本資料のうち,	枠囲みの内容
は,営業秘密又	は防護上の観
点から公開でき	ません。

東海第二発電所 工事計画審査資料					
資料番号	工認-617 改0				
提出年月日	平成 30 年 8 月 16 日				

V-3-5-4-3-1 原子炉隔離時冷却系ストレーナの強度計算書

1.	概	要
2.	<u> </u>	般事項・・・・・・・・・・・・・・・・・・・・・・
2	. 1	構造計画・・・・・・・・・・・・・・・・・・・・・・
2	. 2	適用基準
2	. 3	記号の説明・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2	.4	計算精度と数値の丸め方 ・・・・・ 5
3.	評	価部位······
4.	構	造強度評価······
4	. 1	構造強度評価方法 ········· 8
4	. 2	荷重の組合せ及び許容応力 ・・・・・ 8
4	. 3	計算方法······15
4	. 4	計算条件
4	. 5	応力の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5.	評	価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
5	. 1	重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・22

1. 概要

重大事故等クラス2機器として使用される原子炉隔離時冷却系ストレーナの材料及び 構造については「実用発電用原子炉及びその附属施設の技術基準に関する規則」(平成 25年6月28日 原子力規制委員会規則第六号)(以下「技術基準規則」という。)第55 条(材料及び構造)に規定されており,「実用発電用原子炉及びその附属施設の技術基 準に関する規則の解釈」(平成25年6月19日 原規技発第1306194号)(以下「技術基 準規則の解釈」という。)に従い,設計基準対象施設の規定を準用する。

また,技術基準規則の解釈第17条4において「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成20・02・12原院第5号 (平成20年2月27日原子力安全・保安院制定))に適合することと規定されている。

本資料は,原子炉隔離時冷却系ストレーナがこれらの要求事項に対して十分な強度を 有することを確認するための強度評価について示すものである。

以下,重大事故等クラス2としての構造強度評価を示す。

- 2. 一般事項
- 2.1 構造計画

原子炉隔離時冷却系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

2.2 適用基準

適用基準等を以下に示す。

- (1)発電用原子力設備規格(設計・建設規格(2005年版(2007年追補版含む。)) JS
 ME S NC1-2005/2007)(日本機械学会 2007年9月)(以下「設計・建設規格」という。)
- (2) 非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(平成 20 年 2 月 27 日付け平成 20・02・12 原院第 5 号)

2.3 記号の説明

記号	記号の説明	単 位
А	断面積	mm^2
а	ボルト穴中心円半径	mm
b	フランジ内半径	mm
СН	チャギング時の荷重	_
СО	蒸気凝縮振動荷重	_
D _i	各部位の直径 (i = 0, 1…)	mm
d	孔径,ボルトの直径	mm
F	軸力	Ν
f t	ボルトの発生応力	MPa
L	長さ	mm
LOCA	原子炉冷却材喪失	_
l	ディスク間ギャップ,ボルトのZ軸からの距離	mm
М	モーメント	N•mm
n	ボルトの本数	-
Р	孔の間隔(中心間)	mm
Рь	一次曲げ応力	MPa
Рь	一次局部膜応力	MPa
P _m	一次一般膜応力	MPa
Q	二次応力	MPa
SRV	逃がし安全弁作動時	_
t	板厚	mm
W	ストレーナ重心に作用する荷重	-
X	軸直角方向 (水平)	_
Y	軸方向	-
Ζ	軸直角方向(鉛直)	-
β	形状係数	-
σr	曲げ応力	MPa

注:ここで定義されない記号又は同符号で別用途に用いる記号については,各計算の 項目において説明する。 2.4 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は表 2-2に示すとおりとする。

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	—	小数点以下第3位	切上げ	小数点以下第2位
温度	°C	_	_	整数位
質量	kg	_	_	整数位
長さ*1	mm	_	_	整数位
面積*2	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2
モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*2
力	Ν	有効数字 5 桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

表 2-2 表示する数値の丸め方

注記 *1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強 さ及び降伏点は比例法により補間した値の小数点以下第 1 位を切り捨 て,整数位までの値とする。

3. 評価部位

原子炉隔離時冷却系ストレーナの取付け状況,形状及び主要寸法を図 3-1 及び図 3-2 に示す。

A~A断面図

図 3-1 原子炉隔離時冷却系ストレーナの取付け状況

図 3-2 原子炉隔離時冷却系ストレーナの形状及び主要寸法(単位:mm)

- 4. 構造強度評価
- 4.1 構造強度評価方法
 - (1) 原子炉隔離時冷却系ストレーナの応力評価は、東海第二発電所 平成20年4月7 日付け平成20・02・29原第41号(既工認)にて認可された実績のある手法を適用する。
 - (2) 原子炉隔離時冷却系ストレーナは,原子炉隔離時冷却系ストレーナ部ティーに据 付部材を介さずに,取付ボルトにて直接接続されるものとする。
 - (3) 応力計算に用いる寸法は、公称値を使用する。
 - (4) 概略構造図を表 2-1 に示す。
- 4.2 荷重の組合せ及び許容応力
 - 4.2.1 荷重の組合せ及び供用状態 原子炉隔離時冷却系ストレーナの荷重の組合せ及び供用状態の評価に用いるものを表 4-1に、荷重の組合せ整理表を表 4-2に示す。
 - 4.2.2 許容応力

原子炉隔離時冷却系ストレーナの許容応力を表 4-3 に示す。

表4-1 荷重の組合せ及び供用状態(重大事故等対処設備)

施設区分		機器名称	機器等の区分	荷重の組合せ	供用状態
原子炉冷却 系統施設	非常用炉心冷却 設備その他 原子炉注水設備	原子炉隔離時冷却系 ストレーナ	重大事故等クラス2	$D + P_{SA} + M_{SA}$	E *

注記 *:供用状態EとしてDの許容限界を用いる。

表 4-2 荷重の組合せ整理表

					SRV荷重		LOCA荷重			地震荷重		
	運転状態	死荷重	異物 荷重 	差圧	運転時	中小 破断時	フ [°] ール スウェル	蒸気 凝縮(CO)	チャキ゛ンク゛ (CH)	S _d 荷重	S。荷重	供用状態
	運転状態V(S)	0		0				0				E *
S A	運転状態V(S)	0		0		0			0			E *
	運転状態V(S)	0					\bigcirc					E *

注記 *:供用状態EとしてDの許容限界を用いる。

表4-3 許容応力

(ストレーナ本体)

供用状態	一次一般膜応力	一次応力 (曲げ応力を含む)
D	S	1 9.5
E *	5	1.0.5

注記 *:供用状態EとしてDの許容限界を用いる。

(ボルト)

供用状態	許容応力(MPa)	
D	2 · S	
E *		

注記 *:供用状態EとしてDの許容限界を用いる。

4.2.3 使用材料の許容応力評価条件及び許容応力

原子炉隔離時冷却系ストレーナの許容応力評価条件のうち重大事故等対処設備の評価に用いるものを表 4-4 及び表 4-5 に 示す。また,使用材料の許容応力のうち重大事故等対処設備の評価に用いるものを表 4-6 及び表 4-7 に示す。

- なお、各評価部位の使用材料については以下のとおり。
- 多孔プレートSUS304フランジSUS304
- ストレーナ取付部ボルト SUS304

表4-4 使用材料(ストレーナ本体)の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件(℃)		S (MPa)	S y (MPa)	S u (MPa)	S _y (RT) (MPa)
多孔プレート	SUS304	周囲環境温度	106	121	_	—	—
フランジ	SUS304	周囲環境温度	106	121	_	—	—

表4-5 使用材料(ボルト)の許容応力(重大事故等対処設備)

評価部材	材料	温度条件(℃)		S (MPa)	S _y (MPa)	S u (MPa)	S _y (RT) (MPa)
ストレーナ取付部ボルト	SUS304	周囲環境温度	106	104	—	—	_

		許容応力 (MPa)			
材料	供用状態	一次応力			
		P m	$P_L + P_b$		
SUS304	E	121	217		

表4-6 ストレーナ本体の許容応力(重大事故等対処設備)

表 4-7 ストレーナ取付部ボルトの許容応力(重大事故等対処設備)

材料	供用状態	許容応力* (MPa)
SUS304	E	209

注記 *:許容応力状態IVASの許容応力を用いる。

- 4.2.4 設計荷重
 - (1) 死荷重

原子炉隔離時冷却系ストレーナの自重による荷重を考慮する。なお,原子炉隔離 時冷却系ストレーナに付着する異物は想定しない。

原子炉隔離時冷却系ストレーナの自重 $W_1 =$ N 内包水を考慮した死荷重 $W_2 =$ N

(2) 差圧

差圧による荷重*は,原子炉隔離時冷却系ストレーナを通しての最大設計差圧よ り設定し,以下のとおりとする。

差圧荷重 Pdif= kPa

注記 *: 差圧荷重は運転状態Vの荷重の組合せ時に考慮する。

(3) 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

逃がし安全弁作動時及び原子炉冷却材喪失時には、サプレッションチェンバ内 の水中構造物には様々な荷重が水力学的動荷重として作用する。これらの荷重に ついては、原子力安全委員会が策定した評価指針(MARK II動荷重指針)に準 じて荷重の評価を実施する。

MARK Ⅱ動荷重指針に基づき,原子炉隔離時冷却系ストレーナに加わる水力 学的動荷重を算出した結果を表 4-8 に示す。表 4-8 に示した荷重は、考慮すべ き水力学的動荷重が最大となる位置を選定して算出した値である。

なお,原子炉隔離時冷却系ストレーナは,プールスウェル荷重の内のプールスウ ェル,ブレークスルー及びフォールバックによる荷重は十分小さいため評価対象 としない。また,逃がし安全弁作動時荷重の内の水ジェット及び蒸気凝縮過程によ る荷重についても十分小さいため評価対象としない。 表4-8 水力学的動荷重(逃がし安全弁作動時荷重及び原子炉冷却材喪失時荷重)

荷重名称		軸方向	軸直角方向		
	(N)	(N)			
LOCA後の荷重	プールスウェル*1				
	蒸気凝縮(CO)*2				
	チャギング(CH)*2				
SRV荷重(中小破断時)* ³					

注:方向は図 3-1 参照。ただし、軸直角方向(水平方向 X 及び鉛直方向 Z) については、二乗和平方根としている。

- 注記 *1:ベントクリアリングによる荷重と気泡形成による荷重の包絡値としてい る。また、気泡形成荷重は加速度ドラッグ荷重と定常ドラック荷重との 代数和とする。
 - *2:加速度ドラッグ荷重とする。
 - *3: 定常ドラッグ荷重と圧力荷重との二乗和平方根とする。

4.3 計算方法

4.3.1 応力評価点

原子炉隔離時冷却系ストレーナの構造は、フランジに円筒型の多孔プレートが 取付く構造となっている。ここでは、多孔プレートとフランジの取付部、フラン ジ及びボルトを応力評価点として選定し、評価を実施する。

応力評価点を表 4-9 及び図 4-1 に示す。

表 4-9 応力評価点

名称	応力評価点番号	応力評価点
多孔プレート	P 1	多孔プレートとフランジの取付部
フランジ	P 2	フランジ
ストレーナ取付部 ボルト	P 3	ボルト

4.3.2 応力計算方法

応力計算方法について,以下に示す。なお,フランジ及びボルトについては作 用する荷重についても本項目で記載する。

- (1) 多孔プレート(応力評価点P1)
 - a. 差圧荷重による応力

円周方向応力

$$\sigma_{t} = -\frac{P_{dif} \cdot D_{0}}{2 \cdot t'}$$

ここに,

 P_{dif} :差圧荷重 t':多孔プレートの等価板厚(設計・建設規格 PVE-3251 準用) $= \frac{P-d}{P} \cdot t$

軸方向応力

$$\sigma_{\ell} = -\frac{\mathrm{P}_{\mathrm{dif}} \cdot \mathrm{D}_{0}}{4 \cdot \mathrm{t}'}$$

- b. ストレーナに作用する荷重による応力
- (a) 死荷重による荷重

軸直角方向荷重によるモーメント

$$M_{Z X} = W_1 \cdot L_W$$

軸直角方向荷重

 $F_{Z X} = W_1$

- (b) 水力学的動荷重
 - 軸方向荷重: F_Y
 軸直角方向荷重によるモーメント: M_{ZX}=F_{ZX}・L_W
 軸直角方向荷重: F_{ZX}
- (c) 各荷重による応力

軸方向荷重による応力

$$\sigma = \frac{F Y}{A}$$

ここに, A:ストレーナ取付部円筒胴の断面積 $=\frac{\pi \cdot \{D_0^2 - (D_0 - 2 \cdot t')^2\}}{4}$ モーメントによる応力

$$\sigma b = \frac{MZX}{Z}$$

ここに,

Z:ストレーナ取付部円筒胴の断面係数

$$=\frac{\pi \cdot \{D_0^4 - (D_0^2 - 2 \cdot t')^4\}}{32 \cdot D_0^4}$$

軸直角方向荷重による応力

$$\tau = \frac{FZX}{A}$$

ここに,

A : ストレーナ取付部円筒胴の断面積

(2) フランジ(応力評価点 P 2)

フランジの設計荷重を表 4-10 に示す。

ストレーナ取付部フランジの設計荷重は、ストレーナに作用する荷重から算出 したフランジ部のモーメントを用いる。ここでのモーメントとは、図4-2に示す ように、ストレーナ重心に作用する荷重とその作用点からフランジまでのモーメ ントアームから計算したモーメントであり、フランジに対して面外方向の曲げモ ーメント(2方向ある面外方向曲げモーメントの二乗和平方根の合成値)とする。 ストレーナ重心がフランジ中心軸上に位置することから、フランジ面内方向の モーメント(ねじりモーメント)は発生しないため、ここでは評価対象としない。

図 4-2 フランジに作用するモーメント

表 4-10 フランジの設計荷重

荷重		モーメント (N・mm)
1	死荷重	
2	差圧	
3	SRV荷重	
4	プールスウェル	
5	蒸気凝縮 (CO)	
6	チャギング(C H)	

ストレーナ取付部のフランジは,一般的なフランジとは異なりガスケットを使 用しない。そこで,フランジを以下のようにモデル化し,応力評価を行う。

フランジを外周(ボルト穴中心円直径)が固定された平板と考え,表 4-10 に示 すモーメントが中心部に作用すると考える。この場合の発生応力は,引用文献(1) より,図4-3に示す計算モデルで下記の計算式より求める。

$$\sigma r = \frac{\beta \cdot M f_{max}}{a \cdot t^2}$$

ここに,

図 4-3 フランジ断面の計算モデル

(3) ストレーナ取付部ボルト(応力評価点P3)

ストレーナ取付部ボルトの設計荷重は、4.3.2 項(2)に示すフランジに作用する 最大モーメントに加え、ストレーナの軸方向に発生する反力であるボルトの軸方 向荷重を考慮する。

ボルトの設計荷重を表 4-11 に示す。

表 4-11 ボルトの設計荷重

荷重		軸方向荷重(N)
1	死荷重	
2	差圧	
3	SRV荷重	
4	プールスウェル	
5	蒸気凝縮 (CO)	
6	チャギング (CH)	

ボルトには,表4-11に示すモーメントに加え,ストレーナの軸方向に発生する 荷重によりボルトの軸方向荷重が発生する。

フランジに作用するモーメントにより,ボルトに生じる軸力は,以下のように算 出する。

図4-4に示すフランジの中心を通る中立軸(Z軸)まわりのモーメントを考え る。このとき、Z軸まわりのモーメントは、各ボルトに発生する軸力とボルトのZ 軸からの距離の積から得られるモーメントとつりあっていると考えることができ る。ここで、軸方向荷重によって中立軸が移動するが、軸方向荷重のボルトへの影 響が小さいため、軸方向荷重による中立軸の移動は無視する。

したがって、Z軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

 $MZ = \sum_{k=1}^{n} F tk \cdot \ell k$

ここに、 M_Z : Z軸まわりのモーメント (N·mm) F_{tk}:各ボルトに発生する軸力(N)

 ℓ_k :任意のボルトkにおけるZ軸からの距離(mm)

n :ボルトの本数=

なお,ストレーナ重心がフランジ中心軸上に位置することから,フランジ面内方 向のモーメント(ねじりモーメント)は発生しないため,ここでは評価対象としな い。

図 4-4 各ボルトに発生する軸力とモーメントアームの関係

また、ボルト軸力のZ軸まわりのモーメント寄与分は中立軸上ではゼロであり、 図4-4に示すように、曲げモーメントを伝えるボルトの軸力は回転中心からの距 離に比例して変化するとして算定する。この場合、ボルトに発生する最大の軸力を F_tとすると、各ボルトに発生する軸力F_{tk}は下記となる。

Ftk=Ft
$$\cdot \frac{\ell_k}{D_1/2}$$

ここに、Ft :最大の軸力が発生するボルトの軸力(N)
Ftk :各ボルトに発生する軸力(N)
D1 :ボルト孔中心円直径=(mm)

以上より、nが偶数の場合、Z軸まわりのモーメントは下記となる。

$$M_{Z} = \frac{2 \cdot F_{t}}{D_{1}} \cdot \sum_{k=1}^{n} \ell_{k}^{2} = \frac{F_{t} \cdot D_{1} \cdot n}{4}$$
$$\hbar \mathcal{E}_{L}, \quad \ell_{k} = \frac{D_{1}}{2} \cdot \sin\{\frac{2 \cdot \pi}{n} \cdot (k-1)\}$$

よって,表 4-11 に示すモーメントから,ボルトの軸力は以下のように算出できる。

$$F_{t} = \frac{4 \cdot M_{fmax}}{D_{1} \cdot n}$$

したがって、ボルトに発生する応力は下記となる。

$$f_{t} = \frac{F_{t}}{A_{s}} + \frac{F_{ax1}}{A_{s} \cdot n}$$
ここに、 f_{t} : ボルトの発生応力(MPa)
 A_{s} : ボルトの有効断面積 = $\frac{\pi \cdot d_{b}^{2}}{4}$ (mm²)
 d_{b} : ボルトのねじ部谷径 = (mm)
 F_{ax1} : 表 4-11に示す軸方向荷重(N)

4.4 計算条件

応力解析に用いる自重及び荷重は、本計算書の4.2項 荷重の組合せ及び許容応力 に示す。

4.5 応力の評価

4.3 項 計算方法で求めた応力は表 4-6 及び表 4-7 に記載される値以下であること。

5. 評価結果

5.1 重大事故等対処設備としての評価結果

原子炉隔離時冷却系ストレーナの重大事故等対処設備としての強度評価結果を以下 に示す。発生値は評価基準値を満足している。

(1) 供用状態 E に対する評価

供用状態Eに対する応力評価結果を表 5-1 に示す。

表4-4に示すD+PsA+MsAの評価について記載している。

表 5-1 供用状態 E に対する応力評価結果 (D+P_{SA}+M_{SA})

	評価部位			E					
評価対象設備			応力分類	2	発生値		評価基準値	判定	備考
				MPa			MPa		
原子炉隔離時 冷却系ストレーナ	Ρ1	多孔プレートとフランジの取付部	一次膜応力 +一次曲げ応力				217	0	
	P 2	フランジ	曲げ応力				217	0	
	Р3	ボルト	引張応力				209	0	

23

6. 引用文献

(1) WARREN C. YOUNG

"ROARK'S FORMULAS for Stress and Strain" 7th Edition