本資料のうち,	枠囲みの内容は営業秘密又
は防護上の観点	から公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-340-1 改3
提出年月日	平成 30 年 4 月 23 日

東海第二発電所 耐震性に関する説明書に係る補足説明資料

地盤の支持性能について

平成 30 年 4 月

日本原子力発電株式会社

1.		概要
2.		基本方針
3.		評価対象施設周辺の地質等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.	.1 評価対象施設周辺の地質・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.	.2 評価対象施設周辺の地質状況整理結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
	3.	.3 敷地の地下水位分布及び耐震評価における地下水位設定方針・・・・・・・・・・・・15
	3.	. 3. 1 敷地の地下水位分布・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.	. 3. 2 耐震評価における地下水位設定方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.	.1 設置変更許可申請書に記載された解析用物性値・・・・・・・・・・・・・・・・・・・・・・・18
	4.	.2 設置変更許可申請書に記載されていない解析用物性値 · · · · · · · · · · · · · · · · · · ·
	4.	. 2.1 有効応力解析に用いる解析用物性値・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.	.2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値52
	4.	. 2. 3 その他の解析用物性値・・・・・・ 56
	4.	.2.4 地盤の物性のばらつきについて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・60
5.		極限支持力
	5.	.1 直接基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.	.2 杭基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	5.	.3 地中連続壁基礎の支持力算定式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	<mark>5.</mark>	.4 極限支持力算定式における久米層の非排水せん断強度の適用性について ・・・・・・・・・63
	<mark>5.</mark>	<mark>.5 杭の支持力試験について</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.		地盤の速度構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.	 入力地震動策定に用いる地下構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	6.	.2 地震応答解析に用いる地盤の速度構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	<mark>6.</mark>	<mark>. 3 PS 検層結果の代表性及び網羅性について</mark> ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	<mark>6.</mark>	. 3.1 第四系における PS 検層の代表性及び網羅性について ・・・・・・・・・・・・・・・・・・ 68
	6.	. 3. 2 新第三系における PS 検層の代表性及び網羅性について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 71

参考資料1	(参考)	1 -1
参考資料 2 · · · · · · · · · · · · · · · · · ·	(参考)	2-1
参考資料 3	(参考)	3-1
参考資料 4 · · · · · · · · · · · · · · · · · ·	(参考)	4-1
参考資料 <mark>5</mark> · · · · · · · · · · · · · · · · · · ·	(参考)	<mark>5</mark> -1
参考資料 <mark>6</mark> · · · · · · · · · · · · · · · · · · ·	(参考)	<mark>6</mark> -1

1. 概要

本資料は、V-2-1「耐震設計の基本方針」のうちV-2-1-1「耐震設計の基本方針」に基づき、 設計基準対象施設並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備,常設耐震 重要重大事故防止設備及び常設重大事故緩和設備が設定される重大事故等対処施設(特定重大事 故等対処施設を除く。)(以下「常設重大事故等対処施設」という。)の耐震安全性評価を実施 するに当たり,対象施設を設置する地盤の物理特性,強度特性,変形特性等の地盤物性値設定及 び支持性能評価で用いる地盤諸元の基本的な考え方を示したものである。

2. 基本方針

設計基準対象施設及び常設重大事故等対処施設において,対象施設を設置する地盤の物理特性, 強度特性,変形特性等の解析用物性値については,各種試験に基づき設定する。また,全応力解 析及び有効応力解析等に用いる解析用物性値をそれぞれ設定する。全応力解析に用いる解析用物 性値は,設置変更許可申請書(添付書類六)に記載した値を用いることを基本とする。有効応力 解析に用いる解析用物性値は,工事計画認可申請において新たに設定する。

対象設備を設置する地盤の地震時における支持性能評価については,設計基準対象施設及び常 設重大事故等対処施設の耐震重要度分類又は施設区分に応じた地震力により地盤に作用する接地 圧が地盤の極限支持力に基づく許容限界*以下であることを確認する。

*:妥当な安全余裕を持たせる。

極限支持力は,道路橋示方書(I共通編・Ⅳ下部構造編)・同解説((社)日本道路協会,平 成 24 年 3 月)(以下「道路橋示方書」という。)の支持力算定式等に基づき,対象施設の支持 岩盤の室内試験結果(せん断強度等)を用いて設定する。また,杭の支持力試験を実施している 場合は,極限支持力を支持力試験結果から設定する。

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化 強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩 擦力を支持力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基 本とする。ただし,杭を根入れした岩盤及び岩着している地盤改良体とその上方の非液状化層が 連続している場合は,杭周面摩擦力を支持力として考慮する場合がある。

3. 評価対象施設周辺の地質等

3.1 評価対象施設周辺の地質

敷地の地質層序を表 3.1-1 に示す。敷地の地質は、下位から先白亜系の日立古生層(日立変 成岩類)、白亜系の那珂湊層群,新第三系の離山層,新第三系鮮新統~第四系下部更新統の久 米層,第四系更新統の東茨城層群及び段丘堆積物,第四系完新統の沖積層及び砂丘砂層からな る。

敷地の地質・地質構造評価に係る地質調査のうち,ボーリング調査位置図を図 3.1-1 に, 敷地の地質平面図を図 3.1-2 に示す。敷地に分布する地層のうち,最下位の日立古生層(日立 変成岩類)は硬質な泥岩,砂岩及び礫岩からなる。那珂湊層群は硬質な泥岩,砂岩及び礫岩か らなる。離山層は泥岩,凝灰岩からなる。久米層は砂質泥岩を主としている。東茨城層群と段 丘堆積物は砂礫,砂及びシルトからなり,沖積層は粘土を主として砂及び礫混じり砂を挟む。 各層は不整合関係で接している。砂丘砂層は均質な細~中粒砂からなり,敷地全体に広く分布 する。

敷地の第四系の主な層相及び代表的なコア写真の拡大を表 3.1-2 に示す。以降,敷地の第 四系をこの層相に基づき区分する。

敷地の地質断面図を図 3.1-3 に示す。敷地には,敷地全域にわたって新第三系鮮新統~第 四系下部更新統の久米層が分布し,その上位に第四系更新統の段丘堆積物,第四系完新統の沖 積層及び砂丘砂層が分布する。

備考	-広く分布する。)層は敷地全体に広く分布する。	き食した凹状の谷を埋めて分布する。			:分布する。 	りLI段丘堆積物に対比される。 中の炭物質の年代: &70年BD→18.320+年BD オ ーパー	1000年n1.1 + n10001 + + n12		はに分布する。 DM2段丘堆積物に対比される。	に分布する風化火山灰層に含まれる 年代:	・赤城鹿沼テフラ >45,000年BP ・赤城水沼1テフラ 55,000年BP~60,000BP)ごく一部に分布する。	:広く分布する。 5等の基礎岩盤である。	。 部を中心に久米層の下位に認められる。	:久米層, 離山層の下位に認められる。	リングで那珂湊層群の下位に認められる。
	敷地全体に		最上位の砂	久慈川が侵			敷地南部に	数120回1200 シルト層ロ 40 830+3	(14C ⁴		敷地南西部 敷地周辺0	本層上部 テフラの4		敷地西部の	敷地全体に 原子炉建扂	敷地では北	敷地全体で	1孔のボー
主な層相	灰褐色~黄灰色の砂~中粒砂	逖	土 暗青灰色~灰褐色の粘土・砂	灰褐色~黄褐色の礫混じり砂	畿	4	Â	煭	→ 本はあ… 単匠なん以綴。 Ph 、 in L	東南日~月次日の夕保・少・ノンド深	Ϋ.	4	迷	暗灰色〜褐色の砂及びシルト 灰褐色〜青灰色の砂礫	暗オリーブ灰色の砂質泥岩	泥岩・凝灰岩	泥岩·砂岩	泥岩・砂岩・礫岩
		2 砂		。 (2)	1 砂	-3 <i>></i> 1	-3 创	-3 砂	-2 シル	-2 砂		 	-1 砂			}))
也質記号	qu	Ag2 Ac Ac As Ag1				D2s-: 02s-: 012s-: 012s-: 01c-: 01c-					D1c	D1g		e e	~ 도 (ž ž	Hp	
4			-	a		D1 D2												
地層区分	砂丘砂層		Ш Т	汗 傾眉										○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○			 00000000 日立古生層 (日立変成岩類) 	
分			完新統							更新統						鮮新統		
年代層序区								第四条	- 11							新第三条	日田系	先白亜系
								4	₩									

表 3.1-1 地質層序

図 3.1-1 ボーリング調査位置図

	年代層序区	分	地層区分	地質	記号		主な層相	代表的なコア写真
			砂丘砂層		lu		灰褐色~黄灰色の砂~中粒砂	
					Ag2	砂礫		
		完新統			Ac	粘土	暗吉灰色~灰褐色の粘土-砂	apple internation
			净積盈	al	As	79	反褐色~黄褐色の練麗じり砂	
					Ag1	砂礫		
					D2c-3	シルト		
新生界	第四系				D2s-3	D2s−3 秒	 	
		更新統		D2	D2g-3	砂礫		
			段斤维秸物		D2c-2	シルト		and the second second second
			校正單板物		D2g-2	砂礫		
					Im	п—д		V. J. D.
				D1	D1c-1	シルト		
					D1g-1	砂礫		

表 3.1-2 第四系の主な層相及び代表的なコア写真の拡大

(1) 原子炉建屋周辺断面(A-A断面)

(2) 原子炉建屋周辺断面(B-B 断面)図 3.1-3(1) 地質断面図(1/6)

 \bigcirc

S E.L. (m)

0.95 ŝ

E-Trail

85.3 cm

HIJ-B

*

E.L. (m) 40.0

, Ø

 Θ

E.L. (m)

. 1

三丁二

(I)' EL (II)

100

â

②-②' 断面

3.2 評価対象施設周辺の地質状況整理結果

「3.1 評価対象施設周辺の地質」において作成した地質断面図より,評価対象施設周辺の 地質状況を整理した結果を表 3.2-1 に示す。これらの地質に対し,図 3.1-1 に示すような広 範囲における調査結果等に基づき解析用物性値を設定した。

\square					屋外重要土	大構造物	言語権利益な事		各解析用物性値の記	己載項及び設定概要	
	/		百乙枯華民	緊急時			律政い 聴起 ひょう ううしょう しん 御堤	4.1 設置変更許可申請書に記載	4.2 設置変	5更許可申請書に記載されていない解 [。]	沂用物性値
	/		师士炉建度	対策所建屋	取水構造物	屋外二重管	・貯留堰 等	された解析用物性値 (全応力解析用)	4.2.1 有効応力解析に用いる解 析用物性値	4.2.2 強制的に液状化させるこ とを仮定した有効応力解析に用い る解析用物性値	4.2.3 その他の解析用物性値
	埋戻土	fl	0	0	0	0	0			-	1
	段丘砂層	qu	0	0	0	0	0			-	1
		Ag2	0	0	0	0	0			Ι	Ι
	四郡泉	Ac	0	Ι	0	0	0			I	I
	1个4月7营	at	0	Ι	0	0	0			-	1
策		Ag1	0	Ι	0	0	0			-	1
		D2c-3	0	0	(O) *1	Ι	0	···································	シート 日本市田 子子	-	-
亲	1	D2 D2s-3	0	0	-		0	原业直対戦火の 室内試験に基づき設定	原位国政戦及の 室内試験に基づき設定	-	-
	的「茶舗物	D2g-3	0	0	(O) *1	0	0			-	-
	₩ Ⅲ − − − − − − − − − − − − − − − − − −	lm	Ι	(O) * 1	-	I	Ι			-	-
	Ţ	D1 D1c-1		Ι			Ι			-	-
		D1g-1	Ι	(O) * 1	1		I			-	I
新第三系	久米層	Km	0	0	0	0	0			I	I
	持石		Ι	Ι	I		0	Ι	-	-	文献情報に基づき設定
	豊浦標準配	4	強	制的に液状化さ	きせることを仮	定する場合に近	適用	Ι	Ι	文献情報に基づき設定	Ι
	人工岩盤		0	Ι	I	I	Ι	Ι	I	I	原位置試験, _{全中計略} 立 赴唐和
	地盤改良角	14		0	0	0	0	-	-	1	≖い!?!?!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

表 3.2-1 評価対象施設周辺の地質分布一覧

*1:施設直下及び直近には分布していないが,地質断面図内に現れる地層 証

- 3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針
- 3.3.1 敷地の地下水位分布

敷地においては水位観測に基づき,水位コンターを設定している。地下水位については, 平成29年6月時点でのデータを用いて取り纏めを行い,地下水位コンター図を作成した。 図3.3-1に観測最高水位コンター図,表3.3-1に観測最高地下水位一覧表を示す。 各地点における地下水位観測データを(参考資料1)に示す。

図 3.3-1 観測最高地下水位コンター図

観測孔名	計測期間	観測最高地下水位 (T.P.+m)	観測最高地下水位 計測時期
а	$1995 \sim 1999$	3.49	1998年10月8日
b	$1995 \sim 1999$	2.52	1998年9月25日
с	$1995 \sim 1999$	2.53	1998年9月22日
d	$1995 \sim 1999$	2.28	1998年9月22日
a-1	1995~1999, 2004~2009	15. 42	2006年8月7日
a-2	$2004 \sim 2009$	13.60	2006年7月28日
b-2	$2004 \sim 2009$	9.06	2006年7月30日
c-0	1995~1999, 2004~2009	2.05	1998年9月19日
c-2	1995~1999, 2004~2017	2.58	2012年7月7日
c-3	$2004 \sim 2017$	2.49	2012年7月7日
c-4	$2004 \sim 2017$	2.00	2012年6月25日
d-1	1995~1999, 2004~2009	1.50	1998年9月18日
d-3	2004~2017	1.44	2013年10月27日
d-6	$2004 \sim 2017$	1.58	2013年10月28日
e-2	$2004 \sim 2017$	1.38	2006年10月8日
e-3	$2004 \sim 2017$	1.50	2013年10月16日
e-5	2004~2017	1.30	2013年10月21日
e-6	$2004 \sim 2017$	1.26	2013年10月21日
B-1	$2005 \sim 2017$	2.90	2006年7月30日
B-2	2005~2017	3.09	2006年7月30日
B-4	2005~2017	3.56	2006年7月31日
B-6	$2005 \sim 2017$	5. 51	2006年8月17日
C-4	$2005 \sim 2017$	3.17	2012年6月27日
C-7	$2005 \sim 2017$	4.99	2006年8月18日
D-0	2006~2017	2.37	2012年6月22日
D-3	2005~2017	2.88	2006年10月7日
D-4	2006~2017	2.76	2012年6月25日
D-5	2006~2017	2.54	2012年7月16日
E-4	2006~2017	2.26	2012年6月25日
F-2	2005~2015	1.74	2013年10月30日
F-4	2005~2017	1.55	2013年10月27日
F-6	2005~2017	1.77	2012年6月24日
G-5	2005~2017	1.53	2013年10月27日
H-4	2006~2017	2.13	2013年10月16日
H-7	$2005 \sim 2017$	1.33	2013年10月27日

表 3.3-1 観測最高地下水位一覧表

- 3.3.2 耐震評価における地下水位設定方針
 - (1) 建物・構築物の耐震評価における地下水位設定方針 建物・構築物の耐震評価においては、東海第二発電所における将来の防潮堤設置による 地下水位上昇の可能性を踏まえ、地下水位を地表面に設定する。ただし、原子炉建屋の地 下水位については、原子炉建屋直下の人工岩盤下端レベルにサブドレンを配置し、地下水 位の低減措置を実施しているため、地下水位は原子炉建屋の基礎盤下端レベルより低い位 置に設定する。
 - (2) 土木構造物(津波防護施設等を含む)の耐震評価における地下水位設定方針 土木構造物(津波防護施設等を含む)の耐震評価においては、東海第二発電所における 将来の防潮堤設置による地下水位上昇の可能性を踏まえ、地下水位を地表面に設定する。

4. 地盤の解析用物性値

4.1 設置変更許可申請書に記載された解析用物性値

全応力解析に用いる解析用物性値として,設置変更許可申請書に記載された解析用物性値を 表4.1-1及び図4.1-1~図4.1-10に,設定根拠を表4.1-2に示す。設置変更許可申請書に 記載された解析用物性値については,原位置試験及び室内試験から得られた各種物性値を基に 設定した。

								第四系						新第三系
	項目	f1層	du)層	Ag2層	Ac層	As層	Ag1層	D2c-3層	D2s-3層	D2g-3層	lm層	D1c-1層	Dlg-1層	Km層
物理	密度	1.	82	1.89	I		I	t t	6	L.	1.43	t t	1.89	I
特性	$\rho_{\rm t}({\rm g/cm^3})^{(*1)}$	1.	98	2.01	1.65	1.74	2.01	77.77	1. 92	2.10	1.47	1.11	2.01	$1.72{-}1.03{\times}10^{-4}\cdot2$
静的変形特性	静弹性係数 (N/m ²)	4.00+15	6 · α c'	10. 5+142 • σ c'	11.4	21. 1+14. 8 o c	10.5+142 · σ c'	32.3+5.46 · σ c	16.0+48.3 • σ c'	83. 4+160 • <i>σ</i> c'	7. 26+19. 6 · σ c'	32. 3+5. 46 • ø c'	10.5+142 · σ c'	221-2. 23 • Z
	初期せん断剛性	80	33	109	I	I	I	001	070	00 L	0	OC F	287	
箯	G ₀ (N/mm ²) (*1)	87	.3	116	$ ho_{\rm sat} \sim 1000 \times {\rm Vs}^2 {\rm Vs}^{\rm sat} {\rm Vs}^{\rm sat} {\rm Vs}^{\rm sat}$	$\begin{array}{c} \rho_{\rm sat} \swarrow 1000 \times \rm Vs^2 \\ \rm V_{\rm S}{=}21 \rm I{-}1. 19 \rm z \end{array}$	246	179	249	0.00	24. 8	139	306	$\rho_{\rm v}/1000 \times V {\rm s}^2$ V s=433-0.771 • Z
淣	動ポアソン比	0.1	385	0.286	Ι		I	007 0	107 0	0.07	101 0	201 0	0. 382	
変 彩	$\nu_{\rm d}^{(*1)}$	0. 2	193	0.491	0.486	0.484	0.483	0.488	0. 465	0. 462	0. 494	0.487	0.474	0.463+1.03×10 ⁻⁴ • Z
新 性	せん断剛性 のひずみ依存性 ^{G/G₆〜ッ}	1+154	$\frac{1}{0 \gamma^{1.04}}$	$\frac{1}{1+2520\;\gamma^{\;1.14}}$	$\frac{1}{1+269\;\gamma^{\;0.\;909}}$	$\frac{1}{1+422\gamma^{0.951}}$	$\frac{1}{1+1730 \ \gamma^{1.11}}$	$\frac{1}{1+269\;\gamma^{\;0.862}}$	$\frac{1}{1+1100\gamma^{0.994}}$	$\frac{1}{1+237\;\gamma\;0.732}$	$\frac{1}{1+222 \ \gamma^{0.975}}$	$\frac{1}{1+269~\gamma^{0.862}}$	$\frac{1}{1+2520\;\gamma^{1.14}}$	$\frac{1}{1+107\;\gamma^{\;0.824}}$
	減衰定数 h~y	7 7 10,27 7	+0.0102	$\frac{2}{10.7 \pm 0.0057} \pm 0.0043$	$\frac{\gamma}{(6,65\gamma+0.0101)}$ 9 0.022	$\frac{\gamma}{(4,40,\gamma+0.0122)}$ +0.0144	$\frac{\gamma}{(3.73 + 0.0102)}$ +0.00798	000 °0+ (63600 °0+ 4 59 '9)	$\frac{\gamma}{(5, 68 + 10, 00560)}$ +0.0132	9. 70 y +0. 00754) +0. 0233	$\frac{\gamma}{(8,2)\gamma+0,0261)}$ +0,021	$\frac{\gamma}{(6,62\gamma+6,0649)}$ +0.0205	7, 00, 00, 10, 00, 12) +0, 00, 13)	$\frac{\gamma}{16, 41 - \gamma} - 0.0181$
強度	ピーク強度 C _u (N/mm ²)	0.491P +0.200	1. 12P +0. 670	1. 40P+0. 620	0. 242P+0. 090	1. 42P+0. 464	1. 40P+0. 620	0. 274P+0. 180	0. 462P+0. 230	0.770P+0.594	0.338P+0.050	0.274P+0.180	1. 40P+0. 620	備考参照
《特性	残留強度 で ₀ (N/mm ²)	0. 500P +0. 195	1. 00P +0. 577	1.20P+0.548	0. 220P+0. 059	1. 43P+0. 430	1. 20P+0. 548	0.170P+0.141	0. 310P+0. 213	0. 788P+0. 582	0. 280P+0. 036	0. 170P+0. 141	1. 20P+0. 548	$\tau^{2=0.632} \cdot \sigma$ ($\sigma < 0.572 N mm^2$) $\tau^{=0.601}$ ($\sigma \ge 0.572 N mm^2$)
	籠							新第三系の強	奥特性は右図より 「	設定する。 1 1 1 1 1 1 1 1 1 1 1 1 1			$\sigma_{t} = 0.1$ $\tau_{R} = 0.3$ $C_{CUV} = 0.8$ $Z : ff$	11-0.00114・Z 54-0.00168・Z 37-0.00346・Z カ=0 ⁰ 点高EL. 表示 (m)

表4.1-1 設置変更許可申請書に記載された解析用物性値

注記 *1:上段は地下水位面以浅,下段は地下水位以深に対する値を示す。 P (N/mm²):圧密圧力(有効上載圧) G/G0(-):剛性低下率

ッ (一) : せん断ひずみ

p sut (g/cm²) :飽和密度 Vs (m/s) :せ心断波速度

h (-) : 減衰定数

図 4.1-1 du 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-2 Ag2 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-3 Ac 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-4 As 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-5 Ag1 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-6 D2c-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-7 D2s-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-8 D2g-3 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-9 lm 層の動せん断弾性係数及び減衰定数のひずみ依存性

図 4.1-10 Km 層の動せん断弾性係数及び減衰定数のひずみ依存性

新第三系	Km層	室内物理 試驗	三軸圧縮 試驗	P S 検醒 と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
	D1g-1屠	強度特性等と 併せて	Ag2層で 代用	P S 検醒 と 密度より 算出	P S 検福 より算出	強度特性等と 併せて	Ag2/m.c 代用	より N 値の 小さい Ag2層で 代用
	D1c-1層	若在して来来」	D2c-3層で 代用	P S 検醒 と 密度より 算出	P S 検 より算出		同じ洪積 粘性土である D2c-3層で 代用	
	lm層	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	D2g-3屠	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
	D2s-3屠	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
第四系	D2c-3屠	室内物理 試驗	三軸圧縮 試験	P S 検醒 と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
	Ag1屠	歯度特性等と 併せて	Ag2層で 代用	P S 検醒と 密度より 算出	P S より算出	繰返し三軸 試験	繰返し三軸 試験	よりN値の 小さい Ag2層で 代用
	As層	室内物理 試験	三軸圧縮 試験	P S検層と 密度より 算出	P S 検 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧 試験
	Ac層	室内物理 試験	三 軸圧 誘騎	P S 検層 P 密度より 算出	P S より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧 試験
	Ag2)屠	室内物理 試驗	三軸圧縮 試験	P S 検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	du層	室内物理 試驗	三軸圧縮 試験	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
埋戻土	f1屠			f1層の主要な 構成の主要な ーイング	幅にあるこの さの、			三軸圧 試験
Ř	通日	密度	静弹性係数	初期 せん断剛性	動ポアソン比	せん断剛性の ひずみ依存性	减衰定数	強度特性

表 4.1-2 解析用物性値の設定根拠

4.2 設置変更許可申請書に記載されていない解析用物性値

設置変更許可申請書に記載されていない解析用物性値を表 4.2-1~表 4.2-3 に, その設定 根拠を表 4.2-4~表 4.2-6 に示す。以下の章に, 各物性値の設定根拠を示す。

							原均	也盤				
	パラメータ			埋戻土			第四系	(液状化検討対	†象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	g/cm^3	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	$\nu_{\rm CD}$	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m^2	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
強度	最大履歷減衰率	h _{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0. 287
	粘着力	C _{CD}	N/mm^2	0	0	0	0.012	0	0.01	0	0	0
特 性	内部摩擦角	ϕ_{CD}	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ		-	34.8	34.8	34. 9	38.3	34. 9	33.4	41.4	34. 9	28
adr.	液状化パラメータ S ₁		-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
被状	液状化パラメータ	W_1	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特性	液状化パラメータ	P_1	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
1	液状化パラメータ	\mathbb{P}_2	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	-	2.00	2.00	3.40	2.27	3. 35	3. 15	3.82	2. 83	1.44

表 4.2-1(1) 設置変更許可申請書に記載されていない解析用物性値(液状化検討対象層)

表 4.2-1(2) 設置変更許可申請書に記載されていない解析用物性値(非液状化層)

							原地盤		
	パラメータ				第四系(非	液状化層)		新第三系	
				Ac	D2c-3	lm	D1c-1	Km	括石
物理は	密度 () は地下水位以浅	ρ	g/cm^2	1.65	1.77	1.47 (1.43)	1.77	1.72–1.03 \times 10 ⁻⁴ · z	2.04 (1.84)
特性	間隙比	е	_	1.59	1.09	2.8	1.09	1.16	0.82
	ポアソン比	$\nu_{\rm CD}$	_	0.10	0.22	0.14	0.22	0.16+0.00025 · z	0.33
変形	基準平均有効主応力 () は地下水位以浅	σ'_{ma}	kN/m^2	480	696	249 (223)	696	表4.1-1の	98
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m^2	121829	285223	38926 (35783)	285223	動的変形特性に基づき z(標高)毎に物性値を 設定	180000
	最大履歷減衰率	h _{max}	_	0.200	0.186	0.151	0.186		0.24
強度	粘着力	C _{CD}	N/mm^2	0.025	0.026	0.042	0.026	0.358-0.00603 · z	0.02
特性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	35.6	23.2+0.0990 · z	35

z:標高 (m)

	単位体積重量 (kN/m ³)	ポアソン比	せん断剛性 (N/mm ²)	減衰定数	ヤング係数 (kN/mm ²)
人工岩盤(新設) (f'ck = 18 N/mm ²)	23. 0	0.20	8580^{*1}	0.05	20.6
人工岩盤(既設) (f'ck = 13.7 N/mm ²)	《工岩盤(既設) ck = 13.7 N/mm ²) 23.0		7830^{*1}	0.05	18.8

表 4.2-2 設置変更許可申請書に記載されていない解析用物性値(人工岩盤)

注記 *1:人工岩盤のせん断剛性は以下の式から算出する。

 $(G = \frac{E}{2(1+\nu)}, E: ヤング係数, \nu : ポアソン比)$

表 4.2-3 設置変更許可申請書に記載されていない解析用物性値(地盤改良体(セメント改良))

項目		地盤改良体 (セメント改良)					
		一軸圧縮強度(≦8.5N/mm ² の場合)	一軸圧縮強度(>8.5N/mm ² の場合)				
物理特性	密度 ρ _t (g/cm³)	改良対象の原地盤の平均密度×1.1					
静的変形特性	静弾性係数 (N/mm ²)	581	2159				
	静ポアソン比 _{v s}	0. 260					
動的変形特性	初期せん断 剛性 G ₀ (N/mm ²)	G ₀ = ρ _t / Vs = 147.6 × q _u :一軸圧縮強	1000 × Vs ² q _u ^{0.417} (m/s) 3度(kgf/cm ²)				
	動ポアソン比 _{V d}	0. 431					
	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	G/G ₀ = <u>1</u> 1+γ/0.000537 γ:せん断ひずみ(一)	G/G ₀ = <u>1</u> 1+γ/0.001560 γ:せん断ひずみ(一)				
	減衰定数 h~ γ	h=0.152 <u>γ/0.000537</u> 1+γ/0.000537 γ:せん断ひずみ (-)	h=0.178 <u>γ/0.001560</u> + γ/0.001560 γ:せん断ひずみ (-)				
強度特性	粘着力 C (N/mm ²)	C = c q _u :一軸圧縮把	C = q _u / 2 一軸圧縮強度 (N/mm ²)				
	ピーク強度 C _u (N/mm ²)	1.44 P + 1.76 P: 圧密圧力(N/mm ²)	1.60 P + 7.80 P: 圧密圧力 (N/mm ²)				
	残留強度 $\tau_0 (N/mm^2)$	1.44 P + 0.808 P:圧密圧力(N/mm ²)	1.60 P + 2.05 P:圧密圧力 (N/mm ²)				

			原地盤									
パラメータ			埋戻土 第四系 (液状化検討対象層)								豊浦標準砂	
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	1
物 理	密度	ρ	g/cm^3		室内	室内 物理試験	室内	Ag2層で 代用	室内 物理試験	室内 物理試験	Ag2層で 代用	文献*1より
特性	間隙比	е	-		物理試験		物理試験					文献* ² より
	ポアソン比	ν _{CD}	-		三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	Ag2層で 代用	三軸圧縮 試験 (CD)	三軸 三軸 能 (CD)	Ag2層で 代用	文献* ¹ より
変形	基準平均有効主応力	σ' _{ma}	kN/m²		第4-1表の 第4-1表の 動的変形特性 に基づき設定 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定) 第4-1表の 性動的変形特性 定に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	文献 ^{*1} より 引用した 動的変形特性 に基づき設定
特性	基準初期せん断剛性	G _{ma}	na kN/m ²									
	最大履歴減衰率	h _{max}	-							Ag2層で 代用		
強度	粘着力	C _{CD}	N/mm^2	du層で 代用	三軸圧縮	三軸圧縮	三軸圧縮	Ag2層で	三軸圧縮	三軸圧縮	Ag2層で	- 大和*1 ト わ
特性	内部摩擦角	ϕ_{CD}	度	1.00.00	試験 (CD)	試験 (CD)	試験 (CD)	代用	試験 (CD)	試験 (CD)	代用	又献 より
	液状化パラメータ	$\phi_{\rm p}$	_			 度 液状化強度 試験結果 に基づく /ョン 要素パュレーション 		Ag2層の 液状化強度 試験結果 を代用した 要素パュレーション	液状化強度 試験結果 に基づく 要素パュレーション	液状化強度 試験結果 に基づく - 要素?ミュレーション	液状化強度 試験結果 に基づく 要素シミュレーション	文献* ² より
ut-	液状化パラメータ	S_1	_		artal IV / La Béa mbr							
被状	液状化パラメータ	W ₁	-		液状化強度 試験結果 に基づく 要素バネレーション							引用した 液状化強度
特性	液状化パラメータ	P_1	-									
177	液状化パラメータ	P_2	-									安永/(ユレ / コ/
	液状化パラメータ	C_1	-									

表 4.2-4(1) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(液状化検討対象層)

注記 *1:二方向同時加振による液状化実験(第28回土質工学研究発表会 藤川他, 1993)

*2: CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)]

表 4.2-4(2) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(非液状化層)

							原地盤			
パラメータ				第四系(非	液状化層)	新第三系	<u>や</u> て			
				Ac D2c-3 lm D1c-1				Km	信仰	
物 理	密度	ρ	g/cm^3	室内 室内 物理試験 物理試験 三軸圧縮 三軸圧縮 試験 (CD)		室内		室内		
特性	間隙比	е	-			物理試験		物理試験		
	ポアソン比	ν_{CD}	_			三軸圧縮 試験 (CD)		三軸圧縮試験 (CD)		
変 形	基準平均有効主応力	σ'_{ma}	kN/m^2	毎年まで	答(1まの	年にまの	D2c-3層で	ましいの単始本で比坦	本 ##*3 と M	
特性	基準初期せん断剛性	G _{ma}	kN/m ²	第4-1衣の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	代用	表4.1-100期的変形特性 に基づきz(標高)依存物性 として設定	又厭 より	
	最大履歴減衰率	h _{max}	-							
強度	粘着力	C _{CD}	N/mm^2	三軸圧縮	三軸圧縮	三軸圧縮		三軸圧縮		
特性	内部摩擦角	ϕ_{CD}	度	試験 (CD)	試験 (CD) 試験 (CD)			試験 (CD)		

注記 *3:港湾構造物設計事例集((財)沿岸技術研究センター,平成19年3月)

表 4.2-5 設置変更許可申請書に記載されていない解析用物性値の設定根拠(人工岩盤)

	単位体積重量	ポアソン比	せん断剛性	減衰定数	ヤング係数
人工岩盤(新設) (f'ck = 18 N/mm ²)	慣用値 ^{*1}	慣用値*1	ヤング係数と ポアソン比 より算出	慣用値	慣用値*1
人工岩盤(既設) (f'ck = 13.7 N/mm ²)	慣用値*1	慣用値 ^{*1}	ヤング係数と ポアソン比 より算出	慣用値	慣用値*1

注記 *1:原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)

表 4.2-6 設置変更許可申請書に記載されていない解析用物性値の設定根拠(地盤改良体(セメント改良))

	項目	設定根拠					
物 理 特 性	密度 $ ho_{ m t}({ m g/cm^3})$	既設改良体のコアによる密度試験に基づき係数(×1.1)を 設定					
静的麥	静弹性係数 (N/mm ²)	既設改良体を模擬した再構成試料による一軸圧縮試験に 基づき設定					
形 特 性	静ポアソン比 ッ _s	文献*1より設定					
afi.	初期せん断 剛性 G ₀ (N/mm ²)	文献* ² より「一軸圧縮強度q _u ~せん断波速度Vs」の 関係式を引用し設定					
助的変	動ポアソン比 ^v d	既設改良体のPS検層に基づき設定					
▲ 形 特 性 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定					
	減衰定数 h~ γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定					
	粘着力 C (N/mm ²)	ー軸圧縮強度q _u と粘着力Cの関係に基づき設定					
	ピーク強度 C _u (N/mm ²)	既設改良体を模擬した再構成試料による三軸圧縮試験					
	残留強度 τ ₀ (N/mm ²)	(CU条件) に基づき設定					

注記 *1:建築基礎のための地盤改良設計指針案((社)日本建築学会,2006)

*2:地盤工学への物理探査技術の適用と事例((社)地盤工学会,2001),

わかりやすい土木技術 ジェットグラウト工法(鹿島出版社 柴崎他, 1983)

4.2.1 有効応力解析に用いる解析用物性値

建物・構築物の動的解析において,地震時における地盤の有効応力の変化に応じた影響 を考慮する場合は,有効応力解析を実施する。有効応力解析に用いる液状化強度特性は, 敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定することを 基本とする。

設定する液状化強度特性は、試験データのばらつきを考慮し、液状化強度試験データの 最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不変分散に基づく標準偏 差を用いた「平均-1g」について整理する。

また,保守的な配慮として,地盤を強制的に液状化させることを仮定した影響を考慮す る場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊浦標準砂に基 づく液状化強度特性)を設定する。

設置変更許可申請書における解析物性値は全応力解析用に設定しているため,液状化検 討対象層の物理的及び力学的特性から,各層の有効応力解析に必要な物性値を設定する。

また,有効応力解析に用いる解析用物性値のうち一部の地盤材料については,同等若し くは保守的な他の地盤材料の試験結果を代用している。他の地盤材料の試験結果を代用し たものについて物性設定における考え方を(参考資料2)に示す。

なお、地盤の物理特性及び力学特性は、日本工業規格(JIS)又は地盤工学会(JGS)の 基準に基づいた試験の結果から設定することとした。 (1) 液状化影響検討方針の概要

図 4.2-1 に液状化影響評価のフローを示す。

東海第二発電所の液状化影響評価については道路橋示方書を基本とし,道路橋示方書で は液状化検討対象外とされている現地盤から-20m 以深及び更新統についても液状化検討 対象層として扱う。

原地盤の各液状化検討対象層の試験結果に基づき,液状化強度特性を設定し,有効応力 解析により構造物への影響評価を実施する。設定する原地盤の各液状化検討対象層の液状 化強度特性は試験データのばらつきを考慮し,液状化強度試験データの最小二乗法による 回帰曲線と,その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いて適切に 設定する。

設計基準対象施設,常設重大事故等対処施設及び波及的影響の設計対象とする下位クラ ス施設の耐震設計において液状化影響の検討を行う場合は,原地盤に基づく液状化強度特 性を用いて基準地震動S。に対する有効応力解析による検討(①)を行うことを基本とし, 更に,当該検討において最も厳しい(許容限界に対する余裕が最も小さい)解析ケースに 対して,豊浦標準砂*の液状化強度特性により強制的な液状化を仮定した有効応力解析に よる検討(②)を追加で行う。上記の検討の組合せは,個別の施設設置位置の液状化強度 特性の信頼性等を確認し,施設毎に設定する。

図 4.2-2 に原地盤に基づく液状化強度特性と豊浦標準砂を仮定した液状化強度特性の比較を示す。豊浦標準砂の液状化強度特性は原地盤に基づく液状化強度特性の全てを包含している。豊浦標準砂は、敷地に存在しないものであるが、極めて液状化しやすい液状化強度特性を有していることから、豊浦標準砂の液状化強度特性を仮定した有効応力解析は、強制的に液状化させることを仮定した影響評価となる。

*豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地には存在しないもので ある。豊浦標準砂は、淡黄色の丸みのある粒から成り、粒度が揃い均質で非常に液状化 しやすい特性を有していることから、液状化強度特性に関する研究等における実験など で多く用いられている。

図 4.2-1 液状化影響評価のフロー

図 4.2-2 原地盤に基づく液状化強度特性と豊浦標準砂を仮定した液状化強度特性の比較

(2) 液状化検討対象層の抽出

道路橋示方書(道路橋示方書・同解説V耐震設計編,平成24年3月)では,液状化検討 対象層を完新統の以下の条件全てに該当する土層と定めている。

①地下水位が現地盤面から-10 m以内であり、かつ現地盤面から-20 m以内の飽和土層
 ②細粒分含有率 FC が 35%以下、または FC が 35%をこえても塑性指数 I_pが 15 以下の土

③平均粒径 D₅₀ が 10 mm 以下で,かつ 10% 粒径 D₁₀ が 1 mm 以下である土層

上記の条件は指針類(鉄道構造物等設計標準・同解説 耐震設計編(平成 24 年 9 月), 港湾の施設の技術上の基準・同解説(平成 19 年))でほぼ共通している。

当該地での液状化検討対象層の抽出では,道路橋示方書で対象としている地層を基本とし、さらに,道路橋示方書では検討対象外としている更新統及び現地盤面から-20 m以深の土層も抽出対象とする。

図 4.2-3 には敷地の液状化検討対象層抽出方針,表 4.2-7 には液状化検討対象層の抽 出結果を示す。

以上より,敷地における液状化検討対象層は du 層, Ag2 層, As 層, Ag1 層, D2s-3 層, D2g-3 層及び D1g-1 層とする。

図 4.2-3 液状化検討対象層抽出方針
地質記号		層相	道路橋示方 書における 液状化検討 対象層	当社における 液状化検討対 象層	備考
du		砂	0	0	
al	Ag2	砂礫	0	0	
	Ac	粘土	—	—	
	As	砂	0	0	G.L.-20 m 以深に分布 する範囲についても検 討対象とする。
	Ag1	砂礫	_		G.L20 m 以深に分布 するが検討対象とす る。
D2	D2c-3	シルト	—	—	
	D2s-3	砂	_		更新統であるが検討対 象とする。
	D2g-3	砂礫			更新統であるが検討対 象とする。 G.L20 m 以深に分布 する範囲についても検 討対象とする。
D1	1m	ローム	—	—	
	D1c-1	シルト			
	D1g-1	砂礫	—		更新統であるが検討対 象とする。

表 4.2-7 液状化検討対象層の抽出結果

○:検討対象

□:道路橋示方書では検討対象外だが □:液状化検討対象と 検討対象とするもの

-:検討対象外 するもの

(3) Ac 層の液状化強度試験結果

敷地の北部には砂層を間に挟在している過圧密粘土層(Ac 層)が厚く堆積している。Ac 層は細粒分含有率が90%以上,塑性指数 I_Pは30~60を示す高塑性粘土である。前節の液 状化検討対象層の抽出では Ac 層は液状化検討対象層外と分類されるが,敷地における分布 範囲が広く,液状化影響検討における重要度が高いことから液状化の可能性の有無を定量 的に検討することを目的として室内液状化強度試験を実施した。

室内液状化強度試験は,砂・礫質土で実施した中空繰返しねじりせん断試験により実施 した。以下に試験条件を示す。

【室内液状化強度試験の試験条件】

試験方法:中空繰返しねじりせん断試験

地盤材料試験の方法と解説(公益社団法人地盤工学会,2009)に基づき,繰返 し回数200回を上限とし,両振幅せん断ひずみ7.5%に達するまで試験を実施した。

せん断応力比は(繰返し回数 5~50 回を目安)0.36~0.80 の間で設定した。 供試体寸法:外形 70mm×内径 30mm×高さ 100mm

載荷波形:正弦波(0.02Hz)

圧密圧力:供試体採取深度の有効上載圧を考慮して設定

図 4.2-4 に中空繰返しねじりせん断試験の概要及び図 4.2-5 に液状化強度試験試料採 取箇所(Ac 層)を示す。図 4.2-6 に中空繰返しねじりせん断試験結果を示す。

試験を行った全ての供試体において,過剰間隙水圧比は 0.95 に達せず,Ac 層は液状化しないものであることが確認された。

中空ねじりせん断試験

36

図4.2-6(4) 中空繰返しねじりせん断試験結果(Ac層, SC-9-23~24(1))

図4.2-6(6) 中空繰返しねじりせん断試験結果(Ac層, SC-7-23~24(2))

- (4) 液状化強度試験試料採取位置の選定とその代表性追而
- (5) 液状化強度試験結果追而
- (6) 液状化強度特性の妥当性及び代表性追而
- (7) 施設毎の液状化影響検討の組合せ追而

- (8) 有効応力解析の検討方針
 - a. 有効応力解析コード「FLIP」について

有効応力解析コード「FLIP(Finite element analysis of Liquefaction Program)」は、1988年に運輸省港湾技術研究所(現, (独)港湾空港技術研究所)において開発された平面ひずみ状態を対象とする有効応力解析法に基づく、2次元地震応答解析プログラムである。FLIPの主な特徴として、以下の5点が挙げられる。

- ① 有限要素法に基づくプログラムである。
- ② 平面ひずみ状態を解析対象とする。
- ③ 地盤の液状化を考慮した地震応答解析を行い、部材断面力や残留変形等を計算する。
- ④ 土の応力-ひずみモデルとしてマルチスプリングモデルを採用している。
- ⑤ 液状化現象は有効応力法により考慮する。そのため、必要な過剰間隙水圧発生モデ ルとして井合モデルを用いている。

砂の変形特性を規定するマルチスプリングモデルは、任意方向のせん断面において仮 想的な単純せん断バネの作用があるものとし、これらのせん断バネの作用により、土全 体のせん断抵抗が発揮されるものである。土の応力-ひずみ関係は、このせん断バネの 特性によって種々の表現が可能であるが、「FLIP」では双曲線(Hardin-Drnevich) 型モデルを適用している。また、履歴ループについては、その大きさを任意に調整可能 なように拡張した Masing 則を用いている。図 4.2-7 にマルチスプリングモデルの概念 図を、図 4.2-8 に非排水条件での土の応力-ひずみ関係の概念図を示す。

* 文献「液状化による構造物被害予測プログラム FLIP において必要な各種 パラメータの簡易設定法(港湾空港技術研究所資料 No.869)を一部修正

図 4.2-7 マルチスプリングモデルの概念図

* 文献「液状化による構造物被害予測プログラム FLIP において必要な各種 パラメータの簡易設定法(港湾空港技術研究所資料 No.869)を一部修正

図 4.2-8 非排水条件での土の応力一ひずみ関係の概念図

b. 液状化判定に係る評価基準値について

有効応力解析コード「FLIP」での地震応答解析結果により算出される各地盤要素 の間隙水圧に対し,液状化の定義を明確にした上で,評価基準値を以下のように設定し, 液状化判定を行う。

レベル 2 地震動による液状化研究小委員会活動成果報告(土木学会,2003)では、地 盤の液状化の事象の定義として、以下のように記載されている。

・地震の繰り返しせん断力などによって、飽和した砂や砂礫などの緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、有効応力がゼロまで低下し液体状となり、その後地盤の流動を伴う現象。

液状化判定の評価基準値を設定するにあたり,規格・基準における液状化と過剰間隙 水圧に関する記載事例を調査した。地盤材料試験の方法と解説(公益社団法人地盤工学 会,2009)では,液状化と関連する過剰間隙水圧について,以下のように記載されてい る。

・各繰り返しサイクルにおける過剰間隙水圧Δuの最大値が有効拘束圧 σ₀'の 95%になった時の繰り返し載荷回数 Nu₉₅を求める。(土の液状化強度特性を求めるための繰返し非排水三軸試験(p. 703~749))

これらの知見を踏まえて、過剰間隙水圧を指標とした液状化の評価基準値について、 "液状化の定義"及び"規格・基準における記載事例"に基づき、以下のように設定する。

・過剰間隙水圧Δuの最大値が有効拘束圧 σ₀'の 95%に達した状態を液状化と判定する。

図 4.2-9 に液状化パラメータ設定の流れを示す。液状化パラメータの設定は、室内試験(液状化強度試験、三軸圧縮試験(CD 条件),動的変形試験)及び原位置試験(PS 検層)により動的変形特性を求め、その後「FLIP」による要素シミュレーションにより液状化強度特性を求めている。以上のように設定した液状化パラメータを表 4.2-1 に示す。

図 4.2-9 液状化パラメータ設定の流れ

4.2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値

(1) 豊浦標準砂について

豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地には存在しないもので ある。豊浦標準砂は、淡黄色の丸みのある粒から成り、粒度が揃い均質で非常に液状化し やすい特性を有していることから、液状化強度特性に関する研究等における実験などで多 く用いられている。

(2) 豊浦標準砂の液状化強度

液状化評価に用いる豊浦標準砂の強度特性は,文献(CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE.26-3.(1986)])から引用した相対密度 73.9~82.9%の豊浦標準砂の液状化強度試験データに対し、それらを全て包含する「FLIP」の液状化特性を設定する。

図 4.2-10 に豊浦標準砂の液状化強度試験データ,図 4.2-11 にFLIPによる豊浦標 準砂の液状化強度特性を示す。

FLIPを用いて,強制的に液状化を仮定した液状化影響評価を行うため,東海第二発 電所の全地層の液状化強度試験データを包含する液状化強度特性(豊浦標準砂)をFLI Pに仮定した有効応力解析を行い,耐震評価を実施する。図 4.2-12 に豊浦標準砂の液状 化強度特性と原地盤の液状化強度特性の比較を示す。

豊浦標準砂と液状化検討対象層である du 層及び As 層の比較を実施した。表 4.2-8 に平 均粒径と細粒分含有率の比較,図 4.2-13 及び図 4.2-14 に粒径加積曲線による比較を示 す。豊浦標準砂と du 層及び As 層の粒度分布について比較した結果,豊浦標準砂は細粒分 含有率が低く,均質な粒径を持つという特徴がある。

図 4.2-11 FLIPによる豊浦標準砂の液状化強度特性(-1 σ)

図 4.2-12 豊浦標準砂と原地盤の液状化強度特性の比較

	平均粒径(mm)	細粒分含有率(%)
豊浦標準砂	0. 202	0.24
du 層	0. 384	5. 2
As 層	0. 201	2. 1~71. 5

表 4.2-8 平均粒径と細粒分含有率の比較

*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用

図 4.2-13 粒径加積曲線による比較(du 層)

*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用

図 4.2-14 粒径加積曲線による比較(As 層)

4.2.3 その他の解析用物性値

(1) 捨石

捨石については、「港湾構造物設計事例集((財)沿岸技術研究センター、平成19年3 月)」に基づき、表4.2-1の通り解析用物性値を設定する。捨石の解析用物性値の詳細に ついては(参考資料3)に示す。

(2) 人工岩盤

人工岩盤については、「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会、2005)」に基づき、表 4.2-2の通り解析用物性値を設定する。

(3) 地盤改良体

地盤改良体(セメント改良)については,既設改良体又は既設改良体を模擬した再構成 試料による試験結果及び文献(地盤工学への物理探査技術の適用と事例((社)地盤工学 会,2001年),わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他,1983 年))等を参考に表 4.2-3の通り解析用物性値を設定する。

地盤改良体(セメント改良)のせん断波速度は,図 4.2-15 に示す通り,一軸圧縮強度 の増加に伴って増加する傾向があるため,各構造物で計画されている改良体の一軸圧縮強 度に応じたせん断波速度を設定する方法を採用した。

地盤改良体(セメント改良)の動ポアソン比は,屋外二重管の底部地盤に施工されている既設地盤改良体(セメント改良)のPS検層結果より設定した。既設改良体(セメント改良)のPS検層実施位置を図4.2-16に,PS検層結果を表4.2-9に示す。

地盤改良体(セメント改良)のひずみ依存特性を設定するにあたり,一軸圧縮強度を2水準(qu=4.0N/mm²,13.0N/mm²)*とした再構成試料による動的変形試験を実施した。2水準の一軸圧縮強度毎の動的変形試験結果とH-Dモデルによる回帰式を図4.2-17に示す。

上記の文献情報及び試験結果と解析用地盤物性の対応を,表 4.2-10 にとりまとめる。

また,地盤改良体におけるばらつきの考え方及び物性設定の妥当性についての検討結果を (参考試料4)に示す。

*屋外二重管の底部地盤に施工されている既設地盤改良体(セメント改良)の一軸圧縮強 度がおよそ 13.0N/mm²であったため、これを高強度側の目標一軸圧縮強度とし、一方で 低強度側の目標一軸圧縮強度として 4.0N/mm²を採用した。

また,地盤改良体(浸透固化改良)については,文献(浸透固化処理工法技術マニュアル(2010年版)(()財)沿岸技術研究センター,平成22年6月))に基づき改良対象の原地盤の解析用物性値と同等の基礎物理特性を用いると共に,非液状化層とする。

なお、上記物性値とは別に、地盤改良試験施工を実施する主排気筒、非常用ガス処理系 配管支持架構及び緊急時対策所建屋における地盤改良体(セメント改良)の解析用物性及 びばらつきの設定については、各対象施設近傍にて実施した地盤改良試験施工結果を用い て設定する。詳細については、補足説明資料「主排気筒の耐震性評価に関する補足説明」、 「非常用ガス処理系配管支持架構の耐震性評価に関する補足説明」、「緊急時対策所建屋 の耐震性評価に関する補足説明」に示す。

*文献(わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他, 1983 年)) より引用

図 4.2-15 一軸圧縮強度とせん断波速度の関係

図 4.2-16 既設地盤改良体(セメント改良)の PS 検層実施位置

表 4.2-9 既設地盤改良体(セメント改良)の PS 検層結果

調查孔名	Vs (m/s)	Vp (m/s)	動ポアソン比	
地盤改良体	SJ-1	750	2006	0.419
(セメント改良)	SJ-2	754	2357	0.443
平均值	752	2182	0.431	

(目標一軸圧縮強度:4.0Nmm²)

と文献情報及び室内試験の対応関係

項目		地盤改良体(セメント改良)		
		ー軸圧縮強度 (≦8.5N/mm ² の場合)	ー軸圧縮強度 (>8.5N/mm ² の場合)	
勫	初期せん断 剛性 G ₀ (N/mm ²)	$egin{array}{llllllllllllllllllllllllllllllllllll$		
動 的 変	動ポアソン比 _{v d}	0. 431		
形特性	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	G/G ₀ = <u>1</u> 1+γ/0.000537 γ:せん断ひずみ (-)	G/G。= <u>1</u> 1+y/0.001560 y : せん断ひずみ (-)	
	減衰定数 h~ γ	h=0.152 <u>γ/0.000537</u> 1+γ/0.000537 γ:せん断ひずみ (-)	h=0.178 $\frac{\gamma / 0.001560}{1 + \gamma / 0.001560}$ γ : せん断ひずみ (-)	

- 4.2.4 地盤の物性のばらつきについて
 - (1) 建物・構築物の地震応答解析に考慮する地盤の物性のばらつき
 建物・構築物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細に
 ついては、補足説明資料「地震応答解析における材料物性のばらつきに関する検討」に示す。
 - (2) 土木構造物(津波防護施設等を含む)の地震応答解析に考慮する地盤の物性のばらつき 土木構造物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細については、補足説明資料「屋外重要土木構造物の耐震安全性評価について」に示す。

なお,地震応答解析にて考慮する地盤物性のばらつきについて,詳細を(参考資料<mark>5</mark>) に示す。

5. 極限支持力

極限支持力は,道路橋示方書の支持力算定式等に基づき,対象施設の岩盤の室内試験結果(せん断強度)等より設定する。

5.1 直接基礎の支持力算定式

道路橋示方書による直接基礎の支持力算定式を以下に示す。

·極限支持力算定式(直接基礎)

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

- q_d:基礎底面地盤の極限支持力度(kN/m²)
- c:基礎底面より下にある地盤の粘着力(kN/m²)
 *cは表4.1-1におけるKm層の非排水せん断強度
- γ₁: 基礎底面より下にある地盤の単位体積重量(kN/m³)
 ただし、地下水位以下では水中単位体積重量とする。
- γ₂: 基礎底面より上にある周辺地盤の単位体積重量(kN/m³) ただし、地下水位以下では水中単位体積重量とする。
- α, β:基礎底面の形状係数
 - B : 基礎幅 (m)
 - D_f: 基礎の有効根入れ深さ(m)
- N_a, N_a, N_y: 支持力係数

5.2 杭基礎の支持力算定式

道路橋示方書による杭基礎における各工法の支持力算定式を以下に示す。杭基礎構造を有す る耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化強度特性により強 制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力と して考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基本とする。た だし,杭を根入れした岩盤及び岩着している地盤改良体とその上方の非液状化層が連続してい る場合は,杭周面摩擦力を支持力として考慮する場合がある。

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設の支持力算定方法に関する補 足を(参考資料6)に示す。

・極限支持力算定式(杭基礎[中堀り工法])

 $R_u = q_d A + U \sum L_i f_i$

R_u:地盤から決まる杭の極限支持力(kN)

q_d: 杭先端における単位面積あたりの極限支持力度(kN/m²)

 $q_d = 3 \cdot q_u$

- qu:支持岩盤の一軸圧縮強度(kN/m²)
- *quは表 4.1-1 における Km 層の非排水せん断強度×2
- A: 杭先端面積 (m²)
- U: 杭の周長 (m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- fi: 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)
- ・極限支持力算定式(杭基礎[打込み工法])

 $R_u = P_u + U \sum L_i f_i$

- R_u:地盤から決まる杭の極限支持力(kN)
- P_u: <mark>杭先端の極限支持力(kN)</mark>
 - $P_u = 440 \cdot q_u^{1/2} \cdot A_t^{2/5} \cdot A_i^{1/3}$
 - qu:支持岩盤の一軸圧縮強度(kN/m²)

*quは表 4.1-1 における Km 層の非排水せん断強度×2

- A_t:鋼管杭の先端純断面積(m²)
- A_i:鋼管杭の先端閉塞面積(m²)
- A:鋼管杭の先端面積(m²)
- U: 杭の周長 (m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- fi: 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

5.3 地中連続壁基礎の支持力算定式

道路橋示方書による地中連続壁基礎における支持力算定式を以下に示す。

·極限支持力算定式(地中連続壁基礎)

 $R_u = q_d A$

R_u:基礎底面地盤の極限支持力(kN)

qd: 基礎底面地盤の極限支持力度(kN/m²)

 $q_d = 3 \cdot q_u$

q_u:支持岩盤の一軸圧縮強度(kN/m²)

*quは表 4.1-1 における Km 層の非排水せん断強度×2

A: 基礎の底面積(内部土は含まない) (m²)

5.4 極限支持力算定式における久米層の非排水せん断強度の適用性について

久米層の非排水せん断強度については、供試体を土被り圧相当で圧密した後、非排水状態で 所定の側圧のもとで軸荷重を載荷する方法(以下、「CUU試験」という。)にて、表4.1-1に 示す通り設定している。CUU試験は、供試体を土被り圧相当で圧密した後にUU試験を実施す るものであり、標高毎に取得されるせん断強度τは粘着力 c である。久米層の解析用地盤物性 値は、この粘着力 c を標高毎にとりまとめることで、標高依存式として非排水せん断強度を設 定している。

表 5.1-2 により,非排水状態での拘束圧が増加してもモール円の半径は有意に大きくなる ことはなく,久米層の非排水せん断強度における内部摩擦角はゼロである。

以上により、久米層の非排水せん断強度における内部摩擦角はゼロであり、CUU 試験により 得られる久米層の非排水せん断強度は粘着力に相当することが明らかであることから、極限支 持力の入力パラメータである粘着力及び一軸圧縮強度を、久米層の非排水せん断強度から設定 することは妥当である。

5.5 杭の支持力試験について

杭の支持力試験を実施している使用済燃料乾式貯蔵建屋については、極限支持力を支持力試 験結果から設定する。詳細については、補足説明資料「使用済燃料乾式貯蔵建屋の耐震性評価 に関する補足説明」に示す。

6. 地盤の速度構造

6.1 入力地震動策定に用いる地下構造モデル

入力地震動の策定に用いる地下構造モデルについては,重要施設設置位置の地層構成に基づき,解放基盤表面(EL.-370 m)から解析モデル入力位置までをモデル化する。地下構造モデルの概要を表 6.1-1 に示す。入力地震動算定の概念図を図 6.1-1 示す。

地層	新第三系 (Km層)	基盤*1	
標高	解析モデル入力位置 ~ EL370 m	EL.-370 m以深	
P波速度 Vp (m/s)	$Vp = Vs \sqrt{\frac{2(1 - v_d)}{1 - 2v_d}}$	$1988 \ (z=-370 \text{ m})$	
S波速度 Vs (m/s)	Vs=433-0.771・z z:標高(m)	718 (z=-370 m)	
動ポアソン比 v _d	ν _d =0.463+1.03×10 ⁻⁴ ・z z:標高(m)	0.425 (z=-370 m)	
密度 ρ (g/cm ³)	$\rho = 1.72 - 1.03 \times 10^{-4} \cdot z$ z:標高 (m)	1.76 (z=-370 m)	
せん断剛性の ひずみ依存性 G/G ₀ ~γ	 1+107 γ ^{0.824} γ :せん断ひずみ(-)	—	
減衰定数 h~γ	<u>γ</u> (4.41γ+0.0494) γ:せん断ひずみ(-)	0.03	

表 6.1-1 入力地震動の策定に用いる地下構造モデル

注記 *1:入力地震動作成モデルにおける解放基盤表面以深の半無限地盤

図 6.1-1 入力地震動算定の概念図

6.2 地震応答解析に用いる地盤の速度構造モデル

地震応答解析に用いる地盤の速度構造モデルとして、図 6.2-1 に示す位置で実施した PS 険層の結果に基づく地層ごとのせん断波速度 Vs 及び粗密波速度 Vp を表 6.2-1 に示す。

表 6.2-1 では, PS 検層結果を 2 種類の速度構造モデルとして取り纏めている。表 6.2-1 の うち平均値として記載した速度構造モデルは,全応力解析に適用する。

また,有効応力解析コード「FLIP」では,「図 4.2-9 液状化パラメータ設定の流れ」 に示すように,平均有効主応力の関数式にて動的変形特性をモデル化する必要がある。よって, 表 6.2-1 のうち平均有効主応力依存式として記載した速度構造モデルは,有効応力解析に適 用することを基本とする。ただし,一部の全応力解析に対しては,平均有効主応力の関数式に てせん断波速度 Vs をモデル化する場合がある。

図 6.2-1 PS 検層実施位置図

表 6.2-1 PS 検層結果

地層			平均值		平均有効主応力依存式 Vs=A×(σ'm) ^{0.25}
			Vs (m/s)	Vp (m/s)	係数A
	du層	不飽和	210	482	82.8598
		飽和		1850	82.2410
	Ag2層	不飽和	240	446	71.5266
		飽和		1801	78.7716
	Ac層	飽和	163—1.54 • z	1240-1.93 • z	58.0616
	As層	飽和	211-1.19 • z	1360—1.78 • z	65.1014
第四系	Ag1層	飽和	350	1950	82.6980
<u>ж</u>	D2c-3層	飽和	270	1770	78.1556
	D2s-3層	飽和	360	1400	104.4247
	D2g-3層	飽和	500	1879	136. 1685
	1m層	不飽和	130	1160	40.9503
	D1c-1層	飽和	280	1730	—
	D1g-1層	不飽和	- 390	903	110.6364
		飽和		1757	107.0330
新第三系	Km層	飽和	433-0.771 • z	1650-0.910 · z	_

z:標高(m) σ'm:平均有効主応力(kN/m²) A:最小二乗法の回帰係数

6.3 PS 検層結果の代表性及び網羅性について

設計基準対象施設及び常設重大事故等対処施設が敷地全体に点在しているが,既往の PS 検 層の取得場所には偏りがあることから,その代表性及び網羅性について検討した。

6.3.1 第四系における PS 検層の代表性及び網羅性について

第四系における PS 検層の代表性及び網羅性については,敷地全体で幅広く取得している N 値により検討した。具体的には,敷地を東西 4 つのブロックに区分し,各ブロックで取 得された N 値(平均値)を比較することで,各地層が工学的に同一の特性を持って平面的 に分布していることを確認する。

図 6.3-1 に各ブロックにおける N 値の比較結果を示す。各地層の N 値(平均値)を領域 毎に比較した結果,有意な差が無いことを確認した。よって,既往の PS 検層は代表性及び 網羅性を有している。

図 6.3−1(1) 各ブロックにおける N 値の比較結果(du 層)

(ブロック区分とN値の採取位置)

図 6.3-1(3) 各ブロックにおける N 値の比較結果(As 層)

(ブロック区分とN値の採取位置)

図 6.3-1(4) 各ブロックにおける N 値の比較結果(Ac 層)

(ブロック区分とN値の採取位置)

図 6.3-1(7) 各ブロックにおける N 値の比較結果(D2g-3 層)

なお,耐震評価においては,以下の解析を実施することにより,上記のばらつきを包含 してさらに大きいばらつきを考慮することとなる。

- ・地中土木構造物への地盤変位に対する保守的な配慮として、地盤を強制的に液状化させることを仮定した影響を考慮する場合は、原地盤よりも十分に小さいせん断波速度 Vs及び液状化強度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性)を設定する。
- ・上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤 の非液状化の影響を考慮する場合は,原地盤において非液状化の条件(最も液状化強 度が大きい場合に相当)を仮定した解析を実施する。
6.3.2 新第三系における PS 検層の代表性及び網羅性について

新第三系については,解析用地盤物性値(地盤の速度構造モデル)の基となっている PS 検層に加え,敷地の地質・地質構造検討用に敷地の広範囲で複数の PS 検層を実施している。 図 6.3-2 に地質・地質構造検討用の PS 検層実施位置を示す。

解析用地盤物性値の基となっている PS 検層と,地質・地質構造検討用の PS 検層を比較 することで,解析用地盤物性値の基となっている PS 検層の代表性及び網羅性について検討 した。

図 6.3-3 に地質・地質構造検討用の PS 検層(黒)と,解析用地盤物性値の基となって いる PS 検層(赤)の回帰式を比較した結果,概ね一致していることを確認した。 よって,解析用地盤物性値の基となっている PS 検層は代表性及び網羅性を有している。

地盤の支持性能についての参考資料

- (参考資料1)地下水位観測データについて
- (参考資料2)解析用物性値の代用の考え方
- (参考資料3) 捨石の解析用物性値について

(参考資料4)地盤改良体(セメント改良)におけるばらつきの考え方と物性設定の妥当性

- (参考資料5) 地震応答解析にて考慮する地盤物性のばらつき
- (参考資料6) 杭基礎の支持力算定方法に関する補足

(参考資料1)地下水位観測データについて

図1(1) 地下水位観測記録(1/3)

図1(2) 地下水位観測記録(2/3)

図1(3) 地下水位観測記録(3/3)

(参考資料2)解析用物性値の代用の考え方

1. 概要

表1に設置変更許可申請書に記載されていない解析用物性値の設定根拠一覧を示す。これらの 解析用物性値のうち,他の地盤材料の試験結果で代用しているものについて物性設定における考 え方を示す。

							原土	也盤				
	パラメータ			埋戻土			第四系	(液状化検討対	象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度	ρ	g/cm^3		室内	室内	室内	Ag2層で	室内	室内	Ag2層で	文献* ¹ より
特性	間隙比	е	-		物理試験	物理試験	物理試験	代用	物理試験	物理試験	代用	文献* ² より
	ポアソン比	$\nu_{\rm CD}$	-		三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	Ag2層で 代用	三軸圧縮 試験 (CD)	三軸 王軸 王 輸 (CD)	Ag2層で 代用	文献* ¹ より
変 形	基準平均有効主応力	σ'_{ma}	kN/m^2		第4.1末の	第4.1字の	第41主の	第4.1末の	第4.1字の	第41字の	第4-1表の 動的亦形性研	文献 ^{*1} より
特性	基準初期せん断剛性	$G_{\rm ma}$	kN/m^2	du層で 代用	動的変形特性に基づき設定	新11次の 動的変形特性 に基づき設定	動的変形特性 に基づき設定	動的変形特性に基づき設定	動的変形特性に基づき設定	動的変形特性 に基づき設定	に基づき設定	引用した 動的変形特性 に基づき設定
	最大履歷減衰率	\mathbf{h}_{\max}	-								Ag2層で 代用	
強度	粘着力	C _{CD}	N/mm^2		du層で 代用	三軸圧縮	三軸圧縮	三軸圧縮	Ag2層で	三軸圧縮	三軸圧縮	Ag2層で
特性	内部摩擦角	ϕ_{CD}	度		試験 (CD)	試験 (CD)	試験 (CD)	代用	試験 (CD)	試験 (CD)	代用	又献「より
	液状化パラメータ	$\phi_{\rm p}$	-						液状化強度 試験結果 に基づく 要素パュレーション	液状化強度 試験結果 に基づく 要素シミュレーション		
ante:	液状化パラメータ	S_1	-			art dis / a die nin		Ag2層の			attally / La Béarder	文献 ^{*2} より
被状	液状化パラメータ	${\tt W}_1$	-		版次化強度 試験結果	版状化強度 試験結果	 液状化強度 試験結果 に基づく 要素シミュレーション 	液状化強度 試験結果			版次化強度 試験結果	初用した 液状化強度
特性	液状化パラメータ	P_1	-		に基づく 要素シミュレーション	要素シミュレーション		を代用した 要素シミュレーション			に基づく 要素シミュレーション	試験結果 に基づく 画表がらいがの
T	液状化パラメータ	\mathbb{P}_2	-									女光/、1/-/1/
	液状化パラメータ	C_1	-									

表1(1) 解析用物性値の設定根拠(液状化検討対象層)

注記 *1:二方向同時加振による液状化実験(第28回土質工学研究発表会 藤川他, 1993)

*2: CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)]

							原地盤		
	パラメータ				第四系(非	液状化層)		新第三系	於 一
				Ac	D2c-3	lm	D1c-1	Km	告有
物 理	密度	ρ	g/cm^3	室内	室内	室内		室内	
特性	間隙比	е	_	物理試験	物理試験	物理試験		物理試験	
	ポアソン比	ν _{CD}	_	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸 三軸 能 (CD)	D2c-3層で	三軸圧縮試験 (CD)	- 赤本*3 ト り
変 形	基準平均有効主応力	σ'_{ma}	kN/m ²	第4-1まの	答んしまの	毎41まの		第4.1≠の動始亦形態地	
特性	基準初期せん断剛性	G _{ma}	kN/m ²	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	第4-1表の 動的変形特性 に基づき設定	代用	^{第4-1} 表の動的変形特性 に基づきz (標高) 依存物性 として設定	又開 より
	最大履歴減衰率	h _{max}	_						
強度	粘着力	C _{CD}	N/mm^2	三軸圧縮	三軸圧縮	三軸圧縮		三軸圧縮	
特性	内部摩擦角	φ _{CD}	度	試験 (CD)	試験 (CD)	試験 (CD)		試験 (CD)	

表1(2) 解析用物性値の設定根拠(非液状化層)

注記 *3:港湾構造物設計事例集((財)沿岸技術研究センター,平成19年3月)

- 1.1 他の地盤材料の試験結果で代用している地盤材料の設定根拠
 - (1) 埋戻土(f1層)の解析用物性値 埋戻土は人工的に締め固められた土質材料であるが、その主要な構成材料は敷地に分布 する du 層である。よって、全ての解析用物性値を du 層で代用する。

(2) Ag1 層の物理特性,変形特性,強度特性及び液状化特性

Ag1 層は,分布深度が深く,硬質な巨礫を含む砂礫層である。Ag1 層は Ag2 層と同時代に 堆積した砂礫層であることや,Ag2よりも粗粒であること,N値が Ag2 層よりも大きい事を 踏まえ,保守的に Ag2 層の解析用物性値で代用する。

Ag1 層と Ag2 層の<mark>粒度分布の比較を図1に,</mark>N 値の比較を図<mark>2</mark>に示す。

(参考) 2-3

(3) D1g-1 層の物理特性,変形特性及び強度特性

D1g-1 層は,硬質な巨礫を含む砂礫層である。D1g-1 層は更新統の段丘堆積物であり,完 新統の沖積層である Ag2 層に比べて古い時代に堆積した砂礫層である。以上の地質条件や Ag2 よりも粗粒であること, Vs が Ag2 層よりも大きい事を踏まえ,保守的に Ag2 層の解析 用物性値で代用する。

D1g-1 層と Ag2 層の粒度分布の比較を図3に, PS 検層の比較を図4に示す。

(4) D1c-1 層の解析用物性値

D1c-1 層は更新統の段丘堆積物であり、細粒分を多く含む粘性土である。敷地内において、極めて狭い範囲に局所的に分布している層厚が薄い地層であり、試料採取が困難であることから、同時代の段丘堆積物である D2c-3 層にて解析用物性値を代用する。D1c-1 層の分布範囲を図 5 に示す。

<mark>また,D1c-1 層とD2c-3 層について,PS 検層の比較結果を図 6 に示す。D1c-1 層とD2c-3</mark> 層の Vs に有意な差は無く,同等の変形特性を有することが分かる。

(参考) 2-5

(参考資料3) 捨石の解析用物性値について

1. 東海第二発電所における捨石について

捨石は,護岸や傾斜堤等の港湾構造物に広く用いられる材料である。東海第二発電所の護岸部 に分布する捨石は主に100kg~500kg/個程度の質量を有しており,捨石の規格としては標準的な ものである。

耐震重要施設及び常設重大事故等対処施設のうち津波防護施設である貯留堰の周囲にも捨石が 分布しており,解析断面にモデル化する必要があることから,適切な解析用物性値を設定する。 貯留堰の周辺地盤における捨石の施工状況を図1に示す。

(平面図)

図1 貯留堰の周辺地盤における捨石の施工状況

(参考) 3-1

- 2. 捨石の解析用物性値
- 2.1 解析用物性値の設定方針

捨石の解析用物性値については、現地の捨石での試験が非常に困難であることから、通常、 標準的なパラメータを用いて解析が実施されている。東海第二発電所においては、捨石の標準 的なパラメータとして、「港湾構造物設計事例集((財)沿岸技術研究センター、平成 19 年 3月)」(以下「設計事例集」という)に記載される値を用いるものとする。

2.2 捨石の解析用物性値

捨石の解析用物性値を表1に示す。また、参考として「設計事例集」に記載の解析用物性値 を表2に示す。

	パラメータ										
物	密度 () は地下水位以浅	ρ	g/cm^2	2.04 (1.84)							
垤特 性	間隙比	e		0.82							
	ポアソン比	u _{CD}	_	0.33							
変形特性	基準平均有効主応力 () は地下水位以浅	σ' _{ma}	kN/m²	98							
	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	180000							
	最大履歴減衰率	h _{max}		0.24							
強度	粘着力	C _{CD}	N/mm^2	0.02							
特性	内部摩擦角	$\phi_{ ext{CD}}$	度	35							

表1 捨石の解析用物性値

((
щ
p. 1–69
(設計事例集,
引用した捨石の解析用物性値
表 2

表-1. 65 FLIP 入力パラメーター一覧

										_	1										
		cl													2.8						
	ĩ	p2													0.94						
特性	(ILv. 7)	μ													0.5						
液状化	嵌机	WI													6.0						
		sI													0.005						
	阳角	â	Ĵ												83						
せん話	抵抗角	ζ¢	Ĵ	'	ı		ı	1	3	35	40	ı		39	39	30	I		35	35	
粘着力		J	(kN/m ²)	44	146		1	1	I	20	1	146		1	I.	(11)	146		20	20	
最大	成實定版	h max		0.20	0.20		1	'	1	0.24	0.23	0.20		0.24	0.24	0.20	0.20		0.24	0.24	
kの体積	种生係数	Kw	(kN/m ²)	2. 2E+06	2. 2E+06		ı	1	1	2. 2E+04	2. 2E+06	2. 2E+06		1	2. 2E+06	2. 2E+06	2. 2E+06		2. 2E+04	ı	
-	空隊率	ĸ		0.55	0.55		1	I	1	0.45	0.47	0.55		0.45	0.45	0.55	0.55		0.45	0.45	
貨重量	本中	, м	(Fal/NR)	6.0	7.0		١	I	11.0	10.0	9.2	7.0		ı	10.0	6.0	7.0		10.0	ı	
単位体	随和	14	(PN/m ³)	16.0	17.0		22.6	21.0	21.0	20.0	19.2	17.0		18.0	20.0	16.0	17.0		20.0	18.0	
	\$" 7%/HC	ž		0. 33	0.33		I	I	1	0.33	0.33	0.33		0.33	0.33	0.33	0.33		0.33	0.33	
Kman	指数伦勒	шĸ		0.5	0.5		1	ı	1	0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5	
竖準体 積	滞性係数	K_{ma}	(kN/m ²)	39, 100	129, 300			ı	1	169, 400	139, 200	129, 300		192, 500	192, 500	68, 300	129, 300		469, 400	469, 400	
Gma 0	指数定数	m _G		0.5	0.5		1	1	I	0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5	
影響的機能力能	弹性係数	Gme	(kN/m ²)	15, 000	49,600		ı	,	8	180, 000	168, 400	49,600		73, 800	73, 800	26, 200	49,600		180, 000	180, 000	
透	運搬	70	(m/s)	061	336	1600	1	ı	1	236	582	336	1600	398	378	252	336	1600	596	2962	
赘	速度	*	(s/m)	96	169	300	1	ł	1	300	293	169	300	201	190	127	169	300	300	300	
族傳輸的	拘束圧	а т,	(kN/m ²)	25.7	61.8		1	1	1	98.0	227.6	262. 2		98.0	98.0	154.7	201.2		98.0	98.0	
	有地向电压	σ ===	(kN/m ²)	25.7	61.8		15.2	37.6	109.1	188.4	227.6	262.2		19.6	78.9	154.7	201.2		1	I	
懲	WHI POLE	σ,	(kN/m ²)	34.2	82.4		20.3	50.1	145,4	251.2	303.4	349.6		26.1	105.2	206.2	268.2		1	1	
いな力相	響中心消滅	Z	(m)	-20.30	-28.00		2.40	1.05	-7.20	-17.00	-22.50	-28.00		2.05	-4.70	-18.00	-28,00		1	ı	
条件及	層厚		(m)	11.4	4.0		1.8	0.9	15.6	4.0	7.0	4.0		2.9	10.6	16.0	4.0		1	ı	245.
土曜	塑上		A.P. + (a)	-26.0	-30.0		1.5	0.6	-15.0	-19.0	-26.0	-30.0		0.6	-10.0	-26.0	-30.0		0.6	-19.0	(小学)
	쬀		A.P. + (m)	-14.6	-26.0	-30.0	3.3	1.5	0.6	-15.0	-19.0	-26.0	-30.0	3.5	0.6	-10.0	-26.0	-30.0	1.5	0.6	カCを(
	÷Ð	(e,'*131)	Bour cases	1	ı		1	1	ı	1	ł	1		66	39	1	1		ı	1	5.粘着
易設定	Ą	(lti=,**)		1	1		1	1	1	1	1	1		20	20	I	1		'	1	で与う
FLIP (N 131	(e,'*131)		'	1		1	1	1	1	1	'		11.4	11.4	'	1		'	1	t 6 -30
	N 65	(e.; =66)		'	1		'	1	1	1	1	'		~	80	1	'		'	1	斯渔康
識結果	ABRONCHER	Fc	(%)	'	'		'	1	1	1	ı	'		14	14	1	1		'	1	ありせん
引地	NİİÜ	~		'	'	ļ	<u>'</u>	1	'	1	1	1		6	6	1	۰.		1	1	状態に
土質記号				Ac1_12	Det_11	Dg1				suteish	Scp_80	Del_21	Dg1	Asl_a	Asl_w	Ac1_32	Del_31	Dg1	uragone	uragene.	北正規圧
材料				沖積粘性土	洪積粘性土	挑盤層	上誌エコンクリート	ケーソン (気中)	ケーソン (木中)	捨石	SCP(80%改良) 沖積粘性土	洪郁粘性土	基盤層	裏埋土 (気中)	裏壇土 (水中)	沖積粘性土	洪積粘性土	基盤層	裏込石 (水中)	真込石 (気中)	上(材料番号32));
对料番号				12	=		8	23	51	53	53	21		34	33	32	31		41	43	沖積粘性
区分				慶鎭	L	1		L	護岸部	(1-1)						壇土部			裏込石		注1:3埋土部の
Second second second	-			-	the second second second second second second second second second second second second second second second se		Contraction of the local division of the loc					the local division of the		Contraction of the		the second second second second second second second second second second second second second second second s	the later later later				

3 捨石の解析用物性値の妥当性について

3.1 FLIP における捨石の物性に関する検討状況

FLIP における捨石の物性については,「捨石のモデル化に関する検討報告書(FLIP 研究会 企画委員会捨石作業部会,平成13年5月)」(以下,「捨石のモデル化に関する検討報告書」 という。)において,「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007 年 版)」,「埋立地の液状化ハンドブック(改訂版)((財)沿岸技術研究センター,平成 9 年)」及び様々な文献(表 3)を基に,神戸港六甲アイランド RF-3 岸壁の捨石に着目した簡 易モデルによる検討やパラメトリックスタディーを踏まえ,第4表に示すパラメータを捨石の 標準的なパラメータとして提案している。

表3 捨石に係る文献一覧*

 - 港湾の施設(・ 埋立地の液) ・ 小林、寺師、 Vol.26,No.2 - 荘司,大型、 Vol.22,No.4 - 水上,小林,マ - 上部,土田, (本)、北西, (本)、北田, (本)、北市, (本)、 (本)、北市, (本)、	の技術上の基準(平成11年) 大化対策ハンドブック(高橋,中島,捨石マウンドの支持力の新しい計算法,港湾技術研究所報告 1987年 三軸試験による捨石材のせん断特性に関する考察,港湾技術研究所報告 1938年 ウンド用石材の大型三軸試験による強度特性,港湾技術研究所資料,Vol.699,1991年 1日,大型混成式防波堤の強震記録に基づく水・構造物連成系の地震応答解析,港湾技 皆 Vol.22,No.2,1983年 9,国生,護岸基礎捨石マウンドの沈下予測(その1) 一捨石マウンド材料の物理的特 浄力学的特性、電力中央研究所報告 384030,1985年 4,国生,護岸基礎捨石マウンドの沈下予測(その2) 一捨石マウンド材料の繰り返し 電力中央研究所報告 384031,1985年 支術研究所資料 No.857,1995年兵庫県南部地震による港湾施設等被害報告
---	--

注記*:捨石のモデル化に関する検討報告書, p3より抜粋

表4 捨石の標準的なモデル化(案)*

モデル化の項目	モデル化の方法				
せん断強度定数	$ m c=20~(kN/m^2)$, $\phi=35~(^\circ$)				
最大減衰定数	$h_{max} = 0.2 \sim 0.3$				
初期せん断剛性	マウンド Vs=300 (m/s), 裏込石 Vs=225 (m/s)				
水の体積弾性係数	Kf=2.2×10 ⁴ (kPa) 以下の小さな値				
対象範囲	捨石マウンドおよび裏込石				

注記*:捨石のモデル化に関する検討報告書, p9より抜粋(一部修正)

また,このパラメータを適用した事例検証として,3地点(神戸港六甲アイランド RF-3 岸 壁,神戸港第七防波堤,釧路港北埠頭岸壁)において事例検証を行い,各地点において,観測 値に近い結果が得られることを確認している。以下に,各事例検証の概要を示す。

(1) 神戸港六甲アイランド RF-3 岸壁

1995 年兵庫県南部地震における神戸港六甲アイランド RF-3 岸壁の被災断面を検討対象 としている。検討ケースを表 5 に、検討対象断面を図 1 に示す。また、主要な応答結果を 表 6 に示す。表 6 より、表 4 に示されている捨石の標準的なモデル化案を用いた CASE4 が、 より観測値に近い結果を与えていることが確認されている。

表 5 検討ケース一覧表(神戸港六甲アイランド RF-3 岸壁)*

検討ケース	せん断強度特性 c. d	水の体積弾性係数 Kr	備考
CASE1	$c = 0$ (kPa), $\phi = 40$ (°)	2.2×10^{6} (kPa)	従来設定方法
CASE2	$c = 20 (kPa), \phi = 35 (^{\circ})$	2.2×10^{6} (kPa)	_
CASE3	$c = 0 (kPa), \phi = 40 (^{\circ})$	0 (kPa)	—
CASE4	c =20 (kPa), ϕ =35 (°)	0 (kPa)	提案方法

注記*:捨石のモデル化に関する検討報告書, p10より抜粋

2*: 揺石のモブル化に関する検討報告書, p10より抜粋(一部加筆 図1 検討対象断面(神戸港六甲アイランド RF-3 岸壁)*

表 6	主要な応答結果一	覧表	(神戸港六甲アイラン	ド RF-3 岸壁)*
-----	----------	----	------------	-------------

松井	ケー	- ソン残留変位	之量	ケーソン最大	大応答加速度	供考	
4 史 可	δ _H (m)	$\delta_{\rm V}({\rm m})$	heta (°)	$\alpha_{\rm H}$ (Gal)	$\alpha_{\rm V}$ (Gal)	1用 与	
CASE1	2.83	1.06	2.64	278	306	従来方法	
CASE2	3.82	1.80	3.71	274	309		
CASE3	6.10	2.11	10.6	315	387	—	
CASE4	4.33	2.00	4.69	364	317	提案方法	
実測値	$4.1 \sim 4.6$	$1.7 \sim 2.0$	$4.1 \sim 5.1$	_	_		

注記*:捨石のモデル化に関する検討報告書,p10 より抜粋

(2) 神戸港第七防波堤

常時土圧の作用を受けない構造物として,1995年兵庫県南部地震における神戸港第七防 波堤の被災断面を検討対象としている。検討ケースを表7に,検討対象断面を図2に示 す。また,主要な応答結果を表8に示す。表4に示されている捨石の標準的なモデル化案 を用いた CASE4 も含めて,CASE2以外は観測値に近い結果を与えていることが確認されて いる。

表7 検討ケース一覧表(神戸港第七防波堤)*

	水の Kf	c (kPa)	φ (°)	備考
CASE1	100%	0	40	従来設定
CASE2	1%	0	40	Kf を低下
CASE3	100%	20	35	Kf そのままで c, φ 指定
CASE4	1%	20	35	c, φ 指定かつ Kf 低下

注記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部修正)

注記*:捨石のモデル化に関する検討報告書,pl4より抜粋(一部加筆) 図2 検討対象断面(神戸港第七防波堤)*

表 8 主要な応答結果一覧表(神戸港第七防波堤)*

	CASE1	CASE2	CASE3	CASE4
水平変位(m)	0.07	0.04	0.04	0.00
鉛直変位(m)	2.00	4.39	1.84	2.26

観測データ: (鉛直変位)1.4~2.6m

(水平変位) –

注記*:捨石のモデル化に関する検討報告書, pl4より抜粋(一部修正)

(3) 釧路港北埠頭岸壁

1993 年釧路沖地震における釧路港北埠頭岸壁の被災断面を検討対象としている。検討ケ ースを表9に,検討対象断面を図3に示す。また,主要な応答結果を表10に示す。表4に 示されている捨石の標準的なモデル化案を用いた CASE3 も含めて,観測値に近い結果を与 えていることが確認されている。

表 9 検討ケース一覧表(釧路港北埠頭岸壁)*

検討ケース	モデル化の概要	備考
CASE0	$ m c=0, \phi=40^\circ$, $ m Kf=100\%$	従来のモデル化
CASE1	$ m c=20~(kN/m^2)$, $\phi=35^\circ$,	Kfをそのままにしたケース
	Kf=100%	
CASE2	$ m c=\!20~(kN\!/m^2)$, $\phi=\!35^\circ$,	Kfを低下したケース
	Kf=0	

注記*:捨石のモデル化に関する検討報告書, p15 より抜粋

注記*:捨石のモデル化に関する検討報告書,p15 より抜粋(一部加筆) 図 2 検討対象断面(神戸港第七防波堤)*

	ケーソン残	径留変位(m)	最大応答加速度(Gal)		
	水平	鉛直	ケーソン天端水平	背後地表面水平	
実測値	0.8~1.6	$0.2 \sim 0.5$	_	—	
CASE0	0.89	0.21	247		
CASE1	1.20	0.21	219	161	
CASE2	1.28	0.22	229	159	
主記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部修正)					

3.2 捨石の解析用地盤物性の妥当性

3.1 にて示した「捨石のモデル化に関する検討報告書」による事例検証を踏まえ、そこで提 案されている捨石の標準的なモデル化案と、東海第二発電所における捨石の解析用地盤物性値 の基となっている設計事例集における捨石のモデル化案を表 11 にて比較する。

東海第二発電所における捨石の解析用地盤物性値の基となっている設計事例集における捨石 のモデル化案は、「捨石のモデル化に関する検討報告書」にて検証されている捨石の標準的な モデル化案と概ね同等の数値であることから、捨石の解析用地盤物性値として妥当であると判 断した。

項目	捨石のモデル化に関する 検討報告書	設計事例集 (東二の解析用物性値)	
強度特性(せん断強度)	c=20 (kN/m2) , ϕ =35 (°)	c=20 (kN/m2) , $\phi=35$ (°)	
最大履歴 減衰率	$h_{max} = 0.2 \sim 0.3$	$h_{max} = 0.24$	
せん断波速度	Vs=300 (m/s)	$V_{\rm S} = 300 \ (m/s)$	
水の 体積弾性係数	Kf=2.2×10 ⁴ (kPa)以下の小さな値	$Kf = 2.2 \times 10^4 (kPa)$	

4 捨石の解析用物性値におけるばらつきについて

捨石の解析用地盤物性値におけるばらつきについては、耐震評価における各照査結果への感度 を検討した上で、その要否を判断するものとする。

(参考資料4)地盤改良体(セメント改良)におけるばらつきの考え方と物性設定の妥当性

 地盤改良体(セメント改良)におけるばらつきの考え方
 地盤改良体(セメント改良)の平均せん断波速度Vsについては、下式を適用する。 Vs = 147.6×qud^{0.417}(m/s)
 ここに、qud:設計基準一軸圧縮強度(kgf/cm²)
 一方、この設計基準一軸圧縮強度に対し、実施工時には不良率を低水準に抑えることを目的と
 した施工目標一軸圧縮強度を設定する。施工目標一軸圧縮強度は、設計基準一軸圧縮強度を大き
 く上回ることが一般的であるため、地盤改良体(セメント改良)においては、この施工目標一軸
 圧縮強度を基準としてばらつきを設定する。
 設計基準一軸圧縮強度と施工目標一軸圧縮強度及び標準偏差の関係については、「建築基礎の
 ための地盤改良設計指針案((社)日本建築学会、2006 年)」に基づき、図 1 のように設定する。

図1 設計基準一軸圧縮強度と施工目標一軸圧縮強度及び標準偏差の関係

以上より、地盤改良体におけるばらつきを以下のように設定する。
 • q_{ud}により算定した Vs: 原地盤の物性に相当する Vs
・q _{uf-1} σにより算定した Vs:地盤物性のばらつきを考慮(-1σ)に相当する Vs
・q _{uf+1} 。により算定した Vs:地盤物性のばらつきを考慮(+1σ)に相当する Vs

 地盤改良体(セメント改良)における物性設定の妥当性 地盤改良体(セメント改良)における物性設定の妥当性を確認するため、東海第二発電所敷地 内にて実施した地盤改良体(セメント改良)の PS 検層との比較を行った。比較対象とした PS 検 層は以下 2 つの調査にてデータを取得した。

・排気筒_地盤改良体試験施工(H28年度)

・屋外二重管_既設改良体(H20年度)

2 つの調査における PS 検層のばらつきは大きいが,解析用地盤物性として設定している「設 計基準一軸圧縮強度により算定した Vs」は概ねその下限値を,ばらつきとして考慮する「施工 目標一軸圧縮強度(平均+1σ)により算定した Vs」は概ねその上限値を,代表して表現する物 性値となっている。

以上より,地盤改良体(セメント改良)における解析用地盤物性及びばらつきの設定は妥当で あると判断した。

図2 地盤改良体の解析用地盤物性値(Vs)とPS 検層の比較

(参考資料5) 地震応答解析にて考慮する地盤物性のばらつき

- 1 土木構造物の地震応答解析における地盤物性のばらつき
 - 1.1 せん断波速度 Vs のばらつき

屋外重要土木構造物の耐震評価にあたっては、構造物の周囲に分布する第四系に対し、Vs のばらつきを考慮した耐震評価を実施する。

(1) Vs のばらつきの設定方法

PS 検層による Vs の深度分布に基づき、Vs のばらつきを考慮する。

各土質材料の Vs の深度分布に応じた平均有効主応力σ' ω依存の回帰式を(式 1)に示す。

$$V_s(\sigma'_m) = A \times (\sigma'_m)^{0.25} \tag{$\pi 1$}$$

$$\sigma'_{m} = \frac{\sigma'_{v} + \sigma'_{h}}{2} = \frac{\sigma'_{v} + K_{0} \times \sigma'_{v}}{2} = \frac{1 + K_{0}}{2} \cdot \sigma'_{v}$$
(式 2)

$$K_0 = \frac{\nu_{CD}}{1 - \nu_{CD}} \tag{₹3}$$

各土質材料の解析用物性値の元になっている地盤調査結果のVs~ σ'_{m} 関係データがN個の $\sigma'_{m i}$ (*i*=1,2,....,*N*) に対応して与えられているものとし,これらを $V_{s}(\sigma'_{m i})_{investigat ion}$ と表記し、最小二乗法による(式1)のせん断波速度回帰式の出力を $V_{s}(\sigma'_{m i})$ と表記する。この時、回帰係数Aは(式4)が成立する値として求める。

$$\sum_{i=1}^{N} \left\{ V_{s}(\sigma'_{m-i}) - V_{s}(\sigma'_{m-i})_{investigation} \right\}^{2} \rightarrow \text{minimum} \quad (\not \mathbb{R} 4)$$

また,各土質材料の標準偏差σは(式5)により求められる。

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left\{ V_s(\sigma'_{m-i}) - V_s(\sigma'_{m-i})_{investigation} \right\}^2} \qquad (\not \exists 5)$$

よって、Vsの±1σを考慮したVs~σ' 」関係式は、各N個の σ'_{mi} (*i*=1,2,....,*N*)に 対応して、最小二乗法による平均的な曲線を示す(式1)に基づき、(式6)により表される。

$$V_{S}(\sigma'_{m}) = A \times \left(\sigma'_{m}\right)^{0.25} \pm 1\sigma \qquad (\not \exists 6)$$

(式 6)により、Vs の±1 σ 側の各 N 個のデータ $V_s(\sigma'_{m i})_{+1\sigma}$ 及び $V_s(\sigma'_{m i})_{-1\sigma}$ を生成する。 (式 6)により生成された各 N 組の $V_s(\sigma'_{m i})_{+1\sigma} \sim \sigma'_{m i}$ 及び $V_s(\sigma'_{m i})_{-1\sigma} \sim \sigma'_{m i}$ 関係データ を対象に(式 7)及び(式 8)で最小二乗法により回帰する。

$$V_{S}(\sigma'_{m})_{+1\sigma} = A_{+1\sigma} \times (\sigma'_{m})^{0.25} \tag{\mathbf{t} 7}$$

$$V_{s}(\sigma'_{m})_{-1\sigma} = A_{-1\sigma} \times (\sigma'_{m})^{0.25} \tag{\mathbf{z}} 8$$

(2) Vs のばらつきを考慮した初期せん断剛性 G の設定方法

Vs の平均的な深度分布に対応する $G_m(\sigma'_m) \sim \sigma'_m$ 関係は(式 9)で表される。密度 ρ と係数 A の値を用いれば、各土質材料の解析用物性値の元になっている地盤調査結果の Vs $\sim \sigma$ ' m関係データに対応する G_m についても、(式 9)の係数 B が求められる。

$$G_m(\sigma'_m) = \rho \times \left\{ A \times (\sigma'_m)^{0.25} \right\}^2 = \rho \times A^2 \times (\sigma'_m)^{0.5} = B \times (\sigma'_m)^{0.5} \qquad (\not \exists 9)$$

したがって、Vs の±1 σ 側に対応する $G_m(\sigma'_m) \sim \sigma'_m$ 関係は、(式 10)及び(式 11)で表される。

$$G_{m}(\sigma'_{m}) = \rho \times \left\{ A_{+1\sigma} \times (\sigma'_{m})^{0.25} \right\}^{2} = \rho \times (A_{+1\sigma})^{2} \times (\sigma'_{m})^{0.5} = B_{+1\sigma} \times (\sigma'_{m})^{0.5} \quad (\not \exists 10)$$

$$G_{m}(\sigma'_{m}) = \rho \times \left\{ A_{-1\sigma} \times (\sigma'_{m})^{0.25} \right\}^{2} = \rho \times (A_{-1\sigma})^{2} \times (\sigma'_{m})^{0.5} = B_{-1\sigma} \times (\sigma'_{m})^{0.5} \quad (\not{\mathbb{R}} 11)$$

上記で示した G_mのσ'_m依存の関係式設定イメージを図 1.1-1 に示す。

図 1.1-1 Vs のばらつきを考慮した $G_m \sigma \sigma'_m$ 依存の関係式設定イメージ

(3) Vs のばらつきの設定結果

PS 検層結果と、(1)の設定方法により算定した Vs の深度分布に応じた σ'_m 依存式(平均及び $\pm 1\sigma$)を図 1.1-2 に示す。また、液状化検討層については豊浦標準砂の Vs 算定式を比較する。

図 1.1-2(1) Vs の σ' m 依存式(du 層(地下水位以浅))

図 1.1-2 (3) Vs の σ' m 依存式 (Ag2 層 (地下水位以浅))

図 1.1-2(4) Vs の σ' m 依存式(Ag2 層(地下水位以深))

図 1.1-2 (5) Vs の σ' m 依存式 (Ac 層)

図 1.1-2 (6) Vsの σ' m 依存式 (As 層)

図 1.1-2 (8) Vsの σ' m依存式 (D2c-3 層)

図 1.1-2 (9) Vs の σ' m 依存式 (D2s-3 層)

図 1.1-2 (10) Vs の σ' m 依存式 (D2g-3 層)

図 1.1-2(11) Vs の σ' m 依存式(D1g-1 層(地下水位以浅))

図 1.1-2(12) Vs の σ' m 依存式(D1g-1 層(地下水位以深))

図 1.1-2 (13) Vs の o' m 依存式 (1m 層 (地下水位以浅))

以上のように求めた平均 Vs の場合及び±1 σ を考慮した場合の係数 A をまとめて表 1.1 -1 に、また、(式 7) ~ (式 9) にて求めた G_mの σ '_mとの関係式における係数 B を表 1.1-2 に示す。

本国			V _s のσ ['] mに対する依存式			
		密度 ρ(g/cm³)	$V_s = A \times (\sigma'_m)^{0.25} (m/s)$			
大口/眉			係数A (平均のV _s)	係数A (平均+1 σ のV _s)	係数A (平均-1 σ のV _s)	
第四系	du層	不飽和	1.82	82.8598	101.6984	64.0212
		飽和	1.98	82.2410	82. 4428	82.0391
	Ag2層	不飽和	1.89	71.5266	73.9462	69.1071
		飽和	2.01	78.7716	86.0654	71.4778
	Ac層	飽和	1.65	58.0616	63. 5317	52. 5915
	As層	飽和	1.74	65.1014	73. 4333	56. 7694
	Ag1層	飽和	2.01	82.6980	83. 2301	82.1659
	D2c-3層	飽和	1.77	78.1556	87. 1758	69.1353
	D2s-3層	飽和	1.92	104. 4247	109.9760	98.8734
	D2g-3層	飽和	2.15	136. 1685	151.4711	120.8660
	1m層	不飽和	1.43	40,0500	41. 7688	40. 1318
		飽和	1.47	40.9503		
	D1g-1層	不飽和	1.89	110. 6364	123. 5713	97.7014
		飽和	2.01	107.0330	110. 3465	103. 7195

表 1.1-1 Vs のばらつきを考慮した係数 A

σ[']m : 平均有効主応力 (kN/m²)

表 1.1-2 Vs のばらつきを考慮した Gmの係数 B

th 🖂		Gmの o ['] mに対する依存式			
		$G_m = B \times (\sigma'_m)^{0.5} (kN/m^2)$			
地階			係数B (平均のV _s)	係数B (平均+1 σ のV _s)	係数B (平均-1 σ のV _s)
	du層	不飽和	12496	18823	7460
		飽和	13392	13458	13326
	Ag2層	不飽和	9669	10335	9026
		飽和	12472	14889	10269
	Ac層	飽和	5562	6660	4564
	As層	飽和	7374	9383	5608
竺田ズ	Ag1層	飽和	13746	13924	13570
第四米	D2c-3層	飽和	10812	13451	8460
	D2s-3層	飽和	20937	23222	18770
	D2g-3層	飽和	39865	49328	31408
	lm層	不飽和	2398	2495	2303
		飽和	2465	2565	2368
	D1g-1層	不飽和	23134	28860	18041
		飽和	23027	24474	21623

σ'm : 平均有効主応力 (kN/m²)

(4) 豊浦標準砂の Vs 算定式との比較

液状化検討対象層のVsのばらつきを考慮した σ'_m 依存式(-1σ)と,豊浦標準砂のVs 算定式を比較する。豊浦標準砂のVs 算定式は、全ての液状化検討対象層の -1σ の回帰式 を包含し、さらに小さく設定されている。

図 1.1-3 Vs の平均有効主応力依存式 (-1 g) と豊浦標準砂の Vs 算定式の比較

以上により、 $\pm 1\sigma$ による原地盤の Vs のばらつきの設定方法及び設定結果を示すとともに、 Vs のばらつきに基づく初期せん断剛性 G_mの設定方法を示した。また、強制的に液状化させる ことを仮定した影響を考慮する場合に用いる豊浦標準砂の Vs 算定式は、原地盤の液状化検討 対象層の -1σ の回帰式を全て包含していることを確認した。 1.2 液状化強度特性のばらつき

屋外重要土木構造物の耐震評価にあたっては、地震時の有効応力の変化に応じた影響を適切に評価できる有効応力解析を実施する。

有効応力解析に用いる液状化強度特性は,敷地の原地盤における代表性及び網羅性を踏ま えた上で保守性を考慮して設定する。設定する原地盤の各液状化検討対象層の液状化強度特 性は試験データのばらつきを考慮し,液状化強度試験データの最小二乗法による回帰曲線と, その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いて適切に設定することを 基本とする。

液状化強度試験データの回帰式として,回帰係数 a,b を用いた常用片対数の指数関数を (式 12) に示す。

各土質材料の解析用物性値の元になっている液状化試験結果のせん断応力比 τ/σ'_m (=R_L) と繰返し載荷回数Nの関係のデータがK 個の繰返し載荷回数 N_j (j=1,2,...,K)に対応し て与えられているものとし、これらの実測値を $R_L(N_j)_{experiment}$ と表記し、最小二乗法により 係数 a、b の値が定められた(式 12)の液状化強度回帰式の出力を $R_L(N_j)$ と表記すると、各 土質材料の液状化強度特性の標準偏差 σ は(式 13)で求められる。

$$\sigma = \sqrt{\frac{1}{K-2} \sum_{j=1}^{K} \left\{ R_L(N_j) - R_L(N_j)_{\text{experiment}} \right\}^2} \qquad (\not \exists 13)$$

(式12), (式13)より,各土質材料の液状化強度試験データのばらつきを考慮した保守 側の液状化強度近似曲線は, (式14)により求められる。

$$R_{L}(N)_{-1\sigma} = a \times (\log_{10} N)^{b} - 1\sigma \qquad (\not{\mathfrak{R}} 14)$$

屋外重要土木構造物の耐震評価では、(式 14)による原地盤の液状化強度特性(-1σ) を適用した有効応力解析を実施することを基本とする。

また、屋外重要土木構造物の耐震評価においては、以下の解析を実施する場合がある。

地中土構造物への地盤変位に対する保守的な配慮として,地盤を強制的に液状化させるこ とを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存 在しない豊浦標準砂に基づく液状化強度特性)を設定する。豊浦標準砂の液状化強度特性を 原地盤の液状化強度特性(-1σ)と比較した結果を図1.2-1に示す。

上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤の非 液状化の影響を考慮する場合は,原地盤において非液状化の条件(最も液状化強度が大きい 場合に相当)を仮定した解析を実施する。

図 1.2-1 原地盤の液状化強度特性(-1 g)と豊浦標準砂の液状化強度特性の比較

以上より,屋外重要土木構造物の耐震評価においては,地盤の液状化強度特性のばらつき を以下のように考慮する。

- ・原地盤の液状化強度特性(-1 g)の適用を基本とする。
- ・地中土構造物への地盤変位に対する保守的な配慮として、強制的に液状化させること を仮定した影響を考慮する場合は、原地盤よりも十分に小さい液状化強度特性(敷地 に存在しない豊浦標準砂に基づく液状化強度特性)を設定する。
- ・上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,非液 状化の影響を考慮する場合は,原地盤において非液状化の条件(最も液状化強度が大 きい場合に相当)を仮定した解析を実施する。
2 建物・構築物の地震応答解析における地盤物性のばらつき

建物・構築物の地震応答解析においては、構造物の周囲に分布する第四系及び支持層である新 第三系に対し、Vs のばらつきを考慮した耐震評価を実施する。

以下に, PS 検層結果に基づく平均 Vs 及び変動係数を示す。<mark>また, 図 2-1 に PS 検層結果とばら</mark> <mark>つきを示す。</mark>

地層		せん断波速度 Vs 平均値(m/s)	変動係数	
第四系	du 層	210	0.04	
	Ag2 層	240	0.10	
	D2c-3 層	270	0.11	
	D2s-3 層	360	0.04	
	D2g-3 層	500	0.13	
新第三系	Km 層	433-0.771 • z	0.07	

表 2-1 PS 検層結果に基づく平均 Vs 及び変動係数

z:標高 (m)

(参考) 5-16

(参考資料<mark>6) 杭基礎の支持力算定方法に関する補足</mark>

1. 杭先端の支持岩盤への接地圧算定方法について

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化 強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩 擦力を支持力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基 本とする。図1に上記支持力評価における杭先端の支持岩盤への接地圧算定方法を示す。

図1 杭先端の支持岩盤への接地圧算定方法

2. 杭周面摩擦力を支持力として考慮する場合について

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,杭を根入れした岩盤 及び岩着している地盤改良体とその上方の非液状化層が連続している場合は,杭周面摩擦力を支 持力として考慮する場合がある。図2に上記支持力評価の適用イメージを示す。

図2 杭周面摩擦力を支持力として考慮する評価の適用イメージ

3. 引抜きに対する支持力の考え方

上部構造物のロッキング挙動等により杭に発生する引抜き力が問題となるおそれがある場合に は、引抜きに対する支持力評価を実施する。引抜きに対する極限支持力は杭の周面摩擦力より算 定する。

豊浦標準砂の液状化強度特性により強制的に液状化させることを仮定した耐震設計を行う場合 は、第四系の杭周面摩擦力を支持力として考慮せず、岩盤に根入れしている部分のみの杭周面摩 擦力より極限支持力を算定することを基本とする。また、「2. 杭周面摩擦力を支持力として考 慮する場合について」と同様に、杭を根入れした岩盤及び岩着している地盤改良体とその上方の 非液状化層が連続している場合は、それらを含めた杭周面摩擦力を支持力として考慮する場合が ある。図3に引抜きに対する支持力評価のイメージを示す。

4. 有効応力解析における杭と地盤との境界条件について

4.1 杭-地盤相互作用ばねの設定

地盤と杭が接している箇所の側方境界部に杭ー地盤相互作用ばねを設けることにより、地 盤と杭の相互作用における3次元効果を2次元モデルで適切に考慮する。

杭ー地盤相互作用ばねの杭軸方向では、地盤と杭のせん断抵抗力以上のせん断応力が発生 した場合、剛性をゼロとし、すべりを考慮する。せん断強度 τ_{f} は次式の Mohr – Coulomb 式に より規定される。 c、 ϕ は周辺地盤の c、 ϕ とする。(表 4.2–1 参照)

 $\tau_{\rm f} = c + \sigma' \tan \phi$

ここで、

- **τ_f**:せん断強度
- <mark>c : 付着力</mark>

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きな値として,港湾構造物設計事例集(沿岸開発技術センター)に従い,表 1のとおり設定する。

また,杭ー地盤相互作用ばねの杭軸直角方向のばね定数については,杭径及び杭間隔よ り設定される[※]。

図4に杭ー地盤相互作用ばね設定の考え方を示す。

※ FLIP 研究会 14 年間の検討成果のまとめ「理論編」

表 1 机一地盤相互	表 1 机一地盤相互作用はねのはね定数		
	せん断剛性 ks		
	(kN/m^3)		
杭軸方向	$1.0 imes 10^{6}$		

(杭-地盤相互作用ばね(杭軸方向)の力学的特性)

図4 杭ー地盤相互作用ばね設定の考え方

4.2 杭下端ジョイントばねの設定

杭下端境界部に圧縮応力の上限値を有さないジョイントばねを設けることにより、杭下端 における地盤と杭の相互作用を適切に考慮する。

杭下端の杭軸方向について設定するジョイントばねは、常時状態以上の引張が生じた場合、 剛性及び応力をゼロとし、剥離を考慮する。

杭下端ジョイントばねのばね定数は,数値解析上不安定な挙動を起こさない程度に十分大 きな値として、港湾構造物設計事例集(沿岸開発技術センター)に従い、表 2 のとおり設定 する。図5に杭下端ジョイントばね設定の考え方を示す。

	圧縮剛性 k _v
	(kN/m)
杭軸方向	1.0×10^{6}

ま9 枯玉逆ジョイントげわのげわ定粉

