本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

補足説明

(東海第二発電所 工事計画認可申請に係る論点整理について)

平成 30 年 7 月 6 日

日本原子力発電株式会社

|--|

ブローアウトパネル閉止装置 機能確認試験要領書	1
加振試験後の点検結果	28
ブローアウトパネル閉止装置の「閉」状態における地震の組み合わせの考え方 について	30
ブローアウトパネル閉止装置の開放を仮定した場合の中央制御室の被ばく評価 への影響について	37

東海第二発電所

ブローアウトパネル閉止装置 機能確認試験要領書

日本原子力発電株式会社

平成 30 年 7 月

目次

1.	目的 ••••••	1
2.	試験期間及び場所 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
3.	試験項目 ••••••	1
4.	加振試験・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
5.	試験要領	13

東海第二発電所 ブローアウトパネル閉止装置機能確認試験要領について

1 目的

ブローアウトパネル閉止装置(以下,「閉止装置」という。)に要求される機能を確認するため,実機 規模の試験体を用いた加振試験を行い,重大事故等時における閉止装置の機能維持確認を実施する。ま た,機能確認試験時に発生した閉止装置の不具合に対する対策の効果を確認するため,対策を施した試 験体を用いた加振試験を行い,対策の妥当性を確認する。

- 2 試験期間及び場所
 - 実施時期:平成 30 年 6 月 18 日 (月) ~ 22 日 (金) 平成 30 年 7 月 24 日 (火) ~ 30 日 (月)
 - 場 所:国立研究開発法人 防災科学研究所 兵庫耐震工学研究センター 兵庫県三木市志染町三津田西亀屋 1501-21
- 3 試験項目
 - 3.1 閉止装置に要求される機能について

閉止装置は、原子炉建屋外側ブローアウトパネル(以下、「BOP」という。)が開放状態で炉心損 傷が発生した場合に、運転員等の中央制御室での居住性確保のため、BOPの開放部を速やかに閉止 し、原子炉建屋の気密性を維持することが求められる。具体的には下記の機能が求められる。

- ・ 地震後においても、容易かつ確実に閉止でき、また現場において人力による操作できる作動性を 確保し、原子炉建屋原子炉棟を負圧に維持できる気密性を確保していること。
- ・開放したBOPを復旧するまでの期間において閉止装置を使用するため、重大事故後、一定期間内に想定される地震が発生した場合においても、原子炉建屋原子炉棟を負圧に維持できる気密性を確保していること。
- 3.2 加振条件
 - (1) 基準適合性を確認するための加振(基準地震動Ss加振波による加振) 閉止装置の設置位置(最も高所の設置位置)における基準地震動Ss^{*1}に対する設計用震度を上 回るように設定された加振波を用いて加振を行う。
 - ※1 閉止状態の閉止装置は、BOPと同等の弾性設計用地震動Saによる荷重が作用した場合の気密性確保が求められるが、耐震裕度を確認するため、基準地震動Ss加振波を用いて加振を行う。
 - (2) 閉止装置の耐震裕度を確認するための加振(基準地震動S_s加振波を超える加振波による加振) 閉止装置の耐震裕度を確認するため、振動台の性能限界(基準地震動S_sの1.1倍相当^{*2})での 加振波を用いて加振を行う。
 - ※2 振動台を動かす油量等の制限により数値が上下する可能性がある。
 - (3) 閉止装置の不具合対策の効果を確認するための追加加振

閉止装置の不具合対策(チェーン等の補強,閂の設置)の効果を確認するため,3.1(1)と同じ 基準地震動 Ss加振波による加振を行う。 3.3 試験項目

基準地震動Ss加振波及び振動台性能限界加振波による加振を行い、閉止装置に要求される機能が 確保されことを確認する。

- :閉止装置が開放状態において,加振後の<mark>扉本体の</mark>作動性が確保している 加振後の作動確認 ことを確認する。また、扉本体の作動確認に合わせて、閂の作動性が確 保していることを確認する。
- 加振後の気密性能試験:閉止装置が開放状態において、加振後の気密性を確保していることを確 認する。気密性能試験の準備段階で、扉本体を閉動作させる際に、閂が 作動することを確認する。
- 加振後の気密性能試験:閉止措置が閉止状態において、加振後の気密性を確保していることを確 認する。
- : 閉止装置が閉止状態において,加振後の<mark>扉本体の</mark>作動性が確保している 加振後の作動確認 ことを確認する。扉本体の作動確認に合わせて、閂の作動性が確保して いることを確認する。

【扉開放状態】

【扉閉止状態】

第1図 試験治具概念図

- 4 加振試験について
 - 4.1 加振装置(三次元振動台)の概要

振動台の上に試験体を設置し、水平方向と鉛直方向を同時に加振する。第1表に振動台の仕様、第 2図に三次元振動台の概要図及び第3図に試験体の鳥瞰図を示す。

加振自由度		3軸6自由度	
振動台寸法		$20\mathrm{m} \times 15\mathrm{m}$	
最大積載重量		1200 t f	
加振方向	X方向	Y方向	Z方向
最大加速度	900cm/s^2	900cm/s^2	1500cm/s^2
最大速度	200cm/s	200cm⁄s	70cm∕s
最大変位	± 100 mm	$\pm 100 \mathrm{mm}$	± 100 mm

第1表 三次元振動台の仕様

第2図 三次元振動台の概要図

第3図 試験体の鳥観図

4.2 加振波

(1) 基準地震動 S_s加振波

加振試験用の模擬地震波は以下のとおりとする。第4回,第5回に,複数の基準地震動Ssの床 応答スペクトルを包絡する模擬地震波の時刻歴波形,床応答スペクトルを示す。

- ・閉止装置の設置高さより上方の原子炉建屋 EL. 63. 65m
- ・基準地震動 S s 8 波及び建屋影響評価で考慮するばらつきケースを包絡
- ・加振目標の包絡スペクトルは減衰定数1.0%で設定

第4図 模擬地震波の時刻歴波形

第5図 模擬地震波の床応答スペクトル(減衰定数1%)

※ 振動台の性能を考慮し,閉止装置の固有周期近傍の加速度に影響を及ぼさない長周期側 の加速度を低減処理した入力地震動にて試験を実施する。 (2) 振動台性能限界加振波

振動台性能限界加振波は、4.2(1)の基準地震動S_s加振波の振幅を、振動台の性能限界 付近(基準地震動S_sの1.1倍相当)の加速度振幅になるよう等倍した加振波とする。

4.3 加振試験項目及び内容

加振試験ケースの項目,概要は以下の通りである。各試験ケースの扉の試験体条件(閉止装置の開閉状態),加振波等を第2表に示す。

(1) 振動台補償加振

目標とする入力波を精度よく振動台で再現するための振動台補償加振を行う。本試験は, 試験体を振動台に搭載しない条件で行う。

(2) センサ確認試験

センサの取付方向、感度確認を行うために、各方向単独で正弦波加振を行う。

(3) 振動特性把握試験

試験体の振動特性を把握するため、0.1Hz~30Hz 程度の振動数成分を有する広帯域ランダ ム波による加振試験を行う。加振方向は各方向単独とし、扉の開状態及び閉状態の振動特性 を確認する。なお、試験体の固有振動数が高い場合は、入力波の主要な振動数成分の範囲に 固有振動数がないことを確認する。

(4) 地震波加振試験

加振レベルは4段階に分けて振動台の加振性能限界まで漸増させていく。加振方向は3方 向同時とし、閉止装置の開状態、閉状態のそれぞれで実施する。

なお,基準地震動Ssを超える加振試験として,振動台の性能限界である基準地震動Ssの 1.1倍相当をレベル4として実施し,閉止装置の耐震裕度を確認する。

第2表 試験ケース一覧

No	試験項目	試験体条件	加振方向	加振波	加振レベル	備考
—	振動台補償加振	—	X + Y + Z	_	_	_
1			Х			
2	センサ確認試験	扉閉	Y	正弦波	0.5m/s ² 程度	1~2Hz で実 拡
3			Z			加也
4			Х			
5		扉閉	Y	ランダム波*1	2.0m/s ² 程度	—
6	乍乱性此切恨≯聆		Z			
7	派期特性把推訊練		Х			
8		扉開	Y	ランダム波*1	2.0m/s ² 程度	—
9			Z			
10		扉開			0.3 \times S _s	レベル1
11					$0.6 imes S_s$	レベル2
12			X + Y + Z	包絡波 ^{※2}	$1.0 \times$ S s	レベル3
13					$1.1 \times S_s$	L ~ n 4 % 3
14	地電社加坡				振動台性能限界	V V V 4
15	地辰仅加恢				$0.3 \times S_s$	レベル1
16					$0.6 imes S_s$	レベル2
17		扉閉	X + Y + Z	包絡波*2	1.0×S _s	レベル3
18					1.1×S _s	1.0.21.4.83
19					振動台性能限界	V 1 V 4 × 0

※1 0.1Hz~30Hz 程度の振動数成分を有する広帯域ランダム波で加振を行う。

※2 方向毎に複数の基準地震動Ssの床応答スペクトルを包絡する模擬地震波を作成して加振する。

※3 基準地震動Ssに対する裕度を確認するために実施。

4.4 計測要領

(1) 計測項目

試験体の代表的挙動を評価するための項目を計測する。計測項目を第3表に示す。

第3表 計測項目

項目	計測点
加速度	 ・振動台 ・支持架台 ・扉 ・駆動装置
ひずみ	・プッシュローラ(開閉時に扉を押える部位)

(2) 計測位置

計測点は,試験体の代表的な挙動を評価する位置に設置する。第4表に計測項目の一覧表 を示す。

① 加速度

第6図に加速度計の設置位置を示す。

②ひずみ

第7図にひずみゲージの設置位置を示す。扉の開時,閉時において扉を抑える荷重が 発生するプッシュローラを代表位置として加振試験時のひずみを計測する。ただし今後 の詳細検討,試験時の状況判断により,計測位置の見直し,追加の可能性がある。

③その他

加速度,ひずみ以外に,加振試験時や扉の開閉動作の記録のため,動画撮影を実施する。なお,必要に応じ試験場に備え付けられているカメラも活用する。

- ・試験体全景:振動台外から,試験体全景を撮影
- ・扉近傍 : 振動台または支持架台上から、レール、プッシュローラ付近を撮影
- (3) 測定計器

試験に使用する測定計器を第5表に示す。

項目 記号 測定点 備考 No 方向 Х 1 Y 2 A1 振動台上加速度を計測 3 Ζ 振動台 ・計画条件の範囲内で加振試験が実施された Х 4 ことの確認が目的 Y 5 A2 Ζ 6 Х 7 8 A3 扉上部(閉時) Y 閉時,開時の扉上部の支持架台に設置 9 Ζ ・閉時,開時の閉止装置の機能維持確認加速 度の計測が目的 10 Х 支持架台の振動特性確認も兼ねる A4扉上部(開時) Y 11 Ζ 12Х 13加速度 14 A5 駆動装置本体 Y ・駆動装置単体の機能維持確認加速度の計測 15 Ζ が目的 Х 16 ・駆動装置の振動特性確認も兼ねる Y 17 A6 駆動装置の取付位置 18 Ζ Х 19 20 A7扉の中央部 Y ・扉の振動特性確認が目的 Ζ 21 振動特性把握試験時に設置^{※1} Х 22 A8 扉の右・中央 23 A9 扉の左・中央 Х A10 24 扉の中央部 Х ・地震波加振, 扉閉, レベル3または4(第 25 Х A11 扉の中央部 1 表の No. 16 または 17) のケースで扉 3 箇 所に設置*1 Х 26 A12 扉の中央部 27 S1 プッシュローラ (扉閉時) ※2 28 S2・扉の開放状態及び閉止状態での加振試験時 ひずみ に代表位置として, ひずみの計測が目的 29 S3 プッシュローラ (扉開時) ※2 S4 30

第4表 計測項目の一覧表

※1 扉の開閉による作動性能の確認の際にケーブルが試験体や他センサと干渉する恐れがあるため, 代表試験ケースのみでの計測とする。

※2 開時, 閉時において扉を押える荷重がプッシュローラに発生するため代表位置とする。なお, 支持部材の形状により, 測定位置が変更になる可能性がある。

第6図(1/2) 加速度計の設置位置(振動台,支持架台)

第6図(2/2) 加速度計の設置位置(扉,駆動装置)

第7図 ひずみゲージの設置位置

- 5 試験要領
 - 5.1 試験手順
 - 目標とする入力波を精度よく振動台で再現するための振動台補償加振の後,試験体を振動台 に搭載し,下記の手順で加振及び加振後の作動試験,気密性能試験を実施する。

なお,試験場との調整,現場の進捗状況等により,試験手順が変更となる場合もある。

- (1) 加振試験の準備として、センサ(加速度計及びひずみゲージ)が所定の位置に設置されて いることを確認する。また、測定計器の仕様が適切であることを確認する。
- (2) センサ確認試験を以下の手順で実施する。
 - ① 閉止装置の扉が閉止状態であることを確認する。
 - ② 加振レベル 0.5m/s²程度,振動数 1~2Hz にて,各方向単独で正弦波加振を行う。
 - ③ センサの取付方向,感度を確認する。
- (3) 振動特性把握試験を以下の手順で実施する。
 - ① 閉止装置の扉が閉止状態であることを確認する。
 - ② 加振レベル 2.0m/s²程度にて,各方向単独で,0.1Hz~30Hz 程度の振動数成分を有する 広帯域ランダム波の加振を行う。
 - ③ 試験体の固有振動数を測定し、入力波の主要な振動数成分の範囲に固有振動数の有無を 確認する。
 - ④ 閉止装置の扉を開放状態とし、(3) ②, ③ を実施する。

【閉止装置の扉開放状態における加振試験】

- (4) 地震波(0.3×S_s)加振試験を以下の手順で実施する。
 - ① 閉止装置の扉を開放状態であることを確認する。
 - ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
 - ③ 3 方向同時加振の包絡波によるレベル1 (0.3×S_s) で加振する。
 - ④ 加振後,採取データを確認する。
- (5) 地震波(0.6×Ss)加振試験を実施する。
 - ① 閉止装置の扉が開放状態であることを確認する。
 - ② センサ取付状況及び試験体の外観目視を行い,異常のないことを確認する。
 - ③ 3 方向同時加振の包絡波によるレベル2 (0.6×Ss) で加振する。
 - ④ 加振後,採取データを確認する。
 - ⑤ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
 - ⑥ 作動試験を「5.3(1)作動試験」のとおり実施する。
- (6) 地震波(1.0×Ss)加振試験を実施する。
 - (5) ① ~ ⑥と同じ。ただし、下記に読み替える。
 - ・レベル2 $(0.6 \times S_s)$ をレベル3 $(1.0 \times S_s)$

・基準地震動Ssの0.6倍を1.0倍

- (7) 地震波(1.1×S_s)加振試験を実施する。
 - (5) ① ~ ⑥と同じ。ただし、下記に読み替える。
 - ・レベル2 $(0.6 \times S_s)$ をレベル4 $(1.1 \times S_s)$
 - ・基準地震動Ssの0.6倍を1.1倍

【閉止装置の扉閉止状態における加振試験】

閉止装置の扉を閉止状態とし、5.1(4)~(7)を実施する。ただし、下記に読み替える。

・扉の開放状態を閉止状態

【追加加振試験(閉止装置の扉開放状態)】

① 閉止装置の扉が開放状態,閂(開側,閉側)が挿入状態であることを確認する。

- ② センサ取付状況及び試験体の外観目視を行い,異常のないことを確認する。
- ③ 3 方向同時加振の包絡波によるレベル3 (1.0×S_s)で加振する。
- ④ 加振後,採取データを確認する。
- ⑤ 閂(開側,閉側)を持ち上げる。
- ⑥ 気密試験準備のため,扉閉動作させる。
- ⑦ 閂(開側,閉側)を挿入する。
- ⑧ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
- ⑨ 作動試験を「5.3(1)作動試験」のとおり実施する。

【追加加振試験(閉止装置の扉閉止状態)】

- ① 閉止装置の扉が閉止状態,閂(開側,閉側)が挿入状態であることを確認する。
- ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
- ③ 3 方向同時加振の包絡波によるレベル3 (1.0×S_s)で加振する。
- ④ 加振後,採取データを確認する。
- ⑤ 扉がシート面からずれている場合は、閉止装置の閉操作を実施する。
- ⑥ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
- ⑦ 気密性能試験の結果、気密性を満足しない場合は、一度、扉をシート面から外れるまで 開操作した後、扉を全閉し、再度、気密性能試験を実施する。
- ⑧ 作動試験を「5.3(1)作動試験」のとおり実施する。

5.2 気密性能試験について

(1) 気密性能試験

ASTM E283-4 (Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen) に準じた装置を用いて実施する。排風機により試験容器 内の空気を排出することにより試験体前後に圧力差を生じさせ,試験体のシール部から試験 容器へ流入する通気量を測定する。

第8図に気密性能試験装置図,第9図に試験体の内のり寸法図を示す。

第8図 気密性能試験装置図

第9図 試験体の内のり寸法図

試験体を通過した空気量Q(m^3 /h)は、風速計の風速V(m/s)、風量測定管の直径 d(m)から算出する。

$$Q = V \times \frac{\pi \times d^2}{4} \times 3,600$$

試験手順は、「JISA 1516 (建具の気密性試験方法) 6.3 試験手順」に準じて(ただし、予備加圧後の開閉確認は省略する。), 負圧での圧力差 10Pa, 30Pa, 50Pa, 63Pa, 100Pa, 150Pa, 200Paと上げ, 150Pa, 100Pa, 63Pa, 50Pa, 30Pa, 10Paと下げていく*(保持時間1分)。通気方向は1方向(負圧)とする。(第10図 負圧試験線図) ※ 負圧を維持できる範囲で試験を実施する。

第10図 負圧試験線図

試験により得られた試験体を通過した空気量Q(m³/h)を,標準状態(20℃, 1,013 hPa)に換算し,扉の内のり面積(m²)で除すことにより,単位面積当たり,1時間当たりの通気量(m³/h·m²)として算出する。圧力差に応じた通気量の推移を確認する。

q = Q' / A

- ここで,
 - q :通気量 (m³/h·m²)
 - A :試験体の内のり面積 (m²)
 - Q':通過した空気量(20℃, 1,013hPa 換算値)(m³/h)

Q' = Q
$$\cdot \frac{P}{1,013} \cdot \frac{273 + 20}{273 + T}$$

- P :試験容器内の気圧(hPa)
- T :試験時の空気温度(℃)
- (2) 判定基準

通気量:12.6 m³/h·m²以下*(差圧 63Pa 時)

※ 閉止装置単体の判定基準(設計目標)としては,JISA 1516 で示されるA4 等級以上とする。なお,原子炉建屋原子炉棟全体としての気密性能は確保できる ことを確認する。試験体は,実機に取り付ける全ての閉止装置を考慮し,各々の 縦・横寸法を包絡する大きさで製作することにより試験の保守性を考慮する。

- 5.3 作動確認について
 - (1) 作動確認

【電動作動確認】

電動駆動により閉止装置が開閉できることを確認する。併せて電動機の電流測定及び 開閉時間を測定する。なお,開操作と閉操作は原則各1回とするが,初期状態との差異 があると判断した場合は,各5回を計測し,最も保守的な値を判定基準に用いる。

また,閉止装置の開閉に合わせ,閂を電動操作により持上げ,挿入できることを確認 する。

【手動作動確認】

閉止装置の扉が開放状態での加振後

手動操作により閉止装置が閉止できることを確認 する。(第11図) また,手動操作により閂を持上げ,挿入できるこ

とを確認する。

ただし、電動作動確認結果から作動状況に変化が ないと判断できる場合は、手動作動確認を省略する。

⑦ 閉止装置の扉が閉止状態での加振後

手動操作により閉止装置が開放できることを確認する。

また,手動操作により閂を持上げ,挿入できることを確認する。

ただし、電動作動確認結果から作動状況に変化が ないと判断できる場合は、手動作動確認を省略する。

第11図 手動操作概念図

(2) 判定基準

【電動作動確認】

 電動駆動により開閉できること。

 扉の閉止
 : 全閉位置であること

 開閉時間
 : 2 分以内(参考値)

 電流値
 : 定格電流値以内であること

 門
 : 電動操作により閂が持上げ, 挿入できること。

【手動作動確認】

手動操作により閉止(開放状態の加振後)又は開閉(閉止状態の加振後)できること。
 扉の閉止 : 全閉位置又は全開位置であること。
 閂 : 手動操作により、閂が持上げ、挿入できること。

ЯП 6/16(42) 6/16(42) 6/16(42) 6/16(42) 6/16(42) 6/16(42) 6/20(4)						~	₹ 71 F		Ħ								
⁻¹¹ M ⁻¹¹ </th <th>Ц</th> <th>6/15</th> <th>5(金)</th> <th>6/16</th> <th>(干)</th> <th>6/17</th> <th>(日).</th> <th>6/18</th> <th>(H)</th> <th>6/19</th> <th>(Xr)</th> <th>6/20</th> <th>(火)</th> <th>6/21</th> <th>(米)</th> <th>6/22</th> <th>(金)</th>	Ц	6/15	5(金)	6/16	(干)	6/17	(日).	6/18	(H)	6/19	(Xr)	6/20	(火)	6/21	(米)	6/22	(金)
(振動:)補償加減(原用) (注) (原用) (注) (原用) (活動:) (注) (原用) (振動:) (採動:) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (「(1)) (□(1	日日	AM ^{** 3}	PM ^{* 3}	AM	MA	MM	MA	MM	MA	MM	MA	AM	MA	AM	MA	AM	Md
センサ補認契確 3 方向 (服用) ビンサ補認契確 3 方向 (服用) (原用) (原用) 原動种性把程序確 3 方向 (原用) (原用) 原動种性把程序確 3 方向 (原用) (原用) 原動种性把程序確 3 方向 (原用) (原用) (原用) (原用) (原用) (原用) (原用) (P) U-501 (0.5 S s) (P) 地震放功能 (原用) (P) U-502 (0.6 S s) (P) 地震放功能 (原用) (P) U-502 (0.6 S s) (P) 地震放功能 (原用) (P) U-502 (0.6 S s) (P) 地震放功服 (原用) (P) U-502 (0.6 S s) (P) 地震放功服 (原用) (P) U-502 (0.6 S s) (P) 地震放功服 (原用) (P) U-502 (0.6 S s) (P) U-502 (0.6 S S s) (P) <td>振動台補償加振</td> <td></td>	振動台補償加振																
振動特性把握試験 3 力向 (原間) (原間) (原例) (原例) 地酸波功能 (原制) レーン1 (0.3 × S_3) 地酸波加能 (原制) レーン1 (0.3 × S_3) 地酸波加能 (原制) レーン1 (0.3 × S_3) 地酸波加能 (原制) レーンレ 3 (1.0 × S_3) *2 地酸波加能 (原制)	センサ確認試験3方向(扉開)																
振動特性把握減減3方向 (面別) (回 N S_3) (\Pi N N (D N S_3)	振動特性把握試験3方向 (扉開)																
地震波加緩(雇開) レベル1 (0.3×S ₃) 脱動合への乾酸体の指付け 地震波加緩(雇開) レベル2 (0.6×S ₃) 脱動合への乾酸体の指付け 地震波加緩(雇用) レベル3 (1.0×S ₃) *** 地震波加緩(雇用) レベル4 (1.1×S ₃) *** レベル4 (1	振動特性把握試験3方向 (扉閉)																
WYWI (0.3×35) 振動台への試験体の指付け 地震波加振 (原開) 地震波加振 (原用) レベン2 (10.5×3) 地震波加振 (原用) レベン2 (10.5×3) ション 地震波加振 (原用) レベン1 (0.3×5) レベン1 (0.3×5) ション 地震波加振 (原用) レベン2 (0.6×5) 地震波加振 (原用) レベン4 (1.1×5) レベン4 (1.1×5) 地震波加振	地震波加振(扉開)																
レベル2 (0.6×S _s) ビベル2 (0.6×S _s) 地震波加振 (原閉) レベル2 (0.6×S _s) レベル2 (0.6×S _s) ビジル3 (1.0×S_s) **2 レベル3 (1.0×S _s) **2 レベル4 (1.1×S _s) **2 レベル4 (1.1×S _s) **2 レベル4 レベル4 レベル4	▶ * *>▶ 1 (0.3 × 3 S) 地震波加振(扉開)				振動台~	の試験体(の据付け									予備	⊥ -11⊞
地震波加振(雇開) レベシル3 (1.0×S ₃) **2 初期状態の気密性能試験 地震波加振(原閉) レベシル3 (1.0×S ₃) **2 助震波加振(原閉) レベシル1 (0.3×S ₃) **2 地震波加振(原閉) レベシル3 (1.0×S ₃) **2 レベシッシッシッシッシッシッシッシッシッシッシッシッシッシッシッシッシッシッシッ	$V \ll V 2 (0.6 \times S_s)$	_															I
レーベル3 (1.0×S ₃) **2 初期状態の気密性能試験 地震波加振 (原閉) レーベル1 (0.3×S ₃) レーベル1 (0.3×S ₃) 第の作業 地震波加振 (原閉) レーベル2 (0.3×S ₃) レーベル1 (0.3×S ₃) 第の作業 地震波加振 (原閉) レーベル2 (0.5×S ₃) レーベル3 (1.0×S ₃) **2 10 地震波加振 (原閉) レーベル3 (1.0×S ₃) **2 地震波加振 (原閉) レーベル3 (1.0×S ₃) **2 地震波加振 (原閉) レーベル3 (1.0×S ₃) **2 地震波加振 (原閉) レーベル4 (1.1×S ₃) **2 地震波加振 (原閉) レーベル4 (1.1×S ₃) **2	地震波加振(扉開)			影響	験体へのせ、	ンサ等計測	器類の取作	43									
地震波加振 (雇削) レーベル 1 (0.3×S_s) 世 地震波加振 (雇削) レーベル 1 (0.3×S_s) ※3 地震波加振 (雇削) レーベル 3 (1.0×S_s) ※3 地震波加振 (雇削) レーベル 3 (1.0×S_s) ※3 地震波加振 (雇削) レーベル 3 (1.0×S_s) ※3 地震波加振 (雇削) レーベル 4 (1.1×S_s) ※3 <td>$u \!$</td> <td></td> <td></td> <td></td> <td>初期狀態</td> <td>能の気染性</td> <td>: 他就聯</td> <td></td>	$ u \!$				初期狀態	能の気染性	: 他就聯										
レベル1 (0.3×S _s) 第の作業 地震波加振 (原開) レベル2 (0.3×S _s) *2 地震波加振 (原開) レベル2 (0.6×S _s) 地震波加振 (原閉) レベル2 (0.6×S _s) レベル2 (0.6×S _s) 10 地震波加振 (原閉) 10 レベル4 (1.1×S _s) *2 10 地震波加振 (原開) レベル4 (1.1×S _s) *2	地震波加振(扉閉)				· · · · · · · · · · · · · · · · · · ·												
地震波加振 (原開) レベル3 (1.0×S _s) *2 地震波加振 (原閉) レベル2 (0.6×S _s)	$V \ll 1$ (0.3×S _S)					等の作業											
地震波加振(扉閉) レベル2 (0.6×S _s) 加震波加振(扉閉) レベル3 (1.0×S _s) ※2 地震波加振(扉閉) レベル4 (1.1×S _s) ※2 地震波加振(扉閉) レベル4 (1.1×S _s) ※2	地震波加振(扉開) レベル3(1.0×S _s) ^{※2}																
レベル2 (0.6×S_s) 1 地震波加振 (扉閉) 1 レベル3 (1.0×S_s) **2 1 地震波加振 (扉閉) 1 レベル4 (1.1×S_s) **2 地震波加振 (扉閉) レベル4 (1.1×S_s) **2 地震波加振 (扉閉) レベル4 (1.1×S_s) **2	地震波加振(扉閉)																
地震波加振 (扉閉) レベル3 (1.0×S _s) **2 地震波加振 (扉閉) レベル4 (1.1×S _s) **2 地震波加振 (扉閉) レベル4 (1.1×S _s) **2 地震波加振 (扉閉)	$V \ll \mathcal{V} 2 (0.6 \times S_s)$																
レベル3 (1.0×S _s) **2 地震液加振(原閉) レベル4 (1.1×S _s) **2 地震液加振(原閉) レベル4 (1.1×S _s) **2 地震液加振(原閉) レベル4 (1.1×S _s) **2 ビベル4 ビベル ビベル4 ビベル ビベル ビベル4 ビベル4 ビベル4 ビベル4 ビベル ビベル ビベル4 ビベル ビベル	地震波加振(扉閉)																
地震波加振 (扉閉) レベル4 (1.1×S _s) *2 地震波加振 (扉開)	$V \!$																
レベル4 (1.1×S s) *2 地震波加振 (扉開) し、ション4 (1・S) *2	地震波加振 (扉閉)																
地震波加振(扉開)	$V \sim 1.4$ (1.1×S s) *2																
1. × 1. 1 1 × C) *2	地震波加振(扉開)																
	$ u \!$																

※1 呼戦物にい調道により灸死による物口もめる。

※2 地震波加振のうちレベル2,3,4の加振後に、健全性確認試験(作動確認、気密性能試験)を実施する。
 ※3 AMは,10:00~1:00 PMは,13:30~18:00を想定している。

							策	13 🔀	追加	試験 I	- [※]] 1											
日 更 L	7/21(.	(干	7/22	(日)	7/23	(日)	7/24	(N)	7/25	() ()	7/26	(米)	7/27	(金)	7/28(:	E)	7/29(1	Щ)	7/30 (J	(E	7/31 (り	\odot
ц	AM	PM	AM	ΡM	AM	Μd	MM	Μd	AM	MA	MM	ΡM	AM	ΡM	AM	ΡM	AM	PM	AM	PM	AM	ΡM
センサ確認試験3方向(扉開)															-		-					
振動特性把握試験3方向 (扉開)																						
振動特性把握試験3方向 (扉閉)																						
地震波加振(扉開) レベル 3 (1.0×S _S)																						
地震波加振(扉閉) レベル 3 (1.0×S _s)	試験 4	振動台· 言台への	くの試聴したとも、	険い 第計測器	据付け 器類の取	付け																
作動確認			闄羽気	の設置									予備		予備		予備	Ξ.	予備日	E		
気密性能試験			等の	作業																		
地震波加振(扉開) レベル3 (1.0×S _S) ^{※2}																						
地震波加振(扉閉) レベル 3 (1.0×S _S) ^{※2}																						
地震波加振(扉開) レベル 3 (1.0×S _S) ^{※2}																				_		
地震波加振(扉閉) レベル 3 (1.0× S _S) ^{※2}																						
※1 試験場との調整により	り変更と	なる場	景合もあ	5 Z °																		

※2 加振後に、健全性確認試験(作動確認、気密性能試験)を実施する。
 ※3 AMは, 10:00~1:00 PMは, 13:30~18:00 を想定している。

		7 <i>H</i>	· 4、 网匹叫烟油	47
No.	用途	計測器名称	メーカ (型式)	仕 様
	絶縁抵抗測定	絶縁抵抗計	sanwa (PDM508S)	管理番号:HSO1A667 定格測定電圧(V/MΩ): 500/100 精度:第一有効測定範囲(指示値の±5%以内) 第二有効測定範囲(指示値の±10%以内)
5	動作試験 (モータ電流値測定)	デジタルクランプ メータ	HIOKI (3282)	管理番号:HS014509 交流電流(A):レンジ 30A,300A,600A 精度:30A(40~1kHz:±1%rdg±0.7%fs) 300A/600A(45~60Hz:±1.0%rdg±5dgt, 40~45Hz:±1.5%rdg±5dgt
3	動作試驗 (扉開閉速度測定)	ストップウオッチ	SEIK0 (S034-4000)	管理番号:HS012003 時間精度:±0.0012%(月差±30秒以内)
4		熱式風速計	日本カノマックス(病 (6141)	製造番号:642361 3 レンジ:0~1m/s(50 等分目盛。最小読取値 0.02m/s) 0~10m/s(50 等分目盛。最小読取値 0.2m/s) 0~50m/s(50 等分目盛。最小読取値 1m/s) 精度:各レンジのメータフルスケールの±2%
5		風量計測管	ー般財団洗人 建材試験センター	◆50mm (内径) ◆130mm (内径)
9	気密性能試験	デジタル圧力計	㈱サヤマトレーディング (マノエース 230-8110HP-B)	器物番号:2K43019 圧力レンジ:0~110kPa, 200kPa, 700kPa 最大表示:700kPa 精度:土0. 35%fs土1dgt
2		デジタル圧力計	㈱コスモ計器 DM-3501 (200Pa)	器物番号:311-1813-05B 圧力レンジ:0〜±200Pa 最大表示:220Pa 精度:土0.15%fs±1dgt
œ		(差圧計)	(朝コスモ計器 DM-3501 (500Pa)	器物番号:311-2144-07B 圧力レンジ:0〜±500Pa 最大表示:550Pa 精度:土0.15%fs±1dgt
6		ガラス製単管温度計	日本計量器工業㈱ (DF-201)	範囲:-20℃~50℃以下 目盛:1℃

第5表 測定計測器一覧表 (1/2)

(イノーク) 秋	仕様	定格容量 AS-5GB : ±49.03m/s ² AS-10GB : ±98.07m/s ² -20GB) AS-20GB : ±196.1m/s ² 精度(非直線性/ヒステリシス): ±1.0%R0 以内 ※R0(Rated Output): 定格出力	 世 (1) 世 (10%) (1) 世 (10%) (1) 市 (10%) (1) (1) 市 (10%) (1)	
J. X. 例儿可例 du 見 d	メーカ (型式)	株式会社共和電業 (AS-5GB, AS-10GB, AS-:	株式会社共和電業 (KFG-2-120-C1-11	
7 75	計測器名称	加速度計	ひずみゲージ	
	用途	加振試験		
	No.	10	11	

_	_
6	j
6	j
測児一覧 ま	
新生き	
#	4 7
詽	R

第1図 閉止装置の構造概略図

第2図 閉止装置の駆動機構概略図

参考資料2

- 「JISA 1516 建具の気密性試験方法」抜粋
- 6.3 試験手順 試験は、図2に示す手順に従って行う。
- a) 予備加圧 試験に先立ち試験圧力 P_{max}(¹)より10 %以上大きい圧力差を3秒以上保持し,3回加える。ただし, その圧力差は500 Pa以上とする。

なお, 圧力を変化させる時間は, 1秒以上とする。

- b) 開閉確認 戸の開閉繰返しを5回行い,その後施錠する。
- c) 加圧 加圧は、図2に示す試験手順に従い、正圧のもとで各段階ごとに最低10秒以上保持しながら、この試験で 要求されている最高圧まで昇圧する。

なお, 試験における圧力差の段階は, <u>10, 30</u>, 50, 100, 150, 200, 300, 400, 500及び600 Paとし(図2), *P*_{max} が600 Paを超える場合は, 100 Paを超えない範囲の段階で圧力差を増加する(図3)。この圧力差は, 降圧にも適 用する。

d) 測定 個々の圧力差ごとに流量が定常になったときの流量を測定する。

- 7. 試験結果の記録
- 7.1 通気量の表し方 通気量は、次のいずれか一つで表す。
 - 建具面積の平方メートル当たり
 - ー 可動部の平方メートル当たり
 - すき間長さメートル当たり

7.2 通気量の算出 通気量は、それぞれの加圧時での通気面積1 m²当たり(又は、すき間長さ1 m当たり)、1時間当 たりの流量で表し、JIS A 1513の5.で規定する基準状態の値に次の式を用いて換算する。

なお, 換算結果は JIS Z 8401によって丸めて表す。

・通気面積当たりの換算式
$$q = \frac{Q}{A} \cdot \frac{P_1 \cdot T_0}{P_0 \cdot T_1}$$

・すき間長さ1 m当たりの換算式 $a = \frac{Q}{2} \cdot \frac{P_1 \cdot T_0}{T_0}$

$$\frac{1}{L} \cdot \frac{1}{P_0 \cdot T_1}$$

- ここに、q : 基準状態に換算した通気量(m³/h·m²)
 - q1: 基準状態に換算した通気量(m³/h·m)
 - Q : 測定された流量(m³/h)
 - A :通気面積(m²)
 - L : すき間長さ(m)
 - P_0 : 1 013(hPa)
 - P₁:試験室の気圧(hPa)
 - $T_0: 273 + 20 = 293 (K)$
 - T_i :測定空気温度(K)

7.3 記録 7.2で求めた通気量の換算結果は,縦軸に通気量を,横軸に圧力差をとった両対数グラフ(通気量線図)で示す。

なお、通気量線図に示す通気量は、昇圧時の値と降圧時の値の両者のうち、大きい値を記入する。

人	点検部位	点検方法	点検日	点検結果
	ボルト 結 部	アイマークにより, 揺るみがないこと	2018年6月27日	異常なし
装置全	溶接部	目視により,割れ等 の異常がないこと	2018年6月27日	異常なし
体	架台	目視により, 鋼材等 に割れ等の異常が ないこと	2018年6月27日	異常なし
駆	電動機	目視により,変形, 損傷,ボルトの緩み 等がないこと	2018年6月27日	異常なし
動装置	減速機	目視により, スプロ ケット等に変形, 損 傷, ボルトの緩み等 がないこと	2018年6月28日	 主軸に微小(約 1mm)な 曲りが確認されたが,駆動 に影響を与える異常はなし
	パッキン	外観,取付状態に異 常がないこと	2018年6月28日	 ・若干の凹凸が確認された が,異常な傷等はなし ・左上隅のパッキンにずれ が確認
	テーパー ブロック	目視により,変形, 異常な傷等がない こと	2018年6月27日	変形,異常な傷なし
その	下部押え	目視により,変形, 異常な傷等がない こと	2018年6月28日	変形,異常な傷なし
の 他	ハンガー ローラ	目視により,変形, 異常な傷,ボルトの 緩み等がないこと	2018年6月27日	変形,異常な傷,ボルト の緩みなし
	ハンガー レール	目視により,割れ, 異常な変形等がな いこと	2018年6月29日	若干のゆがみが確認され たが,割れ,異常な変形等 はなし
	チェーン ガイド	目視により,割れ, 異常な変形等がな いこと	2018年6月28日	若干のゆがみが確認され たが,割れ,異常な変形等 はなし
	上・下部,	目視により、変形、	2018年6月27日	変形,異常な傷なし

加振試験後の外観点検記録

開・閉側プ	異常な変形等がな		
ッシュロ	いこと		
ーラ			
リミット	目視により,変形,		亦 出作 ギルトの 経
スイッチ	損傷, ボルトの緩み	2018年6月27日	変形、損傷、ホルトの液
	等がないこと		みなし
メカスト	目視により,異常な		曲ぶり 夏側に叩りが遮認
ッパー (扉	変形, 異常な傷等が	2019 年 6 日 20 日	曲かり, 扉側に凹みが帷部
側を含	ないこと	2018年6月29日	されたか、共吊な変形、場
む。)			寺はなし
扉 (裏面を	目視により,変形,		
含む。)及	異常な傷等がない		
び上・下部	こと		
ガイドロ		2018年6月27日	変形,異常な傷なし
ーラ、テー			
パーブロ			
ック			
ケーブル	目視により、挟ま		
(電動機	れ, 異常な傷等がな		
動力、リミ	いこと	2019 年 6 日 20 日	田告告
ットスイ		2016 平 0 月 29 日	共市なし
ッチ電源			
他)			
チェーン	目視により, 扉閉加		
	振後に変形,異常な	2018年6月29日	異常なし
	傷等がないこと		

ブローアウトパネル閉止装置の「閉」状態における地震の組み合わせの考え方 について

1. 設計基準事故におけるブローアウトパネル閉止装置の地震の組み合わせの考え方について

原子力発電所耐震設計技術指針 重要度分類・許容応力編(JEAG4601・補)においては, 運転状態IV(設計基準事故)でかつ事象が長期にわたる場合(事故と地震動の発生頻度の 組合せが10⁻⁷/年を上回る期間)は,基準地震動S₁(S_d相当)との組合せが必要と整理 されている。

東海第二発電所のブローアウトパネルは弾性用設計地震動Saに対して開放しない設計 としており、上記の考え方との整合が図られている。

したがって、事故発生後の地震によるブローアウトパネルの開放を考慮する必要はなく, また,ブローアウトパネル閉止装置は設計基準対象施設としての位置づけには整理されず, 「閉」状態における地震の組合せを考慮する必要はない。

2.重大事故におけるブローアウトパネル閉止装置の地震の組み合わせの考え方について 重大事故に至るおそれがある事故及び重大事故において、ブローアウトパネルは格納容 器バイパス及び起因事象として過渡事象(過渡事象のうちMSIV閉の隔離事象を想定し ている場合、主蒸気管破断は当該事象に含まれるとの整理をした場合*1)を起因事象とし て含むシナリオは、起因事象の従属としてブローアウトパネルが開放するシナリオを含む と整理される。

ブローアウトパネルが開放した場合において,炉心損傷防止シナリオにおいては放出さ れる放射能量は極めて少なく,原子炉格納容器からの漏えいによる現場操作環境,中央制 御室居住性の環境の著しい悪化を引き起こすことはない。

格納容器破損防止シナリオにおいては、以下の2つのシナリオが対象事象となり、各々 について地震との組み合わせについて述べる。

a. 格納容器過圧·過温破損

当該シナリオは、国内外の先進的な対策を講じても炉心損傷防止が困難なものとして、 大LOCA+非常用炉心冷却系機能喪失+全交流動力電源喪失を対象シナリオとして選定 している。しかしながら、本シナリオの起因事象は大LOCAであり、主蒸気管破断の従 属としてのブローアウトパネルの開放が起きることはない。

以下に,重大事故等対処施設の耐震設計の荷重の組合せの考え方に基づき,本シナリオ に対する地震の組み合わせの考え方について示す(表1参照)。

① 事故発生前

既設BOPが基準地震動S。により開放した場合は、保安規定の原子炉建屋の条項に

基づく運転上の制限の逸脱となり、4 時間以内に負圧に保つ措置を講じることができな ければ、AOTに従いプラントは停止することとなる。従って、ブローアウトパネル閉 止装置の「閉」の状態に対しては、地震の組み合わせの要求は課されない。

② 事故発生後(運転状態V(S)~10⁻²/年)

事故発生直後においては、荷重の組み合わせを考慮する判断目安である 10⁻⁸/年を 下回ることから、この期間において地震との組み合わせを考慮する必要がないため、ブ ローアウトパネルの機能は維持されると整理される期間である。

③ 事故発生後(運転状態V(L) 10⁻²/年~2×10⁻¹/年)

事故発この期間において考慮すべき地震動はSa地震動となり、さらに、起因事象が 大LOCAであるため主蒸気管破断を考慮する必要なく、ブローアウトパネルの機能は 維持されると整理される期間である。

④ 事故発生後(運転状態V(LL)2×10⁻¹/年~)

この期間において考慮すべき地震動は、基準地震動S。となり、ブローアウトパネル は開放する可能性がある。したがって、BOP閉止機能により速やかに閉止することが 必要であるが、閉止後に対し更なる地震を考慮する必要はない。

b. 原子炉圧力容器破損シナリオ(DCH, FCI, MCCI等)

① 事故発生前

既設BOPが基準地震動S。により開放した場合は、保安規定の原子炉建屋の条項に 基づく運転上の制限の逸脱となり、4時間以内に負圧に保つ措置を講じることができな ければ、AOTに従いプラントは停止することとなる。従って、ブローアウトパネル閉 止装置の「閉」の状態に対しては、地震の組合せの要求は課されない。

② 事故発生後

起因事象が過渡事象であり、これに主蒸気管破断が含まれるとの解釈は可能であることから、仮に含まれるとの前提とした場合、起因事象発生と従属でブローアウトパネルは開放する可能性がある。

しかしながら、当該シナリオは、格納容器内で起き得る物理化学現象に対する格納容 器の頑健性を確認することを主眼に置いており、SA設備として代替の原子炉注水機能 が設置されている場合においても、これらが使用できないとの仮定をおいた上で、原子 炉圧力容器を破損させるシナリオであり、地震荷重との組合せは当該シナリオの発生可 能性という観点で考慮する必要はないシナリオと整理している。

したがって、ブローアウトパネル開放後にブローアウトパネル閉止装置を使用した場 合においても、その状態において地震荷重の組合せは考慮しなくて良い。

以上のとおり,ブローアウトパネル閉止装置の「閉」の状態に対しては,地震の組合せ を考慮する必要はないものの,設備設計の基本方針として,地震の組合せの考え方を参考 に、ある一定期間の地震動に対する頑健性を有する設計であるべきと考える。

一つの仮定として、前述b. の事故シナリオに対して地震の組合せを考慮するとした場合、ブローアウトパネル閉止装置がブローアウトパネルと同程度の頑健性を有するとした場合(S_d相当)、ブローアウトパネル閉止装置は2×10⁻¹/年以降(73日以降)のS_sとの組み合わせでは密閉性は維持されないとの前提となるが、仮にこの段階において、密閉性が確保できない状態となった場合においても、中央制御室居住性という観点では、73日後以前に放出された放射性物質によるグランドシャインによる影響が支配的になることから、73日以降にブローアウトパネル閉止装置の密閉性が確保できない状態を仮定しても100mSv /7日間の判断基準を大幅に下回る(仮に73日以降開放を仮定してもグランドシャインによる線量寄与は直勤務当たり5mSv 未満)。

したがって、ブローアウトパネル閉止装置の「閉」状態に対して、考慮すべき地震動は S_a相当の頑健性を有すべきと考える。

3. ブローアウトパネル閉止装置の地震による一時的な密閉性の喪失の影響について

BOP閉止機能の「閉」状態においては、所定の密閉性が維持されることが求められる が、ここでは地震が発生した場合の影響として一時的な密閉性の喪失が被ばく評価等へ与 える影響について述べる。

重大事故発生後にブローアウトパネル閉止装置を「閉」状態で使用しているという前提 で,地震の規模及び発生の時期については,前述と同様,地震荷重の組み合わせの考え方 を参考とする。

重大事故発生後、ブローアウトパネル閉止装置により「閉」を実施した後、地震荷重の 組み合わせの考え方に基づけば、運転状態V(S)(~ 10^{-2} /年)の期間においては地震の 発生を考慮せず、運転状態V(L)(10^{-2} /年~ 2×10^{-1} /年)ではS_d相当の地震の発生 を仮定することとなる。

前項と同様に、b. の事故シナリオに対し、運転状態V(L)となった段階において、 地震動により閉止装置が1時間程度開放するとした場合、その後に再閉止を再び講じるこ とで、被ばく評価上の影響としては100mSv/7日間を超えることはなく、また、中央制御 室居住性という観点で最も厳しいシナリオ(格納容器過圧・過温破損シナリオ)の結果を 超えることはない。

なお,格納容器過圧・過温破損シナリオは,起因事象が大LOCAであり主蒸気管破断 の従属としてのブローアウトパネルの開放が起きることはないが,仮に重大事故発生後, ブローアウトパネル閉止装置により「閉」を実施した後,運転状態V(L)の地震による 一時的な開放を仮定したとしても,実際に閉止可能と想定される時間内に再び閉止をする ことにより,有意な影響はなく,100mSv/7日間を超えることはないと考える(図1)。

したがって、ブローアウトパネル閉止機能が「閉」状態において地震が発生した場合の 影響として一時的な開放を考慮しても、「閉」状態においてSa相当の耐震性を有し、かつ、 一時的な開放後の再閉止の機能(作動性)が失われることがなければ,中央制御室居住性 という観点でも問題ないと考える。

以上

	# # % # #	+ + % + +		亩 坮 婺 什 绦 ⊡ 隧	
	争议充生刖	争改充生		事政无生夜以阵	
	運転状態I	運転状態V	運転状態 V (S)	運転状態 V (L)	運転状態 V (LL)
	0~	0	~10-2/年	10-2/年~2×10-1/年	2×10−1/年~
a. 格納容器過圧・過温破損 (大LOCA+ECCS機能喪失+SBO)		起因]事象:LOCA(MSLBAの	発生は考慮しない)	
地震の組み合わせ (独立事象)	Ss	Ι	Ι	Sd	Ss
ブローアウトパネルの開放可能性	有[地震による開] (4+以内復旧できない場合プ ラント停止へ移行)	単	賺	賺	有[地震による開]
ブローアウトパネル閉止装置の状態	甾	甾	畕	閨	E
ブローアウトパネル閉止装置の 地震の組み合わせ	「開」状態+Ss	I	I	運転状態に包絡	(Ss地震後の「閉」であるため組み (Ss地震後の「閉」であるため組み 合わせの必要なし)
o. 原子炉圧力容器破損シナリオ (DCH, FCI, MCCI等)		桓	因事象:過渡事象(MSLI	3Aの発生を考慮)	
地震の組み合わせ (独立事象)	Ss	-	Ι	ー (注水機能喪失を仮定し という観点で地震との組	っており, 発生頻度 、み合わせはしない)
ブローアウトパネルの開放可能性	有[地震による開] (4h以肉復旧できない場合プ ラント停止へ移行)	有〔内圧による開〕	有	有	申
ブローアウトパネル閉止装置の状態	甛	鮨	R	F	R
ブローアウトパネル閉止装置の「閉」状態 の地震の組み合わせ	sS+缆状[開]	Ι	Ι	I	I

ブローアウトパネル閉止装置の「閉」状態に対する地震との組み合わせの考え方の整理について 表1
	(女女) 四个小部位	【参ん】 冶田田田	へ法型エロして	%4 6 0∨ 101-mS	∧<Ⅲ- ∩ 1 ~ 0 . 0 ℓ液
置の開放を想定した場合の被ばく評価結果	バローアウトパネル閉止装置が	開放した場合	(過渡事象,3時間後からSGTSに期待)		₩9 4. 3 < 10 - III > 0
表2 ブローアウトパネル閉止装	ブローアウトパネル閉止装置が	開放しない場合	(過渡事象,2時間後からSGTSに期待)	%† 9 0∕ 101C	A CHIL O I く O 、7 C派
		居住性評価条件		被ばく量	(最大となる班)

、評価結果	
× ×	
N1	
葱	
6	
⊲⊓	
郹	
た	
Ĺ	
Ψŀ	
÷	
K K	
T T	
鬥	
<u>6</u>	
肥	
峩	
끸	
刑	
2	
Ň	
~	
ì	
Þ	
V.	
5	
1	
11	
\mathcal{D}	

中央制御室の居住性評価に与える影響(大破断LOCA) \mathbb{X} 1

,	イベント	▽炉心損傷3	老生		▽格納容	器ベント			
46.	径過時間(h)	0			19				
ui	時刻	8:00		21:30	3:00	8:00		21:30	
	重		A 班				ЕЩ		
	2直				C 班			D班	
									1
		1 日 日	2 日 日	3日日	4 月 日	5日日	6日日	7日日	開放の影響を
	A班	1直							受ける期間
	B班			1直	1直		2直	2直	
	C 班	2直				1直	1直		
	D班		2直	2直				1直	
	E班		1直		2直	2直			
	推	证結果(mSv	v)			13			
		1 日 日	2日日	3日日	4月日	5日日	6日日	7日日	合計
最大とな	る班	A 班 約 6. 0×10 ¹							約 6. 0×101
	L Ř	B 班		約 1.2×10 ¹	約 9.3×10 ⁰		約 5.5×10 ⁰	約 2.7×10 ⁰	約3.0×101
) I	C 班 約 4.0×10 ¹				約 7.5×10°	約 6.2×10 ⁰		約 5.4×101
	L ţ	D Æ	約 1.4×101	約 1.0×10 ¹				約 5.2×10 ⁰	約 2.9×101
	<u> </u>	五 五	約 2.4×10 ¹		約 8.0×10 ⁰	約 6.6×10°			約 3.9×10 ¹
					-				5

ブローアウトパネル閉止装置の開放を仮定した場合の中央制御室の被ばく評価への影響について

- 1. 評価方針
 - (1) 評価の概要

ブローアウトパネルが開放し炉心の著しい損傷が発生した場合の評価事象を選定し,ブロ ーアウトパネル閉止装置の短期的な開放を仮定した場合,そのソースタームの設定により, 被ばく経路ごとに中央制御室の居住性を確保するための設備及び及び運用面の対策を考慮し た線量評価を行い,中央制御室に入り,とどまる運転員の実効線量の計算結果を,ブローア ウトパネル閉止装置が開放しない場合と比較する。

具体的な居住性に係る被ばく評価の手順は以下のとおりであり,図1に示す。

- a. 評価事象は、炉心の著しい損傷が発生した場合についてブローアウトパネル閉止装置が 短期的に開放することを考慮し、運転員の線量結果が厳しくなるよう選定する。なお、ブ ローアウトパネル閉止装置が開放しない場合についても評価を行う。
- b. 評価事象に対して,原子炉施設に滞留する又は放出される放射性物質によって,中央制 御室に入り,とどまる運転員の放射線被ばくをもたらす経路を選定する。
- c. 評価事象に対して, 建屋内の放射性物質の存在量分布及び大気中への放出量を計算する。
- d. 原子炉建屋内の放射性物質の存在量分布から線源強度を計算する。
- e. 発電用敷地内の気象データを用いて、大気拡散を計算して相対濃度及び相対線量を計算 する。
- f. 中央制御室内及び入退域時の運転員の被ばくを計算する。
 被ばく経路ごとに評価期間中の積算線量を計算し、これを運転員の中央制御室内の滞在
 時間及び入退域に要する時間の割合で配分して計算する。
 - (a) 中央制御室内での被ばく
 - イ. d.の結果を用いて,建屋内の放射性物質からのガンマ線による被ばくを,中央制 御室遮蔽による遮蔽効果を考慮して計算する。
 - c. 及び e. の結果を用いて、大気中へ放出された放射性物質からのガンマ線による 被ばくを、中央制御室遮蔽による遮蔽効果を考慮して計算する。
 - ハ. c.及び e.の結果を用いて、中央制御室内に外気から取り込まれた放射性物質の濃度を、中央制御室換気系設備による室内放射性物質の低減効果を考慮して計算し、 放射性物質による被ばく(ガンマ線による外部被ばく及び呼吸による吸入摂取による内部被ばく)を計算する。
 - (b) 入退域時の被ばく
 - イ. d.の結果を用いて、建屋内の放射性物質からのガンマ線による被ばくを計算する。
 - ロ. c. 及び e. の結果を用いて、大気中へ放出された放射性物質による被ばく(ガン マ線による外部被ばく及び呼吸による吸入摂取による内部被ばく)を計算する。
- g. f.の被ばく経路ごとの線量を合算し、判断基準と比較する。

(2) 評価事象の選定

炉心の著しい損傷が発生した場合において,原子炉施設の構造及び特性並びに安全上及び 格納容器破損防止の諸対策の観点から,評価事象を選定する。具体的には以下のとおりとす る。

「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則」第37条の「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」の想定する格納容器破損モードのうち,起因事象としてブローアウトパネルが開放し,ブロ ーアウトパネル閉止装置に期待する事故シーケンスを想定する。

事故シーケンスとしては、起因事象としてブローアウトパネルが開放する主蒸気管破断を 含む過渡事象起因であり、炉心損傷が早く、また、原子炉格納容器内の圧力が高く推移する 「高圧溶融物放出/格納容器雰囲気直接加熱」とし、全交流動力電源喪失の重畳を考慮する。 また、評価期間は、解釈に従い事故後7日間とする。 評価事象に係る条件を表1に示す。

(3) 被ばく経路の選定

炉心の著しい損傷が発生した場合において,運転員は,中央制御室にとどまり必要な操作, 措置を行う。この時,大気中に放出された放射性物質が中央制御室内に取り込まれることな どにより,中央制御室内に滞在している運転員は被ばくする。また,運転員の当直交替に伴 い入退域の移動が生じ,この入退域時にも運転員は被ばくする。

以上より,運転員の被ばく経路は、以下の被ばく経路①~⑤を考慮する。

また,評価事象ごとの対象とする被ばく経路は,それぞれの事故の形態,規模,事象進展, 運転員の交替要員体制等を考慮して選定する。

運転員の被ばく経路及び中央制御室の居住性に係る被ばく経路イメージを図2及び図3に 示す。

- a. 中央制御室内での被ばく
 - (a) 被ばく経路① 建屋内の放射性物質からのガンマ線による被ばく

想定事故時に建屋内に放出された放射性物質から直接的に施設周辺に到達してくるガ ンマ線(以下「直接ガンマ線」という。)及び空気中で散乱されて施設周辺に到達してく るガンマ線(以下「スカイシャインガンマ線」という。)が、中央制御室遮蔽を透過して 中央制御室内の運転員に与える線量。

 (b) 被ばく経路② 大気中へ放出された放射性物質からのガンマ線による被ばく 大気中へ放出された放射性物質が大気中を拡散して生ずる放射性雲からのガンマ線
 (以下「クラウドシャインガンマ線」という。)及び大気中へ放出され地表面に沈着した 放射性物質からのガンマ線(以下「グランドシャインガンマ線」という。)が、中央制御 室遮蔽を透過して中央制御室内の運転員に与える線量。

- (c) 被ばく経路③ 外気から室内に取り込まれた放射性物質による被ばく 大気中へ放出された放射性物質が、中央制御室内に取り込まれて中央制御室内の運 転員に与える線量(ガンマ線による外部被ばく及び呼吸による吸入摂取による内部被ば く)。
- b. 入退域時の被ばく
 - (a) 被ばく経路④ 建屋内の放射性物質からのガンマ線による被ばく
 直接ガンマ線及びスカイシャインガンマ線が、入退域時の運転員に与える線量。
 - (b) 被ばく経路⑤ 大気中へ放出された放射性物質による被ばく クラウドシャインガンマ線及びグランドシャインガンマ線が、入退域時の運転員に 与える線量及び吸入摂取による内部被ばく線量。

(4) 建屋内の放射性物質の存在量分布及び大気中への放出量の計算

建屋内の放射性物質の存在量分布及び大気中への放出量の計算は、炉心の著しい損傷が発 生した場合において、事故の形態、規模により、運転員の被ばくへの影響度合いを考慮して 適切に設定する。

a. 事故発生直前の状態

事象発生直前まで,原子炉は定格出力の105%で長期間にわたって運転されていたものとする。炉心内蓄積量計算条件を表2に示す。

炉心の著しい損傷が発生した場合の評価で使用する炉心内蓄積量は、ウラン燃料の9× 9燃料炉心を条件に、燃焼計算コードORIGEN2コードにより算出する。事故発生直 前の炉心内蓄積量を表3に示す。

計算にあたっては、9×9燃料炉心の代表的な燃焼度、比出力、初期濃縮度及び運転履 歴を考慮する。

- ・ 燃焼度

 : 55000 MWd/t(燃焼期間は,5サイクルの平衡炉心を 想定)
- 比出力 : 26 MW/t
- 初期濃縮度 : 3.8 %
- ・ 核データライブラリ: JENDL3.2 (BWR STEP-3 VR=0 %, 60 GWd/t)

b. 評価の対象とする放射性核種

運転員の被ばくに有意に寄与すると考えられる放射性希ガス(以下「希ガス」とい う。)及び放射性よう素(以下「よう素」という。)を対象とする。よう素は,有機よう 素及び無機よう素を考慮する。また,粒子状放射性物質も含めた放射性核種を対象とす る。よう素は,有機よう素,無機(元素状)よう素及び粒子状よう素を考慮する。

c. 大気中への放出過程

対象核種ごとに,大気中への放出過程上における放射性物質の低減効果を適切に考慮 し,大気中への放出量を計算する。 (5) 建屋内の線源強度の計算

建屋内の放射性物質の存在量分布から計算する線源強度及びその計算結果を用いた被ばく 経路①の計算については,審査ガイドを参照する。

(6) 大気拡散の計算

炉心の著しい損傷が発生した場合の中央制御室の居住性に係る被ばく評価に使用する相対 濃度及び相対線量 は、「被ばく評価手法について(内規)」及び「発電用原子炉施設の安全 解析に関する気象指針(昭和57年1月28日 原子力安全委員会決定,一部改訂 平成13年3月29 日 原子力安全委員会)」(以下「気象指針」という。)に基づき評価する。

a. 大気拡散評価モデル

放出点から放出された放射性物質が大気中を拡散して評価点に到達するまでの計算は, ガウスプルームモデルを適用する。

(a) 相対濃度

相対濃度は、毎時刻の気象項目と実効的な放出継続時間をもとに評価点ごとに以下の式のとおり計算する。

$$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot \delta_i^d$$

ここで,

χ/Q	:実効放出継続時間中の相対濃度(s/m³)	
Т	: 実効放出継続時間(h)	
$(\chi/Q)_i$: 時刻 i における相対濃度 (s/m ³)	
δ^d_i	: 時刻 i において風向が当該方位 d にあるとき	$\delta_i^d = 1$
	: 時刻 i において風向が他の方位にあるとき	$\delta_i^d = 0$

(高所放出の場合)

$$(\chi/Q)_i = \frac{1}{2\pi \cdot \sum_{yi} \cdot \sum_{zi} U_i}$$
$$\sum_{yi} = \sqrt{\sigma_{yi}^2 + \frac{CA}{\pi}} \quad , \qquad \sum_{zi} = \sqrt{\sigma_{zi}^2 + \frac{CA}{\pi}}$$

(地上放出の場合)

$$(\chi/Q)_i = \frac{1}{\pi \sum_{yi} \sum_{zi} U_i}$$

U_i	:時刻 i の放出源を代表する風速(m/s)
\sum_{yi}	:時刻 i の建屋の影響を加算した濃度の水平方向(y 方向)の拡がりの
	パラメータ (m)
\sum_{zi}	:時刻 i の建屋の影響を加算した濃度の水平方向(z 方向)の拡がりの
	パラメータ (m)
σ_{yi}	:時刻 i の濃度の y 方向の拡がりパラメータ(m)
σ_{zi}	:時刻 i の濃度の z 方向の拡がりパラメータ(m)
С	:建屋の風向方向の投影面積 (m ²)
A	:形状係数(一)

上記のうち,気象項目(風向,風速及び*σ_{yi}, σ_{zi}を*求めるために必要な大気安定度) については,「b. 気象データ」に示すデータを,建屋の投影面積については「a. 建屋投影面積」に示す値を,形状係数については「f. 形状係数」に示す値を用いる こととする。実効放出継続時間及び放出源高さは事故シーケンスに応じて求める条件 であることから,個別に設定する。

σ_{yi}及びσ_{zi}については、「発電用原子炉施設の安全解析に関する気象指針」(昭和 57年1月28日原子力安全委員会決定,平成13年3月29日一部改訂)における相関 式を用いて計算する。

(b) 相対線量

クラウドシャインガンマ線量を計算するために,空気カーマを用いた相対線量を毎 時刻の気象項目と実効放出継続時間をもとに,評価点ごとに以下の式で計算する。

$$D/Q = (K_1/Q)E\mu_0 \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} B(\mu r)\chi(x',y',z')dx'dy'dz'$$

ここで、

$$D/Q$$
 :評価地点 $(x, y, 0)$ における相対線量 (μ Gy/Bq)
 (K_1/Q) :単位放出率当たりの空気カーマ率への換算係数 $\left(\frac{dis \cdot m^3 \cdot \mu Gy}{MeV \cdot Bq \cdot s}\right)$
 E : ガンマ線の実効エネルギ (MeV/dis)
 μ_0 :空気に対するガンマ線の線エネルギ吸収係数 (1/m)

r : (x', y', z')から(x, y, 0)までの距離 (m)

B(μr) : 空気に対するガンマ線の再生係数 (-)

$$B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^2 + \gamma(\mu r)^3$$

ただし, $\mu_0, \mu, \alpha, \beta, \gamma$ については, 0.5 MeV のガンマ線に対する値を用い,以下のとおりとする。

 $\mu_0 = 3.84 \times 10^{-3} (m^{-1}), \quad \mu = 1.05 \times 10^{-2} (m^{-1})$ $\alpha = 1.000, \quad \beta = 0.4492, \quad \gamma = 0.0038$ $\chi(\mathbf{x}', \mathbf{y}', \mathbf{z}') : 放射性雲中の点(\mathbf{x}', \mathbf{y}', \mathbf{z}')における濃度 (Bq/m^3)$

b. 気象データ

2005年4月~2006年3月の1年間における気象データを使用する。なお、当該デー タの使用に当たっては、風向、風速データが不良標本の棄却検定により、過去10年間 の気象状態と比較して異常でないことを確認している。

c. 相対濃度及び相対線量の評価点

相対濃度及び相対線量の評価点は以下とする。

(a) 中央制御室内滞在時

換気系設備は事故後検知後,通常運転時の排風機が停止し,中央制御室給気隔離弁, 中央制御室排気隔離弁及び排煙装置隔離弁が閉止する。その後,フィルタユニット入 口隔離弁が開き,チャコールフィルタを介して中央制御室内の空気を再循環する閉回 路循環運転に切り替わることを前提とする。中央制御室が属する建屋の屋上面を代表 面として選定し,建屋巻き込みの影響を受ける場合には,中央制御室が属する建屋表 面での濃度は風下距離の依存性は小さくほぼ一様であるので,相対濃度の評価点は中 央制御室中心を代表とする。

また、相対線量の評価点も同様に中央制御室中心とする。

(b) 入退域時

入退域時の運転員の実効線量の評価に当たっては,周辺監視区域境界から中央制御 室出入口までの運転員の移動経路を対象とし,入退域時の評価点は,線量結果が厳し くなる様,運転員の入退域時のアクセスルート中において原子炉建屋原子炉棟に近接 する屋外(建屋入口)とする。

炉心の著しい損傷が発生した場合の放射性物質の放出源と評価点の位置関係を図5に 示す。

d. 評価対象方位

中央制御室のように,事故時の放射性物質の放出点から比較的近距離の場所では,建 屋の風下側における風の巻き込みによる影響が顕著になると考えられる。そのため,放 出点と巻き込みを生じる建屋及び評価点との位置関係によっては,建屋の影響を考慮し て拡散の計算を行う。

中央制御室の被ばく評価においては,放出点と巻き込みを生じる建屋及び評価点との 位置関係について,以下の条件すべてに該当した場合,放出点から放出された放射性物 質は建屋の風下側で巻き込みの影響を受け拡散し,評価点に到達するものとする。放出 点から評価点までの距離は,保守的な評価となるように水平距離を用いる。

- (a) 放出源の高さが建屋の高さの 2.5 倍に満たない場合
- (b) 放出源と評価点を結んだ直線と平行で放出源を風上とした風向 n について,放出源の位置が風向 n と建屋の投影形状に応じて定まる一定の範囲(図4の領域
 - A.n)の中にある場合
- (c) 評価点が、巻き込みを生じる建屋の風下にある場合

巻き込みを生じる代表建屋として,放出源から最も近く,影響が最も大きいと考えら れる原子炉建屋をを選定する。そのため評価対象とする方位は,放出された放射性物質 が原子炉建屋の巻き込み現象の影響を受けて拡散する方位及び原子炉建屋の巻き込み現 象の影響を受けて拡散された放射性物質が評価点に届く方位の両方に該当する方位とす る。具体的には,全16方位のうち以下の(a)~(b)の条件に該当する方位を選定し,す べての条件に該当する方位を評価対象とする。

- (a) 放出点が評価点の風上にあること。
- (b) 放出点から放出された放射性物質が,原子炉建屋の風上側に巻き込まれるよう な範囲に放出点が存在すること。
- (c) 原子炉建屋の風下側で巻き込まれた大気が評価点に到達すること。

評価対象とする方位は,原子炉建屋を見込む方位の範囲の両端が,それぞれの方位に 垂直な投影形状の左右に 0.5L(Lは対象となる複数の方位の投影面積の中の最小面積と する)だけ幅を広げた部分を見込む方位を仮定する。

上記選定条件(b)の条件に該当する風向の方位の選定には,放出点が評価点の風上となる範囲が対象となるが,放出点は原子炉建屋に近接し,0.5Lの拡散領域の内部にあるため,放出点が風上となる180°を対象とする。その上で,選定条件(c)の条件に該当する風向の方位の選定として,評価点から原子炉建屋+0.5Lを含む方位を対象とする。

以上より, 選定条件(a)~(c)の条件にすべて該当する方位は,本評価においては,評価点が中央制御室中心の場合で,放出源が原子炉建屋の場合は,9方位 (S,SSW,SW,WSW,W,NNW,NW,NNW,N)となる。また,評価点が建屋入口の場合で,放出源 が原子炉建屋の場合は,9方位(S,SSW,SW,WSW,W,WNW,NW,NN,N)となる。 なお、放出源が非常用ガス処理系排気筒の場合においては、放出源の高さが原子炉建 屋の高さの2.5倍以上となることから建屋の影響を受けないものとして評価し、評価点 が中央制御室中心及び建屋入口ともにW方位となる。評価対象とする風向を図6~図9 に示す。

e. 建屋投影面積

建屋投影面積は小さい方が厳しい結果となるため,対象となる複数の方位の投影面積 の中で最小面積を全ての方位の計算の入力として共通に適用する。

原子炉建屋の投影面積を図10に示す。

f. 形状係数

建屋の形状係数は 1/2^{*1}とする。

g. 累積出現頻度

中央制御室の居住性に係る被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い、実効放出継続時間を基に計算した値を年間について小さい方から順に並べたとき累積出現頻度 97 %^{*1}に当たる値を用いる。

※1 「発電用原子炉施設の安全解析に関する気象指針」昭和 57 年 1 月 28 原子力安全委員 会決定,平成 13 年 3 月 29 日一部改訂

大気拡散評価条件を表4に示す。

(7) 線量計算

炉心の著しい損傷が発生した場合の線量計算に当たっては,被ばく線量が最も厳しくな る運転員の勤務体系を踏まえて中央制御室内の滞在期間及び入退域に要する時間を考慮し て評価する。想定する勤務体系を表 11 に示す。

入退域時の運転員の実効線量の評価に当たっては、周辺監視区域境界から中央制御室出 入口までの移動を考慮して、線量結果が厳しくなるように建屋入口に15分間滞在するも のとする。

- a. 中央制御室内での被ばく
 - (a) 被ばく経路① 建屋内の放射性物質からのガンマ線による被ばく
 原子炉建屋内に浮遊する放射性物質からの直接ガンマ線及びスカイシャインガンマ
 線による運転員の実効線量は、施設の位置、建屋の配置及び形状等から評価する。
 イ. 評価条件

(イ) 線源強度

炉心の著しい損傷が発生した場合における想定事故時の線源強度は、次のと おりとする。

炉心の著しい損傷が発生した場合に炉心から格納容器内に放出された放射性 物質は,格納容器から原子炉建屋(二次格納施設)内に放出され,二次格納施 設内の自由空間内に均一に分布するものとする。この二次格納施設内の放射性 物質を直接ガンマ線及びスカイシャインガンマ線の線源とする。

評価に使用する積算線源強度を表 12 に示す。

ガンマ線エネルギ群構造は評価済核データライブラリ JENDL-3.3^{*1}から作成 した輸送計算用ライブラリ MATXSLIB-J33^{*2}の42 群とする。

注記 *1:K. Shibata, et al., "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3", J.Nucl.Sci.Technol., 39,1125 (2002)

*2: K. Kosako, N. Yamano, T. Fukahori, K. Shibata and A. Hasegawa, "The Libraries FSXLIB and MATXSLIB based on JENDL-3.3", JAERI-Data/Code 2003-011 (2003)

(口) 幾何条件

中央制御室内での被ばく評価に係る直接ガンマ線及びスカイシャインガンマ 線の評価モデルをそれぞれ図 11 及び図 12 に示す。直接ガンマ線の線源範囲は, 原子炉建屋の地下1 階以上*1とし,保守的に各階の二次格納施設の東西南北 最大幅をとることとする。スカイシャインガンマ線の線源範囲は,原子炉建屋 運転階のみ*2とする。

原子炉建屋は保守的に二次遮蔽及び中央制御室遮蔽を考慮する。二次遮蔽及 び中央制御室遮蔽において,評価で考慮する壁及び天井は,公称値からマイナ ス側許容差(-5 mm)を引いた値とする。

- 注記 *1:地下階は外壁厚さが厚く,地面にも遮られるため十分無視できる。ただし,原子炉建屋に関しては,中央制御室が隣接するため保守的に地下1階を考慮する。
 - *2:原子炉建屋運転階の床はコンクリート厚さが厚く,下層階から の放射線を十分に遮蔽している。したがって,建屋天井から放 射 されるガンマ線を線源とするスカイシャインガンマ線の評 価では,下層階に存在する放射性物質からの放射線の影響は十 分小さいため,線源として無視できる。

直接ガンマ線の線源範囲は,原子炉建屋の地上1階以上*³とし,保守的に 各階の管理区域の東西・南北最大幅をとることとする。 中央制御室は中央制御室遮蔽を考慮する。

なお、中央制御室遮蔽及び二次遮蔽は鉄筋コンクリートであるが、評価上コ ンクリートのみとし、コンクリート密度は東海第二発電所建設時の骨材(砂, 砂利)配合記録より、日本建築学会建築工事標準仕様書・同解説「原子力発 電所施設における鉄筋コンクリート工事(JASS 5N)」に基づき乾燥単 位容積質量として評価した 2.0 g/cm³とする。また、評価で考慮する壁は、公 称値からマイナス側許容差(-5 mm)を引いた値とする。

注記 *3:地下階は外壁厚さが厚く,地面にも遮られるため十分無視できる。

(ハ) 評価点

室内作業時の評価点は,線量結果が厳しくなる様,線源領域である原子炉建 屋原子炉棟に囲まれる図11に示す位置とした。

(ニ) 計算機コード
 直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャ
 インガンマ線は、ANISN及びG33-GP2Rコードを用いる。

(b) 被ばく経路② (クラウドシャインガンマ線)

大気中に放出された放射性物質からのガンマ線による中央制御室内での運転員の外 部被ばくは、以下により計算する。

イ. 線量計算

大気中放射性物質からの直接ガンマ線による中央制御室内作業時の実効線量は, 以下により評価する。

$$H_{\gamma} = \int_0^T K \cdot D/Q \cdot Q_{\gamma}(t) \cdot F \, dt$$

ここで,

H_γ: 時刻 T までの放射性物質からの直接ガンマ線による外部被ばく
 (Sv)

K : 空気カーマから実効線量への換算係数(1 Sv/Gy)

F : 中央制御室遮蔽厚さにおける減衰率(-)

(c) 被ばく経路③

中央制御室内へ外気から取り込まれた放射性物質からのガンマ線による外部被ばく 及び放射性物質の吸入による内部被ばく線量は以下により評価する。

- イ. 中央制御室内の放射性物質濃度計算
 - (イ) 計算式

中央制御室内の放射性物質濃度の計算に当たっては,以下の式を用いて,中 央制御室換気系設備等を考慮した評価を実施する。

$$\begin{split} \frac{d(\mathbf{V} \boldsymbol{\cdot} \mathbf{C}_{i}(\mathbf{t}))}{d\mathbf{t}} = & (1 - \eta) \boldsymbol{\cdot} \mathbf{C}_{i}^{0}(\mathbf{t}) \boldsymbol{\cdot} \mathbf{f}_{1} + \mathbf{C}_{i}^{0}(\mathbf{t}) \boldsymbol{\cdot} \mathbf{f}_{2} \\ & - \mathbf{C}_{i}(\mathbf{t}) \boldsymbol{\cdot} (\mathbf{f}_{1} + \mathbf{f}_{2} + \eta \boldsymbol{\cdot} \mathbf{F}_{F}) - \lambda_{i} \boldsymbol{\cdot} \mathbf{V} \boldsymbol{\cdot} \mathbf{C}_{i}(\mathbf{t}) \end{split}$$

- V : 中央制御室内容積 (m³)
- C_i(t) :時刻 t における中央制御室内の核種 i の濃度(Bq/m³)
- η : チャコールフィルタの除去効率(-)

 (Bq/m^3)

$$C_{i}^{0}(t) = Q_{i}(t) \cdot \chi / Q$$

- Q_i(t) :時刻 t における大気への核種 i の放出率 (Bq/s)
- χ/Q :相対濃度 (s/m³)
- f₁:中央制御室への外気取込量(m³/s)
- f₂ : 中央制御室への外気リークイン量 (m³/s)
- **F**_F: : 再循環フィルタを通る流量(m³/s)
- λ_i :核種 i の崩壊定数 (s⁻¹)
- (口) 事故時運転

炉心の著しい損傷が発生した場合においては、全交流動力電源喪失を想定し、 電源復旧の時間を考慮し、事故発生から2時間後に中央制御室フィルタ系ファ ンが起動する想定としている。また、外気を取り入れる場合は事故後運転員に よる外気取入れモード操作により隔離弁が開き、フィルタを介して外気を取り 込む設計となっている。

(ハ) 中央制御室バウンダリ体積

中央制御室バウンダリ体積は、中央制御室、運転員控室等の中央制御室換気 系設備の処理対象となる区画の体積を合計して保守的に2800 m³とする。

- (ニ) フィルタ除去効率
 - (i) 中央制御室換気設備のよう素フィルタの効率は,設計上97%以上期待で きるが,評価上保守的に95%とする。
 - (ii) 中央制御室換気系設備の高性能粒子フィルタの効率は,設計上 99.97 %以 上期待できるが,評価上保守的に 99 %とする。
- (ホ) 中央制御室換気設備フィルタユニットのフィルタ流量 中央制御室非常用給気ファンの起動により,流量は設計上期待できる値とし て 5100m³/h とする。
- (へ) 空気流入量
 中央制御室へのフィルタを通らない空気流入量は、換気率換算で設計上期待
 できる値として 1.0 回/h とする。

中央制御室内放射性物質濃度評価条件を表5に示す。

口. 線量計算

中央制御室内の放射能濃度により,以下の式を用いて外部被ばく及び内部被ば く線量を計算する。

(イ) 中央制御室内の放射性物質による外部被ばく
 中央制御室は、容積が等価な半球状とし、半球の中心に運転員がいるものと
 する。中央制御室内に取り込まれた放射性物質のガンマ線による実効線量は、

$$H_{\gamma} = \int_0^T 6.2 \times 10^{-14} \cdot E_{\gamma} \cdot C_{\gamma}(t) \cdot \{1 - e^{-\mu r}\} dt$$

ここで,

H_γ:時刻 T までの放射性物質からのガンマ線による外部被ばく線量
 (Sv)

C_y(t) :時刻 t における中央制御室内の放射能濃度 (Bq/m³)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

- μ : 空気に対するガンマ線のエネルギ吸収係数 (3.9×10⁻³ m⁻¹)
- r : 中央制御室内空間と等価な半球の半径 (m)

$$\mathbf{r} = \sqrt[3]{\frac{3 \cdot \mathbf{V}}{2 \cdot \pi}}$$

(ロ) 中央制御室内の放射性物質の吸入による内部被ばく中央制御室内の放射性物質の吸入による内部被ばくは、次式で計算する。

$$H_I = \int_0^T R \cdot H \infty \cdot C_I(t) \, dt$$

ここで,

H_{I}	:よう素の内部被ばくによる実効線量(Sv)
R	:呼吸率 (m³/s)
	(成人活動時の呼吸率 1.2 m ³ /h)
Н∞	:よう素(I-131)を1 Bq吸入した場合の成人の実効線量
	$(2.0 \times 10^{-8} \text{ Sv/Bq})$
$C_{I}(t)$:時刻 t における中央制御室内の放射能濃度 (Bq/m³)

(I-131 等価量-成人実効線量係数換算)

b. 入退域時の被ばく

(a) 被ばく経路④

入退域時における建屋内の放射性物質からの直接ガンマ線及びスカイシャインガン マ線による外部被ばくの評価方法は,被ばく経路①と同様である。ただし,入退域時 は屋外を移動するため,スカイシャインガンマ線の評価には中央制御室遮蔽及び二次 遮蔽のガンマ線の遮蔽効果を考慮しない。

(b) 被ばく経路⑤

入退域時における大気中へ放出された放射性物質からのガンマ線による外部被ばく 及び放射性物質の吸入による内部被ばくは以下により計算する。

- イ. 線量計算
- (イ) 放射性物質からのガンマ線による外部被ばく

大気中へ放出された放射性物質からのガンマ線による外部被ばくは,以下に より計算する。

$$H_{\gamma} = \int_0^T K \cdot D/Q \cdot Q_{\gamma}(t) dt$$

ここで,

- *H*_γ : 時刻 T までの放射性物質からの直接ガンマ線による外部被ばく
 線量 (Sv)
- K : 空気カーマから実効線量への換算係数(1 Sv/Gy)
- *D/Q* :相対線量 (Gy/Bq)
- *Q_v(t)* :時刻 t における大気への放射能放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

(ロ) 放射性物質の吸入による内部被ばく

大気中へ放出された放射性物質の吸入による内部被ばくは、次式で計算する。

$$H_I = \int_0^T R \cdot H\infty \cdot \chi/Q \cdot Q_I(t) dt$$

- H_I:時刻 T までの放射性物質の吸入による内部被ばく(Sv)
 R:呼吸率(m³/s) (成人活動時の呼吸率1.2 m³/h)
 H∞:よう素(I-131)を1 Bq 吸入した場合の成人の実効線量 (2.0×10⁻⁸ Sv/Bq)
 χ/Q:相対濃度(s/m³)
 2.(i)
- Q_I(t)
 :時刻tにおける大気への放射性物質の放出率(Bq/s)

 (I-131等価量-成人実効線量係数換算)

線量計算条件を表6に示す。

(8) 線量の合算及び判断基準との比較

被ばく経路ごとの線量を合算し,居住性に係る被ばく評価の判断基準100mSvと比較する。

2. 評価条件及び評価結果

炉心の著しい損傷が発生した場合における条件は,「1.評価方針」に示すとおりであり, 大気中への放射性物質の放出過程,中央制御室内の滞在期間及び入退域に要する時間並びに 中央制御室換気空調設備の起動時間等の条件を考慮して,以下のとおり線量を評価する。

(1) 大気中への放出量の評価

大気中に放出される放射性物質の量は,審査ガイドに従い設定する。放射性物質の大気 放出過程を図 14~図 17 に示す。放射性物質の大気中への放出量評価に関する条件を表 7 に示す。

a. 有効性評価におけるソースターム解析結果

有効性評価におけるソースターム解析結果として、1.(2)項の想定事象で示した事故 シーケンス「過渡事象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧 失敗(+DCH)」(全交流動力電源喪失の重畳を考慮)を想定し、格納容器から原子 炉建屋への漏えい及び原子炉建屋から大気中への放出を考慮して実施したMAAP解析 結果を使用する。

被ばく評価においては、本評価から得られるMAAP解析結果の、格納容器への放出 割合、格納容器から原子炉建屋への漏えい割合及び格納容器圧力逃がし装置への放出割 合のトレンドを使用する。

b. よう素の化学形態

よう素の化学形態は、下記を使用する。

	よう素の化学形態*1
有機よう素	4 %
無機よう素	91 %
粒子状よう素	5 %

注記 *1:R.G.1.195"Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors"

c. 格納容器内での自然沈着

CSE 実験*²に基づき, 無機よう素の格納容器内での自然沈着率を 9×10^{-4} (1/s) と設定し, カットオフ DF200 後は自然沈着の効果を見込まない評価とする。本事故シーケンスでは, 格納容器内の無機よう素の存在量が 1/200 になる時間は, 事故後 4.6 時間となるため, 4.6 時間までは自然沈着率 9×10^{-4} (1/s) を適用し, それ以降は無機よう素の自然沈着がないものとして評価する。

注記 *2: R.K. HILLIARD, A.K. POSTMA, J.D. McCORMACK and L.F. COLEMAN,

"Removal of iodine and particles by sprays in the containment systems experiment", Nuclear Technology, Vol. 10, p. 499-519, April 1971 d. サプレッションチェンバのプール水による除去

サプレッションチェンバのプール水による無機よう素の除染係数は,NUREG-0800*³ を参考として DF=10 を仮定する。

- 注記 *3:NUREG-0800 Standard Review Plan 6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", Rev. 1, 3/2007.
- (2) 大気拡散の評価

放射性物質の大気拡散評価に関する条件を以下に示す。

- a. 実効放出継続時間は、評価結果が厳しくなるように、全核種1時間とする。
- b. 放出源高さは,事故シーケンスに応じて,非常用ガス処理系排気筒放出時は排気筒 高さ,原子炉建屋漏えい時は地上とする。

大気拡散評価条件の詳細について,表9に示す。

また、これら条件による相対濃度及び相対線量の評価結果を表 10 に示す。

(3) 線量評価

運転員勤務体系としては、5直2交替とし、被ばく線量が最も厳しくなる運転員の勤務 体系を踏まえて中央制御室の滞在期間及び入退域に要する時間を考慮して評価する。想定 する勤務体系を表 11 に示す。

- a. 中央制御室内での被ばく
 - (a) 被ばく経路① 建屋からの直接ガンマ線及びスカイシャインガンマ線による外部被 ばく

直接ガンマ線及びスカイシャインガンマ線の評価に使用する線源強度を表 12 に示 す。

(b) 被ばく経路② 大気中に放出された放射性物質からのガンマ線による外部被ばく (クラウドシャインガンマ線)

大気中へ放出される放射性物質を線源として、中央制御室遮蔽厚さ(コンクリート 39.5 cm)における減衰率を考慮し計算する。減衰率は、QAD-CGGP2Rコードにより計算する。

(c) 被ばく経路② 大気中に放出された放射性物質からのガンマ線による外部被ばく (グランドシャインガンマ線)

大気中へ放出され地表面に沈着した放射性物質からのガンマ線(グランドシャイン) による,中央制御室内での運転員の実効線量は,評価期間中の大気中への放射性物質 の放出量を基に大気拡散効果,地表沈着効果及び中央制御室遮蔽による減衰効果を考 慮して評価する。

イ. 地表面沈着濃度の計算

(イ) 計算式

$$S_{O}^{i}(t) = \frac{V_{G} \cdot \chi / Q \cdot f \cdot Q_{i}(t)}{\lambda_{i}} \cdot \left(1 - e^{-\lambda_{i} \cdot t}\right)$$

ここで,

- $S_o^i(t)$:時刻 t における核種 i の地表面沈着濃度 (Bq/m²)
- *V_G* :沈着速度 (m/s)
- *χ/Q* :相対濃度 (s/m³)
- *f* : 沈着した放射性物質のうち残存する割合(1.0)
- *Q_i(t)* :時刻 t における核種 i の大気への放出率 (Bq/s)
- λ_i : 核種 i の崩壊定数 (s⁻¹)
- (ロ) 地表面への沈着速度

放射性物質の地表面への沈着評価では、地表面への乾性沈着及び降雨による 湿性沈着を考慮して地表面沈着濃度を計算する。地表面への沈着速度の条件を 表13に示す。

沈着速度は、有機よう素はNRPB-R322*1を参考として 0.001 cm/s,有機よう 素以外は NUREG/CR-4551*2を参考として 0.3 cm/s と設定し、湿性沈着を考慮し た沈着速度は、線量目標値評価指針の記載(降水時における沈着率は乾燥時の 2~3 倍大きい値となる。)を参考に、保守的に乾性沈着速度の 4 倍として、有 機よう素は 0.004 cm/s,有機よう素以外は 1.2 cm/s を設定する。

- 注記 *1:NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99
 - *2: J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, NUREG/CR-4551 Vol.2 Rev.1 Part 7, 1990
- 口. 線量計算
- (イ) 線源強度

炉心の著しい損傷が発生した場合に,大気中へ放出され建屋屋上に沈着した 放射性物質を線源とし,線源は建屋屋上に均一分布しているものとする。

なお、評価に使用する積算線源強度は表14に示す。

(口) 幾何条件

グランドシャイン評価モデルを図 18 に示す。グランドシャインの線源は、中 央制御室と隣接建屋の屋上に沈着した放射性物質である。この線源の大きさは 800 m×800 m*とする。なお、地表面の線源は、建屋の床・天井・壁で遮蔽され影響は小さいが、屋上面に線源が存在するものとして取り扱う。

中央制御室遮蔽で考慮する天井及び壁は、公称値からマイナス側許容差(-5 mm)を引いた値とする。

(ハ) 評価点

評価点は,遮蔽効果が小さく線源からの距離が近い位置として,線量が最も 厳しくなる天井の線源の影響が最大となりかつ同一フロアの線源に最も近接す る位置とする。

(ニ) 計算コード

グランドシャインは、QAD-CGGP2Rコードを用い評価する。

(d) 被ばく経路③ 外気から室内に取り込まれた放射性物質による被ばく

評価期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内に取り 込まれる。中央制御室内に取り込まれた希ガスのガンマ線による外部被ばく及びよう 素の吸入摂取による内部被ばくの和として実効線量を評価する。

中央制御室内の放射性物質濃度の計算に当たっては、以下に示す中央制御室換気系 設備等の効果を考慮して評価を実施する。中央制御室換気系設備等条件を表 15 に示 す。

- イ. 中央制御室非常用給気ファンの起動時間については、全交流電力電源喪失及び 電源回復操作並びに現場での手動によるダンパ開操作を想定した起動遅れ(事故 発生後120分)を考慮し、流量3400m³/hの中央制御室非常用給気ファンの起動を 想定する。
- ロ. 炉心損傷が予測される状態となった場合又は炉心損傷の徴候が見られた場合は、
 全面マスク等を着用するため、一部の期間についてマスク着用しているものとして評価する。このとき、マスクの除染係数は50とする。
- b. 入退域時の被ばく
 - (a) 被ばく経路④ 建屋からの直接ガンマ線及びスカイシャインガンマ線による外部被 ばく

直接ガンマ線及びスカイシャインガンマ線の評価に使用する線源強度を表 16 に示 す。

(b) 被ばく経路⑤ 大気中に放出された放射性物質からのガンマ線による外部被ばく (グランドシャインガンマ線)

入退域時における大気中へ放出され地表面に沈着した放射性物質からのガンマ線 (グランドシャイン)による外部被ばくの評価方法は,被ばく経路②と同様である が,入退域時は中央制御室遮蔽外を移動するため,中央制御室遮蔽を含めた建屋壁 のガンマ線の遮蔽効果は考慮しない。異なる条件を以下に示す。 大気中へ放出され地表面に沈着した放射性物質を線源とし、線源は地表面に 均一分布しているものとする。

なお、評価に使用する積算線源強度は表 17 に示す。

- ② 各建屋によるグランドシャインの遮蔽効果を期待しない。
- ③ 評価点は図 19 に示す線源領域の中心上とする。
- 注記 *: JAEA-Technology 2011-026「汚染土壌の除染領域と線量低減効果の検討」にお いて評価対象から 400 m 離れた位置の線源が及ぼす影響度は 1 %以下である。 これより,評価点から片側 400 m まで線源領域とし,グランドシャインを面線 源からの被ばくと想定する場合は,全体の線源領域として 800 m×800 mを設 定した。
- (4) 被ばく評価結果

炉心の著しい損傷が発生した場合にブローアウトパネルが開放を考慮し、炉心損傷時及 びブローアウトパネル開放時に中央制御室に滞在する場合(A班)における中央制御室の 居住性に係る被ばく評価結果を表 18 に示す。

この結果,炉心の著しい損傷が発生した場合の中央制御室の運転員に及ぼす実効線量は, ブローアウトパネル閉止装置の開放を考慮した場合で約45 mSv であり,ブローアウトパ ネル閉止装置の開放を考慮しない場合の約28 mSv に対して有意な上昇はない。また,実 効線量への寄与としては室内に外気から取り込まれた放射性物質による被ばくのうち内部 被ばくの影響が大きく,大気中へ放出された放射性物質による実効線量への影響は軽微で ある。

さらに、居住性評価の対象ケース(大破断LOCA)の評価結果に包絡されており、本 評価では、保守的に1時間の開放を仮定しているが、実際の再閉止操作時間は速やかに実 施可能なことから、中央制御室の運転員に及ぼす実効線量は更に緩和されることから、ブ ローアウトパネル閉止装置が開放した場合においても、速やかに閉止操作を行うことで、 中央制御室の居住性への影響はない。

表1 評価事象に係る条件

項目	評 価 条 件	選 定 理 由	備考
事故の 評価期間	事故後7日間	解釈に基づき評価期間 を設定	解釈 1 b) ④ 判断基準は, 運転員の実効線量が7日 間で100mSv を超えない こと。
評価事象	過渡事象時に高圧炉心 冷却及び低圧炉心冷却失 敗に失敗する事故 全交流電力電源喪失を 考慮する。	起因事象としてブローア ウトパネルが開放する主 蒸気管破断を含む事故シ ーケンスとして選定	ブローアウトパネル閉止 装置の開放影響を評価す るため

表 2 炉心内蓄積量計算条件

項目	評価条件	選 定 理 由	備考
炉心熱出力	3293MWt	定格値	審査ガイド 4.3.(1)a. 原子炉格納容器内への放 射性物質の放出割合は, 4.1.(2)aで選定した事故 シーケンスのソースター ム解析結果を基に設定す る。
運転時間	1 サイクル: 10000h 2 サイクル: 20000h 3 サイクル: 30000h 4 サイクル: 40000h 5 サイクル: 50000h	1 サイクル 13 ヶ月(395 日)を考慮して,燃料の 最高取出燃焼度に余裕を 持たせ長めに設定	_
取替炉心の 燃料装荷割 合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装荷割合 に基づき設定	_

核種グループ	炉内蓄積量(Bq) (gross 値)
 - 希ガス類	約2.2×10 ¹⁹
よう素類	約 2.8×10 ¹⁹
C s OH類	約 1.1×10 ¹⁸
S b 類	約 1.3×10 ¹⁸
T e O ₂類	約 6.7×10 ¹⁸
S r O類	約 1.2×10 ¹⁹
BaO類	約 1.2×10 ¹⁹
M o O 2類	約 2.4×10 ¹⁹
CeO2類	約7.4×10 ¹⁹
L a 2O3類	約 5.5×10 ¹⁹

項目	評価条件	選定理由	備考
大気拡散 評価モデル	ガウスプルームモデル	気象指針を参考として, 放射性雲は風下に直線的 に流され,放射性雲の軸 のまわりに正規分布に拡 がっていくと仮定するガ ウスプルームモデルを適 用	 被ばく評論 5.1.1(1)a)1) 放射物 5.1.1(1)a)1) 放射物 質の空気、風に応見した (内規)方式 (気気、気気、気気、気気、気気、気気、気気、気気、気気、気気、気気、気気、気気、
気象資料	東海第二発電所における 1 年間の気象資料 (2005.4~2006.3) (地上風を代表する標高 18m 及び排気筒付近を代 表する標高 148m の気象 データ)	建屋影響を受ける大気拡 散評価を行う場合は保守 的に地上(標高 18m)の 気象データを使用 非常用ガス処理系排気筒 からの放出の場合は,建 屋影響を受けないため標 高 148m の気象データを 使用 過去 10 年間の気象状態 と比較して異常がなく, 気象データの代表性が確 認された 2005 年 4 月~ 2006 年 3 月の1 年間の気 象データを使用	 被ばく評価手法(内規) 5.1.1(1)c)風向,風 速,大気安定の観測項目を、現地において少なくとも1年間観測して得られた気象資料を拡散式に用いる。 5.1.1(2)d)建屋影響は、放出渡る気象条件の影響ならため、地上高さに引着した気を受けるため、地上高さに引着したの気気を使けるため、地上高さで測定)を採用するのは保守の加速の気や(地上10m高さで測定)を採用するのは保守的かつ適切である。 審査ガイド 4.2(2)a. 風向,風速,大気安定度及び現地において少なくとも1年間観測して得られた気象資料を大気拡散式に用いる。

表 4 大気拡散評価条件 (1/6)

項目	評価条件	選 定 理 由	備考
累積出現 頻度	小さい方から 97 %	気象指針を参考として, 年間の相対濃度又は相対 線量を昇順に並べ替え,	 被ばく評価手法(内規) 5.2.1(2) 評価・の相対 濃度は,毎時刻の相対濃 度を年間について小さい 方から累積した場合,その累積出現頻度が97% に当たる相対濃度とする。 審査ガイド
頻度		累積出現頻度が 97 %に 当たる値を設定	 4.2(2) c. ・評価点の相対濃度又は 相対線量は,毎時刻の相 対濃度又は相対線量を年 間について小さい方から 累積した場合,その累積 出現頻度が97%に当た る値とする。
建屋影響	考慮する	放出点から近距離の建屋 の影響を受けるため,建 屋による巻き込み現象を 考慮	被ばく評価手法(内規) 5.1.2(1)a) 中央制御室 のように,事故時の放射 性物質のからに、建 をのかった。、 を りのかけです を うのが のののの による ためのの による ため、 たる ため、 たる ため、 たる たる ため、 たる たる たる たる たる たる たる たる たる たる たる たる たる

表 4 大気拡散評価条件(2/6)

百日	河 伍 冬 仲	湿 定 珥 占	借
<u></u>	げ 価 余 件	速 止 埋 田	加考
巻生さる代表	原子炉建屋	放出源から最も近く,巻 き込みの影響が最も大き いと考えられる一つの建 屋として選定 また,建屋投影面積が小 さい方が保守的な結果を 与えるため,単独建屋と して設定	(内規) 5.1.2(3)a)3) 巻き込み を生じる代表を建 して、表5.1に示す っる。 = 5.1 放射性物質の巻き込み対象 = 5.1 広射電空電電気 = 5.1 広射性物質の巻き込み対象 = 5.1 広射電空電電気 = 5.1 放射性物質の巻き込み対象 = 5.1 広射電空電空電気 = 5.1 広射電空電空 = 5.1 広射電空電空 = 5.1 広射電空電空 = 5.1 広射電空電空 = 5.1 広射電空空 = 5.1 広射電空空 = 5.1 広射電空空空 = 5.1 広射電空空 = 5.1 広射電空空空 = 5.1 大炉電電 = 5.1 大炉電電 = 5.1 大炉電 = 5.1 大型 = 5.1 The formula to $= 5.1$ The formula to $= 5.1$ The formula to

表 4 大気拡散評価条件(3/6)

双4 八XUA队叶屾木叶 (4/ 0,	表 4	大気拡散評価条件	(4/	6)
---------------------	-----	----------	-----	---	---

項目	評価条件	選定理由	備考
放射 濃 個 の	【中央制御室内】 中央制御室中心 【入退域時】 建屋入口	【中央気入りのです。 御備軍に転したないです。 御備運に転したないです。 御備運に転したたちです。 御備運に転したたちです。 御備運に転したたちでです。 一般取が、気が設ました。 ですって、 にたたたちで、 にたたたち、 にたたたち、 にたたいで、 にたいで、 にたいで、 にたいで、 にたいで、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、 に、	被(1) (は、) (は、) (は、) (は、) (は、) (は、) (は、) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

表 4 大気拡散評価条件(5/6)

項目	評価条件	選 定 理 由	備考
着目方位	原子炉建屋漏えい 中央制御室 S, SSW, SW, WSW, W, WNW, N W, NNW, N (9 方位) 建屋入口 S, SSW, SW, WSW, W, WNW, N W, NNW, N (9 方位) 非常用ガス処理系排気筒か らの放出 中央制御室 W (1 方位) 建屋入口 W (1 方位)	 原子炉建屋の建屋後流での巻き込みが生じる条件としては、放出点と巻き込みが生じる建屋及び評価点とってに該当した部で、次場合、放出点をないてにに該当した放射なの影響するものとする。 (a) 放出線の高さが建屋の高さの2.5 倍に満たない場合 (b) 放出行行でいたが出源の右にしたしたが出源の市価点を超したとしたが、放出部門でを結んだ直線と平向に向とするの後形が出がした。 (b) 放出「の役野形状にに応じての範囲の中にある場合 (c) 評価点の人気が習慣した。 (c) 評価点の人気が習慣した。 (c) 評価点にしたの後にした。 (c) 評価点の後による拡がりのを考慮し、以下のi)~iii)の条件にこの後流がりの影響がの方位を選定し、が存在した。 (i) 放出点から放出された放射性物質が、建屋の風下側で巻き込まれたかりた。 (i) 放出点から放出された放射性物質が、建屋の風下側で巻き込まれた。 (i) 建屋の風下側で巻き込まれた、 	被1.2(3)に)1) 5.1.2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)1) 「二、2(3)に)2 二、2(3)に)2 二、2(3)に)2 二、2(3)に)2 二、2(4)に 二、2(2)に)2 二 (2)に)2

項目	評価条件	選定理由	備考		
建屋投影 面積	3000m ³	建屋投影面積は小さい方が厳 しい結果となるため,対象と なる複数の方位の投影面積の 中で最小面積(原子炉建屋, 短手方向)となる南(北)方 向の断面積を切り下げた数値 を全ての方位の計算の入力と して共通に適用する。	 被ばく評価手法(内規) 5.1.2(3)d)1) 図 5.9に示すとおり,風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を求めるために大気拡散の入力とする。 審査ガイド 4.2(2)b. ・建屋投影面積 1)図 10に示すとおり,風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を求めるために大拡散式の入力とする。 		
形状係数	1/2	気象指針を参考として設定	被ばく評価手法(内規) 5.1.1(2)d) 形状係数 c の値は,特 に根拠が示されるもののほかは原則 として 1/2 を用いる。 審査ガイド		

表 4 大気拡散評価条件(6/6)

表 5	中央制御室内放射性物質濃度評価条件	(1/	′ 3)
		·-/	- /

項目	評価条件	選 定 理 由	備考
事ける すし り る り 込 み	[非常時運転モード] 外気間欠取入 (27時間隔離,3時間 取入) [外気取り込み量] (通常時)3400m ³ /h (事故時)3400m ³ /h [非常時運転モードへ の切り替え時間] 事故後2時間	事故後,中央制御室換 気系設備による外気間 欠取入れを前提とし, 更に,換気設備を通ら ずに直接室内に流入す ることを考慮する。	 被ばく評価手法(内規) 7.3.2(1)建屋の表面空気中から,次のa)及びb)の経路で放射性物質が外気から取り込まれることを想定する。 a)中央制御室の非常用換気空調によって室内に取入れること b)中央制御室内に直接,流入すること b)中央制御室内に直接,流入すること 審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊時対策所の建屋の表面空気中から,次の二つの経路で放射性物質が外気から取り込まれることを仮する。 一)原子炉制御室/緊急時制御室/緊急時対策所の非常用換気空調設備によって室内に取り込まれることと(外気取入) 二)原子炉制御室/緊急時制御室/緊急時対策所内に直接流入すること(空気流入)
中 中 や 制 御 室 バ ウ ン ダ リ 体 積	$2800 \mathrm{m}^3$	中央制御室,運転員控 室等の中央制御室換気 空調設備の処理対象と なる区の体積を合計し て保守的に大きめに設 定(図 21 参照)	被ばく評価手法(内規) 7.3.2(7)a)中央制御室内への取り込 み空気放射能濃度に基づき,空調シ ステムの設計に従って中央制御室内 の放射能濃度を求める。 審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊急 時対策所内に取り込まれる放射性物 質の空気流入量は,空気流入率及び 原子炉制御室/緊急時制御/緊急時 対策所バウンダリ体積(容積)を用 いて計算する。

項目	評価条件	選定理由	備考
外部ガンマ 線による全	2000 3	保守側に中央制御室バ	被ばく評価手法(内規) 7.3.4(3)b) ガンマ線による被ばくの 計算では、中央制御室と異なる階層 部分のエンベロー ブについて、階層 間の天井等による遮へいがあるの で、中央制御室の容積から除外して もよい。
身に対する 線量評価時 の自由体積	2800m ³	ウンダリ体積を設定	審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊 急時対策所内に取り込まれる放射性 物質の空気流入量は,空気流入率及 び原子炉制御室/緊急時制御室/緊 急時対策所バウンダリ体積(容積) を用いて計算する。
 中央制御室 換気系チャ コールフィ ルタによる 除去効率 	[炉心の著しい損傷が 発生した場合] 95 %	設計値(97 %以 上)に余裕を見込んだ 値として設定	 審査ガイド 4.2(1)a. よう素類及びエアロゾルのフィル タ効率は、使用条件での設計値を基 に設定する。
 中央制御室 換気系高性 能粒子フィ ルタによる 除去効率 	[炉心の著しい損傷が 発生した場合] 99 %	設計値(99.97%以 上)に余裕を見込んだ 値として設定	なお,フィルタ効率の設定に際し ては,ヨウ素類の性状を適切に考慮 すう。
中 央 制 御 室 イ ル タ ユ ニ ッ ト の フィ ル タ 流 量	5100m³/h	設計上期待できる値を 設定	被ばく評価手法(内規) 7.3.2(7)a)中央制御室内への取り込み空気放射能濃度に基づき,空調システムの設計に従って中央制御室内の放射能濃度を求める。 審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊急時対策所内への外気取入による放射性物質の取り込みについては,非常用換気空調設備の設計及び転条件

表 5 中央制御室内放射性物質濃度評価条件(2/3)

項目	評価条件	選定理由	備考
空気流入率	1.0回/h	設計上期待できる値を 設定	被ばく評価手法(内規) 7.3(1)なお,中央制御室の空気流 入率については,「原子力発電所の 中央制御室の空気流入率測定試験手 法」に従うこと。 審査ガイド 4.2(2)e. 既設の場合では,空気流入率は,気 流入率測定試験結果を基に設定す る。

表 5 中央制御室内放射性物質濃度評価条件(3/3)

	表 6	線量計算条件
--	-----	--------

項目	評価条件	選定理由	備考
線量換算 係数	成人実効線量換算係数を使用 (主な核種を以下に示す) I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq I-134:1.5×10 ⁻¹⁰ Sv/Bq I-135:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq L記以外の核種は ICRP Pub. 71, 72 に基づく	ICRP Publication 71, 72に基づく	_
呼吸率	1.2m³/h	成人活動時の呼吸 率を設定 ICRP Publication 71に基づく	被ばく評価手法(内規) 7.3.3(4) 吸入摂取による運転 員の内部被ばく線量は,次のと おり計算する。 $H_I = \int_0^T R \cdot H_\infty \cdot C_I(t) dt$ $H_I: よう素の吸入摂取の内部被 ばくによる実効線量(Sv) R: 呼吸率(成人活動時)(m^3/s)H_\infty: よう素(I-131) 吸入摂取 時の成人の実効線量への 換算係数(Sv/Bq) C_I(t): 時刻 t における中央制御 室内の放射能濃度(I-131)等価量)(Bq/m^3)T: 計算期間(30 日間)(S)$

百日	証 価 冬 侊	强 定 珥 占	家本ガイドの 記載
評価事象	Image: FT Image: FT <thimage: ft<="" th=""> <thimage: ft<="" th=""> <t< td=""><td> </td><td>ブローアウトパネル閉止装置 の開放影響を評価するため</td></t<></thimage:></thimage:>	 	ブローアウトパネル閉止装置 の開放影響を評価するため
炉心熱出力	3293MW	定格熱出力	
運転時間	1 サイクルあたり 10000 時間(約 416 日)	1 サイクル 13 ヶ月 (395 日)を考慮し て設定	_
取替炉心の装荷 割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替燃料炉心の燃 料装荷割合に基づ き設定	
炉心内蔵量	希ガス類 : 2.2×10^{19} Bq CsI類 : 2.9×10^{19} Bq CsOH類 : 1.2×10^{18} Bq Sb類 : 1.3×10^{18} Bq TeO ₂ 類 : 6.8×10^{18} Bq SrO類 : 1.3×10^{19} Bq BaO類 : 1.2×10^{19} Bq MoO ₂ 類 : 2.5×10^{19} Bq CeO ₂ 類 : 7.5×10^{19} Bq La ₂ O ₃ 類 : 5.5×10^{19} Bq (核種毎の炉心内蓄積量を核 種グループ毎に集約して記 載)	「単位熱出力当た りの炉心内蓄積量 (Bq/MW)」× 「3293MW(定格熱 出力)」 (単位熱出力当た りの炉心蓄積量 (Bq/MW)は,BWR 共通条件として, 東海第二と同じ装 荷燃料(9×9燃料 (A型)),運転 時間(10000時間) で算出したABW Rのサイクル末期 の値を使用)	4.3.(1)a. 希ガス類, ヨウ素 類, C s 類, T e 類, B a 類, R u 類, C e 類及びL a 類を考慮する。
放出開始時間	事故発生直後	MAAP解析結果	4.3.(4)a. 放射性物質の大気 中への放出開始時刻及び放出 継続時間は,4.1(2)a.で選定 した事故シーケンスのソース ターム解析結果を基に設定す る。

表7 大気中への放出量評価条件(1/4)

項目	評価条件	選 定 理 由	審査ガイドの記載
格納容器内 p H 制御の効果	考慮しない	格納容器内pH制 御設備は,重大事 故等対処設備と位 置付けていないた め,保守的に設定	4.3(1)a. 原子炉格納容器へ の放出割合の設定に際し,ヨ ウ素の性状を適切に考慮す る。
よう素の形態	粒子状よう素: 5 % 無機よう素 :91 % 有機よう素 : 4 %	R.G.1.195 ^{*1} に基 づき設定	4.3(1)a. 原子炉格納容器へ の放出割合の設定に際し,ヨ ウ素類の性状を適切に考慮す る。
格納容器から原 子炉建屋への漏 えい率(希ガ ス,エアロゾル 及び有機よう 素)	1Pd以下: 0.9Pdで0.5 %/日 1PD 超過: 2Pdで1.3 %/日	MAAP解析にて 格納容器の開口面 積を設定し格納容 器圧力に応じ漏え い率が変化するも のとし,格納容器 の設計漏えい率 (0.9pdで0.5% /日)及びAEC の式等に基づき設 定	4.3(1)e. 原子炉格納容器漏 えい率は,4.1(2)a.で選定し た事故シーケンスの事故進展 解析結果を基に設定する
格納容器から原 子炉建屋への漏 えい率(無機よ う素)	5.5h後~10h後: 1.3 %/日 上記以外の時間: 0.5 %/日	格納容器の設計漏 えい率及びAEC の式等に基づき設 定(格納容器圧力 が0.9Pdを超える 期間を包絡するよ うに1.3%/日の 漏えい率を設定)	所作作品本で変に取足する。
格納容器内での 除去効果(エア ロゾル)	MAAP解析に基づく(沈 着,サプレッション・プール でのスクラビング及びドライ ウェルスプレイ)	MAAPのFP挙 動モデル	 4.3(3) c. 原子炉格納容器ス プレイの作動については、 4.1(2) a. で選定した事故シー ケンスの事故進展解析条件を 基に設定する。 4.3(3) d. 原子炉格納容器内 の自然沈着率については、実 験等から得られた適切なモデ ルを基に設定する。
格納容器内での 除去効果(有機 よう素)	考慮しない	保守的に設定	_
格納容器内での 除去効果(無機 よう素)	自然沈着率:9×10 ⁻⁴ (1/s) (格納容器内の最大存在量か ら1/200まで)	CSE実験及び Standard Review Plan 6.5.2 ^{*2} に基 づき設定	4.3(3)d. 原子炉格納容器内 の自然沈着率については,実 験等から得られた適切なモデ ルを基に設定する。
	サプレッション・プールのス クラビングによる除去効果 : 10	Standard Review Plan 6.5.5 ^{*3} に基 づき設定	_

表7 大気中への放出量評価条件(2/4)

項目	評価条件	選定理由	審査ガイドの記載
格納容器から原 子炉建屋への漏 えい割合	希ガス類 : 4.3×10^{-3} C s I 類 : 6.3×10^{-5} C s OH類 : 3.2×10^{-5} S b 類 : 6.8×10^{-6} T e O 2類 : 6.8×10^{-6} S r O類 : 2.7×10^{-6} B a O類 : 2.7×10^{-6} M o O 2類 : 3.4×10^{-7} C e O 2類 : 6.8×10^{-8} L a 2 O 3類 : 2.7×10^{-8}	MAAP解析結果及 び NUREG-1465 ^{*4} の知 見に基づき設定	_
原子炉建屋から 大気への漏えい 率(非常用ガス 処理系及び非常 用ガス再循環系 の起動前)	無限大/日(地上放出) (格納容器から原子炉建屋 へ漏えいした放射性物質 は,即座に大気へ漏えいす るものとして評価)	保守的に設定	_
原子炉建屋から 大気への放出率 (非常用ガス処 理系及び非常用 ガス再循環系の 起動後)	1回/日(排気筒放出)	設計値に基づき設定 (非常用ガス処理系 のファン容量)	4.9(9)- 北学田ガス加田ズ
非常用ガス処理 系及び非常用ガ ス再循環系の起 動時間	ブローアウトパネル閉止装 置の開放を仮定する場合: 事故発生から3時間 ブローアウトパネル閉止装 置の開放を仮定しない場 合: 事故発生から2時間	起動操作時間(115 分)+負圧達成時間 (5分)(起動に伴 い原子炉建屋は負圧 になるが,保守的に 負圧達成時間として 5分を想定) ブローアウトパネル 閉止装置開放時間と して1時間を考慮 ^{**}	4.3(3)a. 非常用ガス処理宗 (BWR)又はアニュラス空 気浄化設備(PWR)の作動 については、4.1(2)a.で選定 した事故シーケンスの事故進 展解析条件を基に設定する。
非常用ガス処理 系及び非常用ガ ス再循環系のフ ィルタ除去効率	考慮しない	保守的に設定	4.3(3)b. ヨウ素類及びエア ロゾルのフィルタ効率は,使 用条件での設計値を基に設定 する。なお,フィルタ効率の 設定に際し,ヨウ素類の性状 を適切に考慮する。
ブローアウトパ ネルの開閉状態	開状態	原子炉建屋の急激な 圧力上昇等によるブ ローアウトパネルの 開放を考慮	_

表7 大気中への放出量評価条件(3/4)

※ ブローアウトパネル開放時にブローアウトパネル閉止装置を閉止するまでの時間は約17分で あり、再閉止時には更に短期間で閉止が可能となるが、影響評価として保守的に設定する観点 から1時間の開放を考慮している。

項目	評 価 条 件	選定理由	審査ガイドの記載
事故の評価期間	7 日間	審査ガイドに示す 7日間における運 転員の実効線量を 評価する観点から 設定	 3. (解釈)第74条(原子炉制 御室) 1 b) ④判断基準は,運転員 の実効線量が7日間で100mSv を超えないこと。

表7 大気中への放出量評価条件(4/4)

注記 *1:R.G.1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors"

- *2: Standard Review Plan 6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007
- *3: Standard Review Plan 6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007
- $\pm4: {\rm NUREG-1465}$ "Accident Source Terms for Light-Water Nuclear Power Plants", 1995
表8 大気中への放出量評価結果(事故後7日間積算)

(単位:Bq)

	原子炉建屋から	大気中へ放出
核種グループ	ブローアウトパネル閉止装置が	ブローアウトパネル閉止装置が
	開放する場合	開放しない場合
希ガス類	約 1.2×10 ¹⁷	約 1.2×1017
よう素類	約 5.2×1015	約 5.2×1015
C s OH類	約 8.1×10 ¹³	約 8.1×10 ¹³
S b 類	約 5.2×10 ¹⁰	約 4.2×1010
T e O ₂類	約 8.5×1010	約 8.4×1010
SrO類	約 1.2×10 ⁸	約 1.1×10 ⁸
B a O類	約 4.5×10 ⁸	約 4.4×10 ⁸
M o O 2類	約 3.9×10 ⁹	約 3.7×10 ⁹
C e O 2類	約 1.9×10 ⁸	約 1.9×10 ⁸
L a 2O3類	約 3.6×10 ⁷	約 3.5×10 ⁷

項目	評 価 条 件	選定理由	審査ガイドでの記載
実効放出 継続時間	全核種:1時間	保守的に最も短 い実効放出継続 時間を設定	4.2(2)c. 相対濃度は,短時間放出又は長時 間放出に応じて,毎時刻の気象項 目と実効的な放出継続時間を基に 評価点ごとに計算する。
放出源及び 放出源高さ	原子炉建屋漏えい(地上放 出) 地上:0m 非常用ガス処理系排気筒か らの放出 地上:95m	排気筒放出は有 効高さ,地上放 出時は地上高さ を使用	 4.3(4)b. 放出原高さは, 4.1(2)a. で選定した事故シーケンスに応じて放出口からの放出を仮定する。4.1(2)a. で選定した事故シーケンスのソースターム解析結果を基に放出エネルギーを考慮してもよい。
大気拡散評価地 点及び評価距離	原子炉建屋漏えい 中央制御室中心 評価距離:10 m 建屋入口 評価距離:15 m 非常用ガス処理系排気筒か らの放出 中央制御室中心 評価距離:100 m 建屋入口 評価距離:110 m	放出源から評価 点までの距離 は,保守的な評 価となるように 水平距離として 設定	

表 9 大気拡散評価条件

放出位置		中央制御室中心	建屋入口
百乙炬建民	$\chi \swarrow \mathbf{Q}$ (s/m ³)	8. 3×10^{-4}	8. 2×10^{-4}
原于炉建 <u>座</u>	D∕Q (Gy/Bq)	2.9 $\times 10^{-18}$	2.9×10 ⁻¹⁸
非常用ガス処理系	$\chi \swarrow \mathbf{Q}$ (s/m ³)	3. 0×10^{-6}	3. 0×10^{-6}
排気筒	D/Q (Gy/Bq)	8.8×10 ⁻²⁰	9. 0×10^{-20}

表10 相対濃度及び相対線量の評価結果

表 11 運転員交替考慮条件(炉心の著しい損傷が発生した場合)

	中央制御室の滞在時間
1直	8:00~21:45
2 直	21:30~8:15

	1日目	2日目	3日目	4日目	5日目	6日目	7日目
A班*	1直						
B班			1直	1直		2直	2直
C班	2直				1直	1直	
D班		2直	2直				1直
E班*		1直		2直	2直		

注記 *: 被ばくの平均化のため,事故直後に中央制御室に滞在している班(A班) に代わり,2日目以降は日勤勤務の班(E班)が滞在するものとする。

	▽炉心損傷発生				
イベント	▽ブローアウトノ	ペネル閉止装置開	放		
	▽ブローアウ	トパネル閉止装置	置再閉止		
経過時間(h)	0 2 3				
時刻	8:00 10:00 11:00	21:30	3:00	8:00	21:30
1直	THE A			日祖	
1,62					
2直			C班		D班

表 12 直接ガンマ線及びスカイシャインガンマ線評価用線源強度(室内作業時)

		BOP開放なし
群	エネルギ	A班
	(MeV)	0.00 h \sim
		13.75 h
1	0.01	2.9E+18
2	0.02	3.2E+18
3	0.03	3.6E+18
4	0.045	4.7E+19
5	0.06	1.7E+17
6	0.07	1.2E+17
7	0.075	6.6E+18
8	0.1	3.3E+19
9	0.15	1.3E+17
10	0.2	2.0E+19
11	0.3	4.0E+19
12	0.4	2.5E+18
13	0.45	1.3E+18
14	0.51	4.1E+18
15	0.512	1.4E+17
16	0.6	6.0E+18
17	0.7	6.8E+18
18	0.8	1.9E+18
19	1.0	3.9E+18
20	1.33	2.0E+18
21	1.34	6.1E+16
22	1.5	9.8E+17
23	1.66	3.8E+17
24	2.0	8.1E+17
25	2.5	2.8E+18
26	3.0	8.4E+16
27	3.5	9.7E+14
28	4.0	9.7E+14
29	4.5	1.8E+01
30	5.0	1.8E+01
31	5.5	1.8E+01
32	6.0	1.8E+01
33	6.5	2.1E+00
34	7.0	2.1E+00
35	7.5	2.1E+00
36	8.0	2.1E+00
37	10.0	6.4E-01
38	12.0	3.2E-01
39	14.0	0.0E+00
40	20.0	0.0E+00
41	30.0	0.0E+00
42	50.0	0.0E+00

群		BOP開放あり (事故発生2~3hにBOP開放)
	エネルギ	A班
	(MeV)	0.00 h \sim
		13.75 h
1	0.01	2.6E+18
2	0.02	2.9E+18
3	0.03	3.2E+18
4	0.045	4.2E+19
5	0.06	1.5E+17
6	0.07	1.0E+17
7	0.075	6.0E+18
8	0.1	3.0E+19
9	0.15	1.1E+17
10	0.2	1.8E+19
11	0.3	3.7E+19
12	0.4	2.0E+18
13	0.45	1.0E+18
14	0.51	3.4E+18
15	0.512	1.1E+17
16	0.6	5.0E+18
17	0.7	5.7E+18
18	0.8	1.6E+18
19	1.0	3.1E+18
20	1.33	1.6E+18
21	1.34	4.8E+16
22	1.5	7.7E+17
23	1.66	3.0E+17
24	2.0	6.4E+17
25	2.5	2.3E+18
26	3.0	6.2E+16
27	3.5	6.5E+14
28	4.0	6.5E+14
29	4.5	1.7E+01
30	5.0	1.7E+01
31	5.5	1.7E+01
32	6.0	1.7E+01
33	6.5	2.0E+00
34	7.0	2.0E+00
35	7.5	2.0E+00
36	8.0	2.0E+00
37	10.0	6.0E-01
38	12.0	3.0E-01
39	14.0	0.0E+00
40	20.0	0.0E+00
41	30.0	0.0E+00
42	50.0	0.0E+00

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時及びブロー アウトパネル開放時に中央制御室に滞在)

表13 地表面への沈着速度の条件

項目	評価条件	選 定 理 由	審査ガイドでの記載
地表面への沈着 速度	1.2cm/s	線量目標値評価指針 ^{*1} を参考に,湿性沈着を 考慮して乾性沈着速度 (0.3cm/s)の4倍を 設定 乾性沈着速度は NUREG/CR-4551 Vol2 ^{*2} より設定	4.3(3)f. 原子炉制御室の非常用 換気空調設備の作動については, 非常用電源の作動状態を基に設定 する。

注記 *1:発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会) *2:米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident

Risks:Quantification of Major Input Parameters", Fabruary 1994

表 14 グランドシャイ	ン線評価用線源強度	(室内作業時)
--------------	-----------	---------

		BOP開放なし
栽	エネルギ	A班
	(MeV)	0.00 h ~
		13.75 h
1	0.01	1.7E+08
2	0.02	1.9E+08
3	0.03	2.9E+08
4	0.045	8.5E+07
5	0.06	4.1E+07
6	0.07	2.7E+07
7	0.075	2.1E+07
8	0.1	1.1E+08
9	0.15	5.9E+07
10	0.2	2.5E+08
11	0.3	5.0E+08
12	0.4	2.2E+09
13	0.45	1.1E+09
14	0.51	3.4E+09
15	0.512	1.1E+08
16	0.6	5.0E+09
17	0.7	5.7E+09
18	0.8	2.3E+09
19	1.0	4.6E+09
20	1.33	2.7E+09
21	1.34	8.3E+07
22	1.5	1.3E+09
23	1.66	3.2E+08
24	2.0	6.8E+08
25	2.5	1.8E+08
26	3.0	2.7E+06
27	3.5	1.2E-01
28	4.0	1.2E-01
29	4.5	4.5E-09
30	5.0	4.5E-09
31	5.5	4.5E-09
32	6.0	4.5E-09
33	6.5	5.2E-10
34	7.0	5.2E-10
35	7.5	5.2E-10
36	8.0	5.2E-10
37	10.0	1.6E-10
38	12.0	8.0E-11
39	14.0	0.0E+00
40	20.0	0.0E+00
41	30.0	0.0E+00
42	50.0	0.0E+00

群		BOP開放あり (事故発生2~3hにBOP開故)
	エネルギ	A班
	(MeV)	0.00 h \sim
		13.75 h
1	0.01	1.9E+08
2	0.02	2.1E+08
3	0.03	3.3E+08
4	0.045	9.6E+07
5	0.06	4.6E+07
6	0.07	3.1E+07
7	0.075	2.4E+07
8	0.1	1.2E+08
9	0.15	6.5E+07
10	0.2	2.8E+08
11	0.3	5.6E+08
12	0.4	2.5E+09
13	0.45	1.2E+09
14	0.51	3.8E+09
15	0.512	1.3E+08
16	0.6	5.6E+09
17	0.7	6.4E+09
18	0.8	2.6E+09
19	1.0	5.2E+09
20	1.33	3.1E+09
21	1.34	9.3E+07
22	1.5	1.5E+09
23	1.66	3.6E+08
24	2.0	7.6E+08
25	2.5	2.0E+08
26	3.0	3.0E+06
27	3.5	1.5E-01
28	4.0	1.5E-01
29	4.5	6.0E-09
30	5.0	6.0E-09
31	5.5	6.0E-09
32	6.0	6.0E-09
33	6.5	6.9E-10
34	7.0	6.9E-10
35	7.5	6.9E-10
36	8.0	6.9E-10
37	10.0	2.1E-10
38	12.0	1.1E-10
39	14.0	0.0E+00
40	20.0	0.0E+00
41	30.0	0.0E+00
42	50.0	0.0E+00

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時及びブロー アウトパネル開放時に中央制御室に滞在)

表 15 中央制御室換気系設備等条件

項目	評価条件	選 定 理 由	審査ガイドでの記載
中央制御室非常 用換気系の起動 時間	事象発生から2時間	全交流電力電源喪失を 考慮し,代替電源から の電源供給開始時間か ら保守的に設定	4.3(3)f. 原子炉制御室の非常用 換気空調設備の作動については, 非常用電源の作動状態を基に設定 する。

表 16 直	接ガンマ緑及びス ス	カイシャ	インガン	マ緑評価用緑源強度	(入退域時)
--------	-------------------	------	------	-----------	--------

			BOP開放なし			
		班	A班			
群	エネルギ (MeV)	入域	_			
		退域	13.75 h ~ 14.00 h			
1	0.01		1. 2E+17			
2	0.02		1.4E+17			
3	0.03		1.6E+17			
4	0.045		2.3E+18			
5	0.06		7.5E+15			
6	0.07		5.0E+15			
7	0.075		3.3E+17			
8	0.1		1.7E+18			
9	0.15		4.9E+15			
10	0.2		9.4E+17			
11	0.3		1.9E+18			
12	0.4		9.1E+16			
13	0.45		4. 5E+16			
14	0.51		1.6E+17			
15	0.512		5.2E+15			
16	0.6		2.3E+17			
17	0.7		2.6E+17			
18	0.8		6.9E+16			
19	1.0		1.4E+17			
20	1.33		6.0E+16			
21	1.34		1.8E+15			
22	1.5		2.9E+16			
23	1.66		8.3E+15			
24	2.0		1.8E+16			
25	2.5		4.8E+16			
26	3.0		7.1E+14			
27	3.5		1.9E+12			
28	4.0		1.9E+12			
29	4.5		4.3E-01			
30	5.0		4.3E-01			
31	5.5		4.3E-01			
32	6.0		4.3E-01			
33	6.5		4.9E-02			
34	7.0		4.9E-02			
35	7.5		4.9E-02			
36	8.0		4.9E-02			
37	10.0		1.5E-02			
38	12.0		7.6E-03			
39	14.0		0.0E+00			
40	20.0		0.0E+00			
41	30.0		0.0E+00			
42	50.0		0.0E+00			

			BOP開放あり (まただたの、a)にFROP開た)		
		班	(事政発生2~3hにBOP用放) A班		
群	エネルギ (MeV)	入域	_		
		退城	13.75 h ~ 14.00 h		
1	0.01		1. 2E+17		
2	0.02		1.3E+17		
3	0.03		1.5E+17		
4	0.045		2.3E+18		
5	0.06		7.2E+15		
6	0.07		4.8E+15		
7	0.075		3.2E+17		
8	0.1		1.6E+18		
9	0.15		4. 7E+15		
10	0.2		9.1E+17		
11	0.3		1. 8E+18		
12	0.4		8.5E+16		
13	0.45		4.2E+16		
14	0.51		1.5E+17		
15	0.512		4.9E+15		
16	0.6		2.2E+17		
17	0.7		2.5E+17		
18	0.8		6.4E+16		
19	1.0		1.3E+17		
20	1.33		5.6E+16		
21	1.34		1.7E+15		
22	1.5		2.7E+16		
23	1.66		7.8E+15		
24	2.0		1.7E+16		
25	2.5		4.7E+16		
26	3.0		6.8E+14		
27	3.5		1.9E+12		
28	4.0		1.9E+12		
29	4.5		4.1E-01		
30	5.0		4.1E-01		
31	5.5		4.1E-01		
32	6.0		4.1E-01		
33	6.5		4.7E-02		
34	7.0		4.7E-02		
35	7.5		4.7E-02		
36	8.0		4.7E-02		
37	10.0		1.4E-02		
38	12.0		7.2E-03		
39	14.0		0.0E+00		
40	20.0		0.0E+00		
41	30.0		0.0E+00		
42	50.0		0.0E+00		

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時及びブロー アウトパネル開放時に中央制御室に滞在)

表17 グランドシャイン線評価用線源強度(入退域時)

			BOP開放なし		
		班	A班		
群	エネルギ (MeV)	入域	-		
		退域	13.75 h ~ 14.00 h		
1	0.01		2.8E+06		
2	0.02		3.1E+06		
3	0.03		5.3E+06		
4	0.045		1.5E+06		
5	0.06		6.5E+05		
6	0.07		4.3E+05		
7	0.075		4.0E+05		
8	0.1		2.0E+06		
9	0.15		7.6E+05		
10	0.2		4.0E+06		
11	0.3		7.9E+06		
12	0.4		4.1E+07		
13	0.45		2.1E+07		
14	0.51		6.0E+07		
15	0.512		2.0E+06		
16	0.6		8.8E+07		
17	0.7		1.0E+08		
18	0.8		5.9E+07		
19	1.0		3. 4E+07		
20	1. 33		1. 0E+06		
21	1.54		1.7E+07		
23	1. 66		3. 3E+06		
24	2.0		7.0E+06		
25	2.5		2.5E+06		
26	3.0		4.0E+04		
27	3.5		1.3E-04		
28	4.0		1.3E-04		
29	4.5		9.2E-11		
30	5.0		9.2E-11		
31	5.5		9.2E-11		
32	6.0		9.2E-11		
33	6.5		1.1E-11		
34	7.0		1.1E-11		
35	7.5		1.1E-11		
36	8.0		1.1E-11		
37	10.0		3.2E-12		
38	12.0		1.6E-12		
39	14.0		0.0E+00		
40	20.0		0.0E+00		
41	30.0		0.0E+00		
42	50.0		0.0E+00		

			BOP開放あり (事故発生2~3hにBOP開放)
		班	A班
群	エネルギ (MeV)	入域	-
		101-6	13.75 h
		退墩	~ 14.00 h
1	0.01		3.1E+06
2	0.02		3.5E+06
3	0.03		6.0E+06
4	0.045		1.7E+06
5	0.06		7.4E+05
6	0.07		4.9E+05
7	0.075		4.5E+05
8	0.1		2.3E+06
9	0.15		8.6E+05
10	0.2		4.5E+06
11	0.3		9.0E+06
12	0.4		4.7E+07
13	0.45		2.3E+07
14	0.51		6.8E+07
15	0.512		2.3E+06
16	0.6		1.0E+08
17	0.7		1.1E+08
18	0.8		4.4E+07
19	1.0		8.9E+07
20	1.33		3.9E+07
21	1.34		1.2E+06
22	1.5		1.9E+07
23	1.66		3.8E+06
24	2.0		8.0E+06
25	2.5		2.9E+06
26	3.0		4.6E+04
27	3.5		1.8E-04
28	4.0		1.8E-04
29	4.5		1.3E-10
30	5.0		1.3E-10
31	5.5		1.3E-10
32	6.0		1.3E-10
33	6.5		1.4E-11
34	7.0		1.4E-11
35	1.5		1.4E-11
36	8.0		1.4E-11
37	10.0		4.4E-12
38	12.0		2. 2E-12
39	14.0		0.0E+00
40	20.0		0.000
41	50.0		0.02+00
42	00.0		U. UE+UU

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時及びブロー アウトパネル開放時に中央制御室に滞在)

表18 中央制御室の居住性に係る被ばく評価結果

		実効線量(7日間)					
		高圧溶融物放出/格約	居住性評価の対象ケ				
				ース「大破断LOC			
	彼はく栓路	ブローアウトパネル	ブローアウトパネル	A+高圧炉心冷却失			
		閉止装置開放あり	閉止装置開放なし	敗+低圧炉心冷却失			
				敗」			
	①建屋からのガンマ線によ						
	る被ばく	新J 4.9×10 「	新J 6. 0×10 「	新J 7.8×10 「			
	②大気中へ放出された放射						
	性物質のガンマ線による	約 2.4×10 ⁻¹	約 2.0×10 ⁻¹	約 9.6×10 ⁻¹			
中	被ばく						
- 央 制	③室内に外気から取り込ま						
御	れた放射性物質による被	約 3.6×10 ¹	約 2.0×10 ¹	約 4.6×10 ¹			
至内	ばく						
作業	(内訳) 内部被ばく	約 3.4×10 ¹	約 1.8×10 ¹	約4.0×10 ¹			
時	外部被ばく	約 1.7×10 ⁰	約 1.3×10 ⁰	約 5.3×10 ⁰			
	②大気中へ放出され,地表		約 2.8×10 ⁰	約 4.7×10 ⁰			
	面に沈着した放射性物質	約 3.1×10 ⁰					
	のガンマ線による被ばく						
	小 計 (①+②+③)	約 4.0×10 ¹	約 2.3×10 ¹	約 5.2×10 ¹			
	④建屋からのガンマ線によ	(1.6×10^{-1})	約 1 7 \times 10 ⁻¹	$\frac{1}{2}$ 6 \times 10 ⁻¹			
	る被ばく	示り1.0~10	示り1.7~10	赤り 2. 6 へ 10			
	⑤大気中へ放出された放射	約4.2×10 ⁻³	約4 4×10-3	約60×10-3			
入退域時	性物質による被ばく	小1 4. 2 八 10	かり 4. 4 へ 10	赤り 0. 9 <10			
	(内訳) 内部被ばく	約 6.6×10 ⁻⁴	約7.1×10 ⁻⁴	約 1.3×10 ⁻³			
	外部被ばく	約 3.5×10 ⁻³	約 3.7×10 ⁻³	約 5.6×10 ⁻³			
	⑤大気中へ放出され、地表						
	面に沈着した放射性物質	約 5.4×10 ⁰	約4.7×10 ⁰	約 8.0×10 ⁰			
	のガンマ線による被ばく						
	小 計 (④+⑤)	約 5.5×10 ⁰	約 4.9×10 ⁰	約 8.3×10 ⁰			
合	計 (①+②+③+④+5)	約 4.5×10 ¹	約 2.8×10 ¹	約 6.0×10 ¹			

※被ばく評価上最も厳しいA班における被ばく評価結果(炉心損傷時及びブローアウトパネル閉止装置 開放時に中央制御室に滞在)

注記 *:「1 評価方針」の項番号を示す。

図1 居住性に係る被ばく評価の手順

図2 中央制御室の運転員の被ばく経路

	① 建屋内の放射性物質からのカンマ線による被はく
	(直接ガンマ線及びスカイシャインガンマ線による外部被ばく)
	② 大気中へ放出された放射性物質からのガンマ線による被ばく
中市判御会内での地げく	(クラウドシャインガンマ線及びグランドシャインガンマ線による
中天前御室内での彼はく	外部被ばく)
	③ 外気から室内に取り込まれた放射性物質による被ばく
	(吸入摂取による内部被ばく及び室内に浮遊している放射性物質か
	らのガンマ線による外部被ばく)
	④ 建屋内の放射性物質からのガンマ線による被ばく
	(直接ガンマ線及びスカイシャインガンマ線による外部被ばく)
入退域時の被ばく	⑤ 大気中へ放出された放射性物質による被ばく
	(クラウドシャインガンマ線及びグランドシャインガンマ線による
	外部被ばく並びに吸入摂取による内部被ばく)

図3 中央制御室の居住性に係る被ばく経路イメージ

注: Lは風向に垂直な建屋又は建屋群の,投影面高さ又は投影幅の小さい方

図4 建屋影響を考慮する条件(水平断面での位置関係)

(原子炉建屋からの放出における放出源と評価点)

(非常用ガス処理系排気筒からの放出における放出源と評価点)

図5 放射性物質の放出源と評価点の位置関係

図10 原子炉建屋断面積(投影面積)

図 11 直接ガンマ線評価モデル(1/2)

図 12 直接ガンマ線評価モデル(2/2)

図 13 スカイシャインガンマ線評価モデル

図 14 希ガスの大気放出過程

図 15 よう素の大気放出過程

図16 セシウムの大気放出過程

図 17 その他核種の大気放出過程

図18 中央制御室内被ばく評価時のグランドシャイン評価モデル(1/2)

図18 中央制御室内被ばく評価時のグランドシャイン評価モデル(2/2)

図 19 入退域被ばく評価時のグランドシャイン評価モデル

図 20 中央制御室換気系系統図

図 21 中央制御室容積