本資料のうち,枠囲みの内容 は,商業機密あるいは防護上の 観点から公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-341 改1
提出年月日	平成 30 年 3 月 1 日

東海第二発電所 耐震性に関する説明書に係る補足説明資料

地盤の支持性能について

平成 30 年 3 月

日本原子力発電株式会社

1.	材	既要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	Į	基本方針
3.		評価対象施設周辺の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	8.1	↓ 評価対象施設周辺の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	8. 2	2 評価対象施設周辺の地質状況整理結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	ţ	地盤の解析用物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	. 1	し 設置変更許可申請書に記載された解析用物性値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4	. 2	2 設置変更許可申請書に記載されていない解析用物性値 ····································
4	. 2	2.1 有効応力解析に用いる解析用物性値······20
4	. 2	2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値・・・・・・24
4	. 2	2.3 その他の解析用物性値······28
4	. 2	2.4 地盤の物性のバラツキについて・・・・・29
5.	木	亟限支持力······30
5	5.1	L 直接基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	5.2	2 杭基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	5.3	3 地中連続壁基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.	ţ	地盤の速度構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6	5.1	1 入力地震動策定に用いる地下構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・32
6	5.2	2 地震応答解析に用いる地盤の解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

目 次

1. 概要

本資料は、V-2-1「耐震設計の基本方針」のうちV-2-1-1「耐震設計の基本方針」に基づき, 設計基準対象施設並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備,常設耐震 重要重大事故防止設備及び常設重大事故緩和設備が設定される重大事故等対処施設(特定重大事 故等対処施設を除く。)(以下「常設重大事故等対処施設」という。)の耐震安全性評価を実施 するに当たり,対象施設を設置する地盤の物理特性,強度特性,変形特性等の地盤物性値設定及 び支持性能評価で用いる地盤諸元の基本的な考え方を示したものである。

2. 基本方針

設計基準対象施設及び常設重大事故等対処施設において,対象施設を設置する地盤の物理特性, 強度特性,変形特性等の解析用物性値については,各種試験に基づき設定する。また,全応力解 析及び有効応力解析等に用いる解析用物性値をそれぞれ設定する。

対象設備を設置する地盤の地震時における支持性能評価については,設計基準対象施設及び常 設重大事故等対処施設の耐震重要度分類又は施設区分に応じた地震力により地盤に作用する接地 圧が地盤の極限支持力に対し許容限界以下であることを確認する。

極限支持力は,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)(以下「道路橋示方書」という。)の支持力算定式等に基づき,対象施設の支持 岩盤の室内試験結果(せん断強度)を用いて設定する。

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化 強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩 擦力を支持力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基 本とする。ただし,杭を根入れした岩盤及び岩着している地盤改良体とその上方の非液状化層が 連続している場合は,杭周面摩擦力を支持力として考慮する場合がある。

3. 評価対象施設周辺の地質

3.1 評価対象施設周辺の地質

主要な評価対象施設及び地質断面の位置を図 3.1-1 に示す。地質断面図は図 3.1-1 に示す ボーリングデータを基に作成している。地質断面図を図 3.1-2 に示す。

図 3.1-1 主要な評価対象施設及び地質断面位置図

(1) 原子炉建屋周辺断面(A-A断面)

0 10 50 100m

(4) 緊急時対策所周辺断面(D-D 断面)

図 3.1-2(2) 主要な評価対象施設及び地質断面位置図(2/3)

3.2 評価対象施設周辺の地質状況整理結果

「3.1 評価対象施設周辺の地質」において作成した地質断面図より,評価対象施設周辺の 地質状況を整理した結果を表 3.2-1 に示す。これらの地質に対し,図 3.1-1 に示すような広 範囲における調査結果等に基づき解析用物性値を設定した。

\backslash					屋外重要土	二木構造物			各解析用物性値の言	己載項及び設定概要	
	/		四年二十日	緊急時			律波い護施設 ・防潮堤	4.1 設置変更許可申請書に記載	4.2 設置変	医更許可申請書に記載されていない 解	拆用物性值
	/		原士护建屋	対策所建屋	取水構造物	屋外二重管	・貯留堰 等	された解析用物性値 (全応力解析用)	4.2.1 有効応力解析に用いる解 析用物性値	4.2.2 強制的に液状化させることを仮定した有効応力解析に用いる をを仮定した有効応力解析に用いる解析用物性値	4.2.3 その他の解析用物性値
	埋戻土	fl	0	0	0	0	0			I	Ι
	段丘砂層	du	0	0	0	0	0			1	Ι
		Ag2	0	0	0	0	0			I	Ι
	国物学	Ac	0	Ι	0	0	0			I	Ι
	111个具/雪	at	0	Ι	0	0	0			Ι	Ι
熊		Ag1	0	Ι	0	0	0			I	Ι
E		D2c-5	0	0	(O) * ¹	Ι	0	かっ 11. 安朗中国100	2 ~ 11、73月小田田 - 十7 - エニ	1	Ι
条		D2 D2s-5	0	0	Ι	Ι	0	原止直転戦々の 室内試験に基づき設定	原位直転戦及い 室内試験に基づき設定	I	Ι
	写 八祐佳香	D2g-5	0	0	(O) * 1	0	0			-	Ι
	权山地俱初	lm	Ι	(O) *1	Ι	Ι	Ι			I	Ι
		D1 D1c-1		Ι	Ι	Ι	Ι			I	Ι
		D1g-1		(O) *1	I	I	Ι			I	Ι
新第三系	久米層	Km	0	0	0	0	0			I	I
	择石		Ι	-	1	1	0	1	文献情報に基づき設定	1	Ι
	豊浦標準	砂	通	制的に液状化。	きせることを仮	反定する場合に	適用	-	I	文献情報に基づき設定	Ι
	人工岩盘	26	0	Ι	Ι	Ι	Ι	-	Ι	Ι	原位置試験, 会中計略, 本社は担
	地盤改良	体		0	0	0	0		Ι		≖P1ANW、人間NIF#W に基づき設定
<i>`</i> ~`	五百二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	:1:施	設直下及	えび直近	いには分	布してい	、ないしない 、	、地質断面図内に到	現れる地層		

表 3.2-1 評価対象施設周辺の地質分布一覧

4. 地盤の解析用物性値

4.1 設置変更許可申請書に記載された解析用物性値

全応力解析に用いる解析用物性値として,設置変更許可申請書に記載された解析用物性値を 表4.1-1及び図4.1-1~図4.1-10に,設定根拠を表4.1-2に示す。設置変更許可申請書に 記載された解析用物性値については,原位置試験及び室内試験から得られた各種物性値を基に 設定した。

第四赤 新馬二赤	see $Ag1$ metric $D2c-3$ metric $D2s-3$ metric $D2s-3$ metric $D2s-3$ metric $D2s-3$ metric $D2s-3$ metric $D1c-1$ metric $D1s-1$ metric $Mmetric Mmetric Mmetri Mmetric Mmetri Mmetric Mmetri Mmetric Mmetri Mmetr$. 74 2.01 1.12 2.01 1.12 2.01 1.72-1.03×10 ⁻¹ ·Z	$4.8 \cdot \sigma c' = 10.5 \cdot 142 \cdot \sigma c' = 32.3 \cdot 5.46 \cdot \sigma c' = 16.0 \cdot 48.3 \cdot \sigma c' = 83.4 + 160 \cdot \sigma c' = 7.26 + 19.6 \cdot \sigma c' = 32.3 \cdot 5.46 \cdot \sigma c' = 10.5 + 142 \cdot \sigma c' = 221 - 2.23 \cdot 2 + 142 \cdot 2 + 142 \cdot \sigma c' = 221 - 2.23 \cdot 2 + $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		484 0.483 0.484 0.494 0.484 0.474 0.468+1.03×10 ^{-1.2}	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\gamma}{6.0122} = 0.014 + \frac{\gamma}{(6.127) \cdot 0.002} = 0.031 + \frac{\gamma}{(6.627) \cdot 0.003} = 0.031 + \frac{\gamma}{(5.637) \cdot 0.0050} = 0.032 + \frac{\gamma}{(6.77) \cdot 0.0053} = 0.012 + \frac{\gamma}{(6.67) \cdot 0.0053} = 0.012 + \frac{\gamma}{(4.10) \cdot 0.0053} = 0.0184 + \frac{\gamma}{(4.10) $	2+0.464 1.40P+0.620 0.274P+0.180 0.462P+0.230 0.770P+0.594 0.338P+0.050 0.274P+0.180 1.40P+0.620 備考参照	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	新第三系の強度特性は右図より設定する。 新第三系の強度特性は右図より設定する。 $\left(\frac{z}{54}\right)^{-1+\frac{2}{3}} - 1 + \frac{1}{54}$ $\sigma_{1} = 0.364 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00346 + 2$ $\sigma_{1} = 0$ $\sigma_{1} = 0.837 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00168 + 2$ $\sigma_{1} = 0.837 - 0.00168 + 2$		
D2g-3層		0 15	7. I C	c' 83.4+160 · σ c' 7.2	C C C	938 8		0.402	$\frac{1}{1+237 \ \gamma^{0.732}} \qquad \frac{1}{1}$. 0132 ⁷ /(9.70 ⁷ / ₂ +0.10754) +0.0233 [8.	30 0.770P+0.594 0.	13 0.788P+0.582 0.	3より設定する。 (こ) -+		
	c-3)曹 DZS-3)唐		T. 11 T. 37	5.46 · σ c' 16.0448.3 · σ		129 249	100	J. 488 U. 400	$\frac{1}{69 \ \gamma^{0.862}} \qquad \frac{1}{1+1100 \ \gamma^{0.862}}$	²	4P+0. 180 0. 462P+0. 2	0P+0.141 0.310P+0.2	育三系の強度特性は右逐		
	Ag1)售 D2		2.01	10.5+142 • σ c' 32.3+		246		0.483	$\frac{1}{1+1730 \gamma^{1.11}} \qquad 1+20$	(3. 73 y +0, 0102) +0, 0791	1. 40P+0. 620 0. 27	1.20P+0.548 0.17	新香		
0	AS/曽	Ι	1.74	21. 1+14. 8. ø c'		$\begin{array}{c} \rho_{sat} \swarrow 1000 \times \rm{Vs}^2 \\ \rm{Vs=}211-1.19z \end{array}$		0.484	$\frac{1}{1+422\gamma^{0.951}}$	$\frac{\gamma}{(4.40\gamma+0.0122)}$ +0.0144	1. 42P+0. 464	1.43P+0.430			
	Ac層		1.65	11.4		$\begin{array}{c} \rho \\ \nu_{\rm Sel} \sqrt{1000 \times \rm Vs^2} \\ \nu_{\rm S} = 163{-}1, 54z \end{array}$		0.486	$\frac{1}{1+269 \ \gamma^{\ 0.909}}$	$\frac{\gamma}{(6.65\gamma+0.0104)}$ +0.022	0.242P+0.090	0. 220P+0. 059		する値を示す。	
	Ag2層	1.89	2.01	10.5+142 • σ c'	109	116	0. 286	0.491	$\frac{1}{1^{+2520}\gamma^{1.14}}$	$\frac{\gamma}{\langle 4, 10 \gamma + 0.0057 \rangle} + 0.0413$	1. 40P+0. 620	1.20P+0.548		下水位面以深に対 : 剛性低下率 【袁定数	せん断ひずみ
	fl層 du層	1.82	1.98	4.00+199 • σ c'	80.3	87.3	0. 385	0. 493	$\frac{1}{1+1540\;\gamma^{\;1.04}}$	$\frac{\gamma}{(1.27 + 0.00580)} + 0.0102$	0. 491P 1. 12P +0. 200 +0. 670	0. 500P +0. 195 +0. 577		位面以浅,下段は地 6/60(-) ヵ(-):湯	γ.: (-) γ
	項目	密度	$ ho_{\rm t} ({\rm g}/{\rm cm^3})^{(*1)}$	静弹性係数 (N/mm ²)	初期せん断剛性	G ₀ (N/mm ²) (*1)	動ポアソン比	$\nu_{ m d}^{(*1)}$	せん断剛性 のひずみ依存性 6/6 ₀ ~ y	減衰定数 h~ッ	ピーク強度 C _u (N/mm ²)	残留強度 τ ₀ (N/mm ²)	籠	記 *1:上段は地下水 (N/mm ²) :圧密圧力 _{set} (g/cm ³) :飽和密度	(m/s) : せん断波速度
		物理	称	静的变形特性		働	倪	変形	》 特 性		強度	《特性		注 L o	Vs

表4.1-1表 設置変更許可申請書に記載された解析用物性値

9

図 4.1-1 du 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-2 Ag2 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-3 Ac 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-4 As 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-5 Ag1 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-6 D2c-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-7 D2s-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-8 D2g-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-9 lm 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-10 Km 層の動せん断弾性係数及び減衰定数のひずみ依存性

新第三系	Km層	室内物理 試驗	三軸圧縮 試驗	P S 検醒 と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
	D1g-1屠	油度特性等と 併せて	Ag2層で 代用	P S 検醒 と 密度より 算出	P S 検層 より算出	強度特性等と 併せて	Ag2/唐で 代用	よりN値の 小さい Ag2層で 代用
	D1c-1層	同じ洪樹 熱性土である	D2c-3層で 代用	P S 検層 と 密度より 算出	P S 検層 より算出		同じ洪積 粘性土である D2c-3層で 代用	
	lm層	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	D2g-3屠	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	D2s-3層	室内物理 試験	三軸圧縮 試験	P S 検醒 b 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三 朝田緒 天際
第四系	D2c-3屠	室内物理 試験	三軸圧縮 試験	P S 検層 と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	Ag1屠	油度特性等と 併せて	Ag2層で 代用	P S検層と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	よりN値の 小さい Ag2層で 代用
	As層	室内物理 試験	三軸圧 試験	P S検層と 密度より 算出	P S 検醒 より算出	繰返し三軸 試験	繰返し三軸 試験	三 朝王 勝
	Ac層	室内物理 試験	三 軸圧 誘	P S 検層 b 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三 朝田 瀬
	Ag2)屠	室内物理 試験	三軸圧縮 試験	P S 検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	du)居	室内物理 試験	三軸圧縮 試験	P S 検層と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
埋戻土	f1]層			f1層の主要な 構成の主要な ーイオイ	層にあるこの さの、du層の 代用			三軒氏務
μ	通日	密度	静弹性係数	初期 せん断剛性	動ポアソン比	せん断剛性の ひずみ依存性	减衰定数	強度特性

表 4.1-2 解析用物性値の設定根拠

4.2 設置変更許可申請書に記載されていない解析用物性値

設置変更許可申請書に記載されていない解析用物性値を表 4.2-1~表 4.2-3 に,その設定 根拠を表 4.2-4~表 4.2-6 に示す。以下の章に,各物性値の設定根拠を示す。

							原封	也盤				
	パラメータ			埋戻土			第四系	(液状化検討対	†象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	${\rm g/cm^3}$	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
特性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	$\nu_{\rm CD}$	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m^2	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
	最大履歷減衰率	h _{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0
特 性	内部摩擦角	$\phi_{\rm CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	-	34.8	34.8	34. 9	38.3	34. 9	33.4	41.4	34. 9	28
adr.	液状化パラメータ	S_1	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
被状化	液状化パラメータ	W_1	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特性	液状化パラメータ	P_1	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
1	液状化パラメータ	P_2	-	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3. 35	3. 15	3.82	2.83	1.44

表 4.2-1(1) 設置変更許可申請書に記載されていない解析用物性値(液状化検討対象層)

表 4.2-1(2) 設置変更許可申請書に記載されていない解析用物性値(非液状化層)

							原地盤		
	パラメータ				第四系(非	液状化層)		新第三系	松 一
				Ac	D2c-3	lm	D1c-1	Km	皆有
物理的	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1.47 (1.43)	1.77	1.72–1.03 \times 10 ⁻⁴ · z	2.04 (1.84)
特性	間隙比	е	-	1.59	1.09	2.8	1.09	1.16	0.82
	ポアソン比	$\nu_{\rm CD}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z	0.33
変形特性	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m^2	480	696	249 (223)	696	第4-1表の動的変形特性	98
	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m^2	121829	285223	38926 (35783)	285223	に基づき z(標高)毎に物性値を設 定	180000
	最大履歴減衰率	h _{max}	_	0.200	0.186	0.151	0.186		0.24
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z	0.02
特性	内部摩擦角	ϕ_{CD}	度	29.1	35.6	27.3	35.6	23.2+0.0990 · z	35

z:標高 (m)

	単位体積重量 (kN/m ³)	ポアソン比	せん断剛性 (N/mm ²)	減衰定数	ヤング係数 (kN/mm ²)
人工岩盤(新設) (f'ck = 18 N/mm ²)	23. 0	0.20	9170 ^{*1}	0.05	22.0
人工岩盤(既設) (f'ck = 13.7 N/mm ²)	23.0	0.20	7830^{*1}	0.05	18.8

表 4.2-2 設置変更許可申請書に記載されていない解析用物性値(人工岩盤)

注記 *1:人工岩盤のせん断剛性は以下の式から算出する。

(G = $\frac{E}{2(1+\nu)}$, E:ヤング係数, ν :ポアソン比)

表 4.2-3 設置変更許可申請書に記載されていない解析用物性値(地盤改良体(セメント改良))

		地盤改良体(セ	マメント改良)
	項日	一軸圧縮強度 (≦8.5N/mm ² の場合)	一軸圧縮強度(>8.5N/mm ² の場合)
物理特性	密度 ρ _t (g/cm³)	改良対象の原地盤	との平均密度×1.1
静的変	静弾性係数 (N/mm ²)	581	2159
形特性	静ポアソン比 _{v s}	0.2	260
計	初期せん断 剛性 G ₀ (N/mm ²)	G ₀ = ρ _τ / Vs = 147.6 × q _u :一軸圧縮強	1000 × Vs ² $q_u^{0.417}$ (m/s) 3度 (kgf/cm ²)
勤 的 変	動ポアソン比 _{V d}	0.4	431
形特性	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	G/G。= <u>1</u> 1+y/0.000537 y : せん断ひずみ (-)	G/G。= <u>1</u> 1+y/0.001560 y:せん断ひずみ (-)
	減衰定数 h~ γ	h=0.152 <mark>γ/0.000537</mark> 1+γ/0.000537 γ:せん断ひずみ (-)	h=0.178 <u>γ /0.001560</u> + γ /0.001560 γ : せん断ひずみ (-)
	粘着力 C(N/mm ²)	C = q q _u :一軸圧縮語	i _u / 2 独度(N/mm²)
強度特性	ピーク強度 C _u (N/mm ²)	1.44 P + 1.76 P:圧密圧力(N/mm ²)	1.60 P + 7.80 P:圧密圧力(N/mm ²)
性	残留強度 $\tau_0 (N/mm^2)$	1.44 P + 0.808 P:圧密圧力(N/mm ²)	1.60 P + 2.05 P:圧密圧力 (N/mm ²)

							原注	地盤				
	パラメータ			埋戻土			第四系	(液状化検討対	象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度	ρ	g/cm^3		室内	室内	室内	Ag2層で	室内	室内	Ag2層で	文献* ¹ より
特性	間隙比	е	-		物理試験	物理試験	物理試験	代用	物理試験	物理試験	代用	文献* ² より
	ポアソン比	$\nu_{\rm CD}$	-		三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	Ag2層で 代用	三軸圧縮 試験 (CD)	三軸 王軸 王 輸 (CD)	Ag2層で 代用	文献* ¹ より
変 形	基準平均有効主応力	σ'_{ma}	kN/m^2		第4.1末の	第4.1末の	第41字の	第4.1末の	第4.1字の	第41字の	第4-1表の 動的亦形株研	文献 ^{*1} より
特性	基準初期せん断剛性	G_{ma}	kN/m^2		第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	転転づき設定	引用した 動的変形特性 に基づき設定
	最大履歷減衰率	\mathbf{h}_{max}	-								Ag2層で 代用	1-02 - 0 1000
強度	粘着力	C _{CD}	N/mm^2	du層で 代用	三軸圧縮	三軸圧縮	三軸圧縮	Ag2層で	三軸圧縮	三軸圧縮	Ag2層で	-+====================================
特性	内部摩擦角	ϕ_{CD}	度		試験 (CD)	試験 (CD)	試験 (CD)	代用	試験 (CD)	試験 (CD)	代用	又厭 より
	液状化パラメータ	$\phi_{\rm p}$	-					Ag2扇の				
July-	液状化パラメータ	S_1	-			art dis / a die nin						文献 ^{*2} より
被状	液状化パラメータ	${\rm W}_1$	-		版状化強度 試験結果 に其べく	版状化強度 試験結果 に其べく	液状化強度 試験結果 に其べく	液状化強度 試験結果	版状化強度 試験結果 に其べく	被状化強度 試験結果	版状化強度 試験結果 に其づく	初用した 液状化強度
特性	液状化パラメータ	P_1	-		要素シミュレーション	要素シミュレーション	要素シミュレーション	を代用した 要素シミュレーション	要素シミュレーション	要素シミュレーション	要素シミュレーション	に基づく
17	液状化パラメータ	P_2	-									女光/、1/~/1/
	液状化パラメータ	C_1	-									

表 4.2-4(1) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(液状化検討対象層)

注記 *1:二方向同時加振による液状化実験(第28回土質工学研究発表会 藤川他, 1993)

*2: CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)]

表 4.2-4(2) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(非液状化層)

							原北	也盤		
	パラメータ				第	四系(非液状化)	圉)		新第三系	**
				Ac	D2c-3	D2c-2	lm	D1c-1	Km	悟石
物 理	密度	ρ	g/cm^3	室内	室内		室内		室内	
特性	間隙比	е	-	物理試験	物理試験		物理試験		物理試験	
	ポアソン比	ν _{CD}	-	三軸 三軸 能 (CD)	三軸圧縮 試験 (CD)]	三軸 転 (CD)		三軸圧縮試験 (CD)	
変形	基準平均有効主応力	σ'_{ma}	kN/m²	笠しまの	年11末の	D2c-3層で	奈山市の	D2c-3層で	第11 末の動約本形時期	-tratu#3 1- 10
特性	基準初期せん断剛性	G _{ma}	kN/m²	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	代用	第4-1款の 動的変形特性 に基づき設定	代用	毎4-1衣の動的変形特性 に基づきz(標高)依存物性 として設定	文服 より
	最大履歴減衰率	h _{max}	-							
強度	粘着力	C _{CD}	N/mm^2	三軸圧縮	三軸圧縮		三軸圧縮		三軸圧縮	
特性	内部摩擦角	ϕ_{CD}	度	試験 (CD)	試験 (CD)		試験 (CD)		試験 (CD)	

注記 *3:港湾構造物設計事例集((財)沿岸技術研究センター,平成19年3月)

	単位体積重量	ポアソン比	せん断剛性	減衰定数	ヤング係数
人工岩盤(新設) (f'ck = 18 N/mm ²)	慣用値 ^{*1}	慣用値*1	ヤング係数と ポアソン比 より算出	慣用値	慣用値 ^{*1}
人工岩盤(既設) (f'ck = 13.7 N/mm ²)	慣用値 ^{*2}	慣用値 ^{*2}	ヤング係数と ポアソン比 より算出	慣用値	慣用値 ^{*2}

表 4.2-5 設置変更許可申請書に記載されていない解析用物性値の設定根拠(人工岩盤)

注記 *1:コンクリート標準示方書 構造性能照査編((社)土木学会,2002)

*2:原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)

表 4.2-6 設置変更許可申請書に記載されていない解析用物性値の設定根拠(地盤改良体(セメント改良))

項目		設定根拠	
物 理 特 性	密度 ρ _t (g/cm ³)	既設改良体のコアによる密度試験に基づき係数(×1.1)を 設定	
静的変	静弹性係数 (N/mm ²)	既設改良体を模擬した再構成試料による一軸圧縮試験に 基づき設定	
形特性	静ポアソン比 ッ _s	文献*1より設定	
動的変形特性	初期せん断 剛性 G ₀ (N/mm ²)	文献*2より「一軸圧縮強度q _u ~せん断波速度Vs」の 関係式を引用し設定	
	動ポアソン比 _{ν_d} 既設改良体のPS検層に基づき設定		
	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定	
	減衰定数 h~ γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定	
強度特性	粘着力 C (N/mm ²)	ー軸圧縮強度q _u と粘着力Cの関係に基づき設定	
	ピーク強度 C _u (N/mm ²)	既設改良体を模擬した再構成試料による三軸圧縮試験	
	残留強度 τ ₀ (N/mm ²)	(CU条件) に基づき設定	

注記 *1:建築基礎のための地盤改良設計指針案((社)日本建築学会, 2006)

*2:地盤工学への物理探査技術の適用と事例((社)地盤工学会,2001),

わかりやすい土木技術 ジェットグラウト工法(鹿島出版社 柴崎他, 1983)

4.2.1 有効応力解析に用いる解析用物性値

建物・構築物の動的解析において,地震時における地盤の有効応力の変化に応じた影響 を考慮する場合は,有効応力解析を実施する。有効応力解析に用いる液状化強度特性は, 敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定することを 基本とする。

設定する液状化強度特性は、試験データのバラツキを考慮し、液状化強度試験データの 最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不変分散に基づく標準偏 差を用いた「平均-1σ」について整理する。

また,保守的な配慮として,地盤を強制的に液状化させることを仮定した影響を考慮す る場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊浦標準砂に基 づく液状化強度特性)を設定する。

設置変更許可申請書における解析物性値は全応力解析用に設定しているため,液状化検 討対象層の物理的及び力学的特性から,各層の有効応力解析に必要な物性値を設定する。

なお、地盤の物理特性及び力学特性は、日本工業規格(JIS)又は地盤工学会(JGS)の 基準に基づいた試験の結果から設定することとした。

(1) 液状化検討対象層の抽出

敷地には,完新統及び更新統の堆積層が広く,厚く分布していることが確認されており, 全土層を液状化検討対象層の抽出の対象とする。

道路橋示方書(道路橋示方書・同解説V耐震設計編,平成24年3月)では,液状化検討 対象層を完新統の以下の条件全てに該当する土層と定めている。

①地下水位が現地盤面から-10 m以内であり、かつ現地盤面から-20 m以内の飽和土層
 ②細粒分含有率 FC が 35%以下、または FC が 35%こえても塑性指数 I_pが 15 以下の土層
 ③平均粒径 D₅₀が 10 mm 以下で、かつ 10%粒径 D₁₀が 1 mm 以下である土層

上記の条件は指針類(鉄道構造物等設計標準・同解説 耐震設計編(平成 24 年 9 月), 港湾の施設の技術上の基準・同解説(平成 19 年))でほぼ共通している。

当該地での液状化検討対象層の抽出では,道路橋示方書で対象としている地層を基本とし、さらに,道路橋示方書では検討対象外としている更新統及び G.L. -20 m 以深の土層も抽出対象とする。

図 4.2-1 には敷地の液状化検討対象層抽出方針,表 4.2-7 には液状化検討対象層の抽 出結果を示す。

以上より,敷地における液状化検討対象層は du 層, Ag2 層, As 層, Ag1 層, D2s-3 層, D2g-3 層及び D1g-1 層とする。

- (2) 液状化強度試験試料採取位置の選定とその代表性追而
- (3) 液状化強度試験結果追而
- (4) 液状化強度特性の妥当性及び代表性追而

図 4.2-1 液状化検討対象層抽出方針

地質記号		層相	道路橋示方 書における 液状化検討 対象層	当社における 液状化検討対 象層	備考
du		砂	0	0	
al	Ag2	砂礫	0	0	
	Ac	粘土	—	_	
	As	砂	0	0	G.L20 m 以深に分布 する範囲についても検 討対象とする。
	Ag1	砂礫	—		G.L20 m 以深に分布 するが検討対象とす る。
D2	D2c-3	シルト	—	—	
	D2s-3	砂	_		更新統であるが検討対 象とする。
	D2g-3	砂礫	_		更新統であるが検討対 象とする。 G.L20 m 以深に分布 する範囲についても検 討対象とする。
D1	1m	ローム	—	—	
	D1c-1	シルト	_	_	
	D1g-1	砂礫	_		更新統であるが検討対 象とする。

表 4.2-7 液状化検討対象層の抽出結果

○:検討対象

□:道路橋示方書では検討対象外だが 検討対象とするもの −:検討対象外
 □:液状化検討対象と するもの 4.2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値

(1) 豊浦標準砂について

豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地には存在しないもので ある。豊浦標準砂は、淡黄色の丸みのある粒から成り、粒度が揃い均質で非常に液状化し やすい特性を有していることから、液状化強度特性に関する研究等における実験などで多 く用いられている。

(2) 豊浦標準砂の液状化強度

液状化評価に用いる豊浦標準砂の強度特性は,文献(CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE.26-3.(1986)])から引用した相対密度 73.9~82.9%の豊浦標準砂の液状化強度試験データに対し,それらを全て包含する「FLIP」の液状化特性を設定する。

図 4.2-2 に豊浦標準砂の液状化強度試験データ,図 4.2-3 にFLIPによる豊浦標準 砂の液状化強度特性を示す。

FLIPを用いて,強制的に液状化を仮定した液状化影響評価を行うため,東海第二発 電所の全地層の液状化強度試験データを包含する液状化強度特性(豊浦標準砂)をFLI Pに仮定した有効応力解析を行い,耐震評価を実施する。図4.2-4に豊浦標準砂の液状化 強度特性と原地盤の液状化強度特性の比較を示す。

豊浦標準砂と液状化検討対象層である du 層及び As 層の比較を実施した。表 4.2-8 に平 均粒径と細粒分含有率の比較,図4.2-5及び図4.2-6に粒径加積曲線による比較を示す。 豊浦標準砂と du 層及び As 層の粒度分布について比較した結果,豊浦標準砂は細粒分含有 率が低く,均質な粒径を持つという特徴がある。

図 4.2-3 FLIPによる豊浦標準砂の液状化強度特性(-1 σ)

図 4.2-4 豊浦標準砂と原地盤の液状化強度特性の比較

	平均粒径(mm)	細粒分含有率(%)
豊浦標準砂	0. 202	0.24
du 層	0. 384	5. 2
As 層	0. 201	2. 1~71. 5

表 4.2-8 平均粒径と細粒分含有率の比較

*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用

図 4.2-5 粒径加積曲線による比較(du 層)

*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用

図 4.2-6 粒径加積曲線による比較(As 層)

- 4.2.3 その他の解析用物性値
 - (1) 人工岩盤

人工岩盤については、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、 2002 年制定)」等に基づき、表 4.2-2 の通り解析用物性値を設定する。

(2) 地盤改良体

地盤改良体(セメント改良)については,既設改良体又は既設改良体を模擬した再構成 試料による試験結果及び文献(地盤工学への物理探査技術の適用と事例((社)地盤工学 会,2001年),わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他,1983 年))等を参考に表 4.2-3の通り解析用物性値を設定する。

また,地盤改良体(浸透固化改良)については,文献(浸透固化処理工法技術マニュアル (2010年版)((財)沿岸技術研究センター,平成22年6月))に基づき改良対象の原地 盤の解析用物性値と同等の基礎物理特性を用いると共に,非液状化層とする。

なお,上記物性値とは別に,施設設置位置にて地盤改良試験施工を実施した上で,その 供試体を用いた試験により当該施設設置位置の物性値を設定する場合がある。

- 4.2.4 地盤の物性のバラツキについて
 - (1) 建物・構築物の地震応答解析における地盤の物性のバラツキ
 建物・構築物の地震応答解析においては地盤の物性のバラツキを考慮している。詳細に
 ついては、補足説明資料「地震応答解析における材料物性のばらつきに関する検討」に示す。
 - (2) 土木構造物(津波防護施設等を含む)の地震応答解析における地盤の物性のバラツキ 土木構造物(津波防護施設等を含む)の地震応答解析においては地盤の物性のバラツキ を考慮している。詳細については、補足説明資料「屋外重要土木構造物の耐震安全性評価 について」に示す。

5. 極限支持力

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験結果(せん断強度)等より設定する。

5.1 直接基礎の支持力算定式

道路橋示方書による直接基礎の支持力算定式を以下に示す。

·極限支持力算定式(直接基礎)

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

- q_d:基礎底面地盤の極限支持力度(kN/m²)
- c: 基礎底面より下にある地盤の粘着力(kN/m²)
- γ₁: 基礎底面より下にある地盤の単位体積重量(kN/m³) ただし、地下水位以下では水中単位体積重量とする。
- γ₂: 基礎底面より上にある周辺地盤の単位体積重量(kN/m³) ただし、地下水位以下では水中単位体積重量とする。
- *α*, *β*: 基礎底面の形状係数
 - B : 基礎幅 (m)
 - D₄: 基礎の有効根入れ深さ(m)
- N_o, N_o, N_o: 支持力係数
- 5.2 杭基礎の支持力算定式

道路橋示方書による杭基礎における各工法の支持力算定式を以下に示す。杭基礎構造を有す る耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化強度特性により強 制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力と して考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基本とする。た だし,杭を根入れした岩盤及び岩着している地盤改良体とその上方の非液状化層が連続してい る場合は,杭周面摩擦力を支持力として考慮する場合がある。

・極限支持力算定式(杭基礎[中堀り工法])

 $R_u = q_d A + U \sum L_i f_i$

- R_u: 地盤から決まる杭の極限支持力(kN)
- qd: 杭先端における単位面積あたりの極限支持力度(kN/m²)
 - $q_d = 3 \cdot q_u$
 - q_u:支持岩盤の一軸圧縮強度(kN/m²)
- A : 杭先端面積 (m²)
- U: 杭の周長 (m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- fi: 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

- ・極限支持力算定式(杭基礎[打込み工法])
 - $R_u = P_u + U \sum L_i f_i$
 - R_u: 地盤から決まる杭の極限支持力(kN)
 - Pu: 杭先端における単位面積あたりの極限支持力度(kN/m²)
 - $P_u = 440 \cdot q_u^{1/2} \cdot A_t^{2/5} \cdot A_i^{1/3}$
 - qu:支持岩盤の一軸圧縮強度(kN/m²)
 - A_t:鋼管杭の先端純断面積(m²)
 - A_i:鋼管杭の先端閉塞面積(m²)
 - A:鋼管杭の先端面積(m²)
 - U: 杭の周長 (m)
 - L_i:周面摩擦力を考慮する層の層厚(m)
 - fi: 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)
- 5.3 地中連続壁基礎の支持力算定式

道路橋示方書による地中連続壁基礎における支持力算定式を以下に示す。

- ・極限支持力算定式(地中連続壁基礎)
 - $R_u = q_d A$
 - Ru: 基礎底面地盤の極限支持力(kN)
 - qd: 基礎底面地盤の極限支持力度(kN/m²)

 $q_d = 3 \cdot q_u$

- qu:支持岩盤の一軸圧縮強度(kN/m²)
- A: 基礎の底面積(内部土は含まない) (m²)

6. 地盤の速度構造

6.1 入力地震動策定に用いる地下構造モデル

入力地震動の策定に用いる地下構造モデルについては、重要施設設置位置の地層構成に基づき、解放基盤表面(EL.-370 m)から解析モデル入力位置までをモデル化する。地下構造モデルの概要を表 6.1-1 に示す。

地層	新第三系 (Km層)	基盤
標高	解析モデル入力位置 ~ EL370 m	EL.-370 m以深
P波速度 Vp (m/s)	$Vp = Vs \sqrt{\frac{2(1 - v_d)}{1 - 2v_d}}$	1988 (z=-370 m)
S波速度 Vs (m/s)	Vs=433-0.771・z z:標高(m)	718 (z=-370 m)
動ポアソン比 v _d	ν _d =0.463+1.03×10 ⁻⁴ ・z z:標高(m)	0.425 (z=-370 m)
密度 p (g/cm ³)	ρ=1.72-1.03×10 ⁻⁴ ・z z:標高(m)	1.76 (z=-370 m)
せん断剛性の ひずみ依存性 G/G ₀ ~γ	$\frac{1}{1+107\gamma^{0.824}}$ γ :せん断ひずみ(一)	_
減衰定数 h~γ	<u>γ</u> (4.41γ+0.0494) γ:せん断ひずみ(一)	0.03

表 6.1-1 入力地震動の策定に用いる地下構造モデル

6.2 地震応答解析に用いる地盤の解析モデル

「3. 評価対象施設周辺の地質 図 3.1-1」に示すボーリング孔を利用して図 6.2-1 に示 す位置で実施した PS 険層の結果に基づく地層ごとのせん断波速度 Vs 及び粗密波速度 Vp を表 6.2-1 に示す。

地震応答解析に用いる地盤の解析モデルの作成に当たっては、「3.1 評価対象施設周辺の 地質」において作成した地質図を基に、地盤の速度構造を適切に反映できる深度までモデル化 する。

図 6.2-1 PS 検層実施位置図

地層			平均值		平均有効主応力依存式 Vs=A×(σ'm) ^{0.25}
			Vs (m/s)	Vp (m/s)	係数A
	du層	不飽和	210	482	82.8598
		飽和		1850	82.2410
	Ag2層	不飽和	240	446	71.5266
		飽和		1801	78.7716
	Ac層	飽和	163-1.54 • z	1240-1.93 • z	58.0616
	As層	飽和	211-1.19 • z	1360—1.78 · z	65.1014
室 四系	Ag1層	飽和	350	1950	82.6980
3107	D2c-3層	飽和	270	1770	78.1556
	D2s-3層	飽和	360	1400	104.4247
	D2g-3層	飽和	500	1879	136. 1685
	1m層	不飽和	130	1160	40.9503
	D1c-1層	飽和	280	1730	-
	D1g-1層	不飽和	390	903	110.6364
		飽和		1757	107.0330
新第三系	Km層	飽和	433-0.771 • z	1650-0.910 · z	_

表 6.2-1 PS 検層結果

z:標高(m)

σ'_m:平均有効主応力(kN/m²)

A:最小二乗法の回帰係数