本資料のうち,枠囲みの内容は, 営業秘密あるいは防護上の観点 から公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-400-1 改1
提出年月日	平成 30 年 5 月 10 日

工事計画に係る補足説明資料

耐震性に関する説明書のうち

補足-400-1 【地震応答解析における既工認と今回工認の解析モデ

ル及び手法の比較】

平成 30 年 5 月 日本原子力発電株式会社

目 次

1.	概要	1
2.	地震応答解析モデル及び手法の比較	2

別紙 1-1 原子炉建屋の地盤接地状況と埋込みSRモデルの適用性について

別紙 1-2 原子炉建屋の地震応答解析モデルの変更について

別紙 1-3 原子炉建屋の地震応答解析モデルについて

別紙 2-1 使用済燃料乾式貯蔵建屋で用いる有効入力動の適用性について

別紙 2-2 使用済燃料乾式貯蔵建屋の地震応答解析モデルの変更について

別紙 2-3 使用済燃料乾式貯蔵建屋の地震応答解析モデルについて

下線:本日ご提出資料

別紙1-3 原子炉建屋の地震応答解析モデルについて

į	1.	概	要要	1
1	2.	原	子炉建屋の概要	2
	2.	1 3	建屋概要	2
	2.	2	設置地盤の状況	6
ļ	3.	地	震応答解析モデルに係る影響検討	8
	3.	1	概要	8
	3.	2	原子炉建屋内の地震計設置位置	9
	3.	3	建屋-地盤動的相互作用の評価法について 1	0
	3.	4	人工岩盤のモデル化について2	3
	3.	5	側面回転ばねの扱いについて 3	5
4	4.	2	ミュレーション解析結果を踏まえた施設影響4	7
ļ	5.	ま	とめ	58

1. 概要

原子炉建屋の地震応答解析モデル(以下「R/B 今回工認モデル」という。)は、2011 年 3 月 11 日東北地方太平洋沖地震(以下「東北地方太平洋沖地震」という。)のシミュレーション解析結果 を踏まえて設定している。

本資料は、東北地方太平洋沖地震のシミュレーション解析として実施した基礎底面の人工岩盤 のモデル化方法及び側面地盤ばねの扱いについての影響検討結果を説明するものである。

2. 原子炉建屋の概要

2.1 建屋概要

原子炉建屋は、地下2階、地上6階の鉄筋コンクリート造の建物である。

建物の中央部には原子炉格納容器を収納する原子炉棟があり、その周囲に付属棟を配置して いる。原子炉建屋の概要を図 2-1 及び図 2-2 に、使用材料を表 2-1 に示す。

原子炉棟と付属棟とは同一基礎スラブ上に設置した一体構造であり,原子炉建屋の平面は, 地下部分は約67 m×約67 m,地上部分は一部を除き約41 m×約44 mの矩形をしている。基礎 底面からの高さは約73 mであり,地上高さは約56 mである。

原子炉建屋の基礎は、平面が約67m×約67m、厚さ5mのべた基礎で、人工岩盤を介して、 砂質泥岩である久米層に岩着している。

(EL.46.5 m)

(A-A 断面)

±⊓ /±	設計基準強度		単位体積 重量	ポアソン比	ヤング係数	せん断 弾性係数
节り <u>1以</u>	Fc (kgf/cm ²)	Fc ^{*2} (N/mm ²)	γ (kN/m ³)	ν	E (N/mm ²)	G (N/mm ²)
建屋	225	22.1	24.0	0.2	2. 21×10^4	9.21×10 ³
人工岩盤	140	13.7	23.0	0.2	1.88×10^{4}	7.83 $\times 10^{3}$
鋼材	_	_	77.1	0.3	2.05 $\times 10^{5}$	7.9 $\times 10^4$

表 2-1 原子炉建屋の使用材料*1

※1 使用材料については、「鉄筋コンクリート構造計算規準・同解説-許容応力度設計 法-(1999)」、「原子力施設鉄筋コンクリート構造計算規準・同解説(2005)」及び「鋼構造設計規準-許容応力度設計法-(2005)」に準拠した。

※2 Fcは9.80665 m/s²を用いて換算した。

2.2 設置地盤の状況

原子炉建屋はコンクリート造の人工岩盤を介して,砂質泥岩である久米層に岩着している。 原子炉建屋の設置状況及び埋込み状況を図 2-3の原子炉建屋設置地盤断面図に示す。

(NS 方向)

図 2-3 原子炉建屋設置地盤断面図

- 3. 地震応答解析モデルに係る影響検討
- 3.1 概要

東海第二発電所原子炉建屋の基礎はコンクリート造の人工岩盤を介して支持地盤である久 米層に設置している。また,原子炉建屋の基礎下端は EL. -9 m であり,地表面(EL.8 m)から 17 m 地中に埋め込まれている。

建設当時の工認(以下「建設工認」という。)では,原子力発電所耐震設計技術指針JEA G4601-1987((社)日本電気協会)(以下「JEAG4601-1987」という。)制定前 であったため,解放基盤表面という概念が無く,地盤応答解析を介さずに人工岩盤下端に設計 波を直接入力していた。そのため人工岩盤を建屋モデル側にモデル化し,建屋と側面地盤の相 互作用は考慮していなかった。

R/B 今回工認モデルを検討するにあたり、「JEAG4601-1987」及び原子力発電所耐震 設計技術指針JEAG4601-1991追補版((社)日本電気協会)(以下「JEAG4601 -1991追補版」という。)には、基礎底面の人工岩盤のモデル化方法及び側面回転地盤ばねの 扱いについて明確に表記されていないため、東北地方太平洋沖地震の観測記録を用いたシミュ レーション解析を行い、人工岩盤のモデル化の影響と建屋と側面地盤との相互作用の影響評価 を行った。

3.2 原子炉建屋内の地震計設置位置

原子炉建屋には、地震時の基本的な振動性状を把握する目的で偶数階に各階1台の地震計を 設置している。また、基礎上(地下2階)には更に4台の地震計を設置している。

原子炉建屋の地震計設置位置を図 3-1 に示す。

図 3-1 原子炉建屋の地震計設置位置

3.3 建屋-地盤動的相互作用の評価法について

建設工認では、埋込み効果を無視した、スウェイ・ロッキングモデル(以下「SRモデル」 という。)として、建屋と地盤の相互作用を考慮している。

本資料では、はじめに、建設工認に用いたSRモデルと側面地盤による回転拘束を含む埋込 み効果を考慮した埋込みSRモデルを用いて東北地方太平洋沖地震のシミュレーション解析を 行い、建屋の振動性状を比較した。解析に用いたSRモデルによる地震応答解析の概要を図 3 -2に、埋込みSRモデルによる地震応答解析の概要を図 3-3に示す。

東北地方太平洋沖地震のシミュレーション解析結果として、両者の最大応答加速度分布の比較を図 3-4 及び図 3-5 に、床応答スペクトルの比較を図 3-6 及び図 3-7 に示す。これらの解析結果より埋込みSRモデルを用いた方が、SRモデルを用いた場合に比べ、観測記録との整合が改善しており、より実状に近い建屋の振動性状を評価できているものと考えられる。

図 3-2 SRモデルによる地震応答解析の概要

図 3-3 埋込みSRモデルによる地震応答解析の概要

図 3-4 最大応答加速度分布の比較(NS 方向)

図 3-5 最大応答加速度分布の比較(EW 方向)

地下2階 図 3-6(1/4) 床応答スペクトルの比較(NS 方向)

図 3-6(2/4) 床応答スペクトルの比較(NS 方向)

図 3-6 (3/4) 床応答スペクトルの比較 (NS 方向)

図 3-6(4/4) 床応答スペクトルの比較(NS 方向)

h=5% 地下2階 図 3-7 (1/4) 床応答スペクトルの比較(EW方向)

2 階 図 3-7 (2/4) 床応答スペクトルの比較(EW 方向)

図 3-7 (3/4) 床応答スペクトルの比較(EW 方向)

6 階 図 3-7(4/4) 床応答スペクトルの比較(EW 方向)

3.4 人工岩盤のモデル化について

建設工認では、人工岩盤を建屋モデル側にモデル化し、地震応答解析を行っていたが、ここでは、人工岩盤を地盤モデル側に岩盤としてモデル化した場合の建屋応答への影響について検 討した。

人工岩盤を岩盤としてモデル化した場合の地震応答解析の概要を図 3-8 に示す。ここで、基礎底面の地盤ばね及び入力動の算定に用いる地盤モデルは、基礎底面レベルである EL. -9.0mまで砂質泥岩である久米層の物性と同等として設定した。また、比較検討には、前章にも用いた実状に近い建屋の振動性状を評価できている埋込みSRモデルを用いた。

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度分布の比較を図3 -9及び図3-10に、床応答スペクトルの比較を図3-11及び図3-12に示す。人工岩盤を地 盤モデル側に岩盤としてモデル化した場合は、建屋モデル側にモデル化した場合の応答に比べ、 概ね同程度であるか一部の周期帯では若干大きくなることが確認できた。そのため R/B 今回工 認モデルでは、保守的に人工岩盤を地盤モデル側に岩盤としてモデル化する方針とした。

図 3-8 人工岩盤を岩盤としてモデル化した場合の地震応答解析の概要

図 3-9 最大応答加速度分布の比較(NS 方向)

図 3-10 最大応答加速度分布の比較(EW 方向)

地下2階 図 3-11 (1/4) 床応答スペクトルの比較(NS 方向)

図 3-11 (3/4) 床応答スペクトルの比較 (NS 方向)

n=5% 地下2階 図 3-12(1/4) 床応答スペクトルの比較(EW方向)

図 3-12 (3/4) 床応答スペクトルの比較(EW 方向)

図 3-12(4/4) 床応答スペクトルの比較(EW 方向)

3.5 側面回転ばねの扱いについて

建屋側面地盤の埋込み効果を考慮するにあたり,側面地盤を水平ばね及び回転ばねとして評価してきた。ここでは,側面回転ばねを考慮しない場合の建屋応答への影響について検討した。 側面回転ばねを考慮しない場合の地震応答解析の概要を図 3-13 に示す。

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度分布の比較を図3 -14及び図3-15に、床応答スペクトルの比較を図3-16及び図3-17に示す。側面回転ばね を考慮しない場合の解析結果は、側面回転ばねを考慮する場合の応答に比べ、概ね同程度であ るか一部の周期帯では若干大きくなることが確認できた。

「3.3 建屋-地盤動的相互作用の評価法について」において示したように、埋込み効果として、側面地盤の水平ばね及び回転ばねを考慮した場合に、より実状に近い建屋の振動性状を評価できているものと考えられるが、R/B 今回工認モデルにおいては、保守的に側面回転ばねを採用しない方針とした。

図 3-13 側面回転ばねを考慮しない場合の地震応答解析の概要

図 3-14 最大応答加速度分布の比較(NS 方向)

図 3-15 最大応答加速度分布の比較(EW 方向)

地下2階 図 3-16(1/4) 床応答スペクトルの比較(NS 方向)

図 3-16 (2/4) 床応答スペクトルの比較 (NS 方向)

図 3-16 (3/4) 床応答スペクトルの比較 (NS 方向)

図 3-16 (4/4) 床応答スペクトルの比較 (NS 方向)

地下2階 図 3−17(1/4) 床応答スペクトルの比較(EW 方向)

図 3-17 (2/4) 床応答スペクトルの比較(EW 方向)

図 3-17 (3/4) 床応答スペクトルの比較(EW 方向)

図 3-17(4/4) 床応答スペクトルの比較(EW 方向)

4. シミュレーション解析結果を踏まえた施設影響

2011年東北地方太平洋沖地震の観測記録を踏まえた原子炉建屋のシミュレーション解析を3.地 震応答解析モデルに係る影響検討にて実施した。本検討において観測記録とシミュレーション解 析結果との床応答スペクトルの比較において、一部の周期帯において観測記録がシミュレーショ ン解析の応答を上回る結果が確認されたため、施設への影響について確認する。

4.1 原子炉建屋への影響

図 4-1 に観測記録の最大応答加速度とシミュレーション解析との最大応答加速度との比較を示 す。原子炉建屋の地震計設置位置での観測記録と原子炉建屋質点系モデルを用いたシミュレーシ ョン解析の応答とを比較した結果,最大応答加速度分布は各方向において,観測記録がシミュレ ーション解析を上回らないことが確認できたため,原子炉建屋の耐震評価に影響はない。

(EW方向)

図 4-1 最大応答加速度の分布の比較

- 4.2 原子炉建屋に設置された機器・配管系
 - (1) 影響検討対象設備
 - a. 床応答スペクトルの傾向確認

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床応答 スペクトルとの比較を図 4-1 に示す。機器・配管系評価においては、NS方向及びEW方向を 包絡させた設計用床応答曲線を適用し、耐震評価を実施することから、図 4-1 はNS方向とE W方向を包絡させた床応答スペクトルにて比較している。

また,原子炉建屋の設計用床応答曲線は,設備評価用として加速度を1.5倍した値を基本と して耐震計算を実施していることから,シミュレーション解析結果については,加速度値(震 度)を1.5倍したものとする。

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床応答 スペクトルの比較結果を以下に記す。

① 減衰定数 5%

- シミュレーション解析結果の床応答スペクトルは観測記録の床応答スペクトルを包絡している。
- ② 減衰定数 2%
 - EL. 46. 5mの床応答スペクトルの比較では、0.05 秒から 0.1 秒において観測記録の床応答 スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認で きる。
 - ・ EL. 46.5mの床応答スペクトル以外の階高の床応答スペクトルにおいては、シミュレーション解析結果が観測記録を概ね包絡していることが確認できる。
- ③ 減衰定数 1%
 - EL. 46. 5mの床応答スペクトルの比較では、0.05 秒から 0.1 秒において観測記録の床応答 スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認で きる。
 - ・ EL. 29.0 及び EL. 14.0mの床応答スペクトルの比較では、一部の周期帯で観測記録の床応 答スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認 できる。
 - EL.-4.0mの床応答スペクトルにおいては、シミュレーション解析結果が観測記録を包絡 していることが確認できる。

以上のとおり床応答スペクトルの比較した傾向を示したが,機器・配管系の耐震設計の特 徴を踏まえて,影響検討対象設備を整理する。

減衰定数 1%を適用する設備は、溶接構造物、ポンプ等があるが、これら設備は一般的に剛構造であることから床応答スペクトルを用いた評価でなく、最大応答加速度(ZPA)を用いた評価を実施する。また配管系は柔構造であるため、床応答スペクトルを用いたスペクトルモーダル解析を実施するが、配管系評価に用いる一般的な減衰定数 2%では、EL.46.5mを除きシミュレーション解析結果の床応答スペクトルが観測記録の床応答スペクトルを概ね包絡し

ている。

上記整理を踏まえて影響検討対象設備は、観測記録の床応答スペクトルとシミュレーション解析結果の床応答スペクトルとの比較にて応答増幅が顕著な EL46.5m に設置される設備とする。

原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰5%)

原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰5%)

原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰5%)

原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰5%)

原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰2%)

原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰2%)

原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰2%)

原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰2%)

原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰1%)

原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰1%)

原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰1%)

原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰1%)

b. 影響検討対象設備の抽出

影響検対象設備として原子炉建屋 EL. 46.5m に設置される設備について表 4-4 に,各設備の 設置場所を示した図を 4-3 図に示す。

また表 4-4 には,固有周期の記載し床応答スペクトルを用いて耐震計算を実施する設備を 明記した。剛設備については,最大応答加速度(ZPA)を用いた評価を実施するため,観測記 録のほうが保守的な値となっていることから,影響対象設備から除外する。これより,対象 設備は,燃料取替機,使用済燃料プール温度計(SA)及び代替燃料プール注水系配管につ いて影響検討を行う。

設備	固有周期 (秒)	床応答 スペクトルの 適用
①燃料取替機	水平: 0.078 鉛直: 0.089	0
②使用済燃料プールエリア放射線 モニタ(高レンジ,低レンジ)	0.05以下	*
③使用済燃料プール水位・温度 (SA広域)	0.05以下	_
④使用済燃料プール監視カメラ	0.05以下	*
⑤使用済燃料プール温度(SA)	0.23	0
⑥原子炉建屋水素濃度	0.05以下	_ *
⑦静的触媒式水素再結合器	0.05以下	*
⑧静的触媒式水素再結合器動作装置	0.05以下	*
⑨代替燃料プール注水系配管 (スプレイヘッダ)	1次: 0.077	0

表 4-4 原子炉建屋に設置の影響検討対象設備

* EL. 57.0mの最大応答加速度を使用

図 4-3 原子炉建屋 EL. 46.5m の応答加速度を用いる設備

- (2) 影響評価結果
 - (a) 燃料取替機

追而

(b) 使用済燃料プール温度計(SA)

追而

(c) 代替燃料プール注水系配管

追而

5. まとめ

原子炉建屋の地震応答解析モデルについて,東北地方太平洋沖地震のシミュレーション解析結 果の比較から,人工岩盤のモデル化及び側面回転ばねの影響について検討した。

建設工認ではSRモデルとしていたが、側面地盤の埋込み効果を考慮した埋込みSRモデルとした場合、より実状に近い建屋の振動性状を評価できることを確認した。また、人工岩盤は岩盤として地盤モデル側にモデル化し、側面回転ばねを考慮しないモデルとする方が、応答を保守側に評価することを確認した。

以上の結果から, R/B 今回工認モデルは,人工岩盤を地盤モデル側に岩盤としてモデル化し, 側面回転ばねを考慮しない埋込みSRモデルとすることとした。 1. 概要

本資料は、別紙 1-3「原子炉建屋の地震応答解析モデルについて」で示した原子炉建屋の地震 応答解析における東北地方太平洋沖地震のシミュレーション解析について、鉛直方向モデルによ る結果を示すものである。

2. 解析モデル

鉛直方向の解析モデルを図 2-1 に示す。

鉛直方向の解析モデルは,水平方向と同様に人工岩盤を地盤モデル側に岩盤としてモデル化する。なお,側面地盤ばねについては考慮しない。

<u>5.13m</u>

0.00m

<u>10. 27m 15. 41m</u> 20. 55m

・数字は質点番号を示す。

・()内は部材番号を示す。

図 2-1 解析モデル(鉛直方向)

3. 解析結果

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度分布の比較を図3-1に、床応答スペクトルの比較を図3-2に示す。

最大応答加速度は,解析結果が観測記録を上回っており,床応答スペクトルについてもほぼ全 ての周期帯で解析結果が観測記録を上回る傾向となっている。

図 3-2 最大応答加速度分布の比較(鉛直方向)

11-3/0 地下2階 図 3-2(1/4) 床応答スペクトルの比較(鉛直方向)

図 3-2 (2/4) 床応答スペクトルの比較(鉛直方向)

図 3-2 (3/4) 床応答スペクトルの比較(鉛直方向)

図 3-2 (4/4) 床応答スペクトルの比較(鉛直方向)

別紙 2-3 使用済燃料乾式貯蔵建屋の地震応答解析モデルについて

目 次

1.	概要	1
2.	使用済燃料乾式貯蔵建屋モデルの妥当性検討	2
2	.1 地震計設置位置	.2
2	.2 シミュレーション解析結果	.4
2	.3 施設の耐震評価への影響検討	.2
2	.4 工認に用いる地震応答解析モデルの妥当性について	.6

1. 概要

DC 今回工認モデルの妥当性確認として,2011 年 3 月 11 日東北地方太平洋沖地震(以下「東北 地方太平洋沖地震」という。)時の観測記録を用いたシミュレーション解析を実施した。解析に 用いる地震の諸元を図 2-1 に示す。

地震名	2011年東北地方太平洋沖地震
発生日時	2011年3月11日
	14時46分頃(注)
マグニチュード	9.0 ^(注)
震源深さ	$24 \mathrm{km}^{(\wr\!\!\!\pm)}$
震央距離	270
震源距離	271

別紙 2-3-1
- 2. 使用済燃料乾式貯蔵建屋モデルの妥当性検討
 - 2.1 地震計設置位置

使用済燃料乾式貯蔵建屋には、地震時の基本的な振動性状を把握する目的で基礎上端と屋根 トラス上部に各1台の地震計を設置している。

使用済燃料乾式貯蔵建屋の地震計設置位置を図 2-2 に示す。

(a) 断面図

図 2-2 使用済燃料乾式貯蔵建屋の地震計設置位置

2.2 シミュレーション解析結果

観測記録を用いたシミュレーション解析は、使用済燃料乾式貯蔵建屋の地震応答解析モデル (以下「DC 今回工認モデル」という。)を用いた。既工認での地震応答解析の概要図を図 2-3 に、今回工認での評価の概要図を図 2-4 に、東北地方太平洋沖地震のシミュレーション解析結 果として、最大応答加速度分布の比較を図 2-5 に床応答スペクトルの比較を図 2-6 に示す。 各解析結果の比較図には建設工認時の地震応答解析モデル(以下「DC 既工認モデル」という。) による結果も参考として示す。

観測記録とシミュレーション解析結果との比較結果を踏まえた施設影響について,以下説明 する。

図 2-3 地震応答解析の概要図(既工認)

(水平方向)

(鉛直方向)図 2-4 地震応答解析の概要図(今回工認での評価)

図 2-6 (2/3) 床応答スペクトルの比較(EW 方向, h=5%)

別紙 2-3-0

図 2-6 (3/3) 床応答スペクトルの比較(上下方向, h=5%)

別紙 2-3-1

- 2.3 施設の耐震評価への影響検討
- 2.3.1 建屋への影響

使用済燃料乾式貯蔵建屋の地震計設置位置での観測記録と今回工認モデルを用いたシミュレ ーション解析の応答とを比較した結果,最大応答加速度分布は観測記録がシミュレーション解 析を上回らないことが確認できたため,DC建屋の耐震評価に影響はない(図 2-5)。

2.3.2 機器・配管系への影響

(1) 影響検討対象設備

使用済燃料乾式貯蔵建屋に設置された機器・配管系として,使用済燃料乾式貯蔵容器(以下「ド ライキャスク」という。)及び使用済燃料乾式貯蔵建屋天井クレーン(以下「DC建屋クレーン」 という。)がある。影響検討対象設備を表 3-1 に示す。

影響検討対象設備	設置階高	
ドライキャスク	EL. 8. 3m	
DC建屋天井クレーン	EL. 17. 75m	

表 3-1 使用済燃料乾式貯蔵建屋に設置の影響検討対象設備

- (2) 影響評価結果
 - (a) ドライキャスク

ドライキャスクの耐震評価に用いる EL.8.3m の最大応答加速度(ZPA)について、シミュレ ーション解析の結果と観測記録とを比較した結果を表 3-2 に示す。表 3-2 に示すとおり観測 記録の応答加速度はシミュレーション解析の加速度を上回らないことが確認できたため、使 用済燃料乾式貯蔵容器(DC)の耐震評価に影響はない。

		応答加速度 (cm/s ²)	
	方向	シミュレーション	年日、日川三丁ムヨ
		解析結果	観測記跡
使用済燃料乾式 貯蔵建屋 EL.8.3m	水平	489	342
	鉛直	283	236

表 3-2 使用済燃料乾式貯蔵建屋 EL.8.3m の応答加速度比較

(b) DC建屋クレーン

DC建屋クレーンは, EL. 17.75mのクレーンガーダ上に設置されている。地震観測計は EL8.3m及び EL29.2mに設置されており、シミュレーション解析結果との比較も当該階で実施 していることから, EL8.3m及び EL29.2mによる床応答スペクトルの比較により影響を確認す る。 図 3-1 に観測記録の床応答スペクトルとシミュレーション解析結果の床応答スペクトルとの比較にDC建屋クレーンの1次固有周期を記載して示す。またDC建屋クレーンの1次固有周期を表 3-3 に示す。

シミュレーション解析結果の応答加速度値のほうが観測記録の応答加速度値を概ね大きな 値となっていることを確認した。鉛直方向の固有周期0.128秒で観測記録のほうが大きな応 答加速度値となっているが,耐震評価で支配的な解析条件となる吊荷有りの1次固有周期 0.292秒及び0.239秒ではシミュレーション解析のほうが応答加速度値は大きいことから問 題ない。

ガーダ位置	吊荷	1 次固有周期(秒)		
		NS方向	EW方向	鉛直方向
中央	有	0.190	0.174	0, 292
	無	0.191	0, 175	0, 128
端部	有	0.141	0.177	0.239
	無	0.141	0.178	0.103

表 3-3 DC建屋クレーンの1次固有周期

図 4-1(1) 使用済燃料乾式貯蔵建屋の床応答スペクトル比較図

図 4-1(2) 使用済燃料乾式貯蔵建屋の床応答スペクトル比較図

2.4 工認に用いる地震応答解析モデルの妥当性について

使用済燃料乾式貯蔵建屋が細長い形状をしていること等を考慮し,地震応答解析モデルを既 工認から変更した。東北地方太平洋沖地震のシミュレーション解析結果より,貯蔵容器への入 力となる EL.8.3 mの基礎上端での応答及び建屋有周期近傍での建屋応答を概ね安全側に評価 出来ていることを確認した。

以上の結果を踏まえ,使用済燃料乾式貯蔵建屋の地震応答計算及び耐震計算書に用いる応答 解析モデルには,DC 今回工認モデルを用いることとした。