東海第二発電所	工事計画審査資料
資料番号	工認-61 改3
提出年月日	平成 30 年 5 月 21 日

V-1-1-6 安全設備及び重大事故等対処設備が使用される 条件の下における健全性に関する説明書

(抜粋)

第 2-1-1 表 (1/2) 放射線の環境条件設定方法 (重大事故等時)

対象区画			環境条件設定方法		
		想定する事象	線源等	線量評価	環境条件
原子炉格納容器内		有効性評価のうち,原子炉	「許可申請書十号」ハ. にお	原子炉格納容器自由体積を	550 kGy/7 日間 (主蒸気逃
		格納容器内の線量が最も高	いて評価した重大事故等の	保存し、区画内に線源が均	がし安全弁), 640 kGy/7日
		くなる事象として「大破断	のうち「大破断LOCA+	一に分布するとして線量を	間 (その他の設備)
		LOCA+高圧炉心冷却失	高圧炉心冷却失敗+低圧炉	評価した結果、主蒸気逃が	
		敗+低圧炉心冷却失敗(+	心冷却失敗 (+全交流動力	し安全弁は550 kGy/7日間,	
		全交流動力電源喪失)」を想	電源喪失)」時に原子炉格納	その他の設備は 640 kGy/7	
		定する。	容器内に放出される放射性	日間を設定する。	
			物質の存在量を包絡した線		
			源(第 2-1-2 表)を設定す		
			る。		
原子炉格納	原子炉建屋	有効性評価のうち,原子炉	「許可申請書十号」ハ. にお	原子炉建屋原子炉棟自由体	1.7 kGy/7 日間
容器外	原子炉棟内	格納容器内の線量が最も高	いて評価した重大事故等の	積を保存し,区画内に線源	
		くなる事象として「大破断	のうち「大破断LOCA+	が均一に分布するとして線	
		LOCA+高圧炉心冷却失	高圧炉心冷却失敗+低圧炉	量を評価した結果, 1.7	
		敗+低圧炉心冷却失敗(+	心冷却失敗(+全交流動力	kGy/7日間を設定する。	
		全交流動力電源喪失)」を想	電源喪失)」時に原子炉格納	なお、「格納容器バイパス	
		定する。	容器から原子炉建屋原子炉	(インターフェイスシステ	
			棟内に漏えいする放射性物	ムLOCA)」時は,最高	
			質の存在量を包絡した線源	15.2 mGy/h であり, 1.7	
			(第 2-1-3 表)を設定する。	kGy/に包絡される。	

対象区画		環境条件設定方法			環境条件
刈豕!	△ 四	想定する事象	線源等	線量評価	· · · · · · · · · · · · · · · · · · ·
原子炉格納	原子炉建屋	有効性評価のうち、原子炉	原子炉建屋付属棟等の遮へ	屋外と同じの放射線量とし	3 Gy/7 日間
容器外	の原子炉棟	格納容器内に浮遊する放射	い効果を考慮しないことか	て 3 Gy/7 日間を設定する。	
	外及びその	性物質量が多くなり、格納	ら、屋外と同じ線源を設定		
	他の建屋内	容器ベントを実施し原子炉	する。		
		建屋の原子炉棟外及びその			
		他の建屋内の線量が厳しく			
		なる事象として「大破断L			
		OCA+高圧炉心冷却失敗			
		+低圧炉心冷却失敗(+全			
		交流動力電源喪失)」 におい			
		て、代替循環冷却系が使用			
		できない場合を想定する。			
屋外		有効性評価のうち,原子炉	屋外における放射線の環境	屋外における線量は、「中央	3 Gy/7 日間
		格納容器内に浮遊する放射	条件設定のための線源は、	制御室の居住性に関する説	
		性物質量が多くなり、格納	「中央制御室の居住性に関	明書」に記載される炉心の	
		容器ベントを実施し屋外線	する説明書」に記載される	著しい損傷が発生した場合	
		量が厳しくなる事象として	炉心の著しい損傷が発生し	の中央制御室への入退域時	
		「大破断LOCA+高圧炉	た場合の中央制御室への入	の被ばく評価に使用するモ	
		心冷却失敗+低圧炉心冷却	退域時の被ばく評価におけ	デル等を使用して設定す	
		失敗 (+全交流動力電源喪	る線源と同じく, 「許可申請	る。	
		失)」において、代替循環冷	書十号」ハ. において評価し	評価点は、屋外の原子炉建	
		却系が使用できない場合を	た重大事故等のうち「大破	屋近傍の位置を代表点とし	
		想定する。	断LOCA+高圧炉心冷却	て評価する。評価の結果、環	
		-	失敗+低圧炉心冷却失敗	境条件は 3 Gy/7 日間を設	
			(+全交流動力電源喪失)」	定する。	
			時に原子炉建屋原子炉棟内	-	
			の放射性物質及び大気中へ		
			放出された放射性物質を線		
			源として設定する。		

第 2-1-1 表 (2/2) 放射線の環境条件設定方法(設計基準事故時)

対象	区画		環境条件設定方法		環境条件
		想定する事象	線源等	線量評価	
原子炉格納容器内		原子炉格納容器内で発生す	「許可申請書十号」ロ. にお	原子炉格納容器自由体積を	260 kGy/6 ヶ月
		る事象として,原子炉格納	いて評価した設計基準事故	保存し、区画内に線源が均	
		容器内の線量が最も高くな	のうち「原子炉冷却材喪失」	一に分布するとして線量を	
		る事象として「原子炉冷却	時に原子炉格納容器内に放	評価した結果, 260 kGy/6 ヶ	
		材喪失」を想定する。	出される放射性物質を線源	月を設定する。	
			(第 2-1-4 表)として設定		
			する。		
原子炉格納	原子炉建屋	原子炉格納容器内で発生す	「許可申請書十号」ロ. にお	原子炉建屋原子炉棟自由体	1.7 kGy/6 ヶ月
容器外	原子炉棟内	る事象として,原子炉格納	いて評価した設計基準事故	積を保存し,区画内に線源	
		容器内の線量が最も高くな	のうち「原子炉冷却材喪失」	が均一に分布するとして線	
		る事象として「原子炉冷却	時に原子炉格納容器から原	量を評価した結果, 1.7	
		材喪失」を想定する。	子炉建屋原子炉棟内に <mark>漏え</mark>	kGy/6ヶ月を設定する。	
			いする放射性物質を線源		
			(第 2-1-5 表) として設定		
			する。		
	原子炉建屋	各事故時の放射線の影響を	原子炉建屋付属棟等の遮へ	屋外と同じの放射線量とし	1 mGy/h 以下
	の原子炉棟	直接受けない範囲であり,	い効果を考慮しないことか	て, 1 mGy/h 以下を設定す	
	外及びその	想定する事象はない。	ら,屋外と同じ線源を設定	る。	
	他の建屋内		する。		

対象区画		環境条件設定方法		
N 家	想定する事象	線源等線量評価		環境条件
屋外	原子炉格納容器内で発生す	屋外における放射線の環境	屋外における線量は、「中央	1 mGy/h以下
	る事象として,原子炉格納	条件設定のための線源は、	制御室の居住性に関する説	
	容器内の線量が最も高くな	「中央制御室の居住性に関	明書」に記載される設計基	
	る事象として「原子炉冷却	する説明書」に記載される	準事故時の中央制御室への	
	材喪失」を想定する。	設計基準事故時の中央制御	入退域時の被ばく評価に使	
		室への入退域時の被ばく評	用するモデル等を使用して	
		価における線源と同じく,	設定する。	
		「許可申請書十号」ロ. にお	評価点は、屋外の中央制御	
		いて評価した設計基準事故	室相当(入口付近)の位置を	
		のうち「原子炉冷却材喪失」	代表点として評価する。評	
		時の,原子炉建屋原子炉棟	価の結果,環境条件は1	
		内の放射性物質及び大気中	mGy/h 以下を設定する。	
		へ放出された放射性物質を		
		線源として設定する。		

第2-1-2表 重大事故時における原子炉格納容器内の積算放射能量

核種	積算放射能量[Bq·s] (0.5 MeV 換算値)		
/次/里	ドライウェル	サプレッション・チェンバ	
希ガス類	約 6.6E+23	約 2.8E+23	
よう素類	約 1.0E+24	約 1.2E+24	
CsOH 類	約 1.1E+23	約 1.9E+23	
Sb 類	約 4.0E+21	約 6.5E+21	
TeO ₂ 類	約 2.1E+22	約 3.5E+22	
Sr0 類	約 3.7E+21	約 6.0E+21	
BaO 類	約 9.6E+21	約 1.6E+22	
MoO ₂ 類	約 1.5E+21	約 2. 5E+21	
CeO ₂ 類	約 2.4E+21	約 3.9E+21	
La ₂ O ₃ 類	約 9. 2E+21	約 1.5E+22	

第 2-1-3 表 重大事故時における原子炉建屋原子炉棟内の積算放射能量

核種	積算放射能量[Bq·s] (0.5 MeV 換算値)
希ガス類	約 1.5E+22
よう素類	約 2. 3E+22
CsOH 類	約 2. 5E+21
Sb 類	約 4. 9E+19
TeO ₂ 類	約 3. 1E+20
Sr0 類	約 1. 0E+19
BaO 類	約 2. 0E+20
MoO ₂ 類	約 3. 0E+19
CeO ₂ 類	約 3. 7E+19
La ₂ O ₃ 類	約 1.9E+20

2-1-4表 設計基準事故時における原子炉格納容器内の積算放射能量

核種	積算放射能量[Bq·s] (0.5 MeV 換算値)	核種	積算放射能量[Bq·s] (0.5 MeV 換算値)
Kr-83m	約 2.8E+19	I-131	約 1. 3E+23
Kr-85m	約 1.1E+22	I-132	約 4. 7E+23
Kr-85	約 4.3E+21	I-133	約 5. 5E+22
Kr-87	約 2.9E+22	I-134	約 1. 2E+22
Kr-88	約 2. 2E+23	I-135	約 4.5E+22
Xe-131m	約 2.4E+21		
Xe-133m	約 4.8E+21		
Xe-133	約 4.3E+23		
Xe-135m	約 1.4E+21		
Xe-135	約 1.7E+23		
Xe-138	約 2.0E+22		

第 2-1-5 表 設計基準事故時における原子炉建屋原子炉棟内の積算放射能量

核種	積算放射能量[Bq·s] (0.5 MeV 換算值)	核種	積算放射能量[Bq·s] (0.5 MeV 換算値)
Kr-83m	約 1.4E+16	I-131	約 1.6E+20
Kr-85m	約 1.1E+19	I-132	約 5. 5E+20
Kr-85	約 2.1E+19	I-133	約 5.7E+19
Kr-87	約 1.0E+19	I-134	約 2.6E+18
Kr-88	約 1.6E+20	I-135	約 3.4E+19
Xe-131m	約 1.1E+19		
Xe-133m	約 1.9E+19		
Xe-133	約 1.9E+21		
Xe-135m	約 1.1E+17		
Xe-135	約 3.0E+20		
Xe-138	約 1.4E+18		