本資料のうち、枠囲みの内容は、 営業秘密または防護上の観点から 公開できません。

東海第二発電所 工事計画審査資料						
資料番号	工認-461 改0					
提出年月日	平成30年6月1日					

V-2-6-3-2-1 水圧制御ユニットの耐震性についての計算書

目次

1. 棋	既要 · · · · · · · · · · · · · · · · · · ·	1
2. –	-般事項	1
2. 1	構造計画	1
2.2	評価方針	3
2.3	適用基準	4
2.4	記号の説明	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
3. 膏	平価部位	8
4. ±	也震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4. 1	地震応答解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4. 2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.3	設計用地震力	12
4.4	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
4. 5	固有周期 ·····	15
4.6	計算方法	16
4. 7	計算条件	18
4.8	応力の評価	18
5. ‡	平価結果	20
5. 1	設計基準対象施設としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
5.2	重大事故等対処設備としての評価結果	20

1. 概要

本計算書は、「V-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、水圧制御ユニットが設計用地震力に対して十分な構造強度を有していることを説明するものである。

水圧制御ユニットは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備に おいては常設耐震重要重大事故防止設備に分類される。以下、分類に応じた構造強度評価を示 す。

2. 一般事項

2.1 構造計画

水圧制御ユニットの構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の材	 既要	次 2 1
基礎・支持構造	主体構造	概略構造図
水圧制御ユニットのフレ	支持構造物	
ームは,十分剛な支持架		
構に取付ボルトにより固		(
定されている。		水圧制御ユニット支持架構 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

2.2 評価方針

水圧制御ユニットの応力評価は、「V-2-1-9 機能維持の基本方針 3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す水圧制御ユニットの部位を踏まえ「3. 評価部位」にて設定する箇所において、「4.4 解析モデル及び諸元」及び「4.5 固有周期」で算出した固有周期及び荷重に基づく応力等が許容限界内に収まることを、「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。確認結果を「5. 評価結果」に示す。

水圧制御ユニットの耐震評価フローを図 2-1 に示す。

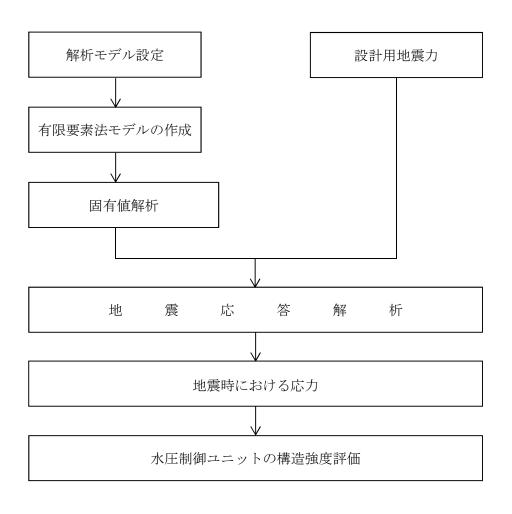


図 2-1 水圧制御ユニットの耐震評価フロー

2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG 4 6 0 1・補-1984, JEAG 4 6 0 1-1987 及び JEAG 4 6 0 1-1991 追補版)(日本電気協会電気技術基準調査委員会 昭和 59 年 9 月, 昭和 62 年 8 月及び平成 3 年 6 月)
- (2) 発電用原子力設備規格(設計・建設規格(2005 年版 (2007 年追補版含む。)) JSME S NC1-2005/2007) (日本機械学会 2007年9月)(以下「設計・建 設規格」という。)

2.4 記号の説明

記号	記 号 の 説 明	単 位
A	フレームの断面積	mm^2
Ab	取付ボルトの軸断面積	mm^2
Сн	水平方向設計震度	_
Сv	鉛直方向設計震度	_
Do	外径	mm
Di	内径	mm
Е	縦弾性係数	MPa
F	設計・建設規格 SSB-3121.1又はSSB-3131に定める値	MPa
F*	F値を求める際において,設計・建設規格 SSB-3121.3又はSSB-	MPa
	3133に定める値	
Fь	取付ボルトに作用する引張力	N
Fx	フレームの軸力 (x方向)	N
Fу	フレームのせん断力 (y方向)	N
Fz	フレームのせん断力 (z方向)	N
$f_{ m b}$	フレームの許容曲げ応力	MPa
f_{C}	フレームの許容圧縮応力	MPa
$f_{\mathtt{S}}$	フレームの許容せん断応力	MPa
$f_{ \mathrm{S}}$ b	せん断力のみを受ける取付ボルトの許容せん断応力	MPa
f t	フレームの許容引張応力	MPa
ft o	引張力のみを受ける取付ボルトの許容引張応力	MPa
ft s	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
I_p	フレームの断面二次極モーメント	mm^4
Iy	フレームの断面二次モーメント (y軸)	mm^4
I_z	フレームの断面二次モーメント (z軸)	mm^4
i	断面二次半径	mm
ℓ	取付ボルト間の距離	mm
ℓ k	座屈長さ	mm
M_{X}	フレームのねじりモーメント (x軸)	N•mm
My	フレームの曲げモーメント (y 軸)	N•mm
M_{Z}	フレームの曲げモーメント (z軸)	N•mm
$m\mathrm{i}$	荷重位置の質量(i = a, b, c, d, e)	kg
\mathbf{Q} b	取付ボルトに作用するせん断力	N
S	設計・建設規格 付録材料図表 Part5 表 5 に定める値	MPa
Su	設計・建設規格 付録材料図表 Part5 表 9 に定める値	MPa
Sу	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa

記号	記 号 の 説 明	単 位
Sy(RT)	設計・建設規格 付録材料図表 Part5 表8に定める材料の	MPa
	40 °Cにおける値	
X, Y, Z	絶対(節点)座標軸	_
x, y, z	局所(要素)座標軸	_
Zp	フレームのねじり断面係数	mm^3
Z y	フレームの断面係数(y軸)	mm^3
Z _Z	フレームの断面係数 (z軸)	mm^3
Λ	フレームの限界細長比	_
λ	フレームの有効細長比	_
ν	座屈に対する安全率	_
σь	フレームに生じる曲げ応力	MPa
σс	フレームに生じる圧縮応力	MPa
σf	フレームに生じる組合せ応力	MPa
σ fa	フレームに生じる引張応力又は圧縮応力と曲げ応力の和	MPa
σt	フレームに生じる引張応力	MPa
σ tb	取付ボルトに生じる引張応力	MPa
τ	フレームに生じるせん断応力	MPa
τь	取付ボルトに生じるせん断応力	MPa

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

	衣 2 2 収小する数値の九切刀								
	数値の種類	単位	処理桁	処理方法	表示桁				
固有周期		S	小数点以下第4位	四捨五入	小数点以下第3位				
震馬	度	_	小数点以下第3位	切上げ	小数点以下第2位				
温月	度	$^{\circ}\!\mathbb{C}$	_	_	整数位*1				
55 8	=	,			整数位又は				
質量	Ē.	kg	_	_	小数点以下第1位				
	下記以外の長さ	mm	_	_	整数位*1				
長さ	+17 + 14 N/ → - 1 - N/ -		小数点以下第2位	四	小数点以下第1位				
9	部材断面寸法 	mm	又は第3位	四捨五入	又は第2位				
面和	責	mm^2	有効数字 5 桁目 四捨五入		有効数字 4 桁*2				
モー	ーメント	N•mm	N·mm 有効数字 5 桁目 四捨五入		有効数字 4 桁*2				
力		N	有効数字 5 桁目 四捨五入		有効数字 4 桁*2				
縦引	単性係数	MPa	有効数字4桁目	四捨五入	有効数字3桁				
算上	出応力	MPa	小数点以下第1位	切上げ	整数位				
許須	字応力* ³	MPa	小数点以下第1位	切捨て	整数位				
座原	ヹの評価	_	小数点以下第3位	切上げ	小数点以下第2位				

注記 *1: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏 点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値と する。

3. 評価部位

水圧制御ユニットの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す条件に基づき、フレーム及び取付ボルトについて実施する。なお、水圧制御ユニットは、構造物として十分な剛性を有しており、支持構造物であるフレーム及び取付ボルトが健全であればスクラム機能を維持できるため、フレーム及び取付ボルトを評価対象とする。水圧制御ユニットの耐震評価部位については、表 2-1 の概略構造図に示す。

4. 地震応答解析及び構造強度評価

- 4.1 地震応答解析及び構造強度評価方法
 - (1) 水圧制御ユニットのフレームは、十分剛な水圧制御ユニット支持架構に取付ボルトにより固定されるものとする。
 - (2) 水圧制御ユニットの質量には、フレーム自身の質量のほか、配管ユニット、スクラム弁、 セレクタ弁、スクラムパイロット弁、端子箱、アキュムレータ、窒素容器、計装ユニット及びそれらに内包する水の質量を考慮する。
 - (3) 地震力は、水圧制御ユニットに対して水平方向及び鉛直方向から個別に作用するものとし、作用する荷重の算出において組み合わせるものとする。
 - (4) 耐震計算に用いる寸法は、公称値を使用する。
 - (5) 概略構造図を表 2-1 に示す。

4.2 荷重の組合せ及び許容応力

4.2.1 荷重の組合せ及び許容応力状態

水圧制御ユニットの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に 用いるものを表 4-1 に、重大事故等対処設備の評価に用いるものを表 4-2 に示す。

4.2.2 許容応力

水圧制御ユニットの許容応力を表 4-3 に示す。

4.2.3 使用材料の許容応力

水圧制御ユニットの許容応力のうち設計基準対象施設の評価に用いるものを表 4-4 に、重大事故等対処設備の評価に用いるものを表 4-5 示す。

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
計測制御系統	制御材駆動	水圧制御ユニット	C	クラス 2	$D+P_D+M_D+S d^*$	III ∧ S
施設	7		5	支持構造物	$D+P_D+M_D+S_S$	IV a S

表 4-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		施設区分 機器名称 設備分類*1 機器等		機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S_{S}^{*2}$	IV A S
計測制御系統	 	制御材駆動 水圧制御ユニット	常設耐震/防止	重大事故等	$D+P_{SAD}+M_{SAD}+S$ s	VAS
	前側前側示航 前側付船期 水圧制御ユニット 施設 装置					(VASとして
加以 表色			7 7 7 1 2 11 m 2 m	D I SAD MISAD S S	IVASの許容限界を	
						用いる。)

注記 *1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止」は常設耐震重要重大事故防止設備以外の常設重大事故 防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2: 「D+P_{SAD}+M_{SAD}+S_S」の評価に包絡されるため、評価結果の記載を省略する。

表 4-3 許容応力 (クラス2支持構造物及び重大事故等クラス2支持構造物)

计分尺 小比能		界* ^{1,*2} 等以外)	許容限界* ^{1,*2} (ボルト等)	
許容応力状態	一次	応力	一次応力	
	引張り	せん断	引張り	せん断
III A S	1.5 • f _t	1.5 • f _s	1.5 • f _t	1.5 • f _s
IV A S	×	_ 44		*
VAS (VASとしてIVASの許容限界を用いる)	1.5 • f t*	1.5 • f _s *	1.5 • f t*	1.5 • f _s *

注記 *1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-4 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		S (MPa)	S y (MPa)	S u (MPa)	Sy(RT) (MPa)
		周囲環境温度		_	205	365	_
フレーム		周囲環境温度		_	241	394	_
取付ボルト		周囲環境温度		_	231	394	_

注記*:()は新JIS記号を示す。

表 4-5 使用材料の許容応力評価条件(重大事故等対処設備)

⇒17 / m² - 4-12 - 4-14	L-L-Vol	温度条件		S	Sу	Su	Sy(RT)
評価部材	材料	(℃)			(MPa)	(MPa)	(MPa)
		周囲環境温度		_	189	357	_
フレーム		周囲環境温度		_	234	385	_
取付ボルト		周囲環境温度		_	225	385	_

注記*:()は新JIS記号を示す。

4.3 設計用地震力

評価に用いる設計用地震力を表 4-6 及び表 4-7 に示す。

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は,「V-2-1-7、記記用内内な世界の作品大利」に基づく

7 設計用床応答曲線の作成方針」に基づく。

表 4-6 設計用地震力(設計基準対象施設)

耐震	据付場所 及び	固有周期	弾性設計用地震動S d 又は静的震度		基準地別	§動Ss
重要度分類	床面高さ (m)	(s)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
S	原子炉建屋 EL. 20.3*	0.009	$C_H = 0.79$	$C_{V} = 0.62$	$C_{H} = 1.55$	$C_V = 1.17$

注記 *:基準床レベルを示す。

表 4-7 設計用地震力(重大事故等対処設備)

設備分類	据付場所 及び	固有周期	弾性設計用 又は静	地震動Sd 的震度	基準地原	§動S s
政佣分類	床面高さ	(_S)	水平方向	鉛直方向	水平方向	鉛直方向
	(m)		設計震度	設計震度	設計震度	設計震度
常設耐震	原子炉建屋	0.000			C -1 FF	$C_{v}=1.17$
/防止	EL. 20.3*	0.009	_	_	$C_H = 1.55$	$C_V-1.17$

注記 *:基準床レベルを示す。

4.4 解析モデル及び諸元

水圧制御ユニットの解析モデルを図 4-1 に、解析モデルの概要を以下に示す。また、機器の諸元を表 4-8 に示す。

- (1) 図 4-1 中〇内の数字は部材番号 (要素番号), 数字は節点番号を示す。
- (2) 図 4-1 中の **◆** は荷重位置を示し、ma、mbは kg、mcは kg、mdは kg、meは kgであり、総質量は kgである。
- (3) 図 4-1 中実線はフレーム部材,点線はフレーム部と荷重位置の質量 $ma\sim me$ とを結ぶ要素を示す。
- (4) 拘束条件は、HCUフレーム下端と上端を固定(ボルトによる固定)とする。HCU フレーム中段をフレーム軸方向自由、フレーム軸直角方向固定(Uボルトによる固定)とする。
- (5) 部材の応力算出に必要な機器要目を表 4-8 に示す。

表 4-8 機器諸元

項目	記号	単位		入力	7値
材質	_	_			
	_	_			
質量	ma	kg			
	mb	kg	Ш		
	m c	kg			
	md	kg			
	m e	kg			
温度条件	Т	$^{\circ}\! \mathbb{C}$			
—————————————————————————————————————	E	MPa			
ポアソン比	ν	_			
要素数	_	個			
節点数	_	個			

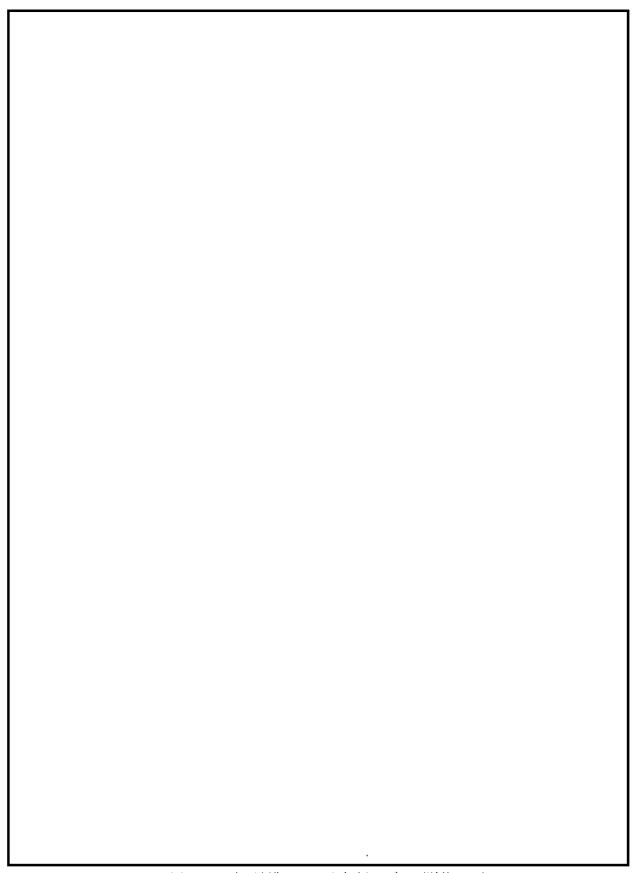


図 4-1 水圧制御ユニット解析モデル (単位:mm)

材料 1 - 14<u>15</u>—<u>17</u> 18-20 21-23 対象要素 $A \hspace{0.1cm} (mm^2)$ Iy (mm^4) $Iz (mm^4)$ Ip (mm^4) Zy (mm^3) $Zz (mm^3)$ $Zp (mm^3)$ 断面形状(mm) Do= Di=

表 4-9 部材の機器要目

4.5 固有周期

計算機コード「SAP-IV」により求めた固有値解析の結果を表 4-10 に示す。

表 4-10 固有周期(s)
 固有周期
 0.009

4.6 計算方法

- 4.6.1 応力の計算方法
 - 4.6.1.1 フレームの応力

解析による計算で得られる各要素端での軸力 F_x , せん断力 F_y , F_z , ねじりモーメント M_x 及び曲げモーメント M_y , M_z より各応力を次のように求める。

(1) 引張応力又は圧縮応力

$$\sigma t = \frac{|F_x|}{A} \qquad (4. 6. 1. 1. 1)$$

$$\sigma_{c} = -\frac{\mid F_{x} \mid}{A} \qquad \cdots \qquad (4.6.1.1.2)$$

(2) せん断応力

$$\tau = \text{Max} \left\{ \sqrt{\left(\frac{|F_y|}{A} + \frac{|M_x|}{|Z_p|}\right)^2 + \left(\frac{|F_z|}{A}\right)^2}, \sqrt{\left(\frac{|F_z|}{A} + \frac{|M_x|}{|Z_p|}\right)^2 + \left(\frac{|F_y|}{A}\right)^2} \right\} \quad \cdots \quad (4. \ 6. \ 1. \ 1. \ 3)$$

(3) 曲げ応力

鋼管の場合は,

$$\sigma \, \mathrm{b} = \sqrt{\left(\frac{M_y}{Z_y}\right)^2 + \left(\frac{M_z}{Z_z}\right)^2} \quad \dots \qquad (4.6.1.1.4)$$

形鋼の場合は,

$$\sigma_{b} = \frac{|M_{y}|}{Z_{y}} + \frac{|M_{z}|}{Z_{z}} \qquad (4.6.1.1.5)$$

(4) 組合せ応力

$$\sigma_f = \sqrt{\sigma_{fa}^2 + 3 \cdot \tau^2} \qquad \cdots \qquad (4.6.1.1.6)$$

ここで,

$$\sigma_{fa} = \frac{|F_x|}{A} + \sigma_b \qquad \cdots \qquad (4.6.1.1.7)$$

4.6.1.2 取付ボルトの応力

取付ボルトに生じる応力は、地震による引張応力とせん断応力について計算する。

(1) ボルト取付要領

水圧制御ユニットの取付ボルトの取付図を図4-2に示す。

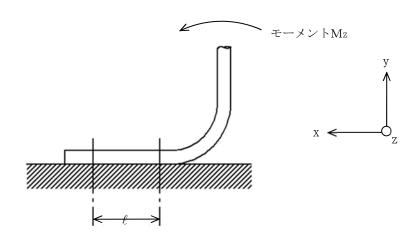


図 4-2 取付ボルトの取付図

(2) 引張応力

取付ボルトに対する引張応力は、ボルトの軸方向引張力 F_y とモーメント M_z を考え、これを保守的にボルトで受けるものとして計算する。

a. 引張力

$$F_b = |F_y| + \frac{|M_z|}{\ell}$$
 (4. 6. 1. 2. 1)

b. 引張応力

$$\sigma_{tb} = \frac{F_b}{A_b} \qquad (4.6.1.2.2)$$

(3) せん断応力

a. せん断力

$$Q_{b} = \sqrt{|F_{x}|^{2} + \left(|F_{z}| + \frac{|M_{x}|}{Di} + \frac{|M_{y}|}{\ell}\right)^{2}} \qquad (4.6.1.2.3)$$

b. せん断応力

$$\tau b = \frac{Qb}{2 \cdot Ab} \qquad (4.6.1.2.4)$$

4.7 計算条件

応力解析に用いる自重(水圧制御ユニット)及び荷重(地震荷重)は、本計算書の【水圧制御ユニットの耐震性についての計算結果】の設計条件及び機器要目に示す。

4.8 応力の評価

4.8.1 フレームの応力評価

(1) 4.6.1.1 項で求めた各応力が下表で定めた許容応力以下であること。ただし、許容組合 せ応力は f_t 以下であること。

		弾性設計用地震動Sd又は静的震 度による荷重との組合せの場合	基準地震動Ssによる 荷重との組合せの場合	
許容引引 ft		$\frac{F}{1.5}$ • 1.5	F* 1.5	
許容圧縮応力	STPG38 $(\lambda \leq \Lambda)$	$\left\{1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^2\right\} \cdot \frac{F}{\nu} \cdot 1.5$	$\left\{1 - 0.4 \cdot \left(\frac{\lambda}{\Lambda}\right)^2\right\} \cdot \frac{F}{\nu}^* \cdot 1.5$	
fc	SS41 $(\lambda > \Lambda)$	$0.277 \cdot F \cdot \left(\frac{\Lambda}{\lambda}\right)^2 \cdot 1.5$	$0.277 \cdot F \cdot \left(\frac{\Lambda}{\lambda}\right)^2 \cdot 1.5$	
許容せん f s	断応力	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$	
許容曲k	ず応力 ポープ	$\frac{\mathrm{F}}{1.5}$ · 1.5	F* 1.5	

ただし,

$$\lambda = \frac{\ell k}{i} \qquad (4.8.1.1)$$

弾性設計用地震動Sd 又は静的震度による荷重との組合せの場合

$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F}} \qquad (4.8.1.2)$$

基準地震動Ssによる荷重との組合せの場合

$$\Lambda = \sqrt{\frac{\pi^2 \cdot E}{0.6 \cdot F^*}}$$
 (4. 8. 1. 3)

$$v = 1.5 + \frac{2}{3} \left(\frac{\lambda}{\Lambda}\right)^2$$
 (4.8.1.4)

(2) 圧縮力と曲げモーメントを受ける部材の応力は次式を満足すること。

$$\frac{|\sigma \ c|}{f_c} + \frac{\sigma \ b}{f_b} \le 1 \quad \text{fig.} \quad \frac{\sigma \ b - |\sigma \ c|}{f_t} \le 1 \quad \dots \quad (4.8.1.5)$$

4.8.2 取付ボルトの応力評価

4.6.1.2 項で求めた取付ボルトの引張応力 σ tb は次式より求めた許容引張応力 $f_{\rm t}$ s 以下であること。ただし、 $f_{\rm t}$ o は下表によること。

せん断応力 τ b はせん断力のみを受ける取付ボルトの許容せん断応力 f_{s} b 以下であること。ただし, f_{s} b は下表による。

	弾性設計用地震動 Sd 又は静的震	基準地震動Ssによる
	度による荷重との組合せの場合	荷重との組合せの場合
許容引張応力	$\frac{F}{2}$ • 1.5	$\frac{F^*}{2}$ • 1.5
ft o	$\frac{1}{2}$ 1.3	$\frac{1}{2}$ 1. 3
許容せん断応力	F · 1.5	F* 1.5
$f_{ m S}$ b	$\frac{1.5 \cdot \sqrt{3}}{1.5}$	$\frac{1.5 \cdot \sqrt{3}}{1.5}$

5. 評価結果

5.1 設計基準対象施設としての評価結果

水圧制御ユニットの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限 界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

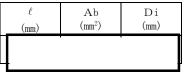
5.2 重大事故等対処設備としての評価結果

水圧制御ユニットの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生 値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認 した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

【水圧制御ユニットの耐震性についての計算結果】

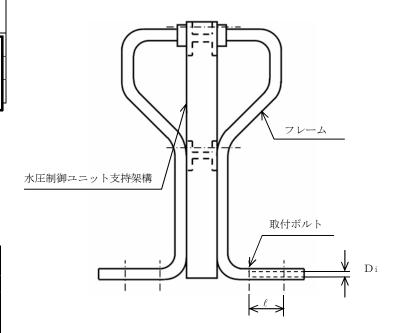

1. 設計基準対象施設

1.1 設計条件

	据付場所及び床面高さ	固有周期	弾性設計用地 静的	震動Sd又は 震度	基準地別	§動Ss	最高使用圧力	最高使用温度	周囲環境温度	
	機器名称 耐震重要度分類	(m)	(s)	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
水圧制御ユニット	S	原子炉建屋 EL. 20.3*	0.009	Сн=0.79	Cv = 0.62	Сн=1.55	Cv=1.17	_	_	

注記 *:基準床レベルを示す。

1.2 機器要目


材料	要素 番号	E (MPa)	ℓk (mm)	i (mm)	λ	1	٨	-	ν
CTDCOO	8		+	+	-				<u> </u>
STPG38	12								
SS41	20								

	要素	番号
	8 10 12	20
A (mm ²)		
$Z y (mm^3)$		
$Z z (mm^3)$		
$Z p (mm^3)$	1	L
材料	<u> </u>	

部材	材料	Sy	Su	F	F*	
1311	(MPa)	(MPa)	(MPa)	(MPa)		
フレーム		205	365	205	246	
70-4		241 (厚さ≦16 mm)	394	241	276	
取付ボルト		231 (16 mm<径≦40	394	231	276	
30117777		mm)	004	201	210	

*2:基準地震動Ssによる荷重との組合せの場合

1.3 計算数値

1.3.1 フレームの荷重及びモーメント

			弹性設計用地震動 \$	ら d 又は静的震度		
要素 節点 番号 番号		フレームの荷重			フレームのモーメント	
番号	F x (N)	F y (N)	Fz (N)	Mx (N•mm)	My (N∙mm)	Mz (N•mm)
10						
10						
12						
20						
	番号 10 10 12	番号 Fx (N) 10 10 12	番号 Fx Fy (N) (N) 10 10 12	節点 番号 Fx Fy Fz (N) (N) (N) (N) (N)	番号 Fx Fy Fz Mx (N) (N) (N・mm) 10 10 12	節点番号 フレームの荷重 フレームのモーメント Fx (N) (N) (N) (N) (N) (N・mm) Mx (N・mm) (N・mm) 10 10 12

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

				基準地別	震動Ss		
要素	節点		フレームの荷重			フレームのモーメント	
番号番号	番号	F x (N)	F y (N)	F z (N)	Mx (N•mm)	My (N·mm)	Mz (N·mm)
8	10				•		
10	10						
12	12						
20	20						

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

1.3.2 取付ボルトの荷重及びモーメント

KIJ MADE TOO DE				弾性設計用地震動	Sd又は静的震度			
要素	節点		フレームの荷重		フレームのモーメント			
番号	番号	F x (N)	F y (N)	F z (N)	Mx (N∙mm)	My (N⋅mm)	Mz (N⋅mm)	
14	14							

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

				基準地	震動Ss		
要素節点			フレームの荷重			フレームのモーメント	
番号	番号	F x (N)	Fy (N)	F z (N)	Mx (N·mm)	My (N•mm)	Mz (N∙mm)
(13)	13						
14	14						

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

1.4 結論

1.4.1 固有周期

(単位: s)

固有周期 0.009

1.4.2 応力

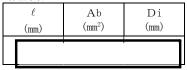
(単位:MPa)

部材	材料	材料 応力	弾性設計用地震動Sd又は静的震度					基準地震動 S s				
门小们	171 147	ルロンフ	要素番号	節点番号	算出応力	許容応力	要素番号	節点番号	算出応力	許容応力		
		引張り	12	12	σt =1	f t =205	12	12	σt =1	f t =246		
		圧縮	12	12	$\sigma c = 1^{*1}$	f c =183	12	12	σc =1*1	f c =214		
		せん断	10	10	$\tau = 1$	f s =118	10	10	τ =2	f s =142		
	STPG38	曲げ	8	10	σb =2	f b =205	8	10	σb =3	f b =246		
		組合せ	8	10	$\sigma f = 2$	f t =205	8	10	$\sigma f = 3$	f t =246		
		圧縮と曲げの 組合せ	(8)	10	$\frac{ \sigma _{\rm c}}{f_{\rm c}} + \frac{\sigma _{\rm b}}{f_{\rm b}} \le 1 \text{ his } \frac{\sigma _{\rm b} - \sigma _{\rm c}}{f_{\rm t}} \le 1$		8 10		$\frac{ \sigma }{f_{\rm c}} + \frac{\sigma}{f_{\rm b}} \le 1 \text{ find } \frac{\sigma}{f_{\rm t}} \le 1$			
フレーム		(座屈の評価)	O		0.01 (無次元))		0.01 (無次元)			
	SS41	引張り	20	20	σt =2	f t =241	20	20	σt =4	f t =276		
		圧縮	20	20	σc =2*1	f c =43	20	20	σc =4*1	f c =43		
		せん断	20	20	τ =6	f s =139	20	20	τ =9	f s =159		
		曲げ	20	20	σb =40	f b =241	20	20	σb =69	f b =276		
		組合せ	20	20	$\sigma f = 43$	f t =241	20	20	σf =74	f t =276		
		圧縮と曲げの 組合せ	20	20	$\frac{ \sigma }{f_{\rm c}} + \frac{\sigma}{f_{\rm b}} \le 1 \text{ is } \frac{\sigma}{f_{\rm t}} \le 1$		(S)	20	$\frac{ \sigma_{\rm c} }{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}} \le 1.7$	$\frac{\sigma \mathbf{b} - \sigma \mathbf{c} }{f_{\mathbf{t}}} \leq 1$		
		(座屈の評価)			0.22 (無次元)			_	0.34 ((無次元)		
取付式ルト	SS41	引張り	14	14	σ tb=1	f ts=173*2	13	13	σ tb=1	f ts=207*2		
取付ボルト	SS41	せん断	14	14	τ b =1	f sb=133	14	14	τ b =1	f sb=159		

すべて許容応力以下である。

注記 *1:絶対値を記載

*2:fts=Min[1.4·fto-1.6·τb, fto]より算出

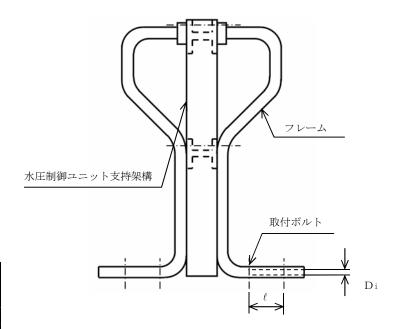

2. 重大事故等対処設備

2.1 設計条件

数	設 備 分 類	据付場所及び床面高さ (m)	固有周期 (s)	弾性設計用地震動 S d 又は 静的震度		基準地震動Ss		最高使用圧力	最高使用温度	周囲環境温度
機器名称				水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(MPa)	(℃)	(℃)
水圧制御ユニット	-(Ss)	原子炉建屋 EL. 20.3*	0.009	_	_	Сн=1.55	Cv=1.17	_	_	

注記 *:基準床レベルを示す。

2.2 機器要目



材料	要素 番号	E (MPa)	ℓk (mm)	i (mm)	λ	Λ	ν
CTDCOO	8						
STPG38	12	1					
SS41	20	Ī					

	要素番号				
	8 10 12	20			
A (mm2) $Z y (mm3)$ $Z z (mm3)$ $Z p (mm3)$					
材料					

部材	材料	材料 Sy (MPa)		F (MPa)	F* (MPa)
		(Mra)	(MPa)	(Mra)	(Mra)
フレーム	Ш	189	357	_	227
70-4		234 (厚さ≦16 mm)	385	_	270
取付ボルト		225 (16 mm<径≦40	385	_	270
		mm)	300		210 I

注記 *:基準地震動Ssによる荷重との組合せの場合

25

2.3 計算数値

2.3.1 フレームの荷重及びモーメント

		基準地震動S s								
要素	節点		フレ	/ 一ムの荷重		フレームのモーメント				
番号	番号 番号	番号	番号	F x (N)		F y (N)	F z (N)	Mx (N∙mm)	My (N·mm)	Mz (N·mm)
8	10									
10	10									
12	12									
20	20									

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

2.3.2 取付ボルトの荷重及びモーメント

X11 X170 1 0710		基準地震動S s								
要素	節点		フレームの荷重		フレームのモーメント					
番号	番号	F x (N)	Fy (N)	F z (N)	Mx (N·mm)	My (N•mm)	Mz (N∙mm)			
13	13									
14	14									

注:添え字x,y,zは要素に与えられた座標軸で,x軸は常に要素の長手方向にとる。

2.4 結論

2.4.1 固有周期

(単位: s)

固有周期
0.009

2.4.2 応力

(単位:MPa)

ل با جوجاب	- Inlet	, de 1.	基準地震動Ss					
部材	材料	応力	要素番号	節点番号	算出応力	許容応力		
		引張り	12	12	σt =1	f t =227		
		圧縮	12	12	σc =1*1	f c =200		
		せん断	10	10	τ =2	f s =131		
	STPG38	曲げ	8	10	$\sigma b = 3$	f b =227		
		組合せ	8	10	σf =3	f t =227		
		圧縮と曲げの 組合せ	8	10	$\frac{ \sigma _{c}}{f_{c}} + \frac{\sigma _{b}}{f_{b}} \le 1 \text{ for } \frac{\sigma _{b} - \sigma _{c}}{f_{t}} \le 1$			
フレーム		(座屈の評価)			0.02 (無次元)			
		引張り	20	20	σ t =4	f t =270		
		圧縮	20	20	σc =4*1	f c =43		
		せん断	20	20	τ =9	f s = 155		
	SS41	曲げ	20	20	σb =69	f = 270		
		組合せ	20	20	σf =74	f t =270		
		圧縮と曲げの 組合せ	20	20	$\frac{ \sigma _{c}+\sigma _{b}}{f_{c}}+\frac{\sigma _{b}}{f _{b}} \leq 1 \text{ for } \frac{\sigma _{b}- \sigma _{c}}{f _{t}} \leq 1$			
		(座屈の評価)	9		0.34 (無次元)			
取付ボルト	SS41	引張り	(13)	13	σtb=1	f ts=202*2		
AXIJ WVV I	5541	せん断	14)	14	τ b =1	f sb=155		

すべて許容応力以下である。

注記 *1:絶対値を記載

*2:fts=Min[1.4·fto-1.6·τb, fto]より算出