東海第二発電	所工事計画審査	至資料
資料番号	工 認 -084	改 2
提出年月日	平成 30 年 3 月	23 日

V-1-2-2 原子炉圧力容器の脆性破壊防止に関する説明書

1. 概要	1
2. 基本方針	1
3. 脆性破壊防止に対する設計	2
4. 評価対象と評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
5. 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
6. 最低使用温度に基づく評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
6.1 評価箇所	5
6.2 最低使用温度	5
7. 関連温度に基づく評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7.1 評価箇所	6
7.2 関連温度の要求値 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7.3 応力拡大係数の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7.3.1 最大仮想欠陥	6
7.3.2 応力拡大係数の計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
7.4 中性子照射による関連温度の移行量	7
7.5 計算結果	8
7.5.1 応力拡大係数の計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・	8
7.5.2 関連温度の要求値の計算結果	8
8. 上部棚吸収エネルギーの評価 ・・・・・・・・・・・・・・・・・・・・・・・・	9
8.1 評価箇所	9
8.2 上部棚吸収エネルギーの評価方法	9
8.3 上部棚吸収エネルギーの計算 ・・・・・・・・・・・・・・・・・・・・・・	9
8.3.1 上部棚吸収エネルギー減少率の推定 ・・・・・・・・・・・・・・・	9
8.3.2 上部棚吸収エネルギー調整値の算出 ・・・・・・・・・・・・・・・・	10
8.4 上部棚吸収エネルギーの評価結果	10
9. 結論	11

付録1 中性子照射による関連温度移行量 22

図表目次

図6-1	破壞靱性評価箇所	12
図7-1	最大仮想欠陥形状	13
表4-1	重大事故シーケンスの影響確認 ・・・・・・・・・・・・・・・・・	14
表6-1	最低使用温度に基づく評価箇所 ・・・・・・・・・・・・・・・・・・・・・・	16
表7-1	関連温度の評価箇所 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
表7-2	応力拡大係数及び関連温度の要求値の計算結果 ・・・・・・・・・・	19
表8-1	上部棚吸収エネルギーの評価結果 ・・・・・・・・・・・・・・・・・・・・・	21

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」(以下「技術基準 規則」という。)」第14条第2項及び第54条第1項第1号並びにそれらの「実用発電用原子炉 及びその附属施設の技術基準に関する規則の解釈」(以下「解釈」という。)に基づき、設計基 準対象施設としての原子炉圧力容器の破壊靭性及び想定される重大事故等が発生した場合に、原 子炉圧力容器が重大事故等時に対処するために流路としての機能を有効に発揮できることを確 認するため、破壊靭性に対する評価についても説明するものである。あわせて、技術基準規則第 17条第1項第1号及び第55条第1項第2号並びにそれらの解釈に対して、原子炉圧力容器の材 料が適切であることを説明する。

今回、設計基準対象施設としての原子炉圧力容器については,原子炉圧力容器の材料について 昭和49年12月3日付け49資庁第19356号にて認可された工事計画から変更はないが,現行の 適用規格で規定されている各供用状態及び試験状態の脆性破壊に対する詳細な評価手法は,施設 当時の適用規格である「発電用原子力設備に関する構造等の技術基準」(昭和45年通商産業省 告示第501号)において規定されていなかったため,改めて設計基準対象施設としての原子炉圧 力容器の破壊靭性に対する評価について説明する。また,重大事故等対処設備としての原子炉圧 力容器の破壊靭性に対する評価について説明する。

2. 基本方針

原子炉圧力容器に使用する材料は,通常運転時,運転時の異常な過渡変化時及び設計基準事故 時において使用される圧力,温度,放射線,荷重その他の使用条件に対して適切な破壊靭性を有 する設計とする。

原子炉圧力容器に使用する材料は、中性子照射の影響を考慮し設計基準事象において、保安規 定に監視試験片の評価結果に基づき冷却材温度及び冷却材温度変化率の制限範囲を定めて、原子 炉圧力容器の脆性破壊を防止するよう管理する。

原子炉圧力容器に使用する材料は,重大事故等時における温度,圧力及び荷重に対して適切な 破壊靱性を有する設計とし,かつ,重大事故等時における温度,放射線,荷重その他の使用条件 において重大事故等時に対処するために流路としての機能を有効に発揮することができる設計 とする。

原子炉圧力容器の脆性破壊防止以外の温度,放射線,荷重その他の使用条件に対して健全性を 維持することについては,「V-1-1-6 安全設備及び重大事故等対処設備が使用される条件の下 における健全性に関する説明書」に示している。

原子炉圧力容器の材料に対して施設時の評価として、中性子照射が及ぼす影響を評価すること から、評価時期については、「核原料物質、核燃料物質及び原子炉の規制に関する法律」第43 条の3の32に、発電用原子炉の運転できる期間が40年と定められていることを考慮し、40定格 負荷相当年数を想定して、評価を実施する。

なお、原子炉圧力容器の炉心領域部の中性子照射による影響評価については、監視試験片によ

1

って計画的に評価を行うとともに,施設後 40 定格負荷相当年数の運転期間後以降の評価については,高経年化対策として実施する。

3. 脆性破壊防止に対する設計

技術基準規則第 17 条を踏まえ,原子炉圧力容器に使用する材料は,強度と靱性に優れる低合 金鋼の鋼板及び鍛鋼品で構成し,冷却材と接触する原子炉圧力容器内面部分はステンレス鋼及び 高ニッケル合金で内張りし,耐食性を向上させた設計とする。原子炉圧力容器は脆性破壊防止の 観点から,原子炉冷却材の最低温度及び温度変化率を設定し,適切な温度で使用する。また,中 性子照射脆化が予想される材料に関しては,材料中のCu及びNi含有量が多いほど中性子照射 脆化に与える影響が大きいことから,材料調達時に各元素の含有量を管理する。

また,技術基準規則第55条を踏まえ,重大事故等対処設備としての原子炉圧力容器の材料は, 重大事故等時の原子炉圧力容器の使用温度が崩壊熱による原子炉冷却材の加熱により設計基準 対象施設としての最低使用温度を下回らず、想定される使用条件に対して適切な破壊靭牲を有す る設計とする。

4. 評価対象と評価方法

原子炉圧力容器に使用する材料は,発電用原子力設備規格(設計・建設規格 JSME S N C1-2005(2007年追補版含む))(日本機械学会 2007年)(以下「設計・建設規格」という。),並びに原子力発電所用機器に対する破壊靭性の確認試験方法 JEAC4206-2007(日本電気協会)(以下「JEAC4206」という。),原子炉構造材の監視試験方法JEAC4201-2007[2010年追補版](日本電気協会),原子炉構造材の監視試験方法JEAC4201-2007[2010年追補版含む)(日本電気協会)及び原子炉構造材の監視試験方法 JEAC4201-2007(2013年追補版含む)(日本電気協会))(以下「JEAC4201」という。)に基づき,原子炉圧力容器の脆性破壊に対する安全性確保について評価する。

JEAC4206 第2章 クラス1機器の規定により,破壊靭性試験を行う場合に必要とさ れる試験条件,すなわち最低使用温度及び関連温度を明確にすること,及びJEAC4201の 規定により,上部棚吸収エネルギーが供用期間中の破壊靭性の要求を満足すること,並びに重大 事故等が発生した場合に,原子炉圧力容器が重大事故等時に対処するために流路としての機能を 有効に発揮できることを示す。

破壊靭性の評価は大別して,JEAC4206のFB-2000で規定されるように,最低使用温度 以下での衝撃試験結果を判定基準と対比し評価する方法と,JEAC4206のFB-4000並びに 附属書A及び附属書Fで規定されるように,応力拡大係数と運転状態における材料の温度より求 められる関連温度を用いて評価する方法,また,JEAC4201のSA-3440で規定されるよう に,高温時における靱性を示す上部棚吸収エネルギーの減少率を予測し,設計寿命末期における 上部棚吸収エネルギーを評価する方法に区分される。また,評価対象は,最低使用温度に対して スタッドボルト,関連温度に対して耐圧部を構成する材料,上部棚吸収エネルギーに対して炉心

NT2 補① V-1-2-2 R1

域材料とする。

したがって,原子炉圧力容器の材料で破壊靱性試験を要求される箇所に対し,最低使用温度を 基準とする評価箇所と関連温度を基準とする評価箇所を区別して評価を行い,加えて炉心域材料 について上部棚吸収エネルギーの評価を行う。なお,関連温度を用いての評価は,供用期間中の 耐圧・漏えい試験及び供用状態A及びB(耐圧・漏えい試験を除く)の運転条件において,原子 炉圧力容器の材料の脆性破壊防止の観点で破壊靱性上最も厳しい運転条件は,低温高圧の運転管 理となる耐圧・漏えい試験時であるため,供用状態A及びBの評価は耐圧・漏えい試験での評価 で代表する。

供用状態C及び供用状態Dについては, JEAC4206 解説-附属書A-3120より, 健全性評価上最も問題となる事象はPTS事象*である。沸騰水型原子炉圧力容器では相当運転期間での中性子照射量が低いこと, 炉圧は蒸気温度の低下に伴い低下することからPTS事象は発生しない。そのため,供用状態C及び供用状態Dにおいては脆性破壊に対して厳しくなる事象はなく,耐圧・漏えい試験時に対する評価で代表される。

また,重大事故等時についてすべての炉心損傷防止シーケンス及び格納容器破損シーケンスを 表4-1に示す。表4-1より重大事故時の温度・圧力条件は従来想定されている設計基準事象に包 絡される。このことから,重大事故等対処設備としての原子炉圧力容器の破壊靭性に対する評価 は、7章に示す設計基準事象における評価で代表できる。

注記*: PTS (加圧熱衝撃)

加圧下の原子炉圧力容器内で急激な冷却が生じると,原子炉圧力容器内外間の温度差 により高い引張応力が容器内面に発生し,これと内圧による膜応力が重畳して高い引 張応力が容器内面に発生する現象。

5. 記号の説明

記号	記号の説明	単位
а	欠陥の深さ	mm
f	原子炉圧力容器内表面から深さ a における中性子照射量	n/cm^2
F (a / r n)	補正係数で、JEAC4206の附属書Fの附属書図	—
	F-4200-1で有限要素法のデータを結んだ曲線により得ら	
	れる値	
Kı	供用状態における材料の応力と応力係数との積	MPa•√m
	(以下「応力拡大係数」という。)	
K _{I C}	JEAC4206の附属書Aにより規定される静的破壊	MPa•√m
	靱性値	
KIp	一次応力による応力拡大係数	MPa•√m
K_{Iq}	二次応力による応力拡大係数	MPa•√m
ℓ	欠陥の長さ	mm
M_{m}	J E A C 4 2 0 6 の附属書 F の附属書図 F-3100-1によ	$\sqrt{\mathrm{m}}$
	り得られる膜応力の応力補正係数	
M_{b}	J E A C 4 2 0 6 の附属書 F のF-3100に示される曲げ応	$\sqrt{\mathrm{m}}$
	力の応力補正係数 $(M_m o \frac{2}{3} o d a)$	
RT _{NDT}	J E A C 4 2 0 6 のFB-2000及び附属書Aにより規定され	°C
	る関連温度	
ΔRT_{NDT}	関連温度の移行量	°C
r _i	ノズルの内半径	mm
r _c	ノズルコーナーの曲率半径	mm
r _n	ノズルのみかけの半径	mm
$S_{\rm F}$	安全係数	—
Т	供用状態における材料の温度	°C
t	板厚	mm
USE	上部棚吸収エネルギー	J
Δ USE	上部棚吸収エネルギー減少率	%
$\phi_{ m c}$	原子炉圧力容器内表面から深さ a における中性子束	$n/(cm^2 \cdot s)$
σ	胴及び鏡板部の周方向応力	MPa
$\sigma_{\rm m1}$	一次膜応力	MPa
σ_{m2}	二次膜応力	MPa
$\sigma_{\rm b1}$	一次曲げ応力	MPa
σ_{b2}	二次曲げ応力	MPa

- 6. 最低使用温度に基づく評価
- 6.1 評価箇所

JEAC4206のFB-2400の規定により,最低使用温度以下の温度で衝撃試験を行う箇所を 表6-1及び図6-1に示す。

6.2 最低使用温度

表6-1に示した箇所の最低使用温度を同表中に示す。最低使用温度は、平成16年1月9日付け 発室発第163号にて届出した工事計画に示す熱サイクル図をもとに、原子炉の運転状態又は試 験状態において原子炉圧力容器の内外にて接する流体の最低温度を考慮して定めた。

- 7. 関連温度に基づく評価
- 7.1 評価箇所

関連温度に基づいた評価を行う箇所を表7-1(1),表7-1(2)及び図6-1に示す。

7.2 関連温度の要求値

原子炉圧力容器に欠陥を想定した場合,欠陥に発生する応力拡大係数K₁が,JEAC4206の附属書AのA-3222に基づく静的破壊靱性値K₁cを超えなければ脆性破壊は生じない。

K_{IC}は関連温度RT_{NDT}を基準とした温度の関数として示される。

 $K_{IC} = 36.48 + 22.78 \exp[0.036(T - RT_{NDT})]$

ここで、関連温度RT_{NDT}を関連温度の要求値として計算するため、上式をRT_{NDT}についての式とする。

(関連温度)

$$RT_{NDT} = T - \frac{1}{0.036} ln \left(\frac{K_{IC} - 36.48}{22.78} \right)$$

K₁がK₁cを超えないRT_{NDT}の最大値として,関連温度の要求値を定義すると以下の式に より求められる。

(関連温度の要求値)

$$RT_{NDT} \leq T - \frac{1}{0.036} ln\left(\frac{K_{I} - 36.48}{22.78}\right)$$

応力拡大係数K_Iの計算は、JEAC4206の附属書A及び附属書Fにより、7.3節に示 すように行う。

7.3 応力拡大係数の計算

7.3.1 最大仮想欠陥

応力拡大係数の計算に用いる最大仮想欠陥は, 胴及び鏡板部にあっては, 板厚の1/4倍の 深さ, 板厚の1.5倍の長さの表面欠陥を用いる。ただし, 板厚 t が t <100.0 mmの場合, 100.0 mm厚断面に対する欠陥を用いる。

ノズル部にあっては、ノズルが取り付く部分の胴及び鏡板部板厚の1/4倍の深さの欠陥を 用いる。ただし、最大仮想欠陥の大きさは胴部の最大仮想欠陥寸法を超えないものとする。 図7-1に最大仮想欠陥の形状を示す。

- 7.3.2 応力拡大係数の計算
 - (1) 形状不連続部を含めた胴及び鏡板部
 形状不連続部を含めた胴及び鏡板部の応力拡大係数の計算は次式による。
 K₁=S_F・K_{1p}+K_{1q}

(a) 一次応力に対する安全係数

S_F=1.5(耐圧・漏えい試験における係数)

(b) 一次応力に対する応力拡大係数

 $K_{Ip} = M_m \cdot \sigma_{m1} + M_b \cdot \sigma_{b1}$

M_mは, JEAC4206の附属書Fの附属書図 F-3100-1により得られる。 M_bは, M_mの2/3の値。

(c) 二次応力に対する応力拡大係数

 $K_{Iq} = M_m \cdot \sigma_{m2} + M_b \cdot \sigma_{b2}$

(2) ノズル部

ノズル部の応力拡大係数の計算は次式による。

$$K_{I} = \frac{S F \cdot F(a / r_{n}) \cdot \sigma \cdot \sqrt{\pi \cdot a}}{\sqrt{1000}}$$

ここで,

$$S_F = 1.5$$

 $r_n = r_i + 0.29 \cdot r_c$

7.4 中性子照射による関連温度の移行量

炉心領域材料は、中性子照射による脆化を受けると予想されることから、中性子照射による 関連温度の移行量ΔRT_{NDT}を見込む。

中性子束及び中性子照射量は,第4回炉壁照射試験の結果から得られた値を評価に用いる。 内表面から深さ1/4 t 位置での中性子束 φ。は以下となる。

 $\phi_{\rm c} = 3.18 \times 10^8 \text{ n/(cm^2 \cdot s)}$

中性子照射量fは、中性子束 ø。に40定格負荷相当年数を乗ずることにより求める。

 $f = 3.18 \times 10^8 \times (40 \times 365 \times 24 \times 60 \times 60) = 0.0401 \times 10^{19} \text{ n/cm}^2$

付録1より、炉心領域材料の化学成分を用いて、安全側に中性子照射による関連温度の移行 量を、ΔRT_{NDT}=39.8 ℃とする。 7.5 計算結果

7.5.1 応力拡大係数の計算結果

応力拡大係数の計算条件及び計算結果を表7-2(1)及び表7-2(2)に示す。

表7-2(1)には胴及び鏡板部に対する計算結果を,表7-2(2)にはノズル部に対する計算 結果を示す。

7.5.2 関連温度の要求値の計算結果

応力拡大係数及び耐圧試験の温度より,7.2節に示した関係を満足する関連温度の要求値 を求めた結果を,胴及び鏡板部に対して表7-2(1)に,ノズル部に対して表7-2(2)に示す。 また,同表中に使用する材料の実測値を示す。

なお,表7-2(1)及び表7-2(2)において使用した耐圧試験温度55 ℃は,平成16年1月9日 付け発室発第163号にて届出した工事計画に示す熱サイクル図をもとに,中性子照射による 関連温度の移行量を設計段階で予測し,これをもとに定めた温度である。

- 8. 上部棚吸収エネルギーの評価
- 8.1 評価箇所

上部棚吸収エネルギーの評価は、中性子照射による脆化を受けると予想される炉心領域材料 について行う。評価を行う箇所を図6-1に示す。

8.2 上部棚吸収エネルギーの評価方法

上部棚吸収エネルギーは、高温時における鋼材の粘り強さ(靱性)の程度を示す指標であり、 中性子照射が進むと低下する。

上部棚吸収エネルギーの要求値は、JEAC4206のFB-4200において、68 J以上と規定 されており、JEAC4201 附属書BのB-3100に基づき、供用期間中の中性子照射を考慮 しても、原子炉圧力容器内表面から1/4t位置において、上部棚吸収エネルギー調整値が68 J 以上であることを確認する。

- 8.3 上部棚吸収エネルギーの計算
- 8.3.1 上部棚吸収エネルギー減少率の推定 中性子照射による上部棚吸収エネルギーの減少率(ΔUSE(%))を,次式を用いて推定 する。

$$\Delta USE = C_o + [CF_U] \cdot [FF_U]_{(f)} + M_u$$

ここで,

С

$$\begin{bmatrix} CF_{U} \end{bmatrix} : 化学成分による係数 \\ \begin{bmatrix} CF_{U} \end{bmatrix} = 5.23 + 9.36 \cdot \left\{ 0.5 + 0.5 \cdot \tanh\left(\frac{C_{U} - 0.087}{0.034}\right) \right\} \times (1 + 0.59 \cdot \text{Ni})$$

[FF_U](f): 中性子照射量fによる係数
[FF_U](f) = f^(0.349-0.068·log f)

- f : 40定格負荷相当年数での原子炉圧力容器内表面から1/4t位置の中性 子照射量
 0.0401 (×10¹⁹ n/cm², E>1 Mev)

8.3.2 上部棚吸収エネルギー調整値の算出

8.3.1項にて推定した上部棚吸収エネルギーの減少率(ΔUSE)及び照射前の上部棚吸 収エネルギー(USE(初期値))を用いて、上部棚吸収エネルギー調整値(USE(調整 値))を、次式を用いて算出する。

評価に当たっては、初期条件確認試験の結果をUSE(初期値)としてUSE(調整値)の算出を行う。

USE (調整値) = USE (初期値) × $(1 - \Delta USE/100)$

USE(調整値):照射後の上部棚吸収エネルギー(J)

USE(初期値):照射前の上部棚吸収エネルギー(J):202 J

8.4 上部棚吸収エネルギーの評価結果

供用期間中の中性子照射を考慮した,上部棚吸収エネルギー調整値の計算結果を表8-1に示 す。

表8-1より、40定格負荷相当年数での上部棚吸収エネルギー調整値は、JEAC4206に 規定される要求値の68J以上を満足している。 9. 結論

原子炉圧力容器の材料に対して、JEAC4206 第2章 クラス1機器の規定により破壊 靭性の評価を必要とされる箇所について、JEAC4206のFB-2000により最低使用温度以下 の温度で衝撃試験を行う箇所は流体の最低温度を考慮した最低使用温度を定めるとともに、J EAC4206のFB-4000並びに附属書A及び附属書Fにより関連温度を決定する必要のある箇 所については関連温度の要求値を示し、JEAC4206のFB-2100により求めた関連温度が要 求値を満足することを確認した。

また,設計寿命末期における上部棚吸収エネルギー調整値が,JEAC4206のFB-4200に 規定されている要求値,68J以上を満足することを確認した。

注記*1:最低使用温度を基準とする評価箇所

*2:関連温度を基準とする評価箇所

*3:上部棚吸収エネルギーの評価箇所

図6-1 破壊靭性評価箇所

a. 胴及び鏡板部

図7-1 最大仮想欠陥形状

表 4-1(1) 重大事故シーケンスの影響確認

	<mark>重要</mark> 事故 シーケンス 等	事象の概要及び考察
1	高圧・低圧注水 機能喪失 (給水喪失) [TQUV]	給水喪失及び水位低による再循環系ポンプトリップによ り,原子炉水位は徐々に低下して炉心が露出する。 その後,手動により急速減圧させ,低圧代替注水系(常設) により注水する。本事象は設計熱サイクルで想定している 「原子炉冷却材喪失事故」に包絡される。
2	高圧注水・減圧 機能喪失 (給水喪失) [TQUX]	給水喪失及び外部電源喪失による再循環系ポンプトリッ プにより,原子炉水位は徐々に低下して炉心が露出する。 その後,トランジェント自動減圧系による自動減圧が行わ れ,低圧炉心スプレイ等により注水される。本挙動は設計熱 サイクルで想定している「原子炉冷却材喪失事故」に包絡さ れる。
3	全交流 動力電源喪失 [TB]	外部電源喪失で水位低下しL2で主蒸気隔離弁閉となり, その後原子炉隔離時冷却系が運転開始して原子炉水位が維持される。 8時間後に可搬型代替注水大型ポンプを用いた低圧代替注 水系(可搬型)の準備が完了した時点で,自動減圧系7弁で 減圧させ,低圧代替注水系(可搬型)により注水する。本挙 動は設計熱サイクルで想定している「原子炉冷却材喪失事 故」に包絡される。
4	崩壞熱除去 機能喪失 (取水機能喪失) [TW]	給水喪失による水位低下により,L2 で主蒸気隔離弁閉と なり,その後原子炉隔離時冷却系が運転開始して原子炉水位 が維持される。 その後,自動減圧系7弁で減圧させ,低圧代替注水系(常 設)により注水する。本挙動は設計熱サイクルで想定してい る「原子炉冷却材喪失事故」に包絡される。
5	崩壞熱除去 機能喪失 (残留熱除去系機能喪失) [TW]	給水喪失による水位低下により,L2 で主蒸気隔離弁閉と なり,その後原子炉隔離時冷却系及び高圧炉心スプレイ系が 運転開始して原子炉水位が維持される。 その後,自動減圧系7弁で減圧させ,低圧代替注水系(常 設)により注水する。本挙動は設計熱サイクルで想定してい る「原子炉冷却材喪失事故」に包絡される。

表 4-1(2) 重大事故シーケンスの影響確認

	<mark>重要</mark> 事故 シーケンス 等	事象の概要及び考察
6	原子炉停止 機能喪失 [ATWS]	主蒸気隔離弁誤閉止の発生後,原子炉スクラムに失敗す る。主蒸気隔離弁が閉止されると原子炉圧力が上昇し,原子 炉圧力高信号で再循環系がトリップする。主蒸気隔離弁の閉 止により,タービン駆動給水ポンプはトリップするが,電動 駆動給水ポンプが自動起動して給水が継続される。 圧力上昇の挙動は設計熱サイクルで想定している「過大圧 力」に包絡される。
7	LOCA 時注水 機能喪失 (中小破断) [SE]	給水喪失及び外部電源喪失による再循環系ポンプトリッ プにより原子炉水位は徐々に低下して炉心が露出する。 その後,自動減圧系7弁を用いた手動での急速減圧とな り,減圧開始からまもなく低圧代替注水系(常設)による注 水を開始する。本事象は設計熱サイクルで想定している「原 子炉冷却材喪失事故」に包絡される。
8	格納容器バイパス (残留熱除去系配管破断) [ISLOCA]	ISLOCA 時は,残留熱除去系配管の破断を想定し,破断口 からの冷却材流出による水位低下により,L2 で原子炉隔離 時冷却系起動となる。 その後,自動減圧系 7 弁を用いた手動での急速減圧とな り,減圧開始からまもなく低圧炉心スプレイ系による注水を 開始する。本事象は設計熱サイクルで想定している「原子炉 冷却材喪失事故」に包絡される。
9	雰囲気圧力・温度による 静的負荷 (格納容器過圧・過温破損)	大破断 LOCA により原子炉水位は低下し,炉心が損傷・溶融する。 その後,低圧代替注水系(常設)による注水を開始し,溶
1 0	水素燃焼	融炉心を冷却することで,原子炉圧力容器は破損しない。本 事象は設計熱サイクルで想定している「原子炉冷却材喪失事 故」に包絡される。
11	高圧溶融物放出/格納容器 雰囲気直接加熱, 原子炉圧力容器外の溶融 燃料ー冷却材相互作用, 溶融炉心・コンクリート 相互作用	原子炉圧力容器が破損するシーケンスであり,原子炉圧力 容器の破壊靭性に対する評価は不要である。

表6-1 最低使用温度に基づく評価箇所

評価箇所	材料	最低使用温度 (℃)
スタッドボルト		21

表7-1(1) 関連温度の評価箇所 (胴及び鏡板部)

評価箇所	材料	備考
上鏡板1		SQV2A相当
上鏡板2		SQV2A相当
円筒胴1		SQV2A相当
円筒胴2		SQV2A相当
円筒胴3		SQV2A相当
円筒胴4		SQV2A相当
下鏡板1		SQV2A相当
下鏡板2		SQV2A相当
上鏡側フランジ		SFVQ2A相当
胴側フランジ		SFVQ2A相当

注記:以降,材料は現行 J I S 相当材で記す。

表7-1(2) 関連温度の評価箇所

(ノズル部)

評価箇所		材料		備考
再循環水出口ノズル	(N1)			SFVQ2A相当
再循環水入口ノズル	(N2)			SFVQ2A相当
蒸気出口ノズル	(N3)			SFVQ2A相当
給水ノズル	(N4)			SFVQ2A相当
炉心スプレイノズル	(N5)			SFVQ2A相当
上鏡スプレイノズル	(N6A)			SFVQ2A相当
上鏡予備ノズル	(N6B)			SFVQ2A相当
ベントノズル	(N7)			SFVQ2A相当
ジェットポンプ計測ノズル	(N8)			SFVQ2A相当
制御棒駆動水戻りノズル	(N9)			SFVQ2A相当
低圧注水ノズル	(N17)			SFVQ2A相当

注記:以降,材料は現行 J I S 相当材で記す。

評価箇所	材料	応力拡大係数 K _I	関連温度 (℃)		
		$(MPa \cdot \sqrt{m})$	要求值	実測値	
上鏡板1	SQV2A	56.0	59.2	-12	
上鏡板2	SQV2A	116. 1	20.2	-17	
円筒胴1	SQV2A	110. 2	22.3	-16	
円筒胴2	SQV2A	94. 2	29.1	-12	
円筒胴3	SQV2A	93. 6	-10.4 *	-25	
円筒胴4	SQV2A	93.6	-10.4 *	-25	
下鏡板1	SQV2A	54.1	62.1	-12	
下鏡板2	SQV2A	101.1	26.0	-12	
上鏡側フランジ	SFVQ2A	116. 1	20.2	-17	
胴側フランジ	SFVQ2A	110. 2	22.3	-16	

表7-2(1) 応力拡大係数及び関連温度の要求値の計算結果(胴及び鏡板部) 耐圧試験(最高使用圧力以下) T=55 ℃ a=t/4

注記*:中性子照射による関連温度の移行量を含めた値

NT2 補① V-1-2-2 R0

表7-2(2) 応力拡大係数及び関連温度の要求値の計算結果(ノズル部) 耐圧試験(最高使用圧力以下) T=55 ℃ a = t/4

評価箇所		材料	応力拡大係数 K _I 成力拡大係数 関連温度 (℃)		温度 C)
			$(MPa \cdot \sqrt{m})$	要求値	実測値
再循環水出口ノズル	(N1)	SFVQ2A	164. 8	6.9	-12
再循環水入口ノズル	(N2)	SFVQ2A	137.0	13.7	-12
蒸気出口ノズル	(N3)	SFVQ2A	160. 7	7.8	-12
給水ノズル	(N4)	SFVQ2A	140. 9	12.7	-20
炉心スプレイノズル	(N5)	SFVQ2A	139. 2	13.1	-28
上鏡スプレイノズル	(N6A)	SFVQ2A	76.9	39.0	-34
上鏡予備ノズル	(N6B)	SFVQ2A	76.9	39.0	-12
ベントノズル	(N7)	SFVQ2A	68.0	45.9	-12
ジェットポンプ計測ノズル	(N8)	SFVQ2A	102.7	25.3	-12
制御棒駆動水戻りノズル	(N9)	SFVQ2A	90.6	30.9	-28
低圧注水ノズル	(N17)	SFVQ2A	136.9	13.7	-28

表8-1	上部棚吸収エネルギーの評価結果
------	-----------------

評価箇所	上部棚吸収エネルギー(J)		
	初期 (実測値)	寿命末期 予測値	要求値 (必要下限値)
炉心領域 材料	202	111	68

JEAC4201により,関連温度移行量の予測値を求める。JEAC4201によると, 関連温度の移行量の予測値は次式により求められる。

 ΔRT_{NDT} 予測值= ΔRT_{NDT} 計算值+ M_R

ここで,

△ RT_{NDT}計算値 : J E A C 4 2 0 1 のB-2100②に規定される手順により、附属書表
 B-2100-2を用いて計算する、関連温度の移行量の計算値(℃)

M_R : JEAC4201のB-2100③に規定されるマージン 22(℃)

ΔRT_{NDT}の計算においては以下のパラメータを使用する。

- φ_c : 計算に使用する中性子束 (n/(cm²·s))
- Cu : 銅の含有量 (mass%)
- Ni : ニッケルの含有量 (mass%)

上式により,以下の値に対して関連温度の移行量を求める。材料の化学成分は,材料調達時 における試験による実測値を用いて算出する。

上式に対して関連温度の移行量は、17.8 ℃と求まる。

ただし、中性子照射による関連温度の移行量は、マージン22 ℃を見込んで、39.8 ℃として 関連温度の検討を行う。

なお、中性子照射による関連温度の移行量を監視するために、付図-1に示す位置に監視試 験片を取り付けている。

付図-1 監視試験片取付図