東海第二発電所 工事計画審査資料	
資料番号	工認-097 改4
提出年月日	平成 30 年 7 月 31 日

V-2-9-3-1 原子炉建屋原子炉棟の耐震性についての計算書

1.	根	既要1
2.	差	基本方針
2.	1	位置2
2.	2	構造概要3
2.	3	評価方針17
2.	4	適用規格・基準等19
3.	坿	也震応答解析による評価方法 20
4.	応	5.力解析による評価方法 22
4.	1	評価対象部位及び評価方針 22
4.	2	荷重及び荷重の組合せ 26
4.	3	許容限界
4.	4	解析モデル及び諸元 105
4.	5	評価方法
5.	副	平価結果
5.	1	地震応答解析による評価結果 118
5.	2	応力解析による評価結果 119

別紙 原子炉建屋原子炉棟の気密性に関する計算書

1. 概要

本資料は,添付書類V-2-1-9「機能維持の基本方針」に基づき,原子炉建屋のうち二 次格納施設となる原子炉建屋原子炉棟(以下「原子炉棟」という。)の地震時の構造強度 及び機能維持の確認について説明するものであり,その評価は,地震応答解析による評 価及び応力解析による評価により行う。

原子炉棟は,設計基準対象施設においては「Sクラスの施設」に,重大事故等対処施 設においては「常設重大事故緩和設備」に分類される。また,原子炉棟を構成する壁及 びスラブの一部は,原子炉建屋の二次遮蔽に該当し,その二次遮蔽は,重大事故対処施 設において,「常設重大事故緩和設備」に分類される。

以下, それぞれの分類に応じた耐震評価を示す。

2. 基本方針

2.1 位置

原子炉棟は原子炉建屋の一部を構成している。原子炉棟を含む原子炉建屋の設置位 置を図 2-1 に示す。

2.2 構造概要

原子炉建屋は,主体構造が鉄筋コンクリート造で,鉄骨造陸屋根をもつ地下2階, 地上6階の建物である。中央部には,平面が南北方向45.5 m,東西方向42.5 mの原 子炉棟があり,その周囲には,平面が南北方向68.5 m,東西方向68.25 m原子炉建屋 付属棟(以下「付属棟」という。)を配置している。

原子炉棟は,基礎スラブから屋根面まで連続した,壁厚1.5 m~0.3 mの耐震壁(以下「内部ボックス壁(I/W)」という。),厚さ約10 cmの鉄筋コンクリート造のスラブ (以下「屋根スラブ」という。)及び鉄骨架構(以下「屋根トラス」という。)で構成 される。

内部ボックス壁(I/W)は二次遮蔽となっている。

原子炉棟を含む原子炉建屋の概略平面図を図 2-2 に、概略断面図を図 2-3 に、二 次遮蔽の範囲を図 2-4 に、屋根伏図を図 2-5 に示す。

м_

の概略平面図(EL.2.0 m)

図 2-2 (2/10) 原子炉棟を含む

図 2-2 (3/10) 原子炉棟を含む原子炉建屋の概略平面図 (EL.8.2 m)

の概略平面図(EL.29.0 m)

NT2 補② V-2-9-3-1 R1

NT2 補② V-2-9-3-1 R1

図 2-3 (2/2) 原子炉棟を含む原子炉建屋の概略断面図 (B-B 断面)

図 2-4 (3/12) 二次遮蔽の範囲(平面図 EL.8.2 m)

 図 2-4 (6/12)
 の範囲(平面図 EL.29.0 m)

PN

図 2-4 (12/12) 二次遮蔽の範囲 (NS 方向 B-B 断面)

2.3 評価方針

原子炉棟は,設計基準対象施設においては「Sクラスの施設」に,重大事故等対処 施設においては「常設重大事故緩和設備」に分類される。また,原子炉棟を構成する 壁及びスラブの一部は,原子炉建屋の二次遮蔽に該当し,その二次遮蔽は,重大事故 等対処施設において,「常設重大事故緩和設備」に分類される。

原子炉棟の設計基準対象施設としての地震時の評価は、弾性設計用地震動Saleよる地震力または静的地震力のいずれか大きい方の地震力に対する評価(以下「Sa地震時に対する評価」という。),基準地震動Ssleよる地震力に対する評価(以下「Sslu電時に対する評価」という。)及び保有水平耐力の評価を行うこととし、それぞれの評価は、添付書類V-2-2-1「原子炉建屋の地震応答計算書」の結果を踏まえたものとする。ただし、耐震壁については、常時荷重が設計時と同一であること、また、応答に対して支配的となる水平方向の弾性設計用地震動Saleよる地震力及び静的地震力がいずれも『既工事計画認可申請書第1回 資料Ⅲ-1-4「原子炉建屋の地震応答計算書」(47公第12076号 昭和48年4月9日認可)』の設計用地震力よりも小さいことから、Sal地震時に対する評価は行わない。

原子炉棟の評価は,添付書類V-2-1-9「機能維持の基本方針」に基づき,地震応答 解析による評価においてはせん断ひずみの評価を,応力解析による評価においては断 面の評価を行うことで,原子炉棟の地震時の構造強度及び機能維持の確認を行う。評 価に当たっては,地盤物性のばらつきを考慮する。なお,保有水平耐力の評価につい ては,原子炉棟が原子炉建屋の一部であることを踏まえ,原子炉棟を含む原子炉建屋 全体としての評価結果を添付書類V-2-2-2「原子炉建屋の耐震性についての計算書」 に示すこととする。

また,重大事故等対処施設として評価においては,S。地震時に対する評価及び保 有水平耐力に対する評価を行う。ここで,原子炉棟では,運転時,設計基準事故時及 び重大事故等時の状態において,圧力,温度等の条件について有意な差異がないこと から,重大事故等対処施設としての評価は,設計基準対象施設と同一となる。

原子炉棟の評価フローを図 2-2 に示す。

 ※:添付書類 V-2-2-1「原子炉建屋の地震応答計算 書」の結果を踏まえた評価を行う。

図 2-2 原子炉棟の評価フロー

2.4 適用規格·基準等

原子炉棟の評価において、適用する規格、基準等を以下に示す。

- ・ 原子力発電所耐震設計技術指針 J E A G 4 6 0 1 1987 ((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編JEAG4601・ 補-1984((社)日本電気協会)
- ・ 原子力発電所耐震設計技術指針JEAG4601-1991追補版((社)日本電気協会)
- · 建築基準法 · 同施行令
- ・ 鉄筋コンクリート構造計算規準・同解説-許容応力度設計法-((社)日本建築 学会, 1999)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説((社)日本建築学会, 2005)(以下「RC-N規準」という。)
- ・ 鋼構造設計規準-許容応力度設計法-((社)日本建築学会,2005)(以下「S 規準」という。)
- ・ 2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所)(以下「技術基準解説書」という。)

3. 地震応答解析による評価方法

地震応答解析による評価において,原子炉棟の構造強度については,添付書類V-2-2-1「原子炉建屋の地震応答計算書」に基づき,地盤物性のばらつきを考慮した最大せん断 ひずみが許容限界を超えないことを確認する。

また,遮蔽性及び気密性の維持については,添付書類V-2-2-1「原子炉建屋の地震応 答計算書」による結果に基づき,地盤物性のばらつきを考慮した最大せん断ひずみが許 容限界を超えないことを確認する。

地震応答解析による評価における原子炉棟の許容限界は,添付書類V-2-1-9「機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき,表 3-1及び表 3-2のとおり設定する。

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持のための 考え方	許容限界 (評価基準値)
_	構造強度を 有すること	基準地震動 S _s	耐震壁 ^{※1}	最大せん断ひずみ が構造強度を確保 するための許容限 界を超えないこと を確認	最大せん断ひずみ 2.0×10 ⁻³
気密性	換気性能とあ いまって気密 機能を維持す ること	基準地震動 S _s	耐震壁*1	最大せん断ひずみ が気密性を維持す るための許容限界 を超えないことを 確認	最大せん断ひずみ 2.0×10 ^{-3 %2}

表 3-1 地震応答解析による評価における許容限界

(設計基準対象施設としての評価)

※1:建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、梁、 間仕切壁等が耐震壁の変形に追従することと、全体に剛性の高い構造となっており、複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えられるため、 各層の耐震壁が最大せん断ひずみの許容限界を満足していれば、建物・構築物に 要求される機能は維持される。

※2:事故時に原子炉格納容器から漏洩した空気を非常用ガス処理系で処理できるよう に気密性を有する設計とし、地震時においてもその機能を維持できる設計とす る。耐震壁の気密性に対する許容限界の適用性は、「原子炉建屋原子炉棟の気密 性に関する計算書」に示す。

	表 3-2	地震応答解析によ	、る評価におけ	る許容限界
--	-------	----------	---------	-------

要求 機能	機能設計上の 性能目標	地震力	部 位	機能維持のための 考え方	許容限界 (評価基準値)
	構造強度を 有すること	基準地震動 S _s	耐震壁 ^{※1}	最大せん断ひずみ が構造強度を確保 するための許容限 界を超えないこと を確認	最大せん断ひずみ 2.0×10 ⁻³
遮蔽性	遮蔽体の損傷 により遮蔽性 を損なわない こと	基準地震動 S _s	耐震壁*1	最大せん断ひずみ が遮蔽性を確保す るための許容限界 を超えないことを 確認	最大せん断ひずみ 2.0×10 ⁻³
気密性	換気性能とあ いまって気密 機能を維持す ること	基準地震動 S _s	耐震壁*1	最大せん断ひずみ が気密性を維持す るための許容限界 を超えないことを 確認	最大せん断ひずみ 2.0×10 ^{-3 ※2}

(重大事故等対処施設としての評価)

※1:建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、梁、 間仕切壁等が耐震壁の変形に追従することと、全体に剛性の高い構造となっており、複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えられるため、 各層の耐震壁が最大せん断ひずみの許容限界を満足していれば、建物・構築物に 要求される機能は維持される。

※2:事故時に原子炉格納容器から漏洩した空気を非常用ガス処理系で処理できるよう に気密性を有する設計とし、地震時においてもその機能を維持できる設計とす る。耐震壁の気密性に対する許容限界の適用性は、「原子炉建屋原子炉棟の気密 性に関する計算書」に示す。

- 4. 応力解析による評価方法
- 4.1 評価対象部位及び評価方針

原子炉棟の応力解析による評価対象部位は、屋根スラブ及び屋根トラスとする。屋 根トラスについては、屋根スラブを支持するつなぎばりの上弦材、母屋及び主トラス を評価対象部位とする。屋根スラブについては、つなぎばりの上弦材もしくは母屋で 支持されたスパンでモデル化した梁により評価を行う。屋根トラスのうち、つなぎば りの上弦材及び母屋については、主トラスで支持されたスパンでモデル化した梁によ り評価を行い、主トラスについては燃料取替床(EL.46.50 m)より上部を取り出し た、3次元FEMモデルを用いた弾塑性応力解析により評価を行う。3次元FEMモデ ルを用いた弾塑性応力解析に当たっては、添付書類V-2-2-1「原子炉建屋の地震応答 計算書」より得られた結果を用いて、荷重の組合せを行う。応力解析による評価フロ ーを図4-1に示す。なお、つなぎばりの上弦材及び母屋の評価については、母屋の断 面がつなぎばりの上弦材よりも小さいことから、支配面積の大きい母屋の部材を選定 して示す。選定した部材の位置を図4-2及び図4-3に示す。

4.1.1 S_d地震時に対する評価

S_d地震時に対する評価は,屋根スラブ及び屋根トラスについて,地震力と地 震力以外の荷重の組合せの結果,発生する応力が,「RC-N規準」及び「S規 準」に基づき設定した許容限界を超えないことを確認する。

また,断面の評価については,地盤物性のばらつきを考慮した断面力に対して 行うこととする。

4.1.2 S 。地震時に対する評価

S。地震時に対する評価は、屋根スラブ及び屋根トラスについて、地震力と地 震力以外の荷重の組合せの結果、発生する応力が、「RC-N規準」、「S規準」 及び「技術基準解説書」に基づき設定した許容限界を超えないことを確認する。

また,断面の評価については,地盤物性のばらつきを考慮した断面力に対して 行うこととする。

※:地盤物性のばらつきを考慮する。

図 4-1 (1/2) 応力解析による評価フロー

※:地盤物性のばらつきを考慮する。

(b) 屋根トラス

図 4-1 (2/2) 応力解析による評価フロー

図 4-2 屋根スラブの評価を記載する部材の位置(EL.64.08 m)

図 4-3 つなぎばりの上弦材及び母屋の評価を記載する部材の位置(EL.64.08 m)

4.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは,添付書類V-2-1-9「機能維持の基本方針」にて設定して いる荷重及び荷重組合せを用いる。

- 4.2.1 屋根スラブ及び母屋
 - (1) 荷重
 - a. 固定荷重(G)

屋根スラブ及び母屋に作用する固定荷重を表 4-1,屋根スラブの断面図を図 4-4に示す。

部位	仕上げ	固定荷重
屋根スラブ	防水シート アスファルト防水層 コンクリート(t=100 mm) デッキプレート部コンクリート デッキプレート	3 kgf/m ² 37 kgf/m ² 240 kgf/m ² 45 kgf/m ² 18 kgf/m ²
	合 計	343 kgf/m²→3400 N/m²

表 4-1 (1/2) 固定荷重(屋根スラブ)

表 4-1 (2/2) 固定荷重(母屋)

部位	自重
母屋 (H-390×300×10×16)	1050 N/m

図 4-4 屋根スラブの断面図

b. 積雪荷重 (SNL)

積雪荷重は,添付書類V-2-1-9「機能維持の基本方針」に記載の地震力と積 雪荷重の組合せに基づき,表4-2のとおり設定する。

表 4-2 積雪荷重 (SNL)

外力の状態	積雪荷重
地震時	210 N/m^2

c. 地震荷重 (Sd, Ss)

鉛直地震力は,弾性設計用地震動S_d及び基準地震動S_sに対する地震応答解 析より算定される動的地震力に地盤物性のばらつきを考慮して設定する。

屋根スラブが, EW 方向 2.57 m, NS 方向 7.7 m スパンで支持され, 厚さ約 10 cm の鉄筋コンクリート造スラブであることから剛とみなす。

地震荷重は,弾性設計用地震動Sa及び基準地震動Ssに対する質点系モデルの屋根トラス部(EL.63.65 m,質点番号22~質点番号25)の鉛直方向最大応答加速度より鉛直震度を算定する。

(2) 荷重の組合せ

荷重の組合せを表 4-3 に示す。屋根スラブについては S_d 地震時及び S_s 地震時, 母屋については S_s 地震時の荷重の組合せを用いる。

外力の状態	荷重の組合せ
S _d 地震時	G + SNL + Sd
S。地震時	G + SNL + Ss
G :固定荷重	

表 4-3 荷重の組合せ

SNL:積雪荷重(地震時)

Sd : S d 地震荷重

Ss : S_s地震荷重

- 4.2.2 屋根トラス
 - (1) 荷重
 - a. 固定荷重(G)

屋根トラスの応力解析において考慮する固定荷重は,添付書類V-2-2-1「原 子炉建屋の地震応答計算書」に示す地震応答解析モデルの重量に基づき設定す る。固定荷重を表 4-4 に示す。

部 位	部材	固定荷重	
屋根面 (EL.64.08 m) 屋根本 トラス鋼材		343 kgf/m² 204 kgf/m²	
	合 計	547 kgf/m ² \rightarrow 5370 N/m ²	
EL.64.08 m	外周梁	33790 N/m	
EL 57.00 m	外周梁	78700 N/m	
EL. 57.00 m	天井クレーン	2750 kN	

表 4-4 固定荷重(屋根トラス)

b. 積雪荷重 (SNL)

積雪荷重は,添付書類V-2-1-9「機能維持の基本方針」に記載の地震力と積 雪荷重の組合せに基づき,表4-5のとおり設定する。

₹ 1 0 lq	目向重 (5012)
外力の状態	積雪荷重
地震時	210 N/m^2

表 4-5 積雪荷重 (SNL)

c. 地震荷重 (Sd, Ss)

水平地震力及び鉛直地震力は,弾性設計用地震動 S_d及び基準地震動 S_sに対 する地震応答解析より算定される動的地震力より設定する。

地震荷重は、図4-5に示す質点系モデルのうち、3次元FEMモデルの脚部 にあたる燃料取替床レベル(EL.46.5 m,質点番号3)におけるSa地震時及び Ss地震時の水平方向及び鉛直方向の動的応答(時刻歴応答加速度)とする。 なお、水平方向の地震荷重には、並進成分と回転成分を考慮する。また、地震 荷重については、地盤物性のばらつきを考慮するものとする。

弾性設計用地震動S_d及び基準地震動S_sに対する燃料取替床レベル (EL.46.5 m, 質点番号3)の基本ケース及び地盤物性のばらつきを考慮したケ ースの加速度応答スペクトル及び加速度時刻歴波形を図 4-6~図 4-66 に示 す。

図 4-5 地震応答解析モデル

29

図 4-6 加速度応答スペクトル(弾性設計用地震動 S_d, NS 方向並進成分,基本ケース)

図 4-7 (1/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, NS 方向並進成分,基本ケース)

図 4-7(2/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, NS 方向並進成分,基本ケース)

図 4-8 加速度応答スペクトル(弾性設計用地震動 S_d, NS 方向回転成分,基本ケース)

NT2 補② V-2-9-3-1 R1

図 4-9 (2/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, NS 方向回転成分,基本ケース)

図 4-10 加速度応答スペクトル(弾性設計用地震動 S_d, EW 方向並進成分, 基本ケース)

図 4-11 (1/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, EW 方向並進成分,基本ケース)

図 4-12 加速度応答スペクトル(弾性設計用地震動 S_d, EW 方向回転成分, 基本ケース)

図 4-13 (1/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, EW 方向回転成分, 基本ケース)

図 4-13 (2/2) 加速度時刻歴波形 (弾性設計用地震動 S_d, EW 方向回転成分, 基本ケース)

図 4-14 加速度応答スペクトル(弾性設計用地震動 S_d, UD 方向, 基本ケース)

図 4-15 (1/2) 加速度時刻歴波形(弾性設計用地震動 S_d, UD 方向, 基本ケース)

図 4-15 (2/2) 加速度時刻歴波形(弾性設計用地震動 S_d, UD 方向, 基本ケース)

(弾性設計用地震動 S_d, NS 方向並進成分, 地盤物性のばらつきを考慮 $(+ \sigma)$)

(弾性設計用地震動 S_d, NS 方向並進成分, 地盤物性のばらつきを考慮(+ σ))

(弾性設計用地震動 S_d, NS 方向回転成分, 地盤物性のばらつきを考慮 (+ σ))

(弾性設計用地震動 S_d, NS 方向回転成分, 地盤物性のばらつきを考慮(+ σ))

(弾性設計用地震動 S_d, EW 方向並進成分, 地盤物性のばらつきを考慮 (+ σ))

(弾性設計用地震動 S_d, EW 方向並進成分, 地盤物性のばらつきを考慮(+ σ))

(弾性設計用地震動 S_d, EW 方向回転成分, 地盤物性のばらつきを考慮(+ σ))

(弾性設計用地震動 S_d, EW 方向回転成分, 地盤物性のばらつきを考慮(+ σ))

(弾性設計用地震動 S_d, UD 方向, 地盤物性のばらつきを考慮 $(+\sigma)$)

(弾性設計用地震動 S_d, NS 方向並進成分, 地盤物性のばらつきを考慮 $(-\sigma)$)

(弾性設計用地震動 S_d, NS 方向並進成分, 地盤物性のばらつきを考慮 (- σ))

図 4-28 加速度応答スペクトル

(弾性設計用地震動 S_d, NS 方向回転成分, 地盤物性のばらつきを考慮 $(-\sigma)$)

(弾性設計用地震動 S_d, NS 方向回転成分, 地盤物性のばらつきを考慮 (- σ))

(弾性設計用地震動 S_d, EW 方向並進成分, 地盤物性のばらつきを考慮 (- σ))

(弾性設計用地震動 S_d, EW 方向並進成分, 地盤物性のばらつきを考慮 (- σ))

(弾性設計用地震動 S_d, EW 方向回転成分, 地盤物性のばらつきを考慮 $(-\sigma)$)

(弾性設計用地震動 S_d, EW 方向回転成分, 地盤物性のばらつきを考慮 (- σ))

図 4-34 加速度応答スペクトル (弾性設計用地震動 S_d, UD 方向,地盤物性のばらつきを考慮 (-σ))

(弾性設計用地震動 S_d, UD 方向, 地盤物性のばらつきを考慮 $(-\sigma)$)

図 4-36 加速度応答スペクトル(基準地震動 S_s, NS 方向並進成分,基本ケース)

図 4-37 (1/2) 加速度時刻歴波形(基準地震動 S_s, NS 方向並進成分,基本ケース)

図 4-37 (2/2) 加速度時刻歴波形(基準地震動 S_s, NS 方向並進成分,基本ケース)

図 4-38 加速度応答スペクトル(基準地震動 S_s, NS 方向回転成分,基本ケース)

図 4-39 (1/2) 加速度時刻歴波形(基準地震動 S_s, NS 方向回転成分,基本ケース)

図 4-39 (2/2) 加速度時刻歴波形(基準地震動 S_s, NS 方向回転成分,基本ケース)

図 4-40 加速度応答スペクトル(基準地震動 S_s, EW 方向並進成分,基本ケース)

図 4-41 (1/2) 加速度時刻歴波形(基準地震動 S_s, EW 方向並進成分,基本ケース)

図 4-41 (2/2) 加速度時刻歴波形(基準地震動 S_s, EW 方向並進成分, 基本ケース)

図 4-42 加速度応答スペクトル(基準地震動 S_s, EW 方向回転成分,基本ケース)

図 4-43 (1/2) 加速度時刻歴波形(基準地震動 S_s, EW 方向回転成分, 基本ケース)

図 4-43 (2/2) 加速度時刻歴波形(基準地震動 S_s, EW 方向回転成分, 基本ケース)

図 4-44 加速度応答スペクトル(基準地震動 S_s, UD 方向, 基本ケース)

図 4-45 (1/2) 加速度時刻歴波形(基準地震動 S_s, UD 方向, 基本ケース)

図 4-45 (2/2) 加速度時刻歴波形(基準地震動 S_s, UD 方向, 基本ケース)

図 4-46 加速度応答スペクトル (基準地震動 S_s, NS 方向並進成分,地盤物性のばらつきを考慮(+ σ))

(基準地震動 S_s, NS 方向並進成分, 地盤物性のばらつきを考慮(+ σ))

(基準地震動 S_s, NS 方向回転成分, 地盤物性のばらつきを考慮(+ σ))

(基準地震動 S_s, EW 方向並進成分, 地盤物性のばらつきを考慮 (+ σ))

(基準地震動 S_s, EW 方向回転成分, 地盤物性のばらつきを考慮 (+ σ))

(基準地震動 S_s, NS 方向並進成分, 地盤物性のばらつきを考慮 (- σ))

(基準地震動 S_s, NS 方向回転成分, 地盤物性のばらつきを考慮 (- σ))

(基準地震動 S_s, EW 方向並進成分,地盤物性のばらつきを考慮 (- σ))

(基準地震動 S_s, EW 方向回転成分, 地盤物性のばらつきを考慮 (- σ))

(2) 荷重の組合せ

荷重の組合せを表 4-6 に示す。

外	力の状態	荷重の組合せ	
S	_d 地震時	G + SNL + Sd	
S。地震時		G + SNL + Ss	
G : 固定荷重 SNL : 積雪荷重(地震時) Sd : S _d 地震荷重			

表 4-6 荷重の組合せ

Ss : S_s地震荷重

4.3 許容限界

応力解析による評価における原子炉棟の許容限界は,添付書類V-2-1-9「機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき,表 4-7~表 4-8 のとおり設定する。また,鋼材,コンクリート及び鉄筋の許容応力度を表 4-9~表 4-11 に,鋼材及びボルトの引張強さを表 4-12 に示す。

表 4-7 応力解析による評価における許容限界

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持のための 考え方	許容限界 (評価基準値)
		弾性設計用 地震動 S _d	屋根スラブ	 部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認 	「RC-N規準」 に基づく 短期許容応力度
構造強度を 有すること	構造強度を		屋根トラス	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	「 S 規準」 に基づく 短期許容応力度
	有すること	基準地震動 S _s	屋根スラブ	部材に生じる応力 及びひずみが構造 強度を確保するた めの許容限界を超 えないことを確認	「RC-N規準」 に基づく終局強度 ^{※1}
			屋根トラス	 部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認 	「S規準」 に基づく 弾性限強度 ^{※2, ※3}
換気 気密性 機能 るころ	換気性能とあ いまって気密	弾性設計用 地震動 S _d	屋根スラブ	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを 確認	「RC-N規準」 に基づく 短期許容応力度
	機能を維持す ること	基準地震動 S _s	屋根スラブ	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを 確認	「RC-N規準」 に基づく 短期許容応力度 ^{*4}

(設計基準対象施設としての評価)

※1: RC-N基準の短期許容応力度の鋼材の基準強度 F を「技術基準解説書」に基づき 1.1 倍(面外せん断力に対する評価時の鋼材の基準強度 F は 1.0 倍)した耐力とす る。

※2:「技術基準解説書」に基づき, F 値に 1.1 倍の割増しを考慮し, 圧縮及び曲げについては座屈強度を用いる。

※3:母屋については、母屋及び屋根スラブの落下防止の観点から、仕口部(ボルト、ス プライスプレート及びウェブ)が先行して破断しないことを確認する。

※4: 地震時に生じる応力に対して許容応力度設計とし, 地震時及び地震後においても気 密性を維持できる設計とする。

表 4-8 応力解析による評価における許容限界

要求 機能	機能設計上の 性能目標	地震力	部位	機能維持のための 考え方	許容限界 (評価基準値)
		弾性設計用 地震動 S _d	屋根スラブ	 部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認 	「RC-N規準」 に基づく 短期許容応力度
樟	構造強度を		屋根トラス	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	「S規準」 に基づく 短期許容応力度
	有すること	屋根スラ		部材に生じる応力 及びひずみが構造 強度を確保するための許容限界を超 えないことを確認	「RC-N規準」 に基づく終局強度 *1
		S s	屋根トラス	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	「S規準」 に基づく 弾性限強度 * ^{2,} *3
遮蔽体の損傷 遮蔽性 が損なわない こと	弾性設計用 地震動 S _d	屋根スラブ	部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを 確認	「RC-N規準」 に基づく 短期許容応力度	
	基準地震動 S _s	屋根スラブ	 部材に生じる応力 が遮蔽性を維持す るための許容限界 を超えないことを 確認 	「RC-N規準」 に基づく 短期許容応力度 ^{**4}	
気密性	換気性能とあ いまって気密 機能を維持す ること	弹性設計用 地震動 S _d	屋根スラブ	部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを 確認	「RC-N規準」 に基づく 短期許容応力度
		基準地震動 S _s	屋根スラブ	 部材に生じる応力 が気密性を維持す るための許容限界 を超えないことを 確認 	「RC-N規準」 に基づく 短期許容応力度 ^{*5}

(重大事故等対処施設としての評価)

※1: RC-N基準の短期許容応力度の鋼材の基準強度 F を「技術基準解説書」に基づき 1.1 倍(面外せん断力に対する評価時の鋼材の基準強度 F は 1.0 倍)した耐力とす る

※2:「技術基準解説書」に基づき, F 値に 1.1 倍の割増しを考慮し, 圧縮及び曲げについ

※4:許容限界は終局強度に対し妥当な安全余裕を有したものとして設定することとし、 さらなる安全余裕を考慮して短期許容応力度とする。

※5:地震時に生じる応力に対して許容応力度設計とし、地震時及び地震後においても気密性を維持できる設計とする。

種 類		F 値	短 期(N/mm²)		
		(N/mm^2)	引 張	圧縮及び曲げ	せん断
SS400 ^{*1} SM400A ^{*2}	t≦40 (mm)	235	235	235 ^{**3}	135

表 4-9 鋼材の許容応力度

※1:建設当時の鋼材の種類はSS41であるが現在の規格(SS400)に読み替えた 許容応力度を示す。

※2:建設当時の鋼材の種類は SM41A であるが現在の規格 (SM400A) に読み替え た許容応力度を示す。

※3:上限値であり、座屈長さ等を勘案して設定する。

A 1		~ 而 在 心 乃 反
Fc (N/mm²))圧縮 (N/mm²)	せん断 (N/mm²)
22.1	14.7	1.06

表 4-10 コンクリートの許容応力度

表 4-11 鉄筋の許容応力度

SD345**			
引張及び圧縮 (N/mm ²)	面外せん断補強 (N/mm ²)		
345	345		

※:建設当時の鉄筋の種類は SD35 であるが現在の規格(SD345)に読み替えた許容応力度を示す。

表 4-12 鋼材及びボルトの引張強さ

種類	引張強さ (N/mm ²)
SS400*	400
F10T	1000

※:建設当時の鋼材の種類は SS41 であるが現在の規格 (SS400) に読み替えた引張強さを示す。

- 4.4 解析モデル及び諸元
 - 4.4.1 屋根スラブ及び母屋
 - (1) モデル化の基本方針

屋根スラブは母屋で支持された1方向スラブとして単位幅を,母屋は主トラス で支持されたスパンの支配幅を取り出した範囲についてモデル化する。

屋根スラブの解析モデルは両端固定梁として,母屋の解析モデルは単純梁とし て評価する。スラブの解析モデルを図4-6に,母屋の解析モデルを図4-7に示 す。

図 4-6 解析モデル (屋根スラブ)

図 4-7 解析モデル(母屋)

(2) 解析諸元

鉄筋コンクリートの物性値を表 4-13 に、鋼材の物性値を表 4-14 に示す。

		的工匠
コンクリートの 設計基準強度 Fc (N/mm ²)	ヤング係数 E(N/mm ²)	ポアソン比 v
22.1	2. 21×10^4	0.2

表 4-13 鉄筋コンクリートの物性値

表 4-14 鋼材の物性値

使用材料		ヤング係数 E(N/mm ²)	せん断弾性係数 G (N/mm ²)
鉄	骨:SS400 [※]	2. 05×10^5	7.9 $\times 10^4$

※:建設当時の鋼材の種類は SS41 であるが現在の規格 (SS400)に読み替えた。

- 4.4.2 屋根トラス
 - (1) モデル化の基本方針
 - a. 基本方針

屋根トラスの各部応力は、3次元FEMモデルを用いて弾塑性応力解析を実施することにより評価する。解析には、解析コード「DYNA2E Ver. 8.0.4」を用いる。また、解析コードの検証及び妥当性確認等の概要については、添付書類V-5-2「計算機プログラム(解析コード)の概要・DYNA2 E」に示す。

解析モデルは,原子炉棟の燃料取替床(EL.46.5 m)より上部について,壁, 柱,梁及び屋根トラスをモデル化した解析モデルを用いる。なお,屋根スラブ については剛性を考慮しないことからモデル化していない。

解析モデルを図 4-8 に、屋根トラスの部材リストを表 4-15 に示す。

b. 使用要素

解析モデルに使用する要素は、シェル要素、梁要素及びトラス要素とする。 解析モデルの節点数は 274、要素数は 849 である。

- (2) 境界条件 応力解析モデルは燃料取替床レベル(EL.46.5 m)を固定とする。
- (3) 解析諸元 使用材料(鉄筋コンクリート及び鉄骨)の物性値を表 4-16 に示す。

図 4-8 解析モデル(屋根トラス)
部材	断面積 A	断面 2 次モーメント I (cm ⁴)
$\mathrm{H}\!-\!400\!\times\!400\!\times\!13\!\times\!21$	218. 7	66600
$2Ls - 200 \times 200 \times 15 + 2FBs - 9 \times 150$	142.5	
$2Ls - 200 \times 200 \times 15$	115.5	
$2Ls - 150 \times 150 \times 15$	85.48	
$2Ls - 150 \times 100 \times 12$	57.12	
$2Ls - 100 \times 100 \times 10$	38.00	
$\mathrm{H}\!-\!390\!\times\!300\!\times\!10\!\times\!16$	136.0	38700
$\mathrm{H}\!-\!582\!\times\!300\!\times\!12\!\times\!17$	174.5	103000
$\mathrm{H}\!-\!250\!\times\!250\!\times\!9\!\times\!14$	92.18	10800
$2CTs - 200 \times 400 \times 13 \times 21$	218.6	
$\mathrm{CT} - 300 \times 200 \times 11 \times 17$	67.21	
$2Ls - 90 \times 90 \times 10$	34.00	

表 4-15 部材リスト

表 4-16 材料の物性値

使用材料	ヤング係数 E(N/mm ²)	せん断弾性係数 G (N/mm ²)	減衰定数 h(%)
鉄筋コンクリート:Fc22.1	2. 21×10^4	9. 21×10^3	5
鉄 骨:SS400 ^{※1} SM400A ^{※2}	2. 05×10^5	7.9 $\times 10^4$	2

※1:建設当時の鋼材の種類は SS41 であるが現在の規格(SS400)に読み 替えた。 ※2:建設当時の鋼材の種類は SM41A であるが現在の規格 (SM400A) に読

み替えた。

4.5 評価方法

- 4.5.1 応力解析方法
 - (1) 屋根スラブ及び母屋

屋根スラブ及び母屋について,両端支持梁に対する一般材料力学公式により応 力を算定する。

a. 荷重ケース

S_d地震時及びS_s地震時の応力は次の荷重ケースによる応力を組み合わせて 求める。

G	:固定荷重	
SNL	: 積雪荷重	(地震時)
Sd _{DU} [≫]	: 鉛直方向	Sd地震荷重
Ss _{DU} [₩]	: 鉛直方向	S。地震荷重

※:計算上の座標軸を基本として,鉛直方向は上向き加力を記載している。

b. 荷重の組合せケース

荷重の組合せケースを表 4-17 に示す。

作用荷重のうち地震荷重は,固定荷重及び積載荷重と同じ下向きに作用する 場合に生じる応力が最大となるため,地震荷重は鉛直下向きの場合のみ考慮す る。

外力の状態	ケース No.	荷重の組合せ
S _d 地震時	1	$G + SNL - 1.0Sd_{DU}$
S。地震時	2	$G + SNL - 1.0Ss_{DU}$

表 4-17 荷重の組合せケース(屋根スラブ及び母屋)

c. 長期荷重の算出方法

長期荷重時の端部モーメント,中央モーメント及びせん断力の算出方法は下 式の通り算出する。長期荷重時の端部モーメント,中央モーメント及びせん断 力を表 4-18 に示す。 (両端固定梁)

・長期荷重時の端部モーメント(M_E)

$$\mathbf{M}_{\mathrm{E}} = -\frac{1}{12} \mathbf{w} \cdot \mathbf{1}^2$$

・長期荷重時の中央モーメント(Mc)

$$\mathbf{M}_{\mathrm{C}} = \frac{1}{24} \mathbf{w} \cdot \mathbf{1}^2$$

・長期荷重時の端部せん断力 (Q_E) $Q_E = 0.5w \cdot 1$

(単純梁)

・長期荷重時の中央モーメント(Mc)

$$M_{\rm C} = \frac{1}{8} \mathbf{w} \cdot 1^2$$

・長期荷重時の端部せん断力 (Q_E) $Q_E = 0.5w \cdot 1$

ここで,

- 1 : 有効スパン (m)
- w : 単位長さあたりの長期荷重 (kN/m)

表 4-18 長期荷重時の端部モーメント、中央モーメント及びせん断力

	部 位	端部モーメント (kN・m)	中央モーメント (kN・m)	せん断力 (kN)
唇	뤁根スラブ	1.99	0.99	4.64
	母屋	_	76.5	39.8

d. 応力の算出方法

「c. 長期荷重の算出方法」における長期荷重時の端部モーメント,中央モ ーメント及びせん断力を,屋根トラス部(EL.63.65 m,質点番号22~質点番号 25)の鉛直方向最大応答加速度より算出した鉛直震度により係数倍することで 応力を算出する。鉛直方向最大応答加速度を表4-19に,算出した端部モーメ ント,中央モーメント及びせん断力を表4-20に示す。

表 4-19 地震応答解析による最大応答加速度

部位	質点 番号	基本ケース ^{*1} (cm/s ²)	地盤物性の ばらつきを考慮 (+ σ) ^{*2} (cm/s ²)	地盤物性の ばらつきを考慮 (- σ) ^{*2} (cm/s ²)	最大値 (cm/s ²)
	22	761	852	683	
屋相	23	871	931	800	1959
座侬	24	978	1001	962	1393
	25	1305	1353	1254	
×1.		1 0 11	<u> </u>	19 6 14	S 91

(a)俾性設計用地震動5

 ※1: S_d-D1, S_d-11, S_d-12, S_d-13, S_d-14, S_d-S_d-22及びS_d-31の最大値
 ※2: S_d-D1, S_d-21, S_d-22及びS_d-31の最大値 21,

部位	質点 番号	基本ケース ^{*1} (cm/s ²)	地盤物性の ばらつきを考慮 (+ σ) ^{※2} (cm/s ²)	地盤物性の ばらつきを考慮 (- σ) ^{*2} (cm/s ²)	最大値 (cm/s ²)
	22	1396	1637	1203	
屋相	23	1594	1717	1464	9551
座侬	24	1868	1923	1810	2001
	25	2450	2551	2332	
※ 1 : :	$S_{a} - D$	1. $S_{s} = 1.1$.	$S_{s} = 1 \overline{2}, S_{s} =$	$13. S_{-14}$	$S_{s} = 2.1$.

(b) 基準地震動 S_s

S_s-22及びS_s-31の最大値 ※2:S_s-D1,S_s-21,S_s-22及びS_s-31の最大値

表 4-20 鉛直震度より算出した端部モーメント、中央モーメント及びせん断力

(a) 弾性設計用地震動 S_d

部位	検討用 鉛直震度	端部モーメント (kN・m)	中央モーメント (kN・m)	せん断力 (kN)
屋根スラブ	2.38	4.74	2.36	11.0
母屋	2.38	—	182	94.7

(b) 基準地震動 S_s

部位	検討用 鉛直震度	端部モーメント (kN·m)	中央モーメント (kN·m)	せん断力 (kN)
屋根スラブ	3.61	7.18	3.57	16.8
母屋	3.61	—	276	144

(2) 屋根トラス

屋根トラスについて、3次元FEMモデルを用いた弾塑性応力解析を実施する。

a. 荷重ケース

S d 地震時及び S s 地震時の応力は、次の荷重ケースによる応力を組合せて求める。

- G : 固定荷重
- SNL :積雪荷重(地震時)
- Sdwe^{**} : W→E 方向 S d 地震荷重
- Sd_{SN}[※] : S→N 方向 S d 地震荷重
- Sd_{DU}^{*}:鉛直方向 S_d地震荷重
- Sswe^{**} : W→E 方向 S_s地震荷重
- Ss_{SN}^{*} : S→N 方向 S_s地震荷重
- Ssul^{*}:鉛直方向 S_s地震荷重
- ※:計算上の座標軸を基本として, EW 方向は W→E 方向加力, NS 方向は S→N 方 向加力, 鉛直方向は上向き加力を記載している。
- b. 荷重の組合せケース

荷重の組合せケースを表 4-21 に示す。

水平地震力と鉛直地震力は、加速度時刻歴波を同時入力することにより組合 せる。ここで、地震荷重に極性をもたないS_s-D1及びS_s-31について は、水平1方向と鉛直方向の正負を組合せた4ケースについて解析を行い、地 震荷重が位相を含めて設定されているS_s-11,S_s-12,S_s-13,S s-14,S_s-21及びS_s-22については、水平2方向及び鉛直地震力を 組合せたケースについて解析を行う。

外力の状態	ケース No.	荷重の組合せ
S _d 地震時	$1 - 1^{*1}$	$G + SNL + Sd_{WE} + Sd_{DU}$
	$1 - 2^{*1}$	$G + SNL + Sd_{WE} - Sd_{DU}$
	$1 - 3^{*1}$	$G + SNL - Sd_{WE} + Sd_{DU}$
	$1 - 4^{*1}$	$G + SNL - Sd_{WE} - Sd_{DU}$
	$1 - 5^{*1}$	$G + SNL + Sd_{SN} + Sd_{DU}$
	$1 - 6^{*1}$	$G + SNL + Sd_{SN} - Sd_{DU}$
	$1 - 7^{*1}$	$G + SNL - Sd_{SN} + Sd_{DU}$
	$1 - 8^{*1}$	$G + SNL - Sd_{SN} - Sd_{DU}$
	$2 - 1^{*2}$	$G + SNL + Sd_{WE} + Sd_{SN} + Sd_{DU}$
S。地震時	$3 - 1^{*3}$	G + SNL + Sswe + Ssou
	$3 - 2^{3}$	G + SNL + Sswe - Ssou
	$3 - 3^{*3}$	$G + SNL - Ss_{WE} + Ss_{DU}$
	$3 - 4^{3}$	$G + SNL - Ss_{WE} - Ss_{DU}$
	$3-5^{*3}$	$G + SNL + Ss_{SN} + Ss_{DU}$
	3-6*3	$G + SNL + Ss_{SN} - Ss_{DU}$
	$3-7^{*3}$	$G + SNL - Ss_{SN} + Ss_{DU}$
	3-8*3	$G + SNL - Ss_{SN} - Ss_{DU}$
	$4 - 1^{**4}$	$G + SNL + Ss_{WE} + Ss_{SN} + Ss_{DU}$
%1: S _d − D 1 $𝔅%2$: S ₁ − 1 1	$VS_{d} - 3$	1 による地震荷重に適用する。

表 4-21 荷重の組合せケース(屋根トラス)

※1: S_d-D1及びS_d-31による地震荷重に適用する。
※2: S_d-11, S_d-12, S_d-13, S_d-14, S_d-21及びS_d-22による地震荷重に適用する。
※3: S_s-D1及びS_s-31による地震荷重に適用する。
※4: S_s-11, S_s-12, S_s-13, S_s-14, S_s-21及びS_s-22による地震荷重に適用する。

- c. 荷重の入力方法
 - (a) 固定荷重及び積雪荷重
 屋根面の固定荷重及び積雪荷重は面荷重として、外周梁の固定荷重は線荷
 重として、天井クレーンの重量は対応する節点に集中荷重として入力する。
 - (b) 固定荷重及び積雪荷重

地震荷重は,図4-6~図4-65に示した加速度時刻歴波を3次元FEMモ デルの脚部に入力する。

- 4.5.2 断面の評価方法
 - (1) 屋根スラブ
 - a. 曲げモーメントに対する断面の評価方法 断面の評価は、「RC-N規準」に基づき、評価対象部位に生じる曲げモーメ ントが、短期許容曲げモーメントを超えないことを確認する。

 $M_A = a_t \cdot f_t \cdot j$

ここで,

- M_A : 短期許容曲げモーメント (N·mm)
- a_t : 引張鉄筋断面積 (mm²)
- f_t:引張鉄筋の短期許容引張応力度(N/mm²)
- j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
- b. 面外せん断力に対する断面の評価方法

断面の評価は、「RC-N規準」に基づき、評価対象部位に生じる面外せん断 力が、次式をもとに計算した許容面外せん断力を超えないことを確認する。

$Q_A = b \cdot j \cdot \alpha \cdot f_s$

- ここで,
 - Q_A:許容面外せん断力(N)
 - b :断面の幅 (mm)
 - j : 断面の応力中心間距離で, 断面の有効せいの 7/8 倍の値 (mm)
 - α :許容せん断力の割り増し係数

(2を超える場合は2,1未満の場合は1とする。)

f。: コンクリートの短期許容せん断応力度で表 4-10 に示す値 (N/mm²)

(2) 母屋

曲げモーメント及びせん断力による応力度を算定し、各許容値を超えないこと を確認する。また、仕口部が先行して破断しないことを確認する。

a. 曲げモーメントに対する断面の評価方法

断面の評価は、「S規準」に基づき、次式をもとに計算した評価対象部位に生じる曲げモーメントによる応力度が、S_d地震時に対しては表 4-11 に示した 鋼材の許容応力度、S_s地震時に対しては鋼材の許容応力度に 1.1 倍の割増し を考慮した弾性限応力度をそれぞれ超えないことを確認する。

$$\sigma_{b} = \frac{M}{Z}$$

ここで、
 σ_{b} :曲げ応力度 (N/mm²)
M :曲げモーメント (N・mm)
Z :部材の断面係数 (mm³)

b. せん断力に対する断面の評価方法

断面の評価は、「S規準」に基づき、次式をもとに計算した評価対象部位に 生じるせん断応力度が表 4-9 に示した鋼材の許容応力度とした弾性限応力 度を超えないことを確認する。

 $\tau = \frac{Q}{A_s}$ ここで、 τ : せん断応力度 (N/mm²) Q : せん断力 (N) A_s : 部材のせん断断面積 (mm²) c. 仕口部の評価方法

仕口部の評価は、「技術基準解説書」に基づき、評価対象部位の短期許容せん 断力が次式をもとに計算したボルト、スプライスプレート及びウェブプレート の破断耐力を超えないことを確認する。

(部材の短期許容せん断力)

 $Q_A = A_s \cdot f_s$ ここで, $A_s : 部材のせん断断面積 (mm²)$ $f_s : 鋼材の短期許容せん断応力度で,表 4-9 に示す値 (N/mm²)$

(仕口部の破断強度)

 $Q_u = \min(Q_u, Q_u, W_u)$ ただし, $_{\rm h}Q_{\rm m} = 0.75 {}_{\rm h}A \cdot {}_{\rm h}\sigma_{\rm m}$ $_{\rm s} Q_{\rm m} = {}_{\rm s} A_{\rm e} \cdot {}_{\rm s} \sigma_{\rm m} / \sqrt{3}$ $_{\rm w} Q_{\rm u} = _{\rm w} A_{\rm e} \cdot _{\rm w} \sigma_{\rm u} / \sqrt{3}$ ここで、 ьA :ボルトのせん断断面積 (mm²) :ボルトの引張強さで,表 4-12 に示す値 (N/mm²) $_{\rm b}\sigma_{\rm u}$:スプライスプレートの有効断面積 (mm²) _sA_e :スプライスプレート鋼材の引張強さで,表4-12に示す値 $_{\rm s}\sigma_{\rm u}$ (N/mm^2) :ウェブプレートの有効断面積 (mm²) wAe :ウェブプレート鋼材の引張強さで,表4-12に示す値 $_{w}\sigma_{u}$

 (N/mm^2)

(3) 主トラス

(圧縮)

断面の評価は、「S規準」に基づき、次式をもとに計算した評価対象部位に生 じる軸力及び曲げモーメントによる応力度が、Sa地震時に対する評価について は短期許容応力度、Ss地震時に対する評価については表4-9に示した鋼材の許 容応力度に1.1倍の割増しを考慮した弾性限応力度を超えないことを確認する。

f_t:鋼材の短期許容引張応力度及び弾性限引張応力度 (N/mm²)

- 5. 評価結果
- 5.1 地震応答解析による評価結果

原子炉棟について、S_s地震時の各層の最大せん断ひずみが許容限界(2.0×10⁻³) を超えないことを確認する。

地盤物性のばらつきを考慮した最大せん断ひずみは 0.60×10^{-3} (要素番号(5),地盤 + σ ケース,NS 方向,S_s-31) であり,許容限界 (2.0×10^{-3}) を超えないことを 確認した。地盤物性のばらつきを考慮した各方向の Q- γ 関係と最大応答値を図 5-1 に示す。

118

5.2 応力解析による評価結果

- 5.2.1 屋根スラブ
 - (1) 屋根スラブ

「4.5.2 断面の評価方法」に基づいた断面の評価結果を表 5-1 及び表 5-2 に示す。

S_d地震時及びS_s地震時において,曲げモーメントによる鉄筋応力度及び面外 せん断応力度が許容値を超えないことを確認した。

厚さt (mm)	100×1000		
有効せい	d (mm)	50	
而 從	上端	D13@180 (709.3 mm ²)	
	下端	D13@180 (709.3 mm ²)	
発生曲げモーメ	ント M (kN・m)	4.74	
鉄筋引張応力度	154.0		
許容値 f _t	345		
検定値	0.45		
発生せん断え	11.0		
せん断スパン比に	1.00		
許容値	46.3		
検定値	0.24		
	定	न्	

表 5-1 評価結果(屋根スラブ,弾性設計用地震動 S d)

厚さt (mm)	×幅 b(mm)	100 imes 1000	
有効せい	∖ d (mm)	50	
而一件	上端	D13@180 (703.9 mm ²)	
	下端	D13@180 (703.9 mm ²)	
発生曲げモーメ	ント M (kN・m)	7.18	
鉄筋引張応力度	$\sigma_{\rm t}$ (N/mm ²)	233.2	
許容值 ft	(N/mm^2)	345	
検定値	$\sigma_{\rm t}/f_{\rm t}$	0.68	
発生せん断	力 Q(kN)	16.8	
せん断スパン比に	よる割増係数 α	1.00	
許容値	Q _A (kN)	46.3	
検定値	$Q \swarrow Q_A$	0.37	
判	定	न	
厚さ	100×1000		
	有効せい d (mm)		50
而一 俗:	有効せい d (mm) 上	端	50 D13@180 (703.9 mm ²)
配 筋	有効せい d (mm) 上 下	端	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²)
配 筋 発生曲 <i>i</i>	有効せい d (mm) 上 下 ザモーメント M (k	端 端 N·m)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18
配 筋 発生曲 鉄筋引き	有効せい d (mm) 上 下 ザモーメント M (k 張応力度 σ _t (N/	端 端 N・m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2
配 筋 発生曲 鉄筋引 許	有効せい d (mm) 上 下 デ デモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²)	端 端 N・m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2 345
配 筋 発生曲 鉄筋引 許	有効せい d (mm) 上 下 デ デモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²) 検定値 σ _t /f _t	端 端 N·m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2 345 0.68
配 筋 発生曲 (鉄筋引き 許 (発生)	有効せい d (mm) 上 下 ザモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²) 検定値 σ _t /f _t 主せん断力 Q (kN)	端 端 N・m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2 345 0.68 16.8
配 筋 発生曲 鉄筋引 許 発 全 し し 断ス	有効せい d (mm) 上 下 ザモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²) 検定値 σ _t /f _t 主せん断力 Q (kN) パン比による割増係	端 端 N・m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2 345 0.68 16.8 1.00
配 筋 発生曲 鉄筋引 許 発 全 せん断ス	有効せい d (mm) 上 下 デ デモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²) 検定値 σ _t /f _t 生せん断力 Q (kN) パン比による割増係 許容値 Q _A (kN)	端 端 N·m) mm ²)	50 D13@180 (703.9 mm ²) D13@180 (703.9 mm ²) 7.18 233.2 345 0.68 16.8 1.00 46.3
配 筋 発生曲 (鉄筋引 手 で 発 生 ん 断ス	有効せい d (mm) 上 下 デ デモーメント M (k 張応力度 σ _t (N/ 容値 f _t (N/mm ²) 検定値 σ _t /f _t 主せん断力 Q (kN) パン比による割増係 許容値 Q _A (kN) 検定値 Q/Q _A	端 端 N·m) mm ²)	50 D13@180 (703.9 mm²) D13@180 (703.9 mm²) 7.18 233.2 345 0.68 16.8 1.00 46.3 0.37

表 5-2 評価結果(屋根スラブ,基準地震動 S_s)

5.2.2 屋根トラス

(1) 母屋

「4.5.2 断面の評価方法」に基づいた断面の評価結果を表 5-3 に, 仕口部の評価 結果を表 5-4 に示す。

S_d地震時及びS_s地震時において,発生応力度が許容値を超えないことを確認した。また,仕口部が先行して破断しないことを確認した。

	部材	$\text{H-}390\!\times\!300\!\times\!10\!\times\!16$		
	断面係数 Z(cm ³)	1980		
	せん断断面積 As (mm ²)	3580		
曲	発生曲げモーメント M (kN・m)	182		
げモーメント	曲げ応力度 σ _b (N/mm ²)	92.0		
	許容値 (N/mm ²)	235		
	検定値	0.40		
	発生せん断力 Q(kN)	94. 7		
せん 断	せん断応力度 τ (N/mm ²)	26.5		
力	許容値 (N/mm ²)	135		
	検定値	0.20		
	判定	Ъ		

表 5-3 (1/2) 評価結果(母屋,弾性設計用地震動 S_d)

	部材	$\text{H-}390\!\times\!300\!\times\!10\!\times\!16$		
	断面係数 Z (cm ³)	1980		
	せん断断面積 A _s (mm ²)	3580		
曲	発生曲げモーメント M (kN・m)	276		
げ モ ー	曲げ応力度 σ _b (N/mm ²)	139.4		
メント	許容値 (N/mm ²)	258		
	検定値	0.55		
	発生せん断力 Q (kN)	144		
せん 断	せん断応力度 τ (N/mm ²)	40.3		
力	許容値 (N/mm ²)	135		
	検定値	0.30		
	判定	न्		

表 5-3 (2/2) 評価結果(母屋,基準地震動 S_s)

	部材	$\text{H-}390\!\times\!300\!\times\!10\!\times\!16$		
	短期許容せん断力 Q _A (kN)	483.3		
仕口	ボルト _b Qu (kN)	2280		
部 破 尿 の の の の の の し の の し の の の の の の の の の の の の の		910		
		605		
	判定	可		

表 5-4 評価結果(母屋仕口部)

仕口部概要図

(2) 主トラス

a. 固有值解析結果

3次元フレームモデルの固有値解析結果を表 5-5 に,主要な固有モード図を 図 5-2 に示す。

UD 方向の1次モードは全体1次に現れており,固有振動数は3.00 Hz である。NS 方向の1次モードは全体4次に現れており,固有振動数は5.77 Hz である。EW 方向の1次モードは全体6次に現れており,固有振動数は6.66 Hz である。

次数	固有周期(s)	固有振動数(Hz)	備考
1	0.333	3.00	UD 方向1次
2	0.293	3. 41	
3	0.210	4.77	
4	0.173	5.77	NS 方向 1 次
5	0.170	5.88	
6	0.150	6.66	EW 方向 1 次

表 5-5 固有值解析結果

(b) 4次(5.77 Hz)(NS方向1次)
 図 5-2(1/2) 固有モード図

NT2 補② V-2-9-3-1 R1

b. 断面算定結果

「4.5.2 断面の評価方法」に基づいた断面の評価結果は,許容値に対する 発生値の比率が最大となる要素を選定し示す。評価結果を表 5-6 及び表 5-6 に,評価位置を図 5-3 及び図 5-3 に示す。

S_d地震時及びS_s地震時において,発生応力度が許容値を超えないことを確認した。

			, .,		-	
部材		応力度 (N/mm²)	許容値 (N/mm²)	検定値	位置	判 定
上弦材	(圧縮)	71.4	233	0.44	TU ₉	ਜ
$(\mathrm{H}\text{-}400\times400\times13\times21)$	(曲げ)	30.6	235	0.44	(M通り)	μĴ
下弦材	(引張)	128.1	235	0.71	TL ₉	Ē
$(\mathrm{H}\text{-}400\times400\times13\times21)$	(曲げ)	37.7	235	0.71	(M通り)	τļ
斜材 (2Ls-150×100×12)	(引張)	165.8	235	0.71	0 ₁₅ (M通り)	可
東材 (2Ls-150×150×15)	(圧縮)	141.1	162	0.88	V ₁₃ (M通り)	न्

表 5-6 評価結果(主トラス,弾性設計用地震動 S d)

図 5-3 評価結果の位置(主トラス)

NT2 補② V-2-9-3-1 R1

部 材		応力度 (N/mm²)	許容値 (N/mm²)	検定値	位置	判定	
上弦材	(圧縮)	109.8	257	0.61	TU ₉	ਜ	
$(\mathrm{H-400} \times 400 \times 13 \times 21)$	(曲げ)	46.7	258	0.01	(M通り)	ΗĴ	
下弦材	(引張)	187.1	258	0.05	TL ₉	ਜ	
$(\mathrm{H-400} \times 400 \times 13 \times 21)$	(曲げ)	57.2	258	0.95	(M通り)	ΗĴ	
斜材 (2Ls-150×100×12)	(引張)	236.7	258	0.92	0 ₁₂ (N通り)	न	
束材 (2Ls-150×150×15)	(圧縮)	199.7	208	0.96	V ₁₃ (M通り)	न्	

表 5-7 評価結果(主トラス,基準地震動 S_s)

図 5-4 評価結果の位置(主トラス)

別紙 原子炉建屋原子炉棟の気密性に関する計算書

1.	概	要	1
2.	既	往の知見等の整理	1
3.	原	子炉建屋原子炉棟における空気漏えい量に対する影響検討	3
3	. 1	検討方針	3
3	. 2	空気漏えい量の算定結果	6
3	. 3	総漏えい量と非常用ガス処理系放出流量の比較	7
3	.4	検討結果	7
4.	ま	とめ	7

目次

1. 概要

「発電用原子炉施設に関する耐震設計審査指針」(昭和53年9月制定)におけるAク ラスの施設の気密性について,原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会以下「JEAG4601-1987」という。)では,S1 地震動に 対し弾性範囲であることを確認することで,機能が維持されるとしている。

添付書類V-2-1-9「機能維持の基本方針」の機能維持の設計方針では、耐震壁のせん 断ひずみが概ね弾性状態にとどまることを基本としたうえで、概ね弾性状態を超える場 合は、地震応答解析による耐震壁のせん断ひずみから算定した空気漏えい量が、設置す る換気設備の性能を下回ることで必要な気密性を維持する設計としている。その場合、 気密性を要求される施設に対し、基準地震動 S_s による鉄筋コンクリート造耐震壁の許 容限界を最大せん断ひずみ 2.0×10⁻³としている。

二次格納施設の気密バウンダリを構成する原子炉建屋原子炉棟(以下「原子炉棟」という。)の地震応答解析による評価において、耐震壁の許容限界として設定した最大せん断ひずみ 2.0×10⁻³の適用性について確認するために、耐震壁のせん断ひび割れと空気漏えい量の関係に係る既往の知見を整理するとともに、原子炉棟における空気漏えい量に対する影響を評価する。

2. 既往の知見等の整理

(財)原子力発電技術機構は、「原子力発電施設耐震信頼性実証試験に関する報告書 (注 ¹⁾」において、JEAG4601-1987 による許容限界の目安値(S2 地震時に対し てせん断変形角 2/1000rad,静的地震力に対して $\tau = \tau u/1.5$)において想定されるひ び割れを残留ひび割れと仮定した場合の外気侵入量を算出し、気圧差維持のためのファ ン容量と比較することで、空気漏えい量に対する評価を実施している。その結果「残留 ひび割れからの外気侵入量は、ファン容量に比較すると無視できるほど小さいことが明 らかになった」としている。

また,(財)原子力発電技術機構は,「原子炉建屋の弾塑性試験に関する報告書^(注 2)」 において,耐震壁の残留ひび割れからの通気量の評価式が,十分に実機への適用性があ ることを確認している。更に,開口部の存在による通気量割増率の評価式も示されてお り,「開口部の残留ひび割れ幅の割増率がおおよそ推定できる」としている。

したがって、二次格納施設の気密バウンダリとなる原子炉棟の壁が鉄筋コンクリート 造であり、壁厚も「原子炉建屋の弾塑性試験に関する報告書」に示される壁厚と同程度 であることから、同文献にて提案されている各評価式を用い、原子炉棟における空気漏 えい量の算出を行う。以下に評価式を示す。

α :通気量割増範囲(=3)

$$\frac{Q'}{Q_0}$$
:定数

(中央値とみなされる評価法では 1.81, 安全側とみなされる評価法では 7.41)β :壁の見付け面積に対する開口の総面積

- (注1)財団法人 原子力発電技術機構「原子力発電施設耐震信頼性実証試験 原子炉
 建屋総合評価 建屋基礎地盤系評価 に関する報告書(その2)平成8年度」
- (注 2) 財団法人 原子力発電技術機構「耐震安全解析コード改良試験 原子炉建屋の 弾塑性試験 試験結果の評価に関する報告書 平成5年度」

- 3. 原子炉建屋原子炉棟における空気漏えい量に対する影響検討
- 3.1 検討方針

「原子炉建屋の弾塑性試験に関する報告書」に基づき,式5.3.1-4及び式6.2.4-31により気密バウンダリを構成する壁の最大せん断ひずみが許容限界2.0×10⁻³)に 達したときの空気漏えい量を算定し,非常用ガス処理系放出流量以下となっているこ とを確認する。

原子炉棟の概略図を図 3-1 に示す。原子炉棟(EL.-4.0 m~EL.64.08 m)を構成 する壁の壁厚は約 30 cm から約 150 cm である。

(a) 平面図 (EL.14.0 m)

----- : 気密バウンダリ

(b) 平面図(EL.-4.0 m)図 3-1 原子炉棟の概略図(1/2)

NT2 補② V-2-9-3-1 別紙

R0

3.2 空気漏えい量の算定結果

原子炉棟の壁厚ごとに空気漏えい量を算定した。本検討は、地震応答解析のせん断 ひずみの許容限界として最大せん断ひずみ 2.0×10⁻³を用いることの適用性を確認す ることが目的であることから、評価式における定数について、安全側の値を用いた。 算定結果を表 3-1 に示す。

壁厚	定数	Ż	(注 1) 最大	(注 2) 差圧	(注 3) 壁の	漏えい量	壁の見 付け面 積に対	通気量	総漏えい量
T (cm)	С	$\frac{Q'}{Q_0}$	せん断 ひずみ γ	ΔP (mmAq)	面積 A (m ²)	Q (L/min/m²)	する開 口の総 面積 β	割増率 ▲ Q	$Q \times A \times \Delta_Q$ (L/min)
30	1. 18×10^7	7.41	2. 0×10^{-3}	6.4	3150	0.30	0.039	2.97	2807
40	1. 18×10^7	7.41	2. 0×10^{-3}	6.4	1101	0.22	0.058	3.92	950
60	1. 18×10^7	7.41	2. 0×10^{-3}	6.4	1401	0.15	0.000	1.00	211
90	1. 18×10^7	7.41	2. 0×10^{-3}	6.4	1202	0.10	0.011	1.56	188
100	1. 18×10^{7}	7.41	2. 0×10^{-3}	6.4	1305	0.09	0.007	1.36	160
120	1. 18×10^{7}	7.41	2. 0×10^{-3}	6.4	387	0.08	0.001	1.06	33
140	1. 18×10^{7}	7.41	2. 0×10^{-3}	6.4	393	0.07	0.000	1.00	28
150	1.18×10^{7}	7.41	2. 0×10^{-3}	6.4	3168	0.06	0.014	1.71	326
								合計	4703

表 3-1 算定結果 (原子炉棟)

(注1)保守的に各壁の最大せん断ひずみが同時に許容限界となることを想定し,評価する。

(注2) 設計気密度の差圧条件とする。

(注3)気密バウンダリを構成する壁の総面積を用いる。

3.3 総漏えい量と非常用ガス処理系放出流量の比較 原子炉棟の総漏えい量と非常用ガス処理系放出流量を表 3-2 に示す。

総漏えい量	非常用ガス処理系放出流量
(m ³ /min)	(m^3/min)
5	<u>59.5</u> (注)

表 3-2 総漏えい量と非常用ガス処理系放出流量の比較

(注)非常用ガス処理系排風機容量とする。

3.4 検討結果

原子炉棟について総漏えい量は非常用ガス処理系放出流量以下となっていることを 確認した。

よって,原子炉棟は,耐震壁の許容限界を最大せん断ひずみ2.0×10⁻³とした場合 において,換気設備とあいまって機能を維持できる気密性を有している。

4. まとめ

原子炉棟は,耐震壁の許容限界として最大せん断ひずみ 2.0×10⁻³を適用した場合に おいて,原子炉格納容器から漏えいした空気を非常用ガス処理系で処理できる気密性を 有していることを確認した。

以上より,原子炉建屋の地震応答解析による評価において,換気設備とあいまって気 密性を維持するために設定する許容限界として,最大せん断ひずみ 2.0×10⁻³を用いる ことの適用性を確認した。