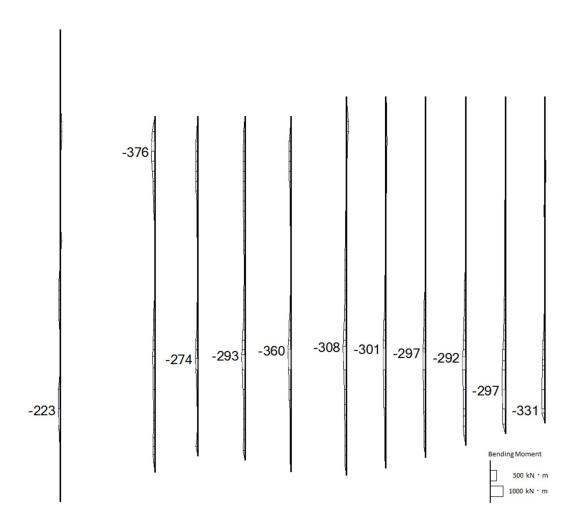
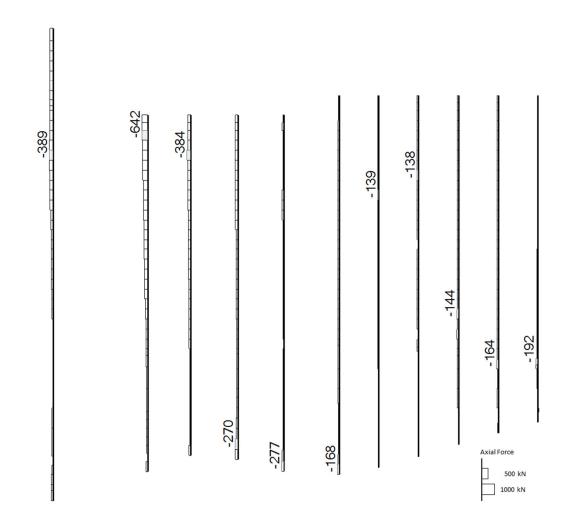
(4) 鋼管杭の断面力分布(各基準地震動に着目した断面力図)

各基準地震動において、鋼管杭に対する照査のうち、最も厳しい照査値となる部材の評価時刻における断面力図を示す。検討ケースは①:原地盤に基づく液状化強度特性を用いた解析ケースについて各基準地震動の照査結果を示す。表 2.4-12 に各基準地震動で抽出した照査値について照査項目とその評価位置の一覧表を示し、図 2.4-12 に断面力分布を示す。

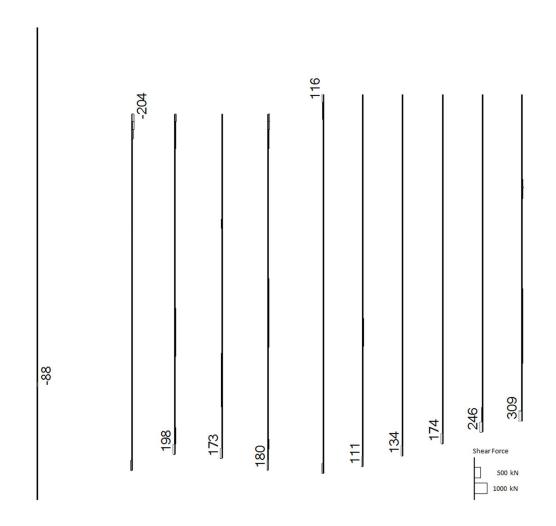

表 2.4-12 各地震波に対して最も厳しい照査値とその照査項目及び評価位置の結果(鋼管杭)

基準地震動	抽出照査値と照査項目			
	照査値	照査項目	評価位置	部材 番号
$S_{S}-D_{1}$ (H+, V+)	0. 533	せん断	縦断面(⑥-⑥断面)杭	11
$S_{S}-D_{1}$ (H+, V-)	0. 522	せん断	縦断面(⑥-⑥断面)杭	11
$S_{S}-D_{1}$ (H-, V+)	0. 552	せん断	縦断面(⑥-⑥断面)杭	11
$S_{S}-D_{1}$ (H-, V-)	0. 561	せん断	縦断面(⑥-⑥断面)杭	11
S _s -11	0. 233	せん断	取水ピット(④-④断面)杭	1
$S_{s}-12$	0. 347	せん断	縦断面(⑥-⑥断面)杭	1
$S_{s}-13$	0. 284	せん断	縦断面(⑥-⑥断面)杭	1
S _S -14	0. 275	せん断	縦断面(⑥-⑥断面)杭	11
$S_{s}-21$	0. 335	せん断	縦断面(⑥-⑥断面)杭	2
$S_{s}-22$	0. 338	せん断	縦断面(⑥-⑥断面)杭	2
$S_{s}-31 (H+, V+)$	0. 495	せん断	縦断面(⑥-⑥断面)杭	11
$S_{S}-31 (H-, V+)$	0. 317	せん断	縦断面(⑥-⑥断面)杭	11

注記 *:評価位置は下図に示す


取水ピット(④-④断面)
1 2 3 4 5 6 7 8 9 10 11 12 縦断面(⑥-⑥断面)
1 2 3 4 5 6 7 8 9 10 11

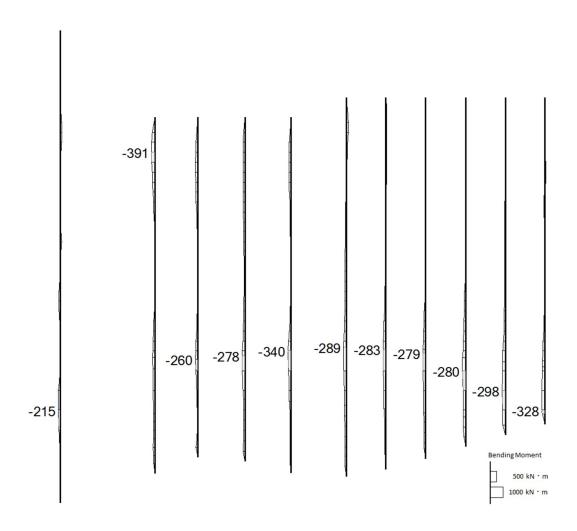
base: TK2-VLS_2D_DYNA_Ss-D1L++ 時刻:59.790s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-D1L++ 時刻: 59.790s

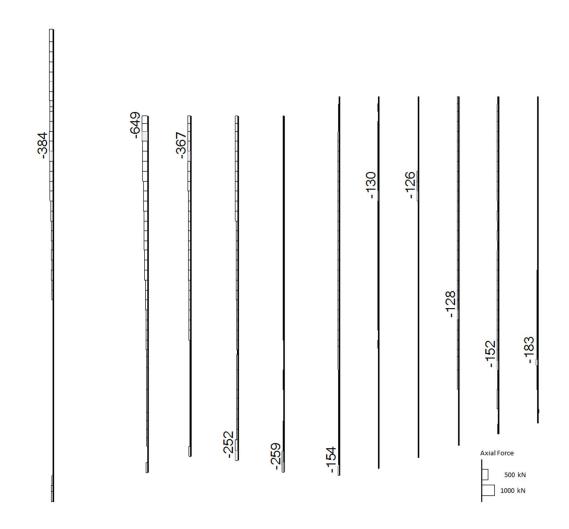
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-D1L++ 時刻:59.790s

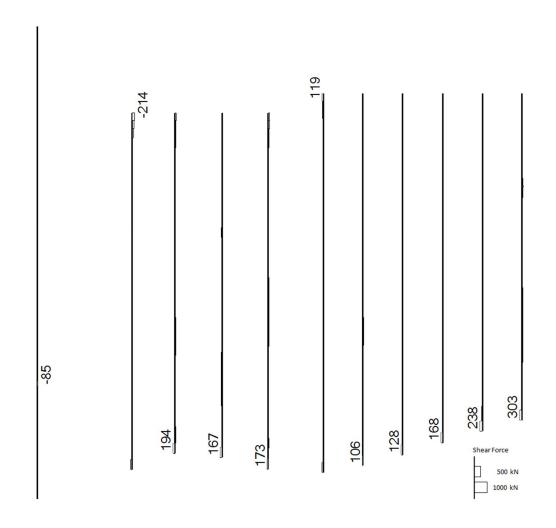


(c) せん断力(kN)

図 2.4-12(1) S_s-D 1 (H+, V+) において最も厳しい照査値となる時刻の断面力 (t=59.79s)


(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

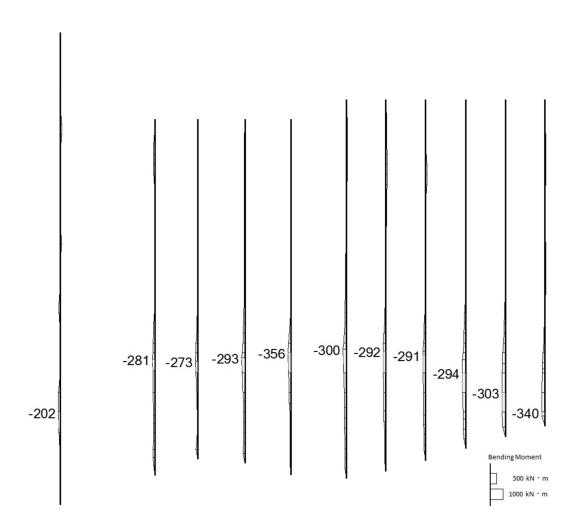
base: TK2-VLS_2D_DYNA_Ss-D1L+-時刻:59.830 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-D1L+-時刻:59.830 s

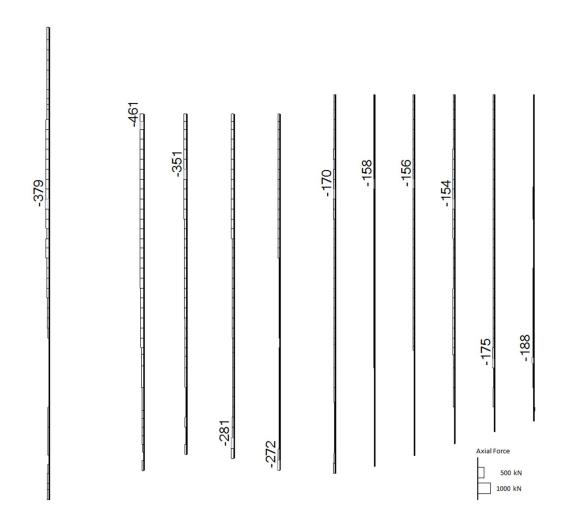
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-D1L+-時刻:59.830 s

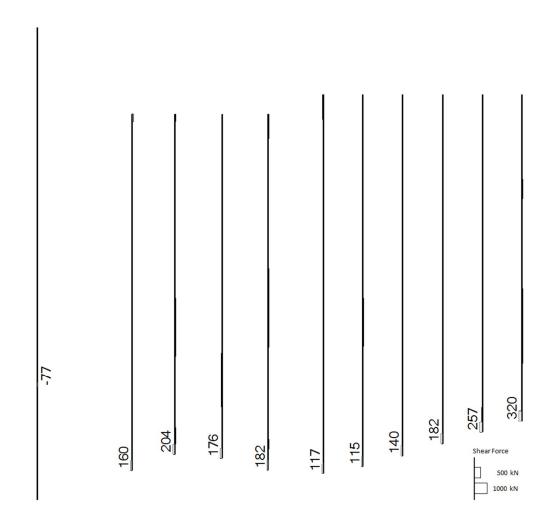


(c) せん断力(kN)

図 2.4-12(2) S_s-D 1 (H+, V-) において最も厳しい照査値となる時刻の断面力 (t=59.83s)


(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

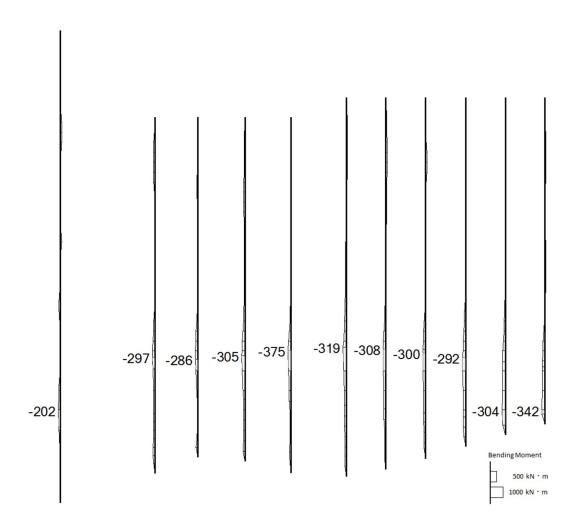
base: TK2-VLS_2D_DYNA_Ss-D1L-+ 時刻:67.570 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-D1L-+ 時刻:67.570 s

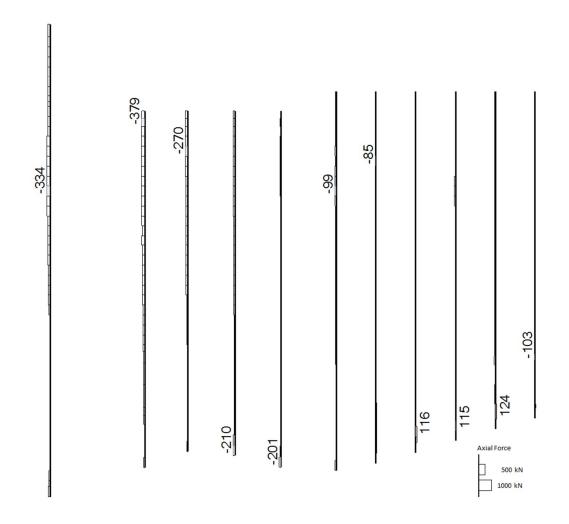
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-D1L-+ 時刻:67.570s



(c) せん断力(kN)

図 2.4-12(3) S_s-D 1 (H-, V+) において最も厳しい照査値となる時刻の断面力 (t=67.57s)

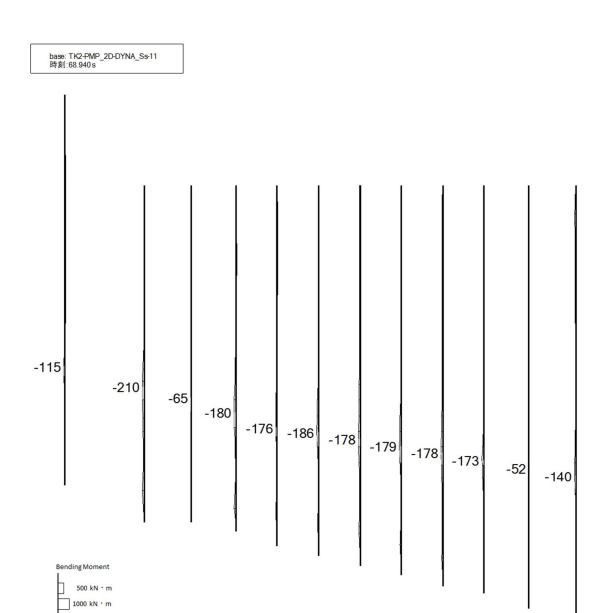

(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

base: TK2-VLS_2D_DYNA_Ss-D1L--時刻: 67.590s

(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-D1L--時刻: 67.590s

(b) 軸力(kN)


base: TK2-VLS_2D_DYNA_Ss-D1L--時刻: 67.590s

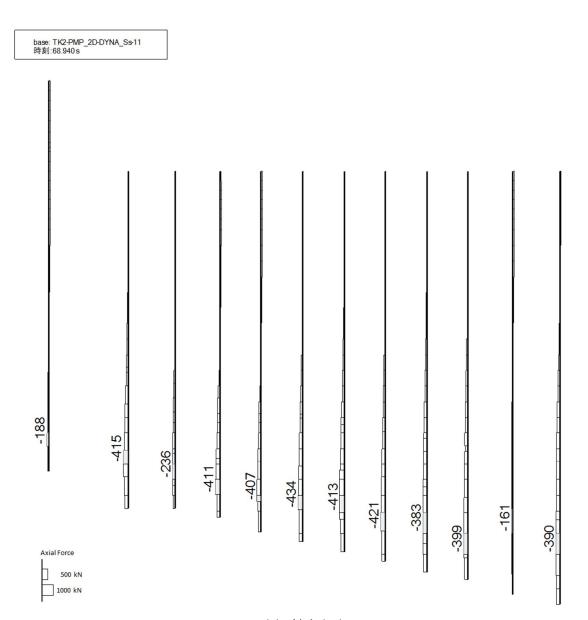
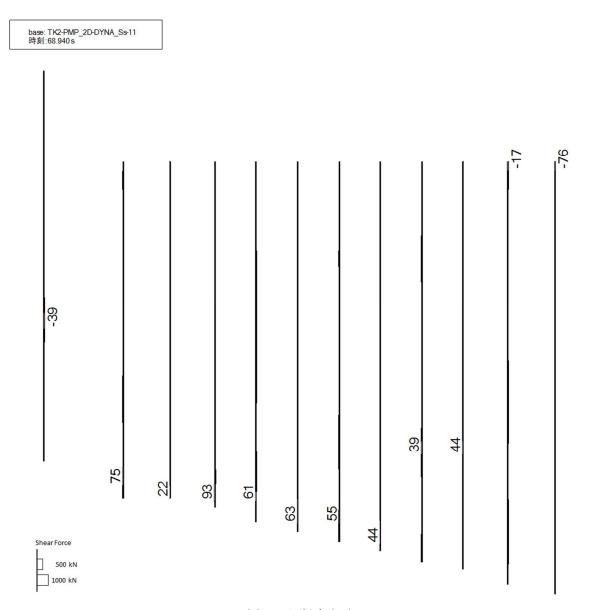
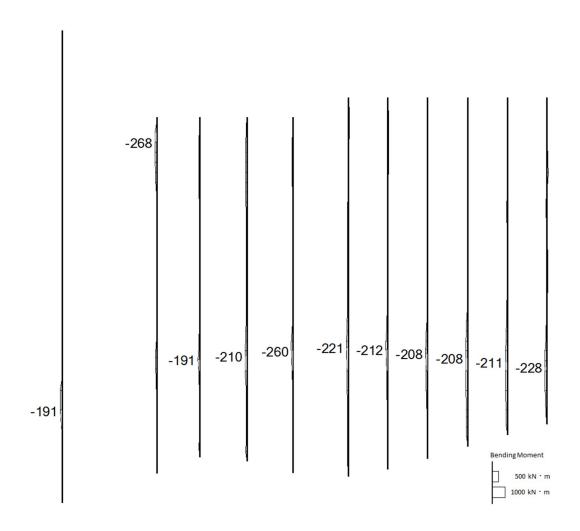

(c) せん断力(kN)

図 2.4-12(4) S_s-D 1 (H-, V-) において最も厳しい照査値となる時刻の断面力 (t=67.59s)


(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

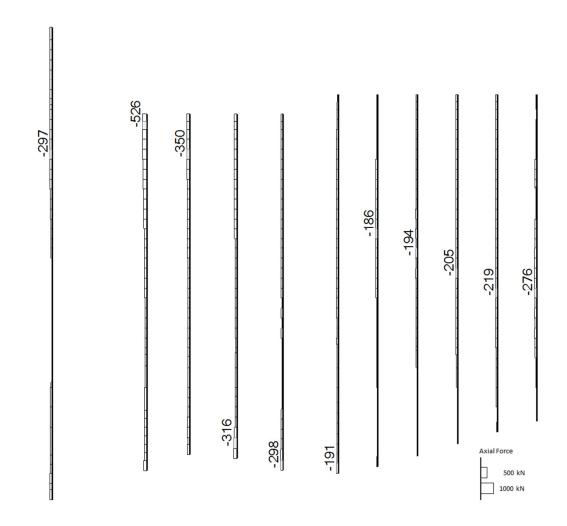
(a) 曲げモーメント (kN·m)

(b) 軸力(kN)

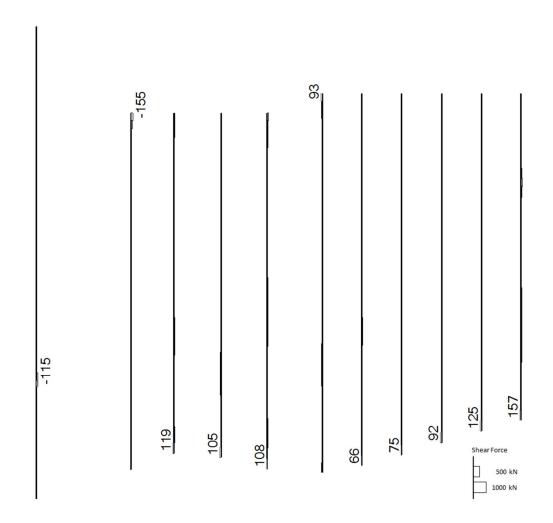


(c) せん断力(kN)

図 2.4-12(5) S_s-11 において最も厳しい照査値となる時刻の断面力 (t=68.94s)


(評価位置:取水ピット(④-④断面) 杭〈1〉)

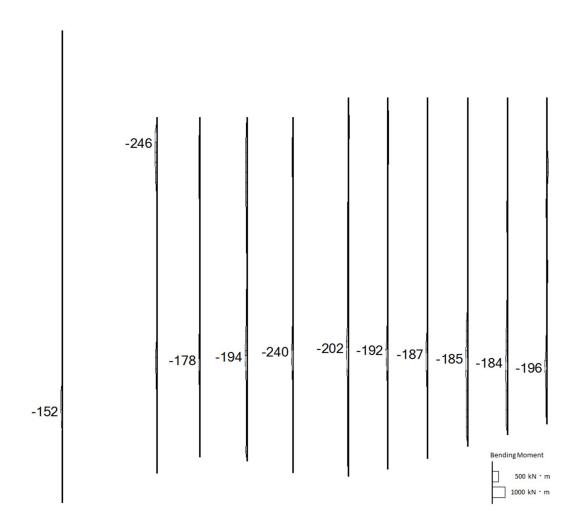
base: TK2-VLS_2D_DYNA_Ss-12 時刻:88.140 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-12 時刻:88.140 s

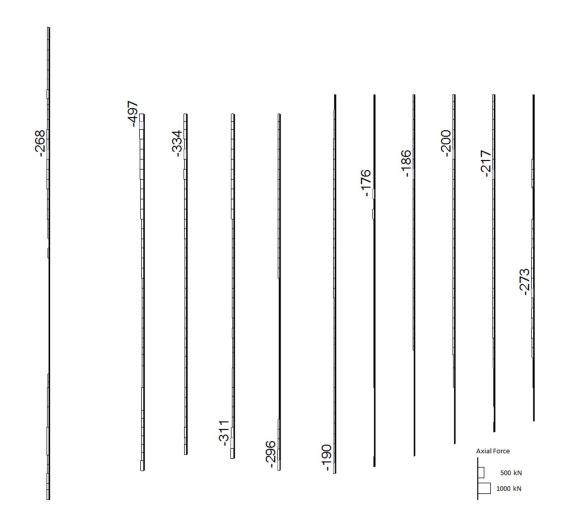
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-12 時刻:88.140 s

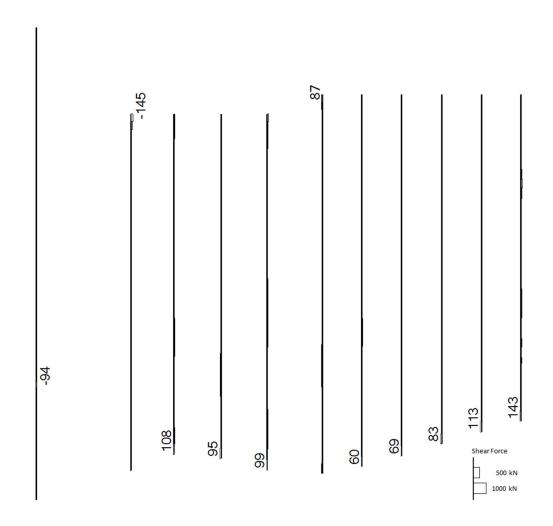


(c) せん断力(kN)

図 2. 4-12(6) S_s-1 2 において最も厳しい照査値となる時刻の断面力 (t=88.14s)


(評価位置:縦断面(⑥-⑥断面)杭〈1〉)

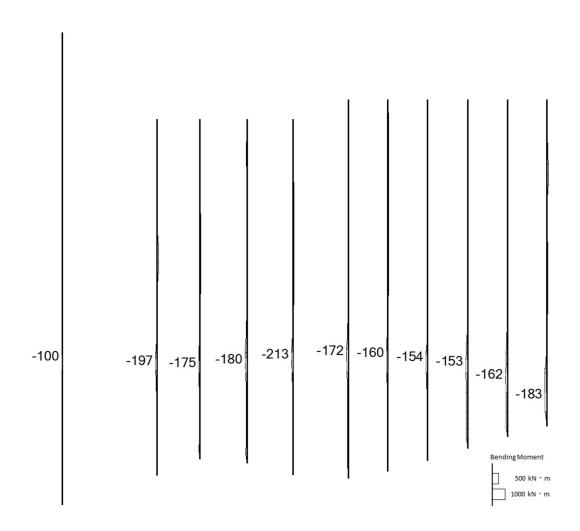
base: TK2-VLS_2D_DYNA_Ss-13 時刻:85.310 s


(a) 曲げモーメント (kN·m)

base: TK2-VLS_2D_DYNA_Ss-13 時刻:85.310 s

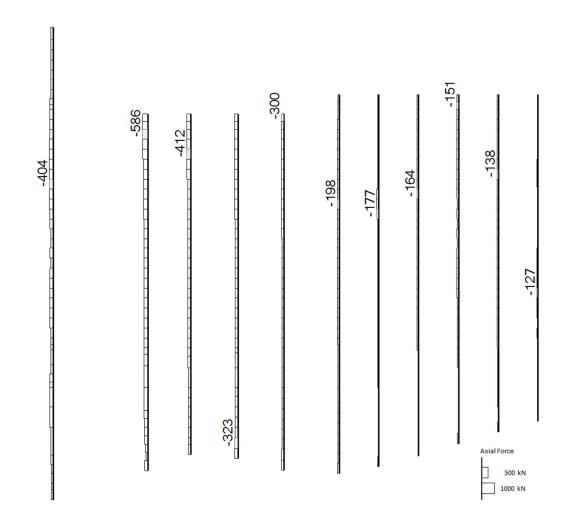
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-13 時刻:85.310 s

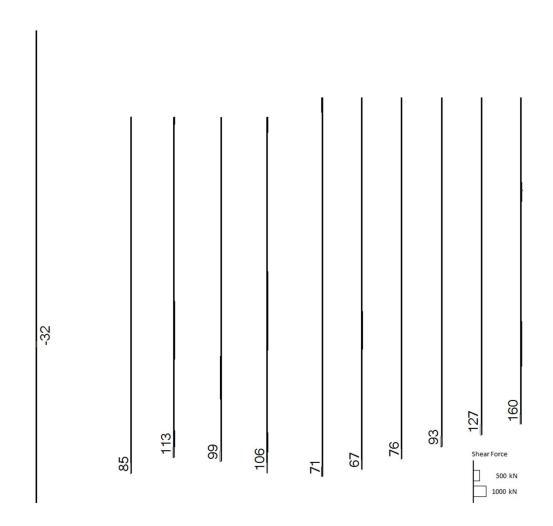


(c) せん断力(kN)

図 2.4-12(7) S_s-13において最も厳しい照査値となる時刻の断面力 (t=85.31s)


(評価位置:縦断面(⑥-⑥断面)杭〈1〉)

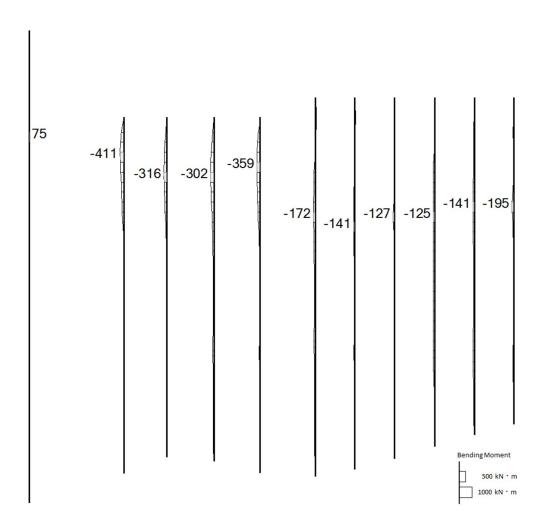
base: TK2-VLS_2D_DYNA_Ss-14 時刻:31.660 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-14 時刻:31.660 s

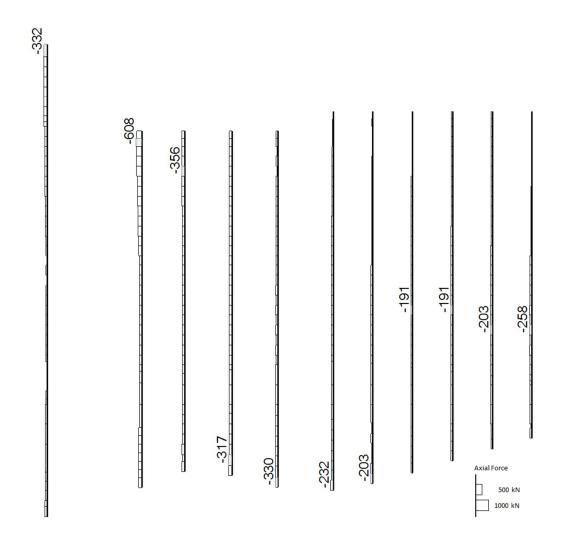
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-14 時刻:31.660 s

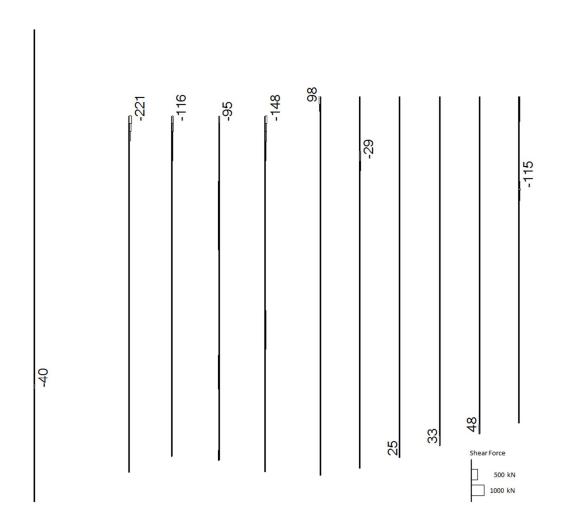


(c) せん断力(kN)

図 2.4-12(8) S_s-1 4 において最も厳しい照査値となる時刻の断面力 (t=31.66s)


(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

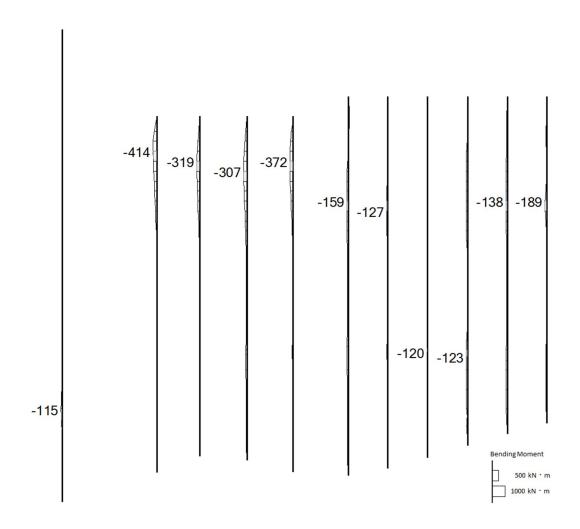
base: TK2-VLS_2D_DYNA_Ss-21 時刻:102.900 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-21 時刻:102.900 s

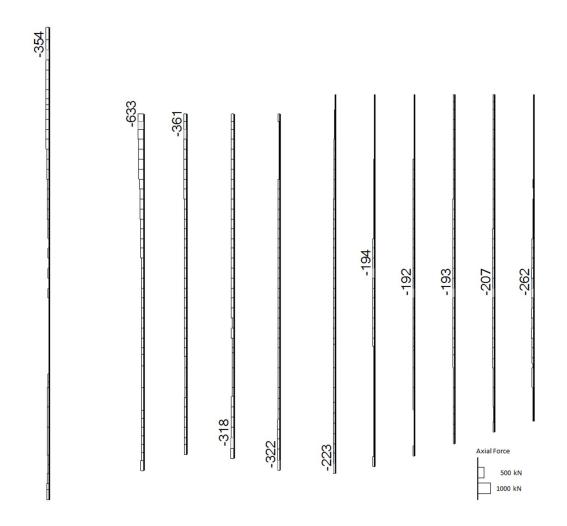
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-21 時刻:102.900 s

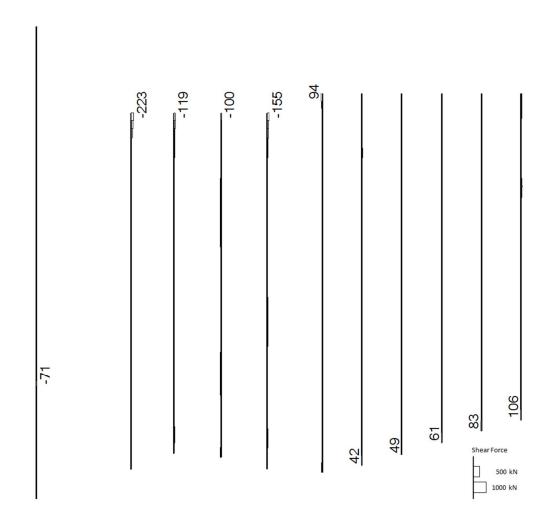


(c) せん断力(kN)

図 2.4-12(9) S_s-21において最も厳しい照査値となる時刻の断面力 (t=102.90s)


(評価位置:縦断面(⑥-⑥断面)杭〈2〉)

base: TK2-VLS_2D_DYNA_Ss-22 時刻:96.170s


(a) 曲げモーメント (kN・m)

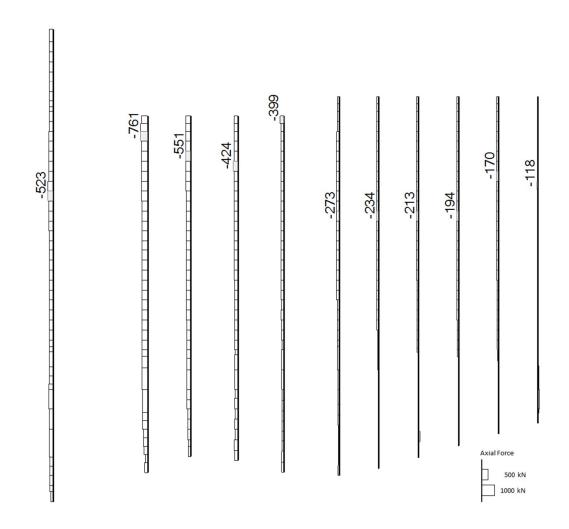
base: TK2-VLS_2D_DYNA_Ss-22 時刻:96.170 s

(b) 軸力(kN)

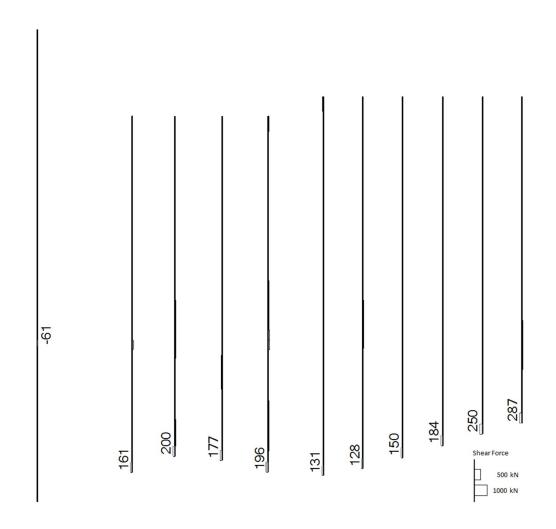
base: TK2-VLS_2D_DYNA_Ss-22 時刻:96.170 s

(c) せん断力(kN)

図 2.4-12(10) S_s-22において最も厳しい照査値となる時刻の断面力 (t=96.17s)


(評価位置:縦断面(⑥-⑥断面)杭〈2〉)

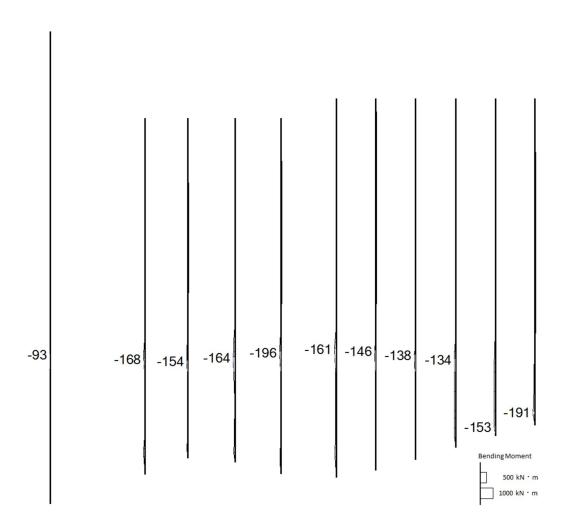
base: TK2-VLS_2D_DYNA_Ss-31++ 時刻:8.760s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-31++ 時刻:8.760s

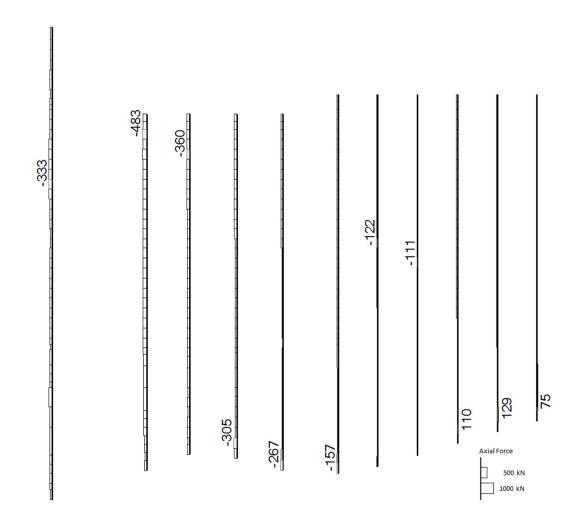
(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-31++ 時刻:8.760s

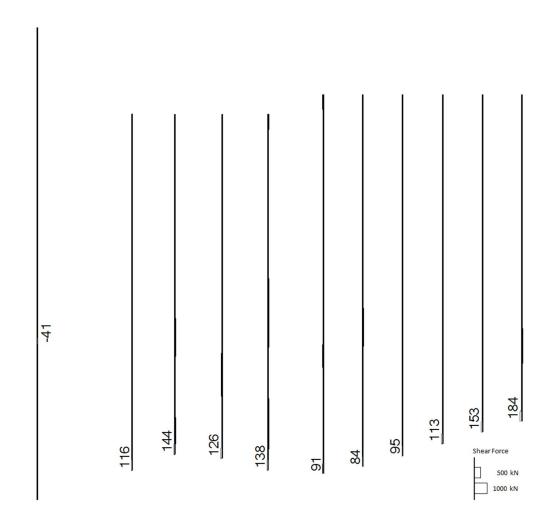


(c) せん断力(kN)

図 2.4-12(11) S_s -3 1 (H+, V+) において最も厳しい照査値となる時刻の断面力 (t=8.76s)


(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

base: TK2-VLS_2D_DYNA_Ss-31-+ 時刻:8.390 s


(a) 曲げモーメント (kN・m)

base: TK2-VLS_2D_DYNA_Ss-31-+ 時刻:8.390 s

(b) 軸力(kN)

base: TK2-VLS_2D_DYNA_Ss-31-+ 時刻:8.390 s

(c) せん断力(kN)

図 2.4-12(12) S_s-31 (H-,V+) において最も厳しい照査値となる時刻の断面力 (t=8.39s)

(評価位置:縦断面(⑥-⑥断面)杭〈11〉)

	(5) 最大せん断ひずみ分布
	各要素に発生した最大せん断ひずみを確認するため、地震応答解析の全時刻における最
	大せん断ひずみの分布を示す。①一①断面における最大せん断ひずみ分布を図 2.4-1 <mark>3</mark> に,
	④-④断面における最大せん断ひずみ分布を図 2.4-14 に, ⑥-⑥断面における最大せん
	断ひずみ分布を図 2.4-15 に示す。
(①一①断面

図 2.4-13(1) 取水路(①-①断面)の最大せん断ひずみ分布(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

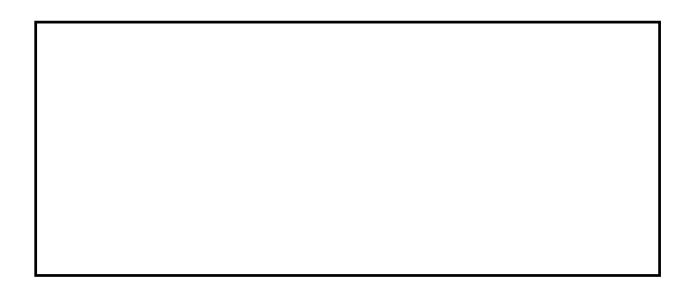


図 2.4-13(2) 取水路(①-①断面)の最大せん断ひずみ分布 (S_s-D1 (H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2. 4-13(4) 取水路(①-①断面)の最大せん断ひずみ分布 (S_s-D1 (H-,V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

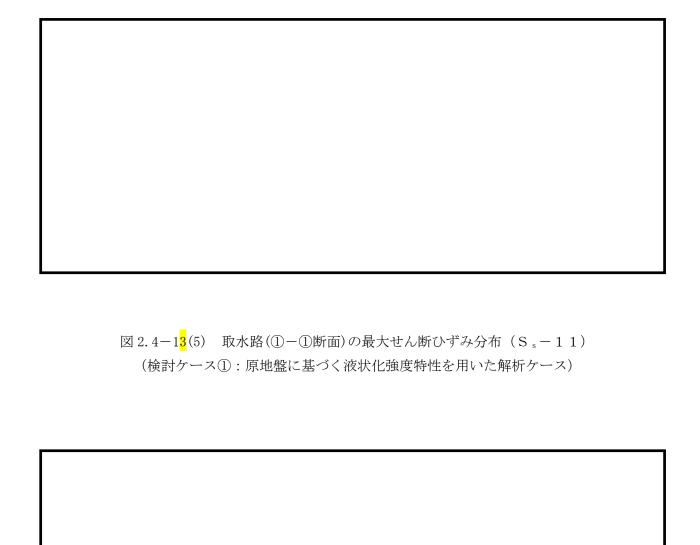


図 2.4-13(6) 取水路 (①-①断面) の最大せん断ひずみ分布 (S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

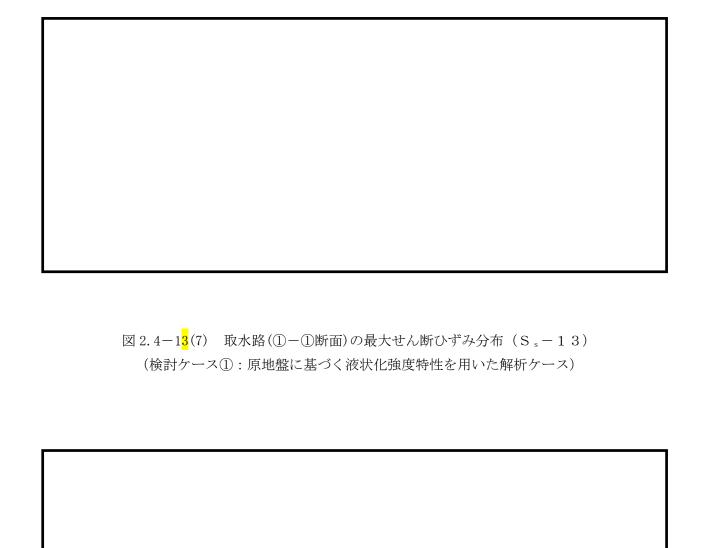


図 2.4-13(8) 取水路(①-①断面)の最大せん断ひずみ分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

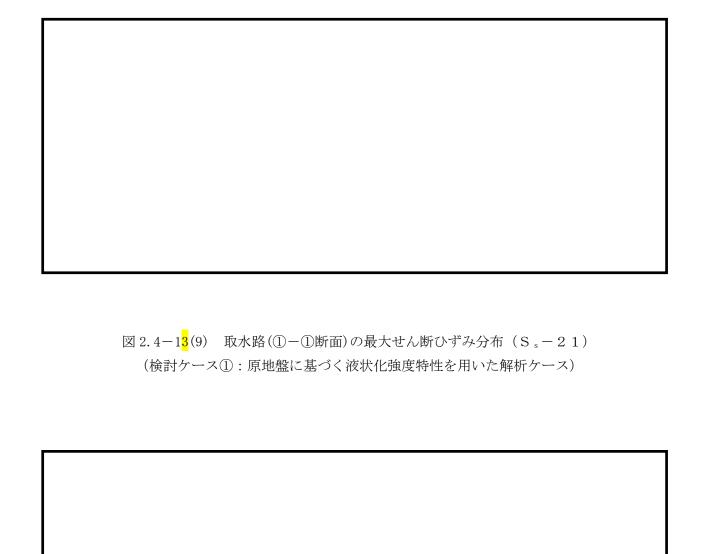


図 2.4-13(10) 取水路(①-①断面)の最大せん断ひずみ分布(S_s-22)(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

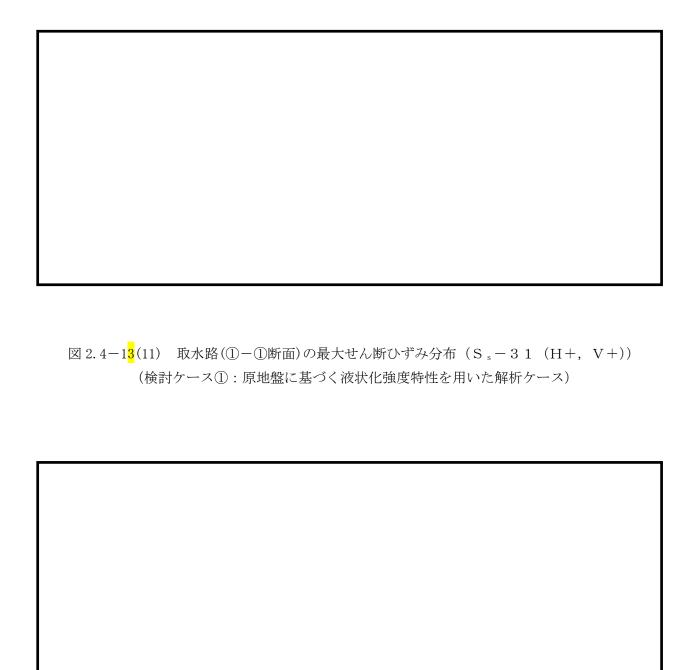


図 2.4-13(12) 取水路(①-①断面)の最大せん断ひずみ分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-13(13) 取水路(①-①断面)の最大せん断ひずみ分布 (S _s -D1 (H-, V+)) * (検討ケース②: 地盤物性のばらつきを考慮 (+1σ) した解析ケース) * 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-13(14) 取水路 (①-①断面) の最大せん断ひずみ分布(S_s-D1 (H+,V+))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

(検討	ケース②:地質	盤物性のばらつき	きを考慮(+1σ	(S _s -31(H+,) した解析ケース) ぶ最も厳しい地震動	

図 2.4-13(16) 取水路(①-①断面)の最大せん断ひずみ分布 (S_s-D1 (H-, V+))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-13(17) 取水路(①-①断面)の最大せん断ひずみ分布 (S _s -D1 (H+, V+))*
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)
* 躯体のせん断力照査で照査値が最も厳しい地震動

図 2.4-13(18) 取水路 (①-①断面) の最大せん断ひずみ分布(S_s-3 1 (H+,V+))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ) した解析ケース)

* 鋼管杭の曲げ軸力及びせん断力照査で照査値が最も厳しい地震動

図 2.4 -13 (19) 取水路(① $-$ ①断面)の最大せん断ひずみ分布(S $_{\rm s}$ -D 1 (H $-$, V $+$))*
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース) * 躯体の曲げ軸力照査で照査値が最も厳しい地震動
で 他件の曲り細力無直と無直直が取り取りい地震動

図 2.4-13(20) 取水路(①-①断面)の最大せん断ひずみ分布 (S_s-D1 (H+, V+))*

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

	取水路($\hat{\mathbb{U}}$ – $\hat{\mathbb{U}}$ 断面)の最大せん断ひずみ分布(S_s – 31 ($H+,V+$))* 討ケース④: 敷地に存在しない豊浦標準砂の液状化強度特性により
<mark>- (1尺)</mark>	地盤を強制的に液状化させることを仮定した解析ケース)
*	鋼管杭の曲げ軸力及びせん断力照査で照査値が最も厳しい地震動

図 2.4-13(22) 取水路(①-①断面)の最大せん断ひずみ分布(S $_{s}$ -D 1 (H-, V+))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-13(23) 取水路(①-①断面)の最大せん断ひずみ分布 (S _s -D1 (H+, V+))*
図 2. 4 = 13(23) 取水路(① = ①断面)の取入せん断いりみ刃和(S _s = D1(N+, V+)) (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)
* 躯体のせん断力照査で照査値が最も厳しい地震動
* 本本のでの例の無点で無点にが取り取して、地域到

図 2.4-13(24) 取水路 (①-①断面) の最大せん断ひずみ分布 (S_s -31 (H+,V+)) *

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

* 鋼管杭の曲げ軸力及びせん断力照査で照査値が最も厳しい地震動

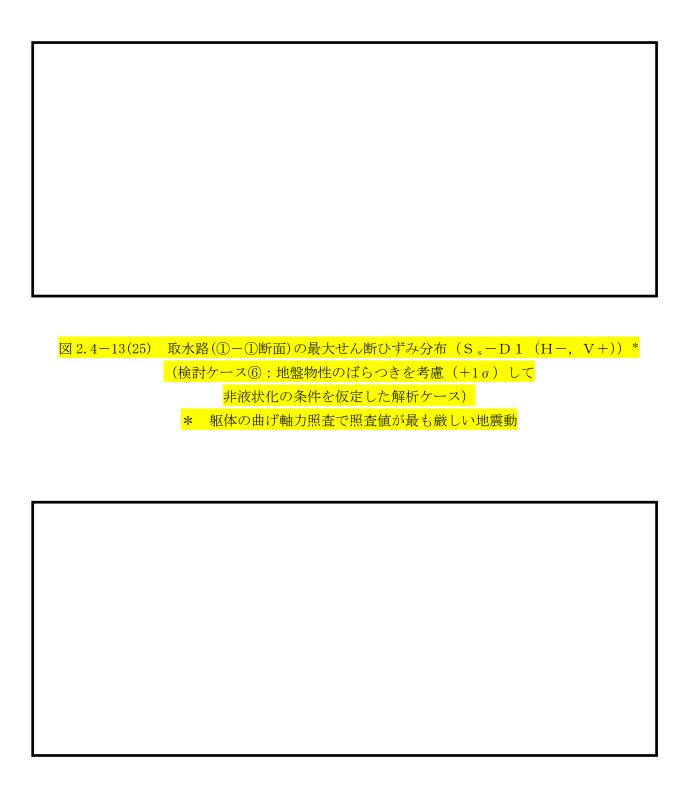


図 2.4-13(26) 取水路 (① - ①断面) の最大せん断ひずみ分布 ($S_s - D1$ (H+, V+)) * (検討ケース⑥: 地盤物性のばらつきを考慮 ($+1\sigma$) して

非液状化の条件を仮定した解析ケース)



図 2.4-13(27) 取水路(①-①断面)の最大せん断ひずみ分布(S $_s$ -31 (H+, V+))*

(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して

非液状化の条件を仮定した解析ケース)

* 鋼管杭の曲げ軸力及びせん断力照査で照査値が最も厳しい地震動

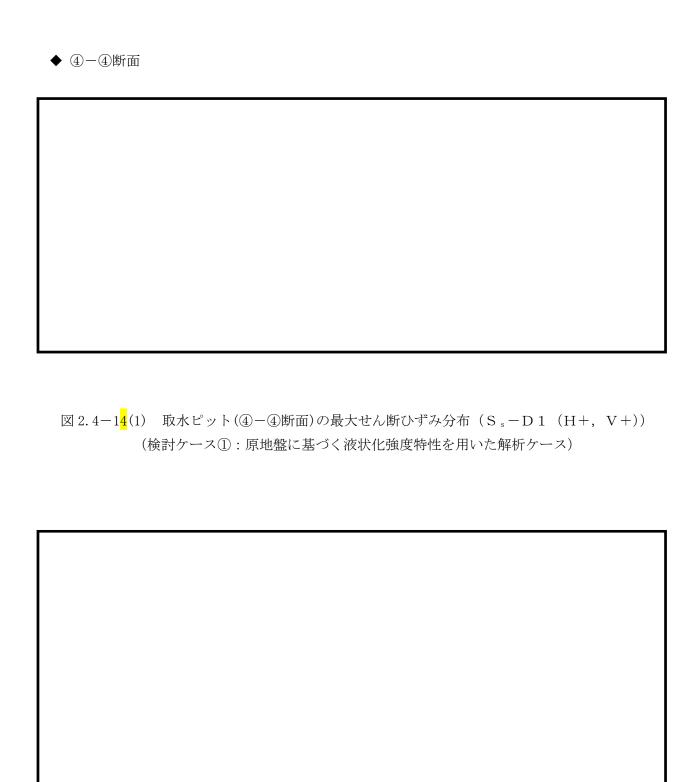


図 2.4-1<mark>4</mark>(2) 取水ピット(④-④断面)の最大せん断ひずみ分布 (S_s-D1 (H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

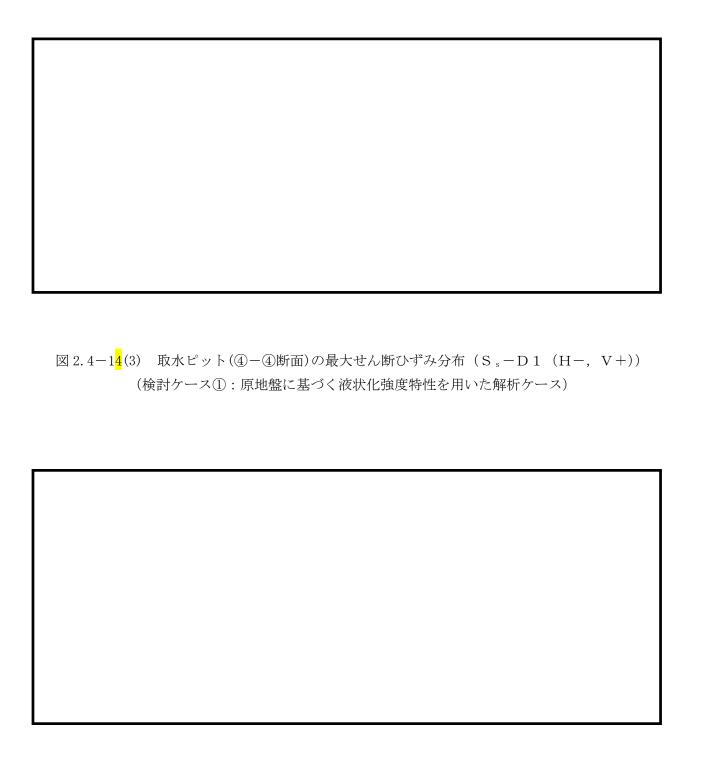


図 2.4-14(4) 取水ピット(④-④断面)の最大せん断ひずみ分布 (S_s-D1 (H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

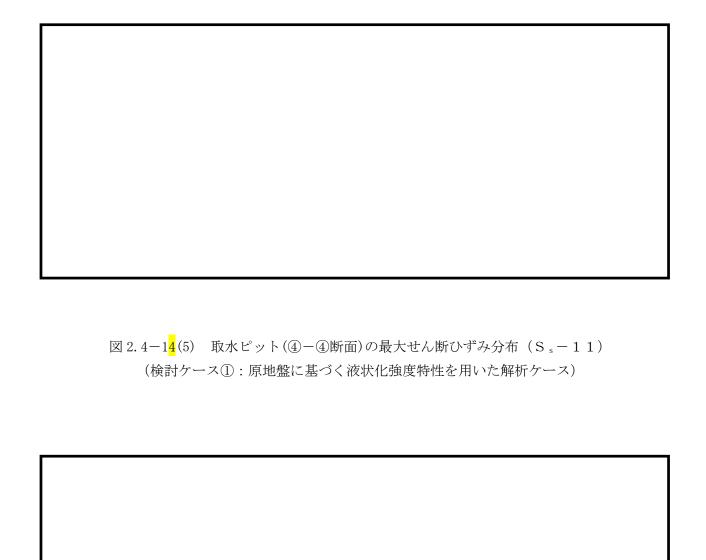


図 2. 4-14(6) 取水ピット(4-4) 断面)の最大せん断ひずみ分布 (8_s-12) (検討ケース①: 原地盤に基づく液状化強度特性を用いた解析ケース)

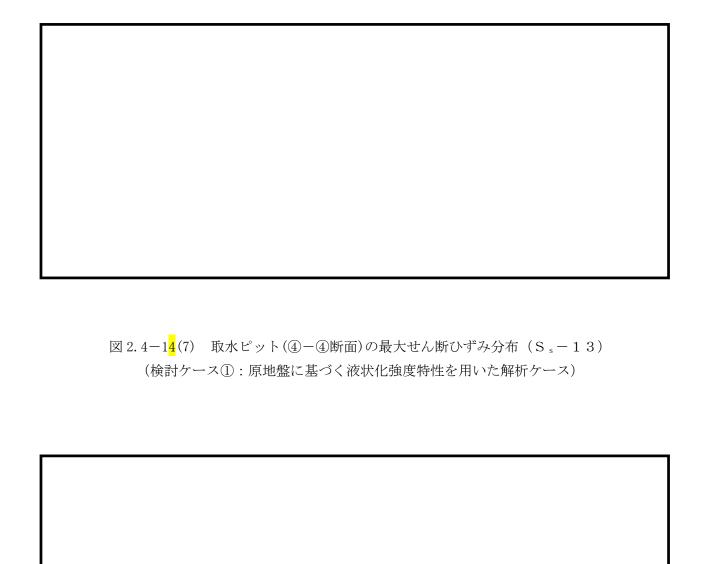


図 2. 4-14(8) 取水ピット(4-4) 断面)の最大せん断ひずみ分布 (8_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

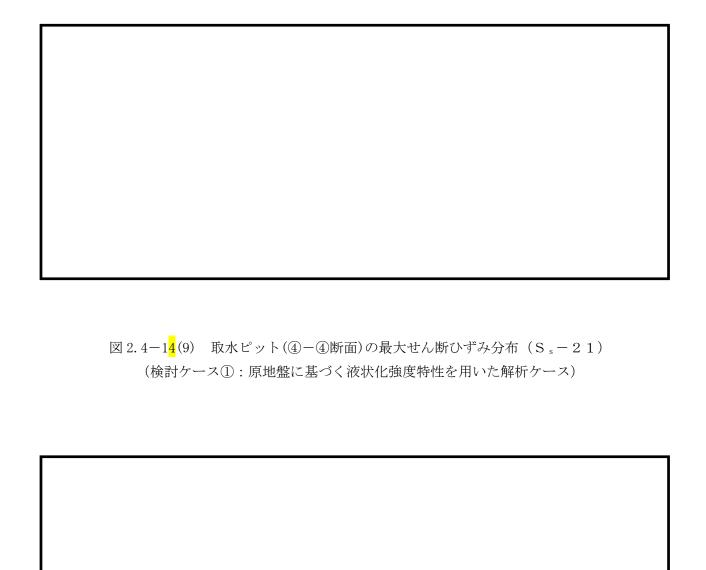


図 2. 4-14(10) 取水ピット(4-4) 断面)の最大せん断ひずみ分布(S_s-22) (検討ケース①: 原地盤に基づく液状化強度特性を用いた解析ケース)

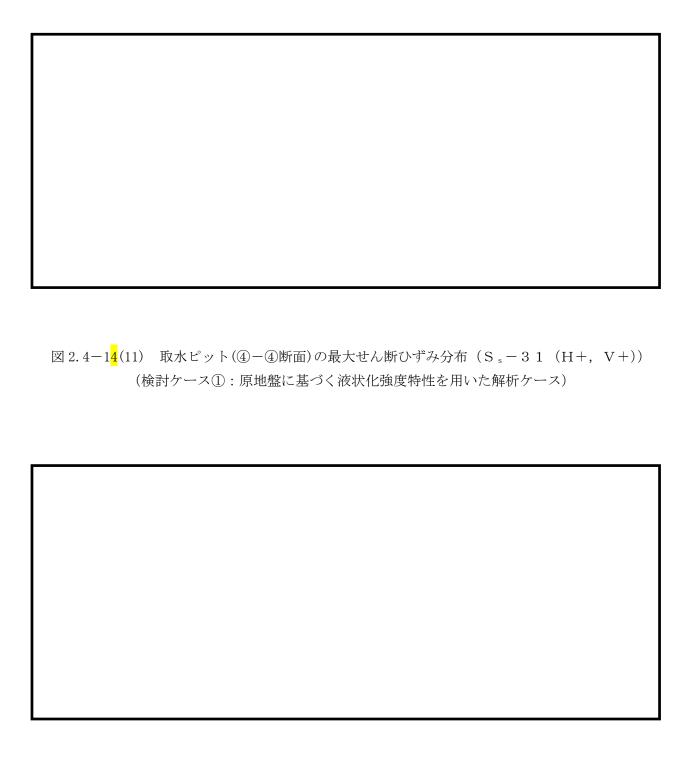


図 2.4-14(12) 取水ピット(④-④断面)の最大せん断ひずみ分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-14(13) 取水ピット(④-④断面)の最大せん断ひずみ分布(S _s -D 1 (H-, V-))*
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動
ABIT DESCRIPTION OF THE CAMERICAN PRODUCT OF THE PR

図 2.4-14(14) 取水ピット(④-④断面)の最大せん断ひずみ分布(S_s -3 1(H+, V+))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ) した解析ケース)

図 2.4-14(15) 取水ピット(④-④断面)の最大せん断ひずみ分布 (S _s -D1 (H-, V-))* (検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)
* 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-14(16) 取水ピット(④-④断面)の最大せん断ひずみ分布(S_s -31 (H+,V+))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ) した解析ケース)

取水ピット(④-④断面)の最大せん断ひずみ分布(S _s -D1(H-, V-)) 検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動	*

図 2.4-14(18) 取水ピット(④-④断面)の最大せん断ひずみ分布 (S_s-31 (H+, V+))*

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 2.4-14(19) 取水ピット(④-④断面)の最大せん断ひずみ分布(S _s -D1 (H-, V-))*
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-14(20) 取水ピット(④-④断面)の最大せん断ひずみ分布(S_s -3 1 ($H+,\ V+$)) *

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

☑ 2.4-14(21)	取水ピット(④-④断面)の最大せん断ひずみ分布 (S _s -D1 (H-, V-))* (検討ケース⑥:地盤物性のばらつきを考慮 (+1σ) して 非液状化の条件を仮定した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-14(22) 取水ピット(④-④断面)の最大せん断ひずみ分布(S_s-3 1 ($H+,\ V+$)) *

(検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して

非液状化の条件を仮定した解析ケース)

♦ ⑥-€	⑥断面					
図 2.	4-15(1) 縦 断	前(⑥一⑥断面)(の最大せん断ひず	<mark>み分布(S。-</mark> [01 (H+, V+	-))
		・ス①:原地盤に基				· ·

図 2.4-15(2) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-D1(H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

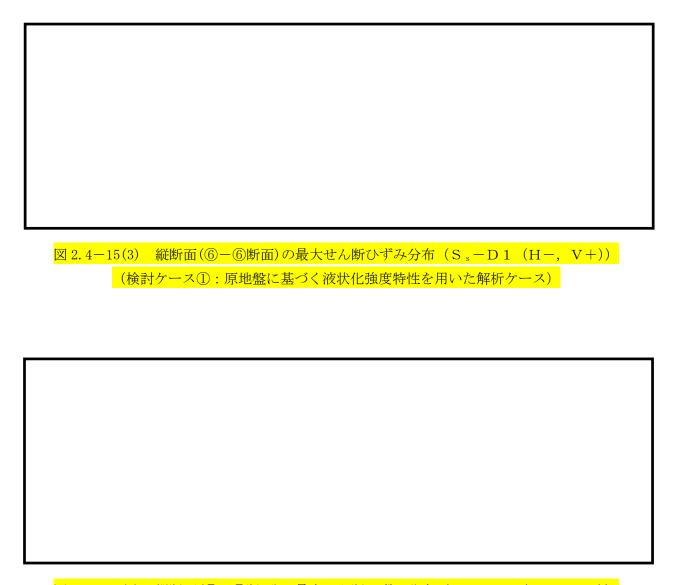


図 2.4-15(4) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

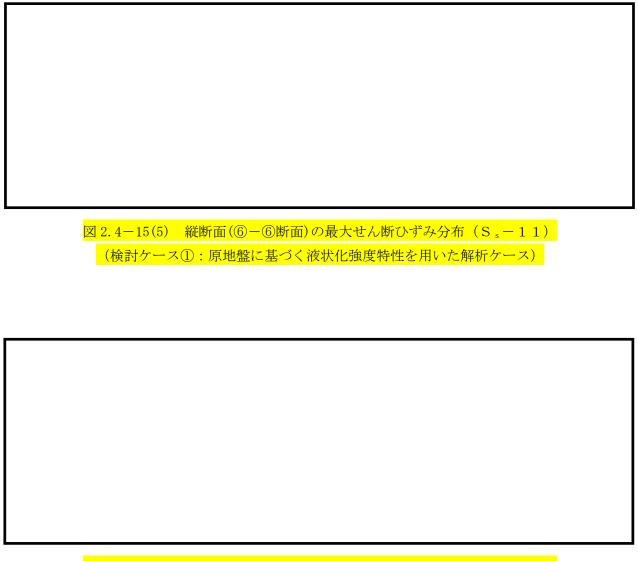


図 2.4-15(6) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

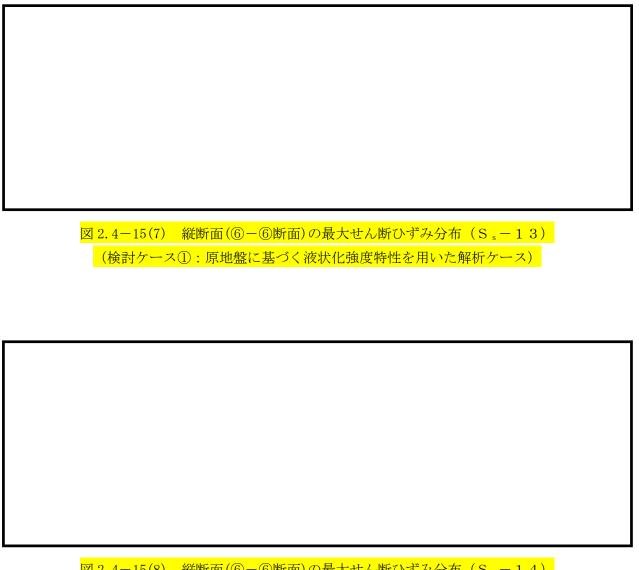


図 2.4-15(8) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

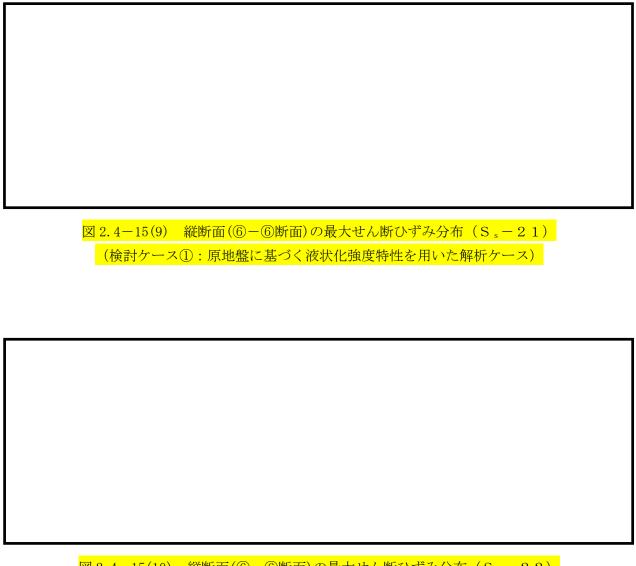


図 2.4-15(10) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

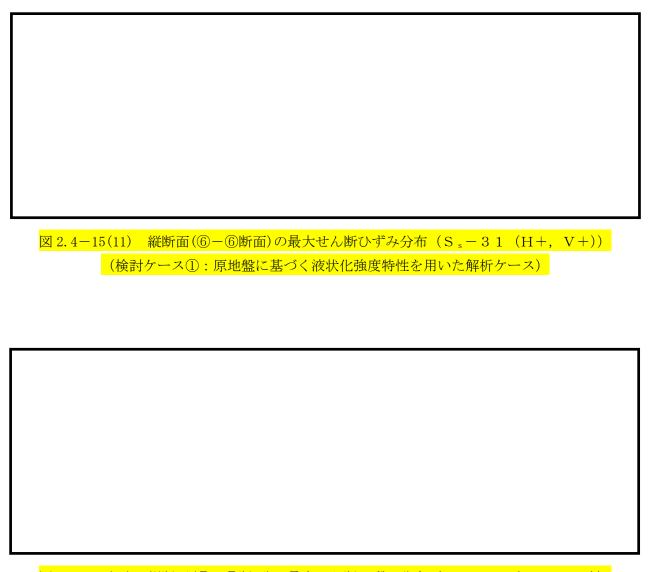


図 2.4-15(12) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-15(13) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S_s -31(H-, V+))* (検討ケース②:地盤物性のばらつきを考慮(+1 σ)した解析ケース)
* 躯体の曲げ照査およびせん断照査で照査値が最も厳しい地震動

図 2.4-15(14) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布 (S_s-D1 (H-, V-))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

図 2.4-15(15) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S _s -31(H-, V+))* (検討ケース③:地盤物性のばらつきを考慮(-1 _σ)した解析ケース) * 躯体の曲げ照査およびせん断照査で照査値が最も厳しい地震動

図 2.4-11(16) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布 (S_s-D1 (H-, V-))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

図 2.4-15(18) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(Ss-D1(H-, V-))*

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

図 2.4-15(19) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布(S _s -31(H-, V+))* (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) * 躯体の曲げ照査およびせん断照査で照査値が最も厳しい地震動

図 2.4-15(20) 縦断面(⑥-⑥断面)の最大せん断ひずみ分布 (S_s-D1 (H-, V-))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

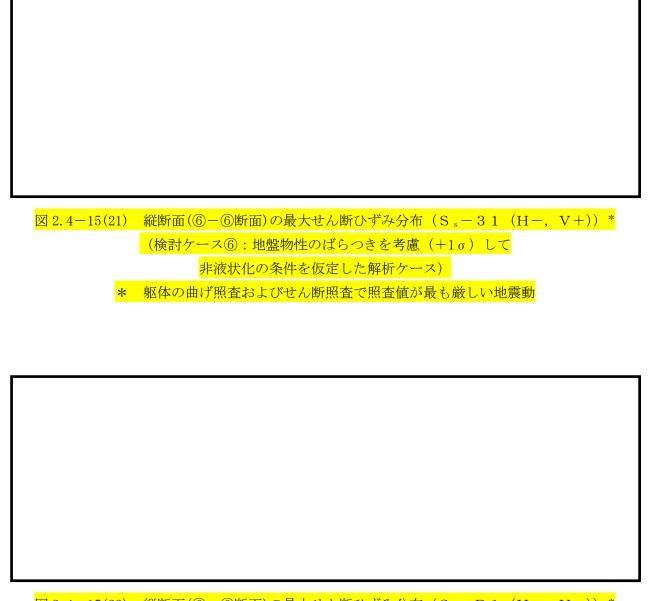


図 2. 4-15(22) 縦断面 (⑥-⑥断面) の最大せん断ひずみ分布(S_s-D1 (H-,V-))* (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して 非液状化の条件を仮定した解析ケース)

(6)	過剰間隙水圧比分	<u> </u>
(())		7 / 1 1 1

各要素に発生した過剰間隙水圧比を確認するため、地震応答解析の全時刻における過剰間隙水圧比の最大値の分布を示す。①-①断面における過剰間隙水圧比分布を図 2.4-16に、④-④断面における過剰間隙水圧比分布を図 2.4-17に、⑥-⑥断面における過剰間隙水圧比分布を図 2.4-18に示す。

◆ ①一①断面		
	_	

図 2. 4-16(1) 取水路(①-①断面)の過剰間隙水圧比分布 (S_s-D1 (H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

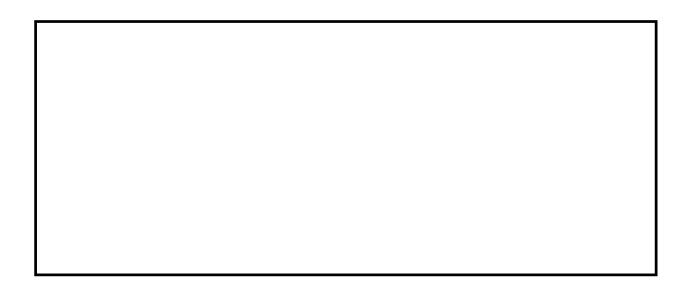


図 2. 4-16(2) 取水路(①-①断面)の過剰間隙水圧比分布(S_s-D1 (H+,V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

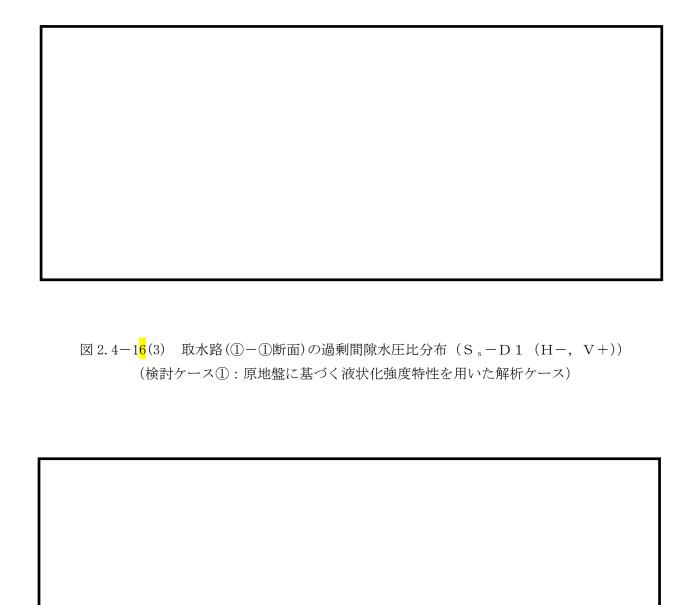


図 2. 4-16(4) 取水路(①-①断面)の過剰間隙水圧比分布(S_s-D1 (H-,V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

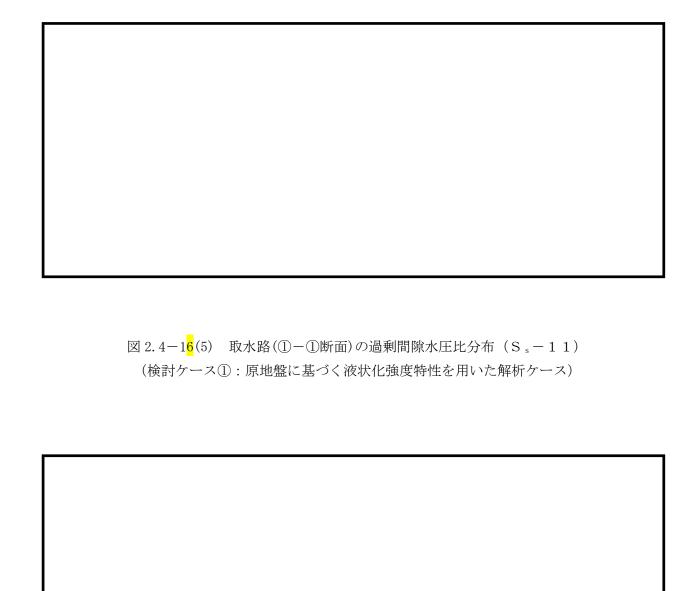


図 2.4-16(6) 取水路(①-①断面)の過剰間隙水圧比分布(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-16(8) 取水路(①-①断面)の過剰間隙水圧比分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

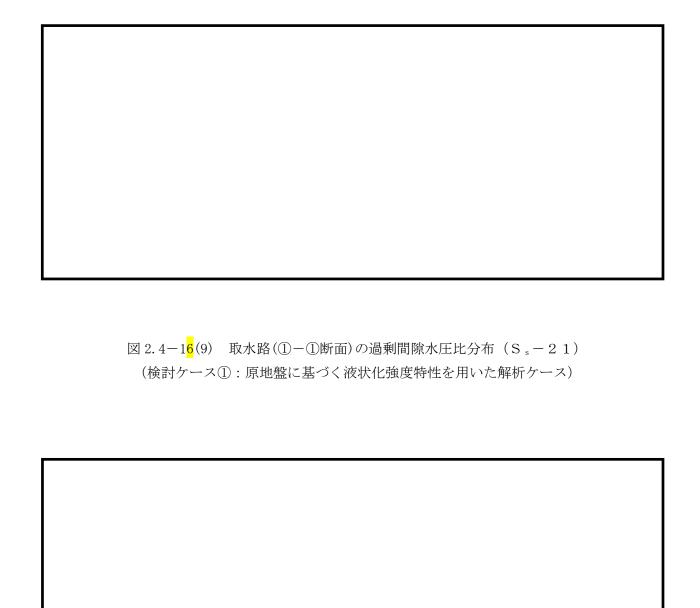


図 2.4-16(10) 取水路 (1) - ①断面) の過剰間隙水圧比分布 (S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

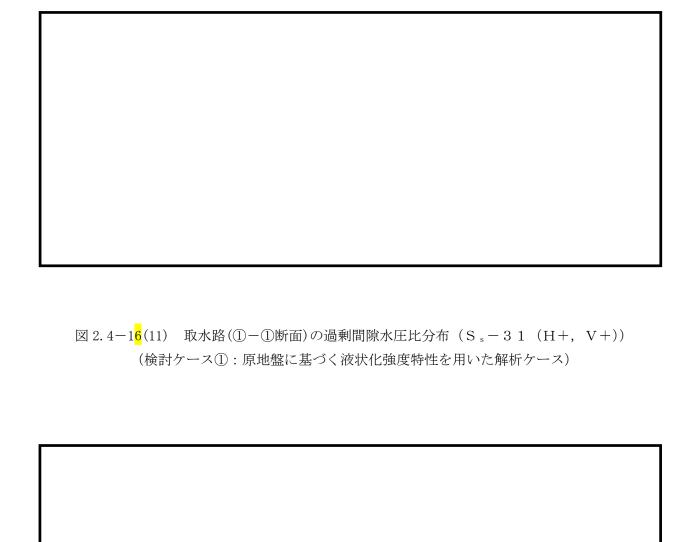


図 2.4-16(12) 取水路(①-①断面)の過剰間隙水圧比分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-16(13) 取水路(①-①断面)の最過剰間隙水圧比分布(S _s -D1(H-, V+))* (検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) * 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-16(14) 取水路(①-①断面)の最過剰間隙水圧比分布(S_s-D1(H+, V+))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

図 2.4-16(15) 取水路(①-①断面)の最過剰間隙水圧比分布(S _s -31(H+, V+ (検討ケース②: 地盤物性のばらつきを考慮(+1σ)した解析ケース) * 鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい地震動)) *

図 2.4-16(16) 取水路(①-①断面)の最過剰間隙水圧比分布(S_s-D1(H-, V+))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-16(17) 取水路(①-①断面)の最過剰間隙水圧比分布(S _s -D1(H+, V+))* (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース) * 躯体のせん断力照査で照査値が最も厳しい地震動

図 2.4-16(18) 取水路 $(\hat{\mathbb{U}}-\hat{\mathbb{U}})$ 断面) の最過剰間隙水圧比分布 $(S_s-31(H+,V+))^*$ (検討ケース③: 地盤物性のばらつきを考慮 (-1σ) した解析ケース)

図 2.4-16(19) 取水路(①-①断面)の最過剰間隙水圧比分布(S _s -D1 (H-, V+))*
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)
* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-16(20) 取水路 (①-①断面) の最過剰間隙水圧比分布(S_s-D 1 (H+, V+))*

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 2.4-16(21) 取水路(①-①断面)の最過剰間隙水圧比分布 (S _s -31 (H+, V+))*
図 2. 4 = 10(21) 取示路(① = ①樹面)の最過氣間原示圧比分布(S _s = S 1 (日 + , V +)) (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)
* 鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい地震動

図 2.4-16(22) 取水路(①-①断面)の最過剰間隙水圧比分布(S_s-D1 (H-, V+))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-16(23) 取水路(①-①断面)の最過剰間隙水圧比分布(S _s -D1 (H+, V+))*
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) * 躯体のせん断力照査で照査値が最も厳しい地震動

図 2.4-16(24) 取水路 (①-①断面) の最過剰間隙水圧比分布($S_s-3.1$ ($H+,\ V+$))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

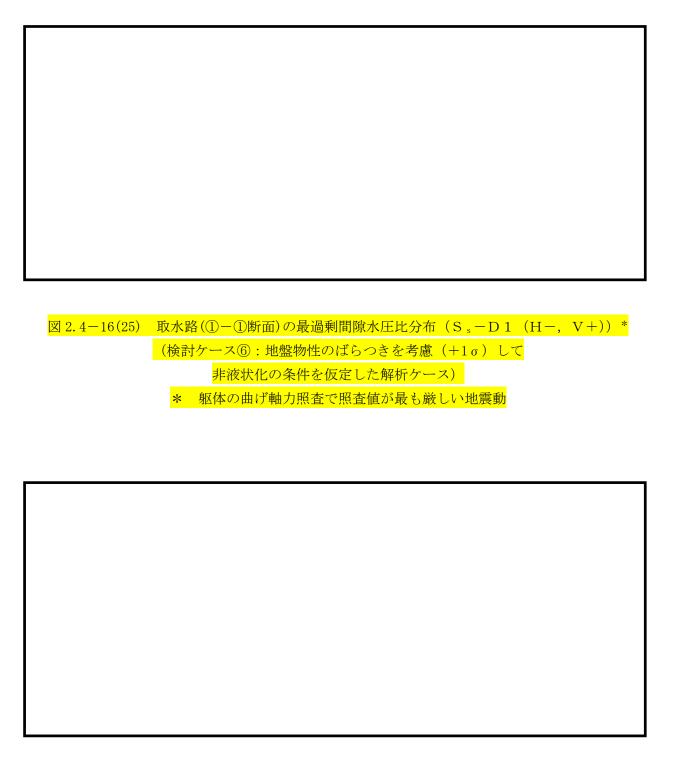


図 2.4-16(26) 取水路(①-①断面)の最過剰間隙水圧比分布(S_s-D1 (H+,V+))* (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して 非液状化の条件を仮定した解析ケース)



図 2.4-16(27) 取水路 (① - ①断面) の最過剰間隙水圧比分布 ($S_s - 31$ (H+, V+)) * (検討ケース⑥: 地盤物性のばらつきを考慮 ($+1\sigma$) して

非液状化の条件を仮定した解析ケース)

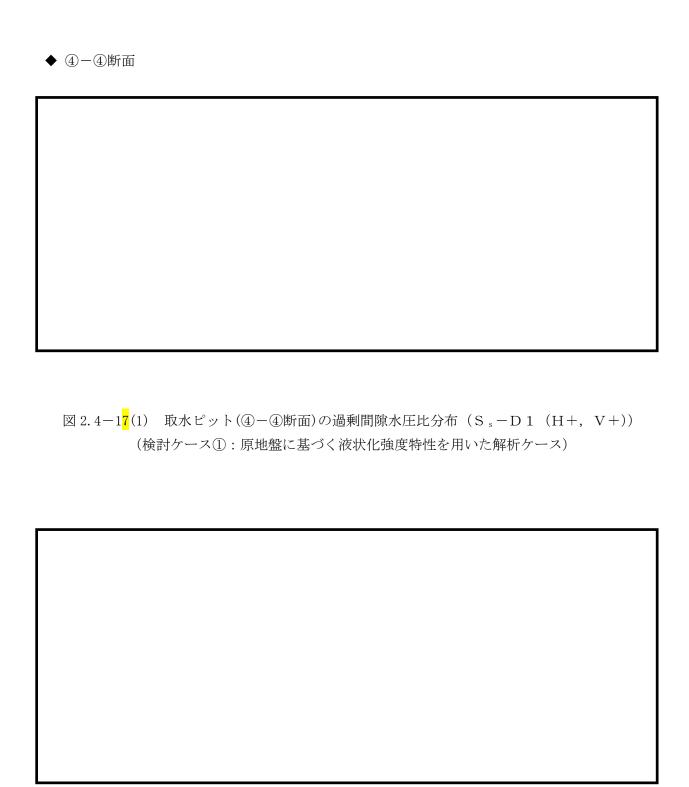


図 2.4-17(2) 取水ピット(④-④断面)の過剰間隙水圧比分布 (S_s-D1 (H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

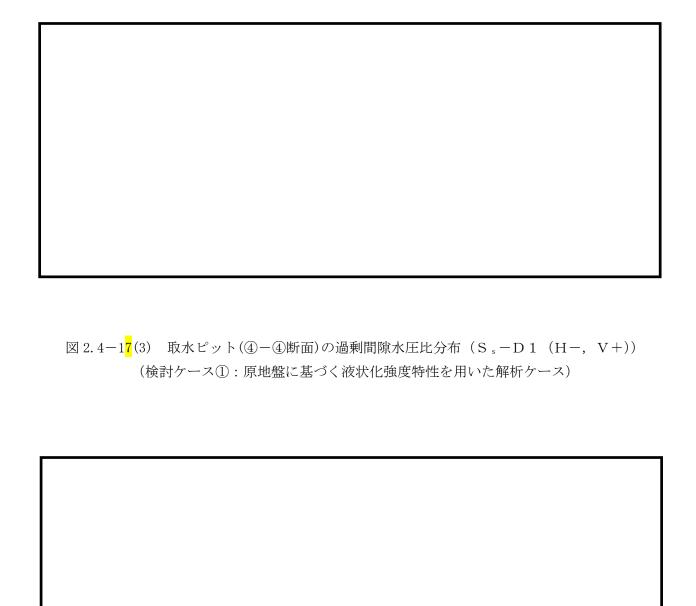


図 2.4-17(4) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

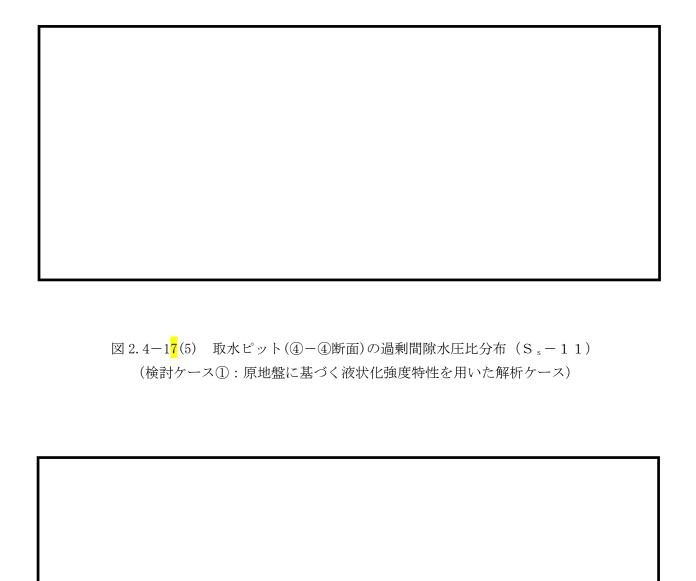


図 2.4-17(6) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)



図 2.4-17(8) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2. 4-17(10) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

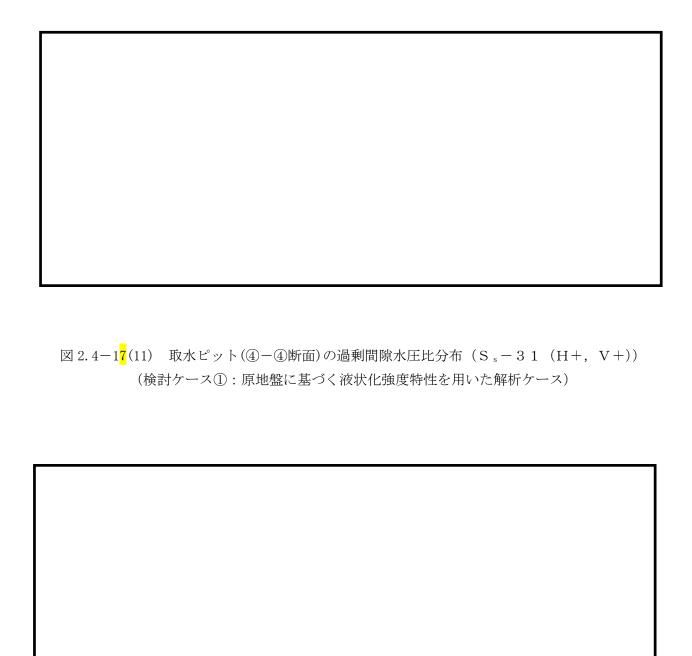


図 2.4-17(12) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

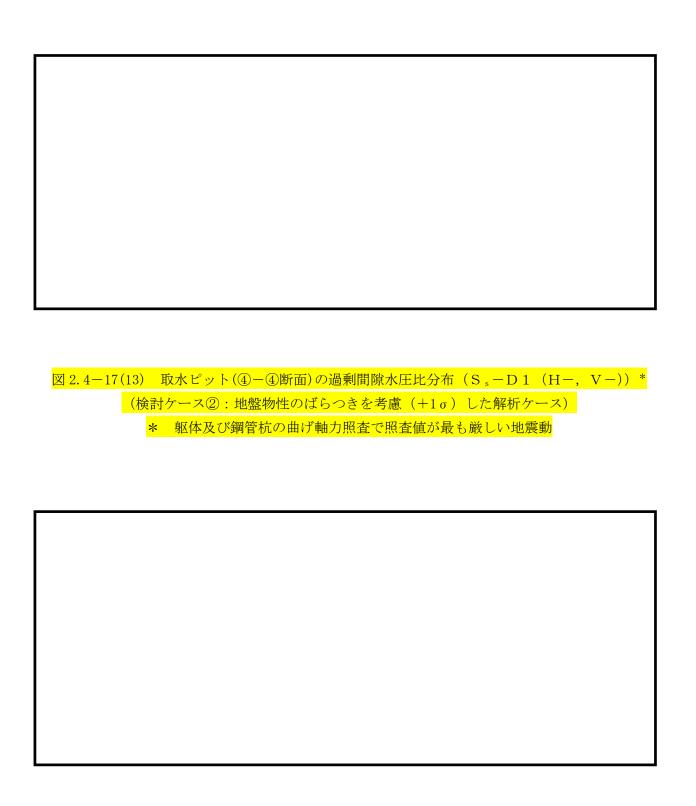


図 2.4-17(14) 取水ピット(④-④断面)の過剰間隙水圧比分布 (S_s-31 (H+, V+))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

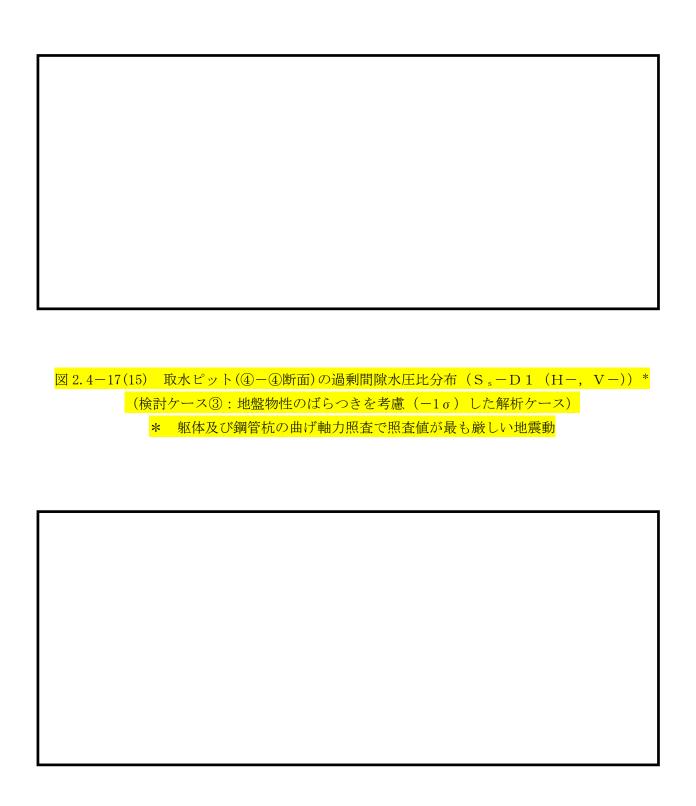


図 2.4-17(16) 取水ピット(④-④断面)の過剰間隙水圧比分布 (S_s-31 (H+, V+))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

図 2.4-17(17) 取水ピット(④-④断面)の過剰間隙水圧比分布(Ss-D1(H-, V-))*
(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により
地盤を強制的に液状化させることを仮定した解析ケース)
* 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動
· ALITYCHIA MATAMERINA WOMEN SILVE

図 2.4-17(18) 取水ピット(④-④断面)の過剰間隙水圧比分布 (S_s-31 (H+, V+))*

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 2.4-17(19) 取水ピット(④-④断面)の過剰間隙水圧比分布(S _s -D1(H-, V-))*
(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)
* 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-17(20) 取水ピット(④-④断面)の過剰間隙水圧比分布(S_s-31 (H+, V+))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

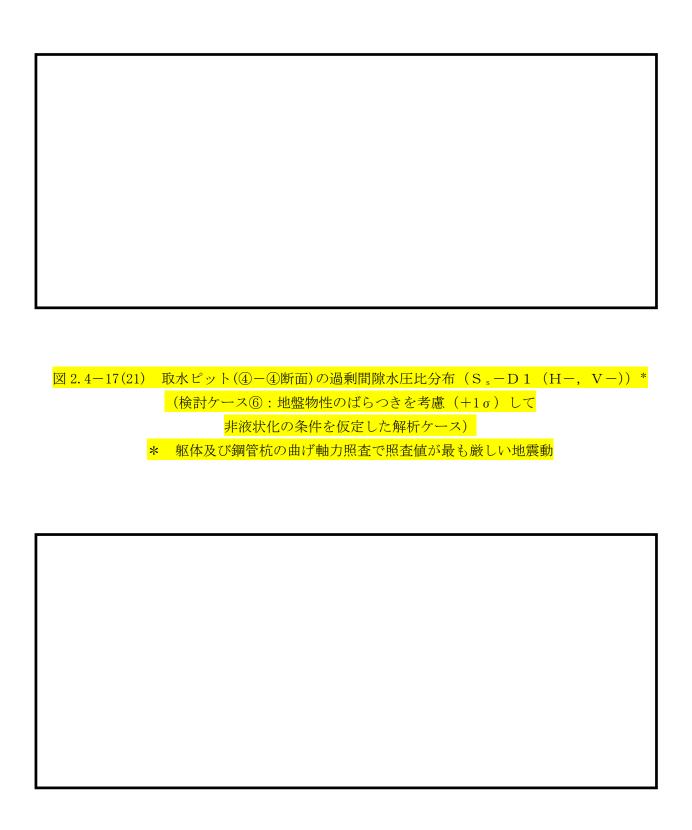


図 2. 4-17(22) 取水ピット(④ー④断面)の過剰間隙水圧比分布(S_s-31 (H+,V+))* (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して

非液状化の条件を仮定した解析ケース)

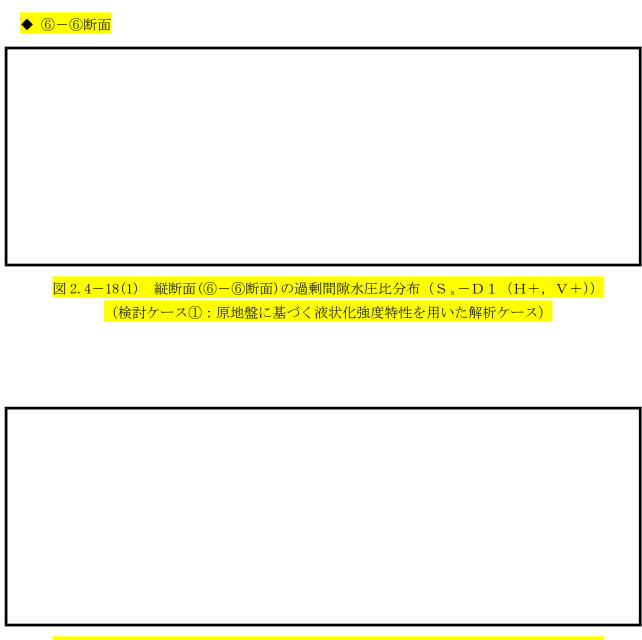


図 2.4-18(2) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

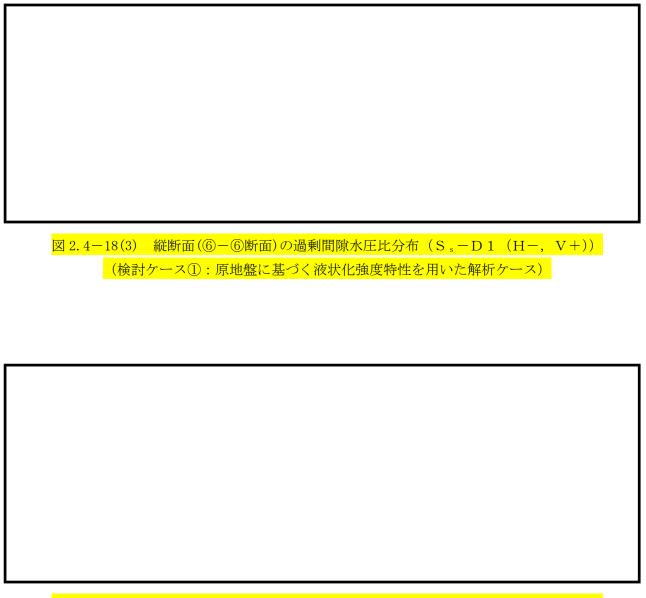


図 2.4-18(4) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

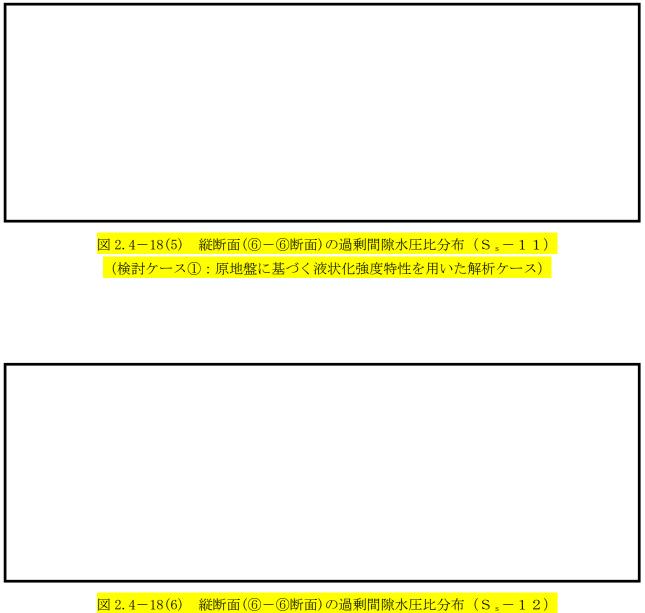


図 2.4-18(6) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布 (S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

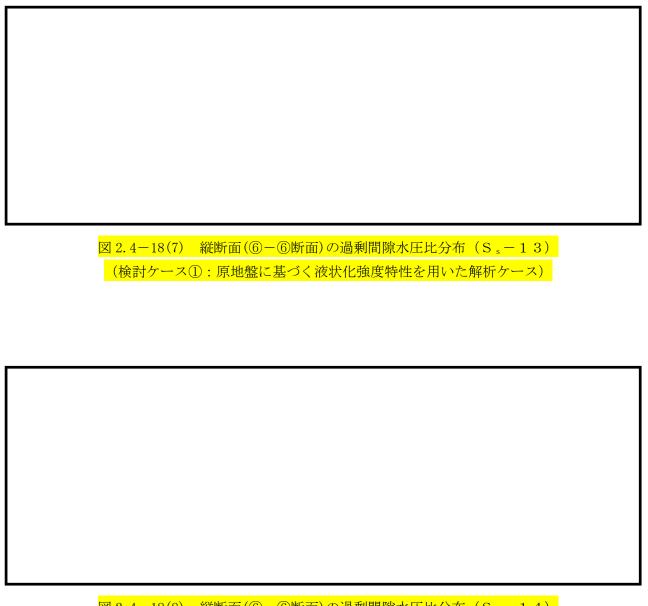


図 2.4-18(8) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

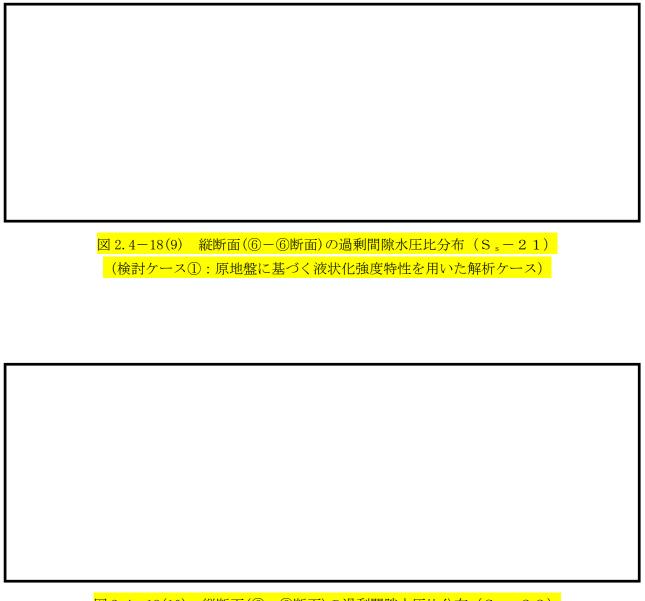


図 2.4-18(10) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

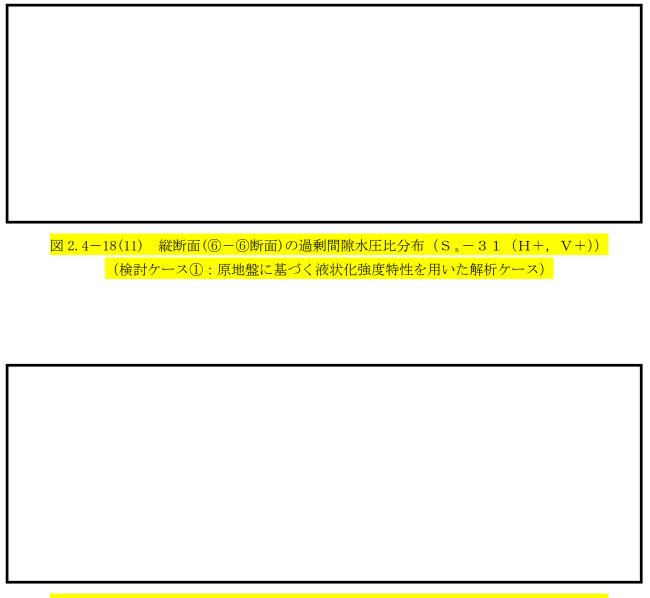


図 2.4-18(12) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

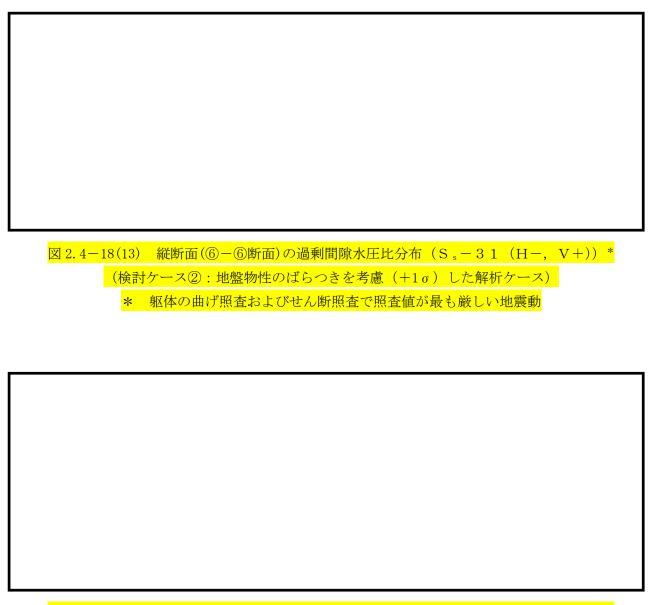


図 2.4-18(14) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布 (S_s-D1 (H-, V-))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

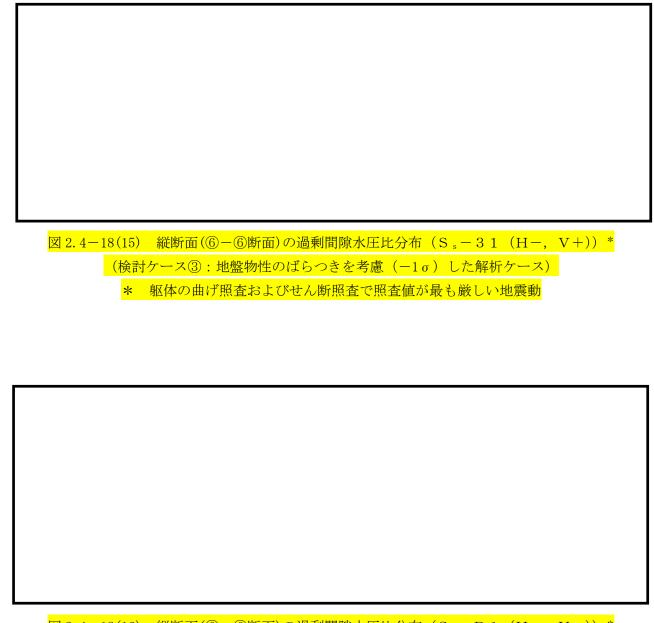


図 2.4-18(16) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-D1(H-, V-))*

(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)

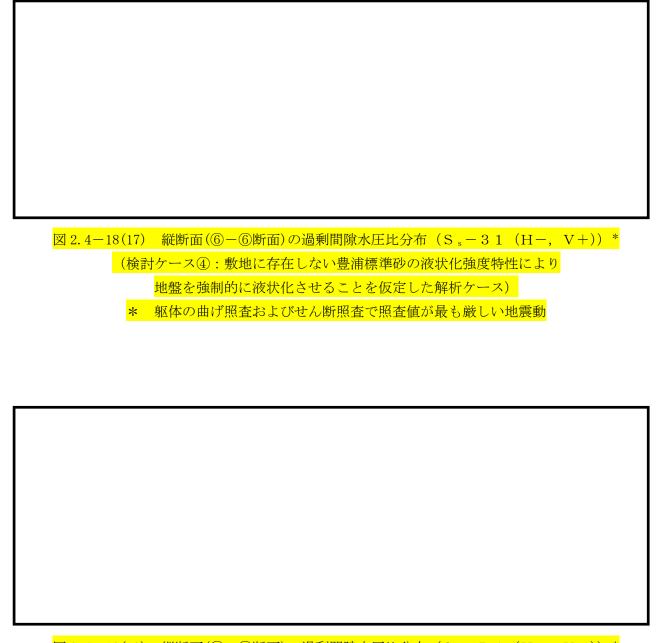


図 2.4-18(18) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-D1 (H-, V-))* (検討ケース④: 敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース)

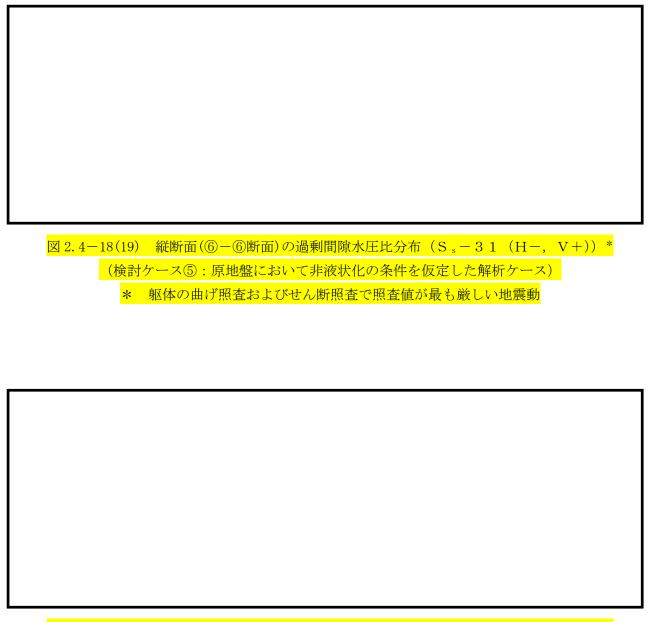


図 2.4-18(20) 縦断面(⑥-⑥断面)の過剰間隙水圧比分布(S_s-D 1(H-,V-))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

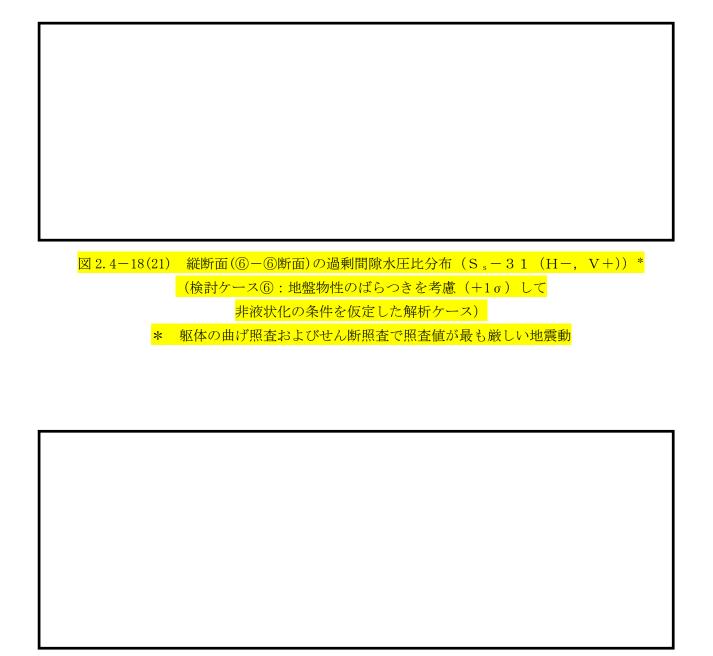


図 2. 4-18(22) 縦断面 (⑥ - ⑥断面) の過剰間隙水圧比分布 (S_s-D1 (H-,V-)) * (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して 非液状化の条件を仮定した解析ケース)

(7))最大加速度分布
	各要素に発生した最大加速度を確認するため、地震応答解析の全時刻における水平方向
	の最大加速度の分布を示す。 $①$ $-①$ 断面における最大加速度分布を図 $2.4-19$ に, $④$ $-④$ 断
	面における最大加速度分布を図 2.4-20 に, ⑥-⑥断面における最大加速度分布を図 2.4-
	<mark>21 に示す。</mark>
ī)	- ①斯面

◆ ①一①断面		

図 2.4-19(1) 取水路(①-①断面)の最大加速度分布 (S_s-D 1 (H+, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

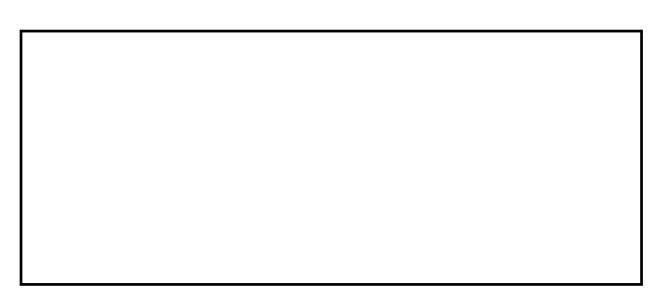


図 2.4-19(2) 取水路(①-①断面)の最大加速度分布(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

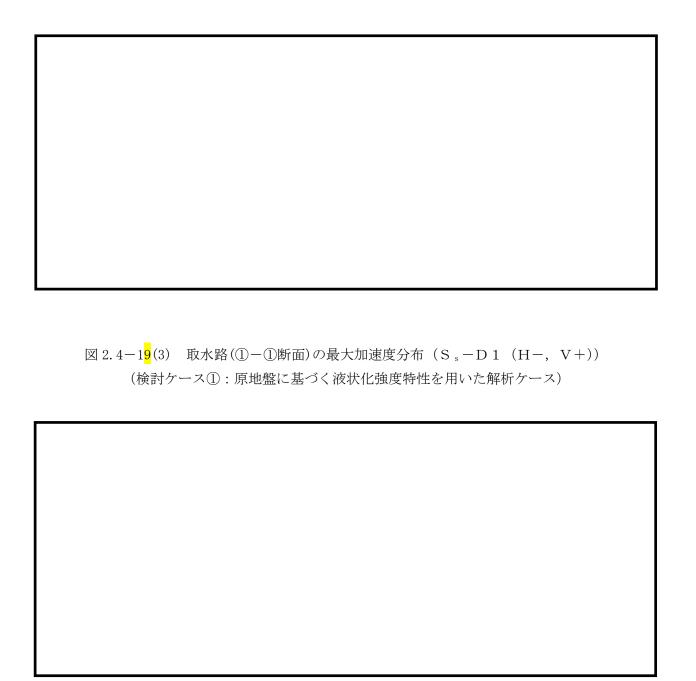


図 2.4-19(4) 取水路(①-①断面)の最大加速度分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

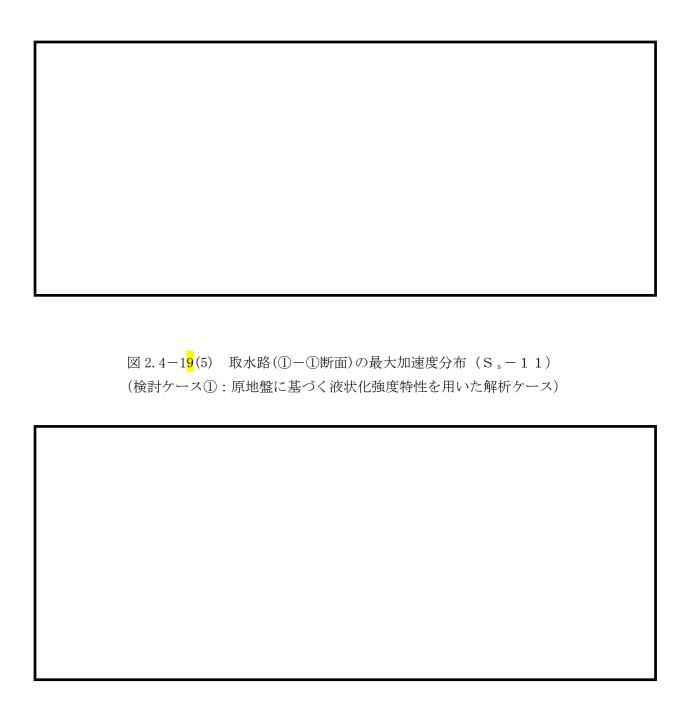


図 2.4-19(6) 取水路(①-①断面)の最大加速度分布 (S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

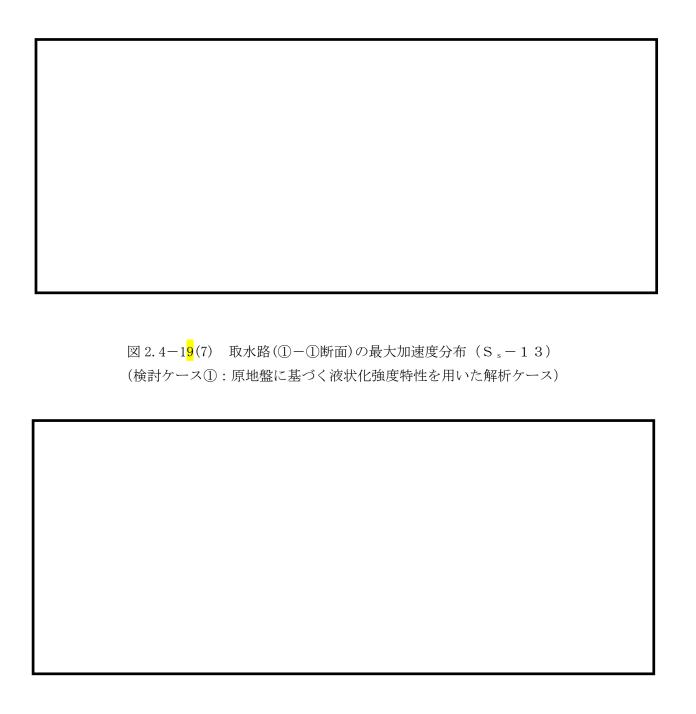


図 2.4-19(8) 取水路(①-①断面)の最大加速度分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

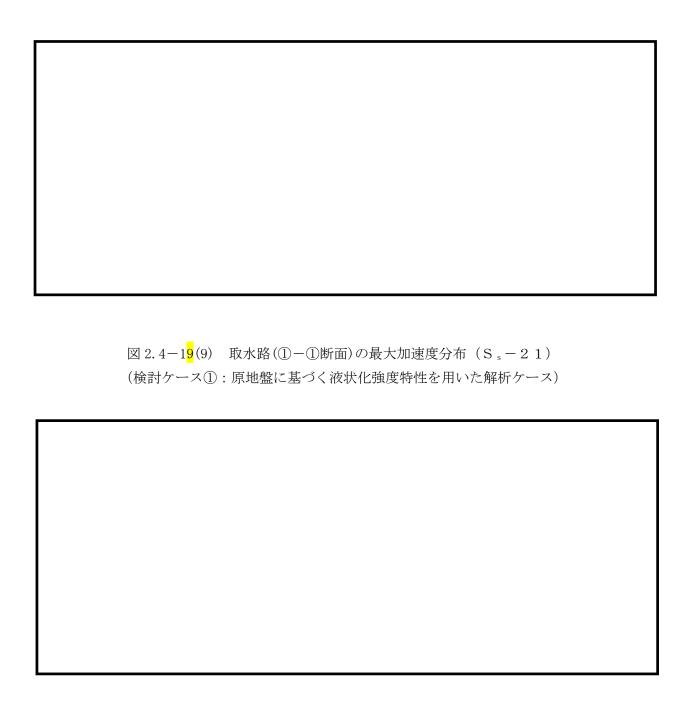


図 2.4-19(10) 取水路(①-①断面)の最大加速度分布(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-19(12) 取水路(①-①断面)の最大加速度分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

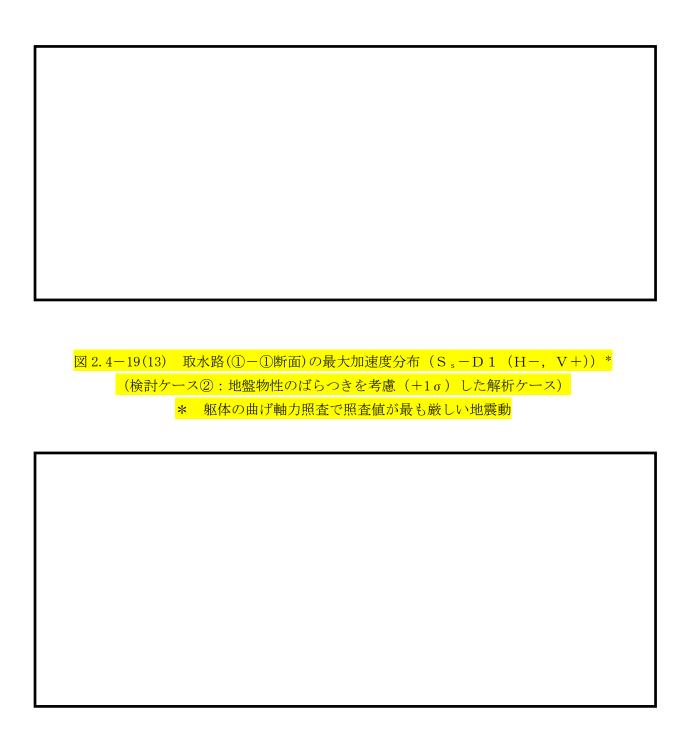


図 2.4-19(14) 取水路 $(\hat{\mathbb{U}}-\hat{\mathbb{U}})$ 断面) の最大加速度分布 $(S_s-D_1(H+,V+))^*$ (検討ケース②: 地盤物性のばらつきを考慮 $(+1\sigma)$ した解析ケース) * 躯体のせん断力照査で照査値が最も厳しい地震動

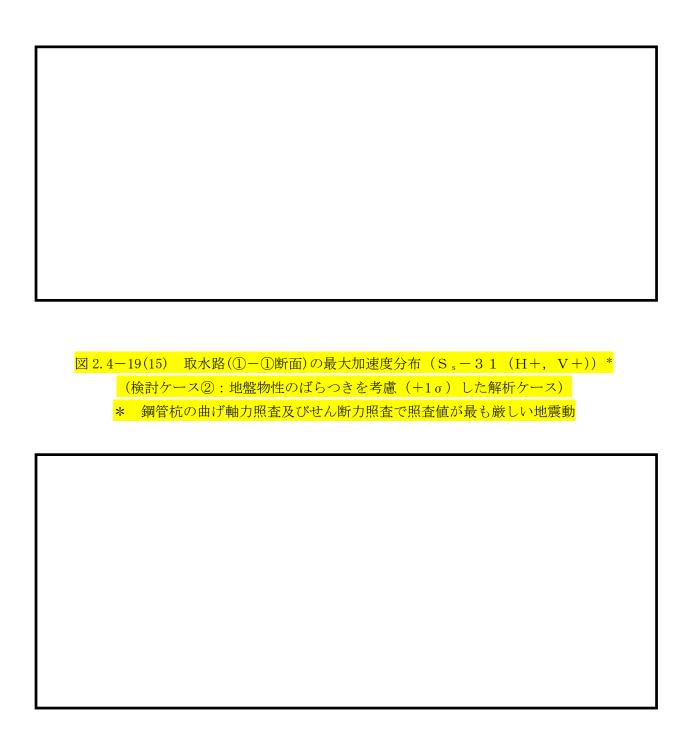


図 2.4-19(16) 取水路(①-①断面)の最大加速度分布(S_s-D1(H-, V+))*
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)
* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

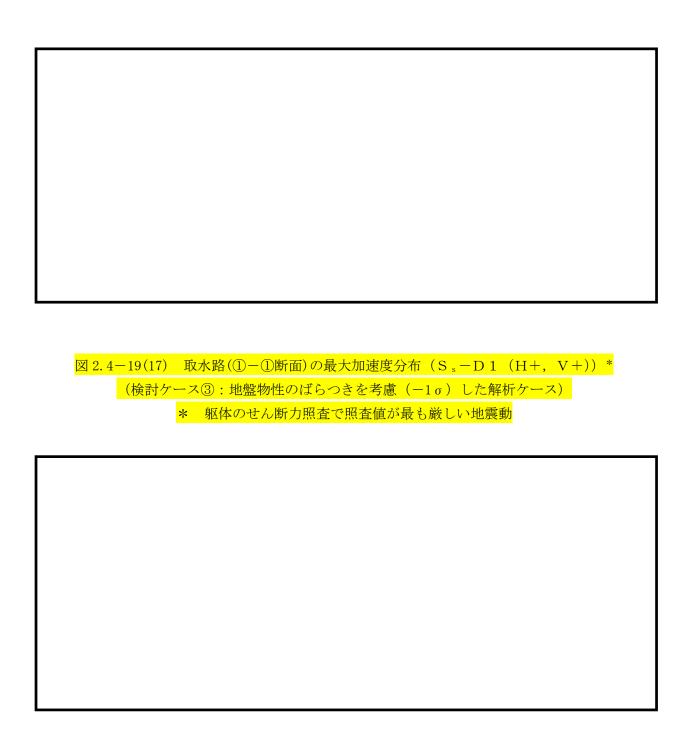


図 2.4-19(18) 取水路(①-①断面)の最大加速度分布(S_s-31(H+, V+))* (検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース)* 鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい地震動

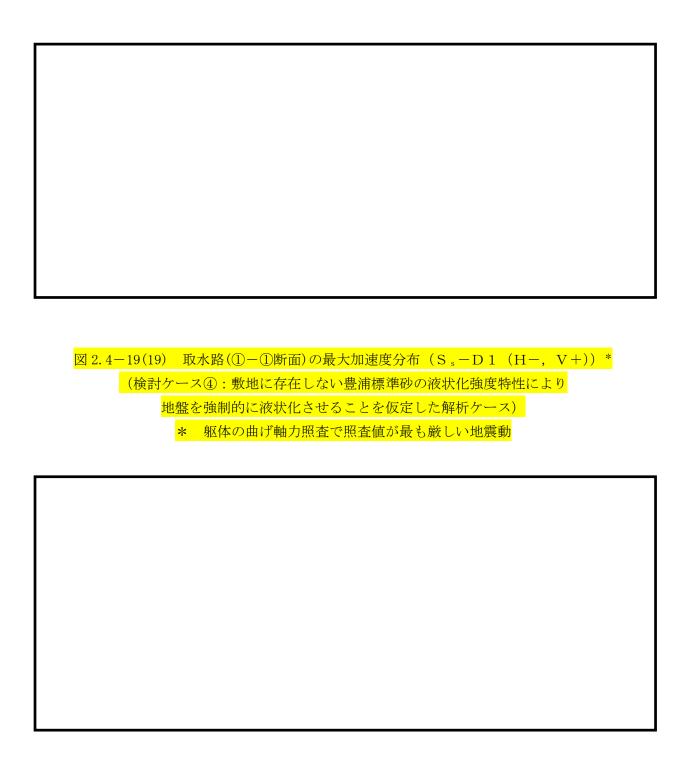


図 2.4-19(20) 取水路(①-①断面)の最大加速度分布 (S_s-D1 (H+, V+)) * (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した解析ケース)

図 2.4-19	(21) 取水路(①-①断面)の最大加速度分布(S _s -31(H+,V+))*
	(計ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース) 鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい地震動

図 2.4-19(22) 取水路(①-①断面)の最大加速度分布 (S_s-D1 (H-, V+)) * (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

* 躯体の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-19(23) 取水路(①-①断面)の最大加速度分布(S _s -D1(H+, V+))* (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)
* 躯体のせん断力照査で照査値が最も厳しい地震動

図 2.4-19(24) 取水路(①-①断面)の最大加速度分布(S_s-31(H+, V+))* (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) * 鋼管杭の曲げ軸力照査及びせん断力照査で照査値が最も厳しい地震動

図 2.4-19(26) 取水路 (①-①断面) の最大加速度分布 (S_s-D1 (H+, V+)) * (検討ケース⑥: 地盤物性のばらつきを考慮 ($+1\sigma$) して

非液状化の条件を仮定した解析ケース)

図 2.4-19(27) 取水路(①-①断面)の最大加速度分布(S $_{\rm s}-3$ 1 (H+, V+))*

(検討ケース⑥:地盤物性のばらつきを考慮(+1σ)して

非液状化の条件を仮定した解析ケース)

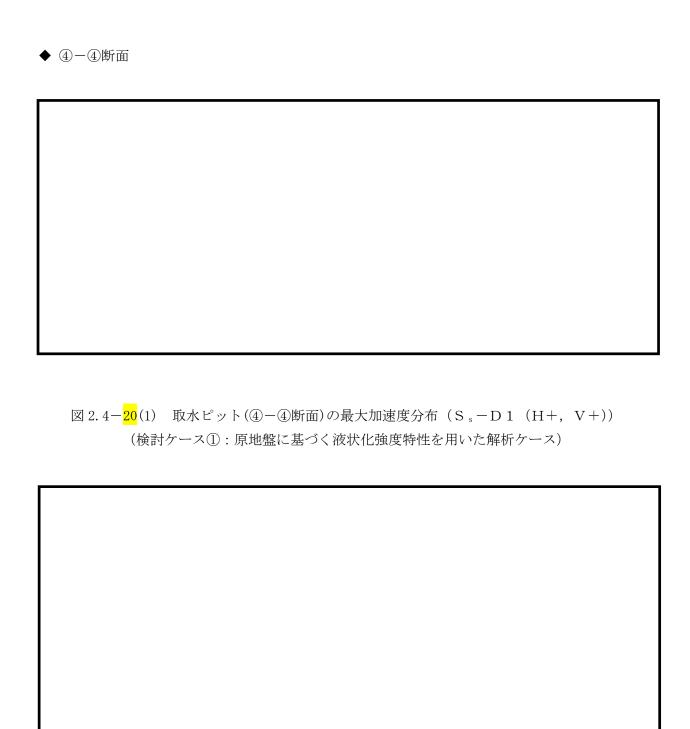


図 2.4-20(2) 取水ピット(④-④断面)の最大加速度分布(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

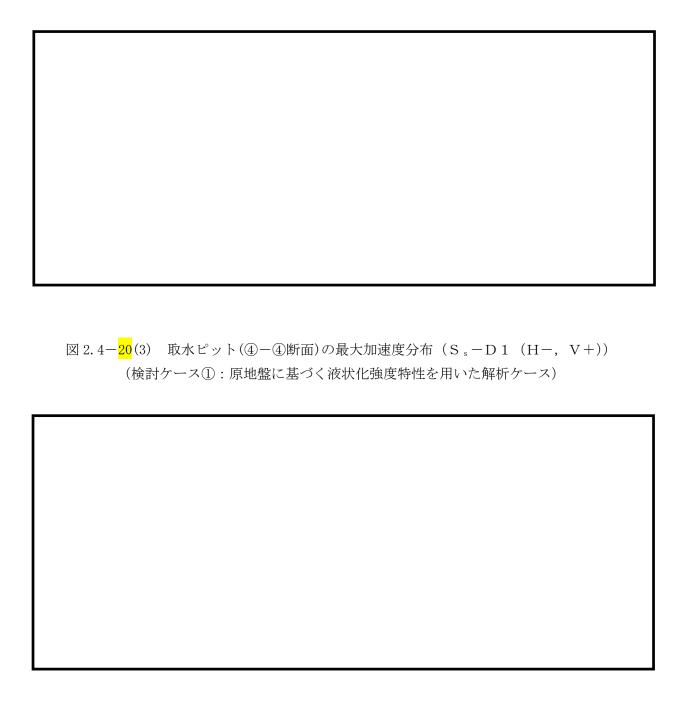


図 2.4-20(4) 取水ピット(④-④断面)の最大加速度分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

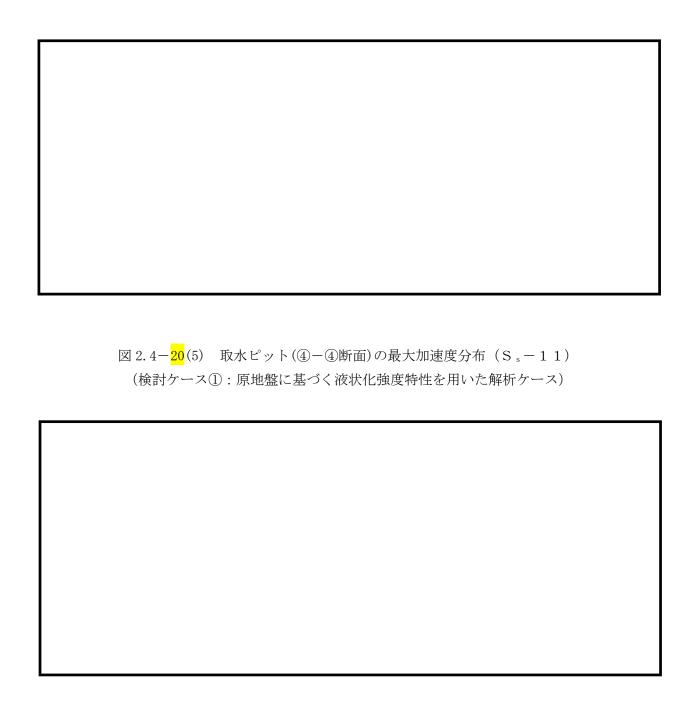


図 2.4-20(6) 取水ピット(④-④断面)の最大加速度分布(S_s-12) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

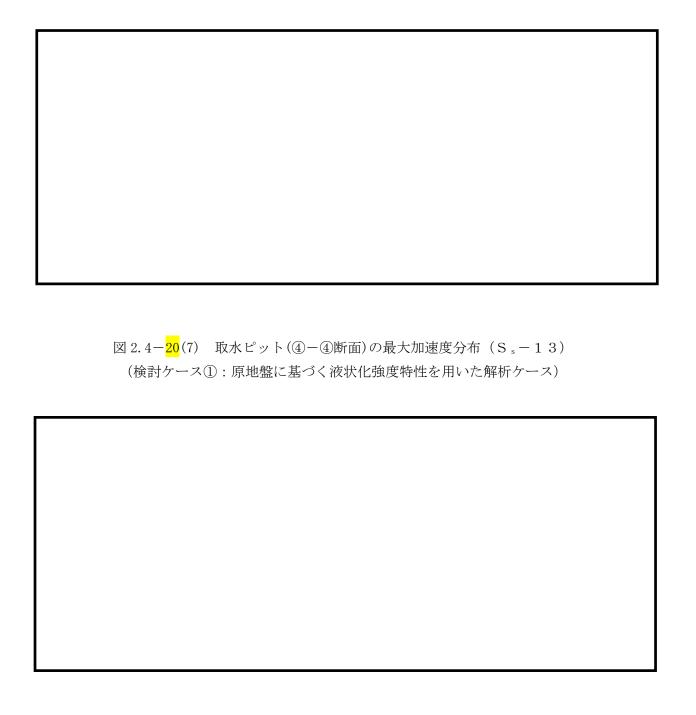


図 2.4-20(8) 取水ピット(④-④断面)の最大加速度分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

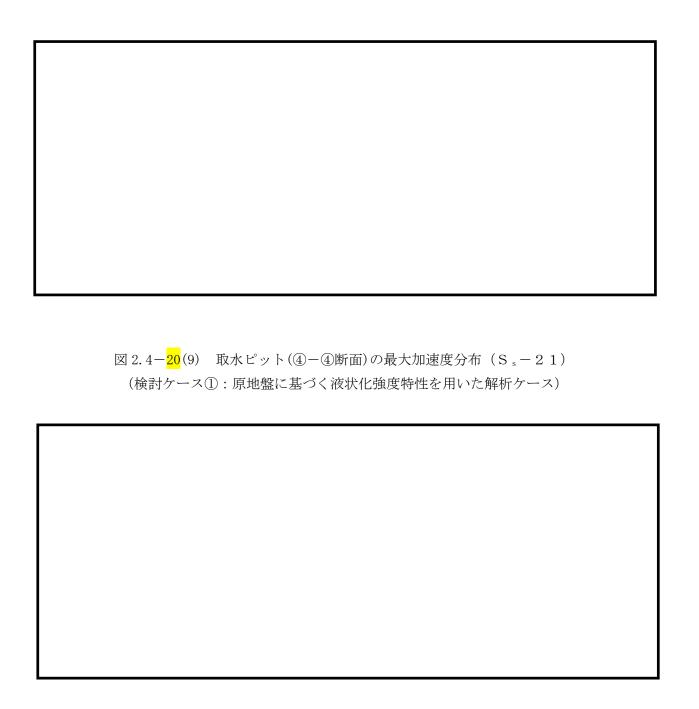


図 2.4-20(10) 取水ピット(④-④断面)の最大加速度分布(S_s-22)(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

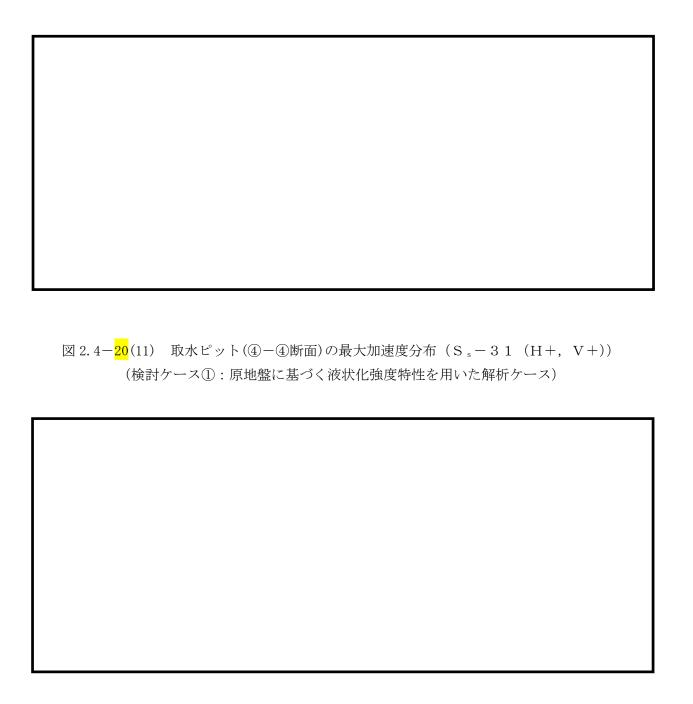


図 2.4-20(12) 取水ピット(④-④断面)の最大加速度分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

図 2.4-20(13) 取水ピット(④-④断面)の最大加速度分布(S _s -D1(H-, V-))*
(検討ケース②:地盤物性のばらつきを考慮($+1\sigma$)した解析ケース)
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-20(14) 取水ピット(④-④断面)の最大加速度分布(S_s-31(H+, V+))*

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

図 2.4-20(15) 取水ピット(④-④断面)の最大加速度分布 (S _s -D1 (H-, V-)) *
(検討ケース③:地盤物性のばらつきを考慮(-1σ)した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-20(16) 取水ピット(④-④断面)の最大加速度分布 $(S_s-31(H+,V+))*$ (検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

図 2.4-20(17) 取水ピット(④-④断面)の最大加速度分布(S _s -D1(H-, V-))* (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)
地盤を強制的に液状化させることを仮定した解析ゲース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-20(19) 取水ピット(④-④断面)の最大加速度分布(S _s -D1(H-, V-))* (検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース) * 躯体及び鋼管杭の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-20(20) 取水ピット(④-④断面)の最大加速度分布(S_s-31(H+, V+))*

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

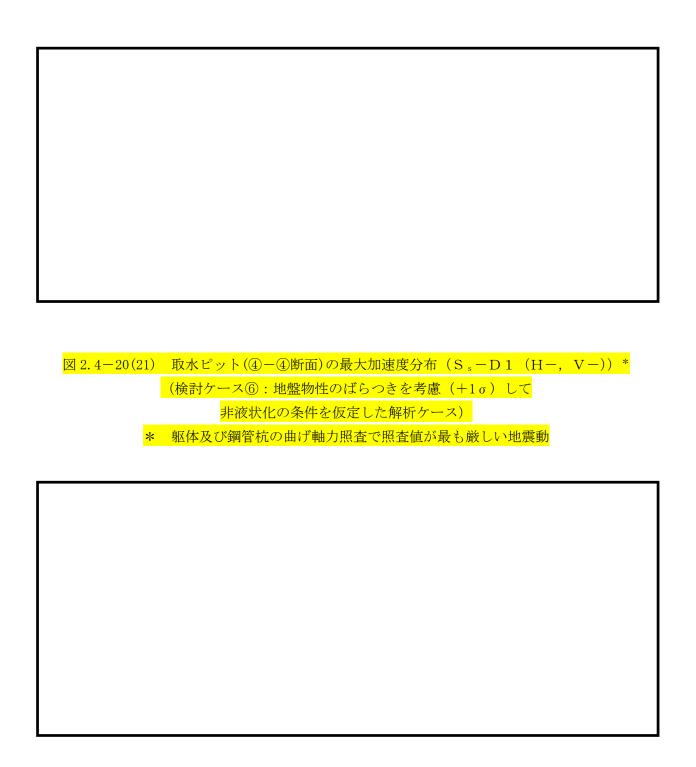


図 2. 4-20(22) 取水ピット(4-4)断面)の最大加速度分布(S_s-31 (H+,V+))* (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して 非液状化の条件を仮定した解析ケース)

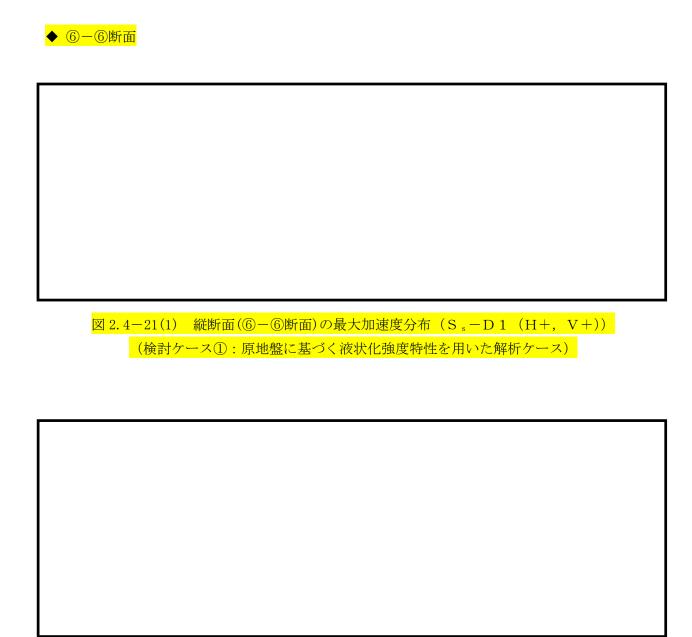


図 2.4-21(2) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-D1(H+, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

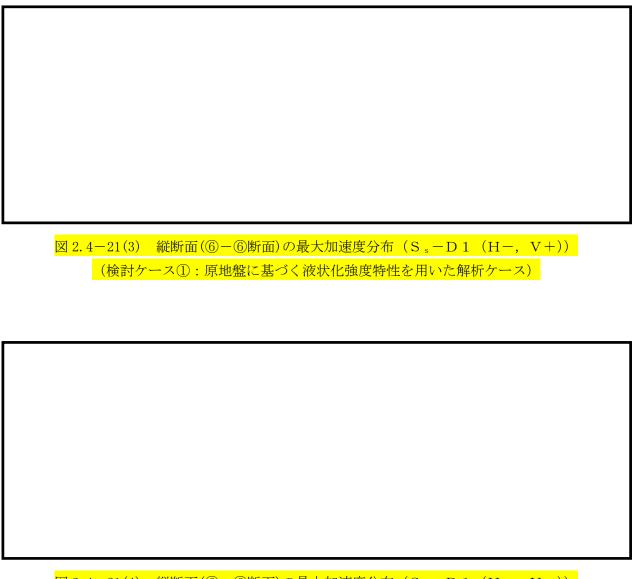


図 2.4-21(4) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-D1(H-, V-)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

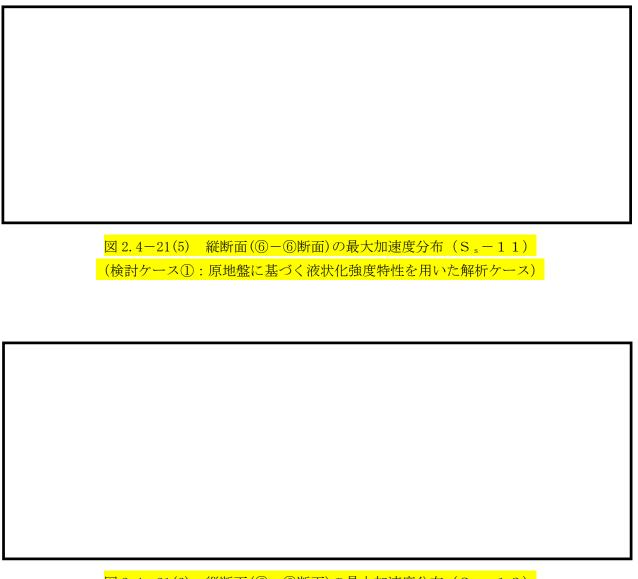


図 2.4-21(6) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-12)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

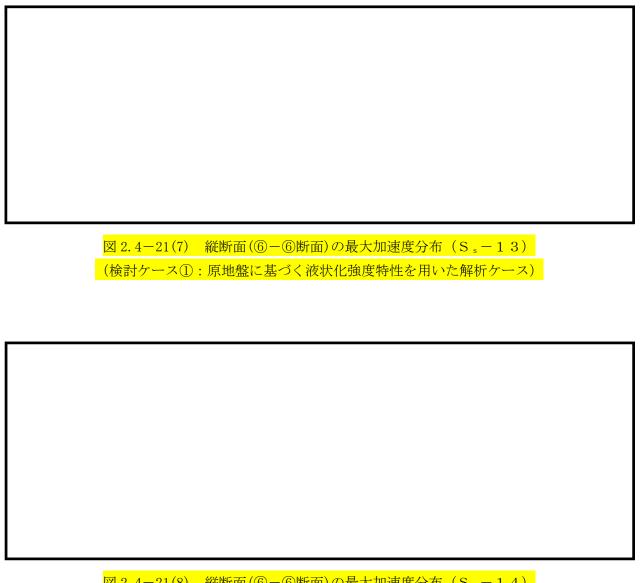


図 2.4-21(8) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-14) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

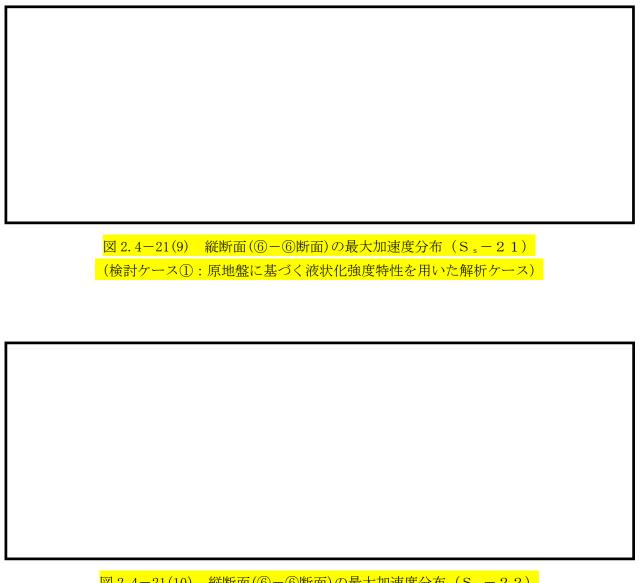


図 2.4-21(10) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-22) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

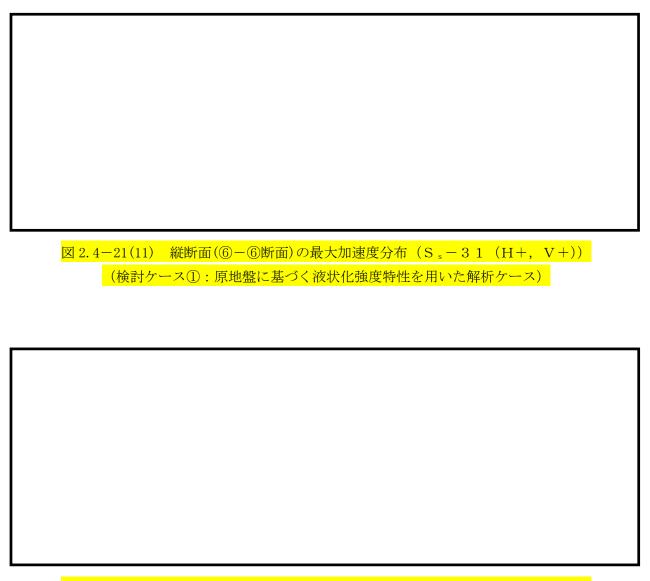


図 2.4-21(12) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-31(H-, V+)) (検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

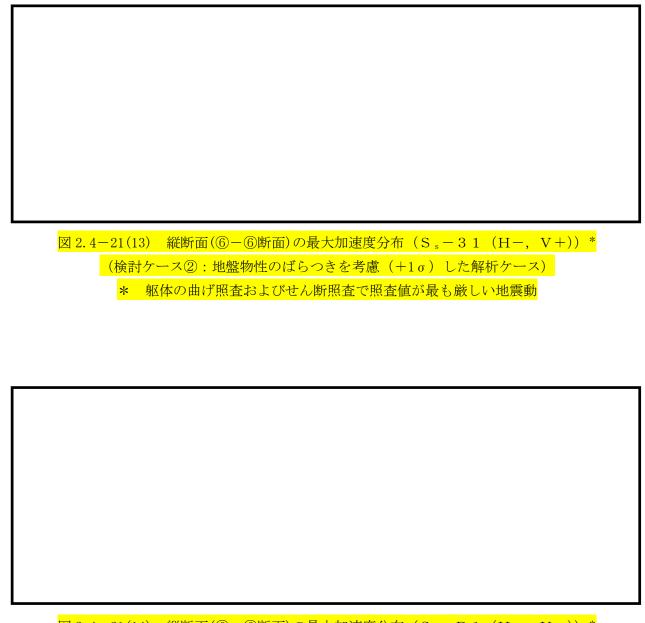


図 2.4-21(14) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-D1(H-, V-))*
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)
* 鋼管杭の曲げ照査およびせん断照査で照査値が最も厳しい地震動

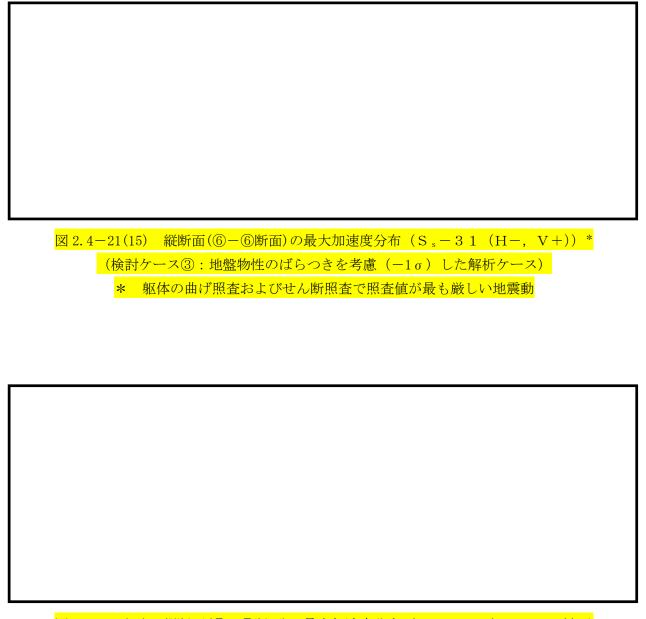


図 2.4-21(16) 縦断面(⑥-⑥断面)の最大加速度分布 (S_s -D 1 (H-, V-)) * (検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

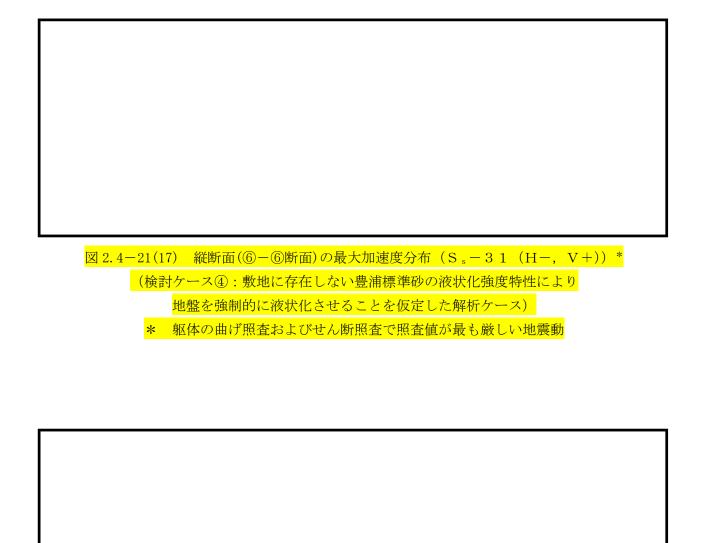
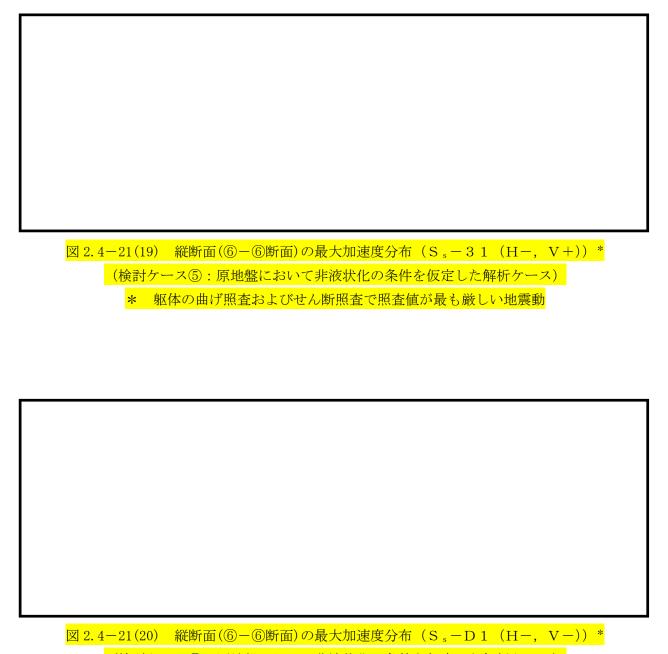



図 2.4-21(18) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-D1(H-, V-))* (検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

(検討ケース⑤:原地盤において非液状化の条件を仮定した解析ケース)

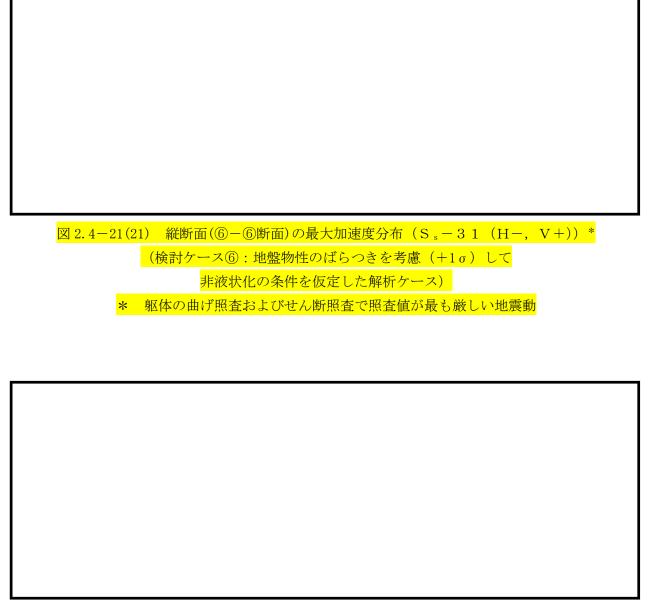


図 2.4-21(22) 縦断面(⑥-⑥断面)の最大加速度分布(S_s-D1 (H-,V-))* (検討ケース⑥:地盤物性のばらつきを考慮($+1\sigma$)して 非液状化の条件を仮定した解析ケース)

* 鋼管杭の曲げ照査およびせん断照査で照査値が最も厳しい地震動

2.4.2 躯体の耐震性評価結果

(1) 躯体の曲げ軸力に対する評価結果

表 2.4-13, 表 2.4-14 及び表 2.4-15 に RC <mark>躯体</mark>の曲げ軸力に対する評価結果を示す。 <mark>躯体</mark>の全塑性モーメント相当として、土木学会マニュアルに基づき、圧縮縁コンクリート ひずみ 1.0%に対応する曲率(以下、「限界曲率」という。)を許容限界とし、照査用曲率が 限界曲率を下回ることを確認した。なお、照査用曲率は、各地震動、各部材において最大と なる値を示している。

以上より、<mark>取水構造物躯体</mark>の各部材に発生する曲率は、限界曲率以下であることを確認した。

また、貯水機能を要求する①-①断面及び④-④断面の側壁について、曲げに対する耐震裕度が最も小さい部位及び検討ケースを抽出した上で、 $M-\phi$ 曲線により、貯水機能が維持されていることを確認した。図 2.4-22 に、当該部材の $M-\phi$ 曲線を示す。

最大応答は第2折れ点(鉄筋の降伏)には至っていないことから,当該部材が貯水機能を 維持していることを確認した。

さらに、浸水防止設備を間接支持している(止水機能を有する)①一①断面及び④一④断面の頂版、⑥一⑥断面の部材①について、曲げに対する耐震裕度が最も小さい部位及び検討ケースを抽出した上で、Mーφ曲線により、部材がおおむね弾性範囲内である(止水機能及び浸水防止設備の間接支持機能が維持されている)ことを確認した。図 2.4-23 に、当該部材のM-φ曲線を示す。

最大応答は第2折れ点(鉄筋の降伏)には至っていないことから,当該部材が止水機能及 び浸水防止設備の間接支持機能を維持していることを確認した。

表 2.4-13(1) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	近様	軸方向	m+ m.u.+	FE H . II. +	777 -t- t-t-
検討ケース	評価	位置	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • φ d/φ _L
① S _S -D1	側壁	2	1000	1500	1425	D22	D25	-6. 97×10 ⁻⁶	-7. 36×10 ⁻⁴	1.33×10 ⁻²	0.055
(H+, V+)	頂版1	3	1000	1000	925	D19	D25	-1. 64×10 ⁻⁵	8.85×10 ⁻⁴	1. 99×10 ⁻²	0.044
	頂版2	8	1000	1000	925	D19	D22	-5. 65×10 ⁻⁶	2. 21×10 ⁻⁴	1. 99×10 ⁻²	0.011
	底版1	18	1000	1000	925	D19	D25	−3. 63×10 ^{−5}	1. 90×10 ⁻³	1. 99×10 ⁻²	0.095
	底版2	17	1000	1000	925	D19	D25	-3.27×10^{-5}	-2. 10×10 ⁻⁴	1. 99×10 ⁻²	0.011
	隔壁	25	1000	1000	925	D22	D22	−9. 11×10 ^{−6}	1. 41×10 ⁻³	1. 99×10 ⁻²	0.071
① S _S -D1	側壁	1	1000	1500	1425	D22	D25	-6. 00×10 ⁻⁶	-7. 20×10 ⁻⁴	1. 33×10 ⁻²	0.054
(H+, V-)	頂版1	3	1000	1000	925	D19	D25	−1. 76×10 ^{−5}	9. 39×10 ⁻⁴	1. 99×10 ⁻²	0.047
	頂版2	9	1000	1000	925	D19	D22	-1. 44×10 ⁻⁵	2.44×10 ⁻⁴	1. 99 \times 10 ⁻²	0.012
	底版1	18	1000	1000	925	D19	D25	−3. 14×10 ^{−5}	1. 96×10 ⁻³	1. 99×10 ⁻²	0.098
	底版2	17	1000	1000	925	D19	D25	-2.89×10^{-5}	-1.94×10 ⁻⁴	1. 99 \times 10 ⁻²	0.010
	隔壁	25	1000	1000	925	D22	D22	-1. 45×10 ⁻⁵	1. 35×10 ⁻³	1. 99×10 ⁻²	0.068
① S _S -D1	側壁	2	1000	1500	1425	D22	D25	−5. 50×10 ^{−6}	−9. 01×10 ^{−4}	1. 33×10 ⁻²	0.068
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	−1. 27×10 ^{−5}	1. 21×10 ⁻³	1. 99×10 ⁻²	0.061
	頂版2	8	1000	1000	925	D19	D22	−9. 67×10 ^{−6}	1.86×10 ⁻⁴	1. 99 \times 10 $^{-2}$	0.009
	底版1	18	1000	1000	925	D19	D25	-4. 26×10 ⁻⁵	2. 13×10 ⁻³	1. 99 \times 10 ⁻²	0. 107
	底版2	17	1000	1000	925	D19	D25	-2.86×10^{-5}	−2. 10×10 ^{−4}	1. 99 \times 10 $^{-2}$	0.011
	隔壁	19	1000	1000	925	D22	D22	-8. 47 \times 10 ⁻⁶	1. 22×10^{-3}	1. 99 \times 10 $^{-2}$	0.061
① S _S -D1	側壁	2	1000	1500	1425	D22	D25	−7. 26×10 ^{−6}	−8. 78×10 ^{−4}	1. 33 \times 10 $^{-2}$	0.066
(H-, V-)	頂版1	10	1000	1000	925	D19	D25	-1.82×10 ⁻⁵	1. 30×10 ⁻³	1. 99 \times 10 ⁻²	0.065
	頂版2	4	1000	1000	925	D19	D22	-1. 39×10 ⁻⁵	2. 54×10 ⁻⁴	1. 99×10 ⁻²	0.013
	底版1	18	1000	1000	925	D19	D25	−3. 66×10 ^{−5}	2. 05×10 ⁻³	1. 99 \times 10 ⁻²	0. 103
	底版2	17	1000	1000	925	D19	D25	−2. 76×10 ^{−5}	−2. 01×10 ⁻⁴	1. 99×10 ⁻²	0.010
	隔壁	19	1000	1000	925	D22	D22	-1. 14×10 ⁻⁵	1. 26×10 ⁻³	1. 99 \times 10 $^{-2}$	0.063

注記 *:評価位置は下図に示す。

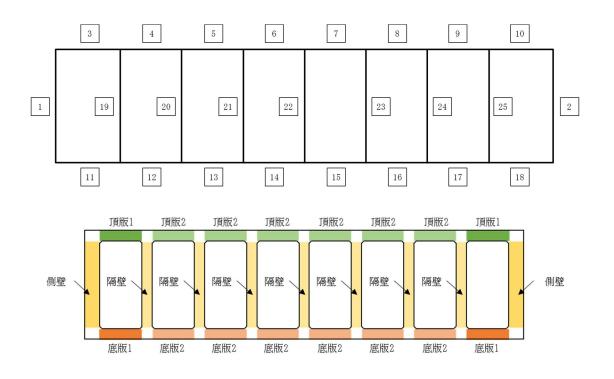


表 2.4-13(2) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	軸方向	照査用曲率	四里井本	四木は
検討ケース	評価	位置	部材幅	部材高	有効高	1 144		ひずみ	炽 重用曲半	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	ϕ d [1/m]	ϕ_L [1/m]	γ i • φ d/ φ L
① S _S -11	側壁	2	1000	1500	1425	D22	D25	-3.80×10^{-6}	-4. 77×10 ⁻⁴	1.33×10 ⁻²	0. 036
	頂版1	3	1000	1000	925	D19	D25	-1.84×10 ⁻⁵	4. 53×10 ⁻⁴	1. 99×10 ⁻²	0. 023
	頂版2	4	1000	1000	925	D19	D22	-1.65×10 ⁻⁵	1. 43×10 ⁻⁴	1. 99×10 ⁻²	0.007
	底版1	18	1000	1000	925	D19	D25	−3. 15×10 ^{−5}	1. 34×10 ⁻³	1. 99×10 ⁻²	0.067
	底版2	13	1000	1000	925	D19	D25	-2. 32×10 ⁻⁵	1. 34×10 ⁻⁴	1. 99×10 ⁻²	0.007
	隔壁	25	1000	1000	925	D22	D22	−8. 55×10 ^{−6}	7. 45×10 ⁻⁴	1. 99×10 ⁻²	0. 037
① S _S -12	側壁	2	1000	1500	1425	D22	D25	-5. 03×10 ⁻⁶	-8. 66×10 ⁻⁴	1. 33×10 ⁻²	0.065
	頂版1	10	1000	1000	925	D19	D25	−2. 93×10 ^{−5}	8. 54×10 ⁻⁴	1. 99×10 ⁻²	0.043
	頂版2	4	1000	1000	925	D19	D22	-6. 23×10 ⁻⁶	1. 72×10 ⁻⁴	1. 99×10 ⁻²	0.009
	底版1	18	1000	1000	925	D19	D25	-3.87×10^{-5}	1. 81×10 ⁻³	1. 99×10 ⁻²	0.091
	底版2	17	1000	1000	925	D19	D25	-2.61×10^{-5}	-1. 58×10 ⁻⁴	1. 99×10 ⁻²	0.008
	隔壁	25	1000	1000	925	D22	D22	-4. 38×10 ⁻⁶	8. 82×10 ⁻⁴	1. 99×10 ⁻²	0.044
① S _S -13	側壁	2	1000	1500	1425	D22	D25	-6. 13×10 ⁻⁶	-8. 31×10 ⁻⁴	1. 33×10 ⁻²	0.062
	頂版1	10	1000	1000	925	D19	D25	−2. 13×10 ^{−5}	7. 96×10 ⁻⁴	1. 99×10 ⁻²	0.040
	頂版2	4	1000	1000	925	D19	D22	-4. 61 \times 10 ⁻⁶	1. 78×10 ⁻⁴	1. 99 \times 10 ⁻²	0.009
	底版1	18	1000	1000	925	D19	D25	-3.32×10^{-5}	1. 73×10 ⁻³	1. 99×10 ⁻²	0. 087
	底版2	17	1000	1000	925	D19	D25	-3.76×10^{-5}	-1. 54×10 ⁻⁴	1. 99 \times 10 ⁻²	0.008
	隔壁	25	1000	1000	925	D22	D22	-4. 78×10 ⁻⁶	9. 11×10 ⁻⁴	1. 99×10 ⁻²	0.046
① S _S -14	側壁	2	1000	1500	1425	D22	D25	-4. 96 \times 10 ⁻⁶	-5. 60×10 ⁻⁴	1. 33×10 ⁻²	0.042
	頂版1	10	1000	1000	925	D19	D25	-2. 22×10 ⁻⁵	5. 79×10 ⁻⁴	1. 99×10 ⁻²	0. 029
	頂版2	4	1000	1000	925	D19	D22	-1. 34×10 ⁻⁵	1. 50×10 ⁻⁴	1. 99×10 ⁻²	0.008
	底版1	18	1000	1000	925	D19	D25	-3.42×10^{-5}	1. 37×10^{-3}	1. 99 \times 10 ⁻²	0.069
	底版2	17	1000	1000	925	D19	D25	-4. 17 \times 10 ⁻⁵	-1.26×10 ⁻⁴	1. 99×10 ⁻²	0.006
	隔壁	19	1000	1000	925	D22	D22	-1. 30 \times 10 ⁻⁵	6. 88×10 ⁻⁴	1. 99 \times 10 ⁻²	0. 035

注記 *:評価位置は下図に示す。

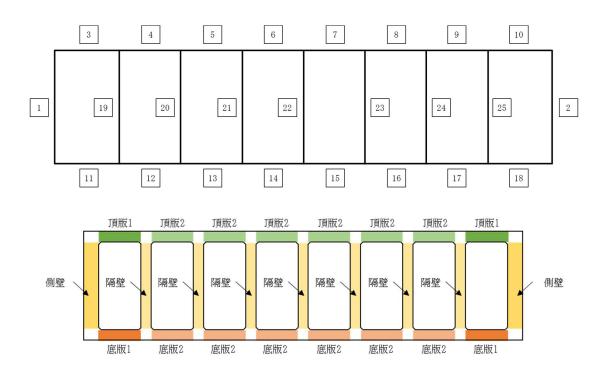


表 2.4-13(3) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	軸方向	照査用曲率	限界曲率	照査値
検討ケース	評価	位置	部材幅	部材高	有効高	1 444		ひずみ	炽 重用曲学	限界田半	思宜旭
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • φ d/ φ L
① S _S -21	側壁	1	1000	1500	1425	D22	D25	-6. 54×10 ⁻⁶	-5. 85×10 ⁻⁴	1.33×10 ⁻²	0.044
	頂版1	3	1000	1000	925	D19	D25	−2. 33×10 ^{−5}	7. 20×10 ⁻⁴	1. 99×10 ⁻²	0. 036
	頂版2	4	1000	1000	925	D19	D22	-1. 30×10 ⁻⁵	1. 82×10 ⁻⁴	1. 99×10 ⁻²	0.009
	底版1	11	1000	1000	925	D19	D25	−3. 24×10 ^{−5}	1. 51×10 ⁻³	1. 99×10 ⁻²	0. 076
	底版2	12	1000	1000	925	D19	D25	−3. 13×10 ^{−5}	-1. 60×10 ⁻⁴	1. 99×10 ⁻²	0.008
	隔壁	19	1000	1000	925	D22	D22	-1.10×10^{-5}	9. 79×10 ⁻⁴	1. 99×10 ⁻²	0.049
① S _S -22	側壁	2	1000	1500	1425	D22	D25	-4. 95×10 ⁻⁶	-6. 66×10 ⁻⁴	1. 33×10 ⁻²	0.050
	頂版1	3	1000	1000	925	D19	D25	-2. 12 \times 10 ⁻⁵	8. 39×10 ⁻⁴	1. 99×10 ⁻²	0.042
	頂版2	9	1000	1000	925	D19	D22	-1.84×10^{-5}	-1. 62×10^{-4}	1. 99 \times 10 ⁻²	0.008
	底版1	18	1000	1000	925	D19	D25	-3.22×10^{-5}	1. 54×10 ⁻³	1. 99×10 ⁻²	0. 077
	底版2	17	1000	1000	925	D19	D25	-3.44×10^{-5}	-1. 49×10^{-4}	1. 99 \times 10 ⁻²	0. 007
	隔壁	19	1000	1000	925	D22	D22	-8. 62×10 ⁻⁶	8. 29×10 ⁻⁴	1. 99×10 ⁻²	0.042
① S _S -31	側壁	2	1000	1500	1425	D22	D25	-2. 89 \times 10 ⁻⁶	-5. 09 \times 10 ⁻⁴	1. 33×10 ⁻²	0. 038
(H+, V+)	頂版1	3	1000	1000	925	D19	D25	−5. 91×10 ⁻⁶	−7. 84×10 ⁻⁴	1. 99×10 ⁻²	0. 039
	頂版2	4	1000	1000	925	D19	D22	-5. 71 \times 10 ⁻⁶	2. 83×10^{-4}	1. 99 \times 10 ⁻²	0. 014
	底版1	18	1000	1000	925	D19	D25	-3.19×10^{-5}	1. 48×10 ⁻³	1. 99×10 ⁻²	0.074
	底版2	12	1000	1000	925	D19	D25	-2. 57 \times 10 ⁻⁵	-1. 68×10^{-4}	1. 99 \times 10 ⁻²	0.008
	隔壁	19	1000	1000	925	D22	D22	-1. 42×10 ⁻⁵	1. 33×10 ⁻³	1. 99×10 ⁻²	0.067
① S _S -31	側壁	2	1000	1500	1425	D22	D25	-4. 67 \times 10 $^{-6}$	-6. 12×10 ⁻⁴	1. 33×10 ⁻²	0.046
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	-2. 32×10 ⁻⁵	6. 04×10 ⁻⁴	1. 99×10 ⁻²	0. 030
	頂版2	4	1000	1000	925	D19	D22	−7. 77×10 ^{−7}	1. 72×10 ⁻⁴	1. 99×10 ⁻²	0.009
	底版1	18	1000	1000	925	D19	D25	−3. 14×10 ^{−5}	1. 70×10 ⁻³	1. 99×10 ⁻²	0. 085
	底版2	17	1000	1000	925	D19	D25	−3. 11×10 ^{−5}	-1. 54×10 ⁻⁴	1. 99×10 ⁻²	0.008
	隔壁	25	1000	1000	925	D22	D22	-8. 45×10 ⁻⁶	1. 10×10 ⁻³	1. 99×10 ⁻²	0. 055

注記 *:評価位置は下図に示す。

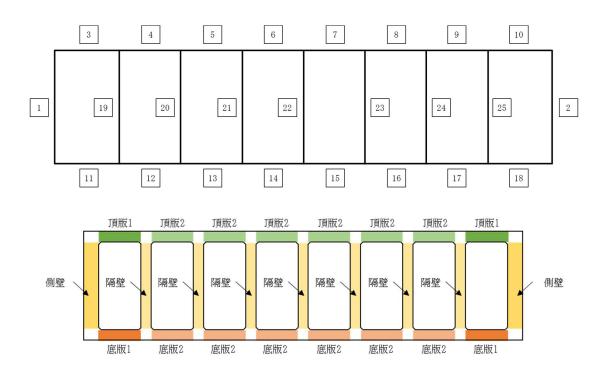


表 2.4-13(4) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋仕様		軸方向	照査用曲率	限界曲率	照査値
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	思宜用曲半	限乔田华	思宜旭
			b (mm)	h (mm)	d (m)	上。海	1, 1,440	εa [-]	φd [1/m]	ϕ_{L} [1/m]	γ i • φ d/φ _L
② S _S -D1	側壁	2	1000	1500	1425	D22	D25	−5. 92×10 ^{−6}	-8. 38×10 ⁻⁴	1. 33×10 ⁻²	0.063
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	-1. 25×10 ⁻⁵	1. 13×10 ⁻³	1. 99×10 ⁻²	0. 057
	頂版2	8	1000	1000	925	D19	D22	-8. 74×10 ⁻⁶	1. 94×10 ⁻⁴	1. 99×10 ⁻²	0. 010
	底版1	18	1000	1000	925	D19	D25	-4. 09×10 ⁻⁵	1. 92×10 ⁻³	1. 99×10 ⁻²	0. 096
	底版2	17	1000	1000	925	D19	D25	-2. 89×10 ⁻⁵	-2. 12×10 ⁻⁴	1. 99×10 ⁻²	0. 011
	隔壁	19	1000	1000	925	D22	D22	-8. 71×10 ⁻⁶	1. 31×10 ⁻³	1. 99×10 ⁻²	0.066

表 2.4-13(5) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	軸方向			
検討ケース	評価	位置	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εа [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
$3 S_S - D1$	側壁	2	1000	1500	1425	D22	D25	-4. 76×10 ⁻⁶	−9. 58×10 ^{−4}	1. 33×10 ⁻²	0. 072
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	-1. 24×10 ⁻⁵	1. 24×10 ⁻³	1. 99×10 ⁻²	0.062
	頂版2	9	1000	1000	925	D19	D22	-1. 44×10 ⁻⁵	2. 29×10 ⁻⁴	1. 99×10 ⁻²	0. 012
	底版1	18	1000	1000	925	D19	D25	-4. 27 \times 10 ⁻⁵	2. 32×10 ⁻³	1. 99×10 ⁻²	0. 117
	底版2	17	1000	1000	925	D19	D25	-2. 85×10 ⁻⁵	-2. 09×10 ⁻⁴	1. 99×10 ⁻²	0. 011
	隔壁	25	1000	1000	925	D22	D22	−9. 73×10 ^{−6}	1. 20×10 ⁻³	1. 99×10 ⁻²	0.060

注記 *:評価位置は下図に示す。

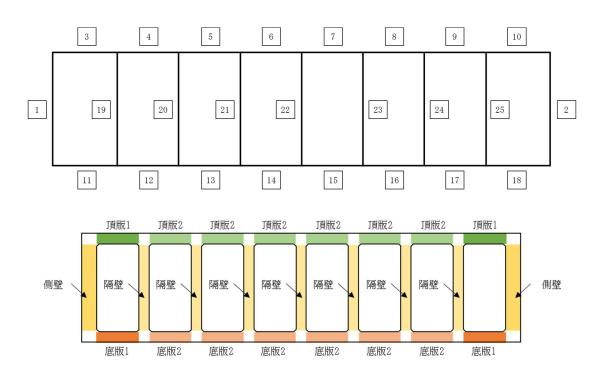


表 2.4-13(6) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋仕様		軸方向	照査用曲率	限界曲率	照査値
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	炽宜用曲学	限升田半	思重旭
			b (mm)	h (mm)	d (m)	上坪面	1, 1,100	εа [-]	φd [1/m]	ϕ_L [1/m]	γi• φd/φ _L
$4 S_S - D1$	側壁	1	1000	1500	1425	D22	D25	−7. 14×10 ⁻⁶	−1. 22×10 ⁻³	1. 33×10 ⁻²	0.092
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	-1.51×10^{-5}	1. 57 \times 10 ⁻³	1. 99×10 ⁻²	0. 079
	頂版2	4	1000	1000	925	D19	D22	-2. 36×10 ⁻⁵	−7. 87×10 ^{−4}	1. 99×10 ⁻²	0.040
	底版1	11	1000	1000	925	D19	D25	-3.88×10^{-5}	2. 35×10 ⁻³	1. 99×10 ⁻²	0. 118
	底版2	17	1000	1000	925	D19	D25	-3.66×10^{-5}	-4. 50×10 ⁻⁴	1. 99×10 ⁻²	0. 023
	隔壁	22	1000	1000	925	D22	D22	-1. 21×10 ⁻⁵	1. 62×10 ⁻³	1. 99×10 ⁻²	0.081

表 2.4-13(7) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	軸方向			
検討ケース		位置	部材幅	部材高	有効高	25 1125	122 1-24	ひずみ	照査用曲率	限界曲率	照査値
1戻申1 ノーノ	μιμι	INTE	b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	φ _L [1/m]	γί·φd/φμ
			D (IIIII)	11 (11111)	u (III)			£ a []	φα [1/11]	Ψ[[1/11]]	γι· φα/ φι
⑤ S _S −D1	側壁	2	1000	1500	1425	D22	D25	-5. 74×10^{-6}	−7. 32×10 ^{−4}	1. 33×10 ⁻²	0.055
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	–2. 17 \times 10 ^{–5}	1. 05 \times 10 ⁻³	1. 99×10 ⁻²	0. 053
	頂版2	4	1000	1000	925	D19	D22	-8. 74×10 ⁻⁶	2. 10×10 ⁻⁴	1. 99×10 ⁻²	0. 011
	底版1	18	1000	1000	925	D19	D25	-2.62×10^{-5}	1. 77×10 ⁻³	1. 99×10 ⁻²	0. 089
	底版2	17	1000	1000	925	D19	D25	-3.84×10^{-5}	-1. 71×10 ⁻⁴	1. 99×10 ⁻²	0.009
	隔壁	19	1000	1000	925	D22	D22	-1. 13 $ imes$ 10 $^{-5}$	1. 32×10^{-3}	1. 99 \times 10 ⁻²	0.066

注記 *:評価位置は下図に示す。

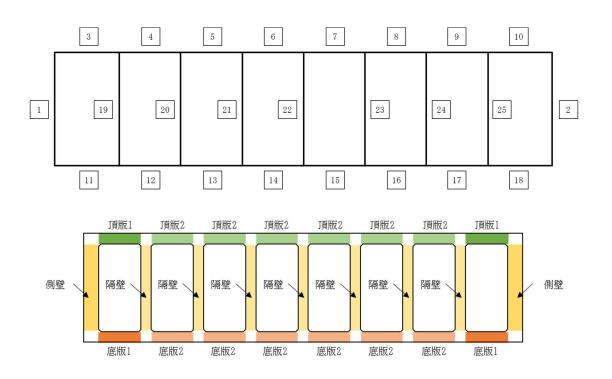


表 2.4-13(8) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋仕様		軸方向	照査用曲率	限界曲率	照査値
検討ケース	評価	i位置	部材幅	部材高	有効高	上端	下端	ひずみ	無重用曲竿	政外曲学	川正川
			b (mm)	h (mm)	d (m)	上遍	广城	εa [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
6 S _S -D1	側壁	2	1000	1500	1425	D22	D25	-5. 23×10 ⁻⁶	-6. 42×10 ⁻⁴	1. 33×10 ⁻²	0. 048
(H-, V+)	頂版1	10	1000	1000	925	D19	D25	-2.02×10^{-5}	9. 21×10 ⁻⁴	1. 99×10 ⁻²	0. 046
	頂版2	4	1000	1000	925	D19	D22	−9. 25×10 ^{−6}	2. 21×10 ⁻⁴	1. 99×10 ⁻²	0. 011
	底版1	18	1000	1000	925	D19	D25	-2. 66×10 ⁻⁵	1. 73×10 ⁻³	1. 99×10 ⁻²	0. 087
	底版2	17	1000	1000	925	D19	D25	-3.82×10^{-5}	-1. 68×10 ⁻⁴	1. 99×10 ⁻²	0.008
	隔壁	19	1000	1000	925	D22	D22	-1. 11×10 ⁻⁵	1. 36×10 ⁻³	1. 99×10 ⁻²	0.068

注記 *:評価位置は下図に示す。

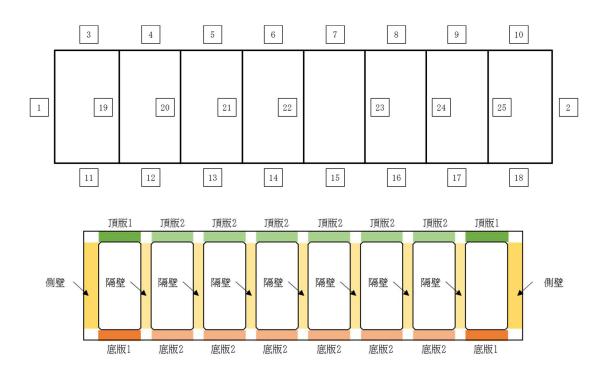
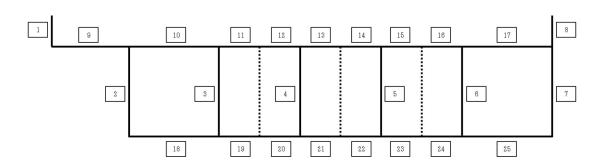



表 2.4-14(1) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	軸方向	m+ m // +	72 B . II. +	777 -t- t-t-
検討ケース	評価	i位置	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	ϕ d [1/m]	φ _L [1/m]	γ i • φ d/ φ _L
① S _S -D1	突出部	1	1000	1000	925	D19	D22	-9. 52×10 ⁻⁷	7. 70×10 ⁻⁵	1. 99×10 ⁻²	0.004
(H+, V+)	側壁	2	1000	1500	1425	D25	D29	-1. 67×10 ⁻⁷	6. 07×10 ⁻⁴	1. 33×10 ⁻²	0.046
	隔壁	6	1000	1200	1125	D22	D22	-2. 29×10 ⁻⁵	9. 60×10 ⁻⁴	1.66×10 ⁻²	0.058
	左張出	9	1000	1000	925	D22	D22	-4. 12×10 ⁻⁶	-1. 42×10 ⁻³	1. 99×10 ⁻²	0.071
	頂版1	17	1000	1000	925	D22	D29	-2. 47×10 ⁻⁵	1. 32×10 ⁻³	1. 99×10 ⁻²	0.066
	頂版2	13	1000	3190	3115	D22	D29	-2. 46×10 ⁻⁵	-4. 37 \times 10 ⁻⁵	6. 25×10 ⁻³	0.007
	底版1	25	1000	1200	1125	D22	D29	-1.84×10 ⁻⁵	1. 08×10 ⁻³	1.66×10 ⁻²	0.065
	底版2	19	1000	1200	1125	D22	D22	-2. 28×10 ⁻⁵	3. 58×10 ⁻⁴	1. 66×10 ⁻²	0.022
① S _S -D1	突出部	1	1000	1000	925	D19	D22	-2. 09×10 ⁻⁶	7. 76×10^{-5}	1. 99×10^{-2}	0.004
(H+, V-)	側壁	2	1000	1500	1425	D25	D29	1. 02×10 ⁻⁶	5. 69×10 ⁻⁴	1. 33×10^{-2}	0.043
	隔壁	6	1000	1200	1125	D22	D22	-2. 44×10 ⁻⁵	1. 01×10^{-3}	1. 66×10^{-2}	0.061
	左張出	9	1000	1000	925	D22	D22	-2. 13×10 ⁻⁶	-1. 46×10 ⁻³	1. 99×10^{-2}	0.073
	頂版1	17	1000	1000	925	D22	D29	-2. 78×10 ⁻⁵	1. 39×10 ⁻³	1. 99×10 ⁻²	0.070
	頂版2	13	1000	3190	3115	D22	D29	−2. 33×10 ^{−5}	-4. 37 \times 10 ⁻⁵	6. 25×10 ⁻³	0.007
	底版1	25	1000	1200	1125	D22	D29	−2. 79×10 ^{−5}	1. 19×10 ⁻³	1.66×10 ⁻²	0.072
	底版2	21	1000	1200	1125	D22	D22	−3. 56×10 ^{−5}	3. 61×10 ⁻⁴	1.66×10 ⁻²	0.022
① S _S -D1	突出部	1	1000	1000	925	D19	D22	-1. 38×10 ⁻⁶	7. 90×10^{-5}	1. 99×10^{-2}	0.004
(H-, V+)	側壁	2	1000	1500	1425	D25	D29	2. 52×10^{-6}	6. 13×10 ⁻⁴	1. 33 $ imes$ 10 $^{-2}$	0.046
	隔壁	6	1000	1200	1125	D22	D22	-2.75×10^{-5}	-1. 44 \times 10 ⁻³	1. 66×10^{-2}	0.087
	左張出	9	1000	1000	925	D22	D22	-5. 35×10^{-6}	–1. 57 $ imes$ 10 $^{-3}$	1. 99 \times 10 $^{-2}$	0.079
	頂版1	17	1000	1000	925	D22	D29	−2. 57×10 ^{−5}	1.82 \times 10 ⁻³	1. 99 \times 10 ⁻²	0.091
	頂版2	13	1000	3190	3115	D22	D29	−1. 98×10 ^{−5}	-5. 33×10^{-5}	6. 25×10 ⁻³	0.009
	底版1	25	1000	1200	1125	D22	D29	−2. 75×10 ^{−5}	1. 29×10 ⁻³	1.66×10 ⁻²	0.078
	底版2	19	1000	1200	1125	D22	D22	−2. 55×10 ^{−5}	4. 31×10 ⁻⁴	1.66×10 ⁻²	0.026
① S _S -D1	突出部	1	1000	1000	925	D19	D22	-1. 04×10 ⁻⁶	8. 60×10^{-5}	1. 99×10^{-2}	0.004
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	1.83×10 ⁻⁶	6. 87×10 ⁻⁴	1. 33×10 ⁻²	0.052
	隔壁	6	1000	1200	1125	D22	D22	-3.10×10^{-5}	-1. 45×10 ⁻³	1. 66×10 ⁻²	0.087
	左張出	9	1000	1000	925	D22	D22	-4. 36×10 ⁻⁶	-1.65×10 ⁻³	1. 99×10 ⁻²	0.083
	頂版1	17	1000	1000	925	D22	D29	-3.00×10^{-5}	2. 02×10^{-3}	1. 99×10 ⁻²	0.102
	頂版2	13	1000	3190	3115	D22	D29	-2. 07×10 ⁻⁵	−5. 35×10 ^{−5}	6. 25×10 ⁻³	0.009
	底版1	25	1000	1200	1125	D22	D29	−3. 25×10 ^{−5}	1. 38×10 ⁻³	1.66×10 ⁻²	0.083
	底版2	19	1000	1200	1125	D22	D22	−2. 13×10 ^{−5}	4. 58×10 ⁻⁴	1. 66 \times 10 $^{-2}$	0.028

注記 *:評価位置は下図に示す。

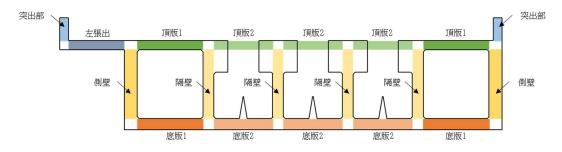
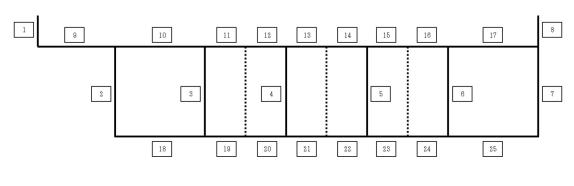



表 2.4-14(2) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	5仕様	軸方向	m+n++	四用业去	077 ** t=
検討ケース	評価	位置	部材幅	部材高	有効高	1 144		ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • φ d/φ _L
① S _S -11	突出部	1	1000	1000	925	D19	D22	-1. 11×10 ⁻⁶	6. 18×10 ⁻⁵	1. 99×10 ⁻²	0.003
	側壁	2	1000	1500	1425	D25	D29	8. 44×10 ⁻⁷	3. 24×10 ⁻⁴	1. 33×10 ⁻²	0.024
	隔壁	6	1000	1200	1125	D22	D22	-2. 62×10 ⁻⁵	-5. 25×10 ⁻⁴	1.66×10 ⁻²	0.032
	左張出	9	1000	1000	925	D22	D22	-4. 72×10 ⁻⁶	-8.86×10 ⁻⁴	1. 99×10 ⁻²	0.045
	頂版1	17	1000	1000	925	D22	D29	−2. 69×10 ^{−5}	9. 63×10 ⁻⁴	1. 99×10 ⁻²	0.048
	頂版2	13	1000	3190	3115	D22	D29	-1. 49×10 ⁻⁵	−2. 92×10 ^{−5}	6. 26×10 ⁻³	0.005
	底版1	25	1000	1200	1125	D22	D29	-2. 51×10 ⁻⁵	6. 99×10 ⁻⁴	1.66×10 ⁻²	0.042
	底版2	21	1000	1200	1125	D22	D22	-2. 18×10 ⁻⁵	1. 99×10 ⁻⁴	1. 66×10 ⁻²	0.012
① S _s -12	突出部	1	1000	1000	925	D19	D22	-7. 57×10 ⁻⁷	7. 29×10^{-5}	1. 99 \times 10 ⁻²	0.004
	側壁	2	1000	1500	1425	D25	D29	-1. 11×10 ⁻⁶	5. 59×10 ⁻⁴	1. 33 \times 10 $^{-2}$	0.042
	隔壁	6	1000	1200	1125	D22	D22	-2.29×10^{-5}	7. 12×10^{-4}	1. 66 \times 10 $^{-2}$	0.043
	左張出	9	1000	1000	925	D22	D22	-2.04×10^{-6}	-1.30 \times 10 ⁻³	1. 99 \times 10 $^{-2}$	0.065
	頂版1	10	1000	1000	925	D22	D29	−4. 67×10 ^{−5}	1. 23×10^{-3}	1. 99 \times 10 ⁻²	0.062
	頂版2	14	1000	3190	3115	D22	D29	−2. 43×10 ^{−5}	-3.74×10^{-5}	6. 25×10 ⁻³	0.006
	底版1	18	1000	1200	1125	D22	D29	−3. 77×10 ^{−5}	8. 98×10 ⁻⁴	1.66×10 ⁻²	0.054
	底版2	21	1000	1200	1125	D22	D22	-2.60×10^{-5}	2. 38×10 ⁻⁴	1.66×10 ⁻²	0.014
① S _S -13	突出部	1	1000	1000	925	D19	D22	−9. 00×10 ^{−7}	6. 91 \times 10 $^{-5}$	1. 99 \times 10 $^{-2}$	0.003
	側壁	2	1000	1500	1425	D25	D29	−9. 53×10 ^{−7}	5. 29×10^{-4}	1. 33 $ imes$ 10 $^{-2}$	0.040
	隔壁	6	1000	1200	1125	D22	D22	-2.28×10^{-5}	6.05 \times 10 ⁻⁴	1. 66×10^{-2}	0.036
	左張出	9	1000	1000	925	D22	D22	−2. 58×10 ^{−6}	-1.21×10^{-3}	1. 99 \times 10 $^{-2}$	0.061
	頂版1	10	1000	1000	925	D22	D29	-4. 61×10 ⁻⁵	1. 12×10 ⁻³	1. 99×10 ⁻²	0.056
	頂版2	14	1000	3190	3115	D22	D29	-2. 49×10^{-5}	–3. 47 $ imes$ 10 $^{-5}$	6. 25×10^{-3}	0.006
	底版1	25	1000	1200	1125	D22	D29	-2.55×10^{-5}	7. 93×10 ⁻⁴	1. 66×10^{-2}	0.048
	底版2	21	1000	1200	1125	D22	D22	-2.53×10^{-5}	2. 16×10 ⁻⁴	1. 66×10^{-2}	0.013
① S _s -14	突出部	8	1000	1000	925	D19	D22	-1.74×10^{-6}	6. 29×10^{-5}	1. 99 \times 10 $^{-2}$	0.003
	側壁	2	1000	1500	1425	D25	D29	-1. 02×10 ⁻⁶	3. 75×10^{-4}	1. 33×10 ⁻²	0.028
	隔壁	6	1000	1200	1125	D22	D22	−2. 55×10 ^{−5}	-4. 13×10 ⁻⁴	1.66×10 ⁻²	0.025
	左張出	9	1000	1000	925	D22	D22	-6. 61×10 ⁻⁶	−7. 58×10 ^{−4}	1. 99 \times 10 $^{-2}$	0.038
	頂版1	17	1000	1000	925	D22	D29	-2. 43×10 ⁻⁵	1. 08×10 ⁻³	1. 99×10 ⁻²	0.054
	頂版2	13	1000	3190	3115	D22	D29	−2. 16×10 ^{−5}	-2.62×10^{-5}	6. 25×10 ⁻³	0.004
	底版1	18	1000	1200	1125	D22	D29	-2. 46×10 ⁻⁵	6. 31×10 ⁻⁴	1.66×10 ⁻²	0.038
	底版2	23	1000	1200	1125	D22	D22	-2.90×10^{-5}	1. 59×10^{-4}	1. 66 \times 10 $^{-2}$	0.010

注記 *:評価位置は下図に示す。

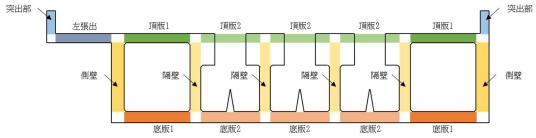
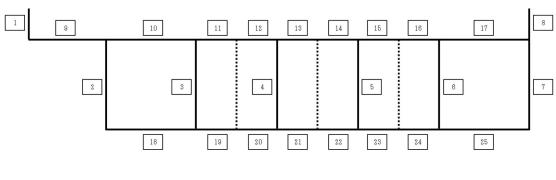



表 2.4-14(3) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	5仕様	軸方向			
検討ケース	評価	i位置	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • φ d/ φ _L
① S _S -21	突出部	1	1000	1000	925	D19	D22	-2. 06×10 ⁻⁶	6. 94×10 ⁻⁵	1. 99×10 ⁻²	0.003
	側壁	2	1000	1500	1425	D25	D29	-1. 36×10 ⁻⁶	4. 22×10 ⁻⁴	1. 33×10 ⁻²	0.032
	隔壁	6	1000	1200	1125	D22	D22	-2. 94×10 ⁻⁵	-6. 82×10 ⁻⁴	1.66×10 ⁻²	0.041
	左張出	9	1000	1000	925	D22	D22	−6. 50×10 ^{−6}	-8.82×10 ⁻⁴	1. 99×10 ⁻²	0.044
	頂版1	17	1000	1000	925	D22	D29	−1. 97×10 ^{−5}	1. 26×10 ⁻³	1. 99×10 ⁻²	0.063
	頂版2	13	1000	3190	3115	D22	D29	-1. 54×10 ⁻⁵	−3. 49×10 ^{−5}	6. 25×10 ⁻³	0.006
	底版1	18	1000	1200	1125	D22	D29	−3. 05×10 ^{−5}	9. 48×10 ⁻⁴	1.66×10 ⁻²	0.057
	底版2	21	1000	1200	1125	D22	D22	-1. 82×10 ⁻⁵	2.53×10 ⁻⁴	1.66×10 ⁻²	0.015
① S _s -22	突出部	1	1000	1000	925	D19	D22	−1. 78×10 ^{−6}	6.89×10 ⁻⁵	1. 99×10 ⁻²	0.003
	側壁	2	1000	1500	1425	D25	D29	−2. 85×10 ^{−6}	4. 21×10 ⁻⁴	1. 33×10 ⁻²	0.032
	隔壁	6	1000	1200	1125	D22	D22	-2. 66×10 ⁻⁵	-6.14×10 ⁻⁴	1.66×10 ⁻²	0.037
	左張出	9	1000	1000	925	D22	D22	-4. 05×10 ⁻⁶	-9. 91×10 ⁻⁴	1. 99×10 ⁻²	0.050
	頂版1	17	1000	1000	925	D22	D29	−2. 97×10 ^{−5}	1. 42×10 ⁻³	1. 99×10 ⁻²	0.071
	頂版2	13	1000	3190	3115	D22	D29	−2. 07×10 ^{−5}	−3. 45×10 ^{−5}	6. 25×10 ⁻³	0.006
	底版1	18	1000	1200	1125	D22	D29	−2. 68×10 ^{−5}	7. 63×10 ⁻⁴	1.66×10 ⁻²	0.046
	底版2	23	1000	1200	1125	D22	D22	−3. 54×10 ^{−5}	2. 81×10 ⁻⁴	1.66×10 ⁻²	0.017
① S _s -31	突出部	8	1000	1000	925	D19	D22	−1. 56×10 ^{−6}	6. 46×10 ⁻⁵	1. 99×10 ⁻²	0.003
(H+, V+)	側壁	2	1000	1500	1425	D25	D29	4. 71×10 ⁻⁷	5. 10×10 ⁻⁴	1. 33×10 ⁻²	0.038
	隔壁	6	1000	1200	1125	D22	D22	−2. 81×10 ^{−5}	-6. 20×10 ⁻⁴	1.66×10 ⁻²	0.037
	左張出	9	1000	1000	925	D22	D22	−3. 09×10 ^{−6}	-1.10×10 ⁻³	1. 99×10 ⁻²	0.055
	頂版1	17	1000	1000	925	D22	D29	-1. 38×10 ⁻⁵	1. 03×10 ⁻³	1. 99×10 ⁻²	0.052
	頂版2	14	1000	3190	3115	D22	D29	−2. 28×10 ^{−5}	−3. 01×10 ^{−5}	6. 25×10 ⁻³	0.005
	底版1	18	1000	1200	1125	D22	D29	−2. 25×10 ^{−5}	1. 11×10 ⁻³	1.66×10 ⁻²	0.067
	底版2	21	1000	1200	1125	D22	D22	-2. 00×10 ⁻⁵	2. 42×10 ⁻⁴	1.66×10 ⁻²	0.015
① S _S -31	突出部	8	1000	1000	925	D19	D22	-1. 54×10 ⁻⁶	7. 01×10 ⁻⁵	1. 99×10 ⁻²	0.004
(H-, V+)	側壁	2	1000	1500	1425	D25	D29	8. 43×10 ⁻⁷	5. 56×10 ⁻⁴	1. 33×10 ⁻²	0.042
	隔壁	3	1000	1200	1125	D22	D22	-2. 69×10 ⁻⁵	−7. 28×10 ^{−4}	1.66×10 ⁻²	0.044
	左張出	9	1000	1000	925	D22	D22	-4. 74×10 ⁻⁶	-1. 18×10 ⁻³	1. 99×10 ⁻²	0.059
	頂版1	10	1000	1000	925	D22	D29	−3. 84×10 ^{−5}	1. 07×10 ⁻³	1. 99×10 ⁻²	0.054
	頂版2	14	1000	3190	3115	D22	D29	-2. 04×10 ⁻⁵	−3. 49×10 ^{−5}	6. 25×10 ⁻³	0.006
	底版1	25	1000	1200	1125	D22	D29	-2. 45×10 ⁻⁵	9. 61×10 ⁻⁴	1.66×10 ⁻²	0.058
	底版2	20	1000	1200	1125	D22	D22	-3.07×10^{-5}	2. 49×10 ⁻⁴	1.66×10 ⁻²	0.015

注記 *:評価位置は下図に示す。

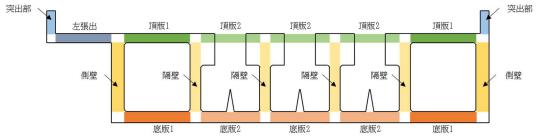


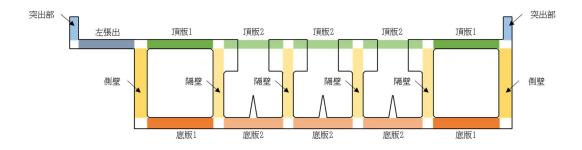
表 2.4-14(4) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

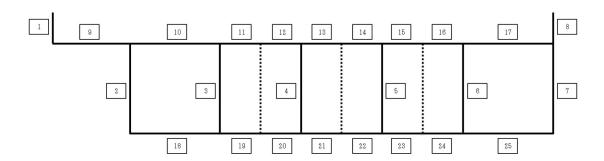
				断面性状		鉄筋	仕様	軸方向	照査用曲率	限界曲率	四大は
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	思 宜用田学	限升田半	照査値
			b (mm)	h (mm)	d (m)	上炉	1,540	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • ϕ d/ ϕ L
② S _S -D1	突出部	1	1000	1000	925	D19	D22	-1. 34×10 ⁻⁶	8. 60×10 ⁻⁵	1. 99×10 ⁻²	0.004
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	1.84×10 ⁻⁶	7. 34×10 ⁻⁴	1. 33×10 ⁻²	0.055
	隔壁	6	1000	1200	1125	D22	D22	-2. 99×10 ⁻⁵	-1.50×10 ⁻³	1.66×10 ⁻²	0.090
	左張出	9	1000	1000	925	D22	D22	−3. 58×10 ^{−6}	-1. 69×10 ⁻³	1. 99×10 ⁻²	0.085
	頂版1	17	1000	1000	925	D22	D29	-2. 92×10 ⁻⁵	1. 96×10 ⁻³	1. 99×10 ⁻²	0.098
	頂版2	14	1000	3190	3115	D22	D29	-2. 99×10 ⁻⁵	-5. 22×10 ⁻⁵	6. 25×10 ⁻³	0.008
	底版1	25	1000	1200	1125	D22	D29	−3. 11×10 ^{−5}	1. 37×10 ⁻³	1. 66×10 ⁻²	0.083
	底版2	19	1000	1200	1125	D22	D22	-2. 05×10 ⁻⁵	4. 53×10 ⁻⁴	1. 66×10 ⁻²	0.027

表 2.4-14(5) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	軸方向	m + m 41 +	四用业去	177 -k- 1-k-
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	1.50	1, 240	εа [-]	ϕ d [1/m]	ϕ_L [1/m]	γ i • φ d/ φ _L
3 S _S -D1	突出部	1	1000	1000	925	D19	D22	-1. 38×10^{-6}	8. 60×10 ⁻⁵	1. 99×10^{-2}	0.004
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	1. 54×10 ⁻⁶	5. 98×10 ⁻⁴	1. 33×10^{-2}	0.045
	隔壁	6	1000	1200	1125	D22	D22	−3. 44×10 ^{−5}	-1.35×10 ⁻³	1.66×10 ⁻²	0.081
	左張出	9	1000	1000	925	D22	D22	-4. 43×10 ⁻⁶	-1.52×10 ⁻³	1. 99×10 ⁻²	0.076
	頂版1	17	1000	1000	925	D22	D29	−2. 99×10 ^{−5}	1. 99×10 ⁻³	1. 99×10 ⁻²	0.100
	頂版2	13	1000	3190	3115	D22	D29	−1. 97×10 ^{−5}	-5. 13×10 ⁻⁵	6. 25×10 ⁻³	0.008
	底版1	25	1000	1200	1125	D22	D29	−3. 28×10 ^{−5}	1. 21×10 ⁻³	1. 66×10 ⁻²	0.073
	底版2	19	1000	1200	1125	D22	D22	−2. 23×10 ^{−5}	4. 37×10 ⁻⁴	1. 66×10 ⁻²	0.026

注記 *: 評価位置は下図に示す。




表 2.4-14(6) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	軸方向	m+n4+	四用业去	四大は
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上炉	1,540	εa [-]	φd [1/m]	ϕ_L [1/m]	γ i • ϕ d/ ϕ L
$4 S_S - D1$	突出部	1	1000	1000	925	D19	D22	-6. 40×10 ⁻⁷	9. 61×10 ⁻⁵	1. 99×10 ⁻²	0.005
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	5. 55×10 ⁻⁶	7.67 \times 10 ⁻⁴	1. 33×10 ⁻²	0.058
	隔壁	6	1000	1200	1125	D22	D22	-3. 64×10 ⁻⁵	-2. 13×10 ⁻³	1.66×10 ⁻²	0.128
	左張出	9	1000	1000	925	D22	D22	−9. 57×10 ^{−6}	-2. 64×10 ⁻³	1. 99×10 ⁻²	0. 133
	頂版1	17	1000	1000	925	D22	D29	-3. 05×10 ⁻⁵	2. 46×10 ⁻³	1. 99×10 ⁻²	0.124
	頂版2	13	1000	3190	3115	D22	D29	-2. 49×10 ⁻⁵	−9. 34×10 ^{−5}	6. 25×10 ⁻³	0.015
	底版1	25	1000	1200	1125	D22	D29	−3. 70×10 ^{−5}	1. 89×10 ⁻³	1. 66×10 ⁻²	0.114
	底版2	19	1000	1200	1125	D22	D22	-2. 44×10 ⁻⁵	8. 72×10 ⁻⁴	1.66×10 ⁻²	0.053

表 2.4-14(7) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	軸方向	m*=+=	四田北志	077 ->
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	1.50	1,540	εa [-]	ϕ d [1/m]	ϕ_L [1/m]	γ i • φ d/φ _L
⑤ S _S −D1	突出部	8	1000	1000	925	D19	D22	-2.72×10^{-6}	7. 25×10^{-5}	1. 99×10 ⁻²	0.004
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	-1. 22×10 ⁻⁶	6. 78×10 ⁻⁴	1. 33×10 ⁻²	0.051
	隔壁	6	1000	1200	1125	D22	D22	-3.08×10^{-5}	-1.04 \times 10 ⁻³	1.66×10 ⁻²	0.063
	左張出	9	1000	1000	925	D22	D22	−3. 44×10 ^{−6}	-1. 32×10^{-3}	1. 99×10 ⁻²	0.066
	頂版1	17	1000	1000	925	D22	D29	-2. 65×10 ⁻⁵	1.66×10 ⁻³	1. 99×10 ⁻²	0.083
	頂版2	13	1000	3190	3115	D22	D29	-1.56×10 ⁻⁵	-4. 08×10 ⁻⁵	6. 25×10 ⁻³	0.007
	底版1	18	1000	1200	1125	D22	D29	−2. 69×10 ^{−5}	1. 28×10 ⁻³	1. 66×10 ⁻²	0. 077
	底版2	23	1000	1200	1125	D22	D22	−2. 63×10 ^{−5}	3. 19×10 ⁻⁴	1. 66×10 ⁻²	0.019

注記 *: 評価位置は下図に示す。

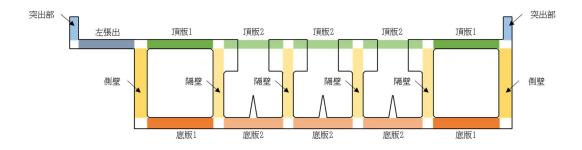
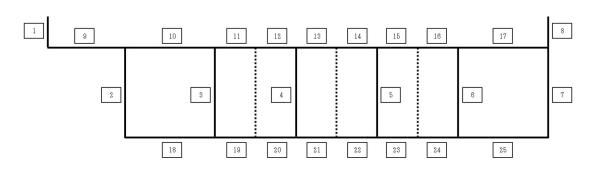



表 2.4-14(8) <mark>躯体</mark>の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	軸方向	m+n++	四用业去	077 ** l**
検討ケース	評価	位置	部材幅	部材高	有効高	上端	下端	ひずみ	照査用曲率	限界曲率	照査値
			b (mm)	h (mm)	d (m)	上少的	1,540	εa [-]	ϕ d [1/m]	ϕ_L [1/m]	γ i • ϕ d/ ϕ L
⑥ S _S −D1	突出部	8	1000	1000	925	D19	D22	-2. 65×10 ⁻⁶	7. 22×10^{-5}	1. 99×10^{-2}	0.004
(H-, V-)	側壁	2	1000	1500	1425	D25	D29	-2. 36×10 ⁻⁶	6. 92×10 ⁻⁴	1. 33×10^{-2}	0.052
	隔壁	6	1000	1200	1125	D22	D22	-2.78×10^{-5}	-1.04 \times 10 ⁻³	1. 66 \times 10 $^{-2}$	0.063
	左張出	9	1000	1000	925	D22	D22	-3. 14×10 ^{−6}	-1.34×10 ⁻³	1. 99×10 ⁻²	0.067
	頂版1	17	1000	1000	925	D22	D29	-2. 66×10 ⁻⁵	1.56×10 ⁻³	1. 99×10 ⁻²	0.078
	頂版2	13	1000	3190	3115	D22	D29	-1. 59×10 ⁻⁵	-4. 07×10 ⁻⁵	6. 25×10 ⁻³	0.007
	底版1	18	1000	1200	1125	D22	D29	-2. 64×10 ⁻⁵	1. 32×10 ⁻³	1.66×10 ⁻²	0.080
	底版2	20	1000	1200	1125	D22	D22	−3. 60×10 ^{−5}	3. 42×10 ⁻⁴	1. 66×10 ⁻²	0.021

注記 *:評価位置は下図に示す。

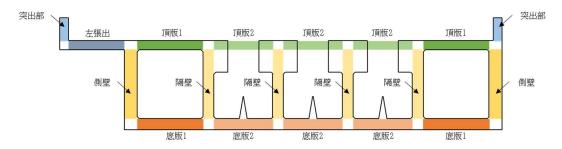


表 2.4-15(1) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	(得られる荷重		音巻等防護設備の		断面性状		鉄筋	仕様	軸方向	WW 4-89 U -4-		WW. do. f. fe
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
① S _S -D1			$(H \rightarrow \lor \downarrow)$			0.00	2.0	(上) D19	-1. 01×10 ⁻⁵	-1. 70×10 ⁻⁴	1. 99×10 ⁻²	0.009
(H+, V+)		①	(H→∨↑)	1000	1000	850	D19	(下) D25	-6. 35×10 ⁻⁶	-1. 70×10 ⁻⁴	1. 99×10 ⁻²	0.009
	最大加速度	②	$(H \rightarrow \lor \downarrow)$	1000	1000	1050	D10	D10	-1. 61×10 ⁻⁵	-8. 38×10 ^{−4}	1. 66×10 ⁻²	0.050
	発生時刻	2	(H→∨↑)	1000	1200	1050	D19	D19	-5. 30×10 ⁻⁶	-8. 38×10 ^{−4}	1. 66×10 ⁻²	0.050
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.76×10 ⁻⁵	-1. 44×10 ⁻³	1.66×10 ⁻²	0.087
		9	(H←∨↑)	1000	1200	1000	D19	D19	-2.76×10^{-6}	1. 27×10 ⁻³	1.66×10 ⁻²	0.077
	最大土圧	①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 41 \times 10 ⁻⁶	-6. 87×10 ⁻⁴	1. 99×10 ⁻²	0.035
	発生時刻	w.	$(H \rightarrow \lor \uparrow)$	1000	1000	830	D15	(下) D25	-7.00×10^{-6}	−6. 87×10 ^{−4}	1. 99×10 ⁻²	0.035
① S _S -D1		①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 94×10 ^{−6}	-1.70×10 ⁻⁴	1. 99×10 ⁻²	0.009
(H+, V-)		0	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D19	(下) D25	−6. 47×10 ^{−6}	-1.70×10 ⁻⁴	1. 99×10 ⁻²	0.009
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1. 61×10 ⁻⁵	-8. 38×10 ⁻⁴	1.66×10 ⁻²	0.050
	発生時刻	9	$(H \rightarrow \lor \uparrow)$	1000	1200	1000	D15	D15	–5. 30 \times 10 ⁻⁶	−8. 38×10 ^{−4}	1.66×10 ⁻²	0.050
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.73×10 ⁻⁵	−1. 47×10 ⁻³	1.66×10 ⁻²	0. 089
		9	(H←∨↑)	1000	1200	1000	D15	D15	-3.04×10^{-6}	1. 31×10 ⁻³	1.66×10 ⁻²	0.079
	最大土圧	①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	-9.23×10^{-6}	-1. 52×10 ⁻⁴	1. 99×10 ⁻²	0.008
	発生時刻	w	$(H \rightarrow \lor \uparrow)$	1000	1000	830	D15	(下) D25	−7. 18×10 ^{−6}	−1. 52×10 ^{−4}	1. 99×10 ⁻²	0.008
① S _S -D1		①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	-9.41×10^{-6}	-1.73×10 ⁻⁴	1. 99×10 ⁻²	0.009
(H-, V+)		9	$(H \rightarrow \lor \uparrow)$	1000	1000	830	D15	(下) D25	-7.00×10^{-6}	−1. 73×10 ^{−4}	1. 99×10 ⁻²	0.009
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 54×10 ^{−5}	−8. 38×10 ^{−4}	1. 66×10 ⁻²	0.050
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1200	1000	D13	D13	−5. 94×10 ^{−6}	−8. 38×10 ^{−4}	1. 66×10 ⁻²	0.050
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 67×10 ^{−6}	−1. 47×10 ⁻³	1. 66×10 ⁻²	0. 089
			(H←∨↑)	1000	1200	1000	D13	D13	−3. 62×10 ^{−6}	1. 31×10 ⁻³	1. 66×10 ⁻²	0. 079
	最大土圧	①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	−1. 50×10 ^{−4}	1. 99×10 ⁻²	0.008
	発生時刻		$(H \rightarrow \lor \uparrow)$	1000	1000	000	D13	(下) D25	−7. 18×10 ^{−6}	-1.50×10 ⁻⁴	1. 99×10 ⁻²	0.008
① S _S -D1		①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−1. 13×10 ^{−5}	−1. 73×10 ^{−4}	1. 99×10 ⁻²	0.009
(H-, V-)		9	$(H \rightarrow \lor \uparrow)$	1000	1000	000	D13	(下) D25	−5. 11×10 ^{−6}	−1. 73×10 ^{−4}	1. 99×10 ⁻²	0.009
	最大加速度	②	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 74×10 ^{−5}	−8. 76×10 ^{−4}	1. 66×10 ⁻²	0.053
	発生時刻	•	(H→∨↑)	1000	1200	1000	210	510	-4. 03×10 ⁻⁶	-8. 76×10 ⁻⁴	1. 66×10 ⁻²	0.053
		(3)	(H→∨↓)	1000	1200	1050	D19	D19	−1. 85×10 ^{−5}	-1. 47×10 ⁻³	1. 66×10 ⁻²	0. 089
		*	(H←∨↑)	1000	1200	1000	210	210	-1.84×10 ⁻⁶	1. 31×10 ⁻³	1. 66×10 ⁻²	0. 079
	最大土圧	①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 53×10 ^{−6}	-1. 51×10 ⁻⁴	1. 99×10 ⁻²	0.008
	発生時刻	30	$(H{\rightarrow}\vee\uparrow)$	1300	1300	550	210	(下) D25	−6. 88×10 ^{−6}	-1.51×10 ⁻⁴	1. 99×10 ⁻²	0.008

注記 *:評価位置は下図に示す。

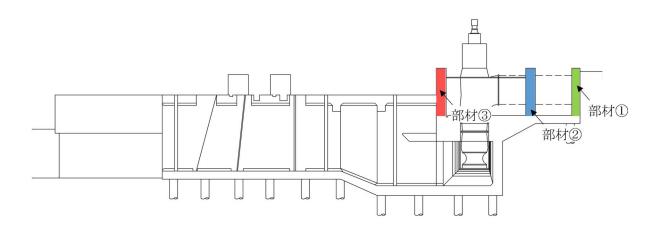


表 2.4-15(2) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	(得られる荷重		竜巻等防護設備の		断面性状		鉄筋	仕様	軸方向	WW 4-89 U -6-		WT do ble
検討ケース **1	応答抽出	部材	応答解析により	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
① S _S -11			(H→∨↓)			0.00		(上) D19	−1. 08×10 ^{−5}	-1. 56×10 ⁻⁴	1. 99×10 ⁻²	0.008
		1	(H→∨↑)	1000	1000	850	D19	(下) D25	-5. 64×10 ⁻⁶	-1. 56×10 ⁻⁴	1. 99×10 ⁻²	0.008
	最大加速度	②	$(H \rightarrow \lor \downarrow)$	1000	1000	1050	D10	D10	−1. 68×10 ^{−5}	-4. 68×10 ⁻⁴	1. 66×10 ⁻²	0. 028
	発生時刻	2	(H→∨↑)	1000	1200	1050	D19	D19	-4. 55×10 ⁻⁶	-4. 68×10 ⁻⁴	1. 66×10 ⁻²	0.028
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.81×10^{-5}	-1. 11×10 ⁻³	1.66×10 ⁻²	0.067
		9	(H←∨↑)	1000	1200	1000	D19	D19	–2. 24 \times 10 ⁻⁶	9. 52×10 ⁻⁴	1.66×10 ⁻²	0.057
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 29 \times 10 ⁻⁶	-1.39×10 ⁻⁴	1. 99×10 ⁻²	0.007
	発生時刻	W	$(H \rightarrow \lor \uparrow)$	1000	1000	830	D15	(下) D25	–7. 12 \times 10 ⁻⁶	-1. 39×10 ⁻⁴	1. 99×10 ⁻²	0.007
① S _S -12		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 41 \times 10 $^{-6}$	-2.05×10^{-4}	1. 99×10 ⁻²	0.010
		w w	$(H \rightarrow \lor \uparrow)$	1000	1000	830	D15	(下) D25	–7. 00 \times 10 ⁻⁶	−2. 05×10 ^{−4}	1. 99×10 ⁻²	0.010
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	–1. 55 $ imes$ 10 ^{–5}	−6. 53×10 ^{−4}	1.66×10 ⁻²	0. 039
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1200	1000	D15	D15	–5. 88 $ imes$ 10 ⁻⁶	−6. 53×10 ^{−4}	1.66×10 ⁻²	0. 039
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 67×10 ^{−5}	−1. 26×10 ⁻³	1. 66×10 ⁻²	0. 076
			(H←∨↑)	1000	1200	1000	D15	D15	−3. 68×10 ^{−6}	1. 10×10 ⁻³	1. 66×10 ⁻²	0.066
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	-1. 42×10 ⁻⁴	1. 99×10 ⁻²	0.007
	発生時刻	w.	$(H \rightarrow \lor \uparrow)$	1000	1000	000	D13	(下) D25	−7. 18×10 ^{−6}	-1. 42×10 ⁻⁴	1. 99×10 ⁻²	0.007
① S _S -13		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 47 \times 10 ⁻⁶	−2. 10×10 ^{−4}	1. 99×10 ⁻²	0. 011
		w.	$(H \rightarrow \lor \uparrow)$	1000	1000	000	D13	(下) D25	−6. 94×10 ^{−6}	−2. 10×10 ^{−4}	1. 99×10 ⁻²	0. 011
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 56×10 ^{−5}	−6. 16×10 ^{−4}	1. 66×10 ⁻²	0. 037
	発生時刻		(H→∨↑)	1000	1200	1000	210	210	−6. 40×10 ^{−6}	−6. 16×10 ^{−4}	1. 66×10 ⁻²	0. 037
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 66×10 ^{−5}	-1. 26×10 ⁻³	1. 66×10 ⁻²	0. 076
			(H←∨↑)	1000	1200	1000	210	210	−3. 73×10 ^{−6}	1. 10×10 ⁻³	1. 66×10 ⁻²	0.066
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 29×10 ^{−6}	−1. 43×10 ^{−4}	1. 99×10 ⁻²	0.007
	発生時刻		(H→∨↑)	1000	1000	500	210	(下) D25	−7. 12×10 ^{−6}	−1. 43×10 ^{−4}	1. 99×10 ⁻²	0.007
① S _S -14		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−1. 09×10 ^{−5}	−1. 71×10 ^{−4}	1. 99×10 ⁻²	0.009
			$(H \rightarrow \lor \uparrow)$					(下) D25	−5. 53×10 ^{−6}	−1. 71×10 ^{−4}	1. 99×10 ⁻²	0.009
	最大加速度	(2)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 70×10 ^{−5}	−5. 79×10 ^{−4}	1. 66×10 ⁻²	0. 035
	発生時刻	-	(H→∨↑)						−4. 43×10 ^{−6}	−5. 79×10 ^{−4}	1. 66×10 ⁻²	0. 035
		3	(H→∨↓)	1000	1200	1050	D19	D19	−1. 81×10 ^{−5}	−1. 19×10 ⁻³	1.66×10 ⁻²	0.072
		~	(H←∨↑)						−2. 24×10 ^{−6}	1. 02×10 ⁻³	1.66×10 ⁻²	0.061
	最大土圧	0	(H→∨↓)	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	−1. 35×10 ^{−4}	1. 99×10 ⁻²	0.007
	発生時刻	-	$(H \rightarrow \lor \uparrow)$					(下) D25	−7. 18×10 ^{−6}	−1. 35×10 ^{−4}	1. 99×10 ⁻²	0.007

注記 *:評価位置は下図に示す。

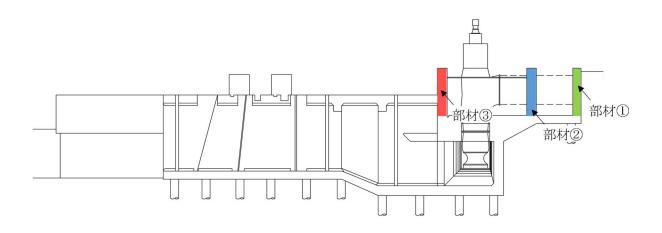
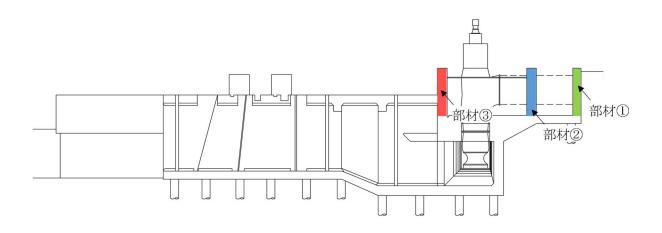



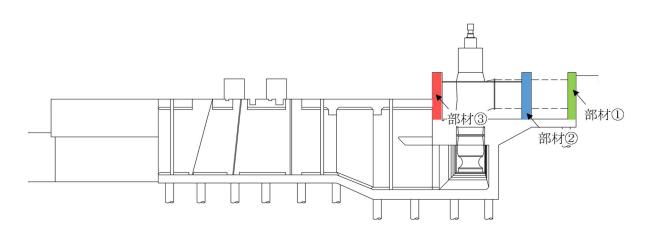
表 2.4-15(3) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		鉄筋	i 仕様	軸方向	MIT - La PITA III - eles	Maria Bala III des	HTT - Le 1-Le
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高			ひずみ	照査用曲率	限界曲率	照査値
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	上端	下端	εa [-]	φd [1/m]	φ _L [1/m]	γi·φd/φ _L
① S _S -21			(H→∨↓)			0.50	2.0	(上) D19	−9. 47×10 ^{−6}	-1.53×10 ⁻⁴	1. 99×10 ⁻²	0.008
		1	(H→∨↑)	1000	1000	850	D19	(下) D25	-6. 94×10 ⁻⁶	-1.53×10 ⁻⁴	1. 99×10 ⁻²	0.008
	最大加速度	②	(H→∨↓)	1000	1000	1050	D10	D10	-1. 56×10 ⁻⁵	−5. 42×10 ^{−4}	1. 66×10 ⁻²	0. 033
	発生時刻	2	(H→∨↑)	1000	1200	1050	D19	D19	−5. 77×10 ^{−6}	−5. 42×10 ^{−4}	1. 66×10 ⁻²	0. 033
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1. 70×10 ⁻⁵	-1.15×10 ⁻³	1.66×10 ⁻²	0.069
		9	(H←∨↑)	1000	1200	1050	D19	D19	-3.33×10^{-6}	9.88×10 ⁻⁴	1.66×10 ⁻²	0.060
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 71 \times 10 ⁻⁶	–1. 31 \times 10 ^{–4}	1. 99×10 ⁻²	0.007
	発生時刻	W	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D15	(下) D25	–6. 71 \times 10 ⁻⁶	-1.31×10^{-4}	1. 99×10 ⁻²	0.007
① S _S -22		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	-1. 18×10 ⁻⁵	-1.67×10 ⁻⁴	1. 99×10 ⁻²	0.008
		w	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D19	(下) D25	-4.58×10^{-6}	-1.67×10 ⁻⁴	1. 99×10 ⁻²	0.008
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1. 78×10 ⁻⁵	−7. 64×10 ^{−4}	1.66×10 ⁻²	0.046
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1200	1000	D15	D15	-3.57×10^{-6}	−7. 64×10 ^{−4}	1.66×10 ⁻²	0.046
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.89×10^{-5}	-1.36×10 ⁻³	1.66×10 ⁻²	0.082
		9	(H←∨↑)	1000	1200	1000	D15	D15	–1. 44 \times 10 ^{–6}	1. 20×10^{-3}	1.66×10 ⁻²	0.072
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	-9.59×10^{-6}	-1. 43×10 ⁻⁴	1. 99×10 ⁻²	0.007
	発生時刻	w.	$(H{\rightarrow}\vee\uparrow)$	1000	1000	830	D15	(下) D25	-6.82×10^{-6}	-1. 43×10 ⁻⁴	1. 99×10 ⁻²	0.007
① S _S -31		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	-9.23×10^{-6}	-2.90×10^{-4}	1. 99×10 ⁻²	0.015
(H+, V+)		w .	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D15	(下) D25	−7. 18×10 ^{−6}	-2. 90×10 ⁻⁴	1. 99×10 ⁻²	0.015
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 53×10 ^{−5}	-6. 90×10 ⁻⁴	1. 66×10 ⁻²	0.042
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1200	1000	D13	D13	−6. 05×10 ^{−6}	−6. 90×10 ^{−4}	1. 66×10 ⁻²	0.042
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 67×10 ^{−6}	-1. 29×10 ⁻³	1. 66×10 ⁻²	0. 078
			(H←∨↑)	1000	1200	1000	513	D13	−3. 68×10 ^{−6}	1. 13×10 ⁻³	1. 66×10 ⁻²	0.068
	最大土圧	0	(H→∨↓)	1000	1000	850	D19	(上) D19	−9. 41×10 ^{−6}	−1. 41×10 ^{−4}	1. 99×10 ⁻²	0. 007
	発生時刻	w.	(H→∨↑)	1000	1000	000	D13	(下) D25	−7. 00×10 ^{−6}	-1. 41×10 ⁻⁴	1. 99×10 ⁻²	0.007
① S _S -31		0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	−3. 11×10 ^{−4}	1. 99×10 ⁻²	0. 016
(H-, V+)		w.	$(H \rightarrow \lor \uparrow)$	1000	1000	000	515	(下) D25	−7. 18×10 ^{−6}	−3. 11×10 ^{−4}	1. 99×10 ⁻²	0. 016
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	−1. 53×10 ^{−5}	−9. 87×10 ^{−4}	1. 66×10 ⁻²	0.059
	発生時刻		(H→∨↑)	1000	1200	1000	210	510	−6. 05×10 ^{−6}	−9. 87×10 ^{−4}	1. 66×10 ⁻²	0. 059
		(3)	(H→∨↓)	1000	1200	1050	D19	D19	−1. 65×10 ^{−5}	-1.58×10 ⁻³	1. 66×10 ⁻²	0. 095
			(H←∨↑)	1000	1200	1000	210	510	−3. 79×10 ^{−6}	1. 42×10 ⁻³	1. 66×10 ⁻²	0. 086
	最大土圧	0	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	−1. 35×10 ^{−4}	1. 99×10 ⁻²	0. 007
	発生時刻	*	(H→∨↑)	1000	1000	550	210	(下) D25	−7. 18×10 ^{−6}	-1. 35×10 ⁻⁴	1. 99×10 ⁻²	0.007

注記 *:評価位置は下図に示す。

表 2.4-15(4) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		鉄筋	近伏様	軸方向	照香用曲率	限界曲率	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	上端	下端	ひずみ	炽重用曲单	欧外田学	ALTERN.
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	TENN	L yili	εa [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
② S _S -31		(I)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D10	(上) D19	–9. 23 \times 10 ⁻⁶	-3. 40×10 ⁻⁴	1. 99×10 ⁻²	0.017
(H-, V+)		w w	(H→∨↑)	1000	1000	850	D19	(下) D25	–7. 18 \times 10 ⁻⁶	-3. 40×10 ⁻⁴	1. 99×10 ⁻²	0.017
	最大加速度		(H→∨↓)	1000	1200	1050	D19	D19	−1. 53×10 ^{−5}	−9. 50×10 ^{−4}	1. 66×10 ⁻²	0.057
	発生時刻	2	(H→∨↑)	1000	1200	1050	D19	D19	-6. 05×10 ⁻⁶	−9. 50×10 ^{−4}	1. 66×10 ⁻²	0.057
		(3)	(H→∨↓)	1000	1200	1050	D19	D19	−1. 65×10 ^{−5}	-1.54×10 ⁻³	1. 66×10 ⁻²	0.093
		(3)	(H←∨↑)	1000	1200	1050	D19	D19	-3. 79×10 ⁻⁶	1. 38×10 ⁻³	1. 66×10 ⁻²	0.083
	最大土圧		$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 23×10 ^{−6}	-1.34×10 ⁻⁴	1. 99×10 ⁻²	0.007
	発生時刻	w w	(H→∨↑)	1000	1000	000	D19	(下) D25	−7. 18×10 ^{−6}	-1. 34×10 ⁻⁴	1. 99×10 ⁻²	0.007

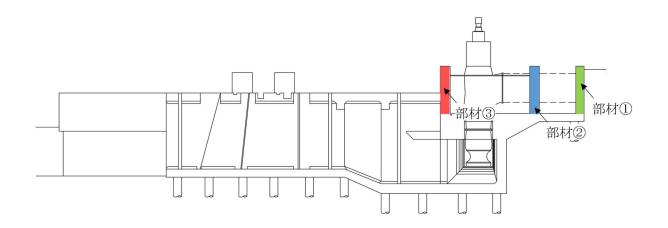

表 2.4-15(5) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		音巻等防護設備の		断面性状		鉄筋	i 仕様	軸方向	照香用曲率	限界曲率	照杏値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	上端	下端	ひずみ	照堂用曲单	欧乔田华	無宜旭
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	上少曲	1, 3,40	εa [-]	φd [1/m]	φ _L [1/m]	$\gammai\boldsymbol{\cdot}\phid/\phi_L$
3 S _S -31		(Ī)	(H→∨↓)	1000	1000	850	D10	(上) D19	–9. 23 \times 10 ⁻⁶	-2.86×10 ⁻⁴	1. 99×10 ⁻²	0.014
(H-, V+)		w	(H→∨↑)	1000	1000	850	D19	(下) D25	−7. 18×10 ^{−6}	-2.86×10 ⁻⁴	1. 99×10 ⁻²	0.014
	最大加速度	②	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1. 53×10 ⁻⁵	−9.87×10 ^{−4}	1. 66×10 ⁻²	0.059
	発生時刻	9	(H→∨↑)	1000	1200	1050	D19	D19	-6. 05×10 ⁻⁶	−9. 87×10 ^{−4}	1. 66×10 ⁻²	0.059
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.66×10 ⁻⁵	-1.58×10 ⁻³	1.66×10 ⁻²	0.095
		9	(H←∨↑)	1000	1200	1050	D19	D19	-3.73×10^{-6}	1. 42×10 ⁻³	1.66×10 ⁻²	0.086
	最大土圧	(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 23 \times 10 ⁻⁶	-1.60×10 ⁻⁴	1. 99×10 ⁻²	0.008
	発生時刻	9	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D19	(下) D25	–7. 18 \times 10 ⁻⁶	-1.60×10 ⁻⁴	1. 99×10 ⁻²	0.008

表 2.4-15(6) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		鉄筋	i仕様	軸方向	照香用曲率	限界曲率	照杏値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	上端	下端	ひずみ	無重用曲率	欧外田等	無重胆
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	7.50	1 200	εa [-]	φd [1/m]	φ _L [1/m]	γ i • φ d/φ _L
④ S _S − 31		①	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	–9. 23 \times 10 ⁻⁶	-2. 31×10 ⁻⁴	1. 99×10 ⁻²	0.012
(H-, V+)		w	(H→∨↑)	1000	1000	850	D19	(下) D25	-7. 18×10 ⁻⁶	-2. 31×10 ⁻⁴	1. 99×10 ⁻²	0.012
	最大加速度	@	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1. 53×10 ⁻⁵	-1. 02×10 ⁻³	1. 66×10 ⁻²	0.061
	発生時刻	2	$(H \rightarrow \lor \uparrow)$	1000	1200	1050	D19	D19	–6. 05 \times 10 ⁻⁶	-1.02×10 ⁻³	1.66×10 ⁻²	0.061
		(3)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	D19	D19	-1.65×10 ⁻⁵	-1.62×10 ⁻³	1.66×10 ⁻²	0.098
		9	(H←∨↑)	1000	1200	1000	D19	D19	$-3.79\!\times\!10^{-6}$	1. 45×10 ⁻³	1.66×10 ⁻²	0.087
	最大土圧	(I)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	D19	(上) D19	−9. 35×10 ^{−6}	-1.62×10 ⁻⁴	1. 99×10 ⁻²	0.008
	発生時刻	W	$(H \rightarrow \lor \uparrow)$	1000	1000	650	D19	(下) D25	–7. 06 \times 10 $^{-6}$	-1.62×10 ⁻⁴	1. 99×10 ⁻²	0.008

注記 *:評価位置は下図に示す。


表 2.4-15(7) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		童巻等防護設備の		断面	i性状		鉄筋	i 仕様	軸方向	照香用曲率	限界曲率	照查值
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	鉄筋かぶり	有効高	1.44		ひずみ	無延用曲率	限介田华	MR DICIE.
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)		d (m)	上端	下端	εа [-]	φd [1/m]	φ _L [1/m]	γi·φd/φL
⑤ S _S −31		0	(H→∨↓)	4000	1000	-	850	240	(上) D19	-9.23×10 ⁻⁶	-4. 09×10 ⁻⁴	1.99×10 ⁻²	0.021
(H-, V+)		00	(H→∨↑)	1000	1000	75	850	D19	(下) D25	-7.18×10 ⁻⁶	-4. 09×10 ⁻⁴	1.99×10 ⁻²	0.021
	最大加速度	2	(H→∨↓)	4000	1200	75	4050	D19	D40	-1.53×10 ⁻⁵	-1. 02×10 ⁻³	1.66×10 ⁻²	0.061
	発生時刻		(H→∨↑)	1000	1200	75	1050	D19	D19	-6.05×10 -6	-1. 02×10 ⁻³	1.66×10 ⁻²	0.061
			(H→∨↓)	4000	4000	75	1050	240	D40	-1.66×10 ⁻⁵	-1.62×10 ⁻³	1.66×10 ⁻²	0.098
		3	(H←∨↑)	1000	1200	75	1050	D19	D19	-3.73×10 ⁻⁶	1. 45×10 ⁻³	1.66×10 ⁻²	0.087
	最大土圧	0	(H→∨↓)	4000	4000		050	240	(上) D19	-9.29×10 ⁻⁶	-4. 59×10 ⁻⁴	1.99×10 ⁻²	0.023
	発生時刻	00	(H→∨↑)	1000	1000	75	850	D19	(下) D25	−7. 12×10 ^{−6}	-4.59×10 -4	1.99×10 ⁻²	0.023

表 2.4-15(8) 躯体の曲げ軸力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		童券等防護設備の		断面	性状		鉄筋	仕様	軸方向	照查用曲率	限界曲率	照查值
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	鉄筋かぶり	有効高	上端	下端	ひずみ	無延用曲率	阪乔曲争	無通用
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)		d (m)	1.5m	1.340	εa [-]	φd [1/m]	φ _L [1/m]	$\gammai\cdot\phid/\phiL$
⑥ S _S − 31		0	$(H \rightarrow \lor \downarrow)$	4000	1000	75	050	240	(上) D19	-9.23×10 ⁻⁶	-4. 14×10 ⁻⁴	1.99×10 ⁻²	0.021
(H-, V+)		00	(H→∨↑)	1000	1000	75	850	D19	(下) D25	-7.18×10 ⁻⁶	-4. 14×10 ⁻⁴	1.99×10 ⁻²	0.021
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	75	1050	D19	D40	-1.53×10 ⁻⁵	-1. 02×10 ⁻³	1.66×10 ⁻²	0.061
	発生時刻	w	(H→∨↑)	1000	1200	15	1050	D19	D19	-6.05×10 -6	-1. 02×10 ⁻³	1.66×10 ⁻²	0.061
		3	(H→∨↓)	1000	1200	75	1050	D19	D19	-1.66×10 ⁻⁵	-1.62×10 ⁻³	1.66×10 ⁻²	0.098
		(3)	(H←∨↑)	1000	1200	15	1050	D19	D19	-3.73×10 ⁻⁶	1. 45×10 ⁻³	1. 66×10^{-2}	0.087
	最大土圧	OD.	(H→∨↓)	1000	1000	75	850	Dio	(上) D19	-9.23×10 ⁻⁶	-4. 93×10 ⁻⁴	1.99×10 ⁻²	0.025
	発生時刻	W	(H→∨↑)	1000	1000	15	800	D19	(下) D25	−7. 18×10 ^{−6}	-4. 93×10 ⁻⁴	1.99×10 ⁻²	0.025

注記 *:評価位置は下図に示す。

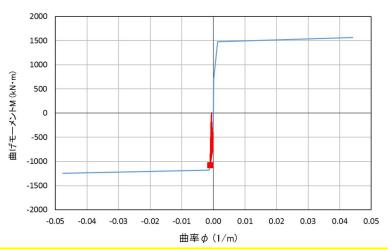


図 2.4-22(1) M-φ曲線を用いた貯水機能の確認 (①-①断面 側壁) (検討ケース④, S_s-D1 (H-, V+))*

* 当該部材の曲げ軸力照査で照査値が最も厳しい地震動

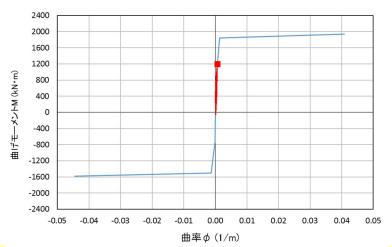


図 2.4-22(2) M-φ曲線を用いた貯水機能の確認 (④-④断面 側壁) (検討ケース④, S_s-D1 (H-, V-))*

* 当該部材の曲げ軸力照査で照査値が最も厳しい地震動

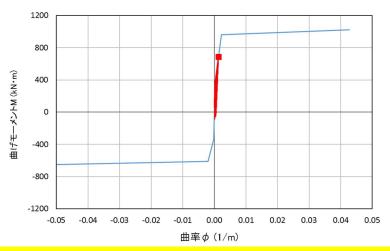


図 2.4-23(1) M-φ曲線を用いた止水機能等の確認 (①-①断面 頂版)

(検討ケース④, S_s-D1 (H-, V+))*

* 当該部材の曲げ軸力照査で照査値が最も厳しい地震動

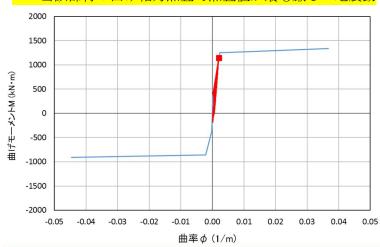


図 2.4-23(2) M-φ曲線を用いた止水機能等の確認 (④-④断面 頂版) (検討ケース④, S_s-D1 (H+, V+))*

* 当該部材の曲げ軸力照査で照査値が最も厳しい地震動

図 2.4-23(3) M-φ曲線を用いた止水機能等の確認 (⑥-⑥断面 部材①)

(検討ケース, S_s – 3 1 (H+, V+), 竜巻等防護設備反力 (H→, V↓)) *

* 当該部材の曲げ軸力照査で照査値が最も厳しい地震動

(2) 躯体のせん断力に対する評価結果

<mark>躯体</mark>のせん断力に対する評価結果を表 2.4-<mark>16</mark>,表 2.4-<mark>17 及び表 2.4-18</mark> に示す。

躯体の評価位置において発生せん断力(V)がコンクリートの負担するせん断力(V_{cd})と斜め引張鉄筋の負担するせん断力(V_{sd}),建設技術審査証明報告書による後施工せん断補強筋が負担するせん断力(V_{phb})を合わせたせん断耐力(V_{yd})を下回ることを確認した。($V_{yd} = V_{cd} + V_s + V_{phb} \ge V$)。なお,発生断面力は各地震動,各部材において最大となる値を示している。

以上より、<mark>取水構造物躯体</mark>の各部材に発生するせん断力は、せん断耐力以下であること を確認した。

表 2.4-16(1) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		077 -ke fele
検討ケース	評価	位置	部材幅	部材高	有効高	2011 3) 3 Her LB 7/2 Art	Ante-sie	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
① S _S -D1	側壁	2	1000	1500	1425	SD345 D22 @300×300		-630	1911	0.330
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-240	1322	0. 182
	頂版2	7	1000	1000	925	=	※ 5,6,7 : PHbなし	-169	276	0.612
	底版1	11	1000	1000	925	SD345 D22 @300×300		-523	1318	0. 397
	底版2	14	1000	1000	925	=	※ 12,14 : PHbなし	-228	413	0. 552
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-187	1238	0. 151
① S _S -D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		623	1909	0. 326
(H+, V-)	頂版1	3	1000	1000	925	SD345 D22 @300×300		239	1297	0. 184
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-122	202	0.604
	底版1	11	1000	1000	925	SD345 D22 @300×300		-537	1324	0. 406
	底版2	14	1000	1000	925	-	※ 12,14 : PHbなし	-192	331	0. 580
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-185	1243	0. 149
① S _S -D1	側壁	2	1000	1500	1425	SD345 D22 @300×300		-696	1921	0. 362
(H-, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-302	1313	0. 230
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-168	307	0. 547
	底版1	11	1000	1000	925	SD345 D22 @300×300		-517	1328	0. 389
	底版2	14	1000	1000	925	-	※ 12,14 : PHbなし	-261	431	0.606
	隔壁	19	1000	1000	925	SD345 D22 @300×300		171	1236	0. 138
① S _S -D1	側壁	2	1000	1500	1425	SD345 D22 @300×300		-681	1929	0. 353
(H-, V-)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-297	1291	0. 230
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-175	318	0. 550
	底版1	11	1000	1000	925	SD345 D22 @300×300		-534	1320	0. 405
	底版2	14	1000	1000	925	-	※ 12,14 : PHbなし	-255	424	0.601
	隔壁	19	1000	1000	925	SD345 D22 @300×300		172	1238	0. 139

注記 *:評価位置は下図に示す。

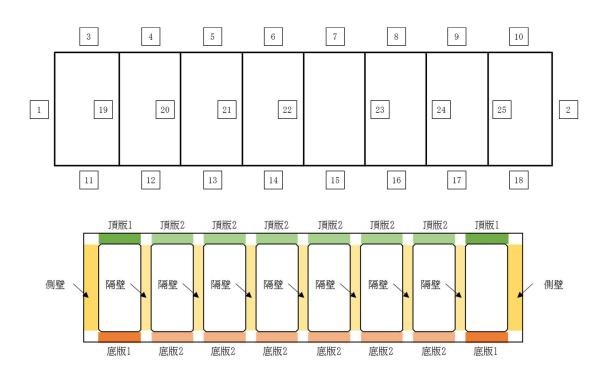


表 2.4-16(2) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		1777 - de de de de
検討ケース	評価	i位置	部材幅	部材高	有効高	DIII 11. 1 Nr 4534 M	/##s -195.	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
① S _s -11	側壁	2	1000	1500	1425	SD345 D22 @300×300		-528	1922	0. 275
	頂版1	3	1000	1000	925	SD345 D22 @300×300		180	335	0. 537
	頂版2	7	1000	1000	925	=	※ 5,6,7 : PHbなし	-140	331	0. 423
	底版1	11	1000	1000	925	SD345 D22 @300×300		-428	1324	0. 323
	底版2	14	1000	1000	925	=	※ 12,14 : PHbなし	-205	470	0. 436
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-136	261	0. 521
① S _S -12	側壁	2	1000	1500	1425	SD345 D22 @300×300		-698	1942	0. 359
	頂版1	10	1000	1000	925	SD345 D22 @300×300		-231	1331	0.174
	頂版2	7	1000	1000	925	=	※ 5,6,7 : PHbなし	-79	152	0.520
	底版1	18	1000	1000	925	SD345 D22 @300×300		442	1337	0. 331
	底版2	14	1000	1000	925	-	※ 12,14 : PHbなし	-222	467	0. 475
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-149	1228	0. 121
① S _s -13	側壁	2	1000	1500	1425	SD345 D22 @300×300		-622	1888	0. 329
	頂版1	3	1000	1000	925	SD345 D22 @300×300		-228	1284	0. 178
	頂版2	7	1000	1000	925	=	※ 5,6,7 : PHbなし	-94	162	0.580
	底版1	18	1000	1000	925	SD345 D22 @300×300		425	1327	0.320
	底版2	12	1000	1000	925	=	※ 12,14 : PHbなし	232	510	0. 455
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-151	1231	0. 123
① S _s -14	側壁	2	1000	1500	1425	SD345 D22 @300×300		-570	1952	0. 292
	頂版1	10	1000	1000	925	SD345 D22 @300×300		-200	345	0.580
	頂版2	6	1000	1000	925	=	※ 5,6,7 : PHbなし	-121	308	0. 393
	底版1	11	1000	1000	925	SD345 D22 @300×300		-390	1343	0. 290
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	169	462	0. 366
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-128	254	0.504

注記 *:評価位置は下図に示す。

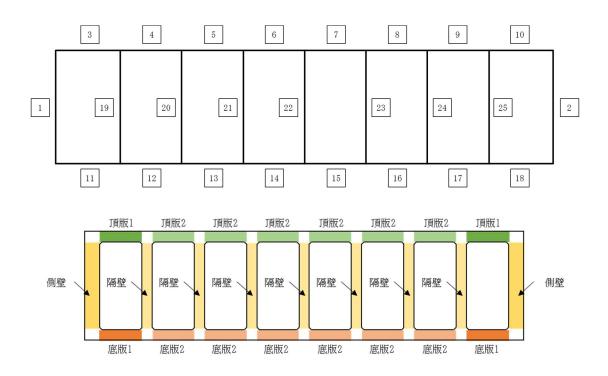


表 2.4-16(3) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		077 - de fete
検討ケース	評価	i位置	部材幅	部材高	有効高	DIII 11. 1 Mr 44-34 Mr	/##s -195.	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
① S _S -21	側壁	1	1000	1500	1425	SD345 D22 @300×300		582	1929	0.302
	頂版1	3	1000	1000	925	SD345 D22 @300×300		222	1318	0.168
	頂版2	5	1000	1000	925	=	※ 5,6,7 : PHbなし	-130	283	0. 459
	底版1	11	1000	1000	925	SD345 D22 @300×300		-495	1332	0.372
	底版2	14	1000	1000	925	=	※ 12,14 : PHbなし	-195	403	0. 484
	隔壁	19	1000	1000	925	SD345 D22 @300×300		159	270	0. 589
① S _s -22	側壁	2	1000	1500	1425	SD345 D22 @300×300		-602	1971	0. 305
	頂版1	10	1000	1000	925	SD345 D22 @300×300		-241	1311	0. 184
	頂版2	5	1000	1000	925	=	※ 5,6,7 : PHbなし	-131	285	0.460
	底版1	11	1000	1000	925	SD345 D22 @300×300		-487	1340	0. 363
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	223	510	0. 437
	隔壁	19	1000	1000	925	SD345 D22 @300×300		150	263	0. 570
① S _s -31	側壁	2	1000	1500	1425	SD345 D22 @300×300		-559	1896	0. 295
(H+, V+)	頂版1	3	1000	1000	925	SD345 D22 @300×300		-264	1283	0. 206
	頂版2	7	1000	1000	925	=	※ 5,6,7 : PHbなし	-135	250	0. 540
	底版1	11	1000	1000	925	SD345 D22 @300×300		-391	1310	0. 298
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	-202	462	0. 437
	隔壁	19	1000	1000	925	SD345 D22 @300×300		178	1249	0. 143
① S _s -31	側壁	2	1000	1500	1425	SD345 D22 @300×300		-590	1882	0. 313
(H-, V+)	頂版1	3	1000	1000	925	SD345 D22 @300×300		-242	1246	0. 194
	頂版2	7	1000	1000	925	_	※ 5,6,7 : PHbなし	-123	222	0. 554
	底版1	18	1000	1000	925	SD345 D22 @300×300		419	1322	0. 317
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	246	510	0. 482
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-172	1237	0. 139

注記 *:評価位置は下図に示す。

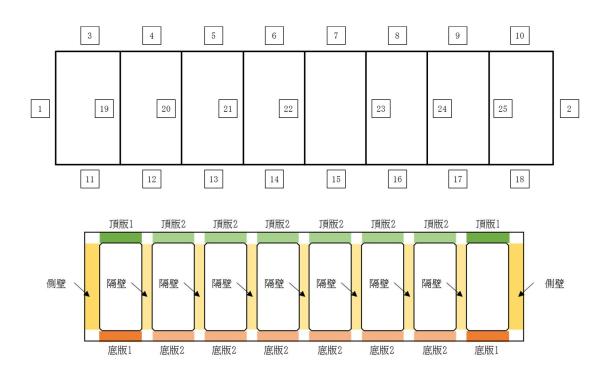


表 2.4-16(4) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		照査値
検討ケース	評価	位置	部材幅	部材高	有効高	PHbせん断補強筋	備考	せん断力	せん断耐力	児宜旭
			b (mm)	h (mm)	d (m)	FIDでん肉相短肋	1用-/5	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
② S _S -D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		615	1898	0. 324
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-248	1320	0. 188
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-173	273	0. 634
	底版1	11	1000	1000	925	SD345 D22 @300×300		-516	1320	0. 391
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	-228	431	0. 529
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-189	1240	0. 152

表 2.4-16(5) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		照査値
検討ケース	評価	位置	部材幅	部材高	有効高	PHbせん断補強筋	備考	せん断力	せん断耐力	川正川
			b (mm)	h (mm)	d (m)	FIDでん肉相短肋	1用-/5	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
3 S _S -D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		-637	1902	0. 335
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-262	1310	0. 200
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-56	87	0.644
	底版1	11	1000	1000	925	SD345 D22 @300×300		-518	1319	0. 393
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	-223	405	0. 551
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-185	1235	0.150

注記 *:評価位置は下図に示す。

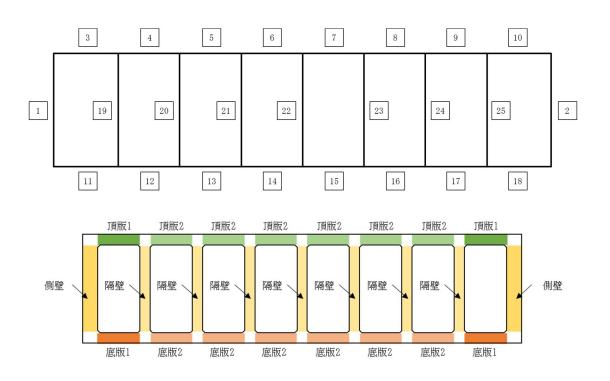


表 2.4-16(6) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		照査値
検討ケース	評価	位置	部材幅	部材高	有効高	PHbせん断補強筋	備考	せん断力	せん断耐力	児宜旭
			b (mm)	h (mm)	d (m)	FIDでん肉相短肋	1用-/5	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
4 S _S -D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		859	1887	0. 455
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		303	1300	0. 233
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-195	281	0. 694
	底版1	11	1000	1000	925	SD345 D22 @300×300		-651	1318	0. 494
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	-264	383	0. 689
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-186	1240	0. 150

表 2.4-16(7) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		照査値
検討ケース	評価	位置	部材幅	部材高	有効高	PHbせん断補強筋	備考	せん断力	せん断耐力	思重旭
			b (mm)	h (mm)	d (m)	FIDEが阿相短肋	湘石	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
⑤ S _S −D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		-622	1897	0. 328
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-225	1273	0. 177
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-91	184	0. 495
	底版1	11	1000	1000	925	SD345 D22 @300×300		-478	1351	0.354
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	239	510	0. 469
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-187	1239	0. 151

注記 *:評価位置は下図に示す。

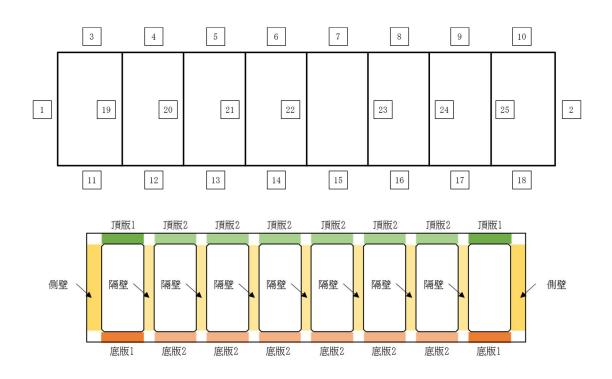


表 2.4-16(8) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

				断面性状		鉄筋	仕様	照査用		照査値
検討ケース	評価	位置	部材幅	部材高	有効高	PHbせん断補強筋	備考	せん断力	せん断耐力	児宜旭
			b (mm)	h (mm)	d (m)	FIDE ん阿州加州	湘石	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
⑥ S _S −D1	側壁	1	1000	1500	1425	SD345 D22 @300×300		-615	1901	0. 324
(H+, V+)	頂版1	10	1000	1000	925	SD345 D22 @300×300		-232	1326	0. 175
	頂版2	7	1000	1000	925	-	※ 5,6,7 : PHbなし	-93	188	0. 495
	底版1	11	1000	1000	925	SD345 D22 @300×300		-478	1353	0. 353
	底版2	12	1000	1000	925	-	※ 12,14 : PHbなし	241	489	0. 493
	隔壁	25	1000	1000	925	SD345 D22 @300×300		-185	1242	0. 149

注記 *:評価位置は下図に示す。

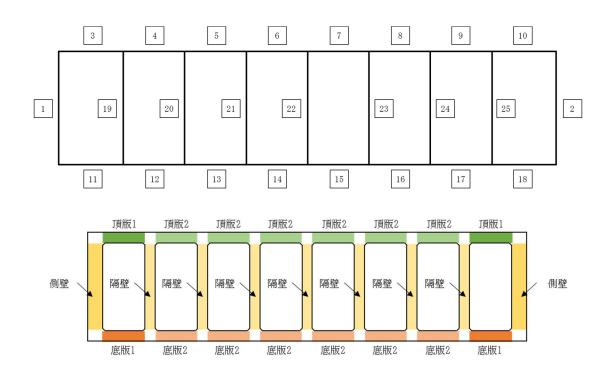


表 2.4-17(1) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

接換サース 子の					断面性状		鉄筋	仕様	照査用		077 ++ I++
	検討ケース	評価	位置	部材幅	部材高	有効高	Part 1.) Mr 4-P 24 AV	£441 +69°.	せん断力	せん断耐力	照査値
(H+, V+) 機器 2 1000 1500 1425 87045 722 8300×300 -609 1839 0.331 1839 0.331				b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
極壁 6 1000 1200 1205 SD345 D22 単200×300 364 1522 0.229 佐栗田 9 1000 1000 925 SD345 D22 単200×300 251 1228 0.294 頂飯1 17 1000 1000 925 SD345 D22 単200×300 -366 1308 0.2265 頂飯2 16 1000 3190 3115 SD345 D22 単200×300 -885 4158 0.215 底飯1 18 1000 1200 1125 SD345 D22 単200×300 -528 1583 0.334 底飯2 23 1000 1200 1125 SD345 D22 単200×300 -339 1605 0.211 (H+,V−)	① S _S -D1	突出部	1	1000	1000	925	-		110	317	0. 347
左張出 9	(H+, V+)	側壁	2	1000	1500	1425	SD345 D22 @300×300		-609	1839	0. 331
頂似		隔壁	6	1000	1200	1125	SD345 D22 @300×300		364	1522	0. 239
接版2 16 1000 3190 3115 SD345 D22 e300×300 -895 4158 0.215 底版2 23 1000 1200 1125 SD345 D22 e300×300 -528 1583 0.334 底版2 23 1000 1500 1200 1125 SD345 D22 e300×300 -539 1605 0.211 (H+, V-) 機能 2 1000 1500 1200 1125 SD345 D22 e300×300 695 1964 0.354 振版2 1000 1500 1200 1125 SD345 D22 e300×300 695 1964 0.354 近張版1 17 1000 1000 925 SD345 D22 e300×300 369 1519 0.243 近康版2 16 1000 3190 3115 SD345 D22 e300×300 -410 1318 0.311 (H-, V+) 機能 1 1000 1000 925 SD345 D22 e300×300 -410 1318 0.311 所版2 16 1000 1200 1125 SD345 D22 e300×300 -569 1582 0.325 0.215 底版2 23 1000 1200 1125 SD345 D22 e300×300 -569 1582 0.3348 0.220 近藤版2 23 1000 1200 1125 SD345 D22 e300×300 -759 2009 0.378 后版2 16 1000 3190 3115 SD345 D22 e300×300 -759 2009 0.378 后版2 17 1000 1500 1520 1125 SD345 D22 e300×300 -759 2009 0.378 近藤版2 23 1000 1200 1125 SD345 D22 e300×300 -759 2009 0.378 后版2 16 1000 3190 3115 SD345 D22 e300×300 -759 2009 0.378 后版2 16 1000 3190 3115 SD345 D22 e300×300 -759 2009 0.378 近藤版2 23 1000 1200 1125 SD345 D22 e300×300 -759 2009 0.378 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -759 2009 0.378 近藤版2 23 1000 1000 925 SD345 D22 e300×300 -759 2009 0.378 近藤版2 23 1000 1000 925 SD345 D22 e300×300 -404 1341 0.301 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -7125 4607 0.244 近藤版2 23 1000 1200 1125 SD345 D22 e300×300 -7125 4007 0.244 近藤版2 23 1000 1200 1125 SD345 D22 e300×300 -735 1993 0.389 「藤版2 6 1000 1200 1125 SD345 D22 e300×300 -735 1993 0.389 「藤版2 7 1000 1500 1425 SD345 D22 e300×300 -735 1993 0.389 「藤版2 16 1000 1000 925 SD345 D22 e300×300 -735 1993 0.389 「藤版2 16 1000 3190 3115 SD345 D22 e300×300 -735 1993 0.389 「藤版2 16 1000 1000 925 SD345 D22 e300×300 -744 1512 0.292 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -744 1512 0.292 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -744 1512 0.292 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -744 1512 0.292 近藤版2 16 1000 3190 3115 SD345 D22 e300×300 -744 1510 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1260 0.343 1		左張出	9	1000	1000	925	SD345 D22 @300×300		251	1228	0. 204
底版		頂版1	17	1000	1000	925	SD345 D22 @300×300		-386	1308	0. 295
 底殻2 23 1000 1200 1125 SD345 D22 €300×300 -339 1605 0.211 (日+, V−) (日+, V		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-895	4158	0. 215
① S s − D 1 (H + , V −) 機壁 2 1000 1500 925 − 1111 319 0.348		底版1	18	1000	1200	1125	SD345 D22 @300×300		-528	1583	0. 334
(H+, V-)		底版2	23	1000	1200	1125	SD345 D22 @300×300		-339	1605	0. 211
隔壁 6 1000 1200 1125 SD345 D22 ®300×300 257 1230 0.209	① S _S -D1	突出部	1	1000	1000	925	-		111	319	0. 348
左張田 9 1000 1000 925 SD345 D22 8300×300 257 1230 0.209 頂版1 17 1000 1000 925 SD345 D22 8300×300 -410 1318 0.311 頂版2 16 1000 3190 3115 SD345 D22 8300×300 -905 4205 0.215 底版1 18 1000 1200 1125 SD345 D22 8300×300 -569 1582 0.360 底版2 23 1000 1200 1125 SD345 D22 8300×300 -362 1643 0.220 (H−, V+)	(H+, V-)	側壁	2	1000	1500	1425	SD345 D22 @300×300		695	1964	0. 354
頂版1		隔壁	6	1000	1200	1125	SD345 D22 @300×300		369	1519	0. 243
頂版2		左張出	9	1000	1000	925	SD345 D22 @300×300		257	1230	0. 209
廃版		頂版1	17	1000	1000	925	SD345 D22 @300×300		-410	1318	0. 311
底版2 23 1000 1200 1125 SD345 D22 @300×300		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-905	4205	0. 215
田田		底版1	18	1000	1200	1125	SD345 D22 @300×300		-569	1582	0.360
(H-,V+) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -759 2009 0.378 隔壁 6 1000 1200 1125 SD345 D22 @300×300 443 1508 0.294 左張出 9 1000 1000 925 SD345 D22 @300×300 262 1230 0.213 頂版1 17 1000 1000 925 SD345 D22 @300×300 -404 1341 0.301 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1125 4607 0.244 底版1 25 1000 1200 1125 SD345 D22 @300×300 581 1602 0.363 底版2 23 1000 1200 1125 SD345 D22 @300×300 581 1602 0.363 底版2 23 1000 1200 1125 SD345 D22 @300×300 -343 1620 0.212 ① S s - D 1		底版2	23	1000	1200	1125	SD345 D22 @300×300		-362	1643	0. 220
際整 6 1000 1200 1125 SD345 D22 @300×300 443 1508 0.294 左張出 9 1000 1000 925 SD345 D22 @300×300 262 1230 0.213	① S _s -D1	突出部	1	1000	1000	925	-		112	322	0.348
左張出 9 1000 1000 925 SD345 D22 @300×300 262 1230 0.213 頂版1 17 1000 1000 925 SD345 D22 @300×300 -404 1341 0.301 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1125 4607 0.244 底版1 25 1000 1200 1125 SD345 D22 @300×300 581 1602 0.363 底版2 23 1000 1200 1125 SD345 D22 @300×300 -343 1620 0.212 ③ S _S -D I (H-, V-) 喚出部 1 1000 1000 925 - 121 316 0.383 (H-, V-) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -735 1993 0.369 隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925	(H-, V+)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-759	2009	0. 378
頂版1		隔壁	6	1000	1200	1125	SD345 D22 @300×300		443	1508	0. 294
頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1125 4607 0.244 1512 0.292 1000 1200 1125 SD345 D22 @300×300 581 1602 0.363 1600 0.212 1125 SD345 D22 @300×300 -343 1620 0.383 1620 0.383 1620 0.383 1620 0.383 1620 0.383 1620 0.383 1620 1		左張出	9	1000	1000	925	SD345 D22 @300×300		262	1230	0. 213
底版1 25 1000 1200 1125 SD345 D22 @300×300 581 1602 0.363 底版2 23 1000 1200 1125 SD345 D22 @300×300 -343 1620 0.212 ① S _S -D 1 (H-, V-) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -735 1993 0.369 隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		頂版1	17	1000	1000	925	SD345 D22 @300×300		-404	1341	0. 301
底版2 23 1000 1200 1125 SD345 D22 @300×300 -343 1620 0.212 ③ S _S -D 1 (H-, V-) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -735 1993 0.369 隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-1125	4607	0. 244
① S _S -D 1 (H-,V-) 突出部 1 1000 1000 925 - 121 316 0.383 (H-,V-) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -735 1993 0.369 隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		底版1	25	1000	1200	1125	SD345 D22 @300×300		581	1602	0. 363
(H-, V-) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -735 1993 0.369 隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		底版2	23	1000	1200	1125	SD345 D22 @300×300		-343	1620	0. 212
隔壁 6 1000 1200 1125 SD345 D22 @300×300 442 1512 0.292 左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377	① S _S -D1	突出部	1	1000	1000	925	-		121	316	0. 383
左張出 9 1000 1000 925 SD345 D22 @300×300 283 1226 0.231 頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377	(H-, V-)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-735	1993	0. 369
頂版1 17 1000 1000 925 SD345 D22 @300×300 -449 1310 0.343 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		隔壁	6	1000	1200	1125	SD345 D22 @300×300		442	1512	0. 292
頂版2 16 1000 3190 3115 SD345 D22 @300×300 -1132 4607 0.246 底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		左張出	9	1000	1000	925	SD345 D22 @300×300		283	1226	0. 231
底版1 25 1000 1200 1125 SD345 D22 @300×300 597 1585 0.377		頂版1	17	1000	1000	925	SD345 D22 @300×300		-449	1310	0. 343
		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-1132	4607	0. 246
底版2 23 1000 1200 1125 SD345 D22 @300×300 -339 1569 0.216		底版1	25	1000	1200	1125	SD345 D22 @300×300		597	1585	0. 377
		底版2	23	1000	1200	1125	SD345 D22 @300×300		-339	1569	0. 216

注記 *: 評価位置は下図に示す。

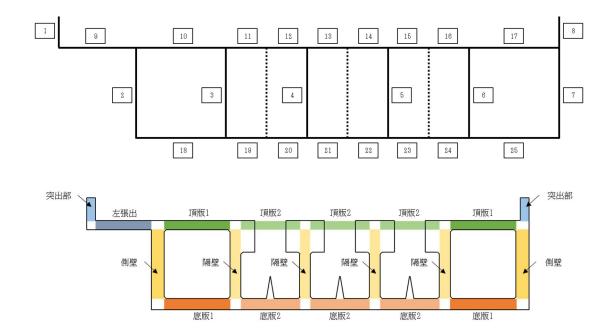


表 2.4-17(2) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

				断面性状		鉄筋	仕様	照査用		177
検討ケース	評価	位置	部材幅	部材高	有効高	DITE (1.) MC 4+34 Mc	£441 →69°.	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
① S _S -11	突出部	1	1000	1000	925	-		90	327	0. 275
	側壁	7	1000	1500	1425	SD345 D22 @300×300		-548	1980	0. 277
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		303	1526	0. 199
	左張出	9	1000	1000	925	SD345 D22 @300×300		190	1231	0. 154
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-361	1331	0. 271
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-804	4473	0. 180
	底版1	25	1000	1200	1125	SD345 D22 @300×300		-405	1563	0. 259
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-285	1570	0. 182
① S _S -12	突出部	1	1000	1000	925	-		105	316	0. 332
	側壁	7	1000	1500	1425	SD345 D22 @300×300		-730	2025	0. 360
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		326	1525	0. 214
	左張出	9	1000	1000	925	SD345 D22 @300×300		233	1221	0. 191
	頂版1	10	1000	1000	925	SD345 D22 @300×300		376	1368	0. 275
	頂版2	11	1000	3190	3115	SD345 D22 @300×300		891	4402	0. 202
	底版1	25	1000	1200	1125	SD345 D22 @300×300		543	1606	0. 338
	底版2	20	1000	1200	1125	SD345 D22 @300×300		298	1606	0. 186
① S _S -13	突出部	1	1000	1000	925	-		100	320	0. 313
	側壁	2	1000	1500	1425	SD345 D22 @300×300		-635	1858	0. 342
	隔壁	3	1000	1200	1125	SD345 D22 @300×300		-314	1526	0. 206
	左張出	9	1000	1000	925	SD345 D22 @300×300		237	1225	0. 193
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-358	1344	0. 266
	頂版2	11	1000	3190	3115	SD345 D22 @300×300		831	4402	0. 189
	底版1	25	1000	1200	1125	SD345 D22 @300×300		492	1583	0. 311
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-287	1588	0. 181
① S _S -14	突出部	1	1000	1000	925	-		89	327	0. 272
	側壁	7	1000	1500	1425	SD345 D22 @300×300		-580	2006	0. 289
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		283	1528	0. 185
	左張出	9	1000	1000	925	SD345 D22 @300×300		186	1239	0. 150
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-325	1329	0. 245
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-778	4607	0. 169
	底版1	25	1000	1200	1125	SD345 D22 @300×300		438	1594	0. 275
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-272	1592	0. 171

注記 *: 評価位置は下図に示す。

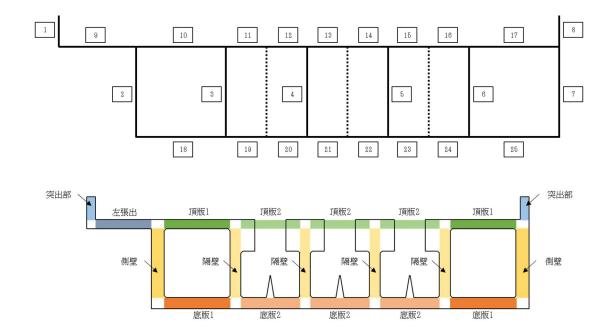
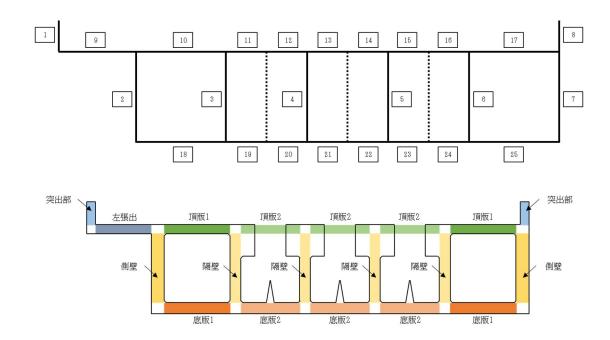
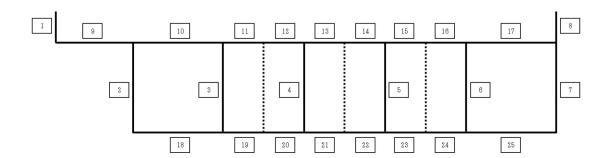


表 2.4-17(3) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

日本					断面性状		鉄筋	仕様	照査用		177 + 1+
日本日本	検討ケース	評価	位置	部材幅	部材高	有効高	Part 1.) Mr 4-P 24 AV	£441 +69°.	せん断力	せん断耐力	照査値
				b (mm)	h (mm)	d (m)	PHbせん断補強筋	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
	① S _S -21	突出部	1	1000	1000	925	-		100	337	0. 297
必要的 企業的 1000 1000 925 80345 D22 800×300 210 1205 0.107 日曜日 17 1000 1000 925 80345 D22 800×300 4-610 1342 0.306 直配日 100 1000 9150 80345 D22 800×300 4-610 4607 0.187 直配日 120 1120 1125 80345 D22 800×300 4-620 1690 0.337 日本記記 23 1000 1120 1125 80345 D22 800×300 -531 1641 0.202 日本記記 23 1000 1120 1125 80345 D22 800×300 -637 2019 0.332 0.303 日本記述 24 100 1000 1205 80345 D22 800×300 657 2019 0.323 日本記述 19 1000 1000 1205 80345 D22 800×300 200 1520 0.219 日本記述 19 1000 1000 1205 80345 D22 800×300 400 -632 1407 0.231<		側壁	2	1000	1500	1425	SD345 D22 @300×300		674	1988	0. 339
		隔壁	6	1000	1200	1125	SD345 D22 @300×300		340	1518	0. 224
接換 日接記 16 100 319 3115 52345 D22 8300×300 -861 4467 0.187 1450 1250 1250 1125 53345 D22 8300×300 -520 1150 1250 0.327 1250 125		左張出	9	1000	1000	925	SD345 D22 @300×300		210	1235	0. 170
・		頂版1	17	1000	1000	925	SD345 D22 @300×300		-410	1342	0. 306
膨胀 23 1000 1125 51345 122 1000 325 303		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-861	4607	0. 187
日から Sa - 2 2 突出部 1 1000 1000 925 97 323 0.300 個壁 2 1000 1500 1425 SD345 D22 @300×300 667 2019 0.325 隔壁 6 1000 1200 1125 SD345 D22 @300×300 330 1542 0.214 左張出 9 1000 1000 925 SD345 D22 @300×300 220 1229 0.179 頂版2 16 1000 3190 3115 SD345 D22 @300×300 -432 1337 0.323 底版2 23 1000 1200 1125 SD345 D22 @300×300 520 1620 0.321 (H+,V+) 機態 2 1000 1200 1125 SD345 D22 @300×300 520 1620 0.321 (H+,V+) 機能 2 1000 1200 1125 SD345 D22 @300×300 520 1620 0.207 (H+,V+) 機能 7 1000 1500 1425 SD345 D22 @300×300 520 160 0.202 <t< td=""><td></td><td>底版1</td><td>18</td><td>1000</td><td>1200</td><td>1125</td><td>SD345 D22 @300×300</td><td></td><td>-520</td><td>1590</td><td>0. 327</td></t<>		底版1	18	1000	1200	1125	SD345 D22 @300×300		-520	1590	0. 327
個壁 2 1000 1500 1425 SD345 D22 (8300×300		底版2	23	1000	1200	1125	SD345 D22 @300×300		-331	1641	0. 202
開催 6 1000 1200 1200 1205 SD345 D22 ®300×300 20 20 1229 0.179 0.179 1200 1200 1200 1200 1200 1200 1200 120	① S _S -22	突出部	1	1000	1000	925	-		97	323	0. 300
左張出 9 1000 1000 925 SD345 D22 (8300×30) 220 1229 0.179 頂版 17 1000 1000 925 SD345 D22 (8300×30) -432 1337 0.323 頂版 16 1000 3190 3115 SD345 D22 (8300×30) -872 4607 0.189 成成 25 1000 1200 1125 SD345 D22 (8300×30) -872 4607 0.321 (H+,V+) 25 23 1000 1200 1125 SD345 D22 (8300×30) -333 1606 0.207 (H+,V+) 29 8 1000 1000 925 -89 333 0.267 6 9 1000 1500 1425 SD345 D22 (8300×30) -580 1961 0.296 6 16 1000 1200 1125 SD345 D22 (8300×30) 227 1222 0.186 7 16 1000 1000 925 SD345 D22 (8300×30) 317 3131 </td <td></td> <td>側壁</td> <td>2</td> <td>1000</td> <td>1500</td> <td>1425</td> <td>SD345 D22 @300×300</td> <td></td> <td>657</td> <td>2019</td> <td>0. 325</td>		側壁	2	1000	1500	1425	SD345 D22 @300×300		657	2019	0. 325
頂版1 17 1000 1000 925 SD345 D22 @300 × 300 -432 1337 0.323 頂版2 16 1000 3190 3115 SD345 D22 @300 × 300 -872 4607 0.189 底版1 25 1000 1200 1125 SD345 D22 @300 × 300 520 1620 0.321 (H+,V+) 機能 23 1000 1000 925 -89 333 0.267 (H+,V+) 機能 7 1000 1500 1425 SD345 D22 @300 × 300 -580 1961 0.296 原盤 6 1000 1200 1125 SD345 D22 @300 × 300 338 1528 0.221 近根 9 1000 1000 925 SD345 D22 @300 × 300 338 1528 0.221 直接 9 1000 1000 925 SD345 D22 @300 × 300 317 1351 0.235 頂版 11 1000 3190 3115 SD345 D22 @300 × 300 317		隔壁	6	1000	1200	1125	SD345 D22 @300×300		330	1542	0. 214
日版2 16 1000 3190 3115 8345 D22 8300×300 -872 4607 0.189 底版1 25 1000 1200 1125 83045 D22 8300×300 520 1620 0.321 底版2 23 1000 1200 1125 83045 D22 8300×300 -333 1606 0.207 ① S s - 3 1		左張出	9	1000	1000	925	SD345 D22 @300×300		220	1229	0. 179
底版1 25 1000 1200 1125 SD345 D22 @300 ×300 520 1620 0.321 成成2 23 1000 1200 1125 SD345 D22 @300 ×300 -333 1666 0.207 ① S s - 3 1 (H+, V+) 突出部 8 1000 1000 925 - - -89 333 0.267 個壁 7 1000 1500 1425 SD345 D22 @300 ×300 -580 1961 0.296 隔壁 6 1000 1200 1125 SD345 D22 @300 ×300 338 1528 0.221 直隙型 9 1000 1000 925 SD345 D22 @300 ×300 227 1222 0.186 万成打 10 1000 1000 925 SD345 D22 @300 ×300 317 1351 0.235 月成版 11 1000 3190 3115 SD345 D22 @300 ×300 388 4402 0.184 日本版 25 1000 1200 1125 SD345 D22 @300 ×300 444		頂版1	17	1000	1000	925	SD345 D22 @300×300		-432	1337	0. 323
底版2 23 1000 1200 1125 SD345 D22 ®300×300		頂版2	16	1000	3190	3115	SD345 D22 @300×300		-872	4607	0. 189
S s - 3 1		底版1	25	1000	1200	1125	SD345 D22 @300×300		520	1620	0. 321
(H+,V+)		底版2	23	1000	1200	1125	SD345 D22 @300×300		-333	1606	0. 207
隔壁 6 1000 1200 1125 8D345 D22 @300×300 227 1222 0.186 2 乗出 9 1000 1000 925 8D345 D22 @300×300 317 1351 0.235 12 乗収 11 1000 3190 3115 8D345 D22 @300×300 808 4402 0.184 12	① S _S -31	突出部	8	1000	1000	925	-		-89	333	0. 267
左張出 9 1000 1000 925 SD345 D22 @300×300 227 1222 0.186 頂版1 10 1000 1000 925 SD345 D22 @300×300 317 1351 0.235 頂版2 11 1000 3190 3115 SD345 D22 @300×300 808 4402 0.184 底版1 25 1000 1200 1125 SD345 D22 @300×300 444 1575 0.282 底版2 23 1000 1200 1125 SD345 D22 @300×300 -278 1567 0.179 ① S s - 3 1 (H-, V+) 機墜 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 簡壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 322 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 直版2 11 1000 3190 3115 <t< td=""><td>(H+, V+)</td><td>側壁</td><td>7</td><td>1000</td><td>1500</td><td>1425</td><td>SD345 D22 @300×300</td><td></td><td>-580</td><td>1961</td><td>0. 296</td></t<>	(H+, V+)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-580	1961	0. 296
頂版1 10 1000 1000 925 SD345 D22 @300×300 317 1351 0.235 頂版2 11 1000 3190 3115 SD345 D22 @300×300 808 4402 0.184 底版1 25 1000 1200 1125 SD345 D22 @300×300 444 1575 0.282 底版2 23 1000 1200 1125 SD345 D22 @300×300 -278 1557 0.179 ① S s - 3 1 (H-, V+) 機監 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 障壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 322 126 0.189 頂版1 10 1000 3190 3115 SD345 D22 @300×300 368 4402 0.197 庭版1 25 1000 1200 1125 SD345 D22 @300×300 368 4402 0.197		隔壁	6	1000	1200	1125	SD345 D22 @300×300		338	1528	0. 221
頂版2 11 1000 3190 3115 SD345 D22 @300×300 808 4402 0.184 底版1 25 1000 1200 1125 SD345 D22 @300×300 444 1575 0.282 底版2 23 1000 1200 1125 SD345 D22 @300×300 -278 1557 0.179 ① S s - 3 1 (H - , V +) 機壁 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 3190 3115 SD345 D22 @300×300 322 1345 0.239 直版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		左張出	9	1000	1000	925	SD345 D22 @300×300		227	1222	0. 186
底版1 25 1000 1200 1125 SD345 D22 @300×300 444 1575 0.282 底版2 23 1000 1200 1125 SD345 D22 @300×300 -278 1557 0.179 ① S s - 3 1 (H - , V +) 突出部 8 1000 1000 925 - -96 330 0.291 隔壁 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		頂版1	10	1000	1000	925	SD345 D22 @300×300		317	1351	0. 235
底版2 23 1000 1200 1125 SD345 D22 @300×300 -278 1567 0.179 ① S _S -3 1 (H-, V+) 突出部 8 1000 1000 925 - -96 330 0.291 隔壁 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		頂版2	11	1000	3190	3115	SD345 D22 @300×300		808	4402	0. 184
(H-,V+) (H-,V+) 機壁 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		底版1	25	1000	1200	1125	SD345 D22 @300×300		444	1575	0. 282
(H-, V+) 側壁 7 1000 1500 1425 SD345 D22 @300×300 -613 1938 0.316 隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		底版2	23	1000	1200	1125	SD345 D22 @300×300		-278	1557	0. 179
隔壁 3 1000 1200 1125 SD345 D22 @300×300 -350 1523 0.230 左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327	① S _S -31	突出部	8	1000	1000	925	-		-96	330	0. 291
左張出 9 1000 1000 925 SD345 D22 @300×300 232 1226 0.189 頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327	(H-, V+)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-613	1938	0. 316
頂版1 10 1000 1000 925 SD345 D22 @300×300 322 1345 0.239 頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		隔壁	3	1000	1200	1125	SD345 D22 @300×300		-350	1523	0. 230
頂版2 11 1000 3190 3115 SD345 D22 @300×300 868 4402 0.197 底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		左張出	9	1000	1000	925	SD345 D22 @300×300		232	1226	0. 189
底版1 25 1000 1200 1125 SD345 D22 @300×300 513 1567 0.327		頂版1	10	1000	1000	925	SD345 D22 @300×300		322	1345	0. 239
		頂版2	11	1000	3190	3115	SD345 D22 @300×300		868	4402	0. 197
底版2 23 1000 1200 1125 SD345 D22 @300×300 -283 1581 0.179		底版1	25	1000	1200	1125	SD345 D22 @300×300		513	1567	0. 327
		底版2	23	1000	1200	1125	SD345 D22 @300×300		-283	1581	0. 179

注記 *: 評価位置は下図に示す。



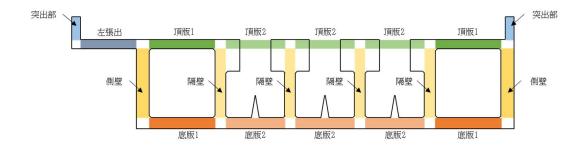

表 2.4-17(4) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

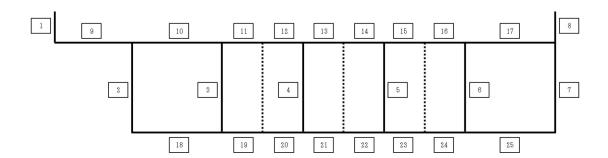
				断面性状		鉄筋	仕様	照査用		四本は
検討ケース	評価	位置	部材幅	部材高	有効高	DIII 11. / MCARISON	備考	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	1用-芍	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
② S _S -D1	突出部	1	1000	1000	925	-		121	320	0. 378
(H-, V-)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-739	1993	0. 371
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		449	1509	0. 298
	左張出	9	1000	1000	925	SD345 D22 @300×300		292	1224	0. 239
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-444	1311	0. 339
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-1131	4607	0. 245
	底版1	25	1000	1200	1125	SD345 D22 @300×300		598	1586	0. 377
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-339	1577	0. 215

表 2.4-17(5) <mark>躯体</mark>のせん断力に対する<mark>照査結果(④-④断面)</mark>

			断面性状			鉄筋	仕様	照査用		1777
検討ケース	評価位置		部材幅	部材高	有効高	DIII 11.) Mr. 4±34-leb	備考	せん断力	せん断耐力	照査値
				h (mm)	d (m)	PHbせん断補強筋	1用-芍	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
3 S _S -D1	突出部	1	1000	1000	925	-		120	321	0. 374
(H-, V-)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-728	1995	0. 365
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		431	1513	0. 285
	左張出	9	1000	1000	925	SD345 D22 @300×300		261	1226	0. 213
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-457	1336	0. 342
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-1098	4607	0. 238
	底版1	25	1000	1200	1125	SD345 D22 @300×300		591	1586	0. 373
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-338	1580	0. 214

注記 *:評価位置は下図に示す。




表 2.4-17(6) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

	ス評価位置		断面性状			鉄筋	仕様	照査用		1177 - te fete
検討ケース			部材幅	部材高	有効高	DIII 11. / MCARISON	備考	せん断力	せん断耐力	照査値
				h (mm)	d (m)	PHbせん断補強筋	1用-芍	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
④ S _S −D1	突出部	1	1000	1000	925	-		135	312	0. 433
(H-, V-)	側壁	2	1000	1500	1425	SD345 D22 @300×300		-733	1805	0. 406
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		523	1503	0. 348
	左張出	9	1000	1000	925	SD345 D22 @300×300		392	1230	0. 319
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-497	1325	0. 375
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-1338	4607	0. 290
	底版1	25	1000	1200	1125	SD345 D22 @300×300		-613	1539	0. 398
	底版2	23	1000	1200	1125	SD345 D22 @300×300		-372	1584	0. 235

表 2.4-17(7) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

	ス 評価位置		断面性状			鉄筋	仕様	照査用		照査値
検討ケース			部材幅	部材高	有効高	DITE 11. 1 MCARTAN	備考	せん断力	せん断耐力	思重旭
			b (mm)	h (mm)	d (m)	PHbせん断補強筋	1用-芍	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
⑤ S _S −D1	突出部	8	1000	1000	925	-		93	337	0. 276
(H-, V-)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-730	1977	0. 369
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		395	1517	0. 260
	左張出	9	1000	1000	925	SD345 D22 @300×300		259	1221	0. 212
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-421	1312	0. 321
	頂版2	16	1000	3190	3115	SD345 D22 @300×300		-941	4607	0. 204
	底版1	25	1000	1200	1125	SD345 D22 @300×300		636	1588	0. 401
	底版2	20	1000	1200	1125	SD345 D22 @300×300		339	1622	0. 209

注記 *:評価位置は下図に示す。

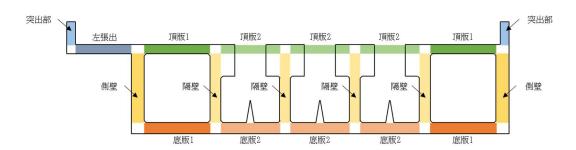
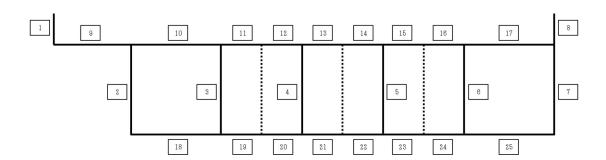



表 2.4-17(8) <mark>躯体</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

	食計ケース 評価位置		断面性状			鉄筋	仕様	照査用		1777
検討ケース			部材幅	部材高	有効高	PHbせん断補強筋	(44s +4ar.	せん断力	せん断耐力	照査値
			b (mm)	h (mm)	d (m)	FIDE 心胸情知知	備考	Vd (kN)	Vyd (kN)	γi•Vd/Vyd
⑥ S _S −D1	突出部	8	1000	1000	925	-		89	341	0. 261
(H-, V-)	側壁	7	1000	1500	1425	SD345 D22 @300×300		-724	1973	0. 367
	隔壁	6	1000	1200	1125	SD345 D22 @300×300		396	1516	0. 261
	左張出	9	1000	1000	925	SD345 D22 @300×300		259	1218	0. 213
	頂版1	17	1000	1000	925	SD345 D22 @300×300		-409	1316	0. 311
	頂版2	11	1000	3190	3115	SD345 D22 @300×300		921	4402	0. 209
	底版1	25	1000	1200	1125	SD345 D22 @300×300		641	1586	0. 404
	底版2	20	1000	1200	1125	SD345 D22 @300×300		343	1624	0. 211

注記 *:評価位置は下図に示す。

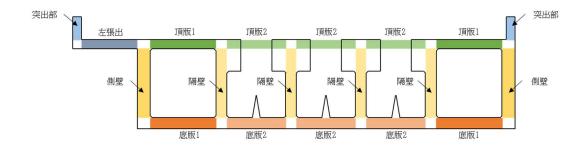


表 2.4-18(1) 躯体のせん断力に対する照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用	11 1 10521+	照査値
検討ケース **1	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん断耐力	
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
① S _S - D1		(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	70	294	0. 238
(H+, V+)	最大加速度	1	$(H \rightarrow \lor \uparrow)$	1000	1000	650	70	282	0. 248
		2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	108	279	0.387
	発生時刻		$(H \rightarrow \lor \uparrow)$	1000	1200	1000	108	253	0. 427
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	123	277	0. 444
			(H←∨↑)	1000	1200	1000	-123	246	0.500
	最大土圧 発生時刻	(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	108	283	0.382
			$(H \rightarrow \lor \uparrow)$	1000	1000		108	277	0.390
① S _S - D1		(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	71	294	0. 241
(H+, V-)			$(H \rightarrow \lor \uparrow)$	1000	1000		71	283	0. 251
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	108	279	0. 387
	発生時刻	2	$(H \rightarrow \lor \uparrow)$				108	253	0. 427
		3	$(H\rightarrow \lor \downarrow)$		1200		124	276	0. 449
			(H←∨↑)				-124	246	0. 504
	最大土圧	1)	(H→∨↓)	1000	1000 85	850	64	295	0. 217
	発生時刻		(H→∨↑)				64	288	0. 222
① S _S - D1		1	(H→∨↓)	1000	1000	850 1050	72	292	0. 247
(H-, V+)		2	(H→∨↑)				72	284	0. 254
	最大加速度 発生時刻		(H→∨↓)	1000			108	277	0. 390
	完生时刻		(H→∨↑)				108	254	0.425
		3	(H→∨↓)	1000	1200	1050	124	274	0.453
			(H←∨↑)				-124	248	0. 500
	最大土圧 発生時刻	1	(H→V↓)	1000	1000	850	67	296	0. 226
	光工門刻		(H→∨↑)				67	288	0. 233
① S _S - D1		1	(H→∨↓)	1000	1000	850	73	298	0. 245
(H-, V-)			(H→∨↑)				73	278	0. 263
	最大加速度 発生時刻	2	(H→√↑)	1000	1200	1050	109	281	0.388
			(H→∧↓)				109	249	0. 438
		3	(H→∧↑)	1000	1200	1050	124	278	0. 446
			(H←√↑)			1	-124	244	0. 508
	最大土圧 発生時刻	1	(H→∧↑)	1000	1000	850	68	296	0. 230
	20.020	_	$(H \rightarrow \lor \uparrow)$		1000		68	287	0. 237

注記 *:評価位置は下図に示す。

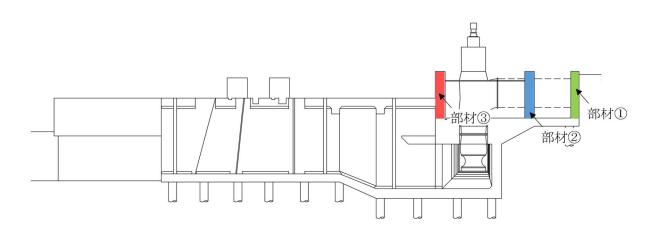


表 2.4-18(2) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用	11) NCT1+	W * #
検討ケース **1	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん断耐力	照査値
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
① S _S - 11		(Ī)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	67	300	0. 223
	最大加速度	(1)	$(H{\rightarrow}\vee\uparrow)$	1000	1000	890	67	282	0. 238
		2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	91	284	0.320
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1200	1030	91	252	0.361
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	108	280	0.386
		•	(H←∨↑)	1000	1200	1000	-108	245	0. 441
	最大土圧	(1)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	55	299	0. 184
	発生時刻		$(H \rightarrow \lor \uparrow)$	1000	1000		55	290	0. 190
① S _S - 12		(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	77	290	0. 266
			$(H \rightarrow \lor \uparrow)$				77	283	0. 272
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	100	279	0.358
	発生時刻 最大土圧 発生時刻		(H→∨↑)	1000			100	255	0. 392
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	114	276	0. 413
			(H←∨↑)				-115	248	0. 464
		1)	(H→∨↓)	1000	1000	850	58	298	0. 195
			(H→∨↑)				58	290	0. 200
① S _S - 13		1	(H→∨↓)	1000	1000	850	78	291	0. 268
			(H→∨↑)				78	283	0. 276
	最大加速度 発生時刻	2	(H→∨↓)			1050	98	280	0.350
			(H→∨↑)				98	256	0.383
		3	(H→∨↓)	1000	1200	1050	114	276	0.413
			(H←∨↑)				-115	248	0.464
	最大土圧 発生時刻	1	(H→V↓)	1000	1000	850	59	298	0. 198
	22.424		(H→∨↑)				59	289	0. 204
① S _S - 14		1	(H→√↑)	1000	1000	850	73	297	0. 246
			(H→ ∨ ↑)				73	280	0. 261
	最大加速度 発生時刻	2	(H→√↑)	1000	1200	1050	96	283	0. 339
			$(H \rightarrow \lor \uparrow)$				96	251	0.382
		3	(H→√↓)	1000	1200	1050	-111	280 245	0. 396 0. 453
							-111		
	最大土圧 発生時刻	1	$(H \rightarrow \lor \downarrow)$	1000	1000	850	53 53	300 291	0. 177 0. 182
	/		(⊔→ /)				ე კ	291	0.182

注記 *:評価位置は下図に示す。

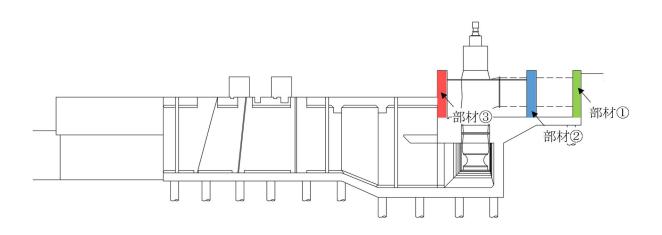
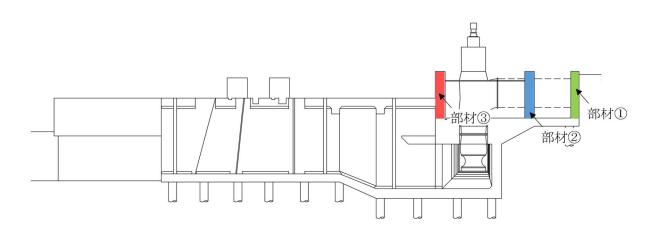
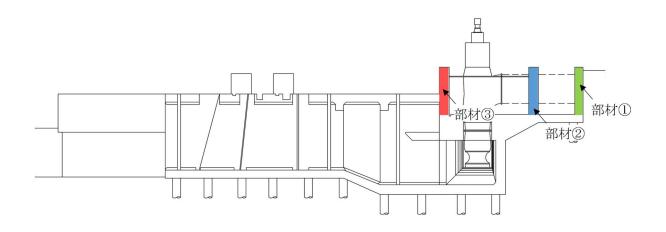



表 2.4-18(3) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用)) WTTL	nn +- /+-
検討ケース **1	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん断耐力	照査値
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
① S _S - 21		(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	60	296	0. 203
		(1)	$(H \rightarrow \lor \uparrow)$	1000	1000	890	60	287	0. 209
	最大加速度	2	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	95	280	0. 339
	発生時刻	2	$(H \rightarrow \lor \uparrow)$	1000	1200	1050	95	255	0.373
		3	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	110	278	0.396
	9	•	(H←∨↑)	1000	1200	1000	-110	247	0. 445
	最大土圧	(Ī)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	51	303	0. 168
	発生時刻	•	$(H \rightarrow \lor \uparrow)$	1000	1000	000	51	290	0. 176
① S _S - 22		(I)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	69	301	0. 229
			$(H \rightarrow \lor \uparrow)$	1000	1000 000	000	69	277	0. 249
	最大加速度②	(2)	$(H \rightarrow \lor \downarrow)$	1000	1200	1050	104	284	0.366
	発生時刻		$(H \rightarrow \lor \uparrow)$				104	249	0.418
		3	(H→∨↓)	1000		1050	119	280	0. 425
			(H←∨↑)				-119	243	0.490
	最大土圧	(I)	(H→∨↓)	1000	1000	850	60	299	0. 201
	発生時刻		(H→∨↑)				60	288	0. 208
① S _S - 31		1	(H→∨↓)	1000	1000	850	90	288	0. 313
(H+, V+)			(H→∨↑)				90	282	0. 319
	最大加速度	2	(H→∨↓)	1000	1200	1050	101	278	0. 363
	発生時刻		(H→∨↑)				101	255	0. 396
		3	(H→∨ ↓)	1000	1200	1050	116	276	0.420
			(H←∨↑)				-116	248	0.468
	最大土圧 発生時刻	1	(H→∨↓)	1000	1000	850	60	299	0. 201
	光工时刻		(H→∨↑)				60	289	0. 208
① S _S - 31		1	(H→V↓)	1000	1000	850	87	288	0. 302
(H-,V+)			(H→∨↑)				87	282	0. 309
	最大加速度 発生時刻 ② ③	2	(H→∨↓)	1000	1200	1050	114	276	0. 413
			(H→∨↑)				114	254	0. 449
		(H→√↑)	1000	1200	1050	129	273	0. 473	
			(H←√↓)				-129	248	0. 520
	最大土圧 発生時刻	1	(H→√↑)	1000	1000	850	54	299	0. 181
L	20.020		$(H\rightarrow \lor \uparrow)$				54	291	0. 186

注記 *:評価位置は下図に示す。


表 2.4-18(4) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用	せん断耐力	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん例剛刀	炽鱼胆
および地震動			得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
② S _S - 31		(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	88	287	0.307	
(H-, V+)		0	(H→∨↑)	1000	1000	850	88	282	0.312
	最大加速度	速度	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	113	276	0.409
	発生時刻	2	$(H{\rightarrow}\vee\uparrow)$	1000	1200	1050	113	254	0.445
		3	$(H{\rightarrow}\vee\downarrow)$	1000		1050	127	274	0. 464
	3	9	(H←∨↑)	1000	1200		-127	248	0.512
	最大土圧	(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	52	300	0. 173
	発生時刻	1)	$(H{\rightarrow}\vee\uparrow)$	1000	1000		52	291	0.179

表 2.4-18(5) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	芯答解析により得られる荷重		竜巻等防護設備の		断面性状		照査用	せん断耐力	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん例剛刀	思重旭
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
3 S _S - 31		(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	85	288	0. 295
(H-, V+)		0	$(H{\rightarrow}\vee\uparrow)$	1000	1000		85	282	0. 301
	最大加速度	、加速度 4. max # 2	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	114	276	0. 413
	発生時刻	2	$(H{\rightarrow}\vee\uparrow)$	1000			114	254	0. 449
		3	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	129	273	0. 473
	3	9	(H←∨↑)	1000	1200		-129	248	0. 520
	最大土圧	(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	68	294	0. 231
	発生時刻	Œ.	$(H{\rightarrow}\vee\uparrow)$	1000	1000		68	287	0. 237

注記 *: 評価位置は下図に示す。

表 2.4-18(6) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用	せん断耐力	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	答解析により 部材幅	部材高	有効高	せん断力	せん例酬力	思宜但
および地震動			得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
④ S _S − 31		(I)	$(H \rightarrow \lor \downarrow)$	1000	1000	850	82	289	0. 284
(H-, V+)		(1)	(H→∨↑)	1000	1000		82	283	0. 290
	最大加速度	2	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	116	275	0. 422
	発生時刻	4	$(H \rightarrow \lor \uparrow)$	1000			116	254	0. 457
		3	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	131	273	0.480
		(3)	(H←∨↑)	1000	1200		-131	248	0. 528
	最大土圧		$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	81	293	0. 276
	発生時刻		$(H \rightarrow \lor \uparrow)$		1000		81	286	0. 283

表 2.4-18(7) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状		照査用	せん断耐力	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん例剛刀	思宜胆
および地震動	の考え方		得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
⑤ S _S − 31		①	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	105	286	0.367
(H-, V+)		0	$(H{\rightarrow}\vee\uparrow)$	1000			105	281	0.374
	最大加速度	速度 ②	$(H{\rightarrow}\vee\downarrow)$	1000	1200	1050	116	275	0.422
	発生時刻	2	$(H{\rightarrow}\vee\uparrow)$	1000			116	254	0.457
		3	$(H{\rightarrow}\vee\downarrow)$	1000	4000	1050	131	273	0.480
	3	9	$(H \leftarrow \lor \uparrow)$	1000	1200		-131	248	0. 528
	最大土圧	(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	126	285	0.442
	発生時刻	Œ	$(H{\rightarrow}\vee\uparrow)$		1000		126	280	0.450

注記 *: 評価位置は下図に示す。

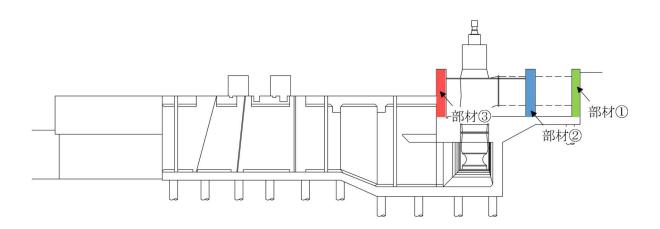



表 2.4-18(8) RC 構造物のせん断力照査結果(⑥-⑥断面)

地震応答解析により	得られる荷重		竜巻等防護設備の		断面性状			せん断耐力	照査値
検討ケース ^{※1}	応答抽出	部材	応答解析により	部材幅	部材高	有効高	せん断力	せん例刷刀	炽鱼胆
および地震動			得られる地震時反力	b (mm)	h (mm)	d (m)	Vd (kN)	Vyd (kN)	γi•Vd / Vyd
⑥ S _S − 31		(I)	$(H \rightarrow \lor \downarrow)$	1000	1000	1000 850	106	286	0.371
(H-, V+)		0	(H→∨↑)	1000	1000		106	281	0.377
	最大加速度	2	$(H{\rightarrow}\vee\downarrow)$	1000	1900	1050	116	275	0. 422
	発生時刻	4	$(H{\rightarrow}\vee\uparrow)$	1000	1200		116	254	0. 457
		3	$(H{\rightarrow}\vee\downarrow)$	1000	1900	1050	131	273	0.480
	3	3	(H←∨↑)	1000	1200		-131	248	0. 528
	最大土圧	(I)	$(H{\rightarrow}\vee\downarrow)$	1000	1000	850	131	285	0.460
	発生時刻	U)	$(H \rightarrow \lor \uparrow)$	1000	1000		131	280	0.468

注記 *:評価位置は下図に示す。

2.4.3 鋼管杭の耐震性評価結果

(1) 鋼管杭の曲げ軸力に対する評価結果

鋼管杭の曲げ軸力に対する評価結果を表 2.4-19,表 2.4-20 及び表 2.4-21 に示す。

鋼管杭の全塑性モーメント相当として、乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関する技術規定 JEAC 4 6 1 6 - 2009 及び鋼・合成構造標準示方書[耐震設計編]((社) 土木学会、2008 年制定)に基づき、鋼管杭の終局曲率を許容限界とし、照査用曲率が終局曲率を下回ることを確認した。なお、照査用曲率は、各地震動、各部材において最大となる値を示している。

以上より、<mark>取水構造物鋼管杭</mark>の各部材に発生する曲率は、限界曲率以下であることを確認 した。

表 2.4-19 <mark>鋼管杭</mark>の曲げ軸力<mark>に対する</mark>照査結果(①-①断面)

検討ケース	評価位置	照査用曲率	終局曲率	照査値
DOM 1	HI IMI III	$\phi d (1/m)$	φu (1/m)	γ i • φ d/ φ u
① $S_S - D_1$ $(H+, V+)$	1	1. 14×10 ⁻³	9. 48×10 ⁻³	0. 120
① $S_S - D_1$ $(H+, V-)$	1	1. 18×10 ⁻³	9. 21×10^{-3}	0. 128
① $S_S - D_1$ $(H-, V+)$	1	1.21×10^{-3}	1. 07×10^{-2}	0. 113
① $S_S - D_1$ $(H-, V-)$	1	1. 33×10 ⁻³	1. 06×10 ⁻²	0. 125
① S _S -11	1	1. 03×10 ⁻³	1. 10×10 ⁻²	0. 094
① S _S -12	1	1. 07 \times 10 ⁻³	9. 78×10 ⁻³	0. 109
① S _S -13	1	9. 49×10 ⁻⁴	9. 90×10 ⁻³	0. 096
① S _S -14	1	5. 90×10 ⁻⁴	9. 80×10 ⁻³	0.060
① S _S -21	1	8. 43×10 ⁻⁴	9. 44×10 ⁻³	0. 089
① S _S -22	1	7. 82×10 ⁻⁴	1. 10×10 ⁻²	0. 071
① $S_S - 31$ (H+, V+)	1	1. 38×10 ⁻³	9. 30×10 ⁻³	0. 148
① $S_S - 31$ $(H-, V+)$	1	1. 17×10 ⁻³	8. 90×10 ⁻³	0. 131
② S _S -31 (H+, V+)	1	1. 30×10 ⁻³	8. 94×10 ⁻³	0. 145
③ S _S -31 (H+, V+)	1	1. 39×10 ⁻³	9. 24×10 ⁻³	0. 150
④ S _S -31 (H+, V+)	1	2. 06×10 ⁻³	9. 44×10 ⁻³	0. 218
⑤ S _S -31 (H+, V+)	1	1. 47×10 ⁻³	9. 42×10 ⁻³	0. 156
⑥ S _S −31 (H+, V+)	1	1. 40×10 ⁻³	9. 14×10 ⁻³	0. 153

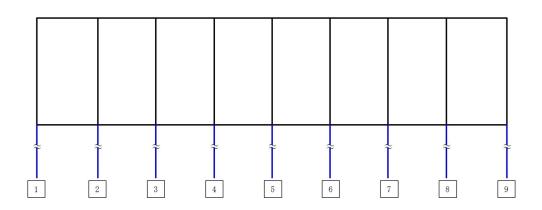


表 2.4-20 鋼管杭の曲げ軸力<mark>に対する</mark>照査結果(④-④断面)

検討ケース	評価位置	照査用曲率	終局曲率	照査値
	,	φd (1/m)	φu (1/m)	γί• φd/φu
① $S_S - D_1$ $(H+, V+)$	1	1. 75×10^{-3}	9. 47×10^{-3}	0. 185
① $S_S - D_1$ $(H+, V-)$	1	1. 77×10 ⁻³	9. 38×10 ⁻³	0. 189
① $S_S - D_1$ $(H-, V+)$	1	1. 76×10 ⁻³	9. 51×10 ⁻³	0. 185
① S _S -D1 (H-, V-)	1	1. 85×10 ⁻³	8. 40×10 ⁻³	0. 220
① S _S -11	1	1. 61×10 ⁻³	1. 00×10 ⁻²	0. 161
① S _S -12	1	1. 47×10 ⁻³	9. 70×10 ⁻³	0. 152
① S _S -13	1	1. 41×10 ⁻³	8. 86×10 ⁻³	0. 159
① S _S -14	1	1. 01×10 ⁻³	1. 17×10 ⁻²	0. 086
① S _S -21	1	1. 19×10 ⁻³	8. 94×10 ⁻³	0. 133
① S _S -22	1	1. 13×10 ⁻³	1. 04×10 ⁻²	0. 109
① S _S -31 (H+, V+)	1	1. 43×10 ⁻³	7. 66×10 ⁻³	0. 187
① S _S -31 (H-, V+)	2	1. 14×10 ⁻³	8. 13×10 ⁻³	0. 140
② S _S -D1 (H-, V-)	1	1. 76×10 ⁻³	8. 33×10 ⁻³	0. 211
③ S _S -D1 (H-, V-)	1	1. 83×10 ⁻³	8. 06×10 ⁻³	0. 227
④ S _S -D1 (H-, V-)	2	2. 18×10 ⁻³	9. 73×10 ⁻³	0. 224
⑤ S _S -D1 (H-, V-)	1	-1. 68×10 ⁻³	8. 38×10 ⁻³	0. 200
⑥ S _S −D1 (H−, V−)	2	1. 59×10 ⁻³	8. 05×10 ⁻³	0. 198

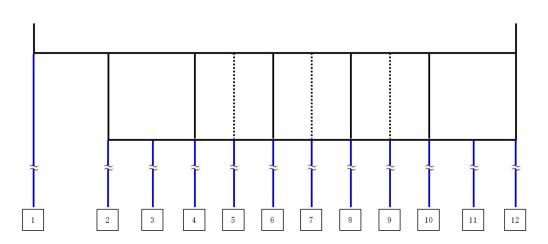
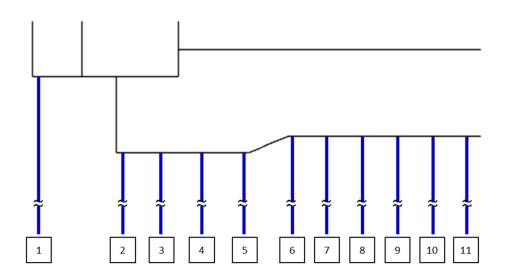



表 2.4-21 鋼管杭の曲げ軸力に対する照査結果(⑥-⑥断面)

検討ケース	評価位置	照査用曲率	終局曲率	照査値
		φd (1/m)	φu (1/m)	γi• φd/φu
① $S_S - D_1$ $(H+, V+)$	2	2.21×10^{-3}	9. 35×10 ⁻³	0. 236
① $S_S - D_1$ $(H+, V-)$	2	1. 98×10 ⁻³	8. 43×10 ⁻³	0. 235
① $S_S - D_1$ $(H-, V+)$	2	2. 58×10 ⁻³	8. 71×10^{-3}	0. 296
① $S_S - D_1$ $(H-, V-)$	2	2.62×10^{-3}	8. 59×10 ⁻³	0. 305
① S _S -11	2	7. 71×10 ⁻⁴	8. 68×10 ⁻³	0. 089
① S _S -12	1	1. 27×10 ⁻³	9. 38×10 ⁻³	0. 135
① S _S -13	1	1. 04×10 ⁻³	9. 27×10 ⁻³	0. 112
① S _S -14	1	7. 50×10 ⁻⁴	8. 96×10 ⁻³	0. 084
① S _S -21	2	1. 42×10 ⁻³	8. 82×10 ⁻³	0. 161
① S _S -22	2	1. 43×10 ⁻³	8. 72×10 ⁻³	0. 164
① $S_S - 31$ (H+, V+)	1	-1. 58×10 ⁻³	9. 19×10 ⁻³	0. 172
① S _S -31 (H-, V+)	2	1. 18×10 ⁻³	8. 89×10 ⁻³	0. 133
② S _S -D1 (H-, V-)	2	2. 52×10 ⁻³	8. 41×10 ⁻³	0.300
③ S _S -D1 (H-, V-)	2	2. 77×10 ⁻³	8. 52×10 ⁻³	0. 325
④ S _S -D1 (H-, V-)	2	2. 60×10 ⁻³	8. 05×10 ⁻³	0. 323
⑤ S _S -D1 (H-, V-)	1	2. 27×10 ⁻³	9. 09×10 ⁻³	0. 250
⑥ S _S −D1 (H−, V−)	1	-2. 20×10 ⁻³	9. 55×10 ⁻³	0. 230

(2) 鋼管杭のせん断力に対する評価結果

鋼管杭のせん断力に対する評価結果を表 2.4-22, 表 2.4-23 及び表 2.4-24 に示す。 鋼管杭のせん断力に対する許容限界は、乾式キャスクを用いる使用済燃料中間貯蔵建屋 の基礎構造の設計に関する技術規定 JEAC 4 6 1 6-2009 及び鋼・合成構造標準示方 書[耐震設計編]((社) 土木学会、2008 年制定)に基づき、鋼管杭の発生せん断力がせん断 耐力を下回ることを確認した。なお、発生せん断力は、各地震動、各部材において最大とな る値を示している。

以上より、<mark>取水構造物鋼管杭</mark>の各部材に発生するせん断力は、せん断耐力以下であること を確認した。

表 2.4-22 <mark>鋼管杭</mark>のせん断力<mark>に対する</mark>照査結果(①-①断面)

検討ケース	評価位置	照査用せん断力	終局せん断耐力	照査値
DCR 3 7	FT IM JUST	Qd (kN)	Qu (kN)	γi•Qd/Qu
① $S_S - D_1$ $(H+, V+)$	3	-849	2904	0. 292
① $S_S - D_1$ $(H+, V-)$	3	-875	2904	0. 301
① $S_S - D_1$ $(H-, V+)$	1	-748	2904	0. 258
① $S_S - D1$ $(H-, V-)$	1	-739	2904	0. 254
① S _S -11	3	-522	2904	0. 180
① S _S -12	3	-730	2904	0. 251
① S _S -13	3	-652	2904	0. 225
① S _S -14	1	424	2904	0. 146
① S _S -21	3	-612	2904	0. 211
① S _S -22	3	-417	2904	0. 144
① $S_S - 31$ (H+, V+)	1	-921	2904	0. 317
① $S_S - 31$ $(H-, V+)$	3	-829	2904	0. 285
② S _S -31 (H+, V+)	3	-899	2904	0. 310
③ S _S -31 (H+, V+)	1	-937	2904	0. 323
④ S _S -31 (H+, V+)	1	-1392	2904	0. 479
⑤ S _S -31 (H+, V+)	1	-986	2904	0. 340
⑥ S _S −31 (H+, V+)	1	-954	2904	0. 329

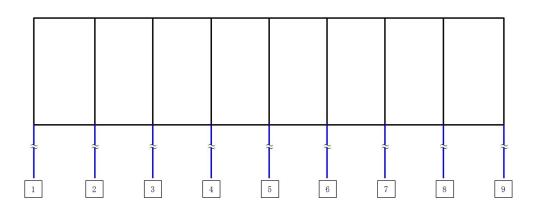


表 2.4-23 <mark>鋼管杭</mark>のせん断力<mark>に対する</mark>照査結果(④-④断面)

検討ケース	評価位置	照査用曲率	終局曲率	照査値
	,	φd (1/m)	φu (1/m)	γί• φd/φu
① $S_S - D_1$ $(H+, V+)$	1	1. 75×10^{-3}	9. 47×10^{-3}	0. 185
① $S_S - D_1$ $(H+, V-)$	1	1. 77×10 ⁻³	9. 38×10 ⁻³	0. 189
① $S_S - D_1$ $(H-, V+)$	1	1. 76×10 ⁻³	9. 51×10 ⁻³	0. 185
① S _S -D1 (H-, V-)	1	1. 85×10 ⁻³	8. 40×10 ⁻³	0. 220
① S _S -11	1	1. 61×10 ⁻³	1. 00×10 ⁻²	0. 161
① S _S -12	1	1. 47×10 ⁻³	9. 70×10 ⁻³	0. 152
① S _S -13	1	1. 41×10 ⁻³	8. 86×10 ⁻³	0. 159
① S _S -14	1	1. 01×10 ⁻³	1. 17×10 ⁻²	0. 086
① S _S -21	1	1. 19×10 ⁻³	8. 94×10 ⁻³	0. 133
① S _S -22	1	1. 13×10 ⁻³	1. 04×10 ⁻²	0. 109
① S _S -31 (H+, V+)	1	1. 43×10 ⁻³	7. 66×10 ⁻³	0. 187
① S _S -31 (H-, V+)	2	1. 14×10 ⁻³	8. 13×10 ⁻³	0. 140
② S _S -D1 (H-, V-)	1	1. 76×10 ⁻³	8. 33×10 ⁻³	0. 211
③ S _S -D1 (H-, V-)	1	1. 83×10 ⁻³	8. 06×10 ⁻³	0. 227
④ S _S -D1 (H-, V-)	2	2. 18×10 ⁻³	9. 73×10 ⁻³	0. 224
⑤ S _S -D1 (H-, V-)	1	-1. 68×10 ⁻³	8. 38×10 ⁻³	0. 200
⑥ S _S −D1 (H−, V−)	2	1. 59×10 ⁻³	8. 05×10 ⁻³	0. 198

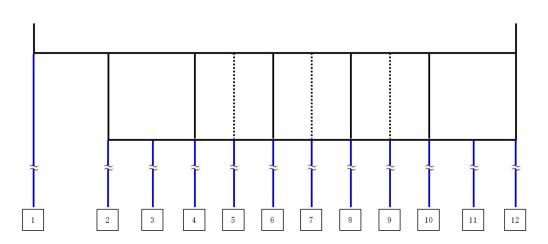
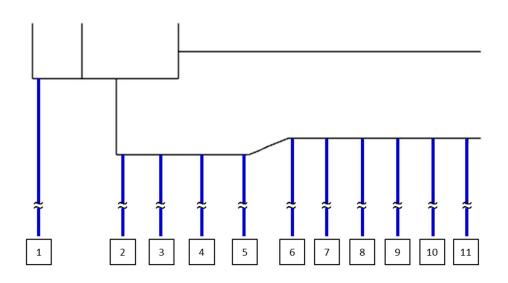



表 2.4-24 鋼管杭のせん断力に対する照査結果(⑥-⑥断面)

検討ケース	評価位置	照査用せん断力	終局せん断耐力	照査値
IXH17	HI IMIZE	Qd (kN)	Qu (kN)	γi•Qd/Qu
① $S_S - D_1$ $(H+, V+)$	11	-1547	2904	0. 533
① $S_S - D_1$ $(H+, V-)$	11	-1517	2904	0. 522
① $S_S - D_1$ $(H-, V+)$	11	-1602	2904	0. 552
① $S_S - D1$ $(H-, V-)$	11	-1629	2904	0. 561
① S _S -11	11	630	2904	0. 217
① S _S -12	1	1008	2904	0. 347
① S _S -13	1	825	2904	0. 284
① S _S -14	11	-800	2904	0. 275
① S _S -21	2	972	2904	0. 335
① S _S -22	2	981	2904	0. 338
① S _S -31 (H+, V+)	11	-1437	2904	0. 495
① S _S -31 (H-, V+)	11	-922	2904	0. 317
② S _S -D1 (H-, V-)	11	-1631	2904	0. 562
③ S _S -D1 (H-, V-)	11	-1636	2904	0. 563
④ S _S -D1 (H-, V-)	11	-1958	2904	0. 674
⑤ S _S -D1 (H-, V-)	11	-1576	2904	0. 543
⑥ S _S −D1 (H−, V−)	11	-1720	2904	0. 592

(3) 基礎地盤の支持性能に対する支持力評価

表 2.4-25 に基礎地盤の支持性能評価結果を示す。

取水構造物においては、第四系の杭周面摩擦力を支持力として考慮せず、杭先端の支持岩盤への接地圧に対する支持力評価を実施した。

取水路 (①一①断面) において、最大接地圧が最大となるケースは、① S $_8$ - D 1 (H+, V-)および① S $_8$ - D 1 (H-, V+)で、最大接地圧が 740 kN/m² であり、極限支持力度 6581 kN/m² 以下である。

取水ピット(④-④断面)において、最大接地圧が最大となるのは \mathbb{O}_{S} - \mathbb{O}_{S} -

縦断面(⑥-⑥断面)において,最大接地圧が最大となるのは \mathbb{O} S_S-12で,最大接地圧が 754 kN/m²であり,極限支持力度 6519 kN/m²以下である。

以上より、<mark>取水構造物</mark>の基礎地盤は、基準地震動S₈に対し、支持性能を有する。

表 2.4-25(1) <mark>基礎地盤</mark>の支持性能照査結果(①-①断面)

検討ケース	照査 位置	最大接地圧 (kN/m²)	極限支持力度 (kN/m²)
① $S_S - D_1 (H+, V+)$	9	701	6581
① $S_S - D_1 (H+, V-)$	9	740	6581
① $S_S - D_1 (H-, V+)$	9	740	6581
① $S_S - D_1 (H-, V-)$	9	702	6581
① S _S -11	9	680	6581
① S _S -12	9	687	6581
① S _S -13	9	687	6581
① S _S -14	9	666	6581
① S _S -21	9	708	6581
① S _S -22	9	716	6581
① $S_S - 31 (H+, V+)$	9	524	6581
① $S_S - 31 (H-, V+)$	9	567	6581
② S _S -31 (H+, V+)	9	531	6581
$3 S_S - 31 (H+, V+)$	9	515	6581
④ S _S -31 (H+, V+)	9	578	6581
⑤ S _S -31 (H+, V+)	9	527	6581
⑥ S _S −31 (H+, V+)	9	532	6581

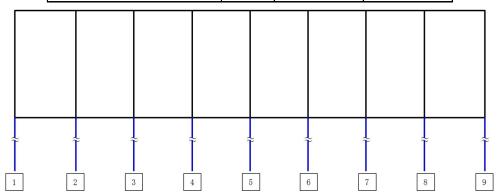


表 2.4-<mark>25</mark>(2) <mark>基礎地盤</mark>の支持性能照査結果(④-④断面)

検討ケース	照査 位置	最大接地圧 (kN/m²)	極限支持力度 (kN/m²)
① $S_S - D_1 (H+, V+)$	12	721	6581
① $S_S - D_1 (H+, V-)$	12	768	6581
① $S_S - D_1 (H-, V+)$	12	753	6581
① $S_S - D_1 (H-, V-)$	12	716	6581
① S _S -11	12	696	6581
① S _S -12	12	712	6581
① S _S -13	12	713	6581
① S _S -14	12	687	6581
① S _S -21	12	728	6581
① S _S -22	12	738	6581
① $S_S - 31 (H+, V+)$	12	544	6581
① $S_S - 31 (H-, V+)$	12	578	6581
② S _S -D1 (H-, V-)	12	718	6581
② $S_S - 31 (H+, V+)$	12	550	6581
③ S _S -D1 (H-, V-)	12	717	6581
$3 S_S - 31 (H+, V+)$	12	535	6581
④ S _S −D1 (H−, V−)	12	723	6581
$4 S_S - 31 (H+, V+)$	12	583	6581
⑤ S _S -D1 (H-, V-)	12	725	6581
	12	544	6581
⑥ S _S −D1 (H−, V−)	12	735	6581
\bigcirc \bigcirc S _S -31 (H+, V+)	12	548	6581

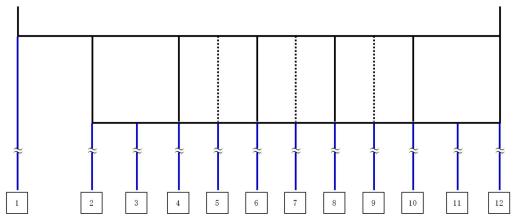
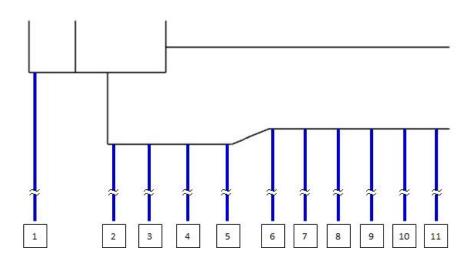



表 2.4-25(3) 基礎地盤の支持性能照査結果(⑥-⑥断面)

検討ケース	照査 位置	最大接地圧 (kN/m²)	極限支持力度 (kN/m²)
① $S_S - D_1 (H+, V+)$	2	732	6519
① S _S -D1 (H+, V-)	2	730	6519
① $S_S - D_1 (H-, V+)$	2	726	6519
① $S_S - D_1 (H-, V-)$	2	745	6519
① S _S -11	2	704	6519
① S _S -12	2	754	6519
① S _S -13	2	752	6519
① S _S -14	2	702	6519
① S _S -21	2	711	6519
① S _S -22	2	742	6519
① $S_S - 31 (H+, V+)$	2	559	6519
① $S_S - 31 (H-, V+)$	2	536	6519
② S _S -D1 (H-, V-)	2	745	6519
③ S _S -D1 (H-, V-)	2	738	6519
④ S _S -D1 (H-, V-)	2	742	6519
⑤ S _S -D1 (H-, V-)	2	737	6519
⑥ S _S -D1 (H-, V-)	2	736	6519

2.5 まとめ

取水構造物は、基準地震動S。に対して、構造物の地震応答解析に基づく曲げ軸力に伴う曲率及びせん断力が各部材の要求性能に応じた許容限界以下であることを確認した。基礎地盤の支持性能評価については、地震応答解析に基づく支持地盤の接地圧が許容限界以下であることを確認した。

以上のことから、取水構造物は、基準地震動S_sによる地震力に対して、間接支持機能、通水機能、貯水機能、止水機能及び浸水防止設備の間接支持機能を維持できる。

取水構造物の耐震安全性評価に関する参考資料

- 1. 曲げ照査に係る土木学会マニュアルの適用性について(追而)
- 2. せん断照査に係る土木学会マニュアルの適用性について(追而)
- 3. 鋼管杭の照査に係る J E A C 4 6 1 6 2009 の適用性について
- 4. 鋼管杭の照査(安全係数)に係る鋼・合成構造標準示方書の適用性について(追而)
- 5. 安全上適切と認められる規格及び基準を用いた評価結果について(追而)
- 6. 後施工プレート定着型せん断補強鉄筋工法の適用性について(追而)
- 7. 減衰の設定について
- 8. 静的地震力に対する耐震安全性評価(追而)
- 9. 軸力の変動が部材の非線形特性に与える影響について
- 10. 竜巻等防護設備による地震時反力を考慮した取水構造物<mark>躯体</mark>の耐震評価
- 11. 縦断面(⑥-⑥断面)の有効応力解析モデルについての整理

3. 鋼管杭の照査に係る J E A C 4 6 1 6 -2009 の適用性について

取水構造物における鋼管杭の耐震評価では、乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関する技術規定 JEAC 4 6 1 6 - 2009 に基づき算定した終局曲率及びせん断耐力を許容限界としている。

本項では、JEAC4616-2009における「第1章 適用範囲」の記載等に対し、取水構造物における鋼管杭の適用性を確認する。

(1)対象とする建屋

本規程は、「金属製乾式キャスクを用いる使用済燃料中間貯蔵施設のための安全審査指針」 (原子力安全委員会)(以下、「貯蔵施設安全審査指針」という。)で規定される使用済燃料貯蔵 施設における中間貯蔵建屋(以下、「中間貯蔵建屋」という。)の基礎構造の設計に適用する。

【解 説】

また,本規程の技術的な内容は,建物の重量,剛性等の構造特性が同等の他の施設の基礎構造の設計において参考にすることができる。

取水構造物は、中間貯蔵建屋と同じく基準地震動S。に対して設計された鉄筋コンクリート構造物であり規模も概ね同等であることから、その基礎構造の設計において、JEAC4616-2009を参考にすることができると考える。

(2)対象とする基礎形式

本規程で対象とする基礎形式は、杭基礎、及び直接基礎の2種類とする。何れの基礎形式に おいても、支持地盤としては、基準地震動S。に対して液状化の恐れがなく、中間貯蔵建屋を構 造耐力上安全に支持し得る地盤を選定する。

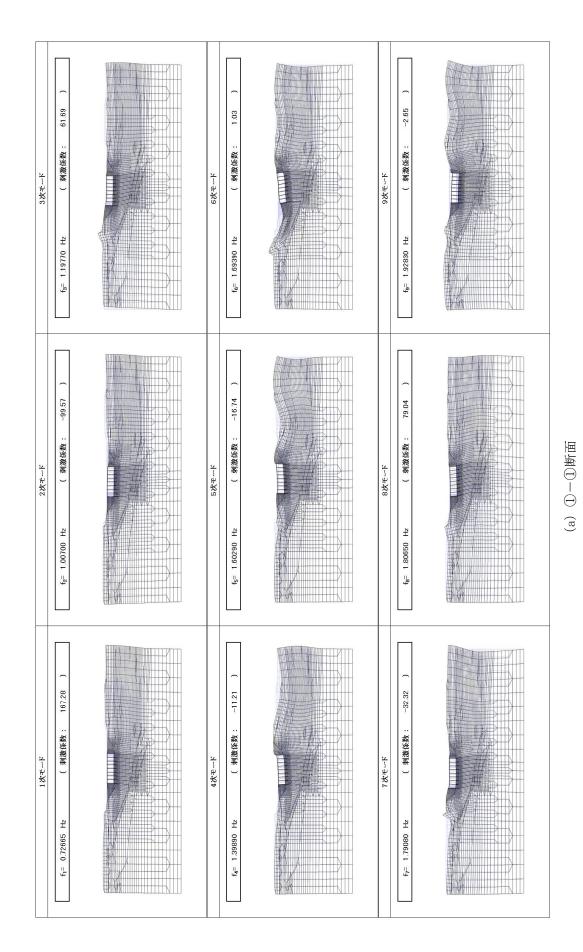
【解説】

基準地震動 S s に対して液状化の恐れがなく、中間貯蔵建屋を構造耐力上安全に支持しうる地盤としては、地質時代区分の観点から見ると、第三紀の地盤又は第三紀より古期の地盤・岩体、及び第四紀の地盤(十分な支持力のある更新統)が相当する。

取水構造物は、新第三系(久米層)を支持地盤とした杭基礎構造であることから、JEAC46 16-2009の適用範囲内であると考える。

以上より、取水構造物における鋼管杭の照査に係るJEAC4616-2009の適用性を確認した。

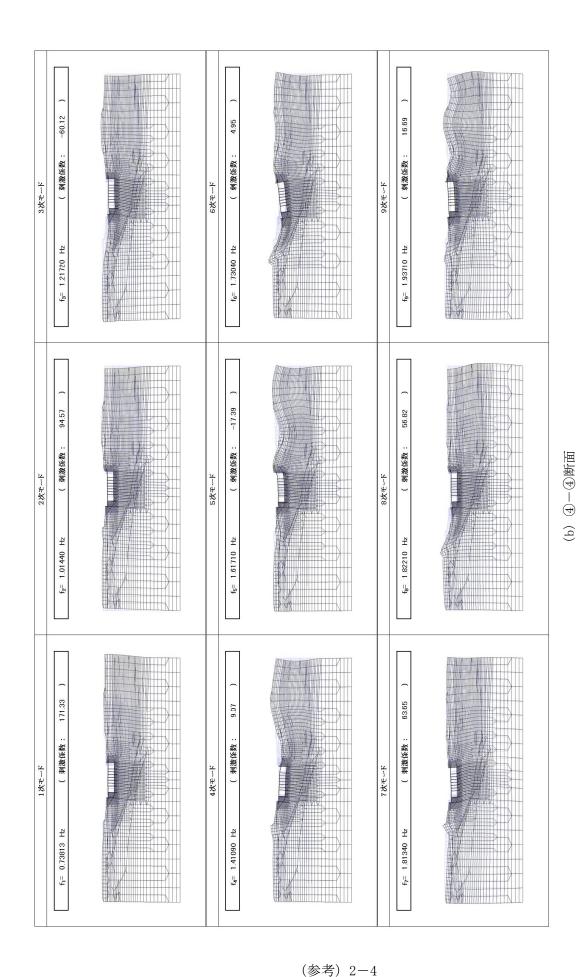
7. 減衰の設定について


地震応答解析における減衰については、固有値解析にて求まる固有周期及び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお、Rayleigh 減衰を $\alpha=0$ となる剛性比例型減衰とする。

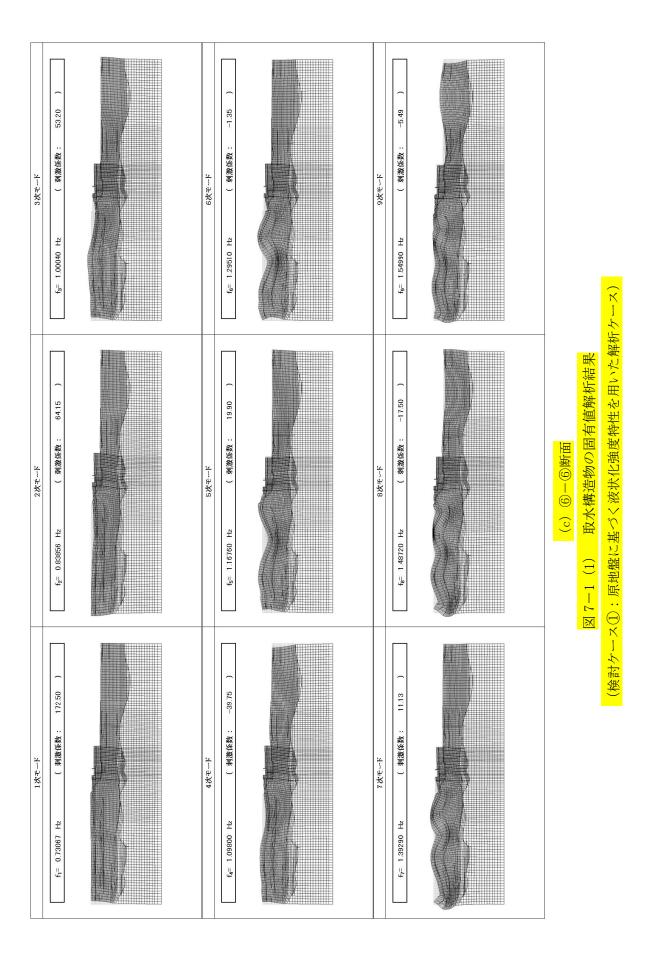
Rayleigh 減衰の設定は、地盤の低次のモードの変形が特に支配的となる地中埋設構造物のような地盤及び構造系全体に対して、その特定の振動モードの影響が大きいことを考慮し、かつ、振動モードの影響が全体系に占める割合の観点から、刺激係数に着目し行う。

固有値解析による刺激係数及びモード図を図 7-1 に示す。また、設定した Rayleigh 減衰を図 7-2 に示す。

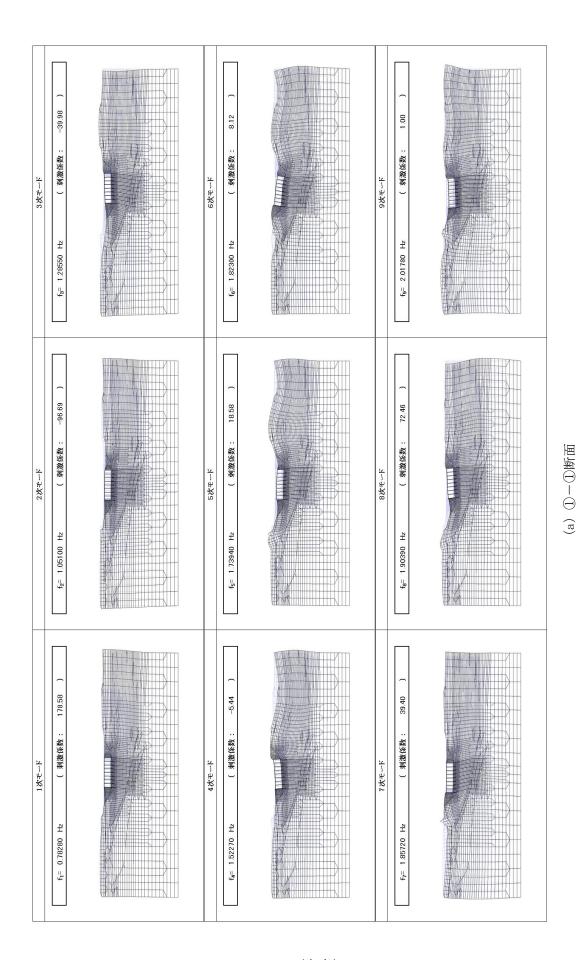
1次の基準モードについては、地盤及び構造系全体がせん断変形しているモードを選定している。


なお、初期減衰定数は、非線形特性を考慮する地盤、コンクリート及び鋼材の減衰定数は 1% (解析における減衰は、ひずみが大きい領域では履歴減衰が支配的となる。このため、解析上の安定のためになるべく小さい値として 1%を採用している。)とする。また、線形材料としてモデル化するコンクリートの減衰定数は 5% (JEAG 4601-1987)とする。

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

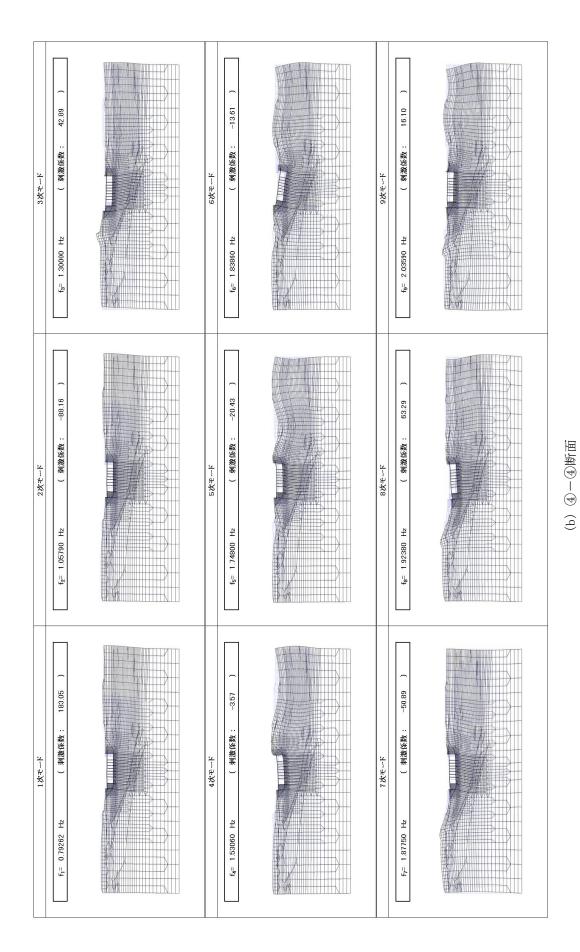

⊠ 7-1 (1)

(参考) 2-3

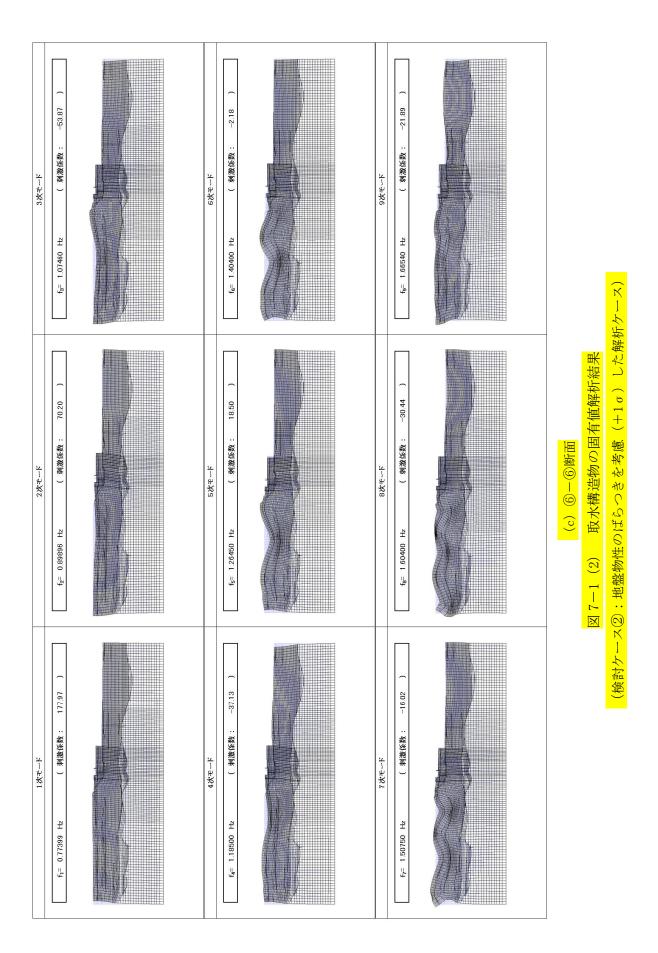


(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

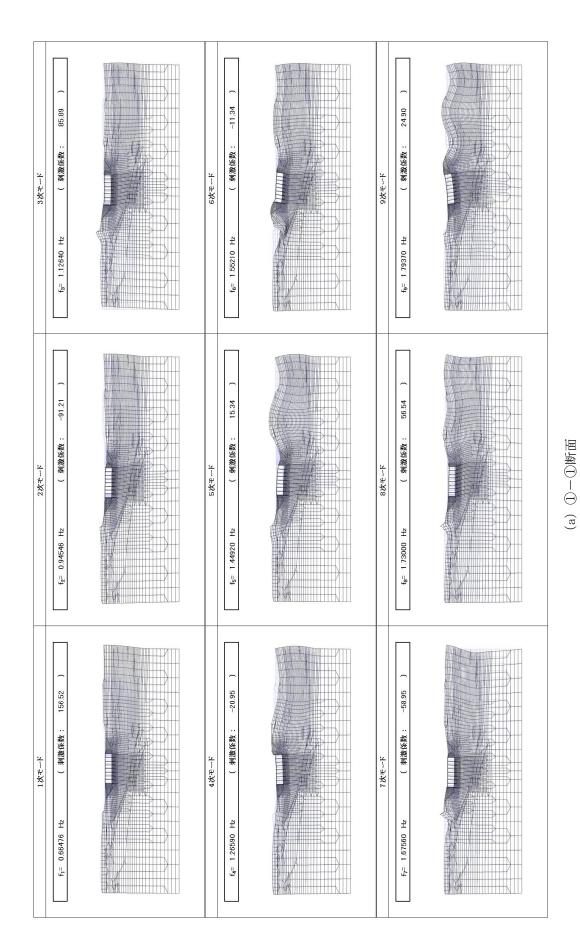
 $\boxtimes 7-1 (1)$


(参考) 2-5

(検討ケース②:地盤物性のばらつきを考慮($+1\sigma$)した解析ケース)

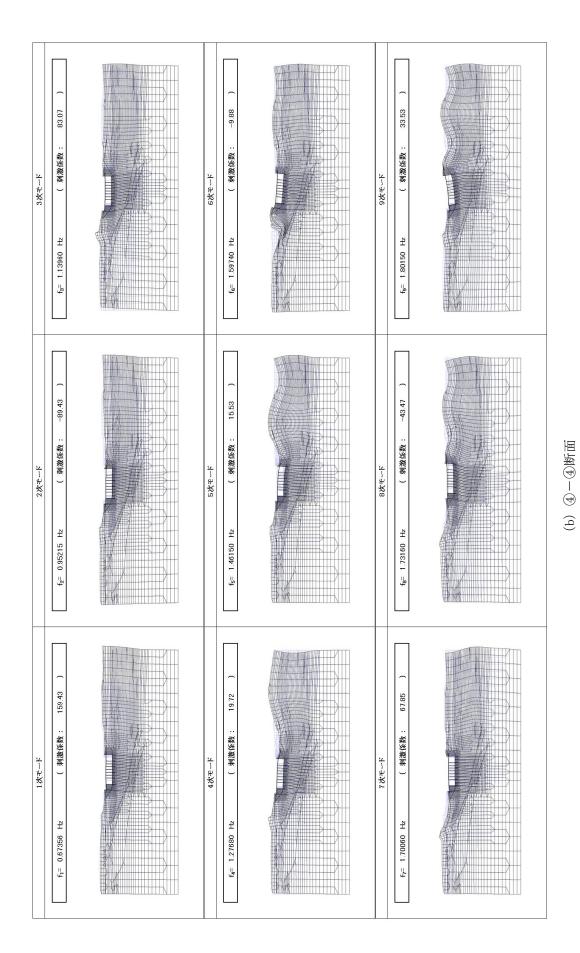

 $\boxtimes 7 - 1 (2)$

(参考) 2-6



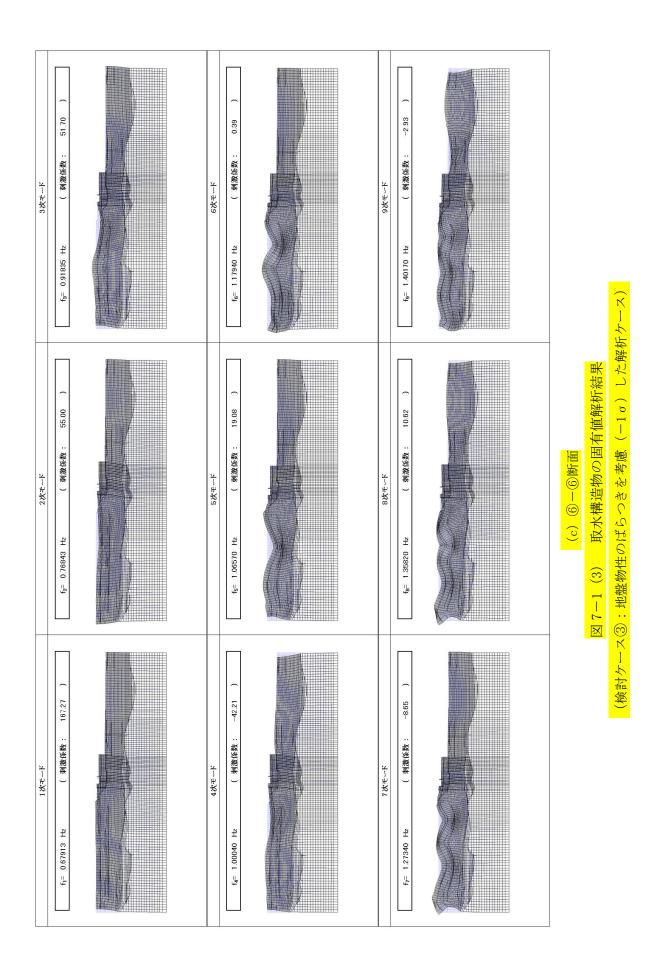
(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

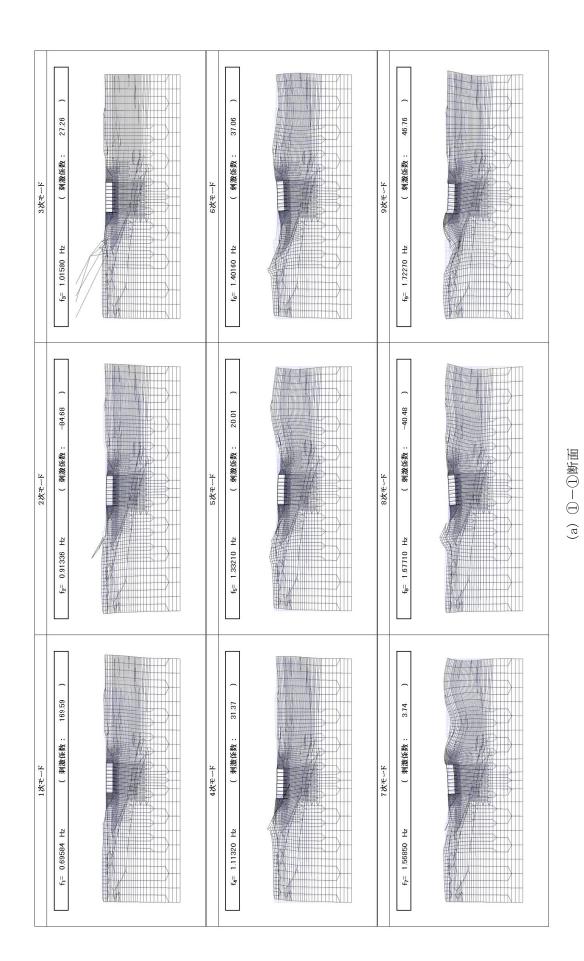
 $\boxtimes 7 - 1 (2)$


(参考) 2-8

(検討ケース③:地盤物性のばらつきを考慮(-1g)した解析ケース)

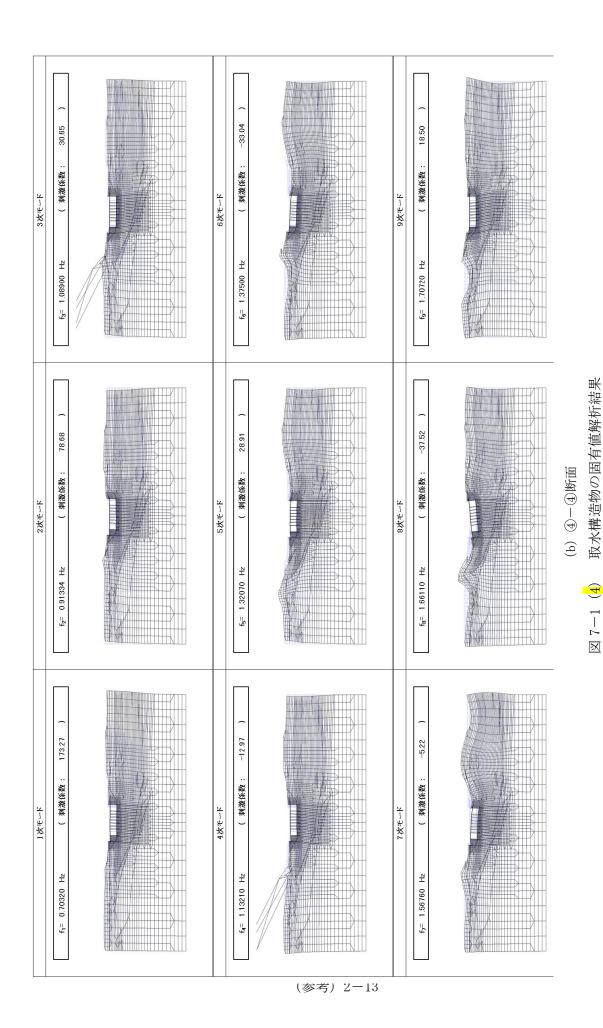
 $\boxtimes 7 - 1 (3)$

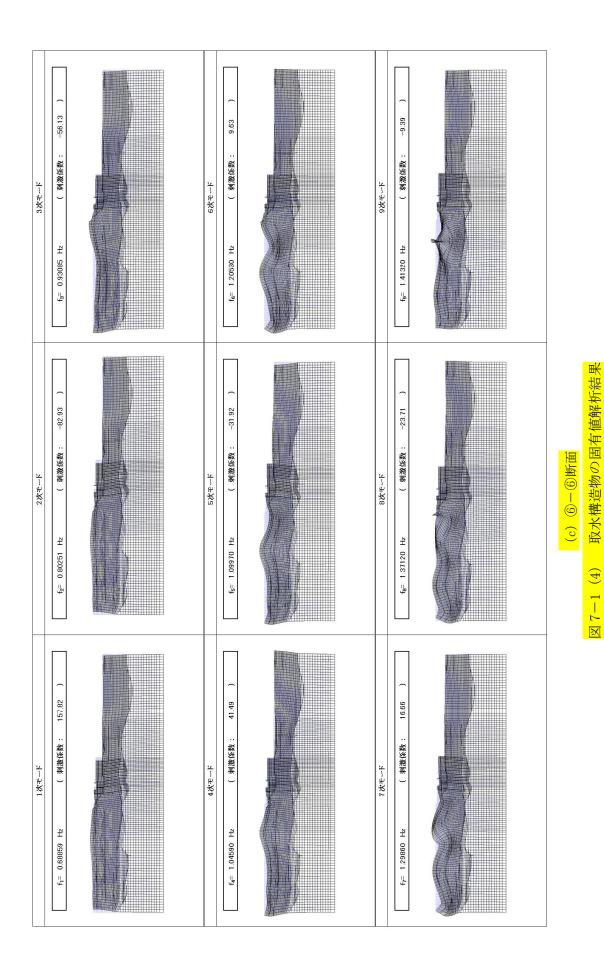

(参考) 2-9


(検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

 $\boxtimes 7 - 1 (3)$

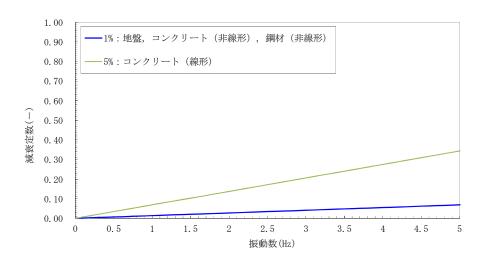
(参考) 2-10


(参考) 2-11

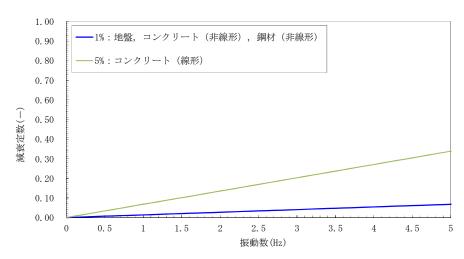

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース)

 $\boxtimes 7-1 \ (4)$

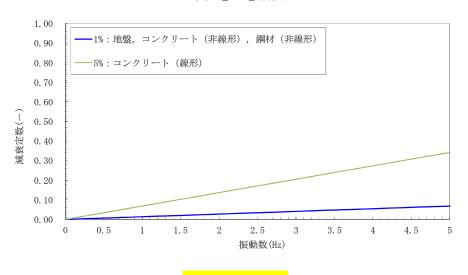
(参考) 2-12



(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース)

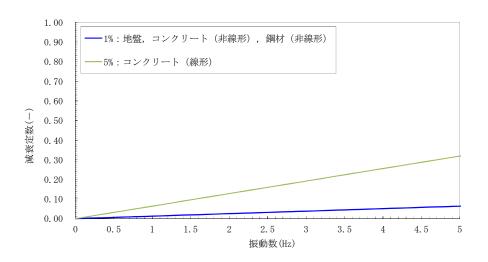


(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定した解析ケース)

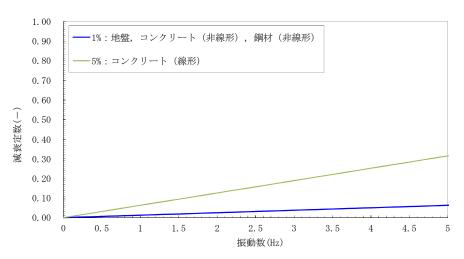

(参考) 2-14

(a) ①-①断面

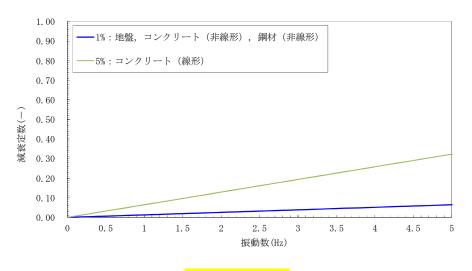
(b) 4-4断面



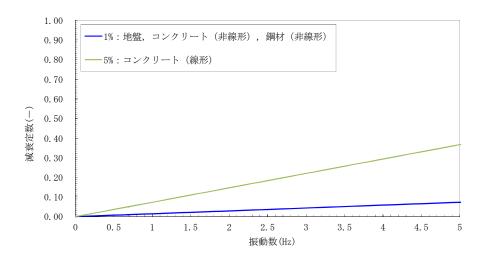
(c) ⑥-⑥断面


図 7-2 (1) 設定した Rayleigh 減衰

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)


(参考) 2-15

(a) ①-①断面


(b) 4-4断面

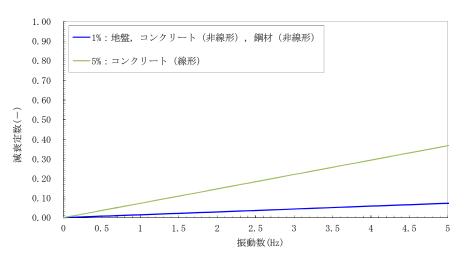
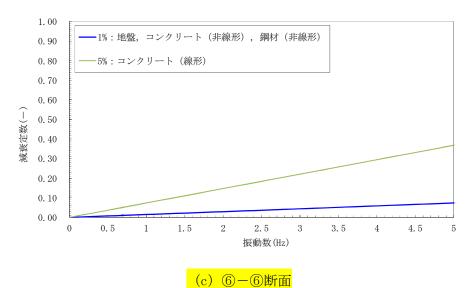
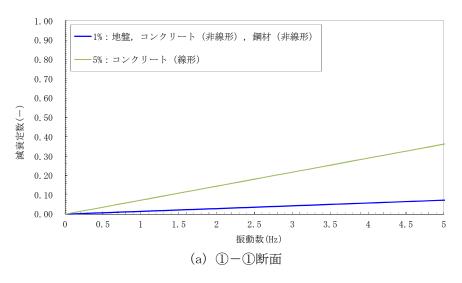
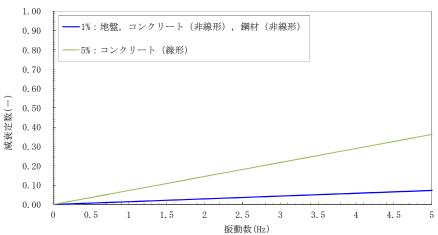

(c) ⑥-⑥断面

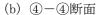
図 7-2 (2) 設定した Rayleigh 減衰 (検討ケース②: 地盤物性のばらつきを考慮($+1\sigma$)した解析ケース)

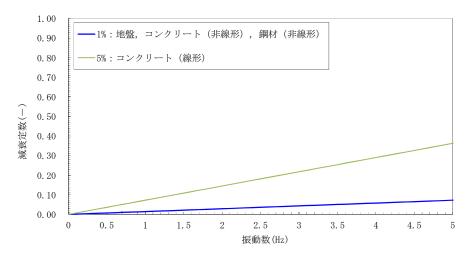
(参考) 2-16

(a) ①-①断面

(b) 4-4断面


図 7-2 (3) 設定した Rayleigh 減衰


(検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

(参考) 2-17

(c) ⑥-⑥断面

図 7-2 (4) 設定した Rayleigh 減衰

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により 地盤を強制的に液状化させることを仮定した解析ケース)

9. 軸力の変動が部材の非線形特性に与える影響について

取水構造物の地震応答解析では、鉄筋コンクリート部材及び鋼管杭を非線形はり要素にてモデル化している。この非線形特性として、鉄筋コンクリート部材における非線形特性($M-\phi$ 関係)にトリリニアモデル(修正武田モデル)を、鋼管杭における非線形特性($M-\phi$ 関係)にバイリニアモデルを適用しているが、有効応力解析コード「FLIP ver. 7.3.0_2」における当該非線形特性では、地震時における部材の軸力は一定とされる。

よって、本項では、基準地震動S。を入力とした地震応答解析による各部材の軸力及び曲げモーメントの変動範囲を踏まえた上で、それが部材の非線形特性に与える影響を検討し、取水構造物の耐震評価において軸力が一定とされる有効応力解析コード「FLIP ver. 7.3.0_2」の当該非線形特性を用いることの妥当性を検討する。

部材の軸力変動範囲を確認するための解析ケースを以下に示す。

- ・入力地震動: S_s-D1 (H+, V+)
- ・検討ケース:①原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)
- ・解析断面: ④-④断面(取水ピット区間)
- ・確認対象部材:図<mark>9</mark>-1に示す通り。

図 9-1 軸力及び曲げモーメントの変動範囲の確認対象部材

図 9-2 にて、鉄筋コンクリート部材における軸力及び曲げモーメントの変動範囲と、当該部材の M_u (終局モーメント) -N (軸力) 関係及び M_y (降伏モーメント) -N (軸力) 関係を比較した。また、同図には、FLIP にて非線形特性として用いられている M_u 及び M_y の設定根拠である常時応力解析による当該部材の軸力をプロットしている。

基準地震動S。による応答結果によると、地震時の鉄筋コンクリート部材における軸力の変動範囲は限定的であり、概ね常時応力解析における軸力と同等の範囲に収まっている。また、部材に発生する曲げモーメントはM。(降伏モーメント)以下であり、概ね弾性範囲内に収まっている。

以上より、鉄筋コンクリート部材において、軸力の変動が部材の非線形特性に与える影響は軽微であり、耐震評価において軸力が一定とされる有効応力解析コード「FLIP ver. 7.3.0_2」の当該非線形特性を用いることは妥当であると考える。

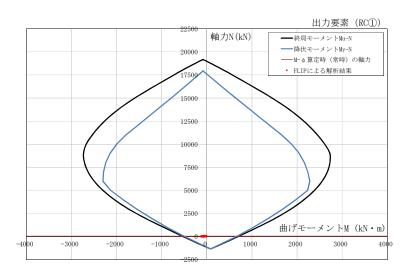


図 9-2 (1) 基準地震動 S_sによる取水構造物の部材の応答範囲 (RC①)

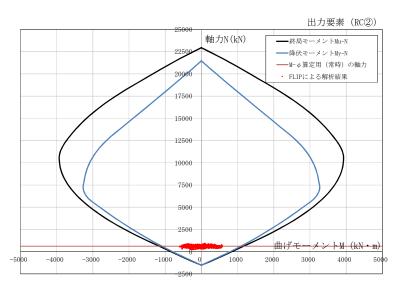


図 9-2 (2) 基準地震動 S_sによる取水構造物の部材の応答範囲 (RC②)

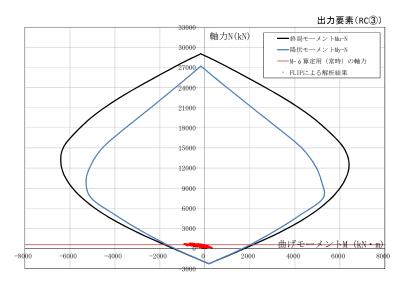


図 9-2 (3) 基準地震動 S s による取水構造物の部材の応答範囲 (RC③)

また、同様の地震応答解析結果を参照し、鋼管杭における軸力変動範囲を把握した上で、その変動が非線形特性(バイリニアモデル)における M_p(全塑性モーメント)にどの程度影響するかを検討した。

基準地震動 S_s による地震応答解析により,図 9-1 に示す鋼管杭要素にて得られた最大発生軸力 N_{max} 及び最小発生軸力 N_{min} を用いて, M_p (全塑性モーメント)を算定し,バイリニアモデルを設定した。各軸力におけるバイリニアモデルの比較を図 9-3 に示す。

いずれの軸力においても、M_p(全塑性モーメント)に有意な差は無いことから、鋼管杭において、軸力の変動が部材の非線形特性に与える影響は軽微であり、耐震評価において軸力が一定とされる有効応力解析コード「FLIP ver. 7.3.0_2」の当該非線形特性を用いることは妥当であると考える。

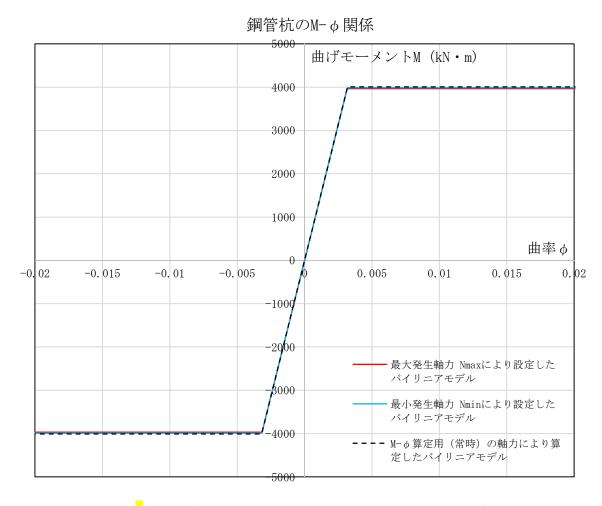
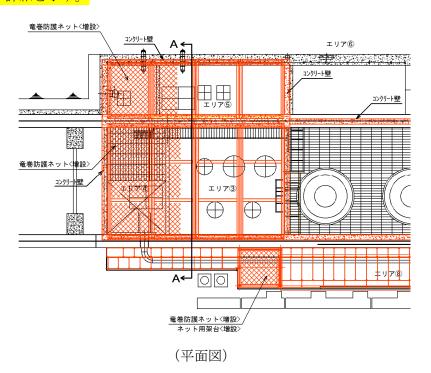


図 9-3 鋼管杭の発生軸力により設定したバイリニアモデル


10. 竜巻等防護設備による地震時反力を考慮した取水構造物躯体の耐震評価

<mark>10</mark>.1 概要

取水構造物の耐震評価では、竜巻等防護設備を分布質量として地震応答解析モデルに反映 し、その質量による慣性力を考慮した照査を実施している。

また、図 $\frac{10}{10}$ -1 に示すように、竜巻等防護設備は嵩上げ RC 壁と鋼材によるラーメン構造であることを考慮すると、地震時には既設 RC 部材への反力が発生することが想定される。

よって、本項では竜巻等防護設備による地震時反力を考慮した取水構造物<mark>躯体</mark>の耐震評価<mark>に</mark>ついて、その詳細を示す。

(A-A断面)

図 10-1 竜巻等防護設備の構造概要と想定される反力

10.2 耐震評価フロー

竜巻等防護設備による地震時反力を考慮した取水構造物<mark>躯体</mark>の耐震評価フロー及び他の解析 との関係を図 10-2 に示す。

有効応力解析より抽出した慣性力及び地震時土圧に加え、竜巻等防護設備の応力解析より得られる地震時反力を2次元フレームモデルに入力することで耐震評価を実施する。2次元フレームモデルを用いた静的応力解析については、解析コード「Engineer's Studio Ver. 6.00.04」を使用する。なお、解析コードの検証及び妥当性確認の概要については、V-5-39「計算機プログラム(解析コード)の概要」に示す。

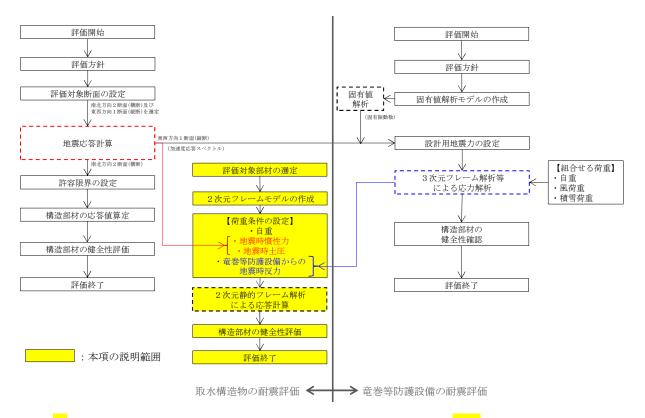


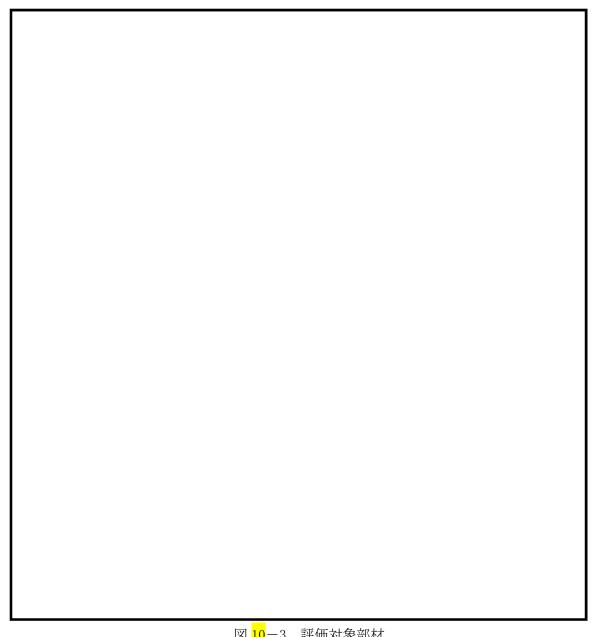
図 <mark>10</mark>-2 竜巻等防護設備による地震時反力を考慮した取水構造物<mark>躯体</mark>の耐震評価フロー

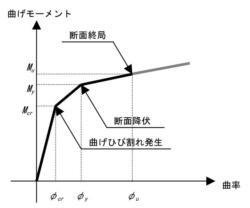
10.3 評価内容

10.3.1 評価対象部材

対象とする構造部材は、取水構造物の縦断面にて竜巻等防護設備を受ける部材のうち、 より荷重条件が厳しい部材として以下の評価対象部材を選択する。各評価対象部材を図 10 -3に示す。

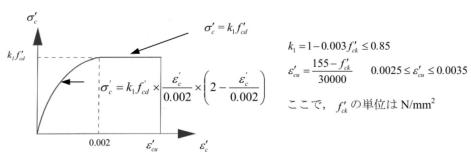
- ・評価対象部材①:部材頂部にて竜巻等防護設備から地震時反力を受けるとともに、地 震時土圧を受ける部材
- ・評価対象部材②:部材頂部の両側にて竜巻等防護設備を支持しており、地震時反力が 大きくなると想定される部材
- ・評価対象部材③:部材頂部に加え、側方でも竜巻等防護設備を支持しており、地震時 反力が大きくなると想定される部材



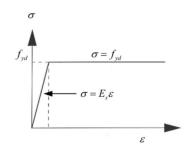

図 10-3 評価対象部材

解析モデル 各評価対象部材について, 下端固定の片持ちはりとしてモデル化する。解析モデルを図 <mark>10</mark> -4 に示す。

図 <mark>10</mark>-4 解析モデル


なお、壁部材は非線形はり要素を用いてモデル化する。非線形特性の設定においては、コンクリート及び鉄筋について、それぞれの非線形特性を考慮する。

鉄筋コンクリート部材における $M-\phi$ 関係のトリリニアモデルを図 $\frac{10}{10}-5$ に示す。また、コンクリート及び鉄筋の非線形特性を図 $\frac{10}{10}-6$ 及び図 $\frac{10}{10}-7$ に示す。



(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル ((社) 土木学会 2005年) より引用)

図 10-5 M- ϕ 関係のトリリニアモデル(鉄筋コンクリート部材)

(コンクリート標準示方書[設計編] ((社) 土木学会 2007 年制定) より引用) 図 10-6 コンクリートの応力ーひずみ曲線

(コンクリート標準示方書[設計編] ((社) 土木学会 2007年制定) より引用)

図 10-7 鉄筋の応力-ひずみ曲線

10.3.3 荷重

(1) 地震応答解析により得られる荷重

解析モデルに入力する荷重は、常時荷重に加え、取水構造物縦断方向(⑥—⑥断面)の地 震応答解析から得られる地震時土圧及び慣性力とする。

部材の曲げ及びせん断照査については、取水構造物縦断方向(⑥-⑥断面)の地震応答解 析により, 各評価対象部材における加速度及び地震時土圧が最大となる時刻を抽出し, この 時刻における地震時土圧及び慣性力を解析モデルに作用させる。図 10-8 に⑥-⑥断面の 地震応答解析モデルと評価対象部材を示す。また、図 10-9 に評価対象部材①を例に、荷重 抽出の考え方を示す。

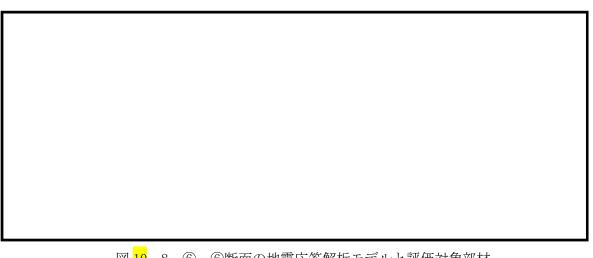


図 10-8 ⑥—⑥断面の地震応答解析モデルと評価対象部材

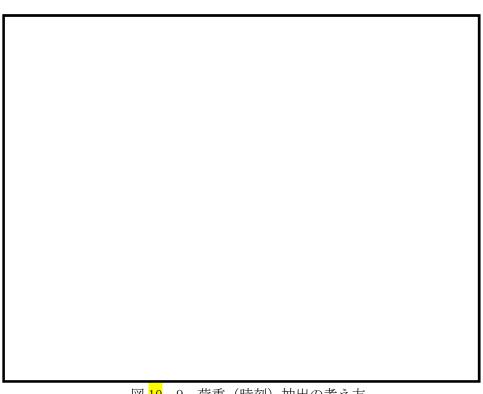


図 10-9 荷重(時刻)抽出の考え方

(2) 竜巻等防護設備の応力解析により得られる地震時反力

図 10-4 に示す解析モデルの上端には、竜巻等防護設備の応力解析により得られる地震時反力を考慮する。竜巻等防護設備の応力解析モデル及び地震時反力抽出の考え方を以下に示す。

竜巻等防護設備の応力解析においては、鋼材部を3次元フレーム、嵩上げRC壁部及びRC壁部を既設RC部材との接続部を固定端とする片持ちはりとしてモデル化する。竜巻等防護設備から既設RC部材への応力伝達の考え方を図10-10に示す。

考慮する荷重は、竜巻等防護設備及び嵩上げ壁自重、積雪荷重、風荷重、慣性力とする。 慣性力は、取水構造物縦断方向(⑥—⑥断面)の地震応答解析に基づき算出する。



図 10-10(1) 竜巻等防護設備から既設 RC 部材への応力伝達の考え方

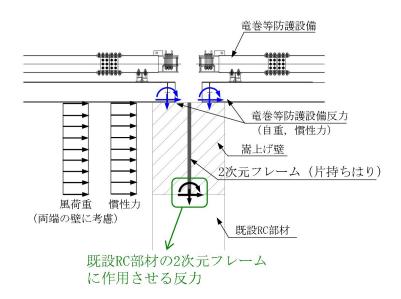


図 10-10(2) 竜巻等防護設備から既設 RC 部材への応力伝達の考え方("a部"詳細)

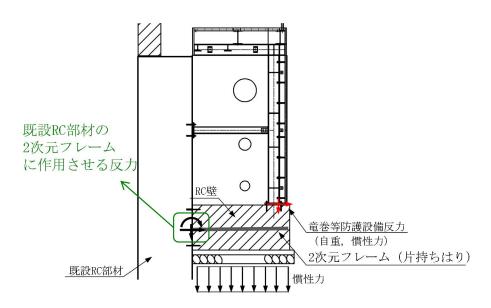


図 10-10(3) 竜巻等防護設備から既設 RC 部材への応力伝達の考え方("b部"詳細)

(3) 荷重の組合せ

「地震応答解析により得られる荷重」と「竜巻等防護設備の応力解析により得られる地 震時反力」の組合せ方法についての考え方を示す。

a. 部材①における荷重の組合せ

「地震応答解析により得られる荷重」と「竜巻等防護設備の応力解析により得られる地震時反力」の水平成分(水平力、曲げモーメント)が同一方向となるように組合せる。また、「竜巻等防護設備の応力解析により得られる地震時反力」の鉛直成分は軸圧縮と軸引張の両方向を考える。荷重の組合せの模式図を図 10-11 に示す。

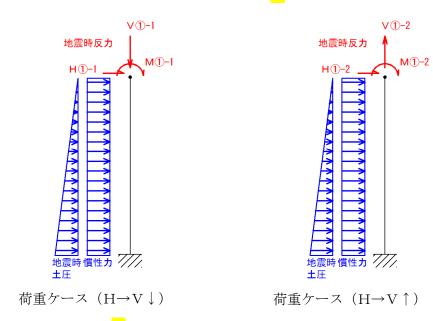


図 10-11(1) 荷重の組合せの模式図(部材①)

b. 部材②における荷重の組合せ

部材①と同様の考え方で荷重を組合せる。荷重の組合せの模式図を図 10-11 に示す。

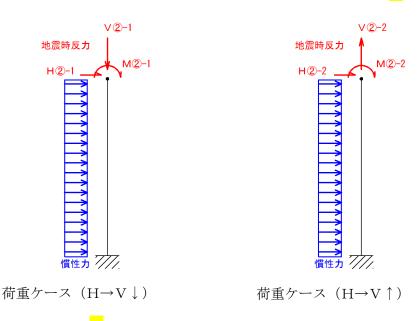
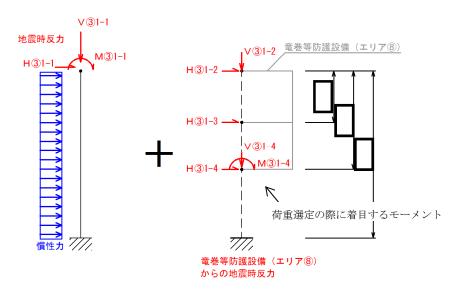
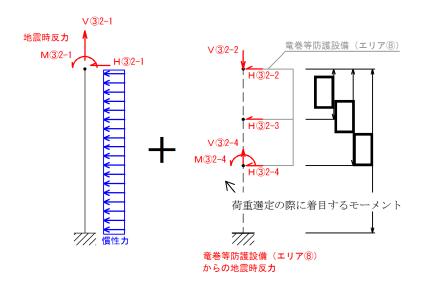


図 10-11(2) 荷重の組合せの模式図(部材②)


c. 部材③における荷重の組合せ

部材③においては、「竜巻等防護設備の応力解析により得られる地震時反力」として上部の竜巻等防護設備に加えて、側面に接続する竜巻等防護設備(エリア®)を考慮する。


側面に接続する竜巻等防護設備(エリア®)に対しては、部材中央付近に作用する曲げ モーメントに着目し、上部の竜巻等防護設備からの地震時反力の作用方向に合わせて、以 下2つの荷重ケースを選定する。

- ・荷重ケース (H→V ↓): 軸圧縮状態において時計回りの曲げが卓越するケース
- ・荷重ケース (H←V↑): 軸引張状態において反時計回りの曲げが卓越するケース

なお、上記の荷重ケースには、部材③が側面で支持している非常用海水配管を考慮している。

荷重ケース (H→V↓)

荷重ケース (H←V↑)

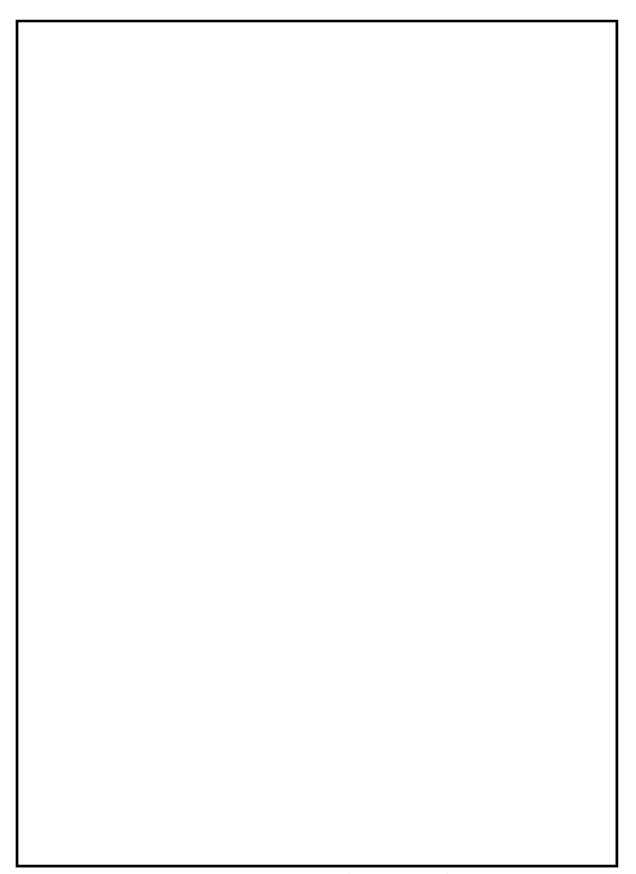
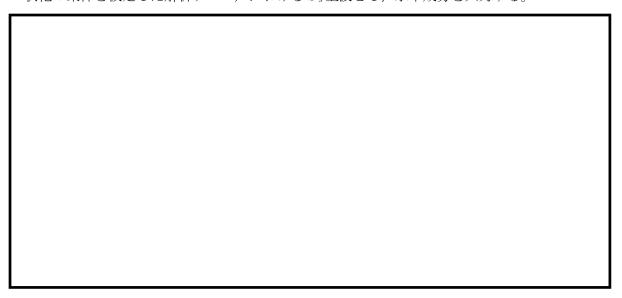
図 10-11(3) 荷重の組合せの模式図(部材③)

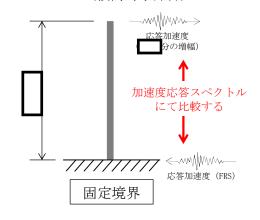
【竜巻等防護設備の嵩上げ RC 壁が FRS に与える影響について】

1. はじめに

竜巻等防護設備のFRS の基となる加速度応答スペクトルは、取水構造物の地震応答解析により 算定している。取水構造物の地震応答解析モデルでは、竜巻等防護設備の嵩上げRC壁を部材と してモデル化せず、分布質量として考慮する方針としている。取水構造物の地震応答解析モデル におけるモデル化の考え方を図1に示す。

本モデルでは、嵩上げRC壁の質量による慣性力は考慮できるが、当該部材による加速度応答の増幅効果を考慮出来ていない可能性がある。よって、本項では、嵩上げRC壁による加速度応答の増幅効果を確認し、地震応答解析モデルの妥当性を検証する。


図1 取水構造物の地震応答解析モデルにおけるモデル化の考え方

2. 検討方針

嵩上げ RC 壁の下端を固定端とした片持ちはりモデルにて、モデル下端より入力した応答加速度を嵩上げ RC 壁上端部で取り出し、加速度応答スペクトルにて比較する。加速度応答スペクトル比較用の片持ちはりモデルを図 2 に示す。また、検討波は検討ケース⑤(原地盤において非液状化の条件を仮定した解析ケース)における S_s 全波とし、水平成分を入力する。*

(検討対象部材)

(解析モデル)

図2 加速度応答スペクトル比較用の片持ちはりモデル

注記 *:下端を固定端とした片持ちはりモデルにて水平成分のみの入力を行うことで、加速 度応答のうち回転成分を考慮しないモデルとなる。ただし、以下に示すとおり、入 力波の回転成分は極めて小さいことから、下端固定によるモデル化は妥当であると 判断した。

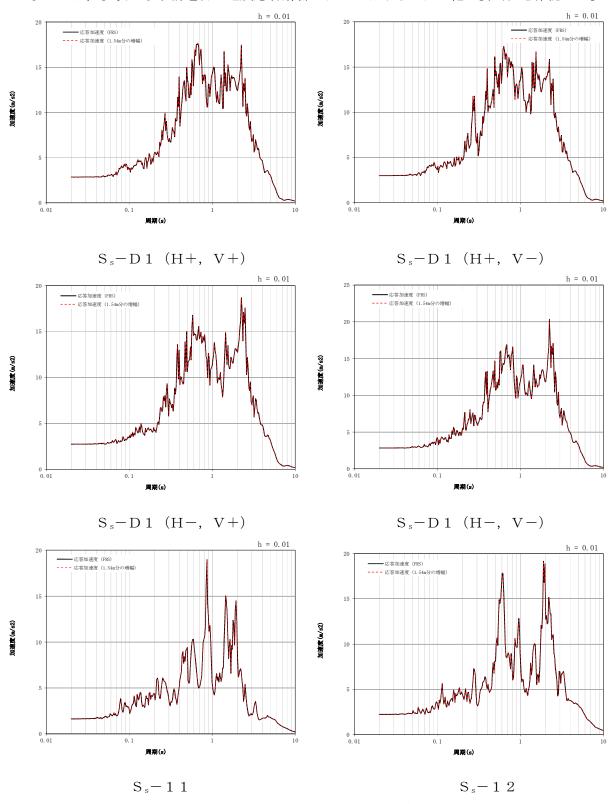
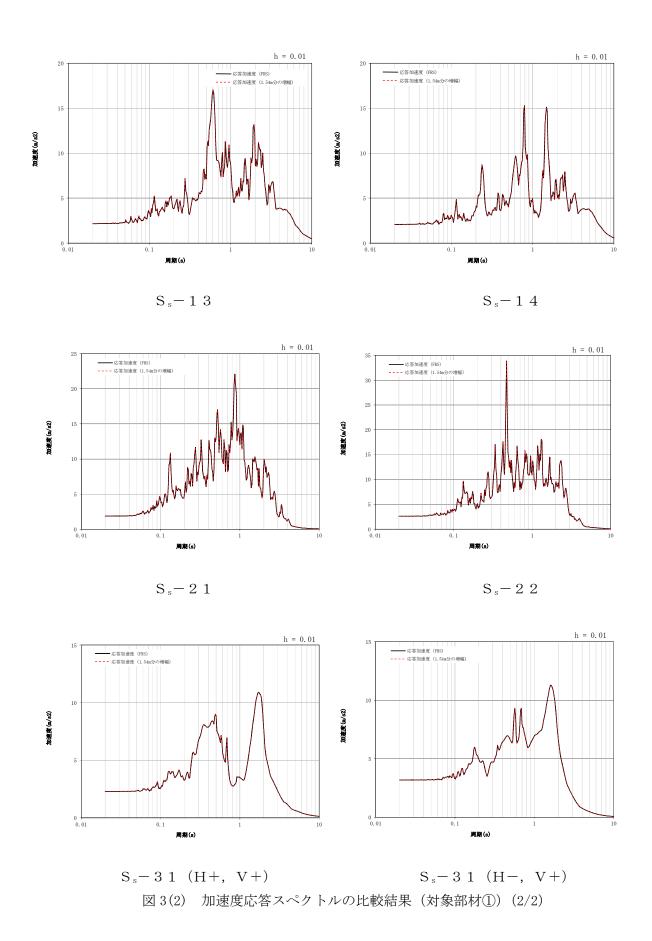
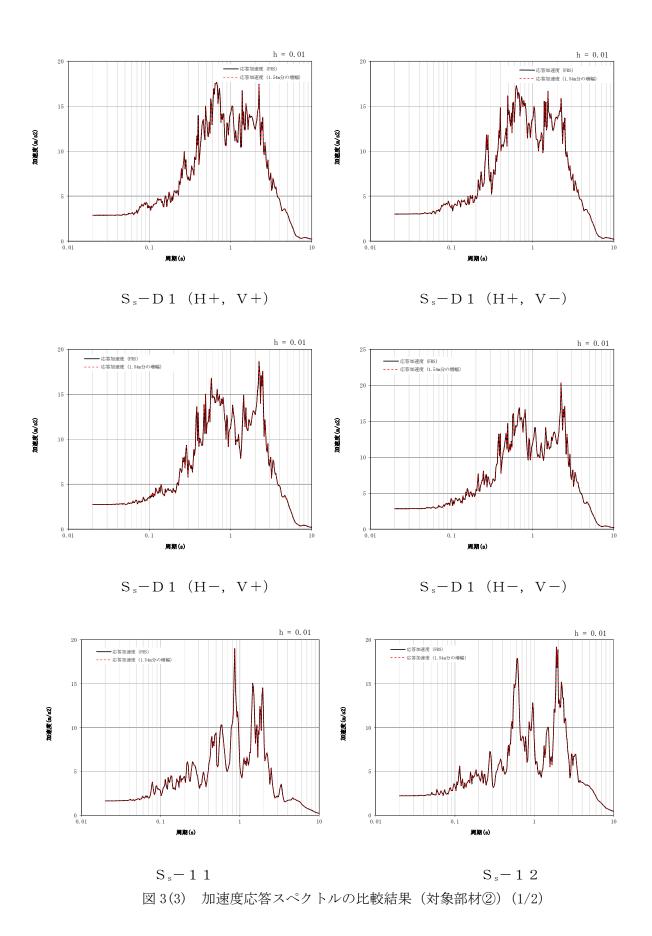
評価対象 部材	最大回転加速度 R (rad/s²)	部材長 × R (cm/s²)
部材①	0. 0283	4. 36
部材②	0.0307	4.73
部材③	0.0421	6.48

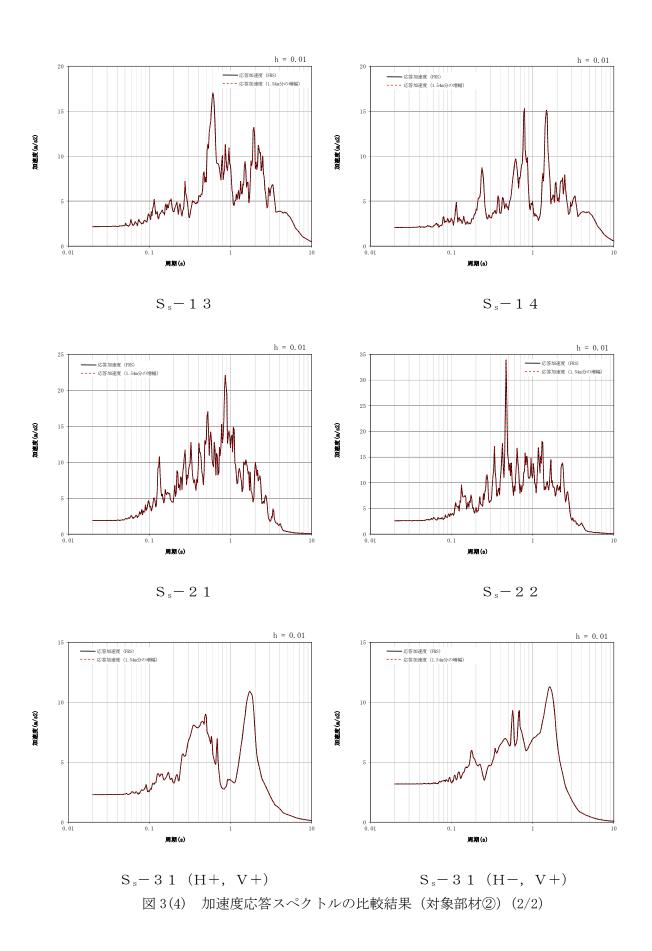
*:代表波として、 S_s-D1 (H+、V+)を対象に上記確認を実施した。

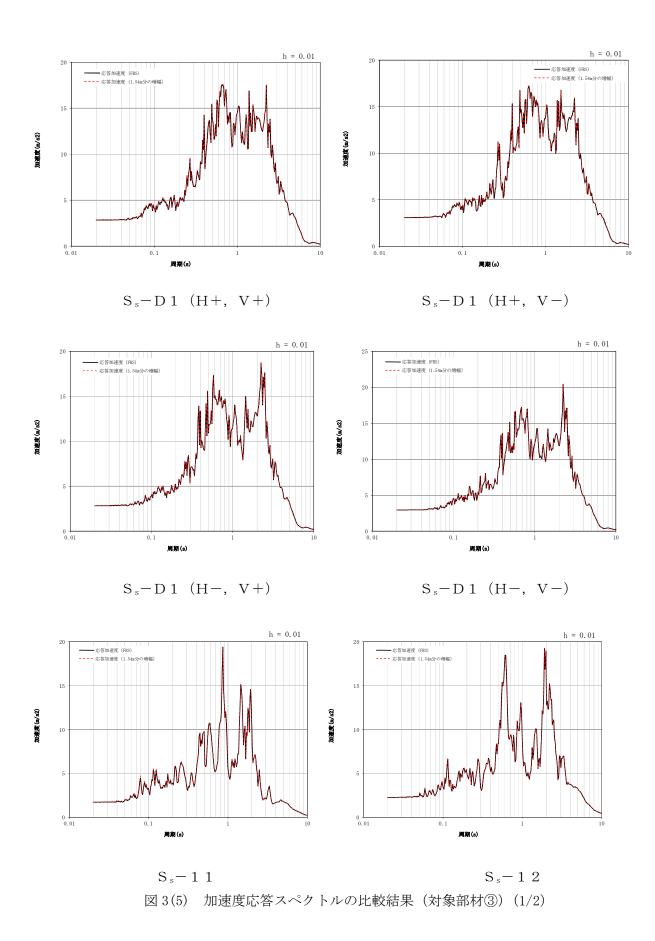
3. 検討結果

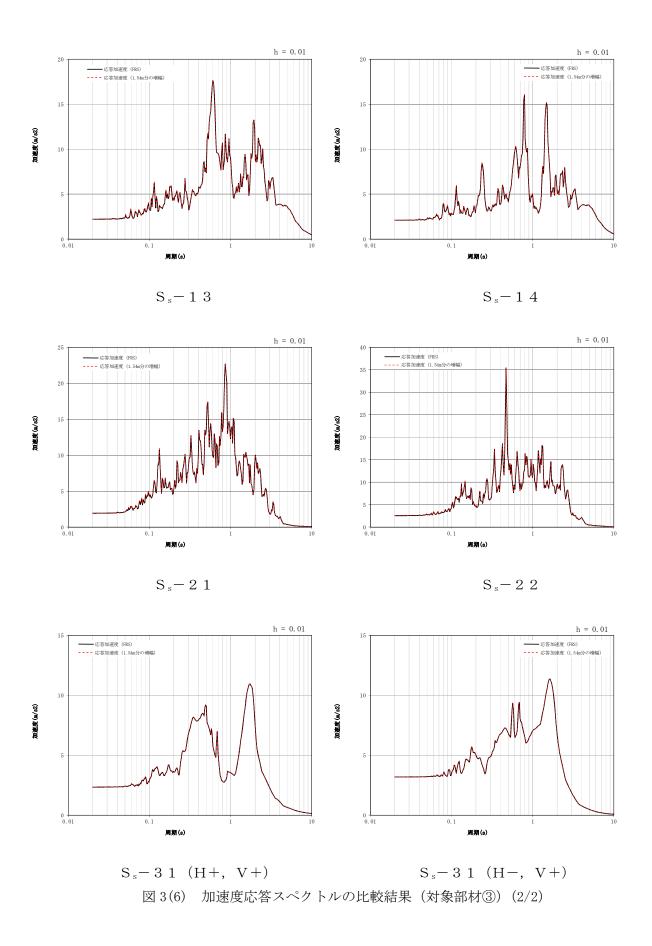
分の RC 壁による増幅を考慮した加速度応答スペクトルを算定し比較した結果を図 3 に示す。 S_s全波において、嵩上げ RC 壁部における有意な応答増幅は確認されなかった。

以上より、現状の取水構造物の地震応答解析モデルにおけるモデル化の妥当性を確認した。


図3(1) 加速度応答スペクトルの比較結果(対象部材①)(1/2)


(参考) 2-36

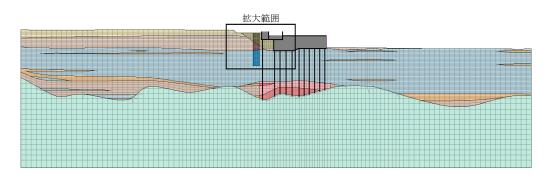

(参考) 2-37

(参考) 2-38

(参考) 2-39

(参考) 2-40

11. 縦断面(⑥-⑥断面)の有効応力解析モデルについての整理


11.1 概要

取水構造物の縦断面(⑥-⑥断面)における有効応力解析では、その用途に応じて3つの解析モデルを使い分けている。本項では、縦断面(⑥-⑥断面)における各解析モデルについて、その差異を説明するとともに、各用途における保守性を説明する。

11.2 縦断面(⑥-⑥断面)の各解析モデル

(1) 鋼管杭照査用解析モデル (最終)

周辺地盤を含めた鋼管杭の耐震性向上を目的として、構造物の背面に地盤改良体(セメント改良)を考慮した解析モデルである。取水構造物の耐震設計における最終形状を反映しており、鋼管杭の耐震評価を実施する際に適用する解析モデルである。鋼管杭照査用解析モデルを図 11-1 に示す。

(a) 全体

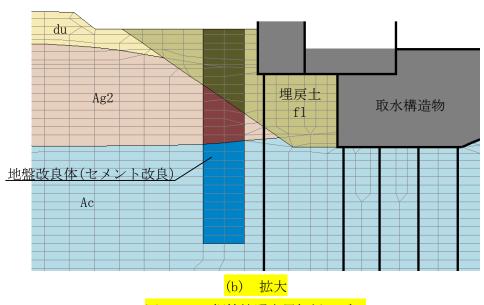
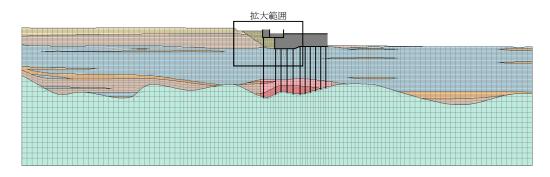



図 11-1 鋼管杭照査用解析モデル

(2) 躯体照査用解析モデル

構造物の背面に計画している地盤改良体(セメント改良)を考慮しない解析モデルである。この地盤改良体(セメント改良)は、構造物の背面に分布する埋戻土(f1層)の変形を抑制することを目的に計画されているため、これを考慮しないことで躯体に作用する土圧を保守的に評価出来る。よって、本解析モデルは躯体の耐震評価を実施する際に適用している。躯体照査用解析モデルを図11-2に示す。

(a) 全体

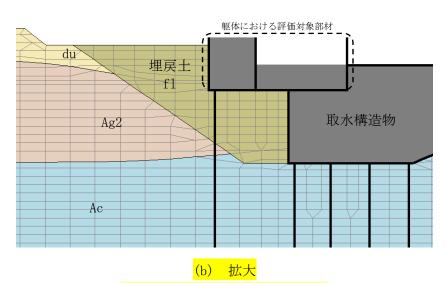
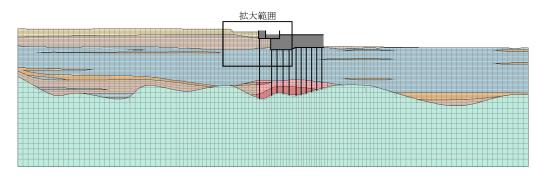



図 11-2 躯体照査用解析モデル

(3) FRS 算定用解析モデル

構造物の背面に分布する埋戻土(f1層)を原地盤(第四紀層)に置換した解析モデルである。構造物の側方地盤をより剛性の高い地層と仮定しているため、機器・配管系への加速度応答の観点でより保守的な配慮となることから、本解析モデルは機器・配管系のFRSを算定する際に適用している。FRS 算定用解析モデルを図 11-3 に示す。

(a) 全体

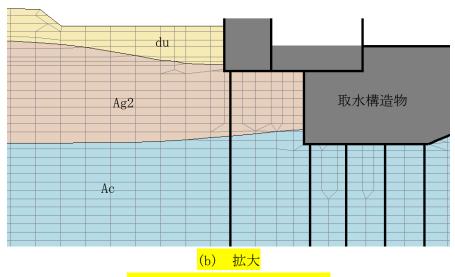


図 11-3 FRS 算定用解析モデル

12. 緊急用海水ポンプピットの耐震安全性評価

目次

12	. 緊	急用海水ポンプピットの耐震安全性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • •	$\cdots 12-1$
		評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		
	12. 2	評価条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12-2
	12.	. 2. 1 適用規格 · · · · · · · · · · · · · · · · · · ·		12-2
	12.	.2.2 耐震安全性評価フロー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		··· 12-3
	12.	. 2. 3 評価対象断面の方向・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12-8
	12.	.2.4 評価対象断面の選定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12-9
	12.	.2.5 使用材料及び材料定数・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		··· 12-12
	12.	. 2. 6 評価構造物諸元・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		··· 12-15
	12.	. 2.7 地下水位・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdots 12 - 17$
	12.	.2.8 地震応答解析手法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdots 12 - 17$
	12.	.2.9 解析モデルの設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		··· 12-18
	12.	. 2. 10 減衰定数 · · · · · · · · · · · · · · · · · · ·		12 - 29
	12.	. 2. 11 荷重の組合せ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 35
	12.	. 2. 12 地震応答解析の検討ケース・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12-42
	12. 3	評価内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 45
	12.	.3.1 鉛直断面の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 45
	12.	.3.2 水平断面の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 55
	12.	.3.3 版部材の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12-60
	12.	.3.4 カルバート部の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 64
	12.	.3.5 入力地震動の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		12 - 69
	12.	.3.6 許容限界の設定・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		· 12-102
	12.4	評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 108$
	12.	.4.1 地震応答解析結果‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥		12-108
	12.	.4.2 鉛直断面に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		· 12-231
	12.	.4.3 水平断面に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 275$
	12.	.4.4 版部材に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 342$
	12.	.4.5 版部材が側壁を固定することによる隅角部の評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 369$
	12.	.4.6 カルバート部に対する耐震評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 387$
	12.	.4.7 基礎地盤の支持性能に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 406$
	12. 5	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		$\cdot 12 - 426$

12.1 評価方針

緊急用海水ポンプピットは、緊急用海水系非常用取水設備の取水設備であり、緊急用海水ポンプ等を間接支持する機能を求められる土木構造物である。緊急用海水ポンプピットについて基準地震動S_sによる耐震安全性評価として、構造部材の曲げ、せん断評価及び地盤の支持性能評価を実施する。

立坑の地震応答解析においては、地震時の地盤の有効応力の変化に応じた影響を考慮できる有効応力解析を実施する。

有効応力解析に用いる液状化強度特性は、敷地の原地盤における代表性及び網羅性を踏まえた上で保守性を考慮して設定する。

屋外重要土木構造物への地盤変位に対する保守的な配慮として、地盤を強制的に液状化させることを仮定した影響を考慮する。その際は、原地盤よりも十分に小さい液状化強度特性(敷地に存在しない豊浦標準砂に基づく液状化強度特性)を仮定する。

屋外重要土木構造物及び機器・配管系への加速度応答に対する保守的な配慮として、地盤の非液状化の影響を考慮する。その際は、原地盤において非液状化の条件を仮定した解析を実施する。

構造部材の曲げ、せん断評価については地震応答解析に基づく発生応力度又は発生せん 断力が許容限界以下であることを確認する。基礎地盤の支持性能評価については、地震応 答解析に基づく最大接地圧が許容限界以下であることを確認する。

12.2 評価条件

12.2.1 適用規格

適用する規格, 基準類を以下に示す。

- •原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・コンクリート標準示方書[構造性能照査編] ((社)土木学会,2002年制定)
- ・道路橋示方書(I 共通編・IV下部構造編)・同解説((社)日本道路協会,平成24年3月)

緊急用海水ポンプピットの耐震評価に当たっては,原子力発電所耐震設計技術指針 J E A G 4 6 0 1 - 1987 ((社)日本電気協会),コンクリート標準示方書 [構造性能照査編] ((社)土木学会,2002年制定)等を適用するが,鉄筋コンクリートの曲げ及びせん断の許容限界については,道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会,平成24年3月)を適用する。

表 12.2-1 に適用する規格, 基準類を示す。

表 12.2-1 適用する規格,基準類

項目	適用する規格,基準類	備考
使用材料及び材料定数	・コンクリート標準示方書 [構造性能照査編] (2002年制定)	_
荷重及び荷重の組合せ	・コンクリート標準示方書 [構造性能照査編] (2002年制定)	・永久荷重+偶発荷重+従た る変動荷重の適切な組合せ を検討
許容限界	・コンクリート標準示方書 [構造性能照査編] (2002 年制定) ・道路橋示方書 (I共通編・IV 下部構造編)・同解説 (平成 24年3月)	 ・曲げに対する照査は、発生 応力が許容限界以下である ことを確認 ・せん断に対する照査は、発 生応力又は発生せん断力が 許容限界以下であることを 確認 ・接地圧が基礎地盤の許容限 界以下であることを確認
地震応答解析	• JEAG4601-1987	・有限要素法による2次元モ デルを用いた時刻歴非線形 解析

12.2.2 耐震安全性評価フロー

緊急用海水ポンプピットの耐震安全性評価フローを図 12.2-1 に示す。

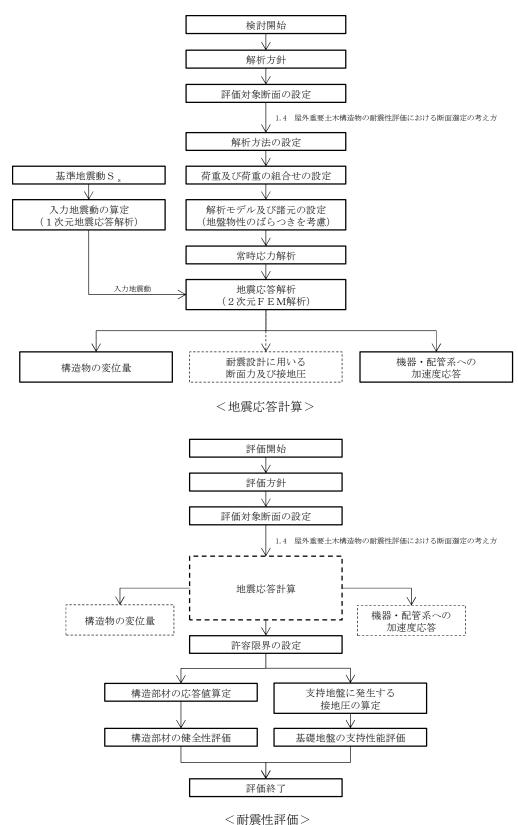
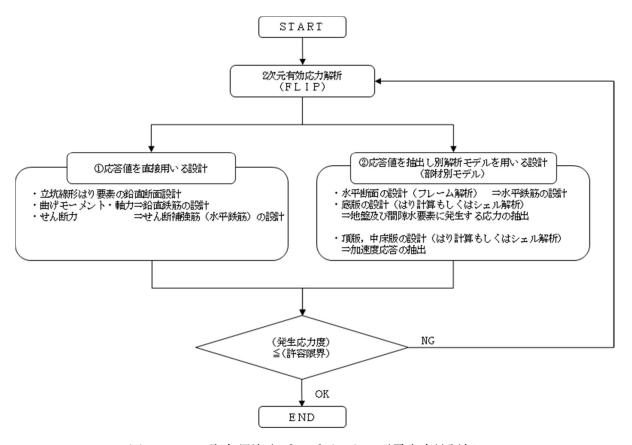
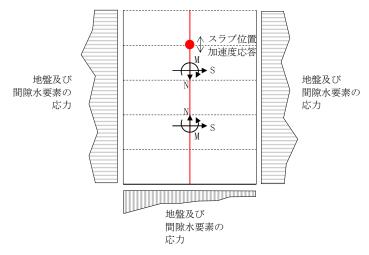
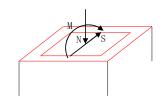
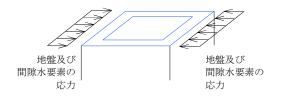
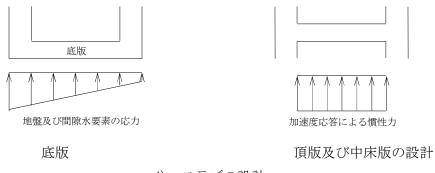


図 12.2-1 緊急用海水ポンプピットの耐震安全性評価フロー

部材評価フローを図 12.2-2 に、部材評価概念図を図 12.2-3 に、各部材評価で照査対象とする鉄筋を図 12.2-4 に示す。また、各部材評価で照査対象とする鉄筋を表 12.2-2 に示す。


図 12.2-2 緊急用海水ポンプピットの耐震安全性評価フロー


a) 2次元有効応力解析からの応答値の抽出

b) 立坑線形はり要素の鉛直断面設計

c) 水平断面の設計 (フレーム計算)

d) スラブの設計 図 12.2-3 部材評価概念図

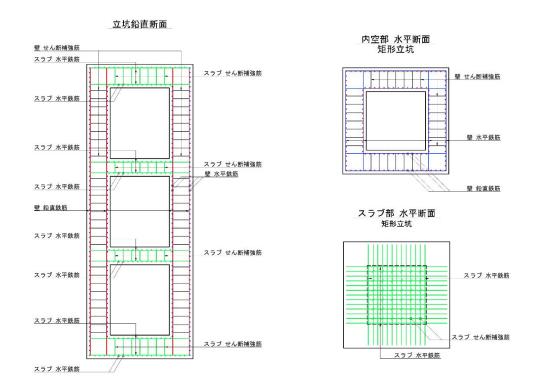


図 12.2-4 各部材評価で照査対象とする鉄筋種別概念図

表 12.2-2 各部材評価で照査対象とする鉄筋

部材	照查対象鉄筋	記号	部材評価	備考
	鉛直鉄筋	_	立坑線形はり要素の鉛直断面設計(曲げ軸力)	
側壁	水平鉄筋		立坑線形はり要素の鉛直断面設計(せん断力)	
侧生		_	水平断面の設計(曲げ軸力)	*
	せん断補強筋	_	水平断面の設計(せん断力)	
底版	水平鉄筋	_	底版の設計(曲げモーメント)	
) 区/(X	せん断補強筋	_	底版の設計(せん断力)	
頂版	水平鉄筋	_	頂版の設計 (曲げモーメント)	
1兵/0人	せん断補強筋		頂版の設計(せん断力)	

注記 *: 側壁の水平方向の鉄筋の設計は、コンクリート標準示方書 [構造性能照査編]

((社) 土木学会,2002年制定)に準拠して,円筒形断面を同じ面積の矩形断面として考慮し実施する。各2次元鉛直断面モデル(2次元有効応力解析モデル)による各側壁の面内方向のせん断力に対するせん断力照査で設計する水平鉄筋(面内方向のせん断補強筋)と,水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対する曲げ軸力照査で設計する水平鉄筋(主鉄筋)は,同じ方向の鉄筋であり,両設計で算定される必要水平鉄筋量を足し合わせた合計必要水平鉄筋量以上を同側壁の面内方向に配置する。これと共に,水平断面フレーム解析モデルにおける同側壁の面外方向の最大荷重に対するせん断力照査で設計するせん断補強筋を同側壁の面外方向に配置する。

直交する2つの2次元鉛直断面モデル(2次元有効応力解析モデル)により求められる各側壁の面内方向のせん断力と面外方向の最大荷重に基づき,4辺の側壁全てについて,上記の設計計算により,面内方向の合計必要水平鉄筋量(面内方向の必要せん断補強筋量と必要主鉄筋量を足し合わせた合計必要水平鉄筋量)以上を各側壁の面内方向に配置し,面外方向の必要せん断補強筋量以上を各側壁の面外方向に配置する。

12.2.3 評価対象断面の方向

緊急用海水ポンプピットの位置を図12.2-5に示す。

緊急用海水ポンプピットは,短辺11.6 m(東西方向),長辺12.2 m(南北方向),高 さ36.0 mの鉄筋コンクリート造の矩形立坑である。緊急用海水ポンピットは,短辺と長辺の長さに大きな違いがなく強軸断面方向と弱軸断面方向が明確でなく,東西方向断面と南北方向断面で地質断面に差異があるため,構造物に直交する東西方向と南北方向の両方向を評価対象断面とする。

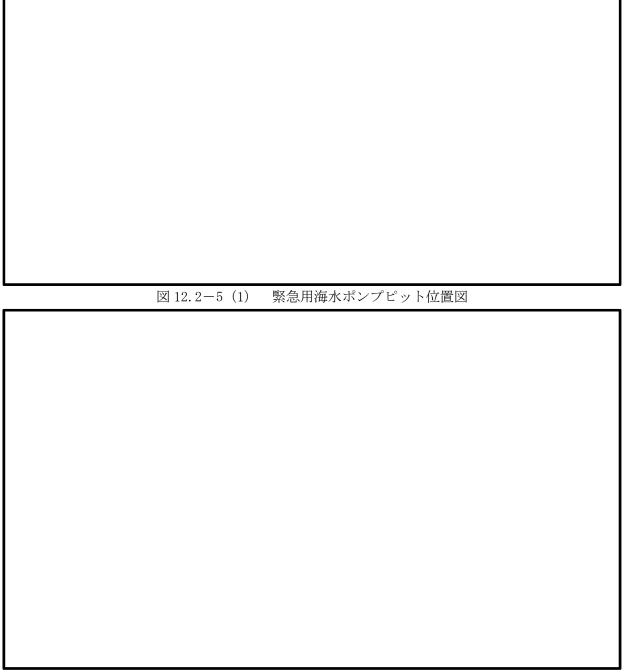


図 12.2-5 (2) 緊急用海水ポンプピット位置図

12.2.4 評価対象断面の選定

緊急用海水ポンプピットの平面図を図 12.2-6 に、断面図を図 12.2-7 に示す。

緊急用海水ポンプピットは,東西方向 11.6 m,南北方向 12.2 m,高さ 36.0 m の多層ラーメン構造の鉄筋コンクリート造であり,十分な支持性能を有する岩盤に直接設置する。また,原子炉建屋内へ接続する配管を間接支持する内空幅 2.85 m,内空高さ 2.2 m のカルバートの張出しを有する。

緊急用海水ポンプピットは箱形構造物であり、強軸断面方向・弱軸断面方向の区別が明確でない構造物であるため、評価対象断面は緊急用海水ポンプピットの南北方向及び東西方向の2断面を対象とする。

緊急用海水ポンプピットは,構造物中心位置において各構造部材と等価な剛性を有する 線形はり要素にてモデル化する。なお,東西方向断面においては,カルバートの張出し部 を奥行き方向に等価な剛性でモデル化し,カルバートに作用する上載荷重を考慮する。

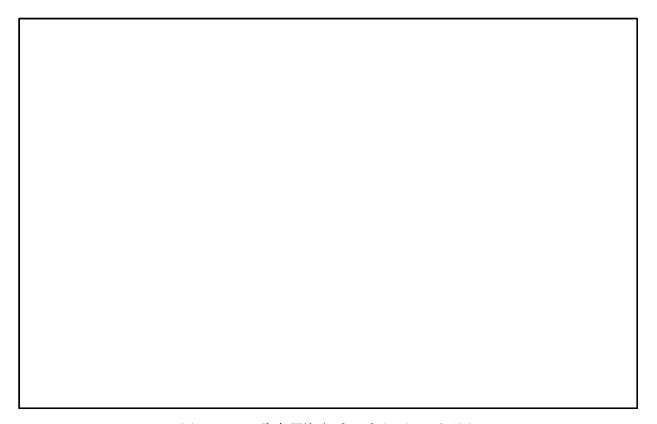


図 12.2-6 緊急用海水ポンプピットの平面図

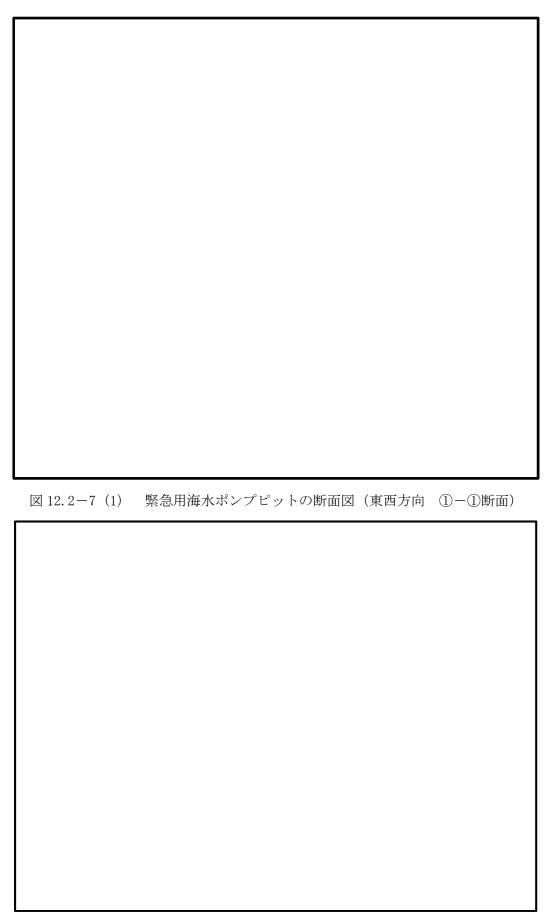


図 12.2-7(2) 緊急用海水ポンプピットの断面図(南北方向 ②-②断面)

12.2.5 使用材料及び材料定数

耐震評価に用いる材料定数は、適用基準類を基に設定する。構造物の使用材料を表 12.2-3に、材料物性値を表 12.2-4に示す。

地盤の諸元は、V-2-1-3「地盤の支持性能に係る基本方針」にて設定している物性値を用いる。なお、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるモデル化とする。地盤の物性値を表 12.2-5 に示す。

表 12.2-3 使用材料

材料	諸元
コンクリート	設計基準強度 40 N/mm ²
鉄筋	SD345, SD490

表 12.2-4 材料物性値

材料	単位体積重量	ヤング係数	ポアソン比	減衰定数
	(kN/m³) *1	(N/mm²) *1	*1	(%) * ²
鉄筋コンクリート	24. 5	3.1×10^4	0. 2	5

注記 *1: 道路橋示方書(I 共通編・IV下部構造編)・同解説((社)日本道路協会,平成24年3月)

*2:原子力発電所耐震設計技術指針 JEAG4601-1987 ((社)日本電気協会)

表 12.2-5(1) 地盤の解析用物性値一覧(液状化検討対象層)

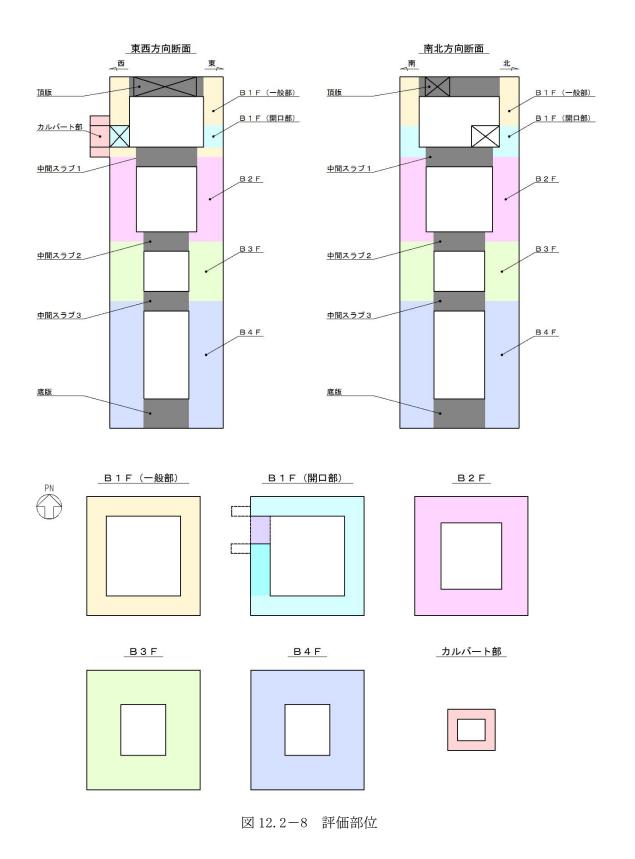
							原均	也盤				
	パラメータ						第四系	(液状化検討	対象層)			豊浦標準砂
				fl	du	Ag2	As	Ag1	D2s-3	D2g-3	D1g-1	
物理特	密度 () は地下水位以浅	ρ	g/cm ³	1. 98 (1. 82)	1. 98 (1. 82)	2. 01 (1. 89)	1.74	2. 01 (1. 89)	1.92	2. 15 (2. 11)	2. 01 (1. 89)	1. 958
性	間隙比	е	_	0.75	0.75	0. 67	1.2	0.67	0.79	0. 43	0.67	0.702
	ポアソン比	ν _{CD}	-	0. 26	0. 26	0. 25	0. 26	0. 25	0.19	0. 26	0. 25	0. 333
変形	基準平均有効主応力 () は地下水位以浅	σ' ma	kN/m²	358 (312)	358 (312)	497 (299)	378	814 (814)	966	1167 (1167)	1695 (1710)	12. 6
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	253529 (220739)	253529 (220739)	278087 (167137)	143284	392073 (392073)	650611	1362035 (1362035)	947946 (956776)	18975
	最大履歴減衰率	h_{max}	_	0. 220	0. 220	0. 233	0. 216	0. 221	0. 192	0. 130	0. 233	0. 287
強度	粘着力	C_{CD}	$\mathrm{N/mm}^2$	0	0	0	0.012	0	0.01	0	0	0
特性	内部摩擦角	φ _{CD}	度	37. 3	37. 3	37. 4	41	37. 4	35. 8	44. 4	37. 4	30
	液状化パラメータ	ф р	_	34. 8	34. 8	34. 9	38. 3	34. 9	33. 4	41. 4	34. 9	28
Notes	液状化パラメータ	S_1	-	0. 047	0. 047	0. 028	0.046	0. 029	0. 048	0.030	0. 020	0.005
液状	液状化パラメータ	\mathbf{W}_1	_	6. 5	6. 5	56. 5	6. 9	51.6	17. 6	45. 2	10. 5	5. 06
化特性	液状化パラメータ	P_1	_	1. 26	1. 26	9.00	1.00	12.00	4. 80	8. 00	7. 00	0. 57
119.	液状化パラメータ	P_2	_	0.80	0.80	0.60	0.75	0.60	0.96	0.60	0.50	0.80
	液状化パラメータ	C_1	-	2.00	2.00	3. 40	2. 27	3. 35	3. 15	3. 82	2.83	1. 44

表 12.2-5(2) 地盤の解析用物性値一覧(非液状化層)

					原地盤					
	パラメータ				第四系(非	液状化層)		新第三系		
				Ac	D2c-3	1m	D1c-1	Km		
物理特	密度 () は地下水位以浅	ρ	g/cm ²	1.65	1. 77	1. 47 (1. 43)	1.77	1.72-1.03×10 ⁻⁴ · z		
性	間隙比	е	1	1. 59	1. 09	2.8	1. 09	1. 16		
	ポアソン比	ν _{CD}	_	0. 10	0. 22	0.14	0. 22	0.16+0.00025 · z		
変形	基準平均有効主応力 () は地下水位以浅	σ' _{ma}	kN/m²	480	696	249 (223)	696	表12.2-6の		
特性	基準初期せん断剛性 () は地下水位以浅	G _{ma}	kN/m²	121829	285223	38926 (35783)	285223	動的変形特性に基づき z (標高) 毎に物性値を 設定		
	最大履歴減衰率	h_{max}	-	0. 200	0. 186	0. 151	0. 186			
強度	粘着力	C_{CD}	$\mathrm{N/mm}^2$	0.025	0.026	0.042	0.026	0.358-0.00603·z		
特性	内部摩擦角	φ _{CD}	度	29. 1	35. 6	27. 3	35. 6	23. 2+0. 0990· z		

z:標高 (m)

表 12.2-5 (3) 地盤の解析用物性値一覧(新第三系 Km 層)


Page 19	区分	設定深度				密度	静ポアソン比	粘着力	内部摩擦角	せん断波	基準初期	基準体積	基準平均有効	拘束圧	最大履歴	動ポアソン比	疎密波	
1	番号	TP(m)	適用	深度 1	TP (m)	ρ	V cn	Ссв	фсв	速度Vs	せん断剛性 Gma	弾性係数 Kma	主応力 σ'ma	依存係数	減衰率	24	速度Vp	1000*Vp
2		-										(,)					_	
2				~														
Total Control			_	~		_												
S	-																	
T	5		5. 5	~	6.5	1.72	0. 16	322	23. 8	428	315, 076	358, 322	504	0. 0	0.106	0.464	1,651	
S	6	5	4. 5	~	5.5	1.72	0.16	328	23.7	429	316, 551	359, 999	504	0. 0	0.106	0.464	1,655	1, 655, 000
S			3. 5		4.5	1.72	0.16	334	23.6	430	318, 028	361, 679	504	0.0	0.106	0.463	1,638	1, 638, 000
12						_												
12																	_	
12												_					_	
13				~		_												
15	14	-3	-3.5	~	-2.5		0.16	376	22. 9	435	325, 467	370, 139	504	0. 0	0.108	0.463	1,657	1, 657, 000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	-4	-4.5	~	-3.5	1.72	0.16	382	22.8	436	326, 965	371, 843	504	0.0	0.108	0.463	1,661	1, 661, 000
18				~													_	
19																		
29	_																	
22																		
22				~													_	
25				~													_	
Section Sect	23	-14	-15	~	-13	1.72		442	21.8	444	339, 074	385, 614	504	0.0	0.111	0.462	1,671	1, 671, 000
28 -20 -21 -21 -21 -17 0.16 479 51.2 448 345.211 392.525 394 0.0 0.112 0.861 1.065 1.065,000 1.07 -22 -23 -23 -23 1.72 0.15 503 30.8 432 331.803 384.870 688 0.0 0.112 0.861 1.065 1.065,000 1.07																		
27				~													_	
28				~														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				~														
1			-27	~	-25	_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	-28	-29	~	-27	1.72	0. 15	527	20.4	455	356, 083	389, 996	498	0. 0	0.114	0.460	1,672	1, 672, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	31	-30	-31	~	-29	1.72	0.15	539	20.2	456	357,650	391, 712	498	0.0	0.114	0.460	1,675	1, 675, 000
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-32		~					20. 0		360, 794		498			0.460	1,683	1, 683, 000
35																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									_									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			_	~		_												
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				~					_									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	38	-44	-45	~	-43	1.72	0. 15	623	18.8	467	375, 113	410, 838	498	0. 0	0.117	0.458	1,678	1, 678, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39	-46	-47	~	-45	1.72	0.15	635	18.6	468	376, 721	412, 599	498	0.0	0.117	0.458	1,681	1, 681, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				~		_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				~														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				~		_												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	~													_	1, 699, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	-60	-61	~	-59	1. 73	0. 15	720	17.3	479	396, 933	434, 736	498	0.0	0.120	0.457	1,702	1, 702, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				~														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									_								_	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	~														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				~														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_															
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			-75	~				804		490			492	0. 0				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54	-76	-77	~	-75	1. 73	0. 14	816	15.7	492	418, 771	442, 036	492	0.0	0.122	0.455	1,712	1, 712, 000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			~														
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_					_												
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																	_	
63 -118 -122 ~ -115 1.73 0.13 1,070 11.5 524 475,016 483,575 486 0.0 0.127 0.451 1,754 1,754,000			_	~														
	62	-112	-115	~	-108	1. 73	0. 13	1, 033	12.1	519	465, 995	474, 391	486	0.0	0.127	0.451	1, 737	1, 737, 000
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						_												
	64	-126	-130	~	-122	1.73	0.13	1, 118	10.7	530	485, 957	494, 713	486	0.0	0.128	0.450	1, 758	1, 758, 000

12.2.6 評価構造物諸元

許容応力度法による照査を行う緊急用海水ポンピットの評価構造物諸元を表 12.2-6 に示す。

表 12.2-6 評価部位とその仕様

	秋 12.2 0 計画的位とでの圧物							
		仕	:様		料			
	部位		部材幅	部材高	コンクリート f'ck	鉄筋	機能要求	
			(m)	(m)	(N/mm²)			
		B 1 F	12. 200	11.600	40	SD345 SD490		
	東西	B1F (開口部)	12. 200	11.600	40	SD345 SD490		
	東西方向断面	B 2 F	12. 200	11. 600	40	SD345 SD490		
鉛	面	B 3 F	12. 200	11. 600	40	SD490		
鉛直断面の設計		B 4 F	12. 200	11. 600	40	SD490		
の設計		B 1 F	11. 600	12. 200	40	SD345 SD490		
計	南北	B1F (開口部)	11. 600	12. 200	40	SD345 SD490		
	南北方向断面	B 2 F	11. 600	12. 200	40	SD345 SD490		
	面面	B 3 F	11. 600	12. 200	40	SD490		
		B 4 F	11. 600	12. 200	40	SD490	緊急用海水ポン プ,緊急用海水系	
	B 1 F		1. 000	2. 000	40	SD345	配管,緊急用海水ポンプ点検用開口	
水平	(B1F (開口部)	6. 200	2. 000	40	SD345	部浸水防止蓋,緊急用海水ポンプ人	
水平断面の設計		B 2 F	1. 000	2. 700	40	SD345	員用開口部浸水防止蓋及び緊急用海	
設計		B 3 F	1. 000	3. 500	40	SD345 SD490	水取水管の間接支 持構造	
		B 4 F	1. 000	3. 500	40	SD345 SD490		
		頂版	1. 000	2. 000	40	SD345 SD490		
版部	中	間スラブ 1	1. 000	2. 000	40	SD345		
版部材の鉛	中間スラブ2		1. 000	2. 000	40	SD345		
設計	中国	間スラブ 3	1. 000	2. 000	40	SD345		
		底版	1. 000	3. 000	40	SD345 SD490		
カル	延長	鉛直	4. 850	4. 200	40	SD345		
バート部	方向	水平	4. 200	4. 850	40	SD345		
1 117	ħ	横断方向	1. 000	1. 000	40	SD345		

12 - 16

12.2.7 地下水位

地下水位は地表面として設定する。

12.2.8 地震応答解析手法

緊急用海水ポンピットの地震応答解析は、地盤と構造物の相互作用を考慮できる2次元有限要素法を用いて、基準地震動に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析にて行う。部材については、はり要素を用い、地盤については平面ひずみ要素を用いることとする。また、地盤については、有効応力の変化に応じた地震時挙動を適切に考慮できるようにモデル化する。地震応答解析については、解析コード「FLIP Ver. $7.3.0_2$ 」を使用する。なお、解析コードの検証及び妥当性確認等の概要については、V-5-10「計算機プログラム(解析コード)の概要」に示す。

地震応答解析手法の選定フローを図 12.2-9 に示す。

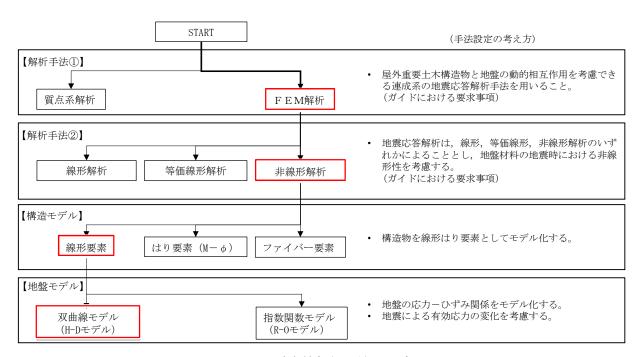


図 12.2-9 地震応答解析手法の選定フロー

地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線の構成則を有効応力解析へ適用 する際は、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線に関するせん断ひずみ 及び有効応力の変化に応じた特徴を適切に表現できるモデルを用いる必要がある。

一般に、地盤は荷重を与えることによりせん断ひずみを増加させていくと、地盤のせん 断応力は上限値に達し、それ以上はせん断応力が増加しなくなる特徴がある。また、地盤 のせん断応力の上限値は有効応力に応じて変化する特徴がある。

よって、耐震評価における有効応力解析では、地盤の繰返しせん断応力~せん断ひずみ 関係の骨格曲線の構成則として、地盤の繰返しせん断応力~せん断ひずみ関係の骨格曲線 に関するせん断ひずみ及び有効応力の変化に応じたこれら2つの特徴を表現できる双曲線 モデル (H-D モデル) を選定する。

12.2.9 解析モデルの設定

(1) 解析モデル領域

地震応答解析モデルは,境界条件の影響が地盤及び構造物の応力状態に影響を及ぼさないよう,十分広い領域とする。具体的には,JEAG4601-1987 を適用し,図 12.2 -10 に示すとおりモデル幅を構造物基礎幅の 5 倍以上,モデル高さを構造物幅の 2 倍以上を保する。

地盤の要素分割については、地盤の波動をなめらかに表現するために、最大周波数 20 Hz 及びせん断波速度 V_s で算定される波長の 5 又は 4 分割、すなわち $V_s/100$ 又は $V_s/80$ を考慮し、要素高さを 1 m 程度まで細分割して設定するとともに、構造物の要素分割については、構造物が接している地盤と同じ要素幅に分割して設定する。

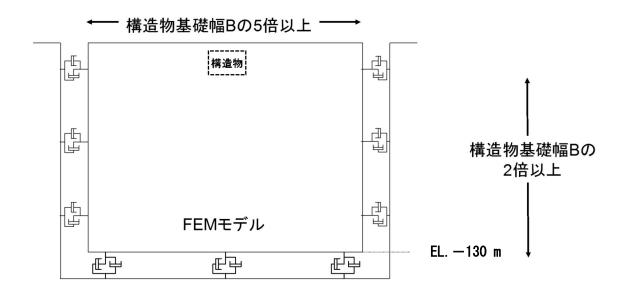


図 12.2-10 モデル範囲の考え方

2次元有効応力解析モデルは、検討対象構造物とその周辺地盤をモデル化した不整形地盤に加え、この不整形地盤の左右に広がる地盤をモデル化した自由地盤で構成される。この自由地盤は、不整形地盤の左右端と同じ地層構成を有する1次元地盤モデル(不整形地盤左右端のそれぞれ縦1列の要素列と同じ地層構成で、水平方向に連続することを表現するために循環境界条件を設定したモデル)である。2次元有効応力解析における自由地盤の初期応力解析から不整形地盤の地震応答解析までのフローを図 12.2-11 に示す。また、緊急用海水ポンピット周辺の地質断面図を図 12.2-12 に示す。

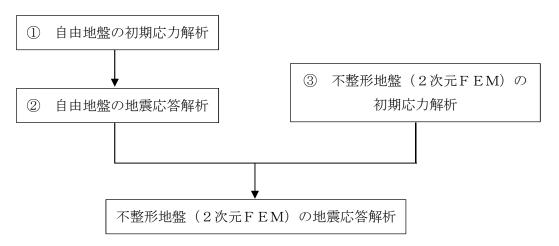


図 12.2-11 自由地盤の初期応力解析から不整形地盤 (2次元FEM) の 地震応答解析までのフロー

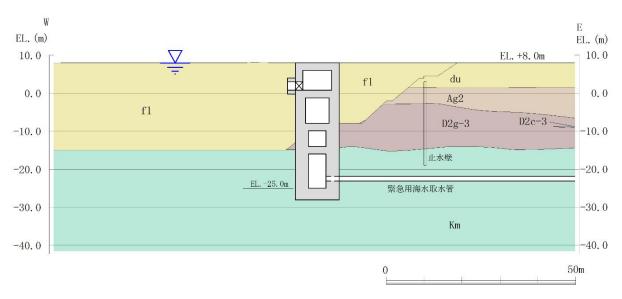


図 12.2-12(1) 地質断面図(東西方向断面)

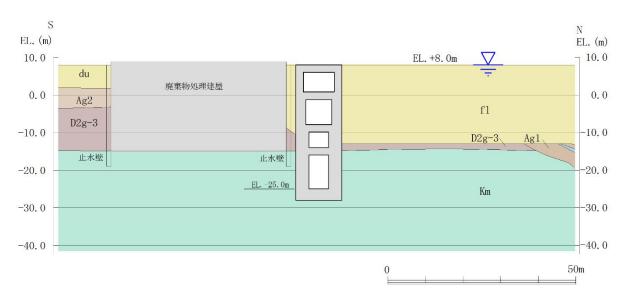


図 12.2-12(2) 地質断面図(南北方向断面)

(2) 境界条件

a. 固有值解析時

固有値解析を実施する際の境界条件は、境界が構造物を含めた周辺地盤の振動特性に影響を与えないよう設定する。ここで、底面境界は地盤のせん断方向の卓越変形モードを把握するために固定とし、側面は実地盤が側方に連続していることを模擬するため水平ローラーとする。境界条件の概念図を図 12.2-13 に示す。

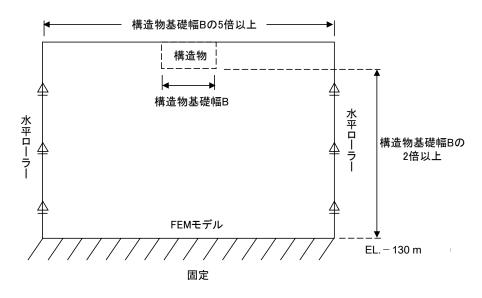


図 12.2-13 固有値解析における境界条件の概念図

b. 初期応力解析時

初期応力解析は、地盤や構造物の自重及び風荷重等の静的な荷重を載荷することによる常時の初期応力を算定するために行う。そこで、初期応力解析時の境界条件は底面固定とし、側方は自重による地盤の鉛直方向の変形を拘束しないよう鉛直ローラーとする。境界条件の概念図を図 12.2-14 に示す。

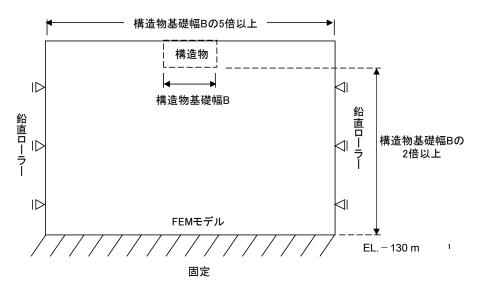


図 12.2-14 初期応力解析における境界条件の概念図

c. 地震応答解析時

地震応答解析時の境界条件については、有限要素解析における半無限地盤を模擬する ため、粘性境界を設ける。底面の粘性境界については、地震動の下降波がモデル底面境 界から半無限地盤へ通過していく状態を模擬するため、ダッシュポットを設定する。側 方の粘性境界については、自由地盤の地盤振動と不成形地盤側方の地盤振動の差分が側 方を通過していく状態を模擬するため、自由地盤の側方にダッシュポットを設定する。

地震応答解析モデルを図 12.2-15 に示す。なお、南北方向断面における廃棄物処理 建屋は、保守的に埋戻土としてモデル化する。

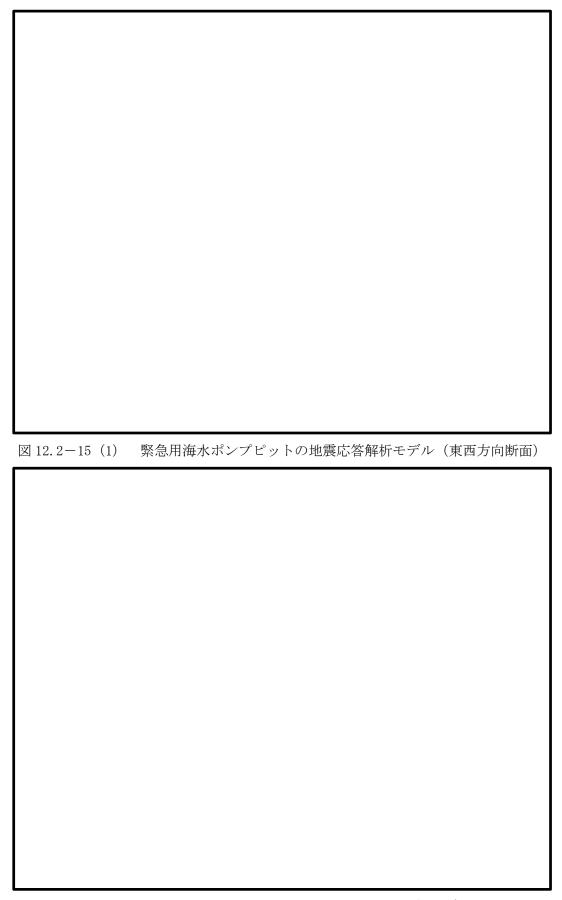


図 12.2-15 (2) 緊急用海水ポンプピットの地震応答解析モデル (南北方向断面)

(3) 構造物のモデル化

緊急用海水ポンプピットは、構造物中心位置において各構造部材と等価な剛性を有する 線形はり要素にてモデル化する。

①立坑構造 (線形はり要素)

図 12.2-17 に示すように各層における開口配置を考慮し、開口を控除した断面諸量 (断面積A、断面2次モーメントI)を設定する。

開口については、開口補強ができない場合(部材厚よりも開口サイズ(1辺の長さ)が 大きい場合を目安とする)には、開口として評価する。また、開口補強が可能な場合(部 材厚よりも開口サイズが小さい場合を目安とする)には、開口を剛性低減しないモデルで 評価し、実配筋としては、開口により配置できない鉄筋と同等以上を開口部周辺に配置す る(周囲への鉄筋の配置で補強が可能な規模の開口については、開口がない部材としての 質量並びに剛性を考慮して断面力を保守的に算定する)。

立坑構造の質量は、各節点位置の節点付加質量として設定する。なお、立坑構造をモデル化した線形はり要素には回転慣性を考慮する。

解析奥行は単位奥行(1.0 m)とする。

②立坑側方(仮想剛梁要素)

立坑の構造部材と地盤との相互作用を考慮するため、構造部材に対して剛な断面性能の仮想剛梁を配置する。

軸剛性=100×EA 曲げ剛性=100×E I

質量密度 $\rho = 0.0$

③側面(仮想柔梁要素)

立坑構造と地盤の接合面にジョイント要素を設けるため、側面に仮想柔梁を配置する。 仮想柔梁は、解析モデルの挙動に影響を及ぼさないよう十分に柔な断面性能とする。

軸剛性= E A/106

曲げ剛性=EI/106

質量密度 $\rho = 0.0$

④底面(仮想剛梁要素)

底面のロッキング挙動を考慮するため、立坑の構造部材に対して剛な断面性能の仮想剛 梁を配置する。

軸剛性=100×EA

曲げ剛性=100×E I

質量密度 $\rho = 0.0$

⑤その他	
側面及び底面と地盤との間にジョイント要素を配置し、接合面の剥離及びすべりを	考慮
する。	
機器配管荷重,内水重量,及び積雪荷重については節点付加質量で考慮する。積雪	まにつ
いては回転慣性を考慮する。	

図 12.2-16 (1) 立坑構造物の解析モデル図(東西方向断面)

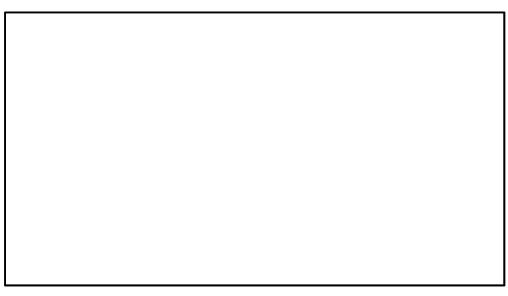


図 12.2-16 (2) 立坑構造物の解析モデル図 (南北方向断面)

構造物はり要素 断面剛性区分 構造物はり要素 A, I ① 頂版 ② B1F(一般部) ③ B1F (開口部) ① 頂版 ② B1F(一般部) ③ B1F(開口部) ④ 中間スラブ1 ④ 中間スラブ1 ⑤ B2F ⑥ 中間スラブ2 ⑤ B2F ⑥ 中間スラブ2 ⑦ B3F ⑧ 中間スラブ3 9 B4F ⑦ B3F ⑧ 中間スラブ3 Ø 9 B4F ① 底版 ⑩ 底版

図 12.2-17 立坑構造物 (線形はり要素) の入力剛性設定 (概念図)

(4) ジョイント要素の設定

地盤と構造体の接合面にジョイント要素を設けることにより、強震時の地盤と構造体の接合面における剥離及びすべりを考慮する。

ジョイント要素は、地盤と構造体の接合面で法線方向及びせん断方向に対して設定する。 法線方向については、常時状態以上の引張荷重が生じた場合、剛性及び応力をゼロとし、 剥離を考慮する。せん断方向については、地盤と構造物の接合面におけるせん断抵抗力以 上のせん断荷重が生じた場合、せん断剛性をゼロとし、すべりを考慮する。図 12.2-18 に、ジョイント要素の考え方を示す。

なお, せん断強度 τ_f は次式の Mohr-Coulomb 式により規定される。 c , ϕ は周辺地盤の c , ϕ とする。(表 12.2-7 参照)

 $\tau_f = c + \sigma' \tan \phi$

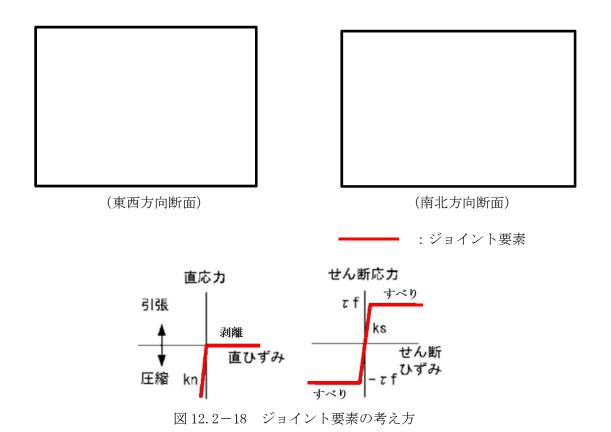
ここで,

τ f : せん断強度

c : 粘着力

φ : 内部摩擦角

表 12.2-7 周辺地盤及び隣接構造物との境界に用いる強度特性


周辺0	り状況	粘着力 C (N/mm²)	内部摩擦角 φ (度)
	埋戻土層	0	37. 3
第四紀層	du 層	0	37.3
	D2g-3 層	0	44.4
新第三系	Km 層	C=0.358-0.00603 • Z	φ =23. 2+0. 0990 • Z

Z:標高(m)

ジョイント要素のばね定数は、数値解析上不安定な挙動を起こさない程度に十分に大きな値として、港湾構造物設計事例集(沿岸技術研究センター)に従い、表 12.2-8 のとおり設定する。

表 12.2-8 ジョイント要素のばね定数

	せん断剛性ks	圧縮剛性kn
	(kN/m^3)	(kN/m^3)
側方及び底面	1.0×10^{6}	1.0×10^{6}

(5) 材料特性の設定

緊急用海水ポンプピットの東西方向断面及び南北方向断面については、側壁、底版、頂版及び中床版を線形はり要素によりモデル化する。

地盤は、マルチスプリング要素及び間隙水要素にてモデル化し、地震時の有効応力の変化に応じた非線形せん断応力~せん断ひずみ関係を考慮する。

12.2.10 減衰特性

動的解析における地盤及び構造物の減衰については、固有値解析にて求まる固有周期及 び減衰比に基づき、質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰にて与える。なお、Rayleigh 減衰を $\alpha=0$ となる剛性比例型減衰とする。

有効応力解析では、時系列で地盤の1次固有振動数が低振動数側へシフトして行くことから、Rayleigh 減衰の係数 α 、 β の両方を用いると、質量比例項の減衰 α [M]の影響により、有効応力解析における減衰定数が低振動数帯で過減衰となる場合がある。

一方,有効応力解析における低振動数帯で減衰 α [M]の影響がない剛性比例型減衰では, 地盤の1次固有振動数が時系列で低振動数側へシフトしていくのに伴い,1次固有振動モ ードに対する減衰定数が初期減衰定数より保守的に小さい側へ変化していくことを考慮で きる。

ゆえに、有効応力解析では、地震力による時系列での地盤剛性の軟化に伴う 1 次固有振動数の低振動数側へのシフトに応じて、1 次固有振動モードに対する減衰定数として、初期減衰定数よりも保守的に小さい側のモード減衰定数を適用し、地盤応答の適切な評価が行えるように、低振動数帯で減衰 α [M]の影響がない剛性比例型減衰を採用した。

 $[C] = \alpha [M] + \beta [K]$

ここで,

[C] :減衰係数マトリックス

[M] :質量マトリックス

[K] : 剛性マトリックス

 α , β :係数

係数 α , β は以下のように求めている。

 $\alpha = 0$

$$\beta = \frac{h}{\pi f}$$

ここで,

f : 固有値解析により求められた1次固有振動数

h : 各材料の減衰定数

地盤の減衰定数は 1%(解析における減衰は、ひずみが大きい領域では履歴減衰が支配的となる。このため、解析上の安定のためになるべく小さい値として 1%を採用している。)とする。また、線形材料としてモデル化するコンクリートの減衰定数は 5%(JEAG4601-1987)とする。

図 12.2-19 に Rayleigh 減衰の設定フローを、表 12.2-9 及び表 12.2-10 に固有値解析結果を示す。

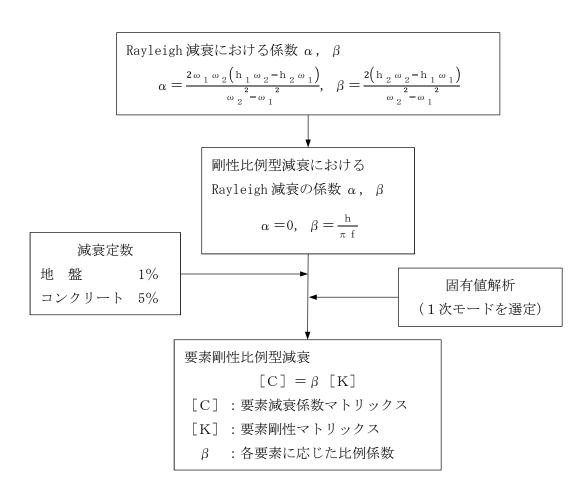


図 12.2-19 Rayleigh 減衰の設定フロー

表 12.2-9(1) 固有値解析結果(東西方向断面)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.721	165. 39	地盤の1次として採用
2	1. 442	-0.23	_
3	1.748	21.72	_
4	2. 024	-46.68	構造物の1次として採用
5	2. 235	14.65	_
6	2. 474	-16. 22	_
7	2.713	13.81	_
8	2.804	15. 15	_
9	3. 130	-16.42	_

表 12.2-9(2) 固有値解析結果(東西方向断面)

(検討ケース②:地盤物性のばらつきを考慮($+1\sigma$)した解析ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.721	165. 46	地盤の1次として採用
2	1. 442	-0.27	_
3	1.757	22. 95	_
4	2.063	48. 42	構造物の1次として採用
5	2. 269	7. 16	_
6	2. 495	14. 17	_
7	2. 768	17. 27	_
8	2.817	12. 04	_
9	3. 161	-15. 38	_

表 12.2-9(3) 固有値解析結果(東西方向断面)

(検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.720	165. 29	地盤の1次として採用
2	1. 441	-0.23	_
3	1.738	-19.52	_
4	1.965	44.04	構造物の1次として採用
5	2. 200	-22.48	_
6	2. 450	17.82	_
7	2.655	11.54	_
8	2. 791	15. 35	_
9	3. 081	-18. 49	_

表 12.2-9(4) 固有値解析結果(東西方向断面)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した検討ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.709	162.09	地盤の1次として採用
2	1. 289	-3.25	
3	1. 431	-39.69	
4	1. 457	0.34	_
5	1.834	-34.80	構造物の1次として採用
6	1. 958	-5.67	
7	2. 205	-17.08	
8	2. 344	-16. 38	_
9	2. 421	-5.75	_

表 12.2-10(1) 固有值解析結果(南北方向断面)

(検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.722	165. 27	地盤の1次として採用
2	1. 444	-0.24	_
3	1.886	20.84	_
4	2.004	48.73	構造物の1次として採用
5	2. 256	-9. 28	_
6	2. 565	17. 21	_
7	2. 924	9. 21	_
8	3. 026	21. 43	_
9	3. 155	18. 28	_

表 12.2-10(2) 固有值解析結果(南北方向断面)

(検討ケース②:地盤物性のばらつきを考慮(+1σ)した解析ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.722	165. 31	地盤の1次として採用
2	1. 445	-0.26	_
3	1.898	23. 19	_
4	2.018	48.03	構造物の1次として採用
5	2. 265	8.38	_
6	2. 577	16.77	_
7	2. 947	-9. 13	_
8	3. 046	22.09	_
9	3. 170	-17. 29	_

表 12.2-10(3) 固有值解析結果(南北方向断面)

(検討ケース③:地盤物性のばらつきを考慮 (-1σ) した解析ケース)

モード次数	固有振動数 (Hz)	刺激係数	備考
1	0.722	165. 22	地盤の1次として採用
2	1. 444	-0.20	I
3	1.871	17. 50	
4	1. 985	49. 48	構造物の1次として採用
5	2. 245	-10.73	
6	2. 550	-17.78	_
7	2.892	-9.38	_
8	2. 997	20. 39	_
9	3. 134	-19. 49	_

表 12.2-10(4) 固有值解析結果(南北方向断面)

(検討ケース④:敷地に存在しない豊浦標準砂の液状化強度特性により

地盤を強制的に液状化させることを仮定した検討ケース)

モード次数	固有振動数(Hz)	刺激係数	備考
1	0.710	162. 34	地盤の1次として採用
2	1. 305	14. 21	ı
3	1. 451	13. 29	
4	1. 494	-35. 75	ı
5	1.847	30. 58	構造物の1次として採用
6	2. 046	20.44	ı
7	2. 263	4. 31	I
8	2. 352	15.83	
9	2. 471	3. 67	

12.2.11 荷重の組合せ

耐震性能照査にて考慮する荷重は、通常運転時の荷重(永久荷重)及び地震荷重を抽出し、それぞれを組み合せて設定する。地震荷重には、地震時土圧、機器・配管系からの反力による荷重が含まれるものとする。

なお、緊急用海水ポンプピットは、地盤内に埋設されている構造物であることから運転 時の異常な過渡変化時の状態及び設計基準事故時の状態の影響を受けないと考えられるた め当該状態についての組合せは考慮しないものとする。また重大事故等対処時においても、 地盤内で設計基準事故時の条件を上回るような事象は発生しないため、設計基準事故時の 条件を上回る荷重はない。

荷重の組合せを表 12.2-11 に示す。

地震時に緊急用海水ポンピットに作用する機器・配管系からの反力については、機器・ 配管系を、解析モデルに付加質量として与えることで考慮する。

種別 荷重 算定方法 ・設計図書に基づいて、対象構造物の体積に材料 躯体自重 \bigcirc の密度を乗じて設定 常時考慮 機器・配管荷重 \bigcirc ・機器・配管の重さに基づいて設定 荷重 土被り荷重 \bigcirc ・常時応力解析により設定 ・恒常的に配置された設備はないことから、考慮 永久 永久上載荷重 荷重 しない。 静止土圧 \bigcirc ・常時応力解析により算定 ・地下水位に応じた静水圧として設定 外水圧 \bigcirc ・地下水の密度を考慮 内水圧 \bigcirc ・海水の密度を考慮 ・雪荷重以外には発電所の立地特性及び構造物の 雪荷重以外 配置状況を踏まえると、偶発荷重(地震荷重) 変動荷重 と組合せるべき変動荷重はない 雪荷重 \bigcirc ・雪荷重を考慮 水平地震動 \bigcirc ・基準地震動S。による水平・鉛直同時加振 ・躯体,機器・配管の慣性力,動土圧を考慮 偶発荷重 鉛直地震動 \bigcirc 動水圧 \bigcirc ・水位条件,密度は,永久荷重と同様

表 12.2-11 荷重の組合せ

(1) 機器・配管荷重

図 12.2-20 に東西方向断面,南北方向断面における機器・配管荷重図を,表 12.2-12 に機器・配管荷重表を示す。

機器・配管荷重は解析の単位奥行き(1 m)あたりの付加質量として立坑線形はり要素位置に考慮する。

配管荷重は立坑線形はり要素構成節点の分担幅を考慮した付加質量を計算し,立坑線形はり要素各節点に考慮する。

機器荷重の固定物荷重については、設置位置に相当する節点に付加質量として考慮する。

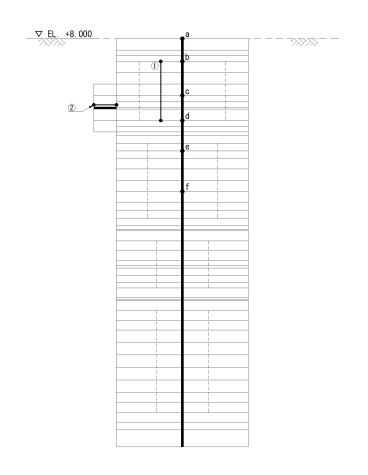


図 12.2-20(1) 機器・配管荷重図(東西方向断面)

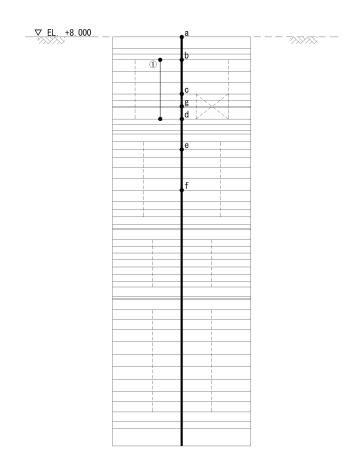
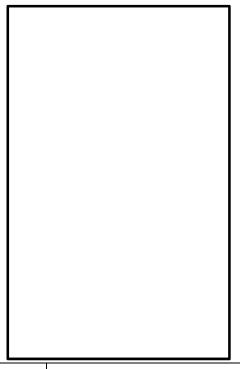


図 12.2-20(2) 機器・配管荷重図(南北方向断面)

表 12.2-12 機器・配管質量表

荷重 No.	種類	質量及び単位	備考
1)	側壁部配管	$0.10 t/m^2$	_
2	カルバート部機器・配管	1.61 t/m	_
a	点検用開口部浸水防止蓋	9.60 t	
b	天井ダクト	6.36 t	_
С	空調機	11.20 t	水平方向のみ適用
d	緊急用海水ポンプ	58.12 t	2 基分の質量
	床スラブ配管	19.07 t	
	空調機	11.20 t	鉛直方向のみ適用
е	ポンプ配管サポート	6.12 t	2 箇所分の質量
f	ポンプ配管サポート	6.12 t	2 箇所分の質量
g	カルバート部機器・配管	6.45 t	_

(2) 外水圧


地下水位は地表面として設定する。設定の際は、地下水の密度として、1.00 g/cm³を考慮する。

(3) 内水圧

緊急用海水ポンプピット内の内水圧水頭は海面と同じ朔望平均満潮位 (T.P.+0.61 m)とする。海水の密度は 1.03 g/cm³とする。

朔望平均満潮位 (T. P. +0.61 m) は、中間スラブ1の上面標高 (T. P. +0.80 m) と中間スラブ1の下面標高 (T. P. -1.20 m) との間にあり、B2F以深は満水状態である。したがって、緊急用海水ポンプピット内の海水は自由水面を持たない固定水としてモデル化する。

内水圧は、構造物をモデル化したはり要素の節点に付加質量として考慮する。緊急用海 水ポンプピット内の内水圧の荷重モデルを図 12.2-21 に示す。

記号	状態	水平	鉛直	内容	
\circ	満水	0		負担高分の水重を付加質量として付加する	
		○ 負担高分の水重を付加質量として付加する		負担高分の水重を付加質量として付加する	
				各フロアの内空容積分の水重を 1/2 ずつ付加質量として中	
•	満水	満水		間スラブ及び底版上面に付加する。	
			初期応力解析時は各フロアの内空容積分の全水重をスラブ		
				及び底版上面に付加質量として設定する。	

図 12.2-21 緊急用海水ポンプピット内水圧の荷重モデル

(4) 雪荷重

雪荷重については、「建築基準法施行令第 86 条」及び「茨城県建築基準法施行細則第 16 条の 4」に従って設定する。積雪の厚さ 1 cm あたりの荷重を 20 N/m²/cm として、積雪量は 30 cm としていることから積雪荷重は 600 N/m² であるが、地震時短期荷重として図 12.2-22 に示すように積雪荷重の 0.35 倍である 0.21 kN/m² を考慮する。

積雪荷重は解析の単位奥行き(1 m)あたりの付加質量として立坑線形はり要素頂部に考慮する。

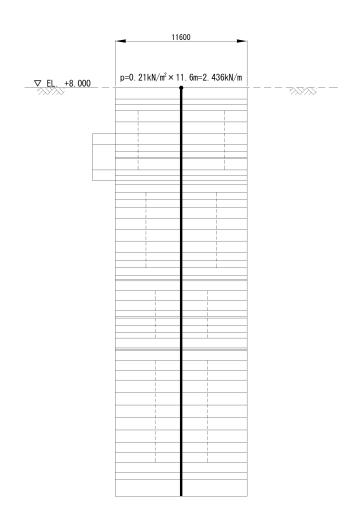


図 12.2-22 (1) 雪荷重図 (東西方向断面)

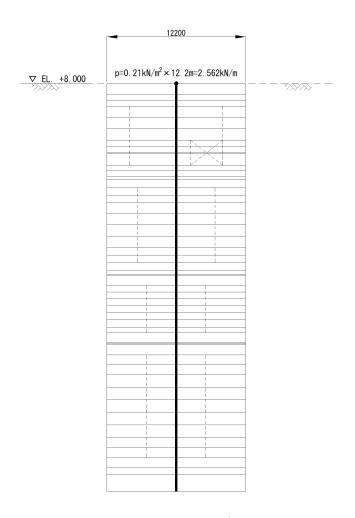


図 12.2-22(2) 雪荷重図(南北方向断面)

12.2.12 地震応答解析の検討ケース

(1) 耐震設計における検討ケース

緊急用海水ポンプピットの耐震設計における検討ケースを表 12.2-13 に示す。

耐震評価においては、すべての基準地震動 S_s に対して実施する①の検討ケース(基本ケース)において、せん断力照査及び曲げ軸力照査をはじめとしたすべての評価項目について、各照査値が最も厳しい(許容限界に対する余裕が最も小さい)地震動を用い、②~⑥より追加検討ケースを実施する。最も厳しい地震動の選定は、照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的に厳しい地震動の選定の目安として実施する。

②~⑥より追加検討ケースを実施する地震動の選定フローを図 12.2-23 に示す。

(2) (3) 4 (5)原地盤に基 地盤物性の 地盤物性の 地盤を強制 原地盤にお 地盤物性のば づく液状化 ばらつきを ばらつきを 的に液状化 いて非液状 らつきを考慮 考慮 (-1 考慮(+1 させること 検討ケース 強度特性を (+1 σ) L 化の条件を σ) した解 用いた解析 σ) した解 を仮定した 仮定した解 て非液状化の ケース(基 析ケース 析ケース 解析ケース 析ケース 条件を仮定し 本ケース) た解析ケース 液状化パラ 原地盤に基 原地盤に基 原地盤に基 敷地に存在 液状化パラ メータを づく液状化 づく液状化 づく液状化 しない豊浦 メータを 液状化強度特性 非適用 強度特性 強度特性 強度特性 標準砂に基 非適用 の設定 (標準偏差 (標準偏差 (標準偏差 づく液状化 を考慮) を考慮) を考慮) 強度特性 (H+V+)実施 (H+V-)実施 $S_s - D_1$ (H-V+)実施 全ての基準地震動Ssに対して実施する①の検討ケー (H-V-)実施 ス(基本ケース)において、せん断力照査及び曲げ軸 地 $S_{s} - 11$ 実施 力照査をはじめとした全ての照査項目について、各照 $S_{s} - 12$ 実施 波 査値が最も厳しい(許容限界に対する余裕が最も小さ 実施 $S_{s} - 13$ 位 $S_{s} - 14$ 実施 い) 地震動を用い、②~⑥より追加検討ケースを実施 相 $S_s = 2.1$ 実施 する。 $S_{s} - 22$ 実施 (H+V+)実施 $S_{s} - 31$ (H-V+)実施

表 12.2-13 耐震評価における検討ケース

注記:構築物間の相対変位の算定を行う場合は、上記の実施ケースにおいて変位量が厳しいケースで行う。

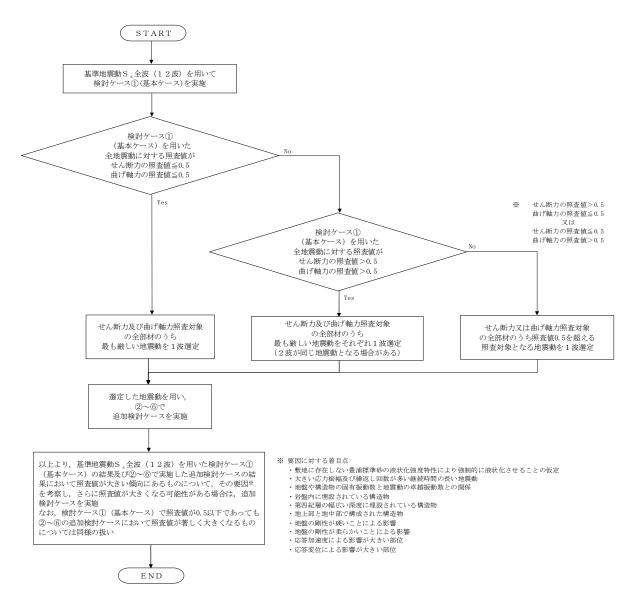


図 12.2-23 ②~⑥より追加検討ケースを実施する地震動の選定フロー

(2) 機器・配管系に対する加速度応答抽出のための検討ケース

機器・配管系に対する加速度応答の抽出における検討ケースを表 12.2-14 に示す。 すべての基準地震動 S_S に対して実施する⑤の検討ケース(原地盤において非液状化の 条件を仮定した解析ケース)において,上載される機器・配管系の固有振動数帯で加速度 応答が最も大きくなる地震動を用い,④及び⑥より追加検討ケースを実施する。

表 12.2-14 機器・配管系への加速度応答の抽出における検討ケース

検討ケース			④ 地盤を強制的に液状 化させることを仮定 した解析ケース	⑤ 原地盤において非液 状化の条件を仮定し た解析ケース	⑥ 地盤物性のばらつき を考慮 (+1 σ) し て非液状化の条件を 仮定した解析ケース
	液状化強度物 の設定	寺性	敷地に存在しない豊 浦標準砂に基づく液 状化強度特性	液状化パラメータを 非適用	液状化パラメータを 非適用
地震波(位担	$S_s - D 1$ $S_s - 1 1$ $S_s - 1 2$ $S_s - 1 3$ $S_s - 1 4$	(H+V+) (H+V-) (H-V-)	全ての基準地震動 Ssに対して実施す る⑤の検討ケース (原地盤において非 液状化の条件を仮定 した解析ケース)に おいて,上載される 機器・配管系の固有 振動数帯で加速度応 答が最も大きくなる 地震動を用い,④及	実施 実施 実施 実施 実施 実施 実施	全ての基準地震動 Ssに対して実施する⑤の検討ケース (原地盤において非 液状化の条件を反した解析ケース) した解析ケース) おいて、配管系の速にる 機器数帯で加速なる 機動数帯で加速なる 地震動を用い、④及
相)	$S_s - 21$ $S_s - 22$			実施実施	
	S _s -31	(H+V+) (H-V+)	び⑥より追加検討ケ ースを実施する。	実施 実施	び⑥より追加検討ケ ースを実施する。

12.3 評価内容

12.3.1 鉛直断面の設計

(1) 鉛直断面の曲げ及び軸力に対する設計

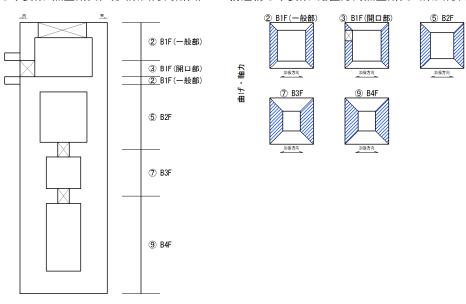
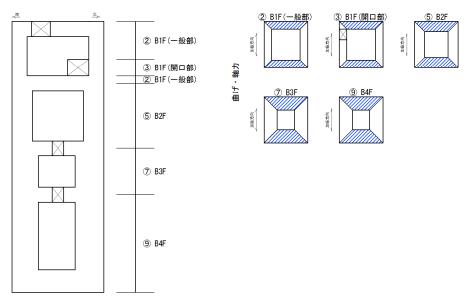

緊急用海水ポンピットは矩形立坑であり、強軸断面方向及び弱軸断面方向が明確でないことから、東西方向断面と南北方向断面の二方向を設計断面として選定する。二方向の断面に対し2次元有効応力解析を実施し部材の耐震安全性評価を行う。矩形立坑の鉛直鉄筋は2次元有効応力解析にて算出される線形はり要素の発生断面力(曲げモーメント及び軸力)を用いて照査を行う。

図 12.3-1 に鉛直鉄筋配置の概念図を示す。東西方向断面及び南北方向断面の各々の方向の地震力に対して、照査に用いる鉛直鉄筋配置を区分し、各々の断面方向を独立して照査する。各方向に対して有効な鉛直鉄筋を配置する範囲は側壁内-内幅及び隅角部 45 度範囲(図 12.3-1 の青塗り範囲)とする。

図 12.3-2 に開口を有する断面において、照査を行う際に有効とする鉛直鉄筋の概念図を示す。開口を有する断面においては、開口部以外に配置される鉄筋のみを有効として照査を行うことで開口の影響を考慮する。

構造物はり要素 照査断面区分(東西方向断面)


構造物はり要素 鉛直方向照査断面 (東西方向断面)

(a) 東西方向断面

構造物はり要素 照査断面区分(南北方向断面)

構造物はり要素 鉛直方向照査断面(南北方向断面)

(b) 南北方向断面

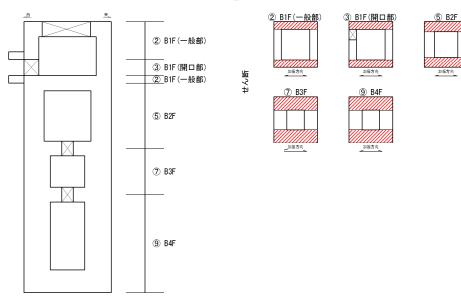
図 12.3-1 各方向の照査で有効となる鉛直鉄筋の概念図



図 12.3-2 開口を有する断面の照査で有効とする鉛直鉄筋の概念図

(2) 鉛直断面のせん断に対する設計

鉛直断面のせん断照査については、発生せん断力(V)に対し図 12.3-3 の有効断面積 (A_w , 図 12.3-3 の赤塗り範囲)で抵抗するものとし、発生せん断応力度($\tau = V/A_w$)がコンクリート標準示方書に示される許容せん断応力度(τ_{a1})以下であることを確認する。


発生せん断応力度が許容せん断応力度(τ_{a1})を超える場合には,発生せん断力(V)がせん断補強筋を考慮した許容せん断力以下であることを確認する。なお,鉛直断面のせん断力に対して配置するせん断補強筋は,水平断面の設計における主鉄筋と同じ方向の鉄筋であり,両設計で必要となる配筋量を足し合わせた配筋量以上を配置する設計を行う。

せん断応力度(τ)は,はり要素断面のウェブに発生するせん断応力度であり,耐震壁に発生する面内せん断応力度相当と考えられる。はりのせん断応力度(τ)の算定に関し,部材厚以上を目安とした開口がある断面においては,開口以外のウェブをせん断有効面積としてせん断力に対する照査を行うことで,開口の影響を考慮する。その上で,せん断補強筋量の決定においては,開口のない側のウェブに部材断面全体のせん断力に対して必要となるせん断補強筋を配置し,さらに開口を有するウェブにも同様の仕様のせん断補強筋を開口以外の箇所に配置する。また,部材厚以下を目安とした小さい開口がある場合は,開口がある側のウェブに配置される水平鉄筋も有効とみなしせん断補強筋の設計を行う。

(せん断補強筋は両ウェブで同じ配筋である。) 開口における水平鉄筋は、開口上下にまわり込ませて配置する。

構造物はり要素 照査断面区分(東西方向断面)

構造物はり要素 鉛直方向照査断面 (東西方向断面)

(a) 東西方向断面

構造物はり要素 照査断面区分(南北方向断面)

構造物はり要素 鉛直方向照査断面(南北方向断面)

(b) 南北方向断面 図 12.3-3 せん断有効面積概念図

構造物はり要素 照査断面区分(東西方向断面)

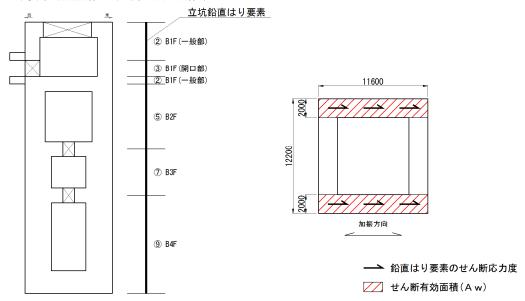


図 12.3-4 矩形立坑を鉛直はり要素でモデル化した場合の断面に生じるせん断応力の概念図

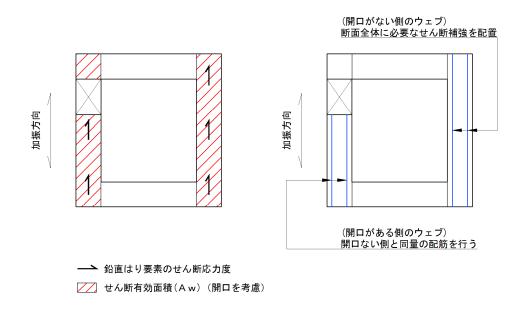
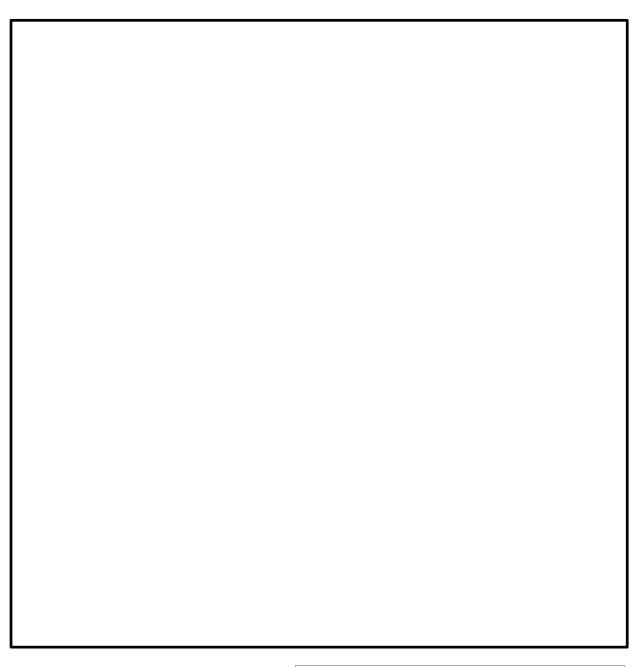
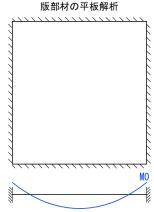


図 12.3-5 ウェブに開口を有する場合のせん断照査概念図

(3) 版部材が側壁を固定することによる隅角部の評価(曲げ)

側壁と版部材の隅角部には、各部材の剛性に起因する端曲げが発生するため、隅角部に おける曲げモーメントの廻り込みに対する影響検討を行う。


a. 版部材の拘束効果による側壁の検討


版部材から側壁に廻り込む曲げモーメントを計算する場合の概念図を図 12.3-6 に示す。

版部材と側壁の隅角部には、版部材の曲げモーメント(M_0)が側壁に廻り込む。また側壁が版部材に支持される拘束効果により、地震時荷重を面外方向に受けた場合に曲げモーメントが反転する(M_1,M_2)。この現象は2次元有効応力解析において考慮することができない。

版部材の端曲げモーメント (M_0) は、境界条件を固定支持としてシェル解析により 算定する。

側壁は版部材中心間距離で固定支持された、単位幅を有する両端固定はりとしてモデル化し、地震時荷重を作用させた場合に、支持位置に発生する曲げモーメント (M_1, M_2) を算定する。

M₀ : 支持条件を固定支持とした版部材の

シェル解析の曲げモーメント

M₁, M₂ : 版部材の拘束効果により側壁に発生

する曲げモーメント

 M_0+max (M_1, M_2) を設計曲げモーメントとし、「鉛直断面の曲げ軸力に対する設計」で1次設定した鉛直鉄筋への影響を検討

図 12.3-6 版部材から側壁に廻り込む曲げモーメント算定概念図

地震時荷重については、地盤反力(地盤要素の水平有効直応力(σ_x ')+間隙水要素の発生応力(Δ_u)の合算値が最大となる時刻の地盤反力分布を用いる。

開口近傍に版部材が存在しない場合については、開口上部にかまち梁を想定し、版部 材とかまち梁中心間をスパンとした両端固定はりにより曲げモーメントを算定する。

本検討において側壁を単位奥行当たりのはり要素でモデル化するが、実際の矩形立坑の形状は図 12.3-7 に示すように直交壁が存在し、側壁の変形を抑制している。側壁に開口補強できない開口が存在しない場合は、図 12.3-7 に示すように立坑の形状ばねを考慮した弾性床上のはり(端部は固定支持)としてモデル化を行い曲げモーメントを算定する。矩形立坑の形状ばねの算定は、「シールド工事用立坑の設計((社)土木学会、平成 27 年 1 月)」に示される通り、側壁及び直交壁で閉鎖された形状に対し、単位荷重を作用させた場合に側壁に発生する最大変位を用いて導出する。

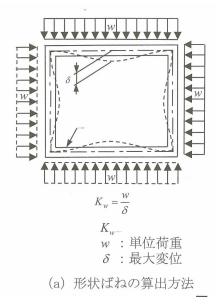


図 12.3-7 矩形立坑の形状ばねの算出方法 (「シールド工事用立坑の設計((社)土木学会,平成27年1月)」)

版部材の端曲げモーメント(M_0)及び版部材に拘束された側壁に発生する端曲げモーメント(M_1, M_2 のうちモーメントの連続性を考えて両者の最大値を用いる)の和を設計曲げモーメントとする。

上記により得られる設計曲げモーメントから鉛直鉄筋の引張応力度を算定し,「(1) 鉛直断面曲げ及び軸力に対する設計」における鉛直鉄筋の引張応力度を加算した照査を 行い,必要な場合は鉛直鉄筋量を増して配置する。

b. 側壁の拘束効果による版部材の検討

版部材については、版部材の端曲げモーメント(M_0)及び側壁から版部材へ廻り込むモーメント(M_1, M_2 のうち最大値)の和を設計曲げモーメントとする。

上記により得られる設計曲げモーメントから版部材主鉄筋の引張応力度を算定し、「12.3.3 版部材の設計」で決定した版部材主鉄筋に対して照査を行い、必要な場合は 鉛直鉄筋量を増して配置する。

12.3.2 水平断面の設計

(1) 設計断面の選定

緊急用海水ポンプピットの水平断面については、側壁を線形はり要素としてモデル化した静的フレーム解析に地震時荷重を作用させたときに発生する断面力に対し、水平鉄筋及びせん断補強筋の設計を行う。

図 12.3-8 に水平断面の設計断面選定図を示す。

緊急用海水ポンプピットは各階層において、側壁部材厚、開口の位置が異なることから、図 12.3-8 に示す 5 断面を選定し設計を行う。

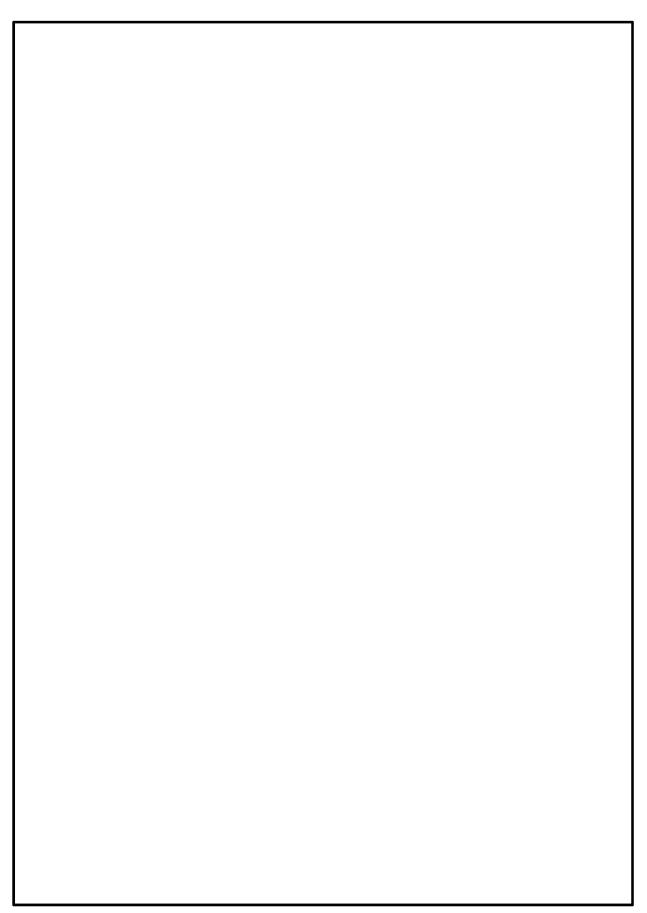


図 12.3-8 設計断面選定図(水平断面)

(2) 解析のモデル化

a. 開口部がない水平断面(B1F(一般部), B2F, B3F, B4F) 水平断面については、側壁の図心位置において線形はり要素としてモデル化した静的 フレーム解析を行う。

境界条件については、「道路橋示方書(I共通編・IV下部構造編)・同解説((社)日本道路協会、平成24年3月) | に準拠し、単純支持とする。

静的フレーム解析におけるはり要素の要素分割については、土木学会マニュアルに準拠し、各分割要素が断面厚さ又は有効高さの1.0倍程度の長さとし、各分割要素が部材の断面厚又は有効高さの2.0倍以下として設定する。

図 12.3-9 に静的フレーム解析における剛域の考え方を示す。静的フレーム解析においては、「コンクリート標準示方書〔構造性能照査編〕 ((社)土木学会 2002 年制定)」に準拠し、隅角部に剛域を設ける。

静的フレーム解析においては、解析コード「FREMING Ver. 14.1B」を使用する。なお、解析コードの検証及び妥当性確認等の概要については、V-5-10「計算機プログラム(解析コード)の概要」に示す。

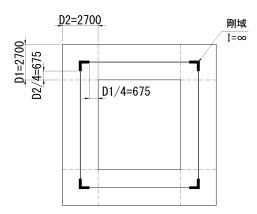


図 12.3-9 静的フレーム解析における剛域の考え方

b. 開口部を含む水平断面(B1F(開口部))

側壁に開口がある場合については、側壁を線形はり要素としてモデル化し、開口部は 開口部上下に位置する部材に相当する等価剛性を入力した静的フレーム解析により水平 断面の照査を行う。

等価剛性の設定にあたっては、図 12.3-8 に示す全高中に開口上下の部材及び開口部が存在するが、これら剛性を足し合わせた、それを解析奥行 1.0 m 相当にして入力する。全高とする範囲は、開口が存在する側壁に接続する上下床版の上面から下面までとする。

得られた断面力に対し水平鉄筋を決定するが、等価剛性を入力した部材については、 スターラップで内外主鉄筋を拘束するはりの配筋を施すことで対応する。

境界条件,はり要素の要素分割及び剛域の設定は,a. 開口部がない水平断面と同じ 設定とする。

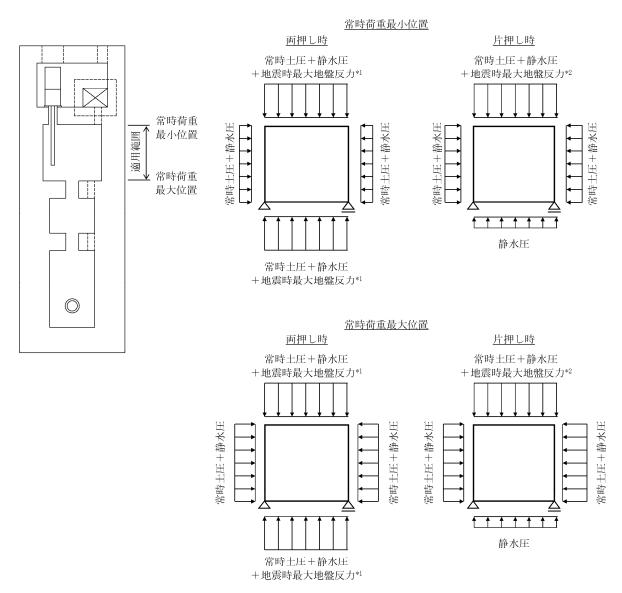

(3) 荷重条件

図 12.3-10 に水平断面の荷重図を示す。

地盤と構造物の連成系モデルによる 2 次元有効応力解析の結果に基づき,水平断面の検討では,構造物の両側に地盤からの最大荷重を作用させる場合(両押し時)と,片側のみに地盤からの最大荷重を作用させる場合(片押し時)の 2 つの荷重状態について検討する。水平断面の設計荷重として,図 12.3-10 に示すように,両押し時は, 2 次元有効応力解析により得られる構造物側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x)+間隙水要素の発生応力(Δ_u))の全時刻の最大値を抽出し,構造物平面の両側から同じ最大荷重を常時荷重と共に作用させる。

片押し時は、両押し時と同じ地震時地盤反力の最大値を構造物平面の片側から最大荷重 として常時荷重と共に作用させる。

常時荷重については常時土圧及び静水圧を考慮する。設計断面の適用範囲ごとに最浅部 (最小)及び最深部(最大)の常時荷重を算定し、図 12.3-10 に示すように、水平断面 の静的フレーム解析に用いる。

注記 *1:立坑上下地盤の「常時土圧+静水圧+地震時最大地盤反力」を両側に作用させる。 *2:立坑上下地盤の「常時土圧+静水圧+地震時最大地盤反力」を片側に作用させる。

図 12.3-10 水平断面の荷重図

12.3.3 版部材の設計

(1) 頂版及び中間スラブの設計

頂版及び中間スラブについては、開口形状を模擬した静的線形シェル解析により設計断面力を算定する。

スパンは頂版及び中間スラブが接続する側壁の中心間距離とし、境界条件は単純支持とする。

設計荷重は、面外方向に躯体及び機器類の慣性力を静的に作用させる。頂版については 積雪の慣性力、中間スラブに関しては、内水(固定水)の慣性力を考慮する。

慣性力については、2次元有効応力解析により各版部材位置における最大鉛直加速度を 算定し、重力加速度で除することで鉛直設計震度を求め算定する。

単純支持による静的線形シェル解析により求めた主鉄筋を、頂版及び中間スラブ上下面 に格子状に配置する。

シェル解析の要素分割については、土木学会マニュアルに準拠して、各分割要素が断面 厚さ又は有効高さの 1.0 倍程度の長さとし、各分割要素が部材の断面厚又は有効高さの 2.0 倍以下として設定する。

シェル要素のアスペクト比については、「コンクリート構造物の設計に FEM 解析を適用するためのガイドライン(1989 年 3 月 日本コンクリート工学協会)」を参考に原則 1:1とし、最大でも 1:5 程度を限度とする。

静的線形シェル解析においては、解析コード「MSC Nastran Ver. 2018. 0.1」を使用する。なお、解析コードの検証及び妥当性確認等の概要については、V-5-10「計算機プログラム(解析コード)の概要」に示す。

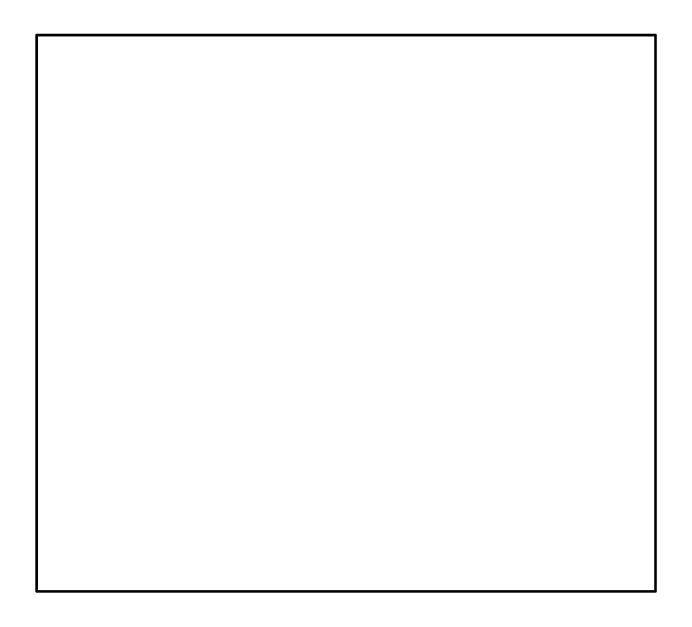


図 12.3-11 頂版及び中間スラブ平面図

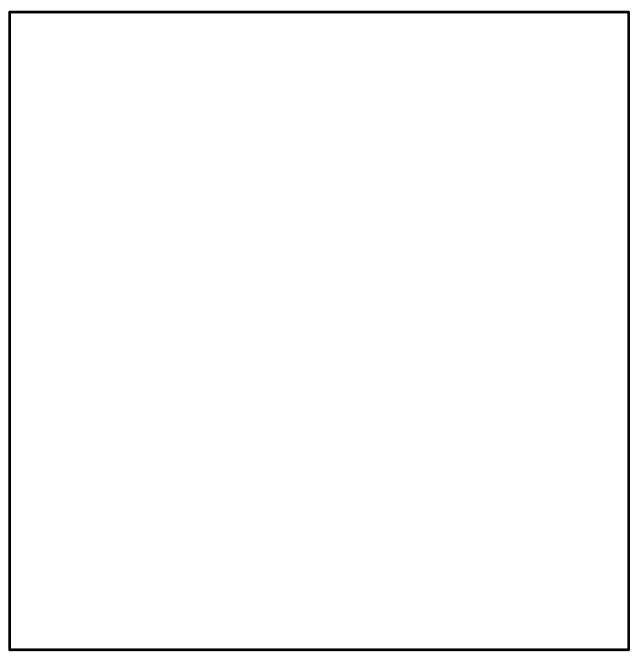


図 12.3-12 頂版及び中床版シェル解析概念図

(2) 底版の設計

底版は接続する側壁の中心間距離をスパンとした静的線形シェル解析により設計断面力 を算定する。境界条件は単純支持とする。

設計荷重は 2 次元有効応力解析において,仮想剛梁要素(底面)下面の地盤要素に発生する鉛直方向有効直応力(σ_y ')及び間隙水要素の発生応力(Δ_u)の底版幅方向合力が最大となる時刻を抽出し,その時刻における地盤反力分布を作用させる。また,静水圧も分布荷重として考慮する。

線形シェル解析における要素分割は、頂版及び中間スラブにおける設定と同じとする。 単純支持による線形シェル解析により求めた断面力に対して必要とされる主鉄筋を、底 版上下面に格子状に配置する。

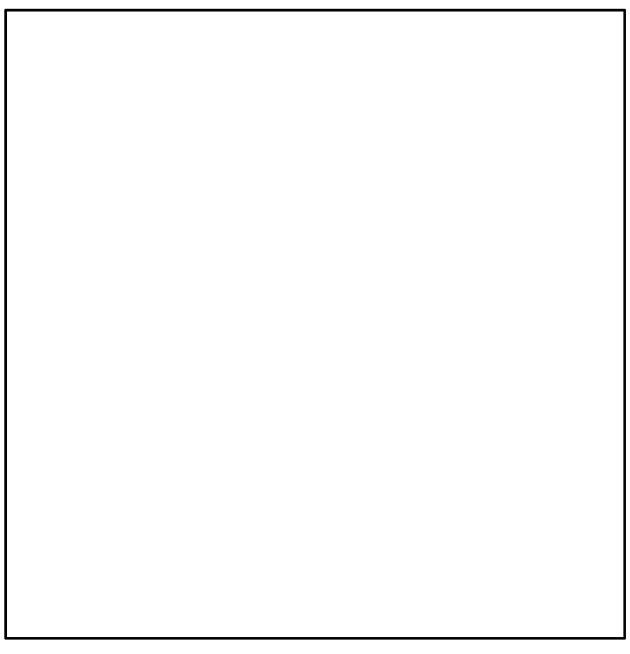


図 12.3-13 底版シェル解析概念図

12.3.4 カルバート部の設計

(1) カルバート延長方向の設計

カルバート部の延長方向の設計は、鉛直方向及び水平方向に対して実施する。ただし、 鉛直方向については、「12.3.1 鉛直断面の設計」における2次元有効応力解析のうち、 東西方向断面の検討において、カルバート部を線形はり要素としてモデル化し、部材評価 を実施することから、ここでは水平方向の検討方針について示す。

カルバート部延長方向は,緊急用海水ポンピット本体の側壁外面を固定端とする片持ち梁としてモデル化する。地震時にカルバート部に作用する水平荷重として,南北方向断面の 2次元有効応力解析により得られるカルバート側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x)+間隙水要素の発生応力(Δ_u))の全時刻の最大値を抽出し,作用させる。

図12.3-14 カルバート延長方向(水平)の概念図

(2) カルバート横断方向の設計

a. 解析のモデル化

カルバート横断方向の設計は,「12.3.2 水平断面の設計」に示す,緊急用海水ポンプピットの水平断面と同様に,頂版,底版及び側壁を線形はり要素としてモデル化した静的フレーム解析に地震時荷重を作用させたときに発生する断面力に対して,各部材の曲げ軸力に対する照査及びせん断に対する照査を行う。

境界条件については、「12.3.2 水平断面の設計」と同様に単純支持とする。

静的フレーム解析におけるはり要素の要素分割については、土木学会マニュアルに準拠し、各分割要素が断面厚さ又は有効高さの1.0倍程度の長さとし、各分割要素が部材の断面厚又は有効高さの2.0倍以下として設定し、隅角部には剛域を設ける。

静的フレーム解析においては、解析コード「FREMING Ver. 14.1B」を使用する。なお、解析コードの検証及び妥当性確認等の概要については、V-5-10「計算機プログラム(解析コード)の概要」に示す。

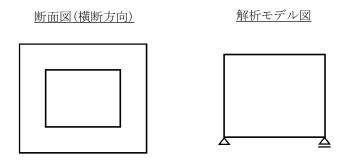
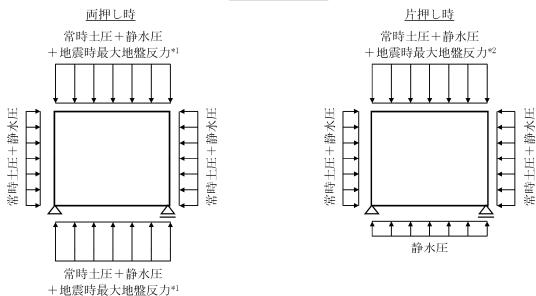


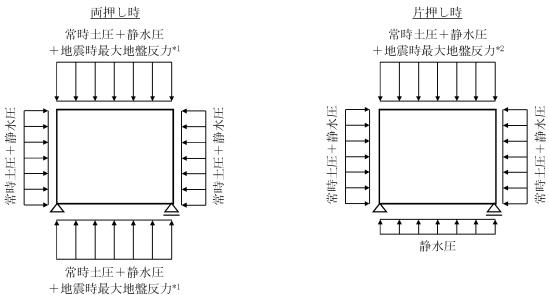
図 12.3-15 カルバート横断方向の解析モデル概念図

b. 荷重条件

図 12.3-16 にカルバート横断方向の荷重図を示す。


カルバート横断方向の検討は、地震時荷重がカルバートの上下から作用するケースとカルバートの左右から作用するケースを実施する。地盤と構造物の連成系モデルによる2次元有効応力解析の結果に基づき、カルバートの上下、又は左右の地盤からの最大荷重を両側作用させる場合(両押し時)と、片側のみに地盤からの最大荷重を作用させる場合(片押し時)の各々2つの荷重状態について検討する。

カルバート横断方向の設計荷重として,図 12.3-16 に示すように,両押し時は,2 次元有効応力解析により得られるカルバート上下,又は側方の地震時地盤反力(地盤要素の水平有効直応力(σ_x ')+間隙水要素の発生応力(Δ_u))の全時刻の最大値を抽出し,カルバートの上下,又左右の両側から同じ最大荷重を常時荷重と共に作用させる。

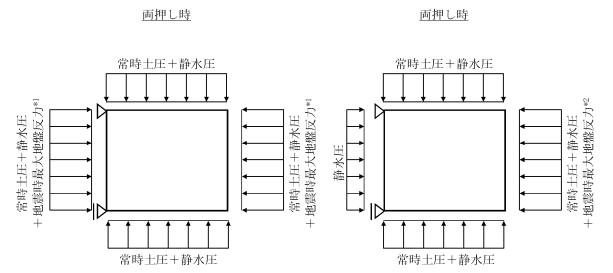

片押し時は、両押し時と同じ地震時地盤反力の最大値を上下、又は左右の片側から最大荷重として常時荷重と共に作用させる。

常時荷重については常時土圧及び静水圧を考慮する。カルバート部の最小及び最大の常時荷重を算定し、図 12.3-16 に示すように、カルバート横断方向の静的フレーム解析に用いる

常時荷重最小位置

常時荷重最大位置

注記 *1:カルバート上下地盤の「常時土圧+静水圧+地震時最大地盤反力」を両側に作用させる。 *2:カルバート上下地盤の「常時土圧+静水圧+地震時最大地盤反力」を片側に作用させる。


図 12.3-16(1) カルバート横断方向の荷重図(上下方向)

常時荷重最大位置

常時土圧+静水圧

常時土圧+静水圧

注記 *1:カルバート左右地盤の「常時土圧+静水圧+地震時最大地盤反力」を両側に作用させる。 *2:カルバート左右地盤の「常時土圧+静水圧+地震時最大地盤反力」を片側に作用させる。

図 12.3-16(2) カルバート横断方向の荷重図(左右方向)

十地震時最大地盤反力*2