本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません

東海第二発電所	工事計画審査資料
資料番号	工認-174 改4
提出年月日	平成 30 年 6 月 19 日

V-1-1-8-4 溢水影響に関する評価

目次

1.	概	要	1
2.		水評価	
2	. 1	没水影響に対する評価	
2	. 2		
2	. 3	蒸気影響に対する評価	
2	. 4	使用済燃料プールの機能維持に関する溢水評価	34
2	. 5	海水ポンプエリアの溢水影響評価	37
3.	溢	水防護区画を内包する建屋外からの流入防止	38
3	. 1	屋外タンクの溢水による影響評価	38
3	. 2	その他の地震起因による敷地内溢水影響評価	48
3	. 3	海水ポンプエリアの区域外溢水による影響評価	53
3	. 4	地下水からの影響評価	54

1. 概要

本資料は,防護すべき設備に対して,発電用原子炉施設内で発生を想定する溢水の影響により,防護すべき設備が要求される機能を損なうおそれがないことを評価する。

また、放射性物質を含む液体を内包する容器、配管<mark>その他の設備</mark>が破損することにより発生を想定する放射性物質を含む液体が、管理区域外へ漏えいしないことを評価する。

2. 溢水評価

発電用原子炉施設内で発生を想定する溢水の影響により、防護すべき設備が<mark>安全 要求される機能</mark>を損な<mark>うおそれが</mark>ないことを評価する。また、使用済燃料プールのスロッシングによる水位低下を考慮しても、使用済燃料プールの冷却機能及び<mark>使用済燃料プールの給水 遮蔽</mark>機能が維持できることを評価する。溢水評価において、放射性物質を含む液体を内包する容器、配管その他の設備が破損することにより発生を想定する放射性物質を含む液体が、管理区域外へ漏えいするおそれがないことを評価する。

評価で期待する<mark>浸水 溢水</mark>防護施設は、資料V-1-1-8-1「溢水等による損傷防止の基本方針」によるものとする。また、溢水源及び溢水量の設定並びに溢水防護区画及び溢水経路の設定は、資料V-1-1-8-3「溢水評価条件の設定」によるものとする。

重大事故等対処設備のうち可搬設備については、保管場所における溢水影響を評価する。

溢水評価において現場操作が必要な設備に対しては、必要に応じて環境の温度及び放射線量並びに薬品、溢水水位及び漂流物による影響を考慮しても、運転員による操作場所までのアクセスが可能な設計とする。なお、必要となる操作を中央制御室で行う場合は、操作を行う運転員は中央制御室に常駐していることからアクセス性を失わずに対応できる。なお、操作場所までのアクセス性については、溢水水位は20 cm以下であること又は時間的な裕度が十分に確保されていることを確認することで評価を行う。

溢水評価を行うに当たり防護対策として期待する溢水防護に関する施設の設計方針については、資料V-1-1-8-5「溢水防護施設の詳細設定」に示す。

2.1 没水影響に対する評価

(1) 評価方法

溢水源、溢水量、溢水防護区画及び溢水経路から算出される溢水水位と防護すべき設備の機能喪失高さを比較し評価する。没水影響評価に用いる溢水水位の算出は、評価ガイドを踏まえ、漏えい発生区画とその経路上の溢水防護区画の全てに対して行う。

溢水水位(H)は、以下の式に基づいて算出する。床勾配が溢水防護区画にある場合には、保守的に床勾配分の滞留量は考慮せず、溢水水位の算出は床勾配高さ*分嵩上げする。

*:床勾配の下端から上端までの高さ

(建屋設計では50mmであるが、保守的に一律100 mmと設定)

H = Q/A + h

H:溢水水位(m)

Q:流入量 (m3)

設定した溢水量及び溢水経路に基づき評価対象区画への流入量を算 出する。

A:滯留面積 (m²)

評価対象区画内と溢水経路に存在する区画の総面積を滞留面積として評価する。滞留面積は、壁及び床の盛り上がり(コンクリート基 磁等)範囲を除く有効面積を滞留面積とする。

h:床勾配高さ(0.1m)(溢水防護区画の床勾配を考慮)

滞留面積(A)は、除外面積を考慮した算出面積に対して30%の裕度を確保する。

(2) 判定基準

没水影響に関する判定基準を以下に示す。

a. 発生した溢水による水位が、<mark>溢水の影響を受けて</mark>、防護すべき設備の<mark>安全機能</mark> 要求される機能を損なうおそれがある高さ(以下「機能喪失高さ」という。)を上回らないこと。 この時、溢水による水位の算出に当たっては、区画の床勾配、区画面積、系統保有水量、流入状態、溢水源からの距離、人員のアクセス等による一時的な水位変動を考慮し、保有水量や伝播経路の設定において十分な保守性を確保するとともに、人員のアクセスルートにおいて発生した溢水による水位に対して100 mm以上の裕度が確保されていること。

その際,溢水の流入状態,溢水源からの距離,人のアクセス等による一時的な水位変動を考慮し,発生した溢水による水位に対して100mm以上の裕度が確保されていること。 さらに,溢水防護区画への資機材の持ち込み等による床面積への影響を考慮すること。

- b. 防護すべき設備のうち設計基準対象設備等については、多重性又は多様性を有しており、各々が別区画に設置され同時に安全機能要求される機能を損なうことのないこと。その際、溢水を起因とする運転時の異常な過渡変化及び設計基準事故に対処するために必要な機器が機能喪失する溢水事象により、運転時の異常な過渡変化及び設計基準事故が発生しないこと。
- ・安全機能別に分類した防護すべき設備が水没等せず、機能維持される場合 や、防護すべき設備の機能維持に必要となる防護対策を実施することによ

り、必要な各系統機能が維持され、「系列(安全区分)」のうち対応する 系列が確保される。

次に、多重性又は多様性を有する系統が「安全機能の維持」に必要な、 安全区分の区画分離等の要求事項を満足し、同時に機能喪失しないことを 確認することで、「安全機能」が維持される。

上記の手順にて、想定する溢水発生時に、すべての「安全機能」が維持されると確認された場合に、総合判定にてプラントの安全機能維持となる。

c. 防護すべき設備のうち重大事故等対処設備については、没水影響により設計基準事故対象設備等又は同様の機能を有する重大事故等対処設備と同時に機能を喪失することがないこと。

(3) 評価結果

防護すべき設備が、没水影響に関する判定基準のいずれかを満足すること から、要求される機能を損なうおそれはない。

防護すべき設備の機能喪失判定を踏まえ、プラント全体として安全機能が保たれているかについて判定を実施した結果、必要となる対策(貫通部の止水処置及び堰の改造等)を行うことにより、判定基準を満足するため、原子炉の停止機能、冷却機能及び放射性物質の閉じ込め機能が維持されること、使用済燃料プールの冷却機能及び給水機能が維持されること、重大事故等対処設備が設計基準事故等対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能を喪失しないことを確認した。

消火栓の放水による没水に対しては、中央制御室、電気品室及びバッテリー排気ファン室等の異なる安全区分を有する設備が隣接するエリア、そのエリアへの流下経路があるエリア及び重大事故等対処設備を内包する緊急時対策所建屋、緊急用海水ポンプピット、格納容器圧力容器逃がし装置格納槽、常設代替高圧電源装置置場、常設代替高圧電源装置用カルバート、常設低圧代替注水ポンプ室、可搬型設備用軽油タンク室(南側)、可搬型設備用軽油タンク室(西側)は、水消火を行わない消火手段として考慮し、消火栓の放水は行わない設計とする。

具体的な<mark>対策</mark>評価結果を第2-1表に示す。

第2-1表 防護すべき設備の没水評価結果 (1/6)

第 2 - 1 表 的 護すべざ 設備の 没水評価 結果 (1 / 6) 判定 判定												
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	消火水	地震 起因	被水影響評価 判定基準						
HPCS ポンプ室空調機 (HVAC-AH2-2)			•	_	-	b.						
HPCS ポンプ入口弁 (S/P側) (E22-F015 (MO))			•	_	-	b.						
代替循環冷却系原子炉注水流量(B系) (FT-SA17-N013B)			•	_	-	c.						
代替循環冷却系格納容器スプレイ流量 (TE-SA17-N018B)			•	_	-	c.						
水平方向地震加速度検出器 (C72-N010A)			•	•	•	b.						
水平方向地震加速度検出器 (C72-N010B)			•	•	•	b.						
鉛直方向地震加速度検出器 (C72-N011A)			•	•	•	b.						
鉛直方向地震加速度検出器 (C72-N011B)			•	•	•	b.						
RHR ポンプ (B) 停止時冷却ライン入口弁 (E12-F006B (MO))			•	_	-	b.						
RHR ポンプ (B) 入口弁 (E12-F004B (MO))	原子炉		•	_	-	b.						
RHR (B) ポンプ室空調機 (HVAC-AH2-5)	建屋原 子炉棟						·		•	_	-	b.
代替循環冷却系ポンプB			•	_	-	c.						
代替循環冷却系ポンプ吐出圧力B (PT-SA17-N005B)			•	-	_	с.						
サプレッション・プール水位 (LT-26-79.60)			•	_	ı	c.						
RHR ポンプ (C) 入口弁 (E12-F004C (MO))			•	-	ı	b.						
RHR (C) ポンプ室空調機 (HVAC-AH2-6)			•	_	_	b.						
SUPP CHAMBER LEVEL (伝送器) (LT-26-79.5R)			•	_	_	b.						
SUPP CHAMBER LEVEL (B) (伝送器) (LT-26-79.5B)			•	_	-	b.						
RHR ポンプ (A) 停止時冷却ライン入口弁 (E12-F006A (MO))			•	_	-	b.						
RHR ポンプ (A) 入口弁 (E12-F004A (MO))			•	_	_	b.						

第2-1表 防護すべき設備の没水評価結果(2/6)

第 2-1 表								
	設置	設置高さ		判定		被水影響評価		
防護すべき設備	建屋	EL. [m]	想定 破損	消火水	地震 起因	判定基準		
RHR (A) ポンプ室空調機 (HVAC-AH2-7)			•	•	_	b.		
代替循環冷却系ポンプ入口温度 (TE-SA17-N001A)			•	•	_	с.		
代替循環冷却系格納容器スプレイ流量 (TE-SA17-N018A)			•	_	_	c.		
残留熱除去系海水系系統流量 (FT-E12-N007A)			•	_	_	b./c.		
代替循環冷却系ポンプ吐出圧力A (PT-SA17-N005A)			•	_	_	c.		
水平方向地震加速度検出器 (C72-N010C)			•	•	_	b.		
水平方向地震加速度検出器 (C72-N010D)			•	•	-	b.		
鉛直方向地震加速度検出器 (C72-N011C)		₹ -4.00	•	•	_	b.		
鉛直方向地震加速度検出器 (C72-N011D)			•	•	-	b.		
代替循環冷却系ポンプA	原子炉		•	-	_	с.		
原子炉隔離時冷却系ポンプ (RCIC-PMP-C001/TBN-RCIC-C002)	建屋原 子炉棟		•	_	_	b./c.		
原子炉隔離時冷却系系統流量 (FT-E51-N003)			•	_	ı	c.		
RCIC ポンプサプレッションプール水供給 弁 (E51-F031 (MO))			•	-	_	b.		
RCIC ミニフロー弁 (E51-F019 (MO))			•	-	-	b.		
RCIC 潤滑油クーラー冷却水供給弁 (E51-F046 (MO))			•	-	-	b.		
RCIC 蒸気供給弁 (E51-F045 (MO))			•	-	-	b.		
RCIC 弁 (E51-F045) バイパス弁 (E51-F095 (MO))			•	_	_	b.		
RCIC トリップ/スロットル弁 (E51-C002 (MO))			•	_	-	b.		
油圧作動弁 ガバナ弁 (GOVERNING VALVE)			•	_	-	b.		
ガバナ			•	-	_	b.		

第2-1表 防護すべき設備の没水評価結果(3/6)

第 2-1 表 防護すべざ設備の没水評価結果(3 / 6)										
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	消火水	地震 起因	被水影響評価 判定基準				
PUMP DISCHARGE PRESS (スイッチ) (PSH-E51-N020)			•	_	-	b.				
PUMP DISCHARGE H/L FLOW (伝送器) (FT-E51-N002)			•	_	-	b.				
FI-E51-N002 計器収納箱			•	_	_	b.				
RCIC PUMP DISCHARGE FLOW (伝送器) (FT-E51-N003)			•	_	_	b.				
RCIC 蒸気入口ドレンポット排水弁 (E51-F025 (A0))			•	_	_	b.				
低圧炉心スプレイ系ポンプ (LPCS-PMP-C001)			•	_	_	b./c.				
LPCS ポンプ入口弁 (E21-F001 (MO))			•	-	ı	b.				
LPCS ミニフロー弁 (E21-F011 (MO))			•	_	_	b.				
常設高圧代替注水系ポンプ			•	•	_	c.				
高圧代替注水系系統流量 (FT-SA13-N006)	原子炉建屋原		•	-	_	c.				
LPCS ポンプ室空調機(HVAC-AH2-3)	子炉棟						•	•	_	b.
SUPP CHAMBER LEVEL (A) (伝送器) (LT-26-79.5A)					•	_	_	b.		
残留熱除去系ポンプA(RHR-PMP-C002A)			•	_	_	b./c.				
RCIC 真空ポンプ (RCIC-PMP-VAC)			•	•	_	b.				
RCIC 復水ポンプ (RCIC-PMP-COND)			•	•	_	b.				
RCIC バキュームタンク復水排水弁 (E51-F004 (AO))			•	_	_	b.				
RCIC バキュームタンク復水排水弁 (E51-F005 (A0))			•	_	-	b.				
RCIC ポンプ・タービン室空調機 (HVAC-AH2-4)			•	_	-	b.				
高圧炉心スプレイ系ポンプ (HPCS-PMP-C001)				•	_	-	b./c.			
HPCS ポンプ室空調機 (HVAC-AH2-1)			•	_	_	b.				

第2-1表 防護すべき設備の没水評価結果(4/6)

R 2 - 1 衣 防護すべさ設備の没水評価結果(4 / 6)								
	設置	設置高さ		判定		被水影響評価		
防護すべき設備	建屋	設理問さ EL.[m]	想定 破損	消火水	地震 起因	判定基準		
HPCS ミニフロー弁 (E22-F012 (MO))		-4.00	•	-	_	b.		
R/B INST DIST PNL 3		2.00	•	•	_	b.		
主蒸気ドレン弁 (外側隔離弁) (B22-F019 (MO))			•	_	-	b.		
主蒸気ドレン弁 (外側隔離弁) (B22-F067A (M0))			•	-	-	b.		
主蒸気ドレン弁 (外側隔離弁) (B22-F067B (M0))			•	_	_	b.		
主蒸気ドレン弁 (外側隔離弁) (B22-F067C (MO))			•	_	_	b.		
主蒸気ドレン弁 (外側隔離弁)(B22-F067D (MO))			•	-	-	b.		
主蒸気隔離弁第2弁(A)(B22-F028A(A0))			•	_	_	b.		
主蒸気隔離弁第2弁(B)(B22-F028B(A0))	原子炉建屋原		•	_	_	b.		
主蒸気隔離弁第2弁(C)(B22-F028C(A0))	子炉棟	14. 00	•	_	-	b.		
主蒸気隔離弁第2弁(D)(B22-F028D(A0))				11.00	•	_	_	b.
MSL AREA TEMP (A) (検出器) (TE-E31-N031A)			•	-	_	b.		
MSL AREA TEMP (B) (検出器) (TE-E31-N031B)			•	-	_	b.		
MSL AREA TEMP (C) (検出器) (TE-E31-N031C)			•	_	_	b.		
MSL AREA TEMP (D) (検出器) (TE-E31-N031D)			•	_	-	b.		
RHR (A) 系 シャットダウン注入弁 (E12-F053A (MO))			•	•	-	b.		
RHR (B) 系 格納容器スプレイ弁 (E12-F016B (MO))			•	•	-	b.		
RHR (B) 系 格納容器スプレイ弁 (E12-F017B (MO))			•	•	_	b.		

第2-1表 防護すべき設備の没水評価結果(5/6)

防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	判定 消火水	地震 起因	被水影響評価 判定基準	
RHR (B) 系 シャットダウン注入弁 (E12-F053B (MO))			•	•	-	b.	
格納容器內水素濃度 (SA) (H2E-SA19-N002A)			•	•	_	с.	
格納容器内酸素濃度 (SA) (O2E-SA19-N001A)		14. 00	•	•	_	c.	
格納容器内雰囲気ガスサンプリング装置			•	•	_	c.	
緊急用電源切替盤			•	•	_	c.	
CUW 外側隔離弁 (G33-F004 (MO))			•	_	_	b.	
格納容器内水素濃度 (SA) (H2E-SA19-N002B)			•	•	_	c.	
格納容器内酸素濃度 (SA) (02E-SA19-N001B)		20. 30	•	•	_	c.	
格納容器内雰囲気ガスサンプリング装置			•	•	-	c.	
RHR (A) 系 格納容器スプレイ弁 (E12-F016A (MO))	原子炉建屋原		•	•	_	b.	
RHR (A) 系 格納容器スプレイ弁 (E12-F017A (MO))	子炉棟			•	•	_	b.
FPC F/D (A) 出口弁 (G41-102A (A0))				•	_	-	ь.
FPC F/D (A) 出口流量制御弁 (G41-FCV-11A)		29, 00	•	_	_	ь.	
FPC F/D (B) 出口弁 (G41-102B (A0))		29.00	•	_	_	b.	
FPC F/D (B) 出口流量制御弁 (G41-FCV-11B)			•	_	_	b.	
代替燃料プール冷却系ポンプ			•	_	_	c.	
再循環系ポンプ低速度用電源装置遮断器 A, B			•	•	_	c.	
緊急用電源切替盤			•	•	•	с.	
SKIMMER SURGE TANK HI LEVEL(スイッチ) (LSH-G41-N004)		38. 80	•	_	_	b.	
SKIMMER SURGE TANK LO LEVEL (スイッチ) (LSL-G41-N005)			•	_	_	b.	

第2-1表 防護すべき設備の没水評価結果(6/6)

第2 1 数 例														
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	消火水	地震 起因	被水影響評価 判定基準								
SKIMMER SURGE TANK LO LOLEVEL (スイッチ) (LSLL-G41-N006)	原子炉	38. 80	•	_	ı	b.								
SKIMMER SURGE TANK HI LEVEL(伝送器) (LT-G41-N100)	建屋原	36. 60	•	_	_	b.								
RCW SURGE TANK LEVEL (伝送器) (LT-9-192)	子炉棟	46. 50	•	_	_	b.								
燃料デイタンク液面レベルスイッチ (2D) (DG-LITS-5)		4. 56	•	_	-	b.								
燃料デイタンク液面レベルスイッチ (HPCS) (DG-LITS-205)	原子炉	4. 50	•	_	_	b.								
燃料デイタンク液面レベルスイッチ (2C) (DG-LITS-105)	建屋付 属棟	4. 05	•	_	_	b.								
使用済燃料プール監視カメラ用空冷 装置		23. 00	•	_	•	с.								
残留熱除去系海水系ポンプA (RHRS-PMP-A)				•	_	_	b.							
残留熱除去系海水系ポンプC (RHRS-PMP-C)			•	_	_	b.								
2 C非常用ディーゼル発電機用海水 ポンプ (DGSW-PMP-2C)			•	_	_	b.								
ASW ポンプ (A) (ASW-PMP-A)	海水ポ	海水ポ									•	_	_	b.
ASW ポンプ (C) (ASW-PMP-C)			0.80	•	_	_	b.							
残留熱除去系海水系ポンプB (RHRS-PMP-B)	ンプ室	0.80	•	_	_	b.								
残留熱除去系海水系ポンプD (RHRS-PMP-D)			•	_	_	ь.								
2 D非常用ディーゼル発電機用海水 ポンプ (DGSW-PMP-2D)			•	_	_	b.								
高圧炉心スプレイ系ディーゼル発電 機用海水ポンプ (DGSW-PMP-HPCS)			•	_	_	b.								
ASW ポンプ (B) (ASW-PMP-B)			•	_	_	b.								
上記以外の防護すべき設備	_	-	-	-	-	a								

*:●:溢水による没水水位が、機能喪失高さを上回る設備。

-:溢水による没水水位に対して.機能喪失高さが裕度(100mm以上)を有する設備。

2.2 被水影響に対する評価

(1) 評価方法

被水影響については、溢水源からの直線軌道及び放物線軌道の飛散による被水、並びに天井面の開口部若しくは貫通部からの被水の影響を受ける範囲内**にある防護すべき設備が被水により安全機能要求される機能を損なうおそれがないことを評価する。

※:被水により防護すべき設備の機能が喪失する場合の被水源及び上層階から の伝播経路と防護すべき設備の位置関係について、溢水評価ガイドを参考 に第2-2表及び第2-1図のように定める。

(2) 判定基準

被水影響に関する判定基準を以下に示す。

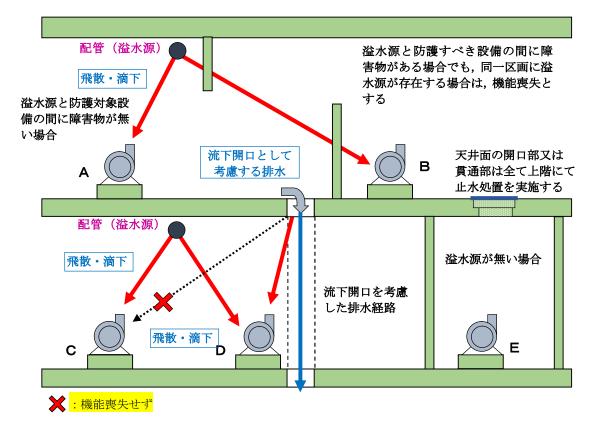
- a. 「JIS C 0920 電気機械器具の外郭による保護等級(IPコード)」に おける第二特性数字4以上相当の保護等級を有すること。
- b. 防護すべき設備のうち設計基準対象設備等については、多重性又は多様性を有しており、各々が別区画に設置され、同時に安全機能要求される機能を損なうことのないこと。その際、溢水を起因とする運転時の異常な過渡変化及び設計基準事故に対処するために必要な機器が機能喪失する溢水事象により、運転時の異常な過渡変化及び設計基準事故が発生しないこと。
- c. 安全機能別に分類した防護すべき設備が水没等せず、機能維持される場合や、 防護すべき設備の機能維持に必要となる防護対策を実施することにより、必要 な各系統機能が維持され、「系列(安全区分)」のうち対応する系列が確保される。

次に、多重性又は多様性を有する系統が「安全機能の維持」に必要な、安全区分の区画分離等の要求事項を満足し、同時に機能喪失しないことを確認することで、「安全機能」が維持される。

上記の手順にて、想定する溢水発生時に、すべての「安全機能」が維持されると確認された場合に、総合判定にてプラントの安全機能維持となる。

- c. 実機での被水条件を考慮しても、<mark>安全機能 要求される機能</mark>を損なわないことを被水試験等により確認した保護カバーやパッキン等による被水防護措置がなされていること。
- d. 防護すべき設備のうち重大事故等対処設備については、被水影響により設計 基準事故対象設備等又は同様の機能を有する重大事故等対処設備と同時に機 能を喪失することがないこと。

(3) 評価結果


防護すべき設備が判定基準のいずれかを満足することから,被水影響を受けて 要求される機能を損なうおそれはない。 被水に対し、必要となる被水防護対策(保護カバーの設置、コーキング処理等) や区画分離等を実施することにより、判定基準を満足するため、原子炉の停止機能、冷却機能及び放射性物質の閉じ込め機能が維持されること、使用済燃料プールの冷却機能及び給水機能が維持されること、重大事故等対処設備が設計基準事故等対処設備等又は同様の機能を有する重大事故等対処設備と同時に機能を喪失しないことを確認した。

消火栓の放水による没水に対しては、中央制御室、電気品室及びバッテリー排気ファン室等の異なる安全区分を有する設備が隣接するエリア、そのエリアへの流下経路があるエリア及び重大事故等対処設備を内包する緊急時対策所建屋、緊急用海水ポンプピット、格納容器圧力容器逃がし装置格納槽、常設代替高圧電源装置置場、常設代替高圧電源装置用カルバート、常設低圧代替注水ポンプ室、可搬型設備用軽油タンク室(両側)は、水消火を行わない消火手段として考慮し、消火栓の放水は行わない設計とする。

具体的な<mark>対策</mark>評価結果を第2-3表に示す。

第2-2表 被水による機能喪失の考え方

防護すべき設備	溢水源 1	溢水源 2
A	機能喪失	機能喪失せず
В	機能喪失	機能喪失せず
С	機能喪失せず	機能喪失
D	機能喪失	機能喪失
E	機能喪失せず	機能喪失せず

第2-1図 被水による機能喪失の考え方

第2-3表 防護すべき設備の被水評価結果(1/13)

	設置建屋	設置高さ EL.[m]		判定		被水影響評価							
防護すべき設備			想定 破損	消火水	地震 起因	判定基準							
HPBS ポンプ室空調機 (HVAB-AH2-2)			•	•	_	b.							
代替循環冷却系原子炉注水流量(B系) (FT-SA17-N013B)			•	•	I	d.							
代替循環冷却系格納容器スプレイ流量 (TE-SA17-N018B)			•	•	l	d.							
水平方向地震加速度検出器 (B72-N010A)			•	•	-	b.							
水平方向地震加速度検出器 (B72-N010B)			•	•	-	b.							
鉛直方向地震加速度検出器 (B72-N011A)			•	•	-	b.							
鉛直方向地震加速度検出器 (B72-N011B)			•	•	-	b.							
RHR ポンプ (B) 停止時冷却ライン入 口弁 (E12-F006B (MO))			•	•	-	b.							
RHR ポンプ (B) 入口弁 (E12-F004B (MO))	*		建屋原	建屋原	建屋原	建屋原	建屋原 -4.00	-4.00	•	•	-	b.	
RHR (B) ポンプ室空調機 (HVAB-AH2-5)							1 // 1/4	•	•	ı	b.		
代替循環冷却系ポンプB											•	•	-
代替循環冷却系ポンプ入口温度 (TE-SA17-N001B)							•	•	-	d.			
代替循環冷却系ポンプ吐出圧力B (PT-SA17-N005B)			•	•	_	d.							
残留熱除去系ポンプ B (RHR-PMP-B002B)			•	•	-	b. /d.							
サプレッション・プール水位 (LT-26-79.60)			•	•	-	d.							
RHR ポンプ (B) 入口弁 (E12-F004B (M0))			•	•	-	b.							
RHR (B) ポンプ室空調機 (HVAB-AH2-6)			•	•	-	b.							
SUPP BHAMBER LEVEL (B) (伝送器) (LT-26-79.5B)			•	•	-	b.							

第2-3表 防護すべき設備の被水評価結果(2/13)

加2 0数 例		ダ偏の彼水評		/ 10/		1								
	設置	設置 設置高さ - 建屋 EL.[m]		判定		 被水影響評価								
防護すべき設備	建屋		想定 破損	消火水	地震 起因	判定基準								
RHR ポンプ (A) 停止時冷却ライン入口弁 (E12-F006A (MO))			•	•	-	b.								
RHR ポンプ (A) 入口弁 (E12-F004A (MO))			•	•	_	b.								
RHR (A) ポンプ室空調機 (HVAB-AH2-7)			•	•	_	b.								
代替循環冷却系ポンプ入口温度 (TE-SA17-N001A)			•	•	_	d.								
代替循環冷却系格納容器スプレイ流 量 (TE-SA17-N018A)			•	•	-	d.								
残留熱除去系海水系系統流量 (FT-E12-N007A)			•	•	_	b. /d.								
代替循環冷却系ポンプ吐出圧力A (PT-SA17-N005A)			•	•	-	d.								
水平方向地震加速度検出器 (B72-N010B)		百乙烷	•	•	_	b.								
水平方向地震加速度検出器 (B72-N010D)	原子炉		•	•	_	b.								
鉛直方向地震加速度検出器 (B72-N011B)	建屋子炉棟	建屋原	建屋原	建屋原	建屋原	建屋原	建屋原	建屋原	建屋原 -4.00	建屋原 -4.00	•	•	-	b.
鉛直方向地震加速度検出器 (B72-N011D)											•	•	-	b.
代替循環冷却系ポンプA											•	•	_	d.
原子炉隔離時冷却系ポンプ (RBIB-PMP-B001/TBN-RBIB-B002)			•	•	-	b. /d.								
原子炉隔離時冷却系系統流量 (FT-E51-N003)			•	•	_	d.								
RBIB 潤滑油クーラー冷却水供給弁 (E51-F046 (MO))			•	•	-	b.								
RBIB 蒸気供給弁 (E51-F045 (MO))			•	•	-	b.								
RBIB 弁 (E51-F045) バイパス弁 (E51-F095 (MO))			•	•	-	b.								
RBIB トリップ/スロットル弁 (E51-B002 (MO))			•	•	-	b.								
油圧作動弁 ガバナ弁 (GOVERNING VALVE)			•	•	-	b.								

第2-3表 防護すべき設備の被水評価結果(3/13)

第 2 - 3 表 的		X VH V Z IXZ J C F I												
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	判定消火水	地震 起因	被水影響評価 判定基準								
ガバナ			•	•	_	b.								
PUMP DISBHARGE PRESS (スイッチ) (PSH-E51-N020)			•	•	-	b.								
PUMP DISBHARGE H/L FLOW (伝送器) (FT-E51-N002)			•	•	-	b.								
FI-E51-N002 計器収納箱			•	•	-	b.								
RBIB PUMP DISBHARGE FLOW(伝送器) (FT-E51-N003)			•	•	-	b.								
RBIB 蒸気入口ドレンポット排水弁 (E51-F025 (A0))			•	•	_	b.								
低圧炉心スプレイ系ポンプ (LPBS-PMP-B001)			•	•	ı	b. /d.								
常設高圧代替注水系ポンプ					İ	I				•	•	-	d.	
高圧代替注水系系統流量 (FT-SA13-N006)		原子炉	•	•	ı	d.								
LPBS ポンプ室空調機(HVAB-AH2-3)			•	•	_	b.								
SUPP BHAMBER LEVEL (A) (伝送器) (LT-26-79.5A)	建屋原 子炉棟	-	-					· ·	· ·	-4.00	•	•	ı	b.
残 留 熱 除 去 系 ポ ン プ B (RHR-PMP-B002B)										•	•	-	b. /d.	
残 留 熱 除 去 系 ポ ン プ A (RHR-PMP-B002A)							•	•	1	b. /d.				
RBIB 真空ポンプ (RBIB-PMP-VAB)			•	•	1	b.								
RBIB 復水ポンプ (RBIB-PMP-BOND)			•	•	_	b.								
RBIB バキュームタンク復水排水弁 (E51-F004 (A0))			•	•	-	b.								
RBIB バキュームタンク復水排水弁 (E51-F005 (A0))			•	•	_	b.								
RBIB ポンプ・タービン室空調機 (HVAB-AH2-4)			•	•	_	b.								
高圧炉心スプレイ系ポンプ (HPBS-PMP-B001)			•	•	-	b. /d.								
HPBS ポンプ室空調機(HVAB-AH2-1)			•	•	_	b.								

第2-3表 防護すべき設備の被水評価結果(4/13)

	設置	設置高さ		判定		被水影響評価			
防護すべき設備	建屋	EL. [m]	想定 破損	消火水	地震 起因	判定基準			
高圧代替注水系タービン止め弁 (SA13-M0-F300)			•	•	-	d.			
低圧代替注水系格納容器スプレイ流量(常設ライン用) (FT-SA11-N202)			•	•	_	d.			
BAMS (A) 冷却水入口弁 (RHRS (A) 系) (3-12F101A (MO))			•	•	-	b.			
BAMS (A) 冷却水出口弁 (RHRS (A) 系) (3-12F102A (MO))			•	•	-	b.			
HPBS ポンプ入口弁(BST側)(E22-F001 (MO))			•	•	_	b.			
残留熱除去系熱交換器出口温度 B (TE-E12-N027B)			•	•	-	d.			
BAMS (B) 冷却水入口弁 (RHRS (B) 系) (3-12F101B (MO))		2.00	•	•	-	b.			
BAMS (B) 冷却水出口弁 (RHRS (B) 系) (3-12F102B (MO))	原子炉 建屋原 子炉棟		•	•	-	b.			
RHR 熱交換器 (B) バイパス弁 (E12-F048B (MO))		建屋原	建屋原	建屋原		•	•	-	b.
RHRS 熱交換器 (B) 海水出口弁 (E12-F068B (MO))						•	•	-	b.
残留熱除去系熱交換器出口温度 A (TE-E12-N027A)				•	•	-	d.		
RHR 熱交換器 (A) バイパス弁 (E12-F048A (MO))					•	•	-	b.	
RHRS 熱交換器 (A) 海水出口弁 (E12-F068A (MO))				•	•	-	b.		
原子炉建屋水素濃度 (H2E-SA16-N001)			•	•	I	d.			
SUPP BHAMBER PRESS (PT-26-79. 52A)			•	•	-	b.			
サプレッション・チェンバ圧力 (PT-26-79.61)			•	•	-	d.			
SUPP BHAMBER PRESS (PT-26-79. 52B)		8. 20	•	•	_	b.			
残留熱除去系熱交換器入口温度 A (TE-E12-N004A)			•	•	-	d.			

第2-3表 防護すべき設備の被水評価結果(5/13)

第 2 — 3 表 防i		スリ用ックが又/NoT	III加木(J	/ 10)		1	
	設置	設置高さ		被水影響評価			
防護すべき設備	建屋	EL. [m]	想定 破損	消火水	地震 起因	判定基準	
残留熱除去系熱交換器入口温度 B (TE-E12-N004B)		8. 20	•	•	-	d.	
原子炉建屋水素濃度 (H2E-SA16-N002)			•	•	_	d.	
低圧代替注水系原子炉注水流量(可搬ライン用) (FT-SA11-N206)			•	•	_	d.	
低圧代替注水系原子炉注水流量(可搬 ライン狭帯域用) (FT-SA11-N207)			•	•	-	d.	
代替循環冷却系原子炉注水流量(A 系)(FT-SA17-N013A)			•	•	-	d.	
原子炉水位(SA燃料域) (LT-B22-N020)			•	•	_	d.	
格納容器內水素濃度(SA) (H2E-SA19-N002A)			•	•	_	d.	
格納容器內酸素濃度(SA) (02E-SA19-N001A)			•	•	_	d.	
格納容器内雰囲気ガスサンプリング 装置		14. 00	•	•	_	d.	
緊急用電源切替盤	原子炉建屋原		•	•	-	d.	
水平方向地震加速度検出器 (B72-N009B)	子炉棟		•	•	_	b.	
水平方向地震加速度検出器 (B72-N009D)			•	•	_	b.	
原子炉水位(燃料域) (LT-B22-N044B)				•	•	_	d.
原子炉建屋水素濃度 (H2E-SA16-N003)				•	•	_	d.
水平方向地震加速度検出器 (B72-N009A)			•	•	_	b.	
水平方向地震加速度検出器 (B72-N009B)			•	•	-	b.	
起動領域計装 前置増幅器 (H22-P030)			•	•	-	b./d.	
起動領域計装 前置増幅器 (H22-P032)		20.20	•	•	_	b. /d.	
原子炉圧力(SA)(PT-B22-N071B, D)		20. 30	•	•	-	d.	
原子炉水位(広帯域) (LT-B22-N091A, B)			•	•	_	d.	

第2-3表 防護すべき設備の被水評価結果(6/13)

				被水影響評価				
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 破損	消火水	地震 起因	判定基準		
原子炉水位(広帯域) (LT-B22-N079B, D)			•	•	-	d.		
低圧代替注水系格納容器下部注水流 量(FT-SA11-N204)			•	•	-	d.		
非常用窒素供給系A系高圧窒素ボン ベ			•	•	ı	d.		
非常用窒素供給系A系供給圧力			•	•	I	d.		
非常用窒素供給系B系供給圧力			•	•	-	d.		
非常用窒素供給系A系高圧窒素ボン ベ圧力			•	•	-	d.		
非常用窒素供給系B系高圧窒素ボン ベ圧力			•	•	-	d.		
N2 GAS BOMBE DISBH PRESS(指示スイッチ)(PIS-16-900.1)			•	•	-	b.		
ドライウェル窒素ボンベガス供給遮 断弁(3-16V900A(AO))			•	•	-	b.		
FBS ブロワ (A) (FBS-HVA-T49-BLOWER-A)	原子炉 建屋原	20. 30	•	•	-	b.		
FBS 再結合器(A)(FBS-HEX-1A)	子炉棟		•	•	ı	b.		
FBS 加熱器(A)(FBS-HEX-HTR-A)			•	•	-	b.		
ブロワ(A)入口ガス温度(検出器) (TE-T49-2A)					•	•	-	b.
加熱管 2/3 位置(A)ガス温度(検出器) (TE-T49-4A)			•	•	I	b.		
加熱管(A)出口ガス温度(検出器) (TE-T49-5A)			•	•	I	b.		
加熱管(A)出口壁温度(検出器) (TE-T49-6A)			•	•	-	b.		
再結合(A)ガス温度(検出器) (TE-T49-7A)			•	•	-	b.		
再結合器 (A) 壁温度 (検出器) (TE-T49-8A)			•	•	_	b.		

第2-3表 防護すべき設備の被水評価結果 (7/13)

	設置	設置高さ		判定		被水影響評価	
防護すべき設備	建屋	成画同さ EL. [m]	想定 破損	消火水	地震 起因	判定基準	
再循環 (A) ガス温度 (検出器) (TE-T49-9A)			•	•	-	b.	
FBS ヒータ制御盤(A) (PNL-FBS-HEATER-A)			•	•	ı	b.	
FBS (A) 冷却器冷却水元弁 (E12-FF104A (MO))			•	•	-	b.	
FBS 冷却器冷却水入口弁 (MV-10A (MO))			•	•	-	b.	
FBS 再循環制御弁 (FV-2A (MO))			•	•	_	b.	
FBS(A)系統流量計装			•	•	-	b.	
D/W 内サンプリングバイパス弁 (V25-1008(電磁弁))			•	•	_	b.	
起動領域計装 前置増幅器 (H22-P031)			•	•	_	b. /d.	
起動領域計装 前置増幅器 (H22-P033)			•	•	-	b. /d.	
低圧代替注水系原子炉注水流量 (常設ライン用) (FT-SA11-N201)	原子炉 建屋原 子炉棟		•	•	-	d.	
低圧代替注水系原子炉注水流量(常設ライン狭帯域用) (FT-SA11-N200)				20.30	•	•	-
原子炉圧力(SA)(PT-B22-N071A,B)			•	•	_	d.	
原子炉水位(広帯域) (LT-B22-N079A, B)			•	•	_	d.	
原子炉水位(SA広帯域) (LT-B22-N010)			•	•	-	d.	
格納容器內水素濃度 (SA) (H2E-SA19-N002B)			•	•	-	d.	
格納容器內酸素濃度 (SA) (02E-SA19-N001B)			•	•	ı	d.	
非常用窒素供給系B系高圧窒素ボンベ			•	•	_	d.	
格納容器内雰囲気ガスサンプリング 装置			•	•	-	d.	
N2 GAS BOMBE DISBH PRESS(指示スイッチ)(PIS-16-900. 2)			•	•	_	b.	
ドライウェル窒素ボンベガス供給遮 断弁(3-16V900B(AO))			•	•	-	b.	

第2-3表 防護すべき設備の被水評価結果(8/13)

第 2 — 3 表 的			判定			
防護すべき設備	設置 建屋	設置高さ EL.[m]	想定 被損	消火水	地震 起因	被水影響評価 判定基準
FBS ブロワ (B) (FBS-HVA-T49-BLOWER-B)			•	•	Ι	b.
FBS 再結合器 (B) (FBS-HEX-1B)			•	•	-	b.
FBS 加熱器 (B) (FBS-HEX-HTR-B)			•	•	-	b.
ブロワ (B) 入口ガス温度 (検出器) (TE-T49-2B)			•	•	-	b.
加熱管 2/3 位置 (B) ガス温度 (検出器) (TE-T49-4B)			•	•	-	b.
加熱管 (B) 出口ガス温度 (検出器) (TE-T49-5B)			•	•	-	b.
加熱管 (B) 出口壁温度 (検出器) (TE-T49-6B)			•	•	-	b.
再結合 (B) ガス温度 (検出器) (TE-T49-7B)			•	•	-	b.
再結合器 (B) 壁温度 (検出器) (TE-T49-8B)		建屋原 20.30	•	•	-	b.
再循環 (B) ガス温度 (検出器) (TE-T49-9B)	原子炉		•	•	-	b.
FBS ヒータ制御盤(B) (PNL-FBS-HEATER-B)	子炉棟		•	•	-	b.
FBS (B) 冷却器冷却水元弁 (E12-FF104B (MO))			•	•	-	b.
FBS 冷却器冷却水入口弁 (MV-10B (MO))			•	•	-	b.
FBS 再循環制御弁 (FV-2B (MO))			•	•	-	b.
FBS (B) 系統流量計装			•	•	-	b.
低圧代替注水系格納容器スプレイ流 量(可搬ライン用) (FT-SA11-N208)			•	•	-	d.
原子炉隔離時冷却系原子炉注入弁 (E51-MO-F013)			•	•	-	b./d.
ドライウェル圧力 (PT-26-79.60)			•	•	-	d.
第二弁(SA14-F001A)			•	•	-	d.
第二弁バイパス弁 (SA14-F001B)			•	•	-	d.

第2-3表 防護すべき設備の被水評価結果(9/13)

		設置高さ		被水影響評価		
防護すべき設備	設置 建屋	改直向さ EL.[m]	想定 破損	消火水	地震 起因	判定基準
格納容器雰囲気モニタヒータ電源盤 (B) (LBP-188B)			•	•	-	b.
BAMS (B) 系 ヒータ電源用変圧器			•	•	-	b.
BAMS モニタラック (B) (D23-P001B)			•	•	-	b.
BAMS 校正用計器ラック (B) (D23-P002B)			•	•	-	b.
BAMS 校正用ボンベラック (B) (D23-P003B)			•	•	_	b.
FPB F/D (A) 出口弁 (G41-102A (A0))		29. 00	•	•	-	b.
FPB F/D (A) 出口流量制御弁 (G41-FBV-11A)			•	•	_	b.
FPB F/D (B) 出口弁 (G41-102B (A0))			•	•	-	b.
FPB F/D (B) 出口流量制御弁 (G41-FBV-11B)			•	•	_	b.
代替燃料プール冷却系ポンプ	原子炉		•	•	-	d.
再循環系ポンプ低速度用電源装置遮 断器A, B	全屋原 子炉棟		•	•	-	d.
FRVS INST. RABK (A) (PNL-LR-R-41)			•	•	_	b.
緊急用電源切替盤			•	•	-	d.
耐圧強化ベント系一次隔離弁 (2-26B-90)		38. 80	•	•	-	d.
耐圧強化ベント系二次隔離弁(2-26B-91)			•	•	ı	d.
FRVS INST. RABK (B) (PNL-LR-R-44)	-		•	•	1	b.
使用済燃料プール監視カメラ			•	•	•	d.
原子炉建屋水素濃度 (H2E-SA16-N004)		46. 50	•	•	•	d.
原子炉建屋水素濃度 (H2E-SA16-N005)		40.00	•	•	•	d.
静的触媒式水素再結合器動作監視装置			•	•	•	d.

第2-3表 防護すべき設備の被水評価結果(10/13)

第 2-3 表 防護	とり へさ設	加沙波水評価	11 紀代 10	J/I3)					
	設置	設置高さ		判定		被水影響評価			
防護すべき設備	建屋	EL. [m]	想定 破損	消火水	地震 起因	判定基準			
使用済燃料プールエリア放射線モニ タ (低レンジ)	原子炉	46, 50	•	•	•	d.			
使用済燃料プールエリア放射線モニ タ (高レンジ)	建屋原 子炉棟	46. 50	•	•	•	d.			
DG 2D 潤滑油サンプタンク (DG-VSL-2D-DGL0-1)			•	•	-	b.			
HPBS DG 潤滑油サンプタンク (DG-VSL-HPBS-DGLO-1)		-4.00	•	•	_	b.			
DG 2B 潤滑油サンプタンク (DG-VSL-2B-DGL0-1)			•	•	-	b.			
2 D非常用ディーゼル発電機 (内燃機関,調速装置,非常用調速装置,冷却水ポンプを含む)			•	•	-	b. /d.			
2 D非常用ディーゼル発電機励磁装置			•	•	ı	b. /d.			
2 D非常用ディーゼル発電機保護継電 装置			•	•	-	b. /d.			
DG 2D 可飽和変流器 (PNL-SBT-2D)	原子炉 建屋付 属棟	建屋付	建屋付			•	•	ı	b.
DG 2D 始動用電磁弁 (No.1) (3-14-E47D-1)					•	•	-	b.	
DG 2D 始動用電磁弁 (No.2) (3-14-E47D-2)					•	•	ı	b.	
DG 2D INST. RABK (R-52)				属棟	属棟		•	•	-
DG 2D DIESEL ENGINE INST. RABK (R-64)		0.70	•	•	-	b.			
DG 2D シリンダー油タンク (DG-VSL-2D-DGLO-2)			•	•	-	b.			
HVAB D/G 2D EQUIP ROOM VENTILATING SYS. (PNL-T41-P008)			•	•	-	b.			
高圧炉心スプレイ系ディーゼル発電 機			•	•	-	b. /d.			
高圧炉心スプレイ系ディ-ゼル発電機 励磁装置			•	•	-	b. /d.			
高圧炉心スプレイ系ディ-ゼル発電機 保護継電装置			•	•	-	b. /d.			
動力変圧器 HPBS			•	•		b. /d.			
HPBS DG 可飽和変流器盤 (PNL-SBT-HPBS)			•	•	-	b.			

第2-3表 防護すべき設備の被水評価結果(11/13)

界 2 一 3 衣 奶酸	設置	設置高さ		判定		被水影響評価		
防護すべき設備	建屋	設旦向さ EL.[m]	想定 破損	消火水	地震 起因	判定基準		
HPCS DG 起動用電磁弁(No. 1) (3-14E247D-1)			•	•	ı	b.		
HPCS DG 起動用電磁弁(No. 2) (3-14E247D-2)			•	•	-	b.		
DG HPCS INST. RACK (R-60)			•	•	ı	b.		
DG HPCS DIESEL ENGINE INST. RACK (R-66)			•	•	ı	b.		
HPCS DG シリンダー油タンク (DG-VSL-HPCS-DGLO-2)			•	•	I	b.		
HVAC D/G HPCS EQUIP ROOM VENTILATING SYS. (PNL-T41-P009)			•	•	_	b.		
2 C非常用ディーゼル発電機			•	•	_	b. /d.		
2 C非常用ディーゼル発電機励磁装置			0.70	•	•	-	b. /d.	
2 C非常用ディーゼル発電機保護継電 装置		0.70	•	•	-	b. /d.		
DG 2C 可飽和変流器 (PNL-SCT-2C)	原子炉 建屋付		•	•	ı	b.		
DG 2C 始動用電磁弁 (No. 1) (3-14E147D-1)	属棟				•	•	-	b.
DG 2C 始動用電磁弁(No. 2) (3-14E147D-2)			•	•	-	b.		
DG 2C INST. RACK (R-56)					•	•	-	b.
DG 2C DIESEL ENGINE INST. RACK (R-65)			•	•	-	b.		
DG 2C シリンダー油タンク (DG-VSL-2C-DGLO-2)			•	•	-	b.		
HVAC D/G 2C EQUIP ROOM VENTILATING SYS. (PNL-T41-P010)			•	•	ı	b.		
燃料デイタンク液面レベルスイッチ (2D) (DG-LITS-5)	-	A 56	•	•	-	b.		
燃料デイタンク液面レベルスイッチ (HPCS) (DG-LITS-205)		4. 56	•	•	-	b.		
燃料デイタンク液面レベルスイッチ (2C) (DG-LITS-105)		4. 05	•	•	_	b.		
使用済燃料プール監視カメラ用空冷 装置		23. 00	•	•	•	d.		

第2-3表 防護すべき設備の被水評価結果(12/13)

第 2-3 表 - 防護 	とり、これ T	備の被水評価 「	II和木(I 4			T				
-1-10-2-2-10	設置	設置高さ EL.[m]		判定		一 被水影響評価 判定基準				
防護すべき設備	建屋		想定 破損	消火水	地震 起因					
SA31-DMP-MO-F001		99 00	•	•	•	d.				
RCIC TURBINE CONTROL BOX (LCP-105)		23. 00	•	•	-	b.				
2D DG 室外気取入ダンパ (A) (A0-T41-F060A)			•	•	-	b.				
2D DG 室外気取入ダンパ (B) (A0-T41-F060B)			•	•	-	b.				
2D DG 室外気取入ダンパ (C) (AO-T41-F060C)			•	•	-	b.				
2D DG 室外気取入ダンパ (D) (AO-T41-F060D)			•	•	-	b.				
2D DG 室外気取入ダンパ (E) (A0-T41-F060E)	原子炉建屋村属棟		•	•	-	b.				
2D DG 室外気取入ダンパ (F) (A0-T41-F060F)		建屋付	建屋付		•	•	-	b.		
2D DG 室外気取入ダンパ (A) (A0-T41-F061A)				建屋付			•	•	_	b.
2D DG 室外気取入ダンパ (B) (A0-T41-F061B)						•	•	-	b.	
2D DG 室外気取入ダンパ (C) (AO-T41-F061C)					属棟	•	•	_	b.	
2D DG 室外気取入ダンパ (D) (AO-T41-F061D)					30.30	•	•	-	b.	
HPCS DG 室外気取入ダンパ (A) (A0-T41-F062A)						•	•	_	b.	
HPCS DG 室外気取入ダンパ (B) (A0-T41-F062B)			•	•	-	b.				
HPCS DG 室外気取入ダンパ (C) (A0-T41-F062C)			•	•	-	b.				
HPCS DG 室外気取入ダンパ (D) (A0-T41-F062D)	-		•	•	-	b.				
HPCS DG 室外気取入ダンパ (A) (A0-T41-F063A)			•	•	-	b.				
HPCS DG 室外気取入ダンパ (B) (A0-T41-F063B)			•	•	_	b.				
HPCS DG 室外気取入ダンパ (C) (A0-T41-F063C)			•	•	-	b.				
HPCS DG 室外気取入ダンパ (D) (AO-T41-F063D)			•	•	_	b.				

第2-3表 防護すべき設備の被水評価結果(13/13)

	設置	設置高さ		判定		- 被水影響評価
防護すべき設備	建屋	EL. [m]	想定 破損	消火水	地震 起因	判定基準
2C DG 室外気取入ダンパ (A) (A0-T41-F064A)			•	•	-	b.
2C DG 室外気取入ダンパ (B) (AO-T41-F064B)			•	•	-	b.
2C DG 室外気取入ダンパ (C) (AO-T41-F064C)			•	•	-	b.
2C DG 室外気取入ダンパ (D) (AO-T41-F064D)	原子炉	20. 20	•	•	_	b.
2C DG 室外気取入ダンパ (A) (A0-T41-F065A)	- 建屋付 属棟	30. 30	•	•	-	b.
2C DG 室外気取入ダンパ (B) (AO-T41-F065B)			•	•	-	b.
2C DG 室外気取入ダンパ (C) (AO-T41-F065C)			•	•	_	b.
2C DG 室外気取入ダンパ (D) (AO-T41-F065D)	=		•	•	-	b.
残留熱除去系海水系ポンプA (RHRS-PMP-A)			•	_	_	b.
残留熱除去系海水系ポンプC (RHRS-PMP-C)	海水ポ		•	_	-	b.
2 C 非常用ディーゼル発電機用海水 ポンプ (DGSW-PMP-2C)			•	_	-	b.
ASW ポンプ (A) (ASW-PMP-A)			•	_	-	b.
ASW ポンプ (C) (ASW-PMP-C)			0.80	•	_	ı
残留熱除去系海水系ポンプB (RHRS-PMP-B)	ンプ室		•	_	_	b.
残留熱除去系海水系ポンプD (RHRS-PMP-D)			•	_	_	b.
2 D非常用ディーゼル発電機用海水 ポンプ (DGSW-PMP-2D)			•	_	-	b.
高圧炉心スプレイ系ディーゼル発電 機用海水ポンプ (DGSW-PMP-HPCS)			•	_	-	b.
ASW ポンプ (B) (ASW-PMP-B)			•	_	-	b.
上記以外の防護すべき以外	_	-	_	_	-	a. c. 含む

*1:●:被水源となる溢水事象である。 -:被水源となる溢水事象ではない。

*2:欄内の記載は、「2.2 被水影響に対する評価」の「(2) 判定基準」による。

2.3 蒸気影響に対する評価

(1) 評価方法

a. 蒸気環境評価

発生を想定する蒸気が、防護すべき設備に与える影響を評価する。

蒸気影響を及ぼす可能性のある高温配管は、資料V-1-1-8-2「溢水評価条件の設定」にて抽出された高エネルギー配管を対象とする。

防護すべき設備に対する漏えい蒸気の拡散による影響を確認するために、建設時の高エネルギー配管破断による蒸気漏えいを考慮した環境条件を基に保守的な環境条件を設定する。また、建設時に破断を想定していない高エネルギーである所内蒸気系統については、熱流動解析コードGOTHICを用い、空調条件、解析区画等を設定して解析を実施する。溢水防護区画内での漏えい蒸気及び区画間を拡散する漏えい蒸気による防護すべき設備への影響を評価する。

また、破損想定箇所の近傍に防護すべき設備が設置される場合は、破損想定 箇所と防護すべき設備との位置関係を踏まえ、漏えい蒸気の直接噴出による防 護すべき設備への影響を評価する。

(a) 評価対象系統について

資料V-1-1-8-2「溢水評価条件の設定」にて抽出された高エネルギー配管を有する系統について、蒸気影響を評価する系統及び評価に用いる条件を示す。蒸気影響を評価する系統及び評価に用いる条件の考え方を第2-2図に示す。

以下の系統については、破断時の蒸気影響を考慮した建設時の環境条件があるため、これを基にした保守的な環境条件により蒸気評価を実施する。

- 原子炉隔離時冷却系
- 原子炉冷却材浄化系
- 主蒸気系
- 給水系

以下の系統については、建設時に破断を想定していないため、熱流体解析コードGOTHICにより蒸気評価を実施する。蒸気影響を考慮する範囲の概要図を第2-3図に示す。

• 所内蒸気系(原子炉建屋付属棟)

(b) 蒸気拡散影響に対する評価

蒸気漏えいに伴う環境条件のうち、建設時の高エネルギー配管破断による蒸気漏えいを考慮した環境条件を基に設定する保守的な環境条件については、資料V-1-1-6「安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」のうち添付資料3「主蒸気

管破断事故起因の重大事故等時を考慮した場合の環境条件について」に て設定される主蒸気系破断時の環境条件を用いる。なお,原子炉隔離時 冷却系,原子炉冷却材浄化系及び給水系の環境条件については,主蒸気 系配管破断時の影響に包絡される。

熱流体解析コードGOTHICによる評価では、空調装置の吸排気量及び位置の条件並びに解析区画を設定して、区画ごとの温度及び湿度を算出する。評価に用いる熱流体解析コードGOTHICの検証、妥当性確認等の概要については、資料V-5-14「計算機プログラム(解析コード)の概要」に示す。具体的な評価の手順を以下に示す。

イ. 蒸気影響を考慮すべき建屋内のルートの特定

ロ. 高エネルギー配管からの蒸気漏えい影響範囲の設定 蒸気漏えい影響範囲に防護すべき設備の有無を評価する。蒸気評価を実施する系統である所内蒸気系の破損形態は貫通クラックであり、自動隔離として設定する。

ハ. 系統の隔離条件の設定

蒸気影響緩和対策として設置する蒸気漏えい検知システムにより、 破損配管を隔離するための警報設定及び系統隔離条件を以下に示す。 温度センサによる温度異常高警報 (60℃:雰囲気温度 (~40℃) +20℃)とする。

所内蒸気系統は温度異常高警報(60℃)により蒸気遮断弁にて自動隔離し蒸気影響の緩和を図る。解析では、保守的に温度検出器の応答遅れを20秒、蒸気遮断弁の閉止時間を30秒として設定する。

ニ. 漏えい蒸気流量の設定

破損配管からの漏えい蒸気流量は、系統の内部流体条件に応じ、 軽水型動力炉の非常用炉心冷却系の性能評価指針において妥当性が 認められている臨海流モデルを用いて設定する。

ホ. 空調条件の設定

空調条件については、保守的に停止状態を考慮する。

へ. 蒸気拡散解析の実施

蒸気の評価はその区画にある系統のうち最も蒸気流量の大きくなる る箇所での破損を想定して評価を行う。また、保守的な評価とする ため、ヒートシンクとなる構造物(コンクリート壁等)への熱伝達

による蒸気温度低下はないものとする。

b. 蒸気曝露試験及び蒸気影響机上評価

漏えい蒸気による環境において要求される機能を損なうおそれがある電気 設備又は計装設備を対象に、漏えい蒸気による環境条件による環境条件(温度、湿度及び圧力)により対象設備が機能を損なうおそれがないことを評価するために実施する。

(a) 蒸気曝露試験

漏えい蒸気による環境において要求される機能を損なうおそれがある 電気設備又は計装設備を対象に、漏えい蒸気による環境条件による環境条件(温度、湿度及び圧力)により対象設備が機能を損なうおそれがないことを評価するために実施する。

イ. 試験条件

「a.(b) 蒸気拡散影響に対する評価」にておける環境条件を包絡する試験条件を下記に示す。

・温度:100℃

•湿度:飽和蒸気

• 0. 1MPa

ロ. 試験内容及び結果

漏えい蒸気による環境条件を踏まえた試験条件を設定し、蒸気曝露試験装置内で対象設備を蒸気曝露させ、試験中及び試験後に要求される機能を損なうおそれがないことを確認する。

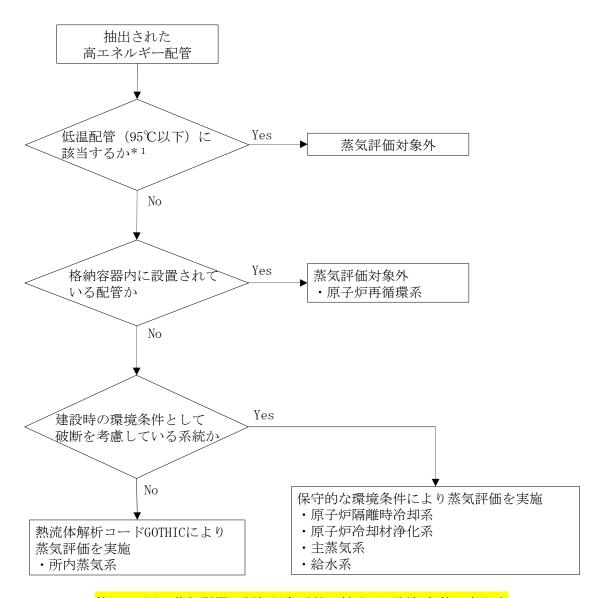
蒸気曝露試験内容及び結果を第2-4表に示す。

(b) 蒸気影響机上評価

試験実施が困難な設備については、漏えい蒸気による環境条件(温度、湿度及び圧力)に対する耐性を机上で評価する。机上評価においては、対象設備のうち蒸気条件下において影響を受ける可能性がある構成部品を抽出し、抽出した構成部品に関する知見と漏えい蒸気による環境条件を比較し、当該部品の性能に影響を与えないことを確認することで対象設備が要求される機能を損なうおそれがないことを評価する。具体的には、設備の大きさの関係上、試験実施が困難な電動機について、蒸気条件下で影響を受ける可能性がある構成部品を抽出し、評価した結果を第2-5表に示す。

(2) 判定基準

蒸気影響に関する判定基準を以下に示す。


- ・漏えい蒸気による環境条件(温度,湿度及び圧力)が、設備仕様、蒸気曝露 試験又は机上評価によって設備の健全性が確認されている条件を超えない こと。
- ・防護すべき設備のうち重大事故等対処設備については、蒸気影響により設計 基準事故対象設備等又は同様の機能を有する重大事故等対処設備と同時に 機能を喪失することがないこと。

(3) 評価結果


蒸気影響緩和対策を実施した結果、蒸気漏えい発生区画内での漏えい蒸気による影響、区画間を拡散する漏えい蒸気による影響及び漏えい蒸気の直接噴出による影響に対し、防護すべき設備は、判定基準のいずれかを満足することから、要求される機能を損なうおそれはない。

なお、原子炉隔離時冷却系統については、耐火壁等の躯体形状の変更を踏まえると、保守的に設定した環境条件を一部超えるおそれがあることから、防護カバー設置による蒸気影響の緩和を図る。

具体的な評価結果を第2-6表に示す。

第2-2図 蒸気影響の評価対象系統の抽出及び評価条件の考え方

第2-3 図 所内蒸気系統 概要図

第2-4表 蒸気曝露試験内容及び結果(1/2)

評価部位	試験内容	結果
11 11대 11시 12	試験中 : 操作どおりに作動し, 正しくリミットスイッチ	かロント
電動弁	の接点が出力されること。	良
(モータ及び駆動部)	試験後:同上	K
	試験中:リミットスイッチが誤信号を発信しないこと。	
(リミットスイッチ)	試験後:入出力特性試験で健全に動作すること。	良
	試験中:電磁弁を励磁した状態で,入出力圧力に相違の	
空気作動弁	ないこと。	良
(電磁弁)	ぱいここ。 試験後:入出力特性試験で健全に動作すること。	K
· 加拿大手 4	試験中:減圧された圧力が出力されること。	
空気作動弁		良
(減圧弁)	試験後:入出力特性試験で健全に動作すること。	
空気作動弁	試験中:一	н
(ダイヤフラム)	試験後:ダイヤフラムに有意な変形や割れ等がないこ	良
	٤.	
ダンパ	試験中:一	.t.
(ダンパオペレータ及	試験後:ポジショナに開度信号を入力し,ダンパオペレ	良
びポジショナ)	ータが正常に動作すること。	
ダンパ	試験中:開度信号が変化しないこと。	
´ (ポジションスイッ	試験後:シャフトを回転させ,正常な開度信号が出力さ	良
チ)	れること。入出力特性試験で健全に動作するこ	
	と。	
ダンパ	試験中:電磁弁を励磁した状態で,入出力圧力に相違の	
(電磁弁)	ないこと。	良
(HEIRAX)I)	試験後:入出力特性試験で健全に動作すること。	
ダンパ	試験中:減圧された圧力が出力されること。	良
(減圧弁)	試験後:入出力特性試験で健全に動作すること。	尺
計器	試験中:伝送器出力が正常であること。	良
(伝送器)	試験後:入出力特性試験で健全に動作すること。	区
計器	試験中:減圧された設定圧力が出力されること。	Ė
(流量設定器)	試験後:入出力特性試験で健全に動作すること。	良

第2-4表 蒸気曝露試験内容及び結果(2/2)

評価部位	試験内容	結果
計器	試験中:設定温度どおりに接点出力されること。	白
(温度スイッチ)	試験後:入出力特性試験で健全に動作すること。	良
現場盤	34版中,后级 O.Uk 级 然 公极 45 亩 井 1 大 1 、 2 1、	
(スイッチ,表示灯,	試験中:短絡や地絡等で機能喪失しないこと。	良
端子台等)	試験後:同上。	
モータケーブル接続部	試験中:絶縁抵抗を測定し、健全であること。	白
(高圧ケーブル)	試験後:同上。	良
モータケーブル接続部	試験中:絶縁抵抗を測定し、健全であること。	白
(低圧ケーブル)	試験後:同上。	良
中継端子箱	試験中:地絡や短絡等がなく,正常に通電できること。	良
(端子台)	試験後:同上。	尺

第2-5表 机上評価結果*

評価部位	評価部品	評価内容	結果
電動機	固定子コイル	熱的影響により絶縁破壊の可能性があ	良
		るため、蒸気条件下の環境温度に通電に	
		よる温度上昇(電気学会規格値)を加算	
		した値が、設計上の許容温度以下である	
		ことを確認する。	
		絶縁物は含浸処理が施されているため	
		温度の影響はなく、想定される環境条件	
		時にも十分に耐えられる材質であるこ	
		とから圧力の影響もない。	
	軸受	熱的影響により荷重支持性能を損なう	良
		可能性があるため、蒸気条件下の環境温	
		度に摩擦熱による温度上昇(モータ運転	
		前後の実測値)を加算した値が、設計上	
		の許容温度以下であることを確認する。	
		軸受は,密封されているため湿度の影響	
		はなく、想定される環境条件時にも十分	
		に耐えられる材質であることから圧力	
		の影響もない。	
		熱的影響により潤滑性能を損なう可能	
		性があるため、蒸気条件下の環境温度に	
		摩擦熱による温度上昇(モータ運転前後	
		の実測値)を加算した値が、設計上の許	
	グリス・潤滑油	容温度以下であることを確認する。	良
		グリス・潤滑油部は, 密封されているた	
		め湿度の影響はなく, 想定される環境条	
		件時にも差圧が発生せず、機内外への漏	
		えいはないことから圧力の影響もない。	

*:漏えい蒸気による環境条件(温度,湿度及び圧力)において影響を受ける可能性がある部品について評価した。金属材料で構成される機械的な部品については、漏えい蒸気による環境条件において機能を損なうおそれがない。

第2-6表 防護すべき設備への蒸気影響評価結果

整理中のため、別途結果を提示します。

2.4 使用済燃料プールの機能維持に関する溢水評価

(1) 評価方法

基準地震動S_Sによる地震力によって生じる使用済燃料プールのスロッシングによる 使用済燃料プールからの溢水量がプール外に流出した際の 使用済燃料プール水位の低下が、冷却機能及び遮蔽機能 維持に必要な水位が確保されていること に与える影響を評価する。

また、スロッシングによって使用済燃料プール外へ流出する溢水等により、使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統の防護すべき設備については、これまでの「2.1 没水影響に対する評価」及び「2.2 被水影響に対する評価」における溢水影響評価において、スロッシングを含む溢水に対して機能喪失しないことを確認している。

スロッシングにより発生する溢水量は、基準地震動 Ssによる地震力により生じるスロッシング現象を三次元流動解析により評価する。

スロッシングによる水位低下の影響評価においては,三次元解析における評価 条件である通常水位を初期水位とするが,保守的な評価条件として使用済燃料プ ールの低水位警報設定値を初期水位とした評価も行う。

また、スロッシングによる溢水量を保守的に評価するために、使用済燃料プール及びキャスクピットが通常水位にて水張りされた状態とする。解析モデルは、使用済燃料貯蔵プール本体、キャスクピットを考慮するとともに、原子炉建屋6階床面への溢水の流れをシミュレートできるように空気部分もモデル化した。

なお、施設定期検査中における、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水についても、同様の評価を行う。

(2) 判定基準

使用済燃料プールの機能維持に関する判定基準を以下に示す。

・スロッシング後の使用済燃料プール水位が、使用済燃料プールの冷却機能 (水温65 ℃以下)及び<mark>使用済燃料の</mark>燃料体等からの放射線に対する</mark>遮蔽 機能(保安規定で定めた管理区域内における特別措置を講じる基準である 水面の線量率(≦1.0 mSv/h))の維持に必要な水位が確保されること。

(3) 評価結果

スロッシング後の使用済燃料プール水位は、<mark>使用済</mark>燃料体等からの放射線に 対する 遮蔽機能に必要な水位が維持されることを確認した。

また、スロッシング後の使用済燃料プール水位は、一時的にオーバーフロー水位を下回るが、<mark>残留熱除去系</mark>使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であり、冷却機能維持への影響がないことを確認した。

評価結果を第2-6表,第2-7表に示す。

施設定期検査中におけるスロッシング後の使用済燃料プール水位は、燃料体等からの放射線に対する遮蔽機能に必要な水位が維持されることを確認した。

また,施設定期検査中におけるススロッシング後の使用済燃料プール水位は,一時的にオーバーフロー水位を下回るが,使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であり,冷却機能維持への影響がないことを確認した。評価結果を第2-8表,第2-9表に示す。

なお、使用済燃料プール、原子炉ウェル及びドライヤセパレータプールのスロッシングによる溢水については、原子炉建屋原子炉棟6階よりも下層階へ流下する経路に堰の設置等の閉止措置を行うこととしており、溢水はすべてプールへ戻るため、使用済燃料プールの水位に優位な変動はない。

第2-6表 評価結果 (使用済燃料プールの冷却機能維持)

地震後の使用済燃料プール	冷却機能の維持に	評価結果
水位 (m)	必要な水位(m) <mark>*3</mark>	计测加术
10. 75 <mark>* 1</mark>		
(EL. 45. 495 m)	11. 337 <mark>以上</mark>	<u>*4</u>
10. 50* ²	(EL. 46. 082 m)	
(EL. 45. 470 m)		

*1:初期使用済燃料プール水位 EL. 46. 195m (N. W. L)

*2:初期使用済燃料プール水位 EL. 46. 170m (L. W. L)

*3:保安規定で定められている65℃の冷却に必要な水位としてサージタンクに流入するオーバーフローラインの下端位置以上とした。

*4:使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であるため。

第2-7表 評価結果(使用済燃料プールの遮蔽機能維持)

地震後の使用済燃料プール 水位 (m)	冷却機能の維持に 必要な水位(m) <mark>*3</mark>	評価結果
10. 75*1 (EL. 45. 495 m) 10. 50*2 (EL. 45. 470 m)	10.45 (EL.45.195 m)	0

*1:初期使用済燃料プール水位 EL. 46. 195m (N. W. L)

*2:初期使用済燃料プール水位 EL. 46. 170m (L. W. L)

*3:保安規定で定めた管理区域内における特別措置を講じる基準である水面の線量率 (≦1.0 mSv/h) を満足するために必要な水位

第2-8表 評価結果(施設定期検査中における使用済燃料プールの冷却機能維持)

地震後の使用済燃料プール 水位 (m)	冷却機能の維持に 必要な水位 (m) * ³	評価結果
10. 74* ¹ (EL. 45. 485 m) 10. 49* ² (EL. 45. 460 m)	11.337以上 (EL.46.082 m)	<u>*</u> 4

*1:初期使用済燃料プール水位 EL. 46. 195m (N. W. L)

*2:初期使用済燃料プール水位 EL. 46. 170m (L. W. L)

*3:保安規定で定められている65℃の冷却に必要な水位としてサージタンクに流入するオーバーフローラインの下端位置以上とした。

*4:使用済燃料プールの冷却機能及び使用済燃料プールへの給水機能を有する系統による給水・冷却が可能であるため。

第2-9表 評価結果(施設定期検査中における使用済燃料プールの遮蔽機能維持)

地震後の使用済燃料プール 水位 (m)	冷却機能の維持に 必要な水位 (m) *3	評価結果
10. 74* ¹ (EL. 45. 485 m) 10. 49* ² (EL. 45. 460 m)	10.45 (EL.45.195 m)	O

*1:初期使用済燃料プール水位 EL. 46. 195m (N. W. L)

*2:初期使用済燃料プール水位 EL. 46. 170m (L. W. L)

*3:保安規定で定めた管理区域内における特別措置を講じる基準である水面の線量率 (≦1.0 mSv/h) を満足するために必要な水位

2.5 海水ポンプエリアの浴水影響評価

(1) 評価方法

防護すべき設備のうち海水ポンプ等については、屋外取水口エリアに設置されていることから、他の防護すべき設備とは別に溢水源や溢水防護区画を設定し、 溢水影響評価を行う。

海水ポンプエリアは、海水ポンプエリア防護壁の設置やエリア外からの浸水を防止する対策として、逆流防止弁の設置、貫通部止水処理等を実施する。 海水ポンプエリアについて、想定破損及び地震起因による溢水を評価する。 海水ポンプエリアの平面図を第2-2図、断面図を第2-3図に示す。

(2) 判定基準

・想定破損による溢水影響評価

循環水ポンプエリアでの想定破損による溢水が、隣接する海水ポンプエリアの防護すべき設備である残留熱除去系海水系ポンプ及び非常用ディーゼル発電機海水系ポンプ等の設置エリアに海出しないことを確認する。

・消火活動による放水における溢水影響評価

海水ポンプエリアにおける消火活動に使用される設備には、屋外消火栓がある。消火栓の放水量を 350 L/min×2 箇所 (=約 42 m³/h) とし、放水時間を連続 3 時間として消火活動による放水に伴う浴水量とした。

消火水の放水による海水ポンプエリアの消火活動に使用される溢水量は, 想定破損の評価で想定する溢水量より小さくなるため,消火水の放水による 溢水評価は想定破損の評価に包含される。

・地震起因による溢水影響評価(伸縮継手の破損考慮)

地震起因により溢水源となりうる機器のうち、破損の生じるおそれがある 伸縮継手部を溢水源として評価する。循環水ポンプの通常運転圧力における 伸縮継手の破損を考慮した場合、流出流量は、複数箇所の同時破断を考慮す ることから想定破損の流出流量より大きくなるため、評価において最大とな る溢水量を地震による溢水量とする。

(3) 評価結果

循環水ポンプエリアに敷設されている低エネルギー配管としては,循環水系の他に,タービン補機冷却系配管,所内用水系配管がある。この時の最大溢水量となる循環水系配管による溢水量が,循環水ポンプエリアを超えず隣接する海水ポンプエリアに流出しないことを確認した。

<u>溢水流量及び溢水量を第2-8表に、評価結果を第2-9表に示す。</u>

3. 溢水防護区画を内包する建屋外からの流入防止

資料V-1-1-8-3「溢水評価条件の設定」にて考慮すべき建屋の外部に存在する溢水源としては、海水を除き、屋外タンク等及び淡水貯水池の保有水並びに地下水が挙げられる、以下にこれらの溢水が防護すべき設備に与える影響を評価する。

- 3.1 屋外タンク等 の溢水による影響評価 からの流入防止
- 3.1.1 屋外タンク等の溢水による溢水流入影響評価
 - (1) 評価方法

屋外タンク等の破損により生じる溢水が、防護すべき設備の設置されている 原子炉建屋、タービン建屋、海水ポンプ室及び使用済燃料乾式貯蔵建屋に及ぼ す影響を確認する。

東海第二発電所敷地内等にある屋外タンク等のうち、溢水影響のあるタンク等の配置図を第3-1図に、タンク等の容量を第3-1表に示す。ただし、耐震性が確保されるタンク等は評価対象から除外する。

評価の前提条件として以下を考慮する。

- a. 敷地内に広がった溢水は、構内排水路からの流出や、地中への浸透は評価 上考慮しない。
- b. タンク等から漏えいした溢水は敷地全体に均一に広がるものとする。
- c. 溢水量の算出では、基準地震動 S_s による地震力によって破損が生じるおそれのある屋外タンク等からは、全量が流出することとし、基準地震動 S_s による地震力によって破損が生じないものは除外した。
- d. 淡水貯水池については、スロッシング時においても溢水を発生させない設計とすることから、溢水源としては考慮しない。
- (2) 判定基準

屋外タンク等からの溢水が溢水防護区画を内包する建屋の開口部高さを超えて伝播するおそれがなく、溢水防護区画を内包する建屋内の防護すべき設備が要求される機能を損なうおそれがないこと。

(3) 評価結果

屋外タンク等の破損により生じる溢水が、防護すべき設備の設置されている原子炉建屋、タービン建屋、海水ポンプ室及び使用済燃料乾式貯蔵建屋に影響を及ぼさないことを確認した。第3-2表、第3-3表に評価結果を示す。

また、第3-1表から、敷地内にある水源タンク等(水、薬品及び油)の溢水及び漏えいは、仮に上記の全タンク等(計64箇所)が破損したと評価した場合においても、最大水位は約0.1 mであり、防護すべき設備が設置されている建物等の外壁に設置した扉等の開口部は敷地高さ EL. 8.0 m より0.2 m 以上高い位置に設置されているため、屋外タンク等の溢水により防護すべき設備に影響を及ぼすことはない。

屋外タンク等による溢水の滞留箇所である EL. 8.0 m, EL. 3.3 m 及び S A 設備設置エリアの溢水水位を第 3-2 表, 第 3-3 表及び表 3-4 に示す。

第3-1表 屋外タンク等一覧 (1/3)

	タンク等の名称	タンク等の容量 (m³)
1	碍子洗浄タンク	100
2	取水口ろ過水ヘッドタンク	20
3	ブローダウンタンク	1. 67
4	多目的タンク	1500
5	第1ろ過水タンク	150
6	第2ろ過水タンク	150
7	濃縮槽	62
8	No.1 pH 調整槽	2.7
9	No.2 pH 調整槽	1.32
10	凝集沈殿槽	78
11	原水タンク	1000
12	ろ過水貯蔵タンク	1500
13	純水貯蔵タンク	500
14	600 トン純水タンク	600
15	モノスコアフィルター	15. 3
16	溶融炉灯油タンク	10
17	重油貯蔵タンク*2	(500) *1
18	少量危険物貯蔵所*2	1
19	予備変圧器*3	35. 9
20	起動変圧器	A 45. 95
		B 46.75
21	主変圧器	136
22	所内変圧器	21
23	油倉庫	42. 5
24	工事協力会油倉庫*2	9. 5

注記 *1:評価上容量を考慮しない機器(埋設タンク)

*2:敷地内移設 *3:移設予定

第3-1表 屋外タンク等一覧(2/3)

	タンク等の名称	タンク等の容量 (m³)		
25	No. 1 保修用油倉庫	94. 1		
26	No. 2 保修用油倉庫	100		
27	保修用屋外油貯蔵所	80		
28	絶縁油保管タンク	200		
29	硫酸貯蔵タンク	50		
30	苛性ソーダ貯蔵タンク	50		
31	硫酸第一鉄薬注タンク	7		
32	溶融炉苛性ソーダタンク	3		
33	溶融炉アンモニアタンク	1		
34	アニオン塔	5. 40		
35	カチオン塔	3. 49		
36	66kV 非常用変圧器	6. 6		
37	構内服洗濯用タンク	1.82		
38	1号エステート変圧器	1.1		
39	2号エステート変圧器	1.1		
40	硫酸貯槽	3		
41	硫酸希釈槽	1. 19		
42	苛性ソーダ貯槽	10		
43	PAC 貯槽	6		
44	HHOG 冷却塔	1.5		
45	HHOG 補給水タンク	2. 39		
46	加圧水槽	1.1		
47	モノバルブフィルター	92. 2		
48	活性炭ろ過器	40		
49	脱炭酸水槽	2		
50	温水槽	14		
51	パルセーター	200		
52	加圧浮上分離槽	74. 82		
53	薬品混合槽	8. 4		
54	中間層	15		
55	S/B 飲料水タンク	10		
56	ろ過用水高築水槽	20		
57	放管センター受水槽	22		
58	工事協力会事務所受水槽	30		

第3-1表 屋外タンク等一覧 (3/3)

	タンク等の名称	タンク等の容量 (m³)
59	原子力館受水槽 (濾過水)	12
60	原子力館受水槽 (飲料水)	12
61	AD ビル飲料水タンク	22
62	チェックポイント高置水槽	4
63	構内服ランドリー受水槽	4
64	復水貯蔵タンク A, B*	4000

^{*:}復水貯蔵タンクは、ピット内に設置されており、保有水量はこのピット内に全量滞留可能であるため、溢水源としては考慮しない。

第3-1図 屋外タンク等配置図

第3-2表 原子炉建屋等への溢水流入影響評価

EL.8.0 mエリア	許容浸水深 (m)	溢水量 (m³)	敷地面積 (m²)	敷地浸水深 (m)	評価
原子炉建屋	0. 2*1				0
タービン建屋	0. 2*1	7408	151000	0.1	0
使用済燃料乾式貯 蔵建屋	0. 3*1				0

注記 *1: 設置高さから敷地レベル E. L. +8.0m を引いた値(設計床高さまでの高さ)

第3-3(1)表 海水ピットポンプ室への溢水流入影響評価

EL.3.3 mエリア	許容 浸水深 (m)	溢水量 (m³)	海水ポンプ室周りの 滞留可能容積 (m³)	敷地 浸水深 (m)	評価
海水ポンプ室	約 4. 0* ²	7408	9000	2. 4	0

注記 *2: 既設分離壁の上端から設置高さを引いた値

第3-3(2)表 海水ピットポンプ室へのケーブル点検口からの溢水流入影響評価

EL.8.0 mエリア	許容浸水深 (m)	溢水量 (m³)	敷地面積 (m²)	敷地浸水深 (m)	評価
ケーブル用マンホ ール	0.0	7408	151000	0. 1	0

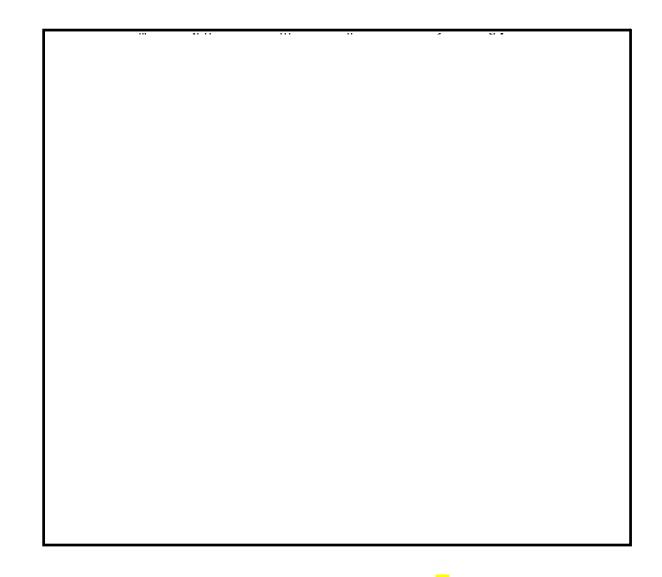
第3-4表 SA設備が設置されるエリアの溢水流入影響評価

エリア	設置 EL. (m)	許容浸水深 (m)	溢水量 (m³)	敷地面積 (m²)	敷地浸水深 (m)	評価
西側可搬型設備用 軽油タンク	23. 00	0.0	_	_	_	0
緊急時対策所	23. 00	0.3	_		_	0
南側可搬型設備用 軽油タンク	25. 00	0.0	_	_	_	0
常設代替高圧電源 装置置場	11.00	0.0	_	_	_	0
常設代替高圧電源 装置用カルバート	8.00	0.0	7408	151000	0.1	O*3
低圧代替注水ポン プ室	8.00	0.0	7408	151000	0.1	O*3
格納容器圧力逃が し装置格納槽	8.00	0.0	7408	151000	0.1	O*3
緊急用海水ポンプ ピット	8.00	0.0	7408	151000	0.1	O*3

注記 *3:溢水防止蓋及び水密扉を設置

3.1.2 屋外タンク等の溢水による溢水流入影響評価 (解析による詳細評価)

屋外タンク等の溢水では、溢水が防護すべき設備を内包する建屋に到達した際に、短時間ではあるものの浸水深がピークに達する。解析による詳細評価では、そのピークを再現し防護すべき設備を内包する建屋への影響を評価する。


(1) 評価方法

屋外タンク等の破損により生じる溢水が、防護すべき設備の設置されている原子炉建屋、タービン建屋、海水ポンプ室、及び使用済燃料乾式貯蔵建屋に及ぼす影響を確認する。東海第二発電所の溢水影響評価対象となる屋外タンク等のうち伝播挙動評価に影響を及ぼす水源として、E.L. +11.0 m地上面に配置される屋外タンクが挙げられる。前項同様に敷地内の水処理設備エリアに分散配置されていることから、これらの屋外タンク等から溢水した場合の影響について確認するため、第3-2図に示す配置に従い、第3-5表に示す水源を設定した。

(2) 評価条件

タンク等の損傷形態及び流出水の伝播に係る条件について以下のとおり設定した。

- a. 各タンク等を代表水位及び合算体積を持った一つの円筒タンクとして表現し、地震による損傷をタンク下端から1 m かつ円弧180 度分の側板が瞬時に消失するとして模擬する。
- b. 防護すべき設備を内包する建屋に指向性を持って流出するように、消失する側板 を建屋側の側板とする。
- c. 流路抵抗となる道路及び水路等は考慮せず,敷地を平坦面で表現するとともに, その上に流路に影響を与える主要な構造物を配置する。
- d. 構内排水路による排水機能や、地盤への浸透は考慮しない。

第3-2図 溢水伝播挙動評価の対象となる屋外タンク<mark>等</mark>及び建屋等配置図

第3-5表 水源の設定

b > . b + TL	基数	タンク容量	
タンク名称		(m ³)	
多目的タンク	1	1500	
原水タンク	1	1000	
ろ過水貯蔵タンク	1	1500	
純水貯蔵タンク	1	500	
総量		4500	

(3)	評価結果 水位測定箇所を第3-3図に,評価結果を第3-5表に示す。

第3-3図 水位測定箇所

第3-6表 評価結果

No.	屋外タンク等の溢水による浸水深(m)
0-0	0. 27
0-0	1. 79
0-0	0. 14
2 -0	0.84

(4) 影響評価

溢水防護区画である防護すべき設備の設置されている原子炉建屋,タービン建屋,海水ポンプ室,及び使用済燃料乾式貯蔵建屋に及ぼす影響として浸水経路を第3-7表に示す。

第3-7表 浸水経路

No.	浸水経路
1	溢水防護区画の境界にある扉
2	溢水防護区画の境界にある隙間部 (配管等貫通部)
3	溢水防護区画(地下トレンチ等)の地表ハッチ
4	建屋間の接合部

※いずれも浸水経路のうち最大浸水深となった箇所

以上の各浸水経路に対する影響評価の結果は次の通り。

浸水経路①

水密扉等を設置することにより水密化を行っているため、本経路からの浸水はない。

浸水経路②

建屋外周における浸水深は第3-5表に示す通り,溢水防護区画の中で水源となるタンクに最も近い**1**-2でも最大で1.8 m程度であり,2.0 mにまで達することはない。これに対して,地上2.0 m以下に存在する隙間部についてはシーリング材により止水措置を行うため,本経路からの溢水防護区画への浸水はない。

浸水経路③

水密蓋等を設置することにより水密化を行っているため、本経路からの浸水はない。

浸水経路④

建屋間の接合部にはエキスパンションジョイント止水板が設置されているため,本 経路から溢水防護区画への浸水はない。 なお、止水性が期待できないサービス建屋への浸水については、建屋内の扉部に水 密性はないものの、実際に建屋に流入する水の量は浸水時間が短時間であることから 僅かと考えられる。また、仮に開口部等から流入を想定した場合でも、建屋に地下区 画が無いことから、建屋内部で長期間滞留することはないと考えられ、他区画や建屋 への影響はほぼないと評価する。このため、サービス建屋からの溢水経路として想定 されるタービン建屋に溢水の一部が流入した場合でも、原子炉建屋等の溢水防護区画 に浸水することはないものと考えられる。

以上より、屋外タンク<mark>等の</mark>破損時の溢水において、サービス建屋扉等を介した浸水 経路は、防護すべき設備に影響を与える浸水経路とはならない。

3.2 その他の地震起因による敷地内溢水影響評価

地震起因による評価において、屋外タンクの破損以外に機器等の複数同時破損を想定した溢水量について考慮すべき範囲として、機器等の破損により生じる溢水が、防護すべき設備の設置されている原子炉建屋、タービン建屋、海水ポンプ室及び使用済燃料乾式貯蔵建屋に影響を及ぼさないことを確認する。

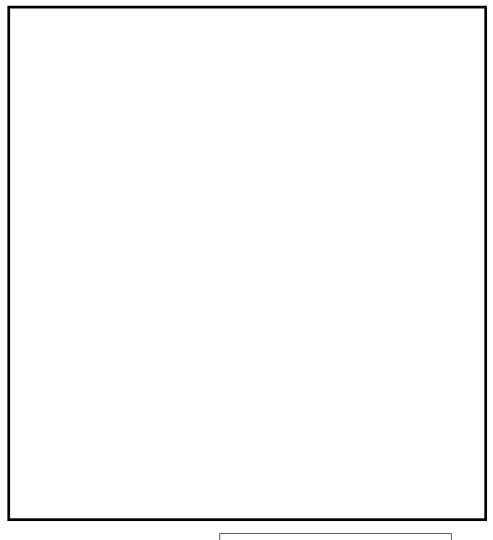
(1) 評価方法

溢水影響のある機器として、東海第二発電所敷地内にある 本影響のある機器等を抽出した結果、耐震補強工事により、地上化した 安全系ポンプの放出ライン配管を 溢水源として 選定し、当該配管の 耐震 B, C クラス範囲の 地震起因による配管破損による溢水 破損ケース が防護すべき設備の設置されて いる建屋に影響を及ぼさないことを評価する。評価において以下の条件を考慮す る。

- a. 海水ポンプ(安全系)は全台運転とし、溢水量を定格流量にて算出した。
- b. 敷地内に広がった溢水は、構内排水路からの流出や、地中への浸透は評価上 考慮しない。
- c. 放出ラインから漏えいした溢水は敷地全体に均一に広がるものとする。

(2) 判定基準

安全系ポンプの放出ライン配管からの溢水が溢水防護区画を内包する建屋の開口部高さを超えて伝播するおそれがなく,溢水防護区画を内包する建屋内の防護すべき設備が要求される機能を損なうおそれがないこと。


(3) 評価結果

屋外放出ラインルート図を第3-4図に,放出ラインからの溢水量の評価結果を第3-8表に示す。この結果,敷地内における溢水水位の上昇率は,対象のポンプ全てについて,運転及び放出配管の破損を考慮した場合においても,約30 mm/hである。敷地内で想定される溢水については,敷地内の水位低下率127.5 mm/hの排水設計を行うことから,敷地に滞留することはない。

このため、防護すべき設備が設置されている建物等の外壁に設置した扉等の開口部高さ 0.2 mまで水位が上昇することはない。

第3-8表 放出ラインからの溢水量

対象ポンプ	吐出流量 (m³/h·台)	運転台数	溢水流量 (m³/h)	敷地内水位 上昇率 (mm/h)	敷地内水位 低下率 (mm/h)
残留熱除去系 海水系ポンプ	885. 7	4	3542.8		
非常用ディーゼル 発電機用海水ポンプ	272. 6	2	545. 2	約 30	127. 5
高圧炉心スプレイ系 ディーゼル発電機用 海水ポンプ	232.8	1	232. 8		

凡 例:非常用ディーゼル発電機海水系屋外配管:残留熱除去系海水系屋外配管

第3-4図 屋外放出ラインルート図

3.3 タービン建屋からの流入防止

(1) 評価方法

資料V-1-1-8-3「溢水評価条件の設定」にて設定したタービン建屋内で発生を 想定する溢水が、溢水防護区画を内包する建屋である原子炉建屋へ伝播しないこ とを評価する。

なお、資料V-1-1-8-3「溢水評価条件の設定」にて設定した溢水量より、タービン建屋における想定破損による溢水及び消火栓の放水による溢水は、地震起因による溢水に包絡されるため、ここでは地震起因による溢水量を用いた評価を行う。

(2) 判定基準

タービン建屋内で発生を想定する溢水が、溢水防護区画を内包する建屋である原子炉建屋の開口部高さを超えて伝播するおそれがなく、溢水防護区画を内包する建屋内の防護すべき設備が要求される機能を損なうおそれがないこと。

(3) 評価結果

タービン建屋内で発生する溢水水位は,資料V-1-1-8-3「溢水評価条件の設定」のうち「2.3 地震起因による溢水」において設定される溢水量より算出する。タービン建屋から原子炉建屋へ連絡する経路の高さ EL.8.2m であり,また境界壁には貫通部が存在するが,タービン建屋内で発生を想定する溢水によるタービン建屋の浸水水位は約 EL.6.2m であり連絡する経路高さを下回ること及び境界壁には EL.8.2m の高さまで,資料V-1-1-8-5「溢水防護に関する施設の設計方針」に示す貫通部止水処置を実施している。

これより、タービン建屋内で発生した溢水が溢水防護区画を内包する建屋である原子炉建屋へ流入することはなく、防護すべき設備が要求される機能を損なうおそれはない。評価結果を第3-9表に示す。

第3-9表 原子炉建屋への溢水溢水流入影響評価

	溢水量			
循環水管	循環水管以外の 耐震 B, C クラス機器	<mark>合計量</mark>	<mark>許容量</mark>	判定
約 12, 300m ³	約 8,610m ³	約 20,910m³ (EL.6.2m)	約 26,700m³ (EL.8.2m)	<u>*</u>

*:貫通部止水処置による溢水伝播防止処置を実施済み。

3.4 海水ポンプ室循環水ポンプエリアからの流入防止

(1) 評価方法

資料V-1-1-8-3「溢水評価条件の設定」にて設定した海水ポンプ室循環水ポンプエリアで発生を想定する溢水が、海水ポンプ室の溢水防護区画へ伝播しないことを評価する。なお、資料V-1-1-8-3「溢水評価条件の設定」にて設定した溢水量より、海水ポンプ室循環水ポンプエリアにおける想定破損による溢水及び消火栓の放水による溢水は、地震起因による溢水に包絡されるため、ここでは地震起因による溢水量を用いた評価を行う。

(2) 判定基準

海水ポンプ室循環水ポンプエリア内で発生を想定する溢水が,海水ポンプ室の 溢水防護区画の開口部高さを超えて伝播するおそれがなく,海水ポンプ室の溢水 防護区画の防護すべき設備が要求される機能を損なうおそれがないこと。

(3) 評価結果

海水ポンプ室循環水ポンプエリア内で発生する溢水水位は、資料V-1-1-8-3 「溢水評価条件の設定」のうち「2.3 地震起因による溢水」において設定される溢水量より算出する。

海水ポンプ室循環水ポンプエリアから海水ポンプ室の溢水防護区画へ連絡する経路の高さ EL. 6.6m であり、また境界壁には貫通部が存在する。

海水ポンプ室循環水ポンプエリアにおける循環水管伸縮継手部からの溢水に関して、溢水発生から隔離までの間に発生する溢水による溢水水位は約 EL. 6.1mであり、伸縮継手部(上端約 EL. 5.6m)がすべて没水することになるため、循環水管内の保有水との水位差より保有水は流出しない。

海水ポンプ室循環水ポンプエリア内で発生を想定する溢水によるタービン建屋の浸水水位(約 EL.6.1m)は連絡する経路高さを下回ること及び境界壁には EL.6.6mの高さまで、資料V-1-1-8-5「溢水防護に関する施設の設計方針」に示す貫通部止水処置を実施しているため、海水ポンプ室循環水ポンプエリア内で発生した溢水が海水ポンプ室の溢水防護区画へ流入することはなく、防護すべき設備が要求される機能を損なうおそれはない。評価結果を第3-10表に示す。

第3-10表 原子炉建屋への溢水溢水流入影響評価

循環水管か	らの溢水量	滞留する		
溢水発生から 隔離完了まで	系統保有水量	溢水量	許容量	判定
694m ³	5,000m ³ 以上	642m ³ * 1 (EL. 6. 1m)	713m ³ (EL. 6. 6m)	<u>* 2</u>

*1:系統保有水量は、水位差により流出することはないため、滞留しない。

*2:貫通部止水処置による溢水伝播防止処置を実施済み。

3.5 地下水からの影響評価

東海第二発電所では、防護すべき設備を内包する原子炉建屋、タービン建屋等の周辺地下部には 第3-4図に示すように 排水設備(サブドレン)を設置しており、同設備により各建屋周辺に流入する地下水の排出を行っている。地震によりすべての排水ポンプが同時に機能喪失することを想定し、その際の排水不能となった地下水が防護すべき設備に与える影響について評価を行う。

排水ポンプが機能喪失した場合,地下水位が上昇するが,保守的に地表面までの水 位上昇を考慮する。

この地表面までの地下水位に対して、建屋外壁及び貫通部止水処置により建屋内に流入することを防止することから、<mark>溢水防護区画を内包する建屋内の防護すべき設備への影響はない</mark>。

4. 管理区域外への漏えい防止に関する溢水評価

(1) 評価方法

発電用原子炉施設内の放射性物質を含む液体を内包する容器,配管その他の設備が破損することにより発生する放射性物質を含む液体が,管理区域外へ漏えいするおそれがないことを評価する。

資料V-1-1-8-3「溢水評価条件の設定」で設定した溢水源、溢水量、溢水防護 区画及び溢水経路を踏まえ、管理区域内での放射性物質を含む液体の溢水水位は 「2.1 没水影響に対する評価」における算出方法により評価する。

防護すべき設備を内包する建屋の管理区域内の放射性物質を含む液体の溢水量と建屋の地下階の容積等を比較し、放射性物質を含む液体が管理区域外へ伝播するおそれがないことを評価する。また、中間階における溢水の一時的な水位と、管理区域外へつながる経路高さ放射性物質を含む液体が管理区域外へ伝播することを防ぐことを期待する管理区域外伝播防止堰高さを比較し、放射性物質を含む液体が管理区域外へ伝播するおそれがないことを評価する。

(2) 判定基準

発生を想定する放射性物質を含む液体の溢水量が建屋の地下階等の容積等を

超えず、放射性物質を含む液体が管理区域外へ伝播するおそれがないこと。

中間階における溢水の一時的な水位が,管理区域外伝播防止堰高さを超えず, 放射性物質を含む液体が管理区域外へ伝播するおそれがないこと。

(3) 評価結果

発生を想定する放射性物質を含む液体の溢水量は、建屋の地下階等の容積等を超えないことから、放射性物質を含む液体は管理区域外へ伝播するおそれはない。また、中間階における一時的な水位を考慮した場合の溢水水位が管理区域外伝播防止堰高さを超えないことから、放射性物質を含む液体は管理区域外へ伝播するおそれはない。

地下階における滞留評価結果を第4-1表に、中間階における一時的な水位を考慮した場合の溢水水位が管理区域外伝播防止堰高さを超えないことに対する評価結果を第4-2表に示す。

第4-1表 地下階層への滞留評価結果

対象建屋	滞留可能容量 (m²)	溢水量(m³)	判定
原子炉建屋廃棄物処 理棟	6319	約2700	0
タービン建屋	約26699	約20910	0
廃棄物処理建屋	6970	約4300	0

第4-2表 中間階における堰の評価結果

対象建屋	溢水水位 (m)	堰高さ (m) *1
タービン建屋 EL.8.2m	0. 248 <mark>* ²</mark>	0.3m以上

*1:設置床からの高さ

*2:本水位は、当該区画の床面の開口(階段)からの排水には期待せず、溢水がすべて滞留することを想定した保守的な水位であるため、床勾配と水面の揺らぎによる裕度(200mm)は考慮しない。