本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-400-1 改4
提出年月日	平成 30 年 6 月 29 日

建物・構築物の地震応答解析についての補足説明資料

補足-400-1【地震応答解析における既工認と今回工認の解析モデ

ル及び手法の比較】

平成 30 年 6 月 日本原子力発電株式会社

1.	概要	1
2.	地震応答解析モデル及び手法の比較	2

別紙 1-1 原子炉建屋の地盤接地状況と埋込みSRモデルの適用性について

別紙 1-2 原子炉建屋の地震応答解析モデルの変更について

別紙 1-3 原子炉建屋の地震応答解析モデルについて

- 別紙 2-1 使用済燃料乾式貯蔵建屋で用いる有効入力動の適用性について
- 別紙 2-2 使用済燃料乾式貯蔵建屋の地震応答解析モデルの変更について
- 別紙 2-3 使用済燃料乾式貯蔵建屋の地震応答解析モデルについて

別紙1-3 原子炉建屋の地震応答解析モデルについて

1.	概要		1
2.	原子炉建屋の概要		2
2	2.1 建屋概要		2
2	2.2 設置地盤の状況		6
3.	地震応答解析モデルに係る影響検討		8
3.	3.1 概要		8
3.	3.2 原子炉建屋内の地震計設置位置		9
3.	3.3 建屋-地盤動的相互作用の評価法について	• • • •	10
3.	3.4 人工岩盤のモデル化について		23
3.	3.5 側面回転ばねの扱いについて	· • • •	35
4.	シミュレーション解析結果を踏まえた施設影響		47
5.	まとめ		57

目次

4. シミュレーション解析結果を踏まえた施設影響

「3.項 地震応答解析モデルに係る影響検討」における観測記録とシミュレーション解析結果の 床応答スペクトルの比較において,観測記録の加速度がシミュレーション解析の加速度を上回る 結果が確認された。このため,観測記録がシミュレーション解析結果を上回ることによる施設へ の影響について確認する。施設の影響確認については,観測記録と観測記録を適用した今回工認 の原子炉建屋地震応答解析モデルを用いたシミュレーション解析による応答とを比較することに より行う。

なお,観測記録とシミュレーション解析の差異の考察ついては,「補足説明資料340-7 水平2 方向及び鉛直方向の適切な組合せに関する検討について 別紙3 3次元FEMモデルによる地震 応答解析 2.3 観測記録を用いた検討」で示す。

4.1 原子炉建屋への影響

図 4-1 に観測記録の最大応答加速度とシミュレーション解析との最大応答加速度との比較を示 す。原子炉建屋の地震計設置位置での観測記録と原子炉建屋質点系モデルを用いたシミュレーシ ョン解析の応答とを比較した結果,最大応答加速度分布は各方向において,観測記録がシミュレ ーション解析を上回らないことが確認できたため,原子炉建屋の耐震評価に影響はない。

(NS方向)

図 4-1 最大応答加速度の分布の比較

- 4.2 原子炉建屋に設置された機器・配管系
 - (1) 床応答スペクトルの傾向確認

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床応答 スペクトルとの比較を図 4-2~図 4-4 に示す。また、最大応答加速度と固有周期 0.05 秒位置 での加速度比較を表 4-1 に示す。機器・配管系評価においては、NS方向及びEW方向を包絡 させた設計用床応答曲線を適用し、耐震評価を実施することから、NS方向とEW方向を包絡 させた床応答スペクトルにて比較している。

また,原子炉建屋の設計用床応答曲線及び評価用震度は,設備評価用として加速度を1.5倍 した値を基本として耐震計算を実施していることから,シミュレーション解析結果については, 加速度値(震度)を1.5倍したものとする。

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床応答 スペクトルの比較結果を以下に記す。

① 減衰定数 5%

シミュレーション解析結果の床応答スペクトルは観測記録の床応答スペクトルを包絡している。

② 減衰定数 2%

- EL. 46. 5mの床応答スペクトルの比較では、0.05 秒から 0.1 秒において観測記録の床応答 スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認で きる。
- ・ EL. 46.5mの床応答スペクトル以外の階高の床応答スペクトルにおいては、シミュレーション解析結果が観測記録を概ね包絡していることが確認できる。
- ③ 減衰定数 1%
 - EL. 46. 5mの床応答スペクトルの比較では、0.05 秒から 0.1 秒において観測記録の床応答 スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認で きる。
 - ・ EL. 29.0 及び EL. 14.0mの床応答スペクトルの比較では、一部の周期帯で観測記録の床応 答スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認 できる。
 - ・ EL.-4.0mの床応答スペクトルにおいては、シミュレーション解析結果が観測記録を包絡 していることが確認できる。
 - ④ 最大応答加速度
 - ・ 全標高に対してシミュレーション解析結果の最大応答加速度は、観測記録の最大応答加 速度を超えていることが確認できる

以上のとおり床応答スペクトル及び最大応答加速度の比較した傾向を示したが,機器・配 管系の耐震設計の特徴を踏まえて,設備の影響評価を実施する。

図 4-2(1) 原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰5%)

図 4-2(2) 原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰5%)

図 4-2(3) 原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰5%)

図 4-2(4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰5%)

図 4-3(1) 原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰2%)

図 4-3(2) 原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰2%)

図 4-3(3) 原子炉建屋 EL. 14.0m 床応答スペクトル比較(減衰2%)

図 4-3(4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰2%)

図 4-4(1) 原子炉建屋 EL.46.5m 床応答スペクトル比較(減衰1%)

図 4-4(2) 原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰1%)

図 4-4(3) 原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰1%)

図 4-4(4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰1%)

		I	最大応答加速度	固有周期 0.05 秒位置 *						
			(cm/s^2)			σ	の加速度 (cm/s ²)			
標高	シ	ミュレー	ション		→ ¬ />⊐	シミュ	レーション			
(m)		解析	1	(観測)	観測記録		解析	<i>年</i> 日、汨ロ1号□ 4∃.		
	NIC	EW	Max(NS,EW)	NC	EW	×1.0	×1 E	(貺伿)記琢		
	NS	\times EW \times 1.5		N S	ΕW	× 1. 0	×1. 5			
46 5	520	522	709	402	401	700	1050	707		
40. 5	550	002	190	492	401	700	1050	191		
20.0	246	274	561	201	261	420	644	556		
29.0	540	374	201	301	501	430	044	000		
14.0	9.49	217	E1E	995	206	250	E 2 0	491		
14.0	343	317	515	220	306	399	538	431		
1.0	202	970	455	014	225	220	500	201		
-4.0	303	279	455	214	225	339	509	301		

表 4-4 最大応答加速度と固有周期 0.05 秒位置での加速度比較

* 床応答スペクトルは減衰2%を適用し、NS方向とEW方向を包絡させた値として記載。

(2) 観測記録による影響検討

影響検対象設備は、(1)床応答スペクトルの傾向確認を踏まえて、観測記録と建屋シミュレ ーション解析結果との差異が確認される EL. 14. 0mから上層階に設置される設備とする。また、 最大応答加速度は、全標高に対して、シミュレーション解析結果の加速度が観測記録の加速 度を超えていることから、床応答スペクトルを用いて評価を行う設備を対象とする。

影響検討については,設備の固有周期を確認し,観測記録とシミュレーション解析の応答 比率を踏まえた割り増しを考慮しても,設備の有する耐震裕度に収まることを確認する。 (以下、追而)

5. まとめ

原子炉建屋の地震応答解析モデルについて,東北地方太平洋沖地震のシミュレーション解析結 果の比較から,人工岩盤のモデル化及び側面回転ばねの影響について検討した。

建設工認では埋込みを考慮しないSRモデルとしていたが、側面地盤の埋込み効果を考慮した 埋込みSRモデルとした場合、より実状に近い建屋の振動性状を評価できることを確認した。ま た、人工岩盤は岩盤として地盤モデル側にモデル化し、側面回転ばねを考慮しないモデルとする 方が、応答を保守側に評価することを確認した。

なお,建設工認の地震応答解析モデルは,埋込みを考慮しないモデルで,底面地盤ばね減衰定 数 5%一定としている。東北地方太平洋沖地震のシミュレーション解析結果より,埋込みを考慮 しない場合,埋込みを考慮したモデルに比べて建屋応答を保守的に評価することを確認しており, 建設工認モデルが埋込み考慮の今回工認モデルに比べて保守的な応答となるモデル化となってい たことを確認した。

以上の結果から, R/B 今回工認モデルは,人工岩盤を地盤モデル側に岩盤としてモデル化し, 側面回転ばねを考慮しない埋込みSRモデルとすることとした。 1. 概要

本資料は、別紙 1-3「原子炉建屋の地震応答解析モデルについて」で示した原子炉建屋の地震 応答解析における東北地方太平洋沖地震のシミュレーション解析について、鉛直方向モデルによ る結果を示すものである。

2. 解析モデル

鉛直方向の解析モデルを図 2-1 に示す。

鉛直方向の解析モデルは,水平方向と同様に人工岩盤を地盤モデル側に岩盤としてモデル化する。なお,側面地盤ばねについては考慮しない。

<u>5.13m</u>

0.00m

<u>10. 27m 15. 41m</u> 20. 55m

・数字は質点番号を示す。

・()内は要素番号を示す。

図 2-1 解析モデル(鉛直方向)

別紙 1-3 補-1

3. 解析結果

東北地方太平洋沖地震のシミュレーション解析結果として最大応答加速度分布の比較を図3-1に、床応答スペクトルの比較を図3-2に示す。

最大応答加速度は,解析結果が観測記録を上回っており,床応答スペクトルについてもほぼ全 ての周期帯で解析結果が観測記録を上回る傾向となっている。

図 3-2 最大応答加速度分布の比較(鉛直方向)

n-5% 地下2階 図 3-2(1/4) 床応答スペクトルの比較(鉛直方向)

図 3-2 (2/4) 床応答スペクトルの比較(鉛直方向)

図 3-2 (3/4) 床応答スペクトルの比較(鉛直方向)

6 階 図 3-2(4/4) 床応答スペクトルの比較(鉛直方向)

- 4.2 原子炉建屋に設置された機器・配管系
- (1) 床応答スペクトルの傾向確認

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床 応答スペクトルとの比較を図4-2~図4-4に示す。また,最大応答加速度と固有周期 0.05秒位置での加速度比較を表4-1に示す。機器・配管系評価においては,NS方向 及びEW方向を包絡させた設計用床応答曲線を適用し,耐震評価を実施することから, NS方向とEW方向を包絡させた床応答スペクトルにて比較している。

また,原子炉建屋の設計用床応答曲線及び評価用震度は,設備評価用として加速度を 1.5倍した値を基本として耐震計算を実施していることから,シミュレーション解析結 果については,加速度値(震度)を1.5倍したものとする。

原子炉建屋の各床面のシミュレーション解析結果の床応答スペクトルと観測記録の床 応答スペクトルの比較結果を以下に記す。

- ① 減衰定数 5%
 - シミュレーション解析結果の床応答スペクトルは観測記録の床応答スペクトルを 包絡している。
- ② 減衰定数 2%
 - EL. 46. 5mの床応答スペクトルの比較では、0.05 秒から 0.1 秒において観測記録の
 床応答スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認できる。
 - ・ EL. 46.5mの床応答スペクトル以外の階高の床応答スペクトルにおいては、シミュレーション解析結果が観測記録を概ね包絡していることが確認できる。
- ③ 減衰定数 1%
 - EL. 46.5mの床応答スペクトルの比較では、0.05秒から0.1秒において観測記録の
 床応答スペクトルがシミュレーション解析結果の床応答スペクトルを超えている周期が確認できる。
 - ・ EL. 29.0 及び EL. 14. 0m の床応答スペクトルの比較では、一部の周期帯で観測記録 の床応答スペクトルがシミュレーション解析結果の床応答スペクトルを超えている 周期が確認できる。
 - ・ EL. -4. 0mの床応答スペクトルにおいては、シミュレーション解析結果が観測記録 を包絡していることが確認できる。
- ④ 最大応答加速度
- ・ 全標高に対してシミュレーション解析結果の最大応答加速度は、観測記録の最大応答加速度を超えていることが確認できる。

以上のとおり床応答スペクトル及び最大応答加速度の比較した傾向を示したが,機器・配管系の耐震設計の特徴を踏まえて,設備の影響評価を実施する。

図 4-2 (1/4) 原子炉建屋 EL. 46.5m 床応答スペクトル比較(減衰5%)

図 4-2 (2/4) 原子炉建屋 EL.29.0m 床応答スペクトル比較(減衰5%)

図 4-2 (3/4) 原子炉建屋 EL. 14.0m 床応答スペクトル比較(減衰5%)

図 4-2 (4/4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰5%)

図 4-3 (1/4) 原子炉建屋 EL. 46.5m 床応答スペクトル比較(減衰2%)

図 4-3 (2/4) 原子炉建屋 EL. 29.0m 床応答スペクトル比較(減衰2%)

図 4-3 (3/4) 原子炉建屋 EL.14.0m 床応答スペクトル比較(減衰2%)

図 4-3 (4/4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰2%)

図 4-4 (1/4) 原子炉建屋 EL. 46.5m 床応答スペクトル比較(減衰1%)

図 4-4 (2/4) 原子炉建屋 EL. 29.0m 床応答スペクトル比較(減衰1%)

図 4-4 (3/4) 原子炉建屋 EL. 14.0m 床応答スペクトル比較(減衰1%)

図 4-4 (4/4) 原子炉建屋 EL.-4.0m 床応答スペクトル比較(減衰1%)

		J	最大応答加速度	固有周期 0.05 秒位置 *					
			(cm/s^2)	の	の加速度 (cm/s ²)				
標高	シ	ミュレー	ーション	左 日 汨山			レーション		
(m)		解析	ŕ	(配供)	判記跡 解析				
	N S	EW	$\frac{\text{Max}(\text{NS, EW})}{\times 1.5}$	NS EW		×1.0	×1.5	PULK ILLER	
46.5	530	532	798	492	481	700	1050	797	
29.0	346	374	561	301	361	430	644	556	
14.0	343	317	515	225	306	359	538	431	
-4.0	303	279	455	214	225	339	509	301	

表 4-1 最大応答加速度と固有周期 0.05 秒位置での加速度比較

* 床応答スペクトルは減衰2%を適用し、NS方向とEW方向を包絡させた値として記載。

(2) 観測記録による影響評価

観測記録とシミュレーション解析結果との差異に対して設備の影響評価を実施する。 影響評価に当たっては、シミュレーション解析結果の最大応答加速度が、全標高におい て観測記録の加速度を超えていることから、床応答スペクトルを用いて評価を行う設備 ついて網羅的に実施する。

具体的には,設備の固有周期を確認し,観測記録とシミュレーション解析の応答比率 (注1)を踏まえた割り増しを考慮しても,設備の有する耐震裕度に収まることを確認す る。この際,地震観測計の設置されている標高が EL. -4. 0m, EL. 14. 0m, EL. 29. 0m 及び EL. 46. 5m に限定され,観測系統としてすべての標高を網羅できていないことに鑑み, 観測記録とシミュレーション解析結果に差異が認められた EL. 14. 0m 以上の標高に設置 される耐震重要設備並びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備, 上位クラスの設備に波及的影響を及ぼす設備を対象とする。

なお、地震観測計が設置されていない標高に設置された設備の影響評価においては、 地震観測計が設置された上下階の応答比率を用いて検討を行う。但し、EL.46.5mの観 測記録とシミュレーション解析結果との差異については、東西のオペフロ面が外側には らみ出すようなモードによる影響が要因となっており、その影響は EL.46.5m のオペフ ロ面に限定されることから、他の標高に設置された設備への影響評価には用いないこと とする。

各設備の影響評価結果について次頁以降に示す。

注1:耐震計算において,設計用床応答曲線を1.5倍した設備評価用床応答曲線を適用 している設備については、シミュレーション解析結果を1.5倍した床応答スペク トルにより応答比率を求める。また、設計用床応答曲線及びばらつきケースを包絡 した設備評価用床応答曲線を適用している設備については、シミュレーション解 析結果(×1.0)により応答比率を求める。 設置床レベル46.5mの機器・配管系(減衰0.5%)への影響検討結果 設置床レベルがEL.46.5mであり,減衰定数0.5%を適用して耐震評価を実施する機器・配管系として,格納容器圧力逃がし装置配管が有る。当該設備に対して影響評価結果を実施した結果,基準地震動Ssの耐震裕度はFRS比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-2 設置床レベル 46.5m の機器・配管系(減衰 0.5%)への影響評価結果

	凯供力 升	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
		部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
(a)	格納容器圧力逃	配管		せん	0.9	262	2.04	1 90	\bigcirc
	がし装置配管	本体		断	92	303	5.94	1.38	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-5 原子炉建屋 EL46.5m 床応答スペクトル比較(減衰 0.5%)

 ② 設置床レベル 46.5mの機器・配管系(減衰1.0%)への影響検討結果 設置床レベルが EL.46.5mであり,減衰定数1.0%を適用して耐震評価を実施する機器・配管系として,使用済燃料プール温度計(SA)が有る。当該設備に対して影響評価結果を実施した結果,基準地震動Ssの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-3 設置床レベル 46.5m の機器・配管系(減衰 1.0%)への影響評価結果

	凯供友新	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
		部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
ⓐ	使用済燃料プール	基礎		14 / 145	10	0.4	7 99		\bigcirc
	温度計 (SA)	本体		せん例	15	94	1.23	_	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-6 原子炉建屋 EL46.5m 床応答スペクトル比較(減衰1.0%)

③ 設置床レベル 46.5m の機器・配管系(減衰 2.0%)への影響検討結果

設置床レベルが EL. 46.5m であり,減衰定数 2.0%を適用して耐震評価を実施する機器・配管系として,燃料取替機(SA),燃料取替機(DB)及び非常ガス再循環系配管が有る。当該設備に対して影響評価結果を実施した結果,非常ガス再循環系配管については,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。燃料取替機については,FRS 比率が耐震裕度を上回る結果となったため,詳細検討を行い耐震裕度が確保可能であることを確認した。

表 4-4 設置床レベル 46.5m の機器・配管系(減衰 2.0%)への影響評価結果

	凯供力称	評価	一次固有		応力	発生応力	許容応力	耐震	FRS ^{* 1}	影響
		部位	周期(秒)		分類	(MPa)	(MPa)	裕度	比率	評価
(a)	燃料取替機	脱線防止ラグ		1	14 / 平5	195	146	1 00	1 60	$\bigcirc *2$
		(取付ボルト)			セん例	155	140	1.08	1.69	0.1-
	非常ガス再循環	配管本体			1 1	95	9.49	10 70	1 10	\bigcirc
	系配管(FRVS-6)				工伙	25	343	13.72	1.13	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

*2 FRS 比率が耐震裕度を上回る結果となったため,詳細検討を行い耐震裕度が確保可能であることを確認 した。

図 4-7 原子炉建屋 EL46.5m 床応答スペクトル比較(減衰 2.0%)

【燃料取替機の詳細検討】

詳細検討は,耐震評価にて上述の FRS 比率 1.69 未満の耐震裕度の部材について行う。 表 5 に示すとおり FRS 比率 1.69 未満の部材として,燃料取替機構造物フレーム,トロリ 脱線防止ラグ,横行レールについて詳細検討を行う。

			応 力	基準地震動Ssによる評価結果			
	部材		分類	応力値	許容応力	耐震裕度	
			曲 げ	216	275	1.27	
燃料取	替機構造物フ!	ノーム	せん断	3	158	52.66	
			組 合 せ	217	275	1.26	
			曲 げ	101	253	2.50	
	単純広止	ラグ本体	せん断	31	146	4.70	
ブリッジ	「元林のユー		組合せ	114	253	2.21	
))	取付 ボルト	せん断	64	146	2.28	
		ラグ本体	曲 げ	154	253	1.64	
	脱線防止		せん断	59	146	2.47	
トロリ			組 合 せ	184	253	1.37	
		取付 ボルト	せん断	135	146	1.08	
			曲 げ	240	756	3.15	
	走行レール		せん断	26	436	16.76	
			組 合 せ	244	756	3.09	
			曲 げ	428	483	1. 12	
	横行レール		せん断	17	278	16.35	
			組合せ	428	483	1.12	

表 4-5 燃料取替機の耐震評価結果(設計基準対処設備)

a. 燃料取替機構造物フレームの詳細検討

詳細検討は、地震応答解析結果から算定される荷重のうち水平方向地震の影響を受ける 荷重に FRS 比率の1.69 倍をした荷重から、応力値を算出することにより行う。観測記録 による影響検討に用いた荷重の算定結果を表 4-6 及び表 4-7 に示す。表 4-8 に燃料取 替機構造物フレームの詳細検討を示すが燃料取替機構造物フレームの地震時による応答 は、鉛直方向地震の荷重が支配的であり、水平方向地震による荷重増加の影響は小さく応 力値の増加も僅かとなり、許容応力に収まる結果となった。

表 4-6 応力値算定に用いる荷重条件	ŧ
---------------------	---

	S s による 荷重	観測記録による 影響検討	備考
Fx:軸力]	代表として算定過程
(N)			を表 4-7 に示す。
Fy:y方向せん断力		T	
(N)			
Fz:z方向せん断力			
(N)			
Mx:ねじれモーメント		T	
(N • mm)			
My:y軸曲げモーメント			
(N • mm)			
Mz:z軸曲げモーメント		T	
(N • mm)		_	

表 4-7 観測記録による影響検討の算定過程(Fx:軸力の例示)

	荷重条件			S s による 荷重	観測記録による 影響検討
	自重				
		((1))			
	鉛直方向地震				
	(②)				
Fx:軸力	ブリッジ				
(N)	水平方向	(③)			
	地震	トロリ ^(注1)			
		(④)			
	合 計				
	(①+④+√	(2^2+3^2))			

注1:トロリはレール上を滑ることにより摩擦係数分の荷重に制限される。

			基	準地震動 S	S	観測記録による						
士 77 十十	応	力	に	よる評価結	ī果		影響検討					
部にため	分	類	亡力値	許容	耐震	亡力信	許容	耐震				
			心ノゴ电	応力	裕度	心ノゴ風	応力	裕度				
	曲	げ	216	275	1.27	224	275	1.22				
燃料取替機 構造物フレーム	セノ	し断	3	158	52.66	3	158	52.66				
	組合	合 반	217	275	1.26	224	275	1.22				

表 4-8 燃料取替機構造物フレームの詳細検討結果

b. トロリ脱線防止ラグ及び横行レールの詳細検討

燃料取替機の応力値算出に用いる荷重は、床応答スペクトルを適用した動的解析に加え て、最大応答加速度(1.2ZPA)を適用した静的解析により算出している。ブリッジ脱線防 止ラグ及び横行レールの応力値算出は、動的解析による算出荷重と静的解析による算出荷 重との何れか大きい方を用いている。

動的解析による算出荷重と静的解析による算出荷重との比較を、観測記録による影響を 考慮した結果を含めて表 4-9 に示す。シミュレーション解析と観測記録との比較から最 大応答加速度(1.2ZPA)は、シミュレーション解析結果が保守的な結果となっていること から静的解析の荷重に変更はない。動的解析による観測記録影響を考慮した荷重は、基準 地震動 S_sの評価に用いた荷重から増加することになる。

上述のとおり動的解析については、観測記録による影響により荷重が増加することにな るが、静的解析による荷重に包絡されることから、基準地震動 S_sの評価結果に変更がな いことを確認した。

	荷	:重(N)		
芭香の	静的解析	動的	解析	
荷重の 方向	(1.2ZPA を適用)	(床応答スペクトルを適用		
	らったトス庁ダ	Ssによる	観測記録影響	
	ことによる心合	応答	を考慮	
水平方向				

表 4-9 動的解析と静的解析との荷重比較

④ 設置床レベル 38.8mの機器・配管系(減衰2.0%)への影響検討結果 設置床レベルが EL.38.8mであり,減衰定数2.0%を適用して耐震評価を実施する機器・配管系として,非常用ガス処理系配管,低圧代替注水系配管及び格納容器下部注水系 配管が有る。当該設備に対して影響評価結果を実施した結果,基準地震動Ssの耐震裕度 は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響が ないことを確認した。

表 4-10 設置床レベル 38.8m の機器・配管系(減衰 2.0%)への影響評価結果

	乳供及分	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
	 取	部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
ⓐ	非常用ガス処理系配	配管		1 \/	101	225	0.01	1 10	0
	管(AC-SGTS)	本体		1 次	101	330	5. 51	1.19	0
ⓑ	低圧代替注水系配管	配管		1 \/\+	07	266	0.77		0
	(ALPI-003R3F)	本体		工伙	91	300	3.77	_	0
C	低圧代替注水系配管	配管		1 \/\+	116	266	2 15		0
	(ALPI-001DG)	本体		工伙	110	300	3.15	_	0
d	格納容器下部注水系	配管		1 \/\+	100	266	2.00		0
	配管 (FP-R-1)	本体		工伙	183	300	2.00		0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-8 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰 2.0%)

⑤ 設置床レベル 38.8mの機器・配管系(減衰 3.0%)への影響検討結果 設置床レベルが EL.38.8mであり,減衰定数 3.0%を適用して耐震評価を実施する機器・配管系として,格納容器圧力逃がし装置配管が有る。当該設備に対して影響評価結果 を実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-11 設置床レベル 38.8mの機器・配管系(減衰 3.0%)への影響評価結果

	乱供女称	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
		部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
a	格納容器圧力逃	配管							
	がし装置配管	本体		1次	78	363	4.65	1.12	0
	(PV-002R5F)								
ⓑ	格納容器圧力逃	配管							
	がし装置配管	本体		1次	96	363	3.78	—	0
	(PV-008YD)								

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

Г				
図 4-9	原子炉建屋 EL29.0m	床応答スペク	トル比較	(減衰 3.0%)

 ⑥ 設置床レベル 34.7mの機器・配管系(減衰 0.5%)への影響検討結果 設置床レベルが EL.34.7mであり,減衰定数 0.5%を適用して耐震評価を実施する機器・配管系として,代替燃料プール冷却系配管が有る。当該設備に対して影響評価結果を 実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-12 設置床レベル 34.7mの機器・配管系(減衰 0.5%)への影響評価結果

	司供力和	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
		部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
a	代替燃料プール冷	配管		1 \/\	77	265	4 74		\bigcirc
	却系(AFPC-3)	本体		1 次	11	305	4.74	_	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-10 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰 0.5%)

⑦ 設置床レベル 34.7mの機器・配管系(減衰1.0%)への影響検討結果 設置床レベルが EL.34.7mであり,減衰定数1.0%を適用して耐震評価を実施する機器・配管系として,使用済燃料貯蔵ラック(70体)及び制御棒貯蔵ラック(Sクラスへの波及的影響)が有る。当該設備に対して影響評価結果を実施した結果,基準地震動Ssの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-13 設置床レベル 34.7mの機器・配管系(減衰 1.0%)への影響評価結果

	乳供女社	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
	[] 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕 〕	部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
a	使用済燃料貯蔵ラ ック(70 体)	取付 ボルト		1次	146	153	1.04	1.03	0
Ь	制御棒貯蔵ラック	基礎 ボルト		1次	158	171	1.08	1.08	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーシ

ョン解析が観測記録を上回っていれば「-」と記載する。

図 4-11 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰1.0%)

⑧ 設置床レベル 29.0mの機器・配管系(減衰2.0%)への影響検討結果
 設置床レベルが EL.29.0mであり,減衰定数2.0%を適用して耐震評価を実施する機器・配管系として,原子炉隔離時冷却系配管が有る。当該設備に対して影響評価結果を実施した結果,基準地震動Ssの耐震裕度はFRS比率以上であるため,観測記録とシミュレ

ーション解析結果の差異に対する影響がないことを確認した。

表 4-14 設置床レベル 29.0mの機器・配管系(減衰 2.0%)への影響評価結果

	乱供权私	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
		部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
(a)	原子炉隔離時冷	配管							
	却系配管(RCIC-	本体		1次	146	363	2.48	—	0
	19, 20, 29)								

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-12 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰 2.0%)

 ・設置床レベル 29.0mの機器・配管系(減衰 3.0%)への影響検討結果
 設置床レベルが EL.29.0mであり,減衰定数 3.0%を適用して耐震評価を実施する機
 器・配管系として,原子炉隔離時冷却系配管が有る。当該設備に対して影響評価結果を実
 施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレ
 ーション解析結果の差異に対する影響がないことを確認した。

表 4-15 設置床レベル 29.0mの機器・配管系(減衰 3.0%)への影響評価結果

	乳供力粉	評価	一次固有	応力	発生応力	許容応力	耐震	FRS*1	影響
	 取 佣	部位	周期(秒)	分類	(MPa)	(MPa)	裕度	比率	評価
ⓐ	原子炉隔離時冷却	配管		1 \/\	69	200	6 19		0
	系配管(RCIC-7)	本体		11	62	380	0.12	_	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-13 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰 3.0%)

 ・設置床レベル 20.3mの機器・配管系(減衰 0.5%)への影響検討結果
 設置床レベルが EL.20.3m であり,減衰定数 0.5%を適用して耐震評価を実施する機
 器・配管系として,窒素ガス代替注入系配管,中央制御室待避室空気ボンベユニット配
 管,第二弁操作室空気ボンベユニット配管及び非常用逃がし安全弁駆動系配管が有る。
 当該設備に対して、シミュレーション解析結果を踏まえた影響評価を実施した結果、基
 準地震動 S_sの耐震裕度は FRS 比率以上であるため、観測記録とシミュレーション解析結
 果の差異に対する影響がないことを確認した。

	乳供女教	評価		一次固有	応力	発生応力	許容応力	松 南	FRS ^{* 1}	影響
	 設加名	項目	Ji	周期(秒)	分類	(MPa)	(MPa)	俗皮	比率	評価
ⓐ	窒素ガス代替注入系配	配管			1 1/17	244	267	1 50	1.59	○*2
	管(ANI-7)	本体			11	244	307	1. 50	—	0
	中央制御室待避室空気	配管								
	ボンベユニット配管	本体			1次	244	468	1.91	_	0
	(MCRS-1)								_	
©	第二弁操作室空気ボン	配管								
	ベユニット配管	本体			1次	213	468	2.19	_	0
	(PCVVVCC-1)								_	
đ	非常用逃がし安全弁駆	配管			1 \/	207	401	2 02	1.67	
	動系配管(ESD-1)	本体			工伙	207	431	2.08	—	U

表 4-16 20.3m に設置された機器・配管系(減衰 0.5%)への影響評価結果

*2 FRS 比率が耐震裕度を上回る結果となったため,詳細検討を行い耐震裕度が確保可能であることを確認 した。

図 4-14 (1/2) 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰 0.5%)

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。また、上段に 29.0mの比率、下段に 14.0mの比率を記載する。

図 4-14 (2/2) 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰 0.5%)

【窒素ガス代替注入系配管(ANI-7)の詳細検討】

詳細検討は,配管系の発生応力を地震による応力,地震時以外の応力に分け,更に地震時応力を水平方向地震による応力と鉛直方向地震による応力に分類し,水平方向地震による応力に FRS 比率を考慮することにより行う。FRS 比率を考慮した詳細検討結果を表 4-15 に示すとおり発生応力は,許容値を満足することを確認した。

		1 次応力 (MPa)											
	Η	h雪门从	地震		許容値								
	ц ц	四底以2下	水亚古向	公古七向	合計	合計応力	(MPa)						
	の応力		水平力问	如巨刀问	(SRSS)								
現状評価						244	367						
詳細検討						270	367						

表 4-17 FRS 比率を考慮した詳細検討結果

① 設置床レベル 20.3mの機器・配管系(減衰 1.5%)への影響検討結果

設置床レベルが EL. 20. 3m であり,減衰定数 1.5%を適用して耐震評価を実施する機器・配管系として,代替循環冷却系配管が有る。当該設備に対して,シミュレーション 解析結果を踏まえた影響評価を実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-18 20.3m に設置された機器・配管系(減衰 1.5%)への影響評価結果

	凯供力和	評価	一次固有	応力	発生応力	許容応力	※ 库	FRS*1	影響
	 初 備 名	部位	周期(秒)	分類	(MPa)	(MPa)	俗及	比率	評価
a	代替循環冷却系	配管		1 \/\	196	265	1 06	_	\bigcirc
	配管(ARC-2)	本体		工伙	180	202	1.90	_	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。また、上段に 29.0mの比率、下段に 14.0mの比率を記載する。

図 4-15 (1/2) 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰1.5%)

図 4-15 (2/2) 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰1.5%)

② 設置床レベル 20.3mの機器・配管系(減衰 2.0%)への影響検討結果

設置床レベルが EL. 20. 3m であり,減衰定数 2.0%を適用して耐震評価を実施する機器・配管系として,不活性ガス系配管,可燃性ガス濃度制御系配管,残留熱除去系配管,給水系配管が有る。当該設備に対して,シミュレーション解析結果を踏まえた影響評価を実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-19 20.3m に設置された機器・配管系(減衰 2.0%)への影響評価結果

	乳供力补	評価	一次固有	応力	発生応力	許容応力	※ 库	FRS ^{* 1}	影響
	[]	部位	周期(秒)	分類	(MPa)	(MPa)	俗及	比率	評価
a	不活性ガス系配管	配管		1 \/	171	225	1 05	—	\bigcirc
	(AC-1, 2, 3, 8)	本体		1 K	171	335	1.95	—	U
ⓑ	可燃性ガス濃度制御系	配管		1 1/-	65	0.60	5 50	_	\sim
	配管(FC-1)	本体		工伙	65	363	5.58	—	0
C	可燃性ガス濃度制御系	配管		1 1/	100	0.60	0.70	1.07	\sim
	配管(FC-2)	本体		工伙	155	303	2.12	_	
đ	可燃性ガス濃度制御系	配管		1 1/-		0.60	C CO	_	
	配管(FC-3,4)	本体		工伙	55	363	6.60	—	0
e	可燃性ガス濃度制御系	配管		1 1/4	61	0.60	5 05	_	
	配管(FC-7,8)	本体		工伙	61	363	5.95	—	0
Ð	残留熱除去系配管	配管		1 1/4	100	0.00	0.00	_	
	(RHR-34, 37, 38, 39, 50)	本体		工伙	166	380	2.28	—	0
g	給水系配管	配管		1 1/4	01	000	0.00	_	
	(FDW-13, 14)	本体		工次	81	229	2.82	_	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。また、上段に 29.0mの比率、下段に 14.0mの比率を記載する。

図 4-16 (1/2) 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰2.0%)

図 4-16 (2/2) 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰2.0%)

 ③ 設置床レベル 20.3mの機器・配管系(減衰3.0%)への影響検討結果 設置床レベルが EL.20.3mであり,減衰定数3.0%を適用して耐震評価を実施する機器・配管系として,原子炉冷却材浄化系配管,主蒸気隔離弁漏えい抑制系配管が有る。 当該設備に対して、シミュレーション解析結果を踏まえた影響評価を実施した結果、基準地震動Ssの耐震裕度はFRS比率以上であるため、観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-20 20.3m に設置された機器・配管系(減衰 3.0%)への影響評価結果

	訊供友好	評価	一次固有		応力	発生応力	許容応力	纷 庄	FRS*1	影響
		部位	周期(秒)		分類	(MPa)	(MPa)	俗及	比率	評価
ⓐ	原子炉冷却材浄化系配	配管			1 \	109	260	2 40	_	0
	管(CU-R-7)	本体			11	108	200	2.40	_	0
	主蒸気隔離弁漏えい抑	配管								
	制系配管(MSIV-	本体			1次	114	363	3.18		0
	23, 25, 27, 29)								—	

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。また、上段に 29.0mの比率、下段に 14.0mの比率を記載する。

図 4-17 (1/2) 原子炉建屋 EL29.0m 床応答スペクトル比較(減衰3.0%)

図 4-17 (2/2) 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰 3.0%)

 ④ 設置床レベル14.0mの機器・配管系(減衰0.5%)への影響検討結果 設置床レベルがEL.14.0mであり,減衰定数0.5%を適用して耐震評価を実施する機器・配管系として不活性ガス系配管が有る。当該設備に対して、シミュレーション解析 結果を踏まえた影響評価を実施した結果、基準地震動Ssの耐震裕度はFRS比率以上であ るため、観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-21 14.0m に設置された機器・配管系(減衰 0.5%)への影響評価結果

	乳借友折	評価	一次固有	応力	発生応力	許容応力	松声	FRS*1	影響
	設備名称		周期(秒)	分類	(MPa)	(MPa)	俗及	比率	評価
ⓐ	不活性ガス系配管	配管		1 \/	50	335	5 67	1 19	0
	(AC-6,7)	本体		ТĶ	59	222	5.07	1.12	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

図 4-18 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰 0.5%)

③ 設置床レベル14.0mの機器・配管系(減衰1.0%)への影響検討結果 設置床レベルがEL.14.0mであり,減衰定数1.0%を適用して耐震評価を実施する機器・配管系として,残留熱除去系配管が有る。当該設備に対して、シミュレーション解析結果を踏まえた影響評価を実施した結果、基準地震動Ssの耐震裕度はFRS比率以上であるため、観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-22 14.0m に設置された機器・配管系(減衰 1.0%)への影響評価結果

	凯供女 称	評価	一次固有	応力	発生応力	許容応力	※ 库	FRS*1	影響
2000年1月11日) 1011日日 1011日日 1011 1011日 10110		III名称 部位		分類	(MPa)	(MPa)	俗及	比率	評価
ⓐ	残留熱除去系配管	配管		1 \/	100	262	0 00	1.04	\cap
	(RHR-66)	本体		1次	109	303	ə. əə	1.04	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーシ

ョン解析が観測記録を上回っていれば「-」と記載する。

図 4-19 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰1.0%)

(16) 設置床レベル 14.0mの機器・配管系(減衰 2.0%)への影響検討結果

設置床レベルが EL. 14. 0m であり,減衰定数 2.0%を適用して耐震評価を実施する機器・配管系として,高圧炉心スプレイ系配管,低圧炉心スプレイ系配管,残留熱除去系配管が有る。当該設備に対して,シミュレーション解析結果を踏まえた影響評価を実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-23 14.0m に設置された機器・配管系(減衰 2.0%)への影響評価結果

	凯供友补	評価	一次固有	応力	発生応力	許容応力	炎 庄	FRS*1	影響
		部位	周期 (秒)	分類	(MPa)	(MPa)	俗及	比率	評価
a	高圧炉心スプレイ系	配管		1 //++	104	264	1 07		\cap
	配管 (HPCS-4,5)	本体		工伙	194	304	1.87	—	0
	低圧炉心スプレイ系	配管		1 1	150	396	2.64		
	配管(LPCS-2,3)	本体		工伙				—	0
©	残留熱除去系配管	配管		1 1	1.4.9	206	9.76		
	(RHR-48)	本体		11	143	390	2.70	—	0
đ	残留熱除去系配管	配管		1 1	917	960	1 10		0
	(RHR-70)	本体		工伙	217	260	1.19	—	0

*1 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーション解析が観測記録を上回っていれば「-」と記載する。

① 設置床レベル 14.0mの機器・配管系(減衰 3.0%)への影響検討結果

設置床レベルが EL. 14.0m であり,減衰定数 3.0%を適用して耐震評価を実施する機器・配管系として,残留熱除去系配管が有る。当該設備に対して,シミュレーション解析結果を踏まえた影響評価を実施した結果,基準地震動 S_sの耐震裕度は FRS 比率以上であるため,観測記録とシミュレーション解析結果の差異に対する影響がないことを確認した。

表 4-24 14.0m に設置された機器・配管系(減衰 3.0%)への影響評価結果

	設備名称	評価	一次固有	応力	発生応力	許容応力	※ 庄	FRS*1	影響
	[1]	部位	周期(秒)	分類	(MPa)	(MPa)	俗及	比率	評価
a	残留熱除去系配管	配管		1 //~	156	225	9.14		\cap
	(RHR-5, 21)	本体		1 次	190	335	2.14	—	0
	残留熱除去系配管	配管		1 \	101	200	0.00		
	(RHR-8, 30, 99, 100)	本体		1 伏	181	380	2.09	—	0

^{*1} 観測記録がシミュレーション解析結果上回っている場合は、その比率を記載する。またシミュレーシ

ョン解析が観測記録を上回っていれば「-」と記載する。

図 4-21 原子炉建屋 EL14.0m 床応答スペクトル比較(減衰 3.0%)