本資料のうち、枠囲みの内容は、 営業秘密または防護上の観点から 公開できません。

| 東海第二発電所 工事計画審査資料 |            |  |  |  |
|------------------|------------|--|--|--|
| 資料番号             | 工認-575 改1  |  |  |  |
| 提出年月日            | 平成30年7月20日 |  |  |  |

V-2-6-3-1 制御棒駆動機構の耐震性についての計算書

# 目次

| 1. † | 既要                                               | 1  |
|------|--------------------------------------------------|----|
| 2    | 一般事項 · · · · · · · · · · · · · · · · · · ·       | 1  |
| 2. 1 | 構造計画                                             | 1  |
| 2. 2 | 評価方針                                             | 3  |
| 2.3  | 適用基準 ·····                                       | 4  |
| 2.4  | 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 5  |
| 2.5  | 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 6  |
| 3.   | 評価部位                                             | 7  |
| 4.   | 固有周期                                             | 7  |
| 5. † | <b>溝造強度評価</b>                                    | 8  |
| 5. 1 | 構造強度評価方法                                         | 8  |
| 5. 2 | 荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 8  |
| 5.3  | 194 F 17 14 - 124 5 4                            | 11 |
| 5.4  | 11. ST. 4 F.                                     | 12 |
| 5. 5 | 1.1 × 1.1.1.1                                    | 14 |
| 5.6  | / L / J · FI III                                 | 15 |
| 6.   |                                                  | 16 |
| 6. 1 | S 10 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2         | 16 |
| 6.2  | 重大事故等対処設備としての評価結果                                | 16 |

### 1. 概要

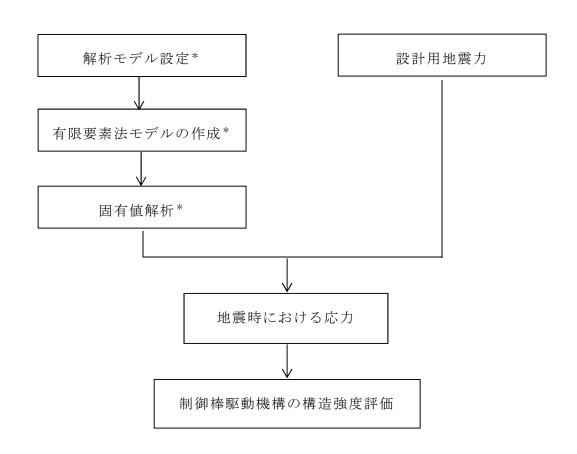
本計算書は、「V-2-1-9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき、制御棒駆動機構が設計用地震力に対して十分な構造強度を有していることを説明するものである。

制御棒駆動機構は、設計基準対象施設においては既設のSクラス施設に、重大事故等 対処設備においては常設耐震重要重大事故防止設備に分類される。以下、設計基準対象 施設及び重大事故等対処設備としての構造強度評価を示す。

## 2. 一般事項

#### 2.1 構造計画

制御棒駆動機構の構造計画を表 2-1 に示す。


表 2-1 構造計画

| 計画の概要     |          | 25.7 1 1445户中国 |
|-----------|----------|----------------|
| 基礎・支持構造   | 主体構造     | 概略構造図          |
| 制御棒駆動機構は, | ラッチ機構を備  |                |
| 圧力容器下部から延 | えた水圧ピスト  |                |
| 長している制御棒駆 | ンシリンダ構   |                |
| 動機構ハウジング内 | 造。水圧ピスト  |                |
| に収容する一体構造 | ンシリンダは,  |                |
| 物で,制御棒駆動機 | ピストンチュー  |                |
| 構ハウジングの下端 | ブ,インデック  |                |
| フランジに締付ボル | スチューブ,シ  |                |
| トで接合される。  | リンダーチュー  |                |
|           | ブ等から構成さ  |                |
|           | れる。また,ラ  |                |
|           | ッチ機構は、コ  |                |
|           | レットフィンガ  |                |
|           | ー, コレットス |                |
|           | プリング等から  |                |
|           | 構成される。   |                |
|           |          |                |
|           |          |                |
|           |          |                |
|           |          |                |

#### 2.2 評価方針

制御棒駆動機構の応力評価は、「V-2-1-9 機能維持の基本方針 3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す制御棒駆動機構の部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」にて算出した固有周期に基づく応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。

制御棒駆動機構の耐震評価フローを図 2-1 に示す。



注記 \*:解析モデル設定,有限要素法モデルの作成,固有値解析は,「V-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の地震応答計算書」にて実施。

図 2-1 制御棒駆動機構の耐震評価フロー

#### 2.3 適用基準

適用基準を以下に示す。

- (1) 原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG 4 6 0 1・補-1984, JEAG 4 6 0 1-1987及びJEAG 4 6 0 1-1991 追補版)(日本電気協会 電気技術基準調査委員会 昭和 59 年 9 月,昭和 62 年 8 月及び平成 3 年 6 月)
- (2) 発電用原子力設備規格(設計・建設規格(2005 年版(2007 年追補版含む。))JSME S NC1-2005/2007) (日本機械学会2007年9月) (以下「設計・建設規格」という。)

# 2.4 記号の説明

| 2.4 記方のi                        | r <sub>1</sub> /31                            |                 |
|---------------------------------|-----------------------------------------------|-----------------|
| 記号                              | 記号の説明                                         | 単位              |
| B <sub>1</sub> , B <sub>2</sub> | 設計・建設規格 PPB-3810 に規定する応力係数                    | _               |
|                                 | (一次応力の計算に使用するもの)                              |                 |
| C 2                             | 設計・建設規格 PPB-3810 に規定する応力係数                    | _               |
|                                 | (一次+二次応力の計算に使用するもの)                           |                 |
| $D_0$                           | 管の外径                                          | mm              |
| Е                               | 設計・建設規格 付録材料図表 Part6 表1に規定する縦弾性               | MPa             |
|                                 | 係数                                            |                 |
| F w                             | 制御棒駆動機構の自重                                    | N               |
| F s c r                         | スクラム反力により制御棒駆動機構に生じる荷重                        | N               |
| F v                             | 鉛直方向震度により制御棒駆動機構に生じる地震荷重                      | N               |
| K 2                             | 設計・建設規格 PPB-3810 に規定する応力係数                    | _               |
|                                 | (ピーク応力の計算に使用するもの)                             |                 |
| K e                             | 設計・建設規格 PPB-3536 に規定する係数                      | _               |
|                                 | (繰返しピーク応力強さの計算に使用するもの)                        |                 |
| M <sub>hsg</sub>                | 水平方向震度により制御棒駆動機構ハウジングに生じるモーメ                  | N•mm            |
|                                 | ント                                            |                 |
| M <sub>i p</sub>                | 管の機械的荷重(地震による慣性力を含む。)により生じるモ                  | N•mm            |
|                                 | ーメント                                          |                 |
| M i s                           | 管の地震動の慣性力と相対変位により生じるモーメントの全振                  | N•mm            |
|                                 | 幅                                             |                 |
| n i                             | 繰返し荷重iの実際の繰返し回数                               | 口               |
| N i                             | 設計・建設規格 PPB-3534 による繰返し荷重 i の許容繰返し回           | 口               |
|                                 | 数                                             |                 |
| Р                               | 地震と組合せるべき運転状態における圧力                           | MPa             |
| S e                             | <br> 繰返しピーク応力強さ                               | MPa             |
| S <sub>m</sub>                  | <br> 設計・建設規格 付録材料図表 Part5 表1に規定する材料の          | MPa             |
|                                 | 設計応力強さ                                        |                 |
| S <sub>n</sub>                  | <br>  一次 + 二次 応力                              | MPa             |
| S p                             | ピーク応力                                         | MPa             |
| S <sub>prm</sub>                | 一次応力                                          | MPa             |
| S p r m                         | 「^^^^^<br>  設計・建設規格 付録材料図表 Part5 表 8 に規定する材料の | MPa             |
| y                               | 設計降伏点                                         | mi a            |
| t                               | 管の厚さ                                          | mm              |
| U                               | · · · · · · · · · · · · · · · · · · ·         | _               |
| Z i                             | 管の断面係数                                        | $\mathrm{mm}^3$ |

# 2.5 計算精度と数値の丸め方 精度は6桁以上を確保する。表示する数値の丸め方は表2-2に示すとおりである。

表 2-2 表示する数値の丸め方

| 1       | 衣と 2 衣がする数値の元の刀 |                        |           |      |            |  |  |
|---------|-----------------|------------------------|-----------|------|------------|--|--|
| 数値の種類   |                 | 単位                     | 処理桁       | 処理方法 | 表示桁        |  |  |
| 縦弾性係数   |                 | MPa                    | 有効数字 4 桁目 | 四捨五入 | 有効数字3桁     |  |  |
| 断面包     | 系数              | $\mathrm{mm}^3$        | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁*1 |  |  |
| 力       |                 | N                      | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁*1 |  |  |
| モーノ     | ベント             | N•mm                   | 有効数字 5 桁目 | 四捨五入 | 有効数字 4 桁*1 |  |  |
| 算出応力    |                 | MPa                    | 小数点以下第1位  | 切上げ  | 整数位        |  |  |
| 許容応力*2  |                 | MPa                    | 小数点以下第1位  | 切捨て  | 整数位        |  |  |
| 設計震度    |                 | _                      | 小数点以下第3位  | 切上げ  | 小数点以下第2位   |  |  |
| 圧力      |                 | MPa                    | 小数点以下第3位  | 四捨五入 | 小数点以下第2位   |  |  |
| 下記以外の長さ |                 | mm                     | 小数点以下第3位  | 四捨五入 | 小数点以下第2位   |  |  |
| 長さ      | 計算上必要な厚さ        | mm                     | 小数点以下第3位  | 切上げ  | 小数点以下第2位   |  |  |
|         | 最小厚さ            | mm                     | 小数点以下第3位  | 切捨て  | 小数点以下第2位   |  |  |
| 温度      |                 | $^{\circ}\!\mathbb{C}$ |           |      | 整数位        |  |  |
| 疲労界     | <b>尽積係数</b>     | _                      | 小数点以下第5位  | 切上げ  | 小数点以下第4位   |  |  |

注記 \*1:絶対値が1000以上のときは、べき数表示とする。

\*2:設計・建設規格 付録材料図表に記載された温度の中間における設計 応力強さ、許容引張応力及び設計降伏点は、比例法により補間した値 の小数点以下第1位を切り捨て、整数位までの値とする。

#### 3. 評価部位

制御棒駆動機構の要求機能は、クラス1の耐圧バウンダリとスクラム機能である。本計算書では、クラス1の耐圧バウンダリであるフランジについて耐震評価を実施する。また、スクラム機能の耐震評価については、「V-2-6-2-1 制御棒の耐震性についての計算書」にて確認している。

#### 4. 固有周期

表 2-1 の概略構造図に示すように、制御棒駆動機構は制御棒駆動機構ハウジングに据付部材を介さずに、締付ボルトにて直接接続される構造である。したがって、固有周期は、「V-2-3-2 炉心、原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の地震応答計算書」において、原子炉本体地震応答解析により求める。

- 5. 構造強度評価
- 5.1 構造強度評価方法
- (1) 制御棒駆動機構ハウジングの下端フランジとの接合部品である制御棒駆動機構フランジを評価部位とし、フランジの最小板厚部を管とみなして評価を実施する。

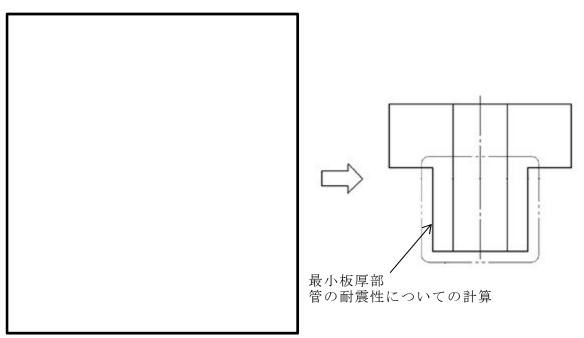



図 5-1 評価モデル

- 5.2 荷重の組合せ及び許容応力
- 5.2.1 荷重の組合せ及び許容応力状態

制御棒駆動機構の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表 5-1 に、重大事故等対処設備の評価に用いるものを表 5-2 に示 す。

5.2.2 許容応力

制御棒駆動機構の許容応力を表 5-3 に示す。

5.2.3 使用材料の許容応力評価条件

制御棒駆動機構の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 5-4 に、重大事故等対処設備の評価に用いるものを表 5-5 に示す。

| 公 1 尚重沙配自己次 0 时 1 地方 1 |         |         |                 |        |                   |         |
|------------------------------------------------------|---------|---------|-----------------|--------|-------------------|---------|
| 施設[                                                  | 区分      | 機器名称    | 耐震設計上の<br>重要度分類 | 機器等の区分 | 荷重の組合せ            | 許容応力状態  |
|                                                      |         |         |                 |        | $D+P+M+S_d$ *     | III A S |
| 計測制御系統設備                                             | 制御材駆動装置 | 制御棒駆動機構 | S               | _*     | $D+P+M+S_s$       | W       |
| 以加                                                   | 衣但      |         |                 |        | $D+P_L+M_L+S_d^*$ | IV A S  |

表 5-1 荷重の組合せ及び許宏広力状能(設計基準対象施設)

NT2 補③ V-2-6-3-1 RO

注記 \*:クラス1管の荷重の組合せ及び許容応力を適用する。

表 5-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

| 施設区分                 |  | 機器名称 | 設備分類*1 | 機器等の区分   | 荷重の組合せ            | 許容応力状態 |  |
|----------------------|--|------|--------|----------|-------------------|--------|--|
|                      |  |      |        |          | $D+P+M+S_s$       |        |  |
| <br>  計測制御系統   制御材駆動 |  | 新    |        |          | $D+P_L+M_L+S_d$ * | IV A S |  |
| 設備                   |  | *2   | *3     | V A S *3 |                   |        |  |
|                      |  |      |        |          |                   |        |  |

注記 \*1:「常設耐震/防止」は常設耐震重要重大事故防止設備を示す。

\*2: 重大事故等クラス2管(クラス1管)の荷重の組合せ及び許容応力を適用する。

\*3:原子炉冷却材圧力バウンダリ範囲は重大事故等発生時の環境条件が設計条件(圧力・温度等)を超える時間が短期(10<sup>-1</sup>年未満)であるため、運転状態VにおいてSd又はSs地震力との組合せは考慮不要とする。

表 5-3 許容応力 (クラス1管及び重大事故等クラス2管であってクラス1管)

| ス                  |                                                |                             |                                         |  |  |  |
|--------------------|------------------------------------------------|-----------------------------|-----------------------------------------|--|--|--|
| 하다 나는 나 시시설도       | 許容限界                                           |                             |                                         |  |  |  |
| 許容応力状態             | 一次応力                                           | 一次+二次応力                     | 一次+二次+ピーク応力                             |  |  |  |
| III <sub>A</sub> S | Min(2.25·S <sub>m</sub> , 1.8·S <sub>y</sub> ) | 3 · S m                     | Sd又はSs地震動のみによる疲労解析を                     |  |  |  |
| IV <sub>A</sub> S  | Min(3·S <sub>m</sub> , 2·S <sub>y</sub> )      | Sa又はSs地震動のみによる応力振幅について評価する。 | 行い,運転状態Ⅰ,Ⅱにおける疲労累積係<br>数との和が1.0以下であること。 |  |  |  |

表 5-4 使用材料の許容応力評価条件(設計基準対象施設)

| St Devotati i hi Hydyddi Maith (Meth CE 1) 43000 Mae |        |                |     |        |     |  |  |
|------------------------------------------------------|--------|----------------|-----|--------|-----|--|--|
| 1.1.101                                              | 最高使用温度 |                | 許容応 | カ(MPa) |     |  |  |
| 材料                                                   | (℃)    | S <sub>m</sub> | Sу  | S u    | S h |  |  |
| SUSF304                                              | 302    | 114            | 126 | _      | _   |  |  |
| SUSF304 相当                                           | 302    | 114            | 126 | -      | _   |  |  |
|                                                      | 1      |                |     |        | l   |  |  |

表 5-5 使用材料の許容応力評価条件(重大事故等対処設備)

|            | 最高使用温度 |                | 許容応 | カ(MPa) |     |
|------------|--------|----------------|-----|--------|-----|
| 材料         | (℃)    | S <sub>m</sub> | Sу  | S u    | S h |
| SUSF304    | 302    | 114            | 126 | _      | _   |
| SUSF304 相当 | 302    | 114            | 126 | _      | _   |

#### 5.3 設計用地震力

評価に用いる設計用地震力を表 5-6 及び表 5-7 に示す。

「弾性設計用地震動 S a 又は静的震度」及び「基準地震動 S s 」による地震力は、「V-2-1-7 設計用床応答曲線の作成方針」に基づく。

表 5-6 設計用地震力(設計基準対象施設)

| 据付場所及び                | 固有周期 | 通有周期 <b>弹性設計用地</b> 類 <b>静的</b> 類 |              | ₫又は<br>基準地震動S。 |              |
|-----------------------|------|----------------------------------|--------------|----------------|--------------|
| 床面高さ<br>(m)           | (s)  | 水平方向<br>設計震度                     | 鉛直方向<br>設計震度 | 水平方向<br>設計震度   | 鉛直方向<br>設計震度 |
| 原子炉建屋<br>EL. 17.142*1 | *2   | *3                               | Cv = 0.73    | *3             | Cv=1.34      |

注記 \*1:制御棒駆動機構ハウジングの取付面のレベルを示す。

\*2:原子炉本体地震応答解析結果より、剛であることを確認している。

\*3:水平方向震度により発生する荷重は原子炉本体地震応答解析より得られる値。

表 5-7 設計用地震力(重大事故等対処設備)

| 据付場所及び                            | 固有周期 | 弾性設計用地震動 S d 又は<br>静的震度 |              | 基準地震動S <sub>s</sub> |              |
|-----------------------------------|------|-------------------------|--------------|---------------------|--------------|
| 床面高さ<br>(m)                       | (s)  | 水平方向<br>設計震度            | 鉛直方向<br>設計震度 | 水平方向<br>設計震度        | 鉛直方向<br>設計震度 |
| 原子炉建屋<br>EL. 17.142* <sup>1</sup> | *2   | _                       |              | <u>*</u> *3         | Cv=1.34      |

注記 \*1:制御棒駆動機構ハウジングの取付面のレベルを示す。

\*2:原子炉本体地震応答解析結果より、剛であることを確認している。

\*3:水平方向震度により発生する荷重は原子炉本体地震応答解析より得られる値。

#### 5.4 計算方法

#### 5.4.1 応力の計算方法

#### 5.4.1.1 管の計算方法

地震荷重として制御棒駆動機構ハウジングの応答の最大値が作用するものとして実施する。

耐震評価モデルを図5-2に示す。

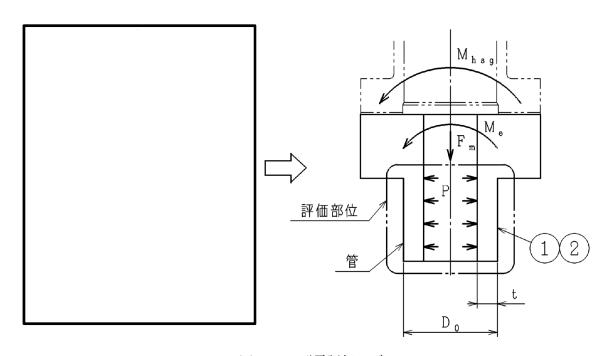



図 5-2 耐震評価モデル

#### a. 管に作用するモーメント

(a) 管の機械的荷重(地震による慣性力を含む)により生じるモーメント機械的荷重として自重とスクラム反力による荷重,地震による慣性力として地震動による鉛直荷重と応答モーメントを考慮すると以下となる。

$$M_{ip} = M_{hsg} + M_{e}$$

$$= M_{h s g} + \frac{D_0^2 + (D_0 - 2 \cdot t)^2}{8 \cdot D_0} \cdot F_m$$
 (5.4.1)

ここで,

$$F_{m} = F_{w} + F_{s c r} + F_{v}$$
 (5.4.2)

(b) 管の地震動の慣性力と相対変位により生じるモーメントの全振幅 相対変位は生じないことから、地震動の慣性力として地震動による鉛直荷重と応答

モーメントを考慮すると以下となる。

$$M_{i s} = \left\{ M_{h s g} + \frac{D_{0}^{2} + (D_{0} - 2 \cdot t)^{2}}{8 \cdot D_{0}} \cdot F_{v} \right\} \times 2 \qquad (5.4.3)$$

- b. 耐震性についての計算
  - (a) 一次応力

$$S_{prm} = \frac{B_1 \cdot P \cdot D_0}{2 \cdot t} + \frac{B_2 \cdot M_{ip}}{Z_i} \qquad (5.4.4)$$

ここで,

$$Z_{i} = \frac{\pi}{32} \cdot \frac{D_{0}^{4} - (D_{0} - 2 \cdot t)^{4}}{D_{0}} \qquad (5.4.5)$$

とする。

(b) 一次+二次応力

$$S_{n} = \frac{C_{2} \cdot M_{i s}}{Z_{i}} \qquad (5.4.6)$$

(c) ピーク応力

$$S_{p} = \frac{K_{2} \cdot C_{2} \cdot M_{i s}}{Z_{i}} \qquad (5.4.7)$$

(d) 繰返しピーク応力強さ

$$S_{\ell} = \frac{K_{e} \cdot S_{p}}{2} \qquad (5.4.8)$$

(e) 疲労累積係数

$$\sum \left(\frac{n_{i}}{N_{i}}\right) \leq 1. \quad 0 \qquad \dots \qquad \dots \qquad \dots \qquad (5.4.9)$$

### 5.5 計算条件

表 5-8 計算条件

|                                                                    | ÷1 II | )\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 数值      | 直等         |
|--------------------------------------------------------------------|-------|-----------------------------------------|---------|------------|
| 項目                                                                 | 記号    | 単位                                      | 管NO. 1  | 管NO. 2     |
| 材料                                                                 |       | _                                       | SUSF304 | SUSF304 相当 |
| 設計・建設規格 PPB-3810 に規定する応力係数                                         | В 1   | _                                       |         | •          |
| 設計・建設規格 PPB-3810 に規定する応力係数                                         | B 2   | _                                       |         |            |
| 設計・建設規格 PPB-3810 に規定する応力係数                                         | C 2   | _                                       |         |            |
| 管の外径                                                               | Dο    | mm                                      |         |            |
| 使用温度における材料の縦弾性係数                                                   | Е     | MPa                                     |         |            |
| 自重                                                                 | F w   | N                                       |         |            |
| スクラム反力により生じる荷重                                                     | Fscr  | N                                       |         |            |
| 鉛直方向震度 (S <sub>d</sub> ) により生じる地震荷重                                | F v   | N                                       |         |            |
| 鉛直方向震度(S <sub>s</sub> )により生じる地震荷重                                  | F v   | N                                       |         |            |
| 設計・建設規格 PPB-3810 に規定する応力係数                                         | K 2   | _                                       |         |            |
| 設計・建設規格 PPB-3536 に規定する係数                                           | Ке    | _                                       |         |            |
| 水平方向震度(S <sub>d</sub> 又は静的震度)により制御<br>棒駆動機構ハウジングに生じるモーメントの<br>最大値* | Mhsg  | N•mm                                    |         |            |
| 水平方向震度 (S <sub>s</sub> ) により制御棒駆動機構<br>ハウジングに生じるモーメントの最大値*         | Mhsg  | N•mm                                    |         |            |
| 地震と組合せるべき運転状態における圧力                                                | Р     | MPa                                     |         |            |
| 管の厚さ                                                               | t     | mm                                      |         |            |

注記 \*:「V-2-3-2 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉本体の基礎の地 震応答計算書」の原子炉本体地震応答解析により得られた値。

- 5.6 応力の評価
- 5.6.1 管の応力評価
- 5.4.1 項で求めた応力が許容応力以下であること。許容応力は下表による。

|                 | 許容                                                         | 芯力                                        |  |  |  |  |
|-----------------|------------------------------------------------------------|-------------------------------------------|--|--|--|--|
| 応力の種類           | 許容応力状態ⅢAS                                                  | 許容応力状態IV <sub>A</sub> S                   |  |  |  |  |
| 一次応力            | 設計応力強さ S m の 2.25 倍と<br>設計降伏点 S y の 1.8 倍の<br>いずれか小さい方の値   | 設計応力強さSmの3倍と<br>設計降伏点Syの2倍の<br>いずれか小さい方の値 |  |  |  |  |
| 一次十二次<br>応力     | 設計応力強さ Smの 3 倍<br>ただし,弾性設計用地震動 S d 又に<br>振幅について評価する。       | は基準地震動S₅のみによる応力                           |  |  |  |  |
| 一次+二次+<br>ピーク応力 | Sd又はSs地震動のみによる疲労解析を行い,運転状態Ⅰ,Ⅱ<br>における疲労累積係数との和が1.0以下であること。 |                                           |  |  |  |  |

#### 6. 評価結果

#### 6.1 設計基準対象施設としての評価結果

制御棒駆動機構の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界 を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

#### (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

#### 6.2 重大事故等対処設備としての評価結果

制御棒駆動機構の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度を有していることを確認した。

#### (1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

#### 【制御棒駆動機構の耐震性についての計算結果】

#### 1. 設計基準対象施設

#### 1.1 設計条件

|         |       | 据付場所及び                            | 田太田畑()  | 弾性設計用地震動 S d<br>又は静的震度 |              | 基準地震動S <sub>s</sub> |              | 最高使用温度 | 周囲環境温度 |
|---------|-------|-----------------------------------|---------|------------------------|--------------|---------------------|--------------|--------|--------|
|         | 重要度分類 | 戻度分類 床面高さ (m)                     | 固有周期(s) | 水平方向<br>設計震度           | 鉛直方向<br>設計震度 | 水平方向<br>設計震度        | 鉛直方向<br>設計震度 | (℃)    | (℃)    |
| 制御棒駆動機構 | S     | 原子炉建屋<br>EL. 17.142* <sup>1</sup> | *2      | *3                     | CV=0.73      | *3                  | CV=1.34      | 302    | _      |

注記 \*1:制御棒駆動機構ハウジングの取付面のレベルを示す。

\*2:原子炉本体地震応答解析結果より、剛であることを確認している。

\*3:水平方向震度により発生する荷重は原子炉本体地震応答解析より得られる値。

#### 1.2 機器要目

| 1.2 版份女口 | T                           | 1         |                            |                         | 1                  |             | ı                                 |                         |                         |                       |
|----------|-----------------------------|-----------|----------------------------|-------------------------|--------------------|-------------|-----------------------------------|-------------------------|-------------------------|-----------------------|
|          |                             |           | M <sub>h s g</sub>         | (N·mm)                  |                    |             | F v                               | (N)                     |                         |                       |
| 部材       | D o<br>(mm)                 | t<br>(mm) | 弾性設計用<br>地震動 S d<br>又は静的震度 | 基準地震動<br>S <sub>s</sub> | F <sub>w</sub> (N) | F s c r (N) | 弾性設計用<br>地震動 S a<br>又は静的震度        | 基準地震動<br>S <sub>s</sub> | P<br>(MP <sub>a</sub> ) | n <sub>i</sub><br>(回) |
| 管NO. 1   |                             |           |                            |                         |                    |             |                                   |                         |                         |                       |
| 管NO. 2   |                             |           |                            |                         |                    |             |                                   |                         |                         |                       |
| -        |                             |           |                            |                         |                    |             |                                   |                         |                         | 1                     |
| 部材       | $Z_{\mathrm{i}}$ (mm $^3$ ) | В 1       | В 2                        | C 2                     | K 2                | K e         | S <sub>m</sub> (MP <sub>a</sub> ) | S y<br>(MPa)            | 縦弾性係数<br>E(MPa)         |                       |
| 管NO. 1   |                             |           |                            |                         |                    |             | 114                               | 126                     | 176000*2                |                       |
| 管NO. 2   |                             |           |                            |                         |                    |             | 114                               | 126                     | 176000*2                |                       |

注記 \*1:運転条件の回数に設計用地震応力繰返し回数 を加えた回数

\*2:最高使用温度で算出

#### 1.3 計算数值

管に作用するモーメント

| <b>₩</b> | M <sub>ip</sub> (      | (N·mm)    | M <sub>is</sub> (N·mm) |                     |  |
|----------|------------------------|-----------|------------------------|---------------------|--|
| 部材       | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動 S s | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S <sub>s</sub> |  |
| 管NO. 1   |                        |           |                        |                     |  |
| 管NO. 2   |                        |           |                        |                     |  |

#### 許容繰返し回数

| der L. | S p                    | (MPa)               | S <sub>1</sub> (       | MPa)    | N <sub>i</sub> (回)     |         |  |
|--------|------------------------|---------------------|------------------------|---------|------------------------|---------|--|
| 部材     | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S <sub>s</sub> | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S。 | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S。 |  |
| 管NO. 1 |                        |                     |                        |         |                        |         |  |
| 管NO. 2 |                        |                     |                        |         |                        |         |  |

# 1.4 結論

# 1.4.1 応力

|         |        |                | 一次              | 応力評価(MPa)                            | 一次+二次応力     | 評価(MPa) | 疲労評価     |
|---------|--------|----------------|-----------------|--------------------------------------|-------------|---------|----------|
| 許容応力状態  | 最大応力評  | 最大応力区分         | 一次応力            | 許容応力                                 | 一次+二次応力     | 許容応力    | 疲労累積係数   |
|         | 価点     |                | $S_{prm} (S_d)$ | $Min(2.25 \cdot S_m, 1.8 \cdot S_y)$ | $S_n (S_d)$ | 3 · S m | $U+US_d$ |
|         |        |                | $S_{prm} (S_s)$ | $Min(3 \cdot S_m, 2 \cdot S_y)$      | $S_n (S_s)$ | 3⋅S m   | $U+US_s$ |
| III a S |        | $S_{prm}(S_d)$ | 21              | 226                                  | _           | _       | _        |
| III A S |        | $S_n (S_d)$    | _               | _                                    | 14          | 342     | _        |
| III A S | 管NO. 1 | $U+U_{Sd}$     | _               | _                                    | _           |         | 0.0000   |
| IV A S  | 最小断面   | $S_{prm}(S_s)$ | 22              | 252                                  | _           |         | _        |
| IV A S  |        | $S_n (S_s)$    | _               | _                                    | 15          | 342     | _        |
| IV A S  |        | U+USs          | _               | _                                    | _           | _       | 0.0000   |
| III A S |        | $S_{prm}(S_d)$ | 21              | 226                                  | _           | _       | _        |
| III A S |        | $S_n (S_d)$    | _               | _                                    | 14          | 342     | _        |
| III A S | 管NO. 2 | U+USd          | _               | _                                    | _           | _       | 0.0000   |
| IV a S  | 最小断面   | $S_{prm}(S_s)$ | 22              | 252                                  | _           | _       | _        |
| IV A S  |        | $S_n (S_s)$    |                 | _                                    | 15          | 342     | _        |
| IV A S  |        | U+USs          |                 | _                                    | _           | _       | 0.0000   |

すべて許容応力以下である。

【制御棒駆動機構の耐震性についての計算結果】

#### 2. 重大事故等対処設備

#### 2.1 設計条件

| 機器名称設備分類 | ⇒∴供八粨        | 据付場所及び 床面高さ                       | 固有周期(s)      | 弾性設計用地震動 S d<br>又は静的震度 |              | 基準地震動S <sub>s</sub> |         | 最高使用温度 | 周囲環境温度 |
|----------|--------------|-----------------------------------|--------------|------------------------|--------------|---------------------|---------|--------|--------|
|          | 床面筒 C<br>(m) | 回有问朔(S)                           | 水平方向<br>設計震度 | 鉛直方向<br>設計震度           | 水平方向<br>設計震度 | 鉛直方向<br>設計震度        | (℃)     | (℃)    |        |
| 制御棒駆動機構  | 常設耐震/防止      | 原子炉建屋<br>EL. 17.142* <sup>1</sup> | *2           | _                      | _            | *3                  | CV=1.34 | 302    | _      |

注記 \*1:制御棒駆動機構ハウジングの取付面のレベルを示す。

\*2:原子炉本体地震応答解析結果より、剛であることを確認している。

\*3:水平方向震度により発生する荷重は原子炉本体地震応答解析より得られる値。

#### 2.2 機器要目

| 2.2 仅和安日 | 1                      | •         |                            |                         | 1                  |                      |                                   |                                      | 1                       | 1                     |
|----------|------------------------|-----------|----------------------------|-------------------------|--------------------|----------------------|-----------------------------------|--------------------------------------|-------------------------|-----------------------|
|          |                        |           | $M_{ m h\ s\ g}$ (N·mm)    |                         |                    |                      | F <sub>v</sub>                    | (N)                                  |                         |                       |
| 部材       | D <sub>0</sub><br>(mm) | t<br>(mm) | 弾性設計用<br>地震動 S a<br>又は静的震度 | 基準地震動<br>S <sub>s</sub> | F <sub>w</sub> (N) | F <sub>scr</sub> (N) | 弾性設計用<br>地震動 S a<br>又は静的震度        | 基準地震動<br>S <sub>s</sub>              | P<br>(MP <sub>a</sub> ) | n <sub>i</sub><br>(回) |
| 管NO. 1   |                        |           | _                          |                         |                    |                      | _                                 |                                      |                         |                       |
| 管NO. 2   |                        |           | _                          |                         |                    |                      | _                                 |                                      |                         |                       |
|          |                        |           |                            |                         | •                  |                      |                                   |                                      | •                       | =                     |
| 部材       | $Z_{i}$ (mm $^{3}$ )   | В 1       | В 2                        | C <sub>2</sub>          | $K_2$              | K <sub>e</sub>       | S <sub>m</sub> (MP <sub>a</sub> ) | S <sub>y</sub><br>(MP <sub>a</sub> ) | 縦弾性係数<br>E(MPa)         |                       |
| 管NO. 1   |                        |           |                            |                         |                    |                      | 114                               | 126                                  | 176000*2                |                       |

176000\*2

114

126

注記 \*1:運転条件の回数に設計用地震応力繰返し回数 を加えた回数

\*2:最高使用温度で算出

管NO. 2

#### 2.3 計算数値

管に作用するモーメント

| <b>∀</b> 7 ++ | Мір (                  | N·mm)     | M <sub>is</sub> (N·mm) |           |  |
|---------------|------------------------|-----------|------------------------|-----------|--|
| 部材            | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動 S s | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動 S s |  |
| 管NO. 1        | _                      |           | _                      |           |  |
| 管NO. 2        | _                      |           | _                      |           |  |

#### 許容繰返し回数

| <del>*************************************</del> | S <sub>p</sub> (       | MPa)                | $S_1$ (                | MPa)      | N <sub>i</sub> (回)     |         |  |
|--------------------------------------------------|------------------------|---------------------|------------------------|-----------|------------------------|---------|--|
| 部材                                               | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S <sub>s</sub> | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動 S 。 | 弾性設計用地震動<br>S d 又は静的震度 | 基準地震動S。 |  |
| 管NO. 1                                           | _                      |                     | _                      |           | _                      |         |  |
| 管NO. 2                                           | _                      |                     | _                      |           | _                      |         |  |

# 2.4.1 応力

|        | 許容応力状態 最大応力評 価点   |                                  | 一次                    | 芯力評価(MPa)                 | 一次+二次応力                                     | ァ評価(MPa)                 | 疲労評価            |
|--------|-------------------|----------------------------------|-----------------------|---------------------------|---------------------------------------------|--------------------------|-----------------|
| 許容応力状態 |                   | 最大応力区分                           | 一次応力<br>S p r m (S s) | 許容応力<br>Min(3・S m, 2・S y) | 一次+二次応力<br>S <sub>n</sub> (S <sub>s</sub> ) | 許容応力<br>3·S <sub>m</sub> | 疲労累積係数<br>U+US。 |
| IV A S |                   | $S_{prm}(S_s)$                   | 22                    | 252                       | _                                           | _                        | _               |
| IV a S | 管 N O . 1<br>最小断面 | S <sub>n</sub> (S <sub>s</sub> ) |                       |                           | 15                                          | 342                      | _               |
| IV a S | 双 1 四             | U+USs                            | ı                     |                           | _                                           | _                        | 0.0000          |
| IV A S |                   | $S_{prm}(S_s)$                   | 22                    | 252                       | _                                           | _                        | _               |
| IV a S | 管NO.2<br>最小断面     | S <sub>n</sub> (S <sub>s</sub> ) |                       |                           | 15                                          | 342                      | _               |
| IV A S | 水 1 国 国           | U+USs                            | _                     |                           | _                                           | _                        | 0.0000          |

すべて許容応力以下である。