本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません

東海第二発電所	工事計画審査資料
資料番号	工認-173 改 2
提出年月日	平成30年5月1日

V-1-1-8-3 溢水評価条件の設定

目次

1.	概	要	3
2.		水源及び溢水量の設定	
2	. 1	想定破損による溢水	3
2	. 2	消火水の放水による溢水	
2	. 3	地震起因による溢水	14
2	. 4	その他の溢水	22
3.	溢	水防護区画及び溢水経路の設定	24
3	. 1	溢水防護区画の設定	25
3	. 2	溢水防護区画内漏えいでの溢水経路	25
3	. 3	溢水防護区画外漏えいでの溢水経路	27
3	. 4	蒸気に対する溢水経路について	28

1. 概要

本資料は、溢水から防護すべき設備の溢水評価に用いる溢水源及び溢水量並びに溢水 防護区画、溢水経路の設定について説明するものである。

2. 溢水源及び溢水量の設定

溢水影響を評価するために, 評価ガイドを踏まえて発生要因別に分類した以下の溢水を設定し, 溢水源及び溢水量を設定する。

- ・溢水の影響を評価するために想定する機器の破損等により生じる溢水(以下「想定 破損による溢水」という。)
- ・発電所内で生じる異常状態(火災を含む。)の拡大防止のために設置される系統からの放水による溢水(以下「消火水の放水による溢水」という。)
- ・地震に起因する機器の破損等により生じる溢水(通常運転中における使用済燃料プールのスロッシングにより発生する溢水,施設定期検査中における使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングにより発生する溢水及び廃棄物処理建屋におけるサイトバンカプールのスロッシングにより発生する溢水を含む。)(以下「地震起因による溢水」という。)
- ・その他の要因(地下水の流入,地震以外の自然現象,機器の誤作動等)により生じる溢水(以下「その他の溢水」という。)

想定破損により生じる溢水では、溢水源となり得る機器は流体を内包する配管とし、 地震起因による溢水では溢水源となり得る機器は流体を内包する容器(タンク,熱交換器,脱塩塔,ろ過脱塩器等)及び配管として、それぞれにおいて対象となる機器を系統 図より抽出し、抽出された機器が想定破損における応力評価又は耐震評価において破損 すると評価された場合、それぞれの評価での溢水源とする。

2.1 想定破損による溢水

想定破損による溢水については、単一の配管の破損による溢水を想定して、配管の 破損箇所を溢水源として設定する。

また,破損を想定する配管は,内包する流体のエネルギーに応じて,以下で定義する高エネルギー配管又は低エネルギー配管に分類する。

- ・「高エネルギー配管」とは、呼び径25A(1B)を超える配管であって、プラント の通常運転時に運転温度が95 ℃を超えるか又は運転圧力が1.9 MPa[gage]を超 える配管。ただし、被水及び蒸気の影響については配管径に関係なく評価する。
- ・「低エネルギー配管」とは、呼び径25A(1B)を超える配管であって、プラント の通常運転時に運転温度が95 ℃以下で、かつ運転圧力が1.9 MPa[gage]以下の配 管。なお、運転圧力が静水頭圧の配管は除く。
- ・高エネルギー配管として運転している割合が当該系統の運転している時間の2% 又はプラント運転期間の1%より小さければ、低エネルギー配管として扱う。

配管の破損形状の想定に当たっては、高エネルギー配管は、原則「完全全周破断」、低エネルギー配管は、原則「配管内径の1/2の長さと配管肉厚の1/2の幅を有する貫通クラック(以下「貫通クラック」という。)」を想定する。ただし、応力評価を実施する配管については、発生応力 S_n と許容応力 S_a の比により、以下で示した応力評価の結果に基づく破損形状を想定する。

【高エネルギー配管(ターミナルエンド部を除く。)】

- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリの配管 S_n≤0.8×許容応力*1 → 破損想定不要
 - *1 クラス1配管は2.4Sm以下, クラス2配管は0.8Sa以下
- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管
 - $S_n ≤ 0.4 \times$ 許容応力*2 ⇒ 破損想定不要
 - 0.4×許容応力*2 < S_n≤0.8×許容応力*3→貫通クラック
 - *2 クラス1配管は1.2Sm以下, クラス2, 3又は非安全系配管は0.4Sa以下
 - *3 クラス1配管は2.45 m以下, クラス2, 3又は非安全系配管は0.85 a以下

【低エネルギー配管】

- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリの配管 S_n≤0.4S_a→破損想定不要
- ・原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管 S_n≤0.4×許容応力*⁴→破損想定不要
 - *4 クラス1配管は1.2Sm以下, クラス2, 3又は非安全系配管は0.4Sa以下

発生応力と許容応力の比較により破損形状の想定を行う原子炉隔離時冷却系蒸気配管,原子炉建屋廃棄物処理棟の所内蒸気<mark>系</mark>配管の一般部<mark>,重大事故等対処設備の新設範囲の配管すべて及び重大事故等対処設備と既設系統の共用ラインのうち,単一の破損を想定した場合に,代替の設備又は系統による機能が維持されない範囲の配管(1Bを超える。)は,評価結果に影響するような減肉がないことを確認するために,継続的な肉厚管理を実施することとし,保安規定に定めて管理する。</mark>

また,高エネルギー配管として運転している時間の割合が,当該系統の運転している時間の2%又はプラント運転期間の1%より小さいことから低エネルギー配管とする系統(ほう酸水注入系,残留熱除去系,残留熱除去海水系,高圧炉心スプレイ系,低圧炉心スプレイ系及び原子炉隔離時冷却系)については,運転時間実績管理を実施することとし、保安規定に定めて管理する。

(1) 溢水源の設定

高エネルギー配管及び低エネルギー配管に対して, 想定される破損形状に基づいた溢水源及び溢水量を設定する。

想定破損評価対象配管を応力評価する際には、評価ガイドの評価式に記載されている発生応力に関するパラメータから最も高い応力が発生する配管を抽出し、 代表として三次元はりモデルによる評価を実施する。

評価で用いる解析コードSAP-IV及びHISAPは耐震評価と同じ使用方法で用いる。

a. 配管破損を考慮する高エネルギー配管の抽出及び破損想定

液体又は蒸気を内包し、防護すべき設備へ影響を与える高エネルギー配管を 有するすべての系統を抽出する。被水及び蒸気影響を評価する場合は25A(1B) 以下の配管も考慮する。

高エネルギー配管は、「完全全周破断」を想定するが、防護すべき設備が設置される建屋内の原子炉隔離時冷却系蒸気配管の一般部(1Bを超える。)は、三次元はりモデルによる応力評価を実施し、発生応力が許容応力の0.8倍以下を確保することから、破損想定貫通クラックとする。また、原子炉建屋廃棄物処理棟の所内蒸気系配管の一般部(1Bを超える。)は、原子炉隔離時冷却系蒸気配管の3次元はりモデルによる算出した応力以下となるよう、標準支持間隔法を用いた簡易評価手法により評価を実施する。

補助蒸気系統の小口径(25A以下)の配管及びその他の高エネルギー配管については任意の箇所での完全全周破断を想定する。

抽出した高エネルギー配管を有する系統について,蒸気影響評価における想 定破損評価条件を第2-1表に示す。また,破損形状を貫通クラックとする系統 の強度評価結果を第2-2表に示す。

第2-1表 高エネルギー配管を有する系統の想定する破損形状

				敷設建屋			
		最高使用	原子炉建屋ター				想定する
系統名*1	温度	圧力	原子炉	廃棄物		ビン	破損形状
	95℃超	1.9MPa 超	棟	処理棟	附属棟	建屋	100 JA /10 ·100
制御棒團動系	_	0	0	_	_	_	完全全周破断
原子炉隔槽流	0	0	O*2	_	_	_	貫通クラック*3
原子炉再循環系	0	0	0		_	_	完全全周被折
主蒸気隔離漏えい抑制系	0	0	\circ	_	_	_	完全全周破断
原子炉谷材净化系	0	0	0	0	_	\circ	完全全周被新
主蒸気系	0	0	\circ		_	\circ	完全全周破断
抽系	\circ	0	_	_	_	\circ	完全全周破断
タービン補助蒸気系	0	0		1	_	\circ	完全全周被新
タービン制御系(制御油系)	0	0		-	_	0	完全全周破断
タービングラント蒸気系	0	0			_	0	完全全周被折
湿分滴器	0	0			_	0	完全全周被折
給水系	0	0	0	1	_	\circ	完全全周被新
給水原器ドレン系	0	0	_	_	_	0	完全全周被折
給水原路ベント系	0	0	_	_	_	0	完全全周被折
タービン建屋換気系	0	_	_	_	_	0	完全全周破断
原子炉建屋换気系(所内蒸気系)	0	_	_	_	_	0	完全全周破断
バッテリー室換気系 (所内蒸気系)	0	_	_	_	0	_	完全全周破断
放射性廃棄物処理系換気系 (所内蒸気系)	0	_	_	_	_	0	完全全周破断
所内蒸気・所内蒸気戻り系	0		*4	_	0	\circ	貫通クラック*3
所内ボイラ系 (給水系)	0	_	_	_	_	0	完全全周破断
放射性廃棄物処理系 スラッジ系	0	_	_	0	_	_	完全全周破断
放射性廃棄物処理系 使用済樹間計蔵系	0	_	_	0	_	_	完全全周破断
放射性廃棄物処理系 濃縮廃液・廃夜中和 スラッジ系	0	_	_	0	_	_	完全全周破断
が身性廃棄物処理系 加熱蒸気・加熱蒸気戻り系	0	_	_	0	_	_	完全全周破断
が外性発棄物の理系 タンクベント系 (防外性発棄物の理系 原子炉補機冷却水系,加熱 蒸気・加熱蒸気戻り系)	0	_	_	0	_	_	完全全周破断

^{*1:()}内記載の系統名は、主系統に含む溢水源として想定する系統

第2-2表 高エネルギー配管の強度評価結果

項目 評価 建屋	EL. 配管	一次応力	許容値
----------	--------	------	-----

^{*2:}常に充圧されている範囲のみ。

	手法		(m)	仕様	+二次応	0.8Sa
					力	(MPa)
					(MPa)	
原子炉隔離時冷却系	3次元 はりモデル	原子炉建屋原 子炉棟	追而	追而	追而	追而
所内蒸気系	標準支持 間隔法	原子炉建屋 廃棄物処理棟		:力が0.8Sa ことを確認	以下となるヨ 。	支持間隔以内

b. 配管破損を考慮する低エネルギー配管の抽出及び破損想定

液体を内包し,防護すべき設備に影響を与える低エネルギー配管を有するすべての系統を抽出する。評価ガイドを踏まえて,静水頭圧の配管は対象外とし,口径が25A以下の配管は被水影響のみ考慮する。

低エネルギー配管は、任意の箇所での貫通クラックを想定する。 抽出した低エネルギー配管を有する系統について、想定する破損形状を第2 -3表に示す。

第2-3表 低エネルギー配管を有する系統の想定する破損形状 (1/2)

<u>第2一3衣 似-</u>	エイルイー能		(///2 - > //////	施設建屋		- 7	
	最高使用	最高使用				ター	相学士で
系統名*1	温度	圧力		原子炉建屋			想定する
	$[\infty]$	[MPa]	原子炉	廃棄物	附属棟	ビン	破損形状
) ナンボル L ソ), ナーデ			棟	処理棟		建屋	—
ほう酸水注入系		2	0	_	_	_	貫通クラック
残留熟除去系		2	0	_			貫通クラック
残留熱除去系海水系	*	2	0	0	_	_	貫通クラック
補機合却海水系	38	0.87	_	_	_	\circ	貫通クラック
高王炉心スプレイ系	*	2	0	_	_	_	貫通クラック
低圧炉心スプレイ系	*	2	0	_	_	_	貫通クラック
原子炉隔槽养法系	*	2	0	_	_	_	貫通クラック
燃料プール冷却浄化系	66	1.39	0	_		_	貫通クラック
原子炉補機合却系	66	0.87	0	0	_	0	貫通クラック
格納容器雰囲気監視系 (残留熱除去系海水系)	*	2	0	_	_	_	貫通クラック
可燃性ガス濃度制御系 (残留熱除去系)	*	2	0	_	_	_	貫通クラック
ドライウェル冷は系 (原子炉補機/法以系)	66	0.87	0	_	_	_	貫通クラック
タービン潤滑油系	66	0.87				0	貫通クラック
復水系	63	1.38	_	_		\circ	貫通クラック
空気抽出系	94	1.38	_	_	_	0	貫通クラック
循環水系	*	3	_	_	_	0	貫通クラック
辨冰系	66	1.33	_	_	_	0	貫通クラック
復水脱塩装置系	66	1.39	_	_	_	0	貫通クラック
タービン補機合い系	66	0.87	0	_	_	0	貫通クラック
非常用ディーゼル発電設備(潤滑油系)	80	0. 79	_	_	0	_	貫通クラック
非常用ディーゼル発電設備 (冷却水系)	80	0. 25	_	_	0	_	貫通クラック
非常用ディーゼル発電機 海水系	50	0.70	_	_	0	_	貫通クラック
高王炉心スプレイ系 ディーゼル発電設備 (間骨油系)	80	0. 79	_	_	0	_	貫通クラック
高王炉心スプレイ系 ディーゼル発電設備 (冷劫水系)	80	0. 25	_	_	0	-	貫通クラック
高王炉心スプレイ系 ディーゼル発電機毎水系	50	0.70	0	_	0	_	貫通クラック
ディーゼル発電機然料油系	55	0.2	_	_	0	_	貫通クラック
ろ過水系(屋内消火系)	常温	0.88	0	_	\circ	\circ	貫通クラック
復水・純水移送系	66	1.33	0	\circ		\circ	貫通クラック
補助系(ドレンサンプ系)	65	1.03	0	0	0	0	貫通クラック
中央制御室換気系(冷水系)	66	0.54	_	_	0	_	貫通クラック
スイッチギヤ室娱気系(冷水系)	66	0. 54	_	_	0	_	貫通クラック
オフガス再生室換気系 (原子炉補機合は系)	66	0.87	_	0	_	_	貫通クラック

第2-3表 高エネルギー配管を有する系統の想定する破損形状(2/2)

<u> </u>			1000			-, -, -, -, -, -, -, -, -, -, -, -, -, -	
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	施設建屋/区域				担点よっ
系統名*1	運転温度	運転圧力		京子炉建屋		ター	想定する
	95℃超	1.9MPa 超	原子炉	廃棄物	附属棟	ビン	破損形状
the Whatter I was to have			棟	処理棟		建屋	
制御用圧縮空気系	66	0.87	_	_	_	0	貫通クラック
(タービン補機/法原)							
所内用圧縮空気系	66	0.87	_	_	_	\circ	貫通クラック
(タービン補機合用系)							
所内ボイラ系(給水系)	80	1.38	_	_	_	0	貫通クラック
所内ボイラ系(燃料系)	40	1. 1	_		_	0	貫通クラック
放射性廃棄物処理系	90	1.32	_	0	_	_	貫通クラック
機器ドレン系	00	1.02					7
放射性廃棄物処理系	65	1.03	_	0	_	_	貫通クラック
床ドレン系		1.00					ACO 7 7 7 7
放射性廃棄物処理系	65	1.1	_	\circ	_	_	貫通クラック
凝集沈殿系	00	1. 1					
放射性廃棄物処理系	65	1.1	_	0	_	_	貫通クラック
スラッジ系	00	1. 1					
放射性廃棄物処理系	65	1.1	_	0	_	_	貫通クラック
使用済樹間消蔵系	00	1. 1					貝曲ノブブブ
放射性廃棄物処理系	65	1.1	_	0	_	_	貫通クラック
高電導度ドレン系	00	1. 1					東四ノノノノ
放射性廃棄物処理系	65	1. 43	_	0		_	貫通クラック
凝縮水如理系	00	1.40					貝曲ノブブブ
放射性廃棄物処理系	65	12. 4	_	0	_	_	貫通クラック
洗濯葬夜系	00	12. 4					貝曲ノブブブ
放射性廃棄物処理系							
所内用空気系	66	0.87		0		_	貫通クラック
仿佛性廃棄物処理系	00	0.01					見 囲え ノソン
原子炉補機合法水系)							
放射性廃棄物処理系復水系	65	1.43	_	0	_	_	貫通クラック
放射性廃棄物処理系純水系	66	1.33	_	0			貫通クラック
放射性廃棄物処理系	CC	0.07					#33カニ・カ
原子炉補幾份却水系	66	0.87	_	0	_	_	貫通クラック
放射性廃棄物処理系	CC	0.07					#13月二 月
タービン補機合法が系	66	0.87	_	0	_	_	貫通クラック
放射性廃棄物処理系							
タンクベント系							
仿身性廃棄物処理系	66	0.87	_	\circ	_	_	貫通クラック
原子炉補機合却水系,							
加熱蒸気・加熱蒸気戻り系)							
放射性廃棄物処理系	/±×⊨	0.00					#13月二 月
消火系	常温	0.88	_	0	_	_	貫通クラック

^{*1:()}内記載の系統名は、主系統に含む溢水源として想定する系統

(2) 溢水量の設定

応力評価の結果により想定した破損形状による溢水を想定し, 異常の検知,

^{*2:}高エネルギー配管として運転している時間の割合が、プラント運転期間の1%より小さいため、低エネルギー配管として扱う。

^{*3:}循環水系は復水器設置エリア及び循環水ポンプ設置エリアでの伸縮継手破損による溢水を想定

事象の判断及び漏えい箇所の特定並びに現場又は中央制御室からの隔離により漏えい停止するまでの時間を適切に考慮し、想定する破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。想定する破損箇所は防護すべき設備への溢水影響が最も大きくなる位置とする。

破損を想定する配管については,系統ごとに以下の手法を用いて溢水量の算 定を行う。

- ・完全全周破断を想定する場合の溢水流量は、原則として系統の定格流量を 用いる。ただし、系統上の破断位置、口径及び流体圧力等を考慮すること により、より適切な溢水流量を算定できる場合はその値を用いる。
- ・貫通クラックを想定する場合の流出流量は、破断面積、損失係数及び水稲 を用いて以下の計算式より求める。

 $Q = A \times C \times \sqrt{(2 \times g \times H) \times 3600}$

Q:流出流量 (m³/h)

A:破断面積 (m²)

C:損失係数 (0.82)

g: 重力加速度 (m/s²)

H:水頭 (m)

破断面積(A)及び水頭(H)は、原則として系統の最大値(最大口径、最大肉厚、配管の最高使用圧力)を使用するが、破断を想定する系統の各区 画内での最大値が明確な場合は、その値を使用する。

- ・溢水の発生後,溢水を検知し隔離するまでの隔離時間を,手動隔離及び自動隔離隔離を想定し設定する。評価した隔離までの時間に流出流量を乗じて系統保有水量を加えた溢水量を算定する。
- ・系統保有水量は、原則として系統内のすべての配管内及びポンプ等の機器内の保有水量の合算値を、保守的に1.1倍の安全率を乗じた値を用いる。ただし、配管の高さや引き回し等の観点から流出しないと判断できる範囲を明確に占め節場合は、その範囲を除いた保有水量を用いる。また、屋外タンク等の公称容量が定められ、想定する保有水量が大きく変動することがない機器に関しては、1.1倍の安全率を乗ずる対象から除外する。
- ・隔離までの流出量に関しては、補給水や他系統からの回り込みを考慮する。
- ・溢水量を比較して最大となる溢水量を,当該系統の没水評価に用いる溢水量として設定する。設定した溢水量を第2-4表に示す。

なお,配管の想定破損による溢水評価において,溢水量を制限するために漏 えい停止操作に期待する場合は,的確に操作を行うために手順を整備すること とし,保安規定に定めて管理する。

第2-4表 想定破損による溢水量の選定(想定破損) (1/2)

 系統名称
 分類
 破断
 溢水量

 形状
 (m³)

制御棒駆動系	高	全	68
ほう酸水注入系	同 低	<u>土</u>	22
残留熱除去系	低 低	貫	382
残留熱除去系海水系	低 低	貫	272
高圧炉心スプレイ系	低 低	貫	378
	低 低	貫	
低圧炉心スプレイ系			300
原子炉隔離時冷却系	低	貫	288
原子炉再循環系	高	全	1
原子炉冷却材浄化系	高	全	54
燃料プール冷却浄化系	低	貫	83
原子炉補機冷却系	低	貫	298
格納容器雰囲気監視系(残留熱除去系海水系)	低	貫	272
可燃性ガス濃度制御系(残留熱除去系)	低	貫	382
ドライウェル冷却系(原子炉補機冷却系)	低	貫	_ <mark>*1</mark>
タービン潤滑油系(潤滑油)	低	貫・	195
給・復水系(R/B内漏えい時)	<u>高</u>	全	289
給・復水系(T/B内漏えい時)	高	全	1133
循環水系	低	貫	1588
補機冷却海水系	低	貫	744
弁封水系	低	貫	127
復水脱塩装置系	低	貫	297
給水加熱器ドレン系	高	全	290
タービン補機冷却系	低	貫	366
非常用ディーゼル発電設備(潤滑油系)	低	貫	15
非常用ディーゼル発電設備(冷却水系)	低	貫	39
非常用ディーゼル発電機 海水系	低	貫	124
高圧炉心スプレイ系ディーゼル発電設備(潤滑油系)	低	貫	15
高圧炉心スプレイ系ディーゼル発電設備(冷却水系)	低	貫	39
高圧炉心スプレイ系ディーゼル発電機海水系	低	貫	124
ディーゼル発電機燃料油系	低	貫	19
ろ過水系(屋内消火系)	低	貫	92
復水・純水移送系	低	貫	325
所内用水系(サービス建屋飲料水系)	低	貫	12
所内用水系(サービス建屋ろ過水系)	低	貫	22
サービス建屋換気系(冷水・冷却水系)	低	貫	22
補助系(ドレンサンプ系)	低	貫	9
中央制御室換気系(冷水系)	低	貫	23
スイッチギヤ室換気系(冷水系)	低	貫	23
オフガス再生室換気系(原子炉補機冷却系)	低	貫	298
制御用圧縮空気系(タービン補機冷却系)	低	貫	366
所内用圧縮空気系(タービン補機冷却系)	低	貫	366
所内ボイラ系(給水系)	<u>高</u>	貫	58
所内ボイラ系(燃料系)	低	貫	19
放射性廃棄物処理系の機器ドレン系	<u>低</u>	貫	47
放射性廃棄物処理系 床ドレン系	低	貫	52
放射性廃棄物処理系 凝集沈殿系	低	貫	22
放射性廃棄物処理系 スラッジ系	高	貫	10
放射性廃棄物処理系使用済樹脂貯蔵系	<u> </u>	貫	10
第2- <mark>4</mark> 表 想定破損によろ溢水量の選定(想定破損			<u> </u>

第2-4表 想定破損による溢水量の選定(想定破損) (2/2)

系統名称	八粘	破断	溢水量
术机石机	分類	形状	(m^3)

放射性廃棄物処理系 高電導度ドレン系	低	貫	30
放射性廃棄物処理系 濃縮廃液・廃液中和スラッジ系	高	全	326
放射性廃棄物処理系 凝縮水処理系	低	貫	37
放射性廃棄物処理系 洗濯廃液系	低	貫	22
放射性廃棄物処理系 所内用空気系 (原子炉補機冷却系)	低	貫	298
放射性廃棄物処理系 復水系	低	貫	150
放射性廃棄物処理系 純水系	低	貫	55
放射性廃棄物処理系原子炉補機冷却水系	低	貫	298
放射性廃棄物処理系タービン補機冷却水系	低	貫	366
放射性廃棄物処理系タンクベント系(原子炉補機冷却系)	低	貫	298
放射性廃棄物処理系 消火系	低	貫	92

*1:原子炉格納容器内のため、溢水量を算出せず。

2.2 消火水の放水による溢水

溢水源として消火栓からの溢水について考慮する。

(1) 消火栓からの放水による溢水

消火水の放水による溢水については,発電用原子炉施設内に設置される消火設備等からの放水を溢水源として設定し,消火設備等からの単位時間当たりの放水量と放水時間から溢水量を設定する。

火災発生時には、1箇所の火災源を消火することを想定するため溢水源となる 区画は1箇所となる。また、放水量は評価ガイドに従い放水時間を設定して算定 する。

なお,消火活動により区画の扉を開放する場合は,開放した扉からの消火水の 伝播を考慮する。

a. 放水時間の設定

消火栓からの消火活動における放水時間は,建物内について,3時間に設定する。

消火水を使用しない消火手段である固定式消火設備を設置する区画のうち、中央制御室、電気品室及びバッテリー排気ファン室等の異なる安全区分を有する設備が隣接するエリア及びそのエリアへの流下経路があるエリアは、固定式消火設備を消火手段として考慮し、消火栓の放水は行わない。

b. 溢水量の設定

屋内の消火栓からの溢水量の算出に用いる放水流量は、消防法施行令第十一条に規定される「屋内消火栓設備に関する基準」により、消火栓からの放水流量を 130 L/min とし、この値を 2 倍して溢水流量とした。放水時間と溢水流量から評価に用いる消火栓の溢水量を以下のとおりとした。

·130 L/min/個×3 時間×2 箇所=46.8 m³

屋外の消火栓からの溢水量の算出に用いる放水流量は、消防法施行令第十九条に規定される「屋外消火栓設備に関する基準」により、消火栓からの放水流量を350 L/min とし、この値を2倍して溢水流量とした。放水時間と溢水流量から評価に用いる消火栓の溢水量を以下のとおりとした。

•350 L/min/個×3 時間×2 箇所=126.0 m³

(2) 消火栓以外からの放水による溢水

消火栓以外の設備としては、スプリンクラや格納容器スプレイ冷却系があるが、 防護すべき設備が設置されている建屋には、スプリンクラは設置しない設計とし、 防護すべき設備が安全機能を損なわない設計とすることから溢水源として想定 しない。

また,原子炉格納容器内の防護すべき設備については,格納容器スプレイ冷却 系の作動により発生する溢水により安全機能を損なわない設計とする。なお,格 納容器スプレイ冷却系は,単一故障による誤作動が発生しないように設計上考慮 されていることから誤作動による溢水は想定しない。

2.3 地震起因による溢水

(1) 溢水源の設定

地震起因による溢水については、溢水源となり得る機器(流体を内包する機器) のうち、基準地震動 S_s による地震力により破損が生じる機器及び使用済燃料プールのスロッシングによる漏えい水を溢水源として設定する。

耐震Sクラス機器については、基準地震動Ssによる地震力によって破損は生じないことから溢水源として想定しない。また、耐震B, Cクラス機器のうち耐震対策工事の実施あるいは設計上の裕度の考慮により、基準地震動Ssによる地震力に対して耐震性が確保されているものについては溢水源として想定しない。

施設定期検査中の評価を行う場合には、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングによる漏えい水を溢水源として設定

放射性物質を含む液体の管理区域外漏えいに関する評価を行う場合について、 タービン建屋内及び廃棄物処理建屋内の溢水源となり得る機器(流体を内包する機器)のうち、要求される地震力により破損が生じる機器及び廃棄物処理建屋のサイトバンカプールのスロッシングによる漏えい水を溢水源として設定する。

溢水源としない機器の具体的な耐震計算を資料V-2「耐震性に関する説明書」のうち資料V-2-別添2「溢水防護に関する施設の耐震性に関する説明書」に示す。

(2) 溢水量の設定

溢水量の算出に当たっては、漏水が生じるとした機器のうち防護すべき設備への溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。溢水源となる配管については破断形状を完全全周破断とし、溢水源となる容器については全保有水量を考慮した上で、溢水量を算出する。

また、漏えい検知による漏えい停止を期待する場合は、漏えい停止までの隔離時間を考慮し、配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。ここで、漏水量は、配管の破損箇所からの流出流量に隔離時間を乗じて設定する。なお、地震による機器の破損が複数箇所で同時に発生する可能性を考慮し、漏えい検知による自動隔離機能を有する場合を除き、隔離による漏えい停止は期待しない。

基準地震動S_Sによる地震力に対して、耐震性が確保されない循環水配管については、伸縮継手の全円周状の破損を想定し、循環水ポンプを停止するまでの間に生じる溢水量を設定する。

使用済燃料プール,原子炉ウェル,ドライヤセパレータプール及びサイトバン カプールのスロッシングによる溢水量の算出については,以下に示す。

【使用済燃料プールのスロッシングについて】

通常運転中の使用済燃料プールのスロッシングによる溢水量の算出に当たっては、原子炉建屋の使用済燃料プールのあるフロアレベルをモデル化範囲とし、三次元流動解析により溢水量を算定する。また、スロッシングによる溢水量を保守的に評価するために、使用済燃料プール及びキャスクピットが水張りされた状態とする。解析モデルは、使用済燃料貯蔵プール本体、キャスクピットを考慮するとともに、原子炉建屋6階床面への溢水の流れをシミュレートできるように空気部分もモデル化した。

解析に用いる地震動は、基準地震動 S_s の8波をそれぞれ用いて溢水量を算出し、床面への溢水量の最大値を評価に使用した。

また,プール廻りのダクト開口部については,流入防止の対策を講じることから,モデル化しない。

なお,原子炉建屋 6 階床面への溢水は無限遠へ流れるものとし,壁からの反射 等によりプールに戻る水は考慮しない。

また,プール内構造物は,スロッシング抑制効果があるので保守的にモデル化 しない。

原子炉建屋(EL. 46.5 m)の使用済燃料プール周辺の概要を第2-1図に示す。 使用済燃料プールスロッシングの三次元流動解析条件を第2-5表に,使用済燃料プールスロッシングによる最大溢水量を第2-6表に示す。

【使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシング について】

施設定期検査中の使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水量の算出に当たっては,原子炉建屋の使用済燃料プールのあるフロアレベルをモデル化範囲とし,手計算により溢水量を算定する。解析に用いる地震動は,基準地震動 S_s の8波のうち S_s -13を用いて溢水量

解析に用いる地震動は、基準地震動 S_s の8波の $_{9}$ ち S_{s} $_{-13}$ を用いて溢水量を算出した。

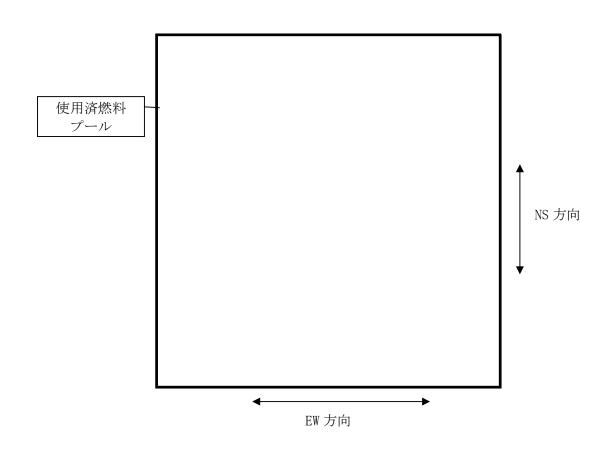
なお,原子炉建屋 6 階床面への溢水は無限遠へ流れるものとし,壁からの反射等によりプールに戻る水は考慮しない。

また、プール内構造物は、スロッシング抑制効果があるので保守的にモデル化 しない。

原子炉建屋(EL. 46.5 m)の使用済燃料プール,原子炉ウェル及びドライヤセパレータプール周辺の概要を第2-2図に示す。

スロッシングの三次元流動解析条件を第2-7表に,使用済燃料プールスロッシングによる最大溢水量を第2-8表に示す。

【サイトバンカプールのスロッシングについて】

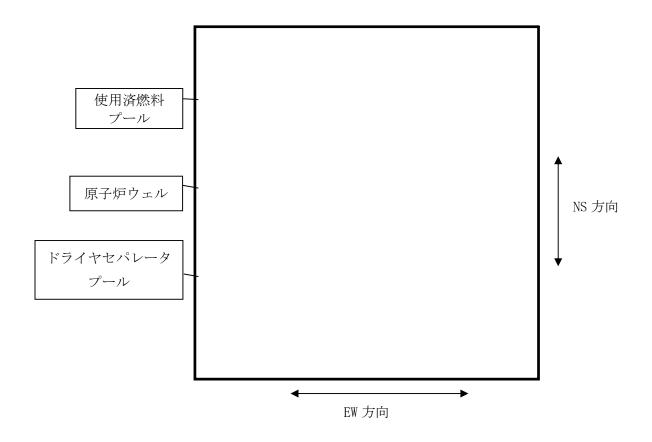

廃棄物処理建屋2階のサイトバンカプールのスロッシングによる溢水量の算出に当たっては、設置フロアをモデル化範囲とし、手計算により溢水量を算定する。解析に用いる地震動は、弾性設計用地震動SdのうちSd-D1(NS方向)及びNS-14(EW方向)の廃棄物処理建屋2階の床応答スペクトルを用いて溢水量を算出する。

なお、床面への溢水は無限遠へ流れるものとし、壁からの反射等によりプール に戻る水は考慮しない。

また、プール内構造物は、スロッシング抑制効果があるので保守的にモデル化 しない。

廃棄物処理建屋2階のサイトバンカプール周辺の概要を第2-3図に示す。 スロッシングの解析条件を第2-9表に、スロッシングによる最大溢水量を第2-10表に示す。

以上の条件により設定した各建屋の溢水量を第2-11表に示す。


第2-1図 使用済燃料プール周辺の概略図

第2-5表 使用済燃料プールスロッシングの三次元流動解析条件

	<u> </u>
モデル化 範囲	使用済燃料プール(キャスクピット含む)
境界条件	上部は開放とし、他は壁による境界を設定。
初期水位	EL. 46. 195 m (通常水位)
評価用地震波	基準地震動 S _s 8 波による原子炉建屋 EL. 46.50 m での床応答を用いた 三方向 (NS, EW 及び UD) 同時入力時刻歴解析により評価する。
解析コード	STAR-CD (汎用流体解析プログラム) STAR-CD は, VOF (Volume of Fluid) 法を搭載した CD-adapco 社製の 汎用熱流体解析コード。
その他	使用済燃料プール周りに設置されているフェンス等による流出に対す る抵抗は考慮しない。

第2-6表 使用済燃料プールスロッシングによる最大溢水量

地震波の種類	床面への溢水量 (m³)
S _S -13	81. 49


第2-2図 使用済燃料プール,原子炉ウェル及びドライヤセパレータプール周辺 の概略図

第2-7表 使用済燃料プール,原子炉ウェル及びドライヤセパレータプール スロッシングの三次元流動解析条件

モデル化 範囲	使用済燃料プール(キャスクピット含む) <mark>,原子炉ウェル及びドライヤ</mark> セパレータプール
境界条件	上部は開放とし、他は壁による境界を設定。
初期水位	EL. 46. 195 m (通常水位)
評価用地震波	基準地震動 S_s -13 による原子炉建屋 EL. 46. 50 m での床応答スペクトルを用いた手計算により評価する。
その他	使用済燃料プール周りに設置されているフェンス等による流出に対す る抵抗は考慮しない。

第2-8表 使用済燃料プールスロッシング,原子炉ウェル及び ドライヤセパレータプールによる最大溢水量

地震波の種類	床面への溢水量 (m³)
S _S -13	503

第2-3図 サイトバンカプール周辺の概略図

第2-9表 サイトバンカプールプールスロッシングの三次元流動解析条件

モデル化 範囲	サイトバンカプール
境界条件	上部は開放とし,他は壁による境界を設定。
初期水位	EL. 15. 5
評価用地震波	プールの固有周期で最大の応答となる地震動(NS方向は弾性設計用地震動Sd-D1, EW方向は弾性設計用地震動Sd-14)による廃棄物処理建屋 EL.15.8m での床応答スペクトルを用いた手計算により評価する。
その他	使用済燃料プール周りに設置されているフェンス等による流出に対す る抵抗は考慮しない。

第2-10表 サイトバンカプールによる最大溢水量

地震波の種類	床面への溢水量 (m³) *1
S d - D 1 (N S 方向)	8
S d-14 (EW方向)	5

*1:最大となる溢水量にて評価を行う。

第2-11表 設定した溢水量(地震起因)

建屋名称		溢水量 (m³)
西フ屋神県西フ屋神	通常運転中	123. 76*1
原子炉建屋原子炉棟	施設定期検査中	503* ²
タービン建屋	20910*3	
海水ポンプエリア	515	
屋外タンク	7408	
原子炉建屋廃棄物処理棟	約2700	
廃棄物処理建屋	全保有水量	約4300* ⁴
()	スロッシングのみ	8

- *1:使用済燃料プールスロッシングによる最大溢水量を含む
- *2:使用済燃料プール,原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水量のみ。
- *3:基準地震動Ssにより破損する機器・配管からの溢水量 放射性物質を含む液体の管理区域外漏えいの評価においても,保守的に本溢水量を 用いた評価を行う。
- *4:サイトバンカプールの全保有水量を含む。 放射性物質を含む液体の管理区域外漏えいの評価においても,保守的に本溢水量を 用いた評価を行う。
- *5:サイトバンカプール設置エリアからの放射性物質を含む液体の管理区域外漏えいを 評価する際に用いる値。

2.4 その他の溢水

その他の要因(地下水の流入,地震以外の自然現象,機器の誤作動等)により生じる溢水については、地下水の流入,降水,屋外タンクの竜巻による飛来物の衝突による破損に伴う漏えい等の地震以外の自然現象に伴う溢水,機器の誤作動,弁グランド部,配管フランジ部からの漏えい事象等を想定する。

(1) 地震以外の自然現象に伴う溢水

各自然現象による溢水影響としては、降水のようなプラントへの直接的な影響と、飛来物による屋外タンク等の破壊のような間接的な影響が考えられる。間接的な影響に関しては、設置位置や保有水量等を鑑み、屋外タンク等を自然現象による破損の影響を確認する対象とする。

想定される自然現象による直接的,間接的影響をそれぞれ整理し,第2-12表に示す。結果として,いずれの影響に対しても現状の設計にて問題がないこと,又は現状の評価で包含されることを確認した。

第2-12表 地震・津波以外の自然現象による溢水影響の検討要否(1/3)

現象	検討要否	理由
洪水 不	洪水 不要	洪水ハザードマップ及び浸水想定区域図によると,敷
		地に影響が及ばないこと、および新川の浸水は丘陵地
		を遡上していないことから、洪水による影響はない。
風(台風)	不要	敷地付近で観測された最大瞬間風速は44.2 m/sであ
	小安	り, 最大風速100 m/sの竜巻の影響に包絡される。
	竜巻 要	設計竜巻による飛来物により屋外タンクが破損した場
竜巻		合に発生する溢水については,屋外タンクの溢水によ
		る影響評価に包絡される。
		敷地付近で観測された最低気温は-12.7 ℃である。屋
凍結	不要	外機器で凍結のおそれがあるものに対しては凍結防止
保和		対策を施しているため、凍結により屋外タンクが破損
		するおそれはない。
	要	敷地付近における10年確率で想定される雨量強度は
		127.5 mm/hであるが,安全施設のうち降水に対し必要
降水		な構築物、系統及び機器の設置場所は、その降水によ
		る浸水に対して構内排水路による排水等により影響が
		ないことから、地震時に想定する溢水に包含される。
積雪		敷地付近で観測された最大の積雪の深さは32 cmであ
	不要	る。屋外タンクが破損したとしても、影響は地震時及
		び津波重畳時に想定する溢水に包絡される。

第2-12表 地震・津波以外の自然現象による溢水影響の検討要否 (2/3)

第2- <mark>]</mark>	1 <mark>4</mark> 水 地辰·佯伙。	以外の自然現象による溢水影響の検討要否 (2/3)
現象	検討要否	理由
落雷		雷害防止対策として、建築基準法に基づき高さ20mを
		超える原子炉建屋等へ避雷針の設置、接地網の布設に
	不要	よる設置抵抗の低減等をおこなっている。落雷により
		屋外タンクが破損したとしても、地震時及び津波重畳
		時に想定する溢水に包絡される。
	不要	想定される降下火砕物の堆積厚さは50 cmである。屋外
火山の影響		タンクが破損したとしても,影響は地震時及び津波重
		畳時に想定する溢水に包絡される。
₽₩₩₩₩₽₽₽		想定される小動物の浸入に対する止水処置及び海生生
生物学的	不要	物の襲来による塵芥の除去等により、安全機能を損な
事象		うことのない設計とすることから溢水は発生しない。
***************************************		防火帯の内側に設置されているため,森林火災の影響
森林火災	不要	は及ばない。
		高潮の影響を受けない敷地高さ以上(EL.3.3 m)に屋
高潮	不要	外タンクが設置されていることから、高潮の影響によ
		る溢水は発生しない。
飛来物(航空		屋外タンクが破損したとしても、影響は地震時及び津
機落下)	不要	波重畳時に想定する溢水に包絡される。
		久慈川は敷地の北側を太平洋に向かい東進しているこ
22.	不要	 と,発電所敷地の西側は北から南にかけては標高3~21
ダムの崩壊		 mの上り勾配となっていることから,ダムの崩壊による
		影響を考慮する必要はない。
		原子炉施設周辺には、石油コンビナート等、爆発によ
18 70	不要	り安全施設の安全機能を損なうような爆発物の製造及
爆発		 び貯蔵設備は約50 km以上の距離があることから,爆発
		による影響を考慮する必要はない。
		・発電所近隣の工場で火災により影響があると考えら
近隣工場等 の火災		れるものはない。また,周辺の道路を通行する車両や
	不要	 入港する船舶,周辺を航行する船舶による火災から,
		 原子炉建屋外壁面が許容温度(200 ℃)以下となる危
		 険距離に対して,離隔距離が確保されている。
		・航空機落下に伴う火災及び発電所敷地内に存在する
		 危険物タンク火災により,屋外タンクが破損したとし
		 ても,影響は地震時及び津波重畳時に想定する溢水に
		 包絡される。
有毒ガス	 不要	有毒ガスにより溢水は発生しない。
L		1

第2-12表 地震・津波以外の自然現象による溢水影響の検討要否 (3/3)

現象	検討要否	理由
船舶の衝突 不要	不西	屋外タンクの設置高さから船舶の衝突による溢水は発
	生しない。	
電磁的障害	不要	電磁的障害により溢水は発生しない。

(2) 地下水による影響

東海第二発電所では、溢水防護すべき設備を内包する原子炉建屋、タービン建屋等の周辺地下部に排水設備(サブドレン)を設置しており、同設備により各建屋周辺に流入する地下水の排出を行っている。

サブドレンは、ピット及び排水ポンプより構成され、ピット間は配管で相互に接続されているため、一箇所の排水ポンプが故障した場合でも、他のピット及び排水ポンプにより排水することができる。

このため、想定破損による溢水の評価においては、地下水の影響はない。

一方, 地震発生時には排水ポンプが機能喪失することから, 建屋周囲の地下水 位が地表面まで上昇することを想定する。

(3) 機器の誤作動や弁グランド部,配管フランジ部からの漏えい事象

機器の誤作動等からの漏えい事象については、区画毎に漏えいを想定する系統の配管口径と圧力、保有水量等によって設定した最大の漏えい量である想定破損の溢水量を上回ることはない。

また,少量漏えいの想定については,防護対象設備に影響のある全区画について評価を行い,排水や漏えい検知が可能なことを確認している。

なお、人的過誤については、発生の未然防止を図るために、定められた運用、 手順を確実に順守すると共に、トラブル事例等を参考に継続的な運用改善を行っ ていく。

3. 溢水防護区画及び溢水経路の設定

溢水影響を評価するために、溢水防護上の溢水防護区画及び溢水経路を設定する。 溢水防護区画の設定は、防護すべき設備が設置されている全ての区画並びに中央制御 室及び現場操作が必要な設備へのアクセス通路について設定する。

防護すべき設備が設置されるフロアを基準とし、平坦な床面は同一区画として考え、壁、扉及び堰又はそれらの組み合わせによって他の区画と分離される区画として設定する。設定した溢水防護区画は、資料V-1-1-8-2「防護すべき設備の設定」の第2-1図に示す。

溢水影響評価において考慮する溢水経路は, 溢水防護区画とその他の区画との間における伝播経路となる扉, 壁貫通部, 天井貫通部, 床面貫通部, 床ドレン等の連接状況及びこれらに対する溢水防護措置を踏まえ, 溢水防護区画内の水位が最も高くなるように

保守的に設定する。

火災により壁貫通部の止水機能が損なわれ、当該貫通部から溢水防護区画に消火水が 流入するおそれがある場合には、当該貫通部からの消火水の流入を考慮する。 消火活動 により区画の扉を開放する場合は、開放した扉からの消火水の伝播を考慮する。

また,施設定期検査作業に伴う防護対象設備の待機除外や扉の開放等,プラントの保守管理上やむを得ぬ措置の実施により,影響評価上設定したプラント状態と一時的に異なる状態となった場合も想定する。

具体的には、以下の運用を行うことを保安規定に定めて管理する。

- ・施設定期検査時において、原子炉建屋原子炉棟6階で使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングにより発生する溢水に対して、 床ファンネル及び流下開口の閉止を行うことで、溢水影響が他に及ばない運用とする。
- ・原子炉建屋原子炉棟6階の残留熱除去系熱交換器ハッチを開放する場合には、ハッチ廻りに止水板を設置することで、ハッチ内へ溢水が伝播することを防止する運用とする。
- ・通常運転中に関して、原子炉建屋原子炉棟6階におけるキャスク搬出入を行う際の み、干渉物となる大物機器搬入口開口部及び燃料輸送容器搬出口開口部の溢水拡大 防止堰(鋼板部)の取り外しを行い、作業完了後に設置する運用とする。
- ・上記の運用において、必要時に設置又は取り外すとした設備及び措置については、 設置又は復旧時の構造強度及び止水性能を満足するための施工方法を定める。
- ・溢水経路を構成する水密扉については、開放後の確実な閉止操作、中央制御室にお ける閉止状態の確認及び閉止されていない状態が確認された場合の閉止操作の手 順等を定める。

3.1 溢水防護区画の設定

溢水防護に対する評価対象区画を溢水防護区画とし、防護すべき設備が設置されている全ての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路について設定する。

溢水防護区画は壁, 扉, 堰, 床段差等, 又はそれらの組み合わせによって他の区画と分離される区画として設定し, 溢水防護区画を構成する壁, 扉, 堰, 床段差等については, 現場の設備等の設置状況を踏まえ, 溢水の伝播に対する評価条件を設定する。

3.2 溢水防護区画内漏えいでの溢水経路

溢水防護区画内漏えいに関する溢水経路の評価を行う場合、溢水防護対象設備の存在する溢水防護区画の水位が最も高くなるように当該の区画から他の区画への流出がないように溢水経路を設定することを基本とする。

溢水評価を行う場合の各構成要素の溢水に対する考え方を以下に示す。

(1) 床ドレン

評価対象区画に床ドレン配管が設置され、他の区画とつながっている場合でも、 目皿が1つの場合は、他の区画への流出は想定しない。

ただし、同一区画に目皿が複数ある場合は、流出量の最も大きい床ドレン配管 1本を除き、それ以外からの流出を期待する。

(2) 床面開口部及び床貫通部

評価対象区画床面に開口部又は貫通部が設置されている場合であっても,床開口部又は貫通部から他の区画への流出は,考慮しない。

ただし,以下に掲げる場合は、評価対象区画から他の区画への流出を期待する。

- ・ 評価対象区画の床面開口部にあっては、明らかに流出が期待できることを 定量的に確認できる場合
- ・ 評価対象区画の床貫通部にあっては、貫通する配管、ダクト、ケーブルトレイ又は電線管と貫通部との間に隙間があって、明らかに流出が期待できることを定量的に確認できる場合

(3) 壁貫通部

評価対象区画の境界壁に貫通部が設置され、隣の区画との貫通部が溢水による 水位より低い位置にある場合であっても、その貫通部からの流出は考慮しない。 ただし、当該壁貫通部を貫通する配管、ダクト、ケーブルトレイ又は電線管と 貫通部との間に隙間があって、明らかに流出が期待できることを定量的に確認で きる場合は、他の区画への流出を考慮する。

(4) 扉

評価対象区画に扉が設置されている場合であっても、当該扉から他の区画等への流出は考慮しない。ただし、以下の場合には当該扉の下部枠高さを超える溢水について他の区画への流出を期待する。

- ・常時開の扉
- ・フェンスドア
- ・区画内に消火栓がなく,区画外の消火栓を用いて当該区画の扉を開放して消 火活動を行う場合

(5) 堰及び壁

他の区画への流出は期待しない。

(6) 排水設備

評価対象区画に排水設備が設置されている場合であっても,当該区画の流出は 期待しない。

3.3 溢水防護区画外漏えいでの溢水経路

溢水防護区画外漏えいでの溢水経路の評価を行う場合, 溢水防護対象設備の存在する溢水防護区画の水位が最も高く(当該溢水区画に流入する水量は多く, 排水する流量は少なくなるように設定) なるように溢水経路を設定する。

評価を行う場合の各構成要素の溢水に対する考え方を以下に示す。

(1) 床ドレン

評価対象区画の床ドレン配管が他の区画とつながっている場合であって他の 区画の溢水水位が評価対象区画より高い場合は、水位差によって発生する流入量 を考慮する。

ただし,評価対象区画内に設置されているドレン配管に逆流防止措置が施されている場合は、その効果を考慮する。

(2) 天井面開口部及び貫通部

評価対象区画の天井面に開口部又は貫通部がある場合は,上部の区画で発生した溢水量全量の流入を考慮する。

ただし、天井面開口部自体が鋼製又はコンクリート製の蓋で覆われたハッチに 防水処理が施されている場合又は天井面貫通部に止水処置等の流出防止対策が 施されている場合は、評価対象区画への流入は考慮しない。

なお,評価対象区画上部にある他の区画に蓄積された溢水が,当該区画に残留 する場合は,その残留水の流出は考慮しない。

(3) 壁貫通部

評価対象区画の境界壁に貫通部が設置されている場合であって,隣の区画の溢水による水位が貫通部より高い位置にある場合は,隣室との水位差によって発生する流入量を考慮する。

ただし,評価対象区画の境界壁の貫通部に止水処置等の流出防止対策が施されている場合は,評価対象区画への流入は考慮しない。

(4) 扉

評価対象区画に扉が設置されている場合は, 隣室との水位差によって発生する 流入量を考慮する。

ただし,当該扉が溢水時に想定する水位による水圧に対する水密性が確保できる扉である場合は,流入を考慮しない。

(5) 堰

溢水が発生している区画に堰が設置されている場合であって,他に流出経路が存在しない場合は,当該区画で発生した溢水は堰の高さまで滞留とする。

(6) 壁

溢水が長時間滞留する区画境界の壁に、基準地震動Ssによる地震力によりひび割れが生じるおそれがある場合は、ひび割れからの漏水量を算出し、溢水評価に影響を与えないことを確認する。要求される地震力に対し健全性を確認できる壁については、その効果を考慮する。

(7) 排水設備

評価対象区画に排水設備が設置されている場合であっても,当該区画の排水は 考慮しない。

3.4 蒸気に対する溢水経路について

蒸気は液体の場合と伝播の仕方が異なることから、気密要求のある床、壁及び天井等を境界として区域を分割し、それら区域間の伝播経路を設定する。火災防護対応による3時間以上の耐火能力を有する耐火壁・隔壁等による区分分離は考慮する。