東海第二発電所	工事計画審査資料
資料番号	工認-202 改 4
提出年月日	平成 30 年 8 月 10 日

本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から 公開できません。

V-1-1-6-別添 4 ブローアウトパネル関連設備の設計方針

平成30年8月日本原子力発電株式会社

目 次

1.	概 要
2.	設計の基本方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・ 2
3.	設備分類 · · · · · · · · · · · · · · · · · · ·
4.	要求機能及び性能目標・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4. 1	要求機能 · · · · · · · · · · · · · · · · · · ·
4. 2	2. 性能目標 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	機能設計
5. 1	[原子炉建屋外側ブローアウトパネル ・・・・・・・・・・11
5. 2	2 閉止装置 · · · · · · · · · · · · · · · · · · 11
	3 竜巻防護設備
5.4	l 強制開放装置 · · · · · · · · · · · · · · · · · · ·
	構造強度設計13
6. 1	【構造強度の設計方針 · · · · · · · · · · · · · · · · · · ·
6. 2	2 荷重及び荷重の組合せ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
6.3	3 機能維持の方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

V-1-1-6「安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書」(以下「V-1-1-6」という。)にて,ブローアウトパネル関連設備が使用される条件の下における健全性について,「多重性,多様性及び位置的分散」,「悪影響防止」,「環境条件等」及び「操作性及び試験・検査性」に分け,設計方針を示している。

本資料は、V-1-1-6にて設定しているブローアウトパネル関連設備に係る設計方針を整理した上で、各設計方針に対して、ブローアウトパネル関連設備の設備分類、要求機能及び性能目標を明確にし、各設備の機能設計等について説明するものである。

2. 設計の基本方針

ブローアウトパネル関連設備(原子炉建屋外側ブローアウトパネル, 閉止装置, 竜巻防護設備及 び強制開放装置)の設計に考慮すべき要因である, 自然現象, 外部人為事象, 溢水及び火災に対す る設計方針について以下に示す。

(1) 原子炉建屋外側ブローアウトパネル

原子炉建屋外側ブローアウトパネルは、高圧の原子炉冷却材が原子炉建屋原子炉棟に漏えいして蒸気となり、原子炉建屋原子炉棟の圧力が上昇した場合において、外気との差圧により自動的に開放し、原子炉建屋原子炉棟内の圧力及び温度を低下させることができる(以下「ブローアウトパネルの必要な機能」という。)設計とするとともに、原子炉建屋外側ブローアウトパネルは、他の設備に波及的影響を及ぼさない設計とする。

また,原子炉建屋外側ブローアウトパネルは,設計基準事故対処設備及び常設重大事故等対処設備と共通要因によって同時に機能が損なわれるおそれがない設計とする。

a. 自然現象及び外部人為事象

(a) 地震

自然現象のうち地震に関して、原子炉建屋外側ブローアウトパネルは地震時に落下し、他の 設備に波及的影響を及ぼさない設計とする。

原子炉建屋外側ブローアウトパネルの耐震設計については、本資料に基づき実施する。

(b) 津波

自然現象のうち津波に関して、原子炉建屋外側ブローアウトパネルは津波の影響を受けない 位置に設置されることから、設計上考慮しない。

(c) 風(台風)及び竜巻

自然現象のうち風(台風)及び竜巻に関して、原子炉建屋外側ブローアウトパネルは、風(台風)及び竜巻による風荷重を考慮して設置し、設計飛来物の原子炉建屋外側ブローアウトパネルへの衝突を防止可能な設計とするとともに、他の設備に波及的影響を及ぼさない設計とする。なお、風(台風)の風荷重については、竜巻の風荷重に包絡される。

(d) 積雪及び火山の影響

自然現象のうち積雪及び火山の影響に関して、原子炉建屋外側ブローアウトパネルは、積雪 及び降下火砕物の堆積荷重を考慮して設置し、他の設備に波及的影響を及ぼさない設計とす る。

積雪及び火山の影響に対する閉止装置の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。

(e) その他自然現象及び外部人為事象

自然現象のうち凍結,降水,落雷,生物学的事象,森林火災及び高潮並びに外部人為事象のうち近隣工場等の火災(発電所敷地内に設置する危険物タンク等の火災,航空機墜落による火災,発電所港湾内に入港する船舶の火災及びばい煙等の二次的影響),有毒ガス及び電磁的障害(以下「その他自然現象及び外部人為事象」という。)に関して,原子炉建屋外側ブローア

ウトパネルは、これら事象による影響を受けない設計とする。

b. 溢水

溢水に関して、原子炉建屋外側ブローアウトパネルは溢水の影響を受けない位置に設置される ことから、設計上考しない。

c. 火災

火災に関しては、原子炉建屋外側ブローアウトパネル近傍の屋内に有意な火源は存在しないため、設計上考慮しない。

(2) ブローアウトパネル閉止装置

ブローアウトパネル閉止装置(以下「閉止装置」という。)は、荷重及び波及的影響を含め想定される環境条件において、原子炉建屋外側ブローアウトパネルが開放された状態において炉心損傷した場合に速やかに閉止し原子炉建屋原子炉棟を負圧に維持できる気密性を保持できる機能(以下「閉止装置の必要な機能」という。)を有する設計とする。

これらの設計に考慮すべき要因である自然現象,外部人為事象,溢水及び火災に対する閉止装置 の設計方針について以下に示す。

a. 自然現象及び外部人為事象

(a) 地震

自然現象のうち地震に関して、重大事故等対処設備である閉止装置は、耐震設計として、構造強度評価及び機能維持評価を実施して、地震後において閉止装置の必要な機能を維持する設計とする。

また、閉止装置は、地震随伴火災及び地震随伴溢水の影響を考慮して設置する。 また、閉止装置は、地震により他の設備へ波及的影響を与えることのない設計とする。 閉止装置の耐震設計については、本資料に基づき実施する。

(b) 津波

自然現象のうち津波に関して、閉止装置は津波の影響を受けない位置に設置されることから、設計上考慮しない。

(c) 風(台風)

自然現象のうち風(台風)に関して閉止装置は、風(台風)による風荷重を考慮して設置し、他の設備に波及的影響を及ぼさない設計とする。

(d) 積雪及び火山の影響

自然現象のうち積雪及び火山の影響に関して閉止装置は、積雪及び降下火砕物の堆積の影響を受けない設計とする。

積雪及び火山の影響に対する閉止装置の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき、閉止装置の必要な機能を損なうおそれがない設計とする。

(e) その他自然現象及び外部人為事象

自然現象のうち凍結,降水,落雷,生物学的事象,森林火災及び高潮並びに外部人為事象のうち近隣工場等の火災(発電所敷地内に設置する危険物タンク等の火災,航空機墜落による火災,発電所港湾内に入港する船舶の火災及びばい煙等の二次的影響),有毒ガス及び電磁的障害(以下「その他自然現象及び外部人為事象」という。)に関して、閉止装置は、これら事象による影響を受けない設計とする。

その他自然現象及び外部人為事象に対する閉止装置の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。

b. 溢水

溢水に関して、閉止装置は溢水の影響を受けない位置に設置されることから、設計上考慮しない。

c. 火災

火災に関しては、ブローアウトパネル閉止装置近傍に有意な火源は存在しないため、設計上考慮しない。

(3) 竜巻防護対策施設

原子炉建屋外側ブローアウトパネル竜巻防護対策施設(以下「竜巻防護対策施設」という。) は、荷重及び波及的影響を含め想定される環境条件において、竜巻の設計飛来物(鋼製材)の原 子炉建屋外側ブローアウトパネルへの衝突を防止する機能を保持できる設計とする。

また, 竜巻防護対策施設は, 地震, 風(台風)及び竜巻並びに積雪及び火山の影響により, 他の設備へ波及的影響を与えることのない設計とする。

竜巻防護対策施設の設計に考慮すべき要因である自然現象、外部人為事象、溢水及び火災に対する設計方針について以下に示す。

a. 自然現象及び外部人為事象

(a) 地震

自然現象のうち地震に関して、竜巻防護対策施設は地震時に落下し、他の設備に波及的影響 を及ぼさない設計とする。

竜巻防護対策施設の耐震設計については、本資料に基づき実施する。

(b) 津波

自然現象のうち津波に関して、竜巻防護対策施設は津波の影響を受けない位置に設置される ことから、設計上考慮しない。

(c) 風(台風)及び竜巻

自然現象のうち風(台風)及び竜巻に関して、竜巻防護対策施設は、風(台風)及び竜巻による風荷重並びに竜巻の設計飛来物(鋼製材)の衝突荷重を考慮して設置し、設計飛来物の原子炉建屋外側ブローアウトパネルへの衝突を防止可能な設計とするとともに、他の設備に波及的影響を及ぼさない設計とする。なお、風(台風)の風荷重については、竜巻の風荷重に包絡される。

竜巻に対する竜巻防護対策施設の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。

(d) 積雪及び火山の影響

自然現象のうち積雪及び火山の影響に関して、竜巻防護対策施設は、積雪及び降下火砕物の 堆積荷重を考慮して設置し、他の設備に波及的影響を及ぼさない設計とする。

積雪及び火山の影響に対する竜巻防護対策施設の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。

(e) その他自然現象及び外部人為事象

自然現象のうち凍結,降水,落雷,生物学的事象,森林火災及び高潮並びに外部人為事象のうち近隣工場等の火災(発電所敷地内に設置する危険物タンク等の火災,航空機墜落による火災,発電所港湾内に入港する船舶の火災及びばい煙等の二次的影響),有毒ガス及び電磁的障害(以下「その他自然現象及び外部人為事象」という。)に関して,竜巻防護対策施設は,これら事象による影響を受けない設計とする。

その他自然現象及び外部人為事象に対する竜巻防護設備の設計については、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に基づき実施する。

b. 溢水

溢水に関して、竜巻防護対策施設は、溢水の影響を受けない位置に設置されることから、設計 上考慮しない。

c. 火災

火災に関しては、竜巻防護対策施設近傍に有意な火源は存在しないため、設計上考慮しない。

(4) 強制開放装置(自主設備)

強制開放装置は、荷重及び波及的影響を含め想定される環境条件において、開放が必要な原子炉 建屋外側ブローアウトパネルを強制的に開放する機能(以下「強制開放装置に必要な機能」とい う。)を有する設計とする。

これらの設計に考慮すべき要因である自然現象,外部人為事象,溢水及び火災に対する強制開放 装置の設計方針について以下に示す。

a. 自然現象及び外部人為事象

(a) 地震

自然現象のうち地震に関して、自主設備である強制開放装置は、耐震設計として、構造強度 評価及び機能維持評価を実施して、地震後において強制開放装置に必要な機能を維持する設計 とする。

また、強制開放装置は、地震随伴火災及び地震随伴溢水の影響を考慮して設置する。

また、強制開放装置は、地震により他の設備へ波及的影響を与えることのない設計とする。

(b) 津波

自然現象のうち津波に関して強制開放装置は津波の影響を受けないよう設置する。

(c) 風(台風)及び竜巻

自然現象のうち風(台風)及び竜巻に関して強制開放装置は、外部からの衝撃による損傷の防止が図られた建屋内に設置する。

(d) 積雪及び火山の影響

自然現象のうち積雪及び火山の影響に関して強制開放装置は、積雪及び火山の影響を受けない建屋内に設置する。

(e) その他自然現象及び外部人為事象

自然現象のうち凍結,降水,落雷,生物学的事象,森林火災及び高潮並びに外部人為事象のうち近隣工場等の火災(発電所敷地内に設置する危険物タンク等の火災,航空機墜落による火災,発電所港湾内に入港する船舶の火災及びばい煙等の二次的影響),有毒ガス及び電磁的障害(以下「その他自然現象及び外部人為事象」という。)に関して強制開放装置は,建屋内に設置する。

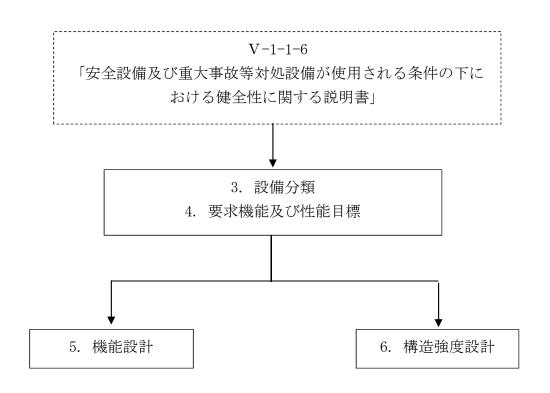
b. 溢水

溢水に関して強制開放装置は、溢水量による溢水水位を考慮した配置とする。

強制開放装置の溢水防護設計については、V-1-1-8「発電用原子炉施設の溢水防護に関する説明書」に基づき実施する。

c. 火災

火災に関しては、強制開放装置近傍に有意な火源は存在しないため、設計上考慮しない。


以上を踏まえ、ブローアウトパネル関連設備については、本資料にて設備を分類し、要求機能を整理するとともに、機能設計上の性能目標と地震による荷重を考慮した構造強度設計上の性能目標を定める。

また、ブローアウトパネル関連設備の構造強度設計上の性能目標を達成するため、構造強度設計上の方針を示した上で、V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」及びV-2「耐震性に関する説明書」のうちV-2-1-9「機能維持の基本方針」の「3.1 構造強度上の制限」にて設定している荷重条件及び荷重の組合せに従い、構造強度設計上に必要な考慮すべき荷重条件を設定し、その荷重の組合せの考え方を定める。

以上のブローアウトパネル関連設備の設計フローを第2-1図に示す。

ブローアウトパネル関連設備の耐震計算については、V-2「耐震性に関する説明書」のうちV-2-1-9「機能維持の基本方針」に基づき実施し、耐震計算の方法及び結果については、V-2-9-5-2-4「ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

V-1-1-2「発電用原子炉施設の自然現象等による損傷の防止に関する説明書」のうちV-1-1-2-3-3「竜巻防護に関する施設の設計方針」に基づき実施する竜巻対策については、ブローアウトパネル関連設備の耐震計算の波及的影響評価の結果を考慮した設計とする。

(注) フロー中の番号は本資料での記載箇所の章を示す。

第2-1図 設備の設計フロー

3. 設備分類

ブローアウトパネル関連設備は、以下のとおり、原子炉建屋外側ブローアウトパネル、閉止装置、
竜巻防護設備及び強制開放装置に分類する。

(1) 原子炉建屋外側ブローアウトパネル

原子炉建屋外側ブローアウトパネルについては、原子炉建屋原子炉棟外壁(5階及び6階部分)に配置され、差圧により開放するパネル本体部、パネルを建屋外壁内に設置する枠部及び差 圧により破損するクリップ部より構成される設備である。

(2) 閉止装置

閉止装置は、扉、扉枠(扉を移動させるためのレールを含む)、扉を駆動する電動機及び扉を 開状態又は閉状態で固定する閂から構成されており、通常運転中は、扉は開放した状態であり、 原子炉建屋外側ブローアウトパネルが開放された状態で炉心損傷した場合において、扉を電動機 又は手動操作により扉を動作させ、ブローアウトパネル開口部を閉止する装置である。

(3) 竜巻防護対策施設

竜巻防護対策施設は、防護ネット、防護鋼板及び架構から構成され、原子炉建屋外側ブローアウトパネルに向かって飛来する飛来物の原子炉建屋外側ブローアウトパネルへの衝突を防止する施設である。

(4) 強制開放装置(自主設備)

強制開放装置は、ブローアウトパネル押し出し用シリンダ、窒素ガスボンベ、アキュムレータ、配管及び弁から構成されており、窒素ガスボンベよりアキュムレータに窒素ガスを供給することにより、原子炉建屋外側ブローアウトパネル前面(建屋内部)に設置しているシリンダを加圧し原子炉建屋外側ブローアウトパネルを開放する装置である。

4. 要求機能及び性能目標

4.1 要求機能

ブローアウトパネル関連設備のうち原子炉建屋外側ブローアウトパネル, 閉止装置及び強制開 放装置は, 重大事故等に対し, 地震後においても必要な機能を損なわないことが要求される。

ブローアウトパネル関連設備は、地震、風(台風)及び竜巻並びに積雪及び火山に対し、他の 設備に波及的影響を及ぼさないことが要求される。

4.2 性能目標

(1) 原子炉建屋外側ブローアウトパネル

原子炉建屋外側ブローアウトパネルは,設計基準事故に対し,地震後においても,構造健全性 及び設計基準事故に対処するために必要な開放機能を保持し,規定の圧力にて自動的に開放でき ることを機能設計上の性能目標とする。

また、原子炉建屋外側ブローアウトパネルは、地震後においても、設計基準事故に対処するために必要な開放機能を保持し、規定の圧力にて自動的に開放できることを損なわないこと及び地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを機能設計上の性能目標とする。

原子炉建屋外側ブローアウトパネルは、基準地震動 S_s による地震力に対し、以下の内容を構造強度設計上の性能目標とする。

a. 構造強度

原子炉建屋外側ブローアウトパネルは、基準地震動S_Sによる地震力に対し、本体及び枠等の主要な構造部材が開放機能を保持可能な構造強度を有すること。

b. 機能維持

原子炉建屋外側ブローアウトパネルは、規定の圧力にて自動的に開放できること。

c. 波及的影響

原子炉建屋外側ブローアウトパネルは、基準地震動Ssによる地震力に対し、構造健全性及び設計基準事故に対処するために必要な開放機能を保持可能な構造強度を有するとともに、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないこと。

(2) 閉止装置

閉止装置は、重大事故に対し、地震後において作動性を保持するとともに、原子炉建屋原子炉棟を負圧に維持できる気密性を保持することを機能設計上の性能目標とする。また、地震、風(台風)、積雪及び降下火砕物に対し、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを機能設計上の性能目標とする。

a. 機能維持

閉止装置は、基準地震動Ssによる地震力に対し、基準地震動Ss後の作動性、気密性を保持すること。また、閉止状態においては基準地震動Sd後の気密性を保持すること。

b. 構造強度

閉止装置は、基準地震動S_Sによる地震力に対し、開閉装置を原子炉建屋原子炉棟に据付し、主要な構造部材が閉止装置の作動性、気密性を保持可能な構造強度を有すること。

c. 波及的影響

閉止装置は、基準地震動Ssによる地震力及び降下火砕物による荷重に対し、耐震性を有する原子炉建屋原子炉棟に据付し、当該装置の脱落により、当該装置の波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう構造強度を有すること。

(3) 竜巻防護対策施設

竜巻防護対策施設は、設計竜巻の襲来時において、設計飛来物を捕捉し原子炉建屋外側ブローアウトパネルへの衝突を防止する機能を保持できることを、機能設計上の性能目標とする。

また, 竜巻防護対策施設は, 地震, 風(台風)及び竜巻並びに積雪及び火山の影響時において, 当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを機能設計上の性能目標とする。

竜巻防護対策施設は、設計竜巻の風荷重及び設計飛来物(鋼製材)の衝撃荷重に対し、以下の 内容を構造強度設計上の性能目標とする。

a. 機能維持

竜巻防護対策施設は、設計竜巻の風荷重及び設計飛来物(鋼製材)の衝撃荷重に対し、設計 飛来物を捕捉し原子炉建屋外側ブローアウトパネルへの衝突を防止する、若しくは気圧差で開 放した原子炉建屋外側ブローアウトパネルの開口部から建屋内への飛来物の侵入を防止する機 能を保持すること。

b. 構造強度

竜巻防護対策施設は、設計竜巻の風荷重及び設計飛来物(鋼製材)の衝撃荷重に対し、飛来物が施設を構成する防護ネット及び防護鋼板を貫通せず、また架構を構成する主要な構造部材を貫通せず、上載する防護ネット及び防護鋼板を支持する機能を保持可能な構想強度を有し、設計飛来物を捕捉し原子炉建屋外側ブローアウトパネルへの衝突を防止する、若しくは気圧差で開放した原子炉建屋外側ブローアウトパネルの開口部から建屋内への飛来物の侵入を防止する機能を保持可能な構造強度を有すること。

c. 波及的影響

竜巻防護対策施設は、設計竜巻の風荷重及び設計飛来物(鋼製材)の衝撃荷重に対し、架構を構成する部材が脱落せず、上載する防護ネット及び防護鋼板を支持する機能を保持可能な構造強度を保持すること。

また、基準地震動S_Sによる地震力に対し、耐震性を有する原子炉建屋原子炉棟に据付ボルトで固定し、当該施設の脱落により他の設備に対して波及的影響を及ぼさない構造強度を保持すること。

(4) 強制開放装置(自主設備)

強制開放装置は、地震後においても、原子炉建屋外側ブローアウトパネルを強制的に開放する機能を保持することを機能設計上の性能目標とする。また、地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを機能設計上の性能目標とする。

a 機能維持

強制開放装置は、基準地震動S_Sによる地震力に対し、原子炉建屋外側ブローアウトパネルを強制的開放する機能を保持すること。

b. 構造強度

強制開放装置は、基準地震動S_Sによる地震力に対し、耐震性を有する原子炉建屋原子炉棟に設置し、主要な構造部材が原子炉建屋外側ブローアウトパネルを強制的開放する機能を保持可能な構造強度を有すること。

c. 波及的影響

強制開放装置は、基準地震動S_Sによる地震力に対し、耐震性を有する原子炉建屋原子炉棟に据付し、当該装置の脱落により、当該装置の波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう構造強度を有すること。

5. 機能設計

「4. 要求機能及び性能目標」で設定している,ブローアウトパネル関連設備の機能設計上の性能目標を達成するために,各設備の機能設計の方針を定める。

- 5.1 原子炉建屋外側ブローアウトパネル
 - 5.1.1 原子炉建屋外側ブローアウトパネルの設計方針

原子炉建屋外側ブローアウトパネルは,「4.要求機能及び性能目標」の「4.2性能目標」で設定している機能設計上の性能目標を達成するために、以下の設計方針としている。

原子炉建屋外側ブローアウトパネルは、設計基準事故に対し、地震後においても、設計基準事故に対処するために必要な開放機能を保持し、規定の圧力にて自動的に開放できるものとするため、また、地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう必要な構造強度を有する設計とする。

原子炉建屋外側ブローアウトパネルの基準地震動 S_s による地震力に対する機能保持の設計方針は「6.1.1 原子炉建屋外側ブローアウトパネル」に示す。

5.2 閉止装置

5.2.1 閉止装置の設計方針

閉止装置は,「4. 要求機能及び性能目標」の「4.2 性能目標」で設定している機能設計上の性能目標を達成するために,以下の設計方針としている。

閉止装置は、重大事故等に対し、地震後においても、作動性及び重大事故等に原子炉建屋原子炉棟を負圧に維持できる気密性を保持し、閉止後の弾性設計用地震動Sdにおいても原子炉建屋原子炉棟を負圧に維持できる気密性を保持する設計とする。また、地震、風(台風)、積雪及び降下火砕物による荷重に対して、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう構造強度を有する設計とする。

5.3 竜巻防護対策施設

5.3.1 竜巻防護対策施設の設計方針

竜巻防護対策施設は,「4. 要求機能及び性能目標」の「4.2 性能目標」で設定している機能設計上の性能目標を達成するために,以下の設計方針としている。

竜巻防護対策施設は、設計竜巻の襲来時において、設計飛来物を捕捉し原子炉建屋外側ブローアウトパネルへの衝突を防止する機能を保持するため、また、地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう、構造強度を有する設計とする。

5.4 強制開放装置(自主設備)

5.4.1 強制開放装置の設計方針

強制開放装置は,「4. 要求機能及び性能目標」の「4.2 性能目標」で設定している機能設計上の性能目標を達成するために、以下の設計方針としている。

強制開放装置は、重大事故等に対し、地震後においても、原子炉建屋外側ブローアウトパネルを強制的に開放する機能を保持するため、また、地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう構造強度を有する設計とする。

6. 構造強度設計

「4. 要求機能及び性能目標」で設定している,原子炉建屋外側ブローアウトパネル,閉止装置,竜巻防護設備及び強制開放装置が構造強度設計上の性能目標を達成するよう,「5. 機能設計」で設定している各設備が有する機能を踏まえて,構造強度設計の設計方針を設定する。 各設備の構造強度の設計方針を設定し,想定する荷重及び荷重の組合せを設定し,それらの荷重に対し,各設備の構造強度を保持するよう構造強度設計と評価方針を設定する。

閉止装置の耐震計算の方法及び結果を、V-2「耐震性に関する説明書」のV-2-9-5-2-4「ブローアウトパネル閉止装置の耐震性についての計算書」に示す。

6.1 構造強度の設計方針

「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するための設計 方針を原子炉建屋外側ブローアウトパネル,ブローアウトパネル閉止装置,竜巻防護設備及び強制 開放装置ごとに示す。

6.1.1 原子炉建屋外側ブローアウトパネル

原子炉建屋外側ブローアウトパネルは、「5.1 原子炉建屋外側ブローアウトパネル」の「5.1.1 原子炉建屋外側ブローアウトパネルの設計方針」で設定している機能設計を踏まえ、必要な開放機能を保持し、規定の圧力にて自動的に開放が可能な設計とする。また、「4. 要求機能及び性能目標」の「4.2 性能目標」で設定している構造強度設計上の性能目標を踏まえ、基準地震動 S_s による地震力に対し、本体及び枠等の主要な構造部材が開放機能を保持可能な構造強度を有する設計とする。

6.1.2 閉止装置

閉止装置は、「5.2 ブローアウトパネル閉止装置」の「5.2.1 ブローアウトパネル閉止装置の設計方針」で設定している機能設計,及び「4.要求機能及び性能目標」の「4.2 性能目標」で設定している構造強度設計上の性能目標を踏まえ、基準地震動 S_Sによる地震力に対し、耐震性を有する原子炉建屋原子炉棟に据付し、主要な構造部材が気密性及び作動性を保持可能な構造強度を有する設計とする。

6.1.3 竜巻防護設備

竜巻防護設備は、「5.3竜巻防護設備」の「5.3.1竜巻防護設備の設計方針」で設定している機能設計,及び「4.要求機能及び性能目標」の「4.2性能目標」で設定している構造強度設計上の性能目標を踏まえ、設計竜巻の襲来時において、設計飛来物を捕捉し原子炉建屋外側ブローアウトパネルへの衝突を防止する機能を保持するため、また、地震時において、当該設備による波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないよう、構造強度を有する設計とする。

6.1.4 強制開放装置(自主設備)

強制開放装置は,「5.4 強制開放装置」の「5.4.1強制開放装置の設計方針」で設定している機能設計,及び「4.2 要求機能及び性能目標」の「4.2 性能目標」で設定している構造強度設計上の性能目標を踏まえ,基準地震動 S_S による地震力に対し,耐震性を有する原子炉建屋原子炉棟に据付し,主要な構造部材が原子炉建屋外側ブローアウトパネルを強制的開放する機能を保持可能な構造強度を有する設計とする。

6.2 荷重及び荷重の組合せ

「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために、考慮すべき荷重条件を設定し荷重の組合せの考え方を示す。

6.2.1 荷重の種類

(1) 常時作用する荷重

常時作用する荷重は持続的に生じる荷重であり、自重とする。

(2) 風荷重

風荷重は、V-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本 方針」に従い、建築基準法施行令に基づく平成12年建設省告示第1454号に定められた東海村の基準 風速である30m/sを使用する。

風荷重の最大荷重の継続時間は短いため、ガスト影響係数を考慮して風荷重を算定する。

(3) 積雪荷重

積雪荷重は、V-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に従い、茨城県建築基準法等施工細則(昭和45年3月9日茨城県規則第9号)による東海村の垂直積雪量30cmに平均的な積雪荷重を与えるための係数0.35を考慮した10.5cmに設定し210N/m²とする。

(4) 降下火砕物による荷重

設計に用いる降下火砕物特性は、V-1-1-2-1-1「発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針」に従い、設置(変更)許可申請において示した、層厚50 cm、密度1.5 g/cm³(湿潤状態)、粒径8 mm以下を考慮する。

(5) 圧力荷重

圧力荷重は,建屋内外差圧を考慮する。

(6) 地震荷重

地震荷重は、基準地震動Ss又は弾性設計用地震動Sd伴う地震力による荷重とする。

6.2.2 荷重の組合せ

ブローアウトパネル関連設備の耐震計算の荷重の組合せの考え方については、V-2「耐震性に関する説明書」のうちV-2-1-9「機能維持の基本方針」に示す。

6.3 機能維持の方針

「4. 要求機能及び性能目標」で設定している構造強度設計上の性能目標を達成するために、 「6.1 構造強度の設計方針」に示す構造を踏まえ、「6.2 荷重及び荷重の組合せ」で設定している 荷重条件を考慮して、各設備の構造設計及びそれを踏まえた評価方針を設定する。

6.3.1 原子炉建屋外側ブローアウトパネル

(1) 構造設計

原子炉建屋外側ブローアウトパネルは、「6.1 構造強度の設計方針」で設定している 設計方針及び「6.2 荷重及び荷重の組合せ」で設定している荷重を踏まえ、以下の構造 とする。

原子炉建屋外側ブローアウトパネルは,原子炉建屋外壁の開口部に設置し,パネル本体,枠,クリップで構成する構造とする。

原子炉建屋外側ブローアウトパネルの構造計画を第6-1表に示す。原子炉建屋外側ブローアウトパネルの概略図を第6-1図に示す。

(2) 評価方針

原子炉建屋外側ブローアウトパネルは,「(1) 構造設計」を踏まえ,以下の耐震評価方針とし,構造強度等の確認を行う。

a. 構造強度

原子炉建屋外側ブローアウトパネルは、基準地震動 S_s による地震力に対し、本体及び枠等の主要な構造部材が変形等を生じないための必要な構造強度を有することを計算等により確認する。

b. 機能維持

原子炉建屋外側ブローアウトパネルは、規定の圧力にて自動的に開放できることを事前のモックアップ試験装置にて確認するとともに、クリップの保守管理にてその機能を維持する。

c. 波及的影響

原子炉建屋外側ブローアウトパネルは、当該設備が開放時に波及的影響を防止する必要がある他の設備に対して波及的影響を及ぼさないことを、波及的影響を防止する必要がある他の設備との離隔距離未満であることにより確認する。

第6-1表 原子炉建屋外側ブローアウトパネルの構造計画

設備分類	計画	の概要	説明図
双胂刀炔	主体構造	支持構造	元切囚

【位置】

原子炉建屋外側ブローアウトパネルは、V-1-1-6の要求を満たす耐震性を有する原子炉建屋原子炉棟に設置する計画としている。

	1	ı	
原子炉建屋	原子炉建屋	原子炉建屋外	第6-1図
外側ブロー	外側ブロー	側ブローアウ	
アウトパネ	アウトパネ	トパネルは,	
ル	ルは、パネ	十分な強度を	
	ル本体部,	有する構造と	
	パネルを建	し、取付枠に	
	屋外壁内に	より原子炉建	
	設置する枠	屋原子炉棟の	
	部及より構	壁に据え付け	
	成される設	る。	A CONTRACTOR OF THE PARTY OF TH
	備である。		

6.3.2閉止装置

(1) 構造設計

閉止装置は、「6.1 構造強度の設計方針」で設定している設計方針及び「6.2 荷重及び荷重の組合せ」で設定している荷重を踏まえ、原子炉建屋に据付し、扉はローラを介して扉枠に支持する構造とする。

閉止装置の構造計画を第6-2表に示す。閉止装置の概略図を第6-2図に示す。

(2) 評価方針

閉止装置は、「(1) 構造設計」を踏まえ、以下の耐震評価方針とする。

a. 機能維持

閉止装置は、基準地震動Ssによる地震力に対し、設置場所における最大加速度が、加振試験により、閉止装置の作動性、気密性を保持できることを確認した加振台の最大加速度以下であることにより確認する。

b. 構造強度

閉止装置は、開閉方向及び鉛直方向について、最大加速度の1.2倍の震度に裕度2倍を考慮した評価用震度とする。

面外方向については、床応答スペクトル及び固有値計算結果から得られる震度と最大加速度の 1.2倍の震度に裕度2倍を考慮した評価用震度の大きいほうを評価用震度とする。

c. 波及的影響

閉止装置は、基準地震動 S_s による地震力に対し、設置場所における最大加速度が、加振試験により主要部材が健全であることを確認した加振台の加速度以下であることにより確認する。

第6-2表 閉止装置の構造計画

設備分類 主体構造 支持構造 説明図 主体構造 支持構造 説明図 【位置】 閉止装置は、V-1-1-6の要求を満たす耐震性を有する原子炉建屋原子炉棟に設置す 計画としている。
閉止装置は、V-1-1-6の要求を満たす耐震性を有する原子炉建屋原子炉棟に設置す
計画としている。
閉止装置 閉止装置 扉枠 (レール 第6-2図 閉止装置
は, 扉, 扉 を含む) は,
枠(扉を移 原子炉建屋原
動させるた 子炉棟の壁に
めのレール 据え付ける。
を含む), 扉はローラを
及び扉を駆 介して扉枠
動する電動(レール含
機から構成 む) に支持す
する。 る。

6.3.3 竜巻防護対策施設

竜巻防護対策施設は、「6.1 構造強度の設計方針」で設計方針及び「6.2 荷重及び荷重の組合せ」で設定している荷重を踏まえ、据付ボルトにより原子炉建屋原子炉棟に固定する構造とする。

竜巻防護対策施設の構造計画を第6-3表に示す。竜巻防護対策施設の概略図を第6-3図に示す。

(2) 評価方針

竜巻防護対策施設の評価対象部位である機器全体は、「(1) 構造設計」を踏まえ、以下の耐震評価方針とし、施工段階に確認を行う。

a. 機能維持

竜巻防護対策施設は、基準地震動 S_s による地震力に対し、b. で示す構造強度を維持することでその機能を確認する。

b. 構造強度及び波及的影響

竜巻防護対策施設は、基準地震動Ssによる地震力に対し、施設を構成する防護ネット、防 護鋼板及び架構が必要な強度を有することを計算により確認する。

第6-3表 竜巻防護対策施設の構造計画

設備分類	計画の概要		説明図				
双闸刀短	主体構造	支持構造	元				
【位置】							
竜巻防護対策施設は、V-1-1-6の要求を満たす耐震性を有する原子炉建屋原子炉棟に							
設置する計画	 国としている。						
竜巻防護対	竜巻防護対	竜巻防護対策	第6-3図				
策施設	策施設は,	施設は,原子					
	防護ネッ	炉建屋原子炉	1500 kss kss kss kss kss kss kss kss kss k				
	ト,防護鋼	棟の外壁に据	H.L. NH.				
	板及び架構	え付ける。	H300 G G G G G G G G G G G G G G G G G G				
	から構成す						
	る。						
			H300 H300 H300 H300 H300 H300 H300 H300				
			<u> 1882 - 1</u>				
			NUMBER OF STREET				
			, · · · · · · · · · · · · · · · · · · ·				

6.3.4 強制開放装置

(1) 構造設計

強制開放装置は,「6.1 構造強度の設計方針」で設計方針及び「6.2 荷重及び荷重の組合せ」で設定している荷重を踏まえ,原子炉建屋原子炉棟に固定する構造とする。

強制開放装置の構造計画を第6-4表に示す。強制開放装置の概略図を第6-4図から第6-6図に示す。

(2) 評価方針

強制開放装置の評価対象部位である機器全体は、「(1) 構造設計」を踏まえ、以下の耐震評価方針とし、施工段階に確認を行う。

a. 機能維持

強制開放装置は、基準地震動 S_s による地震力に対し、設置場所における最大加速度が、加振試験により、原子炉建屋外側ブローアウトパネルを強制的に開放する機能を保持できることを確認した加速度以下であることにより確認する。

b. 構造強度及び波及的影響

計画の概要

強制開放装置は、基準地震動Ssによる地震力に対し、強制開放装置を構成するシリンダ等、機器の取付ボルトが必要な強度を有することを計算により確認する。

第6-4表 強制開放装置の構造計画

국저 미디 12의

1 沙腊八海	,		┪けっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱっぱ						
設備分類	主体構造	支持構造	脱切四						
【位置】									
強制開放装置は、V-1-1-6の要求を満たす耐震性を有する原子炉建屋原子炉棟に設置									
する計画としている。									
強制開放装	強制開放装	強制開放装置	第6-4図 シリンダ						
置	置は, ブロ	は,原子炉建							
	ーアウトパ	屋原子炉棟の							
	ネル押し出	壁又は床に据							
	し用シリン	え付ける。							
	ダ,窒素ガ								
	スボンベ,								
	アキュムレ								
	ータ,配管								
	及び弁から								
	構成する。								
•									

	第6-5図	アキュムレータ
	·	
	第6-6図	窒素ガスボンベ

本資料のうち、枠囲みの内容は、営業 秘密又は防護上の観点から公開でき ません。

東海第二発電所

工事計画に係る説明資料

(ブローアウトパネル関連設備の設計方針)

補足資料目次

1.	東淮	第二発電所のブローアウトパネル関連設備について
	1-1	ブローアウトパネル関連設備の要求機能について · · · · · · · 1-1
	1-2	ブローアウトパネル・・・・・・・1-1
	1-3	ブローアウトパネル閉止装置 ・・・・・・・・・1-39
	1-4	強制開放装置1-48
	1-5	竜巻防護ネット · · · · · · · 1-49
	1–6	ブローアウトパネル開放時の設計基準事故時被ばく評価への影響について ・・・・・・・・1-50
2.	東淮	第二発電所 原子炉建屋ブローアウトパネル機能確認試験
	2-1	試験要領 · · · · · · · · · · · · · · · · · · ·
	2-2	試験結果 · · · · · · · · · · · · · · · · · · ·
3.	原于	ゲ炉建屋外側ブローアウトパネルの耐震性についての計算書
4.	東淮	第二発電所 ブローアウトパネル閉止装置機能確認試験
	4-1	試験要領 · · · · · · · · · · · · · · · · · · ·
	4-2	試験結果 · · · · · · · · · · · · · · · · · · ·
	4-3	不具合の原因対策・・・・・・・・・・・・・・・・・・・・・・・・・4-3-1
	4-4	再試験結果 · · · · · · · · · · · · · · · · · · ·
5.	ブロ	ューアウトパネル閉止装置の開放を仮定した場合の中央制御室の被ばく評価への影響について
6.	ブロ	zーアウトパネル閉止装置の要求機能について

東海第二発電所のブローアウトパネル関連設備について

日本原子力発電株式会社 平成30年8月

- 1. ブローアウトパネル関連設備の要求機能について
- 1.1 ブローアウトパネル及び関連設備の必要機能と確認方法

ブローアウトパネル及び関連設備への技術基準規則の主な要求事項(基準地震動と設計竜巻)と成立性確認方法について整理した。各要求機能は以下の通りとなる。これらの機能を第1-1表のとおり整理した。

1.1.1 設計基準対処施設としての要求機能

原子炉建屋外側ブローアウトパネルは、設計基準対処施設として以下の要求事項に適合する必要がある。

- ・技術基準規則 第12条 溢水等による損傷の防止
 - (1) 開放機能

ブローアウトパネルは、主蒸気配管破断等を想定した場合の放出蒸気による圧力から原子炉建屋や原子 炉格納容器等を防護するため、放出蒸気を建屋外に放出することを目的に設置されている。建屋の内外差 圧により自動的に開放するこの機能を、ブローアウトパネルの開放機能とする。

- ・技術基準規則 第38条 原子炉制御室等
- ・技術基準規則 第44条 原子炉格納施設
 - (2) 2次格納施設のバウンダリ機能

上記機能に加えブローアウトパネルはその配置より、原子炉建屋原子炉棟の壁の一部となることから、 2次格納施設のバウンダリを構成する部位となる。

1.1.2 重大事故等対処施設としての要求機能

ブローアウトパネル閉止装置は、重大事故等対処施設として以下の要求事項に適合する必要がある。

- ・技術基準規則 第74条 運転員の被ばく防止等
 - (1) 2次格納施設のバウンダリ維持

ブローアウトパネル閉止装置は、原子炉建屋原子炉棟の壁の一部となることから、運転員及び公衆被ばく防止のため、閉維持機能が必要となる。

第1-1表 ブローアウトパネル及び関連設備の必要機能

			DB		SA		
防護すべき設備		5条 地震	7条 自然条件 竜巻差圧	7条 自然条件 竜巻飛来物	50条 地震	54条 自然条件 竜巻差圧	54条 自然現象 竜巻飛来物 (共通要因)
ブローアウトバ ネル	◎開機能 (12条)	○ (地震後)	プラント停	0	_	-	-
	△閉維持 (建屋気密性) (38条, 44条)		止にて対応	(竜巻防護設 備にて防護)	ı	-	-
ブローアウトバ ネル閉止装置 (SA緩和設備)	◎閉機能(SA前) (74条)	_	_	I	◎(地震後)	○ (差圧発生せ ず影響なし)	-*1
	◎閉維持 (建屋気密性) (74条)	_	_	-	0	- *2	-*2
竜巻 防護設備	○飛来物からの 防護機能 (7条)	(波及的影響)	○ (差圧発生せ ず影響なし)	0	_	_	-

◎:実機大の試験による確認 ○:解析評価による確認 △:実機での確認 一:機能要求なし

※1 ブローアウトパネル閉止装置は、SA緩和設備であるため、共通要因故障の考慮不要

※2 SA後の閉止状態での設計竜巻は、事象の重ね合わせの頻度から組み合わせ不要

- 1.2 ブローアウトパネル開放時の要求機能について
- 1.2.1 ブローアウトパネル開放時の条件について

ブローアウトパネルの開放機能は、建屋の内外差圧により自動的に開放する機能であるため、他の自然現象や事故発生時等においてパネルが開放した場合は、一時的に、バウンダリの維持機能が喪失することになる。

ブローアウトパネルの開放による2次格納施設のバウンダリ維持機能に影響を与える可能性がある自然現象としては、
竜巻と地震がある。

この2つの事象に対しての対応方針をブローアウトパネルの開放時に想定される事象を 踏まえ第1-2表のとおり検討した。

検討の結果,以下の対応とすることで,2次格納施設としてのバウンダリ機能は十分に 維持できるものと考える。

- ・ブローアウトパネルの耐震性は、開放機能に影響を与えないよう確保する。なお、開放した場合は、安全な状態(運転中は冷温停止へ移行、停止中は使用済燃料に関連する作業の停止)に移行することを保安規定に定める。
- ・設計竜巻の差圧に対して、開放した場合は、安全な状態(運転中は冷温停止へ移行、停止中は使用済燃料に関連する作業の停止)に移行することを保安規定に定める。

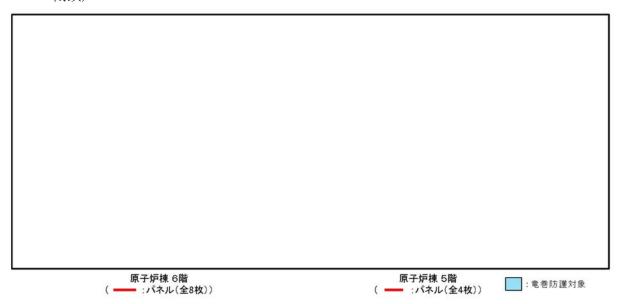
第1-2表 ブローアウトパネルの開放時に想定される事象と対応方針

自然現象	設計 差圧	プラント 状態	自然現象発生時に 想定される事象	対応策	対応策の妥当性		
設計竜巻	8.9kPa	運転中	く自動停止〉 ·主タービン、発電機の 損傷 ·補機冷却系(常用の 海水、淡真空失) ·復な環水悪源を大 (循部動水で度) ·外動水で度と、外動水で度と、外動水で度と、 ・対動水の表と、 ・対・補機が変を、 ・外が表の表と、 ・補機が変を、 ・対・補機が変を、 ・対・対し、 ・対し、 ・対し、 ・対し、 ・対し、 ・対し、 ・対し、 ・	◆安全上で 安全上で が可能な ですることで、 安全機能を なわない する	◆プラント運転中には、プラントの停止を要する事象の発生が想定されるが、停止及び冷却に必要な設備は確保されており、原子炉安全に影響しない。 ◆プラント停止中においても、残留熱除去系は維持されており、原子炉安全に影響しない。 ◆竜巻によるブローアウトパネル開放と設計基準事故との重畳頻度は有意性の判断基準10つつの/年を下回り、十分小さい・ブローアウトパネル開放差圧を生じる竜巻(89m/s)の発生頻度:5.2×10つの/年・設計基準事故の発生頻度:10つつ10つ/年・設計基準事故の発生頻度:10つつ10つ/年・遺費によるブローアウトパネル開放と設計基準事故の重畳頻度:<10つの/年		
設計用地震動 Sd @EL63.65 m	1.4G	運転中 停止中	◆ブローアウトパネルの設計開放差圧6.9kPaが発生した場合, ブローアウトパネルに付加される開放荷重(差圧×面積)は,約106~111kN程度 ◆一方,Sd地震による開放荷重(自重×地震加速度)は,約28~33kN程度 ◆以上より,地震荷重よる開放荷重は,ブローアウトパネル開放荷重より小さく,設計用地震動Sdによりブローアウトパネルは開放しない設計となる				

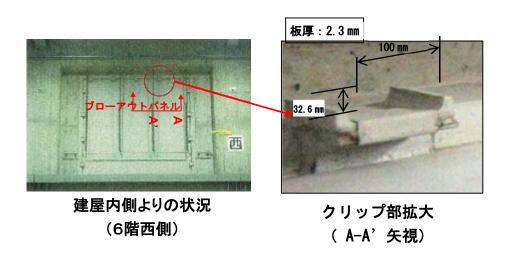
1.3 ブローアウトパネルに対する要求事項

建設時の設計**を極力踏襲し、可能な限りブローアウトパネル枚数を多く確保した上で、解析により、主蒸気管破断事故 (MSLBA)時の建屋内圧力、温度が設計条件内にあることを確認した。この結果を踏まえ、竜巻に対する対応、重大事故等発生時の要求を考慮し、ブローアウトパネル枚数の最適化を図るため原子建屋原子炉棟の5階の東側2枚を閉鎖する。

上記対策を実施するため、内部溢水における蒸気評価の再評価を行い、従来の評価に影響の無いことを確認した。

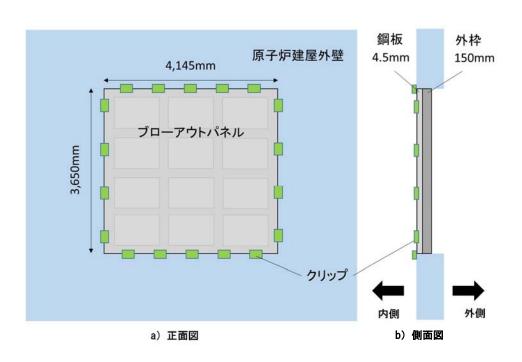

- ・添付十(安全解析)のMSLBA時の被ばく評価は、全量の地上放出を仮定しており、ブローアウトパネル枚数に影響しないため、ブローアウトパネル枚数変更の影響なし。
- ・IS-LOCA 時の環境条件への影響なし。(開放する場合でも、開放しない場合でも評価に影響しない)
 - ※ 建設時設計の設置数12枚については、建屋内圧力の上限値に対して裕度を持った開口面積として設定しており、圧力に着目した評価により十分とされた開口面積(約90m²)の約2倍(約185m²)を有している。このうち2枚を閉とした場合においても、圧力・温度ともに当初の設定値を超えることはなく影響はない。

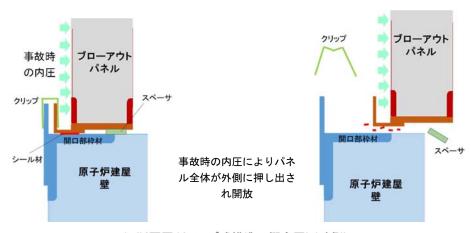
1. ブローアウトパネル


(1) 設置概要

ブローアウトパネルは,原子炉建屋原子炉棟の外壁に建設時より合計 12 枚(型式:クリップ方式,大きさ約 $4m \times 4m$,重さ約 1.5t)が設置されている。原子炉棟外壁におけるブローアウトパネルの配置を第 1-1 図に示す。

- ・原子炉棟6階:東西南北の壁面に各2箇所の合計8箇所
- ・原子炉棟 5 階: 東西南北の壁面に各 1 箇所の合計 4 箇所 ⇒ (東側 2 枚を竜巻防護対策にて 閉鎖)




第 1-1 図 ブローアウトパネル配置図

(2) ブローアウトパネルの構造について

ブローアウトパネルは、厚さ 2.3 mmのクリップと呼ばれる装置 18 個で原子炉建屋外壁に設置されており、原子炉格納容器の設計上の最高使用外圧 2psi に対し、1psi で開放するように設計されている。詳細を第 1-2 図に示す。また、主要な仕様を第 1-4 表に示す。

c) 断面図(クリップ式構造の概念図)(外側)

第1-2図 ブローアウトパネルの構造及び作動原理

第1-4表 ブローアウトパネル主要仕様

	設置場所	寸法(躯体開口部)	クリップ数
5階	北、西	4,000mm×4,000mm	18個
6階	北1、北2、南1、南2	3,680mm×4,170mm	18個
	西1、西2、東1、東2	4,170mm×3,680mm	18個

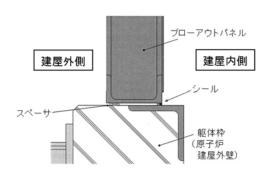
ブローアウトパネルは、電源や空気源に頼ることなく、静的、且つ圧力上昇に対して確実に開 放できる仕組みとして、クリップを使用したパネルの開放機構を選定している。

この開放機構は、既設系統設備でも採用実績のある破壊板(ラプチャーディスク)と同様の考え方(圧力による負荷荷重により、部材を破壊させる)であり、構造が単純であることから、信頼性が高いものである。

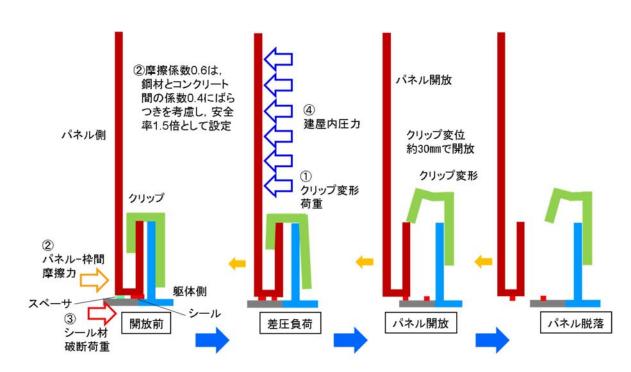
1.2 差圧によるクリップの開放機構

(1) パネル開放の仕組み

建屋内圧力によるクリップの変形及びパネルの開放は、具体的に第1-5図の流れとなる。

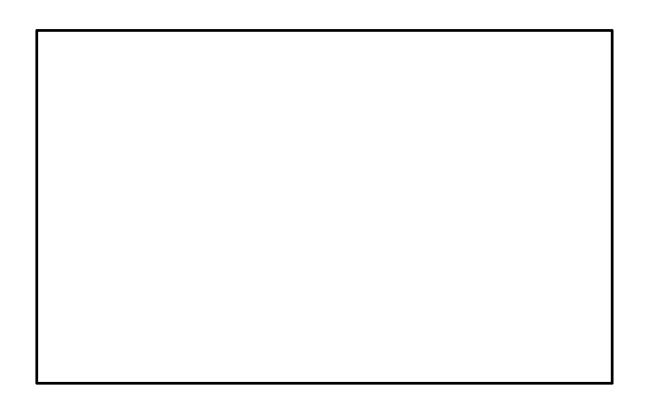

パネルの開放に必要な荷重 < 建屋内圧力による荷重 (①+②+③) (④)

ここで,


① : クリップを変形させる荷重×クリップ個数

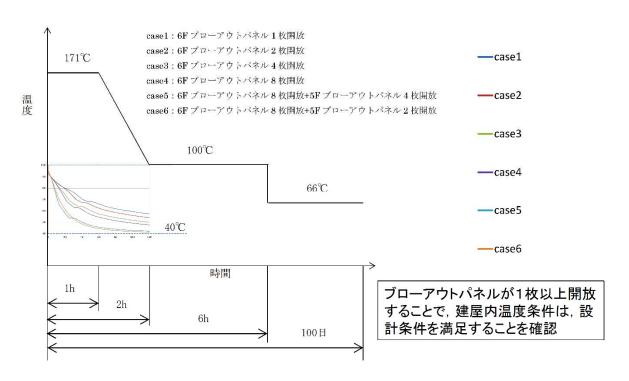
② : パネルと躯体枠部の摩擦力(パネル鋼材 - 枠鋼材及び枠躯体) ⇒ 摩擦係数 0.6

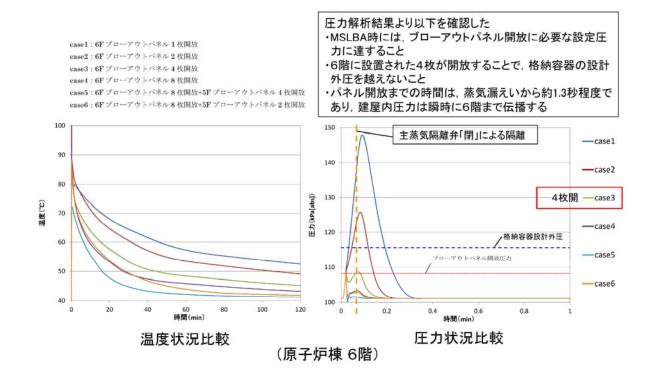
③ :シール材の破断に必要な荷重 (シール材の選定及び施工方法の検証により設定)


ブローアウトパネル下部の詳細断面

第1-5図 ブローアウトパネル開放のメカニズム

- 1.6 新規制対応での基本方針
- (1) ブローアウトパネルの基本設計及び対策


内部溢水における蒸気影響評価,竜巻に対する対応,重大事故等発生時の要求等を考慮し,原子炉棟5階の東側ブローアウトパネルを2枚閉止する対策を行う。このため,3次元流体解析により,主蒸気管破断事故時の建屋内圧力,温度が設計条件内にあることを確認した。対策の概要及び解析結果を第1-6図から第1-8図に示す。


:西側区画ブローアウトパネルから見通せる範囲

🔷 🐤 : 開口部を繋ぐ風の流れ

第1-6図 ブローアウトパネルの閉鎖対応箇所について

第1-7図 主蒸気管破断時の原子炉棟内温度状態と解析結果の比較

第1-8図 ブローアウトパネル作動枚数による温度及び圧力状況比較

(2) ブローアウトパネル作動のばらつきの考慮について

原子炉格納容器の設計外圧に着目すると、主蒸気管破断事故時の開放必要枚数は3次元流体解析の結果から、4枚以上となることを確認した。5枚以上の開放は、建屋内雰囲気温度と圧力の更なる低下に寄与するものであり、設備防護上は考慮するものであるが必須ではない。

3次元流体解析コードにおいては、ブローアウトパネルの開放時間遅れも解析上考慮し、設定 圧力でパネルが開放すると評価している。これに対し、実際に必要とする4枚開放まで、同時に 作動しない場合を想定すると、この場合は、開放面積が少ないため、建屋内圧力は再度設定圧力 に到達する評価であり、4枚目までは確実に開放すると判断できる。

また、実際の蒸気噴出時の圧力伝播速度は、音速に近い値であり、ブローアウトパネルの設置 位置による圧力伝播の時間差はほとんどなく、ほぼ原子炉棟6階の全域に同時に作用すると想定 されることから、作動圧力に影響を与えるような、時間差は発生しないと評価している。

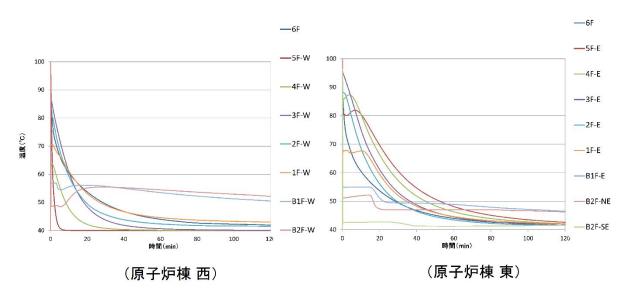
(3) ブローアウトパネルのクリップの信頼性について

ブローアウトパネルは,電源や空気源に頼ることなく,静的,且つ圧力上昇に対して確実に開 放できる仕組みとして,クリップを使用したパネルの開放機構を選定している。

この開放機構は、既設系統設備でも採用実績のある破壊板(ラプチャーディスク)と同様の考え方(圧力による負荷荷重により、部材を破壊させる)であり、構造が単純であることから、信頼性が高いものである。

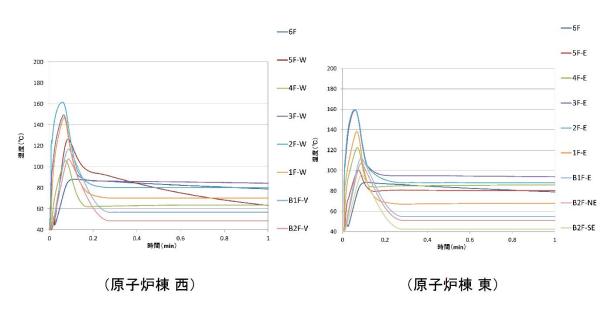
ブローアウトパネルが差圧により確実に作動することを確認するための管理として, クリップ の確認試験を実施し, ブローアウトパネル開放機構の作動性能を担保することとする。

(4) ブローアウトパネル2枚閉鎖後の建屋内温度評価の結果について


ブローアウトパネルの2枚閉鎖対策後の建屋内温度評価の詳細を第1-9図及び第1-10図に示す。また、ブローアウトパネルの作動枚数による建屋内温度状況の代表例として、原子炉棟3階の結果を第1-11図及び第1-12図に示す。

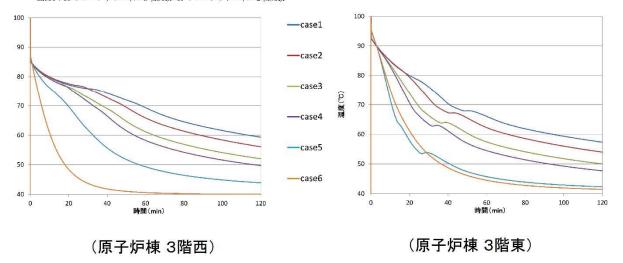
第1-7 図に示すブローアウトパネル開放後に温度が停滞する箇所は、蒸気が自然対流で上昇する流れと、外気から流入する下降気流がぶつかり、入れ替る際の停滞状況を示している。

また、5階東側のブローアウトパネルを閉止することにより、東側は大物搬入口を通じた上昇 気流が発生し、6階に高温の蒸気が抜ける流れが主となる。


これに対し、西側エリアにおいては、5階から取り入れられた外気の下降気流が主となり、主蒸気管室で西→東の流れができると考えられる。このため、ブローアウトパネル全数が開放する場合と比べて、5階西側(ほう酸ポンプ設置側)の温度が下がる結果となっている。

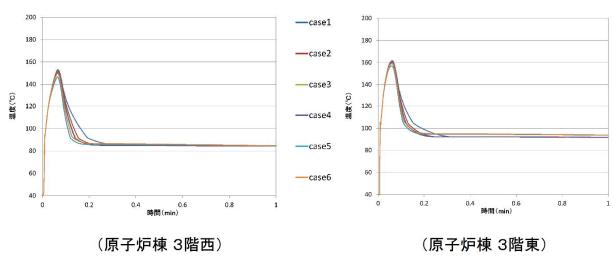
BOP開条件:全10枚「開」(6階 全8枚 + 5階西側 全2枚。5階東側「閉」)

第1-9図 対策後の温度状況比較

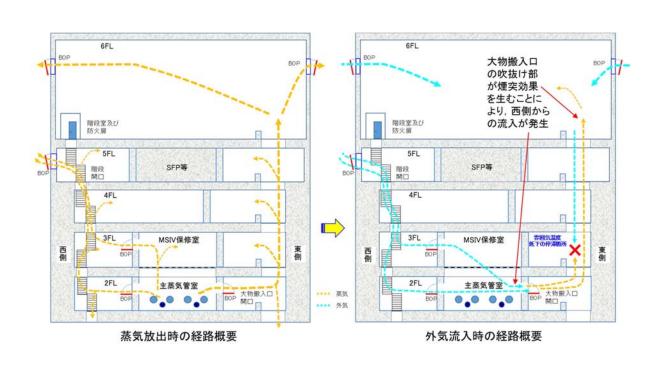

BOP開条件:全10枚「開」(6階 全8枚 + 5階西側 全2枚。5階東側「閉」)

第 1-10 図 対策後の温度状況比較(最高温度)

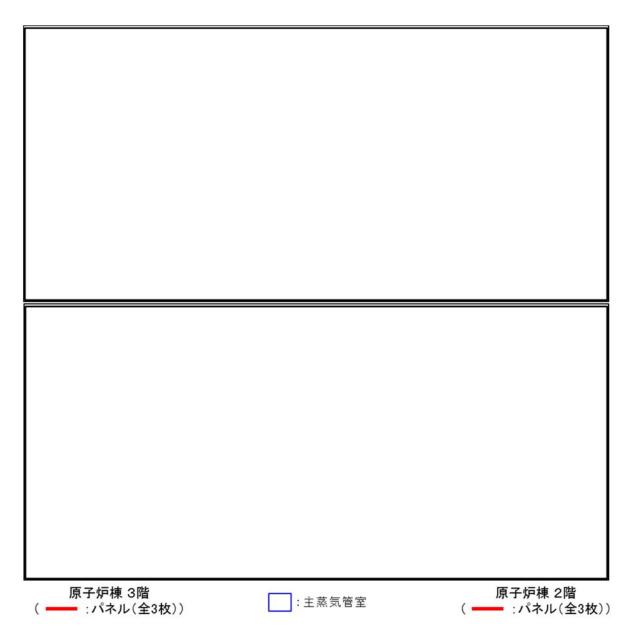
case1:6F ブローアウトバネル 1 枚関放 case2:6F ブローアウトバネル 2 枚関放 case3:6F ブローアウトバネル 4 枚関放 case4:6F ブローアウトバネル 8 枚関放


 ${\bf case5:6F}$ プローアウトパネル 8 枚側放+5F プローアウトパネル 4 枚側放 ${\bf case6:6F}$ プローアウトパネル 8 枚関放+5F プローアウトパネル 2 枚関放

第1-11図 ブローアウトパネル作動枚数による温度状況比較


case1: 6F ブローアウトバネル 1 枚開放 case2: 6F ブローアウトバネル 2 枚開放 case3: 6F ブローアウトバネル 4 枚開放 case4: 6F ブローアウトバネル 8 枚開放

case5:6F プローアウトパネル 8 枚関放+5F プローアウトパネル 4 枚関放 case6:6F プローアウトパネル 8 枚関放+5F プローアウトパネル 2 枚関放



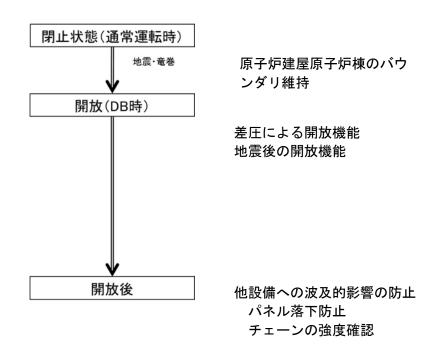
第1-12 図 ブローアウトパネル作動枚数による温度状況比較(最高温度)

ブローアウトパネル開放後に一時温度低下が停滞するのは、漏えいした高温の蒸気が大物搬入口開口部を上昇する流れと、外気が流入する際の下降気流がぶつかり、入れ替る状況を示している。ブローアウトパネルの開放枚数が多い方が蒸気漏えい後の早い段階でこの状況が現れる結果となる。また、5階、6階のブローアウトパネル全数が開放する場合と比較して、5階の東側を閉鎖する方が温度低下が早くなる原因は、5階西側から取入れられた外気が、東側大物搬入口吹抜け部で発生する煙突効果により、主蒸気管室の西側から東側への流れとなり、原子炉棟内で大きな循環が発生することで、外気の流入が速やかに進むためである。これらの状況を第1-13 図及び第1-14 図に建屋の断面図と平面図により示す。

第 1-13 図 原子炉棟断面図

第 1-14 図 原子炉建屋平面図

5 階東側のブローアウトパネルを閉止することにより、東側は大物搬入口を通じた上昇気流が発生し、6 階に高温の蒸気が抜ける流れが主となる。(図中の →)


これに対し、西側エリアにおいては、5階から取り入れられた外気の下降気流が主となり、主蒸気管室で西→東の流れができると考えられる。(図中の--)

このため,ブローアウトパネル全数が開放する場合と比べて, 5階西側(ほう酸ポンプ設置側) の温度が下がる結果となる。

また、各溢水防護対象設備の設置位置と蒸気配管の設置位置を考慮し、蒸気漏えいの観点で、最 も厳しい環境条件となると考えられるのは2階、3階の東側エリアである。

1.7 ブローアウトパネル開放の成立性について

ブローアウトパネルが設計差圧 $\triangle P$ (1psi=約 6.9kPa) により開放する場合のメカニズムは、以下のとおりである。各段階に対し、確認すべき項目を以下の第 1-15 図に整理した。

第1-15図 ブローアウトパネルの各段階での要求機能

1.7.1 原子炉建屋原子炉棟のバウンダリ維持

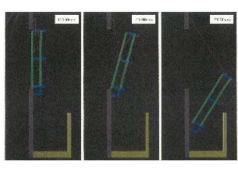
東海第二の場合,基準地震動 S_s による地震荷重は差圧による開放荷重より小さいため,差圧による開放機能確認に合わせ,基準地震動 S_s 相当の荷重では開放しないことを確認する。

差圧による開放荷重(面積×差圧)は約110kN程度であり、基準地震動Ssによる開放荷重 (質量×地震加速度)は約33kN程度であるため、地震力相当では開放しない。

1.7.2 差圧による開放機能

固定用クリップの引張試験を実施し、どの程度の荷重でクリップが開放するかを確認する。 また、実機大モックアップによる開放試験を実施する。油圧ジャッキにより差圧に相当する力 をパネルに静的に付加し、開放すること確認する。第1-16 図に試験の状況を示す。

1.7.3 地震後の開放機能


建屋の許容最大ひずみ量を生じた場合でも、変形は建屋取付枠とパネルの隙間にあるシール 材の施工範囲内にあり、開放機能に影響しないことを評価により確認する。

1.7.4 実作動試験の代表性について

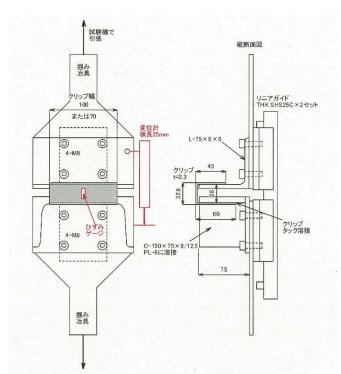
ブローアウトパネルは開口面積の違う 2 タイプ(開口面積 $4m \times 4m$, $3.68m \times 4.17m$)が設置されており、面積に応じて開放時に負荷される差圧による荷重に相違($4m \times 4m$ の場合:約 110kN, $3.68m \times 4.17m$ の場合:約 がある。このため、実作動試験の実施については、最大面積のパネル(自重最大)を用いて、最少面積のパネルに負荷される荷重により開放することを確認する。

落下 防止柵

(2012年 自主的安全性向上の一環として 実施した,原子炉建屋 6 階北側強制開放装 置設置時の試験)

第 1-16 図 実機大ブローアウトパネル開放試験

1.8 クリップの信頼性(規定差圧により開放することの信頼性)


ブローアウトパネルの作動圧力は、クリップの開放荷重により管理することが可能であることから、この荷重を管理項目とする目的で個別の要素試験を実施する。

1.8.1 試験目的

クリップ単体の引張試験を実施し、ブローアウトパネルの開放機能を担保するための、適切なクリップの管理項目を設定する。

1.8.2 試験方法

- ・オートグラフ試験機(AG-50kNB)による引張試験
- ·変位制御(引張速度 1 mm/min)
- ・各測定項目は、第1-17図参照。

◆ 引張試験内容

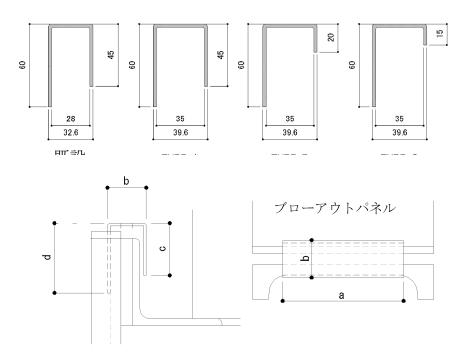
クリップ単体を引張試験にてパネルの 水平方向の荷重を模擬する

【測定項目】

- ①試験荷重,
- ②クリップ変位,
- ③クリップのひずみ

【測定結果の評価】

クリップの最大荷重と変位の試験結果より、クリップの作動時における ばらつきを検証する パネルが設定差圧にて確実に開放 するための管理項目を検証する


【クリップの管理項目】

- ①材質,
- ②形状,
- ③クリップの寸法(板厚, 幅),
- ④取付方法と取付寸法

第1-17図 クリップの引張試験概要図

1.8.3 クリップの信頼性(クリップ試験の結果整理)

試験に用いた各クリップの形状及び試験体寸法の測定箇所を,第 1-18 図に示す。これらの各試験片にて確認する項目は以下とする。

第1-18 図 クリップの形状及び試験体寸法測定箇所

第1-5表 試験での確認項目

項目	目的	具体的な仕様
材質	材質による強度 のばらつきを確認	SS400, SPCC
板厚	一定(既設と同じ)	2.3mm
幅(a)	クリップ幅と強度 の関係を確認	100mm, 70mm
掛り寸法(6)	掛り寸法による強 度(外れ易さ)の ばらつきを確認	45mm, 20mm, 15mm
曲げ加工後のク リップ幅(b)	曲げ加工後のク リップ幅と強度の ばらつきを確認	28mm, 35mm

(1) クリップ材質 : SS400 及び SPCC

⇒ 材質による強度との関係を確認

(2) クリップ板厚:2.3mm

⇒ 変更なし

(3) クリップ幅 : (a) 100mm 及び 70mm 2種類

⇒ クリップ幅寸法の強度との関係を確認

(4) クリップの掛り寸法: (c) 3種類 45mm, 20mm, 15mm (TYPE-A~C)

⇒ クリップが完全に外れる位置と掛り長さの関係を確認

(5) クリップの曲げ加工後の厚さ: (b) 2種類 28mm, 35mm

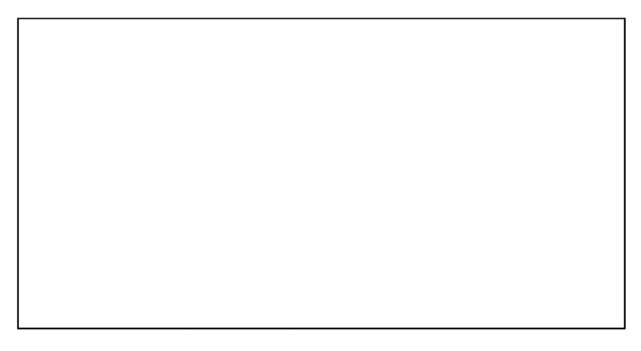
⇒ 取付寸法と強度との関係を確認

(6) アングル部の表面処理: 研磨の有無

⇒ 最大荷重値への影響を確認 (クリップ変形時 のアングルとの摩擦に より強度にばらつき)

(7) 試験体数は各ケース5個で実施

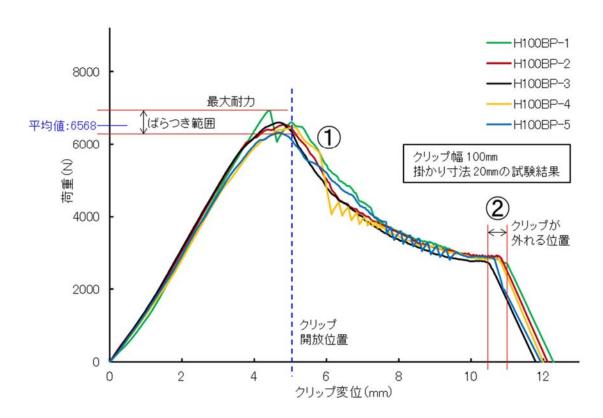
各試験体の一覧を第1-6表に示す。


第1-6表 試験用クリップ一覧

試験 区分	試験体名称	クリップ 材質	クリップ 板厚	クリップ幅(a)	クリップ 掛り寸法(c)	曲げ加工後のク リップ幅(b)	クリップ形状	変位速度	試験体数
	C70	SPOC		70 mm			9F = 0.1 (=):-		5
=-P #A 4	C100	(冷間圧延鋼 板)		100 mm					5
試験1	H70	SS400	70 mm	45mm	28mm	既設と同じ		5	
	H100	(一般構造用圧 延鋼材)	2.3mm	2.3mm	100 mm				1 mm/分
試験2	H100AP	SS400				45mm		TYPE-A	
	H100BP	(一般構造用圧 延鋼材)		100 mm	20mm	35mm	TYPE-B] [5
	H100CP				15mm		TYPE-C		5

1.8.4 試験結果及び考察

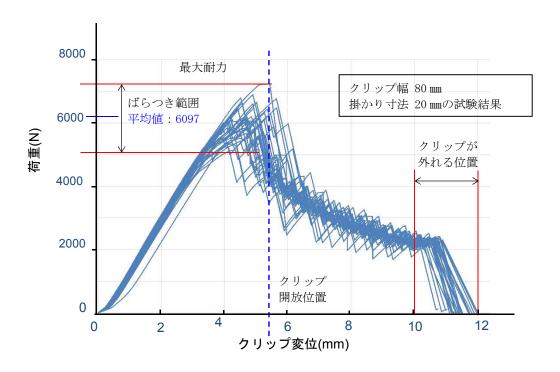
試験結果を最大耐力の測定値で整理した結果を第1-7表にまとめる。



試験1のC70,C100,H70,H100では,各5本の試験結果の最大耐力のバラツキが大きくなっている。これは,クリップ変形時のアングル部との摩擦の大小により最大強度の値にばらつきが発生したと考える。このため,試験2ではパネル側のアングル部を研磨し,摩擦を軽減させた場合の試験を実施し良好な結果を得た。

クリップの変位と荷重の関係を第1-19図に示す。

- ◆ 試験1の結果から, SS400の降伏点の明確でばらつきも低減できることを確認 ⇒ 材質 は SS400 を選定
- ◆ 試験1の結果から、材料に関係なく、降伏荷重(平均値) はクリップ幅に比例 (C70/C100=H70/H100≒0.69)
- ◆ 試験2の結果から、掛り寸法は、20mm 程度(TYPE-B)が最もばらつきが小さく適切な形状であることを示す結果となった。


第1-19図 クリップの荷重・変位関係

- ①最大耐力に達したのち、クリップが降伏して開くことで荷重が低下していることをクリップ 部のひずみ測定により確認した。
- ②パネル側のアングル部を研磨し、クリップとの摩擦を軽減させることで最大耐力のばらつきが低下することを確認した。
- ③クリップの掛かり長さが 20 mm (H100BP) では変位 11mm で,掛かり長さ 15mm (H100CP) では変位 9mm でクリップが完全に外れることを確認した。

(クリップの掛かり長さ 45mm (H100A) では、試験装置の仕様より、クリップが完全に外れるまで測定ができなかった)

前項の試験結果より TYPE-B(幅80mm)をクリップの基本形状とすることとする。

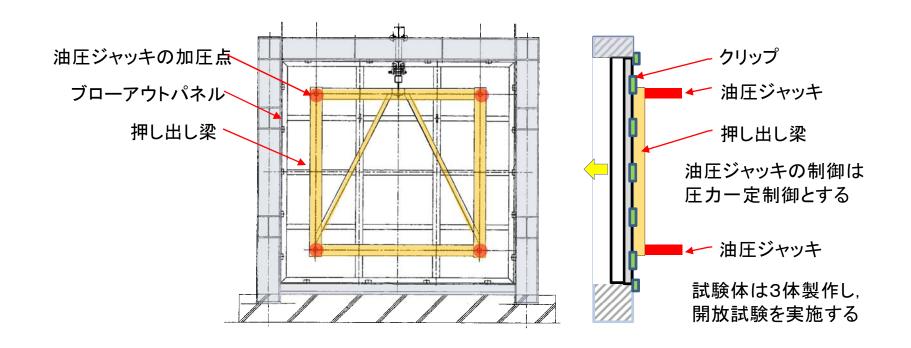
次に、クリップ TYPE-B (幅 80mm) についてばらつきを考慮し、30 個の開放試験を実施した結果を以下にまとめる。

第1-19図 クリップの荷重・変位の関係

第1-7表 試験結果

項目		荷重 (N)	
	平均値	6097	
最大耐力	最大値	7231	
	最小値	5192	
標準偏差σ	524		
最大耐力(平均)	7670		
最大耐力(平均)	4524		

1.8.5 クリップの信頼性(モックアップによる開放試験)

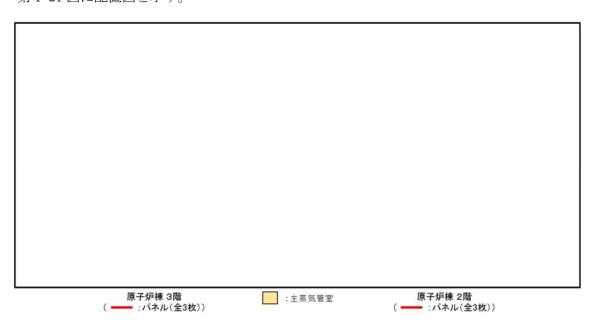

実機同等のブローアウトパネル及びパネルフレーム枠の試験体を製作し、シール施工及び新たに設定するクリップを設置した状態で、油圧ジャッキを用いた加力試験により以下の項目を確認する。モックアップ試験装置の概要を第1-20図に示す。

確認項目:規定圧力以下でブローアウトパネルが開放すること

クリップが完全に外れること

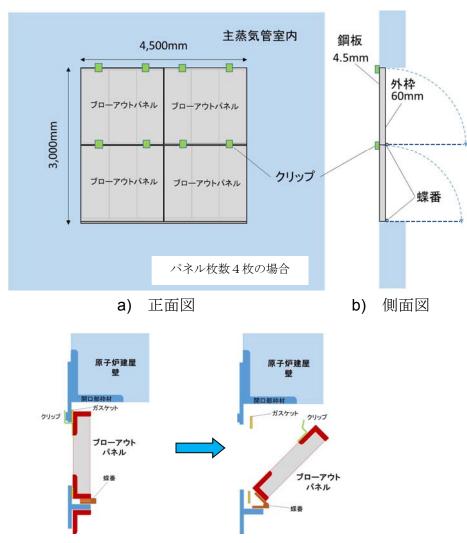
ブローアウトパネルが躯体より脱落すること

その他条件:ブローアウトパネルの加圧条件(蒸気条件による均等加圧)を実 現象として模擬することは困難であるため、油圧ジャッキと押し出し梁を用いて等圧で均等に加圧する。

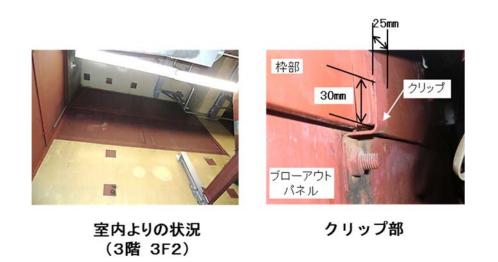


第 1-20 図 モックアップ装置の概要

1.9 原子炉建屋内側ブローアウトパネルについて


原子炉建屋外壁のブローアウトパネル以外に、原子炉棟内のブローアウトパネルとして主蒸気管室の壁面 6 箇所にブローアウトパネルが設置されている。(大きさ 約 2m×1.5m のパネル複数で構成)

- ・原子炉建屋 3 階:主蒸気管室上部の保守点検室北側壁面に 2 箇所, 西の壁面に 1 箇所の合計 3 箇所
- ・原子炉建屋 2 階:主蒸気管室西側壁面に 1 箇所,東側壁面に 2 箇所の合計 3 箇所 第 1-21 図に配置図を示す。



第1-21図 原子炉建屋内側ブローアウトパネル配置図

主蒸気管室のブローアウトパネルは、厚さ約1mmのクリップと呼ばれる装置2個で壁に設置されており、差圧のみで自動開放し、主蒸気管室での漏えい蒸気を原子炉棟内に放出するよう設計されている。第1-22図に原子炉建屋内側ブローアウトパネルの概要を示す。

c) 断面図 (クリップ式構造の概念図) (内側)

第1-22図 原子炉建屋内側ブローアウトパネル概要

内側ブローアウトパネルのクリップは建設時の試験結果より、外側ブローアウトパネルのクリップの約1/2以下の荷重で開放する構造であり、パネルの面積とクリップの個数より、容易に (1psi 以下で) 開放する構造である。原子炉建屋内側ブローアウトパネルの主な仕様を第1-8表に示す。

主蒸気配管破断時に主蒸気管室のブローアウトパネルが開放しない場合は、構造的に弱い、タービン建屋側の配管貫通部や主蒸気管室入口扉が圧力により破損することが考えられる。

第1-8表 原子炉建屋内側ブローアウトパネルの主な仕様

ā	设置場所	寸法(躯体開口部)	パネル枚数	パネル1枚の クリップ数
OFF	2F1, 2F3	2,969mm×1,400mm	2枚	2個
2階	2F2	4,031 mm×1,400mm	2枚	2個
3階	3F1	2,250mm×3,000mm	2枚	2個
	3F2, 3F3	4,500mm×3,000mm	4枚	2個

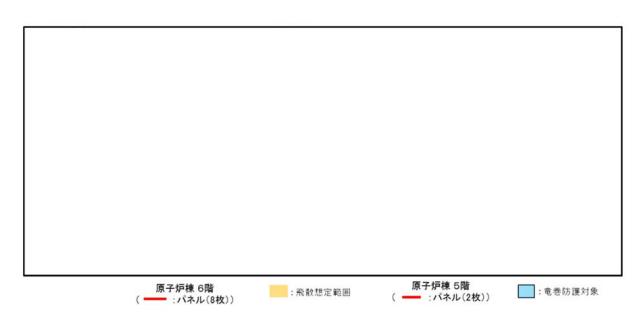
1.12 クリップ破損時の他設備への影響について

ブローアウトパネルのクリップは、ボルトにて固定されており容易に脱落することはないが、ブローアウトパネルの開放時にクリップが破損した場合に、脱落する可能性があることから、この影響について以下のとおり検討し、防護対象設備等への影響がないことを確認した。

プローアウトパネルが設置されている原子炉建屋原子炉棟 5 階, 6 階における防護すべき設備は以下の第 1-9 表となる。

第1-9表 影響を考慮する防護対象設備

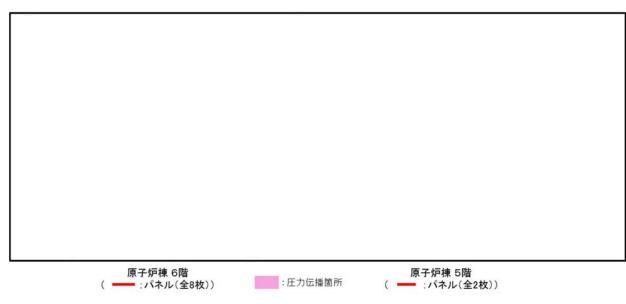
原子炉棟6階の設備


No.	系統名称	機器名称		
1	原子炉補機冷却系	RCW SURGE TANK LEVEL (スイッチ) (LSL-9-192)		
2	原子炉補機冷却系	RCW SURGE TANK LEVEL(伝送器)(LT-9-192)		
3	エリア放射線モニタ系	燃料取替フロア 燃料プール (検出器) (RE-D21-NS03)		
4	エリア放射線モニタ系	燃料取替フロア 燃料プール (現場監視ユニット) (RIA-D21-NS03)		
5	燃料プール冷却浄化系	FPC SKIMMER SURGE TANK LI (PNL-LCP-133)		
6	燃料プール冷却浄化系	FUEL POOL TEMP (検出器) (TE-G41-N015)		
7	プロセス放射線モニタ系	R/B REFUELING EXHAUST RADIATION MONITOR (A) (検出器) (D17-N300A)		
8	プロセス放射線モニタ系	R/B REFUELING EXHAUST RADIATION MONITOR (B) (検出器) (D17-N300B)		
9	プロセス放射線モニタ系	R/B REFUELING EXHAUST RADIATION MONITOR (C) (検出器) (D17-N300C)		
10	プロセス放射線モニタ系	R/B REFUELING EXHAUST RADIATION MONITOR (D) (検出器) (D17-N300D)		

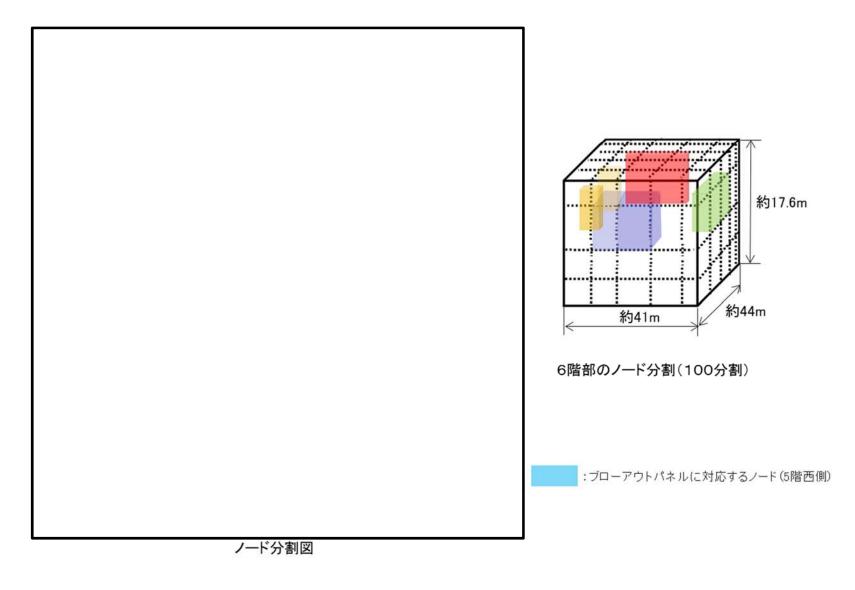
原子炉棟5階の設備

No.	系統名称	機器名称		
1	燃料プール冷却浄化系	SKIMMER SURGE TANK HI LEVEL(スイッチ) (LSH-G41-N004)		
2	燃料プール冷却浄化系	SKIMMER SURGE TANK LO LEVEL(スイッチ) (LSL-G41-N005)		
3	燃料プール冷却浄化系	SKIMMER SURGE TANK LO LO LEVEL(スイッチ)(LSLL-G41-N006)		
4	燃料プール冷却浄化系	SKIMMER SURGE TANK HI LEVEL(伝送器) (LT-G41-N100)		

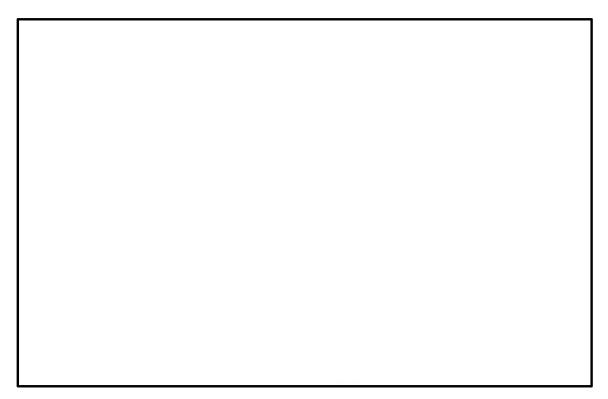
ブローアウトパネル配置に対し、クリップの飛散する水平距離を落下高さとした場合の飛散範囲 及び主な防護対象設備の配置を第1-23図に示す。


- ・原子炉建屋6階:ブローアウトパネルの取付高さは、床面より12.5m
 - ⇒ 使用済燃料プールへの落下による影響が考えられるが、クリップの 重量(約230g)より影響なしの評価となる
 - ⇒ エリアモニタが床面及びブローアウトパネル下部の壁面に設置されているが、保護カバーを有しており影響なし
 - ⇒ プロセスモニタがブローアウトパネル下部の壁面に設置されている が、他の構造物配置により直接影響はなし
 - ⇒ スキマサージタンクレベル計がブローアウトパネル下部の壁面に設置されているが、保護カバーを有しており影響なし
- ・原子炉建屋5階:ブローアウトパネルの取付高さは、床面より6.4m
 - ⇒ 主要な設備が飛散範囲内に無いため影響なし

第 1-23 図 防護対象設備位置図


1.13 ブローアウトパネルの同時開放について

原子炉建屋外壁に設置されるブローアウトパネル 10 枚に作用する主蒸気管破断時の圧力は音速で伝播する。GOTHIC 解析によれば、原子炉棟 5 階のパネル 2 枚開放後、6 階のパネル 8 枚にも作動圧力以上の圧力が負荷されるため、ブローアウトパネルは開放する。圧力伝播とブローアウトパネルの位置関係を第 1-24 図に、ノード分割図及び解析結果を第 1-25 図から第 1-26 図に示す。

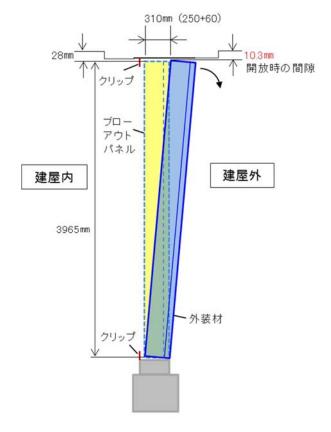


第1-24図 圧力伝播とブローアウトパネルの位置関係

- ・原子炉棟6階にMSLBA時の圧力が伝播してからパネル開放までの時間は、空気中の蒸気漏えいによる圧力伝播速度を音速同等とすると、最も遠い(西1)パネル位置でも約0.13秒程度である。最も近い(東2)位置との差で、約0.1秒。
- ・ブローアウトパネルの開放時間遅れ (開放圧力に到達してからパネルが開放するまでの時間) は、十分長い。
- ・各ブローアウトパネルが開放する時間差を、原子炉棟6階での蒸気圧伝播に掛かる時間の差と 考えると、最初の1枚が開放を開始し、開放時間遅れの間に、他のパネルについても圧力が 0.1秒で伝播することでこの間に作動を開始するため、ほぼ同時に開放が可能といえる。

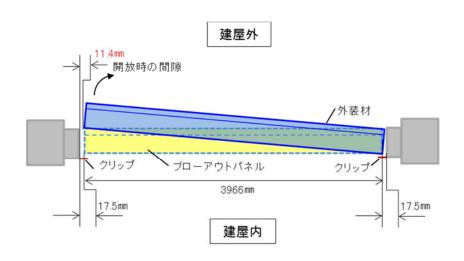
第 1-25 図 ノード分割図

第1-26図 原子炉棟5階及び6階の解析結果


なお,ブローアウトパネル本体の寸法と取付枠の寸法との関係より上,下端,若しくは左端(又は右端)を固定した状態でも,上端,若しくは右端(又は左端)は,型枠に干渉せずに開放する。 ブローアウトパネル設置状態での取付枠との隙間は以下のとおり。

> 上部:28 mm 下部:6 mm 左右:17.5 mm

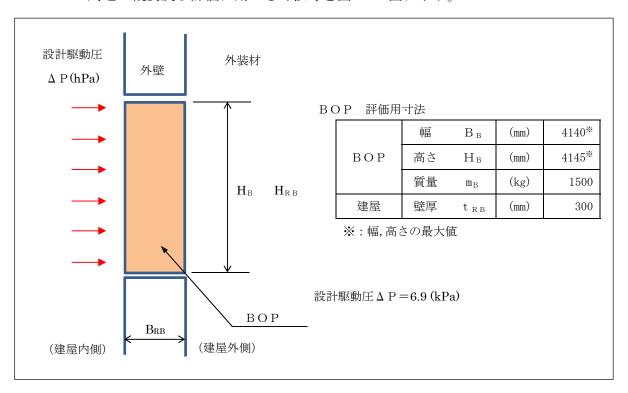
開放時のパネルの移動を保守的に $0 \, \text{mm}$ (パネル下部若しくは、側面が移動量なしで開放する) とした場合でも、パネルと枠間には上部で約 $10 \, \text{mm}$ 、左右で約 $11 \, \text{mm}$ の隙間を有した状態であり、開放に影響はない。この状況を第 $1-27 \, \text{図及び第 } 1-28 \, \text{図に示す}$ 。


また,ブローアウトパネルの寸法公差は,保守的に普通公差とした場合でも,±4mm 範囲であり 開放に影響はない。

このため、強制開放装置は、念のための装置であることから、自主設備と位置付けている。

縦断面図

第1-27図 ブローアウトパネル開放時の縦断面図

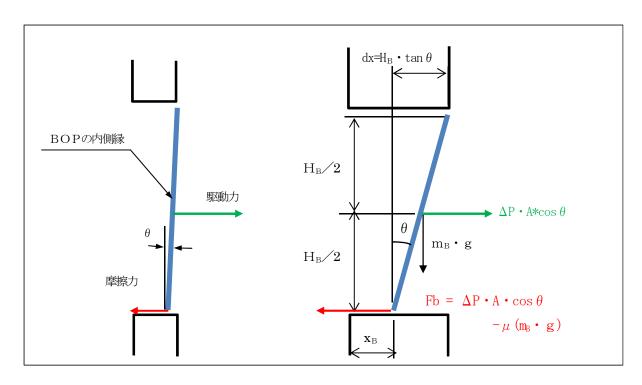

横断面図

第1-28 図 ブローアウトパネル開放時の横断面図

1.14 原子炉建屋外側ブローアウトパネルの飛出し挙動について 原子炉建屋原子炉棟 5,6 階の原子炉建屋外側ブローアウトパネル(以下「BOP」という。) が、設計圧力を受圧し、飛び出した際の挙動を検討した。

1.14.1 BOPの検討条件

BOPの周辺の概要及び評価に用いる寸法等を図1-29図に示す。



第1-29 図 BOPの概略図及び寸法条件

1.14.2 BOPの飛出し挙動

BOPは、設計駆動圧 Δ Pを受けて、クリップが外れ、図-29 に示すように、BOPの下端と外壁部が接する。そのため、接触面には摩擦が生じ、BOPの上端と下端の移動速度は異なることとなるが、その差は微小であり、ほぼ垂直状態であることを確認する。

第 1-30 図のモデル図に示すとおり、BOPの上端が外壁の外縁に達した際の下端との移動量の差である dx を算出することにより、BOPの状態を確認する。

第1-30図 BOPの飛出し挙動時の概略図及び検討モデル図

(1) 下端を中心とする回転時の慣性モーメント(I)は、次式により求める。

$$I = m_B \times H_B^2 / 3$$

(2) BOPの回転に関する運動方程式は、次式のとおりである。

$$I \cdot \ddot{\theta} = \Delta P \cdot A \cdot \cos \theta \times \frac{H_{B}}{2} + m_{B} \cdot g \times \frac{H_{B}}{2} \tan \theta$$

ここで、 $\ddot{\theta}$: 角加速度

(3) BOPの並進に関する運動方程式は、次式のとおりである。

$$m_B \cdot \ddot{a} = \Delta P \cdot A \cdot \cos \theta - \mu \cdot m_B \cdot g$$

ここで、 *ä*: BOPの加速度

μ:摩擦係数 (=0.6)

クリップが外れた瞬間を t=0 とすると、初期条件 $\theta=0$ より、初期角速度 $\ddot{\theta}_0$ 及び初期並進加速度 \ddot{a}_0 が算出できる。また、初期の並進速度 $v_0=0$ である。

次に、任意の時刻から微小時間 Δ t 後のBOPの傾き角度の増加分 $\Delta\theta$ は以下のとおりとなる。

$$\Delta\theta = \frac{1}{2} \cdot \ddot{\theta}_{\mathsf{t}} \cdot \Delta \mathsf{t}^{2}$$

同様に、 Δt 後のBOPの下端の移動速度の増分 Δv_t は以下のとおりとなる。

$$\Delta \mathbf{v}_{\mathsf{t}} = \ddot{a}_t \cdot \Delta \mathsf{t}$$

また、 Δt 後のBOPの下端の移動量 Δx Bは以下のとおりとなる。

$$\Delta x_{b} = v_{t} \cdot \Delta t + \frac{1}{2} \cdot \ddot{a}_{t} \cdot \Delta t^{2}$$

これらの関係を用いて,BOPの上端が外壁外縁まで移動($x_B+dx=300mm$)するまでの時間 t を求めると,

t = 0.090 (s)

となり、このときの傾きと上端の先行変位は、

$$\theta = 0.00129 \text{ (rad) } (=0.074^{\circ})$$

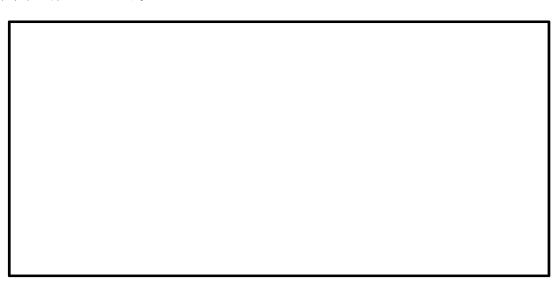
dx=5.4 (mm)

であることから、上端が飛び出す時点で BOP はほぼ垂直状態を保っており、下端もほぼ外壁外縁に到達していることが分かる。

また、BOPの下端の速度は $6.7~\mathrm{m/s}$ であることから、下端も 0.001 秒後には外壁の外縁に到達する。

1.14.3 検討結果

以上の検討により、BOPは、クリップが外れたのち、開口部からほぼ垂直状態を保って飛び出すと考えられるため、「上端が傾いて飛び出し、竜巻防護ネットに引っ掛かり、下端が動けなくなり、BOPが外れなくなる」という事象は起こらない。


2. ブローアウトパネル閉止装置

2.1 概要

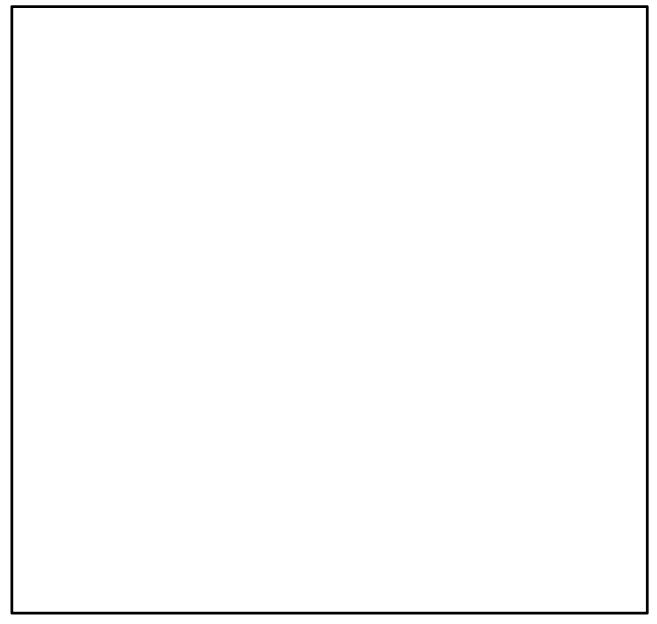
ブローアウトパネル閉止装置(以下,「閉止装置」という。)は,実用発電用原子炉及びその附属施設の技術基準に関する規則及び規則の解釈の第74条で要求される設備であり,原子炉建屋外側ブローアウトパネルが開放した状態において,炉心の著しい損傷が発生した場合に中央制御室にとどまる運転員を過度の被ばくから防護するため,原子炉建屋外側ブローアウトパネルが開放した後の躯体の開口部を閉止し,原子炉建屋原子炉棟の放射性物質の閉じ込め機能を確保するために設置する。

2.2 設置位置及び個数

閉止装置は,原子炉建屋原子炉棟5階,6階に計10個設置する。 設置位置を第2-1図に示す。

第2-1図 ブローアウトパネル閉止装置設置位置図

2.3 閉止装置の構造


閉止装置は、電動機の回転をハンガーローラに取り付けられているチェーンにより開閉方向の動作に変換することで扉本体の開閉が可能な構造としており、リミットスイッチにより扉本体の開閉状態を中央制御室にて確認できる構造としている。

扉本体は、ハンガーローラを介して上部レールに吊り下げられた構造としており、全開状態においては、 テーパーブロックとプッシュローラにより扉本体をフレームに押し付けて固定する構造としている。また、 全閉状態においては、テーパーブロックとプッシュローラにより扉本体をパッキンに押し付けることにより 高い気密性を確保する構造としている。

扉本体の開閉は、ガイドローラとガイドレールにより面外方向をガイドする構造となっている。 閉止装置の構造図を第2-2 図、第2-3 図に示す。

第2-2図 閉止装置の構造概要図

第2-3 図 閉止装置の駆動機構概要図

- 2.4 設置許可基準規則第43条への適合について
 - (1) 環境条件(設置許可基準規則第43条第1項第1号)
 - (i) 要求事項

想定される重大事故等が発生した場合における温度,放射線,荷重その他の使用条件において,重 大事故等に対処するために必要な機能を有効に発揮するものであること。

(ii) 適合性

ブローアウトパネル閉止装置は、屋外に設置するが、重大事故等時に原子炉建屋原子炉棟内の気密性 を確保するために閉止する設備であることから、その機能を期待される重大事故等時における屋外又は 原子炉建屋原子炉棟内の環境条件を考慮している。

(2) 操作性(設置許可基準規則第43条第1項第2号)

(i) 要求事項

想定される重大事故等が発生した場合において確実に操作できるものであること。

(ii) 適合性

閉止装置は、中央制御室の操作盤のスイッチで遠隔操作による開閉操作が可能な設計とするとともに、 現場においても人力により開閉操作操作が可能な設計としている。

(3) 試験検査(設置許可基準規則第43条第1項第3号)

(i) 要求事項

健全性及び能力を確認するため、発電用原子炉の運転中又は停止中に試験又は検査ができるもので あること。

(ii) 適合性

閉止装置は、原子炉の運転中又は停止中に構造健全性のため外観検査が可能な設計としている。また、 ブローアウトパネル閉止装置は、原子炉の停止中に機能・性能検査として動作状態の確認が可能な設計 としている。

試験検査内容を第2-1表に示す。

必要な機能	検査内容
気密性能	パッキンの外観点検によりシール性能に影響を及ぼす劣化が無 いことを確認する。
作動性能	閉止装置を電動による遠隔操作及び現場での手動操作により開 閉が可能なことを確認する。
構造健全性	外観目視検査による閉止装置構成部品の健全性を確認する。

第2-1表 ブローアウトパネル閉止装置の試験検査内容

(4) 切替えの容易性(設置許可基準規則第43条第1項第4号)

(i) 要求事項

本来の用途以外の用途として重大事故等に対処するために使用する設備にあっては、通常時に使用 する系統から速やかに切り替えられる機能を備えるものであること。

(ii) 適合性

閉止装置は、本来の用途以外の用途として使用しない設計としている。

(5) 悪影響の防止(設置許可基準規則第43条第1項第5号)

(i) 要求事項

工場等内の他の設備に対して悪影響を及ぼさないものであること。

(ii) 適合性

閉止装置は、他の設備から独立して使用が可能であり、他の設備に悪影響を及ぼさない設計として いる。また、ブローアウトパネル閉止装置の開閉動作が他の設備に悪影響を及ぼさない設計としてい

(6) 設置場所(設置許可基準規則第43条第1項第6号)

(i) 要求事項

想定される重大事故等が発生した場合において重大事故等対処設備の操作及び復旧作業を行うことができるよう、放射線量が高くなるおそれが少ない設置場所の選定、設置場所への遮蔽物の設置その他の適切な措置を講じたものであること。

(ii) 適合性

閉止装置は、原子炉建屋原子炉棟の壁面(屋外)に設置し、重大事故等時において放射線量が高くなるおそれの少ない中央制御室から操作が可能な設計としている。

- (7) 容量(設置許可基準規則第43条第2項第1号)
- (i) 要求事項

想定される重大事故等の収束に必要な容量を有するものであること。

(ii) 適合性

閉止装置は、原子炉建屋外側ブローアウトパネルと同数の 10 個設置する。なお閉止装置は、重大事故等時において中央制御室の運転員の居住性を確保するために必要な気密性能を有していること。

- (8) 共用の禁止(設置許可基準規則第43条第2項第2号)
- (i) 要求事項

二以上の発電用原子炉施設において共用するものでないこと。ただし、二以上の発電用原子炉施設と共用することによって当該二以上の発電用原子炉施設の安全性が向上する場合であって、同一の工場等内の他の発電用原子炉施設に対して悪影響を及ぼさない場合は、この限りでない。

(ii) 適合性

施設内に二以上の発電用原子炉施設はないことから、閉止装置は、共用しない。

- (9) 設計基準事故対処設備との多様性(設置許可基準規則第43条第2項第3号)
- (i) 要求事項

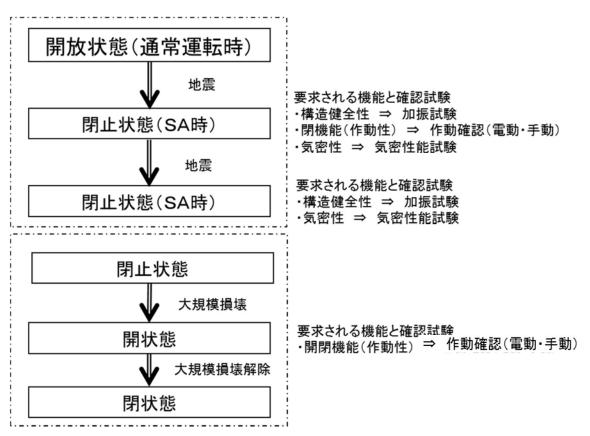
常設重大事故防止設備は、共通要因によって設計基準事故対処設備の安全機能と同時にその機能が損なわれるおそれがないよう、適切な措置を講じたものであること。

(ii) 適合性

閉止装置は、常設重大事故緩和設備であるが、設計基準対象施設であるブローアウトパネルの気密性機能と閉止装置の気密性能が同時に損なわれない設計としている。

2.4 閉止装置に要求される機能

閉止装置の機能として, 扉を閉止するための作動性と原子炉建屋原子炉棟からの放射性物質漏えいを防止するための気密性が要求される。作動性には、電動で遠隔操作できるとともに手動においても作動できることが要求される。


閉止装置の機能を維持するための性能目標を「V-1-1-6 別添4」に示す。

2.5 閉止装置の機能確認

閉止装置が要求される機能を発揮することを確認するために機能確認試験を実施する。

プラントの運転状態において、閉止装置に想定される自然現象、外部人為事象のうち最も厳しい地震を想定し、地震後にも機能を維持することを確認する。

閉止装置の運転状態における要求機能と確認試験について第2-4図に示す。

第2-4図 閉止装置の運転状態における要求機能と確認試験

確認試験の内容について以下に示す。

○加振試験

ブローアウトパネル閉止装置(扉,レール、扉枠等)を一体として、躯体部への取付け状態を模擬した 状態で、当該装置の設置高さにおける床応答スペクトルを包絡する条件(当該装置の固有振動数近傍)**1 の試験用地震波にて加振試験を実施し、下記の試験を実施する。

※1 固有振動数が20Hz以上の場合、ZPA(当該位置の最大床応答加速度)を包絡する条件とする。

○気密性能試験※2

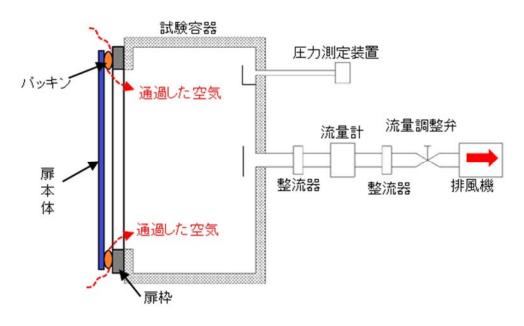
試験体両側に圧力差を生じさせ、試験体の隙間からの漏えい量を測定する。気密性能試験は、加振試験前後に実施する。

○外観目視試験

閉止装置の構成部品の目視点検を実施する。外観目視試験は、加振試験前後に実施する。

○作動試験

電動及び手動操作により閉止装置が開閉できることを確認する。作動試験は、加振試験前後に実施する。


※2 気密性能試験について

・ 気密性能試験の方法

建屋壁面を模擬した実機大の試験体に試験容器を取付け、排風機により試験容器内の空気を排出することにより、試験容器に取り付けた扉本体に圧力差を生じさせ、圧力測定装置により圧力差を確認しながらパッキンから通過した空気の漏えい量を流量計で測定する。

試験装置, 方法については, ASTM E283-4 等に準じて実施する。

試験装置の例を第2-5図に示す。

第2-5図 試験装置の例

・試験体の大きさ

約4,800mm×約4,800mm (躯体開口部を包絡^{**}する大きさ) ※躯体開口部寸法についても包絡する大きさとする 閉止装置を設置する躯体部の開口寸法を第2-2表に示す。

第2-2表 躯体開口寸法表

設置場所		躯体開口部寸法(単位:mm)
5階 北,西		4, 000×4, 000
6階	北1, 北2, 南1, 南2	3, 680×4, 170
0 頃	西1, 西2, 東1, 東2	4, 170×3, 680

・ 気密性能の評価方法

試験により得られた試験体を通過した空気量 $Q(m^3/h)$ を,標準状態($20^{\circ}C$,1,013 hPa)に換算し,扉の内のり面積(m^2)で除すことにより,単位面積当たり,1 時間当たりの通気量($m^3/h \cdot m^2$)として算出する。圧力差に応じた通気量の推移を確認する。

$$q = Q' / A$$

ここで,

q : 通気量 (m³/h·m²)

A :試験体の内のり面積 (m²)

Q': 通過した空気量 (20℃, 1,013hPa 換算値) (m³/h)

Q' = Q
$$\cdot \frac{P}{1,013} \cdot \frac{273+20}{273+T}$$

P:試験容器内の気圧 (hPa) T:試験時の空気温度 (°C)

・閉止装置単体の気密性能の基準

通気量:12.6 m³/h·m²以下** (差圧63Pa時)

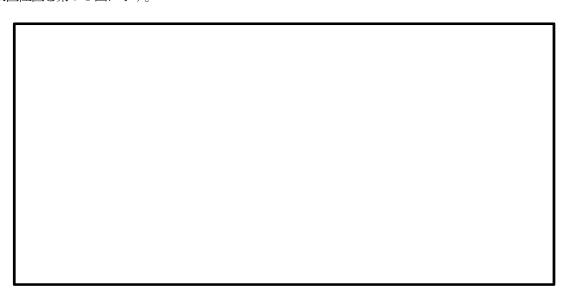
- ※ 閉止装置単体の判定基準(設計目標)としては、JISA 1516で示されるA4等級以上とする。なお、原子炉建屋原子炉棟全体としての気密性能は確保できることを確認する。
- 現地設置後の閉止装置の気密性能の基準

閉止装置の現地設置後の気密性能は、原子炉建屋原子炉棟の設計気密度

を確保できることを基準とする。

試験体は、包絡性を考慮しているため実際に取り付ける閉止装置より内法面積が大きくなってしまい通気量の基準は厳しくなる。

3. 強制開放装置

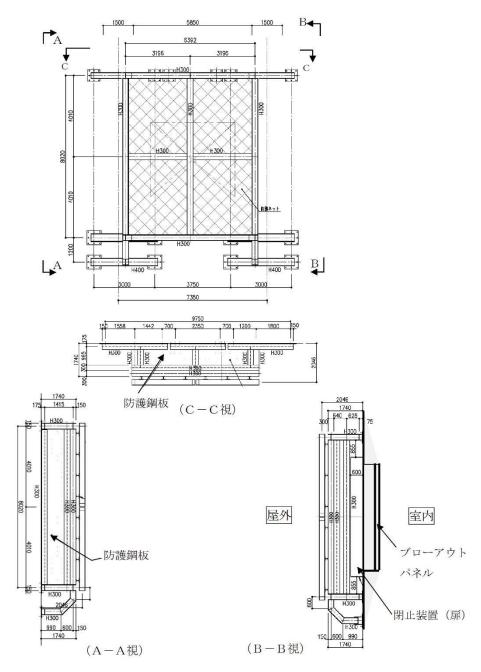

3.1 概要

強制開放装置は、炉心の著しい損傷が発生し閉止装置の気密機能が必要な状況において、原子炉建屋外側 ブローアウトパネルの開放が途中で止まった場合を想定し、閉止装置の動作に悪影響を及ぼさないよう、強 制的に原子炉建屋外側ブローアウトパネルを開放させるために設置する。

3.2 設置位置及び個数

強制開放装置は、各ブロアーアウトパネルに配備することとし、原子炉建屋原子炉棟5階、6階に計10個設置する。

設置位置を第3-1図に示す。


第3-1 図 強制開放装置設置位置図

4. 竜巻防護ネットについて

4.1 概要

竜巻防護ネットは、原子炉建屋外側ブローアウトパネルの竜巻飛来物からの防護、及び原子炉建屋外側ブローアウトパネルが竜巻による気圧低下の影響で開放した場合に、開口部から飛来物が侵入することを防止するために設置される。竜巻防護ネットは、鉄骨架構、防護ネット及び防護鋼板により構成される。

竜巻防護ネットの外形図を,第4-1図に示す。

第4-1図 竜巻防護ネットの構造図

4.2 設置位置及び個数

竜巻防護ネットは、各ブロアーアウトパネルに配備することとし、原子炉建屋原子炉棟5階、6階に計10個設置する。

5. ブローアウトパネル開放時の設計基準事故時被ばく評価への影響について

設計基準事故のうち「燃料集合体の落下」及び「原子炉冷却材喪失」では、放射性物質は非常用ガス処理系等で処理して排気筒から放射性物質が放出される想定としているが、原子炉建屋のブローアウトパネルが開放した場合は、原子炉建屋内の負圧維持ができなくなり、ブローアウトパネル開放部から直接大気中に放射性物質が放出される可能性がある。

本評価では事故発生から30日後以降に地震によりブローアウトパネルが開放されると想定したときの設計 基準事故時の被ばく評価への影響について以下のとおり確認した。

5.1 放出量評価

事故発生から30日までは、設置許可申請書添付書類十に記載される評価に基づき放出量評価を行い、31日後は原子炉建屋から直接大気中に放射性物質が放出されると仮定し、非常用ガス処理系及び非常用ガス再循環系を通らずに地上放出されるものとし、非常用ガス処理系及び非常用ガス再循環系のよう素除去効果及び換気率を見込まずに放出量を評価する。評価対象事故は、事故発生時に非常用ガス処理系排気筒から放射性物質が放出され、長期間放出が継続し、ブローアウトパネルが開放される影響が生じる「原子炉冷却材喪失」とする。具体的な放出量評価方法については別紙1に示す。

放出量の評価結果を第5-1表に示す。

第5-1表 原子炉冷却材喪失時の放出量の評価結果

7/3 - 1 3C - 7/3 7/3 -				
		原子炉冷却材喪失		
項目	評価期間	希ガス (0. 5MeV 相当値) (Bq)	よう素 (I-131 換算値) (Bq)	
設置許可申請書における 放出量	無限期間	4.0×10^{12}	4.8×10^9	
	事故発生から 30 日まで	3.9×10^{12}	4.4×10^9	
ブローアウトパネル開放 を想定した放出量	事故発生から 31 日後以降	1.1×10^{11}	4.6×10^{10}	
	合 計	4. 0×10^{12}	5. 1×10 ¹⁰	

5.2 大気拡散条件

大気拡散評価は、「発電用原子炉施設の安全解析に関する気象指針」に基づき行う。

事故発生から30日までは排気筒放出,31日後以降は地上放出を想定し大気拡散評価を行う。また,ブローアウトパネルが開放した場合は原子炉建屋から瞬時に放出するものとし実効放出継続時間は1時間とする。 大気拡散条件の評価結果を第5-2表に示す。

第5-2表 原子炉冷却材喪失時の相対濃度及び相対線量の評価結果

項目		実効放出 継続時間 (h)	相対濃度/相対線量		評価方位
設置許可申請書における拡散条件		24	D/Q (Gy/Bq)	4.5×10^{-20}	W
		24	χ/Q (s/m³)	8. 0×10 ⁻⁷	W
	事故発生 から 30 日	24	D/Q (Gy/Bq)	3.5×10^{-20}	
ブローアウ トパネル開 放を想定し	まで	24	χ/Q (s/m ³)	7. 6×10 ⁻⁷	NW
放を想定した。	事故発生	1	D/Q (Gy/Bq)	4.0×10^{-19}	TNAA
2014 VIVI	から 31 日 後以降	1	χ/Q (s/m³)	2. 9×10 ⁻⁵	

5.3 被ばく評価結果

ブローアウトパネルが開放した場合の設計基準事故時の被ばく評価結果を第5-3 表に示す。ブローアウトパネル開放を考慮した評価結果は、設計基準事故の基準である5mSv を十分に下回る結果となっている。また、設置許可申請書の本文十号に記載されている設計基準事故で最も線量が高くなる主蒸気管破断の線量 $(1.8\times10^{-1}\ \text{mSv})$ と比べても十分に低い値となっており、設計基準事故に係る被ばく評価の結論に影響はない。

第5-3表 原子炉冷却材喪失時の被ばく評価結果

Ŋ	実効線量(mSv)		
設置許可申請書添付書類十記載値	希ガス		1.8×10 ⁻⁴
	よう素		3. 6×10 ⁻⁵
	直接・スカイシャイン線		1. 0×10 ⁻⁴
	合 計		3. 2×10 ⁻⁴
	事故発生か ら30日	希ガス	1. 4×10 ⁻⁴
	まで	よう素	3. 3×10 ⁻⁵
ブローアウトパネル開放	事故発生か ら31 日後以	希ガス	4. 4×10 ⁻⁵
を想定した場合	降	よう素	1. 3×10 ⁻²
	直接・スカイシャイン線		1. 0×10 ⁻⁴
	合 計		1. 3×10 ⁻²

※ブローアウトパネル開放後は原子炉建屋内の放射性物質は大気中へ放出 されるため、原子炉建屋からの直接γ線及びスカイシャインガンマ線は 無くなるが本評価においては考慮しない。

ブローアウトパネルの開放を考慮した放出量評価について

「燃料集合体の落下」及び「原子炉冷却材喪失」の放出量評価においては非常用ガス処理系及び 非常用ガス再循環系によるよう素除去効果及び換気率を考慮して式①及び式②により放出量評価を 行っている。

ブローアウトパネルが開放した場合には、非常用ガス処理系及び非常用ガス再循環系のよう素除去効果及び換気率が期待できなくなる。このため、別表1及び別表2に示す条件の違いを考慮して補正係数を求め、設置許可申請書に基づく放出量の事故発生から31日以降の放出量に補正係数を乗じてブローアウトパネル開放後の放出量を評価した。

1. 燃料集合体の落下

燃料集合体の落下におけるブローアウトパネル開放時(事故発生から 31 日後以降)の放出量を評価するための補正係数は、①式で $\frac{F_1}{DF}$ ・ Q_P^i は定数とし、その他の係数は別表 1 に示す条件から求める。

ただし、燃料集合体の落下の放出率は別図 1 に示すように約 20 日で≒0 であり、事故発生から 31 日後以降のブローアウトパネル開放の影響はない。

Q: : 大気中に放出される放射性物質の放出量 (Bq)

F₁: 核分裂生成物の存在割合

「希ガス F=1

有機よう素 F=全よう素中の有機よう素の割合 無期よう素 F=全よう素中の無機よう素の割合

DF : 無機よう素のプール水による除去係数 (DF=500)

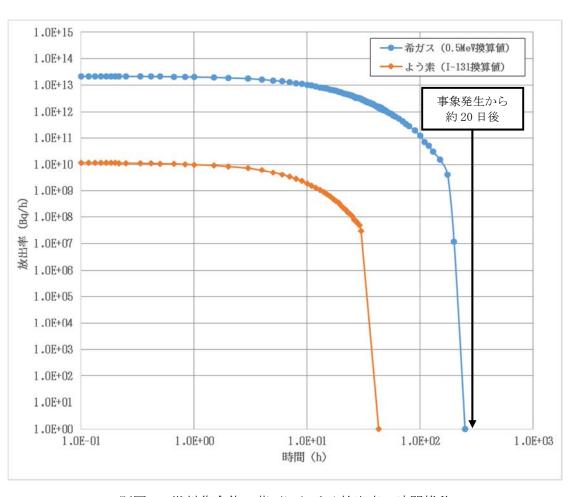
(希ガス及び有機よう素はDF=1)

λLSGTS : 非常用ガス処理系による原子炉建屋内空気の換気率 (s⁻¹)

λLFRVS:非常用ガス再循環系による原子炉建屋内空気の再循環率 (s-1)

f₁:非常用ガス再循環系フィルタのよう素除去効率(-)

f₂:非常用ガス再循環系フィルタ及び非常用ガス処理系フィルタ


を経由した場合の総合よう素除去効率 (-)

λⁱ。 : 核種iの崩壊定数 (s⁻¹)

設置申請書添付書類十 ブローアウトパネルの開放を 考慮した場合の評価条件 における評価条件 F=100 % 希ガス F_1 有機よう素 F=1 % 同左 無期よう素 F=99 % 希ガス DF = 1DF 有機よう素 DF=1 同左 無期よう素 DF=500 1 回/d 無限大 **λ LSGTS** 0 回/d λ LFRVS 4.8 回/d 90 % 0 % f_1 97 % 0 % f_2 (例) λ_R^i 希ガス (Xe-133): 0.131 (d⁻¹) 同左

よう素 (I-131): 0.086 (d-1)

別表1 燃料集合体の落下時の非常用ガス処理系等の評価条件

別図1 燃料集合体の落下における放出率の時間推移

2. 原子炉冷却材喪失

原子炉冷却材喪失におけるブローアウトパネル開放時(事故発生から31日後以降)の放出量 を評価するための補正係数は、②式で $(q_c^i+q_f^i\cdot g)\cdot K_0$ は定数とし、その他の係数は別表 1 に示 す条件から求める。

補正前後のブローアウトパネル開放後(事故発生から31日後以降)を別表3に示すとおりで あり、よう素は約140倍、希ガスは約1.1倍となっている。

 Q_H^i :大気中に放出される放射性物質の放出量 (Bq)

 q_C^i :核種iの冷却材中存在量(Bq)

 $q_C^i = C_W^i \cdot M$

 C_W^i : 核種iの冷却材中存在量 (Bq/g)

: 冷却材保有量(g)

 q_f^i :核種iの追加放出量

:組成構成比

希ガス

有機よう素 g=全よう素中の有機よう素の割合 【無機よう素 g=全よう素中の無機よう素の割合

: 格納容器気相部に存在する核分裂生成物の格納容器全存在量に対する割合 K_0

 $K_0 = (1 - F_2) \cdot F_3$

F₂ :無機よう素の格納容器内の壁面等に付着する割合

(希ガス及び有機よう素はこの効果を無視する。)

: 格納容器内の気相部に浮遊する割合

 $F_3 = \frac{V_A}{V_A + V_W \cdot P}$

 V_A :格納容器内気相容積 (m^3) V_W : 格納容器內液相容積 (m^3)

: 気液分配係数(-)

: 格納容器からの漏えい率 (s-1) λLPCV

:非常用ガス処理系による原子炉建屋内空気の換気率 (s-1) λLSGTS

λLFRVS :非常用ガス再循環系による原子炉建屋内空気の再循環率 (s-1)

: 非常用ガス再循環系フィルタのよう素除去効率 (-) f_1

: 非常用ガス再循環系フィルタ及び非常用ガス処理系フィルタを経由した場 f_2

合の総合よう素除去効率(-)

 λ_R^i :核種iの崩壊定数 (s-1)

別表 2 原子炉冷却材喪失時の非常用ガス処理系等の評価条件

	設置申請書添付書類十 ブローアウトパネルの開放を		
	における評価条件	考慮した場合の評価条件	
C_W^i	$4.6 \times 10^3 \text{ Bq/g} \text{ (I-131)}$	同左	
M	289 t	同左	
q_f^i	2. 22×10 ¹⁴ Bq (I-131)	同左	
g	希ガス F=100 %有機よう素 F=4 %無期よう素 F=96 %	同左	
F_2	50 %	同左	
V_A	9,800 m ³	同左	
V_W	3, 300 m ³	同左	
Р	希ガス P=1有機よう素 P=1無期よう素 P=100	同左	
λ LPCV	0.5 %/d	同左	
λ LSGTS	1回/d	無限大	
λ LFRVS	4.8回/d	0 回/d	
f_1	90%	0%	
f_2	97%	0%	
λ_R^i	希ガス(Xe-133): 0.131(d ⁻¹) よう素(I-131): 0.086(d ⁻¹)	同左	

別表 3 ブローアウトパネル開放後(事故発生から31日後以降)の放出量

項目		補正前	補正後	補正後/補正前
ブローアウト パネル開放後	希ガス (0.5MeV 相当値)	1.0×10^{11}	1.1×10^{11}	1.1倍
の放出量 (Bq)	よう素 (I-131 換算値)	3.1×10^{8}	4.6×10^{10}	140 倍

東海第二発電所

原子炉建屋ブローアウトパネル機能確認試験

日本原子力発電株式会社平成30年8月

東海第二発電所

原子炉建屋外側ブローアウトパネル機能確認試験要領について

目 次

1.	目的	2-1-1
2.	試験期間及び場所 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-1-1
3.	試験項目 · · · · · · · · · · · · · · · · · · ·	•2-1-1
4.	試験概要 · · · · · · · · · · · · · · · · · · ·	2-1-2
5.	加力方法 · · · · · · · · · · · · · · · · · · ·	2-1-5

1. 目的

原子炉建屋外側ブローアウトパネル(以下「ブローアウトパネル」という。)の機能を確認するため、実機規模の試験体を用いた開放試験を行い、機能維持確認を実施する。

2. 試験期間

実施時期:平成30年6月6日(水)~22日(金)(予定)

場 所:株式会社 根本鉄工

茨城県ひたちなか市十三奉行 2076-2

3. 試験項目

(1) 作動確認 : ブローアウトパネルの開機能確認

(2) 閉維持確認:ブローアウトパネルの耐震性能の確認

ブローアウトパネルとその取付枠,並びに新たに設計したクリップを設置した実機大のモックアップ 試験体を製作し、設計作動圧の1psiで確実に開放されることを確認するため、油圧ジャッキを用いた加 力による開放試験を実施する。さらに、本試験にて実測する開放に必要な荷重より、シール材とパネル 下部の摩擦による抗力を求め、クリップの条件を必要に応じて最適化する。

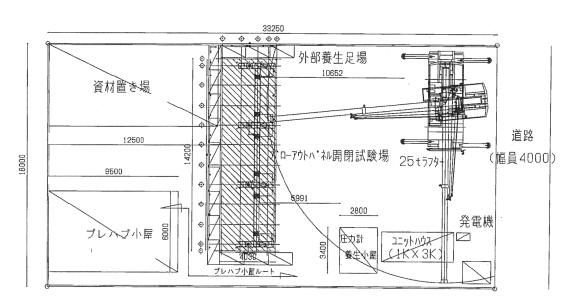
上記で求めたクリップ条件によりのブローアウトパネルの耐震性能を確認する。

本試験での確認事項を以下に示す。

【作動確認】

- ①ブローアウトパネルの開放動作の確認
- ②ブローアウトパネルの開放荷重の確認
- ③クリップ脱落荷重の確認※
- ④シール材と下部摩擦の開放荷重に与える影響の確認

【閉維持確認】


①ブローアウトパネルがSd相当荷重で開放しないこと (パネルの荷重曲線より評価)

※クリップは取付部材(溝形鋼)に固定されているため、脱落はしないが、クリップがブローアウトパネルに取り付けられた山形鋼から完全に外れて荷重を負担しなくなった時点を脱落とし、クリップのひずみ計測などから判断する。

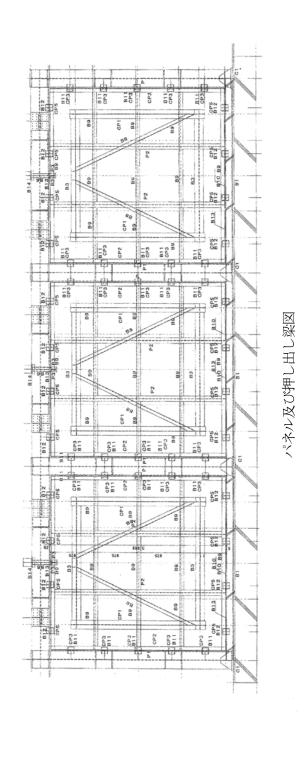
4. 試験概要

4.1 試験場所概要

モックアップ試験は、ブローアウトパネル及び取付け架台を試験場で作成し実施する。第1図に試験場の配置図を示す。

第1図 試験場配置図

4.2 試験装置概要

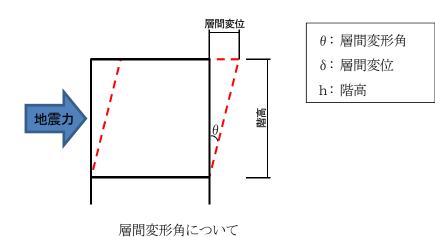

試験装置は、実機を模擬したブローアウトパネル、加力装置および躯体を再現するブローアウトパネル取付け部と加力装置取付け部を一体化した取付け架台で構成する。第2図に試験で使用するブローアウトパネル及び取付け架台の概略図を示す。

ブローアウトパネルは実機に取り付けられているブローアウトパネルのうち最大のものを模擬して 実施する。サイズは約4m×約4m, 重量は約2.0 t ※である。なお, 試験体のブローアウトパネルは3 体製作する。

取付け架台は四方が鉄筋コンクリート造の原子炉建屋開口部を再現する。パネルとの接触により摩擦の影響を強く受ける開口部下部のみ鉄筋コンクリート造とし、開口部の側面および上面側はH形鋼によって再現する。

試験体のブローアウトパネルは、脱落時の損傷等を防止するために、クレーンとワイヤにて落下を 防止し、復旧による複数回の試験を実施可能とするものとする。

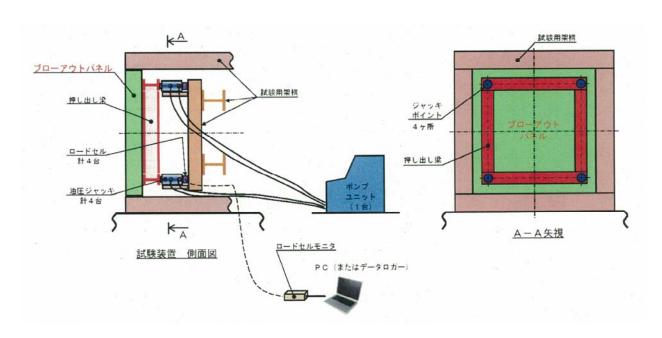
※ 本体:約1.8t,保温材及び外装板:約0.2t

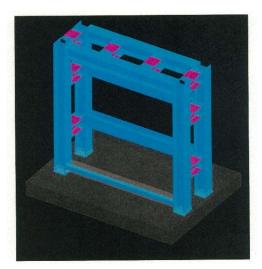


第2図 ブローアウトパネル及び取付け架台の概略図

4.3 ブローアウトパネルの架台への取付け方法

ブローアウトパネルは、屋外側全周にシーリング材を施工する。シール材は、コニシボンド製「M
Sシール」とし、 mとする。ブローアウトパネルは、試験装置架台(実機では、躯体)に
取り付けられた溝形鋼と、ブローアウトパネルに取り付けられた山形鋼をクリップで挟むことにより
固定する。クリップを取り付が可能な箇所は、上下に各4箇所、左右に各5箇所の計18箇所とする。
クリップの形状および溝形鋼への取付け位置を第3図に示す。クリップの材質はSS400とし、形状は
図に示すように、クリップ幅80mm, mm, アングル側の mmとし、溝型鋼の先端との
mmとして,M6ボルトにより溝形鋼に取付ける。ここで,溝形鋼との mmとしたのは,ブ
ローアウトパネル設置階におけるSsに対する地震応答解析結果の層間変形角の最大値
に十分な余裕を見込んだ層間変形角 に対しても、アングル先端がクリップと干渉するこ
とを防ぐことを目的としている。


第3図 クリップ形状及び取付位置図


5. 加力方法

5.1 試験機器構成及び加力方法概要

本試験に使用する機器の配置及び構成の概念図を第4図に、試験用の架構の詳細を第5図に示す。

第4図 試験機器配置及び構成概念図

第5図 試験用架構詳細図

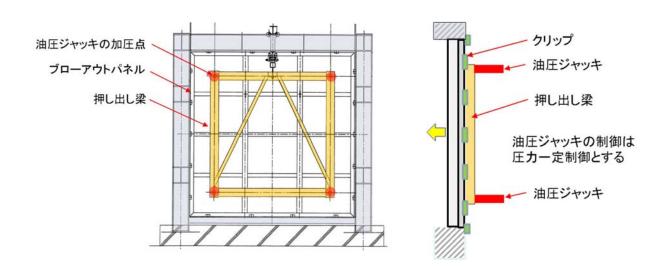
試験用架構にブローアウトパネル1面を取付する。当該パネルに「押し出し梁」を接触させ、その「押し出し梁」を4台の油圧ジャッキを使用して押し出すことにより、ブローアウトパネルを加力する。

「押し出し梁」はブローアウトパネルに対して独立しており,ブローアウトパネルの開放条件に 影響を与えないものとする。

油圧ジャッキの反力は試験用架構で受ける構造とする。

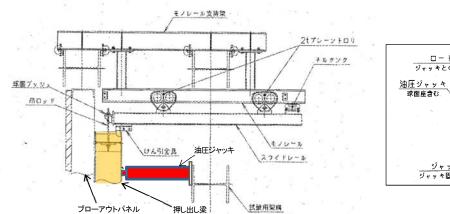
また、各油圧ジャッキの反力側にはロードセルを取付し、各油圧ジャッキから試験体への負荷を測定するものとする。各ロードセルはロードセルモニタにて出力を抽出・変換し、それぞれの出力はPC(またはデータロガー等)で記録するものとする。

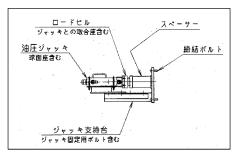
試験体は既設仕様に合わせて3体製作する。試験体仕様を第1表に示す。


製 造	清水建設株式会社(株式会社根本鉄工)
型式	既存パネル模擬
概算質量	2, 000kg
数量	各1面
サイズ	幅 3,965 mm×高さ 3,966 mm
クリップ取付箇所	18 箇所(既設設置位置と同様)※
シール材	シリコンシーラント

第1表 試験体仕様(試験体1~3)

5.2 加力仕様


ブローアウトパネルを押し出し梁により加力するために、複動型油圧ジャッキ4台を使用する。ジャッキは1台のポンプユニットから加圧する。当該ポンプユニットは、4台のジャッキへの吐出油圧を一定とすることで、一定の加重にて作動を制御する。油圧ジャッキは、パネルの開放状況を詳細に確認するために、ストローク及び伸長速度の異なる2種類を準備する。


加力方法概要図を第6図に、押し出し梁の支持装置を第7図に示す。油圧ジャッキ及びポンプユニットの仕様を第2-1表、第2-2表、及び第3表に示す。

第6図 加力方法概要図

[※] クリップ個数及び形状は、試験体により変更する場合有り。

第7図 押し出し梁と支持装置の概要図

第2-1表 油圧ジャッキ仕様 (その1)

製造メーカ	オックスジャッキ株式会社
型式	RM-1020
能力(1台あたり)	100kN
使用数量	4台
ストローク(最大)	200mm
伸長速度(理論値)	51.8 mm/s(50Hz 時)

第2-2表 油圧ジャッキ仕様(その2)

製造メーカ	オックスジャッキ株式会社
型式	SLP-20100
能力(1台あたり)	200kN
使用数量	4台
ストローク(最大)	1000mm
伸長速度(理論値)	11.6 mm/s (50Hz 時)

第3表 ポンプユニット仕様

製造メーカ	オックスジャッキ株式会社
型式	4LH-7. 5P
吐出量	6.10/min (50Hz時)
使用数量	1台
電源	AC200V
電動機	7. 5×4kW
質 量	約2, 100kg

5.3 試験方法

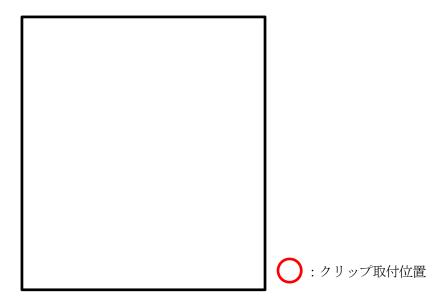
(1) 試験手順

モックアップ試験は3ケース実施し、試験パラメータはクリップの配置(クリップを取付ける個数)とする。試験ケースを第4表に示す。

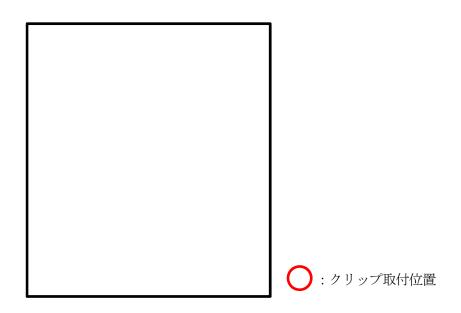
試験体2は、試験体1の結果を反映し、より最適化した開放荷重を得ることを目的とする。試験体1で所定の荷重以下での開放動作の機能が確認できた場合は、試験体2は同条件にて再現性を確認するものとする。

開放機能が確認できなかった場合は、試験体1のクリップ数を減して開放荷重の調整を図り試験を実施する。(クリップ数減の場合は、荷重の均一化の観点より左右のクリップ各1を減とする) 試験体2のクリップ取付位置(案)を第8-2図に示す。

実機では、これら2ケースの試験結果より、試験体1または試験体2の何れかのクリップ配置を採用することとし、設計の妥当性を確認する。


試験体3は、試験体2で所定の荷重以下での開放動作の機能が確認できた場合に、試験体2と同条件にて再現性を確認するものとする。

上記の開放試験を、2種類のジャッキにて実施する。最初に伸長速度の速い油圧ジャッキを用いて試験を行い、パネルの開放状況が確認できた段階で、クリップ等同じ条件にてパネル開放状況等を詳細に確認するために、伸長速度を遅くしたジャッキを用い、詳細に開放状況を確認する。必要に応じて測定機器等の追加を行う。


試験体 $1\sim3$ は、落下防止の目的でワイヤとクレーンを準備することから、必要に応じて復旧し再試験が可能な状態を保つこととする。

クリップの配置及び個数 クリップ形状, 取付寸法 備考 内寸法 掛かり代 上 下 左 右 幅 試験体1 80 mm mmmm 試験体2 試験体1と同条件 80 mm 試験体1で機能確認 mm mm の場合 試験体1の条件を踏まえ設 80 mmmm mm 試験体1で機能確認 できない場合 定 試験体3 試験体2と同条件 80 mm mm mm

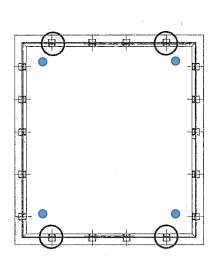
第4表 試験ケース

第8-1図 クリップ配置図 (ケース1)

第8-2図 クリップ配置図 (案) (ケース2)

5.4 測定内容及び方法

(1) 測定内容


各油圧ジャッキ負荷,変位

(2) 測定方法

各油圧ジャッキに1台ずつ配置したロードセルを使用する。その他の測定項目と連動し、時刻歴測 定とする。

計測項目は、ジャッキによる加力荷重4点(上記、荷重計より取得)、ブローアウトパネルの変位4点(加力位置近傍の変位)、クリップのひずみ4点(上下の両側、第9図参照)、ならびに試験時の開放状況を動画撮影する。荷重、変位及び、ひずみ計測の機器構成を第10図に示す。加力が短時間で終了する試験のため、動的な計測システムを用い、サンプリング時間は0.005sec程度とする。

第5表に計測機器等仕様を示す。ただし、今後の詳細検討及び事前の作動確認状況等により、必要に応じ変更の場合が有り。

○:ひずみ計設置クリップ

●:変位計

第9図 計測器取付位置図

第5表 計測機器等仕様(又は相当品)

No.	機器名	員数	メーカ	型番
1	電動ポンプユニット	1台	オックスジャッキ	4LH-7. 5P
2	複動型油圧ジャッキ	4台	オックスジャッキ	RM-1020
3	薄型圧縮型ロードセル	4台	共和電業	LCK-A-100KN
4	レーザ変位計	4台	キーエンス	IL-2000, 1000
5	動ひずみ測定器	4台	共和電業	DPM-911B
6	ユニバーサルレコーダ	1台	共和電業	EDX-100A-4H
7	コンディショナカード	1台	共和電業	CDV-40B-F
8	ノートパソコン	1台	_	_

ケーブル等の付属品は省略

※上記の他,パソコン1台と収録ソフト (DCS-100A共和電業製) を準備

第10図 計測システム構成

(3) 確認項目

開放試験における確認項目を以下に示すとともに、ブローアウトパネルの開放時の荷重と変位及 び他の抗力との関係を第11図に示す。

開放試験にて得られる記録値とこの関係から、ブローアウトパネルの耐震性能を確認する。

- ・ジャッキ荷重 変位関係 (グラフ)
- ・ブローアウトパネルの開放荷重
- ・クリップの脱落時荷重
- ・シール材の抗力と下部の摩擦

東海第二発電所

原子炉建屋外側ブローアウトパネル機能確認試験結果について

1. 試験結果

1.1 作動確認結果

ブローアウトパネルが所定の荷重にて開放することを確認した。

5.3 試験方法の第4表に示した試験体1の条件にて開放試験を実施し、設計差圧6.9kPa以下の荷重でパネルが開放することを確認した。試験体1の結果より、再現性確認を試験体2で実施し、設計差圧以下の荷重でパネルが開放することを確認した。

【試験結果】

試験体1:最大荷重59.6kN(差圧3.8kPa相当)

試験体2:最大荷重62.8kN(差圧4.0kPa相当) 試験体1と同条件にて再現性を確認

試験結果の詳細を第6表に示すとともに、各油圧ジャッキの荷重と変位測定結果及びクリップの開放状況を第1図、第2図に示す。

		加工农 一个 加州 阿里 少极 八區			(10.1)
項目	試験日	測定値	許容値	判定	備考
78.0	IP-VIIIX II		(6.9kPa相当值)	TIAL	相当する差圧値
試験体1	6/9	59. 6	106	0	3.8 (kPa)
試験体2	6/15	62. 8	106	0	4.0 (kPa)

第1表 パネル開放荷重の最大値

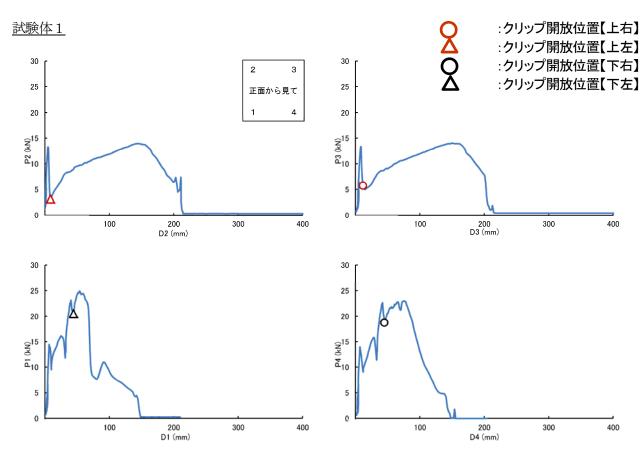
(kN)

1.2 閉維持確認結果

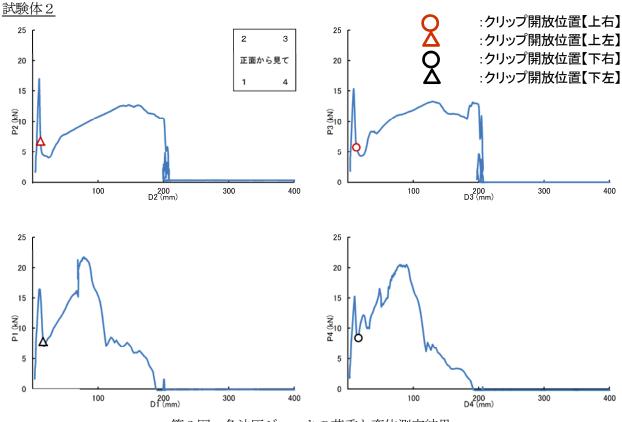
ブローアウトパネルがSd相当荷重で開放しないことを確認した。

1.1 作動確認結果より、ブローアウトパネルの開放荷重が、Sd相当荷重値※(約25kN)以上であることを確認した。試験結果の詳細を第2表に示す。

第2表 パネルの耐震性能確認結果


(kN)

項目	試験日	測定値	判定値 (Sd相当荷重)	判定
試験体1	6/9	59. 6	25以上	0
試験体2	6/15	62. 8	25以上	0


※ ブローアウトパネルの固有振動数判定より求めた値に対応する,設置位置の Sd相当荷重

1.3 考察

クリップは、変位約12mmで脱落するため、グラフにはクリップ開放時の荷重が最初のピークとして現れている。2度目の荷重のピークは、コーキングが約400%~600%に伸長し、切断するまでの最大荷重とパネル下部の摩擦荷重によるもの。コーキングは使用環境により経年劣化するものであることから、接着力及びパネル開放時のコーキング分の荷重は、本試験結果より低下しパネルが開放し易くなる傾向と想定される。また、上部と下部の荷重の相違は、パネルが上から倒れる状況における上下の速度の違いによるものである。

第1図 各油圧ジャッキの荷重と変位測定結果

第2図 各油圧ジャッキの荷重と変位測定結果

1.4 試験結果

第6表に示した開放試験に加え、ストローク及び伸長速度の異なる油圧ジャッキによる開放試験 (追加試験1~追加試験4)を実施した結果を第3表に示す。

	为 3 数 7 9 17 7 1			(KIV)	
項目	試験日	測定値	許容値	判定	備考
7,41	p- 400/C pi	MALIE	(6.9kPa相当值)	7	相当する差圧値
試験体1	6/9	59. 6	106	0	3.8 (kPa)
試験体2	6/15	62. 8	106	0	4.0 (kPa)
追加試験1	6/20	56. 5	106	0	3.6 (kPa)
追加試験 2	6/21	64. 4	106	0	4.1 (kPa)
追加試験3	7/5	57. 2	106	0	3.6 (kPa)
追加試験4	7/6	53. 4	106	0	3.4 (kPa)

第3表 パネル開放荷重の最大値

(kN)

各測定値の変動範囲は、クリップ単体試験のばらつき等と比較しても、小さいことを確認した。

1.5 実開放時との相違点について

本開放試験で使用した油圧ジャッキの伸長速度は、実際にブローアウトパネルが作動する際の開放速度と比較すると遅い状態であるため、実作動時における対応として以下を考慮している。

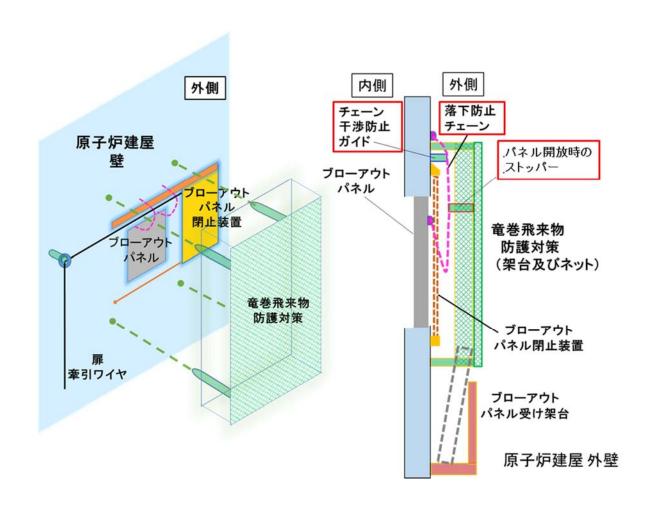
1) ブローアウトパネルのチェーンが、閉止装置に干渉しない設計とする。

パネル上部に設置する落下防止チェーンは、干渉防止ガイドを設置することで、閉止装置の上 部レール及び下部レールに接触しない配置とする。

一方, 待機中の閉止装置におけるシール部及びレールに接触する配置となり, これらの部位 を損傷させる恐れがあることから, ブローアウトパネル下部へのチェーン設置は行わない。

2) ブローアウトパネルのチェーンが落下の衝撃荷重に十分耐える設計とする。

充分な強度を有する落下防止チェーン,シャックル及び吊ピースとアンカーを複数設置する。 過去の強制開放装置設置において実績のある落下防止チェーン,シャックル及び吊ピースとア ンカー等の評価により,1本のチェーンで約5.5tの重量物を高さ4.5m の落下を想定しても,衝 撃荷重に耐えることを確認済み。このチェーンを2本以上設置することで,開放時の衝撃に耐 える設計とする。


3) ブローアウトパネル受け架台を設置する。

ブローアウトパネルと原子炉建屋外壁は落下防止チェーンで接続されるが、受け架台は落下するパネルを受け止め、ブローアウトパネル開放時のチェーンの衝撃を緩和させる役割及び、建屋外壁や他関連設備への波及的影響を防止する機能を果たす目的で設置する。

以上の対策案を第3図にまとめる。これらの詳細設計対応については、ブローアウトパネル関連 設備の干渉対策にて具体的に示す。

(1) ブローアウトパネル開放時の干渉対策

- ・落下防止チェーンは、建屋外壁に設置し、干渉防止用ガイドを設置することで、ブローアウトパネル落下時の閉止装置との干渉を防止する。(パネル上部にのみ設置)
- ・ブローアウトパネル開放時に、パネルの竜巻防護ネットとの干渉を防止する目的で、ストッパーを設置する。
- ・ブローアウトパネル受け架台を設置し、開放時に落下するパネルを受け止め、建屋外壁や竜 巻防護ネットとの干渉を防止する。

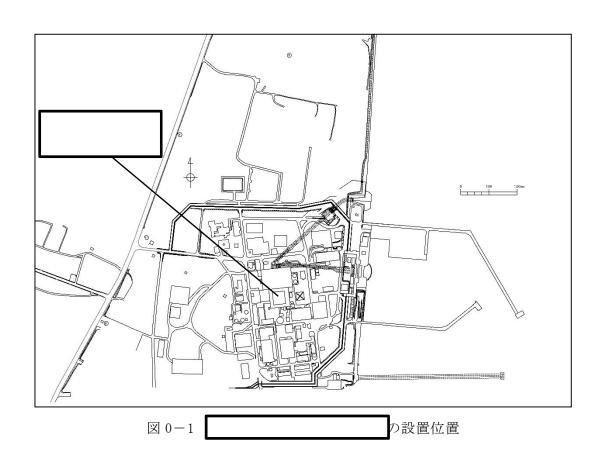
第3図 ブローアウトパネル開放時の干渉対策について

原子炉建屋外側ブローアウトパネルの耐震性についての計算書

目 次

1. 根	現要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-1
2. –	-般事項3	8-1
2.1	配置概要	8-1
2.2	構造概要 3	3-2
2.3	評価方針 3	8-6
2.4	適用基準 3	8-8
3. 葦	平価方法	3-9
3. 1	地震応答解析による評価方法 3-	-10
4. 匿	∃有周期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3−	-11
4. 1	基本方針 3-	-11
4.2	固有周期の算出方法3-3-	11
4.3	固有周期評価結果3-	11
5. 模	&能維持評価3-	-12
5. 1	評価部位 3-	-12
5.2	評価用加速度 3-	-12
5.3	評価方法3-	-12
6. 閉	 	-13
6. 1	評価対象部位及び評価方針 ・・・・・・・・・・・・・・・・・・・・・・・3-	-13
6.2	評価方法3-	-13
7. 許	₽価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 3-	-14
7. 1	原子炉建屋原子炉棟の耐震評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	-14
7.2	開放試験結果3-	-15

1. 概要


本計算書は、「V-2-9 機能維持の基本方針」にて設定している機能維持の設計方針に基づき、原子炉建屋外側ブローアウトパネルが設計用地震力に対して十分な機能を有していることを説明するものである。

原子炉建屋外側ブローアウトパネルは、設計基準対象施設においては「Sクラス施設」 に分類される。以下、分類に応じた機能維持評価を示す。

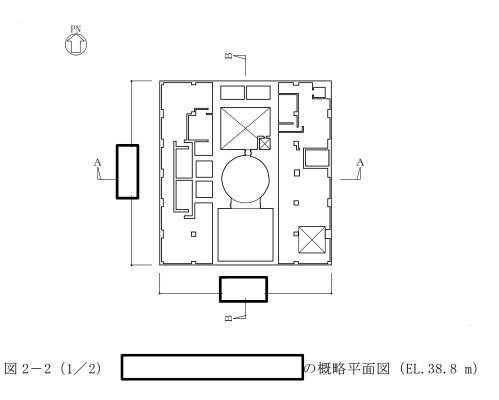
2. 一般事項

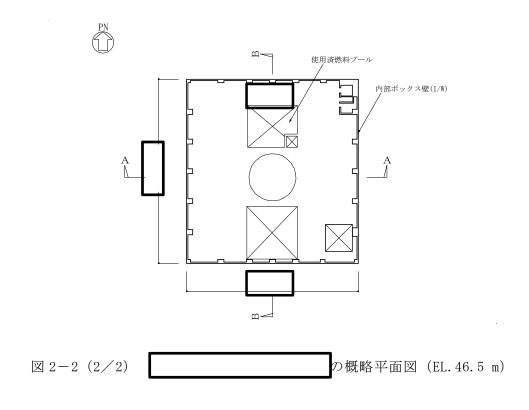
2.1 配置概要

原子炉建屋外側ブローアウトパネルは、原子炉建屋のうち二次格納施設となる原子炉建屋原子炉棟(以下「原子炉棟」という。)の一部を構成している。原子炉棟を含む原子炉建屋の設置位置を図 0-1 に示す。

2.2 構造概要

原子炉建屋は、主体構造が鉄筋コンクリート造で、鉄骨造陸屋根をもつ地下 2 階、地上 6 階の建物である。中央部には、平面が南北方向 45.5m、東西方向 42.5m の原子炉棟があり、その周囲には、平面が南北方向 68.5m、東西方向 68.25m 原子炉建屋付属棟(以下「付属棟」という。)を配置している。


原子炉棟は、基礎スラブから屋根面まで連続した、壁厚 $1.5m\sim0.3m$ の耐震壁(以下「内部ボックス壁(I/W)」という。)、厚さ約 10cm の鉄筋コンクリート造のスラブ(以下「屋根スラブ」という。)及び鉄骨架構(以下「屋根トラス」という。)で構成される。


内部ボックス壁(I/W)は二次遮蔽となっておりこの一部に、原子炉建屋外側ブローアウトパネルが配置されている。

原子炉棟を含む原子炉建屋の概略平面図を図2-2に、概略断面図を図2-3に示す。

原子炉建屋外側ブローアウトパネルは、原子炉建屋原子炉棟外壁(5階及び6階部分)に配置され、差圧により開放するパネル本体部、パネルを建屋外壁内に設置する枠部及び差圧により破損するクリップ部より構成される設備である。

原子炉建屋外側ブローアウトパネルの詳細構造を図2-4に示す。

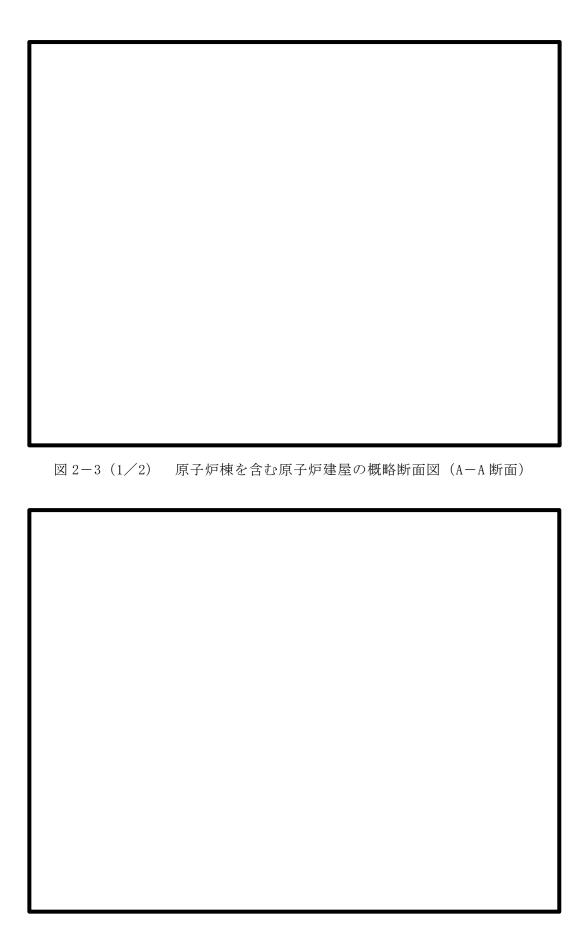


図 2-3 (2/2) 原子炉棟を含む原子炉建屋の概略断面図 (B-B 断面)

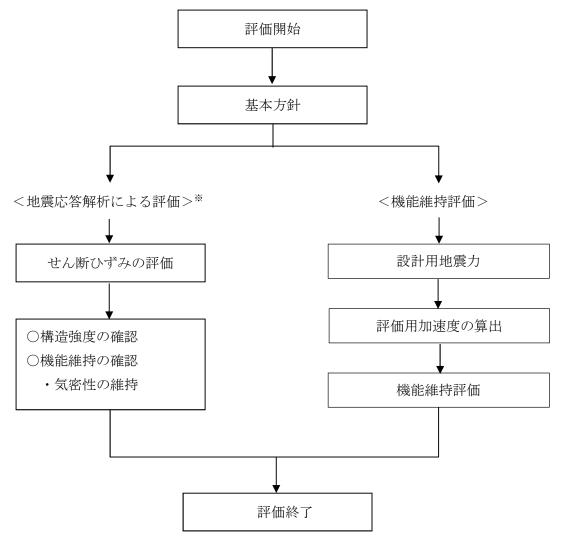

計画(の概要	+ELL mな +# パト 1251
基礎・支持構造	主体構造	概略構造図
原子炉建屋外側ブローアウトパネルは、十分な強度を有する構造とし、取付枠とクリップにより原子炉建屋原子炉棟の壁内に据え付けられる	取付枠部	クリップ プローアウトパネル本体部 取付枠部

図 2-4 原子炉建屋外側ブローアウトパネルの構造

2.3 評価方針

原子炉建屋外側ブローアウトパネルの機能維持評価は,「V-2-1-9 機能維持の基本方針 4.4 止水性の維持及び 4.6 支持機能の維持」にて設定した機能維持の方針に基づき,地震時の構造強度及び機能維持を「5. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 評価結果」に示す。

原子炉建屋外側ブローアウトパネルの耐震評価フローを図2-1に示す。

※: 資料V-2-2-1「原子炉建屋の地震応答計算書」の結果を 踏まえた評価を行う。

図 2-1 原子炉建屋外側ブローアウトパネルの耐震評価フロー

(1) 原子炉建屋外側ブローアウトパネル

原子炉建屋外側ブローアウトパネルは、二次格納施設としてのバウンダリ機能を維持するとと もに、設計基準事故に対し、地震後においても、構造健全性及び設計基準事故等に対処するため に、必要な開放機能を保持し、規定の圧力にて自動的に開放できることを機能設計上の性能目標 とする。

また,原子炉建屋外側ブローアウトパネルは,地震後においても,設計基準事故等に対処する ために必要な開放機能を保持し,規定の圧力にて自動的に開放できることを損なわないことを機 能設計上の性能目標とする。

原子炉建屋外側ブローアウトパネルは,基準地震動 S_s 及び弾性設計用地震動 S_d 相当の地震力よる地震力に対し,以下の内容を構造強度設計上の性能目標とする。

a. 構造強度

原子炉建屋外側ブローアウトパネルは、基準地震動S_Sによる地震力に対し、本体及び枠等の主要な構造部材が開放機能を保持可能な構造強度を有すること。

b. 機能維持

原子炉建屋外側ブローアウトパネルは、二次格納施設としてのバウンダリ機能を維持するために、弾性設計用地震動S₃相当地震力にて開放しないこと。

原子炉建屋外側ブローアウトパネルは、規定の圧力にて自動的に開放できること。

2.4 適用基準

本計算書においては,原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG4601・補-1984,JEAG4601-1987及びJEAG4601-1991 追補版)(日本電気協会 電気技術基準調査委員会 昭和59年9月,昭和62年8月及び平成3年6月)に準拠して評価する。

原子炉棟の評価において、適用する規格、基準等を以下に示す。

- · 原子力発電所耐震設計技術指針 J E A G 4 6 0 1 1987 ((社) 日本電気協会)
- ・ 原子力発電所耐震設計技術指針 重要度分類・許容応力編JEAG4601・補-1984((社)日本電気協会)
- 原子力発電所耐震設計技術指針 J E A G 4 6 0 1 1991 追補版 ((社)日本電気協会)
- · 建築基準法·同施行令
- ・ 鉄筋コンクリート構造計算規準・同解説-許容応力度設計法- ((社)日本建築学会,1999)
- ・ 原子力施設鉄筋コンクリート構造計算規準・同解説 ((社)日本建築学会,2005) (以下「RC-N規準」という。)
- ・ 鋼構造設計規準-許容応力度設計法- ((社)日本建築学会,2005) (以下「S規準」という。)
- ・ 2015 年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・ 国立研究開発法人建築研究所)(以下「技術基準解説書」という。)

3. 評価方法

原子炉棟は、設計基準対象施設においては「Sクラスの施設」に分類される。

原子炉棟の設計基準対象施設としての地震時の評価は,弾性設計用地震動 S_a による地震力または静的地震力のいずれか大きい方の地震力に対する評価(以下「 S_a 地震時に対する評価」という。),基準地震動 S_a による地震力に対する評価(以下「 S_a 地震時に対する評価」という。)及び保有水平耐力の評価を行うこととし,それぞれの評価は,資料V-2-2-1「原子炉建屋の地震応答計算書」の結果を踏まえたものとする。ただし,耐震壁については,常時荷重が設計時と同一であること,また,応答に対して支配的となる水平方向の弾性設計用地震動 S_a による地震力及び静的地震力がいずれも『既工事計画認可申請書第1回 資料III-1-4「原子炉建屋の地震応答計算書」(47公第12076号 昭和48年4月9日認可)』の設計用地震力よりも小さいことから, S_a 地震時に対する評価は行わない。

原子炉棟の評価は,資料V-2-1-9「機能維持の基本方針」に基づき,地震応答解析による評価においてはせん断ひずみの評価を行うことで,原子炉棟の地震時の構造強度及び機能維持の確認を行う。評価に当たっては,地盤物性のばらつきを考慮する。なお,保有水平耐力の評価については,原子炉棟が原子炉建屋の一部であることを踏まえ,原子炉棟を含む原子炉建屋全体としての評価結果を資料V-2-2-2「原子炉建屋の耐震性についての計算書」に示すこととする。

3.1 地震応答解析による評価方法

地震応答解析による評価において、原子炉棟の構造強度については、資料V-2-2-1「原子炉建屋の地震応答計算書」に基づき、地盤物性のばらつきを考慮した最大せん断ひずみが許容限界を超えないことを確認する。

また、気密性の維持については、資料V-2-2-1「原子炉建屋の地震応答計算書」による結果に基づき、地盤物性のばらつきを考慮した最大せん断ひずみが許容限界を超えないことを確認する。地震応答解析による評価における原子炉棟の許容限界は、資料V-2-1-9「機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき、表 3-1 のとおり設定する。

表 3-1 地震応答解析による評価における許容限界 (設計基準対象施設としての評価)

要求機能	機能設計上の 性能目標	地震力	部位	機能維持のための 考え方	許容限界 (評価基準値)
_	構造強度を 有すること	基準地震動 S _s	耐震壁※1	最大せん断ひずみが 構造強度を確保する ための許容限界を超 えないことを確認	最大せん断ひずみ 2.0×10 ⁻³
気密性	換気性能とあ いまって気密 機能を維持す ること	基準地震動 S _s	耐震壁※1	最大せん断ひずみが 気密性を維持するた めの許容限界を超え ないことを確認	最大せん断ひずみ 2.0×10 ⁻³ ** ²

※1:建屋全体としては、地震力を主に耐震壁で負担する構造となっており、柱、梁、間仕切壁等が耐震壁の変形に追従することと、全体に剛性の高い構造となっており、複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えられるため、各層の耐震壁が最大せん断ひずみの許容限界を満足していれば、建物・構築物に要求される機能は維持される。

※2: 事故時に原子炉格納容器から漏洩した空気を非常用ガス処理系で処理できるように気密性を有する設計とし、地震時においてもその機能を維持できる設計とする。

4. 固有周期

4.1 基本方針

原子炉建屋外側ブローアウトパネルの固有周期は、振動試験(自由振動試験)にて求める。

4.2 固有周期の算出方法

プラスチックハンマ等により,当該装置に振動を与え自由減衰振動を固有振動数測定装置(圧電式加速度ピックアップ,振動計,分析器)により記録解析する。

4.3 固有周期の測定結果

固有周期の計算結果を表 4-1 に示す。鉛直方向,水平方向ともに固有周期が 0.05 秒以下であり,剛であることを確認した。

表 4-1 固有周期(s)

水平	鉛直
0.05以下	0.05以下

5. 機能維持評価

5.1 評価部位

原子炉建屋外側ブローアウトパネルの閉維持機能の確認を目的とし,クリップにて固定された原子炉建屋外側ブローアウトパネルが,評価用地震加速度相当の荷重に対して,開放しないことを確認する。

5.2 評価用加速度

原子炉建屋外側ブローアウトパネルは原子炉棟の外壁内に直接取り付けられた枠内に設置されることから,評価用加速度は,「V-2-9-3-1 原子炉建屋原子炉棟の耐震性についての計算書」に示す地震応答解析で評価した,原子炉建屋外側ブローアウトパネル取付部に相当する質点に生じる加速度とする。評価用加速度を表 5-1 に示す。

表 5-1 評価用加速度

 $(\times 9.8 \text{m/s}^2)$

機器名称	対象機器設置箇所 (m)	方向	評価用加速度
原子炉建屋外側	原子炉建屋	水平	1. 23
ブローアウトパネル	EL. +57. 00	鉛直	0.94

5.3 評価方法

モックアップ試験装置を用いて、油圧ジャッキによりパネル本体を開方向に加力し、ブローアウトパネルがSd相当荷重で開放しないことをパネルの荷重曲線より評価する。

6. 開放試験による応力評価

6.1 評価対象部位及び評価方針

ブローアウトパネルとその取付枠,並びにクリップを設置した実機大のモックアップ試験体を 製作し、設計作動圧の1psiで確実に開放されることを確認するため、油圧ジャッキを用いた加力 による開放試験を実施する。

本試験装置を用いて実測する,開放に必要な荷重より,設定したクリップ条件によるブローアウトパネルの耐震性能を確認する。

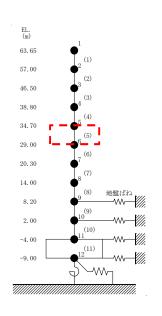
6.2 評価方法

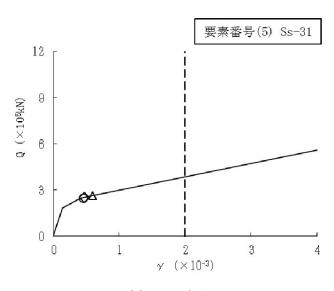
開放試験における確認項目を以下に示す。開放試験にて得られる記録値から,ブローアウトパネルの耐震性能を確認する。

- ・ジャッキ荷重 変位関係 (グラフ)
- ・ブローアウトパネルの開放荷重

7. 評価結果

7.1 原子炉建屋原子炉棟の耐震評価結果


原子炉棟について、 S_s 地震時の各層の最大せん断ひずみが許容限界 (2.0×10^{-3}) を超えないことを確認する。


地盤物性のばらつきを考慮した最大せん断ひずみは 0.60×10^{-3} (要素番号(5), 地盤 $+\sigma$ ケース, NS 方向, S $_s$ -3 1) であり、許容限界(2.0×10^{-3})を超えないことを確認した。地盤物性のばらつきを考慮した各方向の $Q-\gamma$ 関係と最大応答値を図 7-1 に示す。

○:基本ケース

 \triangle : 地盤物性のばらつきを考慮(+ σ)

◇:地盤物性のばらつきを考慮(-σ)

(a) NS 方向

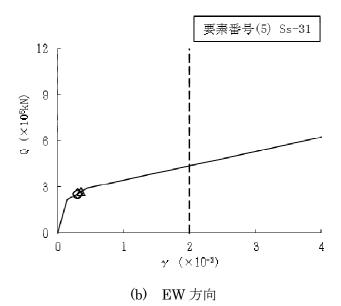


図 7-1 Q-γ 関係と基準地震動S。に対する各部材の最大応答値

(1) 機能維持評価結果

機能維持評価の結果を以下に示す。

本体パネルと,取付枠の隙間は,左右各17.5mm,上28mm,下6mmに施工されており,地震時の変形等がこの間隙以下であれば,開放機能に影響はないと判断する。さらに,クリップの取付寸法による間隙も併せて確認する。

クリップの形状および溝形鋼への取付け位置を図7-2に示す。クリップの材質はSS400とし、形状は図に示すように、クリップ幅80mm、厚み34.6mm、アングル側のかかり代20mmとし、溝型鋼の先端との間隙を3mmとして、M6ボルトにより溝形鋼に取付ける。ここで、溝形鋼との間隙を3mmとすることにより、ブローアウトパネル設置階におけるSs に対する地震応答解析結果の層間変形角の最大値 (0.23×10^{-3}) に十分な余裕を見込んだ層間変形角 (0.5×10^{-3}) に対しても、アングル先端がクリップと干渉することを防ぐことが可能となる。図7-3参照。

図 7-2 クリップ形状及び取付位置図

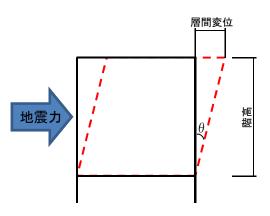


図 7-3 層間変形角について

 θ : 層間変形角

δ:層間変位

h: 階高

7.2 開放試験結果

原子炉建屋外側ブローアウトパネルの設計基準対象施設としての耐震評価結果を以下に示す。評価用加速度は機能評価用加速度以下であり、設計用地震力に対して機能が維持されていることを確認した。

開放に必要な荷重は、評価用加速度に相当する水平方向荷重値以下であり、設計用地震力に対して原子炉建屋外側ブローアウトパネルの閉維持機能が維持されることを確認した。

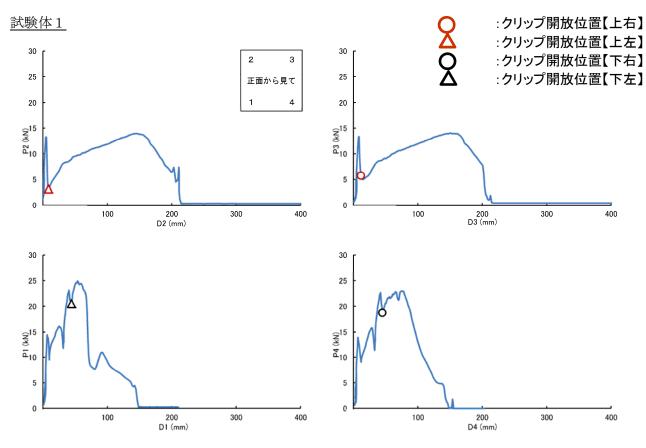


図 7-4 各油圧ジャッキの荷重と変位測定結果

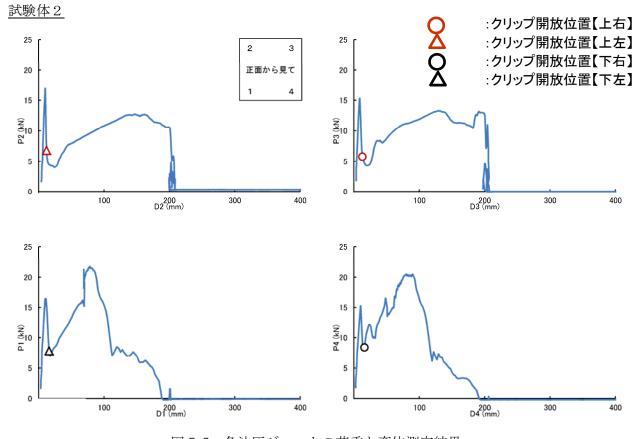


図 7-5 各油圧ジャッキの荷重と変位測定結果

7.3 試験結果

2回の開放試験加え、ストローク及び伸長速度の異なる油圧ジャッキによる開放試験(追加試験 $1 \sim$ 追加試験 4)を実施した結果を表7-1に示す。

表7-1 パネル開放荷重の最大値

(kN)

項目	試験日	測定値	許容値 (6. 9kPa相当 値)	判定	備考 相当する差圧値
試験体1	6/9	59. 6	106	0	3.8 (kPa)
試験体2	6/15	62.8	106	0	4.0 (kPa)
追加試験 1	6/20	56. 5	106	0	3.6 (kPa)
追加試験 2	6/21	64. 4	106	0	4.1 (kPa)
追加試験 3	7/5	57. 2	106	0	3.6 (kPa)
追加試験 4	7/6	53. 4	106	0	3.4 (kPa)

東海第二発電所

ブローアウトパネル閉止装置 機能確認試験について

日本原子力発電株式会社平成30年8月

目次

1	目的	4-1-1
2	試験期間及び場所・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1-1
3	試験項目 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1-1
4	加振試験 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1-6
5	計驗更領	4-1-10

東海第二発電所 ブローアウトパネル閉止装置機能確認試験要領について

1 目的

ブローアウトパネル閉止装置(以下,「閉止装置」という。)に要求される機能を確認するため, 実機規模の試験体を用いた加振試験を行い,重大事故等時における閉止装置の機能維持確認を実施する。

また,機能確認試験時に発生した閉止装置の不具合に対する対策の効果を確認するため,対策 を施した試験体を用いた加振試験を行い,対策の妥当性を確認する。

2 試験期間及び場所

実施時期: 平成 30 年 6 月 18 日 (月) ~ 22 日 (金) 平成 30 年 7 月 24 日 (火) ~ 31 日 (火)

場 所:国立研究開発法人 防災科学研究所 兵庫耐震工学研究センター 兵庫県三木市志染町三津田西亀屋 1501-21

3 試験項目

3.1 閉止装置に要求される機能について

閉止装置は、原子炉建屋外側ブローアウトパネル(以下、「BOP」という。)が開放状態で炉心損傷が発生した場合に、運転員等の中央制御室での居住性確保のため、BOPの開放部を速やかに閉止し、原子炉建屋の気密性を維持することが求められる。具体的には下記の機能が求められる。

- ・ 地震後においても、容易かつ確実に閉止でき、また現場において人力による操作できる作動 性を確保し、原子炉建屋原子炉棟を負圧に維持できる気密性を確保していること。
- ・ 開放したBOPを復旧するまでの期間において閉止装置を使用するため、重大事故後、一定期間内に想定される地震が発生した場合においても、原子炉建屋原子炉棟を負圧に維持できる気密性を確保していること。

3.2 加振条件

(1) 基準適合性を確認するための加振(基準地震動Ss加振波による加振)

閉止装置の設置位置(最も高所の設置位置)における基準地震動 S_s^{*1}に対する設計用震度を上回るように設定された加振波を用いて加振を行う。

- ※1 閉止状態の閉止装置は、BOPと同等の弾性設計用地震動Saによる荷重が作用した場合の気密性確保が求められるが、耐震裕度を確認するため、基準地震動Ss加振波を用いて加振を行う。
- (2) 閉止装置の耐震裕度を確認するための加振 (基準地震動 S_s 加振波を超える加振波による加振)

閉止装置の耐震裕度を確認するため、振動台の性能限界 (基準地震動 S_{s} の 1.1 倍相当 *2) での加振波を用いて加振を行う。

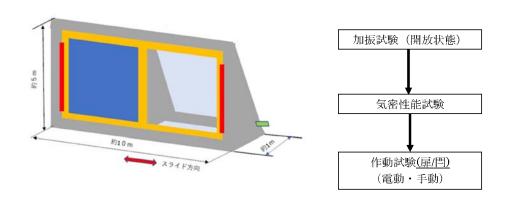
※2 振動台を動かす油量等の制限により数値が上下する可能性がある。

(3) 閉止装置の不具合対策の効果を確認するための追加加振

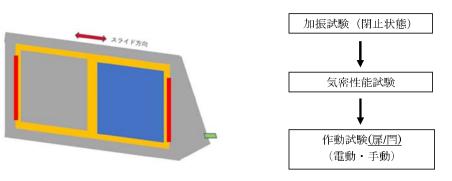
閉止装置の不具合対策(チェーンの強化等、閂の設置)の効果及び他の部位へ悪影響を及ぼさないことを確認するため、3.2 (1)と同じ基準地震動 S_s 加振波による加振を行う。

3.3 試験項目

基準地震動S_S加振波及び振動台性能限界加振波による加振を行い、閉止装置に要求される機能が確保されことを確認する。


・加振後の作動確認 : 閉止装置が開放状態において、加振後の扉本体の作動性が確保していることを確認する。また、扉本体の作動確認に合わせて、門の作動性が確保していることを確認する。

・ 加振後の気密性能試験: 閉止装置が開放状態において, 加振後の気密性を確保していること を確認する。気密性能試験の準備段階で, 扉本体を閉動作させる際 に、門が作動することを確認する。

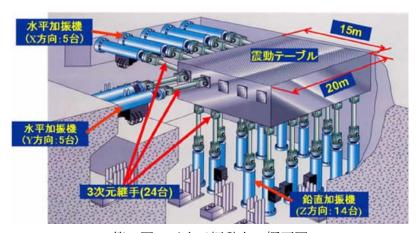

・ 加振後の気密性能試験: 閉止措置が閉止状態において, 加振後の気密性を確保していること を確認する。

・加振後の作動確認 : 閉止装置が閉止状態において、加振後の扉本体の作動性が確保していることを確認する。扉本体の作動確認に合わせて、門の作動性が確保していることを確認する。

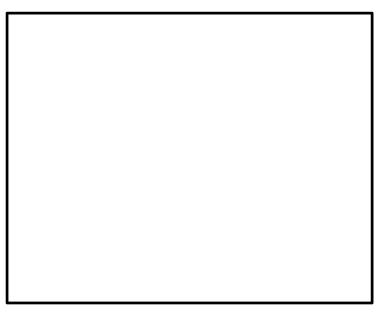
【扉開放状態】

【扉閉止状態】

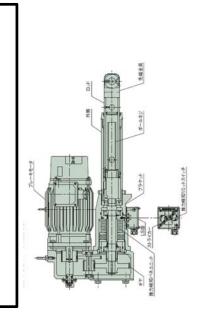
第1図 試験治具概念図


4 加振試験

4.1 加振装置 (三次元振動台) の概要

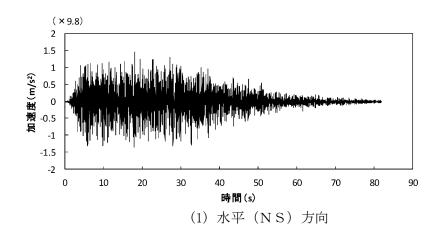

振動台の上に試験体を設置し、水平方向と鉛直方向を同時に加振する。第1表に振動台の仕様、第2図に三次元振動台の概要図及び第3図に試験体の鳥瞰図を示す。

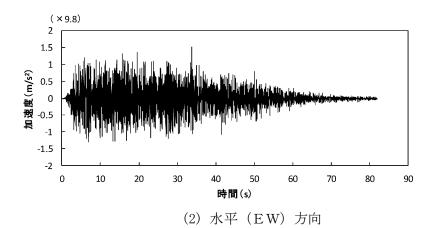
7) I 3					
加振自由度	3軸6自由度				
振動台寸法	20m×15m				
最大積載重量	1200 t f				
加振方向	X方向	Y方向	Z方向		
最大加速度	900cm/s^2	900cm/s^2	$1500 \mathrm{cm/s^2}$		
最大速度	200cm/s	200cm/s	70cm/s		
最大変位	± 100 mm	± 100 mm	± 100 mm		

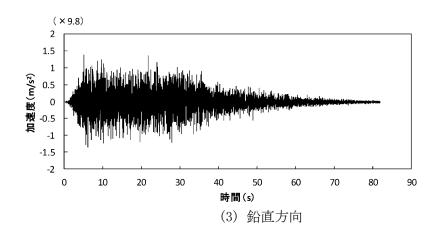

第1表 三次元振動台の仕様

第2図 三次元振動台の概要図

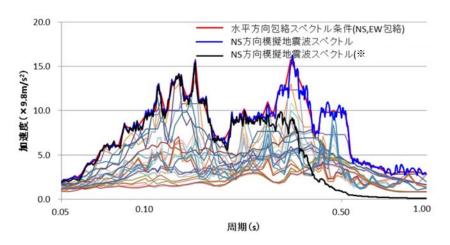
第3図 試験体の鳥観図

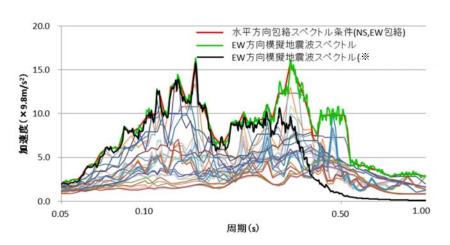

閂イメージ図 電動駆動シリンダ

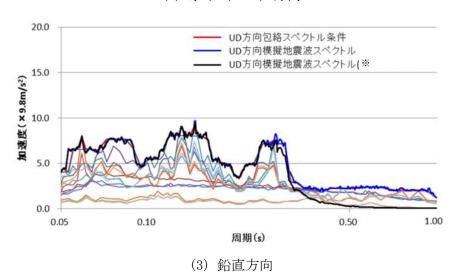

4.2 加振波


(1) 基準地震動 S_s加振波

加振試験用の模擬地震波は以下のとおりとする。第4回,第5回に,複数の基準地震動Ssの床応答スペクトルを包絡する模擬地震波の時刻歴波形,床応答スペクトルを示す。


- ・閉止装置の設置高さより上方の原子炉建屋 EL. 63. 65m
- ・基準地震動 S_S 8波及び建屋影響評価で考慮するばらつきケースを包絡
- ・加振目標の包絡スペクトルは減衰定数 1.0%で設定




第4図 模擬地震波の時刻歴波形

(1) 水平(NS)方向

(2) 水平(EW)方向

第5図 模擬地震波の床応答スペクトル (減衰定数1%)

※ 振動台の性能を考慮し、閉止装置の固有周期近傍の加速度に影響を及ぼさない長周期側 の加速度を低減処理した入力地震動にて試験を実施する。

(2) 振動台性能限界加振波

振動台性能限界加振波は、4.2 (1) の基準地震動 S_s 加振波の振幅を、振動台の性能限界付近(基準地震動 S_s の1.1 倍相当)の加速度振幅になるよう等倍した加振波とする。

4.3 加振試験項目及び内容

加振試験ケースの項目,概要は以下の通りである。各試験ケースの扉の試験体条件(閉止装置の開閉状態),加振波等を第2表に示す。

(1) 振動台補償加振

目標とする入力波を精度よく振動台で再現するための振動台補償加振を行う。本試験は, 試験体を振動台に搭載しない条件で行う。

(2) センサ確認試験

センサの取付方向、感度確認を行うために、各方向単独で正弦波加振を行う。

(3) 振動特性把握試験

試験体の振動特性を把握するため、0.1Hz~30Hz 程度の振動数成分を有する広帯域ランダム波による加振試験を行う。加振方向は各方向単独とし、扉の開状態及び閉状態の振動特性を確認する。なお、試験体の固有振動数が高い場合は、入力波の主要な振動数成分の範囲に固有振動数がないことを確認する。

(4) 地震波加振試験

加振レベルは4段階に分けて振動台の加振性能限界まで漸増させていく。加振方向は3方向同時とし、閉止装置の開状態、閉状態のそれぞれで実施する。

なお、基準地震動 S_s を超える加振試験として、振動台の性能限界である基準地震動 S_s の 1.1 倍相当をレベル4として実施し、閉止装置の耐震裕度を確認する。

19

第2表 試験ケース一覧

No	試験項目	試験体条件	加振方向	加振波	加振レベル	備考
_	振動台補償加振	—	X+Y+Z	——————————————————————————————————————	——————————————————————————————————————	— Vm ·· J
1			X			
2	センサ確認試験	扉閉	Y	正弦波	0.5m/s ² 程度	1~2Hz で
3			Z			実施
4			X			
5		扉閉	Y	ランダム波*1	2.0m/s ² 程度	_
6	振動特性把握試		Z			
7	験		X			
8		扉開	Y	ランダム波*1	2.0m/s ² 程度	_
9			Z			
10					0.3×S _S	レベル1
11					0.6×S _S	レベル2
12		扉開	X+Y+Z	包絡波※2	1.0×S _S	レベル3
13					$1.1 \times S_S$	レベル4*
14	地震波加振				振動台性能限界	3
15	→四/文1/X///HT/X				0.3×S _S	レベル1
16					0.6×S _S	レベル2
17		扉閉	X+Y+Z	包絡波※2	1. 0× S s	レベル3
18					$1.1 \times S_S$	レベル4*

※1 0.1Hz~30Hz 程度の振動数成分を有する広帯域ランダム波で加振を行う。

※2 方向毎に複数の基準地震動Ssの床応答スペクトルを包絡する模擬地震波を作成して加振する。

振動台性能限界

※3 基準地震動Ssに対する裕度を確認するために実施。

4.4 計測要領

(1) 計測項目

計測項目は、対策前の試験と同様とする。ただし、対策前の試験結果を参考に加速度、ひずみ計測点を追加する。

試験体の代表的挙動を評価するための項目を計測する。計測項目を第3表に示す。

第3表 計測項目

項目	計測点		
加速度	・振動台・支持架台・扉・駆動装置		
ひずみ	・プッシュローラ (開閉時に扉を押える部位)・レール*・チェーン*・門周辺 (閂の荷重を伝達する部位) **		

※:対策後の加振試験に追加する計測点

(2) 計測位置

計測点は、試験体の代表的な挙動を評価する位置に設置する。第4表に計測項目の一覧表を示す。

① 加速度

第6図に加速度計の設置位置を示す。

②ひずみ

第7図にひずみゲージの設置位置を示す。扉の開時、閉時において扉を抑える荷重が発生するプッシュローラのひずみを計測する。対策後の加振試験には、レール、チェーン、門周辺(門の荷重を伝達する部位)を追加して計測する。ただし今後の詳細検討、試験時の状況判断により、計測位置の見直し、追加の可能性がある。

③その他

加速度, ひずみ以外に, 加振試験時や扉の開閉動作の記録のため, 動画撮影を実施する。なお, 必要に応じ試験場に備え付けられているカメラも活用する。

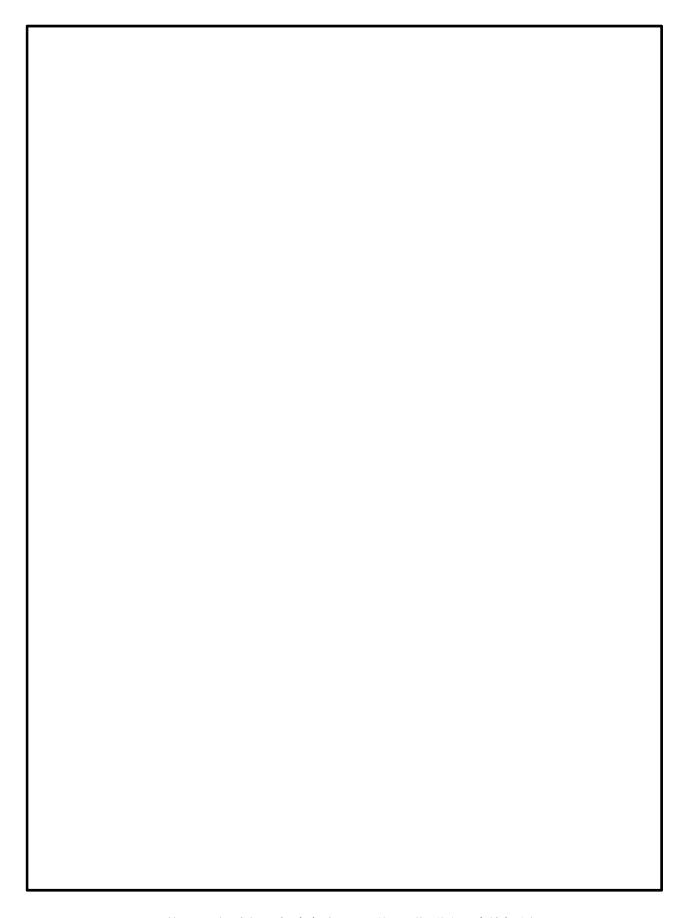
・試験体全景:振動台外から、試験体全景を撮影

・扉近傍 :振動台または支持架台上から、レール、プッシュローラ付近を撮影

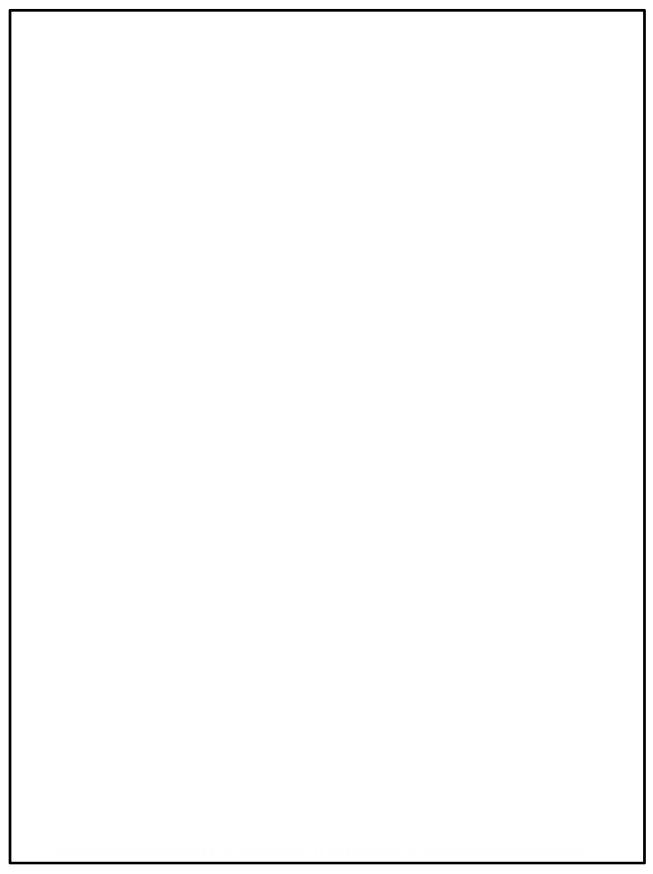
(3) 測定計器

試験に使用する測定計器を第5表に示す。

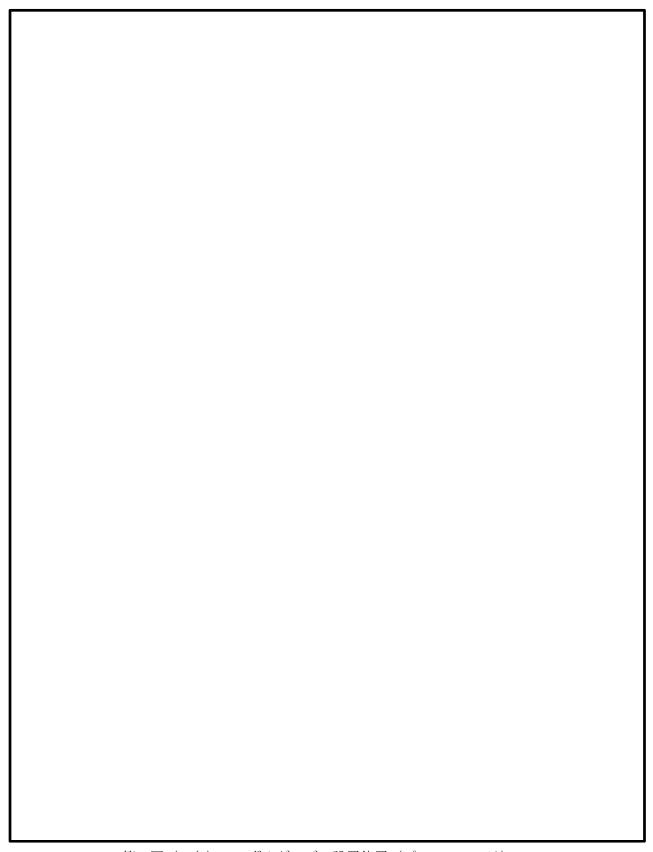
第4表(1/2) 計測項目の一覧表

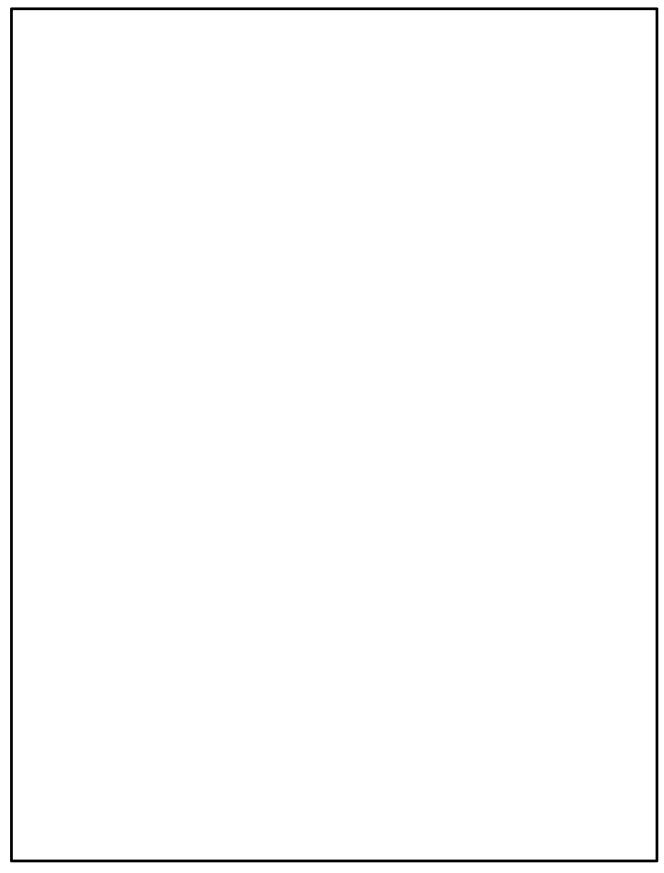

No	項目	記号	測定点	方向	備考
110	78.17	마 <i>フ</i>	以人二		ΣΦ HIV
1				X	
2		A1		Y	・振動台上加速度を計測
3			振動台	Z	・計画条件の範囲内で加振試験が実施
4				X	されたことの確認が目的
5		A2		Y	
6				Z	
7				X	・閉時,開時の扉上部の支持架台に設
8		А3	扉上部(閉時)	Y	で、同時の無上部の文行来口に成して、一間
9				Z	- □ - ・閉時,開時の閉止装置の機能維持確
10				X	認加速度の計測が目的
11		A4	扉上部(開時)	Y	・支持架台の振動特性確認も兼ねる
12				Z	> 100 / 10 / 10 / 10 / 10 / 10 / 10 / 10
13			駆動装置本体	X	
14	加速度	A5		Y	
15				Z	・駆動装置単体の機能維持確認加速度
16				X	の計測が目的 ・駆動装置の振動特性確認も兼ねる
17		A6	駆動装置の取付位置	Y	・心別を巨い派別付出推心り来なる
18				Z	
19				X	
20		A7	扉の中央部	Y	
21				Z	・扉の振動特性確認が目的
22		A8		X	・振動特性把握試験時に設置 ^{※1}
23		A9	扉の左・中央	X	
24				X	・扉の振動特性,地震応答の確認が目
25		A10	扉の中央部	γ*2	的
26				X	・地震波加振,扉閉,レベル3または
27		A12	扉の中央部	γ* 2	4 (第1表の No. 16 または 17) のケ

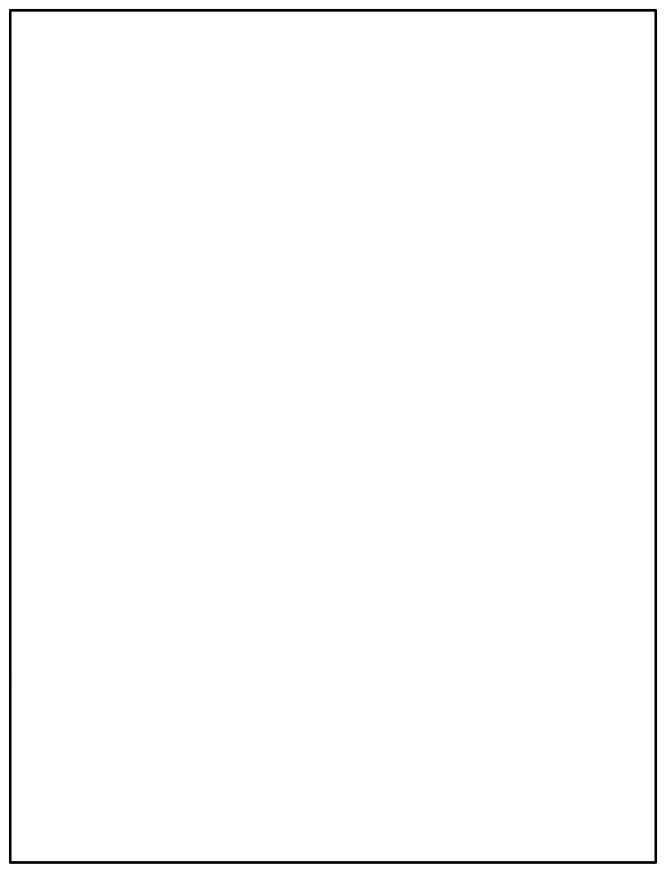
- ※1 扉の開閉による作動性能の確認の際にケーブルが試験体や他センサと干渉する恐れがあるため、代表試験ケースのみでの計測とする。対策前の試験では、計測点 A11 を設定していたが、計測点 A7 で代表できるため対策後の試験では計測点 A11 は設定しない。
- ※2 対策後の加振試験に追加する。


第4表(2/2) 計測項目の一覧表

					の一見衣
No	項目	記号	測定点	方向	備考
28		S1	プッシュローラ		
29		S2	(扉閉時) ※1		・扉の開放状態及び閉止状態での加振 試験時に代表位置として, ひずみの
30		S3	プッシュローラ		計測が目的
31		S4	(扉開時) **1		
32		S5 [*] 2			・S5, S6 は, 扉閉時のローラ付近の上
33		S6 [*] ²			部レールの加振試験時のひずみを 計測
34		S7 [*] 2	レール		・F
35	ひずみ	S8 ^{※ 2}		_	験時のひずみを計測 ・S8 は、下部レール付近の加振試験時のひずみを計測
36		S9 [*] 2	チェーン		・チェーンの固定端付近の加振試験時
37		S10 [*] 2	サェーン		のひずみを計測
38		S11**2	閂周辺		
39		S12**2	2 ^{※2} (扉閉時)		門の荷重が伝達する部位の加振試験
40		S13**2	閂周辺	時のひずみを計測する。	時のひずみを計測する。
41		S14 ^{** 2}	(扉開時)		


- ※1 扉の全閉時、全開時に扉に作用する荷重を代表する位置として計測
- ※2 対策後の加振試験で追加


第6図(1/2) 加速度計の設置位置(振動台,支持架台)


第6図(2/2) 加速度計の設置位置(扉,駆動装置)

第7図(1/3) ひずみゲージの設置位置(プッシュローラ)

第7図 (2/3) ひずみゲージの設置位置 (レール)

第7図 (3/3) ひずみゲージの設置位置 (チェーン, 閂)

5 試験要領

5.1 試験手順

目標とする入力波を精度よく振動台で再現するための振動台補償加振の後、試験体を振動台 に搭載し、下記の手順で加振及び加振後の作動試験、気密性能試験を実施する。

なお、試験場との調整、現場の進捗状況等により、試験手順が変更となる場合もある。

- (1) 加振試験の準備として、センサ(加速度計及びひずみゲージ)が所定の位置に設置されていることを確認する。また、測定計器の仕様が適切であることを確認する。
- (2) センサ確認試験を以下の手順で実施する。
 - ① 閉止装置の扉が閉止状態であることを確認する。
 - ② 加振レベル 0.5m/s²程度,振動数 1~2Hz にて,各方向単独で正弦波加振を行う。
 - ③ センサの取付方向, 感度を確認する。
- (3) 振動特性把握試験を以下の手順で実施する。
 - ① 閉止装置の扉が閉止状態であることを確認する。
 - ② 加振レベル 2.0m/s²程度にて,各方向単独で,0.1Hz~30Hz 程度の振動数成分を有する 広帯域ランダム波の加振を行う。
 - ③ 試験体の固有振動数を測定し、入力波の主要な振動数成分の範囲に固有振動数の有無を 確認する。
 - ④ 閉止装置の扉を開放状態とし、(3) ②、③ を実施する。

【閉止装置の扉開放状態における加振試験】

- (4) 地震波(0.3×S_S)加振試験を以下の手順で実施する。
 - ① 閉止装置の扉を開放状態であることを確認する。
 - ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
 - ③ 3 方向同時加振の包絡波によるレベル1 (0.3×S_s) で加振する。
 - ④ 加振後、採取データを確認する。
- (5) 地震波(0.6×S_S)加振試験を実施する。
 - ① 閉止装置の扉が開放状態であることを確認する。
 - ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
 - ③ 3 方向同時加振の包絡波によるレベル 2 (0.6×S_S) で加振する。
 - ④ 加振後、採取データを確認する。
 - ⑤ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
 - ⑥ 作動試験を「5.3(1)作動試験」のとおり実施する。
- (6) 地震波 (1.0×S_S) 加振試験を実施する。
 - (5) ① ~ ⑥と同じ。ただし、下記に読み替える。
 - ・レベル2 (0.6×S_S) をレベル3 (1.0×S_S)
 - ・基準地震動 S_Sの 0.6 倍を 1.0 倍
- (7) 地震波 (1.1×S_s) 加振試験を実施する。

- (5) ① ~ ⑥と同じ。ただし、下記に読み替える。
 - ・レベル2 (0.6×S_S) をレベル4 (1.1×S_S)
 - ・基準地震動 S_Sの 0.6 倍を 1.1 倍

【閉止装置の扉閉止状態における加振試験】

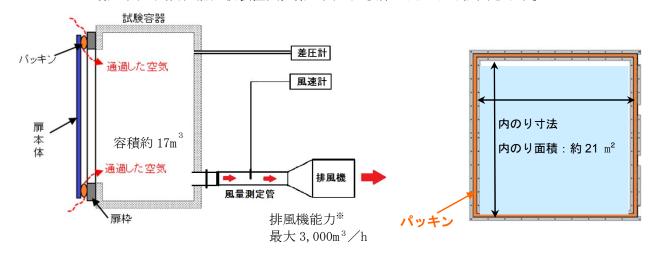
閉止装置の扉を閉止状態とし、5.1(4)~(7)を実施する。ただし、下記に読み替える。

・ 扉の開放状態を閉止状態

【追加加振試験 (閉止装置の扉開放状態)】

- ① 閉止装置の扉が開放状態、閂(開側、閉側)が挿入状態であることを確認する。
- ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
- ③ 3 方向同時加振の包絡波によるレベル 3 (1.0×S_s) で加振する。
- ④ 加振後, 採取データを確認する。
- ⑤ 開側の閂及び閉側の閂を押し上げる。この際, 閂の電動駆動シリンダの電流及び作動時間の計測を行う。
- ⑥ 気密試験準備のため、扉閉動作させる。
- ⑦ 開側の閂及び閉側の閂を挿入する。この際, 閂の電動駆動シリンダの電流及び作動時間の計測を行う。
- ⑧ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
- ⑨ 作動試験を「5.3(1)作動試験」のとおり実施する。併せて、門の押上げ及び挿入についても確認する。
- ⑩ 試験体の外観目視を行い、異常のないことを確認する。

【追加加振試験(閉止装置の扉閉止状態)】


- ① 閉止装置の扉が閉止状態, 閂(開側, 閉側)が挿入状態であることを確認する。
- ② センサ取付状況及び試験体の外観目視を行い、異常のないことを確認する。
- ③ 3 方向同時加振の包絡波によるレベル3 (1.0×S_s) で加振する。
- ④ 加振後、採取データを確認する。
- ⑤ 気密性能試験を「5.2(1)気密性能試験」のとおり実施する。
- ⑥ 作動試験を「5.3(1)作動試験」のとおり実施する。併せて、門の押上げ及び挿入についても確認する。
- ⑦ 試験体の外観目視を行い、異常のないことを確認する。

5.2 気密性能試験について

(1) 気密性能試験

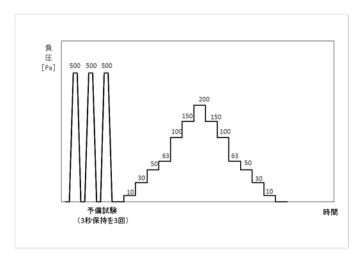
ASTM E283-4 (Standard Test Method for Determining Rate of Air Leakage Through Exterior Windows, Curtain Walls, and Doors Under Specified Pressure Differences Across the Specimen) に準じた装置を用いて実施する。排風機により試験容器内の空気を排出することにより試験体前後に圧力差を生じさせ、試験体のシール部から試験容器へ流入する通気量を測定する。

第8図に気密性能試験装置図,第9図に試験体の内のり寸法図を示す。

風量測定管径: ϕ 50mm (通過した空気量が多い場合は ϕ 130mm を使用)

※追加加振試験においては、排風機能力最大 7,200 m³/h

第8図 気密性能試験装置図


第9図 試験体の内のり寸法図

試験体を通過した空気量 $Q(m^3/h)$ は、風速計の風速V(m/s)、風量測定管の直径d(m)から算出する。

$$Q = V \times \frac{\pi \times d^2}{4} \times 3,600$$

試験手順は,「JIS A 1516 (建具の気密性試験方法) 6.3 試験手順」に準じて (ただし, 予備加圧後の開閉確認は省略する。), 負圧での圧力差 10Pa, 30Pa, 50Pa, 63Pa, 100Pa, 150Pa, 200Pa と上げ, 150Pa, 100Pa, 63Pa, 50Pa, 30Pa, 10Pa と下げていく**(保持時間 1分)。通気方向は 1 方向(負圧)とする。(第 10 図 負圧試験線図)

※ 負圧を維持できる範囲で試験を実施する。

第10図 負圧試験線図

試験により得られた試験体を通過した空気量 $Q(m^3/h)$ を,標準状態 $(20^{\circ}C, 1,013 \text{ hPa})$ に換算し,扉の内のり面積 (m^2) で除すことにより,単位面積当たり,1 時間当たりの通気量 $(m^3/h \cdot m^2)$ として算出する。圧力差に応じた通気量の推移を確認する。

$$q = Q' / A$$

ここで,

q : 通気量 (m³/h·m²)

A :試験体の内のり面積 (m²)

Q':通過した空気量(20℃, 1,013hPa 換算値)(m³/h)

Q' = Q
$$\cdot \frac{P}{1,013} \cdot \frac{273 + 20}{273 + T}$$

P:試験容器内の気圧(hPa)

T :試験時の空気温度 (°C)

(2) 判定基準

通気量:12.6 m³/h·m²以下** (差圧 63Pa 時)

※ 閉止装置単体の判定基準(設計目標)としては、JIS A 1516で示されるA4 等級以上とする。なお、原子炉建屋原子炉棟全体としての気密性能は確保できることを確認する。試験体は、実機に取り付ける全ての閉止装置を考慮し、各々の縦・横寸法を包絡する大きさで製作することにより試験の保守性を考慮する。

5.3 作動確認について

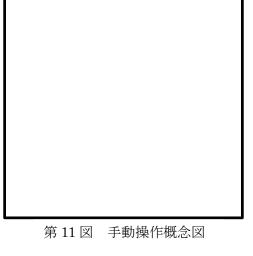
(1) 作動確認

【電動作動確認】

電動駆動により閉止装置が開閉できることを確認する。併せて電動機の電流測定及び 開閉時間を測定する。なお、開操作と閉操作は原則各1回とするが、初期状態との差異 があると判断した場合は、各5回を計測し、最も保守的な値を判定基準に用いる。

また、閉止装置の開閉に合わせ、門を電動駆動シリンダの操作により押上げ、挿入できることを確認する。なお、電動作動時間については次のとおりとする。

- ・閂押上げ時間:電動駆動シリンダの起動から、閂押上げ検知のリミットスイッチが 作動するまでの時間
- ・ 門挿入時間:電動駆動シリンダの起動から、 門挿入のリミットスイッチが作動した ことを確認の後、電動シリンダの停止リミットスイッチが作動するまでの時間


【手動作動確認】

① 閉止装置の扉が開放状態での加振後 手動操作により閉止装置が閉止できること を確認する。(第11図)

また、手動操作により門を引抜き、挿入できることを確認する。ただし、電動作動確認結果から作動状況に変化がないと判断できる場合は、手動作動確認を省略する。

② 閉止装置の扉が閉止状態での加振後 手動操作により閉止装置が開放できること を確認する。

また、手動操作により閂を引上げ、挿入できることを確認する。ただし、電動作動確認結果から作動状況に変化がないと判断できる場合は、手動作動確認を省略する。

(2) 判定基準

【電動作動確認】

○扉

電動駆動により開閉できること。

扉の閉止: 全閉位置であること開閉時間: 2 分以内(参考値)

電流値 : 定格電流値以内であること

○閂

電動駆動シリンダにより閂が押上げ、挿入できること。

閂の位置: 閂が挿入又は押上げ位置であること

開閉時間 : 15 秒以内(参考値)

電流値: 定格電流値以内であること

【手動作動確認】

○扉

手動操作により閉止 (開放状態の加振後) 又は開閉 (閉止状態の加振後) できること。

扉の閉止 :全閉位置又は全開位置であること。

○閂

手動操作により閂を引上げ又は自重により閂挿入できること

閂の位置:閂が物理的な上限位置までの引上げができること。また、閂挿入時は、

ピン頭部がフレーム側の閂受の位置にあること。

第12図 試験工程※1

	6/15	(全)	6/16	(十)	6/17	(日)	6/18	(日)	6/19	(1k)	6/20	(7k)	6/21	(木)	6/22	(全)
項目	•	,,						1	-			1		1		
	AM ^{* 3}	PM ^{* 3}	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
振動台補償加振																
センサ確認試験3方向(扉																
振動特性把握試験3方向																
振動特性把握試験3方向																
地震波加振 (扉開)			振	動台への	の試験体	の据付に	ナ									
地震波加振 (扉開)			試験体	へのセ	ンサ等計	·測器類(の取付									
地震波加振 (扉開)					け										予備	前日
地震波加振 (扉閉)			1	纫期状態	の気密性	生能試験	Ĭ.									
地震波加振(扉開)				4	等の作業											
地震波加振 (扉閉)																
地震波加振 (扉閉)																
地震波加振 (扉閉)																
地震波加振(扉開)																

- ※1 試験場との調整により変更となる場合もある。
- ※2 地震波加振のうちレベル2, 3, 4の加振後に、健全性確認試験(作動確認,気密性能試験)を実施する。
- ※3 AMは10:00~13:00, PMは13:30~18:00を想定している。

第13図 追加試験工程※1

項目	7/21	(土)	7/22	(日)	7/23	3(月)	7/24	4(火)	7/25	(水)	7/26	(木)	7/27	(金)	7/28	(土)	7/29	(目)	7/30	(月)	7/31	(M)
	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
センサ確認試験3方向(扉																						
開)																						
振動特性把握試験3方向																						
(扉開)																						
振動特性把握試験3方向																						
(扉閉)																						
地震波加振 (扉開)																						
レベル3 (1.0×S _S)	振	動台へ	-の試験	224	の据付	·1+																
気密性能試験			へのセン										試験	:体各	試験	体各			試験	体各		
地震波加振 (扉閉)			取付	けけ									部点	検・	部点	検・	子位	莆日	部点	.検・		
レベル3 (1.0×S _S) **2			門の記	沙置										整		整				整		
地震波加振 (扉開)			等の何										19.5		19/13	-11-			ly. s	,		
レベル3 (1.0×S _S) **2			4001																			
地震波加振 (扉開)																						
レベル3 (1.0×S _S) **2																						
地震波加振 (扉閉)																						
レベル3 (1.0×S _S) **2																						
<確認試験(参考)>																						
地震波加振 (扉開)																						
レベル3 (1.0×S _S)																						

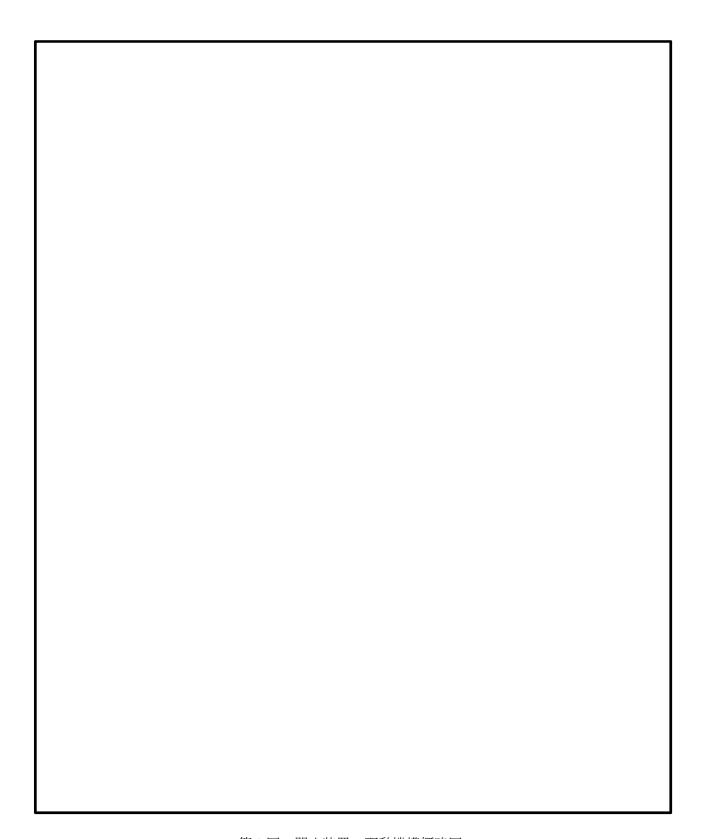
- ※1 試験場との調整により変更となる場合もある。
- ※2 加振後に、健全性確認試験(作動確認、気密性能試験)を実施する。
- ※3 AMは10:00~13:00, PMは13:30~18:00を想定している。

第5表 測定計測器一覧表 (1/3)

No.	用途	計測器名称	メーカ (型式)	仕様
1	絶縁抵抗測定	絶縁抵抗計	sanwa (PDM508S)	管理番号: HS01A667 定格測定電圧(V/MΩ): 500/100 精度:第一有効測定範囲(指示値の±5%以内) 第二有効測定範囲(指示値の±10%以内)
2	動作試験 (モータ電流値測定)	デジタルクランプ メータ	HIOKI (3282)	管理番号: HS01A509 交流電流(A): レンジ 30A, 300A, 600A 精度: 30A(40~1kHz: ±1%rdg±0.7%fs) 300A/600A(45~60Hz: ±1.0%rdg±5dgt, 40~45Hz: ±1.5%rdg±5dgt 66~1kHz: ±1.5%rdg±5dgt
3	動作試験 (扉開閉,閂押上げ 挿入速度測定)	ストップウォッチ	SEIKO (S034-4000)	管理番号: HS01Z003 時間精度: ±0.0012%(月差±30秒以内)
4		熱式風速計	日本カノマックス(株) (6141)	製造番号:642361 3 レンジ:0~1m/s(50 等分目盛。最小読取値 0.02m/s) 0~10m/s(50 等分目盛。最小読取値 0.2m/s) 0~50m/s(50 等分目盛。最小読取値 1m/s) 精度:各レンジのメータフルスケールの±2%
5		風量計測管	一般財団法人 建材試験センター	φ 50mm (内径) φ 130mm (内径)
6	気密性能試験	デジタル圧力計 (絶対圧)	(株)サヤマトレーディング (マノエース 230-8110HP-B)	器物番号: 2K43019 圧力レンジ: 0~110kPa, 200kPa, 700kPa 最大表示: 700kPa 精度: ±0.35%fs±1dgt
7		デジタル圧力計 (差圧計)	(株)コスモ計器 DM-3501(200Pa)	器物番号:311-1813-05B 圧力レンジ:0~±200Pa 最大表示:220Pa 精度:±0.15%fs±1dgt

第5表 測定計測器一覧表 (2/3)

No.	用途	計測器名称	メーカ(型式)	仕 様
8	気密性能試験	デジタル圧力計 (差圧計)	㈱コスモ計器 DM-3501 (500Pa)	器物番号:311-2144-07B 圧力レンジ:0~±500Pa 最大表示:550Pa 精度:±0.15%fs±1dgt
9		ガラス製単管温度 計	日本計量器工業㈱ (DF-201)	範囲:-20℃~50℃以下 目盛:1℃
10	加振試験	加速度計	株式会社共和電業 (AS-5GB,AS-10GB,AS-20GB)	定格容量 AS-5GB : ±49.03m/s² AS-10GB : ±98.07m/s² AS-20GB : ±196.1m/s² 精度 (非直線性/ヒステリシス) : ±1.0%R0以内 ※RO (Rated Output) : 定格出力
11		ひずみゲージ	株式会社共和電業 (KFG-2-120-C1-11)	ひずみ限界:約5%(常温) 誤差:最大10%(ひずみ限界条件における最大誤差)


第5表 測定計測器一覧表 (3/3) 追加加振試験にて追加して使用する計器

No.	用途	計測器名称	メーカ (型式)	仕様
				管理番号: HS01A506
				交流電流(A): レンジ 30A, 300A, 600A
1			HIOKI	精度:30A(40~1kHz:±1%rdg±0.7%fs)
1			(3281)	300A/600A(45~60Hz: ±1.0%rdg±5dgt,
				40∼45Hz: ±1.5%rdg±5dgt
	動作試験	デジタルクランプ メータ		$66\sim$ 1kHz: $\pm1.5\%$ rdg ±5 dgt
	(モータ電流値測定)			管理番号: HS01A511
				交流電流(A): レンジ 30A, 300A, 600A
2			HIOKI	精度:30A(40~1kHz:±1%rdg±0.7%fs)
2			(3282)	300A/600A(45~60Hz: ±1.0%rdg±5dgt,
				40∼45Hz: ±1.5%rdg±5dgt
				$66\sim$ 1kHz: $\pm1.5\%$ rdg ±5 dgt
3	Z1 / L= NEA		SEIKO	管理番号:HS01Z010
3	3 動作試験 (扉開閉,門押上げ 4 挿入速度測定)	ストップウォッチ・	(S051-4000)	時間精度:±0.0012%(月差±30 秒以内)
4			SEIKO	管理番号: HS01Z013
•			(S034-4000)	時間精度:±0.0012%(月差±30 秒以内)

No.	用途	計測器名称	メーカ (型式)	仕様
5		熱式風速計	日本カノマックス(株) (6141)	製造番号:102215 3 レンジ:0~1m/s(50 等分目盛。最小読取値 0.02m/s) 0~10m/s(50 等分目盛。最小読取値 0.2m/s) 0~50m/s(50 等分目盛。最小読取値 1m/s) 精度:各レンジのメータフルスケールの±2%
6		風量計測管	一般財団法人 日本建築総合試験所	φ53mm (内径)
7	気密性能試験	デジタル圧力計 (絶対圧)	横河電気(株) (7673-17)	製造番号:91L819634 圧力レンジ:0~130kPa(abs) 最大表示:156kPa(abs) 精度:±(0.03%rdg+0.005%fs+6dgt)
8		デジタル圧力計 (差圧計)	横河電気(株) (7673-20)	製造番号: 27EB13728 圧力レンジ: 0~±1kPa 最大表示: 1. 2kPa 精度: ±(0.02%rdg+0.04%fs)
9		ガラス製単管温度 計	シンワ測定(株)	管理番号: HS01U110 範囲: -20℃~105℃以下 精度: ±1.0℃
10	加振試験	加速度計	株式会社共和電業 (AS-5GA)	定格容量 AS-5GA : ±49.03m/s ² 精度(非直線性/ヒステリシス): ±1.0%R0以内 ※RO(Rated Output): 定格出力
11		ひずみゲージ	株式会社共和電業 (KFGS-1-120-C1-11)	ひずみ限界:約5%(常温) 誤差:最大10%(ひずみ限界条件における最大誤差)

第1図 閉止装置の構造概略図

第2図 閉止装置の駆動機構概略図

参考資料2

「JIS A 1516 建具の気密性試験方法」抜粋

- 6.3 試験手順 試験は、図2に示す手順に従って行う。
- a) 予備加圧 試験に先立ち試験圧力 $P_{\max}(^1)$ より10 %以上大きい圧力差を3 秒以上保持し,3 回加える。ただし,その圧力差は500 Pa以上とする。

なお、圧力を変化させる時間は、1秒以上とする。

- b) 開閉確認 戸の開閉繰返しを5回行い, その後施錠する。
- c) 加圧 加圧は、図2に示す試験手順に従い、正圧のもとで各段階ごとに最低10秒以上保持しながら、この試験で要求されている最高圧まで昇圧する。

なお, 試験における圧力差の段階は, 10, 30, 50, 100, 150, 200, 300, 400, 500及び600 Paとし(図2), P_{max} が600 Paを超える場合は, 100 Paを超えない範囲の段階で圧力差を増加する(図3)。この圧力差は, 降圧にも適用する。

d) 測定 個々の圧力差ごとに流量が定常になったときの流量を測定する。

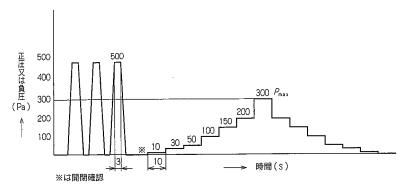


図 2 加圧線図(P_{max}が 600 Pa以下の例)

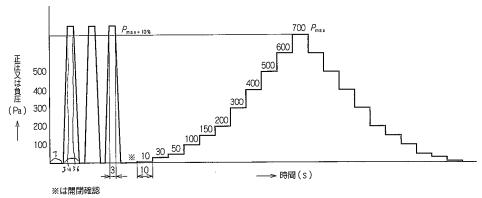


図3 加圧線図(Pmaxが600 Paを超える例)

- 7. 試験結果の記録
- 7.1 通気量の表し方 通気量は、次のいずれか一つで表す。
 - 一 建具面積の平方メートル当たり
 - 一 可動部の平方メートル当たり
 - 一 すき間長さメートル当たり
- 7.2 通気量の算出 通気量は、それぞれの加圧時での通気面積 1 m^2 当たり(又は、すき間長さ 1 m当たり)、 $1 \text{ 時間当 たりの流量で表し、JIS A 1513の5. で規定する基準状態の値に次の式を用いて換算する。$

なお、換算結果は JIS Z 8401によって丸めて表す。

・通気面積当たりの換算式

$$q = \frac{Q}{A} \cdot \frac{P_1 \cdot T_0}{P_0 \cdot T_1}$$

・すき間長さ1 m当たりの換算式

$$q_1 = \frac{Q}{L} \cdot \frac{P_1 \cdot T_0}{P_2 \cdot T_1}$$

ここに, q : 基準状態に換算した通気量(m³/h·m²)

 q_1 : 基準状態に換算した通気量 $(m^3/h \cdot m)$

Q:測定された流量(m³/h)

A : 通気面積(m²)

L : すき間長さ(m)

 P_0 : 1013(hPa)

Pi:試験室の気圧(hPa)

 $T_0: 273+20=293 (K)$

 T_i : 測定空気温度(K)

7.3 記録 7.2で求めた通気量の換算結果は、縦軸に通気量を、横軸に圧力差をとった両対数グラフ(通気量線図)で示す。

なお、通気量線図に示す通気量は、昇圧時の値と降圧時の値の両者のうち、大きい値を記入する。

東海第二発電所 ブローアウトパネル閉止装置 機能確認試験結果(第1回目)について

1. 試験結果

「試験要領」に基づき実施した試験結果概要を以下の第6表に示す。加振時にチェーンの損傷や 閉状態の扉の移動(開放)が確認された。また、チェーンの破損がなく扉を閉状態にできれば十分 な気密性能が確保できることを確認した。チェーンの破損については対策を実施し、再度、実機大 の加振試験を実施する。

第1表 試験結果概要

試験 No	区分	扉状態	試験項目	目的/試験内容	結果
1	事前確認	_	センサ確認	加速度センサの動作 確認	完了
2		開/閉	振動特性試験	・ ランダム波による振 動特性(固有値)確認	完了
3	気密性能確 認	閉	気密性能試験	• 気密性能確認	良好
4	加振試験	開	加振試験 0.3Ss	• 構造健全性確認	良好
5	(レベル1)	閉	加振試験 0.3Ss	· 構造健全性確認	良好
6	加振試験(レベル2)	開	加振試験 0.6Ss	・加振→扉閉操作→気 密性能確認・電動での扉開閉確認	良好
7		閉	加振試験 0.6Ss	加振→気密性能確認電動での扉開閉確認	加振時に扉が 52mm 開側に移動
8	加振試験 (レベル3) (予備試験)	開	加振試験 1.0Ss ・作動確認 ・気密性能試験	・加振→扉閉操作→気 密性能確認・電動及び手動での扉 開閉確認	良好
9	加振試験 (レベル3) (本試験)	開	加振試験 1.0Ss ・作動確認 ・気密性能試験	・加振→扉閉操作→気密性能確認・電動での扉開閉確認	 チェーン (開側) 破損 閉操作可能であったため電動にて閉操作後,気密試験実施
10		閉	加振試験 1.0Ss • 作動確認 • 気密性能試験	・加振→気密性能確認・電動及び手動での扉 開閉確認	 チェーン (閉側) 破損 ・扉は完全閉から約300mm 開方向に移動。手動にて再閉止後,気密試験実施

[※] 電動による扉作動確認の結果、電流値、開閉時間に異常はないため手動開閉操作は省略

第1表 試験結果概要

	为11 式 PV0次/归不 M.女								
試験 No	区分	扉状態	試験項目	目的/試験内容	結果				
11	加振試験 (レベル4) (参考:Ssを 超える試験 装置の加振 限界を考慮	開	加振試験 1.1Ss • 作動確認 • 気密性能試験	・加振→扉閉操作→気密性能確認・電動及び手動での扉開閉確認	チェーン (開側) 破損確認閉操作可能であったため電動にて閉操作後,気密試験実施				
12	した試験)	閉	加振試験 1.1S。 ・作動確認 ・気密性能試験	・加振→気密性能確認・電動及び手動での扉開閉確認	 チェーン (閉側) 破損はなかったが、有意な伸び(約38mm)を確認 ・扉は完全閉から約85mm開方向に移動。電動にて再閉止後、気密試験実施 				

2. 固有振動数

ブローアウトパネル閉止装置の固有振動数を確認するため,扉が開状態と閉状態時に,各方向(X,Y,Z方向)単独で, $0.1Hz\sim30Hz$ 程度の振動数成分を有する広帯域ランダム波(加振レベル $2.0m/s^2$ 程度)で加振し,閉止装置の固有振動数を確認した。結果として,扉開状態では,X方向,Y方向,Z方向ともに明確な振動数ピークは確認されず,扉の固有振動数は 20Hz 以上と評価した。また扉閉状態では,X方向(面外方向)にのみピークが確認され,閉状態面外方向の固有振動数は,前回加振時と同様に約 16Hz(約 0.0625 秒)と評価した。固有振動数をを以下の第 2.1 表に示す。

第2.1表 固有振動数

扉状態 (加振時)	固有振動数
開	・面外方向:20Hz 以上 ・面内方向:20Hz 以上 ・鉛直方向:20Hz 以上
閉	・面外方向:約16Hz ・面内方向:20Hz 以上 ・鉛直方向:20Hz 以上

3. 加振試験加速度の妥当性

閉止装置の上部及び下部の最大加速度は、 S_s 包絡条件を超えており、必要な加振がされていることを確認した。加振レベル $1.0S_s$ の加速度結果を以下の第3.1表から第3.8表に示す。また加振時の応答スペクトルが設計応答スペクトルを超えていることを確認した。応答スペクトルの測定結果を第3.1図から第3.4図に示す。

第3.1表 扉「開」上部の加速度評価(試験 No.9 6月20日 レベル3)

+:=	S _s 包絡条件	A4(扉上部)	判定結果		
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	刊化桁米		
X	1.66 <	4.09	0		
Y		2. 43	0		
Z	1.21 <	2.02	0		

第3.2表 扉「開」下部の加速度評価(試験 No.9 6月20日 レベル3)

No are to will built the compact the contract of the contract								
方向	S 。包絡条件	A2(扉下部)	判定結果					
	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	刊化桁米					
X	1.34 <	1.51	0					
Y		1.56	0					
Z	1.09 <	1.64	0					

第3.3表 扉「閉」上部の加速度評価(試験 No.10 6月21日 レベル3)

方向	S _s 包絡条件	A3(扉上部)	判定結果		
刀凹	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)			
X	1 66	2.65	0		
Y	1.66 <	2. 01	0		
Z	1.21 <	1.94	0		

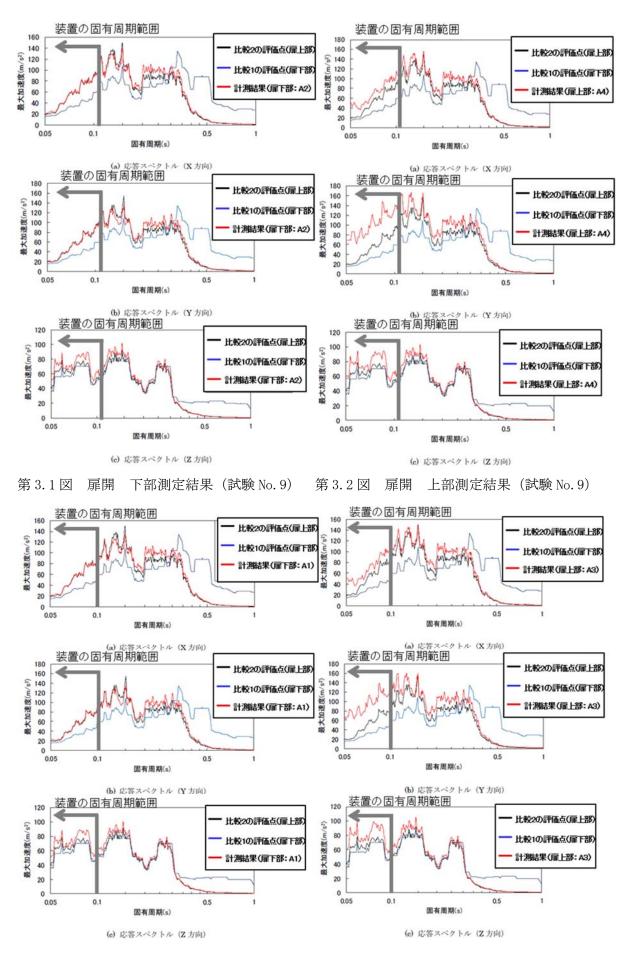
第3.4表 扉「閉」下部の加速度評価(試験 No.10 6月21日 レベル3)

方向	S s 包絡条件	A1(扉下部)	· 判定結果	
刀凹	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)		
X	1 24	1.41	0	
Y	1. 34 <	1.60	0	
Z	1.09 <	1.60	0	

第3.5表 扉「開」上部の加速度評価(試験 No.11 6月22日 レベル4)

方向	S 。包絡条件	A4(扉上部)	和今往田	
万円	(×9.8m/s²) 計測結果 (×9.8m/s²)		判定結果	
X	1 66	3. 40	0	
Y	1.66 <	2.06	0	
Z	1.21 <	2. 12	0	

第3.6表 扉「開」下部の加速度評価(試験 No.11 6月22日 レベル4)


方向	S 。包絡条件	A2(扉下部)	判定結果	
刀凹	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)		
X	1 24	1. 56	0	
Y	1.34 <	1. 57	0	
Z	1.09 <	1.72	0	

第3.7表 扉「閉」上部の加速度評価(試験 No. 12 6月21日 レベル4)

方向	S。包絡条件	A3(扉上部)	判定結果	
万円	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)		
X	1 66	2. 67	0	
Y	1.66 <	2.04	0	
Z	1.21 <	2. 09	0	

第3.8表 扉「閉」下部の加速度評価(試験 No.12 6月21日 レベル4)

方向	S 。包絡条件	A1(扉下部)	加宁休田	
刀凹	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1 24	1. 43	0	
Y	1.34 <	1.58	0	
Z	1.09 <	1.62	0	

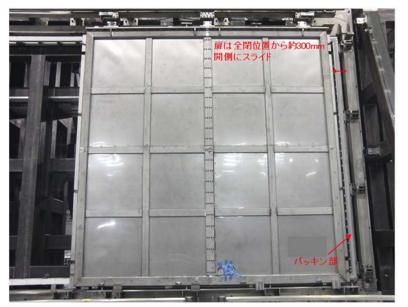
4. 加振試験結果

4.1 チェーン等の破損確認

門を設置した結果,チェーン破損はなく,雇開放等の不具合は認められなかった。結果 を以下の第4.1表に示す。

第 4.1 表 加振後の外観目視点検結果

	为1.1.4.4.7.7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.					
試験	試験条件		外観目視点検結果等			
No.	扉状態	加振	チェーン	扉開放	その他部位	
6	開	0.6S s	破損なし	_	異常なし	
7	閉	0.6S s	破損なし	扉は約 52mm 開放	異常なし	
9	開	1.0S s	破損		異常なし	
10	閉	1.0 S s	破損	扉は約 300mm 開放	異常なし	
11	開	1.1S s	破損		異常なし	
12	閉	1.1S s	破損なし (約 38mm の伸びを確 認)	扉は約 85mm 開放	異常なし	



4-2-8

雇開状態レベル3加振後のチェーンの状態 (6月21日)

扉開閉の仕組み

屏閉状態レベル4加振後のチェーンの状態6月21日) (端部近傍の3つのピンについて選り止め溶接を実施よた特果、チェーン破損はなかったが約38mm(新品全長5584mm) の伸びが確認された)

扉閉レベル3(1.0Ss)後の扉状態(6月21日)

扉閉レベル4(1.1Ss)後の扉状態(6月21日)

4.2 気密性能試験結果

気密性能試験の初期状態及び加振後については第 4.2 表のとおり。扉が閉止できれば気密性は十分に確保できることを確認した。

試験条件 試験 通気量[m³/h・m²] 備考 (63Pa 時) No. 扉狀態 加振 組立後の加振前 3 閉 約 0.25 開 約 0.24 加振後に扉を閉止し試験 6 0.6Ss 扉閉状態での加振後の状態で試験 7 閉 約 0.24 0.6Ss 8 開 1.0Ss 約 0.25 加振後に扉を閉止し試験 加振時にチェーン (開側) が破損したが電動で 9 開 1.0Ss 約 0.26 閉止後に気密性能試験を実施 加振時にチェーン (閉側) が破損し, 扉が約 閉 300mm 開放したため、手動にて閉止後に気密性 10 1.0Ss 約 0.26 能試験を実施 加振時にチェーン(開側)が破損したが電動で 開 約 0.27 11 1. 1Ss 閉止後に気密性能試験を実施 加振時にチェーンの破損は発生しなかったが, チェーンには約 38mm の伸びが確認された。ま 12 閉 1. 1Ss 約 0.27 た, 扉が約85mm 開放したため, 電動にて閉止後 に気密性能試験を実施

第4.2表 加振後の気密漏洩試験

<原子炉建屋としての負圧達成について>

今回の閉止装置単体での気密性能試験結果から、本装置を原子炉建屋原子炉棟外壁のブローアウトパネル部に設置した場合の原子炉建屋の負圧達成可否について評価した結果、非常用ガス処理系定格容量(3570m³/h)は、推定漏えい量1768m³/hを十分に上回るため、非常用ガス処理系にて63Pa以上の負圧達成可能である。

- ・既設原子炉建屋の推定インリーク量:約1,710m³/h@63Pa
- ・閉止装置 10 個の合計面積:約 213m²
- ・閉止装置 10 個設置時の推定インリーク量: 213m²×0.27m³/h·m²=58m³/h@63Pa
- ・非常用ガス処理系定格容量:3570 m³/h@63Pa
- ・ 閉止装置設置時の原子炉建屋原子炉棟の推定漏えい量 :

1710m³/h+58m³/h=1768m³/h@63Pa < 3570m³/h@63Pa (SGTS 定格容量の約 50%)

4.3 扉作動試験

扉作動試験の結果は第4.3表のとおり。チェーンが健全であれば扉の開閉に問題ないことを確認したが、チェーンが破損した場合には、電動による扉の開閉が不可能となる可能性があるため対策が必要である。

第4.3表 加振後の扉作動試験

			電動					
試験	期状	試験条	開放→閉止		閉止→開放			
			作動時間 目標 120 秒 以内	電流 目標 7. 48A 以内	作動時間 目標 120 秒 以内	電流 目標 7.48A 以内	手動	備考
6	開	0.6Ss	約99秒	約 3.92A	約 98 秒	約 3.90A	異常なし	
7	閉	0.6Ss	約99秒	約 3.95A	約97秒	約 4.01A	異常なし	
8	開	1. 0Ss	約 100 秒	約 4.00A	約98秒	約 4.05A	異常なし	
9	開	1.0Ss	約 99 秒 (チェーン 取替後)	約 4.02A (チェーン 取替後)	約 97 秒 (チェーン 取替後)	約 4.02A (チェーン 取替後)		加振時チェーン破損有
10	閉	1.0Ss	約 99 秒 (チェーン 取替後)	約 3.86A (チェーン 取替後)	約 97 秒 (チェーン 取替後)	約 3.90A (チェーン 取替後)		加振時チェーン破損有
11	開	1. 1Ss	約 99 秒 (チェーン 取替後)	約 3.69A (チェーン 取替後)	約 97 秒 (チェーン 取替後)	約3.74A (チェーン 取替後)		加振時チェーン破損有
12	閉	1. 1Ss	約 99 秒	約 4. 10A	約 98 秒	約 4. 23A		加振時チェ ーンは破損 しなかった が約 38mm の 伸びを確認

東海第二発電所

ブローアウトパネル閉止装置

機能確認試験(第1回目)の不具合の原因と対策について

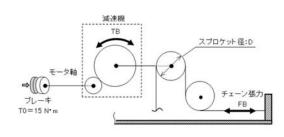
加振試験にて確認された2つの不具合(①チェーンの破損,②チェーン破損による閉状態の扉開 放時の再閉止不可)の原因と対策は以下のとおりである。

1. 推定原因

1.1 チェーンの破損

当初設計において、閉止装置のカタログ値から算出される電動機ブレーキ力は、チェーンの許容引張強さより小さいため、ブレーキ力を超える荷重が付加された場合にはすべりが発生し、チェーンには許容引張強さ以上の荷重は付加されないと考えていた。

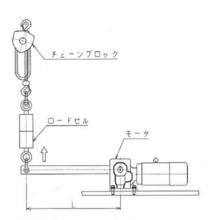
実際に引張試験にて電動機ブレーキに滑りが発生する荷重を確認した結果,チェーン張力換算で最大約 33kN であり,カタログから算出される電動機ブレーキ荷重約 19.6kN を超えていた。


〇モータのブレーキトルクによる荷重

モータのブレーキの標準動摩擦トルク: T0=15 N·m(カタログ値)

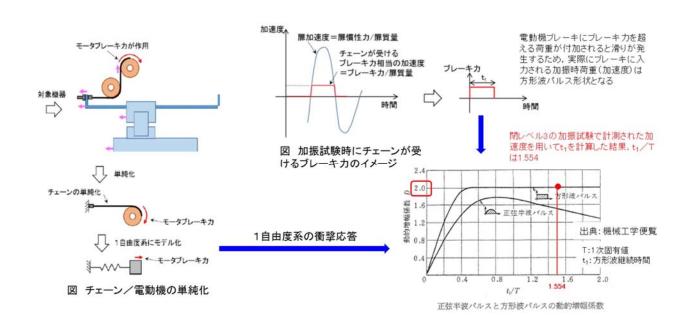
- •実減速比:78.57
- ・減速機の出力軸のブレーキトルク:

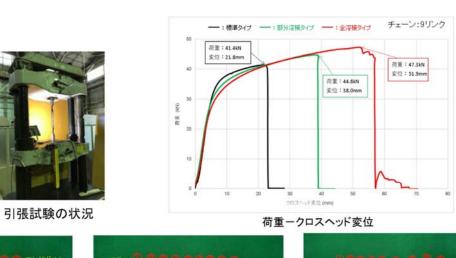
 $TB = 15 \times 78.57 = 1178 \text{ N} \cdot \text{m}$


- ・スプロケット径:D=120mm
- ・チェーン張力FB:FB=2×TB/D=2×1178/0.12=19.6kN

電動機ブレーキトルク体系図

○試験で得られたブレーキトルクによる荷重 最大トルク: 1934N・m

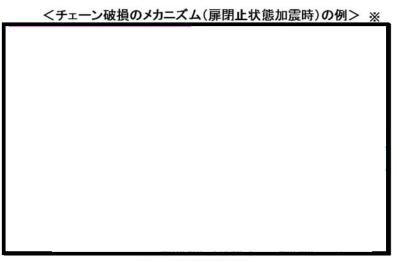

・チェーン張力FB: FB=2×TB/D=2×1934/0.12=33 kN

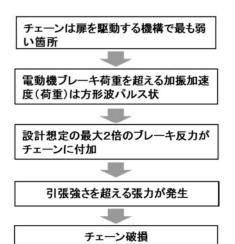


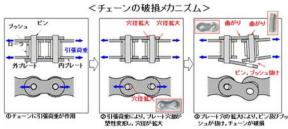
電動機ブレーキトルク試験概略図

電動機駆動軸からチェーン端部までを1自由度系に単純化して考える。電動機ブレーキがチェーンを介して受ける力は正弦波に近似できるが、ブレーキ力を超える荷重が付加された場合にはすべりが発生するため、この分の荷重は付加されない。このため、実際に電動機が受ける荷重は方形波パルス形状となると想定される。機械工学便覧によれば、ブレーキ荷重が方形波パルス形状の場合、チェーンに作用するブレーキ反力は、最大ブレーキ力の2倍となり得ることを確認したが、この影響は設計上、想定されていなかった。

チェーンに付加される荷重がブレーキ荷重の 2 倍になる場合,チェーン張力は,約 66 k N(約 33 kN の 2 倍)程度となり,実際に引張試験にて確認したチェーンの引張強さ(約 41.4 ~ 44.8 k N)を超え,チェーンは破損することを確認した。



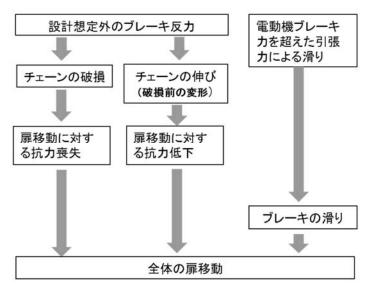

標準タイプ(オリジナル)


部分溶接タイプ

【参考】全溶接タイプ (加振試験では使用せず)

以上より、加振試験時にチェーンが破損した原因は、加振試験により発生したスライド方向の慣性力の一部が、チェーン等を通じて電動機ブレーキに伝わり、その反力が動的に増倍されたことにより、チェーンに設計想定以上の過大な引張荷重が発生し、チェーンプレートが塑性変形してピン穴径が拡大した結果、ピンが抜け出てチェーンが破損したと推定した。

※図は扉閉状態のチェーン破損メカニズムであるが、扉開 状態のチェーン破損メカニズムも同様。但し、扉が開状 態であるためチェーン破損位置は扉を開ける側のチェー ン端部近傍となる。


1.2 扉閉止時に扉の移動

扉閉止状態で扉が開方向に移動し、チェーンの破損により電動にて再閉止できなかった原因について検討した。

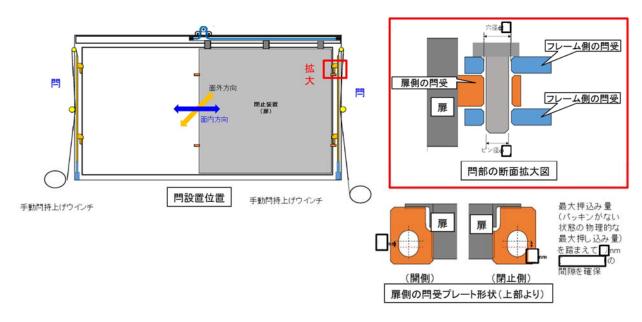
チェーンが破損すると扉の移動を抑制するための抗力が減少する。また、参考として実施した扉閉状態での 1.1Ss 加振(レベル 4)時には、チェーンリンク孔の一部(端部から 3 リンク分)を溶接補強した結果、チェーンは破損しなかったが、チェーンには約 38mm の伸びが確認された。また、この際の扉の移動量は約 85mm であったことから、この差分である約 47mm 分は、モータ部でのすべりによるものと判断した。

以上より, 扉閉状態での加振試験時に扉が開放し気密性能を維持できない状態となった原因は, 以下の3つが重畳したものと推定

- ① 電動機ブレーキ力を上回るチェーン引張力が作用したことによりチェーンが破損し、扉が開方向に移動
- ② チェーンに降伏荷重を超える荷重が付加されたことによりチェーンが伸び、扉が開方向 に移動
- ③ 電動機ブレーキ力を上回るチェーン引張力が作用したことによるチェーンの滑りにより 扉が移動

- <チェーンが破損した場合>
- ◆ 加振により扉を左側に動かす荷重が付加されるが、チェーンは破損しているため、青点線のチェーンには引張荷重は付加されないため、扉は容易に移動
- <チェーンが破損しないが伸びた場合>
- ◆ チェーン破損時と同じだが、チェーンは繋がっているため、青点線のチェーンの伸びに応じて扉が移動

2. 対策

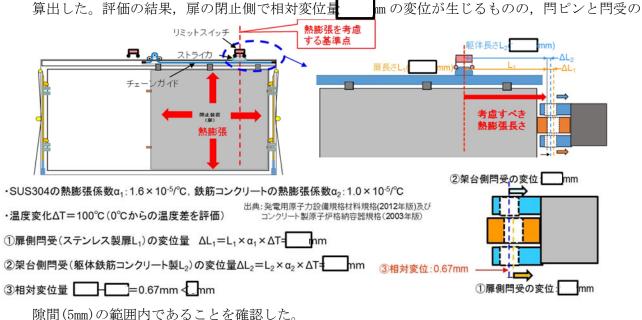

チェーン破損を防止するため、①加振時のチェーンへ付加される荷重及び変位の低減、②加振時の荷重に耐える対策、③チェーン部の荷重の低減の3つの観点から検討した。また、閉状態の扉移動に対する再閉止不可に対しては、加振試験時に扉が移動(開放)しない対策を講じることとし、その効果については、実機大の試験装置にて確認する。

2.1 チェーンの破損

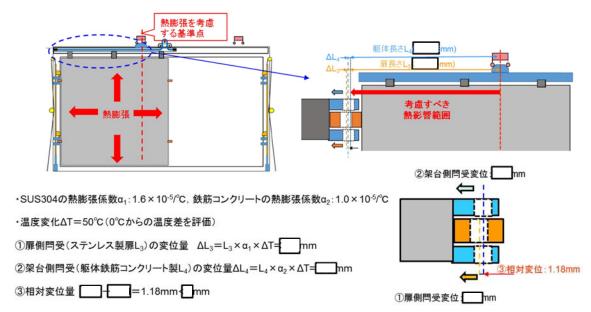
(1)加振時のチェーンへ付加される荷重及び変位の低減対策(閂の設置)

扉開状態又は閉状態での加振時の扉の動きを拘束し、チェーンを含む駆動系に過度な荷重や変位が発生しないように閂を設置する。

この際, 門部については, 門が抜けなくなるリスクを最小限とするため, 次表に示す各検討項目を考慮した設計とする。

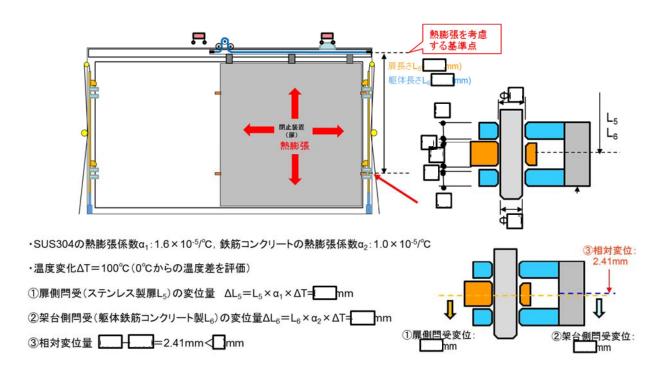

門が抜けな くなる要因	検討項目	対策
固着, かじ り	腐食防止	ピン側:S45C (焼き入れ) +メッキ門受側:ステンレス
	かじり防止	 ・ 閂ピンと閂受の間隙を確保するため、閂の芯が適切に設定できる工法を採用(治具を用いて閂の芯をあわせた後、閂受(プレート)を固定) ・ かじりが発生しないように閂ピンと閂受でと異なる材料を使用(ピン側:S45C(焼き入れ)+メッキ、閂受側:SUS)
	寸法 (熱膨張及 び公差)	・ 熱膨張及び製作公差を考慮しても、門ピンと門受の間隙を 確保できる設計(公差+熱膨張合計最大 mm に対して mmを確保する設計)
	異物対策	・ 閂ピン頂部の形状により上部からの異物は入らない構造・ 念のため定期的な動作確認を実施し健全性確認
門の変形・ 強度不足	閂ピンの強度	・ 前回加振時の最大加速度の 2 倍の加速度(19.2G)が扉に付加 されても塑性変形を起こさない強度を確保 (閂が歪まない 設計)
門押上げ力 不足	閂ピンの自重に よる挿入	・ 製作精度の確保及びピンの構造強度確保により、 門ピンの 傾きを想定しても門は自重で挿入 (落下) する設計
	閂ピンの過度な 引き抜き防止	・ 閂ピンは物理的にプレート側閂受から外れない設計
	門押上げ用電動機への過度な荷重付加の抑制	通常状態では、閂は押上げ用電動機と連結されておらず、 地震等の過度な荷重が電動機に付加されない設計
	充分大きな門押 上げ力	・ 電動機の押上げ力は、門重量約 50 kgの 音の約 kgと十 分な容量を確保
	手動引抜き手段	・ ウィンチの定格容量は 2000 kg, ワイヤーの許容荷重は 4000 kgと閂重量 50 kgに対して十分な容量を確保
_	機能が維持され ていることの確 認	・ 定期的な動作確認による健全性確認

<熱膨張影響について>


<熱膨張影響について>

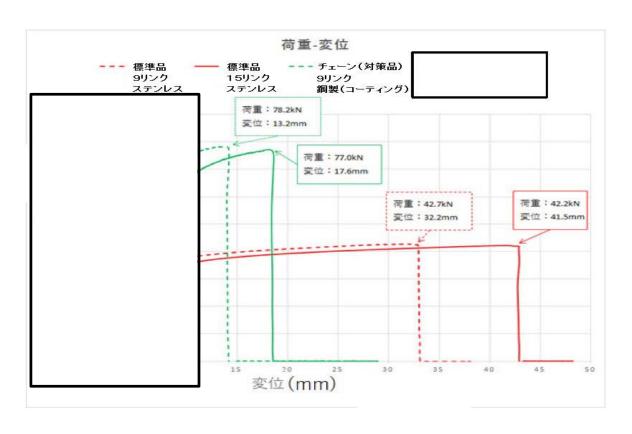
① 閉状態(水平方向)の評価

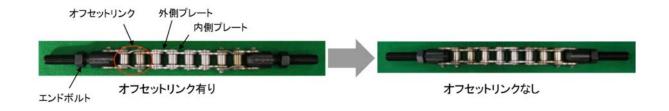
閉止状態において SA 時の二次格納施設内の温度として 100 でを想定し熱膨張を考慮した。扉の閉止動作は,チェーンガイドに取り付けられたストライカがリミットスイッチを作動させ扉を停止するため,リミットスイッチの位置を基準点とし,扉側閂受の変位量はストライカと扉側閂受の距離(下図 L_1),架台側閂受の変位量はリミットスイッチと架台側閂受の距離(下図 L_2)に比例するため,扉側及び架台側閂受について,それぞれの熱膨張率を使用して,各閂受の位置の変位量を


②開状態(水平方向)の評価

イッチと架台側閂受の距離(下図 L_4)に比例するため,それぞれの熱膨張率を使用して,各閂受の位置の変位量を算出した。評価の結果,相対変位量 $1.18 \, \mathrm{mm}$ の変位が生じるものの,閂ピンと閂受の隙間 \mathbf{m} の範囲内であることを確認した。

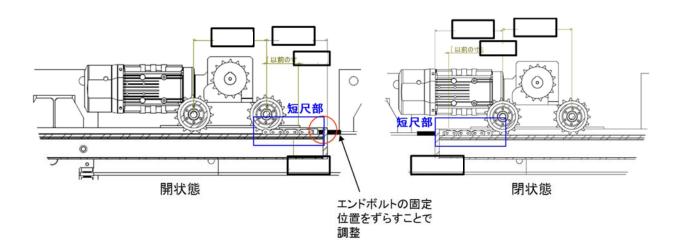
③垂直方向の評価


閉止状態において SA 時の二次格納施設内の温度として 100℃を想定し熱膨張を考慮した。垂直 方向については、チェーンガイド部から下部閂受までの距離が熱影響範囲である。評価の結果、扉 側閂受と架台側閂受の相対変位量 2.41mm が生じるが、架台側閂受と扉側閂受間の隙間 (mm) の 範囲内であることを確認した。


(2)加振時の荷重に耐える対策 (チェーン材質の変更及びオフセットリンク構造の取止め)

チェーン破損防止のため、閂構造を採用することにより、チェーンを含む扉の駆動系が、過大な加振荷重や変位を受けない設計とするが、電動機ブレーキ反力に関する知見を踏まえて、チェーンを高強度で耐候性を有する材質に変更する。材料強度を上げたチェーンについて、引張試験を実施し確認した結果、破断荷重は現行品の約1.8倍の約77kN(扉開又は閉状態において、ブレーキとなる電動機駆動軸からチェーン端部までのリンク数は約15リンクであるため、15リンクでの試験データから評価)であり、電動機ブレーキ荷重の最大反力66kNが発生しても破損しないこと、また、閂部の間隙から推定されるチェーンの最大変位量 [mm] が発生した場合でも、チェーンの変位は概ね弾性域であることを確認した。

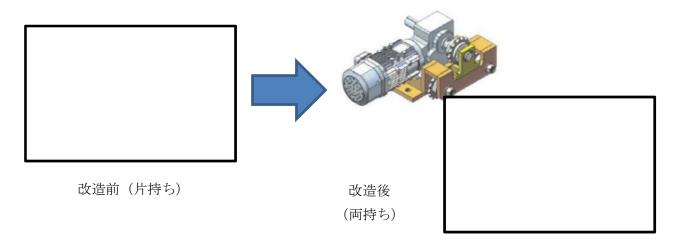
なお、強度計算においては使用するチェーンの引張強度は、実際の試験結果ではなく、チェーンメーカのカタログ値である約71.6kNを用いて設計する。



併せて、現設計では、チェーン端部とエンドボルトの接続ためオフセットリンク*が使用されているが、構造変化部となるため、エンドボルトのガイドレールへの固定位置を調整しチェーン長さを調整することでオフセットリンクを使用しない設計とする。

(3) チェーン部の荷重の低減対策 (チェーンリンク数の増加)

チェーンに破損が発生する短尺部(扉開状態又は閉状態において,電動機駆動軸からチェーン端部までの距離が短い側)のチェーンの荷重低減策として,短尺部を延長し,チェーン1個あたりの伸び量を低減することで,地震荷重を緩和する効果を期待できるため,加振試験体形状の制限を踏まえて,短尺部について,開状態で約mm (4 リンク分),閉状態で約mm (2 リンク分)を延長する。



2.2 扉閉止時に扉の移動

加振時に扉が移動(開放)しない対策として,加振時のチェーンへ付加される荷重及び変位の 低減対策させる対策と同様に閂の設置を設置し,扉の移動(開放)させない設計とする。

2.3 その他

チェーン材質を変更し、高強度のものを採用した場合、荷重伝達経路上の最弱部がチェーンからスプロケット軸やモータ駆動軸に変更となる。このため、スプロケット軸及びモータ駆動軸の支持方法を1か所で支持する構造から2か所で支持する構造に変更し、設計裕度を確保することとする。

閉止装置試験体 荷重伝達経路各部位の簡易強度計算について

1. 概要

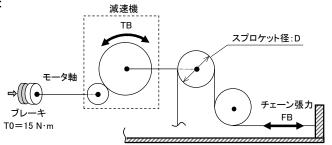
閉止装置の試験体が加振試験において発生した、チェーン切断事象の原因を特定するため、扉開 閉方向の荷重伝達経路及び伝達経路上の各部材の開閉方向の荷重に対する強度上の裕度を簡易的に 確認したものである。

2. 対象部位

開閉方向の荷重伝達経路となる部材を強度計算の対象とする。荷重の伝達経路及び計算対象部位 を第1図に示す。

3. 強度計算

(1) 荷重


応力評価に際し荷重は以下のケースを考慮した。

- 1) 設計想定時:モータのブレーキ(カタログ値)による制動力が駆動系へ負荷※
- 2) 加振試験時:ブレーキトルク試験結果から得られた推定荷重 加振試験で使用したモータのブレーキトルクを実測して得られたトルク値に動的効果 を考慮して2倍した荷重。
- ※ モータのブレーキトルクによる荷重
 - ・モータのブレーキの標準動摩擦トルク: $T0=15 \text{ N} \cdot \text{m}$
 - 実減速比: 78.57
 - ・減速機の出力軸のブレーキトルク:TB=15×78.57=1178 N・m
 - ・スプロケット径:

D = 120 mm

・チェーン張力 FB:

 $FB = 2 \times TB/D = 2 \times 1178/0.12 = 19.6 \text{ kN}$

(2) 応力計算

2. で示した荷重伝達経路上の部材に対し、扉開閉方向の荷重に対する応力を算出した。評価断面は強度上最も脆弱な部位とした。計算は単位荷重に対して行い、荷重値に対して比例倍して評価を行う。

(3) 評価

要因分析のための脆弱部位の特定が目的であるため、各部材の引張強さに対する算出応力の比を裕度として算出し評価した。

計算結果を各部位の裕度 2に対策後の評価結果を示	として整理し,	表1に対策前の評価結果,

4. 計算結果

第1図 荷重伝達経路及び計算対象部位

表

表1 対策前の計算結果まとめ

ブレーキトルク (カタログ値) よ ブレーキトルク試験から得られ

り発生する荷重:19.6kN た荷重:66kN

No.	部	品名	裕度※	
1	ボルト1			
2		ブラケット1		
3	ハンガー ローラ	リンク		
4		ブラケット2		
5	ボルト2			
6	ホルダ			
7	ボルト3			
8	チェーンガ	チェーンガイド		
9	エンドボル	エンドボルト		
10	チェーン			
11	スプロケッ	ト(補助) 軸		
11'	モータ 出力	り軸		
12	_			
12'	減速機固定	ボルト		
13	モーターベ	ース		
14	ボルト4			
15	ハンガーレ	ール		

No.	部品名	裕度※
1	ボルト1	
2	ブラケ	ツト1
3	ハンガー リンク	
4	ブラケ	ット2
5	ボルト2	
6	ホルダ	
7	ボルト3	
8	チェーンガイド	
9	エンドボルト	
10	チェーン	
11	スプロケット(補助	」)軸
11'	モータ 出力軸	
12	_	
12'	減速機固定ボルト	
13	モーターベース	
14	ボルト4	
15	ハンガーレール	

※ 裕度=許容値/評価値(1以上で成立) 許容値はSu(引張強さ)ベース

表2 対策後の計算結果まとめ

対策品のチェーン,スプロケット,モータ出力軸等について,門のある場合は,門受とピンのギャップ m を用いて,チェーン(対策品)引張試験から得られた15リンク分のチェーンが m 伸びた時点での荷重(43.8kN,図2参照)を用いて評価した。門については,加振試験で得られた加速度に基づく荷重により評価した。

また、門がない場合の裕度評価については、電動機ブレーキ荷重から得られた 66kN を用いて評価した。

<対策前>

<対東俊(円めり)>

<対策後(閂あり)> 【参考】<対策後(閂なし>

No.	部品名	裕度※
1	ボルト1	
2	ブラケット	1
3	ハンガー リンク	1
4	ブラケット	2
5	ボルト2	
6	ホルダ	
7	ボルト3	
8	チェーンガイド	
9	エンドボルト	
10	チェーン	
11	スプロケット(補助)軸	
11'	モータ 出力軸	1
12	-	
12'	減速機固定ボルト	
13	モーターベース	
14	ボルト4	
15	ハンガーレール	

No.		部品名	裕度※
1	ボルト1		
2		ブラケット1	
3	ハンガー	リンク	
4	'	ブラケット2	
5	ボルト2		
6	ホルダ		
7	ボルト3		
8	チェーンカ	ゴイド	
9	エンドボルト		
10	チェーン	(対策品)※2	
11	スプロケッ	ノト(補助) 軸 (対策品)	
11'	モータ 出		
12	軸補強部本		
12'	減速機固定ボルト		
13	モーターへ	ベース	
14	ボルト4		
15	ハンガーし	ール	
16	かん思さ	(新規)	

No.	部品名		裕度※
1	ボルト1		
2		ブラケット1	
3	ハンガー ローラ	リンク	
4		ブラケット2	
5	ボルト2	*	
6	ホルダ		
7	ボルト3		
8	チェーン	ガイド	
9	エンドボ		
10	チェーン		
11	スプロケ		
11'	モータと		
12	軸補強部		
12'	減速機固		
13	モーターベース		
14	ボルト4		
15	ハンガー	レール	

- ※1 裕度=許容値/評価値(1以上で成立) 許容値はSu(引張強さ)ベース
- ※2 許容値はカタログ値を使用。引張試験による実力値では、裕度 1.8
- ※3 許容値はカタログ値を使用。引張試験による実力値では、裕度 1.2

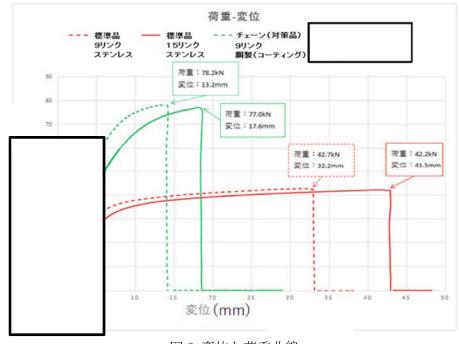


図2変位と荷重曲線

①ボルト1	<u>_</u>
	ボルトはブラケット 1 体につき 本。ブラケットが 体あるため、合計ボルト 本で荷重を受持つと考える。
注)ボルトの設計として、ボルト自体でせん断荷重耐えるという思想であるが、ここでは仮にボルトががあるかを確認する。以降、ボルトについては同様	せん断力を受けたとして、どれくらいの裕度
(1) 断面特性: 断面積A (mm²) A=π/4× mm²)(小数/	点第3位を四捨五入)
(2)荷重:W(kN) W=1(kN)	
(3) 評価断面に生じるせん断応力: τ (MPa) τ = W/A = 1000 (MPa) (小数点)	第3位を切上げ)
(4) 組合せ応力: $\sigma_c(MPa)$ $\sigma_c = \sqrt{(\sigma^2 + 3 \times \tau^2)} = \sqrt{1 + 3 \times 1} = \sqrt{1 + 3 \times 1}$	MPa)(小数点第3位を切上げ)
(5) 許容値(引張強さ): S _u (MPa) S _u =520 (MPa) (SUS304(設計時)の値)	
(6) 裕度: K K=S _u /σ _c =520/ (小数点第3	位を切下げ)

②ハンガ	ーローラ ブラケット1
評価	<u> </u>
	ハンガーローラ 箇所 で荷重を受けるものと する。
(1)	断面特性: 断面積A (mm²), 断面二次モーメントI (mm⁴), 断面係数Z (mm³) A= (mm²) (mm²) I= (mm²) (mm⁴) Z=I/ (mm³) (小数点第3位を四捨五入)
(2)	荷重:W(kN) W=1 (kN)
(3)	評価断面に生じるせん断応力: τ (MPa) τ = W/A=1000 (MPa) (小数点第3位を切上げ)
(4)	評価断面に生じる軸曲げ応力: σ_b (MPa) $\sigma_b = M/Z = W \times L/Z = 1000 \times MPa$ (MPa) (小数点第3位を切上げ)
(5)	組合せ応力: σ_c (MPa) $\sigma_c = \sqrt{(\sigma_b^2 + 3\tau^2)} = \sqrt{MPa}$ (小数点第3位を切上げ)

(6) 許容値(引張強さ): S_u (MPa)

Su=520 (MPa) (SUS304の値)

(7) 裕度:K

K=S_u / σ_c=520 (小数点第3位を切下げ)

③ハンガ	ーローラ リンク
	ハンガーローラー箇所で荷重を受けるものとする。
(1)	断面特性: 断面積A (mm²) A= (mm²)
(2)	荷重:W(kN) W=1 (kN)
(3)	評価断面に生じるせん断応力: τ (MPa) τ = W/A=1000 (MPa) (小数点第3位を切上げ)
(4)	組合せ応力: σ_c (MPa) $\sigma_c = \sqrt{(\sigma^2 + 3\tau^2)} = \sqrt{(MPa)}$ (MPa) (小数点第3位を切上げ)
(5)	許容値(引張強さ): S _u (MPa) S _u =520 (MPa) (SUS304の値)
(6)	裕度: K K=S _u / σ _c =520/ 小数点第3位を切下げ)

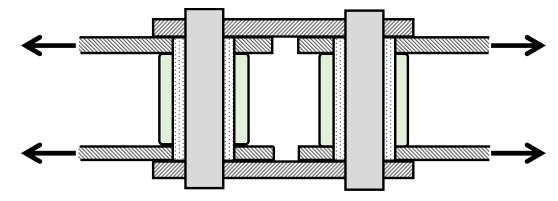
④ ハンガ	ーローラ ブラケット2
	ハンガーローラ し 箇所 で荷重を受けるものと する。
(1)	断面特性: 断面積A (mm²), 断面二次モーメントI (mm⁴), 断面係数Z (mm³) A= (mm²) (mm²) (mm²) I= (mm³) (小数点第3位を四捨五入)
(2)	
(3)	評価断面に生じるせん断応力: τ (MPa) $\tau = W/A = 1000/$ (MPa) (小数点第3位を切上げ)
(4)	評価断面に生じる軸曲げ応力: σ_b (MPa) $\sigma_b = M/Z = W \times L/Z = 1000 \times MPa$ (MPa) (小数点第3位を切上げ)
(5)	組合せ応力: σ_c (MPa) $\sigma_c = \sqrt{(\sigma_b^2 + 3\tau^2)} = \sqrt{13.80}$ 4.3.80
	4-3-20

(小数点第3位を切上げ)

(6) 許容値(引張強さ): S _u (MPa)	
Su=520 (MPa) (SUS304の値)	
(7) 裕度:K	
K=S _u / σ _c =520 / 小数点第 ⑤ボルト 2	3位を切下け)
	ボルトはブラケット 1 体につき 本。ブラケットが 本あるため, 合計ボルト 本で荷
	重を受持つと考える。
(1)断面特性:断面積A (mm²) A=π/4× × = mm²)(小数点	(第3位を四捨五入)
(2)荷重:W(kN)	
W=1 (kN)	
(3)評価断面に生じるせん断応力:τ(MPa) τ=W/A=1000/ MPa)(小数点第	3位を切上げ)
(4)組合せ応力: $\sigma_c(MPa)$ $\sigma_c = \sqrt{(\sigma^2 + 3 \times \tau^2)} = \sqrt{1 + 3 \times 1} = \sqrt{1 + 3 \times 1}$	(MPa)(小数点第3位を切上げ)
(5) 許容値(引張強さ): S _u (MPa) S _u =520 (MPa) (SUS304(設計時)の値)	
(6) 裕度:K K=Su /σc=520/ / 小数点第3位を	∵切下げ)
4-3	-21

⑥ホルダ	
	ホルダ し 箇 所で荷重を 受けるもの とする。
(1)断面特性:断面積A (mm²),断面係数Z(mm³) A=	四捨五入)
(2)荷重:W(kN) W=1(kN)	
(3)評価断面に生じるせん断応力: τ (MPa) τ = W/A = 1000/ (MPa) (小数点第3位を切上げ)	
(4)評価断面に生じる軸曲げ応力: σ b (MPa) σ b = (W×L)/Z = (1000× (MPa) (MPa) (小数点第3位を対	切上げ)
(5)組合せ応力:σ _C (MPa) σ _C =√(σ _b ² +3× τ ²)=√(位を切上げ)
(6) 許容値(引張強さ): S _u (MPa) S _u =520 (MPa) (SUS304の値)	
(7) 裕度: K K=S _u / σ _c =520/	

⑦ボルト3	
	各ホルダに対してボルトは 一 本, ホルダが 一 体あるため, 一 箇所で荷重を負担すると考える。
(1) 断面特性:断面積A (mm²)	
A=π/4× (mm) (2) 荷重:W(kN) W=1 (kN)	m ²)(小数第3位を四捨五入)
(3) 評価断面に生じるせん断応力: τ τ = W/A=1000/ (MPa	(MPa) a)(小数点第3位を切上げ)
(4) 組合せ応力: σ_c (MPa) $\sigma_c = \sqrt{(\sigma^2 + 3\tau^2)} = \sqrt{\square + 3} \times \square$) = (MPa) (小数点第3位を切上げ)
(5) 許容値(引張強さ): S _u (MPa) S _u =520 (MPa) (SUS304(設計時)の	値)
(6) 裕度: K K=S _u /σ _c =520	数点第3位を切下げ)


⑧チェーンガイド
(1)断面特性:断面積A (mm²),断面係数Z (mm³) $A = $
(2)荷重: W(kN), モーメント: M(kN·mm) W=1(kN) M=1× (kN·mm)
(3)評価断面に生じる引張り応力: σ (MPa) σ = W/A=1000 (MPa) (小数点第3位を切上げ)
(4) 評価断面に生じる軸曲げ応力: σ_b (MPa) $\sigma_b = M/Z = M$
(5)組合せ応力: $\sigma_{c}(MPa)$ $\sigma_{c} = \int (\sigma_{b}^{2} + 3 \times \tau^{2}) = \int (MPa) + 3 \times (MPa)$ (小数点第3位を切上げ)
(6) 許容値(引張強さ): S _u (MPa)

Su=520 (MPa) (SUS304の値)

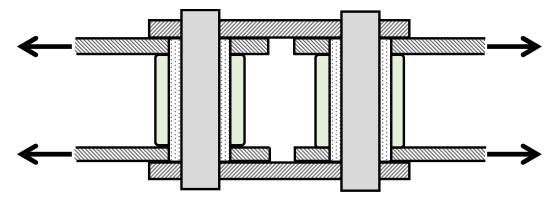
(7) 裕度: K

⑨エン	ドボルト
(1)	断面特性: 断面積 A (mm²) $A = \pi/4 \times$ mm²) (小数点第3位を四捨五入)
	ルール/4八 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
(2)	荷重:W(kN)
	W=1 (kN)
(3)	評価断面に生じる引張り応力: σ (MPa)
	σ=W/A=1000/= (MPa) (小数点第3位を切上げ)
(4)	組合せ応力: σ _C (MPa)
	$\sigma_{c} = \sqrt{(\sigma^{2} + 3 \times \tau^{2})} = \sqrt{(-3 \times 1)^{2}} = \sqrt{MPa}$ (小数点第 3 位を切上げ)
(5)	許容値(引張強さ): S _u (MPa)
	S _u =930 (MPa) (SCM435の値)
(6)	裕度:K
	K=S _u / σ _c =930/

⑩チェーン (対策前)

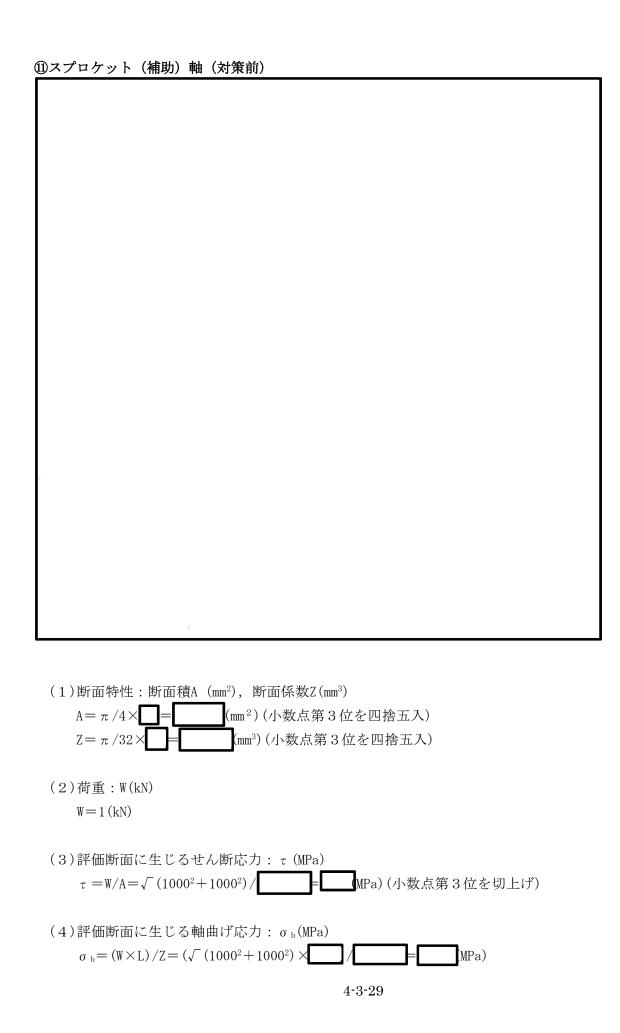
チェーンは応力ではなく、発生荷重とカタログ記載の最小引張強さの比較により評価する。

(1)荷重:W(kN) W=1(kN)


(2)最小引張強さ:Wc(kN)(カタログ値)Wc₁=53.4kN(参考値)(引張試験での実測値)Wc₂=41.4kN

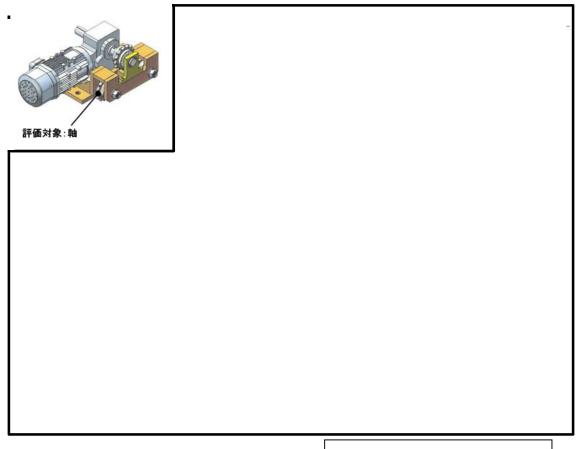
(3) 裕度:K K=Wc₂/W=41.4

チェーンの引張り試験結果(荷重-変位線図)

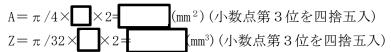

⑩チェーン (対策後)

チェーンは応力ではなく、発生荷重とカタログ記載の最小引張強さの比較により評価する。

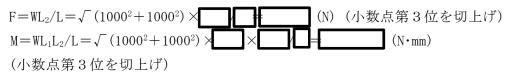
(1)荷重:W(kN) W=1(kN)


- (2)最小引張強さ:Wc(kN)(カタログ値)Wc₁=71.6kN(参考値)(引張試験での実測値)Wc₂=78.2kN
- (3) 裕度: K K=Wc₁/W=71.6

(小数点第3位を切上げ)


- (6) 許容値(引張強さ): S_u (MPa) S_u=570 (MPa) (S45C(直径100mm以下)の値)
- (7) 裕度: K K=S_u / σ_c=570/ 小数点第3位を切下げ)

⑪スプロケット (補助) 軸 (対策後)


2箇所のスプロケット軸で均等に 全荷重を受け持つとする。

(1)断面特性:断面積A (mm²), 断面係数Z(mm³)

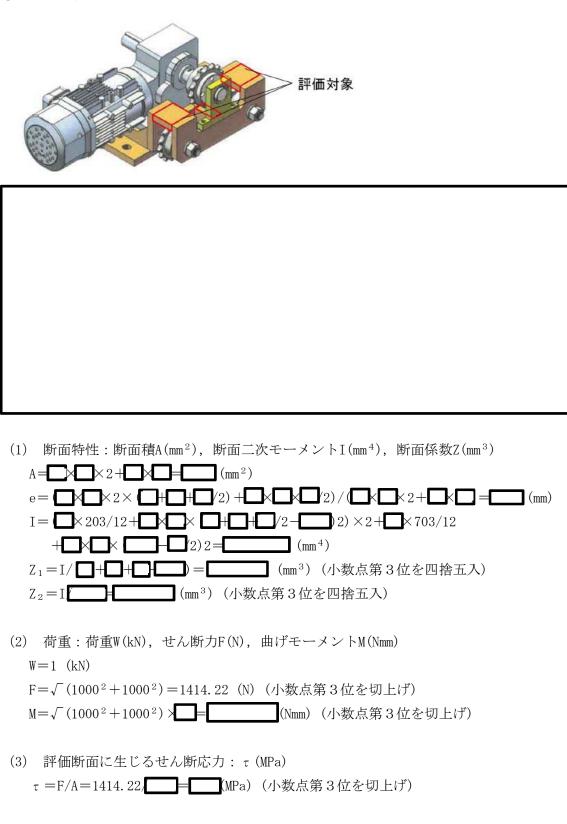
(2)荷重:W(kN), せん断力F(N), モーメントM(Nmm)

W = 1 (kN)

(3)評価断面に生じるせん断応力: τ (MPa)

(4)許	平価断面に生じる軸曲げ応力:σь(MPa) σь=M/Z= (MPa)(小数点第3位を切上げ)
(5)糸	阻合せ応力: $\sigma_{\rm C}(\text{MPa})$ $\sigma_{\rm C} = \sqrt{(\sigma_{\rm b}^2 + 3 \times \tau^2)} = \sqrt{(\text{MPa})^2 + 3 \times \text{MPa}} $ (小数点第3位を切上げ)
(6)	許容値(引張強さ):引張強さSu(MPa) Su=570 (MPa) (S45C(直径100mm以下)の値)
(7)	裕度: K _u (引張) K _u =S _u /σ _c =570/ (小数第3位を切下げ)

⑪'	モータ出力軸(対策前)
(1)	断面特性: 断面積 $A(mm^2)$, 断面係数 $Z(mm^3)$ $A = \pi/4 \times$ (mm^2) (小数点第 3 位を四捨五入) $Z = \pi/32 \times$ (mm^2) (小数点第 3 位を四捨五入)
(2)	荷重:W(kN), せん断力F(N), 曲げモーメントM(Nmm), ねじりモーメントT(Nmm) W=1 (kN) F=W=1000 (N) M=WL ₁ =1000 (Nmm) T=WD/2=1000 (Nmm)
(3)	評価断面に生じるせん断応力: τ _s (MPa) τ _s =F/A=1000/ (MPa) (小数点第3位を切り上げ)
(4)	評価断面に生じる曲げ応力: $\sigma_b(MPa)$ $\sigma_b=M/Z=$ (MPa) (小数点第3位を切り上げ)
(5)	評価断面に生じるねじり応力: $\tau_{t}(MPa)$ $\tau_{t}=16T/\pid^{3}=(16\times)/(\pi\times)^{3}=(MPa)$ (MPa) (小数点第3位を切り上げ)


- (6) 評価断面に生じる組み合わせ応力: σ (MPa) $\sigma = \sqrt{(\sigma_b^2 + 3 \times (\tau_s + \tau_t)^2)} = \sqrt{(\mathbf{MPa})^2 + 3 \times (\mathbf{MPa})^2}$ (小数点第 3 位を切り上げ)
- (7) 許容応力(引張強さ): S_u (MPa) S_u=690 (MPa) (S45C (直径 40mm 以下)の値)

⑪'	モータ出力軸	(対策後)
(1)		面積A(mm²), 断面係数Z(mm³) =(mm²) (小数点第3位を四捨五入)
		3=(mm ³) (小数点第3位を四捨五入)
(2)	荷重:W(kN), W=1 (kN)	せん断力F(N), 曲げモーメントM(Nmm), ねじりモーメントT(Nmm)
	$F = WL_2/L = 100$ $M = WL_1L_2/L =$	
	T = WD/2 = 1000	
(3)	評価断面に生 τ _s =F/A=	じるせん断応力:τ _s (MPa) (MPa) (小数点第3位を切り上げ)
(4)	評価断面に生 σ _b =M/Z=	じる曲げ応力: σ _b (MPa) (MPa) (小数点第3位を切り上げ)
(5)		じるねじり応力: τ _t (MPa) =(16×60000)/(π×□)=□□(MPa) (小数点第3位を切り上げ)
(6)	評価断面に生	じる組み合わせ応力: σ(MPa)

 $\sigma = \int (\sigma_b^2 + 3 \times (\tau_s + \tau_t)^2) = \int (MPa)$ (小数点第3位を切り上げ)

- (7) 許容応力:最小引張強さSu (MPa)Su=690(MPa) (S45C(直径40mm以下)の値)
- (8) 裕度:引張強さKu $K_u {=} S_u / \sigma = 690 / \text{ (小数点第3位を切り下げ)}$

⑩軸補強部材(対策後)

| _____ (MPa) (小数点第3位を切上げ)

(4) 評価断面に生じる軸曲げ応力: σ_b(MPa)

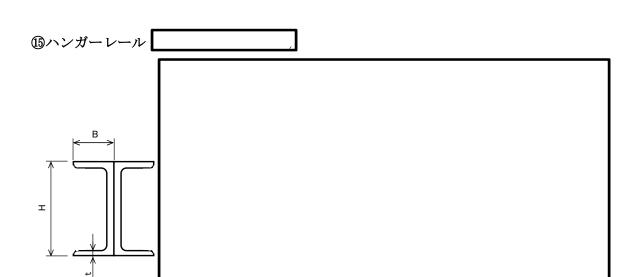
 $\sigma_b = M/Z_2 =$

(5)	組合せ応力: σ _C (MPa)						
o	$\sigma_{\rm C} = \sqrt{(\sigma_{\rm b}^2 + 3 \times \tau^2)} = \sqrt{(\sigma_{\rm b}^2 + 3 \times \tau^2)}$	$^{2} +$	·3×]=[(MPa) (/	数点第3	位を切上げ

- (6) 許容値:引張強さS_u(MPa) S_u=520(MPa) (SUS304の値)
- (7) 裕度: K_u(引張)
 K_u=S_u/σ_c=520/ (小数点第3位を切り下げ)

⑫、減速機固定ボルト
ボルト合計 本で荷重を受け持つと考える。 (引張を受けるボルトは 本)
(1)断面特性:断面積 A (mm²), 断面二次モーメント I (mm⁴), 断面係数 Z (mm³) A= π /4× 2×4= (mm²) (小数占第 3 位を四捨五 入)
$A = \pi/4 \times$ $^2 \times 4 =$ $^2 \times 4$
[ボルト断面内に関する項は無視]
Z=I/
(2)荷重:荷重W(N), 曲げモーメントM(N·mm) W=1(kN)
$M = W \times L = 1000 \times \text{mm}$
(a) 司ぼはも (m)
(3) 引張応力: σ (MPa) $σ = M/Z = $
(4)組合せ応力:σ _C (MPa)
$\sigma_{\rm C} = \sqrt{\left(\sigma^2 + 3 \times \tau^2\right)} = \sqrt{2 \times 10^2} + 3 \times 10^2 \times 10^$
4-3-39

- (5)許容応力:引張強さSu(MPa) S_u=930(MPa)(SCM435 の値)
- (6)裕度: Ku(引張)


 K_u=S_u/σ_c=930

 小数第 3 位を切下げ)

③モータベース
(1) 断面特性:断面積A (mm²),断面二次モーメントI (mm²),断面係数Z (mm³) A=(mm²)
$I = \underbrace{ \left\{ \begin{array}{c} I = \underbrace{ \left(\left(\begin{array}{c} I = \underbrace{ \left(\left(\begin{array}{c} I = \left(\left(\left(\left(I = I = \underbrace{ \left(\left(I = \underbrace{ \left(\left(I = I = \underbrace{ \left(I = I = I = I = \underbrace{ \left(I = I = I = I = \underbrace{ \left(I = I = I = I = I = \underbrace{ \left(I = I = I = I = I = I = I = I = I = I $
(2) 荷重:W(kN) W=1(kN)
(9) 亚伊斯克尼亚斯克斯 (m.)
(3) 評価断面に生じるせん断応力:τ (MPa) τ = W/A = 1000/ (MPa) (MPa) (小数点第3位を切上げ)
(4) 評価断面に生じる曲げ応力:σ _ь (MPa)

 $K=S_u/\sigma_c=520/0.53=981.13$ (小数点第3位を切下げ)

⑭モータベース用ボルト(ボルト4)	
	合計ボルト 本で荷重を受持つと考える。
(1)断面特性:断面積A (mm²) A=π/4× × 4= (mm²)(小数点第3位をD	当捨五人)
(2)荷重:W(kN) W=1(kN)	
(3)評価断面に生じるせん断応力: τ (MPa) τ = W/A=1000/ (MPa)(小数点第3位を5	刀上げ)
(4)組合せ応力: $\sigma_{C}(MPa)$ $\sigma_{C} = \sqrt{(\sigma^{2} + 3 \times \tau^{2})} = \sqrt{(MPa)}$ (MPa)	(小数点第3位を切上げ)
(5) 許容値(引張強さ): S _u (MPa) S _u =690 (MPa) (S45C(直径40mm以下)の値)	
(6)裕度:K K=Su / σ c=690/ □ □□ (小数点第3位を切下	げ)

- (1) 断面特性 断面積: A (mm²)
 荷重が伝達する面積は、断面の1/4で伝達するものとする。
 A= (mm²)
 - 断面積はJIS G 4321:2000より引用
- (2)荷重:W(kN) W=1 (kN)
- (3) 評価断面に生じる軸方向応力: σ (MPa) $\sigma = \mathbb{W}/A = 1000/$ (MPa) (小数点第3位を切上げ)
- (4) 組合せ応力: $\sigma_{C}(MPa)$ $\sigma_{C} = \sqrt{(\sigma^{2} + 3 \times \tau^{2})} = \sqrt{(mPa)(mPa)(mPa)(mPa)}$ (小数点第3位を切上げ)
- (5) 許容値(引張強さ): S_u (MPa) S_u=520 (MPa) (SUS304 の値)

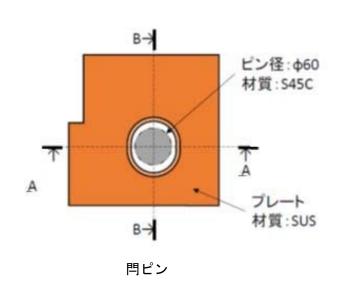
16門
(1)断面特性:断面積A (mm²), 断面係数Z(mm³) $A = \pi/4 \times $
(2)荷重:W(kN) W=1(kN) F=(WL1+W(L1+L2))/L=1000× +1000×
(3)評価断面に生じるせん断応力: τ (MPa) τ = F/A= MPa) (小数点第3位を切上げ)
(4)評価断面に生じる軸曲げ応力: $\sigma_b(MPa)$ $\sigma_b=M/Z=$ MPa) (小数点第3位を切上げ)
(5)組合せ応力: $\sigma_c(MPa)$ $\sigma_c = \sqrt{(\sigma_b^2 + 3 \times \tau^2)} = \sqrt{(Pa)(mPa)}$ (小数点第3位を切上げ)
(6) 許容値(引張強さ): Su (MPa) Su=570 (MPa) (S45C(直径100mm以下)の値)
(7) 裕度:K K=S _u / σ _c =570 (小数点第3位を切下げ)

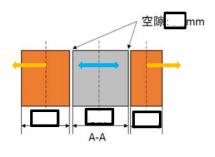
No.	部品	品名	荷重1kN に対する 裕度	荷重66kN に対する 裕度 <対策前(門なし)>	荷重43.8kN に対する 裕度 <対策後(門有り)>	備考
1	ボルト1					
2		ブラケット1				
	ハンガーローラ	リンク				
4		ブラケット2				
	ボルト2					
	ホルダ					
	チェーンガイド					
9	エンドボルト					
10	チェーン	対策前				材質変更
-		対策後				
11	スプロケット軸	対策前				支持方法変更
-		対策後				
11'	モータ出力軸	対策前 対策後				支持方法変更
12	スプロケット軸補強部材					新規設置
						7777865
	3 モータベース				İ	
	4 ボルト4					
	ハンガーレール					
	閂 [※]					新規設置

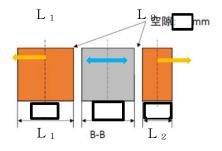
[※] 閂については、加振試験時の扉の最大加速度(9.6G)の2倍の荷重で評価した値(236kN)

閂ピンと閂受の熱膨張による影響について

1. 概要


門ピン及び門受プレートが熱膨張した場合においても、ピンと門受の隙間の範囲内であり、門の押上げ、挿入に影響がないことを確認する。


2. 評価結果


門部の材質は、門受プレート材がステンレス、ピンが炭素鋼である。ステンレス鋼の線膨張係数は炭素鋼の約1.5倍あるため、熱膨張によりピン径が増加するよりもプレート穴が大きくなる割合が大きいため、熱膨張は問題とはならない。

3. 線膨張係数による詳細評価

(1) 閂ピン及び閂受フレームの寸法はつぎのとおり。

(2) 評価条件·評価結果

- ✓ 閉止装置が閉止状態において、SA時の二次格納施設内の温度が100℃になると仮定し、0℃からの $\Delta T=100$ Kにて評価
- ✓ 線膨張係数は次のとおり(出典:発電用原子力設備規格材料規格(2012年版)) ステンレス(プレート)線膨張係数 $\alpha_1:1.6\times10^{-5}/\mathrm{K}$ ・・・プレート部 炭素鋼(閂ピン)線膨張係数 $\alpha_2:1.0\times10^{-5}/\mathrm{K}$ ・・・ピン部
- ✓ 熱による変位量 $\Delta L = \alpha \cdot L \cdot \Delta T$ により、各変位量を評価

	温度変化ΔT	L 1	L 2	ΔL	熱膨張によるピンとプレ ート間の隙間変位量
プレートA-A	100	52. 5	32. 5	0. 0696575	0. 0041375
プレートB-B	100	62. 5	32. 5	0. 0778525	0. 0123325
ピン	100	Φ60		0.06552	

以上

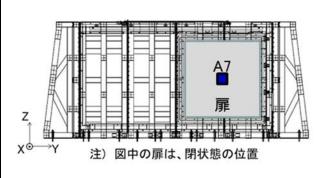
東海第二発電所 ブローアウトパネル閉止装置 機能確認試験結果(第2回目)について

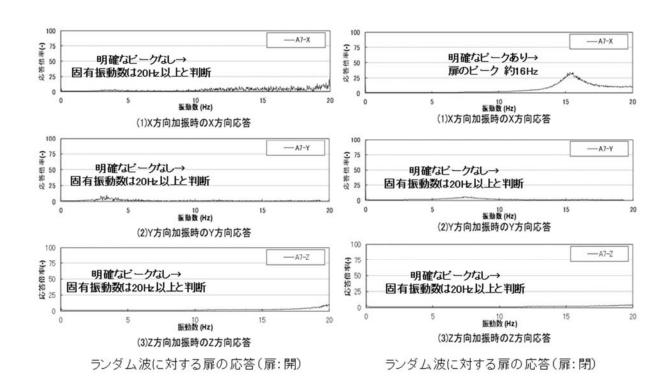
1. 試験結果(追加試験)

「試験要領」に基づき実施した試験結果概要を以下の第6表に示す。

第1表 試験結果概要

		>14 - 24	的大阳不例女		
区分	No	試験項目	目的/試験内容	門 有無	結果
事前確認	1	センサ確認	加速度センサの動作確認	_	完了
	2	振動特性試験	ランダム波による閂状態での振 動特性(固有値)確認	有	完了
要素試験 (閂単体)	3	加振試験 1.0 S。(扉開) ・閂作動確認	加振後の閂動作確認	有	良好
気密性能確認(加振無)	4	気密性能試験	気密性能確認 (閂間隙を考慮し 扉位置を変えて実施)	有	良好
加振試験 (予備試験)	5	加振試験 1.0 S s(扉開) ・作動確認 ・気密性能試験	 ・加振→扉閉操作(門含む) →気密性能確認 ・電動での扉開閉確認(門含む) ・手動での扉開閉確認(門含む) 	有	良好
	6	加振試験 1.0 S。(扉閉) ・作動確認 ・気密性能試験	・加振→気密性能確認・電動での扉開閉確認(閂含む)・手動での開閉操作(閂含む)	有	良好
加振試験 (本試験)	7	加振試験 1.0 S。(扉開) ・作動確認 ・気密性能試験	・加振→扉閉操作(門含む)→気密性能確認・電動での扉開閉確認(門含む)	有	良好
	8	加振試験 1.0 S。(扉閉) ・作動確認 ・気密性能試験	・加振→気密性能確認・電動での扉開閉確認(門含む)・手動での開閉操作(門含む)*	有	良好
その他 確認試験	参考	加振試験 1.0 S。(扉開) ・扉開閉試験	強度を増加させたチェーンでの 加振試験	無	良好


[※] 電動による扉及び閂の作動確認の結果、電流値、開閉時間に異常はないが、念のため手動開閉 操作も実施


2. 固有振動数

ブローアウトパネル閉止装置の固有振動数を確認するため,扉が開状態と閉状態時に,各方向 (X,Y,Z) 方向)単独で,0.1 $Hz\sim30Hz$ 程度の振動数成分を有する広帯域ランダム波(加振レベル 2.0 m/s^2 程度)で加振し,閉止装置の固有振動数を確認した。結果として,扉開状態では,X 方向,Y 方向,Z 方向ともに明確な振動数ピークは確認されず,扉の固有振動数は 20Hz 以上と評価した。また扉閉状態では,X 方向(面外方向)にのみピークが確認され,閉状態面外方向の固有振動数は,前回加振時と同様に約 16Hz (約 0.0625 秒)と評価した。固有振動数をを以下の第 6.1 表に示す。

第2.1表 固有振動数

扉状態 (加振時)	固有振動数
開	・面外方向: 20Hz 以上 ・面内方向: 20Hz 以上 ・鉛直方向: 20Hz 以上
閉	・面外方向:約16Hz ・面内方向:20Hz以上 ・鉛直方向:20Hz以上

3. 加振試験加速度の妥当性

閉止装置の上部及び下部の最大加速度は、 S_s 包絡条件を超えており、必要な加振がされていることを確認した。加振レベル $1.0S_s$ の加速度結果を以下の第3.1表から第3.8表に示す。また加振時の応答スペクトルが設計応答スペクトルを超えていることを確認した。応答スペクトルの測定結果を第3.1図から第3.8図に示す。

第3.1表 扉「開」上部の加速度評価(試験 No.5)

+6	S s包絡条件	A4(扉上部)	判定結果	
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)		
X	1 66	3.72	0	
Y	1.66 <	3. 12	0	
Z	1.21 <	2. 39	0	

第3.2表 扉「開」下部の加速度評価(試験 No.5)

方向	S 。包絡条件	A2(扉下部)	判定結果	
力问	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	刊足和未	
X	1.94	1.46	0	
Y	1.34 <	1. 52	0	
Z	1.09 <	1.70	0	

第3.3表 扉「閉」上部の加速度評価(試験 No.6)

方向	S _s 包絡条件	A3(扉上部)	判定結果	
刀凹	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)		
X	1.00	3. 32	0	
Y	1.66 <	2. 66	0	
Z	1.21 <	2. 27	0	

第3.4表 扉「閉」下部の加速度評価(試験 No.6)

++	S s 包絡条件	A1(扉下部)	小川 亡・仕・田	
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1.94	1. 39	0	
Y	1.34 <	1. 59	0	
Z	1.09 <	1. 67	0	

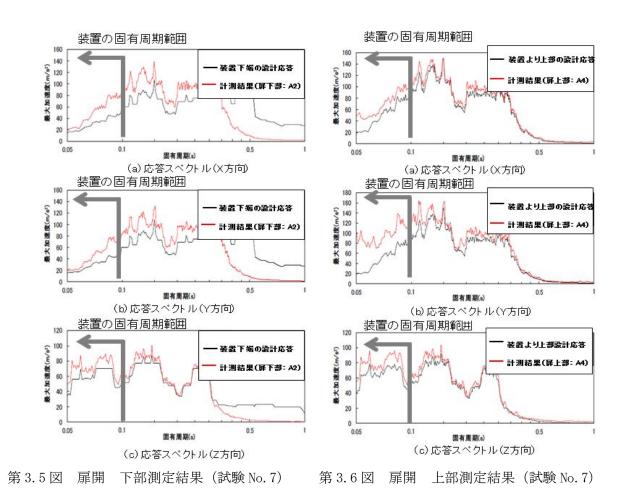
第3.5表 扉「開」上部の加速度評価 (試験 No.7)

+:=	S _s 包絡条件	A4(扉上部)	加宁公田	
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1 66 /	3.96	0	
Y	1.66 <	3. 25	0	
Z	1.21 <	2. 32	0	

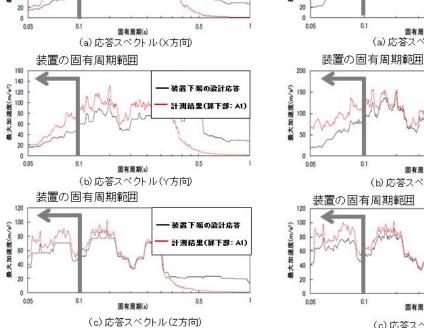
第3.6表 扉「開」下部の加速度評価(試験 No.7)


+:-	S s 包絡条件	A2(扉下部)	和 字 社 田	
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1 24	1.49	0	
Y	1.34 <	1.50	0	
Z	1.09 <	1.65	0	

第3.7表 扉「閉」上部の加速度評価(試験 No.8)


++	S _s 包絡条件	A3(扉上部))(1) たくす 田	
方向	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1 66	3. 27	0	
Y	1.66 <	2. 73	0	
Z	1.21 <	2. 24	0	

第3.8表 扉「閉」下部の加速度評価 (試験 No.8)


方向	S s 包絡条件	A1(扉下部)	加宁外田	
	$(\times 9.8 \text{m/s}^2)$	計測結果 (×9.8m/s²)	判定結果	
X	1 24	1.43	0	
Y	1.34 <	1.54	0	
Z	1.09 <	1.66	0	

4-4-6

装置の固有周期範囲 装置の固有周期範囲 160 160 140 装置より上部の設計応答 装置下端の設計応答 計測結果(扉上部: A3) 計測結果(屏下部: A1) 20 20 0.05 0.05 **國有周期**(a) (a) 応答スペクトル(X方向) 固有周期(s) (a) 応答スペクトル(X方向)

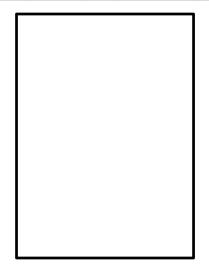
第3.7図 扉開 下部測定結果(試験 No. 8)

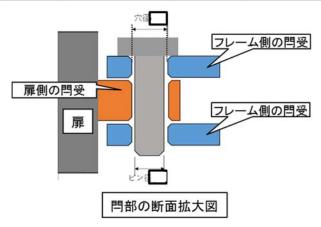
固有周期(s) (b) 応答スペクトル(Y方向) 装置の固有周期範囲 装置より上部の設計応答 計測結果(屏上部: A3) 固有周期(s) (c) 応答スペクトル(Z方向)

装置より上部の設計応答

計測結果(屛上部: A3)

上部測定結果 (試験 No. 8) 第3.8 図 屝開


4. 加振試験結果


4.1 チェーン破損確認

門を設置した結果,チェーン破損はなく,扉開放等の不具合は認められなかった。結果 を以下の第4.1表に示す。

試験	試験日		試験条件		外籍	備考		
No.	政級口	屝	加振	チェーン	扉開閉止	閂	その他部位	チェーン伸び
5	7月26日	開	1.0Ss	破損なし	異常なし	異常なし (擦れ跡有)	異常なし	5919mm ⇒ 5923mm
6	7月25日	閉	(予備試験)	破損なし	異常なし	異常なし (擦れ跡有)	異常なし	(約4mm)
7	7月31日	開	1.0Ss	破損なし	異常なし	異常なし (擦れ跡有)	異常なし	5919mm ⇒ 5920mm
8	7月31日	閉	(本試験)	破損なし	異常なし	異常なし (擦れ跡有)	異常なし	(約1mm)

第4.1表 加振後の外観目視点検結果

<擦れ跡発生のメカニズム>

門ピンと閂受の間には設計上5mmの間隙がある。このため、閂が挿入され扉が固定されている状態で加振されると、閂ピンと閂受けが接触するため、閂ピン等の表面に擦れ跡が発生

<チェーンの伸びについて>

加振によりチェーンには $1 \sim 4 \, \text{mm}$ の伸びが計測された。この伸びに対する見解は以下のとおりであり、チェーンの機能に影響を及ぼすような有意なものではないと評価した。

- ・ 今回使用した炭素鋼チェーン (コーティング有) の引張試験結果によると、門部の最大間隙から推定されるチェーンの最大変位量 (5 mm) が発生した場合でも、チェーンの変位は概ね弾性 域であることを確認
- ・ チェーン製造メーカによると、チェーンは組立歪と初期なじみにより初期伸びが発生する。その量は通常 0.1%程度だが、今回のチェーンの製造メーカでは部品精度の向上等により、初期伸び量を 0.05%程度に抑えている(ホームページにも記載有)とのことであり、今回のチェーンは全長約 6000mm であり、この 0.05%は約 3mm 程度に相当するため、今回確認されたチェーンの伸びは、この初期伸びに相当するものであり、有意なものではないと評価した。

4.2 気密性能試験結果

気密性能試験の初期状態及び加振後については第4.2表のとおり。追加試験に先立って消耗品であるパッキンの交換を実施しているが、初期状態においても前回試験とほぼ同じ気密性能が確保できていること、加振後の漏えい量も十分に小さく、原子炉建屋外壁のブローアウトパネル部に適用した場合でも、原子炉建屋としての気密性能(負圧)は十分に十分に確保できることを確認した。

試験	試験日	ī	试験条件	通気量[m³/h· m²]	備考	【参考】前回試験
No.	八	屝	加振	(63Pa時)) 	通気量[m³/h•m²]
4	7月25日	閉	初期状態	0.28 0.28 0.32	・門穴の間隙による扉移動(最大±5mm)を考慮 して試験実施 ・数値は上から扉停止位置, 閉側に5mm移動さ せた位置, 開側に8mm(設計最大量5mm+保守 的に3mm)移動させた位置での試験結果	0.25
5	7月26日	開	1.0Ss	0.28	加振後に扉を閉止し試験	0.25
6	7月25日	閉	(予備試験)	0.32	扉閉状態での加振後の状態で試験	1
7	7月31日	開	1.0Ss	0.28 ^{Ж1}	加振後に扉を閉止し試験	0.26
8	7月31日	閉	(本試験)	0.35 ^{**2}	扉閉状態での加振後の状態で試験	0.26

第 4.2表 加振後の気密漏洩試験

※1 風速計指示の振れ幅の最大値では, 0.70 m³/h・m²

※2 風速計指示の振れ幅の最大値では, 0.95 m³/h・m²

<原子炉建屋としての負圧達成について>

今回の閉止装置単体での気密性能試験結果から、本装置を原子炉建屋原子炉棟外壁のブローアウトパネル部に設置した場合の原子炉建屋の負圧達成可否について評価した結果、非常用ガス処理系定格容量(3570m³/h)は、推定漏えい量1913m³/hを十分に上回るため、非常用ガス処理系にて63Pa以上の負圧達成可能である。

- ・既設原子炉建屋の推定インリーク量:約1,710m³/h@63Pa
- ・閉止装置 10 個の合計面積:約 213m²
- ・閉止装置 10 個設置時の推定インリーク量: 213m²×0.35m³/h·m²=75m³/h@63Pa
- ・非常用ガス処理系定格容量:3570 m³/h@63Pa
- ・ 閉止装置設置時の原子炉建屋原子炉棟の推定漏えい量:

1710m³/h+75m³/h=1785m³/h@63Pa < 3570m³/h@63Pa (SGTS 定格容量の約 50%)

<原子炉建屋としての負圧達成について(気密性能試験時の風速の振れを考慮)>

今回の閉止装置単体での気密性能試験は JIS に基づき実施しているが、風速測定時には風速の振れが伴っているため、試験時の振れ幅の最大値 (0.95 m³/h・m²) を考慮し、原子炉建屋の負圧達成可否について評価した。この結果、非常用ガス処理系定格容量 (3570m³/h) は、推定漏えい量 1913m³/hを十分に上回るため、非常用ガス処理系にて 63Pa 以上の負圧達成可能である。

- ・既設原子炉建屋の推定インリーク量:約1,710m³/h@63Pa
- ・閉止装置 10 個の合計面積:約 213m²
- ・閉止装置 10 個設置時の推定インリーク量: 213m²×0.95m³/h·m²=203m³/h@63Pa
- ・非常用ガス処理系定格容量:3570 m³/h@63Pa

・閉止装置設置時の原子炉建屋原子炉棟の推定漏えい量:

1710m³/h+203m³/h=1913m³/h@63Pa < 3570m³/h@63Pa (SGTS 定格容量の約 54%)

4.3 扉作動試験

加振後の扉作動試験の結果は第4.3表のとおり。作動時間,電流値ともに設計目標値を満足して おり問題ないことを確認した。

試験条件 電動 開放→閉止 閉止→開放 試験 No. 試験日 手動 扉 加振 作動時間 目標120秒以内 電流 目標7.48A 以内 作動時間 目標120秒以内 電流 目標7.48A 以内 約99秒 7月26日 開 4.35A 約97秒 4.39A 開→閉 異常なし 5 1.0Ss(予備試験) 7月25日 閉 約99秒 4.45A 約96秒 4.46A 閉→開 異常なし 6 7 7月31日 約99秒 4.21A 約97秒 4.15A 1.0Ss(本試験) 7月31日 閉 約99秒 4.50A 約97秒 4.60A 開→閉 異常なし※ 8

第4.3表 加振後の扉作動試験結果

※ 電動による扉の作動試験の結果,作動時間及び電流値に異常はなく,省略可能であるが,最 終確認として手動操作を実施

4.4 閂作動試験

加振後の閂作動試験の結果は第4.4表のとおり。作動時間,電流値ともに設計目標値を満足して おり問題ないことを確認した。

	試験日	試験条件			電動				手動			
試験		験日 扉	扉 加振	加振門位置	押上時		挿入時					
No.					作動時間 (目標15秒以内)	電流 (2.1A以内)	作動時間 (目標15秒以内)	電流 (2.1A以内)	押上時	挿入時		
5	7月26日	開		扉開側	約8秒	1.62A	約8秒	1.44A	異常なし	異常なし		
5	/ H20 E	[21]	1.0Ss	扉閉側	約8秒	1.64A	約8秒	1.47A	異常なし	異常なし		
6	7 8050	7月25日	月25日 閉	7 日05 日 - 四	(予備試験)	扉開側	約8秒	1.60A	約8秒	1.49A	異常なし	異常なし
"	7 7 2 3 0	[3]		扉閉側	約8秒	1.61A	約8秒	1.48A	異常なし	異常なし		
7	7 Pot D	開		扉開側	約8秒	1.63A	約8秒	1.41A	-	-		
′	7月31日	PH1	1.0Ss	扉閉側	約8秒	1.60A	約8秒	1.43A	-	-		
8	7 801 0	閉	(本試験)	扉開側	約8秒	1.66A	約8秒	1.48A	異常なし*	異常なし*		
8	7月31日	闭		扉閉側	約8秒	1.66A	約8秒	1.50A	異常なし*	異常なし*		

第4.4表 加振後の閂作動試験結果

[※] 電動による扉の作動試験の結果,作動時間及び電流値に異常はなく,省略可能であるが, 最終確認として手動操作を実施

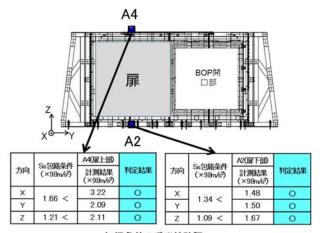
閂がない状態での加振試験結果について

1. はじめに

第1回目の加振試験では、チェーンに損傷が発生し、扉の操作機能を喪失する事象が発生した。 このため、本不具合の再発防止策として前述のように閂の設置やチェーン材質の変更等を実施する こととした。

閂がない状態での加振試験を実施し、主にチェーンの材質変更(強度増加)の効果について確認 し、閂がない状態でもチェーンに破損等は発生せず扉の開閉機能が確保できることを確認した。

2. 試験結果


扉は閉方向に約 30mm 移動したが,チェーンに破損,有意な伸びはなく,扉の開閉に問題はなかった。また,本加振前後でチェーンの伸びを測定した結果,チェーンの伸びは約 3mm ($5919mm \rightarrow 5922mm$) であったが,本伸びは,組立歪や初期なじみにより使用開始時に発生する伸びであり,チェーンメーカによる見解である全長に対して 0.05%程度 (約 3mm) であり,有意な伸びではないと評価した。

試験No.	試験日	試験条件		電動			
				開放→閉止		閉止→開放	
		扉	加振	作動時間 目標120秒以内	電流 目標7.48A 以内	作動時間 目標120秒以内	電流 目標7.48A 以内
参考	7月26日	開※	1.0Ss	約100秒	4.31A	約97秒	4.39A

※ これまでの加振試験結果から、電動機スプロケットからチェーンガイド端部までの距離が短く ,チェーンが損傷を受けやすい扉開状態にて試験を実施

加振試験時の状況

加振条件の妥当性確認 (扉上部及び下部の加振加速度は、当該高さの最大応答加速度を超えていることを確認)

ブローアウトパネル閉止装置の開放を仮定した場合の中央制御室の被ばく評価への影響について

1. 評価方針

(1) 評価の概要

ブローアウトパネルが開放し炉心の著しい損傷が発生した場合の評価事象を選定し、ブローアウトパネル閉止装置の短期的な開放を仮定した場合、そのソースタームの設定により、被ばく経路ごとに中央制御室の居住性を確保するための設備及び及び運用面の対策を考慮した線量評価を行い、中央制御室に入り、とどまる運転員の実効線量の計算結果を、ブローアウトパネル閉止装置が開放しない場合と比較する。

具体的な居住性に係る被ばく評価の手順は以下のとおりであり、図1に示す。

- a. 評価事象は、炉心の著しい損傷が発生した場合についてブローアウトパネル閉止装置が 短期的に開放することを考慮し、運転員の線量結果が厳しくなるよう選定する。なお、ブ ローアウトパネル閉止装置が開放しない場合についても評価を行う。
- b. 評価事象に対して,原子炉施設に滞留する又は放出される放射性物質によって,中央制御室に入り,とどまる運転員の放射線被ばくをもたらす経路を選定する。
- c. 評価事象に対して,建屋内の放射性物質の存在量分布及び大気中への放出量を計算する。
- d. 原子炉建屋内の放射性物質の存在量分布から線源強度を計算する。
- e. 発電用敷地内の気象データを用いて、大気拡散を計算して相対濃度及び相対線量を計算 する。
- f. 中央制御室内及び入退域時の運転員の被ばくを計算する。 被ばく経路ごとに評価期間中の積算線量を計算し、これを運転員の中央制御室内の滞在 時間及び入退域に要する時間の割合で配分して計算する。
 - (a) 中央制御室内での被ばく
 - イ. d. の結果を用いて, 建屋内の放射性物質からのガンマ線による被ばくを, 中央制御 室遮蔽による遮蔽効果を考慮して計算する。
 - ロ. c. 及び e. の結果を用いて、大気中へ放出された放射性物質からのガンマ線による 被ばくを、中央制御室遮蔽による遮蔽効果を考慮して計算する。
 - ハ. c. 及び e. の結果を用いて、中央制御室内に外気から取り込まれた放射性物質の濃度を、中央制御室換気系設備による室内放射性物質の低減効果を考慮して計算し、放射性物質による被ばく(ガンマ線による外部被ばく及び呼吸による吸入摂取による内部被ばく)を計算する。
 - (b) 入退域時の被ばく
 - イ. d. の結果を用いて, 建屋内の放射性物質からのガンマ線による被ばくを計算する。
 - ロ. c. 及び e. の結果を用いて、大気中へ放出された放射性物質による被ばく(ガンマ線による外部被ばく及び呼吸による吸入摂取による内部被ばく)を計算する。
- g. f.の被ばく経路ごとの線量を合算し、判断基準と比較する。

(2) 評価事象の選定

炉心の著しい損傷が発生した場合において、原子炉施設の構造及び特性並びに安全上及び

格納容器破損防止の諸対策の観点から、評価事象を選定する。具体的には以下のとおりとする。

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」第37条の「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」の想定する格納容器破損モードのうち、起因事象としてブローアウトパネルが開放し、ブローアウトパネル閉止装置に期待する事故シーケンスを想定する。

事故シーケンスとしては、起因事象としてブローアウトパネルが開放する主蒸気管破断を 含む過渡事象起因であり、炉心損傷が早く、また、原子炉格納容器内の圧力が高く推移する「高 圧溶融物放出/格納容器雰囲気直接加熱」とし、全交流動力電源喪失の重畳を考慮する。

また、評価期間は、解釈に従い事故後7日間とする。

評価事象に係る条件を表1に示す。

(3) 被ばく経路の選定

炉心の著しい損傷が発生した場合において,運転員は,中央制御室にとどまり必要な操作,措置を行う。この時,大気中に放出された放射性物質が中央制御室内に取り込まれることなどにより,中央制御室内に滞在している運転員は被ばくする。また,運転員の当直交替に伴い入退域の移動が生じ,この入退域時にも運転員は被ばくする。

以上より、運転員の被ばく経路は、以下の被ばく経路①~⑤を考慮する。

また,評価事象ごとの対象とする被ばく経路は,それぞれの事故の形態,規模,事象進展, 運転員の交替要員体制等を考慮して選定する。

運転員の被ばく経路及び中央制御室の居住性に係る被ばく経路イメージを図 2 及び図 3 に示す。

- a. 中央制御室内での被ばく
 - (a) 被ばく経路① 建屋内の放射性物質からのガンマ線による被ばく 想定事故時に建屋内に放出された放射性物質から直接的に施設周辺に到達してくるガンマ線(以下「直接ガンマ線」という。)及び空気中で散乱されて施設周辺に到達してくるガンマ線(以下「スカイシャインガンマ線」という。)が、中央制御室遮蔽を透過して中央制御室内の運転員に与える線量。
 - (b) 被ばく経路② 大気中へ放出された放射性物質からのガンマ線による被ばく 大気中へ放出された放射性物質が大気中を拡散して生ずる放射性雲からのガンマ線 (以下「クラウドシャインガンマ線」という。)及び大気中へ放出され地表面に沈着した 放射性物質からのガンマ線(以下「グランドシャインガンマ線」という。)が、中央制御 室遮蔽を透過して中央制御室内の運転員に与える線量。
 - (c) 被ばく経路③ 外気から室内に取り込まれた放射性物質による被ばく 大気中へ放出された放射性物質が、中央制御室内に取り込まれて中央制御室内の運 転員に与える線量(ガンマ線による外部被ばく及び呼吸による吸入摂取による内部被ば く)。
- b. 入退域時の被ばく
 - (a) 被ばく経路④ 建屋内の放射性物質からのガンマ線による被ばく 直接ガンマ線及びスカイシャインガンマ線が、入退域時の運転員に与える線量。

(b) 被ばく経路⑤ 大気中へ放出された放射性物質による被ばく クラウドシャインガンマ線及びグランドシャインガンマ線が, 入退域時の運転員に 与える線量及び吸入摂取による内部被ばく線量。

(4) 建屋内の放射性物質の存在量分布及び大気中への放出量の計算

建屋内の放射性物質の存在量分布及び大気中への放出量の計算は、炉心の著しい損傷が発生した場合において、事故の形態、規模により、運転員の被ばくへの影響度合いを考慮して適切に設定する。

a. 事故発生直前の状態

事象発生直前まで,原子炉は定格出力の105 %で長期間にわたって運転されていたものとする。炉心内蓄積量計算条件を表2に示す。

炉心の著しい損傷が発生した場合の評価で使用する炉心内蓄積量は、ウラン燃料の 9×9 燃料炉心を条件に、燃焼計算コードORIGEN2コードにより算出する。事故発生直前の炉心内蓄積量を表3に示す。

計算にあたっては、9×9燃料炉心の代表的な燃焼度、比出力、初期濃縮度及び運転履歴を考慮する。

燃焼度 :55000 MWd/t (燃焼期間は,5サイクルの平衡炉心を想

定)

比出力 : 26 MW/t初期濃縮度 : 3.8 %

・ 核データライブラリ: JENDL3.2 (BWR STEP-3 VR=0 %, 60 GWd/t)

b. 評価の対象とする放射性核種

運転員の被ばくに有意に寄与すると考えられる放射性希ガス(以下「希ガス」という。) 及び放射性よう素(以下「よう素」という。)を対象とする。よう素は、有機よう素及び 無機よう素を考慮する。また、粒子状放射性物質も含めた放射性核種を対象とする。よ う素は、有機よう素、無機(元素状)よう素及び粒子状よう素を考慮する。

c. 大気中への放出過程

対象核種ごとに、大気中への放出過程上における放射性物質の低減効果を適切に考慮し、大気中への放出量を計算する。

(5) 建屋内の線源強度の計算

建屋内の放射性物質の存在量分布から計算する線源強度及びその計算結果を用いた被ばく 経路①の計算については、審査ガイドを参照する。

(6) 大気拡散の計算

炉心の著しい損傷が発生した場合の中央制御室の居住性に係る被ばく評価に使用する相対 濃度及び相対線量 は、「被ばく評価手法について(内規)」及び「発電用原子炉施設の安全解 析に関する気象指針(昭和57年1月28日 原子力安全委員会決定、一部改訂 平成13年3月29日 原子力安全委員会)」(以下「気象指針」という。)に基づき評価する。

a. 大気拡散評価モデル

放出点から放出された放射性物質が大気中を拡散して評価点に到達するまでの計算は、 ガウスプルームモデルを適用する。

(a) 相対濃度

相対濃度は、毎時刻の気象項目と実効的な放出継続時間をもとに評価点ごとに以下の式のとおり計算する。

$$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (\chi/Q)_i \cdot \delta_i^d$$

ここで,

χ/Q : 実効放出継続時間中の相対濃度 (s/m³)

T : 実効放出継続時間(h)

 $(\chi/Q)_i$: 時刻 i における相対濃度 (s/m³)

 δ_i^d : 時刻 i において風向が当該方位 d にあるとき $\delta_i^d=1$

: 時刻 i において風向が他の方位にあるとき $\delta_i^d=0$

(高所放出の場合)

$$(\chi/Q)_i = \frac{1}{2\pi \cdot \sum_{yi} \cdot \sum_{zi} U_i}$$

$$\Sigma_{yi} = \sqrt{\sigma_{yi}^2 + \frac{cA}{\pi}}$$
 , $\Sigma_{zi} = \sqrt{\sigma_{zi}^2 + \frac{cA}{\pi}}$

(地上放出の場合)

$$(\chi/Q)_i = \frac{1}{\pi \sum_{yi} \sum_{zi} U_i}$$

ここで,

U_i : 時刻 i の放出源を代表する風速 (m/s)

 Σ_{vi} : 時刻 i の建屋の影響を加算した濃度の水平方向(y 方向)の拡がりの

パラメータ (m)

 Σ_{zi} : 時刻 i の建屋の影響を加算した濃度の水平方向(z 方向)の拡がりの

パラメータ (m)

 σ_{yi} : 時刻 i の濃度の y 方向の拡がりパラメータ (m)

 σ_{zi} : 時刻 i の濃度の z 方向の拡がりパラメータ (m)

C:建屋の風向方向の投影面積 (m²)

A : 形状係数 (-)

上記のうち、気象項目(風向、風速及び σ_{yi} 、 σ_{zi} を求めるために必要な大気安定度)については、「b. 気象データ」に示すデータを、建屋の投影面積については「a. 建屋投影面積」に示す値を、形状係数については「f. 形状係数」に示す値を用いることとする。実効放出継続時間及び放出源高さは事故シーケンスに応じて求める条件であることから、個別に設定する。

 σ_{yi} 及び σ_{zi} については、「発電用原子炉施設の安全解析に関する気象指針」(昭和 57年 1月 28日原子力安全委員会決定、平成 13年 3月 29日一部改訂)における相関式を用いて計算する。

(b) 相対線量

クラウドシャインガンマ線量を計算するために、空気カーマを用いた相対線量を毎 時刻の気象項目と実効放出継続時間をもとに、評価点ごとに以下の式で計算する。

$$D/Q = (K_1/Q)E\mu_0 \int_0^\infty \int_{-\infty}^\infty \int_0^\infty \frac{e^{-\mu r}}{4\pi r^2} B(\mu r) \chi(x', y', z') dx' dy' dz'$$

ここで,

D/Q : 評価地点(x,y,0)における相対線量(μ Gy/Bq)

 (K_1/Q) : 単位放出率当たりの空気カーマ率への換算係数 $\left(\frac{dis\cdot m^3 \cdot \mu Gy}{MeV\cdot Bars}\right)$

E:ガンマ線の実効エネルギ (MeV/dis)

 μ_0 : 空気に対するガンマ線の線エネルギ吸収係数 (1/m)

μ: 空気に対するガンマ線の線減衰係数 (1/m)

r : (x', y', z')から(x, y, 0)までの距離 (m)

 $B(\mu r)$: 空気に対するガンマ線の再生係数 (-)

 $B(\mu r) = 1 + \alpha(\mu r) + \beta(\mu r)^{2} + \gamma(\mu r)^{3}$

ただし、 μ_0 , μ , α , β , γ については、0.5 MeV のガンマ線に対する値を用い、以下のとおりとする。

 $\begin{array}{ll} \mu_0 = 3.84 \times 10^{-3} (m^{-1}), & \mu = 1.05 \times 10^{-2} (m^{-1}) \\ \alpha = 1.000, & \beta = 0.4492, & \gamma = 0.0038 \end{array}$

 $\chi(\mathbf{x}',\mathbf{y}',\mathbf{z}')$: 放射性雲中の点 $(\mathbf{x}',\mathbf{y}',\mathbf{z}')$ における濃度 $(\mathrm{Bq/m^3})$

b. 気象データ

2005 年 4 月~2006 年 3 月の 1 年間における気象データを使用する。なお、当該データの使用に当たっては、風向、風速データが不良標本の棄却検定により、過去 10 年間の気象状態と比較して異常でないことを確認している。

c. 相対濃度及び相対線量の評価点 相対濃度及び相対線量の評価点は以下とする。

(a) 中央制御室内滞在時

換気系設備は事故後検知後,通常運転時の排風機が停止し,中央制御室給気隔離弁, 中央制御室排気隔離弁及び排煙装置隔離弁が閉止する。その後,フィルタユニット入 口隔離弁が開き,チャコールフィルタを介して中央制御室内の空気を再循環する閉回 路循環運転に切り替わることを前提とする。中央制御室が属する建屋の屋上面を代表 面として選定し、建屋巻き込みの影響を受ける場合には、中央制御室が属する建屋表 面での濃度は風下距離の依存性は小さくほぼ一様であるので、相対濃度の評価点は中 央制御室中心を代表とする。

また、相対線量の評価点も同様に中央制御室中心とする。

(b) 入退域時

入退域時の運転員の実効線量の評価に当たっては、周辺監視区域境界から中央制御 室出入口までの運転員の移動経路を対象とし、入退域時の評価点は、線量結果が厳し くなる様、運転員の入退域時のアクセスルート中において原子炉建屋原子炉棟に近接 する屋外(建屋入口)とする。

炉心の著しい損傷が発生した場合の放射性物質の放出源と評価点の位置関係を図 5 に示す。

d. 評価対象方位

中央制御室のように、事故時の放射性物質の放出点から比較的近距離の場所では、建 屋の風下側における風の巻き込みによる影響が顕著になると考えられる。そのため、放 出点と巻き込みを生じる建屋及び評価点との位置関係によっては、建屋の影響を考慮し て拡散の計算を行う。

中央制御室の被ばく評価においては、放出点と巻き込みを生じる建屋及び評価点との 位置関係について、以下の条件すべてに該当した場合、放出点から放出された放射性物 質は建屋の風下側で巻き込みの影響を受け拡散し、評価点に到達するものとする。放出 点から評価点までの距離は、保守的な評価となるように水平距離を用いる。

- (a) 放出源の高さが建屋の高さの 2.5 倍に満たない場合
- (b) 放出源と評価点を結んだ直線と平行で放出源を風上とした風向 n について,放出源の位置が風向 nと建屋の投影形状に応じて定まる一定の範囲(図 4 の領域 A.n) の中にある場合
- (c) 評価点が、巻き込みを生じる建屋の風下にある場合

巻き込みを生じる代表建屋として、放出源から最も近く、影響が最も大きいと考えられる原子炉建屋をを選定する。そのため評価対象とする方位は、放出された放射性物質が原子炉建屋の巻き込み現象の影響を受けて拡散する方位及び原子炉建屋の巻き込み現象の影響を受けて拡散された放射性物質が評価点に届く方位の両方に該当する方位とす

る。具体的には,全 16 方位のうち以下の(a) \sim (b) の条件に該当する方位を選定し,すべての条件に該当する方位を評価対象とする。

- (a) 放出点が評価点の風上にあること。
- (b) 放出点から放出された放射性物質が、原子炉建屋の風上側に巻き込まれるよう な範囲に放出点が存在すること。
- (c) 原子炉建屋の風下側で巻き込まれた大気が評価点に到達すること。

評価対象とする方位は、原子炉建屋を見込む方位の範囲の両端が、それぞれの方位に 垂直な投影形状の左右に 0.5L (L は対象となる複数の方位の投影面積の中の最小面積と する) だけ幅を広げた部分を見込む方位を仮定する。

上記選定条件(b)の条件に該当する風向の方位の選定には、放出点が評価点の風上となる範囲が対象となるが、放出点は原子炉建屋に近接し、0.5Lの拡散領域の内部にあるため、放出点が風上となる180°を対象とする。その上で、選定条件(c)の条件に該当する風向の方位の選定として、評価点から原子炉建屋+0.5Lを含む方位を対象とする。

以上より、選定条件(a) \sim (c) の条件にすべて該当する方位は、本評価においては、評価点が中央制御室中心の場合で、放出源が原子炉建屋の場合は、9 方位 (S, SSW, SW, WSW, W, WNW, NW, NNW, NN NNW, NN NNW, NN NNW, NN となる。また、評価点が建屋入口の場合で、放出源が原子炉建屋の場合は、9 方位 (S, SSW, SW, WSW, W, WNW, NN NNW, NN となる。

なお、放出源が非常用ガス処理系排気筒の場合においては、放出源の高さが原子炉建屋の高さの 2.5 倍以上となることから建屋の影響を受けないものとして評価し、評価点が中央制御室中心及び建屋入口ともに W 方位となる。評価対象とする風向を図 6~図 9に示す。

e. 建屋投影面積

建屋投影面積は小さい方が厳しい結果となるため、対象となる複数の方位の投影面積 の中で最小面積を全ての方位の計算の入力として共通に適用する。

原子炉建屋の投影面積を図10に示す。

f. 形状係数

建屋の形状係数は 1/2*1 とする。

g. 累積出現頻度

中央制御室の居住性に係る被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い、実効放出継続時間を基に計算した値を年間について小さい方から順に並べたとき累積出現頻度 97 %^{※1}に当たる値を用いる。

※1 「発電用原子炉施設の安全解析に関する気象指針」昭和57年1月28原子力安全委員 会決定、平成13年3月29日一部改訂

大気拡散評価条件を表4に示す。

(7) 線量計算

炉心の著しい損傷が発生した場合の線量計算に当たっては、被ばく線量が最も厳しくなる運転員の勤務体系を踏まえて中央制御室内の滞在期間及び入退域に要する時間を考慮して評価する。想定する勤務体系を表 11 に示す。

入退域時の運転員の実効線量の評価に当たっては、周辺監視区域境界から中央制御室出入口までの移動を考慮して、線量結果が厳しくなるように建屋入口に 15 分間滞在するものとする。

a. 中央制御室内での被ばく

(a) 被ばく経路① 建屋内の放射性物質からのガンマ線による被ばく

原子炉建屋内に浮遊する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による運転員の実効線量は、施設の位置、建屋の配置及び形状等から評価する。

イ. 評価条件

(イ) 線源強度

炉心の著しい損傷が発生した場合における想定事故時の線源強度は、次のと おりとする。

炉心の著しい損傷が発生した場合に炉心から格納容器内に放出された放射性物質は、格納容器から原子炉建屋(二次格納施設)内に放出され、二次格納施設内の自由空間内に均一に分布するものとする。この二次格納施設内の放射性物質を直接ガンマ線及びスカイシャインガンマ線の線源とする。

評価に使用する積算線源強度を表 12 に示す。

ガンマ線エネルギ群構造は評価済核データライブラリ JENDL-3.3*1 から作成 した輸送計算用ライブラリ MATXSLIB-J33*2の42 群とする。

- 注記 *1:K. Shibata, et al., "Japanese Evaluated Nuclear Data Library Version 3 Revision-3: JENDL-3.3", J. Nucl. Sci. Technol., 39,1125 (2002)
 - *2:K. Kosako, N. Yamano, T. Fukahori, K. Shibata and A. Hasegawa, "The Libraries FSXLIB and MATXSLIB based on JENDL-3.3", JAERI-Data/Code 2003-011 (2003)

(口) 幾何条件

中央制御室内での被ばく評価に係る直接ガンマ線及びスカイシャインガンマ線の評価モデルをそれぞれ図11及び図12に示す。直接ガンマ線の線源範囲は、原子炉建屋の地下1階以上*1とし、保守的に各階の二次格納施設の東西南北最大幅をとることとする。スカイシャインガンマ線の線源範囲は、原子炉建屋運転階のみ*2とする。

原子炉建屋は保守的に二次遮蔽及び中央制御室遮蔽を考慮する。二次遮蔽及び中央制御室遮蔽において、評価で考慮する壁及び天井は、公称値からマイナ

ス側許容差(-5 mm)を引いた値とする。

注記 *1:地下階は外壁厚さが厚く、地面にも遮られるため十分無視できる。 ただし、原子炉建屋に関しては、中央制御室が隣接するため保守 的に地下1階を考慮する。

*2:原子炉建屋運転階の床はコンクリート厚さが厚く,下層階からの 放射線を十分に遮蔽している。したがって,建屋天井から放射 されるガンマ線を線源とするスカイシャインガンマ線の評価で は,下層階に存在する放射性物質からの放射線の影響は十分小さ いため、線源として無視できる。

直接ガンマ線の線源範囲は、原子炉建屋の地上1階以上*3とし、保守的に各階の管理区域の東西・南北最大幅をとることとする。

中央制御室は中央制御室遮蔽を考慮する。

なお、中央制御室遮蔽及び二次遮蔽は鉄筋コンクリートであるが、評価上コンクリートのみとし、コンクリート密度は東海第二発電所建設時の骨材(砂、砂利)配合記録より、日本建築学会建築工事標準仕様書・同解説「原子力発電所施設における鉄筋コンクリート工事(JASS 5N)」に基づき乾燥単位容積質量として評価した2.0 g/cm³とする。また、評価で考慮する壁は、公称値からマイナス側許容差(-5 mm)を引いた値とする。

注記 *3:地下階は外壁厚さが厚く、地面にも遮られるため十分無視できる。

(ハ) 評価点

室内作業時の評価点は、線量結果が厳しくなる様、線源領域である原子炉建屋原子炉棟に囲まれる図11に示す位置とした。

(二) 計算機コード

直接ガンマ線については、QAD-CGGP2Rコードを用い、スカイシャインガンマ線は、ANISN及びG33-GP2Rコードを用いる。

(b) 被ばく経路② (クラウドシャインガンマ線)

大気中に放出された放射性物質からのガンマ線による中央制御室内での運転員の外部被ばくは、以下により計算する。

イ. 線量計算

大気中放射性物質からの直接ガンマ線による中央制御室内作業時の実効線量は, 以下により評価する。

$$H_{\gamma} = \int_{0}^{T} K \cdot D/Q \cdot Q_{\gamma}(t) \cdot F \ dt$$

ここで,

H_v: 時刻 T までの放射性物質からの直接ガンマ線による外部被ばく

 (S_{V})

K: 空気カーマから実効線量への換算係数(1 Sv/Gv)

D/Q : 相対線量 (Gy/Bq)

 $Q_{\nu}(t)$: 時刻 t における大気への放射能放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

F:中央制御室遮蔽厚さにおける減衰率(-)

(c) 被ばく経路③

中央制御室内へ外気から取り込まれた放射性物質からのガンマ線による外部被ばく 及び放射性物質の吸入による内部被ばく線量は以下により評価する。

イ. 中央制御室内の放射性物質濃度計算

(イ) 計算式

中央制御室内の放射性物質濃度の計算に当たっては,以下の式を用いて,中央制御室換気系設備等を考慮した評価を実施する。

$$\begin{split} \frac{\mathrm{d}(\mathrm{V} \cdot \mathrm{C}_{\mathrm{i}}(\mathrm{t}))}{\mathrm{d}\mathrm{t}} &= (1 - \eta) \cdot \mathrm{C}_{\mathrm{i}}^{0}(\mathrm{t}) \cdot \mathrm{f}_{1} + \mathrm{C}_{\mathrm{i}}^{0}(\mathrm{t}) \cdot \mathrm{f}_{2} \\ &- \mathrm{C}_{\mathrm{i}}(\mathrm{t}) \cdot (\mathrm{f}_{1} + \mathrm{f}_{2} + \eta \cdot \mathrm{F}_{\mathrm{F}}) - \lambda_{\mathrm{i}} \cdot \mathrm{V} \cdot \mathrm{C}_{\mathrm{i}}(\mathrm{t}) \end{split}$$

ここで,

V:中央制御室内容積 (m³)

C_i(t) : 時刻 t における中央制御室内の核種 i の濃度 (Bq/m³)

η : チャコールフィルタの除去効率 (-)

 $C_i^0(t)$: 時刻 t における中央制御室換気系給気口での核種 i の濃度

 (Bq/m^3)

$$C_{\mathbf{i}}^{0}(t) = Q_{\mathbf{i}}(t) \cdot \chi / Q$$

 $Q_i(t)$: 時刻 t における大気への核種 i の放出率 (Bq/s)

χ/Q: 相対濃度 (s/m³)

f₁:中央制御室への外気取込量(m³/s)

f₂:中央制御室への外気リークイン量 (m³/s)

F_F: 再循環フィルタを通る流量 (m³/s)

λ; : 核種 i の崩壊定数 (s⁻¹)

(口) 事故時運転

炉心の著しい損傷が発生した場合においては、全交流動力電源喪失を想定し、 電源復旧の時間を考慮し、事故発生から 2 時間後に中央制御室フィルタ系ファ ンが起動する想定としている。また、外気を取り入れる場合は事故後運転員による外気取入れモード操作により隔離弁が開き、フィルタを介して外気を取り込む設計となっている。

(ハ) 中央制御室バウンダリ体積

中央制御室バウンダリ体積は、中央制御室、運転員控室等の中央制御室換気系設備の処理対象となる区画の体積を合計して保守的に 2800 m³とする。

(ニ) フィルタ除去効率

- (i) 中央制御室換気設備のよう素フィルタの効率は、設計上97 %以上期待できるが、評価上保守的に95 %とする。
- (ii) 中央制御室換気系設備の高性能粒子フィルタの効率は,設計上99.97 %以上期待できるが,評価上保守的に99 %とする。
- (ホ) 中央制御室換気設備フィルタユニットのフィルタ流量 中央制御室非常用給気ファンの起動により、流量は設計上期待できる値として 5100m³/h とする。

(へ) 空気流入量

中央制御室へのフィルタを通らない空気流入量は、換気率換算で設計上期待できる値として 1.0 回/h とする。

中央制御室内放射性物質濃度評価条件を表5に示す。

口. 線量計算

中央制御室内の放射能濃度により,以下の式を用いて外部被ばく及び内部被ば く線量を計算する。

(イ) 中央制御室内の放射性物質による外部被ばく

中央制御室は、容積が等価な半球状とし、半球の中心に運転員がいるものとする。中央制御室内に取り込まれた放射性物質のガンマ線による実効線量は、次式で計算する。

$$H_{\gamma} = \int_{0}^{T} 6.2 \times 10^{-14} \cdot E_{\gamma} \cdot C_{\gamma}(t) \cdot \{1 - e^{-\mu r}\} dt$$

ここで,

 H_{γ} : 時刻 T までの放射性物質からのガンマ線による外部被ばく線量 (Sv)

E_v : ガンマ線エネルギ (0.5 MeV)

C_y(t) : 時刻 t における中央制御室内の放射能濃度 (Bq/m³)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

ι 空気に対するガンマ線のエネルギ吸収係数

$$(3.9 \times 10^{-3} \text{ m}^{-1})$$

r : 中央制御室内空間と等価な半球の半径 (m)

$$r = \sqrt[3]{\frac{3 \cdot V}{2 \cdot \pi}}$$

(ロ) 中央制御室内の放射性物質の吸入による内部被ばく 中央制御室内の放射性物質の吸入による内部被ばくは,次式で計算する。

$$H_I = \int_0^T R \cdot H \infty \cdot C_I(t) dt$$

ここで,

H_I :よう素の内部被ばくによる実効線量 (Sv)

R : 呼吸率 (m³/s)

(成人活動時の呼吸率 1.2 m³/h)

H∞ :よう素(I-131)を1 Bq 吸入した場合の成人の実効線量

 $(2.0 \times 10^{-8} \text{ Sv/Bq})$

C_I(t) : 時刻 t における中央制御室内の放射能濃度 (Bq/m³)

(I-131等価量-成人実効線量係数換算)

b. 入退域時の被ばく

(a) 被ばく経路④

入退域時における建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による外部被ばくの評価方法は、被ばく経路①と同様である。ただし、入退域時は屋外を移動するため、スカイシャインガンマ線の評価には中央制御室遮蔽及び二次遮蔽のガンマ線の遮蔽効果を考慮しない。

(b) 被ばく経路⑤

入退域時における大気中へ放出された放射性物質からのガンマ線による外部被ばく 及び放射性物質の吸入による内部被ばくは以下により計算する。

イ. 線量計算

(イ) 放射性物質からのガンマ線による外部被ばく

大気中へ放出された放射性物質からのガンマ線による外部被ばくは,以下により計算する。

$$H_{\gamma} = \int_{0}^{T} K \cdot D/Q \cdot Q_{\gamma}(t) dt$$

ここで,

 H_{ν} : 時刻 T までの放射性物質からの直接ガンマ線による外部被ばく

線量 (Sv)

K: 空気カーマから実効線量への換算係数(1 Sv/Gy)

D/Q : 相対線量 (Gy/Bq)

 $Q_{\nu}(t)$: 時刻 t における大気への放射能放出率 (Bq/s)

(ガンマ線実効エネルギ 0.5 MeV 換算値)

(ロ) 放射性物質の吸入による内部被ばく

大気中へ放出された放射性物質の吸入による内部被ばくは、次式で計算する。

$$H_I = \int_0^T R \cdot H \infty \cdot \chi / Q \cdot Q_I(t) dt$$

ここで,

H_I:時刻 T までの放射性物質の吸入による内部被ばく(Sv)

R : 呼吸率 (m³/s)

(成人活動時の呼吸率 1.2 m³/h)

H∞ :よう素(I-131)を1 Bq 吸入した場合の成人の実効線量

 $(2.0 \times 10^{-8} \text{ Sv/Bq})$

χ/Q : 相対濃度 (s/m³)

 $Q_l(t)$: 時刻 t における大気への放射性物質の放出率 (Bq/s)

(I-131等価量-成人実効線量係数換算)

線量計算条件を表6に示す。

(8) 線量の合算及び判断基準との比較

被ばく経路ごとの線量を合算し、居住性に係る被ばく評価の判断基準 100mSv と比較する。

2. 評価条件及び評価結果

炉心の著しい損傷が発生した場合における条件は、「1. 評価方針」に示すとおりであり、大気中への放射性物質の放出過程、中央制御室内の滞在期間及び入退域に要する時間並びに中央制御室換気空調設備の起動時間等の条件を考慮して、以下のとおり線量を評価する。

(1) 大気中への放出量の評価

大気中に放出される放射性物質の量は、審査ガイドに従い設定する。放射性物質の大気 放出過程を図 14~図 17 に示す。放射性物質の大気中への放出量評価に関する条件を表 7 に示す。

a. 有効性評価におけるソースターム解析結果

有効性評価におけるソースターム解析結果として、1. (2)項の想定事象で示した事故シーケンス「過渡事象+高圧炉心冷却失敗+原子炉減圧失敗+炉心損傷後の原子炉減圧失敗 (+DCH)」(全交流動力電源喪失の重畳を考慮)を想定し、格納容器から原子炉建屋への漏えい及び原子炉建屋から大気中への放出を考慮して実施したMAAP解析結果を使用する。

被ばく評価においては、本評価から得られるMAAP解析結果の、格納容器への放出 割合、格納容器から原子炉建屋への漏えい割合及び格納容器圧力逃がし装置への放出割 合のトレンドを使用する。

b. よう素の化学形態

よう素の化学形態は、下記を使用する。

	よう素の化学形態*1
有機よう素	4 %
無機よう素	91 %
粒子状よう素	5 %

注記 *1:R.G.1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors"

c. 格納容器内での自然沈着

CSE 実験*2 に基づき,無機よう素の格納容器内での自然沈着率を 9×10^{-4} (1/s) と設定し,カットオフ DF200 後は自然沈着の効果を見込まない評価とする。本事故シーケンスでは,格納容器内の無機よう素の存在量が 1/200 になる時間は,事故後 4.6 時間となるため,4.6 時間までは自然沈着率 9×10^{-4} (1/s) を適用し,それ以降は無機よう素の自然沈着がないものとして評価する。

注記 *2:R.K. HILLIARD, A.K. POSTMA, J.D. McCORMACK and L.F. COLEMAN, "Removal of iodine and particles by sprays in the containment systems experiment", Nuclear Technology, Vol. 10, p.499-519, April 1971

d. サプレッションチェンバのプール水による除去

サプレッションチェンバのプール水による無機よう素の除染係数は、NUREG-0800* 3 を 参考として DF=10 を仮定する。

注記 *3: NUREG-0800 Standard Review Plan 6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", Rev. 1, 3/2007.

(2) 大気拡散の評価

放射性物質の大気拡散評価に関する条件を以下に示す。

- a. 実効放出継続時間は、評価結果が厳しくなるように、全核種1時間とする。
- b. 放出源高さは、事故シーケンスに応じて、非常用ガス処理系排気筒放出時は排気筒 高さ、原子炉建屋漏えい時は地上とする。

大気拡散評価条件の詳細について、表9に示す。

また、これら条件による相対濃度及び相対線量の評価結果を表 10 に示す。

(3) 線量評価

運転員勤務体系としては、5 直 2 交替とし、被ばく線量が最も厳しくなる運転員の勤務体系を踏まえて中央制御室の滞在期間及び入退域に要する時間を考慮して評価する。想定する勤務体系を表 11 に示す。

- a. 中央制御室内での被ばく
 - (a) 被ばく経路① 建屋からの直接ガンマ線及びスカイシャインガンマ線による外部被 ばく

直接ガンマ線及びスカイシャインガンマ線の評価に使用する線源強度を表 12 に示す。

(b) 被ばく経路② 大気中に放出された放射性物質からのガンマ線による外部被ばく (クラウドシャインガンマ線)

大気中へ放出される放射性物質を線源として、中央制御室遮蔽厚さ(コンクリート39.5 cm)における減衰率を考慮し計算する。減衰率は、QAD-CGGP2Rコードにより計算する。

(c) 被ばく経路② 大気中に放出された放射性物質からのガンマ線による外部被ばく (グランドシャインガンマ線)

大気中へ放出され地表面に沈着した放射性物質からのガンマ線(グランドシャイン)による、中央制御室内での運転員の実効線量は、評価期間中の大気中への放射性物質の放出量を基に大気拡散効果、地表沈着効果及び中央制御室遮蔽による減衰効果を考慮して評価する。

イ. 地表面沈着濃度の計算

(イ) 計算式

$$S_o^i(t) = \frac{V_G \cdot \chi / Q \cdot f \cdot Q_i(t)}{\lambda_i} \cdot \left(1 - e^{-\lambda_i \cdot t}\right)$$
5-15

ここで,

 $S_o^i(t)$: 時刻 t における核種 i の地表面沈着濃度(Bq/m²)

 V_G : 沈着速度 (m/s) χ/Q : 相対濃度 (s/m^3)

f : 沈着した放射性物質のうち残存する割合(1.0) $Q_i(t)$: 時刻 t における核種 i の大気への放出率(Bq/s)

λ_i :核種 i の崩壊定数(s⁻¹)

(ロ) 地表面への沈着速度

放射性物質の地表面への沈着評価では、地表面への乾性沈着及び降雨による湿性沈着を考慮して地表面沈着濃度を計算する。地表面への沈着速度の条件を表 13 に示す。

沈着速度は、有機よう素は NRPB-R322*1を参考として 0.001 cm/s, 有機よう素以外は NUREG/CR-4551*2を参考として 0.3 cm/s と設定し、湿性沈着を考慮した沈着速度は、線量目標値評価指針の記載(降水時における沈着率は乾燥時の 2~3 倍大きい値となる。)を参考に、保守的に乾性沈着速度の 4 倍として、有機よう素は 0.004 cm/s, 有機よう素以外は 1.2 cm/s を設定する。

注記 *1:NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99

* 2 : J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, NUREG/CR-4551 Vol. 2 Rev. 1 Part 7, 1990

口. 線量計算

(イ) 線源強度

炉心の著しい損傷が発生した場合に,大気中へ放出され建屋屋上に沈着した放射性物質を線源とし、線源は建屋屋上に均一分布しているものとする。

なお、評価に使用する積算線源強度は表14に示す。

(口) 幾何条件

グランドシャイン評価モデルを図 18 に示す。グランドシャインの線源は、中央制御室と隣接建屋の屋上に沈着した放射性物質である。この線源の大きさは 800 m×800 m*とする。なお、地表面の線源は、建屋の床・天井・壁で遮蔽され影響は小さいが、屋上面に線源が存在するものとして取り扱う。

中央制御室遮蔽で考慮する天井及び壁は,公称値からマイナス側許容差(-5 mm) を引いた値とする。

(ハ) 評価点

評価点は、遮蔽効果が小さく線源からの距離が近い位置として、線量が最も厳しくなる天井の線源の影響が最大となりかつ同一フロアの線源に最も近接する

位置とする。

(二) 計算コード

グランドシャインは、QAD-CGGP2Rコードを用い評価する。

(d) 被ばく経路③ 外気から室内に取り込まれた放射性物質による被ばく

評価期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内に取り込まれる。中央制御室内に取り込まれた希ガスのガンマ線による外部被ばく及びよう素の吸入摂取による内部被ばくの和として実効線量を評価する。

中央制御室内の放射性物質濃度の計算に当たっては、以下に示す中央制御室換気系設備等の効果を考慮して評価を実施する。中央制御室換気系設備等条件を表 15 に示す。

- イ. 中央制御室非常用給気ファンの起動時間については、全交流電力電源喪失及び電源回復操作並びに現場での手動によるダンパ開操作を想定した起動遅れ(事故発生後120分)を考慮し、流量3400m³/hの中央制御室非常用給気ファンの起動を想定する。
- ロ. 炉心損傷が予測される状態となった場合又は炉心損傷の徴候が見られた場合は、 全面マスク等を着用するため、一部の期間についてマスク着用しているものとし て評価する。このとき、マスクの除染係数は50とする。

b. 入退域時の被ばく

(a) 被ばく経路④ 建屋からの直接ガンマ線及びスカイシャインガンマ線による外部被 ばく

直接ガンマ線及びスカイシャインガンマ線の評価に使用する線源強度を表 16 に示す。

(b) 被ばく経路⑤ 大気中に放出された放射性物質からのガンマ線による外部被ばく (グランドシャインガンマ線)

入退域時における大気中へ放出され地表面に沈着した放射性物質からのガンマ線 (グランドシャイン)による外部被ばくの評価方法は、被ばく経路②と同様であるが、 入退域時は中央制御室遮蔽外を移動するため、中央制御室遮蔽を含めた建屋壁のガンマ線の遮蔽効果は考慮しない。異なる条件を以下に示す。

① 大気中へ放出され地表面に沈着した放射性物質を線源とし、線源は地表面に 均一分布しているものとする。

なお、評価に使用する積算線源強度は表 17 に示す。

- ② 各建屋によるグランドシャインの遮蔽効果を期待しない。
- ③ 評価点は図19に示す線源領域の中心上とする。
- 注記 *: JAEA-Technology 2011-026「汚染土壌の除染領域と線量低減効果の検討」において評価対象から 400 m離れた位置の線源が及ぼす影響度は1 %以下である。これより、評価点から片側 400 mまで線源領域とし、グランドシャインを面線源からの被ばくと想定する場合は、全体の線源領域として 800 m×800 mを設

定した。

(4) 被ばく評価結果

炉心の著しい損傷が発生した場合にブローアウトパネルが開放を考慮し、炉心損傷時及 びブローアウトパネル開放時に中央制御室に滞在する場合(A班)における中央制御室の 居住性に係る被ばく評価結果を表 18 に示す。

この結果, 炉心の著しい損傷が発生した場合の中央制御室の運転員に及ぼす実効線量は, ブローアウトパネル閉止装置の開放を考慮した場合で約 31 mSv であり, ブローアウトパネル閉止装置の開放を考慮しない場合の約 28 mSv に対して有意な上昇はない。また, 実効線量への寄与としては室内に外気から取り込まれた放射性物質による被ばくのうち内部被ばくの影響が大きく, 大気中へ放出された放射性物質による実効線量への影響は軽微である。

さらに、居住性評価の対象ケース(大破断LOCA)の評価結果に包絡されており、本評価では、保守的に1時間の開放を仮定しているが、実際の再閉止操作時間は速やかに実施可能なことから、中央制御室の運転員に及ぼす実効線量は更に緩和されることから、ブローアウトパネル閉止装置が開放した場合においても、速やかに閉止操作を行うことで、中央制御室の居住性への影響はない。

表1 評価事象に係る条件

項目	評 価 条 件	選定理由	備考
事故の 評価期間	事故後7日間	解釈に基づき評価期間を設定	解釈 1 b) ④ 判断基準は,運 転員の実効線量が7日間 で 100mSv を超えないこ と。
評価事象	過渡事象時に高圧炉心 冷却及び低圧炉心冷却 失敗に失敗する事故 全交流電力電源喪失を 考慮する。	起因事象としてブローア ウトパネルが開放する 主蒸気管破断を含む事 故シーケンスとして選 定	ブローアウトパネル閉 止装置の開放影響を評 価するため

表 2 炉心内蓄積量計算条件

項目	評 価 条 件	選定理由	備考
炉心熱出力	3293MWt	定格値	審査ガイド 4.3.(1)a. 原子炉格納容器内への 放射性物質の放出割合 は,4.1.(2)aで選定した 事故シーケンスのソー スターム解析結果を基 に設定する。
運転時間	1 サイクル: 10000h 2 サイクル: 20000h 3 サイクル: 30000h 4 サイクル: 40000h 5 サイクル: 50000h	1 サイクル 13 ヶ月 (395 日) を考慮して,燃 料の最高取出 燃焼度に余裕 を持たせ長め に設定	_
取替炉心の燃料装 荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃 料装荷割合に 基づき設定	_

表 3 炉心内蓄積量

核種グループ	炉内蓄積量(Bq) (gross 値)
希ガス類	約 2. 2×10 ¹⁹
よう素類	約 2.8×10 ¹⁹
CsOH類	約 1.1×10 ¹⁸
Sb類	約 1. 3×10 ¹⁸
T e O 2類	約 6.7×10 ¹⁸
SrO類	約 1.2×10 ¹⁹
ВаО類	約 1.2×10 ¹⁹
MoO₂類	約 2.4×10 ¹⁹
CeO ₂ 類	約 7.4×10 ¹⁹
La ₂ O ₃ 類	約 5.5×10 ¹⁹

表 4 大気拡散評価条件 (1/6)

項目	評 価 条 件	選 定 理 由	備考
- K H	ні Щ 🔨 ГТ		被ばく評価手
大気拡散評価モデル	ガウスプルームモデル	気象指針を参考として,放射性雲は風放射性雲の軸のまわりに流され,がに要の軸のまからではがってがかってがでででででででででである。 と近くでは、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は	法(内規) 5.1.1(1)a)1) 大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大
気象資料	東海第二発電所における1年間の気象資料 (2005.4~2006.3) (地上風を代表する標高18m及び排気筒付近を 代表する標高148mの気象データ)	建屋影響を受ける場合を受ける場合を受ける場合を受ける場合を受ける場合を受ける場合を受ける場合をできます。 18m)の気をできます。 18m)の気をできます。 148m の気をできまり。 148m のようなをできまり。 148m のようなをできませる。 15を 15を 16を 16を 16を 16を 16を 16を 16を 16を 16を 16	適用 (内) (内) (内) (同) (同) (同) (同) (同) (同) (同) (同) (同) (同

表 4 大気拡散評価条件(2/6)

項目	評 価 条 件	選 定 理 由	備考
累積出現 頻度	小さい方から 97 %	気象指針を参考として、年間の相対濃度又は相対線量を昇順に並べ替え、累積出現頻度	被ばく評価手法(内規) 5.2.1(2) 評価・の相対 濃度は,毎時刻の相対濃度を年間について小さい方から累積した場合, その累積出現頻度が 97%に当たる相対濃度 とする。 審査ガイド
		が 97 %に当たる値を 設定	4.2(2)c. ・評価点の相対濃度又は相対線量は、毎時刻の相対濃度又は相対線量を年間について小さい方から累積した場合、その累積出現頻度が97%に当たる値とする。被ばく評価手法(内規)
建屋影響	考慮する	放出点から近距離の建 屋の影響を受けるた め,建屋による巻き込 み現象を考慮	5.1.2(1)a) 中央制御 中央時のように、事間の 事出りに、事間の 事出りに、事出の がらでは物質の がのの がのででででである。 をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといるの をといる。 をといるの をといる。 をといると をといる。 をといるの をといる。 といる。 といる。 といる。 といる。 といる。 といる。 といる。
			審査ガイド 4.2(2)a. ・原子炉制御室/緊急時 制御室/緊急時対策所 の居住性評価で特徴的 な放出点から近距離の 建屋影響を受ける巻き込 には、建屋による巻き込 み現象を考慮した大気 拡散によるパラメータ を用いる。

表 4 大気拡散評価条件 (3/6)

項目	評 価 条 件	選定理由	備考		
7K FI	可	丛 化 生 田	被ばく評価手法(内規)		
			5.1.2(3)a)3) 巻き込		
			みを生じる代表的な建 屋として,表5.1に示す		
			建屋を選定することは		
) 選座を選定りることは 適切である。		
			表 5.1 放射性物質の巻		
			き込み対象とす		
			る代表建屋の選		
			定例		
			原		
			子 想定 オロの紙板		
			炉 _{東坎} 建産の種類		
			他		
			設		
			原子原子炉建屋		
			DWR 炉冷 (建屋影響 BWR たります。 ままままままままままままままままままままままままままままままままままま		
		放出源から最も近く,巻 き込みの影響が最も大 きいと考えられる一つ	型 却材 がある場		
			原要集合)		
	原子炉建屋		原子炉他建 屋又はター		
			炉 王燕 ゼン 建 艮		
巻き込み		の建屋として選定			
を生じる		また,建屋投影面積が小さい方が保守的な結果	設 破断 しい方で代		
代表建屋			表)		
		を与えるため、単独建屋	原子炉格納		
		として設定	容器(原子		
			原 炉 格 納 施		
			原子(設)		
			_{DWD} _{車生} 谷畚(原子		
			設)及び原		
			子炉建屋)		
			4 // / / / / / / / / / / / / / / / / /		
			審査ガイド		
			4. 2(2)b.		
			・巻き込みを生じる代		

	表建屋
	2) 巻き込みを生じる建
	屋として,原子炉格納容
	器,原子炉建屋,原子炉
	補助建屋、タービン建
	屋, コントロール建屋及
	び燃料取扱い建屋等,原
	則として放出源の近隣
	に存在する全ての建屋
	が対象となるが, 巻き込
	みの影響が最も大きい
	と考えられる一つの建
	屋を代表建屋とするこ
	とは、保守的な結果を与
	える。

表 4 大気拡散評価条件(4/6)

項目	評 価 条 件	選定理由	備考
放射質度価や物では、	【中央制御室内】 中央制御室中心 【入退域時】 建屋入口	「大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大大	被【5.のけ室の存と点はす御す【7.のに卜路点すにを 審【4.点価3)影原制の濃性と点は「無評制3)込合すは小ら密屋、合中は域5)経るにつ滞こてし イ制5.のは建下くの定面えぞで 入びを、切間合物なり、 とり、 とり、 とり、 とり、 とり、 とり、 とり、 とり、 とり、 と

表 4 大気拡散評価条件(5/6)

		選 定 理 由	備考
着目方位	原子炉建屋漏えい 中央制御室 S, SSW, SW, WSW, W, WNW, NW, N NW, N (9 方位) 建 屋 入 ロ S, SSW, SW, WSW, W, WNW, NW , NNW, N (9 方位) 非常用ガス処理系排気筒 からの制御室 W (1 方位) 建屋入口 W (1 方位)	展達して、 一様、 一様、 一様、 一様、 一様、 一様、 一様、 一様	では、1.2(3)による。 (中の風)というには、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いでは、大いで

表 4 大気拡散評価条件(6/6)

	2 - 2 2 (West Death Death 1 1 - 2 - 2			
項目	評 価 条 件	選定理由	備考	
建屋投影面積	$3000 \mathrm{m}^3$	建屋投影面積は小さい方が 厳しい結果となるため,対 象となる複数の方位の投影 面積の中で最小面積(原子 炉建屋,短手方向)となる南 (北)方向の断面積を切り 下げた数値を全ての方位の 計算の入力として共通に適 用する。	被ばく評価手法(内規) 5.1.2(3)d)1) 図 5.9 に示すとおり,風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を求めるために大気拡散の入力とする。 審査ガイド4.2(2)b. ・建屋投影面積1)図10に示すとおり,風向に垂直な代表建屋の投影面積を求め,放射性物質の濃度を求めるために大拡散式の入力とする。	
形状係数	1/2	気象指針を参考として設定	被ばく評価手法(内規) 5.1.1(2)d) 形状係数 c の値は,特に根拠が示されるもののほかは原則として1/2を用いる。 審査ガイド	

表 5 中央制御室内放射性物質濃度評価条件(1/3)

項目	評 価 条 件	選定理由	備考
事故時に おかる を 気 り り み	[非常時運転モード] 外気間欠取入 (27時間隔離,3時間 取入) [外気取り込み量] (通常時)3400m³/h (事故時)3400m³/h [非常時運転モードへ の切り替え時間] 事故後2時間	事故後,中央制御室換 気が開かまな 間がない。 ではないでは では では では では では では では では では では では では で	被ばく評価手法 (内規) 7.3.2(1) 建屋の表面空気中から,次の a)及びb)の経路で放射性物質が外気から取り込まれることを担定する。 a) 中央制御室の非常用換気空調によって室内に取入れること 中央制御室内に直接,流入すること 中央制御室内に直接,流入すること 「中央制御室」との表面空気中がられることを明子がの二のの経路でで放射性物質が多気があることを仮する。一)原子炉制御室」を明神気を明神気を明神気を明神気を明神気を明神気を明神気を明神気を明神気を明神気
中央制御室 バウンダリ 体積	$2800\mathrm{m}^3$	中央制御室, 運転員控 室等の中央制御室換 気空調設備の処理対 象となる区の体積を 合計して保守的に きめに設定(図 21 参 照)	被ばく評価手法(内規) 7.3.2(7)a) 中央制御室内への取り 込み空気放射能濃度に基づき,空調 システムの設計に従って中央制御 室内の放射能濃度を求める。 審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれる放射 性物質の空気流入量は,空気流入率 及び原子炉制御室/緊急時制御/緊急時対策所バウンダリ体積(容積)を用いて計算する。

表 5 中央制御室内放射性物質濃度評価条件(2/3)

項目		前側至内放射性物質振度 選 定 理 由	備考
項目	評価条件	選定理由	ヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶヶ
外部ガンマ線による全		保守側に中央制御室	7.3.4(3)b) ガンマ線による被ばくの計算では、中央制御室と異なる階層部分のエンベロー ブについて、階層間の天井等による遮へいがあるので、中央制御室の容積から除外してもよい。
身に対する 線量評価時 の自由体積	2800m³	バウンダリ体積を設定	審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊急時対策所内に取り込まれる放射性物質の空気流入量は,空気流入率及び原子炉制御室/緊急時制御室/緊急時対策所バウンダリ体積(容積)を用いて計算する。
中央制御室 換気チャコールタによる 除去効率	[炉心の著しい損傷が 発生した場合] 95 %	設計値(97 %以上)に 余裕を見込んだ値と して設定	審査ガイド 4.2(1)a. よう素類及びエアロゾルのフィルタ効率は、使用条件での設計値を 基に設定する。
中央制御室 換気子フよる ルタカン 除去効率	[炉心の著しい損傷が 発生した場合] 99 %	設計値 (99.97 %以 上) に余裕を見込んだ 値として設定	なお,フィルタ効率の設定に際しては,ヨウ素類の性状を適切に考慮すう。
中央制御室換気が備フィルタ流量	5100m³/h	設計上期待できる値を設定	被ばく評価手法 (内規) 7.3.2(7)a) 中央制御室内への取り 込み空気放射能濃度に基づき,空調 システムの設計に従って中央制御室内の放射能濃度を求める。 審査ガイド 4.2(2)e. ・原子炉制御室/緊急時制御室/緊急時対策所内への外気取入による 放射性物質の取り込みについては,非常用換気空調設備の設計及び転 条件に従って計算する。

表 5 中央制御室内放射性物質濃度評価条件 (3/3)

項目	評 価 条 件	選定理由	備考
空気流入率	1. 0 回/h	設計上期待できる値を設定	被ばく評価手法(内規) 7.3 (1) なお,中央制御室の空気流入率については,「原子力発電所の中央制御室の空気流入率測定試験手法」に従うこと。 審査ガイド4.2(2)e. 既設の場合では,空気流入率は,気流入率測定試験結果を基に設定する。

表 6 線量計算条件

	1	えり 線重計算条件	
項目	評 価 条 件	選定理由	備考
線量換算 係数	成人実効線量換算係数を使用(主な核種を以下に示す) I-131:2.0×10 ⁻⁸ Sv/Bq I-132:3.1×10 ⁻¹⁰ Sv/Bq I-133:4.0×10 ⁻⁹ Sv/Bq I-134:1.5×10 ⁻¹⁰ Sv/Bq I-135:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq Cs-134:9.2×10 ⁻¹⁰ Sv/Bq L記以外の核種は ICRP Pub. 71, 72 に基づく	ICRP Publication 71,72に基づく	
呼吸率	1. 2m³/h	成人活動時の呼吸 率を設定 ICRP Publication 71に基づく	被ばく評価手法(内規) $7.3.3(4)$ 吸入摂取による運転員の内部被ばく線量は,次のとおり計算する。 $H_I = \int_0^T R \cdot H_\infty \cdot C_I(t) dt$ $H_I: よう素の吸入摂取の内部被ばくによる実効線量(Sv)R: 呼吸率(成人活動時)(m^3/s) H_\infty: よう素 (I-I31) 吸入摂取時の成人の実効線量への換算係数(Sv/Bq) C_I(t): 時刻 t における中央制御室内の放射能濃度(I-I31等価量)(Bq/m^3) T:計算期間(30日間)(S)$

表7 大気中への放出量評価条件(1/4)

項目	評 価 条 件	選定理由	審査ガイドの記載
評価事象	「過渡事象+高圧炉心冷 却失敗+原子炉減圧失敗+ 炉心損傷後の原子炉減圧失 敗(+DCH)」(全交流電 力電源喪失の重畳を考慮)	起因事象としてブローアウトパネ気 で破断を含む事故 シーケンスとして 選定	ブローアウトパネル閉止装置の開放影響を評価するため
炉心熱出力	3293MW	定格熱出力	_
運転時間	1 サイクルあたり 10000 時間(約 416 日)	1 サイクル 13 ヶ月 (395 日) を考慮し て設定	_
取替炉心の装 荷割合	1 サイクル: 0. 229 2 サイクル: 0. 229 3 サイクル: 0. 229 4 サイクル: 0. 229 5 サイクル: 0. 084	取替燃料炉心の燃 料装荷割合に基づ き設定	
炉心内蔵量	希ガス類 : 2.2× 10 ¹⁹ Bq	「単位熱出力当積 × 熱 出力 当 積 × 熱 (Bq/MW)」 「 3293MW (定	4.3.(1)a. 希ガス類,ヨウ素類, Cs類, Te類, Ba類, Ru類, Ce類及びLa類を考慮する。
放出開始時間	事故発生直後	MAAP解析結果	4.3.(4)a. 放射性物質の大 気中への放出開始時刻及び放 出継続時間は,4.1(2)a.で選 定した事故シーケンスのソー スターム解析結果を基に設定 する。

表7 大気中への放出量評価条件(2/4)

表 7 大気中への放出量評価条件 (2/4)			
項目	評 価 条 件	選定理由	審査ガイドの記載
格納容器内 p H制御の効果	考慮しない	格納容器内 p H制 御設備は, 重大事 故等対処設備と位 置付けていないた め, 保守的に設定	4.3(1)a. 原子炉格納容器への放出割合の設定に際し,ヨウ素の性状を適切に考慮する。
よう素の形態	粒子状よう素: 5 % 無機よう素 : 91 % 有機よう素 : 4 %	R.G.1.195* ¹ に 基づき設定	4.3(1)a. 原子炉格納容器への放出割合の設定に際し,ヨウ素類の性状を適切に考慮する。
格納容器から原建屋への漏えい率(希ガス,エアロゾル及び有機よう素)	1Pd 以下: 0.9Pd で 0.5 %/日 1PD 超過: 2Pd で 1.3 %/日	MAAP解析にて 格納容器の開口格納容 意定し格納漏を設定応化 のとし、格別のとし、 の設計漏でのものの設計漏でのの ののではでいる。 (0.9pdでの、5 (1)の式等に基づると での式等に をしている。 での式等に をしている。 での式等に をしている。 でのました。 でのまた。 での。 での。 での。 での。 との。 での。 での。 との。 での。 での。 での。 での。 での。 での。 での。 での。 で。 で。 での。 との。 で。 での。 との。 での。 と。 での。 と。 で。 と。 で。 と。 で。 と。 で。 と。 で。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。 と。	4.3(1)e. 原子炉格納容器漏 えい率は,4.1(2)a.で選定し た事故シーケンスの事故進展 解析結果を基に設定する。
格納容器から原子炉建屋への漏えい率(無機よう素)	5.5h後~10h後: 1.3 %/日 上記以外の時間: 0.5 %/日	格納容器の設計漏 えい率及びAEC の式等に基づき設 定(格納容器圧力 が 0.9Pd を超える 期間を包絡するよ うに1.3 %/日の 漏えい率を設定)	
格納容器内での除去効果(エアロゾル)	MAAP解析に基づく(沈 着, サプレッション・プー ルでのスクラビング及びド ライウェルスプレイ)	MAAPのFP挙 動モデル	4.3(3)c. 原子炉格納容器スプレイの作動については, 4.1(2)a.で選定した事故シーケンスの事故進展解析条件を基に設定する。 4.3(3)d. 原子炉格納容器内の自然沈着率については,実験等から得られた適切なモデルを基に設定する。
格納容器内で の除去効果(有 機よう素)	考慮しない	保守的に設定	_
格納容器内で の除去効果 (無	自然沈着率:9×10 ⁻⁴ (1/s) (格納容器内の最大存在量 から1/200まで)	CSE実験及び Standard Review Plan 6.5.2*2に基 づき設定	4.3(3)d. 原子炉格納容器内の自然沈着率については,実験等から得られた適切なモデルを基に設定する。
機よう素)	サプレッション・プールの スクラビングによる除去効 果 : 10	Standard Review Plan 6.5.5*3に基 づき設定	_

表7 大気中への放出量評価条件 (3/4)

		1~の放出重評価条件	
項目	評 価 条 件	選定理由	審査ガイドの記載
格納容器から原子炉建屋への漏えい割合	希ガス類 : 4.3×10^{-3} CsI 類 : 6.3×10^{-5} $CsOH$ 類 : 3.2×10^{-5} Sb 類 : 6.8×10^{-6} TeO_2 類 : 6.8×10^{-6} SrO 類 : 2.7×10^{-6} BaO 類 : 2.7×10^{-6} MoO_2 類 : 3.4×10^{-7} CeO_2 類 : 6.8×10^{-8} La_2O_3 類 : 2.7×10^{-8}	MAAP解析結果及 び NUREG-1465*4 の 知見に基づき設定	_
原子炉建屋かまた、	無限大/日(地上放出) (格納容器から原子炉 建屋へ漏えいした放射性 物質は、即座に大気へ漏 えいするものとして評 価)	保守的に設定	_
原子炉建屋かか 出率 (非常用が ス処理 用が 及	1回/日(排気筒放出)	設計値に基づき設定 (非常用ガス処理系 のファン容量)	4.3(3)a. 非常用ガス処理系
非常用ガス処理系及び非常用ガス再循環系の起動時間	ブローアウトパネル閉止 装置の開放を仮定する場合: 事故発生から2時間20分 ブローアウトパネル閉止 装置の開放を仮定しない 場合: 事故発生から2時間	起動操作時間 (115 分) +負圧達成時間 (5分)(起動に伴い 原子炉建屋は負圧に なるが,保守的にて を想定) ブローアウトパネル 閉止装置開か時間と して20分を考慮*	(BWR) 又はアニュラス空 気浄化設備 (PWR) の作動 については, 4.1(2)a.で選定 した事故シーケンスの事故進 展解析条件を基に設定する。
非常用ガス処理系及び非常用ガス再循環系のフィルタ除去効率	考慮しない	保守的に設定	4.3(3)b. ヨウ素類及びエアロゾルのフィルタ効率は、使用条件での設計値を基に設定する。なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮する。
ブローアウト パネルの開閉 状態	開状態	原子炉建屋の急激な 圧力上昇等によるブローアウトパネルの 開放を考慮	_

[※] ブローアウトパネル開放時にブローアウトパネル閉止装置を閉止するまでの時間は約 17 分であり、再閉止時には更に短期間で閉止が可能となるが、影響評価として 20 分の開放を考慮している。

表7 大気中への放出量評価条件(4/4)

項目	評 価 条 件	選定理由	審査ガイドの記載
I/ I/- I/-		審査ガイドに示す 7日間における運	3. (解釈) 第 74 条 (原子炉制 御室)
事故の評価期 間	7日間	転員の実効線量を	1 b) ④判断基準は,運転員の実効線量が7日間で
		設定	100mSv を超えないこと。

- 注記 *1:R.G.1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Ligth Water Nuclear Power Reactors"
 - *2:Standard Review Plan 6.5.2, "Containment Spray as a Fission Product Cleanup System", March 2007
 - *3: Standard Review Plan 6.5.5, "Pressure Suppression Pool as a Fission Product Cleanup System", March 2007
 - $\mathbf{*4}: \mathtt{NUREG-1465}$ "Accident Source Terms for Light-Water Nuclear Power Plants", 1995

表8 大気中への放出量評価結果(事故後7日間積算)

(単位:Bq)

	原子炉建屋から大気中へ放出		
核種グループ	ブローアウトパネル閉止装置が	ブローアウトパネル閉止装置が	
	開放する場合	開放しない場合	
希ガス類	約 1. 2×10 ¹⁷	約 1.2×10 ¹⁷	
よう素類	約 5. 2×10 ¹⁵	約 5. 2×10 ¹⁵	
CsOH類	約 8. 1×10 ¹⁰	約 8. 1×10 ¹⁰	
Sb類	約 4. 4×10 ¹⁰	約 4. 2×10 ¹⁰	
TeO2類	約 8. 5×10 ¹⁰	約 8. 4×10 ¹⁰	
SrO類	約 1.1×10 ⁸	約 1.1×10 ⁸	
ВаО類	約 4.4×10 ⁸	約 4.4×10 ⁸	
M o O 2類	約 3.7×10 ⁹	約 3.7×10 ⁹	
CeO ₂ 類	約 1.9×10 ⁸	約 1.9×10 ⁸	
La ₂ O ₃ 類	約 3.6×10 ⁷	約 3.5×10 ⁷	

表 9 大気拡散評価条件

項目	評 価 条 件	選定理由	審査ガイドでの記載
実効放出 継続時間	全核種:1 時間	保守的に最も短 い実効放出継続 時間を設定	4.2(2)c. 相対濃度は、短時間放出又は長時間放出に応じて、毎時刻の気象項目と実効的な放出継続時間を基に評価点ごとに計算する。
放出源及び 放出源高さ	原子炉建屋漏えい(地上放出) 地上:0m 非常用ガス処理系排気筒からの放出 地上:95m	排気筒放出は有 効高さ,地上放 出時は地上高さ を使用	4.3(4)b. 放出原高さは, 4.1(2)a.で選定した事故シーケンスに応じて放出口からの放出を仮定する。4.1(2)a.で選定した事故シーケンスのソースターム解析結果を基に放出エネルギーを考慮してもよい。
大気拡散評価 地点及び評価 距離	原子炉建屋漏えい 中央制御室中心 評価距離:10 m 建屋入口 評価距離:15 m 非常用ガス処理系排気筒からの放出 中央制御室中心 評価距離:100 m 建屋入口 評価距離:110 m	放出源から評価 点までの距離 は、保守的な評 価となるように 水平距離として 設定	_

表 10 相対濃度及び相対線量の評価結果

放出位置		中央制御室中心	建屋入口
百乙烷炔艮	χ / Q (s/m^3)	8. 3×10 ⁻⁴	8. 2×10 ⁻⁴
原子炉建屋	D/Q (Gy/Bq)	2.9×10^{-18}	2.9×10^{-18}
非常用ガス処理系	χ / Q (s/m^3)	3.0×10^{-6}	3.0×10^{-6}
排気筒	D/Q (Gy/Bq)	8. 8×10 ⁻²⁰	9. 0×10^{-20}

表 11 運転員交替考慮条件(炉心の著しい損傷が発生した場合)

	中央制御室の滞在時間
1 直	8:00~21:45
2 直	21:30~8:15

	1日目	2 日目	3 日目	4 日目	5日目	6日目	7日目
A班*	1直						
B班			1直	1 直		2 直	2 直
C班	2 直				1直	1直	
D班		2 直	2 直				1 直
E班*		1直		2 直	2 直		

注記 *:被ばくの平均化のため、事故直後に中央制御室に滞在している班(A班) に代わり、2日目以降は日勤勤務の班(E班)が滞在するものとする。

	▽炉心損傷発生				
イベント	▽ブローアウトパ ▽ブローアウト/	ネル閉止装置開放 パネル閉止装置再閉止			
経過時間(h)	0 2				
時刻	8:00 10:00 10:20	21:30	3:00	8:00	21:30
1直	A 班			E班	
2直			C班		D班

表 12 直接ガンマ線及びスカイシャインガンマ線評価用線源強度(室内作業時)

		ガンマ線積算線源強度(一)			
群	エネルギ	(A班滯在時:事多	泉発生直後~13.75h)		
ит	(MeV)	ブローアウトパネル閉止装置 開放なし	ブローアウトパネル閉止装置 開放あり (事象発生2時間後から20分間開放)		
1	0. 01	約2.9E+18	約2.8E+18		
2	0.02	約3.2E+18	約3.1E+18		
3	0.03	約3.6E+18	約3.5E+18		
4	0.045	約4.7E+19	約4.5E+19		
5	0.06	約1.7E+17	約1.7E+17		
6	0. 07	約1.2E+17	約1.1E+17		
7	0. 075	約6.6E+18	約6.4E+18		
8	0. 1	約3.3E+19	約3. 2E+19		
9	0. 15	約1.3E+17	約1.2E+17		
10	0. 2	約2.0E+19	約2.0E+19		
11	0.3	約4.0E+19	約3.9E+19		
12	0.4	約2.5E+18	約2.3E+18		
13	0. 45	約1.3E+18	約1.2E+18		
14	0. 51	約4.1E+18	約3.8E+18		
15	0. 512	約1.4E+17	約1.3E+17		
16	0.6	約6.0E+18	約5.6E+18		
17	0. 7	約6.8E+18	約6.4E+18		
18	0.8	約1.9E+18	約1.8E+18		
19	1.0	約3.9E+18	約3.5E+18		
20	1. 33	約2.0E+18	約1.8E+18		
21	1. 34	約6.1E+16	約5.6E+16		
22	1. 5	約9.8E+17	約8. 9E+17		
23	1. 66	約3.8E+17	約3.5E+17		
24	2. 0	約8.1E+17	約7.4E+17		
25	2. 5	約2.8E+18	約2. 7E+18		
26	3. 0	約8.4E+16	約7. 7E+16		
27	3. 5	約9.7E+14	約8.6E+14		
28	4. 0	約9.7E+14	約8.6E+14		
29	4. 5	約1.8E+01	約1.8E+01		
30	5. 0	約1.8E+01	約1.8E+01		
31	5. 5	約1.8E+01	約1.8E+01		
32	6. 0	約1.8E+01	約1.8E+01		
33	6. 5	約2.1E+00	約2.1E+00		
34	7. 0	約2.1E+00	約2.1E+00		
35	7. 5	約2.1E+00	約2.1E+00		
36	8. 0	約2.1E+00	約2.1E+00		
37	10.0	約6.4E-01	約6.4E-01		
38	12.0	約3.2E-01	約3. 2E-01		
39	14. 0	約0.0E+00	約0.0E+00		
40	20.0	約0.0E+00	約0.0E+00		
41	30.0	約0.0E+00	約0.0E+00		
42	50.0	約0.0E+00	約0.0E+00		

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時 及びブローアウトパネル開放時に中央制御室に滞在) 表 13 地表面への沈着速度の条件

項目	評 価 条 件	選定理由	審査ガイドでの記載
地表面への沈着速度	1.2cm/s	線量目標値評価指針* ¹ を参考に、湿性沈着 を考慮して乾性沈着 速度 (0.3cm/s) の 4 倍 を設定 乾 性 沈 着 速 度 は NUREG/CR-4551 Vol2* ² より設定	は,非常用電源の作動状態を基

注記 *1:発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会)
* 2 : 米 国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident
Risks:Quantification of Major Input Parameters", Fabruary 1994

表 14 グランドシャイン線評価用線源強度(室内作業時)

		ガンマ線積算線源強度(一)			
群	エネルギ	(A班退城時:事象発生13.75h~14.00h) ブローアウトパネル閉止装置			
	(MeV)	ブローアウトパネル閉止装置 開放なし	開放あり (事象発生2時間後から20分間開放)		
1	0.01	約1.2E+17	約1.2E+17		
2	0.02	約1.4E+17	約1.4E+17		
3	0.03	約1.6E+17	約1.6E+17		
4	0.045	約2.4E+18	約2.3E+18		
5	0.06	約7.5E+15	約7.4E+15		
6	0. 07	約5.0E+15	約4.9E+15		
7	0. 075	約3.3E+17	約3.3E+17		
8	0.1	約1.7E+18	約1.6E+18		
9	0. 15	約4.9E+15	約4.8E+15		
10	0. 2	約9.4E+17	約9.3E+17		
11	0.3	約1.9E+18	約1.9E+18		
12	0.4	約9.1E+16	約8.8E+16		
13	0. 45	約4.5E+16	約4.4E+16		
14	0. 51	約1.6E+17	約1.5E+17		
15	0. 512	約5.2E+15	約5.1E+15		
16	0.6	約2.3E+17	約2.2E+17		
17	0.7	約2.6E+17	約2.5E+17		
18	0.8	約6.9E+16	約6.7E+16		
19	1.0	約1.4E+17	約1.3E+17		
20	1. 33	約6.0E+16	約5.8E+16		
21	1. 34	約1.8E+15	約1.8E+15		
22	1.5	約2.9E+16	約2.8E+16		
23	1.66	約8.3E+15	約8.1E+15		
24	2. 0	約1.8E+16	約1.7E+16		
25	2. 5	約4.8E+16	約4.8E+16		
26	3. 0	約7.1E+14	約7.0E+14		
27	3. 5	約1.9E+12	約1.9E+12		
28	4. 0	約1.9E+12	約1.9E+12		
29	4. 5	約4.3E-01	約4. 2E-01		
30	5. 0	約4.3E-01	約4. 2E-01		
31	5. 5	約4.3E-01	約4. 2E-01		
32	6. 0	約4.3E-01	約4. 2E-01		
33	6. 5	約4.9E-02	約4.9E-02		
34	7. 0	約4.9E-02	約4.9E-02		
35	7. 5	約4.9E-02	約4.9E-02		
36	8. 0	約4.9E-02	約4.9E-02		
37	10.0	約1.5E-02	約1.5E-02		
38	12.0	約7.6E-03	約7.5E-03		
39	14. 0	約0.0E+00	約0.0E+00		
40	20.0	約0.0E+00	約0.0E+00		
41	30.0	約0.0E+00	約0.0E+00		
42	50.0	約0.0E+00	約0.0E+00		

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時 及びブローアウトパネル開放時に中央制御室に滞在)

表 15 中央制御室換気系設備等条件

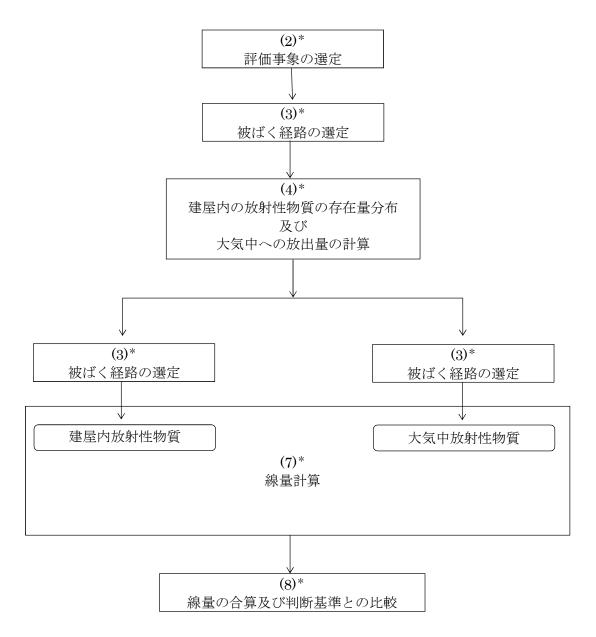
項目	評 価 条 件	選定理由	審査ガイドでの記載
中央制御室非 常用換気系の 起動時間	事象発生から 2 時間	全交流電力電源喪失 を考慮し,代替電源か らの電源供給開始時 間から保守的に設定	4.3(3)f. 原子炉制御室の非常 用換気空調設備の作動について は,非常用電源の作動状態を基 に設定する。

表 16 直接ガンマ線及びスカイシャインガンマ線評価用線源強度(入退域時)

		ガンマ線積算線源強度(一)			
群	エネルギ	(A班退域時:事象発生13.75h~14.00h) ブローアウトパネル関止装置 ブローアウトパネル閉止装置			
	(MeV)	ブローアウトパネル閉止装置 開放なし	開放あり (事象発生2時間後から20分間開放)		
1	0. 01	約1.2E+17	約1.2E+17		
2	0. 02	約1.4E+17	約1.4E+17		
3	0. 03	約1.6E+17	約1.6E+17		
4	0. 045	約2.4E+18	約2.3E+18		
5	0.06	約7.5E+15	約7.4E+15		
6	0. 07	約5.0E+15	約4.9E+15		
7	0. 075	約3.3E+17	約3.3E+17		
8	0. 1	約1.7E+18	約1.6E+18		
9	0. 15	約4.9E+15	約4.8E+15		
10	0. 2	約9.4E+17	約9.3E+17		
11	0. 3	約1.9E+18	約1.9E+18		
12	0. 4	約9.1E+16	約8.8E+16		
13	0. 45	約4.5E+16	約4.4E+16		
14	0. 51	約1.6E+17	約1.5E+17		
15	0. 512	約5.2E+15	約5.1E+15		
16	0.6	約2.3E+17	約2.2E+17		
17	0. 7	約2.6E+17	約2.5E+17		
18	0.8	約6.9E+16	約6.7E+16		
19	1. 0	約1.4E+17	約1.3E+17		
20	1. 33	約6.0E+16	約5.8E+16		
21	1. 34	約1.8E+15	約1.8E+15		
22	1. 5	約2.9E+16	約2.8E+16		
23	1. 66	約8.3E+15	約8.1E+15		
24	2. 0	約1.8E+16	約1.7E+16		
25	2. 5	約4.8E+16	約4.8E+16		
26	3. 0	約7.1E+14	約7.0E+14		
27	3. 5	約1.9E+12	約1.9E+12		
28	4. 0	約1.9E+12	約1.9E+12		
29	4. 5	約4.3E-01	約4.2E-01		
30	5. 0	約4.3E-01	約4.2E-01		
31	5. 5	約4.3E-01	約4.2E-01		
32	6. 0	約4.3E-01	約4. 2E-01		
33	6. 5	約4.9E-02	約4.9E-02		
34	7. 0	約4.9E-02	約4.9E-02		
35	7. 5	約4.9E-02	約4.9E-02		
36	8. 0	約4.9E-02	約4.9E-02		
37	10.0	約1.5E-02	約1.5E-02		
38	12.0	約7.6E-03	約7.5E-03		
39	14.0	約0.0E+00	約0.0E+00		
40	20.0	約0.0E+00	約0.0E+00		
41	30.0	約0.0E+00	約0.0E+00		
42	50.0	約0.0E+00	約0.0E+00		

※被ばく評価上最も厳しいA班における線源強度(炉心損傷時 及びブローアウトパネル開放時に中央制御室に滞在)

表 17 グランドシャイン線評価用線源強度(入退域時)


		ガンマ線積算 (A班 退城時: 事象	線源強度(cm ⁻²) 発生13.75h~14.00h)
群	エネルギ (MeV)	ブローアウトパネル閉止装置開放なし	プローアウトパネル閉止装置 開放あり (事象発生2時間後から20分間開放)
1	0. 01	約2.8E+06	約3.0E+06
2	0.02	約3.1E+06	約3.3E+06
3	0.03	約5.3E+06	約5.7E+06
4	0.045	約1.5E+06	約1.6E+06
5	0.06	約6.5E+05	約6.9E+05
6	0.07	約4.3E+05	約4.6E+05
7	0. 075	約4.0E+05	約4.2E+05
8	0.1	約2.0E+06	約2.1E+06
9	0. 15	約7.6E+05	約8.1E+05
10	0.2	約4.0E+06	約4.2E+06
11	0.3	約7.9E+06	約8.5E+06
12	0.4	約4.1E+07	約4.4E+07
13	0. 45	約2.1E+07	約2. 2E+07
14	0. 51	約6.0E+07	約6. 4E+07
15	0. 512	約2.0E+06	約2.1E+06
16	0.6	約8.8E+07	約9.4E+07
17	0.7	約1.0E+08	約1.1E+08
18	0.8	約3.9E+07	約4. 2E+07
19	1.0	約7.8E+07	約8. 3E+07
20	1. 33	約3.4E+07	約3.7E+07
21	1. 34	約1.0E+06	約1.1E+06
22	1. 5	約1.7E+07	約1.8E+07
23	1. 66	約3.3E+06	約3.5E+06
24	2. 0	約7.0E+06	約7.5E+06
25	2. 5	約2.5E+06	約2.7E+06
26	3. 0	約4.0E+04	約4. 3E+04
27	3. 5	約1.3E-04	約1.3E-04
28	4. 0	約1.3E-04	約1.3E-04
29	4. 5	約9.2E-11	約9.7E-11
30	5. 0	約9.2E-11	約9.7E-11
31	5. 5	約9.2E-11	約9.7E-11
32	6.0	約9.2E-11	約9.7E-11
33	6. 5	約1.1E-11	約1.1E-11
34	7. 0	約1.1E-11	約1.1E-11
35	7. 5	約1.1E-11	約1.1E-11
36	8. 0	約1.1E-11	約1.1E-11
37	10.0	約3.2E-12	約3.4E-12
38	12.0	約1.6E-12	約1.7E-12
39	14. 0	約0.0E+00	約0.0E+00
40	20.0	約0.0E+00	約0.0E+00
41	30.0	約0.0E+00	約0.0E+00
42	50.0	約0.0E+00	約0.0E+00

※被ばく評価上最も厳しいA班における線源強度 (炉心損傷時 及びブローアウトパネル開放時に中央制御室に滞在)

表 18 中央制御室の居住性に係る被ばく評価結果

		実効線量(7日間)			
		高圧溶融物放出/格絲	内容器雰囲気直接加熱	居住性評価の対象ケー	
	被ばく経路	ブローアウトパネル 閉止装置開放あり	ブローアウトパネル 閉止装置開放なし	ス「大破断LOCA+ 高圧炉心冷却失敗+ 低圧炉心冷却失敗」	
	①建屋からのガンマ線による被ばく	約 5.7×10 ⁻¹	約 6. 0×10 ⁻¹	約 7.8×10 ⁻¹	
	②大気中へ放出された放射性物質のガンマ線による被ばく	約 2.2×10 ⁻¹	約 2.0×10 ⁻¹	約 9.6×10 ⁻¹	
中央制御室内作業時	③室内に外気から取り込 まれた放射性物質によ る被ばく	約 2. 2×10¹	約 2. 0×10 ¹	約 4. 6×10 ¹	
内作	(内訳) 内部被ばく	約 2.1×10 ¹	約 1.8×10 ¹	約 4.0×10 ¹	
業時	外部被ばく	約1.4×10°	約1.3×10°	約 5.3×10°	
	②大気中へ放出され、地 表面に沈着した放射性 物質のガンマ線による 被ばく	約 3. 0×10 ⁰	約 2.8×10º	約 4. 7×10°	
	小 計 (①+②+③)	約 2.6×10 ¹	約 2.3×10 ¹	約 5.2×10 ¹	
	④建屋からのガンマ線による被ばく	約 1.7×10 ⁻¹	約 1.7×10 ⁻¹	約 2. 6×10 ⁻¹	
	⑤大気中へ放出された放 射性物質による被ばく	約 4.3×10 ⁻³	約 4. 4×10 ⁻³	約 6.9×10 ⁻³	
入	(内訳) 内部被ばく	約 6.9×10 ⁻⁴	約 7.1×10 ⁻⁴	約 1. 3×10 ⁻³	
入退域時	外部被ばく	約3.6×10 ⁻³	約3.7×10 ⁻³	約 5.6×10 ⁻³	
時	⑤大気中へ放出され、地 表面に沈着した放射性 物質のガンマ線による 被ばく	約 5. 1×10º	約 4.7×10°	約 8. 0×10 ⁰	
	小 計 (4+5)	約 5.2×10°	約 4.9×10°	約8.3×10°	
合	計 (①+②+③+④+ ⑤)	約 3. 1×10 ¹	約 2. 8×10 ¹	約 6.0×10 ¹	

[※]被ばく評価上最も厳しいA班における被ばく評価結果(炉心損傷時及びブローアウトパネル閉止 装置開放時に中央制御室に滞在)

注記 *:「1. 評価方針」の項番号を示す。

図1 居住性に係る被ばく評価の手順

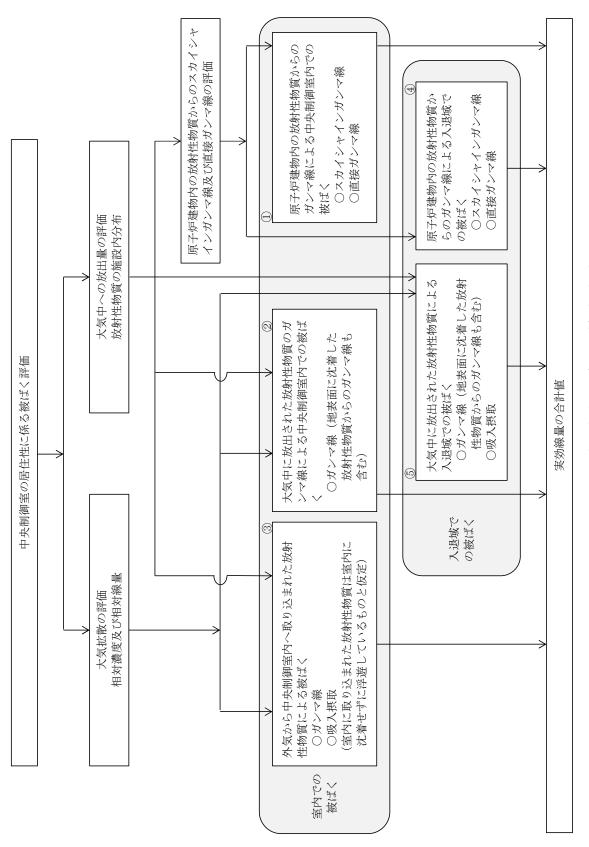


図2 中央制御室の運転員の被ばく経路

中央制御室内での被ばく	① 建屋内の放射性物質からのガンマ線による被ばく (直接ガンマ線及びスカイシャインガンマ線による外部被ばく)② 大気中へ放出された放射性物質からのガンマ線による被ばく (クラウドシャインガンマ線及びグランドシャインガンマ線による 外部被ばく)③ 外気から室内に取り込まれた放射性物質による被ばく (吸入摂取による内部被ばく及び室内に浮遊している放射性物質か
入退域時の被ばく	らのガンマ線による外部被ばく) ④ 建屋内の放射性物質からのガンマ線による被ばく (直接ガンマ線及びスカイシャインガンマ線による外部被ばく) ⑤ 大気中へ放出された放射性物質による被ばく (クラウドシャインガンマ線及びグランドシャインガンマ線による 外部被ばく並びに吸入摂取による内部被ばく)

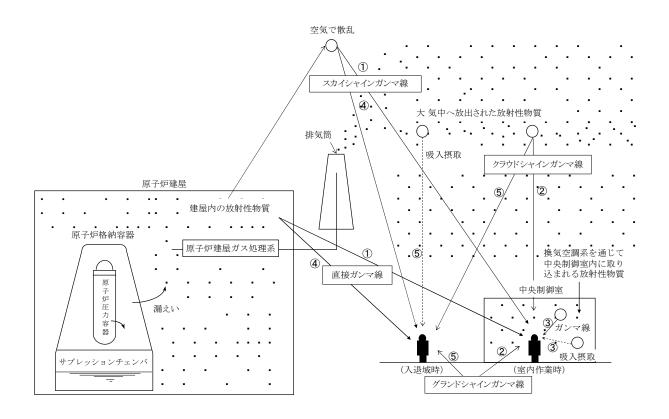
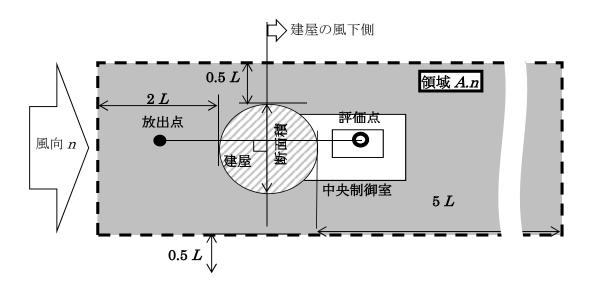



図3 中央制御室の居住性に係る被ばく経路イメージ

風向に対して垂直な 建屋の中心線

注: Lは風向に垂直な建屋又は建屋群の、投影面高さ又は投影幅の小さい方

図4 建屋影響を考慮する条件(水平断面での位置関係)

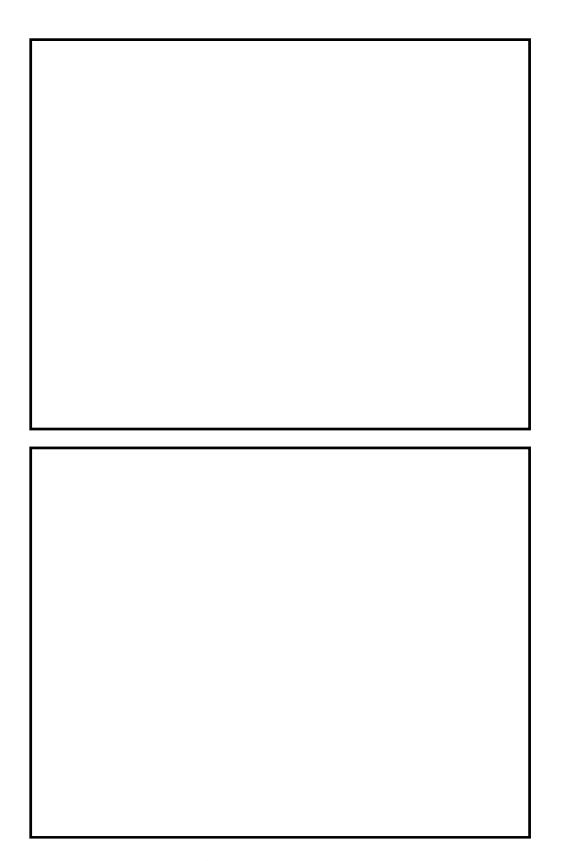


図 5 放射性物質の放出源と評価点の位置関係

図 6 非常用ガス処理系排気筒放出時の評価方位 (評価点:中央制御室中心)

図7 原子炉建屋漏えい時の評価方位(評価点:中央制御室中心)

図8 非常用ガス処理系排気筒からの放出時の評価方位(評価点:建屋入口)

図9 原子炉建屋漏えい時の評価方位(評価点:建屋入口)

図 10 原子炉建屋断面積(投影面積)

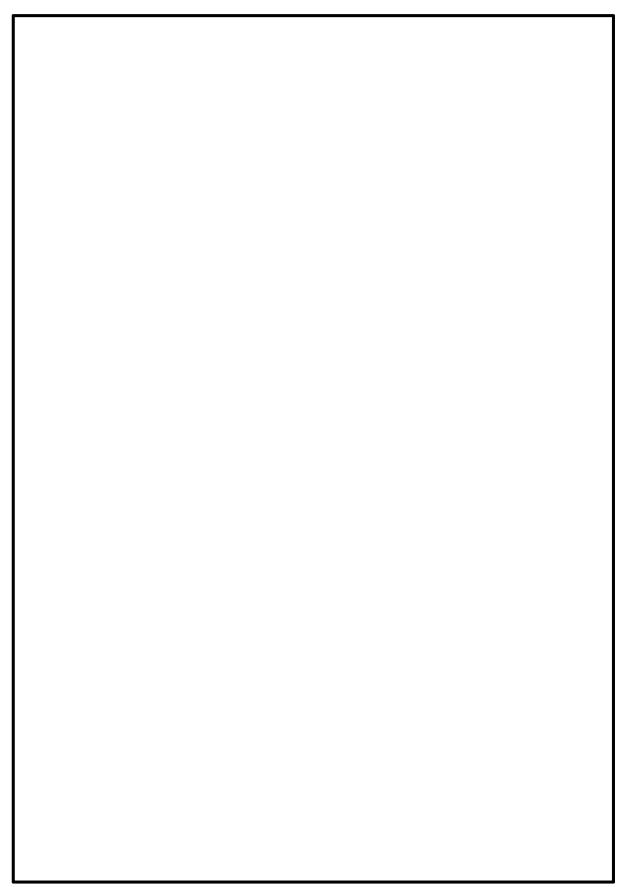


図11 直接ガンマ線評価モデル

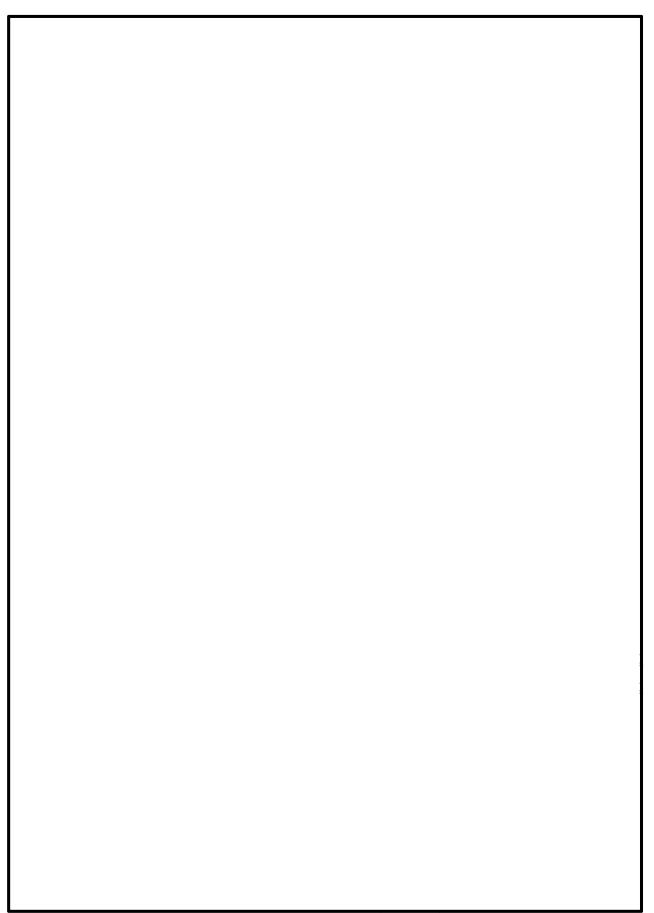
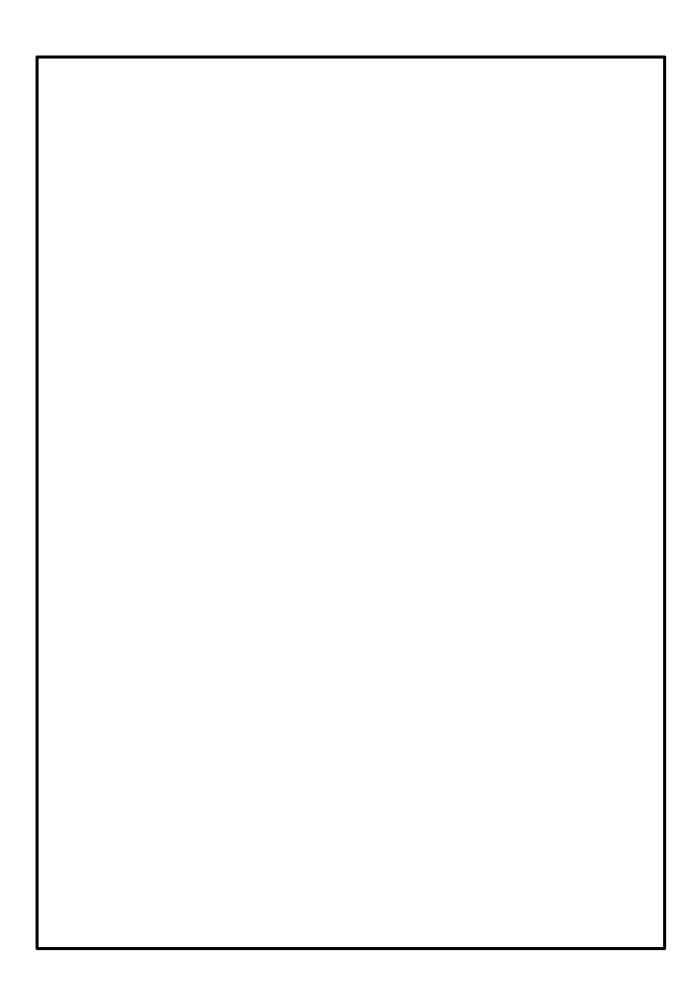



図 12 直接ガンマ線評価モデル

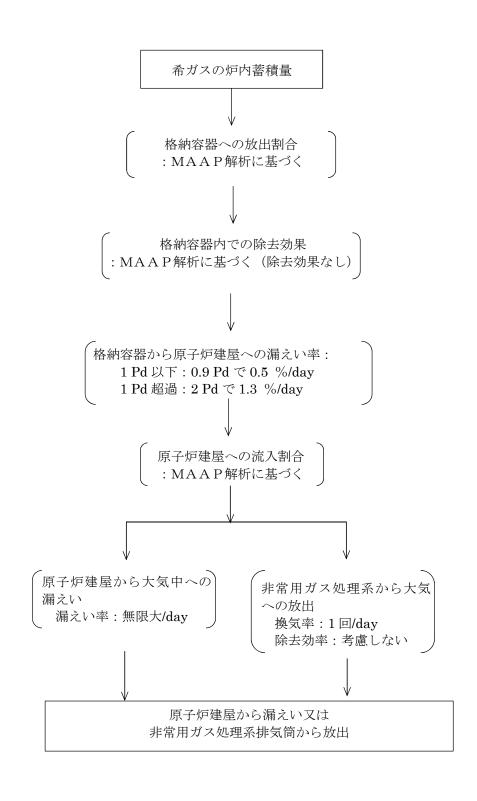
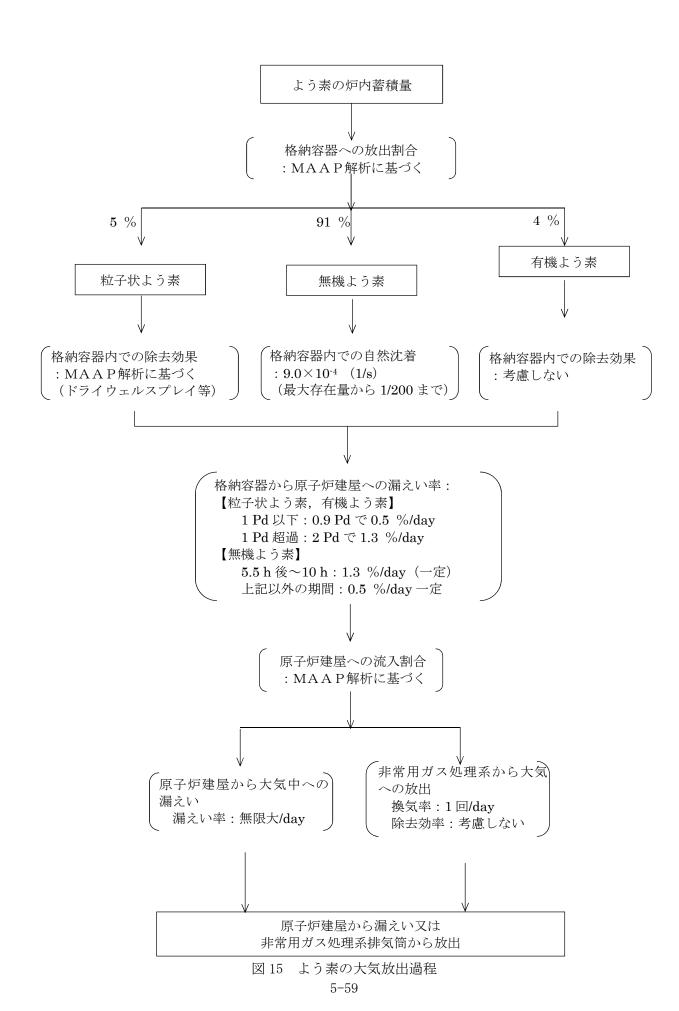



図 14 希ガスの大気放出過程

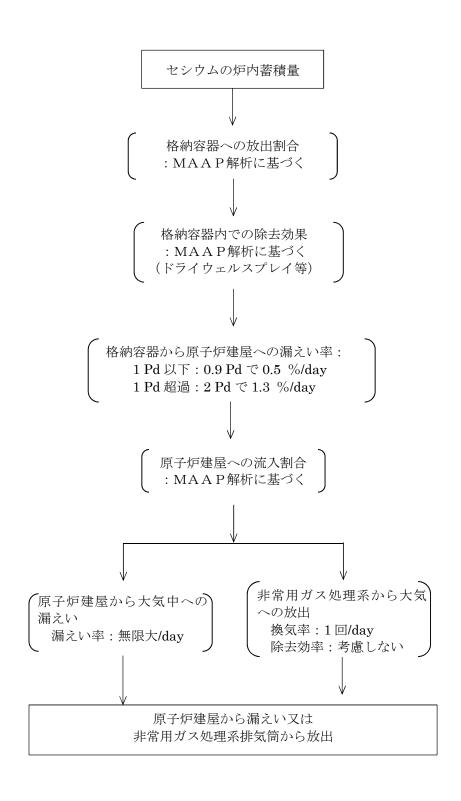


図16 セシウムの大気放出過程

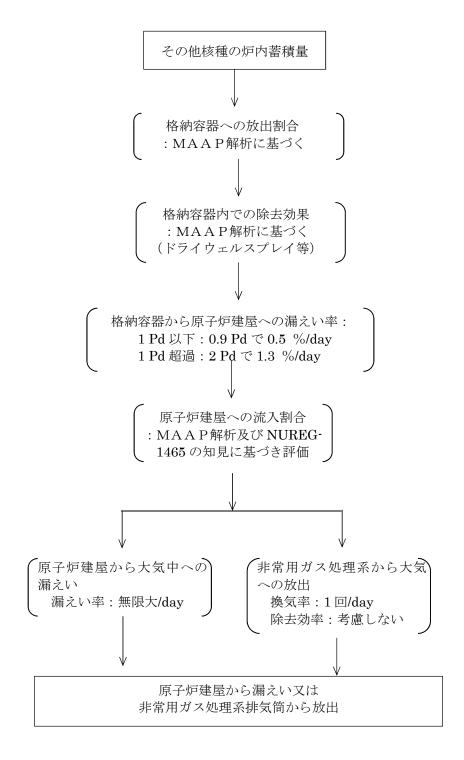


図 17 その他核種の大気放出過程

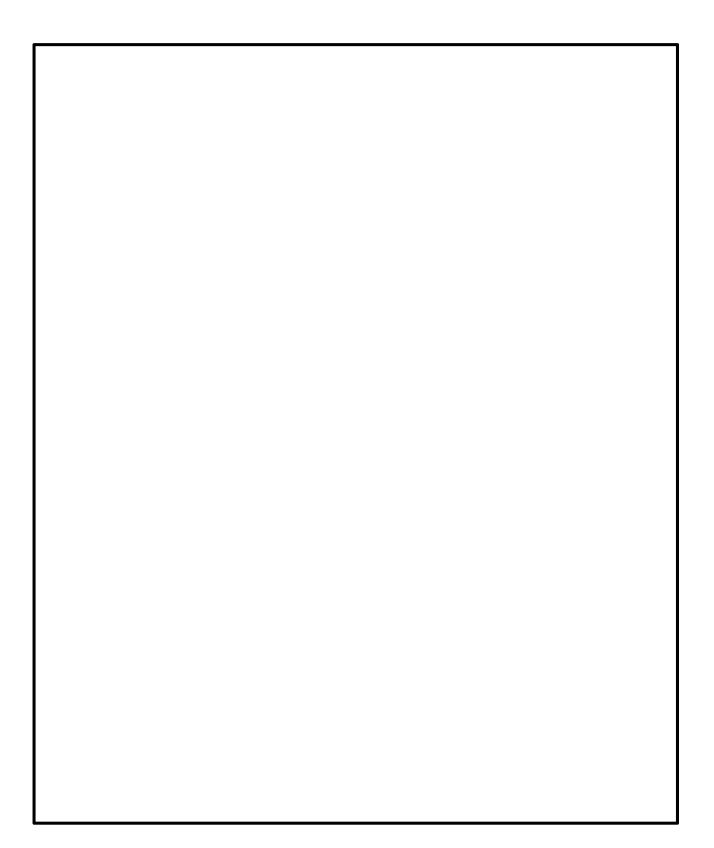


図 18 中央制御室内被ばく評価時のグランドシャイン評価モデル(1/2)

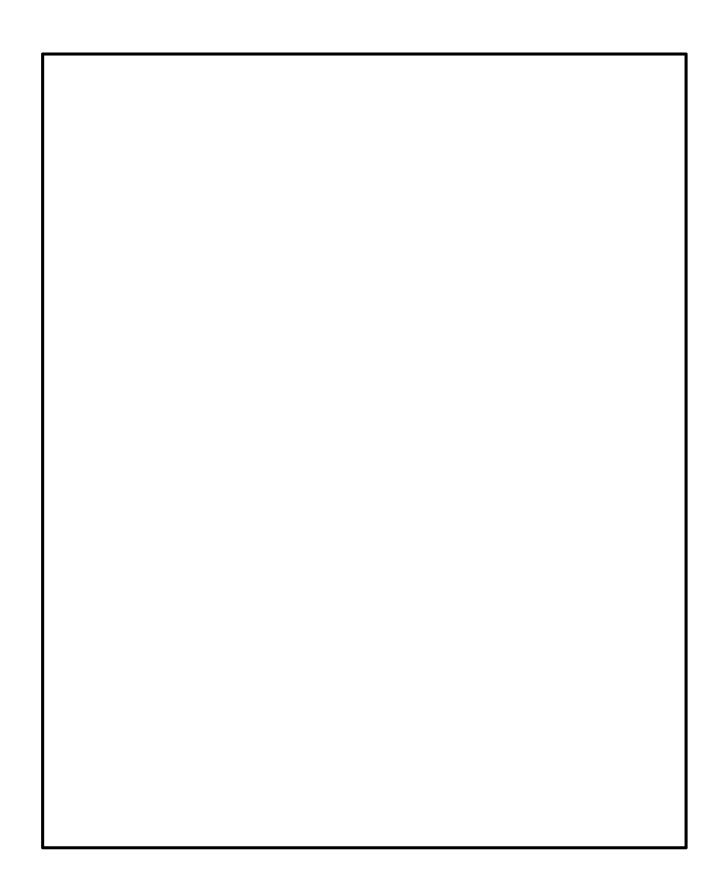


図 18 中央制御室内被ばく評価時のグランドシャイン評価モデル(2/2)

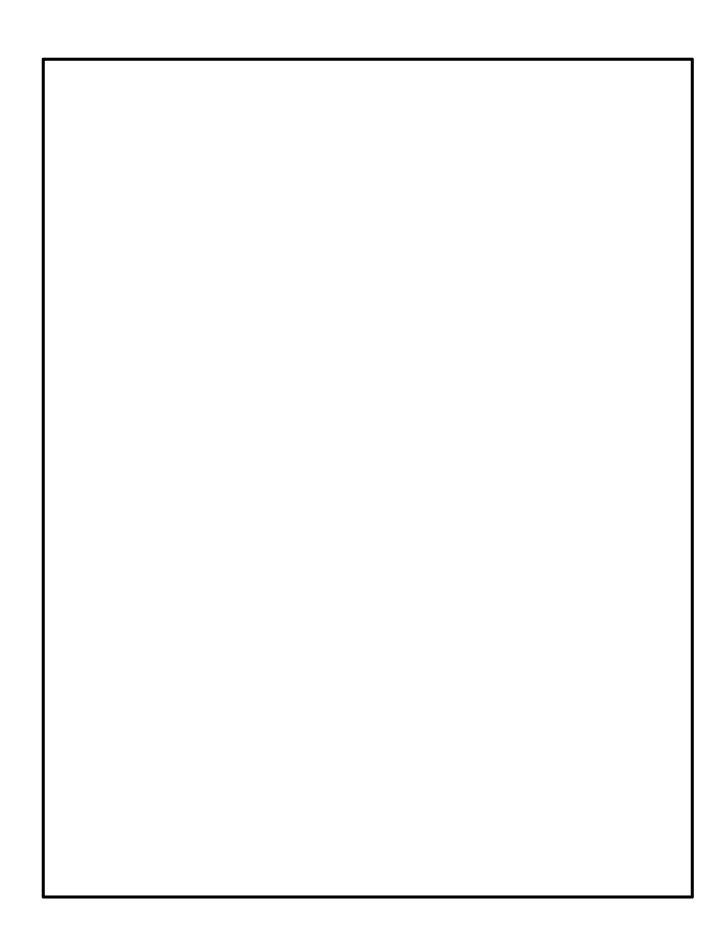


図 19 入退域被ばく評価時のグランドシャイン評価モデル

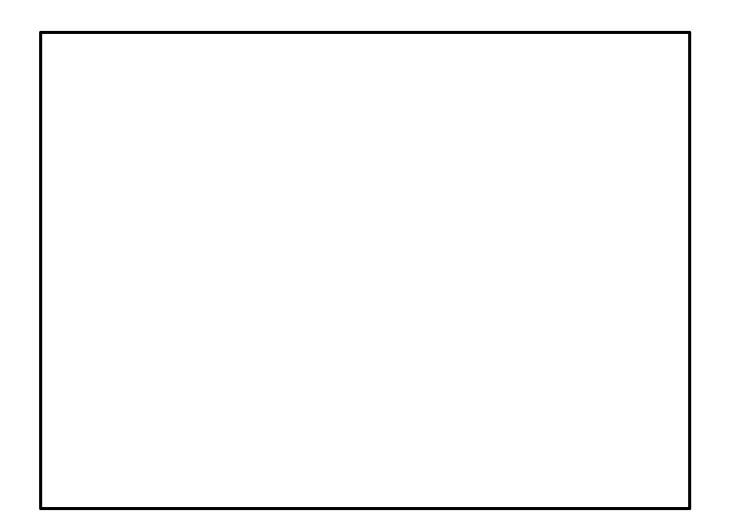


図 20 中央制御室換気系系統図

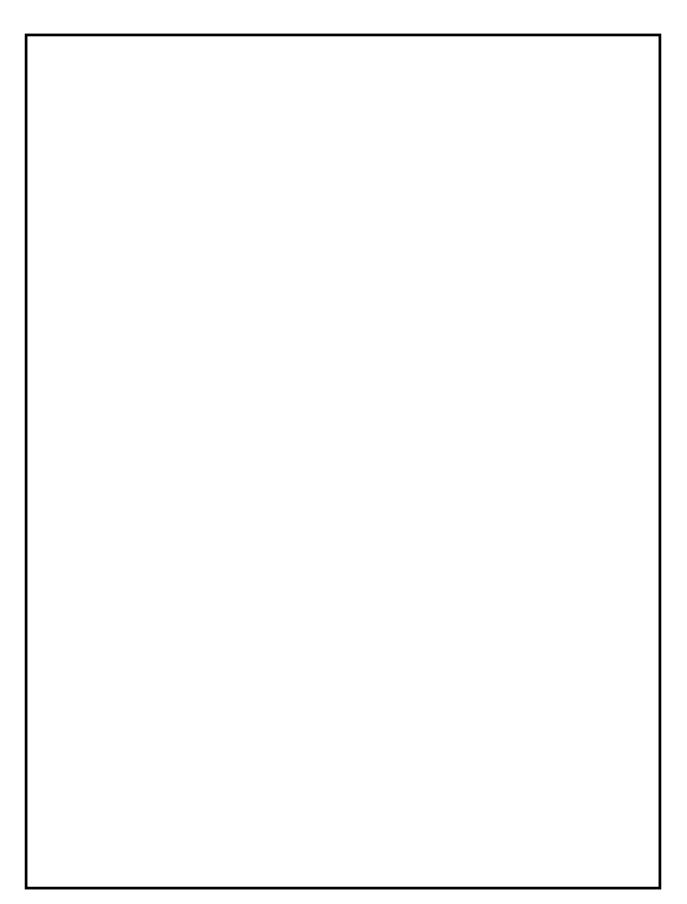
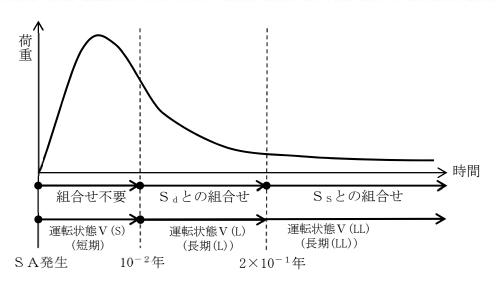


図 21 中央制御室容積

ブローアウトパネル閉止装置の要求機能について

(1)技術基準規則の要求


技術基準第七十四条(運転員が原子炉制御室にとどまるための設備)の解釈 2 e では、「原子炉制御室の居住性を確保するために原子炉建屋に設置されたブローアウトパネルを閉止する必要がある場合は、容易かつ確実に閉止操作ができること。また、ブローアウトパネルは、現場において人力による操作が可能なものとすること。」が要求されている。

重大事故等対処設備であるブローアウトパネル閉止装置は、待機状態(開状態)にて、基準地震動 Ss により閉止機能を損なわないようにする必要があるため、基準地震動 Ss に対する耐震健全性を確保することが必要である。

一方、閉止装置の閉機能維持が必要な状況とは、原子炉建屋外側ブローアウトパネルが格納容器バイパス又は過渡事象(過渡事象のうちMSIV閉の隔離事象を想定している場合、主蒸気管破断は当該事象に含まれるとの整理をした場合)により開放し、更に重大事故に至った場合である。この状態では、技術基準第74条(運転員が原子炉制御室にとどまるための設備)では、7日間で100mSvを超えないことが要求されており、7日間で想定する地震動は、設置許可基準規則第39条(地震による損傷の防止)で整理するSA発生後の最大荷重の組合せ(第1図)の考え方を踏まえ、ブローアウトパネル閉止装置が閉状態で組み合わせるべき地震動は弾性設計用地震動Sdとする。

		実用発電用原子炉及びその附属設備の技術基準に関する規則	
		七十四条 原子炉制御室にとどまるための設備	五十条 地震による損傷の防止
ブローアウトパネル閉止装置(SA緩和設備)	開状態 (SA前)	容易かつ確実に閉止操作ができること	基準地震動S。機能維持
	閉状態 (SA後)	気密性確保 ^{※1}	弾性設計用地震動S _d ^{※2}

- ※1 閉止装置の再閉止による場合を含む。
- ※2 SA事象発生後、閉止装置を使用することになるが、一定期間の地震動に対する頑健性を有するよう弾性設計用地震動S。とする。

第1図 荷重の組合せと継続時間の関係

(2)その他手順上考慮している機能要求(自主対策設備)

東海第二発電所の場合,技術基準規則からの要求事項とは別に,自主対策設備としてブローアウトパネル閉止装置の以下の2つの機能に期待している。

- ◆ 技術的能力 1.10「水素爆発による原子炉建屋等の損傷を防止するための手順等」原子炉建屋原子炉棟からの水素排出を行うため、閉状態における開機能
- ◆ 技術的能力 2. 「大規模な自然災害又は故意による大型航空機の衝突その他のテロリズムへの対応」使用済燃料プールへの放水砲による注水を行うため、閉状態における開機能