平成 30 年 3 月 15 日 日本原子力発電㈱

漂流物に係る検討について

1. 検討方針について

東海第二発電所における漂流物荷重に係る検討は、図-1に示す「漂流物評価フローにより評価する対象の施設・設備の配置」を考慮し、図-2に漂流物に係る全体的な検討フロー を示す。

は、商業機密又は防護上の観点から公開できません。

図-2 漂流物に係る全体的な検討フロー

-----数値実験シミュレーション

- 2. 漂流物位置と地形と流況の整理
- (1) 流況の整理

東海第二発電所での基準津波による発電所敷地前面海域の流向ベクトルを図-3 に示す。 津波は、防潮堤東側の法線方向から遡上し、北側及び南側では防潮堤に沿うような流れとなっている。

(37.5分※)

※:津波の原因となる地震発生後の経過時間

図-3 発電所敷地前面海域の流向ベクトル(防波堤あり(既往モデル)の場合)

(2) 検討対象漂流物の選定

東海第二発電所の防潮堤周辺 500m 範囲において漂流物となる可能性が否定できない施設・設備の配置を図-4 に示す。防潮堤東側エリアについては,津波が法線方向に遡上することから,津波による漂流物の衝突を仮定するために,代表エリアとして検討対象漂流物の 選定を行った。

図-5,写真-1及び表-1に防潮堤東側エリアに設置されている構築物を示す。防潮堤 東側エリアの構築物は,撤去又は移設することを基本とし,撤去又は移設ができない場合に ついては,耐震性等を評価した上で,必要に応じ補強対策を検討する。

検討対象漂流物は,<mark>津波防護施設への漂流物荷重として考慮する船舶(排水トン数 15t)</mark> に加え,漂流物となる可能性が否定できない施設・設備のうち,防潮堤の前面に仮置きや残 置の可能性があるものを選定した。表-2 に仮置きや残置の可能があるものの一覧を示す。 仮置きや残置の可能性があるものは,運用での対応が可能であるかを検討した上で,検討対 象漂流物を選定する。

は、商業機密又は防護上の観点から公開できません。

陸1 検潮小屋	陸2 海水電解装置建屋	陸3 放水ロモニター小 屋	陸4 北防波堤灯台
陸5 復水冷却用水路スク リーン室	陸6 塩素処理室	陸 7 放水口放射能測定 機器上屋	陸 8 ロータリースクリ ーン室
陸9 主ゲート	陸 10 次亜塩素酸ソーダ注 入室	陸 11 合併処理浄化槽設 備	陸 12 海上レーダー
陸13 物揚場倉庫	陸14 桟橋	陸 15 カーテンウォール	陸 16 メンテナンスセン ター
陸17 輸送本部建屋	陸18 輸送本部倉庫	陸 24 再利用物品置場テ ント	
	写真-1 防潮堤東側に調	設置されている構築物	

は、商業機密又は防護上の観点から公開できません。

番号	名称	主要構造(形状)	寸法	対策
陸1	検潮小屋	鉄筋 コンクリート造	2.9m×2.9m×2.3m	
陸2	海水電解装置建屋	鉄筋 コンクリート造	8m×11m×3.7m	
陸3	放水口モニター小屋	鉄筋 コンクリート造	$4\mathrm{m} imes 5\mathrm{m} imes 3\mathrm{m}$	
陸4	北防波堤灯台	鉄筋 コンクリート造	Φ 3m $ imes$ 9m	
陸5	復水冷却用水路 スクリーン室	鉄筋 コンクリート造	-	
陸6	塩素処理室	鉄筋 コンクリート造	$10m \times 13m \times 10m$	
陸7	放水口放射能 測定機器上屋	鉄筋 コンクリート造	$3m \times 5m \times 3m$	
陸8	ロータリースクリーン室	鉄筋 コンクリート造	$13m \times 21m \times 11m$	
陸9	主ゲート	鉄筋 コンクリート造	$4m \times 18m \times 10m$	撤去又は移設することを基本と
陸10	次亜塩素酸ソーダ注入室	鉄筋 コンクリート造		し,撤去又は移設が出来ない場 合は,耐震性等を評価した上で,
陸11	合併処理浄化槽設備	鉄筋 コンクリート造	$10 \mathrm{m} imes 15 \mathrm{m} imes 10 \mathrm{m}$	必要に応じ漂流化しないための 補強対策を検討する。
陸12	海上レーダー	鋼製支柱	_	
陸13	物揚場倉庫	コンクリート製ブロ ック	$7m \times 12m \times 3m$	
陸14	桟橋	鋼製コンクリート造	$1.2m \times 40m \times 4m$	
陸15	カーテンウォール	鉄筋 コンクリート造 (鋼材支柱)	_	
陸16	メンテナンスセンター	鉄骨造	34m imes 19m imes 11m	
陸17	輸送本部建屋	鉄骨造	$22m \times 13m \times 7m$	
陸18	輸送本部倉庫	鉄骨造	$12m \times 8m \times 4m$	
陸24 -2	再利用物品置場テント	_	_	

表-1 防潮堤東側に設置されている構築物一覧表

	表-2 漂流	物となる可能性が否定で	きない仮置き	や残置の可食	≧性があるもの(1/2)		
場所	種類	想定質量(t)	防潮堤との 距離	対策の 要否	対策不要である根拠	対策	検討 対象
	日根台根	15 (排水トン数)	500m <mark>以上</mark> (海域)	Ŕī	I	I	0
	流木	0.08^{*1}	500m 以内 (海域)	¥⊐	I	I	0
	流木 (丸太)	I	100m 以内 (陸域)	瘷	I	仮置禁止又 は固縛	I
	フェンス	0.9	100m 以内 (陸城)	を	受圧面積が小さく, 津波が 透過することから, 漂流に ま至らないと考えられる ため。	I	I
中国	電源盤	0.6	100m 以内 (陸域)	瘷	I	移設・撤去 又は固縛	Ι
玉 (国)	ケーブル等収納箱	0.04	100~300m (陸域)	爂	I	移設・撤去 又は固縛	I
	ページング電話ボックス	0.02	100~300m (陸域)	瘷	I	移設・撤去 又は固縛	I
	室外機	0.3	100m 以内 (陸域)	爂	I	移設・撤去 又は固縛	I
	自動販売機	0.5	100m 以内 (陸域)	瘷	I	移設・撤去 又は固縛	I
	オイルフェンス巻取機	1.5	100~300m (陸域)	爂	I	移設・撤去 又は固縛	I
	オイルフェンス	0.07	100~300m (陸域)	瘷	I	移設・撤去 又は固縛	I
※1:流7 空間の	∀の想定質量(t)は,敷地周辺)緑化手法(1988)の算定式に。	Jの植生調査結果のうちタ より設定した。	丁線沿いの海岸	植生の樹木	(平均直径 12 cm, 平均樹計	峝 8m)を選定し	、 建築

	教 教 教	I	l	l		0
	対策	移設・撤去又 は固縛	移設・撤去又 は固縛	移設・撤去又 は固縛	<mark>. 副耕 </mark>	-
	対策不要である根拠	I	I	I	-	I
	対策 <i>の</i> 要否	廒	瘷	蔑	要	7
い自然をい	防潮堤との 距離	100m以内 (陸域)	100m 以内 (陸域)	100m 以内 (陸域)	100m 以内 (陸域)	100m 以内 (陸域)
	想定質量 (t)	0.04	0.02	0.2		<mark>0. 69</mark>
	種類	廃材容器	手洗いシンク	仮設設備	<mark>車両(工事車両)</mark>	<mark>車両(パトロール車)</mark>
	場所		<u>.</u>	東側	L	

表-2 漂流物となる可能性が否定できない仮置きや残置の可能性があるもの (2/2)

(3) 検討対象漂流物の選定結果

検討対象漂流物の選定結果を表-3に示す。検討の結果,船舶,流木及び車両(軽自動 車) を検討対象漂流物として選定する。

車両は,発電所構内に入域する車両については退避措置を基本とし,工事車両は退避措置の徹底について工事契約時に定める運用を図る。しかしながら,日常的に使用する車両 (パトロール車)は漂流する可能性が否定できないことから検討対象漂流物とする。

	X O MAL		
中市		相完皙昙 (+)	防潮堤との
-9991))	1里大只	心足員里(1)	距離
	前八南百		500m <mark>以上</mark>
	河 口 7月日	13 (护小トン奴)	(海域)
古加	新 十	0.09	500m 以内
凩側		0.08	(海域)
			100m 以内
		0.69	(陸域)

表-3 検討対象漂流物の選定結果

3. 東海第二発電所のサイト特性を反映したソリトン分裂波発生位置の確認

漂流物は津波の襲来により発生するが,漂流物の移動は津波の砕波位置に漂流物が存在 する場合に大きな移動距離となることが知られている。そこで,東海第二発電所のサイト 特性を踏まえた,津波による分裂波や砕波の発生位置を確認するために,水理模型実験及 び数値解析シミュレーションを実施した。

(1) 分裂波発生に関する検討

沖合から伝播してくる津波が,サイト前面においてソリトン分裂波を伴うか否かの判 定に当たっては,「防波堤の耐津波設計ガイドライン」において以下の2つの条件に合致 する場合,ソリトン分裂波が発生するとされている。

- ・ 概ね入射津波高さが水深の30%以上(津波数値解析等による津波高さが水深の 60%以上)
- ② 海底勾配が 1/100 以下程度の遠浅

東海第二発電所前面の海底地形は約 1/200 勾配で遠浅であり,入射波津波高さと水深の関係も入射津波高さが水深の 30%以上であることから,両方の条件に合致する(図-6 及び表-4)。そこで,沖合におけるソリトン分裂波及び砕波の発生の有無や陸上へ遡 上する過程での減衰の状況を定量的に確認するため,東海第二発電所のサイト特性を考 慮した水理模型実験を行った。

図-6 海底地形断面位置図及び海底地形断面図

地点	(1)水深	(2)入射津波高さ**	(2)/(1)
東海第二発電所前面	7.5m	4.7m	62%

表-4 津波高さと水深の関係

※津波数値解析による津波高さの 1/2 を入射津波高さと定義(防潮堤の耐津波ガイドライ

- (2) 水理模型実験
 - 1) 目的

基準津波の策定に用いた波源については、2011 年東北地方太平洋沖地震で得られた 知見を踏まえて設定した波源のすべり領域を拡大したり、すべり量の割増しを行うな どの保守的な設定を複数加えた波源である。

水理模型実験は、ソリトン分裂波が生じない沖合 5.0km における津波波形を入力し、 ソリトン分裂波や砕波の発生の有無及び陸上へ遡上する過程での減衰状況の把握を目 的に実施した。

2) 検討断面

東海第二発電所前面の海底地形は概ね一様の地形となっていることから、本実験では、津波水位が最大となる地点を基に、津波の伝播特性を踏まえ、等深線図に直交する 断面を選定した(図-7)。

3) 実験条件

断面二次元実験施設の水路は,長さ 60m×幅 1.2m(貯水部は 1.8m)×高さ 1.5m とし, 沖合 5km から陸側の範囲を再現するために,実験縮尺(幾何縮尺)は λ=1/200 とした(図 -8)。

図-<mark>9</mark> 実験施設写真

4)入射津波の造波

水理模型実験における再現範囲の最沖地点はソリトン分裂波が発生しない沖合 5.0km の位置とし、基準津波の波源モデルを用いた数値解析から求めた同地点における津波波 形を入力した。また、この津波波形を防潮堤位置で平面二次元津波シミュレーション解析 結果と同様の高さになるよう振幅を調整した(図-10)。

5) 水理模型実験の結果(水理模型実験におけるソリトン分裂波の確認) 平面二次元津波シミュレーション解析に即した津波波形を造波し,水理模型実験を行った。水理模型実験における時刻歴図を図-11に示す。その結果,目視観察と波高計による計測により,沖合約220m地点(W7)においてソリトン分裂波が生じることを確認したが,陸上に遡上する過程で分裂波は減衰している。

(3) 水理模型実験結果の検証(再現性検討)

水理模型実験結果について、断面二次元津波シミュレーション解析を実施した。断面二 次元津波シミュレーション解析は、分散波理論に基づいた解析手法であり、ソリトン分裂 波を表現可能な数値波動水路 CADMAS-SURF/2D (Ver. 5.1)を用いた。

1) 水理模型実験結果の再現性

水理模型実験でモデル化した区間と同じ区間を解析領域としてモデル化した(図-12)。また,入射波は水理模型実験の入力波形に合わせて作成した。

断面二次元津波シミュレーション解析の結果を図-13に示す。水理模型実験結果と同様,沖合約220m地点(W7)においてソリトン分裂波を確認したが,陸上に遡上する過程で分裂波は減衰している。

図-13 断面二次元津波シミュレーション解析における時刻歴図

(4) 敷地前面の流況について

水理模型実験及び断面二次元津波シミュレーション解析の結果,沖合約220m地点において,ソリトン分裂波を確認したが,汀線位置では分裂波は減衰している。

これらの結果から,漂流物の検討においては,ソリトン分裂波の減衰状況を考慮し,<mark>保</mark> 守的に被衝突体からの距離を,汀線より 500m 内(陸側)を直近,<mark>汀線より 500m 以上(海</mark> 側)を前面海域と定義する。 4. 漂流物荷重の試算

(1) 各種基準類の漂流物荷重算定式の整理

漂流物の位置と地形及び流況の整理で抽出された漂流物となる可能性が否定できない施設・設備のうち、仮置きや残置の可能性があるものについて、被衝突体への衝突を仮定した場合の漂流物荷重の試算を行う。 各種基準類の漂流物荷重算定式を表-5に示す。漂流物荷重の試算は、漂流物の種類や想定質量等、漂流物荷重算定式の適用性考慮する。

	出典	種類	概要及び算定式	算定式の適用性が確認された範囲(実験条件等)
1	松冨ほか(1999)	流木	津波による流木の漂流荷重を提案している。本式は円柱形状の流木が縦向きに衝突する場合の漂流荷重算定式である。 $F_m/(\gamma D^2 L) = \frac{1.6}{C_{MA}} (v_{A0}/(gD)^{0.5})^{1.2} (\sigma_v/\gamma L)^{0.4}$ $F_m: 衝突力, \gamma: 流木の単位体積重量, D: 木材の直径, L: 木材の長さ, g: 重力加速度, C_{MA}: 見かけの質量係数(水の緩衝機能も加味), v_{A0}: 衝突速度, \sigma_v: 木材の降伏応力$	「実験に基づく推定式」 ・見かけの質量係数に関する水路実験(実験:高さ0.5m,幅0.3m,長さ11.0m) 流木(丸太)の直径:4.8cm~12cm,流木の重量:305~8615gf ・衝突荷重に関する空中での実験 水理模型実験及び空中衝突実験において,流木(植生林ではない丸太)を被衝突体の前面 (2.5m以内)に設置した状態で衝突させている。東海第二のサイト条件を踏まえると,被衝 突体の直近に衝突体があることを仮定する場合に適用性がある可能性がある。個別の流木 (丸太)の種類等に応じて,実現象を再現するようなパラメータを適切に定める必要がある。
2	池野・田中(2003)	流木	円柱以外にも角柱,球の形状をした木材による漂流荷重を提案している。 $F_H/(gM) = S \cdot C_{MA} \cdot \{V_H/(g^{0.5}D^{0.25}L^{0.25})\}^{2.5}$ $F_H: 衝突力, g: 重力加速度, M: 漂流物の質量, S: 係数(=5.0),$ $C_{MA}: 付加質量係数, V_H: 漂流物移動速度,$ D: 漂流物の直径(角柱の場合は正方形断面辺長), L: 漂流物の長さ	「実験に基づく推定式」(縮尺 1/100 の模型実験) 漂流物の形状:円柱,角柱,球 漂流物重量:0.588N~29.792N 受圧板を陸上構造物と想定し,衝突体を受圧板前面 80cm(現地換算 80m)離れた位置に設置 した状態で衝突させた実験である。模型縮尺(1/100)を考慮した場合,現地換算で直径 2.6 ~8mの仮定となり,東海第二のサイト条件を考慮すると適用性が無いものと判断する。
3	道路橋示方書(2002)	流木等	 橋(橋脚)に自動車,流木あるいは船舶等による漂流荷重を定めている。 P = 0.1WU P:衝突力,W:流送物の重量,U:表面流速 	新規制基準に基づく審査において適用された実績がある。 漂流物が流下(漂流)して来た場合に,表面流速(津波流速)を与えることで漂流流速に 対する荷重を算定できることから,被衝突体の前面海域からの漂流物を想定する場合に適 用性があると判断する。
4	FEMA (2012)	流木 コンテナ	漂流物による漂流荷重を正確に評価するのは困難としながら、一例として算 定式を示している。 $F_i = 1.3u_{max}\sqrt{km_d(1+c)}$ $F_i: 衝突力, c: 付加質量係数, u_{max}: 漂流物を運ぶ流体の最大流速, m_d, k: 漂流物の質量と有効軸剛性$	「運動方程式に基づく衝突力方程式」 非減衰系の振動方程式に基づいており、衝突体及び被衝突体の両方とも完全弾性体で、かつ 衝突時のエネルギー減衰が一切考慮されていない前提条件での算定式であることから、漁船 等のように衝突時に塑性変形を伴う漂流物の荷重算定には適さない。 FEMA の原形式は、 $F = v\sqrt{km}$ (Haehnel and Daly ^{*2})であり、表面流速(津波流速)ではな く漂流流速を用いて漂流物荷重を算定する式となっている。漂流物が地表面を転がるような 場合は、衝突流速を 50%として良い可能性があるとの記載がある。 個別の漂流物に対して、実現象を再現するような軸剛性を適切に定める <mark>必要がある</mark> 。
5	水谷ほか(2005)	コンテナ	漂流するコンテナの漂流荷重を提案している。 $F_m = 2\rho_w \eta_m B_c V_x^2 + \left(\frac{WV_x}{gdt}\right), V_x = C_x = 2\sqrt{g\eta_m}$ $F_m : 衝突力, g: 重力加速度, W: コンテナの重量, B_c: コンテナ幅, \rho_m: 遡上波の最大水位, dt: 衝突時間, \rho_w: 木の密度, V_x: コンテナの漂流速度, C_x: 津波の遡上流速$	「実験に基づく推定式」(縮尺 1/75 の模型実験) 使用コンテナ:長さを 20ft と 40ft,コンテナ重量:0.2N~1.3N 程度, 遡上流速:1.0m/s以下,材質:アクリル 被衝突体の直近のエプロン上にコンテナを設置して衝突力を求めた算定式である。
6	有川ほか(2007, 2010)	流木 コンテナ	鋼製構造物(コンテナ等)による漂流荷重を提案している。 $F = \gamma_p x^{\frac{2}{5}} \left(\frac{5}{4} \widetilde{m}\right)^{\frac{3}{5}} v^{\frac{6}{5}}, x = \frac{4\sqrt{a}}{3\pi} \frac{1}{k_1 + k_2}, k = \frac{(1 - v^2)}{\pi E}, \widetilde{m} = \frac{m_1 m_2}{m_1 + m_2}$ a: 衝突面半径の 1/2(ここではコンテナ衝突面の縦横長さの平均の 1/4), E: ヤング係数, v: ポアソン比, m: 質量, v: 衝突速度, γ_p : 塑性によるエネルギ減衰効果, 添字 1,2 は衝突体と被衝突体を表す	「実験に基づく推定式」(縮尺 1/5 の模型実験) 使用コンテナ:長さ1.21m,高さ0.52m,幅0.49m 衝突速度:1.0~2.5m/s程度,材質:鋼製 水理模型実験では,コンテナを被衝突体の前面1.21m(現地換算6.05m)に設置して衝突力を 求めた算定式である。 個別の漂流物に対して,実現象を再現するような剛性に係るk値を適切に定める必要がある が,対象としている種類以外への適用性があるk値,すなわち実験データを再現するよう同 定された当該式の妥当なk値が不明であるため,現状では当該式は対象としている種類以外 への適用性はないと考える。

表-5 各種基準類の漂流物荷重算定式の整理

(2) 各種基準類の漂流物荷重算定式の整理結果

各種基準類の漂流物荷重算定式の整理結果を表-6に示す。

運用対策が不可能である場合において,漂流物荷重の試算を行う場合は,表-6に示す各 算定式での適用条件(種類,被衝突体からの距離,適用流速)を踏まえた上で行うものとす る。

	出典	種類	被衝突体 との距離	適用流速	備考
1	松冨ほか	流木	直近	衝突速度	個別の流木(丸太)の種類等に応じて,実現象を再現す るようなパラメータを適切に定める必要がある。
2	池野・田中	流木	直近	漂流物 移動速度	模型縮尺(1/100)を考慮した場合,東海第二発電所への 適用性が無いものと判断する。
3	道路橋示方書	流木等	前面海域	表面流速 (津波流速)	
4	FEMA	流木 コンテナ	直近	漂流物を運ぶ 流体の最大流速	衝突体及び被衝突体の両方とも完全弾性体で、かつ衝突時のエネルギー減衰が一切考慮されていない前提条件での算定式であり、漁船等のように衝突時に塑性変形を伴う漂流物の荷重算定には適さない。FEMAの原形式は、F=v√km (Haehnel and Daly ^{*2})であり、表面流速(津波流速)ではなく漂流流速を用いて漂流物荷重を算定する式
5	水谷ほか	コンテナ	直近	津波の 遡上流速	東海第二発電所では,防潮堤東側エリアの500m範囲内に コンテナが無く,検討対象漂流物とはならないため,対 象外とする。
6	有川ほか	流木 コンテナ	直近	衝突速度	個別の漂流物に対して、実現象を再現するような剛性に 係るk値を適切に定める必要があるが、対象としている種 類以外への適用性があるk値、すなわち実験データを再現 するよう同定された当該式の妥当なk値が不明であるた め、現状では当該式は対象としている種類以外への適用 性はないと考える。

表-6 各種基準類の漂流物荷重算定式の整理結果

(3) 検討対象漂流物の漂流物荷重の算定

検討対象漂流物へ適用性を確認した各種基準類の漂流物荷重算定式による漂流物荷重の 算定結果を表-7に示す。漂流物荷重の算定に用いた流速は,基準津波時の防潮堤近傍での 法線方向の最大流速 6.91 m/s を保守側に切り上げた 10 m/s とした。

各算定式に基づく実荷重の算定結果の比較を行うため、実験における実現象を再現する 軸剛性 k の同定<mark>(電力中央研究所(2015)^{*3)}</mark>にも用いられている FEMA の原形式 $F = v\sqrt{km}$ (Haehnel and Daly^{*2})を適用した。 漂流物の衝突直前の漂流流速v(m/s)と水の表面流速U(m/s)の比率 α について,電力中央 研究所(2017)^{*4}及び甲斐田ほか(2016)^{*5}によれば,漂流流速vは表面流速(津波流 速)Uに対して0~60%に低下するとされている。甲斐田ほか(2016)で述べられている構 造物模型に衝突する漂流物の衝突速度vの確率分布を図-13に示す。図-13の通り, α = v/U=0.1(10%)において相対頻度が最も高いことを示している。ただし,試算におい ては,設計上の保守的な配慮として漂流物の速度の低下を想定せず, $\alpha = v/U=1$ (100%)として実施する。

図-13 構造物模型に衝突する漂流物の速度比率α(=v/U)の確率分布

各種基準類の漂流物荷重算定式において,車両を対象とした算定式が無いことから,対象 種別がコンテナとされている算定式(FEMA,水谷ほか,有川ほか)の車両への適用について 検討した。

FEMA の原形式 $F = v\sqrt{km}$ (Haehnel and Daly^{*2})は、電力中央研究所(2015)***において 車両の有効軸剛性を同定するのに用いられている式であり、実験により妥当な有効軸剛性 が既知となったことから、車両へ適用できるものと判断し漂流物荷重の試算の対象とする。

水谷ほかの式は、入力パラメータの車両に対する実験での検証がされていないため、車 両へは適用性が無いと考える。よって、車両の漂流物荷重の試算の対象外とする。

有川ほかの式では、入力パラメータとして、衝突面積、ヤング率、ポアソン比、塑性に よるエネルギー減衰効果が必要なるが、車両の実験データを再現するよう同定された当該 式の妥当なパラメータが不明であるため、現状では当該式は自動車への適用が無いと考え る。よって、車両の漂流物荷重の試算の対象外とする。

表-7に検討対象物の漂流物荷重の試算結果を示す。試算の結果,車両の漂流物荷重が最 も大きくなった。

種類	防潮堤との 距離	質量 (t)	適用式	流速 (m/s)	漂流物荷重 (kN)
船舶	前面海域	15	道路橋示方書	10	
	直近	0. 08	松冨ほか	10	* 7
流木			FEMA	10	
			有川ほか	10	* 7
車両	直近	0.69	Haehnel and Daly ^{%6} (FEMA)	10	¥7

<mark>表ー7 検討対象物の漂流物荷重の試算</mark>

*6: 実荷重での算定結果を比較するため、実験における実現象を再現する軸剛性 k の同 定にも用いられている FEMA の原形式 $F = v\sqrt{km}$ (Haehnel and Daly^{*2})を適用した。 *7: 設計上の保守的な配慮として $\alpha = v/U=1$ (100%)として試算した。

(4) まとめ

検討対象漂流物として選定した船舶について,漂流物荷重を算定した。また,保守的な配 慮として,各種基準類の漂流物算定式の東海第二発電所での適用性を考慮した上で,漂流物 荷重を試算した。その結果を踏まえ,最も荷重が大きくなったのkNを,東海第二発電所に おける津波防護施設の設計に考慮する。

- ※2: Haehnel R.R and Daly F.D. Maximum Impact Force of Woody Debris on Floodplain Structures. Journal of Hydraulic Engineering, 130, No.2, 2004, pp.112-120.
- ※3:大規模水理実験による津波フラジリティ評価手法の高度化(その2) 津波漂流
 物の衝突力評価手法の適用性検証-研究報告: o15003,電力中央研究所報告書

 (2015)
- ※4:原子力発電所における津波漂流物の影響評価技術-現状調査とその適用に関する 考察-研究報告: o16010,電力中央研究所報告書(2017)
- ※5:陸上遡上津波中の漂流物挙動に関する研究,土木学会論文集 B2(海岸工学) (2016)

以上