東海第二発電所	工事計画審査資料
資料番号	工認-139 改3
提出年月日	平成 30 年 3 月 27 日

日本原子力発電株式会社

東海第二発電所 工事計画審査資料

V-1-8-1 原子炉格納施設の設計条件に関する説明書

格納容器圧力逃がし装置の設計

1.	概要・・		別添3-1
1	.1 設置	፤目的 ·····	別添3-1
1	.2 基本	≤性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-1
1	.3 系統	で概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-1
2.	系統設	計 • • • • • • • • • • • • • • • • • • •	別添3-3
2	.1 設計	↑方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-3
2	.2 設計	↑条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-5
2	.3 格約	h容器圧力逃がし装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-5
	2.3.1	系統構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-5
	2.3.2	フィルタ装置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-9
	2.3.3	配置	別添3-19
2	.4 付帯	持設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-29
	2.4.1	計装設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-29
	2.4.2	電源設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-36
	2.4.3	給水設備・・・・・	別添3-39
	2.4.4	可搬型窒素供給設備 · · · · · · · · · · · · · · · · · · ·	別添3-40
	2.4.5	排水設備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-42
3.	フィル	タ性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-43
3	.1 フィ	・ルタ装置による放射性物質の除去原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-43
	3.1.1	エアロゾルの除去原理・・・・・	別添3-43
	3.1.2	ガス状放射性よう素の除去原理・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-48
3	.2 運転	全範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-51
3	.3 性能	2検証試験結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-52
	3.3.1	性能検証試験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-52
	3.3.2	エアロゾルの除去性能試験結果・・・・・	別添3-57
	3.3.3	ガス状放射性よう素の除去性能試験結果・・・・・・・・・・・・・・・・・・・・・・・	別添3-64
	3.3.4	フィルタ装置の継続使用による性能への影響・・・・・・・・・・・・・・・	別添3-68
4.	設備の	維持管理 · · · · · · · · · · · · · · · · · · ·	別添3-72

別紙

別紙1	可燃性ガスの爆発防止対策について・・・・・・・・・・・・・・・・・・・・・・・	別添3-80
別紙2	流量制限オリフィスの設定方法について・・・・・・・・・・・・・・・・・・・・・・・・	別添3-95
別紙3	移送ポンプの設定根拠について・・・・・	別添3-98
別紙4	格納容器圧力逃がし装置の系統設計条件の考え方について	別添3-100
別紙5	金属フィルタドレン配管の閉塞及び逆流防止について	別添3-111
別紙6	ベント実施時の放射線監視測定の考え方について ・・・・・・・・・・・・・・	別添3-112

別紙7	エアロゾルの再浮遊・フィルタの閉塞について	別添3-123
別紙8	ベンチュリスクラバにおける無機よう素の再揮発・薬剤の容量不足について・	別添3-127
別紙9	よう素除去部におけるよう素の再揮発,吸着材の容量減少及び変質について・	別添3-134
別紙10	スクラビング水の保有水量の設定根拠について	別添3-139
別紙11	よう素除去部へのスクラビング水の影響について	別添3-152
別紙12	格納容器圧力逃がし装置の外部事象に対する考慮について	別添3-156
別紙13	スクラビング水のpHについて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別添3-161
別紙14	ステンレス構造材, 膨張黒鉛パッキンの妥当性について	別添3-168
別紙15	エアロゾルの粒径分布が除去性能に与える影響について ・・・・・・・・・・・	別添3-179
別紙16	エアロゾルの粒径と除去係数の関係について	別添3-187
別紙17	JAVA試験及びJAVA PLUS試験の適用性について	別添3-189
別紙18	格納容器フィルタベント設備隔離弁の人力操作について	別添3-197
別紙19	窒素供給装置の容量について	別添3-211
別紙20	エアロゾルの保守性について・・・・・・	別添3-214
別紙21	スクラビング水の粘性の変化が除去性能に与える影響について	別添3-215
別紙22	ベント実施に伴う作業等の作業員の被ばく評価・・・・・・・・・・・・・	別添3-219

1. 概要

1.1 設置目的

炉心の著しい損傷が発生した場合において,原子炉格納容器(以下「格納容器」という。) 破損及び格納容器内の水素による爆発を防止するため,格納容器圧力逃がし装置を設置する。 本系統はフィルタ装置を通して放射性物質を低減した上で,格納容器内の雰囲気ガスを放出す ることで,格納容器内の圧力及び温度を低下させるとともに,格納容器内に滞留する水素を大 気へ放出する機能を有する。

また,設計基準事故対処設備の有する最終ヒートシンクへ熱を輸送する機能が喪失した場合 に,炉心の著しい損傷及び格納容器破損を防止するために,大気を最終ヒートシンクとして熱 を輸送する機能を有する。

1.2 基本性能

格納容器圧力逃がし装置は、炉心の著しい損傷が発生した場合において、格納容器に発生す るガスを、フィルタ装置を通して大気に逃がすことで、放出される粒子状の放射性物質(セシ ウム等)を低減する。このため、放射性物質による環境への汚染の視点も含め、環境への影響 をできるだけ小さくとどめるものとして定められている Cs-137 の放出量が 100 TBq を下回る ことができる性能を有したものとする。

フィルタ装置としては、上述した Cs-137 の放出量制限を満足させるため、粒子状放射性物 質除去効率 99.9 %以上の性能を有する装置を採用する。

また、当該装置は、ガス状放射性よう素の除去効率として、無機よう素は99%以上、有機よう素は98%以上の性能を有する。

1.3 系統概要

第1.3-1 図に系統概要を示す。

本系統は、フィルタ装置、圧力開放板等で構成する。本系統は、中央制御室からの操作で、 第一弁及び第二弁を「全開」とすることにより、格納容器内の雰囲気ガスを、ドライウェル又 はサプレッション・チェンバより抜き出し、フィルタ装置にて放射性物質を低減させた後に、 排気管を通して原子炉建屋屋上位置(標高約 65 m)で放出する。

本系統は,排気ラインに圧力開放板を設け,水素爆発防止のため系統内を不活性ガス(窒素) で置換した状態で待機する際の大気との隔壁とする。この圧力開放板は,格納容器からの排気 の妨げにならないように,格納容器からの排気圧力と比較して十分小さい圧力に設定する。

本系統は、中央制御室からの操作を可能とするため、代替電源設備からの給電を可能とする が、電源の確保ができない場合であっても、放射線量率の低い原子炉建屋付属棟(二次格納施 設外)より遠隔で操作することができる。

なお,格納容器からの排気時に,高線量率となるフィルタ装置等からの被ばくを低減するために, 必要な遮蔽等を行う。

第1.3-1図 格納容器圧力逃がし装置 系統概要図

- ドライウェル (D/M) ベントの流路

- 2. 系統設計
- 2.1 設計方針

格納容器圧力逃がし装置は,想定される重大事故等が発生した場合において,格納容器の過 圧破損及び格納容器内の水素による爆発を防止するとともに,大気を最終ヒートシンクとして 熱を輸送できるよう,以下の事項を考慮した設計とする。

(1) 格納容器圧力逃がし装置の設置

炉心の著しい損傷が発生した場合において格納容器の破損を防止するため,格納容器内 の圧力及び温度を低下させるために格納容器圧力逃がし装置を設置する。

i)格納容器圧力逃がし装置は,排気中に含まれる放射性物質を低減するためのフィルタ 装置を設置する設計とする。

フィルタ装置は,排気中に含まれるエアロゾル(粒子状放射性物質)に対して99.9 % 以上,ガス状の無機よう素に対して99 %以上及びガス状の有機よう素に対して98 % 以上を除去可能な設計とする。

ii)格納容器圧力逃がし装置は、可燃性ガスの爆発防止等の対策として不活性ガス(窒素) に置換した状態で待機させ、系統内に可燃性ガス(水素)が蓄積する可能性のある箇所 にはベントラインを設け、可燃性ガスを排出できる設計とするとともに、使用後におい ても不活性ガスで置換できるよう、可搬型窒素供給装置(窒素供給装置及び窒素供給装 置用電源車)を用いて系統内に窒素を供給できる設計とすることで、系統内で水素濃度 及び酸素濃度が可燃領域に達することを防止できる設計とする。

格納容器内酸素濃度をドライ条件に換算して5 vol%未満で管理することで,格納容 器圧力逃がし装置内で可燃性ガス濃度が可燃域に達することはない。

格納容器圧力逃がし装置の使用によりスクラビング水内に捕集された放射性物質に よる水の放射線分解によって発生する水素・酸素は、崩壊熱により発生する蒸気と共 に排出されることから、格納容器圧力逃がし装置内で可燃性ガス濃度が可燃域に達す ることはない。

格納容器圧力逃がし装置内で可燃性ガスが蓄積する可能性がある箇所については, 可燃性ガスを連続して排出するベントラインを設置し,可燃性ガスが局所的に滞留し ない設計とする。

- iii)東海第二発電所は、単一の発電用原子炉施設であり、格納容器圧力逃がし装置を使用 する際に流路となる不活性ガス系、耐圧強化ベント系及び格納容器圧力逃がし装置の 配管は、他の原子炉とは共用しない。また、格納容器圧力逃がし装置と他の系統・機器 を隔離する弁は、直列で2弁設置し、格納容器圧力逃がし装置と他の系統・機器を確実 に隔離することで、悪影響を及ぼさない設計とする。
- iv) 格納容器圧力逃がし装置の使用に際して, 格納容器の負圧破損を防止するため, 窒素 供給ラインを設け, 格納容器へ窒素供給できる設計とする。

- v)格納容器圧力逃がし装置の隔離弁は、現場でも操作が可能となるよう、遠隔人力操作 機構を設け、原子炉建屋原子炉棟外から容易かつ確実に開閉操作できる設計とする。
- vi) 炉心の著しい損傷時においても,現場において,人力で格納容器圧力逃がし装置の隔 離弁の操作ができるよう,遠隔人力操作機構を介した操作場所又は操作室を放射線量 率の低い原子炉建屋付属棟に設置する設計とする。さらに,第二弁及び第二弁バイパス 弁の操作室には,格納容器圧力逃がし装置使用後に高線量となる配管に対する遮蔽及 び格納容器内雰囲気ガスの操作室への流入防止装置(空気ボンベユニット)を設ける設 計とする。
- vii) 格納容器圧力逃がし装置待機時に格納容器圧力逃がし装置内を不活性ガス(窒素)に て置換する際の大気との障壁として,圧力開放板を設置する設計とする。

圧力開放板は,格納容器からのベントガス圧力(0.31 MPa[gage]~0.62 MPa[gage]) と比較して十分に低い圧力である0.08 MPa[gage]にて開放する設計であり,格納容器 圧力逃がし装置の使用の妨げにならない設計であるため,バイパス弁は併置しない。

- viii)格納容器圧力逃がし装置は、サプレッション・チェンバ側及びドライウェル側のいず れからも排気できる設計とする。サプレッション・チェンバ側からの排気ではサプレッ ション・プールの水面からの高さを確保し、ドライウェル側からの排気では燃料有効長 頂部よりも高い位置に接続箇所を設けることで、長期的にも溶融炉心及び水没の影響 を受けない設計とする。
- ix)格納容器圧力逃がし装置のフィルタ装置は、格納容器圧力逃がし装置格納槽(地下埋設)に格納し、十分な厚さのコンクリート及び覆土により地上面の放射線量を十分に低減する設計とする。また、フィルタ装置に接続する配管等は、原子炉建屋原子炉棟内及び原子炉建屋付属棟内に設置することにより、事故時の復旧作業における被ばくを低減する設計とする。

2.2 設計条件

本系統における設備の設計条件を第2.2-1表に示す。

	設計条件	設定根拠
具立体田口力	690 I-D-[]	格納容器の限界圧力を考慮し, 2 Pd (最高使用
 	620 KPalgagej	圧力 310 kPa[gage]の2倍)とする。
最高使用温度	200 °C	格納容器の限界温度を考慮し、200℃とする。
	13.4 kg/s	原子炉定格熱出力1 %相当の飽和蒸気量を,
設計流量	(格納容器圧力 310	ベント開始圧力が低い場合 (310 kPa[gage])
	kPa[gage]において)	であっても排出可能な流量とする。
		想定されるフィルタ装置に捕集及び保持され
フィルタ装置内	500 kW	る放射性物質の崩壊熱に対して十分な余裕を
発熱量		見込み,原子炉定格熱出力の0.015 %に相当
		する発熱量とする。
エアロゾル		想定されるフィルタ装置に移行するエアロゾ
エノロノル	400 kg	ルの量 (38 kg) に対して十分な余裕を見込み,
1911 里		400 kg とする。
		BWRプラントにおける代表炉心(ABWR)
トる事の病内内		の平衡炉心末期を対象としたORIGEN2
より 素の 炉内内 蔵量	24.4 kg	コードの計算結果に対して、東海第二発電所
		の熱出力 (3293 MW) を考慮して算出した結果,
		24.4 kg とする。
副電久供	基準地震動Ssにて機能	基準地震動Ssにて機能を維持する。
	維持	

第 2. 2-1 表 設計条件

2.3 格納容器圧力逃がし装置

2.3.1 系統構成

本系統は,屋外地下の格納容器圧力逃がし装置格納槽内に設置するフィルタ装置,格納 容器からフィルタ装置までの入口配管,フィルタ装置から大気開放される出口配管,圧力 開放板,計装設備,電源設備,給水設備,可搬型窒素供給装置及び排水設備で構成される。

配管等の構成

入口配管は,格納容器のサプレッション・チェンバ及びドライウェルに接続された不 活性ガス系配管が合流した下流に接続する耐圧強化ベント系配管から分岐し,弁を経由 してフィルタ装置に接続する。

出口配管には,待機時に窒素置換された系統と大気を隔離する圧力開放板を設置する。圧力開放板はベント開始時に微正圧で動作するものとし,信頼性の高いものを使用する。

フィルタ装置には、外部からスクラビング水を補給できるよう給水配管を設置する。

R0

また、外部から系統に窒素を供給できるよう窒素供給配管を設置する。また、ベント後の放射性物質を含むスクラビング水を格納容器(サプレッション・チェンバ)に移送するための移送ポンプ及び配管、さらに、万一、放射性物質を含むスクラビング水が格納容器に力逃がし装置格納槽に漏えいした場合に、漏えい水を格納容器(サプレッション・チェンバ)に移送するための排水ポンプ及び配管を設置する。

第2.3.1-1 図に格納容器圧力逃がし装置の系統構成を示す。

(2) 材質及び構造

配管及び弁は,重大事故等クラス2機器として,「日本機械学会 発電用原子力設備 規格 設計・建設規格(2005/2007)」クラス2の規定に準拠して設計する。材質は炭 素鋼を基本とするが,使用環境に応じて耐食性の高いステンレス鋼を使用する。炭素鋼 配管外面には防錆のため塗装を施し,特に屋外に敷設される配管の外面については,海 塩粒子の付着による腐食防止の観点から,シリコン系等の防食塗装を行う。

系統を構成する主要な機器の仕様を第2.3.1-1表に,フィルタ装置及び配管の材質範 囲を第2.3.1-2図に示す。

(3) 系統の切替性

格納容器からフィルタ装置へ至る配管は、ベントを実施する際、接続する他系統と隔 離し、流路を構成する必要がある。対象となる系統は、原子炉建屋ガス処理系、換気空 調系及び耐圧強化ベント系である。これらの系統との取合いの弁は通常全閉状態である が、開状態の場合でも中央制御室からの操作により、速やかに閉操作が可能である。

原子炉建屋ガス処理系及び換気空調系との取合いの弁は、フェイルクローズの空気駆動弁であることから、全交流動力電源喪失時には、全閉状態となる。また、耐圧強化ベント系との取合い弁は、電動駆動弁であり、耐圧強化ベント系は格納容器圧力逃がし装置が使用できない場合に使用する系統であるため、全閉状態を維持する。

以上より,格納容器からフィルタ装置へ至る配管は,ベントを実施する際,他系統と 隔離し,流路の構成が可能である。

第2.3.1-1 図 格納容器圧力逃がし装置 系統概要図

第2.3.1-1表 主要系統構成機器の仕様

(1) 配管

	口径	材質
a. フィルタ装置入口配管 (b. の範囲を除く)	450 A∼600 A	炭素鋼
b.フィルタ装置周辺配管 (格納容器圧力逃がし装置格納槽 内に設置する範囲)	450 A(入口側), 350 A~600 A(出口側)	ステンレス鋼
c. フィルタ装置出口配管 (b. の範囲を除く)	600 A	炭素鋼

(2) 隔離弁

	型式	駆動方式	口径
a. 第一弁(S/C側)	バタフライ弁	電動駆動(交流) +遠隔人力操作機構	600 A
b. 第一弁(D/W側)	バタフライ弁	電動駆動(交流) +遠隔人力操作機構	600 A
c. 第二弁	バタフライ弁	電動駆動(交流) +遠隔人力操作機構	450 A
d. 第二弁バイパス弁	バタフライ弁	電動駆動(交流) +遠隔人力操作機構	450 A

S/C:サプレッション・チェンバ

D/W:ドライウェル

(3) 圧力開放板

型式	設定破裂圧力	呼び径	材質	個数
引張型ラプチャー ディスク	0.08 MPa	600 A	ステンレス鋼	1

第2.3.1-2図 フィルタ装置及び配管の材質範囲

- 2.3.2 フィルタ装置
 - (1) フィルタ装置仕様

フィルタ装置は、スカート支持される円筒たて形容器であり、常時スクラビング水を貯 留する。容器下部にはベンチュリスクラバ(ベンチュリノズル及びスクラビング水)、上 部には金属フィルタが設置され、これらを組み合わせてエアロゾルを除去する。

さらに,金属フィルタの後段として,容器内部によう素除去部を設け,ガス状放射性よう素を捕集する物質(銀ゼオライト)を収納している。

フィルタ装置の主な仕様を以下に示す。

- a. 容器は,重大事故等クラス2容器として「日本機械学会 発電用原子力設備規格 設計・建設規格(2005/2007)」クラス2容器の規定に準拠して設計する。
- b. 容器内に貯留するスクラビング水量は,捕集した放射性物質の崩壊熱による減少を 考慮し,設計条件であるフィルタ装置内発熱量500 kWに対して,ベント開始後24時間 はベンチュリスクラバによる所定の放射性物質の除去性能が確保できるように設定す る。
- c. 容器及び内部構造物の材料は、スクラビング水に添加されるアルカリ性の薬剤に対して、耐性に優れるステンレス鋼を使用する。
- d. 容器には、スクラビング水の減少分を補充するための注水用ノズル、スクラビング 水を採取するための試料採取用ノズル及びスクラビング水を移送するためのドレン用 ノズルを設ける。
- e. 容器は、ベンチュリノズル及び金属フィルタを内蔵する。
- f. 容器内部には、よう素除去部を設け、銀ゼオライトを収納する。
- g. 金属フィルタとよう素除去部の連絡管には、流量制限オリフィスを設け、格納容器

より排出されるガスの体積流量をほぼ一定に保つ設計とする。

フィルタ装置の仕様を第2.3.2-1表に、構造を第2.3.2-1図に示す。

第2.3.2-1図 フィルタ装置概略図

- (2) フィルタ仕様
 - a. ベンチュリスクラバ

ベンチュリスクラバは、ベンチュリノズル、スクラビング水等で構成され、ベントガス中に含まれるエアロゾル及び無機よう素を捕集し、スクラビング水中に保持する。

ベンチュリノズルは、上部に行くにつれて緩やかに矩形断面の流路面積を増やして 断面変化させており、上端は閉じて、側面に出口開口を設けている。また、ノズル中低 部の一番流路断面積が小さくなるスロート部の側面にスクラビング水を取り込む開口 を設けている。これにより、ノズルスロート部で高流速とすることで、スロート部の圧 力を周囲スクラビング水領域よりも低下させて側面開口からノズル周囲のスクラビン グ水を吸込み、ノズル内に噴霧させる。ノズル内ではガスと噴霧水滴の流速の差でエ アロゾルの捕集効率を高め、上端吐出部からスクラビング水中に排出させる。

ベンチュリノズルは、分配管に設置し、同一分配管上のベンチュリノズルは、分配管 に対して直行させるとともに、同心円状のベンチュリノズルは、離隔距離を確保した 配置とする。また、ベントガスは、スクラビング水中に斜め下方向に排出されたのち、 減速し分配管の間を浮き上がっていく流れとなるため、同一分配管上の隣接ノズル及 び同心円状の隣接ノズルへ与える影響はない。

ベンチュリノズルの材質は、耐アルカリ性に優れる

ベンチュリノズルの機器仕様を第2.3.2-1表に,スクラビング水の仕様を第2.3.2-2表に,概略図を第2.3.2-2図に,配置を第2.3.2-3図に,ベンチュリノズルからのベントガスの流れの概要を第2.4.2-4図に示す。

第2.3.2-2図 ベンチュリノズル概略図

第2.3.2-3 図 ベンチュリノズルの配置図

第2.3.2-4 図 ベンチュリノズルからのベントガスの流れの概要

b. 金属フィルタ

金属フィルタは、ベンチュリスクラバで除去しきれなかったエアロゾルを除去する。 金属フィルタは、必要なフィルタ面積と最適なフィルタ流速が得られるように、容 器の上部に縦向きに配置される。金属フィルタは 製で、プレフィルタと メインフィルタを であり、周囲の型枠により容器内部に直接取り付け られる。

ベントガスは、スクラビング水を出た後、スクラビング水から生じる湿分(液滴)を 含んでいる。長時間の運転でも高い除去効率を確保するため、

除去した液滴は,スクラビング水内にド

レンされる。

金属フィルタの機器仕様を第 2.3.2-1 表に、概略図及びフィルタ容器内の配置を第 2.3.2-5 図及び第 2.3.2-6 図に示す。

第2.3.2-5 図 金属フィルタ概略図

第2.3.2-6 図 フィルタ装置の断面図(金属フィルタ高さ)

(a) プレフィルタ及び湿分分離機構

湿分分離機構の概要を第2.3.2-7 図に、ドレン配管接続部の概要を第2.3.2-8 図に示す。

第2.3.2-7図 湿分分離機構の概略図

第2.3.2-8図 ドレン配管接続部のzx概略図

c. 流量制限オリフィス

ベントフィルタ内の体積流量をほぼ一定に保つため、金属フィルタ下流に流量制限 オリフィスを設置する。流量制限オリフィスの穴径は、系統の圧力損失を考慮した上 で、ベント開始時の格納容器圧力(1 Pd~2 Pd)のうち、低い圧力(1 Pd)において、 設計流量が確実に排気できるよう設定する。

流量制限オリフィスの仕様を第2.3.2-1表に示す。

d. よう素除去部

よう素除去部には,銀ゼオライトを収納し,ベントガスを通過させることで,ガス中 に含まれる放射性のよう素を除去する。

よう素除去部の仕様を第 2.3.2-1 表に、概略図を第 2.3.2-9 図に、フィルタ装置内のよう素除去部の配置を第 2.3.2-10 図に示す。

(1) 容器

一 一 一 元	田筒たて形容異
主式	
材質	
胴 内 径	約 5 m
高 さ	約 10 m

(2) ベンチュリノズル

材	質
個	数

(3) 金属フィルタ

材		質	
- 1.		法	
繊	維	径	
個		数	
総	面	積	

(4) 流量制限オリフィス

型式	同心オリフィス板
材質	
個数	

(5) よう素除去部

材質	銀ゼオライト
充填量	
ベッド厚さ	

第2.3.2-2表 スクラビング水仕様(待機水位時)

項目	設定値	

2.3.3 配置

フィルタ装置は,原子炉建屋外に地下埋設で設置する頑健な格納容器圧力逃がし装置格 納槽の中に設置することで,地震や津波等の自然現象及び航空機衝突に対する耐性を高め ている。格納容器圧力逃がし装置格納槽は,鉄筋コンクリート製であり,フィルタ装置に 保持された放射性物質からの遮蔽を考慮した設計としている。また,最終ヒートシンクへ 熱を輸送するための設計基準事故対処設備である残留熱除去系ポンプ,残留熱除去系熱交 換器及び残留熱除去系海水ポンプ並びに重大事故等対処設備である緊急用海水ポンプに対 して位置的分散を図っている。さらに,重大事故等対処設備である代替循環冷却系ポンプ に対しても位置的分散を図っている。

フィルタ装置の配置を第2.3.3-1図, 第2.3.3-2図に示す。

格納容器圧力逃がし装置の配管については、ベント時に発生する蒸気凝縮で発生するド レン水による閉塞やこれに起因する水素及び酸素の滞留を防止するため、配置に留意する。 具体的には配管ルートにUシール部ができないよう配置する。なお、新設部分については、 水平配管に適切な勾配を設ける。

格納容器圧力逃がし装置の配管ルート図を第2.3.3-3図~15図に示す。

NT2 補① V-1-8-1 別添3 R0

第2.3.3-1図 フィルタ装置配置図(原子炉建屋地下2階)

第2.3.3-2図 フィルタ装置配置図(屋外)

NT2 補① V-1-8-1 別添3 R0

第2.3.3-4図 格納容器圧力逃がし装置配管ルート拡大図(1/12)

第2.3.3-5図 格納容器圧力逃がし装置配管ルート拡大図(2/12)

第2.3.3-9図 格納容器圧力逃がし装置配管ルート拡大図(6/12)

第2.3.3-13 図 格納容器圧力逃がし装置配管ルート拡大図(10/12)

2.3.3-15 図 格納容器圧力逃がし装置配管ルート拡大図 (12/12)

2.4 付帯設備

2.4.1 計装設備

格納容器圧力逃がし装置の計装設備は,各運転状態において,設備の状態を適切に監視 するため,フィルタ装置入口水素濃度計,フィルタ装置出口放射線モニタ及びフィルタ装 置周り計装設備にて構成する。

(1) フィルタ装置入口水素濃度計

フィルタ装置入口水素濃度計は、ベント停止後の系統内の水素濃度が可燃限界 4 vol% 以下に維持されていることを監視するため、フィルタ装置入口配管に設置する。

ベント停止(第一弁を閉止)後は、フィルタ装置入口配管に窒素を供給し、系統内に残 留するガスを掃気することで、水素が可燃限界に至ることはない。また、フィルタ装置内 の放射性物質を保持するスクラビング水より放射線分解で発生する水素は、窒素供給す ることでフィルタ装置出口配管を通って掃気され、可燃限界に至ることはない。

水素濃度の計測は、ベント停止後の窒素供給による系統パージ停止後に実施する。

フィルタ装置入口水素濃度計の計測範囲は、0~100 vol%とし、0~20 vol%に切り替 えて計測できるようにする。計測した水素濃度は、中央制御室及び緊急時対策所で監視可 能な設計とする。

フィルタ装置入口水素濃度計は,通常待機時には非常用母線より受電しているが,重大 事故等時で非常用電源から受電できない場合には,常設代替交流電源設備である常設代 替高圧電源装置及び可搬型代替交流電源設備である可搬型代替低圧電源車から給電可能 な構成とする。

フィルタ装置入口水素濃度計の主要仕様を第2.4.1-1表に示す。

種類	熱伝導式水素濃度検出器
計測範囲	0∼100 vol%
個 数	2
使用電源	交流電源

第2.4.1-1表 フィルタ装置入口水素濃度計の仕様

(2) フィルタ装置出口放射線モニタ

フィルタ装置出口放射線モニタは、大気へ放出する放射性物質濃度を監視する目的で、 排気中の放射性物質からのγ線強度を計測するため、フィルタ装置出口配管近傍に設置 する。

フィルタ装置出口放射線モニタの計測範囲は、フィルタ使用時に想定される排気中の 放射性物質がフィルタ装置出口配管に内包された時の最大の放射線量率を計測できる範 囲として、炉心損傷している場合は10⁻²~10⁵ Sv/h(高レンジ用)を、炉心損傷していな い場合は10⁻³~10⁴ mSv/h(低レンジ用)を計測範囲としている。計測した放射線量率は、 中央制御室及び緊急時対策所で監視可能な設計とする。

フィルタ装置出口放射線モニタは,通常待機時には非常用母線より受電しているが,重 大事故等時で非常用電源から受電できない場合には,常設代替直流電源設備である緊急 用 125 V系蓄電池並びに可搬型代替直流電源設備である可搬型低圧電源車及び可搬型整 流器から給電可能な構成とする。

フィルタ装置出口放射線モニタの主要仕様を第2.4.1-2表に示す。

		高レンジ用	低レンジ用
	種類	イオンチェンバ式	イオンチェンバ式
		放射線検出器	放射線検出器
	計測範囲	$10^{-2} \sim 10^5$ Sv/h	$10^{-3}\sim 10^4$ mSv/h
	個 数	2	1
使用電源		直流電源	直流電源

第2.4.1-2表 フィルタ装置出口放射線モニタの仕様

(3) フィルタ装置周り計装設備

通常待機時,系統運転時及び事故収束時の各状態において,フィルタ装置の水位,圧力 及び温度並びにスクラビング水pHを監視するため,フィルタ装置周辺に水位計,圧力 計,温度計及びpH計を設置し,中央制御室,緊急時対策所及び一部現場において監視で きる設計とする。

フィルタ装置周りの計装設備のうち水位計, 圧力計及び温度計は, 通常待機時には非常 用母線より受電しているが, 重大事故等時で非常用電源から受電できない場合には, 常設 代替直流電源設備である緊急用 125 V系蓄電池並びに可搬型代替直流電源設備である可 搬型代替低圧電源車及び可搬型整流器から給電可能な構成とする。また, p H 計は, 通常 待機時には非常用母線より受電しているが, 非常用電源から受電できない場合には, 常設 代替交流電源設備である常設代替高圧電源装置及び可搬型代替交流電源設備である可搬 型代替低圧電源車から給電可能な構成とする。

なお、フィルタ装置周り計装設備のうち、フィルタ装置排気ライン圧力計及びフィルタ 装置スクラビング水pH計は、系統待機時以外の系統運転時及び事故収束時は監視する 必要がないため、自主対策設備とする。また、フィルタ装置水位計及びフィルタ装置圧力 計は、中央制御室及び現場にて監視が可能であるため、現場計器は自主対策設備とする。

- (4) 各状態における監視の目的
 - a. 系統待機状態

格納容器圧力逃がし装置の通常待機時の状態を,以下のとおり確認する設計としている。

(a) フィルタ装置の性能に影響するパラメータの確認

フィルタ装置水位計にて、スクラビング水の水位が、通常待機時の設定範囲内 にあることを監視することで、要求される放射性物質の除去 性能が発揮できることを確認する。

通常待機時における水位の範囲は、ベント時のスクラビング水の水位変動を考慮し ても放射性物質の除去性能を維持し、ベント開始後7日間は水補給が不要となるよう 設定している。

また、フィルタ装置スクラビング水pH計にて、pHがアルカリ性の状態(pH13 以上)であることを監視することで、フィルタ装置の性能維持に影響がないことを確 認する。

(b) 系統不活性状態の確認

フィルタ装置排気ライン圧力計及びフィルタ装置圧力計にて,封入した窒素圧力 を継続監視することによって,系統内の不活性状態を確認する。

b. 系統運転状態

格納容器圧力逃がし装置の運転時の状態を,以下のとおり確認する設計としている。 (a) 格納容器内の雰囲気ガスがフィルタ装置へ導かれていることの確認

フィルタ装置圧力計にて、ベント開始により圧力が上昇し、ベント継続により格納 容器の圧力に追従して圧力が低下傾向を示すことで、格納容器内の雰囲気ガスがフィ ルタ装置に導かれていることを確認する。

また、フィルタ装置スクラビング水温度計にて、ベント開始によりスクラビング水 が待機状態から飽和温度まで上昇することを監視することで、格納容器のガスがフィ ルタ装置に導かれていることを確認する。さらに、フィルタ装置出口放射線モニタが 初期値から上昇することを計測することにより、ガスが通気されていることを把握で きる。

(b) フィルタ装置の性能に影響するパラメータの確認

フィルタ装置水位計にて、スクラビング水の水位が、ベント後の下限水位から上限 水位の範囲内 にあることを監視することで、要求され る放射性物質の除去性能が維持できることを確認する。 ベント後における下限水位については、ベンチュリノズルが水没していることを確 認するため、上限水位については、金属フィルタの性能に影響がないことを確認する ためにそれぞれ設定する。

(c) ベントガスが放出されていることの確認

フィルタ装置出口放射線モニタにて、フィルタ装置出口を通過するガスに含まれ る放射性物質からの y 線強度を計測することで、フィルタ装置出口配管よりベント ガスが放出されていることを確認する。 c. 事故収束状態

格納容器圧力逃がし装置の事故収束時の状態を以下のとおり確認する設計としている。

(a) 系統内に水素が滞留していないことの確認

フィルタ装置入口水素濃度計にて,窒素供給による系統パージ停止後において,水 素が長期的に系統内に滞留していないことを確認する。

(b) フィルタ装置の状態確認

フィルタ装置に異常がないことを確認するため、フィルタ装置水位計にて、スクラ ビング水の水位が確保されていること(フィルタ装置のスクラビング水の移送後を除 く。)、フィルタ装置スクラビング水温度計にて温度の異常な上昇がないこと及びフ ィルタ装置出口放射線モニタの指示値が上昇傾向にないことを確認する。
(5) 計装設備の仕様

フィルタ装置の水位について第 2.4.1-1 図に,計装設備の概略構成図を第 2.4.1-2 図に,主要仕様を第 2.4.1-3 表に示す。

第2.4.1-1図 フィルタ装置水位

監視パラメータ ^{※1}	設置目的	計測範囲	計測範囲の根拠	検出器 個数	監視場所
①フィルタ装置水位	フィルタ装置性 能維持のための 水位監視	180~5500 mm		2	中 央 制 御 室, 緊急時 対策所
				1*2	現場
②フィルタ装置圧力	系統運転中に格 納容器雰囲気ガ スがフィルタ装	0∼1.0 MPa [gage]	系統の最高使用圧力 (620 kPa[gage])を	1	中 央 制 御 室, 緊急時 対策所
	直に導かれてい ることの確認		監視できる範囲	1^{22}	現場
③フィルタ装置スクラビ ング水温度	フィルタ装置の 温度監視	0∼300 °C	系統の最高使用温度 (200 ℃)を監視でき る範囲	1	中 央 制 御 室, 緊急時 対策所
 ④フィルタ装置排気ライ ン圧力^{※2} 	通常待機時の窒 素封入による不 活性状態の確認	0∼100 kPa [gage]		1	中 央 制 御 室, 緊急時 対策所
⑤フィルタ装置出口放射 線モニタ(高レンジ・ 低レンジ)	系統運転中に放 出される放射性 物質濃度の確認	高レンジ: 10 ⁻² ~10 ⁵ Sv/h 低レンジ: 10 ⁻³ ~10 ⁴ mSv/h	想定される放射性物 質がフィルタ装置出 口配管に内包された 時の最大の放射線量 率(約5×10 ¹ Sv/h) を計測できる範囲	高レンジ : 2 低レンジ : 1	中 央 制 御 室, 緊急時 対策所
⑥フィルタ装置入口水素 濃度	事故収束時の系 統内の水素濃度 の確認	0∼100 vol%	想定される水素濃度 の変動範囲を計測で きる範囲	2	中 央 制 御室, 緊急時対策所
 ⑦フィルタ装置スクラビ ング水 pH ^{※2}	フィルタ装置性 能維持のための pH 監視	рН 0~14	想定される pH の変動 範囲を計測できる範 囲	1	中 央 制 御 室, 緊急時 対策所
⑧第二弁操作室差圧計	正圧化維持のた めの差圧監視	0∼60 Pa	温度の影響を無視で きる圧力差(約10.4 Pa)を計測できる範 囲	1	第二弁操作 室

第 2.4.1-3 表 計装設備主要仕様

※1 監視パラメータの数字は第2.4.1-2図の○数字に対応する。

※2 自主対策設備

2.4.2 電源設備

ベントガスの流路となる配管に設置される電動駆動弁及び計装設備については,通常 待機時には非常用母線より受電しているが,重大事故等時で非常用母線から受電できな い場合には,常設代替交流電源設備である常設代替高圧電源装置,可搬型代替交流電源設 備である可搬型低圧電源車,常設代替直流電源設備である緊急用 125 V系蓄電池並びに 可搬型代替直流電源設備である可搬型低圧電源車及び可搬型整流器から給電可能な構成 とする。電源構成図を第2.4.2-1~2 図に示す。

第2.4.2-1図 格納容器圧力逃がし装置 電源構成図(交流電源)

第2.4.2-2図 格納容器圧力逃がし装置 電源構成図(直流電源)

2.4.3 給水設備

系統待機状態において,フィルタ装置はスクラビング水を貯留している状態であるが, 重大事故時においてフィルタ装置を使用した場合,保持した放射性物質の崩壊熱によりス クラビング水が蒸発し,水位が低下する。このような状況に備え,フィルタ装置には格納 容器圧力逃がし装置格納槽に設ける遮蔽外から給水できるよう接続口を設け,可搬型代替 注水大型ポンプ車等からの給水を可能とする設計としている。

給水配管の仕様を第2.4.3-1表に、概要を第2.4.3-1図に示す。

口径25 A, 50 A材質ステンレス鋼 (SUS316LTP)

第2.4.3-1表 給水配管仕様

第2.4.3-1 図 給水設備概要図

2.4.4 可搬型窒素供給装置

ベント終了後,スクラビング水の放射線分解によって発生する水素により系統内の水素 濃度が上昇する可能性があるため,窒素を供給し,系統内の水素濃度が可燃限界を超えな いように希釈及び掃気するために,窒素供給装置及び窒素供給装置用電源車で構成する可 搬型窒素供給装置を設ける。

窒素の供給は,可搬型窒素供給装置(窒素供給装置及び窒素供給装置用電源車)により 行う。系統の隔離弁(第一弁)の下流配管から供給ラインを分岐し,原子炉建屋外に接続 口を設け,窒素供給装置を可搬ホースにて接続する。

窒素供給装置の仕様を第2.4.4-1表に,窒素供給配管の仕様を第2.4.4-2表に,窒素供 給装置の概要を第2.4.4-1図に,窒素供給装置の構成概略を第2.4.4-2図に示す。

種類	圧力変動吸着式
容 量	約 200 Nm³/h
窒素純度	約 99.0 vo1%
供給圧力	約 0.5 MPa [gage]
個 数	2(予備 2)

第 2.4.4-1 表 窒素供給装置仕様

第 2.4.4-2 表 窒素供給配管仕様

口径	50 A
材質	炭素鋼(STPT410)

第 2.4.4-1 図 窒素供給設備概要図

第2.4.4-2 図 可搬型窒素供給装置構成概略

2.4.5 排水設備

フィルタ装置の水位調整及びベント停止後の放射性物質を含んだスクラビング水の格納 容器(サプレッション・チェンバ)への移送並びに放射性物質を含むスクラビング水が格 納容器圧力逃がし装置格納槽に漏えいした場合の漏えい水の格納容器(サプレッション・ チェンバ)への移送のため,排水設備を設置する。

排水設備の仕様を第2.4.5-1表に、排水設備の概要を第2.4.5-1図に示す。

第2.4.5-1表 排水設備仕様

(1) 配管

口径	50 A
材質	ステンレス鋼(SUS316LTP)

(2) ポンプ

	移送ポンプ	排水ポンプ
型式	キャンドポンプ	水中ポンプ
定格流量	10 m³/h	$10 \text{ m}^3/\text{h}$
定格揚程	40 m	40 m
個 数	1	1
駆動方式	電動駆動(交流)	電動駆動(交流)

格納容器圧力逃がし装置格納槽

第2.4.5-1 図 排水設備概要図

3. フィルタ性能

3.1 フィルタ装置による放射性物質の除去原理

3.1.1 エアロゾルの除去原理

エアロゾルの除去原理は、一般にフィルタ媒体(ベンチュリスクラバの場合は水滴,金属フィルタの場合は金属繊維)の種類によらず、主に以下の3つの効果の重ね合わせとして記述できる。

・さえぎり効果(Interception): 粒径が大きい場合に有効

・拡散効果(Diffusion):流速が遅い場合、粒径が小さい場合に有効

・慣性衝突効果(Inertia effect):流速が早い場合、粒径が大きい場合に有効

(1)~(3)に、それぞれの除去効果についてその特性を記載する。これらの除去原理は フィルタ媒体が水滴でも金属繊維でも作用するが、フィルタの種類や系統条件により効果 的に除去できる粒径、流速の範囲が異なることから、幅広い粒径、流速のエアロゾルを除 去するためには異なる種類のフィルタを組み合わせることが有効である。

(4),(5)に、ベンチュリスクラバ及び金属フィルタにおけるエアロゾルの除去原理を示す。

(1) さえぎり効果

さえぎりによるエアロゾルの捕集は、第3.1.1-1図に示すように、エアロゾルが流線 にそって運動している場合に、フィルタ媒体表面から1粒子半径以内にエアロゾルが達 したときに起こる。

エアロゾル粒径が大きい場合,より遠くの流線に乗っていた場合でもフィルタ媒体と 接触することが可能であるため,さえぎりによる除去効果は,エアロゾル粒径が大きい程 大きくなる傾向にある。

出典:W. C. ハインズ, エアロゾルテクノロジー, ㈱井上書院(1985) 第 3.1.1-1 図 さえぎりによる捕集

(2) 拡散効果

拡散によるエアロゾルの捕集は、第3.1.1-2 図に示すように、エアロゾルがフィルタ 媒体をさえぎらない流線上を移動しているときでも、フィルタ媒体近傍を通過する際 に、ブラウン運動によってフィルタ媒体に衝突することで起こる。

エアロゾル粒径が小さい場合,ブラウン運動による拡散の度合いが大きくなるため, 拡散による除去効果は,エアロゾル粒径が小さい程大きくなる傾向にある。また,フィ ルタ媒体の近傍にエアロゾルが滞在する時間が長い程ブラウン運動によりフィルタ媒体 に衝突する可能性が高まるため,流速が遅い程大きくなる傾向にある。

出典:W. C. ハインズ, エアロゾルテクノロジー, ㈱井上書院(1985) 第 3.1.1-2 図 拡散による捕集

(3) 慣性衝突効果

慣性衝突によるエアロゾルの捕集は,第3.1.1-3 図に示すように,エアロゾルがその 慣性のために,フィルタ媒体の近傍で急に変化する流線に対応することができず,流線 を横切ってフィルタ媒体に衝突するときに起こる。

エアロゾル粒径が大きい場合又はエアロゾルの流れが早い場合にエアロゾルの慣性が 大きくなり、フィルタ媒体と衝突する可能性が高まるため、慣性衝突による除去効果は エアロゾル粒径が大きい程大きく、流速が早い程大きくなる傾向がある。

出典:W. C. ハインズ, エアロゾルテクノロジー, ㈱井上書院(1985) 第 3.1.1-3 図 慣性衝突による捕集

(4) ベンチュリスクラバにおけるエアロゾルの除去原理

ベンチュリスクラバは、断面積の小さいベンチュリノズルのスロート部にベントガス を通し、ガス流速を大きくすることで発生する負圧によって、ガス中にスクラビング水を 噴霧(いわゆる霧吹き)し、微小水滴にすることでエアロゾルが水と接触する面積を大き くすることにより、効果的にエアロゾルを水滴に捕集する。

ベンチュリノズルにおける除去原理を第 3.1.1-4 図に, ベンチュリノズルにおける速 度模式図を第 3.1.1-5 図に示す。

第3.1.1-4図 ベンチュリノズルにおける除去原理

第3.1.1-5図 ベンチュリノズルにおける速度模式図

第3.1.1-5 図に示すとおり、ベンチュリスクラバはガス流速 V₁と水滴速度 V₂が異なる ことで、ガス中のエアロゾルが水滴に衝突し水滴に付着する現象を利用していることか ら、慣性衝突による除去が支配的と考えられる。慣性衝突効果では「ガス流速」と「粒径」 が主な影響因子である。 ①ベンチュリノズル下方よりベントガスが流入する。

- ②ベンチュリノズルのスロート部(絞り機構)によってベントガスの流速が加速される
 ③ガス流速を大きくすることで発生する負圧によりスクラビング水が吸入され、ガス流中に水滴を噴霧(いわゆる霧吹き)する。
- ④噴霧によって、微小水滴にすることでエアロゾルが水と接触する面積が大きくなり、 エアロゾルがフィルタ媒体と衝突し、ベントガスから捕集される。
- ⑤ベンチュリノズルの出口に設置した板によってベントガス及び水滴の方向が変わり, エアロゾルはスクラビング水に保持される。

第3.1.1-6図 ベンチュリスクラバにおける除去原理の補足図

(5) 金属フィルタにおけるエアロゾルの除去原理

金属フィルタは、ベンチュリスクラバの後段に設置され、より粒径の小さいエアロゾル を除去する。

金属フィルタの除去原理は,第3.1.1-7 図に示すように,さえぎり,拡散,慣性衝突効 果の重ね合わせにより,エアロゾルを金属繊維表面に付着させ捕集する。さえぎり,拡散, 慣性衝突効果では「粒径」と「ガス流速」が主な影響因子である。

以上より,金属フィルタの除去性能に対して,影響を与える可能性のある主要なパラメ ータとしては,ガス流速,エアロゾル粒径を考慮する必要がある。

第3.1.1-7図 金属フィルタにおける除去原理

3.1.2 ガス状放射性よう素の除去原理

重大事故時に発生する放射性よう素は、粒子状よう素(CsI:よう化セシウム等)と、ガ ス状よう素として無機よう素(I₂:元素状よう素)と有機よう素(CH₃I:よう化メチル等) の形態をとる。大部分のよう素は粒子状よう素として格納容器内へ放出され、残りは無機 よう素として格納容器内に放出されるが、無機よう素の一部は格納容器内の有機物(塗装 等)と結合し、有機よう素へ転換する。粒子状よう素については、エアロゾルの除去原理 に基づき、ベンチュリスクラバと金属フィルタで捕集する。

有機よう素については,吸着材と化学反応させることにより,よう素除去部で捕集 する。

(1) フィルタ装置内におけるベントガスの流れ

フィルタ装置内部の下部にベンチュリスクラバ(ベンチュリノズル・スクラビング水 等),上部に金属フィルタを設置し,金属フィルタの下流側に流量制限オリフィスを介し てよう素除去部を設置する。ベントガスの流れを第3.1.2-1 図に示す。

オリフィス通過時の蒸気の状態変化のイメージを第3.1.2-2図に示す。

(2) ベチュリスクラバにおけるよう素の除去

ベントガスがベンチュリスクラバを通過する際,無機よう素を化学反応によりスクラ ビング水中に ために,スクラビング水には第 3.1.2-1 表に示す 薬剤を添加する。

第3.1.2-1 表 スクラビング水への添加薬剤

薬剤	化学式	目的

の沃加に上って、スクラビング水けアルカリ性冬件下とたろたと
式(3.1.2-2)により, 無機よう素を捕集する。

したがって、ベンチュリスクラバにおける無機よう素の除去効率に影響を与える因子 として「スクラビング水の pH」が挙げられる。

なお,一般的に有機よう素は,無機よう素に比べ活性が低く,反応しにくいため,ベン チュリスクラバでの有機よう素の除去は期待していない。

(3) よう素除去部におけるよう素の除去

3.2 運転範囲

3.1.1項で,エアロゾルの除去原理において主要なパラメータとしたガス流速及びエアロ ゾル粒径に加え,ベント時に変動するパラメータであるガス温度及びガス蒸気割合につい て,有効性評価に基づき,ベント実施中に想定する運転範囲を第3.2-1表に示す。また, 3.1.2項で,ガス状放射性よう素の除去原理において主要なパラメータとしたスクラビング 水のpH及びガスの過熱度について,ベント実施中に想定する運転範囲を第3.2-1表に示 す。

パラメータ	想定運転範囲
ガス流速	ベントからほぼ静定した格納容器圧力に対応するベンチュリノ
	ズル部のガス流速は となる。なお、金属フィ
	ルタ部におけるガス流速は、適切なガス流速となるよう金属フィ
	ルタの表面積を設定している。
エアロゾル粒径	サプレッション・チェンバからのベント時の粒径分布より,質量
	中央径をとする。
ガス温度	ベントから格納容器温度がほぼ静定した状態の運転範囲は
	となることから、上限を最高使用温度に合わせ包絡
	するよう, とする。
ガス蒸気割合	ベントから事象発生7日後における、フィルタ装置に流入する
	ガス蒸気割合は %となるが保守的に 0~100 %を運
	転範囲とする。
スクラビング水の pH	スクラビング水は高アルカリに保つために
	添加されていることから、運転範囲はアルカリ側で維持される。
ガフ海劫 在	ベントからほぼ静定した格納容器圧力に対応する,よう素除去部
ハヘ 四 然 没	におけるベントガスの過熱度は, Kとなる。

第3.2-1表 ベント実施中における想定運転範囲

3.3 性能検証試験結果

3.3.1 性能検証試験の概要

AREVA社製のフィルタ装置は、大規模なセクター試験装置により、実機使用条件を 考慮した性能検証試験を行っており、その結果に基づき装置設計を行っている。以下に試 験の概要を示す。

(1) エアロゾルの除去性能試験(JAVA試験)

AREVA(当時Siemens)社は、1980年代から1990年代にかけ、ドイツのカ ールシュタインにある試験施設(以下、「JAVA」という。)にて、電力会社、ドイツ 原子力安全委員会(RSK)及びその他第三者機関立会の下、フィルタ装置のエアロゾル に対する除去性能試験を行っている。

試験装置には、実機に設置するものと同一形状のベンチュリノズルと、実機に設置する ものと同一仕様の金属フィルタを設置し、試験条件として、実機の想定事象における種々 のパラメータ(圧力、温度、ガス流量等の熱水力条件及びエアロゾル粒径、濃度等のエア ロゾル条件)について試験を行うことにより、フィルタ装置の使用条件において所定の性 能が発揮されることを確認している。試験装置の概要を第3.3.1-1 図に、試験条件を第 3.3.1-1 表に示す。 NT2 補① V-1-8-1 別添3 R0

計 除 冬						
圧	力	bar[abs]				
		(kPa[abs])				
温	度	°C				
流	重	m³/h				
蒸	気 割 合	%				
エ	アロゾル					

第3.3.1-1表 JAVA試験条件(エアロゾル除去性能試験)

第3.3.1-2図 試験用エアロゾルの粒径分布

(2) 無機よう素の除去性能試験(JAVA試験)

AREVA社は「JAVA」試験装置を使用し、(1)に示したエアロゾルの除去性能試験と同時期に電力会社,RSK及びその他第三者機関立会の下,無機よう素の除去性能試験を実施している。

試験条件として,種々のパラメータ(圧力,温度,ガス流量等の熱水力条件,スクラビング水のpH等の化学条件)にて試験を行うことにより,フィルタ装置における無機よう素の除去性能について確認している。JAVA 試験における無機よう素の試験条件を第3.3.1-2表に示す。

武 験 条 件						
圧	力	bar[abs]				
		kPa[abs])				
温	度	°C				
流	重	m ³ /h				
	рH					
物	質					

第3.3.1-2表 JAVA試験条件(無機よう素除去性能試験)

(3) 有機よう素の除去性能試験(JAVA PLUS試験)

実機使用条件を想定した有機よう素の除去性能を確認するため、AREVA社は「J AVA」試験装置に有機よう素除去部を設けた「JAVA PLUS」試験装置を用い て、2013年より有機よう素の除去性能試験を実施している。

試験装置には,実機に使用する吸着材を実機と同一の密度で充填し,試験条件として 種々のパラメータ(圧力,温度,過熱度等の熱水力条件)にて試験を行うことにより,フ ィルタ装置における有機よう素の除去性能について確認している。

試験装置の概要を第3.3.1-3 図に、試験条件を第3.3.1-3 表に示す。

試 験 条 件						
圧		力	bar[abs]			
			kPa[abs])			
温		度	°C			
蒸	気 割	合	%			
過	熱	度	K			
物		質				

第3.3.1-3表 JAVA PLUS試験条件(有機よう素除去性能試験)

3.3.2 エアロゾルの除去性能試験結果

JAVA試験における性能検証試験結果を第3.3.2-1 表~4 表に示す。エアロゾルの 除去原理では、3.1.1 に示すとおり、「流速」と「粒径」が主な影響因子であるため、 ガス流速とエアロゾル粒径に対しての性能評価を行った。さらに、その他の試験条件に 用いたパラメータについてもフィルタ装置のエアロゾルの除去性能への影響を確認する ため、ガス温度及びガス蒸気割合に対しての性能評価を行った。

(1) ガス流速

ガス流速の変化による除去性能を確認するために,流量からベンチュリノズル部のガ ス流速と金属フィルタ部のガス流速を計算して確認した。

第3.3.2-1 図及び第3.3.2-2 図にベンチュリノズル部及び金属フィルタ部におけるガ ス流速に対して整理した性能検証試験結果を示す。

この結果から、ベンチュリスクラバ部にて想定する運転範囲 (_________m/s) と金属フィルタ部にて想定する運転範囲全域にわたって要求される DF1000 以上を満足していることがわかる。

なお,運転範囲よりも小さいガス流速においても、ベンチュリスクラバ及び金属フィルタの組合せで、DF1000以上を満足しているため、フィルタ装置はガス流速によらず十分な性能を有していると言える。

第3.3.2-2図 金属フィルタ部におけるガス流速に対するベンチュリスクラバ と金属フィルタを組み合わせた除去係数

(2) エアロゾル粒径

第3.3.2-3 図に試験用エアロゾル(エアロゾルの粒径)に対して整理した性能検証試験結果を示す。この結果からエアロゾル粒径(質量中央径: μm)の違いによって除去性能に影響が出ているような傾向は見られず,いずれの試験結果においても要求される DF1000 を満足していることがわかる。

サプレッション・チェンバからのベント実施時に想定する質量中央径は μm で ある。試験用エアロゾルとしては質量中央径 を使用し,DF1000以上を 満足していることから,フィルタ装置はエアロゾル粒径に対して十分な性能を有してい ると言える。

第3.3.2-3 図 粒径に対する除去係数

(3) ガス温度

したがって, ガス温度の運転範囲

第3.3.2-4 図にガス温度に対して整理した性能検証試験結果を示す。この結果から、 ガス温度の違いによって除去性能に影響が出ているような傾向は見られず、試験を実施 した全域にわたって要求される DF1000 以上を満足していることがわかる。

に対して,フィルタ装置はガス温度

第3.3.2-4図 ガス温度に対する除去係数

(4) ガス蒸気割合

第3.3.2-5 図にガス蒸気割合に対して整理した性能検証試験結果を示す。この結果から、ガス蒸気割合の違いによって除去性能に影響が出ているような傾向は見られず、試験を実施した全域にわたって要求される DF1000 以上を満足していることがわかる。

ガス蒸気割合の運転範囲(0~100%)で性能検証試験が行われており、フィルタ装置 はガス蒸気割合に対して十分な性能を有していると言える。

	第 3.3	5.2-1 表	エアロゾル	rν	除去性	能試験結果	
Test-No	Test	Pressure	Temp.	Gas Flow	Gas	Contaminated Gas Concentration	Total Removal Efficiency
Active Ac	Aerosol	(bar abs)	(°C)	(m ³ /h)	Composition	(mg/m^3)	(%)

第 3.3.2-2 表	エアロゾル
-------------	-------

除去性能試験結果 Total Removal Efficiency (%) Contaminated Gas Concentration Test Aerosol Pressure Temp. Gas Flow Gas Composition Test-No. (bar abs) (°C) (m^3/h) (mg/m^3)

			1.4.1				
Test-No.	Test Aerosol	Pressure (bar abs)	Temp. (°C)	Gas Flow (m ³ /h)	Gas Composition	Contaminated Gas Concentration (mg/m ³)	Total Removal Efficiency (%)

第3.3.2-3 表 エアロゾル 除去性能試験結果(1/2)

	第 3.3.2-4 表	エアロゾル	/ 除:	去性能試験結果	ŧ (2∕2))
Test-No.	Gas	Gas Flow	Pressure	Total Removal Efficiency	Test	Contaminated Gas Concentration
	COmposition	(m ³ /h)	(bar abs)	(%)	Aerosoi	(mg/m^3)

- 3.3.3 ガス状放射性よう素の除去性能試験結果
 - (1) 無機よう素除去性能試験結果

JAVA試験における無機よう素の除去性能試験結果を第 3.3.3-1 表に示す。無機よう素のベンチュリスクラバ (スクラビング水) への捕集は化学反応によるものであり、その反応に影響を与える因子は、「スクラビング水の pH」である。第 3.3.3-1 図に、スクラビング水の pH に対する無機よう素の除去性能試験結果を示す。この結果から、スクラビング水がの pH に対する無機よう素の除去性能試験結果を示す。この結果から、スクラビング水がの pH に対する無機よう素の除去性能試験結果を示す。この結果から、スクラ

一般的に無機よう素は、有機よう素と比べ活性が高く、反応しやすいため、よう素除 去部でも捕集されやすい。したがって、ベンチュリスクラバによう素除去部を組み合わ せることで、さらに除去性能が高くなるものと考えられる。

第3.3.3-1図 pHに対する無機よう素除去係数

<i>,</i>						
Test-No.	Pressure (bar abs)	Temp. (°C)	Gas Flow (m ³ /h)	Gas Composition	Scrubbing Water (pH)	Removal Efficiency (%)
			(111 / 117			

第3.3.3-1表 ベンチュリスクラバにおける無機よう素除去性能試験結果

(2) 有機よう素除去性能試験結果

JAVA PLUS試験における有機よう素の除去性能試験結果を第3.3.3-2表に示 す。 JAVA PLUS試験で得られた除去係数を,過熱度で整理したものを第3.3.3-2 図に示す。

ここで、JAVA PLUS試験装置と実機においては、ベッド厚さが異なるため、ベ ントガスの吸着ベッドにおける滞留時間が異なる。その補正をするために以下に示す関 係を用いる。

第3.3.3-3 図 JAVA PLUS試験結果(補正後)

Test-No.	VSV inlet Pressure (bar abs)	Pressure in the M/S (bar abs)	Temp. (°C)	Gas Flow (kg/s)	Gas Composition (Steam:Air) (vol.%)	Removal Efficiency (%)

第3.3.3-2表 有機よう素除去性能試験結果

3.3.4 フィルタ装置の継続使用による性能への影響

フィルタ装置を継続使用することにより,放射性物質の除去性能に影響する可能性の ある因子について検討する。

- (1) エアロゾルの再浮遊
 - a. ベンチュリスクラバ部
 - (a) 想定する状態

フィルタ装置を継続使用すると、ベンチュリスクラバで捕集されたエアロゾルによ り、ベンチュリスクラバ内のエアロゾル濃度は徐々に上昇する。スクラビング水の水 面近傍には、水沸騰やベンチュリノズルを通るベントガスによる気流により、細かい 飛沫(液滴)が発生するが、その飛沫にエアロゾルが含まれていると、エアロゾルが ベンチュリスクラバの後段に移行することが考えられる。

(b) 影響評価

以上のとおり,フィルタ装置は,ベンチュリスクラバでのエアロゾルの再浮遊に対 して考慮した設計となっている。

b. 金属フィルタ部

(a) 想定する状態

(b) 影響評価

金属フィルタに捕集されたエアロゾルの崩壊熱は、ベント中はベントガスの流れに よって冷却され、ベント後はベンチュリスクラバに捕集したエアロゾルの崩壊熱によ り発生する蒸気によって冷却されることから、金属フィルタの温度は、エアロゾルの 再浮遊が起こるような温度(参考:CsOHの融点:272.3 ℃)に対し十分低く抑えるこ とができる。
- (2) ガス状放射性よう素の再揮発
 - a. ベンチュリスクラバにおける無機よう素の再揮発
 - (a) 想定する状態

フィルタ装置を継続使用すると、スクラビング水の温度は上昇する。スクラビング 水の温度上昇に伴い、スクラビング水中に捕集した無機よう素が気相中に再揮発する ことが考えられる。

(b) 影響評価

気液界面(フィルタ装置水面)における無機よう素の平衡については温度依存性が あり、スクラビング水の水温が高い方が気相の無機よう素の割合が増える。しかし、 アルカリ環境下では、無機よう素とよう素イオンの平衡により液相中に存在する無機 よう素が極めて少なく、無機よう素の気相部への移行量は、スクラビング水の温度が 上昇しても十分小さい値となる。

JAVA試験は、高温のベントガスを用いて、無機よう素が気相中に移行しやすい 条件での試験を実施しており、温度上昇による影響に配慮したものとなっている。

- b. よう素除去部における放射性よう素の再揮発
 - (a) 想定する状態

化学工業の分野ではゼオライトに高温の水素を通気することにより捕集されている よう素を再揮発させる技術がある。よう素除去部に充填された銀ゼオライトに、ベン トガスに含まれる水素が通気されると、捕集された放射性よう素が再揮発することが 考えられる。

(b) 影響評価

水素によるよう素の再浮遊は400 ℃以上の高温状態で数時間程度,水素を通気した 場合に起こることが知られている。一方フィルタ装置に流入するガスは200 ℃以下で あり,銀ゼオライトに水素を含むガスが通過したとしても,ゼオライトに捕集されて いるよう素が再揮発することはない。

また、よう素除去部で捕集した放射性よう素の崩壊熱は、ベント中はベントガスに より冷却され、ベント後は系統を不活性化するために供給される窒素により冷却され ることから、よう素除去部の温度上昇は、放射性よう素の再揮発が起こるような温度 (400 ℃)に対して、十分低く抑えることができる。

- (3) フィルタの閉塞
 - a. 想定する状態

炉心損傷後のベント時には、溶融炉心から発生するエアロゾルに加え、炉内構造物の 過温などによるエアロゾル、コアコンクリート反応により発生する CaO₂ 等のコンクリ ート材料に起因するエアロゾル及び保温材等の熱的・機械的衝撃により発生する粉塵が、 フィルタ装置に移行する可能性がある。これらのエアロゾルの影響により、ベンチュリ ノズルの狭隘部や金属フィルタに付着し、閉塞することが考えられる。

b. 影響評価

ベンチュリノズルの狭隘部を通過するガス流速は、高速となる。ベンチュリノズルの 狭隘部寸法に対して、エアロゾルの粒子径は極めて小さく、ベンチュリノズルが閉塞す ることはない。

- (4) 薬剤の容量減少
- a. 想定する状態 無機よう素はベンチュリスクラバにて薬剤 との反応により捕 集されるが,薬剤の容量を超える無機よう素が流入した場合には,無機よう素は捕集さ れずに下流に流出されることが考えられる。
 - b. 影響評価 スクラビング水に含まれるの量は、格納容器から放出される無 機よう素の量に対して十分大きいことから、容量に達することはない。
- (5) よう素除去部の容量減少
 - a. 想定する状態

ガス状放射性よう素は、銀ゼオライトに捕集されるが、銀ゼオライトの吸着容量に達 した場合には、ガス状放射性よう素は捕集されずに系外に放出されることが考えられる。

b. 影響評価

よう素除去部で保持が可能なガス状放射性よう素の吸着容量(銀分子数)は、格納容 器から放出されるよう素量に対して十分大きいことから吸着容量に達することはない。

- (6) ベント時に生じるスウェリングによるよう素除去部への影響
 - a. 想定する状態

スクラビング水に蒸気が流入すると、スウェリングにより水位が上昇する。その結果、 スクラビング水の水位は通常待機時に比べ上昇しており、よう素除去部の外壁はスクラ ビング水に接することとなり、スクラビング水の温度による除去性能に影響することが 考えられる。

b. 影響評価

ベントガスの温度はベンチュリスクラバ(スクラビング水)を通過することで,ス クラビング水の水温と同じになっているものと考えられ,

よって,スクラビング水と

接するよう素除去部の外壁はスクラビング水から入熱されるため、よう素除去部で蒸 気が凝縮することはなく、よう素の除去性能への悪影響はない。

- 4. 設備の維持管理
 - (1) 点検方法
 - a. 機械設備

格納容器圧力逃がし装置の機械設備については,東海第二発電所の他設備の点検実績等を 参考に,設置環境や動作頻度に対する故障及び劣化モード等を考慮して,適切な周期で点検 (時間基準保全)を行うことにより,設備の健全性を確保する。

一方,東海第二発電所として保全の経験がない設備として,高アルカリ性のスクラビング 水に接液する設備が挙げられる。これらの設備については,劣化モード(腐食等)を考慮し た材料選定を行っており,有意な劣化が発生する可能性は小さいと考えているが,先ずは初 回定期検査時に点検を実施し,その結果を基に点検周期を定めるものとする。

スクラビング水の分析については、海外プラントにおいて窒素封入環境下で約15年間薬液 濃度の有意な変化は認められていない実績があり、性状に有意な変化はないものと考えられ るが、定期検査毎に実施することとする。

また、よう素除去部に充填される銀ゼオライトについては、試験を行い、スクラビング水 による飽和蒸気環境下で15カ月間保管した後も性能基準を満たしていることを確認した。

東海第二のフィルタ装置では、銀ゼオライトのサンプリングが可能な設計としており、先 ずは初回定期検査時に性状の確認を行い、その結果を基にサンプリング周期を定めるものと する。

機械設備の点検内容を第4-1表に示す。

設備名		点検内容	点検周期・時期(計画)
フィルタ装置	本体	 外観点検(内面) 	初回定検(結果によりそ
			の後の周期を決定)
	機能確認	・漏えい確認	本体内部点検に合わせて
			実施
	スクラビング水	・水質確認	毎定検
内部構造物	本体	・外観点検	初回定検(結果によりそ
・ベンチュリノズル			の後の周期を決定)
・金属フィルタ	機能確認(とう	・サンプル性状確認	-
・流量制限オリフィス	表除土如	シッシン アレーエイバル世中心	
・よう素除去部	来你又的		
圧力開放板	本体	・外観点検	初回定検(結果によりそ
		・フランジ面手入れ	の後の周期を決定)
	機能確認	・漏えい確認	-
配管	本体	・外観点検	10 定検毎
		・フランジ部点検手入	10 定検毎,ただし接液部
		n	については初回定検(結
	機能確認	・漏えい確認	果によりその後の周期を
			決定)
弁	本体	・弁箱内面点検手入れ	3 定検毎,ただし接液部
		• 弁体, 弁座, 弁棒等	については初回定検(結
		点検手入れ	果によりその後の周期を
		・パッキン類交換	決定)
		·外観目視点検	
	機能確認	・漏えい確認	
		・作動試験	毎定検(手動弁を除く)
ポンプ	本体	・内面点検手入れ	4 定検毎
		・インペラ、シャフ	
		ト、ケーシング等点	
		検手入れ	
		・パッキン類交換	1
		·外観目視点検	
	機能確認	・漏えい確認	
		・作動試験	4 定検毎,ただし移送ポ
			ンプについては毎月定期
			試験

第4-1表 機械設備の点検内容

b. 電気設備

格納容器圧力逃がし装置の電気設備については,東海第二発電所の他設備の点検実績等を 参考に,設置環境や動作頻度に対する故障及び劣化モード等を考慮して,適切な周期で点検 (時間基準保全)を行うことにより,設備の健全性を確保する。

電気設備の点検内容を第4-2表に示す。

対象機器		点検内容	点検周期・時期(計画)
電動駆動弁駆動部	電動機	・外観点検	2 定検毎
		・分解点検	156ヶ月毎
	トルクスイッチ	・動作確認	2 定検毎
		・設定値確認	
	リミットスイッ	・動作確認	2 定検毎
	チ	・取付状態確認	
	電気室	・結線点検	2 定検毎
	開度計	・外観点検	2 定検毎
		・指示値確認	
	試験・測定	・絶縁抵抗測定	1 定検毎
		・作動試験	
		・電流測定	
ポンプ電動機	電動機	・外観点検	5 定検毎
		・分解点検	
	機能確認	・絶縁抵抗測定	5 定検毎,ただし移送ポ
		・作動試験	ンプについては毎月定期
		・電流測定	試験

第4-2表 電気設備の点検内容

c. 計装設備

格納容器圧力逃がし装置の計装設備については,東海第二発電所の他設備の点検実績等を 参考に,設置環境や動作頻度に対する故障及び劣化モード等を考慮して,適切な周期で点検 (時間基準保全)を行うことにより,設備の健全性を確保する。

計装設備の点検内容を第4-3表に示す。

設備名	点検内容		点検周期・時期(計画)
水位計	特性試験	・外観点検	1 定検毎
		・単体・ループ校正	
圧力計	特性試験	・外観点検	1 定検毎
		・単体・ループ校正	
温度計	特性試験	・外観点検	1 定検毎
		・電気試験]
		・ループ校正	
放射線モニタ	特性試験	・外観点検	1 定検毎
		・単体・ループ校正	
		・線源校正	
水素濃度計	特性試験	・外観点検	1 定検毎
		・単体・ループ校正	
		・ガス校正	
サンプリング機器	外観検査	・外観点検	1 定検毎
	特性試験	・計器校正	1 定検毎
	機能・性能検査	・作動試験	1 定検毎
	分解点検	・ポンプ分解点検	5 定検毎
制御盤	外観検査	・外観点検	1 定検毎

第4-3表 計装設備の点検内容

(2) 試験方法

格納容器圧力逃がし装置の機能検査として,「弁開閉試験」,「移送ポンプ作動試験」,「漏 えい試験」,「スクラビング水質確認試験」及び「よう素除去部(銀ゼオライト)性能確認試 験」を実施する。

a. 弁開閉試験

系統が所定の機能を発揮することを確認するため、以下の弁について開閉試験を実施する。第4-1図に対象弁を示す。

- ・中央制御室の操作スイッチによる弁開閉試験
- ・フレキシブルシャフトによる人力での弁開閉試験

第4-1図 格納容器圧力逃がし装置機能検査対象弁

b. 移送ポンプ作動試験

排水設備のうち移送ポンプが所定の機能を発揮することを確認するため、テストラインを 使用して、移送ポンプの作動試験を実施する。移送ポンプ作動試験の概要図を第4-2図に示 す。

注)系統構成は現在の計画

第4-2図 排水設備(移送ポンプ)作動試験概要図

c. 漏えい試験(主配管)

漏えい試験の試験条件・方法を第4-4表に,試験概要図を第4-3図に示す。 漏えい試験の各条件について下記(a)~(c)に整理する。

(a) 加圧媒体

格納容器圧力逃がし装置の最高使用圧力620 kPa [gage] でのベント開始時の系統内は窒 素が支配的であること、また、ベント継続中に漏えい防止対象となる放射性物質は窒素よ り分子量が大きいことから、窒素を加圧媒体とすることは妥当であると判断する。なお、 事故時に発生する水素については、系統内は常に流動があり滞留することがないため、フ ランジ部等から水素の大量漏えいは考え難いこと、系統内から水素が漏えいした場合にお いても、建屋内についてはPARによる処理が、建屋外については外気への拡散が期待できる こと、また、試験時の安全性確保の観点から、水素を加圧媒体とした漏えい試験は行わな い。 (b) 試験圧力

漏えい試験では、系統内が不活性状態で維持できることを確認するため窒素封入圧力30 kPa [gage] 以上を試験圧力とする。また、系統の使用時にバウンダリ機能を維持できるこ とを確認するため最高使用圧力620 kPa [gage] を試験圧力とする。

(c) 試験温度

漏えい試験では、系統の最高使用温度200 ℃を模擬することが困難となることから約 180 ℃低い常温約20 ℃での漏えい確認となるが、同様に系統最高使用温度での漏えい確認 が困難な原子炉圧力容器の漏えい試験では、通常運転温度約280 ℃に対し180 ℃以上低い 100 ℃以下で漏えい確認を行っていることから、常温での漏えい確認で十分であると判断 する。

	加圧 媒体	試験 圧力	試験 温度	試験目的・方法
簡易 点検	窒素 ガス	30 kPa [gage] 以上 (窒素封入圧力)	常温	系統内を不活性状態に維持することを目的 に,系統全体を窒素封入圧力(待機状態)に 加圧し,著しい漏えいのないことを確認す る。
本格 点検	窒素 ガス	620 kPa [gage] (最高使用圧力)	常温	使用時にバウンダリ機能が維持されている ことを確認するために,系統全体を最高使 用圧力に加圧し,著しい漏えいのないこと を確認する。

第4-4表 漏えい試験の試験条件・目的・方法

第4-3図 漏えい試験の試験概要図

d. スクラビング水質確認試験

スクラビング水質確認試験は、サンプリングラインから水を採取・分析を実施し、スクラ ビング水が規定の濃度であることを確認する。

e. 銀ゼオライト性能確認試験

よう素除去部に充填される銀ゼオライトについては,原子炉停止期間中にベントフィルタ 内の試験用銀ゼオライトを用いてよう素除去性能試験を行い,規定の性能が確保されている ことを確認する。

可燃性ガスの爆発防止対策について

格納容器圧力逃がし装置の系統内で可燃性ガスの爆発が発生した場合,格納容器圧力逃がし装置 に期待している放射性物質の低減効果が喪失するおそれ又はフィルタ装置内で保持している放射性 物質の外部への放出のおそれがあるため,設計及び運用により系統内での可燃性ガスの爆発を防止 する。

(1) 考慮する可燃性ガスの種類及び対策

炉心の著しい損傷を伴う重大事故時に発生するおそれのある可燃性ガスとして、ジルコニウ ムー水反応、水の放射線分解及び金属腐食により発生する水素が考えられる^{※1}。これらの反応 によって格納容器内水素濃度は、可燃限界濃度である4 vol%を大きく上回るが、格納容器内 雰囲気は通常運転時から不活性化(ドライ条件で酸素濃度2.5 vol%以下に管理)することに 加え、水の放射線分解によって発生する酸素を考慮しても酸素濃度を可燃限界であるドライ条 件で5 vol%未満に管理することで、水素及び酸素が同時に可燃限界に到達することを防止す る。格納容器圧力逃がし装置の系統内については、待機状態から系統内を窒素で不活性化する ことにより、格納容器内の水素が排出経路を通過する際における水素爆発を防止する。

また,格納容器圧力逃がし装置の配管については,ベント時に発生する蒸気凝縮で発生する ドレン水による閉塞やこれに起因する水素及び酸素の滞留を防止するために,配管ルートにU シール部ができないように配置する。新設部分については水平配管に適切な勾配を設ける。

なお、水素爆発の条件として、水素濃度4 vol%かつ酸素濃度5 vol%以上の条件に加えて、 着火源又は500 ℃以上の発熱源が必要となるが、格納容器内における着火源又は500 ℃以上 の発熱源の不確かさが大きいため、酸素濃度を管理することで水素爆発を防止することとして いる。

- ※1:溶融炉心・コンクリート相互作用によって、可燃性ガスである一酸化炭素が発生することが考えられるが、コリウムシールドを設置することでペデスタル(ドライウェル部)のコンクリートが溶融炉心によって侵食されないことから、一酸化炭素は可燃性ガスとして考慮しないこととした。また、仮にペデスタル(ドライウェル部)のコンクリートが床面及び壁面共に30 cm 侵食したことを仮定した場合においても、一酸化炭素の発生量は15 kgであり、有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」における水素発生量700 kg に対して十分に低いこと及び一酸化炭素の可燃限界濃度が空気中において12.5 vo1%であることを踏まえると、無視できると考えられる。
- (2) 系統の各運転状態における設計上の考慮
- a. 系統待機状態①:プラント通常運転中
- (a) 水素爆発防止対策

プラント通常運転中においては、格納容器と同様に系統内を窒素で不活性化する設計として いる。フィルタ装置から放出端へ至る配管上には、窒素置換時に大気と隔離するため、圧力開 放板を設けている。この圧力開放板は、格納容器からの排気と比較して、十分低い圧力で開放

RO

するよう設計している。

(b) 系統における水素濃度監視

系統における水素濃度に関しては、水素の発生がないため、監視不要である。

北気筒

この系統状態における水素爆発防止対策概要を第1図に示す。

系統待機状態①:プラント通常運転中

第1図 水素爆発防止対策(系統待機状態①)

- b. 系統待機状態②:重大事故時,ベント前
 - (a) 水素爆発防止対策

炉心の著しい損傷を伴う重大事故時の格納容器内雰囲気は,蒸気,窒素,水素及び酸素が混 合した状態となるが,格納容器ベント実施前の系統は格納容器内からのガスの流入はないた め,不活性化が保たれる。

(b) 系統における水素濃度監視 系統における水素濃度に関しては、系統内に水素が持ち込まれないため、監視不要である。

この系統状態における水素爆発防止対策概要を第2図に示す。

第2図 水素爆発防止対策(系統待機状態②)

- c. 系統運転状態①:ベント実施直後
 - (a) 水素爆発防止対策

格納容器ベント開始時において、ベントガス中の蒸気がスクラビング水によって凝縮され た場合、酸素濃度が上昇することで、水素爆発が発生するおそれがあるが、格納容器ベント実 施前から、格納容器内の酸素濃度をドライ条件で監視し、4.3 vol%に到達した時点でベント 実施する判断基準を設定していること及び格納容器圧力逃がし装置系統内は不活性化されて いるため、仮にベントガス中の蒸気全てがスクラビング水によって凝縮された場合において も水素爆発は発生しない。なお、このベント実施判断基準については、酸素濃度の可燃限界で ある5 vol%に対し、酸素濃度監視設備(格納容器酸素濃度(SA))の測定誤差である±0.6 vol%及び0.1 vol%の余裕を考慮して設定した。また、格納容器内の気体については、格納 容器スプレイ及び温度差による自然対流効果によって均一に撹拌されており、濃度分布がな いため、酸素濃度監視設備(格納容器酸素濃度(SA))により格納容器全体の濃度を代表し て監視することができる。

(b) 系統における水素濃度監視

系統における水素濃度に関しては、格納容器から可燃限界を超えた水素が流入するが、格納 容器内の酸素を可燃限界未満で管理していることから監視不要である。

(c) 対向流による空気の流入

フィルタ装置内が負圧に至るような状況下では、対向流が発生することにより、フィルタ装置内に空気が流入するおそれがある。しかしながら、格納容器ベント実施時におけるスクラビング水沸騰までの間、ベントガス中の蒸気がスクラビング水によって凝縮された場合においても、蒸気の供給が継続的に行われるためフィルタ装置内が負圧にならないこと及び非凝縮 性ガスの排出は継続されることから、対向流は発生しない。 (d) 枝管における水素及び酸素の蓄積について

東海第二発電所では、格納容器内をドライ条件に換算して、5 vol%未満に管理することか ら、ベント実施中において、仮に枝管におけるベントガスの蓄積があった場合においても、枝 管での水素爆発は発生しないと考えられるが、万が一、枝管内での成層化等によって混合ガス の濃度が変化した場合、枝管での水素爆発の脅威が存在する。そのため、枝管内での混合ガス の蓄積評価を実施する。枝管における水素及び酸素の混合ガスの蓄積の評価について「BWR 配管における混合ガス(水素・酸素)蓄積防止に関するガイドライン(第3版)」(日本原子力技 術協会)に基づき、上向きの枝管に対して評価を実施する。なお、ガイドラインでは、下向き の枝管に対しては、水封されることで混合ガスが蓄積しないと評価されているため対象外と した。

枝管長さ(L)を枝管内径(D)で除することによって規格化した不燃限界長さ(L/D)の数値によって、枝管内に混合ガスが蓄積する可能性の有無を判断する。不燃限界長さ(L/D)の数値が4以下であれば混合ガスの蓄積が発生しないとされている。評価結果を第1表に示す。

ドライウェル側第一弁のバイパスライン,原子炉建屋ガス処理系ライン及び第二弁バイパス 弁については,混合ガスが蓄積する可能性がある結果となった。そのため,第3図及び第4図 に示すように,ベントラインを設置し,混合ガスが蓄積することのない設計とする。また,フ ィルタ装置に接続される枝管については,不燃限界長さ(L/D)を考慮して,必要に応じてベ ントラインを設置する設計とする。

(e) 圧力開放板の下流における水素爆発について

格納容器から圧力開放板までは不活性化されていること及び格納容器内の酸素濃度をドラ イ条件で可燃限界未満に維持することで、高濃度の水素雰囲気においても水素爆発は発生し ないが、圧力開放板以降については、不活性化していない範囲であるため、高濃度の水素と 空気が触れることで水素爆発のおそれがある。しかしながら、ベント実施直後は、格納容器 からのベントガスによって系統内の窒素が押し出され、圧力開放板以降の空気が排出される ことから、放出端までの範囲で高濃度の水素が空気と触れず、水素爆発が発生することはな いと考えられる。また、放出端から先については、大気であるものの、大気中には着火源等 がなく、水素爆発は発生しないと考えられる。

					•
		枝管	枝管	L/D	浪入ガマ芸
	分岐箇所※	長さ	内径		低日ルハ雷
		L(m)	D (m)	(-)	惧 刂 胎注
	ドライウェル側第一弁	4 006	0 0495	80.9	右
Û	バイパスライン(上流側)	4.000	0.0495	00.9	行
0	ドライウェル側第一弁	1 115	0.0405	22 5	右
ベイパス	バイパスライン(下流側)	1.115	0.0495	22.0	伯
3	換気空調系ライン	0.755	0.5906	1.28	無
	原子炉建屋ガス処理系				
4	ライン	5.073	0. 5906	8.59	有
5	第二弁バイパス弁(下流側)	7.043	0.4286	16.4	有

第1表 主ラインから分岐する枝管の閉止端までの長さと口径等

※:フィルタ装置に接続される枝管については、不燃限界長さ(L/D)を考慮して、必要に応じて ベントラインを設置する設計とする。

第3図 枝管へのベントラインの追設(混合ガス蓄積防止)

第4図 ベントライン設置概要図

この系統状態における水素爆発防止対策概要を第5回に,酸素濃度監視設備(格納容器 酸素濃度(SA))の概要図を第6回に,有効性評価シナリオ「雰囲気圧力・温度による 静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用しない場合)」における格 納容器の気相濃度の推移を第7図及び第8図に示す。なお,図に示す格納容器の水素及び 酸素の気相濃度については,MAAP解析に基づく水ージルコニウム反応により発生する 水素に加え,MAAP解析で考慮していない水の放射線分解によって発生する水素及び酸 素についても考慮している。

第5図 水素爆発防止対策(系統運転状態)

計測周期:サンプリング装置は,格納容器内ガスのサンプリングから,測定,排出までの工程を約3分で行う。

中央制御室指示:ドライ条件及びウェット条件での濃度を表示する。

第6図 酸素濃度監視設備(格納容器酸素濃度(SA))に関する系統概要図

第7図 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損) (代替循環冷却系を使用しない場合)」における ドライウェルの気相濃度の推移(ウェット条件)

第8図 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損) (代替循環冷却系を使用しない場合)」における

サプレッション・チェンバの気相濃度の推移 (ウェット条件)

- d. 系統運転状態②:非凝縮性ガス排出(ベント開始後1時間程度)後
 - (a) 水素爆発防止対策

ベント実施に伴うサプレッション・プール水の減圧沸騰により,可燃性ガスを含む非凝縮性 ガスが排出された以降の格納容器は,ほぼ水蒸気で満たされた状態となり,系統へ流入するベ ントガスもほぼ水蒸気となることから,水素爆発は発生しない。

(b) 系統における水素濃度監視

系統における水素濃度については、ベントガスがほぼ蒸気となっていることから、監視不要 である。

(c) 対向流による空気の流入

格納容器及び系統から非凝縮性ガスが排出された以降は,仮に対向流が発生した場合であっても,格納容器及び系統内はほぼ蒸気で満たされている状態となるため,水素爆発は発生しない。

この系統状態における水素爆発防止対策概要は第5図と同様である。

- e. 格納容器ベント停止後
 - (a) 水素爆発防止対策
 格納容器ベント停止後、スクラビング水の放射線分解により水素及び酸素が発生するため、
 第一弁の下流から窒素供給装置等による窒素供給を実施し、系統のパージを継続することで、
 水素爆発を防止する。
- (b) 系統における水素濃度監視

系統における水素濃度に関しては,窒素供給による系統パージ停止後において,水素が長期 的に系統内に滞留しないことを確認するため,監視を実施する。

(c) スクラビング水の放射線分解による酸素発生

ベント停止後において、スクラビング水の放射線分解によって発生する酸素については、ス クラビング水中の放射性物質の崩壊熱によって発生量が変化するが、蒸気の発生量も崩壊熱 によって変化する比例関係にあり、以下のとおり、酸素濃度は 0.1 vol%未満となるため系統 内で水素爆発することはない。

- ・スクラビング水の沸騰を考慮し、酸素発生量のG値は0.2とする。
- ・スクラビング水の放射線吸収割合は1.0とする。
- ○蒸気発生量= [崩壊熱(MW)]×1000/([飽和蒸気比エンタルピ]-

[飽和水比エンタルピ])×1000/分子量×22.4×10⁻³×3600

= [崩壊熱 (MW)] ×1000/ ((2675.57-419.10) ×1000/18×22.4× 10^{-3} ×3600

=1985.4× [崩壊熱 (MW)] Nm³/h

○酸素発生量= [崩壊熱(MW)]×10⁶× [G値] /100

/ (1. 602×10⁻¹⁹) / (6. 022×10²³) ×22. 4×10⁻³

×3600× [放射線吸収割合]

(d) 移送ライン使用時における格納容器内への空気流入の影響について 格納容器ベント停止後は、第9図に示すとおり、移送ポンプを用いてスクラビング水をサ プレッション・チェンバへ移送することとしているが、スクラビング水を移送する際には、移 送ポンプ下流側配管のうち水張りを行っていない範囲の空気がスクラビング水と共にサプレ ッション・チェンバへ流入するが、ベント停止後の格納容器は窒素供給により不活性化されて おり、さらに可燃性ガス濃度制御系によって格納容器内の水素濃度を可燃限界未満に維持す るため、空気の流入による影響はない。

この系統状態における水素爆発防止対策概要を第10回に示す。

第10図 水素爆発防止対策(ベント停止後)

格納容器圧力逃がし装置系統の不活性化については、プラント起動前に実施する。系統の 不活性化に使用する系統について第1図に示す。

第一弁を閉とした状態で,第一弁の下流から可搬型窒素供給装置により窒素供給を実施し, フィルタ装置を通じてパージラインから排出を継続することで窒素置換を実施する。また, フィルタ装置配管は,管理区域内を通るため,パージラインの排気先については,原子炉建 屋付属棟とする。格納容器圧力逃がし装置系統の不活性化については,プラント起動前に実 施する。系統の不活性化に使用する系統について第11図に示す。

第一弁を閉とした状態で,第一弁の下流から可搬型窒素供給装置により窒素供給を実施し, フィルタ装置を通じてパージラインから排出を継続することで窒素置換を実施する。また, フィルタ装置配管は,管理区域内を通るため,パージラインの排気先については,原子炉建 屋付属棟とする。

第11図 格納容器圧力逃がし装置の不活性化系統

BWRの格納容器内の気体のミキシング効果については、電力共同研究「格納容器内ミキシング確認試験に関する研究」(S57年度)^[1]によって、格納容器スプレイや温度差による 自然対流に伴う撹拌効果による十分なミキシングが短時間に得られることを確認している。

有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代 替循環冷却系を使用しない場合)」において,事象発生後25分から格納容器スプレイを実 施すること及び格納容器内の温度差により,格納容器内の気体は十分にミキシングされるも のと考えられる。さらに,崩壊熱によって炉心で発生した蒸気が格納容器内へ放出されるこ とによってもミキシングが促進される。

格納容器スプレイを実施している場合の格納容器内の気体の流動については、上記研究に て実験的に確認されている。実験結果を第12回に示す。10 vol%の空気希釈ヘリウムガス の供給を停止すると、格納容器スプレイにより短期間で十分なミキシング効果が得られるこ とが示されている。

格納容器内雰囲気と壁面に温度差がある場合のミキシング効果についての実験結果を第 13 図に示す。第13 図は格納容器内雰囲気と壁面に5 ℃の温度差がある場合のミキシング効 果を示しており、10 vol%の空気希釈ヘリウムガスを供給しているが、実験開始から約 20 分後までには十分にミキシングされることを示している。BWRの格納容器内では、原子炉 圧力容器が熱源として考えられるため、格納容器内雰囲気と壁面において少なくとも5 ℃ 以上の温度差は生じているものと考えられる。このため、BWRの格納容器内において、気 体が成層化する等の位置的な濃度の著しい偏りが生じる可能性は低いと考えられる。さら に、本試験は、より成層化の可能性が高い軽密度気体であるヘリウムにて撹拌効果を確認し ているため、格納容器内での水素燃焼を防止するためのベント実施判断基準として設定して いる酸素については、濃度の著しい偏りが生じる可能性はさらに低いと考えられる。

また、シビアアクシデント条件下における格納容器内の気体のミキシング効果について は、比較的単純な形状から大規模で複雑な形状の試験装置に至る国内外の試験において検討 されている。代表的なものとして、旧(財)原子力発電技術機構による試験で得られた知見 ^[2]を以下にまとめる。

- ・軽密度気体(試験では水素をヘリウムで模擬)の放出による自然循環のみでも、ミキシ ングは比較的良好であった。
- ・水蒸気発生を考慮したケースでは、ミキシングは促進された。
- ・上部区画へ軽密度気体を放出して濃度の偏りを生じさせたケースでも、格納容器スプレイを作動させることによりミキシングは達成された。
 本試験はPWRプラントを模擬したものであるが、複雑な区画を含む形状においても+
- 分なミキシングが得られたことが確認されており、BWRプラントでも同様の効果が期待 できると考えられる。
- [1] 共同研究報告書,格納容器内ミキシング確認試験に関する研究(S57年度)
- [2] 重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書,財団法人 原子 力発電技術機構(平成15年3月)

RO

第12図 格納容器スプレイ実施時のガス濃度変化

第13図 格納容器内雰囲気と壁面の温度差によるガス濃度変化結果

別紙2

流量制限オリフィスの設定方法について

格納容器圧力逃がし装置は,格納容器の過圧破損を防止するため,格納容器内で発生する蒸気量 以上のガスをベントできる必要がある。

一方,格納容器圧力の上昇に伴い,ベントガスの質量流量が増加する場合においても,ベンチュ リノズル部の流速を適正な条件に保持するため,フィルタ装置の下流に流量制限オリフィスを設置 することにより,体積流量をほぼ一定に保つ設計としている。

なお,格納容器圧力1 Pd で必要量を排出可能な設計としているため,より差圧が大きくなる格納容器圧力2 Pd によるベントの場合においても必要量は排出できる。

オリフィスの流出断面積は、以下の式に基づき計算する。

V [3/-]	

V: 体積流量

m : 質量流量

σ : 比体積

概算評価結果を第1表及び第1図に,格納容器圧力とベンチュリノズル入口における体積流量の 関係を第2図に示す。

	第13		/ 3 汗喉心星(脉开	
收油应用工具	オリフィス上流	オリフィス下流	質量流量	体積流量
格納谷 翻上刀	圧力損失	圧力損失	kg/s	m^3/s
KPalgagej	kPa	kPa	(相対比) ^{※1}	(相対比) ^{※1}
620				
(2 Pd)				
310				
(1 Pd)				

第1表 格納容器圧力に対する体積流量(概算評価)

※1 格納容器圧力1 Pdのときの値を100 %とした場合の比を記載

※2 低流量になる事故発生7日後の値

第2図 格納容器圧力逃がし装置の流量特性

フィルタ装置のベント停止後の放射性物質を含んだスクラビング水をサプレッション・チェ ンバへ移送するため設置する。

ポンプ仕様

名	称		移送ポンプ
容量		m³/h/個	10
揚 程		m	40
最高使用圧力		MPa	2. 5
最高使用温度		°C	200
原動機出力		kW/個	7.5
個数		—	1

1. 容量の設定根拠

重大事故等対処設備として使用する移送ポンプの容量は、スクラビング水(上限水位において約 57.4 m³)を6時間程度でサプレッション・チェンバに移送可能な容量とし、10 m³/h とする。

2. 揚程の設定根拠

移送ポンプの揚程は、下記を考慮して決定する。

- 水源と移送先の圧力差:0 m フィルタ装置及びサプレッション・プールは大気圧状態にて使用する。
- ② 静水頭 : 22.1 m
 フィルタ格納層床レベル(EL.-12.8 m)とサプレッション・プール水位(真空破壊弁中心から1m下(EL.9.3m)を想定)のレベル差
- ③ 配管·機器圧力損失 :16 m
- ④ 合計 : 38.1 m

重大事故等対処設備として使用する移送ポンプの揚程は、④の合計以上とし、40 mとする。

3. 最高使用圧力の設定根拠

移送ポンプの最高使用圧力は、下記を考慮して決定する。

- ① 静水頭 : 0.06 MPa
 - 5.9 m×0.00980665 ≒0.06 MPa
 - 5.9 m: フィルタ格納層床レベル(EL.-12.8 m)とスクラビング水上限

水位 (EL.-6.9 m) のレベル差

2 締切揚程 : 1.96 MPa

200 m×0.00980665 ≒1.96 MPa

200 m:移送ポンプ締切り揚程(許容最高全揚程)

③ 合計 : 2.02 MPa

移送ポンプの最高使用圧力は、③の合計を上回る圧力とし、2.5 MPaとする。

- 4. 最高使用温度の設定根拠
 重大事故等対処設備として使用する移送ポンプの最高使用温度は、フィルタ装置の最高使用
 温度に合わせ、200 ℃とする。
- 原動機出力の設定根拠
 移送ポンプの原動機出力は、下記の式により、容量及び揚程を考慮して決定する。
 Pw=10⁻³×ρ×q×Q×H

$$\eta = \frac{P w}{P} \times 100$$
(引用文献:日本工業規格 JIS B 0131(2002)「ターボポンプ用語」)
$$P = \frac{10^{-3} \times \rho \times g \times Q \times H}{\eta / 100}$$
P : 軸動力 (kW)
P w : 水動力 (kW)
 ρ : 密度 (kg/m³) = 1000
g : 重力加速度 (m/s²) = 9.80665
Q : 容量 (m³/s) = 10/3600
H : 揚程 (m) = 40
 η : ポンプ効率 (%) (設計計画値)

上記から、移送ポンプの原動機出力は、軸動力を上回る出力とし、7.5 kW/個 とする。

6. 個数の設定根拠

重大事故等対処設備として,放射性物質を含んだスクラビング水をサプレッション・チ ェンバへの移送するために必要な個数1個設置する。

格納容器圧力逃がし装置の系統設計条件の考え方について

格納容器圧力逃がし装置については、想定される事故事象での使用条件下において、性能を発 揮できる設計とするため、系統設計条件を定めている。主な系統設計条件を第1表に示す。

設計条件		設定根拠		
最高使用圧力	620 kPa[gage]	格納容器の限界圧力を考慮し 2Pd(最高使用圧力		
		310 kPa[gage]の2倍)とする。		
最高使用温度	200 °C	格納容器の限界温度を考慮し200℃とする。		
	13.4 kg/s	原子炉定格熱出力 1 %相当の飽和蒸気量を、ベ		
机乱法具	(格納容器圧力 310	ント開始圧力が低い場合(310 kPa[gage])であ		
	kPa[gage]におい	っても排出可能な流量とする。		
	て)			
		想定されるフィルタ装置に捕集,保持される放射		
フィルタ装置内	500 kW	性物質の崩壊熱に対して十分な余裕を見込み, 原		
発熱量		子炉定格熱出力の 0.015 %に相当する発熱量と		
		する。		
エアロゾル		想定されるフィルタ装置に移行するエアロゾル		
40 移行量	400 kg	の量 (38 kg) に対して十分な余裕を見込み, 400		
		kgとする。		
		BWRプラントにおける代表炉心(ABWR)の		
トる事の偏由中		平衡炉心末期を対象としたORIGEN2コー		
より 素の 炉内内 蔵量	24.4 kg	ドの計算結果に対して, 東海第二発電所の熱出力		
		(3293 MW)を考慮して算出した結果, 24.4 kgと		
		する。		
利雷タル	基準地震動Ssにて	基準地震動Ssにて機能を維持する。		
Ⅲ 辰 余 仲	機能維持			

第1表 格納容器圧力逃がし装置の系統設計条件

格納容器圧力逃がし装置の各設計条件の考え方を以下に示す。

(1) 最高使用圧力及び最高使用温度

格納容器圧力逃がし装置は、炉心の著しい損傷が発生した場合において、格納容器の破損を 防止するため、格納容器内のガスを排気することにより、格納容器内の圧力及び温度を低下さ せることができる設計とし、格納容器圧力が格納容器の限界圧力を下回る 620 kPa[gage](2Pd: 最高使用圧力の2倍)に到達するまでにベント操作を実施することとしている。

有効性評価における格納容器圧力及び格納容器温度の推移から、ベント時に格納容器圧力及 び格納容器温度は限界圧力を下回る 620 kPa[gage]及び限界温度を下回る 200 ℃を下回ること から、2 Pd、200 ℃を最高使用圧力及び最高使用温度としている。

有効性評価のうち格納容器過圧・過温破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却を使用しない場合)」における格納容器圧力及び格納容器 温度の推移を第1図,第2図に示す。格納容器圧力の最大値はベント時の約465 kPa[gage],シ ーケンス中の格納容器の最高温度は事象開始直後,破断口から流出する過熱蒸気により一時的 に格納容器雰囲気温度は約202 ℃となるが,格納容器バウンダリにかかる温度(壁面温度)は 最大でも約157 ℃であり,限界温度を下回る200 ℃を超えないことから,格納容器の限界圧力 及び限界温度を下回っている。

第1図 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却を使用し ない場合)」における格納容器圧力の推移

第2回 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損) (代替循環冷却を使用しない場合)」における格納容器温度の推移

(参考) フィルタ装置の最高使用圧力及び最高使用温度を超える場合の健全性について

ベント中のフィルタ装置(容器)について,設計上考慮している最高使用圧力(620 kPa[gage]), 最高使用温度(200 ℃)を超える場合の構造健全性を評価する。

·評価方法

フィルタ装置の持つ放射性物質の閉じ込め機能が喪失する要因として、高温状態で内圧を受 け、過度に塑性変形することによる延性破壊が想定される。

フィルタ装置について、「発電用原子力設備規格 設計建設規格(2005 年版(2007 年追補版 を含む)) JSME S NC1-2005/2007」(以下,「設計・建設規格」という) に示され る、内面に圧力を受ける円筒胴の計算上必要な厚さを求める式により、温度(フィルタ装置温 度における材料の許容引張応力),圧力をパラメータとして、フィルタ装置(胴部)の構造健 全性が確保される、温度と圧力の組合せを評価する。

• 評価

設計・建設規格のPVC-3122(1)項に準拠し、設計・建設規格「表5 鉄鋼材用(ボルト 材を除く)の各温度における許容引張応力」に規定される、50 ℃から450 ℃の各温度における 許容引張応力を与えることで、構造健全性が確保できる圧力(以下、「許容圧力」という。) を算出する。

mm

 η :長手継手の効率 (η =1)

評価結果

設計・建設規格の必要最小板厚を求める式を用いて評価を実施した結果、第3図に示すとお り,設計上考慮している最高使用圧力(620 kPa[gage]),最高使用温度(200 ℃)を超える圧 力、温度でも構造健全性を有する結果が得られた。

第3図 フィルタ装置(胴部)の必要最小板厚の式を用いた評価結果
(2) 系統流量(ベントガス流量)

格納容器圧力逃がし装置の系統流量は,原子炉定格熱出力の1%相当の蒸気流量をベント開始圧力が低い場合(1Pd)においても排出できるよう以下のとおり設定している。

a. 蒸気流量の設定
 重大事故等発生後の数時間で格納容器圧力逃がし装置が使用されることはないが、保守的に
 原子炉停止後 2~3 時間後に格納容器圧力逃がし装置が使用されると考え、その時点での原子炉の崩壊熱として原子炉定格熱出力の1%を設定し、それに相当する蒸気流量とする。

b. 格納容器圧力の設定

有効性評価において格納容器圧力逃がし装置のベント開始圧力を1 Pd~2 Pd としており,格納容器圧力が低い方が蒸気排出条件が厳しくなるため,格納容器圧力は1 Pd とする。

c. 系統流量の算出

a. 及びb. の組合せにより、系統流量を設定する。系統流量は式1により算出する。

$$W_{Vent} = Q_R \times 0.01 / (h_s - h_w) \times 3600 / 1000$$
 (式 1)

ここで,

 Wvent
 :系統流量(t/h)

 Q_R
 :定格熱出力(3293×10³ kW)

 h_s:飽和蒸気の比エンタルピ(2739 kJ/kg @1Pd)

 h_w
 :飽和水の比エンタルピ(251 kJ/kg @60 ℃*)

 ※格納容器内に注水する水温を保守的に高めに設定した温度

以上より,系統流量は48 t/h となることから,13.4 kg/s を格納容器圧力1 Pd の時の系統 流量とする。系統流量は,配管設計やオリフィスの設計条件として使用される。

なお,格納容器圧力が1 Pdより高い圧力でベントする場合には,その時の格納容器圧力と系 統全体の圧力損失から系統流量が決まり,格納容器圧力が1 Pd以上になれば系統流量も13.4 kg/s以上となり,より蒸気を排出しやすい状況となる。 (3) フィルタ装置内発熱量

格納容器圧力逃がし装置のフィルタ装置内発熱量は,原子炉定格熱出力の0.015 %に相当する崩壊熱である 500 kW に設定している。

NUREG-1465 における格納容器ソースタームに基づき、ドライウェルベント時に格納容器からフィルタ装置に移行するFPによる崩壊熱を評価する。

フィルタ装置内発熱量は以下の式で表される。

【フィルタ装置内発熱量】

=【①ベント時の原子炉の崩壊熱】

- ×【②FPの格納容器への放出割合】
 - ÷【③格納容器内のDF】

×【④フィルタ装置に蓄積するFPの崩壊熱への寄与割合】

① ベント時の原子炉の崩壊熱

重大事故等発生後の数時間で格納容器圧力逃がし装置が使用されることはないが,保守的 に原子炉停止後約 2~3 時間後に格納容器圧力逃がし装置が使用されると考え,その時点で の原子炉の崩壊熱として,原子炉定格熱出力の1%とする。

② FPの格納容器への放出割合

NUREG-1465 に基づき, 揮発性核種のうち格納容器への放出割合が最も大きい Halogen(I)の放出割合である 61 %で代表させる(第2表参照)。

③ 格納容器内のDF

海外で行われたFPエアロゾルの自然除去効果に関する試験(NSPP試験等)では,格 納容器のエアロゾルは数時間程度で1/10程度まで減少している結果が得られており,格納 容器内のエアロゾルに対する除去効果として,ドライウェルベント時はDF:10*とする。

※事象発生から 19 時間(有効性評価におけるベント開始時間)後のMAAP解析における 感度解析の結果からDF10000~DF100000であることを確認しており, DF10としてい る発熱量評価の設定は保守的である。

④ フィルタ装置に蓄積するFPの崩壊熱への寄与割合

NUREG-1465に基づき、揮発性が比較的高く、炉心損傷を伴う事故時に有意な放出割 合となり、フィルタ装置に蓄積する核種として、Halogen(I)、Alkali metal(Cs)、Te、 Ba及びSrを想定し、これら核種の崩壊熱への寄与割合は22%とする(第3表参照)。

したがって、定格熱出力に対する崩壊熱は以下のように評価される。

ドライウェルベント : 0.01×0.61÷10×0.22=0.01342 %

以上より、フィルタ装置内発熱量は、上記割合を包絡する条件とし、原子炉定格熱出力の 0.015 %である 500 kW (3293 MV×0.015 %)と設定する。

フィルタ装置内発熱量は、スクラビング水の初期保有量及びフィルタ装置の寸法設定に使 用される。

	Gap Release	Early-In -vessel	Ex-vessel	Late-In -vessel	合計
Noble Gases [*]	0.05	0.95	0	0	1.00
Halogens (I)	0.05	0.25	0.30	0.01	0.61
Alkali metal (Cs)	0.05	0.20	0.35	0.01	0.61
Те	0	0.05	0.25	0.005	0.305
Ba, Sr	0	0.02	0.1	0	0.12
Noble metals (Mo, Ru, Sb)	0	0.0025	0.0025	0	0.005
Се	0	0.0005	0.005	0	0.0055
La	0	0.0002	0.005	0	0.0052

第2表 NUREG-1465 における格納容器内への放出割合

※ 希ガスはフィルタ装置内に蓄積しないため、評価対象外とする。

第3表 放出割合が大きい揮発性核種の崩壊熱寄与割合

ニまグループ※	放出	①放出割合	②崩壊熱寄与割合	崩壊熱寄与割合
元系クルーク	割合	(ハロゲン比)	(炉停止後約2時間)	1×2
Halogens (I)	0.61	1.0	0.18	0.18
Alkali metal (Cs)	0.61	1.0	0.02	0.02
Те	0.305	0.5	0.02	0.01
Ba, Sr	0.12	0.2	0.06	0. 01
			合計	0.22

※ 希ガスはフィルタ装置内に蓄積しないため,評価対象外とする。また,放出割合が小さい核種 は放出量として無視できるため,評価対象外とする。

(4) エアロゾル移行量

有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循 環冷却を使用しない場合)」における格納容器からフィルタ装置に移行するエアロゾルの重量 を第4表に示す。

シーケンフ(車角)	エアロゾル重量	
	W/Wベント	D/Wベント
雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損) (代替循環冷却を使用しない場合)	1 g	5000 g

第4表	格納容器からフ	ィルタ装置に移行す	るエアロゾル重量
-----	---------	-----------	----------

一方,格納容器からのエアロゾルの移行量を保守的に評価するため、サプレッション・プールによるスクラビング効果がないドライウェルベント時の格納容器からフィルタ装置に移行するエアロゾル量について、核分裂生成物の炉内内蔵量とNUREG-1465に基づく炉心から格納容器へ放出される核分裂生成物の割合を用いて評価した結果、約38 kgとなるが、エアロゾルに係る海外規制の規定、さらにそれらを上回る400 kgとして設計する。

想定するエアロゾル移行量の評価方法と海外規制におけるエアロゾル移行量を以下に示す。

- a. 核分裂生成物の炉内内蔵量 各核種グループのFPの炉内内蔵量を第5表に示す。
- b. 核分裂生成物の格納容器への放出割合 NUREG-1465に基づき,各核種グループの放出割合を設定する(第2表参照)。
- c. 格納容器内のDF 保守的にドライウェルベントの場合を想定し,崩壊熱の設定と同様に,DF10とする。 以上より,想定するエアロゾル量を計算した結果,約38kgとなる。 評価式を以下に示す。

【エアロゾル量】=

 $\sum_{\substack{\text{全核種グループ}}} \left[(核種グループの炉内内蔵量) × (核種グループの格納容器への放出割合) / 10 \right]$

d. 海外規制におけるエアロゾル移行量

ドイツRSKの勧告では、フィルタ装置に移行するエアロゾル量としてPWRについては60 kg, BWRについては30 kg としている。また、スイスの原子力施設ガイドラインにおいては、エ アロゾル量は150 kg と規定されている。

核種	代表	炉内内蔵量	格納容器への	エアロゾル
グループ	化学形態	(kg)	放出割合(一)	移行量 (kg)
Halogens	CsI		0.61	
Alkali metal	CsOH		0.61	
Те	TeO ₂ , Sb		0. 305	
Ba, Sr	Ba0, Sr0		0.12	-
Noble metals	MoO_2		0.005	
Се	CeO_2		0.0055	
La	La_2O_3		0.0052	
			合計	3.8E+01

第5表 核分裂生成物の炉内内蔵量

エアロゾル移行量は、金属フィルタの総面積の設定に使用される。

(参考)ベントタイミングにおいて発生する荷重の考慮について

(1) 重大事故等発生時において格納容器内にて発生する動的荷重

重大事故等発生時において、格納容器内にて発生する可能性がある動的荷重には以下のもの がある。

- ① ドライウェル内の配管破断によるジェット力
- ② プールスウェル荷重
- ③ ベント管出口での蒸気凝縮振動荷重
- ④ 逃がし安全弁作動時の荷重
- ⑤ 原子炉隔離冷却タービン排気圧力の荷重

①~③は、原子炉冷却材喪失事故において事故発生直後に発生する荷重であり、ベント時に 生じる荷重は、これに比べて影響は小さい。

また④,⑤は、ベント開始の判断基準である格納容器圧力 2Pd に近づいた状態では、原子炉 圧力は、原子炉冷却材喪失事故や逃がし安全弁による急速減圧等により、既に低下した状態と なっており、原子炉隔離冷却系も運転していないことから、2Pd ベント時に作用する荷重ではな い。

以上のことから、ベントの判断基準である格納容器圧力 2Pd における格納容器の加圧は、崩 壊熱により発生する蒸気によるものであり、動的荷重を考慮する必要はない。

スクラバ容器の設計に当たっては,最高使用圧力2Pd,最高使用温度200 ℃の条件に加えて, 地震荷重を考慮した強度評価を実施している。

また,耐圧機器ではないが,内部構造物であるベンチュリノズルについては,差圧荷重及び 地震荷重を考慮するとともに,JAVA 試験にて得られた知見を踏まえた圧力振動を考慮して強度 評価を実施している。(第6表参照)

部位	設計	に用いた荷重	評価方法
スクラビング装	静的荷重	内圧荷重(最高使	JSME 設計・建設規格に基づき,荷重に対
置 (容器)		用圧力)	する必要板厚を算出し,最小板厚が必要板
			厚を満足することを確認する。
		内圧荷重, 地震荷	内圧荷重及び地震荷重による一次応力及
		重	び一次+二次応力を算出し,原子力発電所
	動的何里		耐震設計技術 <mark>指針</mark> で定める許容値を満足
			することを確認する。
内部構造物	静的荷重	差圧荷重	ASME Sec.Ⅱ, Ⅲ, Ⅶに基づき評価
(ベンチュリノ		差圧荷重, 地震荷	ACME C Ⅱ Ⅲ Ⅲに甘べた玉江
ズル)	動的荷重	重	ASME Sec. II, III, WIIに基づき計画
		水力学的荷重	JAVA 試験にて得られた知見を踏まえて,
			圧力振動を評価

第6表 スクラバ容器の設計

別紙5

金属フィルタドレン配管の閉塞及び逆流防止について

(1) ドレン配管の閉塞

金属フィルタのドレン配管の内径は であり、金属フィルタに流入するベントガスに 含まれるエアロゾルの粒径は極めて小さい ことから、ドレン配管の閉塞が発生する おそれはないと言える。

(2) ドレン配管によるスクラビング水の逆流防止 金属フィルタのプレフィルタ部における圧損が大きい場合、金属フィルタに設置されるドレン配管において逆流が発生し、金属フィルタにスクラビング水が流入する可能性がある。

実機ではプレフィルタ部の圧損は

であり、ドレン配管の逆流を考

慮しても,スクラビング水が金属フィルタまで逆流するおそれはないと評価できる。 なお,系統待機時,運転中を通して,フィルタ装置の水位は水位計により監視し,水位が上 限水位となる前に排水する計画としている。

フィルタ装置のスクラビング水位の概要を第1図に示す。

第1図 フィルタ装置のスクラビング水位

ベント実施時の放射線監視測定の考え方について

(1) フィルタ装置出口放射線モニタの計測範囲

フィルタ装置出口放射線モニタの計測範囲と計測範囲の設定の考え方は,第1表のとおりである。

名称	計測範囲	取付箇所	計測範囲の設定の考え方
フィルタ装置出口放射	$10^{-2} \sim 10^5$ Sv/h	原子炉建屋付属	系統運転中における放射性
線モニタ(高レンジ)		棟1階	物質濃度を確認するため,
		屋外(原子炉建	想定される放射性物質がフ
		屋南側外壁面)	イルタ装置出口配管に内包
フィルタ装置出口放射	$10^{-3} \sim 10^4 \text{ mSv/h}$	原子炉建屋付属	された時の最大の放射線量
線モニタ (低レンジ)		棟1階	率を計測できる範囲とす
			る。なお,高レンジ用は炉心
			損傷している場合に,低レ
			ンジ用は炉心損傷していな
			い場合を想定して設定す
			る。

第1表 計測範囲とその考え方

a. ベント実施に想定される線量率について

ベント実施時に想定される最大の線量率を評価するために必要な評価条件を第2表に示す。 また,第2表の評価条件に基づく評価結果を第3表に示す。フィルタ装置出口放射線モニタ (高レンジ)の計測範囲の上限値である1.0×10⁵ Sv/hは、ベント実施時に想定される最大線 量率3.0×10¹ Sv/hに対し、余裕があり、計測可能である。

第2表 評価条件

項目	評価条件	評価条件の考え方
評価対象核種	希ガス類(Kr-83m, Kr-85m, Kr-85, Kr-87, Kr-88, Xe-131m, Xe-133m, Xe-133, Xe-135m, Xe-135, Xe-138)	大気に放出される放射性物 質のうち,線量率が支配的 となる核種を選定 (後述 b 項参照)
炉心状態	平衡炉心(サイクル末期)	原子炉の放射性物質の内蔵 量が最も多くなる状態を選 定
炉心から格納容器へ の移行割合(希ガス)	100 %	MAAP解析結果に基づき 設定
格納容器から原子炉 建屋への漏えい	考慮しない	格納容器圧力逃がし装置に よる大気への放出量を多く 見積もるため
ベント開始時間	事象発生から1時間後	開始時刻が遅れるほど希ガ スが減衰するため,保守的 に設定
評価モデル	第1図のとおり	フィルタ装置出口放射線モ ニタ (高レンジ)の設置位置 (第2図)をモデル化
線量評価コード	QAD-CGGP2R	現行許認可(添十)と同じ

第1図 評価モデル

第2図 フィルタ装置出口放射線モニタ(高レンジ)位置図

評価対象核種	線量率 (Sv/h)
Kr-83m	1.1E-21
Kr-85m	1.2E+00
Kr-85	8.4E-04
Kr-87	3.9E+00
Kr-88	1.6E+01
Xe-131m	8.6E-04
Xe-133m	3.7E-02
Xe-133	2.9E-01
Xe-135m	2.6E+00
Xe-135	4.2E+00
Xe-138	1.6E+00
合計	3.0E+01

第3表 評価結果

b. 評価対象核種の考え方

格納容器圧力逃がし装置を通じて格納容器内の放射性物質が大気へ放出される際,希ガス 及びよう素を除く放射性物質はベントフィルタの除去効果を大きく受けるため,大気へ放出 される主な放射性物質は希ガス及びよう素となる。

第4表に示す評価条件を用いて希ガス及びよう素の線量率を評価した結果,第5表のとお り希ガスの線量率は,よう素に比べて 10² 倍程度高く,放射線モニタ測定値は希ガスからの 寄与が支配的であるため,希ガスを評価対象核種とする。

項目	評価条件	評価条件の考え方
評価事象	「大破断LOCA+高圧炉心冷却失 敗+低圧炉心冷却失敗+全交流動力 電源喪失」 (代替循環冷却系を使用しない場合)	格納容器破損防止対策の 有効性評価で想定する格 納容器破損モードのうち, 希ガス類及びよう素の放 出量が最も多くなる事故 シーケンスとして,ベント の実施時間が最も早くな る事故シーケンスを選定
炉心状態	平衡炉心(サイクル末期)	原子炉の放射性物質の内 蔵量が最も多くなる状態 を選定
評価対象核種	希ガス類: Kr-83m, Kr-85m, Kr-85, Kr-87, Kr-88, Xe-131m, Xe- 133m, Xe-133, Xe-135m, Xe- 135, Xe-138 よう素: I-131, I-132, I-133, I-134, I-135	大気に放出される放射性 物質のうち,線量当量率が 支配的となる核種を選定
炉心から格納容器への 移行割合	希ガス:100 % トラ素・80 %	MAAP解析結果に基づ き設定
よう素の形態	á 有機よう素 á	R. G. 1.195 ^{**1} に基づき 設定
格納容器内での除去効 果(希ガス及び有機よ う素)	考慮しない	保守的に設定
格納容器内での除去効	沈着による除去係数:200 ^{※3}	CSE 実験及び Standard Review Plan 6.5.2 ^{※2} に基 づき設定
小 (灬(灰よ / ボ)	サプレッション・プールでのスクラビ ングによる除去係数:10	Standard Review Plan 6.5.5 ^{※3} に基づき設定
格納容器内での除去効 果(粒子状よう素)	無機よう素と同じ	無機よう素よりも沈着等 による除去効果が大きい が,保守的に無機よう素と 同じとする。

第4表 評価条件 (1/2)

項目	評価条件	評価条件の考え方
ベント開始時間	事象発生から 19 時間後	MAAP解析結果
ベントフィルタ除去係 数	 希ガス : 1 有機よう素 : 50 無機よう素 : 100 粒子状よう素 : 1,000 	設計値に基づき設定
評価モデル	第1図のとおり	フィルタ装置出口放射線 モニタ(高レンジ)の設置 位置(第2図)をモデル化
線量評価コード	QAD-CGGP2R	現行許認可(添十)と同じ

第4表 評価条件 (2/2)

※1 : Regulatory Guide 1.195, "Methods and Assumptions for Evaluationg Radiological Consequences of Desigh Basis Accidents at Light-Water Nuclear Power Reactors", May 2003

※2 : Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007

X 3 : Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007

ベント 開始時間	希ガス 線量率① (Sv/h)	よう素 線量率② (Sv/h)	1/2
事象発生から 19 時間後	5. 6×10^{0}	5. 2×10^{-2}	1.08×10^{2}

第5表 評価結果

(2) フィルタを通過した放射性物質がフィルタ装置出口放射線モニタ近傍の配管に付着した場合の影響について

フィルタ装置出口放射線モニタはフィルタ装置出口の配管外側から計測となるため,フィル タ装置出口配管内に付着した放射性物質の影響を受ける。そのため,ベント終了後に残る放射 線モニタ指示値から配管付着分を評価し,ベント中の放射線モニタ指示値から差し引くことで 配管付着影響を除去することができる。

第4表の評価条件(希ガスは配管付着しないため,よう素に係る評価条件のみ)及びフィル タ装置出口配管への放射性物質付着率を「放射性物質の通過量に対して100m当たり10%が 配管内に均一に付着する」とした場合の評価結果は,230mSv/hである。 (3) 線量率から放射性物質濃度への換算の考え方

フィルタ装置出口放射線モニタでの計測値(γ線強度)は、フィルタ装置出口配管内の放射 性物質の核種及びその放射性物質濃度により決まる値である。あらかじめ、フィルタ装置出口 配管内の放射性物質濃度と線量率により、換算係数を定めておくことで、事故時のフィルタ装 置出口放射線モニタの指示値からフィルタ装置出口配管内の放射性物質濃度を把握すること ができる。

第4表の評価条件において評価したフィルタ装置出口放射線モニタ(高レンジ)の換算係数を 第6表に示す。なお,換算係数の算出過程を以下に示す。

- 平衡炉心(サイクル末期)における核種ごとの炉内希ガスの総量(①)を解析により算 出する。
- ② ベント開始時間までの減衰を考慮した核種ごとの希ガスの総量(②)を算出する。
- ③ 格納容器空間体積(9800m³)から核種ごとの希ガス量を除し、核種ごとの放射性物質濃度の合計(③)を算出する。
- ④ 上記③の核種ごとの放射性物質濃度にγ線放出割合を乗じて算出したγ線線源強度と第
 1 図の評価モデルから核種ごとの線量率の合計(④)を算出する。
- ⑤ 上記③で求めた放射線物質濃度の合算値を④で求めた線量率の合算値で除すことで、換算係数を算出する。

炉停止時 内蔵量① (Bq)	19 時間後 減衰値② (Bq)	放射性物質 濃度③ (Bq/cm ³)	線量率④ (Sv/h)	換算係数 ((Bq/cm³)/(Sv/h))
2. 2×10^{19}	9. 4×10^{18}	9.6×10 ⁸	5. $6 \times 10^{\circ}$	1.7×10^{8}

第6表 換算係数の算出

第6表の換算係数は,原子炉停止から19時間後にベントを開始した場合の換算係数であり, 核種の減衰により換算係数は変化するため,同様の手法で算出した換算係数の時間変化は第3 図のグラフのとおりとなる。実際の運用では,手順書に代表的な時間における換算係数を表と して備えるなどして適切な評価ができるように準備する。また,屋外のフィルタ装置出口放射 線モニタ(高レンジ)及び建屋内のフィルタ装置出口放射線モニタ(低レンジ)についても, 同様の方法で換算係数を算出し,上記の評価ができるように準備する。

なお、事故後に当該事故の状態を詳細に把握し、換算係数の再評価を実施することにより、 フィルタ装置出口放射線モニタの指示値(Sv/h)の記録から、より精度の高い放射性物質濃度 (Bq/cm³)を評価することが可能である。

第3図 換算係数の時間推移

- (4) 放射性物質の放出量の推定方法
 - a. 格納容器雰囲気放射線モニタによる推定方法 格納容器雰囲気放射線モニタは,格納容器内に存在する放射性物質からの放射線を測定す るものである。格納容器内には,気相部に浮遊している放射性物質と構造物等に沈着した放 射性物質が存在しており,ベント時に放出される放射性物質濃度を把握することで,放射性 物質の放出量を推定する。以下に格納容器雰囲気放射線モニタによる推定方法を示す。

○事前準備事項

- ① 平衡炉心(サイクル末期)における核種ごとの炉内内蔵量(Bq)を解析にて求める。
- ② ベント開始時間までの減衰を考慮した核種ごとの存在量(Bq)を算出する。
- ③ MAAPコードを用い、代表的な重大事故時想定*1における主要な放射性物質の格納容 器内への移行割合(気相部への移行割合,沈着割合)を求め、①及び②で算出した核種 ごとの存在量(Bq)より壁面沈着分の放射能量(Bq)及び気相部の放射能量(Bq)を評 価する。
- ④ 検出器位置周辺に沈着した放射能量(Bq)及び気相部の放射能量(Bq)から検出器への 線量の寄与(Sv/h)について、検出器の周辺の構造を考慮した線量評価モデルを用いて 評価する。
- ⑤ 上記の評価結果を用い、「格納容器気相部に存在する放射能量(Bq)及び検出 器位置 での線量率(Sv/h)」をあらかじめ用意する。

○放射性物質の推定方法

- プラントデータを確認し、事前に評価する代表的な重大事故時想定*1の中より最も事象進展が近いものを選定する。
- ② 格納容器雰囲気放射線モニタの指示値(Sv/h)に対し、事前に評価した代表的な重大事 故時想定における「格納容器気相部に存在する放射能量(Bq)及び検出器位置での線量 率(Sv/h)」をもとに、格納容器気相部に浮遊する放射能量(Bq)を比例計算にて求め る。
- ③ ②より求めた格納容器気相部内の放射能量(Bq)に格納容器圧力逃がし装置,サプレッション・プールにおけるスクラビングの除去係数を考慮し放出放射能量(Bq)を求める。
- ※1:事前に評価する代表的な重大事故時想定として、格納容器内の放射性物質の存在割合 に大きく影響するLOCAの発生の有無等を考慮した複数ケースを評価する。事故時 においてはプラントデータを確認し、評価ケースの中より最も近い事象進展を選定し 評価を行う。なお、上記手順は、格納容器圧力逃がし装置の使用の可能性がある場合 において、その影響(概算)を早期に確認するための手法である。そのため、詳細な 値は事故後に得られた詳細な事象進展、データを用いて確認する必要がある。
- b. フィルタ装置出口放射線モニタによる推定方法

フィルタ装置出口放射線モニタは、フィルタ装置出口配管に設置されており、ベントによ

る放射性物質からの放射線を測定するものである。ベント中に放出される放射性物質濃度と ベント流量を把握することで,放射性物質の放出量を推定する。以下にフィルタ装置出口放 射線モニタによる推定方法を示す。

○事前準備事項

(3)項で示す手法で算出した「換算係数((Bq/cm³) / (Sv/h))」をあらかじめ用意する。 なお,核種の減衰により換算係数は変化するため,代表的な時間における同様な手法で算出 した換算係数を表として備えるなどの対応をあらかじめ用意する。

○放射性物質の推定方法

- フィルタ装置出口放射線モニタの指示値(Sv/h)に対し、事前に評価した「換算係数 ((Bq/cm³) / (Sv/h))」を乗じ、放射性物質濃度(Bq/cm³)を求める。
- ①で求めた放射性物質濃度(Bq/m³)に格納容器圧力から推定されるベント流量(m³/h) を乗じ,放出速度(Bq/h)を求める。
- ③ ②の放出速度(Bq/h)をベント実施期間で積分することにより、放出放射能量(Bq)を 求める。
- ④ 事故後に換算係数を再評価し、また、配管付着分のバックグランドを差し引くことで、 より精度の高い放出放射能量(Bq)を求める。

エアロゾルの再浮遊・フィルタの閉塞について

フィルタ装置を継続使用する場合,エアロゾルの除去性能に影響を与える可能性のある因子として,以下の点を考慮する必要がある。

・エアロゾルの再浮遊

・フィルタの閉塞

それぞれの因子について、影響評価を実施する。

- (1) エアロゾルの再浮遊
- a. ベンチュリスクラバ
- (a) 想定する状態

フィルタ装置を継続使用すると、ベンチュリスクラバで捕集されたエアロゾルにより、ベ ンチュリスクラバ内のエアロゾル濃度は徐々に上昇する。スクラビング水の水面近傍には、 水沸騰やベンチュリノズルを通るベントガスによる気流により、細かい飛沫(液滴)が発生 するが、その飛沫にエアロゾルが含まれていると、エアロゾルがベンチュリスクラバの後段 に移行することが考えられる。

(b) 影響評価

ベンチュリスクラバの後段には、金属フィルタが備えられており、この金属フィルタには、

以上のとおり,フィルタ装置はベンチュリスクラバでのエアロゾルの再浮遊に対して考慮し た設計となっている。

b. 金属フィルタ

(a) 想定される状態

(b) 影響評価

金属フィルタに捕集されたエアロゾルの崩壊熱は、ベント中はベントガスの流れによって 冷却され、ベント後はベンチュリスクラバに捕集したエアロゾルの崩壊熱により発生する蒸

RO

気によって冷却されることから、この影響について評価する。

- イ. 金属フィルタへのエアロゾル移行割合 フィルタ装置では、ベンチュリスクラバにより大部分のエアロゾルが捕集される。このベ ンチュリスクラバによる除去性能を考慮して、金属フィルタへのエアロゾル移行割合は、フ ィルタ装置に移行する総量の とする。
- 口. 蒸気割合

保守的に評価するため、冷却源となる蒸気量が最も小さくなるような条件として格納容 器圧力逃がし装置の隔離弁を閉とした場合を想定し、蒸気量はスクラビング水に捕集される 崩壊熱による蒸気量とし、圧力、温度条件はベント後長期間を経た後と想定し、大気圧及び その飽和温度とする。

- ・蒸気潜熱(100 ℃飽和蒸気)= 2.256E+6 J/kg
- ・比熱(100 ℃飽和蒸気)= 2,077 J/kg℃

 ·. 評価結果

ここで、金属フィルタの上昇温度は流入するエアロゾルの崩壊熱量(フィルタ装置内の発熱量)に関わらず、金属フィルタへのエアロゾル移行割合で一義的に決まり、ベント後長期間を経た後を想定した蒸気条件を使用すると、以下の評価結果となる。

・上昇温度

したがって,金属フィルタの温度は,エアロゾルの再浮遊が起こるような温度(参考: CsOHの融点: 272.3 ℃) に対し十分低く抑えることができる。

- (2) フィルタの閉塞
- a. 想定する状態

炉心損傷後のベント時には、溶融炉心から発生するエアロゾルに加え、炉内構造物の過温な どによるエアロゾル、コアーコンクリート反応により発生する CaO₂等のコンクリート材料に起 因するエアロゾル、保温材等の熱的・機械的衝撃により発生する粉塵がフィルタ装置に移行す る可能性がある。これらのエアロゾルの影響により、ベンチュリノズルの狭隘部や金属フィル タに付着し、閉塞する可能性について考慮する。また、金属フィルタについては、液滴の付着に よる閉塞についても考慮する。

- b. 影響評価
- (a) ベンチュリノズル

ベンチュリノズルの狭隘部は数 cm であり,狭隘部を通過するガス流速は高速となる。これ に対して,エアロゾルの粒子径は極めて小さく,ベンチュリノズルが閉塞することはない。

(b) 金属フィルタ (エアロゾルによる閉塞)

ベンチュリスクラバで捕集されなかったエアロゾルは,後段の金属フィルタに捕集される。 この金属フィルタに捕集されるエアロゾル量と金属フィルタの許容負荷量を比較し,閉塞し ないことを以下のとおり確認した。

- 金属フィルタの許容負荷量
 金属フィルタ単体に対し、エアロゾルを供給した場合、負荷量は
 まで許容されることが確認されている。
- ロ. エアロゾル量

格納容器からのエアロゾルの移行量を保守的に評価するため、サプレッション・プールに よるスクラビング効果がないドライウェルベント時の格納容器からフィルタ装置に移行す るエアロゾル量について、核分裂生成物の炉内内蔵量とNUREG-1465 に基づく炉心か ら格納容器へ放出される核分裂生成物の割合を用いて評価した結果、約38 kg となる。さら に、エアロゾルに係る海外規制を踏まえ、400 kg に設定している。

このエアロゾル重量に金属フィルタへのエアロゾル移行割合 1/100 を考慮すると,設計 エアロゾル重量(400 kg)に対して金属フィルタへの移行量は,4 kg となる。

ハ. 評価結果

金属フィルタの総面積は であり、設計エアロゾル移行量に対する金属フィルタへ の移行量は4 kg となることから、金属フィルタの負荷は る。

これは金属フィルタの許容負荷量に対して十分小さいことから,金属フィルタが閉塞することはない。

RO

(c) 金属フィルタ(液滴による閉塞)

金属フィルタに移行するベントガスに含まれる液滴(湿分)は,

低流速では、 機能の低下が懸念されるものの、J AVA試験における下記の結果から、金属フィルタ部におけるエアロゾルの除去性能は運転 範囲を下回る低速範囲 においても 低下しないと考えられる。

- ベントフィルタ運転範囲を下回る低流速範囲においても、第1図のとおりベントフィルタ(ベンチュリスクラバ及び金属フィルタ)の除去性能が確保されている。
- ② ベンチュリスクラバでは、慣性力による衝突によりエアロゾルを除去していることから、低流速においては、除去効率が低下する傾向にあると考えられる。

以上から、プレフィルタ及び湿分分離機構における、液滴分離が十分に実施でき、液滴(湿 分)によるメインフィルタの閉塞が発生することはないと評価する。

第1図 金属フィルタ部におけるガス流速に対するベンチュリスクラバと 金属フィルタを組み合わせた除去係数 フィルタ装置を継続使用する場合,ベンチュリスクラバの無機よう素除去性能に影響を与える可 能性のある因子として,以下の点を考慮する必要がある。

- ・無機よう素の再揮発
- ・薬剤の容量不足

それぞれの因子について、影響評価を実施する。

- (1) 無機よう素の再揮発
- a. 想定する状態

気液界面における無機よう素の平衡については温度依存性があり、温度の上昇に伴い気相中 に移行する無機よう素が増えることが」知られている。高温のベントガスによりスクラビング 水の温度が上昇した場合、スクラビング水中に捕集された無機よう素が気相中に再揮発するこ とが考えられる。

b. 影響評価

無機よう素の除去係数の温度依存性については、NUREG/CR-5732 に類似の影響評価 に関する知見が得られている。

NUREG/CR-5732によれば,格納容器内のよう素の化学形態について,気相中のよう素と液相中のよう素の挙動は2つの効果が組み合わさって影響を受けることとなる。

① 液相中における無機よう素(I₂)とよう素イオン(I⁻)の平衡

放射線環境下において,液相中における無機よう素とよう素イオンの存在比は以下の ように表される。

$$F = \frac{[I_2]}{[I_2] + [I^-]}$$

[I₂]と[I⁻]は,無機よう素とよう素イオンの濃度を表す。この平衡反応はpHに強く依存する。第1図にpHに対する平衡の関係を示す。

第1図 液相中における I₂と I⁻の平衡とpHの関係

別添 3-127

② 液相と気相の無機よう素(I2)の平衡

液相中の無機よう素($I_2(aq)$)と気相中の無機よう素($I_2(g)$)の存在比は以下のよう に表される。

 $P = \frac{[I_2(aq)]}{[I_2(g)]}$

[I₂(aq)]及び[I₂(g)]はそれぞれ液相中の無機よう素濃度及び気相中の無機よう素濃 度を表す。この平衡は、以下の関係で温度に依存する。

log₁₀ P = 6.29 - 0.0149T T:絶対温度

気液界面(フィルタ装置水面)における無機よう素の平衡については、②のとおり温 度依存性があり、スクラビング水の水温が高い方が気相の無機よう素の割合が増える。 しかし、アルカリ環境下では、①の無機よう素とよう素イオンの平衡により液相中に 存在する無機よう素が極めて少なく、無機よう素の気相部への移行量は、スクラビン グ水の温度が上昇しても十分小さい値となる。

JAVA試験は、高温のベントガスを用いて、無機よう素が気相中に移行しやすい条件での試験を実施しており、温度上昇による影響に配慮したものとなっている。

JAVA試験で得られた無機よう素除去性能試験の結果を第1表に,温度に対する無機よう素除去性能の関係を第2図に示す。

第1表 JAVA試験結果(無機よう素除去性能試験結果)

第2図 温度に対する無機よう素除去性能

- (2) 薬剤の容量不足
- a. 想定する状態

(1)式に示すとおり、無機よう素はベンチュリスクラバにて薬剤 反応により捕集されるが、薬剤の容量を超える無機よう素が流入した場合には、無機よう素は 捕集されずに下流に流出されることが考えられる。

••• (1)

b. 影響評価

スクラビング水に含まれるの量は、格納容器から放出される無機よう素の量に対して十分大きいことから、容量に達することはないことを以下のとおり確認した。

- (a) スクラビング水の薬剤の保有量
 スクラビング水に含まれるの割合は待機時下限水位に対して
 であるため, comparing comparison comparison
- (b) 無機よう素の流入量

ベンチュリスクラバに流入する無機よう素の量を以下のとおり設定した。

・事故時に炉内に内蔵されるよう素元素量

BWRプラントにおける代表炉心(ABWR)の平衡炉心末期を対象としたORI GEN2コードの計算結果に対して,東海第二発電所の熱出力(3293 MW)を考慮して 算出した結果,約24.4 kgとする。

・格納容器への放出割合

NUREG-1465に基づき,格納容器内へのよう素の放出割合を61%とする。 ・格納容器に放出されるよう素の元素割合 Regulatory Guide 1.195 に基づき,よう化セシウム5 %,無機よう素91 %,有機よう素4 %とする。 以上より,ベンチュリスクラバに流入する無機よう素(分子量 253.8 g/mol) の量は となる。

(c) 評価結果

ベンチュリスクラバにおける無機よう素の反応はアルカリ環境下において(1)式に示すとお りであることから、ベンチュリスクラバに流入する無機よう素の反応に必要な の量は となる。スクラビング水に含まれる の量は であること から, が容量不足となることはない。

〈参考図書〉

- 1. NUREG/CR-5732_ORNL/TM-11861 Iodine Chemical Forms in LWR Severe Accidents
- 2. NUREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants" Feb. 1995
- 3. Regulatory Guide 1.195, "Methods and assumptions for evaluating radiological consequences of design basis accidents at light-water nuclear power reactors"

(参考) 有機よう素の生成割合に関する REGULATORY GUIDE 1.195 の適用について

有機よう素の生成割合は, Regulatory Guide 1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light Water Nuclear Power Reactors"で示されたよう素の存在割合を用い,4%を仮定している。

格納容器中の無機よう素等から有機よう素への転換割合,重大事故時におけるpH調整と有機よう 素の生成割合に関する評価を以下に示す。

a. 格納容器中の無機よう素等から有機よう素への転換割合

WASH-1233 "Review of Organic Iodide Formation Under Accident Conditions in Water-Cooled Reactors"では、粒子状よう素(CsI)を除く無機よう素等(I₂, HI, I)から 有機よう素(CH₃I) への転換に関して、格納容器内を模擬した種々の実験結果に基づいて提案 している。

一方, NUREG-0772 "Technical Basis for Estimating Fission Product Behavior during LWR Accidents"において、上記のWASH-1233の実験結果を再度評価し、WASH-1233で示される有機よう素への転換割合は、有機よう素の生成を導くメカニズムの定義付けが十分ではなく、保守的としている。

WASH-1233 及びNUREG-0772 に示されている,それぞれの有機よう素への転換割 合を第2表に示す。

有機よう素	WASH-1233	NUREG-0772
非放射線場	1 %未満	0.01 %未満
放射線場	2.2 %未満	0.02 %未満
合計	3.2 %未満	0.03 %未満

第2表 格納容器中の無機よう素等から有機よう素への転換割合

NUREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants"で は、無機よう素等から生成される有機よう素の転換割合として、WASH-1233で示される 3.2%(合計)に基づき決定している。しかし、WASH-1233では有機よう素の生成反応の みを考慮し、放射線による分解反応については考慮していないこと、格納容器内での有機よう 素の生成割合を評価していることなどから、NUREG-0772のレビュー結果と同様、相当な 保守性を持った値としている。 b. 重大事故時におけるpH調整と有機よう素の生成割合

NUREG/CR-5732 "Iodine Chemical Forms in LWR Severe Accidents"では、pHと よう素の存在割合について、pHの低下に伴って無機よう素等への生成割合が増加する知見が示 されており、pH調整が実施されている場合とpH調整が実施されていない場合のそれぞれにつ いて、重大事故時のよう素形態に関して、複数のプラントに対するよう素の発生量を評価して いる。pH調整が実施されている場合の結果を第3表に、pH調整が実施されていない場合の結果 を第4表に示す。BWRプラント(Grand GulF Peach Bottom)では、重大事故時において、 pH調整の実施の有無に限らず、有機よう素の生成割合は1%以下となっている。

Plant	т.		Fraction of total iodine in containment		
	Accident	I ₂ (g)	I ₂ (१)	I. (i)	CH ₃ I (g)
Grand Gulf	TC Y	0.05	0.03	99.92	0.001
	TQUV Y	0.01	0.03	99.96	0.0003
Peach Bottom	ΑΕ γ	0.002	0.03	99.97	0.0001
	ΤC2 γ	0.02	0.03	99.95	0.0004

Table 3.6 Distribution of iodine species for pH controlled above 7

第4表 重大事故時にpH 調整を実施しない場合の有機よう素の生成割合

Table 3.7	Distribution of	iodine species fo	or uncontrolled pH

Plant		Fraction of total iodine in containment (%)			
	Accident	I ₂ (g)	I ₂ (1)	I ⁻ (f)	CH ₃ I (g)
Grand Gulf	TC Y	26.6	15.3	58.0	0.2
	TQUV Y	6.6	18.3	75.1	0.06
Peach Bottom	AE Y	1.6	21.6	76.8	0.01
	TC2 Y	10.9	18.0	71.0	0.07

以上より,有機よう素の生成割合については不確定さがあるものの,Regulatory Guide 1.195 で示されている4%は十分な保守性を有していると考えられることから,設計値として 採用している。

〈参考図書〉

- 1. WASH-1233, "Review of Organic Iodide Formation Under Accident Conditions in Water-Cooled Reactors"
- 2. NUREG-0772, "Technical Basis for Estimating Fission Product Behaviour during LWR Accidents"

よう素除去部におけるよう素の再揮発,吸着材の容量減少及び変質について

フィルタ装置を継続使用する場合,よう素除去部の性能に影響を与える可能性のある因子として, 以下の点を考慮する必要がある。

- ・よう素(有機よう素, 無機よう素)の再揮発
- ・吸着材の容量減少
- ・吸着材の変質

それぞれの因子について、影響評価を実施する。

- (1) よう素の再揮発
- a. 想定する状態

化学工業の分野ではゼオライトに高温の水素を通気することにより捕集されているよう素を 再揮発させる技術がある。よう素除去部に充填された銀ゼオライトに、ベントガスに含まれる 水素が通気されると、捕集された放射性よう素が再揮発することが考えられる。

b. 影響評価

水素によるよう素の再揮発は400 ℃以上の高温状態で数時間程度,水素を通気した場合に起こることが知られている。一方フィルタ装置に流入するガスは200 ℃以下であり,銀ゼオライトに水素を含むガスが通過したとしても、ゼオライトに捕集されているよう素が再揮発することはない。

また,よう素除去部で捕集した放射性よう素の崩壊熱は、ベント中はベントガスにより冷却 され、ベント後は系統を不活性化するために供給される窒素により冷却されることから、この 冷却条件における上昇温度を評価する。

(a) よう素除去部で蓄積されるよう素の発熱量

よう素除去部に蓄積されるよう素の発熱量を以下のとおり設定した。

・事故時に炉内に内蔵されるよう素の発熱量

BWRプラントにおける代表炉心(ABWR)の平衡炉心末期を対象としたORIGE N2コードの計算結果に対して,東海第二発電所の熱出力(3293 MW)を考慮して算出した結果, とする。

- ・格納容器への放出割合
 - NUREG-1465に基づき、格納容器へのよう素の放出割合を61%とする。
- ・格納容器に放出されるよう素の元素割合

Regulatory Guide 1.195 に基づき,よう化セシウム 5 %, 無機よう素 91 %, 有機よう素 4 %とする。

・格納容器内の除去係数(無機よう素) 格納容器内の沈着やスプレイ,サプレッション・プールによるスクラビング効果によっ ては,保守的に除去されないものとして評価する。

ベンチュリスクラバでの無機よう素の除去性能(DF=100)を考慮して、ベンチュリスク

ラバで除去されずに残った全ての無機よう素がよう素除去部に蓄積するものとする。また、よう素除去部の有機よう素の除去性能はDF=50 であるが、有機よう素全てがよう素除去部に 蓄積されるものとすることでよう素除去部での発熱量を保守的に評価する。よう素除去部での 発熱量を第1表に示す。

第1表 よう素除去部での発熱量(単位:₩)

	原子炉停止後時間		
	19 hr	168 hr	
有機よう素+無機よう素の発熱量			

(b) 減衰時間と冷却ガス条件

ベント終了までは蒸気による冷却となるため、以下の①、②のケースを想定し、その時点 の減衰を考慮する。窒素による冷却については②を想定し、その時点の減衰を考慮する。

① 原子炉停止後 19 時間(有効性評価におけるベント開始時間)

② 原子炉停止後 168 時間(事象発生7日後)

保守的に評価するため、冷却能力が低い条件として、可搬型窒素供給装置による窒素流量のみを冷却ガス条件とし、圧力、温度条件は大気圧及び常温付近の 27 ℃ (300 K) とする。

・窒素流量 = 200 m³[N]/h

- ・窒素比熱 = 1040 J/kg・℃
- ・窒素密度 = 125 kg/m³[N]
- また、蒸気の場合も、圧力、温度条件は、大気圧及びその飽和温度とする。

・蒸気潜熱(100 ℃飽和蒸気)= 2.256×10⁶ J/kg

- ・比熱(100 ℃飽和蒸気)= 2077 J/kg℃
- ・格納容器内発熱量 = 2.03×10⁷ W (19 hr)

 $= 9.83 \times 10^6$ W (168 h)

(c) 評価結果

よう素除去部に蓄積したよう素の崩壊熱によりガスが昇温される量を評価することによ

り, 簡易的によう素除去部の温度上昇を評価する。よう素除去部に移行したよう素の崩壊熱 の全量がガスに移行したと仮定し,以下の評価式にてよう素除去部の上昇温度を評価した。 <窒素パージの場合>

上昇温度(℃)=よう素除去部内の発熱量(W)

/(比熱(J/kg℃)・窒素パージ量(m³/s)・窒素密度(kg/m³))
<<p><蒸気の場合>

上昇温度 (\mathbb{C}) =よう素除去部内の発熱量 (\mathbb{W}) / (比熱 ($J/kg\mathbb{C}$)・蒸気発生量 (kg/s)) 蒸気発生量 (kg/s) = 格納容器内の発熱量 (\mathbb{W}) /蒸発潜熱(J/kg) 第2表に窒素冷却における上昇温度を,第3表に蒸気(崩壊熱相当)冷却における上昇温度を示す。いずれの場合においても、よう素除去部の温度上昇は十分低く、よう素除去部での温度上昇は、再揮発が起こるような温度(400 ℃以上)に対して十分に低く抑えることができる。

第2表 窒素冷却による上昇温度(単位:℃)

	原子炉停止後時間		
	168 hr		
上昇温度			

第3表 蒸気(崩壊熱相当)冷却による上昇温度(単位:℃)

	原子炉停	亭止後時間	
	19 hr	168 hr	
上昇温度			

- (2) 吸着材の容量減少
- a. 想定する状態

ガス状放射性よう素は銀ゼオライトに捕集されるが,銀ゼオライトの吸着容量に達した場合 には,ガス状放射性よう素は捕集されずに系外に放出されることが考えられる。

b. 影響評価

よう素除去部で保持が可能なガス状放射性よう素の吸着容量(銀分子数)は、格納容器から 放出されるよう素量に対して十分大きいことから、吸着容量に達することはないことを以下の とおり確認した。また、JAVA PLUS試験と実機の有機よう素注入量と銀ゼオライト充 填量との比較においても、よう素除去部の有機よう素捕集に関する吸着容量が十分であること を確認した。

(a) よう素除去部の銀の保有量

よう素除去部の銀ゼオライトの銀含有割合は約 12 wt%であるため,銀ゼオライト こ含まれる銀の量は である。

(b) ガス状放射性よう素の流入量

よう素除去部に蓄積されるよう素の発熱量を以下のとおり設定した。

・事故時に炉内に内蔵されるよう素元素量

BWRプラントにおける代表炉心(ABWR)の平衡炉心末期を対象としたORIGE N2コードの計算結果に対して,東海第二発電所の熱出力(3293 MW)を考慮して算出した 結果,約 24.4 kg とする。

- ・格納容器への放出割合
 - NUREG-1465に基づき、格納容器内へのよう素の放出割合を 61 %とする。
- ・格納容器に放出されるよう素の元素割合

Regulatory Guide 1.195 に基づき,よう化セシウム 5 %,無機よう素 91 %,有機よう素 4 %とする。

フィルタ装置での無機よう素の除去性能(DF=100)を考慮して、ベンチュリスクラバで 除去されずに残った全ての無機よう素がよう素除去部に蓄積するものとする。また、有機よ う素は全てがよう素除去部に蓄積されるものとする。

以上の想定で、よう素除去部に吸着するガス状放射性よう素の量は無機よう素約 0.54 mol, 有機よう素約 4.7 mol であり、無機よう素 I₂ (分子量:253.8)約 136 g, 有機よう素

(無機よう素 (I₂)のモル数) =24400 g/126.9 g/mol×61 %×91 %/100(DF)

/2 (I₂)

CH₃I(分子量:141.9)約666 gに相当する。

=0.536...mol

(有機よう素 (CH₃I) のモル数) =24400 g/126.9 g/mol×61 %×4 %

 $=4.69\cdots$ mol

(c) 評価結果

よう素は、以下に示すように銀と反応することから、銀ゼオライトに含まれる銀の量(約 mol)は、流入する放射性よう素の捕集に十分な量であると言える。

- ・有機よう素の除去反応
 - ・無機よう素の除去反応
- (d) JAVA PLUS試験と実機の比較による容量の確認

JAVA PLUS試験において、有機よう素を用いて銀ゼオライトの性能検証を行って いる。JAVA PLUS試験では、約 kgの銀ゼオライトを交換することなく有機よう 素を約 g以上注入しているが、銀ゼオライトの性能劣化は確認されていない。

実機の銀ゼオライト充填量は約 t であり、JAVA PLUS試験の実績より、約 kg の有機よう素が流入しても性能劣化を起こさないと言える。実機よう素除去部に想定される有機よう素の最大流入量は約 g であり、無機よう素を含めても約 g であることから、銀ゼオライトが性能劣化することはないと考えられる。

- (3) 吸着材の変質
- a. 想定する状態

よう素除去部の吸着材として使用する銀ゼオライトは,光照射又は高湿度の環境に長期間晒 されると,変質してよう素除去性能が低下することが考えられる。

b. 影響評価

銀ゼオライトは、ステンレス鋼製のフィルタ装置容器内のよう素除去部に充填されるため、 光が照射されることはなく、変質するおそれはない。

また、湿分による銀ゼオライトのよう素除去性能への影響	こついては, 密閉容器内にスクラ
ビング水	と銀ゼオライトを保管し、6カ月
後及び15カ月後の除去効率の測定試験を行い,性能基準	を満たしているこ
とを確認した。	

〈参考図書〉

- ORNL/TM-6607 "Literature Survey of Methods to Remove Iodine from Off-gas Streams Using Solid Sorbents", Apr/10/1979
- 2. NUREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants" Feb. 1995
- 3. Regulatory Guide 1.195, "Methods and assumptions for evaluating radiological consequences of design basis accidents at light-water nuclear power reactors"

別紙10

スクラビング水の保有水量の設定根拠について

スクラビング水の初期保有水量(系統待機時)は、ベント開始後24時間はベンチュリスクラバ による所定の放射性物質の除去性能が得られる水量と、

と設定している。

スクラビング水の水量の設定根拠を以下に示す。また、フィルタ装置水位の概略図を第1図に 示す。

(1) 最大水量について

(2) 最小水量について

第1図 フィルタ装置水位の概略図

(3) スクラビング水の補給期間について

フィルタ装置の設計条件に基づいているスクラビング水の初期保有水量(フィルタ装置の寸 法)は、他の設計条件と同様に、大きな保守性を確保し設定(設計)している。一方、スクラビ ング水の補給期間は、運用に係るものであり、有効性評価に基づく運用を考慮して評価するこ ととし、有効性評価のうちベント時間を厳しく評価する大破断LOCAを想定した「雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損)」におけるフィルタ装置内の発熱量を用い たスクラビング水の水位挙動より評価する(第1表)。

スクラビング水の補給期間の評価条件及び評価結果を以下に示す。

【評価条件】

- ・初期水位:
- ・室温:25 ℃*1 (系統待機時),65 ℃*2 (ベント実施中)
- ・ベント時の格納容器圧力:第2図のとおり
- ・フィルタ装置内発熱量:
 - ※1:ベント実施前のスクラビング水の初期水温としても使用。地下の格納容器圧力 逃がし装置格納槽にあることを踏まえて設定した値
 - ※2:スクラビング水の蒸発量を多く見込むために高めに設定した値
 - ※3:19 時間ベントの解析結果にNUREG補正した格納容器外へ放出された放射性 物質(希ガスを除く)の発熱量(約15 kW)に余裕を考慮した値

【評価結果】

スクラビング水位の挙動を第3図に示す。より保守的な結果を与えるD/Wベントのケース においても、ベント時のスクラビング水位は最高水位、最低水位に至らず、想定事故において は事象発生後7日間(168時間)運転員による水の補給操作は不要となる。

	設備設計	運用	
	【フィルタ装置寸法】	【水補給の運用の評価】	
	2 時間~3 時間後	10 時間必必	
ベント時間	【原子炉定格熱出力の1 %相当	19 時間後※ 【有効性評価結果より】	
	の時間】		
コールカ壮田中が	500 kW	20 kW	
ノイルク装直内発	【ベント時間	【ベント時間	
然重	2~3 時間ベース】	19 時間ベース】	

第1表 設備設計と運用の主な条件設定の差異

※:水補給の運用の評価のほか、被ばく評価もベント時間19時間ベース

第2図 ベント時の圧力推移図(水位計算時)

第3図 「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」 におけるベント時のスクラビング水位の変化 (参考) スクラビング水の下限水位の設定について

スクラビング水位について、ベンチュリノズルの頂部まで水位があれば、設計上期待しているD Fが確保できることを以下のとおり確認した。

ベンチュリスクラバは、図4のようにスクラビング水を微小液滴にしてベントガス中に噴霧させることで除去効率を上げている。

①ベンチュリノズル下方よりベントガスが流入
②スロート部でベントガス流速が増大
③スクラビング水がベントガス中に噴霧(微小液滴)
④ガスとスクラビング水が接触する面積が大きくなり除去効率が上がる
⑤ベントガス及び液滴は方向を変えられ、スクラビング水中に斜め下に排出

第4図 ベンチュリスクラバにおける除去原理

- (1) エアロゾルのDFについて
 - ベンチュリスクラバ内のガス流速と水滴速度が異なることで、ガス中のエアロゾルが水滴 に衝突し水滴に付着する現象を用いたものであることから、慣性衝突による除去が支配的 と考えられる。
 - そのメカニズムから、DFに影響するのはガス流速及びエアロゾル粒径であり、水位はベンチュリスクラバによるエアロゾル除去原理が有効となるベンチュリノズル上端以上であればよい。
 - JAVA試験によるエアロゾルのDFの結果を第5図及び第6図に示す。図に示すとおり、様々なガス流速と質量中央径が異なるエアロゾルで試験が行われているが、ガス流速及び質量中央径によるDFへの有意な影響は見られず、スクラビング水位をベンチュリノズル上端とした試験においても、設計条件DF1000以上を十分に確保できている。

第6図 エアロゾルの粒径とエアロゾルDFの関係

- (2) 無機よう素のDFについて
 - スクラビング水に添加された薬剤との化学反応により非揮発性のよう素イオンに変化させ、スクラビング水中に捕集・保持することから、スクラビング水のpHがDFに影響する主要なパラメータであり、水位はベンチュリスクラバによる除去原理が有効となるベンチュリノズル上端以上であればよい。
 - JAVA試験による無機よう素のDFの結果を第7図に示す。スクラビング水位がベンチ ュリノズル上端となっている試験は、無機よう素の捕集の観点から厳しい条件である低pH においても、設計条件DF100以上を確保できている。

第7図 スクラビング水のpHと無機よう素DFの関係

したがって、スクラビング水位の下限水位をベンチュリノズル上端とすることは適切と考える。

実運用における系統待機時(通常時)のスクラビング水位は、ベンチュリノズルの上端 (1325 mm) を十分に上回る 2530 mm とし、F P が多く流入するベント開始初期のスクラビン グ水位を十分に確保し、ベント中においても、スクラビング水位 1500 mm 以上を確保するよう スクラビング水を補給する運用とする。

スクラビング水のpHについては,待機時にpH 13以上(NaOH 濃度 3.0 wt%相当)であること を確認し,ベント中におけるスクラビング水のアルカリ性を維持する運用とする。 格納容器圧力逃がし装置のスクラバ容器について,地震時にスロッシングが発生することで,ス クラビング水が金属フィルタ下端まで到達する可能性がある。そこで,保守的な評価となるハウス ナー理論を用いてスロッシング高さを評価した。

ハウスナー理論により、スロッシング高さdmaxは以下のように算出できる。

金属フィルタは上限水位から mm上方に設置しており、スロッシング高さは最大でも mm と算出されることから、スクラビング水は金属フィルタ下端まで到達しない。評価結果を第8図に 示す。

また,スロッシング水位が下限水位時にスロッシングが発生すると,ベンチュリノズルは一部気 層部に露出し,性能が一時低下するが,露出している時間はベント実施時間と比較して非常に小さ く,さらにベンチュリスクラバの後段には金属フィルタも設置していることから,格納容器ベント により放出される放射性物質のトータル量に影響を与えるものではないと考える。

第8図 スクラビング水スロッシング評価結果

別紙 11

よう素除去部へのスクラビング水の影響について

よう素除去部は,硝酸銀を添加した吸着材(銀ゼオライト)が充填されており,硝酸銀との化学 反応で放射性よう素を除去する。

ベント中のよう素除去部へのスクラビング水の影響として、スウェリングにより、よう素除去部 の位置までスクラビング水位が上昇し、よう素除去部において蒸気が凝縮し、銀ゼオライトの表面 に水が付着することでよう素の除去性能が低下することがないかを確認する。

また,格納容器圧力逃がし装置の待機時のフィルタ装置内の環境が,スクラビング水により飽和 蒸気となることが想定されるが,この環境でよう素の除去性能が低下することがないかを確認する。

(1) スウェリングの影響について

スクラビング水に蒸気が流入すると、スウェリングにより水位が上昇するとともに、スクラ ビング水の水温も上昇する。その結果、定常状態(スクラビング水が飽和した状態)では、ス クラビング水は待機時に比べ上昇しており、よう素除去部の外壁はスクラビング水に接するこ ととなる。この場合、スクラビング水からよう素除去部へ入熱されるため、よう素除去部で蒸 気が凝縮することはなく、よう素の除去性能への悪影響はない。

スクラビング水が飽和した状態においては、スクラビング水の温度はフィルタ装置内の圧力 (スクラビング水部の圧力)により決まる。ベントガスの温度はこのベンチュリスクラバ(ス クラビング水)を通過することで、スクラビング水の水温と同じになっているものと考えられ る。

したがって、よう素除去部の外壁がスクラビング水に接する場合、スクラビング水の温度は よう素除去部を通過するベントガスの温度よりも高いこととなり、スクラビング水からの入熱 が期待でき、よう素除去部において蒸気が凝縮し、銀ゼオライトの表面に水が付着することは ないため、よう素の除去性能への悪影響はない。

フィルタ装置内のガスの流れと温度の関係を第1図に示す。

(2) 系統待機時におけるよう素除去部へのスクラビング水の影響について

プラント運転中を通して格納容器圧力逃がし装置の系統待機時は,フィルタ装置内がスクラ ビング水によって飽和蒸気の環境となり,銀ゼオライトは長期間,飽和蒸気の環境下で保管さ れる。

この保管状況において湿分による銀ゼオライトのよう素除去性能への影響を確認するため, 密閉容器内にスクラビング水 と銀ゼオラ イトを第1表に示す環境で保管し,よう素除去効率を6カ月後及び15カ月後に測定を実施した 結果と銀ゼオライトの保管の様子を各々第2表と第2図に示す。

項目	試験条件	実機環境を考慮した適用性

第1表 銀ゼオライトの試験条件

<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
有機よう素の除去効率(%)				
初期 6 カ月後 15 カ月後				

第2表 銀ゼオライトの除去効率の経時変化

第2図 銀ゼオライトの保管の様子

試験結果によると、6カ月及び15カ月後における銀ゼオライトの除去効率は、性能基準 を満たしており、実機においてもプラント運転中を通して性能は維持されると 考える。

別紙 12

格納容器圧力逃がし装置の外部事象に対する考慮について

格納容器圧力逃がし装置は、自然現象(地震及び津波を除く。)及び外部人為事象に対し て、原子炉建屋外の地下の格納容器圧力逃がし装置格納槽内に配置する等、第1表(1/4~4/ 4)のとおり考慮した設計とする。

なお,想定する外部事象は,「設置許可基準規則」第六条(外部からの衝撃による損傷の防止)において考慮する事象,内部溢水及び意図的な航空機衝突とする。ただし,洪水,地滑り,生物学的事象(海生生物),高潮の自然現象,並びに航空機落下,ダムの崩壊,有毒ガス,船舶の衝突の外部人為事象については,発電所の立地及び格納容器圧力逃がし装置の設置場所等により,影響を受けないことから考慮する必要はない。

外音	《事象	影響チード	設置	設計方針
♪ 山 中 35			以 臣 場所	на нт 73 жт
		荷重 (風)	屋内	原子恒建屋又け地下の格納容器圧力逃がし装置
	風	荷重 (孤本物)		格納榑内に設置されている部位についてけ 外
	(石			- 一部の原子炉建屋等により防護される。
	L 風		屋外	飛ぶ物による影響け 一般来物による影響け 一般来物による影響け 一般来物による影響け
				1.3.
		荷重(風),	屋内	原子炉建屋又は地下の格納容器圧力逃がし装置
		荷重 (気圧差),	/	格納槽内に設置されている部位については、外
		荷重(飛来物)		殻の原子炉建屋等により防護される。
			屋外	屋外に設置されるフィルタ装置出口配管、圧力
	竜			開放板等については、竜巻飛来物により損傷す
	Ċ			る可能性があるため,損傷が確認された場合
				は、必要に応じてプラントを停止し補修を行
				う。また、風荷重、気圧差により、機能が損な
				われるおそれがない設計とする。
		温度(低温) 屋内		原子炉建屋又は地下の格納容器圧力逃がし装置
目然				格納槽内に設置されている部位については、換
現 象				気空調設備により環境温度が維持されるため、
21				外気温の影響を受け難い。
	凍		屋外	屋外に設置,かつ,水を内包する可能性のある
	結			範囲のフィルタ装置出口配管のドレン配管には
				保温等の凍結防止対策を行い、凍結し難い設計
				とする。また、適宜ドレン水を排出することか
				ら、フィルタ装置出口配管を閉塞することはな
				<i>۷</i> ۰,
		浸水,	屋内	フィルタ装置は、格納容器圧力逃がし装置格納
		荷重		槽内に設置し、止水処理を実施することによ
				り、降水による浸水、荷重の影響は受けない。
	降水		屋外	屋外に設置されるフィルタ装置出口配管、圧力
	水			開放板等は、滞留水の影響を受け難い位置に設
				置するとともに、系統開口部から降水が浸入し
				難い構造とすることにより、必要な機能が損な
				われるおそれがない設計とする。

第1表 格納容器圧力逃がし装置の外部事象に対する考慮(1/4)

外音	『事象	影響モード	設置	設計方針
			場所	
		荷重(積雪),	屋内	原子炉建屋又は地下の格納容器圧力逃がし装置
		閉塞		格納槽内に設置されている部位については、外
				殻の原子炉建屋等により防護する設計とする。
			屋外	屋外に設置されるフィルタ装置出口配管、圧力
	積			開放板等については、積雪荷重に対して耐性が
	÷			確保されるように設計する。また、系統開口部
				から降雪が浸入し難い構造とすることにより,
				必要な機能が損なわれるおそれがない設計とす
				る。なお、多量の積雪が確認される場合には、
				除雪を行う等,適切な対応を実施する。
		雷サージによる電	屋内	落雷の影響を考慮すべき設備については、原子
	落	気・計装設備の損	及び	炉建屋等への避雷針の設置,接地網の布設によ
白	雷	傷	屋外	る接地抵抗の低減を行う等の雷害防止で必要な
然				機能が損なわれるおそれがない設計とする。
圯 象		荷重,	屋内	原子炉建屋又は地下の格納容器圧力逃がし装置
		閉塞,		格納槽内に設置されている部位については、外
		腐食		殻の原子炉建屋等により防護する設計とする。
	火		屋外	屋外に設置されるフィルタ装置出口配管、圧力
	山 の			開放板等については、降下火砕物の堆積荷重に
	影郷			対して耐性が確保されるように設計する。ま
	音			た、系統開口部から降下火砕物が侵入し難い構
	降下			造とすることにより、必要な機能が損なわれる
	火砕			おそれがない設計とする。なお、降下火砕物の
	物			堆積が確認される場合には、降下火砕物を除去
				する等、適切な対応を実施する。
				化学的影響(腐食)防止のため、屋外に敷設さ
				れるフィルタ装置出口配管(炭素鋼配管)外面
				には防食塗装を行う。

第1表 格納容器圧力逃がし装置の外部事象に対する考慮(2/4)

外部事象		影響モード	設置	設計方針
			場所	
	生	電気的影響	屋内	原子炉建屋又は地下の格納容器圧力逃がし装置
	物 学	(齧歯類(ネズミ		格納槽内に設置されている部位については、外
	前重	等)によるケーブ		殻の原子炉建屋等により防護する設計とする。
	事象	ル等の損傷)	屋外	地下の格納容器圧力逃がし装置格納槽外に設置
				されている端子箱貫通部等にはシールを行うこ
				とにより、小動物の侵入を防止する設計とす
				る。
				屋外に設置されている系統開口部から小動物が
				浸入し難い構造とすることにより、必要な機能
				が損なわれるおそれがない設計とする。
	森	温度(輻射熱),	屋内	機器を内包する原子炉建屋、地下の格納容器圧
	林火	閉塞	及び	力逃がし装置格納槽及び屋外に設置される機器
	災		屋外	は、防火帯の内側に配置し、森林との間に適切
				な離隔距離を確保することで、必要な機能が損
				なわれるおそれがない設計とする。
自 伏				ばい煙等の二次的影響に対して、ばい煙等が建
現免				屋内に流入するおそれがある場合には、換気空
豕				調設備の外気取入ダンパを閉止し、影響を防止
				する。
		爆風圧,飛来物	屋内	近隣の産業施設,発電所周辺の道路を通行する
	懪		及び	燃料輸送車両,発電所周辺を航行する燃料輸送
	発		屋外	船の爆発による爆風圧及び飛来物に対して、離
				隔距離が確保されている。
	`Ľ	温度(熱)	屋内	近隣の産業施設,発電所周辺の道路を通行する
	の隣		及び	燃料輸送車両,発電所周辺を航行する燃料輸送
	火工 災場		屋外	船及び敷地内の危険物貯蔵施設の火災に対し
	等			て,離隔距離が確保されている。
		サージ・ノイズに	屋内	日本工業規格(JIS)等に基づき、ラインフ
	電磁	よる計測制御回路	及び	ィルタや絶縁回路の設置により、サージ・ノイ
	的	への影響	屋外	ズの侵入を防止するとともに、鋼製筐体や金属
	障害			シールド付ケーブルの適用により電磁波の侵入
				を防止する設計とする。

第1表 格納容器圧力逃がし装置の外部事象に対する考慮(3/4)

从部重象	影響モード	設置	設計方針
→ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		以 固 坦正	
	沉水 妆水 茎层	物内	
	夜小, 彼小, 烝凤 に上了四位夕仙の	座内	内部溢水 光 生 時は、日 期 隔離 人 は 手 期 隔離 に よ ゆ 、 思 こ い 焼 ぎ の 厚 競 担 (た き な こ ま き 、 思 こ)
	による東現余件の		り、漏えい固所の隔離操作を行う。また、漏え
	患化		い箇所の隔離が不可能な場合においても、漏え
			い水は,開放ハッチ部,床ファンネルを介し建
			屋最地下階へと導く設計としていることから、
内			ベント操作を阻害することはない。
部			隔離弁については、没水、被水等の影響により
溢水			中央制御室からの操作機能を喪失する可能性が
/4.			あるものの、人力での現場操作が可能であり機
			能は維持される。
			必要な監視機器については、没水、被水、蒸気
			に対する防護対策を講じ、機能を維持する設計
			とする。
		屋外	対象外
	衝突による衝撃	屋内	原子炉建屋又は地下の格納容器圧力逃がし装置
	力、火災による熱		格納槽内に設置されている部位については、外
意	影響		殻の原子炉建屋等により防護されると考えられ
的			る。
な 航		屋外	屋外に設置されるフィルタ装置出口配管、圧力
空機			開放板等については、航空機の衝突による衝撃
衝			カ及び航空機燃料火災による熱影響により損傷
癸			する可能性があるが、フィルタ装置の除去性能
			に大きな影響はないと考えられる。
	自の得入による影	民从	排気管生體に自得し防止田久綱を設置する
	局の反入によ 3 家	/至2下	14-34目元端に局区八防止用並納を改直する。
バ	普		バードスクリーン
トス			
クリ			
ĺ			

第1表 格納容器圧力逃がし装置の外部事象に対する考慮(4/4)

スクラビング水の pH について

スクラビング水は、無機よう素をスクラビング水中に捕集・保持するためにアルカリ性の状態 (pH7以上)に維持する必要があるが、重大事故等発生時においては、格納容器内のケーブルから 放射線分解、熱分解等により塩化水素(HC1)等の酸として放出され、ベント実施により格納容器 からフィルタ装置(スクラビング水)に移行するため、pHが低下する可能性がある。

これに対して、スクラビング水は、待機時における重大事故等時に発生する可能性がある酸の量 に対して十分な塩基量を確保することにより、ベント実施中のpH監視を実施することなく、確実に アルカリ性の状態を維持することとしている。

なお,スクラビング水のpHについては,pH計を設置し,pHがアルカリ性の状態となっていることを原子炉停止中に適宜確認する。

(1) 格納容器内の酸性物質及び塩基性物質

重大事故等時に格納容器内において発生する酸性物質と塩基性物質については、NUREG /CR-5950において検討が実施されており、その発生源として燃料(核分裂生成物),原子 炉水、サプレッション・プール水溶存窒素、格納容器内塩素含有被覆材ケーブル、格納容器下 部コンクリートが掲げられている。これに加え、格納容器内の塗料についても成分元素に窒素 が含まれており、酸として硝酸、塩基としてアンモニア等の発生源となる可能性がある。主な 酸性物質、塩基性物質を発生源毎に第1表に示す。

発生源	酸性物質	塩基性物質	備考
燃料(核分裂生成物)	よう化水素 (HI)	水酸化セシウム (CsOH) 等	
原子炉水	_	五ほう酸ナトリウム (Na ₂ B ₁₀ O ₁₆)	ほう酸水注入系によ りほう酸水を原子炉 へ注入した場合
サプレッション・プール 水溶存窒素	硝酸(HNO ₃)	_	
格納容器内塩素含有 被覆材ケーブル	塩化水素(HC1)	_	
格納容器下部 コンクリート (溶融炉心落下時)	二酸化炭素 (CO ₂)	—	
格納容器内塗料	硝酸(HNO ₃)	アンモニア(NH ₃)	

第1表 主な酸性物質と塩基性物質

これらのうち,酸性物質が発生することが知られているサプレッション・プール水溶存窒素の 放射線の照射により発生する硝酸,原子炉圧力容器が破損した場合にMCCIにより発生する二 酸化炭素に加え,pHへの寄与が大きいと考えられる塩素含有被覆材ケーブルの放射線分解及び熱 分解により発生する塩化水素,スクラビング水中で分解する際に塩基を消費する が,スクラビング水の塩基量を評価する上で重要であることから,以下では,これらの発生量を 評価することとする。

a. 格納容器内ケーブルの被覆材の放射線分解による酸の発生量

格納容器内の塩素含有被覆材ケーブルについて、放射線分解により発生する塩化水素量を NUREG/CR-5950の放射線分解モデルに基づき評価した。なお、ケーブル量について は、実機調査を行った。

有効性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(循 環冷却を使用しない場合)」において、ベント時(事象発生から約19時間後)には mol,7日後には mol,60日後には molの酸性物質が格納容器内で生成されると 評価した。

b. 格納容器内電気ケーブルの被覆材の熱分解による酸の発生量

熱分解については、原子炉圧力容器損傷前の格納容器内環境(200 ℃以下)ではケーブル からの塩酸の発生はほとんどないことから、炉心損傷などによるデブリ接近によりケーブル 温度が著しく上昇した場合を想定した酸性物質の放出量を評価した。

ここでは、格納容器ペデスタル内に配置された塩素を含有するケーブルの被覆材から塩化 水素が放出されると仮定し、ペデスタル内ケーブルの塩酸含有量 kgの全量が放出される ものとして、 の酸が発生すると評価した。 c. サプレッション・プール水での放射線分解による硝酸の発生量

重大事故等時において、サプレッション・プール水中ではサプレッション・プール水溶存窒素の放射線の照射によって硝酸が生成される。

なお,格納容器内に放出されたエアロゾルの一部はフィルタ装置のスクラビング水に移行し, フィルタ装置内での硝酸の発生に寄与すると考えられるが,ここでは,格納容器内に放出され た放射性よう素を全てエアロゾル (CsI) とし,サプレッション・プール内に全てのエアロゾ ルが移行するものとして,硝酸の発生量を評価した上で,発生した硝酸は全てフィルタ装置に 移行し,スクラビング水の塩基と反応するものとして評価している。このため,ラジオリシス によるスクラビング水のpHの影響は保守的に評価されている。

NUREG-1465, Reg. Guide. 1. 183及びNUREG/CR-5950に基づき, サプレッショ ン・プール水の積算吸収線量から硝酸の生成量を評価した結果, ベント時(事象発生から約 19時間後)には mol, 7日後には mol, 60日後には molとなる。

 $\begin{bmatrix} H N O_{3} \end{bmatrix} = \frac{G \times 10}{1.602 \times 10^{-19} \times 6.022 \times 10^{23}} \times (E(t)^{\gamma} + E(t)^{\beta})$ ここで、 $\begin{bmatrix} H N O_{3} \end{bmatrix} : 硝酸濃度 (mol/L)$ $G : H CO_{3} O 水 中 におけ る G 値 (個/100 eV)$ $E (t) \gamma, E (t) \beta : \gamma 線 と \beta 線 の 積算吸収線量 (kGy)$

d. MCCIにより発生する二酸化炭素の発生量

MCCI対策としてコリウムシールドを設置するため,原子炉圧力容器が破損した場合でも 溶融炉心によるコンクリート侵食は発生しないものの,保守的に約30 cmのコンクリート侵食 を見込み評価する。

MCCIにより発生する二酸化炭素のほとんどは、高温環境下において溶融炉心に含まれる金属元素によって酸性物質ではない一酸化炭素に還元されるが、全て二酸化炭素として評価した結果、二酸化炭素の発生量は molとなる。

二酸化炭素は塩化水素ほど溶解度が大きくないため、フィルタ装置内では全量がスクラビング水に溶解することはなく、また弱酸のため、酸性物質としてスクラビング水に与える影響は小さいと考えるが、本評価では保守的にスクラビング水のpHに影響を与える酸性物質として評価する。

e. 無機よう素の捕集により消費される塩基の量

ベンチュリスクラバに流入する無機よう素の量を以下のとおり設定した。

- ・事故時に炉内に内蔵されるよう素元素量 BWRプラントにおける代表炉心(ABWR)の平衡炉心末期を対象としたORIGEN 2コードの計算結果に対して,東海第二発電所の熱出力(3293 MW)を考慮して算出した結 果,約24.4 kgとする。
- ・格納容器への放出割合 NUREG-1465に基づき,格納容器内へのよう素の放出割合を61%とする。 ・格納容器に放出されるよう素の元素割合
- Regulatory Guide 1.195 に基づき,よう化セシウム 5 %, 無機よう素 91 %, 有機よう素 4 %とする。

以上より、ベンチュリスクラバに流入する無機よう素(分子量 253.8 g/mol)の量は約 13.6 kg(約 53.6 mol)となる。

(2) フィルタ装置での塩基の消費量

(1)項で生成した酸性物質は、ほとんどが液相に溶解してサプレッション・プールに移行 し、ベント時にはサプレッション・プールに残留してフィルタ装置には移行しない可能性もあ るが、保守的に全量が移行するとして評価する。スクラビング水の消費される塩基の量は、以 下のとおりとなる。

【事象発生7日後での塩基の消費量 (mol)】

- ・ケーブルの放射線分解の塩化水素で消費される塩基の量
- ・ケーブルの熱分解の塩化水素で消費される塩基の量
- ・S/P※水から発生する硝酸で消費される塩基の量
- ・MCCIで発生する二酸化炭素で消費される塩基の量
- ・無機よう素の捕集により消費される塩基の量

の分解により消費される塩基

【事象発生60日後での塩基の消費量(約9970 mol)】

- ・ケーブルの放射線分解の塩化水素で消費される塩基の量
- ・ケーブルの熱分解の塩化水素で消費される塩基の量
- ・S/P※水から発生する硝酸で消費される塩基の量
- ・MCCIで発生する二酸化炭素で消費される塩基の量

・無機よう素の捕集により消費される塩基の量

の分解により消費される塩基 ※:S/P:サプレッション・プール

mol
mol

(3) スクラビング水のpH評価結果

フィルタ装置は無機よう素(I₂)を捕集及び保持するものであるため、2ヶ月でよう素が十 分減衰することを考慮し、スクラビング水には保守的に設定した60日後の塩基の消費量 mol)を考慮する。

消費される molの塩基に相当する の濃度は、待機時最低水位(約 35t)時に約1.1 wt%(=9,970×40/(35×10⁶))となることから、これに余裕を考慮し て、スクラビング水の水酸化ナトリウム濃度は、待機時最低水位 t)時に wt%とす る。

この場合、初期のpHは	60日後のスク	ラビング水のpHは	であり,	スクラビング
水はアルカリ性の状態を維持で	きる。なお,電気	気ケーブルに含ま	れる酸性物質の)総量(
mol)が全て分解し、フィ	アルタ装置に移行	した場合であって	くも60日後の塩	基の消費量は
		であり、待機時に	ニスクラビング	水に含まれる
の量は十分で	ある。この場合,	スクラビング水	のpHは と	なる。

(4) 薬液の劣化・濃度均一性

フィルタ装置スクラビング水に添加する の水系の相平衡については、「Cmelins Handbuch der anorganischer Chemie, Natrium, 8 Auflage, Verlag Chemlie, Berlin 1928」 より、第1図のとおり示されている。第1図より、フィルタ装置スクラビング水の添加濃度であ る では、水温が0 ℃以上であれば相変化は起こらない(つまり析出することは ない)ことがわかる。フィルタ装置は格納容器圧力逃がし装置格納槽の地下埋設部に設置する こととしており、スクラビング水は0 ℃以上となる。よって、フィルタ装置待機中に が析 出することはない。

また, は非常に安定な化学種であり,フィルタ装置待機中,フィルタ装置は圧力開放板 により外界と隔離され,窒素雰囲気に置かれることから,フィルタ装置待機中において,薬液が 変質することはない。

第1図	の水조相亚術図	

(5) スクラビング水の管理について

(3)に記載したとおり、スクラビング水は待機時に十分な薬剤の量を確保しておくことで、 ベントを実施した際に格納容器から酸が移行した場合においても、スクラビング水はpH 7以上 を維持できる。以上を踏まえ、スクラビング水の管理について以下に示す。

- a. 系統待機時の管理
 - ・スクラビング水が通常水位の範囲内であることを確認する。
 - ・系統待機時にフィルタ装置スクラビング水 pH 計により,水質が管理基準内であることを確認する。

b. ベント中の管理

・スクラビング水の水位を監視し、水位低に至る場合においては、水を補給する。

- c. ベント停止後(隔離弁閉止後)
 - ・ベント停止後において、フィルタ装置に異常がないことを確認するため、フィルタ装置水 位計にて、スクラビング水の水位が確保されていること(フィルタ装置のスクラビング水 の移送後を除く)を確認する。

<参考図書>

- 1. NUREG/CR-5950 ''Iodine Evolution and pH Control'', Dec.1992
- 2. NUREG/CR-5564 ' 'Core-Concrete Interactions Using Molten U02 With Zirconium on A Basaltic Basement' ', Apr.1992

ステンレス構造材、膨張黒鉛パッキンの妥当性について

フィルタ装置や入口配管等のスクラビング水の接液部については、内部に保有しているスクラビ ング水の通常状態での性状(高アルカリ性)と重大事故時に放出される放射性物質を捕集・保持す ること(汚染水の貯蔵)を考慮して、耐食性に優れたステンレス鋼を材料として選定している。 第1表にスクラビング水接液部の材質について記載する。

部位		材質
バウンダリ	容器	SUS316L
	入口配管接液部	SUS316LTP
	接続配管	SUS316LTP
		(計装配管,ドレン配管,給水配管)
内部構造物	多孔板,支持部材等	SUS316L
	ベンチュリノズル	
	金属フィルタ	ドレン配管:SUS316LTP
その他	よう素除去部	枠材:SUS316L
	ガスケット類	膨張黒鉛系シール材

第1表 スクラビング水接液部の材質

スクラビング水はpH の強アルカリ性であることから,各材料については,全面腐食,局部 腐食(孔食,すきま腐食)及び応力腐食割れが想定されるため,これらについて検討する。

(1) ステンレス鋼の腐食評価

a. 全面腐食

全面腐食は、金属表面の全面にわたってほぼ同一の速度で侵食が進む腐食形態である。 SUS304 は第1図に示すとおり、pH2以上で不動態化するため、強アルカリ環境では、全面腐食 に対する耐性がある。

系統待機時は pH で水質が維持されることから、不動態化が保てることとなる。

同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向を 示すことから,全面腐食の発生は考え難い。

第1図 大気中酸素に接する水中環境におけるSUS304の腐食形態とpHの関係

b. 孔食

孔食は、ステンレス鋼のように表面に生成する不動態化膜によって耐食性が保たれている金属において、塩化物イオン等の影響で不動態化膜の一部が破壊され、その部分において局部的に腐食が進行する腐食形態である。

第2回にSUS304の塩化物イオン濃度と温度が腐食形態に及ぼす影響を示す。孔食発生の領域はpH7と比べpH12のほうが狭く、アルカリ環境になるほど孔食発生のリスクは低減する。

同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向を 示すものと評価する。

なお,系統待機時は pH であり,塩化物イオンの濃度も十分低いと考えられるので, 孔食は発生しないものと考えられる。

第2図 304 ステンレス鋼の pH7及び pH12 の塩化物イオン濃度と温度が腐食形態に及ぼす影響

c. すきま腐食

すきま腐食は、ステンレス鋼表面の異物付着、構造上のすきま部分において進行する腐食形 態であり、その成長過程は孔食と類似している。第3図に SUS304 と SUS316の中性環境におけ るすきま腐食発生に対する塩化物イオン濃度と温度の影響を示す。

SUS304 及び SUS316 のいずれも塩化物イオン濃度が低い中性環境では、すきま腐食の発生の可能性は低い。前述のとおりアルカリ環境では中性環境より孔食の発生リスクが低いことから、同様な成長過程のすきま腐食についても発生の可能性が低減されるものと考えられる。

同じオーステナイト系ステンレス鋼である SUS316L 等の適用材料についても同様の傾向を 示すものと評価する。

第3図 SUS304 と SUS316 の中性環境におけるすきま腐食に対する塩化物イオン濃度と温度の影響

d. 応力腐食割れ

応力腐食割れ(以下, SCC という)は、腐食性の環境におかれた金属材料に引張応力が作用 して生ずる割れであり、材料、応力、環境の三要因が重畳した場合に発生する。以下にアルカ リ環境及び 環境における SCC 発生に関する評価結果を示す。

(a)	アルカリ環境におけるSCC
	第4図に SUS304, SUS316の農度に対する SCC 発生限界を示す。フィル
Ļ	
	となる。また、ベント時でスクラビング水が最低水位となった場合の
Г	 となる。いずれの場合においても SCC の発
Ŀ	上領域から外れており問題のないことがわかる。
	使用する材料である SUS316L や 等については,耐 SCC 性に優れた材料で
ŧ	っることから、さらに信頼性が高いものと評価する。
	第4図 SUS304, SUS316の 溶液中の耐食性
(b)	環境下における SCC
	第5図に 本溶液中のSUS304の低ひずみ速度試験(SSRT)の結果を示
-	(
ſ	
L	
v	$- \pi \pm w = 0.00 \text{ M} = 0.00$
ı I	
لح	こから、より信頼住か向いちりと評価する。

第5図	水溶液中における 304 ステンレス鋼の SSRT 結果

- (2) ベンチュリノズルの耐エロージョン性
- (3) JAVA PLUS試験時に使用したベンチュリノズルの確認

第6図に示すとおり,

第6図 ベンチュリノズル内面観察部位

第7図及び第8図に

液滴衝撃エロージョンは蒸気とともに加速されるなどして高速となった液滴が,配管等の壁 面に衝突したときに,局部的に大きな衝撃力を発生させ,それにより配管等の表面の酸化膜や 母材が侵食される現象である。液滴衝撃エロージョンは非常に進展の速い減肉の一種であるこ とから,発生ポテンシャルがあれば,第7図及び第8図に示す

bのと考えられる。したがって、ベンチュリノズルは液滴衝撃エロージョンを含むベント 時の環境に対して十分な耐性があると考える。

第8図 ベンチュリノズル内面SEM観察結果 (2/2)

- b. ベントガス流速におけるエロージョン発生の評価
 - (a) 評価部位

このため、ベントガスが流れるベンチュリノズル内部のうち、液滴衝撃エロージョンは、 液滴がほぼ垂直に衝突するカバープレート部内面に発生するものと考えられる。なお、ス ロート部は最もガス流速が速くなるものの、ベントガスの流れがアウトレットコーンに沿 って流れることから、液滴の衝突角度がほぼ0度(衝突面となるアウトレットコーンと並 行)であり、液滴衝撃エロージョンの発生は考え難い。

(b) 液滴の衝突速度

(c) 評価結果

こ衝突する液滴の速度 は、「発電用設備規格 配 管減肉管理に関する規格(2005年度版)(増訂版)JSME S CA1-2005」によるス テンレス鋼のエロージョン限界流速である70 m/sを下回っていることから、東海第二発電 所のベント時の運転範囲において、液滴衝撃エロージョンは発生しないものと考えられる。
第9図 ベンチュリノズル内のガスの流路について

(3) 膨張黒鉛パッキンの評価

格納容器圧力逃がし装置に使用する弁等には,耐漏えい性確保のため,使用環境(温度,圧 力,放射線量,高アルカリ環境)を考慮して膨張黒鉛系のパッキン,ガスケットを使用する。

膨張黒鉛は、天然黒鉛の優れた耐熱性や耐薬品性を維持しつつ、シート状に形成することで 柔軟性、弾性を有した材料で、パッキン、ガスケットの材料として幅広く使用されている。パッ キン類は系統の設計条件である、最高使用圧力2 Pd、最高使用温度200 ℃について満足する仕 様のものを使用する。また、メーカーの試験実績よりの照射に対しても機械的性質 に変化はみられないことが確認されており、無機物であることから十分な耐放射線性も有し、 アルカリ溶液にも耐性があり、100 %の

劣化については、黒鉛の特性として、400 ℃以上の高温で酸素雰囲気下では酸化劣化が進む ため、パッキンが痩せる(黒鉛が減少する)ことでシール機能が低下することが知られている が、格納容器圧力逃がし装置を使用する環境は200 ℃以下であることから、酸化劣化の懸念は ない。

したがって, 膨張黒鉛パッキンは系統待機時, ベント時のいずれの環境においても信頼性が あるものと評価する。 <参考図書>

- 1. 腐食・防食ハンドブック,腐食防食協会編,平成12年2月
- J.E.Truman, "The Influence of chloride content, pH and temperature of test solution on the occurrence of cracking with austenitic stainless steel", Corrosion Science, 1977
- 3. 宮坂松甫: 荏原時報, 腐食防食講座-海水ポンプの腐食と対策技術(第5報), No. 224, 2009年
- 4. ステンレス鋼便覧 第3版 ステンレス協会編
- 5. 電力中央研究所報告,研究報告:280057, "チオ硫酸ナトリウム水溶液中におけるSUS304ステン レス鋼のSCC挙動"財団法人電力中央研究所 エネルギー・環境技術研究所,昭和56年10月
- 6. 発電用設備規格 配管減肉管理に関する規格(2005年度版)(増訂版)JSME S CA1-2005

別紙 15

JAVA試験における試験用エアロゾルの粒径は、JAVA試験装置からエアロゾルをサンプリ ングし、 で観察することにより、粒径分布を測定している。過酷事故解析コード(MA APコード)より得られる粒径について、JAVA試験において得られたエアロゾルの粒径との比 較検証を行い、想定される粒径分布の全域を包絡できていることを確認することで、重大事故時に 想定されるエアロゾルの粒径分布においても、JAVA試験と同様の除去性能(DF1000以上) が適用可能であることを確認した。

(1) JAVA試験におけるエアロゾルの粒径分布

JAVA試験のおいては、エアロゾルの除去性能を評価するため、 を試験用エアロゾルとして用いている。それぞれの試験用エアロゾルの質量中央径(以下、「MMD」 という。)を以下に示す。

これらの試験用エアロゾルの粒径分布は を使用した測定を行っており、ベンチュ リスクラバ上流側より採取したガスを粒径測定用フィルタに通過させ、粒径測定用フィルタ表 面の粒子を エアロゾルの量及び粒径を確認している。

JAVA試験装置のサンプリングラインを第1図に,サンプルガスの取出し部分の概要を第2 図に示す。

第2図 サンプルガスの取出し部分概要図

(2) 重大事故時に想定される粒径分布

重大事故時におけるエアロゾルの粒径分布はMAAPコードによる解析にて得ることができる。エアロゾルの粒径分布は凝集効果及び沈着効果の自然現象に加えて、格納容器スプレイ効 果やサプレッション・プールのスクラビング効果によって、粒径分布の幅が限定される。MA APコードではこれらの効果を考慮してエアロゾルの粒径分布を評価している。

- a. 粒径分布の収束効果
 - (a) 凝集効果と沈着効果

エアロゾルの粒径分布は、凝集効果及び沈着効果によりある粒径を中心に持つような分 布が形成される。第3図に、エアロゾル分布形成のイメージを示す。また、以下に凝集効果 及び沈着効果の内容を示す。

第3図 エアロゾル分布形成のイメージ

イ. 凝集による成長

小粒径のランダムな運動(ブラウン運動:Brownian Diffusion)により、他の粒子と 衝突し凝集することでより大きな粒子へと成長する。小粒径の粒子は、特に大粒径の粒 子と衝突し凝集する傾向が見られる。凝集効果の例を第4図に示す。

第4図の横軸は粒径(D_{p1})で、縦軸ブラウン運動による凝集係数を示しており、この 値が大きい場合に凝集効果が大きくなる。凝集係数は凝集する相手の粒子径(D_{p2})によ り変化するため、D_{p2}を変化させた場合の凝集係数として複数の曲線が示されている。相 手の粒径による差はあるものの、小粒径の場合に効果が大きいことがわかる。

第4図 凝集効果の例

ロ. 沈着による除去

沈着による除去効果は重量が大きいほど沈着しやすく、床・壁に付着することで減少 する傾向が見られる。粒子の密度が一定と仮定した場合には、粒子径が大きいほど沈着 効果を期待することができる。沈着効果の例を第5図に示す。

第5図 沈着効果の例

(b) 格納容器内のエアロゾル除去機構の影響

格納容器内では,重大事故等対処設備による格納容器スプレイ効果やサプレッション・ プールのスクラビング効果によって,エアロゾルが除去される。以下に格納容器スプレイ 効果及びサプレッション・プールのスクラビング効果を示す。

イ. 格納容器スプレイ効果

格納容器スプレイでは,水滴が落下する際に,慣性効果,さえぎり効果,拡散効果等 の除去メカニズムが働く。

第6図に格納容器スプレイを継続することによる格納容器内のエアロゾル粒子の粒子 径分布の変化の例を示す。初期の段階(DF:1.1)では,エアロゾル粒子は最大値が約 1 μmで幅の広い分布を持っているが,格納容器スプレイを継続し積算の除去効果が大 きくなると,大粒径の粒子と小粒径の粒子が効果的に除去され,粒径分布の最大値は小 さくなり,また分布の幅も小さくなる傾向が見られる。

第6図 格納容器スプレイを継続することによる格納容器内のエアロゾル粒径分布の変化

ロ. プールスクラビング効果
 サプレッション・プールにおけるスクラビングでは、気泡が上昇する間に第7図に示
 すような種々の除去メカニズムが働き、第8図の実験結果に示すように、粒径の大きい
 エアロゾルが効果的に除去される。

第7図 スクラビング気泡内でのガスの働きとエアロゾル除去メカニズム

第8図 プールスクラビングによる除去性能の例(参考図書3)

(c) 重大事故時に想定される粒径分布

重大事故時に想定される粒径は、上記1),2)に示したエアロゾルの除去効果により主に サブミクロン(0.1から1 μm程度)になると考えられる。その代表径として、粒径分布の MMDを0.5 μmにもつ粒径分布を重大事故等発生時に想定される粒径分布とした。

b. MAAPコードにより得られる粒径分布

有効性評価で用いるMAAPコードより得られるベントの際のエアロゾルは, μm (MAAPコードで得られた μmを丸めた値)程度に質量中央径を持つ分布(ウェッ トウェルベント)となることを確認している。また,同じタイミングでドライウェルよりベ ントした場合,エアロゾルは μm程度に質量中央径を持つ分布となる。第1表にベン ト位置の違いによる粒径分布を示す。

相合审社之上卫士	ベント	ベント	質量中央径	幾何標準	エアロゾル
忠正争政ンテリオ	時間[h]	位置	(MMD) [偏差σg[-]	量[g]
雰囲気圧力・温度に		W⁄W		0.32	1
よる静的負荷(格納) 容器過圧・過温破 損)	19	D⁄W		0.36	5000

別添 3-184

第1表 想定事故シナリオのエアロゾル粒径分布

ドライウェルベントと比較してウェットウェルベントではエアロゾル量が少なくなる。こ れはウェットウェルベントでは、サプレッション・プールにおけるプールスクラビング効果 により、エアロゾルが除去されるためと考えられる。また、ドライウェルベントではウェッ トウェルベントと比較して MMD が大きくなっているが、エアロゾル量が多いことから、エア ロゾル同士の衝突頻度が高くなり、より大きい粒径のエアロゾル粒子が生成されやすくなる ためと考えられる。

(3) 試験用エアロゾルの粒径分布の妥当性と除去性能

ドライウェルベントでは全体的に粒径が大きくなるが、粒径が大きいほど、慣性衝突効果や さえぎり効果によるエアロゾルの除去効果が見込めるため、より高いDFを期待することができ る。

一方,ウェットウェルベントでは、サプレッション・プール水のスクラビング効果により粒 径の大きいエアロゾルが除去されるため、ドライウェルベントに比べフィルタ装置のDFが低く なることが考えられる。

このため、JAVA試験では、様々な粒径分布を持つ を試験用エア ロゾルとしてDFを確認している。これらの試験用エアロゾルとMAAPコードより想定され るドライウェルベント時及びウェットウェルベント時の粒径分布の比較を第9図に示す。

第9図に示すとおり、JAVA試験に使用した試験用エアロゾルの粒径分布はMAAPコード より想定される粒径分布の全域を包絡できていることが確認できることから、これらの試験エ アロゾルで試験を行うことで、想定粒径全体の性能を確認することができる。

第9図 試験用エアロゾルとMAAPコードより想定される粒径分布

RO

<参考図書>

- 1. NEA/CSNI/R(2009)5 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS
- 2. California Institute of Technology FUNDAMENTALS OF AIR POLLUTION ENGINEERING
- 3. 22nd DOSE/NRC Nuclear Air Cleaning and Treatment Conference Experimental study on Aerosol removal effect by pool scrubbing, Kaneko et al. (TOSHIBA)
- 4. A Simplified Model of Aerosol Removal by Containment Sprays (NUREG/CR-5966)
- 5. A Simplified Model of Decontamination by BWR Steam Suppression Pools (NUREG/CR -6153 SAND93-2588)
- 6. Overview of Main Results Concerning the Behaviour of Fission Products and Structural Materials in the Containment (NUCLEAR ENERGY FOR NEW EUROPE 2011)

エアロゾルの粒径と除去係数の関係について

(1) 除去係数と重量及び放射能の関係 除去係数(以下,「DF」という。)は、フィルタに流入した粒子の重量とフィルタを通過し た粒子の重量の比で表される。エアロゾルに放射性物質が均一に含まれている場合、DFはフ ィルタへ流入した粒子の放射能とフィルタを通過した粒子の放射能の比で置き換えることがで きる。

(2) 粒径分布(個数分布と累積質量分布)

エアロゾルは一般的に,単一粒径ではなく,粒径に対して分布を持つ。粒径に対する個数分 布及び累積質量分布の関係を別添図1に示す。

別添図1 個数分布と累積質量分布

(左図出典:W.C.ハインズ,エアロゾルテクノロジー,(株)井上書院(1985))

ここで,

個数モード径	最も存在個数の比率の多い粒径
質量中央径(MMD)	全質量の半分がその粒径よりも小さい粒子によって占められ,
	残りの半分がその粒径よりも大きい粒子によって占められる関
	係にある粒径

を表す。別添図1のような粒径分布の場合,小さい粒径のエアロゾルの個数は多いが,総重量 に占める割合は小さいことが分かる。よって,大きい粒径のエアロゾルに比べて小さい粒径の エアロゾルがDFに与える影響は小さい。

RO

(3) JAVA試験における除去係数と重量及び放射性物質の関係

ベンチュリスクラバでは、慣性衝突効果を利用しエアロゾルを捕集しており、重大事故等時 におけるエアロゾルの密度変化を考慮しても、慣性衝突効果によるDFへの影響は小さいと評 価している。また、AREVA社製のフィルタ装置では、慣性衝突効果、さえぎり効果、拡散効 果による除去機構によってエアロゾルを補修するものであり、JAVA試験において、小さい 粒径のエアロゾルを含む を使用した場合においても、高い除去効率を発揮することを確認 している。

(参考) 質量中央径 (MMD) と空気力学的質量中央径 (AMMD)

分布を持つエアロゾルの粒径を表す方法として、質量中央径(MMD)を使用する場合と、空気 力学的質量中央径(AMMD)を使用する場合があるが、カスケードインパクターのような慣性衝 突効果を利用した粒径の測定を行う場合にはAMMDで測定され、のような画像分析を利用 した粒径の測定を行う場合にはMMDで測定される。AREVA社製のフィルタは、慣性衝突効果 の他に、さえぎり効果、拡散効果を利用したエアロゾルの捕集を行っており、フィルタ装置の 除去性能の評価にはMMDを使用している。

別紙 17

JAVA試験及びJAVA PLUS試験の適用性について

AREVA社製のフィルタ装置は、JAVA試験及びJAVA PLUS試験により、実機使用 条件を考慮した性能検証試験を行っており、その結果に基づき装置設計を行っている。JAVA試 験及びJAVA PLUS試験で使用したフィルタ装置は、ベンチュリノズル、金属フィルタ、よ う素除去部及び装置内のガスの経路が実機を模擬した装置となっており、また、試験条件は様々な プラントの運転範囲に対応できる広範囲の試験を行っていることから、各試験で得られた結果は、 実機の性能検証に適用できるものと考える。

一方,米国EPRI(電力研究所)が中心となって行ったACE試験については、AREVA 社製のフィルタ装置についても性能試験を実施しているが、試験条件等の詳細が開示されていない ことから、東海第二発電所のフィルタ装置の性能検証には用いていない。

JAVA試験の概要

JAVA試験で使用したフィルタ装置は,高さ m,直径 mの容器の中に,実機と 同形状のベンチュリノズル と,実機と同一仕様の金属フィルタ を内蔵している。

また、これら試験のフィルタ装置に流入したベントガスは、ベンチュリスクラバ、気相部、金属フィルタ、流量制限オリフィスの順に通過し、装置外部へ放出される経路となっており、実機と同じ順に各部を通過する。

(2) JAVA PLUS試験の概要

JAVA PLUS 試験設備は、実規模を想定した有機よう素の除去性能を確認するため、 JAVA試験で使用したフィルタ装置に、実機と同一仕様(同一材質,同一充填率)の銀ゼオラ イト(ベッド厚さ mm)を追加設置している。

フィルタ装置に流入したベントガスは、ベンチュリスクラバ、気層部、金属フィルタ、流量制 限オリフィス、よう素除去部(銀ゼオライト)の順に通過し、装置外部へ放出される経路となっ ており、実機と同じ順に各部を通過する。

(3) ACE試験の概要

AREVA社製のフィルタ装置は、各国のフィルタメーカ等が参加したACE試験において も試験が行われ、エアロゾル及び無機よう素の除去性能について確認されている。第1図に試験 設備の概要を、第1表に試験条件及び結果を示す。

ACE試験で使用したフィルタ装置は、高さ m, 直径 mの容器の中に、実機と同 じベンチュリノズル 及び実機と同構造(同一金属メッシュ構造,同一充填率)の金属フ ィルタを設置しており、ベントガスは実機と同じ経路を流れるが、試験装置、試験条件の詳細 が開示されないため、東海第二発電所のフィルタ装置の性能検証には用いていない。 (4) スケール性の確認

JAVA試験, JAVA PLUS試験のスケール性を確認することで,実機への適用性を 確認する。第2図に実機とJAVA試験装置(JAVA PLUS試験でも同一の容器を使用) 及び参考にACE試験装置の主要寸法の比較を示す。

東海第二発電所のフィルタ装置は高さ約10 m, 直径約5 mであり, JAVA試験及びJAVA PLUS試験のフィルタ装置よりも大きいが,フィルタ装置の構成要素及びベントガス経路の 同一性からJAVA試験及びJAVA PLUS試験にて使用したフィルタ装置は実機を模擬 したものとなっていると言える。

JAVA試験及びJAVA PLUS試験の条件と実機運転範囲の比較を第2表に示す。実機 はベンチュリノズル(個数: 10)と金属フィルタ(表面積: 10) を内蔵しており,重大 事故時にベントを実施した際のベンチュリノズルスロート部流速及び金属フィルタ部流速がJ AVA試験で除去性能を確認している範囲に包絡されるよう設計している。JAVA試験にお いて得られたベンチュリノズルスロート部における速度に対する除去係数を第3図,金属フィル タ部における速度に対する除去係数を第4図に示す。ベンチュリスクラバと金属フィルタを組み 合わせた試験において,ベンチュリノズルスロート部流速及び金属フィルタ部流速が変化した 場合においても除去係数は低下していない。

また, JAVA PLUS試験で用いた銀ゼオライトのベッド厚さは mであり, 実機 mであり、実機 mm) に対して薄いが, これはJAVA PLUS試験結果に基づき滞留時間を確保するために実機のベッド厚さを厚くしていることから, JAVA PLUS試験結果を適切に実機に適用していると言える。

JAVA試験及びJAVA PLUS試験の実機への適用性についてまとめたものを第3表 に示す。

(5) 評価

以上より、JAVA試験及びJAVA PLUS試験のスケール性については性能に影響す る範囲について実機を模擬できていると評価できる。これらの試験は実機の使用条件について も模擬できており、試験結果を用いて実機の性能を評価することが可能であると考える。

PROJECT	PROJECT YEARS		Materials		Conditions Tested	
		tested	Pressure [bar abs]	Temperature [°C]	Gas composition % steam	retention Efficiency %
ACE	1989-	Cs	1.4	145	42	99.9999
	1990	Mn	1.4	145	42	99.9997
		Total iodine (particles and gaseous)	1.4	145	42	99.9997
		DOP	1.2-1.7	ambient	0	99.978 - 99.992

第1表 ACE試験の試験条件及び結果

出典:OECD/NEA, "Status Report on Filtered Containment Venting", (2014)

第2表 JAVA試験及びJAVA PLUS試験の条件と実機運転範囲の比較						
パラメータ	JAVA試験	JAVA	実機運転範囲			
		PLUS試験				
圧力(kPa[gage])						
温度(℃)						
ベンチュリノズルスロート部流						
速(m/s)						
金属フィルタ部流速(%)						
蒸気割合(%)						
過熱度(K)						

第2図 実機フィルタ装置と試験装置の主要寸法の比較

※概算評価値を示す。

第3図 ベンチュリノズルスロート部における流速に対する除去係数

第4図 金属フィルタ部における流速に対する除去係数

			相違点	į	
構成要	要素	有 無	JAVA (PLUS)	実機	適用性
容器	高さ	有		約 10 m	試験装置と実機で高さと直径が異なること で,空間部の容積が異なるが,空間部はベン チュリスクラバや金属フィルタに比べ
	直径	有		約5 m	, 高さと 直径の違いによる影響は小さい。
	構造	無	_	_	試験装置は実機と同一形状(寸法)のベンチ ュリノズルを使用している。
ベンチュ リノズル	個数	有			実機のベンチュリノズルスロート部の流速 が、JAVA 試験で確認されている流速の範囲 内となるよう、ベンチュリノズルの個数を設 定している。
	構造	無	—	—	試験装置は実機と同一使用(の金属フィルタを使用している。
金属 フィルタ (個 数)		有			実機の金属フィルタ部の流速が, JAVA試 験で確認されている流速の範囲内となるよ う金属フィルタの表面積を設定している。
	薬剤	無	_	_	試験装置と実機は同じ薬剤を使用している。
スクラビ ング水	水位	有	*	*	実機の水位は試験装置の水位よりも高い。 JAVA試験の水位を変化させた試験にお いて,除去効率に変化が無いことが確認され ていることから,水位の違いによる影響はな い。
	吸着材	無	—	—	試験装置は実機と同じ吸着材(銀ゼオライ ト)を使用している。
よう素	厚さ	有			JAVA PLUS試験ではベッド厚さが 実機に比べて薄いが,実機は試験結果を基に 滞留時間を確保するために厚くなっている ことから,試験結果を適切に実機に適用して いると言える。
	配置	有	容器外側	容器内側	JAVA PLUS試験ではフィルタ装置 の外によう素除去部が配置されたが、実機で は容器の中に配置される。よう素除去部の放 熱は、外部に配置される試験の方が厳しくな るため、JAVA PLUS試験は保守的な 条件で実施されていると言える。

第3表 JAVA試験, JAVA PLUS試験の実機への適用性

(6) ベンチュリスクラバ及び金属フィルタにおける除去係数

AREVA社製のフィルタ装置は、ベンチュリスクラバ及び金属フィルタを組み合わせるこ とにより、所定の除去性能(DF)を満足するよう設計されている。エアロゾルに対する除去効 率は、ベンチュリスクラバと金属フィルタを組み合わせた体系で評価を行っており、JAVA 試験結果では、試験を実施した全域にわたってDF1000以上を満足していることを確認してい る。JAVA試験ではベンチュリスクラバ単独でのエアロゾル除去性能を確認している試験ケ ースもあり、実機運転範囲のガス流速において、ベンチュリスクラバ単独でもDF

ベンチュリスクラバによるエアロゾル除去の主な原理は慣性衝突効果であり、一般的にガス 流速が大きい方が除去効率は高く、ガス流速が小さい方が除去効率は低くなることから、実機 運転範囲以下のガス流速におけるベンチュリスクラバ単独での除去性能は、実機運転範囲と比 較して低下することが見込まれるが、後段の金属フィルタによる除去により、スクラバ容器全 体としては試験を実施した全域にわたって要求されるDF1000以上の除去性能を満足している と考えられる。

第4表 ベンチュリスクラバ単独でのエアロゾル除去性能

(参考) 性能検証試験に係る品質保証について

フィルタ装置の放射性物質除去性能は、JAVA試験及びJAVA PLUS試験で用いたベン チュリノズル、金属フィルタ及び銀ゼオライトと同じ仕様・構造のものを、ISO9001等に適 合した品質保証体制を有するAREVA社において設計・製作することにより、JAVA試験及び JAVA PLUS試験と同じ性能を保証する。

(1) 性能保証

フィルタ装置に設置するベンチュリノズル,金属フィルタ及び銀ゼオライトは,AREVA 社試験(JAVA試験,JAVA PLUS試験)で用いた金属フィルタ,ベンチュリノズル及 び銀ゼオライトと同じ仕様・構造とする。また,ベンチュリノズル及び金属フィルタは,単体性 能試験により性能を確認している。

これに加えて、ベンチュリノズル、金属フィルタ及び銀ゼオライト(よう素除去部)の運転範囲は、AREVA社試験で確認している範囲内で運転されるよう格納容器圧力逃がし装置を設計する。

(2) AREVA社品質保証体制

ベンチュリノズル,金属フィルタ及び銀ゼオライトフィルタを製作するAREVA社は,フ ィルタベントシステム納入実績を多数有しており,原子力プラントメーカとして下記の品質保 証体制を有している。

- ・フィルタベントシステムの性能保証するAREVA社は、品質管理システムとしてISO9 001を2008年にSGS社から取得している。また、世界中の顧客要求品質要求に対応でき るよう、ASMENPT、N.S Stamp、KTA1401、1408、RCCM、RCC-E、EN ISO9001などの認証も取 得している。
- ・AREVA社は、システム設計・製作に際し、品質保証含めてプロジェクトを横断的に管理 する部門を設置しており、技術要求仕様、品質要求仕様を指示し製作仕様に盛り込む体制が 整えられている。
- ・AREVA社は、原子力製品のエンジニアリング及びプロジェクト管理を世界レベルで展開 している。また、各種品質管理手順に従い外注先の品質管理を実施している。

別紙 18

格納容器フィルタベント設備隔離弁の人力操作について

格納容器フィルタベント設備の隔離弁は、中央制御室からの操作ができない場合には、現場の隔 離弁操作場所から遠隔人力操作機構を介して弁操作を実施する。ベントに必要な弁の位置と操作場 所について、第1図〜第3図に示す。

ベントは,第一弁より開操作を実施し,第一弁が全開となったのちに第二弁の操作を実施し, ベントガスの大気への放出が開始されるため,第二弁操作室を設ける。第二弁操作室は,弁の人力 操作に必要な要員を収容可能な遮蔽に囲まれた空間とし,空気ボンベユニットにより正圧化し,外 気の流入を一定時間完全に遮断することで,ベントの際のプルームの影響による操作員の被ばくを 低減する設計とする。

第1図 隔離弁の操作場所 (1/3)

第2図 隔離弁の操作場所 (2/3)

第3図 隔離弁の操作場所 (3/3)

(1) 電動駆動弁の遠隔人力操作機構の概要

隔離弁の操作軸にフレキシブルシャフトを接続し、二次格納施設外まで延長し、端部にハン ドル又は遠隔操作器を取り付けて人力で操作できる構成とする。フレキシブルシャフトは直線 に限らずトルクが伝達可能な構造とし、容易に操作できるよう設計する。フレキシブルシャフ トの一部は、隔離弁の付近に設置されることから、設備の使用時には高温、高放射線環境が想 定されるが、機械装置であり機能が損なわれるおそれはない。

なお,フレキシブルシャフトを取り外し,ハンドルを取り付けることにより,弁設置場所で の操作も可能である。

遠隔人力操作機構の模式図を第4図に、ベントに必要な隔離弁の遠隔人力操作機構の仕様について第1表に示す。

第4図 遠隔人力操作機構の模式図

弁名称 (口径)	第一弁(S/C側) (600 A)	第一弁(D/W側) (600 A)	第二弁及び 第二弁バイパス弁 (450A)
フレキシブ ルシャフト 長さ	約 12 m	約 25 m	約 15 m
ハンドル 回転数	約 2940 回	約 2940 回	約 1989 回
個数	1	1	2

第1表 ベントに必要な隔離弁の遠隔人力操作機構の仕様

(2) 遠隔人力操作機構のモックアップ試験

フレキシブルシャフトを介した遠隔人力操作機構の成立性及び操作時間を500 Aのバタフラ イ弁を用いたモックアップ試験により確認した。モックアップ試験の概要を第5図に示す。

モックアップ試験の結果,弁上流側に格納容器圧力2Pdに相当する圧力(620 kPa[gage])が かかった状態であっても,フレキシブルシャフトを介した遠隔手動操作が可能なことを確認し た。また,弁の操作要員は3名で約82回/分の速度にてハンドル操作が可能なことを確認した。 モックアップ試験の結果を第2表に示す。

試験の結果を反映したベントに必要な隔離弁のハンドル操作時間を第3表に示す。

なお,東海第二ではフィルタベントを使用する際の系統構成(他系統との隔離及びベント操 作)において,A0弁の遠隔手動操作をすることはない。

第5図 モックアップ試験の概要(1/2)

第5図 モックアップ試験の概要 (2/2)

弁開度指示	ハンドル操作時間	ハンドル回転数	弁上流側圧力 (kPa[gage])	備考
5%	2分03秒	144	650	弁開度指示9 %で
10%	3分09秒	238	0	弁上流側圧力0 kPa
50%	11分55秒	985	0	
100%	22分59秒	1893	0	

第2表 モックアップ試験結果

第3表 ベントに必要な隔離弁のハンドル操作時間

弁名称	第一弁(サプレッション・ チェンバ側)	第一弁(ドライウェル 側)	第二弁
ハンドル 操作時間	約 36 分	約 36 分	約 25 分

モックアップ試験結果のハンドル操作速度約82回転/分より算出。

(3) 汎用電動工具による操作性向上

遠隔人力操作機構のハンドル操作時間には数十分を要することから,操作性を向上するため に,汎用電動工具(電動ドライバ)を第二弁操作室付近に準備する。汎用電動工具を用いたハン ドル操作時間は,10分程度に短縮可能である。

なお,過回転による遠隔人力操作機構の損傷防止のため,ハンドル付近には回転数カウンタ を設け,弁開度が全閉及び全開付近では必要により人力で操作することとする。

(4) 第二弁操作室の正圧化バウンダリの設計差圧

第二弁操作室の正圧化バウンダリは、配置上、動圧の影響を直接受けない屋内に設置されて いるため、室内へのインリークは隣接区画との温度差によるものと考えられる。

第二弁操作室の正圧化に必要な差圧を保守的に評価するため、重大事故等発生時の室内の温度を高めの50 ℃、隣接区画を外気の設計最低温度-12.7 ℃と仮定すると、第二弁操作室の天井高さは最大約4 mであり、以下のとおり約10.4 Paの圧力差があれば、温度の影響を無視できると考えられる。

∠P={(-12.7℃の乾き空気密度[kg/m³])-(+50℃の乾き空気の密度[kg/m³])}×天井高さ[m]
= (1.3555 [kg/m³] -1.0925 [kg/m³]) ×4 [m]
=1.052 [kg/m²]
≒10.4 [Pa]

したがって、正圧化の必要差圧は裕度を考慮して隣接区画+20 Paとする。

別添 3-204

(5) 第二弁操作室

第二弁操作室は、弁の人力操作に必要な要員を収容可能な遮蔽に囲まれた空間とし、空気ボ ンベユニットにより正圧化し、外気の流入を一定時間完全に遮断することで、ベントの際のプ ルームの影響による操作員の被ばくを低減する設計とする。室温については、ベント開始後は、 格納容器圧力逃がし装置の配管の一部が遮蔽を挟んで隣接したエリアに設置されるため、長期 的には徐々に上昇することが想定されるが、遮蔽が十分厚く操作員が第二弁操作室に滞在する 数時間での室温の上昇はほとんどなく、居住性に与える影響は小さいと考えられる。

また,現場の第二弁操作室には,酸素濃度計,二酸化炭素濃度計及び電離箱サーベイメータ を設けることで居住性が確保できていることを確認できる。

中央制御室との通信については、携行型有線通話装置を第二弁操作室に

a. 収容人数

第二弁の操作に必要な要員は,既述のモックアップ試験結果より3名であることから,第二 弁操作室には3名を収容できる設計とする。

b. 設置場所

第二弁操作室は、アクセス性と被ばく低減を考慮して原子炉建屋原子炉棟外でかつ遮蔽のある部屋とする必要があることから、原子炉建屋付属棟内に設置する。

また,第二弁を遠隔人力操作機構を用いて操作することから,弁の操作性のため,可能な限 り第二弁に近い場所に第二弁操作室を設置する。第二弁操作室の設置位置を第3図に示す。

c. 遮蔽設備

第二弁操作室の壁及び床は,弁操作要員がベント開始から4時間滞在可能なように鉄筋コン クリート40 cm以上の厚さを有し,さらに,第二弁操作室に隣接するエリアに格納容器圧力逃 がし装置入口配管が設置される方向の壁及び床の厚さは,鉄筋コンクリート120 cmとし,放 射性物質のガンマ線による外部被ばくを低減する設計とする。

なお,第二弁操作室の入口は,遮蔽扉及び気密扉を設置し,放射性物質のガンマ線による外 部被ばくを低減し,また,放射性物質の第二弁操作室への流入を防止する設計とする。

- d. 第二弁操作室空気ボンベユニット
 - (a) 系統構成

第二弁操作室空気ボンベユニットの概要図を第7図に示す。空気ボンベユニットから減圧 ユニットを介し、流量計ユニットにより一定流量の空気を第二弁操作室へ供給する。第二弁 操作室内は微差圧調整ダンパにより正圧を維持する。また、第二弁操作室内が微正圧である ことを確認するため差圧計を設置する。

第7図 第二弁操作室空気ボンベユニット概要図

- (b) 必要空気量
 - イ. 二酸化炭素濃度基準に基づく必要空気量
 - ・収容人数:n=3(名)
 - ・許容二酸化炭素濃度:C=0.5 % (JEAC4622-2009)
 - ・空気ボンベ中の二酸化炭素濃度:C₀=0.0336 %
 - ・呼吸により排出する二酸化炭素量:M

作業 (時間)	呼吸により排出する二酸 化炭素量:M (m ³ /h/人)	空気調和・衛生工学便覧の作 業程度区分
弁操作 (1 時間) ※	0.074	重作業
待機 (3 時間)	0. 022	極軽作業

※ 弁操作時間は第3表のとおり1時間未満であるが、保守的に1時間を見込む。

・必要換気量:Q=M×n/(C-C₀)

弁操作時 Q₁=0.074×3∕ (0.005−0.000336)

 $=47.6 \text{ m}^3/\text{h}$

 $=14.2 \text{ m}^3/\text{h}$

・必要空気量: $V=Q_1 \times 1 + Q_2 \times 4$

$$=47.6 \times 1 + 14.2 \times 4$$

=104.4 m³

- ロ. 酸素濃度基準に基づく必要空気量
 - ・収容人数:n=3名
 - ・吸気酸素濃度:a=20.95 % (標準大気の酸素濃度)
 - ・許容酸素濃度:b=19.0 % (鉱山保安法施工規則)
 - ・乾燥空気換算酸素濃度:d=16.4 % (空気調和・衛生工学便覧)

・成人の酸素消費量:c=(呼吸量)×(a-d)/100

作業	酸素消費量:c	呼吸量	空気調和・衛生工学
(時間)	(m ³ /h/人)	(L/min)	便覧の作業区分
弁操作	0.972	100	步行(200 m/min)
(1時間) ※	0.275	100	少11(300 m/min)
待機	0.00194	0	主 名 広
(3時間)	0.02184	0	

・必要換気量:Q=c×n/(a-b)

弁操作時 Q₁=0.273×3/ (0.2095-0.190)

=42.0 m³/h 待機時 Q₂=0.02184×3∕ (0.2095-0.190) =3.36 m³/h ・必要空気量:V=Q₁×1+Q₂×3

 $=42.0 \times 1 + 3.36 \times 4$

=55.44 m³

ハ. 必要ボンベ本数

イ,ロの結果より,第二弁操作室内に滞在する操作員(3名)が弁操作時間を含めて4時間滞在するために必要な空気ボンベによる必要空気量は二酸化炭素濃度基準の104.4 m³とする。

空気ボンベの仕様は以下のとおり。

・容量:46.7 L/本

・初期充填圧力:14.7 MPa[gage]

したがって、1気圧でのボンベの空気量は約6.8 m³/本であるが、残圧及び使用温度補正 を考慮し、空気供給量は5.5 m³/本とすると、空気ボンベの必要本数は下記の計算により19 本となる。

104. 4∕5. 5=18. 98 →19 本

e. 通信設備

第二弁操作室には、中央制御室と通信するための携行型有線通話装置(図8)を設ける。

通話装置

通話装置差込口

第8図 携行型有線通話装置

(参考) 第二隔離弁の遠隔人力操作作業室の環境について

重大事故等時に想定される放射線量及び室温が、第二弁の操作に影響はないことを以下のとおり 確認した。

第二弁操作室内は、空気ボンベにより正圧化して、放射性物質の流入を防ぐ設計としており、第 二弁操作室の壁及び床は、弁操作要員の滞在中の被ばく防護のため、40 cm 以上の鉄筋コンクリー ト壁厚を確保している。

さらに,第二弁操作室に隣接するエリアに格納容器圧力逃がし装置入口配管が設置されるため, 配管が設置される方向に対し,120 cm以上の鉄筋コンクリート壁厚を確保し,ベント時の放射性 物質からのガンマ線による外部被ばくを低減する設計としている。

この対策により,第二弁操作室にベント開始から3時間滞在した場合の被ばく量は,ウェット ウェルベントの場合で約25 mSv,ドライウェルベントの場合で40 mSv と評価している。

また、ベント開始後の格納容器圧力逃がし装置配管の影響による室温の上昇は、ベント開始3時 間~5時間後で夏季:約37 ℃(外気温+2 ℃)、冬季:約20 ℃(外気温+10 ℃)と評価した。 (第9図)

- ・初期室温は夏季:30 ℃,冬季:10 ℃とし,外気温は夏季:35℃,冬季:10 ℃とする。
- ・評価開始時点で格納容器圧力逃がし装置の入口配管が敷設 される部屋の壁の表面温度を 60 ℃とする。
 (保温材の効果により 60 ℃となる)
- ・隣接する部屋に格納容器圧力逃がし装置の入口配管が敷設 されていない部屋の壁は、保守的に断熱とする。

室温は,格納容器圧力逃がし装置の入口配管が敷設される部屋の壁の表面温度を評価開始時点で 60 ℃と保守的に設定しても 3 時間~5 時間後で夏季:約 37 ℃(外気温+2 ℃),冬季:約 20 ℃(外気温+10 ℃)と評価。

第9図 第二弁操作室の室温上昇評価モデルと評価結果

窒素供給装置の容量について

可搬型窒素供給装置の窒素容量は、下記(1)(2)を考慮して設定している。

- (1) ベント後,中長期的に格納容器除熱系が復旧した後に窒素供給を開始し,除熱中の原子炉格納 容器内の水素濃度を4 %(水素の可燃限界温度)未満あるいは酸素濃度を5 %(水素を燃焼させ る下限濃度)未満に維持
- (2) ベント停止後の格納容器圧力逃がし装置における水素滞留防止のため、窒素の供給を行い、格納容器圧力逃がし装置の系統内の水素濃度を4%(水素の可燃限界温度)未満あるいは酸素濃度を5%(水素を燃焼させる下限濃度)未満に維持

可搬型窒素供給装置の主要な仕様を第1表に示す。

	收主主杀 医柏衣间 ⁰⁰ 工女 山 10
窒素容量	約200 Nm ³ /h
窒素純度	99.0 vo1%以上
窒素供給圧力	0.5 MPa (可搬型窒素供給装置出口にて)

第1表 可搬型窒素供給装置の主要仕様

以下に、可搬型窒素供給装置の窒素供給量の設定について示す。

a. 格納容器における可搬型窒素供給装置の容量

ベント開始後に格納容器内で発生する水素及び酸素は、サプレッション・プールに移行した放 射性物質による水の放射線分解によるものが支配的となる。ベントシーケンスである「雰囲気圧 力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用しない場合)」に おけるMAAP解析に基づき評価した水素及び酸素の発生量を第2表に示す。なお、水素及び酸 素の発生量算出については、以下の式により算出した。ベント後の格納容器除熱によって原子炉 格納容器内は非沸騰状態にあることを想定し、水素発生量のG値は0.25、酸素発生量のG値は 0.125とする。

(a) 発生水素(酸素)分子数[分子数/J]

=G値[分子/100 eV]/100/(1.602×10⁻¹⁹[J])

- (b) 水素(酸素)発生量[分子数/s] =崩壊熱[MW]×10⁶×発生水素(酸素)分子数[分子数/J]×放射線吸収割合
- (c) 水素(酸素)発生量[m³/h]
 =水素(酸素)発生量[分子数/s]/(6.022×10²³)×22.4×10⁻³×3600

	放射線	放射性物質移行量		発生量[m³/h]※	
刘家	吸収割合	割合[%]	崩壞熱[MW]	水素	酸素
炉心部(コリウム)※	0.1	62.0	6.100	1.27	0.64
炉心部 (コリウム以外)	1.0	9.0	0.889	1.85	0.93
D/W 及びペデスタル部	1.0	0.3	0.030	0.06	0.04
S∕P	1.0	26.0	2.550	5.33	2.67
合計	—	97.3	9.569	8.51	4.28

第2表 想定事象における格納容器内の水素及び酸素の発生量

※ ベント停止は事象発生7日後とし、7日後の崩壊熱として10 MWを想定する。

※ 酸素濃度を厳しく評価するため,水素発生量は小数点第3位を切り下げ,酸素発生量は小 数点第3位を切り上げる。

※ 炉心部ではβ線が燃料被覆管で吸収され ru ことを考慮し,放射線吸収割合を 0.1 として いる。

この結果より,酸素濃度を5%(水素を燃焼させる下限濃度)未満に抑えるために必要な窒素 供給量xを求める。

 酸素発生量+窒素供給装置からの酸素供給量

 水素発生量+酸素発生量+窒素供給装置の供給量 (x)

$\frac{4.28 + x \times 0.01}{222 + x} < 0.05$

 $\overline{8.51 + 4.28 + x} < 0.$

x > 91.1 (小数点第2位切上げ)

上記結果より,必要窒素供給量は91.1 Nm³/hである。窒素供給装置の1台当たりの容量は200 Nm³/hであることから,格納容器用の窒素供給装置の必要台数は1台となる。

なお、この時の水素は可燃限界濃度の4 %を超えるが、上述のとおり酸素の濃度が5 %(水素 を燃焼させる下限濃度)を超えないことから水素が燃焼することはない。

b. 格納容器圧力逃がし装置における可搬型窒素供給装置の容量

ベント開始後に格納容器圧力逃がし装置のフィルタ装置で発生する水素及び酸素は、フィルタ 装置に移行した放射性物質による水の放射線分解によるものが支配的となる。このため、フィル タ装置で発生する水素及び酸素の量は、a. に示した(a)~(c)の式により算出できる。スク ラビング水は沸騰しているものと想定し、水素発生量のG値は0.4、酸素発生量のG値は0.2とす る。その他の情報については、以下のとおりとする。

崩壊熱量:0.5 MW (フィルタ装置の設計条件)

放射線吸収割合:1.0

以上より,水素の発生量は1.67 m³/h,酸素の発生量は0.836 m³/hとなる。

水素及び酸素の発生量より、酸素濃度を5%(水素を燃焼させる下限濃度)未満に抑えるため

別添 3-212
に必要な窒素供給量yを求める。

<u>酸素発生量+窒素供給装置からの酸素供給量</u> 水素発生量+酸素発生量+窒素供給装置の供給量(y) < 0.05

 $\frac{0.836 + y \times 0.01}{1.67 + 0.836 + y} < 0.05$

y>17.8(小数点第2位切上げ)

上記より,必要窒素供給量は17.8 Nm³/hとなる。窒素供給装置の1台当たりの容量は200 Nm³/h であることから,格納容器圧力逃がし装置用の窒素供給装置の必要台数は1台となる。

エアロゾルの保守性について

- (1) 格納容器圧力逃がし装置の設計条件について 格納容器圧力逃がし装置の設計条件としては、エアロゾル移行量を400 kgに設定している。
- (2) 事故シナリオに応じたエアロゾル移行量について
- a. エアロゾルが発生する事故シナリオの選定について

ベント実施時には、希ガスやガス状よう素(無機よう素及び有機よう素)を除く核分裂生成物 及び構造材がエアロゾルとして格納容器圧力逃がし装置に流入する。エアロゾルが発生する事故 シナリオは、格納容器破損防止対策の有効性評価の対象とする事故シーケンスのうち、以下に示 すMAAP解析上の特徴を踏まえ、原子炉圧力容器が健全な事故シーケンスである「雰囲気圧力・ 温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用しない場合)」を選定 している。

- (a) 原子炉圧力容器内に溶融炉心が存在する場合は、炉心が再冠水し溶融炉心の外周部が固化した後でも、溶融炉心中心部は溶融プール状態を維持する。一方、原子炉圧力容器破損時は、原子炉圧力容器破損前に水張りしたペデスタル部で溶融炉心の一部が粒子化するとともに、最終的にはクエンチする。エアロゾル移行量は溶融炉心の温度が高い方がより多くなるため、原子炉圧力容器が健全な場合がより保守的な評価となる。
- (b) 原子炉圧力容器内に溶融炉心が存在する場合は、溶融炉心冠水時において溶融炉心上部の水によるスクラビング効果を考慮していない。一方、溶融炉心がペデスタル部に存在する場合は、溶融炉心上部の水によるスクラビング効果を考慮している。以上より、スクラビング効果を考慮していない原子炉圧力容器が健全な場合がより保守的な評価となる。
- (c) 東海第二発電所では,MCCI対策としてコリウムシールドを設置するため,原子炉圧力 容器が破損した場合でも溶融炉心による侵食は発生しない。したがって,原子炉圧力容器破 損後に特有のエアロゾルの発生源はないと考えられる。
- b. 対象シーケンスにおけるエアロゾル移行量について

「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用しない場合)」シーケンスにおける格納容器圧力逃がし装置へ流入するエアロゾル移行量を第1表に示す。本シーケンスの有効性評価ではS/Cベントを優先して実施することとしているが、ここではD/Wベントを実施した場合のエアロゾル移行量も併せて示している。第1表より、エアロゾル移行量はS/Cベント時よりD/Wベント時の方が多く5kgであるが、格納容器圧力逃がし装置で設計上想定するエアロゾル移行量はこれを十分上回る400kgである。

放出する系統	FPエアロゾル移行量(kg)
S/Cベント	0.001
D/Wベント	5

第1表 静的負荷シーケンスにおけるFPエアロゾル移行量

RO

ベントにより格納容器からフィルタ装置にエアロゾルが移行する。スクラビング水の粘性は、エ アロゾルが可溶性の場合はそのエアロゾルの水和性と溶解する量によって、不溶性の場合はスクラ ビング水に分散する固体粒子の量によって変化する。可溶性エアロゾル又は不溶性エアロゾルの影 響によるスクラビング水の粘性率の変化を保守的に評価した結果、その変化は十分小さく、DFへ の影響がないことを確認した。

(1) フィルタ装置内に移行するエアロゾル等の影響

重大事故等時に格納容器内へ放出されるエアロゾルがベントによりフィルタ装置に移行する ことから、NUREG-1465に記載されている格納容器への放出割合を参照し、フィルタ装置 内へ移行するエアロゾル量を基にスクラビング水への影響を評価する。なお、NUREG-1465 では格納容器への放出過程(Early In-Vessel, Late In-Vessel等)ごとに格納容器への移行割 合を与えており、本評価では事故後長期にわたってスクラビング水への影響を評価するため、 放出過程ごとの放出割合の合計値をエアロゾル移行量の算出に使用している。)

ベント後のスクラビング水には、可溶性エアロゾルと不溶性エアロゾルがそれぞれ存在する こととなる。エアロゾルの種類と溶解の可否を第1表に示す。

核種グループ	代表化学形態	FP エアロゾル移行量(kg)	溶解の可否
Halogens	CsI		可溶性
Alkali metal	CsOH		可溶性
Те	TeO ₂ , Sb		不溶性
Ba, Sr	Ba0, Sr0		可溶性
Noble metals	MoO ₂		不溶性
Се	CeO_2		不溶性
La	La_2O_3		不溶性
構造材	SiO ₂ 等		大半は不溶性
	合計	400	_

第1表 エアロゾル(設計条件)の種類と溶解の可否

可溶性エアロゾルと不溶性エアロゾルでは、スクラビング水の粘性に与える影響はそれぞれ 異なることから、可溶性エアロゾル、不溶性エアロゾルに分けて粘性に与える影響を確認する。 なお、流体が流動する際の抵抗を示す粘性の大きさは、粘性率η[mPa・s]で表され、水の粘性 率は水温10 ℃の場合は約1.3 [mPa・s]、80 ℃の場合は約0.3 [mPa・s]である(参考図書1)。

a. 可溶性エアロゾルの影響

エアロゾルがスクラビング水に溶解すると、分解してイオンとして存在し、溶解したイオンの

周囲に水分子が水和しやすい場合には、イオンと水分子が集団として振る舞うため移動しにくく なり、粘性率が大きくなる。一方、溶解したイオンの周囲に水分子が水和しにくい場合には、イ オンや水分子が移動しやすくなり、粘性率が小さくなる(参考図書2)。

ベント実施後にフィルタ装置に含まれる主な陽イオンには、Na+, K+, CS+があり、陰イオンに はOH-, C1-, Br⁻, I⁻, CO₃²⁻, HCO₃⁻, SO₄²⁻がある。これらイオンのうち、水和しやすく粘性率の増加に最も寄与する陽イオンはNa⁺, 陰イオンはOH⁻であり、水和しにくく粘性率の減少に寄与する陽イオンはCs⁺, 陰イオンはI⁻であると考えられる(参考図書1,3)。

このため、フィルタ装置にエアロゾルが移行した場合の粘性率は、エアロゾルの全量を水酸化 ナトリウム (NaOH) として評価したとき最も大きく、よう化セシウム (CsI) として評価したとき には小さくなる。

スクラビング水として低温(粘性率が高い)の25 ℃における水酸化ナトリウムとよう化セシ ウムが水に溶解した場合の粘性率の変化を第1図に示す。

第1図 NaOH と CsI が水に溶解した場合の粘性率の変化(25 ℃)(NaOH: 参考図書 4, CsI: 参考図書 5)

スクラビング水に添加している化学薬剤の	
	であり、このスクラビング水の粘性率は、化学薬剤
を全て水酸化ナトリウムとして評価すると、	第1図より mPa・sとなる。
また、スクラビング水の粘性率の変化を	保守的に評価するため、仮にフィルタ装置に移行す
るエアロ <u>ゾルが全</u> て水酸化ナトリウム(40	0 kg=10,000 mol) と想定とすると,その溶液のモ
ル濃度は mol/0 上昇し,	となり、可溶性エア
ロゾルが溶解したスクラビング水の粘性率	は, 第1図より約1.13 mPa・s となる。
以上より、可溶性エアロゾルが溶解した	場合のスクラビング水の粘性率の変化は、フィルタ

装置待機時のスクラビング水の粘性率に比べて,わずか (mPa·s 大きくなる) と評価 できる。

なお、JAVA試験における初期のスクラビング水に含まれる化学薬剤の質量パーセント濃度は、のり、これらの モル濃度はそれぞれ、となることから、このスクラビング水の 粘性率は、化学薬剤が全て水酸化ナトリウムとして評価すると、第1図よりのPa・sとなる。

b. 不溶性エアロゾルの影響

エアロゾルが不溶性の場合,スクラビング水中ではコロイド等の懸濁粒子濃度が上昇すると考 えられる。このような懸濁粒子が分散した溶液の粘性率はアインシュタインの粘度式等によって 評価することができる(参考図書1)。

 $\eta / \eta_0 - 1 = 2.5 \phi$

ここで、η:懸濁粒子溶液の粘性、η₀:分散溶媒の粘性、φ:懸濁粒子の容積分率を示す。上 式を用いて、懸濁粒子濃度が粘性率に及ぼす影響を評価した結果を第2図に示す(アインシュタ インの粘度式の成立限界である容積分率2%までを記載)。

第2図 不溶性分が共存した場合の粘性率の変化(25℃)

スクラビング水の粘性率の変化を保守的に評価するため、仮にフィルタ装置に移行するエアロ ゾルを全て不溶性のエアロゾル(密度2.4 g/cm³)とし、最低水量の tに加わったとして懸濁 粒子の容積分率を算出すると、 vol%(=400×10³/2.4/(15.5×10⁶))となる。第2図 によると懸濁粒子の容積分率2 vol%程度まで粘性率がほとんど上昇していないため、不溶性エ アロゾルによるスクラビング水の粘性率の変化はほとんどないと評価できる。

なお,上記の密度____g/cm³は,コア・コンクリート反応で発生するコンクリート由来のエアロ ゾルを想定したものであり,TeO₂(密度約5.7 g/cm³)等の密度の大きいエアロゾルを想定する よりも懸濁粒子の容積分率を大きく算定するため,保守的な評価となっている。 (2) 評価結果

粘性率の増加量は、粘性率の変化が大きい可溶性エアロゾルの場合においても下記のとおり であり、第3図に示す純水の温度変化に伴う粘性率の変化量と同等であるため、この粘性率の変 化は十分小さい。よって、フィルタ装置を長期に使用する場合においても、スクラビング水の 粘性のDFへの影響はないと考えられる。

・可溶性エアロゾル(水酸化ナトリウム400 kg)が溶解した場合のスクラビング水の粘性率の変化は、待機時のスクラビング水と比べた場合に mPa・s大きくなる。

第3図 水の粘性率に及ぼす温度の影響

なお,エアロゾルには有機物が含まれていないため,温度が上昇した場合にも粘性率を著し く大きくさせることはない。

〈参考図書〉

- 1. 化学便覧改訂3版基礎編Ⅱ
- 2. 上平恒, 「水の分子工学」
- 3. 横山晴彦,田端正明「錯体の溶液化学」
- 4. Pal M. Sipos, Glenn Hefter, and Peter M. May, Viscosities and Densities of Highly Concentrated Aqueous MOH Solutions (M+) Na+, K+, Li+, Cs+, (CH3)4N+) at 25.0 ° C, J. Chem. Eng. Data, 45, 613-617 (2000)
- Grinnell Jones and Holmes J. Fornwalt, The Viscosity of Aqueous Solutions of Electrolytes as a Function of the Concentration. III. Cesium Iodide and Potassium Permanganate, J. Am. Chem. Soc., 58 (4), 619–625 (1936)
- Joseph Kestin, H. Ezzat Khalifa and Robert J. Correia, Tables of the Dynamic and Kinematic Viscosity of Aqueous NaCl Solution in the Temperature Range 20-150°C and the Pressure Range 0.1-35MPa, J. Phys. Chem. Ref. Data, Vol.10, No.1 (1981)
- 7. 日本機械学会 蒸気表 <1999>

ベント実施に伴う作業等の作業員の被ばく評価

1. ベント実施に伴うベント操作時の作業員の被ばく評価

ベント実施に伴うベント操作を手動で行う場合の作業員の被ばく評価を以下のとおり行った。 ベント操作としてサプレッション・チェンバ(以下「S/C」という。)からのベントを行う場 合及びドライウェル(以下「D/W」という。)からのベントを行う場合のそれぞれにおける第一 弁及び第二弁の開操作時の被ばく評価を行った。

(1) 評価条件

a. 放出量評価条件

格納容器破損防止対策の有効性評価で想定している炉心損傷を前提とした事象のうち、炉心 損傷時間が早く、格納容器ベントを実施する「大破断LOCA+高圧炉心冷却失敗+低圧炉心 冷却失敗」の代替循環冷却系を使用できない場合が最も放射性物質の放出量が多くなるため、 この事象をベント実施に伴うベント操作時の作業員の被ばく評価で想定する事象として選定す る。

また,放出量評価条件を第1表,大気中への放出過程及び概略図を第1図~第4図に示す。 大気中への放出経路については第5図に示すとおりであり,非常用ガス処理系等が起動するま で(事象発生から2時間)は原子炉建屋からの漏えいを想定し地上放出するとし,非常用ガス 処理系等が起動した以降(事象発生から2時間以降)は非常用ガス処理系排気筒からの放出を 想定し排気筒放出とする。また,ベント実施以降は格納容器圧力逃がし装置排気口からの放出 を想定し原子炉建屋屋上の排気口放出とする。

b. 被ばく評価条件

被ばく経路は,第6図~第8図に示すとおりであり,経路ごとに以下に示す評価を行った。 大気中へ放出される放射性物質については,第2表及び第3表示すように,ガウスプルーム モデルを用いて拡散効果を考慮して外部被ばく及び内部被ばくの評価を行った。なお,内部被 ばくについては,第4表に示す線量換算係数,呼吸率及びマスクの効果を考慮し評価を行った。

外気から作業場所内へ流入した放射性物質による被ばくについては、屋外の放射性物質の濃度と作業場所の放射性物質の濃度を同じとし、外部被ばくについては、第4表示すとおり作業場所の空間体積を保存したサブマージョンモデルで評価を行い、内部被ばくについては、第4表に示す線量換算係数、呼吸率及びマスクの効果を考慮し評価を行った。なお、第二弁の操作については、空気ボンベにより加圧された第二弁操作室内で作業することを考慮し評価を行った。

大気中に放出され地表面に沈着した放射性物質からのガンマ線による外部被ばくについて は、ガウスプルームモデルを用いて拡散効果を考慮して放射性物質の濃度を求めた後、第5表 に示す地表面への沈着速度を考慮し評価を行った。

格納容器圧力逃がし装置配管,原子炉建屋等からの直接ガンマ線及びスカイシャインガンマ 線による外部被ばくについては,第6表及び第7表に示す原子炉建屋の外壁,作業場所の遮蔽 壁の遮蔽効果を考慮し評価を行った。

別添 3-219

c. アクセスルート

第一弁(S/C側)のベント操作を行う場合のアクセスルートは,第9図~第11図に示す とおりである。第一弁(D/W側)のベント操作を行う場合のアクセスルートは,第12図~ 第15図に示すとおりである。第二弁(S/C側及びD/W側共通)のベント操作を行う場合 のアクセスルートは第17図~第19図に示すとおりである。また,第一弁及び第二弁のベント 操作を行う場合の屋外移動時のアクセスルートは第16図に示すとおりである。

d. 評価点

評価点は、第9図~第20図に示すとおりであり、ベント操作時は作業場所を評価点とする。 アクセスルートの評価点は、大気中に放出された放射性物質(グランドシャインの評価含む。) に関する評価では、アクセスルート上で相対濃度が最も大きくなる地点を評価点とする。また、 原子炉建屋からの直接ガンマ線及びスカイシャインガンマ線、格納容器圧力逃がし装置配管か らの直接ガンマ線に関する評価では、アクセスルート上で遮蔽壁等の効果が小さく、線量が厳 しくなる地点を評価点とする。

なお,作業及び移動に必要な時間は常に上記の評価点にいるものとし,被ばく評価を行う。 e. 作業時間

第一弁の開操作は、ベント実施前に行うものとし、第一弁(S/C側)の作業時間は160分 (移動時間(往復)70分+作業時間90分)、第一弁(D/W側)の作業時間は190分(移動 時間(往復)100分+作業時間90分)とする。また、第二弁(S/C側及びD/W側共通) の開操作は、ベント実施直後から180分作業場所(第二弁操作室)に滞在するものとし、作業 時間は410分(移動時間(往復)90分+待機時間140分+作業時間(第二弁操作室滞在)180 分)とする。

(2) 評価結果

ベント実施に伴うベント操作を手動で行う場合の作業員の被ばく評価結果は以下に示すとお りであり、作業員の実効線量は緊急作業時の線量限度である 100 mSv 以下であり、ベント実施 に伴うベント操作を手動で行うことができることを確認した。また、実効線量の内訳を第8表 ~第 10 表に示す。

- a. S/Cからのベント操作時の作業員の実効線量 作業員の実効線量は第一弁開操作時で約37 mSv, 第二弁開操作時で約28 mSv となった。
- b. D/Wからのベント操作時の作業員の実効線量 作業員の実効線量は第一弁開操作時で約52 mSv, 第二弁開操作時で約42 mSv となった。

項目	評価条件	選定理由
評価事象	「大破断LOCA+高圧炉心冷却失敗+低圧炉 心冷却失敗」(代替循環冷却系を使用できない 場合)(全交流動力電源喪失の重畳を考慮)	格納容器破損防止対策 の有効性評価で想定す る格納容器破損モード のうち,中央制御室の 転員又は対策要員の ばくの観点から結果が 最も厳しくなる事故 レ た事故シー ケンスを選定
炉心熱出力	3,293 MW	定格熱出力
運転時間	1 サイクル当たり 10000 時間(約 416 日)	1 サイクル 13 ヶ月(395 日)を考慮して設定
取替炉心の 燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装荷割 合に基づき設定
炉内蓄積量	希ガス類 : 約2.2×10 ¹⁹ Bq よう素類 : 約2.8×10 ¹⁹ Bq C s OH類 : 約1.1×10 ¹⁸ Bq S b 類 : 約1.3×10 ¹⁸ Bq T e O 2類 : 約6.7×10 ¹⁸ Bq S r O類 : 約1.2×10 ¹⁹ Bq B a O類 : 約1.2×10 ¹⁹ Bq M o O 2類 : 約2.4×10 ¹⁹ Bq C e O 2類 : 約5.5×10 ¹⁹ Bq L a 2O ₃ 類 : 約5.5×10 ¹⁹ Bq (核種ごとの炉内蓄積量を核種グループごとに 集約して記載)	「単位熱出力当たりの 炉内蓄積量(Bq/MW)」× 「3293 MW(定格熱出力)」 (単位熱出力当たりの 炉内蓄積量(Bq/MW)は, BWR共通条件として, 東海第二と同じ装荷燃 料(9×9燃料(A型)), 運転時間(10000時間) で算出したABWRの サイクル末期の値を使 用)
放出開始時間	格納容器漏えい:事象発生直後 格納容器圧力逃がし装置による格納容器減圧及 び除熱:事象発生から約19h後	MAAP解析結果
原子炉格納容器内 p H制御の効果	考慮しない	サプレッション・プール 水内 p H制御設備は,重 大事故等対処設備と位 置付けていないため,保 守的に設定
よう素の形態	粒子状よう素 : 5 % 無機よう素 : 91 % 有機よう素 : 4 %	R.G.1.195 ^{※1} に基づき 設定

第1表 放出量評価条件 (1/3)

項目	評価条件	選定理由
原子炉格納容器か ら原子炉建屋への 漏えい率 (希ガス, エアロゾル及び有 機よう素)	1 Pd以下:0.9 Pdで0.5 %/日 1 Pd超過:2 Pdで1.3 %/日	MAAP解析にて原子 炉格納容器の開口面積 を設定し格納容器圧力 に応じ漏えい率が変化 するものとし,原子炉 格納容器の設計漏えい 率(0.9Pdで0.5%/日) 及びAECの式等に基 づき設定(補足1参照)
原子炉格納容器か ら原子炉建屋への 漏えい率(無機よ う素)	1.5 h後~19.5 h後:1.3 %/日(一定) その他の期間 :0.5 %/日(一定)	原子炉格納容器の設計 漏えい率(0.5%/日) 及びAECの式等に基 づき設定(格納容器圧 力が0.9Pdを超える期 間を包絡するように 1.3%/日の漏えい率を 設定)(補足1参照)
原子炉格納容器内 での除去効果(エ アロゾル)	MAAP解析に基づく(沈着,サプレッション・ プールでのスクラビング及びドライウェルスプ レイ)	MAAP+のFP挙動 モデル (補足2参照)
原子炉格納容器内 での除去効果(有 機よう素)	考慮しない	保守的に設定
原子炉格納容器内 での除去効果(無	自然沈着率:9.0×10 ⁻⁴ (1/s) (原子炉格納容器内の最大存在量から1/200ま で)	CSE実験及び Standard Review Plan 6.5.2 ^{※2} に基づき設定 (補足3参照)
機よう素)	う素) サプレッション・プールでのスクラビングによ る除去効果:10(S/Cベントのみ)	
原子炉格納容器か ら原子炉建屋への 漏えい割合	 希ガス類S/Cベント 約4.3×10 ⁻³ D/Wベント :約4.3×10 ⁻³ C s I 類:約6.2×10 ⁻⁵ :約4.3×10 ⁻³ C s OH類:約6.2×10 ⁻⁵ :約6.2×10 ⁻⁵ S b類:約6.7×10 ⁻⁶ :約6.8×10 ⁻⁶ T e O 2類:約6.7×10 ⁻⁶ :約6.8×10 ⁻⁶ S r O類:約2.7×10 ⁻⁶ :約2.7×10 ⁻⁶ B a O類:約3.4×10 ⁻⁷ :約3.4×10 ⁻⁷ C e O 2類:約6.7×10 ⁻⁸ :約2.7×10 ⁻⁶ L a 2O 3類:約2.7×10 ⁻⁸ :約2.7×10 ⁻⁸	MAAP解析結果及び NUREG-1465 ^{**4} に 基づき設定(補足5参 照)

第1表 放出量評価条件 (2/3)

項目	評価条件	選定理由
原子炉建屋から大 気への漏えい率 (非常用ガス処理 系及び非常用ガス 再循環系の起動 前)	無限大/日(地上放出) (原子炉格納容器から原子炉建屋へ漏えいした 放射性物質は,即座に大気へ漏えいするもの として評価)	保守的に設定
非常用ガス処理系 から大気への放出 率(非常用ガス処 理系及び非常用ガ ス再循環系の起動 後)	1 回/日(排気筒放出)	設計値に基づき設定 (非常用ガス処理系の ファン容量)
非常用ガス処理系 及び非常用ガス再 循環系の起動時間	事象発生から2時間後	起動操作時間(115分) +負圧達成時間(5分) (起動に伴い原子炉建 屋原子炉棟内は負圧に なるが,保守的に負圧 達成時間として5分を 想定)
非常用ガス処理系 及び非常用ガス再 循環系のフィルタ 除去効率	考慮しない	保守的に設定
原子炉建屋外側ブ ローアウトパネル の開閉状態	閉状態	原子炉建屋原子炉棟内 の急激な圧力上昇等に よる原子炉建屋外側ブ ローアウトパネルの開 放がないため
格納容器圧力逃が し装置への放出割 合	S/Cベント 希ガス類 C s I 類 S か 1.0^{-1} : 約9.5×10 ⁻¹ : 約9.5×10 ⁻¹ : 約9.5×10 ⁻¹ : 約9.5×10 ⁻¹ : 約9.5×10 ⁻¹ : 約9.5×10 ⁻¹ : 約9.5×10 ⁻³ : 約3.9×10 ⁻³ : 約7.5×10 ⁻³ : 約7.2×10 ⁻⁵ C e O 2類 : 約8.9×10 ⁻¹⁰ : 約7.2×10 ⁻⁵ L a 2 O 3類 : 約3.6×10 ⁻¹⁰ : 約5.8×10 ⁻⁶	MAAP解析結果及び NUREG-1465に基 づき設定 (補足5参照)
格納容器圧力逃がし装置の除去係数	希ガス :1 有機よう素:50 無機よう素:100 エアロゾル (粒子状よう素含む):1000	設計値に基づき設定

第1表 放出量評価条件 (3/3)

※1 Regulatory Guide 1.195, "Methods and Assumptions for Evaluating Radiological Consequences of Desigh Basis Accidents at Light-Water Nuclear Power Reactors", May 2003

*2 Standard Review Plan6.5.2, "Containment Spray as a Fission Product Cleanup System", December 2005

X3 Standard Review Plan6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007

%4 NUREG-1465, "Accident Source Terms for Light-Water Nuclear Power Plants", 1995

第1図 希ガスの大気放出過程

第2図 よう素の大気放出過程

NT2 補① V-1-8-1 別添3 R1

第3図セシウムの大気放出過程

第4図 その他核種の大気放出過程

※1 原子炉格納容器から原子炉建屋への漏えい率
 【希ガス,エアロゾル(粒子状よう素含む),有機よう素】
 1 Pd 以下: 0.9 Pd で 0.5 %/日,1 Pd 超過:2 Pd で 1.3 %/日

【無機よう素】

1.5 h 後~19.5 h 後:1.3 %/日 (一定),上記以外の期間:0.5 %/日 (一定)

大気への放出経路	0 h ▼2 h ^{*2}	▼ 19 h ^{**} 3	168 h ▼
原子炉建屋から大気中への漏えい			
非常用ガス処理系排気筒から放出			
格納容器圧力逃がし装置からの放出			

※2 非常用ガス処理系の起動により原子炉建屋原子炉棟内は負圧となるため,事象発生2h以降は原子炉建屋から大気中への漏えいはなくなる。

※3 事象発生後19h以降は、「非常用ガス処理系排気筒から放出」及び「格納容器圧力逃がし装置からの放出」 の両経路から放射性物質を放出する。

第5図 大気放出過程概略図(イメージ)

第6図 ベント操作に係る作業時の被ばく評価経路イメージ(屋外作業時)

第2表 大気拡散評価条件

項目	評価条件	選定理由
大気拡散評価 モデル	ガウスプルームモデル	発電用原子炉施設の安全解析に関 する気象指針(以下「気象指針」と いう。)に基づき評価
気象資料	東海第二発電所における1年 間の気象資料(2005年4月~ 2006年3月) 地上風 :地上10 m 排気筒風:地上140 m	格納容器圧力逃がし装置排気口及 び原子炉建屋からの放出は地上風 (地上10 m)の気象データを使用 非常用ガス処理系排気筒からの放 出は排気筒風(地上140 m)の気象 データを使用(補足11参照)
放出源及び放出源 高さ(有効高さ)	原子炉建屋漏えい:地上0 m 格納容器圧力逃がし装置 排気口からの放出:地上55 m 非常用ガス処理系排気筒 からの放出:地上95 m	格納容器圧力逃がし装置排気口か らの放出は建屋影響を考慮し原子 炉建屋屋上からの放出と想定し設 定 非常用ガス処理系排気筒からの放 出は方位ごとの風洞実験結果のう ち保守的に最低の方位の有効高さ を設定
実効放出継続時間	1 時間	保守的に最も短い実効放出継続時 間を設定(補足9参照)
累積出現頻度	小さい方から 97 %	気象指針に基づき設定
建屋の影響	考慮する	格納容器圧力逃がし装置排気口放 出及び原子炉建屋漏えいにおいて は放出源から近距離の原子炉建屋 の影響を受けるため,建屋による巻 き込み現象を考慮
巻き込みを生じる 代表建屋	原子炉建屋	放出源から最も近く, 巻き込みの影 響が最も大きい建屋として選定
大気拡散評価点	第 20 図参照	屋外移動時は敷地内の最大濃度点 で設定 屋内移動時は原子炉建屋付近の最 大濃度点で設定 作業時は作業地点のある原子炉建 屋外壁で設定
着目方位	非常用ガス処理系排気筒: 1方位 原子炉建屋及び 格納容器圧力逃がし装置 排気口: 9方位	非常用ガス処理系排気筒(排気筒放 出)については評価点の方位とし, 原子炉建屋漏えい及び格納容器圧 力逃がし装置排気口については放 出源が評価点に近いことから,180 度をカバーする方位を対象とする。
建屋影響	3000 m^2	原子炉建屋の最小投影断面積を設 定
形状係数	0.5	気象指針に基づき設定

作業内容		放出箇所	χ/Q及びD/Q	
第一弁 (S/C側) 開操作	屋内外移動時/ 作業時	原子炉建屋漏えい (地上放出)	$\chi \angle Q$ (s/m ³)	約 8.0×10 ⁻⁴
		非常用ガス処理系排気筒 (排気筒放出)	$\chi \angle Q$ (s/m ³)	約 3.0×10 ⁻⁶
	昆山山投動吐	原子炉建屋漏えい (地上放出)	$\chi \swarrow Q$ (s/m ³)	約 8.0×10 ⁻⁴
	/至1/17F移動时	非常用ガス処理系排気筒 (排気筒放出)	$\chi \swarrow Q$ (s/m ³)	約 3.0×10 ⁻⁶
第一弁 (D/W側) 開操作		原子炉建屋漏えい (地上放出)	χ / Q (s/m ³)	約 7.4×10 ⁻⁴
	作業時	非常用ガス処理系排気筒	$\chi \swarrow Q$ (s/m ³)	約 2.1×10 ⁻⁶
		(排気筒放出)	D∕Q (Gy/Bq)	約 6.4×10 ⁻²⁰
	屋外移動時	原子炉建屋漏えい (地上放出)	$\chi \swarrow Q$ (s/m ³)	約 8.3×10 ⁻⁴
		格納容器圧力逃がし装置 排気口 (建屋屋上放出)	$\chi \swarrow Q$ (s/m ³)	約 4.2×10 ⁻⁴
			D∕Q (Gy/Bq)	約 8.7×10 ⁻¹⁹
		非常用ガス処理系排気筒 (排気筒放出)	$\chi \swarrow Q$ (s/m ³)	約 3.0×10 ⁻⁶
			D∕Q (Gy/Bq)	約 1.2×10 ⁻¹⁹
第二弁 開操作	屋内移動時	原子炉建屋漏えい (地上放出)	$\chi \swarrow Q$ (s/m ³)	約 8.0×10 ⁻⁴
		格納容器圧力逃がし装置 排気口 (建屋屋上放出)	$\chi \swarrow Q$ (s/m^3)	約 4.0×10 ⁻⁴
		非常用ガス処理系排気筒 (排気筒放出)	χ / Q (s/m ³)	約 3.0×10 ⁻⁶
	作業時	原子炉建屋漏えい (地上放出)	χ / Q (s/m ³)	約 7.4×10 ⁻⁴
		格納容器圧力逃がし装置 排気口 (建屋屋上放出)	$\chi \swarrow Q$ (s/m ³)	約 3.7×10 ⁻⁴
		非常用ガス処理系排気筒 (排気筒放出)	$\chi \swarrow Q$ (s/m ³)	約 3.0×10 ⁻⁶

第3表 評価に使用する相対濃度(χ/Q)及び相対線量(D/Q)(1/2)

項目	評価条件	選定理由
サブマージ ョンモデル (評価式)	$D = 6.2 \times 10^{-14} \cdot Q_{\gamma} \cdot \chi / Q \cdot E_{\gamma} \cdot (1 - e^{-\mu \cdot R}) \cdot 3600$ D : 放射線量率 (Sv/h) $Q_{\gamma} : 大気に放出された放射性物質放出率 (Bq/s) \\ (0.5 MeV 換算値)$ $E_{\gamma} : ガンマ線エネルギ (0.5 MeV/dis) \\ \mu : 空気に対するガンマ線エネルギ吸収係数 \\ (3.9 \times 10^{-3} / m)$ R : 作業エリア等の空間体積と等価な半球の半径 (m) $R = \sqrt[3]{\frac{3V_R}{2\pi}} \\ V_R : 作業エリア等の空間体積 (m3)$	
作業場所等 の空間体積 (V _R)	<s cからのベントを行う場合=""> ・第一弁 操作場所 主 2200 m³ 屋内移動アクセスルート: 2200 m³ ・第二弁 操作場所 た 590 m³ 屋内移動アクセスルート: 2200 m³ < </s>	アクセスルートとなる 建屋内の区画で最も線 量率が高くなる区画の 空間体積で設定 操作エリアは作業区画 の空間体積で設定
屋内作業場 所流入率の 考慮	考慮しない	保守的に外気濃度と同 一濃度とする。
第二 の空加 第 金 で 加 第 第 代 場 所) の み)	 第二弁操作室の遮蔽厚 :	第二弁操作場所にベン ト後3時間滞在する。
許容差	評価で考慮するコンクリート遮蔽は,公称値からマイナス側許容 差 (-5 mm) を引いた値を適用	建築工事標準仕様書 JASS 5N・同解説(原子 力発電所施設における 鉄筋コンクリート工事, 日本建築学会)に基づき 設定
コンクリー ト密度	2.00 g/cm ³	建築工事標準仕様書 JASS 5N・同解説(原子 力発電所施設における 鉄筋コンクリート工事, 日本建築学会)を基に算 出した値を設定(補足12 参照)

第4表 建屋内に流入した放射性物質による外部被ばく評価条件

項目	評価条件	選定理由
線量換算係数	成人実効線量換算係数を使用 (主な核種を以下に示す) $I - 131 : 2.0 \times 10^{-8}$ Sv/Bq $I - 132 : 3.1 \times 10^{-10}$ Sv/Bq $I - 133 : 4.0 \times 10^{-9}$ Sv/Bq $I - 134 : 1.5 \times 10^{-10}$ Sv/Bq $I - 135 : 9.2 \times 10^{-10}$ Sv/Bq $C s - 134 : 2.0 \times 10^{-8}$ Sv/Bq $C s - 136 : 2.8 \times 10^{-9}$ Sv/Bq $C s - 137 : 3.9 \times 10^{-8}$ Sv/Bq L記以外の核種は ICRP Pub. 71 等に基づく	ICRP Publication 71 に基づき設定
呼吸率	$1.2 m^3/h$	成人活動時の呼吸率 を設定
マスクの 除染係数	D F 50	性能上期待できる値 から設定
地表面への 沈着速度	粒子状物質:0.5 cm/s 無機よう素:0.5 cm/s 有機よう素:1.7×10 ⁻³ cm/s	東海第二発電所の実 気象から求めた沈着 速度から保守的に設 定(補足 6〜補足 8 及び補足15参照)

第5表 線量換算係数,呼吸率等

	F 11	王 / - / - /		
		評価条件		選定埋田
	第一弁 (S ∕ C 側)	作業場所		
		移動ルート		 1 坦 /b リ つけまいよう
) 南志同 ケ※1	第一弁	作業場所		ペント操作エリアにおける 原子炉建屋壁,補助遮蔽設
遮蔽序 3	(D/W側)	移動ルート	-	備等を考慮(第9図~第19 図参昭)
		作業場所		
	一 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	移動ルート		
許容差		評価で考慮するコンクリート遮蔽 は,公称値からマイナス側許容差 (-5 mm)を引いた値を適用		建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会) に基づき設定
コンクリート密度		2.00 g/cm ³		建築工事標準仕様書 JASS 5N・同解説(原子力発電所 施設における鉄筋コンクリ ート工事,日本建築学会) を基に算出した値を設定 (補足 12 参照)
	第一弁	作業場所		
配管中心から 評価点までの 距離	(S/C側)	移動ルート		
	第一弁	作業場所		
	(D/W側)	移動ルート		
	第二弁	作業場所		
		移動ルート		

第6表 格納容器圧力逃がし装置配管からの直接ガンマ線

※1 遮蔽厚はコンクリート相当の厚さとする。

第7表 原子炉建屋からの直接ガンマ線及びスカイシャインガンマ線

項目	評価条件	選定理由
遮蔽厚さ		原子炉建屋外壁(二次遮 蔽)の厚さを設定(補足 15 参照)
原子炉建屋内線源強度 分布	原子炉建屋内に放出された放射性 物質が均一に分布	審査ガイドに示されたと おり設定
原子炉建屋のモデル	原子炉建屋の幾何形状をモデル化	建屋外壁を遮蔽体として 考慮(補足15参照)
直接ガンマ線・スカイ シャインガンマ線評価 コード	直接ガンマ線評価: QAD-CGGP2R スカイシャインガンマ線評価: ANISN G33-GP2R	現行許認可(添十)に同 じ

第9図 第一弁(S/C側)操作場所及びアクセスルート

(原子炉建屋原子炉棟3階及び原子炉建屋付属棟3階,4階)

第10図 第一弁(S/C側)操作場所及びアクセスルート

(原子炉建屋原子炉棟2階及び原子炉建屋付属棟2階)

第11図 第一弁 (S/C側) 操作場所及びアクセスルート

(原子炉建屋原子炉棟1階及び原子炉建屋付属棟1階)

第12図 第一弁 (D/W側) 操作場所及びアクセスルート

(原子炉建屋原子炉棟3階及び原子炉建屋付属棟3階,4階)

第13図 第一弁(D/W側)操作場所及びアクセスルート

(原子炉建屋原子炉棟2階及び原子炉建屋付属棟2階)

第14図 第一弁 (D/W側) 操作場所及びアクセスルート

(原子炉建屋原子炉棟1階及び原子炉建屋付属棟1階)

第15図 第一弁(D/W側)操作場所及びアクセスルート (原子炉建屋原子炉棟4階及び原子炉建屋付属棟屋上)

第16図 屋外移動時のアクセスルート

第17図 第二弁操作場所及びアクセスルート

(原子炉建屋原子炉棟1階及び原子炉建屋付属棟1階)

第18図 第二弁操作場所及びアクセスルート

(原子炉建屋原子炉棟2階及び原子炉建屋付属棟2階)

第19図 第二弁操作場所及びアクセスルート

(原子炉建屋原子炉棟3階及び原子炉建屋付属棟3階)

第20図 大気中に放出された放射性物質の濃度評価点
第8表 第一弁開操作に伴う移動時及び作業時の線量

(単位:mSv/h)

被ばく経路		第一	弁(S/C側)開掛	喿作 ^{※1}	第一弁(D/W側)開操作 ^{※1}					
		ベント操作時	屋内移動時 (中央制御室⇒ 作業場所)	屋外移動時 (作業場所⇒ 緊急時対策所)	ベント操作時	屋内/屋外移動 時(中央制御室 →作業場所)	屋内/屋外移動 時(作業場所⇒ 付属棟入口)	屋外移動時 (付属棟入口⇒ 緊急時対策所)		
原子炉建屋内の放射性物質からの ガンマ線による外部被ばく		約2.1×10 ⁰	約3.1×10º	約1.9×10 ⁰	約5.4×10 ⁰ 約5.4×10 ⁰ 約5.4×10 ⁰		約5.4×10°	約1.9×10 ⁰		
大気中へ放出された 放射性物質による被ばく	外部被ばく	屋内に流入する放射性物質の 影響に包絡される		約4.8×10 ⁻²	約2.6×10 ⁻²	約2.6×10 ⁻²	約2.6×10 ⁻²	約4.8×10 ⁻²		
	内部被ばく			1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下		
外気から作業場所内へ流入 した放射性物質による被ばく	外部被ばく	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	大気中へ放出さ れた放射性物質	大気中へ放出された放射性物質の 影響に包絡される					
	内部被ばく	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	の影響に包絡さ れる						
ベント系配管内の放射性物質からの ガンマ線による外部被ばく*2		約1.4×10 ⁻¹	1.0×10 ⁻² 以下	屋外移動のため 対象外※3	約4.6×10 ⁻¹	約4.6×10 ⁻¹	約4.6×10 ⁻¹	屋外移動のため 対象外 ^{※3}		
大気中へ放出され地表面に沈着した 放射性物質からのガンマ線による被ばく		約1.2×10 ¹	約1.2×10 ¹	約1.2×10 ¹	約1.1×10 ¹	約1.2×10 ¹	約1.2×10 ¹	約1.2×10 ¹		
作業線量率		約1.4×10 ¹	約1.5×10 ¹	約1.4×10 ¹	約1.7×10 ¹	約1.8×10 ¹	約1.8×10 ¹	約1.4×10 ¹		
作業時間及び移動時間		90 分	35 分(往路)	35 分(復路)	90 分	50 分(往路)	15 分(復路)	35 分(復路)		
作業員の実効線量(作業時及び移動時)		約2.1×10 ¹ mSv	約8.6×10 ⁰ mSv	約8.2×10 ⁰ mSv	約2.5×10 ¹ mSv	約1.5×10 ¹ mSv	約4.4×10 ⁰ mSv	約8.2×10° mSv		
作業員の実効線量(合計)		約3.7×10 ¹ mSv			彩5.2×10 ¹ mSv					

※1 第一弁開操作はベント実施前に行う。

※2 第一弁開操作前は, 第一弁までのベント系配管内に浮遊した放射性物質を考慮する。

※3 屋外移動時は、アクセスルートからベント系配管の距離が離れているため、評価対象外とする。

第9表 第二弁開操作に伴う移動時及び作業時の線量(S/Cからのベント操作の場合)

(単位:mSv/h)

									· mo (/ m)	
被ばく経路		第二弁開操作時 (ベント実施時)			待機時	屋内移動時 (原子炉建屋入口⇔ 作業場所)		屋外移動時 (緊急時対策所⇔ 原子炉建屋入口)		
		ベント開始~ 1 時間	1 時間~ 2 時間	2 時間~ 3 時間	ベント 実施前	ベント 実施前	ベント 実施後	ベント 実施前	ベント 実施後	
原子炉建屋内の放射性物質からの ガンマ線による外部被ばく		1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	約2.6×10 ⁰	約2.6×100	約1.9×10 ⁰	約1.9×10 ⁰	
大気中へ放出された放 外部被ばく 射性物質による被ばく 内部被ばく	外部被ばく	屋内に流入する放射性物質の			屋内に流入する放射性物質の			約4.8×10 ⁻²	約1.1×10 ⁻¹	
	内部被ばく		影響に包絡される	3	影響に包絡される			1.0×10 ⁻² 以下	約2.7×10 ⁻²	
外気から作業場所内へ 流入した放射性物質 による被ばく	外部被ばく	約4.7×10 ⁰	約5.2×10 ⁻²	1.0×10-2以下	1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	約4.1×10 ⁻²	日月29時のたみ出気が1		
	内部被ばく	正圧化により流入なし			1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	約2.7×10 ⁻²	座7下杉朝いため対家7下***		
ベント系配管内の放射性物質からの ガンマ線による外部被ばく		約4.6×10 ⁻¹	約4.6×10 ⁻¹	約4.6×10 ⁻¹	約1.3×10 ⁻¹	約1.3×10 ⁻¹	約2.9×10 ⁻¹	屋外移動のため対象外*1		
大気中へ放出され地表面に沈着した 放射性物質からのガンマ線による被ばく		約2.2×10-2	約2.2×10 ⁻²	約2.2×10 ⁻²	約2.3×10 ⁻²	約1.2×10 ¹	約1.2×10 ¹	約1.2×10 ¹	約1.2×10 ¹	
作業線量率		約5.2×10 ⁰	約5.3×10 ⁻¹	約4.8×10 ⁻¹	約1.7×10 ⁻¹	約1.4×10 ¹	約1.4×10 ¹	約1.4×10 ¹	約1.4×10 ¹	
作業時間及び移動時間		60 分	60 分	60 分	140 分	10 分(往路)	10 分(復路)	35 分(往路)	35 分(復路)	
作業員の実効線量(作業時及び移動時)		約5.2×10 ⁰ mSv	約5.3×10 ⁻¹ mSv	約4.8×10 ⁻¹ mSv	約4.0×10 ⁻¹ mSv	約2.4×10 ⁰ mSv	約2.4×10 ⁰ mSv	約8.2×10 ⁰ mSv	約8.2×10 ⁰ mSv	
作業員の実効線量(合計)		約2.8×10 ¹ mSv								

※1 屋外移動時は、アクセスルートからベント系配管の距離が離れているため、評価対象外とする。

第10表 第二弁開操作に伴う移動時及び作業時の線量(D/Wからのベント操作の場合)

被ばく経路		第二弁開操作時 (ベント実施時)			待機時	屋内移動時 (原子炉建屋入口⇔ 作業場所)		屋外移動時 (緊急時対策所⇔ 原子炉建屋入口)		
		ベント開始~ 1時間	1時間~ 2時間	2時間~ 3時間	ベント 実施前	ベント 実施前	ベント 実施後	助時 量入口⇔ 所)屋外和 (緊急時 原子炉建 ベント 実施後ベント 実施後ベント 実施前約2.6×10°約1.9×10°約2.6×10°約1.9×10°か約.9×10°約4.8×10 ⁻² の約4.8×10 ⁻² か約.3×10°屋外移動のた 約1.3×10°約3.2×10 ⁻¹ 屋外移動のた 約1.6×10 ¹ 約1.6×10 ¹ 約1.2×10 ¹ 約2.8×10 ¹ 約1.4×10 ¹ 10分(復路)35分(往路)約4.7×10° mSv約8.2×10° mSv	ベント 実施後	
原子炉建屋内の放射 ガンマ線による外	原子炉建屋内の放射性物質からの ガンマ線による外部被ばく		1.0×10 ⁻² 以下	1.0×10-2以下	1.0×10 ⁻² 以下	約2.6×10 ⁰	約2.6×100	約1.9×10 ⁰	約1.9×10 ⁰	
大気中へ放出された放	外部被ばく	屋内に	こ流入する放射性物	勿質の	屋内に流入する放射性物質の			約4.8×10-2	約1.5×10 ¹	
射性物質による被ばく	内部被ばく		影響に包絡される	5		影響に包絡される		D 約4.8×10 ⁻² 1.0×10 ⁻² 以下 約8.3×10 ⁰ 廃外移動の 約1.3×10 ⁰	約1.3×10 ⁰	
外気から作業場所内へ 流入した放射性物質 による被ばく	外部被ばく	約4.0×100	約3.1×10 ⁻¹	約8.4×10 ⁻²	1.0×10 ⁻² 以下	1.0×10-2以下	約8.3×100	長別投動のたみ対色別※1		
	内部被ばく	正圧化により流入なし			1.0×10 ⁻² 以下	1.0×10 ⁻² 以下	約1.3×10 ⁰	圧ノト1夕則リノにリス」家ノト		
ベント系配管内の放射性物質からの ガンマ線による外部被ばく		約5.1×10 ⁻¹	約5.1×10 ⁻¹	約5.1×10 ⁻¹	約3.1×10 ⁻²	約3.1×10 ⁻²	約3.2×10 ⁻¹	屋外移動のため対象外**1		
大気中へ放出され地表面に沈着した 放射性物質からのガンマ線による被ばく		約2.9×10 ⁻²	約2.9×10 ⁻²	約2.9×10 ⁻²	約2.3×10-2	約1.2×10 ¹	約1.6×10 ¹	約1.2×10 ¹	約1.6×10 ¹	
作業線量率		約4.6×10 ⁰	約8.4×10 ⁻¹	約6.2×10 ⁻¹	約7.3×10-2	約1.4×10 ¹	約2.8×10 ¹	約1.4×10 ¹	約3.5×10 ¹	
作業時間及び移動時間		60分	60分	60分	140分	10分(往路)	10分(復路)	35分(往路)	35分(復路)	
作業員の実効線量(作業時及び移動時)		約4.6×10 ⁰ mSv	約8.4×10 ⁻¹ mSv	約6.2×10 ⁻¹ mSv	約1.7×10 ⁻¹ mSv	約2.4×10° mSv	約4.7×10° mSv	約8.2×10 ⁰ mSv	約2.0×10 ¹ mSv	
作業員の実効線量(合計)		約4.2 \times 10 ¹ mSv								

(単位:mSv/h)

※1 屋外移動時は、アクセスルートからベント系配管の距離が離れているため、評価対象外とする。