本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	補足 400-6 改 2
提出年月日	平成 30 年 6 月 29 日

建物・構築物の地震応答解析についての補足説明資料

補足-400-6 【地震応答解析における原子炉建屋の

重大事故等時の高温による影響】

平成 30 年 6 月 日本原子力発電株式会社

1.		概	要	1						
2.		原	原子炉建屋の構造概要2							
3.		重	大事故等時の温度による影響について	6						
	3.	1	検討方針	6						
	3.	2	重大事故等時の高温による影響を考慮した原子炉建屋の地震応答解析	7						
	3.	3	原子炉建屋の地震応答解析による評価に与える影響3	8						
4.		機	器・配管系の評価に与える影響6	0						
5.		ま	とめ	4						

1. 概要

本資料は、原子炉格納容器を内包する原子炉建屋において、重大事故等により高温状態が一定 期間継続することを踏まえ、熱によるコンクリート部材の剛性低下を考慮した地震応答解析を実 施し、「原子炉建屋の地震応答解析による評価」及び「機器・配管系の評価」に与える影響につ いて確認するものである。

本資料は、以下の添付資料の補足説明をするものである。

- ・資料 V-2-2-1「原子炉建屋の地震応答計算書」
- ・資料V-2-2-2「原子炉建屋の耐震性についての計算書」
- ・資料V-2-9-1-13「原子炉建屋基礎盤の耐震性についての計算書」

2. 原子炉建屋の構造概要

原子炉建屋は、下部では南北方向68.5 m、東西方向68.25 mのほぼ正方形となっている。基礎 底面からの高さは73.08 mの鉄筋コンクリート造の建物・構築物であり、同一の基礎盤上に配置 された原子炉格納容器、1次遮蔽壁、原子炉棟、付属棟から構成されている。原子炉建屋の概略 平面図を図2-1に、概略断面図を図2-2に示す。

a. 1次遮蔽壁

1次遮蔽壁(以下「シェル壁(S/W)」という。)は上部が円錐台形,下部は円筒形で基礎 盤から立ち上がっている。シェル壁の壁厚は上部で1.9 m,下部で1.8 mである。

b. 原子炉棟及び付属棟

原子炉棟の外壁(以下「内部ボックス壁(I/W)」という。)は基礎盤から屋根面まで連続 しており,壁厚は地下部分で1.5 m,地上部分では1.5 m~0.3 mである。また,付属棟の外壁 (以下「外部ボックス壁(0/W)」という。)の壁厚は地下部分で1.5 m,地上部分では1.5 m ~0.9 mである。

c. 原子炉建屋の基礎盤 原子炉建屋の基礎盤は、その上部構造物である原子炉格納容器、1次遮蔽壁、原子炉棟及び 付属棟を支持する。

原子炉建屋の基礎盤は厚さ5.0 mのべた基礎で、支持地盤である砂質泥岩上に人工岩盤を介 して設置されている。

⊠ 2−1 (1∕2)	原子炉建屋の概略平面図

· · · · · · · · · · · · · · · · · · ·		

図 2-1(2/2) 原子炉建屋の概略平面図

図 2-2 (1/2) 原子炉建屋の概略断面図(A-A 断面)

図 2-2 (2/2) 原子炉建屋の概略断面図 (B-B 断面)

- 3. 重大事故等時の温度による影響について
- 3.1 検討方針

原子炉格納容器を内包する原子炉建屋において,重大事故等により高温状態が一定時間継続 することを踏まえ,熱によるコンクリート部材の剛性低下を考慮した地震応答解析を実施し, 原子炉建屋の地震応答解析による評価及び機器・配管系の評価に与える影響について確認す る。

具体的には、重大事故等における熱の影響を考慮し、原子炉建屋のコンクリート部材の剛性 を低減させた地震応答解析モデル(以下「剛性低下考慮モデル」という。)を用いて地震応答 解析を実施し、資料V-2-2-1「原子炉建屋の地震応答計算書」に示す地震応答解析モデル(以 下「今回工認モデル」という。)を用いた結果との比較を行う。

さらに、「剛性低下考慮モデル」の地震応答解析結果が、原子炉建屋の地震応答解析による 評価に与える影響を、「3.3 原子炉建屋の地震応答解析による評価に与える影響」において 確認することとする。

なお、上述の影響検討は、応答倍率を用いた手法により行うことから、応答倍率の算出のための「剛性低下考慮モデル」を用いた地震応答解析は、位相特性の偏りがなく、全周期帯において安定した応答を生じさせる基準地震動S_s-D1に対して実施することとする。さらに、 直接的な影響評価として、資料V-2-2-2「原子炉建屋の耐震性についての計算書」のうち、地 震応答解析による耐震壁の評価において最大せん断ひずみが生じているS_s-31(地盤物性 + σ 考慮)に対して水平方向の応答性状及び最大応答せん断ひずみを確認することとする。

- 3.2 重大事故等時の高温による影響を考慮した原子炉建屋の地震応答解析
 - 3.2.1 解析条件
 - (1) 剛性低下率

剛性低下率の評価対象部位は、シェル壁及び内部ボックス壁とする。なお、基礎盤については、高温となる領域は、シェル壁内部の表面付近に限られ、基礎盤版全体に対する影響は軽微であることから、剛性低下は考慮しないこととした。

原子炉格納容器について,原子炉格納容器内を高温状態とし,その温度を重大事故等時 の有効性評価における原子炉格納容器の評価温度である200 ℃に設定した。これは,有効 性評価のうち,原子炉格納容器壁面温度が最も高くなる雰囲気圧力・温度による静的負荷

(格納容器過圧・過温破損,代替冷却系を使用できない場合)の感度解析結果(注水が遅 れた場合)の165 ℃であり,原子炉格納容器の最高使用温度である171 ℃を包絡する条件 であるが,長期間継続する事象であり,一度経験した剛性低下が復帰しないことを考慮し て,ここでは保守的な設定を行った。

原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)については,建屋内に蒸気が十万 する可能性を考慮して100℃に設定した。

外気温については,安全側に平均温度が高くなる夏季の温度(38.4 ℃)より40 ℃に設定した。更に,原子炉建屋原子炉棟外の付属棟内については,同様に40 ℃に設定した。

また、剛性低下率の算出に用いるシェル壁(S/W)及び内部ボックス壁(I/W)の温度は、内側と外側の雰囲気温度の平均値とした。

なお,表面温度は環境温度と同一とし,シェル壁の内側表面については格納容器内の温 度を用いる。

ここで、100℃以上のコンクリート部材における剛性低下率は、「構造材料の耐火性ガ イドブック(2017年 日本建築学会)」による提案値である、100 ℃の剛性残存比0.80及 び200 ℃の剛性残存比0.68より、線形補間により算出する。また、100 ℃未満のコンク リート部材における剛性低下率は、「原子力施設鉄筋コンクリート構造計算基準・同解説

(2005年 日本建築学会)」において,通常運転時及び異常時を除く長時間(24時間以上)継続する状態における,一般部分のコンクリート温度制限値としている65 ℃を用い,線形補間により算出する。

本検討に用いたコンクリート部材の温度を表3-1に、剛性低下率を表3-2に示す。

立(た	高さ	表面	平均温度	
中 1777	EL. (m)	内側(℃)	外側(℃)	(°C)
シェル壁 (S/W)	$-4.0 \sim 46.5$	200	100	150
内部ボックス壁 (I/W)	$-4.0 \sim 64.08$	100	40	70

表 3-1 本検討に用いたコンクリート部材の温度

	コンクリート温度		解析用諸元		
	(°C)	剛性低下率	ヤング係数 (N/mm ²)	せん断弾性係数 (N/mm ²)	
今回工認モデル		1.0	2. 21×10^4	9. 21×10^3	
シェル壁 (S/W)	150	0.74	1.64×10^4	6.83 $\times 10^{3}$	
内部ボックス壁 (I/W)	70	0.97	2. 14×10^4	8. 92×10^3	

表 3-2 本検討に用いたコンクリート部材の剛性低下率

(2) 解析モデル

シェル壁 (S/W) 及び内部ボックス壁 (I/W) については剛性低下率を考慮したことによ り、「今回工認モデル」に対して諸元を変更した。また、既往の知見^(注)によると、コンク リートを175 ℃程度、91日間加熱した試験でも、コンクリートの圧縮強度の低下は認められ ないとされている。本検討においては、原子炉格納容器の最高温度を200 ℃と設定し、シェ ル壁 (S/W) の温度を150 ℃としており、温度によるコンクリートの圧縮強度の低下はない と考えられることから、設計基準強度については、「今回工認モデル」と同じ値を用いた。

重大事故等時の温度による剛性低下を考慮した建物・構築物の物性値を表3-3に、水平方 向の地震応答解析モデルを図3-1に、諸元を表3-4に、地盤ばね定数を表3-5に、せん断ス ケルトンカーブの諸数値を表3-6に示す。また、鉛直方向の地震応答解析モデルを図3-2 に、諸元を表3-7及び表3-8に、地盤ばね定数を表3-9に示す。

ここで、地震応答解析モデルの諸元は、鉛直方向モデルのトラス端部回転拘束ばね K_{θ} を除き「今回工認モデル」と同一の値(「今回工認モデル」におけるトラス端部回転拘束ばね $K_{\theta}=5.62\times10^{6}$ kN·m/rad)である。また、地盤ばね定数については、静的な値を用いていることから、「今回工認モデル」と同一の値となる。なお、せん断スケルトンカーブについては、せん断弾性係数の低下に応じて γ_{1} および γ_{2} を変更している。

注 :

【参考文献1】

川口他:高温 (175 ℃) を受けたコンクリートの強度性状 (セメント・コンクリート No. 449, July1984)

【参考文献2】

長尾他:高温履歴を受けるコンクリートの物性に関する実験的研究(日本建築学会構造系 論文集 第457号1994年3月)

FI	NS	方向	EW	方向	UD 方向	減喜完粉
(m)	ヤング係数 (N/mm ²)	せん断弾性係数 (N/mm ²)	ヤング係数 (N/mm ²)	せん断弾性係数 (N/mm ²)	ヤング係数 (N/mm ²)	(%)
63, 65						
57.0	2. 14×10^4	8. 92 $\times 10^{3}$	2. 14×10^4	8.92 $\times 10^{3}$	2. 14×10^4	
57.0	2. 14×10^4	8.92 $\times 10^{3}$	2. 14×10^4	8.92 $\times 10^{3}$	2. 14×10^4	
46.5	1.85×10^{4}	7. 24×10^3	1.99×10^4	7.36 $\times 10^{3}$	1.76×10^4	
38.8	2. 10×10^4	7.73 $\times 10^{3}$	2. 10×10^4	7.79 $\times 10^{3}$	1.88×10^4	
34. 7	2.09×10 ⁴	7.66 $\times 10^{3}$	2. 09×10^4	7.70×10 ³	1.84×10^{4}	
29.0	2.04×10 ⁴	8. 01×10^3	2. 07×10^4	8. 14×10^3	1.94×10^{4}	5
20.3	2. 02×10^4	7.97 $\times 10^{3}$	2. 04×10^4	7.99×10^{3}	1.91×10^{4}	
14.0	2.08×10 ⁴	8. 41×10^3	2. 08×10^4	8. 31×10^3	2.00×10 ⁴	
8.2	2. 13×10^4	8. 49×10^3	2. 13×10^4	8. 49×10^3	2. 03×10^4	
2.0	2. 13×10^4	8. 49×10^3	2. 13×10^4	8.49 $\times 10^{3}$	2. 03×10^4	
-4.0	2. 21×10^4	9. 21×10^3	2. 21×10^4	9. 21×10^3	2. 21×10^4	
-9.0						

表 3-3 (1/2) 建物・構築物の物性値

(a) 鉄筋コンクリート (剛性低下考慮モデル)

(b) 鉄筋コンクリート (今回工認モデル)

ヤング係数 (N/mm ²)	せん断 弾性係数 (N/mm ²)	減衰定数 (%)
2.21×10^4	9. 21×10^3	5

)	妖月(阿庄低)	「与應てノルわよ	いう凹上記モノ
	ヤング係数 (N/mm ²)	せん断 弾性係数 (N/mm2)	減衰定数 (%)
	2. 05×10^5	7.90×10 ⁴	2

表 3-3 (2/2) 建物・構築物の物性値 (c)鉄骨(剛性低下考慮モデルおよび今回工認モデル)

・数字は質点番号を示す。

・()内は要素番号を示す。

図 3-1 地震応答解析モデル(水平方向,剛性低下考慮モデル)

標高 FI	質点	質点重量	回転慣 (×10 ⁵	性重量	要素	せん断	断面積 2)	断面22	欠モーメント 0 ³ m ⁴)
(m)	番号	(kN)	NS方向	EW方向	番号	NS方向	 EW方向	(へ1 NS方向	EW方向
63.65	1	15870	35.7	31.5					
57 00		16160	51.2	44 7	(1)	27.3	25.5	20.4	18.4
51.00			01.2	11.1	(2)	27.3	25.5	20.4	18.4
46.50	3	67320	120.3	104.7	(3)	212	154	64.4	34.7
38.80	4	97130	161.6	99.8	(4)	199	1.4.1	45.0	97.9
34.70	5	83270	113.0	68.7	(4)	155	141	45.0	37.3
29.00	6	122370	348 8	250 5	(5)	143	156	45.4	38.7
		101000	400.5	540.0	(6)	218	237	77.6	72.9
20.30	7	161820	488.7	543.9	(7)	242	224	86.3	77.6
14.00	8	234650	720.8	779.6	(8)	304	345	178 5	147 4
8.20	9	199260	893.0	886.8	(0)			170.5	147.4
2.00	10	220710	832.4	830.7	(9)	464	454	218.4	208.5
1.00		400000	1704 0	1710.1	(10)	464	454	218.8	208.9
-4.00	11	439290	1724. 6	1712.1	(11)	4675	4675	1828.1	1814.8
-9.00	12	275090	1081.4	1073.5					
総重	L L	1932940							

表 3-4 地震応答解析モデル諸元(水平方向,剛性低下考慮モデル)

ばね 番号	地盤ばね 成 分	ばね定数 K。		減	·衰係数 C _c
K1	側面·水平	5. 46×10^5	(kN/m)	2. 48×10^5	(kN•S/m)
K2	側面·水平	1.22×10^{6}	(kN/m)	4. 20×10^5	(kN•S/m)
K3	側面·水平	6.64 $\times 10^{6}$	(kN/m)	9.07 $\times 10^{5}$	(kN•S/m)
K4	側面 ・水平	1.92×10^{7}	(kN/m)	8.69 $\times 10^{5}$	(kN•S/m)
K5	底面・水平	6. 41×10^7	(kN/m)	3. 44×10^{6}	(kN•S/m)
K6	底面・回転	9. 26×10^{10}	(kN·m/rad)	1.58×10^{9}	(kN•m•s/rad)

表 3-5(1/2) 地盤ばね定数と減衰係数(S_s-D1, NS方向) (a) 剛性低下考慮モデル

(b) 今回工認モデル

ばね 番号	地盤ばね 成 分	ばね定数 K。		減	滾係数 C _c
K1	側面·水平	5. 46×10^5	(kN/m)	2.50×10 ⁵	$(kN \cdot s/m)$
K2	側面·水平	1.22×10^{6}	(kN/m)	4. 18×10^5	(kN·S/m)
K3	側面·水平	6. 64×10^{6}	(kN/m)	9. 11×10^{5}	(kN·S/m)
K4	側面·水平	1.92×10^{7}	(kN/m)	8.70 $\times 10^{5}$	(kN•s/m)
K5	底面・水平	6. 41×10^7	(kN/m)	3.45×10^{6}	(kN•s/m)
K6	底面・回転	9. 26×10^{10}	(kN·m/rad)	1.59×10^{9}	(kN•m•s/rad)

ばね 番号	地盤ばね 成 分	ばね定数 K _c		減	·衰係数 C _c
K1	側面 ・水平	5. 46×10^5	(kN/m)	2. 46×10^5	(kN•S/m)
K2	側面·水平	1.22×10^{6}	(kN/m)	4. 21×10^5	(kN•S/m)
K3	側面 ・水平	6.64 $\times 10^{6}$	(kN/m)	9.05 $\times 10^{5}$	(kN•S/m)
K4	側面 ・水平	1.92×10^{7}	(kN/m)	8.68 $\times 10^{5}$	(kN•S/m)
K5	底面・水平	6. 42×10^7	(kN/m)	3. 45×10^{6}	(kN•S/m)
K6	底面・回転	9. 17×10^{10}	(kN·m/rad)	1.56×10^{9}	(kN•m•s/rad)

表 3-5(2/2) 地盤ばね定数と減衰係数(S_s-D1, EW 方向) (c) 剛性低下考慮モデル

(d) 今回工認モデル

ばね 番号	地盤ばね 成 分	ばね定数 K _c		減	ī衰係数 C _c
K1	側面·水平	5. 46×10^5	(kN/m)	2. 49×10^5	$(kN \cdot s/m)$
K2	側面·水平	1.22×10^{6}	(kN/m)	4. 19×10^{5}	(kN·S/m)
K3	側面·水平	6. 64×10^{6}	(kN/m)	9.09 $\times 10^{5}$	(kN·S/m)
K4	側面·水平	1.92×10^{7}	(kN/m)	8.69 $\times 10^{5}$	(kN•s/m)
K5	底面・水平	6. 42×10^7	(kN/m)	3. 45×10^{6}	(kN•s/m)
K6	底面・回転	9. 17×10^{10}	(kN•m/rad)	1.57×10^{9}	(kN•m•s/rad)

(a) 剛性低下考慮モデル									
EL.	要素	$ au_{1}$	$ au$ $_2$	$ au_{3}$	γ_{1}	γ 2	γ ₃		
m	番号	N/mm^2	N/mm^2	N/mm^2	$ imes 10^{-3}$	$ imes 10^{-3}$	$ imes 10^{-3}$		
63.65 \sim 57.00	1	1.60	2.16	4.54	0.179	0. 537	4.0		
57.00 \sim 46.50	2	1.71	2.31	4.63	0.192	0.576	4.0		
46.50 \sim 38.80	3	1.59	2.15	4.38	0.220	0.660	4.0		
$38.80 \sim 34.70$	4	1.34	1.81	4.17	0.173	0.519	4.0		
34.70 \sim 29.00	5	1.28	1.73	3.91	0.167	0. 501	4.0		
29.00 \sim 20.30	6	1.47	1.98	4.26	0.184	0.552	4.0		
20.30 \sim 14.00	7	1.61	2.17	4.87	0.202	0.606	4.0		
14.00 \sim 8.20	8	1.68	2.27	4.27	0.200	0.600	4.0		
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.208	0.624	4.0		
2.00 ~ -4.00	10	1.85	2.50	5.84	0.218	0.654	4.0		

表 3-6 (1/2) せん断スケルトンカーブ ($\tau - \gamma$ 関係, NS 方向)

(b) 今回工認モデル

EL.	要素	$ au_{1}$	au 2	τ3	γ_{1}	γ 2	γ3
m	番号	N/mm^2	N/mm^2	N/mm^2	$ imes 10^{-3}$	$ imes 10^{-3}$	$ imes 10^{-3}$
63.65 \sim 57.00	1	1.60	2.16	4.54	0.174	0.522	4.0
57.00 \sim 46.50	2	1.71	2.31	4.63	0.185	0.555	4.0
46.50 \sim 38.80	3	1.59	2.15	4.38	0.173	0.519	4.0
$38.80 \sim 34.70$	4	1.34	1.81	4.17	0.145	0. 435	4.0
34.70 \sim 29.00	5	1.28	1.73	3.91	0.139	0. 417	4.0
29.00 \sim 20.30	6	1.47	1.98	4.26	0.159	0. 477	4.0
20.30 \sim 14.00	7	1.61	2.17	4.87	0.174	0.522	4.0
14.00 \sim 8.20	8	1.68	2.27	4.27	0.183	0.549	4.0
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.192	0.576	4.0
2.00 ~ -4.00	10	1.85	2.50	5.84	0.201	0. 603	4.0

(c) 剛性低下考慮モデル								
EL.	要素	$ au_{1}$	$ au$ $_2$	$ au_{3}$	γ_{1}	γ 2	γ ₃	
m	番号	N/mm^2	N/mm^2	N/mm^2	$ imes 10^{-3}$	$ imes 10^{-3}$	$ imes 10^{-3}$	
63.65 \sim 57.00	1	1.60	2.16	4.54	0.179	0. 537	4.0	
57.00 \sim 46.50	2	1.71	2.31	4.63	0.192	0.576	4.0	
46.50 \sim 38.80	3	1.60	2.16	4.63	0.217	0.651	4.0	
$38.80 \sim 34.70$	4	1.49	2.01	4.40	0.191	0.573	4.0	
34.70 \sim 29.00	5	1.39	1.88	4.01	0.181	0.543	4.0	
29.00 \sim 20.30	6	1.31	1.77	3.72	0.161	0. 483	4.0	
20.30 \sim 14.00	7	1.59	2.15	4.57	0.199	0. 597	4.0	
14.00 \sim 8.20	8	1.68	2.27	4.52	0.202	0.606	4.0	
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.208	0.624	4.0	
2.00 ~ -4.00	10	1.85	2.50	5.77	0.218	0.654	4.0	

表 3-6 (2/2) せん断スケルトンカーブ ($\tau - \gamma$ 関係, EW 方向)

(d) 今回工認モデル

EL.	要素	$ au_{1}$	au 2	τ3	γ_{1}	γ 2	γ3
m	番号	N/mm^2	N/mm^2	N/mm^2	$ imes 10^{-3}$	$ imes 10^{-3}$	$ imes 10^{-3}$
63.65 \sim 57.00	1	1.60	2.16	4.54	0.174	0.522	4.0
57.00 \sim 46.50	2	1.71	2.31	4.63	0.185	0.555	4.0
46.50 \sim 38.80	3	1.60	2.16	4.63	0.173	0.519	4.0
$38.80 \sim 34.70$	4	1.49	2.01	4.40	0.162	0. 486	4.0
34.70 \sim 29.00	5	1.39	1.88	4.01	0.151	0.453	4.0
29.00 \sim 20.30	6	1.31	1.77	3.72	0.143	0. 429	4.0
20.30 \sim 14.00	7	1.59	2.15	4.57	0.172	0.516	4.0
14.00 \sim 8.20	8	1.68	2.27	4.52	0.182	0.546	4.0
$8.20 \sim 2.00$	9	1.77	2.39	5.02	0.192	0.576	4.0
2.00 ~ -4.00	10	1.85	2.50	5.77	0.201	0.603	4.0

図 3-2 地震応答解析モデル(UD 方向,剛性低下考慮モデル)

外壁・シェル壁部							
高さ EL. (m)	質点 番号	質点重量 (kN)	要素 番号	軸断面積 (m ²)			
63.65	1	8030					
57.00	2	16160	(1)	52.4			
46.50	3	67320	(2)	58.8			
10.00	0	01020	(3)	331			
38.80	4	97130	(4)	243			
34.70	5	83270	(4)	240			
20.00	6	199270	(5)	297			
29.00	0	122370	(6)	451			
20.30	7	161820	(7)	4.6.1			
14.00	8	234650	(7)	461			
		100000	(8)	727			
8.20	9	199260	(9)	900			
2.00	10	220710	(
-4.00	11	439290	(10)	900			
			(11)	4675			
-9.00	12	275090					
総重	量	1932940					

			屋根ト	ラス部		
高さ EL. (m)	スパン方向 (m)	質点 番号	質点重量 (kN)	要素 番号	せん断断面積 (×10 ⁻² m ²)	断面2次モーメント (m ⁴)
	20.55	25	1120			
				(24)	5.68	1.76
	15.41	24	2240			
				(23)	5.68	1.76
63.65	10.27	23	2240	(99)	0 50	1 70
	5 13	22	2240	(22)	8. 50	1.70
	0.10			(21)	11.49	1.76
	0.00	1	_	(==)		

表 3-8 トラス端部回転拘束ばね

(a) 剛性低下考慮モデル

ばね	ばね定数				
番号	K _c				
Kθ	5. 44×10^{6}	(kN•m/rad)			

(b) 今回工認モデル

ばね	ばね定数					
番号	Kc					
Kθ	5.62 $\times 10^{6}$	(kN•m/rad)				

表 3-9 地盤ばね定数と減衰係数(UD 方向, S_s-D1)

ばね	地盤ばね	ばね定数	減衰係数		
番号	成 分	K _c	C _c		
K1	底面・鉛直	1.08×10^8 (kN/m)	8. 21×10^6 (kN·s/m)		

剛性低下考慮モデル及び今回工認モデル

※減衰係数については、剛性低下考慮モデルと今回工認モデルは同じ値となる。

- 3.2.2 地震応答解析結果
 - (1) 固有值解析結果

「剛性低下考慮モデル」と「今回工認モデル」の固有値解析結果(固有周期及び固有振動数)の比較を表3-10に示す。また、「剛性低下考慮モデル」の刺激関数図を図3-3に示す。

「剛性低下考慮モデル」の固有周期は,コンクリートの剛性を低減させた影響により 「今回工認モデル」の結果に比べてわずかに大きくなるものの,ほぼ同程度となることを 確認した。

建屋と地盤の相互作用を考慮したモデルとなっていることから,地盤の変形が支配的と なる低次のモードでは,建屋は剛体的な挙動を示すため,建屋の剛性変化が固有値に及ぼ す影響は小さいものと考えられる。また,鉛直方向については,建屋の変形が支配的とな る4次のモードを除きほぼ同等の結果となったものと考えられる。

(a) NS 方向

次数	固有周期(s)		固有振動数(Hz)	
	工認モデル	剛性低下考慮モデル	工認モデル	剛性低下考慮モデル
1	0.409	0. 413	2.44	2.42
2	0.202	0.203	4.96	4.92
3	0.104	0.109	9.60	9.21
4	0.085	0.089	11.77	11.24
5	0.064	0.066	15.65	15.15
6	0.052	0.055	19.15	18.27

(b) EW 方向

次 数	固有周期(s)		固有振動数 (Hz)	
	工認モデル	剛性低下考慮モデル	工認モデル	剛性低下考慮モデル
1	0.411	0.416	2. 43	2.41
2	0.202	0.203	4.96	4.92
3	0.107	0. 111	9. 32	9.00
4	0.086	0.090	11. 59	11.08
5	0.064	0.067	15.53	14.99
6	0.051	0.053	19.76	18.92

(c) UD 方向

次数	固有周期(s)		固有振動数(Hz)	
	工認モデル	剛性低下考慮モデル	工認モデル	剛性低下考慮モデル
1	0.399	0.400	2.50	2.50
2	0.274	0.274	3.65	3.65
3	0.093	0.093	10.79	10.79
4	0.060	0.064	16.72	15.68
5	0.057	0.057	17.64	17.62
6	0.048	0.048	20.70	20.69

図 3-3 (1/3) 刺激関数図 (S_s-D1, NS 方向, 剛性低下考慮モデル)

図 3-3(2/3) 刺激関数図(S_s-D1, EW 方向, 剛性低下考慮モデル)

(2) 最大応答値及び最大接地圧

基準地震動S_s-D1による最大応答値を図3-4~図3-16に、最大せん断ひずみを表3-11に、最大接地圧を表3-12に示す。「剛性低下考慮モデル」の最大応答値及び最大接地圧は、「今回工認モデル」の結果と概ね整合することを確認した。

ここで、建屋の EL. 29.0 m~EL. 46.5 m については、高温を設定しているシェル壁の層の 剛性に占める割合が大きいことから、他の部位に比べて剛性低下が大きくなっており、当該 部位の層間変形が大きくなることから建屋上部の応答が若干増加したものと考えられる。し かし、固有値解析結果から確認できるように、建屋全体の応答に対して支配的となる低次の 振動モードは概ね同程度となっていることから、影響は小さいものと考えられる。

また,NS方向の要素番号(5)ならびにEW方向の要素番号(5)および要素番号(7)に ついては,応答が第1折れ点を超過し,非線形範囲に入っていることから,せん断力の増加 に対するせん断ひずみの増加が大きくなり,せん断ひずみの比率として算定している応答比 の値が大きくなったものと考えられる。

地盤ばね

図 3-4 最大応答加速度(S_s-D1, NS 方向)

図 3-5 最大応答変位(S_s-D1, NS 方向)

EL. (m)

図 3-6 最大応答せん断力(S_s-D1,NS方向)

図 3-7 最大応答曲げモーメント(S_s-D1, NS 方向)

地盤ばね

図 3-8 最大応答加速度(S_s-D1, EW 方向)

図 3-9 最大応答変位(S_s-D1, EW 方向)

図 3-10 最大応答せん断力(S_s-D1, EW 方向)

①工 認 モデル	734	1153	1594	1868	2450
②剛性低下 考慮モデル	717	1235	1673	1879	2558
2/1	0. 98	1.07	1.05	1.01	1.04

(a) 屋根トラス部

(b) 外壁及びシェル壁

図 3-12 最大応答加速度(S_s-D1, UD 方向)

①工 認 モデル	0.56	2. 87	5.26	7.16	7.84
②剛性低下 考慮モデル	0. 58	2.89	5.30	7.22	7.91
2/1	1.04	1.01	1.01	1.01	1.01

(a) 屋根トラス部

(b) 外壁及びシェル壁

図 3-13 最大応答変位(S_s-D1, UD 方向)

図 3-14 最大応答軸力(S_s-D1, UD 方向)

表3-11	最大せん断ひずみ

(a) NS方向 57.					
要素番号	最大せん断ひ (S s	。 ③応答比 3			
	 ①今回工認 モデル (基本ケース) 	②剛性低下考慮 モデル	(2)/ 2 (1)) 2 1		
(1)	0.07	0.07	1.00		
(2)	0.13	0.13	1.00		
(3)	0.05	0.05	1.00		
(4)	0.13	0.15	1.16		
(5)	0.25	0.34	1.36		
(6)	0.14	0.16	1.15		
(7)	0.16	0.19	1.19		
(8)	0.13	0.14	1.08		
(9)	0.13	0.14	1.08		
(10)	0.16	0.17	1.07		

(b) EW方向

	最大せん断ひ ⁻ (S _s -	③応答比			
安 <u></u> 番号	 ①今回工認 モデル (基本ケース) 	②剛性低下考慮 モデル	(2/ 1)		
(1)	0.08	0.08	1.00		
(2)	0.14	0.15	1.08		
(3)	0.06	0.08	1.34		
(4)	0.13	0.15	1.16		
(5)	0.15	0.19	1.27		
(6)	0.14	0.15	1.08		
(7)	0.21	0.26	1.24		
(8)	0.15	0.16	1.07		
(9)	0.14	0.14	1.00		
(10)	0.16	0.17	1.07		

図 3-15 (1/2) せん断スケルトンカーブ上の最大応答値(S_s-D1, NS 方向)

図 3-15 (2/2) せん断スケルトンカーブ上の最大応答値(S_s-D1, NS 方向)

図 3-16 (1/2) せん断スケルトンカーブ上の最大応答値(S_s-D1, EW 方向)

図 3-16 (2/2) せん断スケルトンカーブ上の最大応答値(S_s-D1, EW 方向)

表 3-12 最大接地圧

(単位:kN/m²)

地震動							
		NS方向		EW方向		極限	
		工認モデル	剛性低下 考慮モデル	工認モデル	剛性低下 考慮モデル	支持力度	
	0 D 1	鉛直上向き	826	837	834	842	5260
	5 s - D I	鉛直下向き	₹ 944	950	951	955	5500

3.3 原子炉建屋の地震応答解析による評価に与える影響

「3.2 重大事故等時の高温による影響を考慮した原子炉建屋の地震応答解析」の地震応答 解析結果を踏まえ,重大事故等時の熱によるコンクリート部材の剛性低下が,原子炉建屋の地 震応答解析による評価に与える影響について確認する。

3.3.1 検討方法

検討は、以下の通り、保守的な評価とする。

せん断ひずみの検討では、地盤物性のばらつきを考慮した最大せん断ひずみ(基準地震動S_s-D1~S_s-31に対する包絡値)に、基準地震動S_s-D1に対する「剛性低下 考慮モデル」と「今回工認モデル」の応答比(「剛性低下考慮モデル」/「今回工認モデ ル」)を乗じた値の最大値が許容限界を超えないことを確認する。

接地圧の検討では、地盤物性のばらつきを考慮した最大接地圧(基準地震動S_s-D1 ~S_s-31に対する包絡値)に、基準地震動S_s-D1に対する「剛性低下考慮モデ ル」と「今回工認モデル」の応答比(「剛性低下考慮モデル」/「今回工認モデル」)の 最大値を乗じた値が許容限界を超えないことを確認する。

また,基準地震動S_s-D1に対する床応答スペクトルについて,「剛性低下考慮モデル」と「今回工認モデル」の比較を行う。

なお,基準地震動S_s-31に対しては,水平方向の応答比が基準地震動S_s-D1と 同等となることならびに最大せん断ひずみが許容限界を超えないことを確認する。

- 3.3.2 検討結果
 - (1) せん断ひずみの検討結果

最大せん断ひずみの検討における原子炉建屋の応答比及び応答比を乗じた最大せん断ひ ずみを表3-13に示す。

表3-13より,最大せん断ひずみに応答比を乗じた値の最大値が許容限界(2.0×10⁻ ³)を超えないことを確認した。

王士	最大せん断ひずみ(×10 ⁻³) (S _s – D 1)		③応答比	最大せん断ひずみ(×10 ⁻³) (S _s – D 1 ~ S _s – 3 1)	
安奈番号	 ①今回工認 モデル (基本ケース) 	②剛性低下考慮 モデル	(2)/ (1)	④地盤物性のばらつき考慮モデル	応答比を乗じた値 (③×④)
(1)	0.07	0.07	1.00	0.11	0.11
(2)	0.13	0.13	1.00	0.20	0.20
(3)	0.05	0.05	1.00	0.06	0.06
(4)	0.13	0.15	1.16	0.25	0. 29
(5)	0.25	0.34	1.36	0.60	0.82
(6)	0.14	0.16	1.15	0.31	0. 36
(7)	0.16	0.19	1.19	0.43	0.52
(8)	0.13	0.14	1.08	0.18	0.20
(9)	0.13	0.14	1.08	0.17	0.19
(10)	0.16	0.17	1.07	0.21	0.23

(a) NS方向

表3-13 (1/2)

原子炉建屋に生じる最大せん断ひずみに最大応答比を乗じた値

王士	最大せん断ひずみ(×10 ⁻³) (S _s – D 1)		③応答比	最大せん断ひずみ(×10 ⁻³) (S _s – D 1 ~ S _s – 3 1)	
安奈番号	 ①今回工認 モデル (基本ケース) 	②剛性低下考慮 モデル	(2/ 1)	④地盤物性のばらつき考慮モデル	応答比を乗じた値 (③×④)
(1)	0.08	0.08	1.00	0.11	0.11
(2)	0.14	0.15	1.08	0.21	0. 23
(3)	0.06	0.08	1.34	0.08	0.11
(4)	0.13	0.15	1.16	0.15	0.18
(5)	0.15	0.19	1.27	0.36	0.46
(6)	0.14	0.15	1.08	0.31	0. 34
(7)	0.21	0.26	1.24	0.56	0.70
(8)	0.15	0.16	1.07	0.30	0. 33
(9)	0.14	0.14	1.00	0.18	0.18
(10)	0.16	0.17	1.07	0.22	0.24

(b) EW方向

表3-13 (2/2)

原子炉建屋に生じる最大せん断ひずみに最大応答比を乗じた値

(2) 接地圧の検討結果

資料V-2-9-1-13「原子炉建屋基礎盤の耐震性についての計算書」に記載の地震時の最大 接地圧に,最大応答比を乗じた値を表3-14に示す。

表3-14より,地震時の最大接地圧に,最大応答比を乗じた値が,地盤の極限支持力度 (5360 kN/m²)を超えないことを確認した。

資料V-2-9-1-13 「原子炉建屋基礎盤の耐震性についての計算 書」 に記載の結果		こついての計算	基準地震動S。-D1に対する応答比 (「剛性低下考慮モデル」/「今回工認モデ ル」)	確認結果
地震動	方向	最大接地圧 ①	最大応答比②	
S _s -31	EW方向	1087 kN/m^2	1.01	1098 kN/m^2

表 3-14 地震時の最大接地圧に最大応答比を乗じた値

(3) 床応答スペクトルの検討結果

建屋の全質点の床応答スペクトルについて、剛性低下考慮モデルと今回工認モデルの比較 結果を図 3-17~図 3-19 に示す。

床応答スペクトルの比較を行った結果,全体的な傾向として,今回工認モデルの応答が剛 性低下考慮モデルの応答に対し,概ね同等となった。

質点番号5

質点番号6 🖫

図 3-17 (1/2) 床応答スペクトルの比較(S_s-D1,NS方向,減衰5%)

質点番号10

質点番号11

図 3-17 (2/2) 床応答スペクトルの比較(S_s-D1,NS方向,減衰5%)

質点番号4

質点番号5

質点番号6 🖫

図 3-18 (1/2) 床応答スペクトルの比較(S_s-D1, EW 方向, 減衰 5%)

質点番号10

質点番号11

図 3-18 (2/2) 床応答スペクトルの比較(S_s-D1, EW 方向, 減衰5%)

質点番号4

質点番号5

2.00

-9.00

(11) 12 地盤ばね K1

図 3-19(1/2) 床応答スペクトルの比較(S_s-D1, UD 方向, 減衰5%)

質点番号10

質点番号11

図 3-19(2/2) 床応答スペクトルの比較(S_s-D1, UD 方向, 減衰5%)

(4) 基準地震動 S_s-31に対する検討結果

基準地震動 S_s-31(地盤物性+σ考慮)による最大応答値を図3-20~図3-27に、最 大せん断ひずみを表3-15に、床応答スペクトルの比較を図3-28及び図3-29に示す。

基準地震動S_s-31に対する水平方向の応答比が、基準地震動S_s-D1に対する応答 比と同等であることを確認した。また、表3-15より、基準地震動S_s-31に対する最大 せん断ひずみが許容限界(2.0×10^{-3})を超えないことを確認した。また、床応答スペクト ルの比較を行った結果、基準地震動S_s-31に対しても、今回工認モデルの応答が剛性低 下考慮モデルの応答に対し、概ね同等となった。

(3)

(4)

(5)

(6)

(7)

(10)

地盤ばね (8)

5 W

図 3-25 最大応答変位(S_s-31, + σ ケース, EW 方向)

(d) 11075 [F]				
	最大せん断ひずみ(×10 ⁻³) (S _s – 3 1)			
部 松 番 号	 ①今回工認 モデル (+ σ ケース) 	 ②剛性低下考慮 モデル (+ σ ケース) 		
(1)	0.08	0.08		
(2)	0.15	0.16		
(3)	0.06	0.07		
(4)	0.19	0.25		
(5)	0.60	0.75		
(6)	0.31	0.38		
(7)	0.43	0.51		
(8)	0.18	0.20		
(9)	0.17	0.19		
(10)	0.19	0.21		

(a) NS方向

表3-15(1/2) 原子炉建屋に生じる最大せん断ひずみ(S_s-31)

54

±0++	最大せん断ひずみ(×10 ⁻³) (S _s -31)			
番号	①今回工認 モデル (+σケース)	 ②剛性低下考慮 モデル (+ σ ケース) 		
(1)	0.10	0.10		
(2)	0.17	0.19		
(3)	0.08	0.10		
(4)	0.15	0.18		
(5)	0.36	0.45		
(6)	0.31	0.37		
(7)	0.56	0.66		
(8)	0. 30	0.35		
(9)	0.18	0.20		
(10)	0.20	0.22		

表3-15 (2/2)

質点番号4

質点番号5

質点番号6 🖫

図 3-28 (1/2) 床応答スペクトルの比較(S_s-31,+ σケース,NS方向,減衰5%)

質点番号10

質点番号11

図 3-28 (2/2) 床応答スペクトルの比較(S_s-31,+ σケース,NS方向,減衰5%)

質点番号4

質点番号5

質点番号6 🖫

図 3-29 (1/2) 床応答スペクトルの比較(S_s-31,+ σケース,EW方向,減衰5%)

質点番号10

質点番号11

図 3-29 (2/2) 床応答スペクトルの比較(S_s-31,+ σケース,EW方向,減衰5%)

4. 機器・配管系の評価に与える影響

重大事故等時の高温による影響に対して設備の評価に与える影響確認を行う。影響確認は,原 子炉建屋の地震応答解析結果を適用する設備と建屋-機器連成解析結果を適用して評価を行う設 備に対して行う。

4.1 原子炉建屋の地震応答解析結果による影響

原子炉建屋の地震応答解析結果の応答を用いて耐震評価を実施する設備について影響検討を 行う。影響検討は、今回工認モデルによる床応答スペクトルと剛性低下考慮モデルによる床応 答スペクトルとの比較により行う。また比較に用いる今回工認モデルの床応答スペクトルは、 周期軸方向に10%拡幅する。

図4-1に床応答スペクトルの比較を示す。図4-1に示すとおり一部周期帯で剛性低下考慮モ デルの応答が今回工認モデルの応答を上回ることが確認された。原子炉建屋に設置される設備 については、今回工認モデルの床応答スペクトルに設計上の配慮から震度を1.5倍又は材料物性 のばらつきを考慮した応答を適用し耐震計算を実施していることから、剛性低下考慮モデルの 応答が今回工認モデルの応答を僅かに上回ったとしても問題ないと考える。

(EL.46.5m, 減衰1.0%, 上:水平, 下:鉛直)

図 4-1 (4) 原子炉建屋床応答スペクトルの比較 (EL. 29.0m, 減衰 1.0%, 上:水平,下:鉛直)

図 4-1 (5) 原子炉建屋床応答スペクトルの比較 (EL. 20. 3m, 減衰 1.0%, 上:水平,下:鉛直)

図 4-1 (8) 原子炉建屋床応答スペクトルの比較 (EL.-4.0m, 減衰1.0%, 上:水平,下:鉛直)

4.2 建屋-機器連成解析結果による影響

建屋-機器連成解析結果の応答を用いて耐震評価を実施する設備について影響検討を行う。 影響検討は、今回工認に適用する建屋-機器連成解析モデル(以下「今回工認連成モデル」という。)の応答と重大事故等時の環境影響を考慮した建屋-機器連成解析モデル(以下「SA時環境考慮モデル」という。)の応答を比較することにより行う。SA時環境考慮モデルに適用する原子炉建屋部分のモデル化は剛性低下考慮モデルとする。

(1) SA時環境考慮モデルのモデル化

重大事故等時においては、原子炉格納容器内は高温状態となる。先述したとおり、コン クリート部材については、高温状態を経験すると通常運転状態に戻ったとしても、一度低 下した剛性は元に戻ることはない。このため建屋-機器連成解析モデルにてコンクリート 部材としてモデル化している原子炉本体の基礎、ダイヤフラム・フロアについては、原子 炉建屋壁面と同様の剛性低下を見込んだ。表4-1にSA時環境考慮モデルに用いたコンク リート部材の諸元を示す。有効性評価において、原子炉格納容器平均温度が最も高くなる 雰囲気圧力・温度による静的負荷(格納容器過圧・過温、代替冷却系を使用できない場 合)による165℃に対して、剛性低下率に適用する温度は保守的な設定として200℃とし、 剛性低下率は原子炉建屋の剛性低下考慮モデルと同様に「構造材料の耐火性ガイドブック (2017年 日本建築学会)」による提案値である200℃の剛性残存比0.68とする。

	検討に用いた コンクリート温度	剛性低下率
原子炉本体の基礎	200°C	0. 68
ダイヤフラム・フロア	200°C	0. 68

表4-1 SA時環境考慮モデルに用いたコンクリート部材の諸元

また,基準地震動Ssと組み合わせる原子炉格納容器の環境条件として,重大事故発生後の2×10⁻²年後の原子炉格納容器内の状態を包含して設定した値として,表4-2の値を適用した。

項目通常運転時SA時環境考慮モデル原子炉格納容器
鋼板部温度
(°C)ドライウェル部66サプレション・
チェンバ部3232サプレッション・プール水位
(°L)7.22
(EL+3.22)

表4-2 SA時環境考慮モデルに適用する解析条件
(2) 地震応答解析結果を踏まえた影響検討

SA 時環境考慮モデルを用いた基準地震動Ss-D1による地震応答結果として、今回工認 連成モデルの地震応答解析結果と比較して図4-2に示す。

建屋-機器連成解析結果から得られる応答については、材料物性のばらつきを考慮して 1.5倍していることを踏まえて、SA時環境考慮モデルの応答が今回工認連成モデルの応答 の比率として1.5倍以上となった構造物の当該標高の応答を用いて耐震評価を実施する機 器・配管系について影響検討を行う。表4-3に応答比率が1.5倍以上となった応答を用い る機器・配管系を整理した。

		建屋-機器連成解析結果	亚体计在机供	
評価荷重		構造物,標高等	応答比率	計個內象故伽
1	せん断力	原子炉格納容器 EL.3.787m~EL0.013m	1.55	原子炉格納容器
2	ばね反力	下部シアラグ K10	1.90	下部シアラグ

表 4-3 応答比率が 1.5 倍以上となる対象設備

影響検討は「追而」

		せん断力(kN)			
構造物	標高 EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②	
	44.173				
	41.765	150	131	1.15	
	39.431	503	1200	1.13	
	38.522	1630	1390	1.17	
	36.431	1730	1480	1.17	
	33.431	1900	7740	1.10	
	30.431	9200	7740	1.19	
原	27.432	9380	7920	1.18	
子	24.422	9620	8150	1.18	
炉	21.420	10100	8560	1.18	
俗納	18.420	10500	8930	1.18	
容	16.319	10800	9280	1.16	
器	13.523	11400	9790	1.16	
нн	12.344	7520	10200	0.74	
	11.191	7680	10500	0.73	
	8.164	7760	10700	0.73	
	5.141	9830	11000	0.89	
	3. 787	14800	11300	1. 31	
	-0.013	17800	11500	1.55	
	-4.000	30500	22700	1.34	
	34.643				
	31.432	6330	5040	1.26	
	28.308	4350	3340	1.30	
	25.212	2350	1610	1.46	
及	20.061	1100	931	1.18	
びし	19.856	4890	4980	0.98	
ペや	17.142	9340	9520	0.98	
デヘ	16.624	9650	9790	0.99	
スいタ庭	13.198	15200	14700	1.03	
ア型ル	11.671	7100	8750	0.81	
, ·	8. 395	9620	10800	0.89	
	2. 189	13000	13400	0.97	
	-2.167	16300	16700	0.98	
	-4.000	17900	18300	0.98	

図 4-2(1) SA 時環境考慮モデルと今回工認連成モデルとの比較

		せん断力(kN)		
構造物	標高 EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②
	42.628		95.6	1 40
	41.322	428	306	1.40
	40.015	908	651	1.10
	39.215	833	655	1. 27
	38.301	1400	1030	1.36
	36.421	2270	1640	1. 38
	35.723	2520	1830	1.38
	34.656	5110	4230	1.21
	33.132	4690	3810	1.23
	31.535	4240	3400	1.25
原	30.560	4200	3280	1.28
子	29.503	4130	3160	1.31
炉	28.845	4050	3170	1.28
庄 力	28.188	3960	3230	1.23
容	27.031	3850	3250	1.18
器	20.074	3730	3260	1.14
	20.217	3520	3220	1.09
	23. 147	3310	3140	1.05
	24.000	3130	3070	1.02
	23.052	3030	2990	1.01
	22.095	3450	3400	1.01
	19 856	4420	4510	0.98
	22.095		_	
	21.587	1180	1060	1.11
	20.979	959	869	1.10
	20. 292	531	496	1.07
	35.723			
	34.656	245	239	1.03
	33.132	978	982	1.00
	31.535	1400	1410	0.99
	30.560	1640	1630	1.01
及	29.503	2190	2230	0.98
び気	28.845	3800	3090	0.99
シ水ユム	28.188	4000	4110	0.99
ラ離	27.531	4230	4300	0.98
ウ器	26.874	4520	4470	0.98
ド	26.217	4520 4670	4000	0.90
	25.559	6000	6010	1 00
	25.147	6060	6080	1 00
	24.596	6100	6120	1 00
	23.632	6090	6120	1.00
	23.378			

図 4-2(2) SA 時環境考慮モデルと今回工認連成モデルとの比較

	標高 EL(m)	せん断力(kN)			
構造物		SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②	
	29.503		 1050	0.95	
燃料	28.845	750	719	1.05	
	28.188	200	712	1.03	
集	27.531	255	203	1.14	
合	26.874	200	233	1.09	
体	26.217	142	100	1.05	
	25.559		1090	0.94	
生	25.559				
- 前 御	24.596	160	151	1.06	
棒	23.632	58.0	56.6	1.02	
上案内管	23.378	8.04	8.01	1.00	
	22.095	82.1	77.6	1.06	
	21.587	206	196	1.05	
	21.587				
制	20, 979	437	413	1.06	
への時	20, 292	476	447	1.06	
内ソ体ジャン	19 344	63.2	55.4	1.14	
側ン動	18 610	16.7	16.4	1.02	
グ機	17 876	18.8	13.9	1.35	
構	17 142	53.3	42.7	1.25	
	00.070				
制	20.979	59.3	49.6	1.20	
 ハ御 ウ棒 外ご一 	19.344	11.6	10.9	1.06	
〕 ジ 駆 し ン 動	18.610	24.7	19. 1	1.29	
ク 機 構	17.876	59.5	48.2	1.23	
	17.142			_	

図 4-2(3) SA 時環境考慮モデルと今回工認連成モデルとの比較

		モーメント(kN・m)			
構造物	標局 EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②	
	44.173	42.8	33. 5	1.28	
	41.765	525	430	1.22	
	39.431	1840	1570	1.17	
	38. 522	3360	2860	1.17	
	36.431	7070	6020	1.17	
	33. 431	13000	11100	1.17	
	30. 431	40200	34100	1.18	
原	27.432	68300	57800	1.18	
子	24.422	97300	82500	1.18	
炉枚	21.420	128000	109000	1.17	
俗納	18.420	159000	136000	1.17	
容	16.319	182000	155000	1.17	
器	13. 523	214000	183000	1.17	
	12.344	216000	193000	1.12	
	11.191	219000	205000	1.07	
	8.164	229000	237000	0.97	
	5.141	258000	269000	0.96	
	3. 787	277000	284000	0.98	
	-0.013	348000	337000	1.03	
	-4.000	444000	410000	1.08	
	34.643	67.1	54.0	1.24	
	31.432	20400	16200	1.26	
	28.308	33800	26500	1.28	
	25.212	40300	30900	1.30	
及	20.061	43600	32100	1.36	
びし	19.856	47700	37800	1.26	
ヘヤ	17.142	39500	31100	1.27	
スい	16.624	39300	33700	1.17	
タ壁	13.198	54900	67100	0.82	
ル	11.671	64500	79500	0.81	
	8.395	90600	113000	0.80	
	2. 189	162000	193000	0.84	
	-2.167	227000	259000	0.88	
	-4.000	256000	288000	0.89	

図 4-2(4) SA 時環境考慮モデルと今回工認連成モデルとの比較

	事	モーメント(kN・m)		
構造物	標高 EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②
	42.628	—	_	—
	41.322	175	125	1.40
	40.015	734	525	1.40
	39.215	1460	1050	1.39
	38.301	2220	1590	1.40
	36.421	4850	3510	1.38
	35.723	6430	4630	1.39
	34.656	9120	6580	1.39
	33.132	4220	3340	1.26
	31.535	10800	7840	1.38
原	30.560	14700	10900	1.35
子	29.503	18800	14100	1.33
炉	28.845	21400	16000	1.34
圧	28.188	23900	17900	1.34
力	27.531	26300	19700	1.34
谷哭	26.874	28700	21400	1.34
11	26.217	31100	23100	1.35
	25.147	34800	25700	1.35
	24.596	36600	27400	1.34
	23.632	39500	30300	1.30
	23.378	40300	31100	1.30
	22.095	18300	14200	1.29
	19.856	20300	20400	1.00
	22.095	1050	924	1.14
	21.587	451	392	1.15
	20.979	212	205	1.03
	20.292	577	541	1.07
	35.723		_	
	34.656	261	255	1.02
	33.132	1750	1750	1.00
	31.535	3980	4000	1.00
	30.560	5570	5590	1.00
及	29.503	7880	7950	0.99
いえいえい	28.845	10400	10500	0.99
ン分	28.188	13100	13200	0.99
ラ離	27.531	15900	16100	0.99
ウ器	26.874	18800	19000	0.99
ド	26.217	21700	22000	0.99
	25.559	24800	25200	0.98
	25.147	27300	27600	0.99
	24.596	30600	30900	0.99
	23.632	36500	36800	0.99
	23.378	38000	38300	0.99

図 4-2(5)	SA 時環境考慮モデルと今回工認連成モデルとの)比較
----------	-------------------------	-----

		モーメント(kN・m)		
構造物	標向 EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②
	29.503	_	_	_
俠	28.845	659	691	0.95
料	28.188	1130	1160	0.97
集	27.531	1330	1330	1.00
合	26.874	1160	1180	0.98
体	26.217	678	713	0.95
	25.559		_	
制	25.559	_		_
御	24.596	154	146	1.05
棒	23.632	210	199	1.06
案	23.378	210	199	1.06
内	22.095	105	99.6	1.05
官	21.587		_	_
制	21.587		_	_
ハ御	20.979	266	251	1.06
(」ウ棒	20.292	592	558	1.06
副ジ駆	19.344	40.7	29.9	1.36
ごン動	18.610	52.9	41.5	1.27
2 機	17.876	39.1	31.4	1.25
177	17.142	_	_	—
制	20.979	43.6	39.8	1.10
ハ御〕〕○かか御ウ様	19.344	53. 3	41.7	1.28
外ジ駆	18.610	61.8	49.4	1.25
シン助 グ機	17.876	43. 7	35. 4	1.23
構	17.142		_	_

図 4-2(6) SA 時環境考慮モデルと今回工認連成モデルとの比較

	標高 EL(m)	軸力(kN)			
構造物		SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②	
	44.173			1 02	
	41.765	208	201	1.03	
	39.431	605	591	1.02	
	38.522	671	656	1.02	
	36.431	794	776	1.02	
	33. 431	109	1000	1.02	
	30. 431	1020	1160	1.02	
原	27.432	1400	1380	1.02	
子	24.422	1400	1380	1.01	
炉枚	21.420	2220	2200	1.01	
納	18.420	2220	2200	1.01	
容	16.319	2000	2380	1.01	
器	13.523	3140	2220	1.01	
	12.344	3350	2670	1.01	
	11.191	3090	3870	1.01	
	8.164	3900	3870	1.01	
	5.141	4180	4130	1.01	
	3. 787	4300	4470	1.01	
	-0.013	£140	4750 E100	1.01	
	-4.000			1.01	
	34.643				
	31.432	113	000	0.88	
I	28.308	2140	2420	0.88	
や	25.212	3750	4260	0.88	
\sim	20.061	4950	5630	0.88	
い 廃	19.856	8550	9830	0.87	
重及	17.142	17900	20600	0.87	
び	16.624	17900	20600	0.87	
ヘザ	13.198	21800	25300	0.86	
ノス	11.671	24000	28100	0.85	
タ	8.395	25900	30300	0.85	
ル	2.189	28400	33100	0.86	
	-2.167	31200	36000	0.87	
	-4.000	32600	37400	0.87	

図 4-2(7) SA 時環境考慮モデルと今回工認連成モデルとの比較

	標高	軸力(kN)			
構宣物	EL(m)	SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②	
	42.628			0.88	
	41.322	02.3	265	0.88	
	40.015	572	652	0.88	
	39.215	823	938	0.88	
	38.301	1190	1360	0.88	
	36.421	1510	1730	0.87	
	35.723	1910	2260	0.88	
	34.656	2220	2530	0.88	
	33.132	2500	2860	0.80	
	31.535	2710	3090	0.88	
	30.560	2870	3270	0.88	
原	29.503	3010	3440	0.88	
子	28.845	3110	3550	0.88	
<i>炉</i> 厈	28.188	3210	3670	0.88	
力	27.531	3330	3800	0.88	
容	26.874	3430	3920	0.88	
器	26.217	3560	4070	0.87	
	25.147	3720	4250	0.88	
	24.596	3870	4430	0.87	
	23.632	4170	4780	0.87	
	23.378	4480	5130	0.87	
	22.095	9090	10600	0, 86	
	19.856				
	22.095	4310	5050	0, 85	
	21.587	4310	5050	0.85	
	21.245	4310	5050	0.85	
	20.979	2370	2740	0.86	
	20. 292				
	35.723	27.8	33.1	0.84	
	34.656	172	204	0.84	
	33.132	284	338	0.84	
层	31. 535	468	557	0.84	
×(7k	30.560	781	933	0.84	
分	29.503	871	1040	0.84	
离隹	28.845	895	1070	0.84	
器	28. 188	918	1100	0.83	
及	27.531	942	1130	0.83	
	26.874	966	1160	0.83	
・ユ	26.217	989	1190	0.83	
ラ	25.559	1150	1380	0.83	
ウ	25.147	1280	1530	0.84	
ド	24. 596	1310	1560	0.84	
	23.032	1350	1620	0.83	
	23.318	1370	1640	0.84	
	23.109 21 E40	1400	1680	0.83	
	41.040				

図 4-2(8) SA 時環境考慮モデルと今回工認連成モデルとの比較

楼注册	標高 EL(m)	軸力(kN)		
伸迫物		SA時環境考慮モデル (①)	今回工認連成モデル (②)	比率 ①/②
	29.503			0.97
燃	28.845	108	124	0.87
料	28.188	524	371	0.87
集	27.531	540	618	0.87
来 合 体	26.874	755	865	0.87
	26.217	969	1110	0.87
	25.559		1360	0.88
生山	25.559			_
利御	24.596	1420	1630	0.87
棒	23.632	1450	1670	0.87
案	23.378	1470	1690	0.87
内管	22,095	1490	1710	0.87
	21.587	1520	1750	0.87
	21.587		—	
制	20 979	1550	1790	0.87
ハ御	20, 292	1740	2010	0.87
内ソ降	19 344	264	307	0.86
側ン動	18 610	242	280	0.86
グ機	17 876	222	258	0.86
構	17 142	153	177	0.86
	00.070			-
制	20.979	281	326	0.86
、 ハ御 の ウ棒	19.344	250	290	0.86
^外 ジ駆 側ン動	18.610	230	267	0.86
グ機	17.876	193	1/2	0.86
侢	17.142		—	0.80

図 4-2(9) SA 時環境考慮モデルと今回工認連成モデルとの比較

		r		
		ばね反力(kN)		
構造物	記号	SA時環境考慮モデル	今回工認連成モデル	比率
		((1))	(2)	(1)/(2)
ドライウェル 上部シアラグ	K_9	9360	7840	1.19
ドライウェル 下部シアラグ	K ₁₀	20700	10900	1.90
PCV スタビライザ	K_{6}	15200	12000	1.27
RPV スタビライザ	K_4	7980	6180	1.29
CRDハウジング レストレントビーム	K_3	319	269	1.19
ダイヤフラムフロア	K_7	12000	9310	1.29

図 4-2(10) SA 時環境考慮モデルと今回工認連成モデルとの比較

図 3-3 大型機器,構造物地震応答解析モデル(水平方向)(単位:m)

図 3-3 大型機器,構造物地震応答解析モデル(鉛直方向)(単位:m)

5. まとめ

重大事故等における熱の影響を考慮し、「剛性低下考慮モデル」を用いて、基準地震動 S_s-D1に対する地震応答解析を実施し、「今回工認モデル」を用いた結果と比較した。

その結果、「剛性低下考慮モデル」の固有周期は、コンクリートの剛性を低減させた影響によ り「今回工認モデル」の結果に比べてわずかに大きくなるものの、ほぼ同程度となることを確認 し、最大応答値及び最大接地圧については、「今回工認モデル」の結果と概ね整合することを確 認した。さらに、「原子炉建屋の地震応答解析による評価」に与える影響についても確認を行っ た。確認結果の概要を以下に示す。

(a) 「原子炉建屋の地震応答解析による評価」に与える影響

- 資料V-2-2-2「原子炉建屋の耐震性についての計算書」及び資料V-2-9-1-13「原子炉建屋 基礎盤の耐震性についての計算書」に記載の,原子炉建屋に生じる最大せん断ひずみ及び最大 接地圧(地盤物性のばらつきを考慮した基準地震動S_s-D1~S_s-31に対する包絡値) に、基準地震動S_s-D1に対する「剛性低下考慮モデル」と「今回工認モデル」の応答比 (「剛性低下考慮モデル」/「今回工認モデル」)の最大値を乗じた値が許容限界を超えない ことを確認した。また、床応答スペクトルがほぼ同程度となることを確認し、基準地震動S_s -31(地盤物性+ σ 考慮)に対する水平方向の応答比が基準地震動S_s-D1と同等である ことならびに最大せん断ひずみが許容限界を超えないことを確認した。
- (b) 「機器・配管系の評価」に与える影響

追而

以上の結果より、資料V-2-2-1「原子炉建屋の地震応答計算書」、資料V-2-2-2「原子炉建屋 の耐震性についての計算書」及び資料V-2-9-1-13「原子炉建屋基礎盤の耐震性についての計算書」 の妥当性を確認した。