○東海第二発電所 土木構造物解析モデルの先行プラントとの比較点検結果一覧表

施設名称	解析モ	解析モデル	
	先行プラント	東海第二	結果
緊急用海水取水管, 海水引込み管	(玄海3,4号 取水管路(海域部)) <管周方向> ・2次元周波数応答解析結果に基づく応答変位法・震度法	<管周方向> ・動的 FEM 解析	
	<管軸方向> ・応答変位法 ・可とう管の自由度考慮 ・合成応力照査	<管軸方向> ・応答変位法 ・可とう管の自由度考慮 ・合成応力照査	本質的な差異がないことを確認
鋼管杭鉄筋コンクリート防潮壁	(高浜4号機 放水口側防潮堤(杭基礎形式部)) ・ 地震時は動的 FEM 解析による鋼管杭の応力で照査 ・ 津波時は梁バネモデル ・ 上部工(鋼材)は張り出し梁モデルで照査 ・ 上部工(鋼材)は非線形梁要素 (バイリニアモデル)でモデル化 ・ 地震応答解析での杭基礎部は非線形梁要素 (バイリニアモデル)でモデル)でモデル化	は質点としてモデル化	本質的な差異がないことを確認
貯留堰, 土留鋼管矢板	(高浜4号機 放水口側防潮堤(杭基礎形式部)) ・ 地震時は動的 FEM 解析による鋼管杭の応力で照査 ・ 上部工(鋼材) は張り出し梁モデルで照査 ・ 地震応答解析での杭基礎部は非線形梁要素(バイリニアモデル)でモデル化	・ 地震時は動的 FEM 解析による鋼管矢板の応力で照査・ 鋼管矢板は張り出し梁モデルで照査・ 地震応答解析での鋼管矢板は線形梁要素でモデル化	本質的な差異がないことを確認
鋼製防護壁	 <基礎>(高浜1,2号機 トンネル立坑部) ・地震時は周波数応答解析による立坑の応力で照査 <上部構造> (川内1,2号機屋外タンクエリア (タービン建屋)) ・地震時は3次元骨組みモデルによる動的解析で照査 ・地震応答解析での上部構造は非線形梁要素でモデル化 	・地震時は動的 FEM 解析による RC 部材の応力で照査 ・津波時, 重畳時は上下部一体の 3 次元静的フレーム解析による RC 部材, 鋼材の応力で照査 ・構造物は線形はり要素でモデル化 ・地震時は 3 次元動的フレーム解析による鋼材の応力照査 ・上部構造は線形はり要素でモデル化	本質的な差異がないことを確認

施設名称	解析モデル		У + В
	先行プラント	東海第二	結果
鉄筋コンクリート防潮壁	(高浜1,2号機 海水ポンプ室側立坑) ・地震時は動的 FEM 解析による RC 部材の応力で照査 ・立坑を線形鉛直はり要素でモデル化 ・構造部材の健全性は、曲げについて限界層間変形角、せん断についてせん断耐力で評価	・地震時は動的 FEM 解析による RC 部材の応力で照査 ・地震時の上部構造は静的震度法により照査 ・津波時, 重畳時は上下部一体の 3 次元静的フレーム解析に よる RC 部材の応力で照査 ・構造物は線形はり要素及び線形平面要素でモデル化 ・構造部材の健全性を短期許容応力度で評価	本質的な差異がないことを確認
鉄筋コンクリート防潮壁(放水路エリア)	(高浜1,2号機 海水ポンプ室側立坑) ・地震時は動的 FEM 解析による RC 部材の応力で照査 ・立坑躯体を線形はり要素でモデル化 ・構造物の健全性は、曲げについては限界層間変形角、せん断についてはせん断耐力で評価	・地震時は動的 FEM 解析による RC 部材の応力で照査 ・津波時は2次元静的フレーム解析による RC 部材の応力で 照査 ・FEM 解析モデルにおいて、構造物は線形はり要素及び線形 平面要素としてモデル化 ・構造部材の健全性を短期許容応力度で評価	本質的な差異がないことを確認
取水構造物	 (大飯3号機 海水ポンプ室 岩着RC構造) ・弱軸断面方向のラーメン構造としてモデル化 ・地震時は動的FEM解析によるRC部材の発生応力及び層間変形角で照査 ・RC部材は非線形梁要素(修正武田モデル)にてモデル化 	 (杭基礎 RC 構造) ・ 弱軸断面方向のラーメン構造としてモデル化 ・ 地震時は動的 FEM 解析による RC 部材及び鋼管杭の発生 応力及び曲率で照査 ・ RC 部材は非線形梁要素(修正武田モデル)にてモデル化 ・ 鋼管杭は非線形梁要素(バイリニアモデル)でモデル化 	本質的な差異がないことを確認
屋外二重管	(玄海3号機 取水管路) ・地震応答解析は、2次元FEMモデルによる周波数応答解析 ・地震応答解析は、取水管路を線形はり要素としてモデル化 ・取水管路の応力解析は、3次元梁ばねモデルによる応答変位 法 ・取水管路の応力解析は、取水管路をはり要素としてモデル化 ・構造部材の健全性を短期許容応力度で評価	・地震応答解析は、動的 FEM モデルによる時刻歴非線形解析 ・地震応答解析は、構造部材を線形はり要素としてモデル化 ・屋外二重管本体の応力解析は、3次元梁ばねモデルによる 応答変位法 ・屋外二重管本体の応力解析は、屋外二重管本体を線形はり 要素としてモデル化 ・構造部材の健全性を短期許容応力度で評価	本質的な差異がないことを確認

施設名称	解析モデル		結果
	先行プラント	東海第二	柏未
常設代替高圧電源装置置場及び西側淡水貯水設備	(大飯3号機 海水ポンプ室) ・弱軸断面方向のラーメン構造としてモデル化 ・地震時は動的 FEM 解析による RC 部材の発生応力及び層間変 形角で照査	・弱軸断面方向のラーメン構造としてモデル化 ・地震時は動的 FEM 解析による RC 部材の発生応力で照査	本質的な差異がないことを確認
常設代替高圧電源装置用カルバート(トンネル用)	・RC 部材は非線形はり要素 (修正武田モデル) でモデル化 (高浜3号機 海水取水トンネル) ・ 地震時は動的 FEM 解析による RC 部材の発生応力で照査 ・RC 部材は線形はり要素でモデル化	・RC 部材は線形はり要素でモデル化 ・地震時は動的 FEM 解析による RC 部材の発生応力で照査 ・RC 部材は線形はり要素でモデル化	本質的な差異がないことを確認
常設代替高圧電源装置用カルバート(カルバート部)	(美浜3号機 燃料油配管トレンチ) ・弱軸断面方向のラーメン構造としてモデル化 ・地震時は動的 FEM 解析による RC 部材の発生応力で照査 ・RC 部材は非線形はり要素 (修正武田モデル) でモデル化	・弱軸断面方向のラーメン構造としてモデル化 ・地震時は動的 FEM 解析による RC 部材及び鋼管杭の発生応力で照査 ・RC 部材は線形はり要素でモデル化 ・鋼管杭は線形はり要素でモデル化	本質的な差異がないことを確認
常設低圧代替注水系配管カルバート, 格納容器圧力逃がし装置用カルバート	(美浜3号機 燃料油配管トレンチ 岩着RC構造) ・ 弱軸断面方向のラーメン構造としてモデル化 ・ 地震時は動的FEM解析によるRC部材の応力で照査 ・ RC部材は非線形梁要素(修正武田モデル)にてモデル化	(岩着 RC 構造) ・ 弱軸断面方向のラーメン構造としてモデル化 ・ 地震時は動的 FEM 解析による RC 部材の応力で照査 ・ RC 部材は線形梁要素にてモデル化	本質的な差異がないことを確認
緊急時対策所用発電機燃料油貯蔵タンク基礎, 可搬型設備用軽油タンク基礎	(美浜3号機 燃料油貯蔵タンク基礎 岩着RC構造) ・ 弱軸断面方向のラーメン構造としてモデル化 ・ 地震時は動的FEM解析によるRC部材の応力で照査 ・ RC部材は非線形梁要素(修正武田モデル)にてモデル化	(杭基礎 RC 構造) ・ 弱軸断面方向のラーメン構造としてモデル化 ・ 地震時は動的 FEM 解析による RC 部材及び鋼管杭の応力で照査 ・ RC 部材は線形梁要素にてモデル化 ・ 鋼管杭は線形梁要素にてモデル化	本質的な差異がないことを確認
防潮扉	(高浜 4 号機 放水口側防潮堤(杭基礎形式部)) ・ 地震時は動的 FEM 解析による鋼管杭の応力で照査 ・ 津波時は梁バネモデル ・ 上部工(鋼材)は張り出し梁モデルで照査 ・ 地震応答解析での杭基礎部は非線形梁要素(バイリニアモデル)でモデル化 ・ 上部工(鋼材)も非線形梁要素(バイリニアモデル)でモデル化	 ・ 地震時は動的 FEM 解析による鋼管杭及び上部工鉄筋コンクリート部の応力で照査 ・ 津波時は梁バネモデル ・ 上部エコンクリート部の地震時は動的 FEM 解析, 津波時は梁バネモデルで照査 ・ 地震応答解析での鋼管杭は線形梁要素でモデル化 ・ 上部工鉄筋コンクリート部は線形梁要素でモデル化 	本質的な差異がないことを確認

施設名称	解析モデル		結果
	先行プラント	東海第二	和木
	(高浜4号機 放水口側防潮堤(杭基礎形式部))		
	・ 地震時は動的 FEM 解析による鋼管杭の応力で照査	・ 地震時は動的 FEM 解析による鋼管杭及び鉄筋コンクリ	
		ート部の応力で照査	
	・ 津波時は梁バネモデル	・ 津波時は梁バネモデル	
 構內排水路逆流防止設備(出口側集水桝:杭間部)		・ 鉄筋コンクリート部の地震時は2次元有効応力解析, 津	本質的な差異がないことを確認
特的形式是他的工权佣(四日网来/NVT·7/时间的)		波時は梁バネモデルで照査	本質ロバな左共がなくことを確認
	・ 地震応答解析での杭基礎部は非線形梁要素 (バイリニアモ	・ 地震応答解析での鋼管杭は線形梁要素でモデル化	
	デル) でモデル化		
	・ 上部工(鋼材)も非線形梁要素(バイリニアモデル)でモ	・ 鉄筋コンクリート部も線形梁要素でモデル化	
	デル化		
	(大飯3号機 貯水堰(取付擁壁部))	(控え矢板式護岸)	
貯留堰取付護岸	・ 地震時は動的 FEM 解析による取付擁壁部の応力で照査	・ 地震時は動的 FEM 解析による護岸部の断面力で照査	本質的な差異がないことを確認
X1田2区以口100斤	・ 地震応答解析での取付擁壁部は非線形梁要素 (トリリニ	・ 地震応答解析での護岸部は線形梁要素及び非線形バネ	个員中が4. 左共ルーない。ここで、唯一的
	ア) でモデル化	要素でモデル化	
	(円筒形立坑) (高浜1,2号機 トンネル立坑部)	(円筒形立坑)	
	<鉛直方向>	<鉛直方向>	
 代替淡水貯槽,SA 用海水ピット,	・地震時は周波数応答解析による立坑の応力で照査	・地震時は動的 FEM 解析による RC 部材の応力で照査	
SA 用海水ピット取水塔		・構造物は線形梁要素でモデル化	本質的な差異がないことを確認
SA 用作水 こット取水培	<水平方向>	<水平方向>	
	・側壁:円環モデル(開口部考慮)	・側壁:円環モデル (開口部考慮)	
	・底版:円版モデル	・底版・中床版:梁モデル	