東海第二発電所	工事計画審査資料
資料番号	工認-155 改1
提出年月日	平成30年4月4日

V-2-1-8 水平2方向及び鉛直方向地震力の組合せ に関する影響評価方針

目 次

1.	概要
2.	基本方針 · · · · · · · · · · · · · · · · · · ·
3.	水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動・・・・・・・・・・・1
4.	各施設における水平2方向及び鉛直方向地震力の組合せに対する影響評価方針・・・・・・・・ 2
4.]	建物・構築物・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 2	2 機器・配管系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 3	3 屋外重要土木構造物‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9
4. 4	津波防護施設,浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置
	された建物・構築物・・・・・・・・・・・・・・・・・・・・・・・・・14

1. 概要

本資料は、V-2-1-1「耐震設計の基本方針」のうち、「4.1 地震力の算定法(2)動的地震力」に基づき、水平2方向及び鉛直方向地震力の組合せに関する影響評価の方針について説明するものである。

2. 基本方針

施設の耐震設計では、設備の構造から地震力の方向に対して弱軸、強軸を明確にし、地震力に対して配慮した構造としている。

今回,水平2方向及び鉛直方向地震力の組合せによる耐震設計に係る技術基準が制定されたことから,従来の設計手法における水平1方向及び鉛直方向地震力を組み合わせた耐震計算に対して,施設の構造特性から水平2方向及び鉛直方向地震力の組合せによる影響の可能性がある施設を評価対象施設として抽出し,施設が有する耐震性に及ぼす影響を評価する。

評価対象は「実用発電用原子炉及びその附属施設の技術基準に関する規則(平成25年6月28日原子力規制委員会規則第6号)」の第5条及び第50条に規定されている耐震重要施設及びその間接支持構造物,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設,並びにこれらの施設への波及的影響防止のために耐震評価を実施する施設とする。耐震Bクラスの施設については、共振のおそれのあるものを評価対象とする。

評価に当たっては、施設の構造特性から水平2方向及び鉛直方向地震力の組合せの影響を受ける部位を抽出し、その部位について水平2方向及び鉛直方向の荷重や応力を算出し、施設が有する耐震性への影響を確認する。

施設が有する耐震性への影響が確認された場合は、詳細な手法を用いた検討等、新たに設計上の対応策を講じる。

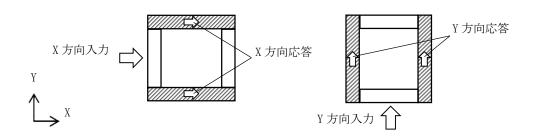
3. 水平2方向及び鉛直方向地震力の組合せによる影響評価に用いる地震動

水平 2 方向及び鉛直方向地震力の組合せによる影響評価には、基準地震動 S_s を用いる。基準地震動 S_s は、V-2-1-2 「基準地震動 S_s 及び弾性設計用地震動 S_d の策定概要」による。

ここで、水平 2 方向及び鉛直方向地震力の組合せによる影響評価に用いる基準地震動 S_s は、複数の基準地震動 S_s における地震動の特性及び包絡関係を、施設の特性による影響も考慮した上で確認し、本影響評価に用いる。

4. 各施設における水平2方向及び鉛直方向地震力の組合せに対する影響評価方針

4.1 建物·構築物


4.1.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方

従来の設計手法では、建物・構築物の地震応答解析において、各水平方向及び鉛直方向の地震動を質点系モデルにそれぞれの方向ごとに入力し解析を行っている。また、原子炉施設における建物・構築物は、全体形状及び平面レイアウトから、地震力を主に耐震壁で負担する構造であり、剛性の高い設計としている。

水平方向の地震力に対しては、せん断力について評価することを基本とし、建物・構築物に作用するせん断力は、地震時に生じる力の流れが明解になるように、直交する2方向につり合いよく配置された鉄筋コンクリート造耐震壁を主な耐震要素として構造計画を行う。地震応答解析は、水平2方向の耐震壁に対して、それぞれ剛性を評価し、各水平方向に対して解析を実施している。従って、建物・構築物に対し、水平2方向の入力がある場合、各方向から作用するせん断力を負担する部位が異なるため、水平2方向の入力がある場合の評価は、水平1方向にのみ入力がある場合と同等な評価となる。

鉛直方向の地震力に対しては、軸力について評価することを基本としている。建物・構築物に作用する軸力は、鉄筋コンクリート造耐震壁を主な耐震要素として構造計画を行う。 入力方向ごとの耐震要素について、図 4-1 に示す。

また、V-2-2「耐震設計上重要な設備を設置する施設の耐震性についての計算書」、 $V-2-3\sim V-2-10$ の申請設備の耐震計算書及びV-2-11「波及的影響を及ぼすおそれのある施設の耐震性についての計算書」のうち建物・構築物の局部評価は、地震応答解析により算出された応答を水平1方向及び鉛直方向に組み合わせて行っている。

(a) 水平方向

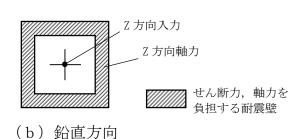


図 4-1 入力方向ごとの耐震要素

4.1.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

建物・構築物において、水平2方向及び鉛直方向地震力の組合せを考慮した場合に影響を受ける可能性がある部位の評価を行う。

評価対象は、耐震重要施設及びその間接支持構造物、常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設並びにこれらの施設への波及的 影響防止のために耐震評価を実施する施設の部位とする。

対象とする部位について、水平2方向及び鉛直方向地震力の組合せによる影響が想定される応答特性から水平2方向及び鉛直方向地震力の組合せによる影響を受ける可能性がある部位を抽出する。

応答特性から抽出された水平2方向及び鉛直方向地震力による影響を受ける可能性がある部位は、従来の評価結果の荷重又は応力の算出結果等を水平2方向及び鉛直方向に組み合わせ、各部位に発生する荷重や応力を算出し、各部位が有する耐震性への影響を確認する。

各部位が有する耐震性への影響が確認された場合,詳細な手法を用いた検討等,新たに 設計上の対応策を講じる。

4.1.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

建物・構築物において、従来の設計手法における水平1方向及び鉛直方向地震力の組み合わせに対して、水平2方向及び鉛直方向地震力の組合せによる影響の可能性がある耐震評価上の構成部位について、応答特性から抽出し、影響を評価する。影響評価のフローを図 4-2 に示す。

(1) 影響評価部位の抽出

① 耐震評価上の構成部位の整理

建物・構築物における耐震評価上の構成部位を整理し、各建屋において、該当する耐震評価上の構成部位を網羅的に確認する。

② 応答特性の整理

建物・構築物における耐震評価上の構成部位について、水平2方向及び鉛直方向 地震力の組合せの影響が想定される応答特性を整理する。

なお、隣接する上位クラス建物・構築物への波及的影響防止のための建物・構築物の評価は、上位クラスの建物・構築物との相対変位による衝突可否判断が基本となる。そのため、せん断及び曲げ変形評価を行うこととなり、壁式構造では耐震壁(ラーメン構造では柱、梁)を主たる評価対象部位とし、その他の構成部位については抽出対象に該当しない。

③ 荷重の組合せによる応答特性が想定される部位の抽出

整理した耐震評価上の構成部位について、水平2方向及び鉛直方向地震力の組合 せによる影響が想定される応答特性のうち、荷重の組合せによる応答特性を検討す る。水平2方向及び鉛直方向地震力に対し、荷重の組合せによる応答特性により、 有する耐震性への影響が想定される部位を抽出する。

④ 3次元的な応答特性が想定される部位の抽出 荷重の組合せによる応答特性が想定される部位として抽出されなかった部位のう ち, 3次元的な応答特性が想定される部位を検討する。水平2方向及び鉛直方向地 震力の組合せに対し, 3次元的な応答特性により, 有する耐震性への影響が想定さ れる部位を抽出する。

⑤ 3次元 FEM モデルによる精査

3次元的な応答特性が想定される部位として抽出された部位について、3次元 FEM モデルを用いた精査を実施し、水平2方向及び鉛直方向地震力の組合せにより、 有する耐震性への影響が想定される部位を抽出する。

また、3次元的な応答特性が想定される部位として抽出されなかった部位についても、局所応答の観点から、3次元 FEM モデルによる精査を実施し、水平2方向及び鉛直方向地震力の組合せにより、有する耐震性への影響が想定される部位を抽出する。

局所応答に対する3次元FEMモデルによる精査は、施設の重要性、建屋規模及び構造特性を考慮し、原子炉建屋について、地震応答解析を行う。

(2) 影響評価手法

⑥ 水平2方向及び鉛直方向地震力の組合せによる影響評価

水平2方向及び鉛直方向同時入力によらない評価を行う部位における。水平2方向及び鉛直方向地震力の組合せによる影響評価においては、水平1方向及び鉛直方向地震力の組合せによる局部評価の荷重又は応力の算出結果を用い、水平2方向及び鉛直方向地震力を組み合わせる方法として、米国 Regulatory Guide $1.92^{(i\pm)}$ の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考として、組合せ係数法(1.0:0.4:0.4)に基づいて地震力を設定する。

評価対象として抽出した耐震評価上の構成部位について、構造部材の発生応力等 を適切に組み合わせることで、各部位の設計上の許容値に対する評価を実施し、各 部位が有する耐震性への影響を評価する。

⑦ 機器・配管系への影響検討

③及び⑤で、施設が有する耐震性への影響が想定され、評価対象として抽出された部位が、耐震重要施設、常設耐震重要重大事故防止設備又は常設重大事故緩和の間接支持機能を有する場合には、機器・配管系に対し、水平2方向及び鉛直方向地震力の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認された場合, 機器・配管系の影響評価に反映する。

なお、⑤の精査にて、建物・構築物の影響の観点から抽出されなかった部位であっても、3次元 FEM モデルによる地震応答解析結果から、機器・配管系への影響の可能性が想定される部位について検討対象として抽出する。

(注) Regulatory Guide (RG) 1.92 "Combining modal responses and Spatial components in seismic response analysis"

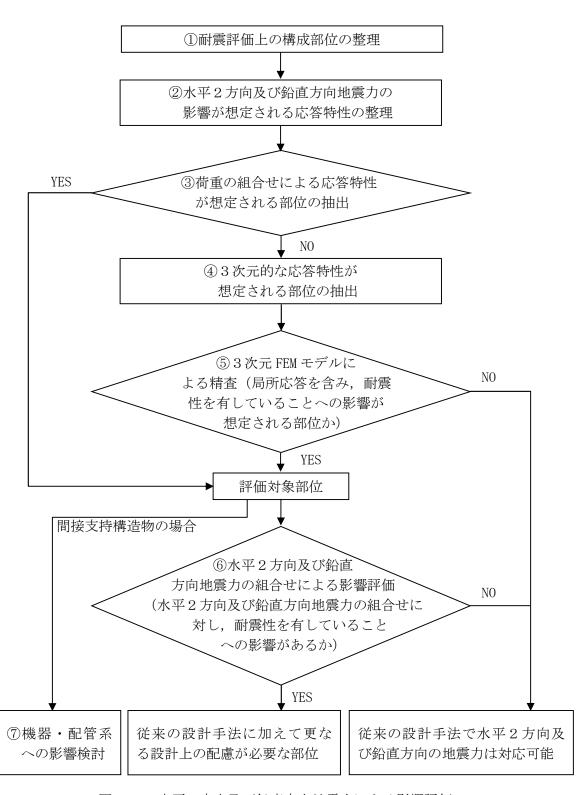


図 4-2 水平 2 方向及び鉛直方向地震力による影響評価のフロー

4.2 機器·配管系

4.2.1 水平方向及び鉛直方向地震力の組合せによる従来設計の考え方

機器・配管系における従来の水平方向及び鉛直方向地震力の組合せによる設計手法では、建物・構築物の振動特性を考慮し、変形するモードが支配的となり応答が大きくなる方向 (応答軸方向)に基準地震動Ssを入力して得られる各方向の地震力(床応答)を用いている。

応答軸(強軸・弱軸)が明確となっている設備の耐震評価においては、水平各方向の地 震力を包絡し、変形モードが支配的となる応答軸方向に入力するなど、従来評価において 保守的な取り扱いを基本としている。

一方,応答軸が明確となっていない設備で3次元的な広がりを持つ設備の耐震評価においては、基本的に3次元のモデル化を行っており、建物・構築物の応答軸方向の地震力をそれぞれ入力し、この入力により算定される荷重や応力のうち大きい方を用いて評価を実施している。

さらに、応答軸以外の振動モードが生じ難い構造の採用、応答軸以外の振動モードが生 じ難いサポート設計の採用といった構造上の配慮など、水平方向の入力に対して配慮した 設計としている。

4.2.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

機器・配管系において、水平2方向及び鉛直方向地震力の組合せを考慮した場合に、影響を受ける可能性がある設備(部位)の評価を行う。

評価対象は、耐震重要施設、常設耐震重要重大事故防止設備又は常設重大事故緩和設備 が設置される重大事故等対処施設の機器・配管系及びこれらの施設への波及的影響防止の ために耐震評価を実施する設備とする。

対象とする設備を機種ごとに分類し、それぞれの構造上の特徴により荷重の伝達方向、 その荷重を受ける構造部材の配置及び構成等により水平2方向の地震力による影響を受け る可能性がある設備(部位)を抽出する。

構造上の特徴により影響の可能性がある設備(部位)は、水平2方向及び鉛直方向地震力の組合せによる影響の検討を実施する。水平各方向の地震力が1:1で入力された場合の発生値を従来の評価結果の荷重又は算出応力等を水平2方向及び鉛直方向に整理して組み合わせる又は新たな解析等により高度化した手法を用いる等により、水平2方向の地震力による設備(部位)に発生する荷重や応力を算出する。

これらの検討により、水平2方向及び鉛直方向地震力を組み合わせた荷重や応力の結果が従来の発生値と同等である場合は影響のない設備とし、評価対象には抽出せず、従来の発生値を超えて耐震性への影響が懸念される場合は、設備が有する耐震性への影響を確認する。

設備が有する耐震性への影響が確認された場合は,詳細な手法を用いた検討等,新たに 設計上の対応策を講じる。

4.2.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

機器・配管系において、水平 1 方向及び鉛直方向地震力を組み合わせた従来の耐震計算に対して、水平 2 方向及び鉛直方向地震力の組合せの影響の可能性がある設備を構造及び発生値の増分の観点から抽出し、影響を評価する。影響評価は従来設計で用いている質点系モデルによる評価結果を用いて行うことを基本とする。影響評価のフローを図 4 -3 に示す。

なお、水平2方向及び鉛直方向地震力の組合せの影響を検討する際は、地震時に水平2方向及び鉛直方向それぞれの最大応答が同時に発生する可能性は極めて低いとした考え方であるSquare-Root-of-the-Sum-of-the-Squares法(以下「最大応答の非同時性を考慮したSRSS法」という。)又は組合せ係数法(1.0:0.4:0.4)を適用する。この組合せ方法については、現状の耐震評価は基本的に概ね弾性範囲でとどまる体系であることに加え、国内と海外の機器の耐震解析は、基本的に線形モデルで実施している等類似であり、水平2方向及び鉛直方向の位相差は機器の応答にも現れることから、米国Regulatory Guid el. 92の「2. Combining Effects Caused by Three Spatial Components of an Earthquake」を参考としているものである。

① 評価対象となる設備の整理

耐震重要施設,常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設の機器・配管系並びにこれらの施設への波及的影響防止のために耐震評価を実施する設備を評価対象とし,機種ごとに分類し整理する。(図 4-3①)

② 構造上の特徴による抽出

機種ごとに構造上の特徴から水平2方向の地震力が重複する観点,若しくは応答軸方向以外の振動モード(ねじれ振動等)が生じる観点にて検討を行い,水平2方向の地震力による影響の可能性がある設備を抽出する。(図4-3②)

③ 発生値の増分による抽出

水平2方向の地震力による影響の可能性がある設備に対して、水平2方向の地震力が各方向1:1で入力された場合に各部にかかる荷重や応力を求め、従来の水平1方向及び鉛直方向地震力の組合せによる設計に対して、水平2方向及び鉛直方向地震力を考慮した発生値の増分を用いて影響を検討し、耐震性への影響が懸念される設備を抽出する。

また、建物・構築物及び屋外重要土木構造物の検討により、機器・配管系への影響の可能性がある部位が抽出された場合は、機器・配管系への影響を評価し、耐震性への影響が懸念される設備を抽出する。

影響の検討は、機種ごとの分類に対して地震力の寄与度に配慮し耐震裕度が小さい設備 (部位)を対象とする。(図 4-3③)

④ 水平2方向及び鉛直方向地震力の影響評価

③の検討において算出された荷重や応力を用いて、設備が有する耐震性への影響を確認する。(図 4-3④)

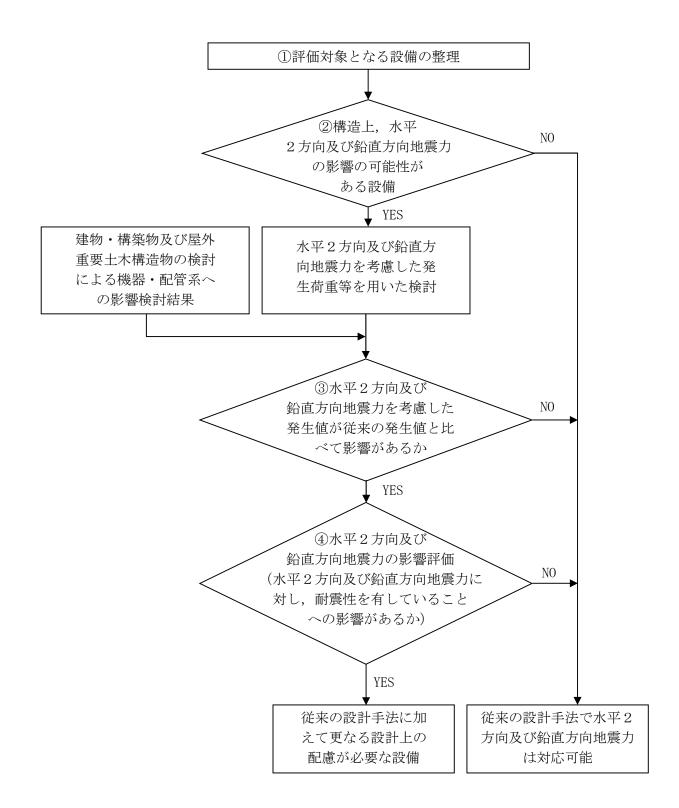


図 4-3 水平 2 方向及び鉛直方向地震力を考慮した影響評価フロー

4.3 屋外重要土木構造物

4.3.1 水平方向及び鉛直方向地震力の組合せによる従来設計手法の考え方 従来の設計の考え方について、取水構造物を例に表 4-1 に示す。

一般的な地上構造物では、躯体の慣性力が主たる荷重であるのに対し、屋外重要土木構造物は、おおむね地中に埋設されているため、動土圧や動水圧等の外力が主たる荷重となる。また、屋外重要土木構造物は、比較的単純な構造部材の配置で構成され、ほぼ同一の断面が奥行き方向に連続する構造的特徴を有することから、3次元的な応答の影響は小さいため、2次元断面での耐震評価を行っている。

屋外重要土木構造物は、主に海水の通水機能や配管等の間接支持機能を維持するため、 通水方向や管軸方向に対して空間を保持できるように構造部材が配置されることから、構 造上の特徴として、明確な弱軸、強軸を有する。

強軸方向の地震時挙動は、弱軸方向に対して顕著な影響を及ぼさないことから、従来設計手法では、弱軸方向を評価対象断面として、耐震設計上求められる水平1方向及び鉛直方向の地震力による耐震評価を実施している。

図 4-4 に示す通り、従来設計手法では、屋外重要土木構造物の構造上の特徴から、弱軸方向の地震荷重に対して保守的に加振方向に平行な壁部材を見込まず、垂直に配置された構造部材のみで受けもつよう設計している。

また、V-2-2「耐震設計上重要な設備を設置する施設の耐震性についての計算書」及び $V-2-3\sim V-2-10$ の申請設備の耐震計算書及びV-2-11「波及的影響を及ぼすおそれのある施設の耐震性についての計算書」における屋外重要土木構造物の耐震評価では、弱軸方向を評価対象断面とし、水平1方向及び鉛直方向の地震力を同時に作用させて評価を行っている。

縦断方向の加振 横断方向の加振 ЦЦЦ 取水方向 加 取水方向 Ĭ 振方向 0 △加振方向 🚨 従来設計 加振方向に平行な側壁及び隔壁を の評価対 加振方向に平行な壁部材が少ない 耐震設計上見込むことができる 象断面の A-A 断面 A-A 断面 考え方 HP+4.20 HP-5.15 HP-6.15 B-B 断面 B-B 断面 HP+4.20 HP+4.20 HP+1.69 HP+1.69

表 4-1 従来設計における評価対象断面の考え方(取水構造物の例)

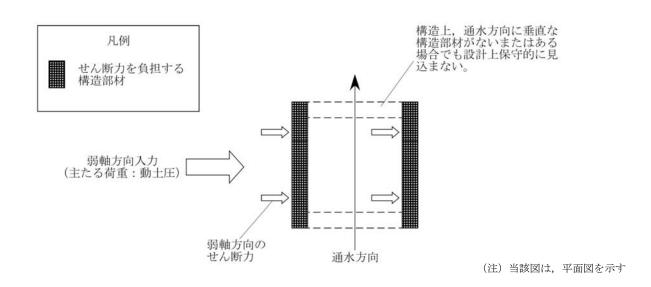


図 4-4 従来設計手法の考え方

4.3.2 水平2方向及び鉛直方向地震力の組合せの影響評価方針

屋外重要土木構造物において,水平2方向及び鉛直方向地震力を考慮した場合に影響を 受ける可能性がある構造物の評価を行う。

評価対象は、屋外重要土木構造物等である、取水構造物及び屋外二重管、常設代替高圧電源装置置場、常設代替高圧電源装置用カルバート、代替淡水貯槽、常設低圧代替注水系ポンプ室、常設低圧代替注水系配管カルバート、SA用海水ピット取水塔、海水引込み管、SA用海水ピット、緊急用海水取水管、緊急用海水ポンプピット、格納容器圧力逃がし装置用配管カルバート、緊急時対策所用発電機燃料油貯蔵タンク基礎及び可搬型設備用軽油タンク基礎並びに波及影響防止のために耐震評価する土木構造物とする。また、津波防護施設である防潮堤、構内排水路逆流防止設備、貯留堰も本評価では屋外重要土木構造物として扱うこととし、評価対象に含める(「4.4 津波防護施設、浸水防止設備及び津波監視設備」参照)。

屋外重要土木構造物を構造形式ごとに分類し、構造形式ごとに作用すると考えられる荷重を整理し、荷重が作用する構造部材の配置等から水平2方向及び鉛直方向地震力による影響を受ける可能性のある構造物を抽出する。

抽出された構造物については、従来設計手法での評価対象断面(弱軸方向)の地震応答解析に基づく構造部材の照査において、評価対象断面(弱軸方向)に直交する断面(強軸方向)の地震応答解析に基づく構造部材の発生応力等を適切に組み合わせることで、水平2方向及び鉛直方向地震力による構造部材の発生応力を算出し、構造物が有する耐震性への影響を確認する。

構造物が有する耐震性への影響が確認された場合は詳細な手法を用いた検討等,新た に設計上の対応策を講じる。

4.3.3 水平2方向及び鉛直方向地震力の組合せの影響評価方法

屋外重要土木構造物において、水平2方向及び鉛直方向地震力の組合せの影響を受ける可能性があり、水平1方向及び鉛直方向の従来評価に加え、更なる設計上の配慮が必要な構造物について、構造形式及び作用荷重の観点から影響評価の対象とする構造物を抽出し、構造物が有する耐震性への影響を評価する。影響評価のフローを図 4-5 に示す。

(1) 影響評価対象構造物の抽出

① 構造形式の分類

評価対象構造物について,各構造物の構造上の特徴や従来設計手法の考え方を踏まえ,構造形式ごとに大別する。

- ② 従来設計手法における評価対象断面に対して直交する荷重の整理 従来設計手法における評価対象断面に対して直交する荷重を抽出する。
- ③ 荷重の組合せによる応答特性が想定される構造物形式の抽出
 - ②で整理した荷重に対して、構造形式ごとにどのように作用するかを整理し、耐震性に与える影響程度を検討した上で、水平2方向及び鉛直方向地震力の影響が想定される構造形式を抽出する。
- ④ 従来設計手法における評価対象断面以外の3次元的な応答特性が想定される箇所の抽

出

③で抽出されなかった構造形式について、従来設計手法における評価対象断面以外の 箇所で、水平2方向及び鉛直方向地震力の影響により3次元的な応答が想定される箇所 を抽出する。

⑤ 従来設計手法の妥当性の確認

④で抽出された箇所が、水平2方向及び鉛直方向地震力の組合せに対して、従来設計 手法における評価対象断面の耐震評価で満足できるか検討を行う。

(2) 影響評価手法

⑥ 水平2方向及び鉛直方向地震力の影響評価

評価対象として抽出された構造物について,従来設計手法での評価対象断面(弱軸方向)の地震応答解析に基づく構造部材の照査において,評価対象断面(弱軸方向)に直交する断面(強軸方向)の地震応答解析に基づく構造部材の発生応力等を適切に組み合せることで,水平2方向及び鉛直方向地震力による構造部材の発生応力を算出すると共に構造部材の設計上の許容値に対する評価を実施し,構造物が有する耐震性への影響を確認する。

評価対象部位については、屋外重要土木構造物が明確な弱軸・強軸を示し、地震時における構造物のせん断変形方向が明確であることを考慮し、従来設計手法における評価対象断面(弱軸方向)における構造部材の耐震評価結果及び水平2方向の影響の程度を踏まえて選定する。

⑦ 機器・配管系への影響検討

③及び⑤にて、水平 2 方向及び鉛直方向地震力の組合せの影響が確認された構造物が、耐震重要施設、常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設の機器・配管系の間接支持構造物である場合、機器・配管系に対して、水平 2 方向及び鉛直方向地震力の組合せによる応答値への影響を確認する。

水平2方向及び鉛直方向地震力の組合せによる応答値への影響が確認された場合, 機器・配管系の影響評価に反映する。

なお、④及び⑤の精査にて、屋外重要土木構造物の影響の観点から抽出されなかった部位であっても、地震応答解析結果から機器・配管系への影響の可能性が想定される部位については検討対象として抽出する。

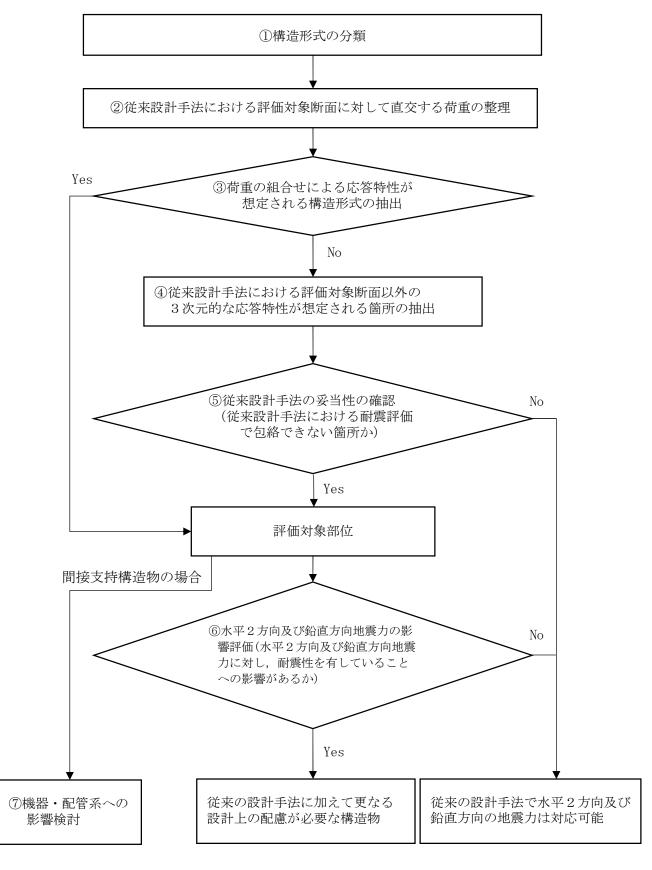


図 4-5 水平 2 方向及び鉛直方向地震力による影響評価のフロー

4.4 津波防護施設,浸水防止設備及び津波監視設備

津波防護施設,浸水防止設備及び津波監視設備は,「機器・配管系」又は「屋外重要土木構造物」に区分し設計をしていることから,水平2方向及び鉛直方向地震力の組合せの影響評価は,施設,設備の区分に応じて「4.2 機器・配管系」又は「4.3 屋外重要土木構造物」の方針に基づいて実施する。