本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	工認-973 改 0
提出年月日	平成 30 年 7 月 31 日

V-2-3-3-2-5 炉心支持板の耐震性についての計算書

目次

1. 一般	事項・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.1 形料	状・寸法・材料・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.2 記号	号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
1.3 考慮	慮する荷重・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
1.4 計算	算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2. 計算	条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.1 解析	析範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.2 設計	計条件	7
2.3 運轉	転条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.4 材料	料·····	7
2.5 物性	性値及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
2.6 応	力の記号と方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3. 応力詞	計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.1 応	力評価点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3.2 差点	圧による応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
3. 2. 1	荷重条件(L02) · · · · · · · · · · · · · · · · · · ·	9
3. 2. 2	計算方法	9
3.3 外花	荷重による応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
3. 3. 1	荷重条件(L04, L14 及び L16)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
3. 3. 2	, , , , , , ,	12
4. 応力引	強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4.1 一次	次一般膜応力強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
4 2 -7	次一般膜+一次曲げ応力強さの評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15

図表目次

図 1-1	形状・寸法・材料・応力評価点・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
図3-1	補強ビームの荷重計算モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
図 3-2	補強ビームの応力計算モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
図3-3	支持板の荷重計算及び応力計算モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
図 3-4	支持板の応力計算モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
表 1-1	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
表 3-1	断面性状 · · · · · · · · · · · · · · · · · · ·	21
表 4-1	一次一般膜応力強さの評価のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
表 4-2	一次一般膜+一次曲げ応力強さの評価のまとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	23

1. 一般事項

本計算書は、炉心支持板の耐震性についての計算書である。

1.1 形状・寸法・材料

本計算書で解析する箇所の形状・寸法・材料を図1-1に示す。

1.2 記号の説明

「V-2-3-3-2-1 炉心支持構造物の応力解析の方針」(以下「応力解析の方針」という。) の 2 章による。

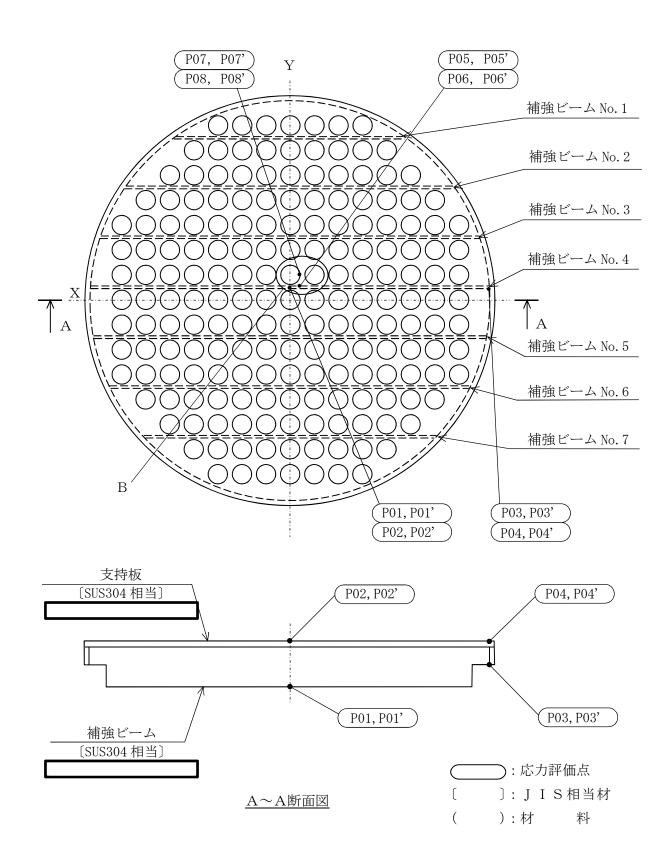
さらに、本計算書において、以下の記号を用いる。

記号	記 号 の 説 明	単 位
a	長方形断面の長辺	mm
аі	補強ビーム固定端から中央部までの長さ	mm
b	長方形断面の短辺	mm
bе	等価幅	mm
D	制御棒案内管用穴径	mm
d	中性子計測案内管用穴径	mm
e 0	中立軸からの距離	mm
e ₀ '	中立軸からの距離	mm
e 1	中立軸からの距離	mm
e 1'	中立軸からの距離	mm
e 2	中立軸からの距離	mm
e 3	中立軸からの距離	mm
еа	中立軸からの距離	mm
е в	中立軸からの距離	mm
Fs	せん断力	N
hс	支持板の厚さ	mm
h o	補強ビーム固定端の高さ	mm
h_1	補強ビーム高さ	mm
Ιo	断面二次モーメント	mm^4
Ι 1	断面二次モーメント	mm^4
Ι 2	断面二次モーメント	mm^4
Ι 3	断面二次モーメント	mm^4
ΙA	断面二次モーメント	mm^4
Iв	断面二次モーメント	mm^4
ℓ_{i}	補強ビーム固定端近傍から中央部までの長さ	mm

記号	記 号 の 説 明	単 位
ℓ_{p}	補強ビーム1スパン当たりの長さ	mm
t	補強ビーム厚さ	mm

1.3 考慮する荷重

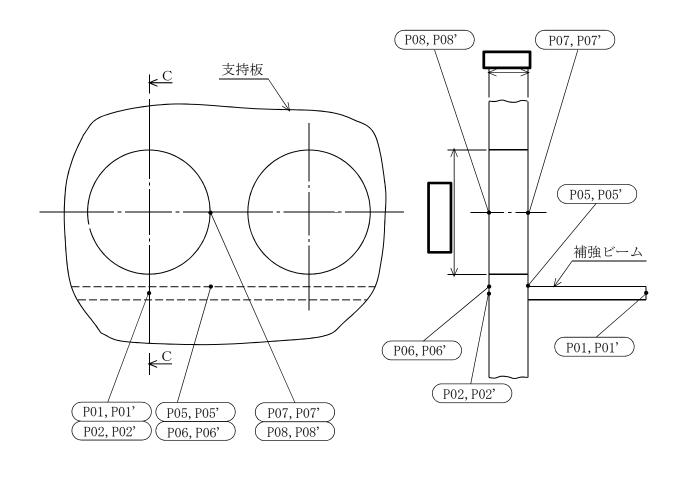
考慮した荷重は,次のとおりである。


- a. 差 圧
- b. 外荷重

各荷重の値を「応力解析の方針」の4章に示す。

1.4 計算結果の概要

計算結果の概要を表 1-1 に示す。


なお,応力評価点の選定に当たっては,形状不連続,溶接部及び厳しい荷重作用点に着目し, 応力評価上厳しくなる代表的な評価点を本計算書に記載している。

注1:B部の詳細は図1-1(2)に示す。

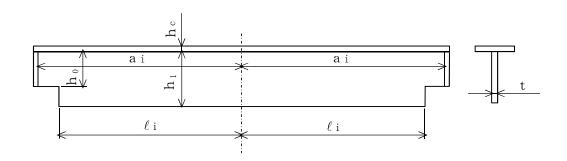

注2:各補強ビームの寸法を図1-1(3)に示す。

図 1-1(1) 形状・寸法・材料・応力評価点

■ <u>C~C</u>断面図□ : 応力評価点

図 1-1(2) 形状・寸法・材料・応力評価点(単位:mm)

各補強ビームの寸法

(単位:mm) 寸法 ℓi аі h_0 h_1 h c t ビーム No. 補強ビーム No.1 補強ビーム No. 2 補強ビーム No.3 補強ビーム No.4 補強ビーム No. 5 補強ビーム No.6 補強ビーム No.7

図 1-1(3) 形状・寸法・材料・応力評価点(補強ビーム)(単位:mm)

表 1-1 計算結果の概要

		一次一般膜応力			一次一般膜+一次曲げ応力		
部分及び材料	供用状態	(MPa)			(MPa)		
	(許容応力状態)	応力 ** ** ** ** ** ** ** ** ** ** ** ** **	応力	応力	許容値	応力	
		強さ		評価面	強さ	計谷旭	評価点
補強ビーム	III a S	12	129	P03-P04	70	193	P03
SUS304	IV a S	12	195	P03-P04	72	293	P03
支持板	III a S	16	172	P07-P08	68	258	P07'
SUS304	IV a S	27	260	P07-P08	108	391	P07'

2. 計算条件

2.1 解析範囲解析範囲を図 1-1 に示す。

2.2 設計条件 設計条件を「応力解析の方針」の 4.1 節に示す。

2.3 運転条件 考慮した運転条件を「応力解析の方針」の 4.2 節に示す。

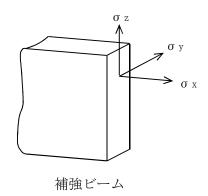
2.4 材料各部の材料を図1-1に示す。

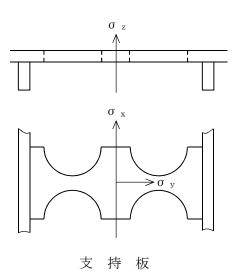
2.5 物性値及び許容応力 物性値及び許容応力は、「応力解析の方針」の 3.4 節及び 3.6 節による。 溶接部の継手効率を「応力解析の方針」の 3.7 節に示す。

2.6 応力の記号と方向

応力の記号とその方向は,以下のとおりとする。

 $\sigma x : x$ 方向応力


σ y : y 方向応力


σ z : z 方向応力

τ xy: せん断応力

τ yz: せん断応力

τzx: せん断応力

3. 応力計算

応力計算において、荷重は図3-1及び図3-3に示す各補強ビーム及び各支持板に加わると考えて計算する。

3.1 応力評価点

応力評価点の位置を図1-1に示す。また、各応力評価点の断面性状を表3-1に示す。

3.2 差圧による応力

3.2.1 荷重条件 (L02)

各運転条件における差圧を「応力解析の方針」の4.2節に示す。

計算は、設計差圧に対して行い、各供用状態(許容応力状態)での応力は、比例計算により求める。

3.2.2 計算方法

- (1) 差圧による一次応力の計算
 - a. 補強ビーム
 - (a) 差圧による荷重

補強ビームの荷重計算モデルを、図3-1に示す。

差圧による単位長さ当たりの分布荷重W1は、次式で求める。

$$W_1 = P_{13} \cdot \frac{1}{\ell_p} \cdot (2 \cdot \ell_p^2 - 2 \cdot \frac{\pi}{4} \cdot D^2)$$

(b) 曲げ応力(一次応力)

図 3-1 に示す補強ビームの荷重計算モデルにより荷重を求め,図 3-2 に示す補強ビームの応力計算モデルにより曲げ応力を求める。ここで,断面二次モーメント I_0 , I_1 は,支持板を穴の部分の面積を除いたものと等しい面積を持つ穴のない帯状の板に置き換えて計算する。穴としては,制御棒案内管の入る穴及び中性子計測案内管の入る穴を考慮する。なお,モーメントは最長の補強ビーム No.4 について求める。

イ. $0 \le x \le \ell_i \mathcal{O}$ とき

(イ) モーメント
$$M = -MA + \frac{W_1}{2} \cdot (ai^2 - x^2)$$

(ロ) 曲げ応力

$$\sigma_{x} = -\frac{M}{I_{1}} \cdot e_{1}$$
 (補強ビームの下端)
$$\sigma_{x} = \frac{M}{I_{1}} \cdot e_{1}$$
 (補強ビームの上端)

ロ. $\ell_i \leq x \leq a_i \mathcal{O}$ とき

(イ) モーメント

$$M = -MA + \frac{W_1}{2} \cdot (a i^2 - x^2)$$

(ロ) 曲げ応力

$$\sigma x = -\frac{M}{I_0} \cdot e_0$$
 (補強ビームの下端)
$$\sigma x = \frac{M}{I_0} \cdot e_0$$
 (補強ビームの上端)

ここで、Ma:固定端モーメント

$$M_{A} = \frac{\frac{W_{1}}{2} \ell \, i \, \cdot \left(a \, i^{2} - \frac{\ell \, i^{2}}{3}\right) \cdot (\, I_{0} - \, I_{1}) + I_{1} \cdot \frac{W_{1}}{3} \cdot \, a \, i^{3}}{(\, I_{0} - \, I_{1}) \cdot \ell \, i + I_{1} \cdot a \, i}$$

I o: I o部の断面二次モーメント

I1: I1部の断面二次モーメント

(c) せん断応力(一次一般膜応力)

補強ビームの固定端でせん断力は最大となり、補強ビームの中央でせん断力は0となる。

補強ビームの固定端におけるせん断応力は次式で求める。

$$\tau zx = \frac{FS}{A_0}$$

ここで, Fs: 固定端におけるせん断力

 $Fs = W_1 \cdot a_i$

A₀ : 固定端の断面積

 $A_0 = b_e \cdot h_c + h_0 \cdot t$

b. 支持板

支持板の計算モデルを、図3-3及び図3-4に示す。

(a) 差圧による荷重

差圧による単位長さ当たりの分布荷重W2は、次式で求める。

$$W_2 = P_{13} \cdot \frac{1}{2 \cdot \ell_4} \cdot (2 \cdot \ell_4 \cdot \ell_p - 2 \cdot \frac{\pi}{4} \cdot D^2)$$

(b) 曲げ応力(一次応力)

図3-3に示す支持板の計算モデルにより曲げ応力を求める。

イ. モーメント

$$M \!=\! M_A \!-\! W_2 \boldsymbol{\cdot} \ell_4 \boldsymbol{\cdot} y + \! \frac{W_2}{2} \boldsymbol{\cdot} y^2$$

ロ. 曲げ応力

固定端における曲げ応力は、次式で求める。

$$\sigma y = \frac{MA}{L_2} \cdot e_2$$
 (支持板の下面)

$$\sigma_y = -\frac{M_A}{I_2} \cdot e_2$$
 (支持板の上面)

また、y= mmにおける曲げ応力は、次式で求める。

$$\sigma y = \frac{M}{I_3} \cdot e_3$$
 (支持板の下面)

$$\sigma_y = -\frac{M}{I_3} \cdot e_3$$
 (支持板の上面)

ここで, Ma: 固定端モーメント

$$MA = \left[\frac{2 \cdot \ell_4{}^3 - \left(\frac{I_2}{I_3} - 1\right) \cdot (\ell_3{}^3 - \ell_2{}^3 - 3 \cdot \ell_3{}^2 \cdot \ell_4 + 3 \cdot \ell_2{}^2 \cdot \ell_4)}{6 \cdot \left\{\ell_4 + \left(\frac{I_2}{I_3} - 1\right) \cdot (\ell_3 - \ell_2)\right\}} \right] \cdot W_2$$

I2: I2部の断面二次モーメント

I3: I3部の断面二次モーメント

(c) せん断応力(一次一般膜応力)

固定端におけるせん断応力は、次式で求める。

$$\tau_{yz} = \frac{W_2 \cdot \ell_4}{h_c \cdot \ell_5}$$

y = mmにおけるせん断応力は、次式で求める。

- 3.3 外荷重による応力
 - 3.3.1 荷重条件(L04, L14 及びL16) 炉心支持板に働く外荷重を「応力解析の方針」の 4.2 節に示す。
 - 3.3.2 計算方法
 - (1) 外荷重による一次応力の計算
 - a. 補強ビーム 補強ビームの荷重計算モデルを,図 3-1 に示す。
 - (a) 死荷重による単位長さ当たりの分布荷重 死荷重による単位長さ当たりの分布荷重W₃は、次式で求める。

$$W_3 = -\frac{V_1}{\ell_p}$$

(b) 鉛直方向地震荷重による単位長さ当たりの分布荷重 鉛直方向地震荷重による単位長さ当たりの分布荷重W₄は、次式で求める。

$$W_4 = \frac{V_1}{\ell_p}$$

- (c) 曲げ応力及びせん断応力 3.2.2(1)a.項と同様にして求める。
- b. 支持板 支持板の計算モデルを図 3-3 に示す。
- (a) 死荷重による単位長さ当たりの分布荷重 死荷重による単位長さ当たりの分布荷重W₅は、次式で求める。

$$W_5 = -\frac{V_2}{2 \cdot \ell_4}$$

(b) 鉛直方向地震荷重による単位長さ当たりの分布荷重 鉛直方向地震荷重による単位長さ当たりの分布荷重W₆は、次式で求める。

$$W_6 = \frac{V_2}{2 \cdot \ell_4}$$

(c) 水平方向地震荷重による荷重

図 3-4(3) に示す 1 本の制御棒案内管が支持板に与える水平方向地震荷重 H_p は、次式で求める。

$$H_p = \frac{4 \cdot H}{764}$$

ここで、Hは水平方向地震荷重で「応力解析の方針」の 4.2 節に示す。

- (d) 曲げ応力及びせん断応力
 - イ. 鉛直方向荷重 (死荷重及び鉛直方向地震荷重) 3.2.2(1)b.項と同様にして求める。
 - ロ. 水平方向地震荷重 図 3-4(3) に示す支持板のモデルにより、曲げ応力を求める。
 - (イ) モーメント 固定端におけるモーメント MA

$$MA = \left(- \frac{1}{2 \cdot \ell_4} \right) \cdot H_p$$

y =
$$\frac{1}{2 \cdot \ell_1}$$
 MB $\frac{1}{2 \cdot \ell_2}$ Hp

(ロ) 曲げ応力(一次応力) 固定端における曲げ応力

$$\sigma y = \frac{MA}{IA} \cdot eA$$

y = mmにおける曲げ応力

$$\sigma y = \frac{MB}{IB} \cdot eB$$

ここで、 I A: I A部の断面二次モーメント I B: I B部の断面二次モーメント

(ハ) せん断応力 (一次一般膜応力) 固定端におけるせん断応力

$$\tau xy = \frac{H_p}{h_c \cdot \ell_5}$$

y = mm におけるせん断応力

$$\tau xy = \frac{H_p}{h_c \cdot \ell_6}$$

4. 応力強さの評価

4.1 一次一般膜応力強さの評価

各供用状態(許容応力状態)における評価をまとめて、表 4-1 に示す。

表 4-1 より,各供用状態(許容応力状態)の一次一般膜応力強さは,「応力解析の方針」の 3.6 節及び 3.7 節に示す許容値を満足する。

4.2 一次一般膜+一次曲げ応力強さの評価

各供用状態(許容応力状態)における評価をまとめて、表 4-2 に示す。

表 4-2 より,各供用状態(許容応力状態)の一次一般膜+一次曲げ応力強さは,「応力解析の方針」の3.6 節及び3.7 節に示す許容値を満足する。

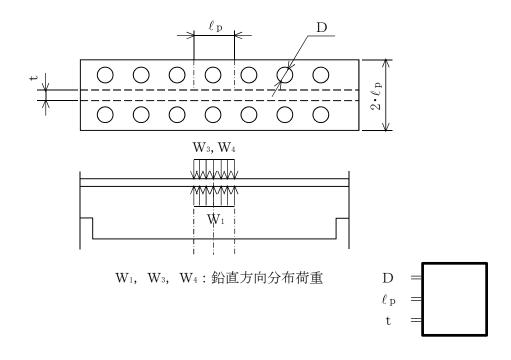


図 3-1 補強ビームの荷重計算モデル (単位:mm)

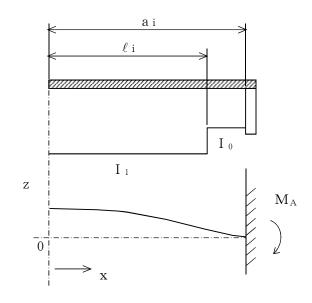



図 3-2(1) 補強ビームの応力計算モデル

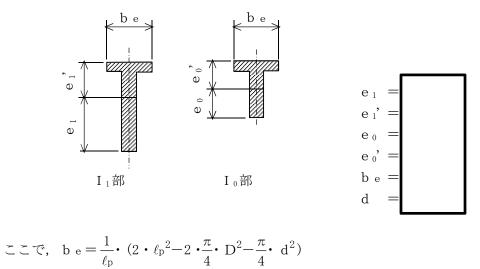
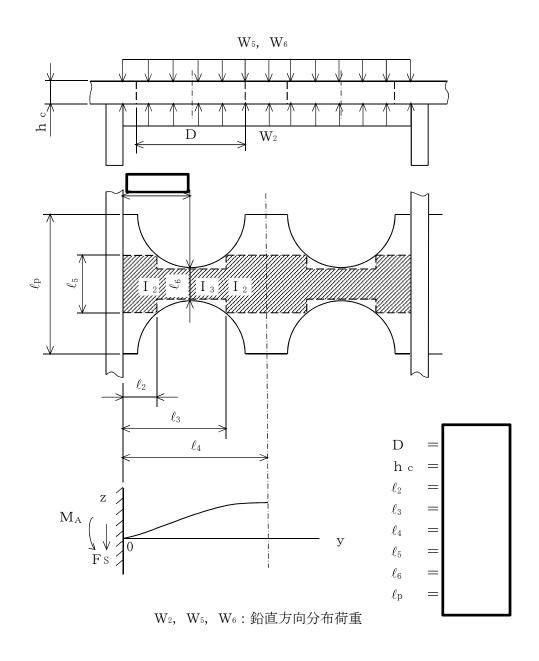
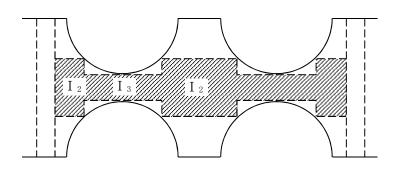




図 3-2(2) 補強ビームの応力計算モデル (単位:mm)

注記 *:固定端から最小幅になる部分までの距離

図 3-3 支持板の荷重計算及び応力計算モデル (単位:mm)

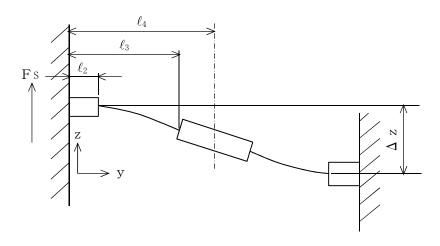


図 3-4(1) 支持板の応力計算モデル

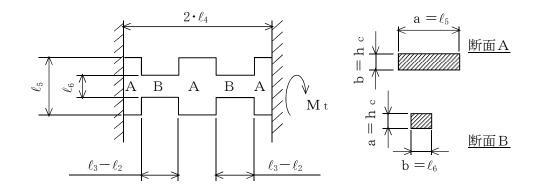
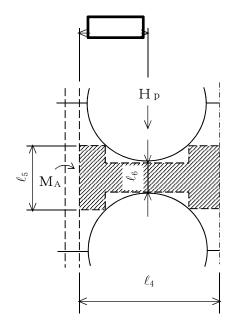



図 3-4(2) 支持板の応力計算モデル

Hp:制御棒案内管用穴1つ当たりに作用する水平方向地震荷重

図 3-4(3) 支持板の応力計算モデル (単位:mm)

表 3-1 断面性状

克	補強ビーム	に平行な軸	補強ビームに垂直な軸		
応力評価点	$I \pmod{4}$	e (mm)	$I \pmod{4}$	e (mm)	
P01, P02					
P03, P04					
P05, P06					
P07, P08					

表 4-1 一次一般膜応力強さの評価のまとめ

(単位:MPa)

(早江:Mra							
	許容応	力状態	許容応力状態				
応力	\mathbf{III} A	A S	IV A S				
評価点	応力	許容値	応力	許容値			
	強さ		強さ				
P01	0	172	0	260			
P01'	0	172	0	260			
P02	0	172	0	260			
P02'	0	172	0	260			
P03	12	129	12	195			
P03'	11	129	11	195			
P04	12	172	12	260			
P04'	11	172	11	260			
P05	5	103	7	156			
P05'	5	103	7	156			
P06	5	172	7	260			
P06'	5	172	7	260			
P07	16	172	27	260			
P07'	16	172	27	260			
P08	16	172	27	260			
P08'	16	172	27	260			

表 4-2 一次一般膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)

(単位:MP						
	許容応	力状態	許容応力状態			
応力	III 2	a S	IVAS			
評価点	応力	許容値	応力	許容値		
	強さ		強さ			
P01	19	258	18	391		
P01'	21	258	21	391		
P02	10	258	10	391		
P02'	9	258	9	391		
P03	70	193	72	293		
P03'	64	193	62	293		
P04	27	258	26	391		
P04'	29	258	29	391		
P05	24	154	32	234		
P05'	11	154	20	234		
P06	11	258	14	391		
P06'	32	258	41	391		
P07	53	258	93	391		
P07'	68	258	108	391		
P08	59	258	98	391		
P08'	63	258	102	391		