縮小版

東海第二発電所

原子炉設置変更許可申請書

(原子炉施設の変更)

本文及び添付書類

平成14年12月

日本原子力発電株式会社

平成14年12月26日

経済産業大臣

平沼 赳夫 殿

東京都千代田区神田美土代町1番地1 女 摦 414 淹 村 茶 民 H 瓣 紕 R 1 取締役社長 壓 Ħ Ш 刑 敋 代表者氏名 請者、 田 #

東海第二発電所原子炉設置変更許可申請書

(原子炉施設の変更)

核原料物質,核燃料物質及び原子炉の規制に関する法律第36条第1項の規定に基づき,下記のとおり東海第二発電所の原子炉設置変更許可の申請をいたします。

温

一 氏名又は名称及び住所並びに代表者の氏名

氏名又は名称 日本原子力発電株式会社

所 東京都千代田区神田美士代町1番地1

 \oplus

代表者の氏名 取締役社長 鷲 見 禎 彦

二 変更に係る工場又は事業所の名称及び所在地

称 東海第二発電所

名

所 在 地 茨城県那珂郡東海村大字自方1番の1

三 変更の内容

昭和47年12月23日付け47原第11624号をもって設置許可を受け、別紙1のとおり設置変更許可を受けた東海第二発電所の原子炉設置許可申請書の記載事項中,次の事項の記述の一部を別紙2のとおり変更する。

五 原子炉及びその附属施設の位置,構造及び設備

四 変更の理由

- (1) 固体廃棄物を処理するため,以下の設備を設置する。これらの設備は東海発電所と共用とする。
- a. 濃縮廃液の減容固化体を固化するためのセメント退練固化装置
- b. 不燃性の雑固体廃棄物を溶融・焼却するための雑固体減容処理設備また,この変更に伴い,放射性廃棄物の廃棄施設の構造及び設備のうち,

液体廃棄物の廃棄設備の記載、及び固体廃棄物の廃棄設備の記載を最新の記載を最新の記載形式に合わせる。なお、セメント混練固化装置の設置に伴い減容固化体貯蔵室の容量を変更する。

- (3) 使用済樹脂及び廃スラッジを雑固体廃棄物焼却設備にて焼劫するよう処理方法を追加する。
- (3) 不燃性の雑固体廃棄物の処理方法に固型化処理を追加する。

五 工事計画

当該変更に伴う工事の計画は、別紙3のとおりである。

- 2

設置変更許可の経緯

\$10 WASHINGTON	ar fan var skriven oan de skriven fan de skriven f	wormon comparing control of the cont	t; candedalate this service and representation of the service of t	egyetti kalannin oleh oleh oleh oleh oleh oleh oleh oleh	mortus revocavos	20000000000000000000000000000000000000	becombinished Colorellation	BANDON-WARRING WAS BROKEN THE STATE OF CONTRACTOR OF THE STATE OF THE	management sensors to 22		STANYA DARFANNIK STANSKA BORENSTANSK SA SAN
LENGTHEN VERNAL MENORMERETERS SOMMERED AND COMMERCED SOMMER SOMME	施設の変更 (8型燃料の採用,主蒸気 (3を設抑制系,非常用ガス (3条等の追加)	子炉施設の変更 使用済燃料貯藏架台の増設)	予炉施設の変更 所しいが心の熱特性評価方法 採用(GETAB),固体脱 が置場、固定モニタ等の東海 関所との共用)	子炉施設の変更 使用済燃料貯蔵架台の増設)	使用済燃料の処分の方法の変更	設の変更 廃棄物貯蔵設備及び処 新・増設)	との変更 (8 燃料の採用)	tの変更 (8ジルコニウムライ (R) 取替燃料の平均 (更)	子炉施設の変更 新型制御棒の採用)	炉施設の変更 燃焼度8×8 燃料の採用, 済燃料貯蔵施設の貯蔵能力 強) 済燃料の処分の方法の変更	子炉施設の変更 起動領域計装の採用)
## (##)	原子炉施設(8×8型隔離升漏池	原子炉施割 (使用済/ 等)	原子が海部の新しいが一般を発展している。 乗りいる 乗りる 発出しい が乗りる 乗り 乗り 乗り 乗り 乗り 乗り 乗り 乗り かんりん しょうしょう しょうしょく しょく しょく しょく しょく しょく しょく しょく しょく しょく	原子炉施部(使用済機	使用済燃料	原子炉施部 (放射性関 理設備の新	原子炉施設 (新型8×	原子炉施設 (新型 8 × ナ燃料の探 機縮度の変	原子炉施部(新型制御	原子が高さる (高級焼り) (高級焼り) (日本の) (日	原子炉施部 (起動領海
	号663号	51安(原規)第70号	52安(原規)第179号	52安(原規)第280号	55資庁第17010号	56資庁第13144号	58資庁第5196号	61資庁第7506号	62資庁第10383号	2資庁第3247号	3資庁第9379号
A THE	0年 9月17日	召和51年10月21日	召和52年 8月15日	召和52年11月24日	留和56年2月3日	留和57年 3月31日	召和58年 9月 9日	码和61年12月 5日	召和63年 4月14日	平成 3年 5月22日	平成 4年 2月18日

	00000	計 可 番 号	群 日 舉 日
平成11年3月10	Ш	平成09·09·18資第5号	原子炉施設の変更 (使用済燃料乾式貯蔵設備の設置)
平成12年	3月30日	平成11-12-16資第4号	使用済燃料の処分の方法の変更
平成13年	日9 日8	平成13·04·02原第1号	原子炉施設の変更 (9×9 燃料の採用,新型制御 棒の採用)
平成14年	9月12日	平成14·07·10原第1号	原子炉施設の変更 (残留熱除去系の蒸気凝縮系の 機能の削除)

別紙2

変更の内容

- 五 原子炉及びその附属施設の位置、構造及び設値
- ト 放射性廃棄物の廃棄施設の構造及び設備

放射性廃棄物の廃棄施設の構造及び設備の記述のうち, (u)液体廃棄物の廃棄設備の(1)構造,及び(ハ)固体廃棄物の廃棄設備の記述を以下のとおり変更する。

- (ロ) 液体廃棄物の廃棄設備
- (1) 構 道

液体廃棄物はその発生源により、機器ドレン廃液、床ドレン廃液、化学廃液、洗濯廃液及び排ガス洗浄廃液に分類され、それぞれ機器ドレン処理系、床ドレン処理系、再生廃液処理系、洗濯廃液処理系及び排ガス洗浄廃液処理系で処理する。

機器ドレン処理系に導かれた機器ドレン廃液等は、ろ過装置、脱塩装置によって処理する。

床ドレン処理系へ導かれた床ドレン廃液は,再生廃液処理系に移送 し濃縮処理するか,又は床ドレン処理系のろ過装置で処理する。 再生廃液処理系に導かれた化学廃液等は,中和後,濃縮装置によって処理する。

発生

固体廃棄物として処理し、

濃縮処理の際発生した濃縮廃液は、

蒸気は凝縮後,機器ドレン処理系に移送する。 各処理系で処理された処理済液は原則として,回収,再使用するが, 放射性物質濃度が低いことを確認したうえで復水器冷却水放水路に放 洗濯廃液処理系に導かれた洗濯廃液は、ろ過装置によって処理した

出する場合もある。

後,放射性物質濃度が低いことを確認したうえで復水器冷却水放水路に放出する。 に放出する。 排ガス洗浄廃液処理系に導かれた排ガス洗浄廃液は、放射性物質濃度が低いことを確認したうえで復水器冷却水放水路に放出する。

- (ハ) 固体廃棄物の廃棄設(
- (1) 構 造

固体廃棄物の廃棄設備(固体廃棄物処理系)は,廃棄物の種類に応じて処理又は貯蔵保管するため,濃縮廃液貯蔵タンク,使用済粉末樹脂貯蔵タンク,カラッドスラリタンク,廃液スラッジ貯蔵タンク,成ドレンスラッジ貯蔵タンク,固化装置(セメント固化式)、減容固化設備、減容固化体貯蔵室,セメント 温練固化洗費し、減容固化 廃棄物焼却設備,雑固体減容処理設備,サイトバンカプール,固体廃棄物貯蔵庫等で構成する。

濃縮廃液は、濃縮廃液貯蔵タンクで放射能を減衰させた後、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。あるいは、放射能を減衰させた後、減容固化設備で乾燥・造粒固化後、容器に詰めて減容固化体貯蔵室に貯蔵するか、貯蔵した後、セメント混練固化装置でドラム缶内に固化材(セメント)と混練して固化し貯蔵保管する。

フィルタ脱塩装置から発生する使用済樹脂は使用済粉末樹脂貯蔵タンクに、また、非助材型ろ過装置から発生する廃スラッジはクラッドスラリタンクに貯蔵するか、又は貯蔵し放射能を減衰させた後、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。

脱塩装置から発生する使用済樹脂並びに助材型ろ過装置から発生す

9

る廃スラッジは、使用済樹脂貯蔵タンク、廃液スラッジ貯蔵タンク若しくは床ドレンスラッジ貯蔵タンクに貯蔵するか、又は貯蔵し放射能を減衰させた後、雑固体廃棄物焼却設備で焼却するか、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。焼却灰は不燃性の雑固体廃棄物として処理する。

可燃性の雑固体廃棄物は、ドラム缶等に詰めて貯蔵保管するか、又は雑固体廃棄物焼却設備で焼却し、焼却灰は不燃性の雑固体廃棄物として処理する。

不燃性の雑固体廃棄物は,圧縮可能なものは圧縮減容し,必要に応じて整固体減容処理設備で溶融。焼却した後,ドラム缶等に詰めて貯蔵保管するか,固型化材(モルタル)を充填してドラム缶内に固型化し貯蔵保管する。

使用済制御棒等の放射化された機器は、使用済燃料プールに貯蔵した後、固体廃棄物移送容器に収納しサイトバンカプールに移送し貯蔵保管する。

雑固体廃棄物焼却設備及び雑固体減容処理設備からの排ガスは,フィルタを通し放射性物質濃度を監視しつつ排気筒等から放出する。

固体廃棄物処理系は、廃棄物の圧縮、焼却、溶融・焼却、固化等の処理過程における放射性物質の散逸等を防止する設計とする。

上記濃縮廃液等を詰めたドラム缶等は,所要の遮へい設計を行った発電所内の固体廃棄物貯蔵庫に貯蔵保管する。 なお,セメント混練固化装置,雑固体廃棄物焼却設備(既設),雑

w w また、必要に応じて、固体廃棄物を廃棄事業者の廃棄施設へ廃棄す

は東海発電所と共用す

固体廃棄物貯蔵庫 (既設)

固体减容処理設備,

vô

(2) 廃棄物の処理能力

使用済粉未樹脂貯蔵タンクの容量は約280m3, 使用済樹脂貯蔵タンクの容量は約630m3, クラッドスラリタンクの容量は約500m3, 廃液スラッジ貯蔵タンクの容量は約320m3, 床ドレンスラッジ貯蔵タンクの容量は約110m3, 減容固化体貯蔵室の容量は約1,400m3, サイトバンカプールの容量は約1,900m3である。

固体廃棄物貯蔵庫は2000ドラム缶相当で約13,000本を貯蔵保管する能力がある。

. & |

年度						年		T				Zļ.	Z 成	1	5年	E									平	成	1 6	年									¥	成	1 7	'年					
	_		(2	0	0 2	2)	,	_	_	_	,	(2 (0 0	3)_									(2	0	0 -	4)									(:	2 0	0	5)					
項目見	9	10	11	12	1	2	3	4	5	6	7	8	9	1	0 1	1	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	~~~			_	12	1	2	3	-
セメント混練 固化装置の設 置に伴う工事								The second secon																								竣:													
雑固体減容処 理設備の設置 に伴う工事			đ			7,000									落▽ [竣▽	T.	The state of the s								

因要類潔条野吸物業熟本辦 図 91 第 (図1-2.01 業 八 競書付添)

ママイ 新額 謝売 (サンサ空) リンチ それたくせが沿路が (センセンマオ)でく 条距域宽線開充 盟 薬 駅 9 縣 取 **乔生昭松处理系** 縮水 本 譲 磁 でくさハヤンサ **センセ**昨中新認 粱 覃 Ħ 图 装 辭 癫 ~条野吸べ 4 7 岩線 ∨ 7 来以 次 本 旗 旗 条歴域ベイド和 く レ キ 束 たくかんたいか 助材型る過差置 動材型で過速配 4/4/6-4-新額 で
で
は
は
か
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
が
< センセハヤン や強額 非動材類で類雑圏 ※課程 ドレン処理系 番 蒸 旗 類 ~ (() と 温 () 本 以 🔏 0.1.0.2.6.集別水蘇蘇

申請書添付参考図面を次のとおり変更する。

液体廃棄物処理の系統概要図を添付1のとおり変更する。

周辺監視区域図を添付2のとおり変更する。

第20図

第21図 第22図 第23図

第16図

(地下階)を添付3のとおり変更する。

VQ

(地上階)を添付4のとおり変更す

廃棄物処理建屋平面図 廃棄物処理建屋平面図 固体廃棄物処理の系統概要図を添付6のとおり変更する。

第24図

廃棄物処理建屋断面図を添付5のとおり変更する。

-111 -

強額幹路×比略 ないそれていせ

第22図 廃棄物処理建屋平面図 (地上階) (添付書類 八 第2.1-7園)

第 23 図 廃棄物処理建屋断面図 (添付書類 八 第 2. 1-8 図)

*1 東海発電所と共用, 既設 *2 東海発電所と共用

第 24 図 固体廃棄物処理系統概要図 (添付書類 八 第10.3-1 図)

添付書類

今回の変更申請に係る東海第二発電所原子炉設置変更許可申請書(原子炉施 設の変更)の添付書類は,以下のとおりである。

添付書類一 変更後における原子炉の使用の目的に関する説明書

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変更) (平成14年9月12日付け、平成14・07・10原第1号をもって設置変更許可)の添付書類一の記載内容と同じ。

添付書類二 変更後における原子炉の熱出力に関する説明書

東梅第二発電所原子炉設置変更許可申請書(原子炉施設の変更)(平成14年9月12日付け,平成14・07・10原第1号をもって設置変更許可)の添付書類二の記載内容と同じ。

添付書類三 変更の工事に要する資金の額及び調達計画を記載した書類

別添1に示すとおりである。

添付書類四 変更後における原子炉の運転に要する核燃料物質の取得計画を記載した書類

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変更)(平成14年9月12日付け,平成14・07・10原第1号をもって設置変更許可)の添付書類四の記載内容と同じ。

添付書類五 変更に係る原子炉施設の設置及び運転に関する技術的能力に関する前野書 る説明書

別添2に示すとおりである。

添付書類六 変更に係る原子炉施設の場所に関する気象、地盤、水理、地震,

社会環境等の状況に関する説明書

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変

更) (平成14年9月12日付け,平成14・07・10原第1号をもって設置変更許可)の添付書類六の記載内容と同じ。

添付書類七 変更に係る原子炉又はその主要な附属施設の設置の地点から二十

ロメートル以内の地域を含む縮尺五万分の一の地図

キロメートル以内の地域を含む縮尺二十万分の一の地図及び五キ

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変更) (平成14年9月12日付け,平成14・07・10原第1号をもって設置変更許可)の添付書類七の記載内容と同じ。

添付書類八 変更後における原子炉施設の安全設計に関する説明書

別添3に示すとおりである。

別添3に示す記載内容以外は次のとおりである。

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変

更) (平成14年9月12日付け, 平成14・07・10原第1号をもって

設置変更許可)の添付書類八の記載内容と同じ。

添付書類九 変更後における核燃料物質及び核燃料物質によって汚染された物には書類九 変更後における核燃料物質及び核燃料物質を開かる説による放射線の被ばく管理並びに放射性廃棄物の廃棄に関する説

明書

添付4に示すとおりである。

添付4に示す記載内容以外は次のとおりである。

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変更) (平成14年9月12日付け, 平成14・07・10原第1号をもって

設置変更許可)の添付書類九の記載内容と同じ。

添付書類十 変更後における原子炉の操作上の過失,機械又は装置の故障,

震,火災等があった場合に発生すると想定される原子炉の事故の

墨

種類、程度、影響等に関する説明書

東海第二発電所原子炉設置変更許可申請書(原子炉施設の変

(平成14年9月12日付け,平成14・07・10原第1号をもって

設置変更許可)の添付書類十の記載内容と同じ。

変更の工事に要する資金の額及び調達計画を記載した書類

添付書類三

1. 変更の工事に要する資金の額

セメント混練固化装置の設置工事及び雑固体減容処理設備の設置工事に

係る費用は,約57億円である。

2. 変更の工事に要する資金の調達計画

自己資金及び借入金により調達する計画である。

3 – 1

H 灦 # to 瘀

変更に係る原子炉施設の設置及び運転に関する 技術的能力に関する説明書

当社は,昭和 32 年以来,原子力発電関係の諸調査,諸準備等を進め,技術 運転, 建設, 關查, 者を国内及び国外の原子力関係諸施設へ多数派遣し、研究、 廃止措置等を通じ,技術的能力の蓄積に努めてきた。 昭和 41 年 7 月に東海発電所の営業運転を開始し、以来今日、以下のごとく 原子炉を4基保有している。

昭和 41年 7月25日 昭和53年11月28日 3月14日 (平成13年10月4日原子炉の解体の届出) 13 営業運転の開始 H 2 昭和 62 年 昭和 45年 357MW) 166MW) 東海第二発電所(電気出力 1,100MW) 敦賀発電所2号炉(電気出力 1,160MW) 所(電気出力 敦賀発電所1号炉(電気出力 原子炉の名称 紫 強 展

 \square

本変更については, 設計は発電管理室において行い, 現地工事並びに原子炉施 当社は,これらの原子炉の建設経験と約 36 年に及ぶ運転経験を有している。 設の運転及び管理は東海第二発電所において行う。

強緩 品質保証活動については、設計、製作、施工、運転の各段階において、社内基 それぞれの 担当箇所が責任をもって業務を遂行するものであるが、本活動の統括は発電管 また、本変更に係る東海第二発電所の安全性、信頼性を確保するために行う 理室長が行い、東海第二発電所においては、所長が本活動に基づき業務責任を 明確にして確実に実施する。以上の品質保証に係る品質監査については、 その責任と分担は, 組織、権限を明確にし実施する。 部門とは独立した社長室が行う。 準に基づき,

以上のとおり、本変更は、発電管理室、社長室及び東海第二発電所の業務の 中で十分対応できるものである。

本店及び東海第二発電所の技術者の人数等 第1表 なお,参考として,平成14年12月1日現在における本店及び東海第二発電

The same and the s				平成1	平成14年12月1日現在
			技術者の	技術者のうち有資格者等の人数	等の人数
	技術者の	技術者のう	原子炉主任	第一種放射	運転責任者
	総人数	ち管理者の	技術者有資	線取扱主任	有資格者の
		人数	格者の人数	者有資格者	人数
				の人数	
本店	33 33	186	29	ာ	6
東 海 第 光 電 所	205	65 (64)	ശ	4.	e-

注:()内は,管理者のうち,技術者としての経験年数が10年以上の人数を示す。

第1図 原子力関係組織系統図

下記項目の記述及び関連図面等を次のとおり変更又は追加する。

1. 安全設計の考え方

1.7 原子炉設置変更許可申請(平成14年12月26日申請)に係る安全設計の

方針(追加)

1.7.1 安全設計の基本方針

1.7.2 「発電用軽水型原子炉施設に関する安全設計審査指針(平成13年3月29日一部改訂)」に対する適合

1.7.3 安全機能の重要度分類

変更後における原子炉施設の安全設計に関する説明書

添付書類 八

第1.7-1表 安全上の機能別重要度分類

第1.7-2表 本原子炉施設の安全上の機能別重要度分類

2. プラント配置ならびに建屋,構築物の概要

第2.1-6図 廃棄物処理建屋平面図(地下階)

第2.1-7図 廃棄物処理建屋平面図(地上階)

第2.1-8図 廃棄物処理建屋断面図

4. 燃料の貯蔵設備及び取扱設備

4.3 主要設備

4.3.5 使用済燃料乾式貯藏設備

電気系

9.2 電気系統構成

第9.2-2図 所内単線結線図

 $8 - \blacksquare - 1$

- 10. 放射性廃棄物の廃棄施設
- 液体廃棄物処理施設 10.2
- 処理設備概要 10.2.1
- 設備仕様 10.2.3

処理流路線図

10.2.2

- 10.3 固体廃棄物処理施設
- 処理設備概要 10.3.1
- 処理流路線図 10.3.2
- 設備仕様 10.3.3
- 固体廃棄物貯蔵庫 10.3.4
- 第10.2-1図 液体廃棄物処理流路線図
- 第10.3-1図 固体廃棄物処理流路線図
- 11. 放射線管理施設
- 11.3 放射線計測器
- 11.3.1 発電所内の放射線監視設備及び測定機器
- 外部放射線量率測定設備及び測定機器 \equiv
- 11.3.2 放出放射性廃棄物及び系統内の放射線監視設備並びに測定機器
- (11) 雑固体減容処理設備排水モニタ (追加)
- 第11.3-1図 プロセス・モニタ位置
- 参考文献 18.
- [その5-9×9燃料が装荷されたサイクル以降]

- 1.7 原子炉設置変更許可申請(平成14年12月26日申請)に係る安全設計の方針
- 1.7.1 安全設計の基本方針

今回の原子炉設置変更許可申請に係る原子炉施設は,「核原料物質,核燃料物質及び原子炉の規制に関する法律」,「電気事業法」等の関係法令の要求を満足するとともに,「発電用軽水型原子炉施設に関する安全設計審查指針」等に適合する構造とする。

1.7.2 「発電用軽水型原子炉施設に関する安全設計審查指針(平成13年3月29日一部改訂)」に対する適合

今回の原子炉設置変更許可申請に係る原子炉施設は,「発電用軽水型原子炉施設に関する安全設計審査指針(平成13年3月29日一部改訂)」のうち以下の指針に十分適合するように設計する。各指針に対する適合のための設計方針は次のとおりである。

ただし、本項において用いる用語の定義は、同指針II「用語の定義」に従い、それぞれ当該各号の定めるところによる。

指針1. 準拠規格及び基準

安全機能を有する構築物、系統及び機器は、設計、材料の選定、製作及び検査について、それらが果たすべき安全機能の重要度を考慮して適切と認められる規格及び基準によるものであること。

適合のための設計方針

セメント混練固化装置及び雑固体減容処理設備の設計,材料の選定,製作, 試験及び検査については「実用発電用原子炉の設置,運転等に関する規則」, 「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量限度等 を定める告示」等の法令,規格及び基準に基づくとともに,下記の法令,規 格,基準等に準拠する。

- り 電気工作物の溶接に関する技術基準を定める省令
- ② 電気設備に関する技術基準を定める省令
- ③ 発電用原子力設備に関する技術基準を定める省令
- ④ 日本工業規格 (JIS)
- ⑤ 電気学会電気規格調査会標準規格 (JEC)
- ⑥ 日本建築学会各種構造設計及び計算規準(AII)
- ② 日本電気協会で規定する電気技術規程及び指針 (JEAC, JEAG)
- ⑧ 建築基準法
- (9) 消防法
- ⑩ ASME* (American Society of Mechanical Engineers) 規格
- ① ANSI* (American National Standards Institute) 規格
- ⑫ ASTM* (American Society for Testing and Materials) 規格
- *印:必要がある場合に準拠するもの。

8 - 1 - 4

指針5. 火災に対する設計上の考慮

原子枦施設は、火災発生防止、火災検知及び消火並びに火災の影響の

軽減の3方策を適切に組み合わせて,火災により原子炉施設の安全性を損

なうことのない設計であること。

適合のための設計方針

火災によりセメント混練固化装置及び雑固体減容処理設備の安全性が損な われることを防止するために、「発電用軽水型原子炉施設の火災防護に関する 審査指針」に基づき

火災発生防止

火災検知及び消火

火災の影響の軽減

の3方策を適切に組み合わせて,次の各項を考慮した設計とする。

- (1)潤滑油等を使用する設備は、その内蔵量を最小限に抑える設計とするとと もに、漏えいし難い構造とする。
- (2) 灯油及び酸素を使用する設備は,その貯蔵量を運用上必要最低限に抑える 設計とする。
- (3)電気系統は、地絡、短絡等に起因する過電流による過熱を防止する設計と 42°
- (4)ケーブル, 盤等は, 実用上可能な限り不燃性又は難燃性材料を使用する設 計とする。
- (5)高温排ガス又は溶融物からの輻射熱により高温となる機器は,耐火物で保 護する設計とする。
- (6) 万一の火災発生に備えて,必要な箇所には自動火災検知器,消火器を設置

する。また、自動火災検知器は常用電源が喪失した場合でもその機能を失 わない設計とする。

添付書類八の下記項目参照

発電所補助系 13.

指針7. 共用に関する設計上の考慮

安全機能を有する構築物,系統及び機器が2基以上の原子炉施設間で共用される場合には,原子炉の安全性を損なうことのない設計であること。

適合のための設計方針

セメント混練固化装置及び雑固体減容処理設備は,東海発電所共用とするが,共用により原子炉の安全性を損なうものではない。

添付書類八の下記項目参照

10. 放射性廃棄物の廃棄施設

指針9. 信頼性に関する設計上の考慮

1. 安全機能を有する構築物,系統及び機器は,その安全機能の重要度に応じて,十分に高い信頼性を確保し,かつ,維持し得る設計であること。

適合のための設計方針

1.について

セメント混練固化装置及び雑固体減容処理設備は,「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」に基づき,それが果たす安全機能の性質に応じて分類し,十分に高い信頼性を確保し,かつ,維持し得る設計とする。

添付書類八の下記項目参照

1. 安全設計の考え方

指針53. 放射性液体廃棄物の処理施設

- 原子炉施設の運転に伴い発生する放射性液体廃棄物の処理施設は、 適切なろ過、蒸発処理、イオン交換、貯留、減衰、管理等により、周 辺環境に対して、放出放射性物質の濃度及び量を合理的に達成できる 限り低減できる設計であること。
- 2. 放射性液体廃棄物の処理施設及びこれに関連する施設は、これらの施設からの液体状の放射性物質の漏えいの防止及び敷地外への管理されない放出の防止を考慮した設計であること。

適合のための設計方針

1. たついて

雑固体減容処理設備で発生した排ガス洗浄廃液は、放射性物質の濃度が低いことを確認する等周辺公衆の線量を合理的に達成できる限り低く保つ設計とし、「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足するように設計する。

2.について

雑固体減容処理設備で発生した排ガス洗浄廃液の漏えいを防止するため、 次の各項を考慮した設計とする。

- (1) 漏えいの発生を防止するため、適切な材料を使用する。
- (2) 処理施設は独立した区画内に設置し、周辺に堰等を設け、漏えいの拡大防止対策を講じた設計とするとともに、敷地外への管理されない放出の防止を考慮した設計とする。

8 - 1 - 7

添付書類八の下記項目参照

10. 放射性廃棄物の廃棄施設

添付書類九の下記項目参照

4. 放射性廃棄物処理

8 - 1 - 8

指針54. 放射性固体廃棄物の処理施設

原子炉施設から発生する放射性固体廃棄物の処理施設は, 廃棄物の破砕, 圧縮, 焼却, 固化等の処理過程における放射性物質の散逸等の防止を考慮した設計であること。

適合のための設計方針

セメント混練固化装置及び雑固体減容処理設備は,処理過程において放射性物質の散逸等の防止を考慮した設計とする。

添付書類八の下記項目参照

10. 放射性廃棄物の廃棄施設

添付書類九の下記項目参照

4. 放射性廃棄物処理

指針55. 固体廃棄物貯蔵施設

固体廃棄物貯蔵施設は,原子炉施設から発生する放射性固体廃棄物を 貯蔵する容量が十分であるとともに,廃棄物による汚染の拡大防止を考 慮した設計であること。

適合のための設計方針

セメント混練固化装置の設置に伴い減容固化体貯蔵室の容量は減少するが、 濃縮廃液を処理する減容固化設備から発生する減容固化体を十分貯蔵できる 設計とする。なお、変更後においても、減容固化体貯蔵室は廃棄物による汚 染の拡大防止のための機能を損なうものでなない。

添付書類八の下記項目参照

10. 放射性廃棄物の廃棄施設

指針57. 放射線業務従事者の放射線防護

 原子炉施設は,放射線業務従事者の立入場所における線量を合理的 に達成できる限り低減できるように,放射線業務従事者の作業性等を 考慮して,進へい,機器の配置,遠隔操作,放射性物質の漏えい防止, 換気等,所要の放射線防護上の措置を講じた設計であること。

適合のための設計方針

1. だついて

セメント混練固化装置及び雑固体減容処理設備は,放射線業務従事者の線量を今理的に達成できる限り低減できるように,遮へい,機器の配置,放射性物質の漏えい防止,換気等,所要の放射線防護上の措置を講じた設計とす

また,操作盤は,放射線レベルの低い場所に設置し,装置の遠隔操作が可能なように設計する。

ζ,

添付書類八の下記項目参照10. 放射性廃棄物の廃棄施設添付書類九の下記項目参照

2. 雄へい

指針58. 放射線業務従事者の放射線管理

原子炉施設は,放射線業務従事者を放射線から防護するために,放射線被従くを十分に監視及び管理するための放射線管理施設を設けた設計

また,放射線管理施設は,必要な情報を制御室又は適当な場所に表示できる設計であること。

であること。

適合のための設計方針

セメント混練固化装置及び雑固体減容処理設備を設置する場所の主要な箇所にエリア・モニタを設け,指示及び警報を発する設計とする。また,廃棄物処理建屋操作室で指示するとともに,中央制御室で記録し,警報を発する設計とする。

また, 放射線業務従事者が特に頻繁に立ち入る場所については, 定期的及び必要の都度, サーベイ・メータによる外部放射線に係る線量当量率, サンプリング等による空気中の放射性物質の濃度及び床等の表面の放射性物質の密度の測定を行い, 適当な場所に表示する設計とする。

添付書類八の下記項目参照 11. 放射線管理施設

指針59. 放射線監視

原子炉施設は、通常運転時及び異常状態において、少なくとも原子炉格納容器内雰囲気、原子炉施設の周辺監視区域周辺及び放射性物質の放出経路を適切にモニタリングできるとともに、必要な情報を制御室又は適当な場所に表示できる設計であること。

適合のための設計方針

廃棄物処理建屋には,プロセス・モニタを設置し,復水器冷却水放水路へ 放出する雑固体減容処理設備の排ガス洗浄廃液中の放射性物質の濃度が監視できる設計とする。 なお,プロセス・モニタは,廃棄物処理建屋操作室で指示し,警報を発するとともに,中央制御室に記録し,警報を発する設計とする。

添付書類八の下記項目参照

- 10. 放射性廃棄物の廃棄施設
- 11. 放射線管理施設

1.7.3 安全機能の重要度分類

原子炉施設の安全機能の相対的重要度を、「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」に基づき、次のように定め、これらの機能を果たすべき構築物、系統及び機器を適切に設計する。

(1) 安全上の機能別重要度分類

安全機能を有する構築物,系統及び機器を,それが果たす安全機能の性質に応じて,次の2種に分類する。

- a. その機能の喪失により,原子炉施設を異常状態に陥れ,もって一般公衆ないし従事者に過度の放射線被ばくを及ぼすおそれのあるもの(異常発生防止系。以下「PS」という。)。
- b. 原子炉施設の異常状態において,この拡大を防止し,又はこれを速やかに収束せしめ,もって一般公衆ないし従事者に及ぼすおそれのある過度の放射線被ばくを防止し,又は緩和する機能を有するもの(異常影響緩和系。以下「MS」という。)。

また, PS及びMSのそれぞれに属する構築物,系統及び機器を,その有する安全機能の重要度に応じ,それぞれクラス1,クラス2及びクラス3に分類する。それぞれのクラスの呼称は第1.7-1表に掲げるとおりとする。

上記に基づく本原子炉施設の安全上の機能別重要度分類を第1.7-2表に示

なお,各クラスに属する構築物,系統及び機器の基本設計ないし基本的設計方針は,確立された設計,建設及び試験の技術並びに運転管理により,安全機能確保の観点から,次の各号に掲げる基本的目標を達成できるようにす

(a) クラス1:合理的に達成し得る最高度の信頼性を確保し,かつ,維持すること。

vo No

- クラス?: 高度の信頼性を確保し、かつ、維持すること。 (P)
- 貒 クラス3:一般の産業施設と同等以上の信頼性を確保し,かつ, 持すること。 9
- 分類の適用の原則 (2)

本原子炉施設の安全上の機能別重要度分類を具体的に適用するに当たっ ては、原則として次によることとする。

- 系統及び機器(以下「関連系」という。)の範囲と分類は、次の各号に 安全機能を直接果たす構築物、系統及び機器(以下「当該系」とい う。)が、その機能を果たすために直接又は間接に必要とする構築物、 掲げるところによるものとする。
- (a) 当該系の機能遂行に直接必要となる関連系は,当該系と同位の重 要度を有するものとみなす。
- るものとみなす。ただし、当該系がクラス3であるときは、関連系は × は担保するために必要な関連系は、当該系より下位の重要度を有す 当該系の機能遂行に直接必要はないが、その信頼性を維持し、 クラス3とみなす。 (P)
- 果たすべきすべての安全機能に対する設計上の要求を満足させるものと 一つの構築物、系統及び機器が、二つ以上の安全機能を有するときは、 j.
- c. 安全機能を有する構築物,系統又は機器は,これら二つ以上のものの 間において、又は安全機能を有しないものとの間において、その一方の れる安全機能が阻害され、もって原子炉施設の安全が損なわれることの 運転又は故障等により、同位ないし上位の重要度を有する他方に期待さ ないように、機能的隔離及び物理的分離を適切に考慮する。
- 重要度の異なる構築物, 系統又は機器を接続するときは, 下位の重要

度のものに上位の重要度のものと同等の設計上の要求を課すか,又は上 位の重要度のものと同等の隔離装置等によって, 下位の重要度のものの 故障等により上位の重要度のものの安全機能が損なわれないように, 適 切な機能的隔離が行われるよう考慮する。

第1.7-1表 安全上の機能別重要度分類

機能による分類	ころ分類	安全機能を有する構築物、	構築物、系統及び	
/		機器		安全機能を有し
		異常の発生防止	異常の影響緩和	ない構築物、系
,	/	の機能を有する	の機能を有する	統及び機器
重要度による分類	凝	ಕೂ (PS)	もの (MS)	
安全に関連する	クラス1	P S - 1	M S – 1	
構築物,系統及	クラス2	P S -2	M S -2	
び機器	クラス3	P S -1 3	M S 3	
	÷			安全機能以外の
安全に関連しない構築物。 	痛染泡,	/	/	機能のみを行う
系統及び機器				もの

8 - 1 - 16

8 - 1 - 17

第1.7-2表 本原子炉施設の安全上の機能別重要度分類

		異常	異常発生防止系		
小				特記す	
ž	定義	蒸端	無然多、米覧人は表現のは表出	えき関	備考
			' ራ ነ ንሂ ሰው	庫	
	異常状態の起因事象	放射性物	セメント混練固化		注)液体
	となるものであっ	質の貯蔵	装置及び雑固体減		及び固体
P S -3	て, PS-I及びPS	機能	容処理設備(放射		の放射性
	- 2以外の構築物, 系		能インベントリの		廃棄物処
	統及び機器		小さいもの) 注)		本

関連系については,「1.7.3(2)分類の適用の原則」参照

.1-6図 廃棄物処理違屋平面図(地下階)

2. プラント配置並びに建屋,構築物の概要

第2.1-7図 廃棄物処理建屋平面図(地上階)

第 2.1-8 図 廃棄物処理建屋断面図

4. 燃料の貯蔵設備及び取扱設備

4.3 主要設備

4.3.5 使用済燃料乾式貯蔵設備(57)(58)

乾式貯蔵設備は,使用済燃料を収納する貯蔵容器,貯蔵容器を支持する支持構造物,貯蔵中の密封監視等を行う装置及びこれらを収納する使用済燃料乾式貯蔵建屋(以下4.では「貯蔵建屋」という。)で構成する。

貯蔵容器は、貯蔵容器本体、蓋部、バスケット等で構成され、これらの部材は、設計貯蔵期間における放射線照射影響、腐食、クリーブ、疲労、応力腐食割れ等の経年劣化に対して十分な信頼性を有する材料を選択し、その必要とされる強度、性能を維持し、必要な安全機能を失うことのないようにする。

貯蔵容器は、61体の使用済燃料の貯蔵が可能であり、24基を設ける。

また、貯蔵容器には、次のとおり燃料の種別に応じた適切な期間使用済燃料プールで冷却され、かつ運転中のデータ、シッピング検査等により健全であることを確認した使用済燃料を燃料プール内で装填し、排水後内部にはヘリウムガスを封入する。

8×8 燃料

貯蔵容器に装填する燃料集合体の平均燃焼度が33,000MWd/t以下の場合9年以上冷却

新型8×8燃料

貯蔵容器に装填する燃料集合体の平均燃焼度が35,000MWd/t以下の場合

7年以上冷却

新型8×8ジルコニウムライナ燃料

貯蔵容器に装填する燃料集合体の平均燃焼度が36,000MMd/1以下の場合 7年以上冷却

高燃焼度8×8燃料

貯蔵容器に装填する燃料集合体の平均燃焼度が39,500MWd/t以下の場合7年以上冷却

貯蔵容器に装填する燃料集合体の平均燃焼度が41,000MWd/1以下の場合8年3か月以上冷却

へリウムガスは,冷却媒体であるとともに燃料被覆管の腐食を防止する。 使用済燃料を装填した貯蔵容器は,車両衝突等の事故を防止するための措置を行い,原子炉建屋から貯蔵建屋へ運搬し,貯蔵建屋内の支持構造物によ なお、使用済燃料を事業所外へ搬出する場合には、燃料プールへ貯蔵容器を運搬し、キャスクに詰め替えを行った後、事業所外へ搬出する。

り支持され、そこで貯蔵される。

貯蔵容器は、容器表面の線量当量率が2mSv/h以下及び容器表面から1mの点における線量当量率100μSv/h以下となるよう、装填される使用済燃料の放射能強度を考慮して十分な遮へいを行う。

装填された使用済燃料から発生する崩壊熱は、伝導、輻射により貯蔵容器の外表面に伝えられ、貯蔵建屋内の自然対流、輻射等により大気へ放散される。また、安全機能を有する構成部材が健全性を維持できる温度以下及び設計貯蔵期間貯蔵しても燃料被覆管の累積クリープ量が1%を超えない温度以下になるようにする。さらに、貯蔵建屋に排気温度等の監視装置を設け、異常が生じた場合には中央制御室に警報を出す。

個々の使用済燃料集合体を貯蔵容器内部の所定の位置に収納するためのバスケットは、中性子吸収材であるほう素を添加したアルミニウム合金を適切に配置するとともに、適切な燃料間距離を保持することにより燃料集合体が相互に接近しないようにする。

また,燃料集合体を全容量収納し,容器内の燃料位置等について想定されるいかなる場合でも,実効増倍率を0.95以下に保ち,貯蔵燃料の臨界を防止する。

貯蔵容器は、貯蔵容器本体、蓋部及び金属ガスケットにより漏えいを防止し、設計貯蔵期間中貯蔵容器内部圧力を負圧に維持する。さらに、貯蔵容器の二重蓋間の空間部をあらかじめ加圧し、密封を監視するための密封監視装置を貯蔵建屋内に設け、異常が生じた場合には中央制御室に警報を出す。

その場合でも、あらかじめ貯蔵容器内部を負圧に維持しているので、内部の気体が外部に流出することはない。

万一, 二重蓋間の圧力低下等が生じた場合は, 原則として燃料プールへ貯蔵容器を搬入し, 必要な処置を行うこととする。

なお、安全評価において想定すべき異常事象として抽出された貯蔵容器の燃料取扱床等への異常着床、貯蔵容器の支持構造物への衝突の各事象に対しても、設計方針で示した各安全機能が満足される。

C)

電気系統構成

9.2

電気系

10. 放射性廃棄物の廃棄施設

放射性廃棄物処理施設は、主に原子炉建屋の付属棟及び廃棄物処理建屋にあり、廃棄物の種類によって気体廃棄物処理系、液体廃棄物処理系及び固体廃棄物処理系に分類される。

10.2 液体廃棄物処理系

10.2.1 概 勇

液体廃棄物処理系は、機器ドレン処理系、床ドレン処理系、再生廃液処理

,洗濯廃液処理系及び排ガス洗浄廃液処理系で構成する。

液体廃棄物処理系統概要図を第10.2-1図に示す。

液体廃棄物処理系は,本原子炉施設で発生する放射性廃液及び潜在的に放射性物質による汚染の可能性のある廃液を,その性状により分離収集し,処理する。

液体廃棄物処理系により処理した後の処理済液は,原則として回収して再使用するが,試料採取分析を行い,放射性物質濃度が低いことを確認して放出する場合もある。

液体廃棄物処理系は,廃棄物処理健屋等に設置する。

10.2.2 設計方針

- (1) 機器ドレン廃液は、ボンプ、弁等各機器からの漏えい水等である。これらの廃液は、廃液収集タンク等に集め、ろ過、脱塩処理した後、廃液サンプルタンクに移し、水質の結果により復水貯蔵タンクに回収、再使用するか、あるいは廃液収集タンクに戻して再処理する。
- (3) 床ドレン廃液は,原子炉建屋,廃棄物処理建屋,タービン建屋等で発生する。これらの廃液は,床ドレン収集タンクに集め,再生廃液処理系に移送し,濃縮処理する。
- (3) 化学廃液は,復水脱塩装置等の樹脂の再生廃液,分析室ドレン等である。これらの廃液は,廃液中和タンクに集め,中和後,濃縮処理する。
- (4) 床ドレン廃液及び化学廃液を濃縮する際発生した濃縮廃液は,濃縮廃液 貯蔵タンクに集め,固体廃棄物として処理する。

- (5) 床ドレン廃液及び化学廃液を濃縮する際発生した蒸気は、凝縮させ凝縮水収集タンクに集め、機器ドレン処理系に送り、復水貯蔵タンクに回収、再使用するか、脱塩処理した後、凝縮水サンプルタンクに移し、放射性物質濃度が低いことを確認したうえで、復水器冷却水放水路に放出する。
- (6) 洗濯廃液は,防護衣類等の洗濯廃液,手洗・シャワから発生する廃液である。これらの廃液は,洗濯廃液ドレンタンク(受タンク)に集め,ろ過処理した後,洗濯廃液サンプルタンク(ドレンタンク)に移し,放射性物質濃度が低いことを確認したうえで復水器冷却水放水路に放出する。
- (7) 排ガス洗浄廃液は、雑固体減容処理設備の排ガス処理に伴って発生する廃液である。この廃液は、排ガス洗浄廃液サンプルタンクに貯留し、放射性物質濃度が低いことを確認したうえで復水器冷却水放水路に放出する。
- () 液体廃棄物処理系は,放射性廃液の漏えいの発生を防止するため適切な材料を使用するとともに適切な計測制御設備を有する設計とする。漏えいが生じた場合,漏えいを早期検出するため漏えい検出器等により検出し,警報を廃棄物処理操作室に個別に表示するとともに,一括して中央制御室に表示する設計とし,かつ,漏えいの拡大を防止するため主要な設備は,独立した区画内に設けるか,周辺に堰等を設ける設計とする。

なお,処理施設及び関連する施設は,建屋及び連絡暗環外への漏えい並びに敷地外への放出経路の形成を防止する設計とする。

10.2.3 主要設備

(1) 機器ドレン廃液の処理

機器ドレン廃液の処理を行う設備は、廃液収集タンク、ろ過装置、脱塩装置等で構成する。機器ドレン廃液は、原子炉棟ドレン・サンプ、ドライウエル機器ドレン・サンプ、廃棄物処理棟機器ドレン・サンプ、タービン

建屋機器ドレン・サンプ等に集めた後、廃液収集タンク等にまとめられ、 ろ過装置、脱塩装置で処理した後、廃液サンプルタンクに移し、水質を測り、その結果により復水貯蔵タンクに回収、再使用するか、又は再び廃液収集タンクに戻して処理する。ろ過装置には、電磁ろ過器及び超ろ過器 (透過膜式)からなる非助材型ろ過装置と助材型ろ過装置があり、通常は非助材型ろ過装置でろ過処理を行う。

(2) 床ドレン廃液の処理

床ドレン廃液を処理する設備は、床ドレン収集タンク, ろ過装置等で構成する。床ドレン廃液は, 原子炉棟床ドレン・サンプ, ドライウエル床ドレン・サンプ, 廃棄物処理棟床ドレン・サンプ, タービン建屋床ドレン・サンプ等に集めた後, 床ドレン収集タンクにまとめられ, 通常は再生廃液処理系に移送し, 濃縮処理するが, 放射能レベルが低い場合には, 助材型な過装置で処理した後, 放射性物質濃度が低いことを確認したうえで, 復水器冷却水放水路に放出することもある。

(3) 化学廃液の処理

化学廃液を処理する設備は、廃液中和タンク、濃縮装置等で構成する。 化学廃液は、廃液中和タンクにまとめられ中和後、濃縮装置で処理する。 発生蒸気は、濃縮装置復水器によって凝縮させ凝縮水収集タンクに集め、 原則として機器ドレン処理系に送り、復水貯蔵タンクに回収、再使用する。 ただし、復水貯蔵タンクの保有水量が増加するような場合には、脱塩装置 で処理した後、凝縮水サンプルタンクに移し、放射性物質濃度が低いこと を確認したうえで、復水器冷却水放水路に放出することもある。

(4) 洗濯廃液の処理

洗濯廃液を処理する設備は、洗濯廃液ドレンタンク(受タンク)、洗濯 廃液サンプルタンク(ドレンタンク)、ろ過装置等で構成する。洗濯廃液 第10.2-1表 液体廃棄物処理系主要仕様

Ξ

洗濯廃液サンプルタンク(ドレンタンク)に移し、放射性物質濃度が低い は洗濯廃液ドレンタンク(受タンク)に集められ、ろ過装置で処理した後、

ことを確認したうえで復水器冷却水放水路に放出する。

(5) 排ガス洗浄廃液の処理

		The state of the s	The state of the s
\$ 1.7.1	· 本	容量	JK ##
かくしゃ	格数	(1113/14)	
廃液収集タンク	_	約 110	炭素鋼
廃液サンプルタンク	2	約 65	炭素鋼
廃液サージタンク	2	約 140	炭素鋼
床ドレン収集タンク	-	約 60	炭素鋼
床ドレンサンプルタンク	2	約 60	炭素鋼
廃液中和タンク	2	約 65	ステンレス鋼
洗濯廃液サンプルタンク (ドレンタンク)	2	約 30	炭素鋼
凝縮水収集タンク	-	約 60	炭素鋼
凝縮水サンプルタンク	T	約 60	炭素鋼
凝集装置供給タンク	1	約 80	炭素鋼
電磁ろ過器供給タンク	I	約 140	炭素鋼
超ろ過器供給タンク	П	約 65	炭素鋼
機器ドレン処理水タンク	2	約 150	ステンレス鋼
洗濯廃液ドレンタンク (受タンク)	2	約 35	炭素鋼
排ガス洗浄廃液サンプルタンク	2	約 2	炭素鋼

(2) ろ過装置

a. 機器ドレン処理系

助材型ろ過装置

圧カプリコート式 私

敎 革 約 50m³/h/基

非助材型ろ過装置

電磁ろ過式及び透過膜式 귂 至

羧 葉 約 40m3/h/式 絘

タンク類

投備は、排ガス洗浄廃液サンプルタンク等で	前の排ガス処理に伴って発生した廃液は排ガ	宇留し, 放射性物質濃度が低いことを確認し	2放出する。
#ガス洗浄廃液を処理する設備は、排ガス洗浄廃液サ	る。雑固体減容処理設備の排ガス処理に伴って発生した廃液は排ガ	ス洗浄廃液サンプルタンクに貯留し、放射性物質濃度が	うえで復水器冷却水放水路に放出する。
排ガス洗	構成する。	ス洗浄廃液·	たうえで復わ

10.2.4 主要仕樣

液体廃棄物処理系の主要仕様を第10.2-1表に示す。

10.2.5 試験検査

液体廃棄物処理系は,定期的な試験又は検査を行うことにより,その機能 の健全性を確認する。

8 - 10 - 7

蒸気加熱強制循環式 竹 産

基

絘

圧カプリコート式

#

陸 基

b. 床ドレン処理系

助材型ろ過装置

約 50m3/h/基

絘

約 6.8m3/h/基

(5) 凝集沉澱装置

急速凝集沈殿装置 竹 描

基

約 12m3/h/基 栤

円筒縦形固定床式

州

型

燚

基

固定床型ろ過装置

洗濯廃液処理系

္:

約 10m3/h/基

カートリッジ型ろ過装置

機器ドレン処理系

(3) 脱塩装置

円筒縦形カートリッジ式

M

椏

約 40m3/h/基

画

基 栨

機器ドレン処理系

ъ.

混床式

44

数 葉

約 50m3/h/基

栤

凝縮水脱塩器 p. 混床式 # 隔

約 30m³/h/基 燚 豳 基

(4) 機縮装置

再生廃液処理系

00

10.3 固体廃棄物処理系

10.3.1 概 星

لې 廃棄物の種類に応じて, 処理又は貯蔵保管するため, 床ドレンスラッジ貯蔵 雑固体減容処理 使用済樹脂貯蔵タンク 减容固化体貯蔵室, 雑固体廃棄物焼却設備, サイトバンカプール、固体廃棄物貯蔵庫等で構成する , 減容固化設備, 使用済粉末樹脂貯蔵タンク, 廃液スラッジ貯蔵タンク, (セメント固化式) 减容装置, ラッドスラリタンク, 固体廃棄物処理系は, 濃縮廃液貯蔵タンク, メント混練固化装置, 固化装置 ソグ, 舗, 2

なお,セメント混練固化装置,雑固体廃棄物焼却装置(既設),雑固体減容処理設備,固体廃棄物貯蔵庫(既設)は,東海発電所と共用する。

主要な固体廃棄物としては次のものがある。

- a) 濃縮廃液
- b) 使用済樹脂
- c) 廃スラッジ
- d) 雑固体廃棄物(布,紙,小器具,使用済空気フィルタ等)
- e) 使用済制御棒,チャンネルボックス等

固体廃棄物処理系統概要図を第10.3-1図に示す。

10.3.2 設計方針

- (1) 濃縮廃液は,放射能を減衰させた後,ドラム缶内に固化し固体廃棄物貯蔵庫に貯蔵保管する。あるいは,放射能を減衰させた後,乾燥・造粒し容器に詰めて減容固化体貯蔵室に貯蔵するか,貯蔵した後ドラム缶内に固化し貯蔵保管する。
- (2) 使用済樹脂には、原子炉冷却材浄化系及び燃料プール冷却浄化系フィルタ院塩装置から発生する使用済粉末樹脂、復水脱塩装置及び液体廃薬物処

8 - 10 - 10

图要聯議条題或破棄竊构辦 図 1-2.01 策

理系脱塩装置から発生する使用済粒状樹脂がある。使用済粉末樹脂は,タンク内に貯蔵するか, 貯蔵し放射能を減衰させた後, ドラム缶内に固化し貯蔵保管する。使用済粒状樹脂は,タンク内に貯蔵するか,又は貯蔵し放射能を減衰させた後,焼却するか,ドラム缶内に固化し貯蔵保管する。焼却灰は不燃性雑固体廃棄物として処理する。

- (3) 廃スラッジには、液体廃棄物処理系の非助材型ろ過装置から発生するクラッドスラリ、助材型ろ過装置から発生するフィルタスラッジがある。クラッドスラリはタンク内に貯蔵するか、貯蔵し放射能を減衰させた後、ドラム缶内に固化し貯蔵保管する。フィルタスラッジはタンク内に貯蔵するか、又は貯蔵し放射能を減衰させた後、焼却するか、ドラム缶内に固化し貯蔵保管する。焼却灰は不燃性雑固体廃棄物として処理する。
- (4) 可燃性雑固体廃棄物は、ドラム缶等に詰めて貯蔵保管するか、又は焼却し、焼却灰は不燃性雑固体廃棄物として処理する。不燃性雑固体廃棄物は、圧縮可能なものは圧縮減容し、必要に応じて溶融・焼却した後、ドラム缶寄に詰めて貯蔵保管するか、ドラム缶内に固型化し貯蔵保管する。
- (5) 使用済制御棒、チャンネルボックス等の放射化された機器は、使用済燃料貯蔵プールに貯蔵した後、サイトバンカプールに貯蔵保管する。
- (6) 固体廃棄物処理系は,操作の遠隔化,遮へい,換気等所要の放射線防護上の措置を講じる。
- (7) 固体廃棄物処理系は,放射性廃液の漏えいの発生を防止するため適切な材料を使用するとともに適切な計測制御設備を有する設計とする。漏えいが生じた場合,漏えいを早期検出するため漏えい検出器等により検出し,警報を廃棄物処理操作室に個別に表示するとともに,一括して中央制御室に表示する設計とし,かつ,漏えいの拡大を防止するため主要な設備は,独立した区画内に設けるか,周辺にせき等を設ける設計とする。

なお,処理施設及び関連する施設は,建屋及び連絡暗渠外への漏えい並びに敷地外への放出経路の形成を防止する設計とする。

10.3.3 主要設備

(1) 濃縮廃液の処理

濃縮廃液の処理を行う設備は、濃縮廃液貯蔵タンク、固化装置(セメント固化式)、減容固化設備、減容固化体貯蔵室及びセメント混練固化装置である。

機縮廃液は、濃縮廃液貯蔵タンクに貯蔵した後、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。あるいは、減容固化設備で乾燥・造粒して容器に詰め減容固化体貯蔵室に貯蔵するか、貯蔵した後、セメント混練固化装置でドラム缶内に固化材(セメント)と混練して固化し貯蔵保管する。減容固化体貯蔵室の容量は発生量の約12年分を貯蔵する能力がある。

演容固化設備は、濃縮廃液受タンク、乾燥装置、造粒装置等である。蒸気加熱の際発生した蒸気は凝縮させ、液体廃棄物処理系の濃縮装置で処理する。乾燥装置では含水率の十分低い粉体を得るために、供給液の組成及び供給量を管理し、さらに水分計により粉体の含水率を監視し、含水率が高い場合は、溶解、回収して液体廃棄物処理系の濃縮装置で処理する。一方、造粒装置では十分な減容と円滑な運転状態を確保するために粉体供給量及び圧縮力を制御する。

減容固化設備は密閉構造とし、かつ、内部を負圧に維持し、装置外への漏えいを防止するとともに、装置の排気は粒子フィルタ及び高性能粒子フィルタを通し、排気中の放射性物質の量を低減させる。また、セメント混練固化装置は、放射性物質が飛散しないような措置を講じ、処理過程で生

じる粒子等は粒子フィルタで除去する。

(2) 使用済樹脂の処理

使用済樹脂の処理を行う設備は,使用済粉末樹脂貯蔵タンク,使用済樹脂貯蔵タンク,固化装置(セメント固化式),雑固体廃棄物焼却設備である。

原子炉冷却材浄化系及び燃料プール冷却浄化系フィル夕脱塩装置から発生する使用済粉末樹脂は、発生量の約30年分の貯蔵容量を有する使用済粉末樹脂貯蔵タンクに貯蔵するか、貯蔵し放射能を減衰させた後、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。

復水脱塩装置及び液体廃棄物処理系脱塩装置から発生する使用済粒状樹脂は, 発生量の約30年分の貯蔵容量を有する使用済樹脂貯蔵タンクに貯蔵するか, 又は貯蔵し放射能を減衰させた後, 雑固体廃棄物焼却設備で焼却するか, 固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。焼却灰は不燃性雑固体廃棄物として処理する。

(3) 廃スラッジの処理

廃スラッジの処理を行う設備は、クラッドスラリタンク、廃液スラッジ 貯蔵タンク、床ドレンスラッジ貯蔵タンク、固化装置(セメント固化式)、 雑固体廃棄物焼却設備である。

液体廃棄物処理系の非助材型ろ過装置から発生するクラッドスラリは,発生量の約25年分の貯蔵容量を有するクラッドスラリタンクに貯蔵するか,又は貯蔵し放射能を減衰させた後、固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内に固化し貯蔵保管する。また、液体廃棄物処理系の助材型ろ過装置から発生するフィルタスラッジは,発生量の

約30年分の貯蔵容量を有する廃液スラッジ貯蔵タンク若しくは床ドレンスラッジ貯蔵タンクに貯蔵するか,又は貯蔵し放射能を減衰させた後,雑固体廃棄物焼却設備で焼却するか,固化装置(セメント)と混合してドラム缶内に固化し貯蔵保管する。焼却灰は不燃性雑固体廃棄物として処理する。

(4) 雑固体廃棄物の処理

雑固体廃棄物の処理を行う設備は,雑固体廃棄物焼却設備,減容装置及び雑固体減容処理設備である。

可燃性雑固体廃棄物は、ドラム缶等に詰めて貯蔵保管するか、又は雑固体廃棄物焼却設備で焼却し、焼却灰は不燃性雑固体廃棄物として処理する。維固体廃棄物焼却設備の排ガスは、セラミックフィルタ及び高性能粒子フィルタを通し(除染係数10⁵以上)(⁹¹⁾廃棄物処理建屋排気口(地上高約50m)から放射性物質濃度を監視しつつ放出する。不燃性雑固体廃棄物は、仕分けし、圧縮可能なものは圧縮減容し、必要に応じて雑固体減容処理設備で溶融・焼却した後、ドラム缶等に詰めて貯蔵保管する。維固体減容処理設保・エルタル)を充填してドラム缶内に固型化し貯蔵保管する。維固体減容処理設備の排ガスはセラミックフィルタ及び高性能粒子フィルタを通し(除棄機の排ガスはセラミックフィルタ及び高性能粒子フィルタを通し(除棄機数10⁷以上)(⁹²⁾⁽⁹³⁾排気筒から放射性物質濃度を監視しつつ放出する。

(5) 使用済制御棒,チャンネルボックス等の処理

使用済制御棒、チャンネルボックス等の放射化された機器は、使用済燃料プールに貯蔵した後、固体廃棄物移送容器を用いてサイトバンカプールに移送し貯蔵保管する。

これらの固体廃棄物は,発生する放射線を遮へいするため水中で取り扱い, 貯蔵状態では2.5m以上の水遮へいを確保する。また, 貯蔵状態を管理しやすくするため固体廃棄物はプール内に設けた支持物に支持する等して

8 - 10 - 16

種類別に配置する。サイトバンカプールは、内面にステンレス綱ライニン

グを施し、プール水の漏えいを防止する。万一,ライニングの損傷により

プール水が漏えいした場合、漏えい水検出装置で検知し補給水を供給する

ことにより必要な遥へい水を確保する。プール水はオーバーフロー式であ

りオーバーフロー水はろ過処理し循環させる。

サイトバンカプールは,発生量の約25年分を貯蔵する能力がある。

(6) 固体廃棄物の貯蔵保管

固体廃棄物を詰めたドラム缶等は、所要の遮へい設計を行った固体廃棄 物貯蔵庫に貯蔵保管する。固体廃棄物貯蔵庫は,発生量の約10年分以上を 貯蔵保管する能力がある。

なお,必要に応じて,固体廃棄物を廃棄事業者の廃棄施設へ廃棄する。

10.3.4 主要仕様

固体廃棄物処理系の主要仕様を第10.3-1表に示す。

10.3.5 試験検査

固体廃棄物処理系は、定期的な試験又は検査を行うことにより、その機能

の健全性を確認する。

第10.3-1表 固体廃棄物処理系主要仕様

(1) タンク類

タンク名	基数	容 (m ³ /基)	本
濃縮廃液貯蔵タンク	ಣ	終 90	炭素鋼
使用済粉末樹脂貯蔵タンク	2	約140	ステンレス鋼
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	y(終1130	ステンレス鋼
使用済阀脂貯蔵タンク	2	終250	ステンレス鋼
クラッドスラリタンク	2	約250	ステンレス鰡
廃液スラッジ貯蔵タンク	2	約160	炭素鋼
床ドレンスラッジ貯蔵タンク		終1110	炭素鲻

(2) 固化装置

セメント固化式 柘

数

脱水機 (3)

数 基

コンベソ (4) 敎 革

減容固化設備 (2)

乾燥装置

※ 革

たて置遠心薄膜式

松

庭

造粒装置

2軸形口一小式 悩 福

欻

基

8 - 10 - 18

减容固化体貯蔵室 (9)

鉄筋コンクリート造

約250m² 類 厘

約1,400m3 嘲 燚

セメント混練固化装置(東海発電所と共用) (2)

セメント固化式 恜 型

数 葉

減容装置 (%)

油压式 47 産

燚 葉

雑固体廃棄物焼却設備(東海発電所と共用、既設) (6)

自燃式 #

窟

数

葉

*

約3.14×10⁶kJ/h (約750,000kcal/h)

(10) 雑固体減容処理設備(東海発電所と共用)

高周波誘導加熱・2次燃焼器・セラミック・高性能粒 Ħ 图

子フイルタ式

狻 葉 約6,400本 (200ℓドラム缶相当) /年 匰 **※**

(24時間/日,約200日/年運転時)

(11) 固体廃棄物移送容器

潋 基 約3.4m3 **%**

(12) サイトバンカプール

数 域

鉄筋コンクリート造ステンレス鋼ライニング ূ 構

約1,900m3 絘

固体廃棄物貯蔵庫A (東海発電所と共用, 既設) (13)

発電所敷地内

垣

鉄筋コンクリート造(地下1階,地上1階) 型 華

延 約5,300m² 檀 垣

約25,000本 (200ℓドラム缶相当) 貯蔵能力

(14) 固体廃棄物貯蔵庫B(東海発電所と共用, 既設)

発電所敷地內 鯝 Ā 鉄筋コンクリート造(地下1階,地上2階) 迴 樂

延 約10,000m² 衡 圄

約48,000本 (200ℓドラム缶相当) 貯蔵能力

8 - 10 - 17

第10.3-1図 固体廃棄物処理系統概要図

8 - 11 - 1

11. 放射線管理施設

11.3 放射線計測器

11.3.1 発電所内の放射線監視設備及び測定機器

外部放射線量測定設備及び測定機器

 \equiv

管理区域内の主要個所には,外部放射線量率を連続的に監視するエリア・モニタを設置する。このモニタは,中央制御室又は廃棄物処理建屋操作室で記録,指示し,放射線レベルが設定値を超えたときは,警報を発する。

11.3.2 放出放射性廃棄物及び系統内の放射線監視設備並びに測定機器

放射性廃棄物及び各系統内の放射性物質を監視するため,主要な系統にプロセス・モニタを設ける。このモニタは,連続的に放射線を測定し,中央制御室又は廃棄物処理建屋操作室で記錄,指示を行い,設定値を超えたときには,警報を発する。

また,各系統から採取した気体,液体,固体状試料中の放射性物質を測定する機器を備える。

主なプロセス・モニタは次のとおりである (第11.3-1図参照)

(11) 雑固体減容処理設備排水モニタ

雑固体減容処理設備の排ガス洗浄処理に伴って排出される排水中の放

射性物質を監視するモニタを備える

[その5-9×9燃料が装荷されたサイクル以降]

次の記載内容以外は,平成14年9月12日付け,平成14・07・10原第1号をもって設置変更許可を受けた東海第二発電所原子炉設置変更許可申請書の添付書類八「18.参考文献 (その5-9×9燃料が装荷されたサイクル以降)」と同じ。

- (57) 「沸騰水型原子力発電所 使用済燃料乾式貯蔵設備について」 (日立造船株式会社 HZTR-01 改2 平成14年11月)
- (91) 「廃樹脂焼却時の焼却設備除染性能について」
- 日本碍子株式会社,昭和60年11月(92) 「バーナー付帯高周波溶融炉による雑固体処理実証試験」
- 日本原子力学会 (2001年秋の大会) 予稿集
 - (93) 「HEPA フィルタの補集効率と除染係数」

(保健物理, 21 1986年)

下記項目の記述及び関連図面等を次のとおり変更する。

2. 旗へい

2.1 遮へい設計の基準

2.2 遊へい設計に際してとられる区域の区分

第9.2-1図 遊へい設計上の区域区分(地階平面)

第9.2-2図 遮へい設計上の区域区分(1階平面)

第9.2-3図 遮へい設計上の区域区分(タービン室及び原子炉補機室平面)

変更後における核燃料物質及び核燃料物質によって汚染された物による

添付書類九

放射線の被ばく管理並びに放射性廃棄物の廃棄に関する説明書

第9.2-4図 遮へい設計上の区域区分(原子炉建屋各階平面)

第9.2-5図 遮へい設計上の区域区分(廃棄物処理建屋地下1,2,3階

平面)

第9.2-6図 遮へい設計上の区域区分(廃棄物処理建屋1,2,3,4階

本面)

遮へい設計上の区域区分(使用済燃料乾式貯蔵建屋1階平面)

第9.2-7図

3. 発電所内の区域区分

3.1 管理区域,保全区域及び周辺監視区域の設定

3.1.1 管理区域

3.1.3 周辺監視区域

3.2.1 管理区域内の区分

管理区域内の管理

3. 2

3.4 周辺監視区域内の管理

第9.3-1図 管理区域図

第9.3-2図 周辺監視区域図

 $9 - \blacksquare - 1$

- 放射性廃棄物処理
- 基本的考え方 4.1
- 気体廃棄物処理
- 気体廃棄物の発生源 4.2.1
- 気体廃棄物の推定放出量 4.2.2
- 放出管理 4.2.3

希ガス漏えい率と実効エネルギ 第4.2-1表

冷却材中のよう素濃度 第4.2-2表 換気系における希ガス及びよう素の漏えい係数 第4.2-3表

希ガス放出量及び実効エネルギ 第4.2-4表

よう素の放出量 第4.2-5表

- 4.3 液体廃棄物処理
- 液体廃棄物の発生源と推定発生量 4.3.1
- 放出管理 4.3.2

第 9.4-1 図 液体廃棄物処理系の放射性物質濃度等説明図

- 4.4 固体廃棄物処理
- 固体廃棄物の種類とその発生 4.4.1
- 廃棄管理 4.4.2
- 平常運転時における一般公衆の被ばく線量評価 5.
- 東海第二発電所の放射性廃棄物による被ばく線量の計算
- 全身被ばく線量の計算 5.1.1
- 甲状腺被ばく線量の計算 5.1.2
- 被ばく線量の評価結果 5.1.3

風向別大気安定度別風速逆数の総和 第5.1.1-1表

風向別大気安定度別風速逆数の平均及び風向別風速逆数 の平均 第5.1.1-2表

風向出現頻度及び風速0.5~2.0m/sの風向出現頻度 第5.1.1-3表 風向出現頻度(隣接方位も含む。)及び間けつ放出時の 第5.1.1-4表

3方位に向かう合計回数

周辺監視区域境界における希ガスのア線による全身被ば 第5.1.1-5表

く線量 (東海第二発電所)

人の居住に着目した場合の希ガスのア線による全身被ば 第5.1.1-6表

<線量(東海第二発電所)

核種組成及び濃縮係数

被ばく線量計算に使用するパラメータ及び換算係数

第5.1.1-7表

第5.1.1-8表

液体廃棄物中放射性物質に関するパラメータ 第5.1.1-9表

よう素の年平均地上空気中濃度 第5.1.2-1表 気体廃棄物中に含まれるよう素による甲状腺被ばく線量 第5.1.2-2表 気体廃棄物中及び液体廃棄物中に含まれるよう素による 第5.1.2-3表

甲状腺被ばく線量

被ばく線量計算地点 (その1) 第5.1.1-1図 被ばく線量計算地点 (その2) 第5.1.1-2図 東海発電所の放射性廃棄物による被ばく線量の計算

気体廃棄物中の希ガスによる被ばく線量の計算 5.2.1 液体廃棄物中の放射性物質による被ばく線量の計算 5.2.2

被ばく線量の評価結果 5.2.3 風向別大気安定度別風速逆数の総和 第5.2.1-1表 風向別大気安定度別風速逆数の平均及び風向別風速逆 第5.2.1-2表

数の平均

第5.2.1-3表 風向出現頻度及び風速 0.5~2.0m/sの風向出現頻度

被ばく線量の監視評価 管理区域への出入管理

7.2 7.3

> 周辺監視区域境界における希ガスのア線による全身被 第5.2.1-4表

ばく線量(東海発電所)

人の居住に着目した場合の希ガスのィ線による全身被 第5.2.1-5表

ばく線量 (東海発電所)

東海第二発電所と東海発電所の放射性廃棄物による被ばく線量の評価 5.3

人の居住に着目した場合の希ガスのア線による全身被ば 第5.3-1表

結署

<線量(東海第二発電所,東海発電所合算)

6. 発電所内外の放射線監視

まえがき 6.1

発電所内の放射線監視 6.2

外部放射線量率の測定 6.2.1 空気中放射性物質の濃度及び表面汚染密度の測定 6.2.2

系統内の放射能測定 6.2.3 6.3 放射性廃棄物の放出管理

液体廃棄物 気体廃棄物 6.3.1

6.3.2

6.4 発電所外に関する放射線監視

外部放射線量の監視 6.4.1 環境試料の放射能監視 6.4.2

7. 所員被ばく管理

7.1 基本的考え方

 $9 - \blacksquare - 4$

薄へい

遮へい設計の基準 2.1

衆及び放射線業務従事者等が受ける線量が経済産業省告示「実用発電用原子 炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」に 進へいは, 通常運転時, 定期検査時等において, 発電所敷地周辺の一般公 定められた限度を十分下回るように設計する。 また、原子炉施設からの直接ガンマ線及びスカイシャインガンマ線による 人の居住の可能性のある地域における空気カーマが年間 $50 \, \mu \, {
m GyU}$ 下となるよ うに設計する。

2.2 遊へい設計に際してとられる区域の区分

塵屋内の遮へいは,放射線業務従事者の関係各場所への立入頻度,滯在時 間等を考慮した上で、外部放射線に係る線量率が次表の基準を満足する設計 とする。遮へい設計上の区域区分を第2.3-1図~第2.2-7図に示す。

	-					-
[60]	中央制御室	一般通路	高圧復水ポンプ	タービン室	廃液サンプルタンク室	使用済樹脂貯蔵タンク室
外部放射線に係る 設計基準線量率	0.006mSv/h以下*	0.01 mSv/h以下	0.06 mSv/h以下	0.12 mSv/h以下	1 mSv/h未満	1 mSv/h以上
X \$	A	В	υ	Ω	田	Ħ

転等に関する規則の規定に基づく線量限度等を定める告示」に基づき1.3mSv *管理区域境界については,経済産業省告示「実用発電用原子炉の設置, /3月間を超えないように管理する。

立入りに対する制限は、線量当量率、作業時間及び個人の線量等を考慮し

て定める。

また,中央制御室については,想定される事故時においても,中央制御室 内にとどまり各種の操作を行う運転員が,過度な被ばくを受けないように遮 へいを行う設計とする。

A: 0.006mSv/h以下 B: 0.01 mSv/h以下

C: 0.06 mSv/h以下

D:0.12 mSv/h以下

E:1 mSv/h未満

F:1 mSv/h以上

注)告示に基づき、1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

第2.2-1図 遮へい設計上の区域区分(地階平面)

A: 0.006mSv/h以下

B:0.01 mSv/h以下

C: 0.06 mSv/h以下

D: 0.12 mSv/h以下

E:1 mSv/h未満

F:1 mSv/h以上

注) 告示に基づき、1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

第2.2-2 図 遮へい設計上の区域区分(1階平面)

B: 0.00 mSv/h以下 C: 0.06 mSv/h以下 D: 0.12 mSv/h以下 E: 1 mSv/h 未満 F: 1 mSv/h以上

注)告示に基づき、1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

第2.2-3 図 遮へい設計上の区域区分 (タービン室及び原子炉補機室平面) A: 0.006mSv/h以下

A:0.006mSv/h以下 B:0.01 mSv/h以下 C:0.06 mSv/h以下 D:0.12 mSv/h以下 E:1 mSv/h 未満 F:1 mSv/h以上 注)告示に基づき、1.3mSv/3月間

注) 告示に基づき、1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

第2.2-4図 遮へい設計上の区域区分(原子炉建屋各階平面)

A:0.006mSv/h以下 B:0.01 mSv/h以下 C:0.06 mSv/h以下 D:0.12 mSv/h以下 E:1 mSv/h 未満 F:1 mSv/h 外 注)告示に基づき,1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 製定する。

A: 0.006mSv/h以下 B: 0.01 mSv/h以下 C: 0.06 mSv/h以下 D: 0.12 mSv/h以下 E: 1 mSv/h未満 F: 1 mSv/h以上 注) 告示に基づき, 1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

遮へい設計上の区域区分 第 2.2-6 図

3, 4階平面) (廃棄物処理違屋1,2,

9 - 2 - 8

遮へい設計上の区域区分 (廃棄物処理建屋地下1,2,3 階平面)

第 2.2-5 図

9 - 2 - 7

9 - 2 - 9

(使用済燃料乾式貯蔵建屋1階平面)

旗へい設計上の区域区分

第 2.2-7 図

A:0.006mSv/h以下 B:0.01mSv/h以下 C:0.06mSv/h以下 D:0.12mSv/h以下 E:1 mSv/h未満 F:1 mSv/h 未満 X) 告示に基づき,1.3mSv/3月間を超えるか 又は超えるおそれのある区域を管理区域に 設定する。

3. 発電所内の区域区分

3.1 管理区域,保全区域及び周辺監視区域の設定

3.1.1 管理区域

万室、使用済燃料の貯蔵施設、放射性廃棄物の廃棄施設等の場所であって、その場所における外部放射線に係る線量、空気中の放射性物質の濃度、又は放射性物質によって汚染された物の表面の放射性物質の密度が経済産業省告示「実用発電用原子炉の設置、運転等に関する規則の規定に基づく線量限度等を定める告示」(第2条)に定められた値を超えるか、又はそのおそれのある区域はすべて管理区域とする。実際には部屋、建屋その他の施設の配置及び管理上の便宜をも考慮して、第3.1−1図に示すように原子炉建屋、タービン建屋及びサービス建屋の一部、固体廃棄物貯蔵庫、廃棄物処理建屋、使用済燃料乾式貯蔵建屋等を管理区域とする。

また、新燃料搬入時,使用済燃料輸送時等,上記管理区域外において一時的に上記管理区域に係る値を超えるか,又はそのおぞれのある区域が生じた場合は,一時管理区域とする。

3.1.3 周辺監視区域

外部放射線に係る線量,空気中又は水中の放射性物質の濃度が,経済産業省告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」(第3条及び第9条)に定められた値を超えるおそれのある区域を周辺監視区域とする。周辺監視区域の境界は,実際には管理上の便宜も考慮して第3.1-2図に示すように設定する。

なお,当社敷地南端を海岸より国道345号線までほぼ東西に走る線以南は 日本原子力研究所によってすでに周辺監視区域の設定がされている。

3.2 管理区域内の管理

管理区域については, 「実用発電用原子炉の設置, 運転等に関する規則」 (第8条) に従って, 次の措置を講ずる。

- (1) 壁,さく等の区画物によって区画するほか、標識を設けることによって明らかに他の場所と区別し、かつ、放射線等の危険性の程度に応じて人の立入制限,かぎの管理等の措置を講ずる。
- (2) 放射性物質を経口摂取するおそれのある場所での飲食及び喫煙を禁止する。
- (3) 床,壁,その他人の触れるおそれのある物であって,放射性物質によって汚染されたものの表面の放射性物質の密度が,経済産業省告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」(第5条)に定める表面密度限度を超えないようにする。
- (4) 管理区域から人が退去し、又は物品を持ち出そうとする場合には、その者の身体及び衣服、履物等身体に着用している物並びにその持ち出そうとする物品(その物品を容器に入れ又は包装した場合には、その容器又は包装)の表面の放射性物質の密度が(3)の表面密度限度の10分の1を超えないようにする。

また、管理区域内は、場所により外部放射線に係る線量当量率,放射線業務従事者等の立入頻度等に差異があるので、これらのことを考慮して適切な管理を行う。

3.2.1 管理区域内の区分

管理区域は、放射性物質によって汚染された物の表面の放射性物質の密度 又は空気中の放射性物質濃度が法令に定める管理区域に係る値を超えるおそれのない区域と、表面の放射性物質の密度、又は空気中の放射性物質濃度が 法令に定める管理区域に係る値を超えるか又は超えるおそれのある区域である汚染管理区域とに区分する。

さらに、その外部放射線に係る線量当量率の高低により、また、汚染管理区域は、空気中の放射性物質の濃度又は床等の表面の放射性物質の密度の高低により、それぞれ細区分し、段階的な出入管理を行うことによって管理区域へ立ち入る者の被ばく管理等が、容易かつ確実に行えるようにする。

なお、原則として、通常運転時については、原子炉建屋、タービン建屋及 びサービス建屋の一部並びに廃棄物処理建屋を汚染管理区域とする。

3.4 周辺監視区域内の管理

「実用発電用原子炉の設置、運転等に関する規則」(第8条)の規定に基づき、周辺監視区域は人の居住を禁止し、境界にさく又は標識を設ける等の方法によって周辺監視区域に業務上立ち入る者以外の立入りを制限する。

周辺監視区域の外部放射線に係る線量,空気中又は水中の放射性物質の濃度及び表面の放射性物質の密度は,経済産業省告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」(第2条)に定める値以下に保つ。

具体的には、外部放射線に係る線量については、管理区域の外側において3月間について1.3mSvを超えないよう管理する。空気中及び水中の放射性物質の濃度については、管理区域との境界を壁等によって区画するとともに、管理区域内の放射性物質の濃度の高い空気や水が容易に流出することのないよう機気系統及び排水系統を管理する。

また,表面の放射性物質の密度については,「3.2 管理区域内の管理」 こ述べたように人及び物品の出入管理を十分に行う。 これらの基準を満足していることを確認するために、管理区域外において、

定期的に外部放射線に係る線量当量率及び外部放射線による線量当量の測定を行うとともに,必要に応じて,随時放射線サーベイを行う。

なお、周辺監視区域外においては、経済産業省告示「実用発電用原子炉の設置、運転等に関する規則の規定に基づく線量限度等を定める告示」 (第3条及び第9条)に定める線量限度及び濃度限度以下に管理するが、その方法については、放射性気体廃棄物は「4.2.3 放出管理」、放射性液体廃棄物は「4.3.3 放出管理」で述べる。

また,その監視については,「6.4 発電所外に関する放射線監視」で述べる。

第3.1-1図 管理区域図

第3.1-2図 周辺監視区域図

1. 放射性廃棄物処理

4.1 放射性廃棄物処理の基本的考え方

放射性廃棄物処理施設の設計及び管理に際しては、「実用発電用原子炉の設置、運転等に関する規則」を遵守するとともに、「発電用軽水型原子炉施設周辺の線量目標値に関する指針」の考え方に基づくものとする。

(1) 気体廃棄物については、その主要なものである蒸気式空気抽出器排ガスを30分減衰配管及び活性炭式希ガスホールドアップ装置に通し、排ガス中の放射能を十分減衰させ、監視しつつ排気筒から大気に放出する。

また,他の排気については,下記の対策を講じることにより,排気中の放射性物質の低減を図った後,監視しつつ排気筒から大気に放出する。

- 8. タービン軸封蒸気には復水貯蔵タンク水を加熱し蒸発させた放射性物質の濃度が十分低い蒸気を用いることにより、軸封部の戻り蒸気が流入する各クービングランド蒸気復水器からの排ガス中の放射性物質を無視できる程度とする。
- 5. 真空ポンプは原子炉の起動時,原子炉で発生した蒸気が復水器に流入するまで使用することとし、真空ポンプからの排ガス中の放射性物質濃度を十分低いものとする。
- c. 換気系の排気については、フィルタで処理することにより、排気中に含まれる粒子状放射性物質を無視できる程度とする。

なお,雑固体廃棄物焼却設備及び雑固体減容処理設備からの排ガスは,フィルタで処理することにより,排気中に含まれる粒子状放射性物質を無視できる程度とする。

(3) 液体廃棄物については、液体廃棄物処理系において濃縮等の処理を行い、原則として放射性物質の濃度がごく低い廃液を除いては環境放出を行わず、補給水として再使用する。

ム缶内に固化し貯蔵保管する。濃縮廃液は、濃縮廃液貯蔵タンクで放射能 を減衰させた後,固化装置(セメント固化式)で固化材(セメント)と混 合してドラム缶内に固化し貯蔵保管する。あるいは、放射能を減衰させた 容器に詰めて減容固化体貯蔵室に 圧縮可能なものは圧縮減容し、必要に応じて雑固体減容処 ドラム缶等に詰めて貯蔵保管するか、固型化 固体廃棄物は、その種類に応じてタンク等に貯蔵するか、又はドラム缶 原子炉冷却材浄化系及び燃 固化装置(セメント固化式)で固化材(セメント)と混合してドラム缶内 に固化し貯蔵保管する。復水脱塩装置及び液体廃棄物処理系脱塩装置から 発生する使用済樹脂、液体廃棄物処理系助材型ろ過装置から発生する廃入 固体廃棄物焼却設備で焼却し、焼却灰は不燃性雑固体廃棄物として処理す 固化装置(セメント固化式)で固化材(セメント)と混合してドラ 蔵するか、貯蔵した後、セメント混練固化装置でドラム缶内に固化材 焼却灰は不燃性雑固体廃棄物として処理する。また、不燃性雑固体廃棄物 用済粉末樹脂貯蔵タンクに貯蔵するか,又は貯蔵し放射能を減衰させた後, ラム缶等に詰めて貯蔵保管するか、又は雑固体廃棄物焼却設備で焼却し、 (モルタル)を充填してドラム缶内に固型化し貯蔵保管する。なお, 料プール冷却浄化系フィルタ脱塩装置から発生する使用済粉末樹脂は、 (セメント) と混練して固化し貯蔵保管する。可燃性雑固体廃棄物は, ラッジは貯蔵タンクに貯蔵するか、又は貯蔵し放射能を減衰させた後、 使用済燃料プールに貯蔵した後, 等に詰めて固体廃棄物貯蔵庫に貯蔵保管する。 後,減容固化設備で乾燥・造粒固化後, 用済制御棒等の放射化された機器は, N イトバンカプールに貯蔵保管す 理設備で溶融・焼却した後、 仕分けし, i.

4.2 気体廃棄物処理

4.2.1 気体廃棄物の発生源

通常運転時に発生する気体廃棄物中の放射性物質として、炉心燃料中で核分裂の際に生成される核分裂生成希ガス及びよう素並びに冷却材中の酸素、アルゴン等の放射化によって生成される気体状放射化生成物を考える。

核分裂生成希ガス及びよう素は,燃料棒被覆管に損傷があれば冷却材中に漏えいし,気体状放射化生成物とともに主蒸気に移行してタービンに運ばれ,蒸気式空気抽出器から気体廃棄物処理系へ移る。

一方,ポンプ,弁等の機器からの漏えいによって換気系の排気に一部の核分裂生成希ガス及びよう素が含まれる。

通常運転時における気体廃棄物の主な放出経路は次のとおりである。(

4.2-1図参照)

(1) 蒸気式空気抽出器排ガス

蒸気式空気抽出器排ガスに含まれる気体状の放射性廃棄物は、炉心燃料からの漏えいがある場合の核分裂生成希ガス及びよう素並びに酸素及びアルゴンの放射化により生成される気体状放射化生成物とからなる。

この排ガスは,30分減衰配管及び活性炭式希ガスホールドアップ装置に通して放射能を十分減衰させ,フィルタを通して排気筒から放出する。

(2) 換気系排気

ポンプ,弁等の機器からの漏えいによって原子炉建屋、タービン建屋及び廃棄物処理建屋の換気に若干の核分裂生成希ガス及びよう素が混在する。機気系排気は、フィルタを通した後、排気筒から大気に放出する。

(3) 真空ポンプ排ガス

短期間停止後起動する場合で,復水器真空度確立のため真空ポンプを運転する場合には,排ガスに復水器に残留する核分裂生成希ガス及びよう素

が含まれる。この排ガスは,フィルタを通した後,排気筒から大気に放出される。

4.2.2 気体廃棄物の推定放出量

気体廃棄物として放出される放射性希ガス(以下「希ガス」という。)及び放射性よう素(以下「よう素」という。)の放出量の推定は,「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」により行う。

4.2.2.1 気体放射性廃棄物放出量推定のための前提

(1) 原子炉施設の稼働率

原子炉施設の稼働率は,年間 80%とする。

(2) 炉心燃料からの希ガス漏えい率及び冷却材中のよう素濃度

・炉心燃料から冷却材への全希ガス漏えい率(以下「全希ガス漏えい率」という。)fは,年間平均を想定した 30分減衰機算値で 1.11×101°03q/

sとする。(以下「f」を無次元の値として用いる。)

希ガス各核種の漏えい率R , (Bq/s) は (4.2-1) 式で計算する。

これらの結果を第4.2-1表に示す。

$$R_{i} = 2.62 \cdot f \cdot Y_{i} \lambda_{i}^{0.4} \cdot e^{-\lambda_{i} \cdot t}$$

$$(4. \ 2 - 1)$$

ころい

R₁ : 希ガスの核種 i の漏えい率 (Bq/s)

f : 全希ガス漏えい率 (1.11×10^{10})

X₁:核種1の核分裂収率(%)

λ_i : 核種 i の崩壊定数 (s⁻¹)

t : 炉心燃料から漏えい後の減衰時間(s)

換気系排気 $t=1.80\times10^3$

 $t = 4.32 \times 10^4$ 真空ポンプ排ガス

 $t = 1.46 \times 10^5 \text{ (K r)}$ 蒸気式空気抽出器排ガス $t = 2.33 \times 10^6$ (X e)

また,炉心燃料からのよう素の漏えい率 $I_+(Bq/s)$ は,(4.2-2)式 で計算し, 冷却材中のよう素濃度A; (Bq/g) は, (4.2-3) 式で計算す

(4.2-2)

(4.2-3) $I_i = 2.47 \cdot f \cdot Y_i \lambda_i^{0.5}$ $A_i = \frac{I_i}{M(\lambda_i + \beta + \gamma)}$

 I_1 :核種:の炉心燃料からの漏えい率 (Bq/s)

f : 全希ガス漏えい率(1.11×10^{10})

Y:: 核種:の核分裂収率(%)

 λ_i : 核種iの崩壊定数 (s^{-1})

A:: 核種iの冷却材中濃度 (Bq/g)

M : 冷却材保有量(g)

:原子炉冷却材浄化系のよう素除去率 (s-1)

 $\beta = \left(1 - \frac{1}{DF}\right) \cdot \frac{FC}{M}$

DF:原子炉冷却材浄化系の除染係数

FC:原子炉冷却材净化系流量(g/s)

7 : よう素の主蒸気系への移行率 (s⁻¹)

 $\gamma = CF \cdot \frac{FS}{M}$

CF:よう素の主蒸気中への移行割合

FS:主蒸気流量(g/s)

パラメータ及び計算結果を第4.2-2表に示す、

4.2.2.2 気体状放射化生成物の放出量

原子炉内で酸素及びアルゴンの放射化により生成された気体状放射化生成 物は,蒸気式空気抽出器排ガスとして抽出される。比較的半減期の長いアル ゴン-41が,30分減衰配管及び活性炭式希ガスホールドアップ装置通過後環 境へ放出されることになるが、その推定放出率は、核分裂生成希ガスに比べ て無視し得る程度である。

4.2.2.3 希ガス及びよう素の放出量

- (1) 放出量の計算方法
- a. 蒸気式空気抽出器排ガス中の希ガス及びよう素

蒸気式空気抽出器排ガス中の希ガス及びよう素は、次により計算する

- (a) 復水器から蒸気式空気抽出器に移行する希ガス及びよう素の割合は、 それぞれ100%及び1%とする。
- 滞留時間は30分, 活性炭式希ガスホールドアップ装置の希ガスの保持 (b) 蒸気式空気抽出器排ガスの減衰に用いられる30分減衰配管の希ガス 時間は、キセノン27日間、クリプトン40時間とする。
- (c) 蒸気式空気抽出器排ガス中に含まれるよう素は, 活性炭式希ガスホ 一ルドアップ装置により十分に減衰するので無視する。
- 真空ポンプの運転による排ガス中の希ガス及びよう素

真空ポンプの運転による排ガス中の希ガス及びよう素は,次により計 算する。

は年間5回の間欠放出とする。この場合,放出希ガスの実効エネルギ は, (4.2-1) 式を用い, 減衰時間を12時間として計算した希ガスの (a) 真空ポンプの運転による排ガス中の希ガスの年間放出量は,1.25× 10⁴Bqに全希ガス漏えい率(1.11×10¹⁰)を乗じた値とし,放出回数

核種組成から求める。

- (b) 真空ポンプの運転による排ガス中のよう素-131及びよう素-133の年間放出量は、ともに0.4Bqに全希ガス漏えい率(1.11×10¹⁰)を乗じた値とし、放出回数は年間5回の間欠放出とする。
- . 換気系から放出される希ガス及びよう素

タービン建屋等の換気系から放出される希ガス及びよう素は、次により計算する。

(a) 希ガスの放出量は,第4.2-3表の係数に炉心燃料からの希ガスの各核種の漏えい率 (Bq/s)を乗じて計算する。

この場合, 放出希ガスの実効エネルギば, (4.2-1) 式を用い減衰時間を30分として計算した希ガスの核種組成から求める。

- (b) よう素の放出量は、第4.2-3表の数値に4.2.2.1(2)で求めた冷却材中のよう素-131及びよう素-133の濃度(Bq/g)を乗じた値とする。
- d. 定期検査時に放出されるよう素-131 定期検査時のよう素-131の放出量は, 2Bqに全希ガス漏え0 2 $\times 10^{10}$) を乗じた値とする。
- (2) 希ガス及びよう素の放出量
- a. 希ガスの放出量 希ガスの放出量及び実効エネルギの計算結果は,第4.2-4表に示すと おりとなる。
- よう素の放出量よう素の放出量の計算結果は、第4.2-5表に示すとおりとなる。

4.2.3 放出管理

気体廃棄物の放出に当たっては、排気筒において放出放射性物質を測定し,

周辺監視区域外における線量及び放射性物質の濃度が,経済産業省告示「実用発電用原子炉の設置,運転等の規則の規定に基づく線量限度等を定める告示」に定める周辺監視区域外における線量限度及び空気中の濃度限度を超えないようにするとともに「発電用軽水型原子炉施設周辺の線量目標値に関する指針」に基づき,希ガス及びよう素の放出管理目標値を下表のように設定し,これを超えないように努める。

標值 (Bq/y)	よう素-131	5.9×10 ¹⁰
放出管理目標	希ガス	1.4×10 ¹⁵

4.3 液体廃棄物処理

4.3.1 液体廃棄物の発生源

液体廃棄物の主なものは,各建屋の機器からのドレン,各建屋の床ドレン,再生廃液等の化学廃液及び洗濯廃液である。これらの主要な廃液のほかに維固体減容処理設備の排ガス洗浄廃液がある。液体廃棄物処理系の放射性物質濃度等説明図を第4.3-1図に示す。

機器ドレン廃液

機器ドレン廃液は、ポンプ、弁等各機器からの漏えい水、サンプルラインの排出液等からなり、化学的純度は高く脱塩水に近いが放射能レベルは通常高い $(約3.7 \times 10^3 \, \mathrm{Bq/cm}^3)$ 。

これらは、液体廃棄物処理系の機器ドレン処理系で処理する。 ろ過装置及び脱塩装置で処理した処理水(約3.7×10¹Bq/cm³)は復 水貯蔵タンクに回収し、再使用する。

. 床ドレン廃液

床ドレン廃液は, 原子炉建屋, タービン建屋, 廃棄物処理建屋等で発生する。化学的純度は低く, 放射能レベルは一定ではないが比較的低い(約3.7×10²Bq/cm³)。

これらは,通常は液体廃棄物処理系の再生廃液処理系に送り濃縮処理する。濃縮装置で処理した処理水は原則として機器ドレン処理系に送り回収,再使用するが,脱塩装置で処理した後,環境に放出する場合もある。

なお、放射能レベルの低い場合には、床ドレン処理条のろ過装置で処理した後、環境に放出することもある。

: 化学廃液

化学廃液は、脱塩装置樹脂の再生廃液及び分析室ドレン等からなる。 化学的純度は低く、酸性又はアルカリ性であることが多く,放射能レベ ルは一般に高い (約3.7× 10^3 Ba/cm^3)。

これらは、液体廃棄物処理系の再生廃液処理系で処理する。

濃縮装置で処理した処理水は,原則として機器ドレン処理系に送り回収,再使用するが,脱塩装置で処理した後,環境に放出する場合もある。

1. 洗濯廃液

洗濯廃液は,防護衣類等を水洗いする際に生ずる廃液,手洗・シャワ廃液であり,化学的純度は低く,放射能レベルも低い(約 3.7×10^{-2} Bq $/ cm^3$)。

これらは、液体廃棄物処理系の洗濯廃液処理系で処理する。

ろ過装置で処理した処理水は放射能濃度が低いことを確認したうえで 復水器冷却水と混合,希釈して環境へ放出する。 なお、汚染の程度の比較的高い上着類については、原則として水洗い

を行わない。

e. 排ガス洗浄廃液

排ガス洗浄廃液は,雑固体減容処理設備の排ガス処理装置の運転時に生ずる廃液であり,化学的純度は低く,放射能レベルも低い (~0Bq/cm³)。排ガス洗浄廃液は,排ガス洗浄廃液サンプルタンクに移し,放射能濃度が低いことを確認したうえで復水器冷却水と混合,希釈して環境へ放出する。

4.3.2 液体廃棄物の推定発生量

平常運転時に発生する液体廃棄物について,先行炉の運転実績及び設計運転条件を基に推定した発生量及び環境放出量を第4.3-1表に示す。

なお,トリチウムの環境放出量については,先行炉の実績等を考慮すると年間 3.7×10^{12} Bq以下と推定される。

液体廃棄物中の放射性物質による実効線量の評価を行う際には,液体廃棄物処理系の運用の変動を考慮して液体廃棄物の年間放出量は,トリチウムを除き3.7×10^{1°}Bq、トリチウムは3.7×10¹²Bqとする。

4.3.3 放出管理

放射性液体廃棄物は、放射性物質濃度のごく低いものを除き、原則として 環境には放出せず、できる限り固化するか処理後再使用する。 液体廃棄物処理系から廃液を環境に放出する際には、あらゆる場合、一時サンプルタンクに貯留した後、廃液中の放射性物質の濃度を測定し、復水器冷却水放水口における放射性物質の濃度が経済産業省告示「実用発電用原子炉の設置、運転等に関する規則の規定に基づく線量限度等を定める告示」に定める周辺監視区域外における水中の濃度限度を超えないようにするととも

に「発電用軽水型原子炉施設周辺の線量目標値に関する指針」に基づき, 放射性液体廃棄物の放出管理目標値を下表のように設定し, これを超えないよ

うに努める。

放出管理目標値 (³ Hを除く) (Bq/y) 3.7×10¹⁰

4.4 固体廃棄物処理

4.4.1 固体廃棄物の種類とその発生量

固体廃棄物には,使用済樹脂,廃スラッジ,濃縮廃液,雑固体廃棄物,使用済制御棒等がある。これらについて設計運転条件に基づき推定した発生量を第4.4-1表に示す。

固体廃棄物の取扱いは,添付書類八「10.3.3 主要設備」による。

4.4.2 保管管理

固体廃棄物を詰めたドラム缶等は,発電所敷地内の固体廃棄物貯蔵庫に貯 蔵保管する。 使用済制御棒等の放射化された機器等は,使用済燃料プールに貯蔵した後,固体廃棄物移送容器に収納してサイトバンカプールに移送し貯蔵保管する。

固体廃棄物貯蔵庫及びサイトバンカプールは、管理区域とし、周辺の放射

なお,必要に応じて固体廃棄物を廃棄事業者の廃棄施設に廃棄する。

線サーベイ等を行い厳重に管理する。

字·U、冬工校実 5 率 U え 漏 入 ひ 希 表 I − S. 4 第

% 2 2 10 × 10 − 5	₩ 5.50×10-1	#3 8. 23 × 10 − 1	001×10.1 (涂		(VeN) キ/	(木工校実際	L
√01×61.8 €%	^e 01×81.2 (涂	o r0i×ii°i €%	1 1 1 2 × 1 0 1 1 2 k		提	₽	
彩 5.82×10 ⁶	801×28.5 €%	89 2. 82×10 6	線 5.82×10 ⁶	2200.0	2.05×10 ⁻⁹	62.0	K r -85
彩 8: 22×10 ⁵	#3.84×10 ⁶	%3 3.95×10 6	901×96°E €#	0.020	7-01×47.8	₽0.0	X e - 131m
√01×88.2 C#	801×83.8 改	801×42.6 G#	801×72.6 C涂	g≯0.0	1.52×10-6	77.8	X e - 133
⁸ 01×89.8 €%	701×11.8 C淋	701×40.8 C淋	701×33.66×107	240.0	3.57×10 ⁻⁶	61.0	X e - 133m
0 ~	⁶ 01×40.1 C涂	%3 2, 51×10 ⁹	彩 5.60×10 ⁹	0.250	2-01×21.2	89.9	X e - 132
89 1.28×10 ⁶	801×70.1 0%	彩 6.32×10 ⁸	801×88.0 €	631.0	4.30×10 ⁻⁵	18.1	K r — 85m
▶01×87.9 C涂	%2 I∵I2×108	601×66.1 G涂	% 7. 25×10 9	1.950	6.88×10 ⁻⁵	3.58	88 - 1 H
0 ~	%1 4.23×106	801×72.8 6%	* 01×39.8 c*	6200.0	1.05×10-4	66.0	. ш88— т №
0 ~	89 3.21×10 6	601×73.1 C洙	e01×61.2 0洙	867.0	1.51×10-4	₽9.2	K r - 87
0 ~	0 ~	% 5.45×10 ⁹	o t 0 I × 90 · I G#	1.183	8.15×10-4	82.8	X e − 138
0 ~	0 ~	*30 4. 56×10 8	e O I × 27 . I C涂	284.0	7.38×10-4	1.06	X e - 135m
0 ~	0 ~	701×83.7 C沸	0 1 0 I × 37 . I 6 珠	181.0	3.02×10 ⁻³	81.8	X e - 137
0 ~	0 ~	701×60.2 0%	0 1 0 l × ł ł · l C沸	7.00.2	3.63×10 ⁻³	89 ⁺₽	68-1 X
0 ~	0 ~	0 ~	o r 01×86.5 0涂	0.850	1.75×10-2	5.16	X e - 139
0 ~	0 ~	0 ~	% 2.93×1010	1.325	2.14×10-2	69.₽	06-1 X
X1 40 時間+30 分 Xe 27 日間+30 分 動衰減	間報 2.1 動衰減	代 08 動衰減	任 0 動衰減	(M6V) .‡/(\$I	養宝數韻 (¹⁻ 8)	率加 (%)	棒種
	り率 (Bd\s)) え厭スは希		りなり		盛代熱	

第4.2-2表 原子炉冷却材中のよう素濃度

	1-131	I -133
冷却材中よう素濃度 (Bq/g)	約1.18×10 ³	約8.28×10 ³
パラメータ		
核分裂収率(%)	2.84	6.77
崩壊定数 (s-1)	9.95×10 ⁻⁷	9.26×10 ⁻⁶
冷却材保有量 (g)	2.89×10 ⁸	×108
原子炉冷却材浄化系流量 (g/s)	3.33×10^{4}	×104
主蒸気流量 (g/s)	1.78×10 ⁶	×10°
原子炉冷却材浄化系の除染係数	10	0
よう素の主蒸気中への移行割合	0.	0.02

第4.2-3表 換気系における希ガス及びよう素の漏えい係数

廃棄物処理建屋	1×10-3*	0.2 (g/s)	0.03 (g/s)
原子炉建屋	1×10-3*	0.6 (g/s)	0.2 (g/s)
タービン健屋	1×10-3	0.3 (g/s)	0.2 (g/s)
換気系	ガス	I - 131	I - 133
	卷	1 1, 1,)

*Xe-133, Xe-135, Xe-135m以外の核種は無視する。

T線実効 (MeV) 放出率 (Bq/s) 約5.1×10⁻² 約3.2×10⁷ 約2.5×10⁻¹ 約1.1×10⁷ 約2.2×10⁻¹ 約1.1×10⁷ 約2.2×10⁻¹ 約3.9×10⁶ 約2.2×10⁻¹ 約3.9×10⁶ 約2.5×10⁻¹ 約3.9×10⁶

タービン建屋 原子炉建屋

換気系

希ガス放出量 (Bq/y)

器

田

犮

蒸気式空気抽出器

真空ポンプ

希ガス放出量及び実効エネルギ

第4.2-4表

約 8.0×10¹⁴ 約 1.4×10¹⁴ 約 2.8×10¹⁴

第4.2-5表 よう素の放出量

約1.4×1015

約9.8×1013

廃棄物処理建屋

iline.

∮□

約9.8×10¹³

I 133	放出量 (Bq/y)	約 4.4×109	約 9.0×1010		約9.4×1010
Ī	放出率 (Bq/s)		約3.6×103	!	
I - 131	放出量 (Bq/y)	約4.4×10 ⁹	約3.3×10 ¹⁰	約2.2×1010	約5.9×10 ¹⁰
1	放出率 (Bq/s)	PRO AND MAY ANY VIOLENCE OF THE PROPERTY OF TH	約 1.3×10 ³	100 to the test of the	
Σ\$	智田田	真空ポンプ	運転時	定検時	गोन
	¥	真空"	換点	《保	₫¤

第4.3-1表 液体廃棄物の推定発生量と推定環境放出量

_					
	推定環境放出量	1	約 4,000m³/y* (約 1.5×10 ⁹ Bq/y)	約 5,500m³ / y (約 2.0×108 Bq/y)	終j 600m³/y (約 08q/y)
	推定発生量	約 180m³ / d	約 40m ³ /d	約 15m³/d	約 3m ³ / d
		機器ドレン	床ドレン, 化学廃液	洗濯廃液	排ガス洗浄廃液

が増加するような場合、放射能レベルの低い処理水を環境に放出することが *床ドレン, 化学廃液の処理水は通常再使用するが, 復水貯蔵タンク保有水量 ある。この環境放出量としては年間 4,000m3程度と推定される。

第 4.4-1表 固体廃棄物推定発生量

		中	年間推定発生量	wind
	種類		体積	2006ドラム缶
		国	(m ₃)	相当 (本)
	原子炉冷却材浄化系フィル	=455	7 1%	water
	夕脱塩装置			
公司 ·	燃料プール冷却浄化系フィ		6 13%	ì
夜 五 な 極 語	ルタ脱塩装置			
	復水脱塩装置	and the second s	約 12	arran .
	液体廃棄物処理系脱塩装置	ADDRESS	約 3	
	液体廃棄物処理系助材型ろ		(松 1) * 1	ì
1	過装置			
一窓イレシン	液体廃棄物処理系非助材型		%1 16	1
	2 過装置			
濃縮廃液	液体廃棄物処理系濃縮装置		約 200	(約30m ³)*2
雑固体	可燃性雑固体廃棄物焼却灰		約 8	約 40 * 3 * 4
廃棄物	不燃性雑固体廃棄物	ampah .	約 300	約1,500*4
* E ±	制御棒	約 19本	Amazin	
使用资	チャンネルボックス	約200個		and a
司軍権等	その他	発生量不定*5	and the state of t	1
				The state of the s

*1 通常における機器ドレン廃液の処理は非助材型ろ過装置で行うので、助材型ろ過装置 からの廃スラッジの発生はないが、ここでは年間の機器ドレン廃液推定発生量の1% 程度を助材型ろ過装置で処理する場合を想定して発生量を推定した。

*2 減容固化体としての発生量である。セメント混練固化した場合は約180本/年となる。

*3 使用済樹脂 (復水脱塩装置及び液体廃棄物処理系脱塩装置) と廃スラッジ (液体廃棄 物処理系助材型ろ過装置)を含む。

*4 雑固体廃棄物を雑固体減容処理設備で処理した場合は約390本/年となる。

*5 放射化された消耗部品等であり、定常的に発生するものではない。

-4 - 17

5.1 東海第二発電所の放射性廃棄物により一般公衆の受ける線量評価

「発電用軽水型原子炉施設周辺の線量目標値に関する指針」に基づき,気 体廃棄物中の希ガスからのγ線,液体廃棄物中に含まれる放射性物質(よう素を除く。)及び気体廃棄物中並びに液体廃棄物中に含まれるよう素に起因する実効線量を,「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」に従って評価する。

- 5.1.1 線量の計算
- 5.1.1.1 気体廃棄物中の希ガスのγ線に起因する実効線量
- 5.1.1.1.1 連続放出の場合
- (1) 計算のための前提条件
- a. 年間平均放出率

第4.2-4表に示した蒸気式空気抽出器及び換気系からの希ガス放出率並びに原子炉施設の稼動率(80%)を基に算出した年間平均の希ガス放出率と実効エネルギを下表に示す。

希ガス放出率 (Bq/s)	約4.1×10 ⁷
ァ線実効エネルギ (MeV)	約2.5×10-1

b. 放出源の有効高さ

下表に、排気筒の地上高、出口直径及び吹出し速度を示す。

吹出し速度	(m/s)	約14
出口直径	(m)	約4.5
地上高	(m)	裕140

放出源の有効高さは、排気筒の地上高に吹上げ高さを加算したものを風洞実験に基づいて補正した値(第5.1-1表に示す。)とする。

なお、吹上げ高さは、下記の式により計算する。

$$\Delta H = 3\frac{W}{U} \cdot D$$

いい

△H:吹上げ高さ (m)

W : 吹出し速度 (m/s)

D : 排気筒出口直径 (m)

 $-\frac{1}{U}$:風向別年間風速逆数の平均(s/m)

気象条件

気象条件は,現地における1981年4月から1982年3月までの観測による

実測値を使用する。

ただし, 静穏 (通常の風速計で観測した風速が0.5m/s未満) の場合は, 風速を0.5m/sとし, 風速 $0.5\sim2.0m/s$ のときの風向出現頻度 (第5.1-2表に示す。) に応じて各風向に比例配分する。

年間平均濃度の計算には,第5.1-3表に示す風向別大気安定度別風速遊数の総和を,吹上げ高さの計算には,第5.1-4表に示す風向別風速逆数の平均を使用する。

. 線量計算地点

周辺監視区域は,第3.1-2図に示されるように,南側では日本原子力研究所周辺監視区域に接しており,東側では海となっている。

したがって,線量の計算は排気筒を中心として16方位に分割した北側及び西側の周辺監視区域境界の各地点について行う。

なお、参考として、南側及び東側についても方位ごとに計算を行う。これらの地点を第5.1-1図に示す。

また、将来の集落の形成を考慮し、北側については周辺監視区域境界、西側については国道245号線、南側については日本原子力研究所の南側周辺監視区域境界のそれぞれの外側についても希ガスのγ線による実効

いれらの地点を第5.1-2図に示す。

線量が最大となる地点での線量を求める。

(2) 線量の計算方法

排気筒から放出された希ガスの放射性雲による計算地点における空気カーマ率は, (5.1-1) 式により計算する。

$$D = K_1 \cdot E \cdot \mu_{en} \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-\mu}}{4m^2} \cdot B(\mu r) \cdot \chi(x', y', z') dx' dy' dz'$$
 (5.1-1)

. ارا ارا D :計算地点 (x, y, 0) における空気カーマ率 $(\mu 6y/h)$

: r線の実効エネルギ (MeV/dis)

μen :空気に対するγ線の線エネルギ吸収係数 (m⁻¹)

μ :空気に対するγ線の線減衰係数("")

: 放射性雲中の点(x,y,z)から計算地点(x,y,0)ま

での距離 (m)

B (μr):空気に対するγ線の再生係数

B (
$$\mu$$
 r) = 1 + α (μ r) + β (μ r) 2 + γ (μ r) 3

ただし, μ_{en} , μ , α , β , ァについては, $0.5\mathrm{MeV}$ のヶ線に対する値を

用い、以下のとおりとする。

$$\mu_{\text{en}} = 3.84 \times 10^{-3} \text{ (m}^{-1})$$
 $\mu = 1.05 \times 10^{-2} \text{ (m}^{-1})$

$$\alpha = 1.000$$
 $\beta = 0.4492$ $\gamma = 0.0038$

$$z$$
 $(x$, y , z):放射性雲中の点 $(x$, y , z)における濃度 (Bq/m^3)

なお, x (x ', y ', z ') は, (5.1-2) 式により計算する。

$$\chi(x',y',z') = \frac{Q}{2\pi \cdot \sigma_y \cdot \sigma_z \cdot U} \exp\left(-\frac{y'^2}{2\sigma_y^2}\right) \times \left[\exp\left\{-\frac{(z'-H)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{(z'+H)^2}{2\sigma_z^2}\right\} \right]$$

だいい

Q : 放出率 (Bq/s)

U : 放出源高さを代表する風速 (m/s)

H : 放出源の有効高さ (m)

σ, : 濃度分布の y 方向の拡がりのパラメータ (m)

σ2 : 濃度分布の z 方向の拡がりのパラメータ (m)

計算地点における年間の実効線量は, 計算地点を含む方位及びその隣接方位に向かう放射性雲のア線からの空気カーマを合計して, 次の (5.1-

3) 式により計算する。

$$H_{\gamma} = K_2 \cdot f_h \cdot f_0(\overline{D}_L + \overline{D}_{L-1} + \overline{D}_{L+1}) \tag{5. 1-3}$$

1.

H, :計算地点における実効線量(μSv/y)

K2 :空気カーマから実効線量への換算係数 (μSv/μ6y)

f b :家屋の厳へい係数

f 0 : 居住係数

 $\overline{D_L}$, $\overline{D_{L-1}}$, $\overline{D_{L+1}}$: 計算地点を含む方位(L)及びその隣接方位に向

かう放射性雲のア線による年間平均空気カーマ

 $(\mu Gy/y)$ 。これらは(5.1-1)式から得られ

S空気力一マ率Dを放出モード,大気安定度別風

向分布及び風速分布を考慮して年間について積算

して求める。

5.1.1.1.2 間欠放出の場合

(1) 計算のための前提条件

a. 年間放出量及び放出回数

真空ポンプからの希ガスの年間放出量及び実効エネルギは,第4.2-4表に示すとおりとする。

放出回数は,年間5回とする。

b. 放出源の有効高さ

5.1.1.1.1(1)b.と同じとする。

c. 気象条件

5.1.1.1.1(1)c.と同じ気象データを用い、年間平均濃度の計算には、第5.1-4表に示す風向別大気安定度別風速逆数の平均を、吹上げ高さの計算には第5.1-4表に示す風向別風速逆数の平均を使用する。

d. 線量計算地点

5.1.1.1.1(1) d.と同じとする。

(3) 線量の計算方法

計算地点を含む方位及びその隣接方位に対する風向出現頻度(3方位の風向出現頻度の合計)並びに年間放出回数を基に,その3方位に向かう合計回数を二項確率分布の信頼度を67%として求め,さらにこれを3方位の風向出現頻度で比例配分する。

以上の方法で求めた3方位に向かう合計回数を第5.1-5表に示す。あわせて, 隣接方位への風向も含めた風向出現頻度を第5.1-5表に示す。

計算地点における空気カーマ率,実効線量は, (5.1-1)及び(5.1-

3) 式により計算する。

5.1.1.1.3 計算結果

周辺監視区域の北側及び西側境界の 6 方位並びに参考として,日本原子力研究所の周辺監視区域と接する南側及び海となっている東側の 10 方位について希ガスの7線による実効線量の計算を行った結果は,第 5.1-6 表に示すとおりである。

これによれば,北側及び西側の周辺監視区域境界で,希ガスの γ 線による実効線量の最大値は,排気筒の西南西約 650m の地点において,約 3.5μ Sv/yである。

周辺における将来の集落の形成を考慮し、北側については周辺監視区域境界,西側については国道 245 号線,南側については日本原子力研究所の南側周辺監視区域境界のそれぞれ外側について希ガスのγ線による実効線量の計算を行った結果は、第5.1-7表に示すとおりである。

これによれば,将来の集落の形成を考慮した地点で希ガスの7線による実効線量の最大値は,排気筒の南西約 1,300m の地点において,約 3.3μSv/yである。

5.1.1.2 液体廃棄物中に含まれる放射性物質に起因する実効線量

5.1.1.2.1 計算のための前提条件

(1) 放射性物質の年間放出量

トリチウムを除き年間 $3.7 \times 10^{10} \, \mathrm{Bq}$,トリチウムは年間 $3.7 \times 10^{12} \, \mathrm{Bq}$ とする。

なお、トリチウムを除く放射性物質の核種組成は、次のとおりとする。

	·				
組成(%)	2	-	2	ū	∞
核種	S r -89	S r - 90	I - 131	C s - 134	C s - 137
組成(%)	2	40	2	ಣ	30
核種	C r -51	M n -54	Fe-59	C o - 58	C o - 60

(2) 海水中における放射性物質の濃度

海水中における放射性物質の濃度は、復水器冷却水放水口の濃度とし、 放射性物質の年間放出量を年間の復水器冷却水量で除した値とする。 年間の復水器冷却水量は,循環水ポンプの稼動率を80%として,約 1.56×109m³/yである。 この場合、上記の年間放出量、核種組成及び年間の復水器冷却水放出量 から算出した復水器冷却水放水口における放射性物質の年間平均濃度は次 のとおりである。

種 年間平均濃度 (Bq/cm³)	-51 854.7×10 ⁻⁷	-54 #59.5×10 ⁻⁶	59 **********************************	-58 #97.1×10 ⁻⁷	-60	-89 $\$54.7\times10^{-7}$	-90 #52.4×10 ⁻⁷	131	-134 #51.2×10 ⁻⁶	-137 #11.9×10 ⁻⁶	en 1
核種	C r - 5	M n - 54	F e 59	C 0 - 5	C 0 - 6	S r - 8	S r - 90	I - 131	Cs - 134	C s - 137	:

5.1.1.2.2 線量の計算方法

実効線量の計算は次の計算式により行い、計算に用いるパラメータ等は、

第5.1-8表~第5.1-10表に示す値とする。

ただし、液体廃棄物中に含まれるよう素に起因する実効線量については、

「5.1.1.3 よう素に起因する実効線量」において計算する。

(5.1-4)(5.1-5) $A_{11} = C_{11} \cdot \sum_{k} (CF)_{1k} \cdot W_{k} \cdot f_{nk} \cdot f_{kl}$ $H_{\text{IV}} = 365 \cdot \sum_{k} K_{\text{IV}} \cdot A_{\text{IV}}$

Ηw : 海産物を摂取した場合の年間の実効線量 (μSv/y)

365 : 年間日数への換算係数 (d/y)

Kw1 : 核種1の実効線量への換算係数 (μSv/Bq)

A_{wi} :核種iの摂取率 (Bq/d)

$$9 - 5 - 8$$

C_{w1} : 海水中の核種 i の濃度 (Bq/cm³)

 $(\mathrm{CF})_{+\mathrm{k}}$:核種iの海産物 k に対する濃縮係数 $\left(rac{\mathrm{Bq}/\mathrm{g}}{\mathrm{Bq}/\mathrm{cm}^3}
ight)$

W : 海産物kの摂取量 (g/d)

f : 海産物kの市場希釈係数

f : 海産物kの採取から摂取までの核種1の減衰比

$$f_{h} = e^{\frac{0.693}{T_n}}$$
 (海藻類以外の海産物に対して)

$$f_{\mu} = \frac{3}{12} + \frac{T_{\mu}}{0.693 \times 365} (1 - e^{\frac{0.693 \times 368 \times 9}{T_{\mu}}})$$
 (海藻類に対して)

T, : 核種;の物理的半減期(d)

t k : 海産物 k (海藻類を除く)の採取から摂取までの期間(d)

5.1.1.2.3 計算結果

液体廃棄物中に含まれる放射性物質(よう素を除く。)に起因する実効線量は,約5.2μSv/yとなる。

- 5.1.1.3 よう素に起因する実効線量
- 5.1.1.3.1 気体廃棄物中に含まれるよう素に起因する実効線量
- 5.1.1.3.1.1 年平均地上空気中濃度の計算
- (1) 計算のための前提条件
- a. よう素放出量
- (a) 連続放出分

第4.2-5表に示した換気系からのよう素放出量及び原子炉施設の稼動率(80%)を基に算出した年間平均のよう素放出率を下表に示す。

放出率 (Bq/s)	約1.7×10 ³	約2.8×10 ³
核種	I - 131	I 133

(b) 間欠放出分

真空ポンプからのよう素の年間放出量は,第4.2-5表の値とする。 これを下表に示す。

年間放出量 (Bq/y)	約4.4×10 ⁹	約4.4×10 ⁹
被	I 131	I —133

また, 放出回数は, 年間5回とする。

b. 放出源の有効高さ

5.1.1.1.1(1)b.と同じとする。

c. 気象条件

連続放出の場合は,5.1.1.1.1(1)c.と同じとする。また,間欠放出の場合は,5.1.1.1.2(1)c.と同じとする。

. 計算地点

気体廃棄物中のよう素による被ばく経路は,吸入摂取,葉菜摂取及び牛乳摂取を対象とする。

吸入摂取及び葉菜摂取による実効線量については,将来の集落の形成及び葉菜摂取による被ばく経路の存在を考慮し,北側については周辺監視区域境界,西側については国道245号線,南側については日本原子力

研究所の南側周辺監視区域境界のそれぞれ外側において、年平均地上空 気中濃度が最大となる地点とする。

発電所の周辺5km程度の範囲内における乳牛の飼養地としては,発電 所の南南西方向の長砂,西方向の船場,北西方向の堅磐がある。 牛乳摂取による実効線量については、これらの実在する乳牛飼養地点 のうち年平均地上空気中濃度が最大となる地点とする

(2) 計算方法

a. 連続放出の場合

計算地点における年平均地上空気中濃度では(5.1-2) 式を用い, 隣 接方位からの寄与も考慮して,次の(5.1-6)式により計算する。

$$\frac{1}{\lambda} = \sum_{j=4}^{F} \frac{1}{\lambda_{jk}} + \sum_{j=4}^{F} \frac{1}{\lambda_{jk-1}} + \sum_{j=4}^{F} \frac{1}{\lambda_{jk+1}} \tag{5.1-6}$$

j:大気安定度(A~F)

L: 計算地点を含む方位

間欠放出の場合

計算地点における年平均地上空気中濃度の算出に当たっては、連続放 出の場合と同様,隣接方位からの寄与も含める。

また, 計算地点を含む方位へ向かう放出回数の計算は, 5.1.1.1.2(2) の希ガスの間欠放出の場合と同じ方法による。

(3) 計算結果

将来の集落の形成及び葉菜摂取による被ばく経路の存在を考慮した年平 均地上空気中濃度の最大地点は、排気筒の南西約3,300mの地点であり、こ の地点におけるよう素-131及びよう素-133の年平均地上空気中濃度の計

算結果は、第5.1-11表に示すとおり、それぞれ約 1.2×10^{-1} 9 Bq/ cm 3 及 び約1.8×10⁻¹⁰Bq/cm³である。

5.1-11表に示すとおり、それぞれ約 $5.4 \times 10^{-11} Bq/cm^3$ 及び約8.5また、実在する乳牛飼養地点のうち、年平均地上空気中濃度が最大とな るよう素-131及びよう素-133の年平均地上空気中濃度の計算結果は,第 るのは,排気筒の南南西約4,400mの地点(長砂)であり,この地点におけ ×10⁻¹¹Bq/cm³である。

5.1.1.3.1.2 線量の計算

空気中のよう素による被ばく経路は,吸入摂取,葉菜摂取及び牛乳摂取が あり、線量評価の対象年令グループは、成人、幼児及び乳児として、次の計 算式により行い, 計算に用いるパラメータ等は第5.1-8表及び第5.1-9表に 示す値とする。

吸入摂取

$$H_I = 365 \cdot \sum_{i=1}^{n} K_{Ii} \cdot A_{Ii}$$
 (5.1-7)
 $A_{Ii} = M_{a} \cdot \chi_{i}$ (5.1-8)

$$H_V = 365 \cdot \sum_{i} K_{ii} \cdot A_{ii}$$
 (5.1–9)

$$A_{II} = M_{I'} \cdot f_{m} \cdot f_{i'} \cdot f_{d'} \cdot F_{I'} \cdot e^{-T_{i'}} \cdot \chi_{i}$$

$$(5.1 - 10)$$

牛乳摂取

$$H_M = 365 \cdot \sum_{i} K_{Ii} \cdot A_{Mi} \tag{5.1 - 11}$$

$$A_{M} = M_{M} \cdot f_{m} \cdot f_{i} \cdot f_{j} \cdot F_{M} \cdot e^{-\frac{0.693}{T_{n}}} \cdot \mathcal{X}_{i}$$
 (5. 1 – 12)

けいは、

 H_1 : 吸入摂取による年間の実効線量 ($\mu \operatorname{Sv}/y$)

$$9-5-11$$

H_ν : 葉菜摂取による年間の実効線量 (μSv/y)

 H_M : 牛乳摂取による年間の実効線量 (μ Sv/y)

365 :年間日数への換算係数 (d/y)

Κ 1.1:核種1の吸入摂取による実効線量係数 (μSv/Bq)

Kri:核種1の経口摂取による実効線量係数(μSv/Bq)

T, : 核種;の物理的半減期(d)

A [i:核種]の吸入による摂取率 (Bq/d)

Avi:核種1の葉菜による摂取率 (Bq/d)

A_{Mi}:核種1の牛乳による摂取率 (Bq/d)

Ma : 呼吸率 (cm³/d)

M_v : 葉菜の摂取量 (g/d)

M_M : 牛乳の摂取量 (mℓ/d)

f m : 市場希釈係数

f , : 葉菜及び牧草の栽培期間の年間比

f_d : 葉菜の除染係数

f : 飼料の混合比

Fvi:核種iの空気中から葉菜に移行する割合

 $\begin{bmatrix} Bq/g \\ Bq/cm^3 \end{bmatrix}$ $\begin{bmatrix} Bq/m\ell \\ Bq/cm^3 \end{bmatrix}$

Fwi:核種iの空気中から牛乳に移行する割合

χ, :核種;の年平均地上空気中濃度 (Bq/cm³)

tv : 葉菜の採取から摂取までの期間 (d)

t M : 牛乳の採取から摂取までの期間 (d)

5.1.1.3.1.3 計算結果

吸入摂取, 葉菜摂取及び牛乳摂取による実効線量の計算結果を第5.1-12 表に示す。

これによれば、気体廃棄物中のよう素の吸入摂取、葉菜摂取及び牛乳摂取 による年間の実効線量は,成人で約 $0.09 \, \mu \, \mathrm{Sv}/\mathrm{y}$,幼児で約 $0.4 \, \mu \, \mathrm{Sv}/\mathrm{y}$,乳 児で約0.3μSv/yである。

5.1.1.3.2 液体廃棄物中に含まれるよう素に起因する実効線量

(1) 計算のための前提条件

a. よう素の年間放出量

5.1.1.2.1(1)に示すとおりとする。

b. 海水中におけるよう素の濃度

5.1.1.2.1(2)に示すとおりとする。

(3) 線量の計算方法

線量の計算は、次の計算式により行い、計算に用いるパラメータ等は第

5.1-8表及び第5.1-9表に示す値とする。

a. 海藻類を摂取する場合

$$H_{WT} = K_3 \cdot \sum_{i} \frac{A_{y_i}}{A_s} \cdot (SEE)_i \cdot f_{si}$$
 (5.1-13)

$$A_{yy} = C_{yy} \cdot \sum_{k} (CF)_{k} \cdot W_{k} \cdot f_{mk} \cdot f_{ki}$$
 (5.1-14)

$$A_s = C_{W_s} \cdot \sum_{k} (CF)_k \cdot W_k \tag{5.1-15}$$

Hwr : 海産物を摂取した場合の年間の実効線量 (μSv/y)

K₃ : 実効線量への換算係数 (dis.g.μSv MeV·Bq·y

q。: 甲状腺中の安定よう素量(g)

A wi : 核種 i の摂取率 (Bq/d)

A。 :安定よう素の摂取率 (g/d)

 $(SEB)_1$:核種 1 の甲状腺に対する比実効エネルギ $\left\{egin{array}{c} MeV \ g - dis. \end{array}
ight.$

f_{si}:核種;の甲状腺中比放射能の減衰係数

C M : 海水中の核種 i の濃度 (Bq/cm3)

 $(\mathrm{CF})_k$:よう素の海産物 $_{\mathrm{K}}$ に対する濃縮係数 $\left(rac{\mathrm{Bq/g}}{\mathrm{Bq/cm}^3}
ight)$

W k : 海産物 k の摂取量 (g/d)

fmk : 海産物kの市場希釈係数

f_{ki}:海産物kの採取から摂取までの核種iの減衰比

$$f_{ki} = e^{-\frac{0.693}{T_{ii}}t_k}$$

$$f_{li} = \frac{3}{12} + \frac{T_{ii}}{0.693 \times 365} (1 - e^{-\frac{0.693}{T_{ii}} \times 365 \times \frac{9}{17}})$$
 (海薬類に対して)

t k : 海産物 k (海藻類を除く)の採取から摂取までの期間 (d) T, : 核種 i の物理的半減期 (d)

Cw。: 海水中の安定よう素の濃度 (g/cm³)

掩藻類を摂取しない場合

$$H_F = 365 \cdot \sum_{i} K_{II} \cdot A_{FI}$$
 (5.1-16)

$$A_{R} = C_W \cdot \sum_{k} (CF)_k \cdot W_k \cdot f_{mk} \cdot f_{kl}$$
 (5.1-17)

ころい

Ηρ :海産物 (海藻類を除く)を摂取した場合の年間の実効線量 (μ

Sv / y

: 年間日数への換算係数 (d/y) 365

 K_{T+1} :核種:の経口摂取による実効線量係数($\mu\,\mathrm{Sv}/\mathrm{Bq}$)

A F i : 核種iの摂取率 (Bq/d)

C m; : 海水中の核種;の濃度 (Bq/cm³)

W_k : 海産物 k (海藻類を除く)の摂取量 (g/d)

fmk : 海産物kの市場希釈係数

f ki : 海産物kの採取から摂取までの核種iの減衰比

$$f_{ki} = e^{-\frac{U_i o y_3}{T_{ii}}}$$

Tri: 核種1の物理的半減期(d)

t k : 海産物 k (海藻類を除く)の採取から摂取までの期間(d)

(2) 計算結果

計算結果を第5.1-13表に示す。これによれば、液体廃棄物中に含まれ

るよう素による実効線量は、海藻類を摂取する場合,成人で約 $0.008 \, \mu \, \mathrm{Sy}$ /y, 幼児で約0.03μSv/y, 乳児で約0.03μSv/yとなる。

また,海藻類を摂取しない場合は,成人で約0.008μSv/y,幼児で約

0.02μSv/y, 乳児で約0.01μSv/yとなる。

5.1.1.3.3 気体廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取す

る場合の実効線量

(1) 線量の計算の方法

実効線量の計算は、次の計算式により行い、計算に用いるパラメータ等

は,第5.1-8表及び第5.1-9表に示す値とする。

a. 海藻類を摂取する場合

$$H_T = K_3 \cdot \sum_{i=1}^{4} \frac{A_i}{A_s} \cdot q_s \cdot (SEE)_i \cdot f_{si}$$
 (5.1—

H_T :年間の実効線量 (μSv/y)

 K_3 :実効線量への検算係数 $\left(\frac{\text{dis} \cdot \mathbf{g} \cdot \boldsymbol{\mu} \cdot \mathbf{S} \mathbf{v}}{\text{MeV} \cdot \text{Bq} \cdot \mathbf{y}} \right)$

A, :核種;の摂取率 (Bq/d)

 $(A_i = 0.90 \cdot A_{ii} + A_{iv} + A_{iw} + A_{iw})$

A。 : 安定よう素の摂取率 (g/d)

9 - 5 - 16

(5.1-15) 式から得られる値を用いる。

q。: 甲状腺中の安定よう素量(g)

 $(SEB)_i$:核種iの甲状腺に対する比実効エネルギ $\left[egin{array}{c} MeV \ g \cdot dis \end{array}
ight]$

f si : 核種 i の甲状腺中比放射能の減衰係数

b. 海藻類を摂取しない場合

$$H_{TF} = 365 \cdot \sum_{n} \left\{ K_{II} \cdot A_{II} + K_{TI} \cdot \left(A_{vI} + A_{MI} + A_{FI} \right) \right\} \tag{5.1 - 19}$$

ر را الا Hrr: 年間の実効線量 (μSv/y)

365 :年間日数への換算係数 (d/y)

K11:核種;の吸入摂取による実効線量係数(μSv/Bq)

Kr1:核種iの経口摂取による実効線量係数 (μSv/Bq)

(2) 計算結果

計算結果を第5.1-13表に示す。これによれば,気体廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取する場合の実効線量は,海薬類を摂取する場合。成人で約0.01 μ Sv/y、幼児で約0.06 μ Sv/y、乳児で約0.07 μ Sv/yとなる。

また、海藻類を摂取しない場合は,成人で約0.09 μ Sv/y,幼児で約0.4 μ Sv/y,乳児で約0.3 μ Sv/yとなる。

5.1.2 線量の評価結果

周辺における将来の集落の形成を考慮し、気体廃棄物中の希ガスの7線による実効線量、液体廃棄物中の放射性物質(よう素を除く。)による実効線量並びに気体廃棄物中及び液体廃棄物中に含まれるよう素を同時に摂取する場合の実効線量を評価した結果は、それぞれ約3.3μSv/y,約5.2μSv/y及

び約0.4μSv/yとなり,合計約9.0μSv/yである。

この値は, 「発電用軽水型原子炉施設周辺の線量目標値に関する指針」に示される線量目標値 50 m Sv/y を下回る。

放出源の有効高さ 第5.1-1表

風向出現頻度及び風速 0.5~2.0m/sの風向出現頻度

第5.1-2表

(%)

		T	1	1		<u> </u>	l			Γ
有効高さ(m)	145	160	130	120	140	165	180	155	155	160
方位	NNE	S	MSS	N S	WSW	W	WNW	ΜN	NNW	Z

表中の方位以外の有効高さについては,上表の有効高さのうち最も低い値を 使用する。

風速 0.5~2.0m/s の風向出現頻度 5.8 6.5 5.8 3.3 3.65.8 8.4 4.7 9,9 9.1 6.67.3 6.5 8.0 風向出現頻度 9.5 18.7 4.4 2.8 3.5 6.73.1 6.23.0 5.2 3.5 4.3 9.8 10.5 5.5 3.2 風下方位 SSW W S WWNWNNN NNE ENE \Box SWNWNE SE ES] SS \geq Z ſΞÌ S NNE ENE SSE SSWW S WWNW NNW風向 N E SE $_{\rm S}$ \mathbb{N} ESI \mathbb{N} \Box S Z

風向, 風速観測点:標高 140m

第5.1-3表 風向別大気安定度別風速逆数の総和

(m/s)	<u>(</u> ±,	21.72	25.71	11.73	14.08	11.50	10.33	12.23	16.79	13.44	21.70	19.32	13.98	19.15	24.93	23.18	21.57
	Э	29.76	31.00	12.42	11.01	5.13	5.27	11.90	6.64	7.77	17.47	12.69	14.67	29.91	33.90	24.75	22.55
	D	115.54	195.58	80.21	67.55	42.70	32.26	40.32	30.44	38.55	54.33	40.98	53.72	91.44	102.39	64.54	50.38
	S	8.33	25.11	20.82	16.54	8.15	9.97	21.83	6.30	4.35	7.56	8.38	12.26	22.38	13.30	6.88	6.70
	В	13.28	16.22	27.14	25.67	31.82	20.71	34.98	9.83	8.79	23.42	20.28	38.13	28.72	17.57	10.80	6.10
•	А	0.37	0.94	4,23	5.77	4.81	2.91	6.29	0.70	2.55	3.78	4.04	1.80	1.65	2.77	1.27	1.81
	大気安定度 風下方位	SSW	S W	WSW	W	WNW	NW	NNW	Z	NNE	N E	ENE	日	ESE	SE	SSE	S
	東面面面	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	S W	WSW	W	WNW	NW	NNW	z

大気安定度観測点:標高 18m

風向, 風速観測点:標高 140m

第 5.1-4表 風向別大気安定度別風速逆数の平均及び風向別風速 第 5.1-4表 風向別大気安定度別風速逆数の平均 逆数の平均

 $(\mathbb{R} \setminus \mathbb{R})$

大	大気安定度風下方位	A	В	၁	D	臼	ഥ	全安定度
NNE	SSW	2.00	0.52	0.25	0.20	0.25	0.30	0.23
NE	S W	0.41	0.30	0.20	0.16	0.26	0.27	0.18
ENE	WSW	0.78	0.42	0.22	0.22	0.39	0.41	0.27
山	M	0.45	0.39	0.32	0.32	0.49	0.57	0.36
ESE	WNW	0.45	0.50	0.32	0.38	0.58	0.59	0.43
SE	NN	0.31	0.28	0.24	0.30	0.62	0.30	0.30
SSE	NNN	0.32	0.22	0.18	0.23	0.47	0.28	0.23
S	z	0.61	0.35	0.18	0.25	0.23	0.35	0.27
SSW	NNE	0.59	0.36	0.18	0.24	0.27	0.21	0.25
S W	NE	0.44	0.37	0.18	0.28	0.29	0.26	0.28
W S W	ENE	0.74	0.38	0.24	0.33	0.35	0.36	0.34
W	田	0.53	0.47	0.29	0.34	0:30	0.36	0.36
WNW	ESE	0.49	0.38	0.20	0.20	0.24	0.21	0.22
NN	SE	0.63	0.37	0.20	0.19	0.23	0.24	0.21
NNN	SSE	1.02	0.48	0.20	0.26	0.24	0.32	0.27
z	S	1.40	0.78	0.42	0.33	0.35	0.50	0.38

大気安定度観測点:標高 18m

風向, 風速観測点:標高 140m

第5.1-5表 風向出現頻度 (隣接方位も含む) 及び間欠放出時の

3方位に向かう合計回数

3 方位に向かう 合計回数	2	2	2		1		,		y	The state of the s	gaamed	*******	2	2	-	
風向出現頻度(%) (隣接方位も含む)	31.4	34.9	29.8	13.9	10.3	12.1	12, 3	12.7	11.7	12.2	13.0	17.6	24.6	25.8	19.2	
通	NNE	N N	ENE	[7]	ESE	SE	SSE	S	SSW	S W	W S W	W	WNW	MN	WNN	A STREET, SALL SALL SALL SALL SALL SALL SALL SAL

風向, 風速観測点:標高 140m

第5.1-6表 周辺監視区域境界における希ガスの7線に起因する 実効線量(東海第二発電所)

		東海第二3	東海第二発電所排気筒から計	7日日子 20日子 7日日子 7日日子 7日日子 7日日子 7日日子 7日日子 7日日子 7
		算地点への	算地点への方位及び距離 (m)	
		方位	距離	美効祿量(μ Sv/y)
		WSW	650	約3.5×10°
		W	550	約2.5×10°
F. B	# 4 1	WNW	009	約 1.7×10°
一角と開	周辺監視区域現外	MN	099	約1.6×10°
		NNW	068	約1.5×10°
		Z	860	約 1.1×10°
		N N E	290	約1.8×10°
		N E	350	約3.8×10°
		ENE	280	約4.7×10 ⁰
	国 建	<u>田</u>	230	約5.7×10 ⁰
物		ESE	240	約7.3×10°
海瓜		SE	280	約6.9×100
		SSE	360	約4.4×10°
	II A	S	330	約3.9×100
	原十九四四十九四四十二十四四十二十二四十二十二十二十二十二十二十二十二十二十二十二	SSW	360	約6.0×10°
	姓光炉側	S W	460	約 6.7×10°

(注) 計算地点については、第5.1-1図に示す。

9 - 5 - 26

第5.1-7表 人の居住に着目した場合の希ガスのγ線に起因する

第5.1-8表 線量計算に使用するパラメータ及び換算係数

実効線量(東海第二発電所)

3.4 元: 4.7 年日日十 4 开北临	布ガムの7 被に起因 9 る美効概量 (μSv/y)		約1.1×10°	約1.5×10°	約1.6×10°	約1.7×10°	約 2.1×10°	約 2. 4×10°	約3.3×10°	約1.6×10°	約 6. 4×10 ⁻¹
*		距離	860	890	099	009	099	930	1,300	1,690	1,870
計算地点	[東海第二発電所排気筒からの方位及び距離(m)]	方位	Z	NNN	N W	WNW	W	W S W	S W	SSW	S
	[東海第二発電]		А	В	C	D	Ħ	Ħ	Ŋ	Н)-roud

(注)計算地点については,第5.1-2図に示す。

パラメータ	50 号	単位	数值
空気カーマ率への機算係数	${ m K}_1$	dis·m³·µGy MeV·Bq·h	4.46×10 ⁻⁴
空気カーマから実効線 量への換算係数	K_2	$\mu \text{ Sv} / \mu \text{ Gy}$	0.8
実効線量への換算係数	$ m K_3$	dis·g·μSv MeV·Bq·y	2.52×10^{2}
家屋の遮へい係数	fh		The state of the s
居住係数	\mathbf{f}_{0}	1	**************************************
			成人 I-131 0.010 I-133 0.022
甲状腺に対する比実効 エネルギ	(SEE) i	MeV	幼児 I-131 0.058 I-133 0.12
			乳児 I-131 0.15 I-133 0.33
		The state of the s	3.7
呼吸率	Ma	cm^3/d	
		***************************************	幼児 2.86×106
葉菜の摂取量	Μv	p/8	成人100, 幼児50, 乳児20
			葉菜・海産物
葉菜、牛乳及び海産物	4	Į.	牛乳 成人 ~ 1
の市場希釈係数	Ī		7 幼児) 8 個) 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
華菜及7K 牧草の栽培期			חלקר
間の年間比	 	ı	0.5
飼料の混合比	f		
葉菜の除染係数	fa		0.5
よう素が空気中から葉葉に移行する割合	Н > 	Bq/g	$I - 131 2.6 \times 10^6$ $I - 133 4.3 \times 10^5$
		.	

1	. 7
	1
L	c
	١

			TTT 14-4		12-	1. 3630		O 846	***************************************	v	O 246	
	数值	$I - 131 6.2 \times 10^{6}$ $I - 133 4.6 \times 10^{4}$	I-131 8.06 I-133 0.87 よう素以外は第 5.1-9 表 に示す。	人 200, 児 600	第5.1-9表に示す。	乳児の牛乳摂取のみ3 その他は無視	成人 魚類 200 無脊椎動物 20	海藻類 40 幼児	角類 100 無脊椎動物 10 海藻類 20	乳児 魚類 40 無脊椎動物 4 海藻糖		成人 1.2×10 ⁻² 幼児 2.1×10 ⁻³ 乳児 7.5×10 ⁻⁴
(続き)	単	Bq/ml Bq/cm³	p	me/d Ba/s	10	Ū			b/g		g/cm ³	مح
	記有	FMI	<u>.</u>	M	(CF) 1 K	t t t t k v		***************************************	W		C w s	ď °
	パラメータ	よう素が空気中から牛 乳に移行する割合	核種:の物理的半減期	牛乳の摂取量施労がいいないの機能		葉菜, 牛乳及び海産物の採取から摂取までの 期間			海産物トの摂取量		梅水中の安定よう素の 機度	甲状腺中の安定よう素量

		(続き)	
パラメータ	記号	単位	数值
甲状腺中比放射能の減衰係数	A-1 22	l	成人 I - 131 0.1 I - 133 0.01 幼児 I - 131 0.3 I - 133 0.04 乳児 I - 131 0.4 I - 131 0.4
液体廃棄物中に含まれ る核種 i の実効線量係 数	Kwi	μ Sv∕Bq	第5.1-10表に示す。
よう素における核種;の吸入摂取による実効線量係数	K 1 .	μ Sv / Bq	成人 I -131 1.5×10 ⁻² I -133 2.9×10 ⁻³ 幼児 I -131 6.9×10 ⁻² I -133 1.6×10 ⁻² 乳児 乳児 I -131 1.3×10 ⁻¹ I -131 3.5×10 ⁻¹
よう素における核種 i の経口摂取による実効 線量係数	X T.	μ Sv∕Bq	成人 I -131 1.6×10 ⁻² I -133 3.1×10 ⁻³ 幼児 I -131 7.5×10 ⁻² 1 -131 1.4×10 ⁻¹ 乳児 I -131 1.4×10 ⁻¹ I -131 3.8×10 ⁻²

9 - 5 - 30

第5.1-9表 物理的半減期及び濃縮係数

第5.1-10表 液体廃棄物中放射性物質の実効線量係数

en amendida kasa seria sebagai kenasa sempai menga kasah pada sebegai kenasa kenasa kenasa kenasa kenasa kenas	掩藤類	2×10^{-3}	2×10 4	5×10 ⁴	10 3	10 3	10	10	4×10^{3}	2×10	2×10		2.0×10 ²
濃縮係数	無脊椎動物	2×10^{-3}	10 4	2×10 4	10 3	10 3	9	9	5×10	2×10	2×10	y1	3.3×10 ³
	魚類	4×10 ²	6×10 ²	3×10 ³	10 2	10 2		1	10	3×10	3×10		3.3×10 ³
物理的	半減期	27.7d	312.5d	44.6d	70.8d	5.27y	50.5d	28.5y	8.06d	2.06y	30.0y	12.26y	249.8d
核		C r - 51	M n - 54	Fe-59	C o 58	C o - 60	S r -89	S r -90	I 131	Cs-134	Cs-137	H – 3	A g -110m

実効線量係数 (μSv/Bq) 1.8 \times 10 - 5 3.4×10^{-3} 2.8×10^{-2} 2.8×10^{-3} 7.1×10^{-4} 1.8 \times 10 $^{-3}$ 7.4×10^{-4} 2.6×10^{-3} 1.9 \times 10⁻² 1.3×10^{-2} 3.8×10^{-5} A g - 110mC s - 134C s - 137M n - 54S r - 89S r - 90Fe-59 Co-58 $C \circ -60$ C r - 51H - 3種 颒

第5.1-11表 よう素の年平均地上空気中濃度(東海第二発電所)

摂取	Ą	年平均地	年平均地上空気中濃度 (Bq/cm³)	/cm³)
経路	修 種	連続放出分	間欠放出分	수 급 급
吸入	I - 131	約1.1×10-10	約9.9×10-12	約1.2×10-10
**	I -133	約1.7×10-10	約 9.9×10-12	約1.8×10-10
선	I 131	約 4.9×10-11	約5.0×10-12	約5.4×10-11
_	I — 133	約8.0×10-11	約5.0×10-12	約8.5×10-11

第5.1-12表 気体廃棄物中に含まれるよう素に起因する実効線量 (東海第二発電所)

争		*	実効線量 (μSv/y)	(
グループ	摂取経路	I -131	I -133	√ □
	吸入	約1.4×10-2	約 4.3×10-3	約1.9×10-2
4		約 4.4×10-2	約2.2×10-3	約 4.7×10-2
₹	升聲	約 2.0×10-2	約 4.4×10-4	約2.0×10-2
	合計	約7.8×10-2	約7.0×10 ⁻³	約8.5×10-2
	吸入	約 2.6×10 ⁻²	約9.4×10-3	約3.5×10-2
	業株	約 1.0×10 ⁻¹	約 6.2×10-3	終 1.1×10-1
刻况	升壓	約 2.3×10-1	約 6.1×10-3	約 2.4×10-1
	合計	約3.6×10-1	約2.2×10-2	約3.8×10-1
	吸入	約1.6×10-2	約 6.7×10-3	約2.3×10-2
į	業業	約7.8×10-2	約5.5×10-3	約8.3×10-2
* 12	牛署	約2.0×10-1	約7.4×10-4	約 2.0×10 ⁻¹
	√ □	約2.9×10-1	約1.3×10-2	約3.0×10-1

第5.1-13表 気体廃棄物中及び液体廃棄物中に含まれるよう素

に起因する実効線量 (東海第二発電所)

液体廃棄物中に含まれるよう素に含まれるよう素に含まれるよう素を同時に摂取に起因する実効線量 する場合の実効線量 (μSv/y)	海藻類を摂取す 海藻類を摂取し 海藻類を摂取す 海藻類を摂取しる場合 ない場合 る場合 ない場合	$\$91.4 \times 10^{-2}$ $\$99.3 \times 10^{-2}$	$\$95.7 \times 10^{-2}$ $\$94.0 \times 10^{-1}$	$\$97.4 \times 10^{-2}$ $\$93.2 \times 10^{-1}$
合まれるよう素 気体廃 食量 (y)	海藻類を摂取し 海藻類ない場合 8場合	約8.3×10 ⁻³ 約1.4	約1.9×10 ⁻² 約5.7	約1.5×10 ⁻² 約7.4
液体廃棄物中に含ま に起因する実効線量 (μSv/y)	梅藻類を摂取す る場合	約8.5×10 ⁻³	約2.5×10 ⁻²	約3.2×10 ⁻²
	グループ	成人	幼児	乳児

第5.1-1図 線量計算地点図 (その1)

9 - 5 - 33

9 - 5 - 34

- 5.2 東海発電所の放射性廃棄物により一般公衆の受ける線量評価
- 5.2.1 気体廃棄物中の希ガスのγ線に起因する実効線量

気体廃棄物の主なものは、生体遮へいコンクリートの熱を除去するための 冷却用空気が遮へい壁と原子炉の間を通過する際に放射化されたアルゴンー 41である。

よう素、希ガス等の核分裂生成物については、破損燃料検出器が設けられており原子炉運転中でも直ちに燃料取換機により原子炉外に破損燃料を取り出せるようになっている。したがって、一次冷却材中の核分裂生成物濃度が高くなることはなく、また、冷却材の漏えいも少ないことから外部へ放出される量は、無視し得ると考えられる。

したがって、ここでは排気筒からの放出の主体となるアルゴン-41による 実効線量の計算を行うものとする。

- (1) 計算のための前提条件
 - a. 年間平均放出率

放出される気体廃棄物の大部分は、生体遮へい壁冷却用空気の放射化 によって生成されるアルゴン-41であり、発電所の年間稼働率(80%) を基に算出した年間平均の希ガス放出率と実効エネルギを下表に示す。

希ガス放出率 (Bq/s)	約1.9×10 ⁷
γ線実効エネルギ(MeV)	約1.28

b. 放出源の有効高さ

排気筒は原子炉建屋屋上に設置されており、その地上高、出口直径及 び吹出し速度を下表に示す。

吹出し速度	(m/s)	約16
出口直径	(m)	約2.7
地上南	(m)	終381

放出源の有効高さの評価は, 5.1.1.1.1(1)b.の東海第二発電所の場合 と同じ方法による。方位別の有効高さを第5.2-1表に示す。

気象条件 ن

N 気象条件は,現地における1981年4月から1982年3月までの観測によ 実測値を使用する。 ただし, 静穏 (通常の風速計で観測した風速が0.5m/s未満) の場合 は, 風速を0.5m/sとし, 風速0.5~2.0m/sのときの風向出現頻度(第 5.2-2表に示す。)に応じて各風向に比例配分する。 年間平均濃度の計算には,第5.2-3表に示す風向別大気安定度別風速 逆数の総和を,吹上げ高さの計算には,第5.2-4表に示す風向別風速逆 数の平均を使用する。

線量計算地点 đ.

5.1.1.1.1(1)d.と同じとする.

線量の計算方法 (2)

5.1.1.1.1(2)と同じとする。

計算結果 (3)

周辺監視区域の北側及び西側境界の 6 方位並びに参考として、日本原子

力研究所の周辺監視区域と接する南側及び海側 10 方位について希ガスの ア線による実効線量の計算を行った結果は、第 5.2-5 表に示すとおりで ある。

る実効線量の最大値は,東海第二発電所排気筒の西南西約 650m(東海発電 これによれば、北側及び西側の周辺監視区域境界で、希ガスのア線に 所排気筒の西約 550m) の地点において,約 8.4μSv/y である。 周辺における将来の集落の形成を考慮し、北側については周辺監視区域 境界,西側については国道 245 号線,南側については日本原子力研究所の 南側周辺監視区域境界のそれぞれ外側について希ガスのア線による実効線 量の計算を行った結果は,第5.2-6表に示すとおりである。 これによれば、将来の集落の形成を考慮した地点で希ガスのア線による 東海第二発電所排気筒の南西約 1,300m(東海発電所 排気筒の南西約1,130m)の地点において約 $13\mu Sv/y$ である。 実効線量の最大値は,

5.2.2 液体廃棄物中に含まれる放射性物質に起因する実効線量

使用済燃料冷却池水は,水質維持のため保有水量に対し,最大1日3%程度 液体廃棄物の発生源は,使用済燃料冷却池水と各種の洗浄廃液である。

ろ過,脱塩処理が行われている。この処理水は原則として再使用する。 したがって、放出の主体は各種器具や衣服等の洗浄廃液である。

(1) 計算のための前提条件

放射性物質の年間放出量 а.

多い場合でも,ほぼ3.7 $imes_{10}^{3} \sim 1.9 \times 10^{10} \, B_{0}$ 程度であるが,長期的に見た変動も考慮して,年間 $3.7 \times 10^{10} \, \mathrm{Bq}$ とする。なお,放射性物質の核種組成は,次のとおりとす 過去の運転実績によれば,年間の放出量は, ŝ

核箱	組 成(%)	核箱	(%) 思
-			
F e - 59	, , ,	C s - 134	4
C o - 60	115	Cs-137	20
S r - 90	29	A g -110m	

海水中における放射性物質の濃度 þ.

海水中における放射性物質の濃度は, 復水器冷却水放水口の濃度とし, 放射性物質の年間放出量を年間の復水器冷却水量で除した値とする。 年間の復水器冷却水量は、循環水ポンプの稼働率を80%として、約 3.33×10 m /yである。 この場合、上記の放射性物質の年間放出量、核種組成及び年間の復水 器冷却水量から算出した復水器冷却水放水口における放射性物質の年間 平均濃度は次のとおりである。

3)	Many Mydical Advances in Louis manual Advances in Control					
年間平均濃度 (Bq/cm³)	約1.1×10 ⁻⁶	約1.7×10 ⁻⁵	約3.2×10 ⁻⁵	約4,4×10 ⁻⁶	約5.6×10 ⁻⁵	約1.1×10 ⁻⁶
核種	Fe-59	C o - 60	S r -90	Cs-134	Cs-137	A g - 110m

(2) 線量の計算方法

5.1.1.2と同じとする。

(3) 計算結果

液体廃棄物中に含まれる放射性物質に起因する実効線量は,約6.2μSv /yとなる。

5.2.3 線量の評価結果

周辺における将来の集落の形成を考慮し、気体廃棄物中の希ガスの7線に よる実効線量及び液体廃棄物中の放射性物質による実効線量を評価した結果 は,それぞれ約13μSv/y及び約6.2μSv/yとなり,合計約19μSv/yである。

第5.2-1表 放出源の有効高さ

風向出現頻度及び風速 0.5~2.0m/sの風向出現頻度

第5.2-2表

有効高さ (m)	75	95	7.0	65	80	95	105	85	75	7.5
方位	NNE	S	SSW	S W	M S M	M	WNW	NW	MNN	Z

表中の方位以外の有効高さについては, 上表の有効高さのうち最も低い値を

使用する。

(%)風速 0.5~2.0m/s の風向出現頻度 7.1 6.2 8.5 5.9 8.9 3.6 3.2 3.2 7.0 7.3 9.08.3 7.3 7.1 風向出現頻度 10.3 8.9 15.2 2.8 2.2 2.2 4.7 3.6 5.1 2.4 2.4 3, 5 9.3 8.1 5.1 16.4 風下方位 SWWSW WNWNNNNNE ENE (Σ) 口 SWNWNE S E ES] SSI \geq Z H S S NNE ENE ESE SSW $W \otimes W$ WNWNNW ഠ 風向 NE SE SWNWSS [T]S M Z

風向, 風速観測点:標高 71m

第5.2-3表 風向別大気安定度別風速逆数の総和

(s/m)

(x / x)

第5.2-4表 風向別大気安定度別風速逆数の平均及び風向別風速逆数の平均

							(- (-)
風面面	大気安定度 風下方位	А	В	၁	D	ম	ĹĽ
NNE	SSW	1.44	15.42	11.41	129.97	20.58	29.63
N	S W	2.42	25.18	28.17	177.43	9.81	19.99
ENE	WSW	7.64	40.74	26.05	86.86	6.22	18.95
田	M	6.61	30.89	7.72	35.54	3.59	10.79
ESE	WNW	6.85	33.03	5.14	30.75	0.92	23.27
SE	ΜN	5.00	26.84	6.98	17.90	1.53	14.58
SSE	NNW	5.75	34.08	16.49	31.04	2.58	16.61
S	Z	1.87	21.79	15.26	49.32	10.19	23.15
SSW	NNE	3.16	12.31	5.75	37.76	6.33	23.67
S W	NE	2.43	18.62	7.04	29, 51	7.55	29.60
WSW	ENE	1.03	22.12	7.25	18.87	11.89	19.95
W	ы	0.80	32.88	10.58	38.62	15.62	25.47
WNW	ESE	0.98	23.00	23.28	118.46	31.36	40.00
M N	SE	0.96	30.96	29.26	176.43	70.43	44.67
NNN	SSE	0.98	11.93	11.71	94.52	58.42	41.50
Z	S	0.72	11.72	4.49	73.91	26.52	35.04

大気安定度観測点:標高 18m

風向, 風速観測点:標高 71m

													-	-		
全安定度	0.23	0.20	0.31	0.39	0.51	0.38	0.26	0.27	0.28	0.45	0.39	0.41	0.29	0.25	0.31	0.34
Ţ	0.40	0.41	0.65	0.66	0.91	0.60	0.66	0.44	0.34	0.52	0.36	0.49	0.42	0.40	0.41	0.44
Ш	0.26	0.29	0.39	0.55	0.66	0.35	0.41	0.28	0.22	0.40	0.36	0.31	0.27	0.24	0.30	0.31
Д	0.19	0.17	0.26	0.30	0.40	0.36	0.27	0.25	0.24	0.45	0.33	0.33	0.25	0.21	0.28	0.30
S	0.28	0.20	0.23	0.28	0.26	0.23	0.18	0.18	0.19	0.24	0.37	0.33	0.29	0.26	0.24	0.31
В	0.47	0.43	0.44	0.51	0.52	0.38	0.23	0.32	0.41	0.54	0.57	0.59	0.50	0.44	0.49	0.64
Ą	1.30	1.14	0.57	0.53	0.73	0.40	0.26	0.36	1.01	0.58	0.49	0.72	0.87	0.86	0.46	0.65
大気安定度風下方位	SSW	S W	WSW	M	WNW	N W	NNW	Z	N N E	NE	ENE	田	ESE	SE	SSE	S
五 回 画	NNE	N E	ENE	ъ	ESE	SE	SSE	S	SSW	S W	WSW	W	WNW	N W	NNN	Z

大気安定度観測点:標高 18m

風向,風速観測点:標高 71m

9 - 5 - 46

第5.2-5表 周辺監視区域境界における希ガスのア線に起因する

実効線量 (東海発電所)

(注) 計算地点については,東海第二発電所排気筒を基準にしたものである。

これらを第 5.1-1 図に示す。

第5.2-6表 人の居住に着目した場合の希ガスの7線に起因する 実効線量(東海発電所)

	計算地点		東海発電	電所排気筒	田井二号からて下来
[東海第二	[東海第二発電所排気筒からの方位及び	らの方位及び	から計算地点への	地点への	在レイシー教で所以上をおおります。
距缀(m)]			方位及び距離	三離 (m)	9 0 未効 敬重
	方位	超	方位	距離	(\(\tau \) Sv/y)
А	Z	860	Z	1,060	約5.6×10°
В	M Z Z	890	M Z Z	1,060	約 4.7×10°
C	N W	099	M Z Z	790	約6.6×100
Д	WNW	009	NW	099	約5.6×100
ப	W	660	WNW	640	約 5.7×10°
لتر	W S W	930	M	820	約 5.4×10°
Ŋ	S W	1,300	S W	1,130	約1.3×101
Н	SSW	1,690	SSW	1,490	約 7.7×10 ⁰
-	S	1,870	S	1,670	約3.9×100

(注)計算地点については、東海第二発電所排気筒を基準にしたものである。 これらを第5.1-2図に示す。

東海第二発電所と東海発電所の放射性廃棄物により一般公衆の受ける線 5.3

量評価

気体廃棄物中の希ガスの7線による実効線量の評価結果は第 5.3-1 表に示 地点 (東海発電所排気筒の南西約 1,130m の地点) において, 約 16μSv/y 将来の集落の形成を考慮した地点における東海第二発電所と東海発電所の すとおりである。これによれば、将来の集落の形成を考慮した地点での希ガ スのア線の実効線量の最大値は,東海第二発電所排気筒の南西約 1,300m の べある。 また、これに東海発電所の液体廃棄物中の放射性物質による実効線量及び 東海第二発電所の気体廃棄物中に含まれるよう素を摂取する場合の実効線量 を加算すると,合計で約23μSv/yとなる。

第5.3-1表 人の居住に着目した場合の希ガスのア線に起因する 実効線量 (東海第二発電所,東海発電所合算)

	希ガスのγ線に起因する実効線量	(Λ/AS π)	[東海第二発電所排気備からの方位及び距離(加)] 東海第二 東海	方位 距離 発電所 発電所 発電所	N 860 約1.1×10° 約5.6×10° 約6.6×10°	NNW 890 \$51.5×10° \$54.7×10° \$5.2×10°	NW 660 約1.6×10° 約6.6×10° 約8.2×10°	WNW 600 約1.7×10° 約5.6×10° 約7.4×10°	W 660 約2.1×10° 約5.7×10° 約7.9×10°	W S W 930 $\pm 9.4 \times 10^{\circ}$ $\pm 9.4 \times 10^{\circ}$ $\pm 9.4 \times 10^{\circ}$	SW 1,300 約3.3×10° 約1.3×10¹ 約1.6×10¹	SSW 1,690 約1.6×10° 約7.7×10° 約9.3×10°	77
And the second s	中國相口	**************************************	所排気筒からの方位及	方位	Z	NNW	MM	W N W	M	W S W	S W	SSW	U
And the second name of the first of the firs			[東海第二発電]		А	В	Ü	Q	Ξ	ഥ	Ö	Ħ)

(注) 計算地点については, 東海第二発電所排気筒を基準にしたものである。 これらを第5.1-2図に示す。

6. 発電所内外の放射線監視

6.1 前書き

発電所内外の放射線監視の方法は,所内外の放射線レベルを常に監視し,原子炉施設,周辺環境及び放射線業務従事者の作業環境の安全を確認すると同時に,万一の放射線レベルの異常及び事故の早期発見,さらに,それらの事態に敏速かつ確実に対処するに十分なものとし,周辺一般公衆及び放射線業務従事者の放射線障害を未然に防止し得るものとする。

6.2 発電所内の放射線監視

放射線業務従事者等の被ばく線量の管理が、容易かつ確実に行えるようにするため放射線計測器により、所内の必要箇所、特に管理区域の放射線レベル等の状況を把握する。

また,放射線防護の観点から特に注意を要する作業,例えば,外部放射線に係る線量当量率,空気中及び水中の放射性物質の濃度,又は表面の放射性物質の密度が著しく高いか,又は一時的に高くなるおそれのある場所において作業が行われる場合には,作業前及び実施中に必要に応じ線量当量率等の測定監視を行う。

6.2.1 外部放射線に係る線量当量率の測定

発電所内の外部放射線に係る線量当量率の測定は,放射線の種類,程度に応じた適切な測定器を用いて測定を行う。特に管理区域内については固定モニタと携帯用のサーベイ・メータとの組合せにより監視する。

固定モニタであるエリア・モニタは、人の立ち入る場所で、運転状況により外部放射線に係る線量当量率が大きく変動する場所、パトロール等で頻繁に入が立ち入る場所等の管理区域の主要部分の外部放射線に係る線量当量率

を監視する。

例えば,人の常駐する中央制御室や廃棄物処理系制御室,立入り頻度の多い燃料取替床,タービン建屋主通路,タービン発電機運転床等に設置する。エリア・モニタは,放射線レベルがあらかじめ設定された値を超えた場合,中央制御室及び必要な箇所については現場において警報を発する。

なお、警報は異常の発見を主目的とすることから、その警報設定点は、通常のバックグラウンド値を基にして定める。

また,放射線業務従事者等が,特に頻繁に立ち入る箇所については,定期的及び必要の都度サーベイ・メータによる外部放射線に係る線量当量率の測定を行う。

6.2.2 空気中の放射性物質濃度及び表面の放射性物質の密度の測定

管理区域内の放射線業務従事者等が特に頻繁に立ち入る箇所については、空気中の放射性物質の濃度及び表面の放射性物質の密度を把握するため、サンプリング等による測定を定期的及び必要の都度行う。

6.2.3 系統内の放射能測定

原子炉施設が正常に運転されていることを確認するため,系統内の気体中及び液体中の放射性物質の濃度を添付書類八の「11.3.2 放出放射性廃棄物及び系統内の放射線監視設備並びに測定機器」に記述するプロセス・モニタにより測定する。

プロセス・モニタは、系統内の気体中又は水中の放射性物質の濃度を常に監視し、そのレベルがあらかじめ設定された値を超えた場合は、中央制御室において警報を発し、適切な処置がなされるよう運転員の注意を喚起する。

なお、警報は異常の発見を目的とすることから、その警報設定点は通常の

上記のモニタのほかに、主な系統は定期的及び必要の都度サンプリングし、 放射性物質の濃度を測定する。

6.3 放射性廃棄物の放出管理

発電所外に放出される気体及び液体廃棄物は,次に述べるように厳重に管理を行い,周辺監視区域外の空気中及び水中の放射性物質の濃度が経済産業省告示「実用発電用原子炉の設置,運転等に関する規則の規定に基づく線量限度等を定める告示」(第9条)に定める値を超えないようにする。

さらに, 「発電用軽水型原子炉施設周辺の線量目標値に関する指針」に基づき, 発電所から放出される放射性物質について放出管理の目標値を定め, これを超えないように努める。

6.3.1 気体廃棄物

平常運転時に気体廃棄物を大気中に放出する場合は、すべて排気筒から放出する。気体廃棄物中の希ガスの環境放出量は、排気筒モニタにより連続監視する。排気筒モニタの測定結果は、中央制御室に指示・記録し、放射線レベルがあらかじめ設定された値を超えた場合は警報を出し、適切な処置がなされるよう運転員の注意を喚起する。

なお、排気筒モニタの警報設定点は、通常のバックグラウンド値及び放出 管理の目標値を基にして定める。 また、よう素及び粒子状物質の環境放出量は、排気筒モニタのよう素用フィルタ及び粒子用フィルタを定期的に交換し、その放射性物質の量を測定することにより監視する。

6.3.2 液体廃棄物

放射性液体廃棄物は,放射性物質濃度のごく低いものを除き,原則として,環境には放出せずできる限り固化するか,処理後再使用する。

液体廃棄物処理系から廃液を環境に放出する際には,あらゆる場合,一時サンプルタンクに貯留した後タンク内の廃液をサンプリングし,放射性物質 濃度を測定して,排水口における放射性物質濃度が,経済産業省告示「実用発電用原子炉の設置,運転等に関する規則等の規定に基づく線量限度等を定める告示」(第9条)に定める周辺監視区域外における水中の濃度限度を超えないようにするとともに,排水中の放射性物質の放出量について放出管理に関する目標値を超えないように努める。

さらに、放出される液体中の放射性物質の濃度は、液体廃棄物処理系排水モニタ又は雑固体減容処理設備排水モニタによって監視する。この液体廃棄物処理系排水モニタ及び雑固体減容処理設備排水モニタの測定結果は、中央制御室又は廃棄物処理建屋操作室に指示・記録するとともに、放射性物質濃度が予め設定された値を超えた場合は警報を出し、適切な処置がなされるよう運転員の注意を喚起する。

液体廃棄物処理系排水モニタ及び雑固体減容処理設備排水モニタの警報設定点は,通常のバックグラウンド値を基にして定める。

6.4 発電所外に関する放射線監視

「6.3 放射性廃棄物の放出管理」で述べたように、気体及び液体廃棄物の放出に当たっては、厳重な管理を行うが、さらに異常がないことを確認するため周辺監視区域境界付近及び周辺地域において外部放射線に係る線量当量及び環境試料の放射能の監視を行う。

なお、測定の実施に当たっては、地点及び対象について東海地区の環境放

射能監視計画との調整を考慮する。

6.4.1 外部放射線の監視

外部放射線に係る線量当量については、周辺監視区域境界付近に設けるモニタリング・ポイントに熱蛍光線量計を配置し、これを 3 か月毎に定期的に回収して線量当量を読み取ることにより測定する。

外部放射線に係る線量当量率は、周辺監視区域境界付近に設置したモニタリング・ポスト (シンチレーション式検出器) により連続測定する。

6.4.2 環境試料の放射能監視

周辺環境の海底土,海洋生物,土壌及び陸上生物等の放射性物質濃度をセシウム-137,コバルト-60 等比較的長寿命核種に重点をおき 3 か月又は 6か月毎に定期的に測定する。

なお、よう素については、試料の性状に応じて測定する。

放射線業務従事者の被ばく管理

7.1 基本的考え方

放射線業務従事者の被ばく線量管理は,被ばく線量が法令の線量限度を超えないよう常に監視評価するとともに,発電所の各種業務は,各人の被ばく線量を合理的に達成できる限り低く保ち,かつ無用の被ばくを避けるよう管理区域への出入管理,作業方法,作業時間,防護具着用等の放射線防護対策に細心の注意を払うこととする。

7.2 被ばく線量の監視評価

被ばく線量の監視評価の基本方針は,次のとおりとする。

- (1) 管理区域に立入る者に対しては、電子式個人線量計を着用させ、外部被ばくによる線量当量を測定し、その日毎に監視する。
- (3) 外部被ばくによる線量の評価は,定期的及び必要に応じて電子式個人線量計の測定結果を積算することにより行う。
- (3) 特殊な作業に従事する者に対しては、その作業に応じて適切な測定器(中性子用線量計等)を着用させ、その都度線量当量を測定して監視を行っ。
- (4) 内部被ばくによる線量の評価は,定期的及び必要に応じて,ホールボディカウンタによる測定等により行う。

7.3 管理区域への出入管理

管理区域への出入管理の基本方針は、次のとおりとする。

- 1) 管理区域には、予め指定された者以外の立入りを原則として禁止する。
- (2) 管理区域に立入る者に対しては、電子式個人線量計の着用を確認させる。
- (3) 管理区域内の汚染管理区域及び特別立入制限区域(高放射線,高汚染)

に対しては立入制限を行う、

- (4) 汚染管理区域への立入りは,必要に応じて適切な防護具を着用させる。
- (5) 汚染管理区域から退出する場合には、退出モニタ等により、表面汚染検査を行わせる。汚染が認められた場合には手洗い、シャワ等により除染を行わせる。