本資料のうち,枠囲みの内容 は,営業秘密あるいは防護上の 観点から公開できません。

東海第二発電所 工事計画審査資料			
資料番号	工認-093 改15		
提出年月日	平成 30 年 6 月 29 日		

V-3-別添2 火山への配慮が必要な施設の強度に関する説明書

V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針
V-3-別添 2-1-1 残留熱除去系海水系ポンプの強度計算書
V-3-別添 2-1-2 残留熱除去系海水系ストレーナの強度計算書
V-3-別添 2-1-3 ディーゼル発電機用海水ポンプの強度計算書
V-3-別添 2-1-4 ディーゼル発電機吸気口の強度計算書
V-3-別添 2-1-5 ディーゼル発電機変気口の強度計算書
V-3-別添 2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書
V-3-別添 2-1-7 建屋の強度計算書
V-3-別添 2-2 防護対策施設の強度計算の方針
V-3-別添 2-21 防護対策施設の強度計算書

: 今回ご説明分

V-3-別添 2-1 火山への配慮が必要な施設の強度計算の方針

1.	概要
2.	強度評価の基本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	構造強度設計
3	.1 構造強度の設計方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3	.2 機能維持の方針・・・・・・・・・5
4.	荷重及び荷重の組合せ並びに許容限界・・・・・25
4	.1 荷重及び荷重の組合せ······25
4	.2 許容限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	強度評価方法
5	.1 機器・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	.2 建屋
6.	適用規格

目次

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」第7条及び「実用 発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に適合する設計とするため、V -1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-4-3 「降下火砕物の影響を考慮する施設の設計方針」(以下「V-1-1-2-4-3」という。)に設定して いる降下火砕物の影響を考慮する施設が、降下火砕物に対して構造健全性を維持することを確認 するための強度評価方針について説明するものである。

強度評価は、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」の うちV-1-1-2-4-1「火山への配慮に関する基本方針」(以下「V-1-1-2-4-1」という。)に示す 適用規格を用いて実施する。

降下火砕物の影響を考慮する施設の具体的な計算の方法及び結果は、V-3-別添2-1-1「残留熱除去系海水系ポンプの強度計算書」、V-3-別添2-1-2「残留熱除去系海水系ストレーナの強度計算書」、V-3-別添2-1-3「ディーゼル発電機用海水ポンプの強度計算書」、V-3-別添2-1-4「ディーゼル発電機用海水ストレーナの強度計算書」、V-3-別添2-1-5「ディーゼル発電機吸気口の強度計算書」、V-3-別添2-1-6「ディーゼル発電機室ルーフベントファンの強度計算書」及びV-3-別添2-1-7「建屋の強度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「2.1 強度評価の対象施設」に示す評価対象施設について、「4.1 荷重及び荷重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組合せ荷重又は応力等が、「4.2 許容限界」で示す許容限界内にあることを、「5. 強度評価方法」で示す評価方法及び考え方を使用し、「6. 適用規格」で示す適用規格を用いて確認する。

2.1 強度評価の対象施設

V-1-1-2-4-3 の「4. 要求機能及び性能目標」にて設定している構造物への荷重を考慮する 施設を,強度評価の対象施設(以下「評価対象施設」という。)とし表 2-1 に示す。なお,構 造物への荷重を考慮する施設のうち,防護対策施設を設置する中央制御室冷凍機並びに降下火 砕物が堆積しにくい形状である非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電 機を含む。)吸気消音機及び排気管は,評価対象施設として選定しない。

施設分類	評価対象施設
	・残留熱除去系海水系ポンプ
	・非常用ディーゼル発電機用海水ポンプ及び高圧炉心スプレイ系デ
	ィーゼル発電機用海水ポンプ(以下「非常用ディーゼル発電機
	(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポン
	プ」という。)
	・残留熱除去系海水系ストレーナ
	・非常用ディーゼル発電機用海水ストレーナ及び高圧炉心スプレイ
	系ディーゼル発電機用海水ストレーナ(以下「非常用ディーゼル
設備	発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水
	ストレーナ」という。)
	・非常用ディーゼル発電機吸気口及び高圧炉心スプレイ系ディーゼ
	ル発電機吸気口(以下「非常用ディーゼル発電機(高圧炉心スプ
	レイ系ディーゼル発電機を含む。)吸気口」という。)
	・非常用ディーゼル発電機室ルーフベントファン及び高圧炉心スプ
	レイ系ディーゼル発電機室ルーフベントファン(以下「非常用デ
	ィーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含
	む。)室ルーフベントファン」という。)
	・原子炉建屋原子炉棟
74, 12	・原子炉建屋付属棟
建厔	・タービン建屋
	・使用済燃料乾式貯蔵建屋

表 2-1 評価対象施設

3. 構造強度設計

V-1-1-2-4-1で設定している降下火砕物特性に対し,「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が,構造強度設計上の性能目標を達成するよう, V-1-1-2-4-3の「5. 機能設計」で設定している各施設が有する機能を踏まえて,構造強度の設計方針を設定する。

各施設の構造強度の設計方針を設定し、想定する荷重及び荷重の組合せを設定し、それらの荷 重に対し、各施設の構造強度を保持するよう構造設計と評価方針を設定する。

3.1 構造強度の設計方針

V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を 達成するための設計方針を示す。

(1) 防護対象施設

a. 残留熱除去系海水系ポンプ

残留熱除去系海水系ポンプは、V-1-1-2-4-3 の「4.要求機能及び性能目標」の 「4.1(3)性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降 下火砕物、積雪及び風(台風)による荷重に対し、降下火砕物堆積時の機能維持を考慮 して、海水ポンプ室床面のコンクリート基礎に基礎ボルトで固定し、残留熱除去系海水 系ポンプの主要な構造部材が構造健全性を維持する設計とする。降下火砕物による荷重 を短期荷重とするために、30日を目途に降下火砕物を適切に除去することを保安規定 に定める。

b. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機含む。)用海水ポン プは、V-1-1-2-4-3の「4.要求機能及び性能目標」の「4.1(3)性能目標」で設定し ている構造強度設計上の性能目標を踏まえ、想定する降下火砕物、積雪及び風(荷重) による荷重に対し、降下火砕物堆積時の機能維持を考慮して、海水ポンプ室床面のコン クリート基礎に基礎ボルトで固定し、非常用ディーゼル発電機(高圧炉心スプレイ系デ ィーゼル発電機を含む。)用海水ポンプの主要な構造部材が構造健全性を維持する設計 とする。降下火砕物による荷重を短期荷重とするために、30日を目途に降下火砕物を 適切に除去することを保安規定に定める。

c. 残留熱除去系海水系ストレーナ

残龍熱除去系海水系ストレーナは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の 「4.1(3)性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降 下火砕物、積雪及び風(台風)による荷重に対し、降下火砕物堆積時の機能維持を考慮 して、海水ポンプ室床面のコンクリート基礎に基礎ボルトで固定し、残留熱除去系海水 系ストレーナの主要な構造部材が構造健全性を維持する設計とする。降下火砕物による 荷重を短期荷重とするために、30日を目途に降下火砕物を適切に除去することを保安 規定に定める。

d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3)性能目標」で 設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、積雪及び風 (台風)による荷重に対し、降下火砕物堆積時の機能維持を考慮して、海水ポンプ室床 面のコンクリート基礎に基礎ボルトで固定し、非常用ディーゼル発電機(高圧炉心スプ レイ系ディーゼル発電機を含む。)用海水ストレーナの主要な構造部材が構造健全性を 維持する設計とする。降下火砕物による荷重を短期荷重とするために、30日を目途に 降下火砕物を適切に除去することを保安規定に定める。

e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロ 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口は, V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3)性能目標」で設定している 構造強度設計上の性能目標を踏まえ,想定する降下火砕物,積雪及び風(台風)による 荷重に対し,降下火砕物堆積時の機能維持を考慮して,脚を溶接でディーゼル発電機室 屋上面に設けたコンクリート基礎に固定し,非常用ディーゼル発電機(高圧炉心スプレ イ系ディーゼル発電機を含む。)吸気口の主要な構造部材が構造健全性を維持する設計 とする。降下火砕物による荷重を短期荷重とするために,30日を目途に降下火砕物を 適切に除去することを保安規定に定める。

f. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファン

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンは、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3)性能目標」 で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物,風(台風) 及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、ディーゼル発電 機室屋上面に設けたコンクリート基礎に基礎ボルトで固定し、非常用ディーゼル発電機 (高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベントファンの主要な構造 部材が構造健全性を維持する設計とする。降下火砕物による荷重を短期荷重とするため に、30日を目途に降下火砕物を適切に除去することを保安規定に定める。

- (2) 建屋
 - a. 原子炉建屋原子炉棟

原子炉建屋原子炉棟は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目標」で設定している構造強度設計上の性能目標を踏まえ,想定する降下火砕物, 積雪及び風(台風)による荷重に対し,降下火砕物堆積時の機能維持を考慮して,部材 又は建屋全体として構造健全性を維持する設計とし,鉄筋コンクリート造の屋根を,鉄 筋コンクリート造の耐震壁で支持し,支持性能を有する基礎により支持する構造とする。 降下火砕物による荷重を短期荷重とするために,30 日を目途に降下火砕物を適切に除 去することを保安規定に定める。

b. 原子炉建屋付属棟

原子炉建屋付属棟は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性 能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、風 (台風)及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、部材又 は建屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の屋根を、鉄筋 コンクリート造の耐震壁又は鉄骨造のはり架構で支持し、支持性能を有する基礎により 支持する構造とする。降下火砕物による荷重を短期荷重とするために、30 日を目途に 降下火砕物を適切に除去することを保安規定に定める。

c. タービン建屋

タービン建屋は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」の「4.1(3) 性能目 標」で設定している構造強度設計上の性能目標を踏まえ、想定する降下火砕物、風(台 風)及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮して、部材又は建 屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の屋根を、鉄筋コン

 $\mathbb{R}3$

クリート造の耐震壁で支持し、支持性能を有する基礎により支持する構造とする。降下 火砕物による荷重を短期荷重とするために、30日を目途に降下火砕物を適切に除去す ることを保安規定に定める。

d. 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋は、V-1-1-2-4-3の「4.要求機能及び性能目標」の 「4.1(3)性能目標」で設定している構造強度設計上の性能目標を踏まえ、想定する降 下火砕物、風(台風)及び積雪による荷重に対し、降下火砕物堆積時の機能維持を考慮 して、部材又は建屋全体として構造健全性を維持する設計とし、鉄筋コンクリート造の 屋根を、鉄筋コンクリート造の耐震壁で支持し、支持性能を有する基礎により支持する 構造とする。降下火砕物による荷重を短期荷重とするために、30日を目途に降下火砕 物を適切に除去することを保安規定に定める。

3.2 機能維持の方針

V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を 達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえV-1-1-2-4-1の「2.1.3
(2)荷重の組合せ及び許容限界」で設定している荷重条件を適切に考慮して、各施設の構造設 計及びそれを踏まえた評価方針を設定する。

- (1) 設備
 - a. 残留熱除去系海水系ポンプ
 - (a) 構造設計

残留熱除去系海水系ポンプは,「3.1 構造強度の設計方針」で設定している設計方 針及びV-1-1-2-4-1の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏 まえ,以下の構造とする。

残留熱除去系海水系ポンプは、鋼製の立形ポンプの上に、原動機を取り付け、原動 機によりポンプの軸を回転させる構造とする。

残留熱除去系海水系ポンプはポンプベースに固定する。原動機は原動機台と結合し 原動機台はポンプベースに固定する。ポンプベースは据付面基礎ボルトで基礎に据え 付ける。端子箱等のポンプの機能保持に必要な附属品は,原動機にボルトで結合する。

原動機の形状は円筒形を基本とした適切な強度を有する鋼製のフレームに一次端子 箱が付加された形態とする。また,想定する降下火砕物及び積雪による荷重に対して は,原動機上部に最も多く降下火砕物が堆積し,原動機を介して支持している原動機 台に伝達する構造とする。風荷重については,原動機フレームを介して原動機台に固 定されている原動機フレーム下部(溶接部)及び据付面基礎ボルトに作用する構造と する。さらに,ポンプのスラスト荷重は全て原動機フレーム部に作用する。

残留熱除去系海水系ポンプの構造計画を表3-1に示す。

(b) 評価方針

残留熱除去系海水系ポンプは、「(a)構造設計」を踏まえ、以下の強度評価方針と する。想定する降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用 する部位及び荷重が伝達する部位を踏まえて,残留熱除去系海水系ポンプを構成する 原動機フレーム、原動機台及び据付面基礎ボルトが、おおむね弾性状態に留まること を計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-1「残 留熱除去系海水系ポンプの強度計算書」に示す。

計画の概要 施設名称 説明図 主体構造 支持構造 【位置】 残留熱除去系海水系ポンプは、海水ポンプ室に設置する設計としている。 原動機フレーム 次側端子箱 残留熱除去 コンクリート基礎に 原動機台 系海水系ポ 立形ポンプ 据付面基礎ボルトで固 定する。 ンプ 据付面基礎ボルト

表 3-1 残留熱除去系海水系ポンプの構造計画

- b. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプ
 - (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ポンプは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の 「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とす る。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ポンプは、鋼製の立形ポンプの上に、原動機を取り付け、原動機によりポンプの軸を 回転させる構造とする。

ポンプはポンプベースに固定する。原動機は原動機台と結合し原動機台はポンプベ ースに固定する。ポンプベースは据付面基礎ボルトで基礎に据え付ける。主回路端子 箱等のポンプの機能保持に必要な附属品は,原動機にボルトで結合する。

原動機の形状は円筒形を基本とした適切な強度を有する鋼製のフレームに,主回路 端子箱等の付属設備が付加された形態とする。また,想定する降下火砕物及び積雪に よる荷重に対しては,原動機及び原動機台の上部に最も多く降下火砕物が堆積し,原 動機を介して支持している原動機台に伝達する構造とする。また,風荷重は,原動機 フレームを介して原動機台に固定されている原動機フレーム下部(溶接部)及び据付 面基礎ボルトに作用する。さらに,ポンプのスラスト荷重は全て原動機フレーム部に 作用する。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ポンプの構造計画を表3-2に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ポンプは、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想定する降下火 砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝 達する部位を踏まえて、ポンプを構成する原動機フレーム、原動機台及び据付面基礎 ボルトが、おおむね弾性状態に留まることを計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-3「ディーゼル発電機用海水ポンプの強度計算書」に示す。

长乱友轮	計画の概要		⇒8 印 □
他設名你	主体構造	支持構造	就明凶
【位置】 <mark>非常用</mark> ディ 水ポンプ室	ーゼル発電機 に設置する設計	(高圧炉心スプレイ系 †としている。	ディーゼル発電機を含む。)用海水ポンプは,海
非ー 機 心 系 ル 含 海常ゼ(ス デ 発 む 水用 ル 高 プ ィ 電 。 ポンプ 電 しんぱい かんしょう かんしょう しんしょう しんしょう しんしょう しんしょう たいしんしょう たいしんしょう かいしょう かいしょう しんしょう おいしんしょう アイロング しんしょう ひんしょう しんしょう ひんしょう しんしょう しんしょ しんしょ	立形ポンプ	コンクリート基礎 に <mark>据付面基礎</mark> ボルト で固定する。	主回路用端子箱

表 3-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプ

の構造計画

- c. 残留熱除去系海水系ストレーナ
- (a) 構造設計

残留熱除去系海水系ストレーナは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とする。

残留熱除去系海水系ストレーナは、胴板と支持脚が鋳物一体となった構造とし、支 持脚をコンクリート基礎に基礎ボルトで固定する構造とする。また、ストレーナ上部 開口部には蓋が設置されている。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積するストレ ーナ上面に作用し,支持脚に伝達する構造とする。また,風荷重は,鋳物一体成型の 胴板及び支持脚を介して基礎ボルトに作用する。

残留熱除去系海水系ストレーナの構造計画を表3-3に示す。

(b) 評価方針

残留熱除去系海水系ストレーナは、「(a)構造設計」を踏まえ、以下の強度評価方 針とする。想定する降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の 作用する部位及び荷重が伝達する部位を踏まえて、ストレーナを構成する蓋、支持脚 及び基礎ボルトが、おおむね弾性状態に留まることを計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-2「残 留熱除去系海水系ストレーナの強度計算書」に示す。

9

	計	・画の概要		
施設名称	主体構造 支持構造		説明図	
【位置】				
残留熱除去系	海水系ストレーナに	は,海水ポンプ室に設置す	る設計としている。	
残留熱除去系 海水系ストレ ーナ	胴板と支持脚が鋳 物一体構造	支持脚をコンクリート 基礎に基礎ボルトで固 定する。	支持脚 上 上 上 上 上 上 上 上 上 正 <th =<="" t<="" td=""></th>	

表 3-3 残留熱除去系海水系ストレーナの構造計画

- d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナ
 - (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ストレーナは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3 (2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構 造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ストレーナは、円筒型の容器と支持脚が鋳物一体構造となった、たて置円筒形容器を 主体構造とし、支持脚をコンクリート基礎に基礎ボルトで固定する構造とする。また、 ストレーナ上部開口部には蓋が設置されている。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積するストレ ーナ上面に作用し,支持脚に伝達する構造とする。また,風荷重は,鋳物一体成型の 胴板及び支持脚を介して基礎ボルトに作用する。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ストレーナの構造計画を表3-4に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ストレーナは、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想定する降 下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重 が伝達する部位を踏まえて、ストレーナを構成する蓋、支持脚及び基礎ボルトが、お おむね弾性状態に留まることを計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-4「ディーゼル発電機用海水ストレーナの強度計算書」に示す。

表 3-4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ストレ ーナの構造計画

齿乳友新	計画	「の概要	学日回
旭武石桥	主体構造	支持構造	就的国
【位置】			
非常用ディー	ゼル発電機(高圧	炉心スプレイ系ディー	-ゼル発電機を含む。)用海水ストレーナ
は、海水ポン	プ室に設置する設計	としている。	
非常用ディー ギル 発 電子 アイモン アイン ア イ マ で オ で た で た で た の で た で た で た で た で た で た で	<mark>胴板</mark> と支持脚が鋳 物一体構造	支持脚をコンクリ ート基礎に基礎ボ ルトで固定する。	支持脚 基礎 ボルト

12

- e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。) 吸気口
 - (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の

「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の構造は4脚たて置円筒型容器構造とし、支持脚は基礎部に溶接により固定する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する吸気口 上面に作用し,吸気ロ胴板及び支持脚を介して床面に伝達する構造とする。また,想 定する風荷重に対しては,胴板に作用し,支持脚を介して床面に伝達する構造とする。 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口

の構造計画を表3-5に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 は、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想定する降下火砕物、 積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び荷重が伝達する 部位を踏まえて、吸気口を構成する平板、胴板、支持脚及び支持脚基礎溶接部が、お おむね弾性状態に留まることを計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-5「ディーゼル発電機吸気口の強度計算書」に示す。

表 3-5 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の構造 計画

旋迎友称		計画	の概要	32 日 22
	他設名你	主体構造	支持構造	就明国
	【位置】 <mark>非常用</mark> ディー- ル発電機室屋_	ゼル発電機(<mark>高圧炉</mark> 上面に設置する設計	戸心スプレイ系ディー・ としている。	ゼル発電機を含む。)吸気口は,ディーゼ
	非常 ル 居 ディー 用 発 恒 不 電 心 ス プ ビ れ 圧 イ ジ イ ゼ む の 気 口	4 脚たて置円筒 型容器	ディーゼル発電機 室屋上面に設けた コンクリート基礎 の基礎プレートに 溶接で固定する。	平板 同板 支持脚 基礎 溶接部

- f. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファン
 - (a) 構造設計

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルー フベントファンは、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下 の構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルー フベントファンは、ケーシング部とケーシング部より上部の吐出フードからなる軸流 ファンであり、ケーシング部をコンクリート基礎に基礎ボルトで固定する構造とする。 想定する降下火砕物及び積雪による荷重に対しては、降下火砕物が堆積する吐出フ ード上面に作用し、ケーシングを介して床面に伝達する構造とする。また、想定する 風荷重に対しては、吐出フード及びケーシングに作用し、吐出フード取付ボルト、ケ ーシング及び基礎ボルトを介して床面に伝達する構造とする。

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)ルーフ ベントファンの構造計画を表3-6に示す。

(b) 評価方針

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルー フベントファンは、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想定す る降下火砕物、積雪及び風(台風)を考慮した荷重に対し、荷重の作用する部位及び 荷重が伝達する部位を踏まえて、ファンを構成する吐出フード天板、ケーシング、基 礎ボルト及び吐出フード取付ボルトが、おおむね弾性状態に留まることを計算により 確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-6「ディーゼル発電機ルーフベントファンの強度計算書」に示す。

表 3-6 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベン トファンの構造計画

坊凯友新	計画の概要		武百百
^{施設名称} 主体構造		支持構造	就明因
【位置】 非常用ディー ンは, ディー	ゼル発電機(高圧炉 ゼル発電機室屋上面	⁵ 心スプレイ系ディー [、] 5に設置する設計とし ⁻	ゼル発電機を含む。)室ルーフベントファ ている。
非常用ディー ゼル 発 電 心ス プレイ系 発 レイズ た の マ イ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ マ	軸流ファン	ディーゼル発電機 室屋上面に設けた コンクリート基礎 に基礎ボルトで固 定する。	吐出フード 吐出フード 取付ボルト ケーシング 基礎ボルト

- (2) 建屋
 - a. 原子炉建屋原子炉棟
 - (a) 構造設計

原子炉建屋原子炉棟は、「3.1 構造強度の設計方針」で設定している設計方針及び V-1-1-2-4-1 の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、 以下の構造とする。

原子炉建屋原子炉棟は、鉄筋コンクリート造の屋根を、鉄筋コンクリート造の耐震 壁で支持し、十分な支持性能を有する基礎により支持する構造とする。鉄筋コンクリ ート造の屋根、鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コ ンクリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋 コンクリート造の耐震壁に作用する構造とする。

原子炉建屋の構造計画を表 3-6 に示す。

(b) 評価方針

原子炉建屋原子炉棟は、「(a)構造設計」を踏まえ、以下の強度評価方針とする。 想定する降下火砕物、風(台風)及び積雪を考慮した荷重に対し、原子炉建屋原子炉 棟の屋根及び耐震壁が、「4.2 許容限界」で示す許容限界に留まることを計算により 確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-7「建 屋の強度計算書」に示す。

- b. 原子炉建屋付属棟
- (a) 構造設計

原子炉建屋付属棟は、「3.1 構造強度の設計方針」で設定している設計方針及びV -1-1-2-4-1 の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、 以下の構造とする。

原子炉建屋付属棟は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の耐震壁 又は鉄骨造のはり架構で支持し,十分な支持性能を有する基礎により支持する構造と する。鉄筋コンクリート造の屋根,鉄筋コンクリート造の耐震壁及び鉄骨造の架構は 適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コ ンクリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋 コンクリート造の耐震壁及び鉄骨造の架構に作用する構造とする。

原子炉建屋付属棟の構造計画を表 3-6 に示す。

(b) 評価方針

原子炉建屋付属棟は、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想 定する降下火砕物、風(台風)及び積雪を考慮した荷重に対し、原子炉建屋付属棟の 屋根、耐震壁及び架構が、「4.2 許容限界」で示す許容限界に留まることを計算によ り確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-7「建 屋の強度計算書」に示す。

- c. タービン建屋
- (a) 構造設計

タービン建屋は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1 の「2.1.3 (2) 荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下 の構造とする。

タービン建屋は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の耐震壁で支持し,十分な支持性能を有する基礎により支持する構造とする。鉄筋コンクリート造の屋根,鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コ ンクリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋 コンクリート造の耐震壁に作用する構造とする。

タービン建屋の構造計画を表 3-6 に示す。

(b) 評価方針

タービン建屋は、「(a)構造設計」を踏まえ、以下の強度評価方針とする。想定す る降下火砕物、風(台風)及び積雪を考慮した荷重に対し、タービン建屋の屋根及び 耐震壁が、「4.2 許容限界」で示す許容限界に留まることを計算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を、V-3-別添2-1-7「建 屋の強度計算書」に示す。

- d. 使用済燃料乾式貯蔵建屋
- (a) 構造設計

使用済燃料乾式貯蔵建屋は,「3.1 構造強度の設計方針」で設定している設計方針 及びV-1-1-2-4-1 の「2.1.3 (2)荷重の組合せ及び許容限界」で設定する荷重を踏 まえ,以下の構造とする。

使用済燃料乾式貯蔵建屋は,鉄筋コンクリート造の屋根を,鉄筋コンクリート造の 耐震壁で支持し,十分な支持性能を有する基礎により支持する構造とする。鉄筋コン クリート造の屋根,鉄筋コンクリート造の耐震壁は適切な強度を有する構造とする。

想定する降下火砕物及び積雪による荷重に対しては,降下火砕物が堆積する鉄筋コ ンクリート造の屋根に作用する構造とする。また,想定する風荷重に対しては,鉄筋 コンクリート造の耐震壁に作用する構造とする。

使用済燃料乾式貯蔵建屋の構造計画を表 3-6 に示す。

(b) 評価方針

使用済燃料乾式貯蔵建屋は、「(a)構造設計」を踏まえ、以下の強度評価方針とす る。想定する降下火砕物、風(台風)及び積雪を考慮した荷重に対し、使用済燃料乾 式貯蔵建屋の屋根及び耐震壁が、「4.2 許容限界」で示す許容限界に留まることを計 算により確認する。

降下火砕物による荷重及びその他の荷重に対する強度評価を, V-3-別添2-1-7「建 屋の強度計算書」に示す。

施設		計画の	概要	->× na roa
分類	他設名称	主体構造	支持構造	- 記別以
	【位置】			
				
建屋				
	L			

表 3-6 建屋の構造計画(1/4)

施設友我	計画の	概要	11日回
旭政和你	主体構造	支持構造	『元り」と
第 テ デ 炉 建 屋 付 属 棟 、 、 、 、 、 、 、 、 、 、 、 、 、	 失筋コンクリー ト造の主体構造 をび鉄骨造の陸 星根で構成す る。 	荷外る壁建さ等礎るる。 重殻屋に屋れを版構 建構及用に耐し伝 造 のす外,置壁基すす	(東西方向断面)

表 3-6 建屋の構造計画(2/4)

长凯友扮	計画の概要		25 日 12	
肥設名称	主体構造	支持構造	就咧凶	
タービン建屋	鉄リ主び陸成第一体鉄屋する。クの及の構	荷外る壁建さ等礎るる。重設屋に屋れを版構はを根作内た介へ造屋成びし配震,達とのす外、置壁基すす	(東西方向断面)	

表 3-6 建屋の構造計画(3/4)

お乳なお	計画の	概要	⇒光 中日 157
他 成 名	主体構造	支持構造	就明因
使用済燃料乾式 貯蔵建屋	鉄 ト よ ン ク リ ー ン ク リ ー ン ク リ ー 、 、 、 、 、 、 、 、 、 、 、 、 、	荷外る壁基する。荷外る壁基する。	(東西方向断面)

表 3-6 建屋の構造計画(4/4)

4. 荷重及び荷重の組合せ並びに許容限界

評価対象施設の強度評価に用いる荷重及び荷重の組合せを「4.1 荷重及び荷重の組合せ」に, 許容限界を「4.2 許容限界」に示す。

4.1 荷重及び荷重の組合せ

評価対象施設の強度評価にて考慮する荷重は、V-1-1-2「発電用原子炉施設の自然現象等に よる損傷の防止に関する説明書」のうちV-1-1-2-4-3にて設定しており、それらを「(1) 荷重 の種類」に示す。また、評価対象施設の強度評価にて考慮する荷重の組合せの考え方は、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-4-3にて定めており、これらを踏まえて、強度評価において考慮すべき荷重の組合せを設定する。 評価対象施設の荷重の組合せを「(2) 荷重の組合せ」に示す。

- (1) 荷重の種類
 - a. 常時作用する荷重(F_d)
 常時作用する荷重は、V-1-1-2-4-1の「2.1.3(2)a. 荷重の種類」で設定している常
 時作用している荷重に従って、持続的に生じる荷重である自重及び積載荷重とする。
- b. 降下火砕物による荷重(F_v)

降下火砕物による荷重は、V-1-1-2-4-1の「2.1.2 設計に用いる降下火砕物特性」の 降下火砕物の特性及び「2.1.3(2)a. 荷重の種類」に示す降下火砕物による荷重を踏ま えて、湿潤密度1.5 g/cm³の降下火砕物が50 cm堆積した場合の荷重とする。

c. 積雪荷重(F_s)

積雪深は、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明 書」のうちV-1-1-2-1-1「発電用原子炉施設の自然現象等による損傷の防止に関する基 本方針」(以下「V-1-1-2-1-1」という。)の「4.1(4)自然現象の組合せの方針」に 示す組み合わせる積雪深を踏まえて、茨城県建築基準法等施行細則(昭和45年3月9日茨 城県規則第9号)による東海村の垂直積雪量30 cmに平均的な積雪荷重*を与えるための 係数0.35を考慮する。積雪荷重については、建築基準法施行令第86条第2項により、積 雪量1 cmごとに20 N/m²の積雪荷重が作用することを考慮し設定する。

注記 *: 建築物荷重指針・解説 (2014)

d. 風荷重(W)

風速は、V-1-1-2-1-1 の「4.1(4) 自然現象の組合せの方針」に示す組み合わせる風 速を踏まえて、建築基準法施行令に基づく平成12年建設省告示第1454号に定められた 東海村の基準風速である 30 m/s とする。風荷重については、施設の形状により風力係 数等が異なるため、施設ごとに設定する。

e. 運転時の状態で作用する荷重(F_p)

運転時の状態で作用する荷重としては、V-1-1-2-4-1の「2.1.3(2)a. 荷重の種類」 で設定している運転時の状態で作用する荷重に従って、ポンプのスラスト荷重等の運転 時荷重とする。

- (2) 荷重の組合せ
 - a. 降下火砕物による荷重,積雪荷重及び風荷重の組合せ
 降下火砕物による荷重,積雪荷重及び風荷重については,それらの組合せを考慮し, 自然現象の荷重として扱う。自然現象の荷重は短期荷重として扱う。
 - b. 評価対象施設の荷重の組合せ

評価対象施設の荷重の組合せについては、自然現象の荷重及び常時作用する荷重を組 み合わせる。

ただし,評価対象施設のうち残留熱除去系海水系ポンプ及び非常用ディーゼル発電 機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプは動的機器である ため,運転時の状態で作用する荷重を考慮する。また,残留熱除去系海水系ストレー ナ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用 海水ストレーナは内包水の荷重,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)吸気口及び非常用ディーゼル発電機(高圧炉心スプレイ系デ ィーゼル発電機を含む。)室ルーフベントファンは運転時の状態で作用する荷重を考 慮する。

なお、常時作用する荷重、積雪荷重、風荷重及び運転時の状態で作用する荷重については、組み合わせることで降下火砕物による荷重の抗力となる場合には、評価結果 が保守的となるよう荷重の算出において考慮しないこととする。

上記を踏まえ,対象施設の強度評価における荷重の組合せの設定については,施設の 設置状況及び構造等を考慮し設定する。対象施設ごとの荷重の組合せの考え方を表 4-1 に示す。

		荷 重						
施設分類	強度評価の 対象施設	常時作用する 荷重(F _d)		降下火砕	積雪	凲	運転時の 状能で作	
		自重	積載荷重	水頭圧	物による 荷重 (F _v)	荷重 (F _s)	荷重 (W)	れる (F _p)
設備	 ・残留熱除去系海水系 ポンプ ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)用海 水ポンプ 	0	_		0	0	0	0
	 ・残留熱除去系海水系 ストレーナ ・非常用ディーゼル発 電機(高圧炉心スプレイ系ディーゼル発 電機を含む。)用海 水ストレーナ 	0	_	_	0	0	0	0
	 ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)吸気 ロ ・非常用ディーゼル発 電機(高圧炉心スプ レイ系ディーゼル発 電機を含む。)室ル ーフベントファン 	0	_	_	0	0	0	0
建屋	 ・原子炉建屋原子炉棟 ・原子炉建屋付属棟 ・タービン建屋 ・使用済燃料乾式貯蔵 建屋 	0	0	_	0	0	0	-

表 4-1 対象施設ごとの荷重の組合せ

(○:考慮する荷重を示す。)

29

(3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重のうち,「4.1(2)a. 降下火砕物による荷 重,積雪荷重及び風荷重の組合せ」で設定している自然現象の荷重の鉛直荷重及び水平荷 重の算出式を以下に示す。鉛直荷重については,V-3-別添 2-1-1「残留熱除去系海水系 ポンプの強度計算書」からV-3-別添 2-1-7「建屋の強度計算書」の各計算書にて共通で 使用するための算出式を用いた荷重の算出も行う。

a. 記号の定義

荷重の算出に用いる記号を表 4-2 に示す。

記号	単位	定 義
А	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С		風力係数
E'	—	建築基準法施行令第 87 条第 2 項に規定する数値
F	_	建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の
Ε _r		分布を表わす係数
F _v	N/m^2	湿潤状態の降下火砕物による荷重
F _s	N/m^2	積雪荷重
Fv'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f s	$N/(m^2 \cdot cm)$	建築基準法施行令に基づき設定する積雪の単位荷重
G	_	ガスト影響係数
g	m/s^2	重力加速度
Н	m	全高
H v	m	降下火砕物の層厚
Ηs	cm	積雪深
q	N/m^2	設計用速度圧
V _D	m/s	基準風速
W	Ν	風荷重
Z _b	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
α	_	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ρ	Kg/cm^3	降下火砕物の湿潤密度

表 4-2 荷重の算出に用いる記号

b. 鉛直荷重

鉛直荷重については,湿潤状態の降下火砕物及び積雪を考慮する。 湿潤状態の降下火砕物による荷重は,次式のとおり算出する。

 $F_v = \rho \cdot g \cdot H_v$

積雪荷重は、次式のとおり算出する。

 $F_s = 0.35 \cdot f_s \cdot H_s$

表 4-3 に入力条件を示す。

表 4-3 入力条件

ρ	G	H s	f s	H s
(kg/m^3)	(m/s^2)	(m)	$(N/(m^2 \cdot cm))$	(cm)
1500	9.80665	0.5	20	10.5

上記式より, Fv=7355 N/m², Fs=210 N/m²である。

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重(以下「降下火砕物等堆積による鉛 直荷重」という。)は,次式のとおり算出する。

 $F_{v} = F_{v} + F_{s}$

以上より, F_v'=7565 N/m²とする。

c. 水平荷重

水平荷重については,風を考慮する。風速を建築基準法施行令の基準風速に基づき 30 m/s に設定し,風荷重については施設の形状により異なるため施設ごとに算出する。

風荷重の算出式は建築基準法施行令第87条に基づき、以下のとおりである。

W=q・C・A ここで q=0.6・E'・V_D² E'=E_r²・G E_r=1.7・(H/Z_G)^{α} (HがZ_bを超える場合) E_r=1.7・(Z_b/Z_G)^{α} (HがZ_b以下の場合)

4.2 許容限界

許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象部 位ごとの許容限界を表 4-4 に示す。

対象施設ごとの許容限界の詳細は,各計算書で評価対象部位の損傷モードを踏まえ,評価項 目を選定し定める。 「原子力発電所耐震設計技術指針重要度分類・許容応力編JEAG4601・補-1984」 ((社)日本電気協会),「原子力発電所耐震設計技術指針JEAG4601-1987」((社) 日本電気協会)及び「原子力発電所耐震設計技術指針JEAG4601-1991追補版」 ((社)日本電気協会)(以下「JEAG4601」という。)を準用できる施設については, JEAG4601に基づき「発電用原子力設備規格設計・建設規格JSME S NC1-2005/2007(以下「JSME」という。)の付録材料図表及びJISの材料物性値により許容 限界を算出している。その他施設や衝撃荷重のみを考慮する施設については、JSMEや既往 の実験式に基づき許容限界を設定する。

ただし、JSMEの適用を受ける機器であって、供用状態に応じた許容値の規定がJ SMEにないものは機能維持の評価方針を考慮し、JEAG4601に基づいた許容限界を設 定する。

- (1) 設備
 - a. 残留熱除去系海水系ポンプ

残留熱除去系海水系ポンプの許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目 標」で設定している残留熱除去系海水系ポンプの構造強度設計上の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 原動機フレーム,原動機台及び据付面基礎ボルト

残留熱除去系海水系ポンプの構造強度評価においては、降下火砕物等堆積による鉛 直荷重、風荷重及びその他の荷重に対し、ポンプを構成する原動機フレーム、原動機 台及び据付面基礎ボルトが、おおむね弾性状態に留まることを計算により確認する評 価方針としていることを踏まえ、JEAG4601に準じて許容応力状態Ⅲ_ASの許 容応力を許容限界として設定する。

b. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポ ンプの許容限界は、V-1-1-2-4-3 の「4.要求機能及び性能目標」で設定しているディ ーゼル発電機用海水ポンプの構造強度設計上の性能目標及び「3.2 機能維持の方針」に 示す評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 原動機フレーム,原動機台及び据付面基礎ボルト

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ポンプの構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷重及びそ の他の荷重に対し,ポンプを構成する原動機フレーム,原動機台及び据付面基礎ボル トが,おおむね弾性状態に留まることを計算により確認する評価方針としていること を踏まえ,JEAG4601に準じて許容応力状態Ⅲ_ASの許容応力を許容限界とし て設定する。

c. 残留熱除去系海水系ストレーナ

残留熱除去系海水系ストレーナの許容限界は, V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定している残留熱除去系海水系ストレーナの構造強度設計上の性能目標及

- び「3.2機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。
- (a) 支持脚及び基礎ボルト 残留熱除去系海水系ストレーナの構造強度評価においては、降下火砕物等堆積によ る鉛直荷重、風荷重及びその他の荷重に対し、ストレーナを構成する支持脚及び基礎 ボルトが、おおむね弾性状態に留まることを計算により確認する評価方針としている ことを踏まえ、JEAG4601に準じて許容応力状態ⅢASの許容応力を許容限界 として設定する。
- d. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナ

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ス トレーナの許容限界は、V-1-1-2-4-3 の「4.要求機能及び性能目標」で設定している 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水スト レーナの構造強度設計上の性能目標及び「3.2機能維持の方針」に示す評価方針を踏ま えて、評価対象部位ごとに設定する。

(a) 支持脚及び基礎ボルト

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水 ストレーナの構造強度評価においては,降下火砕物等堆積による鉛直荷重,風荷重及 びその他の荷重に対し,ストレーナを構成する支持脚及び基礎ボルトが,おおむね弾 性状態に留まることを計算により確認する評価方針としていることを踏まえ,JEA G4601に準じて許容応力状態Ⅲ_ASの許容応力を許容限界として設定する。

- e. 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の 許容限界は、V-1-1-2-4-3の「4.要求機能及び性能目標」で設定しているディーゼル 発電機吸気口の構造強度設計上の性能目標及び「3.2機能維持の方針」に示す評価方針 を踏まえて、評価対象部位ごとに設定する。
 - (a) 平板, 胴板, 支持脚及び支持脚基礎溶接部

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口 の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷重及びその他の 荷重に対し、吸気口を構成する平板、胴板、支持脚及び支持脚基礎溶接部が、おおむ ね弾性状態に留まることを計算により確認する評価方針としていることを踏まえ、J EAG4601に準じて許容応力状態ⅢASの許容応力を許容限界として設定する。

- (2) 建屋
 - a. 原子炉建屋

原子炉建屋の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定して いる原子炉建屋の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、評 価対象部位ごとに設定する。

(a) 屋根

原子炉建屋の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷重

33

及びその他の荷重に対し,評価対象部位に求められる機能が担保できる許容限界を設 定する。屋根スラブは,原子炉建屋の要求機能である気密性及び遮蔽性を担保するた めに,原子力施設鉄筋コンクリート構造計算規準・同解説(以下「RC-N規準」と いう。)に基づく短期許容応力度を許容限界として設定する。また,主トラス及び母 屋(二次部材)は,構造強度を有することを性能目標としていることから,終局耐力 に対して妥当な安全裕度を有する許容限界を設定する。

(b) 耐震壁

原子炉建屋の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷重 及びその他の荷重に対し、構造強度を有することを性能目標としていることからJE AG4601に基づき最大せん断ひずみ 2.0×10⁻³を耐震壁の許容限界として設定す る。

b. 原子炉建屋付属棟

原子炉建屋付属棟の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設 定している原子炉建屋付属棟の性能目標及び「3.2 機能維持の方針」に示す評価方針を 踏まえて、評価対象部位ごとに設定する。

(a) 屋根

原子炉建屋付属棟の構造強度評価においては,降下火砕物等堆積による鉛直荷重, 風荷重及びその他の荷重に対し,評価対象部位に求められる機能が担保できる許容限 界を設定する。原子炉建屋付属棟の屋根は内包する防護すべき施設に波及的影響を及 ぼさないことを性能目標としていることから,屋根スラブは「RC-N規準」に基づ く終局耐力,主トラス及び母屋(二次部材)は崩壊機構が形成されないことを許容限 界として設定する。

(b) 耐震壁

原子炉建屋付属棟の構造強度評価においては、降下火砕物等堆積による鉛直荷重、 風荷重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼさない ことを性能目標としている。ただし、原子炉建屋として評価していることから、原子 炉建屋原子炉棟と同じくJEAG4601に基づき最大せん断ひずみ 2.0×10⁻³ を耐 震壁の許容限界として設定する。

c. タービン建屋

タービン建屋の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」で設定し ているタービン建屋の性能目標及び「3.2 機能維持の方針」に示す評価方針を踏まえて、 評価対象部位ごとに設定する。

(a) 屋根

タービン建屋の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷 重及びその他の荷重に対し、評価対象部位に求められる機能が担保できる許容限界を 設定する。タービン建屋の屋根は内包する防護すべき施設に波及的影響を及ぼさない ことを性能目標としていることから、屋根スラブは「RC-N規準」に基づく終局耐 力、主トラス及び母屋(二次部材)は崩壊機構が形成されないことを許容限界として
設定する。

(b) 耐震壁

タービン建屋の構造強度評価においては、降下火砕物等堆積による鉛直荷重、風荷 重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼさないこと を性能目標としていることから、JEAG4601に基づき最大せん断ひずみ 4.0× 10⁻³を耐震壁の許容限界として設定する。

d. 使用済燃料乾式貯蔵建屋

使用済燃料乾式貯蔵建屋の許容限界は、V-1-1-2-4-3 の「4. 要求機能及び性能目標」 で設定している使用済燃料乾式貯蔵建屋の性能目標及び「3.2 機能維持の方針」に示す 評価方針を踏まえて、評価対象部位ごとに設定する。

(a) 屋根

使用済燃料乾式貯蔵建屋の構造強度評価においては,降下火砕物等堆積による鉛直 荷重,風荷重及びその他の荷重に対し,評価対象部位に求められる機能が担保できる 許容限界を設定する。屋根は内包する防護すべき施設に波及的影響を及ぼさないこと を性能目標としていることから,屋根スラブは「RC-N規準」に基づく終局耐力を, 主トラス及びサブトラス(二次部材)は崩壊機構が形成されないことを許容限界とし て設定する。

(b) 耐震壁

使用済燃料乾式貯蔵建屋の構造強度評価においては、降下火砕物等堆積による鉛直 荷重、風荷重及びその他の荷重に対し、内包する防護すべき施設に波及的影響を及ぼ さないことを性能目標としていることから、JEAG4601に基づき最大せん断ひ ずみ4.0×10⁻³を耐震壁の許容限界として設定する。

	-#				
施設名称	何里の	評価対象	機能損1	易七一下	許容限界
	組合せ	部位	応力等の状態	限界状態	
·残留熱除去系					
海水系ポンプ					
・非常用ディー		原動機台	上縮		JEAG46
ゼル発雷機				部材が弾性	01に準じて
(真圧恒心ス	$F_{d} + F_{V}$			域に留まら	許容応力状態
(同上アルハ	$+ F_{p}$		圧縮	ず塑性域に	Ⅲ _A Sの許容応
ノレイボナイ		原動機	引張	入る状態	力以下とする*
ーセル発電機		フレーム	せん断		1
を含む。)用			組合计		
海水ポンプ					
• 残留熱除去系					
海水系ストレ					
ーナ		支持期	下縮		
・非常用ディー		XMAP)/旧		JEAG46
ゼル発 電機				部材が弾性	01に準じて
(高圧炉心ス	F _d + F _v + F _p			域に留まら	計谷心力状態
プレイ系ディ				す塑性域に	
ーゼル発電機		主氹	引張	人る状態	刀以下とする*
を含む。)用		本ルト	せん断		1, 2
海水ストレー		NITE 1.	組合せ		
ナ					
)				

表 4-4 施設ごとの許容限界 (1/6)

F_d:常時作用する荷重

W:風荷重

Fv:降下火砕物等堆積による鉛直荷重

F_p:運転時の状態で作用する荷重

注記 *1:表 4-5 支持構造物の許容限界を準用する。

*2:表4-6 クラス2,3容器の許容限界を準用する。

	~			- 0)	
旋弧反称	荷重の	評価対象	機能損益	傷モード	<u> </u>
旭政泊怀	組合せ	部位	応力等の状態	限界状態	計谷収か
・非常用ディー	$F_{d} + F_{V}$ +W+F _p	平板	曲げ		弾性範囲内で ある設計降伏 点とする。
ゼル発電機 (高圧炉心ス プレイ系ディ ーゼル発電機		胴板	一次一般膜, 一次 一次+二次	部 材 が 弾 性 域 に 留 ま ら ず 塑 性 域 に 入る状態	JEAG46 01に準じて 許容応力状態
を含む。) 吸 気口		支持脚	組合せ 座屈 (圧縮+曲 げ)		Ⅲ _A Sの許容応 力以下とする* ^{1,2}
・非常用ディー		吐出フード 天板	曲げ		
ゼル発電機 (高圧炉心ス		ケーシング	圧縮	 部材が弾性域 に留まらず塑 性域に入る状態 1. 国共重 	J E A G 4 6 0 1 に 準じて
プレイ系ディ ーゼル発電機 を含む。)室	F _d +F _v +W+F _p	基礎ボルト	引張 せん断 組合せ		許容応力状態 Ⅲ _A Sの許容応 力以下とする*
ルーフベント ファン F ・ 堂時作用=		吐出フード 取付ボルト	引張 せん断 組合せ		1, 2

表 4-4 施設ごとの許容限界 (9/6)

F_p:運転時の状態で作用する荷重

F_v:降下火砕物等堆積による鉛直荷重

注記 *1:表 4-5 支持構造物の許容限界を準用する。

*2:表4-6 クラス2,3容器の許容限界を準用する。

施設名称	要求機能	機能設計上 の性能目標		部位	機能維持のため の考え方	許容限界	評価に用いる 基準
				屋根 スラブ	部材に生じる応力が	終局耐力に対し妥 当な安全裕度を有 する許容限界	RC-N規準の 短期許容応力度 ^{*1}
原子炉建		構造強度を 有すること	屋根	主トラス 母屋 (二次部 材)	構造強度を確保する ための許容限界を超 えないことを確認	終局耐力に対し妥 当な安全裕度を有 する許容限界	弾性限界耐力* ²
<u></u> 屋 原 子 炉				耐震壁	最大せん断ひずみが 構造強度を確保する ための許容限界を超 えないことを確認	最大せん断 ひずみ 2.0×10 ⁻³	最大せん断 ひずみ 2.0×10 ⁻³
棟	気密性	換気性能と あいまって 気密機能を		屋根 スラブ	部材に生じる応力が 気密性を維持するた めの許容限界を超え	短期許容応力度	RC-N規準の 短期許容応力度
	遮蔽性	遮蔽体の損 傷により遮 蔽機能を損		屋根 スラブ	部材に生じる応力が 遮蔽性を維持するた めの許容限界を超え	短期許容応力度*3	RC-N規準の 短期許容応力度

表 4-4 施設ごとの許容限界 (3/6)

注記 *1:構造強度に対しては、「終局耐力に対し妥当な安全裕度を有する許容限界」が許容限 界となるが、気密性、遮蔽性において「短期許容応力度」を許容限界としていること から、「RC-N規準」の短期許容応力度で評価

*2:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第 2464 号に基づきF値×1.1を適用

施設名称	要求機能	機能設計上 の性能目標		部位	機能維持のため の考え方	許容限界*1	評価に用いる 基準
			Ľ	屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認*1	終局耐力	弾性限界耐力 ^{*2}
原子炉建屋付属棟	_	内包する防 護すべきの 影響を及 ぎ ないこと	座 根	母屋 (二次部 材)	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成さ れないこと	崩壊機構が形成 されないこと ^{*3}
				耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ ^{*7} 2.0×10 ⁻³

表 4-4 施設ごとの許容限界(4/6)

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として母屋が崩壊しないことを許容限界とする。

*2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用

- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991 (谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻 第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)
- *7:原子炉建屋として評価するため、原子炉棟の許容限界を適用する。

施設名称	要求機能	機能設計上 の性能目標		部位	機能維持のため の考え方	許容限界*1	評価に用いる 基準
				屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認*1	終局耐力	弾性限界耐力*2
タービン		内包する防 護すべき施 設に波及的	屋根	主トラス	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構	崩壊機構が形成さ	崩壊機構が形成
ン建屋		影響を及ぼ さないこと		母屋 (二次部 材)	が形成されないことを確認	れないこと	されないこと*3
				耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 4-4 施設ごとの許容限界 (5/6)

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として主トラス、母屋が崩壊しないことを許容限界とす る。

- *2:弾性限耐力として「RC-N規準」の短期許容応力度の評価式に平成12年建設省告示 第2464号に基づきF値×1.1を適用
- *3:部材の構造健全性評価においては,弾性限耐力*4が基本となるが,一部の部材が弾性 限耐力を超過した場合は,その部材に対して,修正若林式*5*6及び鋼構造限界状態設 計指針・同解説((社)日本建築学会,2010)による座屈耐力を用い,構造健全性を 評価する。なお,適切な裕度を有していることを,荷重増分解析により確認する。
- *4:弾性限耐力として「S規準」の短期許容応力度の評価式に平成12年建設省告示第
 2464号に基づきF値×1.1を適用
- *5:鉄骨X型ブレース架構の復元力特性に関する研究,日本建築学会構造工学論文集, Vol. 37B, pp. 303-316, 1991(谷口元,加藤勉ほか)
- *6:原子力発電所鉄骨屋根トラスの終局限界に関する研究,日本建築学会構造系論文集 第 76巻第661号,pp571-580,2011(鈴木琢也,貫井泰ほか)

施設名称	要求機能	機能設計上 の性能目標		部位	機能維持のため の考え方	許容限界*1	評価に用いる 基準
/+-				屋根スラブ	内包する防護すべき施 設に波及的影響を及ぼ さないために落下しな いことを確認*1	終局耐力	RC-N規準の 短期許容応力度
使用済燃料乾式貯蔵建屋		内包する防 護 設 で 波 及 び 影 響 を 及 じ て と	屋根	主トラス サブトラス (二次部 材)	内包する防護すべき施 設に波及的影響を及ぼ さないために崩壊機構 が形成されないことを 確認	崩壊機構が形成 されないこと	S規準の 短期許容応力度
				耐震壁	最大せん断ひずみが構 造強度を確保するため の許容限界を超えない ことを確認	最大せん断 ひずみ 4.0×10 ⁻³	最大せん断 ひずみ 4.0×10 ⁻³

表 4-4 施設ごとの許容限界(6/6)

注記 *1: 複数部材で構成されている屋根において、単一部材である屋根スラブは、部材の終局 耐力を許容限界とし、構造体として主トラス、母屋が崩壊しないことを許容限界とす る。

表 4-5 クラス 2,3 容器及び重大事故等クラス 2 容器(クラス 2,3 容器)の許容限界

許容応力						
状態	一次一般膜応力	一次	一次+二次応力			
III _A S	Syと0.6Suの小さい方。 ただし,オーステナイト系ステン レス鋼及び高ニッケル合金につい ては上記値と1.2Sとの大きい方。	左欄の1.5倍の値	2 S y			

注記 *:座屈に対する評価が必要な場合には、クラスMC容器の座屈に対する評価式による。

表 4-6 クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造物 (クラス 2,3 支持構造物)の許容限界

		許容限界*				限界*
許容応		(ボル	(ボル	ト等)		
力状態		一次		一次	応力	
	圧縮	曲げ	引張	せん断	引張	せん断
III _A S	$1.5~f_{\rm c}$	1.5 f _b	1.5 f t	1.5 f s	1.5 f $_{\rm t}$	1.5 f _s

注記 *: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既文献にお いて適用が妥当とされる手法に基づき実施することを基本とする。

- ・ FEM等を用いた解析法
- ・ 定式化された評価式を用いた解析法

具体的な評価においては、JEAG4601を使用する。

風荷重による影響を考慮する施設については、建築基準法施行令等に基づき風荷重を考慮 し、設備の受圧面に対して等分布荷重として扱って良いことから、評価上高さの1/2又は荷重 作用点より高い重心位置に集中荷重として作用するものとしており、これはJEAG4601耐 震評価における1質点モデルと等価なものであり、地震荷重を風荷重と置き換えJEAG460 1に基づき評価を行う。

風荷重を考慮した,降下火砕物等堆積による鉛直荷重が作用する場合に強度評価を行う施 設のうち,設備及び建屋の強度評価方法を以下に示す。ただし,以下に示す強度評価方法が適 用できない施設及び評価対象部位については,個別計算書にその強度評価方法を含めて記載す る。

- 5.1 機器
 - 5.1.1 残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプ
 - (1) 評価条件

残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル 発電機を含む。)用海水ポンプの強度評価を行う場合,以下の条件に従うものとする。

- a. ポンプの強度計算モデルは1質点系モデルとし,評価上の高さの1/2又は荷重作用点より高い重心位置に集中荷重として作用するものとする。計算モデルを図5.1.1-1に示す。
- b. 計算に用いる寸法は公称値を使用する。
- c. 水平方向と鉛直方向のモーメントの組合せは、安全側に絶対和の評価とする。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.1-1 に示す。

評価対象部位	応力等の状態
原動機台	圧縮
原動機フレーム	曲げ、圧縮
据付面基礎ボルト	引張、せん断、組合せ

表 5.1.1-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

残留熱除去系海水系ポンプ,非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)用海水ポンプの強度評価に用いる記号を表 5.1.1-2 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A _b	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B 4	mm	原動機フレーム内径
С	—	風力係数
E'	—	建築基準法施行令第87条第2項に規定する数値
E		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
E _r	_	布を表す係数
F _d	Ν	原動機自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F ,'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
£	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容圧縮
I c	мга	応力
£	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん
I s	мга	断応力
f	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張
I t	мга	応力
G	_	ガスト影響係数
g	m/s^2	重力加速度
ч	N	原動機台に常時作用する原動機自重及びポンプスラスト荷重による軸
11	IN	方向荷重
h	mm	取付面から荷重作用点までの距離
L 1	mm	ボルト間の距離
М	N•mm	原動機フレームに作用するモーメント
M_1	N•mm	風荷重により原動機フレームに作用するモーメント
M_2	N•mm	鉛直荷重により原動機フレームに作用するモーメント

表 5.1.1-2 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ポンプの強度評価に用いる記号(1/2)

記号	単位	定義
m	kg	原動機の質量
Ν		ボルトの本数
Р	kg	ポンプスラスト荷重
q	N/m^2	速度圧
\mathbf{Q}_{b}	Ν	ボルトに対するせん断力
S	mm^2	原動機台の断面積
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V_{D}	m/s	基準風速
W	Ν	風荷重による複合荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	_	円周率
σ _c	MPa	原動機台に生じる圧縮応力
σь	MPa	原動機フレームに生じる曲げ応力
τ	MPa	せん断応力

表 5.1.1-2 残留熱除去系海水系ポンプ及び非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ポンプの強度評価に用いる記号(2/2)

b. 計算モデル

- c. 応力計算
- (a) 原動機台に生じる応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

$$\Xi \equiv \overline{\mathcal{C}},$$

$$S = \frac{\pi}{4} (B_{1}^{2} - B_{2}^{2})$$

原動機台の断面図を図 5.1.1-2 に示す。

図 5.1.1-2 原動機台の断面図

- (b) 原動機フレームに生じる応力
 - イ. 風荷重により原動機フレームに作用するモーメントM₁

 $M_1\!=\!W\boldsymbol{\cdot} h$

ロ. 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H\right) \cdot B_{3}}{2}$$
よって、原動機フレームに作用するモーメントMは
M=M_{1}+M_{2}

以上より、原動機フレームに生じる曲げ応力は次式により算出される。

$$\sigma_{b} = \frac{M}{Z}$$

$$\Xi \equiv \overline{\mathcal{C}}$$

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

- (c) 原動機フレームに生じる応力 $\sigma_{c} = \frac{F_{v} + H}{S}$ ここで, $S = \frac{\pi}{4} (B_{3}^{2} - B_{4}^{2})$
 - 原動機フレームの断面図を図 5.1.1-3 に示す。

図 5.1.1-3 原動機フレームの断面図

- (d) 据付面基礎ボルトに生じる応力
- イ. 引張応力

ボルトに生じる引張応力σ bは次式より求める。

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

ボルトに対するせん断応力は、ボルト全本数で受けるものとして計算する。

- せん断力
 Q_b=W
- せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

47

- 5.1.2 残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ストレーナ
 - (1) 評価条件

残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディー ゼル発電機を含む。)用海水ストレーナの強度評価を行う場合,以下の条件に従うものと する。

- a. ストレーナの強度計算において,降下火砕物が堆積するドーム型円板に対し,等分布 荷重が作用する平板円板として評価し,風荷重が大きな基礎ボルトは1質点系モデルと し,評価を行う。
- b. 平板は等分布荷重が作用するものとする。計算モデルを図 5.1.2-1 に示す。
- c. 1 質点系モデルの強度計算において,評価上高さの 1/2 又は果樹作用点より高い重心 位置に集中荷重として作用するものとする。計算モデルを図 5.1.2-2 に示す。
- d. 計算に用いる寸法は公称値を使用する。
- e. 降下火砕物等堆積による鉛直方向荷重については,平板の面積に対し降下火砕物等の 層厚より上載質量を算出し入力荷重として設定する。
- f. 通常運転時状態の保有水量状態を考慮し,評価を行う。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.2-1 に示す。

評価対象部位	応力等の状態
蓋	曲げ
支持脚	圧縮
基礎ボルト	引張、せん断、組合せ

表 5.1.2-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価に用いる記号を表 5.1.2-2 に示す。

記号	単位	定義
А	m ²	受圧面積(風向に垂直な面に投影した面積)
A 1	m^2	降下火砕物等の堆積面積
A _b	mm^2	基礎ボルトの軸断面積
а	mm	蓋の外半径
B _{x 1}	mm	支持脚の寸法
B _{x 2}	mm	支持脚の寸法
В у 1	mm	支持脚の寸法
B _{y2}	mm	支持脚の寸法
С	—	建築物荷重指針・同解説により規定される風力係数
d	mm	基礎ボルト呼び径
D o	mm	ストレーナ幅 (全幅)
Е'	—	建築基準法施行令第87条第2項に規定する数値
Б	—	建設省告示第1454号の規定によって算出した平均風速の高さ方向の分布を
E _r		表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
F _b	Ν	基礎ボルトに対する引張力
F _d	Ν	ストレーナ自重による荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F _p	Ν	内包水の荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
t	MPa	JSME SSB-3121.1 により規定される供用状態A及びBでの許容圧縮応
I c		カ
f	MDo	J S M E SSB-3121.1により規定される供用状態A及びBでの許容せん断応
1 S	mi a	カ
f t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張応力
G	—	ガスト影響係数
g	m/s^2	重力加速度
Н	Ν	支持脚に常時作用するストレーナ自重及び内包水の荷重
H _s	mm	ストレーナ高さ(全高)
h	mm	蓋の板厚
h g	mm	ストレーナ重心高さ

表 5.1.2-2 残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価に用いる記号(1/2)

表 5.1.2-2 残留熱除去系海水系ストレーナ,非常用ディーゼル発電機(高圧炉心スプレイ系ディ ーゼル発電機を含む。)用海水ストレーナの強度評価に用いる記号(2/2)

記号	単位	定義
L ₁	mm	基礎ボルト間の水平距離
L _H	mm	重心から基礎ボルト間の水平距離
m	kg	容器の有効運転質量*
Ν	—	基礎ボルトの本数
n _f	—	引張力を受ける基礎ボルトの本数
р	N/mm^2	蓋に作用する等分布荷重
\mathbf{Q} b	Ν	基礎ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	支持脚の断面積
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張り強さ
V d	m/s	基準風速
W	Ν	風荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	_	円周率
σ _b	MPa	基礎ボルトに生じる引張応力
σс	MPa	支持脚に生じる圧縮応力
τ	MPa	基礎ボルトに生じるせん断応力

注記 *: 有効運転質量は、容器の満水時における質量とする。

b. 計算モデル

NT2 補② V-3-別添 2-1 R3

c. 応力計算

(- ``

(a) 蓋に生じる応力

鉛直荷重により蓋に作用する最大曲げ応力 σ_{max}は次による。

$$\sigma_{\max} = 1.24 \cdot \frac{p \cdot a^2}{h^2}$$

(b) 支持脚に生じる応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

ここで
 $S = \{ (B_{x1} \cdot B_{y1} \cdot 2) + (B_{x2} \cdot B_{y2}) \} \cdot 4$

支持脚の断面図を図 5.1.2-3 に示す。

図 5.1.2-3 支持脚の断面図

- (c) 基礎ボルトに生じる応力
 - イ. 引張応力

基礎ボルトに対する引張力は最も厳しい条件として,基礎ボルトを支点とする転倒 を考え,これを片側の基礎ボルトで受けるものとして計算する。

(イ) 引張力

$$F_{b} = \frac{W \cdot h_{g} + (m \cdot g + F_{V}) L_{H}}{n_{f} \cdot L_{1}}$$

$$\Xi \Xi \mathcal{C},$$

$$\mathbf{F}_{\mathbf{v}} = \mathbf{F}_{\mathbf{v}} \cdot \mathbf{A}_{1}$$

(ロ) 引張応力

$$\sigma_{\rm b} = \frac{F_{\rm b}}{A_{\rm b}}$$

ここで, 基礎ボルトの軸断面積Abは

$$A_{b} = \frac{\pi}{4} d^{2}$$

ロ. せん断応力

基礎ボルトに対するせん断応力は,基礎ボルト全本数で受けるものとして計算する。 (イ) せん断力

$$Q_{b} = W$$

(ロ) せん断応力

$$\tau = \frac{\mathbf{Q}_{\mathbf{b}}}{\mathbf{A}_{\mathbf{b}} \cdot \mathbf{N}}$$

- 5.1.3 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口
 - (1) 評価条件 非常用ディーゼル発電機高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の強度 評価を行う場合,以下の条件に従うものとする。
 - a. 非常用ディーゼル発電機高圧炉心スプレイ系ディーゼル発電機を含む。)吸気口の 強度計算において、降下火砕物が堆積する平板を円板と仮定し、等分布荷重が作用する 周辺支持円板として評価し、風荷重による影響が大きい胴板及び支持脚は1質点系モデ ルとし、評価を行う。
 - b. 平板は等分布荷重が作用するものとする。
 - c. 1 質点系モデルの強度計算において、評価上の高さの 1/2 又は荷重作用点より高い重 心位置に集中荷重として作用するものとする。計算モデル図を図 5.1.3-1 及び図 5.1.3-2 に示す。
 - d. 計算に用いる寸法は、公称値を使用する。
 - e. 降下火砕物等堆積による鉛直方向荷重については,平板の水平投影面積に対し降下火 砕物等の層厚より上載質量を算出し入力荷重として設定する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.3-1 に示す。

評価対象部位	応力等の状態	
平板	曲げ	
	一次一般膜, 一次	
川門水火	一次+二次	
士住即	組合せ,	
一次+_次 支持脚 座屈(圧縮+曲げ)	座屈(圧縮+曲げ)	
支持脚基礎溶接部	引張、せん断、組合せ	

表 5.1.3-1 評価対象部位及び評価内容

(3) 強度評価方法

a. 記号の定義

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)吸気ロの 強度評価に用いる記号を表 5.1.3-2 に示す。

記号	定義	単位
А	受圧面積(風向に垂直な面に投影した面積)	m ²
A s	脚の断面積	mm^2
A _{sr}	脚の半径方向軸に対する有効せん断断面積	mm^2
A _{st}	脚の周方向軸に対する有効せん断断面積	mm^2
Aw	支持脚基礎溶接部の有効面積	mm^2
а	平板の外半径	mm
С	建築物荷重指針・同解説により規定される風力係数	-
C 1	アタッチメントである脚の胴への取付部の幅の 1/2(胴の周方向)	mm
C 2	アタッチメントである脚の胴への取付部の幅の 1/2(胴の軸方向)	mm
C _c , C _L	応力の補正係数	-
D _i	胴の内径	mm
D o	吸気口幅(全幅)	mm
Е	胴の縦弾性係数	MPa
E _s	脚の縦弾性係数	MPa
F	JSME SSB-3121.1(1)により規定される値	MPa
F ₀	振動モデル系における水平力	Ν
F _d	運転時の状態で作用する荷重	Ν
F v	降下火砕物等堆積による鉛直荷重	Ν
f _c	脚の許容圧縮応力	MPa
f _{br}	脚の半径方向軸まわりの許容曲げ応力	MPa
f _{bt}	脚の半径方向に直角な方向の軸まわりの許容曲げ応力	MPa
f t	脚の許容引張応力	MPa
G	ガスト影響係数	-
G s	脚のせん断弾性係数	MPa
g	重力加速度 (=9.80665)	m/s^2
Н	吸気口高さ	m
h	平板の板厚	mm
Ι	胴の断面2次モーメント	mm^4
I sr	脚の半径方向軸に対する断面 2 次モーメント	mm^4
I st	脚の周方向軸に対する断面 2 次モーメント	mm^4

吸気□ (1/6)

記号	定義	単位
J s	脚のねじりモーメント係数	mm^4
K _c	脚の胴つけ根部における周方向曲げモーメントに対する局部ばね定数	_
K L	胴の脚つけ根部における長手方向曲げモーメントに対する局部ばね定 数	N/mm
K r	胴の脚つけ根部における半径方向荷重に対する局部ばね定数	N/mm
k _L	アタッチメントパラメータ軸方向の補正係数	_
k c	アタッチメントパラメータ周方向の補正係数	_
L	脚の長さ	mm
L 1	支持脚間水平距離	mm
L _c	脚の中立軸間の距離	mm
L _g	基礎から容器上部重心までの距離	mm
L _H	重心から支持脚間の水平距離	mm
M_1	風荷重(Z方向)による胴の脚つけ根部の鉛直方向モーメント	N•mm
M_{3}	風荷重(Z方向)による胴の脚つけ根部のねじりモーメント	N•mm
M _c	風荷重(Z方向)による胴の脚つけ根部の周方向モーメント(圧縮側)	N•mm
$M_{\rm L}$	運転時質量による胴の脚つけ根部の鉛直方向モーメント(引張側)	N•mm
$M_{\rm L\ 2}$	降下火砕物荷重,積雪荷重による胴の脚つけ根部の鉛直方向モーメン ト(引張側)	N•mm
M _x	胴に生じる軸方向の曲げモーメント	N•mm
M_{ϕ}	胴に生じる周方向の曲げモーメント	N•mm
m ₀	運転時質量	kg
N x	胴に生じる軸方向の膜力	N/mm
N $_{\phi}$	胴に生じる周方向の膜力	N/mm
р	平板に作用する等分布荷重	N/mm^2
Р	運転時質量による胴の脚つけ根部の半径方向荷重	Ν
P 1	風荷重(Z方向)による胴の脚つけ根部の半径方向荷重	Ν
P 2	降下火砕物荷重及び積雪荷重による胴の脚つけ根部の半径方向荷重	Ν
Q	風荷重(Z方向)による胴の脚つけ根部の周方向荷重	Ν
Q ₁	支持脚に作用するせん断荷重	Ν

吸気口 (2/6)

記号	定義	単位
q	設計用速度圧	N/m^2
R	運転時質量による脚の軸力	N
R 1	風荷重(Z方向)により脚に作用する軸力	N
R ₂	降下火砕物荷重及び積雪荷重により脚に作用する軸力	N
r _m	胴の平均半径	mm
S y	JSME付録材料図表 Part5の表にて規定される設計降伏点	MPa
t	胴の板厚	mm
Т	支持脚に作用する引張荷重	Ν
u	脚の中心軸から胴の板厚中心までの距離	mm
W 1	風荷重	Ν
W_2	降下火砕物荷重	Ν
W 3	積雪荷重	Ν
Z s r	脚の半径方向軸に対する断面係数	mm ³
Z s t	脚の周方向軸に対する断面係数	mm ³
β , β ₁ , β ₂	アタッチィントパラィータ	
β c, β L	アタッチメントパラメータ	
γ	シェルパラメータ	-
Δr	運転時質量による胴の半径方向局部変位量	mm
Δ _{r1}	水平力Foによる胴の半径方向局部変位量	mm
Δ x 1	水平力Foによる第1脚上端の水平方向変位量	mm
Δ x 3	水平力 F o による第2脚上端の水平方向変位量	mm
Δ y 1	水平力F ₀ による第1脚の鉛直方向変位量	mm
θ	運転時質量による胴の脚つけ根部における局部傾き角	rad
θο	水平力F₀による胴の中心軸の傾き角	rad
θ_{1}	水平力 F o による第1脚の傾き角(圧縮側)	rad
θ 2	水平力F ₀ による胴の第1脚つけ根部における局部傾き角	rad
θ 3	水平力 F o による第2脚の傾き角	rad
π	円周率	-
ρ	比重	-
σο	胴の一次一般膜応力の最大値	MPa
σοφ	胴の周方向一次一般膜応力	MPa
σ _{0x}	胴の軸方向一次一般膜応力	MPa
σ 1	胴の一次応力の最大値	MPa
σ ₂	胴の一次+二次応力の最大値	MPa

吸気口 (3/6)

記号	定義	単位
$\sigma_{11} \sim \sigma_{14}$	風荷重(Z方向)が作用した場合の胴の組合せ一次応力	MPa
σ ₁₅ , σ ₁₆	風荷重(X方向)が作用した場合の胴の組合せ一次応力	MPa
$\sigma_{21} \sim \sigma_{24}$	風荷重(Z方向)が作用した場合の胴の組合せ一次+二次応力	MPa
σ ₂₅ , σ ₂₆	風荷重(X方向)が作用した場合の胴の組合せ一次+二次応力	MPa
σ _s	脚の組合せ応力の最大値	MPa
σ _t	支持脚基礎溶接部に生じる引張応力	MPa
σ s 1, σ s 2	運転時質量による脚の圧縮応力,曲げ応力	MPa
σ _{s3} , σ _{s4}	降下火砕物荷重及び積雪荷重による脚の圧縮応力,曲げ応力	MPa
$\sigma_{\rm s5}\sim\sigma_{\rm s7}$	風荷重(Z方向)による脚の圧縮応力,曲げ応力	MPa
$\sigma_{s8}\sim\sigma_{s10}$	風荷重(X方向)による脚の圧縮応力,曲げ応力	MPa
σ _{sc}	脚の圧縮応力の和	MPa
σ _{sr}	脚の半径方向軸まわりの圧縮側曲げ応力の和	MPa
σ _{st}	脚の半径方向に直角な軸まわりの圧縮側曲げ応力の和	MPa
σ _{sx}	風荷重(X方向)が作用した場合の脚の組合せ応力	MPa
σ sz1, σ sz2	風荷重(Z方向)が作用した場合の脚の組合せ応力	MPa
σ _{x1}	静水頭又は内圧による胴の軸方向応力	MPa
σ _{φ1}	静水頭又は内圧による胴の周方向応力	MPa
σ _{x 2}	運転時質量による胴の軸方向応力	MPa
_	運転時質量により生じる鉛直方向モーメントによる胴の軸方向	MD ₂
0 x 3	応力	мга
G	運転時質量により生じる鉛直方向モーメントによる胴の周方向	MPa
υ φ 3	応力	
σ _{x4}	運転時質量により生じる半径方向荷重による胴の軸方向応力	MPa
$\sigma_{\phi 4}$	運転時質量により生じる半径方向荷重による胴の周方向応力	MPa
σ _{x 5}	応力が作用した場合の転倒モーメントによる胴の軸方向応力	MPa
σ _x 7	降下火砕物荷重及び積雪荷重による胴の軸方向応力	MPa
۵. c	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメント	MPa
0 x 8	による胴の軸方向応力	мга
Ω ι o	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメント	MPa
σφδ	による胴の周方向応力	in a
σο	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による	MPa
- x 9	胴の軸方向応力	mua
σμο	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による	MPa
υ φ 9	胴の周方向応力	int d

吸気口 (4/6)

記号	定義	単位
$(0, \pm 1, 0, 0, \pm 1, 0)$	降下火砕物荷重及び積雪荷重により生じる鉛直方向モーメント	MPa
· • • • • • • • • • • • • • • • • • • •	による胴の局部応力	ini a
G ()) G ())	降下火砕物荷重及び積雪荷重により生じる半径方向荷重による	MPa
	胴の局部応力	ini a
σ x 6 1, σ x 6 2	風荷重(Z方向)が作用した場合の半径方向荷重による胴の軸方	MPa
	向応力	ini a
στοι στορ	風荷重(Z方向)が作用した場合の半径方向荷重による胴の周方	MPa
υ φ 61, υ φ 62	向応力	MI a
6 5 6 5 6	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴	MPa
0 x 7 1, 0 x 7 2	の軸方向応力	ini a
0 + 7 1 0 + 7 9	風荷重(Z方向)が作用した場合の鉛直方向モーメントによる胴	MPa
υ φ / 1, υ φ / 2	の周方向応力	MI a
G = 81 G = 82	風荷重(Z方向)が作用した場合の周方向モーメントによる胴	MPa
0 x 8 1, 0 x 8 2	の軸方向応力	MI G
0 4 8 1 0 4 8 2	風荷重(Z方向)が作用した場合の周方向モーメントによる胴	MPa
σφ81, σφ82	の周方向応力	ini a
M = 0.1 M = 0.2	風荷重(X方向)が作用した場合の半径方向荷重による胴の軸	MPa
0 x 9 1, 0 x 9 2	方向応力	ini a
G + 0.1 G + 0.8	風荷重(X方向)が作用した場合の半径方向荷重による胴の周	MPa
ο φ91, ο φ92	方向応力	MI G
G = 101 G = 102	風荷重(X方向)が作用した場合の鉛直方向モーメントによる	MPa
0 x101, 0 x102	胴の軸方向応力	ini a
$ \begin{array}{c} \sigma & \phi & 1 & 0, & \sigma & x & 1 & 0 \\ \hline \sigma & \phi & 1 & 1, & \sigma & x & 1 & 1 \\ \hline \sigma & x & 6 & 1, & \sigma & x & 6 & 2 \\ \hline \sigma & \phi & 6 & 1, & \sigma & \phi & 6 & 2 \\ \hline \sigma & \phi & 6 & 1, & \sigma & \phi & 6 & 2 \\ \hline \sigma & \phi & 6 & 1, & \sigma & \phi & 6 & 2 \\ \hline \sigma & \phi & 7 & 1, & \sigma & \phi & 7 & 2 \\ \hline \sigma & \phi & 1 & 1, & \sigma & \phi & 1 & 1 & 2 \\ \hline \sigma & \phi & 1 & 1 & 1, & \sigma & \phi & 1 & 1 & 2 \\ \hline \sigma & \phi & 1 & 1 & 1, & \sigma & \phi & 1 & 1 & 2 \\ \hline \sigma & \phi & 1 & 1 & 1, & \sigma & \phi & 1 & 1 & 2 \\ \hline \sigma & \phi & 1 & 1 & 1, & \sigma & \phi & 1 & 1 & 2 \\ \hline \sigma & \phi & x & x & 1, & \sigma & x & x & 2 \\ \hline \sigma & x & x & 1, & \sigma & x & x & 2 \\ \hline \sigma & x & x & 1, & \sigma & x & x & 4 \\ \hline \sigma & x & z & 5 & \sim \sigma & x & z & 8 \\ \hline \end{array}$	風荷重(X方向)が作用した場合の鉛直方向モーメントによる	MPa
σφτοτ, σφτο2	胴の周方向応力	ini a
σ	風荷重(X方向)が作用した場合の周方向モーメントによる胴	MPa
0 x111, 0 x112	の軸方向応力	ini ci
σ	風荷重(X方向)が作用した場合の周方向モーメントによる胴	MPa
ο ψ111, ο ψ112	の周方向応力	
σ _{xx1} , σ _{xx2}	風荷重(X方向)が作用した場合の胴の軸方向一次応力の和	MPa
0. v. v. ² . 0. v. v. 4	風荷重(X方向)が作用した場合の胴の軸方向一次+二次応力	MPa
0 x x 3, 0 x x 4	の和	ini ci
$\sigma_{\rm xz1} \sim \sigma_{\rm xz4}$	風荷重(Z方向)が作用した場合の胴の軸方向一次応力の和	MPa
$\sigma_{ras} \sim \sigma_{ras}$	風荷重(Z方向)が作用した場合の胴の軸方向一次+二次応力	MPa
$\sigma_{xz5} \sim \sigma_{xz8}$	の和	ma

吸気口 (5/6)

記号	定義	単位
σ φ x 1, σ φ x 2	風荷重(X方向)が作用した場合の胴の周方向一次応力の和	MPa
σ _{φx3} , σ _{φx4}	風荷重(X方向)が作用した場合の胴の周方向一次+二次応 力の和	MPa
$\sigma_{\phi z 1} \sim \sigma_{\phi z 4}$	風荷重(Z方向)が作用した場合の胴の周方向一次応力の和	MPa
σ _{φz5} ~σ _{φz8}	風荷重(Z方向)が作用した場合の胴の周方向一次+二次応 力の和	MPa
τ	支持脚基礎溶接部に生じるせん断応力	MPa
τ ₃	風荷重(Z方向)により胴の脚つけ根部に生じるねじりモー メントによるせん断応力	MPa
τ6	風荷重(X方向)により胴の脚つけ根部に生じるねじりモー メントによるせん断応力	MPa
τ _{с1}	風荷重(Z方向)により胴の脚つけ根部に生じる周方向せん 断応力	MPa
τ _{с4}	風荷重(X方向)により胴の脚つけ根部に生じる周方向せん 断応力	MPa
τ _{L1}	運転時質量により胴の脚つけ根部に生じる軸方向せん断応力	MPa
τ _{L2}	風荷重(Z方向)により胴の脚つけ根部に生じる軸方向せん 断応力	MPa
τ μ3	降下火砕物荷重及び積雪荷重により胴の脚つけ根部に生じる 軸方向せん断応力	MPa
τ _{L5}	風荷重(X方向)により胴の脚つけ根部に生じる軸方向せん 断応力	MPa

吸気口 (6/6)

b. 計算モデル

図 5.1.3-1 計算モデル図(平板)

降下火砕物等堆積による鉛直荷重

- c. 強度評価方法
 - (a) 平板の応力
 鉛直荷重により平板に作用する最大曲げ応力σ_{max}は次による。

$$\sigma_{\max} = 1.24 \cdot \frac{p \cdot a^2}{h^2}$$

- (b) 胴板及び支持脚
 - イ. 荷重の設定 水平力の釣合より $2 \cdot P_1 + 2 \cdot Q = F_0$ 転倒モーメントの釣合より $2 \cdot M_1 - 2 \cdot M_3 + 2 \cdot R_1 \cdot r_m = F_0(L_g - L)$ ただし, $r_m = (D_i + t)/2$

第1脚の水平方向変位量 Δ_{x1} , 傾き角 θ_1 , 鉛直方向変位量 Δ_{y1} は次による。

$$\theta_1 = \frac{(M_1 - R_1 \cdot u)L}{E_s \cdot I_{st}} + \frac{P_1 \cdot L^2}{2E_s \cdot I_{st}}$$

胴の半径方向局部変位量Δ_{r1}と局部傾き角 θ₂は次による。

$$\begin{split} & \bigtriangleup_{r \ 1} = \frac{K_r \cdot P_1}{r_m \cdot E} \\ & \theta_2 = \frac{K_L \cdot M_1}{r_m^{3} \cdot \beta_L^{2} \cdot E} \\ & \complement \zeta \subset \mathfrak{T}, \quad \beta_L \wr \natural \not \chi \wr \varsigma \not \zeta_0 \\ & \beta_L = k_L^{3} \sqrt{\beta_1 \cdot \beta_2^2} \\ & \beta_1 = \frac{C_1}{r_m} \end{split}$$

$$\beta_2 = \frac{C_2}{r_m}$$

第2脚の傾き角θ₀と水平方向変位量Δょ₃は、次による。

$$\theta_{0} = -\frac{M_{3} \cdot L}{E_{s} \cdot I_{sr}} + \frac{Q \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$
$$\bigtriangleup_{x 3} = \frac{Q \cdot L^{3}}{3E_{s} \cdot I_{sr}} + \frac{Q \cdot L}{G_{s} \cdot A_{st}} - \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{sr}}$$

第1脚と胴の傾き角の釣合より

 $\theta_1+\theta_2-\theta_0=0$

第2脚のねじり角と局部傾き角は等しいことから

$$\theta_{3} = \frac{(\mathbf{Q} \cdot \mathbf{u} - \mathbf{M}_{c})\mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} = \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \boldsymbol{\beta}_{c}^{2} \cdot \mathbf{E}}$$

ここで, β。は次による。

$$\beta_{c} = k_{c} \sqrt[3]{\beta_{1}^{2} \cdot \beta_{2}}$$
$$\beta_{1} = \frac{C_{1}}{r_{m}}$$
$$\beta_{2} = \frac{C_{2}}{r_{m}}$$

脚と胴の水平方向変位の釣合より

さらに鉛直方向変位の釣合より

式を代入して

$$\frac{\mathbf{R}_{1} \cdot \mathbf{L}}{\mathbf{A}_{s} \cdot \mathbf{E}_{s}} - \frac{\mathbf{u} \left(\mathbf{M}_{1} - \mathbf{R}_{1} \cdot \mathbf{u}\right) \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} - \frac{\mathbf{u} \cdot \mathbf{P}_{1} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s t}} + \frac{\mathbf{r}_{m} \cdot \mathbf{M}_{3} \cdot \mathbf{L}}{\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} - \frac{\mathbf{r}_{m} \cdot \mathbf{Q} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{s} \cdot \mathbf{I}_{s r}} = 0$$

式を代入して

$$\frac{(M_1 - R_1 \cdot u)L}{E_s \cdot I_{st}} + \frac{P_1 \cdot L^2}{2E_s \cdot I_{st}} + \frac{K_L \cdot M_1}{r_m^3 \cdot \beta_1^2 \cdot E} + \frac{M_3 \cdot L}{E_s \cdot I_{sr}} - \frac{Q \cdot L^2}{2E_s \cdot I_{sr}} = 0$$

式を変形して

$$\frac{\mathbf{u} \cdot \mathbf{Q} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{M}_{c} \cdot \mathbf{L}}{\mathbf{G}_{s} \cdot \mathbf{J}_{s}} - \frac{\mathbf{K}_{c} \cdot \mathbf{M}_{c}}{\mathbf{r}_{m}^{3} \cdot \beta_{c}^{2} \cdot \mathbf{E}} = 0$$

式を代入して

$$\frac{P_{1} \cdot L^{3}}{3E_{s} \cdot I_{st}} + \frac{P_{1} \cdot L}{G_{s} \cdot A_{sr}} + \frac{(M_{1} - R_{1} \cdot u)L^{2}}{2E_{s} \cdot I_{st}} + \frac{K_{r} \cdot P_{1}}{r_{m} \cdot E}$$
$$-\frac{Q \cdot L^{3}}{3E_{s} \cdot I_{sr}} - \frac{Q \cdot L}{G_{s} \cdot A_{st}} + \frac{M_{3} \cdot L^{2}}{2E_{s} \cdot I_{sr}} - \frac{u \cdot K_{c} \cdot M_{c}}{r_{m}^{3} \cdot \beta_{c}^{2} \cdot E} = 0$$

したがって、6変数 P_1 、Q、 R_1 、 M_1 、 M_3 、 M_o に対して上記式を連立させることにより方程式ができる。

- (b) 胴の応力計算
 - イ. 静水頭又は内圧による応力 ディーゼル発電機吸気口に静水頭,内圧は発生しないため, $\sigma_{\phi 1}$ 及び $\sigma_{x 1}$ は 0 となる。

ロ. 運転時質量及び降下火砕物と積雪荷重による応力

$$\sigma_{x 2} = \frac{m_0 \cdot g}{\pi (D_1 + t) t}$$
$$\sigma_{x 7} = \frac{W_2 + W_3}{\pi (D_1 + t) t}$$

 ・一運転時質量による胴の脚つけ根部の応力 脚下端が固定の場合、軸力Rは次による。

$$R = \frac{m_0 \cdot g}{4}$$

脚下端が固定の場合の脚及び胴の変形を図 5.1.3-3 に示す。

図 5.1.3-3 脚下端が固定の場合の脚及び胴の変形

脚の半径方向変位量と胴の半径方向局部変位量は等しいことから

また, 脚上端の傾き角と胴の局部傾き角は等しいことから

$$\theta = \frac{(\mathbf{R} \cdot \mathbf{u} - \mathbf{M}_{\mathrm{L}})\mathbf{L}}{\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}} + \mathbf{I}} - \frac{\mathbf{P} \cdot \mathbf{L}^{2}}{2\mathbf{E}_{\mathrm{s}} \cdot \mathbf{I}_{\mathrm{s}} + \mathbf{I}} = \frac{\mathbf{K}_{\mathrm{L}} \cdot \mathbf{M}_{\mathrm{L}}}{\mathbf{r}_{\mathrm{m}}^{3} \cdot \beta_{\mathrm{L}}^{2} \cdot \mathbf{E}}$$

したがって

$$M_{L} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{m_{0} \cdot g \cdot u \cdot L}{4E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}$$

$$P = \frac{\frac{\frac{m_0 \cdot g}{4}u - M_L}{2E_s \cdot I_{s t}}L^2}{\frac{L^3}{3E_s \cdot I_{s t}} + \frac{L}{G_s \cdot A_{s r}} + \frac{K_r}{r_m \cdot E}}$$

鉛直方向モーメントM_Lにより生じる胴の局部応力は,図 5.1.3-4 に示す 3 次元 FEM モデルより求める(以下*を付記する)ことにより算定する。

図 5.1.3-4 3 次元 FEM モデル

$$\sigma_{\phi 3} = \left[\frac{N_{\phi}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x3} = \left[\frac{N_{x}}{M_{L} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

半径方向荷重Pにより生じる胴の局部応力は、次による。

$$\sigma_{\phi 4} = \left[\frac{N_{\phi}}{P / r_{m}}\right]^{*} \left(\frac{P}{r_{m} \cdot t}\right)$$

$$\sigma_{x \ 4} = \left[\frac{N_x}{P \ / \ r_m}\right]^* \left(\frac{P}{r_m \cdot t}\right)$$

反力Rによるせん断応力は、次による。

$$\tau_{L1} = \frac{R}{4C_2 \cdot t}$$

ニ. 風荷重による胴の曲げ応力

$$\sigma_{x5} = \frac{W_{1}(L_{g} - L) (D_{i} + 2t)}{2I}$$

ホ. Z方向荷重による胴の脚つけ根部の応力(イ) 一次応力

半径方向荷重 P1により生じる胴の局部応力は,次による。

$$\sigma_{\phi \ 6 \ 1} = \left[\frac{N_{\phi}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$
$$\sigma_{x \ 6 \ 1} = \left[\frac{N_{x}}{P_{1}/r_{m}}\right]^{*} \left(\frac{P_{1}}{r_{m} \cdot t}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

$$\sigma_{\phi 7 1} = \left[\frac{N_{\phi}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$
$$\sigma_{x 7 1} = \left[\frac{N_{x}}{M_{1} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{1}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}^{*}$$

66

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi \ 8 \ 1} = \left[\frac{N_{\phi}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$
$$\sigma_{x \ 8 \ 1} = \left[\frac{N_{x}}{M_{c} / (r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{c}}{r_{m}^{2} \cdot t \cdot \beta_{c}}\right) C_{c}^{*}$$

ここで, β。は次式による。

$$\beta_{\rm c} = \sqrt[3]{\beta_1^2} \cdot \beta_2$$

周方向せん断力Qによるせん断応力は、次による。

$$\tau_{c 1} = \frac{Q}{4C_1 \cdot t}$$

鉛直方向せん断力R1によるせん断応力は,次による。

$$\tau_{\rm L\,2} = \frac{R_1}{4C_2 \cdot t}$$

ねじりモーメントM₃により生じる胴の局部せん断応力は、次による。

$$\tau_3 = \frac{M_3}{2 \pi \cdot C_1^2 \cdot t}$$

(ロ) 二次応力 半径方向荷重P₁により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi \ 6 \ 2} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} \ 6 \ 2} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{1}}\right]^{*} \left(\frac{6 \ \mathbf{P}_{1}}{\mathbf{t}^{2}}\right)$$

鉛直方向曲げモーメントM1により生じる胴の局部曲げ応力は,次による。

$$\sigma_{\phi 7 2} = \left[\frac{M_{\phi}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$
$$\sigma_{x 7 2} = \left[\frac{M_{x}}{M_{1}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{1}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right)$$

周方向曲げモーメントM。により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi \ 8 \ 2} = \left[\frac{M_{\phi}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$
$$\sigma_{x \ 8 \ 2} = \left[\frac{M_{x}}{M_{c}/(r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{c}}{r_{m} \cdot t^{2} \cdot \beta_{c}}\right)$$

へ. X方向荷重による胴の脚つけ根部の応力

(イ) 一次応力

半径方向荷重 P1により生じる胴の局部応力は,次による。

 $\sigma_{\phi 9 1} = \sigma_{\phi 6 1} / \sqrt{2}$ $\sigma_{x 9 1} = \sigma_{x 6 1} / \sqrt{2}$

鉛直方向曲げモーメントM₁により生じる胴の局部応力は、次による。 $\sigma_{\phi \ 1 \ 0 \ 1} = \sigma_{\phi \ 7 \ 1} / \sqrt{2}$ $\sigma_{x \ 1 \ 0 \ 1} = \sigma_{x \ 7 \ 1} / \sqrt{2}$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。 $\sigma_{\phi 1 1 1} = \sigma_{\phi 8 1} / \sqrt{2}$

 $\sigma_{x \ 1 \ 1 \ 1} = \sigma_{x \ 8 \ 1} / \sqrt{2}$

周方向せん断力 Qによるせん断応力は、次による。

 $\tau_{\rm c~4} = \tau_{\rm c~1}/\sqrt{2}$

鉛直方向せん断力R1によるせん断応力は、次による。

 $\tau_{L\,5} = \tau_{L\,2} / \sqrt{2}$

ねじりモーメントM₃により生じる胴の局部せん断応力は、次による。

 $\tau_6 = \tau_3/\sqrt{2}$

(ロ) 二次応力半径方向荷重 P₁により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi 9 2} = \sigma_{\phi 6 2} / \sqrt{2}$$
$$\sigma_{x 9 2} = \sigma_{x 6 2} / \sqrt{2}$$

鉛直方向曲げモーメントM1により生じる胴の局部応力は,次による。

 $\sigma_{\phi \ 1 \ 0 \ 2} = \sigma_{\phi \ 7 \ 2} / \sqrt{2}$ $\sigma_{x \ 1 \ 0 \ 2} = \sigma_{x \ 7 \ 2} / \sqrt{2}$

周方向曲げモーメントM。により生じる胴の局部応力は、次による。

$$\sigma_{\phi 1 1 2} = \sigma_{\phi 8 2} / \sqrt{2}$$
$$\sigma_{x 1 1 2} = \sigma_{x 8 2} / \sqrt{2}$$

ト. 降下火砕物と積雪荷重による胴の脚つけ根部の応力 脚下端を固定する場合の軸力R₂, 胴の脚つけ根部の鉛直方向モーメントM_{L2}及び 半径方向荷重P₂は, 次による。

$$R_{2} = \frac{W_{2} + W_{3}}{4}$$

$$M_{L2} = \frac{\left(\frac{L^{3}}{12E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \frac{R_{2} \cdot u \cdot L}{E_{s} \cdot I_{st}}}{\left(\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}\right) \left(\frac{L}{E_{s} \cdot I_{st}} + \frac{K_{L}}{r_{m}^{3} \cdot \beta_{L}^{2} \cdot E}\right) - \left(\frac{L^{2}}{2E_{s} \cdot I_{st}}\right)^{2}}{\frac{R_{2} \cdot u - M_{L2}}{2E_{s} \cdot I_{st}}}$$

$$P_{2} = \frac{\frac{R_{2} \cdot u - M_{L2}}{2E_{s} \cdot I_{st}} L^{2}}{\frac{L^{3}}{3E_{s} \cdot I_{st}} + \frac{L}{G_{s} \cdot A_{sr}} + \frac{K_{r}}{r_{m} \cdot E}}$$

$$(\mathcal{A}) - \mathcal{K} \mathcal{K} \mathcal{A}$$

鉛直方向曲げモーメント ML2により生じる胴の局部曲げ応力は、次による。

$$\sigma_{\phi 8} = \left[\frac{N_{\phi}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$
$$\sigma_{x8} = \left[\frac{N_{x}}{M_{L2}/(r_{m}^{2} \cdot \beta)}\right]^{*} \left(\frac{M_{L2}}{r_{m}^{2} \cdot t \cdot \beta_{L}}\right) C_{L}$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi 9} = \left[\frac{N_{\phi}}{P_2/r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$
$$\sigma_{x 9} = \left[\frac{N_x}{P_2/r_m}\right]^* \left(\frac{P_2}{r_m \cdot t}\right)$$

(ロ) 二次応力

鉛直方向曲げモーメントML2により生じる胴の局部応力は次による。

$$\begin{split} \sigma_{\phi \ 1 \ 0} &= \left[\frac{M_{\phi}}{M_{L \ 2} / (r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L \ 2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right) \\ \sigma_{x \ 1 \ 0} &= \left[\frac{M_{x}}{M_{L \ 2} / (r_{m} \cdot \beta)}\right]^{*} \left(\frac{6M_{L \ 2}}{r_{m} \cdot t^{2} \cdot \beta_{L}}\right) \end{split}$$

半径方向荷重 P2により生じる胴の局部応力は,次による。

$$\sigma_{\phi \ 1 \ 1} = \left[\frac{\mathbf{M}_{\phi}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{\mathbf{6} \,\mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$
$$\sigma_{\mathbf{x} \ 1 \ 1} = \left[\frac{\mathbf{M}_{\mathbf{x}}}{\mathbf{P}_{2}}\right]^{*} \left(\frac{\mathbf{6} \,\mathbf{P}_{2}}{\mathbf{t}^{2}}\right)$$

せん断応力は, 次による。

$$\tau_{\rm L3} = \frac{\rm R_2}{\rm 4C_2 \cdot t}$$

チ. 組合せ応力

イ.~ト.項によって算出される脚つけ根部に生じる胴の応力は,次により組み合わ せる。

(イ) 一次一般膜応力

$$\sigma_{0\phi} = \sigma_{\phi 1}$$

 $\sigma_{0x} = \sigma_{x1} + \sigma_{x2} + \sigma_{x5} + \sigma_{x7}$
 $\sigma_0 = \max[\sigma_{0\phi}, \sigma_{0x}]$

(ロ) 一次応力(膜+曲げ)胴の評価点を図 5.1.3-5 に示す。

【Z方向荷重が作用した場合】

・第1脚つけ根部

(第1評価点)

 $\sigma_{\phi \ z \ 1} = \sigma_{\phi \ 1} + \sigma_{\phi \ 3} + \sigma_{\phi \ 4} + \sigma_{\phi \ 8} + \sigma_{\phi \ 9} + \sigma_{\phi \ 6 \ 1} + \sigma_{\phi \ 7 \ 1}$

 $\sigma_{{\rm x}\ z\ 1}=\sigma_{{\rm x}\ 1}+\sigma_{{\rm x}\ 2}+\sigma_{{\rm x}\ 3}+\sigma_{{\rm x}\ 4}+\sigma_{{\rm x}\ 5}+\sigma_{{\rm x}\ 7}+\sigma_{{\rm x}\ 8}+\sigma_{{\rm x}\ 9}+\sigma_{{\rm x}\ 6\ 1}+\sigma_{{\rm x}\ 7\ 1}$

$$\sigma_{1\ 1} = \frac{1}{2} \left\{ \sigma_{\phi \ z \ 1} + \sigma_{x \ z \ 1} \right) + \sqrt{(\sigma_{\phi \ z \ 1} - \sigma_{x \ z \ 1})^2} \right\}$$

(第2評価点)

$$\sigma_{\phi \ z \ 2} = \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 6 \ 1}$$

$$\sigma_{x \ z \ 2} = \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 9} + \sigma_{x \ 6 \ 1}$$

$$\sigma_{12} = \frac{1}{2} \left\{ \sigma_{\phi \ z \ 2} + \sigma_{x \ z \ 2} \right\} + \sqrt{(\sigma_{\phi \ z \ 2} - \sigma_{x \ z \ 2})^2 + 4(\tau_{L1} + \tau_{L2} + \tau_{L3})^2}$$

・第2脚つけ根部
(第1評価点)

$$\sigma_{\phi z 3} = \sigma_{\phi 1} + \sigma_{\phi 3} + \sigma_{\phi 4} + \sigma_{\phi 8} + \sigma_{\phi 9}$$

 $\sigma_{x z 3} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 3} + \sigma_{x 4} + \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9}$
 $\sigma_{1 3} = \frac{1}{2} \left\{ \sigma_{\phi z 3} + \sigma_{x z 3} \right\} + \sqrt{(\sigma_{\phi z 3} - \sigma_{x z 3})^2 + 4(\tau_{c 1} + \tau_{3})^2} \right\}$
(第2評価点)
 $\sigma_{\phi z 4} = \sigma_{\phi 1} + \sigma_{\phi 4} + \sigma_{\phi 9} + \sigma_{\phi 8 1}$
 $\sigma_{x z 4} = \sigma_{x 1} + \sigma_{x 2} + \sigma_{x 4} + \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 8 1}$
 $\sigma_{1 4} = \frac{1}{2} \left\{ \sigma_{\phi z 4} + \sigma_{x z 4} \right\} + \sqrt{(\sigma_{\phi z 4} - \sigma_{x z 4})^2 + 4(\tau_{L 1} + \tau_{3} + \tau_{L 3})^2} \right\}$
【X方向荷重及び降下火砕物荷重, 積雪荷重が作用した場合】
(第1評価点)

 $\sigma_{\phi \ \mathrm{x} \ 1} = \sigma_{\phi \ 1} + \sigma_{\phi \ 3} + \sigma_{\phi \ 4} + \sigma_{\phi \ 8} + \sigma_{\phi \ 9} + \sigma_{\phi \ 9 \ 1} + \sigma_{\phi \ 1 \ 0 \ 1}$

$$\begin{aligned} \sigma_{\phi \ x \ 2} &= \sigma_{\phi \ 1} + \sigma_{\phi \ 4} + \sigma_{\phi \ 9} + \sigma_{\phi \ 9 \ 1} + \sigma_{\phi \ 1 \ 1 \ 1} \\ \sigma_{x \ x \ 2} &= \sigma_{x \ 1} + \sigma_{x \ 2} + \sigma_{x \ 4} + \sigma_{x \ 5} + \sigma_{x \ 7} + \sigma_{x \ 9} + \sigma_{x \ 9 \ 1} + \sigma_{x \ 1 \ 1 \ 1} \\ \sigma_{1 \ 6} &= \frac{1}{2} \left\{ \left(\sigma_{\phi \ x \ 2} + \sigma_{x \ x \ 2} \right) + \sqrt{\left(\sigma_{\phi \ x \ 2} - \sigma_{x \ x \ 2} \right)^2 + 4 \left(\tau_{L \ 1} + \tau_{L \ 5} + \tau_{6} + \tau_{L \ 3} \right)^2} \right\} \\ \sigma_{1} &= \max \left[\sigma_{1 \ 1}, \ \sigma_{1 \ 2}, \ \sigma_{1 \ 3}, \ \sigma_{1 \ 4}, \ \sigma_{1 \ 5}, \ \sigma_{1 \ 6} \right] \end{aligned}$$

(ハ) 組合せ一次十二次応力
【2方向荷重及び降下大砕物荷重,積雪荷重が作用した場合】
・第1脚つけ根部
(第1評価点)

$$\sigma_{\phi z 5} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11} + \sigma_{\phi 61} + \sigma_{\phi 62} + \sigma_{\phi 71} + \sigma_{\phi 72}$$

 $\sigma_{x z 5} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 1 1} + \sigma_{x 5} + \sigma_{x 61} + \sigma_{x 62} + \sigma_{x 71} + \sigma_{x 72}$
 $\sigma_{z 1} = \sigma_{\phi z 5} + \sigma_{x z 5} + \sqrt{(\sigma_{\phi z 5} - \sigma_{x z 5})^2}$
(第2評価点)
 $\sigma_{\phi z 6} = \sigma_{\phi 9} + \sigma_{\phi 11} + \sigma_{\phi 61} + \sigma_{\phi 62}$
 $\sigma_{z 2} = \sigma_{\phi z 6} + \sigma_{x z 6} + \sqrt{(\sigma_{\phi z 5} - \sigma_{x z 6})^2 + 4(\tau_{L 2} + \tau_{L 3})^2}$
· 第2脚つけ根部
(第1評価点)
 $\sigma_{\phi z 7} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11}$
 $\sigma_{z 3} = \sigma_{\phi z 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11}$
 $\sigma_{z 3} = \sigma_{\phi z 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11}$
 $\sigma_{\phi z 8} = \sigma_{\phi 9} + \sigma_{\phi 11} + \sigma_{\phi 81} + \sigma_{\phi 82}$
 $\sigma_{x z 8} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 11} + \sigma_{x 81} + \sigma_{x 82}$
 $\sigma_{z 4} = \sigma_{\phi z 8} + \sigma_{x 28} + \sqrt{(\sigma_{\phi z 8} - \sigma_{x z 8})^2 + 4(\tau_{3} + \tau_{L 3})^2}$

【X方向荷重が作用した場合】
(第1評価点)
$$\sigma_{\phi \times 3} = \sigma_{\phi 8} + \sigma_{\phi 9} + \sigma_{\phi 10} + \sigma_{\phi 11} + \sigma_{\phi 91} + \sigma_{\phi 101} + \sigma_{\phi 92} + \sigma_{\phi 102}$$

 $\sigma_{x \times 3} = \sigma_{x 7} + \sigma_{x 8} + \sigma_{x 9} + \sigma_{x 10} + \sigma_{x 11} + \sigma_{x 5} + \sigma_{x 91} + \sigma_{x 101} + \sigma_{x 92} + \sigma_{x 102}$
 $\sigma_{2 5} = \sigma_{\phi \times 3} + \sigma_{x \times 3} + \sqrt{(\sigma_{\phi \times 3} - \sigma_{x \times 3})^2 + 4(\tau_{c 4} + \tau_6)^2}$
(第2評価点)
 $\sigma_{\phi \times 4} = \sigma_{\phi 9} + \sigma_{\phi 11} + \sigma_{\phi 91} + \sigma_{\phi 92} + \sigma_{\phi 111} + \sigma_{\phi 112}$
 $\sigma_{x \times 4} = \sigma_{x 7} + \sigma_{x 9} + \sigma_{x 11} + \sigma_{x 5} + \sigma_{x 91} + \sigma_{x 92} + \sigma_{x 111} + \sigma_{x 112}$
 $\sigma_{2 6} = \sigma_{\phi \times 4} + \sigma_{x \times 4} + \sqrt{(\sigma_{\phi \times 4} - \sigma_{x \times 4})^2 + 4(\tau_{L 5} + \tau_6 + \tau_{L 3})^2}$
 $\sigma_{2} = \max[\sigma_{2 1}, \sigma_{2 2}, \sigma_{2 3}, \sigma_{2 4}, \sigma_{2 5}, \sigma_{2 6}]$

- (c) 脚の応力計算
 - イ. 運転時質量による応力

$$\sigma_{s 1} = \frac{R}{A_s}$$

$$\sigma_{s 2} = \frac{\max \left[\left[R \cdot u - M_L - P \cdot L \right], \left[R \cdot u - M_L \right] \right]}{Z_{s t}}$$

ロ. 降下火砕物荷重,積雪荷重による応力

$$\sigma_{s3} = \frac{R_2}{A_s}$$

 $\sigma_{s4} = \frac{\max[R_2 \cdot u - M_{L2} - P_2 \cdot L], R_2 \cdot u - M_{L2}]}{Z_{st}}$

ハ. 風荷重(Z方向)による応力(イ) 第1脚

$$\sigma_{s \ 5} = \frac{R_1}{A_s}$$

$$\sigma_{s \ 6} = \frac{\max\left[\!\left[R_1 \cdot u - M_1 - P_1 \cdot L\right]\!\right]\!\left[R_1 \cdot u - M_1\right]\!\right]}{Z_{s \ t}}$$

73

(口) 第2脚

$$\sigma_{s 7} = \frac{\max\left[\left[\mathbf{Q} \cdot \mathbf{L} - \mathbf{M}_{3}\right], \left|\mathbf{M}_{3}\right|\right]}{Z_{s r}}$$

75

(ハ) X方向荷重による応力

$$\sigma_{s 8} = \frac{R_1}{\sqrt{2} \cdot A_s}$$

$$\sigma_{s 9} = \frac{\max \left\| R_1 \cdot u - M_1 - P_1 \cdot L \right\| \left\| R_1 \cdot u - M_1 \right\|}{\sqrt{2} \cdot Z_{s t}}$$

$$\sigma_{s 1 0} = \frac{\max \left\| Q \cdot L - M_3 \right\| \left\| M_3 \right\|}{\sqrt{2} \cdot Z_{s t}}$$

ニ. 組合せ応力

脚の最大応力は,下記式による。

- (イ) Z方向荷重及び降下火砕物荷重,積雪荷重が作用した場合
 - 第1脚

 $\sigma_{\mathrm{s\ z\ 1}}=\sigma_{\mathrm{s\ 1}}+\sigma_{\mathrm{s\ 2}}+\sigma_{\mathrm{s\ 3}}+\sigma_{\mathrm{s\ 4}}+\sigma_{\mathrm{s\ 5}}+\sigma_{\mathrm{s\ 6}}$

第2脚

$$\sigma_{s\ z\ 2} = \sigma_{s\ 1} + \sigma_{s\ 2} + \sigma_{s\ 3} + \sigma_{s\ 4} + \sigma_{s\ 7}$$

(ロ) X方向荷重が作用した場合

 $\sigma_{\mathrm{s\ x}} = \sigma_{\mathrm{s\ 1}} + \sigma_{\mathrm{s\ 2}} + \sigma_{\mathrm{s\ 3}} + \sigma_{\mathrm{s\ 4}} + \sigma_{\mathrm{s\ 8}} + \sigma_{\mathrm{s\ 9}} + \sigma_{\mathrm{s\ 1\ 0}}$

$$\sigma_{s} = \max[\sigma_{s \ z \ 1}, \sigma_{s \ z \ 2}, \sigma_{s \ x}]$$

- ホ. 組合せ圧縮応力
- (イ) Z方向荷重が作用した場合
 - ・ 第1脚 $\sigma_{sc} = \sigma_{s1} + \sigma_{s3} + \sigma_{s5}$ $\sigma_{st} = \sigma_{s2} + \sigma_{s4} + \sigma_{s6}$ $\sigma_{sr} = 0$
 - ・ 第2脚 $\sigma_{sc} = \sigma_{s1} + \sigma_{s3}$ $\sigma_{st} = \sigma_{s2} + \sigma_{s4}$ $\sigma_{sr} = \sigma_{s7}$

(ロ) X方向荷重が作用した場合

$$\sigma_{s c} = \sigma_{s 1} + \sigma_{s 3} + \sigma_{s 8}$$
$$\sigma_{s t} = \sigma_{s 2} + \sigma_{s 4} + \sigma_{s 9}$$
$$\sigma_{s r} = \sigma_{s 1 0}$$

圧縮と曲げの組合せについて、座屈評価用の式を次式より求める。

$$\frac{\sigma_{\mathrm{s}\ \mathrm{r}}}{f_{\mathrm{b}\ \mathrm{r}}} \! + \! \frac{\sigma_{\mathrm{s}\ \mathrm{t}}}{f_{\mathrm{b}\ \mathrm{t}}} \! + \! \frac{\sigma_{\mathrm{s}\ \mathrm{c}}}{f_{\mathrm{c}}} \! \leq \! 1$$

- (d) 支持脚基礎溶接部の応力計算
 - イ. 引張応力の算出

風圧力による荷重W₁によるモーメントMにより,2本の支持脚には吸気口の支持 脚基礎溶接部に作用する引張荷重Tが作用する。

モーメントの釣り合いを考えると、

 $M = W_1 \cdot L_g + (m_0 \cdot g + F_V) L_H = 2 \cdot T \cdot L_1$

よって、吸気口の支持脚基礎溶接部に作用する引張荷重Tは以下のようになる。

$$T = \frac{W_1 \cdot L_g + (m_0 \cdot g + F_V) L_H}{2L_1}$$

吸気口の支持脚基礎溶接部に生じる引張応力σ_tは以下のようになる。

$$\sigma_{t} = \frac{T}{A_{w}} = \frac{W_{1} \cdot L_{g} + (m_{0} \cdot g + F_{V}) L_{H}}{2L_{1} \cdot A_{W}}$$

ロ. せん断応力の算出

吸気口の支持脚基礎溶接部に作用するせん断荷重Qは以下のようになる。

$$Q_1 = \frac{W_1}{4}$$

よって, 吸気口の支持脚基礎溶接部に生じるせん断応力τは以下のようになる。

$$\tau = \frac{\boldsymbol{Q}_1}{\boldsymbol{A}_W} = \frac{\boldsymbol{W}_1}{4\boldsymbol{A}_W}$$

(c) 組合せ応力の算出

$$\sigma = \sqrt{\sigma_{t}^{2} + 3\tau^{2}}$$

- 5.1.4 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベ ントファン
 - (1) 評価条件
 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフベントファンの強度評価を行う場合、以下の条件に従うものとする。
 - a. ファンの強度計算において,降下火砕物が堆積する吐出フード天板に対し,等分布荷 重が作用する平板として評価し,風荷重が大きな基礎ボルト及び吐出フード取付ボルト は1質点系モデルとし,評価を行う。
 - b. 1 質点系モデルの強度計算において,評価上高さの 1/2 又は果樹作用点より高い重心 位置に集中荷重として作用するものとする。計算モデルを図 5.1.2-1 に示す。
 - c. 計算に用いる寸法は公称値を使用する。
 - d. 降下火砕物等堆積による鉛直方向荷重については、平板の面積に対し降下火砕物等の 層厚より上載質量を算出し入力荷重として設定する。
 - (2) 評価対象部位

評価対象部位及び評価内容を表 5.1.4-1 に示す。

評価対象部位	応力等の状態			
吐出フード天板	曲げ			
ケーシング	圧縮			
基礎ボルト	引張、せん断、組合せ			
吐出フード取付ボルト	引張、せん断、組合せ			

表 5.1.4-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの強度評価に用いる記号を表 5.1.4-2 に示す。

記号	単位	定義
а	mm	天板の短辺
A 1	m^2	受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物の堆積面積
A _b	mm^2	ボルトの軸断面積
B 1	mm	ケーシング外径
B 2	mm	ケーシング内径
С	—	建築物荷重指針・同解説により規定される風力係数
с	mm	補強ピッチ
Е'	—	建築基準法施行令第87条第2項に規定する数値
F		建設省告示第1454号の規定によって算出した平均風速の高さ方
E _r	_	向の分布を表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
F _b	Ν	ボルトに対する引張力
F _d	Ν	常時作用する荷重
F i	Ν	各ボルトに作用する引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
£	MDe	J SME SSB-3121.1により規定される供用状態A及びBでの許
Гb	MFa	容曲げ応力
£	MDe	J SME SSB-3121.1により規定される供用状態A及びBでの許
I c	MFa	容圧縮応力
f	MDo	J SME SSB-3121.1により規定される供用状態A及びBでの許
1 s	MI d	容せん断応力
f	MPa	J SME SSB-3121.1により規定される供用状態A及びBでの許
L t	MI a	容引張応力
G	—	ガスト影響係数
g	m/s^2	重力加速度(g=9.80665)
h	mm	全高
h t	mm	天板厚さ
$L_1 \sim L_7$	mm	支点と評価ボルト間の距離

表 5.1.4-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの強度評価に用いる記号(1/2)

記号	単位	定義
L i	mm	各ボルト間の距離
М	N•mm	ファンに作用するモーメント
m	kg	質量
Ν	—	ボルトの本数
р	N/mm^2	天板に作用する等分布荷重
$Q_{\rm b}$	Ν	ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	ケーシングの断面積
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張強さ
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
V _D	m/s	基準風速
$W_{\rm b}$	Ν	風荷重による複合荷重
Z b	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
β	—	天板の最大応力の係数
π	—	円周率
σ _b	MPa	ボルトに生じる引張応力
σс	MPa	ケーシングに生じる圧縮応力
τ	MPa	ボルトに生じるせん断応力

表 5.1.4-2 非常用ディーゼル発電機(高圧炉心スプレイ系ディーゼル発電機を含む。)室ルーフ ベントファンの強度評価に用いる記号(1/2)

b. 計算モデル

NT2 補② V-3-別添 2-1 R3

- c. 応力計算
 - (a) 吐出フードに生じる応力 鉛直荷重により吐出フード天板部に作用する最大曲げ応力σ_{max}は次による。

$$\sigma_{\max} = \beta \cdot \frac{\mathbf{p} \cdot \mathbf{a}^2}{\mathbf{h}_{t}^2}$$

- (b) ケーシングに生じる応力評価 ケーシングに生じる圧縮応力 $\sigma_{c} = \frac{F_{v} + F_{d}}{S}$ ここで, $S = \frac{\pi}{4} (B_{1}^{2} - B_{2}^{2})$
 - ケーシングの断面図を図 5.1.4-2 に示す。

図 5.1.4-2 ケーシングの断面図

(c) 基礎ボルト, 吐出フード取付ボルトに生じる応力イ. 引張応力

M=2
$$\sum_{i=1}^{n}$$
 F_i · L_i · · · (3.1)
 $\frac{F_{i}}{L_{i}} = - 定$ · · · (3.2)
(3.1) (3.2) 式より,
F_n = $\frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$
ここで

$$M = W_{w} \cdot h + (m \cdot g + F_{v}) \cdot \frac{L_{n}}{2}$$

ボルトに生じる引張応力 σ_{b} は次式より求める。

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

ボルトに対するせん断応力は、ボルト全本数で受けるものとして計算する。

・ せん断応力

$$\tau = \frac{Q_{b}}{A_{b} \cdot N}$$

5.2 建屋

(1) 評価条件

建屋の強度評価を行う場合、以下の条件に従うものとする。

- a. 建屋の強度評価において、屋根及び耐震壁は、応答解析モデルを用い評価する。
- b. 建屋の強度評価において,屋根の評価は,降下火砕物等堆積による鉛直荷重を短期 荷重として評価する。
- c. 降下火砕物等堆積による鉛直荷重として 7565 N/m²,風荷重については基準風速 30 m/s を考慮する。
- d. 風荷重の算出は,建屋の形状を考慮して算出した風力係数及び受圧面積に基づき実施し,受圧面積算定において,隣接する建屋の遮断効果による面積の低減は考慮しない。
- e. 水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷重が働き下向き荷重 は低減されるため,屋根面の評価においては,保守的に水平方向の風荷重は考慮しない。
- (2) 評価対象部位評価対象部位及び評価内容を表 5.2-1 に示す。

評価対象部位	応力等の状態
屋根	曲げ、せん断
耐震壁	変形

表 5.2-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

建屋の強度評価に用いる記号を表 5.2-2 に示す。

表 5.2-2 建屋の強度評価に用いる記号

記号	単位	定義
F _d	N/m^2	固定荷重
F 1	N/m^2	積載荷重
F s	N/m^2	積雪荷重
F _v	N/m^2	降下火砕物堆積による鉛直荷重
W	Ν	風荷重

b. 屋根の応力計算

応答解析モデルを用いて,屋根に作用する固定荷重F_d,積載荷重F₁,積雪荷重F_s,降下火砕物堆積等による鉛直荷重F_vにより屋根に発生する応力を求める。

c. 耐震壁の応力計算

応答解析モデルを用いて、風荷重Wにより耐震壁に発生するせん断ひずみを求める。

 $\mathbb{R}3$

NT2 補② V-3-別添 2-1

6. 適用規格

V-1-1-2-4-1 においては、降下火砕物の影響を考慮する施設の設計に係る適用規格を示している。

これらのうち、各対象施設の強度評価に用いる規格、基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005)
- (4) 鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築学会, 1999)
- (5) 原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)
- (6) 原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)
- (7) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・捕-1984((社)日本電気協会)
- (8) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- (9) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本 機械学会)
- (10) 2015 年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所 2015)

V-3-別添 2-1-1 残留熱除去系海水系ポンプの強度計算書

目次

1.	概	$\pm \cdots \cdots $
2.	基	本方針
2	. 1	位置
2	. 2	構造概要
2	. 3	評価方針・・・・・・3
2	. 4	適用規格
3.	強	度評価方法・・・・・・・・・・・5
3	. 1	記号の定義・・・・・5
3	. 2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
3	. 3	荷重及び荷重の組合せ・・・・・・7
3	. 4	許容限界
3	. 5	評価方法
4.	評	価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	強	度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」に示すとおり、残留 熱除去系海水系ポンプが降下火砕物等堆積時においても、送水機能の維持を考慮して、主要な構 造部材が構造健全性を有することを確認するものである。

2. 基本方針

残留熱除去系海水系ポンプは、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」 の「3.2 機能維持の方針」に示す構造計画を踏まえ、残留熱除去系海水系ポンプの「2.1 位 置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

残留熱除去系海水系ポンプは、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方 針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設置する。海水ポンプ室 の位置図を図 2-1 に示す。

図 2-1 海水ポンプ室の位置図

1

2.2 構造概要

残留熱除去系海水系ポンプは、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方 針」の「3.2機能維持の方針」に示す構造計画を踏まえて、構造を設定する。

残留熱除去系海水系ポンプ据付面から原動機台までのポンプ部と,原動機台より上部の原動 機部からなる立形ポンプであり,同一設計の残留熱除去系海水系ポンプ4台を設置している。 降下火砕物等堆積による鉛直荷重及び風(台風)による水平荷重の影響を直接受ける据付位置 より上部のポンプの概要図を図2-2に示す。

残留熱除去系海水系ポンプ原動機の形状は円筒形を基本としたフレームに、一次側端子箱が 付加された形態であり、ポンプのスラスト荷重はすべて原動機フレーム、原動機台部に作用す る構造とする。図2-3に原動機フレームが風圧力を最も多く受ける面の概要図を示し、図2-4に 降下火砕物等が残留熱除去系海水系ポンプに最も多く堆積することが想定される状態図を示 す。

(b) 側面図

図 2-2 残留熱除去系海水系ポンプの概要図

図 2-3 風圧力を受ける面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

残留熱除去系海水系ポンプの強度評価は、V-3-別添2-1「火山への配慮が必要な施設の強度 計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷重及び荷 重の組合せ並びに許容限界を踏まえて、ポンプの評価対象部位に作用する応力が、許容限界に 収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す評価条件を用い て計算し、「5. 強度評価結果」にて確認する。

残留熱除去系海水系ポンプの強度評価フローを図2-5に示す。残留熱除去系海水系ポンプの 強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに組み合 わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象部位 を選定する。

降下火砕物等堆積による鉛直荷重については、ポンプ上面の投影面積に対し降下火砕物等が 堆積した場合を設定する。また、風荷重は水平方向より作用する外荷重という観点で地震荷 重と同様なものであると考え、「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984」((社)日本電気協会)、「原子力発電所耐震設計技術指針 JEAG4601-1987」((社)日本電気協会)及び「原子力発電所耐震設計技術指針 J EAG4601-1991 追補版」((社)日本電気協会)(以下「JEAG4601」とい う。)における1質点系モデルによる評価方法を準用し、V-3-別添2-1「火山への配慮が必要 な施設の強度計算の方針」の「5.強度評価方法」に示す評価式を用いる。残留熱除去系海水 系ポンプの許容限界は、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」の 「4.2許容限界」に示す許容限界である、JEAG4601の許容応力状態ⅢASとする。

図2-5 残留熱除去系海水系ポンプの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 -1984((社)日本電気協会)
- (4) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (6) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)

3. 強度評価方法

3.1 記号の定義

残留熱除去系海水系ポンプの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A 1	m ²	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A_{b}	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B ₄	mm	原動機フレーム内径
С	_	風力係数
E'	_	建築基準法施行令第87条第2項に規定する数値
E		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
E _r		布を表す係数
F _d	Ν	原動機自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
t	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容圧縮
I c	MI a	応力
t	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん
I s	мга	断応力
f	MDo	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張
I t	mi a	応力
G	—	ガスト影響係数
g	m/s^2	重力加速度
ч	N	原動機台に常時作用する原動機自重及びポンプスラスト荷重による軸
11	11	方向荷重
h	mm	取付面から荷重作用点までの距離
L ₁	mm	ボルト間の距離
М	N•mm	原動機フレームに作用するモーメント
M_1	N•mm	風荷重により原動機フレームに作用するモーメント
M_2	N•mm	鉛直荷重により原動機フレームに作用するモーメント

表 3-1 残留熱除去系海水系ポンプの強度評価に用いる記号(1/2)

封 日.	出任	
記万	- 単位	上我
m	kg	原動機の質量
Ν	_	ボルトの本数
Р	kg	ポンプスラスト荷重
q	N/m^2	速度圧
\mathbf{Q}_{b}	Ν	ボルトに対するせん断力
S	mm^2	原動機台の断面積
S y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V_{D}	m/s	基準風速
W	Ν	風荷重による複合荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	_	円周率
σ _c	MPa	原動機台に生じる圧縮応力
σ _b	MPa	原動機フレームに生じる曲げ応力
τ	MPa	せん断応力

表 3-1 残留熱除去系海水系ポンプの強度評価に用いる記号(2/2)

3.2 評価対象部位

残留熱除去系海水系ポンプの評価対象部位は、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って、原動機台、原動機フレーム及び据付面基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及 び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する原動機上部を介して支 持している原動機フレーム及び原動機台下部に作用する。また,風荷重は,原動機フレームを 介して原動機台に固定されている原動機フレーム及び据付面基礎ボルトに作用する。さらに, ポンプのスラスト荷重は全て原動機フレーム,原動機台に作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては原動機台及び原動機フレームを, 風荷重に対しては原動機フレーム及び据付面基礎ボルトを評価対象部位とする。

残留熱除去系海水系ポンプの強度評価における評価対象部位を図 3-1 に示す。

図 3-1 残留熱除去系海水系ポンプの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、V-3-別添 2-1「火山への配慮が必要な施設の 強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用い る。

(1) 荷重の設定

残留熱除去系海水系ポンプの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,原動機の自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v)
 単位面積当たりの降下火砕物等堆積による鉛直荷重は,7565 N/m²とする。
- c. 風荷重 (W)

風荷重は、基準風速 30 m/s に基づき算定する。

風荷重はV-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.1(3)c. 水平荷重」に示す式に従い、算出する。全高Hが5 m以下であるため、HがZ_b以下の場 合の式を用いる。

評価に用いる複合荷重は原動機フレーム,一次側端子箱に風圧力を受けた際の複合荷重 とする。

風荷重を受ける面積は原動機フレーム、一次側端子箱を包含する面積を設定し、風荷重 による複合荷重Wは以下のようにして求める。

 $W = q \cdot C \cdot A_{1}$ $\Xi \equiv \overline{C}$ $q = 0.6 \cdot E' \cdot V_{D}^{2}$

93

$$E' = E_{r}^{2} \cdot G$$
$$E_{r} = 1.7 \cdot (Z_{b}/Z_{G})^{a}$$

図 3-2 原動機フレーム及び一次側端子箱受圧部図

- d. 運転時の状態で作用する荷重(F_p) 運転時の状態で作用する荷重は,鉛直下向きに働くポンプスラスト荷重を考慮する。
- (2) 荷重の組合せ

強度評価に用いる荷重の組合せは,残留熱除去系海水系ポンプの評価対象部位ごとに設定 する。

残留熱除去系海水系ポンプには,自重,降下火砕物等堆積による鉛直荷重,風荷重及びポ ンプスラスト荷重が作用する。

残留熱除去系海水系ポンプの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

		-
施設名称	評価対象部位	荷重
残留熱除去系海水系ポンプ	原動機台	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③ポンプスラスト荷重
	原動機フレーム	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 ④ポンプスラスト荷重
	据付面基礎ボル ト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 ④ポンプスラスト荷重

表 3-2 荷重の組合せ

3.4 許容限界

残留熱除去系海水系ポンプの許容限界は、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、JEAG4601に基づき許容応力状態ⅢASの許容応力を用いる。

残留熱除去系海水系ポンプの許容限界は、JEAG4601を準用し、「クラス2,3支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持できるように弾性設計とするため、許容応力状態ⅢASから算出した以下の許容応力を許容限界とする。JEAG4601に従い、JSME付録材料図表Part5,6の表にて許容応力を評価する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJSME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるものとする。

残留熱除去系海水系ポンプの許容限界を表 3-3 に示す。

評価対象部位	許容応力 状態	応力の種類		許容限界
原動機台	III _A S	一次 応力	圧縮	1.5 f $_{\rm c}$ *
原動機フレーム	III _A S	一次応力	曲げ	1.5 f $_{\rm b}$ *
			圧縮	1.5 f $_{\rm c}$ *
据付面基礎ボルト	III _A S	一次応力	引張	1.5 f _t *
			せん断	1.5 f _s *
			組合せ	Min {1.5 f t *, (2.1 f t *-1.6 τ) }

表 3-3 残留熱除去系海水系ポンプの許容限界

注記 *: JSME SSB-3120 に規定される供用状態Cに対する許容応力算定に用いる応力

3.5 評価方法

残留熱除去系海水系ポンプの応力評価は、V-3-別添 2-1「火山への配慮が必要な施設の強 度計算の方針」の「5. 強度評価方法」にて設定している評価式を用いる。

- (1) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

図 3-3 降下火砕物等の堆積面積図

(b) 原動機台に常時作用する原動機自重及びポンプスラストによる軸方向荷重
 H=F_d+F_p
 ここで,

$$F_{d} = m \cdot g$$
$$F_{p} = P \cdot g$$

- b. 応力評価
- (a) 原動機台に生じる圧縮応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

$$S = \frac{\pi}{4} (B_1^2 - B_2^2)$$

原動機台の断面図を図 3-4 に示す。

図 3-4 原動機台の断面図

- (b) 原動機フレームに生じる曲げ応力
 - イ. 風荷重により原動機フレームに作用するモーメントM₁

 $M_1 = W \cdot h$

ロ. 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H\right) \cdot B_{3}}{2}$$
よって、原動機フレームに作用するモーメントMは
M=M_{1}+M_{2}
以上より、原動機フレームに生じる曲げ応力は次式により算出される。
 $\sigma_{b} = \frac{M}{Z}$
ここで

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

(c) 原動機フレームに生じる圧縮応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

ここで,
 $S = \frac{\pi}{4} (B_{3}^{2} - B_{4}^{2})$

原動機フレームの断面図を図 3-5 に示す。

図 3-5 原動機フレームの断面図

- (d) 据付面基礎ボルトに生じる引張応力, せん断応力
 - イ. 引張応力

M=2
$$\sum_{i=1}^{n}$$
F_i・L_i ... (3.1)
 $\frac{F_{i}}{L_{i}} = -定$... (3.2)
(3.1) (3.2) 式より,

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$
ここで、Mは以下による。

$$M = W \cdot h + (F_{v} + H) \cdot \frac{L_{n}}{2}$$
ここで

$$H = F_{d} + F_{p}$$

$$F_{d} = m \cdot g$$

$$F_{p} = P \cdot g$$

ボルトに生じる引張応力σ bは次式より求める。

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

ボルトに対するせん断応力は、ボルト全本数で受けるものとして計算する。 ・ せん断力

 $Q_{b} = W$

・ せん断応力

$$\tau = \frac{\mathbf{Q}_{\mathbf{b}}}{\mathbf{A}_{\mathbf{b}} \cdot \mathbf{N}}$$

据付面基礎ボルトの各ボルト間寸法の配置図を図 3-6 に示す。

図 3-6 据付面基礎ボルト*の各ボルト間寸法の配置図 注記 *:外側のボルトが据付面基礎ボルト,内側のボルトが原動機台取付ボルト

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-4 に示す。

評価対象部位	材料	温度条件 (℃)	S _y (MPa)	S _u (MPa)	F (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)	1.5 f _b (MPa)	1.5 f _c (MPa)
原動機台	SS400	50* ¹	231	394	231	—	_	—	229
原動機フレーム	SS400	60* ²	237	389	237	—	—	273	235
据付面基礎ボルト	S22C	50* ¹	260	430	260	195	150	—	_

表 4-1 許容応力評価に用いる条件

注記 *1:周囲環境温度

*2:最高使用温度

表 4-2 評価条件

q	G	С	V _D	Z _b	Z _G	F ,'
(N/m^2)	(-)	(-)	(m/s)	(m)	(m)	(N/m^2)
960	2.2	1.2	30	5	350	7565

α	
(-)	
0.15	

表 4-3 評価条件(原動機台,原動機フレーム)

オオギル	A_1	A_2	m	g	Р	B ₁
11 17	(m^2)	(m^2)	(kg)	(m/s^2)	(kg)	(mm)
SS400	8.354	5.760	15200	9.80665	4400	1680

B ₂	Вз	B ₄	h
(mm)	(mm)	(mm)	(mm)
1648	1890	1878	1365

材料	A_1 (m^2)	A_2 (m ²)	m (kg)	g (m/s^2)	P (kg)	L ₁ (mm)
5990	12 15	5.760	17200	0. 20665	4400	541.2
5220	12.10	5.700	17800	9.00000	4400	541.2
			1	1	1	٦
L ₂	L ₃	ボルト	Ν	A _b	h	
(mm)	(mm)	サイズ	(-)	(mm^2)	(mm)	
1306.6	1847.8	M42	8	1385	2279	

表 4-4 評価条件(据付面基礎ボルト)

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 各評価部位に発生する応力は、許容応力以下である。

𝔄 1 𝔅 𝔄 𝔅 𝑘 𝔅 𝑘 𝔅 𝑘 𝔅 𝑘 𝔅 𝑘 𝔅 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘 𝑘				
評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
原動機フレーム	SS400	曲げ	13	273
		圧縮	7	235
原動機台	SS400	圧縮	3	229
据付面基礎ボルト	S22C	引張	34	195
		せん断	2	150
		組合せ	34	195

表 5-1 残留熱除去系海水系ポンプの評価結果

V-3-別添 2-1-3 ディーゼル発電機用海水ポンプの強度計算書

目次

1.	概	要
2.	基	本方針
2	. 1	位置
2	. 2	構造概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	. 3	評価方針・・・・・・3
2	.4	適用規格・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	強	度評価方法・・・・・・・・・・5
3	. 1	記号の定義・・・・・・5
3	. 2	評価対象部位 · · · · · · · · · · · · · · · · · · ·
3	. 3	荷重及び荷重の組合せ・・・・・・7
3	.4	許容限界9
3	. 5	評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	評	価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	強	度評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本資料は、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」に示すとおり、非常 用ディーゼル発電機用海水ポンプ及び高圧炉心スプレイ系ディーゼル発電機用海水ポンプ(以下 「ディーゼル発電機用海水ポンプ」という。)が降下火砕物等堆積時においても、送水機能の維 持を考慮して、主要な構造部材が構造健全性を有することを確認するものである。

2. 基本方針

ディーゼル発電機用海水ポンプは、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方 針」の「3.2 機能維持の方針」に示す構造計画を踏まえ、ディーゼル発電機用海水ポンプの 「2.1 位置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格」を示す。

2.1 位置

ディーゼル発電機用海水ポンプは、V-3-別添 2-1「火山への配慮が必要な施設の強度計算 の方針」の「3.2 機能維持の方針」に示すとおり、屋外の海水ポンプ室に設置する。海水ポン プ室の位置図を図 2-1 に示す。
2.2 構造概要

ディーゼル発電機用海水ポンプは、V-3-別添2-1「火山への配慮が必要な施設の強度計算の 方針」の「3.2機能維持の方針」に示す構造計画を踏まえて、構造を設定する。

ディーゼル発電機用海水ポンプ据付面から原動機台までのポンプ部と,原動機台より上部の 原動機部からなる立形ポンプであり,同一設計の非常用ディーゼル発電機用海水ポンプ2台及 び高圧炉心スプレイ系ディーゼル発電機用海水ポンプ1台を設置している。降下火砕物等堆積 による鉛直荷重及び風(台風)の影響を直接受ける据付位置より上部のポンプの概要図を図2-2に示す。

ディーゼル発電機用海水ポンプ原動機の形状は円筒形を基本としたフレームに、主回路端子 箱等が付加された形態であり、ポンプのスラスト荷重はすべて原動機フレーム、原動機台部に 作用する構造とする。図2-3に原動機フレームが風圧力を最も多く受ける面の概要図を示し、 図2-4に降下火砕物等がディーゼル発電機用海水ポンプに最も多く堆積することが想定される 状態図を示す。

(b) 側面図

図 2-2 ディーゼル発電機用海水ポンプの概要図

2

図 2-3 風圧力を受ける面の概要図

図 2-4 降下火砕物等の堆積状態図

2.3 評価方針

ディーゼル発電機用海水ポンプの強度評価は、V-3-別添2-1「火山への配慮が必要な施設の 強度計算の方針」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷重及 び荷重の組合せ並びに許容限界を踏まえて、ポンプの評価対象部位に作用する応力が、許容限 界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す評価条件を 用いて計算し、「5. 強度評価結果」にて確認する。

ディーゼル発電機用海水ポンプの強度評価フローを図2-5に示す。ディーゼル発電機用海水 ポンプの強度評価においては、その構造を踏まえ、降下火砕物等堆積による鉛直荷重とこれに 組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を考慮し、評価対象 部位を選定する。

降下火砕物等堆積による鉛直荷重については、ポンプ上面の投影面積に対し降下火砕物等が 堆積した場合を設定する。また、風荷重は水平方向より作用する外荷重という観点で地震荷重 と同様なものであると考え、「原子力発電所耐震設計技術指針 重要度分類・許容応力編 JE AG4601・補-1984」((社)日本電気協会),「原子力発電所耐震設計技術指針 JEA G4601-1987」((社)日本電気協会)及び「原子力発電所耐震設計技術指針 JEAG4 601-1991追補版」((社)日本電気協会)(以下「JEAG4601」という。)におけ る1質点系モデルによる評価方法を準用し、V-3-別添2-1「火山への配慮が必要な施設の強度 計算の方針」の「5.強度評価方法」に示す評価式を用いる。ディーゼル発電機用海水ポンプ の許容限界は、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2許容限 界」に示す許容限界である、JEAG4601の許容応力状態Ⅲ_ASとする。

図2-5 ディーゼル発電機用海水ポンプの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 1984((社)日本電気協会)
- (4) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (6) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)

4

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機用海水ポンプの強度評価に用いる記号を表 3-1 に示す。

記号	単位	定義
A 1	m^2	風の受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物等の堆積面積
A _b	mm^2	ボルトの断面積
B 1	mm	原動機台外径
B ₂	mm	原動機台内径
B ₃	mm	原動機フレーム外径
B 4	mm	原動機フレーム内径
С	—	風力係数
E'	—	建築基準法施行令第87条第2項に規定する数値
E		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の分
L _r	_	布を表す係数
F _d	Ν	自重による軸方向荷重
F _p	Ν	ポンプスラスト荷重による軸方向荷重
F _v	Ν	降下火砕物等堆積による鉛直荷重
F v'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
£	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容圧縮
l _c		応力
£	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容せん
l s		断応力
t	MPa	JSME SSB-3121.1により規定される供用状態A及びBでの許容引張
1 t		応力
G	_	ガスト影響係数
g	m/s^2	重力加速度
ц	N	原動機台に常時作用する原動機自重及びポンプスラスト荷重による軸
П	IN	方向荷重
h	mm	取付面から荷重作用点までの距離
L ₁	mm	ボルト間の距離
М	N•mm	原動機フレームに作用するモーメント
M_1	N•mm	風荷重により原動機フレームに作用するモーメント
M 2	N•mm	鉛直荷重により原動機フレームに作用するモーメント

表 3-1 ディーゼル発電機用海水ポンプの強度評価に用いる記号(1/2)

表 3-1 ディーゼル発電機用海水ポンプの強度評価に用いる記号(2/2) 5

記号	単位	定義
m	kg	自重
Ν	—	ボルトの本数
Р	kg	ポンプスラスト荷重
q	N/m^2	速度圧
\mathbf{Q}_{b}	Ν	ボルトに対するせん断力
S	mm^2	原動機台の断面積
S _y	MPa	JSME付録材料図表 Part5の表にて規定される設計降伏点
S _u	MPa	JSME付録材料図表 Part5の表にて規定される設計引張り強さ
V _D	m/s	基準風速
W	Ν	風荷重による複合荷重
Z _b	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面粗度区分に応じて建設省告示1454号に掲げる数値
π	—	円周率
σ _c	MPa	原動機台に生じる圧縮応力
σ _b	MPa	原動機フレームに生じる曲げ応力
τ	MPa	せん断応力

3.2 評価対象部位

ディーゼル発電機用海水ポンプの評価対象部位は、V-3-別添 2-1「火山への配慮が必要な 施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って、原動機台、 原動機フレーム及び据付面基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及 び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する原動機上部を介して支 持している原動機フレーム及び原動機台下部に作用する。また,風荷重は,原動機フレームを 介して原動機台に固定されている原動機フレーム及び据付面基礎ボルトに作用する。さらに, ポンプのスラスト荷重は全て原動機フレーム,原動機台に作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては原動機台及び原動機フレームを, 風荷重に対しては原動機フレーム及び据付面基礎ボルトを評価対象部位とする。

ディーゼル発電機用海水ポンプの強度評価における評価対象部位を,図 3-1 に示す。

図 3-1 ディーゼル発電機用海水ポンプの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、V-3-別添 2-1「火山への配慮が必要な施設の 強度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用い る。

(1) 荷重の設定

ディーゼル発電機用海水ポンプの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は,原動機の自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v)
 単位面積当たりの降下火砕物等堆積による鉛直荷重は、7565 N/m²とする。
- c. 風荷重(W)

風荷重は、基準風速 30 m/s に基づき算定する。

風荷重はV-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.1(3)c. 水平荷重」に示す式に従い、算出する。全高Hが5 m以下であるため、HがZ_b以下の場 合の式を用いる。

評価に用いる複合荷重は原動機フレーム,主回路用端子箱に風圧力を受けた際の複合荷 重とする。

風荷重を受ける面積は原動機フレーム,主回路用端子箱を包含する面積を設定し,風荷 重による複合荷重Wは以下のようにして求める。

7

$$W = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$
$$E_{r} = 1.7 \cdot (Z_{b}/Z_{G})^{2}$$

図 3-2 原動機フレーム及び主回路用端子箱受圧部図

d. 運転時の状態で作用する荷重(F_p)

運転時の状態で作用する荷重は,鉛直下向きに働くポンプスラスト荷重を考慮する。 (2) 荷重の組合せ

強度評価に用いる荷重の組合せは,残留熱除去系海水系ポンプの評価対象部位ごとに 設定する。

ディーゼル発電機用海水ポンプには,自重,降下火砕物等堆積による鉛直荷重,風荷重 及びポンプスラスト荷重が作用する。

ディーゼル発電機用海水ポンプの強度評価にて考慮する荷重の組合せを表 3-2 に示す。

施設名称	評価対象部位	荷重
	原動機台	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③ポンプスラスト荷重
ディーゼル発電機用海水ポンプ	原動機フレーム	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 ④ポンプスラスト荷重
	据付面基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 ④ポンプスラスト荷重

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機用海水ポンプの許容限界は、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、JEAG4601に 基づき許容応力状態ⅢASの許容応力を用いる。

ディーゼル発電機用海水ポンプの許容限界は、JEAG4601を準用し、「クラス2,3支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全機能を維持できるように弾性設計とするため、許容応力状態Ⅲ_ASから算出した以下の許容応力を許容限界とする。JEAG4601に従い、JSME付録材料図表Part5,6の表にて許容応力を評価する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJSME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付録材料図表Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を用いるものとする。

ディーゼル発電機用海水ポンプの許容限界を表 3-3 に示す。

評価対象部位	許容応力 状態	応力	の種類	許容限界
原動機台	III _A S	一次 応力	圧縮	1.5 f $_{\rm c}$ *
百動地フレール	шс	一次 応力	曲げ	1.5 f $_{\rm b}$ *
原動機ノレーム	III A S		圧縮	1.5 f $_{\rm c}$ *
	III _A S	一次応力	引張	1.5 f $_{\rm t}$ *
据付面基礎ボルト			せん断	1.5 f _s *
			組合せ	Min {1.5 f t *, (2.1 f t *-1.6 τ) }

表 3-3 ディーゼル発電機用海水ポンプの許容限界

注記 *: JSME SSB-3120 に規定される供用状態Cに対する許容応力算定に用いる応力

3.5 評価方法

ディーゼル発電機用海水ポンプの応力評価は、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「5.強度評価方法」にて設定しているディーゼル発電機用海水ポンプの評価式を用いる。

- (1) 評価方法
 - a. 鉛直方向荷重
 - (a) 降下火砕物堆積による鉛直荷重

 $F_V = F_V \cdot A_1$

図 3-3 降下火砕物等の堆積面積図

(b) 原動機台に常時作用する原動機自重及びポンプスラストによる軸方向荷重
 H=F_d+F_p
 ここで,
 F_d=m・g

$$F_p = P \cdot g$$

- b. 応力評価
- (a) 原動機台に生じる圧縮応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

$$\Xi \equiv \overline{C},$$

$$S = \frac{\pi}{4} (B_1^2 - B_2^2)$$

原動機台の断面図を図 3-4 に示す。

図 3-4 原動機台の断面図

- (b) 原動機フレームに生じる曲げ応力
 - イ. 風荷重により原動機フレームに作用するモーメントM₁

 $M_1\!=\!W\boldsymbol{\cdot} h$

ロ. 鉛直荷重により原動機フレームに作用するモーメントM2

$$M_{2} = \frac{\left(F_{v} + H\right) \cdot B_{3}}{2}$$
よって、原動機フレームに作用するモーメントMは
M=M_{1} + M_{2}
以上より、原動機フレームに生じる曲げ応力は次式により算出される。
 $\sigma_{b} = \frac{M}{Z}$
ここで

$$Z = \frac{\pi}{32} \left(\frac{B_{3}^{4} - B_{4}^{4}}{B_{3}} \right)$$

(c) 原動機フレームに生じる圧縮応力

$$\sigma_{c} = \frac{F_{v} + H}{S}$$

ここで,

$$S = \frac{\pi}{4} (B_3^2 - B_4^2)$$

原動機フレームの断面図を図 3-5 に示す。

図 3-5 原動機フレームの断面図

12

(d) 据付面基礎ボルトに生じる引張応力, せん断応力 イ. 引張応力

$$M=2\sum_{i=1}^{n} F_{i} \cdot L_{i} \quad \cdots \quad (3.1)$$
$$\frac{F_{i}}{L_{i}}=-\overleftarrow{E} \quad \cdots \quad (3.2)$$

(3.1) (3.2) 式より,

$$F_{n} = \frac{M}{2\sum_{i=1}^{n} L_{i}^{2}} L_{n}$$
ここで、Mは以下による。

$$M = W \cdot h + (F_{v} + H) \cdot \frac{L_{n}}{2}$$
ここで

$$H = F_{d} + F_{p}$$

$$F_{d} = m \cdot g$$

$$F_{p} = P \cdot g$$

ボルトに生じる引張応力 σ b は次式より求める。

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

ボルトに対するせん断応力は、ボルト全本数で受けるものとして計算する。 ・ せん断力

- $Q_{b} = W$
- ・ せん断応力

$$\tau = \frac{\mathbf{Q}_{\mathbf{b}}}{\mathbf{A}_{\mathbf{b}} \cdot \mathbf{N}}$$

据付面基礎ボルトの各ボルト間寸法の配置図を図 3-6 に示す。

4×M36 (据付面基礎ボルト)

4. 評価条件

「3. 強度評価方法」に用いる評価条件を表 4-1~表 4-4 に示す。

評価対象部位	材料	温度条件 (℃)	S _y (MPa)	S _u (MPa)	F (MPa)	1.5 f _t (MPa)	1.5 f _s (MPa)	1.5 f _b (MPa)	1.5 f _c (MPa)
原動機台	SS400	50^{*1}	241	394	241	—	—	—	240
原動機フレーム	SS400	95^{*2}	223	374	223	—	—	257	222
据付面基礎ボルト	S20C	50^{*1}	241	391	241	180	139	_	_

表 4-1 許容応力評価に用いる条件

注記 *1:周囲環境温度

*2:最高使用温度

表 4-2 評価条件

q	G	С	V _D	Z _b	Z _G	F _v '
(N/m^2)	(-)	(-)	(m/s)	(m)	(m)	(N/m^2)
960	2.2	1.2	30	5	350	7565

α	
(-)	
0.15	

表 4-3 評価条件(原動機台,原動機フレーム)

林水米山	A_1	A_2	m	g	Р	B ₁
141 141	(m^2)	(m^2)	(kg)	(m/s^2)	(kg)	(mm)
SS400	1.138	1.690	1230	9.80665	900	1100

B ₂	B ₃	B 4	h
(mm)	(mm)	(mm)	(mm)
1076	449	425	490.5

材料	A 1 (m ²)	A 2 (m ²)	m (kg)	g (m/s²)	P (kg)	L 1 (mm)
S20C	2.789	1.690	2130	9.80665	900	1200

表 4-4 評価条件(据付面基礎ボルト)

ボルト	Ν	A _b	h
サイズ	(-)	(mm^2)	(mm)
M36	4	1018	1126

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。 各評価部位に発生する応力は,許容応力以下である。

評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
百動搬フレール	55400	曲げ	5	257
原動機ノレーム	55400	圧縮	3	222
原動機台	SS400	圧縮	1	240
		引張	12	180
据付面基礎ボルト	S20C	せん断	1	139
		組合せ	12	180

表 5-1 ディーゼル発電機用海水ポンプの評価結果

V-3-別添 2-1-6 ディーゼル発電機室ルーフベントファンの強度計算書

1.	概要1
2.	基本方針1
2.	1 位置1
2.1	2 構造概要2
2.	3 評価方針
2.	4 適用規格4
3.	強度評価方法
3.	1 記号の定義
3. 2	2 評価対象部位
3.	3 荷重及び荷重の組合せ7
3.	4 許容限界9
3.	5 評価方法10
4.	評価条件15
5.	強度評価結果

目次

1. 概要

本資料は、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」に示すとおり、非常 用ディーゼル発電機室ルーフベントファン及び高圧炉心スプレイ系ディーゼル発電機室ルーフベ ントファン(以下「ディーゼル発電機室ルーフベントファン」という。)が降下火砕物堆積時に おいても、その施設の機能維持を考慮して、主要な構造部材が構造健全性を有することを確認す るものである。

2. 基本方針

ディーゼル発電機室ルーフベントファンは、V-3-別添 2-1「火山への配慮が必要な施設の強度 計算書の方針」の「3.2 機能維持の方針」に示す構造計画を踏まえ、ディーゼル発電機室ルーフ ベントファンの「2.1 位置」、「2.2 構造概要」、「2.3 評価方針」及び「2.4 適用規格」を示 す。

2.1 位置

ディーゼル発電機室ルーフベントファンは、V-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」に示すとおり、屋外の図 2-1 に示す位置に設置する。

図 2-1 ディーゼル発電機室ルーフベントファン 位置図

2.2 構造概要

ディーゼル発電機室ルーフベントファンは、V-3-別添 2-1「火山への配慮が必要な施設の強 度計算の方針」の「3.2機能維持の方針」に示す構造計画を踏まえ、構造を設定する。

ディーゼル発電機室ルーフベントファンは据付面からケーシング部とケーシング部より上 部の吐出フードからなる軸流ファンであり,同一構造のディーゼル発電機室ルーフベントファ ンを非常用ディーゼル発電機2C室用,非常用ディーゼル発電機2D室用及び高圧炉心スプレ イ系ディーゼル発電機室用にそれぞれ2台,計6台を屋外に設置している。

ファンの概要図を図 2-2 に示す。

図 2-2 ディーゼル発電機室ルーフベントファンの概要図

2.3 評価方針

ディーゼル発電機室ルーフベントファンの強度評価は、V-3-別添2-1「火山への配慮が必要施設の強度に関する説明書」の「4. 荷重及び荷重の組合せ並びに許容限界」にて設定している、荷重及び荷重の組合せ並びに許容限界を踏まえて、ディーゼル発電機室ルーフベントファンの評価対象部位に作用する応力が許容限界に収まることを「3. 強度評価方法」に示す方法により、「4. 評価条件」に示す評価条件を用いて計算し、「5. 強度評価結果」にて確認する。

ディーゼル発電機室ルーフベントファンの強度評価フローを図2-3に示す。ディーゼル発電 機室ルーフベントファンの強度評価においては、その構造を踏まえ、降下火砕物等堆積による 鉛直荷重とこれに組み合わせる荷重(以下「設計荷重」という。)の作用方向及び伝達過程を 考慮し、評価対象部位を選定する。

降下火砕物等堆積による鉛直荷重については、ディーゼル発電機室ルーフベントファン上面の投影面積に対し降下火砕物等が堆積した場合を設定する。また、風荷重は水平方向より作用する外荷重という観点で地震荷重と同様なものであると考え、「原子力発電所耐震設計技術指針」EAG4601・補-1984」((社)日本電気協会)、「原子力発電所耐震設計技術指針」EAG4601-1987」((社)日本電気協会)及び「原子力発 電所耐震設計技術指針」EAG4601-1987」((社)日本電気協会)及び「原子力発 電所耐震設計技術指針」JEAG4601-1991追補版」((社)日本電気協会)(以下「J EAG4601」という。)における1質点系モデルによる評価方法を準用し、V-3-別添2-1 「火山への配慮が必要な施設の強度計算の方針」の「5.強度評価方法」に示すディーゼル発 電機室ルーフベントファンの評価式を用いる。ディーゼル発電機室ルーフベントファンの許容 限界は、V-3-別添2-1「火山への配慮が必要な施設の強度計算の方針」の「4.2許容限界」に 示す許容限界である、JEAG4601の許容応力状態ⅢASとする。

図2-3 ディーゼル発電機室ルーフベントファンの強度評価フロー

2.4 適用規格

適用する規格,基準等を以下に示す。

- (1) 建築基準法及び同施行令
- (2) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (3) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社)日本電気協会)
- (4) 原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1991追補版((社)日本電気協会)
- (6) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機械学会)(以下「JSME」という。)

3. 強度評価方法

3.1 記号の定義

ディーゼル発電機室ルーフベントファンの強度評価に用いる記号を表3-1に示す。

記号	単位	定義
а	mm	天板の短辺
A 1	m^2	受圧面積(風向に垂直な面に投影した面積)
A_2	m^2	降下火砕物の堆積面積
A _b	mm^2	ボルトの軸断面積
B 1	mm	ケーシング外径
B ₂	mm	ケーシング内径
С	_	建築物荷重指針・同解説により規定される風力係数
С	mm	補強ピッチ
E'	_	建築基準法施行令第87条第2項に規定する数値
E		建設省告示第1454号の規定によって算出した平均風速の高さ方
E _r	_	向の分布を表す係数
F	MPa	JSME SSB-3121.1(1)により規定される値
Fь	Ν	ボルトに対する引張力
F _d	Ν	常時作用する荷重
F i	Ν	各ボルトに作用する引張力
F _v	Ν	降下火砕物等堆積による鉛直荷重
F _v '	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
£	MDe	J SME SSB-3121.1により規定される供用状態A及びBでの許
Гь	MPa	容曲げ応力
£	MDe	J SME SSB-3121.1により規定される供用状態A及びBでの許
lс	MPa	容圧縮応力
f	MDo	J SME SSB-3121.1により規定される供用状態A及びBでの許
I s	MI a	容せん断応力
f	MPa	J SME SSB-3121.1により規定される供用状態A及びBでの許
I t	MI a	容引張応力
G	—	ガスト影響係数
g	m/s^2	重力加速度(g=9.80665)
h	mm	全高
h t	mm	天板厚さ
$L_1 \sim L_7$	mm	支点と評価ボルト間の距離

表3-1 ディーゼル発電機室ルーフベントファンの強度評価に用いる記号(1/2)

記号	単位	定義
L i	mm	各ボルト間の距離
М	N•mm	ファンに作用するモーメント
m	kg	質量
Ν	—	ボルトの本数
р	N/mm^2	天板に作用する等分布荷重
Q _b	Ν	ボルトに対するせん断力
q	N/m^2	設計用速度圧
S	mm^2	ケーシングの断面積
S _u	MPa	JSME付録材料図表Part5の表にて規定される設計引張強さ
S y	MPa	JSME付録材料図表Part5の表にて規定される設計降伏点
V D	m/s	基準風速
W _b	Ν	風荷重による複合荷重
Z _b	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
Z _G	m	地表面祖度区分に応じて建設省告示1454号に掲げる数値
β	—	天板の最大応力の係数
π	—	円周率
σь	MPa	ボルトに生じる引張応力
σс	MPa	ケーシングに生じる圧縮応力
τ	MPa	ボルトに生じるせん断応力

表3-1 ディーゼル発電機室ルーフベントファンの強度評価に用いる記号(2/2)

3.2 評価対象部位

ディーゼル発電機室ルーフベントファンの評価対象部位は、V-3-別添 2-1「火山への配慮が 必要な施設の強度計算の方針」の「4.2 許容限界」にて示している評価対象部位に従って、吐 出フード天板、ケーシング、吐出フード取付ボルト及び基礎ボルトとする。

評価対象部位は、「2.2 構造概要」にて設定している構造に基づき、設計荷重の作用方向及 び伝達過程を考慮し設定している。

降下火砕物等堆積による鉛直荷重は,最も多く降下火砕物が堆積する吐出フード上部を介し て支持している吐出フード及びケーシングに作用する。また,風荷重は吐出フード及びケーシ ングを介してケーシングに固定されている吐出フード取付ボルト及び基礎ボルトに作用する。

このことから,降下火砕物等堆積による鉛直荷重に対しては吐出フード天板及びケーシング を,また,風荷重により発生する応力は,支持断面積の小さな部位に大きな応力が生じること から,支持断面積の小さい吐出フード取付ボルト及び基礎ボルトを評価対象部位として選定す る。

なお,吐出フード天板は,板材としてはフランジ部を境界に天板部と先端部に分かれるが, 天板部の方が面積が大きく,降下火砕物等による鉛直荷重に対し発生応力が大きくなること及 びフランジ以降の先端部は防雨が目的であり,仮に変形が生じてもファンの排気機能に直接影 響を与えないことから,先端部は吐出フード天板には含めない。

吐出フードの強度評価における評価対象部位を図 3-1 に示す。

図 3-1 ディーゼル発電機室ルーフベントファンの評価対象部位

3.3 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは、V-3-別添 2-1「火山への配慮が必要な施設の強 度計算の方針」の「4.1 荷重及び荷重の組合せ」に示している荷重及び荷重の組合せを用いる。

7

(1) 荷重の設定

ディーゼル発電機室ルーフベントファンの強度評価に用いる荷重を以下に示す。

- a. 常時作用する荷重(F_d)
 常時作用する荷重は、ファンの自重を考慮する。
- b. 降下火砕物等堆積による鉛直荷重(F_v) 単位面積当たりの降下火砕物等堆積による鉛直荷重は、7565 N/m²とする。
- c. 風荷重 (W)

風荷重は、基準風速 30 m/s に基づき算定する。

風荷重はV-3-別添 2-1「火山への配慮が必要な施設の強度計算の方針」の「4.1(3)c.水 平荷重」に示す式に従い、算出する。全高Hが5 m以下であるため、HがZ b以下の場合 の式を用いる。

評価に用いる複合荷重は吐出フード,ケーシングに風圧力を受けた際の複合荷重とする。 風荷重を受ける面積は吐出フード,ケーシングを包含する面積を設定し,風荷重による 複合荷重Wは以下のようにして求める。

$$W = q \cdot C \cdot A_{1}$$

$$\Xi \equiv \overline{C}$$

$$q = 0.6 \cdot E' \cdot V_{D}^{2}$$

$$E' = E_{r}^{2} \cdot G$$

$$E_{r} = 1.7 \cdot (Z_{b}/Z_{G})^{\alpha}$$

d. 運転時の状態で作用する荷重(F_p)

ディーゼル発電機室ルーフベントファンは,完全開放された施設であるため,内圧によ る荷重は考慮しない。

(2) 荷重の組合せ

強度評価に用いる荷重の組合せは、ディーゼル発電機室ルーフベントファンの評価対象部 位ごとに設定する。

ディーゼル発電機室ルーフベントファンには,自重,降下火砕物等堆積による鉛直荷重及 び風荷重が作用する。

ディーゼル発電機室ルーフベントファンの強度評価にて考慮する荷重の組合せを表 3-2 に 示す。

8

施設名称	評価対象部位	荷重		
	吐出フード天板	 ①自重 ②降下火砕物等堆積による鉛直荷重 		
	ケーシング	 ①自重 ②降下火砕物等堆積による鉛直荷重 		
ディーゼル発電機室ルーフ ベントファン	吐出フード取付 ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 		
	基礎ボルト	 ①自重 ②降下火砕物等堆積による鉛直荷重 ③風荷重 		

表 3-2 荷重の組合せ

3.4 許容限界

ディーゼル発電機室ルーフベントファンの許容限界は、V-3-別添 2-1「火山への配慮が必要 な施設の強度計算の方針」の「4.2 許容限界」にて設定している許容限界に従って、「3.2 評 価対象部位」にて設定している評価対象部位ごとに、機能損傷モードを考慮し、JEAG46 01に基づき許容応力状態ⅢASの許容応力を用いる。

ディーゼル発電機室ルーフベントファンの許容限界は、吐出フード天板に対しては弾性範囲 である設計降伏点とし、それ以外の評価対象部位についてはJEAG4601を準用し、「ク ラス2,3支持構造物」の許容限界を適用する。設計荷重に対して、当該施設に要求される安全 機能を維持できるように弾性設計とするため、許容応力状態IIIASから算出した以下の許容応 力を許容限界とする。JEAG4601に従い、JSME付録材料図表 Part5,6の表にて許容 応力を評価する際は、評価対象部位の周囲環境温度に応じた値をとるものとするが、温度がJ SME付録材料図表記載の中間の値の場合は、比例法を用いて評価する。ただし、JSME付 録材料図表 Part5,6で比例法を用いる場合の端数処理は、小数点第1位以下を切り捨てた値を 用いるものとする。

ディーゼル発電機室ルーフベントファンの許容限界を表 3-3 に示す。

				-
評価対象部位	許容応力 状態	応力の種類		許容限界
吐出フード天板	III _A S	一次応力	曲げ	S _y
ケーシング	III _A S	一次応力	圧縮	$1.5 f_c$
吐出フード取付			引張	$1.5 f_t$
ボルト, 基礎ボ	III _A S	一次応力	せん断	1.5fs
ルト			組合せ	Min {1.5 f _t , (2.1 f _t -1.6 τ) }

表 3-3 ディーゼル発電機室ルーフベントファンの許容限界

3.5 評価方法

ディーゼル発電機室ルーフベントファンの応力評価は、V-3-別添 2-1「火山への配慮が必要 な施設の強度計算の方針」の「5.強度評価方法」にて設定しているディーゼル発電機室ルーフ ベントファンの評価式を用いる。

(1) 評価方法

a. 鉛直方向荷重

(a) 降下火砕物等堆積による鉛直荷重

 $F_v = F_v' \cdot A_2$

降下火砕物等の堆積面積図を図 3-2 に示す。

図3-2 降下火砕物等の堆積面積図(ファンを上面から見た図)

b. 計算モデル

ファンの計算モデルは1質点モデルとし、ファンの上端に風荷重が作用することとする。受圧面積を含めたファンモデル図を図3-3に、基礎ボルト配置図及び吐出フード取付ボルト配置図を図3-4、図3-5に示す。

図 3-3 ファンモデル図

図 3-4 基礎ボルト配置図

図 3-5 吐出フード取付ボルト配置図

- c. 計算方法
 - (a) 吐出フード天板部に対する応力評価

吐出フード天板については, 吐出フード天板の端部から吐出フードフランジまでの 四辺固定の長方形板として評価を行う。なお, 評価用の面積としては, 保守的に吐出 フード曲がり部を平面とみなして評価を行う。

吐出フード天板の評価範囲図を図 3-6 に,評価用面積図を図 3-7 に示す。

図3-6 吐出フード天板の評価範囲図(吐出フードを上面から見た図)

図3-7 吐出フード天板の評価用面積図(吐出フードを側面から見た図)

鉛直荷重により吐出フード天板部に作用する最大曲げ応力 σ_{max}は次による。

$$\sigma_{\max} = \beta \cdot \frac{\mathbf{p} \cdot \mathbf{a}^2}{\mathbf{h}_{t}^2}$$

(b) ケーシングに対する応力評価
ケーシングに生じる圧縮応力
$$\sigma_{c} = \frac{F_{v} + F_{d}}{S}$$

ここで,
 $S = \frac{\pi}{4} (B_{1}^{2} - B_{2}^{2})$
ケーシングの断面図を図 3-7 に示す。

図 3-8 ケーシングの断面図

- (c) 基礎ボルト, 吐出フード取付ボルトに対する応力評価
- イ. 引張応力

$$\sigma_{\rm b} = \frac{F_{\rm n}}{A_{\rm b}}$$

ロ. せん断応力

ボルトに対するせん断応力は、ボルト全本数で受けるものとして計算する。

- せん断力
 Q_b=W_w
- ・ せん断応力

$$\tau = \frac{\mathbf{Q}_{b}}{\mathbf{A}_{b} \cdot \mathbf{N}}$$

4. 評価条件

「3. 強度評価方法】に用いる評価条件を表 4-1 から表 4-6 に示す。

款 /亚头在:如/去	材料	温度条件	S y	S _u	F	1.5 f $_{\rm t}$	$1.5~f_{\rm s}$	1.5 f $_{\rm c}$
評個对家前迎		(°C)*	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
吐出フード天板	SS400	50	241		—	—	—	_
ケーシング	SS400	50	241	394	241	—	—	240
吐出フード取付	55400	50	091	204	991	179	199	
ボルト	33400	50	201	394	231	175	100	
基礎ボルト	SS400	50	231	394	231	173	133	_

表 4-1 許容応力評価に用いる条件(ディーゼル発電機ルーフベントファン)

注記 *:周囲環境温度

表 4-2 評価条件

	C	ケーシングの	吐出フードの	ケーシングの	吐出フードの			
q	G	風力係数C	風力係数C	受圧面積 A_1	受圧面積 A_1			
(N/m ⁻)	(-)	(-)	(-)	(m^2)	(m ²)			
960	2.2	1.2	2.4	1.980	3.514			

表 4-3 評価条件(吐出フード天板)

β	p	a	h _t
(-)	(N/mm²)	(mm)	(mm)
0.45	8.258×10^{-3}	1557	9

表 4-4 評価条件 (ケーシング)

B 1	B 2	m
(mm)	(mm)	(kg)
1418	1400	2440

L ₁	L ₂	L ₃	L ₄	L ₅	L 6
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
118.7	338.0	624.6	934.8	1221.4	1440.7
L ₇	g	m	ボルト	Ν	A _b
(mm)	(m/s^2)	(kg)	サイズ	(-)	(mm^2)
1559.4	9.80665	2440	M24	16	452.4

表 4-5 評価条件(基礎ボルト)

h	
(mm)	
2812	

表 4-6 評価条件(吐出フード取付ボルト)

L ₁	L ₂	L ₃	g	m	ボルト
(mm)	(mm)	(mm)	(m/s^2)	(kg)	サイズ
403.2	973.4	1376.6	9.80665	1500	M16

Ν	A _b	h
(-)	(mm^2)	(mm)
8	201.1	1612

5. 強度評価結果

降下火砕物等堆積時の強度評価結果を表 5-1 に示す。

吐出フード天板,ケーシング,基礎ボルト,吐出フード取付ボルトに発生する応力は許容応力 以下である。

評価部位	材料	応力	発生応力 (MPa)	許容応力 (MPa)
吐出フード天板	SS400	曲げ	112	241
ケーシング	SS400	圧縮	2	240
基礎ボルト	SS400	引張	16	173
		せん断	2	133
		組合せ	16	173
吐出フード取付 ボルト	SS400	引張	47	173
		せん断	6	133
		組合せ	47	173

表 5-1 ディーゼル発電機ルーフベントファンの強度評価結果

V-3-別添 2-2 防護対策施設の強度計算の方針
1.	概要1
2.	強度評価の基本方針1
2.	.1 対象施設
3.	構造強度設計1
3.	.1 構造強度の設計方針1
3.	.2 機能維持の方針2
4.	荷重及び荷重の組合せ並びに許容限界4
4.	.1 荷重及び荷重の組合せ4
4.	.2 許容限界
5.	强度評価方法9
5.	.1 防護対策施設
6.	適用規格15

目次

1. 概要

本資料は、「実用発電用原子炉及びその附属施設の技術基準に関する規則」第7条及び「実用 発電用原子炉及びその附属施設の技術基準に関する規則の解釈」に適合する設計とするため、V -1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-4-3 「降下火砕物の影響を考慮する施設の設計方針」(以下「V-1-1-2-4-3」という。)に設定して いる降下火砕物の影響を考慮する施設を防護する防護対策施設が、降下火砕物に対して構造健全 性を維持することを確認するための強度評価方針について説明するものである。

強度評価は、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」の うちV-1-1-2-4-1「火山への配慮に関する基本方針」(以下「V-1-1-2-4-1」という。)に示す 適用規格を用いて実施する。

防護対策施設に実施する具体的な計算の方法及び結果は、V-3-別添2-2-1「防護対策施設の強 度計算書」に示す。

2. 強度評価の基本方針

強度評価は、「3.構造強度設計」に示す防護対象施設を防護する防護対策施設を対象として、 「4.1 荷重及び荷重の組合せ」で示す降下火砕物による荷重と組み合わすべき他の荷重による組 合せ荷重により生じる応力等が、「4.2 許容限界」で示す許容限界内にあることを、「5.強度評 価方法」で示す評価方法及び考え方を使用し、「6.適用規格」で示す適用規格を用いて確認する。

2.1 対象施設

V-1-1-2-4-3「降下火砕物の影響を考慮する施設の設計方針」の「4. 要求機能及び性能目標」 に基づき,以下の防護対象施設に施す防護対策施設を対象とする。

·中央制御室換気系冷凍機

3. 構造強度設計

V-1-1-2-4-1で設定している降下火砕物特性に対し、「3.1 構造強度の設計方針」で設定している構造物への荷重を考慮する施設が、構造強度設計上の性能目標を達成するよう、V-1-1-2-4-3の「5. 機能設計」で設定している中央制御室換気系冷凍機が有する機能を維持するために、防護対策施設の構造強度の設計方針を設定する。

防護対策施設の構造強度の設計方針を設定し、想定する荷重及び荷重の組合せを設定し、それ らの荷重に対し、各施設の構造強度を保持するよう構造設計と評価方針を設定する。

3.1 構造強度の設計方針

防護対策施設は、中央制御室換気系冷凍機へ降下火砕物の堆積を防止するものであり、V-1-1-2-4-3の「4.要求機能及び性能目標」で設定している中央制御室換気系冷凍機の構造強度設 計上の目標を踏まえ、防護鋼板、架構及び基礎ボルトで構成し、次に示す設計とする。

防護対策施設は、防護鋼板,架構及び基礎ボルトで構成し、コンクリート基礎に基礎ボルト で固定する設計とする。

想定する降下火砕物及び積雪による荷重に対しは、最も多く降下火砕物が堆積し、防護鋼板

144

を支持する架構及び基礎ボルトに伝達する構造とする。また、風荷重は、架構及び基礎ボルト に作用する。防護対策施設の構造計画を表 3-2 に示す。

3.2 機能維持の方針

V-1-1-2-4-3「4. 要求機能及び性能目標」で設定している防護対象施設の構造強度上の設計 目標を達成するために、「3.1 構造強度の設計方針」に示す構造を踏まえV-1-1-2-4-1 の 「2.1.3 (2)荷重の組合せ及び許容限界」で設定している荷重を適切に考慮して、防護対策施設 の構造設計及びそれを踏まえた評価方針を設定する。

(1) 防護対策施設

a. 構造設計

防護対策施設は、「3.1 構造強度の設計方針」で設定している設計方針及びV-1-1-2-4-1の「2.1.3(2)荷重の組合せ及び許容限界」で設定する荷重を踏まえ、以下の構造と する。

防護対策施設は、防護鋼板及び架構で構成し、防護対象施設を取り囲むように設置す ることで、中央制御室換気系冷凍機に降下火砕物が堆積することを防止する。

降下火砕物が中央制御室換気系冷凍機に堆積することを防止するため,防護鋼板は構造健全性を維持する設計とする。防護鋼板を支持する架構は,鋼材より構成され,施設の外殻に作用する荷重及び防護鋼板からの荷重を支持する構造とする。また,架構に作用する荷重は,基礎ボルトを介して原子炉建屋躯体に伝達する構造とする。

防護対策施設の構造計画を表 3-1 に示す。

b. 評価方針

防護対策施設は、想定する降下火砕物及び積雪荷重に対し、荷重の作用する部位及び 荷重が伝達する部位を踏まえて、防護鋼板及び架構がおおむね弾性状態に留まることを 計算により確認する。評価方法としては、「5.強度評価方法」に示すとおり、評価式 により算出した応力を基に評価を行う。

表 3-1 防護対策施設の構造計画

- 4. 荷重及び荷重の組合せ並びに許容限界
- 4.1 荷重及び荷重の組合せ

対象施設の強度評価にて考慮する荷重及び荷重の組合せは、V-1-1-2-4-1の「2.1.3(2) 荷 重の組合せ及び許容限界」を踏まえ、以下のとおり設定する。

- (1) 荷重の種類
 - a. 常時作用する荷重(F_d)

常時作用する荷重は、持続的に生じる荷重であり、自重及び上載荷重とする。

- b. 降下火砕物による荷重(F_v)
 降下火砕物による荷重は、湿潤密度 1.5 g/cm³の降下火砕物が 50 cm 堆積した 7355 N/m³ とする。
- c. 積雪荷重 (F_s)

積雪深は、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」 のうち、V-1-1-2-1-1「発電用原子炉施設の自然現象等による損傷の防止に関する基本方 針」(以下「V-1-1-2-1-1」という。)の「4.1(4)自然現象の組合せの方針」に示す組み 合わせる積雪深を踏まえて、茨城県建築基準法等施工細則(昭和45年3月9日茨城県規 則第9号)による東海村の垂直積雪量30cmに平均的な積雪荷重を与えるための係数0.35 を考慮した10.5 cmに設定し210 N/m²の荷重とする。

d. 風荷重(W)

風速は、V-1-1-2-1-1の「4.1(4) 自然現象の組合せの方針」に示す組み合わせる風速 を踏まえて、建築基準法施行令に基づく平成12年建設省告示第1454号に定められた東海 村の基準風速である30 m/s とする。風荷重については、施設の形状より風力係数が異なる ため、施設ごとに算出する。

- e. 運転時に作用する荷重(F_p) 運転時の状態で作用する荷重は,配管等に作用する内圧等であり,防護対策施設には作 用しないため考慮しない。
- (2) 荷重の組合せ
 - a. 降下火砕物による荷重,積雪荷重及び風荷重の組合せ

降下火砕物による荷重,積雪荷重及び風荷重については,それらの組合せを考慮し,自 然現象の荷重として扱う。自然現象の荷重は短期荷重として扱う。

b. 防護対策施設の荷重の組合せ

防護対策施設の荷重の組合せについては,自然現象の荷重及び常時作用する荷重を組み 合せる。

防護対策施設の荷重の考え方を表4-1に示す。

			荷重					
廿左∋九	強度評価の 対象部位	常時作用する 荷重(F _d)		降下水砕物	積雪	岡	運転時の状	
分類		自重	上載 荷重	は による荷重 (F _v)	荷重 (F _s)	荷重 (W)	態で作用す る荷重等 (F _p)	
防護対策施設	防護鋼板	0	0	0	0	_*	_	
	架構	0	0	0	0	0*	_	
	基礎ボルト	0	0	0	0	0*	_	

表 4-1 荷重の組合せ

注記 *:水平設置の防護鋼板の評価においては、風荷重の影響が少ないため考慮しない。た だし、架構及び基礎ボルトの評価においては、防護鋼板を受圧面積に含める。 (3) 荷重の算定方法

「4.1(1) 荷重の種類」で設定している荷重のうち,「4.1(2)a.降下火砕物による荷 重,積雪荷重及び風荷重の組合せ」で設定している自然現象の荷重の鉛直荷重及び水平荷 重の算出式を以下に示す。

a. 記号の定義

荷重の算出に用いる記号を表 4-2 に示す。

表 4-2 荷重の算出に用いる記号

記号	単位	定義
А	m^2	風の受圧面積(風向に垂直な面に投影した面積)
С	_	風力係数
E'	_	建築基準法施行令第 87 条第 2 項に規定する数値
Б		建設省告示第 1454 号の規定によって算出した平均風速の高さ方向の
E r	—	分布を表わす係数
F _v	N/m^2	湿潤状態の降下火砕物による荷重
F _s	N/m^2	積雪荷重
Fv'	N/m^2	単位面積当たりの降下火砕物等堆積による鉛直荷重
f s	N/(m ² · cm)	建築基準法施行令に基づき設定する積雪の単位荷重
G	—	ガスト影響係数
g	m/s^2	重力加速度
Н	m	全高
H _v	m	降下火砕物の層厚
Нs	cm	積雪深
q	N/m^2	設計用速度圧
V D	m/s	基準風速
W	Ν	風荷重
Z _b	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ZG	m	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
α	—	地表面粗度区分に応じて建設省告示第 1454 号に掲げる数値
ρ	Kg/cm^3	降下火砕物の湿潤密度

b. 鉛直荷重

鉛直荷重については,湿潤状態の降下火砕物及び積雪を考慮する。 湿潤状態の降下火砕物による荷重は,次式のとおり算出する。

 $F_v = \rho \cdot g \cdot H_v$

積雪荷重は、次式のとおり算出する。

 $F_s = 0.35 \cdot f_s \cdot H_s$

表 4-3 に入力条件を示す。

表 4-3 入力条件

ρ	G	H s	f s	H s
(kg/m^3)	(m/s^2)	(m)	$(N/(m^2 \cdot cm))$	(cm)
1500	9.80665	0.5	20	10.5

上記式より, Fv=7355 N/m², Fs=210 N/m²である。

湿潤状態の降下火砕物に積雪を踏まえた鉛直荷重(以下「降下火砕物等堆積による鉛 直荷重」という。)は、次式のとおり算出する。

 $F_{v} = F_{v} + F_{s}$

以上より, F_v'=7565 N/m²とする。

c. 水平荷重

水平荷重については、風を考慮する。風速を建築基準法施行令の基準風速に基づき 30 m/s に設定し、風荷重については施設の形状により異なるため施設ごとに算出する。 風荷重の算出式は建築基準法施行令第87条に基づき、以下のとおりである。

4.2 許容限界

許容限界は、V-1-1-2-4-3の「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標及び「3.2機能維持の方針」に示す評価方針を踏まえて、評価対象部位ごとに設定する。

「4.1 荷重及び荷重の組合せ」で設定している荷重及び荷重の組合せを含めた,評価対象部 位ごとの許容限界を表 4-4 に示す。

評価対象部位ごとの許容限界の詳細は,各計算書で評価対象部位の損傷モードを踏まえ,評 価項目を選定し定める。

その他施設や衝撃荷重のみを考慮する施設については、JSMEや既往の実験式に基づき許

容限界を設定する。

(1) 防護対策施設

防護鋼板,架構及び基礎ボルトの構造強度評価においては,降下火砕物等堆積による鉛 直荷重及びその他の荷重に対し,おおむね弾性状態に留まることを計算により確認する評 価方針としていることを踏まえ,JEAG4601に準じて許容応力状態態Ⅲ_ASの許容 応力を許容限界として設定する。

施設	荷重の	評価対象	機能損傷モード		新应阻用
名称	組合せ	部位	応力等の状態	限界状態	计谷胶外
防護対策施設	$F_{d} + F_{v}$ + F_{s}	防護鋼板	曲げ	部 材 が 弾 性 域 に 留 ま ら ず 塑 性 域 に 、 て 留 ま ら 入 る 状態	JEAG4601に 準じて許容応力状態 Ⅲ _A Sの許容応力以下 とする ^{*1}
	$F_{d} + F_{v}$ $+ F_{s} + W$	架構	組合せ	部材が弾性 域に留まら	JEAG4601に 準じて許容応力状態
		基礎 ボルト	引張 せん断	ず 塑 性 域 に 入る状態	Ⅲ _A Sの許容応力以下 とする ^{*1}

表4-4 防護対策施設の許容限界

F d: 常時作用する荷重

W:風荷重

F_v:降下火砕物堆積による鉛直荷重
 F_s:積雪による鉛直荷重
 注記 *表4-5その他の支持構造物の許容限界を準用する。

表 4-5 クラス 2,3 支持構造物及び重大事故等クラス 2 支持構造

((クラ	ス2,	3支持構造物)	の許容限界	

		許容[許容限界*			
許容応		(ボル)	(ボルト等)			
力状態		一次	一次応力			
	圧縮	曲げ	引張	せん断	引張	せん断
III _A S	1.5f c	1.5f b	1.5 f t	1.5f s	1.5 f $_{\rm t}$	1.5f s

注記 *: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

5. 強度評価方法

評価手法は,以下に示す解析法により,適用性に留意の上,規格及び基準類や既文献におい て適用が妥当とされる手法に基づき実施することを基本とする。

- ・ FEM等を用いた解析法
- ・ 定式化された評価式を用いた解析法

具体的な評価においては、JEAG4601を使用する。

風荷重を考慮した,降下火砕物等堆積による鉛直荷重が作用する場合に強度評価を行う施 設のうち,設備及び建屋の強度評価方法を以下に示す。ただし,以下に示す強度評価方法が適 用できない施設及び評価対象部位については,個別計算書にその強度評価方法を含めて記載す る。

- 5.1 防護対策施設
 - (1) 評価条件

防護対策施設の強度評価を行う場合、以下の条件に従うものとする。

- a. 防護鋼板に降下火砕物が堆積することを想定し、架構に対して、FEM解析により評価を行う。
- b. FEM解析において,水平方向の風荷重が作用した場合,屋根に対し鉛直上向きの荷 重が働き下向き荷重は軽減されるため,保守的に水平方向の荷重は考慮しない。
- c. 計算に用いる寸法は、公称値を使用する。
- (2) 評価対象部位

評価対象部位及び評価内容を表 5-1 に示す。

次 0 1 时 间 内 须得 医次 0 时 间 1 1 1					
評価対象部位	応力等の状態				
防護鋼板	曲げ				
如構	組合社				

引張, せん断

表 5-1 評価対象部位及び評価内容

- (3) 強度評価方法
 - a. 記号の定義

防護鋼板の強度評価に用いる記号を表 5-2 に示す。

基礎ボルト

記号	定義	単位
σ	積雪及び降下火砕物堆積により防護鋼板に生じる曲げ応力	MPa
а	防護鋼板の長辺	mm
b	防護鋼板の短辺	mm
h	防護鋼板の厚さ	mm
р	防護鋼板に作用する等分布荷重	N/mm
β [`]	防護鋼板の最大応力の係数	—
σa	基礎ボルトに生じる引張応力	MPa
σ _{b1}	自重により架構に生じる曲げ応力	MPa
σ _{b2}	積雪及び降下火砕物堆積により架構に生じる曲げ応力	MPa
σьз	風荷重により架構に生じる曲げ応力	MPa
σ _b	架構に生じる組合せ曲げ応力	MPa
σ _{c1}	自重により架構に生じる圧縮応力	MPa
σ _{с2}	積雪及び降下火砕物堆積により架構に生じる圧縮応力	MPa
σ _{с3}	風荷重により架構に生じる圧縮応力	MPa
σ _c	架構に生じる組合せ圧縮応力	MPa
σ _{f1}	自重により架構に生じる組合せ応力	MPa
σ _{f2}	積雪及び降下火砕物堆積により架構に生じる組合せ応力	MPa
σ _{f3}	風荷重により架構に生じる組合せ応力	MPa
σf	架構に生じる組合せ応力	MPa
σ _{t1}	自重により架構に生じる引張応力	MPa
σ _{t2}	積雪及び降下火砕物堆積により架構に生じる引張応力	MPa
σ _{t3}	風荷重により架構に生じる引張応力	MPa
σ _t	架構に生じる組合せ引張応力	MPa
τ 1	自重により架構に生じるせん断応力	MPa

表 5-2 防護鋼板の強度評価に用いる記号(1/3)

記号	定義	単位
τ2	積雪及び降下火砕物堆積により架構に生じるせん断応力	MPa
τ 3	風荷重により架構に生じるせん断応力	MPa
τ	架構に生じる組合せせん断応力	MPa
τ _a	基礎ボルトに生じるせん断応力	MPa
n _a	架構1箇所当たりの基礎ボルトの本数	
F _a	架構に作用する最大引抜き力(1箇所当たり)	Ν
F _{c1}	自重により架構に作用する圧縮力	Ν
F _{c2}	積雪及び降下火砕物堆積により架構に作用する圧縮力	Ν
F _{c 3}	風荷重により架構に作用する圧縮力	Ν
F _{t1}	自重により架構に作用する引張力	Ν
F _{t2}	積雪及び降下火砕物堆積により架構に作用する引張力	Ν
F _{t3}	風荷重により架構に作用する引張力	Ν
P _{f1}	自重により架構に作用する軸力でF _{t1} 又はF _{c1} のいずれか大きい方	Ν
D	積雪及び降下火砕物堆積により架構に作用する軸力でF _{t2} 又はF _{c2} のいず	N
P _{f2}	れか大きい方	IN
P _{f3}	風荷重により架構に作用する軸力でFt3又はFc3のいずれか大きい方	Ν
Q _{x 1}	自重により架構に作用する x 軸方向のせん断力	Ν
Q x 2	積雪及び降下火砕物堆積により架構に作用するx軸方向のせん断力	Ν
Q x 3	風荷重により架構に作用する x 軸方向のせん断力	Ν
Q _{y 1}	自重により架構に作用する y 軸方向のせん断力	Ν
Q _{y 2}	積雪及び降下火砕物堆積により架構に作用するy軸方向のせん断力	Ν
Q _{y 3}	風荷重により架構に作用するy軸方向のせん断力	Ν
Q a	架構に作用する最大せん断力(1箇所当たり)	Ν
M _{x 1}	自重により架構に作用する x 軸まわりの曲げモーメント	N•mm
М	積雪及び降下火砕物堆積により架構に作用するx軸まわりの曲げモーメン	N. e. mm
IVI x 2	Я	
M _{x 3}	風荷重により架構に作用するx軸まわりの曲げモーメント	N•mm
M _{y 1}	自重により架構に作用するy軸まわりの曲げモーメント	N•mm
М	積雪及び降下火砕物堆積により架構に作用するy軸まわりの曲げモーメン	N • mm
1 VI y 2	А	1N • mm
Муз	風荷重により架構に作用するy軸まわりの曲げモーメント	N•mm

表 5-2 防護鋼板の強度評価に用いる記号(2/3)

記号	定義	単位
A a	基礎ボルトの軸断面積	mm^2
А	架構の断面積	mm^2
A_1	降下火砕物の堆積面積	mm^2
A_2	受圧面積(風向きに垂直な面に投影した面積)	m^2
A _x	架構のx軸方向のせん断断面積	mm^2
Ау	架構のy軸方向のせん断断面積	mm^2
С	建築物荷重指針・同解説により規定される風力係数	—
E'	建築基準法施行令第87条第2項に規定する数値	—
F	建設省告示第1454号の規定によって算出した平均風速の高さ方向の分布を	
L r	表す係数	
F _v	降下火砕物等堆積による鉛直荷重	Ν
F v'	単位面積当たりの降下火砕物等堆積による鉛直荷重	N/mm^2
G	ガスト影響係数	—
q	設計用速度圧	N/m^2
V _D	基準風速	m/s
W _b	風荷重による複合荷重	Ν
Zb	地表面祖度区分に応じて建設省告示 1454 号に掲げる数値	М
Z _G	地表面祖度区分に応じて建設省告示 1454 号に掲げる数値	m
Z _x	架構のx軸まわりの断面係数	mm^3
Ζу	架構のy軸まわりの断面係数	mm^3

表 5-2 防護鋼板の強度評価に用いる記号(3/3)

- b. 応力計算
 - (a) 防護鋼板に生じる曲げ応力

鉛直荷重により防護鋼板に作用する曲げ応力σは次による。

$$\sigma = \beta' \frac{\mathbf{p} \cdot \mathbf{b}^2}{\mathbf{h}^2}$$

(b) 架構に生じる応力

イ. 自重による応力

(イ) 引張応力

$$\sigma_{t1} = \frac{F_{t1}}{A}$$

(ロ) 圧縮応力

$$\sigma_{c1} = \frac{F_{c1}}{A}$$

(ハ) せん断応力

$$\tau_{1} = \sqrt{\left(\frac{Q_{x1}}{A_{x}}\right)^{2} + \left(\frac{Q_{y1}}{A_{y}}\right)^{2}}$$

(二) 曲げ応力

$$\sigma_{b1} = \frac{M_{x1}}{Z_x} + \frac{M_{y1}}{Z_y}$$

-

(ホ) 軸力,曲げモーメント及びせん断力による組合せ応力

$$\sigma_{f1} = \sqrt{\left(\frac{P_{f1}}{A} + \frac{M_{X1}}{Z_X} + \frac{M_{y1}}{Z_y}\right)^2 + 3 \cdot \left\{\left(\frac{Q_{x1}}{A_x}\right)^2 + \left(\frac{Q_{y1}}{A_y}\right)^2\right\}}$$

ここで、 P_{f_1} は F_{t_1} 又は F_{c_1} のいずれか大きい方とする。

ロ. 積雪及び降下火砕物堆積による応力

(イ) 引張応力

$$\sigma_{t2} = \frac{F_{t2}}{A}$$

(ロ) 圧縮応力

$$\sigma_{c2} = \frac{F_{c2}}{A}$$

(ハ) せん断応力

$$\tau_{2} = \sqrt{\left(\frac{Q_{x2}}{A_{x}}\right)^{2} + \left(\frac{Q_{y2}}{A_{y}}\right)^{2}}$$
曲げ応力

$$\sigma_{b2} = \frac{M_{x2}}{Z_x} + \frac{M_{y2}}{Z_y}$$

(__)

(ホ) 軸力, 曲げモーメント及びせん断力による組合せ応力

$$\sigma_{f2} = \sqrt{\left(\frac{P_{f2}}{A} + \frac{M_{X2}}{Z_X} + \frac{M_{y2}}{Z_y}\right)^2 + 3 \cdot \left\{\left(\frac{Q_{x2}}{A_x}\right)^2 + \left(\frac{Q_{y2}}{A_y}\right)^2\right\}}$$

ここで、
$$P_{f_2}$$
は F_{t_2} 又は F_{c_2} のいずれか大きい方とする。

- ハ. 風荷重による応力 (イ) 引張応力 $\sigma_{t3} = \frac{F_{t3}}{A}$ (ロ) 圧縮応力 $\sigma_{c3} = \frac{F_{c3}}{A}$ (ハ) せん断応力 $\tau_{3} = \sqrt{\left(\frac{Q_{x3}}{A_{x}}\right)^{2} + \left(\frac{Q_{y3}}{A_{y}}\right)^{2}}$ (二) 曲げ応力 $\sigma_{b3} = \frac{M_{x3}}{Z_{x}} + \frac{M_{y3}}{Z_{y}}$
- (ホ) 軸力,曲げモーメント及びせん断力による組合せ応力

$$\sigma_{f3} = \sqrt{\left(\frac{P_{f3}}{A} + \frac{M_{X3}}{Z_X} + \frac{M_{y3}}{Z_y}\right)^2 + 3 \cdot \left\{\left(\frac{Q_{x3}}{A_x}\right)^2 + \left(\frac{Q_{y3}}{A_y}\right)^2\right\}}$$

ここで、 P_{f3}はF_{t3}又はF_{c3}のいずれか大きい方とする。

157

二. 荷重の組合せによる応力

イ. ~ハ. によって算出した架構の応力を次式により組合せる。

(イ) 組合せ引張応力

 $\sigma_{t} = \sigma_{t1} + \sigma_{t2} + \sigma_{t3}$

(ロ) 組合せ圧縮応力

$$\sigma_{\rm c} = \sigma_{\rm c1} + \sigma_{\rm c2} + \sigma_{\rm c3}$$

6. 適用規格

V-1-1-2-4-1 においては、降下火砕物の影響を考慮する施設の設計に係る適用規格を示している。

これらのうち、各対象施設の強度評価に用いる規格、基準等を以下に示す。

- (1) 茨城県建築基準法等施行細則(昭和45年3月9日茨城県規則第9号)
- (2) 鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005)
- (3) 原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)
- (4) 原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・捕-1984
 ((社)日本電気協会)
- (5) 原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- (6) 発電用原子力設備規格 設計・建設規格 JSME S NC1-2005/2007((社)日本機 械学会)