本資料のうち,枠囲みの内容は, 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	補足-40-12 改6
提出年月日	平成 30 年 8 月 1 日

工事計画に係る補足説明資料

安全設備及び重大事故等対処設備が使用される条件の下

における健全性に関する説明書のうち

補足-40-12【安全設備及び重大事故等対処設備の

環境条件の設定について】

平成 30 年 8 月 日本原子力発電株式会社

1. はじめに

安全施設及び重大事故等対処設備の環境条件(環境圧力,環境温度,環境湿度及び環境放射線 量)について,以下にまとめる。

設計基準事故時及び重大事故等時における環境条件のうち,環境圧力,環境温度,環境湿度及 び環境放射線量については,原則として事象及びエリアに応じた一律の環境条件を設定するが, 必要に応じて個別の環境条件を設定することとしている。一律及び個別の環境条件を設定する場 合の考慮事項や設定する環境条件について,以下に示す。

- 2. 安全施設の環境条件について
 - 2.1 一律で設定する環境条件の考慮事項

安全施設に対して, V-1-1-6の2.3節記載の一律で設定する環境条件を表 2-1「安全施設の環 境条件及び考慮事項」に示す。

No	安全施設の 設置エリア		環境条件	考慮事項
		圧 力	•0.31 MPa[gage]	 ・設計基準事故の中でPCV内圧力が最も高くなる「原子炉冷却材喪失」時の圧力を包絡するよう 設定
1	原子炉格納容器内	温度・湿度	・171.1 ℃ ・100 % (蒸気)	 ・設計基準事故の中でPCV内温度が最も高くなる「原子炉冷却材喪失」時の温度を包絡するよう設定
		放射線	・260 kGy/6 ヶ月	・設計基準事故の中でPCV内の空間線量が最も 高くなる「原子炉冷却材喪失」の仮想事故相当の ソースタームを想定し、半球中心における線量評 価結果(サブマージョンモデル)を設定 (設定の考え方については、添付資料1に示す。)
		圧力	・大気圧相当	・ブローアウトパネル開放設定値
原子炉格納容器タ 2 の建屋内(原子紫 建屋原子炉棟内)	原子炉格納容器外 の建屋内(原子炉 建屋原子炉棟内)	温度・湿度	 ・原則 65.6 ℃ (事象初期:100 ℃) ・原則 90 % (事象初期: 100 % (蒸気)) 	 ・設計基準事故の中で原子炉棟内温度が最も高くなる「主蒸気管破断事故」の温度を包絡するよう設定
		放射線	・原則 1.7 kGy/6 ヶ月	 ・保守的にPCV圧力0.31 MPa[gage]でのPCV 漏えい率(0.5%/d)一定として、PCV内から 漏えいするFPを想定し、半球中心における線量 評価結果(サブマージョンモデル)を設定 (設定の考え方については、添付資料1に示す。)
		圧力	・大気圧	・圧力上昇要因がないエリア
3	原子炉格納容器外 の建屋内(原子炉 建屋原子炉棟外及 びその他の建屋 内)の設備	温度・湿度	・原則 40 ℃ ・原則 90 %	・温度・湿度上昇要因がないエリア
	内)の設備	放射線	・原則1 mGy/h以下	 ・原子炉冷却材喪失(仮想事故)における屋外被ば く線量を包絡する値

表 2-1 安全施設の環境条件及び考慮事項(1/2)

No	安全施設の 設置エリア		環境条件	考慮事項
		圧力	・大気圧	・圧力上昇要因がないエリア
4	屋外	温度・湿度	• 40 °C • 100 %	・温度は既往最大値を包絡する値を設定 ・湿度は考えられる最大値
		放射線	・1 mGy/h以下	・原子炉冷却材喪失(仮想事故)における屋外被ば く線量を包絡する値

表 2-1 安全施設の環境条件及び考慮事項(2/2)

2.2 安全施設の個別で設定する環境条件の考慮事項

安全施設に対して,個別の環境条件を設定する場合の考慮事項や設定する環境条件につい て示す。

(1) 圧力

原子炉建屋原子炉棟内は,原則として事故時に作動するブローアウトパネル開放設定値 を考慮して一律大気圧相当を設定するが,事故発生時には期待せず,通常運転中にその機 能が求められるものは,通常運転中における圧力を環境圧力として設定する。評価に用い た環境圧力を表 2-2,該当する対象設備を表 2-3 に示す。

(2) 温度

原子炉建屋原子炉棟内は,原則として一律65.6 ℃(事象初期:100 ℃)を設定する が,事故発生時にその機能が求められないものは,通常運転中における温度を環境温度と して設定する。評価に用いた環境温度を表 2-2,該当する対象設備を表 2-3 に示す。

(3) 湿度

原子炉建屋原子炉棟内は,原則として一律90%(事象初期:100%(蒸気))を設定す るが,事故発生時にその機能が求められないものは,通常運転中における湿度を環境湿度 として設定する。評価に用いた環境湿度を表2-2,該当する対象設備を表2-3に示す。

(4) 放射線

原子炉建屋原子炉棟内は,原則として一律 1.7 kGy を設定するが,事故発生時にその機能が求められないものは,通常運転中における線量を環境放射線として設定する。該当する対象設備を表 2-2,該当する対象設備を表 2-3 に示す。

	X 1 1	一面に用いて家り		
	環境圧力	環境温度	環境湿度	環境放射線
評価に用いた環境条件	大気圧	40°C	90 %	1mGy/h以下
V-1-1-6の2.3節記載 の一律の環境条件	大気圧相当	65.6℃ (事象初期: 100 ℃)	90 % (事象初期: 100 % (蒸気))	1.7kGy/6 ヶ月

表 2-2 評価に用いた環境条件

表 2-3 対象設備

系統施設	設備	設置エリア	
核燃料物質の取扱施設及び	什田波隆州子,立田市	医乙烷油巴医乙烷油	
貯蔵施設	使用済燃料ノール温度	原于炉建厔原于炉棵	
核燃料物質の取扱施設及び	(十田)沙脑(叭)	医乙烷油巴医乙烷油	
貯蔵施設	使用済燃料ノール水位	原于炉建室原于炉棵	
核燃料物質の取扱施設及び	は日本降約1つ マンド、月中(2A方杯)	医乙烷冲导医乙烷体	
貯蔵施設	使用済然科ノール水位・温度(SAム域)	原于炉建屋原于炉梯	
その他発電用原子炉の附属施設	府又后冲导	医乙烷冲导医乙烷体	
(火災防護設備)	原于炉建屋	原于炉建室原于炉棵 	
その他発電用原子炉の附属施設		医乙烷冲导医乙烷体	
(火災防護設備)	ハロシホンへ	原子炉建屋原子炉棟	

- 3. 重大事故等対処設備の環境条件について
 - 3.1 一律で設定する環境条件の考慮事項

重大事故等対処設備に対して, V-1-1-6の2.3節記載の一律で設定する環境条件を表3-1「重 大事故等対処設備の環境条件及び考慮事項」に示す。

No	重大事故等対処設 備の設置エリア	環境条件		考慮事項
		圧力	・原則 0.62 MPa[gage]	・PCV限界圧力を設定
1 原子炉格納容器内		温度・湿度	・原則 200 ℃ (最高 235 ℃) ・原則 100 %(蒸気)	・200℃は、PCVバウンダリ許容温度を設定 ・235℃は、有効性評価における原子炉格納容器気 相部の最高温度を設定
	放射線	・原則 640 kGy/7 日間	 PCV内の空間線量への寄与が大きい希ガス、よう素、セシウムについては、RPVからPCVに 全量放出されている状態を保守的に想定する等 し、半球中心における線量評価結果(サブマージ ョンモデル)を設定 D/W最大540 kGy/7日間 S/C最大640 kGy/7日間 (設定の考え方については、添付資料1に示す。) 	
		圧力	・大気圧相当	・ブローアウトパネル開放設定値
原子) 2 の建 建屋 原	原子炉格納容器外 の建屋内(原子炉 建屋同子炉棟内)	温度・湿度	・原則 65.6 ℃ ・原則 100 %	 PCV内を0.62 MPa[gage], 200 ℃と仮定し, PCV圧力0.62 MPa[gage]でのPCV漏えい率 (1.3 %/d)を上回る漏えい率(1.5 %/d)で漏 えいするガスによる上昇を考慮し保守的に設定 湿度は考えられる最大値
		放射線	・原則 1.7 kGy/7 日間	 PCV圧力 0.62MPa[gage]でのPCV漏えい率(1.3%/d)を上回る漏えい率(1.5%/d)で漏えいしたFPによる原子炉建屋原子炉棟内の線量(1.5 kGy/7日間)の包絡値を保守的に設定(設定の考え方については、添付資料1に示す。)
	原子炉格納容器外 の建屋内(原子炉	圧 力	・大気圧相当	・ブローアウトパネル開放設定値
建 の 3 ・ ポ ン コ し す 文	 建屋原子炉棟内) のうち以下の設備 ・格納容器バイパ ス(インターマ 	温度・湿度	• 65.6 ℃ • 100%	・機能を期待される区分は,耐火壁による区分分離 により,No.2の環境条件に包絡 (耐火壁の溢水防止機能については,添付資料2に 示す。)
	 へ (1 ンターノ) ェイスシステム LOCA)時に使用 する重大事故等 対処設備 	放射線	・原則 1.7 kGy/7 日間	 PCV圧力0.62 MPa[gage]でのPCV漏えい率 (1.3%/d)を上回る漏えい率(1.5%/d)で漏 えいしたFPによる原子炉建屋原子炉棟内の線量(1.5kGy/7日間)の包絡値を保守的に設定 (設定の考え方については、添付資料1に示す。)

表 3-1 重大事故等対処設備の環境条件及び考慮事項(1/2)

No	重大事故等対処設 備の設置エリア		環境条件	考慮事項
	原子炉格納容器外 の建屋内(原子炉	圧力	・大気圧相当	・ブローアウトパネル開放設定値
4	 建屋原子炉棟内) のうち以下の設備 ・使用済燃料プー ルにおける重大 	温度・湿度	・100 ℃ ・100 % (蒸気)	・使用済燃料プールにおける重大事故に至るおそ れがある事故を考慮
	事故に至るおそ れがある事故時 に使用する重大 事故等対処設備	放射線	・原則 1.7 kGy/7 日間	 PCV圧力 0.62MPa[gage]でのPCV漏えい率 (1.3%/d)を上回る漏えい率(1.5%/d)で漏え いしたFPによる原子炉建屋原子炉棟内の線量 (1.5 kGy/7 日間)の包絡値を保守的に設定 (設定の考え方については、添付資料1に示す。)
	原子炉格納容器外 の建屋内(原子炉	圧力	・大気圧相当	・ブローアウトパネル開放設定値
5	建屋原子炉棟内) のうち以下の設備 5 ・主蒸気管破断事	温度・湿度	 • 65.6 ℃ (事象初期 100 ℃) • 100 % (事象初期 100 %(蒸気)) 	・主蒸気管破断事故を考慮 (設定の考え方については,添付資料3に示す。)
 故起因の重大事 故等時に使用す る重大事故等対 処設備 	故起因の重大事 故等時に使用す る重大事故等対 処設備	放射線	・原則 1.7 kGy/7 日間	 PCV圧力 0.62MPa[gage]でのPCV漏えい率 (1.3%/d)を上回る漏えい率(1.5%/d)で漏え いしたFPによる原子炉建屋原子炉棟内の線量 (1.5kGy/168時間)の包絡値を保守的に設定 (設定の考え方については、添付資料1に示す。)
		圧力	・大気圧	・圧力上昇要因がないエリア
6	原子炉格納容器外 の建屋内(原子炉 6 建屋原子炉棟外及 びその他の建屋	温度・湿度	・原則 40 ℃ ・原則 90 %	・重大事故等時の原子炉格納容器内等の影響が直接及ばないエリア (原子炉建屋以外の建屋及び地中の配管トレンチ の環境条件及び考慮事項については,添付資料4に示す。)
			・原則3 Gy/7 日間	 ・原子炉格納容器のベント時における屋外被ばく 線量を包絡する値
		圧力	・大気圧	・圧力上昇要因がないエリア
7	屋外	温度・湿度	• 40 °C • 100 %	 ・重大事故等時の原子炉格納容器内等の影響が直接及ばないエリア ・温度は既往最大値を包絡する値を設定 ・湿度は考えられる最大値
		放射線	・3 Gy/7 日間	 ・原子炉格納容器のベント時における屋外被ばく 線量を包絡する値

表 3-1 重大事故等対処設備の環境条件及び考慮事項(2/2)

3.2 重大事故等対処設備の個別で設定する環境条件の考慮事項

重大事故等対処設備に対して,個別の環境条件を設定する場合の考慮事項や設定する環境 条件について示す。

(1) 圧力

パターン1に該当するものは個別に環境圧力を設定することとし、この対象設備を表 3-2 に示す。

パターン1

原子炉格納容器内は,原則として一律0.62 MPa[gage]を設定するが,重大事故等発生初 期に機能が求められるものであり,設計基準対象施設としての設計で仕様を満足するもの は,設計基準事故における原子炉格納容器内の圧力を包絡する値(0.31 MPa[gage])を環 境圧力として設定する。

(2) 温度

パターン1~7に該当するものは個別に環境温度を設定することとし、これらの対象設備 を表 3-3 に示す。

パターン1

原子炉格納容器内は,原則として一律200 ℃(最高235 ℃)を設定するが,重大事故等 発生初期に機能が求められるものであり,設計基準対象施設としての設計で仕様を満足する ものは,設計基準事故における原子炉格納容器内の温度を包絡する値(171.1 ℃)を環境温 度として設定する。

パターン2

原子炉格納容器内は,原則として一律200 ℃(最高235 ℃)を設定するが,逃がし安全 弁については,重大事故等の中で,逃がし安全弁による減圧が必要となる条件を包絡する値 を環境温度として設定する。(設定については,補足-40-11「逃がし安全弁の環境条件の設 定について」による。)

パターン 3

原子炉建屋原子炉棟内は,原則として一律65.6 ℃を設定するが,生体遮蔽の内側で原子 炉格納容器からの熱影響を受けることにより65.6 ℃を超える温度上昇があると考えられる エリアは,個別に重大事故等時の温度を確認した値を環境温度として設定する(添付資料-5)。

パターン4

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)は、原則として一律 40 ℃を設定するが、エリア内の発熱体と、周辺エリアとの熱収支等により個別に重

大事故等時の温度を確認したものは,確認した値を環境温度として設定する(添付資料 6)。

パターン 5

「使用済燃料プールにおける重大事故に至るおそれがある事故」時に使用する重大事故等 対処設備について、当該設備を設置する原子炉建屋原子炉棟内のエリアは、原則として一律 100 ℃を設定するが、当該重大事故等対処設備専用の冷却装置により冷却するものは、個別 に100 ℃以下の温度を環境温度として設定する。

パターン6

「格納容器バイパス(インターフェイスシステムLOCA)」時に使用する重大事故等対 処設備について、原子炉建屋原子炉棟内は耐火壁により区画分離されており、機能が期待さ れる区分の当該設備に対しては、別区分に位置する破断箇所からの高温水及び蒸気による影 響が小さいことから原則 65.6 ℃を設定するが、破断箇所と同区画にあることから高温水及 び蒸気による影響を受けるものは、その影響を考慮して環境温度を設定する。

パターン 7

「主蒸気管破断事故」時に使用する重大事故等対処設備について,原則として 65.6 ℃ (事象初期 100 ℃)を設定するが,当該重大事故等対処設備を断熱材により囲うことによ り耐性の向上を図るものは,個別に 100 ℃以下の温度を環境温度として設定する(添付資料 7,添付資料 8)。

(3) 湿度

パターン1~4に該当するものは個別に環境湿度を設定することとし、これらの対象設備 を表 3-4 に示す。

パターン1

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)は、原則とし て一律90%を設定するが、当該重大事故等対処設備を設置するエリアが通常時に空調設備 により管理されており、重大事故等時においても湿度が上昇する原因がなく、重大事故等時 の湿度を確認したものは、確認した値を環境湿度として設定する。

パターン2

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)は、原則として一律90%を設定するが、90%を超える湿度上昇があると考えらえられるエリアは、個別に重大事故等時の湿度を確認した値を環境湿度として設定する。

パターン 3

「格納容器バイパス(インターフェイスシステムLOCA)」時に使用する重大事故等対

処設備について,原子炉建屋原子炉棟内は耐火壁により区画分離されており,機能が期待される区分の当該設備に対しては,別区分に位置する破断箇所からの蒸気による影響が小さいことから原則100%を設定するが,破断箇所と同区画にあることから蒸気による影響を受けるものは,その影響を考慮して環境湿度を設定する。

パターン4

「主蒸気管破断事故」時に使用する重大事故等対処設備について,原則として 100 % (事象初期 100 % (蒸気))を設定するが,当該設備を気密構造の断熱材により囲うことか ら蒸気による影響が受けないものは,個別に環境湿度を設定する。

(4) 放射線

パターン1~6に該当するものは個別に環境放射線量を設定することとし、これらの対象 設備を表 3-5 に示す。

パターン1

原子炉格納容器内は、原則として一律 640 kGy を設定するが、重大事故等発生初期に機能 が求められるものであり、設計基準対象施設としての設計で仕様を満足するものは、設計基 準事故における原子炉格納容器内の放射線量を包絡する値(260 kGy)を環境放射線として 設定する。

パターン2

原子炉格納容器内は,原則として一律640 kGy を設定するが,原子炉格納容器(ドライウ エル)内に設置する逃がし安全弁については,原子炉格納容器(ドライウェル)内での最大 放射線量を包絡する値を環境放射線として設定する。

パターン3

原子炉建屋原子炉棟は、原則として一律 1.7 kGy を設定するが、当該重大事故緩和設備を 設置するエリアが放射線源付近であり、重大事故時に 1.7 kGy を超える恐れのあるものは個 別に確認した値を環境放射線として設定する(添付資料 9,添付資料 10)。

パターン4

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)は、原則として一律3 Gy を設定するが、当該重大事故緩和設備を設置するエリアが放射線源付近で重大 事故時に3 Gy を超える恐れのあるものは個別に確認した値を環境放射線として設定する (添付資料11)。

パターン5

原子炉建屋原子炉棟は、原則として一律 1.7kGy を設定するが、重大事故等発生初期に機能が求められるものであり、重大事故等時において想定される放射線を個別に確認したもの

は、確認した値を環境放射線として設定する(添付資料12)。

パターン6

原子炉建屋原子炉棟は、原則として一律1.7kGyを設定するが、「使用済燃料プールにおける重大事故に至るおそれがある事故」時に使用する設備であり、重大事故等時において想定される放射線を個別に確認したものは、確認した値を環境放射線として設定する(添付資料13)。

設備	評価に用いた 環境圧力	V-1-1-6 の 2.3 節記載の一律の 環境圧力	パターン	設置エリア
起動領域計装	0.31Mpa[gage]	0.62MPa[gage]	パターン1	原子炉格納容器内
平均出力領域計装	0.31Mpa[gage]	0.62MPa[gage]	パターン1	原子炉格納容器内

表 3-2 重大事故等対処設備の環境圧力設定

設備	評価に用いた 環境温度	V-1-1-6の2.3節 記載の一律の環境 温度	パターン	設置エリア
逃がし安全弁(安全弁機能)	最大 171℃	200℃ (最高 235℃)	パターン2	原子炉格納容器内
逃がし安全弁 [操作対象弁]	最大171℃	200℃ (最高 235℃)	パターン2	原子炉格納容器内
自動減圧機能用アキュムレータ	最大171℃	200℃ (最高 235℃)	パターン2	原子炉格納容器内
非常用窒素供給系高圧窒素ボンベ	65. 6°C	65.6℃ (事象初期: 100℃)	パターン7	原子炉建屋原子炉棟
非常用逃がし安全弁駆動系高圧窒素ボンベ	65. 6°C	65.6℃ (事象初期: 100℃)	パターン7	原子炉建屋原子炉棟
高圧炉心スプレイ系注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
原子炉隔離時冷却系原子炉注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
低圧炉心スプレイ系注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
残留熱除去系A系注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
残留熱除去系B系注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
残留熱除去系C系注入弁	65.6℃ (短期 100℃)	65.6°C	パターン6	原子炉建屋原子炉棟
常設低圧代替注水系ポンプ	66°C	40°C	パターン4	常設低圧代替注水系 ポンプ室
代替淡水貯槽水位	66°C	40°C	パターン4	常設低圧代替注水系 ポンプ室
緊急用海水ポンプ	66°C	40°C	パターン4	緊急用海水ポンプ ピット
緊急用海水系ストレーナ	66°C	40°C	パターン4	緊急用海水ポンプ ピット
フィルタ装置	66°C	40°C	パターン4	格納容器圧力逃がし 装置格納槽
第二弁操作室遮蔽	$50^{\circ}\mathrm{C}$	40°C	パターン4	原子炉建屋付属棟
第二弁操作室空気ボンベユニット (空気ボンベ)	$50^{\circ}\mathrm{C}$	40°C	パターン4	原子炉建屋付属棟
移送ポンプ	66°C	40°C	パターン4	格納容器圧力逃がし 装置格納槽
格納容器内水素濃度(SA)	65. 6°C	65.6℃ (事象初期: 100℃)	パターン7	原子炉建屋原子炉棟
格納容器内酸素濃度(SA)	65. 6°C	65.6℃ (事象初期: 100℃)	パターン 7	原子炉建屋原子炉棟
フィルタ装置出口放射線モニタ (高レンジ・低レンジ)	50°C	40°C	パターン4	原子炉建屋付属棟
使用済燃料プール監視カメラ	50°C	100°C	パターン6	原子炉建屋原子炉棟
緊急用 125V 系蓄電池	50°C	40°C	パターン4	原子炉建屋付属棟

表 3-3 重大事故等対処設備の環境温度設定

設備	評価に用いた 環境温度	V-1-1-6の2.3節 記載の一律の環境 温度	パターン	設置エリア
125V 系蓄電池A系	50°C	40°C	パターン4	原子炉建屋付属棟
125V 系蓄電池 B 系	50°C	40°C	パターン4	原子炉建屋付属棟
125V 系蓄電池HPCS系	50°C	40°C	パターン4	原子炉建屋付属棟
中性子モニタ用蓄電池A系	50°C	40°C	パターン4	原子炉建屋付属棟
中性子モニタ用蓄電池B系	50°C	40°C	パターン4	原子炉建屋付属棟
格納容器雰囲気放射線モニタ(D/W)	200℃	65.6°C	パターン3	原子炉建屋原子炉棟
格納容器雰囲気放射線モニタ(S/C)	148℃	65.6°C	パターン3	原子炉建屋原子炉棟
起動領域計装	171. 1°C	200℃ (最高 235℃)	パターン1	原子炉格納容器内
平均出力領域計装	171. 1°C	200℃ (最高 235℃)	パターン1	原子炉格納容器内
フィルタ装置水位	66°C	40°C	パターン4	格納容器圧力逃がし 装置格納槽
フィルタ装置圧力	66°C	40°C	パターン4	格納容器圧力逃がし 装置格納槽
フィルタ装置スクラビング水温度	66°C	40°C	パターン4	格納容器圧力逃がし 装置格納槽
中央制御室退避室空気ボンベユニット	66°C	40°C	パターン4	原子炉建屋付属棟
酸素濃度計	26°C	40°C	パターン4	緊急時対策所
二酸化炭素濃度計	26°C	40°C	パターン4	緊急時対策所
緊急時対策所エリアモニタ	26°C	40°C	パターン4	緊急時対策所
携行型有線通話装置	26°C	40°C	パターン4	緊急時対策所
総合原子力防災ネットワークに接続する通信 連絡設備(テレビ会議システム, IP電話, IP-FAX)	26°C	40°C	パターン4	緊急時対策所
衛星連絡設備(固定型)	26°C	40°C	パターン4	緊急時対策所

設備	評価に用いた 環境湿度	V-1-1-6の2.3 節記載の一律 の環境湿度	パターン	設置エリア
ATWS緩和設備(代替制御棒挿入機能)	60%	90%	パターン1	原子炉建屋付属棟
ATWS緩和設備(代替制御棒挿入機能)手 動スイッチ	60%	90%	パターン1	原子炉建屋付属棟
ATWS緩和設備(代替再循環系ポンプトリ ップ機能)	60%	90%	パターン1	原子炉建屋付属棟
再循環系ポンプ遮断器手動スイッチ	60%	90%	パターン1	原子炉建屋付属棟
低速度用電源装置遮断器手動スイッチ	60%	90%	パターン1	原子炉建屋付属棟
自動減圧系の起動阻止スイッチ	60%	90%	パターン1	原子炉建屋付属棟
過渡時自動減圧機能	60%	90%	パターン1	原子炉建屋付属棟
逃がし安全弁用可搬型蓄電池	60%	90%	パターン1	原子炉建屋付属棟
高圧炉心スプレイ系注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
原子炉隔離時冷却系原子炉注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
低圧炉心スプレイ系注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
残留熱除去系A系注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
残留熱除去系B系注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
残留熱除去系C系注入弁	100% (短期 100% (蒸気))	100%	パターン3	原子炉建屋原子炉棟
常設低圧代替注水系ポンプ	100%	90%	パターン2	常設低圧代替注水系 ポンプ室
フィルタ装置	100%	90%	パターン2	格納容器圧力逃がし 装置格納槽
第二弁操作室差圧計	60%	90%	パターン1	原子炉建屋付属棟
移送ポンプ	100%	90%	パターン2	格納容器圧力逃がし 装置格納槽
格納容器内水素濃度(SA)	100%	100% (短期 100% (蒸気))	パターン 4	原子炉建屋原子炉棟
格納容器内酸素濃度(SA)	100%	100% (短期 100% (蒸気))	パターン 4	原子炉建屋原子炉棟
常設代替高圧電源装置	100%	90%	パターン2	常設代替高圧電源 装置置場(地上階)
フィルタ装置水位	100%	90%	パターン2	格納容器圧力逃がし 装置格納槽
フィルタ装置圧力	100%	90%	パターン2	格納容器圧力逃がし 装置格納槽

表 3-4	重大事故等対処設備の環境湿度設定

設備	評価に用いた 環境湿度	V-1-1-6の2.3 節記載の一律 の環境湿度	パターン	設置エリア
フィルタ装置スクラビング水温度	100%	90%	パターン2	格納容器圧力逃がし 装置格納槽
可搬型計測器(原子炉圧力容器及び原子炉格 納容器内の温度,圧力,水位及び流量(注水 量)計測用)	60%	90%	パターン1	原子炉建屋付属棟
可搬型計測器(原子炉圧力容器及び原子炉格 納容器内の圧力,水位及び流量(注水量)計 測用)	60%	90%	パターン1	原子炉建屋付属棟
中央制御室待避室遮蔽	60%	90%	パターン1	原子炉建屋付属棟
中央制御室待避室差圧計	60%	90%	パターン1	原子炉建屋付属棟
衛星電話設備(可搬型)(待避室)	60%	90%	パターン1	原子炉建屋付属棟
データ表示装置(待避室)	60%	90%	パターン1	原子炉建屋付属棟
可搬型照明 (SA)	60%	90%	パターン1	原子炉建屋付属棟
酸素濃度計	60%	90%	パターン1	原子炉建屋付属棟
二酸化炭素濃度計	60%	90%	パターン1	原子炉建屋付属棟
安全パラメータ表示システム(SPDS)	60%	90%	パターン1	原子炉建屋付属棟
緊急用電源切替盤	60%	90%	パターン1	原子炉建屋付属棟
衛星電話設備(固定型)	60%	90%	パターン1	原子炉建屋付属棟

設備	評価に用いた 環境放射線量	V-1-1-6の2.3 節記載の一律 の環境放射線	パターン	設置エリア
ほう酸水注入ポンプ	100Gy	1.7kGy	パターン5	原子炉建屋原子炉棟
ほう酸水貯蔵タンク	100Gy	1.7kGy	パターン5	原子炉建屋原子炉棟
常設高圧代替注水系ポンプ	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
逃がし安全弁(安全弁機能)	550kGy	640kGy	パターン2	原子炉格納容器内
逃がし安全弁 [操作対象弁]	550kGy	640kGy	パターン2	原子炉格納容器内
自動減圧機能用アキュムレータ	550kGy	640kGy	パターン2	原子炉格納容器内
代替循環冷却系ポンプ	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系熱交換器	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系ポンプ	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
第一弁 (S/C側)	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
第一弁 (D/W側)	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
フィルタ装置	98kGy	3Gy	パターン4	格納容器圧力逃がし 装置格納槽
第二弁	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
第二弁バイパス弁	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
第二弁操作室遮蔽	32kGy	3Gy	パターン4	原子炉建屋付属棟
第二弁操作室空気ボンベユニット(空気ボン ベ)	32kGy	3Gy	パターン4	原子炉建屋付属棟
移送ポンプ	98kGy	3Gy	パターン4	格納容器圧力逃がし 装置格納槽
フィルタ装置出口放射線モニタ(高レンジ・ 低レンジ)	32kGy	3Gy	パターン4	原子炉建屋付属棟
フィルタ装置入口水素濃度	32kGy	3Gy	パターン4	原子炉建屋付属棟
非常用ガス処理系排風機	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
非常用ガス処理系フィルタトレイン	1.2MGy	1.7kGy	パターン3	原子炉建屋原子炉棟
非常用ガス再循環系排風機	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
非常用ガス再循環系フィルタトレイン	1.2MGy	1.7kGy	パターン3	原子炉建屋原子炉棟
使用済燃料プール監視カメラ	1.7Gy	1.7kGy	パターン6	原子炉建屋原子炉棟
使用済燃料プール監視カメラ用空冷装置	100Gy	3Gy	パターン4	原子炉建屋付属棟
緊急用電源切替盤	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
格納容器雰囲気放射線モニタ(D/W)	640kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
格納容器雰囲気放射線モニタ(S/C)	640kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
格納容器内水素濃度(SA)	20kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
格納容器内酸素濃度 (SA)	20kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
原子炉圧力	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
原子炉圧力 (SA)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟

表 3-5	重大事故等対処設備の環境放射線量設定

設備	評価に用いた 環境放射線量	V-1-1-6の2.3 節記載の一律 の環境放射線	パターン	設置エリア
原子炉水位 (広帯域)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
原子炉水位 (燃料域)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
原子炉水位 (SA広帯域)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
原子炉水位 (SA燃料域)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
高圧代替注水系系統流量	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系原子炉注水流量 (常設ライン用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系原子炉注水流量 (常設ライン狭帯域用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系原子炉注水流量 (可搬ライン用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系原子炉注水流量 (可搬ライン狭帯域用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
代替循環冷却系原子炉注水流量	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系系統流量	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系格納容器スプレイ流量 (常設ライン用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系格納容器スプレイ流量 (可搬ライン用)	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
低圧代替注水系格納容器下部注水流量	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
ドライウェル圧力	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
サプレッション・チェンバ圧力	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
サプレッション・プール水位	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
代替循環冷却系格納容器スプレイ流量	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系ポンプ吐出圧力	12kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
起動領域計装	260kGy	640kGy	パターン1	原子炉格納容器内
平均出力領域計装	260kGy	640kGy	パターン1	原子炉格納容器内
フィルタ装置水位	1.7kGy	3Gy	パターン4	格納容器圧力逃がし 装置格納槽
フィルタ装置圧力	1.7kGy	3Gy	パターン4	格納容器圧力逃がし 装置格納槽
フィルタ装置スクラビング水温度	98kGy	3Gy	パターン4	格納容器圧力逃がし 装置格納槽
代替循環冷却系ポンプ入口温度	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系熱交換器入口温度	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
残留熱除去系熱交換器出口温度	100kGy	1.7kGy	パターン3	原子炉建屋原子炉棟
中央制御室換気系空気調和器ファン	100Gy	3Gy	パターン4	原子炉建屋付属棟
中央制御室換気系フィルタ系ファン	200Gy	3Gy	パターン4	原子炉建屋付属棟
中央制御室換気系フィルタユニット	200Gy	3Gy	パターン4	原子炉建屋付属棟

図1 重大事故等対処設備の環境条件設定(1/6)

図1 重大事故等対処設備の環境条件設定(2/6)

図1 重大事故等対処設備の環境条件設定 (3/6)

図1 重大事故等対処設備の環境条件設定(4/6)

図1 重大事故等対処設備の環境条件設定(5/6)

図1 重大事故等対処設備の環境条件設定(6/6)

- 4. 添付資料
 - -1 環境放射線の設定方法について
 - -2 耐火壁の溢水防止機能について
 - 3 主蒸気管破断事故起因の重大事故等時を考慮した場合の環境条件について
 - 4 その他建屋の環境条件について
 - 5 格納容器雰囲気放射線モニタの環境条件の設定方法について
 - 6 熱収支等により環境温度を設定するエリアの設定方法について
 - 7 主蒸気管破断事故起因の重大事故等時に期待する設備への対応について
 - 8 格納容器内雰囲気ガスサンプリング装置の空調について
 - -9 原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)において個別に放射線環境条件を設 定するエリアの設定方法について
 - -10 原子炉建屋原子炉棟内の計装設備(伝送器)の遮蔽設計及び環境放射線について
 - -11 原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)において個別 に放射線環境条件を設定するエリアの設定方法について
 - -12 ほう酸水注入系の放射線環境条件設定
 - -13 使用済燃料プール監視カメラの放射線環境条件設定

環境放射線の設定方法を図1~図4に示す。

なお,図1及び図2が重大事故等時,図3及び図4が設計基準事故時の環境条件の設定方法を示している。

「環境条件」に記載の内容に該当

図1 重大事故時における原子炉格納容器内の安全施設に対する環境条件設定のフロー図

「環境条件」に記載の内容に該当

図2 重大事故等時における原子炉建屋原子炉棟内の安全施設に対する環境条件設定のフロー図

図3 設計基準事故時における原子炉格納容器内の安全施設に対する環境条件設定のフロー図

「環境条件」に記載の内容に該当

図4 設計基準事故時における原子炉建屋原子炉棟内の安全施設に対する環境条件設定のフロー図

(参考資料) 重大事故時における放射線環境条件設定の保守性

重大事故時における原子炉格納容器(以下「PCV」という)及び原子炉建屋原子炉棟内(以下 「R/B」という)の安全施設に対する環境条件設定に当たり,図1及び図2に示すフロー図に従い, PCV内に対しては550 kGy/7日間(主蒸気逃がし安全弁),640 kGy/7日間(その他の設備)を設定 し,R/B内に対しては1.7 kGy/7日間を設定する。本環境条件設定における放射性物質(以下「FP」 という)存在量の設定に係る評価条件の保守性について表1に示す。

評価項目	評価条件の保守性
炉内から PCV 内への FP 放出量の設定	・希ガス、よう素及びセシウムについて全量放出を設定
PCV 内気相部の FP 存在量の設定	 ・サプレッション・プールの pH 調整効果(有機よう素の 低減効果)を考慮しない ・無機よう素及び粒子状物質は CSE 実験の知見では数百 分の1以上の沈着効果が得られるが、50分の1の沈着 効果を設定 ・PCV 内で沈着する FP のほとんどは S/P に移行すると考 えられるが、5%は空間線量に寄与するものとして気相 部存在量に加算して設定
PCV 内の積算放射線量の算出	 ・サブマージョンモデルにおける評価は、ドライウェル 又はサプレッション・チェンバと等価な体系をモデル 化し評価しているが、原子炉圧力容器等構造物による 遮へい効果は考慮していない ・ドライウェルの線量評価の保守性 PCV 内気相部に存在する FP が全てドライウェルに存在 するものして評価 ・サプレッション・チェンバの線量評価の保守性 PCV 内で沈着する FP 全量がサプレッション・プールに 移行するものとして、サプレッション・プールに内包 する放射性物質からの線量寄与を考慮*
PCV から R/B への FP 放出量の設定	 ・R/B へ漏えいする FP は, PCV 内の放射線環境条件で保守的に想定した PCV 内気相部に存在する FP を想定 ・格納容器圧力 620kPa[gage]及び格納容器温度 200℃を想定した場合の原子炉格納容器の漏えい率 1.3 %/日を包絡する値として 1.5 %/日一定の漏えい率を設定

表1 重大事故時における放射線環境条件設定の保守性

*:サプレッション・チェンバ内気相部に存在する FP からの線量評価に当たっては, FP が PCV 気 相部全域に一様に存在しているものとして積算放射線量を評価する。

耐火壁の溢水防止機能について

原子炉建屋原子炉棟に設置されている耐火壁は,全てが溢水防止機能を有している わけではなく,原子炉建屋原子炉棟地下1階,地上1階,地上2階,地上3階及び地 上4階に設ける東西を区画分離する耐火壁(下図参照)のみ溢水防止機能を有する。

これらの耐火壁は、火災耐久試験により確認した3時間以上の耐火能力だけでなく、 IS-LOCAや内部溢水の蒸気漏えいに対しても、バウンダリとしての機能を確保している。

EL.2.0 m

図 区画分離壁の配置図

図 区画分離壁の配置図

EL. 29.0 m

図 区画分離壁の配置図

添付資料3

主蒸気管破断事故起因の重大事故等時を考慮した場合の環境条件について

- 1. 主蒸気管破断事故(以下「MSLBA」という。)の PRA 及び有効性評価における取扱いについて
 - (1) PRA (内部事象運転時 PRA) 上の扱い
 - ・PRA における起因事象は、実際に発生した事象や安全評価における想定事象 (LOCA, MSLBA)を参考に、発生する可能性のある事象の想定として定めたもので ある。
 - ・MSLBA については、設計基準事故に分類されており、その発生頻度は事故事象相当のレベルであり、これは給水喪失などの過度事象と比較して十分に小さい。
 - ・また、MSLBAが発生し主蒸気隔離弁(以下「MSIV」という。)が閉止して原子炉隔離 に成功する事象は、過渡事象のうち隔離事象と分類される原子炉が隔離される事象 と成功基準が同じであるため、個別の起因事象として扱う必要はないものと整理し ている。
 - ・なお、MSLBA が発生し、MSIV による隔離に失敗する事象は、発生頻度の観点から、 PRA において考慮する必要がない事象として整理している。
 - (2) 有効性評価上の扱い
 - ・有効性評価においては、MSLBA が発生しMSIV 閉止による原子炉隔離に成功した場合については、炉心損傷防止の観点からより厳しい、原子炉スクラム前に原子炉冷却材インベントリが減少する給水喪失を起因とする事象を選定している。
 - ・なお、MSLBA が発生し、MSIV による隔離に失敗する事象は、PRA 上の扱いと同様に 考慮する必要がない事象として整理している。

上記のように、PRA(内部事象運転時PRA)及び有効性評価の起因事象においては、MSLBA は発生頻度、事故進展の観点から個別の起因事象として扱う必要のないものとして整理し ている。

2. MSLBA に伴う環境条件への影響について

設計基準事故に伴う環境条件への影響については従来より, MSLBA 等を考慮して環境条件 として設定されており,設計基準事故時に必要な設計基準対象施設については,当該事故時 の環境条件を考慮した設計としている。

また,重大事故等対処施設に適用する環境条件についても,考慮する事象に応じて適切に 環境条件を設定し,当該事象に必要な重大事故等対処施設はその環境条件を満足する設計 とする。

なお,原子炉建屋原子炉棟内の圧力条件(ブローアウトパネル開放設定値を考慮して大気 圧相当)については変更とはならない。

3. MSLBA 起因の重大事故等時の事象進展及び期待する主な設備について

設計基準の MSLBA 及び MSLBA 起因の重大事故等時の事象進展を表1に示す。MSLBA 起因の重大事故等時は、設計基準の MSLBA から原子炉注水機能が喪失することにより、重大事故に進展することが考えられる。

また、MSLBA 起因の重大事故等時に期待する設備は表2のとおりであり、MSLBA 時に環境条件が厳しくなる原子炉建屋原子炉棟内に設置する機器(例:格納容器圧力逃がし装置に向かう配管)が存在する。

事象	事象進展	機能喪失する 主な設備
設計基準の MSLBA	MSLBA 発生⇒ブローアウトパネル開放 ⇒主蒸気隔離弁閉止開始 ⇒原子炉スクラム ⇒高圧注水系による原子炉注水成功	
MSLBA 起因の重大 事故に至るおそ れがある事故	 MSLBA 発生⇒ブローアウトパネル開放 ⇒主蒸気隔離弁閉止開始 ⇒原子炉スクラム ⇒高圧注水系・低圧注水系による原子炉注水失敗 ⇒逃がし安全弁(自動減圧機能)による原子炉減圧 ⇒低圧代替注水系(常設)による原子炉注水 ⇒代替格納容器スプレイ冷却系(常設)による格納容器(以下「PCV」という。)冷却 ⇒格納容器圧力逃がし装置(又は耐圧強化ベント系)による PCV 除熱 	 ・高圧炉心スプレイ系 ・原子炉隔離時冷却系 ・残留熱除去系(低圧注 水機能含む) ・低圧炉心スプレイ系
MSLBA 起因の重大 事故	 MSLBA 発生⇒ブローアウトパネル開放 ⇒主蒸気隔離弁閉止開始 ⇒原子炉スクラム ⇒高圧注水系・低圧注水系による原子炉注水失敗 ⇒逃がし安全弁(自動減圧機能)による原子炉減圧 (DCH 防止) ⇒代替循環冷却系による PCV 除熱 ⇒代替格納容器スプレイ冷却系(常設)による PCV 冷却 ⇒格納容器下部注水系(常設)によるペデスタル (ドライウェル部)注水 ⇒可搬型窒素供給装置による PCV 内への窒素注入 ⇒格納容器圧力逃がし装置による可燃性ガス排出 その他,被ばく低減のための原子炉建屋ガス処理 系の起動,静的触媒式水素再結合装置による原子 炉建屋原子炉棟内の水素処理を実施 	 高圧炉心スプレイ系 原子炉隔離時冷却系 残留熱除去系(低圧注 水機能含む) 低圧炉心スプレイ系 低圧代替注水系(常 設)(原子炉注水機能)

表1 MSLBA の事象進展

表2 MSLBA 起因の重大事故等時に期待する主な設備

事象	期待する設備
	 ・主蒸気隔離弁 ・逃がし安全弁(安全弁機能) ← 圧力制御
MSLBA 起因の重大	・逃がし安全弁(自動減圧機能)←急速減圧(手動)
事故に至るおそ	・低圧代替注水系(常設) ・代替格納容器スプレイ冷却系(常設)
れがある事故	・格納容器圧力逃がし装置(又は耐圧強化ベント系)
	・必要な電源、計装設備
MSLBA 起因の重大 事故	・主蒸気隔離弁 ・逃がし安全弁(安全弁機能)←圧力制御
	・逃がし安全弁(自動減圧機能)←急速減圧(手動)
	・代替循環冷却系 ・代替格納容器スプレイ冷却系(常設)
	・格納容器下部注水系(常設) ・可搬型窒素供給装置
	・格納容器圧力逃がし装置 ・原子炉建屋ガス処理系
	・静的触媒式水素再結合装置
	・必要な電源、計装設備
4. MSLBA 起因の重大事故等時の環境条件について

1. に記載のとおり、MSLBA 発生時は原子炉建屋原子炉棟内全域に原子炉圧力容器(以下 「RPV」という。)内の大量の蒸気が流出するため、原子炉建屋原子炉棟内全域の環境条 件(温度及び湿度)が最も厳しくなる事象である。したがって、MSLBA 起因の重大事故等 時を考慮することにより、原子炉建屋原子炉棟内の温度及び湿度の条件が変更となる。 具体的な条件としては表3のとおりである。

項目	変更前	変更後	備考
温度	原則として 65.6℃	主蒸気管トンネル室 (図 1) 事象発生~1 時間:171℃ 1時間~2時間:100℃ 2時間~7日間:65.6℃ 主蒸気管トンネル室外 事象発生~2時間:100℃ 2時間~7日間:65.6℃	 ▶ 171℃ RPV 内の蒸気が大気圧条件下に流出した場合の最高温度 蒸気が大気圧条件下に流出することにより,瞬時に飽和温度(100℃)以下となると考えられるが,保守的に事象発生後1時間まで,171℃の温度状態が継続するものとして設定。 ▶ 100℃ 大気圧条件下での飽和温度 ブローアウトパネル開放による外気への蒸気の放出に伴い,建屋内温度は下記室温(65.6℃)までに低下するものと考えられるが,保守的に事象発生後2時間まで100℃の温度状態が継続するものとして設定。 ▶ 65.6℃ MSLBA を考慮しない場合の最高室温に余裕を考慮した値(設計基準の条件と同じ)
湿度	原則として 湿度 100%	 主蒸気管トンネル室 (図 1) 約 171℃~100℃の場合 (事象発生~2 時間): 100% (蒸気) 65.6℃の場合 (2 時間~7 日間): 100% 主蒸気管トンネル室外 100℃の場合 (事象発生~2 時間): 100% (蒸気) 65.6℃の場合 (2 時間~7 日間): 100% 	 > 蒸気条件 100℃以上の場合は、過熱又は飽和状態のため蒸気条件として設定 > 湿度条件 変更前と同じ

表3 原子炉建屋原子炉棟内の温度及び湿度の条件

図1 主蒸気管トンネル室の位置

また,表3の温度条件を設定するに当たり,参考として簡易モデルによる主蒸気管破断 事故時における原子炉建屋内の温度評価を行い,表3で設定した温度条件との比較を行っ た。温度評価モデル(エネルギー保存式より原子炉建屋内温度を評価)のイメージを図2, 評価条件を表4,評価結果を図3に示す。

衣 4 · 计顺朱件					
パラメータ	記号	値	単位	備考	
原子炉建屋内圧力	P _{RB}	101 205	I-D-	十层正	
外気圧力	PEnv	101.325	KPa	人风庄	
原子炉建屋内の気体分子量	M _{RB}	20 07	~ /mol	「「「「「」」」」」。 「「」」」 「「」」 「」」 「」」 「」」 「」」	
外気の気体分子量	MEnv	20.91	g/ moi	原于炉建産的は床り的に至风と忽足りる	
気体定数	R	8.31	J⁄molK		
外気温度	T_{Env}	40	°C		
流出係数	С	0.6	_	Brown ^[1] の試験より得られたオリフィス 形状の場合の流出係数の値(0.6から 0.98の範囲)の下限値を設定	
ブローアウトパネルの幅	W	3.965	m		
ブローアウトパネルの高さ	H	3.966	m		
重力加速度	g	9.8	m/s^2		
原子炉建屋内の体積	V	81000	m ³	原子炉建屋の容積に余裕をみた値	
ブローアウトパネル枚数	п	3	枚		
原子炉建屋内の気体の定圧 比熱	C _{P_RB}	 原子炉建 め 評価	屋内と外気	の物性値は保守的に同じと仮定するた	
外気の定圧比熱	C_{P_Env}				
原子炉建屋内の初期温度	$T_{RB}(O)$	100	°C	大気圧条件下での飽和温度	

表 4 評価条件

 Brown, W.G., and K.R. Solvason, Natural Convection Through Rectangular Openings in Partitions -1:Vertical Partitions, Int. J. Heat mass Transfer, Vol. 5, p859-868, 1962

図3 簡易モデルによる主蒸気管破断事故時の原子炉建屋温度評価

図3に示すとおり,簡易モデルによる評価では主蒸気管破断事故発生時点から1時間経 過した時点で,原子炉建屋の温度は65.6℃を下回っており,表3の環境条件については保 守的に設定されていることを確認した。

なお,原子炉建屋原子炉棟内の圧力条件(ブローアウトパネル開放設定値を考慮して大 気圧相当)については,変更とはならない。

また,原子炉建屋原子炉棟内の放射線条件(原則として 1.7kGy) については,炉心が損傷し放射性物質が PCV 気相部に充満している PCV 内の状態において,0.62 MPa[gage]以上

の圧力での PCV の漏えい率を保守的に想定し,事故後7日間での原子炉建屋原子炉棟内の 積算線量(約1.5kGy)を評価した上で,この結果を包絡する条件として設定している。MSLBA 発生から主蒸気隔離弁閉止まで流出する蒸気に含まれる放射性物質による放射線影響は 軽微であり,MSLBA 起因の重大事故等を考慮しても原子炉建屋原子炉棟内の放射線条件は 変更とはならない。

その他建屋の環境条件について

原子炉建屋以外の建屋等及び地中の配管トレンチについて、環境条件及び考慮内容を示す。

記案担記	琝	覺境条件(重大≣	事故等対処設備	記中上の表慮	
設直場所 	圧力	温度	湿度	放射線	設定上の考慮
	原	原子炉棟以外の	建屋等		
緊急時対策所建屋	大気圧	40 °C	90 %	3 Gy/7日	空調設計より設定
常設代替高圧電源装置置場(地上階)	大気圧	40 °C	100 %	3 Gy/7日	屋外と同じ環境条件を設定
常設代替高圧電源装置置場(地下階)	大気圧	40 °C	90 %	3 Gy/7日	空調設計より設定
格納容器圧力逃がし装置格納槽	大気圧	66 ℃	100 %	98 kGy/7日	温度:格納容器圧力逃がし装置からの発熱 を考慮して設定 放射線:格納容器圧力逃がし装置からの線 量を考慮して設定
常設低圧代替注水系ポンプ室	大気圧	66 °C	100 %	3 Gy/7日	空調設計より設定
緊急用海水ポンプピット	大気圧	66 °C	90 %	3 Gy/7日	温度:ポンプからの発熱を考慮して設定
常設代替高圧電源装置用カルバート(立坑部)	大気圧	40 °C	100 %	3 Gy/7日	屋外と同じ環境条件を設定
		地中の配管トレ	レンチ		
常設代替高圧電源装置用カルバート(トンネル部)	大気圧	40 °C	100 %	3 Gy/7日	屋外と同じ環境条件を設定
常設代替高圧電源装置用カルバート(カルバート部)	大気圧	40 °C	100 %	3 Gy/7日	屋外と同じ環境条件を設定
格納容器圧力逃がし装置用配管カルバート	大気圧	66°C	100 %	98 kGy/7日	格納容器圧力逃がし装置格納槽と同じ環境 条件を設定
常設低圧代替注水系配管カルバート	大気圧	40 °C	100 %	3 Gy/7日	屋外と同じ環境条件を設定

格納容器雰囲気放射線モニタの環境条件の設定方法について

1. はじめに

格納容器雰囲気放射線モニタは、原子炉格納容器の外面にドライウェル側とサプレッション・チェンバ側に2 個ずつ設置している(図1参照)。これらは、原子炉格納容器壁 面から温度の影響を受けやすい場所にあるため、原子炉格納容器壁面温度が最も高くな ると考えられる場合を格納容器雰囲気放射線モニタの環境温度として保守的に設定する。

なお、格納容器雰囲気放射線モニタの環境圧力及び環境湿度については、設置場所が原 子炉建屋原子炉棟内であることから、原子炉建屋原子炉棟内の環境条件である大気圧相 当及び100 %とする。また、環境放射線量については、格納容器内からの直接線の影響 を考慮し、格納容器内の環境条件である640 kGy を保守的に設定する。

以下では、格納容器雰囲気放射線モニタの環境温度の設定について考え方を示す。

- (1) 様々なシーケンスを想定した場合の格納容器雰囲気放射線モニタの環境温度について
- (i) 格納容器雰囲気放射線モニタ(ドライウェル側) について

格納容器雰囲気放射線モニタ(ドライウェル側)(以下「CAMS (D/W)」と いう。)の環境温度は,設置場所の関係から,D/W壁面温度に近接することが考え られる。このため、CAMS (D/W)の環境温度が厳しくなる事象としては,L OCA破断口からの蒸気流出に伴いD/Wの温度が上昇する事象である、大破断L OCAの発生により原子炉水位が低下し炉心損傷に至る事故が考えられる。ただし、 当該重大事故発生時においても、代替格納容器スプレイ冷却系による格納容器スプ レイ等の実施により、原子炉格納容器を冷却することから、D/W壁面温度は原子 炉格納容器の限界温度である 200 ℃を超えることはない。

以上を踏まえ,様々なシーケンスを想定した場合のCAMS(D/W)の環境温度は,200℃を設定する。

表1 CAMS (D/W)の環境温度

シーケンス	環境温度の設定方法	環境温度
大破断LOCAの発生に	設置場所の関係から, D	200 °C
より炉心損傷に至る事故	/W壁面温度を設定	200 C

(ii) 格納容器雰囲気放射線モニタ(サプレッション・チェンバ側)について
 格納容器雰囲気放射線モニタ(サプレッション・チェンバ側)(以下「CAMS(S
 /C)」という。)の環境温度は、設置場所の関係から、S/C壁面温度に近接する

ことが考えられる。このため、CAMS (S/C)の環境温度が厳しくなる事象と しては、以下に示す①原子炉停止機能喪失の発生により炉心損傷に至るおそれがあ る事故、若しくは②大破断LOCA又は過渡事象の発生により炉心損傷に至る事故 が考えられる。

- ①原子炉停止機能喪失の発生により炉心損傷に至るおそれがある事故では、原子 炉スクラムの失敗により、原子炉出力が高く維持された状態での原子炉圧力容 器内の高温・高圧の蒸気が、逃がし安全弁(安全弁機能)を通して、直接S/ Cプール水に排出されることで、S/Cプール水温度が上昇する。
- ②大破断LOCA又は過渡事象の発生により炉心損傷に至る事故では、LOCA 破断口からD/Wに流出した蒸気がベント管を通じて、又は原子炉圧力容器内 の蒸気が逃がし安全弁を通じてS/Cへ排出されることにより、S/Cプール 水温度が、①に比べて緩慢に上昇する。

これらの事象のうち、②については、当該重大事故発生時においても、代替循環 冷却系又は格納容器圧力逃がし装置により原子炉格納容器の温度上昇の抑制を図 ることから、S/P水温度が①の事故に比べて上昇することはない。

一方,①については,原子炉スクラム失敗後に原子炉出力が高く維持された状態 が仮に継続した場合,残留熱除去系による除熱の容量を超える熱量が供給されるた め,S/P水温度の上昇の観点で厳しい事象となる。

以上を踏まえ、様々なシーケンスを想定した場合のCAMS(S/C)の環境温 度については、「原子炉停止機能喪失」の重大事故等時において、より原子炉出力が 高く維持されることとなる、電動駆動給水ポンプのトリップ条件を復水器ホットウ ェル枯渇とした場合の感度解析*を想定し、このときのS/Cプール水温度の最高 温度 148 ℃を保守的にS/C壁面温度として扱い、環境温度として設定する(図 2 参照)。

なお、CAMS (D/W) の環境温度が最も高くなる事象において、CAMS (S /C) の環境温度は 148 ℃を下回ることを、解析結果より確認している。

シーケンス	環境温度の設定方法	環境温度
「原子炉停止機能喪失」 のうち,電動駆動給水ポ ンプのトリップ条件を復 水器ホットウェル枯渇と した場合の感度解析*	設置場所の関係から, S /Cプール水温度を設定	148 °C

表2 CAMS (S/C) の環境温度

注記 *: 原子炉停止機能喪失の有効性評価では、電動駆動給水ポンプのトリップ時刻がサプレ ッション・プール水温度等の評価結果に与える影響を確認する目的で、保守的に復水 器ホットウェル水位の低下で電動駆動給水ポンプがトリップせずに復水器ホットウェ ルが枯渇するまで運転を継続するとした場合の感度解析を実施している。

図1 格納容器雰囲気放射線モニタ配置図(1/2)

図1 格納容器雰囲気放射線モニタ配置図(2/2)

図2 サプレッション・プール水温度及び格納容器圧力の推移(長期)

熱収支等により環境温度を設定するエリアの設定方法について

環境温度の個別設定の考え方としては,各エリアの隣接エリアの温度条件及び内部発熱量(ポ ンプ,電気盤,配管等の発熱量)を考慮し,また,空調設備の期待の有無を踏まえ,熱伝達工学 に基づく室温評価を基に環境温度を設定している。

a. 隣接エリアの温度条件

原子炉格納容器外の建屋内の重大事故等対処設備に対する環境条件設定に関して,隣接エ リアとの熱収支を考慮した環境条件を設定している。例えば,原子炉建屋原子炉棟について は,原子炉格納容器外壁との熱収支を,原子炉建屋付属棟(電気室等)については,原子炉 建屋原子炉棟外壁との熱収支を,考慮している。

b. 内部発熱量

原子炉格納容器外の建屋内の重大事故等対処設備に対する環境条件設定に関して,当該設備を設置するエリアにポンプ,電気盤,配管等の熱源があり,それらの発熱の影響を受ける 設備は,それら発熱の影響を考慮した環境条件を設定している。

例:(格納容器圧力逃がし装置格納槽)

重大事故等時における温度を包絡する環境条件として,保守的に原子炉格納容器圧力 が限界圧力である 0.62 MPa [gage]時にベントを実施することを仮定し,各部位(入口 配管,フィルタ装置及び出口配管)の系統内部流体温度をその場合における飽和温度と 想定し熱源として考慮(参考1)。

c. 空調設備

原子炉格納容器外の建屋内の重大事故等対処設備に対する環境条件設定に関して,当該設 備又は当該設備を設置するエリアが,サポート系である空調設備により管理されている設備 は,空調設備の機能に期待した環境条件を設定している。

空調設備の機能に期待する重大事故等対処設備は,格納容器内雰囲気ガスサンプリング装置となる。また,空調設備の機能に期待するエリアは,水密扉等で区画化されている原子炉 建屋原子炉棟の一部エリア(高圧炉心スプレイ系ポンプ室及び残留熱除去系A系ポンプ

室),原子炉建屋付属棟内の一部エリア(中央制御室等を含む),原子炉建屋廃棄物処理棟の 一部エリア,常設代替高圧電源装置置場(地下階),常設低圧代替注水系ポンプ室,緊急用 海水ポンプピット及び緊急時対策所建屋となる。

環境温度維持のために使用する空調設備(チラーを含む。)は、以下の設計とすることに より、重大事故等時でも必要な機能を発揮できる設計とする。

・各空調設備(チラーを含む。)は、非常用交流電源設備、常設代替交流電源設備、可搬型代替交流電源設備又は緊急時対策所用発電機からの給電により駆動できる設計とする。

- ・既設の空調設備(チラーを含む。)は、通常運転時に使用する場合と同じ系統構成で重 大事故等時に使用することで、他の設備に悪影響を及ぼさない設計とする。新設の空調 設備(チラーを含む。)は、他の設備と独立して使用することで、他の設備に悪影響を 及ぼさない設計とする。
- ・各空調設備(チラーを含む。)は、空調の機能に期待する設備又はエリアにて設定した 環境温度以下に除熱できる容量を有する設計とする。除熱に用いる冷媒は、チラー設備 から供給する設計とする。
- ・各空調設備(チラーを含む。)は、火山の影響を考慮して必要によりフィルタの取替又 は清掃の措置を講じることで火山事象により機能が損なわれない設計とするとともに、 基準地震動S_sによる地震力に対して機能を損なわない設計とする等、想定される重大 事故等時における設置場所の環境条件を考慮した設計とする。
- ・各空調設備(チラーを含む。)は、常時運転することで操作が不要な設計又は非常用炉 心冷却系のポンプ等、当該設備又はエリア内の設備の起動に伴って自動起動する設計と する。
- ・各空調設備(チラーを含む。)は,発電用原子炉の運転中又は停止中に機能・性能及び 外観の確認が可能な設計とする。

これらの空調設備の機能に期待している設備及びエリアを図1,空調設備(チラー含む) の配置概要図を図2に示す。

図1 空調設備に期待する設備及びエリア(1/7)

図1 空調設備に期待する設備及びエリア(2/7)

図1 空調設備に期待する設備及びエリア(3/7)

図1 空調設備に期待する設備及びエリア(4/7)

図1 空調設備に期待する設備及びエリア(5/7)

図1 空調設備に期待する設備及びエリア(6/7)

図1 空調設備に期待する設備及びエリア(7/7)

No	重大事故等対処設備	重大事故等対処設備の 機能維持に必要な 空調設備(新設)	重大事故等対処設備の 機能維持に必要な 空調設備(既設)	設備又はエリア
1	残留熱除去系ポンプ(A)		1	
2	高圧炉心スプレイ系ポンプ			
3	125V 系蓄電池A系			
4	125V 系蓄電池 B 系			
5	中性子モニタ用蓄電池A系			
6	中性子モニタ用蓄電池B系			
7	125V系蓄電池HPCS系			
8	直流 125V 主母線盤 2 A 電圧			
9	直流 125V 主母線盤 2 B 電圧			
10	直流 125V 主母線盤HPCS 電圧			
11	直流±24V 中性子モニタ用分電盤2A電 圧			
12	直流±24V 中性子モニタ用分電盤2B電 圧			
13	M/C 2D電圧			
14	P/C 2D電圧			
15	M/C 2C電圧			
16	P/C 2C電圧			
17	M/C HPCS電圧			
18	高圧炉心スプレイ系ディーゼル発電機			
19	2D非常用ディーゼル発電機			
20	2 C非常用ディーゼル発電機			
21	2C非常用ディーゼル発電機燃料油デイ タンク			
22	2D非常用ディーゼル発電機燃料油デイ タンク			
23	高圧炉心スプレイ系ディーゼル発電機燃 料油デイタンク			
24	緊急用 125V 系蓄電池			
25	フィルタ装置入口水素濃度			
26	緊急用MCC			
27	緊急用直流 125V 主母線盤			
28	緊急用M/C電圧			
29	緊急用P/C電圧			
30	緊急用直流 125V 主母線盤電圧			

表1 重大事故等対処設備の機能維持に必要な空調設備

No	重大事故等対処設備	重大事故等対処設備の 機能維持に必要な 空調設備(新設)	重大事故等対処設備の 機能維持に必要な 空調設備(既設)	設備又はエリア
31	格納容器內水素濃度 (SA)			
32	格納容器內酸素濃度 (SA)			
33	ATWS緩和設備(代替制御棒挿入機能)			
34	ATWS緩和設備(代替制御棒挿入機能) 手動スイッチ			
35	ATWS緩和設備(代替再循環系ポンプ トリップ機能)			
36	再循環系ポンプ遮断器手動スイッチ			
37	低速度用電源装置遮断器手動スイッチ			
38	自動減圧系の起動阻止スイッチ			
39	過渡時自動減圧機能			
40	逃がし安全弁用可搬型蓄電池			
41	衛星電話設備(固定型)			
42	緊急用電源切替盤			
43	安全パラメータ表示システム (SPDS)			
44	可搬型計測器(原子炉圧力容器及び原子 炉格納容器内の温度,圧力,水位及び流量 (注水量)計測用)			
45	可搬型計測器(原子炉圧力容器及び原子 炉格納容器内の圧力,水位及び流量(注水 量)計測用)			
46	中央制御室待避室差圧計			
47	衛星電話設備(可搬型)(待避室)	-		
48	データ表示装置(待避室)			
49	可搬型照明 (SA)			
50	酸素濃度計			
51	二酸化炭素濃度計			
52	使用済燃料プール監視カメラ用空冷装置			
53	中央制御室換気系空気調和機ファン			
54	中央制御室換気系フィルタ系ファン			
55	中央制御室換気系フィルタユニット			
56	常設低圧代替注水系ポンプ	I		
57	代替淡水貯槽水位			
58	緊急用海水ポンプ			
59	緊急用海水系ストレーナ			

No	重大事故等対処設備	重大事故等対処設備の 機能維持に必要な 空調設備(新設)	重大事故等対処設備の 機能維持に必要な 空調設備(既設)	設 <mark>備</mark> 又はエリア
60	酸素濃度計			
61	二酸化炭素濃度計			
62	緊急時対策所エリアモニタ			
63	統合原子力防災ネットワークに接続する 通信連絡設備 (テレビ会議システム, IP 電話, IP-FAX)			
64	衛星 <mark>電話</mark> 設備(固定型)			
65	安全パラメータ表示システム(SPDS)			
66	緊急時対策所非常用送風機			
67	緊急時対策所 <mark>非常</mark> 用フィルタ装置			
68	緊急時対策所加圧設備			
69	緊急時対策所用差圧計			
70	緊急時対策所用M/C電圧計			
71	データ伝送設備			
72	緊急時対策所用発電機			
73	緊急時対策所用発電機給油ポンプ			
74	軽油貯蔵タンク			
75	常設代替高圧電源装置燃料移送ポンプ			
76	緊急用M/C			
77	緊急用P/C			
78	緊急用MCC			
79	2C非常用ディーゼル発電機燃料移送ポ ンプ			
80	2D非常用ディーゼル発電機燃料移送ポ ンプ			
81	高圧炉心スプレイ系ディーゼル発電機燃 料移送ポンプ			
82	西側淡水貯水設備水位			

58

図2 空調設備に期待するエリア(建屋断面図 1/2)

59

図2 空調設備に期待するエリア(建屋断面図 2/2)

格納容器圧力逃がし装置格納槽の室温評価について

1. 評価の考え方

格納容器圧力逃がし装置格納槽は、図1の通りフィルタ装置設置エリアと移送ポンプ設置エリ アで構成されており、これらのエリアについて室温評価を行った。評価においては、室内の熱負 荷と室外(地中)への放熱を考慮し、評価を行っており、室外(地中)への放熱は、室内空間と コンクリートの間の熱伝達、コンクリート内部の熱伝導を考慮している。評価モデルの概念図を 図2に示す。

室内の温度上昇は、熱収支のバランスにより、以下の式で求められる。

 $\Delta T_{in} = (Q_1 - Q_2)/C$ ここで、 $\Delta T_{in} : 室内の温度上昇 (℃/s)$ $Q_1 : 室内の熱負荷 (W)$ $Q_2 : 室外への放熱 (W)$ C : 室内の空間の熱容量 (J/℃)

室内の熱負荷 Q_1 は,保温した配管等からの一般的な放散熱量の式より求められる。 $Q_1 = K(T_n - T_{in})L$ ここで、 $Q_1: 室内の熱負荷(W)$ K: 熱通過率(kcal / (m · h · ℃)) $T_n: 配管等の内部温度(℃)$ L: 配管長さ(m)

室内から室外への放熱Q2は、一般的な熱伝達及び熱伝導の式より求められる。

室内空間とコンクリートの間の熱伝達
 室内空間とコンクリートの間の熱伝達は、以下の熱伝達の式より算出している。

$$Q_2 = h(T_{in} - T_1)A$$

ここで,
 $Q_2 : 室内空間とコンクリートの間の熱伝達による入熱(W)$
 $h : 熱伝達係数(W/(m^{\circ} \cdot C))$
 $T_1 : コンクリート内側の表面温度(C)$
 $T_{in} : 室内空間の環境温度(C)$
 $A : 伝熱面積(m^{\circ})$

② コンクリート内部の熱伝導
 コンクリート内部の温度分布は、以下の一次元の非定常熱伝導方程式より算出している。

図1 格納容器圧力逃がし装置格納槽の概要図

* 入口配管,フィルタ装置及び出口配管を室温評価条件(表1)における 「室内の熱負荷」として考慮。

図2 室温評価の評価モデルの概念図

2. 評価条件

評価条件を表1にまとめる。

	項目		記号	値	単位	備考
室外の環境温度		Tout	20	°C	水戸市の地中温度に余裕を見た値を設 定。(「地中温度等に関する資料(農業気 象資料第3号,1982)」)	
室内の褚	刀期温度	: -	T _{in}	20	°C	通常運転時においては,室内に熱負荷がな いため,室外の環境温度の値を初期温度と して設定。
室内の熱負荷			Q_1	_	_	ベント実施時における入口配管,フィルタ 装置及び出口配管を熱負荷として考慮。 評価条件を表2に,熱負荷の算出結果を図 3に示す。
室内の空間の熱容量		С	1294. 2	kJ∕℃	保守的に室内の設備の熱容量を考慮せず, 空間内を全て空気と仮定して設定。 空間容積は,格納容器圧力逃がし装置格納 槽の形状を基に,約1080 m ³ と設定。	
コンクリートの 熱伝導率		λ	1.6	W∕ (m • ℃)	「空気調和・衛生工学便覧第14版」のコ ンクリートの値を設定。	
コンクリートの 熱拡散率)	α	7.0 $\times 10^{-7}$	m²∕s	「空気設計衛生工学便覧第12版」のコン クリートの値を設定。
熱伝達 係数	鉛値 水平 (上 水平 (下	重壁面 ^Z 壁面 向き) ^Z 壁面 向き)	h	3.1 3.6 0.4	W/ $(m^2 \cdot C)$	「伝熱工学資料第5版」の値を設定。
コンクリ の厚さ	ノート	天井 壁 床	t		m	格納容器圧力逃がし装置格納槽のコンク リート厚さを設定。
コンク の伝熱面	リート 面積	天井 壁 床	А	420. 3 78. 8	m²	格納容器圧力逃がし装置格納槽の地中と 接する面積を基に設定。

表1 格納容器圧力逃がし装置格納槽の室温評価における評価条件

百日	和旦	入口配管	フィルタ	出口配管①	出口配管②	出口配管③
坦日	記万	(450A)	装置	(350A)	(350A)	(600A)
劫`予'正交*1	V	2.692	0.286	2.057	2.057	3.400
款通迥罕	Ň	kcal/mh°C	kcal∕m²h℃	kcal/mh°C	kcal/mh°C	kcal∕mh℃
配管長さ,	т					
表面積						
内部温度						
(ベント実施~		$167^{\circ}\!\mathrm{C}^{*2}$	160°C * 2		$120^{\circ}C^{*2}$	
3時間後まで)						
内部温度	In	167℃から	160℃から			
(3時間後~		145℃へ線形	140℃へ線形	120°Cカ	ら 110℃へ線形に	こ推移*3

表2 評価において考慮する熱負荷

注記 *1: 配管径, 保温材外径, 保温材質等により各部位の熱通過率を算出

*2:格納容器圧力 2Pd 時における各部位の飽和温度

*3:格納容器圧力 2Pd 時における各部位の飽和温度から格納容器圧力 1Pd 時における各部位の 飽和温度へ線形に推移

図3 格納容器圧力逃がし装置格納槽内の熱負荷

3. 評価結果

2. の評価条件に基づき格納容器圧力逃がし装置格納槽の室温を評価した結果を図4に示す。

図4 格納容器圧力逃がし装置格納槽の室温評価結果

図4の室温評価結果を上回る温度として,格納容器圧力逃がし装置格納槽内に設置する設備の環 境温度として 66℃を設定する。 主蒸気管破断事故起因の重大事故等時に期待する設備への対応について

MSLBA 起因の重大事故等時に期待する設備のうち,環境条件が変更となる原子炉建屋原 子炉棟内の設備に対して,MSLBA 起因の重大事故等時の環境条件における健全性評価を行 い,対策が必要な設備の抽出を行った。

抽出の結果,第1表に示す設備に対して環境条件の変更に伴う対策を実施する。なお, 対策については、当該設備の主要な仕様、性能、強度及び耐震性に係る変更を伴うもので はない。

設備名	評価結果	対応方針
非常用窒素供給系高圧 窒素ボンベ	100℃での内部ガスの膨張を考 慮した結果、ボンベ本体は耐圧 試験圧力以下であることから 健全であると考えられるが、ボ	ボンベを厚さ 50mm 以上の断熱 材(けい酸カルシウム)で覆う ことにより, MSLBA 発生後の温 度環境(100℃(事象発生~2時
非常用逃がし安全弁駆 動系高圧窒素ボンベ	ンペ付属の容器用弁の安全装 置の作動圧力を超過するため, 安全装置が動作しボンベ内の ガスが流出してしまう可能性 がある。	間))においても,断熱材内側が 65.6℃以下に抑えられ,機能維 持が可能な設計とする。対策の 概念図を第1図に示す。
格納容器内水素濃度 (SA)	サンプリング装置は、100℃環 境下で機能を担保することが 難しく 環境試験を実施したと	サンプリング装置全体を厚さ 70mm 以上の断熱材(けい酸カル シウム)で覆うことにより, MSLBA 発生後の温度環境(100℃ (事象発生~2 時間))において も、断熱材内側が 65.6℃以下に 加えられ、燃鉄維持が可能な認
格納容器内酸素濃度 (SA)	無しく, 嫌視吶破を実施したとしても所定の機能を満足できない可能性がある。	加えられ、機能維持が可能な設 計とする。また、サンプリング装 置は発熱をするため、断熱材で 覆うと内部に熱が溜まることか ら、断熱材内部に空調を設置す る(添付資料8)。 対策の概念図を第3図に示す。

第1表 環境条件変更に伴い対策が必要な設備及び対応方針

1. 非常用窒素供給系高圧窒素ボンベ及び非常用逃がし安全弁駆動系高圧窒素ボンベの対 策について

<断熱材の厚さの考え方>

断熱材の厚さの考え方は、断熱材内部の初期温度40℃に対して断熱材外部からの入 熱100℃・2時間が与えられた時に、断熱材の内部温度が設備の耐性が確認された温 度である65.6℃以下となるために必要な厚さとする。

項目	値	備考
断熱材内部の初期温度	40°C	_
断熱材外部の環境温度	100°C	MSLBA 時の原子炉建屋原子 炉棟の温度
設備耐性が確認された温度	65. 6℃	_

<評価結果>

上記の温度条件をもとに、断熱材の厚さ 50mm で評価した結果を、第2図に示す。評価の結果、断熱材の厚さ 50mm 以上あれば、断熱材の内部温度を 65.6℃以下にすることが出来る。

第2図 非常用窒素供給系高圧窒素ボンベ及び非常用逃がし安全弁駆動系高圧窒素ボンベの断 熱材厚さの評価結果(断熱材外側:100℃・2時間,断熱材厚さ50mmの場合) 2. 格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA)の対策について

第3図 断熱材の対策概念図(格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA))

<断熱材の厚さの考え方>

断熱材の厚さの考え方は、断熱材内部の初期温度40℃に対して断熱材外部からの入 熱100℃・2時間が与えられた時に、断熱材の内部温度が設備の最高使用温度66℃以 下となるために必要な厚さとする。

項目	値	備考
断熱材内部の初期温度	40°C	_
断熱材外部の環境温度	100°C	MSLBA 時の原子炉建屋原子 炉棟の温度
設備耐性が確認された温度	66°C	—

<評価結果>

上記の温度条件をもとに、2 通りの断熱材の厚さ(60mm, 70mm)で評価した結果を、 第4図及び第5図に示す。評価の結果、断熱材の厚さ70mm以上あれば、断熱材の内部 温度を66℃以下にすることが出来る。

第4図 格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA)の断熱材厚さの 評価結果(断熱材外側:100℃・2時間,断熱材厚さ60mmの場合)

第5図 格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA)の断熱材厚さの 評価結果(断熱材外側:100℃・2時間,断熱材厚さ70mmの場合)

断熱材厚さの評価の考え方及び評価条件

1. 断熱材厚さの評価の考え方

断熱材厚さの評価モデルの概念図を図1に示す。評価においては、断熱材内の熱負荷と 断熱材外からの入熱を考慮し、評価を行っており、断熱材外からの入熱は、外部の空間と 断熱材との熱伝達、断熱材内部の熱伝導、断熱材と断熱材内部の空間との熱伝達を考慮し ている。

断熱材内部の空間の温度上昇は、熱収支のバランスにより、以下の式で求められる。

 $\Delta T_{in} = (Q_1 + Q_2)/C$

ここで,

 ΔT_{in} : 断熱材内部の空間の温度上昇 (C / s)

- Q1: 断熱材内の熱負荷(W)
- *Q*₂: 断熱材外からの入熱(W)
- $C: 断熱材内部の空間の熱容量 (J <math>\nearrow C$)

断熱材外からの入熱Q2は、一般的な熱伝達及び熱伝導の式より求められる。

 外部の空間と断熱材の間の熱伝達及び断熱材と断熱材内部の空間との熱伝達 外部の空間と断熱材の間の熱伝達及び断熱材と断熱材内部の空間との熱伝達は、以下の熱伝達の式より算出している。

外部の空間と断熱材の間の熱伝達: $Q'_2 = h(T_{out} - T_1)A$ 断熱材と断熱材内部の空間との熱伝達: $Q_2 = h(T_2 - T_{in})A$ ここで,

- Q': 外部空間と断熱材との熱伝達による入熱(W)
- Q2: 断熱材と断熱材内部の空間との熱伝達による入熱(W)
- *h*:熱伝達係数(W/(m²・℃))
- Tout: 断熱材外部の空間の環境温度(℃)
- *T*₁:断熱材外側の表面温度(℃)
- *T*₂:断熱材内側の表面温度(℃)
- *T_{in}*:断熱材内部の空間の環境温度(℃)
- A: 伝熱面積 (m²)

② 断熱材内部の熱伝導

断熱材内部の温度分布は、以下の一次元の非定常熱伝導方程式より算出している。

$$\frac{dT}{dt} = \alpha \frac{d^2T}{dx^2}$$
ここで、
$$T : 温度 (C)$$

$$t : 時間 (s)$$

$$\alpha : 断熱材の熱拡散率 (m² / s)$$

$$x : 断熱材内部の位置 (m)$$

* 非常用窒素供給系高圧窒素ボンベ及び非常用逃がし安全弁駆動系高圧窒素ボンベの評価においては窒素ボンベを、格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA)の評価においてはサンプリング装置を室温評価条件(表1及び表2)における「断熱材内の熱負荷」として考慮。

図1 断熱材厚さの評価モデルの概念図
2. 評価条件

評価条件を表1及び表2にまとめる。

	表 1	非常用窒素供給系高圧窒素ボン	ベ及び非常用逃がし安全弁駆動系高圧窒素ボンベ
--	-----	----------------	------------------------

項目	記号	値	単位	備考
断熱材内部の初期温 度	T_{in}	40	°C	通常運転時における原子炉建屋 原子炉棟の最高温度
断熱材外部の環境温 度	$T_{\rm out}$	100	°C	MSLBA 時の原子炉建屋原子炉棟の 温度
断熱材内の熱負荷	Q_1	0	W	ボンベは発熱しない
断熱材内の空間の熱 容量	С	6. 8	kJ∕℃	保守的に断熱材内の設備の熱容 量を考慮せず,空間内を全て空気 と仮定して設定 空間容積は,ボンベ及びボンベラ ックの形状を基に,約6.5 mと設 定
断熱材の伝熱面積	А	19.4	m²	ボンベ及びボンベラックの形状 を基に設定
断熱材の熱伝導率	λ	0.13	₩⁄ (m • °C)	「伝熱工学資料第5版」のけい酸 カルシウムの値を設定
断熱材の熱拡散率	α	2.2 $\times 10^{-7}$	m²∕s	「伝熱工学資料第5版」のけい酸 カルシウムの値を設定
熱伝達係数	h	9. 0	$W/$ $(m^2 \cdot C)$	「空気調和・衛生工学便覧第 14 版」の値を設定

項目	記号	値	単位	備考
断熱材内部の初期温 度	T_{in}	40	°C	通常運転時における原子炉建屋 原子炉棟の最高温度
断熱材外部の環境温 度	$T_{\rm out}$	100	°C	MSLBA 時の原子炉建屋原子炉棟の 温度
断熱材内の熱負荷	Q_1		W	サンプリング装置の計測モード 時における発熱量を設定
断熱材内の空間の熱 容量	С	12. 5	kJ∕℃	保守的に断熱材内の設備の熱容 量を考慮せず,空間内を全て空気 と仮定して設定 空間容積はサンプリング装置の 形状を基に,約12 m ² と設定
断熱材の伝熱面積	А	28. 1	m²	サンプリング装置の形状を基に 設定
断熱材の熱伝導率	λ	0.13	₩∕ (m • °C)	「伝熱工学資料第5版」のけい酸 カルシウムの値を設定
断熱材の熱拡散率	α	2.2 $\times 10^{-7}$	m²∕s	「伝熱工学資料第5版」のけい酸 カルシウムの値を設定
熱伝達係数	h	9. 0	$W/$ $(m^2 \cdot C)$	「空気調和・衛生工学便覧第 14 版」の値を設定

表2 格納容器内水素濃度(SA)及び格納容器内酸素濃度(SA)

格納容器内雰囲気ガスサンプリング装置の空調について

1. 概要

格納容器内雰囲気ガスサンプリング装置の空調(以下「サンプリング装置の空調」とい う。)は、図1のとおり断熱材内部に空調機を設置し、格納容器内雰囲気ガスサンプリング 装置(以下「サンプリング装置」という。)に空気を供給する。サンプリング装置の空調の 冷却水は、屋外に新設する冷凍機及び冷水ポンプから供給し空調機内にて空気との熱交換 を行う。

サンプリング装置の空調は,空調機を2個設置し,空調機は1個で必要容量 kW以上 を有する。

サンプリング装置の空調は常設設備とすることに加え、駆動源である電源及び冷却水も 常設設備とすることにより常時運転可能な設計とする。

図1 格納容器内雰囲気ガスサンプリング装置の空調の概略構成図

- 1.1 格納容器内雰囲気ガスサンプリング装置の空調の必要容量
 - (1) サンプリング装置空調の設置目的

サンプリング装置の空調は、サンプリング装置に設置する断熱材*1の内部機器からの発熱を除熱*2することで、断熱材内部の雰囲気温度をサンプリング装置の最高使用 温度である 66 ℃以下に維持するために設置する。

- *1:断熱材は、主蒸気管破断事故の対策として設置する。主蒸気管破断事故により原 子炉建屋原子炉棟の雰囲気温度が事象発生~2時間まで100 ℃,2時間~7日間 まで65.6 ℃となり、事象発生~2時間の期間はサンプリング装置の最高使用温 度66 ℃を超えるため、サンプリング装置を断熱材で覆いサンプリング装置の機 能維持を図る。断熱材については、添付資料7「主蒸気管破断事故起因の重大事故 等時に期待する設備への対応について」に示す。
- *2:事象発生~2 時間の期間は断熱材によりサンプリング装置の機能維持を図るが、 サンプリング装置を断熱材で覆うとサンプリング装置からの発熱により断熱材内 部に熱が溜まる。これにより、2時間~7日間の期間において断熱材内部の雰囲気 温度がサンプリング装置の最高使用温度 66 ℃を超える可能性があるため、断熱 材の内部機器からの発熱を除熱する必要がある。
- (2) サンプリング装置の空調の必要容量

サンプリング装置の発熱量が kW であることから、サンプリング装置の空調の 必要容量(冷却容量)は kW 以上とする。なお、サンプリング装置の空調の公称 値は、サンプリング装置の空調の発熱量 0.75 kW を考慮しても必要容量を上回る 5.1 kW とする。

なお、サンプリング装置の空調の冷却容量は、空調機に通水する冷却水量によって 性能が担保される。5.1 kWの冷却容量の性能を発揮するために必要な冷却水量は、 以下の式のとおり 0.9 m³/h である。

V = Q×3600 (T2-T1) × c× ρ = 5.1×3600 (12-7) × 4.18×1000 = 0.88 m³/h ここで, V : 冷却水量 (m³/h) Q : 冷却容量 (kW) T1: 冷却水入口温度 (℃) T2: 冷却水出口温度 (℃) C : 水の比熱 (kJ/kg℃) ρ : 水の密度 (kg/m³) 1.2 サンプリング装置の空調の冷却水について

サンプリング装置の空調の冷却水は、屋外に新設する冷凍機及び冷水ポンプから供給する。冷凍機及び冷水ポンプは、サンプリング装置の空調に加えて原子炉建屋廃棄物処理棟の空調機へ冷却水を供給しており、表1のとおり負荷容量に対して余裕のある設計とする。

設備	設備仕様	負荷容量	備考
冷凍機	106.0 kW	5.1 kW×2台 で10.2 kW	サンプリング装置の空調
		約 75 kW	原子炉建屋廃棄物処理棟の空調
冷水 ポンプ	18.3 m³/h	0.9 m³/h×2台 で1.8 m³/h	サンプリング装置の空調
		約 13 m³/h	原子炉建屋廃棄物処理棟の空調

表1 冷凍機及び冷水ポンプの設備仕様及び負荷容量

図2 空調の冷却水の系統概要図

原子炉格納容器外の建屋内(原子炉建屋原子炉棟内)において個別に放射線環境条件を設定する エリアの設定方法について

原子炉建屋原子炉棟は、原則として一律1.7kGyを設定するが、当該重大事故緩和設備を設置するエリアが放射線源付近であり、重大事故時に1.7kGyを超える恐れのあるものは、以下に示すとおり個別に確認した値を環境放射線として設定する。

- ・放射線環境条件を設定する上で代表性のある事故シナリオを想定し、原子炉建屋原子炉棟内における放射線源(代替循環冷却系配管、原子炉建屋ガス処理系フィルタ等)の線量評価を行い、評価結果以上の線量を当該エリアにおける環境条件として設定する。
- ・また,放射線環境条件を設定する上で,放射線源と対象となる重大事故緩和設備との位置関 係を考慮し,必要に応じて距離による放射線の減衰効果を考慮する。

原子炉格納容器外の建屋内(原子炉建屋原子炉棟)において,個別に放射線環境条件を設定する エリアの詳細な設定方法について,図1~図2に示す。また,個別に放射線環境条件を設定するエ リアを図3に示す。

原子炉建屋原子炉棟内における線源(代替循環冷却系配 管)付近の環境条件に該当(計装設備を除く) : (100kGy/7日間)

図1 重大事故時における原子炉建屋原子炉棟内の線源(代替循環冷却系配管 等)付近の 重大事故等対処設備(計装設備を除く)に対する環境条件設定のフロー図

図2 重大事故時における原子炉建屋原子炉棟内の線源(代替循環冷却系配管,格納容器圧力 逃がし装置配管等)付近の重大事故等対処設備(計装設備(伝送器))に対する

環境条件設定のフロー図

原子炉建屋原子炉棟内における線源付近の環境条件に該当 (格納容器内水素濃度(SA),格納容器内酸素濃度(SA)) : (20kGy/7日間)

図3 重大事故時における原子炉建屋原子炉棟内の線源(格納容器内雰囲気ガスサンプリング装置 配管)付近の重大事故等対処設備(格納容器内水素濃度(SA),格納容器内酸素濃度(SA))に 対する環境条件設定のフロー図

*2:非常用ガス処理系排風機,非常用ガス再循環系排風機

図4 重大事故時における原子炉建屋原子炉棟内の線源(原子炉建屋ガス処理系フィルタ)付近の 重大事故等対処設備に対する環境条件設定のフロー図

表1	重大事故時におけ	る代替循環冷却系配管の線源強度

代表エネルギ	7日間積算線源強度
(Mev)	(cm^{-3})
0.01	約 4.5E+13
0.025	約 1.0E+14
0.0375	約 2.8E+13
0.0575	約 1.9E+13
0.085	約 1.7E+13
0.125	約 1.9E+13
0.225	約 1.5E+14
0.375	約 3.9E+14
0.575	約 1.2E+15
0.85	約 6.4E+14
1.25	約 1.9E+14
1.75	約 2.7E+13
2.25	約 9.4E+12
2.75	約 2.4E+11
3. 5	約 9.7E+08
5	約 4.5E+02
7	約 5.2E+01
9.5	約 6.0E+00

表2 重大事故時における格納容器内水素濃度(SA),格納容器内酸素濃度(SA)配管の 線源強度

代表エネルギ	7日間積算線源	[強度 (cm ⁻³)
(Mev)	浮遊線源	付着線源
0.01	約 2.6E+13	約 1.1E+16
0.025	約 1.6E+13	約 2.3E+16
0.0375	約 2.1E+14	約 6.0E+15
0.0575	約 1.6E+12	約 4.1E+15
0.085	約 1.9E+14	約 3.3E+15
0.125	約 1.4E+12	約 4.6E+15
0.225	約 7.9E+13	約 3.2E+16
0.375	約 2.7E+13	約 6.3E+16
0.575	約 7.7E+13	約 1.9E+17
0.85	約 4.0E+13	約 1.1E+17
1.25	約 1.2E+13	約 3.1E+16
1.75	約 3.0E+12	約 5.1E+15
2.25	約 4.7E+12	約 1.5E+15
2.75	約 3.1E+11	約 6.3E+13
3.5	約 9.9E+09	約 1.1E+12
5	約 1.2E+02	約 4.8E+05
7	約 1.4E+01	約 5.6E+04
9.5	約 1.6E+00	約 6.4E+03

表3 重大事故時における非常用ガス処理系フィルタの線源強度

代表エネルギ	7日間積算線源強度
(Mev)	(cm^{-3})
0.01	約 1.9E+14
0.025	約 4.1E+14
0.0375	約 1.1E+14
0.0575	約 6.5E+13
0.085	約 9.4E+13
0.125	約 6.5E+13
0.225	約 6.1E+14
0.375	約 2.3E+15
0.575	約 4.9E+15
0.85	約 2.8E+15
1.25	約 6.2E+14
1.75	約 6.5E+13
2.25	約 3.8E+13
2.75	約 1.4E+12
3.5	約 3.9E+09
5	約 9.0E+03
7	約 1.0E+03
9.5	約 1.2E+02

図5 個別に環境放射線を設定するエリア(1/7)

図5 個別に環境放射線を設定するエリア(2/7)

図5 個別に環境放射線を設定するエリア (3/7)

図5 個別に環境放射線を設定するエリア(4/7)

図5 個別に環境放射線を設定するエリア(5/7)

図5 個別に環境放射線を設定するエリア(6/7)

図5 個別に環境放射線を設定するエリア(7/7)

原子炉建屋原子炉棟内の計装設備(伝送器)の遮蔽設計及び環境放射線について

1. 計装設備(伝送器)の遮蔽方式について

高線量配管からの直接線の影響を考慮する必要がある一部の伝送器については、伝送器を囲む ように鉛の遮蔽材を取り付け、直接線を遮蔽する方式とする。また、伝送器の環境放射線につい ては、遮蔽による放射線の減衰を考慮した値を設定する。伝送器の遮蔽方式、設定する環境放射 線について表1に示す。

衣丨	伝达品の遮敝方式,境現放射線
遮蔽方式	伝送器囲い込み
伝送器の放射線耐性値	
伝送器の環境放射線	12kGy(遮蔽及び線源からの距離を考慮,重大事故緩和 設備の場合)
遮蔽設計による耐震評価への影響	遮蔽材は計器の一部として取扱い,計器の耐震計算書で 評価する。

表1 伝送器の遮蔽方式 環境放射線

遮蔽が必要となる伝送器選定の考え方について
遮蔽が必要となる伝送器選定の考え方を図1に示す。また,選定結果を表2に示す。

図1 遮蔽設置対象の伝送器選定フロー

原子炉建屋原子炉棟の伝送器 (対象:高線量配管がある地下2階〜地上4階)	重大事故 緩和設備	遮蔽を 設置する もの	遮蔽方式
原子炉圧力	0	—	_
原子炉圧力 (SA)	0	—	—
原子炉水位(広帯域)	0	—	—
原子炉水位(燃料域)	0	_	_
原子炉水位(SA広帯域)	0	0	スタンション式
原子炉水位(SA燃料域)	0	—	—
高圧代替注水系系統流量	0	—	—
低圧代替注水系原子炉注水流量(常設ライン用)	0	0	壁掛け式
低圧代替注水系原子炉注水流量(常設ライン狭 帯域用)	0	0	壁掛け式
低圧代替注水系原子炉注水流量(可搬ライン用)	0	0	壁掛け式
低圧代替注水系原子炉注水流量(可搬ライン狭 帯域用)	0	0	壁掛け式
代替循環冷却系原子炉注水流量	0	〇 (A 系*)	壁掛け式
原子炉隔離時冷却系系統流量	_	—	—
高圧炉心スプレイ系系統流量	_	—	—
残留熱除去系系統流量	0	_	—
低圧炉心スプレイ系系統流量	—	—	—
低圧代替注水系格納容器スプレイ流量(常設ラ イン用)	0	_	_
低圧代替注水系格納容器スプレイ流量(可搬ラ イン用)	0	0	壁掛け式
低圧代替注水系格納容器下部注水流量	0	0	壁掛け式
ドライウェル圧力	0	0	天井吊り式
サプレッション・チェンバ圧力	0	0	天井吊り式
サプレッション・プール水位	0	0	壁掛け式
代替循環冷却系格納容器スプレイ流量	0	〇 (A 系*)	壁掛け式
非常用窒素供給系供給圧力	—	—	—
非常用窒素供給系高圧窒素ボンベ圧力	_	—	—
非常用逃がし安全弁駆動系供給圧力	_	—	_
非常用逃がし安全弁駆動系高圧窒素ボンベ圧力	—	—	—
高圧炉心スプレイ系ポンプ吐出圧力	—	—	—
原子炉隔離時冷却系ポンプ吐出圧力	—	—	—
残留熱除去系ポンプ吐出圧力	0	_	_
低圧炉心スプレイ系ポンプ吐出圧力	_	—	—

表2 遮蔽設置対象の伝送器選定結果

* B系については、配置が異なるため、高線量配管からの直接線の影響を受けず、遮蔽は不要と 評価。

図2 スタンション式概念図

図4 壁掛け式概念図

図3 天井吊り式概念図

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)において個別に放射線 環境条件を設定するエリアの設定方法について

原子炉建屋の原子炉棟外及びその他の建屋内は,原則として一律 3Gy を設定するが,当該重大事 故緩和設備を設置するエリアが放射線源付近であり,重大事故時に 3Gy を超える恐れのあるもの は,以下に示すとおり個別に確認した値を環境放射線として設定する。

- ・放射線環境条件を設定する上で代表性のある事故シナリオを想定し、原子炉建屋の原子炉棟 外及びその他の建屋内における放射線源(格納容器圧力逃がし装置配管、中央制御室換気空 調系フィルタ等)の線量評価を行い、評価結果以上の線量を当該エリアにおける環境条件と して設定する。
- ・また,放射線環境条件を設定する上で,放射線源と対象となる重大事故緩和設備との位置関 係を考慮し,必要に応じて距離による放射線の減衰効果を考慮する。

原子炉格納容器外の建屋内(原子炉建屋の原子炉棟外及びその他の建屋内)において,個別に放 射線環境条件を設定するエリアの詳細な設定方法について,図1~図3に示す。また,個別に放射 線環境条件を設定するエリアを図4に示す。

⑤ ④での評価結果に基づき,環境条件を設定 (重大事故対処設備に対して,遮蔽材等により放射線防護を行うものは,その効果を考慮する)

> 原子炉建屋付属棟内における線源付近の環境条件に該当 : (32kGy/7日間)

図1 重大事故時における原子炉建屋付属棟内の線源(格納容器圧力逃がし装置配管)付近の 重大事故等対処設備に対する環境条件設定のフロー図

*2:使用済燃料プール監視カメラ用空冷装置、中央制御室換気系空気調和器ファン、

図2 重大事故時における原子炉建屋付属棟内の線源(中央制御室換気空調系フィルタ)付近の重 大事故等対処設備に対する環境条件設定のフロー図

各納谷器圧力逃かし装直格納槽の環境条件 該当: (98kGy/7日間)

図3 重大事故時における格納容器圧力逃がし装置格納槽内の線源付近の重大事故等対処設備に対 する環境条件設定のフロー図

代表エネルギ	7日間積算線源強度
(Mev)	(cm^{-3})
0.01	約 1.1E+15
0.025	約 1.8E+15
0.0375	約 4.3E+14
0.0575	約 2.2E+14
0.085	約 7.4E+14
0.125	約 1.9E+14
0.225	約 3.1E+15
0.375	約 2.1E+16
0.575	約 4.7E+16
0.85	約 2.6E+16
1.25	約 6.2E+15
1.75	約 6.3E+14
2.25	約 4.1E+14
2.75	約 9.7E+12
3.5	約 8.3E+08
5	約 1.8E+03
7	約 2.1E+02
9.5	約 2.4E+01

表1 重大事故時における格納容器圧力逃がし装置配管の線源強度

表2 重大事故時における格納容器圧力逃がし装置格納槽内の線源の線源強度

代表エネルギ	7日間積算線源強度
(Mev)	(cm^{-3})
0.01	約 5.8E+13
0.025	約 9.5E+13
0.0375	約 2.3E+13
0.0575	約 1.2E+13
0.085	約 3.9E+13
0.125	約 1.0E+13
0.225	約 1.7E+14
0.375	約 1.1E+15
0.575	約 2.5E+15
0.85	約 1.4E+15
1.25	約 3.3E+14
1.75	約 3.4E+13
2.25	約 2.2E+13
2.75	約 5.1E+11
3.5	約 4.4E+07
5	約 9.8E+01
7	約 1.1E+01
9.5	約 1.3E+00

図4 個別に環境放射線を設定するエリア(1/5)

図4 個別に環境放射線を設定するエリア(2/5)

図4 個別に環境放射線を設定するエリア (3/5)

図4 個別に環境放射線を設定するエリア(4/5)

図4 個別に環境放射線を設定するエリア(5/5)

ほう酸水注入系の放射線環境条件設定

重大事故等時における環境条件のうち,原子炉建屋原子炉棟内における環境放射線量について は,原則として1.7 kGyの環境条件を設定しているが,ほう酸水注入系における環境放射線量の設 定については,本設備の使用する状況を踏まえ,100 Gyを設定する。環境放射線量の設定根拠を 以下に示す。

- 運転時の異常な過渡変化時において発電用原子炉の運転を緊急に停止することができない事象(以下「ATWS」という。)が発生した場合に、発電用原子炉を未臨界にする手段として、ほう酸水注入系を起動することにしているが、本操作は炉心損傷前の環境条件で期待する操作であり、以下に示す炉心の著しい損傷が発生した場合の手順における環境条件に包絡できる。
- ・ 炉心の著しい損傷が発生した場合に、ほう酸水注入系を起動させる重大事故等時の手順としては、溶融炉心のペデスタル(ドライウェル部)の床面への落下を遅延又は防止するために、炉心損傷後の原子炉注水時にほう酸水注入系を起動する手順がある。ただし、本操作はほう酸水注入系が使用可能な場合の操作に限定されており、さらに、炉心損傷後に原子炉圧力容器が破損し、溶融炉心がペデスタル(ドライウェル部)へ落下するまでは数時間程度と考えられ、その間の積算放射線量は100 Gy を下回る*。
- 注記 *: 重大事故時における原子炉建屋原子炉棟内の放射線環境条件により評価した放射線量 率及び積算放射能量の経時変化を下図に示す。

図 重大事故時における原子炉建屋原子炉棟内の放射線量率及び積算放射能量の経時変化

使用済燃料プール監視カメラの放射線環境条件設定

重大事故等時における環境条件のうち,原子炉建屋原子炉棟内における環境放射線量について は,原則として1.7 kGyの環境条件を設定しているが,「使用済燃料プールにおける重大事故に至 るおそれのある事故」時に使用する設備のうち,使用済燃料プール監視カメラについては,本設備 の使用する状況を踏まえ,1.7 Gyを設定する。当該重大事故等対処設備の環境放射線量の設定根 拠を以下に示す。

- 「許可申請書十号」ハ.にて評価した重大事故等において、使用済燃料プール監視カメラによる監視に期待する「使用済燃料プールにおける重大事故に至るおそれのある事故」では、事故時に使用済燃料プールへの注水等の対応を行うことにより、使用済燃料プールの水位は必要な遮蔽(10mSv/h)を確保できる水位より高く維持可能であることを確認している。
- ・ 上記を踏まえ,使用済燃料プール監視カメラの環境放射線については,使用済燃料プール水の遮蔽を期待して 1.7Gy を設定する。

10 (mSv/h) ×168 (h/7日間) ≒1.7 (Sv/7日間) =1.7 (Gy/7日間)

・ 環境放射線の設定値(1.7Gy/7日間)に対して,使用済燃料プール監視カメラの設計値 (350Gy/7日間)が上回ることから,設備の健全性は確保される。

なお、大量の水の漏えいその他要因により使用済燃料貯蔵プールの水位が異常に低下する事象に おいては、使用済燃料プールの水位及び温度による監視を継続し、水位監視を主としながら必要に 応じて、使用済燃料プール監視カメラにより使用済燃料貯蔵プールの状態を監視する。

これらの想定に基づいた使用済燃料プールの監視装置の設計については、V-1-3-1「使用済燃料 貯蔵槽の温度,水位及び漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作 範囲に関する説明書」に係る補足説明資料に示す。