本資料のうち、枠囲みの内容は、 営業秘密または防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	工認-334 改 0
提出年月日	平成 30 年 4月26日

V-3-5-4-6-1 代替循環冷却系ポンプの強度計算書

まえがき

本計算書は、添付書類「V-3-1-6 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「V-3-2-9 重大事故等クラス2ポンプの強度計算方法」に基づいて計算を行う。

なお、適用規格の選定結果について以下に示す。適用規格の選定に当たって使用する記号及び略語については、添付書類「V-3-2-1 強度計算 方法の概要」に定義したものを使用する。

• 評価条件整理表

機器名	既設	施設時の 技術基準		クラスア	ップするか	7		条件で	プップす	るか		既工認に			同等性		
	or or する施設	クラス	クラス 施設時	DR SA	条件	DB条件 SA条件		おける施設時の	評価区分	誣価	評価 クラス						
		新設	ッ る 施設 の規定が あるか	アップ の有無	- 「一 クラス クラス		区分	9 7 ^									
	代替循環冷却系ポンプ	新設	無	_	_	_	SA-2	_	_	_	3. 45	80	_	_	設計・建設規格	_	SA-2

目次

1.	計算条件					 	 	• • • 1
1.1	ポンプ形	式				 	 	• • • 1
1.2	計算部位	• • • • • • •				 	 	• • • 1
1.3	設計条件	• • • • • • •				 	 	2
2.	強度計算					 	 	2
2.1	ケーシン	グの厚さ				 	 	2
2.2	ケーシン	グの吸込み	及び吐出	口部分	の厚さ	 	 	2
2.3	ケーシン	グのボルト	穴			 	 	3
2.4	ケーシン	グカバーの	厚さ・・・			 	 	3
2.5	ボルトの	平均引張応	力			 	 	4
2.6	耐圧部分	等のうち管	台に係る	\$, 00 C)厚さ・	 	 	5

1. 計算条件

1.1 ポンプ形式

ターボポンプであって、ケーシングが軸垂直割りで軸対称であるものに相当する。

1.2 計算部位

概要図に強度計算箇所を示す。

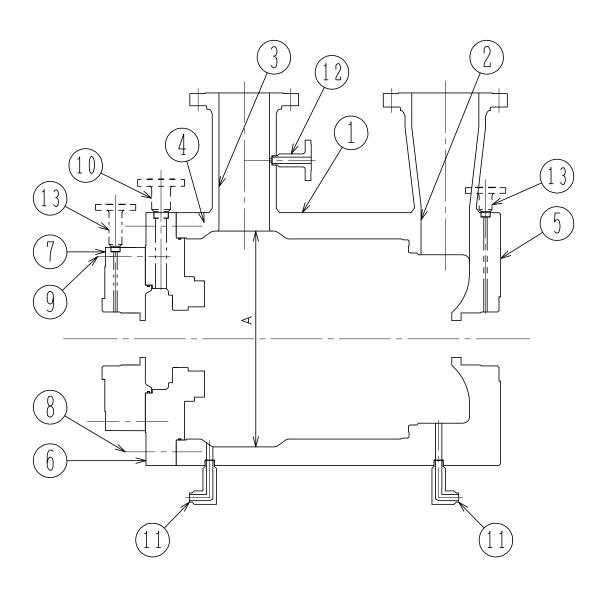


図1-1 概要図

1.3 設計条件

設計条件	
最高使用圧力(MPa)	3. 45
最高使用温度(℃)	80

2. 強度計算

2.1 ケーシング厚さ

設計·建設規格 PMC-3320

計算部位	材	料	P (MPa)	S (MPa)	A (mm)
1)			3. 45	120	

t	t so	t s
(mm)	(mm)	(mm)
9. 2		

評価: $t_s \ge t$, よって十分である。

2.2 ケーシングの吸込み及び吐出口部分の厚さ

設計・建設規格 PMC-3330

(単位:mm)

計算部位	r i	r m	l	t	t lo	t ℓ
2		200.6	21. 5	9. 2		
3		80.1	13.6	9. 2		

評価: $t_\ell \ge t$, よって十分である。

2.3 ケーシングのボルト穴

設計·建設規格 PMC-3340

設計・建	討規格	PMC-3340				(.	単位:mm)
計算部位	$d_{\ b\ m}$	a	a _{s o}	a s	X	X_{so}	X s
4		72.0			18.0		

評価: a $s \ge a$, よって十分である。 $X_s \ge X$, よって十分である。

2.4 ケーシングカバーの厚さ

設計・建設規格 PMC-3410

計算部位	材	料	Р	S	平 杉	反 形
口开印工	12) 121	(MPa)	(MPa)	d (mm)	K	
(5)			3.45	120		
6			3. 45	120		
7			3.45	120		

t (mm)	t so	t _s
60.0		
46.9		
34.3		

評価: $t_s \ge t$, よって十分である。

2.5 ボルトの平均引張応力

設計•建設規格 PMC-3510

計算部位	材	料	P (MPa)	S _b (MPa)	dь (mm)	n	A_{b} (mm ²)
8			3. 45	173			
9			3. 45	173		<u> </u>	

ガスケット材料	ガスケット厚さ	ガスケット	G s	G	D g
カスケット材料	(mm)	座面形状	(mm)	(mm)	(mm)
セルフシール					
ガスケット (ゴム)	_	_	_	_	600.0
セルフシール					
ガスケット (ゴム)	_	_	_	_	320.0

H (N)	Н _р (N)	W _{m 1} (N)	W _{m 2} (N)	W (N)	σ (MPa)
	_		0		78
	_		0		52

評価: $\sigma \leq S_b$, よって十分である。

2.6 耐圧部分等のうち管台に係るものの厚さ

設計·建設規格 PMC-3610

計算部位	材	料	P (MPa)	S (MPa)	D。 (mm)
10			3. 45	120	
(1)			3. 45	120	
12			3. 45	120	
13			3.45	120	

継手の種類	放射線透過試験の有無	η
継手無し	_	1.00

t	t so	t s
(mm)	(mm)	(mm)
0.8		
0.4		
0.6		
0.5		

評価: $t_s \ge t$, よって十分である。