2017年3月29日 日本原子力発電(株)

ブローアウトパネル開口部から侵入する風に対する対応方針について

原子炉建屋外側ブローアウトパネル(以下「BOP」という。)の開放に伴い, 竜巻の風の侵入が想定されるが, 原子炉建屋原子炉棟6階の防護対象施設に対する影響について以下のとおり整理した。

検討の結果,原子炉建屋天井クレーン及び燃料交換機については,運用による退避以外の 対策は不要と判断している。

1. BOP開口部から侵入する風の状況

1.1 風向の不安定性

建屋の開口部から侵入する竜巻の風の流れについて解析を行った文献における、停止した竜巻の中に存在する、開口を有する区画の内外における流線を図 1 に示す。竜巻の流れに対し、開口部の数や向きが変われば、区画内部の流れも複雑に変化することが分かる。

静止している建屋に対し竜巻は移動して行くことを考えれば、BOP開放により生じた 開口により生じる原子炉棟 6 階の内部の風についても、刻々と変化し安定した流れを形成 することはない。

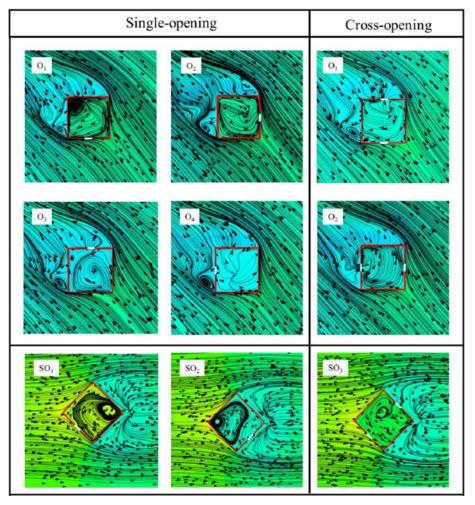


図1 開口から建屋内に流入する風の流線(水平断面)(1)

1.2 屋内における風速の傾向

建屋を模した区画に侵入する流れに関する文献における、対面にも開口を有し、開口から流入する風が受ける抵抗が最も少ないと考えられる場合の建屋内風速分布を図2及び図3に示す。これより以下の傾向が読み取れる。

- ・侵入後の風速は、侵入前に比べ減速する。
- ・両開口を直線的に結ぶ流路から外れる領域における風速は小さい。

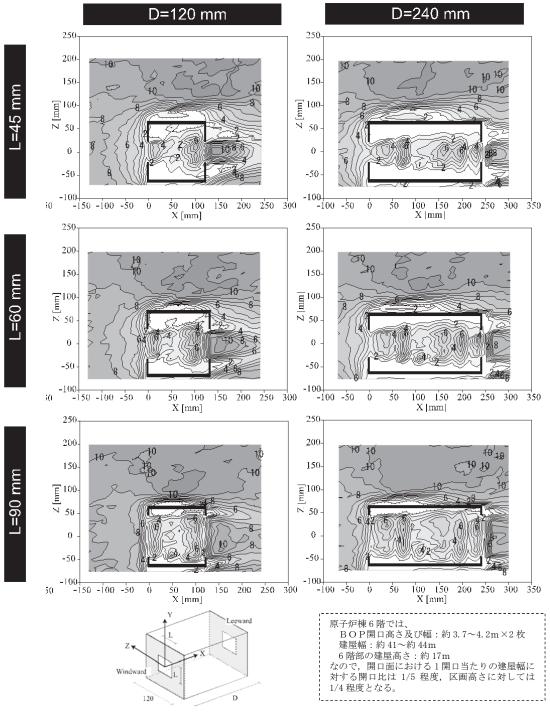


図2 開口を通過した屋内流のスカラー風速分布(水平断面) (文献⁽²⁾の図から一部抜粋)

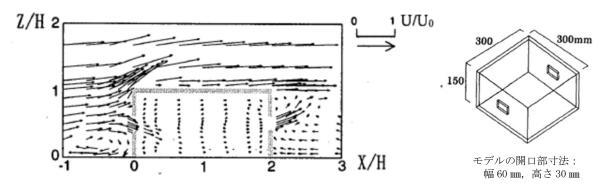
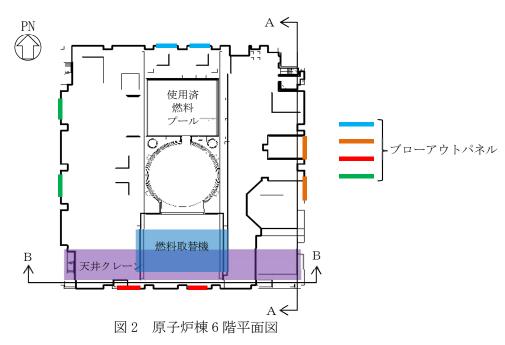


図3 開口から侵入した屋内流の風速分布(鉛直断面) (3)


2. BOP開放時の原子炉棟6階への影響の推定

上記の知見を踏まえ、BOP開放時に原子炉棟6階に生じる風の影響を以下の様に推定した。

これより、原子炉建屋天井クレーン及び燃料交換機については、運用上の措置として、 竜巻襲来予測に基づき原子炉建屋原子炉棟南壁近傍に避難させておけば、「南→北」方向 の風を受け続け、防護対象施設が存在する使用済燃料プールの位置まで移動、転倒(落下) することはなく、特別な設備対応は不要と判断した。

2.1 原子炉棟6階の施設の配置状況

原子炉棟6階の施設の配置を図4から図6に示す。6階の壁面に設置されるBOPの開放により生ずる開口部の寸法は、東西のBOPが1枚当たり幅約4.2m×高さ3.7m、南北のBOPが1枚当たり幅約3.7m×高さ4.2mであり、開口部下端はEL約54.6mに位置する。また、天井クレーン及び燃料交換機は、竜巻襲来の事前準備として使用炭燃料プールから離れた位置に移動するため、南側壁面近傍に停止している。

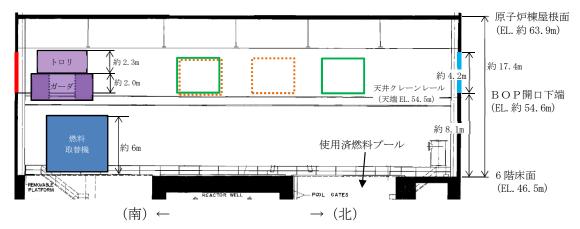


図3 原子炉棟6階南北方向断面図(図2のA-A視)

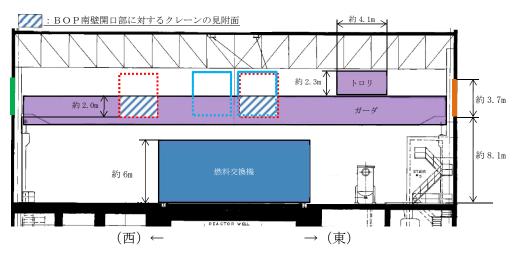


図4 原子炉棟6階東西方向断面図(図2のB-B視)

2.2 BOP開放時に侵入する風の影響

室内への風の侵入に際し、最も抵抗が小さくなると考えられる、「東西方向のBOP開放」及び「南北方向のBOP開放」のケースを想定する。

(1) 東西方向のBOP開放時

図から分かるとおり、東西方向のBOPが開放した場合においては、東西開口部を結ぶ流線の近傍に防護対象施設は存在しないことから、侵入する風により防護対象施設に影響を与える可能性は小さいと判断する。

(2) 南北方向のBOP開放時

a. 北側から風が侵入する場合

図から分かるように、南側のBOP開口部から侵入する風は、南側壁面付近に避難している天井クレーンのガーダにその一部が当たることが考えられるが、開口部を通過する風は減衰すると考えられ、またその作用方向も一定でないと考えられることから、天井クレーンを使用済燃料プール近傍まで移動させ、落下させる様な強風が作用し続ける

状況は想定し難い。

また,天井クレーン同様に南側壁面付近に避難している燃料交換機は,南北開口部を結ぶ流線から外れた領域にあることから,燃料交換機を使用済燃料プール近傍まで移動させ,落下させる様な強風が作用し続ける状況は想定し難い。

b. 北側から風が侵入する場合

北側のBOP開口部から風が侵入する場合には、南側壁面付近に避難している天井クレーン及び燃料交換機に対して、これらを使用済燃料プールまで移動させるような継続的な「南→北」方向の風が作用することはないと考えられる。

<参考文献>

- (1) Nasir, Zoheb, \[\text{Numerical modeling of tornado-like vortex and its interaction with bluff-bodies} \] (2017). Electronic Thesis and Dissertation Repository. 4451. (https://ir.lib.uwo.ca/etd/4451)
- (2) 小林, 相良, 山中 他, 「通風時の建物周辺気流に関する風洞実験及び CFD 解析精度の検証」, 日本建築学会環境系論文集 第 74 巻 (2009) 第 638 号 (https://www.jstage.jst.go.jp/article/aije/74/638/74_638_481/_article/char/ja/)
- (3) 大場, 倉渕, 入江, 「通風開口部の流入気流と圧力損失に関する実験的研究」, 日本建築学会計画系論文集 第 67 巻(2002) 第 552 号

(https://www.jstage.jst.go.jp/article/aija/67/552/67_KJ00004226499/_article/char/ja/)