本資料のうち,枠囲みの内容は 営業秘密又は防護上の観点から 公開できません。

東海第二発電	電所 工事計画審査資料
資料番号	補足-340-1 改 <mark>6</mark>
提出年月日	平成 30 年 <mark>7</mark> 月 <mark>23</mark> 日

東海第二発電所 耐震性に関する説明書に係る補足説明資料

地盤の支持性能について

平成 30 年 <mark>7</mark>月

日本原子力発電株式会社

目	次

1.	概要
2.	基本方針
3.	評価対象施設周辺の地質等・・・・・・2
3	3.1 評価対象施設周辺の地質・・・・・・2
3	3.2 評価対象施設周辺の地質状況整理結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
3	3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針
3	3.3.1 敷地の地下水位分布・・・・・・15
3	3.3.2 耐震評価における地下水位設定方針 · · · · · · · · · · · · · · · · · · ·
4	.1 設置変更許可申請書に記載された解析用物性値・・・・・・・・・・・・・・・・・・・18
4	.2 設置変更許可申請書に記載されていない解析用物性値 ······························26
4	.2.1 有効応力解析に用いる解析用物性値
4	.2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値 52
4	.2.3 その他の解析用物性値······56
4	.2.4 地盤の物性のばらつきについて・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・60
5.	極限支持力61
5	5.1 直接基礎及びケーソン基礎の支持力算定式61
5	5.2 杭基礎の支持力算定式・・・・・・62
5	5.3 地中連続壁基礎の支持力算定式・・・・・・64
5	5.4 極限支持力算定式における久米層の非排水せん断強度の適用性について64
5	5.5 杭の支持力試験について・・・・・・65
6.	地盤の速度構造・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6	5.1 入力地震動の設定に用いる地下構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・66
6	5.2 地震応答解析に用いる地盤の速度構造モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6	5.3 PS 検層結果の代表性及び網羅性について・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 69
6	5.3.1 第四系における PS 検層の代表性及び網羅性について ・・・・・・・・・・・・・ 69
6	5.3.2 新第三系における PS 検層の代表性及び網羅性について

参考資料1·····	(参考)	1 -1
参考資料 2 · · · · · · · · · · · · · · · · · ·	(参考)	2-1
参考資料 3 · · · · · · · · · · · · · · · · · ·	(参考)	3-1
参考資料 4 · · · · · · · · · · · · · · · · · ·	(参考)	4-1
参考資料 5·····	(参考)	5-1
参考資料 6	(参考)	6-1

1. 概要

本資料は、V-2-1「耐震設計の基本方針」のうちV-2-1-1「耐震設計の基本方針」に基づき, 設計基準対象施設並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備,常設耐震 重要重大事故防止設備及び常設重大事故緩和設備が設定される重大事故等対処施設(特定重大事 故等対処施設を除く。)(以下「常設重大事故等対処施設」という。)の耐震安全性評価を実施 するに当たり,対象施設を設置する地盤の物理特性,強度特性,変形特性等の地盤物性値設定及 び支持性能評価で用いる地盤諸元の基本的な考え方を示したものである。

2. 基本方針

設計基準対象施設及び常設重大事故等対処施設において,対象施設を設置する地盤の物理特性, 強度特性,変形特性等の解析用物性値については,各種試験に基づき設定する。また,全応力解 析及び有効応力解析等に用いる解析用物性値をそれぞれ設定する。全応力解析に用いる解析用物 性値は,設置変更許可申請書(添付書類六)に記載した値を用いることを基本とする。有効応力 解析に用いる解析用物性値は,工事計画認可申請において新たに設定する。

対象設備を設置する地盤の地震時における支持性能評価については,設計基準対象施設及び常 設重大事故等対処施設の耐震重要度分類又は施設区分に応じた地震力により地盤に作用する接地 圧が地盤の極限支持力に基づく許容限界*以下であることを確認する。

*:妥当な安全余裕を持たせる。

極限支持力は,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平 成24年3月)(以下「道路橋示方書」という。)の支持力算定式等に基づき,対象施設の支持 岩盤の室内試験結果(せん断強度等)を用いて設定する。また,杭の支持力試験を実施している 場合は,極限支持力を支持力試験結果から設定する。

押込み力に対する支持力評価において,豊浦標準砂の液状化強度特性により強制的に液状化さ せることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力として考慮せず,杭 先端の支持岩盤への接地圧に対する支持力評価を行うことを基本とする。ただし,杭を根入れし た岩盤及び岩着している地盤改良体とその上方の非液状化層が連続している場合は,その杭周面 摩擦力を支持力として考慮する。

引抜き力に対する支持力評価において,豊浦標準砂の液状化強度特性により強制的に液状化さ せることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力として考慮せず,新 第三系(久米層)の杭周面摩擦力により算定される極限支持力を考慮することを基本とする。た だし,杭周面地盤に地盤改良体がある場合は,その杭周面摩擦力を支持力として考慮する。

- 3. 評価対象施設周辺の地質等
- 3.1 評価対象施設周辺の地質

敷地の地質層序を表 3.1-1 に示す。敷地の地質は、下位から先白亜系の日立古生層(日立変成岩類)、白亜系の那珂湊層群,新第三系の離山層,新第三系鮮新統~第四系下部更新統の久 米層,第四系更新統の東茨城層群及び段丘堆積物,第四系完新統の沖積層及び砂丘砂層からなる。

敷地の地質・地質構造評価に係る地質調査のうち,ボーリング調査位置図を図 3.1-1 に, 敷地の地質平面図を図 3.1-2 に示す。敷地に分布する地層のうち,最下位の日立古生層(日立 変成岩類)は硬質な泥岩,砂岩及び礫岩からなる。那珂湊層群は硬質な泥岩,砂岩及び礫岩か らなる。離山層は泥岩,凝灰岩からなる。久米層は砂質泥岩を主としている。東茨城層群と段 丘堆積物は砂礫,砂及びシルトからなり,沖積層は粘土を主として砂及び礫混じり砂を挟む。 各層は不整合関係で接している。砂丘砂層は均質な細~中粒砂からなり,敷地全体に広く分布 する。

敷地の第四系の主な層相及び代表的なコア写真の拡大を表 3.1-2 に示す。以降,敷地の第 四系をこの層相に基づき区分する。

敷地の地質断面図を図 3.1-3 に示す。敷地には,敷地全域にわたって新第三系鮮新統~第 四系下部更新統の久米層が分布し,その上位に第四系更新統の段丘堆積物,第四系完新統の沖 積層及び砂丘砂層が分布する。

	年代層序区	少	地層区分	书質	記묵		主な層相	======================================
			<u> </u>	7	-		同誌名~著売もの梨~日哲型	환 녹 수 k I 다 / 슧 柏 코 ス
			砂工砂層	σ	n		火橘巴~寅火田00砂~中和砂	<u> 熟地主体に広く分布する。</u>
					Ag2	砂礫		
		完新統	Ш Д		Ac	粘土	暗青灰色~灰褐色の粘土・砂	最上位の砂層は敷地全体に広く分布する。
			子復層	a	As	鸟	灰褐色~黄褐色の礫混じり砂	久慈川が侵食した凹状の谷を埋めて分布する。
					Ag1	砂礫		
					D2c-3	シルト		
					D2s-3	钧		敷地南部に分布する。 #11日 m = 0.12 - 11 - 11 - 11 - 1
# 1	第四系			D2	D2g-3	砂礫		敷地周辺のLI段丘種積物に対比される。 シルト層中の炭物質の年代: 40830+3670年BD〜48330+年BDナーバー
利生界			また しい		D2c-2	シルト	井田女, 十百女 不足紧 写 、 三一	40,000年5月11年40,000年4月11日11日11日11日11日11日11日11日11日11日11日11日11日
;		更新統	段止堆俱物		D2g-2	砂礫	奥魯巴~月火日の矽除・砂・ントト	
				~~~~~~	E	マーロ		敷地南西部に分布する。 敷地周辺のM2段丘堆積物に対比される。
				D1	D1c-1	シルト		本層上部に分布する風化火山灰層に含まれる テフラの年代:
					D1g-1	砂礫		・赤城鹿沼テフラ >45,000年BP ・赤城水沼1テフラ 55,000年BP~60,000BP
							暗灰色~褐色の砂及びシルト 灰褐色~青灰色の砂礫	敷地西部のごく一部に分布する。
			(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)				暗オリーブ灰色の砂質泥岩	敷地全体に広く分布する。 原子炉建屋等の基礎岩盤である。
	新第三条	鮮新統					泥岩·凝灰岩	敷地では北部を中心に久米層の下位に認められる。
	日亜系						泥岩·砂岩	敷地全体で久米層, 離山層の下位に認められる。
	先白亜系		0000000000000000000000000000000000000	н 			泥岩・砂岩・礫岩	1孔のボーリングで那珂湊層群の下位に認められる。

表 3.1-1 地質層序

図 3.1-1 ボーリング調査位置図



	年代層序区	分	地層区分	地質	記号		主な層相	代表的なコア写真
			砂丘砂層	d	lu		灰褐色~黄灰色の砂~中粒砂	L Print in
					Ag2	砂礫		
		完新統	si di tati		Ac	粘土	略青灰色~灰褐色の粘土・砂	1 marine
			产值度	aı	As	<b>B</b>	灰褐色~黄褐色の礫混じり砂	
					Ag1	砂礫		
					D2c-3	シルト		
新生界	第四系				D2s-3	99		
				D2	D2g-3	砂礫		
		甲新蜂	段斤堆着物		D2c-2	シルト	黄褐色~青灰色の砂砂・砂・シルト	
					D2g-2	砂礫	-	
					Im	п— <b>ь</b>		N. J. D.
				D1	D1c-1	シルト		
					D1g-1	砂礫		

表 3.1-2 第四系の主な層相及び代表的なコア写真の拡大



(1) 原子炉建屋周辺断面 (A-A 断面)



(2) 原子炉建屋周辺断面(B-B 断面)図 3.1-3(1) 地質断面図(1/6)









2-2, 断面

















3.2 評価対象施設周辺の地質状況整理結果

「3.1 評価対象施設周辺の地質」において作成した地質断面図より,評価対象施設周辺の 地質状況を整理した結果を表 3.2-1 に示す。これらの地質に対し,図 3.1-1 に示すような広 範囲における調査結果等に基づき解析用物性値を設定した。

$\square$					屋外重要土	-木構造物	김종 왕위 神송 구집 감정 中央		各解析用物性値の記	己載項及び設定概要	
	/		国本にする	緊急時			律彼い護施政 ・防潮堤	4.1 設置変更許可申請書に記載	4.2 訣置変	三更許可申請書に記載されていない解	析用物性値
			原士护建臣	対策所建屋	取水構造物	屋外二重管	・貯留堰 等	された解析用物性値 (全応力解析用)	4.2.1 有効応力解析に用いる解 析用物性値	4.2.2 強制的に液状化させることを仮定した有効応力解析に用い とを仮定した有効応力解析に用いる解析用物性値	4.2.3 その他の解析用物性値
	埋戻土	fl	0	0	0	0	0			1	Ι
	段丘砂層	np	0	0	0	0	0			Ι	I
		Ag2	0	0	0	0	0			Ι	I
	大義國	Ac	0	Ι	0	0	0			1	Ι
	11111月7日 21	AS 11	0	Ι	0	0	0			I	Ι
策		Agl	0	Ι	0	0	0			Ι	I
E		D2c-3	0	0	(O) *1	Ι	0	지 가지 주관하는 대표 하기 보기	シート 田子子郎	1	Ι
釆	D	12 D2s-3	0	0	I	I	0	原止直必要及い 室内試験に基づき設定	^{尿但} 直や寒火 ^の 室内試験に基づき設定	Ι	I
	的口格结构	D2g-3	0	0	(O) *1	0	0			1	I
	₩X 117 41 41 41 41 41 41 41 41 41 41 41 41 41	lm	Ι	(O) * 1	I	I	I			-	I
	D	11 D1c-1	Ι	Ι	Ι	Ι	Ι			1	Ι
		D1g-1	Ι	(O) * 1	I	I	I			Ι	I
新第三系	久米層	Km	0	0	0	0	0			I	I
	择石		Ι	Ι	-	Ι	0	-	1	1	文献情報に基づき設定
	豊浦標準砂		強	制的に液状化さ	ちせることを仮	定する場合に	適用	I	I	文献情報に基づき設定	I
	人工岩盤		0	Ι	Ι	I	Ι	Ι	Ι	Ι	原位置試験, 空市学略 立執体和
	地盤改良体			0	0	0	0	Ι	-	Ι	≖1715vww,×mvli #₩ に基づき設定

表 3.2-1 評価対象施設周辺の地質分布一覧

*1: 施設直下及び直近には分布していないが, 地質断面図内に現れる地層 注記

- 3.3 敷地の地下水位分布及び耐震評価における地下水位設定方針
- 3.3.1 敷地の地下水位分布

敷地においては水位観測に基づき,水位コンターを設定している。地下水位については, 平成29年6月時点でのデータを用いて取り纏めを行い,地下水位コンター図を作成した。 図3.3-1に観測最高水位コンター図,表3.3-1に観測最高地下水位一覧表を示す。 各地点における地下水位観測データを(参考資料1)に示す。



図 3.3-1 観測最高地下水位コンター図

観測孔名	計測期間	観測最高地下水位 (T.P.+m)	観測最高地下水位 計測時期
а	$1995 \sim 1999$	3. 49	1998年10月8日
b	$1995 \sim 1999$	2.52	1998年9月25日
с	$1995 \sim 1999$	2.53	1998年9月22日
d	$1995 \sim 1999$	2.28	1998年9月22日
a-1	1995~1999, 2004~2009	15. 42	2006年8月7日
a-2	$2004 \sim 2009$	13.60	2006年7月28日
b-2	$2004 \sim 2009$	9.06	2006年7月30日
c-0	1995~1999, 2004~2009	2.05	1998年9月19日
c-2	1995~1999, 2004~2017	2.58	2012年7月7日
c-3	2004~2017	2.49	2012年7月7日
c-4	$2004 \sim 2017$	2.00	2012年6月25日
d-1	1995~1999, 2004~2009	1.50	1998年9月18日
d-3	2004~2017	1.44	2013年10月27日
d-6	$2004 \sim 2017$	1.58	2013年10月28日
e-2	2004~2017	1.38	2006年10月8日
e-3	2004~2017	1.50	2013年10月16日
e-5	2004~2017	1.30	2013年10月21日
e-6	2004~2017	1.26	2013年10月21日
B-1	2005~2017	2.90	2006年7月30日
B-2	2005~2017	3.09	2006年7月30日
B-4	2005~2017	3.56	2006年7月31日
B-6	2005~2017	5. 51	2006年8月17日
C-4	2005~2017	3.17	2012年6月27日
C-7	2005~2017	4.99	2006年8月18日
D-0	2006~2017	2.37	2012年6月22日
D-3	2005~2017	2.88	2006年10月7日
D-4	2006~2017	2.76	2012年6月25日
D-5	2006~2017	2.54	2012年7月16日
E-4	2006~2017	2.26	2012年6月25日
F-2	2005~2015	1.74	2013年10月30日
F-4	2005~2017	1.55	2013年10月27日
F-6	2005~2017	1.77	2012年6月24日
G-5	2005~2017	1.53	2013年10月27日
H-4	2006~2017	2.13	2013年10月16日
H-7	2005~2017	1.33	2013年10月27日

表 3.3-1 観測最高地下水位一覧表

- 3.3.2 耐震評価における地下水位設定方針
  - (1) 建物・構築物の耐震評価における地下水位設定方針 建物・構築物の耐震評価においては、東海第二発電所における将来の防潮堤設置による 地下水位上昇の可能性を踏まえ、地下水位を地表面に設定する。ただし、原子炉建屋の地 下水位については、原子炉建屋直下の人工岩盤下端レベルにサブドレンを配置し、地下水 位の低減措置を実施しているため、地下水位は原子炉建屋の基礎盤下端レベルより低い位 置に設定する。
  - (2) 土木構造物(津波防護施設等を含む)の耐震評価における地下水位設定方針 土木構造物(津波防護施設等を含む)の耐震評価においては、東海第二発電所における 将来の防潮堤設置による地下水位上昇の可能性を踏まえ、地下水位を地表面に設定する。

#### 4. 地盤の解析用物性値

4.1 設置変更許可申請書に記載された解析用物性値

全応力解析に用いる解析用物性値として,設置変更許可申請書に記載された解析用物性値を 表4.1-1及び図4.1-1~図4.1-10に,設定根拠を表4.1-2に示す。設置変更許可申請書に 記載された解析用物性値については,原位置試験及び室内試験から得られた各種物性値を基に 設定した。

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									第四系						新第三系
$ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$		項目	f1屠	du)層	Ag2層	Ac層	As層	Ag1屠	D2c-3層	D2s-3層	D2g-3層	lm層	D1c-1層	D1g-1層	Km層
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	物理	密度	1.	82	1.89	I		I	t t	8	L	1.43		1.89	I
$ \left  \begin{array}{cccccccccccccccccccccccccccccccccccc$	称杠	$\rho_{\rm t}({\rm g/cm^3})^{(*1)}$	1.	86	2.01	1.65	1.74	2.01	77 T	1. 92	c1 .2	1.47	T	2.01	1.72-1.03×10 ⁻⁴ • 2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	静的変形特性	静弹性係数 (N/mm ² )	4, 00+15	39 · ¢ ¢	10. 5+142 • σ c'	11.4	21. 1+14. 8 · σ c	10.5+142 • σ c'	32. 3+5. 46 • σ c'	16.0+48.3 · σ c'	83, 4+160 • $\sigma$ c'	7. 26+19. 6 · σ c'	32. 3+Б. 46 - σ c'	10. 5+142 • σ c'	221-2. 23 • Z
		初期せん断剛性	80	). 3	109	I	I	I	001	070	C	0	¢¢,	287	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	傸	G ₀ (N/mm ² ) (*1)	87	.3	116	$\begin{array}{c} \rho_{\rm sat} \swarrow 1000 \times {\rm V}{\rm s}^2 \\ {\rm V}{\rm s=163{-}1.54z} \end{array}$	$\begin{array}{c} \rho_{\rm sat} \swarrow 1000  \times  \mathrm{V_S^2} \\ \mathrm{V_S=21 I-1,  19z} \end{array}$	246	128	249	938	24.8	139	306	$\substack{\rho_{\rm v}/1000\times \rm Vs^2}{\rm Vs}=433{-}0.~771\cdot 2$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	鸧	動ポアンン比	0	385	0.286	I	I	I	007			101 0	201 0	0. 382	I
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	変 彩	$\nu_{\rm d}^{(*1)}$	0.	493	0.491	0.486	0.484	0.483	0.488	0. 405	0. 462	0. 494	0.487	0.474	$0.463{+}1.03{\times}10^{-4}\cdot2$
	* 特 性	せん断剛性 のひずみ依存性 ^{6/G} 0~ γ	1+154	1 [0 y ^{1.04}	$\frac{1}{1+2520\;\gamma^{\;1.14}}$	$\frac{1}{1+269\gamma^{0.909}}$	$\frac{1}{1+422\;\gamma^{\;0.951}}$	$\frac{1}{1 + 1730 \ \gamma^{\ 1. \ 11}}$	$\frac{1}{1+269~\gamma^{~0.862}}$	$\frac{1}{1 + 1100 \ \gamma^{\ 0. \ 994}}$	$\frac{1}{1+237 \ \gamma^{\ 0.732}}$	$\frac{1}{1+222\gamma^{0.975}}$	$\frac{1}{1+269 \ \gamma^{\ 0.862}}$	$\frac{1}{1+2520\gamma^{-1.14}}$	$\frac{1}{1+107\;\gamma^{\;0.824}}$
$ \frac{E^{-} - \tilde{m}\tilde{w}}{C_{0}(N^{mn})} = \frac{0.491P}{40.670} = \frac{1.12P}{40.670} = \frac{1.40P+0.620}{0.242P+0.090} = \frac{1.42P+0.464}{1.42P+0.461} = \frac{1.40P+0.620}{0.274P+0.180} = \frac{0.462P+0.230}{0.274P+0.180} = \frac{0.770P+0.594}{0.338P+0.650} = \frac{0.274P+0.180}{0.170P+0.141} = \frac{1.40P+0.62}{0.238P+0.650} = \frac{1.40P+0.62}{0.170P+0.141} = \frac{1.40P+0.62}{0.170P+0.141} = \frac{1.40P+0.63}{0.170P+0.141} = \frac{1.40P+0.63}{0.170P+0.64} = \frac{1.40P+0.63}{0.170P+0.64} = \frac{1.40P+0.63}{0.170P+0.64} = \frac{1.40P+0.64}{0.010P+0.03} = \frac{1.40P+0.64}$		減衰定数 h~y	7 7		(4.10 + 40.0057) +0.00413	$\frac{\gamma}{(6,65_{\gamma}+0,0101)}$ +0,022	$\frac{\gamma}{(4, 40, 9122)}$ +0.0144	13.73 7 +0.0122) +0.00798	v. (6, 62 ₂ + 40, 303439) + 0, 0206	$\frac{\gamma}{(5, 68 \gamma + 0, 00560)}$ +0.0132	70 - 71 - 70 - 70 - 70 - 70 - 70 - 70 -	$\frac{\gamma}{(8,2)\gamma+0,0061)}$ +0,021	$\frac{\gamma}{(6,62\gamma+6,06349)}$ +0.0205	$\frac{\gamma}{(4, 10, \gamma + 0, 00577)} + 0, 00413$	7 (4,4) <u>7</u> 0,0184
稀 聚馏強度 0.500P 1.00P 1.20P+0.548 0.220P+0.059 1.43P+0.430 1.20P+0.548 0.170P+0.141 0.310P+0.213 0.788P+0.582 0.280P+0.036 0.170P+0.141 1.20P+0.541 * (V/mirr ² ) +0.195 +0.577 1.20P+0.548 0.120P+0.548 0.170P+0.141 0.310P+0.213 0.788P+0.582 0.280P+0.036 0.170P+0.141 1.20P+0.541 * 第第三系の強度特性は右図より設定する。	強声	ピーク強度 C _u (N/mm ² )	0.491P +0.200	1. 12P +0. 670	1. 40P+0. 620	0.242P+0.090	1. 42P+0. 464	1. 40P+0. 620	0.274P+0.180	0. 462P+0. 230	0.770P+0.594	0. 338P+0. 050	0.274P+0.180	1. 40P+0. 620	備考参照
	《特性	残留強度 で ₀ (N/mm ² )	0. 500P +0. 195	1. 00P +0. 577	1.20P+0.548	0. 220P+0. 059	1. 43P+0. 430	1.20P+0.548	0. 170P+0. 141	0. 310P+0. 213	0. 788P+0. 582	0. 280P+0. 036	0. 170P+0. 141	1. 20P+0. 548	$\tau^{2=0.632} \cdot \sigma$ ( $\sigma < 0.572 N / \text{mm}^2$ ) $\tau^{=0.601}$ ( $\sigma \ge 0.572 N / \text{mm}^2$ )
		籬							新第三系の強い	<b>୭</b> ₩₩は右図よ ⁰ <mark></mark>	設定する。 $=1+\frac{\alpha}{\alpha_1}$			$\sigma_{t} = 0.1$ $\tau_{R} = 0.3$ $C_{CUU} = 0.8$ $Z : ff$	11-0.00114・Z 54-0.00168・Z 37-0.00346・Z φ = 0° 電高EL. 表示 (m)

表4.1-1 設置変更許可申請書に記載された解析用物性値

注記 *1:上段は地下水位面以浅,下段は地下水位以深に対する値を示す。 P (N/mm²):圧密圧力(有効上載圧) 6/G0(-):剛性低下率

ρ_{sut} (g/cm²) :飽和密度 h (一) :減衰定数



図 4.1-1 du 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-2 Ag2 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-3 Ac 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-4 As 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-5 Ag1 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-6 D2c-3 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-7 D2s-3 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-8 D2g-3 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-9 lm 層の動せん断弾性係数及び減衰定数のひずみ依存性



図 4.1-10 Km 層の動せん断弾性係数及び減衰定数のひずみ依存性

新第三系	Km層	室内物理 試験	三軸圧縮 試驗	P S検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
	D1g-1屠	強度特性等と 併せて	Ag2層で 代用	P S 検層 と 密度より 算出	P S 検層 より算出	通度特性等と 併せて	Ag2會で 代用	より N 値の 小さい Ag2層で 代用
	D1c-1屠	同じ洪積 話性士である	D2c-3層で 代用	P S 検層と 密度より 算出	P S 検層 より算出		同じ洪積 粘性土である D2c-3層で 代用	
	lm層	室内物理 試驗	三軸圧縮 試驗	P S 検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三 軸圧縮 試験
	D2g-3層	室内物理 試験	三 韩压縮 誘騎	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三 割 王 続
	D2s-3層	室内物理 試験	三軸圧縮 試驗	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
第四系	D2c-3屠	室内物理 試験	三軸圧縮 試驗	P S 検醒 と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試験
	Ag1屠	油度特性等と 併せて	Ag2層で 代用	P S検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	よりN値の 小さい Ag2層で 代用
	As層	室 討 勝	三軸圧 試験	P S検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸 試験
	Ac層	室内物理 試験	三 軸圧 誘顎	P S 検層 c 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧 試驗
	Ag2)屠	室内物理 試験	三軸圧誘懸	P S 検醒と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三 朝田緒 瀬
	du属	室内物理 試験	三軸圧縮 試驗	P S 検層と 密度より 算出	P S 検層 より算出	繰返し三軸 試験	繰返し三軸 試験	三軸圧縮 試驗
埋戻土	f1)嚯			f1層の主要な 構成的主要な 同本オクトレ	通 い ( ( ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (			三軸圧 試験
Å D	通田	密度	静弹性係数	初期 せん断剛性	動ポアソン比	せん断剛性の ひずみ依存性	减衰定数	确度特性

表 4.1-2 解析用物性値の設定根拠

## 4.2 設置変更許可申請書に記載されていない解析用物性値

設置変更許可申請書に記載されていない解析用物性値を表 4.2-1~表 4.2-3 に, その設定 根拠を表 4.2-4~表 4.2-6 に示す。以下の章に,各物性値の設定根拠を示す。

							原封	也盤				
	パラメータ			埋戻土			第四系	(液状化検討対	†象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理	密度 () は地下水位以浅	ρ	$g/cm^3$	1.98 (1.82)	1.98 (1.82)	2.01 (1.89)	1.74	2.01 (1.89)	1.92	2.15 (2.11)	2.01 (1.89)	1.958
性	間隙比	е	-	0.75	0.75	0.67	1.2	0.67	0.79	0.43	0.67	0.702
	ポアソン比	$\nu_{\rm CD}$	-	0.26	0.26	0.25	0.26	0.25	0.19	0.26	0.25	0.333
変形	基準平均有効主応力 () は地下水位以浅	$\sigma'_{ma}$	$kN/m^2$	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12.6
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	$kN/m^2$	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
強	最大履歷減衰率	h _{max}	-	0.220	0.220	0.233	0.216	0.221	0.192	0.130	0.233	0.287
強度	粘着力	C _{CD}	$N/mm^2$	0	0	0	0.012	0	0.01	0	0	0
特 性	内部摩擦角	$\phi_{CD}$	度	37.3	37.3	37.4	41	37.4	35.8	44.4	37.4	30
	液状化パラメータ	$\phi_{\rm p}$	-	34.8	34.8	34. 9	38.3	34. 9	33.4	41.4	34. 9	28
adr.	液状化パラメータ	$S_1$	-	0.047	0.047	0.028	0.046	0.029	0.048	0.030	0.020	0.005
被状	液状化パラメータ	$W_1$	-	6.5	6.5	56.5	6.9	51.6	17.6	45.2	10.5	5.06
特性	液状化パラメータ	$P_1$	-	1.26	1.26	9.00	1.00	12.00	4.80	8.00	7.00	0.57
114	液状化パラメータ	$\mathbb{P}_2$	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	$C_1$	-	2.00	2.00	3.40	2.27	3.35	3. 15	3.82	2.83	1.44

表 4.2-1(1) 設置変更許可申請書に記載されていない解析用物性値(液状化検討対象層)

表 4.2-1(	(2)	設置変更許可申請書に記載されていない	、解析用物性値	(非液状化層)
----------	-----	--------------------	---------	---------

				原地盤							
	パラメータ				第四系(非	液状化層)	新第三系	***			
			Ac	D2c-3	lm	D1c-1*1	Km	行有			
物理性	密度 () は地下水位以浅	ρ	$g/cm^3$	1.65	1.77	1.47 (1.43)	_	1.72–1.03×10 ⁻⁴ · z	2.04 (1.84)		
特性	間隙比	е	-	1.59	1.09	2.8	-	1.16	0.82		
変形特性	ポアソン比	$\nu_{\rm CD}$	-	0.10	0.22	0.14	-	0.16+0.00025 · z	0.33		
	基準平均有効主応力 () は地下水位以浅	$\sigma'_{ma}$	$kN/m^2$	480	696	249 (223)	-	表4.1-1の	98		
	基準初期せん断剛性 () は地下水位以浅	G _{ma}	$kN/m^2$	121829	285223	38926 (35783)	—	動的変形特性に基づき z(標高)毎に物性値を 設定	180000		
	最大履歴減衰率	$h_{\text{max}}$	-	0.200	0.186	0.151	-		0.24		
強 度	粘着力	C _{CD}	$N/mm^2$	0.025	0.026	0.042	_	0.358-0.00603 · z	0.02		
特性	内部摩擦角	$\phi_{\rm CD}$	度	29.1	35.6	27.3	_	23.2+0.0990 · z	35		

注記 *1:施設の耐震評価に影響を与えるものではないことから、解析用物性値として本表には記載しない。

z:標高 (m)

	単位体積重量 (kN/m ³ )	ポアソン比	せん断剛性 (N/mm ² )	減衰定数	ヤング係数 (kN/mm ² )
人工岩盤(新設) (f'ck = 18 N/mm ² )	23. 0	0.20	$8580^{*1}$	0.05	20.6
人工岩盤(既設) (f'ck = 13.7 N/mm ² )	23.0	0.20	$7830^{*1}$	0.05	18.8

表 4.2-2 設置変更許可申請書に記載されていない解析用物性値(人工岩盤)

注記 *1:人工岩盤のせん断剛性は以下の式から算出する。

 $(G = \frac{E}{2(1+\nu)}, E: ヤング係数, \nu : ポアソン比)$ 

## 表 4.2-3 設置変更許可申請書に記載されていない解析用物性値(地盤改良体(セメント改良))

		地盤改良体 (セメント改良)					
	項日	一軸圧縮強度 (≦8.5N/mm ² の場合)	一軸圧縮強度(>8.5N/mm ² の場合)				
物理特性	密度 ρ _t (g/cm ³ )	改良対象の原地盤の平均密度×1.1					
静的変	静弾性係数 (N/mm ² )	581	2159				
形特性	静ポアソン比 _{v s}	0. 260					
	初期せん断 剛性 G ₀ (N/mm ² )	$\begin{array}{l} G_{0} = \rho_{t} \ / \ 1000 \ \times \ Vs^{2} \\ Vs = 147.6 \ \times \ q_{u}^{0.417} \ (m/s) \\ q_{u} : - rac{1}{4}mEring \ (kgf/cm^{2}) \end{array}$					
動 的 変	動ポアソン比 _{v d}	0. 431					
《形特性	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	G/G ₀ = <u>1</u> <u>1+γ/0.000537</u> γ:せん断ひずみ (-)	G/G。= <u>1</u> 1+y/0.001560 y:せん断ひずみ (-)				
	減衰定数 h~ γ	h=0.152 <mark>γ/0.000537</mark> 1+γ/0.000537 γ:せん断ひずみ (-)	h = 0.178 $\frac{\gamma / 0.001560}{1 + \gamma / 0.001560}$ $\gamma$ : せん断ひずみ (-)				
強度特性	粘着力 C(N/mm ² )	$C = q_u / 2$ $q_u :\pm E \tilde{m} \tilde{m} \tilde{m} \tilde{g}  (N/mm^2)$					
	ピーク強度 C _u (N/mm ² )	1.44 P + 1.76 P:圧密圧力(N/mm ² )	1.60 P + 7.80 P: 圧密圧力 (N/mm ² )				
	残留強度 $\tau_0(N/mm^2)$	1.44 P + 0.808 P:圧密圧力(N/mm ² )	1.60 P + 2.05 P: 圧密圧力 (N/mm ² )				

							-						
	バラメータ			原地盤									
				埋戻土 第四系(液状化検討対象層)									
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1		
物理	密度	ρ	$g/cm^3$	du層で 代用	室内 物理試験	室内 物理試験	室内	Ag2層で 代用	室内 物理試験	室内 物理試験	Ag2層で 代用	文献*1より	
特性	間隙比	е	-				物理試験					文献* ² より	
	ポアソン比	$\nu_{\rm CD}$	-		三軸圧縮 試験 (CD)	三軸 三軸 上縮 (CD)	三軸 三軸 定 節 (CD)	Ag2層で 代用	三軸 三軸 能 (CD)	三軸 王軸 王翰 (CD)	Ag2層で 代用	文献* ¹ より	
変 形	基準平均有効主応力	σ' _{ma}	kN/m²			答いまの	第4-1志の	第11字の	等いまの	<b>佐いま</b> の - 佐いまの	#11=0	第4-1表の 動の恋び時期	文献 ^{*1} より
特性	基準初期せん断剛性	G _{ma}	kN/m²		新4-1表の 動的変形特性 に基づき設定	動的変形特性 に基づき設定	新4-1200 動的変形特性 に基づき設定	新4-1200 動的変形特性 に基づき設定	新4-1400 動的変形特性 に基づき設定	新4-1200 動的変形特性 に基づき設定	に基づき設定	引用した 動的変形特性 に基づき設定	
	最大履歴減衰率	h _{max}	-								Ag2層で 代用		
強度	粘着力	C _{CD}	$N/mm^2$		三軸圧縮	三軸圧縮	三軸圧縮	Ag2層で	三軸圧縮	三軸圧縮	Ag2層で	-+====================================	
特性	内部摩擦角	$\phi_{CD}$	度		試験 (CD)	試験 (CD) 試験 (CD)	試験 (CD)	代用	試験 (CD)	試験 (CD)	代用	又歌「より	
	液状化パラメータ	$\phi_{\rm p}$	-			<ul> <li>変状化強度 試験結果 に基づく</li> <li>要素シミュレーション</li> </ul>	液状化強度 試験結果 に基づく 夏素パュレーション 要素パュレーション	<ul> <li>▲g2層の 液状化強度</li> <li>液状化強度</li> <li>⇒→3</li> <li>シャン</li> <li>を代用した</li> <li>要素シミュレーション</li> </ul>	<ul> <li>液状化強度 液</li> <li>試験結果 き</li> <li>に基づく に</li> <li>要素シミュレーション 要素</li> </ul>				
July-	液状化パラメータ	$S_1$	-		artala (La Béante							文献 ^{*2} より	
被状	液状化パラメータ	${\tt W}_1$	-		液状化強度 試験結果 に基づく 要素シミュレーション					版状化強度 試験結果 に其べく	版次化強度 試験結果 に其べく	初用した 液状化強度	
特性	液状化パラメータ	$P_1$	-							に基つく 要素シミュレーション	に基づく 要素シミュレーション	に基づく	
17	液状化パラメータ	$P_2$	-									女光/、1/-/1/	
	液状化パラメータ	$C_1$	-										

## 表 4.2-4(1) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(液状化検討対象層)

注記 *1:二方向同時加振による液状化実験(第28回土質工学研究発表会 藤川他, 1993)

*2: CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)]

# 表 4.2-4(2) 設置変更許可申請書に記載されていない解析用物性値の設定根拠(非液状化層)

				原地盤							
	パラメータ				第四系(非	液状化層)	新第三系				
				Ac	D2c-3	lm	D1c-1*4	Km	「皆石		
物 理	密度	ρ	$\rm g/cm^3$	室内 室内		室内		室内			
特性	間隙比	е	-	物理試験	物理試驗 物理試験			物理試験			
	ポアソン比	$\nu_{\rm CD}$	_	三軸圧縮 試験 (CD)	三軸 三軸 定 能 能 (CD)	三軸圧縮 試験 (CD)		三軸圧縮試験 (CD)			
変形	基準平均有効主応力	$\sigma'_{ma}$	$kN/m^2$	奈(1書の	奈山市の	年にまの	_	主人口,小副的东西长期	-+====================================		
特性	特 性 基準初期せん断剛性		$kN/m^2$	第4-1衣の 動的変形特性 に基づき設定	単4-1衣の 動的変形特性 に基づき設定	第4-1表の       動的変形特性       に基づき設定	×05 %特性 :設定	表4.1-100動的変形特性 に基づきz(標高)依存物性 として設定	又献 より		
	最大履歴減衰率	h _{max}	-								
強度	粘着力	C _{CD}	$N/mm^2$	三軸圧縮	三軸圧縮	三軸圧縮	Ĩ	三軸圧縮			
特性	内部摩擦角	$\phi_{CD}$	度	試験 (CD)	試験 (CD)	t験 (CD) 試験 (CD)		試験 (CD)			

注記 *3:港湾構造物設計事例集((財)沿岸技術研究センター,平成19年3月)

*4:施設の耐震評価に影響を与えるものではないことから、解析用物性値として本表には記載しない。

表 4.2-5 設置変更許可申請書に記載されていない解析用物性値の設定根拠(人工岩盤)

	単位体積重量	ポアソン比	せん断剛性	減衰定数	ヤング係数
人工岩盤(新設) (f'ck = 18 N/mm ² )	慣用値 ^{*1}	慣用値*1	ヤング係数と ポアソン比 より算出	慣用値	慣用値*1
人工岩盤(既設) (f'ck = 13.7 N/mm ² )	慣用値*1	慣用値*1	ヤング係数と ポアソン比 より算出	慣用値	慣用値*1

注記 *1:原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会,2005)

#### 表 4.2-6 設置変更許可申請書に記載されていない解析用物性値の設定根拠(地盤改良体(セメント改良))

	項目	設定根拠					
物 理 特 性	密度 ρ _t (g/cm ³ )	既設改良体のコアによる密度試験に基づき係数(×1.1)を 設定					
静的変	静弹性係数 (N/mm ² )	既設改良体を模擬した再構成試料による一軸圧縮試験に 基づき設定					
形 特 性	静ポアソン比 ッ _s	文献*1より設定					
町	初期せん断 剛性 G ₀ (N/mm ² )	文献* ² より「一軸圧縮強度q _u ~せん断波速度Vs」の 関係式を引用し設定					
助的変	動ポアソン比 _{vd}	既設改良体のPS検層に基づき設定					
形 特 性	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定					
	減衰定数 h~ γ	既設改良体を模擬した再構成試料による動的変形試験に 基づき,H-Dモデルにて設定					
	粘着力 C (N/mm ² )	ー軸圧縮強度q _u と粘着力Cの関係に基づき設定					
強 度 特 性	ピーク強度 C _u (N/mm ² )	既設改良体を模擬した再構成試料による三軸圧縮試験					
17	残留強度 τ ₀ (N/mm ² )	(CU条件) に基づき設定					

注記 *1:建築基礎のための地盤改良設計指針案((社)日本建築学会,2006)

*2:地盤工学への物理探査技術の適用と事例((社)地盤工学会,2001),

わかりやすい土木技術 ジェットグラウト工法 (鹿島出版社 柴崎他, 1983)

4.2.1 有効応力解析に用いる解析用物性値

建物・構築物の動的解析において,地震時における地盤の有効応力の変化に応じた影響 を考慮する場合は,有効応力解析を実施する。有効応力解析に用いる液状化強度特性は, 敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定することを 基本とする。

設定する液状化強度特性は、試験データのばらつきを考慮し、液状化強度試験データの 最小二乗法による回帰曲線と、その回帰係数の自由度を考慮した不変分散に基づく標準偏 差を用いた「平均-1g」について整理する。

また,保守的な配慮として,地盤を強制的に液状化させることを仮定した影響を考慮す る場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊浦標準砂に基 づく液状化強度特性)を設定する。

設置変更許可申請書における解析物性値は全応力解析用に設定しているため,液状化検 討対象層の物理的及び力学的特性から,各層の有効応力解析に必要な物性値を設定する。

有効応力解析に用いる解析用物性値のうち一部の地盤材料については、同等若しくは保 守的な他の地盤材料の試験結果を代用している。他の地盤材料の試験結果を代用している ものについて、物性設定の考え方を(参考資料2)に示す。

また,施設の耐震評価に影響を与えるものではないことから有効応力解析に用いる解析 用物性値としての記載を省略した D1c-1 層について,設置変更許可段階での記載内容や敷 地における分布範囲等の詳細を(参考資料2)に示す。

なお、地盤の物理特性及び力学特性は、日本工業規格(JIS)又は地盤工学会(JGS)の 基準に基づいた試験の結果から設定することとした。

(1) 液状化影響検討方針の概要

図 4.2-1 に液状化影響評価のフローを示す。

東海第二発電所の液状化影響評価については道路橋示方書を基本とし,道路橋示方書で は液状化検討対象外とされている現地盤から-20m 以深及び更新統についても液状化検討 対象層として扱う。

原地盤の各液状化検討対象層の試験結果に基づき,液状化強度特性を設定し,有効応力 解析により構造物への影響評価を実施する。設定する原地盤の各液状化検討対象層の液状 化強度特性は試験データのばらつきを考慮し,液状化強度試験データの最小二乗法による 回帰曲線と,その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いて適切に 設定する。

なお,液状化強度特性を設定する際に目標とする繰返し載荷回数については,当該液状 化検討対象層の全ての液状化強度試験データを包含し,かつ不自然な曲線形状とならない よう適切に設定する。

設計基準対象施設,常設重大事故等対処施設及び波及的影響の設計対象とする下位クラ ス施設の耐震設計において液状化影響の検討を行う場合は,原地盤に基づく液状化強度特 性を用いて基準地震動S。に対する有効応力解析による検討(①)を行うことを基本とし, 更に,当該検討において最も厳しい(許容限界に対する余裕が最も小さい)解析ケースに 対して,豊浦標準砂*の液状化強度特性により強制的に液状化させることを仮定した有効 応力解析による検討(②)を行う。上記の検討の組合せは,個別の施設設置位置の液状化 強度特性の信頼性を確認し,施設毎に設定する。

図 4.2-2 に原地盤に基づく液状化強度特性と豊浦標準砂を仮定した液状化強度特性の比較を示す。豊浦標準砂の液状化強度特性は原地盤に基づく液状化強度特性の全てを包含している。豊浦標準砂は、敷地に存在しないものであるが、極めて液状化しやすい液状化強度特性を有していることから、豊浦標準砂の液状化強度特性を仮定した有効応力解析は、強制的に液状化させることを仮定した影響評価となる。

*豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地には存在しないもので ある。豊浦標準砂は、淡黄色の丸みのある粒から成り、粒度が揃い均質で非常に液状化 しやすい特性を有していることから、液状化強度特性に関する研究及びそれに伴う実験 などで多く用いられている。



図 4.2-1 液状化影響評価のフロー



図 4.2-2 原地盤に基づく液状化強度特性と豊浦標準砂を仮定した液状化強度特性の比較

(2) 液状化検討対象層の抽出

道路橋示方書(道路橋示方書・同解説V耐震設計編,平成24年3月)では,液状化検討 対象層を完新統の以下の条件全てに該当する土層と定めている。

①地下水位が現地盤面から-10 m以内であり、かつ現地盤面から-20 m以内の飽和土層
 ②細粒分含有率 FC が 35%以下、または FC が 35%をこえても塑性指数 I_pが 15 以下の土

③平均粒径 D₅₀ が 10 mm 以下で,かつ 10% 粒径 D₁₀ が 1 mm 以下である土層

上記の条件は指針類(鉄道構造物等設計標準・同解説 耐震設計編(平成 24 年 9 月), 港湾の施設の技術上の基準・同解説(平成 19 年))でほぼ共通している。

当該地での液状化検討対象層の抽出では,道路橋示方書で対象としている地層を基本とし、さらに,道路橋示方書では検討対象外としている更新統及び現地盤面から-20 m以深の土層も抽出対象とする。

図 4.2-3 には敷地の液状化検討対象層抽出方針,表 4.2-7 には液状化検討対象層の抽 出結果を示す。

以上より,敷地における液状化検討対象層は du 層, Ag2 層, As 層, Ag1 層, D2s-3 層, D2g-3 層及び D1g-1 層とする。



図 4.2-3 液状化検討対象層抽出方針
地質記号		層相	道路橋示方 書における 液状化検討 対象層	当社における 液状化検討対 象層	備考
du		砂	0	0	
	Ag2	砂礫	0	0	
	Ac	粘土	—	—	
al	As	砂	0	0	G.L.-20 m 以深に分布 する範囲についても検 討対象とする。
	Ag1	砂礫	_		G.L20 m 以深に分布 するが検討対象とす る。
D2	D2c-3	シルト	—	—	
	D2s-3	砂	_		更新統であるが検討対 象とする。
	D2g-3	砂礫	_		更新統であるが検討対 象とする。 G.L20 m 以深に分布 する範囲についても検 討対象とする。
D1	lm	ローム	—	_	
	D1c-1	シルト	_		
	D1g-1	砂礫			 更新統であるが検討対 象とする。

表 4.2-7 液状化検討対象層の抽出結果

○:検討対象

□:道路橋示方書では検討対象外だが □:液状化検討対象と 検討対象とするもの

-:検討対象外 するもの

(3) Ac 層の液状化強度試験結果

敷地の北部には砂層を間に挟在している過圧密粘土層(Ac 層)が厚く堆積している。Ac 層は細粒分含有率が90%以上,塑性指数 I_Pは30~60を示す高塑性粘土である。前節の液 状化検討対象層の抽出ではAc 層は液状化検討対象層外と分類されるが,敷地における分布 範囲が広く,液状化影響検討における重要度が高いことから液状化の可能性の有無を定量 的に検討することを目的として室内液状化強度試験を実施した。

室内液状化強度試験は,砂・礫質土で実施した中空繰返しねじりせん断試験により実施 した。以下に試験条件を示す。

【室内液状化強度試験の試験条件】

試験方法:中空繰返しねじりせん断試験

地盤材料試験の方法と解説(公益社団法人地盤工学会,2009)に基づき,繰返 し回数200回を上限とし,両振幅せん断ひずみ7.5%に達するまで試験を実施した。

せん断応力比は(繰返し回数 5~50 回を目安)0.36~0.80 の間で設定した。 供試体寸法:外形 70mm×内径 30mm×高さ 100mm

載荷波形:正弦波(0.02Hz)

圧密圧力:供試体採取深度の有効上載圧を考慮して設定

図 4.2-4 に中空繰返しねじりせん断試験の概要及び図 4.2-5 に液状化強度試験試料採 取箇所(Ac 層)を示す。図 4.2-6 に中空繰返しねじりせん断試験結果を示す。

試験を行った全ての供試体において,過剰間隙水圧比は 0.95 に達せず,Ac 層は液状化しないものであることが確認された。



中空ねじりせん断試験









図4.2-6(2) 中空繰返しねじりせん断試験結果(Ac層, SC-9-25(3))



図4.2-6(3) 中空繰返しねじりせん断試験結果(Ac 層, SC-9-25(2))



図4.2-6(4) 中空繰返しねじりせん断試験結果(Ac層, SC-9-23~24(1))





















- (4) 液状化強度試験試料採取位置の選定とその代表性追而
- (5) 液状化強度試験結果追而
- (6) 液状化強度特性の妥当性及び代表性追而
- (7) 施設毎の液状化影響検討の組合せ追而

- (8) 有効応力解析の検討方針
  - a. 有効応力解析コード「FLIP」について

有効応力解析コード「FLIP (Finite element analysis of Liquefaction Program)」は、1988年に運輸省港湾技術研究所(現、(独)港湾空港技術研究所)において開発された平面ひずみ状態を対象とする有効応力解析法に基づく2次元地震応答解析プログラムである。FLIPの主な特徴として、以下の5点が挙げられる。

- ① 有限要素法に基づくプログラムである。
- ② 平面ひずみ状態を解析対象とする。
- ③ 地盤の有効応力の変化を考慮した地震応答解析を行い,部材の断面力や変形量を計 算する。
- ④ 土の応力-ひずみモデルとしてマルチスプリングモデルを採用している。
- ⑤ 有効応力の変化は有効応力法により考慮する。そのために必要な過剰間隙水圧算定 モデルとして井合モデルを用いている。

砂の変形特性を規定するマルチスプリングモデルは、任意方向のせん断面において仮 想的な単純せん断バネの作用があるものとし、これらのせん断バネの作用により、土全 体のせん断抵抗が発揮されるものである。土の応力-ひずみ関係は、このせん断バネの 特性によって種々の表現が可能であるが、「FLIP」では双曲線(Hardin-Drnevich) 型モデルを適用している。また、履歴ループについては、その大きさを任意に調整可能 なように拡張した Masing 則を用いている。図 4.2-7 にマルチスプリングモデルの概念 図を、図 4.2-8 に非排水条件での土の応力-ひずみ関係の概念図を示す。



* 文献「液状化による構造物被害予測プログラム FLIP において必要な各種 パラメータの簡易設定法(港湾空港技術研究所資料 No.869)を一部修正

図 4.2-7 マルチスプリングモデルの概念図



* 文献「液状化による構造物被害予測プログラム FLIP において必要な各種 パラメータの簡易設定法(港湾空港技術研究所資料 No.869)を一部修正

図 4.2-8 非排水条件での土の応力一ひずみ関係の概念図

b. 液状化判定に係る評価基準値について

有効応力解析コード「FLIP」での地震応答解析結果により算出される各地盤要素 の間隙水圧に対し,液状化の定義を明確にした上で,評価基準値を以下のように設定し, 液状化判定を行う。

レベル 2 地震動による液状化研究小委員会活動成果報告(土木学会,2003)では、地 盤の液状化の事象の定義として、以下のように記載されている。

・地震の繰り返しせん断力などによって、飽和した砂や砂礫などの緩い非粘性土からなる地盤内での間隙水圧が上昇・蓄積し、有効応力がゼロまで低下し液体状となり、その後地盤の流動を伴う現象。

液状化判定の評価基準値を設定するにあたり,規格・基準における液状化と過剰間隙 水圧に関する記載事例を調査した。地盤材料試験の方法と解説(公益社団法人地盤工学 会,2009)では,液状化と関連する過剰間隙水圧について,以下のように記載されてい る。

・各繰り返しサイクルにおける過剰間隙水圧Δuの最大値が有効拘束圧 σ₀'の 95%になった時の繰り返し載荷回数 Nu₉₅を求める。(土の液状化強度特性を求めるための繰返し非排水三軸試験(p. 703~749))

これらの知見を踏まえて、過剰間隙水圧を指標とした液状化の評価基準値について、 "液状化の定義"及び"規格・基準における記載事例"に基づき、以下のように設定する。

・過剰間隙水圧Δuの最大値が有効拘束圧 σ₀'の 95%に達した状態を液状化と判定する。

図 4.2-9 に液状化パラメータ設定の流れを示す。液状化パラメータの設定は、室内試験(液状化強度試験、三軸圧縮試験(CD 条件),動的変形試験)及び原位置試験(PS 検層)により動的変形特性を求め、その後「FLIP」による要素シミュレーションにより液状化強度特性を求めている。以上のように設定した液状化パラメータを表 4.2-1 に示す。



図4.2-9 液状化ペラメータ設定の流れ

4.2.2 強制的に液状化させることを仮定した有効応力解析に用いる解析用物性値

(1) 豊浦標準砂について

豊浦標準砂は、山口県豊浦で産出される天然の珪砂であり、敷地には存在しないもので ある。豊浦標準砂は、淡黄色の丸みのある粒から成り、粒度が揃い均質で非常に液状化し やすい特性を有していることから、液状化強度特性に関する研究及びそれに伴う実験など で多く用いられている。

(2) 豊浦標準砂の液状化強度

液状化評価に用いる豊浦標準砂の強度特性は,文献(CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE.26-3.(1986)])から引用した相対密度 73.9~82.9%の豊浦標準砂の液状化強度試験データに対し、それらを全て包含する「FLIP」の液状化特性を設定する。

図 4.2-10 に豊浦標準砂の液状化強度試験データ,図 4.2-11 にFLIPによる豊浦標 準砂の液状化強度特性を示す。

FLIPを用いて,強制的に液状化を仮定した液状化影響評価を行うため,東海第二発 電所の全地層の液状化強度試験データを包含する液状化強度特性(豊浦標準砂)をFLI Pに仮定した有効応力解析を行い,耐震評価を実施する。図 4.2-12 に豊浦標準砂の液状 化強度特性と原地盤の液状化強度特性の比較を示す。

豊浦標準砂と液状化検討対象層である du 層及び As 層の比較を実施した。表 4.2-8 に平 均粒径と細粒分含有率の比較,図 4.2-13 及び図 4.2-14 に粒径加積曲線による比較を示 す。豊浦標準砂と du 層及び As 層の粒度分布について比較した結果,豊浦標準砂は細粒分 含有率が低く,均質な粒径を持つという特徴がある。



図 4.2-11 FLIPによる豊浦標準砂の液状化強度特性(-1 σ)



図 4.2-12 豊浦標準砂と原地盤の液状化強度特性の比較

	平均粒径(mm)	細粒分含有率(%)
豊浦標準砂	0. 202	0.24
du 層	0. 384	5. 2
As 層	0. 201	2. 1~71. 5

表 4.2-8 平均粒径と細粒分含有率の比較



*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用



図 4.2-13 粒径加積曲線による比較(du 層)

*豊浦標準砂の粒度については、文献(豊浦砂の粒度分布(土木学会第64回年次学術講演会、平成21年9月))より引用

図 4.2-14 粒径加積曲線による比較(As 層)

4.2.3 その他の解析用物性値

(1) 捨石

捨石については、「港湾構造物設計事例集((財)沿岸技術研究センター、平成19年3 月)」に基づき、表4.2-1の通り解析用物性値を設定する。捨石の解析用物性値の詳細に ついては(参考資料3)に示す。

(2) 人工岩盤

人工岩盤については、「原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会、2005)」に基づき、表 4.2-2の通り解析用物性値を設定する。

(3) 地盤改良体

地盤改良体(セメント改良)については,既設改良体又は既設改良体を模擬した再構成 試料による試験結果及び文献(地盤工学への物理探査技術の適用と事例((社)地盤工学 会,2001年),わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他,1983 年))等を参考に表 4.2-3の通り解析用物性値を設定する。

地盤改良体(セメント改良)のせん断波速度は,図 4.2-15 に示す通り,一軸圧縮強度 の増加に伴って増加する傾向があるため,各構造物で計画されている改良体の一軸圧縮強 度に応じたせん断波速度を設定する方法を採用した。

地盤改良体(セメント改良)の動ポアソン比は,屋外二重管の底部地盤に施工されている既設地盤改良体(セメント改良)の PS 検層結果より設定した。既設改良体(セメント改良)の PS 検層実施位置を図 4.2-16 に,PS 検層結果を表 4.2-9 に示す。

地盤改良体(セメント改良)のひずみ依存特性を設定するにあたり,一軸圧縮強度を2水準(qu=4.0N/mm²,13.0N/mm²)*とした再構成試料による動的変形試験を実施した。2水準の一軸圧縮強度毎の動的変形試験結果とH-Dモデルによる回帰式を図4.2-17に示す。

上記の文献情報及び試験結果と解析用地盤物性の対応を,表 4.2-10 にとりまとめる。 また,地盤改良体におけるばらつきの考え方及び物性設定の妥当性についての検討結果を (参考試料4)に示す。

*屋外二重管の底部地盤に施工されている既設地盤改良体(セメント改良)の一軸圧縮強 度がおよそ 13.0N/mm²であったため,これを高強度側の目標一軸圧縮強度とし,一方で 低強度側の目標一軸圧縮強度として 4.0N/mm²を採用した。

また,地盤改良体(薬液注入)については,改良対象の原地盤の解析用物性値と同等の 基礎物理特性を用いると共に,非液状化層とする。

なお、上記物性値とは別に、地盤改良試験施工を実施する主排気筒、非常用ガス処理系 配管支持架構及び緊急時対策所建屋における地盤改良体(セメント改良)の解析用物性及 びばらつきの設定については、各対象施設近傍にて実施した地盤改良試験施工結果を用い て設定する。詳細については、補足説明資料「主排気筒の耐震性評価に関する補足説明」、

「非常用ガス処理系配管支持架構の耐震性評価に関する補足説明」,「緊急時対策所建屋 の耐震性評価に関する補足説明」に示す。



*文献(わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他, 1983 年)) より引用

図 4.2-15 一軸圧縮強度とせん断波速度の関係



図 4.2-16 既設地盤改良体(セメント改良)の PS 検層実施位置

表 4.2-9 既設地盤改良体(セメント改良)の PS 検層結果

調查孔名	Vs (m/s)	Vp (m/s)	動ポアソン比	
地盤改良体	SJ-1	750	2006	0.419
(セメント改良)	SJ-2	754	2357	0.443
平均值	752	2182	0.431	

57



(目標一軸圧縮強度:4.0Nmm²)





項目		地盤改良体(セメント改良)		
		ー軸圧縮強度 (≦8.5N/mm ² の場合)	<ul> <li>一軸圧縮強度</li> <li>(&gt;8.5N/mm²の場合)</li> </ul>	
勫	初期せん断 剛性 G ₀ (N/mm ² )	$egin{array}{llllllllllllllllllllllllllllllllllll$		
動的変形特性.	動ポアソン比 _{v d}	0. 431		
	動せん断弾性係数 のひずみ依存性 G/G ₀ ~γ	$G/G_0 = \frac{1}{1 + \gamma / 0.000537}$ $\gamma$ : せん断ひずみ (-)	G/G。= <u>1</u> 1+y/0.001560 y : せん断ひずみ (-)	
	減衰定数 h~ γ	h=0.152 <u>γ/0.000537</u> 1+γ/0.000537 γ:せん断ひずみ (-)	h=0.178 $\frac{\gamma / 0.001560}{1 + \gamma / 0.001560}$ $\gamma$ : せん断ひずみ (-)	

## 表 4.2-10 地盤改良体(セメント改良)の解析用地盤物性値

## と文献情報及び室内試験の対応関係

- 4.2.4 地盤の物性のばらつきについて
  - (1) 建物・構築物の地震応答解析に考慮する地盤の物性のばらつき
     建物・構築物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細に
     ついては、補足説明資料「地震応答解析における材料物性のばらつきに関する検討」に示す。
  - (2) 土木構造物(津波防護施設等を含む)の地震応答解析に考慮する地盤の物性のばらつき 土木構造物の地震応答解析においては地盤の物性のばらつきを考慮している。詳細につ いては、補足説明資料「屋外重要土木構造物の耐震安全性評価について」に示す。

なお,地震応答解析にて考慮する地盤物性のばらつきについて,詳細を(参考資料5) に示す。

## 5. 極限支持力

極限支持力は,道路橋示方書(I共通編・Ⅳ下部構造編)・同解説((社)日本道路協会,平 成14年3月)(以下「道路橋示方書」という。)の支持力算定式等に基づき,対象施設の岩盤 の室内試験結果(せん断強度)等より設定する。

5.1 直接基礎及びケーソン基礎の支持力算定式

道路橋示方書による直接基礎の支持力算定式を以下に示す。

·極限支持力算定式(直接基礎)

$$Q_u = A_e \left\{ \alpha \kappa c N_c S_c + \kappa q N_q S_q + \frac{1}{2} \gamma_1 \beta B_e N_\gamma S_\gamma \right\}$$
  
 $Q_u : \frac{\pi}{0} \frac$ 

- D_f: 基礎の有効根入れ深さ(m)
- *α*, *β*: 基礎の形状係数
  - κ : 根入れ効果に対する割増し係数
- $N_{o}, N_{q}, N_{\gamma}$ :荷重の傾斜を考慮した支持力係数
- S., S., S., : 支持力係数の寸法効果に関する補正係数

・極限支持力算定式(ケーソン基礎)

$$q_{d} = \alpha c N_{c} + \frac{1}{2} \beta \gamma_{1} B N_{\gamma} + \gamma_{2} D_{f} N_{q}$$

- q_d:基礎底面地盤の極限支持力度(kN/m²)
- c:基礎底面より下にある地盤の粘着力(kN/m²)
   *cは表 4.1-1における Km 層の非排水せん断強度
- γ₁: 基礎底面より下にある地盤の単位体積重量(kN/m³)
   ただし、地下水位以下では水中単位体積重量とする。
- γ₂: 基礎底面より上にある周辺地盤の単位体積重量(kN/m³) ただし、地下水位以下では水中単位体積重量とする。
- *α*, β:基礎底面の形状係数
  - B : 基礎幅 (m)
  - D_f: 基礎の有効根入れ深さ(m)
- N_a, N_a, N_a: 支持力係数
- 5.2 杭基礎の支持力算定式

道路橋示方書による杭基礎における各工法の支持力算定式を以下に示す。

押込み力に対する支持力評価において,豊浦標準砂の液状化強度特性により強制的に液状化 させることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力として考慮せず, 杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基本とする。ただし,杭を根入 れした岩盤及び岩着している地盤改良体とその上方の非液状化層が連続している場合は,その 杭周面摩擦力を支持力として考慮する。

引抜き力に対する支持力評価において,豊浦標準砂の液状化強度特性により強制的に液状化 させることを仮定した耐震設計を行う場合は,第四系の杭周面摩擦力を支持力として考慮せず, 新第三系(久米層)の杭周面摩擦力により算定される極限支持力を考慮することを基本とする。 ただし,杭周面地盤に地盤改良体がある場合は,その杭周面摩擦力を支持力として考慮する。

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設の支持力算定方法に関する補 足を(参考資料6)に示す。 ・極限支持力算定式(杭基礎[中堀り工法])

 $R_{\rm u} = q_{\rm d} A + U \sum L_{\rm i} f_{\rm i}$ 

- R_u: 地盤から決まる杭の極限支持力(kN)
- $q_d$ : 杭先端における単位面積あたりの極限支持力度 (kN/m²)  $q_d$  =3・ $q_u$ 
  - qu:支持岩盤の一軸圧縮強度(kN/m²)
  - *quは表4.1-1におけるKm層の非排水せん断強度×2
- A : 杭先端面積 (m²)
- U: 杭の周長 (m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- f_i:周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)
- ・極限支持力算定式(杭基礎[打込み工法])

 $R_u = P_u + U \sum L_i f_i$ 

- R_u: 地盤から決まる杭の極限支持力 (kN)
- Pu: 抗先端の極限支持力(kN)
  - $P_{\rm u}$  = 440  $q_{\rm u}^{1/2}$   $A_{\rm t}^{2/5}$   $A_{\rm i}^{1/3}$
  - qu:支持岩盤の一軸圧縮強度(kN/m²)
  - *quは表 4.1-1 における Km層の非排水せん断強度×2
  - A_t:鋼管杭の先端純断面積(m²)
  - A_i:鋼管杭の先端閉塞面積(m²)
  - A:鋼管杭の先端面積(m²)
- U: 杭の周長 (m)
- L_i:周面摩擦力を考慮する層の層厚(m)
- fi: 周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

5.3 地中連続壁基礎の支持力算定式

道路橋示方書による地中連続壁基礎における支持力算定式を以下に示す。

·極限支持力算定式(地中連続壁基礎)

 $R_u = q_d A$ 

R_u:基礎底面地盤の極限支持力(kN)

qd: 基礎底面地盤の極限支持力度(kN/m²)

 $q_d = 3 \cdot q_u$ 

q_u:支持岩盤の一軸圧縮強度(kN/m²)

*quは表 4.1-1における Km 層の非排水せん断強度×2

A: 基礎の底面積(内部土は含まない) (m²)

5.4 極限支持力算定式における久米層の非排水せん断強度の適用性について

久米層に対して以下の力学特性を明らかにするため、CUU 試験を採用した。CUU 試験は、供 試体を土被り圧相当で圧密した後、非排水状態で側圧を変化させた上で軸荷重を増加させ、非 排水せん断強度を求めるものである。

なお,地震時のように間隙水の排水条件が非排水とみなされる期間の評価においては,非排 水状態における強度特性を用いることが適切である。

- ・標高毎の非排水せん断強度を精緻に求める。
- ・非排水状態における内部摩擦角 φ を確認する。

上記試験の結果,久米層の非排水状態における内部摩擦角φはゼロであることを確認した。 図 5.1−1 に E.L. −18m 付近にて採取した試料によるモール円を示す。



図 5.1-1 久米層の CUU 試験によるモール円

以上より、久米層の CUU 試験において、標高毎に取得されるせん断強度 τ は粘着力 c である ことが分かる。久米層の解析用地盤物性値は、この粘着力 c を標高毎にとりまとめることで、 標高依存式として非排水せん断強度を設定している。久米層の非排水せん断強度設定イメージ を図 5.1-2 に示す。



図 5.1-2 久米層の非排水せん断強度設定イメージ

以上により、久米層の非排水せん断強度における内部摩擦角はゼロであり、CUU 試験により 得られる久米層の非排水せん断強度は粘着力に相当することが明らかであることから、道路橋 示方書に記載されている軟岩や土丹に対する強度設定の考え方である「粘着力 c=一軸圧縮強 度 qu/2」に基づき、極限支持力の入力パラメータである粘着力及び一軸圧縮強度を、久米層の 非排水せん断強度から設定することは妥当である。

5.5 杭の支持力試験について

杭の支持力試験を実施している使用済燃料乾式貯蔵建屋については,極限支持力を支持力試 験結果から設定する。詳細については,補足説明資料「使用済燃料乾式貯蔵建屋の耐震性評価 に関する補足説明」に示す。 6. 地盤の速度構造

6.1 入力地震動の設定に用いる地下構造モデル

入力地震動の設定に用いる地下構造モデルについては,解放基盤表面(EL. -370 m)から解 析モデル底面位置の久米層をモデル化する。地下構造モデルの概要を表 6.1-1 に示す。入力 地震動算定の概念図を図 6.1-1 示す。

なお、繰返し三軸試験により、久米層はせん断剛性及び履歴減衰のひずみ依存特性を有して いることを確認していることから、久米層のモデル化においては、繰返し三軸試験による久米 層のひずみ依存特性を解析用地盤物性値として用いる。

地層	地層 新第三系 (Km層)		
標高	解析モデル入力位置 ~ EL370 m	EL.-370 m以深	
P波速度 Vp (m/s)	$Vp = Vs \sqrt{\frac{2(1 - v_d)}{1 - 2v_d}}$	1988 (z=-370 m)	
S波速度 Vs (m/s)	Vs=433-0.771・z z:標高(m)	718 (z=-370 m)	
動ポアソン比 v _d	ν _d =0.463+1.03×10 ⁻⁴ ・z z:標高(m)	0.425 (z=-370 m)	
密度 p (g/cm ³ )	ρ=1.72-1.03×10 ⁻⁴ ・z z:標高(m)	1.76 (z=-370 m)	
せん断剛性の ひずみ依存性 G/G ₀ ~γ	 1+107 γ ^{0.824} γ :せん断ひずみ(-)	—	
減衰定数 h~γ	<u>γ</u> (4.41γ+0.0494) γ:せん断ひずみ(-)	0.03	

表 6.1-1 入力地震動の策定に用いる地下構造モデル

注記 *1:入力地震動作成モデルにおける解放基盤表面以深の半無限地盤



図 6.1-1 入力地震動算定の概念図

6.2 地震応答解析に用いる地盤の速度構造モデル

地震応答解析に用いる地盤の速度構造モデルとして、図 6.2-1 に示す位置で実施した PS 険層の結果に基づく地層ごとのせん断波速度 Vs 及び粗密波速度 Vp を表 6.2-1 に示す。

表 6.2-1 では, PS 検層結果を 2 種類の速度構造モデルとして取り纏めている。表 6.2-1 の うち平均値として記載した速度構造モデルは,全応力解析に適用する。

また,有効応力解析コード「FLIP」では,「図 4.2-9 液状化パラメータ設定の流れ」 に示すように,平均有効主応力の関数式にて動的変形特性をモデル化する必要がある。よって, 表 6.2-1 のうち平均有効主応力依存式として記載した速度構造モデルは,有効応力解析に適 用することを基本とする。ただし,一部の全応力解析に対しては,平均有効主応力の関数式に てせん断波速度 Vs をモデル化する場合がある。



表 6.2-1 PS 検層結果

地層			平均值		平均有効主応力依存式 Vs=A×(σ'm) ^{0.25}
			Vs (m/s)	Vp (m/s)	係数A
	du層	不飽和	210	482	82.8598
		飽和		1850	82.2410
	Ag2層	不飽和	240	446	71.5266
		飽和		1801	78.7716
	Ac層	飽和	163-1.54 • z	1240-1.93 • z	58.0616
	As層	飽和	211-1.19 • z	1360—1.78 • z	65.1014
第四系	Ag1層	飽和	350	1950	82.6980
N D N	D2c-3層	飽和	270	1770	78.1556
	D2s-3層	飽和	360	1400	104.4247
	D2g-3層	飽和	500	1879	136. 1685
	1m層	不飽和	130	1160	40.9503
	D1c-1層	飽和	280	1730	—
	D1g-1層	不飽和	390	903	110.6364
		飽和		1757	107.0330
新第三系	Km層	飽和	433-0.771 • z	$1650 - 0.910 \cdot z$	_

z:標高(m) σ'm:平均有効主応力(kN/m²) A:最小二乗法の回帰係数

6.3 PS 検層結果の代表性及び網羅性について

設計基準対象施設及び常設重大事故等対処施設が敷地全体に点在しているが,既往の PS 検 層の取得場所には偏りがあることから,その代表性及び網羅性について検討した。

6.3.1 第四系における PS 検層の代表性及び網羅性について

第四系における PS 検層の代表性及び網羅性については,敷地全体の広範囲で取得している N 値により検討した。道路橋示方書(V耐震設計編)・同解説((社)日本道路協会, 平成14年3月)には、N値によるせん断波速度Vsの推定式が示されており、この相関関係 を考慮して、N値による比較検討を実施する。

(1) 平面的な地層分布を考慮したブロック区分による比較

東海第二発電所における主な地層の平面的な分布を図 6.3-1 に示す。敷地中央部の基盤 (久米層)傾斜部を境界にして南北方向に地層が分かれていることから、それらをより多 くのブロックに分割するため東西方向のブロック区分を考える。具体的には、図 6.3-1 に 示す東西 4 つのブロックに区分し、各ブロックで取得された平均 N 値を比較することで、 各地層が工学的に同等の特性を持って平面的に分布していることを確認する。

図 6.3-2 に各ブロックにおける平均 N 値の比較結果を示す。各地層の平均 N 値を領域毎 に比較した結果,有意な差が無いことを確認した。よって,既往の PS 検層は代表性及び網 羅性を有している。



図 6.3-1 主な地層の平面的な分布とブロック区分の考え方



(ブロック区分と N 値の採取位置)





(ブロック区分とN値の採取位置)

図 6.3-2(2) 各ブロックにおける N 値の比較結果(Ag2 層)



⁽ブロック区分とN値の採取位置)

図 6.3-2(3) 各ブロックにおける N 値の比較結果(As 層)


(ブロック区分とN値の採取位置)

図 6.3-2(4) 各ブロックにおける N 値の比較結果(Ac 層)



(ブロック区分とN値の採取位置)

図 6.3-2(5) 各ブロックにおける N 値の比較結果(Ag1 層)



⁽ブロック区分とN値の採取位置)

図 6.3-2(6) 各ブロックにおける N 値の比較結果(D2s-3 層)



(ブロック区分とN値の採取位置)

図 6.3-2(7) 各ブロックにおける N 値の比較結果(D2c-3 層)



(ブロック区分とN値の採取位置)

図 6.3-2(8) 各ブロックにおける N 値の比較結果(D2g-3 層)

(2) 地層の堆積状況を考慮したブロック区分による比較

(1)の検討に加え、基盤(久米層)の傾斜による地層の堆積状況の違いに着目したN値の 比較を行う。図 6.3-3に地層の堆積状況の違いに着目したブロック区分の考え方を示す。

堆積状況として基盤(久米層)傾斜の影響を受けている Ac 層, As 層, Ag1 層に対し, 堆 積状況の差異に着目したブロック区分として,基盤(久米層)の傾斜部と平坦部での比較 を考える。

図 6.3-4 に各ブロックにおける平均 N 値と、以下の式*により N 値から換算した Vs の比較結果を示す。

・Vs=100×N^{1/3}(粘性土層の場合)

・Vs=80×N^{1/3}(砂質土層の場合)

* 道路橋示方書(V耐震設計編)・同解説((社)日本道路協会,平成14年3月)

Ac 層及び As 層については, 傾斜部と平坦部で平均 N 値に有意な差が無いことを確認した。また, Ag1 層については, 傾斜部の平均 N 値がやや低い傾向を示したが, 換算 Vs による比較においては, 傾斜部と平坦部にそれほど大きな差が無いことを確認した。

以上より、既往の PS 検層についての代表性及び網羅性を確認した。



(平面図)



(断面イメージ)

図 6.3-3 地層の堆積状況の違いに着目したブロック区分の考え方



(ブロック区分とN値の採取位置)





⁽ブロック区分とN値の採取位置)

図 6.3-4(2) 傾斜部と平坦部における N 値及び換算 Vs の比較結果(As 層)



⁽ブロック区分とN値の採取位置)

図 6.3-4(3) 傾斜部と平坦部における N 値及び換算 Vs の比較結果(Ag1 層)

6.3.2 新第三系における PS 検層の代表性及び網羅性について

新第三系については,解析用地盤物性値(地盤の速度構造モデル)の基となっている PS 検層に加え,敷地の地質・地質構造検討用に敷地の広範囲で複数の PS 検層を実施している。 図 6.3-5 に地質・地質構造検討用も含めた PS 検層実施位置を示す。

図 6.3-5 には解析用地盤物性値の基となっている PS 検層を併せて記載しているが,解 析用地盤物性の基となっている PS 検層は敷地の南側に偏っているのに対し,他の地質・地 質構造検討用の PS 検層は敷地内の広範囲をカバーしている。

解析用地盤物性値の基となっている PS 検層と,敷地内の広範囲をカバーしている地質・ 地質構造検討用の PS 検層を比較し、これらの差異を確認することで、解析用地盤物性値の 基となっている PS 検層の代表性及び網羅性について検討した。



図 6.3-5 PS 検層実施位置図(敷地の地質・地質構造検討用)

図 6.3-6 に地質・地質構造検討用の PS 検層(黒)と,解析用地盤物性値の基となって いる PS 検層(赤)の回帰式を比較した結果を示す。解析用地盤物性値の基となっている PS 検層(赤)は,敷地内の広範囲をカバーしている地質・地質構造検討用の PS 検層(黒)と 概ね同等の傾向を有して深度方向に分布している。

以上の比較結果より,解析用地盤物性値の基となっている PS 検層は,敷地内の広範囲を カバーした PS 検層と概ね同等であり,代表性及び網羅性を有していることを確認した。



79

地盤の支持性能についての参考資料

(参考資料1)地下水位観測データについて

- (参考資料2) 解析用物性値の代用等の考え方
- (参考資料3) 捨石の解析用物性値について
- (参考資料4)地盤改良体における補足
- (参考資料5) 地震応答解析にて考慮する地盤物性のばらつき
- (参考資料6) 杭基礎の支持力評価方法に関する補足

(参考資料1)地下水位観測データについて



図1(1) 地下水位観測記録(1/3)



図1(2) 地下水位観測記録(2/3)



(参考資料2)解析用物性値の代用等の考え方

1. 概要

表1に設置変更許可申請書に記載されていない解析用物性値の設定根拠一覧を示す。これらの 解析用物性値のうち,他の地盤材料の試験結果で代用しているものについて物性設定における考 え方を示す。

					原地盤									
	パラメータ			埋戻土 第四系 (液状化検討対象層)										
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1			
物理	密度	ρ	$g/cm^3$		室内	室内	室内	Ag2層で	室内	室内	Ag2層で	文献* ¹ より		
特性	間隙比	е	_		物理試験	物理試験	物理試験	代用	物理試験	物理試験	代用	文献* ² より		
	ポアソン比	ν _{CD}	-	[	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	Ag2層で 代用	三軸 三軸 定 能 (CD)	三軸圧縮 試験 (CD)	Ag2層で 代用	文献* ¹ より		
変 形	基準平均有効主応力	σ'_ma	kN/m²	n ²	第4-1まの	第4-1主の	第4-1主の	第4-1まの	第4-1主の	第4-1主の	第4-1表の 動的亦形特殊	 文献 ^{*1} より		
特性	基準初期せん断剛性	G _{ma}	kN/m²		第4-1次の 動的変形特性 に基づき設定	新す1300 前変形特性 動の変形特性 基づき設定 に基づき設定	動的変形特性 に基づき設定	動的変形特性 に基づき設定	動的変形特性に基づき設定	動的変形特性に基づき設定	に基づき設定	引用した 動的変形特性 に基づき設定		
	最大履歴減衰率	h _{max}	-								Ag2層で 代用			
強度	粘着力	C _{CD}	$N/mm^2$	du層で 代用	三軸圧縮	三軸圧縮	三軸圧縮	Ag2層で	三軸圧縮	三軸圧縮	Ag2層で	<del>- * 本*1</del> ト n		
特 性	内部摩擦角	$\phi_{CD}$	度		試験 (CD)	試験 (CD)	試験 (CD)	代用	試験 (CD)	試験 (CD)	代用	又厭 より		
	液状化パラメータ	$\phi_{\rm p}$	_											
int:	液状化パラメータ	$S_1$	_		うたいしんしゃ 座	3年4月14日6年	55412/1276 min	Ag2層の	法山心恐怖	いたいしんであります。	ったいしん 16 76 中市	文献 ^{*2} より		
他 状 化	液状化パラメータ	$W_1$	-	l	彼仄1じ独良 武験結果 に其づく	被状115ヵ度 試験結果	液状115度度 試験結果	液状化強度 試験結果	彼沢1じ独長 試験結果 に其べく	彼沢115独長 試験結果 に其づく	彼次115 独長 武験結果 に其づく	51日した 液状化強度		
特性	液状化パラメータ	$P_1$	-		要素シミュレーション	要素シミュレーション	要素シミュレーション	を代用した 要素シミュレーション	に基づく 要素シミュレーション	に基づく 要素シミュレーション	に基づく 要素シミュレーション			
	液状化パラメータ	$P_2$	_									女术/ ( / )/		
	液状化パラメータ	$C_1$	-											

表1(1) 解析用物性値の設定根拠(液状化検討対象層)

注記 *1:二方向同時加振による液状化実験(第28回土質工学研究発表会 藤川他, 1993)

*2: CYCLIC UNDRAINED TRIAXIAL STRENGTH OF SAND BY A COOPERATIVE TEST PROGRAM[Soils and Foundations, JSSMFE. 26-3. (1986)]

				原地盤								
	パラメータ				第四系(非	液状化層)	新第三系	14 T				
				Ac D2c-3 lm D1c-1*4				Km	—————————————————————————————————————			
物 理	密度	ρ	${ m g/cm}^3$	室内	室内	室内		室内				
特性	間隙比	е	-	物理試験	物理試験	物理試験		物理試験				
	ポアソン比	$\nu_{\rm CD}$	_	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)	三軸圧縮 試験 (CD)		三軸圧縮試験 (CD)				
変形	基準平均有効主応力	$\sigma'_{ma}$	$kN/m^2$	(第411年の)	等にまの	笠(まの	_	末(11の動的亦形胜思	<del>立本**3</del> ト い			
特性	ル 特 性 基準初期せん断剛性		$kN/m^2$	弟4-1衣の 動的変形特性 に基づき設定	第4-1衣の 動的変形特性 に基づき設定	第4-1衣の 動的変形特性 に基づき設定	_	表4.1-100期的変形特性 に基づきz (標高) 依存物性 として設定	又献"より			
	最大履歴減衰率	$h_{max}$	-									
強度	粘着力	C _{CD}	$N/mm^2$	三軸圧縮	三軸圧縮	三軸圧縮	Ĩ	三軸圧縮				
特性	内部摩擦角	$\phi_{CD}$	度	試験 (CD)	試験 (CD)	試験 (CD)		試験 (CD)				

表1(2) 解析用物性値の設定根拠(非液状化層)

注記 *3:港湾構造物設計事例集((財)沿岸技術研究センター,平成19年3月)

*4:施設の耐震評価に影響を与えるものではないことから、解析用物性値として本表には記載しない。

- 1.1 他の地盤材料の試験結果で代用している地盤材料の設定根拠
  - (1) 埋戻土(f1層)の解析用地盤物性値全般

埋戻土は人工的に締固められた地盤材料であるが、その主要な構成材料は敷地に分布する du 層である。よって、全ての解析用地盤物性値を du 層で代用する方針としている。

f1層の基礎物理特性を表2に示す。表2にはdu層の基礎物理特性を併記しているが,f1 層は du層と比べて,湿潤密度はより重く,含水比及び間隙比はより小さい結果となってい る。これは,f1層が du層を主要な構成材料としながらも,多少の礫分を含んでいること によると考えられる。

また,有効応力解析に用いる解析用地盤物性値の設定根拠として主要な調査結果及び試 験結果であるせん断波速度,せん断強度及び液状化強度特性について,f1 層と du 層の比 較を行い,解析用地盤物性値を代用することの妥当性を確認した。PS 検層及び室内試験の 試料サンプリングについては,f1 層が厚く分布する原子炉建屋周辺地盤にて実施した。PS 検層及び室内試験試料採取位置を図1に示す。せん断波速度についての比較結果を図2に, せん断強度についての比較結果を図3に,液状化強度特性についての比較結果を図4に示 す。

これらの比較結果より、f1 層と du 層のせん断波速度, せん断強度及び液状化強度特性 に有意な差が無いことを確認した。また, 強制的に液状化させることを仮定した場合の影 響評価のために用いる敷地に存在しない豊浦標準砂の液状化強度特性は, f1 層の液状化強 度特性よりも, 十分に小さいことを確認した。

よって、f1層の解析用地盤物性値をdu層で代用することは妥当である。

地層	湿潤 _{ዖ t} (g	密度 /cm ³ )	含7. w()	k比 %)	間隙比 e		
	平均值	標準偏差	平均值	標準偏差	平均值	標準偏差	
f1層	2.08	0.08	15.2	3.9	0.48	0.10	
【参考】du層	1.82	0.08	17.4	3.1	0.75	0.05	

表2 f1層の基礎物理特性



● PS検層 (du層) 回帰式(du層) PS検層(f1層) せん断波速度Vs(m/s) 回帰式 (f1層) 平均有効主応力 $\sigma_{m}(kN/m^{2})$ 

図 2 fl 層と du 層の PS 検層の比較



図3 f1 層と du 層の三軸圧縮試験結果[CD 条件]の比較



図4 f1層とdu層の液状化強度試験の比較

(2) Ag1 層の物理特性,変形特性,強度特性及び液状化特性

Ag1 層は完新統の沖積層であり、分布深度が深く、硬質な巨礫を含む砂礫層である。 同時代に堆積した Ag2 層にて、有効応力解析に用いる解析用地盤物性値の一部を代用す る方針としている。

Ag2 層で代用する Ag1 層の解析用地盤物性値を表3に示す。また,設定(Ag1 層を Ag2 層 で代用すること)の妥当性について,併せて記載する。

以上より, Ag1 層の解析用地盤物性値を Ag2 層で代用することは,特に地中構造物の耐 震評価に影響の大きい強度特性及び液状化強度特性の観点において保守的な物性設定であ ると考えられる。

Ag2 層で代用する 解析用地盤物性値	試験	設定の妥当性
物理特性(密度,間隙比)	各種物理試験	同じく敷地内に分布する砂礫層で ある Ag2 層で代用する。
変形特性(ポアソン比) 強度特性(c-φ)	三軸圧縮試験 (CD 条件)	内部摩擦角 $\phi$ と相関性のあるN値 に着目し,保守的な設定として, Ag1層の強度特性( $c-\phi$ )を,よ り平均N値の小さいAg2層で代用 する。(図4) また,同試験から取得される変形 特性(ポアソン比)についても, Ag2層で代用する。
液状化強度特性	液状化強度試験	<ul> <li>液状化強度特性と相関性のあるN</li> <li>値及び粒度分布に着目し,保守的</li> <li>な設定として,Ag1層の液状化強度</li> <li>特性を,より平均N値が小さく</li> <li>(図4),より細粒な(図5)Ag2</li> <li>層で代用する。</li> </ul>

表3 Ag2 層で代用する Ag1 層の解析用地盤物性値



図4 Ag1 層と Ag2 層の N 値の比較



図 5 Ag1 層と Ag2 層の粒度分布の比較

さらに、敷地内で実施した液状化強度試験により、Ag1層の液状化強度特性を直接的に 確認した。液状化強度試験における Ag1層の試料は、代表性及び網羅性の観点での説明性 向上のため、よりN値が小さい箇所にて採取されたものである。

Ag1 層と Ag2 層の液状化強度特性に有意な差が無いことから,液状化強度による直接的 な比較においても,Ag1 層の解析用地盤物性値を Ag2 層で代用することの妥当性を確認し た。また,強制的に液状化させることを仮定した場合の影響評価のために用いる敷地に存 在しない豊浦標準砂の液状化強度特性は,Ag1 層の液状化強度特性よりも,十分に小さい ことを確認した。



図 6 Ag1 層と Ag2 層の液状化強度試験の比較

(3) D1g-1 層の物理特性,変形特性及び強度特性

Dlg-1 層は更新統の段丘堆積物であり、硬質な巨礫を含む砂礫層である。

より新しい時代に堆積した Ag2 層にて,有効応力解析に用いる解析用地盤物性値の一部 を代用する方針としている。

Ag2 層で代用する D1g-1 層の解析用地盤物性値を表 4 に示す。また,設定(D1g-1 層を Ag2 層で代用すること)の妥当性について,併せて記載する。

以上より, D1g-1 層の解析用地盤物性値を Ag2 層で代用することは,特に地中構造物の 耐震評価に影響の大きい強度特性において保守的な物性設定であると考えられる。

Ag2 層で代用する 解析用地盤物性値	試験	設定の妥当性			
物理特性(密度,間隙比)	各種物理試験	同じく敷地内に分布する砂礫層で ある Ag2 層で代用する。			
変形特性(ポアソン比)	三軸圧縮試験	内部摩擦角φと相関性のあるN値 に着目し,保守的な設定として, D1g-1層の強度特性(c-φ)を, より平均N値の小さいAg2層で代			
強度特性(c−φ)	(CD 条件)	用する。(図 7) また,同試験から取得される変形 特性(ポアソン比)についても, Ag2 層で代用する。			
動的変形特性 (G/G0~γ, h~γ)	繰返し三軸試験	砂礫層の動的変形特性と相関性の ある拘束圧に着目すると,D1g-1層 とAg2層は概ね同様の深度に分布 しており(図7),従って有効上載 圧及び拘束圧も同様の傾向を示し ている。 また,土木研究所資料*には,洪積 砂質土,礫質土の動的変形特性が 沖積の同層と類似していることが 述べられている。 これらのことから,D1g-1層の動的 変形特性をAg2層の動的変形特性 で代用することは妥当であると判 断している。			
<mark>注記 *:地盤地震時応答</mark> 幣	寺性の数値解析法—SHA	KE:DESRA一,土研資料第 1778 号(建			

表4 Ag2 層で代用する D1g-1 層の解析用地盤物性値

設省土木研究所,1982年)



図7 D1g-1 層と Ag2 層の N 値の比較

- 1.2 耐震評価に影響しない解析用地盤物性値
  - (1) D1c-1 層の解析用地盤物性値

D1c-1 層は更新統の段丘堆積物であり、細粒分を多く含む粘性土である。敷地内において、極めて狭い範囲に、局所的かつ薄く分布している地層であり、試料採取が困難であることから、設置変更許可申請書に記載された解析用物性値の設定においては、同時代の段丘堆積物である D2c-3 層にて物性値全般を代用する方針としている。D1c-1 層の分布範囲を図 8 に示す。また、D1c-1 層の分布範囲において作成した地質断面図を図 9 に示す。

D1c-1 層は,設計基準対象施設及び常設重大事故等対処施設の周辺には分布しておらず, 耐震評価に用いる解析断面にも出てこないことから,本解析用地盤物性値は施設の耐震評 価に影響を与えるものではない。よって,有効応力解析に用いる解析用物性としては記載 しない方針とする。

なお,図9で示したA-A断面は,可搬型重大事故等対処設備保管場所及びアクセスル ートの耐震評価に用いる地質断面であることから,これらのSA設備の耐震評価において もD1c-1層は影響を与えるものではない。



左図に示す範囲に分布するが,同範囲で分布す る砂礫層(Dlg-1層)の中の極めて狭い範囲に 局所的に分布する地層であり,耐震評価用の地 質断面図には出てこない。

図 8 D1c-1 層の分布範囲



図9 D1c-1 層の分布範囲にて作成した地質断面図(A-A断面)

## 【Ag1 層の N 値データについての確認】

Ag1 層において N 値が低く出ている箇所について,その要因を特定するためにボーリング柱状 図を確認した。確認箇所を下図に示す。浅部と深部のそれぞれのデータの中で,最も N 値が低い 箇所を確認対象とした。



次頁以降にボーリング柱状図における確認結果を掲載する。Ag1 層は硬質な巨礫を含む砂礫分 を主体とした沖積層であるが,ボーリング柱状図によると,シルト混り(マトリクスに細粒分が 多い)の箇所が挟み層として局所的に存在しており,N値が低く出ている要因は,この局所的な 挟み層であることが判明した。

挟み層によりN値が低く出ている範囲は,概ね1~2mと局所的であり,その上下においては, 平均的なN値が計測されていることから,Ag1層の当該範囲(N値が局所的に低い範囲)が構造 物の耐震評価に与える影響は小さいと考えられる。







る。



(参考) 2-13



(参考資料3) 捨石の解析用物性値について

1. 東海第二発電所における捨石について

捨石は,護岸や傾斜堤等の港湾構造物に広く用いられる材料である。東海第二発電所の護岸部 に分布する捨石は主に100kg~500kg/個程度の質量を有しており,捨石の規格としては標準的な ものである。

耐震重要施設及び常設重大事故等対処施設のうち津波防護施設である貯留堰の周囲にも捨石が 分布しており,解析断面にモデル化する必要があることから,適切な解析用物性値を設定する。

貯留堰の周辺地盤における捨石の施工状況を図1に示す。

捨石は、津波防護施設である貯留堰への波及影響について考慮すべき施設である土留鋼管矢板 の側方に分布しているが、その分布範囲は浅部に限定的であり、耐震評価における影響は軽微で あると考えられる。





図1 貯留堰の周辺地盤における捨石の施工状況

(参考) 3-1

- 2. 捨石の解析用物性値
- 2.1 解析用物性値の設定方針

捨石の解析用物性値については,現地の捨石での試験が非常に困難であることから,通常, 標準的なパラメータを用いて解析が実施されている。東海第二発電所においては,捨石の標準 的なパラメータとして,「港湾構造物設計事例集((財)沿岸技術研究センター,平成 19 年 3月)」(以下「設計事例集」という)に記載される値を用いるものとする。

2.2 捨石の解析用物性値

捨石の解析用物性値を表1に示す。また、参考として「設計事例集」に記載の解析用物性値 を表2に示す。

Т

	パラメー	9		捨石
物	密度 () は地下水位以浅	ρ	$g/cm^2$	2.04 (1.84)
埋特性	間隙比	е		0.82
	ポアソン比	u _{CD}		0.33
変形	基準平均有効主応力 () は地下水位以浅	σ' _{ma}	kN/m²	98
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	180000
	最大履歴減衰率	h _{max}		0.24
強度	粘着力	C _{CD}	$N/mm^2$	0.02
特性	内部摩擦角	$\phi_{ ext{CD}}$	度	35

## 表1 捨石の解析用物性値

2
щ
p. 1–69
(設計事例集,
した捨石の解析用物性値
引用
表 2

 $\frown$ 

表-1.65 FLIP 入力パラメーター一覧

		cl													2.8					
	4-4	p2													0.94					
化特性	状化" ラ	lq													0.5					
<b>液状</b>	熧	ΙM													6.0					
		sl						economi							0, 005				standarte efferende	
	変相角	â	(°)												8	*****			ay ya baayaa ayaa	
しせん勘	抵抗角	ġ	( )	1				1	}	35	40			39	39	30	1		35	35
粘着力		U	(kN/m ²	44	146		-	1	1	20	1	146		1	'	( 77	146		20	50
<b>黄</b> 最大	<b>数</b> 被变定!	h max	_	6 0.20	6 0.20		1	1	1	M 0.24	6 0.23	6 0.20		0.24	6 0.24	6 0.20	6 0.20		M 0.2	0.2
水の体行	弹性係燙	Kw	(kN/m ² )	2. 2E+0	2. 2E+0		I	I	1	2. 2E+0	2. 2E+0	2. 2E+0		1	2. 2E+0	2. 2E+0	2. 2E+0		2. 2E+0	'
	空際學	и		0.55	0.55		I	I	1	0.45	0.47	0.55		0.45	0.45	0.55	0.55		0.45	0.45
積重量	水中	<i>, 1</i> 1	(kN/m ³ )	6.0	7.0		I	I	11.0	10.0	9.2	7.0		I	10.0	6.0	7.0		10.0	1
単位体	飽和	æ	(kN/m ³ )	16.0	17.0		22.6	21.0	21.0	20.0	19.2	17.0		18.0	20.0	16.0	17.0		20.0	18.0
	\$ 717 H	'n		0. 33	0. 33		I	1	1	0. 33	0. 33	0. 33		0. 33	0. 33	0. 33	0.33		0. 33	0. 33
KmaØ	指数定数	mĸ		0.5	0.5		1	1	1	0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5
基準体領	弾性係数	$K_{ma}$	(kN/m ² )	39, 100	129, 300		ł	ı	-	469, 400	439, 200	129, 300		192, 500	192, 500	68, 300	129, 300		469, 400	469, 400
Gina	指数定数	ш _G		0.5	0.5		1	1		0.5	0.5	0.5		0.5	0.5	0.5	0.5		0.5	0.5
藝術調構也入脈	弹性係数	Gma	(kN/m ² )	15, 000	49,600		ł	ı	and the second se	180, 000	168, 400	49, 600		73, 800	73, 800	26, 200	49,600		180, 000	180, 000
资	速度	N ^a	(m/s)	190	336	1600	I	1	ı	596	582	336	1600	398	378	252	336	1600	596	596
骏	速度	ž	(m/s)	96	169	300	1	1	1	300	293	169	300	201	190	127	169	300	300	300
基準有効	拘束圧	a m	(kN/m ² )	25.7	61.8		1	1	3	98.0	227.6	262.2		98.0	98.0	154.7	201.2		98.0	98.0
	有伪拘束任	0' ace	(kN/m ² )	25.7	61.8		15.2	37.6	109.1	188.4	227.6	262.2		19.6	78.9	154.7	201.2		1	ı
状態	ACC DIRECT	σ,	(kN/m ² )	34.2	82.4		20.3	50.1	145.4	251.2	303.4	349.6		26.1	105.2	206.2	268.2		I	1
をび応力	「「「」」	Z	(III)	-20, 30	28.00		2.40	1.05	-7.20	-17.00	-22.50	-28.00		2.05	-4.70	-18.00	-28.0		1	1
屠条件乃	層厚		(m)	11.4	4.0		1.8	0.9	15.6	4.0	7.0	0 4.0		2.9	0 10.6	0 16.0	0 4.0		1	1
+	類上		0 A.P. +6	3 -26. (	-30. (		1.5	0.6	-15. (	) -19. (	) -26. (	0 -30. (	~	0.6	-10. (	0 -26.	0 -30.		0.6	-19.0
	뾄		a A.P. +la	-14. (	-26. (	-30. (	3.3	1.5	0.6	-15.	-19.	-26.	-30.	3.5	0.6	-10.	-26.	-30.	1.5	0.6
ш	•	(1) (e,'=]3	ALA PARA	1	1		1	1	1	1	ł	1		39	39	1	1		1	1
簡易設行	Dr	31) ( a., =13		1	1			1	1	1	1	1		1 50	1 50		1			1
FLIP	5 N 13.	(9) (°, =1;			1				1	1			 	11.	11.		1		1	
栗	the N ₆₀	(°, "			1			1	1	1	1			8	- 00 				<u> </u>	
試験結	Second I	Fc	%											14	14					
明期	Ņ	Z			п.		<u> </u>	<u> </u>		shi	- %08	21	_	e]		32	31	_	ne_a	Me M
上質。				Ac1	Del	Dg				sutei	Scp_	Dc1_	Bg	) Asl.	) Asl.	AcL	Del_	Dg	) urago	) urago
村				沖積粘性土	洪積粘性土	基盤層	上部エコンクリー	ケーソン (気中	ケーソン (木中	捨石	SCP(80%改良) 沖積粘性土	洪観粘性土	基盤層	裏埋土 (気中	裏埋土 (水中	沖積粘性土	洪積粘性土	基盤層	裏込石 (水中	赛込石 (気中
材料番号		*****		12	II		83	23	51	23	53	21		34	33	33	31		41	43
RÀ				海德	langunganan			digueren guerren an	護岸部	(イーイン)			<u></u>		da en monetario	揮土部	dependent and an and an a	*****	裏込石	

注1:③埋土部の沖積粘性土(材料番号20)は正規圧密状態にありせん構造度は 4 ~30°で与える、粘着力Cを()で併記する.

- 3 捨石の解析用物性値の妥当性について
- 3.1 FLIPにおける捨石の物性に関する検討状況

FLIP における捨石の物性については、「捨石のモデル化に関する検討報告書(FLIP 研究会 企画委員会捨石作業部会,平成13年5月)」(以下,「捨石のモデル化に関する検討報告書」 という。)において、「港湾の施設の技術上の基準・同解説(国土交通省港湾局,2007 年 版)」、「埋立地の液状化ハンドブック(改訂版)((財)沿岸技術研究センター,平成 9 年)」及び様々な文献(表 3)を基に、神戸港六甲アイランド RF-3 岸壁の捨石に着目した簡 易モデルによる検討やパラメトリックスタディーを踏まえ、第4表に示すパラメータを捨石の 標準的なパラメータとして提案している。

表3 捨石に係る文献一覧*

	<ul> <li>・ 港湾の施設の技術上の基準(平成11年)</li> <li>・ 埋立地の液状化対策ハンドブック(</li> <li>・ 小林,寺師,高橋,中島,捨石マウンドの支持力の新しい計算法,港湾技術研究所報告 Vol.26,No.2,1987年</li> <li>エカー、社会に対象にたる、検索はかけ、時時時にに開きる表現,港湾技術研究所報告</li> </ul>
資料	<ul> <li>・ 壮司, 大型三輛試験による括石材のせん所特性に関する考察, 港湾技術研究所報告 Vol.22, No.4, 1938年</li> <li>・ 水上,小林,マウンド用石材の大型三軸試験による強度特性,港湾技術研究所資料, Vol.699, 1991年</li> <li>・ 上部, 土田, 倉田, 大型混成式防波堤の強震記録に基づく水・構造物連成系の地震応答解析,港湾技術研究所報告 Vol.22, No.2, 1983年</li> <li>- 工商 田中国生 蒜島其礎检査コウンドの対下予測(その1) - 検査コウンドは料の検囲的修</li> </ul>
	<ul> <li>工藤,四,四千,四千,四千,四千,四千,四千,四千,四千,四千,四千,四千,四千,四</li></ul>

注記*:捨石のモデル化に関する検討報告書, p3より抜粋

表4 捨石の標準的なモデル化(案)*

モデル化の項目	モデル化の方法
せん断強度定数	c=20 (kN/m ² ), $\phi$ =35 (°)
最大減衰定数	$h_{max} = 0.2 \sim 0.3$
初期せん断剛性	マウンド Vs=300 (m/s), 裏込石 Vs=225 (m/s)
水の体積弾性係数	Kf=2.2×10 ⁴ (kPa) 以下の小さな値
対象範囲	捨石マウンドおよび裏込石

注記*:捨石のモデル化に関する検討報告書, p9より抜粋(一部修正)

また,このパラメータを適用した事例検証として、3 地点(神戸港六甲アイランド RF-3 岸 壁,神戸港第七防波堤,釧路港北埠頭岸壁)において事例検証を行い,各地点において,観測 値に近い結果が得られることを確認している。以下に,各事例検証の概要を示す。 (1) 神戸港六甲アイランド RF-3 岸壁

1995 年兵庫県南部地震における神戸港六甲アイランド RF-3 岸壁の被災断面を検討対象 としている。検討ケースを表 5 に、検討対象断面を図 1 に示す。また、主要な応答結果を 表 6 に示す。表 6 より、表 4 に示されている捨石の標準的なモデル化案を用いた CASE4 が、 より観測値に近い結果を与えていることが確認されている。

表5 検討ケース一覧表(神戸港六甲アイランド RF-3 岸壁)*

検討ケース	せん断強度特性 c, φ	水の体積弾性係数 Kf	備考
CASE1	c=0 (kPa), $\phi=40$ (°)	$2.2\! imes\!10^{6}(\mathrm{kPa})$	従来設定方法
CASE2	c =20 (kPa), $\phi$ =35 (°)	$2.2\! imes\!10^{6}(\mathrm{kPa})$	—
CASE3	c=0 (kPa), $\phi=40$ (°)	0 (kPa)	—
CASE4	c =20 (kPa), $\phi$ =35 (°)	0 (kPa)	提案方法



注記*:捨石のモデル化に関する検討報告書, p10より抜粋

注記*:捨石のモデル化に関する検討報告書, p10より抜粋(一部加筆) 図1 検討対象断面(神戸港六甲アイランドRF-3岸壁)*

表6 主要な応答結果一覧表(神戸港六甲アイランド RF-3 岸壁)*

投手	ケ-	- ソン残留変位	之量	ケーソン最大	供求	
1 灾 司 1	δ _H (m)	$\delta_{\rm V}({\rm m})$	heta (° )	$\alpha_{\rm H}$ (Gal)	$\alpha_{\rm V}$ (Gal)	加巧
CASE1	2.83	1.06	2.64	278	306	従来方法
CASE2	3.82	1.80	3.71	274	309	—
CASE3	6.10	2.11	10.6	315	387	—
CASE4	4.33	2.00	4.69	364	317	提案方法
実測値	$4.1 \sim 4.6$	$1.7 \sim 2.0$	$4.1 \sim 5.1$	_	_	

注記*:捨石のモデル化に関する検討報告書, p10より抜粋

(2) 神戸港第七防波堤

常時土圧の作用を受けない構造物として,1995年兵庫県南部地震における神戸港第七防 波堤の被災断面を検討対象としている。検討ケースを表7に,検討対象断面を図2に示 す。また,主要な応答結果を表8に示す。表4に示されている捨石の標準的なモデル化案 を用いた CASE4 も含めて,CASE2 以外は観測値に近い結果を与えていることが確認されて いる。

## 表7 検討ケース一覧表(神戸港第七防波堤)*

	水の Kf	c (kPa)	$\phi$ (°)	備考
CASE1	100%	0	40	従来設定
CASE2	1%	0	40	Kf を低下
CASE3	100%	20	35	Kf そのままで c, o 指定
CASE4	1%	20	35	c, φ 指定かつ Kf 低下

注記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部修正)



注記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部加筆) 図2 検討対象断面(神戸港第七防波堤)*

表8 主要な応答結果一覧表(神戸港第七防波堤)*

	CASE1	CASE2	CASE3	CASE4
水平変位(m)	0.07	0.04	0.04	0.00
鉛直変位(m)	2.00	4.39	1.84	2.26

観測データ: (鉛直変位) 1.4~2.6m

```
(水平変位) ·
```

注記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部修正)

## (3) 釧路港北埠頭岸壁

1993年釧路沖地震における釧路港北埠頭岸壁の被災断面を検討対象としている。検討ケースを表9に、検討対象断面を図3に示す。また、主要な応答結果を表10に示す。表4に示されている捨石の標準的なモデル化案を用いた CASE3 も含めて、観測値に近い結果を与えていることが確認されている。

表9 検討ケース一覧表(釧路港北埠頭岸壁)*

検討ケース	モデル化の概要	備考
CASE0	$ m c=0, \phi=40^\circ$ , $ m Kf{=}100\%$	従来のモデル化
CASE1	$ m c=\!20~(kN\!/m^2)$ , $\phi=\!35^\circ$ ,	Kfをそのままにしたケース
	Kf=100%	
CASE2	$ m c=\!20~(kN\!/m^2)$ , $\phi=\!35^\circ$ ,	Kfを低下したケース
	Kf=0	

注記*:捨石のモデル化に関する検討報告書, p15より抜粋



注記*:捨石のモデル化に関する検討報告書, p15より抜粋(一部加筆) 図3 検討対象断面(神戸港第七防波堤)*

表 10 主要な応答結果一覧表(神戸港第七防波堤)*

	ケーソン残留変位(m)		最大応答加速度(Gal)	
	水平	鉛直	ケーソン天端水平	背後地表面水平
実測値	$0.8 {\sim} 1.6$	$0.2{\sim}0.5$	—	—
CASE0	0.89	0.21	247	
CASE1	1.20	0.21	219	161
CASE2	1.28	0.22	229	159

注記*:捨石のモデル化に関する検討報告書, p14より抜粋(一部修正)

3.2 捨石の解析用物性値の妥当性

表4に示す捨石の標準的なモデル化案については、3.1に示す神戸港六甲アイランドRF-3 岸壁、神戸港第七防波堤及び釧路港北埠頭岸壁における事例検証結果より、観測値と適合性が 高いことが確認されており、これはFLIPでの解析にて一般的に使用されているものである。 捨石の規格は1個の石の質量にて定義されることが一般的であるが、3.1の事例検証では、神 戸港六甲アイランドRF-3 岸壁の捨石は平均300kg/個程度、神戸港第七防波堤の捨石は平均 105kg/個程度と、様々な規格の捨石に対して検証を行い、観測値と適合性が高いことが確認 されている。東海第二発電所の捨石は平均300kg/個程度であることから、3.1で事例検証が 行われている捨石の規格(質量)と概ね同等の規格である。

以上を踏まえ,表4に示す捨石の標準的なモデル化案を東海第二発電所の捨石に対して適用 することは妥当であると考える。以下に,表4に示す捨石の標準的なモデル化案における主要 な解析用物性値(解析上のパラメータである「捨石の間隙水の体積弾性係数」を含む。)を踏 まえて,東海第二発電所における捨石の解析用物性値について考察する。 (1) せん断強度定数

せん断強度定数は、表4に示す捨石の標準的なモデル化案では内部摩擦角 $\phi = 35^{\circ}$ ,粘着力 c=20kN/m²が提案されている。

工藤ら(1985)*は,既往のケーソン式防波堤基礎捨石の粒度とほぼ相似な,均等係数 Uc=2.3の3種類(15mm,25mm,30mm)の相似粒度の試料を用いて三軸圧縮試験を実施 し,図4に示すように,内部摩擦角 $\phi$ はゆる詰めでも密詰めでも35°~36°,粘着力cは ゆる詰めで0.2kgf/cm²(約20kN/m²)~密詰めで0.6kgf/cm²(約60kN/m²)との結果を得て いる。

捨石の標準的なモデル化案である内部摩擦角 $\phi = 35^{\circ}$ , 粘着力 c=20kN/m²は図4におい て間隙比 e_i=0.9 程度のかなり空隙の多い状態を想定したせん断強度となっており,保守 的な設定となっていることが分かる。なお,東海第二発電所の捨石は施工から年月を経て おり,ある程度締まった密な状態であると考えられることからも,このせん断強度定数を 適用することは妥当であると考える。

注記*:工藤康二,西好一,田中幸久,国生剛治:護岸基礎捨石マウンドの沈下予測(その1) 捨石マウンド材料の物理特性ならびに静的力学特性,電力中央研究所報告,研究報告 384030, 1985 年



図 4 間隙比 e_iに対する粘着力 c と内部摩擦角 φ の推定図表* 注記*:工藤ら(1985) P31 より抜粋(一部加筆)

(2) 最大履歴減衰率

最大履歴減衰率は、表4に示す捨石の標準的なモデル化案では解析結果への影響が小さいことから、 $h_{max}=0.2\sim0.3$ が提案されており、一方で設計事例集では、その内数である $h_{max}=0.24$ が設定されている。以上を踏まえ、東海第二発電所の捨石では、 $h_{max}=0.24$ を採用する。

(3) 初期せん断剛性

初期せん断剛性を設定するためのせん断波速度は、表4に示す捨石の標準的なモデル化 案では、基礎マウンドの捨石に対してVs=300 (m/s)が提案されている。液状化ハンドブ ックには、「混成防波堤における地震観測結果から得られた算定式により水深-10m 程度 の大型岸壁における捨石のせん断波速度としてVs=300 (m/s)を用いる。」との記載があ り、算定式については、上部ら(1983)*1に記載されている表11を指していると考えら れる。表11は沢田ら(1977)*2による国内の複数のロックフィルダムにおける弾性波測 定結果から得られた速度分布モデルであり、ロック材における深さ0~10mのS波速度Vs の平均値が約300 (m/s)となる(図5)。

東海第二発電所における捨石の分布範囲は、図1に示すとおり概ね深さ10mの範囲内で あることから、表4に示す捨石の標準的なモデル化案におけるせん断波速度Vs=300 (m/s)を採用することは妥当であると考える。

- 注記*1:上部達生,土田肇,倉田栄一,国生剛治:大型混成式防波堤の強震記録に基づく 水ー構造物連成系の地震応答解析,港湾技術研究所報告,第22巻,第2号, 1983年,pp289-326
  - *2:沢田義博,高橋忠,桜井彰雄,矢島浩:ロックフィルダムの物性値分布特性および堤体の動的特性-弾性波動に基づく考察-,電力中央研究所報告,研究報告 377008,1977年

夏体のソーン		D ~ 7		з 7 Г	
行性性 深い	材料の 状態 (m)	不飽和	飽 和	S 波速度の大きい材料 の分布	S 波遠度の小さい材料 の分布
	0-5	V, = 245		$V_{s} = 210$	
S波速度	5-30	$V_{\rm s} = 250 Z^{0.20}$	17 - 250 70 20	1/ - 100.70.35	17 - 140 70 34
	30-	$V_s = 200 Z^{0.315}$	V, =250Z***	$V_{j} = 180Z^{0.00}$	$V_{j} = 1402^{0.04}$
ポアソン比	全体	$\nu = 0.375 - 0.006 Z^{0.58}$	$\nu = 0.49 - 0.01Z^{0.95}$	$\nu = 0.45 - 0.006 Z^{0.60}$	
				V <b>,</b> :S 波速B	<b>变 (m/s)</b>
		v:ポアソン比			
				<b>Z:深さ(</b> n	n)

表 11 ロックフィルダムの一般的物性値を与える速度分布モデル*

注記*:上部ら(1983) P311より抜粋(一部加筆)



図 5 ロック材のS波速度について*(表 11 におけるロック材のS波速度をグラフ化)

(4) 捨石の間隙水の体積弾性係数

FLIP では、地下水位又は海水位以下のマルチスプリング要素に対して間隙水要素を設定しており、間隙水の体積弾性係数については慣用値(Kf=2.2×10⁶kPa)を設定している。

捨石の間隙水の体積弾性係数は,表4に示す捨石の標準的なモデル化案では,非排水条件での解析を前提とするFLIPによる解析における工夫として,捨石の高透水性を再現するため,通常の間隙水の体積弾性係数(慣用値であるKf=2.2×10⁶kPa)の1%程度以下の値とすることが提案されていることを踏まえ,東海第二発電所の捨石の間隙水の体積弾性係数はKf=2.2×10⁴kPaとする。

4 捨石の解析用物性値におけるばらつきについて

捨石の解析用地盤物性値におけるばらつきについては,耐震評価における各照査結果への感度 を検討した上で,その要否を判断するものとする。
(参考資料4)地盤改良体における補足

地盤改良体(セメント改良)における物性設定の適用性について
地盤改良体(セメント改良)の平均せん断波速度 Vs の算定については、下式を適用する。
Vs=147.6×qud^{0.417} (m/s)
(式1)

ここに、qud:設計基準一軸圧縮強度(kgf/cm²)

(式 1) は図 1 に示した複数の c 材(粘性土)の qu~Vs 関係から求められているが、本項では、東海第二発電所に分布する地層を対象とした地盤改良体(セメント改良体)に対する(式 1)の適用性を検討した。



*文献(わかりやすい土木技術ジェットグラウト工法(鹿島出版社 柴崎他, 1983 年)) より引用

図1 一軸圧縮強度とせん断波速度の関係*

東海第二発電所における地盤改良体(セメント改良)への(式 1)の適用性を検討するにあた って,東海第二発電所敷地内にて実施した下記の地盤改良体試験施工における取得データ(一軸 圧縮強度及びせん断波速度)を使用した。図2に,(式1)とPS検層結果の比較を示す。

・排気筒_地盤改良体試験施工(H28年度)



地盤改良体試験施工により取得したせん断波速度及び対応するコア供試体の一軸圧縮強度を用いて、(式1)との対応を確認した結果、砂礫層(du層, Ag2層, D2g-3層)に対しては(式1) は現地改良体のVsをやや小さく評価する傾向があり、粘性土(D2c-3層)に対しては、(式1) と現地改良体のVsが概ね整合する結果となった。

(式 1)は、東海第二発電所に分布する砂礫層を対象とした地盤改良体(セメント改良)に対して、Vs をやや小さく評価する傾向はあるが、耐震評価においては、地盤の変形特性の観点で、より保守的な設定であると考えられることから、物性設定としては妥当であると考える。

以上より,東海第二発電所に分布する地層を対象とした地盤改良体(セメント改良)に対する (式1)の適用性を確認した。 2. 地盤改良体(セメント改良)におけるばらつきの考え方

地盤改良体(セメント改良)の平均せん断波速度 Vs については, (式 1)に基づき,構造物 毎に計画している地盤改良体(セメント改良)の設計基準一軸圧縮強度より算定する。

設計基準一軸圧縮強度に対し,実施工時には不良率を低水準に抑えることを目的とした施工目 標一軸圧縮強度を設定する。施工目標一軸圧縮強度は,設計基準一軸圧縮強度を大きく上回るこ とが一般的であるため,地盤改良体(セメント改良)においては,この施工目標一軸圧縮強度を 基準としてばらつきを設定する。

設計基準一軸圧縮強度と施工目標一軸圧縮強度及び標準偏差の関係については、「建築基礎の ための地盤改良設計指針案((社)日本建築学会,2006年)」に基づき、図 3 のように設定す る。



図3 設計基準一軸圧縮強度と施工目標一軸圧縮強度及び標準偏差の関係

これを踏まえ,地盤改良体(セメント改良)におけるばらつきを考慮した Vs を以下のように 設定する。

平均 Vs:  $q_{ud}$ により(式1)にて算定した Vs 平均-1  $\sigma$  Vs:  $q_{uf-1\sigma}$ により(式1)にて算定した Vs 平均+1  $\sigma$  Vs:  $q_{uf+1\sigma}$ により(式1)にて算定した Vs

また,地盤改良体(セメント改良)の各 Vs と各構造物の耐震設計における検討ケースとの対応関係を表1に示す。

表1 地盤改良体(セメント改良)の各 Vs と各構造物の耐震設計における検討ケースとの 対応関係

耐震設計における検討ケースの例	地盤改良体 (セメント 改良) の Vs
①原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)	平均Vs
②地盤物性のばらつきを考慮(+1σ)した解析ケース	平均+1σVs
③地盤物性のばらつきを考慮(-1g)した解析ケース	平均-1σVs
④地盤を強制的に液状化させることを仮定した解析ケース	平均 Vs
⑤原地盤において非液状化の条件を仮定した解析ケース	平均 Vs
⑥地盤物性のばらつきを考慮(+1σ)して非液状化の条件を仮定した解析ケース	平均+1σVs

3. 地盤改良体(セメント改良)におけるばらつきの設定の妥当性

地盤改良体(セメント改良)におけるばらつきの設定の妥当性を確認するため、下記に示す既 設地盤改良体に対して実施した PS 検層結果との比較を行った。図4に、既設地盤改良体の設計 基準一軸圧縮強度から(式1)にて設定した平均 Vs,平均-1 σ Vs,平均+1 σ Vs と PS 検層結果 の比較を示す。

・屋外二重管_既設地盤改良体(H20年度)*

*既設地盤改良体の設計基準一軸圧縮強度 qud は約 30 kgf/cm²である。

設計基準一軸圧縮強度約 30 kgf/cm²にて施工された既設地盤改良体の PS 検層は、地盤改良体 (セメント改良) におけるばらつきの設定 ( $-1\sigma$  Vs~ $+1\sigma$  Vs) の範囲内に収まっていることを 確認した。

以上の施工実績を踏まえ、地盤改良体(セメント改良)におけるばらつきの設定は妥当である と考える。



図4 既設改良体の PS 検層と地盤改良体(セメント改良)におけるばらつきの関係

4. 地盤改良体(セメント改良)における密度の設定根拠

地盤改良体(セメント改良)における密度は,既設地盤改良体(屋外二重管_既設地盤改良 (H20 年度))のコア試料を採取して実施した密度試験結果に基づき表 2 のように設定している。

表2 地盤改良体(セメント改良)の解析用物性値のうち密度

項目		地盤改良体 (セメント改良)		
		一軸圧縮強度(≦8.5N/mm ² の場合)	一軸圧縮強度(>8.5N/mm ² の場合)	
物理特性	密度 ρ _t (g/cm³)	改良対象の原地盤の平均密度×1.1		

本物性の設定根拠である密度試験結果を図5にヒストグラムで示す。改良対象地盤は表層付近 に分布する du 層と Ag2 層であり,密度試験の結果は,du 層で2.17g/cm³,Ag2 層で2.24g/cm³で あり,原地盤の密度(du 層で1.98g/cm³,Ag2 層で2.01g/cm³)に対し,概ね1.1倍の比率となっ た。以上を根拠として,地盤改良体(セメント改良)における密度を設定している。



図5 地盤改良体(セメント改良)の解析用物性値のうち密度

5.	地盤改良体において未改良部が発生した場合の対応方針	
	新設地盤改良体の施工時においては,施工後の確認試験により,未改良部が発生していない、	2
	- を確認する。確認試験の結果,未改良部が発生した場合は,未改良部に対して再施工及び再調	式
E.	食を実施する。	

【既設地盤改良体の PS 検層データについての確認】

1. はじめに

屋外二重管の直下に施工されている既設地盤改良体(セメント改良)の PS 検層結果を確認した結果,設計基準一軸圧縮強度に対して,せん断波速度が相対的に低い箇所があったことから, その原因,データの取扱い及び対応方針について検討した。



図 既設地盤改良体の PS 検層と地盤改良体(セメント改良)におけるばらつきの関係

2. 当該データの原因について

上記の地盤改良体(セメント改良)に対する PS 検層は, 2 つのボーリング孔において下記の 深度にて実施したものである。

・SJ-1 孔:深度 7.0m ~ 17.0m

・SJ-2 孔:深度 6.0m ~ 16.0m

これらの PS 検層データのうち,相対的に低いせん断波速度が取得されたのは, SJ-1 孔における深度 7.0m~8.0m, SJ-2 孔における深度 6.0m~8.0m であり,改良体の最上部に該当する。

改良体最上部は上部地盤が崩落して改良不良となることが懸念されることから,既設地盤改良体 施工当時の状況を確認した結果,地盤改良体(セメント改良)の施工後に,改良体上部地盤の沈 下が生じ事後対策した事例があり,このことから改良体最上部のセメントミルクの液位が低下し, 未改良部が生じていたと推定した。

相対的に低いせん断波速度は、上記未改良部の PS 検層データである可能性が高い。

3. 対応方針

今後新設する地盤改良体(セメント改良)においては、上記のような未改良部の発生を防止す るため、セメントミルクの液位を確実に管理し、理想的な施工状態を確保する。

具体的には、「施工完了後にガイドホール孔にセメントミルクを充填する」ことにより、改良 体上部地盤の沈下を防止し、未改良部の発生を防止する計画である。



図 地盤改良体(セメント改良)の理想的な施工状態

4. 当該データの取扱いについて

当該データは未改良部において取得された特異点であり、3.の対応方針により、今後の新設地 盤改良体(セメント改良)においては発生する可能性が低いことから、既設地盤改良体の PS 検 層データとして採用しないこととする。 (参考資料5) 地震応答解析にて考慮する地盤物性のばらつき

- 1 土木構造物の地震応答解析における地盤物性のばらつき
  - 1.1 せん断波速度 Vs のばらつき

屋外重要土木構造物の耐震評価にあたっては、構造物の周囲に分布する第四系に対し、Vs のばらつきを考慮した耐震評価を実施する。

(1) Vs のばらつきの設定方法

PS 検層による Vs の深度分布に基づき、Vs のばらつきを考慮する。

各土質材料の Vs の深度分布に応じた平均有効主応力σ' 』依存の回帰式を(式 1)に示 す。

$$V_s(\sigma'_m) = A \times (\sigma'_m)^{0.25} \tag{$\mathbf{t}_1$}$$

$$\sigma'_{m} = \frac{\sigma'_{\nu} + \sigma'_{h}}{2} = \frac{\sigma'_{\nu} + K_{0} \times \sigma'_{\nu}}{2} = \frac{1 + K_{0}}{2} \cdot \sigma'_{\nu} \qquad ($$

$$K_0 = \frac{\nu_{CD}}{1 - \nu_{CD}} \tag{₹3}$$

各土質材料の解析用物性値の元になっている地盤調査結果のVs~ $\sigma$ ' _m関係データがN個の $\sigma'_{m i}$  (*i*=1,2,....,*N*)に対応して与えられているものとし、これらを_{V_s}( $\sigma'_{m i}$ )_{investigat ion}と表記し、最小二乗法による(式1)のせん断波速度回帰式の出力を $V_{s}(\sigma'_{m i})$ と表記する。この時、回帰係数Aは(式4)が成立する値として求める。

$$\sum_{i=1}^{N} \{ V_{s}(\sigma'_{m i}) - V_{s}(\sigma'_{m i})_{investigation} \}^{2} \rightarrow \min(\mathbb{R}, 4)$$

また,各土質材料の標準偏差σは(式5)により求められる。

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left\{ V_s(\sigma'_{m-i}) - V_s(\sigma'_{m-i})_{investigation} \right\}^2} \qquad ($$
 $\vec{\mathbb{R}} 5)$ 

よって、Vs の±1  $\sigma$ を考慮した Vs~ $\sigma'_{n}$ 関係式は、各 N 個の $\sigma'_{mi}$  (*i*=1,2,....,*N*)に対応して、最小二乗法による平均的な曲線を示す(式 1)に基づき、(式 6)により表される。

$$V_{S}(\sigma'_{m}) = A \times \left(\sigma'_{m}\right)^{0.25} \pm 1\sigma \qquad (\not \exists 6)$$

(式 6) により、Vsの±1σ側の各N個のデータ $V_s(\sigma'_m)_{+l\sigma}$ 及び $V_s(\sigma'_m)_{-l\sigma}$ を生成する。

116

(式 6)により生成された各 N 組の $V_s(\sigma'_{m i})_{+l\sigma} \sim \sigma'_{m i}$ 及び $V_s(\sigma'_{m i})_{-l\sigma} \sim \sigma'_{m i}$ 関係データを対象に(式 7)及び(式 8)で最小二乗法により回帰する。

$$V_{S}(\boldsymbol{\sigma}_{m}')_{+1\sigma} = A_{+1\sigma} \times \left(\boldsymbol{\sigma}_{m}'\right)^{0.25} \tag{$\mathbf{t}$ 7}$$

$$V_{S}(\boldsymbol{\sigma}_{m}')_{-1\sigma} = A_{-1\sigma} \times \left(\boldsymbol{\sigma}_{m}'\right)^{0.25} \tag{$\mathbf{t}$ 8}$$

(2) Vs のばらつきを考慮した初期せん断剛性 Gmの設定方法

Vs の平均的な深度分布に対応する  $G_m(\sigma'_m) \sim \sigma'_m$ 関係は(式9)で表される。密度 $\rho$ と係数 A の値を用いれば、各土質材料の解析用物性値の元になっている地盤調査結果の Vs~ $\sigma$ ' ___ 関係データに対応する G_mについても、(式9)の係数 B が求められる。

$$G_m(\sigma'_m) = \rho \times \left\{ A \times (\sigma'_m)^{0.25} \right\}^2 = \rho \times A^2 \times (\sigma'_m)^{0.5} = B \times (\sigma'_m)^{0.5} \qquad (\not \exists 9)$$

したがって、 $V_s o \pm 1 \sigma$  側に対応する  $G_m(\sigma'_m) \sim \sigma'_m$ 関係は、(式 10)及び(式 11)で表される。

$$G_m(\sigma'_m) = \rho \times \left\{ A_{+1\sigma} \times \left(\sigma'_m\right)^{0.25} \right\}^2 = \rho \times (A_{+1\sigma})^2 \times \left(\sigma'_m\right)^{0.5} = B_{+1\sigma} \times \left(\sigma'_m\right)^{0.5} \quad (\not \mathfrak{X} \ 10)$$

$$G_m(\sigma'_m) = \rho \times \left\{ A_{-1\sigma} \times \left( \sigma'_m \right)^{0.25} \right\}^2 = \rho \times \left( A_{-1\sigma} \right)^2 \times \left( \sigma'_m \right)^{0.5} = B_{-1\sigma} \times \left( \sigma'_m \right)^{0.5} \quad (\not \gtrsim 11)$$

上記で示した G_mのσ'_m依存の関係式設定イメージを図 1.1-1 に示す。



図 1.1-1 Vs のばらつきを考慮した  $G_m \sigma \sigma'_m$  依存の関係式設定イメージ

(3) Vs のばらつきの設定結果

PS 検層結果と、(1)の設定方法により算定した Vs の深度分布に応じた  $\sigma'_m$  依存式(平均及び $\pm 1\sigma$ )を図 1.1-2 に示す。また、液状化検討層については豊浦標準砂の Vs 算定式を比較する。



図 1.1-2(1) Vs の σ' m 依存式(du 層(地下水位以浅))





図 1.1-2 (3) Vs の σ' m 依存式 (Ag2 層 (地下水位以浅))



図 1.1-2(4) Vs の σ' "依存式(Ag2 層(地下水位以深))



図 1.1-2 (5) Vs の σ' m 依存式 (Ac 層)



図 1.1-2 (6) Vsの σ' m 依存式 (As 層)





図 1.1-2 (8) Vs の σ' m 依存式 (D2c-3 層)



図 1.1-2 (9) Vs の σ' m 依存式 (D2s-3 層)



図 1.1-2 (10) Vs の σ' m 依存式 (D2g-3 層)



図 1.1-2(11) Vs の σ' m 依存式(D1g-1 層(地下水位以浅))



図 1.1-2 (12) Vs の σ' m 依存式 (D1g-1 層 (地下水位以深))



図 1.1-2 (13) Vs の o' m 依存式 (1m 層 (地下水位以浅))

以上のように求めた平均 Vs の場合及び±1  $\sigma$ を考慮した場合の係数 A をまとめて表 1.1 -1 に、また、(式 7) ~ (式 9) にて求めた G_mの $\sigma$ '_mとの関係式における係数 B を表 1.1-2 に示す。

地層			V _s のσ ['] mに対する依存式			
		密度 ρ(g/cm³)	$V_s = A \times (\sigma'_m)^{0.25}  (m/s)$			
			係数A (平均のV _s )	係数A (平均+1 σ のV _s )	係数A (平均-1 σ のV _s )	
	不飽和	1.82	82.8598	101.6984	64.0212	
	du)皆	飽和	1.98	82.2410	82.4428	82.0391
	A9 🖂	不飽和	1.89	71.5266	73.9462	69.1071
	Ag2)皆	飽和	2.01	78.7716	86.0654	71.4778
	Ac層	飽和	1.65	58.0616	63. 5317	52. 5915
	As層	飽和	1.74	65.1014	73. 4333	56.7694
笠田玄	Ag1層	飽和	2.01	82.6980	83. 2301	82.1659
弗四术	D2c-3層	飽和	1.77	78.1556	87.1758	69.1353
	D2s-3層	飽和	1.92	104. 4247	109.9760	98.8734
	D2g-3層	飽和	2.15	136. 1685	151. 4711	120.8660
	1m層	不飽和	1.43	- 40. 9503	41. 7688	40, 1910
		飽和	1.47			40. 1318
	D1g-1層	不飽和	1.89	110. 6364	123. 5713	97.7014
		飽和	2.01	107.0330	110. 3465	103. 7195

表 1.1-1 Vs のばらつきを考慮した係数 A

σ[']m : 平均有効主応力 (kN/m²)

表 1.1-2 Vs のばらつきを考慮した Gmの係数 B

th 🖂		Gmの o ['] mに対する依存式			
		$G_{m} = B \times (\sigma'_{m})^{0.5} (kN/m^{2})$			
7世/官			係数B (平均のV _s )	係数B (平均+1 σ のV _s )	係数B (平均-1 σ のV _s )
	du 🛱	不飽和	12496	18823	7460
	uu/e	飽和	13392	13458	13326
	A_0 🖂	不飽和	9669	10335	9026
	Ag2/唐	飽和	12472	14889	10269
	Ac層	飽和	5562	6660	4564
	As層	飽和	7374	9383	5608
竺田ズ	Ag1層	飽和	13746	13924	13570
弗四希	D2c-3層	飽和	10812	13451	8460
	D2s-3層	飽和	20937	23222	18770
	D2g-3層	飽和	39865	49328	31408
	1 🛱	不飽和	2398	2495	2303
1m/	111/閏	飽和	2465	2565	2368
	D1g-1層	不飽和	23134	28860	18041
		飽和	23027	24474	21623

σ'm : 平均有効主応力 (kN/m²)

(4) 豊浦標準砂の Vs 算定式との比較

液状化検討対象層のVsのばらつきを考慮した $\sigma'_m$ 依存式( $-1\sigma$ )と,豊浦標準砂のVs 算定式を比較する。豊浦標準砂のVs 算定式は、全ての液状化検討対象層の $-1\sigma$ の回帰式 を包含し、さらに小さく設定されている。



図 1.1-3 Vs の平均有効主応力依存式 (-1 g) と豊浦標準砂の Vs 算定式の比較

以上により、 $\pm 1\sigma$ による原地盤の Vs のばらつきの設定方法及び設定結果を示すとともに、 Vs のばらつきに基づく初期せん断剛性 G_mの設定方法を示した。また、強制的に液状化させる ことを仮定した影響を考慮する場合に用いる豊浦標準砂の Vs 算定式は、原地盤の液状化検討 対象層の $-1\sigma$ の回帰式を全て包含していることを確認した。 1.2 液状化強度特性のばらつき

屋外重要土木構造物の耐震評価にあたっては、地震時の有効応力の変化に応じた影響を適切に評価できる有効応力解析を実施する。

有効応力解析に用いる液状化強度特性は,敷地の原地盤における代表性及び網羅性を踏ま えた上で保守性を考慮して設定する。設定する原地盤の各液状化検討対象層の液状化強度特 性は試験データのばらつきを考慮し,液状化強度試験データの最小二乗法による回帰曲線と, その回帰係数の自由度を考慮した不偏分散に基づく標準偏差を用いて適切に設定することを 基本とする。

液状化強度試験データの回帰式として,回帰係数 a,b を用いた常用片対数の指数関数を (式 12) に示す。

$$R_{L}(N) = a \times (\log_{10} N)^{b} \qquad ( \vec{\mathfrak{X}} 12 )$$

各土質材料の解析用物性値の元になっている液状化試験結果のせん断応力比 $\tau/\sigma_m'$  (=R_L) と繰返し載荷回数 N の関係のデータが K 個の繰返し載荷回数  $N_j$  (j=1,2,....,K)に対応し て与えられているものとし、これらの実測値を  $R_L(N_j)_{experiment}$ と表記し、最小二乗法により 係数 a、b の値が定められた(式 12)の液状化強度回帰式の出力を  $R_L(N_j)$ と表記すると、各 土質材料の液状化強度特性の標準偏差  $\sigma$  は(式 13)で求められる。

$$\sigma = \sqrt{\frac{1}{K-2} \sum_{j=1}^{K} \left\{ R_L(N_j) - R_L(N_j)_{\text{experiment}} \right\}^2} \qquad (\not \exists 13)$$

(式12), (式13)より,各土質材料の液状化強度試験データのばらつきを考慮した保守 側の液状化強度近似曲線は, (式14)により求められる。

$$R_{L}(N)_{-1\sigma} = a \times (\log_{10} N)^{b} - 1\sigma \qquad ( \vec{\mathbf{x}} 14 )$$

屋外重要土木構造物の耐震評価では、(式 14)による原地盤の液状化強度特性(-1σ) を適用した有効応力解析を実施することを基本とする。

また、屋外重要土木構造物の耐震評価においては、以下の解析を実施する場合がある。

地中土構造物への地盤変位に対する保守的な配慮として,地盤を強制的に液状化させるこ とを仮定した影響を考慮する場合は,原地盤よりも十分に小さい液状化強度特性(敷地に存 在しない豊浦標準砂に基づく液状化強度特性)を設定する。豊浦標準砂の液状化強度特性を 原地盤の液状化強度特性(-1σ)と比較した結果を図1.2-1に示す。

上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,地盤の非 液状化の影響を考慮する場合は,原地盤において非液状化の条件(最も液状化強度が大きい 場合に相当)を仮定した解析を実施する。



図1.2-1 原地盤の液状化強度特性(-1 g)と豊浦標準砂の液状化強度特性の比較

以上より,屋外重要土木構造物の耐震評価においては,地盤の液状化強度特性のばらつき を以下のように考慮する。

- ・原地盤の液状化強度特性(-1 g)の適用を基本とする。
- ・地中土構造物への地盤変位に対する保守的な配慮として、強制的に液状化させること を仮定した影響を考慮する場合は、原地盤よりも十分に小さい液状化強度特性(敷地 に存在しない豊浦標準砂に基づく液状化強度特性)を設定する。
- ・上部土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として,非液 状化の影響を考慮する場合は,原地盤において非液状化の条件(最も液状化強度が大 きい場合に相当)を仮定した解析を実施する。

2 建物・構築物の地震応答解析における地盤物性のばらつき

建物・構築物の地震応答解析においては、構造物の周囲に分布する第四系及び支持層である新 第三系に対し、Vs のばらつきを考慮した耐震評価を実施する。

以下に、PS 検層結果に基づく平均 Vs 及び変動係数を示す。また、図 2-1 に PS 検層結果とばらつきを示す。

ここで,第四系については,当該地層のせん断波速度と分布層厚を孔毎に抽出し,層厚に応じた加重平均として Vs をとりまとめている。また,ばらつきの評価においては,層厚を確率分布と見て標準偏差及び変動係数を算定している。

地)	田田	せん断波速度 Vs 平均値(m/s)	変動係数
	du 層	210	0.04
	Ag2 層	240	0.10
第四系	D2c-3 層	270	0.11
	D2s-3 層	360	0.04
	D2g-3 層	500	0.13
新第三系	Km 層	433-0.771 · z	0.07

表 2-1 PS 検層結果に基づく平均 Vs 及び変動係数





z:標高(m)





図 2-1(4) PS 検層結果(D2s-3 層)



図 2-1 (5) PS 検層結果 (D2g-3 層)

【D2g-3 層の PS 検層データについての確認】

D2g-3 層の PS 検層データのうち,平均値よりも相対的に小さい 2 点について,ボーリング柱 状図を確認した。PS 検層実施位置は D2g-3 層に分類されており,いずれも上層との地層境界に 相当するが,D2g-3 層のばらつきの範囲内に該当すると考えている。



図 PS 検層実施位置のボーリング柱状図(D2g-3 層)



(参考資料6) 杭基礎の支持力評価方法に関する補足

1. 押込み力に対する杭基礎の支持力評価方法

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化 強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩 擦力を支持力として考慮せず,杭先端の支持岩盤への接地圧に対する支持力評価を行うことを基 本とする。図1に上記支持力評価の概要を示す。

また,上記支持力評価を行う際は,有効応力解析における最大接地圧発生時刻の杭周面摩擦力 の合力が,接地圧を増加させる側に作用していることを確認する。なお,最大接地圧発生時刻の 杭周面摩擦力の合力が接地圧を減少させる側に作用している場合は,当該合力を杭先端の接地圧 に加算した上で支持力評価を行うこととする。



図1 押込み力に対する杭基礎の支持力評価 (押込み力に対し杭周面摩擦力を支持力として考慮しない場合)

ただし,押込み力に対する支持力評価において,杭を根入れした岩盤及び岩着している地盤改 良体とその上方の非液状化層が連続している場合は,その杭周面摩擦力を支持力として考慮する。 図2に上記支持力評価の概要を示す。



図2 押込み力に対する杭基礎の支持力評価

(押込み力に対し杭周面摩擦力を支持力として考慮する場合)

2. 引抜き力に対する杭基礎の支持力評価方法

杭基礎構造を有する耐震重要施設及び常設重大事故等対処施設について,豊浦標準砂の液状化 強度特性により強制的に液状化させることを仮定した耐震設計を行う場合は,第四系の杭周面摩 擦力を支持力として考慮せず,新第三系(久米層)の杭周面摩擦力により算定される極限支持力 を考慮することを基本とする。図3に上記支持力評価の概要を示す。



図3 引抜き力に対する杭基礎の支持力評価

(引抜き力に対し第四系の杭周面摩擦力を支持力として考慮しない場合)

ただし,引抜き力に対する支持力評価において,杭周面地盤に地盤改良体がある場合は,その 杭周面摩擦力を支持力として考慮する。図4に上記支持力評価の概要を示す。



図4 引抜き力に対する杭基礎の支持力評価

(引抜き力に対し地盤改良体の杭周面摩擦力を支持力として考慮する場合)

- 3. 有効応力解析における杭と地盤との境界条件について
  - 3.1 杭-地盤相互作用ばねの設定

地盤と杭の接合面に杭-地盤相互作用ばねを設けることにより,地盤と杭の接合面における,強震時の相互作用の3次元効果を2次元モデルで適切に考慮する。

杭-地盤相互作用ばねの杭軸方向については、地盤と杭の接合面におけるせん断抵抗力 以上のせん断荷重が発生した場合、せん断剛性をゼロとし、すべりを考慮する。図 5 に杭 -地盤相互作用ばねの考え方を示す。

なお、せん断強度  $\tau_{f}$  は次式の Mohr-Coulomb 式により規定される。 c 、  $\phi$  は周辺地盤の c 、  $\phi$  とする。

 $\tau_{\rm f} = c + \sigma' \tan \phi$ 

τ_f : せん断強度

- c : 粘着力



杭-地盤相互作用ばね(杭軸方向)の力学的特性 図5 杭-地盤相互作用ばねの考え方

杭-地盤相互作用ばねの杭軸方向のばね定数は,数値解析上不安定な挙動を起こさない 程度に十分大きい値として,表1のとおり設定する。

また,杭一地盤相互作用ばねの杭軸直交方向のばね定数については,杭径及び杭間隔より設定される*。

注記 * FLIP 研究会 14 年間の検討成果のまとめ「理論編」

AI 7L		
	せん断剛性 ks	
	$(kN/m^3)$	
杭軸方向	$1.0 \times 10^{6}$	

表1 杭一地盤相互作用ばねのばね定数

3.2 杭下端ジョイントばねの設定

杭下端境界部に圧縮応力の上限値を有さないジョイントばねを設けることにより, 杭下端 における地盤と杭の相互作用を適切に考慮する。

杭下端の杭軸方向について設定するジョイントばねは,常時状態以上の引張荷重が生じた 場合,剛性及び応力をゼロとし,剥離を考慮する。

杭下端ジョイントばねのばね定数は,数値解析上不安定な挙動を起こさない程度に十分大 きい値として,表2のとおり設定する。杭下端ジョイントばね設定の考え方を図6に示す。

	圧縮剛性 k _v
	(kN/m)
杭軸方向	$1.0  imes 10^{6}$

表2 杭下端ジョイントばねのばね定数



図6 杭下端ジョイントばね設定の考え方

【杭-地盤相互作用ばねの杭軸直交方向のばね定数について】

本項では,FLIP 研究会 14 年間の検討成果のまとめ「理論編」に記載されている杭-地盤相互 作用ばねの杭軸直交方向のばね定数の考え方を説明する。

杭ー地盤相互作用ばねのばね定数は、杭周辺地盤のせん断応カーせん断ひずみ関係に基づく杭 と地盤の相対変位及び杭と地盤相互のばね力を以下のように設定するものである。

①杭周辺地盤のせん断ひずみ $\gamma$ より, (式 1)を用いて, 杭と地盤の相対変位 u を求める。 杭と地盤の相対変位 u = D× $\beta_p$ ×せん断ひずみ $\gamma$  (式 1) D: 杭径  $\beta_n$ : 地盤のせん断ひずみから杭と地盤の相対変位を求めるための係数

②杭周辺地盤のせん断応力τより、(式2)を用いて杭と地盤相互のばね力Fを求める。
杭と地盤相互のばね力F = L×D×α_p×せん断応力τ (式2)
D:杭径
L:ばね鉛直方向支配長
α_p:地盤のせん断応力から杭と地盤相互のばね力を求めるための係数



図 4-11-19 杭ー地盤相互作用ばねによる2次元一体解析の杭モデルと 地盤モデルの連結方法(模式図)

※ 11 は杭-地盤相互作用ばね要素の杭側節点, 12 は地盤側節点, Lu はばねの上側支配長 (隣接する上側のばねまでの半分の長さ), L1 はばねの下側支配長を表す.

注記 * FLIP 研究会 14 年間の検討成果のまとめ「理論編」より抜粋

図 杭-地盤相互作用ばねのモデル化イメージ

杭ー地盤相互作用ばねは様々な状態の土質(砂,正規圧密粘土,過圧密粘土)を検討対象とし て設定された地盤ばねであり,これらの土質は東海第二発電所の原地盤と類似していることか ら,適用性を有していると判断した。