補足説明

(東海第二発電所 工事計画認可申請に係る論点整理について)

平成 30 年 7 月 30 日

日本原子力発電株式会社

目 次

【論点14】	重大事故時の強度評価におけるジェット荷重について	1
【論点 14】	原子炉圧力容器の応力解析の方針	23
【論点 14】	原子炉圧力容器の強度計算書	64
【論点 14】	管の応力計算書	201
【論点 15】	原子炉格納施設の設計条件に関する説明書のうち 重大事故等時の動荷重について	265
【論点19】	ペデスタル排水系に設置する安全弁について	371

補足-420-5 重大事故等クラス2機器に用いられる

クラス1機器の事故時の強度評価について

1

1. はじめに

重大事故等クラス2機器及び重大事故等クラス2支持構造物の材料及び構造については、「実 用発電用原子炉及びその附属施設の技術基準に関する規則」(平成25年6月28日 原子力規制委員 会規則第六号)第55条第1項第2号及び第5号に規定されており、適切な材料を使用し、十分な構 造及び強度を有することが要求されている。具体的には、「発電用原子力設備規格 設計・建設 規格」(以下「設計・建設規格」という。)もしくは、施設時に適用された規格を用いて重大事故 等時に機器が十分な強度を有することを確認する必要がある。

ここでは、東海第二で重大事故等クラス2であってクラス1機器の対象となる原子炉圧力容器 と重大事故等クラス2管でクラス1管に関する施設時の基準、建設時工認の評価状況の整理を行 い、重大事故等時に機器が十分な強度を有することを示すための方針を記載する。

2. 施設時の要求と既工認の強度評価状況

原子炉圧力容器と重大事故等クラス2管でクラス1管について施設時の基準と既工認の強度評価状況を表1に示す。施設時の基準では強度評価は、原子炉圧力容器は応力評価、第1種管は板厚評価が要求されており、既工認ではそれぞれ「発電用原子力設備に関する構造等の技術基準」(昭和45年通産省告示第501号(以下「昭和45年告示という。」))に基づき評価を実施している。尚、第1種管については昭和45年告示で応力評価の要求はないが、ASMEを準用して応力評価を実施している。

	第1種容器(原子炉圧力容器)	第1種管
施設時の基準	応力評価	板厚評価
(昭和45年告示要求)	(ただし供用状態の概念なし)	(応力評価の要求はなし)
既工認の評価	昭和 45 年告示で応力評価	昭和 45 年告示で板厚評価
(建設時から昭和 55 年前まで)	(ただし供用状態の概念なし)	ASME を準用した応力評価
設計・建設規格の要求	応力評価	板厚評価
(参考)	(供用状態の概念あり)	応力評価

表1 施設時の要求と既工認の強度評価状況

3. 重大事故等クラス2機器でクラス1機器の強度評価方針

施設時の基準,既工認の評価状況を踏まえて,重大事故等クラス2機器であってクラス1機器の強 度評価方針を表2に示す。

原子炉圧力容器の重大事故等クラス2でクラス1機器としての強度評価は施設時の昭和 45 年告示 での評価結果として既工認の評価結果があるが,昭和 45 年告示では供用状態の概念がないことから 設計・建設規格を準用して重大事故等時の評価を行う。

重大事故等クラス2管でクラス1管の強度評価は、施設時の規格(昭和45年告示)では、管に対す る応力評価要求がないが、設計・建設規格では、応力評価の要求があることから、設計・建設規格を 準用して重大事故等時の管の応力評価を行う。

重大事故等クラス2管でクラス1管の板厚評価は施設時の昭和45年告示での評価結果として既 工認の評価結果があり,既工認の評価条件は重大事故等時の評価条件を包絡することを示した上で, 既工認の結果を確認することで重大事故等時の評価を行う。

機器クラス	対象機器	施設時の基準で	強度評価方針
		要求される評価	
重大事故等クラス2機	原子炉圧力容器	応力評価	設計・建設規格を準用して重大
器であってクラス1機			事故等時の評価を行う
器	重大事故等クラス2	応力評価	設計・建設規格を準用して重
	管でクラス1管	(昭和 45 年告示	大事故等時の評価を行う
		では評価要求な	
		し, 昭和 55 年告	
		示,設計建設規	
		格では評価要求	
		あり)	
		板厚評価	既工認の評価条件が重大事故
			等時の評価条件を包絡するこ
			とを示し、既工認の結果を確
			認することで重大事故等時の
			評価を行う

表2 重大事故等クラス2機器であってクラス1機器の強度評価方針

4. 原子炉圧力容器の評価方法

原子炉圧力容器の重大事故等時の強度評価(応力計算)を,設計・建設規格に従い評価を行うこ との妥当性を確認する。

4.1 重大事故等時と建設時の強度計算の整理

以下に原子炉圧力容器の胴を代表として,重大事故等時(設計・建設規格)と建設時(告示第501号)の強度計算を整理した。評価応力については,設計・建設規格と告示第501号で同等である。

- 4.1.1 重大事故等時の原子炉圧力容器の評価 (PVB-3111 準用)
 - (1) 評価応力

重大事故等時の強度評価としては,以下に示す設計・建設規格の供用状態Dの一次応力を準 用して応力評価を行うことが要求事項と考える。

PVB-3111 (3) 供用状態Dにおける応力強さ

- a. 一次一般膜応力強さ: P_m
- (a) オーステナイト系ステンレス鋼及び高ニッケル合金以外の材料

$$\mathsf{Pm} \le \frac{2}{3} \mathsf{Su} \tag{PVB-13}$$

c. 一次膜+一次曲げ応力強さ: P_L+P_b

(a) オーステナイト系ステンレス鋼及び高ニッケル合金以外の材料

$$P_L + Pb \le \alpha \left(\frac{2}{3}Su\right)$$
 (PVB-17)

α:純曲げによる全断面降伏荷重と初期降伏荷重の比または1.5のいずれか小さい方の値

(1) 評価する荷重

上記で一次一般膜応力,一次膜+一次曲げ応力を求めるときに考慮する荷重を表3に示す。

表3 原子炉圧力容器の強度評価の荷重の組み合わせ(重大事故等時)

	強度評価(V)
原子炉圧力容器の	$D + P_{SA} + M_L$
重大事故等時の考慮する荷重	D : 死荷重
	P _{sA} : 重大事故等時の圧力
	M _L : 重大事故等時の機械荷重(ジェット荷重)

(3) 応力算出方法

各荷重に対する応力算出方法は設計・建設規格には規定されていなく,一般的な機械工学便 覧等の算出方法を用いる。ここで,<u>発生する応力はいずれも圧力,荷重(モーメント含む)に</u> <u>比例</u>しており,圧力,荷重(モーメント含む)が大きければ,発生する応力は大きくなること がわかる。

表4 原子炉圧力容器 胴の応力算出方法 (重大事故等時)

図 1 機械荷重における FやMを算出する RPV-建屋連成モデル

4.1.2 建設時の原子炉圧力容器の評価 (昭和45年告示)

(1) 評価応力(昭和45年告示)

建設時の昭和45年告示の応力評価要求は以下の記載となり,設計・建設規格を同様な応 力分類で制限をしている。ただし,許容値については告示では供用状態の概念がまだないた め,設計条件として応力を制限している。昭和45年告示と設計・建設規格の許容値の違い を4.2に示す。

また,建設時の評価では,特別な応力として(軸圧縮)の評価を実施しているが,図2に 示す通り,胴は内圧による引張り応力が作用し,死荷重や地震荷重による圧縮応力より大き いため,軸圧縮応力は支配的ではなく,現在の設計・建設規格評価では省略されている。

昭和 45 年告示 抜粋

第13条

イ 応力解析による一次応力強さ,二次応力強さ及びこれらの組合せによる応力強さは,次 の値をこえないこと.

- (イ)最高使用圧力および自重その他の機械荷重により生じる一次一般膜応力強さは,別 表第1に定める値
- (ハ)最高使用圧力および自重その他の機械荷重により生じる一次膜応力と一次曲げ応力 を加えて求めた応力強さは、別表第1に定める値の1.5倍の値 ここで別表第1は、設計応力強さ(Sm)を示す。

特別な応力(軸圧縮)は、上図に示す外荷重(軸力、モーメント)により発生する圧縮応力に対して規格に規定される許容値を満足する事を確認する評価である。

図 2 特別な応力(軸圧縮)の説明

(1) 評価する荷重

建設時の一次一般膜応力,一次膜+一次曲げ応力を求めるときに考慮する荷重を以下に示す。 評価荷重については重大事故等時と同様の荷重(死荷重,内圧,機械荷重)+地震荷重となって いる。

	強度評価(建設時の設計条件)
原子炉圧力容器の	$D + P_d + M_d + S$
建設時設計荷重	D : 死荷重
	P _d :最高使用圧力
	M _d :機械荷重
	S :設計地震動による荷重

表5 原子炉圧力容器の強度評価時の荷重の組み合わせ(建設時設計)

(2) 応力算出方法

応力算出方法は下表のとおりとなる。各荷重に対する応力算出方法は昭和 45 年告示に規 定されていなく,一般的な工学式(当時の ASME 等)を用いる。ここで,<u>発生する応力はい</u> <u>ずれも圧力,荷重(モーメント含む)に比例</u>しており,圧力,荷重(モーメント含む)が大き ければ,発生する応力が大きくなることがわかる。

表6 原子炉圧力容器 胴の応力算出方法(建設時)

4.2 施設時の許容値と設計・建設規格許容値との比較

表7に既工認の許容値(昭和45年告示)と重大事故等時の許容値(設計・建設規格)を示す。 施設時は設計条件に対する許容値のため,供用状態の概念がなく保守的な値を用いている。尚,Sm 値自体については告示と設計・建設規格で差がないことを確認した。

表7 既工認で用いた昭和45年告示と設計・建設規格の許容値

	一次一般膜応力 (P _m)	膜+曲げ応力 (P _L +P _b)
昭和 45 年告示	S _m (184 MPa) ^{%2}	1.5S _m (276 MPa)
設計・建設規格	$2/3 S_{u}$ (326 MPa)	$\alpha \cdot 2/3$ S _u (470 MPa)

^{※1:()}内は胴(SQV1A)の許容応力例を示す。

4.3 重大事故等時の条件が設計条件(原子炉圧力容器)へ包絡性されていることの確認 原子炉圧力容器の応力評価に必要な評価条件として温度,圧力,外荷重について重大事故等時 の評価条件を表8表に示す。圧力,温度については,重大事故等時のうちNo.8の原子炉停止機能 喪失が事故シーケンスの中で大きい。外荷重としては,No.9のLOCA時注水機能喪失で発生する 配管破断によるジェット荷重が生じる。このため,重大事故等時の評価では,No.8の温度,圧力 条件とNo.9の外荷重を用いた評価を行う。

No.	状態**3	圧力※5	温度	外荷重
		(MPa)	(°C)	
1	高圧・低圧注水機能喪失	7.79	295	事故時荷重は生じない※4
2	高圧注水・減圧機能喪失	7.79	295	事故時荷重は生じない※4
3	全交流動力電源喪失(長期 TB)	8.16	298	事故時荷重は生じない※4
4	全交流動力電源喪失(TBD, TBU)	8.16	298	事故時荷重は生じない※4
5	全交流動力電源喪失(TBP)	8.16	298	事故時荷重は生じない※4
C	崩壊熱除去機能喪失(取水機能喪失の	7.79	295	事故時荷重は生じない※4
0	場合)			
7	崩壞熱除去機能喪失(残留熱除去系故	7.79	295	事故時荷重は生じない※4
(障の場合)			
8	原子炉停止機能喪失	<u>8. 19</u>	298	事故時荷重は生じない※4
9	LOCA 時注水機能喪失	7.79	295	配管破断によるジェット荷重
10	格納容器バイパス(ISLOCA)	7.79	295	事故時荷重は生じない※4
11	津波浸水による注水機能喪失	8.16	298	事故時荷重は生じない※4

表8 既工認と重大事故等時の評価条件

※3: No. 1~11 までは、事故シーケンスの状態を示す。

※4:配管破断を伴わない事故シーケンスであり、事故時荷重は生じない。

※5: No. 1~11 は圧力容器ドーム圧を示す。

^{※2:}設計・建設規格でのSmも184 MPaで告示と同等である。

4.4 重大事故等時の事故シーケンス毎の応力関係

重大事故等時の条件での応力関係を以下に示す。ここで,死荷重は各重大事故等シーケンスで 同様となり,圧力は原子炉停止機能喪失時が大きい。事故時荷重は,LOCA 注水機能喪失時にジ ェット荷重が生じる。このため,重大事故等時の強度評価では,原子炉停止機能喪失時の圧力条 件とLOCA 注水機能喪失時の事故時荷重を用いた評価を行う。尚,有効性評価で考慮している LOCA 注水機能喪失時に想定している破断面積は cm²だが,強度評価ではより厳しい評価と なる全破断を考慮する。

図 3 重大事故等時と建設時時設計条件の応力関係 応力分類:1次応力評価(胴板)

5. 管の応力評価方法

5.1 重大事故等時の管の応力評価(PPB-3560 準用)

(1) 評価応力

重大事故等時の評価は、設計・建設規格での供用状態 D(IVA)の管の応力評価を準用し以下 となる。

PPB-3560 供用状態 D (IVA) に対する規定

PPB-3562 一次応力制限

供用状態 D (IVA) における一次応力 Sprm は, 圧力 P およびモーメントM_{bp},M_{rp},M_{ip}に対して PPB-3520 の式に従い算出すること。この時の許容応力は, 3S_mまたは 2S_yの小さい方の値とする。

S_m:付録材料図 表 Part5 表1に定める設計応力強さ(MPa)

Sy: 付録材料図 表 Part5 表 8 に定める設計降伏点 (MPa)

PPB-3520 設計条件における一次応力制限

設計条件における一次応力は、次の(1)、(2)の要求を満たさなければならない。

- (1) 管台および突合せ溶接式ティー
- $S_{prm} = \frac{B_1 P D_0}{2t} + \frac{B_{2b} M_{bp}}{Z_b} + \frac{B_{2r} M_{rp}}{Z_r}$ (PPB-3.1) (2) (1)以外の管

 $S_{prm} = \frac{B_1 P D_0}{2t} + \frac{B_2 M_{ip}}{Z_i}$ (PPB-3.2)

Sprm :一次応力 (MPa)

P : 最高使用圧力 (MPa)

D₀:管の外径(mm)

- t : 管の厚さ(mm)
- M_{bp}
 : 管台または突合せ溶接式ティーに接続される分岐管の機械的荷重により生じる

 モーメント(N・mm)
- M_{rp}
 : 管台または突合せ溶接式ティーに接続される主管の機械的荷重により生じる

 モーメント(N・mm)
- *M_{in}*: 管の機械的荷重により生じるモーメント(N・mm)
- Z_b:管台または突合せ溶接式ティーに接続される分岐管の断面係数(mm³)
- Z_r:管台または突合せ溶接式ティーに接続される主管の断面係数(mm³)
- Z_i : 管の断面係数(mm³)

*B*₁, *B*_{2b}, *B*_{2r}, *B*₂: PPB-3810 に規定する応力係数

(2) 評価する荷重

重大事故時における管の強度評価に用いる荷重の組み合わせを表9に示す。重大事故等時 (V)は死荷重,圧力,外荷重(機械荷重)を考慮して強度評価を行う。

表9 管の強度評価と耐震評価における荷重の組合せ

	強度評価 (V)
管の荷重の組み合わせ	D + P + M
	D : 死荷重
	P _{SA} : 重大事故等時の圧力
	M : 重大事故等時の機械荷重※

※: MS-SRV の取り付く配管モデルでは、機械荷重として SRV 吹き出し反力が入る。

(3) 応力算出方法

応力は, (1)の式の圧力P, 荷重により発生するモーメントMを代入することで算出する。 荷重により発生するモーメントは図 4 のモデルから得られる。

図 4 モーメントを求めるための管の解析モデル例

5.2 重大事故等時の強度評価条件

管の応力評価に必要な評価条件として温度, 圧力,外荷重について重大事故等時の評価条件を 表 10 に示す。圧力,温度については,重大事故等時のうち No.8の原子炉停止機能喪失が事故シ ーケンスの中で大きい。外荷重については,重大事故等時のうち LOCA 時注水機能喪失時に破断し た配管にはジェット荷重が発生する。

No.	状態*1	圧力	温度	外荷重
		(MPa)	(°C)	
1	高圧・低圧注水機能喪失	7.79	295	事故荷重は生じない※2
2	高圧注水・減圧機能喪失	7.79	295	事故荷重は生じない*2
3	全交流動力電源喪失(長期 TB)	8.16	298	事故荷重は生じない※2
4	全交流動力電源喪失(TBD, TBU)	8.16	298	事故荷重は生じない※2
5	全交流動力電源喪失(TBP)	8.16	298	事故荷重は生じない※2
6	崩壊熱除去機能喪失(取水機能喪失の場合)	7.79	295	事故荷重は生じない*2
7	崩壊熱除去機能喪失(残留熱除去系故障の場合)	7.79	295	事故荷重は生じない*2
8	原子炉停止機能喪失	8.19	298	事故荷重は生じない※2
9	LOCA 時注水機能喪失	7.79	295	配管破断によるジェット荷重あり ^{※4}
10	格納容器バイパス(ISLOCA)	7.79	295	事故荷重は生じない*2
11	津波浸水による注水機能喪失	8.16	298	事故荷重は生じない*2

表 10 耐震評価IV_AS と重大事故等時の評価条件

※1: No. 1~11 までは、重要事故シーケンスの状態を示す。

※2:配管破断を伴わない事故シーケンスであり、事故時荷重は生じない。

※3: No. 1~11 は圧力容器ドーム圧を示す。

※4:破断した管のジェット力により RPV 等に変位が生じることで管に二次応力が生じるが、重大事故事象 は発生回数が少なく疲労に顕著な影響を及ぼす繰り返し応力が発生しない。(重大事故等クラス2管の 疲労評価については補足-420-6 に記載。)

5.3 重大事故等時の事故シーケンス毎の応力関係

重大事故等時の条件での応力関係を以下に示す。ここで,死荷重は各重大事故シーケンスで同様となり,圧力は原子炉停止機能喪失が大きい。このため,重大事故等時の強度評価では,重大事故時の評価条件を上回る条件を用いる。

図 5-1 重大事故等時の応力関係例(MS 配管以外)

図 5-2 重大事故等時の応力関係例(MS 配管)

重大事故等クラス2機器であってクラス1機器(原子炉圧力容器及びクラス1管)の 強度評価において考慮する事故シーケンスの考え方

原子炉圧力容器及びクラス1管が有する原子炉冷却材圧力バウンダリ機能は、「発電用軽水型原子 炉施設の安全機能の重要度分類に関する審査指針」において、異常発生防止系として、その損傷又は 故障により発生する事象によって、炉心の著しい損傷又は燃料の大量の破損を引き起こすおそれのあ る構築物、系統及び機器であると定義されている。このため、重大事故等クラス2機器としての強度 評価においては、技術基準規則第54条に基づき、「実用発電用原子炉及びその付属施設の位置、構造 及び設備の基準に関する規則」第37条において、個別プラントの確率論的安全評価を活用し、炉心の 著しい損傷に至る可能性があると想定する事故シーケンスグループから選定された、炉心損傷防止対 策の重要事故シーケンスに基づく圧力・温度条件を考慮する。

想定する格納容器破損モードのうち、高圧溶融物/格納容器雰囲気直接加熱(DCH)、原子炉圧 力容器外の溶融燃料-冷却材相互作用(FCI),溶融炉心・コンクリート相互作用(MCCI)は, 著しく炉心が損傷し、原子炉圧力容器の破損に至る事故シーケンスである。また、想定する格納容器 破損モードのうち,雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)及び水素燃焼は, 重大事故等対処設備を用いた原子炉注水により原子炉圧力容器の破損防止に成功する事故シーケン スであるが、大破断LOCAが発生し、著しい炉心損傷に至る事象である。これら炉心の著しい損傷 に至る格納容器破損モードの事故シーケンスについては、原子炉格納容器バウンダリの機能維持を確 認する評価に適用することとしている。なお、格納容器過圧・過温破損及び水素燃焼では、原子炉圧 力容器が損傷炉心を冷却するバウンダリの機能を担うが、大破断LOCAの発生により原子炉圧力容 器内の圧力は、原子炉格納容器圧力と同程度に減圧されることから、重大事故等クラス2機器(原子 炉圧力容器及びクラス1配管)強度評価の圧力条件である 8.62MPa を大きく下回り, 圧力荷重による 原子炉圧力容器の発生応力は小さくなる。また、格納容器過圧・過温破損の有効性評価では、感度解 析として, Excessive LOCAが発生することで重大事故等対処設備を用いた原子炉注水 に失敗し、原子炉圧力容器破損に至る場合の評価を行っており、この場合においても、格納容器スプ レイ等の重大事故等対策により原子炉格納容器バウンダリ機能が維持できることを確認している。ま た、DCH、FCI、MCCIについては、原子炉圧力容器が破損に至ることから、原子炉冷却材圧 カバウンダリの健全性を維持する必要は無く、評価は不要である。

想定される重大事故等のうち,使用済燃料貯蔵槽内における想定事故については,原子炉圧力容器 及びクラス1管への事故荷重は生じない。また,想定する運転停止中の事故シーケンスグループにつ いては,事故時の圧力・温度が低いことから,炉心損傷防止対策の重要事故シーケンスの評価に包含 される。

炉心損傷防止対策の重要事故シーケンスに基づく圧力・温度条件を第1表に示す。

No.	状態*1	圧力 ^{%1} MPa[gage]	温度 ^{※2} ℃
1	高圧・低圧注水機能喪失	7.79	295
2	高圧注水・減圧機能喪失	7.79	295
3	全交流動力電源喪失(長期TB)	8.16	298
4	全交流動力電源喪失(TBD, TBU)	8.16	298
5	全交流動力電源喪失(TBP)	8.16	298
6	崩壊熱除去機能喪失(取水機能喪失の場合)	7.79	295
7	崩壊熱除去機能喪失(残留熱除去系故障の場合)	7.79	295
8	原子炉停止機能喪失	8.19	298
9	LOCA時注水機能喪失	7.79	295
10	格納容器バイパス(ISLOCA)	7.79	295
11	津波浸水による注水機能喪失	8.16	298

表1 炉心損傷防止対策の重要事故シーケンスに基づく圧力・温度条件

[重大事故等クラス2機器の強度評価条件: 圧力 8.62MPa, 温度 302℃]

- ※1 有効性評価解析における,原子炉圧力容器ドーム部圧力を示す。
- ※2 原子炉圧力容器ドーム部圧力に対する飽和温度を設定する。炉心損傷しない事故シーケンスにおいて、原子炉容器及びクラス1管に接触する冷却材は過熱状態とならないことから、飽和温度を考慮することは保守的な仮定である。

重大事故時の強度評価におけるジェット荷重について

1. はじめに

重大事故等時の強度評価としては、重要事故シーケンスを考慮した評価を行う方針としている。重要事故 シーケンスでの原子炉圧力容器に生じる外荷重はLOCA時のジェット荷重があり、事故シーケンスのうちLOC A時注水機能喪失時に生じる。有効性評価では、LOCA時注水機能喪失で原子炉冷却材圧力バウンダリに接続 する配管で最大口径の原子炉再循環系配管について中小破断を想定している。

一方で,重大事故時の強度評価については,強度評価上厳しくなるように原子炉冷却材圧力バウンダリに 接続する配管で口径が大きく,原子炉圧力容器に大きなモーメント及びせん断力が生じる主蒸気系配管及び 原子炉再循環系配管の全破断を各々考慮する方針としている。図1に原子炉圧力容器と各々破断を考慮する 主蒸気系配管及び再循環系配管部分を示す。

図1 原子炉圧力容器と各々破断を考慮する主蒸気系配管及び再循環系配管部分

2. 破断ケース毎の原子炉圧力容器(RPV)に作用するジェット荷重

設計・建設規格等^{[1][2]}に基づく算出式から各々主蒸気配管及び再循環配管の破断により,原子炉圧力容器 に作用するジェット荷重を表1に示す。表1に示す各ケースについて,原子炉建屋と原子炉圧力容器を連成 したモデルを用いて原子炉圧力容器に生じるモーメント,せん断力を求める。図2に原子炉建屋と原子炉圧 力容器を連成したモデルとジェット荷重を作用させる主蒸気配管部及び再循環配管部を示す。主蒸気配管部 及び再循環配管部のジェット荷重の作用点はそれぞれ主蒸気配管ノズル部,再循環配管ノズル部にもっとも 近い質点53,66とする。

	破 断	破断面積	ジェット荷重	
ケース No.	配管	${ m A}_{ m E}$ $ imes 10^{6}$ (mm ²)	${ m F}_{ m J}$ $ imes 10^3$ (N)	備考
1	MS			
1	大破断			
9	PLR			フラッシュ 右※1
2	大破断			ノノソンユ有
2	PLR			フラッシュ 毎※1
0	大破断			
4	PLR			参考 サンプルケース
4	中小破断			フラッシュ有*1
E	PLR			参考 サンプルケース
Э	中小破断			フラッシュ無*1

表1 解析ケースおよびジェット荷重の条件

※1 フラッシュ有:蒸気および加圧水で噴出流体がフラッシュする場合 フラッシュ無:加圧水で噴出流体がフラッシュしない場合

※2 ジェット荷重(ジェット反力)には動的荷重係数を考慮する。

- [1] 発電用原子力設備規格 設計・建設規格<第1編軽水炉規格> JSME S NC1-2005/2007 日本機械学会
- [2] F. J. MOODY. Prediction of blowdown thrust and jet forces. (1969)

3. 破断ケース毎の原子炉圧力容器に生じるモーメント及びせん断力

解析により求めたジェット反力による原子炉圧力容器に生じるモーメントおよびせん断力の分布を図3及 び図4に示す。解析の結果,主蒸気配管は原子炉圧力容器上部でモーメント及びせん断力が大きく,原子炉 再循環配管は原子炉圧力容器下部でモーメント及びせん断力が大きいことがわかる。

4. 結論

上記の検討結果から,重大事故時の原子炉圧力容器の評価には,主蒸気配管破断及び再循環配管破断時を包 絡したモーメント,せん断力を用いる。

図2 ジェット反力作用時の荷重算定用解析モデル

図3 MS配管およびPLR配管の破断時のRPVのモーメント分布

図4 MS配管およびPLR配管の破断時のRPVのせん断力分布

V-2-3-4-1-1 原子炉圧力容器の応力解析の方針

1. 概要	1
2. 構造の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3. 記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
4. 計算条件	6
4.1 適用基準	6
4.2 評価対象箇所	7
4.3 形状及び寸法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
4.4 物性値	8
4.5 荷重の組合せ及び許容応力	8
4.5.1 荷重の組合せ及び許容応力状態・・・・・・・・・・・・・・・・・・・・・・	8
4.5.2 許容応力	8
4.6 計算に使用する計算機コード・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
5. 荷重条件	10
5.1 運転条件	10
5.2 重大事故等時の条件	10
5.3 荷重の組合せと応力評価	10
6. 応力評価の手順 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
6.1 応力の評価(ボルトを除く。) ・・・・・・・・・・・・・・・・・・・・・・・・	11
6.1.1 主応力	11
6.1.2 応力強さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
6.1.3 一次応力強さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
6.1.4 一次+二次応力強さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
6.2 繰返し荷重の評価(ボルトを除く。) ・・・・・・・・・・・・・・・・・・	12
6.2.1 疲労解析	12
6.3 ボルトの応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
6.4 特別な応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
6.4.1 純せん断応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
6.4.2 座屈の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
6.5 原子炉圧力容器基礎ボルトの評価 ・・・・・・・・・・・・・・・・・・・・・・	13
7. 評価結果の添付	14
7.1 応力評価結果	14
8. 引用文献	15
9. 参照図書	15

図表目次

図4-1	全体断面図	16
表2-1	原子炉圧力容器の構造計画	3
表4-1	材料の分類と外荷重による応力計算に使用する物性値	17
表4-2	繰返し荷重の評価に使用する材料の物性値	18
表4-3	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・	19
表4-4	許容応力(クラス1容器及び重大事故等クラス2容器) ・・・・・・・・	21
表4-5	クラス1容器(ボルトを除く。)用材料の許容応力 ・・・・・・・・・	22
表4-6	クラス1容器ボルト材料の許容応力 ・・・・・・・・・・・・・・・・・・・	24
表4-7	原子炉圧力容器基礎ボルトの許容応力 ・・・・・・・・・・・・・・・・・	25
表5-1	外荷重	26
表5-2	荷重の組合せ	37
表6-1	繰返しピーク応力強さの割増し方法 ・・・・・・・・・・・・・・・	38

1. 概要

本書は、「V-2-1-9 機能維持の基本方針」及び「V-3-1-6 重大事故等クラス2機器及び重 大事故等クラス2支持構造物の強度計算の基本方針」にて設定している構造強度の設計方針に基 づき、原子炉圧力容器及び原子炉圧力容器基礎ボルト(4.2節に示す評価対象箇所)に関する応 力解析の方針を述べるものである。

本書では、原子炉圧力容器の耐震評価及び重大事故等時における強度評価について記載する。

注:本書に記載していない特別な内容がある場合は、「V-2-3-4-1-2 原子炉圧力容器の耐震 性についての計算書(その1)」、「V-2-3-4-1-3 原子炉圧力容器の耐震性についての 計算書(その2)」及び「V-3-3-1 原子炉圧力容器の強度計算書」に示す。(以下、こ れらの計算書を総称して「応力計算書」という。) 2. 構造の説明

原子炉圧力容器の構造計画を表2-1に示す。 原子炉圧力容器は、下記の機器により構成される。

- (1) 胴板
- (2) 主フランジ,上部鏡板及びスタッドボルト
- (3) 下部鏡板
- (4) 制御棒駆動機構ハウジング貫通部
- (5) 中性子計測ハウジング貫通部
- (6) 再循環水出口ノズル (N1)
- (7) 再循環水入口ノズル (N2)
- (8) 主蒸気ノズル (N3)
- (9) 給水ノズル (N4)
- (10) 炉心スプレイノズル (N5)
- (11) 上鏡スプレイノズル (N6)
- (12) 予備ノズル (N6B)
- (13) ベントノズル (N7)
- (14) ジェットポンプ計測管貫通部ノズル (N8)
- (15) 制御棒駆動水戻りノズル (N9)
- (16) 差圧検出・ほう酸水注入管ノズル (N10)
- (17) 計装ノズル (N11, N12, N16)
- (18) ドレンノズル (N15)
- (19) 低圧注水ノズル (N17)
- (20) 原子炉圧力容器スカート
- (21) ブラケット類
- (22) 原子炉圧力容器基礎ボルト

エノ谷奋い傳逗計画	Linne mades 1 dates 2 dates	概略稱這凶	ベントノズル (N1) 上鏡スプレイノズル (N6) く ベントノズル (N1)	日金具 木 本 土 土部鏡板				主 業気ノズル(N3) 2 日本 - ハイトロットノノッシート		ベタェンイン つっ しょう しょう 「「「「」」 「「」 「「」 「「」 「」 「」 「」 「」 「」 「」 「」	縮水ノズル (N4)	制御棒駆動水		砲圧茁水ノズル (N11)	・ ・ ・ ・ ・ ・ ・ ・ ・ い(16)	Bina Apr	又 再循環水出ロノズル (N1) 再循環水入口ノズル (N2)	シュットポンプ計画番		「 「 」 」 、 、 、 、 、 、 、 、 、 、 、 、 、	intervences and server a server and a server a ser	1011日の10日の10日の10日の10日の10日の10日の10日の10日の10	下部鏡板 「「「「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」」「「」	遊圧検出・ほう酸水 注入管ノズル(X10) ドレンノズル(N15)
<u> </u>)概要	主体構造	原子炉圧力容器は,胴板,	主フランジ,上部鏡板及び	スタッドボルト, 下部鏡	板、制御棒駆動機構ハウジ	ング貫通部、中性子計測ハ	ウジング貫通部、再循環水	出口ノズル、再循環水入口	ノズル、主蒸気ノズル、給	水ノズル、炉心スプレイノ	ズル、上鏡スプレイノズ	ル、予備ノズル、ベントノ	ズル、ジェットポンプ計測	管貫通部ノズル、制御棒駆	動水戻りノズル, 差圧検	出・ほう酸水注入管ノズ	ル、計装ノズル、ドレンノ	ズル、低圧注水ノズル、ブ	ラケット類より構成され	S.			
	が見ていた。	基礎・支持構造	原子炉圧力容器を原子炉圧力	容器スカートが支持する。ま	た、原子炉圧力容器スカート	は基礎ボルトにてペデスタル	に固定する。																	

表2-1 原子炉圧力容器の構造計画

3. 記号の説明

本書及び応力計算書において,以下の記号を使用する。ただし,本書及び応力計算書中に別 途記載ある場合は,この限りでない。

記号	記 号 の 説 明	単 位					
Ao	簡易弾塑性解析に使用する係数						
а	簡易弾塑性解析に使用する係数	—					
Bo	簡易弾塑性解析に使用する係数						
Е	縦弾性係数						
Εo	設計疲労線図に使用されている縦弾性係数	MPa					
F	ピーク応力	MPa					
Fx	水平力	Ν					
Fу	鉛直力	Ν					
Fz	軸力	Ν					
Н	水平力	Ν					
i	応力振幅のタイプ	—					
Κ	簡易弾塑性解析に使用する係数	—					
Kb	曲げに対する応力集中係数	—					
Ke	簡易弾塑性解析に用いる繰返しピーク応力強さの補正係数	—					
Kn	引張りに対する応力集中係数	—					
k	応力振幅のタイプの総数						
М	モーメント	N•m					
Mz	ねじりモーメント	N•m					
Na	Se'に対応する許容繰返し回数	□					
Nc	実際の繰返し回数	旦					
Рb	一次曲げ応力	MPa					
Pl	一次局部膜応力	MPa					
Pm	一次一般膜応力	MPa					
Q	二次応力	MPa					
q	簡易弾塑性解析に使用する係数	—					
S	10 ⁶ 回又は10 ¹¹ 回に対する許容繰返しピーク応力強さ	MPa					
Sd*	弾性設計用地震動Saにより定まる地震力又は静的地震力	—					
S s	基準地震動Ssにより定まる地震力	—					
S12	主応力差 $\sigma_1 - \sigma_2$	MPa					
S23	主応力差 σ2-σ3	MPa					
S 3 1	主応力差 $\sigma_3 - \sigma_1$	MPa					

記号	記 号 の 説 明	単 位
Sa	許容繰返しピーク応力強さ	MPa
Sl	繰返しピーク応力強さ	MPa
Se '	補正繰返しピーク応力強さ	MPa
Sm	設計応力強さ	MPa
Sn	供用状態A及びBにおける一次+二次応力の応力差最大範囲	MPa
$\mathrm{Sn}^{\#1}$	地震荷重Sa*による一次+二次応力の応力差最大範囲	MPa
$Sn^{#2}$	地震荷重Ssによる一次+二次応力の応力差最大範囲	MPa
S_p	一次+二次+ピーク応力の応力差範囲	MPa
$S\mathrm{p}^{\#1}$	地震荷重Sd*による一次+二次+ピーク応力の応力差範囲	MPa
$Sp^{\#2}$	地震荷重Ssによる一次+二次+ピーク応力の応力差範囲	MPa
Su	設計引張強さ	MPa
Sy	設計降伏点	MPa
$U\mathrm{f}$	疲労累積係数(Un+Usd又はUn+Uss)	—
Un	供用状態A及びBにおける疲労累積係数	—
USd	地震荷重Sd*による疲労累積係数	—
Uss	地震荷重Ssによる疲労累積係数	—
V	鉛直力	Ν
α	形状係数(純曲げによる全断面降伏荷重と初期降伏荷重の比又は1.5のい	—
	ずれか小さい方の値)	
ν	ポアソン比	—
σ1	主応力	MPa
σ2	主応力	MPa
σ3	主応力	MPa
σ l	軸方向応力	MPa
σr	半径方向応力	MPa
σt	周方向応力	MPa
τℓr	せん断応力	MPa
τrt	せん断応力	MPa
τtl	せん断応力	MPa
IIIAS	設計・建設規格の供用状態C相当の許容応力を基準として、それに地震に	—
	より生じる応力に対する特別な応力の制限を加えた許容応力状態	
IVAS	設計・建設規格の供用状態D相当の許容応力を基準として、それに地震に	—
	より生じる応力に対する特別な応力の制限を加えた許容応力状態	
VAS	運転状態V相当の応力評価を行う許容応力を基本として、それに地震によ	—
	り生じる応力に対する特別な応力の制限を加えた許容応力状態	

4. 計算条件

4.1 適用基準

発電用原子力設備規格(設計・建設規格 JSME S NC1-2005(2007年追補版含 む。))(日本機械学会 2007年9月)(以下「設計・建設規格」という。)及び原子力発電所耐 震設計技術指針(重要度分類・許容応力編 JEAG4601・補-1984)(日本電気協会 電気技術基準調査委員会 昭和59年9月)(以下「JEAG4601」という。)を適用する。

注:本書及び応力計算書において、設計・建設規格の条項は「設計・建設規格 $\bigcirc \bigcirc \bigcirc \frown \triangle$ $\triangle \triangle \triangle (\diamondsuit) a. (a) 」として示す。$

4.2 評価対象箇所

新規制対応工認対象となる設計用地震力及び重大事故等時に対する応力評価の対象箇所は, 次のとおりである。(図4-1参照)

		機器名称	設計用地震力に対する 応力評価	重大事故等時に対する 応力評価		
(1)	胴板		0	0		
(2)	主フ	ランジ,上部鏡板及びスタッドボルト	\times^{*1}	0		
(3)	下部	鏡板	0	0		
(4)	制御	棒駆動機構ハウジング貫通部	0	0		
(5)	中性	子計測ハウジング貫通部	\times * ²	0		
(6)	再循	環水出口ノズル(N1)	0	0		
(7)	再循	環水入口ノズル(N2)	0	0		
(8)	主蒸	気ノズル(N3)	0	0		
(9)	給水	ノズル (N4)	0	0		
(10)	炉心	スプレイノズル (N5)	0	0		
(11)	上鏡	スプレイノズル (N6)	0	0		
(12)	予備	ノズル (N6B)	\times * ³	\times * ⁵		
(13)	ベン	トノズル (N7)	0	0		
(14)	ジェ	ットポンプ計測管貫通部ノズル(N8)	0	0		
(15)	制御	棒駆動水戻りノズル(N9)	\times * ³	\times * ⁵		
(16)	差圧	検出・ほう酸水注入管ノズル(N10)	0	0		
(17)	計装	ノズル (N11, N12, N16)	0	0		
(18)	ドレ	ンノズル (N15)	0	0		
(19)	低圧	注水ノズル (N17)	0	0		
(20)	原子	炉圧力容器スカート	0	\times * ⁵		
(21)		スタビライザブラケット	0	\times * ⁵		
(22)	ブ	スチームドライヤサポートブラケット	0	\times * ⁵		
(23)	ケ	給水スパージャブラケット	0	\times * ⁵		
(24)	ット	炉心スプレイブラケット	0	× * ⁵		
(25)	類	ガイドロッドブラケット	\times * 4	× * ⁵		
(26)		スチームドライヤホールドダウンブラケット	\times * 4	× * ⁵		
(27)原子炉圧力容器基礎ボルト〇×*5						

注:「〇」は評価対象,「×」は評価対象外を示す。

注記 *1:作用する主たる荷重は内圧であり、地震力を負担するような部位ではないため対象外とする。

*2:結果の厳しくなる制御棒駆動機構ハウジング貫通部を代表として評価するため対象外とする。

*3:建設時より閉止プラグが設置されており、外荷重が作用するような部位ではないため対象外とする。

- *4:使用条件が一時的(機器搬出入時又は事故時のドライヤの浮上がり等)なものであり,通常運転時 に外荷重が作用しないことから対象外とする。
- *5:原子炉冷却材の流路機能がないため、対象外とする。

4.3 形状及び寸法

各部の形状及び寸法は、応力計算書に示す。

4.4 物性值

材料の分類と外荷重による応力計算に使用する物性値を表4-1に示す。 地震荷重による繰返し荷重の評価に使用する材料の物性値を表4-2に示す。

- 4.5 荷重の組合せ及び許容応力
 - 4.5.1 荷重の組合せ及び許容応力状態
 原子炉圧力容器の評価に用いる荷重の組合せ及び許容応力状態(又は供用状態)を表4
 -3に示す。
- 4.5.2 許容応力
 - (1) 設計応力強さSm,設計降伏点Sy及び設計引張強さSuは、それぞれ設計・建設規格 付録材料図表 Part5 表1,表2,表8及び表9に定められたものを使用する。
 - (2) 許容応力状態ⅢAS及び許容応力状態ⅣASの一次応力の評価には、各運転状態における流体の最高温度(運転状態Ⅰ及びⅡ:□□℃)に対する許容応力を用いる。供用状態E*の一次応力の評価には、運転状態Vにおける評価温度条件(302 ℃)に対する許容応力を用いる。 また、許容応力状態ⅢAS及び許容応力状態ⅣASの一次+二次応力及び繰返し荷重の評価には、運転温度□℃:定格出力運転時の蒸気温度)に対する許容応力を用いる。
 - (3) 容器(ボルトを除く。)の各許容応力状態の応力評価に用いる許容応力は,表4-4及び表 4-5に示すとおりである。

これらの表に記載のない軸圧縮荷重を受ける場合に対する許容応力は、応力計算書に記載するものとする。

- (4) ボルトの供用状態Eの応力評価に用いる許容応力は、表4-6に示すとおりである。
- (5) 原子炉圧力容器基礎ボルトの応力評価に用いる許容応力は、表4-7に示すとおりである。
- 注記 *:供用状態Eとは,重大事故等時の状態(運転状態V)であり,供用状態Dを超える 状態である。許容応力の算出式は供用状態Dと同様とする。

4.6 計算に使用する計算機コード

計算に使用する計算機コードは以下のとおりである。

(1) NOPS

内圧及び外荷重がかかる円筒殻又は球殻の応力を,厚肉シェル理論及びはり理論によっ て求めるコードである。

内圧,差圧及び外荷重によって生じる形状の不連続の効果を含まない応力の解析に使用 する。

なお,解析コード「NOPS」の検証及び妥当性確認等の概要については,「V-5-31 計算機プログラム(解析コード)の概要・NOPS」に示す。

(2) A S H S D 2 - B

有限要素法による軸対称構造物の応力解析コードである。応力は, 膜応力, 膜+曲げ応 力および膜+曲げ+ピーク応力の各成分をアウトプットする。

内圧,差圧,外荷重(軸対称荷重及び非軸対称荷重)及び熱荷重によって生じる形状の 不連続の効果を含む一次+二次応力の解析に使用する。

このコードへのインプットは,解析しようとする箇所を形状,材料等の不連続部で小さなメッシュに分割することによって行う。

なお,解析コード「ASHSD2-B」の検証及び妥当性確認等の概要については, 「V-5-53 計算機プログラム(解析コード)の概要・ASHSD2-B」に示す。

(3) T A C F

有限要素法による軸対称構造物の温度分布解析コードである。温度分布計算は、領域を 小さなメッシュに分割し、各メッシュについて熱平衡方程式を立て、微小時間でステップ ごとの温度分布を順次求める方法による。

なお,解析コード「TACF」の検証及び妥当性確認等の概要については,「V-5-54 計算機プログラム(解析コード)の概要・TACF」に示す。
5. 荷重条件

原子炉圧力容器は,以下の荷重条件に耐えることを確認する。 各機器の応力評価には,本章に示す荷重を考慮する。

5.1 運転条件

運転条件は、参照図書(1)に定めるとおりである。 各機器の応力評価において考慮する外荷重の値を表5−1に示す。 また、地震荷重Sa*及び地震荷重Ssの繰返し回数は、地震動に対する応答特性等を考慮し て、それぞれ 2とする。

5.2 重大事故等時の条件

重大事故等時の条件は以下のとおりである。

- (1) 温度条件 : 302 ℃
- (2) 圧力条件 : 8.62 MPa
- (3) 差圧条件 :

領域C*差圧		(MPa)
再循環水入口ノズル(N2)		(MPa)
給水ノズル(N4)		(MPa)
炉心スプレイノズル(N5)		(MPa)
低圧注水ノズル(N17)		(MPa)
注記 *:参照図書(1)による) ₀	

5.3 荷重の組合せと応力評価

荷重の組合せと応力評価項目の対応を表5-2に示す。表5-2及び応力計算書において、荷 重の種類と記号は以下のとおりである。

なお、荷重の組合せについては各機器ごとに適切に組み合わせる。

	荷重	記号
(1)	内圧	[L01]
(2)	差圧又は動圧	[L02]
(3)	死荷重	[L04]
(4)	熱変形力(熱膨張差により生じる荷重)	[L07]
(5)	ボルト荷重	[L11]
(6)	配管又は機器の地震時の振動による地震荷重 Sa* (一次荷重)	[L14]
(7)	配管又は機器の拘束点の地震時の相対変位による地震荷重 Sa* (二次荷重)	[L15]
(8)	配管又は機器の地震時の振動による地震荷重S。 (一次荷重)	[L16]
(9)	配管又は機器の拘束点の地震時の相対変位による地震荷重 S 。(二次荷重)	[L17]
(10)	外荷重(供用状態A及びBにおける荷重) [L12, L13,	L18, L19]
(11)	外荷重(供用状態Eにおける荷重)	[L23, L24]

- 応力評価の手順
 応力評価の手順について述べる。
- 6.1 応力の評価(ボルトを除く。)
 外荷重による応力は表5-1に示す外荷重より計算する。

6.1.1 主応力

計算した応力は、応力の分類ごとに重ね合わせ、組合せ応力を求める。

組合せ応力は、一般に σ t, σ l, σ r, τ tl, τ lr, τ rtの6成分をもつが、主応力 σ は、 引用文献(1)の1.3.6項により、次式を満足する3根 σ 1, σ 2, σ 3として計算する。

 $\sigma^{3} - (\sigma_{t} + \sigma_{\ell} + \sigma_{r}) \cdot \sigma^{2} + (\sigma_{t} \cdot \sigma_{\ell} + \sigma_{\ell} \cdot \sigma_{r} + \sigma_{r} \cdot \sigma_{t} - \tau_{t} \ell^{2} - \tau_{\ell} r^{2} - \tau_{r} t^{2}) \cdot \sigma^{2} - \sigma_{t} \cdot \sigma_{\ell} \cdot \sigma_{r} + \sigma_{t} \cdot \tau_{\ell} r^{2} + \sigma_{\ell} \cdot \tau_{r} t^{2} + \sigma_{r} \cdot \tau_{t} \ell^{2} - 2 \cdot \tau_{t} \ell^{2} - \tau_{\ell} r^{2} - \tau_{r} t^{2}) \cdot \sigma^{2} - \sigma_{t} \cdot \sigma_{\ell} \cdot \tau_{r} t^{2} + \sigma_{\ell} \cdot \tau_{r} t^{2} + \sigma_{r} \cdot \tau_{t} t^{2} - 2 \cdot \tau_{t} \ell^{2} - \tau_{\ell} \tau^{2} - \tau_{r} t^{2}) \cdot \sigma^{2} - \sigma_{r} \cdot \tau_{r} t^{2} + \sigma_{\ell} \cdot \tau_{r} t^{2} + \sigma_{r} \cdot \tau_{r} t^{2} +$

上式により主応力を求める。

6.1.2 応力強さ

以下の3つの主応力差の絶対値で最大のものを応力強さとする。

 $S_{12} = \sigma_1 - \sigma_2$ $S_{23} = \sigma_2 - \sigma_3$

- $S_{31} = \sigma_3 \sigma_1$
- 6.1.3 一次応力強さ

許容応力状態ⅢAS,許容応力状態ⅣAS及び供用状態Eにおいて生じる一次一般膜応力, 一次局部膜応力及び一次膜+一次曲げ応力の応力強さが,4.5節に示す許容応力を満足す ることを示す。

ただし、一次局部膜応力より一次膜+一次曲げ応力の方が発生値及び許容応力の観点で 厳しくなることから、一次局部膜応力強さの評価については省略する。

6.1.4 一次+二次応力強さ

許容応力状態ⅢAS及び許容応力状態ⅣASにおいて生じる一次+二次応力の応力差最大 範囲(Sn^{#1}, Sn^{#2})が,4.5節に示す許容応力を満足することを示す。

本規定を満足しない応力評価点については、6.2節で述べる設計・建設規格 PVB-3300 に基づいた簡易弾塑性解析を行う。

なお,重大事故等は発生回数が少ないことから,供用状態Eにおける一次+二次応力強 さに対する評価については省略する。 6.2 繰返し荷重の評価(ボルトを除く。)

繰返し荷重の評価は、供用状態A及びBによる荷重並びに許容応力状態ⅢAS及び許容応力 状態ⅣASによる荷重を用いて、次の方法によって行う。

なお、重大事故等は発生回数が少ないことから、供用状態Eにおける繰返し荷重に対する評価については省略する。

6.2.1 疲労解析

以下の手順で疲労解析を行う。

- (1) 供用状態A及びBにおいて生じる一次+二次+ピーク応力の応力差の変動並びに許容応力状態ⅢAS及び許容応力状態ⅣASにおいて生じる一次+二次+ピーク応力の応力差の変動を求める。また、この変動の繰返し回数として、5.1節に示す運転条件及び地震荷重の繰返し回数を考慮する。
- (2) 応力差の変動とその繰り返し回数より、一次+二次+ピーク応力の応力差範囲(Sp, Sp^{#1}及びSp^{#2})及びこの応力振幅の繰返し回数を求める。
- (3) 繰返しピーク応力強さは、次式により求める。

$$S_{\ell} = \frac{S_p}{2}$$

ただし、一次+二次応力の応力差最大範囲(Sn, Sn^{#1}又はSn^{#2})が3・Smを超え る応力評価点については、設計・建設規格 PVB-3300の簡易弾塑性解析の適用性の検討 を行い、適合する場合は、表6-1に示す方法により繰返しピーク応力強さの割増しを行 う。

(4) 設計疲労線図に使用している縦弾性係数(Eo)と解析に用いる縦弾性係数(E)との比を考慮し、繰返しピーク応力強さを次式で補正する。

$$S_{\ell} \, {}^{,} = S_{\ell} \, \cdot \, \frac{E_0}{E}$$

なお, EとEoは表4-2に示す。

(5) 疲労累積係数(Uf)

疲労累積係数(Uf)は、S^Q、に対応する許容繰返し回数が10⁶回以下(低合金鋼及 び炭素鋼)又は10¹¹回以下(オーステナイト系ステンレス鋼及び高ニッケル合金)とな る応力振幅について、次式により求める。設計・建設規格 PVB-3114又はPVB-3315に従 って、供用状態A及びBにおける疲労累積係数Unと許容応力状態IIIASにおける疲労累 積係数Usd又は許容応力状態IVASにおける疲労累積係数Ussの和Uf(Un+Usd又は Un+Uss)が、1以下であることを示す。

オーステナイト系ステンレス鋼及び高ニッケル合金の場合,繰返しピーク応力強さ 194 MPa以下の設計疲労線図は,設計・建設規格 表 添付4-2-2の曲線Cを用いる。

疲労累積係数 (Uf) =
$$\sum_{i=1}^{k} \frac{N_{c}(i)}{N_{a}(i)}$$

6.3 ボルトの応力評価

ボルトの応力評価は,設計・建設規格 PVB-3121に基づき,ボルトの軸方向に垂直な断面の 平均引張応力及び平均引張応力+曲げ応力について行う。供用状態Eにおいて生じる平均引 張応力及び平均引張応力+曲げ応力が,4.5節に示す許容応力を満足することを示す。

6.4 特別な応力の評価

6.4.1 純せん断応力の評価

純せん断荷重を受ける部分は,設計・建設規格 PVB-3115により評価する。解析箇所を 以下に示す。評価方法は応力計算書に示し,許容応力は表4-5(4)に示す。

- (1) 給水スパージャブラケット
- 6.4.2 座屈の評価

軸圧縮荷重を受ける部分は,設計・建設規格 PVB-3117又はPVB-3200, あるいはJEA G4601により評価する。

解析箇所を以下に示す。評価方法及び許容応力は、応力計算書に示す。

- (1) 制御棒駆動機構ハウジング貫通部
- (2) 原子炉圧力容器スカート
- 6.5 原子炉圧力容器基礎ボルトの評価 原子炉圧力容器基礎ボルトの評価方法は応力計算書に示し、許容応力は表4-7に示す。

7. 評価結果の添付

応力評価点番号は,機器ごとに記号P01からの連番とする。奇数番号を内面の点,偶数番号を 外面の点として,応力計算書の形状・寸法・材料・応力評価点を示す図において定義する。

なお、軸対称モデル解析において、非軸対称な外荷重による応力評価を行った場合、荷重の 入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力 が極大となる方位の応力評価点は[例 P01]と表し、極小となる方位の応力評価点にはプライ ム(')を付けて[例 P01']と表す。

一次応力の評価は、内外面の応力評価点を含む断面(応力評価面)について行う。

- 7.1 応力評価結果
 - (1) 次の応力評価結果は、全応力評価点(面)について添付する。
 - a. 一次一般膜応力強さの評価のまとめ
 - b. 一次局部膜応力又は一次膜+一次曲げ応力強さの評価のまとめ
 - c. 一次+二次応力強さの評価のまとめ
 - d. 疲労累積係数の評価のまとめ
 - (2) 次の特別な応力は、対象となるすべての部位について評価し、この結果を記載する。
 - a. 純せん断応力
 - b. 座屈
 - (3) 原子炉圧力容器基礎ボルトの評価は、次の応力評価結果を記載する。
 - a. 引張応力
 - b. せん断応力
 - c. 組合せ応力

8. 引用文献

文献番号は、本書及び応力計算書において共通である。

- (1) 機械工学便覧 基礎編 α3(日本機械学会 2005年4月)
- 9. 参照図書
 - (1) 東海第二発電所 「設計サーマルサイクル説明書(発電設備の高経年化に関する技術評価のうち設計サーマルサイクルの開発委託報告書)」 平成13年3月発行

図4-1 全体断面図

種類	材料	現行 J I S 相当材		E ×10 ⁵ (MPa)	ν
任今今年		SQV2A			
低口並剄		SFVQ2A			
炭素鋼		SFVC2B			
		SNCM439			
ホルト用合金輌		SNB24-3			
		SUSF304			
		SUSF304L			
オーステナイト系		SUS304TB			
ステンレス鋼		SUS304TP			
	Ĩ	SUS304LTP			
		_	ĺ		
高ニッケル合金		NCF600			

表4-1 材料の分類と外荷重による応力計算に使用する物性値

注1:以降,材料は現行JIS相当材で記す。

注2:物性値は302 ℃における値を示す。

表4-2 繰返し荷重の評価に使用する材料の物性値

表4-3(1) 荷重の組合せ及び許容応力状態(設計基準対象施設)

状態	許容応力状態IIIAS	ᆳᆞᡘ╨ᇡᡨᠬᡃᆠᆛᆇᇨ	计全心力小限IVAO			
荷重の組合せ	$D + P + M + S_d*$	$\mathrm{D} + \mathrm{P}\mathrm{L} + \mathrm{M}\mathrm{L} + \mathrm{S}\mathrm{d}^{\ast}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S}$ s			
機器等の区分	クラス1 容器					
耐震設計上の 重要度分類	S					
機器名称	原子炉圧力容器					
区分	原子炉容器」					
設備		原子炉本体				

[記号の説明]

19

- D : 自重(JEAG4601・補一1984では「死荷重」と記載)
- P : 地震と組合せるべき圧力荷重,又は最高使用圧力等
- M : 地震及び死荷重以外で地震と組合せるべき機械荷重又は設計機械荷重等
- PL : LOCA直後を除いてその後に生じる圧力荷重
- ML :LOCA直後を除いてその後に生じる死荷重及び地震荷重以外の機械荷重
- Sa* : 弾性設計用地震動 Salにより定まる地震力又は静的地震力
- S。 : 基準地震動 Ssにより定まる地震力

表4-3(2) 荷重の組合せ及び許容応力状態(重大事故等対処設備)

設係	莆区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ*2	状 態
					$D + PRSA (L) + M + Sd^*$	許容応力狀態VAS
原子炉本体	原子炉容器 及び炉心	原子炉压力容器	常設耐震/防止 常設/緩和	重大事故等 クラス2容器	$D + P_{RSA}$ (L1) $+M+S_s$	許容応力狀態VAS
					D + P + M + A	供用状態臣

*1:「常設耐震/防止」は,常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。 注記

*2:許容応力状態VASにおける荷重の組合せで,重大事故後の状態における圧力荷重PRSA(I)及びPRSA(II)は,設計基準対象施設で 想定される圧力と比べて小さい。また,重大事故後の状態で設備に作用する機械荷重Mは発生しない。このことから,許容応力状態 VASにおける荷重の組合せによる評価は,設計基準対象施設の評価に包絡される。

[記号の説明]

- :自重(J EAG4601・補-1984では「死荷重」と記載)
- :地震と組合せるべき圧力荷重,又は最高使用圧力等

പ

 \Box

- :原子炉冷却材圧カバウンダリの重大事故における長期的な(長期(L)) 圧力荷重 PRSA (L)
- :原子炉冷却材圧カバウンダリの重大事故における長期的な(長期(TL))圧力荷重 PRSA (LL)
- M : 地震及び死荷重以外で地震と組合せるべき機械荷重又は設計機械荷重等
- Sd* : 弾性設計用地震動 Sdにより定まる地震力又は静的地震力
- S^s : 基準地震動 S^s により 定まる 地震力
- : 事故時荷重

 \triangleleft

表4-4 許容応力(クラス1容器及び重大事故等クラス2容器)

			許 容 応 力		
头 臆	ー次一般膜応力	一次局部膜応力又は 一次膜+一次曲げ応力	一次十二次応力	一次+二次+ビーク応力	純せん断応力
	Sy と 2/3・Su の小さい方				
許容応力状態 IIIAS	ただし、オーステナイト系ステンレス鋼及び高ニッケル合	左欄のα倍の値*1			$0.6 \cdot S_{\rm m}$
	金については 1.2・Sm とする。		3・Sm ^{*2} Sd*又はS s 地震動の	Sq*又はSs地震動のみに よる疲労解析を行い、供 用状態A及びBにおける	
許容応力狀態 IVAS	2/3 • Su		みによる応力振幅に しいた評価する。	疲労累積係数との和を 1 以下とする。	
許容応力状態 VAS	ただし、オーステナイト系ステンレス鋼及び高ニッケル合金については 2/3・Su と	左欄のα倍の値*1			0.4•Su
供用状態臣	2.4 · Sm 001/2005		I	I	I
注記 *1:α/	t, 一次局部膜応力の場合は1.2,	一次膜+一次曲げ応力の	場合は純曲げによる全断	面降伏荷重と初期降伏荷重の	比、又は1.5のいずれ

か小さい方の値とする。 *2:3・Smを超える場合は弾塑性解析を行う。この場合,設計・建設規格 PVB-3300(同 PVB-3313 を除く)の簡易弾塑性解析を用いる。

表4-5(1) クラス1容器(ボルトを除く。)用材料の許容応力

(単位:MPa)

応力分	類		一次一般膜応力 (Pm)	
状 態		許容応力状態IIIAS	許容応力状態IVAS	供用状態臣
温 度	(D°)			302
	SQV2A	302	326	326
炭素鋼及び低合金鋼	SFVQ2A	302	320	320
	SFVC2B	187	292	292
許容応力の算!	出式	Min. $(S_y, 2/3 \cdot S_u)$	$2/3 \cdot S_u$	$2/3 \cdot S_u$
	SUSF304	137	248	248
	SUSF304L	116	226	226
オーステナイト系ュージンシュ語内が	SUS304TB	137	260	260
くノノレく響べい声しシケアの金	SUS304TP	137	260	260
	SUS304LTP	116	232	232
	NCF600	196	334	334
許容応力の算!	出式	$1.2 \cdot S_m$	Min. (2.4 • Sm, 2/3 • Su)	Min. (2.4 • Sm, 2/3 • Su)

クラス1容器(ボルトを除く。)用材料の許容応力 表4-5 (2) (単位:MPa)

応 力 分	頖	一次局部	真応力(Pr)又は一次膜+一次曲げ応フ	$\eta (P_L + P_b)$
決 臆		許容応力状態IIAS *1	許容応力状態IVAS *1	供用状態 E*1
温 度	()			302
	SQV2A	454	490	490
炭素鋼及び低合金鋼	SFVQ2A	454	480	480
	SFVC2B	281	438	438
許容応力の算(Н Т	lpha • Min. (Sy, 2/3 • Su) * ²	$\alpha \cdot 2/3 \cdot Su^{*2}$	$\alpha \cdot 2/3 \cdot Su^{*2}$
	SUSF304	206	372	372
	SUSF304L	174	339	339
オーステナイト系っテンジン論取び	SUS304TB	206	391	391
くノノレく響火の高レッケアの金	SUS304TP	206	391	391
	SUS304LTP	174	348	348
	NCF600	295	501	501
許容応力の算!	Н Н	$\alpha \cdot 1.2 \cdot \mathrm{Sm^{*2}}$	$\alpha \cdot Min.$ (2.4 $\cdot Sm$, 2/3 $\cdot Su$) *2	$\alpha \cdot Min. (2.4 \cdot Sm, 2/3 \cdot Su) *^{2}$
注記 *1:本表には,	$\alpha = 1.5 の場合$	の値を示す。		

*2:αは、一次局部膜応力の場合は1.2,一次膜+一次曲げ応力の場合は純曲げによる全断面降伏荷重と初期降伏荷重の比,又は1.5のいずれ か小さい方の値とする。

表4-5(3) クラス1容器(ボルトを除く。)用材料の許容応力

(単位:MPa)

応 力 分	類	一次+二次応力 (PL+Pb+Q)		
状 態		許容応力状態ⅢAS	許容応力状態IVAS	
温 度	(°C)			
	SQV2A	552	552	
炭素鋼及び低合金鋼	SFVQ2A	552	552	
	SFVC2B	383	383	
	SUSF304	348	348	
オーステナイト系	SUS304TP	348	348	
ステンレス輌及び 高ニッケル合金	SUS304LTP	294	294	
	NCF600	492	492	
許容応力の算	出式	3 · Sm	$3 \cdot S_m$	

表4-5(4) クラス1容器(ボルトを除く。)用材料の許容応力

(単位:MPa)

応 力 分	7 類	純 せ ん	断 応 力
状	能	許容応力状態ⅢAS	許容応力状態IVAS
温度	(°C)		
オーステナイト系 ステンレス鋼	SUSF304L	58	135
許容応力の	算出式	0.6 • Sm	0.4 • Su

表4-6 クラス1容器ボルト材料の許容応力

(単位:MPa)

応 力 分	7 類	平均引張応力	平均引張応力+曲げ応力
状	能	供用状態E	供用状態E
温 度	(°C)	302	302
ボルト用合金鋼 SNB24-3		572	859
許容応力の	算出式	2∕3•Su	Su

表4-7 原子炉圧力容器基礎ボルトの許容応力

-ll-				温度	-	-	許容応力 (MPa) *1			
材	科	状	態	(°C)		引張応力*2	せん断応力*3	組合せ応力*4		
		許容応力	状態ⅢAS			491	378	491		
SNC	1 439	許容応力	状態IVAS			491	378	491		
		許容応力	状態IVAS			458	353	458		

注記 *1:原子炉圧力容器基礎ボルトの許容応力は,設計・建設規格 SSB-3132, SSB-3133 及びSSB-3121並びにSSB-3131による。

*2:許容応力状態ⅢAS及びIVASにおいて引張応力を受けるボルトの許容応力ftは,

f t = 1.5 •
$$\frac{F}{2}$$

ここで,許容応力状態ⅢASにおけるFは設計・建設規格 SSB-3121.1における Fの値。

 $F = Min. (S_y, 0.7S_u)$

また,許容応力状態IVASにおけるFは設計・建設規格 SSB-3121.1において, Syを1.2Syと読み替えて算出した値。

 $F = Min. (1.2 S_y, 0.7 S_u)$

*3:許容応力状態ⅢAS及びIVASにおいてせん断応力を受けるボルトの許容応力

fsは,

$$f_{s} = 1.5 \cdot \frac{F}{1.5\sqrt{3}}$$

*4: せん断応力と引張応力を同時に受けるボルトの許容引張応力ftsは,以下のいずれか小さい方の値とする。

(a) f t s = 1.4 f t o
$$-1.6 \tau$$

(b)
$$f_{ts} = f_{to}$$

ここで、 f_{to} は許容引張応力。 τ はボルトのせん断応力。

本表には、(b)の場合の値を示す。

表5-1(1) 外荷重

胴板外荷重

記号	荷重名称	鉛直力 (kN)	,	水平力 (kN)	モーメン (kN・m	
		V		Н	М	_
L12	外荷重A*1					
L13	外荷重B*2					
L18	外荷重C*3					
L19	外荷重D*4					
L23	外荷重E*5					
L14	地震荷重Sd*					
L16	地震荷重 S s					

注記 *1:供用状態A及びBのうち,参照図書(1)の運転条件番号③~⑨及 び⑫~⑱にかかるものとする。

- *2:供用状態A及びBのうち,参照図書(1)の運転条件番号②にかか るものとする。
- *4:供用状態A及びBのうち、参照図書(1)の運転条件番号⑲にかか るものとする。
- *5:供用状態Eにかかるものとする。

表5-1(2) 外	·何重
-----------	-----

下部鏡板及び原子炉圧力容器スカート外荷重

記号	荷重名称	鉛ī (k	直力 :N)	水平力 (kN)	モーメント (kN・m)
		V1	V2	Н	М
L12	外荷重A*1		4		
L13	外荷重B*2				
L18	外荷重C*3				
L19	外荷重D*4				
L23	外荷重E*5				
L14	地震荷重Sd*				
L16	地震荷重 S s				

注記 *1:供用状態A及びBのうち,参照図書(1)の運転条件番号③~⑨及び⑫~⑱にか かるものとする。

*2:供用状態A及びBのうち、参照図書(1)の運転条件番号②にかかるものとする。

*3:供用状態A及びBのうち,参照図書(1)の運転条件番号⑩, ⑪, ⑳及び ⑳ に かかるものとする。

*4:供用状態A及びBのうち、参照図書(1)の運転条件番号⑲にかかるものとする。

*5:供用状態Eにかかるものとする。

表5-1(3) 外

制御棒駆動機構ハウジング貫通部外荷重

記号	荷重名称	鉛面 (k	鉛直力 (kN)		区力 N)	モーメント (kN・m)		
		V1	V2	H1	H2	M1	M2	
L12	外荷重A*1							
	外荷重B*2(初期)							
	外荷重B*2 (末期)						Ī	
L13	外荷重B*2						Ī	
	(バッファ効果無し ^{*3})							
	外荷重B*2							
	(ロッドスタック時 ^{*3})	_						
L23	外荷重C*4							
	外荷重D*4(初期)						Ī	
	外荷重D*4 (末期)						Ī	
L24	外荷重D*4	-						
	(バッファ効果無し)							
	外荷重D*4							
	(ロッドスタック時)							
L14	地震荷重Sd*							
L16	地震荷重Ss							

- 注記 *1:供用状態A及びBのうち,参照図書(1)の運転条件番号②~⑨及び⑫~⑲にかかるものとする。
 - *2:供用状態A及びBのうち,参照図書(1)の運転条件番号⑩, ⑪, ⑳及び ⑳ にかかる ものとする。
 - *3:スクラム(タービントリップ及びその他のスクラム)時 回,燃料交換時 回を考 慮する。
 - *4:供用状態Eにかかるものとする。

表5-1(4) 外向重	表5-1	1 (4)	外荷重
-------------	------	-------	-----

ノズル外荷重

171	記号	古 重夕 称	力 (1-N)		モーメント		荷重作用点
))))		刑里口仰	H	F _z	M	Mz	位置 (mm)
	L04	死荷重		12			
再循環水	L07	熱変形力					
出口ノズ	L14	地震荷重Sd*(一次)					
IL	L15	地震荷重Sd*(二次)	T				
(N1)	L16	地震荷重Ss (一次)					
	L17	地震荷重Ss (二次)					
	L04	死荷重	I				
再循環水	L07	熱変形力					
入口ノズ	L14	地震荷重Sd*(一次)					
IL	L15	地震荷重Sd*(二次)	Ι				
(N2)	L16	地震荷重 S s (一次)					
	L17	地震荷重 S s (二次)					
	L04	死荷重					-
シサビッ	L07	熱変形力					
土然気ノ	L14	地震荷重Sd*(一次)					
$\langle N2 \rangle$	L15	地震荷重Sd*(二次)					
(113)	L16	地震荷重 S s (一次)					
	L17	地震荷重 S s (二次)					
	L04	死荷重					
40 L L -	L07	熱変形力					
給水ノス	L14	地震荷重Sd*(一次)					
(N4)	L15	地震荷重Sd*(二次)					
× ,	L16	地震荷重 S s (一次)					
	L17	地震荷重 S s (二次)					
	L04	死荷重	_				
低圧炉心	L07	熱変形力	_				
スプレイ	L14	地震荷重Sd*(一次)	_				
ノズル	L15	地震荷重Sd*(二次)					
(N5)	L16	地震荷重Ss (一次)					
	L17	地震荷重 S s (二次)					
	L04	死荷重	ļ				
高圧炉心	L07	熱変形力	ļ				
スプレイ	L14	地震荷重Sd*(一次)	ļ				
ノズル	L15	地震荷重Sd*(二次)	ļ				
(N5)	L16	地震荷重 S s (一次)	ļ				
	L17	地震荷重 S s (二次)					

表5-1(4) 外荷重(続)

ノズル外荷重

ノズル	記号	荷重名称	力 (kN)		モーメント (kN・m)		荷重作用点		
			Н		Fz	Ν	Λ	Mz	位置 (mm)
	L04	死荷重							•
上鏡スプ	L07	熱変形力							
レイノズ	L14	地震荷重Sd*(一次)							
IV	L15	地震荷重Sd*(二次)							
(N6)	L16	地震荷重Ss (一次)							
	L17	地震荷重 S s (二次)							
	L04	死荷重							
or the d	L07	熱変形力							
ブル	L14	地震荷重Sd*(一次)							
(N7)	L15	地震荷重Sd*(二次)							
$(\mathbf{N}T)$	L16	地震荷重Ss (一次)							
	L17	地震荷重Ss (二次)							
23 I	L04	死荷重							
ンエット	L07	熱変形力							
ホンノ計	L14	地震荷重Sd*(一次)							
側官貝迪	L15	地震荷重Sd*(二次)							
	L16	地震荷重Ss (一次)							
(100)	L17	地震荷重Ss (二次)							
差圧検	L04	死荷重							
出・ほう	L07	熱変形力							
酸水注入	L14	地震荷重Sd*(一次)							
管ノズル	L15	地震荷重Sd*(二次)							
(N10)	L16	地震荷重Ss (一次)							
(炉外)	L17	地震荷重 S s (二次)							
差圧検	L04	死荷重							
出・ほう	L07	熱変形力							
酸水注入	L14	地震荷重Sd*(一次)							
管ノズル	L15	地震荷重Sd*(二次)							
(N10)	L16	地震荷重Ss (一次)							
(炉内)	L17	地震荷重Ss (二次)							
	L04	死荷重							
卦壮 ノブ	L07	熱変形力							
同表ノヘ	L14	地震荷重Sd*(一次)							
(N11)	L15	地震荷重Sd*(二次)							
(111)	L16	地震荷重 S s (一次)							
	L17	地震荷重Ss (二次)							

表5-1(4) 外荷重(続)

ノズル外荷重

ノズル	記号荷重名称			力 (kN)	モー) (k)	メント J・m)	荷重作用点
	•		Н	F z	M	Mz	_ 位置 (mm)
	L04	死荷重					
きをす	L07	熱変形力	I				
計装ノス	L14	地震荷重Sd*(一次)	Ι				
\mathcal{N}	L15	地震荷重Sd*(二次)	Ι				
(N1Z)	L16	地震荷重Ss (一次)	Ι				
	L17	地震荷重Ss (二次)	Ι				
	L04	死荷重	Ι				
きをす	L07	熱変形力	Ι				
計装ノス	L14	地震荷重Sd*(一次)	Ι				
\mathcal{N}	L15	地震荷重Sd*(二次)	I				
(N16)	L16	地震荷重Ss (一次)	Ι				
	L17	地震荷重Ss (二次)	Ι				
	L04	死荷重	Ι				
181.57	L07	熱変形力	Ι				
トレンノ	L14	地震荷重Sd*(一次)	Ι				
(N1E)	L15	地震荷重Sd*(二次)	Ι				
(N13)	L16	地震荷重Ss (一次)					
	L17	地震荷重 S s (二次)					
	L04	死荷重	Ι				
低口注水	L07	熱変形力					
低圧住小	L14	地震荷重Sd*(一次)	1				
(N17)	L15	地震荷重Sd*(二次)					
$(\mathbf{N}\mathbf{I}\mathbf{I})$	L16	地震荷重Ss (一次)					
	L17	地震荷重Ss (二次)					
注1:							
注2:							
注3:							

ノスル 电二 10 <th< th=""><th>171</th><th>封卫.</th><th>世毛女孙</th><th>7</th><th>5 N)</th><th>モー</th><th>メント</th><th>荷重作用点</th></th<>	171	封卫.	世毛女孙	7	5 N)	モー	メント	荷重作用点
104 死倚重 再循環未 107 熟愛形力 入口ノズ 114 地震荷重Sa*(一次) ル 115 地震荷重Sa*(一次) 116 地震荷重Sa*(二次) 117 地震荷重Sa*(二次) 116 地震荷重Sa*(二次) 117 地震荷重Sa*(二次) 118 地震荷重Sa*(二次) 119 地震荷重Sa*(二次) 111 地震荷重Sa*(二次) 115 地震荷重Sa*(二次) 116 地震荷重Sa*(二次) 117 地震荷重Sa*(二次) 118 地震荷重Sa*(二次) 119 地震荷重Sa*(二次) 111 地震荷重Sa*(二次) 112 地震荷重Sa*(二次) 113 地震荷重Sa*(二次) 114 地震荷重Sa*(二次) 115 地震荷重Sa*(二次) 116 地震荷重Sa*(二次) 117 地震荷重Sa*(二次)	1 / ///	記万	何里石你	H (K	F _z	(K) M	M _z	- 位置 (mm)
再循環本 人口ノズ (N2) 107 熟変形力 ル (N2) 1.14 地震荷重Sa [*] (-次) 1.16 地震荷重Sa [*] (-次) 1.17 地震荷重Sa [*] (-次) 1.14 地震荷重Sa [*] (-次) 1.15 地震荷重Sa [*] (-次) 1.16 地震荷重Sa [*] (-次) 1.17 地震荷重Sa [*] (-次) 1.16 地震荷重Sa [*] (-次) 1.17 地震荷重Sa [*] (-次) 1.17 地震荷重Sa [*] (-次) 1.14 地震荷重Sa [*] (-次) 1.15 地震荷重Sa [*] (-次) 1.14 地震荷重Sa [*] (-次) 1.15 地震荷重Sa [*] (-次) 1.16 地震荷重Sa [*] (-次) 1.17 地震荷重Sa [*] (-次) 1.16 地震荷重Sa [*]		L04	死荷重	11	1 2	111	1112	•
11 抽火式 114 地震荷重 Sa ⁴ (一次) $\lambda \Pi / X$ 115 地震荷重 Sa ⁴ (二次) $(N2)$ 116 地震荷重 Sa ⁴ (二次) $(N2)$ 116 地震荷重 Sa ⁴ (二次) $(N2)$ 117 地震荷重 Sa ⁴ (一次) $(N4)$ $(N4)$ $(N7)$ $(N4)$ (14) $/// N \otimes \mathcal{R} / D$ $(N4)$ (15) $// N \otimes \mathcal{R} / D$ $(N4)$ (15) $// N \otimes \mathcal{R} / D$ $(N4)$ (15) $// N \otimes \mathcal{R} / D$ $(N4)$ (16) $// N \otimes \mathcal{R} / D$ $(N4)$ (16) $// N \otimes \mathcal{R} / D$ $(N5)$ (16) $// N \otimes \mathcal{R} / D$ $(N7)$ $(N7)$ $// N \otimes \mathcal{R} / D$ $(N5)$ (16) $// N \otimes \mathcal{R} / D$ $(N7)$ (16) $// N \otimes \mathcal{R} / D$ $(N7)$	 面循環水	L07	熱変形力	-				
ル 1.15 地震荷重 Sa ⁺ (二次) (N2) 1.16 地震荷重 Sa ⁺ (二次) 1.17 地震荷重 Sa ⁺ (二次) 1.17 地震荷重 Sa ⁺ (二次) パイ 1.14 地震荷重 Sa ⁺ (一次) μ 1.15 地震荷重 Sa ⁺ (一次) (N4) 1.15 地震荷重 Sa ⁺ (一次) 1.16 地震荷重 Sa ⁺ (一次) 1.17 1.17 地震荷重 Sa ⁺ (一次) 1.17 (N5) 1.16 地震荷重 Sa ⁺ (一次) 1.17 地震荷重 Sa ⁺ (一次) 1.17 1.17 地震荷重 Sa ⁺ (一次) 1.17 (N5) 1.16 地震荷重 Sa ⁺ (一次) 1.17 地震荷重 Sa ⁺ (一次) 1.17 1.15 地震荷重 Sa ⁺ (一次) 1.17 1.16 地震荷重 Sa ⁺ (一次) 1.17 1.17 地震荷重 Sa ⁺ (一次) 1.17 1.16 地震荷重 Sa ⁺ (一次) 1.17 1.17 地震荷重 Sa ⁺ (一次) <td< td=""><td>入口ノズ</td><td>L14</td><td>地震荷重Sd*(一次)</td><td>-</td><td></td><td></td><td></td><td></td></td<>	入口ノズ	L14	地震荷重Sd*(一次)	-				
(N2) L16 地震荷重Ss (一次) 117 地震荷重Ss (二次) 縮木ノズ L04 死荷重	ル	L15	地震荷重Sd*(二次)					
山17 地震荷重Ss (二次) 縮木ノズ 104 死尚重 ν 114 地震荷重Sa*(一次) (N4) 115 地震荷重Ss (二次) 116 地震荷重Ss (二次) 117 地震荷重Ss (二次) 118 地震荷重Ss (二次) 117 地震荷重Ss (二次) 118 地震荷重Ss (二次) 119 地震荷重Ss (二次) 111 地震荷重Ss (二次) 115 地震荷重Ss (二次) 116 地震荷重Ss (二次) 117 地震荷重Ss (二次) 117 地震荷重Ss (二次) 117 地震荷重Ss (二次) 116 地震荷重Ss (二次) 117 地震荷重Ss (二次) 118 地震荷重Ss (二次) 119 地震荷重Ss (二次) 111 地震荷重Ss (二次) 115 地震荷重Ss (二次) 116 地震荷重Ss (二次) 117 <t< td=""><td>(N2)</td><td>L16</td><td>地震荷重 S s (一次)</td><td></td><td></td><td></td><td></td><td></td></t<>	(N2)	L16	地震荷重 S s (一次)					
ID4 死荷重 107 熱変形力 114 地震荷重Sa*(一次) 115 地震荷重Sa*(二次) 116 地震荷重S。(一次) 117 地震荷重S。(二次) 116 地震荷重S。(二次) 117 地震荷重S。(二次) 116 地震荷重S。(二次) 117 地震荷重S。(二次) 118 地震荷重Sa(*(一次)) 117 地震荷重Sa(-(二次)) 116 地震荷重Sa(-(二次)) 117 地震荷重Sa(-(二次)) 116 地震荷重Sa(-(二次)) 117 地震荷重Sa(-(二次)) 116 地震荷重Sa(-(二次)) 117 地震荷重Sa(-(二次)) 118 地震荷重Sa(-(二次)) 119 地震荷重Sa(-(二次)) 114 地震荷重Sa(-(二次)) 115 地震荷重Sa(-(二次)) 116 地震荷重Sa(-(二次)) 117 地震荷重Sa(-(二次)) 118 地震荷重Sa(-(二次)) 119 地震荷重Sa(-(二次)) 110 地震荷重Sa(-(二次)) 111 地震荷重Sa(-(二次)) 112 地震荷重Sa(-(二次)) 11		L17	地震荷重 S s (二次)					
		L04	死荷重					
	44 L	L07	熱変形力					
	給水ノス	L14	地震荷重Sd* (一次)					
L16 地震荷重Ss(-次) L17 地震荷重Ss(-次) 低圧炉心 L07 熬変形力(定常時) スプレイ L14 地震荷重Ss(-(次) L15 地震荷重Ss(-(次) L16 地震荷重Ss(-(次) L17 地震荷重Ss(-(次) L16 地震荷重Ss(-(次) L17 地震荷重Ss(-(次) L16 地震荷重Ss(-(次) L17 地震荷重Ss(-(次) L17 地震荷重Sa(-(-次) L15 地震荷重Sa(-(-次) L14 地震荷重Sa(-(-次) L15 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L14 地震荷重Sa(-(-次) L15 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L18 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 地震荷重Sa(-(-次) L16 地震荷重Sa(-(-次) L17 <td>(N4)</td> <td>L15</td> <td>地震荷重Sd* (二次)</td> <td></td> <td></td> <td></td> <td></td> <td></td>	(N4)	L15	地震荷重Sd* (二次)					
117地震荷重Ss(二次)低圧炉心近04死荷重スブレイ114地震荷重Sa*(一次)ノズル115地震荷重Sa*(二次)(N5)116地震荷重Ss(二次)117地震荷重Ss(二次)118117地震荷重Sa*(二次)119114地震荷重Sa*(一次)111115地震荷重Sa*(一次)115地震荷重Sa*(一次)116地震荷重Sa(-(二次)117地震荷重Ss(二次)118地震荷重Sa(-(二次)119地震荷重Sa(-(二次)111地震荷重Sa(-(二次)115地震荷重Sa(-(二次)116地震荷重Sa(-(二次)117地震荷重Sa(-(二次)118地震荷重Sa(-(二次)111地震荷重Sa(-(二次)113北震荷重Sa(-(二次)114北震荷重Sa(-(二次)115地震荷重Sa(-(二次)116地震荷重Sa(-(二次)117地震荷重Sa(-(二次)113北震荷重Sa(-(二次)113北震荷重Sa(-(二次)113北震荷重Sa(-(二次)113北震荷重Sa(-(二次)114北震荷重Sa(-(二次)115北震荷重Sa(-(二次)116北震荷重Sa(-(二次)117北震荷重Sa(-(二次)118北震荷重Sa(-(二次)121北122二123二		L16	地震荷重 S s (一次)					
低圧症心 スプレイ ノズル (N5)104死荷重114地震荷重Sa*(一次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)117地震荷重Ss*(二次)117地震荷重Ss*(二次)117地震荷重Ss*(二次)118地震荷重Sa*(一次)119地震荷重Ss*(二次)111地震荷重Ss*(二次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)117地震荷重Ss*(二次)118地震荷重Ss*(二次)119地震荷重Ss*(二次)111地震荷重Ss*(二次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)117地震荷重Ss*(二次)118地震荷重Ss*(二次)119地震荷重Ss*(二次)111地震荷重Ss*(二次)112地震荷重Ss*(二次)113地震荷重Ss*(二次)114地震荷重Ss*(二次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)117地震荷重Ss*(二次)118地震荷重Ss*(二次)119地震荷重Ss*(二次)111地震荷重Ss*(二次)112地震荷重Ss*(二次)113地震荷重Ss*(二次)114地震荷重Ss*(二次)115地震荷重Ss*(二次)116地震荷重Ss*(二次)117地震荷重Ss*(二次)1181171191181118118111911911191191119119111911911191191119119111911911191191119119 <td></td> <td>L17</td> <td>地震荷重 S s (二次)</td> <td></td> <td></td> <td></td> <td></td> <td></td>		L17	地震荷重 S s (二次)					
低圧症心 スプレイ107熱変形力 (定常時)スプレイ114地震荷重Sa*(一次)ノズル (N5)115地震荷重Sa*(二次)116地震荷重Ss(一次)117地震荷重Ss(一次)117地震荷重Sa*(一次)パイ114地震荷重Sa*(一次)パブレイ115地震荷重Sa*(一次)ノズル (N5)116地震荷重Ss116地震荷重Ss(一次)117地震荷重Ss(一次)118地震荷重Sa*(一次)低圧注木 ノズル (N1)115地震荷重Sa*(一次)116地震荷重Sa*(一次)114115地震荷重Sa*(一次)116地震荷重Ss(一次)117地震荷重Ss(一次)118地震荷重Ss(一次)119地震荷重Ss(一次)111地震荷重Ss(一次)112地震荷重Ss(二次)113地震荷重Ss(二次)114地震荷重Ss(二次)115地震荷重Ss(二次)116地震荷重Ss(二次)117地震荷重Ss(二次)118北震荷重Ss(二次)		L04	死荷重					
スプレイ L14 地震荷重Sa*(一次) (N5) L15 地震荷重Sa*(二次) L16 地震荷重Sa*(二次) L17 地震荷重Sa*(二次) 高圧炉心 L04 死荷重 スプレイ L14 地震荷重Sa*(一次) L15 地震荷重Sa*(一次) L14 北京荷重Sa*(一次) L15 地震荷重Sa*(二次) L17 地震荷重Sa*(二次) L17 L18 地震荷重Sa*(一次) L17 L17 地震荷重Sa*(一次) L17 L17 地震荷重Sa*(一次) L14 L17 地震荷重Sa*(一次) L14 L17 地震荷重Sa*(一次) L15 L17 地震荷重Sa*(一次) L17 L18 地震荷重Sa*(一次) L17 L15 地震荷重Sa*(二次) L17 L16 地震荷重Sa*(二次) L17 L15 地震荷重Sa*(二次) L16 L16 地震荷重Sa*(二次) L17 L17 地震荷重Sa*(二次) L17 注 L17 地震荷重Sa*(二次) 注1 L17 地震荷重Sa*(二次) 注3 L17 地震荷重Sa*(二次) 上13 L14	低圧炉心	L07	熱変形力 (定常時)					
ノズル (N5) L15 地震荷重Sa*(二次) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) 高圧炉心 スプレイ L07 熱変形力 (定常時) (元) ノズル (N5) L16 地震荷重Sa*(一次) (一次) L17 地震荷重Sa*(二次) (二) (二) L16 地震荷重Sa*(二次) (二) (二) L17 地震荷重Sa (二次) (二) L16 地震荷重Sa (二次) (二) L17 地震荷重Sa (二次) (二) L14 地震荷重Sa (二次) (二) L17 地震荷重Sa (二次) (二) L17 地震荷重Sa (一次) (二) L14 地震荷重Sa (一次) (二) L17 地震荷重Sa (一次) (二) L16 地震荷重Sa (一次) (二) L17 地震荷重Sa (一次) (二) 注1 : : : : 注3: : : : :	スプレイ	L14	地震荷重Sd*(一次)					
(N5) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) 高圧炉心 L07 熟変形力 (定常時) スプレイ L14 地震荷重Sd*(一次) ノズル L15 地震荷重Ss (二次) (N5) L16 地震荷重Ss (二次) L17 地震荷重Ss (二次) L16 L17 地震荷重Ss (二次) L17 L17 地震荷重Ss (二次) L14 L17 地震荷重Ss (二次) L14 L17 地震荷重Ss (二次) L14 L17 地震荷重Ss (二次) L14 L17 地震荷重Ss (二次) L15 L18 地震荷重Ss (二次) L16 L19 地震荷重Ss (二次) L16 L17 地震荷重Ss (二次) L17 L16 地震荷重Ss (二次) L17 注1 土 工 注2 二 二 注3 二 二	ノズル	L15	地震荷重Sd*(二次)					
117地震荷重Ss (二次)高圧炉心 スプレイ1.04死荷重スプレイ ノズル (N5)1.14地震荷重Sa*(一次)1.15地震荷重Sa*(二次)1.16地震荷重Ss (二次)1.17地震荷重Ss (二次)1.17地震荷重Sa*(一次)1.18北震荷重Sa*(一次)1.14地震荷重Sa*(一次)1.15地震荷重Sa*(一次)1.16地震荷重Sa*(一次)1.16地震荷重Sa*(二次)1.16地震荷重Ss (一次)1.17地震荷重Ss (二次)	(N5)	L16	地震荷重 S s (一次)					
高圧炉心 スプレイL04死荷重L07熱変形力 (定常時)スプレイL14地震荷重Sd*(一次)L15地震荷重Ss(一次)L16地震荷重Ss(一次)L17地震荷重Ss(二次)L17地震荷重Sa(*(一次)L14地震荷重Sd*(一次)L15地震荷重Sd*(一次)L16地震荷重Sd*(一次)L15地震荷重Sd*(一次)L16地震荷重Sd*(一次)L17地震荷重Ss(一次)L16地震荷重Ss(一次)L17地震荷重Ss(一次)L18比震荷重Ss(二次)		L17	地震荷重 S s (二次)					
高圧炉心 スプレイL07熱変形力 (定常時)スプレイL14地震荷重Sa* (一次)ノズル (N5)L15地震荷重Sa* (二次)L16地震荷重Ss(一次)L17地震荷重Ss(二次)L17地震荷重Sa* (二次)L07熱変形力 (定常時)L14地震荷重Sa* (一次)L15地震荷重Sa* (一次)L16地震荷重Sa* (二次)L17地震荷重Sa* (二次)L18地震荷重SsL17地震荷重SsL17地震荷重Sa* (二次)L18地震荷重SsL17地震荷重SsL17地震荷重Ss土17地震荷重Ss注1:注2:注3:		L04	死荷重					
スプレイ ノズル (N5)L14地震荷重Sa*(一次)L15地震荷重Sa(二次)L16地震荷重Ss(二次)L17地震荷重Ss(二次)L17地震荷重Sa(二次)L04死荷重L07熟変形力(定常時)L14地震荷重Sa*(一次)L15地震荷重Sa*(二次)L16地震荷重Ss(一次)L17地震荷重Ss(二次)L16地震荷重Ss(二次)注1:注2:注3:	高圧炉心	L07	熱変形力 (定常時)					
(N5) L15 地震荷重Sa* (二次) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) L17 地震荷重Sa* (二次) 低圧注水 L04 死荷重 L07 熟変形力 (定常時) L14 地震荷重Sa* (一次) L15 地震荷重Sa* (二次) L16 地震荷重Sa* (二次) L16 地震荷重Ss (二次) 注1 土17 注2 注3	スプレイ	L14	地震荷重Sd*(一次)					
(N5) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) L17 地震荷重Ss (二次) 低圧注水 L04 死荷重 L07 熟変形力 (定常時) L14 地震荷重Sa* (一次) L15 地震荷重Sa* (二次) L16 地震荷重Ss (一次) L16 地震荷重Ss (二次) 上17 地震荷重Ss (二次) 注1 注2 注2 注3	ノズル	L15	地震荷重Sd*(二次)					
L17 地震荷重Ss (二次) L04 死荷重 L07 熟変形力 (定常時) L14 地震荷重Sa* (一次) L15 地震荷重Sa* (二次) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) 注1: 注2: 注2: 注3:	(N5)	L16	地震荷重 S s (一次)	_				
L04死荷重L07熱変形力 (定常時)L14地震荷重 S d* (一次)L15地震荷重 S d* (二次)L16地震荷重 S sL17地震荷重 S s注1:注2:注3:		L17	地震荷重 S s (二次)	_				
低圧注水 ノズル (N17) L07 熱変形力(定常時) L14 地震荷重Sa*(一次) L15 地震荷重Sa*(二次) L16 地震荷重Ss(一次) L17 地震荷重Ss(二次)		L04	死荷重	_				
低圧注水 ノズル (N17) L14 地震荷重Sd*(一次) L15 地震荷重Sd*(二次) L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) 注1: 注2: 注3:	低口決步	L07	熱変形力(定常時)	_				
(N17) L15 地震荷重Sd*(二次) L16 地震荷重Ss<(一次)	低圧注水	L14	地震荷重Sd*(一次)	_				
L16 地震荷重Ss (一次) L17 地震荷重Ss (二次) 注1: 注2: 注3:	(N17)	L15	地震荷重Sd*(二次)	_				
L17 地震荷重Ss 二次) 注1: 注2: 注3:		L16	地震荷重 S s (一次)	_				
注1: 注2: 注3:		L17	地震荷重 S s (二次)				+	
注2 : 注3 :	注1:							
注3:	注2:							
	注3:							

表5-1(5) 外荷重 ノズルサーマルスリーブ外荷重

表5-1(6) 外荷重

ブラケット外荷重

ブラケット名	荷重名称		力 (kN)	
		Fx	Fy	Fz
スタビライザ	地震荷重Sd*			
ブラケット	地震荷重Ss			
スチームドライヤ	地震荷重Sd*			
サポートブラケット	地震荷重Ss			
給水スパージャ	地震荷重Sd*			
ブラケット	地震荷重Ss			
炉心スプレイ	地震荷重Sd*			
ブラケット	地震荷重Ss			
注1:				

注2:

小子》在为在带金碇400千万间里					
	荷重名称	軸	力	せん断力	曲げモーメント
記号		(kN)		(kN)	$(kN \cdot m)$
		N (最大)	N(最小)	Q	М
—	供用状態A及びB				
-	供用状態D*				
L14	地震荷重Sd*				
L16	地震荷重Ss				

表5-1 (7) 外荷重

原子炉圧力容器基礎ボルト外荷重

注記 *: 原子炉冷却材喪失事故後(原子炉冷却材喪失直後を除く。)の荷重を表す。

表5-2 荷重の組合せ

状 態	荷重の組合せ	応力評価
供用状態A及びB	L01 + L02 + (L04, L12, L13, L18又は L19) ^{*1} +L07	PL+Pb+Q 疲労解析
	L01+L02+ (L04, L12, L13, L18又はL19) *1 +L11+L14	Pm PL+Pb又はPL
許容応力状態ⅢAS	L14+L15	PL+Pb+Q 疲労解析
	L01+L02+ (L04, L12, L13, L18又はL19) *1 +L11+L16	Pm PL+Pb又はPL
許容応力状態IVAS	L16+L17	PL+Pb+Q 疲労解析
	L01+L02+ (L04, L12, L13, L18又はL19) *1 +L11+ (L14又はL16) *1	Pm PL+Pb又はPL
許容応力状態VAS*2	(L14+L15又はL16+L17) *1	PL+Pb+Q 疲労解析
供用状態E (重大事故等時)	L01+L02+L11+ (L04, L23又はL24) *1	Pm PL+Pb又はPL

注記 *1: ()内の荷重のうち,各運転条件において実際に考慮する荷重を組合せる。

*2:許容応力状態VASにおける荷重の組合せによる評価は,設計基準対象施設の評価に 包絡される。

$$\begin{array}{|c|c|c|c|c|} \hline S_n & S_n & S_n \\ \hline 3 \cdot S_m \# & S_n = \frac{S_n}{2} \\ \hline \hline 3 \cdot S_m \mathbb{K} \bot & S_n = \frac{K \cdot S_n}{2} \\ & Ke(t, \ \mathcal{K} \mathcal{O} = fin(z,t)) \ddagger \# + \mathcal{S}_n, \\ \hline (1) & K < Bo \\ \hline (2) & \frac{S_n}{3 \cdot S_m} < \frac{\left(q + \frac{Ao}{K} - 1\right) - \sqrt{\left(q + \frac{Ao}{K} - 1\right)^2 - 4 \cdot Ao \cdot (q - 1)}}{2 \cdot Ao} \\ & Ke = 1 + Ao \cdot \left(\frac{Sn}{3 \cdot S_m} - \frac{1}{K}\right) \\ \hline (2) & K \ge Bo \\ & Ke = 1 + (q - 1) \cdot \left(1 - \frac{3 \cdot Sm}{Sn}\right) \\ \hline (2) & K \ge Bo \\ & 0 & \frac{Sn}{3 \cdot S_m} < \frac{(q - 1) - \sqrt{Ao\left(1 - \frac{1}{K}\right)(q - 1)}}{a} \\ & Ke = a \cdot \frac{Sn}{3 \cdot S_m} + Ao \cdot \left(1 - \frac{1}{K}\right) + 1 - a \\ & (2) & \frac{Sn}{3 \cdot S_m} \ge \frac{(q - 1) - \sqrt{Ao\left(1 - \frac{1}{K}\right)(q - 1)}}{a} \\ & Ke = 1 + (q - 1) \cdot \left(1 - \frac{3 \cdot Sm}{Sn}\right) \\ \hline C = \zeta \cdot \zeta, \\ & K = \frac{Sn}{Sn} \\ & a + Ao \cdot \left(1 - \frac{1}{K}\right) + (q - 1) - 2 \cdot \sqrt{Ao\left(1 - \frac{1}{K}\right)(q - 1)} \\ \end{array}$$

注1:q, Ao, Boは, 表4-2に示す。

注2:地震荷重Sd*又は地震荷重Ssにあっては、SnをそれぞれSn^{#1}、Sn^{#2}と読み替え、 SpをそれぞれSp^{#1}、Sp^{#2}と読み替えるものとする。

V-3-3-1 原子炉圧力容器の強度計算書

1. 胴板の強度計算	2
1.1 一般事項	2
1.1.1 形状・寸法・材料	2
1.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.1.3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.2 計算条件	5
1.2.1 解析範囲	5
1.2.2 重大事故等時の条件	5
1.2.3 材料	5
1.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
1.3 応力計算	5
1.3.1 応力評価点	5
1.3.2 外荷重による応力 ····································	5
1.3.2.1 荷重条件(L23) ·····	5
1.4 広力強さの延価	5
141 一次一般閲応力強さの評価	5
1 4 2 一次	5
	0
2. 主フランジ,上部鏡板及びスタッドボルトの強度計算	8
2.1 一般事項	8
2.1.1 形状・寸法・材料	8
2.1.2 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
2.2 計算条件	11
2.2.1 解析範囲	11
2.2.2 重大事故等時の条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2.2.3 材料	11
2.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2.3 応力計算	11
2.3.1 応力評価点	11
2.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11
2.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・	11

2.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・	11
2.4.3 スタッドボルトの平均引張応力の評価 ・・・・・・・・・・・・・・	11
2.4.4 スタッドボルトの平均引張+曲げ応力の評価 ・・・・・・・・・・	12
3. ト部鏡板の強度計算 ······	16
3.1 一般事項	16
3.1.1 形状・寸法・材料	16
3.1.2 考慮する荷重	16
3.1.3 計算結果の概要 ·····	16
3.2 計算条件	19
3.2.1 解析範囲	19
3.2.2 重大事故等時の条件	19
3.2.3 材料	19
3.2.4 物性値及び許容応力	19
3.3 応力計算	19
3.3.1 応力評価点	19
3.3.2 外荷重による応力 ・・・・・	19
3.3.2.1 荷重条件(L23)	19
3.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
3.4.1 一次一般膜応力強さの評価	19
3.4.2 一次膜+一次曲げ応力強さの評価	19
 制御棒駆動機構ハウジング貫通部の強度計算 	22
4.1 一般事項	22
4.1.1 形状・寸法・材料	22
4.1.2 考慮する荷重	22
4.1.3 計算結果の概要 ······	22
4.2 計算条件	25
4.2.1 解析範囲	25
4.2.2 重大事故等時の条件	25
4.2.3 材料	25
4.2.4 物性値及び許容応力	25

4.3 応力計算	25
4.3.1 応力評価点	25
4.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
4.3.2.1 荷重条件(L23, L24) ·····	25
4.4 応力強さの評価 ·····	25
4.4.1 一次一般膜応力強さの評価	25
4.4.2 一次膜+一次曲げ応力強さの評価	25
4.5 特別な評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
4.5.1 外圧の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
4.5.2 座屈に対する評価 ・・・・・	26
4.5.2.1 計算データ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	26
4.5.2.2 圧縮応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
5. 中性子計測ハウジング貫通部の強度計算 ・・・・・・・・・・・・・・・・	31
5.1 一般事項	31
5.1.1 形状・寸法・材料	31
5.1.2 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
5.2 計算条件	36
5.2.1 解析範囲	36
5.2.2 重大事故等時の条件	36
5.2.3 材料	36
5.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
5.3 応力計算	36
5.3.1 応力評価点	36
5.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
5.4.1 一次一般膜応力強さの評価	36
5.4.2 一次膜+一次曲げ応力強さの評価	36
6. 再循環水出口ノズル (N1)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・・	41
6.1 一般事項	41
6.1.1 形状・寸法・材料	41
6.1.2 考慮する荷重 ・・・・・・	41
6.1.3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	41

6.2 計算条件	44
6.2.1 解析範囲	44
6.2.2 重大事故等時の条件	44
6.2.3 材料	44
6.2.4 物性値及び許容応力	44
6.3 応力計算	44
6.3.1 応力評価点	44
6.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
6.3.2.1 荷重条件(LO4) ·····	44
6.4 応力強さの評価 ······	44
6.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
6.4.2 一次膜+一次曲げ応力強さの評価	44
7. 再循環水入口ノズル(N2)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・	47
7.1 一般事項	47
7.1.1 形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
7.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
7.1.3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	47
7.2 計算条件	50
7.2.1 解析範囲	50
7.2.2 重大事故等時の条件	50
7.2.3 材料	50
7.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
7.3 応力計算	50
7.3.1 応力評価点	50
7.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
7.3.2.1 荷重条件(L04)	50
7.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
7.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	50
7.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・	50
8. 主蒸気ノズル(N3)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
8.1 一般事項	53

8.1.1	形状・寸法・材料	53
8.1.2	考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
8.1.3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	53
8.2 計	算条件	56
8.2.1	解析範囲	56
8.2.2	重大事故等時の条件 ・・・・・	56
8.2.3	材料	56
8.2.4	物性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
8.3 応	力計算	56
8.3.1	応力評価点	56
8.3.2	外荷重による応力 ・・・・・・	56
8.3.2	.1 荷重条件(LO4) ·····	56
8.4 応	カ強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
8.4.1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	56
8.4.2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・	56
9. 給水	ノズル(N4)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
9.1 -	般事項	59
9.1.1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
9.1.2	考慮する荷重・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
9.1.3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	59
9.2 計	算条件	62
9.2.1	解析範囲	62
9.2.2	重大事故等時の条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
9.2.3	材料	62
9.2.4	物性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
9.3 応	力計算	62
9.3.1	応力評価点	62
9.3.2	外荷重による応力 ・・・・・・	62
9.3.2	.1 荷重条件(LO4) ·····	62
9.4 応	力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
9.4.1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	62
9.4.2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・	62

10. 炉心	スプレイノズル(N5)の強度計算 ・・・・・・・・・・・・・・・・・・・・・	65
10.1 —	般事項	65
10.1.1	形状・寸法・材料	65
10.1.2	考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
10.1.3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	65
10.2 計	算条件	69
10.2.1	解析範囲	69
10.2.2	重大事故等時の条件	69
10.2.3	材料	69
10. 2. 4	物性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
10.3 応	力計算	69
10.3.1	応力評価点	69
10.3.2	外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
10.3.2	.1 荷重条件(LO4) ·····	69
10.4 応	力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
10.4.1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・	69
10. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・	69
11 上錇	スプレイノズル (N6) の쓻度計算 ・・・・・・・・・・・・・・・・・・・・・・	74
11 1 一		74
11 1 1	₩¥+\$	74
11.1.1	2010年1月1日 - 11日	74
11. 1. 2	う 二、 う に い 	74
11 9 卦	笛冬州	77
11.2 pr		77
11.2.1	所行戦四 重十事故	77
11.2.2		77
11.2.3	約科 物性値及び対応広力	77
11. 2. 4	物性値及び計谷応力	((
11.3 応	力計算	77
11.3.1	応力評価点	77
11.3.2	外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
11.3.2	.1 荷重条件(LO4) ·····	77
11.4 応	力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
----------	---	----------
11.4.1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	77
11.4.2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・	77
12. ベン	トノズル(N7)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
12.1 —	般事項	80
12.1.1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
12.1.2	考慮する荷重	80
12.1.3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
12.2 計	算条件	83
12.2.1	解析範囲	83
12.2.2	重大事故等時の条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
12.2.3	材料	83
12.2.4	物性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
12.3 応	力計算	83
12. 3. 1	- 応力評価点	83
12.3.2	外荷重による応力 ····································	83
12.3.2	.1 荷重条件(L04) ·····	83
19.4 🗟	土産キの河圧	0.0
12.4 応		83
12.4.1		83
12. 4. 2	一次膜+一次曲け応力強さの評価	83
13. ジェ	ットポンプ計測管貫通部ノズル (N8) の強度計算 ・・・・・・・・・	86
13.1 —	般事項	86
13. 1. 1	形状・寸法・材料	86
13.1.2	考慮する荷重	86
13. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
13.2 計	筒条件	89
13.2.1		89
13.2.1	パエレ # 12 / 12 / 12 / 12 / 12 / 12 / 12 / 12	80 80
13 9 2	エハナ 映 オ 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	09 20
12.2.3		09
13. 2. 4	彻耳胆及U`矸仓心刀	09

13.3 応力計算	89
13.3.1 応力評価点	89
13.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
13.3.2.1 荷重条件(L04)	89
13.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	89
13.4.1 一次一般膜応力強さの評価	89
13.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・	89
14. 差圧検出・ほう酸水注入管ノズル (N10) の強度計算	92
14.1 一般事項	92
14.1.1 形状・寸法・材料	92
14.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
14.1.3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	92
14.2 計算条件	95
14.2.1 解析範囲	95
14.2.2 重大事故等時の条件	95
14.2.3 材料	95
14.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
14.3 応力計算	95
14.3.1 応力評価点	95
14.3.2 外荷重による応力 ·····	95
14.3.2.1 荷重条件(L04)	95
14.4 応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
14.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	95
14.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・	95
15. 計装ノズル (N11, N12, N16) の強度計算 ·····	98
15.1 一般事項	98
15.1.1 形状・寸法・材料	98
15.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98
15.1.3 計算結果の概要	98
15.2 計算条件	104
15.2.1 解析範囲	104

15.2.2 重大事故等時の条件	· 104
15.2.3 材料	· 104
15.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 104
15.3 応力計算	· 104
15.3.1 応力評価点	· 104
15.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 104
15.3.2.1 荷重条件(L04) ·····	· 104
15.4 応力強さの評価 ······	· 104
15.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・	· 104
15.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・	· 104
16. ドレンノズル(N15)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・・・	· 111
16.1 一般事項	· 111
16.1.1 形状・寸法・材料	· 111
16.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 111
16.1.3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 111
16.2 計算条件	· 114
16.2.1 解析範囲	· 114
16.2.2 重大事故等時の条件	· 114
16.2.3 材料	· 114
16.2.4 物性値及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 114
16.3 応力計算	· 114
16.3.1 応力評価点	· 114
16.3.2 外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 114
16.3.2.1 荷重条件(L04) ·····	· 114
16.4 応力強さの評価 ······	· 114
16.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・	· 114
16.4.2 一次膜+一次曲げ応力強さの評価	· 114
17. 低圧注水ノズル(N17)の強度計算 ・・・・・・・・・・・・・・・・・・・・・・	· 117
17.1 一般事項 ·····	· 117
17.1.1 形状・寸法・材料	· 117
17.1.2 考慮する荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 117

17.1.3	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	117
17.2 計算	算条件 ••••••	120
17.2.1	解析範囲	120
17.2.2	重大事故等時の条件	120
17.2.3	材料	120
17.2.4	物性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
		100
17.3 応う	力計算	120
17.3.1	応力評価点	120
17.3.2	外荷重による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
17. 3. 2.	1 荷重条件 (L04) ·····	120
17.4 応ス	力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
17.4.1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	120
17.4.2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・	120

図表目次

図1-1	形状・寸法・材料・応力評価点(胴板)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
図2-1	形状・寸法・材料・応力評価点	
	(主フランジ,上部鏡板及びスタッドボルト)・・・・・	9
図3-1	形状・寸法・材料・応力評価点(下部鏡板)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
図4-1	形状・寸法・材料・応力評価点	
	(制御棒駆動機構ハウジング貫通部)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23
図5-1	形状・寸法・材料・応力評価点(中性子計測ハウジング貫通部)	32
図6-1	形状・寸法・材料・応力評価点(再循環水出口ノズル(N1)) ······	42
図7-1	形状・寸法・材料・応力評価点(再循環水入口ノズル (N2)) ・・・・・	48
図8-1	形状・寸法・材料・応力評価点(主蒸気ノズル(N3)) ・・・・・・・	54
図9-1	形状・寸法・材料・応力評価点(給水ノズル(N4)) ・・・・・・・・・	60
図10-1	形状・寸法・材料・応力評価点(炉心スプレイノズル(N5))・・・・	66
図11-1	形状・寸法・材料・応力評価点(上鏡スプレイノズル(N6))・・・・	75
図12-1	形状・寸法・材料・応力評価点(ベントノズル(N7))・・・・・・・	81
図13-1	形状・寸法・材料・応力評価点	
	(ジェットポンプ計測管貫通部ノズル(N8)) ・・・・・・	87
図14-1	形状・寸法・材料・応力評価点	
	(差圧検出・ほう酸水注入管ノズル(N10))・・・・・・・	93
図15-1	形状・寸法・材料・応力評価点	
	(計装ノズル(N11, N12, N16)) ・・・・・・・・・・	99
図16-1	形状・寸法・材料・応力評価点(ドレンノズル(N15))・・・・・・・	112
図17-1	形状・寸法・材料・応力評価点(低圧注水ノズル(N17))・・・・・・	118

表1-1	胴板の計算結果の概要	4
表1-2	胴板の一次一般膜応力強さの評価のまとめ ・・・・・・・・・・・・	6
表1-3	胴板の一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・・・	7
表2-1	主フランジ,上部鏡板及びスタッドボルトの計算結果の概要 ・・・・・	10
表2-2	主フランジ及び上部鏡板の	
	一次一般膜応力強さの評価のまとめ ・・・・・・・・・・	13
表2-3	主フランジ及び上部鏡板の	
	一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・・	14
表2-4	スタッドボルトの平均引張応力の評価のまとめ ・・・・・・・・・・	15
表2-5	スタッドボルトの平均引張+曲げ応力の評価のまとめ ・・・・・	15
表3-1	下部鏡板の計算結果の概要	18
表3-2	下部鏡板の一次一般膜応力強さの評価のまとめ	20
表3-3	下部鏡板の一次膜+一次曲げ応力強さの評価のまとめ ・・・・・	21
表4-1	制御棒駆動機構ハウジング貫通部の計算結果の概要 ・・・・・・・・	24
表4-2	制御棒駆動機構ハウジング貫通部の	
	一次一般膜応力強さの評価のまとめ	28
表4-3	制御棒駆動機構ハウジング貫通部の	
	一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・	29
表4-4	スタブチューブの外圧及び座屈に対する評価に用いる荷重	30
表4-5	スタブチューブの外圧の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
表4-6	スタブチューブの座屈に対する評価 ・・・・・・・・・・・・・・・・・	30
表5-1	中性子計測ハウジング貫通部の計算結果の概要 ・・・・・・・・・・・	34
表5-2	中性子計測ハウジング貫通部の	
	一次一般膜応力強さの評価のまとめ ・・・・・・・・・・	37
表5-3	中性子計測ハウジング貫通部の	
	一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・・	39
表6-1	再循環水出口ノズル(N1)の計算結果の概要 ・・・・・・・・・・・	43

- 表6-1 再循環水出ロノスル (N1) の計算結果の概要 ····· 表6-2 再循環水出ロノズル (N1) の

表6-3 再循環水出口ノズル(N1)の

一次膜+一次曲げ応力強さの評価のまとめ ・・・・・ 46

- 表7-1 再循環水入口ノズル(N2)の計算結果の概要 ········· 49
- 表7-2 再循環水入口ノズル(N2)の
 - 一次一般膜応力強さの評価のまとめ ・・・・・・・・・ 51
- 表7-3 再循環水入口ノズル (N2) の
 - 一次膜+一次曲げ応力強さの評価のまとめ ………… 52
- 表8-1 主蒸気ノズル (N3) の計算結果の概要 ······ 55
- 表8-2 主蒸気ノズル(N3)の一次一般膜応力強さの評価のまとめ …… 57
- 表8-3 主蒸気ノズル(N3)の
 - 一次膜+一次曲げ応力強さの評価のまとめ ……… 58
- 表9-1 給水ノズル(N4)の計算結果の概要 ······ 61
- 表9-2 給水ノズル(N4)の一次一般膜応力強さの評価のまとめ ……… 63
- 表9-3 給水ノズル(N4)の一次膜+一次曲げ応力強さの評価のまとめ ···· 64
- 表10-1 炉心スプレイノズル (N5) の計算結果の概要 ····· 67
- 表10-2 炉心スプレイノズル (N5)の

RO

NT2 補③ V-3-3-1

- 表11-1 上鏡スプレイノズル (N6)の計算結果の概要 ····· 76
- 表11-2 上鏡スプレイノズル(N6)の
- 表12-1 ベントノズル (N7) の計算結果の概要 ・・・・・・・・・・・ 82
- 表12-2 ベントノズル(N7)の一次一般膜応力強さの評価のまとめ …… 84

表12-3 ベントノズル (N7)の

一次膜+一次曲げ応力強さの評価のまとめ ……85

77

- 表13-1 ジェットポンプ計測管貫通部ノズル (N8)の計算結果の概要 ····· 88
- 表13-2 ジェットポンプ計測管貫通部ノズル(N8)の
- 表13-3 ジェットポンプ計測管貫通部ノズル(N8)の
 - 一次膜+一次曲げ応力強さの評価のまとめ ………… 91
- 表14-1 差圧検出・ほう酸水注入管ノズル(N10)の計算結果の概要 ・・・・・ 94
- 表14-2 差圧検出・ほう酸水注入管ノズル(N10)の
 - 一次一般膜応力強さの評価のまとめ ………………… 96
- 表14-3 差圧検出・ほう酸水注入管ノズル (N10)の 一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・ 97
- 表15-1 計装ノズル (N11, N12, N16) の計算結果の概要 ・・・・・ 101
- 表15-2 計装ノズル(N11, N12, N16)の
 - 一次一般膜応力強さの評価のまとめ …………… 105
- 表15-3 計装ノズル (N11, N12, N16) の 一次膜+一次曲げ応力強さの評価のまとめ ····· 108
- 表16-1 ドレンノズル(N15)の計算結果の概要 ・・・・・・・・・・・・・・ 113
- 表16-2 ドレンノズル(N15)の一次一般膜応力強さの評価のまとめ ・・・・・ 115
- 表16-3 ドレンノズル (N15) の
 - 一次膜+一次曲げ応力強さの評価のまとめ ………… 116
- 表17-1 低圧注水ノズル(N17)の計算結果の概要 ····· 119
- 表17-2 低圧注水ノズル(N17)の
- 表17-3 低圧注水ノズル (N17)の 一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・・ 122

本計算書は、原子炉圧力容器の強度計算書である。

- 1. 胴板の強度計算
- 1.1 一般事項

本章は、原子炉圧力容器胴板の強度計算である。

1.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図1-1に示す。

1.1.2 考慮する荷重

考慮した各荷重を「V-2-3-4-1-1 原子炉圧力容器の応力解析の方針」(以下「応力解 析の方針」という。)の5章に示す。

1.1.3 計算結果の概要

計算結果の概要を表1-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図1-1 形状・寸法・材料・応力評価点(胴板)(単位:mm)

表1-1 胴板の計算結果の概要

			ー次ー患	誤 膜応力	- ð	₹ 岐 + − }	失曲げ応力	
ホイナット ユノノ 24	가나 삼다		(MP	a)		(MP	a)	
きみみの肉を	公派	応 力 遇 さ	許容値	応力評価面	応強な	許容値	応力評価面	
胴 板 SQV2A	供用状態臣	182	326	P01-P02	182	490	P01-P02	

- 1.2 計算条件
- 1.2.1 解析範囲
 解析範囲を図1-1に示す。
- 1.2.2 重大事故等時の条件
 重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 1.2.3 材料
 各部の材料を図1-1に示す。
- 1.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 1.3 応力計算
- 1.3.1 応力評価点
 応力評価点の位置を図1-1に示す。
- 1.3.2 外荷重による応力
- 1.3.2.1 荷重条件(L23)
 胴板に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 1.4 応力強さの評価
 応力強さの評価は, 胴板について行う。
- 1.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表1-2に示す。
 表1-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す許
 容応力を満足する。
- 1.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表1-3に示す。
 表1-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節に
 示す許容応力を満足する。

表1-2 胴板の一次一般膜応力強さの評価のまとめ

(単位:MPa)			
評価面	供用制	犬態E	
	応力 強さ	許容値	
P01			
P02	182	326	
P01'			
P02'	182	326	
P03			
P04	182	326	
P03'			
P04'	182	326	
P05			
P06	182	326	
P05'			
P06'	182	326	
P07			
P08	182	326	
P07'			
P08'	182	326	

(単位:MPa)

表1-3 胴板の一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)			
評価面	供用制	犬態E	
	応力 強さ	許容値	
P01			
P02	182	490	
P01'			
P02'	182	490	
P03			
P04	182	490	
P03'			
P04'	182	490	
P05			
P06	182	490	
P05'			
P06'	182	490	
P07			
P08	182	490	
P07'			
P08'	182	490	

(単位:MPa)

- 2. 主フランジ、上部鏡板及びスタッドボルトの強度計算
- 2.1 一般事項

本章は、原子炉圧力容器主フランジ、上部鏡板及びスタッドボルトの強度計算である。

2.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図2-1に示す。

2.1.2 計算結果の概要計算結果の概要を表2-1に示す。

なお,供用状態Eにおける評価結果は,各部分ごとに一次応力評価の厳しくなる評価面 を,各部分を代表する応力評価面として記載している。

図2-1 形状・寸法・材料・応力評価点(主フランジ,上部鏡板及びスタッドボルト) (単位:mm)

一次膜+一次曲げ応力 *2 応力評価面 - P08 - P02 P09P01P07 (MPa) 許容値 490490 859 196176358応強さる --* - P10 応力評価面 - P04 – P06 一次一般膜応力 P03P05P09(MPa) 許容値 572320320144268182応強さる 供用状態日 供用状態日 供用状態日 状態 上鏡側フランジ スタッドボルト SNB24-3 部分及び材料 上部鏡板及び 胴側フランジ 及び胴板 SFVQ2A SFVQ2A SQV2A SQV2A

表2-1 主フランジ,上部鏡板及びスタッドボルトの計算結果の概要

注記 *1:スタッドボルトに対しては平均引張応力の評価を示す。

*2:スタッドボルトに対しては平均引張+曲げ応力の評価を示す。

- 2.2 計算条件
- 2.2.1 解析範囲
 解析範囲を図2-1に示す。
- 2.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 2.2.3 材料各部の材料を図2-1に示す。
- 2.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 2.3 応力計算
- 2.3.1 応力評価点
 応力評価点の位置を図2-1に示す。
- 2.4 応力強さの評価応力強さの評価は、主フランジ、上部鏡板及びスタッドボルトについて行う。
- 2.4.1 一次一般膜応力強さの評価

供用状態Eにおける評価をまとめて,表2-2に示す。

表2-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す許 容応力を満足する。

2.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて、表2-3に示す。

表2-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

2.4.3 スタッドボルトの平均引張応力の評価
 供用状態Eにおける評価をまとめて、表2-4に示す。
 表2-4より、供用状態Eの平均引張応力の最大値は、「応力解析の方針」の4.5節に示す
 許容応力を満足する。

2.4.4 スタッドボルトの平均引張+曲げ応力の評価

供用状態Eにおける評価をまとめて、表2-5に示す。

表2-5より,供用状態Eの平均引張+曲げ応力の最大値は,「応力解析の方針」の4.5節 に示す許容応力を満足する。

表2-2 主フランジ及び上部鏡板の 一次一般膜応力強さの評価のまとめ

(単位:MPa)				
評価面	供用制	犬態E		
	応力 強さ	許容値		
P01				
P02	144	326		
P03				
P04	144	320		
P05				
P06	182	320		
P07				
P08	182	326		

NT2 補③ V-3-3-1 R0

表2-3 主フランジ及び上部鏡板の 一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)				
評価面	供用制	犬態E		
	応力 強さ	許容値		
P01				
P02	196	490		
P03				
P04	182	480		
P05				
P06	163	480		
P07				
P08	176	490		

表2-4 スタッドボルトの平均引張応力の評価のまとめ

状態	供用制	犬態 E
評価面	平均引張応力の 最大値	許容値 (2/3)・Su
P09		
P10	268	572

(単位:MPa)

表2-5 スタッドボルトの平均引張+曲げ応力の評価のまとめ

状態	供用状態E	
評価点	平均引張+曲げ 応力の最大値	許容値 Su
P09	358	859
P10	178	859

(単位:MPa)

- 3. 下部鏡板の強度計算
- 3.1 一般事項

本章は、原子炉圧力容器下部鏡板の強度計算である。

3.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図3-1に示す。

- 3.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 3.1.3 計算結果の概要計算結果の概要を表3-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-2 原子炉圧力容器の耐震性についての計算書(その1)」にて選定した,各部分を代表する応力評価面について記載している。

図3-1 形状・寸法・材料・応力評価点(下部鏡板)(単位:mm)

表3-1 下部鏡板の計算結果の概要

火曲げ応力 a)	応力評価面	P01' - P02'	P11 - P12	P15' - P16'
 一次膜+一∛ (MP: 	許容値	490	490	490
	応強さる	203	26	95
一次一般膜応力(MPa)	応力評価面	P01 - P02		
	許容値	326		
	広強力さ	184		
94 1	沃馬	供用状態臣	供用状態臣	供用状態臣
部分及び材料		下部鏡板 SQV2A SQV2A相当	下部鏡板と 胴板の接合部 SQV2A	下部鏡板と スカートの 接合部 SQV2A

- 3.2 計算条件
- 3.2.1 解析範囲
 解析範囲を図3-1に示す。
- 3.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 3.2.3 材料各部の材料を図3-1に示す。
- 3.2.4 物性値及び許容応力 物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 3.3 応力計算
- 3.3.1 応力評価点
 応力評価点の位置を図3-1に示す。
- 3.3.2 外荷重による応力
- 3.3.2.1 荷重条件(L23)下部鏡板に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 3.4 応力強さの評価

応力強さの評価は、下部鏡板について行う。

3.4.1 一次一般膜応力強さの評価

応力評価面P01-P02及びP01'-P02'について,供用状態Eにおける評価をまとめて, 表3-2に示す。

なお、その他の応力評価面は、一次一般膜応力に分類される応力は存在しない。

表3-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す許 容応力を満足する。

3.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて,表3-3に示す。

表3-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

表3-2 下部鏡板の一次一般膜応力強さの評価のまとめ

	(早)	<u>117</u> : MPa)
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	184	326
P01'		
P02'	184	326

(単位:MPa)

表3-3 下部鏡板の一次膜+一次曲げ応力強さの評価のまとめ

	(単位:MPa)	
評価面	供用状態E	
	応力 強さ	許容値
P01 P02	203	490
P01' P02'	203	490
P03 P04	194	490
P03 P04'	194	490
P06 P05'	98	490
P06'	98	490
P08 P07'	97	490
P08' P09	97	490
P10 P09'	89	490
P10' P11	89	490
P12 P11'	97	490
P12' P13	96	490
P14 P13'	95	490
P14' P15	95	490
P16 P15'	95	490
P16' P17	95	490
P18 P17'	89	490
P18' P19	89	490
P20 P19'	51	490
P20' P21	54	490
P22 P21'	53	490
P22'	56	490

(単位・MPa)

- 4. 制御棒駆動機構ハウジング貫通部の強度計算
- 4.1 一般事項

本章は、制御棒駆動機構ハウジング貫通部の強度計算である。

4.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図4-1に示す。

- 4.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 4.1.3 計算結果の概要計算結果の概要を表4-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

注:以下,制御棒駆動機構ハウジングを「ハウジング」,制御棒駆動機構ハウジング貫通部 スタブチューブを「スタブチューブ」という。

図4-1 形状・寸法・材料・応力評価点(制御棒駆動機構ハウジング貫通部)(単位:mm)

P01' - P02' – P06 許容値 応力評価面 一次膜+一次曲げ応力 P05(MPa) 476 363応強力さ 14944 応力 許容値 応力評価面 強さ - P06 P03 - P04 ー次一般膜応力 (MPa) P053342605258 供用状態已 供用状態日 状態 スタブチューブ NCF600 部分及び材料 ハウジング SUS304TP NCF600相当

表4-1 制御棒駆動機構ハウジング貫通部の計算結果の概要

- 4.2 計算条件
- 4.2.1 解析範囲
 解析範囲を図4-1に示す。
- 4.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 4.2.3 材料各部の材料を図4-1に示す。
- 4.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 4.3 応力計算
- 4.3.1 応力評価点応力評価点の位置を図4-1に示す。
- 4.3.2 外荷重による応力
- 4.3.2.1 荷重条件(L23, L24) スタブチューブ及びハウジングに作用する外荷重を「応力解析の方針」の5.1節に 示す。
- 4.4 応力強さの評価 応力強さの評価は、スタブチューブ及びハウジングについて行う。
- 4.4.1 一次一般膜応力強さの評価

供用状態Eにおける評価をまとめて,表4-2に示す。

表4-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す許 容応力を満足する。

4.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて、表4-3に示す。

表4-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

4.5 特別な評価

スタブチューブについて、外圧に対する評価及び座屈に対する評価を行う。

4.5.1 外圧の評価

(1) 荷重

供用状態Eにおける外圧を表4-4に示す。

(2) 許容外圧

供用状態Eにおける許容外圧(Pa)は、設計・建設規格 PVB-3210(3)a.より、次 式で求める。

$$P_{a} = \frac{4 \cdot B \cdot t}{3 \cdot D_{o}} =$$

```
=13.65 MPa
```

B値は次のようにして求める。

(3) 外圧の評価

供用状態Eにおける外圧の評価を表4-5に示す。表4-5より,供用状態Eにおける 外圧は,許容外圧を超えない。

4.5.2 座屈に対する評価

4.5.2.1 計算データ

スタブチューブの断面係数

4.5.2.2 圧縮応力の評価

供用状態Eにおいてスタブチューブに圧縮応力を生じさせる荷重は,表4-4に示す鉛 直力及びモーメントである。これらの組合せにより発生する圧縮応力の評価を行う。

(1) 圧縮応力

表4-4に示す荷重によって生じる供用状態Eでの圧縮応力は以下のように求める。

$$\sigma_{c} = \frac{V}{A} + \frac{M}{Z} = 9 \text{ MPa}$$

(2) 許容圧縮応力

供用状態Eにおける許容圧縮応力は,以下の2つの値のうち小さい方の値を用いる。

 $1.5 \cdot S_m = 1.5 \times 164 = 246$ MPa

 $1.5 \cdot B = 1.5 \times 83 = 124$ MPa

ここで,

 $S_m = 164 MPa$

B = 83 MPa

このうちB値は,設計・建設規格 PVB-3117より,次のようにして求める。 設計・建設規格 付録材料図表 Part7 図1より

$$A = \frac{0.125}{R \text{ i / t}} = 0.0246063$$

を用いて、設計・建設規格 付録材料図表 Part7 図7より

B=83 MPa (302 ℃における値)

よって,許容圧縮応力は,

 $\sigma_{ca} = 124$ MPa

供用状態Eにおける座屈に対する評価結果を表4-6に示す。 表4-6より、供用状態Eにおける座屈に対する評価は、許容値を満足する。

表4-2 制御棒駆動機構ハウジング貫通部の 一次一般膜応力強さの評価のまとめ

	(単位:MPa)		
評価面	供用状態E		
	応力 強さ	許容値	
P01			
P02	34	334	
P01'			
P02'	34	334	
P03			
P04	52	334	
P03'			
P04'	52	334	
P05			
P06	58	260	
P05'			
P06'	58	260	
P07			
P08	3	260	
P07'			
P08'	3	260	
表4-3 制御棒駆動機構ハウジング貫通部の 一次膜+一次曲げ応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	148	476
P01'		
P02'	149	476
P03		
P04	33	460
P03'		
P04'	34	460
P05		
P06	44	363
P05'		
P06'	39	363
P07		
P08	14	363
P07'		
P08'	14	363

表4-4 スタブチューブの外圧及び座屈に対する評価に用いる荷重

状態	外圧	鉛直力 *1	モーメント *2
	(MPa)	V (kN)	M (kN・m)
供用状態E			

注記 *1:「応力解析の方針」の5.1節に示すV1+V2の値

*2:「応力解析の方針」の5.1節に示すM1+M2+(H1+H2)・Lの値 Lは,スタブチューブの最大長さ= ____ mである。

表4-5 スタブチューブの外圧の評価

状態	外圧 (MPa)	許容外圧 Pa (MPa)
供用状態E		

表4-6 スタブチューブの座屈に対する評価

状態	軸圧縮応力 σc(MPa)	許容圧縮応力 σca (MPa)
供用状態E	9	124

- 5. 中性子計測ハウジング貫通部の強度計算
- 5.1 一般事項

本章は,原子炉圧力容器中性子計測ハウジング貫通部(取替前/取替後)の強度計算である。

5.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図5-1に示す。

5.1.2 計算結果の概要計算結果の概要を表5-1に示す。

なお,供用状態Eにおける評価結果は,各部分ごとに一次応力評価の厳しくなる評価面 を,各部分を代表する応力評価面として記載している。

図5-1(1) 形状・寸法・材料・応力評価点(中性子計測ハウジング貫通部(取替前))

(単位:mm)

図 5-1 (2) 形状・寸法・材料・応力評価点(中性子計測ハウジング貫通部(取替後)) (単位:mm)

許容値 応力評価面 P03 - P04一次膜+一次曲げ応力 (MPa) 359応強する 104P03 - P04応力評価面 一次一般膜応力 (MPa) 許容値 26051応強する 供用状態E 状態 部分及び材料 ハウジング SUS304TB

表5-1(1) 中性子計測ハウジング貫通部の計算結果の概要(取替前)

許容値 応力評価面 P03 - P04一次膜+一次曲げ応力 (MPa) 402応力 強さ 75 応力評価面 P03 - P04一次一般膜応力 (MPa) 許容値 28438 応力 遠さ 供用状態日 状態 部分及び材料 ハウジング SUS316TP

表5-1(2) 中性子計測ハウジング貫通部の計算結果の概要(取替後)

- 5.2 計算条件
- 5.2.1 解析範囲 解析範囲を図5-1に示す。
- 5.2.2 重大事故等時の条件
 重大事故等時の条件を「応力解析の方針」の5.2節に示す。
 内圧以外の全ての荷重は無視できるほど小さいため,強度計算は内圧のみについて行う。
- 5.2.3 材料 各部の材料を図5-1に示す。
- 5.2.4 物性値及び許容応力 物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 5.3 応力計算
- 5.3.1 応力評価点 応力評価点の位置を図5-1に示す。
- 5.4 応力強さの評価 応力強さの評価は、中性子計測ハウジング貫通部について行う。
 - 5.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表5-2に示す。
 表5-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す許容応力を満足する。
 - 5.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて、表5-3に示す。

表5-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

表5-2(1) 中性子計測ハウジング貫通部の 一次一般膜応力強さの評価のまとめ(取替前)

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	0	260
P01'		
P02'	0	260
P03		
P04	51	260
P03'		
P04'	51	260

表5-2(2) 中性子計測ハウジング貫通部の 一次一般膜応力強さの評価のまとめ(取替後)

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	0	284
P01' P02'	0	284
P03		101
P04	38	284
P03'		
P04'	38	284

表5-3(1) 中性子計測ハウジング貫通部の 一次膜+一次曲げ応力強さの評価のまとめ(取替前)

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	10	359
P01'		
P02'	10	359
P03		
P04	104	359
P03'		
P04'	104	359

表5-3(2) 中性子計測ハウジング貫通部の 一次膜+一次曲げ応力強さの評価のまとめ(取替後)

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	19	402
P01'		
P02'	19	402
P03		
P04	75	402
P03'		
P04'	75	402

- 6. 再循環水出口ノズル(N1)の強度計算
- 6.1 一般事項

本章は、原子炉圧力容器再循環水出口ノズル(N1)の強度計算である。

6.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図6-1に示す。

- 6.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 6.1.3 計算結果の概要計算結果の概要を表6-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図6-1 形状・寸法・材料・応力評価点(再循環水出ロノズル(N1)) (単位:mm)

矢曲げ応力 a)	応力評価面	P01 - P02	P07 - P08
< 開 + − }	許容値	331	427
\downarrow	応力なる	81	85
膜応力 ()	応力評価面	P01 - P02	P07 - P08
— 次 — 般 (MPa	許容値	248	320
	応強な	81	85
म्रङ्ग सार	扒馬	供用状態臣	供用状態臣
	部分及りなな	ノズル セーフエンド SUSF304 SUSF304相当	ノズルエンド SFVQ2A

表6-1 再循環水出ロノズル (N1)の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により,応力評価は不要である。

- 6.2 計算条件
- 6.2.1 解析範囲解析範囲を図6-1に示す。
- 6.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 6.2.3 材料各部の材料を図6-1に示す。
- 6.2.4 物性値及び許容応力 物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 6.3 応力計算
- 6.3.1 応力評価点応力評価点の位置を図6-1に示す。
- 6.3.2 外荷重による応力
- 6.3.2.1 荷重条件(L04)再循環水出ロノズル(N1)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 6.4 応力強さの評価 応力強さの評価は,再循環水出ロノズル(N1)について行う。
- 6.4.1 一次一般膜応力強さの評価

供用状態Eにおける評価をまとめて,表6-2に示す。

表6-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す許 容応力を満足する。

6.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて、表6-3に示す。

表6-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

表6-2 再循環水出ロノズル(N1)の一次一般膜応力強さの評価のまとめ

	(+	<u>1</u> <u>.</u>
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	81	248
P01'		
P02'	81	248
P03		
P04	79	248
P03'		
P04'	79	248
P05		
P06	67	248
P05'		
P06'	67	248
P07		
P08	85	320
P07'		
P08'	85	320

(単位:MPa)

表6-3 再循環水出口ノズル(N1)の一次膜+一次曲げ応力強さの評価のまとめ

評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	81	331
P01'		
P02'	81	331
P03		
P04	79	332
P03'		
P04'	79	332
P05		
P06	67	335
P05'		
P06'	67	335
P07		
P08	85	427
P07'		
P08'	85	427

(単位:MPa)

- 7. 再循環水入口ノズル(N2)の強度計算
- 7.1 一般事項

本章は、原子炉圧力容器再循環水入口ノズル(N2)の強度計算である。

7.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図7-1に示す。

7.1.2 考慮する荷重

考慮した各荷重を「応力解析の方針」の5章に示す。

7.1.3 計算結果の概要

計算結果の概要を表7-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図7-1 形状・寸法・材料・応力評価点(再循環水入口ノズル(N2)) (単位:mm)

	977 VI		- 次 - 船 (MP:	t 膜応力 a)	<i>A</i> 1	×馬+−-) (MP	≪曲げ応力 'a)	
文 (5 村 村	状愿	広聴力さ	許容値	応力評価面	広聴力さ	許容値	応力評価面	
4 4 4 4 4 目 当	供用状態臣	74	248	P01 - P02	74	336	P01 - P02	1
х Л Н	供用状態臣	49	320	P09 - P10	50	442	P09 - P10	
ン ブ LTP	供用状態臣	25	232	P11 - P12	89	306	PI1' - P12'	
ら (穴の厚	周辺部)について	は設計・	建設規格	F PVB-3510(1)	ctD,	応力評価	は不要である。	

表7-1 再循環水入口ノズル (N2) の計算結果の概要

- 7.2 計算条件
- 7.2.1 解析範囲
 解析範囲を図7-1に示す。
- 7.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 7.2.3 材料各部の材料を図7-1に示す。
- 7.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 7.3 応力計算
- 7.3.1 応力評価点応力評価点の位置を図7-1に示す。
- 7.3.2 外荷重による応力
- 7.3.2.1 荷重条件(L04) 再循環水入口ノズル(N2)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 7.4 応力強さの評価 応力強さの評価は,再循環水入口ノズル(N2)について行う。
- 7.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表7-2に示す。
 表7-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す許
 容応力を満足する。
- 7.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表7-3に示す。
 表7-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節に
 示す許容応力を満足する。

表7-2 再循環水入口ノズル(N2)の一次一般膜応力強さの評価のまとめ

(単位:MPa)		
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	74	248
P01'		
P02'	74	248
P03		
P04	38	248
P03'		
P04'	38	248
P05		
P06	38	248
P05'		
P06'	38	248
P07		
P08	15	248
P07'		
P08'	15	248
P09		
P10	49	320
P09'		
P10'	49	320
P11		
P12	25	232
P11'		
P12'	25	232

(単位:MPa)

表7-3 再循環水入口ノズル(N2)の一次膜+一次曲げ応力強さの評価のまとめ

	(単位:MPa)	
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	74	336
P01'		
P02'	74	336
P03		
P04	41	349
P03'		
P04'	38	349
P05		
P06	40	349
P05'		
P06'	38	349
P07		
P08	53	335
P07'		
P08'	60	335
P09		
P10	50	442
P09'		
P10'	48	442
P11		
P12	78	306
P11'		
P12'	89	306

(単位:MPa)

- 8. 主蒸気ノズル (N3) の強度計算
- 8.1 一般事項

本章は、原子炉圧力容器主蒸気ノズル(N3)の強度計算である。

8.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図8-1に示す。

8.1.2 考慮する荷重

考慮した各荷重を「応力解析の方針」の5章に示す。

8.1.3 計算結果の概要

計算結果の概要を表8-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図8-1 形状・寸法・材料・応力評価点(主蒸気ノズル(N3)) (単位:mm)

- P06 応力評価面 - P02 一次膜+一次曲げ応力 P05P01(MPa) 許容値 38942787 85 応強力さ - P06 応力評価面 P01 - P02→次一般膜応力 (MPa) P05許容値 29232087 85 応強さる 供用状態日 供用状態日 状態 部分及び材料 セーフェンド ノズルエンド SFVC2B相当 SFVC2B ノズル SFVQ2A

表8-1 主蒸気ノズル (N3) の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により,応力評価は不要である。

- 8.2 計算条件
- 8.2.1 解析範囲
 解析範囲を図8-1に示す。
- 8.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 8.2.3 材料各部の材料を図8-1に示す。
- 8.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 8.3 応力計算
- 8.3.1 応力評価点応力評価点の位置を図8-1に示す。
- 8.3.2 外荷重による応力
- 8.3.2.1 荷重条件(L04)
 主蒸気ノズル(N3)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 8.4 応力強さの評価 応力強さの評価は,主蒸気ノズル (N3) について行う。
- 8.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表8-2に示す。
 表8-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す許容応力を満足する。
- 8.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表8-3に示す。
 表8-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節に
 示す許容応力を満足する。

表8-2 主蒸気ノズル(N3)の一次一般膜応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	87	292
P01'		
P02'	87	292
P03		
P04	85	292
P03'		
P04'	85	292
P05		
P06	85	320
P05'		
P06'	85	320

表8-3 主蒸気ノズル(N3)の一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)		
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	87	389
P01'		
P02'	87	389
P03		
P04	85	389
P03'		
P04'	85	389
P05		
P06	85	427
P05'		
P06'	85	427

- 9. 給水ノズル (N4) の強度計算
- 9.1 一般事項

本章は、原子炉圧力容器給水ノズル(N4)の強度計算である。

9.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図9-1に示す。

- 9.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 9.1.3 計算結果の概要計算結果の概要を表9-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-2 原子炉圧力容器の耐震性についての計算書(その1)」にて選定した,各部分を代表する応力評価面について記載している。

図9-1 形状・寸法・材料・応力評価点(給水ノズル(N4)) (単位:mm)

bNB-3210(1)により、応力評価は不要である。 - P16' - P02 応力評価面 - P12 一次膜+一次曲げ応力 P15' P01P11 (MPa) 許容値 307 39143380 669 応強力さ - P02 - P12 応力評価面 - P16 - 次-般膜応力 P15P01P11 (MPa) 注:管台(穴の周辺部)については設計・建設規格 許容値 292320232က 80 66応強ちる 供用状態日 供用状態日 供用状態日 状態 部分及び材料 オーノエンド ノズルエンド NCF600相当 SUS304LTP サーマル スリーブ SFVC2B ノズル SFVQ2A

表9-1 給水ノズル (N4) の計算結果の概要

- 9.2 計算条件
- 9.2.1 解析範囲 解析範囲を図9-1に示す。
- 9.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 9.2.3 材料各部の材料を図9-1に示す。
- 9.2.4 物性値及び許容応力 物性値及び許容応力は,「応力解析の方針」の4.4節及び4.5節による。
- 9.3 応力計算
- 9.3.1 応力評価点
 応力評価点の位置を図9-1に示す。
- 9.3.2 外荷重による応力
- 9.3.2.1 荷重条件(L04) 給水ノズル(N4)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 9.4 応力強さの評価 応力強さの評価は,給水ノズル(N4)について行う。
- 9.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表9-2に示す。
 表9-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す許容応力を満足する。
- 9.4.2 一次膜+一次曲げ応力強さの評価

供用状態Eにおける評価をまとめて,表9-3に示す。

表9-3より,供用状態Eの一次膜+一次曲げ応力強さは,「応力解析の方針」の4.5節に 示す許容応力を満足する。

表9-2 給水ノズル(N4)の一次一般膜応力強さの評価のまとめ

	(44	<u> .</u> . MI a/
評価面	供用状態E	
нітт	応力 強さ	許容値
P01		
P02	80	292
P01'		
P02'	80	292
P03		
P04	49	292
P03'		
P04'	49	292
P05		
P06	66	292
P05'		
P06'	66	292
P07		
P08	2	292
P07'		
P08'	2	292
P09		
P10	5	292
P09'		
P10'	5	292
P11		
P12	66	320
P11'		
P12'	66	320
P13		
P14	3	334
P13'		
P14'	3	334
P15		
P16	3	232
P15'		
P16'	3	232
P17		
P18	3	232
P17'		
P18'	3	232

(単位:MPa)

表9-3 給水ノズル(N4)の一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)		
評価面	供用状態E	
₽⊤ІЩШ	応力 強さ	許容値
P01		
P02	80	391
P01'		
P02'	80	391
P03		
P04	49	403
P03'		
P04'	49	403
P05		
P06	66	394
P05'		
P06'	66	394
P07		
P08	2	401
P07'		
P08'	3	401
P09		
P10	4	382
P09'		
P10'	8	382
P11		
P12	66	433
P11'		
P12'	66	433
P13		
P14	3	442
P13'		
P14'	6	442
P15		
P16	3	307
P15'		
P16'	6	307
P17	_	
P18	3	307
P17'	_	
P18'	5	307

(単位:MPa)
- 10. 炉心スプレイノズル (N5) の強度計算
- 10.1 一般事項

本章は、原子炉圧力容器炉心スプレイノズル(N5)(低圧/高圧)の強度計算である。

10.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図10-1に示す。

- 10.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 10.1.3 計算結果の概要計算結果の概要を表10-1に示す。

図10-1 形状・寸法・材料・応力評価点(炉心スプレイノズル(N5)) (単位:mm)

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。 - P02 - P08 - P10' 応力評価面 一次膜+一次曲げ応力 P09' P01P07(MPa) 許容値 3883084421011547 応強力さ 応力評価面 - P02 - P08 - P10 - 次--般膜応力 P01P09P07 (MPa) 許容値 292320232101 ∞ 47 応強力さ 供用状態日 供用状態日 供用状態日 状態 部分及び材料 SUS304LTP相当 セーフェンド ノズルエンド サーマル スリーブ SFVQ2A ノズル SFVC2B

表10-1(1) 低圧炉心スプレイノズル(N5)の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により,応力評価は不要である。 P09' - P10' 応力評価面 - P02 - P08 一次膜+一次曲げ応力 P01P07 (MPa) 許容値 388 308442 1011547 応強力さ - P10 応力評価面 - P08 P01 - P02一次一般膜応力 P09P07 (MPa) 許容値 29232023210147 ∞ 応強ちる 供用状態E 供用状態日 供用状態日 状態 部分及び材料 SUS304LTP相当 セーフェンド ノズルエンド スリーブ サーマル ノズル SFVQ2A SFVC2B

表10-1(2) 高圧炉心スプレイノズル(N5)の計算結果の概要

- 10.2 計算条件
- 10.2.1 解析範囲 解析範囲を図10-1に示す。
- 10.2.2 重大事故等時の条件
 重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 10.2.3 材料 各部の材料を図10-1に示す。
- 10.2.4 物性値及び許容応力
 物性値及び許容応力は、「応力解析の方針」の4.4節及び4.6節による。
- 10.3 応力計算
- 10.3.1 応力評価点
 応力評価点の位置を図10-1に示す。
- 10.3.2 外荷重による応力
- 10.3.2.1 荷重条件(L04) 炉心スプレイノズル(N5) (低圧/高圧)に作用する外荷重を「応力解析の方針」 の5.1節に示す。
- 10.4 応力強さの評価 応力強さの評価は、炉心スプレイノズル(N5) (低圧/高圧) について行う。
- 10.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表10-2に示す。
 表10-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す
 許容応力を満足する。
- 10.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表10-3に示す。
 表10-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表10-2(1) 低圧炉心スプレイノズル(N5)の 一次一般膜応力強さの評価のまとめ

	(甲	<u>位:MPa)</u>
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	101	292
P01'		
P02'	101	292
P03		
P04	87	292
P03'		
P04'	87	292
P05		
P06	10	292
P05'		
P06'	10	292
P07		
P08	47	320
P07'		
P08'	47	320
P09		
P10	8	232
P09'		
P10'	8	232

(単位:MPa)

高圧炉心スプレイノズル(N5)の 表10-2 (2) 一次一般膜応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	101	292
P01'		
P02'	101	292
P03		
P04	87	292
P03'		
P04'	87	292
P05		
P06	10	292
P05'		
P06'	10	292
P07		
P08	47	320
P07'		
P08'	47	320
P09		
P10	8	232
P09'		
P10'	8	232

表10-3 (1) 低圧炉心スプレイノズル(N5)の 一次膜+一次曲げ応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	101	388
P01'		
P02'	101	388
P03		
P04	87	389
P03'		
P04'	87	389
P05		
P06	10	384
P05'		
P06'	20	384
P07		
P08	47	442
P07'		
P08'	47	442
P09		
P10	7	308
P09'		
P10'	15	308

高圧炉心スプレイノズル(N5)の 表10-3(2) 一次膜+一次曲げ応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	101	388
P01'		
P02'	101	388
P03		
P04	87	389
P03'		
P04'	87	389
P05		
P06	10	384
P05'		
P06'	20	384
P07		
P08	47	442
P07'		
P08'	47	442
P09		
P10	7	308
P09'		
P10'	15	308

- 11. 上鏡スプレイノズル (N6) の強度計算
- 11.1 一般事項

本章は、原子炉圧力容器上鏡スプレイノズル(N6)の強度計算である。

11.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図11-1に示す。

- 11.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 11.1.3 計算結果の概要

計算結果の概要を表11-1に示す。

図11-1 形状・寸法・材料・応力評価点(上鏡スプレイノズル(N6)) (単位:mm)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(曲げ心刀)	応力評価面	P01' - P02'	P05 - P06
	、限+一次 (MPa	許容値	402	441
71	1	ちがある	129	148
	.腆応力 a)	応力評価面	P01 - P02	P05 - P06
<i>л4</i> . //	ー 次 一 般 (MP a	許容値	292	320
		応通れ	49	49
	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	大 尼	供用状態臣	供用状態臣
	立7 75 76 7 8 + + 水1	ま な う 炎 た 信	フランジ SFVC2B	ノズルエンド SFVQ2A

表11-1 上鏡スプレイノズル (N6) の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。

- 11.2 計算条件
- 11.2.1 解析範囲
 解析範囲を図11-1に示す。
- 11.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 11.2.3 材料各部の材料を図11-1に示す。
- 11.2.4 物性値及び許容応力
 物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 11.3 応力計算
- 11.3.1 応力評価点
 応力評価点の位置を図11-1に示す。
- 11.3.2 外荷重による応力
- 11.3.2.1 荷重条件(L04) 上鏡スプレイノズル(N6)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 11.4 応力強さの評価 応力強さの評価は、上鏡スプレイノズル(N6)について行う。
- 11.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表11-2に示す。
 表11-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す
 許容応力を満足する。
- 11.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表11-3に示す。
 表11-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表11-2 上鏡スプレイノズル (N6) の 一次一般膜応力強さの評価のまとめ

	(単位:MPa)		
評価面	供用状態E		
	応力 強さ	許容値	
P01			
P02	49	292	
P01'			
P02'	49	292	
P03			
P04	49	292	
P03'			
P04'	49	292	
P05			
P06	49	320	
P05'			
P06'	49	320	

表11-3 上鏡スプレイノズル (N6)の 一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)		
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	122	402
P01'		
P02'	129	402
P03		
P04	115	402
P03'		
P04'	120	402
P05		
P06	48	441
P05'		
P06'	48	441

- 12. ベントノズル (N7) の強度計算
- 12.1 一般事項

本章は,原子炉圧力容器ベントノズル(N7)の強度計算である。

12.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図12-1に示す。

- 12.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 12.1.3 計算結果の概要

計算結果の概要を表12-1に示す。

図12-1 形状・寸法・材料・応力評価点(ベントノズル(N7)) (単位:mm)

応力評価面 P01' - P02'- P06 一次膜+一次曲げ応力 P05(MPa) 438許容値 44316146応強力さ - P06 応力評価面 P03 - P04 一次一般膜応力 (MPa) P05許容値 29232046 46応強力さ 供用状態E 供用状態日 状態 部分及び材料 ノズルエンド フランジ SFVC2B SFVQ2A

表12-1 ベントノズル (N7) の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。

- 12.2 計算条件
- 12.2.1 解析範囲 解析範囲を図12-1に示す。
- 12.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 12.2.3 材料 各部の材料を図12-1に示す。
- 12.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 12.3 応力計算
- 12.3.1 応力評価点
 応力評価点の位置を図12-1に示す。
- 12.3.2 外荷重による応力
- 12.3.2.1 荷重条件(L04) ベントノズル(N7)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 12.4 応力強さの評価 応力強さの評価は、ベントノズル(N7)について行う。
- 12.4.1 一次一般膜応力強さの評価 供用状態Eにおける評価をまとめて,表12-2に示す。 表12-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す 許容応力を満足する。
- 12.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表12-3に示す。
 表12-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表12-2 ベントノズル (N7) の一次一般膜応力強さの評価のまとめ

(単位:MPa)		
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	20	292
P01'		
P02'	20	292
P03		
P04	46	292
P03'		
P04'	46	292
P05		
P06	46	320
P05'		
P06'	46	320

NT2 補③ V-3-3-1 R0

表12-3 ベントノズル (N7) の一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)		
評価面	供用状態E	
	応力 強さ	許容値
P01		
P02	161	438
P01'		
P02'	161	438
P03		
P04	130	404
P03'		
P04'	131	404
P05		
P06	46	443
P05'		
P06'	46	443

NT2 補③ V-3-3-1 R0

- 13. ジェットポンプ計測管貫通部ノズル(N8)の強度計算
- 13.1 一般事項

本章は、原子炉圧力容器ジェットポンプ計測管貫通部ノズル(N8)の強度計算である。

- 13.1.1 形状・寸法・材料本章で解析する箇所の形状・寸法・材料を図13-1に示す。
- 13.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 13.1.3 計算結果の概要計算結果の概要を表13-1に示す。

図13-1 形状・寸法・材料・応力評価点(ジェットポンプ計測管貫通部ノズル(N8)) (単位:mm)

			ー次ー般	! 膜 応 力	A −	(膜 + 一)	饮曲 げ応力
ホ ++ シレ フレ ヽノ ロ쑤	려운 지기		(MP:	a)		(MP	a)
ずどくいちた	₹ 1 1 1 1 1 1 1 1 1 1 1 1 1	化型	許容値	応力評価面	化动	許容値	応力評価面
		国の			国の		
ノズル セーフエンド SUSF304	供用状態臣	59	248	P01 - P02	68	338	P01 - P02
溶接部 SUSF304相当	供用状態臣	27	248	P05 - P06	30	362	P05 – P06
ノズルエンド SFVQ2A	供用状態臣	45	320	P07 - P08	49	444	P07 - P08
注:管台(穴の厚	見辺部) について	は設計・	建設規格	: PVB-3510(1)	ζłŊ,	応力評価	は不要である。

表13-1 ジェットポンプ計測管貫通部ノズル(N8)の計算結果の概要

- 13.2 計算条件
- 13.2.1 解析範囲
 解析範囲を図13-1に示す。
- 13.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 13.2.3 材料各部の材料を図13-1に示す。
- 13.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 13.3 応力計算
- 13.3.1 応力評価点
 応力評価点の位置を図13-1に示す。
- 13.3.2 外荷重による応力
- 13.3.2.1 荷重条件(L04) ジェットポンプ計測管貫通部ノズル(N8)に作用する外荷重を「応力解析の方針」 の5.1節に示す。
- 13.4 応力強さの評価 応力強さの評価は、ジェットポンプ計測管貫通部ノズル(N8)について行う。
- 13.4.1 一次一般膜応力強さの評価 供用状態Eにおける評価をまとめて、表13-2に示す。

表13-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す 許容応力を満足する。

13.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表13-3に示す。
 表13-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表13-2 ジェットポンプ計測管貫通部ノズル (N8)の 一次一般膜応力強さの評価のまとめ

(単位:MPa)		
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	59	248
P01'		
P02'	59	248
P03		
P04	53	248
P03'		
P04'	53	248
P05		
P06	27	248
P05'		
P06'	27	248
P07		
P08	45	320
P07'		
P08'	45	320

表13-3 ジェットポンプ計測管貫通部ノズル(N8)の 一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)		
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	68	338
P01'		
P02'	63	338
P03		
P04	62	341
P03'		
P04'	58	341
P05		
P06	30	362
P05'		
P06'	28	362
P07		
P08	49	444
P07'		
P08'	45	444

- 14. 差圧検出・ほう酸水注入管ノズル(N10)の強度計算
- 14.1 一般事項

本章は、原子炉圧力容器差圧検出・ほう酸水注入管ノズル(N10)の強度計算である。

14.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図14-1に示す。

- 14.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 14.1.3 計算結果の概要

計算結果の概要を表14-1に示す。

図14-1 形状・寸法・材料・応力評価点(差圧検出・ほう酸水注入管ノズル(N10))(単位:mm)

- 次曲げ応力 MPa)	■ 応力評価面	- 次曲げ応力 MBa)	; P01' - P02'	P03' - P04'	P07' – P08'	. P09' – P10'
× 岐 + −	許容値	大膜 + -	355	501	481	343
) 	応強力さ	7	9	106	47	
e e)	応力評価面	P01 - P02	P03' - P04'	P07 - P08	P09 - P10	
一次一 _角 (MF	許容値	- 次一舟 (MP	248	334	334	248
	応強さる		1	9	31	48
沃		:	供用状態臣	供用状態臣	供用状態臣	供用状態臣
部分及び材料			カップリング SUSF304	溶接部 NCF600相当	ノ ズル NCF600	ノズル セーフエンド SUSF304

表14-1 差圧検出・ほう酸水注入管ノズル (N10) の計算結果の概要

- 14.2 計算条件
- 14.2.1 解析範囲解析範囲を図14-1に示す。
- 14.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 14.2.3 材料各部の材料を図14-1に示す。
- 14.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 14.3 応力計算
- 14.3.1 応力評価点応力評価点の位置を図14-1に示す。
- 14.3.2 外荷重による応力
- 14.3.2.1 荷重条件(L04)
 差圧検出・ほう酸水注入管ノズル(N10)に作用する外荷重を「応力解析の方針」の
 5.1節に示す。
- 14.4 応力強さの評価 応力強さの評価は,差圧検出・ほう酸水注入管ノズル(N10)について行う。
- 14.4.1 一次一般膜応力強さの評価

供用状態Eにおける評価をまとめて,表14-2に示す。

表14-2より,供用状態Eの一次一般膜応力強さは,「応力解析の方針」の4.5節に示す 許容応力を満足する。

14.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表14-3に示す。
 表14-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表14-2 差圧検出・ほう酸水注入管ノズル (N10)の 一次一般膜応力強さの評価のまとめ

	(単位:MPa)			
評価面	供用状態E			
	応力 強さ	許容値		
P01				
P02	1	248		
P01'				
P02'	1	248		
P03				
P04	5	334		
P03'				
P04'	6	334		
P05				
P06	1	334		
P05'				
P06'	1	334		
P07				
P08	31	334		
P07'				
P08'	31	334		
P09				
P10	48	248		
P09'				
P10'	48	248		

NT2 補③ V-3-3-1 R0

表14-3 差圧検出・ほう酸水注入管ノズル (N10)の 一次膜+一次曲げ応力強さの評価のまとめ

	(単位:MPa)			
評価面	供用状態E			
	応力 強さ	許容値		
P01				
P02	2	355		
P01'				
P02'	2	355		
P03				
P04	5	501		
P03'				
P04'	6	501		
P05				
P06	5	481		
P05'				
P06'	5	481		
P07				
P08	100	481		
P07'				
P08'	106	481		
P09				
P10	47	343		
P09'				
P10'	47	343		

- 15. 計装ノズル (N11, N12, N16) の強度計算
- 15.1 一般事項

本章は,原子炉圧力容器計装ノズル(N11, N12, N16)の強度計算である。

- 15.1.1 形状・寸法・材料本章で解析する箇所の形状・寸法・材料を図15-1に示す。
- 15.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 15.1.3 計算結果の概要計算結果の概要を表15-1に示す。

図 15-1 (1) 形状・寸法・材料・応力評価点(計装ノズル(N11, N16)) (単位:mm)

図15-1 (2) 形状・寸法・材料・応力評価点(計装ノズル(N12)) (単位:mm)
失曲げ応力 a)	応力評価面	P01 - P02	P03 - P04
< 「膜 + −- } (MP	許容値	347	499
Â ↓	応力 強さ	40	21
と膜応力 a)	応力評価面	P01 - P02	P03 - P04
- 次一郎 (MP-	許容値	248	334
	応力 強さ	40	21
प्र ह े राग		供用状態臣	供用状態臣
ホ++ ハ × ユ ヽ/ <i>1</i> 平	言方及いるな	ノズル セーフエンド SUSF304	ノズル NCF600

計装ノズル (N11) の計算結果の概要 表15-1 (1)

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。

火曲げ応力 a)	応力評価面	P01 - P02	P05 - P06
₹ <u>—</u> + (MP	許容値	337	495
Ŵ ↓	応力 強さ	60	23
 関 a)	応力評価面	P01 - P02	P05 - P06
ー次一 ^船 (MP	許容値	248	334
	応力 歯さ	60	23
वर्ष ः रा		供用状態臣	供用状態臣
ホ++パと ユ \/ 4卒	部ガ及い肉を	ノズル セーフエンド SUSF304	ノズル NCF600

計装ノズル (N12) の計算結果の概要 表15-1 (2)

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。

火曲げ応力 a)	応力評価面	P01 - P02	P03 - P04
₹ (MP)	許容値	347	499
↓ A	応力協な	40	21
t 膜応力 a)	応力評価面	P01 - P02	P03 - P04
一次一 ^船 (MP.	許容値	248	334
	応力 強 さ	40	21
고류 - 11		供用状態臣	供用状態臣
ホ++ハン 71 \/ <i>1</i> 4	部ガ及い約科	ノズル セーフエンド SUSF304	ノ ズル NCF600

計装ノズル (N16) の計算結果の概要 表15-1 (3)

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

- 15.2 計算条件
- 15.2.1 解析範囲 解析範囲を図15-1に示す。
- 15.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 15.2.3 材料各部の材料を図15-1に示す。
- 15.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.6節による。
- 15.3 応力計算
- 15.3.1 応力評価点
 応力評価点の位置を図15-1に示す。
- 15.3.2 外荷重による応力
- 15.3.2.1 荷重条件(L04) 計装ノズル(N11, N12, N16)に作用する外荷重を「応力解析の方針」の5.1節に示 す。
- 15.4 応力強さの評価 応力強さの評価は,計装ノズル (N11, N12, N16) について行う。
- 15.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表15-2に示す。
 表15-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.6節に示す
 許容応力を満足する。
- 15.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表15-3に示す。
 表15-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.6節
 に示す許容応力を満足する。

表15-2(1) 計装ノズル(N11)の一次一般膜応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	40	248
P01'		
P02'	40	248
P03		
P04	21	334
P03'		
P04'	21	334
P05		
P06	18	334
P05'		
P06'	18	334

NT2 補③ V-3-3-1 R0

表15-2(2) 計装ノズル(N12)の一次一般膜応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	60	248
P01'		
P02'	60	248
P03		
P04	23	248
P03'		
P04'	23	248
P05		
P06	23	334
P05'		
P06'	23	334

NT2 補③ V-3-3-1 R0

表15-2(3) 計装ノズル(N16)の一次一般膜応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	40	248
P01'		
P02'	40	248
P03		
P04	21	334
P03'		
P04'	21	334
P05		
P06	18	334
P05'		
P06'	18	334

NT2 補③ V-3-3-1 R0

表15-3(1) 計装ノズル(N11)の一次膜+一次曲げ応力強さの評価のまとめ

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	40	347
P01'		
P02'	40	347
P03		
P04	21	499
P03'		
P04'	21	499
P05		
P06	18	501
P05'		
P06'	18	501

表15-3(2) 計装ノズル(N12)の一次膜+一次曲げ応力強さの評価のまとめ

	(中	<u>1</u> <u>v</u> . mra)
評価面	供用	伏態E
	応力	許容値
	強さ	
P01		
P02	60	337
P01'		
P02'	60	337
P03		
P04	23	367
P03'		
P04'	23	367
P05		
P06	23	495
P05'		
P06'	23	495

(単位:MPa)

表15-3 (3) 計装ノズル (N16) の一次膜+一次曲げ応力強さの評価のまとめ

	(中	<u>117.: MPa)</u>
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	40	347
P01'		
P02'	40	347
P03		
P04	21	499
P03'		
P04'	21	499
P05		
P06	18	501
P05'		
P06'	18	501

(単位・MPa)

- 16. ドレンノズル (N15) の強度計算
- 16.1 一般事項

本章は、原子炉圧力容器ドレンノズル(N15)の強度計算である。

16.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図16-1に示す。

- 16.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 16.1.3 計算結果の概要計算結果の概要を表16-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図 16-1 形状・寸法・材料・応力評価点(ドレンノズル(N15))(単位:mm)

P03' - P04' 応力評価面 P01 - P02一次膜+一次曲げ応力 (MPa) 許容値 416 43836 応強する 135応力評価面 P01 - P02P03 - P04 ー��一般膜応カ (MPa) 許容値 292292応強する 3621供用状態E 供用状態E 状態 部分及び材料 オーフェンド (肉盛溶接部) SFVC2B相当 ノズル SFVC2B ノズル

表16-1 ドレンノズル (N15) の計算結果の概要

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により, 応力評価は不要である。

- 16.2 計算条件
- 16.2.1 解析範囲
 解析範囲を図16-1に示す。
- 16.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 16.2.3 材料各部の材料を図16-1に示す。
- 16.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 16.3 応力計算
- 16.3.1 応力評価点
 応力評価点の位置を図16-1に示す。
- 16.3.2 外荷重による応力
- 16.3.2.1 荷重条件(L04) ドレンノズル(N15)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 16.4 応力強さの評価 応力強さの評価は、ドレンノズル (N15) について行う。
- 16.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表16-2に示す。
 表16-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す
 許容応力を満足する。
- 16.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表16-3に示す。
 表16-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

表16-2 ドレンノズル(N15)の一次一般膜応力強さの評価のまとめ

	(中	<u>11</u> . mra)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	36	292
P01'		
P02'	36	292
P03		
P04	21	292
P03'		
P04'	21	292

(単位・MPa)

	(単	位:MPa)
評価面	供用	伏態E
	応力 強さ	許容値
P01		
P02	36	416
P01'		
P02'	35	416
P03		
P04	127	438
P03'		
P04'	135	438

表16-3 ドレンノズル (N15) の一次膜+一次曲げ応力強さの評価のまとめ

- 17. 低圧注水ノズル (N17) の強度計算
- 17.1 一般事項

本章は、原子炉圧力容器低圧注水ノズル(N17)の強度計算である。

17.1.1 形状·寸法·材料

本章で解析する箇所の形状・寸法・材料を図17-1に示す。

- 17.1.2 考慮する荷重考慮した各荷重を「応力解析の方針」の5章に示す。
- 17.1.3 計算結果の概要

計算結果の概要を表17-1に示す。

なお,供用状態Eにおける評価結果は,「V-2-3-4-1-3 原子炉圧力容器の耐震性についての計算書(その2)」にて選定した,各部分を代表する応力評価面について記載している。

図17-1 形状・寸法・材料・応力評価点(低圧注水ノズル(N17)) (単位:mm)

			電ー茶ー	職官力	1	た 畦 十 一 、	※曲 げ 応 力
ストレン アレイン ション			(MP	a)	2	(MP	a)
ま な の な に に に		た力	許容値	応力評価面	応力 噛さ	許容値	応力評価面
ノズル セーフエンド SFVC2B	供用状態臣	101	292	P01 - P02	101	387	P01 - P02
ノズルエンド SFVQ2A	供用状態臣	46	320	P07 - P08	46	443	P07 - P08
サーマル スリーブ SUS304LTP相当	供用状態臣	8	232	P09 - P10	18	307	P09' - P10'
注:管台(穴の厚	周辺部)について	は設計・	建設規格	· PVB-3510(1)	ς μ Ŋ ,	応力評価	は不要である。

表17-1 低圧注水ノズル (N17) の計算結果の概要

- 17.2 計算条件
- 17.2.1 解析範囲 解析範囲を図17-1に示す。
- 17.2.2 重大事故等時の条件重大事故等時の条件を「応力解析の方針」の5.2節に示す。
- 17.2.3 材料各部の材料を図17-1に示す。
- 17.2.4 物性値及び許容応力物性値及び許容応力は、「応力解析の方針」の4.4節及び4.5節による。
- 17.3 応力計算
- 17.3.1 応力評価点
 応力評価点の位置を図17-1に示す。
- 17.3.2 外荷重による応力
- 17.3.2.1 荷重条件(L04)低圧注水ノズル(N17)に作用する外荷重を「応力解析の方針」の5.1節に示す。
- 17.4 応力強さの評価 応力強さの評価は,低圧注水ノズル(N17)について行う。
- 17.4.1 一次一般膜応力強さの評価
 供用状態Eにおける評価をまとめて、表17-2に示す。
 表17-2より、供用状態Eの一次一般膜応力強さは、「応力解析の方針」の4.5節に示す
 許容応力を満足する。
- 17.4.2 一次膜+一次曲げ応力強さの評価
 供用状態Eにおける評価をまとめて、表17-3に示す。
 表17-3より、供用状態Eの一次膜+一次曲げ応力強さは、「応力解析の方針」の4.5節
 に示す許容応力を満足する。

-	(+	<u> m a</u> /			
評価面	供用状態E				
	応力 強さ	許容値			
P01					
P02	101	292			
P01'					
P02'	101	292			
P03					
P04	60	292			
P03'					
P04'	60	292			
P05					
P06	12	292			
P05'					
P06'	12	292			
P07					
P08	46	320			
P07'					
P08'	46	320			
P09					
P10	8	232			
P09'					
P10'	8	232			

(単位 : MPa)

	(単位:MPa)				
評価面	供用状態E				
	応力 強さ	許容値			
P01					
P02	101	387			
P01'					
P02'	101	387			
P03					
P04	60	397			
P03'					
P04'	60	397			
P05					
P06	12	381			
P05'					
P06'	27	381			
P07					
P08	46	443			
P07'					
P08'	46	443			
P09					
P10	8	307			
P09'					
P10'	18	307			

NT2 補③ V-3-3-1 R0E

V-3-5-2-1-3 管の応力計算書

本計算書は、添付書類「V-3-1-6 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「V-3-2-11 重大事故等クラス2管の 強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお,評価条件の整理に当たって使用する記号 及び略語については,添付書類「V-3-2-1 強度計算方法の概要」に定義したもの を使用する。

·評価条件整理表

	瀬殻群の		クラスア	ップするか 			条件	₹ ~ ~ ^ \$	532		既工認に			同等性	1
、 [〕,	対象で	カラス	摧赀時	2	ĩ	条件	四後	行	SA条	轩	おける	掲号甲の	評価区分	一個加	評価
an Br Oa	- る闇歌 - 携定が もるか	イップ 合手 無	綾器 クラス	JUE クラス	オリン	イップ の有無	压力 (%Pa)	温度 (C)	圧力 (NPa)	温度 (3C)	評価 海 御 御 御 服 の 有 無	遁用规格		区分	シフム
ಕೆಸ	単	I	DR-1	DR-1	SA-2	I	8.62	302	8.62	302	I	I	設計・建設規格	I	SA-2
e ¹ 1×	難	I	DB-3	DB-3	SA-2	I	3.45	302	3. 45	302	I	I	設計・建設規格	I	SA-2
±₩	単	I	DB-1	DB-1	SA-2	ļ	8.62	302	8. 62	302	l	l	設計・建設規格	I	SA-2
22	兼	I	DB-3	DB-3	SA-2	l	3.45	302	3. 45	302	I	I	設計・建設規格	I	SA-2
22	単	I	DB-1	DB-1	SA-2	I	8.62	302	8.62	302		I	設計・建設規格	I	SA-2
1 12 12 1	業	I	DB-3	DB-3	SA-2	I	3.45	302	3. 45	302	I	I	設計・建設規格	I	SA-2
- 63	まして (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	I	DB-1	DB-1	SA-2	I	8.62	302	8.62	302	I	-	設計・建設規格	I	SA-2
	業	I	DB-3	DB-3	SA-2	I	3.45	302	3. 45	302	I	I	設計・建設規格	I	SA-2
	₩ ₩	I	DB-3	DB-3	SA-2	I	2.28	<u>1</u>	2. 28	<u>.</u> 1	l	l	設計・建設規格	I	SA-2
E 12 1		I		DB-3	SA-2		2.28	171	2. 28	171	-	—	設計・建設規格	I	SA-2
L LK	単	I	DB-3	DB-3	SA-2	I	2.28	17	2. 28	17		I	設計・建設規格	I	SA-2
	 		I	DB-3	SA-2	I	2.28	171	2. 28	171	I	I	設計・建設規格	Ι	SA-2
I							-	-		-					

203

草油		SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	
司 御 在 文		I	I	I	I	I	I	I	l	
評価区分			設計・建設規格	設計・建設規格	ない おうしょう おうしょう おうしょう おうしょう しょう おうしょう おうしょう ひょうしん おうしょう ひょうしん ひょう ひょうしん ひょうしん ひょう	設計・建設規格	設計・建設規格	設計・建設規格	設計・建設規格	} 好。 建築・ 構築
施設時の適用規格		l	1		I	I	ļ	I	-	
開 - - - - - - - - - -		I	I	I	I	I	I			
	华	温度 (C)	12	171	171	171	171	171	171	171
5 232	SA条	圧力 (MPa)	2, 28	2. 28 2.	2. 28	2. 28	2. 28	2. 28	2. 28 12	2. 28
2 2 2 4 2	华	追度 (C)	17	171	171	171	171	171	171	171
条件ア	四条	圧力 (MPa)	2, 28	2. 28	2.28	2, 28	2. 28	2, 28	2, 28	2, 28
	条件	アッブ の有無	I		I	I	I	I	I	
	ES A J X		SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2	SA-2
ップするか		DB クラス	DR-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3	DB-3
をした		機器 クラス	DR-3	I	DB-3	I	DB-3	I	DB-3	
	からス	アップ の有無	I		I	I		I		
被接法にする 動力を引きる 構造の で、 で、 で、 で、 で、 で、 で、 で、 で、 で、		兼		兼	I	単	I	進		
	影が	難喪	既設	難喪	既設	整整	既設	難喪	既設	新設
in M			IA-FD-Z/ (F)	(A 11/) 0 KE FI	1A- <i>FU</i> -3/ (II, A)		1A-FD-4/ (U)	(1) A (1)	(T) /5_77_7	

日 次

1. 概要	1
2. 概略系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.1 概略系統図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.2 鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
3. 計算条件 ······	44
3.1 設計条件	44
3.2 材料及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	57
4. 計算結果 ·····	58

1. 概要

本計算書は、添付書類「V-3-1-6 重大事故等クラス2機器及び重大事故等クラス2支持構造物の強度計算の基本方針」及び「V-3-2-11 重大事故等クラス2管の強度計算方法」に基づき、管の応力計算を実施した結果を示したものである。

(1) 管

工事計画記載範囲の管のうち,設計条件あるいは管クラスに変更がある管における最大 応力評価点の評価結果を解析モデル単位に記載する。また,最大応力評価点の許容値/発 生値(裕度)が最小となる解析モデルを代表として記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

記 号	内容
(太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管 (重大事故等対処設備)
— — — (太破線)	工事計画記載範囲の管のうち,本計算書記載範囲の管 (設計基準対象施設)
————— (細線)	工事計画記載範囲の管のうち,本系統の管であって他 計算書記載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管の うち,他系統の管であって系統の概略を示すために表 記する管
00-0-00	鳥瞰図番号(評価結果を記載する範囲)
()	烏瞰図番号(評価結果の記載を省略する範囲)
$\mathbf{\Theta}$	アンカ
[管クラス]	
DB1	クラス1管
DB2	クラス2管
DB3	クラス3管
DB/1	クラス4管
SA2	重大事故等クラス2管
SA3	重大事故等クラス3管
DB1/SA2	重大事故等クラス2管であってクラス1管
DB2/SA2	重大事故等クラス2管であってクラス2管
DB3/SA2	重大事故等クラス2管であってクラス3管
DB4/SA2	重大事故等クラス2管であってクラス4管

概略系統図記号儿例

2.2 鳥瞰図

皀瞰図記芸材	砺
志遠明灯入自し クチョ	երու

記号	内容
—— (太線)	工事計画記載範囲の管のうち,本計算書記載範囲の管 (重大事故等対処設備の場合は鳥瞰図番号の末尾を「(SA)」,設 計基準対象施設の場合は鳥瞰図番号の末尾を「(DB)」とする。)
——— (細線)	工事計画記載範囲の管のうち,本系統の管であって他計算書記 載範囲の管
(破線)	工事計画記載範囲外の管又は工事計画記載範囲の管のうち,他 系統の管であって解析モデルの概略を示すために表記する管
•	質 点
•	アンカ
	レストレイント (本図は斜め拘束の場合の全体座標系における拘束方向成分を示 す。スナッバについても同様とする。)
<u>∃</u>	スナッバ
∃+	ガイド
∃·WV	ハンガ
<u></u> <u></u> <u></u>	リジットハンガ
	注: 烏瞰図中の寸法の単位はmmである。

MS-B(SA)(1/19)

MS-B (SA) (2/19)

MS-B(SA) (3/19)

MS-B(SA)(4/19)
MS-B(SA) (5/19)

MS-B(SA) (6/19)

MS-B(SA) (7/19)

MS-B(SA) (8/19)

MS-B(SA) (9/19)

MS-B (SA) (10/19)

鳥瞰図

15

MS-B(SA) (11/19)

MS-B (SA) (12/19)

MS-B(SA) (13/19)

224

MS-B (SA) (14/19)

MS-B(SA) (15/19)

MS-B (SA) (17/19)

MS-B(SA) (18/19)

鳥瞰図

23

MS-B (SA) (19/19)

MS-C(SA)(1/19)

MS-C(SA)(2/19)

MS-C(SA)(4/19)

鳥瞰図

233

MS-C(SA) (5/19)

MS-C (SA) (6/19)

MS-C (SA) (7/19)

MS-C (SA) (8/19)

鳥瞰図

MS-C(SA) (9/19)

MS-C (SA) (10/19)

鳥瞰図

239

MS-C (SA) (11/19)

MS-C (SA) (12/19)

鳥瞰図

MS-C (SA) (13/19)

MS-C (SA) (14/19)

MS-C (SA) (15/19)

MS-C (SA) (16/19)

MS-C (SA) (17/19)

MS-C (SA) (18/19)

MS-C (SA) (19/19)

- 3. 計算条件
- 3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し、管番号と対応する評価点番号を示す。

息 殿 図 MS-B

									-		
	内作	STPT49								STPT49	
と見	(mm)	33.6		39.6			23.0			23. 0	
外径	(mm)	660.4		252. 3			219.1			219.1	
最高使用温度	(D _°)	302		302			302			302	
最高使用压力	(MPa)	8. 62		8.62			8.62			8.62	
	XIMC & CELINIA	$1N\sim 31, 17\sim 56$	$56\!\sim\!8100,49\!\sim\!8200$	$41\!\sim\!8300, 21\!\sim\!8400$	$26 \sim 8500, 31 \sim 8600$	$8100\!\sim\!811, 8200\!\sim\!821$	$8300\!\sim\!831, 8400\!\sim\!841$	$8500\!\sim\!851, 8600\!\sim\!861$	$811 \sim 813$ F, $821 \sim 823$ F	$831 \sim 833$ F, $841 \sim 843$ F	851~853F, 861~863F
山 本 社	с Э	1		7			3			4	
	★★日 おいかとがほよ 最高使用圧力 最高使用温度 外径 厚さ H+*1	 街市 街市 街市 街市 街市 (NPa) (P2) (P2) (P2) (P1) (P2) (P1) (P2) (P1) (P1) (P1) (P1) (P1) (P1) 	 街街村 新心市る評価点 街市(川上力) 最高位用温度 外径 厚さ 村村 I 1N~31, 17~56 B.62 3.02 660.4 S.FP149 	 街市村 街市村 秋市 東市 村市 村市 村市 村市 村市 村市 (mm) (mm)	 管番号 対応する評価点 最高使用)モノ」 最高使用温度 外符 (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)<!--</td--><td> 管番号 対応する評価点 1 NN~31,17~56 56~8100,49~8200 26~8500,31~8600 8.62 302 660.1 33.6 57P149 56~8100,49~8200 8.62 302 660.1 33.6 57P149 56~8100,31~8600 8.62 302 252.3 39.6 59.6 56~8500,31~8600 </td><td>管番号 対応する評価点 最高使用 (MPa) (C) (mm) (mm) (mm) 1 1N~31,17~56 最高使用 (MPa) (C) (mm) (mm) (mm) 1 1N~31,17~56 8.62 302 660.1 33.6 STPT49 56~8100,49~8200 8.62 302 260.1 33.6 STPT49 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 8100~811,8200~821 30.6 1 1 1</td><td> 管番号 対応する評価点 (MPa) (MPa) (MPa) (T) (MPa) (T) (MPa) (T) (MPa) (T) (MPa) (T) <li< td=""><td>管番号払応守心評価点最高使用温度外孫厚さ材料11N~31,17~568.62302660.133.6STP14956~8100,49~82008.62302560.133.6STP149241~8300,21~84008.62302252.339.6241~8300,21~84008.62302252.339.63660.31~86008.62302252.339.638100~811,8200~8218.62302219.123.038300~831,8400~8418.62302219.123.058500~851,8600~8618.62302219.123.0</td><td> (推告) (加) (加) (加) (加) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) </td><td> (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</td></li<></td>	 管番号 対応する評価点 1 NN~31,17~56 56~8100,49~8200 26~8500,31~8600 8.62 302 660.1 33.6 57P149 56~8100,49~8200 8.62 302 660.1 33.6 57P149 56~8100,31~8600 8.62 302 252.3 39.6 59.6 56~8500,31~8600 	管番号 対応する評価点 最高使用 (MPa) (C) (mm) (mm) (mm) 1 1N~31,17~56 最高使用 (MPa) (C) (mm) (mm) (mm) 1 1N~31,17~56 8.62 302 660.1 33.6 STPT49 56~8100,49~8200 8.62 302 260.1 33.6 STPT49 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 41~8300,21~8400 8.62 302 252.3 39.6 2 8100~811,8200~821 30.6 1 1 1	 管番号 対応する評価点 (MPa) (MPa) (MPa) (T) (MPa) (T) (MPa) (T) (MPa) (T) (MPa) (T) <li< td=""><td>管番号払応守心評価点最高使用温度外孫厚さ材料11N~31,17~568.62302660.133.6STP14956~8100,49~82008.62302560.133.6STP149241~8300,21~84008.62302252.339.6241~8300,21~84008.62302252.339.63660.31~86008.62302252.339.638100~811,8200~8218.62302219.123.038300~831,8400~8418.62302219.123.058500~851,8600~8618.62302219.123.0</td><td> (推告) (加) (加) (加) (加) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) </td><td> (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1</td></li<>	管番号払応守心評価点最高使用温度外孫厚さ材料11N~31,17~568.62302660.133.6STP14956~8100,49~82008.62302560.133.6STP149241~8300,21~84008.62302252.339.6241~8300,21~84008.62302252.339.63660.31~86008.62302252.339.638100~811,8200~8218.62302219.123.038300~831,8400~8418.62302219.123.058500~851,8600~8618.62302219.123.0	 (推告) (加) (加) (加) (加) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) (m) 	 (4) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し,管番号と対応する評価点番号を示す。

馬 顕 図 NS-B

京本	立ちていたのでは、	最高使用压力	最高使用温度	外径	戸さ	<u>++</u> *%
С Э Э	AJ # C & C # C # C # C # C # C # C # C # C	(MPa)	())	(mm)	(mm)	244
	$101F \sim 133, 201 \sim 227$					
21	$301F \sim 334, 401F \sim 434$	3. 45	302	267.4	15.1	STPT12
	$503 \sim 536, 601F \sim 636$					
	$133 \sim 142, 227 \sim 235$					
9	$334 \sim 338, 434 \sim 442$	3. 45	302	267.4	15.1	STP112
	$536 \sim 540, 636 \sim 640$					
	$143 \sim 166, 236 \sim 256$					
2	$339 {\sim} 360, 443 {\sim} 462$	3.45	302	318. 5	17.4	STPT42
	$541 \sim 559, 641 \sim 661$					
8	$2016 \sim 201$, $5016 \sim 503$	3.45	302	267.4	15.1	STPT410
2110 10101						
------------	---					
質量	対応する評価点					
	$1N \sim 8, 12 \sim 17, 23 \sim 24, 35 \sim 39, 51 \sim 53$					
	8~12, 47~51					
	17~19, 17~35					
	19~23					
	24~29					
	29~31					
	39~43					
	43~47					
	53~56					
Π	8100~813F, 8200~823F, 8300~833F, 8400~843F, 8500~853F					
	8600~863F					

鳥 瞰 凶 MS-B

フランジ部の質量

質量	対応する評価点
	813F, 823F, 833F, 843F, 853F, 863F
	101F, 201F, 301F, 401F, 501F, 601F

鳥 瞰 凶 MS-B

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
813F~814				814~815			
$815 \sim 816$				$816 \sim 817$			
814~101F				823F~824			
$824 \sim 825$				$825 \sim 826$			
826~827				824~201F			
833F~834				$834 \sim 835$			
835~836				836~837			
834~301F				843F~844			
844~845				$845 \sim 846$			
846~847				844~401F			
853F~854				$854{\sim}855$			
$855 \sim 856$				856~857			
$854{\sim}501\mathrm{F}$				863F~864			
864~865				865~866			
866~867				864~601F			

鳥 瞰 図 MS-B

弁部の質量

質量	対応する評価点	質量	対応する評価点
	814, 824, 834, 844, 854, 864		816, 826, 866
	817, 827, 837, 847, 857, 867		836, 846, 856

鳥 瞰 以 MS−B

設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し,管番号と対応する評価点番号を示す。

后 服 刘 NS-C

				_			_					
	3/++	内叶	STPT49								STPT49	
	や画	(mm)	33.6		39.6			23.0			23. 0	
	洲径	(mm)	660.4		252. 3			219. 1		219.1		
	最高伙用温度	(C)	302		302			302			302	
	最高使用压力	(MPa)	8. 62		8.62			8.62			8.62	
后期 X W2-C	北によって前日に	とうしゅう しゅうしん	$1N\sim 25, 12\sim 50$	$50\!\sim\!8100,43\!\sim\!8200$	$35{\sim}8300, 16{\sim}8400$	$20\!\sim\!8500, 25\!\sim\!8600$	$8100\!\sim\!811, 8200\!\sim\!821$	$8300\!\sim\!831, 8400\!\sim\!841$	$8500\!\sim\!851,8600\!\sim\!861$	$811 \sim 813$ F, $821 \sim 823$ F	$831 \sim 833$ F, $841 \sim 843$ F	851~853F, 861~863F
	玉葉	百年内	1		7			n			4	

設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し,管番号と対応する評価点番号を示す。

馬 副 S-C

材料	STPT42	STPT42	STPT42	
耳さ (mm)	15. 1	15. 1	17.4	
¢∱{?{ (mm)	267. 1	267. 1	318.5	
最高祉用温度 (°C)	302	302	302	
最高使用)干力 (MPa)	3. 15	3. 45	3. 45	
対応する評価点	101F∼131, 201~238 302~333, 401F~439 501F~534, 601~604 605~636	$134 \sim 137$, $238 \sim 242$ $333 \sim 339$, $439 \sim 444$ $534 \sim 538$, $636 \sim 640$	$138 \sim 160, 243 \sim 265$ $340 \sim 359, 445 \sim 464$ $539 \sim 559, 641 \sim 661$	
皓希步	מו	Q	Ľ	

設計条件

鳥瞰図番号ごとに設計条件に対応した管番号で区分し,管番号と対応する評価点番号を示す。

馬 戰 図 WS-C

東来上	学がような	長高使用圧力	最高使用温度	外径	戸は	<u> </u>
C H H	אזין ווון איני אין ישע גע	(MPa)	(J _o)	(mm)	(mm)	421 4-1
c	$201F \sim 201$, $301F \sim 302$	17 0	000	r E c c	L	
×	$601F \sim 601, 604 \sim 605$	3. 15	302	207.1	10.1	5171410

質量	対応する評価点
	$1N \sim 12, 18 \sim 19, 29 \sim 33, 45 \sim 47$
	12~14, 12~29
	14~18
	$19 \sim 23, 41 \sim 45$
	$23 \sim 25$
	33~37
	37~41
	47~50
Π	8100~813F, 8200~823F, 8300~833F, 8400~843F, 8500~853F
	8600~863F

鳥 瞰 凶 MS-C

フランジ部の質量

質量	対応する評価点
	813F, 823F, 833F, 843F, 853F, 863F
	101F, 201F, 301F, 401F, 501F, 601F

鳥 瞰 凶 MS−C

54

弁部の寸法

評価点	外径(mm)	厚さ(mm)	長さ(mm)	評価点	外径(mm)	厚さ(mm)	長さ(mm)
813F~814				814~815			
815~816				816~817			
814~101F				823F~824			
824~825				825~826			
826~827				824~201F			
833F~834				834~835			
835~836				836~837			
834~301F				843F~844			
844~845				845~846			
846~847				844~401F			
853F~854				854~855			
855~856				856~857			
854~501F				863F~864			
864~865				865~866			
866~867				864~601F		-	

鳥 瞰 図 MS-C

弁部の質量

質量	対応する評価点	質量	対応する評価点
	814, 824, 834, 844, 854, 864		816, 826, 846, 866
	817, 827, 837, 847, 857, 867		836, 856

鳥 瞰 図 MS-C

3.2 材料及び許容応力 使用する材料の最高使用温度での許容応力を下表に示す。

	ЧS			103	103
) (MPa)	s u				
許容応力	S y	209	173		
	Sm	138	115		
最高使用 温度	(°C)	302	302	302	302
++ }	43 44	STP749		STPT42	STPT410

4. 計算結果

下表に示すとおり最大応力は許容値以下である。

重大事故等クラス2管であってクラス1管

設計・建設規格 PPB-3200の規定に基づく評価

	、 七	物 壇		₩) \$\$\$\$	ち力評価 (Pa)
烏瞰図	たし	■ 家 家	- 泉大応力 マー・ハ	一伙応力	》 指
	評価点	名称	R K		長辺
				Sprm	Min(3Sm,2Sy)
MS-B	49	TEE	Sprm	104	345

計算結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス3管

設計・建設規格 PPC-3520の規定に基づく評価

	<i>رار خ</i> h 6 h	4	
≣¥∕IIIí (MPa	計 <i>给</i> 局 1.55 1.85	15	18
一伙応力	計算応力 Sprm(1) Sprm(2)	49	137
	最大応力 区 分	$\operatorname{Sprm}(1)$	$\operatorname{Sprm}(2)$
	最大応力 評価点	303	232
	鳥瞰図	MS-B	MS-C

原子炉格納施設の設計条件に関する説明書のうち 重大事故等時の動荷重について

1. 概要

東海第二発電所において,重大事故等時の原子炉格納容器に生じる動荷重について整 理し,その動荷重が設計基準事故を上回る又は設計基準事故で想定されていない動荷重 については,原子炉格納容器に対する影響を確認する。

- 2. 原子炉格納容器に生じる動荷重について
- 2.1 設計基準事故時に生じる動荷重
 - 原子炉格納容器に生じる動荷重を抽出するにあたって,初めに設計基準事故時に生じ る動荷重について,記載する。

設計基準事故時に生じる動荷重は、「BWR. MARK Ⅱ型格納容器圧力抑制系に加わる動荷 重の評価指針」で示されており、原子炉冷却材喪失時及び逃がし安全弁作動時に生じるも のを考慮することが求められている(参考資料 1)。この 2 つの事象時は、以下のような 現象により動荷重が生じる。

2.1.1 原子炉冷却材喪失(LOCA)時に生じる動荷重

原子炉冷却材喪失(LOCA)時には,原子炉冷却材圧力バウンダリ内から多量の原子 炉冷却材が流出することに伴い,以下のような現象が生じる。

- ・LOCA時のドライウェル圧力の急激な上昇によりベント管内の水がサプレッション・チェンバへ移行する
- ・その後、ドライウェル内の非凝縮性ガスがサプレッション・チェンバへ移行する
- ・原子炉冷却系統から流出した原子炉冷却材が蒸気となり、ドライウェルからサンプ レッション・チェンバへ移行する

この過程で、ベント管内の水がサプレッション・チェンバへ移行すると、水ジェット流 が形成され、動荷重が作用する。また、非凝縮性ガスがサプレッション・チェンバへ移行 すると気泡を形成し、プール水中の圧力上昇、水面上昇による衝撃力等により、動荷重が 作用する。さらに蒸気がサプレッション・チェンバへ移行するとプール水によって蒸気は 凝縮され、この過程でサプレッション・チェンバ内のプール水が揺動し、種々の動荷重が 生じる。

2.1.2 逃がし安全弁の作動時に生じる動荷重

逃がし安全弁の作動時には,逃がし安全弁から多量の原子炉冷却材が流出することに 伴い,以下のような現象が生じる。

- ・逃がし安全弁作動時に多量の原子炉冷却材が放出されるため、逃がし安全弁排気管
 (以下「排気管」という。)内の水がサプレッション・チェンバへ移行する
- その後、排気管内の非凝縮性ガスがサプレッション・チェンバへ移行する
- ・原子炉圧力容器から流出した蒸気が,逃がし安全弁から排気管を通じて,サンプレ ッション・チェンバへ移行する

この過程で, 排気管内の水がサプレッション・チェンバへ移行すると, 水ジェット流が 形成され, 動荷重が作用する。また, 非凝縮性ガスがサプレッション・チェンバへ移行す ると気泡を形成し, この気泡が過膨張・収縮を繰返し, 動荷重が作用する。さらに蒸気が サプレッション・チェンバへ移行するとプール水によって蒸気は凝縮され, この過程で蒸 気が不安定凝縮となる場合, 動荷重が生じる。

2.2 重大事故等時に生じる動荷重の整理

2.1 に示したとおり、動荷重は、ベント管又は排気管から、多量の水、非凝縮性ガス及 び蒸気がサプレッション・チェンバに移行するときに発生する。このため、重大事故等時 に生じる動荷重についても、ベント管又は排気管から、多量の水、非凝縮性ガス及び蒸気 がサプレッション・チェンバに移行する事象を抽出し、整理する。

整理方法としては、炉心損傷防止対策の有効性評価における重要事故シーケンス及び 格納容器破損防止対策の有効性評価における評価事故シーケンス(重要事故シーケンス 等)ごとに事故進展を整理し,生じる動荷重を抽出する。重要事故シーケンス等において, 多量の水,非凝縮性ガス及び蒸気がサプレッション・チェンバに移行するシーケンスを第 2-1表に示す。

この整理により,設計基準事故時で考慮されていない動荷重は,以下のように抽出できた(第 2-2 表)。

·高圧溶融物放出/格納容器雰囲気直接加熱

逃がし安全弁作動時に原子炉圧力容器からサプレッション・チェンバへ放出され る蒸気が過熱蒸気であることから設計基準事故時の飽和蒸気と性状が異なる

・原子炉圧力容器外の溶融燃料ー冷却材相互作用

高温の炉心(デブリを含む)と水との接触に伴う圧力上昇に伴い,サプレッション・ チェンバヘドライウェル内の非凝縮性ガス等が流入する

・格納容器過圧・過温破損

ベント時にサプレッション・チェンバが減圧することによりドライウェルからサ プレッション・チェンバへ蒸気が流入するとともにプール水の減圧沸騰が生じる恐 れがある

これらの動荷重に対して、有効性評価等で得られている各パラメータ等を用いること

で、原子炉格納容器の健全性を確認する。

また,逃がし安全弁作動時の動荷重のうち,設計基準事故時に想定される動荷重と同等 以下となる重要事故シーケンスについては,一部のパラメータが設計基準事故時のパラ メータを超えることから,その影響について評価結果を記載する。

No.	重要事故 シーケンス等	事象の概要及び重大事故等時に生じる動荷重
1	高圧・低圧注水 機能喪失 (給水喪失) [TQUV]	給水喪失により原子炉水位は低下するが,逃がし安 全弁(自動減圧機能)7弁を手動開放させ,低圧代替 注水系(常設)により注水する。 本事象は,逃がし安全弁(自動減圧機能)7弁の手 動開放に伴うサプレッション・チェンバへの多量の蒸 気放出を想定している。また,格納容器ベント時のド ライウェルからサプレッション・チェンバへの多量の 蒸気放出及びサプレッション・チェンバ内のプール水 の減圧沸騰を想定している。
2	高圧注水・減圧 機能喪失 (給水喪失) [TQUX]	給水喪失により原子炉水位は低下するが,過渡時自 動減圧機能による自動減圧が行われ,低圧炉心スプレ イ系等により注水される。 本事象は,自動減圧時の逃がし安全弁の作動に伴う サプレッション・チェンバへの多量の蒸気放出を想定 している。

第2-1表 重大事故等時に生じる動荷重

No.	重要事故 シーケンス等	事象の概要及び重大事故等時に生じる動荷重
	全交流 動力電源喪失 [長期 TB (津波浸水による 最終ヒートシンク喪失と 同じ)]	全交流動力電源喪失により原子炉水位は低下し,そ の後原子炉隔離時冷却系が運転開始して原子炉水位 は維持される。8時間後に可搬型代替注水中型ポンプ を用いた低圧代替注水系(可搬型)の準備が完了した 時点で,逃がし安全弁(自動減圧機能)7弁を手動開 放させ,低圧代替注水系(可搬型)により注水する。 本事象は,逃がし安全弁(自動減圧機能)7弁の手 動開放に伴うサプレッション・チェンバへの多量の蒸 気放出を想定している。
3	[TBD, TBU]	全電源喪失により原子炉水位は低下し,その後高圧 代替注水系を手動起動して原子炉水位を維持する。8 時間後に可搬型代替注水中型ポンプを用いた低圧代 替注水系(可搬型)の準備が完了した時点で,逃がし 安全弁(自動減圧機能)7弁を手動開放させ,低圧代 替注水系(可搬型)により注水する。 本事象は,逃がし安全弁(自動減圧機能)7弁の手 動開放に伴うサプレッション・チェンバへの多量の 蒸気放出を想定している。
	[TBP]	全交流動力電源喪失により水位は低下し,その後原 子炉隔離時冷却系が運転開始して原子炉水位は維持 される。3時間後に可搬型代替注水中型ポンプを用い た低圧代替注水系(可搬型)の準備が完了した時点で, 再閉鎖に失敗した逃がし安全弁1弁に加えて逃がし安 全弁(自動減圧機能)6弁を手動開放させ,低圧代替 注水系(可搬型)により注水する。 本事象は,再閉鎖に失敗した逃がし安全弁1弁に 加えて逃がし安全弁(自動減圧機能)6弁の手動開放 に伴うサプレッション・チェンバへの多量の蒸気放 出を想定している。

No.	重要事故 シーケンス等	事象の概要及び重大事故等時に生じる動荷重
4	崩壊熱除去 機能喪失 (取水機能喪失) [TW]	全交流動力電源喪失により原子炉水位は低下し,そ の後原子炉隔離時冷却系が運転開始して原子炉水位 が維持される。その後,逃がし安全弁(自動減圧機能) 7 弁を手動開放させ,低圧代替注水系(常設)により 注水する。 本事象は,逃がし安全弁(自動減圧機能)7 弁の手 動開放に伴うサプレッション・チェンバへの多量の蒸 気放出を想定している。
5	崩壞熱除去 機能喪失 (残留熱除去系機能喪失) [TW]	給水喪失により原子炉水位は低下し,その後原子炉 隔離時冷却系及び高圧炉心スプレイ系が運転開始し て原子炉水位が維持される。その後,逃がし安全弁(自 動減圧機能)7弁を手動開放させ,低圧代替注水系(常 設)により注水する。 本事象は,逃がし安全弁(自動減圧機能)7弁の手 動開放に伴うサプレッション・チェンバへの多量の蒸 気放出を想定している。また,格納容器ベント時のド ライウェルからサプレッション・チェンバへの多量の 蒸気放出及びサプレッション・チェンバ内のプール水 の減圧沸騰を想定している。
6	原子炉停止 機能喪失 [ATWS]	主蒸気隔離弁誤閉止の発生後,原子炉スクラムに失 敗する。主蒸気隔離弁が閉止されると原子炉圧力が上 昇し,原子炉圧力高信号で再循環系ポンプがトリップ する。主蒸気隔離弁の閉止により,タービン駆動給水 ポンプはトリップするが,電動駆動給水ポンプが自動 起動して給水が継続される。 本事象は,逃がし安全弁の作動に伴うサプレッショ ン・チェンバへの蒸気放出を想定している。

No.	重要事故 シーケンス等	事象の概要及び重大事故等時に生じる動荷重
7	LOCA 時注水 機能喪失 (中小破断) [SE]	外部電源喪失及び LOCA 発生により原子炉水位は低 下するが,逃がし安全弁(自動減圧機能)7 弁を手動 開放させ,低圧代替注水系(常設)による注水を開始 する。 本事象は, <u>原子炉冷却材喪失時のブローダウン過程</u> における高温水・蒸気の放出を想定している。また, 逃がし安全弁(自動減圧機能)7 弁の手動開放に伴う サプレッション・チェンバへの多量の蒸気放出を想定 している。また, <u>格納容器ベント時のドライウェルか</u> らサプレッション・チェンバへの多量の蒸気放出及び サプレッション・チェンバへの多量の蒸気放出及び サプレッション・チェンバへの多量の蒸気放出及び
8	格納容器バイパス (残留熱除去系配管破断) [ISLOCA]	ISLOCA 時は,残留熱除去系からの漏えいを想定し, 破断口からの冷却材流出による水位低下により,原子 炉隔離時冷却系が運転開始して原子炉水位が維持さ れる。その後,逃がし安全弁(自動減圧機能)7弁を 手動開放させ,低圧炉心スプレイ系による注水を開始 する。 本事象は,逃がし安全弁(自動減圧機能)7弁の手 動開放に伴うサプレッション・チェンバへの多量の蒸 気放出を想定している。
9	雰囲気圧力・温度 による静的負荷 (格納容器過圧・過温破損)	大破断 LOCA により原子炉水位は低下し,炉心が損 傷・溶融する。その後,低圧代替注水系(常設)及び 代替循環冷却系により,原子炉格納容器を冷却・減圧 する,又は,代替循環冷却系が使用できない場合,格 納容器ベントによって,原子炉格納容器を減圧する。 本事象は,原子炉冷却材喪失時のブローダウン過程
10	水素燃焼	<u>における高温水・蒸気の放出</u> を想定している。また, <u>格納容器ベント時のドライウェルからサプレッショ</u> <u>ン・チェンバへの多量の蒸気放出及びサプレッショ</u> <u>ン・チェンバ内のプール水の減圧沸騰</u> を想定してい る。

No.	重要事故 シーケンス等	事象の概要及び重大事故等時に生じる動荷重
1 1	高圧溶融物放出/格納容器 雰囲気直接加熱	給水喪失により原子炉水位は低下し,炉心が損傷・ 溶融する。その後,逃がし安全弁(自動減圧機能)2弁 を手動開放させ,原子炉圧力容器の圧力を低下するこ
1 2	原子炉圧力容器外の溶融燃 料ー冷却材相互作用	とで、高圧溶融物放出/格納容器雰囲気直接加熱の発 生を防止する。 本事象は、逃がし安全弁(自動減圧機能)2弁の手 動開放に伴うサプレッション・チェンバへの多量の過
13	溶融炉心・コンクリート相 互作用	<u>熱蒸気放出</u> を想定している。また, <u>高温の溶融炉心と</u> <u>水との接触に伴う蒸気等のペデスタル(ドライウェル</u> <u>部)からドライウェルを介したサプレッション・チェ</u> <u>ンバへの多量の蒸気放出</u> を想定している。

	青亜車廿	動荷重			
	重安争叹 シーケンス等	逃がし 安全弁	LOCA	FCΙ	ベント
1	高圧・低圧注水機能喪失 (給水喪失)[TQUV]	0			•
2	高圧注水・減圧機能喪失 (給水喪失)[TQUX]	0			
3	全交流動力電源喪失[TB]	0			
4	崩壞熱除去機能喪失 (取水機能喪失) [TW]	0			
5	崩壞熱除去機能喪失 (残留熱除去系機能喪失) [TW]	0			•
6	原子炉停止機能喪失 [ATWS]	0			
7	LOCA 時注水機能喪失 (中小破断)[SE]	0	0		•
8	格納容器バイパス (残留熱除去系配管破断)[ISLOCA]	0			
9	雰囲気圧力・温度による静的負荷 (格納容器過圧・過温破損)		0		•*
10	水素燃焼		0		•
11	高圧溶融物放出/ 格納容器雰囲気直接加熱	•*		•	
1 2	原子炉圧力容器外の溶融燃料 - 冷却材相互作用	•		•*	
13	溶融炉心・コンクリート相互作用	•		•	

第2-2表 重大事故等時に生じる動荷重のまとめ表

○:設計基準事故時に生じる動荷重と同等以下

●:設計基準事故時に考慮されていないもの

●*:設計基準事故時に考慮されていないもののうち、動荷重評価で代表するもの

2.3 重要事故シーケンス等のうち他の重要事故シーケンスで包絡できるものについて

2.2 で抽出した重大事故等時に生じる動荷重のうち,重要事故シーケンス等のうち他の 重要事故シーケンスで包絡できるものについて,検討する。

逃がし安全弁作動時の動荷重のうち,設計基準事故時に想定される動荷重と同等以下 となる重要事故シーケンスについては,一部のパラメータが設計基準事故時のパラメー タを超えるため,動荷重への影響検討が必要である。

検討のため,原子炉格納容器に対する逃がし安全弁の動荷重の考え方について,設計基 準事故時の設計条件について記載する。設計条件は,東海第二の実機試験により,非凝縮 性ガスによる気泡脈動の圧力振幅が支配的であることを確認しているため,この圧力振 幅に基づき動荷重が設定されている(第2-1図)。排気管内の非凝縮性ガスに保留されて いる非凝縮性ガスの体積は,設計基準事故時と重大事故等時で変わらないため,重大事故 等時の気泡脈動による圧力振幅は設計基準事故と同等以下である。また,非凝縮性ガスの 放出後は,原子炉圧力容器から放出された蒸気が凝縮する過程で圧力振幅が生じるが,第 2-1で示すように既往の試験から不安定凝縮しなければ,気泡脈動による動荷重を上回る ことはないため,逃がし安全弁作動時の蒸気が安定的に凝縮できることを確認すること により,設計基準事故時に生じる動荷重と同等以下であることを確認できる。また,既往 の試験条件として,多弁作動時による影響,原子炉圧力容器圧力による影響も確認されて いることから,以下の観点で設計基準事故時と重大事故等時のパラメータを比較し,他の 重要事故シーケンス等の包絡性を確認する。

・サプレッション・チェンバ内のプール水温

プール水温が設計基準事故時(サプレッション・チェンバの最高使用温度)より 高くなる場合,原子炉圧力容器より放出される蒸気による不安定凝縮が生じる 可能性があるため,動荷重が設計基準事故時より大きくなる可能性がある

・逃がし安全弁作動時の弁数

逃がし安全弁作動時に作動する弁の数が設計基準事故時より多い場合,既往の 試験結果で確認している多弁作動時の圧力振幅が大きくなり,動荷重が設計基 準事故時より大きくなる可能性がある

・逃がし安全弁作動時の原子炉圧力容器圧力

逃がし安全弁は原子炉圧力容器圧力に応じた吹出量を放出するため,逃がし安 全弁作動時の圧力が設計基準事故時より大きくなった場合,動荷重が設計基準 事故時より大きくなる可能性がある

第2-1図 東二実機試験で得られた逃がし安全弁作動時の水中圧力振動波形 (横軸:時間,縦軸:圧力)(参考資料2 ③)

整理した結果を第 2-3 表に示す。その結果,以下の 2 つの重要事故シーケンス等で生 じる動荷重は,設計基準事故の評価条件を超えるパラメータあるため,影響評価が必要と 判断した。

· 全交流動力電源喪失

プール水温は約100 ℃に達しており,さらに,減圧完了までの間に約119 ℃まで上昇するため,設計基準事故時のプール水温 ℃を超える。

·原子炉停止機能喪失時

主蒸気隔離弁閉止後の原子炉停止失敗に伴い,逃がし安全弁18弁が動作するため,設計基準事故時に設計上考慮している最大17弁を超える。このとき,原子炉 圧力が約8.19 MPa[gage]まで上昇するため,既往の試験で確認している試験条件 (7.37 MPa)を超える。

重要事故 シーケンス等	高圧・低圧注水機能喪失 (給水喪失)	高圧注水・減圧機能喪失 (給水喪失)	全交流動力電源喪失	崩壞熱除去機能喪失(取 水機能喪失)	崩壞熱除去機能喪失 (残 留熱除去系機能喪失)	原子炉停止機能喪失時	LOCA時注水機能喪失 (中小破断)	格納容器バイパス(残留 熱除去系配管破断)
送ぶし 「安全事事」 「本」の小学で イレッシュー・ イン・シー・ イン・ション・ ノン	他シーケンスに包給 属十句圧力容器を急速 減上する事象路件後早期 (約 25 分)時点での周子 有圧力容器圧力は、7.79 MPaLgage」以下、プール水 油龍は53 °Cであり、周子頃 圧機能環失時に、プール水 に包給される。 また、周子項用力は腐須康失 にによる急速減円を強減 用時には逃がし安全弁7年 による急速減円を強減 正要なにの余年に つ給される。 の発される。	他シーケンスに包絡 原子何圧力な器が急速 減圧される事象発体後早 境(約31分)時点での項 子有圧力容器圧力は7.79 MPa[gage]以下、ブール水 晶は52°Cであり、項子有 正機能喪失時に、ブール水 に包給される。 また、項子有圧力な器減 大一ル水 による急速減圧や容器減 圧移には逃ぶし安全争2 による急速減圧や強器減 圧移症がし安全争2 による急速減圧や強器 でおり、作動非数は項斗句 存止機能喪失時の条件に 包給される。	DBA に包括 振期18シーケンスでは、 減圧開始時点でのプール 水温は約 100 ℃に達して おり、さらに、減圧売了ま での間に約 119 ℃まで上 昇する。 このため,設計基準事故 にのため,設計基準事故 たの がら設計基準事故時の動 荷重と同等以下である (2.4に記載)。 また、原子切圧力容器減 圧時には逃がし安全弁7年 による急速減圧を超成し 有止機能換失時の条件に 自給される。	他シーケンスに包絡 周子有圧力な器の減圧 を開始するプーレナ編 を開始するプーレオ論 に力 容器 圧力 は 7.79 地名[2838]以下であり, 須 東大に包緒される。 康子に回緒される。 東大に回緒される。 東子には近がし安全弁1年 による急速減圧な強縮動力 醴減 による急速減圧な登場力 醴減 による急速減圧な全部成 に成子す による急速減圧な全部で による。 加速減圧な会話 に の条件に の条件に の条件に	他シーケンスに包絶 原子有圧力容器の減圧 時本有圧力容器の減圧 た力容器 用力 は 7.79 46.5 C国連時点での原子有 有存止機能喪失時に、プー 大米値は全交消動力 講領 また、原子有圧力容弱。 また、原子有圧力容器減 また、原子有圧力容器減 による急速減圧安全部で。 合称の余年に でおり、作動速気に気全全な に が の余さた。 の余年に	DBA に包装 同子方田力容器の除熱 原子方田力容器の除熱 の過程で、プール水温は約 一ル水温は全交流動力値 薄残火に包絡される。 また、主蒸気隔離弁関止 後の原子方停止失敗に伴 し、逃ぶし安全弁 18 弁が 動作するものの原子項田 力が約 8.19 MPa[gage]ま で上昇しており、原子項田 力の上昇率が設計基準準 故時より高くなることが 地でたわるが、2.4で記載 の動荷画と同等以下であ の。動荷画と同等以下であ る。	他シーケンスに包絡 順子有圧力容器が急速 減圧される事象発生後早 力有圧力容器が急速 力有圧力容器比力は 7.79 地Palgase」以下、プールオ 油は25 ℃であり,原子有 正統能費失時に、プールオ に包絡される。 また,原子何圧力容器減 下よる急速減圧を踏減し ており、作動弁数は原子有 たよる。 適減用を構成し ており、作動弁数は原子有 れる。	他シーケンスに包給 原子何圧力容器が急速 現子が圧力容器が急速 子何圧力容器力力容器が急速 子何円力容器圧力は7.79 mai (約 15 分) 時沖での項 動意は44℃であり, 東沖での項 動容される。 回路される。 回路される。 目子方圧力容容は による急速減圧を強調使子 にてよる。 連減用や強減圧を強減 になる。 が時外 にし数 になる。 が の による。 連減用や が に に し が の に が の の の の の の の の の の の の の の の の
ド イ イ イ イ イ イ イ イ イ ト イ イ イ イ イ イ イ イ イ イ イ イ イ	他シーケンスに包給 1 Pd での格納容器ベン ト 実施を想定することか ら,格納容器ベント実施時 のガス放出活量は,格納容 器適圧・適温破損 (1.5 Pd での格納容器ベントを想 定) に包給される。	I	I	I	他シーケンスに包給 1 Pd での格納容器ペン ト実施を想定することか ら、格納容器ペント実施 時のガス放出流量は、格 納容器適圧・適温破損 (1.5 Pd での格納容器ペ ントを想定) に包給され る。	I	 他シーケンスに包給 1 Pdでの格納容器ペン 1 Faでの格納容器ペント 大動音電子ることか ち、格納容器ペント実施 許容器適圧・適温破損 (1.5 Pdでの格納容器ペ ントを想定)に包給され る。 	I

第2-3表 重大事故等時に生じる動荷重のうち設計基準事故時の包絡性について(1/2)

第2-3表 重大事故等時に生じる動荷重のうち設計基準事故時の包絡性について(2/2)

2.4 重大事故等時に生じる動荷重のうち設計基準事故時の逃がし安全弁作動時と同等以下 となる重要事故シーケンス等

2.3 において,設計基準事故時の動荷重が包絡できるとしたと同等以下とする重要事故 シーケンス等について,影響評価が不要とできる理由を既往の試験等から,その妥当性に ついて記載する。

2.4.1 全交流動力電源喪失時において設計基準事故時に包絡される理由

本事象は、事象発生後 8 時間までの原子炉注水を原子炉隔離時冷却系に期待している ため、原子炉圧力容器減圧操作する事象発生後 8 時間時点でプール水温は約 100 ℃に達 し、さらに、減圧完了までの間に約 119 ℃まで上昇する(第 2-2 図)。このことから、原 子炉圧力容器減圧操作時点でのプール水温は設計基準事故時(約 ℃)を逸脱する。

このため,以下のように検討し,設計基準事故時に生じる動荷重と同等以下であること を確認する。

プール水温が設計基準事故時を逸脱する場合において設計基準事故時に包絡される理由

クエンチャを採用した場合の逃がし安全弁作動時の凝縮性能に関しては,第 2-2 図で 示すように,プール水がほぼ飽和状態となっていても不安定凝縮が発生しないことを確 認している(参考資料2 ①)。このため,第2-1 図で示すようにプール水温が100 ℃以 上の飽和水は第2-2 図の100 ℃付近の飽和水の試験結果と同様に不安定凝縮することは ない。また,本事象は原子炉圧力容器圧力が7.79 MPa 時に逃がし安全弁が動作する。こ のときの最大蒸気流束は,糸 kg/s/m²であるため,第2-3 図で示す試験条件を逸脱し ているが,第2-4 図で示すように蒸気流束 kg/s/m²において,蒸気は不安定凝 縮をしていない。よって,現状の設計条件を逸脱することはなく,設計基準事故時と同等 以下の動荷重となる。

また、蒸気による動荷重への影響の他に非凝縮性ガスの動荷重への影響が考えられる が、このときの荷重として支配的な気泡脈動荷重については、逃がし安全弁排気管内に保 留されている非凝縮性ガスの放出に伴う荷重であり、排気管内の非凝縮性ガスの体積は 設計基準事故時と同等である。また、気泡脈動荷重は、サプレッション・チェンバ内での 凝縮を伴わないことから、プール水温上昇による影響を受けない。

よって, 蒸気の不安定凝縮が生じなければ, 上記で示すように設計基準事故時の動荷重 を上回ることは無いため, SA時の逃がし安全弁作動時の蒸気が安定的に凝縮できるこ とを確認することにより, 設計基準事故時と同等以下であることを確認した。

第2-2図 全交流動力電源喪失時のプール水温度の時刻歴

第 2-3 図 蒸気凝縮時の圧力変動と水温の関係*1

*1: "MARK-I型格納容器の動荷重評価について", MARK-I型格納容器評価検討会, 昭和 59 年 5 月(参考資料 2 ①) 第 2-4 図 蒸気流束及びプール水温と凝縮性能の関係(クエンチャタイプ) (参考資料2 ①, ②) 2.4.2 原子炉停止機能喪失時において設計基準事故時に包絡される理由

主蒸気隔離弁閉止後の原子炉停止失敗に伴い,逃がし安全弁18弁が動作するため,既 往の試験結果で確認している多弁作動時の弁数より多く,設計基準事故時に設計上考慮 している最大17弁より多い。また,このときに原子炉圧力が約8.19 MPa[gage]まで上昇 するため,既往の試験で確認している試験条件(7.37 MPa)を超える。

上記の2つの事象について,以下のように検討し,設計基準事故時に生じる動荷重の同 等以下であることを確認する。

2.4.2.1 逃がし安全弁18弁作動時において設計基準事故時に包絡される理由

東海第二発電所及び海外プラントで逃がし安全弁作動時の実機試験を実施しており, 以下のことが確認されており,このことから考察できる。

- ・東海第二の実機試験で全主蒸気隔離弁同時閉し、スクラム成功後に 弁の逃がし安 全弁が作動したときに測定された圧力振幅は、単弁作動時と同等の結果
- ・海外プラントの実機試験で複数の逃がし安全弁を手動開とし、各試験で有意な差がない
- ・東海第二の実機試験で測定された圧力振幅は、クエンチャ近傍で大きく、距離が離れ るほど、減衰する

東海第二の実機試験及び海外プラントで確認されている多弁作動時の影響

東海第二の実機試験では、全主蒸気隔離弁を同時閉とすることでプラントをスクラム させ、逃がし安全弁が吹き出すように試験を実施している。

本試験では,逃がし安全弁は 弁作動しており,多弁作動の圧力振幅を確認している。

第2-5 図に示すように逃がし安全弁作動時の圧力振幅は,単弁作動時と比較し,多弁作 動時の方が小さい結果であった。多弁作動した時に圧力振幅が大きくならなかった理由 は,逃がし安全弁の作動タイミングのずれ,排気管の配管長及び非凝縮性ガスが排出され る各クエンチャから測定点までの距離の違いによる気泡脈動の位相のずれが生じる。こ れにより圧力振幅が相殺される等によって,圧力振幅が増幅しなかったものと考えられ る。

さらに海外プラントでは複数の逃がし安全弁を複数弁同時に手動開とする実機試験を 実施しており,測定された圧力振幅に有意な差がなく,東海第二の試験と同様な理由で圧 力振幅が増幅しなかったと考えられる(第2-6図)。^[3] 第 2-5 図 多段弁作動時と単弁作動時の水中圧力脈動の比較 (横軸:測定点,縦軸:圧力振幅)(参考資料2 ③)

第2-6図 海外プラント実機試験時の圧力振幅

海外プラント実機試験の東海第二への適用性

実機試験を実施した海外プラントは東海第二と同じMARK-Ⅱ側格納容器となって いる。また、クエンチャの形状が同等であること、クエンチャの配置については、対称的 な配置が同様である(第2-7図)。これらのことから、海外プラントと東海第二は類似し た形状であるため、実機試験の結果は適用できる。

海外プラント ^[3]	東海第二	

海外プラント ^[3]	東海第二

逃がし安全弁の作動タイミングのずれ等による位相のずれについて

逃がし安全弁は、それぞれの弁毎に作動圧(吹出圧力)が定められており、多弁が作動す るような状況においても、当該作動圧の違いにより、吹出すタイミングが異なる。また、東 海第二の実機試験結果から、同じ作動圧が設定された逃がし安全弁であってもすべてが同 時に作動するわけではない。

さらに, 排気管の長さは, 配管の引き回しによってそれぞれ異なるため, 仮に逃がし安全 弁が同時に作動したとしても, クエンチャ出口で気泡が形成されるタイミングにはずれが 生じる。

これらのことから,逃がし安全弁が複数弁作動時した場合においては,それぞれの圧力荷 重の位相にずれが生じる。よって,これらの圧力荷重が作用する原子炉格納容器バウンダリ においては,位相の一致による荷重の増加が生じることはない。

系統	対象	吹出圧力[MPa]	排気管の長さ[m]
主蒸気系 A	D 弁クエンチャ	7.37	
	G 弁クエンチャ	7.44	
	H弁クエンチャ	7.51	
主蒸気系 B	P 弁クエンチャ	7.44	
	M 弁クエンチャ	7.51	
	F弁クエンチャ	7.58	
	S弁クエンチャ	7.58	
	B 弁クエンチャ	7.65	
	K 弁クエンチャ	7.65	
主蒸気系 C	N 弁クエンチャ	7.37	
	E弁クエンチャ	7.44	
	J弁クエンチャ	7.51	
	A 弁クエンチャ	7.58	
	L弁クエンチャ	7.65	
	R 弁クエンチャ	7.65	
主蒸気系 D	U 弁クエンチャ	7.44	
	V弁クエンチャ	7.51	
	C 弁クエンチャ	7.58	

図 2-8 逃がし安全弁の設置位置及び吹出圧力,排気管の長さの関係
東海第二の実機試験で確認されている距離による減衰効果

東海第二での実機試験結果を第 2-9 図で示すように圧力振幅はクエンチャから距離に 応じて減衰していることを確認しており,距離に応じて動荷重の影響は小さくなる。例と して,原子炉格納容器本体の壁面では,壁面から近いクエンチャから受ける圧力振幅はク エンチャ近傍と比較し,小さくなる。

第 2-9 図 東海第二実機試験時に確認された距離による減衰効果(参考資料 2 ③)

逃がし安全弁18弁作動時における設計基準事故時の包絡性確認

東海第二及び海外プラントの実機試験から,多弁作動時に気泡脈動の位相のずれ等に より圧力振幅が増幅していないこと及び距離による減衰が確認されており,重大事故等 時に18 弁の逃がし安全弁が作動しても,設計基準事故時の動荷重と同等以下となる。ま た,NUREG-0802において,MARK-II型原子炉格納容器である海外プラント の実機試験結果から8弁及び19弁作動時の動荷重は,4弁の結果の動荷重と同等である ことが記載されていることからも東海第二の実機試験における1弁作動時の動荷重が最 も大きくなった結果は妥当と考えられる。

このことから, 重大事故等時においては, 設計基準事故時の動荷重を設計条件とする。

逃がし安全弁18弁作動時に生じる動荷重における強度の感度評価

逃がし安全弁18弁作動時においては、気泡脈動の位相のずれにより圧力振幅が増幅しないが、保守的に逃がし安全弁作動時に生じる圧力振幅を重ね合わせた場合の強度の感度評価を実施する。

評価に当たっては,各クエンチャと評価点の距離による減衰を考慮する。また,各クエ ンチャから生じる気泡脈動が独立して評価点に到達するものとし,そのときのそれぞれ の圧力振幅を重ね合わせる(第2-10図)。具体的には,クエンチャから評価点に到達する 全ての気泡脈動がピーク値で一致することは統計学的に極めて低いことから,各ピーク 値を二乗和平方根により圧力振幅を算出し,評価する。なお,NUREG-0487^[4]には,複数の 逃がし安全弁作動時の荷重の重ね合わせの評価には二乗和平方根を用いることが記載さ れている。評価点は,強度評価として裕度の小さい原子炉格納容器本体で実施する(参考 資料 5)。なお,評価点の選定は,原子炉格納容器本体に近いクエンチャから最短距離の 評価点(第2-10図 評価点1)とクエンチャ2か所の中間位置の評価点(第2-8 図 評 価点2)とする。

各クエンチャから生じる圧力振幅を重ね合わせた結果、以下のようになった。

評価点	Р∕Р _В	圧力振幅[kg/cm ²]
1		
2		

任意のクエンチャからの圧力振幅: $P_n = 2\frac{r_0}{r_0} \cdot P_B$

東海第二の実施危険時の圧力振幅の最大値: P_B (+0.84/-0.39 kg/cm²) クエンチャのアーム長さ相当: r_0 (約) クエンチャ中心からの距離: r評価点における最大圧力振幅: $P = \sqrt{P_1^2 + P_2^2 + \dots + P_n^2}$ ・ : 評価点1 に影響を及ぼす範囲 : 評価点1 に影響を及ぼす範囲 : 評価点2 に影響を及ぼす範囲 : 評価点2 に影響を及ぼすのエンチャ

第2-10図 感度評価を実施する評価点

強度の感度評価に当たっては,強度評価と同様に,保守的に圧力振幅の重ね合わせた結果で得られた原子炉格納容器本体に生じる動荷重の最大値を一様に負荷させて評価を実施する(第2-11図)。評価対象部位を第2-12図に示す。

第2-11図 強度評価における評価上の保守性のイメージ

第2-12図 動荷重の感度評価を実施する部位

評価した結果,以下のように十分な裕度があることを確認した。なお,評価は,逃がし 安全弁作動時の荷重の組合せを考慮し,重大事故等時の内圧と動荷重を組み合わせた。ま た,18 弁が作動するタイミングは,事象初期であるため,サプレッション・チェンバ内 のプール水位は通常運転時の水位とする。

荷重の組合せ	発生応力	許容応力	裕度
死荷重+水頭圧(通常水位)			
+18 弁作動時(6kPa)			
+SRV 作動時(多弁影響補正)			

※1:18 弁作動時の原子炉格納容器圧力

※2:動荷重は簡易評価にて実施。発生応力のうち円周方向の動荷重成分を記載。

※3:許容応力状態VAとしてのWA許容限界を用いる。(限界温度(200 ℃)における許容値)

2.4.2.2 原子炉圧力の上昇率が設計基準事故時より高くなる場合において設計基準事故 時に包絡される理由

有効性評価結果及び既往の試験結果を考慮した設計基準事故時の包絡性確認

本事象においては、主蒸気隔離弁閉止後のスクラム失敗に伴い、原子炉圧力は上昇し、 逃がし安全弁の逃がし弁機能の設定圧に応じて 18 弁が動作するものの原子炉圧力が約 8.19 MPa[gage]まで上昇する。この過程において、排気管内の非凝縮性ガスは、逃がし安 全弁作動後約 0.35 秒間^{※1}で放出が完了する。この時間をATWS事象に適用すると、約 2.2~2.5 秒後に逃がし安全弁が作動するため、約 2.55~2.85 秒後に非凝縮性ガスの放出 が完了すると考えられ、この間原子炉圧力は最大約 0.3 MPa 程度上昇するため、動荷重に 対して影響を及ぼす可能性がある(第 2-13 図)。

※1:逃がし安全弁の設計上の排気流量を基に,排気管内の非凝縮性ガスがサプレッション・チェンバに全て排出されるまでの時間を計算した結果

(排出されるまでの時間=排気管長(全長が最大となる箇所)/蒸気の流速)

上記に示すとおり,逃がし安全弁作動時の圧力上昇率による影響よりも逃がし安全弁 作動時の原子炉圧力が高い方が動荷重への影響があるが,クエンチャ開発時に実施した 試験から, となる(第2-14 図)。このように こなるのは,原子炉圧力が増加するとともに逃 がし安全弁から放出される蒸気が臨界流となり,蒸気流束は増加するものの,蒸気流速は ほぼ一定となることで,クエンチャから排出される非凝縮性ガスの放出速度が一定に近 づくからと考えられる。

本試験で使用しているクエンチャアームの角度は, (参考資料22)で あり、この範囲であれば同等の性能が確保でき、東海第二で採用しているクエンチャアー ムの角度 はその範囲内であるため、本試験結果を適用可能である。ま た、本試験で使用しているクエンチャアームの孔の放射角度は (参考資料22)) であり、東海第二で採用しているクエンチャアームの孔の放射角度は である。クエ ンチャアームの孔の放射角度は東海第二の方が小さく、クエンチャから排出される気泡 が制限され、より安定的に気泡が排出されることから、本試験結果は適用可能である。

以上のことから,逃がし安全弁作動時の動荷重は,圧力上昇率でなく,圧力が上昇した あとの高い原子炉圧力が一定に負荷された方が厳しい値となるが,既往の試験により となるため,設計基準事故

時の原子炉圧力及び圧力上昇率のパラメータが超えていても,重大事故等時の動荷重は, 設計基準事故時と同等以下と考えられる。

第2-13図 ATWS事象時の原子炉圧力変化(運転圧力との差)

第 2-14 図 模擬圧力容器蒸気源圧力と圧力振幅の関係(気泡脈動) (参考資料 2 ②)

ATWS時の最大圧力時に生じる動荷重を踏まえた強度評価

ATWS時の逃がし安全弁作動時の動荷重は設計基準事故時と同等と考えられるが, 第2-14 図に示すクエンチャ開発時の試験では原子炉圧力が上昇する条件で実施していな い等により,原子炉圧力上昇時の逃がし安全弁作動時の動荷重には不確かさが存在する ことを踏まえ,東海第二の実機試験結果で得られている逃がし安全弁作動時の圧力振幅 とそのときの原子炉圧力から,ATWS時の最高圧力時を線形補間して原子炉格納容器 本体の強度評価を実施する。ATWS時の最高圧力を線形補間したグラフを第2-15 図に 示す。また,評価対象部位は,第2-12 図に示す。

なお,第2-15 図では,実機試験で得られたプラス側の圧力振幅のピーク値(+0.84 kg/cm²) に対して線形補間しており,設計基準事故時の逃がし安全弁作動時の動荷重 MPa)に 対して約1.1 倍(0.93/0.84)を乗じることで動荷重を MPa(次頁の表参照)と設定し ている。実機試験で得られたマイナス側の圧力振幅のピーク値(-0.39 kg/cm²)に対して 線形補間した場合,直線の傾きがプラス側に比べて小さく,線形補間時に乗じる倍数は約 1.1 倍よりも小さくなることから,より動荷重が大きくなるプラス側の倍数を乗じている。

第2-15図 原子炉圧力と線形補間した圧力振幅の関係

評価した結果,以下のように十分な裕度があることを確認した。なお,評価は,逃がし 安全弁作動時の荷重の組合せを考慮し,重大事故等時の内圧と動荷重を組み合わせた。ま た,18 弁が作動するタイミングは,事象初期であるため,サプレッション・チェンバ内 のプール水位は通常運転時の水位とする。

荷重の組合せ	発生応力	許容応力	裕度
死荷重+水頭圧(通常水位)			
+18 弁作動時(6kPa)			
+SRV 作動時(圧力影響補正)			

※1:18 弁作動時の原子炉格納容器圧力

※2:動荷重は簡易評価にて実施。発生応力のうち円周方向の動荷重成分を記載。

※3:許容応力状態VAとしてのWA許容限界を用いる。(限界温度(200 ℃)における許容値)

2.4.2.3 逃がし安全弁作動時の荷重の組合せを考慮した包絡性

2.4.2.1 及び 2.4.2.2 で感度評価を実施し、十分な裕度が確保されることを確認した。 逃がし安全弁作動時の動荷重を考慮した荷重の組合せは、参考資料 4 で示すようにAT WS時の最大圧力(200 kPa)との組合せがある。以下に示すようにすでに考慮している 動荷重の裕度を踏まえても感度評価を実施した裕度の方が大きいことを確認できたため、 逃がし安全弁作動時の動荷重との組合せは、参考資料 4 で示している荷重の組合せで代 表できる。

荷重の組合せ	発生応力	許容応力	裕度
死荷重+水頭圧(通常水位)			
+18 弁作動時(6kPa)			
+SRV 作動時(多弁影響補正)			
死荷重+水頭圧(通常水位)			
+18 弁作動時(6kPa)			
+SRV 作動時(圧力影響補正)			
死荷重+水頭圧(SA 時の最大水位)			
+ATWS 時最大圧力(200kPa)			
+SRV 作動時			

※1:動荷重は多弁及び最大圧力の比率から簡易的に算出。発生応力のうち円周方向の動荷重成分を記載。
※2:重大事故等時の長期的な影響を考慮した組合せであるため、重大事故等時のプールの水位及び動荷 重の影響範囲が広がったことによる動荷重の寄与が大きくなる箇所が変わるため、その影響を考慮 (第 2-16 図)。動荷重は、設計・建設規格の式から圧力による影響を P=2S η / (D i /t+1.2)の 関係より簡易的に算出。算出方法は、動荷重が作用する範囲の厚さ t が となるため、 圧力による影響 P が となり、動荷重が (円周方向の動荷重成分 を記載)と大きくなる。

※3:許容応力状態VAとしてのIVA許容限界を用いる。(限界温度(200 ℃)における許容値)

図 2-16 図 重大事故等時(長期)における動荷重の影響範囲(原子炉格納容器本体)

2.5 重要事故シーケンス等のうち設計基準事故時のLOCA時のブローダウン過程にお ける高温水・蒸気の放出と同等以下となる重要事故シーケンス等

2.3 において,設計基準事故時の動荷重と同等以下となる重要事故シーケンス等について,影響評価が不要とできる理由の妥当性を既往の試験等に基づき,記載する。

LOCA時のブローダウン過程における高温水・蒸気の放出による動荷重はドライウ エルで発生した蒸気によって、ベント管内の水、ドライウェル内のガス及び蒸気がサプレ ッション・チェンバへ移行することにより生じる。移行する際のパラメータは格納容器破 損防止対策の有効性評価の解析の結果から得られるため、その値から評価する。評価の考 え方について、第 2-4 表に示す。

事象初期に生じる動荷重を評価するためのベント管内の水のサプレッション・チェン バへの移行,ドライウェルからサプレッション・チェンバへのガス及び蒸気を含む気体 の移行量の最大値は第2-5表のとおりであり,設計基準事故時のLOCAブローダウン 時の高温水・蒸気の放出時の移行量に重大事故等時は包絡される。

また,事象後期にはチャギングによる動荷重が発生するが,設計基準事故時のLOCA ブローダウン時の高温水・蒸気の放出時と事象進展は同じであるため,設計基準事故時に 考慮している動荷重と同じ条件を設定する。

	サプレッション・チェンバへの水等の移行により生じる動荷重
	●設計基準事故時の動荷重の設計条件:既往の試験結果(参考資料2④)で確認された水の噴流速度 m/s
	(水の移行量換算 約 kg/s/m²) を基に動荷重を算出し, 設計条件として適用
ベント管内の水の移行	●設計基準事故時と重大事故等時の動荷重の比較方法:上記の水の移行量(約 kg/s/m²)と有効性評価の
	解析結果を基に算出した最大の水の移行量との比較により、重大事故等時の動荷重が設計基準事故時と同等以
	下であることを確認する
	●設計基準事故時の動荷重の設計条件:設計基準事故時のドライウェル圧力の解析結果を入力として、プールス
	ウェル解析モデルにより「S/P 内での気泡形成時の気泡圧力」,「気泡によって押し上げられる水面の上昇速
シード・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	度」及び「水面の到達高さ」を解析し、その結果に基づき動荷重を算出し、設計条件として適用
トマイリエアシルへの	●設計基準事故時と重大事故等時の動荷重の比較方法:動荷重に影響するドライウェル圧力はS/C へ流入するガ
1311	ス移行量に比例するため,設計基準事故時の解析における最大のガス移行量と有効性評価の解析結果を基に算
	出した最大のガス移行量との比較により、重大事故等時の動荷重が設計基準事故時と同等以下であることを確
	認する
	●設計基準事故時の動荷重の設計条件:既往の試験(参考資料2⑤)において蒸気移行量約 kg/s/m ² までの
	動荷重を測定しており、その際の最大荷重を蒸気凝縮振動荷重の設計条件として適用。また,既往の試験結果
	(参考資料 2 ⑤)で測定された特定の条件(蒸気移行量 18~28kg/s/m²,プール水温 40℃以下)での大振幅の
「こう」で、「「「」」で、「」」	チャギング荷重を設計条件として適用
トノインエルシ系メリク	●設計基準事故時と重大事故等時の動荷重の比較方法:蒸気凝縮振動荷重については、上記の蒸気移行量約
[].&\	kg/s/㎡と有効性評価の解析結果を基に算出した最大の蒸気移行量との比較により,重大事故等時の動荷重が
	設計基準事故時と同等以下であることを確認する
	チャギング荷重については、上記の特定の条件と有効性評価の解析結果(蒸気移行量、プール水温)との比較
	により、重大事故等時の動荷重が設計基準事故時と同等以下であることを確認する

事象	水移行量の 最大値 [kg/s/m ²]	ガス移行量の 最大値 [kg/s/m ²]	蒸気移行量の 最大値 [kg/s/m ²]
LOCAブローダウン時の高温			
水・蒸気の放出(「雰囲気圧力・			
温度による静的負荷(格納容器			
過圧・過温破損)」の起因事象で			
ある大破断LOCAを対象)			
LOCAブローダウン時の高温			
水・蒸気の放出(設計基準対処			
設備としての設計条件)			

第2-5表 サプレッション・チェンバへの水等の移行量

※1:有効性評価の解析結果(MAAPの解析結果から得られる流量をベント管流路断面 積で除した値)

※2:既往の試験結果(参考資料2 ①)

※3:設計基準事故時の原子炉設置変更許可申請書添付書類十の解析結果(解析結果から得られる流量をベント管流路断面積で除した値)

※4:既往の試験結果(参考資料2 ⑤)

3. 高圧溶融物放出/格納容器雰囲気直接加熱(DCH)の発生防止のための逃がし安全弁 作動時における動荷重の評価について

DCHの発生防止のための逃がし安全弁作動時においては,原子炉圧力容器内の水位 が低下し,燃料が露出した後,逃がし安全弁によって,原子炉圧力容器圧力を減圧する。 このとき,原子炉圧力容器内で発生する蒸気は露出した燃料に熱せられ過熱状態となる ため,排気管からサプレッション・チェンバへ流入する蒸気は,設計基準事故時と異なる 性状となる。これにより,蒸気が不安定凝縮する可能性があり,大きな動荷重が生じる恐 れがあるため,不安定凝縮することなく,設計基準事故時に生じる動荷重と同等以下とな ることを確認する。

蒸気凝縮の観点で着目すべき項目としては,短期的にはサプレッション・チェンバ内に 流入する蒸気が最大となる逃がし安全弁作動時の蒸気流束及びプール水温のピーク値, 及び,長期的には逃がし安全弁作動後の原子炉圧力容器圧力低下に伴う蒸気流束の減少 であることから,この2点について,検討を実施した。

3.1 逃がし安全弁作動時の短期的な影響

DCHの発生防止のための逃がし安全弁作動時の短期的な影響として,過熱蒸気によって設計基準事故時に想定していない動荷重が生じる可能性があるため,過熱蒸気と飽 和蒸気の違いから影響を検討する。

過熱蒸気は、単位質量あたりに保有するエネルギが飽和蒸気に比べて高いため、飽和蒸 気と異なり、蒸気温度が低下しても蒸気の状態で維持される(第3-1図)。飽和蒸気とな るまでは蒸気の状態を維持されるものの、高温の蒸気泡と周囲のプール水との温度差に よる熱伝達や気泡そのものの膨張により、短時間で蒸気温度が低下し飽和蒸気と同等と なる。このため、DCHの発生防止のための逃がし安全弁作動時において、過熱蒸気の持 つエネルギと同等となる飽和蒸気が不安定凝縮していなければ、設計基準事故で生じる 動荷重よりも大きくなることはない。

設計基準事故時に生じる飽和蒸気の凝縮時の動荷重は,既往の試験により,蒸気流束と プール水温の関係から,確認できる。

これらのパラメータは有効性評価結果から過熱蒸気を飽和蒸気と仮定して蒸気流束の 換算が可能であり,有効性評価結果からプール水温は確認が可能である。ここで確認した 蒸気流束及びプール水温と既往の試験結果を比較することで過熱蒸気の凝縮時の動荷重 は評価可能である。以下に評価過程を記載する。

 ①蒸気流束の算出

- ・過熱蒸気のエネルギ流束が最大となるように有効性評価の原子炉圧力 (7.79 MPa), 蒸気温度 (332 ℃) 及び排気管出口の流路断面積から蒸気の比エンタルピ及び蒸気 流束を算出し,サプレッション・チェンバへの流入するエネルギ流束を求める。
- ・算出した結果は、第3-1表のとおり。

- ②プール水温の確認
 - ・逃がし安全弁作動時のプール水温は、有効性評価結果(57 ℃)に基づく(第 3-2
 図、第 3-3 図)。

③過熱蒸気を飽和蒸気に仮定した場合の蒸気凝縮時の動荷重確認

・①,②で確認したエネルギ流束とプール水温の関係から,第3-4図を用いて蒸気が 安定凝縮するかを確認する。

既往の試験結果であるクエンチャを有しないストレートパイプにおいて,安定凝縮が 確認されており,蒸気凝縮による動荷重は非凝縮性ガスによる気泡脈動に包絡される領 域であることを確認した。設計基準事故時の動荷重は非凝縮性ガスによる気泡脈動の値 を用いているため,DCHの発生防止のための逃がし安全弁作動時の短期的な動荷重は 設計基準事故時と同等以下となる。なお,第 3-4 図で示す大振動領域は第 3-5 図で示す ようにクエンチャを設けた場合,解消され,プール水温に係らず,蒸気が安定凝縮するこ とを確認している。

^{*1:&}quot;工業熱力学"朝倉書店 1982年

パラメータ	高圧溶融物放出/格納容器雰囲気直接加熱
原子炉圧力容器圧力[MPa]	7.79(解析值)
蒸気温度[℃]	332(解析值)
蒸気の比エンタルピ	
[kJ/kg]	
排気管出口の流路断面積[m ²]	
蒸気流束[kg/s/m²]	
サプレッション・チェンバへの	
流入エネルギ流束[MJ/s/m ²]	

第3-1表 逃がし安全弁作動時のパラメータ

第3-2図 高圧溶融物放出/格納容器雰囲気直接加熱時の原子炉圧力容器圧力の推移

第3-3回 高圧溶融物放出/格納容器雰囲気直接加熱時の原子炉格納容器温度の推移

第 3-4 図 飽和蒸気の蒸気流束及びプール水温と圧力振幅の関係(ストレートタイプ) (参考資料2 ①)

第 3-5 図 飽和蒸気の蒸気流束及びプール水温と圧力振幅の関係(クエンチャタイプ) (参考資料 2 ①, ②) 3.2 逃がし安全弁作動後の長期的な影響

本事象では逃がし安全弁を開保持とするため,原子炉圧力容器の減圧に伴い,蒸気流 束が小さくなるため,このときに生じる動荷重として,蒸気凝縮に伴うチャギング等が 考えられるため,そのときの動荷重が設計基準事故時と同等以下であることを確認す る。

3.1と同様に過熱蒸気の蒸気流束及びエネルギ流束とプール水温から,蒸気凝縮時の 動荷重への影響を確認した。第3-2表で示すパラメータのとき,第3-6図で示す。過熱 蒸気が保有するエネルギ流束とプール水温は蒸気が安定凝縮する領域であることを確 認した。

	高圧溶融物放出/格納容器雰囲気直接加熱
	(逃がし安全弁作動後(長期))
原子炉圧力容器圧力[MPa]	0.13 (解析值)
蒸気温度[℃]	586(解析值)
蒸気の比エンタルピ	
[kJ/kg]	
排気管出口の流路断面積[m ²]	
蒸気流束[kg/s/m ²]	
サプレッション・チェンバへの	
流入エネルギ流束[MJ/s/m ²]	

第3-2表 逃がし安全弁作動時のパラメータ

第3-6図 飽和蒸気の蒸気流束及びプール水温と圧力振幅の関係(クエンチャタイプ)

(参考資料2 ①, ②)

また,逃がし安全弁作動後,高蒸気流束から低蒸気流束へ遷移する過程においては,第3-7図で示す。

第 3-7 図 飽和蒸気の蒸気流束及びプール水温と圧力振幅の関係(クエンチャタイプ) (参考資料 2 ①, ②)

第 3-7 図で示すように原子炉圧力容器からサプレッション・チェンバへ放出される 蒸気は減少し,異なる圧力振幅が生じる領域を通過する。

このような状況において生じる動荷重は東二の実機試験結果から得られた第 3-8 図 の結果から,その影響がないことを確認できる。第 3-8 図で示すように,動荷重が大き くなるのは逃がし安全弁作動直後に生じる気泡脈動荷重である。気泡脈動荷重は,非凝 縮性ガスがサプレッション・チェンバへ移行した際に生じる荷重であり,蒸気による影 響ではない。よって,東二の実機試験から原子炉圧力容器からサプレッション・チェン バへ放出される蒸気が減少する過程において,蒸気凝縮による動荷重は気泡脈動荷重 を超えることはない。

このことから,逃がし安全弁を開保持し,原子炉圧力容器から蒸気がサプレッショ ン・チェンバに移行した際の蒸気凝縮に伴う動荷重の影響はないことから,設計基準事 故時の動荷重として,設定している気泡脈動荷重を超えることはなく,同等以下となる ことを確認した。

第3-8図 東二実機試験で得られた逃がし安全弁作動時の水中圧力振動波形 (横軸:時間,縦軸:圧力)(参考資料2 ③)

 原子炉圧力容器外の溶融燃料-冷却材相互作用(FCI)時の動荷重の評価について FCI時の動荷重はドライウェルで発生した蒸気によって、ベント管内の水、及び、 ドライウェル内のガス及び蒸気がサプレッション・チェンバへ移行することにより生じ る。移行する際のパラメータは格納容器破損防止対策の有効性評価の解析の結果から得 られるため、その値から評価する。評価の考え方について、第2-4表に示す。

事象初期に生じる動荷重を評価するためのベント管内の水のサプレッション・チェン バへの移行及びドライウェルからサプレッション・チェンバへの非凝縮性ガス及び蒸気 を含む気体の移行量の最大値は第4-2表のとおりであり、LOCAブローダウン時の高 温水・蒸気の放出時の移行量が最大となっており、このときの動荷重が最も厳しくな る。LOCAブローダウン時の高温水・蒸気の放出は、設計基準事故「原子炉冷却材喪 失」の起因事象である大破断LOCA時と同じであり、このときの破断想定は原子炉水 位の低下が最も早くなる再循環系配管(出口ノズル)の両端破断としていること、及 び、この設計基準事故「原子炉冷却材喪失」時に原子炉格納容器の健全性が確保される ことを確認していることから、FCI時は、設計基準事故時に包絡されており、原子炉 格納容器の健全性が確保される。なお、FCI発生時には、発生する蒸気によってドラ イウェルは急激に圧力上昇することから、これに伴う動荷重は大きくなる可能性が考え られるが、有効性評価結果(第4-1 図、第4-2 図)より、LOCA時の圧力上昇率の方 が大きいことを確認しており、設計基準事故時に包絡される(FCI時の圧力上昇率: 約4.6 kPa/s、LOCA時の圧力上昇率:約8.5 kPa/s)。

また,事象後期にはチャギングによる動荷重が考えられるが,既往の試験よりサプレ ッション・チェンバ内のプール水の水温(40 ℃以下)が低く,さらにベント管内の蒸 気流束(18~28 kg/s/m²)の特定の領域で振幅の大きな荷重が生じることが確認され ているが,FCI時において,プール水温は約 ℃,蒸気流束 kg/s/m²以下であ り,設計基準事故時に生じる動荷重の影響は大きくなることはない^[2]。

事象	水移行量の 最大値 [kg/s/m ²]	ガス移行量の 最大値 [kg/s/m ²]	蒸気移行量の 最大値 [kg/s/m ²]
原子炉圧力容器破損に伴うFC		-	
I 発生時の蒸気発生			
LOCAブローダウン時の高温			
水・蒸気の放出(設計基準対処			
設備としての設計条件)			
LOCAブローダウン時の高温			
水・蒸気の放出(「雰囲気圧力・			
温度による静的負荷(格納容器			
過圧・過温破損)」の起因事象で			
ある大破断LOCAを対象)			

第4-2表 サプレッション・チェンバへの水等の移行量

※1:有効性評価の解析結果(MAAPの解析結果から得られる流量をベント管流路断面 積で除した値)

※2:既往の試験結果(参考資料2 ①)

※3:設計基準事故時の原子炉設置変更許可申請書添付書類十の解析結果(解析結果から得られる流量をベント管流路断面積で除した値)

※4:既往の試験結果(参考資料2 5)

第4-2図 LOCA時の原子炉格納容器圧力の推移

- 5. 格納容器ベント時の動荷重の評価について
- 5.1 格納容器ベント時のサプレッション・チェンバへの水等の移行に伴う影響

格納容器ベント時の動荷重評価は格納容器破損防止対策の有効性評価の解析の結果を 用いて評価する。考え方について、第2-4表に示す。格納容器ベント開始直後はサプレッ ション・チェンバの圧力低下率が最も大きく、ベント管内の水のサプレッション・チェン バへの移行並びにドライウェルからサプレッション・チェンバへの非凝縮性ガス及び蒸 気を含む気体の移行量が多くなる。

格納容器破損防止対策の有効性評価の解析の結果,ベント管内の水のサプレッション・ チェンバへの移行並びにドライウェルからサプレッション・チェンバへの非凝縮性ガス 及び蒸気を含む気体の移行量の最大値は第 5-1 表のとおりであり,LOCAブローダウ ン時の高温水・蒸気の放出時の移行量が最大となっており,このときの動荷重が最も厳し くなる。LOCAブローダウン時の高温水・蒸気の放出は,設計基準事故「原子炉冷却材 喪失」の起因事象である大破断LOCA時と同じであり,このときの破断想定は原子炉水 位の低下が最も早くなる再循環系配管(出口ノズル)の両端破断としていること,及び, この設計基準事故「原子炉冷却材喪失」時に原子炉格納容器の健全性が確保されることを 確認していることから,格納容器ベント時は,設計基準事故時に包絡されており,原子炉 格納容器の健全性が確保される。

事象	水移行量の 最大値 [kg/s/m ²]	ガス移行量の 最大値 [kg/s/m ²]	蒸気移行量の 最大値 [kg/s/m ²]
格納容器ベント			
(「雰囲気圧力・温度による静的			
負荷(格納容器過圧・過温破損)			
(代替循環冷却系を使用できな			
い場合)」の格納容器ベント時を			
対象)			
LOCAブローダウン時の高温			
水・蒸気の放出(設計基準対処			
設備としての設計条件)			
LOCAブローダウン時の高温			
水・蒸気の放出(「雰囲気圧力・			
温度による静的負荷(格納容器			
過圧・過温破損)」の起因事象で			
ある大破断LOCAを対象)			

第 5-1 表 サプレッション・チェンバへの水等の移行量

※2:既往の試験結果(参考資料2 ①)

※3:設計基準事故時の原子炉設置変更許可申請書添付書類十の解析結果(解析結果から得られる流量をベント管流路断面積で除した値)

※4:既往の試験結果(参考資料2 ⑤)

^{※1:}有効性評価の解析結果(MAAPの解析結果から得られる流量をベント管流路断面 積で除した値)

5.2 格納容器ベント時の水位上昇による影響

格納容器ベント時において、ベント管内の水がサプレッション・チェンバへ移行するた め、サプレッション・チェンバ内のプール水の水位上昇が生じるが、第5-1表に示すよう に、LOCAブローダウン時の高温水・蒸気の放出と比較し、水の流量は小さいため、緩 やかな上昇となる。このため、動荷重として、LOCAブローダウン時の高温水・蒸気の 放出に包絡される。なお、このときの格納容器ベント時におけるサプレッション・チェン バ内のプール水位を第5-1図に示す。この時の水位上昇は約0.6 mであるが、この水位 上昇に伴う影響は、原子炉格納容器に対する水頭圧であり、静荷重に分類される。この静 荷重は、2Pd時の静荷重と比較し、小さいため、原子炉格納容器の健全性は維持される。

第 5-1 図 格納容器ベント時のサプレッション・チェンバ水位上昇

また,重大事故等時の水位上昇による影響としては,設計基準事故時と異なり,水没す る真空破壊弁への考慮が必要であるが,水没する真空破壊弁は,重大事故等時に機能を期 待していない。ただし,真空破壊弁の構造健全性を検討するため,格納容器ベント時のサ プレッション・チェンバ内のプール水の水位上昇に伴う荷重と真空破壊弁が取り付つけ られている箇所の構造強度を比較する。

真空破壊弁は構造上、ベント管の板厚に対して、真空破壊弁との取合部は さを有するとともに、サプレッション・チェンバ内のプール水の水位上昇時に水から荷重 を受ける面積はベント管よりも小さい。また、真空破壊弁の位置は、荷重発生源であるベ ント管先端から距離があることから、水の流速が減衰する。これらのことから、真空破壊 弁は水没したとしてもドラッグ力の影響は小さく、構造強度として大きな影響とならな いと考えられるが、プールスウェルによりドラッグ力の影響を確認する。その結果、ベン ト管と真空破壊弁の取付部に生じるプールスウェルによる応力は, MPa であり, 許容値 (380 MPa)に対して十分に小さいことを確認した。 5.3 格納容器ベント時の減圧沸騰による影響

格納容器ベント時には、サプレッション・チェンバ圧力の低下によりサプレッション・ チェンバ内のプール水が減圧沸騰することが考えられるが、以下のことから、格納容器ベ ント時の原子炉格納容器への動荷重としては小さく、健全性への影響はない。

- ・「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却系を使用できない場合)」では、事故発生約19時間後に格納容器ベントを実施しているが、第5-2図で示すように、サプレッション・チェンバ内のプール水が飽和温度に達するのは格納容器ベントを開始して約1時間後であり、これ以降減圧沸騰が生じると考えられる。しかしながら、第5-3図で示すように、サプレッション・チェンバ内のプール水が飽和温度に達するタイミングではほぼ原子炉格納容器圧力は静定していることから、急速減圧しないため、減圧沸騰が生じない。
- ・サプレッション・チェンバ内のプール水の減圧沸騰が生じるタイミングにおいては、 ドライウェルとサプレッション・チェンバに圧力差があることから、サプレッショ ン・チェンバへの非凝縮性ガス及び蒸気を含む気体の移行は継続するが、その移行量 は少ない。
- ・減圧沸騰の影響はなく、及び、減圧沸騰が生じるタイミングにおいては、ドライウェルからサプレッション・チェンバへの非凝縮性ガス及び蒸気を含む気体の移行量は少ないことから原子炉格納容器の健全性への影響はないと考えられる。

上記に加えて,有効性評価の解析における格納容器ベント時の流量が全て減圧沸騰に 寄与したと仮定して,検討を行った。

ここで,発生蒸気が水面に到達するまでに要する時間を1秒と仮定し,1秒間に発生し た蒸気がすべてサプレッション・チェンバ内のプール水位の上昇に寄与すると仮定する。 減圧沸騰が生じるタイミングでのベント流量は約 kg/s であることから,この時減圧沸 騰によって発生する蒸気量も同等の kg/s と仮定すると,最大 kg の蒸気によってサ プレッション・チェンバ内のプール水面が押しあげられることとなる。また,この時の蒸 気の密度を,大気圧下における蒸気の密度約 kg/m³とすると発生蒸気の体積は約 m³となる。サプレッション・チェンバの断面積は約 m²であるため蒸気泡がサプレッ ション・チェンバ内に一様に分布しているとすると,発生蒸気による水位上昇は約 mとなる。このことから,減圧沸騰によりサプレッション・チェンバの水位上昇が生じた としても,その規模は小さい。

第 5-2 図 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却 系を使用できない場合)のプール水のサブクール度の推移

第 5-3 図 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循環冷却 系を使用できない場合)の原子炉格納容器圧力の推移

5.4 格納容器ベント時の継続時間による影響

原子炉冷却材喪失事故を起因とする格納容器ベント時における継続時間による影響に ついて、検討する。

格納容器ベント時の重大事故等時荷重の時間履歴を第 5-4 図に示す。原子炉冷却材喪 失事故時に加わる荷重のうち, a. から g. までの現象における荷重に関しては配管破断発 生後,原子炉圧力容器からのブローダウンが終了するまでの比較的短期間に生じる荷重 であるため,生じる荷重の強さ及び荷重発生時の原子炉格納容器内圧力・温度条件は設計 基準事故と同等となる。

一方で,h.及び i.については,原子炉圧力容器からのブローダウン収束後も比較的長期にわたって継続する荷重であるため,重大事故等時の原子炉格納容器内圧力・温度条件との組み合わせを考慮する必要がある。具体的には,原子炉格納容器の除熱手段の復旧等により格納容器ベントを停止し,ドライウェルとサプレッション・チェンバの差圧が解消されるまでは,崩壊熱によって発生した蒸気がサプレッション・チェンバ内のプール水へと移行し続けることにより,チャギングが生じると考えられることから,h.及び i.の荷重は格納容器ベント停止までの期間において発生し続けることを考慮する。

第 5-5 図,第 5-6 図で示すように格納容器ベント後サプレッション・チェンバ内のプ ール水温が高いこと及び破断口からの蒸気放出量が低下することで、ベント管の蒸気流 束が小さくなっていく。

蒸気流束が小さくなるような事象後期の影響は,第 4-1 表で示すように有効性評価結 果との比較により動荷重の評価ができる。このため,格納容器ベントの事象後期に生じる チャギングによる動荷重は既往の試験である旧原研で実施された Mark-II 型格納容器の 圧力抑制系の実証試験より,サプレッション・チェンバ内のプール水の水温(40 ℃以下) が低く,さらにベント管内の蒸気流束(18~28 kg/s/m²)が比較的大きい,特定の領域で 振幅の大きな荷重が生じることが確認されており,格納容器ベント後においては,ベント 時のプール水温が ℃,蒸気流束が kg/s/m²以下であり,設計基準事故時に生じる 動荷重の影響は大きくなることはない^[2]。

なお,設計基準事故時に想定しているチャギング荷重が繰返し生じた場合であっても 最大約 130 MPa であり,原子炉格納容器本体の一次+二次応力の許容限界内(393 MPa)と なることから,原子炉格納容器の強度評価に対する影響はない。

第 5-4 図は,原子炉冷却材喪失事故を起因とする格納容器ベント時における荷重の時 刻歴を示したものであるが,以下の理由により,原子炉冷却材喪失事故を伴わない事象に おける荷重の時刻歴は第 5-4 図の時刻歴に包絡されると考えられる。

a. 原子炉冷却材喪失事故を起因としない事象においては,原子炉圧力容器破損時に 原子炉圧力容器内のガスがドライウェルへと放出されると考えられるが,原子炉 圧力容器破損時点では,すでに原子炉圧力容器内は減圧されており,原子炉冷却材 喪失事故時に生じるような急激なガス放出とならない。

- b. 高温の溶融燃料がペデスタル内に落下した際には、溶融燃料と水の相互作用(FCI)によって急激な蒸気発生が生じると考えられるが、当該事象において、サプレッション・チェンバに流入する水等の移行量は原子炉冷却材喪失事故時に比べて非常に小さく(第4-1表)、原子炉冷却材喪失事故発生直後に生じる荷重(第5-4図における a. から g. までの荷重)に包絡される。
- c. 原子炉格納容器ベント実施時においても一時的にドライウェルからサプレッショ ン・チェンバに流入する水等の移行量が増加すると考えられるが、この時の移行量 は原子炉冷却材喪失事故時に比べて非常に小さく(第5-1表),b.同様に原子炉冷 却材喪失事故発生直後に生じる荷重に包絡される。

第5-5図 サプレッション・チェンバ内のプール水温の時刻歴

第 5-6 図 ベント管蒸気流量の時刻歴

5.5 格納容器ベント時の減圧波による影響

US-ABWRには原子炉格納容器の過圧保護のため、系統に取り付けたラプチャー ディスクにより、瞬時に配管の流路断面積を100 %開放し、大気放出によって急速減圧 するCOPS (Containment Overpresure Protection System) が設けられている。この ため、米国ではCOPSを設ける場合、急速減圧による減圧波の影響を考慮する必要があ るとされている。東二の原子炉格納容器は、格納容器ベント時において、弁による開動作 により減圧することから、COPSのように急速減圧することはない。しかしながら、保 守的に減圧波を考慮するため、COPSと同様に弁の開操作直後に配管の流路断面積が 100%開放され、大気放出することを仮定し、検討を実施した。

検討にあたっては, US ABWR DCD Ch. 19E. 2. 3. 5.1 における評価手法を用いて,格納容 器ベント直後のサプレッション・チェンバ内のプール水面に作用すると考えられる減圧 波について評価する。

評価に用いる主要なパラメータは、以下のとおりである。

パラメーク	Ż	記号	値	備考	
S/C 圧力		P ₀		最高使用圧力の2倍	
S/C 水位		_		MAAP による解析結果	
S/C ガス密	S/C ガス密度			200℃, 2Pd 時の蒸気密度	
比熱比 k		理想気体における二原子分子の			
		K		比熱を仮定	
ベントライン	半径	R		AC 玄町倅 (90D)	
入口	面積	А		AU 杀阻官 (28b)	
ベントライン チョーク部	面積	а		AC 系-SGTS 取り合い部(12B)	

第5-2表 評価に用いる主要なパラメータ

プール水の水面に到達する減圧波を評価するため,格納容器ベント直後において,原子 炉格納容器より放出されるガスは,臨界流と仮定する。ベント流量は,ベントラインにお けるチョーク部で律速されることから,当該箇所におけるガス流量は DCD における以下 の評価式及び第 5-2 表のパラメータを用いるとガス流量は,約 75 kg/s となる。

$$G_{gc} = \left(\frac{2}{k+1}\right)^{(k+1)/2(k-1)} \sqrt{kg_0 P_0 \rho_{g0}}$$

 $m = G_{ac}a$

この時,ベントライン入口におけるガスの流速(V)は,以下の式により約80 m/sとな

る。

$$\mathbf{V} = \frac{m}{A * \rho_{g0}}$$

また、DCD における以下の評価式により、サプレッション・チェンバ内の音速(C_{g0})は約 543 m/s であり、この時のマッハ数(V/C_{g0})は約 0.15(<0.2)であることから、ベント時の減圧波は音響波として扱うことができる。

$$C_{go} = \sqrt{\left(kg_0 P_0/\rho_{g0}\right)}$$

ここで、ベントラインに吸い込まれるガスの流速について、ベントライン入口から、ベ ントライン入口半径(R)相当離れた位置(評価点のイメージは、第5-7図のとおり)に おけるガス流速(V')を計算する。当該位置における流路を半径Rの半球の表面積相当 とする。よって、ベント管内の流路面積との面積比からベントライン入口からR離れた半 球表面上の位置におけるガス流速は、以下となる。

$$V' = V \frac{\pi R^2}{2\pi R^2} = \frac{V}{2} = \text{\% 40 m/s}$$

この流速及び DCD における以下の音響方程式を用いると,前述の半球表面における減 圧波は,約74 kPa となる

$$\delta P_0 = \frac{C_\rho \delta V}{g_0}$$

第5-7図 評価点のイメージ図

次に、上記減圧波がプール表面に到達した際の圧力を求める。

ベントライン入口高さは約15.4 m であるため、ベントライン入口から、水面までの 距離(r)は、約4.7 m となる。したがって、DCD における以下の式から、水面に到達す る減圧波は約4.6 kPaとなる。

$$\delta \mathbf{P} = \frac{R}{r} \delta P_0$$

さらに水面に到達した減圧波の水中への伝達係数を DCD における以下の式から,算出 する。

 $\frac{\delta P_{transmitted}}{\delta P_{oncoming}} = \frac{2}{1 + \rho_1 C_1 / \rho_2 C_2}$ $\rho_1 : 気体の密度$ $C_1 : 気体中の音速$ $\rho_2 : 水の密度$ $C_2 : 水中の音速$

ここで、水の密度及び水中音速はそれぞれガスの密度及び気体中の音速に比べて大き いことから、保守的に、上記における ρ₁C₁/ρ₂C₂を 0 とすると減圧波の水中への伝達係数 は、2 となる。したがって、ベントライン入口で生じた減圧波によってサプレッション・ チェンバにもたらされる負圧度は約 10 kPa となる。

格納容器ベント実施時点でのサプレッション・チェンバ圧力は約 620 kPa[gage]となる 可能性を考慮し、この場合の負圧度を考慮した正味の圧力は約 610 kPa[gage]であること から、水面の飽和温度は、約 159 ℃となる。ベント開始時のサプレッション・チェンバ 内のプール水温は、約 Cであることから、水面の飽和温度(159℃)に対して十分に 小さい。よって、減圧波を踏まえてもプール水の減圧沸騰の影響は極めて小さい。

また,蒸気の負圧度より,水面に到達した減圧波によってプール水面の揺動する速度は, 以下の式より約0.01 m/s であり,プール水面の揺動する速度は小さく,これに伴うプー ルスウェルの影響は極めて小さい。

> $\delta V_L = \frac{g_0 \delta P}{\rho_L C_L}$ $\rho_L : 水の密度$ $C_L : 水中の音速$

以上のことから,格納容器ベントによる減圧沸騰及びプールスウェルを保守的に評価 したが,その影響は小さく,原子炉格納容器の健全性に影響はない。
6. まとめ

重大事故等時の原子炉格納容器に生じる動荷重について整理した。重大事故等時の動 荷重は設計基準事故時に想定している動荷重に包絡されること等を確認することにより, 重大事故等時の動荷重を想定した場合の原子炉格納容器の健全性を確認した。

- 7. 参考文献
- [1] 塚田浩司,山口宏克,森田照道;沸騰水型軽水炉主蒸気逃し安全弁作動時の圧力抑制室 内の動荷重の測定,火力原子力発電,1979年8月
- [2] 久木田 他, "蒸気凝縮振動及びチャギングによる圧力抑制プール内動荷重の統計的評価,2; 格納容器圧力抑制系信頼性実証試験データ評価レポート,3", JAERI-M 83-186, 1983 年 10 月
- [3] NEDE-24757-P "MARK II Containment Supporting Program-Caorso Safety Relief Valve Discharge Tests-Phase II test Report", GE (NUREG-0802: Safety/Relief Valve Quencher Loads Evaluation for BWR Mark II and III Containments" におい て参考文献として引用)
- [4] NUREG-0487 "MARK II CONTAINMENT LEAD PLANT PROGRAM LOAD EVALUATION AND ACCEPTANCE CRITERIA"

参考資料1

設計基準事故時に生じる動荷重について

原子炉冷却材喪失時に原子炉格納容器に生じる各荷重に対する現象を第1表に,現象の流れを第1図に示す。また,逃がし安全弁作動時に原子炉格納容器に生じる各荷重に対 する現象を第2表に,現象の流れを第2図に示す。

東海第二発電所では、「BWR. MARK Ⅱ型格納容器圧力抑制系に加わる動荷重の評価指針」 に基づき、原子炉冷却材喪失時及び逃がし安全弁作動時の動荷重を第3図に示す評価対 象に対して、第3表、第4表及び第5表で示すような荷重が生じても、原子炉格納容器の 健全性が確保されることを確認している。また、生じる荷重は、第6表で示すように解析 や試験データに基づき設定している。

	シュション・シュン・ション・ション・ション・ション・ション・ション・ション・ション・ション・ショ
荷重	現象
a. LOCA発生時のドライウェル	原子炉冷却系統の配管の破断が瞬時に発生したとすると、圧力波がドライウェル、ベント管内を通っ
内の圧力上昇	てプールの底面や壁面、内部構造物などに動荷重が作用する。
2111111111111111111111111111111111111	ドライウェル圧力の急激な上昇によりベント管内のプール水がサプレッション・チェンバ内に放出さ
D. イントンツノ H4 V2小ンエツトにトス共和	れるため水ジェット流が形成され、ジェットによる衝撃力及びドラッグ力がベント管の下部にある内
よる肉里	部構造物及び原子炉格納容器底部鉄筋コンクリートマットに作用する。
。、気泡形成によるプール水中の圧	ドライウェルの空気がベント管から放出される際、気泡がサプレッション・チェンバ側壁、内部構造
力上昇	物及び原子炉格納容器底部鉄筋コンクリートマットに圧力波として作用する。
子神史 スイン百つ 史 そ ド	スラグ流が上昇する際、水面より上方にある機器、配管、内部構造物にプール水が衝突しそれらに衝
u.小田上井による関手刀	撃力が作用する。
e. 上昇水流による荷重	プール水が上昇する際、上昇水流によりドラッグ力が、機器、配管及び内部構造物に作用する。
歴祖学がくこう・パーパンパーチャッ	プール水面の上昇によりサプレッション・チェンバ上部の空間部が圧縮されることにより、サプレッ
I. リノアジンヨノ・リエノハ江同訳 FF七共来	ション・チェンバ空間部圧縮荷重が作用する。
圧ノ何里	また、この現象により真空破壊弁が反復動作することが考えられる。
	気泡が上昇し水面を貫通(ブレーク・スルー)することで、サプレッション・チェンバ気相とつなが
g. ブレーク・スルー	る。この時,水面付近のプール水は,フロス状の2相混合物を形成し,これによりサプレッション・
	チェンバ気相部内の構造物及びダイアフラム・フロアに衝撃荷重が加わる。
- ユ ナ 二 二、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	上昇した水面の上昇が停止し、プール水が落下するとき落下水により、機器、配管、内部構造物にド
U. ノオールハッシュ 何里	ラッグ力が作用する。
<u> </u>	中高流量蒸気が凝縮する際、プール水に凝縮振動波が伝播し、サプレッション・チェンバ側壁、原子
1. 杀 X\跳湘1恢 郹10 里	炉格納容器底部鉄筋コンクリートマット,原子炉本体基礎及び内部構造物に作用する。
単弁がへたっす	低流量蒸気が凝縮する際、ベント管出口での不均一な凝縮によりバウンダリに荷重が加わる。
リンマインシ肉里	また、この現象により、真空破壊弁が反復動作することが考えられる。
k. ベント管に加わる水平荷重	低流量蒸気が凝縮する際、ベント管出口での不均一な凝縮によりベント管に水平力が作用する。
	原子炉冷却系統の圧力が低下し、炉心がECCSにより再冠水されると破断口からはサブクール水が
判理がいしいよー	流出するようになる。このサブクール水により,ドライウェル雰囲気が冷却され圧力が低下する。こ
	の時,真空破壊弁が作動することでドライウェルの負圧は抑制される。さらに,格納容器スプレイ系
	の作動によりドライウェルーサプレッション・チェンバ間の差圧は解消される。

第1表 原子炉冷却材喪失時の各荷重の現象

-ク・スルー	第1表g.
- ユ L	~1.6秒
引 部/王縮	第1表f.
5 至	0.7~1.6秒
レ水面上昇	第1表d.e.
v∽L €	0.7~1.6秒
泡形成	第1表 c.
¥ ®	0.6~1.2秒
トクリア	第1表b.
いくべ	0~0.7秒
CA発生	第1表a.
D T O(時 同 0~0.01秒

第1図 原子炉冷却材喪失時の現象の流れ

荷重	現象
	逃がし安全弁作動時、排気管内の水がクエンチャノズルによりサプレッション・チェンバに放出され
a.水ジェットによる荷重	る際、ジェット流が形成され、サプレッション・チェンバ内の内部構造物に衝撃力及びドラッグ力が
	作用する。
	逃がし安全弁作動時、排気管内の空気が圧縮され、これがサプレッション・チェンバに放出される際、
b. 空気泡圧力の振動による荷重	気泡を形成し、この気泡が過膨張,収縮を繰返し、圧力振動が、機器、配管、内部構造物、サプレッ
	ション・チェンバ側壁、原子炉格納容器底部鉄筋コンクリートマットに作用する。
	蒸気がサプレッション・チェンバ内に流入して凝縮する際、凝縮が不安定となる場合、サプレッショ
c. 蒸気凝縮振動荷重	ン・チェンバ底面,壁面に圧力荷重が加わり,サプレッション・チェンバ内の構造物にドラッグ荷重
	が作用する。また、これらの現象を通じて、クエンチャに対しても荷重が作用する。

第2表 逃がし安全弁作動時の各荷重の現象

第2図 逃がし安全弁作動時の現象の流れ

第3図 動荷重の評価対象

第3表	PCV動荷重指針要求荷重と対象構造物との対応

Mark-I PC 動荷重指針	項 目 V	格納容器本体原子炉	ト管ブレーシング	底部ライナ	サポート部	真空破壞弁	コラムサポート D/F及び	原子炉本体基礎	コンクリート マット	備	考
	第4表(1)		(22	、荷重で	あり,打	針上評	価を省略	夺可)	L		
	第4表(2)	_	_	0	_	_	_	_	0		
	第4表(3)	0	_	_	_	_	_	0	_		
圧力抑制	第4表(4)	0	_	0	_	_	_	0	0		
系のバウ ンダリに 加わる荷	第4表(5)	0			_			0	_		
重	第4表(6)	_			_		0		_		
	第4表(7)		(2次荷重であり,指針上評価を省略可)								
	第4表(8)	(2次荷重であり,指針上評価を省略可)									
	第4表(9)	0		0	_			0	0		
	第4表[1]	_	0	—	_	_	_	_	_		
	第4表[2]	_	0		0		0		_		
圧力抑制 系内の構 造物に加	第4表[3]	_	0		_				_		
わる荷重	第4表[4]	_			_	0			_		
	第4表 [5]~[8]	(2次荷重であり,指針上評価を省略可)									
逃がし安全	第5表(1)	0	_	0	_	_	_	0	0		
弁作動時の 動荷重	第5表(2)	0	_	0	_	_	_	0	0		
	第5表[1]	_	0	_	0	_	0	_	_		
逃がし安全 弁作動時の	第5表[2]	_	0	_	0	_	0	_	_		
構造物に加 わる荷重	第5表[3]	_	0	_	0	_	0	_	_		
	第5表[4]	_	_	_	0	_	—	_	_		

	対応する荷重		[5] ベントクリアリング時にベント 管に加わる水平荷重	[2] ベントクリアリングに伴うプー ル水の流動によるドラッグ荷重
	圧力抑制系内の構造物に加わる荷重		717754707 第3488 第4403888 第4403888	
	対応する荷重	(1) 破断発生直後に生ずる圧力波によ 9,プール底面に加わる荷重	 (2) ベントクリアリングに至るまでの 過程におけるベント管下端からの 噴流によるサプレッション・チェ ンバの底面への荷重 (3) (3) (2)と同じ噴流によるサプレッション・ ョン・チェンバの壁面への圧力に よる荷重 	
TT YF K	圧力抑制系のバウンダリに加わる荷重	東子切 「「「」」」 「「」」」 「」」 「」」 「」」」 「」」 「」」 「」」」 「」 「		
	事故後の 推移	①破断直後	◎ シング シンジン ジンシン ジンシン ジンシン ジンシン ジンシン ジンシン ジ	

第4表(1/4) 指針要求に対応するLOCA時動荷重の概要図

	対応する荷重	[2] フォールバックに伴うプール水 の流動によるドラッグ荷重	[7] プールスウェル後のプール水面 の揺動による荷重	[1] 蒸気凝縮に伴いベント管に加わ る水平荷重
してみは割何里の既安凶	圧力抑制系内の構造物に加わる荷重		MIT74-TOT AFF0 Milling	
4) 相町安水に刻心りるしい	対応する荷重	(1) フォールバックによるプール底 面,壁面に加わる圧力による荷重	(8) プールスウェル後のプール水面の 揺動により、プール壁面に加わる 荷重	(9) 蒸気凝縮に伴うプール底面,壁面 に加わる圧力による荷重
544 24 (9/5	圧力抑制系のバウンダリに加わる荷重	417754707 原子塔 藤子橋の基礎 本作の基礎	A17754707 原子野 本体の建設	以1754707 「「 一 一 一 一 一 一 一 一 一 一 一 一 一
	事故後の 推移	⑤フォールバック過程	⑥ ベ 木 程 人 多 水 程 御 御 御 御 御 御 御 過 過 過 過 過 過 過 過 過 過 過 過	□ 蒸気放出 品

第4表(3/4) 指針要求に対応するLOCA時動荷重の概要図

第4表(4/4) 指針要求に対応するLOCA時動荷重の概要図

	対応する荷重	[1] クリアリング時水中構造物に加 わる衝撃荷重及びドラッグ荷重	[2] 気泡形成に伴い水中構造物に加 わる衝撃荷重及びドラッグ荷重	[3] 蒸気凝縮が不安定となる場合, 水 中構造物に加わるドラッグ荷重 [4] これらの現象を通じてクエンチ ゃ地震に加わる荷重
	圧力抑制系内の構造物に加わる荷重			#文作 版14 タエンチャ クエンチャ クエンチャ
IXXCV//// OXF/ OXH)	対応する荷重		(1) 気泡形成に伴うプール底面,壁面 に加わる圧力による荷重	(2) 蒸気凝縮が不安定となる場合,プ ール底面,壁面に加わる圧力によ る荷重
	圧力抑制系のバウンダリに加わる荷重			
	事故後の 推移	①クリアリング過程 ング過程	③気治放出 過程	圆蒸気放出 過程

第5表 指針要求に対応する逃がし安全弁作動時動荷重の概要図

荷重	根拠	第4表との対応
a. LOCA発生時の	指針上評価の省略可	(1)
ドライウェル内の		
圧力上昇		
b. ベントクリア時の	米国で実施された 4T 試験(参考	(2), (3)
水ジェットによる	資料2 ④)結果における出口噴	[2]
荷重	流速度から算出	
c.気泡形成によるサ	 プールスウェル解析モデルに其	(4)
プレッション・チェ	づく解析結果から算出	
ンバ内の圧力上昇		
d. 水面上昇による衝	プールスウェル解析モデルに基	
撃力	づく解析結果から算出	
e. 上昇水流による荷	プールスウェル解析モデルに基	[2], [4], [6]
重	づく解析結果から算出	
f. サブレッション・チ	プールスウェル解析モデルに基	(5), (6)
エンバ空間部圧力	づく解析結果から算出	
何里		
g. フレーク・スルー	指針上評価の省略可	—
	CRT試験(参考資料 2 (5))結	(7), (8)
	来より、ハワンタリに作用する	[2], [7]
h. フォールバック荷	何里としては悪況り能。	
重	小中博垣物に刈りる何里は、ノ	
	これスリエル時間モノルに塗り	
	、肝が相木としこに俗「述反と	
i.蒸気凝縮振動荷重	しRI 訊練(参写貨料 2 ⑤) 7 一 2 に甘べき乳空	(9)
	うに基づき政定	
i.チャギング荷重	CRT試験(参考資料 2 ⑤)デ	(9)
	ータに基づき設定	[2]
k. ベント管に加わる	NURFC-0808の証価毛注から管出	[1], [5], [8]
水平荷重	101120 0000 ジ 町 画 丁 伝がり 昇山	
1. E C C S 作動時	考慮不要	—

第6表 設計基準事故時に生じる動荷重と根拠

荷重	根拠	第5表との対応
a. 水ジェットによる 荷重	b.に包絡(東海第二発電所の実 機試験等)	[1], [4]
b. 空気泡圧力の振動 による荷重	東海第二発電所(参考資料 2 ③)の実機試験	(1) [2], [4]
c. 蒸気凝縮振動荷重	b.に包絡(東海第二発電所の実 機試験等)	(2) [3], [4]

① 主蒸気逃がし安全弁クエンチャ開発試験: 大規模試験(1/4 体積スケールテスト) 試験目的

小規模試験からクエンチャ型が蒸気凝縮振動の安定化に最良との結果を得たので,実機 に適用するためのクエンチャノズルを開発すべく大規模実験が実施された。

試験の項目及び成果

本試験では,主に水温等をパラメータとして, ℃前後から ℃まで幅広い温度範囲 で試験が実施された。気泡脈動荷重及び蒸気凝縮振動荷重の試験結果から,主に以下の内容 が確認された。

- ・クエンチャを採用すれば低プール水温 C)から高プール水温 C)まで安 定した蒸気凝縮性能が確保可能である。
- ・蒸気凝縮振動荷重に対する蒸気流束 kg/s/m²)及びプール水温よる影響

【参考文献】NUREG-0783 "Suppression Pool Temperature Limits for BWR Containment" NEDO-21061 "MARKII Containment Dynamic Forcing Functions Information Report" ② 主蒸気逃がし安全弁クエンチャ開発試験: 実規模試験

試験の目的

本試験では、実規模のクエンチャを使用して荷重確認試験を行った。

試験の項目及び成果

試験に用いられたクエンチャのクエンチャアーム角度は、1 か所が , 他の3 か所が であり、クエンチャアーム取り付け角度の影響が確認された。また、試験は、実機の運転条件を包絡するように幅広いレンジの蒸気源圧力 (Psi MPa)、 プール水温条件 F: \mathbb{C}) で実施された。

この結果、以下の内容が確認された。

- ・クエンチャアーム角度, の全ての方向でクエンチャは安定した凝縮性能を 発揮した。
- ・クエンチャアームの孔の放射角度が 程度以下であれば高温水がクエンチャ周囲 に留まることなく安定疑縮が得られることが示された。

【参考文献】 NUREG-0783 "Suppression Pool Temperature Limits for BWR Containment" NUREG-0802 "Safety/Relief Valve Quencher Loads Evaluation for BWR Mark II and III Containments" NEDO-21061 "MARK II Containment Dynamic Forcing Functions Information Report" NEDE-21078 "Test Results Employed by General Electric for BWR Containment and Vertical Vent Loads" ③ 東海第二発電所 主蒸気逃がし安全弁実機試験

試験の目的

本試験は,新設計格納容器の安全性・健全性・妥当性を確認するとともに,従来設計荷重 の妥当性の評価,構造材の応力算出モデルの妥当性を評価するために実施された。

試験の項目及び成果

試験は、東海第二発電所における実機を用いて行われ、原子炉圧力 35 kg/cm²g(約 3.4 MPa)、55 kg/cm²g(約 5.4 MPa)及び通常運転圧力である 70 kg/cm²g(約 6.9MPa)における 試験が実施された。試験結果により、主蒸気逃がし安全弁作動時の荷重や格納容器に作用す る応力、圧力の距離による減衰の挙動が確認され、以下の成果が得られた。

- ・Mark-Ⅱ格納容器及びプール内構造物の健全性が実証された。
- ・測定された気泡脈動荷重の最大/最小圧力はそれぞれ

0.84kg/cm² (約82 kPa) / -0.39 kg/cm²(約-38 kPa)であった。

- ・1 弁(単弁)を作動させた試験のほか,主蒸気隔離弁を全閉させることによる多段・多 弁作動試験も実施されたが,すべての試験において蒸気凝縮は,安定したものだった。
- ・主蒸気隔離弁を全閉させた試験において,逃し安全弁の最初の作動と後継作動とで気 泡圧力に有意差がないことが確認された。

【参考文献】東海第二発電所主蒸気逃がし安全弁実機試験報告書(昭和53年3月)

④ 米国 4T/4TCO (Temporary Tall Tank Test Condensation Oscillation) 試験
 試験の目的

Mark-ⅡプラントでのLOCA時の蒸気凝縮振動現象を把握することを目的として実施された。

試験装置は、Mark-Ⅱ型格納容器のベント管1本が実物大で模擬されており、また、これ に対応するサプレッション・チェンバ及びドライウェル部分(実炉との体積比約1/100)が 模擬されている。

試験の項目及び成果

試験は、LOCA時のブローダウン(液相破断,蒸気相破断それぞれ)が模擬され,模擬 する破断面積や、ベント管水深、プール水温などを変化させて実施された。この試験により 以下の成果が得られた。

- ・Mark-Ⅱ格納容器の蒸気凝縮振動現象が明らかにされ、蒸気凝縮振動荷重に対する 様々なパラメータの影響が確認された。
- ・また、ベントクリア時の水の流速データが計測され、上限流速として 60 ft/s(約 18.3 m/s) が設定された。
- ・この試験結果には、米国における Mark-Ⅱ型格納容器のLOCA時動荷重の評価に広 く用いられている。

【参考文献】NUREG-0487 "MARK II CONTAINMENT LEAD PLANT PROGRAM LOAD EVALUATION AND ACCEPTANCE CRITERIA"

⑤ 格納容器圧力系信頼性実証試験(CRT: Containment Reliability Test)
 試験の目的

LOCA時のBWR格納容器圧力抑制系の主要な動荷重の評価に用いられる計算モデルの検証と、圧力抑制系のLOCA時における機能の信頼性を実証することを目的として実施された。

試験装置は、Mark-Ⅱ型格納容器の圧力抑制系の一部分が実物大で模擬されている。

試験の項目及び成果

試験は、LOCAを現実的に模擬し、プールスウェル荷重及び蒸気凝縮荷重の両者につい てデータを得ることを目的とした試験等、全28回実施された。これにより、以下の成果が 得られた。

- ・従来の試験に基づいて開発された評価モデルないし評価値が試験結果に比べて保守 的であることを立証した。
- ・複数ベント管を有する系に特有な荷重低減効果を含む試験結果を得て,従来の単一ベント管試験に基づくものよりも現実的な実炉荷重の評価を可能にした。
- ・蒸気凝縮に伴う荷重の測定を目的とした試験では、初期プール水温を ℃、ベント管最大蒸気流束を約 kg/s/m²として試験が実施され、大振幅のチャギング荷 重は特定の熱水力条件(蒸気流束 18~28 kg/s/m²、プール水温 40 ℃以下)で多発す ることが確認された。

参考資料3

東二の実機試験における逃がし安全弁作動時の多弁作動について

2.4 で示したように東海第二発電所での実機試験により,主蒸気隔離弁を全閉し逃がし安 全弁が 作動したとき(原子炉圧力約7.44 MPa)と1弁作動したときでは,1弁作動した ときの方が動荷重は大きくなることが確認されている。1弁作動時の動荷重が大きくなった 理由として,多弁作動時は排気管出口から放出される圧力波が相互干渉し,圧力振幅が相殺 されるためと考えられている。この妥当性を考察するため,東二の実機試験で多弁作動した 箇所とその位置関係から圧力振幅が相殺されることを検討する。

第1図に示すように逃がし安全弁は,作動圧ごとに第1段から第5段まで対称的な配置 となっており、どの作動圧で排出されても、圧力振幅は相殺されやすいと考えられる。逃が し安全弁 「作動時の試験結果も対称的な配置で排気管から排出されており、圧力振幅は 相殺されたと推測される。よって、1弁作動時が最も大きな動荷重を生じると評価すること は妥当である。

第1図 排気管の配置

【参考文献】東海第二発電所主蒸気逃がし安全弁実機試験報告書(昭和53年3月)

重大事故等時の動荷重の組み合わせについて

設計基準対象施設としての原子炉格納容器に対する動荷重の組み合わせの考え方を以下 に示す。

- ・原子炉格納容器の応力計算は,各運転状態に生じる荷重の組み合わせの中で最も厳しい 条件について行う。
- ・圧力,温度及び原子炉冷却材喪失時の蒸気ブローダウンによる荷重において,荷重の生じる時間が明らかに異なる場合は時間のずれを考慮する。具体的には以下の組み合わせとなる。
 - ▶原子炉冷却材喪失直後のジェットカ、及び原子炉冷却材喪失時のサプレッション・ チェンバのプール水揺動による荷重は事象発生後一度のみ作用する荷重であるため、許容応力状態ⅣAとして評価する。この状態は、原子炉格納容器の内圧が上昇 する前の過渡的な状況であることから、最高使用圧力とは組み合わせない。
 - ➤ドライウェルからサプレッション・チェンバへの蒸気の流入が起こり、継続的に蒸気の凝縮等による動的荷重(CO,CH)が作用する状態は、設計条件として評価するものとし、原子炉冷却材喪失事故後の最大内圧との組合せを考慮する。なお、COとCHはドライウェルからサプレッション・チェンバに流入する蒸気量の変化に伴い段階的に生じる事象であるため、互いに組み合わせる必要はない。
 - ▶逃がし安全弁作動時の動荷重については、逃がし安全弁の作動が運転状態Ⅱに区分される事象であることから、許容応力状態ⅡAとして評価するとともに、弾性設計用地震動Sdと基準地震動Ssとの組み合わせも評価する。
 - ►MARK-II型格納容器については、CHと逃がし安全弁作動時の荷重は組み合わせない。

前述の考え方を踏まえ,重大事故等時に生じる動荷重(本文第2-2表)に係る荷重の組み 合わせを以下のように整理する(第1表)。

<逃がし安全弁作動時荷重>

逃がし安全弁が作動する事象は、「高圧・低圧注水機能喪失(給水喪失)[TQUV]」のように原子炉圧力容器バウンダリの機能が維持されている状態であり、原子炉圧力容器破損は想定されない。したがって、重大事故等時であっても、逃がし安全弁作動時荷重と同時に原子炉格納容器の過度な圧力上昇は重畳するものではなく、原子炉格納容器の内圧は最大でも ATWS 事象において想定される 200 kPa 程度である。

<LOCA, FCI及びベント時に生じる動的荷重> 本文2章および5章で述べたとおり、LOCA時に生じる動荷重について重大事故等 時において特に考慮が必要となる荷重は、LOCA後長期にわたって発生しうる荷重で あるチャギング荷重のみとなる。また、格納容器ベント実施時やFCI発生時にはベント 管を通過する水やガスの流量が一時的に増大するが、この時の水およびガスの流量(流束) はLOCA時に想定される最大流量(流束)に比べて小さいことから荷重としては包絡さ れる。したがって、重大事故等時における原子炉格納容器内の圧力・温度条件との組み合 わせを考慮すべき荷重は設計基準事故時に想定するチャギング荷重に包絡される。また、 格納容器圧力が最大となるのは、格納容器雰囲気過圧・過温のシナリオにおいて1.5Pd で ベントする時点となる。

ここで、前述のとおり、想定される圧力及び荷重条件を上回る条件として、1.5 Pd+チャギング事象を保守的に組み合わせて評価した結果を第2表に示す。なお、格納容器ベント実施時やFCI発生時においては、40 ℃以上、かつ、蒸気流束も18 kg/s/m²以下であり、設計条件としているチャギングによる荷重よりも小さくなるが、保守的な値を用いる。この保守性については、5.4 で示したとおり、サプレッション・チェンバ内のプール水の水温(40 ℃以下)が低く、さらにベント管内の蒸気流束(18~28 kg/s/m²)が比較的大きい領域で振幅の大きな荷重が生じることが確認されており、このときの荷重を設計条件としているためである。

重大事故等時の荷重の組合せが設計基準対処施設としての荷重の組合せを網羅的に適 用できているかを確認するため、第2表で示す。確認した結果,設計基準事故時には設 計・建設規格に基づき,運転状態IIである逃がし安全弁作動時の動荷重は地震との組合せ が必要であるが、重大事故等時は逃がし安全弁作動が短期的な荷重であることから組み 合わせないため、相違が生じたものの、その他の荷重について、網羅的に組み合わせてお り、重大事故時の組合せが妥当であることを確認した(第2表)。

第3表に示すとおり、重大事故等時に生じる動荷重の組み合わせは原子炉格納容器の 限界圧力(620 kPa)による構造評価に包絡される。このため、原子炉格納容器の重大事故 等時における閉じ込め機能の健全性は、限界圧力2Pd(620 kPa)によって確認ができる。 このときの各荷重による応力を第4表に示す。

また,動荷重の観点で,最大圧力1.5 Pd (465kPa) +チャギングの動荷重の裕度は, ATWS時の最大圧力+SRV作動時の動荷重の裕度は, である。このこと から,重大事故等時において,チャギングによる荷重の影響は大きいものの,上記で記載 したとおり,重大事故等時においてはチャギングによる動荷重が大きくなる特定の領域 でないことから,原子炉格納容器が有する裕度は小さくならず,動荷重による原子炉格納 容器の強度評価への影響はない。

	備考	強度計算書 評価ケース	≦SA1に包絡		動荷重は CHで代表 ≤SA1に包絡	≤SA3に包絡	≦SA31こ包絡	耐震計算書 評価ケース	動荷重は CHで代表 ≦SA6に包絡	耐震計算書 評価ケース
	荷重の組合せの考え方	限界温度, 圧力 (200℃, 224) を考慮する。	透がし安全弁による急速減圧までの短期的な原子炉格納容 器圧力上昇と逃がし安全升作動時の背重が重量するため、 組み合わせる。原子炉格納容器圧力は、逃がし安全弁件動 時に最大となるATR3時を用いる。	中小破断uのAが発生し、チャギングが生じている状況で、 逃がし安全弁が作動する可能性があるため、組み合わせ る。原子炉格納容器圧力は、逃がし安全弁作動時とする。	株純容器ペント時の原子炉株納容器圧力1.5 Pdと長期間継 続しうる動荷重であるチャギングとの重量を考慮し、組み 合わせる。	SA3で想定される動荷重(LOCA時)に包絡される。	SA3で想定される動荷重(LOCA時)に包絡される。	重大事故等時の地震を考慮するため,事故後1×10 ⁻² 年 (3.65日)の清重と弾性腔計用地震動528組み合わせる。 原子内格納容器圧力は、58(L)で設定される圧約を26条す る最大内圧を用いる。58(L)の状況では原子炉圧力容器は る最大内圧を用いる。58(L)の状況では原子炉圧力容器は でませい。	事故後1×10°年(3.65日)の背重と弾性設計用地震動5dと の組合せ。5a仏)で想定される原子炉格納容器圧力と長期 間総純しうる動背重であるチャギングとの重量を考慮し、 組み合わせる。	重大事故等時の地震を考慮するため、事故後2×10 ^{-4年} (73 日)の荷重と基準地震動Ssを組み合わせる。この時点では 原子序格納容器は代替領統治却系等により冷却が開始され ており、勤的荷重が作用したいため、SA(LL)で増定される ており、勤的荷重が作用したいため、SA(LL)で増定される
ノ肉 里 い 瓶 百 で	重要事故シーケンス等	\$L	原子評學止機能喪失 一語される重要事故シーケンス等: 高田注水・飯田機能喪失(給水喪失), 高田注水・飯田機能喪失(給水喪失), 高田注水・飯田機能喪失(給水喪失), 主交活動力電源喪失 全交活動力電源喪失、 電子時間、 電子師王均常器バイバス(残留熟除主系配幣破断), 高田活躍動放出人格納容器部用公面控用。 高田活躍動なし、特納警察部用公面持相互作用, 高品語的一、コンクリート相互作用	LOCA時注水機能喪失(中小破断)	格純容器過圧・通温破損 包給される重要事故シーケンス等: 水素燃焼	原子存圧力容器外の溶酸燃料 - 冷却対相互作用 (FCI) 包給される重要事故シーケンス等: 百能にれる重要事業が一ケンス等: 管腸的で、コンクリート相互作用	格納容器過圧・通道破損 包務される重要事故シーケンス等; 回務される重要事故シーケンス等; 前機熟除去機能喪失(後留熟除去系機能喪失), DOG時生水酸能喪失(中小破財)、 水素燃焙	<u>ी</u> क्ष	格納容器過圧・通湿破損 包緒される重要事故シーケンス等: の語される重要事故シーケンス等; 前展形体は健健使く(統留熟除主系機能喪失), 1000時注本機能喪失(中小破断)。	17
· · · · · · · ·	ベンイ	1			1	1	0		I	I
く事以	н С н	I	I	I	I	0	I	I	I	I
次 単き	副间 A C C C L	1	I	0	0	I	I	I	0	I
1 4	SEV作動	I	0	0	I	I	I	I	I	I
	SA(LL) 进穴	I	I	I	I	I	I	I		0
	SA(L) 변유	I	I	I	I	I	I	I	0	I
1	L1 1004時 日小破断	I	Ι	0	I	I	I	I		I
	ぬてwS時	I	0	I	I	I	I	I	I	I
	3A時最大	I	I	I	0	0	0	0	I	I
ľ	限界圧力	0	I	I	I	I	I	I	I	I
F	死荷重	0	0	0	0	0	0	0	0	0
	許応状容力戀	VA	\mathbf{V}_{A}	$V_{\rm A}$	\mathbf{V}_{A}	$V_{\rm A}$	V_{A}	$V_{A}S$	VAS	$V_A S$
F	地震	I	I	I	1	I		S a	S a	ŝ
	何里の船台で 各運転状態に よる荷重	SA短期に おける荷重	SA短期に おける荷重	SA短期に おける荷重	SA短期に おける荷重	SA短期に おける荷重	SA魚湖に おける荷重	SA長期 (L) に おける荷重	SA長期 (L)に おける荷重	SA長期(LL)に おける荷重
	No.	SAI	SA2	SA2'	SA3	SA4	SA5	SA6	SA7	SA8

		舗 禿	SA1の荷重の組合せと同様	通常運転時のため, SA時は組み合わせない	SA2の荷重の組合せと同様		SA3の荷重の組合せと同様		SA6の荷重の組合せと同様	SA8の荷重の組合せと同様	SRV作動は短期であるため、SA時は組み合わ	せない	SA6の荷重の組合せと同様	評価圧力:限界圧力2 Pd (620 kPa)	評価圧力:ATWS時(200 kPa ^{%1})	評価圧力:中小破断LOCA時(25 kPa ^{%1})	評価圧力: SA時の最高圧力 (465 kPa ^{%1})	土山梁曰입아이	ono C IPI 守久 「	評価圧力: SA時の最高圧力 (465 kPa ^{%1})	評価圧力:SA(L)時の圧力310 kPa ^{%1}	評価圧力: SA(LL)時の圧力200 kPa ^{%1}	
		НС			Ι	-	Ι	0	Ι		Ι	-	Ι	Ι	Ι	0	0	0	0		0		
羅性	重	00	-	I	T	-	0	-	Ι		-	-	Ι	Ι	-	-	-	I	-	-	-		
土の網	動荷	N D	—		I	0	-	-	Ι		—	—	-	-	—	—				—	—		
の組合せ		作 動 と と と ス	I	I	0		I	I	Ι		0	0	-	Ι	0	0		I		-	I	-	
の荷重(最大圧力事故時	I	I			0	0	I				0	I	0	0	0	0	0	0	0	0	
故等時	圧力	運転圧力通常		0	0				0	0	0	0											
重大事		使用圧力	0						I					0									
2 表		死荷重	0	\bigcirc	0	0	0	0	\bigcirc	\bigcirc	0	0	0	\bigcirc	0	0	0	0	0	0	0	0	
第		許容応力 状態	設計条件	ΙA	ΠA	IVA	設計条件	設計条件	ШАS	IVAS	ΠAS	IVAS	IVAS	V_A	${\rm V}_{ m A}$	${\rm V}_{ m A}$	V_A	V_A	V_A	V A S	$V \wedge S$	$V_A S$	
		油							S d	${\rm S}$ ${\rm s}$	${ m S}_{ m d}$	${ m S}_{ m S}$	S d	-						${\rm S}_{ m d}$	${f S}_{ m d}$	${\rm S}$ ${\rm s}$	
	荷重の組合せ	各運転状態による荷重	設計条件による荷重	運転状態Iによる荷重	運転状態Ⅱによる荷重	運転状態IVによる荷重	運転状態IVによる荷重	運転状態IVによる荷重	運転状態Iによる荷重	運転状態Iによる荷重	運転状態Ⅱによる荷重	運転状態Ⅱによる荷重	運転状態IVによる荷重	SA短期における荷重	SA短期における荷重	SA短期における荷重	SA短期における荷重	SA短期における荷重	SA短期における荷重	SA長期(L)における荷重	SA長期(L)における荷重	- SA長期(LL)における荷重	×1 · 右动卧部 (西红 田
		No.	1	2	3	4	5	9	7	8	6	10	11	SA1	SA2	SA2'	SA3	SA4	SA5	SA6	SA7	SA8	*

※1:有効性評価結果

上記の表は、重大事故等時の荷重の組合せとして考慮すべき、設計基準事故時の圧力、動荷重及び地震に関連する組み合わせについて、 整理している。このため,運転時に想定されない燃料交換/耐圧試験は,組み合わせを記載していない。

評価部位	No.	荷重の組合せ*1	発生応力 (MPa)	許容応力 (MPa)	裕度
	SA1	死荷重+限界圧力(620 kPa)		281^{22}	
	SA2	死荷重+ATWS 時(200 kPa) +SRV 作動時		281 ^{**2}	
	SA2'	死荷重 +中小破断 LOCA 時(25 kPa) +SRV 作動時+チャギング		281**2	
	SA3	死荷重+最大圧力(465 kPa) +チャギング		281^{2}	
円筒胴部	SA4	死荷重+最大圧力(465 kPa) +チャギング(SA3 と同等以下)		281^{2}	
	SA5	死荷重+最大圧力(465 kPa) +チャギング(SA3 と同等以下)		281^{2}	
	SA6	死荷重+最大圧力 (465 kPa) + S d		253 ^{**3}	
	SA7	死荷重+SA(L)圧力 (310 kPa) +チャギング+S _d		253 ^{**3}	
	SA8	死荷重+SA(LL)圧力(200 kPa) +S _s		254 ^{**3}	

第3表 原子炉格納容器 サプレッション・チェンバの強度評価結果

- ※2:許容応力状態VAとしてのIVA許容限界を用いる。(限界温度(200 ℃)における許容値)
- ※3:許容応力状態VASとしてのWAS許容限界を用いる。(SA(L)(171℃), SA(LL)(150℃) における評価温度)

^{※1:}水頭圧は重大事故後に起こりうる最大水位を包絡するものとしてサプレッション・チ ェンバのベントライン下端位置を水面位置として算出した値を用いる。また,動荷重は このときの水位を考慮したものとする。

				各荷重(こよる応	力*2												
技売の統約		Ê				P1+	-Pb			۲ م ۲ م	640	ر v ی	C V J	7 V V	U V L	240	24.3	040
加里い地規		E			内面			外面		THC	24C	ZAC	CAC	544	CHC	OAC	INC	OVC
	σt	σ l	ч	σt	$\sigma \ell$	ч	σt	$\sigma \ell$	ч									
死荷重			l							0	0	0	0	0	0	0	0	0
水頭圧*1										0	0	0	0	0	0	0	0	0
限界圧力 (620kPa)										0								
SA 時最大(465kPa)													0	0	0	0		
SA(L)時(310kPa)																	0	
SA(LL)時(200kPa)																		0
ATWS 時(200kPa)											0							
中小 L0CA 時 (25kPa)												0						
SRV 作動時 ^{%1}									1		0	0						
CH 時 ^{%1}												0	0	(0)	(\bigcirc)		0	
Sd 地震時(鉛直)									L									
Sd 地震時(水平)																0	0	
Sd 地震時(水頭分)																		
Ss 地震時(鉛直)																		
Ss 地震時(水平)																		0
Ss 地震時(水頭分)																		
		ĺ	l	ĺ	I]	ĺ	ĺ		1								

第4表 重大事故等時の各荷重による応力

σt:円周方向応力,σl:軸方向応力,τ:せん断応力(t-l方向) ※1 重大事故時のプール水の水位を考慮。 ※2 動荷重及び地震荷重は振動荷重のため土両方存在するが,本表では1方向のみ表記

設計基準対処施設としての動荷重に対する健全性

東海第二発電所の原子炉格納容器は,建設時において動荷重による影響の知見がなく, その後の知見によって設計上の考慮が必要となった。これを踏まえ,東海第二発電所では, 既工認及び定期的安全レビューで原子炉格納容器の健全性を確認している。

第1表に示す対象部位(第1図)に対して,強度評価を実施している。なお,各部位の 評価結果については,裕度が最も小さいものを記載する。

既工認及び定期的安全レビューの結果で示すように設計基準対処施設としての動荷重 は原子炉格納容器本体に生じる荷重が最も裕度が小さい結果となった。

最も裕度が小さくなる理由としては,

- ・原子炉格納容器本体は、内部構造物と異なり内圧による荷重を受けること(第2表の事故時圧力)及び動荷重の受圧面積が大きく動荷重が大きいこと(第2表の逃がし安全弁作動時等)
- ・これらの荷重は第3表で示すように組合せが必要であり,第4表で示すように地 震による荷重よりも動荷重を組み合わせた荷重の方が大きいこと

・動荷重に対する許容値は、地震時と比較し、小さいこと が挙げられる。

このことから,原子炉格納容器の健全性は原子炉格納容器本体を代表とすることで確認できる。なお,MARK-II改良型と構造比較した部位については,動荷重を考慮したプラント設計されたものと同等以上の強度を有することを確認していることから,十分な裕度を有するものとした。

第1表で示すように残留熱除去系ストレーナは、動荷重を含まない評価結果を記載している。その理由は、応力評価点を第6図、各荷重による応力を第16表に示すように評価点ごとに生じる動荷重は異なるものの、差圧による荷重が最も大きい。このため、動荷 重を組み合わせた結果では裕度が大きくなるため、動荷重でない評価結果を第1表に記載している。

評価対象	評価結果
1	(事故時圧力+チャギング荷重時)
原子炉格納容器本体	一次応力 ^{*1} : MPa/許容値:131 MPa
(第2表~第4表)	裕度:
2	(SRV作動時)
ベント管	一次応力 ^{**2} :
(第5表,第6表)	裕度:
3	(フォールバ <u>ック</u> 荷重)
ベント管ブレーシング	曲げ荷 <u>重^{※2}</u> kg/mm ² /許容値:24.6 kg/mm ²
(第7表, 第8表)	裕度:
4	ベースマットの評価から算出されることから、ベースマット
底部ライナー	の評価に代表される
5	(SRV作動時+S ₁)
クエンチャーサポート	圧縮応 <u>力^{※2}:</u> kg/mm ² /許容値:21.5 kg/mm ²
(第9表)	裕度:
6	(プールスウ <u>ェル(</u> LOCA時))
真空破壞弁	組合せ応力 ^{**2} kg/ mm ² /許容値:50.0 kg/mm ²
(第 10 表)	裕度:
\bigcirc	(SRV作動時+S ₁)
ダイヤフラム・フロア	SRV 作動時 (ton) + S_1 (ton) *2 ton
(第 11 表)	S ₂ : ton
	<u>裕度</u> : (S ₂ に対する裕度)
\bigcirc	(MARK-II 改良型プラントとの単位差圧が作用した場合の裕
ダイヤフラム・フロア大梁	
(第 12 表)	東二 ^{*2} : MARK-Ⅱ改良型プラント:
コフムサホート	・ 発生心力 ^(m) : ton/cm ² /計谷値: ton/cm ²
(第13表)	
	(MARK-II 改良型フラントとの構造比較)
泉于炉本体基礎 (数11.11)	
(第14表)	□ 宋二 ^{····} :Cffi MARA ⁻ Ⅱ以良空ノノント:Cffi
10	<u>ビー・</u> (MARK-II 改良刑プラントとの構造比較)
· ···································	(MARA 1100127) (12001年1月1日1日) (新聞社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会
(第15 表)	■ mmR (U) MARK-II 改良型プラント
	(異物荷重 <u>+差圧</u> +地震荷重(ストレーナ,異物)
- 残留熱除去系ストレーナ**3	一次応力 ^{*1} : MPa/許容值: MPa
(第16表~第18表)	裕度:

第1表 設計基準対処施設としての原子炉格納容器の健全性確認結果

※1:既工認評価値(工事計画認可申請書参考資料(平成 20・02・29 原第 41 号 平成 20 年 4月7日付け))

※2:定期的安全レビュー結果

※3:低圧炉心スプレイ系及び高圧炉心スプレイ系ストレーナを包絡。なお,原子炉隔離時 冷却系ストレーナはストレーナを大型化していないため,差圧による荷重が小さいこ とから,包絡される。

第1図 動荷重の評価対象

第2表 原子炉格納容器本体の各荷重による応力

<u> 応力評価点 P1</u>													(単位:	MPa)
				- ;	灾 応	力					- U	ς + Ξ	二次,	に力	
** ~		Рm				PL -	⊦ Pь				P	L +]	Рь +	Q	
何					内面]		外面		-	内面	_		外面	
	σt	σℓ	τ	σt	σι	τ	σt	σι	τ	a t	al	τ	a t	a	Ŧ
 最高使用圧力(内圧) 最高使用圧力(内圧) 最高使用圧力(外圧) 事故時圧力 PCV鉛直荷重(通常) PCV鉛直荷重(燃交) プール水頭 PCV鉛直方向S1*地震(通常,上向U) PCV鉛直方向S1*地震(燃交,上向U) PCV鉛直方向S1*地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) PCV鉛直方向S2地震(燃交,下向D) プール水S1*地震(上向U) プール水S2<地震(上向U) プール水S2地震(低交,下向D) プール水S2地震(上向U) PCV和声方向S1*地震(日間D) PCV和平方向S1*地震(目張T) PCV和平方向S2地震(目張T) PCV素平方向S2地震(目張T) PCV素平方向S2地震(目長T) PCV素平方向S2地震(目長T) PCV素平方向S2地震(目長T) PCV素平方向S2地震(目長T) PCV素平方向S2地震(目長T) PCV素中行動時資重(三圧P) 透砂し安全弁作動時資重(気圧N) 注(前口) 	力,,	- · · · · · · · · · · · · · · · · · · ·	/断応-	, , (t	- ()	方向)									
応力評価占 P1														(畄位・	MPa)

<u> </u>														(単位:	MPa)
				- 1	吹 応	;力					- &	< + 1	二次,	む カ	
恭 香		Ρm				PL -	+ Pb				P	ι +]	P6 +	Q	
1円 里					内面			外 面			内面			外面	
	Ot	01	τ	σt	σℓ	τ	σt	σℓ	τ	σt	σℓ	τ	σt	σℓ	τ
26 水ジェット 27 蒸気凝縮振動(正圧P) 28 蒸気凝縮振動(負圧N) 29 チャギング(正圧P) 30 チャギング(負圧N)										÷					

注 :σt:円周方向応力,σℓ:軸方向応力,τ:せん断応力(t - ℓ 方向)

			荷重条	件						_		
番号	運転状態	地震荷重	供用状態	荷重条件				荷	重	番	号 *	ŧ
1	設計条件	-	設計条件	設計条件	1	4	6				_	
2	運転状態 I	_	А	I一通常運転	2	4	6	23				
3	運転状態 I	-	А	I - 燃料交換	5	6						
4	運転状態Ⅱ	-	В	II - SRV - (P)	2	4	6	23	24			
5	運転状態Ⅱ	_	В	II - SRV - (N)	2	4	6	23	25			
6	運転状態IV	-	D	IV	4	6	26					
7	運転状態IV	_	設計条件	設計条件-CO(P)	3	4	6	27				
8	運転状態IV	- 1	設計条件	設計条件-CO(N)	3	4	6	28				
9	運転状態Ⅳ	_	設計条件	設計条件-CH (P)	3	4	6	29				
10	運転状態IV	_	設計条件	設計条件-CH (N)	3	4	6	30				
11	運転状態 I	S1*	C(IIIAS)	I−S1 [*] 通常運転(U.T)	2	4	6	7	15	20	23	
12	運転状態 I	Sı*	C(IIIAS)	I-S₁*通常運転 (D. C)	2	4	6	8	16	19	23	
13	運転状態 I	S1*	C(IIIAS)	I-S₁ [*] 燃料交換(U.T)	5	6	9	15	20	23		
14	運転状態 I	S1*	С(ШAS)	I-S₁ [*] 燃料交換(D.C)	5	6	10	16	19	23		
15	運転状態Ⅱ	S1*	C(IIIAS)	$II - SRV - S_1^*$ (U. T. P)	2	4	6	7	15	20	23	24
16	運転状態Ⅱ	S1*	C(IIIAS)	$I - SRV - S_1^*$ (U. T. N)	2	4	6	7	15	20	23	25
17	運転状態Ⅱ	S1*	C(IIIAS)	$II - SRV - S_1^*$ (D. C. P)	2	4	6	8	16	19	23	24
18	運転状態Ⅱ	S 1 *	C(IIIAS)	$II - SRV - S_1^*$ (D. C. N)	2	4	6	8	16	19	23	25
19	運転状態 I	S 2	D(IVAS)	I-S₂ 通常運転 (U. T)	2	4	6	11	17	22	23	
20	運転状態 I	5 2	D(IVAS)	I-S₂ 通常運転 (D. C)	2	4	6	12	18	21	23	
21	運転状態 I	S 2	D(IVAS)	I−S₂ 燃料交換(U.T)	5	6	13	17	22	23		
22	運転状態 I	S 2	D(IVAS)	I-S₂ 燃料交換 (D. C)	5	6	14	18	21	23		
23	運転状態Ⅱ	S 2	D(IVAS)	$II - SRV - S_2$ (U. T. P)	2	4	6	11	17	22	23	24
24	運転状態Ⅱ	S 2	D(IVAS)	$II - SRV - S_2$ (U. T. N)	2	4	6	11	17	22	23	25
25	運転状態Ⅱ	S 2	D(IVAS)	$II - SRV - S_2$ (D. C. P)	2	4	6	12	18	21	23	24

第3表 原子炉格納容器本体の荷重の組合せ

		1, 12										
			荷重条	件				土	ŧ	щ.		*
番号	運転状態	地震荷重	供用状態	荷重条件				1PJ	里	٦. The second sec	79	
26	運転状態Ⅱ	S 2	D(IVAS)	$II - SRV - S_2$ (D. C. N)	2	4	6	12	18	21	23	25
27	運転状態IV	Sı*	D(IVAS)	IV−S1 [*] (U. T)	3	4	6	7	15	20		
28	運転状態IV	S 1 *	D(IVAS)	IV-S ₁ * (D. C)	3	4	6	8	16	19		

応力評価点	P 1							(単位:MPa)
広まの	如人士			一次	応 力		一次+3	二次応力
何里の)		供用状態	I	P _m	PL -	+ Рь	PL + 1	Pb + Q
運転状態	地震荷重		応力強さ	許容値	応力強さ	許容値	応力振幅	許容値
設計条件	-	設計条件		131		· 196		-
Ι	-	А		-		_		393
П		В						393
IV	-	D		258		387		-
IV	_	設計条件		131		196		-
I	S 1 *	C(IIIAS)		237		356		393
П	S 1 *	C(IIIAS)		237		356		393
IV	S 1 *	D(IVAS)		258		387		393
I	S 2	D(IVAS)		258		387		393
П	S 2	D(IVAS)		258		387		393

第4表 原子炉格納容器本体の応力評価結果

注記 *: 地震荷重のみによる応力振幅を示す。

第2図 原子炉格納容器本体の応力評価点

第5表 ベント管の各荷重による応力

(出法	1.01-	2	١.
(中心	kg/mm	~	1

ant. D	** *	P1	P2
留亏	何里	一次応力	一次応力
(1)	内圧		
(2)	死荷重		
(3)	地震荷重		
(4)	冷却材喪失事故時のプール水揺動		
(5)	ベント管に加わる水平方向荷重		
(6)	逃がし安全弁作動時の荷重		

第6表 ベント管の応力評価結果

				萬)	栏位:kg/mm ²
応 5	力評価点	P	1	Р	2
荷重条件	荷重の組合せ番号	一次応力	許容応力	一次応力	許容応力
1	(1)+(2)		12.2		12.2
1	(2)+(6)		14.6		14.6
3	(1)+(2)+(4)		38.7	2003	25.8
3	(1)+(2)+(5)		38.7		25.8
4	(2)+(3)+(6)		23.4		23.4
5	(1)+(2)+(3)		23.4		23.4

(単位:kg/mm²)

応 ブ	り評価点	I	2	P 2			
荷重条件	荷重の組合せ番号	一次+ 二次応力	許容応力	一次+ 二次応力	許容応力		
4	(3) ×2		46.8		46.8		
5	(3) × 2		46.8		46.8		

第2図 ベント管の応力評価点

第7表 ベント管ブレーシングの各荷重による応力

(単位:kg/mm²)

			P3					
番号	何里	Ę	引張応力	圧縮応力	曲げ応力			
(1)	地震荷重							
(2)	逃がし安全弁作動時の荷重							
(3)	ベント管に加わる水平方向荷重							
(4)	事故時の上昇水流による荷重							
(5)	事故時のフォールバック荷重							

第8表 ベント管の応力評価結果

						(単位:)	kg/mm ²)
応り	力 評 価 点			Р	3		
11: 11- 17 14	TAK TEAMANT		応力	压制	館応力	曲げ応力	
何重杂件	何里の粗合で曲方	合計応力	許容応力	合計応力) 許容応力	合計応力	許容応力
2	(2)		13.6		11.6	-	
3	(3)		24.6		20.2		
3	(5)*2			-	— ·		24.6
4	(1)+(2)		20.5		17.4	-	

注記*:荷重番号(4),(5)のうち,応力の大きいフォールバック荷重による応力により評価する。

						(単位:	kg/mm²)
an betwee Ma	荷香の	引張応力		圧縮応力		せん断応力	
評個部位	組合せ	応力	許容 応力	応力	許容 応力	応力	許容 応力
クエンチャ	II+Sı*		22.3		21.5		12.9
サポート	II+S2		26.6		25.9		15.3
上部クエンチャ	II+Si*		22.3		18.4	-	12.9
トラス	II+S2		26.8		21.3	-	15.4
下部クエンチャ	II+Si*		22.3		16.7	_	12.9
トラス	II+S2		26.8		19.0	_	15.4

第9表 クエンチャサポート部の応力評価結果

注記*:曲げモーメントによる応力を含む

第3図 クエンチャサポートの応力評価点

											(単位:kg/m ²
荷重	弁運動 方 向	応 力 評価点	部	材	粗合せ応力	引張応力	せん断応力	応力強さ	準用する 許容応力 (材料:現状)	準用する 許容応力 (材料:改善)	偏考
		P1	2129	7-4					25.0 (SM41A)	50.0 (SPV490)	(AIJ短期)
	朗	P2	28	7ŀ					12, 1 (\$U\$304)	12, 1 (SUS304)	(AIJ短期)
7*-82528		P3	$\hat{\tau}^{*} \in \mathcal{M}$	mah.					27.0 (SA\$36Gr.70)	27.0 (SIV480)	(AIJ短期)
	65	P4	ÿ* (7.9					25.3 (SA516Gr, 70)	26,3 (SDV480)	(IV,S)
		P5	793	Ø*					36, 3 (SA\$36Gr, 70)	36, 3 (SI/V480)	(IV,S)
		P1	2129	· 71					25.0 (3441A)	50.0 (SPV490)	(AIJ短期)
F14"29"	(BB	P2	54	7ŀ					12, 1 (\$U\$304)	12,1 (SUS304)	(A1J短期)
		P3	$\tilde{\tau}^* \partial \delta$	m2+,					27.0 (SA5166r, 70)	27.0 (SI7480)	(AIJ短期)
	10	P4	7.4	7.9					26, 3 (SA5160r, 70)	26,3 (SGV480)	(IV,S)
		P5	793	9+					36, 3 (SA5166r, 70)	36, 3 (SSW880)	(IV,S)

第10表 真空破壊装置の応力評価結果

応力評価点番号	応力評価点
P 1	スイングアーム
P 2	シャフト
P 3	ディスクロッド
P4	ディスク
P 5	フランジ

第4図 真空破壊装置の応力評価点
第11表 ダイヤフラム・フロアの応力評価結果

(a) 逃がし安全弁作動時の荷重

荷重の種類	発生応力[ton]	備考
逃がし安全弁作動時		
S ₁ 地震力		定期的安全レビュー時
S ₂ 地震力		建設時

(b)原子炉冷却材喪失事故時プール水揺動に対する荷重

部位	荷重[ton/m ²]	備考			
断熱コンクリート		下向き荷重			
構造体コンクリート		下向き荷重			
鉄骨グレーチング等		下向き荷重			
鉄骨梁		下向き荷重			
原子炉冷却材喪失時の荷重		上向き荷重			
合計					
スタッドにかかる引抜き力		引抜き耐力: ton			

(c)原子炉冷却材喪失時蒸気ブローダウンによる荷重

荷重の種類	発生応力[ton]	備考
水平荷重		
S ₁ 地震力		定期的安全レビュー時

プラント	単位差圧 1.0 ton/m ² に	設計差圧 ton/m ²) に
ノノンド	対する許容応力比	対する裕度
東海第二発電所		
MARK-Ⅱ改良型		
プラント		

第12表 ダイヤフラム・フロア大梁の許容応力比

第13表 コラムサポートの応力評価結果

(a) 逃がし安全弁作動時の荷重

評価部位	発生応力[ton/cm ²]	許容応力[ton/cm ²]
コラムサポート		
コラムサポート		
ブレーシング		

(b)原子炉冷却材喪失事故時プール水揺動に対する荷重(上向き荷重)

評価部位	発生応力[ton]	許容応力[ton]
基礎ボルト		
基礎スラブ		

(c) 原子炉冷却材喪失事故時プール水揺動に対する荷重(下向き荷重)

	評価部位	発生応力[ton/cm ²]	許容応力[ton/cm ²]
	コラムサポート		
Ī	コラムサポート		
	ブレーシング		

第5図 コラムサポートの概要図

方向	比較	東海第二発電所			MARK-Ⅱ改良	型発電所
	部位	設計配筋	配筋量	補正鉄筋量	設計配筋	配筋量
	Α	内·外側			内·外側	
縦		中 央			中央	
方向	В	内·外側			内·外側	Ē
1-1		開口廻り			開口廻り	
		中 央			中 央	
	Α	内·外側			内·外側	
横方		中 央			中 央	
向	В	内·外側			内·外側	
		中 央			中 央	

第14表 原子炉本体基礎の配筋量

第15表 コンクリートマットの鉄筋比

名称		応力評価点 番号	応力評価点
多孔	ディスク	P 1	
プレート	スペーサ*	P 2	ディスクセット間の円筒形多孔プレート
リブ		P 3	リブ
コンプレッションプレート		P 4	コンプレッションプレート
フィンガ		P 5	フィンガ
ストラップ		P 6	ストラップ
	フランジ		フランジ

注記 *:ボトムスペーサを含む。

第6図 残留熱除去系ストレーナの構造図及び応力評価点

第16表 残留熱除去系ストレーナの各荷重による応力(1/3)

(単位:MPa)

					一 次 応 力					
応 力 評価点	古 番		Рm		$P_L + P_b$					
番号	番号	~ t	a *	-	内面 外面					
		υι	υĩ	L	σt	σℓ	τ	σt	σℓ	τ
	1 死荷重	-	-	-						
	2 異物荷重	-		-						
	3 差圧	-	-	-						
	4 SRV荷重	-	-	-						
Р1	5 プールスウェル	-	-	-						
	6 蒸気凝縮(CO)	-	-	-						
	7 チャギング(CH)	-	-	-						
	8 ストレーナS1*地震荷重	-	-	-						
	9 ストレーナS2 地震荷重	-		-						
	10 異物 S 1 [*] 地震荷重	-	-	-						
	1 死荷重	-	-	-						
	2 異物荷重	-	-	-						
	3 差圧	-	-							
	4 SRV荷重			-						
P 2	5 プールスウェル	-		-						
	6 蒸気凝縮(CO)	-	-	-						
	7 チャギング(CH)	-	-	-						
	8 ストレーナS1*地震荷重	-	-	-						
	9 ストレーナS2 地震荷重	-	-	-						
	10 異物 S 1 * 地震荷重		-	-						
	1 死荷重	-	-	-						
	2 異物荷重	-		-						
	3 差圧	-	-	-						
	4 SRV荷重	-	-	-						
P 3	5 プールスウェル	-	-	-						
	6 蒸気凝縮(CO)	~		-						
	7 チャギング(CH)	-	-	-						
	8 ストレーナS」*地震荷重	-	-	-						
	9 ストレーナS2 地震荷重	-	-	-						
	10 異物 S ₁ *地震荷重	-	-	-						

注 : σ t, σ_{ℓ} : 互いに直交する垂直応力, τ : せん断応力 (t - ℓ 方向)

第16表 残留熱除去系ストレーナの各荷重による応力(2/3)

(単位:MPa)

		一次応力							
応 力 証価点	世 希		P m		$P_L + P_b$				
評加点 番 号	10, 12				内面	外 面			
		σt	01	τ	σt σℓ τ	σt σί τ			
	1 死荷重	-	_	1					
	2 異物荷重	-	_	_					
	3 差圧	-	-	-					
	4 SRV荷重	-	_	-					
РИ	5 プールスウェル	-	· _	-					
Г 4	6 蒸気凝縮(CO)	_	-	-					
	7 チャギング(CH)	-	-	-					
	8 ストレーナS1*地震荷重	-	_	-					
	9 ストレーナS2 地震荷重	-	-	-					
	10 異物 S1 [*] 地震荷重	~	_	-					
	1 死荷重	-		-					
	2 異物荷重	-	-	-					
	3 差圧	-	-	-					
	4 S R V 荷重	_	-	-					
P5	5 プールスウェル	-	-	-					
10	6 蒸気凝縮(CO)	-	-	-					
	7 チャギング(C H)	-	_	-					
	8 ストレーナS1*地震荷重	-	-	-					
	9 ストレーナS2 地震荷重	-	-	-					
	10 異物 Sı [*] 地震荷重	_	-	-					
	1 死荷重	-	-	-					
	2 異物荷重	-	-	-					
	3 差压		-						
	4 SRV荷重	-	-	-					
P6	5 プールスウェル	-	_	-					
	6 蒸気凝縮(CO)	-	_	-					
	7 チャギング(CH)		-	-					
	8 ストレーナS1*地震荷重	: -	_	-					
	9 ストレーナS₂ 地震荷重	-	_	-					
	10 異物 S」* 地震荷重	-	-	-					

注 : σt , $\sigma \ell$: 互いに直交する垂直応力, τ : せん断応力($t - \ell$ 方向)

第16表 残留熱除去系ストレーナの各荷重による応力(3/3)

(応力評価点 P7)

(単位:MPa)

		(甲位:MPa)
	荷 重	曲げ応力
1	死荷重	
2	異物荷重	
3	差圧	
4	SRV荷重	
5	プールスウェル	
6	蒸気凝縮(CO)	
7	チャギング(CH)	
8	ストレーナS1*地震荷重	
9	ストレーナS₂地震荷重	
10	異物Sı*地震荷重	

第17表 残留熱除去系ストレーナの荷重の組合せ

荷重の組合せ		地震			供用		
番号	運転状態	荷重		何里奋方		状態	
1	運転状態I		1				A
2	運転状態Ⅱ	_	1	4			В
3	運転状態IV(L)		1	2	3		А
4	運転状態IV(S)		1	2	3	6	D
(5)	運転状態IV(S)		1	2	3	4	D
6	運転状態IV(S)		1	2	3	7	D
7	運転状態N(S)		1	5			D
8	運転状態I	S1*	1	8			C (∭ ∧ S)
9	運転状態I	S 2	1	9			D(IVAS)
10	運転状態Ⅱ	S1*	1	4	8		C(IIIAS)
(1)	運転状態Ⅱ	S 2	1	4	9		D(IVAS)
12	運転状態IV(L)	Sı*	1	2	3	8 10	C(IIIAS)

第18表 残留熱除去系ストレーナの応力評価結果(1/3)

(単位:MPa)

応力	荷重の組合せ		供用状態	一次応力				
評価点				F) m	$P_L + P_b$		
苗 号	運転状態	地震荷重		応力強さ	許容値	応力強さ	許容値	
	Ι		А		—		161	
	П	—	В	—	-		193	
	$\mathbb{N}(\mathbb{L})$	_	А		_		161	
	Ⅳ (S)	_	D	_			193	
P 1	I	Sı*	C(ⅢAS)	_	_		143	
	I	S 2	D(IVAS)		_		365	
	П	S 1 *	C(IIIAS)		_		143	
	П	S 2	$D(\mathbf{W}_{A}S)$	_	_		365	
	IV(L)	S 1 *	C(IIIAS)				143	
	I	_	А				161	
	Ш		В	_			193	
	IV(L)		А	_	_		161	
	IV(S)	`	D				193	
P 2	I	S 1 *	C(IIIAS)		_		143	
	I	S 2	D(IVAS)		_		365	
	П	S 1 *	C(IIIAS)				143	
	П	S 2	D(IVAS)				365	
	IV(L)	S 1 *	C(IIIAS)	_			143	
	I		А	_			181	
	П	_	В				218	
	IV(L)		А				181	
	IV(S)		D	—	—		218	
Р3	I	S 1 *	C(IIIAS)				169	
	I	S 2	D(IVAS)		-		395	
	П	S 1 *	C(IIIAS)				169	
	11	S 2	D(IVAS)				395	
	IV(L)	S 1 *	$C(\Pi_AS)$		_		169	

第18表 残留熱除去系ストレーナの応力評価結果(2/3)

1	221	11-		1000
\$	EEJ /	111	×	MPo 1
٩.		14.		MI CL/

広 力	荷重の組合せ			一				
評価点			供用状態	F	m	PL + Pb		
畨 号	運転状態	地震荷重		応力強さ	許容値	応力強さ	許容値	
	I		А	-	_		181	
	Ĩ	_	В	_	_		218	
	IV(L)		A		-		181	
	IV(S)		D	_	ļ		218	
P 4	Ι	S1*	C(IIIAS)	-	_		169	
	Ι	S 2	D(IVAS)	-	_		395	
	Ш	S 1*	C(IIIAS)	_	· _		169	
	Ш	S 2	D(IVAS)	_	_		395	
	IV(L)	S 1 *	C(MAS)	_	_		169	
	I		А		—		181	
	П	—	В				218	
	IV(L)	-	А		-		181	
	IV(S)	_	D	_			218	
P 5	I	S 1 *	C(ⅢAS)	_	_		169	
	I	S 2	D(IVAS)	_			395	
	II .	S 1 *	C(IIIAS)		_		169	
	П	S 2	D(IVAS)	-			395	
	IV(L)	S 1 *	C(IIIAS)	_	_		169	
	I	_	А	-			181	
	П		В	_	_		218	
	IV(L)		А				181	
P 6	IV(S)	-	D		_		218	
	Ι	S 1 *	C(IIIAS)	—			169	
	I	S 2	D(IVAS)	_			395	
	П	S 1 *	C(MAS)				169	
	П	S 2	D(IVAS)		_		395	
	IV(L)	S 1 *	$C(\mathbb{M}_{A}S)$	-	_		169	

						(単位:MPa)
応 力	荷重の	供用		H. 1-12 r. 1.	許容応力	
評価点 番 号	運転状態	地震荷重	状態	田り心刀		
	I	_	А			181
/	II		В			218
	IV(L)		A			181
	IV (S)		D			218
Р7	I	S1*	C(IIIAS)			169
	I	S 2	D(IVAS)			395
	II	S1*	C(IIAS)			169
	II	S 2	D(IVAS)			395
	N(L)	Sı*	C(ⅢAS)			169

第18表 残留熱除去系ストレーナの応力評価結果(3/3)

減圧沸騰に関する既往の試験

既往の研究でタンクの初期圧力 0.33 MPa 時にガスの流入がない状態で,減圧による沸騰が発生させる試験が実施されている。当該試験では水面から約 1 m 程度で気泡が発生するものの,水面の揺動としては,比較的小さいものと考えられる。(第1図)。

第1図 減圧沸騰時の水面の揺動

[参考文献] 秋葉 美幸 "プールスクラビングによるエアロゾル除去効果実験", NRA, 平 成 29 年 11 月

ペデスタル排水系に設置する安全弁について

1. 安全弁の設置概要

万が一,デブリによる配管内部の流体が急激に膨張し圧力上昇することを想定し,排 水配管側が加圧された場合の配管及び格納容器外側隔離弁の損傷を防止するため,安全 弁を設ける設計とする。(図1参照)

図1 安全弁設置位置概要図

2. 安全弁の吹出し圧力について

安全弁の吹出し圧力については PCV 限界圧力及び格納容器床ドレン配管に最高使用圧 力である 0.62MPa(2Pd)以上作用しないように 0.54MPa で設定を行う。

安全弁設置レベル と排水配管最低レベル (PCV ペネ: の差は 5,494mm であり,その水頭差は圧力換算で約 0.054MPa となる。(図1寸法参照) 弁の作動圧力は %であり 0.54MPa のときで約 MPa となることから,弁の作 動圧力のプラス側及び水頭差を考慮しても 0.54+ + 0.054= MPa となること から格納容器床ドレン配管に最高使用圧力の 0.62MPa 以上の圧力は作用しない。

また有効性評価上の PCV 内の最高圧力は 0.47MPa であり,その状態でペデスタル内を 最大水位時に維持するとした場合に安全弁へ作用する水頭差の圧力 0.029MPa が安全弁 に作用したとしても 0.47MPa+0.029MPa=0.50MPa となることから安全弁の吹出し圧力 以下であり,安全弁が水位維持に悪影響を及ぼすことは無い。 3. 安全弁の吹出し量について

安全弁の吹出し量は,排水ラインに内包される液体(水)が満水とした場合に, 液体温度が常温から 2Pd の飽和条件温度まで上昇した場合の液体の体積膨張は

```
であり,安全弁で十分体積膨張分を逃がすことが可能である約
とする。
```

体積膨張の計算条件として,配管内部の温度を 20℃から 2Pd 条件での飽和温度までの上昇及び現状の配管長を保守的に 30m とした。その結果温度上昇に伴う密度変化分として となる。

4. 安全弁のベント管への影響について

①安全弁内流路における流速

安全弁内流路における流速は以下となる。

 $V_1 = \sqrt{(2gH)} = \sqrt{(2 \times 9.80665 \times 63.2)} = 35.2 \text{m/s}$

ここで,

V₁:安全弁内流路における速度(m/s)

g :重力加速度 9.80665 (m/s²)

H : 圧力 (m) 0.62MPa≒63.2m

②安全弁排出ラインにおける流速

図2 安全弁内流路概略図(①式)

図3 安全弁排出ライン概略図(②式)

③安全弁の吹出しによるベント管への影響(荷重)

F=ρA₂V₂²=1000× ここで, F:ベント管内面が受ける荷重(N) ρ:密度

④安全弁の吹出しによるベント管への影響(圧力)

安全弁の吹出しによって発生する噴流によりベント管内面が受ける圧力につい て,保守的に噴流の広がりや減速は考慮せずに,安全弁排出ラインと同じと仮定 した。

噴流による圧力は、ベント管の最高使用圧力 173kPa の ■程度であり、ベント管 への影響は無い。

なお、本評価では、保守的に噴流の広がりや減速を考慮していないが、実際にはベ ント管内側に到達するまでに流体は減速するとともに、流れが広がり受圧面積が大き くなるため、ベント管内面が受ける圧力は大幅に小さくなる。

また、安全弁が吹き出すのは短時間であり、時間的な影響も小さい。

5. 安全弁作動時の吹出し反動力による配管設計への配慮について

安全弁作動時の吹出し反動力の配管への影響については,配管解析時の安全弁自重 を入力する質点に吹出し反動力値を入力し,ペデスタル排水系の配管が健全であるよ うに設計する。【図書番号V-3-9-2-2-5-2の荷重として含む】 飽和蒸気を内包する場合の安全弁動作時における吹出し反動力 F_f (水平方向)

