本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から公 開できません。

東海第二発電所 工事計画審査資料						
資 料 番 号	工認-421 改1					
提出年月日	平成 30 年 8 月 15 日					

V-2-6-5-10 代替循環冷却系原子炉注水流量の耐震性についての計算書

目次

1. 代替循環冷却系原子炉注水流量	. 1
1.1 概要	. 1
1.2 一般事項	. 1
1.2.1 構造計画	. 1
1.3 固有周期	. 3
1.3.1 固有周期の算出方法	. 3
1.3.2 固有周期の計算条件	. 3
1.3.3 固有周期の計算結果	. 3
1.4 構造強度評価	. 4
1.4.1 構造強度評価方法	. 4
1.4.2 荷重の組合せ及び許容応力	. 4
1.5. 機能維持評価	. 7
1.5.1 電気的機能維持評価方法	. 7
1.6 評価結果	. 8
1.6.1 重大事故等対処設備としての評価結果	. 8
2. 代替循環冷却系原子炉注水流量 (FT-SA17-N013A) 遮へい体	15
2.1 概要	15
2.2 一般事項	15
2.2.1 構造計画	15
2.2.2 評価方針	17
2.2.3 適用基準	18
2.2.4 記号の説明	19
2.2.5 計算精度と数値の丸め方	21
2.3 評価部位	22
2.4 固有周期	
2.4.1 固有値解析方法	
2.4.2 解析モデル及び諸元	
2.4.3 固有値解析結果	
2.5 構造強度評価	26
2.5.1 構造強度評価方法	
2.5.2 荷重の組合せ及び許容応力	
2.5.3 設計用地震力	
2.5.4 計算方法	
2.5.5 計算条件	
2.5.6 応力の評価	32

2.7	評価結果	33
2. 7. 1	評価結果	. 33

1. 代替循環冷却系原子炉注水流量

1.1 概要

本計算書は、派付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、代替循環冷却系原子炉注水流量が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

代替循環冷却系原子炉注水流量は,重大事故等対処設備においては常設耐震重要重大事故防止 設備及び常設重大事故緩和設備に分類される。以下,重大事故等対処設備としての構造強度評価 及び電気的機能維持評価を示す。

1.2 一般事項

1.2.1 構造計画

代替循環冷却系原子炉注水流量の構造計画を表 2-1 に示す。

表 2-1 構造計画

計画の)概要		机吹拂光窗
基礎・支持構造	主体構造		概略構造図
検出器は、計器取付ボルトにより計器スタンションに取付けられた計器取付板に固定される。 計器スタンションは、基礎に基礎ボルトで設置する。	差圧式流量検出器	上面 正面 160 計器 スタンション (水平方向)	側面 基礎ボルト (ケミカルアンカ) 約 230 計器取付ボルト 基礎 (壁面) 計器取付板

2

1.3 固有周期

1.3.1 固有周期の算出方法

代替循環冷却系原子炉注水流量の固有周期の計算方法を以下に示す。

- (1) 代替循環冷却系原子炉注水流量の質量は、質点に集中するものとする。
- (2) 代替循環冷却系原子炉注水流量は、図3-1に示す壁固定の1質点系振動モデルとして考える。

1.3.1.1 水平方向(X方向, Z方向)

(1) X方向に対する固有周期を次式で求める。

$$T = 2 \cdot \pi \cdot \sqrt{\frac{m}{1000} \cdot \left(\frac{\ell_b^3}{48 \cdot E \cdot I} + \frac{\ell_b}{4 \cdot A \cdot s \cdot G} \right)} \cdot \cdot \cdot (1.3.1.1.1)$$

(2) <mark>2</mark>方向は十分な剛性を有していることから,固有周期の計算を省略する。

1.3.1.2 鉛直方向(Y方向)

(1) Y方向に対する固有周期を1.3.1.1.1 式で求める。

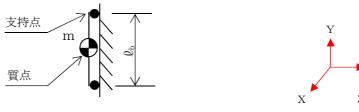


図 3-1 固有周期の計算モデル

1.3.2 固有周期の計算条件

固有周期の計算に用いる数値を表 3-1 に示す。

表 3-1 固有周期の計算条件

項目	記号	単位	数値等
代替循環冷却系原子炉注水流量の質量	m	kg	
上下ボルト間の距離 (壁掛形)	$\varrho_{ m b}$	mm	
縦弾性係数	E	MPa	
断面二次モーメント	I	mm^4	
最小有効せん断断面積	A s	mm^2	
せん断弾性係数	G	MPa	

1.3.3 固有周期の計算結果

固有周期の計算結果を表 3-2 示す。

固有周期の計算の結果から、剛であることを確認した。

表 3-2 固有周期 (s)

水平方向	鉛直方向			

1.4 構造強度評価

1.4.1 構造強度評価方法

代替循環冷却系原子炉注水流量の構造は壁掛形計器スタンションであるため,構造強度評価は,添付書類「V-2-1-13-9 計器スタンションの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき評価する。

1.4.2 荷重の組合せ及び許容応力

1.4.2.1 荷重の組合せ及び許容応力状態

代替循環冷却系原子炉注水流量の荷重の組合せ及び許容応力状態のうち,重大事故等対処設備評価に用いるものを表 4-1 に示す。

1.4.2.2 許容応力

代替循環冷却系原子炉注水流量の許容応力を表 4-2 に示す。

1.4.2.3 使用材料の許容応力

代替循環冷却系原子炉注水流量の使用材料の許容応力のうち,重大事故等対処設備の評価に用いるものを表 4-3 に示す。

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設[区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
			$D + P_D + M_D + S_s^{*3}$	IV _A S		
計測制御系統施設	計測装置	代替循環冷却系原子炉 注水流量計	常設耐震/防止常設/緩和	*2	$D + P_{SAD} + M_{SAD} + S_S$	V _A S (V _A Sとして IV _A Sの許容限 界を用いる。)

注記 *1:「常設耐震/防止」は常設耐震重要重大事故防止設備、「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_{S} \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

 $^{\circ}$

表 4-2 許容応力 (重大事故等その他の支持構造物)

		- X11 III / E / W			
許容応力状態	許容限界* ^{1,*2} (ボルト等)				
	一次応力				
	引張り	せん断			
IV A S					
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$	1.5 · f _t *	1.5 · f _s *			

注記 *1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 4-3 使用材料の許容応力評価条件(重大事故等対処設備)

次1 。 次/////// 圖··· (至//) 数 / //// (
₹₩ ₩₩ ₩	材料	温度条件	S y	S u	S _y (RT)				
評価部材	竹竹	(℃)	(MPa)	(MPa)	(MPa)				
基礎ボルト		周囲環境温度		221	373	_			

1.5. 機能維持評価

1.5.1 電気的機能維持評価方法

代替循環冷却系原子炉注水流量の電気的機能維持評価について、以下に示す。

電気的機能維持評価は、<mark>添付書類「V-2-1-13-9</mark> 計器スタンションの耐震性についての計算書作成の基本方針」に記載の評価方法に基づき評価する。

代替循環冷却系原子炉注水流量の機能確認済加速度には,同形式の検出器単体の正弦波加振試験において,電気的機能の健全性を確認した評価部位の加速度を適用する。機能確認済加速度を表 5-1 に示す。

表 5-1 機能確認済加速度

 $(\times 9.8 \text{ m/s}^2)$

評価部位	方向	機能確認済加速度
代替循環冷却系	水平	
原子炉注水流量 (FT-SA17-N013A)	鉛直	
代替循環冷却系	水平	
原子炉注水流量 (FT-SA17-N013B)	鉛直	

1.6 評価結果

1.6.1 重大事故等対処設備としての評価結果

代替循環冷却系原子炉注水流量の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【代替循環冷却系原子炉注水流量(FT-SA17-N013A)の耐震性についての評価結果】

1. 重大事故等対処設備

1.1 設計条件

			固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動 S _S		_	
機器名称	設備分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向	周囲環境温度 (℃)	
					設計震度	設計震度	設計震度	設計震度		
代替循環冷却系 原子炉注水流量	常設耐震/防止常設/緩和	原子炉建屋			_	_	$C_H = 1.34$	C _V =1.01		

注記 *:基準床レベルを示す。

1.2 機器要目

1.2.1 代替循環冷却系原子炉注水流量

部	材	m (kg)	h ₂ (mm)	Q ₃ (mm)	l _a (mm)	е _ь (mm)	$A_{ m b}$ (mm 2)	n	n _{fV}	n AH
基礎は	ボルト								2	2

	部材	S	S _u (MPa)	F (MPa)	F* (MPa)	転倒方向		
部		(MPa)				弾性設計用地震動 S d 又は静的震度	基準地震動 S _S	
基	礎ボルト	221	373	_	261	_	水平方向	

9

1.3 計算数值

1.3.1 代替循環冷却系原子炉注水流量に作用する力

(単位:N)

	3 材	F_{b}		F_{b1}		F _{b2}		Q_{b}	
部		弾性設計用地震動 S 。 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S _S	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボ	ボルト								

1.4 結論

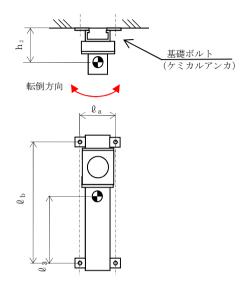
1.4.1 代替循環冷却系原子炉注水流量の応力

(単位:MPa)

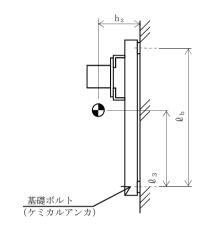
部材	材料	応 力	弾性設計用地震調	動S _d 又は静的震度	基準地震動S _S		
	1/1 1/1 		算出応力	許容応力	算出応力	許容応力	
#7#42 a 1		引張り	_		$\sigma_b = 3$	$f_{\rm ts} = 156^*$	
基礎ボルト		せん断	_	_	$\tau_b=2$	$f_{\rm sb} = 120$	

すべて許容応力以下である。

注記*: fts=Min[1.4・fto-1.6・τb, fto]より算出


1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)_{*}$


		評価用加速度	機能確認済加速度
代替循環冷却系	水平方向	1.11	
原子炉注水流量	鉛直方向	0.84	

評価用加速度 (1.0ZPA) はすべて機能確認済加速度以下である。

10

正面 (水平方向)

側面(鉛直方向)

1. 重大事故等対処設備

1.1 設計条件

			固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S _S		
機器名称	設備分類	据付場所及び床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	周囲環境温度 (℃)
代替循環冷却系 原子炉注水流量	常設耐震/防止常設/緩和	原子炉建屋			_	_	C _H =0.96	$C_V = 0.92$	

注記 *:基準床レベルを示す。

1.2 機器要目

1.2.1 代替循環冷却系原子炉注水流量

部	材	m (kg)	h ₂ (mm)	ℓ ₃ (mm)	Q _a (mm)	Q _b (mm)	A_b (mm 2)	n	n _{fV}	n AH
基礎	ボルト								2	2

	9	S S F F*		転倒方向		
部材	(MPa)	S _u (MPa)	(MPa)	(MPa)	弾性設計用地震動 S d 又は静的震度	基準地震動 S _S
基礎ボルト	221	373	-	261	_	水平方向

桁

13

1.3 計算数值

1.3.1 代替循環冷却系原子炉注水流量計に作用する力

(単位:N)

	部 材	F_b		F _{b1}		F _{b2}		Q_{b}	
部		弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S _S
基礎ボルト									

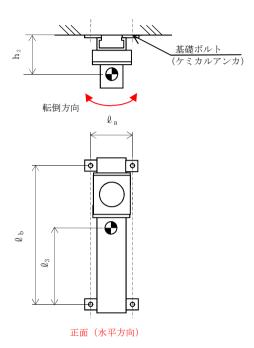
1.4 結論

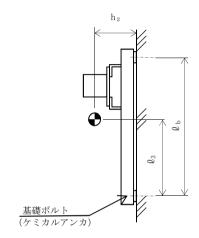
1.4.1 代替循環冷却系原子炉注水流量計の応力

(単位:MPa)

☆ 77 ++	++ 101	応 力	弾性設計用地震動	動S _d 又は静的震度	基準地震動 S _S	
部材	材料		算出応力	許容応力	算出応力	許容応力
###		引張り	_	_	$\sigma_b=3$	$f_{\rm ts} = 156^*$
基礎ボルト		せん断		_	$\tau_b=2$	$f_{\rm sb} = 120$

すべて許容応力以下である。


注記*: f_{ts}=Min[1.4・f_{to}-1.6・τ_b, f_{to}]より算出


1.4.2 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度			
代替循環冷却系	水平方向	0.80				
原子炉注水流量計	鉛直方向	0.77				

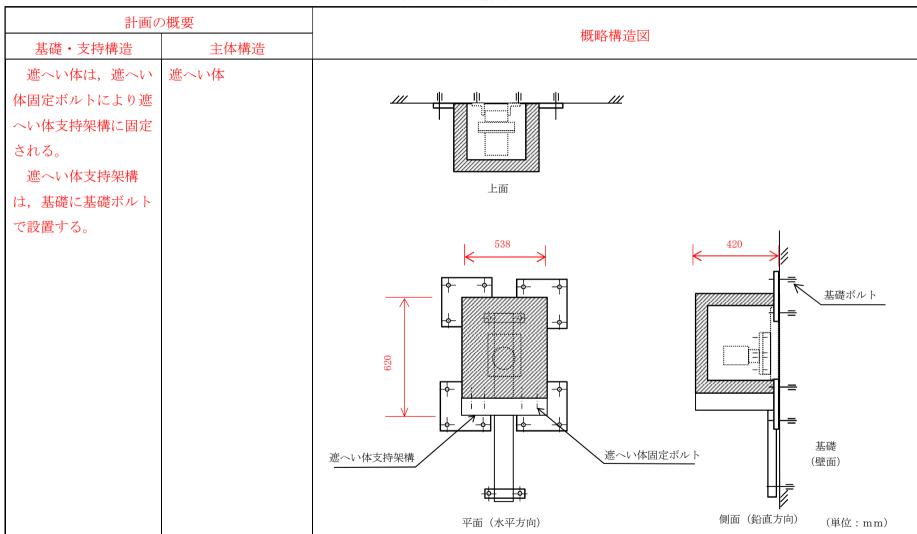
評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

側面(鉛直方向)

2. 代替循環冷却系原子炉注水流量 (FT-SA17-N013A) 遮へい体

2.1 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度 及び機能維持の設計方針に基づき、代替循環冷却系原子炉注水流量遮へい体が設計用地 震力に対して十分な構造強度を有していることを説明するものである。


代替循環冷却系原子炉注水流量遮へい体は,重大事故等対処設備においては常設耐震 重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下,重大事故等対処 設備としての構造強度評価を示す。

2.2 一般事項

2.2.1 構造計画

代替循環冷却系原子炉注水流量遮へい体の構造計画を表 2-1 に示す。

表 2-1 構造計画

2.2.2 評価方針

代替循環冷却系原子炉注水流量遮へい体遮へい体の応力評価は、添付書類「V-2-1-9 機能維持の基本方針 3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.2.1 構造計画」にて低圧代替注水系原子炉注水流量(常設ライン用)遮へい体の部位を踏まえ「2.3 評価部位」にて設定する箇所において、「2.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「2.5 構造強度評価」にて示す方法にて確認することで実施する。確認結果を「2.6 評価結果」に示す。

代替循環冷却系原子炉注水流量遮へい体遮へい体の耐震評価フローを図 2-1 に示す。

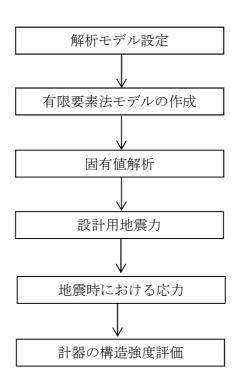


図 2-1 代替循環冷却系原子炉注水流量遮へい体遮へい体の耐震評価フロー

2.2.3 適用基準

適用基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG 4 6 0 1・補-1984, JEAG 4 6 0 1-1987及びJEAG 4 6 0 1-1991 追補版)(日本電気協会 電気技術基準調査委員会 昭和59年9月,昭和62年8月及び平成3年6月)
- (2) 発電用原子力設備規格 (設計・建設規格 (2005 年版 (2007 年追補版含む。)) JSME S NC1-2005/2007) (日本機械学会 2007 年 9 月) (以下「設計・建設規格」という。)

2.2.4 記号の説明

記 号	記号の説明	単 位
A	サポートの断面積	mm^2
A_{b}	ボルトの軸断面積	mm^2
Сн	水平方向設計震度	_
$C_{ m V}$	鉛直方向設計震度	_
d	ボルトの呼び径	mm
E	縦弾性係数	MPa
F	設計・建設規格 SSB-3131 に定める値	MPa
F	設計・建設規格 SSB-3133 に定める値	MPa
F_b	ボルトに作用する引張力(1本当たり)	N
F_{bl}	鉛直方向地震及び壁掛盤取付面に対し左右方向の水平方向地震により	N
	ボルトに作用する引張力(1本当たり)(壁掛形)	
F _{b2}	鉛直方向地震及び壁掛盤取付面に対し前後方向の水平方向地震により	N
	ボルトに作用する引張力(1本当たり)(壁掛形)	
$f_{ m sb}$	せん断力のみを受けるボルトの許容せん断応力	MPa
$f_{ m to}$	引張力のみを受けるボルトの許容引張応力	MPa
$f_{ m ts}$	引張力とせん断力を同時に受けるボルトの許容引張応力	MPa
g	重力加速度(=9.80665)	$\mathrm{m/s^2}$
h_2	取付面から重心までの距離(壁掛形)	mm
Ιp	サポートの断面二次極モーメント	mm^4
Ιy	サポートの断面二次モーメント (y軸)	mm^4
Ιz	サポートの二次モーメント (z軸)	mm^4
ϱ_3	重心と下側ボルト間の距離(壁掛形)	mm
ϱ_{a}	側面(左右)ボルト間の距離(壁掛形)	mm
$\varrho_{ m b}$	上下ボルト間の距離(壁掛形)	mm
m	遮へい体及びサポート鋼材の総質量	kg
m_a	遮へい体の質量	kg
n	ボルトの本数	_
n_f	評価上引張力を受けるとして期待するボルトの本数	_
Q_{b}	ボルトに作用するせん断力	N
S_{u}	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa

記号	記号の説明	単 位
Z_p	サポートのねじり断面係数	mm^3
Z y	サポートの断面係数(y軸)	mm^3
Zz	サポートの断面係数(z軸)	mm^3
ν	ポアソン比	_
π	円周率	_
σь	ボルトに生じる引張応力	MPa
τь	ボルトに生じるせん断応力	MPa

2.2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。表示する数値の丸め方は表2-2に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	_	小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}$ C	_	1	整数位
質量*1	kg	_	1	整数位
長さ*1	mm	_	-	整数位
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字4桁*2
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記 *1: 設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

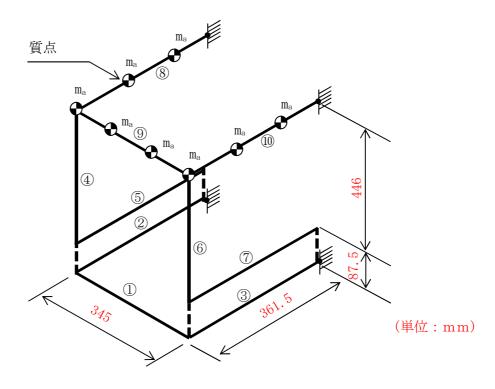
*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

2.3 評価部位

代替循環冷却系原子炉注水流量遮へい体遮へい体の耐震評価は、「4.5 構造強度評価 方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルトについて実施する。代替 循環冷却系原子炉注水流量遮へい体遮へい体の耐震評価箇所については、表 4-1 の概 略構造図に示す。

2.4 固有周期

2.4.1 固有值解析方法


代替循環冷却系原子炉注水流量遮へい体遮へい体の固有値解析方法を以下に示す。

(1) 代替循環冷却系原子炉注水流量遮へい体遮へい体は,2.4.2 解析モデル及び諸元に示す3次元はりモデルとして考える。

2.4.2 解析モデル及び諸元

代替循環冷却系原子炉注水流量遮へい体の解析モデルを図 2-2 に、解析モデルの概要を以下に示す。また、機器の諸元を表 2-3、部材の機器要目を表 2-4 に示す。

- (1) 図 2-2 中①~⑩内の数字は部材番号(要素番号)を示す。
- (2) 図 2-2 中の **→** は遮へい体の質点を示し、m_aは 90kg である。
- (3) 図 2-2 中の はサポート鋼材, は仮想鋼材を示す。
- (4) 拘束条件は、 X Y Z 方向及び回転方向を固定する。
- (5) 解析コードは、「NSAFE」を使用し、固有値及び荷重を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-4 計算機プログラム(解析コード)の概要・HISAP及びNSAFE」に示す。
- (6) 耐震計算に用いる寸法は、公称値を使用する。

₩:支持点(サポート基礎部)

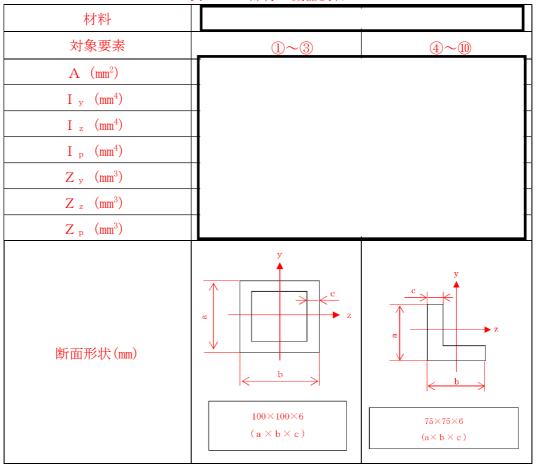

● : 遮へい体質点

図 2-2 代替循環冷却系原子炉注水流量遮へい体解析モデル

表 2-3 機器諸元

項目	記号	単位	入力値
材質	_	_	
質量	m	kg	
温度条件 (雰囲気温度)	Т	$^{\circ}$	
縦弾性係数	E	MPa	
ポアソン比	ν	_	
要素数	_	個	
節点数	_	個	

表 2-4 部材の機器要目

2.4.3 固有値解析結果

固有値解析結果を表 2-5 に示す。

1次モードは水平方向に卓越し、固有周期が 0.05 秒以下であり、剛であることを確認した。また、鉛直方向は2次モード以降で卓越し、固有周期は 0.05 秒以下であり剛であることを確認した。

表 2-5 固有値解析結果(s)

モード	固有周期	卓越方向
1 次		水平

2.5 構造強度評価

2.5.1 構造強度評価方法

- 2.4.2項(1)~(6)のほか,次の条件で計算する。
- (1) 地震力は代替循環冷却系原子炉注水流量遮へい体に対して、水平方向及び鉛直方向から同時に作用するものとする。

2.5.2 荷重の組合せ及び許容応力

2.5.2.1 荷重の組合せ及び許容応力状態

代替循環冷却系原子炉注水流量遮へい体の荷重の組合せ及び許容応力状態の うち重大事故等対処設備の評価に用いるものを表 2-6 に示す。

2.5.2.2 許容応力

代替循環冷却系原子炉注水流量遮へい体の許容応力を表 2-7 に示す。

2.5.2.3 使用材料の許容応力評価条件

代替循環冷却系原子炉注水流量遮へい体の使用材料の許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 2-8 に示す。

表 2-6 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S_s^{*3}$	IV _A S
計測制御系統施設	計測装置	代替循環冷却系原子炉注 水流量遮へい体	常設耐震/防止常設/緩和	*2	$D+P_{SAD}+M_{SAD}+S_{s}$	V _A S (V _A Sとして
						IV _A Sの許容限 界を用いる。)

注記 *1:「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_s \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

表 2-7 許容応力 (重大事故等その他の支持構造物)

		2/11II/E/0/	
	許容限界	*1, *2	
許容応力状態	(ボルト	、等)	
	一次応力		
	引張り	せん断	
IV _A S			
$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} e$	1.5 · f _t *	1.5 • f _s *	

注記 *1: 応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2-8 使用材料の許容応力評価条件(重大事故等対処設備)

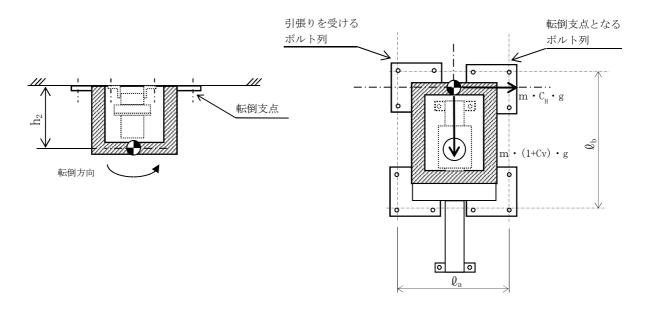
評価部材	材料	温度条件 (℃)	S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
基礎ボルト		周囲環境温度	221	373	_

2.5.3 設計用地震力

「基準地震動 S s 」による地震力は、添付書類「V-2-1-7 設計用床応答曲線の作成 方針」に基づき設定する。耐震評価に用いる設計用地震力を表 2-9 に示す。

表 2-9 設計用地震力(重大事故等対処設備)

据付場所及び		有周期 (s)	弾性設計用 又は静	地震動S _d	基準地震動S s	
床面高さ (m)	水平方向	鉛直方向	水平方向設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋	原子炉建屋		_	_	C _H =1. 34	C _V =1. 01


注記 *1:基準床レベルを示す。

*2:固有値解析より 0.05 秒以下であり剛であることを確認した。

2.5.4 計算方法

2.5.4.1 基礎ボルトの計算方法

基礎ボルトの応力は、地震による震度により作用するモーメントによって生じる

引張力とせん断力について計算する。

図 2-3(1) 代替循環冷却系原子炉注水流量遮へい体 計算モデル (壁掛形 正面方向転倒の場合)

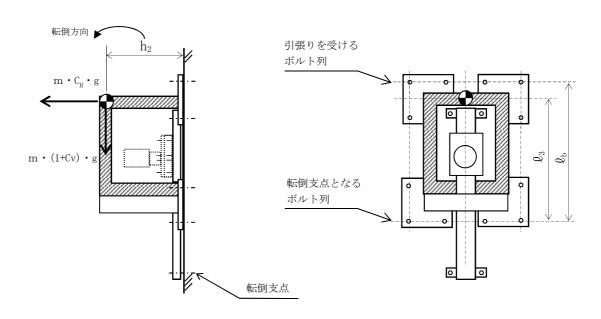


図 2-3(2) 代替循環冷却系原子炉注水流量遮へい体 計算モデル (壁掛形 側面方向転倒の場合)

(1) 引張応力

基礎ボルトに対する引張力は、最も厳しい条件として、図2-3で最外列の基礎ボルトを支点とする転倒を考え、これを片側の最外列の基礎ボルトで受けるものとして計算する。

引張力 (F_b)

計算モデル図2-3(1)の場合の引張力

$$F_{b1}=m \cdot g \cdot \left(\frac{C_{H} \cdot h_{2}}{n_{fH} \cdot \ell_{a}} + \frac{(1+C_{V}) \cdot h_{2}}{n_{fV} \cdot \ell_{b}}\right) \cdot \cdots \cdot (2.5.4.1.1)$$

計算モデル図2-3(2)の場合の引張力

$$F_{b2} = m \cdot g \cdot \left(\frac{C_H \cdot \ell_3 + (1 + C_V) \cdot h_2}{n_{fV} \cdot \ell_b} \right) \cdot \dots (2.5.4.1.2)$$

ここで、基礎ボルトの軸断面積Abは次式により求める。

$$A_b = \frac{\pi}{4} \cdot d^2 \cdots (2.5, 4.1, 5)$$

(2) せん断応力

基礎ボルトに対するせん断力は、基礎ボルト全本数で受けるものとして計算する。

せん断力 (Q_b)

$$Q_{b1} = m \cdot g \cdot C_H \cdot \cdots \cdot (2.5.4.1.6)$$

$$Q_{b2} = m \cdot g \cdot (1 + C_V) \quad \cdots \qquad (2.5.4.1.7)$$

$$Q_b = \sqrt{(Q_{b1})^2 + (Q_{b2})^2} \cdots (2.5.4.1.8)$$

せん断応力 (τ)

$$\tau_{b} = \frac{Q_{b}}{n \cdot A_{b}} \cdot \dots (2.5.4.1.9)$$

2.5.5 計算条件

2.5.5.1 基礎ボルトの応力計算条件

応力計算に用いる計算条件は、本計算書の【代替循環冷却系原子炉注水流量遮へい体の耐震性についての計算結果】の設計条件及び機器様目に示す。

2.5.6 応力の評価

2.5.6.1 ボルトの応力評価

2.5.4.1 項で求めたボルトの引張応力 $\sigma_{\rm b}$ は次式より求めた許容引張応力 $f_{\rm ts}$ 以下であること。

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 $f_{\rm s\,b}$ 以下であること。ただし、 $f_{\rm t\,o}$ 及び $f_{\rm s\,b}$ は下表による。

 $f_{\text{ts}} = \text{Min}[1.4 \cdot f_{\text{to}} - 1.6 \cdot \tau_{\text{b}}] \dots (2.5.6.1.1)$

せん断応力 τ_b は、せん断力のみを受けるボルトの許容せん断応力 $f_{\rm sb}$ 以下であること。

	弾性設計用地震動 S a 又は静的震度による 荷重との組合せの場合	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m t}$ 。	$\frac{\mathrm{F}}{2} \cdot 1.5$	F* · 1.5
許容せん断応力 $f_{ m sb}$	$\frac{\mathrm{F}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{F^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.7 評価結果

2.7.1 評価結果

代替循環冷却系原子炉注水流量遮へい体の重大事故等対処設備としての耐震評価結果 を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強 度を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

1. 重大事故等対処設備

1.1 設計条件

機器名称	設備分類	設備分類 据付場所及び床面高さ (m)	固有周期(s)		弾性設計用地震動Sd又は静的震度		基準地震動 S s		
			1.3344	N) → 1(.	水平方向	鉛直方向	水平方向	鉛直方向	周囲環境温度
			水平方向	鉛直方向	設計震度	設計震度	設計震度	設計震度	(0)
代替循環冷却系原子炉注水	党設耐雲/防止	原子炉建物							
流量遮へい体	常設/緩和				_	_	C _H =1.34	$C_{V} = 1.01$	

1.2 機器要目

1.2.1 代替循環冷却系原子炉注水流量 (FT-SA17-N013A) 遮へい体

【代替循環冷却系原子炉注水流量 (FT-SA17-N013A) 遮へい体の 耐震性 についての計算結果】

注記 *1:基準床レベルを示す。

*2:固有値解析により 0.05 秒以下であることを確認した。

部材	m (kg)	h ₂ (mm)	ℓ ₃ (mm)	Q a (mm)	ℓ_{b} (mm)	$ m A_b \ (mm^2)$	n	n _f v	n AH
基礎ボルト								4	4

垃圾		S y S u	S 11	E.	E *	転倒方向		
	部材	(MPa)	(MPa)	(MPa)	r (MPa)	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	
	基礎ボルト	221	373	_	261	_	側面方向	

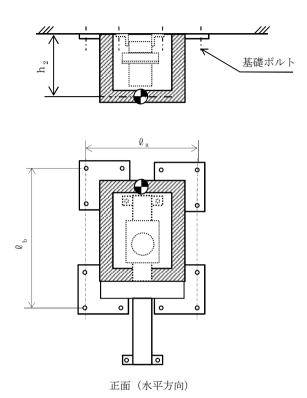
1.3 計算数值

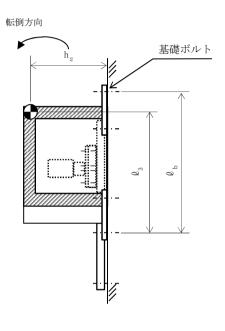
1.3.1 基礎ボルトに作用する力

(単位:N)

	F _b		${\sf F}_{\sf bl}$		${ m F}_{ m b2}$		Q_{b}	
部 材 <u></u>	弾性設計用地震動 S d 又は静的震度	基準地震動S _s	弾性設計用地震動 S d 又は静的震度	基準地震動S _s	弾性設計用地震動 S d 又は静的震度	基準地震動S _s	弾性設計用地震動 S d 又は静的震度	基準地震動S s
基礎ボルト								

1.4 結論


1.4.1 代替循環冷却系原子炉注水流量遮へい体の応力


(単位:MPa)

部材	材料	応 力	弾性設計用地震動Sd又は静的震度		基準地震動 S _S	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	_		σ _b =38	f _{ts} =156*
		せん断	_	_	$\tau_b=14$	$f_{\rm sb} = 120^*$

すべて許容応力以下である。

注記 *:f_{ts}=Min[1.4·f_{to}-1.6·τ_b, f_{to}]より算出

側面(鉛直方向)