本資料のうち,	枠囲みの内容は
営業秘密又は防	護上の観点から
公開できません。	2

東海第二発電所	工事計画審査資料		
資料番号	補足-340-8 改6		
提出年月日	平成 30 年 4 月 16 日		

工事計画に係る補足説明資料

耐震性に関する説明書のうち

補足-340-8

【屋外重要土木構造物の耐震安全性評価について】

平成 30 年 4 月 日本原子力発電株式会社

改定	改定日 (提出年月日)	改定内容		
改 0	H30. 2. 5	補足-348 改0として提出 ・1.1章, 1.4.1章, 1.4.4~1.4.7章を提出		
改1	H30. 2. 15	補足-348 改1として提出 ・1.5章を新規作成し,改0に追加		
改2	H30. 2. 19	補足-348 改2として提出 ・改1のうち,1.1章,1.4.4~1.4.7章を修正		
改 0	H30. 3. 7	資料番号を修正 補足-340-8 改0 ・「1.4. 屋外重要土木構造物の耐震評価における断面選定 の考え方」のうち,1.4.3 章,1.4.8~1.4.10 章,1.4.12 章を新規作成し,追加		
改1	H30. 3. 26	 ・P.3~5に補足説明資料と添付書類との関連を記載 ・1.4.1章,1.4.4章~1.4.7章を修正 ・4章を新規作成し,追加 		
改2	H30. 4. 6	 ・1.4.2章, 1.4.11章, 1.4.17章を新規作成し, 追加 ・4章を修正 ・12章を新規作成し, 追加 		
改3	H30. 4. 9	 ・1.3章,2章を新規作成し,追加 ・4.4章を修正 		
改4	H30. 4. 9	 ・1.2章,8章,11章を新規作成し、追加 		
改5	H30. 4. 12	 ・10 章を新規作成し、追加 		
改 6	H30. 4. 13	 ・1.4.13章, 1.4.14章, 1.4.15章, 1.4.16章, 1.4.18章を 新規作成し, 追加 ・1.6章, 5章, 6章, 7章, 9章, 14章, 16章, 17章を新規 作成し, 追加 		

改定履歴

目	1/17
н	

Γ

を示す。

]内は,当該箇所を提

出(最新)したときの改訂

1. 共通事項

- 1.1 対象設備[改 6 H30.4.13]
- 1.2 屋外重要土木構造物の要求性能と要求性能に対する耐震評価内容[改4 H30.4.9]
- 1.3 安全係数[改3H30.4.9]
- 1.4 屋外重要土木構造部の耐震評価における断面選定の考え方
- 1.4.1 方針[改 3 H30.4.9]
- 1.4.2 取水構造物の断面選定の考え方[改3 H30.4.9]
- 1.4.3 屋外二重管の断面選定の考え方[改0H30.3.8]
- 1.4.4 常設代替高圧電源装置置場及び西側淡水貯水設備の断面選定の考え方[改1 H30.3.26]
- 1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方[改1 H30.3.26]
- 1.4.6 常設代替高圧電源装置用カルバート(立坑部)の断面選定の考え方[改1 H30.3.26]
- 1.4.7 常設代替高圧電源装置用カルバート(カルバート部)の断面選定の考え方[改1 H30.3.26]
- 1.4.8 代替淡水貯槽の断面選定の考え方[改0 H30.3.8]
- 1.4.9 常設低圧代替注水系ポンプ室の断面選定の考え方[改0 H30.3.8]
- 1.4.10 常設低圧代替注水系配管カルバートの断面選定の考え方[改 0 H30.3.8]
- 1.4.11 格納容器圧力逃がし装置用カルバートの断面選定の考え方[改3 H30.4.9]
- 1.4.12 緊急用海水ポンプピットの断面選定の考え方[改0H30.3.8]
- 1.4.13 緊急用海水取水管の断面選定の考え方[改 6 H30.4.16]
- 1.4.14 SA用海水ピットの断面選定の考え方[改 6 H30.4.16]
- 1.4.15 海水引込み管の断面選定の考え方[改 6 H30.4.16]
- 1.4.16 SA用海水ピット取水塔の断面選定の考え方[改 6 H30.4.16]
- 1.4.17 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面選定の考え方[改3 H30.4.9]
- 1.4.18 可搬型設備用軽油タンク基礎の断面選定の考え方[改 6 H30.4.16]
- 1.5 地盤物性のばらつきの考慮方法[改 6 H30.4.16]
- 1.6 許容応力度法における許容限界について[改 6 H30.4.16]
- 2. 取水構造物の耐震安全性評価[改 3 H30.4.9]
- 3. 屋外二重管の耐震安全性評価
- 4. 常設代替高圧電源装置置場及び西側淡水貯水設備の耐震安全性評価[改 3 H30.4.9]
- 5. 常設代替高圧電源装置用カルバート(トンネル部)の耐震安全性評価[改 6 H30.4.16]
- 6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価[改 6 H30.4.16]
- 7. 常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価[改 6 H30.4.16]
- 8. 代替淡水貯槽の耐震安全性評価[改 4 H30.4.9]
- 9. 常設低圧代替注水系ポンプ室の耐震安全性評価[改 6 H30.4.16]
- 10. 常設低圧代替注水系配管カルバートの耐震安全性評価[改5 H30.4.12]
- 11. 格納容器圧力逃がし装置用カルバートの耐震安全性評価[改4 H30.4.9]
- 12. 緊急用海水ポンプピットの耐震安全性評価[改3 H30.4.9]

- 13. 緊急用海水取水管の耐震安全性評価
- 14. SA用海水ピットの耐震安全性評価[改6H30.4.16]
- 15. 海水引込み管の耐震安全性評価
- 16. SA用海水ピット取水塔の耐震安全性評価[改 6 H30.4.16]
- 17. 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価[改6 H30.4.16]
- 18. 可搬型設備用軽油タンク基礎の耐震安全性評価

本補足説明資料は、耐震性に関する説明書のうち屋外重要土木構造物の耐震安全性評価についての内容を補足するものである。本補足説明資料と添付書類との関連を以下に示す。

		工事計画に係る補足説明資料			
耐震性に関する説明書のうち					
福見-340-8		補足-340-8	該当添付書類		
【屋	外重要	土木構造物の耐震安全性評価について】			
1.	1.1	対象設備			
共	1.2	屋外重要土木構造物の要求性能と要求			
通		性能に対する耐震評価内容			
事	1.3	安全係数	共通事項		
項	1.4	1.4.1 方針	共通事項		
	屋外	1.4.2 取水構造物の断面選定の考え方	Ⅴ-2-2-6 取水構造物の地震応答計算書		
	重要	1.4.3 屋外二重管	V-2-2-8 屋外二重管の地震応答計算書		
	土木	1.4.4 常設代替高圧電源装置置場及び	Ⅴ-2-2-21-1 常設代替高圧電源装置置場及び西側淡水貯水		
	構造	西側淡水貯水設備	設備の地震応答計算書		
	部 の	1.4.5 常設代替高圧電源装置用カルバ	V-2-2-21-3 常設代替高圧電源装置用カルバート(トンネ		
	耐震	ート (トンネル部)	ル部)の地震応答計算書		
	評価	1.4.6 常設代替高圧電源装置用カルバ	V-2-2-21-4 常設代替高圧電源装置用カルバート(立坑		
	にお	ート (立坑部)	部)の地震応答計算書		
	ける	1.4.7 常設代替高圧電源装置用カルバ	V-2-2-21−2 常設代替高圧電源装置用カルバート(カルバ		
	断 面 ート (カルバート部)		ート部)の地震応答計算書		
	選定	1.4.8 代替淡水貯槽	V-2-2-27 代替淡水貯槽の地震応答計算書		
	の考	1.4.9 常設低圧代替注水系ポンプ室	V-2-2-25 常設低圧代替注水系ポンプ室の地震応答計算書		
	え方	1.4.10 常設低圧代替注水系配管カル	V-2-2-29 常設低圧代替注水系配管カルバートの地震応答		
		バート	書算作		
		1.4.11 格納容器圧力逃がし装置用カ	V-2-2-19 格納容器圧力逃がし装置用配管カルバートの地		
		ルバート	震応答計算書		
		1.4.12 緊急用海水ポンプピット	V-2-2-33 緊急用海水ポンプピットの地震応答計算書		
		1.4.13 緊急用海水取水管	V-2-10-4-5 緊急用海水取水管の耐震性についての計算書		
		1.4.14 SA用海水ピット	V-2-2-31 SA用海水ピットの地震応答計算書		
		1.4.15 海水引込み管	V-2-10-4-3 海水引込み管の耐震性についての計算書		
		1.4.16 SA用海水ピット取水塔	V-2-10-4-2 SA用海水ピット取水塔の耐震性についての		
			計算書		
		1.4.17 緊急時対策所用発電機燃料油	V-2-2-11 緊急時対策所用発電機燃料油貯蔵タンク基礎の		
		貯蔵タンク基礎	地震応答計算書		
		1.4.18 可搬型設備用軽油タンク基礎	V-2-2-23 可搬型設備用軽油タンク基礎の地震応答計算書		

補足説明資料と添付書類との関連

	 1.5 地盤物性・材料物性のばらつきの考慮 方法 	共通事項
2.	取水構造物の耐震安全性評価	V-2-2-6 取水構造物の地震応答計算書
		V-2-2-7 取水構造物の耐震性についての計算書
3.	屋外二重管の耐震安全性評価	▼-2-2-8 屋外二重管の地震応答計算書
		V-2-2-9 屋外二重管の耐震性についての計算書
4.	常設代替高圧電源装置置場及び西側淡水貯水設	Ⅴ-2-2-21-1 常設代替高圧電源装置置場及び西側淡水貯水
	備の耐震安全性評価	設備の地震応答計算書
		Ⅴ-2-2-22-1 常設代替高圧電源装置置場及び西側淡水貯水
		設備の耐震性についての計算書
5.	常設代替高圧電源装置用カルバート(トンネル	V-2-2-21-3 常設代替高圧電源装置用カルバート(トンネ
	部)の耐震安全性評価	ル部)の地震応答計算書
		V-2-2-22-3 常設代替高圧電源装置用カルバート(トンネ
		ル部)の耐震性についての計算書
6.	常設代替高圧電源装置用カルバート(立坑部)	V-2-2-21-4 常設代替高圧電源装置用カルバート(立坑
	の耐震安全性評価	部)の地震応答計算書
		V-2-2-22-4 常設代常設代替高圧電源装置用カルバート
		(立坑部)の耐震性についての計算書
7.	常設代替高圧電源装置用カルバート(カルバー	V-2-2-21-2 常設代替高圧電源装置用カルバート(カルバ
	ト部)の耐震安全性評価	ート部)の地震応答計算書
		V-2-2-22-2 常設代替高圧電源装置用カルバート(カルバ
		ート部)の耐震性についての計算書
8.	代替淡水貯槽の耐震安全性評価	Ⅴ-2-2-27 代替淡水貯槽の地震応答計算書
		V-2-2-28 代替淡水貯槽の耐震性についての計算書
9.	常設低圧代替注水系ポンプ室の耐震安全性評価	V-2-2-25 常設低圧代替注水系ポンプ室の地震応答計算書
		V-2-2-26 常設低圧代替注水系ポンプ室の耐震性について
		の計算書
10.	常設低圧代替注水系配管カルバートの耐震安	V-2-2-29 常設低圧代替注水系配管カルバートの地震応答
	全性評価	計算書
		V-2-2-30 常設低圧代替注水系配管カルバートの耐震性に
		ついての計算書
11.	格納容器圧力逃がし装置用カルバートの耐震	V-2-2-19 格納容器圧力逃がし装置用配管カルバートの地
	安全性評価	震応答計算書
		V-2-2-20 格納容器圧力逃がし装置用配管カルバートの耐
		震性についての計算書
12.	緊急用海水ポンプピットの耐震安全性評価	V-2-2-33 緊急用海水ポンプピットの地震応答計算書
		V-2-2-34 緊急用海水ポンプピットの耐震性についての計
		算書

13.	緊急用海水取水管の耐震安全性評価	V-2-10-4-5 緊急用海水取水管の耐震性についての計算書
14.	SA用海水ピットの耐震安全性評価	V-2-2-31 SA用海水ピットの地震応答計算書
		V-2-2-32 SA用海水ピットの耐震性についての計算書
15.	海水引込み管の耐震安全性評価	V-2-10-4-3 海水引込み管の耐震性についての計算書
16.	SA用海水ピット取水塔の耐震安全性評価	V-2-10-4-2 SA用海水ピット取水塔の耐震性についての
		計算書
17.	緊急時対策所用発電機燃料油貯蔵タンク基礎	V-2-2-11 緊急時対策所用発電機燃料油貯蔵タンク基礎の
	の耐震安全性評価	地震応答計算書
		V-2-2-12 緊急時対策所用発電機燃料油貯蔵タンク基礎の
		耐震性についての計算書
18.	可搬型設備用軽油タンク基礎の耐震安全性評	V-2-2-23 可搬型設備用軽油タンク基礎の地震応答計算書
	価	V-2-2-24 可搬型設備用軽油タンク基礎の耐震性について
		の計算書

1. 共通事項

1.1 対象設備

耐震安全性評価の対象とする屋外重要土木構造物は,Sクラスの機器・配管の間接支持構造 物若しくは非常時における海水の通水機能・貯水機能を求められる取水構造物,屋外二重管, 貯留堰,常設代替高圧電源装置置場及び常設代替高圧電源装置用カルバートである。

また,同様に耐震安全性評価の対象とする「常設耐震重要重大事故防止設備又は常設重大事 故緩和設備」及び「常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重 大事故等対処施設」に該当する土木構造物である代替淡水貯槽,常設低圧代替注水系ポンプ室, 常設低圧代替注水系配管カルバート,格納容器圧力逃がし装置用カルバート,緊急用海水ポン プピット,緊急用海水取水管,SA用海水ピット,海水引込み管,SA用海水ピット取水塔, 緊急時対策所用発電機燃料油貯蔵タンク基礎,可搬型設備用軽油タンク基礎についても記載す る。

なお,防潮堤及び貯留堰については,津波防護施設としての耐震安全性評価を別途実施する。 これらの屋外重要土木構造物等の位置図を図1.1-1に示す。

図1.1-1 屋外重要土木構造物等位置図

1.4.13 緊急用海水取水管の断面選定の考え方

緊急用海水取水管は、海側からSA用海水ピット取水塔、海水引込み管、SA用海水ピット、緊急用海水取水管及び緊急用海水ポンプピットで構成される非常用海水取水設備の 1つであり、常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

緊急用海水取水管は,延長約168 m,内径約1.2 mの鋼製の管路で,十分な支持性能を 有する岩盤内に直接設置し,SA用海水ピット及び緊急用海水ポンプピットと岩盤内で接 続する。なお,SA用海水ピット及び緊急用海水ポンプピットとの接続部付近及び管路の 中間2個所程度に可とう管を設置する。

緊急用海水取水管の平面位置図を図 1.4.13-1 に、断面図を図 1.4.13-2 に示す。

図 1.4.14-1(1) 緊急用海水取水管 平面位置図(全体図)

図1.4.13-2(2) 緊急用海水取水管 断面図(B-B横断面)

(1) 耐震評価候補断面の整理

1.4.1 「方針①耐震評価断面候補の整理」に従い,耐震評価候補断面を整理する。 緊急用海水取水管の縦断面及び耐震候補断面位置図を図1.4.13-3 に示す。

緊急用海水取水管の敷設区間において,第四紀層が岩盤上に 25 m 程度の厚さで概ね水 平に堆積している。

緊急用海水取水管の設置深度はSA用海水ピット側(①-①の断面)が最も浅く緊急用 海水ポンプピット方向に対して深くなる。緊急用海水ポンプピット側の区間において管路 勾配は水平となり、この区間で管路の設置深度は最大になるため、土被りは最も厚くなる。

したがって、管路の評価候補断面の検討としては、管の設置深度が最小で土被りが最も 薄くなる①-①断面と、設置深度が最大で土被りが最も厚くなる②-②断面を抽出し、 1次元地震応答解析を実施する。また、SA用海水ピット、緊急用海水ポンプピットとの 接続部及び平面曲線の変化点には可とう管を設置する。

耐震評価候補断面の特徴を表 1.4.13-1 に示す。

図 1.4.13-3 緊急用海水取水管の縦断面及び耐震候補断面位置図

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備
1-1	非常時の 通水機能	 ・鋼製の管路である。 ・岩盤内に設置する。 ・SA用海水ピット位置で土被りが最も小さい。 ・可とう管の設置部付近である。 	 ・第四紀層が岩盤上に 25m程度の厚さで概ね 水平に堆積する。 	なし
2-2	非常時の 通水機能	 ・鋼製の管路である。 ・岩盤内に設置する。 ・緊急用海水ポンプピット付近 で土被りが最も大きい。 ・可とう管の設置部からの離隔 が大きい。 	 ・第四紀層が岩盤上に 25m程度の厚さで概ね 水平に堆積する。 	なし

表 1.4.13-1 緊急用海水取水管の耐震評価候補断面の特徴

(2) 評価対象断面の選定

耐震評価候補断面として選定した①-①断面と②-②断面の1次元地震応答解析のモデル図を図1.4.13-4に,確認結果を表1.4.13-2に示す。

緊急用海水取水管は岩盤内に直接設置されることから,管底に対する管頂の相対変位は 微小であるが,①-①断面(SA用海水ピット位置)での値に比べ,②-②断面(緊急用 海水ポンプピット付近)の方がやや大きい。また,せん断ひずみについても同様に②-② 断面(緊急用海水ポンプピット付近)の方がやや大きい。したがって,相対変位及びせん 断ひずみは土被りに応じて大きくなる。

一方,最大加速度については,①-①断面(SA用海水ピット位置)が②-②断面(緊 急用海水ポンプピット付近)をわずかに上回るものの,岩盤内に設置された管路は,地震 時に概ね周囲の岩盤に拘束された微小変形の挙動を呈することから,加速度に伴う慣性力 のわずかな差による影響は有意ではない。

また、SA用海水ピット及び緊急用海水ポンプピットと緊急用海水取水管との接合部, ならびに平面曲線の変化点には、管への応力集中を回避する目的で可とう管を設置するた め、可とう管の近傍では応力が解放される。一方、②一②断面(緊急用海水ポンプピット 付近)は、可とう管設置部の中間付近であり可とう管からの離隔が大きいため発生応力が 大きくなると考えられる。

以上のことから、土被りが最も厚く、可とう管から離れていて大きな応力が発生すると 考えられる位置にあり、水平相対変位及せん断ひずみが大きい②-②断面(緊急用海水ポ ンプピット付近)が耐震評価上厳しくなると想定されるため、これを代表位置として選定 し、基準地震動Ssによる耐震評価を実施する。

なお,縦断面方向については,管路全長をモデル化した応答変位法により静的フレーム 解析を実施して縦断面方向の曲げ応力と軸応力を求め,横断面方向応力と縦断面方向応力 の曲げ応力との合成応力を算定して評価を行う。

① - ①断面耐震評価候補地層モデル図

1.4.13-4 1次元地震応答解析のモデル図

表1.4.13-2(1) 1次元地震応答解析による管頂底間の最大水平相対変位(mm)

のた 可とう管			地震動			
一件 们 合 平	土被り	からの	$S_s - D1$	$S_{s} = 21$	$S_{s} = 21$	S _s -31
业直		離隔		管軸方向	管軸直交方向	
1-1	28.1 m	0 m	0.81	0.60	0.43	0.78
2-2	29.7 m	約 22 m	1.04	0.70	0.47	1.16

注記:着色枠は最大値

表 1.4.13-2(2) 1 次元地震応答解析による管設置深度の最大せん断ひずみ(%)

(471年) 可とう管			地震動			
) 所 (一 一 一 一 一 一 一 一 一 一 一 一	土被り	からの	$S_s - D1$	S _s -21	S _s -21	S _s -31
业里		離隔		管軸方向	管軸直交方向	
1-1	28.1 m	0 m	0.063	0.046	0.033	0.063
2-2	29.7 m	約 22 m	0.081	0.056	0.037	0.092

注記 :着色枠は最大値

表 1.4.13-2(3) 1 次元地震応答解析による管頂部の最大水平加速度(m/s²)

(477+に) 可とう管		地震動				
) 所作() (古里	土被り	からの	$S_s - D1$	S _s -21	S _s -21	S _s -31
业直		最小離隔		管軸方向	管軸直交方向	
1-1	28.1 m	0 m	3.30	3.79	3.04	4.39
2-2	29.7 m	約 22 m	3.66	3.27	3.40	3.36

注記 :着色枠は最大値

(3) 断面選定結果

評価対象断面の選定結果を表 1.4.13-3 に,図 1.4.13-5 に評価対象断面を示す。

緊急用海水取水管の耐震評価対象断面の選定結果 表 1.4.13-3

選定結果	 ・管底に対する管頂の相対変位、せん 断ひずみが②一②断面よりも小さい< く土被りが最も小さい。 ・可とう管設置部からの離隔がないた め、応力が解放される。 以上のことにより評価対象断面としない。 	 ・管底に対する管頂の相対変位、せん 断ひずみが①-①断面よりも大きく 上被りが最も大きい。 ・可とう管設置部からの離隔が大きい ため、発生応力が大きくなると想定 される。 以上のことにより、評価対象断面 とする。
耐震評価 対象断面		0
間接支持 する設備	しな	ない
周辺地質	・第四紀層が岩盤上に25 m程度の厚さで概ね水平に堆積する。	・第四紀層が岩盤上に 25 m程度の厚さで概ね水平に堆積する。
構造的特徴	・鋼製の管路である。 ・岩盤内に設置する。 ・SA用海水ピット位置で 土被りが最も小さい。 ・可とう管設置部付近であ る。	・鋼製管路である。 ・岩盤内に設置する。 ・緊急用海水ポンプピット 付近で土被りが最も大き い。 ・ 可とう管設置部からの離 隔が大きい。
要求性能	非 道水機能	非 通 大 機 能
断面		© ©
	1	-10

-: 耐震評価を省略 ○:耐震評価を実施

1.4.14 SA用海水ピットの断面選定の考え方

SA用海水ピットは,海側からSA用海水ピット取水塔,海水引込み管,SA用海水ピット,緊急用海水取水管及び緊急用海水ポンプピットで構成される非常用海水取水設備の 1つであり,常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

SA用海水ピットは,外径約14 m,内径約10 m,高さ約34 mの鉄筋コンクリートの円 筒状の地中構造物で,十分な支持性能を有する岩盤に直接設置する。

図1.4.14-1, 図1.4.14-2にSA用海水ピットの平面位置図及び断面図を示す。また, 図1.4.14-3, 図1.4.14-4に構造平面図及び構造断面図を示す。

図 1.4.14-1(1) SA用海水ピット 平面位置図(全体図)

図 1.4.14-1 (2) SA用海水ピット 平面位置図(拡大図)

⊠ 1.4.14−3	SA用海水ピット	構造平面図	
⊠ 1.4.14−3	SA用海水ピット	構造平面図	
⊠ 1.4.14−3	SA用海水ピット	構造平面図	
⊠ 1.4.14−3	SA用海水ピット	構造平面図	
⊠ 1.4.14−3	SA用海水ピット	構造平面図	
⊠ 1.4.14−3	SA用海水ピット	構造平面図	

図 1.4.14-4 SA用海水ピット 構造断面図

(1) 耐震評価候補断面の整理

1.4.1 「方針①耐震評価断面候補の整理」に従い、耐震評価候補断面を整理する。

SA用海水ピットは、内径約10m、内空高さ約28mの円筒形の鉄筋コンクリートの地中 構造物であり、明確な弱軸断面方向はない。

また, SA用海水ピットは, 岩盤内で海水引込み管及び緊急用海水取水管が接続する構 造で, 双方の管路はSA用海水ピットへ直交して接続される。

SA用海水ピット周辺においては,第四紀層が岩盤上に20m程度の厚さで概ね水平に堆積している。

耐震評価候補断面の特徴を表1.4.14-1に示す。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備
Ū-Ū	非常時の通水機能 間接支持機能 (浸水防止蓋)	 ・円筒状の鉄筋コンクリートである。 ・海水引込み管が接続する。 ・海水引込み管の縦断面方向である。 	・第四紀層が岩盤上に 20 m程度の厚さで概 ね水平に堆積する。	SA用 海水ピット 浸水防止蓋
2-2	非常時の通水機能 間接支持機能 (浸水防止蓋)	 ・円筒状の鉄筋コンクリートである。 ・緊急用海水取水管が接続する。 ・緊急用海水取水管の縦断面方向である。 	・第四紀層が岩盤上に 20 m程度の厚さで概 ね水平に堆積する。	SA用 海水ピット 浸水防止蓋

表1.4.14-1 SA用海水ピットの耐震評価候補断面の特徴

(2) 評価対象断面の選定

SA用海水ピットは,海水引込み管,緊急用海水取水管が直交して接続される構造物である。

①-①断面は,海水引込み管に対する縦断面方向断面であり,概ね東西方向に近い方向 となる。

②-②断面は,緊急用海水取水管に対する縦断面方向断面であり,概ね南北方向に近い 方向となる。

SA用海水ピットは円筒状の地中構造物であり明確な弱軸断面方向がない。また,地質 状況は直交する2方向で異なる。

以上のことから、SA用海水ピットの耐震評価においては、海水引込み管に対する縦断 面方向断面①-①断面とそれに直交する横断面方向②-②断面の両方向について選定し、 基準地震動Ssによる耐震評価を実施する。

(3) 断面選定結果

評価対象断面の選定結果を表 1.4.14-2 に,評価対象断面を図 1.4.14-3 に示す。

	 ・明確な弱軸断面方 向はない。 ・地質状況は直交す ・地質状況は直交す ・地質状況は直交す ・地質状況は直交す ・地質状況は直交す 	 ・明確な弱軸断面方 向はない。 ・地質状況は直交す ・地質状況は直交す ・地質状況は直交す ・地質状況は直交す ・地質が況は
★ 艶		FF シェ
	S A J 後 米 F ジージー	S A J S A デ シャ 授 「公大授」
周辺地質	・第四紀層が岩盤上に 20 m 程度の厚さで概ね水平に 堆積する。	・第四紀層が岩盤上に 20 m 程度の厚さで概ね水平に 堆積する。
構造的特徴	 ・円筒状の鉄筋コンクリート構造である。 ・海水引込み管が接続する。 ・海水引込み管の縦断面方向である。 	 ・円筒状の鉄筋コンクリート構造である。 ・油水引込み管が接続する。 ・海水引込み管の縦断面方向である。
要求性能	非常時の通水機能 間接支持機能 (浸水防止蓋)	非常時の通水機能 間接支持機能 (浸水防止蓋)
断面	() - ()	© ©

○:震応答解析及び耐震評価を実施

表1.4.14-2 SA用海水ビットの耐震評価対象断面の選定結果

1—8

1.4.15 海水引込み管の断面選定の考え方

海水引込み管は、海側からSA用海水ピット取水塔、海水引込み管、SA用海水ピット、 緊急用海水取水管及び緊急用海水ポンプピットで構成される非常用海水取水設備の1つで あり、常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

海水引込み管は,延長約154 m,内径約1.2 mの鋼製の管路で,岩盤内に直接設置し, SA用海水ピット取水塔及びSA用海水ピットと岩盤内で接続する。なお,SA用海水ピ ット取水塔及びSA用海水ピットとの接続部付近並びに管路の中間2個所程度に可とう管 を設置する。図1.4.15-1及び図1.4.15-2に海水引込み管の平面位置図及び断面図を示 す。

図 1.4.15-1(1) 海水引込み管 平面位置図(全体図)

図 1.4.15-1(2) 海水引込み管 平面位置図(拡大図)

29

1 - 3

30

(1) 耐震評価候補断面の整理

1.4.1「方針①耐震評価断面候補の整理」に従い,耐震評価候補断面を整理する。 海水引込み管の縦断面及び耐震候補断面位置図を図1.4.15-3に示す。

海水引込み管の敷設区間においては,第四紀層が岩盤上に15~30 m 弱程度の厚さで概ね 水平に分布している。

海水引込み管は、堤外側にあるSA用海水ピット取水塔から鋼管杭鉄筋コンクリート防 潮壁の下を通過してから堤内側にあるSA用海水ピットへ敷設する。SA用海水ピットか ら鋼管杭鉄筋コンクリート防潮壁区間については海へ向かって 9.825 %の下り勾配,鋼管 杭鉄筋コンクリート防潮壁からSA用海水ピット取水塔区間については海へ向かって 9.611 %の上り勾配となり、ほぼ中央に最深部が存在する。したがって、管路の評価候補断 面の検討としては、比較的土被りが厚くSA用海水ピット近傍の①-①断面、管路最深部 で土被りが最も大きい②-②断面、及び管路最浅部であり土被りが最も小さくSA用海水 ピット取水塔近傍の③-③断面を抽出し1次元地震応答解析を実施する。

耐震評価候補断面の特徴を表 1.4.15-1 に示す。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備
1)-1)	非常時の 通水機能	 ・鋼製の管路である。 ・岩盤内に設置する。 ・SA用海水ピット近傍で比較的土被りが大きい。 ・可とう管設置部付近である。 	 ・第四紀層が岩盤上に 20m程度の厚さで概ね 水平に堆積する。 	なし
2-2	非常時の 通水機能	 ・鋼製の管路である。 ・岩盤内に設置する。 ・管路最深部で土被りが最も 大きい。 ・可とう管設置部からの離隔 が大きい。 	 ・第四紀層が岩盤上に 20m程度の厚さで概ね 水平に堆積する。 	なし
3-3	非常時の 通水機能	 ・鋼製の管路である。 ・岩盤内に設置する。 ・SA用海水ピット取水塔近傍 で比較的土被りが小さい。 ・管路の最浅部である。 ・可とう管設置部付近であ る。 	 ・第四紀層が岩盤上に 15m程度の厚さで概ね 水平に堆積する。 	なし

表1.4.15-1 海水引込み管の耐震評価候補断面の特徴

図1.4.15-3 海水引込み管の縦断面及び耐震候補断面位置図

(2) 評価対象断面の選定

耐震評価候補断面として選定した①-①断面, ②-②断面及び③-③断面の1次元地震 応答解析のモデル図を図1.4.15-4に,確認結果を表1.4.15-2に示す。

海水引込み管は岩盤に直接設置することから,管底に対する管頂の相対変位は 0.8 mm 程度,管頂部の最大加速度については 4 m/s²前後で場所によらず概ね同程度である。また, 管設置深度の最大せん断ひずみは 0.06 %程度と微小であり,場所によらずほぼ同程度である。

一方, SA用海水ピット及びSA用海水ピット取水塔と海水引込み管との接合部並びに 縦断勾配の変化点には,可とう管を設置することから,可とう管の近傍では応力が解放さ れる。

以上のことから、土被り、設置深度ともに最大であり、可とう管からの離隔が大きいの で発生応力が大きくなると考えられる②-②断面が耐震評価上最も厳しくなると考えられ ることから、代表位置として選定し、基準地震動S_sによる耐震評価を実施する。

なお,縦断面方向については,管路全長をモデル化した応答変位法により静的フレーム 解析を実施して縦断面方向の曲げ応力と軸応力を求め,横断面方向応力と縦断面方向応力 の曲げ応力との合成応力を算定して評価を行う。

図 1.4.15-4 1 次元地震応答解析のモデル図

表1.4.15-2(1) 1次元地震応答解析による管底に対する管頂の最大相対変位(mm)

		可しる姓		地寫	 { ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑥ ⑧ ⑥ ⑤ ⑥	
解析 位置	土被り	可とう で からの 最小離隔	$S_s - D1$	S₅−21 管軸方向	S₅−21 管軸直交 方向	S _s -31
1)-1)	28.1 m	0 m	0.81	0.60	0.43	0.78
2-2	33.4 m	約 21 m	0.80	0.68	0.50	0.76
3-3	15.6 m	0 m	0.70	0.64	0.39	0.68

注記 :着色枠は最大値

表1.4.15-2(2) 1次元地震応答解析による管設置深度の最大せん断ひずみ(%)

		可しる体		地象	 { ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑤ ⑥ ⑤ ⑥ ⑧ ⑥ ⑤ ⑥	
解析 位置	土被り	可とり官 からの 最小離隔	$S_s - D1$	S₅−21 管軸方向	S₅−21 管軸直交 方向	S _s -31
1-1	28.1 m	O m	0.063	0.046	0.033	0.063
2-2	33.4 m	約 21 m	0.063	0.054	0.040	0.062
3-3	15.6 m	0 m	0.053	0.050	0.032	0.052

注記 :着色枠は最大値

表 1.4.15-2(3) 1 次元地震応答解析による管頂部の最大水平加速度(m/s²)

		司しる姓		地意	雲動	
解析 位置	土被り	可とう で からの 最小離隔	$S_s - D1$	S₅−21 管軸方向	S₅−21 管軸直交 方向	S _s -31
1-1	28.1 m	0 m	3.30	3. 79	3.04	4.39
2-2	33.4 m	約 21 m	3.12	4.05	2.79	4.24
3-3	15.6 m	0 m	4.35	4.12	2. 49	4.80

注記: :着色枠は最大値

(1) 断面選定結果

評価対象断面の選定結果を表 1.4.15-3 に,図 1.4.15-5 に評価対象断面を示す。

表1.4.15-3 海水引込み管の耐震評価対象断面の選定結果

平価 所面 所面	 ・1次元地震応答は3個所とも概ね同等- あり有意な差はない。 ・可とう管設置部からの離隔がないため, 応力が解放される。 以上のことにより,評価対象断面と1 ない。 	 ・土被りが最も厚く管の設置深度が最も³ い。 ・1次元地震応答は3個所とも概ね同等であり有意な差はない。 ・可とう管設置部からの離隔があるため, 発生応力が大きくなると想定される。 以上のことにより,評価対象断面とする。 る。 	 ・1次元地震応答は3個所とも概ね同等- あり有意な差はない。 ・可とう管設置部からの離隔がないため, 応力が解放される。 以上のことにより,評価対象断面と1 ない。
耐濃 対象 略		0	
間接支持 する設備	ない	ない	なし
周辺地質	・第四紀層が岩盤上に 20 m程度の厚さで概 お水平に堆積する。	・第四紀層が岩盤上に 20 m程度の厚さで概 ね水平に堆積する。	・第四紀層が岩盤上に 20 m程度の厚さで概 ね水平に堆積する。
構造的特徴	 ・鋼製の管路である。 ・ 岩盤内に設置する。 ・ S A 用海水 ピット近傍で比較的土被りが大きい。 	・鋼製の管路である。 ・岩盤内に設置する。 ・管路最深部で土被りが最も 大きい。	・鋼製の管路である。 ・岩盤内に設置する。 ・SA用海水ピット取水塔近傍 で比較的土被りが小さい。 ・管路の最浅部である。
要求性能	非 満 時 の 通 水 機能	非常時の通水機能	非 消 速 水 機能
断面	(T) – (T)	3-3	- ©

〇: 耐震評価を実施 一: 耐震評価を省略

1-11

1.4.16 SA用海水ピット取水塔の断面選定の考え方

SA用海水ピット取水塔は,海側からSA用海水ピット取水塔,海水引込み管,SA用 海水ピット,緊急用海水取水管及び緊急用海水ポンプピットで構成される非常用海水取水 設備の1つであり常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

SA用海水ピット取水塔は、内径約4m、内空高さ約18mの鉄筋コンクリートの円筒状の地中構造物で、十分な支持性能を有する岩盤に直接設置する。

図 1.4.16-1 及び図 1.4.16-2 に SA用海水ピット取水塔の平面位置図及び断面図を示 す。また,図 1.4.16-3,図 1.4.16-4 に構造平面図及び構造断面図を示す。

図 1.4.16-1(1) SA用海水ピット取水塔 平面位置図(全体図)

図 1.4.16-1 (2) SA用海水ピット取水塔 平面位置図(拡大図)

図 1.4.16-4 SA用海水ピット取水塔 構造断面図

(1) 耐震評価候補断面の整理

1.4.1 「方針①耐震評価断面候補の整理」に従い、耐震評価候補断面を整理する。

SA用海水ピット取水塔は,非常用海水取水設備が設置されるエリアの最東端で東海港内に設置される内径約4 m,内空高さ約18 mの円筒形の鉄筋コンクリートの地中構造物で,明確な弱軸方向はない。

また、SA用海水ピット取水塔は、岩盤内で海水引込み管が接続する。

SA用海水ピット取水塔周辺においては,第四紀層が岩盤上に15m程度の厚さで概ね水平 に堆積している。

耐震評価候補断面の特徴を表1.4.16-1に示す。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備
1-1	非常時の通水機能	 ・円筒状の鉄筋コンクリートである。 ・海水引込み管が接続する。 ・海水引込み管の縦断面方向である。 	・第四紀層が岩盤上に 15 m程度の厚さで概 ね水平に堆積する。	なし
2-2	非常時の通水機能	 ・円筒状の鉄筋コンクリートである。 ・海水引込み管に直交する横断面方向である。 	 ・第四紀層が岩盤上に 15 m程度の厚さで概 ね水平に堆積する。 	なし

表1.4.16-1 SA用海水ピット取水塔の耐震評価候補断面の特徴

(2) 評価対象断面の選定

SA用海水ピット取水塔は、海水引込み管が接続される構造物である。

①-①断面は,海水引込み管に対する縦断面方向であり,概ね東西方向に近い方向となる。

②-②断面は,海水引込み管に直交する横断面方向であり,概ね南北方向に近い方向と なる。

SA用海水ピット取水塔は円筒状の地中構造物であり明確な弱軸方向はない。また,地 質状況は直交する2方向で異なる。

以上のことから、SA用海水ピット取水塔の耐震評価においては、接続する海水引込み 管の縦断面方向①-①断面とそれに直交する横断面方向②-②断面の両方向について選定 し、基準地震動Ssによる耐震評価を実施する。 (3) 断面選定結果

評価対象断面の選定結果を表 1.4.16-2 に,評価対象断面を図 1.4.16-5 に示す。

漸	要求性能	構造的特徴	周辺地質	間接支持 する設備	評価断面	選定結果
	非常時の通水機能	 ・円筒状の鉄筋コンクリートである。 ・海水引込み管が接続する。 ・海水引込み管の縦断面方向である。 	・岩盤上に 15 m 程度の 厚さの第四紀層が概ね 水平に堆積する。	یک ل م	0	 ・明確な弱軸断面方向はない。 ない。 ・地質状況は直交する2 ・地質状況は直交する2 ・地質状況は直交する2 ・地質状況は直交する2
© ©	非常の通水機能	 ・円筒状の鉄筋コンクリートである。 ・海水引込み管に直交する横断面方向である。 	・岩盤上に 15 m 程度の 厚さの第四紀層が概ね 水平に堆積する。	ل <i>م</i> رد م	0	 ・明確な弱軸断面方向はない。 ない。 ・ 地質状況は直交する2 ・ 地質状況は直交する2 ・ 地質状況は直交する2 ・ 地質状況は直交する3
						○: 耐震評価を実施

表1.4.16-5 SA用海水ピット取水塔の耐震評価対象断面の選定結果

1.4.18 可搬型設備用軽油タンク基礎の断面選定の考え方

図 1.4.18-1 に可搬型設備用軽油タンク基礎の平面配置図を示す。

可搬型設備用軽油タンク基礎は,西側と南側に分散配置される可搬型設備保管場所に対応して,同様の構造形式*となる可搬型設備用軽油タンク基礎を2箇所に設置する。内空幅約11m(タンク軸方向)×約13m(タンク横断方向),内空高さ約4mの鉄筋コンクリート造の地中構造物であり,2連のボックスで構成されており,杭を介して十分な支持性能を有する岩盤に設置する。可搬型設備用軽油タンク基礎の平面図を図1.4.18-2に,断面図を図1.4.18-3に示す。

注記 *: 杭長のみ異なる。

図 1.4.18-1 可搬型設備用軽油タンク基礎の平面配置図

図 1.4.18-2 可搬型設備用軽油タンク基礎 平面図

図 1.4.18-3 可搬型設備用軽油タンク基礎 断面図 (A-A 断面)

(1) 耐震評価候補断面の整理

「1.4.1 方針 ①断面評価候補断面の整理」に従い,耐震評価候補断面を整理する。可搬型 設備用軽油タンク基礎は縦断方向(タンク軸方向)にほぼ一様な断面の比較的単純なボックスカ ルバート状の断面であり,縦断方向は加振方向と平行に配置される側壁又は隔壁を耐震設計上 見込むことができるため,強軸方向断面となる。一方,横断方向(タンクの軸方向に対し直交す る方向)は、タンクを格納するため,加振方向と平行に配置される構造部材が無いことから,弱 軸方向断面となる。

耐震評価候補断面位置を図 1.4.18-4 に, 断面図を図 1.4.18-5 に示す。各耐震評価候補断面 図の特徴を表 1.4.18-1 に示す。

図 1.4.18-4 耐震評価候補断面位置図

図 1.4.18-5

方向	要求 性能	断面	構造的特徴	周辺地質	間接支持する構造物
* **	間接支持	①-①	 ・弱軸断面方向 ・地中に埋設 ・一様な断面を有するボックスカルバート形状 	 ・杭を介して十分な支持 性能を有する岩盤に設置 ・第四紀層が厚く(約40m)堆積 	可搬型設備用軽油タンク
東四	間 支持	2-2	 ・弱軸断面方向 ・地中に埋設 ・一様な断面を有するボックスカルバート形状 	 ・杭を介して十分な支持 性能を有する岩盤に設置 ・第四紀層が浅く(約20 m)堆積 	可搬型設備用軽油タンク
专业	間 支持	3-3	 ・強軸断面方向 ・地中に埋設 ・一様な断面を有するボックスカルバート形状 	 ・杭を介して十分な支持 性能を有する岩盤に設置 ・第四紀層が厚く(約 40 m) 堆積 	可搬型設備用軽油タンク
	間接 支持	4 - 4	 ・強軸断面方向 ・地中に埋設 ・一様な断面を有するボックスカルバート形状 	 ・杭を介して十分な支持 性能を有する岩盤に設置 ・第四紀層が浅く(約 20 m) 堆積 	可搬型設備用軽油タンク

表1.4.18-1 可搬型設備用軽油タンク基礎 耐震評価候補断面の特徴

①-①断面は、構造物は地中に埋設しており、一様な断面を有するボックスカルバート形状である。杭を介して十分な支持性能を有する岩盤に設置され、第四紀層が厚く(約40 m)堆積している。

②-②断面は、構造物は地中に埋設しており、一様な断面を有するボックスカルバート形状である。杭を介して十分な支持性能を有する岩盤に設置され、第四紀層が浅く(約20m) 堆積している。

③一③断面は,構造物は地中に埋設しており,一様な断面を有するボックスカルバート形状である。杭を介して十分な支持性能を有する岩盤に設置され,第四紀層が厚く(約40 m)堆積している。

④-④断面は,構造物は地中に埋設しており,一様な断面を有するボックスカルバート形状である。杭を介して十分な支持性能を有する岩盤に設置され,第四紀層が浅く(約20 m)堆積している。

可搬型設備用軽油タンク基礎(西側)と可搬型設備用軽油タンク基礎(南側)にて1次元地 震応答解析を行い応答の比較を行う。

1.4.18-6

(2) 評価対象断面の選定

可搬型設備用軽油タンク基礎(西側)及び可搬型設備用軽油タンク基礎(南側)におい て実施した1次元地震応答解析結果の地表面最大変位発生時刻の変位分布を図1.4.18-6 に,最大せん断ひずみ発生時刻のひずみ分布を図1.4.18-7に,最大せん断ひずみ発生時 刻の変位分布を図1.4.18-8に示す。なお,可搬型設備用軽油タンク基礎(南側)にせん 断剛性が低い lm 層が分布することで変位が大きくなるため,可搬型設備用軽油タンク基礎 (南側)の lm 層以浅については地盤改良(セメント改良)を実施する。

図 1.4.18-6 から図 1.4.18-8 の結果より,可搬型設備用軽油タンク基礎(西側)の方 が相対変位およびせん断ひずみが大きい。よって,可搬型設備用軽油タンク基礎(西側) の弱軸断面方向である①-①断面を耐震評価の評価対象断面として採用する。

可搬型設備用軽油タンク基礎(西側)

可搬型設備用軽油タンク基礎(南側)

可搬型設備用軽油タンク基礎(西側)

可搬型設備用軽油タンク基礎(南側)

可搬型設備用軽油タンク基礎(南側)

図1.4.18-8 最大せん断ひずみ発生時刻の変位分布

また,機器・配管系への加速度応答の観点から,可搬型設備用軽油タンク基礎(西側)の強 軸断面方向の③-③断面及び可搬型設備用軽油タンク基礎(南側)の強軸断面方向の④-④断 面において,1次元地震応答解析を実施し評価対象断面を選定する。

可搬型設備用軽油タンク基礎(西側)及び可搬型設備用軽油タンク基礎(南側)の1次元地 震応答解析における地表面最大加速度を表1.4.18-2に示す。地表面加速度を比較した結果, 可搬型設備用軽油タンク基礎(南側)の方が地表面加速度の最大値が大きくなるため,④-④ 断面を機器・配管系への加速度応答の観点の評価断面とする。

評価対象	地表面加速度の最大値 (cm/s ²)
可搬型設備用軽油タンク基礎(西側)	626.7(水平方向:S _s -22)
可搬型設備用軽油タンク基礎(南側)	646.5 (水平方向: S _s -21)

表 1.4.18-2 評価対象の地表面加速度

(3) 断面選定結果

(2) より、構造物の耐震設計における評価対象断面は可搬型設備用軽油タンク基礎(西側) の弱軸断面方向である①-①断面とし、この断面について地震応答解析及び耐震評価を実施 する。評価対象断面の選定結果を表 1.4.18-2 に、評価対象断面を図 1.4.18-9 に示す。

ただし、機器・配管系への加速度応答算出の観点から、可搬型設備用軽油タンク基礎(南側) の強軸断面方向である④-④断面にて、機器・配管系への加速度応答抽出断面図を図 1.4.18 -10に示す。

表 1.4.18-3 に耐震設計及び機器・配管系への加速度応答抽出に使用する断面の整理を示す。

方向	断面	要求性能	構造的特徴	周辺地質	間接支持する施設	今回工認 評価断面	選定理由
東西	0 0	間接支持	 ・弱軸断面方向 ・地中に埋設 ・一様な断面を有するボックスカルバ ート形状 	 ・ 抗を介して十分な支持 性能を有する岩盤に設置 置 ・ 第四紀層が厚く(約40 ・ 単積 	可搬型設備用 軽油タンク	0	1 次元地震応答解折により得られる相対変位及びせん断ひずみが比較的大きいため,評価対象断面とする。
	©-©	間接支持	 ・弱軸断面方向 ・地中に埋設 ・一様な断面を有す るボックスカルバ ート形状 	 ・杭を介して十分な支持 性能を有する岩盤に設置 ・第四紀層が浅く(約 20 ・第四紀層 	可搬型設備用 軽油タンク	I	1 次元応答解析により得られる相対変位及び せん断ひずみが比較的小さいため,評価対象断 面としない。
ב ד זן	@ - @	間接支持	 ・強軸断面方向 ・地中に埋設 ・一様な断面を有す るボックスカルバ ート形状 	 ・ 抗を介して十分な支持 性能を有する岩盤に設 置 ・ 第四紀層が厚く(約 40 ・ 準積 	可搬型設備用 軽油タンク	I	強軸断面方向であるため,評価対象としない。
<u>-</u>	() - ()	間接支持	 ・ 強軸断面方向 ・ 地中に埋設 ・ 一様な断面を有す るボックスカルバ ート形状 	 ・ 杭を介して十分な支持 性能を有する岩盤に設置 置 ・ 第四紀層が浅く(約 20	可搬型設備用 軽油タンク	I	強軸断面方向であるため,評価対象断面としな いが,機器・配管系への加速度応答の観点より, 地震応答解析の実施対象断面とする。

表 1.4.18-2 評価候補断面の選定結果

1.4.11-11

図 1.4.18-9 可搬型設備用軽油タンク基礎の評価対象断面図 (可搬型設備用軽油タンク基礎(西側) ①-①断面)

図 1.4.18-10 機器・配管系への加速度応答抽出断面図 (可搬型設備用軽油タンク基礎(南側) ④-④断面)

	可搬型設備用軽油タンク基礎の	機器・配管系への
账五久供	耐震設計	加速度応答抽出
例囬宋忤	(Ⅴ-2-2-24 緊急時対策所用発電機燃料油貯	(Ⅴ-2-2-23 緊急時対策所用発電機燃料油貯
	蔵タンク基礎の耐震性についての計算書)	蔵タンク基礎の地震応答計算書)
①-①断面	0	0
④-④断面	_	0

表1.4.18-3 耐震設計及び機器・配管系への加速度応答抽出に使用する断面の整理

1.5 地盤物性のばらつきの考慮方法について

東海第二発電所の屋外重要土木構造物(津波防護施設を含む)の耐震評価において,地震時 における地盤の有効応力の変化に応じた影響を考慮する場合は,有効応力解析を実施する。

本章では,屋外重要土木構造物の耐震評価における地盤物性のばらつきの考慮方法について 記載する。

1.5.1 耐震評価における検討ケース

屋外重要土木構造物の耐震評価における検討ケースを以下に示す。

(1) 原地盤に基づく液状化強度特性を用いた解析ケース(①, ②, ③)

有効応力解析に用いる液状化強度特性は、敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定することを基本とする。原地盤に基づく液状化強度特性は、試験データのばらつきを考慮し、液状化強度試験データの最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いた「平均-1σ」について整理する。

原地盤に基づく液状化強度特性の詳細は、V-2-1-3「地盤の支持性能に係る基本方針」 に示す。

また、地盤に基づく液状化強度特性を用いた解析ケースに加えて、第四紀層に対し、せん断波速度 Vs のばらつき(平均+1 σ 、平均-1 σ)を考慮したケースについても実施する。Vs のばらつきの設定方法の詳細は、「耐震性に関する説明書に係る補足説明資料 地盤の支持性能について」に示す。

(2) 地盤を強制的に液状化させることを仮定した解析ケース(④)

地中の屋外重要土木構造物への地盤変位に対する保守的な配慮として,地盤を強制的に 液状化させることを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強 度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性)を設定する。

豊浦標準砂に基づく液状化強度特性の詳細は、V-2-1-3「地盤の支持性能に係る基本方 針」に示す。

(3) 原地盤において非液状化の条件を仮定した解析ケース(⑤,⑥)

解析条件として液状化強度が小さく設定された場合は,地盤の変位が大きく算定される ことになるため,特に屋外重要土木構造物の下部構造に対して保守的な解析条件となるが, 地表面応答加速度はやや小さめに評価される場合がある。一方,液状化強度が大きく設定 された場合は,地盤の変位が小さく算定されることになるが,地表面応答加速度が大きく 評価されることになるため,特に屋外重要土木構造物の上部構造及び上載される機器・配 管系に対して保守的な解析条件となる。

よって、上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として、 地盤の非液状化の影響を考慮する場合は、原地盤において非液状化の条件を仮定した解析 を実施する。非液状化の条件の仮定は,有効応力解析にて液状化パラメータを非適用とすることにより設定する。これは,地盤の液状化強度が最も大きい場合に相当する。

また,原地盤において非液状化の条件を仮定した解析ケースに加えて,第四紀層に対し, せん断波速度 Vs のばらつき(平均+1 σ)を考慮したケースについても実施する。Vs の ばらつきの設定方法の詳細は,「耐震性に関する説明書に係る補足説明資料 地盤の支持 性能について」に示す。

以上の各検討ケースにおける液状化強度の関係を図 1.5-1 に,各検討ケースにおけるせん 断波強度 Vs の関係を図 1.5-2 に示す。

図 1.5-1 各検討ケースにおける液状化強度の関係

図 1.5-2 各検討ケースにおけるせん断波強度 Vs の関係

1.5.2 耐震評価における検討ケースの組合せについて

屋外重要土木構造物の耐震評価における検討ケースの組合せを図1.5-3に示す。 耐震評価においては、基準地震動S。全波(8波)及びこれらに位相反転を考慮した地震 動(4波)を加えた全12波を用いて解析ケース①を実施する。

上記の解析ケース①において、構造物の安全率が最も厳しい地震動を用いて、解析ケース ②、③、④、⑤、⑥を実施し、解析ケース①も含めた全ての解析ケースに基づく耐震評価を 実施する。最も厳しい地震動の選定にあたっては、各施設の評価部位(上部構造、下部構造) 毎に1 波選定する。また、異なる建屋・構築物間の相対変位の算定は、上記ケースの中で、 変位量が最も大きいケースにて行う。

図 1.5-3 屋外重要土木構造物の耐震評価における検討ケース

上記より,屋外重要土木構造物の耐震評価にあたっては,地盤物性の観点において,想定される地盤物性のばらつき(せん断波速度 Vs のばらつき)を十分包絡する保守的な検討となっている。

また,同様な理由から,耐震評価における断面選定の観点において,屋外重要土木構造物の 形状,基礎地盤の支持条件が同一であれば,第四紀層の各地層構成の軽微な差異は耐震評価結 果に有意な影響を及ぼさない保守的な検討となっている。 1.5.2 機器・配管系に対する加速度応答算定のための検討ケース

屋外重要土木構造物に上載される機器・配管系に対する加速度応答の算定では、上載され る機器・配管系への加速度応答に対する保守的な配慮として、基準地震動S。全波(8波) 及びこれらに位相反転を考慮した地震動(4波)を加えた全12波を用いて解析ケース①を 実施する。

上記の解析ケース⑤において、上載される機器・配管系の固有振動数帯で加速度応答が最 も大きくなる地震動1波を用いて、解析ケース④、⑥を実施し、解析ケース①も含めた全て の解析ケースに基づく加速度応答を算定する。

機器・配管系に対する加速度応答算定のための検討ケースを図 1.5-4 に示す。

図 1.5-4 機器・配管系に対する加速度応答算定のための検討ケース

上載される機器・配管系の固有振動数帯で加速度応答が最も大きくなる地震動の選定の考え方に

ついて

追而

1.5.3 耐震設計における検討ケースのまとめ

屋外重要土木構造物の耐震設計における検討ケースを表 1.5-1 に,屋外重要土木構造物に 上載される機器・配管系に対する加速度応答抽出のための検討ケースを表 1.5-2 に示す。

	検討ケース	ζ.	① 原地盤に基づ く液状化強度 特性を用いた 解析ケース (基本ケース)	② 地盤物性のば らつきを考慮 (+1 σ)し た解析ケース	③ 地盤物性のば らつきを考慮 (-1 σ)し た解析ケース	④ 地盤を強制 的に せ る に と を 仮 析 ケース	⑤ ^⑤ ¹⁰ ¹	 ⑥ 地盤物性のば らつきを考慮 (+1σ)し て非液状化の 条件を仮定し た解析ケース 		
	液状化強度 * の設定	寺性	 原地盤に基 づく液状化 強度特性 (標準偏差 を考慮) 	 原地盤に基 づく液状化 強度特性 (標準偏差 を考慮) 	原地盤に加盤にななた表属(標に基基((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((敷地に存在しない豊しない豊でででが状化強(強(強(強(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(地(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u(u<li< td=""><td>液状化パラ メータを非 適用</td><td>液状化パラメ ータを非適用</td></li<>	液状化パラ メータを非 適用	液状化パラメ ータを非適用		
地震波	$S_{s} - D 1$ $S_{s} - 1 1$ $S_{s} - 1 2$	$(++) \\ (+-) \\ (-+) \\ () \\ (++) \\ (++)$	1 1 1 1 1 1 1	1以上	1以上	1以上	1以上	1以上		
谈(位相)	$\frac{S_{s} - 1}{S_{s} - 1} \frac{3}{3}$ $\frac{S_{s} - 1}{S_{s} - 2} \frac{1}{1}$ $\frac{S_{s} - 2}{S_{s} - 2} \frac{2}{2}$ $\frac{S_{s} - 3}{1}$	$(++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (-+) \\ (-+) \\ (-+) \\ ($	1 1 1 1 1 1 1 1	①の検討において,最も厳しい(許容限界に対する余裕が 小さい)地震動を用いて実施する。 最も厳しい地震動の選定にあたっては,各施設の評価部位 1波選定する。						
計 12 1以上 1以上 1以上 1以上 1以上 1							1以上			

表 1.5-1 屋外重要土木構造物の耐震設計における検討ケース

異なる建屋・構築物間の相対変位の算定は、上記ケースの中で、変位量が最も大きいケースにて行 う。 表 1.5-2 屋外重要土木構造物に上載される機器・配管系に対する加速度応答抽出のための

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤ 原地盤において非液 状化の条件を仮定し た解析ケース	 ⑥ 地盤物性のばらつき を考慮(+1σ)し て非液状化の条件を 仮定した解析ケース
	液状化強度物 の設定	寺性	敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
		(++)		1	
	C D1	(+-)	•	1	•
	$S_s - DI$	(-+)	1	1	1
		()		1	
地	S _s -11	(++)	⑤において, 上載され	1	⑤において, 上載され
震	$S_s = 12$	(++)	る機器・配管系の固有	1	る機器・配管系の固有
(公)	$S_{s} - 13$	(++)	振動数帯で加速度応	1	振動数帯で加速度応
加相	$S_{s} - 14$	(++)	答が最も大きくなる地	1	答が最も大きくなる地
Ű	$S_{s} - 21$	(++)	震動を用いて実施す	1	震動を用いて実施す
	$S_{s} - 22$	(++)	る。	1	る。
	S - 21	(++)		1	
	$S_s = 31$	(-+)		1	
	計		1	12	1

検討ケース

1.6 許容応力度法における許容限界について

屋外重要土木構造物の許容応力度法による耐震設計にあたり,部材に適用する許容応 力度及び短期許容応力度は,「コンクリート標準示方書[構造性能照査編]((社)土木学 会,2002年制定)」に基づき設定することを基本とする。「コンクリート標準示方書[構 造性能照査編]((社)土木学会,2002年制定)」において対象部材に直接適用できる値 が無い場合は,「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会, 平成14年3月)」に基づき設定する。また,「道路橋示方書(I共通編・IV下部構造編)・ 同解説((社)日本道路協会,平成14年3月)」においても対象部材に直接適用できる値 が無い場合は,その他の規格・基準等を検討し,適切に設定する。

表1.6-1に各部材の許容応力度,短期許容応力度及び適用する規格・基準類を示す。

・基準領	適用する規格, 基準額		コンクリート標準示方書[構造性能照査編]((社)土木	学会, 2002年制定)		鉄筋コンクリート構造計算規準・同解説一許容応力度 設計法一(日本連築学会, 1999年)		コンクリート標準示方書[構造性能照査編]((社)土木	学会, 2002年制定)		道路橋示方書(I共通編・IV下部構造編)・同解説	((社)日本道路協会, 平成24年3月)		コンクリート標準示方書[構造性能照査編]((社)土木	学会,2002年制定)		水門鉄管技術基準(水圧鉄管・鉄鋼構造物編, 溶接・ 粒へ這) _ 仕報営「第5回34計版17(4) 電力 4支柱	1弦口釉)—13 胜战—1为30回攻即败1001011年3月413 術協会)							道路橋示方書(I共通編・IV下部構造編)・同解説	((社)日本道路協会, 平成14年3月)						
適用する規格	短期許容応力度 (N/mm ²)	21	0.825	1.65	18	1.35	16.5	0.75	13.5	0.675	435	300	309	309	294	294	360	202.5	382.5	217.5	315	180	277.5	157.5	277.5	157.5	277.5	157.5	210	120	210	120
ら力度及び近	割増し係数	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5 m=//1.2/1
短期許容応	許容応力度 (N/mm2)	14	0.55	1.1	12	0.9^{*1}	11	0.5	6	0.45	290	200	206	206	196	196	240	135	255	145	210	120	185	105	185	105	185	105	140	80	140	80 1 の売し甘 維み
-1 各部材の許容応力度,	項目	許容曲げ圧縮応力度	許容せん断応力度	許容押抜きせん断応力度	許容支圧応力度	許容せん断応力度(耐震壁)	許容曲げ圧縮応力度	許容せん断応力度	許容曲げ圧縮応力度	許容せん断応力度	許容引張応力度	許容引張応力度(せん断補強筋)	許容引張応力度	許容引張り応力度(せん断補強筋)	許容引張応力度	許容引張り応力度(せん断補強筋)	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度	許容引張応力度	許容せん断応力度
表 1.6-	規格		1	設計基準強度	$f'ck=40 N/mm^2$		設計基準強度	f'ck= 30 N/mm^2	設計基準強度	f'ck=24 N/mm^2	5D100	01430	00643	DECTO	31643	01040	CNE70	O LEIVIC	CAFTO	0 / CIVIC	CM40027	7 NI4 90 Y	00100	OGTINC	001/21/13	DNN490	001/0213	0N149U	001100	0.014.0.0	00755	
	部村(材料)					コンクリート			-				2011-22%	亚大用力	-									金服井才	T-c/v findat							

74

5. 常設代替高圧電源装置用カルバート(トンネル部)の耐震安全性評価

目次

5.	常	設代替高圧電源装置用カルバート(トンネル部)の耐震安全性評価・・・・・・・・・・5-1
	5.1	評価方法・・・・・・・・・・.5-2
	5.2	評価条件・・・・・・・・・・・.5-2
	5.	.2.1 適用基準・・・・・・・・・・・
	5.	.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5-3
	5.	.2.3 評価対象断面の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5-4
	5.	.2.4 評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5-6
	5.	.2.5 使用材料及び材料定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・5-8
	5.	.2.6 地下水位 · · · · · · · · · · · · · · · · · · ·
	5.	.2.7 地震応答解析手法・・・・・ 5-11
	5.	.2.8 解析モデルの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.	.2.9 減衰定数・・・・・・ 5-16
	5.	.2.10 荷重の組合せ・・・・・・ 5-18
	5.	.2.11 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5-20
	5.3	評価内容・・・・・・・・・・・・5-22
	5.	.3.1 入力地震動の設定・・・・・・ 5-22
	5.	.3.2 許容限界の設定・・・・・・ 5-39
	5.4	評価結果・・・・・・
	5.	.4.1 地震応答解析結果・・・・・ 5-44
	5.	.4.2 トンネルの耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 5-49
	5.5	まとめ(追而)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

5.1 評価方法

常設代替高圧電源装置用カルバート(トンネル部)(以下,「トンネル」という。)は,耐 震安全上重要な機器・配管系を間接支持する機能を求められる土木構造物である。トンネルに ついて基準地震動S。による耐震安全性評価として,構造部材の曲げ,せん断評価及び地盤の 支持性能評価を実施する。

構造部材の曲げ, せん断評価については地震応答解析に基づく発生応力又は発生せん断力が 許容限界以下であることを確認する。基礎地盤の支持性能評価については, 地震応答解析に基 づく接地圧が許容限界以下であることを確認する。

- 5.2 評価条件
- 5.2.1 適用基準

トンネルの耐震評価に当たっては,原子力発電所耐震設計技術指針JEAG4601-1987((社)日本電気協会),コンクリート標準示方書[構造性能照査編]((社)土木 学会,2002年制定)を適用するが,鉄筋コンクリートの曲げ及びせん断の許容限界につい ては,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成24 年3月)を適用する。

表 5.2-1 に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構 造性能照査編](2002 年制定) 	_
荷重及び荷重の組み合わせ	・コンクリート標準示方書 [構 造性能照査編] (2002 年制定)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	 ・コンクリート標準示方書[構造性能照査編](2002年制定) ・道路橋示方書(I共通編・IV下部構造編)・同解説(平成24年3月) 	・曲げに対する照査は,発生 応力が,許容限界以下であ ることを確認 ・せん断に対する照査は,発 生応力又は発生せん断力 が,許容限界以下であるこ とを確認
地震応答解析	• JEAG4601-1987	 ・有限要素法を用いた2次元 モデルを用いた時刻歴非線 形解析

表 5.2-1 適用する規格,基準類

5.2.2 耐震安全性評価フロー

図 5.2-1 にトンネルの耐震安全性評価フローを示す。

<耐震性評価>

図 5.2-1 トンネルの耐震安全性評価フロー

5.2.3 評価対象断面の方向

トンネルの位置を図 5.2-2 及び図 5.2-3 に示す。

トンネルは、延長約140mの鉄筋コンクリート造である。表 5.2-2に示すとおり、トン ネルの縦断方向は、トンネル覆工及び隔壁を耐震設計上見込むことができるため、強軸断 面方向となる。一方、横断方向は、耐震設計上見込める構造部材が少ないことから、弱軸 断面方向となる。なお、トンネルは全線にわたり一定区間でブロック割し、施工されてい る。そのため、トンネル縦断方向の応力は区間毎に解放されると考えられる。また、縦断 方向の変位に対しては、岩盤に設置されているためブロック毎の相対変位が小さいと考え られる。

以上のことから、トンネルの耐震評価では、構造の安定性に支配的な弱軸断面方向であ る横断方向を評価対象断面の方向とする。

図 5.2-2 トンネルの位置図(全体平面図)

 横断方向の加振
 縦断方向の加振

 トンネル
 加振方向 縦断方向
 加振方向

 加振方向
 加振方向
 加振方向

 加振方向に平行な壁部材が少ない
 トンネル覆工が加振方向に抵抗する

 →弱軸断面方向
 →強軸断面方向

5.2.4 評価対象断面の選定

図 5.2-4 及び図 5.2-5 にトンネルの縦断図及び標準断面図を示す。

トンネルは,延長約140mの鉄筋コンクリート造である。内径4.6m,覆工1.2mであり 縦断方向に対して一様な断面形状を示す。また,間接支持する設備が縦断方向に一様に設 置されている。

評価対象断面は、「1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方」で記載したとおり、L3 地点における埋戻土の層厚を最も薄くしたL3'断面を 代表として耐震評価を実施する。

図 5.2-4 トンネルの縦断図

図 5.2-5 トンネルの標準断面図

5.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,適用基準類を基に設定する。構造物の使用材料を表 5.2 -3に、材料物性値を表 5.2-4 に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を 用いる。なお、地盤については、せん断ひずみの変化に応じた地震時挙動を適切に考慮で きるモデル化とする。地盤の物性値を表 5.2-5 に示す。

表 5.2-3 使用材料

	諸元
コンクリート	設計基準強度 30 N/mm ²
鉄筋	SD345, SD490

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	24.5	2.8×10 ⁴	0.2

表 5.2-4 材料物性值

							原地	也盤					
パラメータ				埋戻土	里戻土 第四系								
				f1	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1		
物理	密度	0	- / ³	1.98	1.98	2.01	1 74	2.01	1 92	2.15	2.01		
特性	()は地下水位以浅	ρ	g/ CIII	(1.82)	(1.82)	(1.89)	1.74	(1.89)	1.52	(2.11)	(1.89)		
	静ポアソン比	νcd	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25		
	動ポアソン比	νd	_	0.493	0.493	0.491	0 484	0.483	0 465	0.462	0.474		
				(0.385)	(0.385)	(0.286)	0.484	(0.483)	0.405	(0.462)	(0.382)		
変形	基準平均有効主応力	_ ,	1. 1. 2	358	358	497	270	814	066	1167	1695		
特性	()は地下水位以浅	o ma	kN/m~	(312)	(312)	(299)	310	(814)	900	(1167)	(1710)		
	基準初期せん断剛性	C	1	253529	253529	278087	149994	392073	650611	1362035	947946		
	()は地下水位以浅	G _{ma}	kN/m ⁻	(220739)	(220739)	(167137)	143264	(392073)	000011	(1362035)	(956776)		
	最大履歴減衰率	h _{max}	_	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233		

表 5.2-5(1) 地盤の解析用物性値一覧

	表 5.2-5	(2)	地盤の解析用物性値一覧	
--	---------	-----	-------------	--

				原地盤							
	パラメータ				第四	四系		新第三系			
				Ac	D2c-3	lm	D1c-1	Km			
物理 特性	密度 ()は地下水位以浅	ρ	g/cm^3	1.65	1.77	1.47 (1.43)	1.77	1.72-1.03×10 ⁻⁴ · z			
	静ポアソン比	$\nu_{ ext{CD}}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z			
	動ポアソン比 ν		_	0.486	0.488	0.494 (0.494)	0.487	0.463+1.03 \times 10 ⁻⁴ · z			
変形 特性	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	480	696	249 (223)	696	動的変形特性に基づ			
	基準初期せん断剛性 ()は地下水位以浅	G_{ma}	kN/m^2	121829	285223	38926 (35783)	285223	き、Z (標高) 毎に物性 値を設定			
	最大履歴減衰率	最大履歴減衰率 h _{max}		0.200	0.186	0.151	0.186				

z:標高 (m)

表 5.2-5(3) 地盤の	⊃解析用物性値-	-覧(新第三系 Km 層)

Part Part Part Part P	区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
9 2 - . . 0		TP(m)	適用深度	TP (m)	ρ		CCD	фсв	速度Vs	せん断剛性 Gma	弾性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
1 10 1.5 1.7 6.10 9.00 1.2 0.00 1.0.107 1.0.1	番号	Z			(g/cm_3)	νcd	(kN/m²)	(°)	(m/s)	(kN/m²)	(kN/m^2)	(kN/m²)	mG, mK	hmax(-)	νd	(m/s)	
12 8 15 - 15 17 6 10 <td>1</td> <td>10</td> <td>9.5 ~</td> <td>10.5</td> <td>1.72</td> <td>0.16</td> <td>298</td> <td>24. 2</td> <td>425</td> <td>310, 675</td> <td>353, 317</td> <td>504</td> <td>0.0</td> <td>0.105</td> <td>0.464</td> <td>1,640</td> <td>1,640,000</td>	1	10	9.5 ~	10.5	1.72	0.16	298	24. 2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
1 1	2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
44 7 6.5 ~ 15.7 15.0 14.0 14.0 15.00 <	3	8	7.5 ~	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1, 648, 000
5 6 5.5 ~ 6.5 1.72 6.10 2.80 6.20 935.00 936.0	4	7	6.5 ~	7.5	1.72	0.16	316	23.9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
6 6 1	5	6	5.5 ~	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
1 4 5.2 - 1.27 6.40 3.44 1.64 1.30 93.80	6	5	4.5 ~	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
8 3 2.5 -3.5 1.72 0.16 340 21.4 11 139.09 383.30 644 0.0 0.07 0.607 <t< td=""><td>7</td><td>4</td><td>3.5 ~</td><td>4.5</td><td>1.72</td><td>0.16</td><td>334</td><td>23.6</td><td>430</td><td>318, 028</td><td>361, 679</td><td>504</td><td>0.0</td><td>0.106</td><td>0.463</td><td>1,638</td><td>1, 638, 000</td></t<>	7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1, 638, 000
9 2 1.5 ~ 2.5 1.72 6.16 300 23.4 431 303.00 304.00 304.00 40.0 6.00 6.00 1.60 1	8	3	2.5 ~	3.5	1.72	0.16	340	23.5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10 1 1.0 1.7 1.10 1.70 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 </td <td>9</td> <td>2</td> <td>1.5 ~</td> <td>2.5</td> <td>1.72</td> <td>0.16</td> <td>346</td> <td>23.4</td> <td>431</td> <td>319, 509</td> <td>363, 363</td> <td>504</td> <td>0.0</td> <td>0.107</td> <td>0.463</td> <td>1,642</td> <td>1,642,000</td>	9	2	1.5 ~	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
111 0 -6.5 ~ 6.6 1.72 0.16 334 23.1 431 32.6,41 35.7 54.8 1.60 1	10	1	0.5 ~	1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1, 646, 000
11 -1 -1 -1 0.1	11	0	-0.5 ~	0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
13 -2 -2.5 -7.5 1.72 0.16 976 235.467 370.18 640 0.6 0.188 0.408 1.67 1.68 151 -4 4.5 -5.5 -1.17 0.18 398 27.6 480 235.467 375.181 60.1 0.18 0.408 1.64 1.64 152 -4.5 -5.5 -1.51 1.72 0.18 398 27.6 497 233.927 373.82 60.0 0.199 0.428 1.642 1.64 <	12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1, 653, 000
14. -3. -3.5 -7.5 17.7 0.16 0.20 0	13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15 -4 -4.5 - -5.5 -1.72 0.16 980 27.6 97.6 97.6 0.00 0.400	14	-3	-3.5 ~	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
16 -5 -5.5 -5.6 -5.6 1.72 0.10 0.4	15	-4	-4.5 ~	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
11 -6 -6.5 -5.5 -1.6 1.72 0.10 0.40 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1.64 1.65 1.64 <th< td=""><td>16</td><td>-5</td><td>-5.5 ~</td><td>-4.5</td><td>1.72</td><td>0.16</td><td>388</td><td>22.7</td><td>437</td><td>328, 467</td><td>373, 551</td><td>504</td><td>0.0</td><td>0.109</td><td>0.462</td><td>1,644</td><td>1, 644, 000</td></th<>	16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1, 644, 000
18 -7 -7.	17	-6	-6.5 ~	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1, 648, 000
1b -b 4.5 -c 7.5 1.72 0.18 606 2.2.1 400 373.607 5941 0.0 0.100 0.62 1.66 1.66 21 -10 -11 -2.5 1.72 0.18 412 2.2.1 411 333.07 398.40 0.01 0.10 0.62 1.66 1.66 22 -11 -13 11 1.72 0.16 412 2.1.6 441 333.07 398.41 504 0.0 0.111 0.62 1.66 1.67 21 -16 -17 0.17 0.16 471 2.1.4 471 38.61 503.0 0.0 0.111 0.68 1.68 1.68 22 -23 -24 1.72 0.15 601 33.61 393.524 503 0.0 0.111 0.68 1.68 1.68 333.61 393.524 600 0.111 0.68 1.68 1.68 333.534 393.534 600	18	-7	-7.5 ~	-6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1, 648, 000
100 -9 -9.6 -9.6 1.72 0.16 1.42 2.7.2 440 333.977 393.407 5941 0.0 0.110 0.482 1.668 1.668 122 -112 -112 -112 1.72 0.164 444 333.073 393.417 5941 0.0 0.111 0.462 1.668 1.668 123 -144 -15 ~17 0.161 444 12.4 444 393.011 393.422 1644 0.0 0.111 0.462 1.668 1.66 125 -18 -19 ~0 1.77 0.164 697 2.1.4 447 393.617 393.428 0.00 0.112 0.461 1.668 1.66 126 -20 ~17 1.77 0.15 691 2.0.4 452 333.403 393.471 698 0.0 0.112 0.681 1.668 1.66 127 -23 -27 1.72 0.15 503 2.0.4	19	-8	-8.5 ~	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
10 -10 -13 - -0.6 135 20.6 145 22.6 413 333.677 393.671 594.7 504.7	20	-9	-9.5 ~	-8.5	1.72	0.16	412	22.3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1, 656, 000
122 -14 -15 -11 122 0.16 430 21.0 442 333,050 323,051 534,01 0.101 0.402 1.00 1.01 21 -16 -15 -15 1.72 0.16 442 21.6 444 330,000 337,32 540 0.0 0.112 0.401 1.62 1.63 1.63 23 -20 -21 1.72 0.16 470 21.2 448 334,01 390,60 0.0 0.112 0.401 1.63 1.63 24 -24 -25 -23 -21 1.72 0.15 313 20.0 430 335,00 384,70 488 0.0 0.113 0.401 1.60	21	-10	-11 ~	-9.5	1.72	0.16	418	22. 2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1, 659, 000
1 -14 -15 -13 1.72 0.16 442 21.8 444 338,041 358,041 504 0.0 0.111 0.022 1.63 1.63 25 -18 -19 ~ -17 1.72 0.16 467 340,000 396,41 500 0.0 0.112 0.681 1.66 1.66 26 -20 -21 ~ 1.72 0.16 477 2.12 446 384,201 396,41 0.0 0.112 0.641 1.662 1.67 27 -23 ~ 1.72 0.15 107 2.0.4 425 336,601 398,90 448 0.0 0.113 0.601 1.67	22	-12	-13 ~	-11	1.72	0.16	430	22.0	442	336,026	382, 147	504	0.0	0.110	0.462	1,663	1, 663, 000
24 -16 -17 -0.17 1.72 0.16 446 210, 0.30 393, 82 564 0.0 0.111 0.461 1.662 1.66 25 -30 -21 -10 1.72 0.16 467 21.4 447 334, 611 390, 82 564 0.0 0.112 0.461 1.662 1.66 25 -22 -23 -22 1.72 0.15 630 20.8 420 383, 300 381, 411 498 0.0 0.113 0.401 1.663 1.66 25 -23 -27 0.17 0.15 551 20.6 433 356, 60 391, 721 488 0.0 0.111 0.400 1.671 1.67 310 -32 -33 1.72 0.15 551 20.0 488 390, 714 393, 531 498 0.0 0.118 0.400 1.681 1.66 330 -44 -55 -53 1.72 0.15 637<	23	-14	-15 ~	-13	1.72	0.16	442	21.8	444	339, 074	385, 614	504	0.0	0.111	0.462	1,671	1, 671, 000
18 -19 - -17 1.72 0.16 477 21.2 36.71 396.81 594. 0.04 0.101 0.401 1.602 1.602 27 -22 -23 -21 1.72 0.15 401 21.0 440 348,000 341,411 448 0.0 0.112 0.401 1.603 1.603 28 -24 -25 -22 1.72 0.15 580 20.6 431 325,003 388,674 488 0.0 0.118 0.401 1.603 1.604 30 -280 -27 -27 1.72 0.15 597 20.2 463 335,693 398,994 498 0.0 0.118 0.400 1.623 1.62 31 -34 -35 -37 -31 1.72 0.15 581 20.0 448 309,391 498 0.0 0.118 0.409 1.631 1.63 33 -34 -35 -37 <th< td=""><td>24</td><td>-16</td><td>-17 ~</td><td>-15</td><td>1.72</td><td>0.16</td><td>454</td><td>21.6</td><td>445</td><td>340, 603</td><td>387, 352</td><td>504</td><td>0.0</td><td>0.111</td><td>0.461</td><td>1,654</td><td>1,654,000</td></th<>	24	-16	-17 ~	-15	1.72	0.16	454	21.6	445	340, 603	387, 352	504	0.0	0.111	0.461	1,654	1,654,000
100 -101 -1.72 0.161 410 1.22 448 345.211 328.30 534. 0.0 0.121 0.401 1.603 1.67 221 -223 -23 -23 1.72 0.15 401 500.4 351.403 384.673 498 0.0 0.113 0.401 1.601 1.601 230 -256 -27 -27 1.72 0.15 500 20.6 420 351.603 398.964 498 0.0 0.114 0.400 1.67 1.67 310 -30 -31 -72 0.15 661 20.0 486 390.90 391.90 0.0 0.114 0.400 1.60 1.60 321 -42 -33 -73 1.72 0.15 673 18.6 480 390.90 490.80 400 0.115 0.400 1.60 410 333 -36 -37 -37 1.72 0.15 653 180.4 400.30 <td>25</td> <td>-18</td> <td>-19 ~</td> <td>-17</td> <td>1.72</td> <td>0.16</td> <td>467</td> <td>21.4</td> <td>447</td> <td>343, 671</td> <td>390, 842</td> <td>504</td> <td>0.0</td> <td>0.112</td> <td>0.461</td> <td>1,662</td> <td>1,662,000</td>	25	-18	-19 ~	-17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0.0	0.112	0.461	1,662	1,662,000
1 1	26	-20	-21 ~	-19	1.72	0.16	479	21.2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
28 -24 -25 - -25 1.72 0.15 503 20.8 453 353,493 388,574 498 0.0 0.113 0.461 1,664 1,664 29 -28 -29 -27 1.72 0.15 557 0.4 455 358,683 399,996 498 0.0 0.114 0.460 1,673 1,673 31 -30 -31 -22 1.72 0.15 539 20.2 466 357,691 399,155 498 0.0 0.114 0.460 1,675 1,67 32 -32 ~33 -33 -37 -35 1.72 0.15 557 19.6 461 356,591 408 0.0 0.116 0.499 1,675 1,67 33 -44 -43 ~37 ~35 1.72 0.15 611 19.0 445 371,99 403.0 0.0 0.117 0.493 1,683 1,68 1,675 1,676 <	27	-22	-23 ~	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1, 673, 000
29 -26 -27 ~ -25 1.72 0.15 155 20.6 433 382,990 388,574 498 0.0 0.13 0.400 1,620 1,672 30 -23 ~ -29 1.72 0.15 537 20.4 455 356,680 398,986 488 0.0 0.114 0.460 1,672 1,67 32 -33 ~ -30 1.72 0.15 551 20.0 488 307,717 398,853 498 0.0 0.115 0.460 1,685 1,66 33 -33 ~37 -33 1.72 0.15 653 19.8 490 306,536 400.8 0.0 0.115 0.409 1,675 1,675 34 -50 -37 -33 1.72 0.15 673 19.4 442 367,11 402,688 409 0.0 0.117 0.463 1,685 1,685 1,685 1,685 1,685 1,685 1,685 1,685 <	28	-24	$-25 \sim$	-23	1.72	0.15	503	20.8	452	351, 403	384, 870	498	0.0	0.113	0.461	1,680	1, 680, 000
30 -28 -99 ~ -27 1.72 0.15 527 20.4 455 358,650 399,661 498 0.0 0.114 0.460 1,67 1,67 31 -30 -31 ~ -31 1.72 0.15 551 20.0 488 369,740 395,155 498 0.0 0.118 0.460 1,68 1,68 33 -34 -55 ~ -35 1.72 0.15 575 19,6 481 366,564 400,319 498 0.0 0.118 0.469 1,675 1,675 34 -36 -37 -172 0.15 587 19,4 442 367,124 40,08 498 0.0 0.116 0.459 1,675 1,675 37 -42 -43 ~ -41 1.72 0.15 661 19,0 445 371,907 498 0.0 0.117 0.498 1,68 37 -42 -43	29	-26	-27 ~	-25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1, 664, 000
31 -30 71 72 1.72 0.15 539 0.2. 456 337,650 391,712 488 0.0 0.114 0.400 1,67 1,67 32 -32 -33 -33 1.72 0.15 551 20.0 458 300,371 396,83 498 0.0 0.115 0.409 1,67 1,67 34 -36 -37 -33 1.72 0.15 557 19.6 481 306,389 400.399 498 0.0 0.116 0.499 1,68 1,67 35 -38 -39 -37 -39 1,72 0.15 611 19.0 462 371,907 405,577 498 0.0 0.117 0.459 1,68 1,68 37 -42 -43 -47 -45 1.72 0.15 615 1.86 487 371,197 405,577 498 0.0 0.117 0.488 1,68 38 -44 -	30	-28	-29 ~	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1, 672, 000
32 32 33 - -11 1.72 0.15 51 20.0 488 306,714 395,155 448 0.0 0.115 0.400 1,687 1,687 33 36 73 1.72 0.15 563 19.8 449 306,371 398,883 448 0.0 0.115 0.490 1,667 1,67 34 -36 -37 73 1.72 0.15 575 19.4 442 370,390 405,577 448 0.0 0.116 0.459 1,689 1,689 37 -42 -43 - -41 1.72 0.15 661 119.0 465 371,907 407,327 448 0.0 0.117 0.458 1,689 <td>31</td> <td>-30</td> <td>-31 ~</td> <td>-29</td> <td>1.72</td> <td>0.15</td> <td>539</td> <td>20.2</td> <td>456</td> <td>357, 650</td> <td>391, 712</td> <td>498</td> <td>0.0</td> <td>0.114</td> <td>0.460</td> <td>1,675</td> <td>1, 675, 000</td>	31	-30	-31 ~	-29	1.72	0.15	539	20.2	456	357, 650	391, 712	498	0.0	0.114	0.460	1,675	1, 675, 000
33	32	-32	-33 ~	-31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1, 683, 000
34 -36 -37 \sim -35 1.72 0.15 575 19.6 491 $396,536$ $400,498$ 408 0.0 0.116 0.499 1.675 1.675 35 -38 -39 1.72 0.15 587 19.4 442 $305,137$ 498 0.0 0.116 0.459 1.675 1.675 -44 -45 -41 1.72 0.15 611 19.0 465 $371,907$ 408 0.0 0.117 0.458 1.685 1.685 38 -44 -45 -47 1.72 0.15 661 18.4 470 $377,11$ 412.59 498 0.0 0.118 0.458 1.685 1.68 410 -56 -47 1.73 0.15 664 17.9 377.51 412.59 498 0.0 0.118 0.458 1.68 1.68 1.68 1.68	33	-34	-35 ~	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
35	34	-36	$-37 \sim$	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1, 675, 000
36 -40 -41 \sim -39 1.72 0.15 599 19.2 464 370.309 $465,77$ 498 0.0 0.116 0.499 1.689 1.689 1.68 37 -44 -45 \sim -41 1.72 0.15 661 19.0 466 377.977 498 0.0 0.117 0.458 1.688 1.68 39 -46 -47 \sim -45 1.72 0.15 643 18.8 467 377.938 416.134 498 0.0 0.118 0.458 1.688 1.688 41 -50 -51 1.73 0.15 667 18.3 472 336.161 422.122 498 0.0 0.118 0.458 1.689 1.68 41 -56 -57 -53 1.73 0.15 696 $1.7.7$ 476 399.937 498 0.0	35	-38	-39 ~	-37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1, 678, 000
37 -42 -43 \sim -41 1.72 0.15 611 19.0 465 371,907 407, 327 498 0.0 0.171 0.489 1,689 1,683 38 -44 -45 \sim -43 1.72 0.15 623 18.8 467 375,113 410,838 498 0.0 0.117 0.488 1,681 1.68 40 -48 -49 \sim -47 1.72 0.15 660 18.3 472 385,416 422,122 498 0.0 0.118 0.458 1,689 1,68 41 -50 -51 \sim -49 1.73 0.15 660 18.3 472 385,416 422,122 498 0.0 0.118 0.458 1,689 1,68 44 -56 -57 \sim 1.73 0.15 678 1.73 0.15 708 17.5 478 395,277 432,902 498 0.0 0.190	36	-40	-41 ~	-39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1,685	1, 685, 000
38 -44 -45 \sim -43 1.72 0.15 623 18.8 467 375,113 410,838 498 0.0 0.117 0.488 1,678 1,675 39 -46 -47 \sim -45 1.72 0.15 635 18.6 486 376,721 412,599 498 0.0 0.117 0.458 1,678 1,678 41 -50 -51 \sim -49 1.73 0.15 660 18.3 472 385,416 422,122 498 0.0 0.118 0.458 1,698 1,699 42 -52 -53 \sim 51 1.73 0.15 660 17.7 475 390,311 427,605 498 0.0 0.118 0.457 1,688 1,688 44 -56 -57 \sim 53 1.73 0.15 720 17.3 476 391,976 429,207 498 0.0 0.19 0.457 1,699	37	-42	-43 ~	-41	1.72	0.15	611	19.0	465	371, 907	407, 327	498	0.0	0.117	0.459	1,689	1, 689, 000
39 -46 -47 \sim -45 1.72 0.15 635 18.6 468 $376,721$ $412,599$ 498 0.0 0.117 0.488 $1,688$ $1,688$ 40 -48 -49 \sim -47 1.72 0.15 660 18.3 472 $338,416$ $422,122$ 4988 0.0 0.118 0.458 $1,696$ 1.696 412 -52 -53 \sim -51 1.73 0.15 6672 18.1 472 $338,416$ $422,122$ 4988 0.0 0.118 0.458 $1,696$ 1.696 43 -54 -55 -53 1.73 0.15 684 17.9 475 $390,331$ $427,505$ 498 0.0 0.118 0.457 $1,693$ $1,69$ $1,69$ 443 -56 -57 -57 1.73 0.15 708 17.7 476 $399,577$	38	-44	-45 ~	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1, 678, 000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	39	-46	-47 ~	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1, 681, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	-48	-49 ~	-47	1.72	0.15	647	18.4	470	379, 948	416, 134	498	0.0	0.118	0.458	1,688	1, 688, 000
42 -52 -53 \sim -51 1.73 0.15 672 18.1 473 387,051 423,913 498 0.0 0.118 0.458 1,699 1,69 43 -54 -55 \sim -53 1.73 0.15 684 17.9 475 390,31 427,505 498 0.0 0.118 0.457 1,688 1,68 44 -55 \sim -57 1.73 0.15 696 17.7 477 432,922 498 0.0 0.119 0.457 1,692 1,69 45 -58 -59 \sim -57 1.73 0.15 720 17.3 479 396,933 434,736 498 0.0 0.120 0.457 1,709 1,70 47 -62 -63 \sim -61 1.73 0.14 744 16.9 482 401,921 424,250 492 0.0 0.120 0.456 1,702 1,70 1,70	41	-50	-51 ~	-49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0.458	1,696	1,696,000
13 -54 -55 \sim -53 1.73 0.15 684 17.9 475 $339, 331$ $427, 505$ 498 0.0 0.118 0.457 $1, 688$ $1, 689$ 44 -56 -57 \sim -55 1.73 0.15 696 17.7 476 $339, 977$ $432, 922$ 498 0.0 0.119 0.457 $1, 699$ $1, 699$ 45 -60 -61 \sim -59 1.73 0.15 720 17.3 479 $396, 933$ $434, 736$ 498 0.0 0.119 0.457 $1, 699$ $1, 69$ 47 -62 -63 \sim -61 1.73 0.14 720 17.3 471 $4400, 255$ $422, 491$ 492 0.0 0.120 0.457 $1, 690$ $1, 70$ 48 -646 -67 -65 1.73 0.14 766 16.7 484 $400, 526$ <	42	-52	-53 ~	-51	1.73	0.15	672	18.1	473	387, 051	423, 913	498	0.0	0.118	0.458	1,699	1, 699, 000
44 -56 -57 \sim -56 1.73 0.15 696 17.7 476 $391,976$ $429,307$ 498 0.0 0.119 0.457 $1,692$ $1,692$ 45 -58 -59 \sim -57 1.73 0.15 708 17.5 478 $396,937$ $432,922$ 498 0.0 0.119 0.457 $1,699$ $1,699$ 461 -61 \sim -59 1.73 0.15 720 17.3 479 $396,933$ $434,736$ 498 0.0 0.120 0.457 $1,702$ $1,70$ $1,702$ $1,702$ $1,70$ $1,702$ $1,702$ $1,70$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,70$ $1,702$ $1,70$ $1,702$ $1,70$ $1,702$ $1,702$ $1,70$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ $1,702$ <t< td=""><td>43</td><td>-54</td><td>-55 ~</td><td>-53</td><td>1.73</td><td>0.15</td><td>684</td><td>17.9</td><td>475</td><td>390, 331</td><td>427, 505</td><td>498</td><td>0.0</td><td>0.118</td><td>0.457</td><td>1,688</td><td>1, 688, 000</td></t<>	43	-54	-55 ~	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1, 688, 000
45 -58 -59 \sim -57 1.73 0.15 708 17.5 478 336,277 432,922 498 0.0 0.119 0.457 1,699 1,69 46 -60 -61 \sim -59 1.73 0.15 720 17.3 4479 396,933 434,736 498 0.0 0.120 0.457 1,699 1,69 47 -62 -63 \sim -61 1.73 0.14 732 17.1 481 400,255 422,491 492 0.0 0.120 0.456 1,695 1,69 48 -64 -65 \sim -63 1.73 0.14 756 16.7 484 400,523 427,778 492 0.0 0.120 0.456 1,702 1,70 50 -68 -69 \sim -67 1.73 0.14 786 16.5 485 406,939 429,547 492 0.0 0.121 0.466 1,712	44	-56	-57 ~	-55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692	1, 692, 000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	45	-58	-59 ~	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699	1, 699, 000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	46	-60	-61 ~	-59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1, 702, 000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	47	-62	-63 ~	-61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1, 709, 000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	48	-64	-65 ~	-63	1.73	0.14	744	16.9	482	401, 921	424, 250	492	0.0	0.120	0.456	1,695	1, 695, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	49	-66	-67 ~	-65	1.73	0.14	756	16.7	484	405, 263	427,778	492	0.0	0.120	0.456	1,702	1, 702, 000
b1 -70 -71 \sim -99 1.3 0.14 180 16.3 487 $410,302$ $433,697$ 492 0.0 0.121 0.466 $1,712$ $1,711$ 52 -72 -73 \sim -71 1.73 0.14 792 16.1 489 $413,679$ $436,661$ 492 0.0 0.121 0.466 $1,719$ $1,71$ 53 -74 -75 \sim -73 1.73 0.14 804 15.9 490 $415,373$ $438,449$ 492 0.0 0.122 0.455 $1,705$ <t< td=""><td>50</td><td>-68</td><td>-69 ~</td><td>-67</td><td>1.73</td><td>0.14</td><td>768</td><td>16.5</td><td>485</td><td>406, 939</td><td>429, 547</td><td>492</td><td>0.0</td><td>0.121</td><td>0.456</td><td>1,705</td><td>1, 705, 000</td></t<>	50	-68	-69 ~	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1, 705, 000
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	51	-70	-71 ~	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	52	-72	-13 ~	-71	1.73	0.14	192	16.1	489	413, 679	430,661	492	0.0	0.121	0.456	1,719	1, 719, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	53	-/4	-15 ~	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	-70	-70	-75	1.73	0.14	010	15.7	492	410, //1	442,030	492	0.0	0.122	0.455	1, /12	1, 716, 000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	-18	-19 ~	-11	1.73	0.14	028	15.0	493	420,475	440,830	492	0.0	0.122	0.455	1,710	1, 710, 000
or o.2 o.3 o.1 o.1.4 o.2 10.1 490 420,000 449,203 492 0.0 0.123 0.450 1,720 1,720 1,720 58 -88 -90 ~ -855 1.73 0.14 889 14.5 501 434,232 458,356 492 0.0 0.124 0.454 1,726 1,72 59 -92 -95 ~ -90 1.73 0.14 913 14.1 504 439,488 463,862 492 0.0 0.124 0.454 1,736 1,739	50	-60	-85 -	-79	1. 13	0.14	852	15.3	495	420, 893	447, 443	492	0.0	0.122	0.455	1,726	1, 123, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	50	_02	-00 ~	-01	1.70	0.14	002	14.5	450	424,000	459 250	400	0.0	0.123	0.454	1,700	1, 120, 000
07 72 70 - 70 1.13 0.14 913 14.1 704 4.39,448 405,802 492 0.0 0.124 0.434 1,736 1,73	50	-00	-90 ~ -05	- 00	1.70	0.14	013	14.0	504	404, 202	400,000	400	0.0	0.124	0.454	1,720	1, 120, 000
60 -98 -101 \sim -95 1.73 0.14 949 13.5 500 449.910 472.111 409 0.0 0.195 0.459 1.796 1.796	59	-00	-101 -	-90	1.70	0.14	910	14.1	500	407,440	403,002	432	0.0	0.124	0.459	1,730	1, 736,000
vo vo tvo tvo tvo vo tvo vo tvo vo tvo vo tvo vo tvo vo v	61	-104	-108 ~	-101	1.73	0.13	985	12.0	513	455 282	463 485	472	0.0	0.120	0.400	1,730	1,733,000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	69	-119	-115 -	_101	1.70	0.13	1 022	12. 7	510	465 005	474 201	196	0.0	0.120	0.451	1, 100	1 737 000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	63	-112	-122 ~	-115	1.73	0.13	1,000	11.5	524	475 016	483 575	486	0.0	0.127	0.451	1, 754	1 754 000
64 -126 -130 ~ -122 1.73 1.18 10.7 530 485.957 494.713 486 0.0 0.128 0.450 1.758 1.758	64	-126	-130 ~	-122	1.73	0.13	1, 118	10.7	530	485, 957	494, 713	486	0,0	0. 121	0, 450	1, 758	1, 758, 000

5.2.6 地下水位

地下水位は地表面として設定する。

5.2.7 地震応答解析手法

トンネルの地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法解 析を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次 時間積分の時刻歴応答解析にて行う。部材については、はり要素及び平面ひずみ要素を用 いることとする。また、地盤については、Ramberg-Osgood モデルを適用し、せん断ひずみ の変化に応じたせん断剛性及び減衰定数の非線形性を考慮し、地震時挙動を適切に考慮で きるようにモデル化する。地震応答解析については、解析コード「TDAPIII Ver. 3.08」を 使用し、過剰間隙水圧の上昇のない岩盤内にトンネルが設置されるため、全応力解析を適 用する。なお、解析コードの検証及び妥当性確認の概要については、付録24「計算機プロ グラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 5.2-6 に示す。

図 5.2-6 地震応答解析手法の選定フロー

- 5.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を適用し、図5.2-7 に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上確保 する。

トンネル周辺の地質断面図を図 5.2-8 図に示す。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長に対し て4又は5分割以上になるように要素高さを設定している。

トンネルの地震応答解析モデルを図 5.2-9 図に示す。

図 5.2-7 モデル範囲の考え方

図 5.2-8 地質断面図

図 5.2-9 トンネルの地震応答解析モデル

(2) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離・す べりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向では, 常時状態以上の引張が生じた場合,剛性及び応力をゼロとし,剥離を考慮する。接線方向 では,地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合,剛性をゼロとし, すべりを考慮する。せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。 c, ϕ は 周辺地盤の c, ϕ とする。(表 5.2-6 参照)

なお、全応力解析を実施するため、粘着力はKm層のCUU条件の粘着力、内部摩擦角はゼロとする。

 $\tau_{f} = c + \sigma' \tan \phi$ ここで、 τ_{f} : せん断強度 c: 粘着力 ϕ : 内部摩擦角

表 5.2-6 周辺地盤及び隣接構造物との境界に用いる強度特性

周辺の状況	粘着力 c (N/mm ²)	内部摩擦角(度)	備考
新第三系 Km 層	$c = 0.837 - 0.00346 \cdot z$	0	—

z :標高 (m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 5.2-7のとおり 設定する。図 5.2-10 にジョイント要素設定の考え方を示す。

表 5.2-7 ジョイント要素のばね定数

	せん断剛性k s	圧縮剛性 k n
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

(3) 材料特性の設定

鉄筋コンクリートの部材は線形はり要素を用いてモデル化する。なお,インバートは平 面ひずみ要素を用いてモデル化する。

地盤要素は、せん断剛性及び減衰定数のひずみ依存特性を表現できる R-0 モデルとする。

5.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、Rayleigh減衰をα=0となる剛性比例型減衰とする。

係数α, βは以下のように求めている。

$$\alpha = 0$$

$$\beta = \frac{h}{\pi f}$$

ここで、
f : 固有値解析により求められた1次固有振動数
h : 各材料の減衰定数

地盤の減衰定数は1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配的となる。このため、解析上の安定のためになるべく小さい値として1%を採用している)とする。また、線形材料としてモデル化するコンクリートの減衰定数は5%(JEAG4601-1987)とする。

図 5.2-11 に Rayleigh 減衰の設定フローを,表 5.2-8 に固有値解析結果を示す。

図 5.2-11 Rayleigh 減衰の設定フロー

表 5.2-8 固有值解析結果(追而)

5.2.10 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出 し,それぞれを組み合せて設定する。地震荷重には,地震時土圧,動水圧,機器・配管系 からの反力による荷重が含まれるものとする。

なお、トンネルは、地盤内に埋設されている構造物であることから運転時の異常な過渡 変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるため当該状態につ いての組合せは考慮しないものとする。また重大事故等対処時においても、地盤内で設計 基準事故時の条件を上回るような事象は発生しないため、設計基準事故時の条件を上回る 荷重はない。

荷重の組合せを表 5.2-9 に示す。

地震時にトンネルに作用する機器・配管系からの反力については,機器・配管系を,解 析モデルに付加質量として与えることで考慮する。

種別		荷重		算定方法		
永久 荷重		邮件卢手	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗		
	常時	淞件日里		じて設定		
	考慮	機器・配管自重	\bigcirc	・機器・配管の重さに基づいて設定		
	荷重	土被り荷重	\bigcirc	・常時応力解析により設定		
		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない		
	静止土圧		\bigcirc	・常時応力解析により設定		
			0	・地下水位に応じた静水圧として設定		
		外小庄		・地下水の密度を考慮		
		内水圧	_	 ・内水がないことから、考慮しない 		
亦動	古舌	雪荷重	_	・構造物は地中に埋設されることから、考慮しない		
変動何里		風荷重	—	・構造物は地中に埋設されることから、考慮しない		
偶発荷重 (地震荷重)		水平地震動	\bigcirc	・基準地震動S。による水平・鉛直同時加振		
		鉛直地震動	\bigcirc	・躯体,機器・配管の慣性力,動土圧を考慮		
		動水圧		・内水がないことから、考慮しない		

表 5.2-9 荷重の組合せ

(1) 機器・配管荷重

図 5.2-12 にトンネルにおける機器・配管荷重図を示す。

機器・配管荷重は解析の単位奥行き(1 m)あたりの付加質量として考慮する。

インバート上面については、単位奥行き当たりの配管・設備質量として 0.45 t/m²を考 慮し、配管質量として 0.20 t/m を考慮する。

隔壁には、単位奥行き当たりのダクト・消火配管、電線管及びトレイ質量として 1.70 t/m を隔壁中央に考慮する。

覆工には、単位奥行き当たりの電線管質量として 0.15 t/m 及び 0.10 t/m を覆工中央に 考慮する。

図 5.2-12 機器・配管荷重図

(2) 外水圧

地下水位は地表面として設定する。なお、全応力解析を実施するため、地下水密度1.00 g/cm³を考慮した地盤の飽和密度を定義することで、トンネルに作用する外水圧は土被り荷 重として考慮される。

- 5.2.11 地震応答解析の検討ケース
 - (1) 耐震設計における検討ケース
 電源装置置場の耐震設計における検討ケースを表 5.2-10 に示す。

				2	3	
検討ケース			原地盤の物性値を用い	地盤物性のばらつきを	地盤物性のばらつき	
			た解析ケース(基本ケ	考慮(+1σ)した解	を考慮(-1σ)し	
			ース)	析ケース	た解析ケース	
	(+		1			
	S - D 1	(+-)	1			
	$S_s - DI$	(-+)	1			
地震波		()	1			
	$S_s - 1 1 (++)$		1		1	
	$S_s - 12$ (++		1	1		
位	$S_{s} - 1 3$	(++)	1			
相	$S_s - 14$ (++)		1	①の検討におい	て、最も厳しい	
-	$S_s - 21$ (++)		1	(許	オス全欲が是た	
	$S_{s} = 2.2$	(++)	1	(町谷政介に入	りる示俗が取り	
	S _ 9 1	(++)	1	小さい)地震動	を用いて実施	
	$S_{s} = 31$	(-+)	1			
	計		12	1	1	

表 5.2-10 電源装置置場の耐震設計における検討ケース

(2) 機器・配管系に対する加速度応答抽出のための検討ケース機器・配管系に対する加速度応答の抽出における検討ケースを表 5.2-11 に示す。

検討ケース			①	2 地般物性のげたへきな	3 世般物性のげたへき	
			床地盤の物性値を用く た解析ケース(基本ケ	地盤初往のはらうさを 考慮($+1\sigma$)した解	地盤物性のならりさ を考慮 (-1σ) し	
		ース)	析ケース	た解析ケース		
(+		(++)	1			
	0 D 1	(+-)	1			
	$S_s = D I$	(-+)	1			
μh		()	1			
震	$S_s - 1 1 (++)$		1			
波	$S_s - 12$ (++		1	1	1	
位	S _s -13	$S_s - 1 3 (++)$				
相	$S_s - 14$ (++)		1	①の検討において,最も厳しい		
	$S_s - 21$ (++)		1	(許	オス全欲が星も	
	$S_s = 2.2$	(++)	1		りつ示伯が取り	
	S _ 2 1	(++)	1	小さい) 地震動	を用いて実施	
	$S_s = S_1$	(-+)	1			
	計		12	1	1	

表 5.2-11 機器・配管系への加速度応答の抽出における検討ケース

5.3 評価内容

5.3.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次 元波動論によって,地震応答解析モデルの底面位置で評価したものを用いる。

図 5.3-1 に入力地震動算定の概念図を,図 5.3-2 に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には解析コード「microSHAKE/3D Ver. 2.2.3.311」を使用する。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認 する。断層モデル波である $S_s - 11 \sim S_s - 22$ については、特定の方向性を有すること から、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的にはNS方向及びEW 方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わせることで方 位補正した地震動を設定する。

図 5.3-1 入力地震動算定の概念図

図 5.3-2(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504 cm/s^2 (44.23 s)

図 5.3-2(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-D1)

図 5.3-2(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524 cm/s^2 (25.01 s)

図 5.3-2(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-11)
MAX 380 cm/s² (29.13 s)

図 5.3-2(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

図 5.3-2(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

図 5.3-2(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

図 5.3-2(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-13)

MAX 356 cm/s^2 (27.50 s)

図 5.3-2(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

図 5.3-2(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-14)

MAX 649 cm/s^2 (68.81 s)

図 5.3-2(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

図 5.3-2(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-21)

図 5.3-2(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

図 5.3-2(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)

図 5.3-2(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

図 5.3-2(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-31)

- 5.3.2 許容限界の設定
 - (1) 許容応力度による許容限界

トンネルの構造部材は,許容応力度による照査を行う。評価位置においてコンクリートの の圧縮応力度,鉄筋の引張応力度,コンクリートのせん断応力度が許容応力度以下である ことを確認する。

許容応力度については、「コンクリート標準示方書[構造性能照査編]((社)土木学 会、2002年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日 本道路協会、平成24年3月)」に基づき、コンクリート及び鉄筋の許容応力度に対して割 増係数1.5を考慮し、表5.3-1のとおり設定する。

	評価項目	短期許容応力度 (N/mm ²)
コンクリート*1	許容曲げ圧縮応力度 σ _{ca}	16.5
(f' $_{ck}$ =30N/mm ²)	許容せん断応力度τ a1	0. 75 ^{*3}
24.4万(CD 400) *2	許容引張応力度 σ _{sa} (曲げ)	435
亚大用力(SD490)	許容引張応力度 σ s a (せん断)	300
鉄筋(SD345)*1	許容引張応力度 σ _{sa}	294

表 5.3-1 許容応力度

注記 *1:コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002年制定)」を適用し、次式により求められる許容せん 断力(Va)を許容限界とする。

$$V_a = V_{ca} + V_{sa}$$

ここで、
 V_{ca} : コンクリートの許容せん断力
 $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$
 V_{sa} : 斜め引張鉄筋の許容せん断力
 $V_{sa} = A_w \cdot \sigma_{sa2} \cdot j \cdot d / s$
 τ_{a1} : 斜め引張鉄筋を考慮しない場合の許容せん断応力度
 b_w : 有効幅
j : 1/1.15
 d : 有効高さ
 A_w : 斜め引張鉄筋断面積

- σ_{sa2}:鉄筋の許容引張応力度
- s :斜め引張鉄筋間隔

表 5.3-2 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(追而)

(2) 基礎地盤の支持性能に対する許容限界

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験結 果(せん断強度)等より設定する。

道路橋示方書による直接基礎の支持力算定式を以下に示す。

$$q_{d} = \alpha C N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

ここで,

q d : 基礎底面地盤の極限支持力度(kN/m2)

- c :基礎底面より下にある地盤の粘着力(kN/m2)
- γ1 : 基礎底面より下にある地盤の単位体積重量(kN/m2)ただし、地下水位以下では水中単位体積重量とする
- γ 2 : 基礎底面より上にある周辺地盤の単位体積重量(kN/m2) ただし、地下水
 位以下では水中単位体積重量とする
- α , β :

表 5.3-3に示す基礎底面の形状係数

D :基礎幅

D_f: :基礎の有効根入れ深さ

N_c, N_q, N_γ:図 5.3-3 に示す支持力係数

基礎底面の形状形状係数	帯	状	正方形,円形	長方形,小判形
lpha . The second of $lpha$, the second of $lpha$	1	.0	1.3	$1+0.3\frac{B}{D}$
β	1	.0	0.6	$1 - 0.4 \frac{B}{D}$

表 5.3-3 基礎底面の形状係数

D:ケーソン前面幅 (m) , B:ケーソン側面幅 (m)

ただし, B/D>1の場合, B/D=1とする。

図 5.3-3 支持力係数を求めるグラフ

トンネルにおける許容限界を表 5.3-4に示す。

表 5.3-4 基礎地盤の支持力に対する許容限界(追而)

5.4 評価結果

5.4.1 地震応答解析結果

トンネルの基準地震動S。による断面力(曲げモーメント,軸力,せん断力)を図5.4-1 図に示す。本図は構造部材の曲げ及びせん断照査結果が最も厳しくなる部材の評価時刻においての断面力を示したものである。

また、トンネルにおいて、最大せん断ひずみ分布図を図 5.4-2 に示す。これらの図は、 各要素に発生したせん断ひずみの全時刻における最大値の分布を示したものである。

追而

曲げモーメント (kN・m)

(+: 圧縮, -: 引張)

軸力(kN)

せん断力 (kN)

照査値が最も厳しくなる部材の発生断面力に太枠表示

図 5.4-1(1) トンネルの地震時断面力(S_s-D1[H+,V+], t=OO.OOs)

- 図 5.4-1 (2) トンネルの地震時断面力 (S_s-D1 [H+, V-], t=OO.OOs)
- 図 5.4-1 (3) トンネルの地震時断面力 (S_s-D1 [H-,V+], t=OO.OOs)
- 図 5.4-1(4) トンネルの地震時断面力(S_s-D1[H-, V-], t=OO.OOs)
- 図 5.4-1 (5) トンネルの地震時断面力 (S_s-11, t=00.00s)
- 図 5.4-1(6) トンネルの地震時断面力(S_s-12, t=00.00s)
- 図 5.4-1(7) トンネルの地震時断面力(S_s-13, t=00.00s)
- 図 5.4-1 (8) トンネルの地震時断面力(S_s-14, t=00.00s)
- 図 5.4-1 (9) トンネルの地震時断面力 (S_s-21, t=00.00s)

図 5.4-1 (10) トンネルの地震時断面力 (S_s-22, t=00.00s)

追而

図 5.4-1 (11) トンネルの地震時断面力 (Ss-31 [H+,V+], t=OO.OOs)

図 5.4-1 (12) トンネルの地震時断面力 (Ss-31 [H-,V+], t=OO.OOs)

追而

図 5.4-2(1) トンネルの最大せん断ひずみ分布(S_s-D1[H+,V+])

- 図 5.4-2(2) トンネルの最大せん断ひずみ分布(S_s-D1[H+, V-])
- 図 5.4-2(3) トンネルの最大せん断ひずみ分布(S_s-D1[H-,V+])
- 図 5.4-2(4) トンネルの最大せん断ひずみ分布(S_s-D1[H-, V-])
- 図 5.4-2(5) トンネルの最大せん断ひずみ分布(S_s-11)
- 図 5.4-2(6) トンネルの最大せん断ひずみ分布(S_s-12)
- 図 5.4-2(7) トンネルの最大せん断ひずみ分布(S_s-13)
- 図 5.4-2(8) トンネルの最大せん断ひずみ分布(S_s-14)
- 図 5.4-2(9) トンネルの最大せん断ひずみ分布(S_s-21)
- 図 5.4-2(10) トンネルの最大せん断ひずみ分布(S_s-22)
- 図 5.4-2(11) トンネルの最大せん断ひずみ分布(Ss-31[H+,V+])
- 図 5.4-2(12) トンネルの最大せん断ひずみ分布(Ss-31〔H-,V+〕)

- 5.4.2 トンネルの耐震評価結果
 - (1) 構造部材の曲げに対する評価結果

表 5.4-1 及び表 5.4-2 に曲げに対する照査結果を示す。

トンネルにおける許容応力度法による照査を行った結果,評価位置においてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお, 発生応力は各地震動,各部材において最大となる値を示している。

以上より、トンネルの構造部材の発生応力は、許容限界以下であることを確認した。 図 5.4-3 に概略配筋図を、表 5.4-3 に断面計算に用いた断面諸元の一覧を示す。

		表 5.4-1	コンク	リー	-トの曲げ照	査結果			追而
基準 地震動	位相	評価位置			圧縮 応力度 (N/mm ²)	(((() (ē期許容 応力度 (N/mm ²)	照望	• 昏値
$S_{s} - D1$	H+, V+	覆工 隔壁	28		表示例				
$S_s - D1$	H+, V-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		P	(下図における	, 5番号) 			
$S_s - D1$	H-, V+	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							
$S_s - D1$	H—, V—	覆工 隔壁							
S _s -11	H+,V+	覆工 隔壁							
S _s -12	H+,V+	覆工 隔壁							
S _s -13	H+, V+	覆工							
S _s -14	H+,V+	覆工							
S _s -21	H+, V+	覆工隔壁							
S _s -22	H+,V+	覆工隔壁							
S _s -31	H+, V+								
S _s -31	H-, V+	覆工							

表 5.4-1 コンクリートの曲げ照査結果

:評価位置は下図に示す *

表 5.4-2 鉄筋の曲げ照査結果

	表 5.4-2 鉄筋の曲げ照査結果									
基準 地震動	位相	評価位置	引張 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値					
$S_{s} - D1$	H+,V+	覆工 隔壁								
$S_s - D1$	H+,V-	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7								
S _s -D1	H-, V+	覆工 隔壁								
S _s -D1	H-,V-	覆工								
S _s -11	H+, V+	覆工								
S _s -12	H+,V+	覆工								
S _s -1 3	H+,V+									
S _s -14	H+,V+	 覆工 隔壁								
S _s -21	H+,V+									
S _s -22	H+,V+									
S _s -31	H+,V+	 覆工 								
S _s -31	H-, V+	 覆工 隔壁								

:評価位置は下図に示す *

図 5.4-3 概略配筋図

追而

- 衣 5.4~5 – – – – – – – – – – – – – – – – – – –	表 5.4-3	断面諸元一覧表	(曲げに対する評価
---	---------	---------	-----------

			断面	性状			主義	+筋(外側・	上側)			主義	*筋(内側・	下側)	
部位	材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	段数	鉄筋間隔	鉄筋量	鉄筋種別	径	段数	鉄筋間隔	鉄筋量
		b (m)	h (m)	d' (m)	d (m)	(-)	(mm)	(-)	(mm)	(cm^2)	(-)	(mm)	(-)	(mm)	(cm ²)
覆工	M1	1.000	1.200	0.150	1.050	SD490	25	1	150	33.780	SD490	29	1	150	42.827
隔壁	M2	1.000	0.600	0.130	0.470	SD490	25	1	150	33.780	SD490	25	1	150	33.780

評価甲	評価	中
-----	----	---

(2) 構造部材のせん断に対する評価結果

表 5.4-4 にせん断に対する照査結果を示す。

トンネルにおける許容応力度法による照査を行った結果,評価位置においてせん断応力 度が短期許容せん断応力度以下又はコンクリートの負担するせん断力(V_c)と,斜め引 張鉄筋の負担するせん断力(V_s)を合わせた許容せん断力(V_a)が,発生せん断力

(V)以上であることを確認した。 ($V_a = V_c + V_s \ge V$) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、トンネルの構造部材の発生応力は、許容限界以下であることを確認した。 図 5.4-4 に概略配筋図を、表 5.4-5 に断面計算に用いた断面諸元の一覧を示す。

表 5.4-4 せん断照査結果

基準 地震動	位相	評価位置	1	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査値
$S_{-}D_{1}$	H+ V+	覆工				
		隔壁				
S - D1	н⊥ v_	覆工				
S _s D1	11 , V	隔壁				
S _ D 1		覆工				
$S_s D_1$	n-, v-	隔壁				
S = D1	II V	覆工				
$S_s DI$	п−, ∨−	隔壁				
<u> </u>	H+, V+	覆工				
S_s II		隔壁				
S _ 1 9	H+, V+	覆工				
$\left \begin{array}{c} S_{s} - 1 \end{array} \right $		H^+, V^+	隔壁			
C 1 2		覆工				
$\left S_{s} - I \right\rangle$	H+, V+	隔壁				
C 1 4	TT T7	覆工				
$5_{s} - 14$	H+,V+	隔壁				
0 01	TT T7	覆工				
$ S_{s} - 2 $	H+,V+	隔壁				
	TT T7	覆工				
$\left S_{s} - Z Z \right $	H+,V+	隔壁				
0 0 1	TI T7	覆工				
$ _{S_s - 31}$	н+,∨+	隔壁				
		覆工				
$ 5_{s} - 31 $	H-, V+	隔壁				

* :評価位置は下図に示す。

追而

追而

図 5.4-4 概略配筋図

表 5.4-5 断面諸元一覧表(せん断に対する評価)										追而
			断面	性状			선	ん断補強	跌筋	r
部位	材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	Sb	Ss	鉄筋量
		b (m)	h (m)	d' (m)	d (m)	(-)	(mm)	(mm)	(mm)	(cm^2)
覆工	M1	1.000	1.200	0.150	1.050	SD345	22	300	300	12.903
隔壁	M2	1.000	0.600	0.130	0.470	SD345	13	300	200	4.223

表 5.4-5 断面諸元一覧表(せん断に対する評価)

(3) 基礎地盤の支持性能に対する評価結果

・ 基礎地盤の文持性能に対する計画相来 表 5.4-6 に基礎地盤の支持性能照査結果を、図 5.4-5 に接地圧分布図を示す。 トンネルの最大接地圧は、S_s−D1 [H+,V+] で〇〇 kN/m^2 であり、基礎地盤の極 限支持力度 $\Delta\Delta$ kN/m^2 以下である。

以上のことから、トンネルの基礎地盤は、基準地震動S。に対し、支持性能を有する。

表 5.4-6 基礎地盤の支持性能照査結果

図 5.4-5(1) 接地圧分布図(S_s-D1[H+,V+])

- 図 5.4-5(2) 接地圧分布図(S_s-D1[H+,V-])
- 図 5.4-5(3) 接地圧分布図(S_s-D1〔H-,V+〕)
- 図 5.4-5(4) 接地圧分布図(S_s-D1[H-,V-])
- 図 5.4-5(5) 接地圧分布図(S_s-11)
- 図 5.4-5(6) 接地圧分布図(S_s-12)
- 図 5.4-5(7) 接地圧分布図(S_s-13)
- 図 5.4-5(8) 接地圧分布図(S_s-14)
- 図 5.4-5(9) 接地圧分布図(S_s-21)
- 図 5.4-5(10) 接地圧分布図(S_s-22)
- 図 5.4-5(11) 接地圧分布図(S_s-31〔H+,V+〕)
- 図 5.4-5(11) 接地圧分布図(S_s-31〔H-,V+〕)

5.5 まとめ (追而)

6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価

6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価	6-1
6.1 評価方法	6-2
6.2 評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot \cdot 6 - 2$
6.2.1 適用基準・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot 6 - 2$
6.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot 6 - 3$
6.2.3 評価対象断面の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 6-4
6.2.4 評価対象断面の選定・・・・・	$\cdot 6 - 7$
6.2.5 使用材料及び材料定数	· 6-9
6.2.6 地下水位 · · · · · · · · · · · · · · · · · · ·	6-13
6.2.7 地震応答解析手法	6-13
6.2.8 解析モデルの設定・・・・・	6-15
6.2.9 減衰定数 · · · · · · · · · · · · · · · · · · ·	6 - 20
6.2.10 荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 - 22
6.2.11 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 - 26
6.3 評価内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot 6 - 28$
6.3.1 水平断面の評価方法・・・・・	6 - 28
6.3.2 頂版・床版の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 - 31
6.3.3 入力地震動の設定・・・・・・	6-32
6.3.4 許容限界の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6 - 65
6.4 評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$\cdot 6 - 70$
6.4.1 地震応答解析結果・・・・・	6 - 70
6.4.2 南北方向の耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-82
6.4.3 東西方向の耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-107
6.5 まとめ(追而)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-132

目次

6.1 評価方法

常設代替高圧電源装置用カルバート(立坑部)(以下,「立坑」という。)は、耐震安全上 重要な機器・配管系を間接支持する機能を求められる構造物である。立坑について基準地震動 S。による耐震安全性評価として、構造部材の曲げ、せん断評価及び地盤の支持性能評価を実 施する。

構造部材の曲げ, せん断評価については地震応答解析に基づく発生応力又は発生せん断力が 許容限界以下であることを確認する。基礎地盤の支持性能評価については, 地震応答解析に基 づく接地圧が許容限界以下であることを確認する。

- 6.2 評価条件
- 6.2.1 適用基準

立坑の耐震評価に当たっては,原子力発電所耐震設計技術指針JEAG4601-1987 ((社)日本電気協会),コンクリート標準示方書[構造性能照査編]((社)土木学 会,2002年制定)等を適用するが,鉄筋コンクリートの曲げ及びせん断の許容限界につい ては,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成24 年3月)を適用する。

表 6.2-1 に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構 造性能照査編](2002 年制定) 	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構 造性能照査編] (2002 年制定)	 ・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	 ・コンクリート標準示方書 [構 造性能照査編](2002年制定) ・道路橋示方書(Ⅰ共通編・Ⅳ 下部構造編)・同解説(平成 24年3月) 	 ・曲げに対する照査は、発生応力が、許容限界以下であることを確認 ・せん断に対する照査は、発生応力又は発生せん断力が、許容限界以下であることを確認
地震応答解析	• JEAG4601-1987	 ・有限要素法による2次元モ デルを用いた時刻歴非線形 解析

表 6.2-1 適用する規格,基準類
6.2.2 耐震安全性評価フロー

図 6.2-1 に立坑の耐震安全性評価フローを示す。

図 6.2-1 立坑の耐震安全性評価フロー

6.2.3 評価対象断面の方向

立坑の位置を図 6.2-2 に示す。

立坑は幅12.5 m(南北方向),16.5 m(東西方向)の箱形構造物であることから,加振 方向の側壁または中壁を耐震壁として考慮することができる。よって,強軸断面方向・弱 軸断面方向の区別が明確でない構造物であるため,評価対象断面は立坑南北方向及び東西 方向の二方向とする。

表 6.2-2 立坑の評価対象断面の方向の選定

6.2.4 評価対象断面の選定

図 6.2-3 及び図 6.2-4 に立坑の平面図及び断面図を示す。

立坑は,電気ケーブル,軽油移送配管及び水配管を支持する4層2連カルバート状の鉄筋コンクリート構造物であり,南北方向12.5 m,東西方向16.5 m,高さ約39.3 m である。

また,奥行方向に耐震壁が存在する,もしくは存在しない断面が存在することから,解 析奥行を立坑奥行とし,部材モデル化に際し加振方向の側壁を耐震壁(平面ひずみ要 素),加振直交方向の側壁及び底版を線形はり要素とし,開口の影響を適切に考慮するこ とで立坑奥行方向を集約し1断面としてモデル化する。

図 6.2-3 立坑の平面図

図 6.2-4(1) 立坑の断面図(南北方向 ①-①断面)

図 6.2-4(2) 立坑の断面図(東西方向 ②-②断面)

6.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,適用基準類を基に設定する。構造物の使用材料を表 6.2 -3 に,材料物性値を表 6.2-4 に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値 を用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮でき るモデル化とする。地盤の物性値を表 6.2-5 に示す。

表 6.2-3 使用材料

材料	諸元
コンクリート	設計基準強度 40 N/mm ²
鉄筋	SD345, SD490

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	24.5	3. 1×10^4	0.2

表 6.2-4 材料物性值

					原地盤					
	パラメータ	埋戻土	 尾土 第四系 (液状化対象層)							
		f1	du	Ag1	Ag2	As	D2s-3	D2g-3		
#4m 7100	密度	0	$\alpha/\alpha m^3$	1.98	1.98	2.01	2.01	1.74	1.92	2.15
物理 特性	()は地下水位以浅	Ρ	g/cm	(1.82)	(1.82)	(1.89)	(1.89)	(-)	(-)	(2.11)
1011	間隙比	e	-	0.75	0.75	0.67	0.67	1.2	0.79	0.43
	ポアソン比	VCD		0.26	0.26	0.25	0.25	0.26	0.19	0.26
	基準平均有効主応力	<u>ر</u>	$1 \text{ N}/m^2$	358	358	814	497	378	966	1167
変形	()は地下水位以浅	U ma	KIN/III	(312)	(312)	(814)	(299)	(-)	(-)	(1167)
特性	基準初期せん断剛性 ()は地下水位以浅	G	$1 M/m^2$	253529	253529	392073	278087	143284	650611	1362035
		Ona	KIN/111	(220739)	(220739)	(392073)	(167137)	(-)	(-)	(1362035)
	最大履歴減衰率	h _{max}	-	0.220	0.220	0.221	0.233	0.216	0.192	0.130
強度	粘着力	C _{CD}	kN/m ²	0	0	0	0	0.012	0.01	0
特性	内部摩擦角	φcd	度	37.3	37.3	37.4	37.4	41	35.8	44.4
	変相角	ϕ_p	-	34.8	34.8	34.9	34.9	38.3	33.4	41.4
液		S_1	-	0.047	0.047	0.029	0.028	0.046	0.048	0.03
状化		W1	-	6.5	6.5	51.6	56.5	6.9	17.6	45.2
化特性	液状化パラメータ	p 1	_	1.26	1.26	12	9	1	4.8	8
		p ₂	_	0.8	0.8	0.6	0.6	0.75	0.96	0.6
		C 1	_	2.00	2.00	3.35	3.40	2.27	3.15	3.82

表 6.2-5(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 6.2-5(2) 地盤の解析用物性値一覧(非液状化層)

					原均	也盤	
	パラメータ			第四系(扌	⊧液状化層)	新第三系	
				Ac	D2c-3	Km	
物理	密度 ()は地下水位以浅	ρ	g/cm ³	1.65 (-)	1.77 (-)	1.72-1.03×10-4 • z (-)	
1寸1工	間隙比	e	-	1.59	1.09	1.16	
変形	ポアソン比	VCD	_	0.1	0.22	0.16+0.00025 • z	
	基準平均有効主応力 ()は地下水位以浅	σ'ma	kN/m ²	480 (-)	696 (-)	動的変形特性に基づ	
特性	基準初期せん断剛性 ()は地下水位以浅	Gma	kN/m ²	121829 (-)	285223 (-)	き、Z(標高)毎に物性 値を設定	
	最大履歴減衰率	h _{max}	-	0.200	0.186		
強度	粘着力	CCD	kN/m ²	0.025	0.026	0.177-0.00603 • z	
特性	内部摩擦角	φcd	度	29.1	35.6	23.2+0.0990•z°	
	変相角	ϕ_p	-	-	-	-	
液		S_1	-	-	-	-	
状		W1	-	-	-	-	
1L 特	液状化パラメータ	p 1	_	-	-	-	
性		p2	—	-	-	-	
		c 1	_	-	-	-	

z:標高 (m)

表 6.2-5 (3) 地盤	の解析用物性値一覧	(新第三系 Km 層)
----------------	-----------	-------------

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
委旦	TP (m)	適用深度	TP (m)	ρ		CCD	φ cd	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
187.2	Z			(g/cms)	VCD	(kN/m²)	(°)	(m/s)	(kN/m²)	(kN/m^2)	(kN/m^2)	mG, mK	hmax(-)	νa	(m/s)	
1	10	9.5 ~	10.5	1.72	0.16	298	24.2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
3	8	$7.5 \sim$	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
4	7	6.5 ~	7.5	1.72	0.16	316	23. 9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5 ~	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5 ~	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318,028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5 ~	3.5	1.72	0.16	340	23. 5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	$0.5 \sim$	1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5 \sim	0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5 \sim	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5 \sim	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5 ~	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5 ~	-6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5 ~	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.5 ~	-8.5	1.72	0.16	412	22.3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1,656,000
21	-10	-11 ~	-9.5	1.72	0.16	418	22. 2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1,659,000
22	-12	-13 ~	-11	1.72	0.16	430	22.0	442	336,026	382, 147	504	0.0	0.110	0.462	1,663	1,663,000
23	-14	-15 ~	-13	1.72	0.16	442	21.8	444	339,074	385, 614	504	0.0	0.111	0.462	1,671	1,671,000
24	-16	-17 ~	-15	1.72	0.16	454	21.6	445	340,603	387, 352	504	0, 0	0.111	0.461	1,654	1,654,000
25	-18	-19 ~	-17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0, 0	0.112	0,461	1,662	1,662,000
26	-20	-21 ~	-19	1.72	0, 16	479	21. 2	448	345, 211	392, 593	504	0, 0	0, 112	0, 461	1,665	1,665,000
27	-22	-23 ~	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1.673	1, 673, 000
28	-24	-25 ~	-23	1.72	0.15	503	20.8	452	351 403	384 870	498	0.0	0.113	0.461	1 680	1 680 000
29	-26	-27 ~	-25	1.72	0.15	515	20.6	453	352 959	386 574	498	0.0	0.113	0.460	1 664	1,664,000
30	-28	-29 ~	-27	1.72	0.15	527	20.4	455	356,083	389,996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31 ~	-29	1.72	0.15	539	20.2	456	357,650	391 712	198	0.0	0.114	0. 160	1,675	1,675,000
39	-32	-33 ~	-31	1.72	0.15	551	20.0	458	360, 794	395 155	498	0.0	0.115	0. 160	1,683	1,683,000
33	-34	-35 ~	-33	1.72	0.15	563	10.8	459	362 371	396 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37 ~	-35	1.72	0.15	575	19.6	461	365,536	400 349	498	0.0	0.115	0.459	1,675	1,675,000
35	-38	-30 ~	-37	1.72	0.15	587	19.4	462	367 124	400, 045	408	0.0	0.116	0.459	1,678	1,678,000
26	-40	-41 01	-20	1.72	0.15	500	10.9	464	270, 200	405 577	409	0.0	0.116	0.459	1,010	1,695,000
30	-40	-43 ~	-41	1.72	0.15	611	19. 2	404	371, 907	403, 317	450	0.0	0.117	0.459	1,000	1,689,000
38	-44	-45 ~	-43	1.72	0.15	623	18.8	467	375 113	410,838	408	0.0	0.117	0.458	1,005	1,678,000
39	-46	-47 ~	-45	1.72	0.15	635	18.6	468	376 721	410,000	408	0.0	0.117	0.458	1,681	1,681,000
40	-40	-40 0	-47	1.72	0.15	647	18.0	400	270.049	412, 395	450	0.0	0.117	0.450	1,001	1,689,000
40	-50	-51 0	-40	1.72	0.15	660	10.4	470	295 416	410, 134	450	0.0	0.110	0.458	1,000	1,000,000
49	-52	-52 0	-51	1.70	0.15	679	10.0	472	297 051	422,122	409	0.0	0.110	0.450	1,600	1,600,000
42	-54	-55 ~:	-53	1.73	0.15	684	17.9	415	390 331	423, 513	400	0.0	0.110	0.450	1,055	1,688,000
44	-56	-57 ~:	-55	1 72	0.15	696	17.7	476	391 976	429 307	408	0.0	0 110	0.457	1 602	1 692 000
45	-58	-59 ~:	-57	1 72	0.15	708	17.5	478	395 277	432 099	408	0.0	0 110	0.457	1 600	1 699 000
46	-60	-61 ~:	-50	1 72	0.15	720	17.3	470	396 933	434 736	408	0.0	0.120	0.457	1 702	1 702 000
47	-62	-63 ~:	-61	1.73	0.14	729	17.1	481	400 255	422 401	409	0.0	0.120	0.457	1,702	1,709,000
48	-64	-65 ~:	-63	1.73	0.14	744	16.9	489	401 021	424 250	402	0.0	0.120	0.456	1,105	1, 105, 000
40	_pe	-67 -	_65	1.70	0.14	756	16.7	494	405 969	497 770	40.9	0.0	0.120	0.450	1,050	1,000,000
49	_60	- 60 -	00 _07	1.10	0.14	100	10.7	404	400,200	420 547	400	0.0	0.120	0.450	1,702	1,702,000
51	-08	-09 ~	-60	1.73	0.14	790	16.2	460	400,939	429, 047	492	0.0	0.121	0.456	1,705	1,705,000
50	-79	_72 -	_71	1.10	0.14	700	10. 3	400	410, 302	435,097	400	0.0	0.121	0.450	1, 112	1, 712, 000
52	-12	-13 ~	-/1	1.73	0.14	192	16.1	489	413, 679	436,661	492	0.0	0.121	0.455	1,719	1, 719, 000
53 54	-72	-10 ~	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-70	-11 ~	-10	1.73	0.14	010	15.7	492	410, //1	442,030	492	0.0	0.122	0.400	1, (12	1, 712, 000
55	-/8	-19 ~	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 710, 000
56	-80	-81 ~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85 ~	-81	1.73	0.14	852	15.1	496	425,608	449, 253	492	0.0	0. 123	0.455	1,726	1, 726, 000
58	-88	-90 ~	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95 ~	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101 ~	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	-108 ~	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733	1,733,000
62	-112	-115 ~	-108	1.73	0.13	1, 033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1,737	1, 737, 000
63	-118	$-122 \sim$	-115	1.73	0.13	1,070	11.5	524	475,016	483, 575	486	0.0	0.127	0.451	1,754	1, 754, 000
64	-126	$-130 \sim$	-122	1.73	0.13	1, 118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1,758	1,758,000

	パラメータ	地盤改良		
物理	密度 ()は地下水位以浅	ρ	g/cm ³	2.18 (2)
기가	間隙比	e	-	0.75
	ポアソン比	VCD	-	0.26
変形	基準平均有効主応力 ()は地下水位以浅	σ'ma	kN/m ²	1 (1)
特性	基準初期せん断剛性 ()は地下水位以浅	Gma	kN/m ²	822662 (756184)
	最大履歴減衰率	h _{max}	—	0.152
強度	粘着力	CCD	kN/m ²	0.66
特性	内部摩擦角	φcd	度	41.2
	変相角	φp	-	-
液		S_1	-	-
状化		W 1	_	-
特	液状化パラメータ	p 1	_	-
性		p2	_	-
		C 1	_	-

表 6.2-5(4) 地盤の解析用物性値一覧(地盤改良)

6.2.6 地下水位

地下水位は地表面として設定する。

6.2.7 地震応答解析手法

立坑の地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法を用い て、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分 の時刻歴応答解析にて行う。部材については、はり要素及び平面ひずみ要素を用いること とする。また、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できる ようにモデル化する。地震応答解析については、解析コード「FLIP Ver.7.3.0_2」を使用 する。なお、解析コードの検証及び妥当性確認等の概要については、付録24「計算機プロ グラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 6.2-5 に示す。

図 6.2-5 地震応答解析手法の選定フロー

H-D モデルの選定理由は次の通りである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力 ~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を 適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって,耐震評価における有効応力解析では,地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として,地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

- 6.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を適用し、図 6.2-6 に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上確保 する。

立坑周辺の地質断面図を図 6.2-7 に示す。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長に対し て4又は5分割以上になるように要素高さを設定している

立坑の地震応答解析モデルを図 6.2-8 に示す。

図 6.2-6 モデル範囲の考え方

図 6.2-7(1) 地質断面図(南北方向断面)

図 6.2-8(1) 立坑の地震応答解析モデル(南北方向断面)

図 6.2-8(2) 立坑の地震応答解析モデル(東西方向断面)

(2) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離・す べりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向では、常時状態以上の引張が生じた場合、剛性及び応力をゼロとし、剥離を考慮する。接線方向では、地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合、剛性をゼロとし、すべりを考慮する。せん断強度 τ_f は次式のMohr-Coulomb式により規定される。c, ϕ は周辺地盤のc, ϕ とする。(表 6.2-6 参照)

$$\tau_{\rm f} = c + \sigma' \tan \phi$$

ここで,

τ_f : せん断強度

- c : 粘着力

表 6.2-	5 周辺地盤	なび隣接構造物	1との境界	に用いる	強度特性
--------	--------	---------	-------	------	-------------

周辺	!の状況	粘着力 c(N/mm ²)	内部摩擦角 (度)	備考
	埋戻土層	0	37.3	
第四紀層	du 層	0	37.3	_
	D2g-3 層	0	44. 4	_
新第三系 Km 層		$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—
地盤	改良体	0.5	0	_

Z:標高(m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 6.2-7のとおり 設定する。図 6.2-9にジョイント要素設定の考え方を示す。

表 6.2-7 ジョイント要素のばね定数

	せん断剛性k _s	圧縮剛性 k n
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	$1.0 imes 10^{6}$

(3) 材料特性の設定

南北方向断面については,加振直交方向の側壁,底版を線形はり要素を用いてモデル化 する。耐震壁の効果を見込む側壁及び中壁は平面ひずみ要素を用いてモデル化する。

東西方向断面については、立坑と隣接する軽油カルバートをモデル化しているが、立坑 については加振直交方向の側壁、底版を線形はり要素を用いてモデル化する。耐震壁の効 果を見込む側壁は平面ひずみ要素を用いてモデル化する。

軽油カルバートについては, 頂版, 底版, 妻壁及び鋼管杭を線形はり要素を用いてモデ ル化する。耐震壁の効果を見込む側壁は平面ひずみ要素を用いてモデル化する。

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

6.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、Rayleigh減衰をα=0となる剛性比例型減衰とする。

係数α, βは以下のように求めている。

$$\alpha = 0$$

 $\beta = \frac{h}{\pi f}$
ここで、
f : 固有値解析により求められた1次固有振動数
h : 各材料の減衰定数

地盤の減衰定数は1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配的となる。このため、解析上の安定のためになるべく小さい値として1%を採用している)とする。また、線形材料としてモデル化するコンクリートの減衰定数は5%(JEAG4601-1987)とする。

図 6.2-10 に Rayleigh 減衰の設定フローを,表 6.2-8 に固有値解析結果を示す。

図 6.2-10 Rayleigh 減衰の設定フロー

表 6.2-8 固有值解析結果 (追而)

6.2.10 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出 し,それぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反 力による荷重が含まれるものとする。

なお、立坑は、地盤内に埋設されている構造物であることから運転時の異常な過渡変化 時の状態及び設計基準事故時の状態の影響を受けないと考えられるため当該状態について の組合せは考慮しないものとする。また重大事故等対処時においても、地盤内で設計基準 事故時の条件を上回るような事象は発生しないため、設計基準事故時の条件を上回る荷重 はない。

荷重の組合せを表 6.2-9 に示す。

地震時に立坑に作用する機器・配管系からの反力については,機器・配管系を,解析モ デルに付加質量として与えることで考慮する。

		1		
種	別	荷重		算定方法
		皈休卢壬	\bigcirc	・設計図書に基づいて、対象構造物の体積に材料の密度を乗
永久荷重	常時	松仲日里	0	じて設定
	考慮	機器・配管自重	\bigcirc	・機器・配管の重さに基づいて設定
	荷重	土被り荷重	\bigcirc	・常時応力解析により設定
		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない
	静止土圧			・常時応力解析により設定
			\bigcirc	・地下水位に応じた静水圧として設定
		外小庄	0	・地下水の密度を考慮
		内水圧	_	・恒常的に内水が存在しないことから、考慮しない
亦動	古手	雪荷重	0	・雪荷重を考慮
変動	彻里	風荷重	_	 ・躯体が地中にあることから、風荷重を考慮しない
/⊞ ∢◊	古手	水平地震動	0	・基準地震動S。による水平・鉛直同時加振
1丙允	(刊里) (古香)	鉛直地震動	\bigcirc	・躯体,機器・配管の慣性力,動土圧を考慮
(地辰	印里ノ	動水圧	_	・恒常的に内水が存在しないことから、考慮しない

表 6.2-9 荷重の組合せ

- (1) 機器・配管荷重 (追而)
 - a. 南北方向断面

図 6.2-11 (1) 機器・配管荷重図(南北断面)

b. 東西方向断面 (追而)

図 6.2-12(2) 機器·配管荷重図(東西方向断面)

(2) 外水圧

地下水位は地表面として設定する。設定の際は、地下水の密度として、1.00 g/cm³を考慮する。

(3) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施行細則 第 16条の4」に従って設定する。積雪の厚さ1 cm あたりの荷重を20 N/m²/cm として、積雪 量は30 cm としていることから積雪荷重は600 N/m2 であるが、地震時短期荷重として積雪 荷重の0.35 倍である0.21 kN/m²を考慮する。

積雪荷重は構造物上面に付加質量として考慮する。

図 6.2-12(1) 雪荷重図(南北方向断面)

図 6.2-12(2) 雪荷重図(東西方向断面)

- 6.2.11 地震応答解析の検討ケース
 - (1) 耐震設計における検討ケース
 立坑の耐震設計における検討ケースを表 6.2-10 に示す。

			1	2	3	4	5	6
			原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤にお	地盤物性の
			づく液状化	はらつきを	はらつきを	的に液状化	いて非液状	はらつきを
	検針ケー	7	独度特性を	考慮(十 1	考慮(− 1	させること	化の条件を	考慮(+ 1
	便前クーン	~	用いた <u></u> 解例 ケース(基本	の)した畔	の)した件	を仮定した	仮定した姓	の)して作
			ケース)			7417 7		他を仮定し
			/ / //					た解析ケー
								ス
			原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パラ	液状化パラ
	液状化強度物	寺性	づく液状化	づく液状化	づく液状化	しない豊浦	メータを非	メータを非
	の設定	117	強度特性	強度特性	強度特性	標準砂に基	適用	適用
			(標準偏差	(標準偏差	(標準偏差	づく液状化		
			を考慮)	を考慮)	を考慮)	强度特性		
		(++)	1					
	$S_s - D 1$	(+-)	1					
		(-+)	1					
+H1	~	()	1					
電	$S_{s} - 1 1$	(++)	1	1	1	1	1	1
波	$S_{s} - 12$	(++)	1	1	1	1	1	1
	$S_{s} - 1 3$	(++)	1					
位相	$S_{s} = 1.4$	(++)	1	①の検	討において.	最も厳しい	、 (許容限界	に対す
	$S_s - 2 1$	(++)	1	て合物	いしょうかい	い地震動ナ	、田いて宇佐	
	$S_s - 2.2$	(++)	1	る余俗	い取も小さい	(*) 地震動を	一日いて夫旭	
		(++)	1					
	$S_{s} = 3.1$		1					
		(-+)	1					
	計		12	1	1	1	1	1

表 6.2-10 立坑の耐震設計における検討ケース

(2) 機器・配管系に対する加速度応答抽出のための検討ケース
 機器・配管系に対する加速度応答の抽出における検討ケースを表 6.2-11 に示す。

検討ケース			④ 地盤を強制的に液状 化させることを仮定	5 原地盤において非液 状化の条件を仮定し	 ⑥ 地盤物性のばらつき を考慮(+1 g)し
			した解析ケース	た解析ケース	て非液状化の条件を 仮定した解析ケース
液状化強度特性 の設定			敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
地震波(位相)	S_s –D1	(++)		1	
		(+-)		1	
		(-+)	1	1	1
		()		1	
	$S_{s} = 11$	(++)	⑤において, 上載され	1	⑤において, 上載され
	$S_s = 12$	(++)	る機器・配管系の固有	1	る機器・配管系の固有
	$S_s = 13$	(++)	振動数帯で加速度応	1	振動数帯で加速度応
	$S_s - 14$	(++)	答が最も大きくなる地	1	答が最も大きくなる地
	$S_s - 21$	(++)	震動を用いて実施す	1	震動を用いて実施す
	$S_s = 22$	(++)	る。	1	る。
	S _ 21	(++)		1	
	$S_s = 51$	(-+)		1	
計			1	12	1

表 6.2-11 機器・配管系への加速度応答の抽出における検討ケース

6.3 評価内容

6.3.1 水平断面の評価方法

図 6.3-1 に立坑構造図を示す。立坑には頂版及び中床版が存在し、地震時においては加 振直交方向の側壁を支持するはり部材として機能する。しかし本立坑における頂版及び中 床版についてはその平面積に対し機器・配管系及び搬入口等開口の占める割合が大きく、 2 次元動的解析においては頂版・中床版の剛性を考慮していない。閉鎖した立坑側壁の形 状効果にて地震時土圧に対し抵抗する構造としている。

この場合,鉛直方向延長(39.3 m)に対し立坑南北及び東西方向幅(それぞれ12.5 m, 16.5 m)と水平方向延長の方が短く,水平方向が主方向になると考えられる。

図 6.3-2 に水平断面解析モデル概念図を示す。

水平方向の設計にあたっては,側壁を直交壁に単純支持されるシェル要素としてモデル 化し,面外方向に2次元動的解析より得られる地震時荷重を作用させ,発生する断面力に 対し必要な水平方向鉄筋を配置する。

地震時荷重としては、2次元動的解析より得られる側壁はり要素に隣接する地盤要素の 水平直応力(σ'_x)と間隙水要素の発生応力(Δu)の和(全時刻絶対値最大)及び静水 圧を考慮する。

図 6.3-1 立坑構造図

図 6.3-2 水平断面解析モデル概念図

6.3.2 頂版·床版の評価方法

図 6.3-3 に頂版及び中床版の平面図を示す。頂版,中床版についてはその平面積に占め る開口面積の比率が大きいこから,2次元動的解析においてその剛性を考慮していない。

頂版及び中床版の設計については、開口形状を模擬したシェル要素にてモデル化し、接続する側壁及び中壁中心において単純支持とする。頂版及び中床版単独の固有値が不明であることから、2次元動的解析において頂版及び中床版位置における鉛直加速度応答スペクトルを算定し、基準地震動S。全ケースに対し全周期帯で最大となる応答加速度を抽出し、それを重力加速度で除することで鉛直設計震度とし、面外方向に自重による地震時荷重を考慮し、その荷重に必要な鉄筋を配置する。

6.3.3 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次 元波動論によって,地震応答解析モデルの底面位置で評価したものを用いる。

図 6.3-4 に入力地震動算定の概念図を,図 6.3-5 及び図 6.3-6 に入力地震動の加速度時刻歴波形と加速度応答スペクトルを示す。入力地震動の算定には解析コード

「microSHAKE/3D Ver. 2.2.3.311」を使用する。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認 する。断層モデル波である $S_s - 1$ 1 ~ $S_s - 2$ 2 については、特定の方向性を有すること から、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的には NS 方向及び EW 方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わせることで方 位補正した地震動を設定する。

図 6.3-4 入力地震動算定の概念図

MAX 621 cm/s² (53.46 s)

(a) 加速度時刻歷波形

図 6.3-5(1) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504 cm/s^2 (44.23 s)

図 6.3-5(2) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-D1)

MAX 414 cm/s^2 (25.29 s)

図 6.3-5(3) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524 cm/s^2 (25.01 s)

図 6.3-5(4) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

MAX 380 cm/s² (29.13 s)

図 6.3-5(5) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 491 cm/s^2 (27.81 s)

図 6.3-5(6) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-12)
MAX 402 cm/s^2 (26.35 s)

図 6.3-5(7) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

MAX 482 cm/s² (25.03 s)

図 6.3-5(8) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-13)

MAX 356 cm/s^2 (27.50 s)

図 6.3-5(9) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 403 cm/s^2 (28.97 s)

図 6.3-5(10) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-14)

MAX 649 cm/s^2 (68.81 s)

図 6.3-5(11) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

MAX 583 cm/s^2 (70.16 s)

図 6.3-5(12) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-21)

MAX 645 cm/s^2 (72.65 s)

図 6.3-5(13) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

MAX 653 cm/s^2 (72.08 s)

図 6.3-5(14) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)

MAX 573 cm/s² (8.25 s)

(b) 加速度応答スペクトル

周期(s)

図 6.3-5(15) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

MAX 245 cm/s^2 (7.81 s)

図 6.3-5(16) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-31)

MAX 621 cm/s^2 (53.46 s)

(a) 加速度時刻歷波形

図 6.3-6(1) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504 cm/s^2 (44.23 s)

(b) 加速度応答スペクトル

図 6.3-6(2) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-D1)

184

MAX 536 cm/s^2 (25.95 s)

図 6.3-6(3) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524 cm/s^2 (25.01 s)

図 6.3-6(4) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-11)

MAX 584 cm/s^2 (28.10 s)

(a) 加速度時刻歷波形

図 6.3-6(5) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 475 cm/s^2 (27.81 s)

図 6.3-6(6) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

MAX 597 cm/s^2 (25.32 s)

図 6.3-6(7) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

MAX 470 cm/s² (25.03 s)

図 6.3-6(8) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-13)

MAX 367 cm/s² (31.25 s)

図 6.3-6(9) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 404 cm/s^2 (28.97 s)

図 6.3-6(10) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-14)

MAX 732 cm/s^2 (61.54 s)

図 6.3-6(11) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

MAX 573 cm/s^2 (70.16 s)

図 6.3-6(12) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-21)

MAX 794 cm/s^2 (69.86 s)

図 6.3-6(13) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

MAX 650 cm/s^2 (72.08 s)

図 6.3-6(14) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)

図 6.3-6(15) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

MAX 245 cm/s^2 (7.81 s) 1200 1000 800 600 Maran -600 -800 -1000 -1200 5 0 10 15 20 時間 (s)

図 6.3-6(16) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-31)

- 6.3.4 許容限界の設定
 - (1) 許容応力度による許容限界

立坑の構造部材は,許容応力度による照査を行う。評価位置においてコンクリートの圧 縮応力度,鉄筋の引張応力度,コンクリートのせん断応力度が短期許容応力度以下である ことを確認する。

許容応力度については、「コンクリート標準示方書〔構造性能照査編〕((社)土木学 会、2002年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日 本道路協会、平成24年3月)」に基づき、コンクリート及び鉄筋の許容応力度に対して割 増係数1.5を考慮し、表6.3-1のとおり設定する。

評価項目		短期許容応力度 (N/mm ²)
コンクリート*1 (f' _{ck} =40 N/mm ²)	許容曲げ圧縮応力度 σ _{ca}	21.0
	許容せん断応力度 τ _{al}	0.825*3
鉄筋(SD490)*2	許容引張応力度 σ _{sa} (曲げ)	435
	許容引張応力度 σ _{sa} (せん断)	300
鉄筋(SD345)*1	許容引張応力度 σ _{sa}	294

表 6.3-1 許容応力度

注記 *1:コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)

- *3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002年制定)」に準拠し、次式により求められる許容せん 断力
- (V_a) を許容限界とする。

$$V_{a} = V_{ca} + V_{sa}$$

ここで、
 V_{ca} : コンクリートの許容せん断力
 $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_{w} \cdot j \cdot d$
 V_{sa} : 斜め引張鉄筋の許容せん断力
 $V_{sa} = A_{w} \cdot \sigma_{sa2} \cdot j \cdot d / s$
 τ_{a1} : 斜め引張鉄筋を考慮しない場合の許容せん断応力度
 b_{w} : 有効幅
j : 1/1.15
d : 有効高さ

- A_w:斜め引張鉄筋断面積
- σ_{sa2} :鉄筋の許容引張応力度
- s : 斜め引張鉄筋間隔

表 6.3-2(1) 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(南北方向) (追而)

6.3-2(2) 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(東西方向) (追而)

- (2) 基礎地盤の支持性能に対する許容限界
 - 極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験結 果(せん断強度)等より設定する。

道路橋示方書による直接基礎の支持力算定式を以下に示す。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

ここで、
 q_{d} : 基礎底面地盤の極限支持力度 (kN/m2)
 c : 基礎底面より下にある地盤の粘着力 (kN/m2)
 γ_{1} : 基礎底面より下にある地盤の単位体積重量 (kN/m2) ただし、地下水位以
下では水中単位体積重量とする
 γ_{2} : 基礎底面より上にある周辺地盤の単位体積重量 (kN/m2) ただし、地下水
 D : 基礎幅

D_f : 基礎の有効根入れ深さ

N_c, N_q, N_γ:図 6.3-7 に示す支持力係数

基礎底面の形状 形状係数	帯	状	正方形,円形	長方形,小判形
lpha . The second second $lpha$	1.0		1.3	$1+0.3\frac{B}{D}$
β	1.0		0.6	$1 - 0.4 \frac{B}{D}$

表 6.3-3 基礎底面の形状係数

D: ケーソン前面幅(m), B: ケーソン側面幅(m)

ただし, *B/D*>1の場合, *B/D*=1とする。

図 6.3-7 支持力係数を求めるグラフ

立坑における許容限界を表 6.3-4 に示す。

表 6.3-4 基礎地盤の支持力に対する許容限界(追而)

6.4 評価結果

6.4.1 地震応答解析結果

立坑の南北方向断面及び東西方向断面の基準地震動S。による断面力(曲げモーメント,軸力,せん断力)を図6.4-1及び図6.4-2に示す。本図は構造部材の曲げ及びせん断照査結果が最も厳しくなる部材の評価時刻においての断面力を示したものである。

また,立坑の南北方向断面及び東西方向断面において,最大せん断ひずみ分布図を図 6.4-3及び図 6.4-4に示し,過剰間隙水圧比の分布図を図 6.4-5及び図 6.4-6に示 す。これらの図は,各要素に発生したせん断ひずみ及び過剰間隙水圧比の全時刻における 最大値の分布を示したものである。 To2_VS-NS_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=00.00 s

追而

To2_VS-NS_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=OO.OO s

(+: 圧縮, -: 引張)

To2_VS-NS_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=OO.OO s

追而

せん断力 (kN)

照査値が最も厳しくなる部材の発生断面力に太枠表示

図 6.4-1(1) 南北方向断面の地震時断面力(S_s-D1〔H+,V+〕, t=○○.○○s)

図 6.4-1(4) 南北方向断面の地震時断面力(S_s-D1〔H-,V-〕, t=○○.○○s)

図 6.4-1(5) 南北方向断面の地震時断面力(S_s-11, t=〇〇.〇〇s)

図 6.4-1(6) 南北方向断面の地震時断面力(S_s-12, t=〇〇.〇〇s)

図 6.4-1(7) 南北方向断面の地震時断面力(S_s-13, t=〇〇.〇〇s)

図 6.4-1(8) 南北方向断面の地震時断面力(S_s-14, t=〇〇.〇〇s)

図 6.4-1(9) 南北方向断面の地震時断面力(S_s-21, t=〇〇.〇〇s)

追而

図 6.4-1 (11) 南北方向断面の地震時断面力 (S_s-31 [H+,V+], t=○○.○○s)

図 6.4-1 (12) 南北方向断面の地震時断面力 (S_s-31 [H-,V+], t=〇〇.〇〇s)

To2_VS-EW_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=00.00 s

(照査値が最も厳しくなる部材の発生断面力)

曲げモーメント (kN・m)

To2_VS-EW_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=00.00 s

(+: 圧縮, -: 引張)

軸力 (kN)

6 - 74

追而
To2_VS-EW_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=OO.OO s

追而

せん断力 (kN)

照査値が最も厳しくなる部材の発生断面力

図 6.4-2(1) 東西方向断面の地震時断面力(S_s-D1 [H+,V+], t=○○.○○s)

図 6.4-2(2) 東西方向断面の地震時断面力(S_s-D1〔H+,V-〕, t=○○.○○s)

図 6.4-2(3) 東西方向断面の地震時断面力(S_s-D1 [H-,V+], t=○○.○○s)

図 6.4-2(4) 東西方向断面の地震時断面力(S_s-D1〔H-,V-〕, t=○○.○○s)

図 6.4-2(5) 東西方向断面の地震時断面力(S_s-11, t=○○.○○s)

図 6.4-2(6) 東西方向断面の地震時断面力(S_s-12, t=〇〇.〇〇s)

図 6.4-2(7) 東西方向断面の地震時断面力(S_s-13, t=○○.○○s)

図 6.4-2(8) 東西方向断面の地震時断面力(S_s-14, t=○○.○○s)

図 6.4-2(10) 東西方向断面の地震時断面力(S_s-22, t=〇〇.〇〇s)

追而

図 6.4-2(11) 東西方向断面の地震時断面力(S_s-31〔H+,V+〕, t=○○.○○s)

図 6.4-2(12) 東西方向断面の地震時断面力(S_s-31〔H-,V+〕, t=○○.○○s)

追而

図 6.4-3(1) 南北方向断面の最大せん断ひずみ分布(S_s-D1[H+,V+])

- 図 6.4-3(2) 南北方向断面の最大せん断ひずみ分布(S_s-D1〔H+, V-〕)
- 図 6.4-3(3) 南北方向断面の最大せん断ひずみ分布(S_s-D1〔H-,V+〕)
- 図 6.4-3(4) 南北方向断面の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
- 図 6.4-3 (5) 南北方向断面の最大せん断ひずみ分布 (S_s-11)
- 図 6.4-3(6) 南北方向断面の最大せん断ひずみ分布(S_s-12)
- 図 6.4-3(7) 南北方向断面の最大せん断ひずみ分布(S_s-13)
- 図 6.4-3(8) 南北方向断面の最大せん断ひずみ分布(S_s-14)
- 図 6.4-3(9) 南北方向断面の最大せん断ひずみ分布(S_s-21)
- 図 6.4-3(10) 南北方向断面の最大せん断ひずみ分布(S_s-22)

追而

```
図 6.4-3(11) 南北方向断面の最大せん断ひずみ分布(S<sub>s</sub>-31[H+,V+])
```

図 6.4-3 (12) 南北方向断面の最大せん断ひずみ分布 (S_s-31 [H-,V+])

図 6.4-4(1) 東西方向断面の最大せん断ひずみ分布(S_s-D1 [H+,V+])

- 図 6.4-4(2) 東西方向断面の最大せん断ひずみ分布(S_s-D1〔H+, V-〕)
- 図 6.4-4(3) 東西方向断面の最大せん断ひずみ分布(S_s-D1〔H-,V+〕)
- 図 6.4-4(4) 東西方向断面の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
- 図 6.4-4(5) 東西方向断面の最大せん断ひずみ分布(S_s-11)
- 図 6.4-4(6) 東西方向断面の最大せん断ひずみ分布(S_s-12)
- 図 6.4-4(7) 東西方向断面の最大せん断ひずみ分布(S_s-13)
- 図 6.4-4(8) 東西方向断面の最大せん断ひずみ分布(S_s-14)
- 図 6.4-4(9) 東西方向断面の最大せん断ひずみ分布(S_s-21)
- 図 6.4-4(10) 東西方向断面の最大せん断ひずみ分布(S_s-22)
- 図 6.4-4(11) 東西方向断面の最大せん断ひずみ分布(S_s-31[H+,V+])
- 図 6.4-4(12) 東西方向断面の最大せん断ひずみ分布(S_s-31〔H-,V+〕)

追而

追而

図 6.4-5(1) 南北方向断面の過剰間隙水圧比分布(S_s-D1〔H+,V+〕)

- 図 6.4-5(2) 南北方向断面の過剰間隙水圧比分布(S_s-D1〔H+,V-〕)
- 図 6.4-5(3) 南北方向断面の過剰間隙水圧比分布(S_s-D1〔H-,V+〕)
- 図 6.4-5(4) 南北方向断面の過剰間隙水圧比分布(S_s-D1〔H-, V-〕)
- 図 6.4-5(5) 南北方向断面の過剰間隙水圧比分布(S_s-11)
- 図 6.4-5(6) 南北方向断面の過剰間隙水圧比分布(S_s-12)
- 図 6.4-5(7) 南北方向断面の過剰間隙水圧比分布(S_s-13)
- 図 6.4-5(8) 南北方向断面の過剰間隙水圧比分布(S_s-14)
- 図 6.4-5(9) 南北方向断面の過剰間隙水圧比分布(S_s-21)
- 図 6.4-5(10) 南北方向断面の過剰間隙水圧比分布(S_s-22)
- 図 6.4-5(11) 南北方向断面の過剰間隙水圧比分布(S_s-31〔H+,V+〕)
- 図 6.4-5(12) 南北方向断面の過剰間隙水圧比分布(S_s-31〔H-,V+〕)

図 6.4-6(1) 東西方向断面の過剰間隙水圧比分布(S_s-D1〔H+,V+〕)

- 図 6.4-6(2) 東西方向断面の過剰間隙水圧比分布(S_s-D1〔H+, V-〕)
- 図 6.4-6(3) 東西方向断面の過剰間隙水圧比分布(S_s-D1〔H-,V+〕)
- 図 6.4-6(4) 東西方向断面の過剰間隙水圧比分布(S_s-D1〔H-, V-〕)
- 図 6.4-6(5) 東西方向断面の過剰間隙水圧比分布(S_s-11)
- 図 6.4-6(6) 東西方向断面の過剰間隙水圧比分布(S_s-12)
- 図 6.4-6(7) 東西方向断面の過剰間隙水圧比分布(S_s-13)
- 図 6.4-6(8) 東西方向断面の過剰間隙水圧比分布(S_s-14)
- 図 6.4-6(9) 東西方向断面の過剰間隙水圧比分布(S_s-21)
- 図 6.4-6(10) 東西方向断面の過剰間隙水圧比分布(S_s-22)
- 図 6.4-6(11) 東西方向断面の過剰間隙水圧比分布(S_s-31〔H+,V+〕)
- 図 6.4-6(12) 東西方向断面の過剰間隙水圧比分布(S_s-31〔H-,V+〕)

追而

- 6.4.2 南北方向の耐震評価結果
 - (1) 構造部材の曲げに対する評価結果

表 6.4-1 及び表 6.4-2 に曲げに対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力は各地震動,各部材において最大となる値を示している。

以上より,立坑の構造部材の発生応力は,許容限界以下であることを確認した。 図 6.4-7 に概略配筋図を,表 6.4-3 に断面計算に用いた断面諸元の一覧を示す。

	表 6.4-1(1) コンクリートの曲げ照査結果											
基準地震動	位相		評価位は	<u> </u>		圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ²)	LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL				
			底版		26							
		いまナウ	北	側壁		+						
		珩 但万円	南側壁				示例					
				B1F		(下図に‡	3ける番号)					
		水平方向		B2F								
			北側壁	B3F								
	H+, V+			B4F								
$S_{-} D 1$				ピット部								
S _S D1				B1F								
				B2F								
				B3F								
				B4F								
			TTUC	ピット部								
		th ch										
		<u> </u>	KNU(BIF~) 中広地(DAI	B3F)								
		<u> </u>										
			上面庭									
		鉛直方向		<u>例型</u> 側辟								
			IH)	<u>原生</u> B1F								
				B2F								
			北側壁	B3F								
				B4F								
				ピット部								
$S_s - D1$	H+, V-	水半方向		B1F								
				B2F								
			南側壁	B3F								
				B4F								
				ピット部								
			頂版									
		中床版 (B1F~B3F)										
		中床版 (B4F)										

表 6.4-1(2) コンクリートの曲げ照査結果										
基準地震動	位相		評価位は	<u>置</u>			短期許容 応力度 (N/mm ²)	照査値		
			底版							
		秋 古士向	北	側壁						
		如电刀内	南側壁							
				B1F						
				B2F						
			北側壁	B3F						
	H—, V+			B4F						
$S_s - D1$		水平方向		ビット部						
_				BIF						
			南側磨	BZF DDF						
			用則型	DOF DAE						
				ピット並						
			佰版							
		中反	<u> 長版(B1F~</u>	B3F)						
			中床版 (B4H	/ 7)						
		底版								
		秋声十百	北	側壁						
		始但力问	南	南側壁						
				B1F						
				B2F						
			北側壁	B3F						
				B4F						
$S_{a} - D1$	н v-	水平方向		ピット部						
55 21	, ,	214 1 22 1.3		B1F						
				B2F						
			南側壁	<u>B3F</u>						
				B4F						
			石山	ビット部						
			<u> </u>	D0E)						
			<u> </u>	2) DOL)						
			<i>⊤/</i> へルX \D41	7						

表 6.4-1(2) コンクリートの曲げ照査結果

Г

		表 6.4-	-1 (3)	コンクリート	トの曲げ照査	結果	追而
基準地震動	位相		評価位は	晋	王縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ²)	照査値
			底版				
		鉛直方向	北	側壁			
	H+, V+		南側壁				
		水平方向		B1F	_		
			北側壁	B2F			
				B3F D4E			
				D4F ピット立M			
$S_{s} - 1 1$				R1F			
			南側壁	B2F			
				B3F			
				B4F			
				ピット部			
			頂版				
		中身	₹版(B1F~	B3F)			
		中床版 (B4F)					
			底版	/p.(.p.+			
		鉛直方向	鉛直方向 北側壁				
			ド				
				B1F D0E			
			北側辟	DZF B3F			
			加肉王	B4F			
~ 10				ピット部			
$S_{s} - 12$	H+, V+	水平万回		B1F			
				B2F			
			南側壁	B3F			
				B4F			
				ピット部			
			頂版	>			
	F	中床版 (B1F~B3F)					
		1	屮床版(B4Ⅰ	()			

	表 6.4-1(4) コンクリートの曲げ照査結果											
基準地震動	位相		評価位置	晋		圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ²)		照査値			
			底版									
		約古士白	北	側壁								
		逝 但万円	南側壁									
				B1F								
		水平方向		B2F								
			北側壁	B3F								
				B4F								
$S_{2} = 1.3$	H+. V+			ピット部								
				B1F								
			声加萨	B2F								
			宵側壁	B3F								
				B4F								
			TE LLC	ビット部								
			<u> </u>	DOE)								
		中床版 (B4F)										
			北	间辟								
		鉛直方向	南	间辟								
			111	B1F								
				B2F								
			北側壁	B3F								
				B4F								
0 14		····································		ピット部								
$S_{s} = 1.4$	H+, V+	水平方问		B1F								
				B2F								
			南側壁	B3F								
				B4F								
				ピット部								
			頂版									
		中床版 (B1F~B3F)										
	-	1	中床版(B4F	7)								

	表 6.4-	-1 (5)	コンクリート	の曲げ照査結果	果	追而
位相		評価位置	<u> </u>	王縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ²)	照查値
		底版				
	<u> </u>					
H+, V+	如臣刀问	南側壁				
			B1F			
		北側壁	B2F			
	水平方向		B3F			
			B4F			
			ビット部			
		南側辟	BIF			
		用則型	DOF DAE			
			ピット部			
		佰版				
	中房		B3F)			
	中床版(B4F)					
		底版				
	秋古士白	北	側壁			
	茹但万问	南	側壁			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
H+.V+	水平方向		ピット部			
,	214 1 22 1.1		B1F			
			B2F			
		甯側壁	B3F			
			B4F			
		百旧	ロット部			
F	<u></u>			1		
	山口	き版 (B1E~)	B3E)			
	位相 H+, V+ H+, V+	在相 「 日本 日本	位相 評価位式 位相 正価 鉛直方向 北側壁 小平方向 北側壁 市 北側壁 小平方向 市 中床版 (B1F~) 中床版 (B47) 日+, V+ 公面方向 北側壁 日+, V+ 小平方向 「 日 日 1 日 日 1 日 日 1 日 日 1 日 日 1 日 日 1 日 日 1 日 日 1 日 日 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 日 1 1 </td <td>使相 評価位置 位相 正飯 1 公面方向 北側壁 1 小花山 南側壁 1 小花山 南側壁 1 北側壁 第日 1 小花山 第日 1 小花山 第日 1 北山 第日 1 第日 1 1 北山 第日 1 第日 1 1 市山 1 1 市山 1 1 市山 1 1 市山 1 1 市田 1 1 市田 1 1 市市 1 1 市 1<</td> <td>密告・4-1(5) コンクリートの曲げ照査結果 位相 評価位置 圧縮 部直方向 北側壁 (N/ma2) 金山直方向 北側壁 0 小平方向 周1F 0 市側壁 0 0 北側壁 1 0 市側壁 0 0 水平方向 1 0 市側壁 0 0 市側壁 1 0 市像側壁 1 0 中床版 (BLF~B3F) 1 0 中床版 (BLF~B3F) 1 0 中床版 (BLF~B3F) 1 0 中水側壁 1 1 0 日 上岐 1 0 日 上岐 1 0 0 日 上岐 1 0 0 日 上岐 1 0</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	使相 評価位置 位相 正飯 1 公面方向 北側壁 1 小花山 南側壁 1 小花山 南側壁 1 北側壁 第日 1 小花山 第日 1 小花山 第日 1 北山 第日 1 第日 1 1 北山 第日 1 第日 1 1 市山 1 1 市山 1 1 市山 1 1 市山 1 1 市田 1 1 市田 1 1 市市 1 1 市 1<	密告・4-1(5) コンクリートの曲げ照査結果 位相 評価位置 圧縮 部直方向 北側壁 (N/ma2) 金山直方向 北側壁 0 小平方向 周1F 0 市側壁 0 0 北側壁 1 0 市側壁 0 0 水平方向 1 0 市側壁 0 0 市側壁 1 0 市像側壁 1 0 中床版 (BLF~B3F) 1 0 中床版 (BLF~B3F) 1 0 中床版 (BLF~B3F) 1 0 中水側壁 1 1 0 日 上岐 1 0 日 上岐 1 0 0 日 上岐 1 0 0 日 上岐 1 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

	表 6.4-1 (6) コンクリートの曲げ照査結果											
基準地震動	位相		評価位は	<u>置</u>		圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ²)]	照査値			
			底版									
		鉛直方向	<u>北</u> 南	<u>側壁</u> 側壁								
				B1F								
		水平方向		B2F								
			北側壁	B3F								
				B4F								
S = 31	н⊥ ∨⊥			ピット部								
5 5 5 1	11 , V			B1F								
				B2F								
			南側壁	B3F								
				B4F								
			~~~!!!=	ピット部								
			<u> </u>									
		<u>- </u>	<u> 中床版 (B1F~B3F)</u> 由 床版 (B4F)									
		<u>中床版(B4F)</u> 底版										
			広成	伯伯卒								
		鉛直方向	一心	间壁								
			111	则型 R1F								
				B2F								
			北側磨	B3F								
				B4F								
				ピット部								
$S_{s} - 31$	H-, V+	水半万回		B1F								
				B2F								
			南側壁	B3F								
				B4F								
				ピット部								
			頂版									
		中床版 (B1F~B3F)										
	-	中床版 (B4F)										

*1 評価位置は次頁の図に示す



٦

表 6.4-2 (1) 鉄筋の曲げ照査結果											
基準地震動	位相		評価位置	<b>晋</b>		引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値			
		底版									
		秋古士白	北	側壁							
		如但刀円	南側壁								
				B1F							
			北側壁	B2F							
				B3F							
	H+, V+			B4F							
SD1		水平方向		ピット部							
3			古側辟	B1F							
				B2F							
			用側壁	B3F D4F							
				D4F ピット立7							
				レット部							
		中反	- <u>- 浜瓜</u> を版(B1F~	R3F)							
		i / //	<u></u> 中床版(B4I	F)							
		底版									
		~ ㅎ + +	北	側壁							
		鉛但力问	南側壁								
				B1F							
				B2F							
			北側壁	B3F							
				B4F							
S - D1	н+ ∨—	水亚方向		ピット部							
J _s D1	11 · ,	14 1 21 10		B1F							
			Lab. (Ab.	B2F							
			南側壁	B3F							
				B4F							
				ピット部							
			<u></u>								
	F	中床版 (B1F~B3F)									
			中本版(B41	1/							

. (-) AH- 65 山じ四本外田

*1 評価位置は次頁の図に示す



表 6.4-2(2) 鉄筋の曲げ照査結果											
基準地震動	位相		評価位置	置		引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照	 查値		
			底版								
		秋古士白	北	側壁							
		亚电刀问	南	側壁							
				B1F							
		水平方向		B2F							
			北側壁	B3F							
				B4F							
SD1	H-, V+			ピット部							
	,			B1F							
			南側辟	B2F							
			用側壁	B3F D4F							
				B4F F ^e い上並7							
			百版	ヒット部							
		山口		R3F)							
		1	<u>中床版(B4</u>	F)							
		底版									
			北側壁								
		鉛直万回	南側壁								
				B1F							
				B2F							
			北側壁	B3F							
				B4F							
S = D1	н— v—	水亚方向		ピット部							
S _s D1	11 , v	77十75日		B1F							
				B2F							
			南側壁	B3F							
				B4F							
			국국민준	ピット部							
		ب . ب	目版								
		中床版 (B1F~B3F)									
		I	屮床版(B4I	F)							

*1 評価位置は次頁の図に示す



٦

Г

表 6.4-2(3) 鉄筋の曲げ照査結果											
基準地震動	位相		評価位置	<u> </u>		引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )		照査値		
			底版								
		<b>扒</b> 古士向	北	側壁							
		如巨刀内	南側壁								
				B1F							
				B2F							
			北側壁	B3F							
				B4F							
$S_{s} - 11$	H+, V+	水平方向		ビット部							
5				BIF							
			靑伽陸	B2F							
			用侧壁	B3F D4E							
				D4F ビット却							
			頂版	レット即							
		中反		B3F)							
		中床版 (B4F)									
			底版								
		いまたら	北	側壁							
		鉛直方向 南側壁									
				B1F							
				B2F							
			北側壁	B3F							
				B4F							
S - 12	H+ V+	水亚方向		ピット部							
0 5 1 2	11 , , , ,	714 1 20 101		B1F							
				B2F							
			甯側壁	B3F							
				B4F					-		
			구동 따드	ビット部							
			 = №(D1E	D0C)							
		中床版 (B1F~B3F)									
		,	<u> ヤバベルス (B4</u> t	'ノ							

*1 評価位置は次頁の図に示す



٦

	表 6.4-2(4) 鉄筋の曲げ照査結果											
基準地震動	位相		評価位置	<u>置</u>		圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照	發查值			
			底版									
		鉛直方向	北	側壁								
			南側壁									
				B1F								
		水平方向	ゴレ相目卒	B2F								
			北側壁	B3F								
	H+, V+			B4F ピット立								
$S_{s} = 1.3$				L ツ 下 司) B1F								
				B2F								
			南側壁	B3F								
				B4F								
				ピット部								
			頂版									
		中房	₹版(B1F~	B3F)								
		中床版 (B4F)										
		底版										
		鉛直方向	北	側壁								
			南側壁									
				BIF								
			小山陸	B2F								
			北侧空	B3F B4E								
				ピット並								
$S_{s} - 14$	H+, V+	水平方向		B1F								
				B2F								
			南側壁	B3F								
				B4F								
				ピット部								
			頂版									
		中身	₹版 (B1F~	B3F)								
		1	中床版(B4F	7)								



表 6.4-2(5) 鉄筋の曲げ照査結果											
基準地震動	位相		評価位置	<u>置</u>			短期許容 応力度 (N/mm ² )	照査値			
			底版								
		ハナトム	北	側壁							
		珩但万问	南側壁								
				B1F							
				B2F							
		水平方向	北側壁	B3F							
				B4F							
S - 21	H+, V+			ピット部							
			去 個 医类	B1F							
				B2F							
			南側壁	B3F							
				B4F							
			국동비단	ピット部							
			目版	DOD)							
		<u>ー </u> 中 Þ	木阪(BIF~ 中亡屿(D41	B3F)							
			上の時								
		鉛直方向	一位	南側辟							
			נדו	B1F							
				B2F							
			北側壁	B3F							
				B4F							
				ピット部							
$S_{s} - 22$	H+, V+	水平万回		B1F							
				B2F							
			南側壁	B3F							
				B4F							
				ピット部							
			頂版								
		中床版 (B1F~B3F)									
		中床版 (B4F)									

-+-(-) AH- 65  1



表 6.4-2(6) 鉄筋の曲げ照査結果 追												
基準地震動	位相		評価位は	<u>置</u>		圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查値				
			底版									
		鉛直方向	北側壁									
			南側壁									
				B1F								
		水平方向	II. Ind Date	B2F								
			北側壁	B3F								
	H+, V+			B4F								
$S_{s} - 31$				ビット部								
				DIF								
			南側辟	B2F								
			用則型	DJF DJF								
				D4r ピット却								
			頂版	ロット即								
		中京	·版 (B1F~	B3F)								
		中床版 (B4F)										
		底版										
		ハナナム	北側壁									
		鉛胆力回	南側壁									
				B1F								
				B2F								
			北側壁	B3F								
				B4F								
S - 31	H- V+	水亚方向		ピット部								
U _s UI	, , , ,	714   75   13		B1F								
				B2F								
			南側壁	B3F								
				B4F								
			72° 11	ビット部								
			<u> </u>									
			KR (BIF~)	B3F)								
		Ļ	+ 休	1)								



#### 表 6.4-3 断面諸元一覧表(曲げに対する評価)

					断面	性状				主鉄筋		
	部位		材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	段数	鉄筋間隔	鉄筋量
				b (m)	h (m)	d'(m)	d (m)	(-)	(mm)	(-)	(mm)	$(cm^2)$
	底版		M 1									
	鉛直	方向	M2									
		B1F	M7									
-1レ /101 日本		B2F	M8									
北側壁	水平方向	B3F	M9									
		B4F	M10									
		ピット部	M11									
	鉛直	方向	M3									
		B1F	M12									
南側廃		B2F	M13									
用側壁	水平方向	B3F	M14									
		B4F	M15									
		ピット部	M16									
	頂版		M4									
中房		B3F)	M5									
I	中床版(B4F	i)	M6									



追而

(2) 構造部材のせん断に対する評価結果

表 6.4-4にせん断に対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 短期許容せん断応力度以下である又はコンクリートの負担するせん断力(V_c)と,斜め 引張鉄筋の負担するせん断力(V_s)を合わせた許容せん断力(V_a)が,発生せん断力

(V) 以上であることを確認した ( $V_a = V_c + V_s \ge V$ )。なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。 図 6.4-8 に概略配筋図を、表 6.4-5 に断面計算に用いた断面諸元の一覧を示す。

		<b></b>	I I (I) U		派且怕不		追而
基準地震動	位相	評	価位置		発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査値
		底	版				
			B1F				
			B2F				
		北側壁	B3F				
			B4F				
			ピット部				
S = D1	H+ V+		B1F				
S _s D1	11   , V		B2F				
		南側壁	B3F				
			B4F				
			ピット部				
		頂	版				
		中床版()	B1F∼B3F)				
		中床版 (B4F)					
		底	版				
			B1F				
			B2F				
		北側壁	B3F				
			B4F				
			ピット部				
S = D1	н∔ v—		B1F				
S _s D1	11 × , V		B2F				
		南側壁	B3F				
			B4F				
			ピット部				
		頂	版				
		中床版()	B1F∼B3F)				
		中床版	(B4F)				

表 6.4-4(1) せん断照査結果

Г

٦



		表 6.	4-4 (2) せん	し断り	照查結果			追而
基準地震動	位相	記 日	平価位置		発生 せん断力 (kN)	短期許容 せん断力 (kN)	Ę,	照查値
			版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
$S_{-} D 1$	H- V+		B1F					
DS DI	,	南側壁	B2F					
			B3F					
			B4F					
			ピット部					
		一 甲床版(	$B1F \sim B3F)$					
		<u> 中床版(B4F)</u>						
			x版	_				
			B1F					
		山口巴本	B2F					
		北側壁	B3F					
			B4F					
			<u> こ ツ 下 部)</u>	_				
$S_s - D1$	H-, V-							
S _s D1		南側辟						
		旧則空	DJF DJF	-				
			ビットゴ					
		T	「版」 「版					
		中床版 (	$B1F \sim B3F$ )					
		中床版	ž (B4F)					

*1 評価位置は次頁の図に示す。



		表 6.	4-4 (3) せん	断照查結果		追而		
基準地震動	位相	評	一位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照查値		
		底	版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S _ 1 1			B1F					
$S_{s} - 11$	H+, V+		B2F					
				南側壁	B3F			
			B4F					
			ピット部					
		頂	〔版					
		中床版(	B1F~B3F)					
		中床版	ā (B4F)					
		底	版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S _ 1 9			B1F					
$5_{s} - 12$	n+, $v+$		B2F					
		南側壁	B3F					
			B4F					
			ピット部					
		頂	〔版					
		中床版(	B1F~B3F)					
		中床版	ā (B4F)					



		表 6.	4-4(4) せん	ノ断	照査結果			追而
基準地震動	位相	計	至価位置		発生 せん断力 (kN)	短期許容 せん断力 (kN)	貝	段查值
		底	版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S = 1.3	н+ ∨+		B1F					
$S_s = 10$	11   , V		B2F					
		南側壁	B3F					
			B4F					
			ピット部					
		頂	〔版					
		中床版(	B1F~B3F)					
		中床版 (B4F)						
			版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S = 1.4	н+ ∨+		B1F					
S _s 14	11   , V		B2F					
		南側壁	B3F					
			B4F					
			ピット部					
		Ĩ	〔版					
		中床版(	B1F~B3F)					
		中床版	ā (B4F)					

*1 評価位置は次頁の図に示す。



		表 6.	4-4 (5) せん	断照查結果		追而
基準地震動	位相	部	平価位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査値
		Ē	K版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
S - 21	H+ V+		B1F			
S _s -21	пт, vт	南側壁	B2F			
			B3F			
			B4F			
			ピット部			
		I	〔版			
		中床版(	B1F~B3F)			
		中床脱	z (B4F)			
			5版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
$S_{s} - 22$	H+, V+		B1F			
S _s -22	,		B2F			
		<b>南側壁</b>	B3F			
			B4F			
			ビット部			
		一 中床版 (	$BIF \sim B3F$			
		甲床肋	ζ (B4F)			

*1 評価位置は次頁の図に示す。



		<b>衣</b> 0.	1 1 (0) E	70 py				追而
基準地震動	位相	評	価位置		発生 せん断力 (kN)	短期許容 せん断力 (kN)	月	照查値
		底	版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S _ 2 1			B1F					
$3_{s} - 31$	Π⊤, ν⊤		B2F					
		南側壁	B3F					
			B4F					
			ピット部					
		頂	版					
		中床版()	B1F∼B3F)					
		中床版 (B4F)						
		底	版					
			B1F					
			B2F					
		北側壁	B3F					
			B4F					
			ピット部					
S _ 2 1	н v_		B1F					
S _s D1	11 , V		B2F					
		南側壁	B3F					
			B4F					
			ピット部					
		頂	版					
		中床版()	B1F~B3F)					
		中床版	(B4F)					

表 6.4-4(6) せん断照査結果

Г

٦



追而

#### 図 6.4-8 概略配筋図

		表	€ 6.4-5	断面諸	行一覧家	表(せん	断に対す	る評価)			追而
断面性状というというで、「「」というのではないで、「」というのではないで、「」というのではないで、「」というのではないで、「」というのではないで、「」というのではないで、「」というのではないで、「」											
部位 材料			部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	Sb	Ss	鉄筋量
			b(m)	h(m)	d'(m)	d (m)	(-)	(mm)	(mm)	(mm)	$(cm^2)$
底版 M1 M1 A A A A A A A A A A A A A A A A A											
B1F M2											
	B2F	M3									
北側壁	B3F	M4									
北側壁 <u>B3F</u> B4F		M2									
B4F ピット部		M6									
	B1F	M7									
	B2F	M8									
南側壁	B3F	M9									
	B4F	M10									
	ピット部	M11									
I	項版 M12 [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [12] [1										
中床版(	$B1F \sim B3F$ )	M13									
中床版	ī (B4F)	M14									







B2F



B3F

B4F

M10



M6





#### 追而

(3) 基礎地盤の支持性能に対する評価結果

表 6.4-6 に基礎地盤の支持性能照査結果を,図 6.4-9 に接地圧分布図を示す。 立坑の最大接地圧は,S_s-D1で○○ kN/m²であり,基礎地盤の極限支持力度△△ kN/m²以下である。

以上のことから、立坑の基礎地盤は、基準地震動S。に対し、支持性能を有する。

表 6.4-6 基礎地盤の支持性能照査結果(南北方向)

- 図 6.4-9(1) 接地圧分布図(S_s-D1〔H+,V+〕)
- 図 6.4-9(2) 接地圧分布図(S_s-D1〔H+, V-〕)
- 図 6.4-9 (3) 接地圧分布図 (S_s-D1 [H-, V+])
- 図 6.4-9(4) 接地圧分布図(S_s-D1〔H-, V-〕)
- 図 6.4-9(5) 接地圧分布図(S_s-11)
- 図 6.4-9(6) 接地圧分布図(S_s-12)
- 図 6.4-9(7) 接地圧分布図(S_s-13)
- 図 6.4-9(8) 接地圧分布図(S_s-14)
- 図 6.4-9(9) 接地圧分布図(S_s-21)
- 図 6.4-9(10) 接地圧分布図(S_s-22)
- 図 6.4-9(11) 接地圧分布図(S_s-31 [H+,V+])
- 図 6.4-9(12) 接地圧分布図(S_s-31[H-,V+])

- 6.4.3 東西方向の耐震評価結果
  - (1) 構造部材の曲げに対する評価結果 表 6.4-7及び表 6.4-8に曲げに対する照査結果を示す。 立坑における許容応力度法による照査を行った結果,評価位置においてコンクリートの 圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生 応力度は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。

	Ī	長 6.4-7	(1)	コンクリー	トの曲げ照査	E結果		追而	
基準地震動	位相		評価位	置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値		
			底版						
			東	側壁					
		鉛直方向	西	側壁					
			F	P壁				_	
				B1F				4	
			市側辟	B2F D2F				-	
			木関型	B4F				-	
				ピット部				-	
	-D1 H+, V+			B1F				-	
6 D 1				B2F				7	
$S_s - DI$		水平方向	西側壁	B3F					
				B4F					
					ピット部				
					B1F				_
				市睦	B2F				-
			甲壁	B3F D4E				-	
				D4F ピット立				-	
			頂版					-	
		中反		·B3F)				-	
		I	中床版(B41	F)					
			底版						
			東	側壁					
		鉛直方向	西側壁					_	
			中壁					_	
				B1F				_	
			市側辟	B2F D2F				-	
			木関型	B4F				-	
				ビット部				-	
				B1F				-	
6 D 1				B2F					
$S_s - DI$	H+, V-	水平方向	西側壁	B3F					
				B4F					
				ピット部					
				B1F				4	
				B2F				-	
			甲壁	B3F D4E					
				D4F ピット立					
			頂版	レツド副				-	
		中房	<u>頃</u> 版 長版(B1F~	B3F)		1		-	
		1	中床版(B4)	F)				1	
	•			1					

### 表 6.4-7(1) コンクリートの曲げ照査結果



基準地震動	位相		評価位置	풉	短期許容 応力度 (N/mm ² )	照查值
			底版			
			東	側壁		
		鉛直方向	西	側壁		
			中壁			
				B1F		
				B2F		
			東側壁	B3F		
				B4F		
				ピット部		
				B1F		
$S_s - D_1$	H-, V+		그도 /nd 8☆	B2F		
		水平方问	四側壁	B3F D4F		
				D4F ピット立V		
				B2F		
			中壁	B3F		
				B4F		
				ピット部		
			頂版			
		中成		B3F)		
		E	中床版(B4I	F)		
		底版				
		鉛直方向	東側壁			
			中壁			
				B1F		
			古加亞	B2F		
			果則望	D3F		
				D4F ピット立V		
				R1F		
				B2F		
S _s – D 1	H-, V-	水平方向	西側壁	B3F		
		214 1 221-1	пм±	B4F		
				ピット部		
				B1F		
				B2F		
			中壁	B3F		
1				B4F		
				ピット部		
1			頂版			
		中床	₹版 (B1F~	B3F)		
		L.	中床版(B4I	F)		

#### 表 6.4-7(2) コンクリートの曲げ照査結果

*1 評価位置は次頁の図に示す



追而

	3 4	表 6.4-7	(3)	コンクリー	、の曲げ照査	結果		追而
基準地震動	位相		評価位	置		短期許容 応力度 (N/mm ² )	照査値	
			底版					
			東	側壁				
		鉛直方向	西	側壁				
			F	中壁				
				B1F				
				B2F				
			東側壁	B3F				_
				B4F				_
				ビット部				_
				BIF				-
$S_{s} - 1 1$	H+, V+	水亚卡白	而间辟	B2F				
		水平方向	四側壁	B3F D4E				
				D4F F ^o 上如				-
				B1F				-
				B2F				-
			中辟	B3F				-
			1	B4F				-
				ピット部				-
			頂版					-
		中房	₹版 (B1F~	B3F)				-
		ſ	中床版 (B4F)					
		底版						
			東側壁					
		鉛直方向	西側壁					
			F	<u>卜壁</u>				
				B1F				
I			La fair tainte	B2F				_
			東側壁	B3F				_
				B4F	-			_
1				ビット部				_
				BIF				-
$S_{s} - 12$	H+, V+		<b>正</b> /m/bx	B2F				_
		水平方问	四側壁	B3F D4F				
				B4F Is°Ì.☆7	+			
				<u>ヒット部</u> ) D1E				-
				B3E				-
			中辟	B2F				
			1.285	B4F	1			
				ドット部	1			
			佰版	941.1 V 2				
		中京	·原版 ·版 (R1F~	B3F)	1			-
		1 1	<u>中</u> 床版(R41	F)	1			-
			I VINA (DT	· / I		1		

#### 表 6.4-7(3) コンクリートの曲げ照査結果


基準地震動         位相         評価位置         圧縮 応力度 応力度 ( $V/m2$ )         短期容 応力度 ( $V/m2$ )         照金値 応力度 ( $V/m2$ )         照金値 応力度            東側壁			表 6.4-7	(4)	コンクリート	、の曲げ照査	結果		追言
$S_{+}-14 \\ H+, V+ \\ H+, V+, V+ \\ H+, V+, V+ \\ H+, V+, V+ \\ H+, V+, H+, V+ \\ H+, V+, H+, V+ \\ H+, H+,$	基準地震動	位相		評価位	置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
$S_{+}-1.4 \\ H_{+}, V_{+} \\ H_{+}, $				底版					
$S_{3}-14 \\ H+, V+ \\ H+, V+, V+ \\ H+, $				東	側壁				
$S_{3}-14 \\ H+, V+ \\$			鉛直方向	西	側壁				
$S_{3}-13 \\ H+, V+ \\ H+, V+, V+ \\ H+, $				F	中壁				
$S_{3}-14 \\ H+, V+ \\ H+, V+, V+ \\ H+$					B1F				
$S_{5}-13 \\ H+, V+ \\$				L. C. LINK	B2F				_
$S_{s}-13  H+, V+ \\ H+, V+ \\$				東側壁	B3F	-			_
$S_{s}-13 H+, V+ H+, V+, H+, H+, H+, V+, H+, H+, V+, H+, H+, H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$					B4F				
$ S_{s} - 13 \\ H+, V+ \\ H+, V$					ヒット部				_
$\begin{split} & S_{s}-1.3 \\ & H+, V+ \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$					BIF	+			
$S_{s}-14    I+, V+ \\   I+, V+ $	$S_{s} - 1 3$	H+, V+	水亚古向	西加陸	B2F D2F	1			
$S_{s}-14 \ \ H+, V+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			水平方向	四侧空	DOL				
$S_{s}-14  H+, V+ \begin{array}{ c c c c c c } &   &   &   &   &   &   &   &   \\ \hline &   &   &   &   &   &   &   \\ \hline \hline &   \\ \hline &   \\ \hline \hline &   \\ \hline &   \\ \hline &   \\ \hline &   \\ \hline \hline &   \\ \hline &   \\ \hline \hline &   \\ \hline &   \\ \hline \hline \hline &   \\ \hline \hline \hline &   \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$					ピット部				
$S_{s}-14  H+, V+ \begin{array}{ c c c c c } & H+, V+ \\ & & & & & & & & & & & & & & & & & & $					B1F				-
$S_{s} = 1.4  H+, V+ \\ H+, V+ \\ H+, V+ \\ \hline H+, V+, V+, V+, V+ \\ \hline H+, V+, V+, V+, V+, V+, V+, V+, V+, V+, V$					B2F				
$S_{s}-14  H+, V+ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				中壁	B3F				-
$S_{s}-14 H+, V+ H+, V+, V+, H+, H+, V+, H+, H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$				1	B4F				-
$S_{s} - 1 4  H+, V+ \begin{array}{ c c c c c } \hline III \\ \hline IIII \\ \hline \hline \hline IIII \\ \hline \hline \hline IIII \\ \hline \hline \hline \hline$					ピット部				
$S_{s}-14 H+, V+ H+, V+, V+, V+, V+, V+, V+, V+, V+, V+, V$				頂版					
$S_{s}-1 4 H+, V+ H+, V+ H+ K + F + F + F + F + F + F + F + F + F $			中房		B3F)				
$S_{s}-14 H+, V+ H+ H+ H+ V+ H+ H+ H+ V+ H+ H+$			ſ	中床版(B41	F)				
$S_{s}-14 H+, V+ H+, V+, H+, H+, H+, V+, H+, H+, H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$				底版					
$S_{s}-14  H+, V+ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				東	側壁				
$S_{s}-14  H+, V+ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $			鉛直方向	西	側壁				
$S_{s}-14  H+, V+ \left[ \begin{array}{c c c c c c c c c c c c c c c c c c c $				F	中壁				
$S_{s}-14  H+, V+ \\ H+, V+ \\ H+, V+ \\ \mu = \frac{\pi \mu B^{2}}{r} \\ \mu = \frac{\mu B^{2}}{r} \\ \mu = $					B1F				_
$S_{s}-14 H+, V+ H+, V+, H+, H+, V+, H+, H+, V+, H+, H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$					B2F				_
$S_{s}-14 H+, V+ H+, V+, H+, H+, V+, H+, V+, H+, H+, V+, H+, H+, V+, H+, H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$				東側壁	B3F				_
$S_{s}-14 H+, V+ H+, V+, H+, H+, H+, H+, H+, H+, H+, H+, H+, H$					B4F	-			_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					ビット部				_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1				BIF				
水平方向         西側壁         B3F             B4F $             \mathcal{C}^{\vee}$ 卜部 $             \mathcal{C}^{\vee}$ 卜部             中壁         B1F $             \mathcal{C}^{\vee}$ 中壁         B3F $             \mathcal{C}^{\vee}$ 日         中壁         B3F $             \mathcal{C}^{\vee}$ 日         日 $             \mathcal{C}^{\vee}$ $             \mathcal{C}^{\vee}$ 中壁         B3F $             \mathcal{C}^{\vee}$ $             \mathcal{C}^{\vee}$ 日         日 $             \mathcal{C}^{\vee}$	$S_{s} - 14$	H+, V+	水平七白	市加陸	BZF				
世子     1       ピット部     1       B1F     1       B2F     1       B3F     1       B4F     1       ビット部     1       「頂版     1       中床版 (B1F~B3F)     1			水平方向	四側壁	D3F D4E				
日本         1					D4F F ^o 上 如				-
中壁     B2F     日       B3F     日     日       B4F     日     日       ビット部     日     日       中床版 (B1F~B3F)     日     日					<u>レツ下部</u> ) B1F	+			
中壁     B3F        B4F         ビット部         一         中床版 (B1F~B3F)					B1F B2F				
Image: Bar (B4F)     Image: B4F (B4F)       ビット部     ビット部       可版     Image: Bar (B4F)       中床版 (B1F~B3F)     Image: Bar (B4F)				中辟	B3E				
近火ト部         日本           頂版         日本           中床版 (B1F~B3F)         日本				1.285	BAE	1			-
頂版       中床版 (B1F~B3F)					DHF ピット立	1			
中床版 (BIF~B3F) 中床版 (DIF~B3F)				佰版	「ヒンド申				
			中は		B3F)				
	l		1.1	<u></u> 中床版(R41	F)	1			

表 6.4-7(4) コンクリートの曲げ照査結果



	老	₹ 6.4-7	(5)	コンクリー	トの曲け照る	全結果		追而
基準地震動	位相		評価位	置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
			底版					1
			東	側壁				1
		鉛直方向	西	側壁				1
				中壁				
				B1F				
				B2F				
			東側壁	B3F				
				B4F				
				ピット部				
				B1F				
S _ 9 1				B2F				
$3_{s} - 21$	$\Pi +$ , v+	水平方向	西側壁	B3F				
				B4F				
				ピット部				
				B1F				
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					
		中身	₹版(B1F~	B3F)				
		r.	中床版(B41	F)				
			底版					
			東	側壁				
		鉛直方向	西	側壁				
			Ľ	中壁				
				B1F				
				B2F				
			東側壁	B3F				
				B4F				
				ピット部				
				B1F				
S _ 9 9				B2F				
$3_{s} - 22$	II <b>⊤</b> , v⊤	水平方向	西側壁	B3F				
				B4F				
				ピット部				4
				B1F				4
				B2F	-			_
			中壁	B3F				4
				B4F	-			_
				ピット部				4
			頂版					_
		中身		B3F)	_			4
		r.	₱床版(B4Ⅰ	F)				

## 表 6.4-7(5) コンクリートの曲げ照査結果



	1	1						迫
基準地震動	位相		評価位	置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
			底版					
			東	側壁				
		鉛直方向	西	側壁				_
			F	P壁				_
				B1F				
			声加晓	B2F				_
			术则至	DJF BAF				-
				ピット部				_
				B1F				
				B2F				
S _s -31	H+, V+	水平方向	西側壁	B3F				
				B4F		1		
				ピット部				
				B1F				
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					
		中身	<u> ₹版(B1F~</u>	B3F)				_
	-	T	<u> 中床版(B4</u> )	F)				_
			<u></u>	/m/P#				_
		約またら		側壁				_
		站但力问	<u>12</u>	加空				_
				P 空 D 1 E				-
				D1F B2F				_
			重側辟	B3F				
			水園坐	B4F				
				ドット部				
				B1F				
				B2F				
S _s – 3 1	H-, V+	水平方向	西側壁	B3F				
				B4F				
				ピット部				
				B1F				
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					
		中房		B3F)				
	1	1	中床版(B41	F)				

## 表 6.4-7(6) コンクリートの曲げ照査結果



		表 6.4	4-8 (1	) 鉄筋の	曲げ照査結界	2		追而
基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查値	
			底版					
			東	側壁				_
		鉛直方向	西	側壁				-
			E	2 壁	-			-
				B1F				4
			声柳辟	B2F	+			-
			果則堂	B3F D4E				4
				D4F ピットゴ				-
				R1F				4
				B2F				-
$S_s - D1$	H+, V+	水平方向	西側壁	B3F				1
		214 1 22 1-3	цМŦ	B4F				1
				ピット部				1
				B1F				1
				B2F				1
			中壁	B3F				]
				B4F				1
				ピット部				
			頂版					
		中身		B3F)				_
		r	<u> 中床版(B4</u>	F)				-
			<u></u>	lad na	-			4
		いまよら		側壁				4
		鉛圓方回	四	<u>則壁</u>				-
			-	^十 空				-
				BIF				-
			声柳辟	D2F				-
			术调堂	DOL BVE				-
				ピット部				-
				B1F				1
				B2F				1
$S_s - D_1$	H+, V-	水平方向	西側壁	B3F				1
				B4F				1
				ピット部				1
				B1F				
				B2F				1
			中壁	B3F				4
				B4F				4
				ピット部				4
			頂版					4
		中身	R版 (B1F~	B3F)				4
	<u> </u>	r.	₽床版(B4	F)				

## 表 6.4-8(1) 鉄筋の曲げ照査結果



		表 6.4	4 - 8 (2)	) 鉄筋の目	曲げ照査結果			追而
基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查値	
			底版					
			東	側壁				
		鉛直方向	西	側壁				
				P壁				_
				BIF				_
			東側壁	B3F				_
			NNI	B4F				
				ピット部				
				B1F				
$S_s - D1$	H-, V+			B2F				_
5	,	水半方向	西側壁	B3F				_
				B4F				_
				L ツ下市 B1F				_
				B2F				_
			中壁	B3F				
				B4F				
				ピット部				
			<u>頂版</u>	DOD)				_
			に 取(BIF~ 中 広 版(D41	B3F)				_
			<u>F/不成(D4</u>					_
				側壁				_
		鉛直方向	西	側壁				
			F	中壁				
				B1F				_
				B2F				_
			東側壁	B3F				_
				D4F ピット部				
				B1F				_
				B2F				
$S_s - D_1$	H-, V-	水平方向	西側壁	B3F				
				B4F				
				ピット部				_
				B1F				_
			中辟	D2F B3F				-
			1.35	B4F				-
				ピット部				
			頂版					
		中床	₹版(B1F~	B3F)				
		E	中床版(B41	F)				

## 表 6.4-8(2) 鉄筋の曲げ照査結果



		衣 6.4	4-8 (3	) 鉄肋の日	田り照省結朱	÷		追
基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
			底版					
			東	側壁				
		鉛直方向	西	側壁				
			F	中壁				_
				B1F				_
				B2F				_
			鬼側壁	B3F D4E				-
				B4F ピット立				-
				B1F				-
				B2F				
$S_{s} = 1.1$	H+, V+	水平方向	西側壁	B3F				
		2441.241.3	HME	B4F				1
				ピット部				
				B1F				
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					_
		中身	<u> R版 (B1F~</u>	B3F)				_
		L	<u>                                     </u>	F)				_
			<u></u>	/印(E卒				-
		松声士向		间壁				-
		如直刀向	P	口座				-
				B1F				
				B2F				
			東側壁	B3F				
			, <u></u>	B4F				
				ピット部				
				B1F				
S = 1.2	H+ V+			B2F				
5 ₈ 12	11   , V	水平方向	西側壁	B3F				
				B4F				4
				ピット部				4
				B1F				4
				B2F				-
			甲壁	B3F D4E				-
				B4F				-
			TE LLC	ビット部				-
			<u> </u>	DOE)				-
		<u> </u>	NUX (BIF~ 力 床 版 (D 4)	-Dof/ D)				-
		۰ ۱	T / M (B4)	r7				

## 表 6.4-8(3) 鉄筋の曲げ照査結果



基準地震動         位相         評価位置         引張 応力度 (N/mm2)         短期許容 応力度 (N/mm2)         照査値                                                                                                                  <			表 6.4	4-8 (4)	) 鉄筋の	曲げ照査結界	2		追而
$ S_{s} - 1 3 H+, V+ \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $	基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查值	
$S_{s}-13 H+, V+ \begin{array}{ c c c c c c c c } & \underline{R} \\ $				底版					]
$S_{s}-13 H+, V+ \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $				東	側壁				1
$S_{s}-13  H+, V+ \\ H+, V+, V+, V+, V+ \\ H+, V+, V+, V+, V+, V+ \\ H+, V+, V+, V+, V+, V+, V+, V+, V+, V+, V$			鉛直方向	西	側壁				1
$S_{s}-13  H+, V+ \\ K = \frac{1}{2} \left[ \begin{array}{c c c c c c c c c c c c } & \underline{B1F} &$				6	中壁				-
$S_{s}-13  H+, V+ \left  \begin{array}{c c c c c c c c c c c c c c c c c c c $					B1F				-
$S_{s}-13 H+, V+ \begin{array}{ c c c c c c } & BF & & & & & & & & & & & & & & & & & $				甫伽辟	BZF				-
$S_{s}-13 H+, V+ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				東側壁	DOF BAE				-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					ピット部				-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					B1F				1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					B2F				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$S_{s} = 1.3$	H+, V+	水平方向	西側壁	B3F				1
$ \begin{array}{ c c c c c c c c } & & & & & & & & & & & & & & & & & & &$					B4F				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					ピット部				]
B2F              中壁 $B3F$ B4F $U > h \bar{w}$ $\bar{U} = \bar{U} = U$					B1F				1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					B2F				1
B4F        ビット部        一     一       一     一       中床版 (B1F~B3F)        中床版 (B4F)        ●        ●        ●        ●        ●        ●        ●        ●        ●        ●        ●        ●        ●        ●				中壁	B3F				-
「ビット部         「            頂版         「            市床版 (B1F~B3F)         「            中床版 (B4F)         「            市床版 (B4F)         「            市床版 (B4F)         「            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・            ・ <td< td=""><td></td><td></td><td></td><td></td><td>B4F</td><td></td><td></td><td></td><td>_</td></td<>					B4F				_
項版         目标         目前         日前           中床版 (B1F~B3F) </td <td></td> <td></td> <td></td> <td>TELL</td> <td>ビット部</td> <td></td> <td></td> <td></td> <td>4</td>				TELL	ビット部				4
中床版 (BIP*05P)         中床版 (B4F)           中床版 (B4F)			rh d	<u> </u>	D9E)				-
底版         車側壁           鉛直方向         西側壁           中壁         □			<u>ти</u>	<u>した</u> 版 (B41)	F)				-
東側壁         回         回           鉛直方向         西側壁         0         0           中壁         0         0         0				<u>「</u> 」(人)(人)(人)(人)(人)(人)(人)(人)(人)(人)(人)(人)(人)(	1 /				1
鉛直方向         西側壁            中壁					側壁				1
			鉛直方向	西	側壁				1
DIE				L	中壁				1
710					B1F				]
B2F					B2F				
東側壁 <u>B3F</u>				東側壁	B3F				1
B4F					B4F				1
ピット部					ピット部				_
BIF					B1F	-			-
$S_s = 1.4$ H+, V+ $J_{VT} = J_{T} = \frac{B2F}{DOD}$	$S_{s} - 14$	H+, $V+$	····································	<b>正</b> /回日本	B2F				-
- 水平方向 四側壁 <u>B37</u>	5	,	水平方回	四側壁	B3F D4E				4
					B4F ピット却				-
					R1F				-
B2E					B2F				1
				中辟	B3F				1
R4F				1 =	B4F				1
					ピット部				1
頂版				頂版	941 \ 2				1
中床版 (B1F~B3F)			中床	₹版 (B1F~	B3F)				1
中床版 (B4F)			F	中床版 (B41	F)				1

## 表 6.4-8(4) 鉄筋の曲げ照査結果



		衣 0.	4-8 (5)	) 鉄筋の	田け照省結果	÷		追而
基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
			底版					
			東	側壁				
		鉛直方向	西	側壁				
			Ц	戶壁				
				B1F				
				B2F				
			東側壁	B3F				
				B4F				
				ピット部				
				B1F				
S = 21	H+ V+			B2F				
Ss 21	11 1 , 1 1	水平方向	西側壁	B3F				
				B4F				
				ピット部				
				B1F				
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					
		中房	₹版(B1F~	B3F)				
		1	中床版(B41	F)				
			底版					
			東	側壁				
		鉛直方向	西	側壁				
			L	P壁				
				B1F				_
				B2F				
			東側壁	B3F				4
				B4F				_
				ピット部				
				B1F				_
S - 22	H+ V+			B2F				4
Os 22	, , , ,	水平方向	西側壁	B3F				4
				B4F				4
				ピット部				
1				B1F				4
1	1			B2F				_
			中壁	B3F				4
1	1			B4F				_
				ピット部				_
			頂版					
1	1	中房	F版(B1F~	B3F)				
		1	<u> 中床版(B4</u> 1	F)				

## 表 6.4-8(5) 鉄筋の曲げ照査結果



		表 6.	4 - 8 (6)	) 鉄筋の	曲げ照査結果	1		追而
基準地震動	位相		評価位	置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	
			底版					1
			東	側壁				
		鉛直方向	西	側壁				
			F	<u>Þ壁</u>				
				B1F	_			_
			古加陸	B2F				_
			果則壁	B3F				-
				D4r ピット部				
				B1F				-
				B2F				-
$S_{s} - 31$	H+, V+	水平方向	西側壁	B3F				
				B4F				1
				ピット部				
				B1F				
				B2F				
			中壁	B3F				_
				B4F				_
				ビット部				_
			<u> </u>	D0E)				-
		ти	<u>、版(DII。</u> カ床版(R41	E)				-
			底版					-
			東	側壁				-
		鉛直方向	西	側壁				1
			L	<b>卜壁</b>				
				B1F				
				B2F				
			東側壁	B3F				_
				B4F	_			_
				ビット部				_
				BIF				-
$S_{s} - 31$	H-, V+	水亚方向	而側辟	B2F B3F				-
			口肉生	B4F				-
				ピット部				-
				B1F				-
				B2F				
			中壁	B3F				
				B4F				
				ピット部				
			頂版					
		中身	<u> R版(B1F~</u>	B3F)	-			_
	l		⊣床版(B4	F)				

## 表 6.4-8(6) 鉄筋の曲げ照査結果





#### 表 6.4-9 断面諸元一覧表(曲げに対する評価)

					断面	性状				主鉄筋		
	部位		材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	段数	鉄筋間隔	鉄筋量
				b (m)	h (m)	d'(m)	d (m)	(-)	(mm)	(-)	(mm)	$(cm^2)$
	底版		M1									
	鉛直	方向	M2									
		B1F	M8									
甫伽辟		B2F	M9									
未圓里	水平方向	B3F	M10									
		B4F	M11									
		ピット部	M12									
	鉛直	方向	M3									
		B1F	M13									
西側壁	1	B2F	M14									
H DOLL	水半万回	B3F	M15									
		B4F	M16									
	い古	ヒット部	M17									
	如但	.万回	M4									
		BIF	M18									
中壁	水亚古向	B2F D2F	M19 M20									
	水平方向	DOF	M20									
		D4F ピット立	M21 M22									
	盾版	네 가 옷 그	M5									
中房	- <u>- 「</u> 版 (B1F~)	33F)	M6									
1 / / i	中床版 (B4F	·)	M7									



追而

(2) 構造部材のせん断に対する評価結果

表 6.4-10 にせん断に対する照査結果を示す。

立坑における許容応力度法による照査を行った結果,評価位置においてせん断応力度が 短期許容せん断応力度以下である又はコンクリートの負担するせん断力(V_c)と,斜め 引張鉄筋の負担するせん断力(V_s)を合わせた許容せん断力(V_a)が,発生せん断力

(V) 以上であることを確認した。 ( $V_a = V_c + V_s \ge V$ ) なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、立坑の構造部材の発生応力は、許容限界以下であることを確認した。 図 6.4-11 に概略配筋図を、表 6.4-11 に断面計算に用いた断面諸元の一覧を示す。

基準地震動	位相	評	価位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照查值
		底	版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
			B1F			
			B2F			
		南側壁	B3F			
$S_s - D1$	H+, V+		B4F			
			ピット部			
			B1F			
			B2F			
		中壁	B3F			
			B4F			
			ピット部			
		頂	版			
		中床版(I	31F∼B3F)			
		中床版	(B4F)			
		底	版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
			B1F			
			B2F			
		南側壁	B3F			
$S_s - D_1$	H+, V-		B4F			
			ピット部			
			B1F			
			B2F			
		中壁	B3F			
			B4F			
			ピット部			
		頂	版			
		中床版(I	31F~B3F)			
		中床版	(B4F)			

表 6.4-10(1) せん断照査結果

*1 評価位置は次頁の図に示す。



追而

基準地震動         位相         評価位置         発生 せん断力 (kN)         短期許容 せん断力 (kN)
広阪         回         回         回           8         B1F         0         0           B2F         0         0         0           B3F         0         0         0           B4F         0         0         0 $U \lor V \land \mathfrak{M}$ 0         0         0           B4F         0         0         0 $U \lor V \land \mathfrak{M}$ 0         0         0           B4F         0         0         0         0           B2F         0         0         0         0           B4F         0         0         0         0         0           B4F         0         0         0         0         0           P         B4F         0         0         0         0         0           B2F         0         0         0         0         0         0         0           P         B3F         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0
$S_{s}-D1$ H-, V+ $H-$ , H-, H-, V+ $H-$ , H-, H-
$S_{s}-D1$ H-, V+
$S_{s} - D 1$ H-, V+ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$S_{s} - D 1$ H-, V+ H-, V+ $H-, V+$ $H-, V$
S _s -D1       H-, V+       B1F           府側壁       B3F            B4F             B1F             B2F             B3F             B1F             B2F             B1F             B2F             B2F             B2F             B2F             B4F             Uv <h< td="">              10</h<>
S _s -D1     H-, V+ $B1F$ 南側壁 $B2F$ B3F          B4F $U^{\vee}$ ト部          B1F          B2F          B4F          B2F          B2F          B2F          B2F          B4F          B4F          B4F          B4F          日期版          中床版 (B1F~B3F)
S _s -D1     H-, V+ $B2F$ B4F          B4F $U^{\vee}$ ト部         B1F         B2F         B1F         B2F         B2F         B2F         B3F         B4F         B4F         日本         日本         日本         日本         日本         日本         日本         日本
$S_s - D1$ H-, V+     南側壁     B3F $B4F$ $U^{\vee} \vee h$ 部 $B1F$ $B2F$ $B3F$ $B1F$ $B2F$ $B4F$ $U^{\vee} \vee h$ 部 $B2F$ $B4F$ $U^{\vee} \vee h$ 部 $U^{\vee} \vee h$ 部 $U^{\vee} \vee h$ 部
S _s -D1     H-, V+     B4F        ビット部         B1F        B2F        B3F        B4F        ビット部        日本日        中壁        周3F        日本日        日本日        中壁        周3F        日本日        日本日        日本日        日本日
ビット部     1       B1F     1       B2F     1       B3F     1       B4F     1       ビット部     1       可版     1       中床版 (B1F~B3F)     1
申壁     B1F         B2F          B3F          B4F          ビット部          印版          中床版 (B1F~B3F)
中壁     B2F        B3F         B4F         ビット部         可版         中床版 (B1F~B3F)
中壁     B3F        B4F         ピット部         頂版         中床版 (B1F~B3F)
B4F     日本       ビット部     日本       可版     日本       中床版 (B1F~B3F)     日本
ビット部        頂版        中床版 (B1F~B3F)
貝瓜           中床版(B1F~B3F)
中床版 (BIF~B3F)
D2F 北側辟 B3E
R/F
B1F
R2F
$S_{-}$ D 1 H $-$ V $-$ B4F
BIF
B2F
中壁 B3F
B4F
ピット部
頂版
中床版 (B1F~B3F)
中床版 (B4F)

表 6.4-10(2) せん断照査結果



基準地震動	位相	<u>計</u>	価位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査値
		底	版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
			B1F			
			B2F			
		南側壁	B3F			
$S_{s} - 11$	H+, V+		B4F			
_			ピット部			
			B1F			
		中壁	B2F			
			B3F			
			B4F			
			ピット部			
		頂	版			
		中床版(I	31F~B3F)			
		中床版	(B4F)			
		底	版			
			B1F			
			B2F			
		北側壁	B3F			
			B4F			
			ピット部			
			B1F			
			B2F			
		南側壁	B3F			
$S_{s} - 12$	H+, V+		B4F			
			ピット部			
			B1F			
			B2F			
		中壁	B3F			
			B4F			
			ピット部			
		頂	版			
		中床版(I	31F~B3F)			
		中床版	(B4F)			

## 表 6.4-10(3) せん断照査結果

*1 評価位置は次頁の図に示す。



追而

表 6.4-10(4) せん断照査結果 道											
基準地震動	位相	i i i	平価位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照查	値				
		匠	気版								
			B1F								
			B2F								
		北側壁	B3F								
			B4F								
	-		ビット部) D1E								
			BIF								
		南側辟	DZF R2F								
$S_{1} = 1.3$	H+ V+	用烟壁	B4F								
0 s 10	11 + ,		ピット部								
			B1F								
		中壁	B2F								
			B3F								
			B4F								
			ピット部								
		Ţ	頁版								
		中床版	(B1F~B3F)								
		中床片	反 (B4F)								
		<u>ار</u>	氐版								
			B1F								
			B2F								
		北側壁	B3F								
			B4F								
			<u>ヒツト部</u> ) D1E								
			DIF								
		南側辟	B2F								
S - 14	H+ V+	用原生	B/F								
U _s 14	11 + , • +		ピット部								
	-		B1F								
			B2F								
		中壁	B3F								
			B4F								
			ピット部								
		Ţ	頁版								
		中床版	(B1F~B3F)								
		中床片	反 (B4F)								

表 6.4-10(4) せん断照査結果



		表 6.4	-10 (5) せん	断照查結果		表 6.4-10(5) せん断照査結果												
基準地震動	位相	許	通位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照3	至值											
		底	版															
			B1F															
			B2F															
		北側壁	B3F															
			B4F															
			ピット部															
			B1F															
			B2F															
		南側壁	B3F															
$S_{s} - 21$	H+, V+		B4F															
			ピット部															
		PP	B1F															
			B2F															
		甲壁	B3F															
			B4F															
		τZ	ビット部															
		し しょう しょうしょう しょうしょ しょうしょう しょう																
		中床版(	$BIF \sim B3F$															
		<u> </u>																
		<u>بط</u>	B1E															
			B2E															
		北间辟	B3E															
		们则生	B/F															
			ピット部															
			B1F															
			B2F															
		南側壁	B3F															
$S_{2} - 2.2$	H+V+	三百四	B4F															
~ \$ 22	,		ピット部															
			B1F															
			B2F															
		中壁	B3F															
		·	B4F															
			ピット部															
		Ĩ	版															
		中床版(	B1F~B3F)															
		中床版	ξ (B4F)															

表 6.4-10(5) せん断照査結果



		表 6.4	-10 (6) せん	し断照査結果			追而
基準地震動	位相	討	2価位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査値	
		底	版				
			B1F				
			B2F				
		北側壁	B3F				
			B4F				
			ピット部				
			B1F				
			B2F				
S _s – 3 1		南側壁	B3F				
	H+, $V+$		B4F				
			ピット部				
		中壁	B1F				
			B2F				
			B3F				
			B4F				
			ピット部				
		<u> </u>	していていていていていていていていた。				
		中床版(	B1F~B3F)				
			ζ (B4F)	-			
			:版	-			
			B1F				
		II. Ind Date	B2F	_			
		北側壁	B3F				
			B4F				
			ビット部				_
			BIF				_
		古伯医	B2F				
C 9.1	II V	用側壁	B3F				
$5_{s} = 51$	n-, v+		B4F be°u l ≠Z				
			ヒツト部				
			BIF				
		市廃	B∠r D2F	+			
		十 笙	D3F D4E				
			D4f ピット b7	+			
		TP	<u>レット部</u> i版				_
		市中市 (	R1F~R3F)				-
l .			i (BAE)				
		一 一 小 心					

表 6.4-10(6) せん断照査結果



追而

#### 図 6.4-11 概略配筋図

表 6.4-11 断面諸元一覧表(せん断に対する評価) <u>追</u>												
				断面	性状			せ	ん断補強鉄	筋		
辛	『位	材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	Sb	Ss	鉄筋量	
			b(m)	h(m)	d'(m)	d (m)	(-)	(mm)	(mm)	(mm)	$(cm^2)$	
底版		M1										
	B1F	M2										
東側壁	B2F	M3										
	B3F	M4										
	B4F	M5										
	ピット部	M6										
	B1F	M7										
	B2F	M8										
西側壁	B3F	M9										
	B4F	M10										
	ピット部	M11										
	B1F	M12										
. L. Die	B2F	M13										
甲壁	B3F	M14										
	B4F	M15										
	ビット部	M16									+	
	貝版	M17									+	
<u> </u>	$(BIF \sim B3F)$	M18									+	
	反 (B4F)	M19										





評価中



B4F

M10

M15

M5







#### 影主 1 1 -=+/ ---. 1 ь.

(3) 基礎地盤の支持性能に対する評価結果

表 6.4-12 に基礎地盤の支持性能照査結果を,図 6.4-12 に接地圧分布図を示す。 立坑の最大接地圧は,S_s-D1で○○ kN/m²であり,基礎地盤の極限支持力度差△△ kN/m²以下である。

以上のことから、立坑の基礎地盤は、基準地震動S。に対し、支持性能を有する。

表 6.4-12 基礎地盤の支持性能照査結果(東西方向)

- 図 6.4-12(1) 最大接地圧分布図(S_s-D1〔H+,V+〕)
- 図 6.4-12(2) 最大接地圧分布図(S_s-D1〔H+,V-〕)
- 図 6.4-12(3) 最大接地圧分布図(S_s-D1[H-,V+])
- 図 6.4-12(4) 最大接地圧分布図(S_s-D1[H-,V-])
- 図 6.4-12(5) 最大接地圧分布図(S_s-11)
- 図 6.4-12(6) 最大接地圧分布図(S_s-12)
- 図 6.4-12(7) 最大接地圧分布図(S_s-13)
- 図 6.4-12(8) 最大接地圧分布図(S_s-14)
- 図 6.4-12(9) 最大接地圧分布図(S_s-21)
- 図 6.4-12(10) 最大接地圧分布図(S_s-22)
- 図 6.4-12(11) 最大接地圧分布図(S_s-31〔H+,V+〕)
- 図 6.4-12 (12) 最大接地圧分布図 (S_s-31 [H-, V+])

#### 6.5 まとめ (追而)

7. 常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価

7.	常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価・・・・・・・・・・7-1
	7.1 評価方法
	7.2 評価条件・・・・・
	7.2.1 適用基準・・・・・・・・・・
	7.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7-3
	7.2.3 評価対象断面の方向・・・・・ 7-4
	7.2.4 評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	7.2.5 使用材料及び材料定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7-9
	7.2.6 地下水位
	7.2.7 地震応答解析手法・・・・・ 7-13
	7.2.8 解析モデルの設定・・・・・ 7-15
	7.2.9 减衰定数
	7.2.10 荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	7.2.11 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7-24
	7.3 評価内容 · · · · · · · · · · · · · · · · · · ·
	7.3.1 杭と底版の結合部の評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7-26
	7.3.2 入力地震動の設定・・・・・ 7-27
	7.3.3 許容限界の設定・・・・・・ 7-44
	7.4 評価結果・・・・・
	7.4.1 地震応答解析結果・・・・・ 7-48
	7.4.2 カルバートの耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	7.4.3 杭基礎の耐震評価結果・・・・・ 7-78
	7.5 まとめ(追而)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

# 目次

7.1 評価方法

常設代替高圧電源装置用カルバート(カルバート部)(以下,「カルバート」という。) は、耐震安全上重要な機器・配管系を間接支持する機能を求められる構造物である。カルバー トについて基準地震動S。による耐震安全性評価として、構造部材の曲げ、せん断評価及び地 盤の支持性能評価を実施する。

構造部材の曲げ, せん断評価については地震応答解析に基づく発生応力又は発生せん断力が 許容限界以下であることを確認する。基礎地盤の支持性能評価については, 地震応答解析に基 づく接地圧が許容限界以下であることを確認する。

- 7.2 評価条件
- 7.2.1 適用基準

カルバートの耐震評価に当たっては,原子力発電所耐震設計技術指針JEAG4601 -1987((社)日本電気協会),コンクリート標準示方書[構造性能照査編]((社)土 木学会,2002年制定)等を適用するが,鉄筋コンクリートの曲げ及びせん断の許容限界に ついては,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)を適用する。

表7.2-1に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及び材料定数	<ul> <li>・コンクリート標準示方書 [構</li> <li>造性能照査編](2002 年制定)</li> </ul>	_
荷重及び荷重の組合せ	<ul> <li>・コンクリート標準示方書 [構</li> <li>造性能照査編](2002 年制定)</li> </ul>	<ul> <li>・永久荷重+偶発荷重+従た</li> <li>る変動荷重の適切な組合せ</li> <li>を検討</li> </ul>
許容限界	<ul> <li>・コンクリート標準示方書 [構 造性能照査編](2002 年制定)</li> <li>・道路橋示方書(I共通編・Ⅳ 下部構造編)・同解説(平成 24 年 3 月)</li> </ul>	<ul> <li>・曲げに対する照査は、発生 応力が、許容限界以下であることを確認</li> <li>・せん断に対する照査は、発 生応力が、許容限界以下であることを確認</li> </ul>
地震応答解析	• JEAG4601-1987	<ul> <li>・有限要素法による2次元モ デルを用いた時刻歴非線形 解析</li> </ul>

表 7.2-1 適用する規格,基準類

7.2.2 耐震安全性評価フロー

図7.2-1にカルバートの耐震安全性評価フローを示す。



<耐震性評価>

図 7.2-1 カルバートの耐震安全性評価フロー

7.2.3 評価対象断面の方向

カルバートの位置を図 7.2-2 に示す。

カルバートは2つの構造物に大別される。軽油移送配管を支持するカルバート(以下,

「軽油カルバート」という。)は、延長 5.0 m、幅 5.5 m、高さ 7.5 mの鉄筋コンクリート 造である。

電源ケーブル及び水配管を支持するカルバート(以下,「水電気カルバート」という。) は、延長約35 m,幅13.9 m,高さ6.7 mの鉄筋コンクリート造である。

図 7.2-2 に示すとおり、カルバート部の縦断方向は東側に剛な原子炉建屋が存在し、加 振方向に耐震壁が多く存在することから、強軸断面方向となる。一方、横断方向は、耐震設 計上見込める構造部材が少ないことから、弱軸断面方向となる。

以上のことから,カルバートの耐震評価では,弱軸断面方向である横断方向を評価対象断 面の方向とする。



図 7.2-2(1) カルバートの平面配置図(全体平面図)



図 7.2-2(2) カルバートの平面配置図(拡大図)



表 7.2-2 カルバートの評価対象断面の方向の選定

#### 7.2.4 評価対象断面の選定

図7.2-3及び図7.2-4にカルバートの平面図及び断面図を示す。

軽油カルバートは,延長約5 mの鉄筋コンクリート造である。1層2連ボックスカルバート 状のラーメン構造である。

水電気カルバートは, 延長35 mの鉄筋コンクリート造である。1層3連ボックスカルバー ト状のラーメン構造である。

評価対象断面は、「1.4.7 設代替高圧電源装置用カルバート(カルバート部)の断面選 定の考え方」で記載したとおり、軽油移送配管、電気ケーブル及び水配管を支持してお り、地震荷重による影響が大きく、弱軸断面方向である横断方向の①-①断面を代表とし て耐震評価を実施する。



図 7.2-3 カルバートの平面図



図 7.2-4 カルバートの断面図(①-①断面)

7.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は、適用基準類を基に設定する。構造物の使用材料を表7.2-3に、材料物性値を表7.2-4に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を 用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できる モデル化とする。地盤の物性値を表7.2-5に示す。

表 7.2-3 使用材料 (追而)

材料	諸元
コンクリート	設計基準強度 40N/mm ²
鉄筋	SD345, SD490
御佐士	
亚叫:目、小L	

材料	単位体積重量 (kN/m ³ )	ヤング係数 (N/mm ² )	ポアソン比	
鉄筋コンクリート	24. 5	3. $1 \times 10^4$	0.2	
鋼管杭	77.0	2. $0 \times 10^{5}$	0.3	

表 7.2-4 材料物性值

						原地	也盤		
	パラメータ			埋戻土		第四系	(液状化素	†象層)	
				fl	du	Ag1	Ag2	As	D2g-3
物理	密度 ()は地下水位以浅	ρ	g/cm ³	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	2.01 (1.89)	1.74 (-)	2.15 (2.11)
JAIT	間隙比	e	-	0.75	0.75	0.67	0.67	1.2	0.43
	ポアソン比	VCD	—	0.26	0.26	0.25	0.25	0.26	0.26
変形	基準平均有効主応力 ()は地下水位以浅	σ'ma	kN/m ²	358 (312)	358 (312)	814 (814)	497 (299)	378 (-)	1167 (1167)
特性	基準初期せん断剛性 ()は地下水位以浅	Gma	kN/m ²	253529 (220739)	253529 (220739)	392073 (392073)	278087 (167137)	143284 (-)	1362035 (1362035)
	最大履歴減衰率	h _{max}	—	0.220	0.220	0.221	0.233	0.216	0.130
強度	粘着力	CCD	kN/m ²	0	0	0	0	0.012	0
特性	内部摩擦角	φcd	度	37.3	37.3	37.4	37.4	41	44.4
	変相角	$\phi_p$	_	34.8	34.8	34.9	34.9	38.3	41.4
液		$S_1$	_	0.047	0.047	0.029	0.028	0.046	0.03
状化		W1	_	6.5	6.5	51.6	56.5	6.9	45.2
特	液状化パラメータ	<b>p</b> 1	_	1.26	1.26	12	9	1	8
性		<b>p</b> ₂	_	0.8	0.8	0.6	0.6	0.75	0.6
		<b>c</b> ₁	—	2.00	2.00	3.35	3.40	2.27	3.82

表 7.2-5(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 7.2-5(2) 地盤の解析用物性値一覧(非液状化層)

				原地盤				
	パラメータ			第四系(扌	‡液状化層)	新第三系		
				Ac	D2c-3	Km		
物理	密度 ()は地下水位以浅	ρ	g/cm ³	1.65 1.77 (-) (-)		1.72-1.03×10-4 • z		
JAIT	間隙比	e	-	1.59	1.09	1.16		
	ポアソン比	VCD	—	0.1	0.22	0.16+0.00025 • z		
変形	基準平均有効主応力 ()は地下水位以浅	σ' _{ma}	kN/m ²	480 (-)	696 (-)	動的変形特性に基づ		
特性	基準初期せん断剛性 ()は地下水位以浅	Gma	kN/m ²	121829 (-)	285223 (-)	き、Z(標高)毎に物性 値を設定		
	最大履歴減衰率	h _{max}	—	0.200	0.186			
強度	粘着力	CCD	kN/m ²	0.025	0.026	0.177-0.00603•z		
特性	内部摩擦角	φcd	度	29.1	35.6	$23.2+0.0990 \cdot z^{\circ}$		
	変相角	φp	—	-	-	-		
液		$S_1$	—	-	-	-		
状化		W1	—	-	-	-		
特	液状化パラメータ	<b>p</b> 1	_	-	-	-		
性		p2	_	-	-	-		
		<b>c</b> 1		-	-	-		

z:標高(m)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
	TP (m)	適用深	度 TP(m)	ρ		CCD	φcd	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
番号	Z			(g/cm)	νcd	(kN/m²)	(°)	(m/s)	(kN/m²)	$(kN/m^2)$	(kN/m²)	mG, mK	hmax(-)	νd	(m/s)	
1	10	9.5	~ 10.5	1.72	0, 16	298	24.2	425	310,675	353, 317	504	0, 0	0, 105	0,464	1,640	1,640,000
2	9	8.5	~ 9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1.644	1.644.000
3	8	7.5	~ 8.5	1.72	0, 16	310	24.0	427	313,606	356, 650	504	0, 0	0, 105	0,464	1,648	1,648,000
4	7	6.5	~ 7.5	1.72	0.16	316	23. 9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1, 651, 000
5	6	5.5	~ 6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1, 651, 000
6	5	4.5	~ 5.5	1.72	0.16	328	23. 7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1, 655, 000
7	4	3.5	~ 4.5	1.72	0, 16	334	23, 6	430	318,028	361, 679	504	0, 0	0, 106	0, 463	1,638	1,638,000
8	3	2.5	~ 3.5	1.72	0, 16	340	23, 5	431	319, 509	363, 363	504	0, 0	0, 107	0, 463	1,642	1,642,000
9	2	1.5	~ 2.5	1.72	0.16	346	23. 4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5	~ 1.5	1.72	0.16	352	23. 3	432	320, 993	365,051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5	~ 0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5	~ -0.5	1.72	0.16	364	23. 1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5	~ -1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5	~ -2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5	~ -3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5	~ -4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5	~ -5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5	~ -6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5	~ -7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.5	~ -8.5	1.72	0.16	412	22. 3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1,656,000
21	-10	-11	~ -9.5	1.72	0.16	418	22. 2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1,659,000
22	-12	-13	~ -11	1.72	0.16	430	22.0	442	336, 026	382, 147	504	0.0	0.110	0.462	1,663	1,663,000
23	-14	-15	~ -13	1.72	0.16	442	21.8	444	339,074	385, 614	504	0.0	0.111	0.462	1,671	1,671,000
24	-16	-17	~ -15	1.72	0.16	454	21.6	445	340, 603	387, 352	504	0.0	0.111	0.461	1,654	1,654,000
25	-18	-19	~ -17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21	~ -19	1.72	0.16	479	21.2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23	~ -21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1,673,000
28	-24	-25	~ -23	1.72	0.15	503	20.8	452	351,403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-26	-27	~ -25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1,664,000
30	-28	-29	~ -27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31	~ -29	1.72	0.15	539	20. 2	456	357,650	391, 712	498	0.0	0.114	0.460	1,675	1,675,000
32	-32	-33	~ -31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1,683,000
33	-34	-35	~ -33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37	$\sim -35$	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
35	-38	-39	$\sim$ -37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1,678,000
36	-40	-41	$\sim$ -39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1,685	1,685,000
37	-42	-43	~ -41	1.72	0.15	611	19.0	465	371,907	407, 327	498	0.0	0.117	0.459	1,689	1,689,000
38	-44	-45	~ -43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1,678,000
39	-46	-47	~ -45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1,681,000
40	-48	-49	~ -47	1.72	0.15	647	18.4	470	379, 948	416, 134	498	0.0	0.118	0.458	1,688	1,688,000
41	-50	-51	~ -49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0.458	1,696	1,696,000
42	-52	-53	~ -51	1.73	0.15	672	18.1	473	387,051	423, 913	498	0.0	0.118	0.458	1,699	1,699,000
43	-54	-55	~ -53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1,688,000
44	-56	-57	~ -55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692	1,692,000
45	-58	-59	~ -57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699	1,699,000
46	-60	-61	$\sim -59$	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1,702,000
47	-62	-63	~ -61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1,709,000
48	-64	-65	~ -63	1.73	0.14	744	16.9	482	401, 921	424, 250	492	0.0	0.120	0.456	1,695	1,695,000
49	-66	-67	~ -65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702	1,702,000
50	-68	-69	~ -67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1,705,000
51	-70	-71	~ -69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
52	-72	-73	~ -71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1,719	1, 719, 000
53	-74	-75	~ -73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-76	-77	~ -75	1.73	0.14	816	15.7	492	418, 771	442,036	492	0.0	0.122	0.455	1,712	1, 712, 000
55	-78	-79	~ -77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81	~ -79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85	~ -81	1.73	0.14	852	15.1	496	425,608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	-90	~ -85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95	~ -90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101	95	1.73	0.14	949	13.5	510	448, 210	4/3, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	-108	~ -101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733	1, 733, 000
62	-112	-115	~ -108	1.73	0.13	1,033	12.1	519	405,995	474, 391	486	0.0	0.127	0.451	1, 737	1, 754,000
03	-118	-122	115	1.73	0.13	1,070	11. 0	524	470,010	403, 373	460	0.0	0.127	0.451	1,759	1, 759, 000

表 7.2-5(3) 地盤の解析用物性値一覧(新第三系 Km 層)

パラメータ				地盤改良
物理 特性	密度 ()は地下水位以浅	ρ	g/cm ³	2.18 (2)
	間隙比	e	-	0.75
変形特性	ポアソン比	VCD		0.26
	基準平均有効主応力 ()は地下水位以浅	σ'ma	kN/m ²	1 (1)
	基準初期せん断剛性 ()は地下水位以浅	Gma	kN/m ²	822662 (756184)
	最大履歴減衰率	h _{max}	_	0.152
強度 特性	粘着力	CCD	kN/m ²	0.66
	内部摩擦角	φcd	度	41.200
液状化特性	変相角	$\phi_p$	—	-
	液状化パラメータ	$S_1$	—	-
		<b>W</b> 1	_	-
		<b>p</b> 1	-	-
		p2	_	-
		<b>c</b> 1	_	-

#### 表 7.2-5(4) 地盤の解析用物性値一覧(地盤改良)

7.2.6 地下水位

地下水位は地表面として設定する。

#### 7.2.7 地震応答解析手法

カルバートの地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法 を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時 間積分の時刻歴応答解析にて行う。部材については、線形はり要素を用いることとする。 また、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるようにモ デル化する。地震応答解析については、解析コード「FLIP Ver. 7.3.0_2」を使用する。な お、解析コードの検証及び妥当性確認等の概要については、付録24「計算機プログラム (解析コード)の概要」に示す。



地震応答解析手法の選定フローを図7.2-5に示す。

図 7.2-5 地震応答解析手法の選定フロー

H-D モデルの選定理由は次の通りである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力 ~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を 適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって,耐震評価における有効応力解析では,地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として,地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。
- 7.2.8 解析モデルの設定
  - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を適用し、図7.2-6 に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上確保す る。

カルバート周辺の地質断面図を図7.2-7に示す。

なお、解析モデルの境界条件は、側面及び底面ともに粘性境界とする。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長に対し て4又は5分割以上になるように要素高さを設定している。

カルバートの地震応答解析モデルを図7.2-8に示す。



図 7.2-6 モデル範囲の考え方



図 7.2-7 地質断面図 (①-①断面)



図 7.2-8 カルバートの地震応答解析モデル

(2) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離・す べりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向で は、常時状態以上の引張が生じた場合,剛性及び応力をゼロとし、剥離を考慮する。接線 方向では、地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合,剛性をゼロと し、すべりを考慮する。せん断強度  $\tau_f$ は次式のMohr-Coulomb式により規定される。 c,  $\phi$ は周辺地盤の c,  $\phi$ とする。(表7.2-6参照)

$$\tau_{\rm f} = c + \sigma' \tan \phi$$

ここで,

τ_f : せん断強度

- c : 粘着力
- φ : 内部摩擦角

表 7.2-6 周辺地盤及び隣接構造物との境界に用いる強度特性

周辺の状況		粘着力 c(N/mm²)	内部摩擦角(度)	備考
第四紀層	埋戻土層	0	37.3	_
	du 層	0	37.3	—
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—
地盤改良体		0.5	0	—

z :標高(m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表7.2-7のとおり 設定する。図7.2-9にジョイント要素設定の考え方を示す。

表 7.2-7 ジョイント要素のばね定数

	せん断剛性k 。	圧縮剛性 k n
	$(kN/m^3)$	$(kN/m^3)$
側方及び底面	$1.0 \times 10^{6}$	$1.0 \times 10^{6}$



図 7.2-9 ジョイント要素の考え方

(3) 材料特性の設定

カルバート部材及び鋼管杭は線形はり要素を用いてモデル化する。 地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

### 7.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、 Rayleigh減衰をα=0となる剛性比例型減衰とする。

[C] = α [M] + β [K]
 ここで、
 [C] :減衰係数マトリックス
 [M] :質量マトリックス
 [K] :剛性マトリックス
 α, β :係数

係数α,βは以下のように求めている。

$$\alpha = 0$$
  
 $\beta = \frac{h}{\pi f}$   
ここで、  
f : 固有値解析により求められた1次固有振動数  
h : 各材料の減衰定数

地盤の減衰定数は1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配的 となる。このため、解析上の安定のためになるべく小さい値として1%を採用している)と する。また、線形材料としてモデル化するコンクリートの減衰定数は5%(JEAG460 1-1987)とする。

図7.2-10にRayleigh減衰の設定フローを、表7.2-8に固有値解析結果を示す。



図 7.2-10 Rayleigh 減衰の設定フロー

表 7.2-8 固有値解析結果(追而) 南北方向(①-①断面) 7.2.10 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出 し,それぞれを組み合せて設定する。地震荷重には,地震時土圧,機器・配管系からの反 力による荷重が含まれるものとする。

なお,カルバートは,地盤内に埋設されている構造物であることから運転時の異常な過 渡変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるため当該状態に ついての組合せは考慮しないものとする。また重大事故等対処時においても,地盤内で設 計基準事故時の条件を上回るような事象は発生しないため,設計基準事故時の条件を上回 る荷重はない。

荷重の組合せを表7.2-9に示す。

地震時にカルバートに作用する機器・配管系からの反力については,機器・配管系を, 解析モデルに付加質量として与えることで考慮する。

看別		荷重		算定方法	
	常時	躯体自重 〇		<ul> <li>・設計図書に基づいて、対象構造物の体積に材料の密度を乗じて設定</li> </ul>	
	考慮	機器・配管自重	$\bigcirc$	・機器・配管の重さに基づいて設定	
<u></u> э. н	荷重	土被り荷重	0	・常時応力解析により設定	
水八		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない	
彻里	静止土圧		0	・常時応力解析により設定	
			$\bigcirc$	・地下水位に応じた静水圧として設定	
		2下小庄		・地下水の密度を考慮	
	内水圧		_	・恒常的に内水が存在しないことから、考慮しない	
変動荷重		雪荷重		・雪荷重を考慮	
		風荷重		・躯体が地中にあることから、風荷重を考慮しない	
御文	古毛	水平地震動	0	・基準地震動S。による水平・鉛直同時加振	
(地電	^{为宠何里} 鉛直地震動 (		0	・躯体,機器・配管の慣性力,動土圧を考慮	
(地辰何里)		動水圧 -		・恒常的に内水が存在しないことから、考慮しない	

表 7.2-9 荷重の組合せ

## (1) 機器·配管荷重

図7.2-11に①-①断面における機器・配管荷重図を示す。 機器・配管荷重は解析の単位奥行き(1 m)あたりの付加質量として考慮する。 軽油カルバートについては,南北両内空の頂版に0.1 t/mの配管荷重を考慮する。また底版には0.2 t/mの軽油配管荷重を考慮する。

水電気カルバートについては、区画1の底版に0.6 t/mの水配管荷重を考慮する。また区画1の中壁には0.1 t/mの配管荷重を考慮する。

区画2の中壁には電気ケーブル荷重として0.8 t/mを考慮する。 区画3の側壁には配管荷重として0.1 t/mを考慮する。



図 7.2-11 機器・配管荷重図 (①-①断面)

# (2) 外水圧

地下水位は地表面として設定する。設定の際は、地下水の密度として、1.00 g/cm³を考 慮する。

(3) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施行細則 第 16条の4」に従って設定する。積雪の厚さ1 cmあたりの荷重を20 N/m²/cmとして、積雪量は 30 cmとしていることから積雪荷重は600 N/m²であるが、地震時短期荷重として積雪荷重の 0.35倍である0.21 kN/m²を考慮する。

積雪荷重は構造物上面に付加質量として考慮する。



図 7.2-12 雪荷重図(①-①断面)

- 7.2.11 地震応答解析の検討ケース
  - (1) 耐震設計における検討ケース

カルバートの耐震設計における検討ケースを表7.2-10に示す。

			(1)	2	3	(4)	(5)	(6)
		原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤にお	地盤物性の	
		づく液状化	ばらつきを	ばらつきを	的に液状化	いて非液状	ばらつきを	
			強度特性を	考慮(+1	考慮 (-1	させること	化の条件を	考慮(+1
	検討ケーン	ス	用いた解析	σ)した解	σ)した解	を仮定した	仮定した解	σ)して非
			ケース(基本	析ケース	析ケース	解析ケース	析ケース	液状化の条
			ケース)					件を仮定し
								た解析ケー
								ス
			原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パラ	液状化パラ
	液状化 強度 \$	寺性	づく液状化	づく液状化	づく液状化	しない豊浦	メータを非	メータを非
	の設定	4 I TT	強度特性	強度特性	強度特性	標準砂に基	適用	適用
	の設定		(標準偏差	(標準偏差	(標準偏差	づく液状化		
		1	を考慮)	を考慮)	を考慮)	強度特性		
		(++)	1					
	$S_s - D 1$	(+-)	1					
		(-+)	1					
		()	1					
地電	$S_{s} = 1 1$	(++)	1					
辰波	$S_{s} = 12$	(++)	1	1	1	1	1	1
$\sim$	$S_{s} = 1 3$	(++)	1					
位	$S_{s} = 1.4$	(++)	1	①の検討において,最も厳しい(許容限界に対す る余裕が最も小さい)地震動を用いて実施			に対す	
他	$S_{s} - 21$	(++)	1					
	$S_{s} - 22$	(++)	1					
			1	L				
	$S_{s} = 3.1$	(++)	1					
	~ 5 0 1	(-+)	1					
			12	1	1	1	1	1

表 7.2-10 カルバートの耐震設計における検討ケース

(2) 機器・配管系に対する加速度応答抽出のための検討ケース 機器・配管系に対する加速度応答の抽出における検討ケースを表7.2-11に示す。

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	<ul><li>⑤</li><li>原地盤において非液</li><li>状化の条件を仮定し</li><li>た解析ケース</li></ul>	<ul> <li>⑥</li> <li>地盤物性のばらつき</li> <li>を考慮(+1σ)し</li> <li>て非液状化の条件を</li> <li>仮定した解析ケース</li> </ul>
液状化強度特性 の設定			敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
		(++)		1	
	$S_s$ -D1	(+-)		1	
		(-+)	1	1	1
		()		1	
地	$S_s = 11$	(++)	⑤において, 上載され	1	⑤において, 上載され
震	$S_s = 12$	(++)	る機器・配管系の固有	1	る機器・配管系の固有
波 ①	$S_s = 13$	(++)	振動数帯で加速度応	1	振動数帯で加速度応
紅相	$S_s - 14$	(++)	答が最も大きくなる地	1	答が最も大きくなる地
	$S_s = 21$	(++)	震動を用いて実施す	1	震動を用いて実施す
	$S_s = 22$	(++)	る。	1	る。
Ī	C 91	(++)		1	
	$5_{s} = 51$	(-+)		1	
計			1	12	1

表 7.2-11 機器・配管系への加速度応答の抽出における検討ケース

7.3 評価内容

7.3.1 杭と底版の結合部の評価方法

カルバート底版と鋼管杭の結合部(以下,「杭頭結合部」という。)の評価は,「道路 橋示方書(IV下部構造編)・同解説((社)日本道路協会,平成24年3月)及び「杭基礎設 計便覧((社)日本道路協会,平成4年10月)に適用し,杭頭でのモーメント,水平力,押 込み力及び引抜き力に対し抵抗できるよう設計を行う。

杭頭結合部の結合方法は、上記指針に示される方法B(フーチング内への杭の埋め込み 長さは最小限度に留め、主として鉄筋で補強することにより杭頭曲げモーメントに対抗す る方法)を採用し、その評価方法を表7.3-1に示す。

結合方法		方法B
鉛	押込み力	杭頭部のフーチングコンクリートの支圧及び押抜きせん断抵抗
直力	引抜き力	補強鉄筋の引張抵抗
		補強鉄筋とフーチングコンクリートの付着抵抗
水平力		杭前面のフーチングコンクリートの支圧抵抗
モーメント		補強鉄筋を含む仮想鉄筋コンクリート柱の曲げ抵抗

表 7.3-1 杭頭結合部の評価方法

#### 7.3.2 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次 元波動論によって,地震応答解析モデルの底面位置で評価したものを用いる。

図7.3-1に入力地震動算定の概念図を,図7.3-2に入力地震動の加速度時刻歴波形と加 速度応答スペクトルを示す。入力地震動の算定には解析コード「microSHAKE/3D Ver. 2.2.3.311」を使用する。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認 する。断層モデル波である $S_s - 1$  1 ~  $S_s - 2$  2については、特定の方向性を有すること から、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的にはNS方向の地震動 について構造物の評価断面方向の成分を求め、各々を足し合わせることで方位補正した地 震動を設定する。



図 7.3-1 入力地震動算定の概念図

MAX  $621 \text{ cm/s}^2$  (53.46 s) 1200 1000 800 600 □ 日本 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10 ير فينه بالأليان -600 -800 -1000 -12000 50 100 150 200 時間 (s) (a) 加速度時刻歷波形 h=0.05 3500



図 7.3-2(1) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 504  $cm/s^2$  (44.23 s)



図 7.3-2(2) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-D1)

MAX 536  $cm/s^2$  (25.95 s)







図 7.3-2(3) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 524  $cm/s^2$  (25.01 s)







図 7.3-2(4) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

MAX 584  $cm/s^2$  (28.10 s)







図 7.3-2(5) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 475  $cm/s^2$  (27.81 s)







図 7.3-2(6) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

MAX 597 cm/s² (25.32 s)







図 7.3-2(7) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

 1200
 1000

 800
 1000

 800
 1000

 800
 100

 900
 100

 1000
 100

 1000
 100

 1000
 100

 1000
 100

 1000
 100

MAX 470  $cm/s^2$  (25.03 s)



時間 (s)



図 7.3-2(8) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-13)

MAX 367  $cm/s^2$  (31.25 s)







図 7.3-2(9) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 404  $cm/s^2$  (28.97 s)







図 7.3-2(10) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-14)

MAX 732  $cm/s^2$  (61.54 s)



(a) 加速度時刻歷波形



図 7.3-2(11) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

MAX 573  $cm/s^2$  (70.16 s)







図 7.3-2(12) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-21)

MAX 794  $cm/s^2$  (69.86 s)







図 7.3-2(13) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

MAX  $650 \text{ cm/s}^2$  (72.08 s)







図 7.3-2(14) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)



図 7.3-2(15) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

MAX 245  $cm/s^2$  (7.81 s)



(b) 加速度応答スペクトル

図 7.3-2(16) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-31)

309

- 7.3.3 許容限界の設定
  - (1) 許容応力度による許容限界

カルバートの構造部材は,許容応力度による照査を行う。評価位置においてコンクリートの圧縮応力度,鉄筋の引張応力度,コンクリートのせん断応力度が短期許容応力度以下であることを確認する。

許容応力度については、「コンクリート標準示方書〔構造性能照査編〕((社)土木学 会 2002年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日 本道路協会,平成24年3月)」に基づき、コンクリート及び鉄筋の許容応力度に対して割増 係数1.5を考慮し、表7.3-2のとおり設定する。

	短期許容応力度 (N/mm ² )	
コンクリート*1	許容曲げ圧縮応力度 σ _{ca}	21.0
(f' $_{ck}$ =40 N/mm ² )	許容せん断応力度 τ _{al}	0.825*3
<b>金生谷(5D400)</b> *2	許容引張応力度 σ _{sa} (曲げ)	435
亚大用力(SD490)。-	許容引張応力度 σ _{sa} (せん断)	300
鉄筋(SD345)*1	許容引張応力度 $\sigma_{sa}$	294
	許容引張・圧縮応力度	
) · · · · · · · · · · · · · · · · · · ·	許容せん断応力度	

表 7.3-2 許容応力度(追而)

注記 *1:コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)
 *2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成24年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002年制定)」に準拠し、次式により求められる許容せん 断力

(V_a) を許容限界とする。

 $V_{a} = V_{ca} + V_{sa}$ ここで、  $V_{ca} : = 1/2 \cdot \tau_{a1} \cdot b_{w} \cdot j \cdot d$   $V_{sa} : 斜め引張鉄筋の許容せん断力$   $V_{sa} = A_{w} \cdot \sigma_{sa2} \cdot j \cdot d / s$   $\tau_{a1} : 斜め引張鉄筋を考慮しない場合の許容せん断応力度$  $b_{w} : 有効幅$ 

- j : 1/1.15
- d : 有効高さ
- A_w:斜め引張鉄筋断面積
- σ_{sa2}:鉄筋の許容引張応力度
- s : 斜め引張鉄筋間隔

表 7.3-3 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(追而)

(2) 基礎地盤の支持性能に対する許容限界

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験結果(せん断強度)等より設定する。

道路橋示方書による杭基礎における支持力算定式を以下に示す。杭基礎構造を有する耐 震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化強度特性により強 制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持 力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基本と する。ただし,杭を根入れした岩盤及び岩着している地盤改良体とその上方の非液状化層 が連続している場合は,杭周面摩擦力を支持力として考慮する場合がある。

・極限支持力算定式(杭基礎[中堀り工法])

$$R_u = q_d A + U \sum_i f_i$$
  
ここで、  
 $R_u$  : 地盤から定まる杭の極限支持力 (kN)  
 $q_d$  : 杭先端における単位面積あたりの極限支持力度 (kN/m²)  
 $A$  : 杭先端面積 (m²)  
 $U$  : 杭の周長 (m) 。ただし、鋼管ソイルセメント杭の場合においてはソイル  
セメント柱の周長とする。  
 $L_i$  : 周面摩擦力を考慮する層の層厚 (m)  
 $f_i$  : 周面摩擦力を考慮する層の最大周面摩擦力度 (kN/m²)

カルバートにおける許容限界を表7.3-4に示す。

## 7.4 評価結果

## 7.4.1 地震応答解析結果

カルバートの南北方向(①-①断面)の基準地震動S。による断面力(曲げモーメント,軸力,せん断力)を図7.4-1に示す。本図は構造部材の曲げ及びせん断照査結果が最も厳しくなる部材の評価時刻においての断面力を示したものである。

また、カルバートの南北方向(①-①断面)において、最大せん断ひずみ分布図を図7.4 -2に示し、過剰間隙水圧比の分布図を図7.4-3に示す。これらの図は、各要素に発生した せん断ひずみ及び過剰間隙水圧比の全時刻における最大値の分布を示したものである。 To2_CV-NS_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=00.00 s



曲げモーメント (kN・m)

To2_CV-NS_TS-L_MnsShousaSect_Ss-D1++.36 Time: t=00.00 s



(+: 圧縮, -:引張)

追而

軸力 (kN)

7 - 49



せん断力 (kN)

□照査値が最も厳しくなる部材の発生断面力

図 7.4-1(1) 南北方向①-①断面の地震時断面力(S_s-D1〔H+,V+〕, t=OO.OOs)

- 図 7.4-1(2) 南北方向①-①断面の地震時断面力(S_s-D1〔H+,V-〕, t=OO.OOs)
- 図 7.4-1 (3) 南北方向①-①断面の地震時断面力 (S_s-D1〔H-,V+〕, t=OO.OOs)

図 7.4-1(4) 南北方向①-①断面の地震時断面力(S_s-D1〔H-, V-〕, t=OO.OOs)

図 7.4-1(5) 南北方向①-①断面の地震時断面力(S_s-11, t=00.00s)

図 7.4-1(6) 南北方向①-①断面の地震時断面力(S_s-12, t=OO.OOs)

図 7.4-1(7) 南北方向①-①断面の地震時断面力(S_s-13, t=00.00s)

図 7.4-1 (8) 南北方向①-①断面の地震時断面力 (S_s-14, t=OO.OOs)

図 7.4-1 (9) 南北方向①-①断面の地震時断面力 (S_s-21, t=00.00s)

図 7.4-1(10) 南北方向①-①断面の地震時断面力(S_s-22, t=OO.OOs)

追而
# 追而

図 7.4-1 (11) 南北方向①-①断面の地震時断面力 (S_s-31〔H+,V+〕, t=OO.OOs)

図 7.4-1 (12) 南北方向①-①断面の地震時断面力 (S_s-31 [H-,V+], t=OO.OOs)

図 7.4-2(1) 南北方向①-①断面の最大せん断ひずみ分布(S_s-D1〔H+,V+〕)

- 図 7.4-2(2) 南北方向①-①断面の最大せん断ひずみ分布(S_s-D1〔H+,V-〕)
- 図 7.4-2 (3) 南北方向①-①断面の最大せん断ひずみ分布 (S_s-D1 〔H-, V+〕)
- 図 7.4-2(4) 南北方向①-①断面の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
- 図 7.4-2(5) 南北方向①-①断面の最大せん断ひずみ分布(S_s-11)
- 図 7.4-2(6) 南北方向①-①断面の最大せん断ひずみ分布(S_s-12)
- 図 7.4-2(7) 南北方向①-①断面の最大せん断ひずみ分布(S_s-13)
- 図 7.4-2(8) 南北方向①-①断面の最大せん断ひずみ分布(S_s-14)
- 図 7.4-2(9) 南北方向①-①断面の最大せん断ひずみ分布(S_s-21)
- 図 7.4-2(10) 南北方向①-①断面の最大せん断ひずみ分布(S_s-22)
- 図 7.4-2(11) 南北方向①-①断面の最大せん断ひずみ分布(S_s-31〔H+,V+〕)
- 図 7.4-2(12) 南北方向①-①断面の最大せん断ひずみ分布(S_s-31〔H-,V+〕)

追而

図 7.4-3 図(1) 南北方向①-①断面の過剰間隙水圧比(S_s-D1〔H+,V+〕)

- 図 7.4-3(2) 南北方向①-①断面の過剰間隙水圧比分布(S_s-D1〔H+,V-〕)
- 図 7.4-3 (3) 南北方向①-①断面の過剰間隙水圧比分布(S_s-D1〔H-,V+〕)
- 図 7.4-3(4) 南北方向①-①断面の過剰間隙水圧比分布(S_s-D1〔H-, V-〕)
- 図 7.4-3 (5) 南北方向①-①断面の過剰間隙水圧比分布 (S_s-11)
- 図 7.4-3(6) 南北方向①-①断面の過剰間隙水圧比分布(S_s-12)
- 図 7.4-3(7) 南北方向①-①断面の過剰間隙水圧比分布(S_s-13)
- 図 7.4-3 (8) 南北方向①-①断面の過剰間隙水圧比分布 (S_s-14)
- 図 7.4-3(9) 南北方向①-①断面の過剰間隙水圧比分布(S_s-21)
- 図 7.4-3(10) 南北方向①-①断面の過剰間隙水圧比分布(S_s-22)
- 図 7.4-3(11) 南北方向①-①断面の過剰間隙水圧比分布(S_s-31〔H+,V+〕)
- 図 7.4-3 (12) 南北方向①-①断面の過剰間隙水圧比分布 (S_s-31 [H-, V+])

追而

- 7.4.2 カルバートの耐震評価結果
  - (1) 構造部材の曲げに対する評価結果
    表7.4-1及び表7.4-2に曲げに対する照査結果を示す。
    許容応力度法による照査を行った結果,評価位置においてコンクリートの圧縮応力度と
    鉄筋の引張応力度が短期許容応力度以下であることを確認した。なお,発生応力は各地震

動,各部材において最大となる値を示している。 以上より,カルバートの構造部材の発生応力は,許容限界以下であることを確認した。

		表 7.4-1(1	) コンク	・リ -	- トの	曲げ照査	結果		追而
基準地震動	位相	評価位置			后 (N	圧縮 5力度 √mm2)	短期許 応力度 (N/mm ²	容 【 照 分	查値
			底版	7					
		軽油	北側壁		$\square$	==	⊐./⊏		
		サルバート	中壁			衣7	下例		
			南側壁			(下図にお	ける番号)		
			頂版		(			)	
$S_s - D_1$ H+, V-	H+, V+		底版						
			北側壁						
		水電気 カルバート	北中壁						
			南中壁						
			南側壁						
			頂版						
			底版						
		軽油	北側壁						
		カルバート	中壁						
			南側壁						
			頂版						
$S_s - D_1$	H-, V+		底版						
			北側壁						
		水電気	北中壁						
		カルバート	南中壁						
			南側壁						
			頂版						

## 表 7.4-1(1) コンクリートの曲げ照査結果

*1 評価位置は下図に示す

軽油カルバート



水電気カルバート



		表 7.4-1 (2	) コンクリー	ートの囲け照省	1. 結果		追而
基準地震動	位相	評伯	評価位置		短期許容 応力度 (N/mm ² )	照函	垕值
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s – D 1	H-, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s – D 1	H—, V—	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-1(2) コンクリートの曲げ照査結果

軽油カルバート





基準地震動	位相	評伯	評価位置		短期許容 応力度 (N/mm ² )	照	查値				
		軽油 カルバート	<u>底版</u> 北側壁 中壁 南側壁 頂版								
S _s -11	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版								
S _s – 1 2		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版								
	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版								

表 7.4-1 (3) コンクリートの曲げ照査結果

軽油カルバート



水電気カルバート



	:	表 7.4-1(4	) コンクリ・	ートの曲げ照査	E結果		追而
基準地震動	位相	評佔	西位置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照函	至値
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s -13	H+, V+	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s -14	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

- トの曲げ昭杳結果 表 7.4-1(4) コンクリー

軽油カルバート



水電気カルバート 10 11 9 12 13 14 1 3 5 7 4 2 6 8 15 16 17 18 19 20

	表 7.4-1 (5) コンクリートの曲げ照査結果								
基準地震動	位相	評伯	西位置	圧縮  応力度  (N/mm2)	短期許容 応力度 (N/mm ² )	照	查値		
S - 2 1		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版						
S _s – 2 1	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版						
S _s – 2 2	軽油 カルバート H+, V+ 水電気 カルバート		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版					
		水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版						

表 7.4-1(5) コンクリートの曲げ照査結果

軽油カルバート





		表 7.4-1(6	5) コンクリ-	- トの曲げ照査	結果		追而
基準地震動	位相	評伯	西位置	圧縮 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照	查値
S _s – 3 1		軽油 カルバート	<u>底版</u> <u>北側壁</u> 中壁 南側壁 頂版				
	H+, V+	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s -31	H-, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-1(6) コンクリートの曲げ照査結果

軽油カルバート





表 7.4-2(1) 鉄筋の曲げ照査結果								
基準地震動	位相	評価位置		引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査	値	
		軽油 カルバート	<u>底版</u> 北側壁 中壁 南側壁 頂版					
S _s – D 1	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版					
	<i>,</i> ,	軽油 カルバート	底版					
5 _s -D1	H—, V+	水電気 カルバート	広阪    北側壁    北中壁    南中壁    南側壁    頂版					

表 7.4-2(1) 鉄筋の曲げ照査結果

軽油カルバート





表 7.4-2 (2) 鉄筋の曲け照査結果								
基準地震動	位相	評价	西位置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查值	直	
S _s – D 1		軽油 カルバート	<u>底版</u> <u>北側壁</u> <u>中壁</u> 南側壁 頂版					
	H-, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版					
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版					
S _s -D1	H-, V-	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版					

表 7.4-2(2) 鉄筋の曲げ照査結果

軽油カルバート





衣 (.4-2 (3) 鉄肋の曲り 照査結果 引張 短期許容							
基準地震動	位相	評伯	西位置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照査値	Ĩ
S _s -11 H+		軽油 カルバート	<u>底版</u> 北側壁 中壁 南側壁 頂版				
	H+, V+	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				
	軽油 カルバート	底版 北側壁 中壁 南側壁 頂版					
S _s -12	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-2(3) 鉄筋の曲げ照査結果

軽油カルバート





表 7.4-2(4) 鉄筋の曲げ照査結果							
基準地震動	位相	評伯	評価位置		短期許容 応力度 (N/mm ² )	照査	値
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s -13	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s -14	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-2(4) 鉄筋の曲げ昭香結果

軽油カルバート





表 7.4-2 (5) 鉄筋の曲げ照査結果							
基準地震動	位相	評价	面位置	引張 応力度 (N/mm2)	短期許容 応力度 (N/mm ² )	照查偭	<u>i</u>
S _s – 2 1 H		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				
	t	軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s – 2 2	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-2(5) 鉄筋の曲げ照査結果

軽油カルバート





表 7.4-2 (6) 鉄筋の曲げ照査結果								
基準地震動	位相	評佔	引張  短期許容    評価位置  応力度    (N/mm2)  (N/mm ² )		照査	·值		
		軽油 カルバート	<u>底版</u> 北側壁 中壁 南側壁 頂版					
S _s - 3 1	H+, V+	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版					
		軽油 カルバート	<u>底版</u> 北側壁 中壁 南側壁 頂版					
S _s -31	H-, V+ ホ カル	水電気 カルバート	底版    北側壁    北中壁    南中壁    南側壁    頂版					

## 表 7.4-2(6)鉄筋の曲げ照査結果

*1 評価位置は下図に示す

軽油カルバート



水電気カルバート







表 7.4-3	断面諸元一覧表	(曲げに対す	る評価)
---------	---------	--------	------

			断面性状			主鉄筋					
部位		材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	段数	鉄筋間隔	鉄筋量
			b(m)	h(m)	d'(m)	d (m)	(-)	(mm)	(-)	(mm)	$(cm^2)$
	底版	M1									
# <b>Z</b> )/H	北側壁	M2									
11日 キャング キャッシュ ション・ション・ション・ション・ション・ション・ション・ション・ション・ション・	中壁	M3									
	南側壁	M4									
	頂版	M5									
	底版	M6									
	北側壁	M7									
水電気	北中壁	M8									
カルバート	南中壁	M9									
	南側壁	M10									
	頂版	M11									





(3) 構造部材のせん断に対する評価結果

表 7.4-4 にせん断に対する照査結果を示す。

許容応力度法による照査を行った結果,評価位置においてせん断応力度が許容せん断応 力度以下である又はコンクリートの負担するせん断力( $V_{c}$ )と,斜め引張鉄筋の負担する せん断力( $V_{s}$ )を合わせた許容せん断力( $V_{a}$ )が,発生せん断力(V)以上であること を確認した( $V_{a}=V_{c}+V_{s} \ge V$ )。なお,発生断面力は各地震動,各部材において最大と なる値を示している。

以上より、カルバートの構造部材の発生応力は、許容限界以下であることを確認した。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							追ī
基準地震動	位相	評価位置		発生 せん断力 (kN)	短期許容 せん断力 (kN)	照查値	
S _s -D1 H+, V+	軽油 カルバート	<u>底版</u> <u>北側壁</u> 中壁 南側壁 頂版					
	H+, V+	+, V+ 水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s – D 1	H-, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-4(1) せん断照査結果

軽油カルバート

		表 7.4	-4 (2) 번	ん断照査結果			追而
基準地震動	位相	評佈	而位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照望	〔 〔 〔 〔
			底版 北側壁 中壁 南側壁 頂版				
S _s – D 1	н-, v+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 <u>北側壁</u> 中壁 南側壁 頂版				
S _s – D 1	H-, V-	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				

軽油カルバート

水電気カルバート 12 13 10 11 16 17 18 19

表 7.4-4 (3) せん断照査結果								
基準地震動	位相	評布	西位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査	í 値	
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版					
S _s – 1 1	H+, V+	水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版					
		軽油 カルバート	底版 <u>北側壁</u> 中壁 南側壁 頂版					
S _s -12	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版					

表7.4-4(3) せん断昭査結果

*1 評価位置は下図に示す。

軽油カルバート

水電気カルバート

		表 7.4	-4 (4) せん	ん断照査結果			追而
基準地震動	位相	評估	評価位置		短期許容 せん断力 (kN)	照查	値
		軽油 カルバート	<u>底版</u> <u>北側壁</u> 中壁 南側壁 頂版				
S _s -13	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				
		軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
S _s - 1 4	H+, V+	水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-4(4) せん断照査結果

軽油カルバート

表 7.4-4 (5) せん断照査結果							
基準地震動	位相	評伯	評価位置		短期許容 せん断力 (kN)	照査	値
S _s – 2 1		軽油 カルバート	<u>底版</u> <u>北側壁</u> 中壁 南側壁 頂版				
	H+, V+	+, V+ 水電気 カルバート	<u>底版</u> 北側壁 北中壁 南中壁 南側壁 頂版				
S _s -22 H	H+, V+	軽油 カルバート	底版 北側壁 中壁 南側壁 頂版				
		水電気 カルバート	底版 北側壁 北中壁 南中壁 南側壁 頂版				

表 7.4-4(5) せん断照査結果

軽油カルバート

		衣 1.4	-4 (0)	. 心例照重和术			追而
基準地震動	位相	評伯	西位置	発生 せん断力 (kN)	短期許容 せん断力 (kN)	照査	直 直
			底版				
		軽油	北側壁				
		カルバート	中壁				
			南側壁				
			頂版				
$S_{s} - 31$	H+, V+		<u></u>				
		水電気 カルバート	北側壁				
			北中壁				
			<u> </u>				
			一 南側壁				
			<u> </u>				
		軽油	北側壁				
		カルバート					
S _ 2 1	и v_+		」				
$S_{s} = 51$	n−, v⊤		上加陸				
		* 電灯	<u>北</u> 侧堂 北市陸				
		小电ス	<u>北中堂</u> 古山時				
			<u>田丁堂</u> 茵側辟				
			百版				

表 7.4-4(6) せん断照査結果

Г

*1 評価位置は下図に示す。

軽油カルバート

水電気カルバート

図 7.4-5 概略配筋図

追而

表 7.4-5 断面諸元一覧表(せん断に対する評価)									追而		
				断面	性状			せ	ん断補強鉄	筋	
部位		材料No.	部材幅	部材高	かぶり	有効高さ	鉄筋種別	径	Sb	Ss	鉄筋量
			b (m)	h (m)	d'(m)	d (m)	(-)	(mm)	(mm)	(mm)	(cm^2)
	底版	M1									
唐文 沙山	北側壁	M2									
11日 キャング キャッシュ ション・ション・ション・ション・ション・ション・ション・ション・ション・ション・	中壁	M3									
	南側壁	M4									
	頂版	M5									
	底版	M6									
	北側壁	M7									
水電気	北中壁	M8									
カルバート	南中壁	M9									
	南側壁	M10									
	頂版	M11									

評価中

- 7.4.3 杭基礎の耐震評価結果
 - (1) 曲げに対する評価結果
 - (2) せん断に対する評価結果
 - (3) 基礎地盤の支持性能に対する評価結果
 表 7.4-6 に基礎地盤の支持性能照査結果を示す。
 カルバートの最大接地圧は、S_s-D1で○○ kN/m²であり、基礎地盤の極限支持力度△
 △ kN/m²以下である。

以上のことから、カルバートの基礎地盤は、基準地震動S。に対し、支持性能を有する。

表 7.4-6 基礎地盤の支持性能照査結果

追而

7.5 まとめ <mark>(追而)</mark>

9. 常設低圧代替注水系ポンプ室の耐震安全性評価

目 次

9.1 評	価方法
9.2 評	価条件
9.2.1	適用基準3
9.2.2	耐震安全性評価フロー4
9.2.3	評価対象断面の方向
9.2.4	評価対象断面の選定7
9.2.5	使用材料及び材料定数13
9.2.6	地下水位16
9.2.7	地震応答解析手法16
9.2.8	解析モデルの設定18
9.2.9	減衰特性
9.2.1	0 荷重の組合せ25
9.2.1	1 地震応答解析の検討ケース
9.3 評	価内容
9.3.1	入力地震動の設定
9.3.2	許容限界の設定64
9.4 評	価結果69
9.4.1	地震応答解析結果
9.4.2	耐震評価結果
9.5 E	とめ(追而)

9.1 評価方法

常設低圧代替注水系ポンプ室は,重大事故等対処設備のうちの「常設耐震重要重大事故防止設備」及び「常設重大事故緩和設備」に分類され,常設低圧代替注水系における複数の代替淡水源 に対応するため設置し,代替淡水貯槽用のポンプ及び配管の間接支持機能を有する。

常設低圧代替注水系ポンプ室について基準地震動S。による耐震安全性評価として,構造部材の健全性評価及び基礎地盤の支持性能評価を実施する。

構造部材の健全性評価については,構造部材の発生応力が許容限界以下であることを確認す る。基礎地盤の支持性能評価については,基礎地盤に作用する接地圧が極限支持力に基づく許容 限界以下であることを確認する。

9.2 評価条件

9.2.1 適用基準

常設低圧代替注水系ポンプ室の耐震評価にあたっては,「原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)」,「コンクリート標準示方書[構造性能照査 編]((社)土木学会,2002年制定)」を適用する。

表 9.2-1 に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
	・コンクリート標準示方書 [構	
使用材料及び材料定数	造性能照査編]((社)土木学	—
	会,2002年制定)	
	・コンクリート標準示方書 [構	・終局限界状態を考慮し, 永久
荷重及び荷重の組合せ	造性能照査編]((社)土木学	荷重+偶発荷重+従たる変動
	会,2002年制定)	荷重の適切な組合せを検討
	・コンクリート標準示方書 [構	
	造性能照査編]((社)土木学	・曲げ及びせん断に対する照
	会,2002年制定)	査は, 許容応力度以下である
許容限界	・道路橋示方書(Ⅰ共通編・Ⅳ	ことを確認
	下部構造編)・同解説((社)	・接地圧が基礎地盤の極限支
	日本道路協会,平成 24 年 3	持力以下であることを確認
	月)	
	- 1 = 1007	・有限要素法による2次元モ
地震応答解析	· JEAG4001-1987	デルを用いた時刻歴線形解
		析

表 9.2-1 適用する規格,基準類

9.2.2 耐震安全性評価フロー

図 9.2-1 に常設低圧代替注水系ポンプ室の耐震安全性フローを示す。

図 9.2-1 常設低圧代替注水系ポンプ室の耐震安全性評価フロー

9.2.3 評価対象断面の方向

常設低圧代替注水系ポンプ室の位置を図 9.2-2 に示す。

常設低圧代替注水系ポンプ室は,長辺17.0m(東西方向),短辺13.0m(南北方向),高さ29.5mの鉄筋コンクリート造の地中構造物であり,比較的単純な箱型構造物である。長辺と 短辺の長さに大きな違いがなく,強軸断面方向と弱軸断面方向が明確でないことから,東西 方向断面と南北方向断面の両方向を評価対象断面とする。

図 9.2-2(1) 常設低圧代替注水系ポンプ室位置図

図 9.2-2(2) 常設低圧代替注水系ポンプ室位置図
9.2.4 評価対象断面の選定

図 9.2-3 及び図 9.2-4 に常設低圧代替注水系ポンプ室の平面図及び断面図を示す。 常設低圧代替注水系ポンプ室は,東西方向 17.0 m,南北方向 13.0 m,高さ 29.5 m の多層 ラーメン構造の鉄筋コンクリート造であり,十分な支持性能を有する岩盤に直接設置する。 北側に常設低圧代替注水系配管カルバートへ開口部で接続し,南側に代替淡水貯槽へ接続す るカルバートの張出しを有する。南側のカルバートの内空幅及び高さは 2.3 m である。

評価対象断面は、「1.4.9 常設低圧代替注水系ポンプ室の断面算定の考え方」で記載した とおり、常設低圧代替注水系ポンプ室は、角筒形の鉄筋コンクリート構造物であり、互いに 直交する荷重はそれぞれ異なる構造部材で受け持つ設計とすることから、耐震評価では、常 設低圧代替注水系ポンプ室の東西方向断面及び南北方向断面の2断面を選定し、基準地震動 S_sに対する耐震評価を実施する。なお、南北方向断面においては、カルバートの張出し部を 奥行き方向に等価な剛性でモデル化し、カルバートの上載荷重を考慮する。

評価対象断面位置図を図 9.2-5 に,評価対象断面図を図 9.2-6 に示す。

図 9.2-4(1) 常設低圧代替注水系ポンプ室断面図(東西方向断面)

図 9.2-4(2) 常設低圧代替注水系ポンプ室断面図(南北方向断面)

図 9.2-5 常設低圧代替注水系ポンプ室 耐震評価対象断面選定位置

図 9.2-6(1) 常設低圧代替注水系ポンプ室評価対象断面図(東西方向断面)

図 9.2-6(2) 常設低圧代替注水系ポンプ室評価対象断面図(南北方向断面)

9.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,適用基準類を基に設定する。構造物の使用材料を第9.2-2 表に、材料物性値を第9.2-3表に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。なお、地盤については、液状化検討対象層における有効応力の変化に応じた地震時挙動 を適切に考慮できるモデル化とする。地盤の物性値を表 9.2-4 に示す。

表 9.2-2 使用材料

材料	諸元
コンクリート	設計基準強度 40 N/mm ²
鉄筋	SD345, SD390, SD490

表 9.2-3 材料物性值

材料	単位体積重量	ヤング係数	ポアソン比
	(kN/m^3)	(N/mm^2)	
鉄筋コンクリート	24.5	3. 1×10^4	0.2

パラメータ				埋戻土	埋戻土 第四系(液状化検討対象層)							豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物	密度	ρ	g/cm ³	1.98	1.98	2.01	1.74	2.01	1.92	2.15	2.01	1.958
埋	() は地下水位以浅			(1.82)	(1.82)	(1.89)		(1.89)		(2.11)	(1.89)	
性	間隙比	е	—	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	$\nu_{\rm CD}$	_	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
	基準平均有効主応力		. 9	358	358	497		814		1167	1695	
发形	() は地下水位以浅	σ'_{ma}	kN/m²	(312)	(312)	(299)	378	(814)	966	(1167)	(1710)	12.6
が特性	基準初期せん断剛性			253529	253529	278087		392073	650611	1362035	947946	18975
	 は地下水位以浅 	G _{ma}	kN/m ²	(220739)	(220739)	(167137)	143284	(392073)		(1362035)	(956776)	
	最大履歴減衰率	h _{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0
特性	内部摩擦角	ϕ_{CD}	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	_	34.8	34.8	34.9	38.3	34.9	33. 4	41.4	34. 9	28
	液状化パラメータ	S_1	_	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
液状	液状化パラメータ	W_1	_	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特姓	液状化パラメータ	P_1	_	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
T±	液状化パラメータ	P_2	-	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44

表 9.2-4(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 9.2-4(2) 地	の解析用物性値一覧(非液状化層)
--------------	------------------

					原地盤						
	パラメータ			第四系(非	液状化層)		新第三系				
			Ac	D2c-3	1m	D1c-1	Km				
物理性	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1. 47 (1. 43)	1.77	1.72-1.03 \times 10 ⁻⁴ · z			
村性	間隙比	е	I	1.59	1.09	2.8	1.09	1.16			
	ポアソン比	ν_{CD}	I	0.10	0.22	0.14	0.22	0.16+0.00025 • z			
変 形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m²	480	696	249 (223)	696	원산고고파타마 ㅋㅋ ~~			
特 性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	121829	285223	38926 (35783)	285223	動的変形特性に基づさ z(標高)毎に物性値を 設定			
	最大履歴減衰率	h_{max}	_	0.200	0.186	0.151	0.186				
強 度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z			
特 性	内部摩擦角	$\phi_{ ext{CD}}$	度	29.1	35.6	27.3	35.6	23. 2+0. 0990 · z			

z :標高(m)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
	TP(m)	適用深度	TP (m)	ρ		CCD	фсв	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
番号	Z			(g/cm_3)	νcd	(kN/m^2)	(°)	(m/s)	(kN/m²)	(kN/m^2)	(kN/m²)	mG, mK	hmax(-)	νd	(m/s)	
1	10	9.5 ~	10.5	1.72	0.16	298	24.2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1, 644, 000
3	8	7.5 ~	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1, 648, 000
4	7	6.5 ~	7.5	1.72	0.16	316	23.9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5 ~	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5 ~	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318,028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5 ~	3.5	1.72	0.16	340	23.5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5 ~	1.5	1.72	0.16	352	23.3	432	320, 993	365,051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5 ~	0,5	1.72	0, 16	358	23. 2	433	322, 481	366, 743	504	0, 0	0, 107	0,463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5 ~	-1.5	1.72	0, 16	370	23.0	435	325, 467	370, 139	504	0, 0	0,108	0,463	1,657	1,657,000
14	-3	-3.5 ~	-2.5	1.72	0, 16	376	22, 9	435	325, 467	370, 139	504	0, 0	0,108	0,463	1,657	1,657,000
15	-4	-4.5 ~	-3, 5	1.72	0, 16	382	22, 8	436	326, 965	371, 843	504	0, 0	0,108	0,463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1.644	1, 644, 000
17	-6	-6.5 ~	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1, 648, 000
18	-7	-7.5 ~	-6.5	1.72	0.16	400	22.5	438	329 972	375 262	504	0.0	0.109	0.462	1 648	1 648 000
19	-8	-8.5 ~	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1, 652, 000
20	-9	-9.5 ~	-8.5	1.72	0.16	412	22. 3	440	332, 992	378.697	504	0.0	0. 110	0.462	1,656	1, 656, 000
21	-10	-11 ~	-9.5	1.72	0.16	418	22.2	441	334, 507	380 420	504	0.0	0, 110	0, 462	1,659	1, 659,000
22	-12	-13 ~	-11	1, 72	0, 16	430	22. 0	442	336. 026	382. 147	504	0, 0	0, 110	0, 462	1,663	1, 663. 000
22	-14	-15 ~	-13	1.72	0.16	442	21.8	444	339,020	385 614	504	0.0	0.111	0.462	1,003	1,003,000
20	-16	-17 ~	-15	1.72	0.16	454	21.0	445	340,603	387 352	504	0.0	0.111	0.461	1,654	1,654,000
25	-18	-10 ~	-17	1.72	0.16	467	21.0	447	343,671	390 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21 ~	-19	1.72	0.16	401	21.4	448	345, 211	392 593	504	0.0	0.112	0.461	1,665	1,665,000
20	_99	-92 0		1.72	0.15	401	21.2	450	248 200	201 471	409	0.0	0.112	0.461	1,000	1,000,000
21	-94	-25 0	22	1.72	0.15	491 502	20.8	450	251 402	204 970	498	0.0	0.112	0.461	1,073	1, 673, 000
20	-26	-27 ~	-25	1.72	0.15	515	20.8	402	352 959	386 574	490	0.0	0.113	0.401	1,080	1,030,000
20	_20	-20 0		1.72	0.15	597	20.0	400	332, 333	200,014	498	0.0	0.113	0.400	1,004	1,004,000
21	-20	-21 0	_20	1.72	0.15	520	20.4	400	257 650	201 712	490	0.0	0.114	0.460	1,072	1,072,000
20	30	31 -	2.9	1.72	0.15	551	20.2	450	307,000	205 155	498	0.0	0.114	0.400	1,073	1,073,000
32	-32	-25 0	-31	1.72	0.15	562	20.0	400	360, 794	206 992	498	0.0	0.115	0.400	1,085	1, 667, 000
24	_26	-27 0		1.72	0.15	575	19.0	405	265 526	400, 240	498	0.0	0.115	0.459	1,007	1,007,000
25	-30	-20 0	35	1.72	0.15	515	19.0	401	267 124	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
20	-30	-39 ~		1.72	0.15	500	19.4	402	307, 124	402,088	496	0.0	0.116	0.459	1,078	1, 678, 000
30	40	41 -	41	1.72	0.15	055	19.2	404	370, 309	407, 207	498	0.0	0.117	0.455	1,000	1,000,000
20	-44	-45 0	-42	1.72	0.15	692	19.0	403	275 112	401, 321	490	0.0	0.117	0.459	1,005	1,039,000
30	44	40	45	1.72	0.15	023	10.0	407	375, 113	410,000	498	0.0	0.117	0.458	1,078	1,078,000
40	-49	-40 0	- 40	1.72	0.15	647	10.0	400	270,049	412, 055	450	0.0	0.117	0.458	1,001	1,001,000
40	-50	-51 0	-40	1.72	0.15	660	10.4	470	295 416	410, 134	490	0.0	0.118	0.458	1,000	1,000,000
49	_52	-52 0	-51	1.70	0.15	679	10.0	472	287 051	492 012	408	0.0	0.110	0.459	1,000	1,600,000
42	-54	-55 ~	-53	1.73	0.15	684	10.1	410	390 331	423, 913	490	0.0	0.118	0.457	1,699	1,059,000
40	-56	-57 ~	-55	1.73	0.15	606	17.7	476	391 076	429 307	498	0.0	0.110	0.457	1,000	1 692 000
45	-58	-59 ~	-57	1.73	0.15	708	17.5	478	395 977	432 022	408	0.0	0.119	0.457	1,092	1 699 000
46	-60	-61 ~	-50	1 72	0.15	720	17.3	470	396 033	434 736	498	0.0	0.120	0.457	1 702	1 702 000
40	-62	-63 ~	-61	1. 73	0.10	732	17.1	481	400, 255	422 491	492	0.0	0.120	0.457	1, 702	1, 702, 000
41	-64	-65 ~	-62	1.73	0.14	744	16.9	489	401 021	424 250	409	0.0	0.120	0.456	1,105	1, 105,000
40	-66	-67 ~	-65	1.73	0.14	756	16.7	484	405 263	427, 200	402	0.0	0.120	0.456	1,055	1,000,000
50	-68	-69 ~	-67	1.73	0.14	768	16.5	485	406 030	429 547	409	0.0	0.120	0.456	1,702	1,705,000
50	-70	-71 0	-60	1.73	0.14	790	16.0	403	410, 339	422,047	492	0.0	0.121	0.450	1,703	1,703,000
50	-79	-73 -	-09	1.70	0.14	709	10.0	401	410, 302	433,097	492	0.0	0.121	0.456	1, 710	1,712,000
52	74	75 -	70	1.73	0.14	192	10.1	405	415,079	430,001	492	0.0	0.121	0.455	1,715	1, 715, 000
53	-14	-75 ~	13	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
- P4	-70	-70	-10	1.73	0.14	010	10.7	492	410, //1	442,030	492	0.0	0.122	0.400	1, (12	1, 712, 000
55	-/8	-19 ~	-11	1.73	0.14	028	10.0	493	420, 475	443,835	492	0.0	0.122	0.455	1,710	1, 710, 000
56	-80	-81 ~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85 ~	-81	1.73	0.14	852	15.1	496	425,608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	-90 ~	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95 ~	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101 ~	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	-108 ~	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1, 733	1, 733, 000
62	-112	-115 ~	-108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1, 737	1, 737, 000
63	-118	-122 ~	-115	1.73	0.13	1,070	11.5	524	475,016	483, 575	486	0.0	0.127	0.451	1, 754	1, 754, 000
64	-126	-130 ~	-122	1.73	0.13	1,118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1, 758	1, 758, 000

表 9.2-4(3) 地盤の解析用物性値一覧(新第三系 Km 層)

9.2.6 地下水位

地下水位は地表面として設定する。

9.2.7 地震応答解析手法

常設低圧代替注水系ポンプ室の地震応答解析は,地盤と構造物の相互作用を考慮できる2 次元動的有限要素法解析を用いて,基準地震動に基づき設定した水平地震動と鉛直地震動の 同時加振による時刻歴非線形解析にて行う。部材については,はり要素を用いることとする。 また,地盤については,有効応力の変化に応じた地震時挙動を適切に考慮できるようにモデ ル化する。地震応答解析については,解析コード「FLIP ver. 7.3.0_2」を使用する。なお, 解析コードの検証及び妥当性確認等の概要については,「計算機プログラム(解析コード)の 概要」(資料番号:追而)に示す。

地震応答解析手法の選定フローを図 9.2-7 に示す。

図 9.2-7 地震応答解析手法の選定フロー

H-D モデルの選定理由は次の通りである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力 ~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を 適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって,耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ関

係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に 関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線モ デル(H-Dモデル)を選定する。

- 9.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさない よう、十分広い領域とする。具体的には、JEAG4601-1987を参考に、図 9.2-8 に 示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上を確保す る。

常設低圧代替注水系ポンプ室周辺の地質断面図を図 9.2-9 に示す。なお,解析モデルの境 界条件は,側面及び底面ともに粘性境界とする。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長に対して 5または4分割似上になるように要素高さを設定している。

地震応答解析モデルを図 9.2-10 に示す。なお,東西方向断面における廃棄物処理建屋は, 保守的に埋戻土としてモデル化する。

図 9.2-8 モデル化範囲の考え方

図 9.2-9(1) 地質断面図(東西方向断面)

図 9.2-9(2) 地質断面図(南北方向断面)

図 9.2-10(1) 常設低圧代替注水系ポンプ室の地震応答解析モデル(東西方向断面)

図 9.2-10(2) 常設低圧代替注水系ポンプ室の地震応答解析モデル(南北方向断面)

(2) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離・すべ りを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向では, 常時状態以上の引張が生じた場合,剛性及び応力をゼロとし,剥離を考慮する。接線方向で は,地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合,剛性をゼロとし,すべ りを考慮する。せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。 c, ϕ は周辺 地盤の c, ϕ とする。(表 9.2-5 参照)

τ_f = c + σ' tan φ ここで, τ_f: せん断強度 c: 粘着力 φ: 内部摩擦角

周辺の状況		粘着力c(N/mm²)	内部摩擦角(度)	備考						
	f1 層	0	37.3							
	du 層	0	37.3							
第四紀層	Ag2 層	0	37.4							
	D2c-3 層	0.026	35.6							
	D2g-3 層	0	44.4	_						
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	_						

表 9.2-5 周辺地盤及び隣接構造物との境界に用いる強度特性

z :標高 (m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大きな 値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 9.2-6のとおり設 定する。図 9.2-11 にジョイント要素設定の考え方を示す。

表 9.2-6 ジョイント要素のばね定数

	せん断剛性ks	圧縮剛性kn
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

図 9.2-11 ジョイント要素の考え方

(3) 材料特性の設定

構造部材は,線形はり要素,及び,質点と地盤間をつなぐ仮想剛梁要素によりモデル化する。

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変化に 応じた非線形せん断応力~せん断ひずみ関係を考慮する。

9.2.9 減衰特性

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及び 減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお, Rayleigh 減衰をα=0となる剛性比例型減衰とする。

 $[C] = \alpha [M] + \beta [K]$

ここで,

[C]: 減衰係数マトリックス

[M]: 質量マトリックス

[K]: 剛性マトリックス

 α , β :係数

係数α, βは以下のように求めている。

$$\alpha = 0$$

$$\beta = \frac{h}{\pi f}$$

ここで,

f : 固有値解析により求められた1次固有振動数

h :各材料の減衰定数

地盤の減衰定数は1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配的 となる。このため、解析上の安定のためになるべく小さい値として1%を採用している)と する。また、線形材料としてモデル化するコンクリートの減衰定数は5%(JEAG460 1-1987)とする。

図 9.2-12 に Rayleigh 減衰の設定フローを,表 9.2-6 に固有値解析結果を示す。

図 9.2-12 Rayleigh 減衰の設定フロー

表 9.2-6 固有值解析結果(追而)

9.2.10 荷重の組合せ

耐震安全性評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震時荷重を抽 出し,それぞれ組合せて設定する。地震時荷重には,地震時土圧,動水圧,機器・配管から の反力による荷重が含まれるものとする。

雪荷重以外の変動荷重(風荷重・温度荷重)については,発電所の立地特性や常設低圧代 替注水系ポンプ室が地中に埋設された構造物であることを考慮すると,構造物に与える影響 は軽微であると判断し,地震力と組合せる荷重としては除外した。

なお、常設低圧代替注水系ポンプ室は、地盤内に埋設されている構造物であることから、 運転時の異常な過渡変化時の状態及び設計基準事故時の状態の影響を受けないと考えられる ため、当該状態についての組合せは考慮しないものとする。また、重大事故等対処時におい ても、地盤内で設計基準事故時の条件を上回るような事象は発生しないため、設計基準事故 時の条件を上回る荷重はない。

荷重の組合せを表 9.2-7 に示す。地震時に常設低圧代替注水系ポンプ室に作用する機器・ 配管系からの反力については、機器・配管系を、解析モデルに付加質量として与えることで 考慮する。

	種別	荷重		算定方法
		皈休白舌	\bigcirc	・設計図書に基づいて、対象構造物の体積に材料
		松件日里	0	の単位体積重量を乗じて設定
	常時考慮	機器・配管荷重	0	・機器・配管荷重の重量に基づいて設定
л.	荷重	土被り荷重		・躯体天端が地表面にある構造物を参照
小八		シカト封告手	_	・恒常的に配置された設備はないことから、考慮
彻里		小八丄戦何里		しない。
	主	争止土圧	0	・常時応力解析により算定
		タナロ	\bigcirc	・地下水位に応じた静水圧として設定
		クトハハエ	\bigcirc	・水の単位体積重量を考慮
				・雪荷重以外には発電所の立地特性及び構造物の
र्याङ	動費重	雪荷重以外	—	配置状況を踏まえると, 偶発荷重(地震荷重)と組
泛	動何里			合せるべき変動荷重はない
		雪荷重	0	・雪荷重を考慮
/=	112 世毛	水平地震動	0	・基準地震動S。による水平・鉛直同時加振
	地們里	鉛直地震動	0	・躯体,機器・配管の慣性力,動土圧を考慮

表 9.2-7 荷重の組合せ

(1) 機器・配管荷重

各フロアのスラブには図 9.2-15 及び図 9.2-16 に示すとおり,低圧代替注水ポンプ,配 管等の荷重を考慮する。低圧代替ポンプ荷重は,ポンプ設置面積で除した値を用いる。それ 以外の荷重は,内空幅で除した単位奥行き当たりの荷重として考慮する。

図 9.2-15 作用荷重図(東西方向断面)

図 9.2-16 作用荷重図 (南北方向断面)

- (2) 外水圧水の密度として 1.00 g/cm³を考慮する。
- (3) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施行細則 第16条の4」に従って設定する。積雪の厚さ1 cm あたりの荷重を20 N/m²として、積雪量は30 cm としていることから常時の積雪荷重は600 N/m²となる。地震時は、常時の雪荷重の0.35 倍となることから210 N/m²として設定する。解析上は、頂版の重量に雪荷重を見込んでモデル 化している。

- 9.2.11 地震応答解析の検討ケース
 - (1) 耐震設計における検討ケース 常設低圧代替注水系ポンプ室の耐震設計における検討ケースを表 9.2-8 に示す。

			1	2	3	4	5	6
			原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤にお	地盤物性の
			づく液状化	ばらつきを	ばらつきを	的に液状化	いて非液状	ばらつきを
			強度特性を	考慮(+1	考慮(-1	させること	化の条件を	考慮(+1
	検討ケーン	ス	用いた解析	σ)した解	σ)した解	を仮定した	仮定した解	σ)して非
			ケース(基本	析ケース	析ケース	解析ケース	析ケース	液状化の条
			ケース)					件を仮定し
								た解析ケー
								ス
			原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パラ	液状化パラ
	液 狀化	寺性	づく液状化	づく液状化	づく液状化	しない豊浦	メータを非	メータを非
	の設定	117	強度特性	強度特性	強度特性	標準砂に基	適用	適用
の設定			(標準偏差	(標準偏差	(標準偏差	づく液状化		
		1	を考慮)	を考慮)	を考慮)	強度特性		
		(++)	1					
	C D 1	(+-)	1					
	$S_s - D_1$	(-+)	1					
		()	1					
地	$S_{s} - 1 1$	(++)	1	1	1	1	1	1
辰波	$S_{s} - 12$	(++)	1	-	_	_	_	_
\sim	$S_{s} = 1 3$	(++)	1					
位	$S_{s} - 14$	(++)	1	①の検	計において	最も厳しい	(許容限界)	に対す
他	$S_{s} - 21$	(++)	1				(日本政外	
	$S_{s} - 22$	(++)	1	る余裕	が最も小さい	い)地震動を	用いて実施	
		(++)	1					
	$S_{s} - 31$		1					
	5	(-+)	1					
 計			12	1	1	1	1	1

表 9.2-8 常設低圧代替注水系ポンプ室の耐震設計における検討ケース

(2) 機器・配管系に対する加速度応答抽出のための検討ケース 機器・配管系に対する加速度応答抽出における検討ケースを表 9.2-9 に示す。

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤原地盤において非液状化の条件を仮定した解析ケース	 ⑥ 地盤物性のばらつき を考慮(+1σ)し て非液状化の条件を 仮定した解析ケース
液状化強度特性 の設定			敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
地震波(位相)	$S_{s}-D1$ $S_{s}-11$ $S_{s}-12$ $S_{s}-13$ $S_{s}-14$ $S_{s}-21$ $S_{s}-22$ $S_{s}-31$	$S_s - D1$ $(++)$ $(+-)$ $(+-)$ $()$ 1 $()$ $()$ $S_s - 11$ $(++)$ $S_s - 12$ $(++)$ $S_s - 13$ $(++)$ $S_s - 14$ $(++)$ $S_s - 21$ $(++)$ $S_s - 22$ $(++)$ $S_s - 22$ $(++)$ $S_s - 22$ $(++)$		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ⑤において,上載され る機器・配管系の固有 振動数帯で加速度応 答が最も大きくなる地 震動を用いて実施す る。
	計	()	1	12	1

表 9.2-9 機器・配管系への加速度応答の抽出における検討ケース

9.3 評価内容

9.3.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次元 波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動算定の概 念図を図 9.3-1に,管軸方向の入力地震動の加速度時刻歴波形及び加速度応答スペクトル を図 9.3-2に,管軸直角方向の入力地震動の加速度時刻歴波形及び加速度応答スペクトル を図 9.3-3に示す。

入力地震動の算定には,解析コード「k-SHAKE Ver. 6.2.0」を使用する。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認する。断層モデル波である $S_s - 11 \sim S_s - 22$ については、特定の方向性を有することから、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的には南北方向及び東西方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わせることで方位補正した地震動を設定する。

図 9.3-1 入力地震動算定の概念図

周期(s)

1

0.1

0 0. 01

10

9 - 43

周期(s)

(b) 加速度応替スペットル 図 9.3-3(11) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

(b) 加速度応容スペクトル 図 9.3-3(13) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

周期(s)

1

0.1

1500

1000

500

0. 01

10

- 9.3.2 許容限界の設定
 - (1) 許容応力度による許容限界

常設低圧代替注水系ポンプ室の構造部材は,許容応力度による照査を行う。評価位置にお いてコンクリートの圧縮応力度,鉄筋の引張応力度,コンクリートのせん断応力度が許容応力 度以下であることを確認する。

許容応力度については、「コンクリート標準示方書[構造性能照査編]((社) 土木 学会、 2002 年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説((社) 日本道路協 会、平成 24 年 3 月)に基づき、コンクリート及び鉄筋の許容応力度に対して割増係数 1.5 を考慮し、表 9.3-1のとおり設定する。

評価項目		短期許容応力度 (N/mm ²)
コンクリート*1 (f' _{ck} =40 N/mm ²)	許容曲げ圧縮応力度 σ _{ca}	21
	許容せん断応力度 τ _{α1}	0.825*3
鉄筋(SD490*2)	許容引張応力度 σ_{sa}	435
鉄筋(SD390 ^{*1})	許容引張応力度 σ _{sa}	309
鉄筋(SD345 ^{*1})	許容引張応力度 σ _{sa}	294

表 9.3-1 許容応力度(短期)

注記 *1:コンクリート標準示方書[構造性能照査編]((社) 土木学会, 2002 年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成 24年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査 編]((社) 土木学会、2002 年制定)」に準拠し、次式により求められる許 容せん断力(V_a)を許容限界とする。

各部材における許容限界を表 9.3-2に示す。

$$V_a = V_{ca} + V_{sa}$$

ここで、
$$V_{ca}$$
 : コンクリートの負担するせん断力
 $V_{ca}=1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$
 V_{sa} : 斜め引張鉄筋の負担するせん断力
 $V_{sa}=A_w \cdot \sigma_{sa} \cdot j \cdot d / s$
 τ_{a1} : 斜め引張鉄筋を考慮しない場合の許容せん断応力度
 b_w : 有効幅
j : 1/1.15

d : 有効高さ

- A_w :斜め引張鉄筋断面積
- σ_{sa}:鉄筋の許容引張応力度
- s :斜め引張鉄筋間隔

表 9.3-2 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(追而)

(2) 基礎地盤の支持性能に対する許容限界

基礎地盤の支持性能については,構造物の接地圧が基礎地盤の極限支持力以下であること を確認する。

常設低圧代替注水系ポンプ室の基礎地盤に作用する接地圧に対する許容限界は、常設低圧 代替注水系ポンプ室の基礎地盤を構成する新第三系 Km 層の極限支持力度を用いる。極限支 持力度については、「道路橋示方書(I 共通編・IV下部構造編)・同解説((社)日本道路協会、 平成 24 年 3 月)」のケーソン基礎の設計に基づき、以下の通り設定する。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

q_d:基礎底面地盤の極限支持力度

c : 基礎底面より下にある地盤の粘着力

- γ₁ : 基礎底面より下にある地盤の単位体積重量。ただし、地下水位以下では 水中単位体積重量とする
- γ₂ :基礎底面より上にある周辺地盤の単位体積重量。ただし、地下水位以下 では水中単位体積重量とする
- *α*, *β* :表 9.3-1 に示す基礎底面の形状係数
- D :基礎幅
- D_f : 基礎の有効根入れ深さ
- N_c, N_q, N_y: 図 9.3-44 に示す支持力係数

基礎底面の形状形状係数	帯	状	正方形,円形	長方形,小判形
lpha . It is a first the set of $lpha$. It is a set of $lpha$	1	.0	1.3	$1+0.3\frac{B}{D}$
β	1	.0	0.6	$1 - 0.4 \frac{B}{D}$

表 9.3-1 基礎底面の形状係数

D:ケーソン前面幅 (m), B:ケーソン側面幅 (m)

ただし, B/D>1の場合, B/D=1とする。

図 9.3-4 支持力係数を求めるグラフ

常設低圧代替注水系ポンプ室における許容限界を表 9.3-2 に示す。

表 9.3-2 基礎地盤の支持力に対する許容限界(追而)

9.4 評価結果

9.4.1 地震応答解析結果

常設低圧代替注水系ポンプ室の基準地震動S。による断面力(曲げモーメント,軸力,せん 断力)を図9.4-1及び図9.4-2に示す。本図は構造部材の曲げ,せん断照査結果が最も厳 しくなる部材の評価時刻における断面力を示したものである。

また,最大せん断ひずみ分布図を図 9.4-3 及び図 9.4-4 に示し,過剰間隙水圧比の分布 図を図 9.4-5 及び図 9.4-6 に示す。これらの図は,各要素に発生したせん断ひずみ及び過 剰間隙水圧比の全時刻における最大値の分布を示したものである。

図 9.4-1(1) 東西方向断面の地震時断面力(S_s-D1 [H+, V+], t=〇〇. 〇〇s)

図 9.4-1(2) 東西方向断面の地震時断面力(S_s-D1〔H+, V-〕, t=〇〇. 〇〇s)

図 9.4-1 (3) 東西方向断面の地震時断面力 (S_s-D1 [H-, V+], t=〇〇. 〇〇s)

図 9.4-1(4) 東西方向断面の地震時断面力(S_s-D1 [H-, V-], t=〇〇. 〇〇s)

図 9.4-1(5) 東西方向断面の地震時断面力(S_s-11, t=〇〇. 〇〇s)

図 9.4-1(6) 東西方向断面の地震時断面力(S_s-12, t=〇〇. 〇〇s)

- 図 9.4-1(7) 東西方向断面の地震時断面力(S_s-13, t=〇〇. 〇〇s)
- 図 9.4-1(8) 東西方向断面の地震時断面力(S_s-14, t=〇〇. 〇〇s)

図 9.4-1 (9) 東西方向断面の地震時断面力 (S_s-21, t=〇〇. 〇〇s)

図 9.4-1(10) 東西方向断面の地震時断面力(S_s-22, t=〇〇. 〇〇s)

図 9.4-1(11) 東西方向断面の地震時断面力(S_s-31 [H+, V+], t=〇〇. 〇〇s)

図 9.4-1(12) 東西方向断面の地震時断面力(S_s-31 [H-, V+], t=〇〇. 〇〇s)

図 9.4-2(1) 南北方向断面の地震時断面力(S_s-D1 [H+, V+], t=〇〇. 〇〇s)

- 図 9.4-2(2) 南北方向断面の地震時断面力(S_s-D1〔H+, V-〕, t=〇〇. 〇〇s)
- 図 9.4-2(3) 南北方向断面の地震時断面力(S_s-D1 [H-, V+], t=〇〇. 〇〇s)
- 図 9.4-2(4) 南北方向断面の地震時断面力(S_s-D1 [H-, V-], t=〇〇. 〇〇s)
 - 図 9.4-2(5) 南北方向断面の地震時断面力(S_s-11, t=〇〇. 〇〇s)
 - 図 9.4-2(6) 南北方向断面の地震時断面力(S_s-12, t=〇〇. 〇〇s)
 - 図 9.4-2(7) 南北方向断面の地震時断面力(S_s-13, t=〇〇. 〇〇s)
 - 図 9.4-2(8) 南北方向断面の地震時断面力(S_s-14, t=〇〇. 〇〇s)
 - 図 9.4-2(9) 南北方向断面の地震時断面力(S_s-21, t=〇〇. 〇〇s)
 - 図 9.4-2(10) 南北方向断面の地震時断面力(S_s-22, t=〇〇. 〇〇s)
- 図 9.4-2(11) 南北方向断面の地震時断面力(S_s-31 [H+, V+], t=〇〇. 〇〇s)
- 図 9.4-2(12) 南北方向断面の地震時断面力(S_s-31 [H-, V+], t=〇〇. 〇〇s)

- 図 9.4-3(1) 東西方向断面の最大せん断ひずみ分布(S_s-D1 [H+, V+])
- 図 9.4-3(2) 東西方向断面の最大せん断ひずみ分布(S_s-D1 [H+, V-])
- 図 9.4-3(3) 東西方向断面の最大せん断ひずみ分布(S_s-D1 [H-, V+])
- 図 9.4-3(4) 東西方向断面の最大せん断ひずみ分布(S_s-D1 [H-, V-])
 - 図 9.4-3(5) 東西方向断面の最大せん断ひずみ分布(S_s-11)
 - 図 9.4-3(6) 東西方向断面の最大せん断ひずみ分布(S_s-12)
 - 図 9.4-3(7) 東西方向断面の最大せん断ひずみ分布(S_s-13)
 - 図 9.4-3(8) 東西方向断面の最大せん断ひずみ分布(S_s-14)
 - 図 9.4-3(9) 東西方向断面の最大せん断ひずみ分布(S_s-21)
 - 図 9.4-3 (10) 東西方向断面の最大せん断ひずみ分布 (S_s-22)
- 図 9.4-3(11) 東西方向断面の最大せん断ひずみ分布(S_s-31 [H+, V+])
- 図 9.4-3(12) 東西方向断面の最大せん断ひずみ分布(S_s-31 [H-, V+])

- 図 9.4-4(1) 南北方向断面の最大せん断ひずみ分布(S_s-D1 [H+, V+])
- 図 9.4-4(2) 南北方向断面の最大せん断ひずみ分布(S_s-D1 [H+, V-])
- 図 9.4-4(3) 南北方向断面の最大せん断ひずみ分布(S_s-D1 [H-, V+])
- 図 9.4-4(4) 南北方向断面の最大せん断ひずみ分布(S_s-D1 [H-, V-])
 - 図 9.4-4(5) 南北方向断面の最大せん断ひずみ分布(S_s-11)
 - 図 9.4-4(6) 南北方向断面の最大せん断ひずみ分布(S_s-12)
 - 図 9.4-4(7) 南北方向断面の最大せん断ひずみ分布(S_s-13)
 - 図 9.4-4(8) 南北方向断面の最大せん断ひずみ分布(S_s-14)
 - 図 9.4-4(9) 南北方向断面の最大せん断ひずみ分布(S_s-21)
 - 図 9.4-4(10) 南北方向断面の最大せん断ひずみ分布(S_s-22)
- 図 9.4-4(11) 南北方向断面の最大せん断ひずみ分布(S_s-31 [H+, V+])
- 図 9.4-4(12) 南北方向断面の最大せん断ひずみ分布(S_s-31 [H-, V+])

- 図 9.4-5(1) 東西方向断面の過剰間隙水圧比分布(S_s-D1 [H+, V+])
- 図 9.4-5(2) 東西方向断面の過剰間隙水圧比分布(S_s-D1 [H+, V-])
- 図 9.4-5(3) 東西方向断面の過剰間隙水圧比分布(S_s-D1 [H-, V+])
- 図 9.4-5(4) 東西方向断面の過剰間隙水圧比分布(S_s-D1 [H-, V-])
 - 図 9.4-5(5) 東西方向断面の過剰間隙水圧比分布(S_s-11)
 - 図 9.4-5(6) 東西方向断面の過剰間隙水圧比分布(S_s-12)
 - 図 9.4-5(7) 東西方向断面の過剰間隙水圧比分布(S_s-13)
 - 図 9.4-5(8) 東西方向断面の過剰間隙水圧比分布(S_s-14)
 - 図 9.4-5(9) 東西方向断面の過剰間隙水圧比分布(S_s-21)
 - 図 9.4-5(10) 東西方向断面の過剰間隙水圧比分布(S_s-22)
- 図 9.4-5(11) 東西方向断面の過剰間隙水圧比分布(S_s-31[H+, V+])
- 図 9.4-5(12) 東西方向断面の過剰間隙水圧比分布(S_s-31 [H-, V+])

- 図 9.4-6(1) 南北方向断面の過剰間隙水圧比分布(S_s-D1 [H+, V+])
- 図 9.4-6(2) 南北方向断面の過剰間隙水圧比分布(S_s-D1 [H+, V-])
- 図 9.4-6(3) 南北方向断面の過剰間隙水圧比分布(S_s-D1 [H-, V+])
- 図 9.4-6(4) 南北方向断面の過剰間隙水圧比分布(S_s-D1 [H-, V-])
 - 図 9.4-6(5) 南北方向断面の過剰間隙水圧比分布(S_s-11)
 - 図 9.4-6(6) 南北方向断面の過剰間隙水圧比分布(S_s-12)
 - 図 9.4-6(7) 南北方向断面の過剰間隙水圧比分布(S_s-13)
 - 図 9.4-6(8) 南北方向断面の過剰間隙水圧比分布(S_s-14)
 - 図 9.4-6(9) 南北方向断面の過剰間隙水圧比分布(S_s-21)
 - 図 9.4-6(10) 南北方向断面の過剰間隙水圧比分布(S_s-22)
- 図 9.4-6(11) 南北方向断面の過剰間隙水圧比分布(S_s-31[H+, V+])
- 図 9.4-6(12) 南北方向断面の過剰間隙水圧比分布(S_s-31 [H-, V+])

9.4.2 耐震評価結果

コンクリートの曲げ照査結果を表 9.4-1 及び表 9.4-2 に,鉄筋の曲げ照査結果を表 9.4-3 及び表 9.4-4 にそれぞれ示す。

常設低圧代替注水系ポンプ室における許容応力度法による照査を行った結果,評価位置に おいてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確 認した。なお,発生応力は各地震動,各部材において最大となる値を示している。

以上より,常設低圧代替注水系ポンプ室の構造部材の応答値は,許容限界以下であること を確認した。

概略配筋図を図 9.4-7 に、断面計算に用いた断面諸元の一覧を表 9.4-5 に示す。

追而

表 9.4-1 (1)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-1 (2)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-1 (3)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-1(4)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-1 (5)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-1(6)	コンクリートの曲げ照査結果	(東西断面方向)
表 9.4-2(1)	コンクリートの曲げ照査結果	(南北断面方向)
表 9.4-2(2)	コンクリートの曲げ照査結果	(南北断面方向)
表 9.4-2(3)	コンクリートの曲げ照査結果	(南北断面方向)
表 9.4-2(4)	コンクリートの曲げ照査結果	(南北断面方向)
表 9.4-2(5)	コンクリートの曲げ照査結果	(南北断面方向)
表 9.4-2 (6)	コンクリートの曲げ照査結果	(南北断面方向)

表 9.4-2	(1)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-2	(2)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-2	(3)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-2	(4)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-2	(5)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-2	(6)	鉄筋の曲げ照査結果	(東西断面方向)
表 9.4-4	(1)	鉄筋の曲げ照査結果	(南北断面方向)
表 9.4-4	(2)	鉄筋の曲げ照査結果	(南北断面方向)
表 9.4-4	(3)	鉄筋の曲げ照査結果	(南北断面方向)
表 9.4-4	(4)	鉄筋の曲げ照査結果	(南北断面方向)
表 9.4-4	(5)	鉄筋の曲げ照査結果	(南北断面方向)

- 表 9.4-4(6) 鉄筋の曲げ照査結果(南北断面方向)
 - 図 9.4-7(1) 概略配筋図(東西断面方向)
 - 図 9.4-7(2) 概略配筋図(南北断面方向)
 - 表 9.4-5(1) 断面諸元一覧表(東西断面方向)
 - 表 9.4-5(2) 断面諸元一覧表(南北断面方向)
(2) 構造部材のせん断に対する評価結果

表 9.4-6 及び表 9.4-7 にせん断に対する照査結果を示す。

常設低圧代替注水系ポンプ室における許容応力度法による照査を行った結果,評価位置 においてせん断応力度が許容せん断応力度以下又は発生せん断力がコンクリートの許容せ ん断力(V_{ca})と,斜め引張鉄筋の許容せん断力(V_{sa})を合わせた許容せん断力(V_a) 以下であることを確認した。なお,発生応力及び発生断面力は各地震動,各部材において 最大となる値を示している。

以上より,常設低圧代替注水系ポンプ室の構造部材の応答値は,許容限界以下であるこ とを確認した。

図 9.4-8 に概略配筋図を、表 9.4-8 に断面計算に用いた断面諸元の一覧を示す。

追而

表 9.4-6 (1)	せん断照査結果(東西断面方向)
表 9.4-6(2)	せん断照査結果(東西断面方向)
表 9.4-6(3)	せん断照査結果(東西断面方向)
表 9.4-6(4)	せん断照査結果(東西断面方向)
表 9.4-6 (5)	せん断照査結果(東西断面方向)
表 9.4-6(6)	せん断照査結果(東西断面方向)
表 9.4-7(1)	せん断照査結果(南北断面方向)
表 9.4-7 (2)	せん断照査結果(南北断面方向)
表 9.4-7 (3)	せん断照査結果(南北断面方向)
表 9.4-7(4)	せん断照査結果(南北断面方向)
表 9.4-7(5)	せん断照査結果(南北断面方向)
表 9.4-7(6)	せん断照査結果(南北断面方向)
図 9.4-8 (1)	概略配筋図(東西断面方向)
図 9.4-8 (2)	概略配筋図(南北断面方向)
表 9.4-8(1)	断面諸元一覧表(東西断面方向)
表 9.4-8 (2)	断面諸元一覧表 (南北断面方向)

9-80

(3) 基礎地盤の支持性能に対する評価結果

表 9.4-9 に基礎地盤の支持性能評価結果を,図 9.4-9 及び図 9.4-10 に接地圧分布図 を示す。

常設低圧代替注水系ポンプ室の接地圧は $S_s - D1$ [H+, V+] (東西断面方向) で \bigcirc kN/m²であり,基礎地盤の極限支持力 $\triangle \triangle$ kN/m²以下である。

以上のことから,常設低圧代替注水系ポンプ室の基礎地盤は,基準地震動S。に対し,支 持性能を有する。

- 表 9.4-9 基礎地盤の支持性能評価結果
- 図 9.4-9(1) 東西断面方向の接地圧分布図(S_s-D1 [H+, V+])
- 図 9.4-9(2) 東西断面方向の接地圧分布図(S_s-D1 [H+, V-])
- 図 9.4-9(3) 東西断面方向の接地圧分布図(S_s-D1 [H-, V+])
- 図 9.4-9(4) 東西断面方向の接地圧分布図(S_s-D1 [H-, V-])
 - 図 9.4-9(5) 東西断面方向の接地圧分布図(S_s-11)
 - 図 9.4-9(6) 東西断面方向の接地圧分布図(S_s-12)
 - 図 9.4-9(7) 東西断面方向の接地圧分布図(S_s-13)
 - 図 9.4-9(8) 東西断面方向の接地圧分布図(S_s-14)
 - 図 9.4-9(9) 東西断面方向の接地圧分布図(S_s-21)
 - 図 9.4-9(10) 東西断面方向の接地圧分布図(S_s-22)
- 図 9.4-9(11) 東西断面方向の接地圧分布図(S_s-31 [H+, V+])
- 図 9.4-9(12) 東西断面方向の接地圧分布図(S_s-31 [H-, V+])

- 図 9.4-10(1) 南北断面方向の接地圧分布図(S_s-D1 [H+, V+])
- 図 9.4-10(2) 南北断面方向の接地圧分布図(S_s-D1 [H+, V-])
- 図 9.4-10(3) 南北断面方向の接地圧分布図(S_s-D1 [H-, V+])
- 図 9.4-10(4) 南北断面方向の接地圧分布図(S_s-D1 [H-, V-])
 - 図 9.4-10(5) 南北断面方向の接地圧分布図(S_s-11)
 - 図 9.4-10(6) 南北断面方向の接地圧分布図(S_s-12)
 - 図 9.4-10(7) 南北断面方向の接地圧分布図(S_s-13)
 - 図 9.4-10(8) 南北断面方向の接地圧分布図(S_s-14)
 - 図 9.4-10(9) 南北断面方向の接地圧分布図(S_s-21)
 - 図 9.4-10(10) 南北断面方向の接地圧分布図(S_s-22)
- 図 9.4-10(11) 南北断面方向の接地圧分布図(S_s-31 [H+, V+])
- 図 9.4-10(12) 南北断面方向の接地圧分布図(S_s-31 [H-, V+])

追 ŤΠ

9.5 まとめ (追而)

14. SA用海水ピットの耐震安全性評価

目 次

14.1 評估	面方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14.2 評位	西条件・・・・・2
14.2.1	適用基準······2
14.2.2	耐震安全性評価フロー・・・・・ 3
14.2.3	評価対象断面4
14.2.4	評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14.2.5	使用材料及び材料定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14.2.6	地下水位
14. 2. 7	地震応答解析手法・・・・・・13
14.2.8	解析モデルの設定・・・・・・15
14.2.9	減衰定数・・・・・・20
14.2.10) 荷重の組合せ
14. 2. 11	し 地震応答解析の検討ケース・・・・・ 26
14.3 評位	洒内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14. 3. 1	入力地震動の設定
14. 3. 2	許容限界の設定・・・・・・ 57
14.4 評位	面結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
14.4.1	地震応答解析結果・・・・・ 60
14.4.2	耐震評価結果・・・・・・ 69
14.5 ま。	とめ

14.1 評価方針

SA用海水ピットは,非常時における海水の通水機能を求められる土木構造物である。 また,浸水防止設備を間接支持する頂版においては止水機能を求められ常設耐震重要重大事故 防止設備及び常設重大事故緩和設備に分類される。

SA用海水ピットの耐震評価は,地盤の2次元動的有効応力解析により得られた解析結果に 基づき,設計基準対象施設及び重大事故等対処施設として,構造部材の健全性評価及び基礎地 盤の支持性能評価を行う。

構造部材の健全性評価については,地震応答解析に基づく発生応力が許容限界以下であるこ とを確認する。また,浸水防止設備の間接支持構造物でもあるため,支持部材についても発生 応力が許容限界以下であることを確認する。

基礎地盤の支持性能評価については,基礎地盤に作用する接地圧が極限支持力に基づく許容 限界以下であることを確認する。

14.2 評価条件

14.2.1 適用基準

適用する規格,基準類を表14.2-1に示す。

項目	適用とする主な基準類	備考
使用材料及び	・コンクリート標準示方書	
材料定数	[構造性能照查編]	
	((社)土木学会,2002年制定)	
	・道路橋示方書(I共通編・IV下部構	—
	造編)・同解説	
	(\)日本道路協会,平成24年3月)	
荷重及び	・コンクリート標準示方書	・永久荷重+偶発荷重+従たる変動荷重
荷重の組合せ	[構造性能照査編]	の適切な組合せを検討
	((社)土木学会,2002年制定)	
	・道路橋示方書(I共通編・IV下部構	
	造編)・同解説(\紀日本道路協会,	
	平成 24 年 3 月)	
許容限界	・コンクリート標準示方書	
	[構造性能照査編]	・曲げに対する照査は、発生応力度が、
	((社)土木学会,2002 年制定)	短期計谷応力度以下であることを確認 ・サム断に対する昭本は 発生広力 南マ
	・道路橋示方書(Ⅰ共通編・Ⅳ下部構	1000所に入りる無重は, 先王心力反义
	造編)・同解説((社)日本道路協	は先生しん朝月が、歴期町谷心月及又
	会, 平成 24 年 3 月)	は町存せん阿刀以下てのることを唯恥
地震応答解析	 JEAG4601-1987((社)日 	・有限要素法による2次元モデルを用い
	本電気協会)	た時刻歴非線形解析

表 14.2-1 適用する主な基準類

14.2.2 耐震安全性評価フロー

図14.2-1にSA用海水ピットの耐震安全性評価フローを示す。

<耐震性評価>

図14.2-1 SA用海水ピットの耐震安全性評価フロー

14.2.3 評価対象断面

SA用海水ピットの位置図を図14.2-2,図14.2-3に示す。

SA用海水ピットは,内径約10 m,内空高さ約28 mの円筒形の鉄筋コンクリート造の 地中構造物であり,明確な弱軸断面方向は無いことから,接続する海水引込み管及び緊急 用海水取水管に着目し,直交する両管路の縦断2方向の断面を評価対象断面とする。

図14.2-2 SA用海水ピット位置図(全体図)

図 14.2-3 SA用海水ピット位置図(拡大図)

14.2.4 評価対象断面の選定

SA用海水ピットの評価対象断面位置図を図 14.2-4 に,評価対象断面図を図 14.2-5 に,構造平面図を図 14.2-6 に,構造断面図を図 14.2-7 に示す。

評価対象断面は、「1.4.14 SA用海水ピットの断面選定の考え方」で記載したとお り、円筒上の地中構造物であり明確な弱軸断面方向がないことにより、接続する海水引込 み管の縦断面方向①-①断面とそれに直交する横断面方向②-②断面の両方向について選 定として耐震評価を実施する。

図 14.2-4 SA用海水ピット 評価対象断面位置図

図 14.2-6 SA用海水ピット 構造平面図

14.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,適用基準類を基に設定する。構造物の使用材料を表 14.2-2 に,材料物性値を表 14.2-3 に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を 用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できる モデル化する。地盤の物性値を表 14.2-4 に示す。

諸元 コンクリート 設計基準強度 40 N/mm² 鉄筋 SD390, SD490

表 14.2-2 使用材料

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	24.5	3.1×10^4	0.2

表 14.2-3 材料物性值

				原地盤								
	パラメータ			埋戻土	埋戻土 第四系(液状化検討対象層)							
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	g/cm^3	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
() (性)	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	ν _{CD}	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特性	 基準初期せん断剛性 ()は地下水位以浅 	kN/m^2	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975	
	最大履歷減衰率	h_{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0
特性	内部摩擦角	$\phi_{\rm CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	_	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28
游	液状化パラメータ	S_1	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
状	液状化パラメータ	W_1	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特	液状化パラメータ	P_1	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
性	液状化パラメータ	P_2	—	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44

表 14.2-4(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 14.2-4(2) 地盤の解析用物性値一覧(非液状化層)

						原封	也盤	
	パラメータ				第四系(非	液状化層)		新第三系
			Ac	D2c-3	1m	D1c-1	Km	
物理	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1.47 (1.43)	1.77	1.72-1.03×10 ⁻⁴ · z
竹性	間隙比	е	-	1.59	1.09	2.8	1.09	1.16
	ポアソン比	$\nu_{\rm CD}$	-	0.10	0.22	0.14	0.22	0.16+0.00025 · z
変形	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m²	480	696	249 (223)	696	動的変形特性に基 づき ₂ (標高) 毎
特性	基準初期せん断剛性 ()は地下水位以浅	G_{ma}	kN/m^2	121829	285223	38926 (35783)	285223	に物性値を設定する
	最大履歷減衰率	h _{max}	-	0.200	0.186	0.151	0.186	
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z
特性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	35.6	23.2+0.0990 · z

z:標高(m)

表 14.2-4 (3) 步	地盤の解析用物性値一覧	(新第三系 Km 層)
----------------	-------------	-------------

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
	TP (m)	適用深度	E TP(m)	ρ		CCD	ф св	速度Vs	せん断剛性 Gma	弾性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
番号	Z			(g/cm_3)	νcd	(kN/m²)	(°)	(m/s)	(kN/m²)	(kN/m²)	(kN/m²)	mG, mK	hmax(-)	νd	(m/s)	
1	10	9.5 ~	- 10.5	1.72	0.16	298	24.2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
3	8	7.5 ~	- 8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
4	7	6.5 ~	- 7.5	1.72	0.16	316	23.9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5 ~	- 6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5 ~	- 5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5 ~	- 3.5	1.72	0.16	340	23.5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	- 2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5 ~	- 1.5	1.72	0.16	352	23.3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5 ~	- 0.5	1.72	0.16	358	23.2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5 ~	2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5 ~	3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5 ~	5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5 ~	6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5 ~	7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.0 ~	8.5	1.72	0.10	412	22.3	440	332,992	200, 400	504	0.0	0.110	0.460	1,000	1,000,000
21	-10	-11 ~	9.5	1.72	0.10	418	22. Z	441	336,096	389 147	504	0.0	0.110	0.462	1,009	1,009,000
22	-12	-15 ~	11	1.72	0.10	430	22.0	442	330,020	302, 147	504	0.0	0.110	0.462	1,003	1,003,000
23	-14	-15 ~	-15	1.72	0.16	442	21.6	444	340,603	387 352	504	0.0	0.111	0.461	1,671	1,671,000
25	-18	-10 ~	-17	1.72	0.16	467	21.0	447	343,671	390 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21 ~	-19	1.72	0.16	479	21.4	448	345,211	392 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23 ~	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0. 461	1,673	1, 673, 000
28	-24	-25 ~	23	1.72	0.15	503	20, 8	452	351, 403	384, 870	498	0, 0	0, 113	0, 461	1,680	1,680,000
29	-26	-27 ~	25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1,664,000
30	-28	-29 ~	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31 ~	29	1.72	0.15	539	20.2	456	357,650	391, 712	498	0.0	0.114	0.460	1,675	1,675,000
32	-32	-33 ~	- 31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1,683,000
33	-34	-35 ~	33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37 ~	35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
35	-38	-39 ~	37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1,678,000
36	-40	-41 ~	39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1, 685	1,685,000
37	-42	-43 ~	-41	1.72	0.15	611	19.0	465	371, 907	407, 327	498	0.0	0.117	0.459	1,689	1,689,000
38	-44	-45 ~	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1,678,000
39	-46	-47 ~	45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1,681,000
40	-48	-49 ~	-47	1.72	0.15	647	18.4	470	379, 948	416, 134	498	0.0	0.118	0.458	1,688	1,688,000
41	-50	-51 ~	-49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0.458	1,696	1,696,000
42	-52	-53 ~	51	1.73	0.15	672	18.1	473	387, 051	423, 913	498	0.0	0.118	0.458	1,699	1,699,000
43	-54	-55 ~	53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1,688,000
44	-56	-01 ~	55	1.73	0.15	096	17.7	4/6	391,976	429, 307	498	0.0	0.119	0.457	1,692	1,092,000
40	-60	-69 ~	50	1. 73	0.15	790	17.0	4/8	395,211	432, 922	498	0.0	0.119	0.457	1,099	1,099,000
40	-62	-63 -	59	1. 73	0.15	720	17.3	4/9	390, 933	434,730	498	0.0	0.120	0.457	1,702	1,702,000
48	-64	-65 ~	63	1.73	0.14	744	16.9	482	400, 200	424, 250	492	0.0	0. 120	0. 456	1, 709	1, 109, 000
49	-66	-67 ~	65	1, 73	0, 14	756	16.7	484	405. 263	427, 778	492	0, 0	0, 120	0, 456	1, 702	1, 702, 000
50	-68	-69 ~	-67	1, 73	0, 14	768	16.5	485	406. 939	429, 547	492	0, 0	0, 121	0, 456	1, 705	1, 705. 000
51	-70	-71 ~	69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0. 121	0.456	1, 712	1, 712, 000
52	-72	-73 ~	-71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1, 719	1, 719, 000
53	-74	-75 ~	73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-76	-77 ~	75	1.73	0.14	816	15.7	492	418, 771	442, 036	492	0.0	0.122	0.455	1, 712	1, 712, 000
55	-78	-79 ~	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81 ~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1, 723	1, 723, 000
57	-82	-85 ~	-81	1.73	0.14	852	15.1	496	425, 608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	-90 ~	85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95 ~	- 90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101 ~	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1, 736	1, 736, 000
61	-104	-108 ~	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1, 733	1, 733, 000
62	-112	-115 ~	-108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1, 737	1, 737, 000
63	-118	-122 ~	-115	1.73	0.13	1,070	11.5	524	475, 016	483, 575	486	0.0	0.127	0.451	1, 754	1, 754, 000
64	-126	-130 ~	122	1.73	0.13	1,118	10.7	530	485, 957	494, 713	486	0.0	0.128	0,450	1,758	1,758,000

14.2.6 地下水位

地下水位は地表面として設定する。

14.2.7 地震応答解析手法

SA用海水ピットの地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限 要素法を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による 逐次時間積分の時刻歴応答解析にて行う。部材については、線形はり要素を用いることと する。また地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるよう にモデル化する。地震応答解析については、解析コード「FLIP Ver. 7.3.0_2」を使用す る。なお、解析コードの検証及び妥当性確認の概要については、付録 24「計算機プログ ラム (解析コード)の概要」に示す。

地震応答解析手法の選定フローを図14.2-8に示す。

図 14.2-8 地震応答解析手法の選定フロー

H-D モデルの選定理由は次のとおりである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力~ せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を適切 に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん断 応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤のせ ん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線モデル(H-Dモデル)を選定する。

- 14.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデル領域は、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼ さないよう、十分広い領域とする。具体的には、JEAG4601-1987を参考に、図 16.2-9に示すとおりモデル幅を構造物基礎幅の5倍以上、構造物下端からモデル下端ま での高さを構造物幅の2倍以上確保する。なお、解析モデルの境界条件は、側方における 波動の反射の影響を低減するとともに、下方への波動の逸散を考慮するために側面及び底 面ともに粘性境界とする。

SA用海水ピット周辺の地震応答解析モデルを図 14.2-10 に示す。

図 14.2-9 解析モデル領域の考え方

(a) 引込み管軸方向(①-①断面)

(b) 引込み管軸直交方向(②-②断面)

図 14.2-10 SA用海水ピットの地震応答解析モデル

(2) 構造物のモデル化

構造部材は,線形はり要素でモデル化する。

なお,引込み管軸方向断面において,複数の構造物を同時にモデル化する際の奥行幅は, SA用海水ピットと等価な平面積を有する正方形の1辺長を基準奥行きとして各構造物の 断面性能を換算する。

SA用海水ピットの構造部材は、ピット中心位置での鉛直はり要素に縮合してモデル化 する。また海水取水管及び海水引込み管とは岩盤内で接合する上に、ピットの壁軸周長約 37 mに対して管径が1.2 mであることから開口の影響は軽微であると考えられる。したが って、2次元有効応力解析では接合部の開口を考慮せず、開口部には適切な開口補強を実 施する。

SA用海水ピットの解析モデル概念図を図14.2-11に示す。

図 14.2-11 SA用海水ピットの解析モデル概念図

(3) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水圧要素にてモデル化し、地震時の有効応力 の変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。 (4) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離及び すべりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向では, 常時状態以上の引張が生じた場合,剛性及び応力をゼロとし,剥離を考慮する。接線方向 では,地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合,剛性をゼロとし, すべりを考慮する。せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。c, ϕ は 周辺地盤のc, ϕ とする。(表 14.2-5 参照)

 $\tau_{\rm f} = c + \sigma' \tan \phi$

τ_f : せん断強度

c : 粘着力

φ :内部摩擦角

周辺	の状況	粘着力 c (N/mm ²)	内部摩擦角 (度)	備考
du 層		0	37.3	
第四紀層 —	Ag2 層	0	37.4	_
	D2c-3 層	0.026	35.6	—
	D2g-3 層	0	44. 4	—
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	_

表 14.2-5 周辺地盤との境界に用いる強度特性

z :標高 (m)

ジョイント要素のばね定数は、数値計算上の不安定挙動を起こさない程度に十分に大き な値として設定する。港湾構造物設計事例集(沿岸開発技術センター)に従い、表 14.2-6のように設定する。図 14.2-12 にジョイント要素の設定の考え方を示す。

表14.2-6 ジョイント要素のばね定数

	せん断剛性 ks	圧縮剛性 k _n
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

14.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、Rayleigh減衰をα=0となる剛性比例型減衰とする。

 $\begin{bmatrix} C \end{bmatrix} = \alpha \begin{bmatrix} M \end{bmatrix} + \beta \begin{bmatrix} K \end{bmatrix}$ ここで、 $\begin{bmatrix} C \end{bmatrix} : 減衰係数マトリックス$ $<math display="block">\begin{bmatrix} M \end{bmatrix} : 質量マトリックス$ $<math display="block">\begin{bmatrix} K \end{bmatrix} : 剛性マトリックス$ $\alpha, \beta : 係数$ 係数 α, β は以下のように求めている。 $\alpha = 0$ $\beta = \frac{h}{\beta}$

$$\beta = \frac{\pi}{\pi}$$
 f

ここで,

f : 固有値解析により求められた1次固有振動数

h : 各材料の減衰定数

地盤の減衰定数は 1% (解析における減衰は,ひずみが大きい領域では履歴減衰が 支配的となる。このため,解析上の安定のためになるべく小さい値として 1%を採用 している)とする。また,線形材料としてモデル化するコンクリートの減衰定数は 5% (JEAG4601-1987)とする。

図 14.2-13 に Rayleigh 減衰の設定フローを,表 14.2-7 に固有値解析結果を示す。

図 14.2-13 Rayleigh 減衰の設定フロー

表 14.2-7 固有值解析結果 (追而)

14.2.10 荷重の組合せ

耐震安全性評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震時荷重を 抽出し,それぞれ組合せて設定する。地震時荷重には,地震時土圧,動水圧,機器・配管 系からの反力による荷重が含まれるものとする。

雪荷重以外の変動荷重(風荷重)については,発電所の立地特性やSA用海水ピットが 地中に埋設された構造物であることを考慮すると,構造物に与える影響は軽微であると判 断し,地震力と組合せる荷重としては除外する。

なお、SA用海水ピットは地盤内に埋設されている構造物であることから、運転時の異 常な過渡変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるため、当 該状態についての組合せは考慮しないものとする。また、重大事故等対処時においても、 地盤内で設計基準事故時の条件を上回るような事象は発生しないため、設計基準事故等の 条件を上回る荷重はない。

地震時にSA用海水ピットに作用する機器・配管系からの反力については、機器・配管系を付加質量としてモデル化することで考慮する。荷重の組合せを第14.2-9表に示す。

種別		荷重		算定方法
		躯体自重	0	・対象構造物の体積に材料の密度を乗じて設定する。
	冶吐去香	機器・配管荷重	_	・頂版の開口を考慮しない。
	吊时< 市 市 市 市 市 市 市 市 ー 二 市 ー 二 	土被り荷重	—	・躯体天端が地表面にあるため考慮しない。
	仰里	シカト封告重	_	・恒常的に配置される構造物等はないことから、考慮
永久		小八丄戦何里		しない。
荷重	書	静止土圧		・常時応力解析により設定する。
				・地下水位に応じた静水圧として考慮する。
		クトノハノエ	\bigcirc	・地下水の密度を考慮する。
			\bigcirc	・H.W.L T.P.+0.61 mからの内水圧を考慮する。
		P 1/JC/11	\bigcirc	・海水の密度を考慮する。
				・雪荷重以外には発電所の立地特性及び構造物の配置
		雪荷重以外	_	状況を踏まえると、偶発荷重(地震荷重)と組合せ
変	変動荷重			るべき変動荷重はない。
		雪荷重	0	・躯体天端に雪荷重を考慮する。
		水平地震動	0	・基準地震動S。によって水平・鉛直同時に加振する。
僶	 弱発荷重	鉛直地震動	0	・躯体・配管系の慣性力,動土圧を考慮する。
		動水圧	0	 ・水位条件、密度は、永久荷重と同様とする。

表 14.2-8 荷重の組合せ

(1) 機器・配管荷重

SA用海水ピットの頂版開口部には浸水防止蓋,中床版開口部には整流装置が設置され るが,開口による質量及び剛性の低減は考慮せず,整流設備の質量も考慮しない。

(2) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施工細則 第23条 第2項」に従って設定する。積雪の厚さ1 cm あたりの重量を20 N/m²として、 積雪量は30 cm と想定していることから常時の積雪荷重は600 N/m²となる。地震時は、常 時の雪荷重の0.35 倍とすることから210 N/m²として設定する。解析上は、頂版天端節点 の付加質量に雪荷重を見込んでモデル化している。

(3) 外水圧

SA用海水ピット周辺の地盤においては、地下水位を地表面に設定する。地下水の密度は1.00 g/m³とする。

(4) 内水圧

SA用海水ピット内の内水圧水頭は海面と同じ朔望平均満潮位(T.P.+0.61 m)とする。 海水の密度は1.03 g/m³とする。

朔望平均満潮位(T.P.+0.61 m)は、項版下面標高(T.P.+5.0 m)と中床版の上面標高(T.P.-8.0 m)との間にあり、中床版以浅に自由水面を有する。したがって、中床版以浅は自由水面を持つWestergaard式、中床版以深は自由水面を持たない固定水としてモ

デル化する。

内水は、構造物をモデル化したはり要素の節点に付加質量として考慮する。 図 14.2-14 にSA用海水ピット内の内水圧の荷重モデルを示す。

記号	状態	水平	鉛直	内容
0	自由水面	0		負担高分の動水圧を付加質量として設定する。
8	自由水面	0		負担高分の動水圧を付加質量として設定する。
			0	中床版より上の容積の水重を付加質量として中床版上面
			_	に付加する。
0	満管	0		負担高分の水重を付加質量として付加する。
	満管	0		負担高分の水重を付加質量として付加する。
				中床版より下の内空容積分の水重を 1/2 ずつ付加質量として中床
•			0	中床版より下の内空容積分の水重を 1/2 ずつ付加質量として中床 版底面ならびに底盤上面に付加する。

図 14.2-14 SA用海水ピット内水圧の荷重モデル

- 14.2.11 地震応答解析の検討ケース
 - (1) 耐震設計における検討ケース

SA用海水ピットの耐震設計における検討ケースを表14.2-9に示す。

		1	2	3	4	5	6	
検討ケース			原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤に	地盤物性の
			づく液状化	ばらつきを	ばらつきを	的に液状化	おいて非	ばらつきを
			強度特性を	考慮(+1	考慮(-1	させること	液状化の	考慮(+1
			用いた解析	σ)した解	σ)した解	を仮定した	条件を仮	σ)して非
			ケース(基本	析ケース	析ケース	解析ケース	定した解	液状化の条
			ケース)				析ケース	件を仮定し
								た解析ケー
								ス
液状化強度特性の設定			原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パ	液状化パラ
			づく液状化	づく液状化	づく液状化	しない豊浦	ラメータ	メータを非
			強度特性	強度特性	強度特性	標準砂に基	を非適用	適用
の設定		(標準偏差	(標準偏差	(標準偏差	づく液状化			
		を考慮)	を考慮)	を考慮)	強度特性			
地震波(位相)	S _s -D1	(++)	1					
		(+-)	1					
		(-+)	1					
		()	1					
	$S_{s} = 1 \ 1$	(++)	1					
	$S_{s} = 12$	(++)	1	1	1	1	1	1
	$S_{s} = 1.3$	(++)	1					
	$S_{s} = 1.4$	(++)	1	①の検討において、		構造物の安全率が最も小さい		
	$S_s = 2.1$	(++)	1					
	$S_s = 2.2$	(++)	1	地辰次 (夭肥 9 る。				
	S _s -31	(++)	1					
		(-+)	1					
 <u></u> <u></u>			12	1	1	1	1	1

表14.2-9 SA用海水ピットの耐震設計における検討ケース

(2) 機器・配管系に対する加速度応答抽出のための検討ケース 機器・配管系に対する加速度応答の抽出における検討ケースを表 14.2-10 に示す。

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤原地盤において非液 状化の条件を仮定し た解析ケース	 ⑥ 地盤物性のばらつき を考慮(+1σ)し て非液状化の条件を 仮定した解析ケース 	
液状化強度特性 の設定			敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用	
地震波(位相)	S _s -D1	(++)		1		
		(+-)		1		
		(-+)	1	1	1	
		()		1		
	$S_s - 11$	(++)	⑤において, 上載され	1	⑤において,上載され る機器・配管系の固有	
	$S_{s} - 12$	(++)	る機器・配管系の固有	1		
	$S_{s} - 13$	(++)	振動数帯で加速度応	1	振動数帯で加速度応 答が最も大きくなる地 震動を用いて実施す	
	$S_{s} - 14$	(++)	答が最も大きくなる地	1		
	$S_{s} - 21$	(++)	震動を用いて実施す	1		
	$S_{s} - 22$	(++)	る。	1	る。	
	S _s -31	(++)		1		
		(-+)		1		
計			1	12	1	

表 14.2-10 機器・配管系への加速度応答の抽出における検討ケース

14.3 評価内容

14.3.1 入力地震動の設定

入力地震動は、資料V-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重量土木 構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を,1 次元波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動算 定の概念図を図14.3-1に示す。

入力地震動の算定には,解折コード「k-SHAKE Ver.6.2.0」を使用する。解折コードの 検証及び妥当性確認の概要については,付録 39「計算機プログラム(解析コード)の概要」 に示す。

なお、断層モデル波であるS_s-11, 12, 13, 14, 21, 22 については、特定の方向性を 有することから、構造物の評価対象断面方向に合わせて方位補正を行う。具体的にはNS 方向及びEW方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わ せることで方位補正した基準地震動を設定する。

図 14.3-2~図 14.3-29 に入力地震動の加速度時刻歴波形並びに加速度応答スペクト ルを示す。

図 14.3-1 入力地震動策定の概念図

(b) 加速度応答スペクトル

MAX 410 cm/s^2 (25.29 s)

図 14.3-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-11)

図 14.3-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-11)

図 14.3-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-11)

図 14.3-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-12)

図 14.3-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-12)

(a) 加速度時刻歷波形

図 14.3-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-12)

図 14.3-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-12)

図 14.3-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-13)

図 14.3-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-13)

図 14.3-14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-13)

図 14.3-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-14)

図 14.3-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-14)

図 14.3-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-21)

図 14.3-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-21)

図 14.3-22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-21)

(a) 加速度時刻歷波形

図 14.3-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-22)

図 14.3-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-22)

(a) 加速度時刻歷波形

- 14.3.2 許容限界の設定
 - (1) 許容応力度による許容限界

許容応力度については、コンクリート標準示方書[構造性能照査編](土木学会、2002年),道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会、 平成24年3月)に基づき、表14.3-1の通り設定する。短期許容応力度はコンクリート 及び鉄筋の許容応力度に対して1.5倍の割増しを考慮する。

表 14.3-1 短期許容応力度

	短期許容応力度 (N/mm ²)		
コンクリート*1	許容曲げ圧縮応力度 σ _{ca}	21.0	
(f' _{ck} =40 N/mm ²)	許容せん断応力度 τ _{al}	0.825*3	
鉄筋(SD490)*2	許容引張応力度 σ _{sa}	435	
鉄筋(SD390)*1	許容引張応力度 σ sa	309	
鉄筋(SD345)*1	許容引張応力度 σ sa	294	

注記 *1:コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)

*2:道路橋示方書(I共通編・Ⅳ下部構造編)・同解説((社)日本道路協会,平成 24 年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002年制定)」に適用し、次式により求められる許容せん断力 (V_a)を許容限界とする。

$$V_{a}\,{=}\,V_{c\ a}\,{+}\,V_{s\ a}$$

ここで,

V ca : コンクリートの許容せん断力

 $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$

V_{sa}:斜め引張鉄筋の許容せん断力

 $V_{sa} = A_w \cdot \sigma_{sa} \cdot j \cdot d / s$

- τ a1 : 斜め引張鉄筋を考慮しない場合の許容せん断応力度
- b_w :有効幅
- j : 1/1.15
- d : 有効高さ
- A_w:斜め引張鉄筋断面積
- σ_{sa}:鉄筋の許容引張応力度
- s :斜め引張鉄筋間隔

(2) 基礎地盤の支持性能に対する許容限界

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験 結果(せん断強度)等より設定する。

道路橋示方書による直接基礎の支持力算定式を以下に示す。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

ここで,

- q_d:基礎底面地盤の極限支持力度
- c : 基礎底面より下にある地盤の粘着力
- γ₁ :基礎底面より下にある地盤の単位体積重量。ただし、地下水位以下では 水中単位体積重量とする。
- γ₂ : 基礎底面より上にある周辺地盤の単位体積重量。ただし,地下水位以下 では水中単位体積重量とする。
- α, β :表 14.3-2 に示す基礎底面の形状係数
- D :基礎幅
- D_f : 基礎の有効根入れ深さ
- N_c, N_q, N_y:図14.3-30に示す支持力係数

表14.3-2 基礎底面の形状係数(道路橋示方書より)

基礎底面の形状 形状係数	帯 状	正方形,円形	長方形,小判形
lpha . It is a first the set of $lpha$	1.0	1.3	$1+0.3\frac{B}{D}$
β	1.0	0.6	$1 - 0.4 \frac{B}{D}$

D: ケーソン前面幅 (m) , B: ケーソン側面幅 (m)

ただし, B/D>1の場合, B/D=1とする。

図 14.3-30 支持力係数N_c, N_q, N_yを求めるグラフ(道路橋示方書より)

上記にて求まる基礎地盤の極限支持力を表14.3-3に示す。

表 14.3-3 基礎地盤の極限支持力(追而)

14.4 評価結果

14.4.1 地震応答解析結果

SA用海水ピットの基準地震動S。による断面力(曲げモーメント,軸力,せん断力) を図 14.4-1~図 14.4-2 に示す。これらの図は、構造部材の曲げ及びせん断照査結果 が最も厳しくなる部材の時刻においての断面力を示したものである。

また,最大せん断ひずみ分布図を図 14.4-3~図 14.4-4 に示し,過剰間隙水圧比の 分布図を図 14.4-5~図 14.4-6 に示す。これらの図は,各要素に発生したせん断ひず み及び過剰間隙水圧比の全時刻における最大値の分布を示したものである。

曲げモーメント図「追而」		軸力図「追而」	せん断力図「追而」
曲げモーメント(kN・m)軸力(kN		せん断力 (kN)	
			*評価位置における断面力値
			照査値が最も厳しくなる部材の発生断面力
X	14.4 - 1 (1)	引込み管軸方向の地震時断面力(S [°] ーD	D1 [H+, V+])

「道前」

萱軸方向の地震時断面力(S₅−D1〔H+, V−〕)	貸軸方向の地震時断面力(S °−D1〔H−, V+〕)	^{含軸} 方向の地震時断面力(S °−D 1 〔H−, V−〕)	引込み管軸方向の地震時断面力(S _。 -11)	引込み管軸方向の地震時断面力(S _。 -12)	引込み管軸方向の地震時断面力(S _s -1 3)	引込み管軸方向の地震時断面力(S _s -14)	引込み管軸方向の地震時断面力(S _s -21)	引込み管軸方向の地震時断面力(S _s -2)	管軸方向の地震時断面力(Ss-31〔H+,V+〕)	管軸方向の地震時断面力(S _s -31[H-,V+])
引込み	비込み합	비込み	(5)	(9)	(2)	(8)	(6)	(10)	引込み。	<u> 1</u> 込み
⊠ 14.4−1 (2) 弓	⊠ 14.4−1 (3) 号	⊠ 14.4−1 (4) 号	図 14.4-1	図 14.4-1	図 14.4-1	図 14.4-1	図 14.4-1	図 14.4—1 (図 14.4-1 (11)	図 14.4−1 (12) Ē

曲げモーメント図「追而」		軸力図「追而」	せん断力図「追而」
曲げモーメント(kN・m)軸力(kN)		せん断力 (kN)	
			*評価位置における断面力値
		照查値	直が最も厳しくなる部材の発生断面力
図 14.4-2 (1)	引込み管軸直	夏交方向の地震時断面力(S _s −D1[H+, V+	([

「通町」

[H+, V-])	[H-, V+]	[H-, V-])	$-1 \ 1 \)$	-12)	$-1 \ 3)$	-14)	-21)	s – 2 2)	[H+, V+]	[H-, V+]
誉軸直交方向の地震時断面力(S _s −D1	營軸直交方向の地震時断面力(S _∞ −D1	營軸直交方向の地震時断面力(S _∞ −D 1	引込み管軸直交方向の地震時断面力(S。	引込み管軸直交方向の地震時断面力(S。	引込み管軸直交方向の地震時断面力(S。	引込み管軸直交方向の地震時断面力(S。	引込み管軸直交方向の地震時断面力(S。	引込み管軸直交方向の地震時断面力(S	管軸直交方向の地震時断面力(S _s -31	管軸直交方向の地震時断面力(S _s -31
引込み ⁽	引込み	引込み	(2)	(9)	(2)	(8)	(6)	(10)	引込み	引込み
⊠ 14.4−2 (2)	⊠ 14.4−2 (3)	⊠ 14.4−2 (4)	図 14.4-2	図 14.4-2	図 14.4-2 (11)	図 14. 4−2 (12)				

「追而」

- 図 14.4-3(1) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H+, V+〕)
- 図 14.4-3(2) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H+, V-〕)
- 図 14.4-3(3) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H-, V+〕)
- 図 14.4-3(4) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
 - 図 14.4-3(5) 引込み管軸方向の最大せん断ひずみ分布(S_s-11)
 - 図 14.4-3(6) 引込み管軸方向の最大せん断ひずみ分布(S_s-12)
 - 図 14.4-3(7) 引込み管軸方向の最大せん断ひずみ分布(S_s-13)
 - 図 14.4-3(8) 引込み管軸方向の最大せん断ひずみ分布(S_s-14)
 - 図 14.4-3(9) 引込み管軸方向の最大せん断ひずみ分布(S_s-21)
 - 図 14.4-3(10) 引込み管軸方向の最大せん断ひずみ分布(S_s-22)
- 図 14.4-3(11) 引込み管軸方向の最大せん断ひずみ分布(S_s-31〔H+, V+〕)
- 図 14.4-3(12) 引込み管軸方向の最大せん断ひずみ分布(S_s-31〔H-, V+〕)
- 図 14.4-4(1) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1〔H+, V+〕)
- 図 14.4-4(2) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1[H+, V-])
- 図 14.4-4(3) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1 [H-, V+])
- 図 14.4-4(4) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
 - 図 14.4-4(5) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-11)
 - 図 14.4-4(6) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-12)
 - 図 14.4-4(7) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-13)
 - 図 14.4-4(8) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-14)
 - 図 14.4-4(9) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-21)
 - 図 14.4-4(10) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-22)
- 図 14.4-4(11) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-31〔H+, V+〕)
- 図 14.4-4(12) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-31〔H-, V+〕)

図 14.4-5(11) 引込み管軸方向の過剰間隙水圧比(S_s-31[H+, V+])

図 14.4-5(12) 引込み管軸方向の過剰間隙水圧比(S_s-31〔H-, V+〕)

- 図 14.4-6(1) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H+, V+〕)
- 図14.4-6(2) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H+, V-〕)
- 図 14.4-6(3) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H-, V+〕)
- 図14.4-6(4) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H-, V-〕)
 - 図 14.4-6(5) 引込み管軸直交方向の過剰間隙水圧比(S_s-11)
 - 図 14.4-6(6) 引込み管軸直交方向の過剰間隙水圧比(S_s-12)
 - 図 14.4-6(7) 引込み管軸直交方向の過剰間隙水圧比(S_s-13)
 - 図 14.4-6(8) 引込み管軸直交方向の過剰間隙水圧比(S_s-14)
 - 図 14.4-6(9) 引込み管軸直交方向の過剰間隙水圧比(S_s-21)
 - 図 14.4-6(10) 引込み管軸直交方向の過剰間隙水圧比(S_s-22)
- 図 14.4-6(11) 引込み管軸直交方向の過剰間隙水圧比(S_s-31〔H+, V+〕)
- 図 14.4-6(12) 引込み管軸直交方向の過剰間隙水圧比(S_s-31〔H-, V+〕)

14.4.2 耐震評価結果

配筋要領図を図14.4-7に、断面計算に用いた断面諸元の一覧を表14.4-1に示す。

図 14.4-7 配筋要領図

ΗĒ
ΠI

表 14.4-1(1) 断面諸元一覧表(引込み管軸方向)

断面積	(単位幅)	A w	(cm^2)			
	S s	(m)				
	\mathbf{S} b	(m)				
	鉄筋径	(mm)				
断面積	(単位幅)	$A_{\rm S}$	(cm^2)			
	副唱	(cm)				
	鉄筋径	(mm)				
断面積	(単位幅)	$A_{\rm S}$	(cm^2)			
	副国	(cm)				
	鉄筋径	(mm)				
と言	m)	・匣句	「面」			
有効) p	外面・	風土			
μ β	(m)	・回り	通过			
3×4	ď,	・匣桜	上面			
무ተ	回口に	ц ()				
旦州十十 11分	回る言	a ((III)			
評価						
迎檐		防潮壁	地中連読壁 基礎(水平)	地中連読壁 基礎(鉛直)		
		部位 評価 部材幅 部材高 かぶり 有効高さ 断面積 断面積 単面積 単面積 2 S S S (単位幅) 新面積 第価権 第級密 S D S (単位幅	新位 評価 部材幅 部材高 かぶり 有効高さ 断面積 断面積 単面積 単位幅) 鉄筋径 間隔 単位幅) 鉄筋径 間隔 (単位幅) 鉄筋径 間隔 (単位幅) 鉄筋径 2 P S (単位幅) 体面積 (単位幅) 鉄筋径 2 B S (単位幅) 体面積 (単位幅) 鉄筋径 2 B S (単位幅) (単位幅) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m	和位 新位		地位 部村幅 $3\gamma,5^{0}$ $4\chi_{n}$ $3\gamma,5^{0}$ $4\chi_{n}$ δM_{n}

表 14.4-1 (2) 断面諸元一覧表(引込み管軸直交方向)

	断面積 (単位幅)	A w	(cm^2)			
釿補強筋	S s	(m)				
せん	S b	(m)				
	鉄筋径	(mm)				
• 下面)	断面積 (単位幅)	A s	(cm^2)			
5(内面・	冒隔	(cm)				
主鉄筋	鉄筋径	(mm)				
・上面)	断面積 (単位幅)	A s	(cm^2)			
5(外面	闔ا	(cm)				
主鉄筋	鉄筋径	(mm)				
	売 (II	内面・	更工			
	有効 d ()	外面・	里丁			
Ŀ\\}	ر بر (m)	内面・	画工			
断面性),p Sr¢	外面・	上面			
	, 里科语	u ((III)			
部材幅 b (m)						
	評価					
	部位			防潮壁	地中連読壁 基礎(水平)	地中連読壁 基礎(鉛直)

(1) 構造部材の曲げに対する評価結果

コンクリートの曲げ照査結果を表 14.4-2~表 14.4-3 に,鉄筋の曲げ照査結果を表 14.4 -3~表 14.4-4 にそれぞれ示す。

SA用海水ピットにおける許容応力度法による照査を行った結果,評価位置においてコ ンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確認した。 なお,発生応力度は各地震動,各部材において最大となる値を示している。

以上のことから, SA用海水ピットの構造部材の発生応力が許容限界以下であることを 確認した。

「追而」

地電味	世 () 小 雪 氏 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一		①発生応力度	②短期許容応力度	照查値
地辰时	1业.7月	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S D 1	[H+, V-]				
5 s - D 1	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s – 3 1	[H+, V+]				
	[H-, V+]				

表 14.4-2(1) コンクリートの曲げ照査結果(引込み管軸方向)

地電吐			①発生応力度	②短期許容応力度	照査値
地辰时	1业.个日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S _ D 1	[H+, V−]				
$S_s - DI$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表 14.4-2(2) コンクリートの曲げ照査結果(引込み管軸直交方向)

地電中	合相	部材高	①発生応力度	②短期許容応力度	照查値
地辰时	1业.4日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S D 1	[H+, V-]				
2°2–11	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表14.4-3(1) 鉄筋の曲げ照査結果(引込み管軸方向)

业金吐	体扣	部材高	①発生応力度	②短期許容応力度	照査値
地宸吁	1立.个目	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S - D 1	[H+, V-]				
$S_s - DI$	[H-, V+]				
	[H-, V-]				
$S_{s} - 1 1$	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
$S_{s} - 13$	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
$S_{s} - 22$	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表14.4-3(2) 鉄筋の曲げ照査結果(引込み管軸直交方向)

(2) 構造部材のせん断に対する評価結果

せん断に対する照査結果を表 14.4-4~表 14.4-5 に示す。

SA用海水ピットにおける許容応力度法による照査を行った結果,評価位置においてせん 断応力度が短期許容応力度以下,又は発生せん断力がコンクリートの許容せん断力 (V_{ca}) と斜め引張鉄筋の許容せん断力 (V_{sa})を合わせた許容せん断力 (V_{a})以下であることを 確認した。なお,発生応力度及び発生断面力は各地震動,各部材において最大となる値を示 している。

以上のことから, SA用海水ピットの構造部材の発生応力が許容限界以下であることを確認した。

		\ 77++- - -	せん断	短期許容	照査用	許容	
地震時	位相	前附向	応力度	応力度	せん断力	せん断力	照査値
		(m)	(N/mm^2)	(N/mm^2)	(KN)	(KN)	
	[H+, V+]						
S _ D 1	[H+, V−]						
5 _s -D1	[H-, V+]						
	[H-, V-]						
S _s -11	[H+, V+]						
$S_{s} - 12$	[H+, V+]						
$S_{s} - 13$	[H+, V+]						
$S_{s} - 14$	[H+, V+]						
$S_{s} - 21$	[H+, V+]						
S _s -22	[H+, V+]						
0 0 1	[H+, V+]						
S₅−31	[H-, V+]						

表14.4-4(1) せん断照査結果(引込み管軸方向)

		动叶十古	せん断	短期許容	照査用	許容	
地震時	位相		応力度	応力度	せん断力	せん断力	照査値
		(III)	(N/mm^2)	(N/mm^2)	(KN)	(KN)	
	[H+, V+]						
S _ D 1	[H+, V−]						
5 _s -D1	[H-, V+]						
	[H-, V-]						
S _s -11	[H+, V+]						
$S_{s} - 12$	[H+, V+]						
S _s -13	[H+, V+]						
$S_{s} - 14$	[H+, V+]						
$S_{s} - 21$	[H+, V+]						
S _s -22	[H+, V+]						
S 9.1	(H+, V+)						
$5_{s} - 51$	[H-, V+]						

表14.4-4(2) せん断照査結果(引込み管軸直交方向)

(3) 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能評価結果を表 14.4-5 に,接地圧分布図を図 14.4-8~図 14.4-9 に示す。

SA用海水ピットの接地圧はS_s−D1 [H+, V+] (●●断面方向) で●● kN/m^2 であり, 基礎地盤の極限支持力●● kN/m^2 以下である。

以上のことから, SA用海水ピットの基礎地盤は, 基準地震動 S。に対し, 支持性能を有 する。

「追而」

表 14.4-5 基礎地盤の支持性能評価結果

図 14.4-8 (1)	引込み管軸方向の接地圧分布図(S _s -D1〔H+, V+〕)
図 14.4-8 (2)	引込み管軸方向の接地圧分布図(S ₃ -D1〔H+,V-〕)

- 図 14.4-8(3) 引込み管軸方向の接地圧分布図(S_s-D1〔H-, V+〕)
- 図 14.4-8(4) 引込み管軸方向の接地圧分布図(S_s-D1〔H-, V-〕)

図 14.4-8(5) 引込み管軸方向の接地圧分布図(S_s-11)

- 図 14.4-8(6) 引込み管軸方向の接地圧分布図(S_s-12)
- 図 14.4-8(7) 引込み管軸方向の接地圧分布図(S_s-13)
- 図 14.4-8(8) 引込み管軸方向の接地圧分布図(S_s-14)
- 図 14.4-8(9) 引込み管軸方向の接地圧分布図(S_s-21)

- 図 14.4-8(11) 引込み管軸方向の接地圧分布図(S_s-31〔H+, V+〕)
- 図 14.4-8(12) 引込み管軸方向の接地圧分布図(S_s-31〔H-, V+〕)

「追而」

図 14.4-9(1) 引込み管軸直交方向の接地圧分布図(S_s-D1 [H+, V+])

- 図 14.4-9(2) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H+, V-〕)
- 図 14.4-9(3) 引込み管軸直交方向の接地圧分布図(S_s-D1 [H-, V+])
- 図 14.4-9(4) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H-, V-〕)

- 図 14.4-9(5) 引込み管軸直交方向の接地圧分布図(S_s-11)
- 図 14.4-9(6) 引込み管軸直交方向の接地圧分布図(S_s-12)
- 図 14.4-9(7) 引込み管軸直交方向の接地圧分布図(S_s-13)
- 図 14.4-9(8) 引込み管軸直交方向の接地圧分布図(S_s-14)
- 図 14.4-9(9) 引込み管軸直交方向の接地圧分布図(S_s-21)
- 図 14.4-9(10) 引込み管軸直交方向の接地圧分布図(S_s-22)
- 図 14.4-9(11) 引込み管軸直交方向の接地圧分布図(S_s-31〔H+, V+〕)
- 図 14.4-9(12) 引込み管軸直交方向の接地圧分布図(S_s-31〔H-, V+〕)

14.5 まとめ

SA用海水ピットについて、基準地震動S。による地震力に対し、構造物の曲げ及びせん断並 びに接地圧が許容限界以下であることを確認した。

以上のことから、SA用海水ピットは、基準地震動S。による地震力に対して、要求機能を維持できる。

16. SA用海水ピット取水塔の耐震安全性評価

目 次

16.1 評価方針	
16.2 評価条件・・・・・	
16.2.1 適用基準 ·····	
16.2.2 耐震安全性評価フロー・・・・・	
16.2.3 評価対象断面の方向・・・・・	
16.2.4 評価対象断面の選定・・・・・	
16.2.5 使用材料及び材料定数・・・・・・	
16.2.6 地下水位	
16.2.7 地震応答解析手法	
16.2.8 解析モデルの設定・・・・・	
16.2.9 減衰定数	
16.2.10 荷重の組合せ・・・・・	
16.2.11 地震応答解析の検討ケース・・・・	
16.3 評価内容	
16.3.1 入力地震動の設定・・・・・	
16.3.2 許容限界の設定・・・・・	
16.3.3 内部配管の評価・・・・・	
16.3.4 上段鋼製蓋の評価・・・・・	
16.4 評価結果・・・・・	
16.4.1 地震応答解析結果・・・・・	
16.4.2 耐震評価結果・・・・・	
16.5 まとめ・・・・・	

16.1 評価方針

SA用海水ピット取水塔は,非常時における海水の通水機能を求められる土木構造物である。 また,常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

SA用海水ピット取水塔の耐震評価は,地盤の2次元動的有効応力解析により得られた解析 結果に基づき,設計基準対象施設及び重大事故等対処施設として,構造部材の健全性評価及び 基礎地盤の支持性能評価を行う。

構造部材の健全性評価については,地震応答解析に基づく発生応力が許容限界以下であるこ とを確認する。

基礎地盤の支持性能評価については,基礎地盤に作用する接地圧が極限支持力に基づく許容 限界以下であることを確認する。

16.2 評価条件

16.2.1 適用基準

適用する規格,基準を表 16.2-1 に示す。

項目	適用する規格,基準類	備考
使用材料及び	・コンクリート標準示方書	
材料定数	[構造性能照査編]	
	((社)土木学会,2002 年制定)	
	・道路橋示方書(I共通編・IV下部	
	構造編)・同解説((社)日本道	
	路協会,平成24年3月)	
荷重及び	・コンクリート標準示方書	・ 永久荷重+偶発荷重の適切な組合せを
荷重の組合せ	[構造性能照查編]	検討
	((社)土木学会,2002 年制定)	
許容限界	・コンクリート標準示方書	・耐震評価により算定した曲げ圧縮応
	[構造性能照查編]	力,曲げ引張応力及びせん断応力が短
	((社)土木学会,2002 年制定)	期許容限界以下であることを確認す
	・道路橋示方書(I共通編・IV下部	る。
	構造編)・同解説((社)日本道	・基礎地盤に作用する接地圧が極限支持
	路協会,平成24年3月)	力に基づく許容限界以下であることを
		確認
地震応答解析	・JEAG4601-1987 ((社)	・有限要素法による2次元モデルを用い
	日本電気協会)	た時刻歴非線形解析

表 16.2-1 適用する規格,基準類

16.2.2 耐震安全性評価フロー

図16.2-1にSA用海水ピット取水塔の耐震安全性評価フローを示す。

<地震応答計算>

< 耐震性評価>

図 16.2-1 SA用海水ピット取水塔の耐震安全性評価フロー

16.2.3 評価対象断面の方向

SA用海水ピット取水塔の位置図を図 16.2-2,図 16.2-3 に示す。 SA用海水ピット取水塔は、内径約4m、内空高さ約18mの円筒形の鉄筋コンクリート 造の地中構造物であり、明確な弱軸断面方向は無いことから接続する海水引込み管に着 目し、管路縦断方向及びこれに直交する断面を評価対象断面とする。

図 16.2-2 SA用海水ピット取水塔位置図(全体図)

図 16.2-3 SA用海水ピット取水塔位置図(拡大図)

16.2.4 評価対象断面の選定

SA用海水ピット取水塔の評価対象断面位置図を図 16.2-4 に,評価対象断面図を図 16.2 -5 に示す。また,構造平面図を図 16.2-6 に,構造断面図を図 16.2-7 に示す。

評価対象断面は、「1.4.16 SA用海水ピットの断面選定の考え方」で記載したとおり、 円筒状の鉄筋コンクリート構造物であり明確な弱軸断面方向がないことから、接続する海水 引込み管の縦断面方向①-①断面とそれに直交する横断面方向②-②断面の両方向について 選定して耐震評価を実施する。

16 - 5

図 16.2-5(2) SA用海水ピット取水塔 評価対象断面図(②-②断面)

16.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は、適用基準類を基に設定する。構造物の使用材料を表 16.2 -2 に、材料物性値を表 16.2-3 に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるモデル化とする。地盤の物性値を表 16.2-4 に示す。

表 16.2-2 使用材料

材料単位体積重量
(kN/m³)ヤング係数
(N/mm²)ポアソン比鉄筋コンクリート24.53.1×1040.2鋼材77.02.05×10⁵0.3

表 16.2-3 材料物性值

			原地盤										
パラメータ				埋戻土	埋戻土 第四系 (液状化検討対象層)								
				f1	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1		
物理	密度 () け地下水位以浅	ρ	g/cm^3	1.98	1.98	2.01	1.74	2.01	1.92	2.15	2.01	1.958	
特 性	間隙比	е	_	0.75	0. 75	0.67	1.2	0.67	0. 79	0. 43	0.67	0.702	
	ポアソン比	$\nu_{\rm CD}$	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333	
変形	基準平均有効主応力 () は地下水位以浅	σ' _{ma}	kN/m²	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6	
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975	
	最大履歴減衰率	h_{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287	
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0	
特性	内部摩擦角	$\phi_{\rm CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30	
	液状化パラメータ	$\phi_{\rm p}$	-	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28	
	液状化パラメータ	S_1	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005	
液 状	液状化パラメータ	W_1	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06	
特性	液状化パラメータ	P_1	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57	
II.	液状化パラメータ	P_2	-	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80	
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44	

表 16.2-4(1) 有効応力解析に用いる地盤の解析用物性値(液状化検討対象層)

表 16.2-4 (2)	有効応力解析に用いる地盤の解析用物性値	(非液状化層)

				原地盤						
パラメータ				第四系(非液状化層)				新第三系		
			Ac	D2c-3	lm	D1c-1	Km			
物理性	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1.47 (1.43)	1.77	1.72-1.03 \times 10 ⁻⁴ · z		
竹性	間隙比	е	_	1.59	1.09	2.8	1.09	1.16		
	ポアソン比	$\nu_{\rm CD}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z		
変形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m²	480	696	249 (223)	696	動的変形特性に基づき z (標		
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	121829	285223	38926 (35783)	285223	高)毎に物性値を設定する。		
	最大履歴減衰率	h_{max}	-	0.200	0.186	0.151	0.186			
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z		
特性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	35.6	23. 2+0. 0990• z		

z:標高(m)

表 16.2-4 (3) 地盤の解析用物性値(新第三系 Km 層)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
来早	TP (m)	適用深度 1	TP (m)	ρ	21.01	Ссъ	фсв	速度Vs	せん断剛性 Gma	弾性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
8.0	Z			(g/cm_3)	VCD	(kN/m^2)	(°)	(m/s)	(kN/m^2)	(kN/m²)	(kN/m²)	mG, mK	hmax(-)	νa	(m/s)	
1	10	9.5 ~	10.5	1.72	0.16	298	24.2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1, 640, 000
2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
3	8	7.5 ~	8.5	1.72	0.16	310	24.0	427	313,606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
5	6	6.0 ~ 5.5 ~	6.5	1.72	0.16	310	23.9	428	315,076	358 322	504	0.0	0.105	0.464	1,051	1,651,000
6	5	4.5 ~	5.5	1.72	0.16	328	23.7	420	316 551	359 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0. 463	1,638	1, 638, 000
8	3	2.5 ~	3.5	1.72	0.16	340	23.5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1, 642, 000
10	1	0.5 ~	1.5	1.72	0.16	352	23.3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1, 646, 000
11	0	-0.5 ~	0.5	1.72	0.16	358	23.2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1, 653, 000
13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5 ~	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5 ~	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0. 463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
18	-7	-7.5 ~	-6.5	1.72	0.16	- 394 400	22.0	430	329, 972	375 262	504	0.0	0.109	0.402	1,040	1,048,000
10	-8	-8.5 ~	-7.5	1. 72	0, 16	406	22. 4	439	331, 480	376, 977	504	0.0	0, 109	0, 462	1, 652	1, 652. 000
20	-9	-9.5 ~	-8.5	1.72	0.16	412	22.3	440	332, 992	378, 697	504	0.0	0.110	0. 462	1,656	1, 656, 000
21	-10	-11 ~	-9.5	1.72	0.16	418	22.2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1,659,000
22	-12	-13 ~	-11	1.72	0.16	430	22.0	442	336, 026	382, 147	504	0.0	0.110	0.462	1,663	1, 663, 000
23	-14	$-15 \sim$	-13	1.72	0.16	442	21.8	444	339, 074	385, 614	504	0.0	0.111	0.462	1,671	1, 671, 000
24	-16	$-17 \sim$	-15	1.72	0.16	454	21.6	445	340, 603	387, 352	504	0.0	0.111	0.461	1,654	1, 654, 000
25	-18	$-19 \sim$	-17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0.0	0.112	0.461	1,662	1, 662, 000
26	-20	$-21 \sim$	-19	1.72	0.16	479	21.2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1, 665, 000
27	-22	-23 ~	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1, 673, 000
28	-24	-25 ~	-23	1.72	0.15	503	20.8	452	351, 403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-26	-21 ~ -29 ~	-25	1.72	0.15	527	20.6	455	352,959	380, 574	498	0.0	0.113	0.460	1,6672	1,664,000
31	-30	-31 ~	-29	1.72	0.15	539	20. 2	456	357, 650	391, 712	498	0.0	0.114	0. 460	1, 675	1, 675, 000
32	-32	-33 ~	-31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1, 683, 000
33	-34	-35 ~	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	$-37 \sim$	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1, 675, 000
35	-38	$-39 \sim$	-37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1, 678, 000
36	-40	$-41 \sim$	-39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1,685	1, 685, 000
37	-42	$-43 \sim$	-41	1.72	0.15	611	19.0	465	371, 907	407, 327	498	0.0	0.117	0.459	1, 689	1, 689, 000
38	-44	-45 ~	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1, 678, 000
39	-46	-47 ~	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1,681,000
40	-48	-49 ~	-47	1.72	0.15	647	18.4	470	379, 948	416, 134	498	0.0	0.118	0.458	1,688	1,688,000
41	-52	-53 ~	-51	1.73	0.15	672	18.1	472	387, 051	422, 122	498	0.0	0.118	0.458	1,699	1,699,000
43	-54	-55 ~	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0. 457	1,688	1, 688, 000
44	-56	$-57 \sim$	-55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692	1, 692, 000
45	-58	$-59 \sim$	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0. 457	1,699	1, 699, 000
46	-60	$-61 \sim$	-59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1, 702, 000
47	-62	-63 ~	-61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1, 709, 000
48	-64	$-65 \sim$	-63	1.73	0.14	744	16.9	482	401, 921	424, 250	492	0.0	0.120	0.456	1, 695	1, 695, 000
49	-66	-67 ~	-65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702	1, 702, 000
50	-68	-69 ~	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1, 705, 000
51	-70	-71 ~	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0. 121	0.456	1, 712	1, 712, 000
52	-72	-75 ~	-73	1.73	0.14	192 804	10.1	489	415, 079	430,001	492 409	0.0	0.121	0.455	1,719	1,719,000
54	-76	-77 ~	-75	1.73	0.14	816	15.7	492	418, 771	442, 036	492	0.0	0. 122	0. 455	1, 712	1,712,000
55	-78	-79 ~	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0. 122	0. 455	1, 716	1, 716, 000
56	-80	-81 ~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85 ~	-81	1.73	0.14	852	15.1	496	425, 608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	$-90 \sim$	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	$-95 \sim$	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	$-101 \sim$	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	$-108 \sim$	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1, 733	1, 733, 000
62	-112	-115 ~	-108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0. 127	0.451	1, 737	1, 737, 000
63	-118	-122 ~	-115	1.73	0.13	1,070	11.5	524	475,016	483, 575	486	0.0	0.127	0. 451	1,754	1,754,000
64	-126	$-130 \sim$	-122	1.73	0.13	1,118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1,758	1, 758, 000

16.2.6 地下水位

SA用海水ピット取水塔が海上構造物であるため,地下水位は考慮しない。

16.2.7 地震応答解析手法

SA用海水ピット取水塔の地震応答解析は,地盤と構造物の相互作用を考慮できる2次 元有限要素法を用いて,基準地震動S。に基づき設定した水平地震動と鉛直地震動の同時 加振による逐次時間積分の時刻歴応答解析にて行う。部材については,線形はり要素を用 いることとする。また地盤については,有効応力の変化に応じた地震時挙動を適切に考慮 できるようにモデル化する。地震応答解析については,解析コード「FLIP Ver. 7.3.0_2」を 使用する。なお,解析コードの検証及び妥当性確認の概要については,付録24「計算機プロ グラム (解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 16.2-8 に示す。

図 16.2-8 地震応答解析手法の選定フロー

H-D モデルの選定理由は次のとおりである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力~ せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を適切 に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん断 応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤のせ ん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。

- 16.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデル領域は、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼ さないよう、十分広い領域とする。具体的には、JEAG4601-1987を参考に、図 16.2-9に示すとおりモデル幅を構造物基礎幅の5倍以上、構造物下端からモデル下端ま での高さを構造物幅の2倍以上確保する。なお、解析モデルの境界条件は、側方における 波動の反射の影響を低減するとともに、下方への波動の逸散を考慮するために、側面及び 底面ともに粘性境界とする。

SA用海水ピット取水塔周辺の地震応答解析モデルを図 16.2-10 に示す。

図 16.2-9 解析モデル領域の考え方

(a) 引込み管軸方向(①-①断面)

(b) 引込み管軸直交方向(②-②断面)

図 16.2-10 SA用海水ピット取水塔の地震応答解析モデル

(2) 構造物のモデル化

構造部材は、線形はり要素でモデル化する。

なお,引込み管軸方向断面において,複数の構造物を同時にモデル化する際の奥行幅は, SA用海水ピット取水塔と等価な平面積を有する正方形の1辺長を基準奥行きとして各構 造物の断面性能を換算する。

SA用海水ピット取水塔の構造部材は、ピット中心位置での鉛直はり要素に縮合してモ デル化する。また、海水引込み管とは岩盤内で接合する上に、取水塔の壁軸周長約 17 m に対して管径が 1.2 m であることから開口の影響は軽微であると考えられる。したがって、 2 次元有効応力解析では接合部の開口を考慮せず、開口部には適切な開口補強を実施する。 SA用海水ピット取水塔の解析モデル概念図を図 16.2-11 に示す。

図 16.2-11 SA用海水ピット取水塔の解析モデル概念図

(3) 地盤のモデル化

地盤は、マルチスプリング要素及び間隙水圧要素にてモデル化し、地震時の有効応力の 変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。 (4) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離及び すべりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向で は、常時状態以上の引張が生じた場合、剛性及び応力をゼロとし、剥離を考慮する。接線 方向では、地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合、剛性をゼロと し、すべりを考慮する。せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。 c、 ϕ は周辺地盤の c、 ϕ とする。(表 16.2-5 参照)

 $\tau_{\rm f} = c + \sigma' \tan \phi$

τ_f : せん断強度

c : 粘着力

表 16.2-5 周辺地盤及び隣接構造物との境界に用いる強度特性

周辺	の状況	粘着力 c (N/mm ²)	内部摩擦角 φ (度)	備考
	du 層	0	37.3	_
第四紀層	Ag2 層	0	37.4	—
	D2g-3 層	0	44.4	—
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—

z:標高 (m)

ジョイント要素のばね定数は、数値計算上の不安定挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表16.2-6のとお り設定する。図16.2-12にジョイント要素の設定の考え方を示す。

表 16.2-6 ジョイント要素のばね定数

	せん断剛性 ks	圧縮剛性 k _n
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

16.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、Rayleigh減衰をα=0となる剛性比例型減衰とする。

$$\begin{bmatrix} C \end{bmatrix} = \alpha \begin{bmatrix} M \end{bmatrix} + \beta \begin{bmatrix} K \end{bmatrix}$$

ここで、
$$\begin{bmatrix} C \end{bmatrix} : 減衰係数マトリックス$$
$$\begin{bmatrix} M \end{bmatrix} : 質量マトリックス$$
$$\begin{bmatrix} K \end{bmatrix} : 剛性マトリックス$$
$$\alpha, \beta : 係数$$

係数α, βは以下のように求めている。

$$\alpha = 0$$

$$\beta = \frac{h}{\pi f}$$

f : 固有値解析により求められた1次固有振動数

h : 各材料の減衰定数

地盤の減衰定数は 1% (解析における減衰は,ひずみが大きい領域では履歴減衰が 支配的となる。このため,解析上の安定のためになるべく小さい値として 1%を採用 している)とする。また,線形材料としてモデル化するコンクリートの減衰定数は 5% (JEAG4601-1987)とする。

図 16.2-13 に Rayleigh 減衰の設定フローを,表 16.2-7 に固有値解析結果を示す。

図 16.2-13 Rayleigh 減衰の設定フロー

表 16.2-7 固有値解析結果(追而)

16.2.10 荷重の組合せ

耐震安全性評価にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震時荷重 を抽出し,それぞれ組み合わせて設定する。地震時荷重には,地震時土圧,動水圧,機 器・配管系からの反力による荷重が含まれるものとする。

変動荷重(雪荷重,風荷重)については,SA用海水ピット取水塔が海水中に没する ため考慮しない。

なお、SA用海水ピット取水塔は地盤内に埋設されている構造物であることから、運 転時の異常な過度変化時の状態及び設計基準事故時の状態の影響を受けないと考えられ るため、当該状態についての組合せは考慮しないものとする。また、重大事故等対処時 においても、地盤内で設計基準事故時の条件を上回るような事象は発生しないため、設 計基準事故等の条件を上回る荷重はない。

地震時にSA用海水ピット取水塔に作用する機器・配管系からの反力については、機器・配管系を付加質量としてモデル化することで考慮する。荷重の組合せを表 16.2-8 に示す。

	種別	荷重		算定方法
		躯体白重	0	・対象構造物の体積に材料の密度を乗じて設定す
				る。
	常時考慮	機器・配管荷重	\bigcirc	・上段鋼製蓋、内部配管を付加質量で考慮する。
	荷重	土被り荷重	—	・躯体天端が海底面上にあるため、考慮しない。
		シカト封告手		・恒常的に配置される構造物等はないため、考慮し
永久		水人上載何里	_	ない。
荷重	:	静止土圧	0	・常時応力解析により設定する。
	外水圧		0	・地下水位及び海水位に応じた静水圧として考慮す
				る。
				・地下水及び海水位の密度を考慮する。
	中水口			・H.W.L T.P.+0.61 mからの内水圧を考慮する。
		的水庄	0	・海水の密度を考慮する。
変	動荷重	雪荷重,風荷重	—	・海水中に没するため考慮しない。
		水平地震動	0	・基準地震動S。によって水平・鉛直に同時加振す
		鉛直地震動	0	る。
偶	発荷重			・躯体,機器・配管の慣性力,動土圧を考慮する。
		まして	\bigcirc	・水位条件、密度は、永久荷重と同様とする。
			0	

表 16.2-8 荷重の組合せ

(1) 機器・配管荷重

頂版に設置する上段鋼製蓋並びに取水塔内に設置する内部配管を付加質量として考慮 する。開口による質量及び剛性の低減は考慮しない。

(2) 外水圧

SA用海水ピット取水塔周辺は朔望平均満潮位(T.P.+0.61 m)以下であるため,地 下水位は海底面に設定する。地下水の密度は1.00 g/cm³とする。

海水は流体要素として考慮し,密度は1.03 g/cm³とする。

(3) 内水圧

SA用海水ピット取水塔内の内水圧水頭は海面と同じ朔望平均満潮位(T.P.+0.61 m) とする。海水の密度は1.03 g/cm³とする。

朔望平均満潮位(T.P.+0.61 m)は, 頂版下面標高(T.P.-0.7 m)より高いため, 取 水塔の内水は自由水面を持たない固定水としてモデル化する。

内水は、構造物をモデル化したはり要素の節点に付加質量として考慮する。

16.2.11 地震応答解析の検討ケース

SA用海水ピット取水塔の耐震設計における検討ケースを表 16.2-9 に示す。

			1	2	3	4	5	6	
		原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤にお	地盤物性の		
		づく液状化	ばらつきを	ばらつきを	的に液状化	いて非液状	ばらつきを		
		強度特性を	考慮(+1	考慮 (-1	させること	化の条件を	考慮(+1		
検討ケース			用いた解析	σ)した解	σ)した解	を仮定した	仮定した解	σ)して非	
			ケース(基本	析ケース	析ケース	解析ケース	析ケース	液状化の条	
			ケース)					件を仮定し	
								た解析ケー	
								ス	
液状化強度特性 の設定		原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パラ	液状化パラ		
		づく液状化	づく液状化	づく液状化	しない豊浦	メータを非	メータを非		
		強度特性	強度特性	強度特性	標準砂に基	適用	適用		
		(標準偏差	(標準偏差	(標準偏差	づく液状化				
	r	n	を考慮)	を考慮)	を考慮)	強度特性			
		(++)	1						
	S = D 1	(+-)	1						
	O _s DI	(-+)	1						
111.		()	1						
地雪	$S_{s} = 1 \ 1$	(++)	1						
 波	$S_{s} = 1.2$	(++)	1	1	1	1	1	1	
	$S_{s} = 1.3$	(++)	1						
位相	$S_{s} = 1.4$	(++)	1	①の検	↓ □の検討において、構造物の安全率が最も小さい				
	$S_s = 2.1$	(++)	1	地電池	で宇族ナス				
	$S_s = 2.2$	(++)	1	地辰仮	て天旭りる。				
		(++)	1						
	$S_{s} - 31$		1						
		(-+)	1						
		12	1	1	1	1	1		

表16.2-9 SA用海水ピット取水塔の耐震設計における検討ケース

16.3 評価内容

16.3.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を, 1次元波動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震 動算定の概念図を図 16.3-1 に示す。

入力地震動の算定には,解折コード「k-SHAKE Ver.6.2.0」を使用する。解折コード の検証及び妥当性確認の概要については,付録 39「計算機プログラム(解析コード)の 概要」に示す。

なお、断層モデル波であるS_s-11, 12, 13, 14, 21, 22 については、特定の方向性 を有することから、構造物の評価対象断面方向に合わせて方位補正を行う。具体的には NS方向及びEW方向の地震動について構造物の評価断面方向の成分を求め、各々を足 し合わせることで方位補正した基準地震動を設定する。

図 16.3-2~図 16.3-29 に入力地震動の加速度時刻歴波形並びに加速度応答スペクト ルを示す。

図 16.3-1 入力地震動策定の概念図

図 16.3-2 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸・管軸直交方向断面,水平成分:S_s-D1)

図 16.3-3 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸・管軸直交方向断面,鉛直成分:S_s-D1)

MAX 410 cm/s^2 (25.29 s) 1000 800 600 400 加速度 (cm/s²) 200 0 MMMM N.A. -200 -400 -600 -800 -1000 L 50 100 150 200 時間 (s)

図 16.3-4 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-11)

図 16.3-5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-11)

MAX 583 cm/s² (25.95 s) 1000 800 600 400加速度 (cm/s²) 200 0 -200 -400 -600 -800 -1000 L 50 100 150 200 時間 (s)

図 16.3-6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分: S_s-11)

図 16.3-7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分: S_s-11)

図 16.3-8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-12)

図 16.3-9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-12)

図 16.3-10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-12)

図 16.3-11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-12)

図 16.3-12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-13)

図 16.3-13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-13)

図 16.3-15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-13)

MAX 362 cm/s² (28.20 s) 1000 800 600 400 加速度 (cm/s²) 200 0 -200 -400 -600 -800 -1000 L 50 100 150 200 時間 (s)

図 16.3-16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分: S_s-14)

図 16.3-17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-14)

図 16.3-18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-14)

図 16.3-19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-14)

図 16.3-20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分: S_s-21)

図 16.3-21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分: S_s-21)

図 16.3-23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-21)

図 16.3-24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,水平成分:S_s-22)

図 16.3-25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸方向断面,鉛直成分:S_s-22)

図 16.3-26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,水平成分:S_s-22)

図 16.3-27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸直交方向断面,鉛直成分:S_s-22)

MAX 574 cm/s^2 (8.25 s)

図 16.3-28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸・管軸直交方向断面,水平成分: S_s-31)

図 16.3-29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (引込み管軸・管軸直交方向断面,鉛直成分: S_s-31)

- 16.3.2 許容限界の設定
 - (1) 許容応力度による許容限界

許容応力度については、コンクリート標準示方書 [構造性能照査編] (土木学会、 2002年),道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)日本道路協 会、平成24年3月)に基づき、表16.3-1の通り設定する。短期許容応力度は、コン クリート及び鉄筋の許容応力度に対して1.5倍の割増しを考慮する。

表 16.3-1 許容応力度

	評価項目	短期許容応力度 (N/mm ²)	
コンクリート*1	許容曲げ圧縮応力度 σ _{ca}	21.0	
(f' _{ck} =40 N/mm ²)	許容せん断応力度 τ _{al}	0.825*3	
鉄筋(SD490)*2	許容引張応力度 σ _{sa}	435	
鉄筋(SD390)*1	許容引張応力度 σ _{sa}	309	
鉄筋(SD345)*1	許容引張応力度 σ _{sa}	294	

注記 *1:コンクリート標準示方書 [構造性能照査編] (土木学会, 2002 年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成24 年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002 年制定)」に適用し、次式により求められる許容せん断力 (V_a)を許容限界とする。

$$V_a = V_{ca} + V_{sa}$$

ここで,

V_{ca}:コンクリートの許容せん断力

 $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$

V_{sa}:斜め引張鉄筋の許容せん断力

 $V_{sa} = A_w \cdot \sigma_{sa} \cdot j \cdot d \swarrow s$

- τ a1 : 斜め引張鉄筋を考慮しない場合の許容せん断応力度
- b_w :有効幅
- j : 1/1.15
- d : 有効高さ
- A_w :斜め引張鉄筋断面積
- σ_{sa}:鉄筋の許容引張応力度
- s : 斜め引張鉄筋間隔

(2) 基礎地盤の支持性能に対する許容限界

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験 結果(せん断強度)等より設定する。

道路橋示方書による直接基礎の支持力算定式を以下に示す。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

ここで,

- q_d:基礎底面地盤の極限支持力度
- c : 基礎底面より下にある地盤の粘着力
- γ₁:基礎底面より下にある地盤の単位体積重量。ただし、地下水位以下では
 水中単位体積重量とする
- γ₂ :基礎底面より上にある周辺地盤の単位体積重量。ただし、地下水位以下では水中単位体積重量とする
- α, β :表 16.3-2 に示す基礎底面の形状係数
- D :基礎幅
- D_f : 基礎の有効根入れ深さ
- N_c, N_q, N_y:図 16.3-30 に示す支持力係数

表 16.3-2 基礎底面の形状係数(道路橋示方書より)

基礎底面の形状 形状係数	帯	伏 正方形,円形	長方形,小判形
lpha . The second second $lpha$	1.0	1.3	$1+0.3\frac{B}{D}$
β	1.0	0.6	$1 - 0.4 \frac{B}{D}$

D:ケーソン前面幅 (m), B:ケーソン側面幅 (m)

ただし, *B/D*>1の場合, *B/D*=1とする。

図 16.3-30 支持力係数N_c, N_q, N_yを求めるグラフ(道路橋示方書より)

上記にて求まる基礎地盤の極限支持力を表 16.3-3 に示す。

表 16.3-3 基礎地盤の極限支持力(追而)
16.3.3 内部配管の評価

2次元動的有効応力解析から得られるリングガーダ位置並びに海水引込み管接合位置 の最大水平相対変位分布を強制変位とし、SA用海水ピット取水塔の最大加速度より算 定した設計震度による慣性力との組合せ荷重に対して内部配管及びリングガーダ固定部 アンカーボルトの応力が許容限界以下であることを確認する。

内部配管の応力照査モデルの概念図を図 16.3-31 に示す。

図 16.3-31 SA用海水ピット取水塔 内部配管の応力照査モデル概念図

16.3.4 上段鋼製蓋の評価

2次元動的有効応力解析から得られる頂版の最大加速度より算定される慣性力に対し て上段鋼製蓋及び固定部アンカーボルトの発生応力が許容限界以下であることを確認す る。

(追而)

16.4 評価結果

16.4.1 地震応答解析結果

SA用海水ピット取水塔の基準地震動S。による断面力(曲げモーメント,軸力,せん断力)を図 16.4-1~図 16.4-2 に示す。これらの図は、構造部材の曲げ及びせん断照査結果が最も厳しくなる時刻における断面力を示したものである。

また,最大せん断ひずみ分布図を図 16.4-3~図 16.4-4 に示し,過剰間隙水圧比の分 布図を図 16.4-5~図 16.4-6 に示す。これらの図は,各要素に発生したせん断ひずみ及 び過剰間隙水圧比の全時刻における最大値の分布を示したものである。

せん断力図「追而」		*評価位置における断面力値	照査値が最も厳しくなる部材の発生断面力	+], t= \bigcirc . \bigcirc s)
軸力図「追而」	せん断力 (kN)			引込み管軸方向の地震時断面力(S ^s -D1[H+, V·
「川道」図インメーサが伸	曲げモーメント (kN・m) 軸力 (kN)			図 16.4-1 (1)

「通町」

$ \begin{array}{c} (2) \vec{\beta} \\ (3) \vec{\beta} \\ (4) \vec{\beta} \\ (4-1) (4-1) (4-1) (4-1) (4-1) (4-1) (4-1) (4-1) (11) \vec{\beta} \\ (11) \vec{\beta} \end{array} $	込み管軸方向の地震時断面力(S ₅−D 1 〔H+, V−〕)	込み管軸方向の地震時断面力(S °-D 1 〔H-,V+〕) 込み管軸方向の地震時断面力(S °-D 1 〔H-,V-〕)	 引込み管軸方向の地震時断面力(S_s-11) 引込み管軸方向の地震時断面力(S_s-12) 	 引込み管軸方向の地震時断面力(S_s-13) 引込み管軸方向の地震時断面力(S_s-14) 	(9) 引込み管軸方向の地震時断面力(S °-21)	10) 引込み管軸方向の地震時断面力(S _s -2 2)	込み管軸方向の地震時断面力(S ₅−31〔H+,V+〕)	込み管軸方向の地震時断面力(S₅−31〔H−, V+〕)
16.4-1 (16.4-1 (16.4-1 (図 16 図 16	[6.4-1 (2)]	$[6, 4-1 (3) \overline{5}$ $[6, 4-1 (4) \overline{5}$	図 16.4—1 図 16.4—1	図 16.4-1 図 16.4-1	図 16.4-1	図 16.4-1	6.4 - 1 (11)	6.4 - 1 (12)

曲げモーメント図「追而」	軸力図「追而」
曲げモーメント(kN・m)軸力(kN)	せん断力 (kN)
	*評価位置における断面力値
	照査値が最も厳しくなる部材の発生断面力
図 16.4-2 (1)	引込み管軸直交方向の地震時断面力(S。-D1〔H+,V+〕)

「道而」

、み管軸直交方向の地震時断面力(S _s -D 1 〔H+,V-〕)	∶み管軸直交方向の地震時断面力(S _s − D 1 〔H −,V +〕)	:み管軸直交方向の地震時断面力(S _s ーD1〔H-,V-〕)	引込み管軸直交方向の地震時断面力(S _。 -11)	引込み管軸直交方向の地震時断面力(S _s -1 2)	引込み管軸直交方向の地震時断面力(S 。-1 3)	引込み管軸直交方向の地震時断面力(S °-1 4)	引込み管軸直交方向の地震時断面力(S _s ー 2 1)) 引込み管軸直交方向の地震時断面力(S _s -22)	込み管軸直交方向の地震時断面力(S ₅-31〔H+,V+〕)	込み管軸直交方向の地震時断面力(S ₅−31〔H−,V+〕)
引込	引込	引込	(5)	(9)	(2)	(8)	(6)	(10)	引迟	3 12
図 16.4-2 (2)	図 16.4-2 (3)	図 16.4-2 (4)	図 16.4-2	図 16.4-2	図 16.4-2	図 16.4-2	図 16.4-2	図 16.4-2	図 16.4-2 (11)	図 16.4-2 (12)

- 図 16.4-3(1) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H+, V+〕)
- 図 16.4-3(2) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H+, V-〕)
- 図 16.4-3 (3) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1 [H-, V+])
- 図 16.4-3(4) 引込み管軸方向の最大せん断ひずみ分布(S_s-D1〔H-, V-〕)
 - 図 16.4-3(5) 引込み管軸方向の最大せん断ひずみ分布(S_s-11)
 - 図 16.4-3(6) 引込み管軸方向の最大せん断ひずみ分布(S_s-12)
 - 図 16.4-3(7) 引込み管軸方向の最大せん断ひずみ分布(S_s-13)
 - 図 16.4-3 (8) 引込み管軸方向の最大せん断ひずみ分布 (S_s-14)
 - 図 16.4-3 (9) 引込み管軸方向の最大せん断ひずみ分布 (S_s-21)
 - 図 16.4-3(10) 引込み管軸方向の最大せん断ひずみ分布(S_s-22)
- 図 16.4-3(11) 引込み管軸方向の最大せん断ひずみ分布(S_s-31〔H+, V+〕)
- 図 16.4-3(12) 引込み管軸方向の最大せん断ひずみ分布(S_s-31〔H-, V+〕)

- 図 16.4-4(1) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1[H+, V+])
- 図 16.4-4(2) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1 [H+, V-])
- 図 16.4-4(3) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1〔H-, V+〕)
- 図 16.4-4(4) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-D1 [H-, V-])
 - 図 16.4-4(5) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-11)
 - 図 16.4-4(6) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-12)
 - 図 16.4-4(7) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-13)
 - 図 16.4-4(8) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-14)
 - 図 16.4-4(9) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-21)
 - 図 16.4-4(10) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-22)
- 図 16.4-4(11) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-31〔H+, V+〕)
- 図 16.4-4(12) 引込み管軸直交方向の最大せん断ひずみ分布(S_s-31〔H-, V+〕)

図 16.4-5 (2)	引込み	管軸方向の過剰間隙水圧比(S _s -D1〔H+,V-〕)
図 16.4-5 (3)	引込み	管軸方向の過剰間隙水圧比(S _s -D1〔H-,V+〕)
図 16.4-5 (4)	引込み	管軸方向の過剰間隙水圧比(Ss-D1〔H-,V-〕)
図 16.4-5	5 (5)	引込み管軸方向の過剰間隙水圧比(S _s -11)
⊠ 16.4-5	5 (6)	引込み管軸方向の過剰間隙水圧比(S _s -12)
図 16.4-5	5 (7)	引込み管軸方向の過剰間隙水圧比(S _s -13)
図 16.4-5	5 (8)	引込み管軸方向の過剰間隙水圧比(S _s -14)

図 16.4-5(1) 引込み管軸方向の過剰間隙水圧比(S_s-D1〔H+, V+〕)

図 16.4-5(9) 引込み管軸方向の過剰間隙水圧比(S_s-21)

- 図 16.4-5(11) 引込み管軸方向の過剰間隙水圧比(S_s-31〔H+, V+〕)
- 図 16.4-5(12) 引込み管軸方向の過剰間隙水圧比(S_s-31〔H-, V+〕)

図 16.4-6 (1)	引込み管軸直交方向の過剰間隙水圧比(S	$_{\rm s}$ – D 1	〔Η+,	V+])
--------------	---------------------	------------------	------	------

- 図 16.4-6(2) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H+, V-〕)
- 図 16.4-6(3) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1 [H-, V+])
- 図 16.4-6(4) 引込み管軸直交方向の過剰間隙水圧比(S_s-D1〔H-, V-〕)
 - 図 16.4-6(5) 引込み管軸直交方向の過剰間隙水圧比(S_s-11)
 - 図 16.4-6(6) 引込み管軸直交方向の過剰間隙水圧比(S_s-12)
 - 図 16.4-6(7) 引込み管軸直交方向の過剰間隙水圧比(S_s-13)
 - 図 16.4-6(8) 引込み管軸直交方向の過剰間隙水圧比(S_s-14)
 - 図 16.4-6(9) 引込み管軸直交方向の過剰間隙水圧比(S_s-21)

- 図 16.4-6(11) 引込み管軸直交方向の過剰間隙水圧比(S_s-31〔H+, V+〕)
- 図 16.4-6(12) 引込み管軸直交方向の過剰間隙水圧比(S_s-31〔H-, V+〕)

16.4.2 耐震評価結果

配筋要領図を図 16.4-7 に、断面計算に用いた断面諸元の一覧を表 16.4-1 に示す。

|--|

図 16.4-7 配筋要領図

Ţ
『追』

表 16.4-1(1) 断面諸元一覧表(引込み管軸方向)

	断面積 (単位幅)	A w (cm^2)			
釿補強筋	S s	(m)			
せん	S b	(m)			
	鉄筋径	(mm)			
・下面)	断面積 (単位幅)	A s (cm^2)			
; (内面・	圓隔	(cm)			
主鉄筋	鉄筋径	(mm)			
上面)	断面積 (単位幅)	A s (cm^2)			
·(外面・	劉倡	(cm)			
主鉄筋	鉄筋径 (mm)				
	ぎ ぎ む	内面・ 下面			
	有効 d (外面・ 上面			
ŧ状	رس (m)	内面・ 下面			
断面性	ۍ.ل کېدل	外面・ 上面			
	部材高	ц (ш)			
		с (ш)			
	評 行 第	加加			
部位			防潮壁	地中連読壁 基礎(水平)	地中連読壁 基礎(鉛直)

覧表(引込み管軸直交方向)
断面諸元一
(2)
表 16.4-1

			1			
	断面積 (単位幅)	A w				
所補強筋	s s	(m)				
せん勝	Sb	(m)				
	鉄筋径	(mm)				
・下面)	断面積 (単位幅)	A s $(2m^2)$				
(内面・	劉昌	(cm)				
主鉄筋	鉄筋径	(mm)				
• 上面)	断面積 (単位幅)	A s				
5(外面	間隔 (cm)					
主鉄魚	鉄筋径	(mm)				
	高さ m)	内面・ 下面	=			
	有効i q (r	外面・ ^{ト面} ・				
t 状	(m) (m)	内面・ ^{大面}	=			
断面松	,p ₹r⊄	・ 型 イ	H H			
	部材高 h (m)					
	部材幅 b (m)					
	1 位置					
	部狱亡			防潮壁	地中連読壁 基礎(水平)	地中連読壁 基礎(鉛直)

(1) 構造部材の曲げに対する評価結果

コンクリートの曲げ照査結果を表 16.4-2 に,鉄筋の曲げ照査結果を表 16.4-3 にそれ ぞれ示す。

SA用海水ピット取水塔における許容応力度法による照査を行った結果,評価位置にお いてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力度以下であることを確 認した。なお,発生応力度は各地震動,各部材において最大となる値を示している。

以上のことから, SA用海水ピット取水塔の構造部材の発生応力が許容限界以下である ことを確認した。

「追而」

地電中	合力	部材高	①発生応力度	②短期許容応力度	照查値
地辰时	1业.11日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S - D 1	[H+, V-]				
$S_s - D_1$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _ 2 1	[H+, V+]				
5 _s -51	[H-, V+]				

表 16.4-2(1) コンクリートの曲げ照査結果(引込み管軸方向)

地震時	位相	部材高	①発生応力度	②短期許容応力度	照査値
		(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S - D 1	[H+, V-]				
S_s D1	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
$S_{s} - 13$	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s – 3 1	[H+, V+]				
	[H-, V+]				

表 16.4-2(2) コンクリートの曲げ照査結果(引込み管軸直交方向)

业重吐	合担	部材高	①発生応力度	②短期許容応力度	照査値
地辰时	1业.个日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S D 1	[H+, V-]				
$S_s - D_1$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
S _s -14	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表 16.4-3(1) 鉄筋の曲げ照査結果(引込み管軸方向)

地雪哇	位扣	部材高	①発生応力度	②短期許容応力度	照査値
地辰时	1业.11日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S _ D 1	[H+, V-]				
$S_s - D_1$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
$S_{s} - 14$	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表 16.4-3(2) 鉄筋の曲げ照査結果(引込み管軸直交方向)

(2) 構造部材のせん断に対する評価結果

せん断に対する照査結果を表16.4-4に示す。

SA用海水ピット取水塔における許容応力度法による照査を行った結果,評価位置においてせん断応力度が短期許容応力度以下,又は発生せん断力がコンクリートの許容せん断力(V_{sa})と斜め引張鉄筋の許容せん断力(V_{sa})を合わせた許容せん断力(V_{a})以下であることを確認した。なお,発生応力度及び発生断面力は各地震動,各部材において最大となる値を示している。

以上のことから, SA用海水ピット取水塔の構造部材の発生応力が許容限界以下である ことを確認した。

地電時	伝相	部材高	①せん断応力度	②短期許容応力度	照査値
地辰时	1立1日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S D 1	[H+, V-]				
$S_s - DI$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
S _s -14	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s – 3 1	[H+, V+]				
	[H-, V+]				

表16.4-4(1) せん断照査結果(引込み管軸方向)

生まれ	合相	部材高	①せん断応力度	②短期許容応力度	照査値
地辰时	1业.1日	(m)	(N/mm^2)	(N/mm^2)	1/2
	[H+, V+]				
S _ D 1	[H+, V−]				
$S_s - D_1$	[H-, V+]				
	[H-, V-]				
S _s -11	[H+, V+]				
$S_{s} - 12$	[H+, V+]				
S _s -13	[H+, V+]				
S _s -14	[H+, V+]				
$S_{s} - 21$	[H+, V+]				
S _s -22	[H+, V+]				
S _s -31	[H+, V+]				
	[H-, V+]				

表 16.4-4(2) せん断照査結果(引込み管軸直交方向)

(3) 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能評価結果を表 16.4-5 に,接地圧分布図を図 16.4-8~図 16.4-9 に示す。

SA用海水ピット取水塔の接地圧はS_s−D1 [H+, V+] (●●断面方向) で●● kN/m^2 であり,基礎地盤の極限支持力●● kN/m^2 以下である。

以上のことから, SA用海水ピット取水塔の基礎地盤は, 基準地震動 S_sに対し, 支持 性能を有する。

表 16.4-5 基礎地盤の支持性能評価結果

「追而」

⊠ 16.4−8 (2)	引込み	管軸方向の接地圧分布図(S _s -D1〔H+,V-〕)
図 16.4-8 (3)	引込み	管軸方向の接地圧分布図(S _s -D1〔H-,V+〕)
図 16.4-8 (4)	引込み	管軸方向の接地圧分布図(S _s -D1〔H-,V-〕)
図 16.4-8	8 (5)	引込み管軸方向の接地圧分布図(S _s -11)
図 16.4-8	8 (6)	引込み管軸方向の接地圧分布図(S _s -12)

図 16.4-8(1) 引込み管軸方向の接地圧分布図(S_s-D1〔H+, V+〕)

- 図 16.4-8(7) 引込み管軸方向の接地圧分布図(S_s-13)
- 図 16.4-8(8) 引込み管軸方向の接地圧分布図(S_s-14)
- 図 16.4-8 (9) 引込み管軸方向の接地圧分布図 (S_s-21)

- 図 16.4-8(11) 引込み管軸方向の接地圧分布図(S_s-31〔H+, V+〕)
- 図 16.4-8(12) 引込み管軸方向の接地圧分布図(S_s-31〔H-, V+〕)

- 図 16.4-9(1) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H+, V+〕)
- 図 16.4-9(2) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H+, V-〕)
- 図 16.4-9(3) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H-, V+〕)
- 図 16.4-9(4) 引込み管軸直交方向の接地圧分布図(S_s-D1〔H-, V-〕)
 - 図 16.4-9(5) 引込み管軸直交方向の接地圧分布図(S_s-11)
 - 図 16.4-9(6) 引込み管軸直交方向の接地圧分布図(S_s-12)
 - 図 16.4-9(7) 引込み管軸直交方向の接地圧分布図(S_s-13)
 - 図 16.4-9(8) 引込み管軸直交方向の接地圧分布図(S_s-14)
 - 図 16.4-9(9) 引込み管軸直交方向の接地圧分布図(S_s-21)
 - 図 16.4-9(10) 引込み管軸直交方向の接地圧分布図(S_s-22)

図 16.4-9(11) 引込み管軸直交方向の接地圧分布図(S_s-31〔H+, V+〕)

16.5 まとめ

SA用海水ピット取水塔について、基準地震動S。による地震力に対し、構造物の曲げ及び せん断並びに接地圧が許容限界以下であることを確認した。

以上のことから、SA用海水ピット取水塔は、基準地震動S。による地震力に対して、要求 機能を維持できる。

17. 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価

目次

17.1 評価方法
17.2 評価条件・・・・・2
17.2.1 適用基準・・・・・・2
17.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
17.2.3 評価対象断面の方向・・・・・ 5
17.2.4 評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
17.2.5 使用材料及び材料定数・・・・・ 10
17.2.6 地下水位
17.2.7 地震応答解析手法・・・・・ 13
17.2.8 解析モデルの設定・・・・・・ 14
17.2.9 減衰定数 · · · · · · · · · · · · · · · · · · ·
17.2.10 荷重の組合せ・・・・・・ 22
17.2.11 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 24
17.3 評価内容 · · · · · · · · · · · · · · · · · · ·
17.3.1 入力地震動の設定・・・・・・ 26
17.3.2 許容限界の設定・・・・・・ 55
17.4 評価結果・・・・・・
17.4.1 地震応答解析結果・・・・・ 59
17.4.2 耐震評価結果・・・・・ 59
17.5 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・60

17.1 評価方法

緊急時対策所用発電機燃料油貯蔵タンク基礎は,緊急時対策所用発電機燃料油貯蔵タンク を間接支持する鉄筋コンクリート造の地中構造物であり,内空幅9m(タンク軸方向)× 約5m(タンク横断方向),内空高さ約6mである。また,杭を介して十分な支持性能を有 する岩盤に設置する。緊急時対策所用発電機燃料油貯蔵タンク基礎について基準地震動S。 による耐震安全性評価として,構造部材の曲げ,せん断評価及び地盤の支持性能評価を実施 する。

構造部材の曲げ, せん断評価については地震応答解析に基づく発生応力又は発生せん断力 が許容限界以下であることを確認する。基礎地盤の支持性能評価については, 地震応答解析 に基づく接地圧が許容限界以下であることを確認する。

17.2 評価条件

17.2.1 適用基準

緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震評価に当たっては、原子力発電所耐 震設計技術指針JEAG4601-1987((社)日本電気協会),コンクリート標準示方 書[構造性能照査編]((社)土木学会,2002年制定)を適応するが、鉄筋コンクリー トの曲げ及びせん断の許容限界については、道路橋示方書(I共通編・IV下部構造編)・ 同解説((社)日本道路協会,平成24年3月),鋼管杭は道路橋示方書(I共通編・IV 下部構造編)・同解説((社)日本道路協会,平成14年3月)を適応する。 表17.2-1に適用する規格,基準類を示す。

項目	適用する規格,基準類	備考
使用材料及び材料定数	 ・コンクリート標準示方書 [構造 性能照査編] (2002 年制定) 	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造 性能照査編](2002 年制定)	 ・永久荷重+偶発荷重+従たる 変動荷重の適切な組合せを検 討
許容限界	 ・コンクリート標準示方書 [構造 性能照査編](2002年制定) ・道路橋示方書(I共通編・IV下 部構造編)・同解説(平成 24 年3月) ・道路橋示方書(I共通編・IV下 部構造編)・同解説(平成 14 年3月) ・JEAG4601-1987 	 ・曲げに対する照査は、発生応 力が、許容応力以下であるこ とを確認 ・せん断に対する照査は、発生 応力又は発生せん断力が、許 容限界以下であることを確認
地震応答解析	• JEAG4601-1987	 ・有限要素法による2次元モデ ルを用いた時刻歴非線形解析

表 17.2-1 適用する規格,基準類

17.2.2 耐震安全性評価フロー

図 17.2-1 に緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価フローを示 す。

図 17.2-1 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価フロー

17.2.3 評価対象断面の方向

緊急時対策所用発電機燃料油貯蔵タンク基礎の位置を図 17.2-2 に示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎は,内空幅9m(タンク軸方向)×約5m (タンク横断方向),内空高さ約6mの鉄筋コンクリート造である。緊急時対策所用発電 機燃料油貯蔵タンク基礎の縦断方向(東西方向)は加振方向と平行に配置される側壁を耐 震設計上見込むことができることから,強軸断面方向となる。一方,横断断面方向(南北 方向)は,タンクを格納するため側壁の離隔が大きく耐震設計上見込めないことから,弱 軸断面方向となる。

以上のことから,緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震評価では,構造の 安定性に支配的な南北方向を評価対象断面の方向とする。

図 17.2-2 緊急時対策所用発電機燃料油貯蔵タンク基礎の位置図(全体平面図)

17.2.4 評価対象断面の選定

図 17.2-3 及び図 17.2-4 に緊急時対策所用発電機燃料油貯蔵タンク基礎の断面位置図 及び断面図を示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎は、内空幅9m(タンク軸方向)×約5m(タンク横断方向),内空高さ約6mの鉄筋コンクリート造である。

評価対象断面は、「1.4.17 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面選定の 考え方」で記載したとおり、第四紀層の液状化検討層の厚さが比較的厚く、構造物の弱 軸断面方向である①-①断面を代表として耐震評価を実施する。なお、②-②断面につ いても、設備の床応答算出の観点から地震応答解析を実施する。

図 17.2-3 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面位置図

(①-①断面)

緊急時対策所用発電機燃料油貯蔵タンク基礎

図 17.2-4 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面図

17.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は,適用基準類を基に設定する。構造物の使用材料を表 17.2-2に、材料物性値を表 17.2-3に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を 用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切にモデル化す る。地盤の物性値を表 17.2-4 に示す。

表 17.2-2 使用材料

諸元						
コンクリート	設計基準強度 40 N/mm ²					
鉄筋	SD490					
鋼管杭	SKK490					

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比	
鉄筋コンクリート	24.5	3. 1×10^4	0.2	
鋼管杭	77	2. 0×10^{5}	0.3	

表 17.2-3 材料物性值

		原地盤										
パラメータ				埋戻土	埋戻土 第四系 (液状化検討対象層)							豊浦標準砂
				f1	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	g/cm^3	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
特性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	ν _{CD}	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特性	基準初期せん断剛性 ()は地下水位以浅	$G_{\rm ma}$	kN/m^2	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
	最大履歷減衰率	h_{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0. 287
強度	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0
特性	内部摩擦角	ϕ_{CD}	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	—	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28
液	液状化パラメータ	S_1	—	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
状化	液状化パラメータ	W_1	—	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
化特	液状化パラメータ	P_1	—	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
性	液状化パラメータ	P_2	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	_	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44

表 17.2-4(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 17.2-4(2) 地盤の解析用物性値一覧(非液状化層)

パラメータ				原地盤				
					第四系(非	液状化層)		新第三系
				Ac	D2c-3	1m	D1c-1	Km
物理	密度 () は地下水位以浅	ρ	${\rm g/cm^2}$	1.65	1.77	1.47 (1.43)	1.77	1.72-1.03×10 ⁻⁴ · z
将性	間隙比	е	—	1.59	1.09	2.8	1.09	1.16
変形特性	ポアソン比	$\nu_{\rm CD}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z
	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	480	696	249 (223)	696	動的亦形性性に甘べき
	基準初期せん断剛性 ()は地下水位以浅	G _{ma}	kN/m^2	121829	285223	38926 (35783)	285223	z (標高) 毎に物性値を 設定
	最大履歷減衰率	h _{max}	-	0.200	0.186	0.151	0.186	
強 度 特 性	粘着力	C _{CD}	$\rm N/mm^2$	0.025	0.026	0.042	0.026	0.358-0.00603 · z
	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	35.6	23.2+0.0990•z

z:標高 (m)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
承旦	TP (m)	適用深度 TP(m)		ρ		CCD	$\phi_{\rm CD}$	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
ш <i>1</i> 7	Z			(g/cm_3)	vcb	(kN/m²)	(°)	(m/s)	(kN/m²)	(kN/m^2)	(kN/m^2)	mG, mK	hmax(-)	νa	(m/s)	
1	10	9.5 ~	10.5	1.72	0.16	298	24. 2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5 ~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
3	8	7.5 ~	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
4	7	6.5 ~	7.5	1.72	0.16	316	23. 9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5 ~	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5 ~	5.5	1.72	0.16	328	23. 7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5 ~	3.5	1.72	0.16	340	23. 5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5 ~	1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5 ~	0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23. 1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5 ~	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5 ~	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5 \sim	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5 ~	-6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5 ~	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.5 ~	-8.5	1.72	0.16	412	22. 3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1,656,000
21	-10	-11 ~	-9.5	1.72	0.16	418	22. 2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1,659,000
22	-12	-13 ~	-11	1.72	0.16	430	22.0	442	336, 026	382, 147	504	0.0	0.110	0.462	1,663	1,663,000
23	-14	-15 ~	-13	1.72	0.16	442	21.8	444	339,074	385, 614	504	0.0	0.111	0.462	1,671	1,671,000
24	-16	-17 ~	-15	1.72	0.16	454	21.6	445	340, 603	387, 352	504	0.0	0.111	0.461	1,654	1,654,000
25	-18	-19 ~	-17	1.72	0.16	467	21.4	447	343,671	390, 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21 ~	-19	1.72	0.16	479	21. 2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23 ~	-21	1.72	0.15	491	21.0	450	348, 300	381,471	498	0.0	0.112	0.461	1,673	1,673,000
28	-24	-25 ~	-23	1.72	0.15	503	20.8	452	351,403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-20	-21 .~	-23	1.72	0.15	515	20.0	400	352,959	200,014	490	0.0	0.113	0.400	1,004	1,004,000
30	-20	-29	-21	1.72	0.15	521	20.4	400	350, 083	369, 990	490	0.0	0.114	0.400	1,072	1,672,000
20	-30	-31 ~~	-29	1.72	0.15	559	20.2	400	357,050	391,712	490	0.0	0.115	0.400	1,075	1,675,000
32	-32	-35 ~~	-31	1.72	0.15	100	20.0	450	269, 271	206 992	490	0.0	0.115	0.400	1,003	1,667,000
34	-36	-37 ~	-35	1.72	0.15	575	19.0	405	365, 536	400 349	490	0.0	0.115	0.459	1,007	1,675,000
34	-38	-30 ~	-37	1.72	0.15	587	19.0	401	367 124	400, 349	490	0.0	0.115	0.459	1,073	1,678,000
36	-40	-41 ~	-30	1.72	0.15	500	19.4	402	370, 309	402,000	498	0.0	0.116	0.459	1,078	1,685,000
37	-42	-43 ~	-41	1.72	0.15	611	19.0	465	371,907	407, 327	498	0.0	0.117	0.459	1,689	1,689,000
38	-44	-45 ~	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0. 458	1,678	1, 678, 000
39	-46	-47 ~	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0. 458	1, 681	1, 681, 000
40	-48	-49 ~	-47	1.72	0.15	647	18.4	470	379, 948	416, 134	498	0.0	0.118	0. 458	1,688	1, 688, 000
41	-50	-51 ~	-49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0.458	1,696	1,696,000
42	-52	-53 ~	-51	1.73	0.15	672	18.1	473	387,051	423, 913	498	0.0	0.118	0.458	1,699	1,699,000
43	-54	$-55 \sim$	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1,688,000
44	-56	$-57 \sim$	-55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692	1,692,000
45	-58	$-59 \sim$	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699	1,699,000
46	-60	$-61 \sim$	-59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1,702,000
47	-62	$-63 \sim$	-61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1,709,000
48	-64	$-65 \sim$	-63	1.73	0.14	744	16.9	482	401,921	424, 250	492	0.0	0.120	0.456	1,695	1,695,000
49	-66	$-67 \sim$	-65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702	1,702,000
50	-68	$-69 \sim$	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1,705,000
51	-70	-71 ~	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
52	-72	-73 ~	-71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1,719	1, 719, 000
53	-74	-75 ~	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-76	-77 ~	-75	1.73	0.14	816	15.7	492	418, 771	442, 036	492	0.0	0.122	0.455	1,712	1, 712, 000
55	-78	-79 ~	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81 ~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	$-85 \sim$	-81	1.73	0.14	852	15. 1	496	425, 608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	$-90 \sim$	-85	1.73	0.14	889	14. 5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95 \sim	-90	1.73	0.14	913	14. 1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101 \sim	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	$-108 \sim$	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733	1,733,000
62	-112	$-115 \sim$	-108	1.73	0.13	1, 033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1,737	1, 737, 000
63	-118	$-122 \sim$	-115	1.73	0.13	1,070	11.5	524	475, 016	483, 575	486	0.0	0.127	0.451	1,754	1, 754, 000
64	-126	$-130 \sim$	-122	1 73	0.13	1, 118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1.758	1 758 000

表 17.2-4(3) 地盤の解析用物性値一覧(新第三系 Km 層)
17.2.6 地下水位

地下水位は地表面に設定する。

17.2.7 地震応答解析手法

緊急時対策所用発電機燃料油貯蔵タンク基礎の地震応答解析は、地盤と構造物の相互作 用を考慮できる2次元有限要素法を用いて、基準地震動に基づき設定した水平地震動と鉛 直地震動の同時加振による逐次時間積分の時刻歴応答解析にて行う。部材については、線 形はり要素を用いることとする。また、地盤については、有効応力の変化に応じた地震時 挙動を適切に考慮できるモデル化とする。地震応答解析については、解析コード「FLIP ver. 7.3.0_2」を使用する。なお、解析コードの検証及び妥当性確認等の概要について は、付録24「計算機プログラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 17.2-5 に示す。

図 17.2-5 地震応答解析手法の選定フロー

H-D モデルの選定理由は次の通りである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力 ~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を 適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じた上記の2つの特徴を適切に表現できる 双曲線モデル(H-Dモデル)を選定する。

- 17.2.8 解析モデルの設定
 - (1) 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を適応し、図17.2-6に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上確 保する。

緊急時対策所用発電機燃料油貯蔵タンク基礎周辺の地質断面図を図17.2-7に示す。 なお,解析モデルの境界条件は,側方及び底面ともに粘性境界とする。

要素分割については、波動をなめらかに表現するために、対象とする波長に対して5または4分割以上になるように要素高さを設定している。

地震応答解析モデルを図 17.2-8 に示す。

図 17.2-6 モデル範囲の考え方

図 17.2-7 (1) 地質断面図 (①-①断面)

緊急時対策所用発電機燃料油貯蔵タンク基礎

(2) 地質断面図(2-2)断面) 図 17.2-7

図 17.2-8(1) 緊急時対策所用発電機燃料油貯蔵タンク基礎の地震応答解析モデル (①-①断面)

図 17.2-8(2) 緊急時対策所用発電機燃料油貯蔵タンク基礎の地震応答解析モデル (2-2)断面) (2) ジョイント要素の設定

地盤と構造物の境界部にジョイント要素を設けることにより,地盤と構造物の剥離・す べりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向で は、常時状態以上の引張が生じた場合、剛性及び応力をゼロとし、剥離を考慮する。接線 方向では、地盤と構造物のせん断抵抗力以上のせん断応力が発生した場合、剛性をゼロと し、すべりを考慮する。せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。c、 ϕ は周辺地盤の c、 ϕ とする。(表 17.2-5 参照)

$$\tau_{\rm f} = c + \sigma' \tan \phi$$

ここで,

τ_f : せん断強度

- c : 粘着力
- φ : 内部摩擦角

周辺	!の状況	粘着力 c (N/mm ²)	内部摩擦角(度)	備考
	du 層	0	37.3	_
第四紀層	地盤改良体	$c = q_u/2$	0	—
	D2c-3 層	0.026	35.6	—
	D2s-3 層	0.01	35.8	—
	D2g-3 層	0	44.4	—
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—

表 17.2-5 周辺地盤及び隣接構造物との境界に用いる強度特性

z : 標高 (m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 17.2-6 のとお り設定する。図 17.2-9 にジョイント要素設定の考え方を示す。

表 17.2-6 ジョイント要素のばね定数

· · · · · · · · · · · · · · · · · · ·		
	せん断剛性 k _s	圧縮剛性 k _n
	(kN/m^3)	(kN/m^3)
側方及び底面	$1.0 imes 10^{6}$	1.0×10^{6}

図 17.2-9 ジョイント要素の考え方

(3) 材料特性の設定

地震応答解析における鉄筋コンクリート部材は,線形のはり要素としてモデル化する。 地盤は,マルチスプリング要素及び間隙水要素にてモデル化し,地震時の有効応力の変化 に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

17.2.9 減衰定数

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお、Rayleigh 減衰を $\alpha = 0$ となる剛性比例型減衰とする。

係数α, βは以下のように求めている。

$$\alpha = 0$$

$$\beta = \frac{h}{\pi f}$$

ここで、
f : 固有値解析により求められた1次固有振動数
h : 各材料の減衰定数

地盤の減衰定数は1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配 的となる。そのため、解析上の安定のためになるべく小さい値として1%を採用してい る。)また、線形材料としてモデル化する鋼材の減衰定数は3%(道路橋示方書(V耐震 設計編)同解説(平成24年3月))、コンクリートの減衰定数は5%(JEAG4601 -1987)とする。

図 17.2-10 に Rayleigh 減衰の設定フローを、表 17.2-8 に固有値解析結果を示す。

図 17.2-10 Rayleigh 減衰の設定フロー

表 17.2-8 固有值解析結果(追而)

17.2.10 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽 出し,それぞれを組み合せて設定する。地震荷重には,地震時土圧,動水圧,機器・配 管からの反力による荷重が含まれるものとする。

なお,緊急時対策所用発電機燃料油貯蔵タンク基礎は,地盤内に埋設されている構造 物であることから運転時の異常な過渡変化時の状態及び設計基準事故時の状態の影響を 受けないと考えられるため,当該状態についての組合せは考慮しないものとする。また 重大事故等対処時においても,地盤内で設計基準事故時の条件を上回るような事象は発 生しないため,設計基準事故時の条件を上回る荷重はない。

荷重の組合せを表 17.2-9 に示す。地震時に緊急時対策所用発電機燃料油貯蔵タンク 基礎に作用する機器・配管からの反力については、機器・配管を、解析モデルに付加質 量として与えることで考慮する。

植	[別]	荷重		算定方法		
		躯体自重	0	 ・設計図書に基づいて、対象構造物の体積に材料の密度を乗じ 		
	冶吐			て設定		
	吊 · · · · · · · · · · · · · · · · · · ·	機器・配管自重	0	・機器・配管の重さに基づいて設定		
	· 一 / · · · · · · · · · · · · · · · · · ·			・内包される砂の荷重を考慮		
永久	彻里	土被り荷重	0	・常時応力解析により設定		
荷重		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない		
		静止土圧	0	 ・常時応力解析により設定 		
				・地下水位に応じた静水圧として設定		
	外水庄		0	・地下水の密度を考慮		
		内水圧	_	 ・水を保有しない設備であることから、考慮しない 		
変動荷重		雪荷重	0	・雪荷重を考慮		
		▲ 風荷重 −		・地中に埋設された構造物であるため、考慮しない		
偶発荷重 (地震荷重)		水平地震動 〇		・基準地震動S。による水平・鉛直同時加振		
		鉛直地震動 〇		・躯体の慣性力,動土圧を考慮		
		動水圧(・水位条件、密度は、永久荷重と同様		

表 17.2-9 荷重の組合せ

(1) 機器・配管荷重

図 17.2-10 に①-①断面における機器・配管荷重図を示す。

機器・配管荷重は解析の単位奥行き(1 m)あたりの付加質量として考慮する。緊急時対策 所用発電機燃料油貯蔵タンクの内空には砂が充填されているため、内空容積から緊急時対 策所用発電機燃料油貯蔵タンクの容積を除いた部分をすべて砂(比重1.7)として考慮す る。

図 17.2-10 機器·配管荷重図

(2) 外水圧

地下水位は地表面として設定する。設定の際は、地下水の密度として、1.00 g/cm³を考慮する。

(3) 雪荷重

雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施行細則 第 16条の4」に従って設定する。積雪の厚さ1 cm あたりの荷重を20 N/m²/cm として、積雪 量は30 cm としていることから積雪荷重は600 N/m²であるが、地震時短期荷重として積雪 荷重の0.35 倍である0.21 kN/m²を考慮する。

積雪荷重は構造物上面に付加質量として考慮する。

図 17.2-11 雪荷重図 17-23

- 17.2.11 地震応答解析の検討ケース
 - (1) 耐震設計における検討ケース
 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震設計における検討ケースを表 17.2-10 に示す。

検討ケース			 ① 原地盤に基 づく液状化 強度状化 強けた解析 ケース(基本 ケース) 	② 地盤物性の ばらつ ま慮(+1 σ)した解 析ケース	③ 地盤物性の ばらつき 考慮(-1 σ)した解 析ケース	④地盤を放けるか後か後からしてをががががからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからからか	 ⑤ 席地盤まで、 第 第 に次 化の 化の た た た チ テ ース 	 ⑥ 地盤らで、 地盤らで、 (+1)ので、 (+		
液状化強度特性 の設定		原地盤に基づく液状化強度特性(標準偏差を考慮)	原 地盤に 基 づ く 液 状 化 強 度 特 性 (標 準 偏 差 を 考 慮)	原地盤に基づく液状化強度特性(標準偏差を考慮)	敷地に存在しない豊しないしないし、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、し、<td>液状化パラ メータを非 適用</td><td>液状化パラ メータを非 適用</td>	液状化パラ メータを非 適用	液状化パラ メータを非 適用			
民	S _s -D1	$(++) \\ (+-) \\ (-+) \\ () \\ () \\ (+) \\$	1 1 1 1							
震波(位	$ \frac{S_{s} - 1 1}{S_{s} - 1 2} \\ \frac{S_{s} - 1 2}{S_{s} - 1 3} $	(++) (++) (++)	1 1 1	1	1	1	1	1		
相)	$S_{s} - 1 \overline{4}$ $S_{s} - 2 \overline{1}$ $S_{s} - 2 \overline{2}$	(++) (++) (++)	1 1 1	 ①の検 る余裕 	①の検討において,最も厳しい(許容限界に対す る余裕が最も小さい)地震動を用いて実施					
	S₅−31 計	(++) (-+)	1 1 12	1	1	1	1	1		

表 17.2-10 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震設計における検討ケース

(2)機器・配管に対する加速度応答抽出のための検討ケース機器・配管に対する加速度応答の抽出における検討ケースを表 17.2-11 に示す。

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤原地盤において非液状化の条件を仮定した解析ケース	 ⑥ 地盤物性のばらつき を考慮(+1σ)し て非液状化の条件を 仮定した解析ケース
液状化強度特性 の設定		寺性	敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
		(++)		1	
	S _s -D1	(+-)		1	
		(-+)	1	1	1
		()		1	
地	$S_s - 11$	(++)	⑤において, 上載され	1	⑤において, 上載され
震	$S_s - 12$	(++)	る機器・配管系の固有	1	る機器・配管系の固有
反(上	$S_{s} - 13$	(++)	振動数帯で加速度応	1	振動数帯で加速度応
紅相	$S_s - 14$	(++)	答が最も大きくなる地	1	答が最も大きくなる地
Ξ.)	$S_s - 21$	(++)	震動を用いて実施す	1	震動を用いて実施す
	$S_s - 22$	(++)	る。	1	る。
	S _ 21	(++)		1	
	$S_s = 51$	(-+)		1	
	計		1	12	1

表 17.2-11 機器・配管に対する加速度応答抽出のための検討ケース

- 17.3 評価内容
- 17.3.1 入力地震動の設定

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動 S_sを1次 元波動論によって,地震応答解析モデルの底面位置で評価したものを用いる。

図 17.3-1 に入力地震動算定の概念図を,図 17.3-2 に入力地震動の加速度時刻歴波形 と加速度応答スペクトルを示す。入力地震動の算定には解析コード「k-SHAKE Ver. 6.2.0」を使用する。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認 する。断層モデル波である $S_s - 11 \sim S_s - 22$ については、特定の方向性を有するこ とから、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的にはNS方向及び EW 方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わせること で方位補正した地震動を設定する。

図 17.3-1 入力地震動算定の概念図

図 17.3-2(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

図 17.3-2(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-D1)

図 17.3-2(3) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

図 17.3-2(4) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

図 17.3-2(5) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

図 17.3-2(6) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

図 17.3-2(7) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

図 17.3-2(8) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

図 17.3-2(9) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

図 17.3-2(10) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-12)

図 17.3-2(11) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-13)

図 17.3-2(12) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

図 17.3-2(13) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-13)

図 17.3-2 (14) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-13)

図 17.3-2(15) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(水平方向: S_s-14)

図 17.3-2(16) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

図 17.3-2(17) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-14)

図 17.3-2(18) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-14)

図 17.3-2(19) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

図 17.3-2 (20) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)

図 17.3-2(21) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-21)

図 17.3-2(22) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル

(鉛直方向: S_s-21)

図 17.3-2(23) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向:S_s-22)

図 17.3-2(24) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)

図 17.3-2(25) 東西方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)

図 17.3-2(26) 南北方向断面の入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-22)

図 17.3-2(27) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

645

図 17.3-2(28) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-31)

- 17.3.2 許容限界の設定
 - (1) 許容応力度による許容限界

緊急時対策所用発電機燃料油貯蔵タンク基礎の構造部材は,許容応力度による照査を行 う。評価位置においてコンクリートの圧縮応力度,鉄筋の引張応力度,コンクリートのせ ん断応力度が許容応力度以下であることを確認する。

許容応力度については、「コンクリート標準示方書[構造性能照査編]((社)土木学 会、2002年制定)」、「道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)日本 道路協会、平成14年3月)」に基づき、コンクリート及び鉄筋の許容応力度に対して割増 係数1.5を考慮し、表17.3-1のとおり設定する。

評価項目			短期許容応力度 (N/mm ²)
コンクリート*1	許容曲げ圧縮応力度 σ _{ca}		21.0
(f' $_{ck}$ =40 N/mm ²)	許容せん断応力度 τ _{al}		0.825^{*4}
鉄筋(SD490)*2	許容引張応力度 σ _{sa} (曲げ)		435
	許容引張応力度 σ _{sa} (せん断)		300
鋼管杭(SKK490)* ³	母材部 溶接部	引張	277.5
		圧縮	277.5
		せん断	157.5

表 17.3-1 許容応力度

注記 *1:コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)

*2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)

*3:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成14年3月)

*4:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会、2002年制定)」を適用し、次式により求められる許容せん 断力

(V_a) を許容限界とする。

 $V_{a} = V_{ca} + V_{sa}$ ここで、 $V_{ca} : = 1 / 2 \cdot \tau_{a1} \cdot b_{w} \cdot j \cdot d$ $V_{sa} : 斜め引張鉄筋の許容せん断力$ $V_{sa} = A_{w} \cdot \sigma_{sa2} \cdot j \cdot d / s$ $\tau_{a1} : 斜め引張鉄筋を考慮しない場合の許容せん断応力度$ $b_{w} : 有効幅$

- j : 1/1.15
- d : 有効高さ
- A_w:斜め引張鉄筋断面積
- σ_{sa2}:鉄筋の許容引張応力度
- s : 斜め引張鉄筋間隔

表17.3-2 斜め引張鉄筋を配置する部材のせん断力に対する許容限界(追而)

(2) 基礎地盤の支持性能に対する許容限界

基礎地盤の支持性能については、構造物の接地圧が基礎地盤の極限支持力に基づく許容 限界以下であることを確認する。

緊急時対策所用発電機燃料油貯蔵タンク基礎の基礎地盤に作用する接地圧に対する許容 限界は、緊急時対策所用発電機燃料油貯蔵タンク基礎の基礎地盤を構成する新第三系 Km 層 の極限支持力度を用いる。極限支持力度については、「道路橋示方書(I共通編・IV下部 構造編)・同解説((社)日本道路協会、平成 14 年 3 月)」のケーソン基礎の設計に基づ き、以下の通り設定する。

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

ここで,

- q_d:基礎底面地盤の極限支持力度
- c : 基礎底面より下にある地盤の粘着力
- γ₁:基礎底面より下にある地盤の単位体積重量。ただし、地下水位以下では 水中単位体積重量とする
- γ₂ :基礎底面より上にある周辺地盤の単位体積重量。ただし、地下水位以下 では水中単位体積重量とする
- α, β : 図 17.3-3 に示す基礎底面の形状係数
- D :基礎幅
- D_f : 基礎の有効値入深さ

N_c, N_q, N_y:図 17.3-4 に示す支持力係数

 基礎底面の形状
 帯
 状
 正方形,円形
 長方形,小判形

 α
 1.0
 1.3
 1+0.3 B/D

 β
 1.0
 0.6
 1-0.4 B/D

表-解 11.4.1 基礎底面の形状係数

D: ケーソン前面幅(m), B: ケーソン側面幅(m)

ただし, B/D>1の場合, B/D=1とする。

図 17.3-3 基礎底面の形状係数

図 17.3-4 支持力係数を求めるグラフ

緊急時対策所用発電機燃料油貯蔵タンク基礎における許容限界を表 17.3-3 に示す。

表17.3-3 基礎地盤の支持力に対する許容限界(追而)

17.4 評価結果

17.4.1 地震応答解析結果

緊急時対策所用発電機燃料油貯蔵タンク基礎の基準地震動S。による断面力(曲げモー メント,軸力,せん断力)を図17.4-1及に示す。本図は構造部材の曲げ,せん断照査結 果が最も厳しくなる部材の評価時刻における断面力を示したものである。

また,最大せん断ひずみ分布図を図17.4-2に示し,過剰間隙水圧比の分布図を図17.4-3に示す。これらの図は,各要素に発生したせん断ひずみ及び過剰間隙水圧比の全時刻における最大値の分布を示したものである。

- 17.4.2 耐震評価結果
 - (1) 構造部材の曲げに対する評価結果

表 17.4-1 及び表 17.4-2 に曲げに対する照査結果を示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎における許容応力度法による照査を行った 結果,評価位置においてコンクリートの圧縮応力度と鉄筋の引張応力度が短期許容応力 度以下であることを確認した。なお,発生応力は各地震動,各部材において最大となる 値を示している。

以上より,緊急時対策所用発電機燃料油貯蔵タンク基礎の構造部材の発生応力は,許容 限界以下であることを確認した。

概略配筋図を図 17.4-4に、断面計算に用いた断面諸元の一覧を表 17.4-3 に示す。

(2) 構造部材のせん断に対する評価結果

表17.4-4にせん断に対する照査結果を示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎における許容応力度法による照査を行った 結果,評価位置においてせん断応力度が許容せん断応力度以下又は発生せん断力がコンク リートの許容せん断力(V_{sa})と,斜め引張鉄筋の許容せん断力(V_{sa})を合わせた許 容せん断力(V_{a})以下であることを確認した。なお,発生応力は各地震動,各部材にお いて最大となる値を示している。

以上より,緊急時対策所用発電機燃料油貯蔵タンク基礎の構造部材の発生応力は,許容 限界以下であることを確認した。

図 17.4-5 に概略配筋図を,表 17.4-4 に断面計算に用いた断面諸元の一覧を示す。

(3) 基礎地盤の支持性能に対する評価結果

表 17.4-6に基礎地盤の支持性能評価結果を、図 17.4-5に接地圧分布図を示す。

緊急時対策所用発電機燃料油貯蔵タンク基礎の最大接地圧はS_s-D1 〔H+, V+〕 で〇〇 kN/m²であり,基礎地盤の極限支持力度△△ kN/m²以下である。

以上のことから,緊急時対策所用発電機燃料油貯蔵タンク基礎の基礎地盤は,基準地震動 S。に対し,支持性能を有する。

17.5 まとめ

