影響もほとんど受けない。

以上のことから,格納容器圧力逃がし装置用配管カルバートに おける屈曲部での水平2方向及び鉛直方向地震力の組合せの影響 は,従来設計手法における評価対象断面での耐震評価で担保され る。

第3-3-5表 屈曲部における3次元的な拘束効果 (格納容器圧力逃がし装置用配管カルバート) 3.3.5 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽 出結果

3.3.4の検討を踏まえ、水平2方向及び鉛直方向地震力の組合せ による影響評価を検討すべき構造物として、構造及び作用荷重の観 点から、箱型構造物、梁状構造物、円筒状構造物及び鋼管杭基礎を 抽出する。なお、管路構造物については、従来設計手法において水 平2方向及び鉛直方向の地震力を同時に作用させて評価を行ってい るため対象外とする。

箱型構造物,円筒状構造及び鋼管杭基礎については,構造物の規 模等を考慮し(第3-3-6表),箱型構造物の代表構造物(施設) として常設代替高圧電源装置置場,円筒状構造の代表構造物(施 設)として代替淡水貯槽及びSA用海水ピット,鋼管杭基礎の代表 構造物(施設)として取水構造物を選定し,影響評価を行う。第3 -3-17図から第3-3-34図に各構造物の概要図を示す。

梁状構造物は屋外二重管基礎コンクリートのみであることから, 当該構造物にて影響評価を行う。

構造形式	構造物(描码)を	規模			選定理由	
再迫形式	1件近170(他权) ⁻ 石	長辺	短辺	高さ	这位性田	
	取水構造物	約56m	約43m	約12m		
	常設代替高圧電源装置置場	約56m	約46m	約47m	長辺・短辺・高さが最大	
箱型	常設代替高圧電源装置用カルバート(立坑部)	約15m	約11m	約39m		
	常設低圧代替注水系ポンプ室	約15m	約11m	約30m		
	緊急用海水ポンプピット	約12m	約12m	約36m		
	緊急時対策所用発電機用燃料油タンク基礎	約12m	約7m	約7m		
	可搬型設備用軽油タンク基礎 (西側) ・ (南側)	約17m	約15m	約7m		
	代替淡水貯槽	直径φ約20m		約22m	直径が最大	
円筒状	SA用海水ピット	直径φ約14m		約34m	高さが最大	
	SA用海水ピット取水塔	直径 φ 約8m		約21m		
	•					

第3-3-6表 代表構造物の選定検討表 (1/2)

※緑色ハッチングが、代表構造物(施設)

					/ 2)	
構造形式	構造物(施設)名	上部工規模			鋼管杭	遥定理由
HTE/IV A		長辺	短辺	高さ	長さ(最大)	医定法由
鋼管杭 基礎	取水構造物	約56m	約43m	約12m	約43m	上部工の長辺・短辺, 杭 長さが最大
	屋外二重管 ^{注)}	約10m	約4m	約3m	約42m	
	緊急時対策所用発電機用燃料油タンク基礎	約12m	約7m	約7m	約33m	
	可搬型設備用軽油タンク基礎(西側)	約17m	約15m	約7m	約33m	
	可搬型設備用軽油タンク基礎(南側)	約17m	約15m	約7m	約15m	

第3-3-6表 代表構造物の選定検討表(2/2)

注) 屋外二重管の上部工規模は基礎コンクリートの寸法 ※緑色ハッチングが、代表構造物(施設)

a) 取水構造物 【箱型構造物】【鋼管杭基礎の代表】

第3-3-17図から第3-3-20図に取水構造物の平面図及び断 面図を示す。

T. P. (a)

16.0

0.0

-16,6

-38,6

-20.0

-40,0

-50.6

-60.0

-70.0

-60,0

8.0

第3-3-18 図 取水構造物 縦断面図 (A-A断面)

b)常設代替高圧電源装置置場 【箱型構造物の代表】

第3-3-21 図及び第3-3-22 図に常設代替高圧電源装置置場の断面図を示す。

第3-3-21図 常設代替高圧電源装置置場 断面図 (東西断面)

第3-3-22 図 常設代替高圧電源装置置場 断面図 (南北断面)

c)常設代替高圧電源装置用カルバート(立坑部)【箱型構造物】 第3-3-23図に常設代替高圧電源装置用カルバート(立坑部) の断面図を示す。

第3-3-23図 常設代替高圧電源装置用カルバート(立坑部)断面図

d)常設低圧代替注水系ポンプ室 【箱型構造物】

4条一別紙7-69

e)緊急用海水ポンプピット 【箱型構造物】

第3-3-25図に緊急用海水ポンプピットの断面図を示す。

f)緊急時対策所用発電機燃料油貯蔵タンク基礎

【箱型構造物】【鋼管杭基礎】

第3-3-26 図に緊急時対策所用発電機燃料油貯蔵タンク基礎の断 面図を示す。

第3-3-26図 緊急時対策所用発電機燃料油貯蔵タンク基礎 断面図

g)可搬型設備用軽油タンク基礎 【箱型構造物】【鋼管杭基礎】

第3-3-27 図及び第3-3-28 図に可搬型設備用軽油タンク基礎の 断面図を示す。

h)代替淡水貯槽 【円筒状構造物の代表】

第3-3-29図に代替淡水貯槽の断面図を示す。

i)SA用海水ピット 【円筒状構造物の代表】

第3-3-30図にSA用海水ピットの断面図を示す。

j) SA用海水ピット取水塔 【円筒状構造物】

第3-3-31図にSA用海水ピット取水塔の断面図を示す。

第3-3-31図 SA用海水ピット取水塔 断面図

k) 屋外二重管 【鋼管杭基礎】

第3-3-32 図及び第3-3-33 図に屋外二重管の平面及び断面図 を示す。第3-3-34 図に概念図を示す。

3.3.6 水平2方向及び鉛直方向地震力の組合せの評価

(1) 箱型構造物

水平2方向及び鉛直方向地震力の組合せによる影響評価につい ては,箱型構造物の弱軸方向(評価対象断面)と強軸方向(評価 対象断面に直交する断面)におけるそれぞれの2次元の地震応答 解析にて,互いに干渉し合う断面力や応力を選定し,弱軸方向加 振における部材照査において,強軸方向加振の影響を考慮し評価 する。

強軸方向加振については、箱型構造物の隔壁・側壁が、強軸方 向加振にて耐震壁としての役割を担うことから、当該構造部材を 耐震壁と見なし、「鉄筋コンクリート構造計算基準・同解説-許 容応力度設計法-(日本建築学会、1999)(以下「RC基準」と いう。)に準拠し耐震評価を実施する。

RC基準では、耐震壁に生じるせん断力(面内せん断)に対し て、コンクリートのみで負担できるせん断耐力と、鉄筋のみで負 担できるせん断耐力のいずれか大きい方を鉄筋コンクリートのせ ん断耐力として設定する。したがって、壁部材の生じるせん断力 がコンクリートのみで負担できるせん断力以下であれば、鉄筋に よるせん断負担は無く鉄筋には応力が発生しないものとして取り 扱う。

一方,強軸方向加振にて生じるせん断力を,箱型構造物の隔
 壁・側壁のコンクリートのみで負担できず,鉄筋に負担させる場
 合,第3-3-35図に示すとおり,強軸方向加振にて発生する側
 壁・隔壁の主筋の発生応力が,弱軸方向における構造部材の照査
 に影響を及ぼす可能性がある。

4条一別紙7-75

したがって,水平2方向及び鉛直方向地震力の組合せによる影響評価においては,強軸方向加振にて発生する応力を,弱軸方向 における構造部材の照査に付加することで,その影響の有無を検 討する。

なお,弱軸方向及び強軸方向の地震応答解析では,保守的に両 方とも基準地震動 S_sを用いる。

第3-3-36図に水平2方向及び鉛直方向地震力の組合せによる評価フローを示す。

		①強軸方向加振	②弱軸方向加振	備考
	My (y軸まわりの曲げモーメント)	\bigtriangleup	×	
	Mx (x軸まわりの曲げモーメント)	×	0	
断面力	Nz(鉛直方向軸力)	0	0	互いに干渉する可能性あり
	Nzx (zx平面面内せん断)	0	×	
	Qz (z方向面外せん断)	×	0	
	主筋	0	0	互いに干渉する可能性あり
応力	配力筋	0	×	
	せん断補強筋	×	0	

(○:発生する可能性あり、△:発生する可能性があるが極めて軽微、×:発生しない)

第3-3-35図 強軸方向加振及び弱軸方向加振において 発生する断面力・応力

4条-別紙7-76

4条-別紙7-77

(2)梁状構造物,円筒状構造物及び鋼管杭基礎

水平2方向及び鉛直方向地震力の組合せによる影響評価について
は、従来の設計手法である水平1方向及び鉛直方向地震力の組合せによる局部評価の荷重又は応力の評価結果等を用い、水平2方向及び鉛 直方向地震力の組み合わせる方法として、米国 Regulatory Guide
1.92(注)の「2. Combining Effects Caused by Three Spatial
Components of an Earthquake」を参考として、組合せ係数法
(1.0:0.4:0.4)に基づいて地震力を設定する。

評価対象として抽出した耐震評価上の部位について,構造部材の発 生応力等を適切に組み合わせることで,各部位の設計上の許容値に対 する評価を実施し,各部位が有する耐震性への影響を評価する。 (注)Regulatory Guide(RG) 1.92 "Combining modal responses and spatial components in seismic response analysis" 3.3.7 機器・配管系への影響評価

水平2方向及び鉛直方向地震力の組合せの影響が確認された構造物 が,耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故 緩和設備が設置される重大事故等対処施設の機器・配管系の間接支持 構造物である場合,水平2方向及び鉛直方向地震力の組合せによる応 答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認された場合,機器・配管系の影響評価に反映する。

なお,屋外重要土木構造物の影響の観点から抽出されなかった部位 であっても,地震応答解析結果から機器・配管系への影響の可能性が 想定される部位については検討対象として抽出する。 3.4 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は 津波監視設備が設置された建物・構築物

3.4.1 津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又 は津波監視設備が設置された建物・構築物における評価対象構造物の抽 出及び整理

水平2方向及び鉛直方向地震力の組合せの影響評価を実施する対象施設 の設置位置図を第3-4-1図に示す。各対象施設において、「3.1 建物・ 構築物」、「3.2 機器・配管系」、「3.3 屋外重要土木構造物」の何れか の区分に基づき設計するものについて、その方針を第3-4-1表に示す。

津波防護施設については,「3.3 屋外重要土木構造物」の水平2方向の 設計方針に基づき影響評価を実施する。なお,評価対象施設の構造的な特 徴を踏まえ,3.4.4項以降に水平2方向及び鉛直方向地震の組合せ影響を整 理する。

浸水防止設備及び津波監視設備については、「3.2機器・配管系」の水 平2方向の設計方針に基づき影響評価を実施する。

浸水防止設備又は津波監視設備が設置された建物・構築物については, 各構造物の構造上の特徴を踏まえ「3.1 建物・構築物」又は「3.3 屋外重 要土木構造物」の水平2方向の設計方針に基づき影響評価を実施する。

第3-4-1図(1/2) 津波防護施設,浸水防止設備及び津波監視設備位置図

第3-4-1図(2/2) 津波防護施設,浸水防止設備及び津波監視設備位置図

第3-4-1表	津波防護施設.	浸水防止設備及び津波監視設備の分類

分類		区分		
	協管抗鉄筋コンクリート防潮壁防潮堤 及び ゲート類鋼製防護壁 鉄筋コンクリート防潮壁 鉄筋コンクリート防潮壁(放水路エリ ア)		「3.3 屋外重要土 木構造物」の設計 方針に基づく。影	
			クリート防潮壁	響評価については 3.4.4以降に整理
津波防護 施設			クリート防潮壁(放水路エリ	する。 津波防護施設のう ち放水路ゲート,
	構内排水調	 客	逆流防止装置	防潮扉本体,構内 排水路逆流防止装
	逆流防止設備		出口側集水桝*	置は,「3.2 機 器・配管系」の設
			計方針に基づく。	
	取水路点标	倹 用開口部	3浸水防止蓋	
	海水ポンプグランドドレン排出口逆止弁			
	取水ピット空気抜き配管逆止弁			
	海水ポンプ室ケーブル点検口浸水防止蓋		「3.2 機器・配	
浸水防止	放水路ゲート点検用開口部浸水防止蓋			
設備	SA用海水ピット開口部浸水防止蓋			官糸」の設計力
	緊急用海水ポンプピット点検用開口部浸水防止蓋			町に産りく
	緊急用海水ポンプグランドドレン排出口逆止弁			
	緊急用海水ポンプ室床ドレン排出口逆止弁			
	貫通部止水処置			
	津波監視:	カメラ		「3.2 機器・配
准 波監視	取水ピット水位計		管系」の設計方	
設備	潮位計		針に基づく	
浸水防止設	取水構造物	「3.3 屋外重要土		
備及び津波	備及び津波 鋼管杭鉄筋コンクリート防潮壁			
監視設備が	<u></u>			
設置された				ート防潮壁の影響
建物・構築	緊急用海ス	水ポンプビ	°ット	計画に りいてね 3.4.4 以降に整理
物				する。
	原子炉建屋			

※:間接支持構造物

3.4.2 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方

津波防護施設における従来設計手法の考え方について,防潮堤を例に第3 -4-2表に示す。津波防護施設は,地中構造物と地上構造物に分けられる。 地上構造物は,躯体の慣性力や基礎部分に係る動土圧等が主たる荷重となる。 地中構造物については,屋外重要土木構造物同様,比較的単純な構造部材の 配置で構成される。地中構造物,地上構造物共にほぼ同一の断面が奥行方向 に連続する構造的特徴を有することから,3次元的な応答の影響は小さいた め、2次元断面での耐震評価を行っている。

上述のとおり,地中構造物,地上構造物共にほぼ同一の断面が長手方向に 連続する構造的な特徴を有していることから,構造上の特徴として明確な弱 軸,強軸を有する。

強軸方向の地震時挙動は,弱軸方向に対して顕著な影響を及ぼさないこと から,従来評価手法では弱軸方向を評価対象として,耐震設計上求められる 水平1方向及び鉛直方向地震力による耐震評価を実施している。

第3-4-2図に示す通り,従来設計手法では,津波防護施設の構造上の特徴から,弱軸方向の地震荷重に対して,保守的に加振方向に平行な壁部材を 見込まず,垂直に配置された構造部材のみで受け持つよう設計している。

第3-4-2表 従来設計における評価対象断面の考え方(防潮堤)

(注) 当該図は平面図を示す

第3-4-2図 従来設計手法の考え方

3.4.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

津波防護施設において,水平2方向及び鉛直方向地震力を考慮した場合に 影響を受ける可能性がある構造物の評価を行う。

対象とする部位について,水平2方向及び鉛直方向地震力の組合せの影響 が想定される応答特性から,水平2方向及び鉛直方向地震力の組合せによる 影響を受ける可能性のある部位を抽出する。

応答特性が抽出された,水平2方向及び鉛直方向地震力の組合せによる影響を受ける可能性のある部位は,既往の評価結果の荷重又は応力の算出結果 等を水平2方向及び鉛直方向に組合せ,対象部位に発生する荷重や応力を算 出し,各部位が有する耐震性への影響を確認する。

各部位が有する耐震性への影響が確認された場合は,詳細な手法を用いた 検討等,新たな設計上の対応策を講じる。

評価フローを第3-4-3図に示す。

- (1) 影響評価対象構造物の抽出
- ① 構造形式の分類

評価対象構築物について,各構造物の構造上の特徴や従来設計手法の考 え方を踏まえ,構造形式ごとに大別する。

- 従来設計手法における評価対象断面に対して直交する荷重の整理
 従来設計手法における評価対象断面に対して直交する荷重を抽出する。
- ③ 荷重の組合せによる応答特性が想定される構造形式の抽出

②で整理した荷重に対して、構造形式ごとにどのように作用するかを整 理し、耐震性に与える影響程度を検討した上で、水平2方向及び鉛直方向 地震力の影響が想定される構造形式を抽出する。

④ 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽出

4条一別紙7-86

③で抽出されなかった構造形式について,従来設計手法における評価対象断面以外の箇所で,水平2方向及び鉛直方向地震力の影響により3次元的な応答が想定される箇所を抽出する。

⑤ 従来設計手法の妥当性の確認

④で抽出された箇所が,水平2方向及び鉛直方向地震力の組合せに対し て,従来設計手法における評価対象断面の耐震評価で満足できるか検討を 行う。

- (2) 影響評価手法
- ⑥ 水平2方向及び鉛直方向地震力の影響評価

評価対象として抽出された構造物について,従来設計手法での評価対象 断面の地震応答解析に基づく構造部材の照査において,評価対象断面に直 交する断面の地震応答解析に基づく構造部材の発生応力等を評価し,適切 に組合せることで,水平2方向及び鉛直方向地震力による構造部材の発生 応力を算出し,構造物が有する耐震性への影響を確認する。

評価手法については、評価対象構造物の構造形式を考慮し選定する。

⑦ 機器・配管系への影響評価

評価対象として抽出された構造物が,耐震重要施設,常設耐震重要重大 事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 の機器・配管系の間接支持構造物である場合は,水平2方向及び鉛直方向 地震力の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認さ れた場合,機器・配管系の影響評価に反映する。

なお、④及び⑤の精査にて、津波防護施設の影響の観点から抽出されな かった部位であっても、地震応答解析結果から機器・配管系への影響の可 能性が想定される部位については検討対象として抽出する。

4条一別紙7-87

第3-4-3図 水平2方向及び鉛直方向地震力による影響評価のフロー

3.4.4 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出

(1) 構造形式の分類

津波防護施設は、その構造形式より1)鋼製防護壁の上部工のような鋼殻
構造物、2)鋼管杭鉄筋コンクリート防潮壁の上部工、鉄筋コンクリート防
潮壁の上部工、鉄筋コンクリート防潮壁(放水路エリア)の防潮壁、鉄筋コンクリート防潮壁(放水路エリア)の放水路、貯留堰のような線状構造物、
3)鋼製防護壁の下部工、鉄筋コンクリート防潮壁の下部工、鉄筋コンクリート防潮壁(放水路エリア)の基礎のような地中連続壁基礎、4)鋼管杭鉄筋
コンクリート防潮壁の下部工、出口側集水桝の下部工のような鋼管杭基礎、
並びに5)出口側集水桝の上部工のような箱型構造物の5つに大別される。

(2) 従来設計手法における評価対象断面に対して直交する荷重の整理

第3-4-3表に,従来設計手法における評価対象断面に対して直交する荷 重を示す。

従来設計手法における評価対象断面に対して直交する荷重として,動土圧 及び動水圧,摩擦力,慣性力が挙げられる。

	作用荷重	作用荷重のイメージ ^(注)
	従来設計手法における	▲ 従来設計手法の評価対象断面
⑦動土圧	評価対象断面に対し	
及び動水	て、平行に配置される	
圧	構造部材に作用する動	
	土圧及び動水圧	動土圧・動水圧
		▲ 従来設計手法の評価対象断面
	周辺の埋戻土と躯体間	Û
⑦摩擦力	で生じる相対変位に伴	
	い発生する摩擦力	

٨

▲ 従来設計手法の評価対象断面

加振方向

t

慣性力

第3-4-3表 従来設計手法における評価対象断面に対して直交する荷重

(注) 作用荷重のイメージ図は平面図を示す。

躯体に作用する慣性力

⑦慣性力

(3) 荷重の組合せによる応答特性が想定される構造形式の抽出

第3-4-4表に, 3.4.4(1)で整理した構造形式毎に, 3.4.4(2)で整理した荷重作用による影響程度を示す。

また、構造形式ごとに、各構造物の概略図と特徴について以下に示す。

第 3-4	1-4表 水平2方向及	& び鉛直方向地震力の組合せの)評価対象構造物の抽出	4 (1∕3)
3.4.4 (1) で整理した構 ^{独取ナッハ新}	a) / 400 #11 P	鋼設構造物 +## 時の - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 1 - 2 - 2	p) 後	泉状構造物
這形式の分類	(剩哭)	り 護 壁 () 上 前 上)	(鉄筋コンクリー	- ト防潮壁の上部工等)
	:能来設計手法におけ	きる評価対象断面(弱軸に平行な断面)	: 従来設計手法におけ	-5評価対象断面(羽軸に平行な断面)
		and a set of the set o		
中井や「専舎りへつ」」。				Contraction of the second
3.4.4(Z) C 発理した何里の作用状況	(廷)	別慣性力はすべての構造部材に作用	(H)	3慣性力はすべての構造部材に作用
	⑦動土圧及び動水圧	の動土圧及び動水圧	⑦動土圧及び動水圧	従来設計手法における評価対 を開立に対しているよう回去
				家跡面に対して半行する側面 に作用
	④摩擦力	①摩擦力	④摩擦力	従来設計手法における評価対
				象断面に対して直交する側面
				に作用
	创慣性力	の慣性力	创慣性力	全ての部材に作用
従来設計手法における評	当該構造物の上部工は	, 基礎深さ及び地盤条件が異な	従来設計手法における評	価対象断面に対して直角方向
価対象断面に対して直交	る下部工を有し、また	形状が複雑であるため、水平 2	(強軸方向)に②動土圧	及び動水圧による荷重が作用
する荷重の影響程度	方向及び鉛直地震力の湯	組合せの影響の程度が大きい。	しないため影響小	
抽出結果 (〇:影響檢討実施)		0		×

4条-別紙7-92

第3-4		とび鉛直方向地震力の組合せの影 ^{袖中油練糖 東磯}	平価対象構造物の抽出	1 (2/3) - 翻管お其隣	
.4 (1) で整埋した 構造形式の分類	c) p (鉄筋コンク	^{也十連} 統堡基礎 リート防潮壁下部工等)	a) (鋼管抗鉄筋コン	- 浉官仇基礎 ノクリート防潮壁下部工等)	
	: 従来設計手法にす	3ける評価対象断面(弱軸に平行な断面)		従来設計手法における評価対象断面	
		0	加振方向	•	
	加板方向			<u> </u>	
4 4 (9)	Ŷ		0		
前重の作用状況	(栞) (()	い 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、			
			(注)③慣性2	カはすべての構造部材に作用	
	の動土圧及び動水圧	従来設計手法における評価対象 断面に対して平行する面に作用	の動土圧及び動水圧	主に胴体部に作用	
	の摩擦力	従来設計手法における評価対象 断面に対して直交する面に作用	④摩擦力	主に胴体部に作用	
	创慣性力	全ての部材に作用	③慣性力	全ての部材に作用	
来設計手法における	送来設計手法における 3	評価対象断面に対して, 平行する	で、 にた と (14) 空	ユー宇戸スイン(山平塘)/2五丁十	L 7 1V
価対象断面に対して	面にの動土圧及び動水	圧による荷重が,上部工との接合	胴体部にないて、②動 上部下からの荷重が作	エ圧及い剰水圧による何里,及用するため影響大	Ś
交する荷重の影響度	面に上部工から伝わるす	苛重が作用するため影響大			
抽出結果		C		C	
〇:影響検討実施))			

4条-別紙7-93

a) 鋼殼構造物

・鋼製防護壁の上部工

第3-4-4図に鋼製防護壁の上部工の概要図を示す。

当該構造物の上部工は,基礎深さ及び地盤条件が異なる下部工を有し, また形状が複雑であるため,水平2方向及び鉛直地震力の組合せの影響が ある可能性が大きい。したがって,3次元解析を実施する。

第3-4-4図 鋼製防護壁の上部工

b)線状構造物

・鋼管杭鉄筋コンクリート防潮壁の上部工,鉄筋コンクリート防潮壁の上 部工,鉄筋コンクリート防潮壁(放水路エリア)の防潮壁

第3-4-5図,第3-4-6図及び第3-4-7図に鋼管杭鉄筋コンクリート防潮壁の上部工,鉄筋コンクリート防潮壁の上部工及び鉄筋コンク リート防潮壁(放水路エリア)の防潮壁の概要図を示す。

当該構造物は,擁壁タイプの線状構造物であり,その構造上の特徴とし て,妻壁(評価対象断面に対して平行に配置される壁部材)等を有さず, 妻側(小口)の面積も小さいことから,従来設計手法における評価対象断 面に対して直交する⑦動土圧及び動水圧はほとんど作用しない。

第3-4-5図 鋼管杭鉄筋コンクリート防潮壁の上部工

4条-別紙7-96

· 貯留堰

第3-4-8図に貯留堰の概要図を示す。

貯留堰は鋼管矢板構造であり,線状構造物に分類される。各鋼管矢板 は,継手部を介して隣接鋼管矢板により鋼管矢板の法線方向に拘束されて おり,法線方向の断面係数は,法線直角方向と比べて大きく,明確な強軸 方向を示す。そのため,強軸方向の水平力により鋼管矢板に発生する曲げ モーメントは比較的小さい。したがって,水平2方向及び鉛直方向地震力 の組合せによる影響は小さい。

c) 地中連続壁基礎

・鋼製防護壁の下部工

第3-4-9図に鋼製防護壁の下部工の断面図を示す。

当該構造物の南北二つの下部工は,基礎深さ及び地盤条件が異なり3次 元的に複雑な挙動をすることが考えられるため,水平2方向及び鉛直地震 力の組合せの影響が想定される。

第3-4-9図 鋼製防護壁の下部工

・鉄筋コンクリート防潮壁の下部工

第3-4-10図に鉄筋コンクリート防潮壁の下部工の概要図を示す。

当該構造物の下部工は、上部工法線方向の水平地震力による動土圧及び 動水圧と上部工からの荷重による発生応力、並びに上部工法線直角方向の 水平地震力による動土圧及び動水圧による発生応力が足し合わされるた め、水平2方向及び鉛直地震力の組合せの影響が想定される。

第3-4-10図 鉄筋コンクリート防潮壁の下部工

・鉄筋コンクリート防潮壁(放水路エリア)の地中連続壁基礎

第3-4-11 図に鉄筋コンクリート防潮壁(放水路エリア)の地中連続 壁基礎の概要図を示す。

当該構造物の地中連続壁基礎は,防潮壁法線方向の水平地震力による動 土圧及び動水圧と防潮壁からの荷重による発生応力,並びに防潮壁法線直 角方向の水平地震力による動土圧及び動水圧による発生応力が足し合わさ れるため,水平2方向及び鉛直地震力の組合せの影響が想定される。

第3-4-11図 鉄筋コンクリート防潮壁(放水路エリア)の地中連続壁基礎

d) 鋼管杭基礎

・鋼管杭鉄筋コンクリート防潮壁の下部工

第3-4-12図に鋼管杭鉄筋コンクリート防潮壁の下部工の概要図を示す。

鋼管杭基礎は,第3-4-13図に示すように水平2方向入力による応力 の集中が考えられる。

当該構造物の鋼管杭は、上部工法線方向の水平地震力による動土圧及び 動水圧と上部工からの荷重による発生応力、並びに上部工法線直角方向の 水平地震力による動土圧及び動水圧による発生応力が足し合わされるた め、水平2方向及び鉛直地震力の組合せの影響が想定される。

第3-4-12図 鋼管杭鉄筋コンクリート 第3-4-13図 鋼管杭基礎に係る 防潮壁の下部工 応答特性 ・出口側集水桝の下部工

第3-4-14図に出口側集水桝の下部工の概要図を示す。

当該構造物の下部工(鋼管杭)も、互いに直交する方向の各水平地震力 による動土圧及び動水圧と、上部工からの荷重による発生応力が足し合わ されるため、第3-4-13図に示すように水平2方向及び鉛直地震力の組 合せの影響が想定される。

第3-4-14図 出口側集水桝の下部工

e) 箱型構造物

・出口側集水桝の上部工

第3-4-15図に出口側集水桝の上部工の概要図を示す。

箱型構造物については、従来設計手法における評価対象断面に対して平 行に配置される構造部材を有し、⑦動土圧及び動水圧による荷重が作用す るため、水平2方向及び鉛直地震力の組合せの影響が想定される。

第3-4-15図 出口側集水桝の上部工

以上のことから,荷重の組合せによる応答特性が想定される構造形式と して,鋼殻構造物,地中連続壁基礎,鋼管杭基礎及び箱型構造物を抽出す る。 (4) 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽出

(3)で抽出しなかった構造形式である線状構造物について,各構造物の 構造等を考慮した上で,従来設計手法における評価対象断面以外の3次元 的な応答特性が想定される箇所を抽出し,以下に示す。

a)鉄筋コンクリート防潮壁の上部工 【線状構造物】

第3-4-16図に鉄筋コンクリート防潮壁の上部工の概要図を示す。

当該構造物は、構造物の配置上、屈曲部(隅角部)を有する。線状構造物の屈曲部(隅角部)では、水平2方向及び鉛直方向地震力の組合せの影響として、弱軸方向のせん断変形や強軸方向の曲げ変形への影響が想定される。

注) 仕様については今後の検討により 変更の可能性がある。

第3-4-16図 鉄筋コンクリート防潮壁の上部工の屈曲部(隅角部)

b) 鉄筋コンクリート防潮壁(放水路エリア)の放水路 【線状構造物】

第3-4-17図に鉄筋コンクリート防潮壁(放水路エリア)の放水路の 概要図を示す。

当該構造物は,防潮壁から強軸方向の荷重を受ける。よって,水平2方 向及び鉛直方向地震力の組合せの影響として,強軸方向の曲げ変形への影 響が想定される。

第3-4-17図 鉄筋コンクリート防潮壁(放水路エリア)の放水路

c)鋼管杭鉄筋コンクリート防潮壁の上部工 【線状構造物】

第3-4-18 図に鋼管杭鉄筋コンクリート防潮壁の上部工の概要図を示す。

当該構造物は、屈曲部(隅角部)に施工目地を設けるため、独立した線 状構造物が接しているだけとなり、3次元的な応答特性は想定されない。 よって、水平2方向及び鉛直方向地震力の組合せの影響はない。

第3-4-18図 鋼管杭鉄筋コンクリート防潮壁の上部工

以上のことから,鉄筋コンクリート防潮壁の上部工の屈曲部(隅角部) 及び鉄筋コンクリート防潮壁(放水路エリア)の放水路については,水平 2方向地震力の組合せの影響を検討する。

- (5) 従来設計手法の妥当性の確認
 - i)鉄筋コンクリート防潮壁の上部工

鉄筋コンクリート防潮壁の上部工の設計において、一般部は第3-4-19 図に示すように、フーチング側を固定端とする鉛直方向の片持ち梁と して設計する。屈曲部(隅角部)の東面鉛直壁は一般部と同様に設計する が、屈曲部(隅角部)の北(南)面は第3-4-20 図に示すように、東面鉛 直壁を固定端とする水平方向の片持ち梁として設計する。したがって、屈 曲部(隅角部)は水平2方向の荷重を組み合わせた設計となるため、水平 2 方向及び鉛直方向地震力の組合せの影響評価対象部位として抽出する。 なお、片持ち梁モデルの妥当性については、静的3次元モデル解析を実施 し確認する。

第3-4-19図 鉄筋コンクリート防潮壁の上部工 [一般部]

第3-4-20図 鉄筋コンクリート防潮壁の上部工 [屈曲部(隅角部)] 4条-別紙7-107

ii)鉄筋コンクリート防潮壁(放水路エリア)の放水路

第3-4-21図に鉄筋コンクリート防潮壁(放水路エリア)の放水路の 概要図を示す。

鉄筋コンクリート防潮壁(放水路エリア)の放水路の設計において,評価対象断面に直交する水平地震力については,カルバート構造物であるため,評価対象断面直交方向(強軸方向)には動土圧・動水圧はほとんど作用しない。しかしながら,放水路(カルバート)上に設置される防潮壁は,当該加振方向による水平地震力により慣性力を受けるため,下部の放水路(カルバート)に荷重が伝わり,強軸方向の曲げ変形への影響が想定される。したがって,水平2方向及び鉛直方向地震力の組合せの影響評価対象部位として抽出する。

第3-4-21図 鉄筋コンクリート防潮壁(放水路エリア)の放水路

3.4.5 水平2方向及び鉛直方向地震力の組合せの評価対象構造物の抽出結果

3.4.4の検討を踏まえ、水平2方向及び鉛直方向地震力の組合せによる影 響評価を検討すべき構造物として、構造及び作用荷重の観点から、地中連続 壁基礎、鋼管杭基礎、箱型構造物、線状構造物のうち鉄筋コンクリート防潮 壁の上部工の屈曲部(隅角部)及び鉄筋コンクリート防潮壁(放水路エリ ア)の放水路を抽出する。

なお、鋼殻構造物については、3次元解析を実施するため、ここでは対象外 とする。

第3-4-5表に抽出した評価対象施設(構造物)を示す。

構造形式	施設(構造物)名称	フロー [※] 中の対応番号
	鋼製防護壁の下部工	3
地中連続壁 基礎	鉄筋コンクリート防潮壁の下部工	3
	鉄筋コンクリート防潮壁(放水路エリア)の地中連続壁基礎	3
密告甘琳	鋼管杭鉄筋コンクリート防潮壁の下部工	3
 婀官机	出口側集水桝の下部工	3
箱型構造物	出口側集水桝の上部工	3
纳尘推尘地	鉄筋コンクリート防潮壁の上部工の屈曲部(隅角部)	5
耐小1件垣初	鉄筋コンクリート防潮壁(放水路エリア)の放水路	5

第3-4-5表 評価対象施設(構造物)の抽出結果

注)鋼殻構造物は三次元解析を実施するため対象外とする。 ※第3-4-3図に示す影響評価フロー

3.4.6 水平2方向及び鉛直方向地震力の組合せの評価

(1)地中連続壁基礎,鋼管杭基礎,線状構造物のうち鉄筋コンクリート防潮 壁の上部工の屈曲部(隅角部)

水平2方向及び鉛直方向地震力の組合せによる影響評価については、従来 の設計手法である水平1方向及び鉛直方向地震力の組合せによる局部評価の 荷重又は応力の評価結果等を用い、水平2方向及び鉛直方向地震力の組み合 わせる方法として、米国 Regulatory Guide 1.92(注)の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考 として、組合せ係数法(1.0:0.4:0.4)に基づいて地震力を設定する。

評価対象として抽出した耐震評価上の部位について,構造部材の発生応力 等を適切に組み合わせることで,各部位の設計上の許容値に対する評価を実 施し,各部位が有する耐震性への影響を評価する。

(注)Regulatory Guide(RG) 1.92 "Combining modal responses and spatial components in seismic response analysis"

2) 箱型構造物,鉄筋コンクリート防潮壁(放水路エリア)の放水路

箱型構造物及び鉄筋コンクリート防潮壁(放水路エリア)の放水路に対す る水平2方向及び鉛直方向地震力の組合せによる影響評価については,箱型 構造物及び放水路の弱軸方向(評価対象断面)と強軸方向(評価対象断面に 直交する断面)におけるそれぞれの2次元の地震応答解析にて,互いに干渉 し合う断面力や応力を選定し,弱軸方向加振における部材照査において,強 軸方向加振の影響を考慮し評価する。

強軸方向加振については、構造物の隔壁・側壁が、強軸方向加振にて耐震 壁としての役割を担うことから、当該構造部材を耐震壁と見なし、「鉄筋コ ンクリート構造計算基準・同解説-許容応力度設計法-(日本建築学会、 1999) (以下「RC基準」という。)に準拠し耐震評価を実施する。

RC基準では、耐震壁に生じるせん断力(面内せん断)に対して、コンク リートのみで負担できるせん断耐力と、鉄筋のみで負担できるせん断耐力の いずれか大きい方を鉄筋コンクリートのせん断耐力として設定する。したが って、壁部材の生じるせん断力がコンクリートのみで負担できるせん断力以 下であれば、鉄筋によるせん断負担は無く鉄筋には応力が発生しないものと して取り扱う。

一方,強軸方向加振にて生じるせん断力を,構造物の隔壁・側壁のコンク リートのみで負担できず,鉄筋に負担させる場合,第3-4-22図に示すと おり,強軸方向加振にて発生する側壁・隔壁の主筋の発生応力が,弱軸方向 における構造部材の照査に影響を及ぼす可能性がある。

したがって、水平2方向及び鉛直方向地震力の組合せによる影響評価に おいては、強軸方向加振にて発生する応力を、弱軸方向における構造部材 の照査に付加することで、その影響の有無を検討する。

なお,弱軸方向及び強軸方向の地震応答解析では,保守的に両方とも基 4条-別紙7-111 準地震動 S_sを用いる。

第3-4-23図に水平2方向及び鉛直方向地震力の組合せによる評価フ ローを示す。

		①強軸方向加振	②弱軸方向加振	備考
	My(y軸まわりの曲げモーメント)	\bigtriangleup	×	
	Mx(x軸まわりの曲げモーメント)	×	0	
断面力	Nz(鉛直方向軸力)	0	0	互いに干渉する可能性あり
	Nzx (zx平面面内せん断)	0	×	
	Qz (z方向面外せん断)	×	0	
	主筋	0	0	互いに干渉する可能性あり
応力	配力筋	0	×	
	せん断補強筋	×	0	

(○:発生する可能性あり、△:発生する可能性があるが極めて軽微、×:発生しない)

第3-4-22図 強軸方向加振及び弱軸方向加振において 発生する断面力・応力

3.4.7 機器・配管系への影響評価

水平2方向及び鉛直方向地震力の組合せの影響が確認された構造物が,耐 震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設 置される重大事故等対処施設の機器・配管系の間接支持構造物である場合, 水平2方向及び鉛直方向地震力の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認され た場合,機器・配管系の影響評価に反映する。

なお、津波防護施設の影響の観点から抽出されなかった部位であっても、 地震応答解析結果から機器・配管系への影響の可能性が想定される部位につ いては検討対象として抽出する。

表1 樟								们心门 T
				 ①-1 水平2方向の地震 + 2 本省:	影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向 の地震力しが負担しないもの		 ①-2 水平2方向と 相関する振動モー 等)が生じる観点 対応) 	その直交方向が ド(ねじれ振動 (3. 2. 4項(2)に
	設備	部位	応力分類	 10 国家にする影響の 13.2,4頁(1)に対応) ○:影響都あり △:影響解後 	B: ホキン同町の地域シアメンドレジョン 合、構造により最大応力の発生 箇所が異なるもの こ: 水平2方向の地震を組み合わせ ても1 万向の地震による応力と 同等といえるもの 2: 従来評価にて、水平2方向の地 震力を考慮しているもの	①-1の影響有無の説明	撮動モード及び 新たな応力成分 の発生有無 ×:発生しない ○:発生する	左記の板撮動ホードのの振動ホートのの離離がない にとの理由 新たな応力成分が発生しないに が発生しないに との理由
			一次一般膜応力	⊲	В	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料3】	×	I
	炉心シュラウド	下部胴	一次膜応カキー次曲げ応カ	4	В	于国		
			支圧応力	⊲	U	鈴直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響は ない。	×	I
			一次一般膜応力	⊲	В	評価部位は円周配置であるため、水平地震の方向毎に最大応力点が異なる。 したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は 軽微である。【補足説明資料3】		
		レグ	一次膜応カキー次曲げ応カ	\bigtriangledown	В	丁国	×	I
	シュラウドサポート		軸圧縮応力	⊲	В	子国		
		シリンダプレート 天如暗	一次一般膜応力	⊲	а	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は略微である。【補足説明資料3】	×	I
炉心支持構	-61	hiller 1	一次膜応力+一次曲げ応力	\bigtriangledown	В	子道		
" " " " "	上部格子板	グリッドプレート	一次一般膜芯力	⊲	В	評価部位は格子構造であることから,水平地震の方向毎に最大応力点が異な る。したがって,水平2方向の地震力を組み合わせた場合でも水平2方向の影響は略微である。	×	I
			一次膜応カキー次曲げ応カ	\bigtriangledown	В	丁国		
	炉心支持板	補 施 世 子 本 古 行	一次一般膜応力	⊲	£	水平地廃の方向毎に最大応力点が異なる。したがって,水平2方向の地震力 を組み合わせた場合でも水平2方向の影響は軽微である。	×	I
		又疛极	- 次膜応力+-次曲げ応力	4	В	子国		
	燃料支持金具	中央燃料支持金具	一次一般膜応力	\bigtriangledown	В	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は略微である。【補足説明資料3】	×	I
		周辺総件入切並気	一次膜応力+一次曲げ応力	\bigtriangledown	В	子闾		
	制御棒案内管	下部溶接部	一次一般膜応力		В	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料3】	×	I
			一次膜応カ+一次曲げ応カ	⊲	В	王臣		
		右 う 田 徳 間	一次一般膜応力	⊲	£	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料3】		
原子炉圧力 ^{家 異}	7 円筒胴 天錘	下鏡と胴板の接合部	一次膜応力+一次曲げ応力	\bigtriangledown	В	日上	×	Ι
	1 .66 –	下鏡とスカートの接合部	₹ 一次+二次応力	\bigtriangledown	В	子園		
			一次+二次+ピーク応力		В	王国		
※1 本表	は、詳細設計時等の)進捗に応じて見直しる	を行う。					

沃什 1

ヒその直交方向が ド(ねじれ振動 (3.2.4項(2)に	左記の疲動ホードの感響がない、 ドの影響がない、 「との理由 が充む方成分 が発生しないに との理由			I				Ι			3次元はりモデル	の応谷騨竹結米(配管反力)を	Her, 	5	I		I		I	
 ①-2 水平2方向と 相関する振動モー 等)が生じる観点 対応) 	振動モード及び 新たな応力成分 の発生有無 ×:発生しない ○:発生する			×				×				0			×		×		×	
	①-1の影響有無の説明	評価部位は円形の一様断面であることから、水平地震の方向毎に長大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。 【補足説明資料3】	千国	子国	干担	干担	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は唯微である。【補足説明資料3】	干担	干国	千国	評価においては3次元的に配置されている接続配管の応答を使用しており、 接続配管において地震入力方向に対する直角方向の応答が生じるため,水平 2方向入力の影響がある。	丁国	丁빌	干担	水平方向の地震街重を分散して負担する多角形配置の構造となっているため、水平2方向の地震荷重な何時に作用した場合においても方向毎にその地震荷重は分担される。したがって、水平2方向入力の影響は軽微である。 【補足説明資料1】	于道	水平2方向入力時の地震力を4つのブラケットのうち2つで分担した荷重を方 向毎に考慮した評価を行っている。【補足説明資料2】	千世	評価においては3次元的に配置されている炉内配管の応答を使用しており、 炉内配管において地震入力方向に対する直交方向の応答が生じるため,水平 2方向入力の影響がある。	于世
「響能後とした分類 、米平2方向の地震力を受けた場 合でも、構造により水平1方向 の地震力しか負担しないもの。	1: 水平2方向の地震力を受けた場合、株造により 味力応力の発生 商所が異なるもの 箇所が異なるもの こ: 水平2方向の地震を組み合わせ ても 1 方向の地震による応力と 同等といえるもの 同等といえるもの 認力を考慮しているもの	В	В	В	В	В	В	В	В	В	I	I	I	Ι	U	С	Q	D	I	I
 -1 水平2方向の地震	和の重複による影響の F 有無 (3.2.4項(1)に対応) ○:影響あり ○:影響解領 □:影響解鎖	4	4	⊲	⊲	4		\bigtriangledown	⊲	4	0	0	0	0	Q		4	⊲	0	0
	応力分類	一次一般膜応力	一次膜応力+一次曲げ応力	一次+二次応力	一次+二次+ピーク応力	座屈 (軸圧縮)	一次一般膜応力	一次膜応カ+一次曲げ応カ	一次+二次応力	一次+二次+ピーク応力	一次一般膜芯力	一次膜応力+-次曲げ応力	一次+二次応力	一次+二次+ピーク応力	一次一般膜応力	一次膜応力+-次曲げ応力	一次一般膜応力	一次膜応力+一次曲げ応力	一次一般膜応力	一次膜応カ+一次曲げ応力
	部位		a 1 3	、スタブチューブ ハウジング				、ウジング				各部位			原子炉圧力容器スタ ビライザブラケット		蒸気乾燥器支持 グット		街心スプレイブラ ケット	-
	墢		1	制御棒駆動機構ハ ウジング賃通部 				中性子計測くウジ	「国田寺」			炉圧力 ノズル	路				ブラケット類			
												国	184							

22方向とその直交方向が (動モード (ねじれ振動 :る観点 (3.2.4頁(2)に	ド及び 在記の振動キー 力成分 ドの選響がない ことの選番 が、 新たな応力成分 たい、 ご発生しないに - 50 世国由						I				I									
 □-2 水平 相関する場 がたじ がたじ 	凝 茶の×の まな 子 を 子 が 子 の 子 の で の で の で の の で の で の で の で の で		×				×				×			>	<				×	
	①-1の影響有無の説明	評価においては3次元的に配置されている炉内配管の応答を使用しており、 炉内配管において地震入力方向に対する直交方向の応答が生じるため、水平 2方向入力の影響がある。	子国	子国	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料3】	周上	子国	子国	子国	ボルトは円周状に配置され,水平地震の方向毎に最大応力の発生点が異な る。したがって水平2方向の影響は軽微である。	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微である。	上記の引張応力及びせん断応力は,水平2方向の影響が軽微のため,組合せ 応力も水平2方向の影響は軽微である。	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水平2方向の地震荷重な河時に作用した場合においても方向毎にその地震荷重は分担される。したがって、水平2方向入力の影響は軽微である。 【補足説明資料1】	干単	구별	子国	子壇	水平方向地震が作用する際に、加振軸上に最大応力が発生する。水平2方向 の地震力が同時に作用した場合においても、それぞれの方向の加振軸上に最 大応力が発生する。したがって、水平2方向入力の影響は確微である。	子国	 Tu
影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向 合でも、構造により水平1方向の地震力しか負担しないもの	B:水半25回の地震力を安けた場合: 合、推造により最大応力の発生 箇所が異なるもの て、水平2方向の地震を組み合わせ ても1方向の地震による応力と 同等といえるもの 同等といえるもの し、従来評価にて、水平2方向の地 震力を考慮しているもの	I	I	I	В	В	В	В	В	В	O	U	U	U	U	U	C	В	В	В
①-1 水平2方向の地震	力の 重復による影響の 有無 (3.2.4項(1)に対応) ○:影響あり △:影響軽微	0	0	0	Q	\triangleleft	⊲	\bigtriangledown	⊲	\bigtriangledown	⊲	⊲	4	⊲	⊲	⊲	⊲	⊲	4	⊲
	応力分類	一次一般膜応力	一次膜応カ+一次曲げ応カ	純せん断応力	一次一般膜応力	一次膜応カ+一次曲げ応カ	一次+二次応力	一次+二次+ピーク 応力	座屈 (軸圧縮)	引張応力	せん断応力	組合せ応力	引張応力	せん断応力	圧縮応力	曲げ応力	組合せ応力	せん断応力	圧縮応力	曲げ応力
	耕作	給木スページャブラ	ケット				スカート				基礎ボルト		1	- ユレメ - ゴン メ - ゴン デュ プニン デ	フォベッベノリノク 支持板				マメトレイ シトロ マ	
	設備		ブラケット類				支持スカート		- 10		原子炉圧力容器基 礎ボルト			格納容器スタビラ イザ	原子炉圧力容器ス タビライザ			制御棒駆動機構ハ	サジングレストレイントビーム	
			県ナ炉圧刀 容器	_		_	_	표구 AEE	ホーデーン 容器支持構 造物			_		_	_	原子炉圧力 容器付属構	道物		_	_

:その直交方向が ド (ねじれ振動 (3.2.4項(2)に	在記の振動ホードの影響がない、 ドの影響がない にたの理由 新たな応力成分 が発生しないに との理由	I		I	I		従来より、3次元 はりモデルの応 答解析結果を用 い、耐護評価を 実施しており、	おにため決続に してたる動機評 面に用こる回離 の が重んし 日 いたる。 田	3次元FEMモデル シルセト 五勝	A 行及し、 三版 評価や実満しん こと	6		I				I	
 ①-2 水平2方向と 相関する振動モー 等)が生じる観点 対応) 	振動 ・ 一 ド及び 新たな応力成分 の発生有無 × ・ 発生しない 〇 :発生する	×		×	×		C)		0			×			>	<	
	①-1の影響有無の説明	(従来評価で評価が厳しくなる方向に地震荷重を与えているため、水平2方向 入力を考慮しても水平1方向の地震荷重と同等となる。したがって水平2方向の影響は軽微である。	子国	地震の水平力は4箇所の耐震用ブロックのうち相対する2箇所で受けるもの として評価しているが、水平2方向入力では4箇所の耐震用ブロックに背重 が分担されるため、水平2方向入力の影響は略戦である。	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は唯徴である。【補足説明資料3】	千国	3 次元的に配置されているため、水平それぞれの方向の地震力に対し、各方向で応力が発生する。したがって、水平2方向入力の影響がある。	干垣	水平それぞれの方向における評価において、最大応力発生箇所は異なるものの、日形状の一様断面でないため、発生応力は積算される。したがって、水 平2方向入力の影響がある。	子道	千国	ボルトは矩形配置であり、水平2方向の入力によるで対角方向への転倒を想 定し検討した結果、水平2方向地震力の最大応答の非同時性を考慮すること により,影響は略級である。【補足説明資料6】	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微とな る。【補足説明資料 6】	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	評価点が脚付税部等の局所であり、1方向の地震においても軸直角方向の評価点へも影響が生じることから、2方向入力の影響がある。	子屋	于邕	評価点が脚付根部等の局所であり、1方向の地震においても軸直角方向の評価点へも影響が生じることから、2方向入力の影響がある。
影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力の文型1方向の地震力を受けた場合でも、構造により水平1方向の地震力が、100世にないもの	 B: ホヤ2か同の辺聴力を受けた場合、構造により最大応力の落住 値前が異なるもの 値前が異なるもの C: 木平2方向の地震を組み合わせ ても1方向の地震による応力と 同等といえるもの D: 従来評価にて、水平2方向の地 酸力を考慮しているもの 	U	C	D	£	В	I	I	I	I	I	U	U	O	I	I	I	Ι
①-1 水平2方向の地震	刀の単夜による影響の 有無 (3.2.4項(1)に対応) ○:影響あり △:影響略徴		⊲	\triangleleft	\bigtriangledown	0	0	0	0									
	応力分類	一次一般膜応力	一次膜応カ+一次曲げ応カ	せん断応力	一次一般膜応力	一次膜応カ+一次曲げ応カ	一次一般膜応力	一次膜応力+一次曲げ応力	引張応力	せん断応力	組合せ応力	引張応力	せん断応力	組合せ応力	一次一般膜芯力 一次膜芯力+一次曲げ応-		一次+二次応力	組合せ応力
	部位	بر ۱۱ ۱۱		耐震用ブロック	各部位		41 HA	石柱		ラック部材	 市 /ul>			■板			脚	
	鐮鋄		蒸気乾燥器ユニシ ト		気水分離器及びス 気ンドパイプ 原子炉圧力	容器内部構 / ユノリトペット 造物	4 X - 2 X	炉内配管				使用済燃料貯蔵ラック (共通ベース含む)				三 至 か / 館 水 三 貧 見 永 昭	伊夕に回口の国へつゆい	

			①-1 水平2方向の地震	影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しかります。		 ①-2 水平2方向とその直交方向が 相関する振動モード(ねじれ振動 等)が生じる観点(3.2.4項(2)に 対応)
設備	以 掩	応力分類	カカ 南 加 (3.2.4頁(1)に対応) ○:影響転後 △:影響転後	B:水平2万间の地震力を受けた場合、構造により最大応力の発生 合、構造により最大応力の発生 留所が異なるもの こ:水平2方向の地震を組み合わせ ても1.方向の地震による応力と 同等といえるもの D:能米評価にて、水平2方向の地 震力を考慮しているもの	①-1の影響有無の説明	援動モード及び右記の振動モー 新たな応力成分ドの影響がない の発生有無 ととの理由 と主発生しない、新発生しないこ の、発生する との理由
		引張応力	0	I	1方向の地震においても軸直角方向の評価点へも影響が生じることから、2方向入力の影響がある。	
四脚たて置き円筒形容器	基礎ボルト	せん断応力	⊲	U	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微である。[補足説明資料6]	ا ×
		組合せ応力	0	I	1方向の地震においても軸直角方向の評価点へも影響が生じることから、2方向入力の影響がある。	
		一次一般膜応力	⊲	V	水平2方向が同時に作用した場合においても,強軸と弱軸の関係が明確であり,斜め方向に変形するのではなく,支持構造物の強軸側と弱軸側に変形するため,最大応力落生部位は変わらず影響は軽衡である。	
	胴板	一次膜応力+一次曲げ応力		Υ	目上	
		一次+二次応力		Α	王国	
横置円筒形容器	磨	組合 난 応力	⊲	V	本平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であり、斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形するため、最大応力発生部位は変わらず影響は軽衡である。	X
		引張応力	⊲	A	本平2方向が同時に作用した場合においても、強軸と弱軸の関係が明確であ り、斜め方向に変形するのではなく、支持構造物の強軸側と弱軸側に変形す るため、最大応力発生部位は変わらず影響は軽級である。	64
	基礎ボルト	せん断応力		υ	本平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微であ る。【補足説明資料6】	Fo
		組合せ応力	\triangleleft	υ	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	41
	コラムパイプ バレルケーシング	一次一般膜応力		В	評価部位は円形の一線断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は酸微である。【補足説明資料3】	 現在考慮してい スX, Y方向振動 モードではねじ
9		引張応力	\triangleleft	В	ポルトは円周状に配置され,水平地酸の方向毎に最大応力の発生点が異な る。したがって水平2方向の影響は軽微である。	た振動は現れない。 よって、 ねって、 ねっし、 こ、 こって、 ねっし、 こ、 こって、 こう ことれ 極部モード
以形ポンプ	基礎ボルト 取付ボルト	せん断応力		O	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微であ る。	□ 0 が高次にて現れ る可能性はある が、有意な応答 がたった。
		組合せ応力	\triangleleft	υ	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	ではないため, 影響がないて地 べつため。
ECCS トレーナ	各部位(ボルトじ 外)	√ 一次膜応力+一次曲げ応力	⊲	D	水平2方向の組合せを考慮した評価を実施している。	×
	ボルト	引張応力	⊲	D	王国	
横形ポンプ		引張応力	⊲	O	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定 し検討した結果、水平2方向地震力の最大応答の非同時性を考慮することに より、影響は軽微である。 【補足説明資料 6】	Jul VI
∻ノノ幣膨用ター∟ノ 筋水ストレーナ 狛譴ノッソ 玲譴ユロット	基礎ボルト 取付ボルト	せん断応力		υ	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微とな る。【補足説明資料6】	ا ×
空気圧縮機		組合せ応力	⊲	U	上記の引張広力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	

4条一別紙7一添1-5

平2方向とその直交方向が 長動モード(ねじれ振動 ごる観点(3.2.4項(2)に	ド及び 内部の振動ホー 力成分 下の影響がない ことの運輸がない にとの理想 第一次の強力成分 でない が発生しないに 下る 中の理由			3次元のモデルを	用いた解析により、従来よっな「	しだトートタル 通した思識評価 や無種ニアミ							1		1			I		I
 □-2 水³ 4 周辺 → 2 北 4 第 小 3 北 4 小 3 北 4 小 3 小 4 小 	振をくく しくとを が発い で 他 で で で の で の で の で の で の の の の で の で				(C							×		×			×		×
	①-1の影響有無の説明	非対象構造であるため3次元モデルを用いた解析を行っており,水平地震力 に対する発生応力が入力方向毎に異なる。したがって,水平2方向入力の影響がある。	千国	子国	千国	子国	非対象構造であるため3次元モデルを用いた解析を行っており,水平地震力 に対する発生応力が入力方向毎に異なる。したがって,水平2方向入力の影 響がある。	丁邕	千世	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は略徴である。【補足説明資料3】	于道	ボルトは円周状に配置され,水平地震の方向毎に最大応力の発生点が異なる。したがって水平2方向の影響は軽微である。	水平2方向入力時のボルトに発生するせん断応力を検討した結果,水平2方向 地震における最大応答の非同時性を考慮することにより,影響は軽微であ る。	上記の引張応力及びせん断応力は,水平2方向の影響が軽微のため,組合せ 応力も水平2方向の影響は軽微である。	評価部位は円形の一様断面であることから、水平地震の方向毎に長大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は略微である。 [補足説明資料3]	千国	水平2方向入力の影響がある。	水平1方向及び鉛直方向の地震力のみを負担し,他の水平方向の地震力は負担しないため,水平2方向入力の影響は軽微である。	水平2方向入力の影響がある。	水平1方向及び鉛直方向の地震力のみを負担し、他の水平方向の地震力は負 出したいとか、本立9方向スカの影響は略縮である
影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも、構造により水平1方向の地震力しか負担しないものの地震力しから担したいもの	B:水平2万回の地震力を受けた場合、 合、構造により最大応力の発生 箇所が異なるもの て:水平2方向の地震を組み合わせ ても1方向の地震による応力と 同等といえるもの 同等といえるもの の に、水平2方向の地 に、水平2方向の地 酸力を考慮しているもの	I	I	I	I	I	I	I	I	В	В	В	U	O	В	В	Ι	V	I	Υ
①-1 水平2方向の地震	力の重複による影響の 有無 (3.2.4項(1)に対応) ○.影響あり △:影響軽微	0	0	0	0	0	0	0	0	⊲	⊲	\bigtriangledown	⊲	4	⊲	4	0	⊲	0	⊲
	応力分類	引張応力	せん断応力	圧縮応力	曲げ応力	組合せ応力	引張応力	せん断応力	組合せ応力	一次一般膜応力	一次+二次応力	引張応力	せん断応力	組合せ応力	一次一般膜応力	一次膜応力+一次曲げ応力	引張応力	せん断応力	組合せ応力	引張応力
	部位			ノレーム				取付ボルト		胴板			基礎ボルト		各部位			取付ボルト		取付ボルト
	設				子 日 祖(名 1 - 1 - 1 - 1	水圧制御ユニシト							平底たて置円筒容器		核計装設備			伝送器(壁排)		伝送器(円形壁掛)

4条一別紙7 一添1 -6

		1 10-1 水平2方向の地震 10の面積による影響の1	影響軽微とした分類 A:水平2方向の地震力を受けた場 合でも、構造により水平1方向 の地震力しか負担しないもの B:水平2方向の地震力を少けた場		 ①-2 水平2方向と 相関する振動モー 等)が生じる観点 対応) 	:その直交方向が ド(ねじれ振動 (3.2.4項(2)に
応力	丧 (4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	 合、構造により最大応力の発生 箇所が異なるもの ビ・オギ2方向の地震を組み合わせ ても1方向の地震による応力と 同学といえるもの 1 洗茶評価にて、水平2方向の地 震力を考慮しているもの 	①-1の影響有無の説明 ①-1の影響有無の説明	振動モード及び 新たな応力成分 の発生有無 ×:発生しない 〇:発生する	た記の振動ホードの影響がない 下の影響がない ことの理由 新たな応力成分 との理由 との理由
引張応力			U	台直荷重のみ作用し,水平荷重が作用しないため,水平2方向の影響はな ♪。	×	I
引張応力		4	v	ドルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定)検討した結果、水平2方向地震力の最大応答の非同時性を考慮することに とり,影響は軽微である。【補足説明資料6】		
せん断応力		4	O	K平2方向入力時のボルトに発生するせん断広力を検討した結果、水平2方向 也震における最大応答の非同時性を考慮することにより、影響は軽微とな 5。【補足説明資料6】	×	I
組合せ応力		4	U	と記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 5力も水平2方向の影響は軽微である。		
圧縮ひずみ		0	I	k平2方向入力の影響がある。	×	I
引張ひずみ		0	I	日日		
一次一般膜応力			В	平価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 ド異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 句の影響は軽微である。【補足説明資料3】		
一次膜応力+一次曲	げ応力	⊲	В	目上	×	I
一次+二次応力		\triangleleft	В	а <i>т</i> .		
一次一般膜応力			В	平価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 ド異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は軽微である。【補足説明資料3】		
一次膜応力+一次曲	げ応力	\bigtriangledown	В	司上	×	I
一次+二次応力		⊲	В	目上		
引張応力		\bigtriangledown	C	多角形配置により水平地震力は分担されるため,水平2方向入力の影響は軽 散である。		
せん断応力		\triangleleft	С	王臣		
圧縮応力		\bigtriangledown	С	目上		
曲げ応力		\bigtriangledown	С	司上	×	I
組合せ応力		⊲	C	目上		
一次膜応力+一次	曲げ応力	\triangleleft	U	多角形配置により水平地震力は分担されるため,水平2方向入力の影響は軽 散である。		
一次+二次応力		\bigtriangledown	С	目上		

庁向とその直交方向が モード (ねじれ振動 観点 (3.2.4項(2)に	及び 内にの感動ホネー 大力にとの理由 で、対発生しないに との理由 で、対発生しないに との理由	1								I	I			I		3 次元は9 モ アの汚な9 モ 来(配等解析 を用い、耐酸 酸子 一 で の の の の で の た の で の た の で の で の た の の に の で の で の の で の の で の の で の の の の の の の の の の の の の			
 ①-2 水平2式 相関する振動 等)が生じる。 対応) 	撮 動 市 た た た た 力 元 光 子 元 名 二 光 人 元 の の 路 た た 応 力 元 の の 名 浩 の た で が 応 力 元 の の 名 路 合 た の 応 力 万 の の の ろ 名 合 の の の の ろ 名 合 の の の の の の の の の の の の の の の の の の		>	~			×		>	×					0		×		
	①-1の影響有無の説明	水平方向の地震荷重を分散して負担する多角形配置の構造となっているため、水平2方向の地震荷重な分散した場合においても方向毎にその地震荷重は分担される。したがって、水平2方向入力の影響は軽微である。 【補足説明資料1】	干担	千国	千国	水平方向の地震街重を分散して負担する多角形配置の構造となっているため、水平2方向の地震荷重な分散した場合においても方向毎にその地震荷重は分担される。したがって、水平2方向入力の影響は軽微である。 【補足説明資料1】	丁岜	3 次元的に配置されているため,水平地震力に対する発生応力が入力方向毎 に異なる。したがって,水平2方向入力の影響がある。	周上	評価部位は水平地震力に対する発生応力が入力方向毎に異なる。したがって、水平2方向入力の影響がある。	王国	評価部位は円周上に配置されていることから,水平地震の方向毎に最大応力 点が異なる。従って,水平2方向入力の影響は軽微である。	干国	千国	千国	評価部位は円周上に配置されていることから,水平地震の方向毎に最大応力 点が異なる。従って,水平2方向入力の影響は軽微である。	評価部位は水平地震力に対する発生応力が入力方向毎に異なる。したがって, 水平2方向入力の影響がある。	子道	水平2方向を考慮した評価を実施している。
響軽厳とした分類 :水平2方向の地震力を受けた場 合でも、推造により水平1方向 の地震力しか負担しないもの の地震力しか負担しないもの に、推造により最大応力の多生 信、構造により最大応力の発生 箇所が異なるもの でも1方向の地震による応力と 同等といえるもの :洗来評価にてい水平2方向の地 に洗料評価にているもの		U	C	C	C	v	C	I	Ι	I	I	В	В	В	В	В	I	1	D
■ 		4	⊲	4	4	4	\triangleleft	0	0	0	0	<	⊲	⊲	⊲	4	0	0	<
応力分類		引張応力	せん断応力	曲げ応力	組合せ応力	一次膜応カ+一次曲げ応力	一次+二次応力	一次膜応力+一次曲げ応力	一次+二次応力	一次膜応力+一次曲げ応力	一次十二次応力	引張応力	曲げ応力	圧縮応力	組合せ応力	せん断応力度	一次膜応力+一次曲げ応力	一次+二次応力	一次膜応力+一次曲げ応力
功焼		各部位 告部シアラグと格納 容器調との接合部 下部シアラグと格納					浴器周との後合部	案内管直管部 案内管エルボ部		バーンナティア ク (人 ケナティア ン シー・ サプ レッションチ・サプ アッ ションチェサプ レッションチェンティ 市通板との板合郎 補強板との板合郎 補強板との板合郎 一般館やの敬命部		各部位			コンクリート	原子炉格納容器胴と	スリーブ接合部	スリーブ付根部	
癜			ドシビドシビ テンテンドシン テティテアティー アクライイラアティー オクライアクライ オクリン オクシー オン オン オン オン オン オン オン オン オン オン オン オン オン					ドライウエルスプ		パーンナイエア ロック オータイノメント 4	ム レックイン トシイン オンタイズ オン オン オン オン スン シン シー イ オ			「 「 子 が 存 称 教 な 路 路 品 語 品 品 。					原子炉格納容器電
				。															

4条一別紙7一添1-8

: その直交方向が ド (ねじれ振動 (3. 2. 4項(2)に	内記ののの た に の の た の た の 足 由 た ひ 以 ひ 次 の の 四 曲 日 た い い の の の の の の の の の の の の の の の の の				I				I		3次元のモデル を用いた解析により、従来より		I	1		I			
 ①-2 水平2方向と 相関する振動モー 第)が生じる観点 対応) 	振動モード及び 新たな応力成分 の発生有無 × : 発生しない 〇 : 発生する					x				×		0		×	×		×		
	①-1の影響有無の説明	王臣	鉛直方向荷重が支配的であるため、水平2方向入力の影響は軽微である。 【補足説明資料4】	子道	于国	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向の影響はない。 い。【補足説明資料4】	子道	子道	多角形配置により水平地震力は分担されるため、水平2方向入力の影響は軽 徹である。【補足説明資料4】	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は軽微である。【補足説明資料3】	副上	評価部位は、非対象構造であるため水平地震力に対する発生応力が入力方向 毎に異なる。したがって、水平2方向入力の影響がある。	王同	プレースはプロワの重心とサポートプレート設置位置のずれによる軸方向転 倒防止のため設置している。そのためプレースが受け持つ背重は現在評価対 象としている軸方のの転倒モーメント分のみと考えられ、軸直方向の水平地 廣荷直している裕辞部のせん断で受け持つと考えられる。したがって、水平 2万向入力の影響は受けない。	溶接部の配置は矩形であり,水平2方向の入力で対角方向に転倒することは なく,2方向入力の影響は軽微である。	ベース溶接部で水平方向のそれぞれの水平荷重を負担する。したがって、水 平2方向入力の影響がある。	ボルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定 し検討した結果、水平2方向地震力の最大応答の非同時性を考慮することに より、影響は軽微である。【補足説明資料 6】	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微とな る。【補足説明資料6】	上記の引張応力及びせん断応力は,水平2方向の影響が軽微のため,組合せ 応力も水平2方向の影響は軽微である。
影響軽微とした分類 A:水平2方向の地震力を受けた場 合でも、構造により水平1方向 の地震力しか負担しないもの	 B: ホームの旧い辺底パンをズリニット 合、構造により表大応力の発生 箇所が異なるもの C: 水平2方向の地震を組み合わせ ても1方向の地震による応力と 同学といえるもの D: 能来評価にて、水平2方向の地 酸力を考慮しているもの 	D	C	C	C	C	С	C	U	В	В	I	I	Y	A	I	O	C	C
 □-1 水平2方向の地震 力の重後による影響の 有無 (3.2.4項(1)に対応) (3.2.4項(1)に対応) ○1.影響あり △1.影響秘 		⊲	⊲	⊲	4	\bigtriangledown	\bigtriangledown	4	⊲		\bigtriangledown	0	0		\triangleleft	0	⊲	4	\bigtriangledown
応力分類		一次+二次応力	引張応力度	せん断応力度	圧縮応力度	曲げ応力	せん断応力	圧縮応力	せん断応力	一次膜応力+一次曲げ応力	一次+二次応力	一次膜応力+-次曲げ応力	一次+二次応力	圧縮応力	引張応力	せん断応力	引張応力	せん断応力	組合せ応力
功雄		補強板付根部	構造用スラブ		大ばり 小ばり 柱		シャーコネクタ	上部	上部 プレージング部		条内管部	 ブレース ベース取付裕俵部 		、一へ4%に1倍1次印	基礎ポルト 取付ポルト				
靈		Aleran Marine Marine	イ ト ト ト ト ト ト ト ト ト ト ト ト ト						御よくと	い、 			騰ブロワ 護プロワ						
 ①-2 水平3万向とその直交方向が 相関する振動モード (ねじれ振動 等)が生じる観点 (3.2.4項(2)に 対応) (3.2.4項(2)に 対応すたして及び 桁記の振動モー 新たな応力成分「との理由 の発生自振 ※ たいの理由 の名生自振 	○:発生する // モエレないことの理由	への転倒を想定 考慮することに	5県、水平2方向 影響は軽微とな ×	のため、組合せ	毎に最大応力点 身合でも水平2方		毎に最大応力点 8合でも水平2方	最大点は地震方 × -	の発生点が異な	5県、水平2方向 影響は軽微であ	のため、組合せ	関係が明確であ 弱軸側に変形す			関係が明確であ 弱軸側に変形す ×	への転倒を想定 考慮することに	5果, 水平2方向 影響は軽微とな	のため、組合せ	
--	---	---	--	---	---	---------	--	---	--	--	---	---	--------------	--	--	---	--	-----------------------------	
①-1の影響有無の説明		ポルトは矩形配置であり、水平2方向の入力による対角方向 し検討した結果、水平2方向地震力の最大応答の非同時性を より,影響は酸欲である。【補足説明資料6】	水平2方向入力時のボルトに発生するせん断応力を検討した約 地震における最大応答の非同時性を考慮することにより,∮ る。【補足説明資料6】	上記の引張応力及びせん断応力は、水平2方向の影響が軽微 芯力も水平2方向の影響は軽微である。	評価部位は円形の一様断面であることから,水平地震の方向 が異なる。したがって,水平2方向の地震力を組み合わせた場 向の影響は軽衡である。【補足説明資料3】	司上	評価部位は円形の一様断面であることから,水平地震の方向 が異なる。したがって,水平2方向の地震力を組み合わせた すの影響は軽微である。【補足説明資料3】	支配的な応力は水平地震による曲げ応力であり、曲げ応力の 向で異なるため影響は軽微である。	ボルトは円周状に配置され、水平地震の方向毎に最大応力 る。したがって水平2方向の影響は軽微である。	水平2方向入力時のボルトに発生するせん断応力を検討した約 地震における最大応答の非同時性を考慮することにより, } る。	上記の引張応力及びせん断応力は、水平2方向の影響が軽微 芯力も水平2方向の影響は軽微である。	水平2方向が同時に作用した場合においても, 強軸と弱軸の 9、斜め方向に変形するのではなく, 支持構造物の強軸側と るため, 最大応力発生部位は変わらず影響は軽微である。	ПТ	干世	水平2方向が同時に作用した場合においても、強軸と弱軸の り、斜め方向に変形するのではなく、支持構造物の強軸側と るため、最大応力発生部位は変わらず影響は軽微である。	ポルトは矩形配置であり,水平2方向の入力による対角方向 し検討した結果,水平2方向地震力の最大応答の非同時性を より,影響は酸微である。【補起説明資料6】	水平2方向入力時のボルトに発生するせん断応力を検討した約 地震における最大応答の非同時性を考慮することにより, J る。【補足説明資料 6】	上記の引張応力及びせん断応力は、水平2方向の影響が軽微	
湾響経徴とした分類 ふ:水平2方向の地震力を受けた場合でも、構造により水平1方向 の地震力しか負担しないもの の地震力しか負担しないもの 3:水平2方向の地震力を受けた場 合、構造により最大応力の発生 箇所が異なるもの ごま水平2方向の地震を組み合わせ ごま水平2方向の地震を組み合わせ でも1方向の地震を組み合わせ でも1方向の地震を出たるのとの): 従来評価にて, 水平2方向の地 震力を考慮しているもの	U	O	O	g	В	В	Щ	щ	U	v	A	Α	Α	A	U	0	C	
■ 	Ι	4		\bigtriangledown	4	4		⊲	4	⊲	4		⊲	⊲	4	<		⊲	
応力分類		引張応力	せん断応力	組合せ応力	一 次一般膜応力	一次十二次応力	組合せ応力	座屈	引張応力	せん断応力	組合せ応力	一次一般膜応力	一次膜応力+一次曲げ応力	一次+二次応力	組合せ応力	引張応力	せん断応力	組合せ応力	
功地			基礎ボルト 取付ボルト		一	-	ц 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- - -		基礎ボルト			側板	<u>. · · · · · · · · · · · · · · · · · · ·</u>	開		基礎ボルト		
毁			非常用ディーゼル発電機					スカート支持たて置円筒形 器							プレート式熱交機器				

こその直交方向が ド(ねじれ振動 (3.2.4項(2)に	在記 で い の の の 離 が な た の 四 田 の の 定 の の 路 備 が の の の 響 流 な ら の の 勝 響 が な ら の の の 勝 動 動 の の の の の の の の の の 部 間 い の の の の の 部 着 部 の が た の の の 部 書 が た の の の の の 等 つ の の の の の の の の の の の の の				I					I		3次元のモデルを用いた解析により、従来よりね	したトードの心 高した討義評価 や実施しんい る。	I	1				I
 ①-2 水平2方向 ¿ 相関する振動モー 等)が生じる観点 対応) 	振動モード及び 新たな応力成分 の発生有無 ×:発生しない 〇:発生する				×					×		(>	×	×				×
	①-1の影響有無の説明	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は唯微である。 【補足説明資料3】	干担	干国	水平2方向が同時に作用した場合においても、応力評価点が区別されるため、2方向入力の影響は軽微である。	ラグ構造は径方向にスライド可能であり、水平2方向が同時に作用した場合 においても、応力評価点が区別されるため、2方向入力の影響は軽微であ る。	ラグ構造は径方向にスライド可能であり、荷重を分担する部材が地震方向に より異なるため、荷重の重ね合わせが発生せず、影響は軽微である。	上記引張応力及びせん断応力は、水平2方向の影響が確微のため、組み合わ せ応力も水平2方向の影響は軽微である。	ポルトは矩形配置であり、水平2方向の入力による対角方向への転倒を想定 し検討した結果、水平2方向地震力の最大応答の非同時性を考慮することに より、影響は軽微である。【補足説明資料6】	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより、影響は軽微とな る。【補足説明資料 6】	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため, 組合せ 応力も水平2方向の影響は軽微である。	水平2方向入力の影響がある。	子道	水平2方向入力の影響がある。	壁面に据付部材を介して支持される。 構造上、壁に垂直な方向の地震入力では据付ボルトの応力成分は引張応力の みであるのに対し、壁面と平行な方向はせん断応力及び曲げモーメントによ る引張応力が発生する。壁面と平行な応力が支配的であるため、水平2方向 の影響は軽微である。	子道	于道	ボルトは円周状に配置され,水平地震の方向毎に最大応力の発生点が異なる。したがって水平2方向の影響は軽微である。	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより,影響は軽微であ る。
影響軽徴とした分類 A:水平2方向の地震力を受けた場合でも,構造により水平1方向の地震力しか負担しないもの。の地震力しか負担しないもの。	B:水平2万向の地震力を受けた場合、 着、構造により最大応力の発生 箇所が異なるもの に、水平2万向の地震を組み合わせ でも1万向の地震による応力と 同等といえるもの 目前、米評価にて、水平2万向の地 慶力を考慮しているもの	я	В	В	В	В	£	В	O	U	U	I	I	I	V	Α	Α	В	C
①-1 水平2方向の地震	力の 重複による影響の 有無 (3.2.4項(1)に対応) ○:影響をり △:影響軽微 △:影響軽微	4	⊲	⊲		⊲	⊲	4	4	4	4	0	0	0	4	⊲	⊲	\bigtriangledown	
	応力分類	一次一般膜応力	一次膜応力+一次曲げ応力	一次+二次応力	組合せ応力	引張応力	せん断応力	組合せ応力	引張応力	せん断応力	組合せ応力	一次応力	一次+二次応力	各応力分類	引張応力	せん断応力	組合せ応力	引張応力	せん断応力
	部位		胴板		ラガ		基礎ボルト			取付ボルト		1		各部位	ボルト				取付ボルト
	設備				ラグ支持たて置き円筒形容器					その他電源設備		配管本体、サポート(多質点	梁モデル解析)	矩形構造の架構設備 (静的触 媒式水素再結合装置, 架台を 含む)	通信連絡設備(アンテナ)				水位計

4条一別紙7一添1-11

5向とその直交方向が モード(ねじれ振動 観点(3.2.4項(2)に	及び 右記の振動キー 成立 下の影響がない 成分 にとの理由 い 新たな応力成分 との理由 での理由								I			I	I			1			
 ①-2 水平2月 相関する振動 等)が生じる 対応) 	擬 動たな応力F の発生点 の × :発生しな ○ :発生する			>	<		×		>	<		×	×			>	<		
	①-1の影響有無の説明	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	ボルトは円周状に配置され,水平地震の方向毎に最大応力の発生点が異なる。したがって水平2方向の影響は軽微である。	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより, 影響は軽微であ る。	上記の引張応力及びせん断応力は、水平2方向の影響が軽微のため、組合せ 応力も水平2方向の影響は軽微である。	水平2方向入力の影響がある。	対象となる貫通部は種屋軸に沿った配置となっていることから、シール材に 加わるせん断方向及び圧縮方向の変位は、水平1方向の地震力の応答が支配 的であり、他の水平方向の地震力による応答は小さいため、水平2方向入力 の影響は軽微である。	鉛直方向加速度のみを用いた評価であるため, 水平2方向を考慮しても影響 はない。	于国	于国	水平2方向入力時のボルトに発生するせん断応力を検討した結果、水平2方向 地震における最大応答の非同時性を考慮することにより,影響は軽微であ る。	水平2方向入力の影響がある。	鉛直方向荷重が支配的であるため、水平2方向入力の影響は軽微である。	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は確徴である。【補足説明資料3】	子国	于邕	円周配置であり、水平地震の方向毎に最大応力の発生点が異なる。したがっ て水平2方向の影響は軽微である。	干胆	干慮
影響軽徴とした分類 A:水平2方向の地震力を受けた場 合でも、構造により水平1方向 の地震力しか負担しないもの	B:水井25回の20歳万を安けた3% C:水井25日の20歳万を安けた3% 箇所が異なるもの C:水平25方向の地震を組み合わせ ても11方向の地震による応力と 同等といえるもの D:従来評価にて、水平25方向の地 酸力を考慮しているもの	O	В	O	C	I	C	O	С	С	c	I	O	В	В	В	В	В	В
①-1 水平2方向の地震 + 0 - 1 - 水平2方向の地震	オ Dの ■ 後による 影響の 角焼 (3.2.4页(1)に対応) ○:影響船 あり △:影響船 微	⊲	4	4	\bigtriangledown	0	4	\bigtriangledown	\bigtriangledown	\bigtriangledown	\bigtriangledown	0	\bigtriangledown	4	4	\bigtriangledown	⊲	4	4
	応力分類	組合せ応力	引張応力	せん断応力	組合せ応力	組合せ応力	シールに生じる変位	曲げ応力	せん断応力	組合せ応力	せん断応力	各応力分類	せん断応力度	引張応力度	圧縮応力度	せん断応力度	引張応力度	せん断応力度	曲げ応力度
	投 規			取付ボルト		据付部材	シール材		謝		基礎ボルト	各部位	本体		円筒部 中間スラブ			下層円筒基部	
	設備			北った五階	へくへれ道		貫通部止水処置		「本語」を出いて、	区小別工品		逆流防止用逆止弁	原子炉ウェル遮へいプラグ			百之后大休の其珠	까지 그 가르스테우오기 2월 11년		

設備	拉 (立	応力分類	 □-1 水平2方向の地震 力の重後による影響の 有無 ○: 影響あり 	影響軽徴とした分類 A:水平2方向の地震力を受けた場 合でも、構造により水平1方向 の地震力しか負担しないもの B:水平2万向の地震力を受けた場 合、構造により最大応力の落生 箇所が異なるもの C:水平2万向の地震を組み合わせ	①-1の影響有無の説明	 ①-2 水平2万川 4周雪する振動モー 4個割する振動モージの 4時の 4	向とその直交方向が 一下 (ねじれ振動 点 (3.2.4項(2)に た 2.3.4項(2)に の た 記の 振動 モー が た の 影響がない か し アの 影響がない
			○:影響軽微	ても 1 万向の地震による応力と 同等といえるもの D: 従来評価にて、水平2方向の地 震力を考慮しているもの		の発生 × : 発生しな 〇 : 発生する	新たな応力成分が発生しないことの理由
	然料取替機構造物フ レーム ブリッジ脱線防止ラ が(本体)	引張応力	4	V	すべり方向とすべり直交方向では、それぞれの水平方向地襲を受けた場合の 挙動が異なるため、方向毎に発生応力が異なる。したがって、水平2方向の 影響は軽微である。【補足説明資料5】		1 1 1 1 2 1 2 2 2
	 (本体) 	せん断応力	4	Α	子園	T	3人びのモンバタ用いた解析により、徐米よのな
1997 1997 1997 1997 1997 1997 1997 1997	走行レーク 横行レーク	組合せ応力	4	Α	王国	0	じた キードや 考慮した 思識 詳価
way in the star way	ブリッジ脱線防止ラ グ(取付ボルト) トロリ脱線防止ラグ (取付ボルト)	せん断応力	4	Y	すべり方向とすべり直交方向では、それぞれの水平方向地震を受けた場合の 挙動が異なるため、方向毎に発生応力が異なる。したがって、水平2方向の 影響は軽微である。【補足説明資料5】		や実施してい る。
	青田	吊具荷重	4	υ	鉛直荷重のみ作用し,水平荷重が作用しないため,水平2方向入力の影響はない。	×	I
		せん断応力	⊲	Q	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		3次元のモデルを 用いた解析により 第一件本上のわ
	クレーン本体ガーダ	曲げ応力	4	D	子闿	0	いたましょる いってい しょう ほうた 単憲 はまま 一番 ほう た 単憲 詳 単
		浮上り量	4	D	子園		や実施したい る。
	落下防止金具	圧縮応力		Α	すべり方向とすべり直交方向では、それぞれの水平方向地震を受けた場合の 挙動が異なるため、方向毎に発生応力が異なる。したがって、水平2方向の 影響は軽微である。	×	I
建屋クレーン		圧縮応力	\bigtriangledown	А	同上		
	トロリストッパ	曲げ応力	⊲	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		る本正のエデタ
		組合せ応力		D	子国	1	用いた解析により、従来よりな
	үпу	陸上り量	\triangleleft	D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。	0	○だホードや地 聴した思識評価 や実施したい。
	首出	吊具荷重		D	水平2方向及び鉛直方向の地震力を組み合わせた評価を実施している。		ô
		せん断応力		В	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は軽微である。【補足説明資料3】		
超、 車, 耳, 一 胆	一般胴部	圧縮応力	⊲	υ	鉛直方向荷重のみ作用し,水平方向荷重が作用しない。したがって,水平2 方向入力の影響は軽微である。	>	
原士ア感くと解	開口集中部	曲げ応力	⊲	щ	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方向の影響は略微である。【補足説明資料3】	<	1
		組合せ応力		Ю	評価部位は円形の一様断面であることから、水平地震の方向毎に最大応力点 が異なる。したがって、水平2方向の地震力を組み合わせた場合でも水平2方 向の影響は軽微である。【補足説明資料3】		

1
100
11
TV
3###
34
ad
ΥĽ
ЧШ
- SKNZ
- 37R
+
10
-Th
115
-UX
ΨШ
順田
>
~
. `
5
- जोत
1
· HER
Ś

表2 動的/電気的機能	維持評価			-	
	①-1 水平2方向の地震力の重複 バ・エ脳部へな毎	影響権徴とした分類 A:水平2方向の地震力を受けた場合でも、構造に より水平1方向の地震力な受けた場合でも、構造に より水平1方向の地震力ものはしないもの D・+ たいた中の地産ートルのたきは、セポルト D		 ①-2 水平2方向とその直 (ねじれ振動等)が生じ 	:交方向が相関する振動モード る観点(3.2.4項(2)に対応)
穢 植	によっな(1)に対応) (3.2.4項(1)に対応) ○:影響あり △:影響略微	D:水ナン川の2008年20メンドンにある)、抽ビニメット 最大応力の多年値面が現在なもの に、水平2方向の地震を組み合わせても1方向の 地震による広力と同等といえるもの D:従来評価にて、水平2方向の地震力を考慮して いるもの	①-1の影響有無の説明	振動モード及び新たな応 力成分の発生有無 ×:発生しない 〇:発生する	左記の擬動モードの影響が ないことの理由 新たな応力成分が発生しな いことの理由
レイポ光口	0	1	軸受は円周に均等に地震力を受け持つため、水平2方向入力の影響を受ける。	×	I
横形ポンプ	4	V	現行の機能維持確認済加速度における詳細評価 ^常 で長弱部である軸系に対して、曲げに対して軸直角 方向の米平方向の地震力のみを負担し、袖の水平方向の地震力は負担しないため、水平2方向入力の 影響は軽敵である。	×	I
パンプ駆動用タービン	\bigtriangledown	g	現行の機能維持確認済加速度における詳細評価 ^部 で最弱部である弁箱(主蒸気止め弁ヨーク部(立置 き))に対して,水平25方向による最大応力の発生箇所が異なるため影響は軽微である。	×	I
立形機器用電動機	4	D	最弱部である軸受に対して、現行の機能維持確認済加速度における詳細評価 [%] において十分な裕度が 確認されており、水平2方向入力による応答増加の影響は軽微である。	×	I
橫形機器用電動機	⊲	Q	展現語であるフレームに対して、現行の機能維持確認済加速度における詳細評価 [%] において十分な裕 度が確認されており、水平2方向入力による応答増加の影響は低欲である。	×	I
空調ファン	⊲	V	現行の機能維持確認済加速度における詳細評価 ^部 で表弱部である軸系に対して、曲げに対して軸直角 方向の米平方向の地震力のみを負担し、袖の水平方向の地震力は負担しないため、水平2方向入力の 影響は確徴である。	×	I
非常用ディーゼル発電機 (機関本体)	⊲	V	現行の機能維持確認済加速度における詳細評価 ^常 で表弱部である軸系に対して、曲げに対して軸直角 方向の水平方向の地震力のみを負担し、他の水平方向の地震力は負担しないため、水平2方向入力の 影響は確徴である。	×	I
非常用ディーゼル発電機 (ガバナ)	0	I	ガバナについては水平2方向合成による広客値加の影響がある。ただし、JEM04601に記載の機能維持確認済加速度は1.86であるが、旧JNES試験より46まで機能維持を確認しているため、2方向合成加速度が 46未満であれば問題ない。	×	I
ж	0	-	チについては水平25向合成による応答増加の影響があるが、2方向合成加速度が試験にて確認した機 能維持確認済加速度未満であれば問題ない。	×	I
制御棒挿入性	0	1	水平2方向入力の影響がある。	×	I
電気盤	4	V	電気盤、制御盤等に取付けられているリレー、進断器等の電気品は、基本的に1次元的な接点のwm- にに関わる比較的単純な構造をしている。加えて、基本的には全て際、原等の通貨部材に強固に固定 されているため、器具の手線が広学はないと考えられる。したがって、確気品は本平庁向の地震力の いみを負担し、仙の水平庁内の地震力は負担しないため、水平2万向人力の影響に確能である。	×	I
伝送器•指示計		Α	伝送器・指示計の掃引試験結果において、X、Y各成分に共振点はなく、出力変動を生じないことを確 していることから、X、Y2方向成分にも共振点はないものと考えられる。 よって、X、Y2方向入力に対しても応答増加は生じないものと考えられることから、水平2方向入力の 影響は確義である。	×	I
常設代替高圧電源装置		Υ	水平2方向の入力で対角方向に応答することはないため、水平2方向の入力の影響は軽微である。	×	I
水位計	加振試験時の掃引試験により水	、平2方向に対する影響有無を確認し、方針を決定す	Ŷ		
監視カメラ	加振試験時の掃引試験により水	.平2方向に対する影響有無を確認し、方針を決定す	Ŷ		
通信連絡設備(アンテナ類)	0	1	水平2方向入力の影響がある。	×	I
※: JEAG4601で定められた評価部位の)裕度評価			_	

添付1 補足説明資料

目 次

- 水平2方向同時加振の影響評価について(原子炉圧力容器スタビライザ及び 格納容器スタビライザ)
- 2. 水平2方向同時加振の影響評価について(蒸気乾燥器支持ブラケット)
- 3. 水平2方向同時加振の影響評価について(円筒形容器)
- 4. 水平2方向同時加振の影響評価について(ダイヤフラムフロア)
- 5. 水平2方向同時加振の影響評価について(燃料取替機)
- 6. 水平2方向同時加振の影響評価について(矩形配置されたボルト)
- 7. 水平2方向同時加振の影響評価について(電気盤)

- 水平2方向同時加振の影響評価について(原子炉圧力容器スタビライザ及び 格納容器スタビライザ)
- 1.1 はじめに

本項は,原子炉圧力容器スタビライザ(以下「RPVスタビライザ」という。) 及び格納容器スタビライザ(以下「PCVスタビライザ」という。)に対する水 平2方向同時加振の影響についてまとめたものである。

RPVスラビライザとPCVスタビライザは、地震時の水平方向荷重を周方向 45°間隔で8体の構造部材にて支持する同様の設計であるため、以下水平2方 向同時加振の影響については、RPVスタビライザを代表に記載する。

1.2 現行評価の手法

RPVスタビライザは、 周方向45°間隔で8体配置されており、 第1-1図に 地震荷重と各RPVスタビライザが分担する荷重の関係を示す。

水平方向の地震荷重に関して現行評価では、RPVスタビライザ6体に各水平 方向地震力(X方向,Y方向)の最大地震力が負荷されるものとしている。

$$f = MAX \left(\frac{F_X}{4}, \frac{F_Y}{4} \right)$$

ここで,

f :RPVスタビライザ1個が受けもつ最大地震荷重

F_x: X方向地震によりスタビライザ全体に発生する荷重
 F_y: Y方向地震によりスタビライザ全体に発生する荷重

第1-1図 原子炉圧力容器スタビライザの水平地震荷重の分担(水平1方向)

1.3 水平2方向同時加振の影響

RPVスタビライザは、水平2方向の地震力を受けた場合における荷重分担に ついて、第1-2図及び第1-1表に示す。第1-2図及び第1-1表に示すとおり、 方向別地震荷重F(F_x またはF_y)に対する最大反力を受け持つ部位が異 なることが分かる。

【X方向加振時】

【Y方向加振時】

第1-2図 原子炉圧力容器スタビライザの水平地震荷重の分担(水平2方向)

	 	方向別地震力]	Fに対する反力
	112. 直	X方向	Y方向
1	0°	$F_X/4$	0
2	45°	$\sqrt{2 \times F_X/8}$	$\sqrt{2 \times F_{\rm Y}}/8$
3	90°	0	$F_{Y}/4$
4	135°	$\sqrt{2 \times F_X/8}$	$\sqrt{2 \times F_{\rm Y}}/8$
5	180°	$F_X/4$	0
6	225°	$\sqrt{2 \times F_X/8}$	$\sqrt{2 \times F_{\rm Y}}/8$
\bigcirc	270°	0	$F_{\rm Y}/4$
8	315°	$\sqrt{2 \times F_X/8}$	$\sqrt{2 \times F_{\rm Y}}/8$
	最大	$F_{\rm X}/4$	$F_{Y}/4$

第1-1表 原子炉圧力容器スタビライザ各点での分担荷重

水平2方向地震力の組合せの考慮については,第1-1表に示した水平方向反 力を用いてX方向・Y方向同時には最大の地震力が発生しないと仮定し,以下 の2つの方法にて検討を行った。

- 組合せ係数法:F_Y=0.4F_xと仮定し,X方向・Y方向のそれぞれの水平1方 向応答結果を単純和する。
- ② 最大応答の非同時性を考慮したSRSS法: F_y=F_xと仮定し, X方向・Y
 方向のそれぞれの水平1方向応答結果をSRSS法にて合成する。

上記検討の結果を第1-2表に示す。いずれの検討方法を用いても,水平2 方向反力の組合せ結果の最大値はfとなり,これは水平1方向反力の最大値と 同値である。

したがって、RPVスタビライザに対して水平2方向の影響はない。

		①組合せ係数法を用いた	②SRSS法を用いた
		水平2方向反力の組合せ	水平2方向反力の組合せ
		$(F_{Y}=0.4 F_{X})$	$(F_{Y}=F_{X})$
\bigcirc	0°	$F_X/4 = f$	$F_X/4 = f$
2	45°	$\sqrt{2 \times F_{X}/8} + \sqrt{2 \times F_{X}/8} = \sqrt{2 \times 1.4 \times F_{X}/8}$	$\sqrt{((2 imes F_{\rm X}/8)^2 + (2 imes F_{\rm X}/8)^2)}$
		$=0.990 \times F_X/4 < f$	= F _x /4 $<$ f
3	90°	$F_{\rm Y}/4$ =0.4× $F_{\rm X}/4$ < f	$F_{ m Y}/4=F_{ m X}/4$ < f
4	135°	$\sqrt{2 \times F_X/8} + \sqrt{2 \times F_X/8} = \sqrt{2 \times 1.4 \times F_X/8}$	$\sqrt{((2 \times F_X/8)^2 + (2 \times F_X/8)^2)}$
		$=0.990 \times F_X/4 < f$	= F _x /4 < f
5	180°	$F_x/4 = f$	$F_{\rm X}/4 = f$
6	225°	$\sqrt{2 \times F_X/8} + \sqrt{2 \times F_X/8} = \sqrt{2 \times 1.4 \times F_X/8}$	$\sqrt{((2 \times F_X/8)^2 + (2 \times F_X/8)^2)}$
		$=0.990 \times F_X/4 < f$	= F _x /4 < f
\bigcirc	270°	$F_{\rm Y}/4$ =0.4× $F_{\rm X}/4$ < f	$F_{ m Y}/4=F_{ m X}/4$ < f
8	315°	$\sqrt{2 \times F_{X}/8} + \sqrt{2 \times F_{X}/8} = \sqrt{2 \times 1.4 \times F_{X}/8}$	$\sqrt{((2 \times F_X/8)^2 + (2 \times F_X/8)^2)}$
		$=0.990 \times F_X/4 < f$	= F _x /4 $<$ f
	最大	$F_X/4 = f$	$F_{Y}/4 = f$

第1-2表 RPV スタビライザ各点における水平2方向の考慮

2. 水平2方向同時加振の影響評価について(蒸気乾燥器支持ブラケット)

2.1 はじめに

本項は、蒸気乾燥器支持ブラケットに対する水平2方向同時加振の影響に ついてまとめたものである。

2.2 現行評価の手法

蒸気乾燥器支持ブラケットは、4体配置されており、位置関係は第2-1図 の通りとなる。

第2-1図 蒸気乾燥器支持ブラケット配置図

蒸気乾燥器支持ブラケットは,4体で耐震用ブロックを介し蒸気乾燥器ユニットを支持する設計である。しかし,耐震用ブロックと蒸気乾燥器支持ブラケットの間にはクリアランスが存在し,水平地震動の入力方向によっては,4体のうち対角のブラケット2体のみがその荷重を負担する可能性があるため,現行評価では対角のブラケット2体により,水平2方向の地震荷重を支持するものとして評価している。

第2-2図に評価においてブラケットに負荷される水平方向の地震荷重を示す。 f = MAX($\frac{F_x}{2}$, $\frac{F_y}{2}$)

f:蒸気乾燥器ユニットから受ける地震荷重
 F_x: X方向地震よりブラケット全体に発生する荷重
 F_y: Y方向地震よりブラケット全体に発生する荷重

第2-2図 評価におけるブラケットの負荷状態

2.3 水平2方向同時加振の影響

蒸気乾燥器支持ブラケットは、現行評価において、水平2方向の地震荷重 を同時に考慮し、ブラケットと耐震ブロックの接触状態として想定される 最も厳しい状態として、4体のブラケットのうち2体で荷重を支持すると評 価しており、水平2方向同時加振による現行の評価結果への影響はない。

- 3 水平2方向同時加振の影響評価について(円筒形容器)
- 3.1 はじめに

本項は,水平地震動が水平2方向に作用した場合の円筒形容器に対する影響検討をFEMモデルを用いた解析で確認した結果をまとめたものである。

容器については,X方向地震とY方向地震とでは最大応力点が異なるため, それぞれの地震による応力を組み合わせても影響軽微としている。本項で は解析にて影響確認することを目的として,円筒形容器のFEMモデルを 用いた解析を実施した結果を示す。ここで,本検討は軸方向応力,周方向 応力及びせん断応力の組合せにより確認を行うため,胴の組合せ一次応力 を対象としたものである。

具体的な確認項目として,以下2点を確認した。

- ① X方向地震とY方向地震とで最大応力点が異なることへの確認
- ② 最大応力点以外に、X方向地震とY方向地震による応力を組み合わせた場合に影響のあるような点があるかを確認
- 3.2 影響評価検討

評価検討モデルを第3-1図に示す。検討方法を以下に示す

- ・検討方法 :水平地震力1Gを、X方向(0°方向)へ入力し、周方向の
 0°方向から90°方向にかけて応力分布を確認する。また、水平1方向地震による応力を用いて水平2方向地震による応力を評価する。
- ・検討モデル:たて置き円筒形容器をシェル要素にてモデル化
- ・拘束点 :容器基部を拘束
- ・荷重条件 :モデル座標のX方向に水平地震力1Gを負荷

- •解析方法 :静的解析
- ・対象部位及び応力 : 容器基部における応力
- ・水平2方向同時加振時の組合せ方法
 - 組合せ係数法(最大応答の非同時性を考慮)
 - SRSS法(最大応答の非同時性を考慮)

第3-1図 評価検討モデル

- 3.3 検討結果
- 3.3.1 軸方向応力σ_x

容器基部における水平地震時の軸方向応力コンタ図を第3-2図に示す。

この結果により,最大応力点は0°/180°位置に発生していることが分かる。円筒形容器のため評価部位が円形の一様断面であることから,Y方向から水平地震力を入力した場合においても,最大応力点は90°/270°位置に発生することは明白であるため,水平方向地震動の入力方向により最大応力点は異なる。

また,第3-1表にX方向,Y方向,2方向入力時の軸方向応力分布を示す。

中間部(0° /90° 方向以外)において2方向入力時の影響が確認できる。 なお,組合せ係数法及びSRSS法のそれぞれを用いた水平2方向入力時の 応力 σ_{xc}(θ)及び σ_{xs}(θ)は,水平1方向入力時の軸方向応力解析結果(X

4条一別紙7一添1-23

方向入力時応力 σ_{x,x}(θ), Y方向入力時応力 σ_{x,y}(θ)) により,以下のとお り算出する。

<組合せ係数法>

 $\sigma_{x,c}(\theta) = \max (\sigma_{x,c(X)}(\theta), \sigma_{x,c(Y)}(\theta))$

ただし, $\sigma_{x,c(X)}(\theta)$ は $\sigma_{x,X}(\theta)$ に1, $\sigma_{x,Y}(\theta)$ に0.4の係数を乗じてX・Y方 向入力時それぞれの軸応力を組み合わせた応力, $\sigma_{x,c(Y)}(\theta)$ は $\sigma_{x,Y}(\theta)$ に 1, $\sigma_{x,X}(\theta)$ に0.4の係数を乗じてX・Y方向入力時それぞれの応力を組み合 わせた応力であり,以下のように表わされる。

$$\sigma_{x, c(X)}(\theta) = \sigma_{x, X}(\theta) + 0.4 \times \sigma_{x, Y}(\theta)$$

$$\sigma_{x,c(Y)}(\theta) = 0.4 \times \sigma_{x,X}(\theta) + \sigma_{x,Y}(\theta)$$

< S R S S 法>

$$\sigma_{x,s}(\theta) = \sqrt{\sigma_{x,x}(\theta)^2 + \sigma_{x,y}(\theta)^2}$$

第3-2図 水平地震時軸方向応力コンタ図

<i>在</i>	X方向入力時	Y方向入力時	2方向入力時応	力(MPa)
円皮	$\sigma_{x,x}(\theta)$	$\sigma_{x, Y}(\theta)$	組合せ係数法 σ _{x,c} (θ)	S R S S 法 σ _{x,s} (θ)
0°方向	12.28	0.00	$ \begin{array}{c} 12.28 \\ \sigma_{x, c(X)}(0^{\circ}) = 12.28 \\ \sigma_{x, c(Y)}(0^{\circ}) = 4.91 \end{array} $	12.28
22.5°方向	11.34	4.70	$\begin{array}{c} 13.22 \\ \sigma_{x, c(X)}(22.5^{\circ}) = 13.22 \\ \sigma_{x, c(Y)}(22.5^{\circ}) = 9.24 \end{array}$	12.28
45°方向	8.68	8.68	12.15 $\sigma_{x, c(X)} (45^{\circ}) = 12.15$ $\sigma_{x, c(Y)} (45^{\circ}) = 12.15$	12.28
67.5°方向	4.70	11.34	$13. 22 \sigma_{x, c(X)} (67. 5^{\circ}) = 9.24 \sigma_{x, c(Y)} (67. 5^{\circ}) = 13.22$	12.28
90°方向	0.00	12.28	$\frac{12.28}{\sigma_{x, c(X)}(90^{\circ})=4.91}$ $\sigma_{x, c(Y)}(90^{\circ})=12.28$	12.28

第3-1表 水平地震時の軸方向応力分布

3.3.2 周方向応力σ。

容器基部における水平地震時の周方向応力コンタ図を第3-3図に,周方 向応力分布を第3-2表に示す。軸方向応力同様に最大応力点は0°/180° 位置に発生しており,最大応力点が異なることについて確認できる。

また,2方向入力時の影響についても軸方向応力と同様に中間部(0°/ 90°方向以外)において2方向入力時の影響が確認できる。なお,組合せ係 数法及びSRSS法のそれぞれを用いた水平2方向入力時の応力σ_{φ,e}(θ) 及びσ_{φ,s}(θ)は,水平1方向入力時の周方向応力解析結果(X方向入力時応

力 $\sigma_{\phi,x}(\theta)$),Y方向入力時応力 $\sigma_{\phi,x}(\theta)$)により,以下のとおり算出する。 <組合せ係数法>

 $\sigma_{\phi,c}(\theta) = \max (\sigma_{\phi,c(X)}(\theta), \sigma_{\phi,c(Y)}(\theta))$

ただし、 $\sigma_{\phi,c(X)}(\theta)$ は $\sigma_{\phi,X}(\theta)$ に1、 $\sigma_{\phi,Y}(\theta)$ に0.4の係数を乗じてX・ Y方向入力時それぞれの軸応力を組み合わせた応力、 $\sigma_{\phi,c(Y)}(\theta)$ は σ 4条-別紙7-添1-25 $_{\phi,Y}(\theta)$ に0.4, $\sigma_{\phi,X}(\theta)$ に1の係数を乗じてX・Y方向入力時それぞれの応力 を組み合わせた応力であり,以下のように表わされる。

$\sigma_{\phi,c(X)}(\theta) = \sigma_{\phi,X}(\theta) + 0.4 \times \sigma_{\phi,Y}(\theta)$

$$\sigma_{\phi,c(Y)}(\theta) = 0.4 \times \sigma_{\phi,X}(\theta) + \sigma_{\phi,Y}(\theta)$$

< S R S S 法>

$$\sigma_{\phi,s}(\theta) = \sqrt{\sigma_{\phi,X}(\theta)^2 + \sigma_{\phi,Y}(\theta)^2}$$

第3-3図 水平地震時周方向応力コンタ図

	X方向入力時	Y方向入力時	2方向入力時応	力(MPa)
月 及	$\sigma_{\phi, X}(\theta)$	$\sigma_{\phi,Y}(\theta)$	組合せ係数法 σ _{φ,c} (θ)	S R S S 法 σ _{φ,s} (θ)
0° 方向	3.54	0.00	3.54 $\sigma_{\phi,c(X)}(0^{\circ})=3.54$ $\sigma_{\phi,c(Y)}(0^{\circ})=1.42$	3.54
22.5° 方向	3.27	1.35	$3.81 \\ \sigma_{\phi,c(X)} (22.5^{\circ}) = 3.81 \\ \sigma_{\phi,c(Y)} (22.5^{\circ}) = 2.66$	3.54
45°方向	2.50	2.50	$3.50 \\ \sigma_{\phi,c(X)} (45^{\circ}) = 3.50 \\ \sigma_{\phi,c(Y)} (45^{\circ}) = 3.50$	3.54
67.5°方向	1.35	3.27	$\begin{array}{c} 3.81 \\ \sigma_{\phi,c(X)} (67.5^{\circ}) = 2.66 \\ \sigma_{\phi,c(Y)} (67.5^{\circ}) = 3.81 \end{array}$	3.54
90°方向	0.00	3.54	$3.54 \\ \sigma_{\phi,c(X)}(90^{\circ}) = 1.42 \\ \sigma_{\phi,c(Y)}(90^{\circ}) = 3.54$	3.54

第3-2表 水平地震時の周方向応力分布

3.3.3 せん断応力τ

容器基部における水平地震時のせん断応力コンタ図を第3-4図に,周方 向応力分布を第3-3表に示す。せん断応力は軸方向及び周方向応力とは異 なり,最大応力は90°/270°位置に生じているが,最大応力最小応力の生 じる点が回転しているのみで応力の傾向として最大応力点が異なることに ついて確認できる。

また,2方向入力時の影響についても同様に中間部(0°/90°方向以外) において2方向入力時の影響が確認できる。なお,組合せ係数法及びSRS S法のそれぞれを用いた水平2方向入力時の応力τ_o(θ)及びτ_s(θ)は,水 平1方向入力時の周方向応力解析結果(X方向入力時応力τ_x(θ)),Y方向入 力時応力τ_y(θ))により,以下のとおり算出する。 <組合せ係数法>

 $\tau_{c}(\theta) = \max (\tau_{c(X)}(\theta), \tau_{c(Y)}(\theta))$

ただし、 $\tau_{c(X)}(\theta)$ は $\tau_{X}(\theta)$ に1、 $\tau_{Y}(\theta)$ に0.4の係数を乗じてX・Y方向 入力時それぞれの軸応力を組み合わせた応力、 $\tau_{c(Y)}(\theta)$ は $\tau_{Y}(\theta)$ に1、 $\tau_{Y}(\theta)$ に0.4の係数を乗じてX・Y方向入力時それぞれの応力を組み合わせ た応力であり、以下のように表わされる。

$$\tau_{c(X)}(\theta) = \tau_{X}(\theta) + 0.4 \times \tau_{Y}(\theta)$$

$$\tau_{c(Y)}(\theta) = 0.4 \times \tau_{X}(\theta) + \tau_{Y}(\theta)$$

< S R S S 法>

$$\tau_{s}(\theta) = \sqrt{\tau_{X}(\theta)^{2} + \tau_{Y}(\theta)^{2}}$$

第3-4図 水平地震時せん断応力コンタ図

<i>在</i>	X方向入力時	Y方向入力時	2方向入力時応	力(MPa)
円皮	$\tau_{\rm X}(\theta)$	$\tau_{\rm Y}(\theta)$	組合せ係数法 $\tau_{c}(\theta)$	S R S S 法 τ s(θ)
0°方向	0.00	2.70	$\begin{array}{c} 2.70 \\ \tau_{c(X)}(0^{\circ}) = 1.08 \\ \tau_{c(Y)}(0^{\circ}) = 2.70 \end{array}$	2.70
22.5° 方向	1.03	2.49	$\begin{array}{c} 2.91 \\ \tau_{c(X)} (22.5^{\circ}) = 2.03 \\ \tau_{c(Y)} (22.5^{\circ}) = 2.91 \end{array}$	2.70
45°方向	1.91	1.91	$\begin{array}{c} 2.67 \\ \tau_{c(X)} (45^{\circ}) = 2.67 \\ \tau_{c(Y)} (45^{\circ}) = 2.67 \end{array}$	2.70
67.5°方向	2.49	1.03	$\begin{array}{c} 2.91 \\ \tau_{\circ(X)} (67.5^{\circ}) = 2.91 \\ \tau_{\circ(Y)} (67.5^{\circ}) = 2.03 \end{array}$	2.70
90°方向	2.70	0.00	$\begin{array}{c} 2.70 \\ \tau_{c(X)} (90^{\circ}) = 2.70 \\ \tau_{c(Y)} (90^{\circ}) = 1.08 \end{array}$	2.70

第3-3表 水平地震時のせん断応力分布

3.3.4 組合せ応力強さσ

胴の組合せ応力強さσは,第3-1表から第3-3表に示したX方向,Y方向, 2方向入力時それぞれの軸方向応力σ_x,周方向応力σ_φ及びせん断応力τを 用いて算出する。

<水平1方向のうち、X方向入力時の組合せ応力強さ $\sigma_x(\theta)$ >

主応力 $\sigma_{1,X}(\theta)$, $\sigma_{2,X}(\theta)$, $\sigma_{3,X}(\theta)$ は以下のとおり表わされる。 $\sigma_{1,X}(\theta) = \frac{1}{2} \left\{ \sigma_{x,X}(\theta) + \sigma_{\phi,X}(\theta) + \sqrt{(\sigma_{x,X}(\theta) - \sigma_{\phi,X}(\theta))^{2} + 4\tau_{X}(\theta)^{2}} \right\}$ $\sigma_{2,X}(\theta) = \frac{1}{2} \left\{ \sigma_{x,X}(\theta) + \sigma_{\phi,X}(\theta) - \sqrt{(\sigma_{x,X}(\theta) - \sigma_{\phi,X}(\theta))^{2} + 4\tau_{X}(\theta)^{2}} \right\}$ $\sigma_{3,X}(\theta) = 0$

各主応力により、応力強さ $\sigma_{x}(\theta)$ は以下のとおりとなる。 $\sigma_{x}(\theta) = \max(|\sigma_{1,x}(\theta) - \sigma_{2,x}(\theta)|, |\sigma_{2,x}(\theta) - \sigma_{3,x}(\theta)|, |\sigma_{3,x}(\theta) - \sigma_{1,x}(\theta)|)$ なお、Y方向入力時の組合せ応力強さ $\sigma_{y}(\theta)$ は、上記の式におけるXをY

に置き換えた式により算出する。

ここで, $\theta = 0^{\circ}$ の場合, 第3-1表より $\sigma_{x,x}(0^{\circ}) = 12.28$, 第3-2表より $\sigma_{\phi,x}(0^{\circ}) = 3.54$, 第3-3表より $\tau_{x}(0^{\circ}) = 0$ であるため, $\sigma_{1,x}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 + \sqrt{(12.28 - 3.54)^{2} + 4(0)^{2}}\} = 12.28$ $\sigma_{2,x}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 - \sqrt{(12.28 - 3.54)^{2} + 4(0)^{2}}\} = 3.54$ $\sigma_{3,x}(0^{\circ}) = 0$

となる。したがって,

 $\sigma_{X}(0^{\circ}) = \max(|12.28 - 3.54|, |3.54 - 0|, |0 - 12.28|) = 12.28$

<組合せ係数法による水平2方向入力時の組合せ応力強さσ_c(θ)> σ_c(θ)の算出フローを第3-5図に示す。

第3-5図 組合せ係数法による組合せ応力算出フロー

X方向入力時の応力に1,X方向入力時の応力に0.4を乗じて組み合わせた 水平2方向入力時を考慮した応力は以下の通りとする。

 $\sigma_{x, c(X)}(\theta) = \sigma_{x, X}(\theta) + 0.4 \times \sigma_{x, Y}(\theta)$

 $\sigma_{\phi,c(X)}(\theta) = \sigma_{\phi,X}(\theta) + 0.4 \times \sigma_{\phi,Y}(\theta)$

 $\tau_{c(X)}(\theta) = \tau_{X}(\theta) + 0.4 \times \tau_{Y}(\theta)$

水平2方向入力時を考慮した各応力により主応力 $\sigma_{1,c(X)}(\theta), \sigma_{2,c(X)}(\theta), \sigma_{3,c(X)}(\theta)$ は以下のとおり表わされる。

 $\sigma_{1,c(X)}(\theta) = \frac{1}{2} \{\sigma_{x,c(X)}(\theta) + \sigma_{\phi,c(X)}(\theta) + \sqrt{(\sigma_{x,c(X)}(\theta) - \sigma_{\phi,c(X)}(\theta))^{2} + 4\tau_{c(X)}(\theta)^{2}}\}$ $\sigma_{2,c(X)}(\theta) = \frac{1}{2} \{\sigma_{x,c(X)}(\theta) + \sigma_{\phi,c(X)}(\theta) - \sqrt{(\sigma_{x,c(X)}(\theta) - \sigma_{\phi,c(X)}(\theta))^{2} + 4\tau_{c(X)}(\theta)^{2}}\}$ $\sigma_{3,c(X)}(\theta) = 0$

各主応力により、応力強さ $\sigma_{c(X)}(\theta)$ は以下の通りとなる。 $\sigma_{c(X)}(\theta) = \max(|\sigma_{1,c(X)}(\theta) - \sigma_{2,c(X)}(\theta)|, |\sigma_{2,c(X)}(\theta) - \sigma_{3,c(X)}(\theta)|, |\sigma_{3,c(X)}(\theta) - \sigma_{1,c(X)}(\theta)|)$

同様に、Y方向入力時の応力に1, X方向入力時の応力に0.4を乗じて組み 合わせた水平2方向入力時を考慮した応力により、応力強さσ_{e(Y)}(θ)を算 出する。

この応力強さ $\sigma_{c(X)}(\theta)$ と $\sigma_{c(Y)}(\theta)$ とを比較し、大きいほうの値を $\sigma_{c(\theta)}(\theta)$ とする。

 $\sigma_{c}(\theta) = \max (\sigma_{c(X)}(\theta), \sigma_{c(Y)}(\theta))$

ここで, $\theta = 0^{\circ}$ の場合, 第3-1表より $\sigma_{x,c(X)}(0^{\circ}) = 12.28$, 第3-2表よ り $\sigma_{\phi,c(X)}(0^{\circ}) = 3.54$, 第3-3表より $\tau_{c(X)}(0^{\circ}) = 1.08$ であるため, $\sigma_{1,c(X)}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 + \sqrt{(12.28 - 3.54)^2 + 4(1.08)^2} \} = 12.41$ $\sigma_{2,c(X)}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 - \sqrt{(12.28 - 3.54)^2 + 4(1.08)^2} \} = 3.41$ $\sigma_{3,c(X)}(0^{\circ}) = 0$

となる。したがって、応力強さ $\sigma_{c(X)}(0^{\circ})$ は以下のとおり算出される。 $\sigma_{c(X)}(0^{\circ}) = \max(|12.41-3.41|, |3.41-0|, |0-12.41|) = 12.41$

同様に,第3-1表より $\sigma_{x,c(Y)}(0^{\circ})=4.91$,第3-2表より $\sigma_{\phi,c(Y)}(0^{\circ})=1.42$, 第3-3表より $\tau_{c(Y)}(0^{\circ})=2.70$ であるため,

 $\sigma_{1, c(Y)}(0^{\circ}) = \frac{1}{2} \left\{ 4.91 + 1.42 + \sqrt{(4.91 - 1.42)^{2} + 4(2.70)^{2}} \right\} = 6.38$ $\sigma_{2, c(Y)}(0^{\circ}) = \frac{1}{2} \left\{ 4.91 + 1.42 - \sqrt{(4.91 - 1.42)^{2} + 4(2.70)^{2}} \right\} = -0.05$ $\sigma_{3, c(Y)}(0^{\circ}) = 0$

となる。したがって、応力強さ $\sigma_{c(Y)}(0^{\circ})$ は以下のとおり算出される。 $\sigma_{c(Y)}(0^{\circ}) = \max(|6.38 - (-0.05)|, |-0.05 - 0|, |0 - 6.38|) = 6.43$

応力強さ $\sigma_{c(X)}(0^{\circ})$ と $\sigma_{c(Y)}(0^{\circ})$ により,組合せ係数法による水平2方向入力時を考慮した応力強さ $\sigma_{c}(0^{\circ})$ は,

 $σ_{c}(\theta) = \max (12.41, 6.43) = 12.41$ となる。

<SRSS法による水平2方向入力時を考慮した組合せ応力強さ $\sigma_{s}(\theta)>$

主応力 $\sigma_{1,s}(\theta)$, $\sigma_{2,s}(\theta)$, $\sigma_{3,s}(\theta)$ は以下のとおり表わされる。 $\sigma_{1,s}(\theta) = \frac{1}{2} \{\sigma_{x,s}(\theta) + \sigma_{\phi,s}(\theta) + \sqrt{(\sigma_{x,s}(\theta) - \sigma_{\phi,s}(\theta))^2 + 4\tau_s(\theta)^2}\}$ $\sigma_{2,s}(\theta) = \frac{1}{2} \{\sigma_{x,s}(\theta) + \sigma_{\phi,s}(\theta) - \sqrt{(\sigma_{x,s}(\theta) - \sigma_{\phi,s}(\theta))^2 + 4\tau_s(\theta)^2}\}$ $\sigma_{3,s}(\theta) = 0$

各主応力により、応力強さ $\sigma_{s}(\theta)$ は以下の通りとなる。 $\sigma_{s}(\theta) = \max(|\sigma_{1,s}(\theta) - \sigma_{2,s}(\theta)|, |\sigma_{2,s}(\theta) - \sigma_{3,s}(\theta)|, |\sigma_{3,s}(\theta) - \sigma_{1,s}(\theta)|)$

ここで, $\theta = 0^{\circ}$ の場合, 第3-1表より $\sigma_{x,s}(0^{\circ}) = 12.28$, 第3-2表より $\sigma_{\phi,s}(0^{\circ}) = 3.54$, 第3-3表より $\tau_{s}(0^{\circ}) = 2.70$ であるため, $\sigma_{1,s}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 + \sqrt{(12.28 - 3.54)^{2} + 4(2.70)^{2}} \} = 13.05$ $\sigma_{2,s}(0^{\circ}) = \frac{1}{2} \{12.28 + 3.54 - \sqrt{(12.28 - 3.54)^{2} + 4(2.70)^{2}} \} = 2.77$ $\sigma_{3,s}(0^{\circ}) = 0$

となる。したがって、 $\sigma_{s}(0^{\circ}) = \max(|13.05-2.77|, |2.77-0|, |0-13.05|) = 13.05$

 $\theta = 0^{\circ}$ の場合に、SRSS法、組合せ係数法を用いて算出した応力強さ を第3-4表に示す。 組合せ係数法を用いて算出した応力強さ(0=0° S 法, S R S 第3-4表

 \frown

	>	^	<u></u> よっ い し い	組合せ	係数法
	<	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$1.0 \times X + 0.4 \times Y$	0. $4 \times X + 1$. $0 \times Y$
$\sigma_{\rm x}(\theta)$	12.28	0.00	$\sqrt{(12.28^2 + 0.00^2)} =$	$12.28 \times 1.0 + 0.00 \times 0.4 =$	$12.28 \times 0.4 + 0.00 \times 1.0 =$
			12. 28	12.28	4.91
$\sigma_{\phi}(\theta)$	3.54	0.00	$\sqrt{(3.54^2 + 0.00^2)} =$	$3.54 \times 1.0 + 0.00 \times 0.4 =$	$3.54 \times 0.4 + 0.00 \times 1.0 =$
			3.54	3. 54	1.42
σ_{τ} (θ)	0.00	2.70	$\sqrt{(0, 00^2 + 2, 70^2)} =$	$0.00 \times 1.0 + 2.70 \times 0.4 =$	$0.00 \times 0.4 + 2.70 \times 1.0 =$
			2.70	1. 08	2.70
$\sigma_{1}(\theta)$	I	I	$1/2 \times [12.28+3.54+$	$1/2 \times [12, 28+3, 54+$	$1/2 \times [4.91+1.42+$
			$\sqrt{\left\{\left(12, 28-3, 54\right)^{2}+4 \times 2, 70^{2}\right\}\right]} =$	$\sqrt{\left\{\left(12, 28-3, 54\right)^2 + 4 \times 1, 08^2\right\}\right]} =$	$\sqrt{\left\{\left(4, 91 - 1, 42\right)^{2+4} \times 2, 70^{2}\right\}}\right] =$
			13. 05	3.41	6.38
$\sigma_2(\theta)$	I	I	$1/2 \times [12.28+3.54-$	$1/2 \times [12, 28+3, 54-$	$1/2 \times [4.91+1.42-$
			$\sqrt{\left\{\left(12, 28-3, 54\right)^{2}+4 \times 2, 70^{2}\right\}\right]} =$	$\sqrt{\left\{\left(12, 28-3, 54\right)^2 + 4 \times 1, 08^2\right\}\right]} =$	$\sqrt{\left\{\left(4, 91 - 1, 42\right)^{2 + 4} \times 2, 70^{2}\right\}}\right] =$
			2.77	12.41	-0. 05
$\sigma_3(\theta)$	Ι	Ι	0	0	0
σ (θ)		I	MAX	MAX	MAX
			(13.05-2.77 , 2.77-0 , 0-13.05 =	(3.41-12.41 , 12.41-0 , 0-3.41 =	(6.38-(-0.05) , -0.05-0 , 0-6.38) =
			13. 05	12.41	6.43
				MAX (12.41,	5.43) =12.41

他表の数値と一致しないことがある。 (注) 本表記載の数値は計算例を示すものであり, 桁処理の関係上, 算出した応力強さの分布及び分布図を第3-5表及び第3-6図に示す。

角度	X方向入力時 応力強さ	Y方向入力時 応力強さ (MPa) σ _Y (θ)	2方向入力時応力強さ(MPa)	
	(MPa) σ _X (θ)		組合せ係数法 σ _c (θ)	SRSS法 σ _s (θ)
0° 方向	12.28	5.40	12.41	13.04
22.5°方向	11.47	6.03	13.64	13.04
45°方向	9.22	9.22	12.91	13.04
67.5°方向	6.03	11.47	13.64	13.04
90°方向	5.40	12.28	12.41	13.04

第3-5表 水平地震時の組合せ応力強さ

第3-6図 水平地震時組合せ応力強さ分布図

組合せ応力強さは、SRSS法では全方向において一定であるのに対して、 組合せ係数法では24.75°及び65.25°にピークを持つ分布となった。組合せ 応力強さは0°、45°及び90°付近ではSRSS法のほうが組合せ係数法に比 べ大きな値となるのに対して、組合せ係数法がピークを持つ24.75°及び 65.25°付近ではSRSS法を約5%上回る結果となった。

水平2方向入力時のSRSS法による組合せ最大応力強さは,第3-6表に示 すとおり水平1方向入力時の最大応力強さに対して6%上回る程度であり,水 平2方向による影響は軽微といえる。

一方,水平2方向入力時の組合せ係数法による組合せ最大応力強さについて は,水平1方向入力時の最大応力強さに対して11%上回る結果となった。これ は水平2方向入力時の影響軽微と判断する基準(応力の増分が1割)を超えて いるが,本検討においては水平地震力のみを考慮しており,実際の耐震評価 においては水平地震力以外に自重,内圧及び鉛直地震力等を考慮して評価を 実施することから,水平2方向を考慮した際の応力強さの増分は小さくなる。

このため、水平2方向による影響は軽微であると考えられるため、詳細設計 段階で、影響軽微とした判断する基準(応力の増分が1割)以下であること を確認する。

		最大組合せ応力強さ	水平2方向/水平1方向
		(MPa)	最大応力強さ比
水平1方向入;	Ъ	12.28	1.00
水平2方向	SRSS法	13.05	1.06
入力	組合せ係数法	13.67	1.11

第3-6表 水平地震時の最大組合せ応力強さ及び水平2方向による影響

4. 水平2方向同時加振の影響評価について(ダイヤフラムフロア)

4.1 はじめに

本項は、ダイヤフラムフロアに対する水平2方向同時加振の影響について まとめたものである。

4.2 ダイヤフラムフロアの構造

ダイヤフラムフロアは、格納容器をドライウェルとサプレッションチェン バとを隔離する構造物であり、上部及び下部に断熱層を持った鉄筋コンクリ ート製の構造用スラブで構成されている。垂直方向の荷重は、鉄筋コンクリ ート製スラブから鉄骨梁に伝えられ、その下部にあるペデスタルび鉄骨の柱 で支持されている。水平方向の荷重も同様に鉄骨梁から原子炉本体基礎及び 格納容器周囲に設置されたシアラグを介して原子炉建屋に伝達される(第4 -1図)。

第4-1図 ダイヤフラムフロアの構造

```
4条一別紙7一添1-38
```

4.3 水平2方向同時加振の影響

構造用スラブ及び鉄骨梁は,水平方向に広がりを有することから,作用す る荷重は鉛直方向の荷重が支配的であり,水平2方向の地震に対して影響は 軽微である。また,同様に構造用スラブ及び鉄骨梁を支持する柱についても, 各構造物からの鉛直方向の荷重を受ける構造であるため,水平2方向の地震 に対する影響はない。

水平地震力を構造用スラブから鉄骨梁に伝達するシャーコネクタに対する 水平2方向の地震の影響について整理する。地震時にダイヤフラムフロア全 体に加わる水平力Qとした場合,シャーコネクタが設置されているダイヤフ ラムフロア端部に加わる水平力qは,第4-2図に示すとおりsin分布とし て与えられるため,地震方向との角度θが90°の位置で最大となることから, NS, EW 方向 で最大となる地震力の位置は異なる(第4-3図)。

さらに,水平2方向同時加振時の水平力は,第4-4図に示すとおり水平1 方向加振時の最大の水平力と比較しSRSS法を用いた場合は同値,組合せ 係数法を用いた場合は最大で約1.08倍の値となるため,水平2方向同時加 振の影響は軽微である。

また、ダイヤフラムフロアは、水平方向に広がりを持った構造物であるこ とから、鉛直方向の地震力に対する影響を無視できないため、水平2方向に 鉛直方向を加えた影響の確認を行う。

なお、地震応答解析結果から得られたダイヤフラムフロアの評価に用いる 既工認時の荷重及び今回工認の荷重の比較を第4-1表に、既工認における ダイヤフラムフロア主要部材における地震荷重の割合を第4-2表及び第4 -3表に示す。今回工認の評価用荷重に比べ既工認の評価用荷重が大きいこ と、また既工認の評価結果から事故時の温度、圧力等による荷重は評価に一

定の影響を与えることが分かる。以上より,水平2方向同時加振による影響 は,ダイヤフラムフロアにおける実際の評価では,事故時荷重として圧力, 熱荷重等を考慮して評価するため,水平方向地震力の寄与度を踏まえると水 平2方向同時加振における影響は軽微であるものと考えられるが,詳細設計 段階で具体的な評価結果を用いた確認を行う。

	既工認 (評価用地震×1.5)	今回工認 (S _s 応答包絡値)
評価用荷重	9,530 kN	7,570 kN

第4-1表 ダイヤフラムフロア評価用荷重の比較

第4-2表 ダイヤフラムフロア(構造用スラブ)の既工認の応力度割合

	自重及び 鉛直地震	水平地震	事故時等
コンクリートの 圧縮応力度	0.4 %	11.9 %	87.7 %
鉄筋の 圧縮応力度	0.7 %	31.1 %	68.2 %
鉄筋の 引張応力度	0.6 %	68.2 %	31.2 %
面外せん断	1.8 %	_	98.2 %
面内せん断	_	100 %	_

第4-3表 ダイヤフラムフロア(柱)の既工認の荷重割合

	自重	鉛直地震	事故時差圧
圧縮荷重	10.8 %	2.6 %	86.6 %

Q:地震時にダイヤフラムフロア全体が受ける水平力 q:ダイヤフラム端部に作用する水平力

第4-2図 ダイヤフラムフロア端部における水平力の分布

第4-3図 シヤーコネクタに与える水平2方向地震組合せの影響

NS 加振時水平力: $q_{NS}=Q/\pi r \times \sin \theta_1$ EW 加振時水平力: $q_{EW}=Q/\pi r \times \sin \theta_2$ = $Q/\pi r \times \sin(\pi/2+\theta_1)$ = $Q/\pi r \times \cos \theta_1$

<組合せ係数法を用いた2方向入力時水平力>

$$q = \max(q_{NS} + 0.4 \times q_{EW}, 0.4 \times q_{NS} + q_{EW})$$
$$= Q/\pi r \times \max(\sin\theta_1 + 0.4 \times \cos\theta_1, 0.4 \times \sin\theta_1 + \cos\theta_1)$$

<SRSS法を用いた2方向入力時水平力>

$$q = \sqrt{(q_{NS}^{2} + q_{EW}^{2})}$$

= $\sqrt{((Q/\pi r \times \sin \theta_{1})^{2} + (Q/\pi r \times \cos \theta_{1})^{2})}$

$$= Q/\pi r$$

第4-4図 水平2方向同時加振時の水平力分布について

5 水平2方向同時加振の影響評価について(燃料取替機)

5.1 はじめに

本項は、燃料取替機(以下「FHM」という。)に対する水平2方向同時加振の影響についてまとめたものである。

5.2 現行評価の手法

燃料取替機の負担する水平地震荷重の概念図を第5-1図に示す。

FHMはレール上を車輪で移動する構造であるため、基本的には建屋との 固定はないが、地震時に横行方向(走行レールに対し直角方向)にすべりが 生じた場合は、レールに沿って取り付けられている脱線防止ラグがレールの 側面と接触し、FHMのすべりを制限する構造となっている。つまり、ラグ とレールが接触し、FHMが横行方向に建屋と固定された体系では、地震入 力がFHM本体へそのまま伝達されることが想定される。

ー方,走行方向(走行レールの長手方向)については,FHMの車輪とレ ールの接触面(踏面)を介してFHM本体へと荷重が伝達される構造であり, その荷重は摩擦力により制限されるため,地震入力により生じる荷重は軽微 (FHM本体への影響は軽微)と考えられる。

上記により, FHM本体の耐震評価では横行方向に対する地震応答が支配 的であり, 走行方向に対しては比較的軽微であると考えられるため, 水平2 方向同時加振の考慮として, 耐震性評価で走行方向の地震応答を追加で組み 合わせたとしても, 従来評価の応答結果への影響は小さいと考えられる。

4条一別紙7一添1-43

第5-1図 燃料取替機の負担する水平地震荷重

6. 水平2方向同時加振の影響評価について(矩形配置されたボルト)

6.1 はじめに

本項は,水平2方向に地震力が作用した場合の矩形配置されたボルトに対 する影響検討結果をまとめたものである。強軸・弱軸が明確なものについて は,弱軸方向に応答し水平2方向地震力による影響が軽微であるため,機器 の形状を正方形として検討を行った。

6.2 引張応力への影響

水平1方向に地震力が作用する場合と水平2方向に地震力が作用する場合 のボルトへの引張力の違いを考察する。なお、簡単のため機器の振動による 影響は考えないこととする。

(1) 水平1方向に地震力が作用する場合

第6-1図のようにX方向に震度C_Hが与えられる場合を考慮する。

第6-1図 水平1方向の地震力による応答(概要)

この場合,対象としている系の重心に作用する水平方向の力 F_Hは,

$$F_{H} = mg C_{H}$$

と表せ、F_HによるボルトBとボルトDの中心を結んだ軸を中心に転倒
モーメントを生じる。この転倒モーメントはボルトA, Cにより負担される。

このとき,系の重心に生じる力は,第6-2図に示すとおりである。

第6-2図 水平1方向の地震力による力

第6-2図より、水平方向地震動による引張力は

$$F_{b} = \frac{1}{L} (mgC_{H}h)$$

である。

ボルトに発生する引張応力 σ_b は全引張力を断面積 A_b のボルト n_f 本で 受けると考え,

$$\sigma_{\rm b} = \frac{F_{\rm b}}{n_{\rm f} A_{\rm b}}$$

となる。

(2) 水平2方向に地震力が作用する場合

第6-3 図のように X 方向と Y 方向にそれぞれ震度 C_x, C_yが作用する 場合を考慮する。なお,本検討においては, X 方向と Y 方向に同時に最大

震度が発生する可能性は低いと考え、X方向の震度とY方向の震度を1:0.4
 (0.4C_x=C_y)と仮定する。

第6-3図 水平2方向の地震力による応答(概要)

この時
$$\theta = \tan^{-1}\left(\frac{4}{10}\right)$$
であることから、水平方向の震度 C_{XY} は
 $C_{XY} = C_{\chi}\cos\theta + C_{\gamma}\cos\phi$
 $= \frac{5}{\sqrt{29}}C_{\chi} + 0.4 \times \frac{2}{\sqrt{29}}C_{\chi}$
 $= \frac{5.8}{\sqrt{29}}C_{\chi}$

と表される。この時,対象としている系の重心に作用する水平方向の力 F

$$F_{H} = mg C_{XY} = mg \frac{5.8}{\sqrt{29}} C_{X}$$

となる。この F_{H} により,転倒軸を中心に転倒モーメントが生じ,ボルト A, B, C により負担される。

水平2方向の地震力を受け対角方向に応答する場合,各ボルトにかかる引

張力を F_A , F_B , F_C とし, 第6-4 図に示すようにボルトDの中心を通る直線 を転倒軸とすると,

転倒軸からの距離により,

 $F_{A}:F_{B}:F_{C}=7:2:5$

であり,転倒軸周りのボルトの軸力により発生するモーメント Mは,

$$\begin{split} \mathbf{M} &= \frac{7}{\sqrt{29}} \mathbf{L} \mathbf{F}_{A} + \frac{2}{\sqrt{29}} \mathbf{L} \mathbf{F}_{B} + \frac{5}{\sqrt{29}} \mathbf{L} \mathbf{F}_{C} \\ &= \frac{7}{\sqrt{29}} \mathbf{L} \times \mathbf{F}_{A} + \frac{2}{\sqrt{29}} \mathbf{L} \times \frac{2}{7} \mathbf{F}_{A} + \frac{5}{\sqrt{29}} \mathbf{L} \times \frac{5}{7} \mathbf{F}_{A} \\ &= \frac{78}{7\sqrt{29}} \mathbf{L} \mathbf{F}_{A} \end{split}$$

である。

第6-4図 対角方向に応答する場合の転倒軸から距離

転倒しない場合,転倒軸周りのボルトの軸力により発生するモーメント Mと水平方向地震力モーメントが釣り合っているので,

$$mgC_{XY} h = \frac{78}{7\sqrt{29}} LF_A$$

であり、引張力 F_Aは以下のとおりとなる。

$$F_{A} = \frac{7\sqrt{29}}{78L} (mg C_{XY}h)$$

以上より、最も発生応力の大きいボルトAに発生する応力 σ_{b} ん

$$\sigma_{\rm b} = \frac{F_{\rm A}}{A_{\rm b}} = \frac{7\sqrt{29}}{78A_{\rm bL}} (\mathrm{mg} \, \mathrm{C}_{\rm XY} \mathrm{h})$$

であり、水平1方向地震動を考慮した場合のボルトにかかる応力σь

$$\sigma_{\rm b} = \frac{F_{\rm b}}{2A_{\rm b}} = \frac{1}{2A_{\rm b}L} \left(\operatorname{mg} C_{\rm H}L \right)$$

に対して, 震度C_{XY}=<u>^{5.8}</u>C_Hであることから

$$\sigma_{b} = \frac{7\sqrt{29}}{39 \times 2A_{b}L} (\operatorname{mg} C_{XY}h)$$
$$= \frac{7\sqrt{29}}{39 \times 2A_{b}L} \times \frac{5.8}{\sqrt{29}} (\operatorname{mg} C_{H}h)$$
$$= \frac{40.6}{39} \sigma_{b}$$
$$= 1.04 \sigma_{b}$$

となる。したがって,水平2方向入力時を考慮した場合,ボルトに発生す る引張応力は増加するが,その影響は軽微と考えられる。

6.3 せん断応力への影響

せん断力は全基礎ボルト断面で負担するため,全ボルトに対するせん断力 T_bは,

$$T_b = F_H$$

であり、せん断応力 τ_{b} は断面積 A_{b} のボルト本数 n でせん断力 T_{b} を受けるため、

$$\tau_{\rm b} = \frac{T_{\rm b}}{nA_{\rm b}}$$

となる。

水平1方向の地震力を考慮した場合のせん断力T_b及び水平2方向の地震力を考慮した場合のせん断力T_b[^]はそれぞれ,

$$T_{b} = mg C_{X}$$

T_b
$$= mg \frac{5.8}{\sqrt{29}} C_{\chi} = 1.08 mg C_{\chi}$$

 $= 1.08 \,\mathrm{T}_{b}$

となる。水平1方向及び水平2方向地震時に断面積A_b及びボルト全本数 nは変わらないため、水平2方向地震を考慮した場合、ボルトに発生するせ ん断応力は増加するが、その影響は軽微と考えられる。

水平2方向の震度比として1:0.4を用いる場合は、本手法を適用することの妥当性を確認した上で適用する。

- 7. 水平2方向同時加振の影響評価について(電気盤)
- 7.1 はじめに

本項は、電気盤に取り付けられている器具に対する水平2方向入力の影響 をまとめたものである。

7.2 水平2方向加振の影響について

電気盤に取り付けられている器具については、1次元的な接点の ON-OFF に関わる比較的単純な構造をしている。加えて、基本的にはすべて梁、扉等 の強度部材に強固に固定されているため、器具の非線形応答もなく、水平2 方向の加振に対しては独立に扱うことで問題ないものと考える。さらに器具 の誤動作モードは、水平1方向を起因としたモードであるため、水平2方向 加振による影響は軽微であると考える。

なお,念のために既往研究等において,電気盤の器具取付位置の応答加速 度に対し,器具の確認済加速度が十分に高いことも確認している。

メタクラ取付器具を代表とし、器具の構造から検討した結果をまとめる。

- 7.2.1 補助リレー
 - (1) 構造,作動機構の概要

第7-1 図に補助リレーの構造及び作動機構を示す。補助リレーはコイルに 通電されることにより生じる電磁力でアマチュア部を動作させ、接点の開閉 を行うものである。

補助リレーのうち,固定鉄心,固定接点(A,B接点)はいずれも強固に固 定されており,可動鉄心は左右方向にのみ動くことのできる構造となってい る。

第7-1図 補助リレー構造図

(2) 水平2方向地震力に対する影響検討

補助リレーの誤動作モードとして以下が考えられる。

 ・地震力で可動鉄心が振動することにより、接点が誤接触、又は誤開 放(左右方向)

ただし、補助リレーは取付部をボルト固定していること、また、器具の 可動部は左右方向にのみ振動することから、誤動作にいたる事象に多次元 的な影響はないと考えられる。

(3) 機能確認済加速度

参考として、発生加速度と補助リレーの既往試験における確認済加速度

4条一別紙7一添1-52

及び試験結果を第7-1表に示す。

第7-1表 補助リレーの発生加速度及び機能確認済加速度

方 向	前後	左 右	上下					
発生加速度(G)	0.97	0.97	0.84					
確認済加速度(G)			1					

7.2.2 ノーヒューズブレーカ (MCCB)

(1) 構造, 作動機構

第7-2図にMCCBの構造及び作動機構を示す。配線用遮断器には熱動 電磁式と完全電磁式がある。下記に代表して熱動電磁式の動作原理と内部 構造を示す。

熱動電磁式は,過電流が流れるとバイメタルが湾曲し,トリップ桿によ りラッチの掛け合いが外れ,キャッチがバネにより回転し,リンクに連結 された可動接点が作動し回路を遮断する。

また,短絡電流等の大電流が流れた場合は,固定鉄心の電磁力で可動鉄 心が吸引されトリップ桿が作動し,以降は上述と同じ動作により回路を遮 断する。

4条-別紙7-添1-53

第7-2図 MCCB構造図

(2) 水平2方向地震力に対する影響検討

MCCBの誤動作モードとして以下が考えられる。

- ・ハンドルが逆方向へ動作する(上下方向)
- ・接点が乖離する(前後方向,左右方向)
- ・ ラッチが外れてトリップする(前後方向,上下方向)

上記より, MCCBの誤動作として2方向の振動の影響が考えられる。 ただし, ハンドルは1方向にしか振動できないこと, 前後-左右の接点乖 離は各々独立であること(前後方向は接触-非接触, 左右方向はずれによ

4条-別紙7-添1-54

る)から,これらについては誤動作に至る事象に多次元的な影響はないも のと考えられる。

ラッチ外れについては2軸の影響は無視できないと考えられるが,左右 方向はラッチ外れに影響を与える誤動作モードではないため,水平2方向 の影響はないものと考えられる。

(3) 機能確認済加速度

参考として,発生加速度とMCCBの既往試験における確認済加速度及 び試験結果を第7-2表に示す。

方 向	前後	左 右	上下					
発生加速度(G)	0.97	0.97	0.84					
確認済加速度(G)								

第7-2表 MCCBの発生加速度及び機能確認済加速度

- 7.2.3 過電流リレー(保護リレー)
 - (1) 構造,作動機構の概要

第7-3 図に過電流リレー(保護リレー)の構造を示す。過電流リレーは、 電流コイル1個を持つ電磁石が動作トルクを発生し、永久磁石の制動によ り限時特性を得る円板形リレーであり、タップ値以上の過電流が流れると 接点が動作し、警報や遮断器引き外しを行う。なお、過電流リレーはボル トにて盤の扉面に強固に取り付けられている。

(2) 水平2方向地震力に対する影響検討

過電流リレーの誤動作モードとして以下が考えられる。

・誘導円板が接触し、固渋する(上下方向)

・可動接点が振動し、接点の誤接触が生じる(前後、左右方向)

誘導円板の固渋については,昭和56年の日本機械学会講演論文集「誘導 円板型リレーの地震時誤動作に関する研究」において,誘導円板が水平2 方向入力により,回転し接点接触により,誤動作が生じることが報告され ている。しかし,平成13年度に行われた電力共通研究「鉛直地震動を受け る設備の耐震評価手法に関する研究」において,水平2方向加振時に鉛直 方向加振を加えた試験を実施しており,正弦波加振試験では誘導円板の回

4条一別紙7一添1-56

転挙動が発生したが,地震波加振試験では誘導円板の回転挙動が発生しな いことを確認している。したがって,地震波による水平2方向の影響はな いものと考えられる。

(3) 機能確認済加速度

参考として,発生加速度と過電流リレーの既往試験における確認済加速 度及び試験結果を第7-3表に示す。

方 向	前後	左 右	上下					
発生加速度(G)	0.97	0.97	0.84					
確認済加速度(G)								

第7-3表 過電流リレーの発生加速度及び機能確認済加速度

方向性を考慮していない水平方向地震動における模擬地震波の作成方針

1. はじめに

応答スペクトルに基づく地震動として策定された基準地震動 S_s-D1

(以下「S_s-D1」という。)及び震源を特定せず策定する地震動として策 定された基準地震動S_s-31(以下「S_s-31」という。)については, 水平方向の地震動に方向性を考慮していないことから,水平2方向及び鉛直方 向地震力の同時入力による影響検討を行う場合,水平2方向のうち新たにもう 1方向の模擬地震波を作成し入力する等の方法が考えられる。本資料では,水 平2方向のうち新たにもう1方向の模擬地震波の作成方針を示すものである。

2. 模擬地震波の作成方針

応答スペクトルに基づく地震動及び震源を特定せず策定する地震動におけ る模擬地震波の作成方針を示す。

(1) 応答スペクトルに基づく地震動における模擬地震波

応答スペクトルに基づく地震動として策定された基準地震動の模擬地震 波については,全く同じ地震動が同時に水平2方向に入力されることは現実 的に考えにくいことから,S_s-D1を作成した方法と同一の方法で,目 標とする応答スペクトルに適合する位相の異なる模擬地震波を作成する。

(2) 震源を特定せず策定する地震動における模擬地震波

 $S_s - 31$ については、2004年北海道留萌支庁南部地震(以下「留萌地 震」という。)の観測記録より策定された地震動である。水平方向の地震 動は、EW方向の観測記録から推定される基盤相当位置の地震動に基づき 敷地地盤の物性等を踏まえて作成されている。水平2方向の影響評価に用い る模擬地震波については、 $S_s - 31$ を作成した方法と同一の方法により、

4条-別紙7-参1-1

NS方向の観測記録を用いて地震波を作成する。

同位相の模擬地震波を2方向に入力した場合の例として、S_s-D1を2方 向に入力した場合のオービットを第1図に、位相の異なる地震波を2方向に入 力した例として、東北地方太平洋沖地震における原子炉建屋での観測記録の オービットを第2図に示す。

第1図に示すように同位相の模擬地震波を入力した場合は,45°方向に直線 的な軌跡を示すが,観測記録として得られた東北地方太平洋沖地震によるオ ービットは第2図に示すようにランダムな軌跡となる。模擬地震波の作成にお いては,第2図に示すような位相差によって生じるランダムな軌跡を示す模擬 地震波を作成する。

第1図 S_s-D1を水平2方向に入力した場合のオービット(同位相の模擬地震波を2方向入力した場合の傾向)

第2図 東北地方太平洋沖地震における原子炉建屋(EL.-4.0m)のオービット (位相が異なる地震波を2方向入力した場合の傾向)

別紙-8

東海第二発電所

屋外重要土木構造物の耐震評価における 断面選定について (耐震)

1. 方針

本資料では、「屋外重要土木構造物」、「常設耐震重要重大事故防止設備又 は常設重大事故緩和設備」及び「常設耐震重要重大事故防止設備又は常設重 大事故緩和設備が設置される重大事故等対処施設(特定重大事故等対処施設 を除く)(以後、「常設重大事故等対処施設」という。)」の耐震評価における 断面選定の考え方について示す。

本資料で記載する屋外重要土木構造物等及びこれに設置される主要設備の 一覧表を第1表に,全体配置図を第1図に示す。

耐震評価においては、構造物の配置、構造形状、周辺の地質構造等を考慮し、耐震評価上最も厳しくなると考えられる位置を評価対象断面とする。

上記を考慮した屋外重要土木構造物等の断面選定の考え方を第2表の通り 整理する。

個々の施設の断面選定においては,上記の考え方に加え,杭基礎,可とう 管,上載する機器・配管系への影響についても考慮する。 耐震重要施設等に設置される主要設備一覧表 第1表

	屋外重要土木構造物等	·	-			主要設備(全てを網羅していないの	○で注意)		
	名称	屋外重要 土木構造物	津波防護 施設	常設SA 設備	常設SA 施設	名 称	耐震	津波	常設SA 設備
						残留熱除去系海水ポンプ	0	Ι	0
	TT1- +18: 24: 4Ma	C		((非常用ディーゼル発電機用海水ポンプ	0	I	0
	HX JX HPJ豆 4/3	D	I))	高圧炉心スプレイ系ディーゼル発電機用海水ポンプ	0	Ι	0
						潮位計、取水ピット水位計	Ι	0	_注1
						残留熟除去系海水系配管	0	I	0
	屋外二重管	0	I	Ι	0	非常用ディーゼル発電機用海水系配管	0	I	0
						高圧炉心スプレイ系ディーゼル発電機用海水系配管	0	Ι	0
	貯留堰	0	0	0	I	1	I	I	I
			(1 元		津波・構内監視カメラ (4台)	Ι	0	_注1
	防御疫(綱官な鉄肋コンクリート防御室)	I	C		I	防潮扉	I	0	[卅]
	防潮堤(鉄筋コンクリート防潮壁)	I	0	[卅1]	I	防潮扉	I	0	1世
·	防潮堤(鋼製防護壁)	Ι	0	一注1	-	1	I	-	I
	鉄筋コンクリート防潮壁(放水路エリア)	-	0		-	放水路ゲート	Ι	0	_注1
	常設代替高圧電源装置置場	(((軽油貯蔵タンク	0	I	0
	(西側淡水貯水設備)	C	I))	常設代替高圧電源装置他	-	I	0
	常設代替高圧電源装置用カルバート (トンネル部)					軽油移送配管	0	I	0
	常設代替高圧電源装置用カルバート(立坑部)	0	I	I	0				
	常設代替高圧電源装置用カルバート(カルバート部)					常設代替高圧電源装置電路	I	Ι	0
	代替淡水貯槽	Ι	Ι	0	I				
_	常設低圧代替注水系ポンプ室	I	I	I	0	常設低圧代替注水系ポンプ	I	I	0
	常設低圧代替注水系配管カルバート	Ι	Ι	Ι	0	常設低圧代替注水系配管	Ι	Ι	0
	緊急用海水ポンプピット	I	I	0	0	緊急用海水ポンプ	I	I	0
	格納容器圧力逃がし装置用配管カルバート	Ι	Ι	Ι	0	格納容器圧力逃がし装置用配管	Ι	Ι	0
	緊急用海水取水管	I	I	0	I	1	I	I	I
	SA用海水ピット	-	Ι	0	—	1	Ι	-	I
	海水引込み管	Ι	Ι	0	I	1	Ι	Ι	I
	SA用海水ピット取水塔	I	I	0	Ι	1	I	I	I
	緊急時対策所用発電機燃料油貯蔵タンク基礎 (A, B)	I	I	I	0	緊急時対策所用発電機燃料油貯蔵タンク(A, B)	I	I	0
	可搬型設備用軽油タンク基礎(西側)	Ι	Ι	Ι	0	可搬型設備用軽油タンク(西側)	I	I	0
	可搬型設備用軽油タンク基礎(南側)	-	Ι	-	0	可搬型設備用軽油タンク(南側)	Ι	-	0

常設SA設備: 常設耐震重要重大事故防止設備又は常設重大事故緩和設備 常設SA施設: 常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設 耐震 : 耐震重要施設(津波防護施設,浸水防止設備,津波監視設備を除く) 津波 : 津波防護施設,浸水防止設備,津波監視設備 注1:常設重大事故等対処設備に対する津波防護施設,浸水防止設備,津波監視設備

		<u> </u>	樂	01	ı IF	<u> </u>	I	<u> </u>	1	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u> </u>	策・	っ神	<u> </u>	<u> </u>	<u> </u>	<u> </u>	
	各	取水構造物	屋外二重管	貯留堰	防潮堤(鋼管杭鉄筋コンクリート防潮壁)	防潮堤(鉄筋コンクリート防潮壁)	防潮堤(鋼製防護壁)	鉄筋コンクリート防潮壁(放水路エリア)	常設代替高圧電源装置置場	常設代替高圧電源装置用カルバート (トンネル, 立坑, カルバート)	代替淡水貯槽	常設低圧代替注水系ポンプ室	常設低圧代替注水系配管カルバート	緊急用海水ポンプピット	格納容器圧力逃がし装置用配管カルバート	緊急用海水取水管	SA用海水ピット	海水引込み管	SA用海水ピット取水塔	緊急時対策所用発電機燃料油貯蔵タンク基礎 (A, B)	可搬型設備用軽油タンク基礎(西側)	
	 A:構造形状、周辺の地質構造等 の条件が比較的単純であり、 耐震評価上厳しい断面が定性 的に定まるもの 							0	0	〇 (立抗,カルバート)	0	0	0	0			0		0	0	0	
ションの一般の思定の	B: 比較的長いトンネル又は鋼管 であり、複数個所にて一次元 波動論等による地震応答解析 を実施し、耐震評価上厳しい 断面を選定するもの									0 (トンネル)						0		0				
の基本方針	C: 構造形状、周辺の地質構造等 の条件から複数の断面を耐震 評価断面として整理し、耐震 評価上厳しい断面を選定する もの	0	0	0		0									0							
	D: 複雑な設備構造,長大な設 範囲であることを考慮し, 波荷重等も踏まえた総合的, 耐震評価,耐達波評価を行 もの				0		0															

第2表 屋外重要土木構造物等の断面選定の考え方

4条-別紙8-4

第1図 全体配置図

- 2. 屋外重要土木構造物の耐震評価における断面選定の考え方
- 2.1 各施設の配置

本章では屋外重要土木構造物である,取水構造物,屋外二重管,常設代替 高圧電源装置置場及び常設代替高圧電源装置用カルバート,津波防護施設で ある防潮堤(放水路エリアを含む)及び貯留堰の断面選定の考え方を示す。

第2.1-1図に屋外重要土木構造物及び津波防護施設の平面配置図を示す。

第2.1-1図 屋外重要土木構造物及び津波防護施設の平面配置図

2.2 取水構造物の断面選定の考え方

取水構造物の平面図を第2.2-1図に,縦断面図を第2.2-2図に,横断面 図を第2.2-3図に示す。

取水構造物は、Sクラス機器である残留熱除去系海水ポンプ,非常用ディ ーゼル発電機用海水ポンプ等の間接支持機能を有する。取水構造物は非常用 取水設備であり,通水性能及び貯水性能が要求される。

取水構造物は, 延長約 56m, 幅約 43m, 高さ約 12m の鉄筋コンクリート造の地中構造物であり, 取水方向に対して複数の断面形状を示すが, 基本的には取水路は8連のラーメン構造にて, 取水ピットは5連のラーメン構造にて 構成され, 杭を介して十分な支持性能を有する岩盤に設置する。

取水構造物の縦断方向(通水方向)は、加振方向に対して平行に配置され る側壁又は隔壁の構造断面性能により抵抗することから、強軸断面方向とな る。一方、横断方向(通水方向に対し直交する方向)は、通水機能を確保す るため、加振方向と平行に配置される構造部材が少ないことから、弱軸断面 方向となる。

耐震評価では,構造の安全性に支配的な弱軸断面方向である横断方向を評 価対象とする。

取水路である8連のボックスカルバート構造の区間(以下,「取水路区 間」という。)においては,頂版には取水方向に概ね規則的に開口が存在す る。このため,耐震評価においては,同区間の取水方向全長で開口を含めた 平均的な剛性及び上載荷重を考慮した断面を設定する。

取水構造物の耐震評価においては,杭基礎への影響についても考慮し,上述の断面を含めた複数の断面を耐震評価候補断面として整理し,耐震安全上最も厳しくなる断面にて基準地震動S_sによる耐震評価を実施する。

なお、取水ピットである5連のボックスカルバート形状の区間(以下,

4条一別紙8-7

「取水ピット区間」という。)においては,循環水ポンプ,残留熱除去系海 水ポンプ等の非常用ポンプなどの重量物が設置される。これら機器・配管系 に対しては,強軸断面方向の影響が大きい可能性も考慮して断面選定を行 う。

第2.2-1 図 取水構造物 平面図

第2.2-2 図 取水構造物 縦断面図 (A-A断面)

第2.2-3(1) 図 取水構造物 横断面図(B-B断面:取水路)

第2.2-3(2)図 取水構造物 横断面図(C-C断面:取水ピット)

2.3 屋外二重管の断面選定の考え方

屋外二重管は、Sクラス機器である残留熱除去系海水系配管、非常用ディ ーゼル発電機用海水系配管等の間接支持機能を有する。

屋外二重管は,延長約215m,内径2.0m及び1.8mの2本の鋼管の地中構造 物である。また,地震時の相対変位を吸収するため,2本の鋼管にはそれぞ れ3箇所に可とう管が設定されている。構造物直下には液状化検討対象層で あるAs層,Ag1層及びAg2層が分布している。なお,指針改訂に伴う耐震裕 度向上工事として,平成21年にAg2層を対象とした地盤改良を実施してい る。

設置許可基準規則第3条第1項への適合性の観点から、本構造物は杭等を 介して岩盤で支持する構造とする。

屋外二重管の平面図を第2.3-1図に,縦断面図を第2.3-2図に,横断図 を第2.3-3図に示す。

主な範囲においては,屋外二重管の直下に沈下防止を目的とした鋼製粱を 設置して,鋼管杭を介して岩盤で支持させる。また,原子炉建屋近傍で,移 設不可能な既設構造物(排気筒基礎等)や埋設物との干渉によって鋼管杭の 打設が困難な箇所については,屋外二重管直下を地盤改良(セメント固化工 法等)することにより補強する地盤に支持させる検討を行う。屋外二重管の 基礎構造概要図を第2.3-4 図に示す。

屋外二重管のうち二重管部分は任意の管軸直交方向断面において一様の形 状を示す線状の構造物である。二重管部分の耐震評価では、一般的な地中埋 設構造管路の設計を考慮し、管周方向応力と管軸方向応力の組合せを考慮し た検討を行う。上記検討に当たっては、可とう管及び杭基礎への影響につい ても考慮し、耐震安全上最も厳しくなる断面にて基準地震動S_sによる耐震 評価を実施する。

4条-別紙8-11

また,屋外二重管には残留熱除去系海水系配管,非常用ディーゼル発電機 用海水系配管等が設置されることから,これら配管系への影響も踏まえた評 価を実施する。

第2.3-1 図 屋外二重管 平面図

注:地盤改良の範囲については、今後の詳細設計により変更の可能性がある。

第2.3-3図 屋外二重管 横断面図 (B-B断面)

4条-別紙8-13

第2.3-4(1)図 基礎構造概要図(断面図)

<u>基礎構造(平面イメージ)</u>

第2.3-4(2)図 基礎構造概要図(平面図)

2.4 貯留堰の断面選定の考え方

貯留堰の平面図を第2.4-1図に、断面図を第2.4-2図に示す。

貯留堰は非常用取水設備であり, 貯水性能が要求される。

貯留堰は,延長約110mの海底面から約2m突出した鋼管矢板を連結した構造物であり,取水口護岸に接続する。鋼管矢板は十分な支持性能を有する岩盤に直接設置する。

貯留堰の縦断方向は,加振方向に対して,鋼管が縦列に連結された鋼管矢 板の構造断面性能により抵抗することから,強軸断面方向となる。一方,横 断方向は,加振方向に連結された鋼管がないことから,弱軸断面方向とな る。

NS-1 断面によれば、貯留堰の設置位置は、北に向かって堆積層の基底面 が深くなっていることから、貯留堰の本体に着目した検討断面として、EW-2 断面を選定する。また、護岸との接続部については、北側の接続部に着目 した検討断面として、EW-1 断面及び NS-1 断面を選定する。

今後,上述の断面を含めた複数の断面を耐震評価候補断面として整理し, 耐震安全上最も厳しくなる断面にて基準地震動Ssによる耐震評価を実施する。

第2.4-1 図 貯留堰 平面図

注:地盤改良の範囲については、今後の詳細設計により変更の可能性がある。

第2.4-2(1) 図 貯留堰 断面図(EW-1断面)

注:地盤改良の範囲については、今後の詳細設計により変更の可能性がある。

第2.4-2(2)図 貯留堰 断面図(EW-2断面)

第2.4-2(3) 図 貯留堰 断面図 (NS-1断面)

4条-別紙8-17

2.5 防潮堤の断面選定の考え方

防潮堤の平面図を第2.5-1 図に示す。防潮堤は,鋼管杭鉄筋コンクリート防潮壁,鋼製防護壁及び鉄筋コンクリート防潮壁に区分され,総延長は約2.3km,天端高さはT.P.+20m(敷地前面東側)又はT.P+18m(敷地側面北 側及び敷地側面南側)からなる。以下に,それぞれの断面選定の考え方を示す。

第2.5-1 図 防潮堤 平面図

2.5.1 鋼管杭鉄筋コンクリート防潮壁

鋼管杭鉄筋コンクリート防潮壁の平面図を第2.5-2図に,正面図及び断面 図を第2.5-3図に,横断面図を第2.5-4~5図に示す。

鋼管杭鉄筋コンクリート防潮壁は,延長約 2km,直径 2~2.5m の複数の鋼 管杭を鉄筋コンクリートで巻き立てた鉄筋コンクリート造の防潮壁を1つの ブロックとした構造物であり,鋼管杭を介して十分な支持性能を有する岩盤 に設置する。

鋼管杭鉄筋コンクリート防潮壁の縦断方向は,加振方向に対して,長辺方 向の躯体及び縦列の杭基礎の構造断面性能により抵抗することから,強軸断 面方向となる。一方,横断方向は,加振方向に対して,短辺方向の躯体及び 杭基礎の構造断面性能により抵抗するため,弱軸断面方向となる。耐震評価 では,構造物の構造的特徴や周辺の地盤条件も考慮して,構造の安全性に支 配的な弱軸断面方向である横断方向の断面について,基準地震動S_sによる 耐震評価を実施する。

なお、鋼管杭鉄筋コンクリート防潮壁は敷地の全域に渡り設置することか ら、敷地の地質・地質構造の特徴や遡上津波の特性等を踏まえ、それらを網 羅的に考慮した検討断面を第2.5-1表、第2.5-6図、第2.5-2表、第2.5 -7図に基づき選定した(①断面~⑥断面)。

第2.5-2図 鋼管杭鉄筋コンクリート防潮壁 平面図

第2.5-3 図 鋼管杭鉄筋コンクリート防潮壁 正面図及び断面図

注:地盤改良の範囲については、今後の詳細設計により変更の可能性がある。

注:地盤改良の範囲については、今後の詳細設計により変更の可能性がある。

第2.5-5図 鋼管杭鉄筋コンクリート防潮壁 横断面図(⑥断面)

4条-別紙8-21
検討	地質的特徴	区間名	治守理由
断面		(防潮堤天端高さ)	进行进口 进行进行
くは④断面 もし	岩盤が傾斜す る。	岩盤傾斜区間	岩盤の傾斜角が最も大きい
		(T.P.+18m もしくは	箇所
		T.P.+20m)	
② 断 面	岩盤標高が低い (第四系の層厚・ が厚い)	「区間	粘土層が最も厚く堆積する
		$T \to 10m$	箇所(区間内で第四系の層
		(1. F. +10m)	厚はほぼ一定)
③ 断 面		Ⅱ区間 (T.P.+20m)	全区間で防潮壁の壁高さが
			最も高い箇所(全区間で津
			波荷重が最も大きい箇所)
⑤ 断 面		Ⅲ区間 (T.P.+20m)	当該区間で第四系の層厚が
	岩盤標高が高い		最も厚い箇所
	(第四系の層厚		
⑥ 断 面	が薄い) 更新統が存在す る。		当該区間で第四系の層層が
		IV区間	
		(T.P.+18m)	収 U/子 V · 回 <i>门</i>

第2.5-1表 検討断面選定理由

第2.5-6図 鋼管杭鉄筋コンクリート防潮壁の区間割図

凡例	区間	鋼管杭径	第四系の層厚(岩盤の出現深さ)
	岩盤傾斜 区間	φ2,000 or φ2,500	薄い~厚い(傾斜)
	I 区間	φ 2,000	一定の厚さで厚い(深い)
	Ⅱ区間	φ 2, 500	一定の厚さで厚い(深い)
	Ⅲ区間	φ 2, 500	一定の厚さで薄い(浅い)
	IV区間	φ 2,000	一定の厚さで薄い(浅い)

第2.5-2表 区間別の第四系層厚

第2.5-7 図 検討断面位置図

2.5.2 鋼製防護壁

鋼製防護壁の平面図を第2.5-8 図に,正面図を第2.5-9 図に,断面図を 第2.5-10 図に示す。

鋼製防護壁は,幅約81m,高さ約17m,奥行約5mの鋼製の構造物であり, 幅約50mの取水構造物を横断し,取水構造物の側方の地中連続壁基礎を介し て十分な支持性能を有する岩盤に設置する。鋼製防護壁周辺の地盤は新第三 系の岩盤上面が南側から北側に傾斜し,その上部に第四系の地層が堆積して いるため,第四系の地層は北側で厚く分布している。

鋼製防護壁は,上部工では相対的に断面係数が大きい縦断方向が強軸断面 方向となる。一方,鋼製防護壁の基礎は取水構造物を挟んで南北に分離され ており,岩盤深さが北側と南側で異なる。

以上より,鋼製防護壁の耐震評価では,縦断方向1断面及び南北基礎の横 断方向(堤軸に対して直交する方向)2断面について,基準地震動Ssによる 耐震評価を実施する。

第2.5-8 図 鋼製防護壁 平面図

第2.5-9図 鋼製防護壁 正面図 (A-A断面)

第2.5-10(1)図 鋼製防護壁 断面図(B-B断面)

第2.5-10(2)図 鋼製防護壁 断面図(C-C断面)

2.5.3 鉄筋コンクリート防潮壁(放水路エリアを除く)

鉄筋コンクリート防潮壁(放水路エリアを除く)の平面図を第 2.5-11 図 に、断面図を第 2.5-12 図に示す。

鉄筋コンクリート防潮壁は,幅 11m~20m 程度,高さ約 22m,奥行約 10mの 鉄筋コンクリート造の構造物であり,ブロック間は止水ジョイントを施した 構造である。鉄筋コンクリート防潮壁は,地中連続壁基礎を介して十分な支 持性能を有する岩盤に設置する。

鉄筋コンクリート防潮壁の縦断方向は,加振方向に対して,長辺方向の躯体の構造断面性能により抵抗することから,強軸断面方向となる。横断方向 (堤軸に対して直交する方向)は,加振方向に対して,短辺方向の躯体の構 造断面性能により抵抗するため,弱軸断面方向となる。一方,地中連続壁基 礎に着目すると防潮堤の縦断方向は加振方向と平行に配置される部材が少な いことから弱軸断面方向となる。

鉄筋コンクリート防潮壁周辺の地盤は新第三系の岩盤上面が南側から北側 に傾斜し,その上部に第四系の地層が堆積しているため,第四系の地層は北 側で厚く分布している。第四系の地層は,南側の東西方向では起伏に富み, 北側の東西方向はほぼ水平に層をなしている。

耐震評価では、構造物の構造的特徴や周辺の地盤条件を考慮して、上部工 については構造の安全性に支配的な弱軸断面方向である横断方向の4断面, 基礎部については構造の安全性に支配的な弱軸断面方向である縦断方向の4 断面を耐震評価候補断面として整理し、耐震安全上最も厳しくなる断面にて 基準地震動Ssによる耐震評価を実施する。

第2.5-11図 鉄筋コンクリート防潮壁 平面図

第2.5-12(1)図 鉄筋コンクリート防潮壁 断面図(D-D断面)

第2.5-12(2)図 鉄筋コンクリート防潮壁 断面図(E-E断面)

第2.5-12(3)図 鉄筋コンクリート防潮壁 断面図(F-F断面)

第2.5-12(4)図 鉄筋コンクリート防潮壁 断面図(G-G断面)

第2.5-12(5)図 鉄筋コンクリート防潮壁 断面図(H-H断面)

⁴条-別紙8-30

第2.5-12(7)図 鉄筋コンクリート防潮壁 断面図(J-J断面)

第2.5-12(8)図 鉄筋コンクリート防潮壁 断面図(K-K断面)

2.5.4 鉄筋コンクリート防潮壁(放水路エリア)

鉄筋コンクリート防潮壁のうち放水路横断部の平面図を第 2.5-13 図に, 断面図を第 2.5-14 図に示す。

鉄筋コンクリート防潮壁は,縦断方向約 20m,高さ約 17m,横断方向約 23m の鉄筋コンクリート造の構造物であり,放水路,地中連続壁基礎を介して十 分な支持性能を有する岩盤に設置する。

鉄筋コンクリート防潮壁の縦断方向では,防潮壁部は,加振方向に対して, 長辺方向の躯体の構造断面性能により抵抗することから,強軸断面方向とな り,防水路部及び放水路ゲート部は加振方向と平行に躯体が配置されないこ とから,弱軸断面方向となる。

鉄筋コンクリート防潮壁周辺の第四系の地層はほぼ水平な層をなし,Ac 層 が厚く分布する。

耐震評価では、構造物の構造的特徴や周辺の地盤条件を考慮して、縦断方向2 断面及び横断方向1 断面について、基準地震動Ssによる耐震評価を実施する。縦断方向の断面位置は防潮壁部と放水路ゲート部に設定する。横断方向の断面位置は構造物の中心線位置とする。

第2.5-14(1)図 鉄筋コンクリート防潮壁(放水路エリア) 断面図(A-A断面)(防潮壁部)

第2.5-14(2)図 鉄筋コンクリート防潮壁(放水路エリア)断面図 (B-B断面)(放水路ゲート部)

第2.5-14(3)図 鉄筋コンクリート防潮壁(放水路エリア)断面図 (C-C断面)

2.6 常設代替高圧電源装置置場の断面選定の考え方

常設代替高圧電源装置置場の平面図を第2.6-1図に、断面図を第2.6-2図に示す。

常設代替高圧電源装置置場は常設重大事故等対処施設である常設代替高圧 電源装置等を内包すると共に, Sクラス施設である軽油貯蔵タンクを間接支 持する機能を有する。また,施設の下部を,常設代替高圧電源装置等である 西側淡水貯水設備として使用する。

常設代替高圧電源装置置場は,幅約46m(南北方向)×約56m(東西方 向),高さ約47mの多層ラーメン構造の鉄筋コンクリート造の地中構造物で あり,十分な支持性能を有する岩盤に直接設置する。

常設代替高圧電源装置置場では内包する常設代替高圧電源装置や間接支持 するSクラス施設が縦断方向(東西方向)に一様に設置されているため、機 器・配管系の設置位置による影響を考慮する必要はない。

常設代替高圧電源装置置場の東西方向は加振方向に対して平行に配置され る側壁又は隔壁の構造断面性能により抵抗することから,強軸断面方向とな る。一方,南北方向は,設備の配置などから加振方向と平行に配置される構 造部材が少ないことから弱軸断面方向となる。

常設代替高圧電源装置置場については、土木構造物に対する影響が大きい 弱軸断面方向である南北方向の断面を選定し、基準地震動S_sによる耐震評 価を実施する。

また,機器・配管系に対しては,強軸断面方向の影響が大きい可能性も考 慮して断面選定を行う。

第2.6-1(1)図 常設代替高圧電源装置置場 平面図

第2.6-1(2)図 常設代替高圧電源装置置場 1F平面図

第2.6-1(4)図 常設代替高圧電源装置置場 B2F 平面図

第2.6-1(3) 図 常設代替高圧電源装置置場 B1F 平面図

第2.6-2(1)図 常設代替高圧電源装置置場 断面図(東西断面)

2.7 常設代替高圧電源装置用カルバートの断面選定の考え方

常設代替高圧電源装置用カルバートの平面図を第2.7-1図に示す。

常設代替高圧電源装置用カルバートは,鉄筋コンクリート造の地中構造物 であり、トンネル部、立坑部及びカルバート部に区分される。以下にそれぞ れの断面選定の考え方を示す。

第2.7-1図 常設代替高圧電源装置用カルバート 平面図

2.7.1 トンネル部

常設代替高圧電源装置用カルバートのうちトンネル部の縦断面図を第2.7 -2 図に,横断面図を第2.7-3 図に示す。

常設代替高圧電源装置用カルバート(トンネル部,立坑部,カルバート 部)は常設重大事故等対処施設である常設代替高圧電源装置電路等を内包す ると共に,Sクラス施設である軽油移送配管を間接支持する機能を有する。

トンネル部は,延長約150m,内径約5mの鉄筋コンクリート造の地中構造物であり,トンネルの縦断方向(配管方向)に対して内空寸法が一様で,十分な支持性能を有する岩盤に設置する。トンネル部は全線にわたり一定区間でブロック割を行う。

トンネルの縦断方向は、加振方向に対して、長辺方向の躯体の構造断面性 能により抵抗することから、強軸断面方向となる。また、前述のとおりトン ネル部は全線にわたり一定区間でブロック割されており、トンネル縦断方向 の応力は区間毎に解放されること、トンネルは岩盤に設置されていることか ら縦断方向のブロック毎の相対変位は小さいと考えられる。一方、横断方向 は、トンネル内に配管が配置されるため、加振方向と平行に配置される構造 部材がないことから、弱軸断面方向となる。

トンネル部は、全長を岩盤に設置されており、周辺の地盤が構造物に与え る影響はどの断面でも大きな差はなく、上載荷重の影響が支配的であると考 えられることから、耐震評価では、構造の安全性に支配的な弱軸断面方向で ある横断方向のうち、土被りが最も大きくなるA-A断面を選定し、基準地 震動Ssによる耐震評価を実施する。なお、周辺地質状況の相違による影響 を確認するため、トンネル縦断方向における複数地点にて一次元波動論にお ける地震応答解析を実施し、トンネルの上端と下端の相対変位を確認する。

第2.7-2図 常設代替高圧電源装置用カルバート(トンネル部)縦断面図

第2.7-3図 常設代替高圧電源装置用カルバート(トンネル部)横断面図

2.7.2 立坑部

常設代替高圧電源装置用カルバートのうち立坑部の断面図を第2.7-4図に示す。

立坑部は,幅約15m(東西方向)×約11m(南北方向),高さ約39mの多層 ラーメン構造の鉄筋コンクリート造の地中構造物であり,十分な支持性能を 有する岩盤に直接設置する。

立坑部は,角筒形の鉄筋コンクリート構造物であり,互いに直交する荷重 はそれぞれ異なる構造部材で受け持つ設計とすることから,耐震評価では, 立坑部の南北方向及び東西方向の2断面を選定し,基準地震動Ssによる耐 震評価を実施する。

第2.7-4(1)図 常設代替高圧電源装置用カルバート(立坑部)断面図 (東西断面)

第2.7-4(2)図 常設代替高圧電源装置用カルバート(立坑部)断面図 (南北断面)

2.7.3 カルバート部

常設代替高圧電源装置用カルバートのうちカルバート部の平面図を第2.7 -5 図に,断面図を第2.7-6 図に示す。

カルバート部は,延長約29m,内空幅約12m,内空高さ約3m及び延長約 6m,内空幅約2m,内空高さ約3mの鉄筋コンクリート造の地中構造物であ り,カルバートの縦断方向(配管方向)に対して内空寸法がほぼ一様で,杭 を介して十分な支持性能を有する岩盤に設置する。

カルバートの縦断方向は,加振方向に対して,長辺方向の躯体の構造断面 性能により抵抗することから,強軸断面方向となる。一方,横断方向は,加 振方向に対して,短辺方向の躯体の構造断面性能により抵抗するため,弱軸 断面方向となる。

耐震評価では、構造の安全性に支配的な弱軸断面方向である横断方向の断面を選定し、基準地震動Ssによる耐震評価を実施する。

第2.7-5図 常設代替高圧電源装置用カルバート(カルバート部)平面図

第2.7-6 図 常設代替高圧電源装置用カルバート(カルバート部) 断面図(①-①'断面)

3. 常設重大事故等対処施設等の耐震評価における断面選定の考え方

3.1 各施設の配置

本章では常設重大事故等対処施設である,代替淡水貯槽,常設低圧代替注 水系ポンプ室,常設低圧代替注水系配管カルバート,緊急用海水ポンプピッ ト,格納容器圧力逃がし装置用配管カルバート,緊急用海水取水管,SA用 海水ピット,海水引込み管,SA用海水ピット取水塔,緊急時対策所用発電 機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク基礎の断面選定の考え 方を示す。各施設の平面配置図を第3.1-1 図に示す。

第3.1-1図 常設重大事故等対処施設の土木構造物 平面配置図

3.2 代替淡水貯槽の断面選定の考え方

代替淡水貯槽の平面図を第3.2-1図に、断面図を第3.2-2図に示す。

代替淡水貯槽は常設重大事故等対処施設である。

代替淡水貯槽は、内径約 20m、内空高さ約 22m の鉄筋コンクリート造の円 筒形の地中構造物であり、十分な支持性能を有する岩盤に直接設置する。

代替淡水貯槽は、円筒形の鉄筋コンクリート構造物であり、明確な弱軸断 面方向がないことから、東西及び南北方向の2断面を選定し、両者から得ら れた地震力による断面力を組み合わせ、基準地震動Ssによる耐震評価を実 施する。

第3.2-1 図 代替淡水貯槽 平面図

第3.2-2(1) 図 代替淡水貯槽 断面図(東西断面)

3.3 常設低圧代替注水系ポンプ室の断面選定の考え方

常設低圧代替注水系ポンプ室の平面図を第3.3-1図に,断面図を第3.3-2図に示す。

常設低圧代替注水系ポンプ室は常設重大事故等対処施設であり,常設低圧 代替注水系ポンプ等を内包する。

常設低圧代替注水ポンプ室は,内空幅約11m(東西方向)×約7m(南北方 向),内空高さ約26mの多層ラーメン構造の鉄筋コンクリート造の地中構造 物であり,十分な支持性能を有する岩盤に直接設置する。また,代替淡水貯 槽と接続する配管を支持する内空幅約2m,内空高さ約2mの張出し部を2箇 所有する。

常設低圧代替注水系ポンプ室は,角筒形の鉄筋コンクリート構造物であ り,互いに直交する荷重はそれぞれ異なる構造部材で受け持つ設計とするこ とから,耐震評価では,常設低圧代替注水系ポンプ室の東西方向及び南北方 向の2断面を選定し,基準地震動Ssによる耐震評価を実施する。また,南 北断面においては,東西方向の幅で張出し部を含めた剛性及び上載荷重を考 慮する。

第3.3-1図 常設低圧代替注水系ポンプ室 平面図

第3.3-2(1)図 常設低圧代替注水系ポンプ室 断面図(東西断面)

第3.3-2(2)図 常設低圧代替注水系ポンプ室 断面図(南北断面)

3.4 常設低圧代替注水系配管カルバートの断面選定の考え方

常設低圧代替注水系配管カルバートの平面図を第3.4-1図に,断面図を 第3.4-2図に示す。

常設低圧代替注水系配管カルバートは常設重大事故等対処施設であり、常設低圧代替注水系配管を内包する。

常設低圧代替注水系配管カルバートは,延長約22m,内空幅約2m,内空高 さ約2mの鉄筋コンクリート造の地中構造物であり,縦断方向(配管方向) に対して内空寸法が一様で,人工岩盤を介して十分な支持性能を有する岩盤 に設置する。

常設低圧代替注水系配管カルバートの縦断方向は,加振方向に対して,長 辺方向の躯体の構造断面性能により抵抗することから,強軸断面方向とな る。一方,横断方向は,加振方向に対して,短辺方向の躯体の構造断面性能 により抵抗するため,弱軸断面方向となる。

常設低圧代替注水系配管カルバートは全区間同一断面であり、周辺地盤も 同じ構成であることから、耐震評価では、構造の安全性に支配的な弱軸断面 方向である横断方向の断面を選定し、基準地震動Ssによる耐震評価を実施 する。

第3.4-1図 常設低圧代替注水系配管カルバート 平面図

第3.4-2図 常設低圧代替注水系配管カルバート 断面図(東西断面)

3.5 緊急用海水ポンプピットの断面選定の考え方

緊急用海水ポンプピットの平面図を第3.5-1図に,断面図を第3.5-2図 に示す。

緊急用海水ポンプピットは常設重大事故等対処施設であり,緊急用海水ポ ンプ等を内包する。

SA用海水ポンプピットは非常用取水設備であり,通水性能及び貯水性能が要求される。

緊急用海水ポンプピットは,幅約 12m (東西方向)×約 12m (南北方向), 高さ約 36m の多層ラーメン構造の鉄筋コンクリート造の地中構造物であり, 十分な支持性能を有する岩盤に直接設置する。また,原子炉建屋内へ接続す る配管を間接支持する内空幅約 3m,内空高さ約 2m の張出し部を有する。

緊急用海水ポンプピットは,角筒形の鉄筋コンクリート構造物であり,互 いに直交する荷重はそれぞれ異なる構造部材で受け持つ設計とすることか ら,耐震評価では,緊急用海水ポンプピットの東西方向及び南北方向の2断 面を選定し,基準地震動S_sによる耐震評価を実施する。また,東西断面に おいては,南北方向の幅で張出し部を含めた剛性及び上載荷重を考慮する。

第3.5-1図 緊急用海水ポンプピット 平面図

第3.5-2(1)図 緊急用海水ポンプピット 断面図(東西断面)

第3.5-2(2)図 緊急用海水ポンプピット 断面図(南北断面)
3.6 格納容器圧力逃がし装置用配管カルバートの断面選定の考え方

格納容器圧力逃がし装置用配管カルバートの平面図を第3.6-1 図に,縦 断面図を第3.6-2 図に,横断面図を第3.6-3 図に示す。

格納容器圧力逃がし装置用配管カルバートは常設重大事故等対処施設であ り,格納容器圧力逃がし装置用配管を内包する。

格納容器圧力逃がし装置用配管カルバートは,延長約37m,内空幅約3m (一部約5m及び約9m),内空高さ約8mの鉄筋コンクリート造の地中構造物 であり,人工岩盤を介して十分な支持性能を有する岩盤に設置する。

格納容器圧力逃がし装置用配管カルバートの縦断方向は,加振方向に対し て,長辺方向の躯体の構造断面性能により抵抗することから,強軸断面方向 となる。一方,横断方向は,加振方向に対して,短辺方向の躯体の構造断面 性能により抵抗するため,弱軸断面方向となる。

格納容器圧力逃がし装置用配管カルバート周辺の地質構造は縦断方向に対して一様であるが,格納容器圧力逃がし装置用配管カルバートは縦断方向に対して複数の断面形状を示すことから,上述の断面を含めた複数の断面を耐 震評価候補断面として整理し,耐震安全上最も厳しくなる断面にて基準地震 動S_sによる耐震評価を実施する。

第3.6-1図 格納容器圧力逃がし装置用配管カルバート 平面図

第3.6-2図 格納容器圧力逃がし装置用配管カルバート 縦断面図

(A-A断面)

第3.6-3(1)図 格納容器圧力逃がし装置用配管カルバート 横断面図 (B-B断面)

第3.6-3(2)図 格納容器圧力逃がし装置用配管カルバート 横断面図 (C-C断面)

3.7 緊急用海水取水管の断面選定の考え方

緊急用海水取水管の平面図を第3.7-1図に,縦断面図を第3.7-2図に, 横断面図を第3.7-3図に示す。

緊急用海水取水管は常設重大事故等対処施設であり,通水性能が要求される。

緊急用海水取水管は、SA用海水ピットと緊急用海水ポンプピットを接続 する延長約 168m で内径 1.2m の鋼管の地中構造物であり、十分な支持性能を 有する岩盤に設置する。また、地震時の相対変位を吸収するため、複数の可 とう管を設定する。

緊急用海水取水管は任意の管軸直交方向断面において一様の断面形状を示 す線状の構造物である。緊急用海水取水管の耐震評価では,一般的な地中埋 設構造管路の設計を考慮し,管周方向応力と管軸方向応力の組合せを考慮し た検討を行う。上記検討に当たっては,可とう管への影響についても考慮 し,耐震安全上最も厳しくなる断面を選定し,基準地震動S_sによる耐震評 価を実施する。

緊急用海水取水管は,全長を岩盤に設置されており,周辺の地盤が構造物 に与える影響はどの断面でも大きな差はなく,上載荷重の影響が支配的であ ると考えられる。管軸直交方向の検討においては,土被りが最も大きくなる A-A断面を選定し,耐震評価を実施する。

なお,周辺地質状況の相違による影響を確認するため,管軸方向における 複数地点にて一次元波動論における地震応答解析を実施し,管路の上端と下 端の相対変位を確認する。

注:可とう管の配置については、今後の設計進歩により変更の可能性がある。

注:可とう管の配置については、今後の詳細設計により変更の可能性がある。

第3.7-2 図 緊急用海水取水管 縦断面図

第3.7-3 図 緊急用海水取水管 横断面図 (A-A断面)

3.8 SA用海水ピットの断面選定の考え方

SA用海水ピットの平面図を第3.8-1図に、断面図を第3.8-2図に示す。

SA用海水ピットは常設重大事故等対処施設である。また,非常用取水設備であり,通水性能及び貯水性能が要求される。

SA用海水ピットは、内径約10m、内空高さ約28mの円筒形の鉄筋コンク リート造の地中構造物であり、十分な支持性能を有する岩盤に直接設置す る。また、SA用海水ピットは、十分な支持性能を有する地盤内で海水引込 み管及び緊急用海水取水管が接続する構造で、双方の管路はSA用海水ピッ トへ直交して接続される。

SA用海水ピットは、円筒形の鉄筋コンクリート構造物であり、明確な弱 軸断面方向がないことから、SA用海水ピットに接続する海水引込み管及び 緊急用海水取水管に着目し、直交する両管路の縦断方向の2断面を選定し、 両者から得られた地震力による断面力を組み合わせ、基準地震動S。による 耐震評価を実施する。

第3.8-1図 SA用海水ピット 平面図

第3.8-2(1)図 SA用海水ピット 断面図(①-①断面)

第3.8-2(2)図 SA用海水ピット 断面図(2-2)断面)

3.9 海水引込み管の断面選定の考え方

海水引込み管の平面図を第3.9-1 図に,縦断面図を第3.9-2 図に,横断 面図を第3.9-3 図に示す。

海水引込み管は常設重大事故防止設備及び常設重大事故緩和設備である。 また,非常用取水設備であり,通水性能が要求される。

海水引込み管は、SA用海水ピット取水塔とSA用海水ピットを接続する 延長約154m,内径1.2mの鋼管の地中構造物であり、十分な支持性能を有する 岩盤に設置する。また、地震時の相対変位を吸収するため、複数の可とう管 を設定する。

海水引込み管は任意の管軸直交方向断面において一様の断面形状を示す線 状の構造物である。海水引込み管の耐震評価では,一般的な地中埋設構造管 路の設計を考慮し,管周方向応力と管軸方向応力の組合せを考慮した検討を 行う。上記検討に当たっては,可とう管への影響についても考慮し,耐震安 全上最も厳しくなる断面を選定し,基準地震動S_sによる耐震評価を実施す る。

海水引込み管は、全長とも岩盤に設置されており、周辺の地盤が構造物に 与える影響はどの断面でも大きな差はなく、上載荷重の影響が支配的である と考えられる。管軸直交方向の検討においては、土被りが最も大きくなるA -A断面を選定し、基準地震動S_sによる耐震評価を実施する。

なお,周辺地質状況の相違による影響を確認するため,管軸方向における 複数地点にて一次元波動論における地震応答解析を実施し,管路の上端と下 端の相対変位を確認する。

注:可とう管の配置については、今後の設計進歩により変更の可能性がある。

第3.9-1図 海水引込み管 平面図

注:可とう管の配置については、今後の詳細設計により変更の可能性がある。

第3.9-2図 海水引込み管 縦断面図

T.P. (m)

T.P. (m)

第3.9-3 図 海水引込み管 横断面図 (A-A断面)

4条-別紙8-68

3.10 SA用海水ピット取水塔の断面選定の考え方

SA用海水ピット取水塔の平面図を第3.10-1図に,断面図を第3.10-2 図に示す。

SA用海水ピット取水塔は常設重大事故等対処施設である。また,非常用 取水設備であり,通水性能が要求される。

SA用海水ピット取水塔は、内径約4m、内空高さ約18mの円筒形の鉄筋コ ンクリート造の地中構造物であり、十分な支持性能を有する岩盤に直接設置 する。また、SA用海水ピット取水塔は、十分な支持性能を有する地盤内で 海水引込み管が接続する構造で、管路はSA用海水ピット取水塔へ直交して 接続される。

SA用海水ピット取水塔は、円筒形の鉄筋コンクリート構造物であり明確 な弱軸断面方向がないことから、SA用海水ピット取水塔に接続される海水 引込み管に着目し、海水引込み管を縦断する断面とこれに直交する断面の2 断面を選定し、両者から得られた地震力による断面力を組み合わせ、基準地 震動Ssによる耐震評価を実施する。

第3.10-1図 SA用海水ピット取水塔 平面図

第3.10-2(2)図 SA用海水ピット取水塔 断面図(②-②断面)

4条-別紙8-70

3.11 緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タン ク基礎

緊急時対策所用発電機燃料油貯蔵タンク基礎の平面図を第3.11-1図に、 断面図を第3.11-2図に示す。また、可搬型設備用軽油タンク基礎の平面図 を第3.11-3図に、断面図を第3.11-4図に示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも常設重大事故等対処施設であり,対応するタンク(緊急時対 策所用発電機燃料油貯蔵タンク及び可搬型設備用軽油タンク)を内包する。

緊急時対策所用発電機燃料油貯蔵タンク基礎は内空幅約9m(タンク軸方 向)×約5m(タンク横断方向),内空高さ約4m,可搬型設備用軽油タンク基 礎は内空幅約11m(タンク軸方向)×約13m(タンク横断方向),内空高さ約 4mの鉄筋コンクリート造の地中構造物であり,杭を介して十分な支持性能を 有する岩盤に設置する。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも比較的単純な箱型構造物であり,縦断方向(タンクの軸方 向)にほぼ一様な断面である。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎はいずれも内包するタンクが縦断方向に一様に設置されているため,機 器・配管系の設置位置による影響を考慮する必要はない。

緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク 基礎の縦断方向は,加振方向に対して平行に配置される躯体又は隔壁の構造 断面性能により抵抗することから,強軸断面方向となる。一方,横断方向

(タンクの軸方向に対し直交する方向)は,加振方向に対して,短辺方向の 躯体の構造断面性能により抵抗するため,弱軸断面方向となる。

耐震評価では、構造の安全性に支配的な弱軸断面方向である横断方向(タ

4条一別紙8-71

ンクの軸方向に対し直交する方向)の断面を選定し,基準地震動Ssによる 耐震評価を実施する。

第3.11-1図 緊急時対策所用発電機燃料油貯蔵タンク基礎 平面図

第3.11-2図 緊急時対策所用発電機燃料油貯蔵タンク基礎 断面図

4条-別紙8-72

第3.11-3図 可搬型設備用軽油タンク基礎 平面図

第3.11-4(1)図 可搬型設備用軽油タンク基礎(西側) 断面図

⁴条-別紙8-73

第3.11-4図(2) 可搬型設備用軽油タンク基礎(南側) 断面図

別紙-9

東海第二発電所

使用済燃料乾式貯蔵建屋の評価方針について (耐震)

1. はじめに

本資料の構成は,以下の2項目から成る。

「Ⅰ 使用済燃料乾式貯蔵建屋の概要」には,使用済燃料乾式貯蔵建屋の 概要を示す。また今回工認においては,既工認から地震応答解析モデルを変 更するため,その内容について「Ⅱ 使用済燃料乾式貯蔵建屋の地震応答解 析モデルの既工認からの変更について」に示す。

- I 使用済燃料乾式貯蔵建屋の概要
- Ⅱ 使用済燃料乾式貯蔵建屋の地震応答解析モデルの既工認からの 変更について

I 使用済燃料乾式貯蔵建屋の概要

使用済燃料乾式貯蔵建屋の設置位置を第1-1図に示す。

使用済燃料乾式貯蔵建屋は、使用済燃料乾式貯蔵容器を24基収納する地上 1階建の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート及び鉄骨造)の建 物である。

使用済燃料乾式貯蔵建屋に加わる地震時の水平力は,外周部に配置された 耐震壁と柱及び梁(屋根トラス)からなるフレーム構造で負担する。耐震壁 には,冷却空気取り入れのための開口がある。

使用済燃料乾式貯蔵建屋の概要を第1-2図及び第1-3図に示す。

使用済燃料乾式貯蔵建屋は,地上1階建で平面が約52 m(南北方向)×約 24 m(東西方向)の鉄筋コンクリート造(一部鉄骨鉄筋コンクリート造及び 鉄骨造)の建物であり,適切に配置された耐震壁で構成された剛な構造とし ている。

使用済燃料乾式貯蔵建屋の基礎は,平面が約60 m(南北方向)×約33 m (東西方向),厚さ約2.5 m(一部約2.0 m)で,鋼管杭を介して,砂質泥岩 である久米層に岩着している。 第1-1図 使用済燃料乾式貯蔵建屋の設置位置

(1 階平面図: EL.8.3 m)

第1-2図 使用済燃料乾式貯蔵建屋の概要(平面図)

(NS方向, A-A断面)

(EW方向, B-B断面)

第1-3図 使用済燃料乾式貯蔵建屋の概要(断面図)

Ⅱ 使用済燃料乾式貯蔵建屋の 地震応答解析モデルの既工認からの変更について 1. 使用済燃料乾式貯蔵建屋の地震応答解析モデルの既工認からの変更

1.1 目的

今回工認に用いる使用済燃料乾式貯蔵建屋のSRモデルについて検討す る。使用済燃料乾式貯蔵建屋はNS方向に細長い形状をしている。このよう な形状であるとEW方向振動に対して,中央部の振動を含め,1本棒モデル に集約するのは難しい。設計当時は1本棒モデルであるが,3次元FEMの 1次固有周期(中央部振動の固有周期)に整合するように剛性を設定してい た。これは,耐震壁の剛性を小さく見積もることであり,クライテリアをせ ん断ひずみとした場合には保守的な設定と言える。また,設計当時の基準地 震動S2に対しては,この保守的なモデルを用いても弾性範囲に収まってい たため,耐震壁の復元力特性を作成していない。

今回工認では基準地震動S_s入力に対し、非線形領域に入ることが予想されるため、耐震壁の復元力特性を設定する必要がある。

上記を背景に,NS方向も含め,より実情に近い建屋の振動性状を評価で きる耐震壁の復元力特性を考慮した解析モデルを設定することを目的とす る。

1.2 今回工認モデルの設定方針

地震応答解析モデルは、以下の方針に基づいて、建設当時の工認(以下 「既工認」という。)のモデルから変更する。NS方向の耐震壁には、金属 キャスク冷却のために大開口が設けられている。既工認モデルでは、開口の 影響を考慮したはり理論による等価剛性を設定しており、既工認モデルで は、3次元全体FEMと1次固有周期は整合していたものの、上階の方が下 階よりも剛性が大きく評価されていた。今回は、より詳細に開口の影響を考 慮するために、3次元全体FEMモデルによる剛性評価を採用することに修 正する。復元力特性は、原子力発電所耐震設計技術指針JEAG4601-1991

4条-別紙9-9

追補版 [社団法人日本電気協会](以下「JEAG4601-1991 追補版」という。)に基づいて設定する。

EW方向の既工認モデルは、「1.1 目的」に記載したように、保守的に1 本棒のモデルを構築していた。基準地震動Ssに対する今回工認では、非線 形挙動を精度良く表現するために、妻側耐震壁と耐震壁間のフレーム部をそ れぞれ1本棒でモデル化し、屋根スラブレベルで屋根スラブ剛性を模擬した せん断ばねで連結する2本棒多質点系モデルに変更する。

1.3 既工認との比較

地震応答解析モデルの変更点を第1-1表に示す。

既工認では,質点系モデルの基礎底面位置に杭と地盤との動的相互作用を 考慮して評価したばね(水平ばね及び回転ばね)を取り付けてモデル化して いる。基礎底面ばねは,地盤の成層性と半無限性を考慮した三次元薄層要素 法による加振解に基づく方法により算定している。

今回工認では,既工認から地盤ばね算出に用いていた三次元薄層要素法を 入力動評価にも用いることにより,杭の拘束効果を考慮した。この入力動の ことを以下「有効入力動」という。

項目	既工認	今回工認
材料諸元	RC部:ヤング係数E・せん断弾	RC部: RC-N規準に基づくヤ
	性係数G(従来単位)	ング係数E・せん断弾
		性係数G
	NS方向, EW方向ともに1軸多	NS方向:1軸多質点系モデル
モデル	質点系モデル	EW方向:建屋振動特性を考慮し
形状*1		た2軸多質点系モデル
		鉛直方向:モデルを新設
耐震 剛性 ^{※1}	NS方向:剛床仮定に基づいた従	NS方向: 3次元FEMモデルに
	来ベースの弾性剛性を	より大開口の影響をよ
	設定	り詳細に考慮した等価
		剛性を設定
	EW方向:3次元FEMモデルに	EW方向:耐震壁と中間フレーム
	より屋根スラブ剛性を	部を独立させ、それぞ
	考慮した等価剛性を設	れ従来ベースの弾性剛
	定	性を設定
	鉛直方向:モデル未設定	鉛直方向:耐震壁配置に応じ従来
		ベースで剛性を設定
		(単スパン集約モデル)
耐震重量	積雪荷重を未考慮	積雪荷重 30 cm×0.35 考慮
		(30 tf 増)

第1-1表(1/3) 地震応答解析モデルの変更点(解析条件)

項目	既工認	今回工認
解析手法	建屋剛性は線形としてモデル化	せん断及び曲げの非線形性を考慮
	(線形応答解析)	(復元力特性の設定による非線形
		応答解析)
		※鉛直方向は線形応答解析
入力 地震動	一次元波動論を用いた地盤応答解	三次元薄層要素法による杭の拘束
	析による基礎版底面レベルの応答	効果を考慮した有効入力動
	波	

第1-1表(2/3) 地震応答解析モデルの変更点(解析条件)

※1:解析モデルの妥当性は、観測記録シミュレーションより確認した。

第1-1表(3/3) 地震応答解析モデルの変更点(解析モデル形状)

【補足資料1】三次元薄層要素法とは

三次元薄層要素法とは,弾性地盤における正弦的な波動伝播を求めるのに 際し,地盤を水平な薄層に分割して水平方向には均質な連続体とするが,深 さ方向には分割面で離散的に扱う方法である。即ち,水平方向には弾性波動 論,深さ方向には有限要素法で定式化したのが三次元薄層要素法である。三 次元薄層要素法では,波動伝播の解が解析的に求められるため積分する必要 がなく,計算効率の点で極めて有利となるため,地盤内部に多数の加振源を 有する埋込み基礎や群杭の動的相互作用解析に広く適用されている。 【補足資料2】観測記録を用いた応答解析モデルの妥当性検討

建屋のモデル化における振動特性評価の妥当性確認として,2011年3月11 日東北地方太平洋沖地震(以下「東北地方太平洋沖地震」という。)時の観 測記録を用いたシミュレーション解析を実施した。

1. 地震計設置位置

使用済燃料乾式貯蔵建屋には、地震時の基本的な振動性状を把握する目的 で基礎上端と屋根トラス上部に各1台の地震計を設置している。

使用済燃料乾式貯蔵建屋の地震計設置位置を第1-1図に示す。

2. シミュレーション解析結果

既工認での地震応答解析の概要図を第2-1図に、今回の工認での評価の概 要図を第2-2図に示す。観測記録を用いたシミュレーション解析は、既工認 モデルと今回の工認モデルの両方を用いた。

東北地方太平洋沖地震のシミュレーション解析結果として、両者の最大応 答加速度分布の比較を第2-3図に示す。今回工認モデルは既工認モデルとほ ぼ同等の応答となっており、観測記録に対しては両モデルともに観測記録よ りも大きい結果となっている。

床応答スペクトルの比較を第2-4図に示す。観測記録,既工認モデル及び 今回工認モデルのピークは,ほぼ同じ周期で生じていることから,建屋の剛 性は適切に模擬できているものと考える。

3. 工認に用いる地震応答解析モデルの妥当性について

使用済燃料乾式貯蔵建屋が細長い形状をしていること等を考慮し,地震応 答解析モデルを既工認から変更したが,東北地方太平洋沖地震のシミュレー ション解析結果より,既工認モデルと今回工認モデルの観測記録の説明性は 同程度であることを確認した。

以上の結果を踏まえ、使用済燃料乾式貯蔵建屋の地震応答計算及び耐震計

4条-別紙9-15

算書に用いる応答解析モデルには、今回工認モデルを用いることとした。

標高 (EL.)

(b) 1 階(EL. 8.3 m) 平面図

第1-1図 使用済燃料乾式貯蔵建屋の地震計設置位置

第2-1図 地震応答解析の概要図(既工認)

(鉛直方向)

第2-2図 地震応答解析の概要図(今回工認での評価)

4条-別紙9-19

第2-3図(1/3) 最大応答加速度分布の比較(NS方向)

第2-4図(1/3) 床応答スペクトルの比較(NS方向, h=5%)

第2-4図(2/3) 床応答スペクトルの比較(EW方向, h=5%)

第2-4図(3/3) 床応答スペクトルの比較(上下方向, h=5%)

【補足資料3】有効入力動の適用性について

1. 既工認と今回工認における地盤ばね及び入力地震動算出方法の比較

既工認では、杭を考慮した地盤ばね算出に三次元薄層要素法を用いていた が、建屋地震応答解析モデルへの入力動には基礎版底面レベルにおける露頭 波を用いていた。三次元薄層要素法とは、水平方向には弾性波動論、深さ方 向には有限要素法で定式化した解析手法である。

今回工認では、入力地震動評価にも同手法により杭の拘束効果を考慮した 基礎版底面レベルにおける有効入力動を用いることにより、地盤ばねの設定 との整合を図り、より実状に近い評価とする。第1-1図に既工認と今回工認 における地盤ばね及び入力地震動算出方法の比較を示す。

第1-1図 既工認と今回工認における地盤ばね及び入力地震動算出方法の比較

 三次元薄層要素法による杭の拘束効果を考慮した有効入力動の算出方法 一次元波動論から算出される自由地盤地震動に三次元薄層要素法により算 出した伝達関数比率を乗じて杭の拘束効果を考慮した有効入力動を算出す る。算出方法を第2-1図に示す。

第2-1図 三次元薄層要素法による有効入力動の算出方法

3. 三次元薄層要素法の妥当性確認

三次元薄層要素法による有効入力動の妥当性を規格基準等の記載より確認 した。規格基準等には、杭基礎の拘束効果を考慮した有効入力動を設定する こと及びその評価に三次元薄層要素法が用いられることが示されている。確 認した規格基準等の抜粋を「補足資料4 規格基準等での有効入力動に関す る記載」に示す。

また,三次元薄層要素法の妥当性を確認するため,三次元薄層要素法及び 一次元波動論より算定した自由地盤の伝達関数を比較した。地盤物性はS。 -D1Hによる等価物性を代表として用いた。第3-1図に比較対象概要図, 第3-2図に一次元波動論及び三次元薄層要素法による自由地盤の伝達関数を 比較して示す。両者同様な結果が得られていることから三次元薄層要素法の 妥当性を確認した。

第3-1図 比較対象概要図

4条-別紙9-28

第3-2図 自由地盤伝達関数の比較

4. 杭の拘束効果を考慮した有効入力動の適用性の検討

使用済燃料乾式貯蔵建屋への杭の拘束効果を考慮した有効入力動の適用性 を確認するため、東北地方太平洋沖地震の観測記録を用いたシミュレーショ ン解析を行った。地震観測記録と有効入力動を用いた解析結果の基礎上の床 応答スペクトルの比較を第4-1図に示す。

有効入力動を用いた解析結果は,建屋の1次固有周期近傍で観測記録より 大きいことより,使用済燃料乾式貯蔵建屋への杭の拘束効果を考慮した有効 入力動の適用性を確認した。

第4-1図(1/3) 床応答スペクトルの比較

(NS方向, h=5%)

第4-1図(2/3) 床応答スペクトルの比較

(EW方向, h=5%)

第4-1図(3/3) 床応答スペクトルの比較(上下方向, h=5%)

5. 基準地震動 S_sに対する有効入力動と自由地盤地震動の比較

基準地震動S_sに対する杭の拘束効果を考慮した有効入力動を既工認手法 による自由地盤地震動と比較を行った。比較は代表として基準地震動S_s-D1Hに対して行った。

第5-1図に一次元波動論により算定した自由地盤地震動X_sの加速度応答 スペクトルを示す。三次元薄層要素法により算定した自由地盤の伝達関数T s, 杭拘束考慮の伝達関数T_Fを第5-2図,第5-3図にそれぞれ示す。また, T_sに対するT_Fの比を第5-4図に示す。最終的に算定された,NS方向及び EW方向の有効入力動の加速度応答スペクトルを自由地盤地震動の加速度応 答スペクトルと比較して第5-5図に示す。

杭の拘束効果を考慮した有効入力動は自由地盤地震動よりやや小さいことを確認した。

第5-1図 自由地盤地震動(X_s)の加速度応答スペクトル (S_s-D1H, h=5%)

第5-2図 自由地盤伝達関数(T_s)

4条-別紙9-35

(a) NS方向

(b) EW方向

第5-3図 杭拘束考慮の伝達関数(T_F)

第5-4図 T_sに対するT_Fの比

(a) NS方向

(b) EW方向

第5-5図 加速度応答スペクトルの比較(h=5%)

【補足資料4】規格基準等での有効入力動に関する記載

1. JEAG4616-2003 乾式キャスク貯蔵建屋基礎構造の設計に関する技術指

針(日本電気協会, 2003)

b) FEM モデル

FEM モデルは、一般に地盤及び杭基礎を二次元にモデル化し、杭基礎全体モ デルとして応答解析を行う。FEM モデルでは、地盤を平面ひずみ要素、杭を梁要 素、建屋を質点系あるいは平面ひずみ要素にモデル化する。また、地盤を軸対称 要素、群杭をリング杭要素にモデル化した軸対称 FEM モデル^(1,3,2-6) による応答 解析も可能である。,地盤モデルの側面と底面の境界には、波動エネルギーの逸散 を考慮するため、エネルギー伝達境界あるいは粘性境界などを設けて地盤の半無 限性を考慮する。FEM モデルでは、群杭と地盤を直接モデル化することが可能 であり、群杭効果や埋込み効果を考慮できる。また、液状化対策などの目的で実 施する地盤改良の効果を直接取り込むことができる。

杭体や地盤の非線形性は、それぞれの要素に非線形特性を組み込んだモデルに よる時刻歴応答解析により考慮する。

なお、二次元 FEM モデルや軸対称 FEM モデルによる解析では、三次元的に 配置されている群杭を適切に二次元又は軸対称にモデル化する必要がある。

c) SR モデル

SR モデルでは、建屋を質点系にモデル化し、基礎底面位置に群杭と地盤との 動的相互作用を考慮して評価した群杭ばね(水平ばねと回転ばね)を取り付けて モデル化する。基礎底面の群杭ばねは、地盤の成層性と半無限性を考慮した三次 元薄層法による加振解などを用いて、群杭効果を考慮して評価することができ る。また、杭本数が多本数となる場合には、2本杭の柔性を重ね合わせる方 法^{G,3,2-9),G,3,2-10}や群杭係数を用いる方法などの近似解法^{G,3,2-10),G,3,2-10}によ り求めることができる。貯蔵建屋に埋込みが有る場合の側面地盤ばねは、質点系 モデルと同様に Novak の方法などにより評価する。群杭ばねは、基礎スラブを 剛体として評価した場合、水平ばね、回転ばね、水平・回転連成ばねの3成分が 算定されるが、水平・回転連成ばねの影響は小さいため、通常考慮しなくてもよ い。

群杭ばねは、複素数として振動数に依存した形で求められるが、時刻歴応答解 析に用いる場合は「原子力発電所耐震設計技術指針 追補版 (JEAG 4601)」(日本 電気協会)による近似法と同様に、地盤ばねの剛性に相当する実数部は振動数 ω =0における値、すなわち、振動数に依存しない一定値として取扱うこととする。 減衰に相当する虚数部は、建屋連成系の1次振動数 ω_1 における減衰定数 h_1 を通 る ω の1次式とする。

SR モデルへの入力動は,原則として,第5章「表層地盤の応答評価」に述べた 自由地盤の地震応答解析結果に基づき,基礎底面深さにおける応答波形とする。 ただし,群杭による拘束効果や地盤改良の影響などにより建屋への入力動が自由 地盤の応答と差を生じる場合には,必要に応じて別途有効入力動を評価すること とする。

なお、SR モデルによって地震応答解析を行う場合には、杭体の応力と変形は

7-25

2. JEAC4616-2009 乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関する技術規程(日本電気協会, 2010)

3. 動的相互作用の要因とその影響 - 83 -

3.3.3 基礎入力動

基礎入力動は基礎の剛性が地盤震動を拘束する効果を考慮した建物-基礎系への入力地震動であ り、解析的には図 3.13 に示すごとく入力地震動を受けたときの無質量・剛体基礎の応答として求 めることができる。鉛直入射S波 $E_0 \exp(i\omega t)$ に対するR1基礎の基礎入力動を図 3.14 に示す。 縦軸は基礎入力動の水平成分 Δ^* および回転成分 Φ^* に基礎の半幅 b を掛けた基礎端での上下変位 Φ^*b を地表面の応答振幅 U_s で基準化した値である。R1基礎は地中梁程度の埋め込みを有する直 接基礎であるが、埋め込みのない地表面基礎では水平の基礎入力動は振幅比 Δ^*/U_s が1 で回転成 分 Φ^* はゼロとなる。すなわち、基礎入力動は地表面の応答そのものになる。基礎が若干埋め込ま れたことにより、上記の地表面基礎での基礎入力動の特性とは異なり、特に回転成分は振動数が高 くなるにつれて大きくなる。水平成分の基礎入力動の振幅比は均質地盤 G1 においては振動数と ともに減少するが、成層地盤 G2 と G3 においては地盤の固有振動数の影響を受けて波打ち、固 有振動数付近では谷になる。これは地盤の固有振動数で共振する地盤の応答を基礎が拘束している ことに起因する。

6. 動的相互作用の代表的解析法 -161-

6.3.4 プログラムの流れ

図 6.3.6 に、直接境界要素法による動的相互作用解析プログラムの流れを示し、前3項の数式および留意点の参照箇所を位置付けた.まず、問題の定義において地盤物性,基礎形状,ならびに擾乱の種類が定義される.次に、境界要素法の要素積分とマトリックス解の評価が行われ、目的とする動的相互作用基本物理量が求められる.

境界要素積分の評価においては、対象振動数範囲に相応しい要素分割、使用するグリーン関数の 選択と評価、ならびに境界要素特異積分および非特異積分の手法の選択が行われる.評価された影 響関数(境界積分結果)にマトリックス演算を行う際には、外部問題において発生する内部固有値 の取り扱いに注意が必要となる.

6.4 薄層要素法

薄層要素法または薄層法とは、弾性地盤における正弦的な波動伝播を求めるのに際し、地盤を水 平な薄層に分割して水平方向には均質な連続体とするが、深さ方向には分割面で離散的に扱う方法 に対して名付けられたものである¹⁷⁷¹. 当初、この方法は有限要素法の普及とも関係して、地盤を規 則領域と不規則領域とに分けたとき、規則領域の無限の広がりに代わるエネルギー伝達境界の設定 に応用されてきた¹⁷⁸⁰⁻¹⁸¹⁷な²⁷². その後、同じ薄層モデルを用いて、任意節面上に正弦的な点加振を与 えたときの波動伝播の解が解析的に導きだされた^{351,1821,1831}. その結果、これを成層地盤のグリーン 関数として用いることにより、サブストラクチャー法に基づいた三次元の動的相互作用解析が著し く簡易化されることになった.

一般に,弾性地盤における波動伝播の解は波数に関する無限積分で表され,その数値計算は極め て煩雑となる.しかしながら,薄層法ではこの無限積分が解析的に求められ,解がいわゆる Closed form で与えられる.したがって,計算効率の点で極めて有利となるため,地盤内部に多数 の加振源を有する埋込み基礎や群杭の動的相互作用解析に広く適用され,最近では理論地震動の計 算にも応用されている^{[14]-180/F&F}、本節では,この薄層法について,その基礎方程式と導出される解 の最終表現を示し,解の精度を検討して薄層モデル設定の際の注意点を述べる.また,薄層法の適 用例として,ここでは群杭の動的相互作用問題をとりあげ,若干の数値解析例を紹介する.

6.4.1 薄層モデルにおける加振解

- まず、図 6.4.1のような半無限成層地盤に対し、薄層モデルを以下のように設定する.
- 地盤の深さ方向にモデル化領域を定め、その成層状況および解析精度を考慮して多数の水平 な薄層に分割する.ここに、各薄層は均質とし、層内では深さ方向の変位分布を直線に仮定す る.
- 2) 各薄層節面に対し、その節面番号を地表面より順次1,2,…,Nと付す.この番号は節面下の層要素についても共用する.
- 3) 地盤の半無限性を考慮するため、最下層(第N層)をダッシュポットまたは半無限要素で モデル化する [図 6.4.2 参照].

-172- 入門・建物と地盤との動的相互作用

(2) 薄層領域の精度

10 層モデルを用いて、最下層がダッシュボットの場合と半無限境界の場合について薄層領域に よる解の精度を検討する.ただし、前述の薄層分割による精度を考え、ここでは $r/H \ge 3$ および $n \ge 5$ をほぼ満足するようにモデルを設定してある.r/L = 1/2、1の場合について、 $\omega L/V_s$ を変数 として求めた変位関数の比較を図 6.4.7 に示す、ここでも同様に、せん断波の 1 波長: λ とモデル 深さ:Lの関係を考えると、

$$m = \frac{\lambda}{L} \rightarrow \frac{\omega L}{V_s} = \frac{2\pi}{m}$$

(6.4.21)

一般の離散化手法では、対象振動数に対してモデル深さをm=1程度に選ぶ、そこで、ここでも式(6.4.21)から $0 < \omega L/V_s \le 6.0$ の範囲を対象とし、図の横軸には上記の $m=\lambda/L$ も示した。

まず、r/Lに着目してモデルの設定深さを考えると、図からはダッシュボットモデルの場合に $r/L \leq 1/2$ 、半無限境界モデルでは $r/L \leq 1$ となるように薄層領域を設けるのが望ましいといえる. さらにこのとき、ダッシュボットモデルおよび半無限境界モデルとも、水平加振に対しては $m \leq 4$ ($\omega L/V_s \geq 1.5$)、上下加振に対しては少なくとも $m \leq 2(\omega L/V_s \geq 3.0)$ となるように設定すること も必要である。結局、ここでも加振点一受振点間距離:rとせん断波の1波長: λ の両者に対する バランスが問題となる。

(3) 薄層モデルの設定方法

以上の精度検討をまとめると、薄層モデルを設定する際の指標として、薄層分割については表 6.4.1 が、薄層領域については表 6.4.2 が提唱できよう、もちろん、現実の地盤は層序が複雑なこ ともあって、このように単純には設定できない場合もある、しかしながら、同表は薄層モデル設定 の際のめやすになろう、

表 6.4.1	薄層分割	(分割層厚)	の設定指標
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

r	'H	$\lambda/H \left(\omega H/V_s \right)$									
少なくとも	できれば	少なくとも	できれば								
>3	≥4	>5 (≤1.25)	≧6 (≤1.0)								

2011年6月間限級(エノル体で)の設定指標	表 6.4.2	薄層領域	(モデル深さ)	の設定指標
------------------------	---------	------	---------	-------

<i>r</i> ,	L	$\lambda/L (\omega L/V_s)$							
ダッシュポット	半無限境界	水平加振	上下加振						
$\leq 1/2$	≤ 1	≤4 (≥1.5)	≤2 (≥3.0)						

6.4.4 薄層モデルによる群杭の動的相互作用解析

計算効率や成層地盤への適用性などにより,薄層モデルは埋込み基礎や杭基礎の三次元動的相互 作用解析に広く用いられている.ここでは,最近注目されている群杭の動的相互作用解析について 数値計算例を紹介する.

いま,図6.4.8(a)のような構造物―杭―地盤系を考え,サブストラクチャー法を適用して同

 — 174 — 入門・建物と地盤との動的相互作用
ここに

 $\{F^*\} = [A]^{-1} \{u_G\}$

ただし, [K_{ss}], [K_{PP}],…および [M_s], [M_P],…は, それぞれ構造物:Sと杭:Pの離散化表示に よる剛性マトリックスと質量マトリックスを意味する. とくに, [K_P] と [M_F] は杭と同体積の 土柱の剛性マトリックスと質量マトリックスを表す. また, (F_s) は構造物に外部から作用する加 振力ベクトルで, {F*} は地震時に杭に作用するドライビングフォースベクトルである. 構造物一 杭一地盤系の解析では,式(6.4.23)の運動方程式が基本となる. 例えば, 群杭の動特性を論じる うえで重要な杭基礎のインピーダンスは,式(6.4.23) で構造物を無質量剛体とし, その上で加振 問題({F*}={0}) を解けばよい. また, 同様に杭基礎の入力動は, 同式で入射問題({F_s}={0}) を解けばよい.

数値例¹⁵⁰として、杭径:Bに対する杭中心間隔:Sの比がS/B=2.5の場合について、杭本数: Nをパラメーターに求めた群杭の水平インビーダンスを図 6.4.10に示す. 同図には参考のため単

4. 建物と地盤の動的相互作用を考慮した応答解析と耐震設計(日本建築学

会, 2006)

1.2.3 慣性の相互作用と入力の相互作用

相互作用を理解するには、図1.2.4に示すように、建物と地盤とを分離して考えると分かりやすい. この考え方は、後に、動的サブストラクチャー法として解説されているが、ここでは導入部として その概要を示しておく.

図 1.2.4 建物と地盤とを分離した解析

まず,建物が存在しない状態(建物部を切り欠いた地盤)を想定する.このときの建物と地盤と の境界部でのカー変位関係を,「動的地盤ばね」と呼んでいる(相互作用ばね,インピーダンスな どとも呼ぶ).また,地震動が入射したときの建物-地盤境界部での動きを,「基礎入力動」と呼 んでいる.基礎入力動は,地盤ばねを介して建物に作用する入力地震動に相当する.動的地盤ばね と基礎入力動を求める問題を,それぞれ、「加振問題」,「入力問題」と呼び,それぞれの相互作 用効果を「慣性の相互作用」,「入力の相互作用」と呼ぶ.上に示した地盤ばねや地下逸散減衰は 慣性の相互作用効果の一つ,入力損失は入力の相互作用効果の一つである.

動的地盤ばねと基礎入力動の積は「ドライビングフォース」と呼ばれる.ドライビングフォース は、地震動が入射したことによって生じた建物-地盤境界部の変位を、元に戻すために必要となる 力である.この力が、作用・反作用の関係で上部構造に作用することになる.

したがって、上部構造物の運動方程式には、剛性行列に動的地盤ばねが加わり、外カベクトルに ドライビングフォースが与えられることになる、動的地盤ばねは、建物の存在の有無による変位差 (基礎の応答変位と基礎入力動との相対変位)に比例した抵抗力を生み出す.これが建物と地盤との 間でやりとりされる「相互作用力」である.

4条-別紙9-46

6 億 抗蒸變の応答評価 -171-

6.4 基礎入力動の評価

6.4.1 杭基礎の基礎入力動の特徴

杭基礎建物の入力動は、直接基礎のように表層地盤の地表面応答波がそのまま上部構造に入力さ れるのではなく、地盤内に存在する群杭が表層地盤の単動を拘束するため、自由地盤の応答波とは 異なる、図 6.4.1 は薄層法を用いて求めた杭基礎の基礎入力動を、自由地表面の応答に対する比(応 答倍率)として示している、地盤モデルは3章の図 3.3.3 に示した地盤-2 の地盤モデル(支持層 GL-25m)であり、被状化層がない場合と考慮した場合である。杭径は1200mmと1500mm、杭間距 曜は 6mとし、杭本数は 2×2=4 本と 6×6=36 本としている。

地盤の1次固有振動数に相当する1H2以下の低振動数では,基礎入力動の振幅は自由地表面を下 回り、いわゆる「入力損失効果」が見られる。その低減効果は、群杭が表層地盤の挙動を拘束する 効果に応じて杭本数が多く、杭径が大さくなるほど大きくなる。また被状化層を考慮した地盤では 入力損失効果が顕著に見られるが、杭本数が多い杭基礎では2H2付近の高振動数域で自由地盤に比 べ大きくなる場合がある。これは、彼状化層をもつ自由地盤では地盤の非線形化による減衰効果に より増幅が抑えられるのに対し、杭基礎では杭の支持層地盤から直接杭体を伝わり上部構造に入力 する地震動成分があるためである。このような杭基礎への基礎入力動の性状は、群杭効果と同様に 杭径、杭長、杭間距離、地盤剛性によって異なる。杭基礎と上部構造をモデル化した一体型モデル を用いた応答解析ではこのような基礎入力動の影響は自動的に考慮されるが、分離型モデルでは別 途基礎入力動を評価して SR モデルに入力する必要がある。

別紙-10

東海第二発電所

液状化影響の検討方針について

目次

1.	液状化影響評価の検討方針の概要	•••3
2.	敷地の地質について	•••6
3.	液状化検討対象層の抽出	•••20
3.	1 液状化検討対象層の抽出	
3.	2 Ac 層の液状化強度試験結果	
4.	液状化強度試験箇所とその代表性	•••35
4.	1 液状化強度試験箇所の選定	
4.	2 液状化強度試験選定箇所の代表性	
4.	3 室内液状化強度試験結果の R _{L20} と道路橋示方書式によ	
	るRLとの比較検討	
4.	4 基準地震動 S _s に対する液状化強度試験の有効性	
5.	施設毎の液状化影響検討の組合せ	•••63
6.	有効応力解析の検討方針	•••69
7.	液状化強度特性(豊浦標準砂)の仮定	•••82
8.	設置許可基準規則第三条第1項,第2項に対する条文適	
	合方針について	•••86
9.	参考資料	
9.	1 地下水位観測データについて	•••88
9.	2 土槽振動実験の再現シミュレーションについて	•••94

1. 液状化影響評価の検討方針の概要

第1.1.1図に液状化影響評価のフローを示す。

東海第二発電所の液状化影響評価については道路橋示方書を基本 とし,道路橋示方書では液状化検討対象外とされている G.L. - 20m 以深及び更新統についても液状化検討対象層として扱う。

原地盤の各液状化検討対象層の試験結果に基づき,液状化強度特 性を設定し,有効応力解析により構造物への影響評価を実施する。 設定する原地盤の各液状化検討対象層の液状化強度特性は試験デー タのバラツキを考慮し,液状化強度試験データの最小二乗法による 回帰曲線と,その回帰係数の自由度を考慮した不偏分散に基づく標 準偏差を用いて適切に設定する。

耐震重要施設等^{*1}及び波及的影響の設計対象とする下位クラス施 設の耐震設計において液状化影響の検討を行う場合は,原地盤に基 づく液状化強度特性を用いて基準地震動Ssに対する有効応力解析 による検討(①)を行うことを基本とし,更に,当該検討において最 も厳しい(許容限界に対する余裕が最も小さい)解析ケースに対し て,豊浦標準砂^{*2}の液状化強度特性により強制的な液状化を仮定し た有効応力解析による検討(②)を追加で行う。上記の検討の組合せ は,個別の施設設置位置の液状化強度特性の信頼性等を確認し,施 設毎に設定する。

第 1.1.2 図に原地盤に基づく液状化強度特性と豊浦標準砂を仮定 した液状化強度特性の比較を示す。豊浦標準砂の液状化強度特性は 原地盤に基づく液状化強度特性の全てを包含している。豊浦標準砂 は、敷地に存在しないものであるが、極めて液状化しやすい液状化 強度特性を有していることから、豊浦標準砂の液状化強度特性を仮

4条-別紙10-3

定した有効応力解析は,強制的に液状化させることを仮定した影響 評価となる。

※1:常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設

置される重大事故等対処施設(特定重大事故等対処施設を除く) ※2:豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷

地には存在しないものである。豊浦標準砂は,淡黄色の丸みのある粒から成り,粒度が揃い均質で非常に液状化しやすい特性を有していることから,液状化強度特性に関する研究等における実験などで多く用いられている。

第1.1.1図 液状化影響評価のフロー

4条-別紙10-4

第1.1.2 図 原地盤に基づく液状化強度特性と豊浦標準砂を仮定した 液状化強度特性の比較

2. 敷地の地質について

敷地の地質層序を第 2.1.1 表に示す。敷地の地質は,下位から先 白亜系の日立古生層(日立変成岩類),白亜系の那珂湊層群,新第三系 の離山層,新第三系鮮新統~第四系下部更新統の久米層,第四系更新統 の東茨城層群及び段丘堆積物,第四系完新統の沖積層及び砂丘砂層から なる。

敷地の地質・地質構評価に係る地質調査のうち,ボーリング調査位置 図を第2.1.1 図に,敷地の地質平面図を第2.1.2 図に示す。敷地に 分布する地層のうち,最下位の日立古生層(日立変成岩類)は硬質な泥 岩,砂岩及び礫岩からなる。那珂湊層群は硬質な泥岩,砂岩及び礫岩か らなる。離山層は泥岩,凝灰岩からなる。久米層は砂質泥岩を主として いる。東茨城層群と段丘堆積物は砂礫,砂及びシルトからなり,沖積層 は粘土を主として砂及び礫混じり砂を挟む。各層は不整合関係で接して いる。砂丘砂層は均質な細~中粒砂からなり,敷地全体に広く分布 する。

敷地の第四系の主な層相及び代表的なコア写真の拡大を第 2.1.2 表に示す。以降,敷地の第四系をこの層相に基づき区分する。

敷地の地質断面図を第 2.1.3 図に示す。敷地には,敷地全域にわたって新第三系鮮新統~第四系下部更新統の久米層が分布し,その上位に第四系更新統の段丘堆積物,第四系完新統の沖積層及び砂丘砂層が分布する。

防潮堤設置位置の地質断面図を第2.1.4 図~第2.1.6 図に示す。 地質断面図は、断面線から最も近いボーリング調査の結果を重視す るとともに、周辺のボーリング調査で確認された地層の走向・傾斜 や分布の連続性を加味して作成した。

4条-別紙10-6

今後,追加ボーリング調査等を行い,第四系の地質構造,岩盤上面 深度等について詳細に確認を行い,詳細設計にて用いられる地盤条 件の精査をしていく。追加ボーリング調査計画を第 2.1.7~2.1.10 図に示す。

筆	備考	敷地全体に広く分布する。		最上位の砂層は敷地全体に広く分布する。	久慈川が侵食した凹状の谷を埋めて分布する。		敗地南部に分布する。 敗地周辺のL1段丘堆積物に対比される。 シルト層中の炭粉質の年代: 40830±2,670年BP→48.330±年BPオーバー (146年代測定法) (146年代測定法) 変地南西部に分布する。 変地南西部に分布する。 本層上部に分布する風化火山灰層に含まれる テフラの年代: ・赤城鹿沼テフラ >45,000年BP~60,000BP							敷地西部のごく一部に分布する。	敷地全体に広く分布する。 原子炉建屋等の基礎岩盤である。	敷地では北部を中心に久米層の下位に認められる。	敷地全体で久米層、離山層の下位に認められる。	1孔のボーリングで那珂湊層群の下位に認められる。						
	主な層相	灰褐色~黄灰色の砂~中粒砂	暗青灰色~灰褐色の粘土・砂 灰褐色~黄褐色の礫混じり砂				、 黄褐色~青灰色の砂礫・砂・シルト				マレート 本語会会取出で、"ILL			暗灰色~褐色の砂及びシルト 灰褐色~青灰色の砂礫	暗オリーブ灰色の砂質泥岩	泥岩·凝灰岩	泥岩·砂岩	泥岩·砂岩·礫岩						
			2 砂	c	s 改	11 砂1	-3 ~1	3 砂	3 砂	-2 ∻л	2 砂		1-1 1-2	1 砂										
	也質記号	du	du	qr	qn	qn	qn	qn	Ag	A.	<	Ag	50 D30	D2s	D2g-	D2c	D2g	D16	D1g	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ζ Ψ.	₹ ₹	ζ ž ž)) H
	*		ש ק ק				D 20											>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>						
	地層区分	砂丘砂層			冲痕 層													那珂湊層群	 (日立変成岩類) 					
			完 新 新 新 新 新 新 新 新 新 新 新 新 新										鮮新統											
	年代層序区分								第四系								新第三条	※ 亜句	先白亜系					
									# F	机生界	5													

第2.1.1 表 地質層序

第2.1.1図 ボーリング調査位置図

第2.1.2図 敷地の地質平面図

÷.,	年代册序到	89	地质部分	-	129		主な語機	代表的なコア写真
			90.9%	*		反褐色~貴灰色の砂~中粒砂		
					A62	94		
		26 4	*88		Ac	粘土	晴吉灰色~灰褐色の粘土・砂 灰褐色~黄褐色の健夏じり砂	and the second second
					As	8		and the second
					Ael	94		
	255	灭新统	· 院丘電磁際	D2	D2e-3	3.A.F	美褐色~古灰色の砂藿・砂・シ ルト	
新生果					02s-3			
					D2g-3	9 8		WEAL PERCH
					02e-2	эль		
					02g-2	98		
				DI	In	A-0		X A P
					Die-1	シルト		
					Dig-1	94		

第2.1.2表 第四系の主な層相及び代表的なコア写真の拡大

4条-別紙10-14

※ボーリング調査位置については、干渉物等を回避するため実施時においては位置が多少変更となる可能性がある第2.1.7図 追加ボーリング調査計画(平面図)

4条-別紙10-18

 3. 液状化検討対象層の抽出

3.1 液状化検討対象層の抽出

道路橋示方書(道路橋示方書・同解説V耐震設計編,平成24年3 月)では液状化検討対象層を完新統の以下の条件全てに該当する土 層と定めている。

- ①地下水位が G.L. 10m 以内であり,かつ G.L. 20m 以内の飽 和
 土層
- ②細粒分含有率が35%以下,又は細粒分含有率が35%以上でも塑
 性指数が15以下の土層

③平均粒径が10mm以下で、かつ10%粒径が1mm以下である土層

上記の条件は指針類(鉄道構造物等設計標準・同解説 耐震設計編 (平成24年9月),港湾の施設の技術上の基準・同解説(平成19年)) でほぼ共通している。

当該地での液状化検討対象層の抽出では,道路橋示方書で対象としている地層を基本とし,さらに,道路橋示方書では検討対象外としている更新統及び G.L. - 20m 以深の土層も抽出対象とする。

第3.1.1 図には敷地の液状化検討対象層抽出方針,第3.1.1 表には液状化検討対象層の抽出結果を示す。

敷地における液状化検討対象層は、du層、Ag2層、As層、Ag1層、 D2s-3層、D2g-3層及びD1g-1層となった。

地質	〔記号	層相	道路 あ 書 る 検 討 層	当社におけ る液状化検 討対象層	備 考
du		砂	0	0	
	Ag2	砂礫	0	0	
	Ac	粘土	—	—	
al	As	砂	0	0	G.L20m 以深に分 布する範囲について も検討対象とする。
	Ag1	砂礫	—		G.L20m 以深に分 布するが検討対象と する。
	D2c-3	シルト	—	—	
DO	D2s-3	砂	_		更新統であるが検討 対象とする。
D2	D2g-3	砂礫	_		更新統であるが検討 対象とする。 G.L20m 以深に分 布する範囲について も検討対象とする。
	1 m	ローム	_	—	
D 1	D1c-1	シルト			
	D1g-1	砂礫	_		更新統であるが検討 対象とする。

第3.1.1表 液状化検討対象層の抽出結果

○:検討対象

□:道路橋示方書では検討対象外だが 検討対象とするもの −:検討対象外
 ∷液状化検討対象と するもの 3.2 Ac 層の液状化強度試験結果

敷地の北部には砂層を間に挟在している過圧密粘土層(Ac 層)が 厚く堆積している。Ac 層は細粒分含有率が90%以上,塑性指数 Ip は30~60を示す高塑性粘土である。前節の液状化検討対象層の抽 出ではAc 層は液状化検討対象層外と分類されるが,敷地における 分布範囲が広く,液状化影響検討における重要度が高いことから液 状化の可能性の有無を定量的に検討することを目的として室内液状 化強度試験を実施した。

室内液状化強度試験は、砂・礫質土で実施した中空繰返しねじり せん断試験により実施した。以下に試験条件を示す。

【室内液状化強度試験の試験条件】

試験方法:中空繰返しねじりせん断試験

地盤材料試験の方法と解説(公益社団法人地盤工学 会,2009)に基づき,繰返し回数200回を上限とし, 両振幅せん断ひずみ7.5%に達するまで試験を実施し た。

せん断応力比は(繰返し回数 5~50 回を目安) 0.36~ 0.80 の間で設定した。

供試体寸法:外形 70mm×内径 30mm×高さ 100mm

載荷波形:正弦波(0.02Hz)

圧密圧力:供試体採取深度の有効上載圧を考慮して設定

第3.2.1 図に中空繰返しねじりせん断試験の概要及び第3.2.2 図に液状化強度試験試料採取箇所(Ac層)を示す。

第3.2.3 図~第3.2.11 図に中空繰返しねじりせん断試験結果を 示す。

試験を行った全ての供試体において,過剰間隙水圧比は 0.95 に 達せず,Ac層は液状化しないものであることが確認された。

第3.2.1 図 中空繰返しねじりせん断試験の概要

第 3.2.2 図 液状化強度試験試料採取箇所 (Ac 層)

(Ac \mathbb{R} , SC - 7 - 23 \sim 24(4)) 中空繰返しねじりせん断試験結果 第3.2.10 図

4条-別紙10-34

4. 液状化強度試験箇所とその代表性

4.1 液状化強度試験箇所の選定

敷地の地層分布と液状化検討対象層の抽出結果を踏まえて,室内 液状化強度試験用試料採取箇所の選定を行った。

液状化強度試験の試料採取箇所の選定には,液状化強度試験試料 採取箇所のN値及び細粒分含有率 Fc から算定される道路橋示方書 の液状化強度比 R_Lと,敷地全体における同層の道路橋示方書に基づ く平均液状化強度比 R_Lと比較して保守的な値であること及び試料採 取が可能な層厚を有していることを考慮した。

第4.1.1 図に液状化強度試験試料を採取した平面位置を,第4.1.2 図~第4.1.8 図に各土層の液状化強度試験試料を採取した縦断位置 を示す。

6

第4.1.6 図 D2s-3 層の液状化強度試験試料採取位置

4条-別紙10-40

第4.1.7 図 D2g-3 層の液状化強度試験試料採取位置

4条-別紙10-41

4.2 液状化強度試験選定箇所の代表性

指針類の液状化抵抗率 F_Lの簡易算定式は,地表面から深さ 20m までに分布する完新統を対象に,次式で示される。

$$F_L = \frac{R}{L}$$

ここに、F_Lは液状化抵抗率、R は液状化強度比、L は地震時最大せん断応力比である。第4.2.1 表は指針類での液状化強度比R の算定時に用いられる物性値を示しているが、基本は完新統のN 値と細粒 分含有率F c を用いた算定式であり、平均粒径D₅₀を用いて補正している。

以上のように液状化強度比Rは完新統のN値,細粒分含有率Fc, 平均粒径D₅₀と相関があり,室内液状化強度試験試料採取箇所と敷 地内全調査孔の簡易式によるそれぞれのRの算定値を比較すること に基づいて代表性を示す。

本検討においては,道路橋示方書の液状化強度比R_Lの算定式を用 いるとともに,原地盤の試料を用いた室内液状化強度試験で求めら れた繰返し回数 20 回に相当するせん断応力比をR_{L20}と表記するも のとする。

また,液状化強度比の比較においては,指針類の物性値のバラツ キに対する考え方を参考とし,液状化強度試験データの最小二乗法 による回帰曲線と,その回帰係数の自由度を考慮した不偏分散に基 づく標準偏差を用いた「平均-1σ」(以下「-1σ値」と称す)につ いて整理した。

第4.2.1表 指針類における液状化強度比Rと基本物性の関係

	液状化強度比Rの	液状化強度比Rの
指針類名	算定に用いる	補正に用いる
	主な物性	物性
道路橋示方書・同解説V耐震 設計編,日本道路協会,平成 24年 (下水道施設の耐震対策指針 と解説,日本下水道協会, 2014) (河川砂防技術基準(案)同解 説,日本河川協会編,1997) (高圧ガス設備等耐震設計指 針,高圧ガス保安協会,平 成 24年)		細粒分含有率 F c 平均粒径 D 50
港湾の施設の耐震設計に係る 当面の借置(その2),日本港 湾協会,平成19年(部分改正 平成24年)	N 値	細粒分含有率 F c
建築基礎構造設計指針,日本 建築学会,2001 (水道施設耐震工法指針・解 説,日本水道協会,2009)		細粒分含有率 F c
鉄道構造物等設計標準・同解 説 耐震設計,(財)鉄道総合 技術研究所,平成24年		細粒分含有率 F c 平均粒径 D 50
4.3 室内液状化強度試験結果のR_{L20}と道路橋示方書式によるR_L
 との比較検討

(1) 概要

各土質について,敷地全体の調査孔のN値及び細粒分含有率F cから道路橋示方書式で算定される液状化強度比(以下,R_Lとす る)と,室内液状化強度試験試料採取箇所の近傍調査孔のR_Lとを 比較し,室内液状化強度試験試料採取箇所の代表性を確認する。

各土質について代表性を確認した液状化強度試験試料採取箇所 の不攪乱試料を用いた室内液状化強度試験を実施し,試験結果に 基づき-1σを考慮した液状化強度特性を設定する(原地盤に基づ く液状化強度特性の設定)。

原地盤に基づく液状化強度試験結果から,繰り返し載荷回数 20 回に該当する液状化強度比(以下, R_{1,20}とする)を算定する。

各土質について,敷地の全調査孔のR_L,液状化強度試験試料採 取箇所の近傍調査孔のR_L及び原地盤に基づく液状化強度特性の R_{L20}とを比較し,有効応力解析に用いる原地盤の液状化強度特性 の保守性を確認する。

さらに、地盤を強制的に液状化させる解析条件を仮定した影響 評価検討のため、敷地の原地盤には存在しない均質さで極めて液 状化しやすい豊浦標準砂の液状化強度試験データに基づき-1 σ を考慮した液状化強度特性も設定する(豊浦標準砂を仮定した液 状化強度特性の設定)。

豊浦標準砂を仮定した液状化強度特性は、原地盤の液状化強度特性, R_L,(全調査孔)及びR_L(近傍調査孔)を全て包含していることを確認する。

道路橋示方書のR_Lの算定式は,更新統及びG.L. - 20m 以深が適 用対象外であるものの,本資料では更新統及びG.L. - 20m 以深に ついても道路橋示方書のR_Lの算定式を用い,原地盤に基づく液状 化強度特性及び豊浦標準砂を仮定した液状化強度特性の設定とを 比較することで,保守的な液状化の影響検討が可能なFLIPの 液状化強度特性の設定となっていることを確認する。

第4.3.1表に液状化強度特性の設定について示す。第4.3.1図 に液状化強度比較検討フローを示す。また,第4.3.2図にFLI Pによる豊浦標準砂の液状化強度特性(-1σ)を示す。さらに, 第4.3.3図に原地盤に基づく液状化強度特性と豊浦標準砂を仮定 した液状化強度特性の設定との比較を示す。

第4.3.1表 液状化強度特性の設定

液状化強	度特性の比較	交対象土層	道路橋示方書にお	有効応力解析に適用する-1σの液状化強度特性及び それら全てを包含する液状化強度特性の仮定							
堆積年代	土層名	層相	ける液状化検討対 象か否かの区分	原地盤の液状化強度特 性の設定	原地盤の液状化強度特 性の全てを包含する液 状化強度特性の仮定						
完新統	du	砂	対象								
	Ag2	砂礫	対象	原地盤試料の液状化強	敷地には存在しない均 質で液状化しやすい豊						
	As	砂	G.L20mまで対象	度試験結果に基づき -1 σ の液状化強度特性	浦標準砂の液状化強度 試験データを包含する						
	D2g-3	砂礫	対象外	を設定 	液状化強度特性を仮定						
	D2s-3	砂	対象外								

4条一別紙10-48

] 液状化強度比較検討フロ 4.3.1 X

第4.3.2 図 FLIPによる豊浦標準砂の液状化強度特性(-1 o)

第4.3.3 図 東海第二発電所の原地盤に基づく液状化強度試験データ とその全てを包含するFLIPの液状化強度特性(-1 σ,豊浦標準砂)

(2) 室内液状化強度試験結果と道路橋示方書式による R_Lとの比較 第 4.3.4 図~第 4.3.8 図に液状化検討対象層の室内液状化強度 試験結果と敷地内調査孔の道路橋示方書式による R_{L20} との比較 結果を示す。

室内液状化強度試験結果と道路橋示方書式による Rrso との比較検討(Ag2層) 第4.3.5 図

4条-別紙10-51

室内液状化強度試験結果と道路橋示方書式による Rraoとの比較検討(D2g-3層) 第4.3.8 図

(3) まとめ

敷地内の液状化検討対象層に対して,原地盤に基づく液状化強 度特性,原地盤に基づく液状化強度特性のR_{L20}(全調査孔),R_L

(近傍孔)及び豊浦標準砂を仮定した液状化強度特性との比較検 討を行った。

- ・ 各土層の原地盤に基づく室内液状化強度特性のR_{L20}は,何れの土層においてもR_L(全調査孔)より小さい。
- 完新統(du 層, As 層, Ag2 層)の液状化強度試験のR_{L20}は、
 それに対応するR_L(近傍孔)より小さい。
- ・更新統(D2g-3層,D2s-3層)の液状化強度試験のR_{L20}は、 それに対応するR_L(近傍孔)よりやや大きめの値を示してい る。しかし、道路橋示方書のR_L算定式は、完新統のN値及び 細粒分含有率Fcと完新統の液状化強度比との関係から定め られた式であり、更新統の液状化強度が一般的に高めの傾向 となる要因である年代効果の続成作用等の影響を考慮できる 評価式になっておらず、更新統は本来適用対象外である。よ って、完新統のN値及び細粒分含有率Fcに基づく道路橋示 方書のR_L算定式をあえて更新統に適用した場合には、当該層 の液状化強度試験結果よりやや小さ目にR_Lを評価する結果と なっている。
- 豊浦標準砂を仮定した液状化強度特性は、原地盤の液状化強
 度特性及び全ての土層の平均R_L(近傍孔)を包含している。
- 現在実施中の追加調査を踏まえ、各液状化検討対象層の液状
 化強度特性について、今後も引き続き検討を進める。当該施
 設設置位置近傍の調査孔で得られるN値と室内液状化強度試

験結果との関係を踏まえ,解析に用いる液状化強度特性が適 切であるか再確認していく。 4.4 基準地震動 S_sに対する液状化強度試験の有効性

敷地で採取された試料を用いて実施した液状化強度試験が基準地 震動 S_s相当の地盤の状態(繰返し応力及び繰返し回数)を模擬し ていることを確認するため,累積損傷度理論を適用し,評価検討を 行った。

第4.4.1 図に累積損傷度理論に基づく等価繰返し回数の評価フロ ーを,第4.4.2 図に累積損傷度理論による等価繰返し回数の評価方 法を示す。

液状化強度試験結果から各せん断応力比(L)に対して所定のせん断ひずみとなる繰返し回数を整理し,取水口南側・北側,海水ポンプ室南側・北側の地盤モデルを用いて実施した一次元有効応力解析結果を累積損傷度理論に基づいて整理した最大せん断応力比(L max)及び等価繰返し回数(N_{eq})と比較検討を行った。

第4.4.3 図~第4.4.6 図には各土層の累積損傷度理論に基づく評価結果を示す。

du 層, Ag2 層及び Ag1 層の評価結果より, 解析結果による最大せん断応力比(L_{max})と等価繰返し回数(N_{eq})は, 試験で実施したせん断応力比と繰返し回数と同程度であり, 概ね基準地震動 S_s-D1相当の試験が実施出来ている。

As 層の評価結果より,液状化強度試験はせん断応力比が小さい (繰返し回数 100 回以上)のデータを包含していないことから,す べてのデータを十分に包含する豊浦標準砂のFLIPの液状化強度 特性を用いた有効応力解析を実施し,耐震評価を行うこととする。

第4.4.1 図 累積損傷度理論に基づく等価繰返し回数の評価フロー

第4.4.3 図 累積損傷度理論に基づく評価結果 (取水口・海水ポンプ室, du 層)

第4.4.4 図 累積損傷度理論に基づく評価結果 (取水口・海水ポンプ室, Ag2 層)

(a)試験データの-1 σ保守側の回帰曲線を再現対象とした

FLIPの液状化強度特性

(b)全ての試験データを包含する
 豊浦標準砂のFLIPの液状化強度特性
 第4.4.5図 累積損傷度理論に基づく評価結果
 (取水口・海水ポンプ室,As層)

第4.4.6 図 累積損傷度理論に基づく評価結果 (取水口・海水ポンプ室, Ag1 層)

- 5. 施設毎の液状化影響検討の組合せ
- (1) 液状化影響検討の組合せの設定方針

液状化影響検討の組合せの設定フローを第5.1.1図に示す。

施設の詳細設計において,その周辺地盤に液状化検討対象層が 存在しない場合は,液状化の影響検討は不要とする。

上記に該当しない施設について,基準地震動 S_sに対して,敷地 全体の原地盤に基づく液状化強度特性を用いた有効応力解析によ る影響検討を行う(①)

個別の施設設置位置の液状化強度特性について,信頼性を確認 した上で,①の液状化強度特性より大きいかの確認を行う。

個別の施設設置位置の液状化強度特性が①の液状化強度特性よ り大きいことの確認ができない場合は,①の検討において最も厳 しい(許容限界に対する余裕が最も小さい)解析ケースに対して, 豊浦標準砂に基づく液状化強度特性により強制的な液状化を仮定 した影響検討を追加で行う(②)。

個別の施設設置位置の液状化強度が①の液状化強度特性より大きいことの確認ができた場合は、個別の施設設置位置における液状化強度特性を考慮した影響検討を行うことを基本とする。

ただし,個別の施設設置位置の液状化強度が①の液状化強度特 性より大きいことから,保守性を考慮し①の影響検討を採用する 場合もある。

第5.1.1図 液状化影響検討の組合せの設定フロー

(2) 施設毎の液状化影響検討の組合せ

対象施設の設置位置,液状化強度試験用試料採取箇所及び対象 層を第5.1.2 図に示す。また,検討フローに基づいた施設毎の液 状化影響検討の組合せは第5.1.1 表を基本とする。ただし,液状 化影響検討の組合せについては,今後の液状化強度試験及び詳細 設計により,その妥当性を示した上で変更する場合がある。ま た,波及的影響の設計対象とする下位クラス施設においても,そ の周辺地盤に液状化検討対象層が存在する場合は,液状化影響検 討を行うことを基本とする。

第5.1.3 図に追加液状化強度試験計画を示す。今後,当該試験 結果を踏まえ,詳細設計にて用いられる液状化強度特性を精査し ていく。

第5.1.2 図 対象施設の設置位置,液状化強度試験用試料採取箇所及

び対象層

	豊浦標準砂の液状化強度特 性により強制的な液状化を仮 定した影響検討を実施(2)	•	•	•	•	•		•		•	•	•		I		•	•	I		•	I	•	•		•	I		•	•
	敷地全体の原地盤の液状化 強度特性に基づく 影響検討を実施(①)	•	•	•	•	•		•		•	•	•		I		•	•			•	I	•	•	Ι	•			•	•
組合せ	液状化の 影響検討 不要						•		•				•	•	•			•	•		•			•		•	•		
: 状化影響検討の)	周辺地盤の地層のうち, 液状化検討対象層	du層, Ag2層, D2g-3層	du層, Ag2層, As層, Ag1層, D2s-3層, D2g-3層, D1-g1層	du層, Ag2層, As層, Ag1層	du層, Ag2層, As層, Ag1層	du層, Ag2層, As層, Ag1層	無し※1	du層, Ag2層, As層, Ag1層	無し(第四系全てを地盤改良)	du層, Ag2層, As層, Ag1層	du層, Ag2層, As層, Ag1層	du層, Ag2層, D2g-3層	無し(岩盤中に直接設置)	無し*1	無し ^{%1}	du層, D2s-3層, D2g-3層	du層, D2s-3層, D2g-3層	無し※1	無し(岩盤中に直接設置)	du層, Ag2層, D2g-3層	無し(岩盤中に直接設置)	du層, Ag2層, D2g-3層	du層, Ag2層, D2g-3層	無し※1	du層, du層, Ag2層, D2g-3層	無し*1	無し*1	du層, D2s-3層, D2g-3層	du層, D1g-1層
毎の液	支持層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層	久米層
1.1表 施設	下部工の構造	杭支持構造	杭支持構造	地中連続壁	地中連続壁	地中連続壁	人工岩盤を介して 岩盤に直接支持	杭支持構造	杭支持構造 (第四系全てを地盤改良)	杭支持構造	岩盤に直接支持	岩盤に直接支持	岩盤内に設置(トンネル)	岩盤に直接支持	地盤改良体を介して 岩盤に直接支持	鋼管コンクリート抗	杭支持構造	岩盤に直接支持	岩盤内に設置(埋設管)	岩盤に直接支持	岩盤内に設置(埋設管)	岩盤に直接支持	岩盤に直接支持	人工岩盤を介して 岩盤に直接支持	岩盤に直接支持	岩盤に直接支持	人工岩盤を介して 岩盤に直接支持	杭支持構造	杭支持構造
第 5.	設備名称 【間接支持している設備名称】	使用済燃料乾式貯蔵建屋 【使用済燃料乾式貯蔵容器】	鋼管杭鉄筋コンクリート防潮壁	鋼製防護壁	鉄筋コンクリート防潮壁	鉄筋コンクリート防潮壁(放水路エリア)	原子炉建屋	取水構造物 【非常用海水取水ボンプ及び非常用海水系配管】	主排気筒 【非常用ガス処理系排気筒】	屋外二重管 【非常用海水系配管】	貯留堰	常設代替高圧電源装置場場 【常設代替高圧電源装置,西側淡水貯水設備及び輸油貯蔵タンク】	常設代替高圧電源装置用カルバート(トンネル部) 【常設代替高圧電源装置電路,燃料移送配管】	常設代替高圧電源装置用カルバート(立坑部) 【常設代替高圧電源装置電路,燃料移送配管】	常設代替高圧電源装置用カルパート(カルパート部) 【常設代替高圧電源装置電路, 燃料移送配管】	緊急時対策所建屋	緊急時対策所用発電機燃料油貯蔵タンク基礎(A, B) 【緊急時対策所用発電機燃料油貯蔵タンク(A, B)】	緊急用海水ポンプピット 【緊急用海水ポンプ】	緊急用海水取水管	SA用海水ビット	海水引込み管	SA用海水ピット取水塔	格納容器圧力逃ぶし装置格納槽 【格納容器圧力逃ぶし装置】	格納容器圧力逃がし装置用配管カルバート 【格納容器圧力逃がし装置用配管】	代替淡水貯槽	低圧代替注水系ポンプ室 【低圧代替注水系ポンプ】	低圧代替注水系配管カルバート 【低圧代替注水系配管】	可搬型設備用軽油タンク基礎(西側) 【可搬型設備用軽油タンク(西側)】	可搬型設備用軽油タンク基礎(南側) 【可搬型設備用軽油タンク(南側)】
	設計基準 設計基準対処施設及び 「「」」」」」」」」」」」」」」」」、1997年19月19日19月19日19月19日19月19日19月19日19月19日19月19日19月19日19月19日19月19日19													Ĩ	₩∔	〈事	故等	対処	插机	വ			1						

※1: 排水設備により,地下水位を久米層分布深度以深としていることから,地下水位以深に液状化検討対象層はない。

第 5.1.3 図 追加液状化強度試験計画

- 6. 有効応力解析の検討方針
 - (1) 有効応力解析コード「FLIP」について

有効応力解析コード「FLIP (Finite element analysis of Liquefaction Program)」は, 1988年に運輸省港湾技術研究所(現,

(独)港湾空港技術研究所)において開発された平面ひずみ状態 を対象とする有効応力解析法に基づく,2次元地震応答解析プロ グラムである。FLIPの主な特徴として,以下の5点が挙げら れる。

- 有限要素法に基づくプログラムである。
- ② 平面ひずみ状態を解析対象とする。
- ③ 地盤の液状化を考慮した地震応答解析を行い,部材断面力や残 留変形等を計算する。
- ④ 土の応カーひずみモデルとしてマルチスプリングモデルを採 用している。
- ⑤ 液状化現象は有効応力法により考慮する。そのため、必要な過 剰間隙水圧発生モデルとして井合モデルを用いている。

砂の変形特性を規定するマルチスプリングモデルは、任意方向 のせん断面において仮想的な単純せん断バネの作用があるものと し、これらのせん断バネの作用により、土全体のせん断抵抗が発 揮されるものである。土の応力-ひずみ関係は、このせん断バネ の特性によって種々の表現が可能であるが、「FLIP」では双曲 線(Hardin-Drnevich)型モデルを適用している。また、履歴ルー プについては、その大きさを任意に調整可能なように拡張した Masing 則を用いている。第6.1.1 図にマルチスプリングモデルの 概念図を、第6.1.2 図に非排水条件での土の応力-ひずみ関係の

第6.1.1図 マルチスプリングモデルの概念図

第6.1.2図 非排水条件での土の応力-ひずみ関係の概念図

(2) 有効応力解析における地下水位分布について

敷地においては水位観測に基づき,水位コンターを設定している。地下水位については,平成29年6月時点でのデータを用いて取り纏めを行い,地下水位コンター図を作成した。

第 6.1.3 図に観測最高地下水位コンター図,第 6.1.1 表に観測 最高地下水位一覧表を示す。

今後,防潮堤の設置に伴い地下水位の上昇の可能性を踏まえ, 施設設計の保守性を考慮し,防潮堤に囲われた第 6.1.3 図に示す 範囲については,地下水位を地表面に設定することを基本とする。

第6.1.3 図 観測最高地下水位コンター及び地下水位設定

		観測最高地下水位	観測最高地下水位					
観測孔名	計測期間	(T.P. + m)	計測時期					
а	$1995 \sim 1999$	3.49	1998年10月8日					
b	$1995 \sim 1999$	2.52	1998年9月25日					
С	$1995 \sim 1999$	2.53	1998年9月22日					
d	$1995 \sim 1999$	2.28	1998年9月22日					
a-1	$1995 \sim 1999, 2004 \sim 2009$	15.42	2006年8月7日					
a-2	$2004 \sim 2009$	13.60	2006年7月28日					
b-2	$2004 \sim 2009$	9.06	2006年7月30日					
c-0	$1995 \sim 1999, 2004 \sim 2009$	2.05	1998年9月19日					
c-2	$1995 \sim 1999, 2004 \sim 2017$	2.58	2012年7月7日					
c-3	$2004 \sim 2017$	2.49	2012 年 7 月 7 日					
c-4	$2004 \sim 2017$	2.00	2012年6月25日					
d-1	$1995 \sim 1999, 2004 \sim 2009$	1.50	1998年9月18日					
d-3	$2004 \sim 2017$	1.44	2013年10月27日					
d-6	$2004 \sim 2017$	1.58	2013年10月28日					
e-2	$2004 \sim 2017$	1.38	2006年10月8日					
e-3	$2004 \sim 2017$	1.50	2013年10月16日					
e-5	$2004 \sim 2017$	1.30	2013年10月21日					
e-6	$2004 \sim 2017$	1.26	2013年10月21日					
B-1	$2005 \sim 2017$	2.90	2006年7月30日					
B-2	$2005 \sim 2017$	3.09	2006年7月30日					
B-4	$2005 \sim 2017$	3.56	2006年7月31日					
B-6	$2005 \sim 2017$	5.51	2006年8月17日					
C-4	$2005 \sim 2017$	3.17	2012年6月27日					
C-7	$2005 \sim 2017$	4.99	2006年8月18日					
D-0	$2006 \sim 2017$	2.37	2012年6月22日					
D-3	$2005 \sim 2017$	2.88	2006年10月7日					
D-4	$2006 \sim 2017$	2.76	2012年6月25日					
D-5	$2006 \sim 2017$	2.54	2012年7月16日					
E-4	$2006 \sim 2017$	2.26	2012年6月25日					
F-2	$2005 \sim 2015$	1.74	2013年10月30日					
F-4	$2005 \sim 2017$	1.55	2013年10月27日					
F-6	$2005 \sim 2017$	1.77	2012年6月24日					
G-5	$2005 \sim 2017$	1.53	2013年10月27日					
H-4	$2006 \sim 2017$	2.13	2013年10月16日					
H-7	$2005 \sim 2017$	1.33	2013年10月27日					

第 6.1.1 表 観測最高地下水位一覧表

(3) 液状化判定に係る評価基準値について

有効応力解析コード「FLIP」での地震応答解析結果により 算出される各地盤要素の間隙水圧に対し,液状化の定義を明確に した上で,評価基準値を以下のように設定し,液状化判定を行う。

レベル2地震動による液状化研究小委員会活動成果報告(土木 学会,2003)では,地盤の液状化の事象の定義として,以下のよう に記載されている。

・地震の繰り返しせん断力などによって、飽和した砂や砂礫などの緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、
 有効応力がゼロまで低下し液体状となり、その後地盤の流動を
 伴う現象。

液状化判定の評価基準値を設定するにあたり,規格・基準にお ける液状化と過剰間隙水圧に関する記載事例を調査した。地盤 材料試験の方法と解説(公益社団法人地盤工学会,2009)では, 液状化と関連する過剰間隙水圧について,以下のように記載さ れている。

 ・各繰り返しサイクルにおける過剰間隙水圧∆uの最大値が有効 拘束圧σ₀'の95%になった時の繰り返し載荷回数Nu95を求める。(土の液状化強度特性を求めるための繰返し非排水三軸試験 (p.703~749))

これらの知見を踏まえて,過剰間隙水圧を指標とした液状化の 評価基準値について,"液状化の定義"及び"規格・基準における 記載事例"に基づき,以下のように設定する。

・過剰間隙水圧Δuの最大値が有効拘束圧σ。"の 95%に達した

状態を液状化と判定する。

第 6.1.4 図に液状化パラメータ設定の流れ,第 6.1.2 表に各層 の液状化パラメータを示す。

液状化パラメータの設定は,室内試験(液状化強度試験,三軸圧 縮試験(CD条件),動的変形試験)及び原位置試験(PS検層) により動的変形特性を求め,その後「FLIP」による要素シミュ レーションにより液状化強度特性を求めている。

第6.1.5 図~第6.1.11 図に液状化強度試験結果に基づき,保守 側に設定した各層の「FLIP」の液状化強度特性を示す。

第 6.1.4 図 液状化パラメータ設定の流れ

K
]
\prec
IV
×
Ţ
Ř
痰
3
Ē
XI
~
表
\sim
Ŀ.
6.
箫

	ċ	2.00	2.00	3.40		2.27	3.35		3.15	3.82			2.83
	P_2	0.80	0.80	0.60		0.75	0.60		0.96	0.60			0.50
	P,	1.26	1.26	9.00	代化層	1.00	12.00	代化層	4.80	8.00	代化層	代化層	7.00
	W1	6.5	6.5	56.5	非液功	6.9	51.6	非液北	17.6	45.2	非液北	非液北	10.5
	S.	0.047	0.047	0.028		0.046	0.029		0.048	0.030			0.020
校 一	<i>も</i> 。 [度]	34.8	34.8	34.9		38.3	34.9		33.4	41.4			34.9
液状化パラメ	最大履歴減衰率 hmax	0.220	0.220	0.233	0.200	0.216	0.221	0.186	0.192	0.130	0.151	0.186	0.233
	基準初期 せん断剛性Gma [kN/m ²]	253,529 (220,739) ※()は地下水位以浅	253,529 (220,739) ※()は地下水位以浅	278,087 (167,137) ※()は地下水位以浅	121,829	143,284	392,073 (392,073) ※()は地下水位以浅	285,223	650,611	1,362,035 (1,362,035) ※()は地下水位以浅	38,926 (35,783) ※()は地下水位以浅	285,223	947,946 (956,776) ※()は地下水位以浅
	基準平均有効 主応力 ^{の'ma} [kN/m ²]	358 (312) ※()は地下水位以浅	358 (312) ※()は地下水位以浅	497 (299) ※()は地下水位以浅	480	378	814 (814) ※()は地下水位以浅	696	966	1,167 (1,167) ※()は地下水位以浅	249 (223) ※()は地下水位以浅	696	1,695 (1,710) ※()は地下水位以浅
	間隙比 e	0.75	0.75	0.67	1.59	1.20	0.67	1.09	0.79	0.43	2.80	1.09	0.67
		夏東土	qu	Ag2	Ac	As	Ag1	D2c-3	D2s-3	D2g-3	E	D1c-1	D1g-1
	/	Ŧ						第四系					

第 6.1.5 図 液状化强度特性 (du 層)

第 6.1.6 図 液状化強度特性 (As 層)

第 6.1.7 図 液状化強度特性 (Ag2 層)

第 6.1.8 図 液状化強度特性 (D2s-3 層)

第 6.1.9 図 液状化強度特性 (D1g-1 層)

第 6.1.10 図 液状化強度特性 (D2g-3 層)

第 6.1.11 図 液状化強度特性 (Ag1 層)

7. 液状化強度特性(豊浦標準砂)の仮定

豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地 には存在しないものである。豊浦標準砂は、淡黄色の丸みのある粒 から成り、粒度が揃い均質で非常に液状化しやすい特性を有してい ることから、液状化強度特性に関する研究等における実験などで多 く用いられている。

液状化評価に用いる豊浦標準砂の強度特性は, 文献 (CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)])から引用し た相対密度 73.9~82.9%の豊浦標準砂の液状化強度試験データに対 し, それらを全て包含する「FLIP」の液状化特性を設定する。

第7.1.1 図に豊浦標準砂の液状化強度試験データ,第7.1.2 図に FLIPによる豊浦標準砂の液状化強度特性を示す。

FLIPを用いて,強制的に液状化を仮定した液状化影響評価を 行うため,東海第二発電所の全地層の液状化強度試験データを包含 する液状化強度特性(豊浦標準砂)をFLIPに仮定した有効応力 解析を行い,耐震評価を実施する。第7.1.3 図に豊浦標準砂の液状 化強度特性と原地盤の液状化強度特性の比較を示す。

豊浦標準砂と液状化評価対象層である du 層及び As 層の比較を実施した。第7.1.1 表に平均粒径と細粒分含有率の比較,第7.1.4 図 ~第7.1.5 図に粒径加積曲線による比較を示す。豊浦標準砂と du 層 及び As 層の粒度分布について比較した結果,豊浦標準砂は細粒分含 有率が低く,均質な粒径であることから,より液状化し易い砂であ るといえる。

4条一別紙10-82

第7.1.2図 FLIPによる豊浦標準砂の

液状化強度特性 (-1σ)

4条一別紙10-83

第7.1.3 図 豊浦標準砂と原地盤の液状化強度特性の比較

	平均粒径 (mm)	細粒分含有率(%)	
豊浦標準砂	0.202	0.24	
du 層	0.384	5.2	
As 層	0.201	2.1~71.5	

第7.1.1表 平均粒径と細粒分含有率の比較

※豊浦標準砂の粒度については,文献(豊浦砂の粒度分布(土木学会) 第64回年次学術講演会,平成21年9月))より引用

第7.1.4図 粒径加積曲線による比較(du層)

※豊浦標準砂の粒度については,文献(豊浦砂の粒度分布(土木学会) 第64回年次学術講演会,平成21年9月))より引用

第7.1.5図 粒径加積曲線による比較(As 層)

- 設置許可基準規則第三条第1項,第2項に対する条文適合方針に ついて
- 8.1 設置許可基準規則第三条第1項,第2項に対する条文適合方針
 当社における耐震重要施設等は,直接または杭を介して十分な支
 持性能を有する岩盤(久米層)で支持する。(第1項適合)

杭基礎構造部においては,豊浦標準砂の液状化強度特性により強 制的に液状化させることを仮定した場合においても,支持機能及び 杭本体の構造が成立するよう設計する。また,液状化を仮定した際 の地盤変状を考慮した場合においても,その安全機能が損なわれな いよう,適切な対策を講ずる設計とする。(第1項及び第2項適合)

- 8.2 上記の設計方針を踏まえた基礎地盤安定性評価及び耐震設計方針
 - (1) 基礎地盤のすべり

耐震重要施設等の杭基礎については,豊浦標準砂の液状化強度 特性により強制的に液状化させることを仮定した場合においても, 杭本体の構造が成立するように設計することから,基礎地盤安定 性評価においては,杭体を貫通横断するような仮想すべり面は想 定しない。

したがって,杭基礎構造を有する耐震重要施設等については, 杭基礎の先端以深の基礎岩盤を通る仮想すべり面を対象とした安 定性評価を実施する。

(2) 基礎地盤の支持力

杭基礎構造を有する耐震重要施設等について,基礎地盤安定性 評価及び豊浦標準砂の液状化強度特性により強制的に液状化させ

ることを仮定した杭基礎の耐震設計を行う際は,第四紀層の杭周 面摩擦力を支持力として考慮せず,杭先端の支持岩盤への最大鉛 直力度(接地圧)に対する支持力評価を行う。

(3) 杭基礎の設計

杭基礎構造を有する耐震重要施設等について,豊浦標準砂の液 状化強度特性により強制的に液状化させることを仮定した杭基礎 の耐震設計を行う際は,液状化を仮定した場合における杭と地盤 の相互作用を考慮しても,杭体の構造が成立するよう設計する。 9. 参考資料

9.1 地下水位観測データについて

敷地内の観測最高水位に基づき地下水位を設定する。地下水位に ついては、平成29年6月時点でのデータを用いて取り纏めを行い、 地下水位コンター図を作成した。

第9.1.1 図に観測最高地下水位コンター図,第9.1.1 表に観測最高地下水位一覧表を示す。

このうち,堆積層が厚く分布している敷地北側の地点の地下水位 観測記録を第9.1.2図~第9.1.4図に示す。

第9.1.1 図 観測最高地下水位コンター図

観測孔名	計測期間	観測最高地下水位 (T.P.+m)	観測最高地下水位 計測時期
а	$1995 \sim 1999$	3.49	1998年10月8日
b	$1995 \sim 1999$	2.52	1998年9月25日
с	$1995 \sim 1999$	2.53	1998年9月22日
d	$1995 \sim 1999$	2.28	1998年9月22日
a-1	$1995 \sim 1999, 2004 \sim 2009$	15.42	2006年8月7日
a-2	$2004 \sim 2009$	13.60	2006年7月28日
b-2	$2004 \sim 2009$	9.06	2006年7月30日
c-0	$1995 \sim 1999$, $2004 \sim 2009$	2.05	1998年9月19日
c-2	$1995 \sim 1999, 2004 \sim 2017$	2.58	2012年7月7日
c-3	$2004 \sim 2017$	2.49	2012年7月7日
c-4	$2004 \sim 2017$	2.00	2012年6月25日
d-1	$1995 \sim 1999, 2004 \sim 2009$	1.50	1998年9月18日
d-3	$2004 \sim 2017$	1.44	2013年10月27日
d-6	$2004 \sim 2017$	1.58	2013 年 10 月 28 日
e-2	$2004 \sim 2017$	1.38	2006年10月8日
e-3	$2004 \sim 2017$	1.50	2013 年 10 月 16 日
e-5	$2004 \sim 2017$	1.30	2013 年 10 月 21 日
e-6	$2004 \sim 2017$	1.26	2013 年 10 月 21 日
B-1	$2005 \sim 2017$	2.90	2006年7月30日
B-2	$2005 \sim 2017$	3.09	2006年7月30日
B-4	$2005 \sim 2017$	3.56	2006年7月31日
B-6	$2005 \sim 2017$	5.51	2006年8月17日
C-4	$2005 \sim 2017$	3.17	2012年6月27日
C-7	$2005 \sim 2017$	4.99	2006年8月18日
D-0	$2006 \sim 2017$	2.37	2012年6月22日
D-3	$2005 \sim 2017$	2.88	2006年10月7日
D-4	$2006 \sim 2017$	2.76	2012年6月25日
D-5	$2006 \sim 2017$	2.54	2012年7月16日
E-4	$2006 \sim 2017$	2.26	2012年6月25日
F-2	$2005 \sim 2015$	1.74	2013 年 10 月 30 日
F-4	$2005 \sim 2017$	1.55	2013年10月27日
F-6	$2005 \sim 2017$	1.77	2012年6月24日
G-5	$2005 \sim 2017$	1.53	2013年10月27日
H-4	$2006 \sim 2017$	2.13	2013年10月16日
H-7	$2005 \sim 2017$	1.33	2013 年 10 月 27 日

第 9.1.1 表 観測最高地下水位一覧表

9.2 土槽振動実験の再現シミュレーションについて

有効応力解析による豊浦標準砂の液状化判定結果の妥当性を確認 するために,豊浦標準砂を用いた土槽振動実験(藤川等(1993年)) 及びFLIPによる再現シミュレーションを実施した。土槽振動実 験及びFLIPによる再現シミュレーションは、日本海中部地震 (1983年)の加速度時刻歴を用いて実施した。

実験に用いた土槽は、内のりで高さ 90 cm, 直径 120 cm の円柱形の せん断土槽である。模型地盤は乾燥状態の豊浦標準砂を空中落下法 で作成し、地盤中の空気を二酸化炭素に置換えた後に水を注入して 地盤を飽和させている。深度 88 cm位置に日本海中部地震(1983年) の加速度時刻歴を入力している。入力レベルの大きさにより複数の 加振レベルを設定しているが、本実験では 78 gal 及び 153 gal の 2 レ ベルを再現対象とした。測定計器は、ひずみゲージ式加速度計及び 間隙水圧計を、土槽底面より定ピッチにて設置している。第 9.2.1 図 に土槽振動実験装置の概要を示す。

FLIPによる1次元地盤モデルを用いて地震応答解析を実施した。解析においては,豊浦標準砂の液状化パラメータについては,文献(CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)])の試験データを包含する設定とした。第9.2.2 図に解析モデルを,第9.2.3 図に豊浦標準砂の液状化パラメータを示す。

第9.2.1 図 土槽振動実験装置の概要

第9.2.2 図 解析モデル

第9.2.3 図 豊浦標準砂の液状化パラメータ

第9.2.4 図に土槽振動実験結果を示す。入力レベル 78gal においては,全深度において液状化は発生しなかったが,入力レベル 153gal においては,深度 28 cm付近まで液状化が発生したが,それより深い 位置で液状化は発生しなかった。

豊浦標準砂の全液状化強度試験データを十分に包含する液状化パ ラメータを用いて、FLIPによる土槽振動実験記録の再現シミュ レーションを実施した結果、実験事実として豊浦標準砂の液状化を 確認した入力レベル153galのみでなく、実験で液状化が発生しなっ た入力レベル78galについても、FLIPは液状化が発生するもの と判定する結果となった。これにより、FLIPによる液状化判定 の保守性を確認した。第9.2.5 図に土槽振動実験結果とシミュレー ション結果との比較を示す。

第9.2.6 図に土槽振動実験における入力地震動と観測記録波形の 比較,第9.2.7 図に入力レベルにおける加速度応答等の比較結果, 第9.2.8 図に入力レベルにおける最大値深度分布図を示す。

FLIPにおいて、平均的な液状化強度特性よりもかなり保守側 の液状化強度特性を用いた場合は、観測記録にみられるサイクリッ クモビリティ現象に起因するパルス的な応答加速度波形は再現され ない結果となり、FLIPは観測記録よりも液状化しやすい側の傾 向を示し、これに伴って、地盤の変形やせん断ひずみは大きめに評 価され、加速度応答は小さめに評価されることが確認された。

土槽振動実験における入力地震動と観測記録波形との比較 第 9.2.6.1 図

第9.5.1.2 図 入力レベルにおける加速度応答等の比較結果

別紙-11

東海第二発電所

屋外二重管の基礎構造の設計方針について (耐震)

目 次

- 1. 屋外二重管の概要
- 2. 基礎構造形式について
- 3. 基礎構造の設計方針
- 4. 鋼管杭の仕様設定
- 5. 鋼製梁の仕様設定
- 6. 鋼管杭と鋼製梁の接続部の仕様設定
- 7. 基礎構造の耐震設計方針(有効応力解析)

1. 屋外二重管の概要

残留熱除去海水系配管及びディーゼル発電機海水系配管をポンプ 室から原子炉建屋まで配置するため,屋外海水配管二重管(以下 「屋外二重管」という。)を設置している。

屋外二重管は,設置許可基準規則第3条及び第4条の対象となる 「耐震重要施設を支持する建物・構築物」及び設置許可基準規則第 38条及び第39条の対象となる「常設耐震重要重大事故防止設備又 は常設重大事故緩和設備が設置される重大事故等対処施設(特定重 大事故等対処施設を除く)」に該当する。

屋外二重管は,第四系地盤に直接支持している施設であり,施設 直下には液状化検討対象層である As 層, Ag1 層及び Ag2 層が分布し ている。なお,指針改訂に伴う耐震裕度向上工事として,平成 21 年 に Ag2 層を対象とした地盤改良を実施している。

設置許可基準規則第3条第1項への適合性の観点から,当該施設 については杭等を介して岩盤(久米層)で支持する構造とする。

第1図に屋外二重管の平面図及び断面図,第2図に既施工の地盤 改良範囲の説明図,第3図に地質縦断図及び横断図を示す。

屋外二重管配置図

第1図 屋外二重管の平面位置図及び断面図

4条-別紙11-4

(断面位置図)

第3図 地質縦断図及び横断図

⁴条-別紙11-5

2. 基礎構造形式について

地震に伴う周辺地盤の沈下に伴って屋外二重管が沈下することを 防止するため,屋外二重管の直下に沈下防止を目的とした鋼製梁を 設置して,鋼管杭を介して岩盤で支持する構造とする。

原子炉建屋近傍で,移設不可能な既設構造物(排気筒基礎等)や 埋設物との干渉によって鋼管杭の打設が困難な箇所については,屋 外二重管直下を地盤改良(セメント固化工法等)することにより補 強する地盤に支持させる検討を行う。

屋外二重管の基礎構造概要図を第 4 図に示す。また,基礎構造区 分を第 5 図に示す。

<u>基礎構図(管軸直角方向イメージB-B断面)</u>

第4図(1) 屋外二重管の基礎構造概要図(断面図)

第4図(2) 屋外二重管の基礎構造概要図(平面図)

平面図

縦断図

第5図 屋外二重管の基礎構造区分

3. 基礎構造の設計方針

屋外二重管の基礎構造の耐震評価は,第1表に示す屋外二重管の 基礎構造の評価項目に基づき,各構造部材の構造健全性評価及び基 礎地盤の支持性能評価を行う。

地震動は、S_s-D1 (水平動及び上下動の位相反転考慮)、S_s-11, S_s-12, S_s-13, S_s-14, S_s-21, S_s-2 2, S_s-31 (水平動の位相反転考慮)を対象とする。

また,地盤定数のばらつきを考慮して,上記の地震波のうち,屋 外二重管に対して最も厳しい地震波を用いて,液状化検討対象層を 強制的に液状化させるケースとして,豊浦標準砂の剛性及び液状化 強度特性を仮定し,その影響を確認する。

屋外二重管の基礎構造の構造健全性及び支持性能評価の検討フロ ーを第6図に示す。

評価方針	評価項目	部位	評価方法	許容限界
構造強度 を有する こと	構造部材の 健全性	鋼管杭	発生応力が許容限界に対して妥当な 安全裕度を有することを確認	短期許容応力度
		鋼製梁	発生応力が許容限界に対して妥当な 安全裕度を有することを確認	短期許容応力度
		鋼管杭と鋼製梁の 接続部	発生応力が許容限界に対して妥当な 安全裕度を有することを確認	短期許容応力度
	基礎地盤の 支持性能	基礎地盤	支持力が許容限界に対して妥当な安 全裕度を有することを確認	安全上適切と認められる 規格及び基準等による地 盤の極限支持力

第1表 屋外二重管の基礎構造の評価項目

4条-別紙11-10
4. 鋼管杭の仕様設定

屋外二重管の基礎構造の鋼管杭は,岩盤で支持する構造(支持杭) とし,その支持力を確保するために杭径程度以上を岩盤に根入れす る。

杭の配列については,屋外二重管の形状や寸法,杭の寸法や本数, 施工条件等を考慮し決定する。

屋外二重管の基礎構造の設計においては,基準地震動 S_s等によ る荷重及びこれらに耐え得る大口径,高強度の鋼管杭の仕様を考慮 した上で,適切な杭配置を検討する。

荷重ケースは地震時を想定し,長期荷重として死荷重を,短期荷 重として基準地震動 S_sによる地震荷重を考慮する。

5. 鋼製粱の仕様設定

屋外二重管の基礎構造の鋼製梁は,屋外二重管を受け,その荷重 を鋼管杭で支持する構造とする。

荷重ケースは地震時を想定し,長期荷重として死荷重を,短期荷 重として基準地震動 Ssによる地震荷重を考慮する。

また, 鋼製梁は, 発生応力度が短期許容応力度に収まる断面性能 を持つ鋼材仕様とする。

(断面)

第7図 鋼製梁イメージ図

6. 鋼管杭と鋼製梁の接続部の仕様設定

屋外二重管の基礎構造の鋼管杭と鋼製梁の接続部は,屋外二重管 を受ける鋼製梁より生じる荷重を鋼管杭に伝達するように,剛結構 造とする。

荷重ケースは、地震時を想定し、長期荷重として死荷重を,短期 荷重として基準地震動 S_sによる地震荷重を考慮する。 7. 基礎構造の耐震設計方針(有効応力解析)

屋外二重管の基礎構造(鋼管杭,鋼製梁,鋼管杭と鋼製梁の接続 部,基礎地盤)の耐震設計は,二次元地震応答解析を行い,地震時 の鋼管杭,鋼製梁及び鋼管杭と鋼製梁の接続部の構造部材の健全性 及び基礎地盤の支持性能について検討する。

検討断面は,岩盤以浅の第四系地盤の変位が,基礎構造に与える 影響を考慮するため,杭基礎範囲の中で岩盤の深いポンプ室側端部 の1断面を選定する。

選定した検討断面位置を第8図に示す。

地震時応答解析は,有効応力の変化に伴う地盤の挙動の変化を考 慮することができる有効応力解析を用いる。

鋼管杭,鋼製梁及び鋼管杭と鋼製梁の接続部については,地震応 答解析により算定された断面力を用いて,曲げモーメント,軸力及 びせん断力に対する照査を行い,許容限界以下であることを確認す ることで健全性評価とする。

基礎地盤については,地震応答解析より算定された支持力が許容 限界以下であることを確認することで支持性能評価とする。

第8図 検討断面位置図

別紙-12

東海第二発電所

既設設備に対する耐震補強等について (耐震)

1. はじめに

本資料では、今回工認の申請において耐震性を向上させる観点から今後実施する計画である既設設備に対する耐震補強等について整理する。

なお,今後の設計評価により補強対象の施設,設備の変更及び補強内容の 変更の可能性がある。

2. 既設設備に対する耐震補強等について

建物・構築物,機器・配管系,屋外重要土木構造物における耐震補強等の 一覧を第1表に,耐震補強の概要を第1図~第11図に示す。

	施設 ・設備 名称	目的	内容	添付図 番号
建物・ 構築物	排気筒	排気筒の支持機能強化	鉄塔部への支持部材の 追加及び地盤改良	1
機器・ 配管系	格納容器スタ ビライザ	フランジボルトの応力 低減対策及び許容限界 値の向上	フランジボルトの口径 変更及び高強度材料適 用	2
	原子炉建屋ク レーン	地震時落下防止による 波及的影響防止	落下防止対策の追設*1	3
	燃料取替機	同上	ガーダ等の部材強化	4
	配管系	配管系の支持機能強化	サポートの追加及び補 強	5
	残留熱除去系 熱交換器	残留熱除去系熱交換器 の支持機能強化	架台部への耐震補強サ ポート追設	6
	水圧制御ユニ ット	水圧制御ユニットの支 持機能強化	架構部への補強梁追加	7
	格納容器シア ラグ部	格納容器とシアラグ取 付け部の応力低減対策	シアラグ部への補強材 追加	8
屋外重要 土木構造 物	貯留堰取付護 岸	地震時の護岸構造の健 全性維持による貯留堰 への波及的影響防止	地盤改良	9
	屋外二重管基 礎構造	屋外二重管の支持機能 強化	屋外二重管を支持する 基礎構造の追設	10
	取水構造物	地震時の取水構造物の 健全性維持	地盤改良	11

第1表 既設設備の耐震補強等一覧

*1 落下防止対策を添付1に示す。

第2図 格納容器スタビライザの耐震補強概要図

第3図 原子炉建屋クレーンの落下防止対策概要図

第6図 残留熱除去系熱交換器の耐震補強概要図

補強構造

第7図 水圧制御ユニット架構の耐震補強概要図

第8図 格納容器シアラグ部の耐震補強概要図

(注記) 南側の貯留堰取付護岸についても同様に耐震補強を実施する予定

橫断面図(EW1-EW1 断面)

第9図 貯留堰取付護岸の耐震補強概要図

基礎平面配置図

基礎縦断配置図

(注記)赤色表示部は追設する基礎構造部を示す。

第10図 屋外二重管の耐震補強概要図

平面図

原子炉建屋クレーンの落下防止対策について

1. 原子炉建屋クレーンの地震時の要求事項

原子炉建屋クレーンは、耐震Bクラスであるが、第1図に示すとおり原子 炉建屋6階面に位置し、地震時により損傷し落下することにより、使用済燃 料プール等の耐震Sクラス設備に波及的影響を及ぼす恐れがある。

このため、耐震Sクラス設備への波及的影響防止の観点から基準地震動 Ssに対して落下防止を図る必要がある。

原子炉建屋クレーン

第1図 原子炉建屋クレーン配置図

2. 落下防止対策の計画概要

原子炉建屋クレーンの主要諸元及び構造概要図を第2図に示す。原子炉建 屋クレーンは,原子炉建屋に設置された走行レール上をガーダ及びサドル(以 下「クレーン本体」という。)が走行し,またクレーン本体上に設置された横 行レールをトロリが横行する構造である。原子炉建屋クレーンの各構造とし て、クレーン本体及びトロリの落下防止対策について以下に述べる。

	項目	諸元
トロリ	質量 (ton)	48.0
	高さ h(m)	2.280
	スパン ℓ1 (m)	5.6
	スパン ℓ2(m)	4.1
クレーン	質量 (ton)	118.0
本体	高さ H(m)	1.915
	スパン L1(m)	39.5
	スパン L 2 (m)	6.2
定格	主巻 (ton)	125.0
荷重	補巻 (ton)	5.0

第2図 原子炉建屋クレーンの主要諸元及び構造概要図

(1) クレーン本体の落下防止対策

クレーン本体の落下防止対策については、ガーダに取り付けられた落下 防止金具の構造を変更することにより行う。クレーン本体の落下防止対策 概要を第3図に示す。

旧構造は,落下防止金具の突起部をランウェイガーダの下部まで突き出 すことによりクレーン本体の浮き上がりを防止する設計としていた。本設 計においては,クレーン本体の浮き上がり時に,落下防止金具の突起部と ランウェイガーダとの衝突により,衝突箇所に過大な荷重が生じ,突起部 が落下する可能性,原子炉建屋側への荷重伝達により波及的影響を及ぼす 可能性が否定できない。参考として,設置変更許可申請時における基準地 震動S_s(以下「申請時S_s」という。)を用いた場合の旧構造の落下防止 金具の評価結果を第1表に,評価断面を第4図に示す。

このため、落下防止金具とランウェイガーダとの関係から落下防止機能 を有する長さが、クレーン本体の浮き上がり量に対して、余裕を有してい ることを確認することでクレーン本体の落下防止を図る設計とした。なお、 審査を経て変更した基準地震動Ssにおけるクレーン本体の浮き上がり量 は、約10mm*であり、落下防止金具がクレーン本体の落下防止機能を有す る長さ約160mmよりも余裕を有することを現時点で確認している。

また,改造後寸法において落下防止金具とランウェイガーダとの通常使 用時の間隙は,約35mmとしている。地震時においてクレーン本体が移動し, 落下防止金具とランウェイガーダとが接触した場合のクレーン配置を第5 図に示す。第5図に示すとおり,地震時においてもクレーン本体の車輪は レール上から落下しない設計としている。

*:現状の評価結果であり、今後変更の可能性がある。

注記 本説明に用いる図は,落下防止対策の概要を模式的に示すものであり,構造物の寸法,間隙等 の縮尺は実物と異なる(第4図~第7図も同様)。

改 造 後

忩

約 35mm

 \overline{B}

約 250 mm ▲▼

クレーン本体の落下防止対策概要図 第3図

B-B矢視

応力分類	応力値(MPa)	許容値(MPa)
圧縮	37	253
曲げ	368	253
せん断	115	146

第1表 申請時Ssを用いた旧構造の落下防止金具の評価結果

(2) トロリの落下防止対策

トロリの落下防止対策概要を第6図に示す。旧構造は、落下防止のため の構造物が設置されていないため、トロリに新たにトロリストッパを追設 する。トロリストッパを追設に当たり、トロリストッパとガーダ部材との 関係から落下防止機能を有する長さがトロリの浮き上がり量に対して、余 裕を有していることを確認することでトロリの落下防止を図る設計とした。

なお,審査を経て変更した基準地震動Ssにおけるトロリの浮き上がり 量は,約40mm*であり,トロリストッパがトロリの落下防止機能を有する 長さ約200mmよりも余裕を有することを現時点で確認している。

また,改造後寸法においてトロリストッパとガーダ部材との通常使用時 の間隙は,約50mmである。地震時においてクレーン本体が移動し,トロリ ストッパとガーダ部材が接触した場合の配置を第7図に示す。第7図に示 すとおり,クレーン本体の車輪はレール上から落下しない設計としている。

*:現状の評価結果であり、今後変更の可能性がある。

第6図 トロリの落下防止対策概要図

A-A矢視

第7図 地震により移動した場合のトロリ配置の概略図

3. 原子炉建屋クレーンの他サイト不具合事例の確認

東海第二発電所の原子炉建屋クレーン落下防止対策に対する影響の観点か ら他サイトの原子炉建屋クレーンの不具合事例の確認を行った。

新潟県中越沖地震において,柏崎刈羽発電所6号機の原子炉建屋天井クレ ーンに不具合が発生している。当不具合事例は,原子炉建屋天井クレーンの 走行電動用継手部(以下「ユニバーサルジョイント」という。)の車輪側のク ロスピンが,地震により損傷していた事例である。第8図に示すとおりユニ バーサルジョイントは,電動機からの動力を車輪部に伝達する装置であり, 東海第二発電所の原子炉建屋クレーン落下防止対策とは関係しないものと考 えられる。

第8図 ユニバーサルジョイント構造概要図

既設設備の耐震補強等に関して設計方針等への記載反映の要否について

既設設備の耐震補強等に関して設計方針等に記載を反映すべき事項の要否に ついて整理する。検討に際しては,設計方針等への反映が必要となる項目とし て①~③の事項を踏まえて行い,その整理結果を第1表に示す。

① 解析手法

解析モデルの作成,地震応答解析等の地震応答解析手法として,既往設計 方針の記載の範囲に加えて,新たな解析手法を採用する。

② 許容限界

評価に用いる許容限界として,構造変更により既往設計方針の記載の範囲 に加えて,新たな許容限界を採用する。

③ 主要構造

原子炉建屋、原子炉格納容器等の主要施設に対する基本構造の記載に対し て変更が生じる。

第1表に示すとおり,設計方針等に新たに記載すべき事項は抽出されなかった。

	施設 ・設備 名称	内容	設計方針等への反映の要否		
建物・ 構築物	排気筒	鉄塔部への支持部 材の追加及び地盤	①解析手法	新たな解析手法を用いないた め,反映は不要	
		改良	②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
機器・ 配管系	格納容器ス タビライザ	フランジボルトの 口径変更及び高強	①解析手法	ボルト材の取替であり解析手 法に影響しない	
		度材料適用	②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	基本構造に変更はないため,反 映は不要	
	原子炉建屋 クレーン	落下防止対策の追 設	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
	燃料取替機	ガーダ等の部材強 化	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
	配管系	サポートの追加及 び補強	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	基本構造に変更はないため,反 映は不要	
	残留熱除去 系熱交換器	架台部への耐震補 強サポート追設	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	

第1表 耐震補強等に対する設計方針等への反映要否

	施設 ・設備 名称	内容	設計方針等への反映の要否		
機器・ 配管系	水圧制御ユニット	架構部への補強梁 追加	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
	格納容器シ アラグ部	シアラグ部への補 強材追加	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	基本構造に変更はないため,反 映は不要	
屋外重 要土木	貯留堰取付 護岸	地盤改良	①解析手法	新たな解析手法を用いないた め,反映は不要	
構造物			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
	屋外二重管 基礎構造	屋外二重管を支持 する基礎構造の追	①解析手法	新たな解析手法を用いないた め,反映は不要	
		設	②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	
	取水構造物	物 地盤改良	①解析手法	新たな解析手法を用いないた め,反映は不要	
			②許容限界	新たな許容限界を用いないた め,反映は不要	
			③主要構造	主要構造としての記載なし	

別紙-13

東海第二発電所

動的機能維持評価の検討方針について (耐震)

1. はじめに

本資料では,実用発電用原子炉及びその附属施設の技術基準に関する規則 の解釈等における動的機能保持に関する評価に係る一部改正(以下「技術基 準規則解釈等の改正」という)を踏まえて,動的機能維持が必要な設備の検 討方針を示す。

2. 動的機能維持のための新たな検討又は詳細検討が必要な設備の検討方針

JEAG4601 に定められた適用範囲から外れ新たな検討が必要な設備又 は評価用加速度が機能維持確認済加速度を超えるため詳細検討が必要な設 備を抽出するとともに,抽出された設備における動的機能維持のための検討 方針を示す。

- 2.1 動的機能維持のための新たな検討又は詳細検討が必要な設備の抽出
 - (1) 検討対象設備

検討対象設備は、耐震Sクラス並びに常設耐震重要重大事故防止設備及 び常設重大事故緩和設備とし、動的機能が必要な設備としてJEAG4601 で適用範囲が定められている機種(立形ポンプ,横形ポンプ,電動機等) とする。なお、加振試験により機能維持を確認する設備JEAG4601にて 評価用加速度が機能維持確認済み加速度を超えた場合の詳細検討の具体的 手順が定められている設備については検討から除外する。

(2) 新たな検討又は詳細検討が必要な設備の抽出

第1図に抽出フローを示す。検討対象設備について,JEAG4601に定 める適用機種に対して構造,作動原理等が同じであることを確認する。同 じであることが確認できない場合は,新たな検討が必要な設備として抽出 する。

さらに評価用加速度がJEAG4601及び既往の研究等*により妥当性が 確認されている値に定める機能確認済加速度以内であることの確認を行い,

4条-別紙13-2

機能確認済加速度を超える設備については詳細検討が必要な設備として抽 出する。

上記の整理結果として別表1に検討対象設備を示すとともに,新たな検討 又は詳細検討が必要な設備の抽出のための情報としてJEAG4601 に該当 する機種名等を整理した。

※ 電力共通研究「鉛直地震動を受ける設備の耐震評価手法に関する研 究(平成10年度~平成13年度)」

第1図 検討が必要な設備の抽出フロー

4条-別紙13-3

(3) 抽出結果

第1表に新たな検討又は詳細検討が必要な設備の抽出結果を示す。

新たな検討が必要となる設備として、Vベルトの方式の遠心ファン(以下「Vベルト式ファン」という。)となる中央制御室換気系空気調和機ファン,中央制御室換気系フィルタ系ファン及び非常用ガス処理系排風機並び に横形スクリュー式ポンプ(以下「スクリュー式ポンプ」という。),横 形ギヤ式ポンプ(以下「ギヤ式ポンプという。)として非常用ディーゼル 発電機燃料移送ポンプ,高圧炉心スプレイ系ディーゼル発電機燃料移送ポ ンプ,常設代替高圧電源装置燃料移送ポンプ及び緊急時対策所用発電機給 油ポンプが該当する。

新たな検討が必要となる設備のうち、Vベルト式ファンについては、遠 心直結式ファン又は遠心直動式ファンへの構造変更を行うため、動的機能 維持評価のための新たな検討は不要となる。

また,評価用加速度が機能確認済加速度を超える設備として残留熱除去 系海水系ポンプ,非常用ディーゼル発電機用海水ポンプ及び高圧炉心スプ レイ系ディーゼル発電機用海水ポンプ並びにこれらポンプ用の電動機が該 当する。

機種名	設備名称	JEAG4601 適用範囲 ○:可 ×:否(新たな 検討が必要)	At 確認 ○:0K ×:NG(詳細 検討が必要)
立形ポンプ	残留熱除去系ポンプ	0	0
	高圧炉心スプレイ系ポンプ	0	0
	低圧炉心スプレイ系ポンプ	0	0
	残留熱除去系海水系ポンプ	0	×
	非常用ディーゼル発電機用海水ポンプ	0	×
	高圧炉心スプレイ系ディーゼル発電機用 海水ポンプ	0	×
	緊急用海水ポンプ	0	○注1
横形ポンプ	原子炉隔離時冷却系ポンプ	0	0
	非常用ディーゼル発電機燃料移送ポンプ	×	—
	高圧炉心スプレイ系ディーゼル発電機燃 料移送ポンプ	×	_
	常設低圧代替注水系ポンプ	0	$\bigcirc^{\pm 1}$
	代替燃料プール冷却系ポンプ	0	0
	格納容器圧力逃がし装置移送ポンプ	0	$\bigcirc^{\pm 1}$
	代替循環冷却系ポンプ	0	0
	常設代替高圧電源装置燃料移送ポンプ	×	_
	緊急時対策所用発電機給油ポンプ	×	_
ポンプ駆動用 タービン	原子炉隔離時冷却系ポンプ用駆動タービ ン	0	0
電動機	残留熱除去系ポンプ用電動機	0	0
	高圧炉心スプレイ系ポンプ用電動機	0	0
	低圧炉心スプレイ系ポンプ用電動機	0	0
	残留熱除去系海水系ポンプ用電動機	0	×
	ほう酸水注入ポンプ用電動機	0	0
	中央制御室換気系空気調和機ファン用電 動機	0	0

第1表(1)新たな検討又は詳細検討が必要な設備の抽出結果

注1) 今後の設計進捗によって、評価用加速度の変更により At 確認結果が変更する可能性が有る。

4条-別紙13-5

機種名	設備名称	JEAG4601 適用範囲 ○:可 ×:否(新たな 検討が必要)	At 確認 ○ : OK × : NG (詳細 検討が必要)
電動機	中央制御室換気系フィルタ系ファン用電 動機	0	0
	非常用ガス処理系排風機用電動機	0	0
	非常用ガス再循環系排風機用電動機	0	0
	可燃性ガス濃度制御系再結合装置ブロワ 用電動機	0	0
	非常用ディーゼル発電機燃料移送ポンプ 用電動機	0	○注1
	非常用ディーゼル発電機用海水ポンプ用 電動機	0	×
	高圧炉心スプレイ系ディーゼル発電機燃 料移送ポンプ用電動機	0	○注1
	高圧炉心スプレイ系ディーゼル発電機用 海水ポンプ用電動機	0	×
	常設低圧代替注水系ポンプ用電動機	0	○注1
	代替燃料プール冷却系ポンプ用電動機	0	0
	格納容器圧力逃がし装置移送ポンプ用電 動機	0	○注1
	代替循環冷却系ポンプ用電動機	0	0
	緊急用海水ポンプ用電動機	0	○注1
	緊急時対策所非常用送風機用電動機	0	○注1
	常設代替高圧電源装置燃料移送ポンプ用 電動機	0	○注1
	緊急時対策所用発電機給油ポンプ用電動 機	0	○注1
ファン	中央制御室換気系空気調和機ファン	×	_
	中央制御室換気系フィルタ系ファン	×	_
	非常用ガス処理系排風機	×	_
	非常用ガス再循環系排風機	0	0
	可燃性ガス濃度制御系再結合装置ブロワ	0	0
	緊急時対策所非常用送風機	0	○注1

第1表(2)新たな検討又は詳細検討が必要な設備の抽出結果

注1) 今後の設計進捗によって,評価用加速度の変更によりAt確認結果が変更する可能性が有る。

4条-別紙13-6

機種名	設備名称	JEAG4601 適用範囲 ○:可 ×:否(新たな 検討が必要)	At 確認 ○:0K ×:NG(詳細 検討が必要)
非常用ディー ゼル発電機	非常用ディーゼル発電機	0	0
	高圧炉心スプレイ系ディーゼル発電機	0	0
	非常用ディーゼル発電機調速装置及び非 常用ディーゼル発電機非常調速装置	0	0
	高圧炉心スプレイ系ディーゼル発電機調 速装置及び高圧炉心スプレイ系ディーゼ ル発電機非常調速装置	0	0
往復動式ポン プ	ほう酸水注入ポンプ	0	0
制御棒	制御棒挿入性	0	○注2

第1表(3) 新たな検討又は詳細検討が必要な設備の抽出結果

注2) 地震応答解析結果から求めた燃料集合体変位が加振試験により確認された制御棒挿入機能に支障 を与えない変位に対して下回ることを確認

2.2. 動的機能維持の検討

2.2.1 新たな検討が必要な設備の検討

(1) 新たな検討が必要な設備における動的機能維持の検討方針

新たな検討が必要な設備における動的機能維持の検討方針としては,技 術基準規則解釈等の改正を踏まえて,公知化された検討として(社)日本 電気協会 電気技術基準調査委員会の下に設置された原子力発電耐震設計 特別調査委員会(以下「耐特委」という。)により取り纏められた類似機 器における検討をもとに実施する。

具体的には,耐特委では動的機能の評価においては,対象機種ごとに現 実的な地震応答レベルでの異常のみならず,破壊に至るような過剰な状態 を念頭に地震時に考え得る異常状態を抽出し,その分析により動的機能上 の評価点を検討し,機能維持を評価する際に確認すべき事項として,基本 評価項目を選定している。

今回新たな検討が必要な設備については,基本的な構造は類似している 機種/型式に対する耐特委での検討を参考に,型式による構造の違いを踏 まえた上で地震時異常要因分析を実施し,基本評価項目を選定し機能維持 評価を実施する。

新たな検討が必要設備において、参考とする機種/型式を第2表に示す とともに、第2図及び第3図に今回工認にて新たな検討が必要な設備及び 耐特委で検討され新たな検討において参考とする設備の構造概要図を示す。

スクリュー式及びギヤ式ポンプは,遠心式横形ポンプ(以下「遠心式ポ ンプ」という。)と内部流体の吐出構造が異なるが,電動機からの動力を 軸継手を介してポンプ側に伝達する方式であること及びケーシング内にて 軸系が回転し内部流体を吐出する機構を有しており基本構造が同じといえ る。このため,スクリュー式及びギヤ式ポンプについては,遠心式横形ポ ンプを参考とし,地震時異常要因分析を実施する。なお,非常用ディーゼ

4条-別紙13-8

ル発電機燃料移送ポンプ,高圧炉心スプレイ系ディーゼル発電機燃料移送 ポンプ,常設代替高圧電源装置燃料移送ポンプ及び緊急時対策所用発電機 給油ポンプについては,新規制基準により新たに動的機能要求が必要とな り,評価する設備となる。

新たな検討が必要な設備	機種/型式	参考とする 機種/型式
・非常用ディーゼル発電機燃料移送ポンプ	横形ポンプ/	横形ポンプ/
・高圧炉心スプレイ系ディーゼル発電機燃料移送	スクリュー式	単段遠心式
ポンプ		
・常設代替高圧電源装置燃料移送ポンプ		
・緊急時対策所用発電機給油ポンプ	横形ポンプ/	
	ギヤ式	

第2表 新たな検討が必要な設備において参考とする機種/型式

第2図 スクリュー式,ギヤ式ポンプ構造概要図

第3図 遠心式ポンプ構造概要図

4条-別紙13-10

(2) 新たな検討が必要な動的機能維持評価の評価項目の抽出

新たな検討が必要な設備として、スクリュー式ポンプ及びギヤ式ポンプ に対する地震時異常要因分析を踏まえて評価項目を抽出する。また当該検 討において参考とする耐特委での機種/型式に対する評価項目を踏まえた 検討を行う。動的機能維持評価のための評価項目の抽出フローを第4図に 示す。

第4図 動的機能維持評価のための評価項目の抽出フロー
- a. スクリュー式ポンプ及びギヤ式ポンプの地震時異常要因分析による評 価項目の抽出
- (a) スクリュー式ポンプの評価項目の抽出

スクリュー式ポンプの地震時異常要因分析図(以下「要因分析図」という。)及び評価項目は,電共研*での検討内容を用いる。電共研では第5図 に示すとおり,耐特委における遠心式横形ポンプ及びNUPECにおける非常 用DGの燃料供給ポンプに対する異常要因分析結果(非常用ディーゼル発 電機システム耐震実証試験(1992年3月))を網羅するように,スクリュ ー式ポンプに対する地震時異常要因分析を行い,評価項目を抽出している。

スクリュー式ポンプの要因分析図を第6図に示す。要因分析図に基づき 抽出される評価項目は第3表のとおりである。

※ 動的機器の地震時機能維持の耐震余裕に関する研究(平成25年3月)

第5図 地震時異常要因分析の適用(スクリュー式ポンプ)

第6図 スクリュー式ポンプの地震時異常要因分析図

第3表 スクリュー式ポンプ要因分析図から抽出した評価項目

	評価項目	異常要因
1	基礎ボルト	ポンプ全体系の応答が過大となることで,転倒モーメントに
	(取付ボルト含む)	より基礎ボルト(取付ボルトを含む)の応力が過大となり損
		傷に至り、全体系が転倒することで機能喪失する。
2	支持脚	ポンプ全体系の応答が過大となることで,転倒モーメントに
		より支持脚の応力が過大となり損傷に至り,全体系が転倒す
		ることで機能喪失する。
3	摺動部	ポンプ全体系の応答が過大となることで,軸変形が過大とな
4	(③スリーブ④主ねじ	ることによりスリーブと主ねじ又は従ねじが接触し,摺動部
5	⑤従ねじのクリアラン	が損傷に至り回転機能及び移送機能が喪失する。
	ス)	
4	軸系(主ねじ)	軸応力が過大となり,軸が損傷することにより回転機能及び
		移送機能が喪失する。
6	逃がし弁	ケーシングの応答が過大となり逃がし弁フランジ部変形し
		油の外部漏えいに至る。
\bigcirc	メカニカルシール	軸系ねじの応答過大により軸変形に至りメカニカルシール
		が損傷することにより移送機能及び流体保持機能が喪失す
		る。
8	軸受	軸変形が過大となり,軸受が損傷することで回転機能及び移
		送機能が喪失する。
9	電動機	電動機の応答が過大になり電動機の機能が喪失することで、
		回転機能及び輸送機能が喪失する。
10	軸継手	電動機の変形過大により軸受部の相対変位が過大となり,軸
		継手が損傷することで回転機能が喪失する。
(1)	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷する
		ことで移送機能及び流体保持機能が喪失する。

(b) ギヤ式ポンプの評価項目の抽出

ギヤ式ポンプの要因分析図及び評価項目は,電共研*での検討内容を用 いる。電共研では,第7図に示すとおり耐特委における遠心式横形ポンプ 及びNUPECにおける非常用DGの燃料供給ポンプに対する異常要因分析結果 (非常用ディーゼル発電機システム耐震実証試験(1992年3月))を網羅 するように,ギヤ式ポンプに対する異常要因分析を行い,評価項目を抽出 している。

ギヤ式ポンプの要因分析図を第8図に示す。要因分析図に基づき抽出される評価項目は第4表のとおりである。

※ 動的機器の地震時機能維持の耐震余裕に関する研究(平成25年3月)

第7図 地震時異常要因分析の適用(ギャ式ポンプ)

第8図 ギヤ式ポンプの地震時異常要因分析図

	評価項目	異常要因
1	基礎ボルト	ポンプ全体系の応答が過大となることで,転倒モーメントに
	(取付ボルト含む)	より基礎ボルト(取付ボルトを含む)の応力が過大となり損
		傷に至り、全体系が転倒することにより機能喪失する。
2	摺動部	ポンプ全体系の応答が過大となることで、主軸(主動歯車)
3	(②主軸又は③従動軸	及び従動軸(従動歯車)の応答が過大となり軸部の変形によ
4	と④ケーシングのクリ	り、ギヤがケーシングと接触することで損傷に至り、回転機
	アランス)	能及び輸送機能が喪失する。
2	軸	軸応力が過大となり,軸が損傷することにより回転機能及び
		輸送機能が喪失する。
5	軸受	軸受荷重が過大となり,軸受が損傷することで回転機能及び
		輸送機能が喪失する。
6	電動機	電動機の応答が過大になり電動機の機能が喪失することで、
		回転機能及び輸送機能が喪失する。
\bigcirc	軸継手	被駆動機軸と電動機軸の相対変位が過大となり,軸継手が損
		傷することで回転機能及び輸送機能が喪失する。
8	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷する
		ことで輸送機能及び流体保持機能が喪失する。
9	逃がし弁	弁の応答が過大となり,弁が損傷又は誤作動することで外部
		漏えい、ポンプ内循環が発生し、輸送機能及び流体保持機能
		が喪失する。

第4表 ギヤ式ポンプ要因分析図から抽出した評価項目

(c) スクリュー式ポンプ及びギヤ式ポンプの抽出した評価項目に対する

相互確認

スクリュー式ポンプ及びギヤ式ポンプは,ポンプ構造が類似している ことを踏まえて,各ポンプの評価項目の抽出結果を比較することにより, その検討結果について相互の確認を行う。

- i) スクリュー式ポンプで抽出した評価項目に対してギヤ式ポンプで 抽出されなかった評価項目
 - 支持脚

ギヤ式ポンプはポンプケーシングに取付ボルト用のフランジが 直接取り付けられており構造上存在しない。 4条-別紙13-17 ② メカニカルシール

ギヤ式ポンプはメカニカルシールを有しない構造である。

- ii) ギヤ式ポンプで抽出した評価項目に対してスクリュー式ポンプで 抽出されなかった評価項目
 - ③ 逃がし弁(移送機能)

スクリュー式ポンプについても逃がし弁が設置されており, 誤 作動すればギヤ式ポンプと同様に移送機能に影響を与えることか らスクリュー式ポンプについても評価項目として選定する。

b. 耐特委で検討された遠心式ポンプの地震時異常要因分析による評価項 目

新たな検討が必要な設備としてスクリュー式ポンプ及びギヤ式ポンプ の評価項目の検討において、公知化された検討として参考とする耐特委 での遠心式ポンプの要因分析図を第9図に、要因分析図から抽出される 評価項目を第5表に示す。

対象	要求機能	要 因	现	象	喪失機能
対 積ポンプ	要求機能 地震後の運転と 水力性能確保 ③ 回転機能 ③ 水力特性機能 ⑤ 流体保持機能	要因 ポンプ本体 応答過大 全体系(ケーシン グ)応容過大 輸系(ロータ) 応答過大 電動機応答過大 配管応答過大	現 ケーシング転倒モー メント過大 ケーシング応力過大 ケーシング応力過大 ケーシングの応力過大 ケーシングの防潤 ケーシングの防潤 ケーシングの防潤 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が接触 ケーシングの が 接触 ケーシングの の 一 の の の の の の の の の の の の の		喪失機能 ④.B.C ④.B.C ④.B ④ ④ ④ ④ ④ ⑤ ④ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤
	•	配管応答過大 冷却水配管応答過大	□ 電動機変形過大 ■ 配管反力過大 ■ 給助価型な過大 ■ 約本配管	 	®,© ®,©

* 駆動用タービンの場合も間様。また,増速機も含む。

第9図 遠心式ポンプの地震時異常要因分析図

	評価項目	異常要因
1	基礎ボルト(取付ボルト	ポンプ全体系の応答が過大となることで,転倒モーメントに
2	含む),支持脚	より基礎ボルト(取付ボルト含む)の応力が過大となり損傷
		に至り、全体系が転倒することにより機能喪失する。
		またポンプ全体系の応答が過大となることで,支持脚の応力
		が過大となり損傷に至り、ポンプが転倒することにより機能
		喪失する。
3	摺動部	軸変形が過大となり,インペラがライナーリングと接触する
	(インペラとライナー	ことで損傷に至り、回転機能及び輸送機能が喪失する。
	リングのクリアランス)	
4	軸	軸応力が過大となり,軸が損傷することにより回転機能及び
		輸送機能が喪失する。
5	メカニカルシール	軸変形が過大となり,メカニカルシールが損傷することによ
		り流体保持機能が喪失する。
6	軸受	軸受荷重が過大となり,軸受が損傷することで回転機能及び
		輸送機能が喪失する。
\bigcirc	電動機	電動機の応答が過大になり電動機の機能が喪失することで、
		回転機能及び輸送機能が喪失する。
8	軸継手	被駆動器軸と電動機軸の相対変位が過大となり,軸継手が損
		傷することで回転機能及び輸送機能が喪失する。
9	ケーシングノズル	接続配管の応答が過大となり,ケーシングノズルが損傷する
		ことで輸送機能及び流体保持機能が喪失する。
10	軸冷却水配管	冷却水配管の応答が過大となり,損傷することで軸冷却不能
		に至り、回転機能が喪失する。

第5表 遠心式ポンプ要因分析図から抽出した評価項目

c. 遠心式ポンプの評価項目を踏まえたスクリュー式ポンプ及びギヤ式ポ

ンプの評価項目の検討

(a) スクリュー式ポンプの評価項目の検討

スクリュー式ポンプの要因分析結果について,耐特委における遠心式ポ ンプの要因分析結果と同様に整理した結果,スクリュー式ポンプの評価項 目は,遠心式ポンプとほぼ同様となった。スクリュー式ポンプの動的機能 維持の評価項目の抽出にあたり,遠心式ポンプの耐特委における評価項目 に加え、構造の差異により抽出されたスクリュー式ポンプの評価項目を加 えて検討を行う。なお、構造の差異として抽出された評価項目は下記の通 りである。

- ・逃がし弁(遠心式ポンプの評価項目になくスクリュー式ポンプのみで 抽出)
- ・ 摺動部 (スクリュー式ポンプ及び遠心式ポンプの両方で抽出された評価項目であるが,構成部品が異なる。)
- ・軸冷却水配管(スクリュー式ポンプの評価項目になく遠心式ポンプの みで抽出)

耐特委で検討された遠心式ポンプは、大型のポンプであり軸受としてす べり軸受を採用していることから、軸受の冷却が必要となる。このため、 地震により軸冷却水配管の損傷に至ればポンプの機能維持に影響を及ぼす ため、軸冷却水配管を評価項目として抽出している。一方でスクリュー式 ポンプの標準設計として、軸冷却水配管を有していない。軸冷却水配管は 軸受の冷却のため設置されるが、スクリュー式ポンプの軸受は内部流体で 冷却が可能であるため、軸冷却水配管は設置されていない。

① 基礎ボルト(取付ボルトを含む)の評価

スクリュー式ポンプは遠心式ポンプと同様に,基礎ボルトで固定された 架台の上に,駆動機器及び被駆動機器が取付ボルトに設置されており,地 震時に有意な荷重がかかることから動的機能維持の評価項目として選定 する。

② 支持脚部の評価

支持脚部については、スクリュー式ポンプと遠心式ポンプとで構造に大 きな違いはなく、高い剛性を有するためにケーシング定着部に荷重がか かる構造となっている。このため、取付ボルト及び基礎ボルトが評価上

厳しい部位であるため,取付ボルト及び基礎ボルトの評価で代表できる。 ③ 摺動部の評価

摺動部の損傷の観点より,遠心式ポンプの検討におけるケーシングと接触して損傷するライナーリング部の評価を行うのと同様に,スクリュー 式ポンプにおける評価項目を以下のとおり選定する。

スクリュー式ポンプのスクリュー部は,構造が非常に剛であり,地震応 答増幅が小さく動的機能評価上重要な部分の地震荷重が通常運転荷重に 比べて十分小さいと考えられる。また,スリーブ部については,ケーシン グ部に設置されている。

主ねじ又は従ねじについては,損傷によってスリーブ部と接触すること で回転機能及び輸送機能が喪失に至ることが考えられるため,動的機能 維持の評価項目として選定する。

 ④ 軸系の評価

スクリュー式ポンプは主ねじ及び従ねじを有する構造であり,一軸構造 の遠心式ポンプとは軸の構造が異なるが,軸系の損傷によってポンプとし ての機能を喪失することは同様である。このため,スクリュー式ポンプに おいても,遠心式ポンプと同様に,軸損傷が発生しないことを確認するた め,軸系の評価を動的機能維持の評価項目として選定する。

⑥ 逃がし弁の評価

逃がし弁はばね式であり,フランジ部の構造評価に対する確認も含め, 弁に作用する最大加速度が,安全弁の動的機能維持確認済加速度以下で あることを確認する。

⑦ メカニカルシール

メカニカルシールは、高い剛性を有するケーシングに固定されており、 地震時に有意な変位が生じない。また軸封部は軸受近傍に位置し、軸は 地震時でも軸受で支持されており、有意な変位は生じることはなく、軸

封部との接触は生じないため、計算書の対象外とする。

⑧ 軸受の評価

ポンプにおいて, 軸受の役割は回転機能の保持であり, その役割はスク リュー式ポンプも遠心式ポンプも同じである。当該軸受が損傷することに より, ポンプの機能喪失につながるため, 動的機能維持の評価項目として 選定する。また, 評価においては発生する荷重としてスラスト方向及びラ ジアル方向の荷重を考慮して評価を行う。

 ① 電動機の評価

スクリュー式ポンプの電動機は横向きに設置されるころがり軸受を使 用する電動機であり,耐特委(JEAG4601)で検討されている横型こ ろがり軸受電動機の適用範囲内であることから,動的機能維持済加速度 との比較により評価を行う。

⑩ 軸継手の評価

スクリュー式ポンプは、遠心式ポンプと同様に、軸受でスラスト荷重を 受け持つこと及びフレキシブルカップリングを採用していることから、軸 継手にはスラスト荷重による有意な応力が発生しないため、計算書の評価 対象外とする。

① ケーシングノズルの評価

スクリュー式ポンプのケーシングノズル部は、遠心式ポンプと同様に、 ポンプケーシングと配管の接続部であるが、ノズル出入口配管のサポー トについて適切に配管設計することで、ノズル部に過大な配管荷重が伝 わらないため、計算書の評価対象外とする。

以上から,スクリュー式ポンプにおいて抽出される動的機能維持の評価 項目のうち,計算書の評価対象とするものは以下の通りである。

・基礎ボルト及び取付ボルトの評価

- ・ 摺動部 (軸系) の評価
- ・軸系としてねじの評価
- ・逃がし弁の評価
- ・軸受の評価
- ・電動機の評価
- (b) ギヤ式ポンプの評価項目の検討

ギヤ式ポンプの要因分析結果について,耐特委における遠心式ポンプの 要因分析結果と同様に整理した結果,ギヤ式ポンプの評価項目は,遠心式 ポンプとほぼ同様となる。ギヤ式ポンプの動的機能維持の評価項目の抽出 にあたり,遠心式ポンプの耐特委における評価項目に加え,構造の差異に より抽出されたギヤ式ポンプの評価項目を加えて検討を行う。なお,構造 の差異として抽出された評価項目は下記の通りである。

・逃がし弁(遠心式ポンプの評価項目になくギヤ式ポンプのみで抽出)

- ・ 摺動部(ギヤ式ポンプと遠心式ポンプの両方で抽出された評価項目 であるが、構成部品が異なる。)
- ・メカニカルシール(ギヤ式ポンプの評価項目になく遠心式ポンプの みで抽出)
- ・軸冷却水配管(ギヤ式ポンプの評価項目になく遠心式ポンプのみで 抽出)

耐特委で検討された遠心式ポンプは、大型のポンプであり軸受としてす べり軸受を採用していることから、軸受の冷却が必要となる。このため、 地震により軸冷却水配管の損傷に至ればポンプの機能維持に影響を及ぼす ため、軸冷却水配管を評価項目として抽出している。一方でスクリュー式 ポンプの標準設計として、軸冷却水配管を有していない。軸冷却水配管は 軸受の冷却のため設置されるが、スクリュー式ポンプの軸受は内部流体で

冷却が可能であるため、軸冷却水配管は設置されていない。

また,ギヤ式ポンプは軸封部の標準設計としてオイルシールを採用して いる(第10図参照)。オイルシールはケーシングと軸受(ブッシング)で 形成される隙間部に挿入される形態で取り付けられており,オイルシール とブッシングの間には隙間がある構造であるため,地震荷重は軸受(ブッ シング)を通してケーシングに伝達されることから,ケーシングと軸受(ブ ッシング)が健全であれば,オイルシールが損傷することはないことから, 地震時異常要因分析による評価項目に選定されていない。

設計進捗により構造変更の可能性有り。

第10図 ギヤ式ポンプの標準的な構造概要図

4条一別紙13-25

① 基礎ボルト(取付ボルトを含む)の評価

ギャ式ポンプは遠心式ポンプと同様に,基礎ボルトで固定された架台の 上に,駆動機器及び被駆動機器が取付ボルトに設置されており,地震時に 有意な荷重がかかることから動的機能維持の評価項目として選定する。 ②③④ 摺動部の評価

摺動部の損傷の観点より,遠心式ポンプの検討におけるケーシングと接触して損傷するライナーリング部の評価を行うのと同様に,ギャ式ポン プにおける評価項目を以下のとおり選定する。

ギャ式ポンプのギャ部は,構造が非常に剛であり,地震応答増幅が小さ く動的機能評価上重要な部分の地震荷重が通常運転荷重に比べて十分小 さいと考えられる。また,ケーシングについては,横形ポンプと同様に耐 圧構造であり,使用圧力に耐えられる強度の肉厚を有している。

主軸又は従動軸については,損傷によってギヤがケーシングと接触する ことで回転機能及び輸送機能が喪失に至ることが考えられる。主軸の重 量は,従動軸の重量に比べ大きく,軸を支持する距離は双方の軸で同じ であるため,評価項目は,主軸(ギヤ部)を対象として行う。

2 主軸の評価

ギヤ式ポンプは二軸(主軸及び従動軸)構造であり,一軸構造の横形ポ ンプとは軸の構造が異なるが,主軸の重量は,従動軸に比べ大きく,軸を 支持する距離は双方の軸で同じであるため,主軸の健全性確認を行うこと によって,一軸構造の横形ポンプと同様の見解が適用できるものである。 そのため,ギヤ式ポンプにおいても,遠心式ポンプと同様に,軸損傷が発 生しないことを確認するため,主軸の評価を動的機能維持の評価項目とし て選定する。

 ⑤ 軸受の評価

ポンプにおいて、軸受の役割は「回転機能の保持」であり、その役割は

遠心ポンプもギヤ式ポンプも同じである。

当該軸受が損傷することにより、ポンプの機能喪失につながるため、動 的機能維持の評価項目として選定する。また、評価においては発生する荷 重としてスラスト方向及びラジアル方向の荷重を考慮して評価を行う。

なお、遠心式ポンプは「ころがり軸受」を用いており、「回転機能の保 持」という役割を果たすために、ベアリング内外輪間に鋼球を装備した回 転機構を有する構造となっている。

一方、ギヤ式ポンプは「ブッシング」を用いており、「ころがり軸受」
 と同様に「回転機能の保持」という役割を果たすために、軸とブッシング
 間に形成された油膜によるスベリ支持を有する構造となっている。

⑥ 電動機の評価

ギヤ式ポンプの電動機は横向きに設置されるころがり軸受を使用する 電動機であり,耐特委(JEAG4601)で検討されている横型ころがり 軸受電動機の適用範囲内であることから,動的機能維持済加速度との比 較により評価を行う。

⑦ 軸継手の評価

ギヤ式ポンプは、遠心式ポンプと同様に、軸受でスラスト荷重を受け持 つこと及びフレキシブルカップリングを採用していることから、軸継手に はスラスト荷重による有意な応力が発生しないため、計算書の評価対象外 とする。

⑧ ケーシングノズルの評価

ギャ式ポンプのケーシングノズル部は,遠心式ポンプと同様に,機器と 配管の接続部であるが,ノズル出入口配管のサポートについて適切に配 管設計することで,ノズル部に過大な配管荷重が伝わらないため,計算 書の評価対象外とする。

⑨ 逃がし弁の評価

逃がし弁はばね式であるため,弁に作用する最大加速度が,安全弁の動 的機能維持確認済加速度以下であることを確認する。

以上から,ギヤ式ポンプにおいて抽出される動的機能維持の評価項目の うち,計算書の評価対象とするものは以下の通りである。

- ・基礎ボルト(取付ボルトを含む)の評価
- ・主軸(ギヤ部)の評価
- ・主軸の評価
- ・軸受の評価
- ・電動機の評価
- ・逃がし弁の評価
- (3) まとめ

新たな検討が必要な設備について,地震時要因分析を行い,基本的な機構造が類似している機種/型式に対する耐特委での検討を参考に,型式に よる構造の違いを踏まえた上で地震時異常要因分析を行い,評価項目の抽 出を行った。

また,耐特委における遠心式ポンプの評価項目に対して,スクリュー式 ポンプ及びギヤ式ポンプは,一部構造の異なる部位があるが,これら部位 に対する評価方法については,耐特委で検討された遠心式ポンプにおける 評価手法と同様であること,既往の評価方法を踏まえて実施が可能である ことから,耐特委の検討をもとに参考とする遠心式ポンプをベースとした 評価は可能であると考える。 (2) 詳細検討が必要な設備における動的機能維持の検討方針

評価用加速度が機能確認済加速度を超えた場合の検討については,JE AG4601-1991 追補版及び耐特委報告書にて,動的機能維持評価上必要 な基本評価項目が地震時異常要因分析に基づき選定されている(第6表)。 機能維持評価に当たっては,技術基準規則解釈等の改正を踏まえて,基本 評価項目に対して,必要な評価項目を選定し,その妥当性を示した上で検 討を実施する。

詳細検討が必要な設備	機種/型式	基本評価項目
 ・残留熱除去系海水系ポンプ ・非常用ディーゼル発電機用海水ポンプ ・高圧炉心スプレイ系ディーゼル発電機 用海水ポンプ 	立形ポンプ/ 立 形 斜 流 ポ ン プ	基礎ボルト 取付ボルト ディスチャージケーシ ング コラム コラムサポート 軸受 軸 冷却水配管 メカニカルシール熱交 換器
		電動機
・残留熱除去系海水系ポンプ用電動機・非常用ディーゼル発電機用海水ポンプ	電動機/	端子箱
用電動機	軸受電動機	基礎ボルト
・高圧炉心スプレイ系ディーゼル発電機		取付ボルト
用海水ポンプ用電動機		固定子
		軸(回転子)
		軸受
		固定子と回転子とのク
		リアランス
		軸継手

第6表 各設備における基本評価項目

3. 弁機能維持評価に用いる配管系の応答値について

技術基準規則解釈等の改正を踏まえて,東海第二発電所の配管系に設置され る弁の機能維持評価に適用する加速度値の算定方針について,規格基準に基づ く設計手順を整理し,比較することにより示す。規格基準に基づく手法として JEAG4601の当該記載部の抜粋を第11図に示す。

(1) 規格基準に基づく設計手順の整理

JEAG4601において,弁の動的機能維持評価に用いる弁駆動部の応答 加速度の算定方針が示されている。

配管系の固有値が剛と判断される場合は最大加速度(ZPA)を用いること, また,柔の場合は設計用床応答スペクトルを入力とした配管系のスペクト ルモーダル解析を行い算出された弁駆動部での応答加速度を用いること により,弁の動的機能維持評価を実施することとされている。

(2) 今回工認における東海第二発電所の設計手順

今回工認における東海第二発電所の弁駆動での応答加速度値の設定は,

上記のJEAG4601の規定に加えて一定の余裕を見込み評価を実施する 方針とする。

a. 剛の場合

配管系が剛な場合は,最大加速度に一定の余裕を考慮し1.2倍した値 (1.2ZPA)を用いて弁駆動部の応答加速度を算出し,機能維持評価を実施 する。

b. 柔の場合

配管系の固有値が柔の場合は、JEAG4601の手順と同様にスペクト ルモーダル解析を行い弁駆動部の応答加速度を算出した値に加えて、剛 領域の振動モードの影響を考慮する観点から 1.2 倍した最大加速度 (1.2ZPA)による弁駆動部の応答加速度を算定し、何れか大きい加速度 を用いて機能維持評価を行う方針とする。

また,弁駆動部の応答加速度の算定に用いる配管系のスペクトルモー ダル解析において,剛領域の振動モードの影響により応答加速度の増加 が考えられる場合には,剛領域の振動モードの影響を考慮するため,高 周波数域の振動モードまで考慮した地震応答解析を行う。スペクトルモ ーダル解析において考慮する高周波数域の範囲については,応答解析結 果を用いた検討を踏まえて決定する。

弁の機能維持評価における規格基準に基づく耐震設計手順及び東海第二 発電所の耐震設計手順の比較を第7表に示す。

第7表に示すとおり,東海第二発電所における弁の機能維持評価に用い る加速度値としては,規格基準に基づく設定方法に比べて一定の裕度を見 込んだ値としている。

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
配管系の		审 海笛二戏電正
固有値	J E A G 4001	术 使 另 一 光 电 川
剛の場合	最大加速度(1.0ZPA)を適用	最大加速度の 1.2 倍した値
	する。	(1.2ZPA)を適用する。
柔の場合	スペクトルモーダル解析に	スペクトルモーダル解析に
	より算出した弁駆動部の応	より算出した弁駆動部の応
	答を適用する。	答*1又は最大加速度の 1.2
		倍した値(1.2ZPA)の何れか
		大きい方を適用する。

第7表 弁の機能維持評価の耐震設計手順の比較

*1 高周波数域の振動モードまで考慮した地震応答解析を行う。

(5) 地震応答解析

弁の地震応答を算出するに当たり、(4)項で作成した弁モデルを配管系モデルに組み込み、地震応答解析を実施する。この場合の解析方法は、配管系の固有値に応じて静的応 答解析法あるいはスペクトルモーダル応答解析法を用いる。

配管系の固有値が剛と判断される場合は,静的応答解析を行うが,この場合弁に加わる加速度は設計用床応答スペクトルの乙PA(ゼロ周期加速度)であり,これを弁駆動部応答加速度と見なして評価を行う。また,剛の範囲にない場合には,原則として(3)項で定めた設計用床応答スペクトルを入力とする配管系のスペクトルモーダル解析を行い,算出された弁駆動部応答加速度を用いて弁の評価を実施する。更に,弁の詳細評価が必要となる場合には,弁各部の強度評価に必要な応答荷重を算出する。

なお、減衰定数については現在配管系の解析に使用されている0.5~2.5%の値を用いるものとする。

第11図 JEAG4601 (1991)の抜粋

			At超え時の評価方 法がJEAGに規定さ	検討対象設備	JEAC 機種/	54601 型式		Atł	確認
施設区分/設備名称	動的機能維持 要求の有無	動的機能維持 の確認方法	れている設備 ○:規定されて いる ×:規定されて いない -:対象外	 こしての抽血病 果 ・検討対象 とする設備 ・:検討対象 でない設備 	機種	型式	方向	評価用 ^{*1} 加速度	機能確認済 加速度
核燃料物質の取扱施設及び貯蔵施設									
使用済燃料貯蔵槽冷却浄化設備									
代替燃料プール注水系									
					*# 112-12 \?	チャーチ	水平	0.61	 3.2(軸直角方向) 1.4(軸方向)
常恐任工作共行水系ポンプ	+	JEAG4601	~	0	1页//シハンフ	120.00	鉛直	0.53	1.0
市政政工代育社が永林マク	71	による確認	^	0	雪曲幽	横形ころ	水平	0.61	4.7
					电到//成	がり軸受	鉛直	0.53	1.0
可搬型代替注水大型ポンプ	有	加振試験 による確認	-	-	_	-	_	-	—
代替燃料プール冷却系									
					構成ポンプ	计公开	水平	0.86	 3.2(軸直角方向) 1.4(軸方向)
仕巷焼料ブニル冷却をポンプ	+	JEAG4601	~	0	傾形がシノ	速心式	鉛直	0.65	1.0
KERNIN / //IIAP/K////	71	による確認	^	0	雪動機	横形ころ	水平	0.86	4.7
					电动机成	がり軸受	鉛直	0.65	1.0
原子炉冷却系統施設									
原子炉冷却材再循環設備									
原子炉冷却材再循環系									
原子炉冷却材再循環ポンプ	無	-	-	-	-	-	-	-	_
原子炉冷却材の循環設備									
残留熱除去設備									
残留熱除去系			a					T	
					立形ポンプ	ピットバレ	水平	0.48	10.0
残留熱除去系ポンプ	有	JEAG4601	×	0		ル形	鉛直	0.50	1.0
		による確認		Ŭ	電動機	立形ころ	水平	0.48	2.5
					Garris	がり軸受	鉛直	0.50	1.0
格納容器圧力逃がし装置	1		1					1	
					横形ポンプ	遠心式	水平	0.61	3.2(軸直角方向) 1.4(軸方向)
格納容器圧力逃がし装置	有	JEAG4601	×	0			鉛直	0.53	1.0
移达小ノノ		による帷部			電動機	横形ころ	水平	0.61	4.7
						がり軸交	鉛直	0.53	1.0
非常用炉心冷却設備その他原子炉注水	設備								
高圧炉心スプレイ系	1	1		1	1			1	[
					立形ポンプ	ピット	水平	0.48	10.0
高圧炉心スプレイ系ポンプ	有	JEAG4601 に上ろ確認	×	0		/ U/U/TS	鉛直	0.50	1.0
		1-010100			電動機	立形すべり 軸受	水平	0.48	2.5
						THE	鉛直	0.50	1.0
低圧炉心スプレイ系								1	
					立形ポンプ	ピット バレル形	水平	0.48	10.0
低圧炉心スプレイ系ポンプ	有	JEAG4601 による確認	×	0			鉛直	0.50	1.0
		1-010100			電動機	立形ころ がり軸受	水平	0.48	2. 5
The stand of the second							鉛直	0.50	1.0
原子炉隔離時冷却系									3.2(軸直角方向)
					横形ポンプ	遠心式	水平	0.48	1.4(軸方向)
原子炉隔離時冷却系ポンプ	有	JEAG4601 による確認	×	0			鉛直	0.50	1.0
					ポンプ駆動用 タービン	RCIC ポンプ用	水平	0.48	2.4
						/ N	鉛直	0.50	1.0
局止代替汪水杀 ++		加振試驗		1				1	
常設局圧代替注水系ボンプ	有	による確認	-	—	-	-	-	-	-

別表1 検討対象設備の抽出結果

*1 評価用加速度は,暫定値であり今後設計進捗により変更の可能性がある。

			At超え時の評価方 法がJEAGに規定さ	検討対象設備	JEAC 機種/	G4601 型式		At≹	雀認
施設区分/設備名称	動的機能維持 要求の有無	動的機能維持 の確認方法	れている設備 ○:規定されて いる ×:規定されて いない -:対象外	 としての加山福 果 一:検討対象 とする設備 一:ない設備 	機種	型式	方向	評価用 ^{*1} 加速度	機能確認済 加速度
低圧代替注水系		1			1				
常設低圧代替注水系ポンプ				- (前	前段で整理済)				
可搬型代替注水大型ポンプ				— (前	前段で整理済)				
代替循環冷却系									
					構成ポンプ	清心才	水平	0.48	 3.2(軸直角方向) 1.4(軸方向)
仕麸毎畳込却玄ポンプ	右	JEAG4601	×	0	1页/12/17 2 ク	14-0-24	鉛直	0.50	1.0
「「「「「「「「「「「」」」」」	71	による確認	^	0	雪動機	横形ころ	水平	0.48	4.7
					电到//成	がり軸受	鉛直	0.50	1.0
原子炉冷却材補給設備									
原子炉隔離時冷却系	1								
原子炉隔離時冷却系ポンプ				- (前	前段で整理済)				
原子炉補機冷却設備									
残留熱除去系海水系	T	[T	([1		1 1	
					立形ポンプ	立形	水平	0.38	10.0
残留熱除去系海水系ポンプ	有	JEAG4601	×	0		附而式	鉛直	1.48	1.0
		による帷秘			電動機	立形ころ	水平	0.38	2.5
						かり軸受	鉛直	1.48	1.0
代替残留熱除去系海水系	1								
可搬型代替注水大型ポンプ				- (首	前段で整理済)				
緊急用海水系	1		1			1			
					立形ポンプ	立形	水平	0.61	10.0
緊急用海水ポンプ	有	JEAG4601 に上ろ確認	×	0		NTULIC	鉛直	0.53	1.0
		1 - OK O HELPO			電動機	立形ころ がり軸受	水平	0.61	2.5
							鉛直	0.53	1.0
計測制御系統施設									
制御材	[[1			
制御棒	有	加振試験	-	_	制御棒	BWR 標準型式	水半	11.2mm	40mm で 公 直古向地震に上る影響
		10 OK D HELPD				W-T-T	鉛直	を整理する。	て如直刀向地族による影響
ほう酸水注入設備									
ほう酸水注入系	1	1	1		1	1	1		
					往復動式ポン プ	横形	水平	0.93	1.6
ほう酸水注入ポンプ	有	JEAG4601 による確認	×	0			鉛直	0.80	1.0
					電動機	横形ころ がり軸受	水平	0.93	4.7
11 & 1.66 Mar 11-20							鉛直	0.80	1.0
放射線管理施設									
放射線官理用計測装直 換有訊供									
山山制御完協与五									
中关前御主侠风术							_		_
					ファン	-		_	
中央制御室換気系空気調和機 ファン	有	JEAG4601 による確認	×	0		100	७ ४ जर	98.0	4 7
					電動機	横形ころ がり軸受	小十	0.65	1.0
								-	-
					ファン	-		_	
中央制御室換気系フィルタ系 ファン	有	JEAG4601 による確認	×	0		Likerer	水平	0.86	4.7
					電動機	電動機 がり軸受	鉛直	0.65	1.0

*1 評価用加速度は,暫定値であり今後設計進捗により変更の可能性がある。

			At超え時の評価方 法がJEAGに規定さ	検討対象設備	JEAC 機種/	G4601 型式		A t	確認
施設区分/設備名称	動的機能維持 要求の有無	動的機能維持 の確認方法	れている設備 ○:規定されて いる ×:規定されて いない -:対象外	としての 抽田 揺 果 ・ 検討対象 とする設備 - :検討対象 でない設備	機種	型式	方向	評価用 ^{*1} 加速度	機能確認済 加速度
緊急時対策所換気系									I
						造心	水平	0.90	2.6
		TEAC4601			ファン	直動式	鉛直	0.78	1.0
緊急時対策所非常用送風機	有	による確認	×	0		 「「」」 	水平	0.90	4.7
					電動機	がり軸受	鉛直	0.78	1.0
原子炉格納施設	L								
圧力低減設備その他の安全設備									
原子炉格納容器安全設備									
格納容器スプレイ冷却系									
残留熱除去系ポンプ				- (1	前段で整理済)				
代替格納容器スプレイ冷却系									
常設低圧代替注水系ポンプ				- (1	前段で整理済)				
可搬型代替注水大型ポンプ				- (1	前段で整理済)				
代基循環冷却系ポンプ				- (1	前段で整理済)				
R 毎日海水ポンプ				- (1	前段で整理済)				
格納容器下部注水系									
堂設任圧代基注水系ポンプ				- (1	前段で郫理済)				
可搬刑公共な大刑ポンプ				- (1	前段で整理済)				
可搬空代管社水入空ホンク				0	前叔 (並裡例)				
原于炉建屋放水設備									
可搬型代替汪水大型ホンフ 放射性物質濃度制御設備及び可燃性ガン	ス濃度制御設備			- ()	則段で整埋済)				
並びに格納容器再循環設備									
非常用ガス処埋糸	[1				[1	
					ファン	_	_	-	_
非常用ガス処理系排風機	有	JEAG4601 によろ確認	×	0			-	-	_
		1000 0 1000			電動機	横形ころがり軸受	水平	1.4	4. 7
						~ / THEX	鉛直	1.0	1.0
非常用ガス再循環系	[1				1	
					ファン	遠心	水平	1.4	2.6
非常用ガス再循環系排風機	有	JEAG4601 にトス確認	×	0			鉛直	1.0	1.0
		白いていい			電動機	横形ころがり軸受	水平	1.4	4.7
						//····/ 和4/文	鉛直	1.0	1.0
可燃性ガス濃度制御系			1	1	1			1	1
					ファン	遠心	水平	1.11	2.6
可燃性ガス濃度制御系再結合	有	JEAG4601	×	0		直動式	鉛直	0.84	1.0
表直ノロリ		による権略		-	電動機	横形ころ	水平	1.11	4.7
						がり軸文	鉛直	0.84	1.0
その他発電用原子炉の附属設備									
非常用電源設備									
非常用発電装置									
非常用ディーゼル発電機	1		ī.	1		1	1		I
					非常用ディー ゼル	機関本体	水平	0.72	1.1
非常用ディーゼル発電機	有	JEAG4601	×	0	発電機		鉛直	0.75	1.0
		による雛認			調速装置	UG型	水平	0.72	1.8
							鉛直	0.75	1.0
					横形ポンプ	_	-	-	-
非常用ディーゼル発電機	有	JEAG4601	×	0			-	-	-
燃料移送ボンプ	E1	による確認			雷動機	横形ころ	水平	0.44	4.7
					- 12 AV 1/3	がり軸受	鉛直	0.59	1.0

*1 評価用加速度は,暫定値であり今後設計進捗により変更の可能性がある。

			At超え時の評価方 注がIFAGに 損定さ	検討対象設備	JEAC 機種/	G4601 型式		At	確認
施設区分/設備名称	動的機能維持 要求の有無	動的機能維持 の確認方法	 Artviる設備 ○:規定されて いる ×:規定されて いない -:対象外 	としての抽出結 果 ○:検討対象 -:検討対対備 -:検討対対備 でない設備	機種	型式	方向	評価用 ^{*1} 加速度	機能確認済 加速度
					さまたいプ	立形	水平	0.72	10.0
非常用ディーゼル発電機	5	JEAG4601	~	0	立形ホンノ	斜流式	鉛直	1.48	1.0
用海水ポンプ	71	による確認	^	0	研究所有大学校	立形ころ	水平	0.38	2.5
					电到1%	がり軸受	鉛直	1.48	1.0
高圧炉心スプレイ系ディーゼル発行	電機								
					非常用ディー	機関太休	水平	0.72	1.1
高圧炉心スプレイ系ディーゼ	右	JEAG4601	×	0	発電機	106 007 11 11	鉛直	0.75	1.0
ル発電機	H.	による確認	~	0	調速準置	UG刑	水平	0.72	1.8
					刚还获匡	001	鉛直	0.75	1.0
					構形ポンプ	_	-	-	—
高圧炉心スプレイ系ディーゼ	5	JEAG4601	~	0	10月1541 2 2		-	-	—
ル発電機燃料移送ポンプ	H.	による確認	~	0	雪雪香有长松	横形ころ	水平	0.44	4.7
					电到1%	がり軸受	鉛直	0.59	1.0
					さまたいプ	立形	水平	0.72	10.0
高圧炉心スプレイ系ディーゼ	4	JEAG4601	~	0	立形ホンノ	斜流式	鉛直	1.48	1.0
ル発電機用海水ポンプ	伯	による確認	^	0	and the two	立形ころ	水平	0.38	2.5
					电则阀	がり軸受	鉛直	1.48	1.0
常設代替高圧電源装置									
常設代替高圧電源装置	有	加振試験 による確認	-	-	-	_	_	-	-
					Life and 10 a log		1	-	_
常設代替高圧電源装置燃料	-	TEAG4601		-	傾形ホンフ	_	I	-	_
移送ポンプ	有	による確認	×	0	ambarti Isla	構形ころ	水平	0.44	4.7
					電動機	がり軸受	鉛直	0.59	1.0
緊急時対策所用発電機	1	1		1	1	1		1	
緊急時対策所用発電機	有	加振試験 による確認	-	-	_	_	_	-	-
		1-01 0 1000			littered and a		-	-	_
緊急時対策所用発電機給油	-	TEAG4601		-	横形ホンフ	_	-	-	_
ポンプ	有	による確認	×	0	ambarti Isla	構形ころ	水平	0.80	4.7
					電動機	がり軸受	鉛直	0.71	1.0
可搬型代替低圧電源車	r.	1	1		r.				
可搬型代替低圧電源車	有	加振試験 による確認	-	-	-	_	_	-	-
タンクローリー	有	加振試験 による確認	-	_	_	_	1	-	_
可搬型窒素供給装置用電源車									·
可搬型窒素供給装置用電源車	有	加振試験 による確認	_	_	_	-	_	-	_
タンクローリー				— (j	前段で整理済)				
補機駆動用燃料設備									
可搬型									
タンクローリー				— (j	前段で整理済)				
弁									
一般弁									
グロープ弁	有	JEAG4601 による確認	0	-	-	-	-	-	_
ゲート弁	有	JEAG4601 による確認	0	-	-	-	-	-	_
バタフライ弁	有	JEAG4601 による確認	0	-	-	-	_	-	-
逆止弁	有	JEAG4601 によろ確認	0	-	-	-	_	-	-
特殊弁									
主蒸気隔離弁	有	JEAG4601 によろ確認	0	-	-	-	-	-	_
安全弁	有	JEAG4601 によろ確認	0	-	-	-	_	_	-
制御棒駆動系スクラム弁	有	JEAG4601 によろ確認	0	-	-	-	_	-	-

*1 評価用加速度は、暫定値であり今後設計進捗により変更の可能性がある。

別紙-14

東海第二発電所

防潮堤の構造及び設置ルートの変遷について (耐震)

- 1. 防潮堤の構造形式および設置ルートの変遷について
- (1) 申請当時の構造について(平成26年5月)

東海第二発電所における津波に対する浸水防止(外郭防護)は,防潮堤を 設置することにより対応する方針であり,申請当時(平成26年5月)におい て,防潮堤の構造形式は,第1図に示す通り鋼製防護壁構造,鉄筋コンクリー ト防潮壁構造,セメント固化盛土構造,鋼管杭鉄筋コンクリート防潮壁構造 の4種類とし,それぞれの配置は以下のとおりであった。

第1図 申請当時の防潮堤の構造形式と配置図(平成26年5月)

(2) セメント固化盛土構造から鋼管杭鉄筋コンクリート防潮壁構造への変更 (平成29年4月)

申請当時は、上記の4種類の構造形式のうち、セメント固化盛土構造区間 が最も長い延長となる計画であったが、セメント固化盛土構造区間について は、防潮堤上部構造の重量が比較的軽量で常時の圧密荷重と地震時の慣性力

4条 別紙14-2

を低減でき,より一層強固な部材である鋼管杭や鉄筋コンクリートを用いる ことで耐震,耐津波の安全裕度向上が見込まれる鋼管杭鉄筋コンクリート防 潮壁構造へ変更することとした。

鋼管杭鉄筋コンクリート防潮壁構造への構造変更により,詳細設計で強度 設定の変更が生じた場合でも,構造部材が工場製品の組合せであることから, 迅速かつ柔軟に設計外力へ対応した設計が可能となる。また,鋼管杭鉄筋コ ンクリート防潮壁構造の場合は,杭支持により防潮堤の長期的な安定性を確 保することが可能となる。これら設計上の利点も勘案した上で,構造変更を 行ったものである。

なお、鋼管杭鉄筋コンクリート防潮壁構造は、申請当時から岩盤が比較的 浅い敷地側面南側の日本原子力研究開発機構との敷地境界付近の区間を対象 に設計検討を進め、平成29年3月までの地盤調査や各種解析の結果、液状化 検討対象層を考慮しても構造成立性の見通しが得られていたことに基づき、 これを最大延長にて計画されていたセメント固化盛土構造区間へも適用した ものである。変更後の防潮堤の構造形式と配置図を第2図に示す。

第2図 変更後の防潮堤の構造形式と配置図(平成29年4月)

4条 別紙14-3

(3) 摩擦杭形式から岩着支持杭形式への変更及びルート変更(平成29年7月)

平成29年4月時点においては、鋼管杭鉄筋コンクリート防潮壁構造の杭基 礎の支持形式について、敷地地盤の特徴を踏まえ、敷地南側は岩盤に支持さ せる岩着支持杭形式とし、敷地北側は恒久的な非液状化層である過圧密粘土 層だけでも必要な支持性能を確保できる摩擦杭形式とする計画であった。

しかし,設置許可基準規則第三条第1項及び第2項に照らして,より安全裕 度の高い支持性能が得られるよう,敷地北側の鋼管杭鉄筋コンクリート防潮 壁構造区間の全ての摩擦杭形式を敷地南側と同様の岩着支持杭形式へ変更す ることとした。

また,鋼管杭鉄筋コンクリート防潮壁周辺の表層地盤については,地震時 における地盤の変形や津波による洗掘などに対して,浸水防護をより確実な ものとするため表層地盤改良を行う計画としていたが,表層地盤改良等の実 施に当たっては,敷地北側の「低レベル放射性廃棄物埋設事業所廃棄物埋設 施設(L3事業所)」及び他事業所施設の地下水流況に影響を及ぼす可能性を 考慮して,岩着支持杭形式への構造変更とあわせて,防潮堤のルートを一部 変更した。第3図に構造変更及び一部ルート変更の結果を示す。

第3図 杭基礎の支持形式及び防潮堤設置ルートの変更(平成29年7月)

- 2. 鋼管杭鉄筋コンクリート防潮壁の構造成立性について
 - (1) 鋼管杭鉄筋コンクリート防潮壁の設計方針及び構造成立性の評価結果について(平成29年10月)

構造成立性の検討では、構造体の各部位の評価において荷重伝達を踏まえ た荷重の受け渡しや検討条件の整合性又は包絡性について体系的に整理し、 構造体に対して最も厳しい評価となる解析断面を選定した上で、その地盤モ デルについても地層構成の不確かさや地盤物性値のバラツキなどを安全側に 考慮(極端な地層厚の組合せや強制的な液状化を仮定するなど)することで、 十分な保守性を持たせた条件による耐震及び耐津波評価を実施した。さらに、 今後の詳細設計段階で検討条件の変化が生じた場合に応じて、材料仕様の変 更等により柔軟に安全裕度向上策の実施が可能な構造となるよう配慮した。

評価結果によれば,鋼管杭鉄筋コンクリート防潮壁の上部構造及び下部構 造とも,各照査項目は許容値内に収まっていることを確認した。

4条 別紙14-5

以上のことから,鋼管杭鉄筋コンクリート防潮壁の耐震及び耐津波設計の 検討としては,安全側に包含する検討条件での評価により,十分な構造強度 と止水性能を有する構造成立性を確認したのと共に,今後の詳細設計で検討 条件の変化が生じた場合においても,材料仕様の変更等により柔軟な設計対 応が可能である見通しを得た。

鋼管杭鉄筋コンクリート防潮壁の設計方針及び構造成立性の評価結果については、審査資料「津波による損傷の防止 添付資料24 鋼管杭鉄筋コンクリート防潮壁の設計方針及び構造成立性の評価結果について」に記載する。

表
1
制
変
\mathcal{N}
窚
Ň
举
更
変
造
顜
堤
膨
臤
-
₩,
\mathbb{W}

時期	項目	内容
平成 26年5月	設置変更許可申請	
平成 29年4月	と 構筋 利 者 節 利 者 節 利 者 節 割 う か 清 当 部 う り う う 舎 置 割 リ ヘ 浩 留 割 リ へ 造 管 む む む む む む む む む む む む む む む む む む	 回 耐震・耐津波の安全裕度向上 セメント固化盛士構造は重量が大きいが、防潮堤上部構造の重量が比較 的軽量で地震時の慣性力を低減でき、より一層強固な部材である鋼管抗 や鉄筋コンクリートを用いることで耐震・耐津波の安全裕度向上が見込 や鉄筋コンクリートを用いることで耐震・耐津波の安全裕度向上が見込 まれる鋼管抗鉄筋コンクリート防潮醛構造へ変更する方針とした。 ③ 防潮堤の長期的な安定性確保 ③ 防潮堤の長期的な安定性確保 ③ 防潮堤の長期的な安定性確保 ③ 防潮堤の長期的な安定性確保 ③ 防潮堤のた期的な安定性確保 ③ 防潮堤のた期的な安定性確保 ③ 防潮堤のた期的な安定性確保 ③ 防潮堤のた期的な安定性確保 ③ 防潮堤のた期的な安定性確保 ③ 防潮堤の長期的な安定性を満定さいため, 車量が大きいセメント固化配 するが, 鋼管抗鉄筋コンクリート防潮醛構造では、抗支持により抗先端 以深への圧密荷重を比較的小さくできることから, 粘土層の過圧密値検 可応支持性能を活かして、長期的な安定性を確保する方針とした。 ③ 迅速かつ柔軟な設計外力への対応 ③ 迅速かつ柔軟な設計外力への対応 ③ 迅速かつ柔軟な設計な方式, 今後実施していく解析菜 店の結果により, 配合の設定や強度のばらつき等に対して多数の試験が 必要となるが, 工場製品の組合せが可能な鋼管抗鉄筋コンクリート防潮 壁構造とすることで, 迅速かつ柔軟な設計を可能とする方針とした。
平成 29 年 7 月	藤藤抗形式から岩 着支持抗形式から岩 変更及び設置と一 トの変更	 ① 支持性能の向上 敷地北側で計画していた杭基礎の構造形式を摩擦杭形式から岩着支持杭 形式に変更することで、より安全裕度の高い支持性能を確保する方針と した。 ② 地下水流況の変化の可能性への対応 ③ 地下水流況の変化の可能性への対応 ③ 地下水流況の変化が低レベル放射性廃棄物埋設事業所廃棄物埋設施設(L) 3 事業所)及び他事業所施設の地下水流況に影響を及ぼす可能性を考慮 し、防潮堤ルートを変更する方針とした。