本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません。

東海第二発電所	工事計画審査資料
資料番号	工認-702 改3
提出年月日	平成 30 年 8 月 2 日

V-2-9-2-6 機器搬入用ハッチの耐震性についての計算書

目次

1.	概要	1
2.	構造説明	2
2. 1	構造計画	2
2. 2	評価方針	3
3.	形状及び主要寸法	4
4.	設計条件	5
4. 1	15.61 14.77	
4. 2	13 1100 0 11 11/10/3	
5.	応力計算	
5. 1	応力評価点	13
	計算方針 ·····	
6.	評価結果	16
6. 1	設計基準対象施設としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
6.2	重大事故等対処設備としての評価結果	19

1. 概要

本計算書は、「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、機器搬入用ハッチが設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は機器搬入用ハッチの地震応答解析、応力評価により行う。

機器搬入用ハッチは設計基準対象施設においては既設のSクラス施設に,重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下,それぞれの分類に応じた耐震評価を示す。

2. 構造説明

2.1 構造計画

機器搬入用ハッチの構造計画を表 2-1 に示す。

表 2-1 構造計画

	計画の	の概要	4UT m/2 +#* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
基礎・支持構	造	主体構造	概略構造図
機器搬入用ハッチは、納容器に支持される。		内径 mm, 板厚 mmの円筒胴及び板厚 mmの鏡板で構成される鋼製構造物である。	機器搬入用ハッチ取付部円筒胴鏡板機器搬入用ハッチ拡大図

2.2 評価方針

- (1) 機器搬入用ハッチの応力評価は、東海第二発電所 昭和48年4月9日付け47公第1207号(既工認)にて認可された実績のある手法を適用する。各荷重による応力は、実績のある三次元シェルモデルによる有限要素解析手法を適用する。
- (2) 解析コードはNASTRANを用いる。なお、評価に用いる解析コードNASTRAN の検証及び妥当性確認等の概要については、「V-5-1 計算機プログラム(解析コード)の概要」に示す。
- (3) 本計算書における評価部位は、機器搬入用ハッチの形状及び応力レベルを考慮し、機器搬入用ハッチの原子炉格納容器への取付部とする。

3.	形状及び主要寸法 機器搬入用ハッチの形状及び主要寸法を図 3-1 に示す。

図 3-1 機器搬入用ハッチの形状及び主要寸法(単位:mm)

4. 設計条件

4.1 設計荷重

(1) 設計基準対象施設としての最高使用圧力及び最高使用温度

内圧 P_D 310 kPa 外圧 P_{DO} 14 kPa 温度 T_D 171 ℃

- (2) 冷却材喪失事故後の最大内圧 P DBA 255 kPa
- (3) 重大事故等対処設備としての評価圧力及び評価温度

内圧 P SAL 465 kPa(S A後長期) 内圧 P SALL 200 kPa(S A後長々期) 温度 T SAL 171 ℃(S A後長規) 温度 T SALL 150 ℃(S A後長々期)

- (4) 死荷重
 - a. 機器搬入用ハッチの自重 N (補強板重量含む)
 - b. ドライウェルの自重

機器搬入用ハッチより上部の原子炉格納容器の自重及び付加物の重量を死荷重とする。

- (5) 活荷重
 - a. 床に加わる荷重 N
 - b. ドライウェルの荷重

機器搬入用ハッチより上部の活荷重を考慮する。

- (6) 地震力による荷重
 - a. 機器搬入用ハッチ

機器搬入用ハッチの設計震度について、添付書類「V-2-1-7 設計用床応答曲線の作成 方針」にて設定した応答スペクトルの作成方針に基づき、作成した設計用床応答曲線を用 いる。設計基準対象施設の評価に用いるものを表 4-1 に、重大事故等対処設備の評価に 用いるものを表 4-2 に示す。

表 4-1 設計震度(設計基準対象施設)

方向	S _d *	Ss
鉛直方向		
水平方向		

表 4-2 設計震度(重大事故等対処設備)

方向	S d	Ss
鉛直方向		
水平方向		

b. 原子炉格納容器

原子炉格納容器に加わる鉛直荷重及び鉛直方向地震荷重のうち,設計基準対象施設の評価に用いるものを表 4-3 に、重大事故等対処設備の評価に用いるものを表 4-4 に示す。 弾性設計用地震動 Sd 及び基準地震動 Ss による水平方向地震荷重のうち、設計基準対象施設の評価に用いるものを表 4-5 に、重大事故等対処設備の評価に用いるものを表 4-6 に示す。

表 4-3 鉛直荷重及び鉛直方向地震荷重(設計基準対象施設)

(単位:N)

	通常運転時		燃料交换時			
NI	地震	荷重	N/1 - + + + = = = = = = = = = = = = = = = =	地震荷重		
鉛直荷重	S _d *	Ss	鉛直荷重	S _d *	Ss	

表 4-4 鉛直荷重及び鉛直方向地震荷重 (重大事故等対処設備)

(単位·N)

		(十四・11)		
重大事故等時				
Noto-tto-T.	地震	荷重		
鉛直荷重	S _d	Ss		

表 4-5 水平方向地震荷重(設計基準対象施設)

弾性設計用	地震動 S d*	基準地震動 S _S		
による均	也震荷重	による地震荷重		
せん断力 モーメント		せん断力	モーメント	
(N) (N·mm)		(N)	(N·mm)	

表 4-6 水平方向地震荷重(重大事故等対処設備)

弾性設計用	地震動 S d	基準地震動 S _S		
による±	也震荷重	による地震荷重		
せん断力 モーメント		せん断力	モーメント	
(N) (N·mm)		(N)	(N⋅mm)	

4.2 材料及び許容応力

(1) 材料

使用部位	使用材料		備考*
ドライウェル円錐部シェル	SGV49 相当		SGV480
補強板	SGV49 相当		SGV480

注記 *:現行の JIS を示す。

(2) 荷重の組合せ及び許容応力

基準地震動の策定に伴う地震荷重との組合せの評価として,荷重の組合せ及び許容応力状態のうち,設計基準対象施設の評価に用いるものを表 4-7 に,重大事故等対処設備の評価に用いるものを表 4-8 に示す。各材料の許容応力状態に対する許容応力のうち,設計基準対象施設の評価に用いるものを表 4-10 に,重大事故等対処設備の評価に用いるものを表 4-11 に示す。

表4-7 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設区分		機器名称	耐震設計上の 重要度分類	機器等 の区分	荷重の組合せ	許容応力 状態
原子炉 格納施設	原子炉格納容器	機器搬入用ハッチ	S	クラス MC容器	$D+P+M+S_{d}^{*}$ $D+P+M+S_{S}$ $D+P_{L}+M_{L}+S_{d}^{**}$	III _A S IV _A S IV _A S

注記 *:原子炉格納容器は冷却材喪失事故後の最終障壁となることから、構造全体としての安全裕度を確認する意味で、冷却材喪失事故後の最大内圧との組合せを考慮する。

表4-8 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施調	施設区分		設備分類*1	機器等 の区分	荷重の組合せ	許容応力 状態
原子炉格納施設	原子炉格納容器	機器搬入用ハッチ	常設耐震/ 防止 常設/緩和	重大事故 等クラス 2容器	D+P _{SALL} +M _{SALL} +S _S *2 D+P _{SAL} +M _{SAL} +S _d	V _A S (V _A Sとして IV _A Sの許容限 界を用いる。) V _A S (V _A Sとして IV _A Sの許容限 界を用いる。)

注記 *1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/防止」は常設耐震重要重大 事故防止設備以外の常設重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。 *2:原子炉格納容器は、放射性物質放出の最終障壁となることから、重大事故等後の最高内圧 と最高温度との組合せを考慮する。

表4-9 許容応力(クラスMC容器及び重大事故等クラス2容器)

		許容限界*1								
許容応力状態		//- 		V/m - V/m 1.0° /m	特別な応力限界					
	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ピーク 応力	純せん 断応力	支圧応力				
Ⅲ A S	Syと0.6・Suの小さい方。 ただし、オーステナイト系ス テンレス鋼及高ニッケル合金 については1.2・Sとする。	左欄の 1.5倍の値* ²		*4*5	0.6 · S	S _y *6 (1.5 • S _y)				
IV _A S	構造上の連続な部分は0.6・S u, 不連続な部分はSyと0.6・ Suの小さい方。 ただし, オーステナイト系ス		3・S*3 Sd又はS _S 地震動 のみによる応力振幅	S _d 又はS _S 地震動の みによる疲労解析を 行い,運転状態Ⅰ, Ⅱにおける疲労累積		G *6				
V _A S (V _A SとしてIV _A Sの許容限界を用 いる。)	☆については、構造上の連続 な部分は2・Sと0.6S uの小さ い方、不連続な部分は1.2・S	左欄の 1.5倍の値* ²	について評価する。	係数との和が1.0 以 下であること。	0.4 · S u	S _u *6 (1.5 · S _u)				

注記 *1: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

*2:設計・建設規格 PVB-3111に準じる場合は、純曲げによる全断面降伏荷重と初期降伏荷重の比又は1.5のいずれか小さい方の値(α)を用いる。

*3:3・Sを超える場合は弾塑性解析を行う。この場合,設計・建設規格 PVB-3300 (PVB-3313を除く。SmはSと読み替える。)の簡易弾塑性解析を用いる。

*4: 設計・建設規格 PVB-3140(6)を満たすときは疲労解析不要。

ただし、PVB-3140(6)の「応力の全振幅」は「 S_d 又は S_s 地震動による応力の全振幅」と読み替える。

*5:運転状態Ⅰ, Ⅱにおいて疲労解析を要しない場合は、地震動のみによる疲労累積係数を1.0以下とする。

*6:()内は、支圧荷重の作用端から自由端までの距離が支圧荷重の作用幅より大きい場合の値。

表4-10 許容応力(設計基準対象施設)

(単位:MPa)

材料	VI &	36-25-da 1	許容応力			
	温度 (℃)	許容応力 状態	一次応力		一次+二次応力	
			Pm	$P_L + P_b$	$P_L + P_b + Q$	
000400	171	III _A S	_	344	393	
SGV480	171	IV _A S	_	380	393	

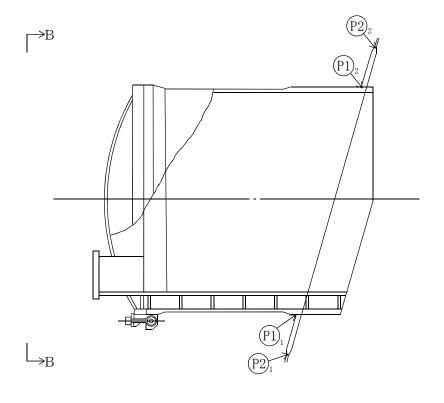
注記 *:新JIS記号を示す。

表4-11 許容応力(重大事故等対処設備)

(単位:MPa)

	72 #	許容応力 状態	許容応力				
材料	温度		一次応力		一次+二次応力		
	(℃)		Рm	$P_L + P_b$	$P_L + P_b + Q$		
SGV480	150	IV _A S	_	381	393		
	171	IV_AS	_	380	393		

注記 *:新JIS記号を示す。


5. 応力計算

5.1 応力評価点

機器搬入用ハッチの形状及び応力レベルを考慮して設定した応力評価点を表 5-1 及び図 5-1 に示す。

表 5-1 応力評価点

応力評価点番号	応力評価点
P 1	機器搬入用ハッチ本体と補強板との結合部
L I	$(P1-1\sim P1-3)$
P 2	ドライウェル円錐胴と補強板との接合部
P 2	$(P2-1 \sim P2-3)$

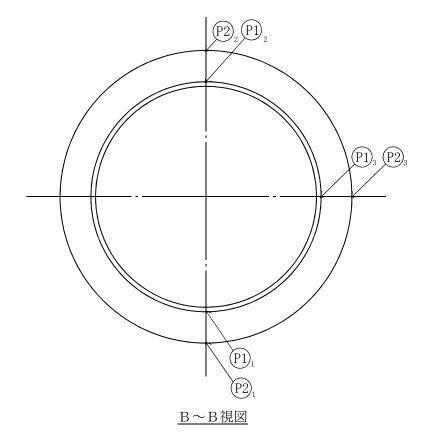


図 5-1 機器搬入用ハッチの応力評価点

5.2 計算方針

図 5-2 解析モデル

6. 評価結果

6.1 設計基準対象施設としての評価結果

機器搬入用ハッチの設計基準対象施設としての耐震評価結果を以下に示す。発生値は評価基準値を満足しており、耐震性を有することを確認した。

(1) 許容応力状態**IV**_ASに対する評価

許容応力状態IV_ASに対する応力評価結果を表 6-1 に示す。

表 4-7 に示す荷重の組合せのうち, $D+P+M+S_S$ 及び $D+P_L+M_L+S_d$ *の評価について,それぞれ発生値が高い方の評価を記載している。

(2) 許容応力状態**Ⅲ**_ASに対する評価

許容応力状態**Ⅲ** △S に対する応力評価結果を表 6-2 に示す。

表 4-7 に示す荷重の組合せのうち、 $D+P+M+S_d$ *の評価について記載している。

表 6-1 許容応力状態 $\mathbb{N}_A S$ に対する評価結果 (D+P+M+ $\mathbb{S}_S Z$ はD+ $\mathbb{P}_L + \mathbb{M}_L + \mathbb{S}_d^*$)

	評価部位			${ m IV}_{ m A}$	S		
評価対象設備			応力分類	発生値	評価基準値	判定	備考
		,		MPa	MPa		
	D 1 1	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	113	380	0	2*1
	P 1 – 1	補強板との結合部	一次+二次応力	362	393	0	①*1
	D.1 0	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	115	380	0	2*1
	P 1 - 2	補強板との結合部	一次+二次応力	232	393	0	①*1
	P 1 – 3	機器搬入用ハッチ本体と補強板との結合部	一次膜応力+曲げ応力	118	380	0	①*1
			一次+二次応力	462	393	\times^{*2}	①*1
機器搬入用			疲労評価	0.392	1	0	単位なし
ハッチ	P 2 – 1	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	116	380	0	①*1
		の接合部	一次+二次応力	336	393	0	①*1
	D.O. O.	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	113	380	0	2*1
	P2-2	の接合部	一次+二次応力	178	393	0	①*1
		ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	112	380	0	2*1
	P2 - 3		一次+二次応力	718	393	×*2	①*1
		の接合部	疲労評価	0.570	1	0	単位なし

注記 *1:①:D+P+M+S_S/②:D+P_L+M_L+S_d*における結果を示す。

*2: P1-3及びP2-3の一次+二次応力評価結果は評価基準値を満足しないが、設計・建設規格(JSMESNC1-2005)PVB-3300 に基づいて疲労評価を行い、この結果より耐震性を有することを確認した。

表 6-2 許容応力状態 MAS に対する評価結果 (D+P+M+S d*)

	評価部位			III A	S		
評価対象設備			応力分類	発生値	評価基準値	判定	備考
				MPa	MPa		
	D 1 1	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	53	344	0	
	P 1 - 1	補強板との結合部	一次+二次応力	198	393	0	
	D.1 O	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	51	344	0	
	P 1 - 2	補強板との結合部	一次+二次応力	128	393	0	
	P 1 – 3	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	72	344	0	
		補強板との結合部	一次+二次応力	272	393	0	
機器搬入用	D.O. 1	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	71	344	0	
ハッチ	P 2 - 1	ア2-1 の接合部	一次+二次応力	184	393	0	
		ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	49	344	0	
	P2-2	の接合部	一次+二次応力	98	393	0	
			一次膜応力+曲げ応力	62	344	0	
	P2 - 3	ドライウェル円錐胴と補強板と	一次十二次応力	424	393	×*	
		の接合部	疲労評価	0.032	1	0	単位なし

注記 *: P 2 - 3 の一次+二次応力評価結果は評価基準値を満足しないが、設計・建設規格(1 S 1 N C 1 - 2005)PVB-3300 に基づいて 疲労評価を行い、この結果より耐震性を有することを確認した。

6.2 重大事故等対処設備としての評価結果

機器搬入用ハッチの重大事故等対処設備としての耐震評価結果を以下に示す。発生値は評価 基準値を満足しており、耐震性を有することを確認した。

(1) 許容応力状態 VAS に対する評価

許容応力状態 V_AS に対する応力評価結果を表 6-3 に示す。

表 4-8 に示す荷重の組合せのうち、D+P_{SALL}+M_{SALL}+S_S及びD+P_{SALL}+

 $M_{SAL}+S_d$ の評価について、それぞれ評価基準値に対する発生値の割合が高い方の評価を記載している。

表 6-3 許容応力状態 VAS に対する評価結果 (D+PSALL+MSALL+SS ZはD+PSAL+MSAL+Sd)

	評価部位			IV_A	S	 -	
評価対象設備			応力分類	発生値	評価基準値	判定	備考
				MPa	MPa		
	D 1 1	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	194	380	0	2*
	P1-1	補強板との結合部	一次+二次応力	228	393	0	①*
	D 1 0	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	196	380	0	2*
	P 1 - 2	補強板との結合部	一次+二次応力	162	393	0	①*
	P 1 – 3	機器搬入用ハッチ本体と	一次膜応力+曲げ応力	185	380	0	2*
機器搬入用		補強板との結合部	一次+二次応力	254	393	0	①*
ハッチ	P 2 – 1	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	189	380	0	2*
		の接合部	一次+二次応力	214	393	0	①*
	P 2 - 2	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	194	380	0	2*
		の接合部	一次+二次応力	128	393	0	①*
	D.O. O.	ドライウェル円錐胴と補強板と	一次膜応力+曲げ応力	193	380	0	2*
	P 2 - 3	の接合部	一次+二次応力	390	393	0	①*

注記 *:①:D+P_{SALL}+M_{SALL}+S_S/②:D+P_{SAL}+M_{SAL}+S_dにおける結果を示す。