本資料のうち、枠囲みの内容 は、商業機密あるいは防護上 の観点から公開できません

東海第二発電所	工事計画審査資料
資料番号	補足-150 改 1
提出年月日	平成 30 年 3 月 7 日

東海第二発電所 原子炉圧力容器の脆性破壊防止に関する説明書に係る 補足説明資料

原子炉圧力容器の中性子照射脆化に関する 評価の詳細について

> 平成 30 年 3 月 日本原子力発電株式会社

目 次

	頁
1. 概要 · · · · · · · · · · · · · · · · · ·	1
2. 評価対象となる材料の抽出	1
3. 中性子東及び中性子照射量	4
3.1 中性子束及び中性子照射量の算出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.2 中性子束及び中性子照射量の算出に関するパラメータについて	5
4. 関連温度の決定	7
4.1 原子炉圧力容器材料の関連温度(初期) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4.2 炉心領域の関連温度(調整値)	7
5. 破壊靭性評価 ····································	9
5.1 耐圧・漏えい試験,供用状態 A 及び B の破壊靭性に対する評価 ·····	9
5.2 供用状態 C 及び供用状態 D の破壊靭性に対する評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
5.3 重大事故等時の破壊靭性に対する評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
5.4 応力拡大係数及び必要関連温度の算出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
6. 上部棚吸収エネルギーによる評価	15
6.1 上部棚吸収エネルギー調整値の算出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
(参考資料)	
1. 「原子炉圧力容器の脆性破壊防止に関する説明書」に係る適用規格等の整理	
2. 耐圧・漏えい試験における必要関連温度の算出手順説明	
3. 仮想欠陥の形状・位置及び解析モデル	
4. 応力計算条件について	
5. 比較表	
6. 関連温度の評価について	

1. 概 要

本資料は,「原子炉圧力容器の脆性破壊防止に関する説明書」(以下「説明書」という。) について,その内容を補足説明するものである。

説明書に記載している原子炉圧力容器の材料の脆性破壊に係る評価について、適用している技術基準規則及び規格と対応させて説明する。

2. 評価対象となる材料の抽出 <説明書 4., 7.1>

評価対象となる材料については、以下の規定に基づき抽出する。

JSME S NC1 PVB-2311「破壊靭性試験不要となる材料の規定」

- ①厚さが 16mm 未満の材料
- ②断面積が 625mm²未満の棒の材料
- ③呼び径が 25mm 未満のボルト材
- ④外径が 169mm 未満の管の材料
- ⑤厚さが 16mm または外径が 169mm 未満の管に接続されるフランジの材料および管継手の 材料
- ⑥オーステナイト系ステンレス鋼および高ニッケル合金

以上を踏まえ、破壊靭性の評価対象となる材料を表 2-1 に示す。

表 2-1(1) 評価対象となる材料の抽出結果

部品名称	材料	評価対象	対象外の 該当項目
上鏡板 1		0	_
上鏡板 2		0	_
円筒胴 1		0	_
円筒胴 2		0	_
円筒胴 3		0	_
円筒胴 4		0	_
下鏡板 1		0	_
下鏡板 2		0	_
上鏡側フランジ		0	_
胴側フランジ		0	_
スタッドボルト		0	_
制御棒駆動機構ハウジング貫通部	オーステナイト系ステンレス鋼 高ニッケル合金	×	6
中性子計測ハウジング貫通部	オーステナイト系ステンレス鋼 高ニッケル合金	×	6
内張り材	オーステナイト系ステンレス鋼 高ニッケル合金	×	6

表 2-1(2) 評価対象となる材料の抽出結果

部品名称	材料	評価対象	対象外の 該当項目
再循環水出ロノズル(N1)		0	_
再循環水入口ノズル(N2)		0	_
蒸気出ロノズル(N3)		0	_
給水ノズル(N4)		0	_
炉心スプレイノズル(N5)		0	_
上鏡スプレイノズル(N6A)		0	_
上鏡予備ノズル(N6B)		0	_
ベントノズル(N7)		0	_
ジェットポンプ計測ノズル(N8)		0	_
制御棒駆動水戻りノズル(N9)		0	_
液体ポイズン及び炉心差圧計測ノズ ル (N10)	オーステナイト系ステンレス鋼 高ニッケル合金	×	6
計測ノズル (N11, N12, N16)	オーステナイト系ステンレス鋼 高ニッケル合金	×	6
低圧注水ノズル(N17)		0	_

3. 中性子東及び中性子照射量 <説明書7.4>

照射実績(中性子東)については,第 4 回監視試験中性子照射量解析結果(平成 27 年)を反映する。なお,監視試験片を採取した供試材は, である。 仮想欠陥深さは内表面から 1/4t の深さ(内表面から 1/4t 部)について評価する。

3.1 中性子束及び中性子照射量の算出

1/4 t 位置の中性子照射量の算出については、説明書の「7.4 中性子照射量による関連温度の移行量」による。また、評価に用いる中性子束については、監視試験の解析結果より求める。算出に用いた数値の詳細を表 3-1 に示す。

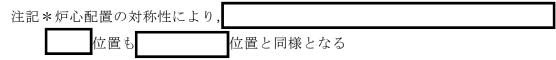
表 3-1 原子炉容器の各深さ位置における中性子束及び中性子照射量

	原子均	戸容器
	内表面	1/4t 部
リードファクタ		
各深さ位置での中性子東[n/cm²/s, E>1MeV]	4.36×10^{8}	3.18×10^{8}
[n/cm ² /s, E>1MeV]	4. 50 \(\)10	3. 10 × 10
照射期間 [EFPY] (注)	40	
中性子照射量 [n/cm², E>1MeV]	0.0550×10^{19}	0.0401×10^{19}

(注) 照射期間については、(EFPY) ×365×24×3600 [s]にて換算している

- 3.2 中性子東及び中性子照射量の算出に関するパラメータについて
 - 3.2.1 定格負荷相当年数 (Effective Full Power Year: EFPY)

定格負荷相当年数(EFPY) は、定格出力で連続運転したと仮定して計算した年数である。


プラントは、起動・停止時、出力制限時など必ずしも 100%出力運転をしている わけではないため、実際の運転期間と EFPY は異なる。

中性子照射による影響の評価にあたっては、定格出力の積分値である発電電力量を用いて、下式により EFPY を算出する。

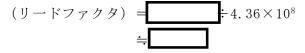
 $(EFPY) = (発電電力量) \div 24 \div 365 \div (定格出力)$

3.2.2 リードファクタ

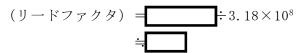
リードファクタは、監視試験片の照射位置における中性子束の、原子炉圧力容器内面あるいは他の深さ位置における最大中性子束に対する比であり、下式で表される。なお、原子炉圧力容器の炉心領域の中性子束分布は、軸方向についてはほぼ一様で分布がないが、周方向については炉心からの距離が近い 位置*で最大となるため、その位置で評価を行う。

(リードファクタ) = (監視試験片位置での中性子束(E>1MeV))

÷ (原子炉圧力容器での最大中性子東 (E>1MeV))


リードファクタの算出に用いる監視試験片位置及び原子炉圧力容器での中性子束は、米国のオークリッジ国立研究所で開発された DORT コードにより算出する。

DORT コードは、中性子輸送方程式を数値的に解くコードであり、DORT コードの入力パラメータは、図 3-1 の通りとなる。


リードファクタの算出方法は、DORT コードで算出した各位置の中性子束をもとに、 以下の計算過程にて算出する。

[計算過程]

(1) 内表面

(2) 1/4t 位置

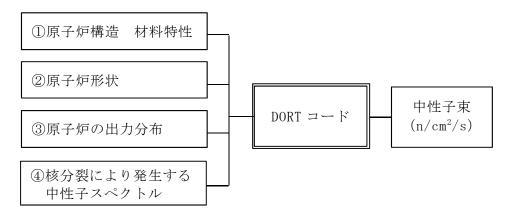


図 3-1 DORT コードの概要

4. 関連温度の決定

4.1 原子炉圧力容器材料の関連温度(初期) <説明書 6., 7.5.2>

照射前の原子炉圧力容器材料について, 関連温度(初期)を決定する。

東海第二については、建設時に「発電用原子力設備に関する構造等の技術基準」(昭和 45 年通商産業省告示 501 号)に基づく試験方法により遷移温度を確認しており、JSME と要求指標が異なることから、関連温度(初期)を「原子炉圧力容器に対する供用期間中の破壊靭性の確認方法」JEAC4206-2007(以下「JEAC4206-2007」という。)付属書Eの方法により推定し実測値として評価に用いる。

スタッドボルトについては、最低使用温度 21℃以下での衝撃試験結果を判定基準と対 比し満足していることを確認している。

評価に用いた各材料の関連温度(初期)を表 4-1 に示す。

4.2 炉心領域材料の関連温度の移行量 <説明書7.4>

炉心領域材料について, 関連温度の移行量を算出する。

炉心領域材料に該当するのは、原子炉圧力容器のうち円筒胴3及び4であり、関連温度の移行量については、中性子照射を考慮して 40 定格負荷相当年数での関連温度の移行量計算値にマージンを加えて求める。

算出方法は、「原子炉構造材の監視試験方法」 J E A C 4201-2007 [2013 年追補版] 「以下「J E A C 4201-2007 [2013 年追補版]」という。」附属書 B による。

表 4-1 原子炉容器材料の関連温度(初期)

名称	関連温度(初期)	材料
	(℃)	
上鏡板 1	-12	SQV2A
上鏡板 2	-17	SQV2A
円筒胴 1	-16	SQV2A
円筒胴 2	-12	SQV2A
円筒胴 3	-25	SQV2A
円筒胴 4	-25	SQV2A
下鏡板 1	-12	SQV2A
下鏡板 2	-12	SQV2A
上鏡側フランジ	-17	SFVQ2A
胴側フランジ	-16	SFVQ2A
再循環水出ロノズル(N1)	-12	SFVQ2A
再循環水入口ノズル(N2)	-12	SFVQ2A
蒸気出ロノズル(N3)	-12	SFVQ2A
給水ノズル(N4)	-20	SFVQ2A
炉心スプレイノズル(N5)	-28	SFVQ2A
上鏡スプレイノズル(N6A)	-34	SFVQ2A
上鏡予備ノズル(N6B)	-12	SFVQ2A
ベントノズル (N7)	-12	SFVQ2A
ジェットポンプ計測ノズル(N8)	-12	SFVQ2A
制御棒駆動水戻りノズル(N9)	-28	SFVQ2A
低圧注水ノズル(N17)	-28	SFVQ2A

5. 破壊靭性評価

5.1 耐圧・漏えい試験,供用状態A及びBの破壊靭性に対する評価 **<説明書 4.>** 設計基準対象施設として,供用期間中の耐圧・漏えい試験及び供用状態A及びB(耐圧・漏えい試験を除く)の運転条件において,原子炉圧力容器の材料の脆性破壊防止の観点で破壊靭性上最も厳しい運転条件は,低温高圧の運転管理となる耐圧・漏えい試験時であるため,供用状態A及びBの評価は耐圧・漏えい試験での評価に代表される。

5.2 供用状態C及び供用状態Dの破壊靭性に対する評価 **<説明書4.>**

JEAC4206-2007 FB-4200に,供用状態C及び供用状態Dについて非延性破壊が防止されることを確認するよう要求がある。健全性評価上最も問題となるのは,加圧された原子炉圧力容器内部が急激に冷却されることで容器内面に高い引張応力が発生するPTS(Pressurized Thermal Shock 加圧熱衝撃)事象だが,沸騰水型原子炉圧力容器では,炉圧は蒸気温度の低下に伴い低下すること,冷水注入するノズルにはサーマルスリーブが設けられており,冷水が直接炉壁に接することはないから,PTS事象は発生しない*1。また相当運転期間での中性子照射量が低く,BWR-5を対象とした評価(図5-1)において、破壊靭性の裕度が十分あることが確認されている*2。図5-1の結果は,プラント毎に初期RTNDT、脆化量及び過渡条件に差異はあるが、プラント間で有意な差異が生じないこと,及び、評価が48EFPYであることから,東二の評価に対して、裕度がある。そのため,供用状態C及び供用状態Dにおいては脆性破壊に対して厳しくなる事象はなく,耐圧・漏えい試験時の評価で代表される。

図5-1 供用状態Dにおける原子炉圧力容器のPTS評価(BWR-5)

注記*1:(財)発電設備技術検査協会,溶接部等熱影響部信頼性実証試験に関する調査報告書[原子炉圧力容器加圧熱衝撃試験][総まとめ版],平成4年3月,p20-26

注記*2:桝田他,「沸騰水型原子炉圧力容器の過渡事象における加圧熱衝撃の評価」,日本保全学会第10回学術講演会,2013.7

5.3 重大事故等時の破壊靭性に対する評価 <説明書4.>

炉心損傷防止対策の有効性評価における全ての事故シーケンスグループについて,設計熱サイクルに基づく,原子炉圧力容器圧力の上昇率及び原子炉圧力容器内温度の低下率を表5-1に整理した。その結果,原子炉圧力容器圧力の上昇率の観点で厳しいシーケンスとして全交流動力電源喪失(長期TB)(TBD,TBU)(TBP)及び原子炉停止機能喪失が,原子炉圧力容器内温度の低下率の観点で厳しいシーケンスとしてLOCA時注水機能喪失が挙げられるが,以下のとおり設計熱サイクルで想定している「過大圧力」「原子炉冷却材喪失事故」に包絡される。

・原子炉圧力容器圧力の上昇率 原子炉圧力容器圧力の上昇率の観点で厳しいのは、 まで上昇する全交流動力電源喪失(長期TB)(TBD, TBU)(TBP)シーケンス及ひ 停止機能喪失シーケンスであるが、設計熱サイクルで想定している「過大圧力」(まで上昇)に包絡される。 ・原子炉圧力容器内温度の低下率 原子炉圧力容器内温度の低下率の観点で厳しいのは、 で低下するLOCA時注水機能喪失シーケンスであるが、設計熱サイクルで想定している「原子炉冷却材喪失事故」(まで低下)に包絡される。 以上のことから、重大事故等対処設備としての原子炉圧力容器の破壊靭性に対する評価

は、供用状態C, Dと同様に耐圧・漏えい試験時に対する評価に代表される。

表 5-1 全ての事故シーケンスグループにおける原子炉圧力容器圧力の上昇率及び原子炉圧力容器内温度の低下率

重要事故シーケンス	原子炉圧力容器圧力の上昇率	原子炉圧力容器内温度の低下率
高圧・低圧注水 機能喪失※		
高圧注水・減圧 機能喪失※		
全交流動力電源喪失 (長期TB) ※		
全交流動力電源喪失 (TBD, TBU) ※		
全交流動力電源喪失 (TBP) ※		
崩壊熱除去機能喪失 (取水機能が喪失した 場合)※		
崩壊熱除去機能喪失 (残留熱除去系が故障 した場合) ※		
原子炉停止機能喪失		
LOCA時注水機能喪失※		
格納容器バイパス (インターフェイス		
システムLOCA)※		
津波浸水による注水		
機能喪失		•
過大圧力		
原子炉冷却材喪失		

[※]原子炉圧力容器圧力及び温度の数値には水頭圧は含めていない

5.4 応力拡大係数及び関連温度の要求値の算出 <説明書7.3,7.5>

5.1, 5.2 及び 5.3 で述べたように、沸騰水型原子炉圧力容器の破壊靭性評価は、耐圧・漏えい試験を代表条件として実施する。

応力拡大係数の算出については、説明書の「7.3 応力拡大係数の計算」による。算出 に用いた数値等の詳細を表 5-2、表 5-3 に示す。

関連温度の要求値の算出方法は、参考資料 2 に示す通りである。この際、各部位の応力は、理論解または参考資料 3 に示すFEM解析モデルを用いて参考資料 4 に示す応力計算条件により求める。

耐圧試験(最高使用圧力以下)における胴及び鏡板部毎の代表断面でのパラメータ 表 5-2

		評価条件			ППП	計算結果	(MPa)	応力拡大	応力拡大係数算出に			*
夕新	板厚	石木目	欠陥	計算	<u>−</u>	一次応力	二次応力	用いる/	用いるパラメータ	$ m K_{I}$		R T NDT
<u>.</u>	t,	文文	彩 い a	力法	膜	田げ	膜曲げ	>	Ž	(Ó	(o
	(mm)		(mm)		$\sigma_{\mathrm{m}1}$	Ο b 1	σ m 2 σ b 2		9 TAT	(MPa√m)	\mathcal{C}	C
上鏡板1												
上鏡板2												
円筒胴1												
円筒胴2												
円筒胴3												
円筒胴4												
下鏡板1												
下鏡板2												
上鏡側フランジ												
胴側フランジ												

注記*1:K 1c式により算出(参考資料2参照) *2:評価には,中性子照射による関連温度の移行量を考慮する。

表 5-3 耐圧試験 (最高使用圧力以下) におけるノズル部毎の代表断面でのパラメータ

			評価条件	-11-			計算結果	応力拡大係数			*
外茶	板厚	仮相	大 祭	1 1 5	半径	計算	応力	算出に用いる	\mathbf{K}_{I}	Т	$R \mathrel{T}_{\textrm{NDT}}$
	t	不不	H (m m)	VI (mm)	r n	力法	ОЪ	パラメータ			
	(mm)	프	(1111111)	(mm)	(mm)		(MPa)	$F(a/r_n)$	$(MPa\sqrt{m})$	(°C)	(°C)
再循環水出口											
ノズル (N1)											
再循環水入口											
ノズル (N2)											·
蒸気出ロノズル											
(N3)											
給水ノズル(N4)											
高いスプレイ											
/ ズル (N5)											
上鏡スプレイ											
ノズル (N6A)											
上鏡予備ノズル											
(N6B)											
ベントノメア											
(N7)											
ジェットポンプ											
計測ノズル(N8)											
制御棒駆動水											
戻りノズル(N9)											
低圧注水ノズル											
(N17)				-		-			•		

注記 $*1:K_{1c}$ 式により算出(参考資料2参照)

- 6. 上部棚吸収エネルギーによる評価 <説明書8.>
 - 6.1 上部棚吸収エネルギー調整値の算出

JEAC4201-2007 [2013年追補版] 附属書Bの国内USE予測式を用いて、上部棚 吸収エネルギー調整値(USE (調整値)) を算出する。

USE (調整値) の算出に用いるパラメータを表6-1に示す。

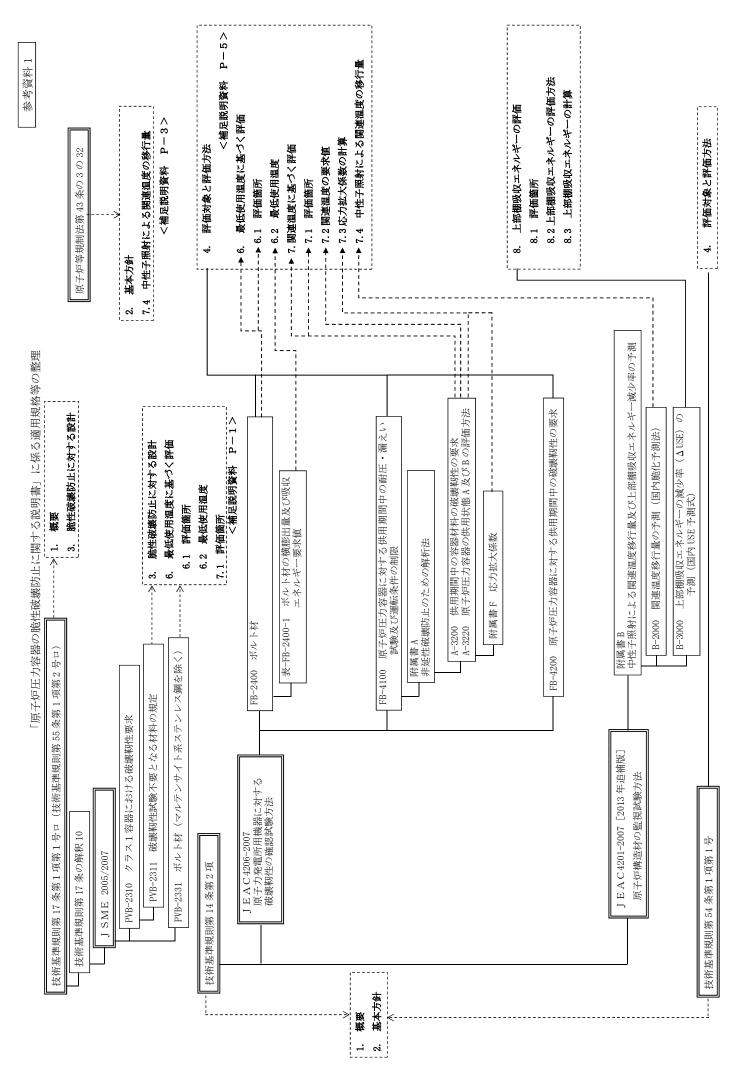
表6-1 USE (調整値) の算出に用いるパラメータ

中性子照射量 (×10 ¹⁹ n/	cm ² , E>1MeV)	0.0401
(())	C _u	
化学成分(mass%)	N i	
σ Δυ (%)		6.9
$M_{u} \ (=2 \sigma_{\Delta U}) \ (\%)$		13.8
Со		-0.95
USE (初期値) (J) (E	È)	202

(注) 照射前試験で確認した主加工方向に平行な方向(L方向) から採取した試験片による結果

USE(調整値)の算出過程を以下に示す。

$$[CF_U] = 5.23 + 9.36 \cdot \left\{ 0.5 + 0.5 \cdot \tanh \left(\frac{C_U - 0.087}{0.034} \right) \right\} \times (1 + 0.59 \cdot N_i)$$


$$[FFU](f) = f^{(0.349-0.068 \cdot \log f)}$$

$$\Delta U S E = C_o + [C F_U] \cdot [F F_U] (f) + M_u$$

 \Rightarrow (%)

USE (調整値) = USE (初期値) ×
$$(1-\Delta USE/100)$$
 × 0.65*
 $=$ (J)

注記*:主加工方向に平行な方向(L方向)から採取した試験片のため, JEAC4201-2007 SA-3440より,計算値の65%の値を用いて評価する。

評価時点におけるUSE (調整値) は Jとなり, 68 Jを上回る。

耐圧・漏えい試験における関連温度の要求値の算出手順説明

1. 評緬の目的

耐圧・漏えい試験において,原子炉圧力容器を脆性破壊させないために最低限必要となる材料の靭性を確認するため,許容される関連温度の要求値を算出する。

2. 評価の概要

- ・原子炉圧力容器にき裂が存在すると想定し、耐圧・漏えい試験における温度・圧力の 変化によりき裂先端に生じる応力拡大係数(K_I)を求める。
- ・KIが原子炉圧力容器材料の靭性(静的破壊靭性値(KIC))よりも小さいことを確認することで、この仮想欠陥が脆性破壊の起点とならないことを評価する。
- ・KICは使用温度(T)と関連温度(RTNDT)の関数であることから、KIをKICよりも小さくするためには、RTNDTが一定値以下となるよう管理すればよい。
 - ・評価の流れの概要を図1で示す。

3. 評価の詳細

3.1 KIの算出

- ・原子炉圧力容器の胴及び鏡板部においては、内面または外面に板厚の1/4の深さ、板厚の1.5倍の長さの表面欠陥を最大仮想欠陥として想定する。ノズル部においては、ノズルが取り付く部分の胴及び鏡板部板厚の1/4倍の深さの表面欠陥を最大仮想欠陥としてノズルコーナー部に想定する。これらの最大仮想欠陥形状を説明書の図7-1に示す。
- ・供用状態A及びBの過渡事象のうち、低温高圧の運転管理となる耐圧・漏えい試験について、理論解またはFEMによる応力解析結果を用いてKIを算出する。

3.2 KICの算出式

KICは材料の靭性(脆性破壊に対する抵抗値、粘り強さ)の温度依存性を示す曲線であり、下式のとおり温度(T)と関連温度(RTNDT)の関数であらわされる。下式の通り、Tが大きく、RTNDTが小さいほどKICは大きくなり、靭性が高くなることを意味する。

$$K_{IC} = 36.48 + 22.78 \exp\left(0.036\left(T - RT_{NDT}\right)\right)$$

3.3 関連温度の要求値の算出及び評価

- ・脆性破壊は、KIがKICより小さい場合には発生しない。KICはRTNDTの関数であるため、RTNDTを一定値以下に管理することで脆性破壊を防止できる。
- ・KIをKICと置き換えてRTNDTを求めれば、これが関連温度の要求値となる。
- ・関連温度の要求値の計算では、まず、3.2 に示す式をRTNDTについての式に変形する。

R T_{NDT} = T
$$-\frac{1}{0.036} ln \left(\frac{K_{IC} - 36.48}{22.78} \right)$$

・次に、上式 σ KIC ϵ KIとして代入し、Tを耐圧・漏えい試験温度とした上で、下式の成立するRTNDTの最大値が関連温度の要求値となる。

$$R T_{NDT} \le T - \frac{1}{0.036} ln \left(\frac{K_{I} - 36.48}{22.78} \right)$$

- ・炉心領域材料には中性子照射による脆化を考慮して、中性子照射による関連温度の移行量 Δ R T N D T を見込む。 Δ R T N D T の計算は説明書の 7.4 及び付録 1 に記載している。
- ・関連温度の実測値が, 算出した関連温度の要求値よりも小さく, 脆性破壊が生じないことを確認する。

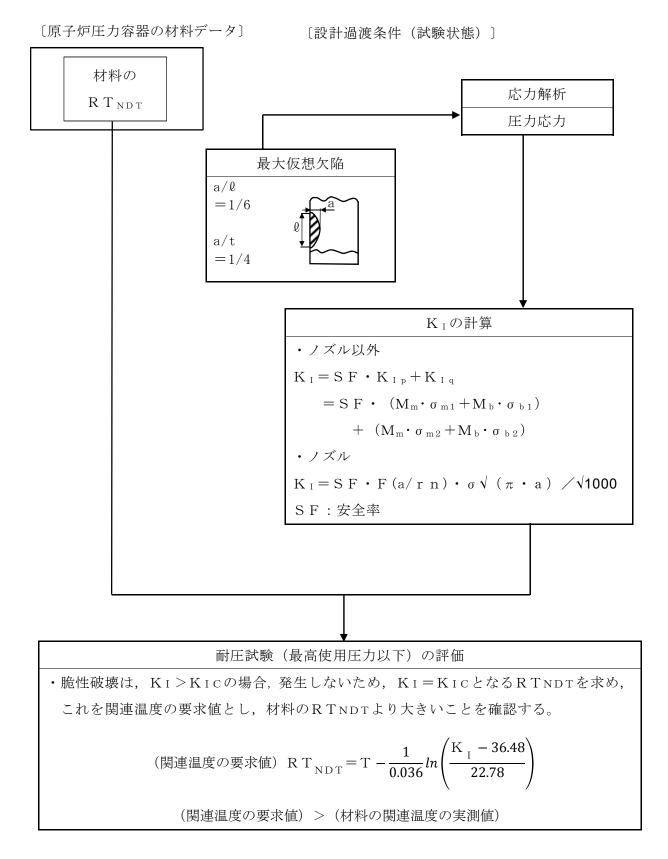


図1 原子炉圧力容器材料の脆性破壊防止の評価の流れ

仮想欠陥の形状・位置及び解析モデル

応力拡大係数の計算に用いる最大仮想欠陥は,胴及び鏡板部にあっては,板厚の1/4倍の深さ,板厚の1.5倍の長さの表面欠陥を用いる。ただし,板厚 t が t < 100.0 mmの場合,100.0 mm厚断面に対する欠陥を用いる。

ノズル部にあっては、ノズルが取り付く部分の胴及び鏡板部板厚の1/4倍の深さの欠陥を 用いる。ただし、最大仮想欠陥の大きさは胴部の最大仮想欠陥寸法を超えないものとする。 図1に最大仮想欠陥の形状を示す。

胴及び鏡板部にあっては、JEAC4206-2007 附属書F F-3100により、欠陥深さと板厚の関係から、耐圧・漏えい試験時の圧力に対して理論解又はFEMにより求めた応力により応力拡大係数を求める。

ノズル部にあっては、JEAC4206-2007 附属書F F-4200により、欠陥深さと穴の半径の関係から、胴部の周方向応力を用いて応力拡大係数を求める。

FEM解析に用いたモデルを図2に示す。

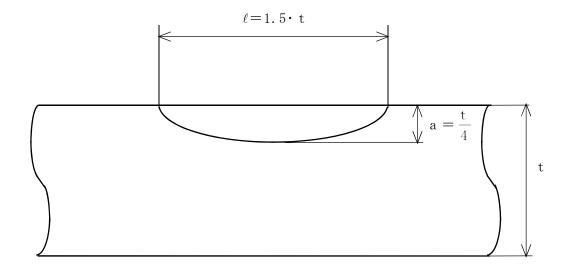


図1 胴及び鏡板部の仮想欠陥の寸法及び位置の例 (1/2)

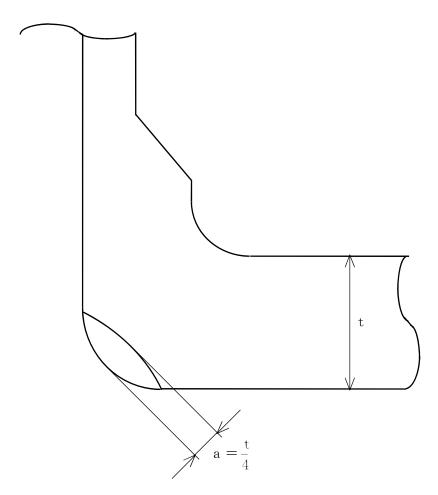


図1 ノズル部の仮想欠陥の寸法及び位置の例(2/2)

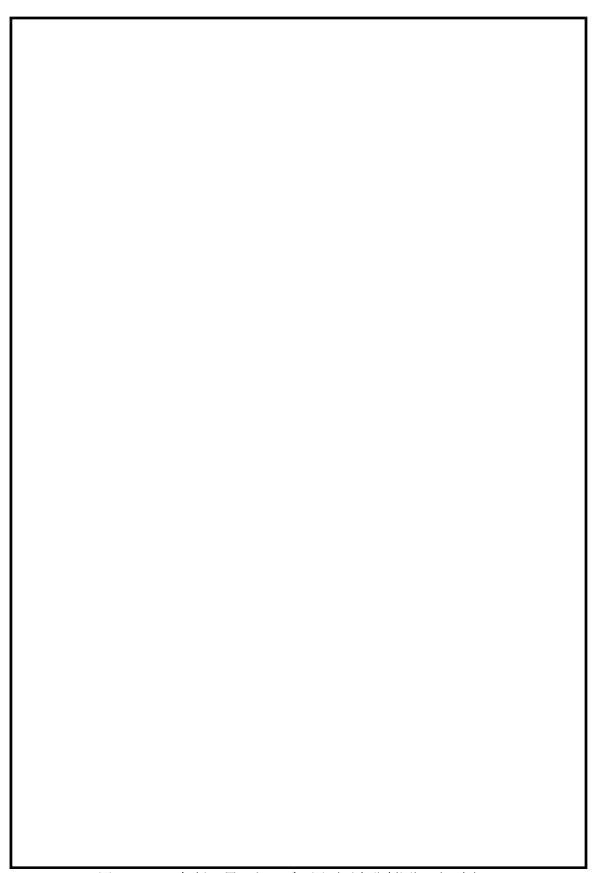


図2 FEM解析に用いたモデル図(要素分割図) (1/2) (上鏡板2,上鏡側フランジ,胴側フランジ及び円筒胴1)

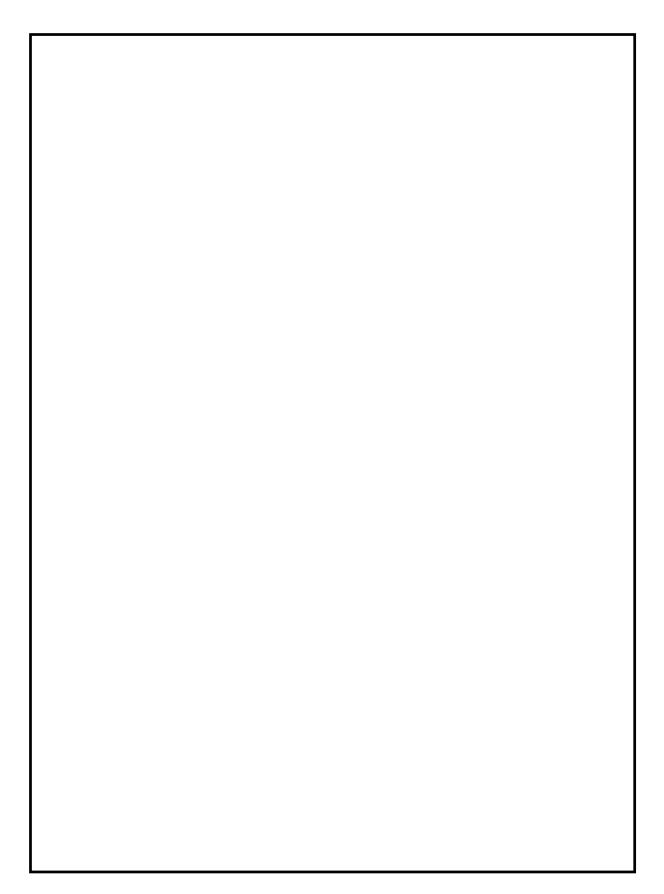


図 2 FEM解析に用いたモデル図 (要素分割図) (2/2) (下鏡板)

応力計算条件について

「原子炉容器の脆性破壊防止に関する説明書」では、応力拡大係数の算出に用いる耐圧・漏えい試験時の応力算出過程において、構造不連続部にFEM解析の値を用いた。

応力の算出に用いた計算条件は、強度評価に用いた条件と同じである。計算コードは、東海第二の計測ノズル改造工認及びPLMにおける応力計算に用いた実績のあるASHSD2-Bを用いている。

応力計算の入力項目を下表に示す。

分類	項目
荷重条件	設計過渡(圧力)
何 里米什	外荷重(ボルト締付け荷重)
₩7+□ 々 / ⊢	モデル形状 (設計図ベース)
解析条件	材料物性値(縦弾性係数)

比較表

概要 基本方針 脆性破壞防止に対する設計 原子炉容器に使用する材料 熟遮蔽材 評価 評価方針 評価対象となる材料の抽出 破壊靭性の評価方法 ひ壊靱性の評価方法	
価方法 供用状態 C 及び供用状態 D の破壊靭性に対する評価方法 上部棚吸収エネルギーによる評価方法	7.3 応力拡大係数の計算 (4. 評価対象と評価方法) 8.2 上部棚吸収エネルギーの評価方法 8.3 上部棚吸収エネルギーの計算 8.3.1 上部棚吸収エネルギー減少率の推定 8.3.2 上部棚吸収エネルギー調整値の算出
5 重大事故等時の破壊靭性に対する評価方法 評価結果	4. 評価対象と評価方法) 題目)
供用状態 A、供用状態 B 及び試験状態に対する評価結果	7.4 中性子照射による関連温度の移行量 付録1 中性子照射による関連温度移行量7.5 計算結果
供用状態 C 及び供用状態 D に対する評価結果 上部棚吸収エネルギーによる評価結果	8.4 上部棚吸収エネルギーの評価結果
重大事故等時に対する評価結果かり、	田県(少号は 5
(記載な <i>し)</i> 討静な!)	

関連温度の評価について

関連温度の評価について、 K_{1C} を用いていることから、その考え方について、以下に示す。

- ・技術基準第14条第2項の解釈において、「日本電気協会「原子力発電所用機器に対する破壊靭性の確認試験方法(JEAC4206-2007)」(以下「「破壊靭性の確認試験方法(JEAC4206-2007)」」という。)の規定に「日本電気協会「原子力発電所用機器に対する破壊靭性の確認試験方法(JEAC4206-2007)」の適用に当たって(別記-1)」の要件に付したものに掲げる、破壊じん性の要求を満足すること。」から、附属書AのA-3220が対応していること、及び、発電用原子力設備規格(設計・建設規格 JSME S NC1-2012)の技術評価書にて、運転条件で容器に作用する荷重の速度が静的な事象と見なせる程度に小さく、静的破壊靭性で評価することが適切、かつ、1970年代前半にK_{IR}曲線が採用された時点で考えられていた不確定要素(局所脆化領域の存在)の懸念が解消されていることの観点より、関連温度の要求値は、K_{IC}を用いることが妥当されていること・原子炉圧力容器の高経年化技術評価において、関連温度の評価は、K_{IC}としていること
- 上記から、原子炉圧力容器の評価は、KICを用いていることとした。