本資料のうち,	枠囲みの内容は営業秘密又
は防護上の観点	から公開できません。

東海第二発電所	工事計画審査資料
資料番号	補足-60-1 改28
提出年月日	平成 30 年 4 月 19 日

東海第二発電所

工事計画に係る説明資料

(V-1-1-2-2 津波への配慮に関する説明書)

平成 30 年 4 月

日本原子力発電株式会社

改定履歴

改定	改定日 (提出年月日)	改定内容
改 0	H30. 2. 5	 ・新規制定 ・「6.1.3 止水機構に関する補足説明」を新規作成し、追加
改1	H30. 2. 7	・「1.1 潮位観測記録の考え方について」及び「1.3 港湾内の局所的 な海面の励起について」を新規作成し,追加
改2	H30. 2. 8	 ・改0の「6.1.3 止水機構に関する補足説明」を改定
改3	НЗО. 2. 9	・改1に、「1.6 SA用海水ピットの構造を踏まえた影響の有無の検 討」を新規作成し、追加(「1.1 潮位観測記録の考え方について」 及び「1.3 港湾内の局所的な海面の励起について」は、変更なし)
改4	H30. 2. 13	 ・改3の内,「1.1 潮位観測記録の考え方について」及び「1.3 港湾内の局所的な海面の励起について」を改定(「1.6 SA用海水ピットの構造を踏まえた影響の有無の検討」は、変更なし)
改 5	H30. 2. 13	・「5.11 浸水防護施設の設計における評価対象断面の選定について」 及び「5.17 強度計算における津波時及び重畳時の荷重作用状況に ついて」を新規作成し,追加
改 6	H30. 2. 15	・「5.7 自然現象を考慮する浸水防護施設の選定について」及び「5.19 津波荷重の算出における高潮の考慮について」を新規作成し,追加
改 7	H30. 2. 19	・改6に、「5.1 地震と津波の組合せで考慮する荷重について」を新 規作成し、追加(「5.7 自然現象を考慮する浸水防護施設の選定に ついて」及び「5.19 津波荷重の算出における高潮の考慮について」 は、変更なし)
改 8	H30. 2. 19	・「5.9 浸水防護施設の評価に係る地盤物性値及び地質構造につい て」及び「5.14 防潮堤止水ジョイント部材及び鋼製防護壁止水シー ルについて」を新規作成し,追加
改 9	H30. 2. 22	・改8の「5.9 浸水防護施設の評価に係る地盤物性値及び地質構造 について」を改定(「5.14 防潮堤止水ジョイント部材及び鋼製防護 壁止水シールについて」は、変更なし)
改 10	H30. 2. 23	 ・改2の「6.1.3 止水機構に関する補足説明」を改定
改11	H30. 2. 27	・「4.1 設計に用いる遡上波の流速について」及び「5.4 津波波力の 選定に用いた規格・基準類の適用性について」を新規作成し,追加
改 12	НЗО. З. 1	 ・「1.2 遡上・浸水域の評価の考え方について」、「1.4 津波シミュレーションにおける解析モデルについて」、「4.2 漂流物による影響確認について」、「5.2 耐津波設計における現場確認プロセスについて」及び「5.6 浸水量評価について」を新規作成し、追加 ・改4の内、「1.6 SA用海水ピットの構造を踏まえた影響の有無の検討」を改定
改 13	H30. 3. 6	 ・改 12 の内,「1.6 SA用海水ピットの構造を踏まえた影響の有無の検討」を改定
改 14	H30. 3. 6	 ・改5の内,「5.11 浸水防護施設の設計における評価対象断面の選定 について」を改定(「5.11 浸水防護施設の設計における評価対象断 面の選定について」のうち,「5.11.5 鋼管杭鉄筋コンクリート防潮 壁」を新規作成) ・改9の内,「5.14 防潮堤止水ジョイント部材及び鋼製防護壁止水シ ールについて」を改定

改定	改定日	改定内容
	(提出年月日)	・ 恣料乗号を「補兄_60」→「補兄_60_1」に亦再(改定乗号は継結)
改 15	H30. 3. 9	 ・改7の内,「5.7 自然現象を考慮する浸水防護施設の選定について」 を改定 ・改10の「6.1.3 止水機構に関する補足説明」を改定
改 16	H30. 3. 12	・改 14 の内,「5.14 防潮堤止水ジョイント部材及び鋼製防護壁止水 シールについて」を改定
改17	H30. 3. 22	 ・改15の内、「6.1.3 止水機構に関する補足説明」を改定
改 18	H30. 3. 30	 「1.5 入力津波のパラメータスタディの考慮について」、「3.1 砂移動による影響確認について」、「6.5.1 防潮扉の設計に関する補足説明」及び「放水路ゲートに関する補足説明」を新規作成し追加 改17の「6.1.3 止水機構に関する補足説明」を改定
改 19	H30. 4. 3	・改 18 の「6.1.3 止水機構に関する補足説明」を改定
改 20	H30. 4. 4	 ・改11の内「4.1 設計に用いる遡上波の流速について」を改定 ・「5.10 浸水防護施設の強度計算における津波荷重,余震荷重及び漂流物荷重の組合せについて」を新規作成し追加
改 21	H30. 4. 6	 ・改11の内「5.4 津波波力の選定に用いた規格・基準類の適用性について」を改定 ・改16の内「5.14 防潮堤止水ジョイント部材及び鋼製防護壁シール材について」を改定(「5.14 防潮堤止水ジョイント部材及び鋼製防 護壁シール材について」のうち「5.14.2 鋼製防護壁シール材について」を新規作成)
改 22	H30. 4. 6	・「6.9.2 逆止弁を構成する各部材の評価及び機能維持の確認方法に ついて」を新規作成し追加
改 23	H30. 4. 10	 ・改 18 の「6.5.1 防潮扉の設計に関する補足説明」及び「6.6.1 放 水路ゲートに関する補足説明」を改訂 ・改 21 の「6.1.3 止水機構に関する補足説明」を改定
改 24	H30. 4. 11	 ・改5の内、「5.11 浸水防護施設の設計における評価対象断面の選定 について」を改定(「5.11 浸水防護施設の設計における評価対象断 面の選定について」のうち、「5.11.4 防潮堤(鉄筋コンクリート防 潮壁(放水路エリア))」を改定) ・改14の内、「5.11 浸水防護施設の設計における評価対象断面の選 定について」を改定(「5.11 浸水防護施設の設計における評価対象断面の選定について」のうち、「5.11.5 鋼管杭鉄筋コンクリート防 潮壁」を改定) ・改20の内、「4.1 設計に用いる遡上波の流速について」を改定 ・「5.15 東海発電所の取放水路の埋戻の施工管理要領について」を新 規作成し追加 ・「6.2.1 鉄筋コンクリート防潮壁の設計に関する補足説明」を新規 作成し追加 ・「6.3.1 鉄筋コンクリート防潮壁(放水路エリア)の設計に関する 補足説明」を新規作成し追加 ・「6.4.1 鋼管杭鉄筋コンクリート防潮壁の設計に関する補足説明」 を新規作成し追加 ・「6.8.1 貯留堰の設計に関する補足説明」を新規作成し追加
改 25	H30. 4. 12	・ 改 23 の「6.1.3 止水機構に関する補足説明」を改定

改定	改定日 (提出年月日)	改定内容
改 26	H30. 4. 13	 ・改12の内,「4.2 漂流物による影響確認について」及び「5.6 浸水量評価について」を改定
改 27	H30. 4. 18	・改 25 の「6.1.3 止水機構に関する補足説明」を改定
改 28	H30. 4. 19	 ・改5の内,「5.11 浸水防護施設の設計における評価対象断面の選定 について」を改定(「5.11.7 防潮扉」を改定) ・改24の内,「4.1 設計に用いる遡上波の流速について」を改定 ・改21の内,「5.4 津波波力の選定に用いた規格・基準類の適用性に ついて」 ・「5.13 スロッシングによる貯留堰貯水量に対する影響評価につい て」を新規作成し、追加 ・「5.18 津波に対する止水性能を有する施設の評価について」を新規 作成し、追加 ・「6.5.1 防潮扉の設計に関する補足説明」(土木)を新規作成し、追 加 ・「6.8.2 貯留堰取付護岸に関する補足説明」を新規作成し、追加

下線は、今回提出資料を示す。

目 次

- 入力津波の評価
- 1.1 潮位観測記録の考え方について[改4 H30.2.13]
- 1.2 遡上・浸水域の評価の考え方について[改 12 H30.3.1]

1.3 港湾内の局所的な海面の励起について[改4 H30.2.13]

1.4 津波シミュレーションにおける解析モデルについて[改 12 H30.3.1]

- 1.5 入力津波のパラメータスタディの考慮について[改 18 H30.3.30]
- 1.6 SA用海水ピットの構造を踏まえた影響の有無の検討[改 13 H30.3.6]
- 2. 津波防護対象設備
- 2.1 津波防護対象設備の選定及び配置について
- 3. 取水性に関する考慮事項
- 3.1 砂移動による影響確認について[改 18 H30.3.30]
- 3.2 海水ポンプの波力に対する強度評価について
- 3.3 電源喪失による除塵装置の機能喪失に伴う取水性の影響について
- 4. 漂流物に関する考慮事項
- 4.1 設計に用いる遡上波の流速について[改 28 H30.4.19]
- 4.2 漂流物による影響確認について[改 26 H30.4.13]
- 4.3 漂流物衝突力について
- 5. 設計における考慮事項
- 5.1 地震と津波の組合せで考慮する荷重について[改7 H30.2.19]
- 5.2 耐津波設計における現場確認プロセスについて[改 12 H30.3.1]
- 5.3 強度計算に用いた規格・基準について
- 5.4 津波波力の選定に用いた規格・基準類の適用性について[改 28 H30.4.19]
- 5.5 津波防護施設のアンカーの設計に用いる規格・基準類の適用性について
- 5.6 浸水量評価について[改 26 H30.4.13]
- 5.7 自然現象を考慮する浸水防護施設の選定について[改 15 H30.3.9]
- 5.8 浸水防護に関する施設の機能設計・構造設計に係る許容限界について
- 5.9 浸水防護施設の評価に係る地盤物性値及び地質構造について[改9 H30.2.22]
- 5.10 浸水防護施設の強度計算における津波荷重,余震荷重及び漂流物荷重の組合せについて[改 20 H30.4.4]
- 5.11 浸水防護施設の設計における評価対象断面の選定について
- 5.11.1 概要[改5 H30.2.13]
- 5.11.2 防潮堤(鋼製防護壁)[改5 H30.2.13]
- 5.11.3 防潮堤(鉄筋コンクリート防潮壁)[改5H30.2.13]
- 5.11.4 防潮堤(鉄筋コンクリート防潮壁(放水路エリア)) [改 24 H30.4.11]
- 5.11.5 防潮堤(鋼管杭鉄筋コンクリート防潮壁)[改 24 H30.4.11]
- 5.11.6 貯留堰及び貯留堰取付護岸[改5 H30.2.13]
- 5.11.7 防潮扉[改 28 H30.4.19]

5.11.8 構内排水路逆流防止設備[改5 H30.2.13]

5.12 浸水防護施設の評価における衝突荷重,風荷重及び積雪荷重について

5.13 スロッシングによる貯留堰貯水量に対する影響評価について[改 28 H30.4.19]

- 5.14 防潮堤止水ジョイント部材及び鋼製防護壁シール材について
 - 5.14.1 防潮堤止水ジョイント部材について[改 16 H30.3.19]
 - 5.14.2 鋼製防護壁シール材について[改 21 H30.4.6]
- 5.15 東海発電所の取放水路の埋戻の施工管理要領について[改 24 H30.4.11]
- 5.16 地殻変動後の基準津波襲来時における海水ポンプの取水性への影響について
- 5.17 強度計算における津波時及び重畳時の荷重作用状況について[改5 H30.2.13]
- 5.18 津波に対する止水性能を有する施設の評価について[改 28 H30.4.19]
- 5.19 津波荷重の算出における高潮の考慮について[改7 H30.2.19]
- 6. 浸水防護施設に関する補足資料
- 6.1 鋼製防護壁に関する補足説明
- 6.1.1 鋼製防護壁の設計に関する補足説明
- 6.1.2 鋼製防護壁アンカーに関する補足説明
- 6.1.3 止水機構に関する補足説明[改 27 H30.4.18]
- 6.2 鉄筋コンクリート防潮壁に関する補足説明
- 6.2.1 鉄筋コンクリート防潮壁の設計に関する補足説明
- 6.2.1.1 鉄筋コンクリート防潮壁の耐震計算書に関する補足説明資料[改 24 H30.4.11]
- 6.2.1.2 鉄筋コンクリート防潮壁の強度計算書に関する補足説明資料

6.2.2 フラップゲートに関する補足説明

- 6.3 鉄筋コンクリート防潮壁(放水路エリア)に関する補足説明
- 6.3.1 鉄筋コンクリート防潮壁(放水路エリア)の設計に関する補足説明
- 6.3.1.1 鉄筋コンクリート防潮壁(放水路エリア)の耐震計算書に関する補足説明[改 24 H30.4.11]

6.3.1.2 鉄筋コンクリート防潮壁(放水路エリア)の強度計算書に関する補足説明

- 6.4 鋼管杭鉄筋コンクリート防潮壁に関する補足説明
- 6.4.1 鋼管杭鉄筋コンクリート防潮壁の設計に関する補足説明
- 6.4.1.1 鋼管杭鉄筋コンクリート防潮壁の耐震計算書に関する補足説明[改 24 H30.4.11]
- 6.4.1.2 鋼管杭鉄筋コンクリート防潮壁の強度計算書に関する補足説明
- 6.5 防潮扉に関する補足説明

6.5.1 防潮扉の設計に関する補足説明[改 23 H30.4.10] [改 28 H30.4.19] (土木)

6.6 放水路ゲートに関する補足説明

6.6.1 放水路ゲートの設計に関する補足説明[改 23 H30.4.10]

- 6.7 構内排水路逆流防止設備に関する補足説明
- 6.7.1 構内排水路逆流防止設備の設計に関する補足説明

6.8 貯留堰に関する補足説明

6.8.1 貯留堰の設計に関する補足説明

6.8.1.1 貯留堰の耐震計算書に関する補足説明[改 24 H30.4.11]

_____ []内は,当該箇所を提出 (最新)したときの改訂を示 す。 6.8.1.2 貯留堰の強度計算書に関する補足説明

6.8.2 貯留堰取付護岸に関する補足説明[改 28 H30.4.19]

6.9 浸水防護設備に関する補足説明

6.9.1 浸水防止蓋,水密ハッチ,水密扉,逆止弁の設計に関する補足説明

6.9.2 逆止弁を構成する各部材の評価及び機能維持の確認方法について[改 22 H30.4.6]

6.9.3 津波荷重(突き上げ)の強度評価における鉛直方向荷重の考え方について

6.10 津波監視設備に関する補足説明

6.10.1 津波監視カメラの設計に関する補足説明

6.10.2 取水ピット水位計及び潮位計の設計に関する補足説明

6.10.3 加振試験の条件について

6.10.4 津波監視設備の設備構成及び電源構成について

6.11 耐震計算における材料物性値のばらつきの影響に関する補足説明

6.12 止水ジョイント部の相対変位量に関する補足説明

6.13 止水ジョイント部の漂流物対策に関する補足説明

4.1 設計に用いる遡上波の流速について

津波防護施設への漂流物荷重は,構造物に対する漂流物の流速に依存するため,防潮堤及び貯 留堰についての流速を整理した。

遡上波の流速は,基準津波による平面2次元津波シミュレーション結果の値を用いる。

- 4.1.1 防潮堤
 - (1) 基準津波時

基準津波時の流速は平面2次元津波シミュレーション(防波堤無しモデル)で最も大きくなる。防波堤無しモデルでの基準津波時における防潮堤前面海域での評価点及び最大流速一覧を図4.1-1及び表4.1-1に示す。最大流速の内,全方向最大流速は,各評価点において V x 及びV y の流速時刻歴から全方向での流速が最大となる時刻のものを抽出して求めた。 表中にその時のV x 及びV y もあわせて記載した。

同様に,防潮堤近傍での評価点を図 4.1-2 に示す。そのうち,各評価点での各方向での 最大流速ベクトルを図示したものを図 4.1-3,防潮堤に向かう法線方向を図示したものを 図 4.1-4 に示す。また,各評価点における各方向での最大流速一覧を表 4.1-2 に示す。最 大流速の内,全方向最大流速は,各評価点においてV x 及びV y の流速時刻歴から全方向で の流速が最大となる時刻のものを抽出して求めた。表中にその時のV x 及びV y もあわせて 記載した。

防潮堤前面海域では流速に大きな傾向の違いは見られず,防潮堤近傍の F-1 地点で最大の流速が確認できる。

防潮堤近傍では,防潮堤北側で防潮堤のない方向へ流れて行く No. 08-a(防潮堤北東側) で最大流速となっている。

以上の結果から,防潮堤に対する法線方向を含む全ての方向の流速ベクトルの中での最大 流速は防潮堤近傍の No. 08-a 地点(防潮堤北東側)で 10.71 m/s となる。

防潮堤近傍の最大流速発生地点の流速時刻歴及び波高時刻歴を図4.1-5に示す。

防潮堤の設計に用いる遡上波の流速は、漂流物荷重の大きさは構造物に対して法線方向の 流速による影響が大きいため、本来は法線方向の速度値に着目するが、ここでは保守的に全 ての方向の流速ベクトルを含めた中での最大流速の数値を切り上げた 11.0 m/s とする。す なわち、この設計用の流速は、防潮堤近傍における基準津波時の法線方向最大流速である 7.08 m/s を 5 割増しした数値を切り上げたものである。

1

図 4.1-1 防潮堤前面海域での評価点

			全方向最大流速(m/s)		
評価位置	Vx方向最大流速	Vy方向最大流速			全方向
	(m/s)	(m/s)	V x	Vу	$(\sqrt{Vx^2+Vy^2})$
A-1	-5.53	-2.05	-5.53	-0.42	5.55
A-2	-5.32	2.90	-5.32	-0.99	5.41
A-3	-4.85	-2.18	-4.85	-1.57	5.10
A-4	-4.61	3.55	-4.61	-3.55	5.82
A-5	-3.58	-3.01	-3.58	-2.28	4.24
A-6	-3.39	-2.99	-3.39	-1.55	3.72
B-1	-5.68	-2.09	-5.68	1.32	5.83
B-2	-4.56	-2.09	-4.56	-0.15	4.56
B-3	-4.60	-2.26	-4.60	-1.71	4.90
B-4	-4.75	-2.31	-4.74	-2.01	5.15
B-5	-4.22	-3.56	-4.22	-3.07	5.21
B-6	-3.27	-3.19	2.69	2.65	3.78
C-1	-6.00	-3.34	-6.00	-1.01	6.08
C-2	-6.21	2.22	-6.21	-1.58	6.41
C-3	-5.85	-2.73	-5.85	-0.63	5.88
C-4	-3.91	4.05	1.91	3.82	4.27
C-5	-4.25	-4.81	-4.25	-4.43	6.14
C-6	-3.14	3.27	2.25	3.27	3.97
D-1	-2.80	-1.95	-2.80	-1.08	3.00
D-2	-3.90	-1.48	-3.90	-1.06	4.04
D-3	-4.57	1.42	-4.57	0.51	4.60
D-4	-5.03	-2.57	-4.97	-0.61	5.00
D-5	-3.47	-4.20	-1.27	-4.20	4.39
D-6	-3.29	-2.75	-3.29	-1.96	3.83
E-I	-2.23	2.06	-2.01	1.83	2.72
E-2	-3.82	-1.96	-3.82	-1.03	3.96
E-3	-3.84	-1.93	-3.84	-0.75	3.92
E-4	-4.00	-3.70	-4.00	-0.97	4.11
E-5	-3.30	-5.82	-1.07	-5.82	5.91
E-6	-4.20	-3.79	-4.20	0.50	4. 29
F-1	-6.36	1.95	-6.36	-1.72	6.59
F-2	-3.88	4. (5	2.01	4.75	5.15
F-3	-4.83	-1.80	-4.83	-0.27	4.84
F-4 F-5	-3.80	-2.02	-3.80	-0.73	<u> </u>
F -6	-3 19	2.15	-3 10	-0.82	3.30
G-1	-3 62	-2 24	-3 62	-1 33	3.86
G-2	-5.30	-2.02	-5.30	-1 00	5.63
G-3	-3 91	-1 79	-3 91	-0.38	3 92
G-4	-3 62	-1 61	-3 62	-0.63	3.67
G-5	-3, 41	-2.04	-3 40	-0 62	3.46
G-6	-3.15	2.62	-3.07	-1.05	3. 24
H-1	-3, 47	-1.91	-3.47	-0.94	3, 60
Н-2	-3, 90	-1.91	-3,90	-0.43	3. 92
Н-3	-3.77	-1.84	-3.77	-0.56	3.81
Н-4	-3.60	-1.54	-3.60	-0.54	3.64
Н-5	-3.42	-1.78	-3.42	-0.58	3.47
Н-6	-3.20	2.30	-3.16	-0.67	3.23

表 4.1-1 防潮堤前面海域での各方向での最大流速一覧

防潮堤前面海域における各方向での最大流速

図 4.1-2 防潮堤近傍での評価点

図 4.1-3 各評価点での最大流速

図 4.1-4 各評価点での法線方向

				~ ~ 古	向最大流道	≢ (m/s)
	V	V	<u>冲绝于百月</u> 上法注	主力	回取 八 111 &	<u> </u>
評価位置	VX刀	Vy万问取入‴述 (m/z)		X 7	X 7	全方向
	(m/s)	(m/s)	(m/s)	V X	νу	$(\sqrt{V_X^2+V_V^2})$
N. 0.1	0.00	0.00	0.00	0.00	0.00	0.00
No. 01-a	0.00	0.00	0.00	0.00	0.00	0.00
No. 02-a	0.00	0.00	0.00	0.00	0.00	0.00
No. 03-a	0.00	0.00	0.00	0.00	0.00	0.00
No. 04-a	-3.57	0.64	0.25	-3.57	-0.44	3.60
No. 05-a	-3.16	0.59	0.59	-3.16	-0.22	3.16
No. 06-a	-3.69	-1.03	0.60	-3.69	-1.03	3.83
No. 07-a	1.62	1.73	1.73	-0.69	1.73	1.86
No. 08-a	-8.91	-5.95	5.72	-8.91	-5.95	10.71
No. 09-a	1.91	-2.67	-1.63	-1.63	-2.53	3.01
No. 10-a	0.85	0.76	0.76	0.85	0.76	1.14
No.11-a	-5.90	-6.78	-5.90	-5.90	-6.78	8.99
No. 12-a	0.76	-1.98	-0.34	-0.34	-1.98	2.01
No. 13-a	-5.77	4.05	-5.77	-5.77	4.05	7.05
No. 14-a	1.17	-1.16	-1.16	1.17	-0.41	1.24
No. 15-a	2.78	-2.05	-0.75	2.53	-1.27	2.84
No. 16-a	2.16	-3.17	-1.93	1.93	-2.84	3.43
No. 17-a	-2.52	1.86	1.52	-1.99	1.86	2.73
No. 18-a	-6.91	0.90	-6.91	-6.91	-0.07	6.91
No. 19-a	-6.98	5 12	-6.98	-6.98	5 12	8 65
No. 20-a	-5.67	-0.41	-0.41	-5.67	-0.07	5.67
No. 21-a	-1 29	0.94	-0.59	-1 29	0.01	1 60
No. 22-a	0.00	0.00	0.00	0.00	0.01	0.00
NO. 22 a	0.00	0.00	0.00	0.00	0.00	0.00
				全方	向最大流过	速 (m/s)
苏尔卢罗	Vx方向最大流速	Vy方向最大流速	法線方向最大流速	全方	向最大流词	<u></u> (m/s)
評価位置	Vx方向最大流速 (m/s)	Vy方向最大流速 (m/s)	法線方向最大流速 (m/s)	全方 V x	向最大流道 Vy	<u>速</u> (m/s) 全方向
評価位置	Vx方向最大流速 (m/s)	Vy方向最大流速 (m/s)	法線方向最大流速 (m/s)	全方 V x	向最大流逝 Vy	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²)
評価位置 No.01-b	Vx方向最大流速 (m/s) 0.00	Vy方向最大流速 (m/s) 0.00	法線方向最大流速 (m/s) 0.00	全方 V x 0.00	向最大流过 Vy 0.00	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²) 0.00
評価位置 No. 01-b No. 02-b	Vx方向最大流速 (m/s) 0.00 0.00	Vy方向最大流速 (m/s) 0.00 0.00	法線方向最大流速 (m/s) 0.00 0.00	全方 V x 0.00 0.00	向最大流速 Vy <u>0.00</u> 0.00	<u></u> 生方向 (√Vx ² +Vy ²) 0.00 0.00
評価位置 No. 01-b No. 02-b No. 03-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20	Vy方向最大流速 (m/s) 0.00 0.00 1.28	法線方向最大流速 (m/s) 0.00 0.00 1.28	全方 V x 0.00 0.00 -2.20	向最大流速 Vy 0.00 0.00 0.97	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87	全方 V x 0.00 0.00 -2.20 -5.26	向最大流 Vy 0.00 0.00 0.97 -0.60	<u></u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40 5.30
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26 -3.74	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51	全方 V x 0.00 0.00 -2.20 -5.26 -3.74	向最大流送 Vy 0.00 0.00 0.97 -0.60 -0.46	<u></u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40 5.30 3.76
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98	全方 V x 0.00 0.00 -2.20 -5.26 -3.74 -5.09	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38	<u></u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40 5.30 3.76 5.11
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08	<u></u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40 5.30 3.76 5.11 8.34
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6 32	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.002.405.303.765.118.347.74 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.002.405.303.765.118.347.745.85 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 7.09	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 7.08	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.002.405.303.765.118.347.745.857.22 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b No. 09-c	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.02$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b No. 09-c No. 10-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37	全方 V x 0.00 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37	向最大流送 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16	★ (m/s) 全方向 (√Vx ² +Vy ²) 0.00 0.00 2.40 5.30 3.76 5.11 8.34 7.74 5.85 7.33 6.03 2.20
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 05-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.00 0.002.405.303.765.118.347.745.857.336.033.622.2 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95	$ (m/s) $ 全方向 ($\sqrt{Vx^2+Vy^2}$) 0.00 0.00 2.40 5.30 3.76 5.11 8.34 7.74 5.85 7.33 6.03 3.62 3.75 7.5
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b	Vx方向最大流速 (m/s) 0.00 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82	$ (m/s) $ 全方向 ($\sqrt{Vx^2+Vy^2}$) 0.00 0.00 2.40 5.30 3.76 5.11 8.34 7.74 5.85 7.33 6.03 3.62 3.75 3.74 5.95 7.33 7.4 7.5 7.4
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 11-b No. 12-b No. 13-b No. 14-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.82 -0.82	<u></u>
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 11-b No. 12-b No. 13-b No. 14-b No. 16-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36	向最大流过 Vy 0.00 0.97 -0.60 -0.46 0.38 -0.08 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.82 -0.41 -0.41	<u></u>
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72	向最大流过 Vy 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.95 -0.82 -0.82 -0.39	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.735.73$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 16-b No. 17-b No. 18-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99 -2.41	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51 -6.70	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70	向最大流过 Vy 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.82 -0.41 -2.86 -0.39 -0.95	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.736.77$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99 -2.41 -3.19	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51 -6.70 -6.14	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14	向最大流过 Vy 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.82 -0.41 -2.86 -0.39 -0.95 -0.95 -0.95 -0.95 -2.47	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.736.776.62$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 10-b No. 12-b No. 13-b No. 14-b No. 14-b No. 14-b No. 17-b No. 18-b No. 19-c	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99 -2.41 -3.19 3.44	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51 -6.70 -6.14 -1.59	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70	向最大流过 Vy 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.82 -0.41 -2.86 -0.39 -0.95 -0.95 -2.47 -0.90	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.736.776.626.767.747.53.753.743.495.736.776.626.76$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 07-b No. 09-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-c No. 20-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70 -6.68	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99 -2.41 -3.19 3.44 -1.11	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51 -6.70 -6.14 -1.59 -1.11	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70 -6.68	向最大流 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.08 -4.47 1.30 1.89 -4.16 -3.53 -0.95 -0.82 -0.41 -2.86 -0.39 -0.95 -2.47 -0.90 -0.89	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.736.776.626.766.74776.74$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-b No. 09-c No. 10-b No. 10-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-c No. 20-b No. 21-b	Vx方向最大流速 (m/s) 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70 -6.68 -3.71	Vy方向最大流速 (m/s) 0.00 0.00 1.28 -0.94 -0.73 0.98 0.61 -4.47 2.25 1.89 -4.16 -3.53 -2.00 1.50 -1.60 -2.86 0.99 -2.41 -3.19 3.44 -1.11 1.03	法線方向最大流速 (m/s) 0.00 0.00 1.28 0.87 0.51 0.98 0.61 1.41 5.30 -7.08 -4.37 -2.03 -3.62 -3.65 -3.46 -4.36 4.51 -6.70 -6.14 -1.59 -1.11 -0.82	全方 V x 0.00 -2.20 -5.26 -3.74 -5.09 -8.34 -6.32 5.71 -7.08 -4.37 -0.80 -3.62 -3.65 -3.46 -4.36 -5.72 -6.70 -6.14 -6.70 -6.68 -3.71	向最大流过 Vy 0.00 0.00 0.97 -0.60 -0.46 0.38 -0.97 -0.46 0.38 -0.97 -0.82 -0.95 -0.82 -0.82 -0.41 -2.86 -0.39 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.95 -0.89 0.31	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.002.405.303.765.118.347.745.857.336.033.623.753.743.495.215.736.776.626.766.743.7272$

表 4.1-2 防潮堤近傍での各方向での最大流速一覧

:防潮堤近傍における各方向での最大流速

図 4.1-5(1) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(Vx 方向)

図 4.1-5(2) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(拡大図)

図 4.1-5(3) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(Vy 方向)

図 4.1-5(4) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(拡大図)

図 4.1-5(5) 防潮堤の最大流速発生地点(No.08-a)の波高時刻歴

図 4.1-5(6) 防潮堤の最大流速発生地点(No.08-a)の波高時刻歴(拡大図)

(2) T.P.+24.0 m 津波時

平面 2 次元津波シミュレーション結果に基づく T.P. +24.0 m 津波時における防潮堤前面 海域での評価点及び最大流速一覧を図 4.1-6 及び表 4.1-3 に示す。最大流速の内,全方向 最大流速は,各評価点においてV x 及びV y の流速時刻歴から全方向での流速が最大となる 時刻のものを抽出して求めた。表中にその時のV x 及びV y もあわせて記載した。

同様に,防潮堤近傍での評価点を図 4.1-7 に示す。そのうち,各評価点での各方向での 最大流速ベクトルを図示したものを図 4.1-8,防潮堤に向かう法線方向を図示したものを 図 4.1-9 に示す。また,各評価点における各方向での最大流速一覧を表 4.1-4 に示す。最 大流速の内,全方向最大流速は,各評価点においてV x 及びV y の流速時刻歴から全方向で の流速が最大となる時刻のものを抽出して求めた。表中にその時のV x 及びV y もあわせて 記載した。

防潮堤前面海域では流速に大きな傾向の違いは見られず, E-5 地点で最大の流速が確認 できる。

防潮堤近傍では,防潮堤北側で防潮堤のない方向へ流れて行く No. 08-a(防潮堤北東側) で最大流速となっている。

以上の結果から,防潮堤に対する法線方向を含む全ての方向の流速ベクトルの中での最大 流速は防潮堤近傍の No. 8-a 地点(防潮堤北東側)で14.23 m/s となる。

図4.1-10に防潮堤前面の最大流速発生地点の流速時刻歴及び波高時刻歴を示す。

防潮堤の設計に用いる遡上波の流速は、漂流物荷重の大きさは構造物に対して法線方向の 流速による影響が大きいため、本来は法線方向の速度値に着目するが、ここでは保守的に全 ての方向の流速ベクトルを含めた中の最大流速の数値を切り上げた 15.0 m/s とする。すな わち、この設計用の流速は T.P. +24.0 m 津波時の法線方向最大流速である 9.98 m/s を 5 割 増しした数値を切り上げたものであり、基準津波時の法線方向最大流速である 7.08 m/s を 10 割増しした数値を切り上げたものである。

図 4.1-6 防潮堤前面海域での評価点

			全方向最大流速(m/s)		
評価位置	Vx方向最大流速 (m/s)	Vy方向最大流速 (m/s)	V x	V y	全方向 (√Vx ² +Vy ²)
A-1	-6.69	-1.42	-6.69	-0.08	0.00
A-2	-6.70	3.17	-6.70	-1.23	0.00
A-3	-5, 93	-2.97	-5, 93	-1.93	6.23
A-4	-5, 03	-4.94	-4.35	-4.94	6. 58
A-5	-4, 46	-3. 82	-4,46	-1.91	4, 85
A-6	-4.22	-3.82	-4.22	-1.86	4.61
B-1	-6.47	-2.11	-6.47	0.62	6.50
B-2	-5.29	-3, 19	-5.29	1.26	5, 43
B-3	-5, 16	-3, 45	-5.16	-2.38	5.68
B-4	-4.71	-2.68	-4.66	-2.06	5.10
B-5	-4.45	-4.63	-2.81	-4.63	5.42
B-6	-4.19	-4.18	-1.93	-4.18	4.61
C-1	-4.69	-3.10	4.69	-3.10	5.62
C-2	-6.85	3.92	-6.85	-2.42	7.27
C-3	-6.37	-2.84	-6.37	-2.84	6,97
C-4	-4.40	6.08	1.60	6.08	6.28
C-5	-4.38	-5.24	-0.62	-5.24	5.27
С-6	-3.94	-4.13	-3.94	-1.96	4.40
D-1	-4.11	-2.53	-4.11	-1.24	4.30
D-2	-4.80	-2.27	-4.80	-1.42	5.00
D-3	-6, 90	-1.68	-6.90	-0.03	6, 90
D-4	-6.32	-2, 68	-6.32	-1.66	6.53
D-5	-4.14	-5, 53	-1.65	-5.53	5.77
D-6	-4. 03	-3.87	-4.02	-1.83	4.42
E-1	-3, 57	2.71	-3.57	-0.63	3, 63
E-2	-4.99	-5,69	0.81	-5.69	5.75
E-3	-4.72	-2.12	-4.72	-1.21	4.87
E-4	-4.84	-5.60	1.27	-5.60	5.75
E-5	-4, 13	-7.35	-0.12	-7.35	7.35
E-6	-5,00	-5.08	2.46	4.56	5, 18
F-1	-6.80	2 39	-6.80	-2 37	7 20
F-2	-4 99	4 37	-4 99	-2.01	5 42
F-3	-4 86	-2 05	-4 86	2.12	5 27
F-4	-4 97	-3.48	-4 97	2.00 2 14	5 41
F-5	-4 75	-3 31	-4 75	1 47	4 98
F-6	-4, 66	3, 40	-4.66	1, 13	4, 80
G-1	-5.22	-2.38	-5.22	-1 94	5 57
G-2	-5.38	-2.90	-5.38	2 15	5 79
G-3	-5.26	-2.46	-5.26	0.47	5, 28
G-4	-4.42	-2.51	-4.42	-1.33	4.61
G-5	-4.15	-2.36	-4.13	-1.72	4.47
G-6	-3.98	3.84	-3.97	-1.72	4.33
H-1	-4.49	-3.08	-4.49	-1.36	4.69
Н-2	-4.68	-2.63	-4.68	-1.44	4.89
Н-3	-4.97	-2.14	-4.97	-0.01	4.97
H-4	-4.37	-2.70	-4.37	-1.21	4.54
H-5	-4.21	-2.32	-4.21	-1.45	4.46
H-6	-3.99	2.99	-3.99	-1.50	4.26

表4.1-3 防潮堤前面海域での各方向での最大流速一覧

:防潮堤前面海域における各方向での最大流速

図 4.1-7 防潮堤近傍での評価点

図 4.1-8 各評価点での最大流速

図 4.1-9 各評価点での法線方向

				全方	向最大流过	東 (m/s)
評価位置	Vx方向最大流速 (m/s)	Vy方向最大流速 (m/s)	法線方向最大流速 (m/s)	V x	V y	全方向 (√Vx ² +Vv ²)
No. 01-a	0.00	0.00	0.00	0.00	0.00	0.00
No. 02-a	0.38	-1.71	0.38	-0.09	1.41	1.41
No. 03-a	-2.80	1.57	1.57	-2.80	1.57	3.21
No. 04-a	-5.04	-0.65	0.19	-5.04	-0.37	5.06
No. 05-a	-4.77	-0.50	0.10	-4.77	-0.14	4.78
No. 06-a	-5.05	-1.18	0.16	-5.05	-1.18	5.19
No. 07-a	-2.25	2.28	2.28	-2.25	2.28	3.20
No. 08-a	-11.78	-7.98	2.70	-11.78	-7.98	14.23
No. 09-a	5.00	-3.51	-2.02	-1.64	-3.51	3.87
No. 10-a	-7.04	2.05	-7.04	-7.04	-0.71	7.07
No. 11-a	-8.41	-8.10	-8.41	-8.41	-8.10	11.68
No. 12-a	-1.45	-1.79	-1.45	-1.45	-0.99	1.76
No. 13-a	-4.10	5.47	-4.10	-3.86	5.47	6.69
No. 14-a	1.42	-1.20	-1.20	1.42	-1.20	1.86
No. 15-a	3.08	-3.20	-0.35	3.08	-0.24	3.09
No. 16-a	3.32	-4.76	-2.23	3.32	-4.76	5.80
No.17-a	-5.02	4.67	0.33	-5.02	4.67	6.85
No. 18-a	-1.21	1.30	-1.21	-1.21	1.30	1.77
No. 19-a	9.88	7.21	-8.90	-8.90	7.21	11.46
No. 20-a	-9.81	-0.36	-0.36	-9.81	0.13	9.81
No. 21-a	-2.90	2.54	-1.22	-2.90	2.54	3.85
No. 22-a	-1.89	-1.61	-1.61	-0.15	0.26	0.30
	•	•	•			
	Vy方向最大流速	Vy方向最大流速	法编专向是十法演	全方	向最大流过	東 (m/s)
評価位置	Vx方向最大流速 (m/s)	Vy方向最大流速 (m/s)	法線方向最大流速 (m/s)	全方 V x	向最大流 び y	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²)
評価位置 No.01-b	Vx方向最大流速 (m/s) 0.00	Vy方向最大流速 (m/s) 0.00	法線方向最大流速 (m/s) 0.00	全方 V x 0.00	向最大流过 Vy 0.00	<u></u> 全方向 (√Vx ² +Vy ²) 0.00
評価位置 No.01-b No.02-b	Vx方向最大流速 (m/s) 0.00 0.00	Vy方向最大流速 (m/s) 0.00 0.00	法線方向最大流速 (m/s) 0.00 0.00	全方 V x 0.00 0.00	向最大流速 Vy 0.00 0.00	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²) 0.00 0.00
評価位置 No. 01-b No. 02-b No. 03-b	Vx方向最大流速 (m/s) 0.00 0.00 -6.04	Vy方向最大流速 (m/s) 0.00 0.00 1.99	法線方向最大流速 (m/s) 0.00 0.00 1.99	全方 V x 0.00 0.00 -6.04	向最大流速 Vy <u>0.00</u> 0.53	<u>東 (m/s)</u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 6.06
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b	Vx方向最大流速 (m/s) 0.00 0.00 -6.04 -7.98	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17	全方 V x 0.00 0.00 -6.04 -7.98	向最大流速 Vy 0.00 0.53 -0.11	<u>速 (m/s)</u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 6.06 7.98
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99	全方 V x 0.00 0.00 -6.04 -7.98 -6.02	向最大流速 Vy 0.00 0.53 -0.11 -0.28	<u></u> <u></u> (m/s) 全方向 (√Vx ² +Vy ²) 0.00 0.00 6.06 7.98 6.03
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92	全方 V x 0.00 -6.04 -7.98 -6.02 -6.55	向最大流速 Vy 0.00 0.53 -0.11 -0.28 2.92	<u></u> <u></u> (m/s) 全方向 (√Vx ² +Vy ²) 0.00 0.00 6.06 7.98 6.03 7.17
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16	<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> (√ Vx ² +Vy ²) <u></u> 0.00 <u></u> 0.00 <u></u> 0.00 <u></u> 0.00 <u></u> 0.00 <u></u> 0.00 <u></u> 0.101 <u>0.101 <u>0.101 0.10</u></u>
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69	<u></u> <u></u> <u></u> (m/s) <u></u> 全方向 (√Vx ² +Vy ²) 0.00 0.00 <u>6.06 7.98 6.03 7.17 11.81 9.44</u>
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 07-b No. 08-b No. 09-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2}) 0.00 0.00 6.06 7.98 6.03 7.17 11.81 9.44 7.55$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b No. 09-c	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16	全方 V x 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.18 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-b No. 09-c No. 10-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72	法線方向最大流速 (m/s) 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78	全方 V x 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2}) 0.00 0.00 6.06 7.98 6.03 7.17 11.81 9.44 7.55 7.18 6.08$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 08-b No. 09-c No. 10-b No. 11-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.17	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20	全方 V x 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2}) 0.00 0.00 6.06 7.98 6.03 7.17 11.81 9.44 7.55 7.18 6.08 4.33$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2}) 0.00 0.00 6.06 7.98 6.03 7.17 11.81 9.44 7.55 7.18 6.08 4.33 5.01$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.17 -2.55 3.48	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65	$ 東 (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.67 $
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 07-b No. 09-b No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -1.49 -1.65 -0.15	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.82$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 07-b No. 08-b No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 16-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -1.49 -1.65 -0.15 -3.13	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.60$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-c No. 09-c No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13 -2.56	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77	全方 V x 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.22$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 14-b No. 17-b No. 18-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13 -2.56 -2.95	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77 -9.98	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04 -1.72	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.2210.13$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13 -2.56 -2.95 -3.72	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77 -9.98 -9.20	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04 -1.72 -0.51	$ (m/s) 全方向 (\sqrt{Vx^{2}+Vy^{2}})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.2210.139.22$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-c	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13 -2.56 -2.95 -3.72 4.84	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77 -9.98 -9.20 -2.53	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04 -1.72 -0.51 -2.53	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.2210.139.2211.25$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 06-b No. 07-b No. 09-b No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 13-b No. 14-b No. 14-b No. 16-b No. 18-b No. 19-c No. 19-c No. 20-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96 -9.72	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.17 -2.55 3.48 -1.57 -3.13 -2.56 -2.95 -3.72 4.84 -1.50	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77 -9.98 -9.20 -2.53 -1.50	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96 -9.72	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04 -1.72 -0.51 -2.53 -1.12	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.2210.139.2211.259.78$
評価位置 No. 01-b No. 02-b No. 03-b No. 04-b No. 05-b No. 05-b No. 05-b No. 07-b No. 09-c No. 09-c No. 10-b No. 10-b No. 11-b No. 12-b No. 12-b No. 13-b No. 14-b No. 16-b No. 17-b No. 18-b No. 19-c No. 20-b No. 21-b	Vx方向最大流速 (m/s) 0.00 -6.04 -7.98 -6.02 -7.07 -11.75 -9.29 6.84 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96 -9.72 -9.72 -8.98	Vy方向最大流速 (m/s) 0.00 0.00 1.99 -1.01 0.99 2.92 1.64 -4.36 3.79 -2.26 -4.72 -4.72 -4.72 -4.72 -4.72 -3.13 -2.55 3.48 -1.57 -3.13 -2.56 -2.95 -3.72 4.84 -1.50 1.57	法線方向最大流速 (m/s) 0.00 0.00 1.99 0.17 0.99 2.92 1.64 5.12 1.88 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 6.77 -9.98 -9.20 -2.53 -1.50 -1.16	全方 V x 0.00 0.00 -6.04 -7.98 -6.02 -6.55 -11.75 -9.29 6.53 -7.16 -5.78 -1.20 -4.79 -5.43 -3.82 -6.92 -8.16 -9.98 -9.20 -10.96 -9.72 -8.98	向最大流道 Vy 0.00 0.53 -0.11 -0.28 2.92 -1.16 -1.69 3.79 0.45 -1.86 -4.16 -1.49 -1.65 -0.15 -3.13 -1.04 -1.72 -0.51 -2.53 -1.12 -0.28	$ (m/s) 全方向 (\sqrt{Vx^2+Vy^2})0.000.006.067.986.037.1711.819.447.557.186.084.335.015.673.827.608.2210.139.2211.259.788.98$

表 4.1-4 防潮堤近傍での各方向での最大流速一覧

:防潮堤近傍における各方向での最大流速

Г

図 4.1-10(1) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(Vx 方向)

図 4.1-10(2) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(拡大図)

図 4.1-10 (3) 防潮堤の最大流速発生地点 (No.08-a) の流速時刻歴 (Vy 方向)

図 4.1-10(4) 防潮堤の最大流速発生地点(No.08-a)の流速時刻歴(拡大図)

図 4.1-10 (5) 防潮堤の最大流速発生地点 (No.08-a) の波高時刻歴

図 4.1-10(6) 防潮堤の最大流速発生地点(No.08-a)の波高時刻歴(拡大図)

4.1.2 貯留堰

平面2次元津波シミュレーション結果に基づく貯留堰近傍での評価点及び法線方向の最大 流速を図4.1-11及び表4.1-5に示す。

貯留堰法線方向の最大流速は上昇側 F4 地点で 3.86 m/s となる。

また, 貯留堰における流速は概ね下降側に比べ上昇側の波の際に流速が大きくなることが 読み取れる。

貯留堰の設計に用いる遡上波の流速については,法線方向最大流速から数値を切り上げた 5.0 m/sとする。貯留堰近傍の法線方向最大流速発生地点の流速時刻歴及び波高時刻歴を図 4.1-12に示す。

図 4.1-11 貯留堰近傍の評価点

表 4.1-5(1) 貯留堰近傍での法線方向最大流速(下降側)

	Vx方向
評価位置	法線方向最大流速 (m/s)
F1	-1.01
F2	-0.94
F3	-1.04
F4	-1.18
F5	-1.27
F6	0.48
F7	0.28
F8	0.23
F9	0.31
F10	0.37
N1	-1.54
N5	-1.15
N6	0.37
S1	-1.47
S5	-1.29
S6	0.34

Vy方向				
評価位置	法線方向最大流速 (m/s)			
N1	0.66			
N2	0.71			
N3	0.78			
N4	0.56			
N6	-1.41			
N7	-1.39			
N8	-1.21			
S1	-0.89			
S2	-0.83			
S3	-0.79			
S4	-0.97			
S6	0.65			
S7	0.66			
S8	0.62			

表 4.1-5(2) 貯留堰近傍での法線方向最大流速(上昇側)

	Vx方向
評価位置	法線方向最大流速
F1	-3.60
F2	-3.71
F3	-3.78
F4	-3.86
F5	-3.78
F6	0.42
F7	0.33
F8	0.37
F9	0.48
F10	0.51
N1	-3.37
N5	-3.42
N6	0.34
S1	-3.80
S5	-3.77
S6	0. 43

Vy方向				
評価位置	法線方向最大流速 (m/s)			
N1	0.72			
N2	0.73			
N3	0.76			
N4	0.85			
N6	-2.59			
N7	-2.63			
N8	-2.53			
S1	-1.77			
S2	-1.78			
S3	-1.81			
S4	-1.84			
S6	0.97			
S7	0.98			
S8	1.04			

. 貯留堰近傍における法線方向最大流速

図 4.1-12(1) 貯留堰の法線方向最大流速発生地点(F4)の流速時刻歴

図 4.1-12(2) 貯留堰の法線方向最大流速発生地点(F4)の流速時刻歴(拡大図)

図 4.1-12(3) 貯留堰の法線方向最大流速発生地点(F4)の波高時刻歴

図 4.1-12(4) 貯留堰の法線方向最大流速発生地点(F4)の波高時刻歴(拡大図)

4.1.3 漂流物荷重算定に用いる流速について

文献^{*1}によれば、津波による漂流物の漂流流速は、津波の表面流速(津波流速)よりも 小さいとされている(図 4.1-13)。文献^{*2,3}によれば、漂流物の衝突直前の漂流流速 v

(m/s) と水の表面流速U (m/s) の比率 α について, 漂流流速vは表面流速(津波流速) U に対して 0~60 %に低下するとされている。文献^{*3}で述べられている比重 0.6 の漂流物の 場合の表面流速に対する漂流流速vの比率 α の確率分布を図 4.1-14 に示す。図 4.1-14 の 通り, $\alpha = v/U = 0.1$ (10 %程度)以下において相対頻度が最も高いことを示している。

以上の知見はあるが、津波防護施設の設計のための漂流物荷重算定に用いる漂流流速vは $\alpha = v / U = 1.0$ (100 %) となるように設定する。

図 4.1-13 表面流速と漂流流速の関係

図 4.1-14 表面流速に対する漂流流速の比率 α (= v/U)の確率分布

- ※1: 遡上津波によるコンテナ漂流力に関する大規模実験,海岸工学論文集,第54巻(2007) (有川ら)
- ※2:原子力発電所における津波漂流物の影響評価技術-現状調査とその適用に関する考察-研究報告: o 16010,電力中央研究所報告(2017)
- ※3:陸上遡上津波中の漂流物挙動に関する研究,土木学会論文集 B2(海岸工学) (2016) (甲斐田ら)

5.4 津波波圧の算定に用いた規格・基準類の適用性について

津波防護施設等の津波波圧は,陸上構造物に対しては朝倉ら(2000)他*^{1,2}で示される算定式 を,海中構造物に対しては「防波堤の耐津波設計ガイドライン」*³で示される算定式を参考に して求める。

算定式を適用するにあたっては、東海第二発電所における遡上津波の特徴を把握する必要が あることから基準津波を対象とした水理模型実験を実施し、さらにその検証のための断面2次 元津波シミュレーション解析を行った。断面2次元津波シミュレーション解析では、防潮堤と 海岸線との離隔距離が津波波圧に与える影響や津波遡上高さ等が異なる津波が防潮堤に与える 影響についても検討した。

各構造物の適用算定式を表1に示す。

構造物名	津波波圧の算定に用いた規格・基準類	
防潮堤(鋼製防護壁,鉄筋コンクリート防	*1:朝倉ら(2000):護岸を越流した	
潮壁,鋼管杭鉄筋コンクリート防潮壁)	津波による波圧に関する実験的	
防潮扉	研究,海岸工学論文集,第47	
構内排水路逆流防止設備	巻, 土木学会	
	*2:港湾の津波避難施設の設計ガイ	
	ドライン(平成 25 年 10 月)	
貯留堰	*3:防波堤の耐津波設計ガイドライ	
	ン(平成 27 年 12 月一部改訂)	

表1 各構造物の適用算定式

5.4.1 津波荷重の算定式

津波防護施設の津波荷重の算定式は,朝倉ら(2000)の研究を元にした「港湾の津波避難施設の設計ガイドライン(国土交通省港湾局,平成25年10月)」や「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)等を参考に設定する。以下に,参考にした文献の津波荷重算定式の考え方と津波防護施設への適用性を示す。

- (1) 津波波圧算定式に関する文献の記載
 - a. NRA技術報告「防潮堤に作用する津波波圧評価に用いる水深係数について」 (平成28年12月)

水理実験及び解析を実施した結果,従来の評価手法でフルード数が1以下になることが 確認できれば,水深係数は3を適用できるとしている。

- b. 東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の構造上の要件 に係る暫定指針(平成 23 年)
 構造設計用の進行方向の津波波圧は,図1-1に示す概念に基づき,次式により算定する。 q z = ρ g (a h - z)
 - q z:構造設計用の進行方向の津波波圧(kN/m²)
 - h:設計用浸水深(m)
 - z:当該部分の地盤面からの高さ(0≤z≤ah)(m)
 - a :水深係数
 - ρg:海水の単位体積重量(kN/m³)

「東日本大震災における津波による建築物被害を踏まえた

c. 港湾の津波避難施設の設計ガイドライン(平成 25 年 10 月)

文献a.に基づく。ただし、津波が生じる方向に施設や他の建築物がある場合や、海岸等から500 m以上離れている場合において、水深係数は3以下にできるとしている。

津波避難ビル等の構造上の要件に係る暫定指針(平成23年)」より 図1-1 津波波圧算定の概念

d.朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第
 47 巻,土木学会,pp.911-915
 直立護岸を越流した津波の遡上特性から護岸背後の陸上構造物に作用する津波波圧について実験水路を用いて検討している。

その結果,非分裂波の場合「朝倉ら(2000):護岸を越流した津波による波圧に関する実験 的研究,海岸工学論文集,第47巻,土木学会」によれば,構造物前面に作用する波圧分布 を規定する水平波圧指標(遡上水深に相当する静水圧分布の倍率)αは,最大で3程度以下 であることが示されている。

非分裂波における津波最大波圧分布を図 1-2 に、分裂波における無次元最大波圧分布を 図 1-3 に示す。ソリトン分裂波の場合は図 1-3 に示されるように、構造物底面標高にお ける非分裂波のαに対し、1.8αとなるとしている。ただし、図 1-2 及び図 1-3 に示され る波圧分布は、同時刻で発生したものではない。

「朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第47巻,土木学会」より 図 1-2 非分裂波における津波最大波圧分布

「朝倉ら(2000):護岸を越流した津波による波圧に関する実験的研究,海岸工学論文集,第47巻,土木学会」より 図1-3 分裂波における無次元最大波圧分布

e. 防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)

防波堤の津波波圧の適用の考え方として、ソリトン分裂波が発生する場合は修正谷本式 を、ソリトン分裂波が発生せず津波が防波堤を越流する場合は静水圧差による算定式を、ソ リトン分裂波が発生せず越流しない場合は谷本式を用いることとしている。防波堤に対す る津波荷重算定手順を図1-4に、越流する場合の静水圧差による算定式を図1-5に示す。

「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」より

図1-4 防波堤に対する津波荷重算定手順

(背面)

‡ 11.

(前面)

ら

h

防波堤前面の水位(津波来襲時)

 $\nabla \mathbf{h}^{h}$

p

S

理+

基礎マウンド

 $p_1 = \alpha_f \rho_0 g(\eta_f + h')$

$$p_2 = \frac{\eta_f - h_c}{\eta_f + h'} p_1$$

 $p_3 = \alpha_r \rho_0 g(\eta_r + h')$

p1 : 直立壁前面の底面における波圧強度(kN/m²)

p2 : 直立壁前面の天端面にける波圧強度(kN/m²)

p3 : 直立壁背面の底面における波圧強度(kN/m²)

- ρ₀g : 海水の単位体積重量 (kN/m³)
- h': 直立壁の底面の水深(m)

hc :静水面から直立壁天端面までの高さ(m)

η : 直立壁前面の静水面からの津波高さ(m)

η_r : 直立壁背面の静水面からの津波高さ(m)

a_f:直立壁前面の静水圧補正係数

a_r : 直立壁背面の静水圧補正係数

「防波堤の耐津波設計ガイドライン(平成27年12月一部改訂)」より 図1-5 越流する場合の静水圧差による算定式

- 5.4.2 陸上構造物に対する津波波圧算定式の適用に関する検討
 - (1) 分裂波発生に関する検討

沖合から伝播してくる津波がサイト前面においてソリトン分裂波を伴うか否かの判定にあ たっては、「防波堤の耐津波設計ガイドライン」において以下の2つの条件に合致する場 合、ソリトン分裂波が発生するとされている。

- おおむね入射津波高さが水深の30%以上(津波数値解析等による津波高さが水深の 60%以上)
- ② 海底勾配が 1/100以下程度の遠浅

東海第二発電所前面の海底地形は約 1/200 勾配で遠浅であり,入射波津波高さと水深の 関係についても入射津波高さが水深の 30 %以上であることから,両方の条件に合致する。 そこで,沖合におけるソリトン分裂波及び砕波の発生の有無や陸上へ遡上する過程での減衰 の状況と防潮堤が受ける津波波圧への有意な影響の有無を定量的に確認するため,東海第二 発電所のサイト特性を考慮した水理模型実験を行い,防潮堤が受ける波圧分布等を測定した。 海底地形断面位置図及び海底地形断面図を図2-1,津波高さと水深の関係を表2-1に示す。

図 2-1 海底地形断面位置図及び海底地形断面図

表 2-1 津波高さと水深の関係

地点	(1) 水深	(2) 入射津波高さ*	(2) / (1)
東海第二発電所前面	7.5 m	4.7 m	62 %

*津波数値解析による津波高さの1/2を入射津波高さと定義(防潮堤の耐津波ガイドライン)

- (2) 水理模型実験
 - a. 目的

基準津波の策定に用いた波源は,2011 年東北地方太平洋沖地震で得られた知見を踏まえ て設定した波源のすべり領域を拡大することや,すべり量の割増しを行うなどの保守的な 設定を複数加えたものである。

水理模型実験は、ソリトン分裂波が生じない沖合 5.0 km における津波波形を入力し、ソ リトン分裂波や砕波の発生の有無及び陸上へ遡上する過程での減衰状況と防潮堤が受ける 津波波圧への有意な影響の有無並びにフルード数の把握を目的に実施した。

b. 検討断面

東海第二発電所前面の海底地形は概ね一様の地形となっていることから,本実験では,津 波水位が最大となる地点を基に,津波の伝播特性を踏まえ,等深線図に直交する断面を選定 した。検討断面位置図を図 2-2 に示す。

図 2-2 検討断面位置図
c. 実験条件

断面 2 次元実験施設の水路は,長さ 60 m×幅 1.2 m (貯水部は 1.8 m) ×高さ 1.5 mと し,沖合 5 km から陸側の範囲を再現するために実験縮尺(幾何縮尺)は $\lambda = 1/200$ とした。 実験の概要を図 2-3 に示す。

単位:mm

(a) 計測位置図

(b) 防潮堤位置拡大図

(c) 実験施設写真

図 2-3 実験の概要

d. 入射津波の造波

水理模型実験における再現範囲の最沖地点はソリトン分裂波が発生しない沖合 5.0 km の 位置とし、基準津波の波源モデルを用いた数値解析から求めた同地点における津波波形を 入力した。また、この津波波形を防潮堤位置で平面 2 次元津波シミュレーション解析結果と 同様の高さになるよう振幅を調整した。沖合 5 km 地点における入射津波の造波波形図を図 2-4 に示す。

図 2-4 沖合 5 km 地点における入射津波の造波波形図

- e. 水理模型実験の結果
 - (a) 水理模型実験におけるソリトン分裂波の確認

平面2次元津波シミュレーション解析に即した津波波形を造波し,水理模型実験を 行った。水理模型実験における時刻歴図を図2-5に示す。その結果,目視観察と波高 計による計測により,沖合約220m地点(W7)においてソリトン分裂波が生じること を確認した。ただし,陸上に遡上する過程で分裂波は減衰しており,防潮堤位置におけ る波圧分布への有意な影響は認められない。なお,W10及びW11で確認できる波形 は,津波の進行波と反射波が合わさった瞬間の波形であり,防潮堤位置における波圧分 布への有意な影響は認められない。

図 2-5 水理模型実験における時刻歴図

(b) フルード数

防潮堤がないモデルで防潮堤位置の最大浸水深を計測し,同時刻における流速からフル ード数を算定した。

その結果,通過波のフルード数は平均で0.8 (<1.0) であったことから,水深係数3で 津波波圧分布を評価し,防潮堤の設計に適用できることを確認した。通過波検定結果表を 表2-2に,持続波領域における最大浸水深,流速及びフルード数の時系列図を図2-6に 示す。

	フルード数
	(最大浸水深時)
1回目	0.9
2回目	0.9
3回目	0.6
4 回目	0.8
5 回目	0.7
6回目	0.9
平均值	0.8

表 2-2 通過波検定結果表

図 2-6 持続波領域における最大浸水深,流速及びフルード数の時系列図

(c) 防潮堤壁面におけるソリトン分裂波の最大津波波圧

防潮堤壁面における津波波圧計測結果を通過波の最大浸水深で除して無次元化した 結果を以下に示す。

東海第二発電所前面海域の地形を模擬した水理模型実験で計測した防潮堤壁面の最 大津波波圧は、構造物前面に作用する波圧分布を規定する水深係数αを3 で評価した ときの非分裂波の場合における無次元最大波圧分布の実験式(以下,「朝倉式①」とい う。)及び,ソリトン分裂波を伴い構造物の下方1/3について非分裂波のαを1.8倍し た無次元最大波圧分布の実験式(以下,「朝倉式②」という。)よりも小さくなった。

また,実験により得られた波圧分布においては,朝倉式②のような波圧分布は認めら れず,朝倉式①と整合する結果となった(朝倉式①の方が津波波圧分布の再現性がよい ことを確認した。)。水理模型実験において,ソリトン分裂波及び砕波の防潮堤に対する 波圧分布への有意な影響はなく,単直線型の朝倉式①に包含されることを確認した。既 往の津波波圧算定式との比較を図 2-7 に示す。

(3) 水理模型実験結果の検証(再現性検討)

水理模型実験結果について、断面2次元津波シミュレーション解析を実施し、防潮堤位置 での津波波圧算定式が朝倉式①で妥当であることを検証した。断面2次元津波シミュレーシ ョン解析は、分散波理論に基づいた解析手法でありソリトン分裂波を表現可能な数値波動水 路 CADMAS-SURF/2D (Ver. 5.1)を用いた。

a. 水理模型実験結果の再現性

水理模型実験でモデル化した区間と同じ区間を解析領域としてモデル化した。解析モデル図を図 2-8 に示す。また、入射波は水理模型実験の入力波形に合わせて作成した。

図 2-8 解析モデル図

断面2次元津波シミュレーション解析結果を図2-9に示す。水理模型実験結果と同様, 沖合約220m地点(W7)においてソリトン分裂波を確認した。ただし、陸上に遡上する 過程で分裂波は減衰しており、防潮堤位置における波圧分布への有意な影響は認められな い。なお、W10及びW11で確認できる波形は、津波の進行波と反射波が合わさった瞬 間の波形であり、防潮堤位置における波圧分布への有意な影響は認められない。

防潮堤壁面に作用する津波波圧は実験値とほぼ同等のものとなり,朝倉式①による波圧 分布を下回るとともに,朝倉式②のような波圧分布は認められず,朝倉式①と整合する結 果となった。

断面 2 次元津波シミュレーション解析においても、ソリトン分裂波及び砕波の防潮堤に 対する波圧分布への有意な影響はなく、単直線型の朝倉式①に包含されることを確認し た。

図 2-9(2) 断面 2 次元津波シミュレーション解析結果(最大波圧分布図)

b. 防潮堤と海岸線との離隔距離の違いが津波波圧に与える影響検討

防潮堤の設置位置は、海岸線から最も近いところで約30mであるが、遡上津波水位が最 も高くなる防潮堤と海岸線との離隔距離は、約60m地点である。そこで、防潮堤全域にわ たって離隔距離の違いが津波波圧に与える影響を確認するため、離隔距離を30m、45m、 60m、75mと変化させた検討を実施した。なお、入力波形は基準津波を用いて実施した。

その結果,防潮堤と海岸線との離隔距離が津波波圧に与える影響は認められず,朝倉式 ①による波圧分布を下回るとともに,分布形は朝倉式①と整合する結果となった。海岸線 からの離隔距離別の防潮堤壁面における最大波圧分布図を図 2-10 に示す。

5.4 - 15

c. 津波遡上高さが異なる津波が防潮堤に与える影響について

基準津波の決定にあたっては、津波シミュレーション解析において、断層の破壊開始点 位置や破壊伝播速度等をパラメータスタディした中で、防潮堤位置での津波遡上高さが最 も高くなる波を抽出している。ここでは、防潮堤位置での津波遡上高さが大きい沖合5 km 地点における上位 10 波の沖合波形を用いて、防潮堤壁面の津波波圧を確認した。

防潮堤位置における遡上高さ上位 10 波の特性を表 2-3 に,水位上昇時間の定義図を図 2-11 に,破壊開始点位置図を図 2-12 に示す。

	ケース*1	津波遡上高さ	水位上昇時間	周期	破壞伝播速度*2	破壞	立ち上り時間* ³
		(T.P.(m))	[min]	[min]	[km⁄s]	開始点	[s]
	1	17.2	1.5	6.0	3.0	6	30.0
	2	17.0	1.5	6.0	2.5	6	30.0
	3	16.8	1.5	6.0	3.0	6	60.0
	4	16.2	1.7	6.8	2.0	6	30.0
	5	16.1	1.5	6.0	3.0	(4)	30.0
	6	15.9	1.7	6.8	3.0	3	30.0
	7	15.8	1.7	6.8	3.0	5	30.0
	8	15.6	1.7	6.8	2.5	(4)	30.0
1	9	15.5	1.8	7.2	1.5	6	30.0
	10	15.5	1.7	6.8	3.0	1	30.0

表 2-3 防潮堤位置の遡上高さ上位 10 波の特性

注記 *1:「津波波源選定モデル」の数値計算におけるケース名である。

*2:破壊開始点から断層破壊が進行する速度である。

*3:断層のある点において破壊開始から終了するまでの時間である。

図 2-11 水位上昇時間の定義図

図 2-12 破壞開始点位置図

断面2次元津波シミュレーション解析による最大波圧分布図を図2-13に示す。最大津 波遡上高さであるケース1の基準津波時を含め、いずれのケースにおいても、朝倉式①に よる波圧分布を下回るとともに、波圧分布は朝倉式①と整合する結果となった。

また,横軸を海底勾配,縦軸を波形勾配としたソリトン分裂の発生条件の結果整理図を 図 2-14 に示す。縦軸の波形勾配は,波高の波長に対する比であり,波形勾配をDと表記 すると,次式*で表される。

$$D = \frac{H}{L} (-) (1)$$
$$T = \frac{L}{c} (s) (2)$$
$$c = \sqrt{g h} (m) (3)$$

注記 *:「水理公式集(平成11年版),土木学会」より

H (m):波高, L (m):波長, g (m/s²):重力加速度, h (m):水深, T (s):周期 である。

したがって,式(1)~(3)より,

$$D = \frac{H}{\sqrt{g h \cdot T}} \quad (-)$$

と,波形勾配は表されることから,図 2-14 から波高を一定としたとき,周期が短いほど 波形勾配は大きくなりソリトン分裂波は発生しやすいことが分かる。

以上のことから,防潮堤位置の遡上高さ上位10波において,最大津波遡上高さを与え, かつソリトン分裂波が発生しやすい短周期であるケース1(基準津波)を平面2次元津波 シミュレーション解析,水理模型実験及び断面2次元津波シミュレーション解析に用い て,防潮堤に対する津波波圧の評価を行うことは,適切であることを確認した。

図 2-14 ソリトン分裂の発生条件の結果整理図

(4) 適用算定式

水理模型実験結果から,東海第二発電所の敷地前面においては,津波はソリトン分裂波を 生じるものの,陸上に遡上する過程で分裂波が減衰することを確認した。また,伝播する津 波による防潮堤壁面の津波波圧は,持続波による津波波圧式(朝倉式①,朝倉式②)から求 められる津波波圧よりも小さく,朝倉式①での再現性が最もよいことを確認した。また,フ ルード数は1.0を下回ることを確認した。ソリトン分裂波及び砕波の防潮堤に対する波圧分 布への有意な影響はなく,単直線型の朝倉式①に包含されることを確認した。

断面2次元津波シミュレーション解析を用いた水理模型実験の結果検証においても、津波 はソリトン分裂波を生じるものの、陸上に遡上する過程で分裂波は減衰することを確認した。 防潮堤壁面における津波波圧は、朝倉式①による波圧分布を下回るとともに、朝倉式①と整 合する結果となった。ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な影響は なく、単直線型の朝倉式①に包含されることを確認した。防潮堤と海岸線との離隔距離を変 えたケースにおいても同様に、防潮堤壁面の津波波圧は朝倉式①による波圧分布を下回ると ともに、分布形は朝倉式①と整合する結果となった。

これら水理模型実験結果及び分散波理論に基づく断面2次元津波シミュレーション解析結 果のいずれにおいても、防潮堤壁面での最大波圧は朝倉式①による波圧を下回るとともに、 分布形は朝倉式①と整合し、ソリトン分裂波及び砕波の防潮堤に対する波圧分布への有意な 影響はなく、単直線型の朝倉式①に包含されることを確認した。防潮堤壁面における最大波 圧分布を図2-15に示す。

以上のことから,陸上構造物に対する設計用津波波圧の算定においては,朝倉式①により 算定することとする。

図 2-15 防潮堤壁面における最大波圧分布

- (5) η (設計浸水深)の検討
 - a. 防潮堤東側に関する検討

津波荷重の作用イメージ図を図 2-16 及び図 2-17 に、検討ポイントを図 2-18 に示す。 朝倉式①に用いる n (設計浸水深) について、「平面 2 次元津波シミュレーション解析 (構造物有り) で得られた各構造物前面における最大津波水位標高と地盤標高の差分を 1/2 倍 した値」と「平面 2 次元津波シミュレーション解析 (構造物無しのフラット地形) で得られ た浸水深」とを比較した。なお、図 2-18 で示される T.P. +3.0 m ラインから内陸側は T.P. +3.0 m よりも地盤標高が高い。すなわち、敷地内陸部に向かうに従い、地盤標高が高くな っていくことから、平面 2 次元津波シミュレーション解析 (構造物無しのフラット地形) モ デルの地盤標高 (T.P. +3.0 m) と乖離が生じるため、両者の浸水深に関する比較を行うこ とは妥当ではない。

したがって、両者の浸水深を適切に比較できるよう、平面2次元津波シミュレーション解 析(構造物無しのフラット地形)モデルの地盤標高 (T.P.+3.0 m)と実際の地盤標高がお おむね同様であり、津波波圧の影響が大きい防潮堤東側前面において 最大津波水位標高 を 示す範囲を含む領域に着目して検討を行う。設計浸水深の比較を表2-4に、最大波圧分布 の比較を図2-19に示す。ただし、図2-19に示される最大波圧分布は、同時刻で発生した ものではない。

図 2-16 津波荷重の作用イメージ図

(η (設計浸水深)を平面2次元津波シミュレーション解析 による浸水深とした場合)

図 2-17 津波荷重の作用イメージ図

(η(設計浸水深)を平面2次元津波シミュレーション解析(構造物有り)による 各構造物前面の最大津波水位標高と地盤標高の差分の1/2倍とした場合)

図 2-18 検討ポイント

表 2-4 設計浸水深の比較

			取八年仅小世际同して地盈			
	ョン解析で得られた浸水深 <mark>*1</mark>		<mark>標高</mark> の差の 1/2 倍			
	(m)		(m)			
1	6.89	<				
2	6.71	<	7.45			
3	6.35	<				
4	6.74	<	7.45			
5	6.96	<				
6	6.87	<				

注記 *1:平面2次元津波シミュレーション解析(構造物無しのフラット地形)にお

いて,フラット地形モデルの地盤標高を T.P.+3.0 m とした場合の計算 <mark>結果である。</mark>

*2: 平面2次元津波シミュレーション解析(構造物有り)による防潮堤前面で の最大津波水位標高である。

図 2-19 最大波圧分布の比較

地盤のフラットモデル標高(T.P.+3.0 m)と実際の地盤標高がおおむね同様であり,津 波波圧の影響が大きい防潮堤東側前面において最大津波遡上高さ示す範囲を含む領域に着 目して検討を行った結果,各構造物前面における最大津波水位標高と地盤標高の差分の1/ 2倍として求めた浸水深は,平面2次元津波シミュレーション解析で得られた浸水深に比べ て大きな値となることが確認されたことから,朝倉式①で求まる津波波圧についても同様 のことが言える。

また,図 2-19 から,各構造物前面における最大津波水位標高と地盤標高の差分の 1/2 倍を浸水深として求めた最大波圧分布は,平面 2 次元津波シミュレーション解析から得ら れた浸水深及び水理模型実験により確認した浸水深から求めた最大波圧分布よりも保守的 であることが確認できる。

- b. 防潮堤北側及び南側に関する検討
 - (a) 流れ方向

各時刻における津波の流れ方向を図 2-20 に示す。なお,各時刻は,津波の原因とな る地震発生後の経過時間である。この図から,防潮堤東側では,津波の進行波は防潮堤 直角方向に卓越するのに対し,防潮堤北側及び南側では,防潮堤に沿う方向に卓越する ことが分かる。

(c) 38.0 min

図 2-20 津波の流れ方向

(b) 津波に伴う圧力

図2-20より,防潮堤北側及び南側においては,津波の流れ方向は,防潮堤に沿う 方向に卓越していることから,これらの領域で作用する津波に伴う圧力は,朝倉式① で算定される津波波圧ではなく,静水圧に近くなるものと考えられる。したがって, 防潮堤北側及び南側については,各構造物前面における最大津波水位標高と各構造物 設置地盤標高の差分の1/2倍をη(設計浸水深)として朝倉式①から算出される最大 津波波圧と最大静水圧を比較することによって,前者の保守性を確認する。

陸上構造物位置図を図 2-21 に、陸上構造物の基準津波に対する最大津波波圧算定 結果を表 2-5 に、最大遡上津波高さに対する静水圧算定結果及び防潮堤天端まで津波 水位が達したと仮定して求めた静水圧算定結果(参考)を表 2-6 に示す。

図 2-21 陸上構造物位置図

表 2-5 陸上構造物の基準津波に対する津波波圧算定結果

構造物名		入力津波高さ	地盤標高	設計浸水深	最大津波波 E*1
		(T.P. (m))	(T.P. (m))	η (m)	p $_{\rm lmax}$ (kN/m ²)
防潮堤(鋼管杭鉄筋コ	敷地側面南側	16.8	8.0	4.40	133. 3
ンクリート防潮壁)	敷地側面北側	15.4	8.0	3. 70	112.1

表 2-6 陸上構造物の最大津波遡上高さに対する静水圧算定結果

及び津波水位が防潮堤天端と仮定した場合の静水圧算定結果(参考)

構造物名		入力津波高さ	地盤標高	最大浸水深	最大静水压*2	最大静水圧
		(T.P. (m))	(T.P. (m))	h (m)	p $_{2max}$ (kN/m ²)	(津波水位が防潮
						堤天端と仮定)
						p $_{\rm 3max}(\rm kN/m^2)$
防潮堤(鋼管杭鉄	敷地側面南側	16.8	8.0	8.8	88.9	101.0
あコンクリート(M) 潮壁)	敷地側面北側	15.4	8.0	7.4	74.7	101.0

注記 *1:津波波圧算定式は次式により算出する。

 $p_{1max} = \alpha \cdot \rho \cdot g \cdot \eta \quad (kN/m^2)$ ここに, $\alpha : 水深係数 (\alpha = 3)$ $\rho : 海水密度 (\rho = 1.03 t/m^3)$ $g:重力加速度 (g = 9.80665 m/s^2)$ である。

注記 *2:最大静水圧は次式により算出する。

$$p_{2max} = \rho \cdot g \cdot h (kN/m^2)$$

ここに,
 $\rho : 海水密度 (\rho = 1.03 t/m^3)$
g:重力加速度 (g = 9.80665 m/s²)

である。

表 2-5 及び表 2-6 より,各構造物に対して,各構造物前面における最大津波水位標 高と各構造物設置地盤標高の差分の 1/2 倍を n (設計浸水深)として朝倉式①から算 出される最大津波波圧は,最大津波遡上高さから求められる最大静水圧及び津波水位 が防潮堤天端まで達したと仮定し,参考として求めた最大静水圧よりも十分に大きい ことを確認した。

したがって、防潮堤北側及び南側についても、各構造物前面における最大津波水位 標高と各構造物設置地盤標高の差分の1/2倍をη(設計浸水深)として算定する朝倉 式①を適用することによって、保守的に津波波圧を評価することができる。

(7) まとめ

陸上構造物に対する津波波圧算定式の適用に関する検討を行った。その結果,陸上構造物 に対する津波波圧は,各構造物前面における最大津波水位標高と各構造物設置地盤標高の差 分の 1/2 倍を η (設計浸水深)として朝倉式①により算定することによって,保守的な津波 波圧算定の設定となることが確認された。

したがって、陸上構造物に対する津波波圧は、各構造物前面における最大津波水位標高と 各構造物設置地盤標高の差分の 1/2 倍をη(設計浸水深)として、朝倉式①により算定す る。

- 5.4.3 海中構造物に対する津波波圧算定式の適用に関する検討
 - (1) 貯留堰

津波又は溢水への配慮が必要な施設のうち海中構造物として,貯留堰が挙げられる。貯留 堰の鳥瞰図を図 3-1 に,断面図を図 3-2 に示す。

貯留堰は,鋼管矢板を連結した構造であり,引き波時に海底面から突出した鋼管矢板頂部 (T.P.-4.9 m)において海水を貯留する。

このため, 貯留堰に有意な津波波力が作用するのは, 引き波により海水貯留堰が海面から 露出し, その後, 押し波が貯留堰に作用してから越流するまでの間に限定される。

「防波堤の耐津波設計ガイドライン(国土交通省港湾局)」(平成27年12月一部改訂)に よると、津波が構造物を越流する場合の津波荷重の算定については、若干越流している状態 に静水圧差による算定式を適用する場合は、それより水位の低い越流直前の状態の方が高い 波力となる可能性があるため、両者を比較して適切に設定する。

図 3-1 貯留堰鳥瞰図

図 3-2 貯留堰断面図

- (2) 津波波圧算定式の検討
 - a. 越流直前の津波波圧の設定方針

貯留堰周りにおける引き波水位の時刻歴図を図 3-3 に示す。

貯留堰前面の水位は若干残るものの保守的に海底面が露出したと仮定し、その後の押し 波を遡上波と考え津波波圧を設定する。

具体的には、津波高さは貯留堰に作用する津波波圧が保守的になるように貯留堰前面の 海底面(設計用海底面標高 T. P. -7.39 m)まで水位が低下した後に到達する津波を考慮す ることとし、貯留堰に津波が越流する直前の状態として貯留堰天端(T. P. -4.9 m)までを 想定する。

津波波圧は、「東日本大震災における津波による建築物被害を踏まえた津波避難ビル等の 構造上の要件に係る暫定指針」の考え方に従って、津波高さの3倍の高さまで静水圧荷重 を考慮する。津波波圧の作用イメージ図を図3-4に示す。

図 3-3 貯留堰周りにおける引き波水位の時刻歴図

図 3-4 津波波圧の作用イメージ図

b. 越流時の津波波圧の設定方針

引き波後に到達する津波が貯留堰を越流する際、貯留堰の内外での水位差はつきにくい が、保守的に引き波水位とその後の押し波水位の差が最も大きくなるものを選定し、津波 波圧を算定した。

津波高さとしては貯留堰天端からの越流を考慮して,「防波堤の耐津波設計ガイドライン (国土交通省港湾局))(平成27年12月一部改訂)による静水圧差による算定式を参考に 設定する。

貯留堰の内外の水位差が最大となる時刻歴水位波形図を図 3-5 に、津波波圧の作用イメ ージ図を図 3-6 に示す。

設計に用いる津波高さは、貯留堰天端高以下となった後の最大水位差となる時刻の水位 標高(T.P.+3.7 m)に潮位のばらつき(+0.18 m)を考慮し, T.P.+3.9 mとする。

図 3-5 貯留堰の内外の水位差が最大となる時刻を含む時刻歴水位波形図

(3) まとめ

海中構造物である貯留堰における津波波圧について,越流直前の波力及び越流時の静水圧 差について検討した。この結果,越流時の静水圧差の方が越流直前の津波波圧を上回る結果 となった。このため,貯留堰における津波波圧として,保守的に越流時の静水圧差を考慮す ることとする。

5.11.7 防潮扉2

防潮扉2の扉体は、鋼製の桁及びスキンプレートを組合せた構造であり、戸当りを介し て鉄筋コンクリート防潮壁の躯体に設置する。戸当りは、H形鋼を組合せた構造である。 鉄筋コンクリート防潮壁は、鉄筋コンクリート造の構造物であり、隣接する鋼管杭鉄筋 コンクリート防潮壁とのジョイント部に止水ジョイント部材を設置する。鉄筋コンクリー ト防潮壁は、鋼管杭を介して十分な支持性能を有する岩盤に設置する。鉄筋コンクリート 防潮壁と鋼管杭基礎は、鉄筋コンクリート製のフーチングを介した一体構造とする。

なお、敷地東側の鉄筋コンクリート防潮壁区間内に設置する防潮扉1の評価対象断面の 選定については、「5.11.3 防潮堤(鉄筋コンクリート防潮壁)」に記載する。

土層構成に関して,防潮扉2の位置が鋼管杭鉄筋コンクリート防潮堤の評価対象断面① の位置と近接していること,防潮扉2の位置の岩盤上面標高T.P.-9.8~12.3 mに対して, 鋼管杭鉄筋コンクリート防潮堤の評価対象断面①の岩盤上面標高がT.P.-14.6 m と低く なっており,鋼管杭鉄筋コンクリート防潮堤の評価対象断面①のほうが安全側であること を考慮して,土層構成は鋼管杭鉄筋コンクリート防潮堤の評価対象断面①と同じものを使 用する。

防潮扉および鋼管杭鉄筋コンクリート防潮堤評価対象断面位置図を図 5.11.7-1,防潮 扉2断面位置図を図 5.11.7-2,構造図を図 5.11.7-3に示す。

図 5.11.7-1 防潮扉および鋼管杭鉄筋コンクリート防潮堤評価対象断面位置図

図 5.11.7-<mark>3 構造</mark>図

(1) 評価対象断面の特徴

評価候補断面の特徴を表 5.11.7-1 に示す。

断面	構造的特徴	周辺地質	間接支持 する設備
A-A	・防潮扉2の横断方向断面 である。	第四紀層が薄い(岩盤 上面標高が高い)。	扉体
В-В	・防潮扉2の縦断方向断面 である。	第四紀層が薄い(岩盤 上面標高が高い)。	扉体

表 5.11.7-1 評価候補断面の特徴

A-A断面は,全断面で防潮堤高さが同一であり,断面位置による差異がなく,構造物の対称性を考え評価対象断面は構造物中心位置の断面とする。

B-B断面は、横断方向に躯体形状が変化することから、評価対象断面は最も躯体高さ が高くなる扉体位置の断面とする。

(2) 評価対象断面の選定

防潮扉2は横断方向と縦断方向で構造が異なるため,その両方向を評価対象断面として 選定する。

(3) 断面選定結果

評価対象断面の選定結果を表 5.11.7-2 に,選定した<mark>評価対象断面の位置を図 5.11.7-</mark> <mark>4 に,</mark>評価対象断面図を図 5.11.7-<mark>5</mark> 及び図 5.11.7-<mark>6</mark>に示す。

断面	構造的特徵	周辺地質	間接支持 する設備	評価 断面	選定結果
A-A	・防潮扉2の横断方向 <mark>断面である。</mark>	第四紀層が薄い (岩盤上面標高 が高い)。	扉体	0	<mark>横断方向の代表断面</mark> として <mark>選定する。</mark>
В — В	・防潮扉2の縦断方向 <mark>断面である。</mark>	第四紀層が薄い (岩盤上面標 高が高い)。	扉体	0	<mark>縦断方向の代表断面</mark> として <mark>選定する。</mark>

表 5.11.7-2 評価対象断面の選定結果

5.11.7-4

- 5.12 スロッシングによる貯留堰貯水量に対する影響評価
 - 5.12.1 概要

貯留堰内の貯水に対して,スロッシングによる溢水量が貯留堰貯水量へ与える影響を 評価する。具体的には,余震(S_d-D1)によるスロッシングによって発生する貯留 堰からの溢水量を算定し,貯留堰の有効容量から溢水量を減じた場合における非常用海 水ポンプの取水可能時間が,引き波の継続時間(水位が貯留堰天端を下回る時間約3分) に対して裕度があることを確認する。また,非常用海水ポンプ*位置での水位の時刻歴 を確認し,非常用海水ポンプの取水可能限界水位を下回っていないことを確認する。

貯留堰鳥瞰図を図 5.12-1 に, 貯留堰の平面図及び断面図を図 5.12-2 に示す。また, 引き波の継続時間約 3 分の考え方を図 5.12-3 に示す。

※ 残留熱除去系海水系ポンプ:4機,非常用ディーゼル発電機用海水ポンプ:2機, 高圧炉心スプレイ系ディーゼル発電機用海水ポンプ:1機 詳細位置を図 5.12-4 に示す。

図 5.12-1 貯留堰鳥瞰図

図 5.12-3 引き波の継続時間(約3分)の考え方

図 5.12-4 非常用海水ポンプ詳細位置図
- 5.12.2 検討方針
 - (1) 検討項目1(貯留量が確保されることを確認) 引き波によって水位が貯留堰天端を下回る時間(約3分)と余震(S_d-D1)との重 畳を考慮したスロッシング解析によりに溢水量を算出し、その溢水量を考慮しても貯留量 が確保されていることを確認する。

溢水量の算定においては、水位が貯留堰天端を下回る時間の約3分に対して保守的な結 果を得るため、5分間(300秒間)のスロッシングによる溢水量を算定するものとする。

(2) 検討項目2(取水可能限界水位を下回らないことを確認)

非常用海水ポンプ位置でのスロッシング時の水位時刻歴波形を算出し,余震継続時間内 における貯留堰内水位が非常用海水ポンプの取水可能限界水位(T.P.-5.7 m)を下回っ ていないことを確認する。スロッシング解析時間は,検討項目1と同様に5分間とする。 スロッシング検討フローを図 5.12-5 に示す。

図 5.12-5 スロッシング検討フロー

- 5.12.3 入力地震動
 - (1) 地震動の引き上げ手法

地震動は, 解放基盤 T.P. −370 m からスロッシング解析モデル下端(計画海底面 T.P. −6.89 m) までの引き上げを行う。

解放基盤 T.P.-370 m から地震応答解析モデル底面位置(T.P.-100 m) までの地震動 引き上げは、1次元地震応答解析(SHAKE)により行うものとし、地震応答解析モデル底 面位置からスロッシング解析モデル下端(計画海底面 T.P.-6.89 m) までの第四紀層を 含む範囲の地震動引き上げについては、1次元地震応答解析(FLIP)により行うものとす る。

(2) 地震動の引き上げ位置

余震時のスロッシング解析は貯留堰からの溢水量を評価することが主目的なので、地震 動の引き上げ位置は、貯留堰の設置位置で解析モデル下端まで引上げた地震動を使用する。 貯留堰の設置位置の地層構成は、長周期側成分が卓越する地層構成として、岩盤上面深 度が深く、第四紀層が厚くなる地点を選定する。地震動の引き上げに用いる地層構成の選 定に用いた地層断面位置図及び地層断面図をそれぞれ図 5.12-6 及び図 5.12-7 に示す。 また、それぞれの図に地層構成抽出地点を合わせて示す。選定した地層構成抽出地点の地 震応答解析モデル図を図 5.12-8 に示す。

図 5.12-6 地震動の選定に用いる地層断面位置図

図 5.12-7 (1)

) 地層断面図 (NS-2)

図 5.12-7(2) 地層断面図(EW-1)

図 5.12-7 (3) 地層断面図 (EW-4)

図 5.12-8 地震応答解析モデル図(地層構成抽出地点)

(2) 地盤物性値

検討に用いる地盤の物性値を表 5.12-	1	に示す	- 0
----------------------	---	-----	--------

					原地盤								
	パラメータ			埋戻土			第四系(液状化検討	対象層)			豊浦標準砂	
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1		
物理	密度 () は地下水位以浅	ρ	g/cm^3	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958	
特性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702	
	ポアソン比	ν _{CD}	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333	
変 形	基準平均有効主応力 ()は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6	
特 性	基準初期せん断剛性 ()は地下水位以浅	G _{ma}	kN/m^2	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975	
	最大履歷減衰率	h_{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287	
強度	粘着力	C_{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0	
特性	内部摩擦角	$\phi_{\rm CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30	
	液状化パラメータ	$\phi_{\rm p}$	-	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28	
液	液状化パラメータ	S_1	_	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005	
状化	液状化パラメータ	W_1	_	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06	
特	液状化パラメータ	P_1	_	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57	
性	液状化パラメータ	P_2	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80	
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44	

表 5.12-1(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 5.12-1(2) 地盤の解析用物性値一覧(非液状化層)

				原地盤						
パラメータ				第四系(非	液状化層)		新第三系	於 天		
				Ac	D2c-3	lm	D1c-1	Km	括句	
物理性	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1.47 (1.43)	1.77	1.72–1.03×10 ⁻⁴ · z	2.04 (1.84)	
特性	間隙比	е	_	1.59	1.09	2.8	1.09	1.16	0.82	
	ポアソン比	$\nu_{\rm CD}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z	0.33	
変形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m²	480	696	249 (223)	696	毛め亦でれたりっせべき	98	
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	121829	285223	38926 (35783)	285223	動的変形特性に基づさ z(標高)毎に物性値を 設定	180000	
	最大履歴減衰率	h _{max}	_	0.200	0.186	0.151	0.186	*	0.24	
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z	0.02	
特性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	35.6	23.2+0.0990 · z	35	

z:標高 (m)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
	TP (m)	適用深度	€ TP(m)	ρ		CCD	φ _{cp}	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
番号	Z			(g/cm)	νcd	(kN/m²)	(°)	(m/s)	(kN/m ²)	(kN/m ²)	(kN/m ²)	mG. mK	hmax(-)	νd	(m/s)	
1	10	9.5 ~	~ 10.5	1.72	0, 16	298	24.2	425	310,675	353, 317	504	0, 0	0, 105	0,464	1,640	1,640,000
2	9	8.5 2	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1.644	1,644,000
3	8	7.5 ~	~ 8.5	1.72	0.16	310	24.0	427	313,606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
4	7	6.5 ~	~ 7.5	1.72	0.16	316	23. 9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5 ~	~ 6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5 ~	- 5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5 ~	- 4.5	1.72	0.16	334	23.6	430	318,028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5 ~	~ 3.5	1.72	0.16	340	23. 5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5 ~	- 2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5 ~	~ 1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5 ~	~ 0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5 ~	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5 ~	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5 ~	~ -2.5	1.72	0.16	376	22. 9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5 ~	~ -3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5 ~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5 ~	-5.5	1.72	0.16	394	22.6	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5 ~	~ -6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5 ~	~ -7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.5 ~	~ -8.5	1.72	0.16	412	22. 3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1,656,000
21	-10	-11 ~	~ -9.5	1.72	0.16	418	22. 2	441	334, 507	380, 420	504	0.0	0.110	0.462	1,659	1,659,000
22	-12	-13 ~	~ -11	1.72	0.16	430	22.0	442	336, 026	382, 147	504	0.0	0.110	0.462	1,663	1,663,000
23	-14	-15 ~	~ -13	1.72	0.16	442	21.8	444	339, 074	385, 614	504	0.0	0.111	0.462	1,671	1,671,000
24	-16	-17 ~	~ -15	1.72	0.16	454	21.6	445	340, 603	387, 352	504	0.0	0.111	0.461	1,654	1,654,000
25	-18	-19 ~	~ -17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21 ~	~ -19	1.72	0.16	479	21.2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23 ~	~ -21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1,673,000
28	-24	-25 ~	~ -23	1.72	0.15	503	20.8	452	351, 403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-26	-27 ~	-25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1,664,000
30	-28	-29 ~	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31 ~	~ -29	1.72	0.15	539	20. 2	456	357,650	391, 712	498	0.0	0.114	0.460	1,675	1,675,000
32	-32	-33 ~	~ -31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1,683,000
33	-34	-35 ~	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37 ~	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
30	-38	-39 ~	-37	1.72	0.15	587	19.4	462	367, 124	402,088	498	0.0	0.116	0.459	1,678	1,678,000
27	-40	-41		1.72	0.15	611	19.2	404	271 007	403, 511	498	0.0	0.117	0.459	1,000	1,680,000
20	-44	-45 0	- 41	1.72	0.15	692	19.0	403	275 112	401, 321	490	0.0	0.117	0.459	1,009	1,679,000
30	-46	-47 2	-45	1.72	0.15	635	18.6	468	376, 721	412 599	490	0.0	0.117	0.458	1,670	1,681,000
40	-48	-49 -2	-47	1.72	0.15	647	18.4	470	379,948	416 134	490	0.0	0.118	0.458	1,688	1,688,000
41	-50	-51 0	-49	1.73	0.15	660	18.3	472	385, 416	422, 122	498	0.0	0.118	0. 458	1,696	1,696,000
42	-52	-53 0	51	1.73	0.15	672	18.1	473	387.051	423, 913	498	0.0	0.118	0.458	1, 699	1, 699, 000
43	-54	-55 ~	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1,688,000
44	-56	-57 ~	~ -55	1.73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0.119	0.457	1,692	1,692,000
45	-58	-59 ~	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699	1,699,000
46	-60	-61 ~	~ -59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1,702,000
47	-62	-63 ~	~ -61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1,709,000
48	-64	-65 ~	~ -63	1.73	0.14	744	16. 9	482	401, 921	424, 250	492	0.0	0.120	0.456	1,695	1,695,000
49	-66	-67 ~	~ -65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702	1,702,000
50	-68	-69 ~	~ -67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1,705,000
51	-70	-71 ~	~ -69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
52	-72	-73 ~	-71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1,719	1, 719, 000
53	-74	-75 ~	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-76	-77 ~	-75	1.73	0.14	816	15.7	492	418, 771	442,036	492	0.0	0.122	0.455	1,712	1, 712, 000
55	-78	-79 ~	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81 ~	~ -79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85 ~	~ -81	1.73	0.14	852	15.1	496	425, 608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	-90 ~	~ -85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95 ~	~ -90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101 ~	~ -95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	-108 ~	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733	1,733,000
62	-112	-115 ~	~ -108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1,737	1, 737, 000
63	-118	-122 ~	-115	1.73	0.13	1,070	11.5	524	475, 016	483, 575	486	0.0	0.127	0.451	1,754	1, 754, 000
64	-126	-130 ~	122	1.73	0.13	1, 118	10.7	530	485,957	494, 713	486	0.0	0, 128	0.450	1.758	1, 758, 000

表 5.12-1 (3) 地盤の解析用物性値一覧(新第三系 Km 層)

- (3) 地震動の選定
 - (a) 地震動の選定概要

スロッシング解析に用いる地震動の選定は、S_d-D1に対して地盤物性のばらつき を考慮したものとする。また、スロッシング波高は入力する地震動の速度応答スペク トルと比例する^{*}。このため、スロッシング解析モデル下端(計画海底面 T.P.-6.89 m)における速度応答スペクトルを比較し、貯留堰水面の1次固有周期を考慮した地震 動の選定を行う。

※ 容器構造設計指針・同解説(日本建築学会)より

(b) 地震動の選定に用いる地盤物性
 地震動の選定において考慮する地盤物性は表 5.12-2に示す6ケースとする。

ケース番号	1	2	3	4	5	6
ケース名称	V s 平均値 (液状化パラ メータ適用)	V s +1 σ (液状化パラ メータ適用)	V s -1 σ (液状化パラ メータ適用)	豊浦標準砂	V s 平均値 (非液状化)	V s +1σ (非液状化)
地盤物性の 考え方	原地盤に基づ く液状化強度 特性を用いた 解析ケース(基 本ケース)	地盤物性のば らつきを考慮 (+1σ)し た解析ケース	地盤物性のば らつきを考慮 (-1σ)し た解析ケース	地盤を強制的 に液状化させ ることを仮定 した解析ケー ス	原地盤におい て非液状化の 条件を仮定し た解析ケース	地盤物性のば らつきを考 (+1σ)し て非液状化の 条件を仮定し た解析ケース
液状化強度 特性の設定	原地盤に基づ く液状化強度 特性(標準偏 差を考慮)	原地盤に基づ く液状化強度 特性(標準偏 差を考慮)	原地盤に基づ く液状化強度 特性(標準偏 差を考慮)	敷地に存在し ない豊浦標準 砂に基づく液 状化強度特性	液状化パラメ ータを非適用	液状化パラメ ータを非適用

表 5.12-2 地震動の選定において考慮する地盤物性検討ケース

(c) 水面の1次固有周期の算出

加振方向,水槽形状を考慮した3ケースについて,水面の1次固有周期を算出する。 算出には以下の式*を用いる。検討に用いた3ケースの水槽形状の考え方を図5.12-9 に、1次固有周期算定結果を表5.12-3に示す。

$$T_{s} = \frac{2\pi}{\omega}$$
$$\omega^{2} = \sqrt{\frac{5}{2}} \cdot \frac{g}{l} \cdot \tanh\left(\sqrt{\frac{5}{2}} \cdot \frac{h}{l}\right)$$

ここに、

T_s:1次固有周期

ω :1次固有円振動数

g :重力加速度

l : 水槽の幅の半分(貝代10 cm 考慮)

h :水深

※ 容器構造設計指針・同解説(日本建築学会)より

(a) 平面図

(b) 断面図

図 5.12-9 水槽形状の考え方

表 5.12-3 1 次固有周期算定結果

項目	記号	単位	ケースA	ケースB	ケースC	数式
水槽の幅	21	m	77.53	62.46	7.25	
	l	m	38.77	31.23	3.63	
貯留堰天端		T.P.m	-4.90	-4.90	-4.90	
底面		T.P.m	-6.89	-6.89	-7.75	
水深	h	m	1.99	1.99	2.85	
重力加速度	g	m/s ²	9.80665	9.80665	9.80665	
固有円振動数の2乗	ω^2	1/s	0.0324	0.0499	3.6201	$(5/2)^{0.5*g/l*tanh((5/2)^{0.5*h/l})}$
固有円振動数	ω	1/s	0.180	0.223	1.903	$(\omega^2)^{0.5}$
固有周期	\overline{T}_{S}	s	34.91	28.14	3.30	round($2\pi/\omega$,2)

(d) 地震動の選定

スロッシング解析モデル下端(計画海底面 T.P.-6.89 m)における速度応答スペクトル(水平方向)を図 5.12-10に示す。貯留堰水面の1次固有周期を考慮し,⑤V s 平均値(非液状化)をスロッシング解析に用いる入力地震動として選定する。

図 5.12-10(1) 速度応答スペクトル(水平方向)

図 5.12-10(2) 速度応答スペクトル(水平方向) 【抜粋】

5.12-12

(d) 入力地震動

計画海底面 T.P.-6.89 m における S_d-D1 (V s 平均値(非液状化))の加速度 時刻歴(水平方向及び鉛直方向)を図 5.12-11 示す。

S_d-D1の水平成分は方向を持たないため,護岸法線直角(東西)方向に加振した場合と護岸法線平行(南北)方向に加振した場合の2ケースに対してスロッシング解析を実施する。

(b) 加速度応答スペクトル

図 5.12-11(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(水平方向) (S_d-D1, V s 平均値(非液状化))

5.12-13

(b) 加速度応答スペクトル

図 5.12-11(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(鉛直方向)
 (S_d-D1, Vs平均値(非液状化))

- 5.12.4 検討ケースの選定
 - (1) 初期水位

スロッシング解析の初期水位は,貯留堰天端高である T.P.-4.9 mに加え,引き波が継続する間も非常用海水ポンプによる取水が行われた場合の水位についても初期水位として検討するものとする。考慮する非常用海水ポンプによる取水時間は,引き波の継続時間を保守的に考慮した 5 分間とする。

5 分間非常用海水ポンプによる取水が行われた場合の水位は以下のとおり。解析に用いる初期水位を表 5.12-4 に示す。

5分間非常用海水ポンプによる

取水が行われた場合の水位 = 貯留堰天端高 - 5分間の水位低下量
= T.P. -4.9 m - 0.115 m
= T.P. -5.015 m
$$\rightarrow$$
 T.P. -5.1 m

表 5.12-4 初期水位

	初期水位	備考		
ケース1	T.P.−4.9 m	貯留堰天端高		
ケース2	TP — 5.1 m	5分間非常用海水ポンプによる		
	1.1. 5.1 m	取水が行われた場合の水位		

(2) 有効容量

検討に用いる貯留堰の有効容量と運転継続可能時間の関係を表 5.12-5 に示す。

A 6 H 6 17 H E C	
有効容量	2,378 m^3
運転継続可能時間	33 分

表 5.12-5 有効容量と運転継続可能時間

5.12.5 解析条件

スロッシング解析は、オープンソースの有限体積法(Finite Volume Method) (以下 「FVM」という)解析コード OpenFOAM を用いた三次元解析を実施する。

本検討では、VOF法による2相流解析ソルバーinterFOAMを用いる。計算メッシュ全体 に加速度時刻歴を入力することにより、計算領域内部の気相(空気)および液相(海水) の挙動を解析する。

モデル化範囲及び解析条件を表 5.12-6 に示す。また,水位時刻歴波形の抽出位置 (①~⑬)を図 5.12-12 に,スロッシング解析モデルを図 5.12-13 に示す。

モデル化範囲	● 貯留堰からポンプ室まで
溢水量	● 取水口前面に設置する貯留堰天端高さ(T.P4.9 m)以上に上昇し, 貯留堰 より外側に溢れた水を溢水量として計算。
初期水位	 T.P4.9 m (貯留堰天端高) T.P5.1 m (5分間非常用海水ポンプによる取水が行われた場合の水位)
計算時間	 5 分間(300 秒間)(引き波を継続時間約3分を保守的に考慮) 地震動による加振(余震継続時間139.28 秒)終了後も解析を継続する。
解析コード	 OpenF0AM (v1706) オープンソースの流体解析ソフトウェアであり、実験結果等との比較を行い、 スロッシング現象を精度よく計算できることが確認されている。
水位抽出位置	 非常用海水ポンプ部での水位変動を確認するために、非常用海水ポンプ(残留熱除去系海水ポンプ)位置である①~④の4点を水位抽出位置とする。 貯留堰天端を超える様子を確認するために、貯留堰東端、北端及び南端の代表点として⑤~⑦の3点(各壁の中央部)を水位抽出位置とする。
その他	 ・ 貯留堰内部の構造物(カーテンウォールやその支柱,スクリーンなど)は溢水 量を保守的に考慮するため、モデル化しない。 ・ 格子サイズは Dx = 25cm, Dy = 25cm, Dz = 20cm を基本とする。 ・ 貯留堰鋼管矢板(φ2,000)は、モデル簡略化のため貯留堰内側の壁面形状を 直線(隅角部は曲線)としてモデル化する。

表 5.12-6 モデル化範囲及び解析条件

(a) 平面

(b) 東西方向断面

- 5.12.6 解析結果 (追而)
 - (1) 初期水位=T.P.-4.9 m (貯留堰天端)
 - (a) 検討項目1(貯留量が確保されることを確認)

スロッシングによる5分間(300秒)の溢水量を算定する。

(b) 検討項目2(取水可能限界水位を下回らないことを確認)

スロッシングにより変動する、非常用海水ポンプ位置における水位を抽出する。

- (2) 初期水位=T.P.-5.1 m (引き波時5分間非常用海水ポンプ取水後の水位)
 - (a) 検討項目1 (貯留量が確保されることを確認)

スロッシングによる5分間(300秒)の溢水量を算定する。

(b) 検討項目2(取水可能限界水位を下回らないことを確認)

スロッシングにより変動する、非常用海水ポンプ位置における水位を抽出する。

- 5.12.7 検討結果まとめ (追而)
 - (1) 貯留量の確保について(溢水量の評価)

スロッシングによる5分間(300秒)の溢水量を算定し、非常用海水ポンプが引き波 継続時間中に運転可能となる必要貯留量を満足することを確認する。

(2) 取水可能限界水位を下回らないことの確認について

スロッシングにより低下する水位が非常用海水ポンプ位置においてポンプ取水可能 限界水位を上回っていることを確認する。 5.17 津波に対する止水機能を有する施設の評価について

5.17.1 概要

取水構造物に設置される津波防護に関する施設としては,取水路点検用開口部浸水防止 蓋,海水ポンプグランドドレン排出口逆止弁,取水ピット空気抜き配管逆止弁があり,これ らは耐震 S クラスであるとともに,地震時・津波時においても止水機能が要求される設備で ある。

取水構造物は、V-2-1-4「重要度分類及び重大事故等対処施設の施設区分の基本方針」に 示すとおり、耐震Sクラスの設備が設置される間接支持構造物であり、地震時の止水機能を 保持する設計としている。

これらの津波に対する止水機能を有する施設の基準上の位置付け並びに耐震及び強度評価に係る図書構成を表 5.17-1 に示す。また、取水構造物頂版の強度評価を「5.17.2 取水構造物頂版の強度評価」に示す。

_			耐震設計			耐津波設計	
施設・設備	施設区分	技術基準規則の解釈 (第5条 地震による損傷の 防止)	機能維持の基本方針 (V-2-1-9)	評価記録記載箇所	技術基準規則の解釈 (第6条 津波による損傷の防 止)	津波又は溢水への配慮が必要な 施設の強度計算書の方針 (V-3-別添 3-1)	評価記録記載箇所
取水構造物 (頂版)	屋外重要土木構造物 (律波防護施設及び浸水防止 設備の間接支持構造物)		止水性の維持が要求される施設 が取り付けられた、維物, 構築 物及び七木構造物で、操物, 構築 物及び七木構造物の窒など, 止 水性の維持が要求される前位に っても、基準地震動る。によ るいにも、基準地震動る。によ あれに伴い生じる荷重又は 筋力に容して、おおむな弾性状 筋に留法ることを計算により確 認った。	V-2-2-7 取水構造物の耐震性 についての計算書	記載なし	(頂版の津波に対する強度評価 は、補足説明資料にて実施。)	発電用原子炉施設の自然現象等 による損傷の防止に関する説明 書に係る補足説明資料 工事計画に係る補足説明資料 (津波) 6.17.2 取水構造物頂版の強度 評価
取水路点検用開口 部浸水防止蓋	浸水防護施設 (浸水防止設備)	1 第1項の規定は、設置許 回基準規則第4条第1項の規 だに出る設置中の企業にし、 だに出ると設置中の企業に ただに基づき、設置非可 確認し 推知象施設が、設置許可基準 規則第4条第2項の地震力に 対し、施設の披露合業持して いること又は機能的変法の していめことをいう。	地震時及び地震後において、防 聴客を設備を設置する維め及び 医面に、港波に伴言う後不による 影響を与えないことを目的として、基準地震動S。による由き 力に対し、「3」構造強度上の 前限」に示す構造強度にの 加え、主要な構造体の施界的に 設置する材料については、看意	V-2-10-2-5-1 取水路点検用開口部 良水防止蓋の耐震性 についての計算書		津波後の再使用性を考慮し, 主 要な構造的村の構造健全性を維 持する設計とする。	V-3-別添 3-5-1 取水路点検用開口部浸水防止蓋 の強度計算書
海水ポンプグラン ドドレン排出口逆 止弁	浸水防護施設 (浸水防止設備)	2 第2項の規定は、設置許 回基準規則第4条第3項の規 だ記書かき設置中の確認し だ記書かき、設置中の強調し が設計方針に進るき、 要加強則 要加設が、設置許可基準規則 第4条第3項の基準地震動に する維持しているにとれば精 道強度を維持しているいとれば構 道強度を確応しているいとれば構	な漏えいが生じない変形にとど めることで、止水性を維持する 設計とする。 具体的には、止水性の維持が要 まかれる施設の母村部について は、基準地震動 S、による地震 力に伴い生じる荷重又に応力に 対して、おおむ和単仕状能に留 まることを計算により確認す	V-2-10-2-6-1 海水ボンブグランド ドレン排出口逆止弁 の耐酸性についての 計算書	1 現の未の税にに,成首計申載 準規則第5条の規定によび首批可整 許可で確認した設計方針に基づ 者、基準準律(設計方針に基づ 第5条に規定する基準律確規則 第5条に規定する基準律権規則 第5条に周につしたり設計基準 対象施設の安全性を損なわないよ 立,詳技防護施設,浸大防止設備 の保護設備の設置等の指置 及び律波器規設備の設置等の指置 及び律波器規設備の設置等の指置 2017	津波後の再使用性を考慮し、主 要な構造的村の構造健全性を維 持する設計とする。	V-3-別添 3−6−1 海水ポンプグランドドレン排出 口逆止弁の強度計算書
取水ビット空気抜 き配管逆止弁	浸水防護施設 (浸水防止設備)	ى م	る。加えて、止水性の維持が要 来される施設の取付部及び開止 影響のつち、開設が上じる可能 性のある境界部に設置した材料 については、境界部において基 準由震動S、による地震力に年 い生じる相対変位重が、材料の 試験により確認した止水性が維 非なっきる変位量素高いなしと	V-2-10-2-6-2 取水ビット空気抜き 配管逆止弁の耐震性 についての計算書	タぼていてるしい男兄でんれつの 繊縮や維持しんこめいでやこう。	津波後の再使用性を考慮し、主要な構造部材の構造能全性を維持する設計とする。	V-3-別添3-6-2 取水ビット空気抜き配管逆止弁 の強度計算書

表 5.17-1 津波に対する止水機能を有する施設の評価について

5.17.2 取水構造物頂版の強度評価

頂版を含めた取水構造物は、V-2-2-7「取水構造物の耐震性についての計算書」におい て、地震時に止水性を有することを確認している。一方、取水路点検用開口部浸水防止蓋 は、取水路頂版(T.P.+3.3m)に、海水ポンプグランドドレン排出口逆止弁及び取水ピット 空気抜き配管逆止弁は、取水ピット頂版(T.P.+0.8m)に上載される構造物であり、これ等 取水構造物の頂版には、津波の突き上げ荷重が作用する。このことから、取水構造物頂版二 ついて津波時の強度評価の必要性について検討を行う。取水構造物の断面図を図 5.17-1 に 示す。

(1) 検討方針

津波荷重が取水構造物の頂版に作用することから,地震時に躯体に作用する荷重(地震時の慣性力)と津波時に躯体に作用する荷重(津波荷重+余震荷重(S_d-D1の慣性力))を 比較する。

(2) 評価内容

地震時及び津波時の余震の慣性力については,取水構造物横断モデルにおいて,頂版に発 生している加速度と重量を用いて算定する。慣性力を算出する際は,地震時に鉛直方向の慣 性力が大きくなる位置(横断面①においては頂版中央部。横断面②においては海水ポンプ設 置位置)にて単位奥行当たりの慣性力を算定する。慣性力の算出に用いる震度を表 5.17-2 に示す。

表 5.17-2 取水構造物頂版に作用する震度

追而

津波荷重については、各浸水防止設備に作用する荷重算定方法を用いて以下の式により 算出する。津波荷重としては、突き上げ津波荷重とし、取水ピットにおける入力津波高さ (T.P.+19.2m)に設計上の裕度*を考慮した津波荷重水位(T.P.+22.0m)の静水頭圧及び 流速 2.0m/sの動的荷重に裕度を持たせた、津波高さ T.P.+22.5mの津波荷重を考慮する。

 $P_z = q_z \cdot A$

 $q_z = \rho_w \cdot g \cdot (h - z)$

ここで, P_z:津波荷重 (kN)

qz:津波波圧(kPa)

- A:作用面積(m²)
- ρ_w:海水の単位体積重量(t/m³)
- g:重力加速度 (m/s²)
- h:津波レベル (m)
- z:検討部位レベル(m)

* 参照する裕度(0.65m)以上となるように設定する。

(3) 評価結果

追而

防潮堤(鋼製防護壁)における止水機構(1次止水機構)の構造概要について

防潮堤(鋼製防護壁)と取水構造物(取水路)の間には,止水版が可動できるような止水機構を 設置する。1次止水機構は,止水版の底面と側面に設置した水密ゴムにて水密性を確保する構造と する。水密ゴムは,摩擦抵抗を低減し追従性を向上させるため,表面ライニング(樹脂)を施工す る。止水機構の構造図を図1に示す。

以上のような止水機構により、止水版が受ける津波波力が取水構造物に伝達しない構造とする。

図1(2) 止水機構断面図及び拡大図

図1(3) 止水版,底面・側面水密ゴム拡大図

6.5.1 防潮扉の設計に関する補足説明

6.5.1.1 防潮扉の耐震計算書に関する補足説明

目次

1.	概	要
2.	基	本方針
2.	1	位置
2.	. 2	構造概要4
2.	3	評価方針・・・・・・9
2.	. 4	適用基準
2.	5	評価対象断面の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.	6	評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	地	震応答解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	1	評価対象断面・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	. 2	解析方法
3.	3	荷重及び荷重の組合せ・・・・・・19
3.	. 4	入力地震動
3.	5	解析モデル及び諸元・・・・・・38
3.	6	解析ケース・・・・・ 50
4.	屝	体及び戸当りの耐震評価・・・・・・52
4.	1	評価対象部位
4.	2	許容限界
4.	3	評価方法
4.	. 4	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	鉄	筋コンクリート防潮壁の耐震評価・・・・・・63
5.	. 1	評価対象部位 · · · · · · · · · · · · · · · · · · ·
5.	. 2	解析方法
5.	3	許容限界 · · · · · · · · · · · · · · · · · · ·
5.	. 4	評価方法
5.	5	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、防潮扉が設計用地震力にして十分な構造健全性及び止水性を有していることを確認 するものである。

防潮扉に要求される機能の維持を確認するに当たっては,地震応答解析に基づく構造部材の健 全性評価,構造部材全体の安定性評価,構造物の支持性能評価及び構造物の変形性評価により行 う。

- 2. 基本方針
- 2.1 位置

防潮扉1を海水ポンプエリア,防潮扉2を敷地南側に設置する。 防潮扉の設置位置図を図2-1に示す。

図 2-1 防潮扉の設置位置図

2.2 構造概要

(1) 防潮扉1

防潮扉は、スライド式のゲートで扉体、戸当り、駆動装置、間接支持構造物(鉄筋コン クリート防潮壁)から構成されている。扉体は鋼製の構造であり、荷重を受ける受圧部にス キンプレートがあり、主桁、縦補助桁、端桁により架構が構成され、スキンプレートに掛る 荷重を架構が受ける構造である。扉体で受けた荷重については、扉体の支圧板から支承部で ある戸当りを介して間接支持構造物が受ける構造である。

扉体の構造は、鋼製の桁及びスキンプレートを組合せた構造であり、鉄筋コンクリート防 潮壁の躯体で保持している。戸当りは、H形鋼を組合せた構造である。

間接支持構造物は、鉄筋コンクリート防潮壁で構成され、鉄筋コンクリート造の構造物で あり、隣接する鉄筋コンクリート防潮壁との境界部に止水ジョイント部材を設置する。鉄筋 コンクリート防潮壁は、地中連続壁基礎を介して十分な支持性能を有する岩盤に設置する。 鉄筋コンクリート防潮壁と地中連続壁基礎は、鉄筋コンクリート製のフーチングを介して一 体構造とする。

防潮扉1の正面図及び平面図を図2-2,側面図を図2-3に示す。

注:寸法は mm を示す。

図 2-2 防潮扉1 正面図及び平面図

注:寸法はmmを示す。

図 2-3 防潮扉 1 側面図

(2) 防潮扉 2

防潮扉は、スライド式のゲートで扉体、戸当り、駆動装置、間接支持構造物(鉄筋コン クリート防潮壁)から構成されている。扉体は鋼製の構造であり、荷重を受ける受圧部にス キンプレートがあり、主桁、縦補助桁、端桁により架構が構成され、スキンプレートに掛る 荷重を架構が受ける構造である。扉体で受けた荷重については、扉体の支圧板から支承部で ある戸当りを介して間接支持構造物が受ける構造である。

扉体の構造は、鋼製の桁及びスキンプレートを組合せた構造であり、鉄筋コンクリート防 潮壁の躯体で保持している。戸当りは、H形鋼を組合せた構造である。

間接支持構造物は,鉄筋コンクリート防潮壁で構成され,鉄筋コンクリート造の構造物で あり,隣接する鋼管杭鉄筋コンクリート防潮壁との境界部に止水ジョイント部材を設置す る。鉄筋コンクリート防潮壁は,鋼管杭を介して十分な支持性能を有する岩盤に設置する。 鉄筋コンクリート防潮壁と鋼管杭基礎は,鉄筋コンクリート製のフーチングを介して一体構 造とする。

防潮扉2の正面図及び平面図を図2-4,側面図を図2-5,鉄筋コンクリート防潮壁の構造図を図2-6に示す。

(単位:mm)

図 2-4 防潮扉 2 正面図及び平面図

2.3 評価方針

防潮扉は、Sクラス施設である浸水防護施設に分類される。

評価方針として,防潮扉1は扉体及び戸当りの評価を行う。

防潮扉2は、構造上の特徴の違いから扉体及び戸当り、鉄筋コンクリート防潮壁に分けて評価を行う。また、扉体及び戸当り、並びに鉄筋コンクリート防潮壁の評価においては、地震応答解析により得られる応答値を用いて、各々の耐震評価を行う。

(1) 扉体及び戸当り

評価対象部位における発生応力が許容限界以下であることを確認する。

戸当りの耐震評価は、H形鋼及びコンクリートに発生する応力を算定し、許容限界との比較を行う。耐震評価のフローを図2-6に示す。

注記 *:構造部材の健全性評価を実施することで、「構造強度を有すること」 及び「有意な漏えいを生じないこと」を満足することを確認する。

図 2-6 防潮扉(扉体及び戸当り)の耐震評価フロー

- (2) 鉄筋コンクリート防潮壁
 - a. 防潮扉1
 防潮扉1における鉄筋コンクリート防潮壁の耐震評価は、V-2-10-2-2-2-1「防潮堤
 (鉄筋コンクリート防潮壁)の耐震性についての計算書」に示す。
 - b. 防潮扉2

防潮扉2における鉄筋コンクリート防潮壁の耐震評価は,設計基準対象施設として 表 2-1 の鉄筋コンクリート防潮壁(防潮扉2)の評価項目に示すとおり,構造部材の 健全性評価,基礎地盤の支持性能評価及び構造物の変形性評価を行う。

評価方針	評価項目	部位	評価方法	許容限界
構造強度	構造部材の	鋼管杭	発生応力が許容限界以	短期許容応力度
を有する	健全性		下であることを確認	
こと		鉄筋コンクリート	発生応力が許容限界以	短期許容応力度
			下であることを確認	
		鋼製アンカー	発生応力が許容限界以	短期許容応力度
			下であることを確認	
		鋼製防護部材	発生応力が許容限界以	短期許容応力度
			下であることを確認	
	基礎地盤の	基礎地盤	発生応力が許容限界以	極限支持力*
	支持性能		下であることを確認	
有意な漏	構造部材の	鋼管杭	発生応力が許容限界以	短期許容応力度
えいを生	健全性		下であることを確認	
じないこ		鉄筋コンクリート	発生応力が許容限界以	短期許容応力度
と			下であることを確認	
		鋼製アンカー	発生応力が許容限界以	短期許容応力度
			下であることを確認	
		鋼製防護部材	発生応力が許容限界以	短期許容応力度
			下であることを確認	
	構造物の	止水ジョイント部	発生変形量が許容限界	有意な漏えいが
	変形性	材	以下であることを確認	生じないことを
				確認した変形量

表 2-2	鉄筋コンク	・リー	ト防潮壁	(防潮扉2)	の評価項目
~~~ -			· // · // · · · ·		

注記 *:妥当な安全余裕を考慮する。

構造部材の健全性評価については,部材に発生する応力が許容限界以下であること を確認する。基礎地盤の支持性能評価については,基礎地盤に作用する発生応力が極限 支持力に基づく許容限界以下であることを確認する。構造物の変形性評価については, 止水ジョイント部材の変形量を算定し,試験により確認した許容限界以下であることを 確認する。

鉄筋コンクリート防潮壁(防潮扉2)の耐震評価フローを図2-7に示す。



- 注記 *1:構造部材の健全性評価を実施することで,表2-2に示す「構造強度を有すること」 及び「有意な漏えいを生じないこと」を満足することを確認する。
  - *2:基礎地盤の支持性能評価を実施することで、表 2-2 に示す「構造強度を有すること」を満足することを確認する。
  - *3:構造物の変形性評価を実施することで、表 2-2 に示す「有意な漏えいを生じないこと」を満足することを確認する。

図 2-7 鉄筋コンクリート防潮壁(防潮扉 2)の耐震評価フロー

# 2.4 適用基準

表 2-2 に適用する規格,基準類を示す。

表 2-2	適用する規格.	基準等
10 0		

項目		目	適用する規格,基準等	備考
使用材料および材料定数			・コンクリート標準示方書 〔構造性能照査編〕(2002 年)	
荷重及び荷重の組み合わせ			・コンクリート標準示方書 〔構造性能照査編〕(2002 年)	<ul> <li>・永久荷重+偶発荷重+従</li> <li>たる変動荷重の適切な組</li> <li>合せを検討</li> </ul>
	扉体(鋼材)		<ul> <li>・ダム・堰施設技術基準(案)</li> <li>〔基準解説編・マニュアル</li> <li>編〕(平成25年6月)</li> </ul>	
	コンクリート		<ul><li>・コンクリート標準示方書</li><li>〔構造性能照査編〕(2002 年)</li></ul>	・曲げに対する照査は,発
	鎁	管杭,鉄筋	<ul> <li>・道路橋示方書・同解説 Ⅳ下</li> <li>部構造編(平成14年3月)</li> </ul>	生応力が,短期許容応力 度以下であることを確認
許容		鋼製アンカー	<ul> <li>・各種合成構造設計指針・同解</li> <li>説(2010年11月)</li> </ul>	<ul> <li>・せん断に対する照査は、</li> <li>発生応力または発生せん</li> </ul>
76249	公司告旧	鋼材, 接合ボルト	・道路橋示方書・同解説 IV下 部構造編(平成14年3月)	断力が,短期許容応力度 または短期許容せん断応
		プ	<ul> <li>・津波漂流物対策施設設計ガイ ドライン(案)((財)沿岸技術研 究センター,(社)寒地港湾技 術研究センター,平成21年)</li> <li>・日本工業規格(JIS G 3549- 2000)</li> </ul>	力度以下であることを確 認
地震応答解析			<ul> <li>・JEAG4601-1987</li> <li>・原子力発電所屋外重要土木構 造物の耐震性能照査指針・マ ニュアル(2005年)</li> </ul>	<ul> <li>・有限要素法による2次元</li> <li>モデルを用いた時刻歴非</li> <li>線形解析</li> </ul>

## 2.5 評価対象断面の方向

防潮扉2は横断方向と縦断方向で構造が異なるため,その両方向を評価対象断面方向として 選定する。



図 2-8 評価対象断面位置図

2.6 評価対象断面の選定
 評価対象断面の選定結果を表 2-3 に示す。

表 2-3 評価対象断面の選定結果

断面	構造的特徴	周辺地質	間接支持 する設備	評価 断面	選定結果
A-A	<ul> <li>防潮扉2の横断方向</li> <li>断面である。</li> </ul>	第四紀層が薄い (岩盤上面標高 が高い)。	扉体	0	横断方向の代表断面 として選定する。
В — В	<ul> <li>防潮扉2の縦断方向</li> <li>断面である。</li> </ul>	第四紀層が薄い (岩盤上面標 高が高い)。	扉体	0	縦断方向の代表断面 として選定する。
3. 地震応答解析

防潮扉 1 の地震応答解析については、V-2-10-2-2-2-1「防潮堤(鉄筋コンクリート防潮壁)の耐震性についての計算書」に示す。

防潮扉2の地震応答解析について説明する。

3.1 評価対象断面

評価断面位置図を図 3-1 に評価対象断面を図 3-2 に示す。



図 3-1 評価対象断面位置図



図 3-2 (1) 評価対象断面図 (A-A断面)



6.5-16

#### 3.2 解析方法

地震応答解析は、V-2-1-6「地震応答解析の基本方針」のうち、「2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答計算では、地震時における地盤の有効応力の変化に伴う影響を考慮できる有効応力 解析を実施する。有効応力解析に用いる液状化強度特性は、敷地の原地盤における代表性及び 網羅性を踏まえた上で保守性を考慮して設定することを基本とする。

地中土木構造物への地盤変位に対する保守的な配慮として,地盤を強制的に液状化させるこ とを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在 しない豊浦標準砂に基づく液状化強度特性)を設定する。

上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤の非液 状化の影響を考慮する場合は,原地盤において非液状化の条件を仮定した解析を実施する。

図 3-3 に鉄筋コンクリート防潮壁の地震応答解析フロー図を示す。

地震応答解析には,解析コード「FLIP Ver. 7.3.0_2」を使用する。なお,解析コードの検 証及び妥当性確認の概要については,別紙「計算機プログラム(解析コード)の概要」(資料 番号:付録 24)に示す。



図 3-3 鉄筋コンクリート防潮壁の地盤応答解析フロー

## 3.2.1 構造部材

構造部材は、線形はり要素でモデル化する。

### 3.2.2 地盤

V-2-1-3「地盤の支持性能に係る基本方針」に示す有効応力解析用地盤物性値に基づき, 地盤の有効応力の変化に応じた地震時挙動を考慮できるモデルとする。

#### 3.2.3 減衰特性

時刻歴非線形解析における減衰特性については、固有値解析にて求められる固有振動数 に基づく Rayleigh 減衰を考慮する。 3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは、V-2-1-9「機能維持の基本方針」に基づき設定する。

- 3.3.1 耐震安全性評価上考慮する状態 防潮扉の地震応答解析において、地震以外に考慮する状態を以下に示す。
  - (1) 運転時の状態
     発電用原子炉施設が運転状態にあり、通常の条件下におかれている状態。ただし、運転
     時の異常な過渡変化時の影響を受けないことから考慮しない。
  - (2) 設計基準事故時の状態設計基準事故時の影響を受けないことから考慮しない。
  - (3) 設計用自然条件 積雪及び風荷重を考慮する。
  - (4) 重大事故等時の状態重大事故等時の状態の影響を受けないことから考慮しない。
- 3.3.2 荷重

防潮扉の地震応答解析において、考慮する荷重を以下に示す。

- (1) 固定荷重 固定荷重として,扉体自重を考慮する。
- (2) 積載荷重積載荷重として,機器荷重を考慮する。
- (3) 地震荷重基準地震動S。による荷重を考慮する。
- (4) 積雪荷重

積雪荷重については、「建築基準法施行令第86条」及び「茨城県建築基準法施工細則 第16条の4」に従って設定する。積雪の厚さ1 cm あたりの荷重を20 N/m²/cm として、 積雪量は30 cm としていることから積雪荷重は600 N/m²であるが、地震時短期荷重とし て積雪荷重の0.35 倍である0.21 kN/m²を考慮する。

積雪荷重は構造物上面に付加質量として考慮する。

(5) 風荷重

風荷重として,風速30 m/sの風圧力を考慮する。

3.3.3 荷重の組合せ

荷重の組合せを表 3-1 に示す。

種別		荷重		算定方法			
		躯体自重	0	・設計図書に基づいて、対象構造物の体積に材料の密度を			
	告呋去		Ŭ	乗じて設定			
	吊时与	常時考 慮荷重 土被り荷重		・防潮扉2の荷重を考慮する			
	忠刊里			・土被りはないため考慮しない			
永久		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない			
荷重		静止土圧	0	・常時応力解析により設定			
				・地下水位に応じた静水圧として設定			
		外小庄	$\cup$	・地下水の密度を考慮			
		内水圧	_	・内水はないため考慮しない			
		雪荷重	0	・雪荷重を考慮			
				・風荷重以外には発電所の立地特性及び構造物の配置状況			
		風荷重以外	—	を踏まえると、偶発荷重(地震荷重)と組み合わせるべき			
変動	荷重	ते. म		変動荷重はない			
		風荷重	0	<ul> <li>・風荷重を考慮</li> </ul>			
偶発	荷重	水半地震動	$\bigcirc$	・基準地震動S。による水平・鉛直同時加振			
(抽霍	高玉(荷重)	鉛直地震動	0	・躯体,動土圧を考慮			
(20)12	而五/	動水圧	—	・自由水はないため動水圧は考慮しない			

表 3-1 荷重の組合せ



#### 3.4 入力地震動

入力地震動は、V-2-1-6「地震応答解析の基本方針」のうち「2.3 屋外重要土木構造物」 に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動算定の概念図 を図 3-5 に,入力地震動の加速度時刻歴波形及び加速度応答スペクトルを図 3-6 に示す。

入力地震動の算定には,解析コード「k-SHAKE Ver. 6.2.0」を使用する。解析コードの検 証及び妥当性確認の概要については,別紙「計算機プログラム(解析コード)の概要」(資料 番号:付録 39)に示す。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認する。 断層モデル波である $S_s-11 \sim S_s-22$ については、特定の方向性を有することから、構造 物の評価対象断面方向を考慮し、方位補正を行う。具体的にはNS方向およびEW方向の地震動 について構造物の評価断面方向の成分を求め、各々を足し合わせることで方位補正した地震動 を設定する。



図 3-5 入力地震動算定の概念図

MAX 608  $cm/s^2$  (53.56s)





図 3-6(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-D1)

MAX 487 cm/s² (44.25s)



(a) 加速度時刻歷波形



図 3-6(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-D1)

MAX 434  $cm/s^2$  (26.04s)





図 3-6 (3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-11)

MAX 506  $cm/s^2$  (25.03s)



(a) 加速度時刻歷波形



図 3-6(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-11)

MAX 554  $cm/s^2$  (28.2s)





図 3-6 (5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-12)

MAX 456  $cm/s^2$  (27.83s)



(a) 加速度時刻歷波形



図 3-6(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-12)

MAX 561  $cm/s^2$  (25.42s) 1200 1000 800 600 加速度 (cm/≥⁵) 400 200 0 www.www -200 -400 -600 -800 -1000 -1200 0 50 100 150 200 時間(s)

(a) 加速度時刻歷波形



図 3-6(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-13)

MAX 452 cm/s² (25.05s)



(a) 加速度時刻歷波形



図 3-6(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-13)

MAX 329  $cm/s^2$  (29.39s)





図 3-6 (9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-14)

MAX 395  $cm/s^2$  (28.99s)



(a) 加速度時刻歷波形



図 3-6(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-14)

MAX 694  $cm/s^2$  (61.64s)





図 3-6(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-21)



(a) 加速度時刻歷波形



図 3-6(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向:S_s-21)

MAX 689  $cm/s^2$  (69.95s)





図 3-6 (13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-22)



(a) 加速度時刻歷波形



図 3-6(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-22)

MAX 574 cm/s² (8.35s)





図 3-6(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (水平方向: S_s-31)

MAX 241 cm/s² (7.83s)







図 3-6(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (鉛直方向: S_s-31)

- 3.5 解析モデル及び諸元
  - 3.5.1 解析モデル
    - (1) 解析領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分に広い領域とする。具体的には、JEAG4601-1987を適用し、図3-7 に示すとおりモデル幅の5倍以上、モデル高さを構造物幅の2倍以上確保する。

地盤の要素分割については、波動をなめらかに表現するために、対象とする波長に対し て5または4分割以上になるように要素高さを設定している。

解析モデルの下端については, T.P.-80.0mまでモデル化する。



図 3-7 モデル化範囲の考え方

- (2) 境界条件解析領域の側方及び底面には、粘性境界を設ける。
- (3) 構造物のモデル化構造物は、線形はり要素でモデル化する。
- (4) 地盤のモデル化
   地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変
   化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

防潮扉の地震応答解析モデルを図 3-8 および図 3-9 に示す。

# 図 3-8 地震応答解析モデル(A-A断面)

(5) ジョイント要素の設定

地盤と構造物の境界部,及び地盤改良体と地盤の境界部にジョイント要素を設けること により,対象となる界面に剥離及びすべりを考慮する。ジョイント要素は法線方向,接線 方向に分けて二重節点として設定する。法線方向は,常時状態以上の引張が生じた場合, 剛性及び応力をゼロとし,剥離を考慮する。接線方向では,地盤と構造物のせん断抵抗力 以上のせん断応力が発生した場合,剛性をゼロとし,すべりを考慮する。

せん断強度  $\tau_{f}$  は次式の Mohr-Coulomb 式により規定される。 c,  $\phi$  は周辺地盤の c,  $\phi$  とする。 (表 3-2 参照)

$$\tau_{\rm f} = c + \sigma' \tan \phi$$

ここで,

τ_f : せん断強度

c : 粘着力

φ : 内部摩擦角

表 3-2 隣接構造物及び周辺地盤との境界に用いる強度特性

周辺	1の状況	粘着力 C (N/mm ² )	内部摩擦角φ(度)	備考
	du 層	0	37.3	_
	Ag2 層	0	37.4	_
第四紀層	D2c-3 層	0.026	35.6	_
	D2s-3 層	0.010	35.8	—
	D2g-3 層	0	44.4	_
新第三系	Km 層	C=0.358-0.00603 • z	$\phi$ =23. 2+0. 0990 • z	_

z:標高(m)

ジョイント要素のバネ定数は、数値計算上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 3-3 のとおり設 定する。

表 3-3 ジョイント要素のバネ定数

<b>_</b>		
	せん断剛性 ks	圧縮剛性 kn
	$(kN/m^3)$	$(kN/m^3)$
側方及び底面	$1.0  imes 10^{6}$	$1.0  imes 10^{6}$

ジョイント要素の概念図を表 3-4 に示す。ジョイント要素の設置位置を図 3-10 に示す。

ジョイント要認	素の力学的特性		
法線方向	せん断方向		
圧縮 Ch	$\tau$ $\tau$ $\tau$ $\gamma$		

# 表 3-4 ジョイント要素の力学特性

図 3-10 防潮扉におけるジョイント要素の配置図

(6) 杭-地盤相互作用ばねの設定

地盤と杭が接している箇所の側方境界部に杭-地盤相互作用ばねを設けることにより, 地盤と杭の相互作用における3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向では、地盤と杭のせん断抵抗力以上のせん断応力が発生した場合、剛性をゼロとし、すべりを考慮する。せん断強度 $\tau_f$ は次式の Mohr – Coulomb 式により規定される。c、 $\phi$ は周辺地盤のc、 $\phi$ とする。(表 3-5参照)

 $\tau_{f} = c + \sigma' \tan \phi$ ここで、  $\tau_{f}$  : せん断強度 c : 付着力  $\phi$  : 内部摩擦角

周辺の状況		粘着力 c (N/mm²)	内部摩擦角 (度)	備考
第四紀層	du 層	0	37.3	—
	Ag2 層	0	37.4	—
	D2c-3 層	0.026	35.6	—
	D2g-3	0	44.4	
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—

表 3-5 周辺地盤及び杭との境界に用いる強度特性

z :標高 (m)

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きな値として,港湾構造物設計事例集(沿岸開発技術センター)に従い,表 3-6のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定される*。

図 3-11 に杭-地盤相互作用ばね設定の考え方を示す。

※ FLIP 研究会 14 年間の検討成果のまとめ「理論編」

	せん断剛性 k。
	$(kN/m^3)$
杭軸方向	$1.0 \times 10^{6}$

表 3-6 杭-地盤相互作用ばねのばね定数

### (a) 杭-地盤相互作用ばね配置図(追而)



(b) 杭-地盤相互作用ばね(杭軸方向)の力学的特性

図 3-11 杭-地盤相互作用ばね設定の考え方

(7) 杭下端ジョイントばねの設定

杭下端境界部に圧縮応力の上限値を有さないジョイントばねを設けることにより, 杭下 端における地盤と杭の相互作用を適切に考慮する。

杭下端の杭軸方向について設定するジョイントばねは,常時状態以上の引張が生じた場 合,剛性及び応力をゼロとし,剥離を考慮する。

杭下端ジョイントばねのばね定数は,数値解析上不安定な挙動を起こさない程度に十分 大きな値として,港湾構造物設計事例集(沿岸開発技術センター)に従い,表 3-7 のと おり設定する。図 3-12 に杭下端ジョイントばね設定の考え方を示す。

	圧縮剛性 kv
	(kN/m)
杭軸方向	$1.0  imes 10^{6}$

表 3-7 杭下端ジョイントばねのばね定数



図 3-12 杭下端ジョイントばね設定の考え方

(8) 地盤の設定

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

#### (9) 減衰定数の設定

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお、Rayleigh 減衰を $\alpha = 0$ となる剛性比例型減衰とする。

有効応力解析では、時系列で地盤の1次固有振動数が低振動数側へシフトして行くこと から、Rayleigh 減衰の係数α, βの両方を用いると、質量比例項の減衰α[M]の影響によ り、有効応力解析における減衰定数が低振動数帯で過減衰となる場合がある。

一方,有効応力解析における低振動数帯で減衰 α [M]の影響がない剛性比例型減衰では, 地盤の1次固有振動数が時系列で低振動数側へシフトしていくのに伴い,1次固有振動モ ードに対する減衰定数が初期減衰定数より保守的に小さい側へ変化していくことを考慮 できる。

ゆえに、有効応力解析では、地震力による時系列での地盤剛性の軟化に伴う1次固有振動数の低振動数側へのシフトに応じて、1次固有振動モードに対する減衰定数として、初期減衰定数よりも保守的に小さい側のモード減衰定数を適用し、地盤応答の適切な評価が 行えるように、低振動数帯で減衰α[M]の影響がない剛性比例型減衰を採用した。

# $[C] = \alpha [M] + \beta [K]$

- [C] :減衰係数マトリックス
- [M] : 質量マトリックス
- [K] : 剛性マトリックス
- $\alpha, \beta$  : 係数

係数α, βは以下のように求めている。

 $\alpha = 0$   $\beta = \frac{h}{\pi f}$ ここで、 f : 固有値解析により求められた1次固有振動数 h : 各材料の減衰定数

減衰定数については、コンクリート 5% (JEAG4601-1987記載),地盤は 1% (解析における減衰は、ひずみが大きい領域では履歴減衰が支配的となる。このため、解 析上の安定のためになるべく小さい値として 1%を採用している)とする。また、線形材 料としてモデル化する鋼材の減衰定数は 3%(道路橋示方書(V耐震設計編)・同解説 (平成 14年3月))とする。

図 3-13 に Rayleigh 減衰の設定フローを,表 3-8 に固有値解析結果を示す。



表 3-8 固有值解析結果(追而)

# 3.5.2 使用材料及び材料の物性値

使用材料を表 3-9 に、材料の物性値を表 3-10 に示す。

		•
	諸元	
鉄筋	SD490	
コンクリート	設計基準強度	: 40 $N/mm^2$
鋼管杭	SM570	

表 3-9 使用材料

表 3-10 材料の物性値

材料	単位体積重量 (kN/m ³ )	ヤング係数 (N/mm ² )	ポアソン比	
鉄筋コンクリート	24.5	3. $10 \times 10^4$	0.2	
鋼管杭	77.0	2.00×10 ⁵	0.3	

### 3.5.3 地盤の物性値

地盤の物性値は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値 を用いる。なお、地盤については、液状化検討対象層における有効応力の変化に応じた地 震挙動を適切にモデル化する。地盤の物性値を表 3-11 に示す。

								TT LL AD					1
				原地盤									_
バラメータ				埋戻土	埋戻土 第四系 (液状化検討対象層)								豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D2g-2	D1g-1	
物理 特性	密度 ()は地下水位以浅	ρ	$g/cm^3$	1.98 (1.82)	1,98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2. 15	2.01 (1.89)	1. 958
	間隙比	е		0.75	0.75	0.67	1.20	0.67	0.79	0.43	0.43	0.67	0.70
変形特性	ポアソン比	V CD		0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.26	0.25	0.333
	基準平均有効主応力 ()は地下水位以浅	σ'	kN/m²	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1167	1695 (1710)	12.6
	基準初期せん断剛性 ()は地下水位以浅	G _{na}	kN/m²	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	1362035	947946 (956776)	18975
	最大履歴演赛率	h _{max}		0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.130	0.233	0.287
強度	粘着力	C _{CD}	$N/mm^2$	0	0	0	0.012	0	0.010	0	0	0	0
特性	内部摩擦角	φ _{cD}	度	37.3	37. 3	37.4	41.0	37.4	35.8	44.4	44.4	37.4	30.0
	液状化パラメータ	φ _p	-	34.8	34.8	34. 9	38.3	34. 9	33. 4	41.4	41.4	34.9	28.0
涛	液状化パラメータ	S1	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.030	0.020	0.005
状化	液状化パラメータ	W ₁		6.5	6.5	56.5	6.9	51.6	17.6	45.2	45.2	10.5	5.06
化特性	液状化パラメータ	P ₁		1.26	1.26	9.00	1.00	12.00	4.80	8.00	8.00	7.00	0. 57
	液状化パラメータ	$P_2$		0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.60	0.50	0.80
	液状化パラメータ	C1	<u></u>	2.00	2.00	3.40	2.27	3.35	3.15	3.82	3.82	2.83	1.44

表 3-11(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 3-11(2) 地盤の解析用物性値一覧(非液状化層)

			原地盤						
パラメータ					第四	新第三系			
			Ac	D2c-3	D2c-2	lm	D1c-1	Km	
物理	密度 ()は地下水位以浅	ρ	g/cm ³	1.65	1.77	1.77	1.47 (1.43)	1, 77	1.72–1.03×10 ⁻⁴ · z
<del>1</del> 91王	間隙比	е		1.59	1.09	1.09	2.80	1.09	1.16
変形 特性	ポアソン比	V CD	1.00	0.10	0.22	0.22	0.14	0.22	0.16+0.00025 · z
	基準平均有効主応力 ()は地下水位以浅	σ'	kN/m²	480	696	696	249 (223)	696	動的変形转性に非べ
	基準初期せん断剛性 ()は地下水位以浅	G _{na}	kN/m²	121829	285223	285223	38926 (35783)	285223	き、Z (標高) 毎に物 性値を設定
	最大履歷減衰率 h			0.200	0.186	0.186	0.151	0.186	
強度 特性	粘着力	CCD	$N/mm^2$	0.025	0.026	0.026	0.042	0.026	0.358-0.00603 · z
	内部摩擦角	φ _{cD}	度	29.1	35.6	35.6	27.3	35.6	23.2+0.0990 · z

z:標高(m)

表 3-11 (3)	地盤の解析用物性値一覧	(新第三系 Km 層)

区分	設定深度			密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波		
来已	TP (m)	適用消	適用深度 TP(m)		ρ		CCD	ф св	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
ж <i>1</i> 7	Z				(g/cm)	VCD	(kN/m²)	(°)	(m/s)	(kN/m²)	$(kN/m^2)$	$(kN/m^2)$	mG, mK	hmax(-)	νa	(m/s)	
1	10	9.5	$\sim$	10.5	1.72	0.16	298	24. 2	425	310, 675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5	$\sim$	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1,644	1,644,000
3	8	7.5	$\sim$	8.5	1.72	0.16	310	24.0	427	313, 606	356, 650	504	0.0	0.105	0.464	1,648	1,648,000
4	7	6.5	$\sim$	7.5	1.72	0.16	316	23.9	428	315,076	358, 322	504	0.0	0.105	0.464	1,651	1,651,000
5	6	5.5	$\sim$	6.5	1.72	0.16	322	23.8	428	315,076	358, 322	504	0.0	0.106	0.464	1,651	1,651,000
6	5	4.5	$\sim$	5.5	1.72	0.16	328	23. 7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5	$\sim$	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5	$\sim$	3.5	1.72	0.16	340	23. 5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5	$\sim$	2.5	1.72	0.16	346	23. 4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5	$\sim$	1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5	$\sim$	0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5	$\sim$	-0.5	1.72	0.16	364	23. 1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5	~	-1.5	1.72	0.16	370	23. 0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5	~	-2.5	1.72	0.16	376	22.9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5	~	-3.5	1.72	0.16	382	22.8	436	326, 965	371,843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5	~	-4.5	1.72	0.16	388	22. 1	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
10	-6	-0.5	~	-0.0	1.72	0.10	394	22. 0 22. 5	438	329,972	275 060	504	0.0	0.109	0.462	1,048	1,046,000
10	1 -8	-8 5	~	-7.5	1.72	0.10	406	22.0	430	325, 912	376 077	504	0.0	0.109	0.402	1,040	1, 652, 000
20	-9	-9.5	~	-8.5	1. 72	0, 16	412	22.3	440	332, 992	378, 697	504	0.0	0. 110	0.462	1,656	1,656,000
21	-10	-11	~	-9.5	1.72	0, 16	418	22. 2	441	334. 507	380, 420	504	0,0	0, 110	0, 462	1,659	1,659.000
22	-12	-13	~	-11	1.72	0.16	430	22.0	442	336, 026	382, 147	504	0.0	0. 110	0. 462	1,663	1,663,000
23	-14	-15	~	-13	1.72	0.16	442	21.8	444	339,074	385, 614	504	0.0	0. 111	0.462	1,671	1,671,000
24	-16	-17	~	-15	1.72	0.16	454	21.6	445	340,603	387, 352	504	0.0	0.111	0.461	1,654	1,654,000
25	-18	-19	~	-17	1.72	0.16	467	21.4	447	343,671	390, 842	504	0.0	0.112	0.461	1,662	1,662,000
26	-20	-21	$\sim$	-19	1.72	0.16	479	21.2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23	$\sim$	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1,673,000
28	-24	-25	$\sim$	-23	1.72	0.15	503	20.8	452	351,403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-26	-27	$\sim$	-25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1,664,000
30	-28	-29	$\sim$	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31	$\sim$	-29	1.72	0.15	539	20. 2	456	357,650	391, 712	498	0.0	0.114	0.460	1,675	1,675,000
32	-32	-33	$\sim$	-31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1,683,000
33	-34	-35	$\sim$	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37	$\sim$	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
35	-38	-39	$\sim$	-37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1,678,000
36	-40	-41	~	-39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1,685	1,685,000
37	-42	-43	~	-41	1.72	0.15	611	19.0	465	371,907	407, 327	498	0.0	0.117	0. 459	1,689	1,689,000
38	-44	-45	~	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1,678,000
39	-46	-47	~	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1,681,000
40	-40	-49	~	-40	1.72	0.15	660	10.4	470	295 416	410, 134	490	0.0	0.110	0.458	1,000	1,000,000
41	-52	-52	~	-51	1.70	0.15	679	10. 3	472	297 051	402,122	450	0.0	0.110	0.450	1,050	1,600,000
43	-54	-55	~	-53	1.73	0.15	684	17. 9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1, 688, 000
44	-56	-57	~	-55	1.73	0.15	696	17.7	476	391,976	429, 307	498	0.0	0.119	0.457	1,692	1,692,000
45	-58	-59	~	-57	1.73	0.15	708	17.5	478	395, 277	432, 922	498	0.0	0.119	0.457	1,699	1,699,000
46	-60	-61	$\sim$	-59	1.73	0.15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1,702,000
47	-62	-63	$\sim$	-61	1.73	0.14	732	17.1	481	400, 255	422, 491	492	0.0	0.120	0.457	1,709	1,709,000
48	-64	-65	$\sim$	-63	1.73	0.14	744	16.9	482	401, 921	424, 250	492	0.0	0.120	0.456	1,695	1,695,000
49	-66	-67	~	-65	1.73	0.14	756	16.7	484	405, 263	427, 778	492	0.0	0.120	0.456	1,702	1,702,000
50	-68	-69	$\sim$	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1,705,000
51	-70	-71	~	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
52	-72	-73	~	-71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1,719	1, 719, 000
53	-74	-75	$\sim$	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1,705,000
54	-76	-77	~	-75	1.73	0.14	816	15.7	492	418, 771	442, 036	492	0.0	0.122	0.455	1,712	1, 712, 000
55	-78	-79	$\sim$	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81	~	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1,723,000
57	-82	-85	~	-81	1.73	0.14	852	15.1	496	425,608	449, 253	492	0.0	0.123	0.455	1,726	1,726,000
58	-88	-90	~	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1,726,000
59	-92	-95	~	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1,736,000
60	-98	-101	~	-95	1.73	0.12	949	13.5	519	448, 210	413,111	492	0.0	0.125	0.453	1,736	1, 736, 000
01 69	-104	-115	~	-101	1.73	0.13	1 000	12.9	510	400,282	400,480	460	0.0	0.120	0.452	1, 733	1, 733, 000
63	-118	-122	~	-115	1.73	0.13	1,000	12.1	524	400, 995	483 575	486	0.0	0.127	0.451	1,754	1,754,000
64	-126	-130	~	-122	1.73	0, 13	1, 118	10.7	530	485. 957	494, 713	486	0.0	0, 121	0, 450	1, 758	1, 758. 000

#### 3.6 解析ケース

### 3.6.1 耐震設計における検討ケース

鋼管杭鉄筋コンクリート防潮壁の耐震設計における検討ケースを表 3-12 に示す。

	検討ケー	-ス	<ol> <li>①</li> <li>原地盤に基 づく液状化 強度特性を 用いた解析 ケース(基本 ケース)</li> </ol>	② 地盤物性の ばらつきを 考慮(+1 σ)した解 析ケース	③ 地盤物性の ばらつきを 考慮(-1 σ)した解 析ケース	④ 地盤を強制 的に液状化 させること を仮定した 解析ケース	<ul><li>⑤</li><li>原地盤にお</li><li>いて非液状</li><li>化の条件を</li><li>仮定した解</li><li>析ケース</li></ul>	<ul> <li>⑥</li> <li>地盤物性のば</li> <li>らつきを考慮</li> <li>(+1σ)し</li> <li>て非液状化の</li> <li>条件を仮定し</li> <li>た解析ケース</li> </ul>		
	液状化強度 の設定	5特性	原 地 盤 に 基 づ 弦 液 状 化 強 度 特 備 ( 差 を 考 慮)	原 基 で 化 性 備 慮 )	原 地 る 、 化 性 ( た 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	<ul><li>敷</li><li>敷 也 た お ば し な だ だ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ  ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ ボ&lt;</li></ul>	液状化パ ラメータ を非適用	液状化パラ メータを非 適用		
地震波(位相)	$S_{s} - D 1$ $S_{s} - 1 1$ $S_{s} - 1 2$ $S_{s} - 1 3$ $S_{s} - 1 4$ $S_{s} - 2 1$	$(++) \\ (+-) \\ (-+) \\ () \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ $	1 1 1 1 1 1 1 1 1 1 1 1	1 ①にお	1 いて,最も は して、 して、 して、 して、	1 接しい(許容	1 限界に対す	1 る余裕		
	$\begin{array}{c c} S_{s}-2 & 2 & (++) \\ \hline S_{s}-3 & 1 & (++) \\ \hline (-+) & \\ \hline \end{array}$		1 1 1 12	か						

表 3-12 鋼管杭鉄筋コンクリート防潮堤の耐震設計における検討ケース
3.6.2 機器・配管系に対する加速度応答抽出のための検討ケース 機器・配管系への加速度応答の抽出における検討ケースを表 3-13 に示す。

検討ケース		ζ.	④ 地盤を強制的に液状 化させることを仮定し た解析ケース	<ul><li>⑤</li><li>原地盤において非液</li><li>状化の条件を仮定した</li><li>解析ケース</li></ul>	<ul> <li>⑥</li> <li>地盤物性のばらつきを</li> <li>考慮(+1σ)して非液</li> <li>状化の条件を仮定した</li> </ul>
液状化強度特性 の設定		寺性	敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを非 適用	解析ケース 液状化パラメータを非 適用
地震波(位相)	$S_{s} - D 1$ $S_{s} - 1 2$ $S_{s} - 1 2$ $S_{s} - 1 3$ $S_{s} - 1 4$ $S_{s} - 2 1$ $S_{s} - 2 2$ $S_{s} - 3 1$	$(++) \\ (+-) \\ (-+) \\ () \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ (++) \\ $	1 ⑤において,上載され る機器・配管系の固有 振動数帯で加速度応 答が最も大きくなる地 震動を用いて実施す る。	1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 ⑤において,上載され る機器・配管系の固有 振動数帯で加速度応 答が最も大きくなる地 震動を用いて実施す る。
(-+) 計			1	12	1

表 3-13 機器・配管系への加速度応答の抽出における検討ケース

- 4. 扉体及び戸当りの耐震評価
- 4.1 評価対象部位

評価対象部位は、水圧等の荷重を受ける受圧部にスキンプレートがあり、主桁、縦補助桁、 端桁により構成される架構の構造部材を評価対象部材とする。また、扉体の支圧板から支承部 の戸当りについても評価対象部材にする。

防潮扉の部材名を図 4-1 及び図 4-2 に示す。

(1) 扉体の健全性

扉体は主桁、スキンプレート、縦補助桁、端桁、支圧板について検討する。

(2) 戸当りの健全性

戸当りはコンクリート支圧応力,底面フランジ曲げ応力,コンクリートのせん断応力それ ぞれについて検討する。









注:寸法はmmを示す。

図 4-1 防潮扉の部材名(正面図及び平面図)



注:寸法は mm を示す。

図 4-2 防潮扉の部材名(側面図)

### 4.2 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

(1) 扉体

扉体の許容限界は、「ダム・堰施設技術基準(案) (基準解説編・マニュアル編) ((社) ダム・堰施設技術協会、平成 25 年 6 月)」に基づき、表 4-1 に示す短期許容応力度とす る。短期許容応力度は、鋼材の許容応力度に対して 1.5 倍の割増しを考慮する。

また,止水性については許容限界を短期許容応力度とすることで部材をおおむね弾性域内 の変形に留め,戸当りとの圧着構造を保つことで止水性を確保するものとする。

評価項目				短期許容応力度 (N/mm ² )
スキンプレ	SM490 t≦40*1	許容曲げ応力度 σ _{ca}	240	
ート,主		+ < 10*1	許容圧縮応力度,許容引張応力度 $\sigma_{ca}$	240
桁,縦補助		SM490 L ≥ 40	許容せん断応力度 t a	135
桁, 端桁		許容支圧応力度 $\sigma_{ca}^{*2}$	360	
支圧板	SUS304	$t \le 40^{*1}$	許容支圧応力度 $\sigma_{ca}^{*2}$	225

表 4-1 鋼材の許容応力度(短期)

注記 *1:t 鋼材の板厚 (mm)

*2:許容支圧応力の上限値は降伏点とする。

(2) 戸当り

防潮扉戸当りの許容限界は,鋼材については扉体と同様とする。コンクリートの許容限界 は、「コンクリート標準示方書[構造性能照査編]((社)土木学会,2002年制定)」を 適用し、表 4-2 に示す短期許容応力度とする。短期許容応力度は、コンクリートの許容応 力度に対して 1.5 倍の割増しを考慮する。

			短期許容応力
	度		
			$(N/mm^2)$
	$f' = 40 \text{ N/mm}^2$	許容圧縮応力度 σ ca	21
<b>コンクリート</b>		許容支圧応力度 σ ca	18
	$1_{ck}$ – 40 N/ IIII	許容せん断応力度 τ _a	0.825
		許容付着応力度 $\sigma_{ca}^*$	3.0

表 4-2 コンクリートの許容応力度(短期)

注記 *: 異形鉄筋の場合を示す。

## 4.3 評価方法

4.3.1 扉体

評価対象部位における発生応力が許容限界以下であることを確認する。

(1) 主桁

主桁は,部材の発生断面力に対して保守的な評価となるよう,支圧板の設置位置を支点と する両端をピン支点の単純梁によりモデル化する。

主桁のモデル図を図4-3に示す。



図 4-3 主桁のモデル図

(2) スキンプレート

スキンプレートに発生する曲げモーメントは、4辺を固定支持された平板としてモデル化 し、「ダム・堰施設技術基準(案)(基準解説編・マニュアル編)((社)ダム・堰施設技 術協会 平成25年6月)」の式により曲げ応力を算定する。

スキンプレートのモデル図及び応力算定式を図4-4に示す。



図 4-4 スキンプレートの応力算定式とモデル図

(3) 縦補助桁

縦補助桁については、主桁によって支持された単純支持梁とし、荷重は平均水圧が亀甲形 または菱形に作用したものとして、「ダム・堰施設技術基準(案) (基準解説編・マニュア ル編) ((社)ダム・堰施設技術協会、平成25年6月)」の式により曲げ応力及びせん断 応力を算定する。

縦補助桁のモデル図及び応力算定式(亀甲形の例)を図4-5に示す。



- p: 各区分の平均水圧 (kN/m²)
- a: 主桁及び横補助桁間隔 (m)
- b: 縦補助桁間隔 (m)

最大曲げモーメント

$$\mathbf{M} = \frac{\mathbf{p} \cdot \mathbf{b}}{24} \left( 3 \cdot \mathbf{a}^2 - \mathbf{b}^2 \right) \quad (\mathbf{kN} \cdot \mathbf{m})$$

$$S = \frac{p \cdot b}{2} (a - \frac{b}{2}) (kN \cdot m)$$

図 4-5 縦補助桁のモデル図及び応力算定式(亀甲形の例)

(4) 端桁

本設備はスライドゲートであるため、端桁は主桁端部に生じた反力を戸当りを介してコン クリート躯体に伝達する役割を果たしている。よって「ダム・堰施設技術基準(案)(基準 解説編・マニュアル編)((社)ダム・堰施設技術協会 平成25年6月)」に従い、垂直 補剛材を有するプレートガーダの荷重集中点として腹板強度の照査を行う。

端桁腹板には垂直補剛材として主桁ウェブとスチフナを有する。縦桁腹板は天地方向に, 主桁ウェブは径間方向に部材が伸びているが,実際に荷重が作用している有効断面で検討す るため,有効幅はそれぞれの板厚の12倍までとする。ただし,補剛材(主桁ウェブ)につ いては,全有効断面積が補剛材断面積の1.7倍を超える場合は有効幅を小さくし,全有効断 面積が補剛材断面積の1.7倍となるようにする。

端桁のモデル図を図4-6に示す。



図 4-6 端桁のモデル図

(5) 支圧板

支圧板の面圧は踏面に曲率を設けるため、「ダム・堰施設技術基準(案)(基準解説編・ マニュアル編)((社)ダム・堰施設技術協会 平成25年6月)」のローラの線接触に倣って計算する。

端桁のモデル図及び応力算定式を図 4-7 に示す。



$$p = 0.591 \sqrt{\frac{P \cdot E_1 \cdot E_2}{Lh \cdot R \cdot (E_1 + E_2)}}$$
$$C = 1.080 \sqrt{\frac{P \cdot R \cdot (E_1 + E_2)}{Lh \cdot E_1 \cdot E_2}}$$

ここに、

$$C = 1.080 \sqrt{\frac{P \cdot R \cdot (E_1 + E_2)}{Lh \cdot E_1 \cdot E_2}}$$
p: ヘルツの接触応力度 (N/mm²)  
P: 計算荷重の常時換算値= (Ps+Pc) /  $\gamma$  (N)  
pd: 扉体下端水圧 (N/mm²)  
B: 扉体水密幅 (mm)  
 $\gamma$ : 許容応力補正係数に裕度を乗じた係数  
 $E_1: 支圧板の弾性係数 (N/mm2)$   
 $E_2: 支圧板当りの弾性係数 (N/mm2)$   
Lh: 支圧板計算高さ (mm)  
R: 支圧板半径(mm)

- C:接触幅の1/2 (mm)
- Z:最大せん断応力度が発生する深さ(mm)
- v : 安全率=1.3(線接触の場合)
- H_B: 支圧板のブリネル硬さ

図 4-7 支圧板のモデル図及び応力算定式

### 4.3.2 戸当り

評価対象部位における発生応力が許容限界以下であることを確認する。

(1) 鋼材

戸当りの鋼材は、下面の水圧が高いため作用水圧とする。 戸当りのモデル図及び応力算定式を図4-8に示す。



.

底面フランジ曲げ応力度

$$\sigma f = \frac{6 \cdot \sigma k \cdot b f^2}{8 \cdot t_f^2} (N/mm^2)$$

腹板の圧縮応力度

$$\sigma cw = \frac{pd \cdot B}{2 \cdot t_w} \quad (N/mm^2)$$

図 4-8 戸当り鋼材のモデル図及び応力算定式

146

(2) コンクリート

戸当りのコンクリートは,前項の鋼材の作用力を負担するものとして支圧応力及びせん断 応力を評価する。

戸当りコンクリートのモデル図及び応力算定式を図4-9に示す。



コンクリートの支圧応力度  $\sigma \mathbf{k} = \frac{\mathbf{pd} \cdot \mathbf{B}}{2 \cdot \mathbf{bf}} \quad (N/\mathrm{mm}^2)$ コンクリートのせん断応力度  $\tau k = \frac{\sigma k \cdot bf}{hr + 2 \cdot S} (N/mm^2)$ ここに、 支圧板中心間 L (mm) 純径間 Bo (mm) 水路面より戸当り中心 までの距離 br (mm)  $(N/mm^2)$ コンクリート支圧応力度  $\sigma \, k$ 戸当り底面フランジ幅 bf (mm) 戸当り高さ (mm) hr 堰柱側面から底面フランジ

端面までの距離 S = br + bf/2

図 4-9 戸当りコンクリートのモデル図及び応力算定式

4.4	評価統	宇果
	追而	

5. 鉄筋コンクリート防潮壁の耐震評価

防潮扉1の耐震評価については、V-2-10-2-2-2-1「防潮堤(鉄筋コンクリート防潮壁)の耐 震性についての計算書」に示す。

防潮扉2の鉄筋コンクリート防潮壁について説明する。防潮扉2の鉄筋コンクリート防潮壁の 正面図を図5-1に,鉄筋コンクリート防潮壁の断面図を図5-2に示す。

5.1 評価対象部位

評価対象部位は、鉄筋コンクリート防潮壁の構造上の特徴を踏まえて設定する。

- (1) 鋼管杭鋼管杭の評価対象部位は、鉄筋コンクリート防潮壁を支持する鋼管杭とする。
- (2) 鉄筋コンクリート
   鉄筋コンクリートの評価対象部位は、鉄筋コンクリート防潮壁とフーチングの鉄筋コンク
   リートとする。
- (3) 基礎地盤の支持力 基礎地盤の評価対象部位は,鉄筋コンクリート防潮壁を支持する基礎地盤とする。
- (4) 止水ジョイント部材
   止水ジョイント部材の評価対象部位は、構造物間に設置する止水ゴム及び止水シートとする。
- (5) 鋼製アンカー 鋼製アンカーの評価対象部位は、止水ジョイント部材の取り付け部のアンカーとする。
- (6) 鋼製防護部材鋼製防護部材の評価対象部位は、止水ジョイント部材を防護する鋼製防護部材とする。



図 5-1 鉄筋コンクリート防潮壁正面図(防潮扉2)

6.5-63



図 5-2 鉄筋コンクリート防潮壁断面図(防潮扉2)

## 5.2 解析方法

(1) 鉄筋コンクリート及び鋼管杭基礎

設計対象構造物~地盤の連成系モデルによる2次元地震応答解析を行い,地震時の鋼管杭 基礎の構造健全性及び支持性能を確認する。有効応力の変化を考慮することができる有効応 力法を用いることとし,2次元地震応答解析を実施する。

#### 5.3 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

(1) 鋼管杭

鋼管杭の許容限界は、「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本 道路協会、平成14年3月)」に基づき、表5-1に示す短期許容応力度とする。短期許容応 力度は、鋼材の長期許容応力度に対して1.5倍の割増を考慮する。

表 5-1 鋼管杭の許容限界

評価項目		短期許容応力度 (N/mm ² )	
鋼管杭	SM570	許容引張応力度 $\sigma_{sa1}$ 許容圧縮応力度 $\sigma_{sa1}$	382. 5
		許容せん断応力度 σ s a 1	217.5

(2) 鉄筋コンクリート

鉄筋コンクリートの許容限界は、「コンクリート標準示方書 [構造性能照査編] ((社) 土木学会、2002 年制定)」及び「道路橋示方書(I共通編・IV下部構造編)・同解説 ((社)日本道路協会 平成 14 年 3 月)」に基づき、表 5-2 に示す短期許容応力度とす る。短期許容応力度は、許容応力度に対して 1.5 倍の割増を考慮する。

また,杭頭部に関しても,鉄筋コンクリートは表 5-2 に示す短期許容応力度を許容限界 とする。

表 5-2 飫筋コンクリートの計谷園
--------------------

評価項目			短期許容応力度 (N/mm ² )	
	f' _{ck} =40 N/mm ²	許容曲げ圧縮応力度 σ с а	21	
<b>コンクリート*</b> 1		許容せん断応力度 τ _{а1}	$0.825^{*3}$	
ユングリード		許容押抜きせん断応力度τ _{а1} ,	1.65	
		許容支圧応力度σca'	18	
		許容曲げ引張応力度 σ s a 2	425	
<b>ትት ረጽ</b> *2	SD490	(軸方向鉄筋)	435	
业大月刀		許容曲げ引張応力度 σ _{sa2}	200	
		(せん断補強筋)	300	

注記 *1:コンクリート標準示方書 [構造性能照査編] ((社) 土木学会,2002 年制定) *2:道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会 平 成14年3月)

*3:斜め引張鉄筋を考慮する場合は、「コンクリート標準示方書[構造性能照査編] ((社)土木学会 2002 年制定)」に準拠し、次式により求められる許容せん断 力(V_a)を許容限界とする。

$$V_a = V_{ca} + V_{sa}$$

ここで, V _{c a} : コンクリートの許容せん断力  $V_{ca} = 1/2 \cdot \tau_{a1} \cdot b_w \cdot j \cdot d$ V s a :斜め引張鉄筋の許容せん断力  $V_{sa} = A_w \cdot \sigma_{sa2} \cdot j \cdot d / s$ :斜め引張鉄筋を考慮しない場合の許容せん断応力度 τ_{a1} : 有効幅 b w j : 1/1.15 : 有効高さ d Aw :斜め引張鉄筋断面積 σ_{sa2}:鉄筋の許容引張応力度

- s : 斜め引張鉄筋間隔
- (3) 基礎地盤の支持力

基礎地盤に作用する許容限界は、V-2-1-3「地盤の支持性能に係る基本方針」を考慮し、 極限支持力に基づき設定する。

道路橋示方書による杭基礎における中堀り工法の支持力算定式を以下に示す。豊浦標準砂 の液状化強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四 系の杭周面摩擦力を支持力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評 価を行うことを基本とする。ただし,杭を根入れした岩盤及び岩着している地盤改良体とそ の上方の非液状化層が連続している場合は,杭周面摩擦力を支持力として考慮する場合があ る。

極限支持力

 $Ru = qd \cdot A + U \Sigma Li \cdot fi$  (kN)

- qd: 杭先端における単位面積あたりの極限支持力度 (kN/m2)
   qd=3・qu
   qu: 支持岩盤の一軸圧縮強度 (kN/m2)
- A: 杭先端面積 (m2)
- U: 杭の周長 (m)
- Li: 周面摩擦力を考慮する層の層厚 (m)
- fi: 周面摩擦力を考慮する層の最大周面摩擦応力度 (kN/m2)
- (4) 止水ジョイント部材

止水ジョイント部材の変形量の許容限界は、メーカー規格、漏水試験及び変形試験により、 有意な漏えいが生じないことを確認した変形量とする。表 5-3 に止水ジョイント部材の変 形量の許容限界を示す。止水ジョイント部材の変形量の算定方法については、「6.11 止水 ジョイント部材の相対変位量に関する補足説明」に示す。

表 5-3 止水ジョイント部材の変形量の許容限界

評価」	<b>頁目</b>	許容限界
レーナンシューインノトカバナナ	ゴムジョイント	伸び:200 mm, せん断:200 mm
エルショイント即約	シートジョイント	相対変位:2 m

(5) 鋼製アンカー

鋼製アンカーの許容限界は、「各種合成構造設計指針・同解説((社)日本建築学会、 2010年11月)」に基づき設定する。コンクリートの許容限界は、表 5-2 に示す短期許容応 力度を許容限界とする。

(a) 引張力に対する許容限界

引張力に対する許容限界 Paについては、アンカーボルトの降伏により決まる Palと定着したコンクリート躯体のコーン状破壊により決まる Palを比較し、値が小さい方を許容限界として設定する。

 $P_a = \min(P_{a1}, P_{a2})$ 

 $P_{a1} = \phi_1 \cdot {}_s \sigma_{pa} \cdot {}_{sc}a$ 

 $P_{a2} = \phi_2 \bullet_c \sigma_t \bullet A_c$ 

ここに,

Pa: 引張力に対する許容限界(N)

- P_{a1}:アンカーボルトの降伏により決まる場合のアンカーボルト1本当たりの許容引張力(N)
- P_{a2}: 定着したコンクリート躯体のコーン状破壊により定まる場合のアンカーボルト 1 本当たりの許容引張力 (N)
- φ₁, φ₂: 低減係数
- $s\sigma_{pa}$ :アンカーボルトの引張強度で、 $s\sigma_{pa}=s\sigma_{y}$ とする。
- sca:アンカーボルトの軸部断面積とねじ部有効断面積の小さい方の値とする。

 $c\sigma_t$ : コーン状破壊に対するコンクリートの引張強度( $c\sigma_t=0.31\sqrt{Fc}$ ) (N/m²)

- Fc: コンクリートの設計基準強度 (N/md)
- $Ac: コーン状破壊面の有効水平投影面積で、<math>Ac=\pi \cdot 1_{ce}(1_{ce}+D)$ とする。
- 1_{ce}:アンカーボルトの強度算定用埋込み長さで,1_{ce}=1_eとする。
- 1。:アンカーボルトのコンクリート内への有効埋込み長さ
- d:アンカーボルト軸部の直径
- D:アンカーボルト頭部の直径

アンカーボルトの許容引張力時の頭部支圧応力度は、コンクリートの支圧強度 fn 以下と なるようにする。  $p_a/Ao \leq fn$ 

pa:アンカーボルト頭部の支圧力

Ao:アンカーボルト頭部の支圧面積で、 $Ao=\pi (D^2-d^2)/4$ とする

fn:コンクリートの支圧強度で、fn=√(Ac・Ao)・Fcπ(D²-d²)/4とする。

ただし,√(Ac/Ao)が6を超える場合は6とする。 (N/mm²)

(b) せん断力に対する許容限界

せん断力に対する許容限界 q_aについては、アンカーボルトのせん断強度によりきまる q_{a1}, 定着したコンクリート躯体の支圧強度により決まる場合のアンカーボルトの許容せん断力 により決まる q_{a2},及び定着したコンクリート躯体のコーン状破壊により決まる場合のアン カーボルトの許容せん断力により決まる q_{a3}を比較し、値が小さいものを許容限界として設 定する。

 $q_{a}=min(q_{a1}, q_{a2}, q_{a3})$ 

- $q_{a1} = \phi_1 \cdot s \sigma_{qa} \cdot sca$
- $q_{a2} = \phi_2 \cdot \sigma_{qa} \cdot \sigma_{sc}a$
- $q_{a3} = \phi_2 \cdot c \sigma_t \cdot A_{qc}$
- ここに,
  - q_a: せん断力に対する許容限界(N)
  - q_{a1}:アンカーボルトのせん断強度により決まる場合のアンカーボルト1本当たりの許容せん断力 (N)
  - q_{a2}: 定着したコンクリート躯体の支圧強度により決まる場合のアンカーボルト1本当 たりの許容せん断力 (N)
  - q_{a3}:定着したコンクリート躯体のコーン状破壊により決まる場合のアンカーボルト1 本当たりの許容せん断力 (N)
  - φ₁, φ₂: 低減係数 (短期荷重用: φ₁=1.0, φ₂=2/3)
  - $s \sigma_{qa}$ :アンカーボルトのせん断強度 ( $s \sigma_{qa}=0.7 \cdot s \sigma_{y}$  (N/mm²))
  - sσy:アンカーボルトの規格降伏点強度
  - sca:アンカーボルトの軸部断面積とねじ部有効断面積の小さい方の値とする。
  - _cσ_{ga}: コンクリートの支圧強度 (_cσ_{ga}=0.5√ (Fc・Ec))
  - $c\sigma_t$ : コーン状破壊に対するコンクリートの引張強度 ( $c\sigma_t=0.31\sqrt{Fc}$ ) (N/må)
  - Fc: コンクリートの設計基準強度 (N/må
  - Ec:コンクリートのヤング係数 (N/ma)
  - A_{ac}: せん断力に対するコーン状破壊面の有効投影面積 (A_{ac}=0.5πc²)

c:へりあき寸法 (mm)

短期許容せん断力を確保するための頭付きアンカーボルトの有効埋込み長さ 1_eは,次式 を満たすように選定するものとする。

 $_{\rm s} \sigma_{\rm qa} \cdot _{\rm sc} a \leq_{\rm c} \sigma_{\rm t} \cdot Ac$ 

(6) 鋼製防護部材

鋼製防護部材の許容限界は、「道路橋示方書・同解説」((社)日本道路協会、平成 14 年 3 月)及び「津波漂流物対策施設設計ガイドライン((財)沿岸技術研究センター、(社) 寒地港湾技術研究センター、2014年3月)」に基づき設定する。

(a) 鋼材

鋼材の許容限界は、「道路橋示方書・同解説」((社)日本道路協会、平成14年3月)に 基づき、表5-4に示す短期許容応力度とする。短期許容応力度は、許容応力度に対して1.5 倍の割増を考慮する。

鋼材	锺別	短期許容応力度 (N/mm ² )		
		圧縮、引張、曲げ	せん断	
SS400	t $\leq$ 40*	210	120	
SM570	$t \leq 40^*$	382.5	217.5	

表 5-4 鋼材の許容限界

*t:鋼材の板厚

(b) 接合ボルト

接合ボルトの許容限界は、「道路橋示方書・同解説」((社)日本道路協会、平成 14 年 3 月)に基づき、表 5-5 に示す短期許容応力度とする。短期許容応力度は、許容応力度に対 して 1.5 倍の割増を考慮する。

表 5-5 接合ボルトの許容限界

使用位置	ボルト諸元	短期許容応力度 (N/mm ² )	
	強度区分	引張	せん断
ワイヤーロープ取付部 軸ボルト	10.9	830	479

(c) ワイヤーロープ

ワイヤーロープの許容限界は「津波漂流物対策施設設計ガイドライン(案)((財)沿岸技術 研究センター,(社)寒地港湾技術研究センター,平成21年)」に基づき,「日本工業規格 (JIS G 3549-2000)」にて規定された破断強度の4分の3とする。表5-6に許容限界を示 す。

五〇〇 ノート		R JI
仕様	破断強度 (kN)	許容限界 (kN) 引張
構造用ストランドロープ ST1670,構成 7×7,φ28mm	567	425

表 5-6 ワイヤーロープの許容限界

5.4 評価方法

鉄筋コンクリート防潮壁の耐震評価は、「3. 地震応答解析」により得られる照査用応答 値が、「5.3 許容限界」で設定した許容限界以下であることを確認する。

(1) 鋼管杭の評価手法

鋼管杭の評価は、杭体の曲げモーメント及び軸力より算定される応力及びせん断力より算 定されるせん断応力が許容限界以下であることを確認する。

a. 曲げモーメント及び軸力に対する照査 曲げモーメント及び軸力を用いて次式により算定される応力が許容限界以下であること を確認する。

$$\sigma = \frac{N}{A} \pm \frac{M}{Z}$$

ここで,

- σ :鋼管杭の曲げモーメント及び軸力より算定される応力 (N/mm²)
- M :最大曲げモーメント (N·mm)
- Z : 断面係数 (mm³)
- N : 軸力 (N)
- A : 有効断面積 (mm²)
- b. せん断力に対する照査

せん断力を用いて次式により算定されるせん断応力がせん断強度に基づく許容限界以下 であることを確認する。

$$\tau = \kappa \frac{S}{A}$$

ここで,

- τ :鋼管杭のせん断力より算定されるせん断応力 (N/mm²)
- S : せん断力 (N)
- A : 有効断面積 (mm²)
- κ : せん断応力の分布係数(2.0)
- (2) 鉄筋コンクリート

鉄筋コンクリートは,耐震評価により算定した曲げ圧縮応力,曲げ引張応力及びせん断応 力が許容限界以下であることを確認する。

(3) 基礎地盤の支持力

基礎地盤の支持性能評価においては,基礎地盤に作用する発生応力が極限支持力に基づく 許容限界以下であることを確認する。

- (4) 止水ジョイント部材地震応答解析で求められる変形量が許容限界以下であることを確認する。
- (5) 鋼製アンカー アンカーの引張力, せん断力及びコンクリートのせん断応力が許容限界以下であることを 確認する。
- (6) 鋼製防護部材鋼製防護部材に発生する応力が許容限界以下であることを確認する。

#### 5.5 評価結果

#### 5.5.1 地震応答解析結果

鉄筋コンクリート防潮堤(防潮扉2)のA-A断面およびB-B断面における基準地震動S。による断面力(曲げモーメント,軸力,せん断力)を図 5-1~図 5-2 に示す。本図は鋼管杭の曲げ及びせん断照査結果が最も厳しくなる評価時刻においての断面力を示したものである。

また,鉄筋コンクリート防潮堤(防潮扉2)のA-A断面およびB-B断面において, 最大せん断ひずみ分布図を図 5-3 及び図 5-4 に示し,過剰間隙水圧比の分布図を図 5-5 及び図 5-6 に示す。これらの図は,各要素に発生したせん断ひずみ及び過剰間隙水圧 比の全時刻における最大値の分布を示したものである。

図 5-1 (1) A-A断面の地震時断面力 (S _s -D1 [H+,V+], t= $\bigcirc$ . $\bigcirc$ s)
図 5-1 (2) A-A断面の地震時断面力(S _s -D1〔H+,V-〕, t=○○.○○s)
図 5-1 (3) A-A断面の地震時断面力(S _s -D1〔H-,V+〕, t=〇〇.〇〇s)
図 5-1 (4) A-A断面の地震時断面力(S _s -D1〔H-,V-〕, t=〇〇.〇〇s)
図 5-1 (5) A-A断面の地震時断面力(S _s -11, t=○○.○○s)
図 5-1 (6) A-A断面の地震時断面力(S _s -12, t=〇〇.〇〇s)
図 5-1 (7) A-A断面の地震時断面力(S _s -13, t=〇〇.〇〇s)
図 5-1 (8) A-A断面の地震時断面力(S _s -14, t=〇〇.〇〇s)
図 5-1 (9) A-A断面の地震時断面力(S _s -21, t=〇〇.〇〇s)
図 5-1(10) A-A断面の地震時断面力(S _s -2 2, t=〇〇.〇〇s)
図 5-1 (11) A-A断面の地震時断面力 (S _s -31 [H+,V+], t=○○.○○s)

図 5-1 (12) A-A断面の地震時断面力 (S_s-31 [H-,V+], t= $\bigcirc$ ).  $\bigcirc$ s)

⊠ 5-2 (1)	$B-B$ 断面の地震時断面力 ( $S_s - D1$ [H+,V+], $t = \bigcirc \bigcirc \odot \odot $ s)
⊠ 5-2 (2)	$B-B$ 断面の地震時断面力 ( $S_s-D1$ [ $H+,V-$ ], $t=\bigcirc\bigcirc,\bigcirc\bigcirc$ s)
⊠ 5-2 (3)	$B-B$ 断面の地震時断面力 ( $S_s-D1$ [ $H-,V+$ ], $t=\bigcirc\bigcirc,\bigcirc\bigcirc$ s)
⊠ 5-2 (4)	$B-B$ 断面の地震時断面力 ( $S_s-D1$ [ $H-,V-$ ], $t=\bigcirc\bigcirc,\bigcirc\bigcirc$ s)
⊠ 5-2	(5) B−B断面の地震時断面力(S _s −11, t=○○.○○s)
⊠ 5-2	(6) B−B断面の地震時断面力(S _s −12, t=○○.○○s)
⊠ 5-2	(7) B−B断面の地震時断面力(S _s −13, t=○○.○○s)
⊠ 5-2	(8) B−B断面の地震時断面力(S _s −14, t=○○.○○s)
⊠ 5-2	(9) B−B断面の地震時断面力(S _s −21, t=○○.○○s)
図 5-2(	10) B-B断面の地震時断面力(S _s -22, t=〇〇.〇〇s)
≥ 5-2 (11)	$B-B$ 断面の地震時断面力 ( $S_s - 31$ [H+,V+], t=○○.○○s)

図 5-2 (12) B-B断面の地震時断面力 (S_s-31 [H-,V+], t=〇〇.〇〇s)

- 図 5-3 (1) A-A断面の最大せん断ひずみ分布(S_s-D1〔H+,V+〕)
- 図 5-3 (2) A-A断面の最大せん断ひずみ分布(S_s-D1〔H+, V-〕)
- 図 5-3 (3) A-A断面の最大せん断ひずみ分布 (S_s-D1 [H-, V+])
- 図 5-3 (4) A-A断面の最大せん断ひずみ分布 (S_s-D1 [H-, V-])
  - 図 5-3 (5) A-A断面の最大せん断ひずみ分布 (S_s-11)
  - 図 5-3 (6) A-A断面の最大せん断ひずみ分布 (S_s-12)
  - 図 5-3 (7) A-A断面の最大せん断ひずみ分布 (S_s-13)
  - 図 5-3 (8) A-A断面の最大せん断ひずみ分布 (S_s-14)
  - 図 5-3 (9) A-A断面の最大せん断ひずみ分布 (S_s-21)
  - 図 5-3 (10) A-A断面の最大せん断ひずみ分布 (S_s-22)
- 図 5-3 (11) A-A断面の最大せん断ひずみ分布 (S_s-31 [H+, V+])
- 図 5-3 (12) A-A断面の最大せん断ひずみ分布 (S_s-31 [H-, V+])

- 図 5-4 (1) B-B断面の最大せん断ひずみ分布 (S_s-D1 [H+, V+])
- 図 5-4 (2) B-B断面の最大せん断ひずみ分布 (S_s-D1 [H+, V-])
- 図 5-4 (3) B-B断面の最大せん断ひずみ分布 (S_s-D1 [H-, V+])
- 図 5-4 (4) B-B断面の最大せん断ひずみ分布 (S_s-D1 [H-, V-])
  - 図 5-4 (5) B-B断面の最大せん断ひずみ分布 (S_s-11)
  - 図 5-4 (6) B-B断面の最大せん断ひずみ分布 (S_s-12)
  - 図 5-4 (7) B-B断面の最大せん断ひずみ分布 (S_s-13)
  - 図 5-4 (8) B-B断面の最大せん断ひずみ分布 (S_s-14)
  - 図 5-4 (9) B-B断面の最大せん断ひずみ分布 (S_s-21)
  - 図 5-4 (10) B-B断面の最大せん断ひずみ分布 (S_s-22)
- 図 5-4 (11) B-B断面の最大せん断ひずみ分布 (S_s-31〔H+, V+〕)
- 図 5-4 (12) B-B断面の最大せん断ひずみ分布 (S_s-31 [H-, V+])



- 図 5-5 (2) A-A断面の過剰間隙水圧比分布 (S_s-D1 [H+, V-])
- 図 5-5(3) A-A断面の過剰間隙水圧比分布(S_s-D1〔H-,V+〕)

図 5-5(6) A-A断面の過剰間隙水圧比分布(S_s-12)

```
図 5-6(1) B-B断面の過剰間隙水圧比分布(S<sub>s</sub>-D1〔H+,V+〕)
```

- 図 5-6(2) B-B断面の過剰間隙水圧比分布(S_s-D1〔H+, V-〕)
- 図 5-6(3) B-B断面の過剰間隙水圧比分布(S_s-D1〔H-,V+〕)

図 5-6 (5) B-B断面の過剰間隙水圧比分布 (S_s-11)

- 図 5-6(6) B-B断面の過剰間隙水圧比分布(S_s-12)
- 図 5-6(7) B-B断面の過剰間隙水圧比分布(S_s-13)
- 図 5-6(8) B-B断面の過剰間隙水圧比分布(S_s-14)
- 図 5-6(9) B-B断面の過剰間隙水圧比分布(S_s-21)
- 図 5-6(10) B-B断面の過剰間隙水圧比分布(S_s-22)
- 図 5-6 (11) B-B 断面の過剰間隙水圧比分布 (S_s-31 [H+, V+])

- 5.5.2 耐震評価結果
  - (1) 鋼管杭の評価結果
  - a. 曲げに対する照査

断面計算に用いた断面諸元を表 5-7 に,曲げに対する照査結果を表 5-8~表 5-9 に 示す。鋼管杭に対して許容応力度法による照査を行った結果,曲げ応力が短期許容応力 度以下であることを確認した。なお,発生応力度は各地震動において最大となる値を示 している。

断面	板厚	断面積	断面係数
	(mm)	$(m^2)$	$(m^3)$
A-A			
В-В			

表 5-7 鋼管杭 (SM570) 断面諸元



表 5-8 曲げに対する安全率(A-A断面)

地盤	地震動	曲げ モーメント (kN・m)	軸力 (kN)	発生曲げ 応力 (N/mm ² )	安全率	判定
	S _s -D1++					
	$S_{s} - D 1 + -$					
	S _s -D1-+					
	S _s -D1					
	$S_{s} - 1 1$					
可切副财	$S_{s} - 1 2$					
十均阿江	$S_{s} - 1 3$					
	$S_{s} - 14$					
	$S_s = 2.1$					
	$S_{s} = 22$					
	$S_s - 31 + +$					
	S _s -31-+					
V _s +1σ剛性						
V _s -1σ剛性						
豊浦標準砂						
平均剛性						
(非液状化)						
V _s +1σ 剛性						
(非液状化)						



表 5-9 曲げに対する安全率(B-B断面)

地盤	地震動	曲げ モーメント (kN・m)	軸力 (kN)	発生曲げ 応力 (N/mm ² )	安全率	判定
	$S_{s} - D 1 + +$					
	$S_{s} - D 1 + -$					
	S _s -D1-+					
	S _s -D1					
	$S_{s} = 1 \ 1$					
亚均副肿	$S_{s} = 12$					
十均阿江	$S_{s} = 1 3$					
	$S_{s} = 1.4$					
	$S_s = 2 1$					
	$S_{s} - 22$					
	$S_s - 31 + +$					
	$S_s - 3 1 - +$					
V _s +1σ剛性						
V _s -1σ剛性						
豊浦標準砂						
平均剛性						
(非液状化)						
V _s +1σ剛性						
(非液状化)						

b. せん断に対する照査

断面計算に用いた断面諸元は前出の表 5-7 に、せん断に対する照査結果を表 5-10 ~表 5-11 に示す。

鋼管杭に対して許容応力度法による照査を行った結果, せん断応力が短期許容応力度 以下であることを確認した。なお,発生応力は各地震動において最大となる値を示して いる。

地盤	地震動	せん断力 (kN)	発生せん断 応力 (N/mm ² )	安全率	判定
	$S_{s} - D 1 + +$				
	S _s -D1+-				
	$S_{s} - D 1 - +$				
	S _s -D1				
	$S_{s} - 1 1$				
可达副时代	$S_s - 1 2$				
十均阿加土	$S_{s} = 1 3$				
	$S_{s} - 14$				
	$S_{s} - 21$				
	$S_{s} - 22$				
	$S_s - 3 1 + +$				
	$S_s - 31 - +$				
V _s +1σ剛性					
V _s -1 σ 剛性					
豊浦標準砂					
平均剛性					
(非液状化)					
V _s +1 o 剛性					
(非液状化)					

表 5-10 せん断に対する安全率(A-A断面)



	X 0 11 C/U	PIC N / DA			
地盤	地震動	せん断力 (kN)	発生せん断 応力 (N/mm ² )	安全率	判定
	S _s -D1++				
	S _s -D1+-				
	$S_{s} - D 1 - +$				
	S _s -D1				
	$S_{s} - 1 1$				
可切图叫	$S_{s} = 12$				
十均阿川主	$S_{s} = 1 3$				
	$S_{s} - 14$				
	$S_{s} = 2.1$				
	S _s -22				
	$S_s - 31 + +$				
	$S_s - 31 - +$				
V _s +1σ剛性					
V _s -1σ剛性					
豊浦標準砂					
平均剛性					
(非液状化)					
V _s +1 σ 剛性					
(非液状化)					

表 5-11 せん断に対する安全率(B-B断面)

- (2) 鉄筋コンクリートの評価結果
  - a. 曲げに対する照査

断面計算に用いた断面諸元を表 5-12 に,曲げに対する照査結果を表 5-13 及び表 5-14 に示す。

鉄筋コンクリートに対して許容応力度法による照査を行った結果,コンクリートに発 生する曲げ圧縮応力及び鉄筋に発生する曲げ引張応力が短期許容応力度以下であること を確認した。なお,発生応力は各地震動において最大となる値を示している。

_		X0 1			
	除苦	かぶり	断面有効高さ	主筋	主筋断面積
	即阻	(m)	(m)		$(cm^2)$
	A - A				
	B - B				

表 5-12 鉄筋コンクリート断面諸元

地盤	地震動	曲げ モーメント (kN・m)	軸力 (kN)	発生曲げ 応力 (N/mm ² )	安全率	判定
	$S_{s} - D 1 + +$					
	$S_{s} - D 1 + -$					
	$S_{s} - D 1 - +$					
	S _s -D1					
	$S_{s} - 1 1$					
亚坎圖啡	$S_{s} = 12$					
十均阿川王	$S_{s} - 1 3$					
	$S_{s} = 1.4$					
	$S_s - 2 1$					
	$S_{s} = 22$					
	$S_s - 31 + +$					
	$S_s - 3 1 - +$					
V _s +1σ剛性						
V _s -1σ剛性						
豊浦標準砂						
平均剛性						
(非液状化)						
V _s +1σ剛性						
(非液状化)						

表 5-13 曲げに対する安全率(A-A断面)



表 5-14 曲げに対する安全率(B-B断面)

地盤	地震動	曲げ モーメント (kN・m)	軸力 (kN)	発生曲げ 応力 (N/mm ² )	安全率	判定
	$S_{s} - D 1 + +$					
	S _s -D1+-					
	S _s -D1-+					
	S _s -D1					
	$S_{s} = 1 1$					
亚均副肿	$S_{s} = 12$					
平均阿归生	$S_{s} - 1 3$					
	$S_{s} = 1.4$					
	$S_s = 2 1$					
	$S_{s} - 22$					
	$S_s - 31 + +$					
	$S_s - 3 1 - +$					
V _s +1σ剛性						
V _s -1σ剛性						
豊浦標準砂						
平均剛性						
(非液状化)						
V _s +1σ剛性						
(非液状化)						
(2) せん断に対する照査

Г

断面計算に用いた断面諸元は前出の表 5-12 及び表 5-15 に、せん断に対する照査結果 を表 5-16 及び表 5-17 に示す。

鉄筋コンクリートにおける許容応力度法による照査を行った結果, せん断応力が短期許 容応力度以下であることを確認した。なお,発生応力は各地震動において最大となる値を 示している。

	斜め引張	区間 s	区間 s における
断面	鉄筋	(m)	斜め引張鉄筋断面積
			$(cm^2)$
A-A			
B – B			

表 5-15 鉄筋コンクリート断面諸元

		サム版力	発生せん断		
地盤	地震動		応力	安全率	判定
		(KIV)	$(N/mm^2)$		
	$S_s - D 1 + +$				
	$S_{s} - D 1 + -$				
	$S_s - D_1 - +$				
	S _s -D1				
	$S_{s} - 1 1$				
	$S_{s} - 1 2$				
平均阿阳生	$S_{s} - 1 3$				
	$S_{s} = 1.4$				
	$S_{s} = 2.1$				
	$S_{s} = 2.2$				
	$S_s - 31 + +$				
	$S_s - 3 1 - +$				
V _s +1σ剛性					
V _s -1σ剛性					
豊浦標準砂					
平均剛性					
(非液状化)					
V _s +1σ 剛性					
(非液状化)					

表 5-16 せん断に対する安全率(A-A断面)



	X 0 11 C/U	PIC N / DA			
地盤	地震動	せん断力 (kN)	発生せん断 応力 (N/mm ² )	安全率	判定
	S _s -D1++				
	S _s -D1+-				
	$S_{s} - D 1 - +$				
	S _s -D1				
	$S_{s} = 1 \ 1$				
可切副此	$S_{s} = 12$				
十均阿加土	$S_{s} - 1 3$				
	$S_{s} - 14$				
	$S_{s} - 2 1$				
	$S_{s} = 2.2$				
	$S_s - 3 1 + +$				
	$S_s - 31 - +$				
Vs+1 o 剛性					
V _s −1 σ 剛性					
豊浦標準砂					
平均剛性					
(非液状化)					
Vs+1 o 剛性					
(非液状化)					

表 5-17 せん断に対する安全率(B-B断面)

(3) 基礎地盤の支持力に対する評価結果

基礎地盤の支持力に対する照査結果を表 5-18~表 5-19 に示す。

基礎地盤の支持力に対する照査を行った結果,発生応力が極限支持力以下であることを 確認した。なお,発生応力は,有効応力解析により求められた応答を次式のように評価し, 各地震動において最大となる値を示している。

発生応力(=N) = (地盤鉛直有効応力 $\sigma'_{y(t)}$ +間隙水圧 $u_{(t)}$ ) max (t)

ここで,地盤鉛直有効応力は,杭先端を支持する地盤要素が2つあるため,平均化した応答値とする。

山上的几	此雪新	発生応力	極限支持力	中人卖	和中	
地盛	地辰期	$(kN/m^2)$	$(kN/m^2)$	女王平	刊化	
	$S_{s} - D 1 + +$					
	S _s -D1+-					
	$S_{s} - D 1 - +$					
	S _s -D1					
	$S_{s} - 1 1$					
亚达副脉	$S_{s} - 1 2$					
干场阿庄	$S_{s} - 1 3$					
	$S_s - 14$					
	$S_{s} - 2 1$					
	$S_{s} - 22$					
	$S_s - 3 1 + +$					
	$S_s - 3 1 - +$					
V _s +1σ剛性						
V _s -1σ剛性						
豊浦標準砂						
平均剛性						
(非液状化)						
V _s +1σ 剛性						
(非液状化)						

表 5-18 極限支持力に対する安全率(A-A断面)

地盤	地震動	発生応力 (kN/m ² )	極限支持力 (kN/m ² )	安全率	判定
	S _s -D1++				
	S _s -D1+-				
	S _s -D1-+				
	S _s -D1				
	S _s -11				
亚均刷烛	S _s -12				
上で回ると	S _s -13				
	S _s -14				
	S _s -21				
	S _s -22				
	S _s -31++				
	S _s -31-+				
V _s +1σ剛性					
V _s -1σ剛性					
豊浦標準砂					
平均剛性					
(非液状化)					
V _s +1σ剛性					
(非液状化)					

## 表 5-19 極限支持力に対する安全率(B-B断面)

- (4) 止水ジョイント部材及び鋼製アンカーに対する評価結果
   止水ジョイント部材及び鋼製アンカーに対する照査結果は、「6.11 止水ジョイント部
   材の相対変位量に関する補足説明」に示す。
- (5) 鋼製防護部材に対する評価結果
   鋼製防護部材に対する照査結果は、「6.12 止水ジョイント部材の漂流物対策に関する
   補足説明」に示す。

5.5.3 まとめ

### 6.8.2 貯留堰取付護岸に関する補足説明

6.8.2.1 貯留堰取付護岸の耐震性についての計算書に関する補足資料

## 目次

1.	概要・・・・・・・・・・・・・・・・・・・・・・52
2.	基本方針
	2.1 位置 · · · · · · · · · · · · · · · · · ·
	2.2 構造概要 · · · · · · · · · · · · · · · · · · ·
	2.3 評価方針・・・・・.56
	2.4 適用基準・・・・・.58
	2.5 使用材料及び材料の物性値・・・・・55
	2.6 地下水位 ······63
	2.7 評価対象断面及び部位・・・・・.63
3.	地震応答解析・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.1 解析方法 ····································
	3.2 解析モデルの設定・・・・・・68
	3.3 減衰特性・・・・・
	3.4 荷重の組合せ・・・・・
	3.5 地震応答解析の検討ケース······79
	3.6 入力地震動
4.	耐震評価・・・・・・・・・・・・・・・・・・・・・・・
	4.1 許容限界 · · · · · · · · · · · · · · · · · · ·
	4.2 評価方法・・・・・・
	4.3 評価結果(追而) · · · · · · · · · · · · · · · · · · ·
	4.4 まとめ(追而)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・98

#### 1. 概要

本資料は、V-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方 針に基づき、貯留堰取付護岸が基準地震動S。に対して十分な構造強度及び止水性を有している ことを確認するものである。

貯留堰取付護岸に要求される機能維持の確認は、地震応答解析に基づく構造部材の健全性評価 により行う。

- 2. 基本方針
- 2.1 位置

貯留堰取付護岸の平面配置図を図2.1-1に示す。



図 2.1-1(2) 貯留堰取付護岸の平面配置図(拡大図)

### 2.2 構造概要

貯留堰取付護岸は,貯留堰の構成部材である防護材取付部鋼材と接続する既設構造物であ り,前面鋼矢板とタイ材及び控え工鋼矢板より構成される。

貯留堰取付護岸の平面図を図 2.2-1,断面図を図 2.2-2 に示す。

図 2.2-1(1) 貯留堰取付護岸の平面図



図 2.2-1(2) 貯留堰取付護岸の平面図(A部拡大)



#### 2.3 評価方針

貯留堰取付護岸は,設計基準対象施設においては,Sクラス施設の間接支持構造物に分類される。

貯留堰取付護岸の耐震評価は、「3. 地震応答解析」により得られた解析結果に基づき、設計基準対象施設として、表 2.3-1 の貯留堰取付護岸の評価項目に示すとおり、構造部材の健 全性評価を行う。

構造部材の健全性評価については, 鋼矢板に発生する曲げモーメント及びタイ材に発生する 引張力が許容限界以下であることを確認する。

貯留堰取付護岸の耐震評価フローを図 2.3-1 に示す。

評価方針	評価項目	部位	評価方法	許容限界
構造強度	構造部材の健	前面鋼矢板	発生曲げモーメントが	全塑性モーメン
を有する	全性	(既設)	許容限界以下であるこ	<b>ト</b> *
こと			とを確認	
		控え工鋼矢板	発生曲げモーメントが	全塑性モーメン
		(既設)	許容限界以下であるこ	<b>ト</b> *
			とを確認	
		タイ材(既設)	発生引張力が許容限界	引張強さ*
			以下であることを確認	
止水性を	構造部材の健	前面鋼矢板	発生曲げモーメントが	全塑性モーメン
損なわな	全性	(既設)	許容限界以下であるこ	<b>ト</b> *
いこと			とを確認	
		控え工鋼矢板	発生曲げモーメントが	全塑性モーメン
		(既設)	許容限界以下であるこ	<b>ト</b> *
			とを確認	
		タイ材(既設)	発生引張力が許容限界	引張強さ*
			以下であることを確認	

表 2.3-1 貯留堰取付護岸の評価項目

注記 *:妥当な安全余裕を考慮する。



注記 *:構造部材の健全性を評価することで、表2.3-1に示す「構造強度を有すること」及び「止水性を損なわないこと」を満足することを確認する。

図 2.3-1 貯留堰取付護岸の耐震評価フロー

### 2.4 適用基準

適用する規格,基準類を表2.4-1に示す。

項目	適用する規格、基準類	備考
使用材料及び材料定数	・港湾の施設の技術上の基準・同	_
	解説(2007 年度)	
	<ul> <li>・原子力発電所屋外重要土木構造</li> </ul>	・永久荷重+偶発荷重の適切
荷重及び荷重の組み合わせ	物の耐震性能照査指針・マニュ	な組合せを検討
	アル(2005 年)	
	・港湾の施設の技術上の基準・同	<ul> <li>・曲げに対する照査は、発生</li> </ul>
	解説(2007 年度)	曲げモーメントが、許容限
<u>赤</u>		界以下であることを確認
计谷脉外		・ 引張強さに対する照査は,
		発生引張力が許容限界以下
		であることを確認
きび / オーナン 注	・港湾の施設の技術上の基準・同	・腐食代の設定
評恤力法 	解説(2007 年度)	
	•原子力発電所屋外重要土木構造	・ 有限要素法による 2 次元モ
山雪亡你知忆	物の耐震性能照査指針・マニュ	デルを用いた時刻歴非線形
	アル(2005 年)	解析
	• J E A G 4 6 0 1 - 1987	

表 2.4-1 適用する規格,基準類

2.5 使用材料及び材料の物性値

耐震評価に用いる材料定数は、適用基準類を基に設定する。構造物の使用材料を表 2.5-1 に、材料物性値を表 2.5-2 に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるようにモデル化する。地盤の物性値を表 2.5-3 に示す。

表 2.5-1 使用材料

諸元							
鋼矢板	貯留堰取付護岸	SY295					
タイ材	貯留堰取付護岸	F130T(タイブル)					
鋼管矢板	貯留堰	SM570					

表 2.5-2 材料物性值

材料	単位体積重量 (kN/m ³ )	ヤング係数 (N/mm ² )	ポアソン比
鋼矢板	77	2. $00 \times 10^5$	0. 3
タイ材		$1.86 \times 10^{5}$	
鋼管矢板	77	2. $00 \times 10^5$	0.3

				原地盤								
	パラメータ			埋戻土	里戻土 第四系(液状化検討対象層)						豊浦標準砂	
				f1	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	$g/cm^3$	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
府 性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	$\nu$ _{CD}	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 ()は地下水位以浅	$\sigma'_{ma}$	$kN/m^2$	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特 性	基準初期せん断剛性 ()は地下水位以浅	$G_{\rm ma}$	$kN/m^2$	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
	最大履歴減衰率	$h_{\text{max}}$	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287
強度	粘着力	C _{CD}	$N/mm^2$	0	0	0	0.012	0	0.01	0	0	0
特性	内部摩擦角	$\phi_{\rm CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	-	34.8	34.8	34.9	38.3	34.9	33.4	41.4	34.9	28
液	液状化パラメータ	$S_1$	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
状化	液状化パラメータ	$W_1$	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特	液状化パラメータ	$P_1$	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
性	液状化パラメータ	$P_2$	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	$C_1$	-	2.00	2.00	3.40	2.27	3.35	3.15	3.82	2.83	1.44

表 2.5-3(1) 地盤の解析用物性値一覧(液状化検討対象層)

表 2.5-3(2) 地盤の解析用物性値一覧(非液状化層)

				原地盤						
	パラメータ				第四系(非	液状化層)		新第三系	於了	
				Ac	D2c-3	1m	D1c-1	Km	悟石	
物理	密度 () は地下水位以浅	ρ	$g/cm^2$	1.65	1.77	1.47 (1.43)	1.77	1.72-1.03 $\times$ 10 ⁻⁴ · z	2.04 (1.84)	
特性	間隙比	е	_	1.59	1.09	2.8	1.09	1.16	0.82	
	ポアソン比	$\nu_{\rm CD}$	-	0.10	0.22	0.14	0.22	0.16+0.00025 • z	0.33	
変形	基準平均有効主応力 () は地下水位以浅	$\sigma'_{ma}$	kN/m²	480	696	249 (223)	696	<i>러.산·국</i> · <b>전·바</b> 니() - 박 · · · ·	98	
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	121829	285223	38926 (35783)	285223	期的変形特性に基づさ z(標高)毎に物性値を 設定	180000	
	最大履歴減衰率	$h_{\text{max}}$	_	0.200	0.186	0.151	0.186		0.24	
強度	粘着力	C _{CD}	$N/mm^2$	0.025	0.026	0.042	0.026	0.358-0.00603 · z	0.02	
特性	内部摩擦角	$\phi_{ ext{CD}}$	度	29.1	35.6	27.3	35.6	23.2+0.0990• z	35	

z:標高 (m)

区分	設定深度				密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
	TP (m)	適用	適用深度 TP(m)		ρ		CCD	ф св	速度Vs	せん断剛性 Gma	弹性係数 Kma	主応力 σ'ma	依存係数	減衰率		速度Vp	1000*Vp
番号	Z				(g/cm3)	νcb	(kN/m²)	(°)	(m/s)	(kN/m²)	$(kN/m^2)$	$(kN/m^2)$	mG, mK	hmax(-)	νd	(m/s)	
1	10	9.5	$\sim$	10.5	1.72	0.16	298	24.2	425	310,675	353, 317	504	0.0	0.105	0.464	1,640	1,640,000
2	9	8.5	~	9.5	1.72	0.16	304	24.1	426	312, 139	354, 982	504	0.0	0.105	0.464	1.644	1.644.000
3	8	7.5	~	8.5	1.72	0.16	310	24.0	427	313 606	356,650	504	0.0	0.105	0.464	1 648	1 648 000
4	7	6.5	~	7.5	1.72	0.16	316	23.0	428	315 076	358 322	504	0.0	0.105	0.464	1,651	1,651,000
-	c I	0.0 E E		0.E	1.72	0.10	200	00.0	400	215,076	259, 222	504	0.0	0.100	0.464	1,001	1,051,000
0 C	5	4.5		0.5	1.72	0.10	200	23.0	420	315, 010	350, 322	504	0.0	0.100	0.464	1,031	1,031,000
6	5	4.5	~	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0.0	0.106	0.464	1,655	1,655,000
7	4	3.5	~	4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1,638,000
8	3	2.5	~	3.5	1.72	0.16	340	23. 5	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
9	2	1.5	$\sim$	2.5	1.72	0.16	346	23.4	431	319, 509	363, 363	504	0.0	0.107	0.463	1,642	1,642,000
10	1	0.5	$\sim$	1.5	1.72	0.16	352	23. 3	432	320, 993	365, 051	504	0.0	0.107	0.463	1,646	1,646,000
11	0	-0.5	$\sim$	0.5	1.72	0.16	358	23. 2	433	322, 481	366, 743	504	0.0	0.107	0.463	1,650	1,650,000
12	-1	-1.5	$\sim$	-0.5	1.72	0.16	364	23.1	434	323, 972	368, 439	504	0.0	0.108	0.463	1,653	1,653,000
13	-2	-2.5	$\sim$	-1.5	1.72	0.16	370	23.0	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
14	-3	-3.5	$\sim$	-2.5	1.72	0.16	376	22. 9	435	325, 467	370, 139	504	0.0	0.108	0.463	1,657	1,657,000
15	-4	-4.5	$\sim$	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1,661,000
16	-5	-5.5	~	-4.5	1.72	0.16	388	22.7	437	328, 467	373, 551	504	0.0	0.109	0.462	1,644	1,644,000
17	-6	-6.5	$\sim$	-5.5	1.72	0.16	394	22.6	438	329,972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
18	-7	-7.5	$\sim$	-6.5	1.72	0.16	400	22.5	438	329, 972	375, 262	504	0.0	0.109	0.462	1,648	1,648,000
19	-8	-8.5	$\sim$	-7.5	1.72	0.16	406	22.4	439	331, 480	376, 977	504	0.0	0.109	0.462	1,652	1,652,000
20	-9	-9.5	$\sim$	-8.5	1.72	0.16	412	22.3	440	332, 992	378, 697	504	0.0	0.110	0.462	1,656	1,656,000
21	-10	-]1	~	-9.5	1.72	0, 16	418	22. 2	441	334, 507	380, 420	504	0, 0	0, 110	0, 462	1,659	1,659.000
22	-19	-19	~	-11	1 72	0.16	430	22.0	442	336 026	382 147	504	0.0	0.110	0.462	1 663	1 663 000
22	-14	-15	~	-13	1.72	0.16	442	21.8	444	339,020	385 614	504	0.0	0.111	0.462	1,003	1,671,000
2.0	14	17		15	1.72	0.10	454	21.0	445	240,602	207, 250	504	0.0	0.111	0.461	1,011	1,071,000
24	-10	-17		-15	1.72	0.10	404	21.0	445	340, 603	361, 352	504	0.0	0.111	0, 461	1,034	1,034,000
25	-18	-19	~	-17	1.72	0.16	467	21.4	447	343, 671	390, 842	504	0.0	0.112	0.461	1,002	1,662,000
26	-20	-21	~	-19	1.72	0.16	479	21. 2	448	345, 211	392, 593	504	0.0	0.112	0.461	1,665	1,665,000
27	-22	-23	~	-21	1.72	0.15	491	21.0	450	348, 300	381, 471	498	0.0	0.112	0.461	1,673	1,673,000
28	-24	-25	$\sim$	-23	1.72	0.15	503	20.8	452	351,403	384, 870	498	0.0	0.113	0.461	1,680	1,680,000
29	-26	-27	$\sim$	-25	1.72	0.15	515	20.6	453	352, 959	386, 574	498	0.0	0.113	0.460	1,664	1,664,000
30	-28	-29	$\sim$	-27	1.72	0.15	527	20.4	455	356, 083	389, 996	498	0.0	0.114	0.460	1,672	1,672,000
31	-30	-31	$\sim$	-29	1.72	0.15	539	20.2	456	357, 650	391, 712	498	0.0	0.114	0.460	1,675	1,675,000
32	-32	-33	$\sim$	-31	1.72	0.15	551	20.0	458	360, 794	395, 155	498	0.0	0.115	0.460	1,683	1,683,000
33	-34	-35	$\sim$	-33	1.72	0.15	563	19.8	459	362, 371	396, 883	498	0.0	0.115	0.459	1,667	1,667,000
34	-36	-37	$\sim$	-35	1.72	0.15	575	19.6	461	365, 536	400, 349	498	0.0	0.115	0.459	1,675	1,675,000
35	-38	-39	$\sim$	-37	1.72	0.15	587	19.4	462	367, 124	402, 088	498	0.0	0.116	0.459	1,678	1,678,000
36	-40	-41	$\sim$	-39	1.72	0.15	599	19.2	464	370, 309	405, 577	498	0.0	0.116	0.459	1,685	1,685,000
37	-42	-43	$\sim$	-41	1.72	0.15	611	19.0	465	371,907	407, 327	498	0.0	0.117	0.459	1,689	1,689,000
38	-44	-45	$\sim$	-43	1.72	0.15	623	18.8	467	375, 113	410, 838	498	0.0	0.117	0.458	1,678	1,678,000
39	-46	-47	$\sim$	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1,681,000
40	-48	-49	$\sim$	-47	1.72	0, 15	647	18.4	470	379, 948	416, 134	498	0, 0	0.118	0,458	1,688	1,688,000
41	-50	-51	~	-49	1.73	0, 15	660	18.3	472	385, 416	422, 122	498	0, 0	0.118	0,458	1,696	1,696,000
42	-52	-53	~	-51	1.73	0.15	672	18.1	473	387.051	423.913	498	0.0	0.118	0.458	1, 699	1.699.000
43	-54	-55	~	-53	1.73	0.15	684	17.9	475	390, 331	427, 505	498	0.0	0.118	0.457	1,688	1, 688, 000
44	-56	-57	~	-55	1, 73	0.15	696	17.7	476	391, 976	429, 307	498	0.0	0, 119	0.457	1,692	1,692,000
45	-58	-50	~	-57	1 73	0.15	708	17.5	478	395 277	432 022	408	0.0	0 110	0.457	1 600	1 699 000
10	_£0	_£1	~:	-50	1 79	0.15	790	17.9	470	396 022	101, 726	100	0.0	0.120	0.457	1 70.9	1 702 000
40	-62	-62	~	_61	1.70	0.10	720	17.1	419	400,955	404,700	400	0.0	0.120	0.457	1,702	1,702,000
10	_64	_67	-	_60	1.70	0.14	744	16.0	400	401 001	494 950	400	0.0	0.120	0.450	1,105	1,105,000
48	-04	-00	.~	-03	1.73	0.14	144	10.9	462	401, 921	424, 250	492	0.0	0.120	0.450	1,095	1,090,000
49	-66	-67	$\sim$	-65	1.73	0.14	756	16.7	484	405, 263	427,778	492	0.0	0.120	0.456	1,702	1, 702, 000
50	-68	-69	$\sim$	-67	1.73	0.14	768	16.5	485	406, 939	429, 547	492	0.0	0.121	0.456	1,705	1,705,000
51	-70	-71	$\sim$	-69	1.73	0.14	780	16.3	487	410, 302	433, 097	492	0.0	0.121	0.456	1,712	1, 712, 000
52	-72	-73	$\sim$	-71	1.73	0.14	792	16.1	489	413, 679	436, 661	492	0.0	0.121	0.456	1,719	1, 719, 000
53	-74	-75	$\sim$	-73	1.73	0.14	804	15.9	490	415, 373	438, 449	492	0.0	0.122	0.455	1,705	1, 705, 000
54	-76	-77	$\sim$	-75	1.73	0.14	816	15.7	492	418, 771	442, 036	492	0.0	0.122	0.455	1,712	1, 712, 000
55	-78	-79	$\sim$	-77	1.73	0.14	828	15.5	493	420, 475	443, 835	492	0.0	0.122	0.455	1,716	1, 716, 000
56	-80	-81	$\sim$	-79	1.73	0.14	840	15.3	495	423, 893	447, 443	492	0.0	0.122	0.455	1,723	1, 723, 000
57	-82	-85	~	-81	1.73	0.14	852	15.1	496	425,608	449, 253	492	0.0	0.123	0.455	1,726	1, 726, 000
58	-88	-90	~	-85	1.73	0.14	889	14.5	501	434, 232	458, 356	492	0.0	0.124	0.454	1,726	1, 726, 000
59	-92	-95	~	-90	1.73	0.14	913	14.1	504	439, 448	463, 862	492	0.0	0.124	0.454	1,736	1, 736, 000
60	-98	-101	$\sim$	-95	1.73	0.14	949	13.5	509	448, 210	473, 111	492	0.0	0.125	0.453	1,736	1, 736, 000
61	-104	-108	$\sim$	-101	1.73	0.13	985	12.9	513	455, 282	463, 485	486	0.0	0.126	0.452	1,733	1, 733, 000
62	-112	-115	~	-108	1.73	0.13	1,033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1,737	1, 737, 000
63	-118	-122	$\sim$	-115	1.73	0.13	1,070	11.5	524	475,016	483, 575	486	0.0	0.127	0.451	1,754	1, 754, 000
64	-126	-130	~	-122	1, 73	0, 13	1, 118	10.7	530	485, 957	494, 713	486	0, 0	0, 128	0,450	1,758	1, 758, 000
		200					-, ++0			, 001	, + + + + + + + + + + + + + + + + +		~			-, 100	-,,

表 2.5-3(3) 地盤の解析用物性値一覧(新第三系 Km 層)

地盤改良体の物性値(追而)

- 2.6 地下水位
   地下水位は地表面として設定する。
- 2.7 評価対象断面及び部位

評価対象断面及び部位は, 貯留堰取付護岸の構造物の配置, 荷重条件及び地盤条件を考慮し 設定する。

2.7.1 評価対象断面

評価対象断面は、貯留堰取付護岸が貯留堰の間接支持構造物であることから、V-2-10-4-4-1「貯留堰の耐震性についての計算書」と同様とし、貯留堰との接続部を通る断面であ る EW-1 断面を選定し、基準地震動 S_sによる耐震評価を実施する。

平面図を図 2.7-1 に、断面図を図 2.7-2 にそれぞれ示す。







図 2.7-2 貯留堰取付護岸の断面図 (EW-1)

- 2.7.2 評価対象部位
   評価対象部位を図 2.7-3 に示す。
  - (1)前面鋼矢板構造部材の健全性が要求される前面鋼矢板を評価対象部位とする。
  - (2) 控え工鋼矢板構造部材の健全性が要求される控え工鋼矢板を評価対象部位とする。
  - (3) タイ材

構造部材の健全性が要求されるタイ材を評価対象部位とする。



図 2.7-3 評価対象部位

- 3. 地震応答解析
- 3.1 解析方法

地震応答解析は、V-2-1-6「地震応答解析の基本方針」のうち、「2.3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答計算では、地震時における地盤の有効応力の変化に伴う影響を考慮できる有効応力 解析を実施する。有効応力解析に用いる液状化強度特性は、敷地の原地盤における代表性及び 網羅性を踏まえた上で保守性を考慮して設定することを基本とする。

地中土木構造物への地盤変位に対する保守的な配慮として,地盤を強制的に液状化させるこ とを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在 しない豊浦標準砂に基づく液状化強度特性)を設定する。

上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤の非液 状化の影響を考慮する場合は,原地盤において非液状化の条件を仮定した解析を実施する。

地震応答解析には,解折コード「FLIP Ver. 7.3.0_2」を使用する。なお,解析コードの検 証及び妥当性確認の概要については,付録 24「計算機プログラム(解析コード)の概要」に 示す。



地震応答解析手法の選定フローを図 3.1-1 に示す。

図 3.1-1 地震応答解析手法の選定フロー

H-D モデルの選定理由は次の通りである。すなわち,地盤の繰返しせん断応力~せん断 ひずみ関係の骨格曲線の構成則を有効応力解析へ適用する際は,地盤の繰返しせん断応力 ~せん断ひずみ関係の骨格曲線に関するせん断ひずみ及び有効応力の変化に応じた特徴を 適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん

断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル(H-Dモデル)を選定する。 3.2 解析モデルの設定

3.2.1 解析モデル領域

地震応答解析モデルは、境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさな いよう、十分広い領域とする。具体的には、JEAG4601-1987を参考に、図3.2-1 に示すとおりモデル幅を構造物基礎幅の5倍以上、モデル高さを構造物幅の2倍以上確保 する。

なお,解析モデルの境界条件は,側面及び底面ともに粘性境界とする。 地盤要素分割については,波動をなめらかに表現するために,対象とする波長に対して

4または5分割以上になるように要素高さを設定している。

貯留堰取付護岸の地震応答解析モデルを図 3.2-2 に示す。



図 3.2-1 モデル範囲の考え方

図 3.2-2 貯留堰取付護岸の地震応答解析モデル (EW-1)

#### 3.2.2 ジョイント要素の設定

構造物と地盤の境界部にジョイント要素を設けることにより、構造物と地盤の剥離・す べりを考慮する。

ジョイント要素は法線方向,接線方向に分けて二重節点として設定する。法線方向では, 常時状態以上の引張が生じた場合,剛性及び応力をゼロとし,剥離を考慮する。接線方向 では,構造物と地盤のせん断抵抗力以上のせん断応力が発生した場合,剛性をゼロとし, すべりを考慮する。せん断強度  $\tau_f$  は次式の Mohr-Coulomb 式により規定される。 c,  $\phi$  は 周辺地盤の c,  $\phi$  とする。(表 3.2-1 参照)

 $\tau_{\rm f} = c + \sigma' \tan \phi$ 

ここで,

τ_f : せん断強度

c : 付着力

φ :内部摩擦角

表 3.2-1 周辺地盤及び隣接構造物との境界に用いる強度特性

周辺	1の状況	粘着力 c (N/mm ² )	内部摩擦角(度)	備考
	Ju R	0	37.3	—
	uu /官	1.5	0	改良体
	1~2 屋	0	37.4	—
笠町幻屋	Ag2 唐	1.5	0	改良体
<b>舟</b> 四和唐		0.025	29.1	—
	AC /官	0.5	0	改良体
	As 層	0.012	41.0	—
	Ag1 層	0	37.4	_
新第三系	Km 層	c =0.358-0.00603 · z $\phi$ =23.2+0.0990		_
1	舎石	0.02	35	_

z :標高 (m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大き な値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 3.2-2のとおり 設定する。図 3.2-2にジョイント要素設定の考え方を示す。

表 3.2-2 ジョイント要素のばね定数

	せん断剛性 ks	圧縮剛性 kn
	$(kN/m^3)$	$(kN/m^3)$
側方及び底面	$1.0 imes10^6$	$1.0 \times 10^{6}$



(a) ジョイント要素配置図



図 3.2-2 ジョイント要素設定の考え方

3.2.3 杭-地盤相互作用ばねの設定

地盤と杭が接している箇所の側方境界部に杭-地盤相互作用ばねを設けることにより, 地盤と杭の相互作用における3次元効果を2次元モデルで適切に考慮する。

杭ー地盤相互作用ばねの杭軸方向では、地盤と杭のせん断抵抗力以上のせん断応力が発生した場合、剛性をゼロとし、すべりを考慮する。せん断強度 $\tau_f$ は次式の Mohr-Coulomb 式により規定される。 c、  $\phi$ は周辺地盤の c、  $\phi$ とする。(表 3.2-3 参照)

```
\tau_{\rm f} = c + \sigma' \tan \phi
```

ここで,

τ_f : せん断強度

c : 付着力

φ :内部摩擦角

周辺	0状況	粘着力 c (N/mm ² )	内部摩擦角(度)	備考					
	Ac 層	0.025	29.1						
第四紀層	As 層	0.012	41.0	_					
	Ag1 層	0	37.4	_					
新第三系	Km 層	$c = 0.358 - 0.00603 \cdot z$	$\phi = 23.2 \pm 0.0990 \cdot z$	—					
1	舎石	0.02	35	_					

表 3.2-3 周辺地盤及び杭との境界に用いる強度特性

z:標高(m)

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きな値として,港湾構造物設計事例集(沿岸開発技術センター)に従い,表 3.2-4のとおり設定する。

また,杭-地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔より設定される*。

図 3.2-3 に杭-地盤相互作用ばね設定の考え方を示す。

※ FLIP 研究会 14 年間の検討成果のまとめ「理論編」

	せん断剛性 ks
	$(kN/m^3)$
杭軸方向	$1.0 \times 10^{6}$

表 3.2-4 杭一地盤相互作用ばねのばね定数

## (a) 杭ー地盤相互作用ばね配置図



(b) 杭-地盤相互作用ばね(杭軸方向)の力学的特性

図 3.2-3 杭-地盤相互作用ばね設定の考え方

3.2.4 杭下端ジョイントばねの設定

杭下端境界部に圧縮応力の上限値を有さないジョイントばねを設けることにより, 杭下 端における地盤と杭の相互作用を適切に考慮する。

杭下端の杭軸方向について設定するジョイントばねは,常時状態以上の引張が生じた場 合,剛性及び応力をゼロとし,剥離を考慮する。

杭下端ジョイントばねのばね定数は,数値解析上不安定な挙動を起こさない程度に十分 大きな値として,港湾構造物設計事例集(沿岸開発技術センター)に従い,表 3.2-5のと おり設定する。図 3.2-4に杭下端ジョイントばね設定の考え方を示す。

	圧縮剛性 k _v
	(kN/m)
杭軸方向	$1.0  imes 10^{6}$

表 3.2-5 杭下端ジョイントばねのばね定数



図 3.2-4 杭下端ジョイントばね設定の考え方

#### 3.2.5 材料特性の設定

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変 化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

構造部材は、線形はり要素及び非線形ばね要素によりモデル化する。

#### 3.3 減衰特性

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及び減 衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰にて与える。なお、Rayleigh減衰をα=0となる剛性比例型減衰とする。

有効応力解析では、時系列で地盤の1次固有振動数が低振動数側へシフトして行くことから、Rayleigh 減衰の係数α, βの両方を用いると、質量比例項の減衰α[M]の影響により、有 効応力解析における減衰定数が低振動数帯で過減衰となる場合がある。

一方,有効応力解析における低振動数帯で減衰α[M]の影響がない剛性比例型減衰では,地 盤の1次固有振動数が時系列で低振動数側へシフトしていくのに伴い,1次固有振動モードに 対する減衰定数が初期減衰定数より保守的に小さい側へ変化していくことを考慮できる。

ゆえに,有効応力解析では,地震力による時系列での地盤剛性の軟化に伴う1次固有振動数 の低振動数側へのシフトに応じて,1次固有振動モードに対する減衰定数として,初期減衰定 数よりも保守的に小さい側のモード減衰定数を適用し,地盤応答の適切な評価が行えるように, 低振動数帯で減衰α[M]の影響がない剛性比例型減衰を採用した。

 $\begin{bmatrix} C \end{bmatrix} = \alpha \begin{bmatrix} M \end{bmatrix} + \beta \begin{bmatrix} K \end{bmatrix}$ ここで、  $\begin{bmatrix} C \end{bmatrix} : 減衰係数マトリックス \\ \begin{bmatrix} M \end{bmatrix} : 質量マトリックス \\ \begin{bmatrix} K \end{bmatrix} : 剛性マトリックス \\ \alpha, \beta : 係数$ 

係数α, βは以下のように求めている。

 $\alpha = 0$  $\beta = \frac{h}{\pi f}$  $\zeta \subset \mathcal{C},$ 

f : 固有値解析により求められた1次固有振動数

h : 各材料の減衰定数

地盤の減衰定数は 1%(解析における減衰は,ひずみが大きい領域では履歴減衰が支配的と なる。このため,解析上の安定のためになるべく小さい値として 1%を採用している)とする。 また,線形材料としてモデル化する鋼材の減衰定数は 3%(道路橋示方書(V耐震設計編)・ 同解説(平成 24 年 3 月))とする。

図 3.3-1 に Rayleigh 減衰の設定フローを,表 3.3-1 に固有値解析結果を示す。



図 3.3-1 Rayleigh 減衰の設定フロー

表 3.3-2 固有值解析結果 (追而)

### 3.4 荷重の組合せ

耐震性能照査にて考慮する荷重は,通常運転時の荷重(永久荷重)及び地震荷重を抽出し, それぞれを組み合せて設定する。地震荷重には,地震時土圧,動水圧による荷重が含まれるも のとする。

荷重の組合せを表 3.4-1 に示す。

種別		荷重		算定方法			
		皈休白香	0	・設計図書に基づいて、対象構造物の体積に材料の密度を乗			
	常時	淞冲日里		じて設定			
	考慮	機器・配管自重	—	<ul> <li>・機器・配管設備はないことから、考慮しない</li> </ul>			
	荷重	土被り荷重	$\bigcirc$	・常時応力解析により設定			
永久		永久上載荷重	_	・恒常的に配置された設備等はないことから、考慮しない			
荷重		静止土圧	0	・常時応力解析により設定			
		カメロ	0	・地下水面及び海水面に応じた静水圧として設定			
		7下小上		・地下水及び海水の密度を考慮			
		内水圧	_	<ul> <li>・内水圧を考慮する構造形式ではないことから、考慮しない</li> </ul>			
		雪荷重	$\bigcirc$	・積雪荷重を考慮			
			_	・風荷重以外には発電所の立地特性及び構造物の配置状況を			
		風荷重以外		踏まえると、偶発荷重(地震荷重)と組み合わせるべき変			
変動	荷重			動荷重はない			
		風荷重	_	<ul> <li>変形に対して抵抗側に作用するため、考慮しない</li> </ul>			
(田 文)公	古舌	水平地震動	$\bigcirc$	・基準地震動S。による水平・鉛直同時加振			
1丙第	(何里)	鉛直地震動	0	・躯体の慣性力,動土圧を考慮			
(地辰	:1刊 里/	動水圧 〇		・水位条件、密度は、永久荷重と同様			

表 3.4-1 荷重の組合せ

3.5 地震応答解析の検討ケース

貯留堰の耐震設計における検討ケースを表 3.5-1に示す。

			1)	(2)	(3)	(4)	(5)	(6)	
			原地盤に基	地盤物性の	地盤物性の	地盤を強制	原地盤にお	地盤物性の	
			づく液状化	ばらつきを	ばらつきを	的に液状化	いて非液状	ばらつきを	
			強度特性を	考慮(+1	考慮 (-1	させること	化の条件を	考慮(+1	
	検討ケーン	ス	用いた解析	σ) した解	σ)した解	を仮定した	仮定した解	<ul><li>σ)して非</li></ul>	
			ケース(基本	析ケース	析ケース	解析ケース	析ケース	液状化の条	
			ケース)					件を仮定し	
								た解析ケー	
								ス	
			原地盤に基	原地盤に基	原地盤に基	敷地に存在	液状化パラ	液状化パラ	
	<b>海</b> 世化   命   唐	去社	づく液状化	づく液状化	づく液状化	しない豊浦	メータを非	メータを非	
	取れてほう	117	強度特性	強度特性	強度特性	標準砂に基	適用	適用	
	仍設定		(標準偏差	(標準偏差	(標準偏差	づく液状化			
			を考慮)	を考慮)	を考慮)	強度特性			
		(++)	1						
	S = D 1	(+-)	1						
	Us DI	(-+)	1						
		()	1						
	$S_{s} = 1  1$	(++)	1						
地	$S_{s} = 1.2$	(++)	1	1	1	1	1	1	
震	$\begin{array}{c c} S_{s}-1 & 3 & (++) \\ \hline S_{s}-1 & 4 & (++) \\ \hline S_{s}-2 & 1 & (++) \end{array}$		1						
			1	①において、最も厳しい(許容限界に対する余が最も小さい)地震動を用いて実施する。最も					
位			1						
租	$S_s = 2.2$	(++)	1	11.144					
		(++)	1		辰期 ツ 悪化(		い   行旭政の	(日川) 十日	
	$S_{s} = 3.1$			- 位ごとに1波選定する。					
		(-+)	1						
計			12	1	1	1	1	1	

表 3.5-1 貯留堰の耐震設計における検討ケース

#### 3.6 入力地震動

入力地震動は、V-2-1-6「地震応答解析の基本方針」のうち、「2.3 屋外重要土木構造物」 に示す入力地震動の設計方針を踏まえて設定する。

地震応答解析に用いる入力地震動は,解放基盤表面で定義される基準地震動S。を1次元波 動論により地震応答解析モデルの底面位置で評価したものを用いる。入力地震動算定の概念図 を図 3.6-1 に,基準地震動S。の加速度時刻歴波形と加速度応答スペクトルを図 3.6-2 に示 す。

入力地震動の算定には,解析コード「k-SHAKE Ver. 6.2.0」を使用する。解析コードの検 証及び妥当性確認の概要については,付録 39「計算機プログラム(解析コード)の概要」に 示す。

なお、特定の方向性を有しない地震動については、位相を反転させた場合の影響も確認する。 断層モデル波である $S_s - 1$  1 ~  $S_s - 2$  2については、特定の方向性を有することから、構造物の評価対象断面方向を考慮し、方位補正を行う。具体的には南北方向及び東西方向の地震動について構造物の評価断面方向の成分を求め、各々を足し合わせることで方位補正した地震動を設定する。



図 3.6-1 入力地震動算定の概念図



図 3.6-2(1) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (水平方向: S_s-D1)


図 3.6-2(2) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向:S_s-D1)



図 3.6-2(3) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (水平方向: S_s-11)



図 3.6-2(4) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (鉛直方向: S_s-11)



図 3.6-2(5) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (水平方向:S_s-12)



図 3.6-2(6) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向:S_s-12)



図 3.6-2(7) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (水平方向: S_s-13)



図 3.6-2(8) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (鉛直方向:S_s-13)



図 3.6-2(9) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル (EW-1) (水平方向: S_s-14)



図 3.6-2(10) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向:S_s-14)



図 3.6-2(11) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (水平方向: S_s-21)



図 3.6-2(12) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向:S_s-21)



図 3.6-2(13) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (水平方向: S_s-22)



図 3.6-2(14) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向: S_s-22)









図 3.6-2(15) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (水平方向:S_s-31)





図 3.6-2(16) 入力地震動の加速度時刻歴波形及び加速度応答スペクトル(EW-1) (鉛直方向:S_s-31)

- 4. 耐震評価
- 4.1 許容限界

許容限界は、V-2-1-9「機能維持の基本方針」に基づき設定する。

- 4.1.1 構造部材に対する許容限界
  - (1) 鋼矢板

貯留堰取付護岸の前面鋼矢板(既設)及び控え工鋼矢板(既設)の許容限界は,「鋼矢板 Q&A(鋼管杭・鋼矢板技術協会,平成29年3月)」に基づく全塑性モーメントを考慮し, 表4.1-1のとおり設定する。

表 4.1-1 鋼矢板(既設)の許容限界

評価項目		許容限界
前面鋼矢板	SP-V型 SY295	884 kN•m *1
控え工鋼矢板	S P− <b>I</b> V型 SY295	565 kN $\cdot$ m *1

注記 *1: 鋼矢板 Q&A (鋼管杭·鋼矢板技術協会,平成 29 年 3 月)

(2) タイ材

貯留堰取付護岸のタイ材(既設)の許容限界は,「タイブル設計施工の手引き「控索編」 (株式会社エスイー,2013年1月)」に基づく引張強さを考慮し,表4.1-2のとおり設定 する。

評価項目		許容限界
タイ材	F130T(タイブル)	1,281 kN *2

表 4.1-2 タイ材(既設)の許容限界

注記 *2:タイブル設計施工の手引き「控索編」(株式会社エスイー,2013年1月)

## 4.2 評価方法

4.2.1 構造部材の健全性

「3. 地震応答解析」により得られる照査用応答値が「4.1 許容限界」で設定した許容 限界以下であることを確認する。 4.3 評価結果 (追而)

## 4.4 まとめ (追而)