東海第二発電所 審査資料				
資料番号	PS-C-2 改 30			
提出年月日	平成 30 年 9 月 12 日			

東海第二発電所

重大事故等対策の有効性評価

補足説明資料

平成 30 年 9 月 日本原子力発電株式会社

本資料のうち, は営業秘密又は防護上の観点から公開できません。

- 目 次
- 1. 原子炉水位及びインターロックの概要
- 2. 炉心燃料格子について
- 3. 逃がし安全弁出口温度による炉心損傷の検知性について
- 4. ほう酸水注入系起動後の炉心状態(冷却材保有量等)について
- 5. 原子炉停止機能喪失時の運転点について
- 6. 非常用炉心冷却系等における系統圧力上昇時の対応操作について
- 7. 有効性評価における解析条件の変更等について
- 8. SAFER における高圧炉心スプレイ系等の自動起動信号の模擬について
- 9. 緊急用海水系を用いた残留熱除去系による格納容器除熱
- 10. 米国等の知見に照らした原子炉停止機能喪失事象の解析条件の妥当性
- 原子炉停止機能喪失時における給水流量低下操作の考え方と給水ランバックの自動化を今後の課題とする理由
- 12. 全制御棒挿入失敗の想定が部分制御棒挿入失敗により出力に偏りが生じ た場合を包絡しているかについて
- 13. 原子炉停止機能喪失の 300 秒以降の燃料被覆管温度挙動について
- 14. 給水ポンプトリップ条件を復水器ホットウェル枯渇とした場合の評価結果への影響
- 15. ADS自動起動阻止操作の失敗による評価結果への影響
- 16. TRACGコードのATWS解析への適用例
- 17. 常設重大事故等対処設備を可搬型設備に置き換えた場合の成立性
- 18. 原子炉冷却材浄化系吸込弁の閉止操作について
- 19. 格納容器圧力挙動について

目-1

- 20. 再循環系のランバック機能について
- 21. 東海第二の有効性評価解析に対する解析コード適用性について
- 22. 溶融炉心が原子炉圧力容器下部の偏心位置より落下した場合の影響評価
- 23. 格納容器ベント時に使用するベントラインによるC s 137 の放出量の 差の要因等について
- 24. ジルコニウム(Zr)-水反応時の炉心損傷状態について
- 25. 残留熱除去系レグシールライン弁の閉止操作について

1 原子炉水位及びインターロックの概要

原子炉水位関連の主要インターロックの概要を第1表に示す。

原子炉水位	設定点 (原子炉圧力容 器 <u>底</u> 部から)	主要なインターロック
L8: 原子炉水位高(レベル8)	+1,481cm	原子炉隔離時冷却系トリップ 高圧炉心スプレイ系注入弁閉止
L3: 原子炉水位低(レベル3)	+1,372 cm	原子炉スクラム 非常用ガス処理系自動起動
L2: 原子炉水位異常低下(レベル2)	+1,243 cm	原子炉隔離時冷却系自動起動 高圧炉心スプレイ系自動起動 主蒸気隔離弁閉止 再循環系ポンプ全台(2台)トリップ
L1: 原子炉水位異常低下(レベル1)	+961 cm	残留熱除去系(低圧注水系)自動起動 低圧炉心スプレイ系自動起動 自動減圧系タイマー作動 [※]

第1表 インターロック概要

※:ドライウェル圧力高信号とのアンド条件で作動

2 炉心燃料格子について

(単位:mm)

格 子 名 称	特徵	a (制御棒 ピッチ)	b	с	d (チャンネル ボックス内 幅)	適用プラント例
D 格子	制御棒側の水ギャップ		約 157	約 148	約 134	BWR2(敦賀1) BWR3(福島第一・1,島根1) BWR4(福島第一・2~5, 浜岡1~2,女川1)
C格子	燃 料 集 合 体 間 ピッチ が 等 間 隔	約 305	約 305 約 152	約 152		BWR5(福島第一・6, 福島第二・1~2,東海第二)
S 格 子	 燃料集合体間ピッチが等間 隔 チャンネルボックス内幅が C 及び D 格子より小 				約 132	BWR5(福島第二・3~4, 柏崎刈羽1~5,島根2, 志賀1,女川2,浜岡3~4)
N 格子	燃料集合体間ピッチが等間 隔 チャンネルボックス内幅が C 及びD格子と同じで制御棒ピ ッチ大	約 310	約 155	約 155	約 134	ABWR(柏崎 6~7)

出典:「沸騰水型原子力発電所 炉心燃料格子形状」(HLR-049)

補足 2-1

3 逃がし安全弁出口温度による炉心損傷の検知性について

炉心損傷開始の判断は,格納容器雰囲気放射線モニタにより行うが,逃がし 安全弁(以下「SRV」という。)出口温度(排気管温度)による炉心損傷の 検知性については以下のとおり。

1. SRV排気管温度の計装設備概要

SRV排気管温度は,原子炉運転中にSRVからの漏えいを検出するため に、SRVの吐出配管に設けており,測定範囲は0℃~300℃である。温度検 出器は、SRV本体からの熱伝導による誤検出を防ぐために,弁本体から十 分離れた位置に取り付けている。(第1図参照)

2. 原子炉水位低下時の原子炉圧力容器内温度の概略挙動

事故発生後,原子炉水位が低下する過程において,炉心が冠水した状態では,炉心部及び原子炉圧力容器ドーム部の温度は,ともに定格原子炉圧力 (6.93MPa[gage])ないしはSRV動作圧力(安全弁機能の最大 8.31MPa[gage])に対応する飽和蒸気温度近傍(約286℃~約299℃)となる。 さらに,原子炉水位が低下すると,炉心が露出した炉心部と原子炉圧力容 器ドーム部は過熱蒸気雰囲気となり,温度は飽和蒸気温度を超えて上昇する。

3. SRV排気管温度による炉心損傷の検知性

事故発生後, SRVによる減圧を行うと, SRV排気管温度は原子炉圧力 容器ドーム部の温度に相当する温度を指示すると考えられる。

原子炉水位の低下により炉心が露出し,原子炉圧力容器ドーム部が過熱蒸 気雰囲気となっている状態でSRVを開放した場合,SRV排気管温度の指

補足 3-1

示値は、飽和蒸気温度近傍よりも高い温度を示し、更に過熱度が大きいと温度計の測定範囲(300℃)を超えるため、指示値はオーバースケールになると考えられる。

一方, 炉心が露出した場合において, 炉心は蒸気冷却等により健全性を維持している場合と, 損傷している場合が考えられる。

したがって,不確実さはあるものの,SRV排気管温度計のオーバースケ ールにより炉心損傷を検知できる可能性がある。

4. SRV排気管温度計測と原子炉圧力容器温度計測

SRV排気管温度と原子炉圧力容器温度は中央制御室にて確認可能である が、故障等より中央制御室で確認できない場合、中央制御室において可搬型 計測器による測定が可能である。可搬型計測器による測定が必要になった場 合は、炉心損傷確認の精度が高い原子炉圧力容器温度の測定を優先する。

第1図 逃がし安全弁排気管温度の概略設置図

4 ほう酸水注入系起動後の炉心状態(冷却材保有量等)について

ほう酸水注入完了後に残留熱除去系(原子炉停止時冷却系)を運転しても原 子炉の未臨界確保が可能であることを以下に示す。

○原子炉の未臨界確保の確認

残留熱除去系(原子炉停止時冷却系)を起動する時点では,ほう酸水は原子 炉圧力容器内でほぼ均一化された状態にある。東海第二発電所のほう酸濃度設 計値は1,000ppmであることから,これを起点として評価する。

残留熱除去系(原子炉停止時冷却系)は、炉水を再循環系ポンプ(A)入口 弁の前から取水し、残留熱除去系ポンプ、熱交換器を介し、再循環系ポンプ出 ロ弁下流又は原子炉隔離時冷却系の原子炉圧力容器頭部スプレイノズル(残留 熱除去系(原子炉停止時冷却系)A系を用いた場合)へ戻すことにより、冷却 された炉水を再び原子炉圧力容器へ注入する。残留熱除去系配管に存在する系 統水は、ジェットポンプノズル又は原子炉圧力容器頂部スプレイノズルを通り、 セパレータからの再循環流と混合し、ダウンカマ領域に注入される。

原子炉停止後に残留熱除去系(原子炉停止時冷却系)を起動した場合の全炉 心流量は 12,000m³/h~14,000m³/h 程度(実績値)であり,ここから残留熱 除去系系統流量を差し引いた流量が再循環流量である。残留熱除去系(原子炉 停止時冷却系)を起動した場合の全炉心流量を 12,000m³/h と仮定すると,ほ う素を含まない残留熱除去系系統水 1,692m³/h(0ppm)はジェットポンプノズ ルから噴射され,1,000ppmのほう素を含む再循環流 10,308m³/h(=全炉心流 量 12,000m³/h-残留熱除去系系統流量 1,692m³/h)を吸引合流し,ジェット ポンプを下降し、下部プレナムを通過して炉心部に到達するまでの間に十分混 合されて 859ppm の混合水となり、炉心部へと流入する。

<混合水の濃度の算出>

$$\frac{1,692\text{m}^3/\text{h} \times 0\text{ppm} + 10,308\text{m}^3/\text{h} \times 1,000\text{ppm}}{1,692\text{m}^3/\text{h} + 10,308\text{m}^3/\text{h}} = 859\text{ppm}$$

各部位における流量とほう素濃度をまとめて第1図に示す。残留熱除去系配 管に存在するほう素を含まない系統水がダウンカマ領域に注入されても炉心に 流入する時には約859ppmのほう素濃度となっており,東海第二発電所のほう酸 水注入系の系統設計上,冷温停止に必要なほう素濃度である600ppmを満足して いるため未臨界性は維持される。

以上より,残留熱除去系(原子炉停止時冷却系)により,残留熱除去系配管 に存在するほう素を含まない系統水が注入されることを考慮しても,安全余裕 を確保できる。

5 原子炉停止機能喪失時の運転点について

事故シーケンスグループ「原子炉停止機能喪失」について,運転特性図上に 運転点の推移を示した図を,第1図として示す。

第1図 「原子炉停止機能喪失」における運転特性図上での運転点の推移

6 非常用炉心冷却系等における系統圧力上昇時の対応操作について

プラント運転中に弁の開閉試験を実施している高圧炉心スプレイ系,原子炉 隔離時冷却系,低圧炉心スプレイ系及び残留熱除去系(低圧注水系)において, 系統圧力上昇が発生した場合の対応操作を警報処置手順書に定めている。

警報処置手順書に定めている系統圧力降下操作及び高圧側境界弁の開閉操作 を実施しても圧力上昇が解消されない場合,保安規定第32条「非常用炉心冷却 系及び原子炉隔離時冷却系の系統圧力監視」(以下「第32条」という。)に基 づいて対応することとなる。なお,第32条に定められている運転上の制限は, 「原子炉冷却材の漏えいにより過圧されていないこと」であり,その判断基準 を警報処置手順書に定めている。

また,プラント運転中に弁の開閉試験を実施しない残留熱除去系(原子炉停 止時冷却系)吸込み配管については系統圧力上昇発生時の対応操作として,警 報処置手順書に定められている系統圧力降下操作及び格納容器外側隔離弁の増 締め操作を実施するが,これらの操作を実施しても圧力上昇が解消されない場 合はプラント通常停止対応をすることになる。

なお,非常用炉心冷却系ポンプの手動起動試験後に,隔離された非常用炉心 冷却系の系統水が温度上昇し,系統の圧力が上昇する傾向が見られる場合があ る。

この場合における圧力の変化は緩やかな上昇傾向を示すが,有効性評価のイ ンターフェイスシステムLOCAで想定している圧力の変化は急激な上昇傾向 を示す。また,前者はポンプ手動起動試験後に,後者は注入弁の開閉試験時に 発生する可能性があり,圧力上昇が発生するタイミングも異なることから,両 者の識別は可能である。

補足 6-1

【警報処置手順書】「HPCS PUMP SUCTION PRESS HI/LO」

【警報処置手順書】※低圧の系統を代表して「RHR PUMP A DISCH PRESS ABNORMAL HI/LO」

【警報処置手順書】「RCIC PUMP SUCTION PRESS HIGH」

【警報処置手順書】「RHR SHUTDOWN HEADER PRESS HIGH」

7 有効性評価における解析条件の変更等について

1. 有効性評価における解析条件の変更について

各シーケンスの有効性評価における解析条件の変更について1.1から1.4に, 解析条件の変更前後の評価結果を別紙1に示す。

1.1 炉心損傷防止の有効性評価における解析条件の変更について

東海第二発電所の重大事故等対策の有効性評価について,先行プラントの 審査状況,東海第二発電所の設備設計の進捗等を踏まえ,設置変更許可申請 時点から解析条件を変更した。第1表に主要な変更内容,以下に概要を示す。

(1) 高圧・低圧注水機能が喪失した場合の原子炉減圧操作条件の変更

申請時は,原子炉減圧操作条件として原子炉水位が原子炉水位異常低下 (レベル1)設定点に到達してから10分の時間余裕を考慮していたが,設 備設計の進捗に伴い運転手順に基づく前段の操作・確認事項(状況判断, 高圧代替注水系の操作失敗等)の積み上げ時間(約25分後)に変更した。

(2) 炉心損傷防止対策における常設低圧代替注水系ポンプを用いた代替格納 容器スプレイ冷却系(常設)のスプレイ流量の変更

申請時は,従前の運転手順に基づき常設低圧代替注水系ポンプを用いた 代替格納容器スプレイ実施時の流量として 110m³/h を設定していたが, サプレッション・プール水位の上昇が早くなり,格納容器圧力逃がし装置 等による格納容器除熱までの操作時間余裕の観点で厳しい条件として,運 転手順の流量調整範囲(102m³/h~130m³/h)における上限としてスプレ イ流量を130m³/hに変更した。

(3) 常設低圧代替注水系ポンプを用いた代替格納容器スプレイ冷却系(常設) のスプレイ停止基準の変更

申請時は,従前の運転手順に基づき代替格納容器スプレイの停止の基準 を,サプレッション・プール水位がウェットウェルベントラインから 1m 下に到達した時点と設定していたが,格納容器ベントに伴うサプレッショ ン・プール減圧沸騰による一時的な水位上昇の影響を考慮し,通常水位+ 6.5mに変更した。

(4) 原子炉圧力制御時に期待する逃がし安全弁機能の変更

申請時は,通常動作する逃がし安全弁(逃がし弁機能)に期待していた が,逃がし安全弁(逃がし弁機能)の駆動用窒素を供給する不活性ガス系 が重大事故等対処設備ではないことを考慮し,「原子炉停止機能喪失」の有 効性評価を除き駆動に窒素を必要としない逃がし安全弁(安全弁機能)に 期待した原子炉圧力制御に変更した。また,「原子炉停止機能喪失」につい ては,原子炉水位が高めに維持された方が反応度の観点で厳しい想定であ ること及び高圧炉心スプレイ系の原子炉注水流量は原子炉圧力に依存する ことを考慮し,原子炉圧力制御は逃がし安全弁(逃がし弁機能)に期待す ることとしている。

なお,逃がし安全弁(自動減圧機能)の手動による原子炉減圧操作時に 逃がし安全弁の駆動用窒素を供給する非常用窒素供給系は重大事故等対処 設備に位置づける。

(5) 原子炉隔離時冷却系等の水源の変更

申請時は、復水貯蔵タンクに期待した有効性評価を実施していたが、基

準地震動の審査状況を踏まえ復水貯蔵タンクは耐震性の観点から重大事故 等対処設備には位置づけないこととし,低圧代替注水系(常設)の水源は 代替淡水貯槽,高圧炉心スプレイ系及び原子炉隔離時冷却系の水源はサプ レッション・チェンバに変更した。また,代替淡水貯槽は地下設置とする ことから水温を30℃とした。

(6) 「全交流動力電源喪失(長期TB)」操作条件の変更

原子炉隔離時冷却系の水源をサプレッション・チェンバに変更したこと に伴い、「全交流動力電源喪失(長期TB)」の有効性評価では、原子炉隔 離時冷却系の運転継続性が確認されているサプレッション・プール水温度 約 106℃に到達するまでに可搬型代替注水ポンプを用いた低圧代替注水系 (可搬型)による原子炉注水に移行する操作条件に変更した。また、低圧 代替注水系(可搬型)の可搬型代替注水中型ポンプは、原子炉注水と格納 容器冷却とを同時に実施する容量を確保していることから、可搬型代替注 水中型ポンプを用いた代替格納容器スプレイ冷却系(可搬型)による格納 容器冷却を実施する操作条件に変更した。

(7) 「原子炉停止機能喪失」初期条件,操作条件等の変更

初期条件の炉心流量は、反応度の観点で厳しい条件として運転範囲の下 限である 85%流量に変更した。

原子炉隔離時冷却系の水源をサプレッション・チェンバに変更したこと に伴い,「原子炉停止機能喪失」の有効性評価では,サプレッション・プー ル水温度 106℃にて原子炉隔離時冷却系による原子炉注水を停止する操作 条件に変更した。

また、原子炉注水については給水系、高圧炉心スプレイ系及び原子炉隔

離時冷却系により実施するが、このうち、原子炉隔離時冷却系による注水 が炉内の体積計算(マスバランス計算)に反映されないことが分かったた め、反映されるように修正した。

(8) 「格納容器バイパス (インターフェイスシステムLOCA)」破断面積の 変更

申請時は,保守的に残留熱除去系(低圧注水系)注水配管の全周破断を 想定していたが,構造健全性評価の結果,隔離弁の誤開等により低圧設計 部分が過圧された場合でも破損が発生しないことが確認されたため,IS LOCA発生時の構造健全性評価を踏まえ,保守的に残留熱除去系熱交換 器フランジ部に21 cm²の漏えいが発生する想定に変更した。

(9) 緊急用海水系の設置

敷地に遡上する津波を考慮した場合にも使用可能な常設の重大事故等対 処設備として緊急用海水系を設置することとした。これに伴い、「2.4.1 崩 壊熱除去機能喪失(取水機能が喪失した場合)」において期待する代替の海 水取水設備を代替残留熱除去系海水系から緊急用海水系に変更した。ただ し、操作条件(格納容器除熱の開始)及び機器条件(除熱性能)について 変更はない。

なお,代替残留熱除去系海水系については自主対策設備として整備する。

第1表 解析条件の主要な変更内容(炉心損傷防止対策)

解析条件	変更前 (申請時)	変更後
(1)高圧・低圧注水機能が喪 失した場合の原子炉減 圧操作	原子炉水位異常低下(レベル 1) 到達の 10 分後	前段の操作・確認事項の積み 上げ時間(25分後)
(2) 炉心損傷防止対策にお ける代替格納容器スプ レイ冷却系(常設)のス プレイ流量	110m ³ /h	130m ³ /h
 (3)代替格納容器スプレイ 冷却系(常設)のスプレ イ停止基準(サプレッション・プール水位) 	ベントラインー1m	通常水位+6.5m
 (4)原子炉圧力制御時に期 待する逃がし安全弁機 能 (原子炉停止機能喪失 を除く) 	逃がし弁機能	安全弁機能
(5)原子炉隔離時冷却系等 の水源	復水貯蔵タンク	代替淡水貯槽 サプレッション・チェンバ
(6)「全交流動力電源喪失(長期TB)」マネジメント	可搬型設備に期待しない	可搬型設備による原子炉注水 及び格納容器冷却に期待
(7)「原子炉停止機能喪失」	【運転員等操作】	
マネジメント,初期炉心	原子炉隔離時冷却系により	サプレッション・プール水温
流量 	注水継続(復水貯蔵タンク水 源)	度 106℃にて原子炉隔離時冷 却系による原子炉注水を停止
	【初期炉心流量】	
	100%流量	85%流量
(8)「格納容器バイパス(イ ンターフェイスシステ ムLOCA)」破断面積	低圧注水系注入配管の両端 破断(463 cm ²)	構造健全性評価を踏まえた破 断(熱交換器フランジ部,21 cm ²)
(9)緊急用海水系の設置	代替残留熱除去系海水系(可 搬型設備) ・機器条件;約24MW ・操作条件(格納容器除熱開 始);格納容器圧力 0.279MPa[gage]到達時	 緊急用海水系(常設設備) ・機器条件;約24MW ・操作条件(格納容器除熱開始);格納容器圧力 0.279MPa[gage]到達時

1.2 格納容器破損防止対策の有効性評価における解析条件の変更について

東海第二発電所の重大事故等対策の有効性評価について,先行プラントの 審査状況,東海第二発電所の設備設計の進捗等を踏まえ,設置変更許可申請 時点から解析条件を変更した。第2表に主要な変更内容,以下に概要を示す。

(1) 炉心損傷後の格納容器スプレイ流量の変更

申請時は,運転手順に従い炉心損傷後の格納容器スプレイ流量を250m³ /hとしていたが,130m³/hのスプレイ流量でも十分な格納容器圧力の抑 制効果が確認されたことから,原子炉注水及び格納容器スプレイを同時に 実施する際の原子炉注水流量の最大化及び炉心損傷前後のスプレイ流量の 統一の観点で,炉心損傷後の格納容器スプレイ流量を130m³/hに変更し た。

(2) 代替循環冷却系及び緊急用海水系の起動

格納容器除熱手段の強化及び格納容器ベント遅延のため,重大事故等対 処設備として,代替循環冷却系及び緊急用海水系を追設することとしてい るため,代替循環冷却系及び緊急用海水系の機能に期待した有効性評価を 実施することに変更した。

なお,代替循環冷却系は信頼性の観点から2系統設置することとしており,有効性評価のベースケースではA系を用いた解析を実施しているが, 感度解析としてB系を用いた解析も実施している。

(添付資料 3.1.3.1)

(3) 格納容器内への窒素注入の実施

申請時は、格納容器内酸素濃度が可燃限界に到達しないことをウェット

条件にて確認することにしていたが,格納容器ベントによる排出ガスが格 納容器圧力逃がし装置の系統内において蒸気凝縮することを考慮すると, 可燃限界濃度を超える可能性があるため,ドライ条件においても可燃限界 濃度未満に維持するように,格納容器内への窒素注入を実施することに変 更した。

なお,酸素発生量を厳しく評価する観点から,設計基準事故ベースのG 値を用いた場合の評価においては,窒素供給後も格納容器内の酸素濃度が 上昇するため,窒素注入量を200Nm³/hから400Nm³/hに増加させる手順 を整備し,それに沿った解析を実施して酸素濃度が低下することを確認し ている。

(4) 炉心損傷後の格納容器ベント実施基準の変更

申請時は、炉心損傷後の格納容器ベントの実施基準を格納容器限界圧力 0.62MPa[gage]到達時としていたが、中央制御室からの遠隔操作による格納 容器ベント失敗後に現場操作による格納容器ベント操作を実施するための 時間を考慮し、格納容器スプレイの停止基準であるサプレッション・プー ル水位が通常水位+6.5m到達時に変更した。

(5) 格納容器スプレイ実施基準の追加

原子炉圧力容器が破損し,溶融炉心がペデスタル(ドライウェル部)の 水プールに落下した際の格納容器圧力の上昇を抑制するため,原子炉圧力 容器破損を判断した場合に300m³/hにて代替格納容器スプレイ冷却系(常 設)により格納容器スプレイを実施する基準を追加した。

(6) 格納容器内初期酸素濃度の変更

申請時は,格納容器内の初期酸素濃度を,保安規定で定める格納容器内酸素濃度の上限値である4.0vo1%と設定していたが,事故時の格納容器内酸素濃度をドライ条件にて可燃限界濃度未満に維持するため,(3)の変更と合わせ,保安規定で定める格納容器内酸素濃度の上限値及び評価条件の初期酸素濃度を2.5vo1%に変更することにした。

(7) ペデスタル(ドライウェル部)水張りマネジメントの変更

東海第二発電所の特徴(鉄筋コンクリート製ペデスタル)を踏まえ,水 蒸気爆発の発生を仮定した場合の発生応力によるペデスタル健全性に対す る裕度を向上する観点から,原子炉圧力容器破損時のペデスタル(ドライ ウェル部)の水張り水位を可能な限り下げる対応として,1m水位とした。 また,水位管理を確実に実施するため,通常運転時からペデスタル(ド

ライウェル部)水位を1mに維持する設計を採用している。

ただし,原子炉圧力容器破損に至らない事故シーケンス(雰囲気圧力・ 温度による静的負荷(格納容器過圧・過温破損)及び水素燃焼)において は,格納容器圧力及び雰囲気温度の挙動を厳しく評価するため,ペデスタ ル(ドライウェル部)の水を評価上考慮しないこととした。

(8) コリムシールドの設置

上記(7)の対策に併せて,溶融炉心落下時のペデスタル健全性への影響を 抑制する観点から,ペデスタル(ドライウェル部)内にジルコニア耐熱材 製のコリウムシールドを設置することとしており,これを考慮した有効性 評価を実施することに変更した。

解析条件	変更前 (申請時)	変更後
(1) 炉心損傷後の格納容器ス プレイ流量の変更	250m ³ /h	130m³⁄h
(2)代替循環冷却系及び緊急用海水系の起動	_	事象発生 90 分後に起動
(3)格納容器内への窒素注入 の実施	_	格納容器内酸素濃度4.0vol% (ドライ)に到達した時点で, 200Nm ³ /h にて注入
(4) 炉心損傷後の格納容器ベント実施基準の変更	0.62MPa[gage] (2Pd) 到達 時	サプレッション・プール水位 が通常水位+6.5m 到達時
(5)格納容器スプレイ実施基準の追加	_	原子炉圧力容器破損を判断し た時点で,300m ³ /hにて実施
(6)格納容器内初期酸素濃度 の変更	4.0vo1%	2.5vo1%
 (7)ペデスタル(ドライウェル 部)水張りマネジメントの 変更 	事象発生後に 6.1m 水張り	通常運転時から 1m 水張り
(8)コリムシールドの設置	_	ペデスタル (ドライウェル部) 内にジルコニア耐熱材製のコ リウムシールドを設置

第2表 解析条件の主要な変更内容(格納容器破損防止)

1.3 使用済燃料プールの有効性評価における解析条件の変更について

東海第二発電所の使用済燃料プールにおける重大事故等対策の有効性評価 について,先行プラントの審査状況,東海第二発電所の設備設計の進捗等を 踏まえ,設置変更許可申請時点から評価条件を変更した。第3表に主要な変 更内容,以下に概要を示す。

(1) 燃料の崩壊熱

申請時から,燃料の崩壊熱の評価方法を変更し,その値を精緻化した。 この変更に伴い,評価に用いる崩壊熱を,申請時の評価結果である約9.9MW から,約9.1MWに変更した。

(2) 使用済燃料プールの保有水量

申請時は、使用済燃料プールの保有水量としてキャスクピットを含めた 約1,273m³としていたが、運用上キャスクピットが隔離される可能性を考 慮し、キャスクピットを除外した使用済燃料プール保有水量(約1,189m³) に変更した。

(3) 使用済燃料プールへの注水開始時間の変更

申請時は,異常事象の認知,代替燃料プール注水系(可搬型)の準備に 要する時間等を考慮して,事象発生から6時間後に注水を開始するものと していたが,放射線の遮蔽が維持される水位到達までの時間余裕を考慮し, 使用済燃料プールへの注水開始時間を事象発生から8時間後に変更した。

評価条件	変更前(申請時)	変更後
(1)燃料の崩壊熱	約 9.9MW	約 9.1MW
(2)使用済燃料プールの保 有水量	約 1,273m ³	約 1,189m ³
(3)使用済燃料プールへの 注水開始時間	事象発生から6時間後	事象発生から8時間後

第3表 評価条件の主要な変更内容(想定事故1,想定事故2)

1.4 運転停止中原子炉における燃料損傷防止対策の有効性評価における評価
 条件の変更について

東海第二発電所の運転停止中の原子炉における重大事故等対策の有効性評価について,先行プラントの審査状況,東海第二発電所の設備設計の進捗等を踏まえ,設置変更許可申請時点から評価条件を変更した。第4表に主要な変更内容,以下に概要を示す。

(1)「崩壊熱除去機能喪失」及び「原子炉冷却材の流出」における原子炉注水 開始時間の変更

申請時は、「崩壊熱除去機能喪失」及び「原子炉冷却材の流出」における 原子炉注水開始時間を、事象の認知に要する時間と操作に要する時間を含 めて事象発生から1時間後としていたが、事象の認知に要する時間に更に 時間余裕を見込んで、原子炉注水開始時間を事象発生から2時間後に変更 した。

(2) 全交流動力電源喪失における残留熱除去系(原子炉停止時冷却系)の海水 系の変更及び原子炉の除熱操作開始時間の変更

申請時は、代替残留熱除去系海水系による残留熱除去系(原子炉停止時 冷却系)の運転を評価条件としていたが、新たに設置した緊急用海水系を 用いた残留熱除去系(原子炉停止時冷却系)の運転を評価条件とすること に変更した。この変更に伴い、原子炉の除熱開始時間を事象発生後23時間 から事象発生後4時間10分に変更した。

なお,代替残留熱除去系海水系については自主対策設備として整備する。

(3) 原子炉冷却材の流出における原子炉初期水位の変更

申請時に評価対象としていたPOS-Aは,通常運転水位の期間におい ては警報や緩和設備の自動起動に期待できることや,原子炉ウェル水張り 実施中においては既に原子炉注水を開始していることより,事象発生後, 速やかな原子炉水位の回復が可能である。このため,警報や緩和設備の自 動起動に期待できず,原子炉ウェルの水張りが完了しているPOS-Bを 評価対象とすることとした。

評価条件	変更前(申請時)	変更後
 (1)「崩壊熱除去機能喪失」 及び「原子炉冷却材の流 出」における炉心への注 水開始時間 	事象発生から1時間後	事象発生から2時間後
 (2)「全交流動力電源喪失」 における残留熱除去系 (原子炉停止時冷却系) 	代替残留熱除去系海水系	緊急用海水系
の海水系及び原子炉の 除熱操作開始時間	事象発生から23時間後	事象発生から4時間10分後
(3)「原子炉冷却材の流出」における原子炉初期水位の変更	通常運転水位	原子炉ウェル満水の水位

第4表 評価条件の主要な変更内容(運転停止中原子炉における燃料損傷防止)

- 2. 有効性評価における柏崎刈羽6,7号炉との主要な相違点について
- 2.1 炉心損傷防止の有効性評価における柏崎刈羽6,7号炉との主要な相違点について
- (1) 高圧·低圧注水機能喪失

	項目	東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER · CHASTE / MAAP	東海第二では、燃料被覆管温度の評価項目に対する余裕を考慮し、SAFER
				コードによる保守的な評価結果を提示している。
事故条件	外部電源	外部電源あり	外部電源あり	相違点はない。
				東海第二では, 運転員等操作の観点では外部電源がない場合も考慮してい
				る。
機器条件	逃がし安全弁(原子炉圧力	安全弁機能	逃がし弁機能	東海第二では、原子炉圧力が高めに維持され、また、原子炉減圧時に原子
	制御時)			炉圧力が所定の圧力に到達するまでの時間が遅くなることで、評価項目に
				対して厳しい条件となる安全弁機能に期待している。
	格納容器圧力逃がし装置	第二弁全開	格納容器二次隔離弁 70%開度	運用の違い。
	等			東海第二では,格納容器ベント実施時は格納容器圧力逃がし装置の第二弁
				を全開とする運用としている。
操作条件	逃がし安全弁(自動減圧機	事象発生から25分後	事象発生から14分後	設定時間は違うが、操作時間の積み上げに基づき設定しているという点で
	能)による原子炉急速減圧			は実態として相違点はない。
	操作			

(2) 高圧注水·減圧機能喪失

ſ	項目	東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
事故条件	外部電源	外部電源あり	外部電源あり	相違点はない。
				東海第二では, 運転員等操作の観点では外部電源がない場合も考慮してい
				る。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では、原子炉圧力が高めに維持され、また、原子炉減圧時に原子
	子炉圧力制御時)			炉圧力が所定の圧力に到達するまでの時間が遅くなることで、評価項目に
				対して厳しい条件となる安全弁機能に期待している。
低圧ECCS	の台数	残留熱除去系(低圧注水系)3台及び低	低圧注水系1台	東海第二においては,高圧注水・減圧機能喪失時の機能喪失状態を考慮し,
		圧炉心スプレイ系		自動起動する低圧ECCS全台による原子炉注水を設定している。
				なお,残留熱除去系(低圧注水系)1台による原子炉注水を想定した場合
				の感度解析を実施し、この場合にも評価項目を満足することを確認してい
				る。

(3) 全交流動力電源喪失(長期TB)

:	項目	東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, 評価項目に対して厳しい条
	子炉圧力制御時)			件となる安全弁機能に期待している。
交流電源復旧	日までの原子炉注水	原子炉隔離時冷却系(水源:サプレッシ	原子炉隔離時冷却系(復水貯蔵	東海第二においては,原子炉隔離時冷却系の水源をサプレッション・チェ
手段		ョン・チェンバ)にて原子炉注水を実施	槽水源)にて原子炉注水を実施	ンバとしていることから、サプレッション・プール水温度上昇により原子
		し,事象発生の8時間1分後に原子炉を		炉隔離時冷却系が機能喪失するまでに交流動力電源を必要としない可搬
		減圧し、低圧代替注水系(可搬型)によ		型の原子炉注水に切り換えることとしている。
		る原子炉注水を実施		
格納容器冷却・除熱手段		格納容器圧力 0.279MPa[gage]到達時に	事象発生の 16 時間後に格納容	東海第二においては, 運転手順に従い代替格納容器スプレイ冷却系(可搬
		代替格納容器スプレイ冷却系(可搬型)	器ベントを実施し,交流電源復	型)による格納容器冷却を実施することとしている。これに伴い、交流電
		による格納容器冷却を実施し、格納容器	旧後に残留熱除去系による格	源に期待可能な事象発生の24時間後まで格納容器圧力が格納容器ベント
		ベントは実施せず, 交流電源復旧後に残	納容器除熱を実施	実施基準(0.31MPa[gage])に到達しないことから,格納容器ベントでは
		留熱除去系による格納容器除熱を実施		なく, 交流電源復旧後に残留熱除去系による格納容器除熱を実施すること
				としている。

(4)	全交流動力電源喪失	(TBD,	TBU)
(-)		(- 2 2)	/

項目		東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, 評価項目に対して厳しい条
	子炉圧力制御時)			件となる安全弁機能に期待している。
交流電源		24 時間交流電源の復旧に期待しない	24 時間交流電源の復旧に期待	相違点はない。
			しない	
交流電源復H	日までの原子炉注水	高圧代替注水系にて原子炉注水を実施	高圧代替注水系(復水貯蔵槽水	東海第二においては, 高圧代替注水系の水源をサプレッション・チェンバ
手段		し,事象発生の8時間1分後に原子炉を	源)にて原子炉注水を実施	としていることから, サプレッション・プール水温度上昇により高圧代替
		減圧し、低圧代替注水系(可搬型)によ		注水系が機能喪失するまでに交流動力電源を必要としない可搬型の原子
		る原子炉注水を実施		炉注水に切り換えることとしている。
格納容器冷却・除熱手段		格納容器圧力 0.279MPa[gage]到達時に	事象発生の16時間後に格納容	東海第二においては, 運転手順に従い代替格納容器スプレイ冷却系(可搬
		代替格納容器スプレイ冷却系(可搬型)	器ベントを実施し,交流電源復	型)による格納容器冷却を実施することとしている。これに伴い、交流電
		による格納容器冷却を実施し、格納容器	旧後に残留熱除去系による格	源に期待可能な事象発生の24時間後まで格納容器圧力が格納容器ベント
ベントは美		ベントは実施せず,交流電源復旧後に残	納容器除熱を実施	実施基準(0.31MPa[gage])に到達しないことから,格納容器ベントでは
留熱除去系による格納容器除熱を実		留熱除去系による格納容器除熱を実施		なく, 交流電源復旧後に残留熱除去系による格納容器除熱を実施すること
				としている。

(5) 全交流動力電源喪失(TBP)

項目		東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
機器条件	逃がし安全弁(原 子炉圧力制御時)	安全弁機能	逃がし弁機能	東海第二では、原子炉圧力が高めに維持されることで、評価項目に対して 厳しい条件となる安全弁機能に期待しているが、事象発生時に逃がし安全 弁1個の開固着が発生する本事故シーケンスでは実態として相違点はない。
交流電源		24 時間交流電源の復旧に期待しない	24 時間交流電源の復旧に期待 しない	相違点はない。

(6) 朋環熱际去機能喪矢(取水機能か喪矢した場	(6)	崩壞熱除去機能喪失	(取水機能が喪失した場合	`)
--------------------------	-----	-----------	--------------	------------

I	頁 目	東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
事故条件	外部電源	外部電源なし	外部電源なし	相違点はない。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, 評価項目に対して厳しい条
	子炉圧力制御時)			件となる安全弁機能に期待している。
格納容器冷却・除熱手段		格納容器圧力 0.279MPa[gage]到達時に	代替格納容器スプレイ冷却系	実際には残留熱除去系の起動準備が完了した時点で、サプレッション・プ
		緊急用海水系を用いた残留熱除去系(格	による格納容器冷却を実施	ール水温度が 32℃を超過している場合は残留熱除去系 (サプレッション・
		納容器スプレイ冷却系) による格納容器	し、事象発生の20時間後に代	プール冷却系)の運転,格納容器圧力が245kPa[gage]を超過している場合
		除熱を実施	替原子炉補機冷却系を用いた	は残留熱除去系(格納容器スプレイ冷却系)の運転を実施するが、東海第
			残留熱除去系による格納容器	二では、操作余裕時間を確認する観点で、評価上は格納容器圧力が代替格
			除熱を実施	納容器冷却の実施基準である 0.279MPa[gage]に到達した時点で残留熱除
				去系(格納容器スプレイ冷却系)の運転を開始するものと設定している。

(7) 崩壊熱除去機能喪失(残留熱除去系が故障した場合)

項目		東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER/MAAP	SAFER/MAAP	相違点はない。
事故条件	外部電源	外部電源あり	外部電源あり	相違点はない。
				東海第二では,運転員等操作の観点では外部電源がない場合も考慮して
				いる。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, 評価項目に対して厳しい
	子炉圧力制御時)			条件となる安全弁機能に期待している。
	格納容器圧力逃	第二弁全開	格納容器二次隔離弁 70%開度	運用の違い。
	がし装置等			東海第二では,格納容器ベント実施時は格納容器圧力逃がし装置の第二
				弁を全開とする運用としている。
原子炉減圧後の原子炉注水手段		低圧代替注水系(常設)による原子炉注	高圧炉心注水系による原子炉	東海第二においては、原子炉減圧時の水位回復性能を確認する観点で、
		水	注水	評価上は注水流量が小さい低圧代替注水系(常設)に期待した評価とし
				ている。

(8) 原子炉停止機能喪失

項目		東海第二	柏崎刈羽6,7号炉	理由
解析コード		REDY / SCAT	REDY / SCAT	相違点はない。
初期条件	炉心流量	85%流量	100%流量	東海第二においては、反応度の観点で厳しい条件として、初期炉心流量
				を運転範囲の下限である 85%流量(41,060 t/h)に設定している。
操作条件	自動減圧系等の	事象発生から4分後	自動減圧系の自動起動阻止操	10 分以内の操作に期待しているという点で相違はないが、東海第二に
	作動阻止操作		作に成功する	おいては,原子炉停止機能喪失の確認及び自動減圧系等の作動阻止操作
				に要する時間を考慮して設定している。
	ほう酸水注入系	事象発生から6分後	原子炉スクラムの失敗を確認	東海第二においては,自動減圧系等の作動阻止操作の後にほう酸水注入
	の起動操作		した後から 10 分後に起動	系の起動操作に要する時間を考慮して設定している。
	残留熱除去系(サ	事象発生から17分後	サプレッション・チェンバ・	東海第二においては、状況の確認及び残留熱除去系(サプレッション・
	プレッション・プ		プール水温49℃到達から10分	プール冷却系)による格納容器除熱操作に要する時間を考慮して設定し
	ール冷却系)によ		後	ている。
	る格納容器除熱			
	操作			
(9) LOCA時注水機能喪失

項目		東海第二	柏崎刈羽6,7号炉	理由	
解析コード		SAFER/MAAP	SAFER • CHASTE / MAAP	東海第二では、燃料被覆管温度の評価項目に対する余裕を考慮し、SAFER	
				コードによる保守的な評価結果を提示している。	
事故	起因事象	再循環系配管の破断	原子炉圧力容器下部のドレン	破断箇所は、液相部配管を選定しており、実態として相違点はない。	
条件		破断面積は 3.7 cm ²	配管の破断	破断面積は,絶対値の違いはあるが,燃料被覆管の破裂防止が可能な最	
			破断面積は 1cm ²	大面積を解析により確認し,事象進展に有意な差がないことを確認した	
				上で,本事故シーケンスの特徴を代表できる条件を設定しているという	
				点で、実態として相違点はない。	
	外部電源	外部電源なし	外部電源なし	相違点はない。	
機器	逃がし安全弁(原子炉圧力制御	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, また, 原子炉減圧時に原	
条件	時)			子炉圧力が所定の圧力に到達するまでの時間が遅くなることで,評価項	
				目に対して厳しい条件となる安全弁機能に期待している。	
	格納容器圧力逃がし装置等	第二弁全開	格納容器二次隔離弁 70%開度	運用の違い。	
				東海第二では,格納容器ベント実施時は格納容器圧力逃がし装置の第二	
				弁を全開とする運用としている。	
操作	逃がし安全弁(自動減圧機能)の	事象発生から25分後	事象発生から14分後	設定時間は違うが,操作時間の積み上げに基づき設定しているという点	
条件	手動による原子炉減圧操作(低圧			では相違点はない。	
	代替注水系(常設)による原子炉				
	注水操作)				

(10) インターフェイスシステムLOCA

項目		東海第二	柏崎刈羽6,7号炉	理由
解析コード		SAFER	SAFER	相違点はない。
事故条件	条件 起因事象 残留熱除去系 B 系熱交換器フランジの 高圧炉心注水系の吸込画		高圧炉心注水系の吸込配管の	構造健全性評価の結果に基づき破断面積を設定しているという点で実
		破断	破断	態として相違点はない。
		破断面積は約 21 cm ²	破断面積は約 10 cm ²	東海第二においては, ISLOCA発生時の構造健全性評価により低圧
				設計部に破損は発生しないことを確認しており,加圧範囲の中で最も大
				きなシール構造である残留熱除去系熱交換器フランジ部に 21cm ² の破
				断面積を設定している。
	安全機能の喪失	インターフェイスシステムLOCAの	インターフェイスシステムL	東海第二においては, ISLOCA発生系統の機能喪失に加えて,保守
	に対する仮定	発生を想定する残留熱除去系B系並び	OCAが発生した側の高圧炉	的に破断箇所から原子炉建屋への原子炉冷却材漏えいにより同じ原子
		に同じ原子炉建屋西側区画に設置され	心注水系の機能喪失	炉建屋西側区画に設置されている系統(高圧炉心スプレイ系及び残留熱
ている高度		ている高圧炉心スプレイ系及び残留熱		除去系C系)が機能喪失する設定としている。
		除去系C系の機能喪失		
	外部電源	外部電源なし	外部電源なし	相違点はない。
機器条件	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二では, 原子炉圧力が高めに維持され, 評価項目に対して厳しい
	子炉圧力制御時)			条件となる安全弁機能に期待している。
操作条件	破断箇所の隔離	事象発生5時間	事象発生4時間	設定時間は違うが,作業環境を考慮し,現場移動及び操作に要する時間
	操作			を考慮して設定しているという点で、実態として相違点はない。

2.2 格納容器破損防止の有効性評価における柏崎刈羽6,7号炉との主要な相違点について

(1) 雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損),水素燃焼

I	項 目	東海第二	柏崎刈羽6,7号炉	理由
事故条件	起因事象	大破断LOCA	大破断LOCA	原子炉圧力容器から格納容器への冷却材流出を大きく見積もる厳しい
		(再循環系配管(出口ノズル)の破断)	(残留熱除去系配管の破断)	設定として, 東海第二においては, 原子炉圧力容器バウンダリに接続す
				る配管のうち、口径が最大である再循環系配管(出口ノズル)における
				両端破断を設定している。
機器条件	原子炉スクラム	原子炉水位低(レベル3)信号	事象発生と同時	東海第二においては, 原子炉水位低下を厳しくする観点で, 外部電源喪
				失に伴うタービン蒸気加減弁急閉及び原子炉保護系電源喪失による原
				子炉スクラムについては保守的に考慮せず、原子炉水位低(レベル3)
				による原子炉スクラムを設定している。
	可搬型窒素供給	200Nm ³ /h	_	東海第二においては,格納容器内をドライ条件で可燃限界濃度未満に維
	装置			持するために,格納容器内に窒素注入を実施することとしている。
	格納容器圧力逃	格納容器圧力逃がし装置第二弁全開	格納容器二次隔離弁 50%開度	東海第二においては,格納容器圧力逃がし装置第二弁全開にて格納容器
	がし装置			ベントを実施する設計としている。
操作条件	代替格納容器ス	事象発生 25 分後	破断口まで原子炉水位が回復	東海第二においては,原子炉注水に伴って炉内で発生する過熱蒸気が破
	プレイ冷却系(常		後,格納容器温度約 190℃到達	断口から格納容器側に移行し格納容器雰囲気温度を急激に上昇させる
	設)		時	ため、原子炉注水と同時に格納容器冷却を実施する手順とすることか
				ら,操作時間を考慮して設定している。
	代替循環冷却系	事象発生 90 分後	事象発生 22.5 時間後	東海第二においては,緊急用海水系及び代替循環冷却系は常設設備であ
				り中央制御室からの操作により対応可能であるため,操作時間を考慮し
				て設定している。
	可搬型窒素供給	格納容器内酸素濃度 4.0vol%(ドライ条	_	東海第二においては、格納容器内に窒素注入を実施することとしてお
	装置	件)到達時		り,格納容器内酸素濃度がベント基準である 4.3vol% (ドライ条件)
				到達を防止する観点で設定している。
	格納容器圧力逃	サプレッション・プール水位が通常水位	格納容器圧力 0.62MPa[gage]	東海第二においては,中央制御室からの遠隔操作失敗後に現場操作に要
	がし装置	+6.5m 到達時	到達時	する時間を考慮して設定している。

(2) 高圧溶融物放出/格納容器雰囲気直接加熱,原子炉圧力容器外の溶融燃料-冷却材相互作用,溶融炉心・コンクリー

ト相互作用

I	項目	東海第二	柏崎刈羽6,7号炉	理由
事故条件	外部電源	外部電源なし(全交流動力電源喪失を想	外部電源なし(非常用ディー	東海第二においては,運転員の対応を厳しく評価する観点から全交流動
		定)	ゼル発電機に期待)	力電源喪失を設定している。
機器条件	原子炉スクラム	原子炉水位低(レベル3)信号	事象発生と同時	東海第二においては,原子炉水位低下を厳しくする観点で,外部電源喪
				失に伴うタービン蒸気加減弁急閉及び原子炉保護系電源喪失による原
				子炉スクラムについては保守的に考慮せず,原子炉水位低(レベル3)
				による原子炉スクラムを設定している。
	逃がし安全弁(原	安全弁機能	逃がし弁機能	東海第二においては, 原子炉圧力が高めに維持され, また, 原子炉減圧
	子炉圧力制御時)			時に原子炉圧力が所定の圧力に到達するまでの時間が遅くなることで
				評価項目に対して厳しい条件として、安全弁機能に期待している。
操作条件	代替循環冷却系	事象発生 90 分後からドライウェルへ連	事象発生 20.5 時間後	東海第二においては,緊急用海水系及び代替循環冷却系は常設設備であ
		続スプレイを実施		り中央制御室からの操作により対応可能であるため,操作時間を考慮し
		原子炉圧力容器破損後に格納容器圧力		て設定している。
		の低下を確認した後は、ドライウェルと		また、原子炉圧力容器が破損し、溶融炉心がペデスタル(ドライウェル
		原子炉へ流量配分し,それぞれ連続スプ		部)の水プールに落下した際の格納容器圧力の上昇を抑制する観点から
		レイ及び連続注水を実施		設定している。
	代替格納容器ス	原子炉圧力容器破損の判断後に、ドライ	原子炉圧力容器下鏡部温度が	東海第二においては,原子炉圧力容器が破損し,溶融炉心がペデスタル
	プレイ冷却系(常	ウェルへ連続スプレイを実施	300℃に到達を確認した場合	(ドライウェル部)の水プールに落下した際の格納容器圧力の上昇を抑
	設)	格納容器圧力の低下を確認した後は一	に開始,原子炉圧力容器破損	制する観点から連続スプレイ条件を設定している。
		旦停止し,再度格納容器圧力が上昇し格	を確認した場合に停止	また,その後も格納容器圧力の上昇を抑制する観点から,間欠スプレイ
		納容器圧力 0.465MPa[gage]に到達した	格納容器圧力が 0.465MPa	条件を設定している。
		場合に間欠スプレイを実施	[gage] 又は格納容器温度が	
			190℃に到達した場合に開始	

2.3 使用済燃料プールの有効性評価における柏崎刈羽6,7号炉との主要な相違点について

(1) 想定事故1

柏崎刈羽6,7号炉との主要な相違点はない。

(2) 想定事故 2

項目		東海第二	柏崎刈羽6, 7号炉	理由
事故条件	漏えいによる使	静的サイフォンブレーカにより、サイフ	サイフォンブレーク孔による	東海第二では, 耐震性も含めて機器, 弁類等の故障及び人的過誤の余地の
	用済燃料プール	オン現象による流出が停止される	サイフォンブレークに期待し	ない単管構造の静的サイフォンブレーカ(重大事故等対処設備)による,
	水位の低下	事象発生と同時に通常水位から約 0.23m	ないため, 漏えい隔離操作実施	サイフォン現象による使用済燃料プール水の流出停止に期待した評価と
		下まで低下	(事象発生 150 分後)まで水位	している。なお、逆止弁式のサイフォンブレーカについては、その効果に
			低下が継続	期待していない。

- 2.4 運転停止中の原子炉での有効性評価における柏崎刈羽6,7号炉との主要な相違点について
- (1) 崩壊熱除去機能喪失

	項 目 東海第二 柏崎刈羽6,7号炉		理由	
事故条件	外部電源	事象認知まで:外部電源あり	外部電源なし	外部電源の有無は事象進展に影響しないことから, 資源の観点で厳しい外
		事象認知後 :外部電源なし		部電源なしを設定。外部電源が喪失する時間を事象発生1時間後(1時間
				ごとの中央制御室の巡視により残留熱除去系(原子炉停止時冷却系)の停
				止を確認する時間)とすることにより、事象発生の認知の観点で厳しい想
				定とする。

(2) 全交流動力電源喪失

項目		東海第二	柏崎刈羽6,7号炉	理由	
操作条件	低圧代替注水系 (常設)の注水開 始時間	事象発生から約 1.1 時間後	事象発生から 145 分後	東海第二においては,事象発生から25分で低圧代替注水系(常設)の起動準備操作が完了すると設定している。原子炉の沸騰開始は事象発生から約1.1時間後であり,原子炉冷却材の蒸発量に応じた原子炉注水を実施することで,原子炉水位を通常運転水位付近で維持することができる。	
	残留熱除去系(停 止時冷却系)によ る原子炉冷却	事象発生から4時間10分後	事象発生から 20 時間後	東海第二においては,常設設備である緊急用海水系に期待した評価として いるため。	

(3) 原子炉冷却材の流出

項目		東海第二	柏崎刈羽6,7号炉	理由
事故条件	外部電源	外部電源あり	外部電源なし	外部電源がない場合は,原子炉保護系電源の喪失により残留熱除去系(原子炉停止時冷却系)のポンプ吸込ラインの弁が閉となり,原子炉冷却材の 流出が停止することから,原子炉冷却材の流出の観点で厳しい外部電源あ りを設定。
操作条件	流出箇所の隔離	原子炉への注水開始後	原子炉への注水開始前	東海第二は原子炉注水による水位回復後に漏えい箇所の隔離を実施する 手順としているため。

(4) 反応度の誤投入

	項目	東海第二	柏崎刈羽6,7号炉	理由
機器条件	制御棒引抜阻止	期待しない	原子炉周期短信号(原子炉周	東海第二においては,原子炉出力ペリオド短(20秒),及び原子炉出力ペ
			期 20 秒)	リオド短(10秒)による制御棒引抜阻止には保守的に期待していない。
				なお、制御棒引抜阻止に期待した場合、原子炉出力ペリオド短信号(20
				秒)が発信すると制御棒引抜が停止する。ただし、本評価では制御棒の誤
				引き抜きにより反応度が急激に投入されるため、原子炉出力ペリオド短信
				号(20秒)と原子炉出力ペリオド短(10秒)信号によるスクラム信号が
				ほぼ同時に発信するため,制御棒引抜阻止に期待した場合でも評価項目に
				与える影響はほとんどない。

解析条件の変更前後の評価結果について

1. 炉心損傷防止対策の有効性評価における解析条件の変更前後の評価結果

解析条件の変更前後における各重要事故シーケンスの評価結果を第1表か ら第8表に示す。なお,非居住区域境界及び敷地境界での実効線量の評価シ ーケンスは,全交流動力電源喪失(長期TB)からLOCA時注水機能喪失 に変更した。

評価項目	変更前(申請時)	変更後	評価項目
燃料被覆管最高温度	約 469℃	約 338℃	1200°C以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力 バウンダリにかかる圧力	約 7.67MPa[gage]	約 8.09MPa[gage]	10.34MPa[gage]以下
格納容器バウンダリ にかかる圧力	約 0.32MPa[gage]	約 0.31MPa[gage]	0.62MPa[gage]以下
格納容器バウンダリ にかかる温度	約 144℃	約 143℃	200℃以下
(格納容器ベント時間)	約 28 時間	約 28 時間	—

第1表 評価結果(高圧·低圧注水機能喪失)

第2表 評価結果(高圧注水·減圧機能喪失)

評価項目	変更前(申請時)	変更後	評価項目
地址中世体日子石中	#1 00 1°C	45 51 1 90	
燃料做復官菆咼温度	約 684 ℃	約711℃	1200で以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力			5 5
	約 7.67MPa[gage]	約 8.09MPa[gage]	10.34MPa[gage]以下
ハワンタリにかかる圧力			
格納容器バウンダリ			
にかかる広力	約 0.04MPa[gage]	約 0.04MPa[gage]	0.62MPa[gage]以下
にががる圧力			
格納容器バウンダリ	** 0.0°C	** 00°C	
にかかる温度	77 86 C	#J 90 C	200 し以下

評価項目	変更前(申請時)	変更後	評価項目
燃料被覆管最高温度	初期値	初期値	1200で以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力			5 7
	約 7.67MPa[gage]	約 8.46MPa[gage]	10.34MPa[gage]以下
ハワンタリにかかる圧力			
格納容器バウンダリ	** 0 01100 []	*h 0 0000 []	
にかかる圧力	約 0.31MPa[gage]	約 0.28MPa[gage]	0.62MPa[gage]以下
格納容器バウンダリ	×5 161°C	¥5 141°C	
にかかる温度	#J 161 C	#J 141 C	200 C L F
(格納容器ベント時間)	約 18 時間	_	—

第3表 評価結果(全交流動力電源喪失(長期TB))

第4表 評価結果(崩壊熱除去機能喪失(取水機能が喪失した場合))

評価項目	変更前 (申請時)	変更後	評価項目
燃料被覆管最高温度	初期値	初期値	1200°C以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力 バウンダリにかかる圧力	約 7.67MPa[gage]	約 8.09MPa[gage]	10.34MPa[gage]以下
格納容器バウンダリ にかかる圧力	約 0.30MPa[gage]	約 0.28MPa[gage]	0.62MPa[gage]以下
格納容器バウンダリ にかかる温度	約 143℃	約 141℃	200℃以下

第5表 評価結果(崩壊熱除去機能喪失(残留熱除去機能が喪失した場合))

		1	
評価項目	変更前(申請時)	変更後	評価項目
燃料被覆管最高温度	初期値	初期値	1200°C以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力	約7 67WD-[]	«4 0 00MD - []	10.24WD-[]NT
バウンダリにかかる圧力	赤り 7.67MPa[gage]	示する.09MPa[gage]	10.34mPa[gage]以下
格納容器バウンダリ	※コ 0 21MDo [mo mo]	約10.21MDo[rogo]	0.62MDo[gogo][]].T
にかかる圧力	示り 0.31MFa[gage]	示り 0. SIMFa[gage]	0.02MFa[gage]以下
格納容器バウンダリ	\$5 144°C	約 149°C	20080175
にかかる温度	示り 144 し	赤り 143 U	200 0 以下
(格納容器ベント時間)	約 30 時間	約 28 時間	

第6表 評価結果(原子炉停止機能喪失)

評価項目	変更前(申請時)	変更後	評価項目
燃料被覆管最高温度	約 859℃	約 872℃	1200°C以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力			
バウンダリにかかる圧力	が」8.39MPa[gage]	示J 8.49MPa[gage]	10.34MPa[gage]以下
格納容器バウンダリ	約0.16WD-[]	約 0 90WD-[]	0.69WD-[]!\]
にかかる圧力	赤り 0.16MPa[gage]	赤り 0.20MPa[gage]	0.62MPa[gage]以下
格納容器バウンダリ	※5 106°C	約 115%	200801715
にかかる温度	₩9 100 C	₩9 110 C	200 C K F

評価項目	変更前(申請時)	変更後 (破断面積:3.7cm ²)	評価項目
燃料被覆管最高温度	約 573℃	約 616℃	1200°C以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力 バウンダリにかかる圧力	約 7.67MPa[gage]	約 8.09MPa[gage]	10.34MPa[gage]以下
格納容器バウンダリ にかかる圧力	約 0.32MPa[gage]	約 0.31MPa[gage]	0.62MPa[gage]以下
格納容器バウンダリ にかかる温度	約 144℃	約 143℃	200℃以下
(格納容器ベント時間)	約 28 時間	約 28 時間	

第7表 評価結果(LOCA時注水機能喪失)

第8表 評価結果 (インターフェイスシステムLOCA)

評価項目	変更前 (申請時)	変更後	評価項目
燃料被覆管最高温度	初期値	初期値	1200℃以下
燃料被覆管酸化量	被覆管厚さの1%以下	同左	被覆管厚さの15%以下
原子炉冷却材圧力 バウンダリにかかる圧力	約 7.23MPa[gage]	約 8.09MPa[gage]	10.34MPa[gage]以下
格納容器バウンダリ にかかる圧力	_*	_*	0.62MPa[gage]以下
格納容器バウンダリ にかかる温度	_*	_*	200℃以下

※:格納容器バイパス事象であり、評価項目に対して十分な余裕があることから比較対象外とした。

格納容器破損防止対策の有効性評価における評価条件の変更前後の評価結果

評価条件の変更前後における各評価事故シーケンスの評価結果を第9表及 び第10表に示す。

第9表 評価結果 (雰囲気圧力・温度による静的負荷

評価項目	変更前(申請時)	変更後	評価項目
格納容器バウンダ リにかかる圧力	約 0.62MPa[gage]	約 0.47MPa[gage]	0.62MPa[gage]以下
格納容器バウンダ リにかかる温度	約 189℃	約 157℃ (壁面温度)	200℃以下
C s -137 放出量 (7 日間)	約 1×10 ⁻⁴ TBq	約 18TBq(ドライ ウェルベント時)	100TBq以下
格納容器内の最大 酸素濃度(7日間)	ドライ条件 約 4.1vo1%	ドライ条件 約 4.0vo1%	格納容器内の酸素濃度 がドライ条件に換算し て 5vo1%以下

(格納容器過圧·過温破損),水素燃焼)

容器外の溶融燃料-冷却材相互作用,溶融炉心・コンクリート相互作用)

評価項目	変更前(申請時)	変更後	評価項目
格納容器バウンダ リにかかる圧力	約 0.43MPa[gage] (原子炉圧力容器破損時)	約 0.47MPa[gage] (7日間の最大値)	0.62MPa[gage]以下
格納容器バウンダ リにかかる温度		約 151℃	200℃以下
原子炉圧力容器破 損時の原子炉圧力	約 0.16MPa[gage]	約 0.3MPa[gage]	2.0MPa[gage]以下
溶融炉心の冷却	ペデスタル (ドライウェル 部) にて冷却維持可能	ペデスタル (ドライウェ ル部) にて冷却維持可能	溶融炉心と格納容器バ ウンダリが接触せず, 適切に冷却できること
溶融炉心の侵食量	侵食せず,支持機能が維持 される	侵食せず,支持機能が維 持される	侵食により格納容器の 構造材の支持機能が喪 失しないこと

第10表 評価結果(高圧溶融物放出/格納容器雰囲気直接加熱,原子炉圧力

 使用済燃料プールの有効性評価における評価条件の変更前後の評価結果 評価条件の変更前後における各想定事故の評価結果を第11表及び第12表 に示す。

第11表 評価結果(想定事故1)

評価項目	変更前 (申請時)	変更後	評価項目
使用済燃料プール水位	燃料有効長頂部から	燃料有効長頂部から	燃料有効長頂部の冠水
			遮蔽維持
	₩9 7.1Ⅲ <u>↓</u>	〒9-0.001 工	(目安:10mSv/h ^{**})
未臨界の維持	未臨界を維持	未臨界を維持	未臨界の維持

※:必要な遮蔽が維持される使用済燃料プール水位は燃料有効長頂部の約6.4m上

第12表 評価結果(想定事故2)

評価項目	変更前 (申請時)	変更後	評価項目
使用済燃料プール水位	燃料有効長頂部から	燃料有効長頂部から	燃料有効長頂部の冠水
			遮蔽維持
	衆9 0. 8Ⅲ 工	〒9-0.000 工	(目安:10mSv/h [*])
未臨界の維持	未臨界を維持	未臨界を維持	未臨界の維持

※:必要な遮蔽が維持される使用済燃料プール水位は燃料有効長頂部の約6.4m上

 運転停止中原子炉の有効性評価における評価条件の変更前後の評価結果 評価条件の変更前後における各重要事故シーケンスの評価結果を第13表 から第15表に示す。

第1	3 表	評価結果	(崩壊執除去機能喪失)
N1 1	.0 1		

評価項目	変更前 (申請時)	変更後	評価項目	
原子炉水位	原子炉水位の低下	燃料有効長頂部から	燃料有効長頂部冠水	
			遮蔽維持	
		赤り 生・ 乙田 二.	(目安:10mSv/h [*])	
未臨界の維持	未臨界を維持	未臨界を維持	未臨界の維持	

※ 必要な遮蔽が維持される原子炉水位は燃料有効長頂部の約 1.7m 上

第14表 評価結果(全交流動力電源喪失)

評価項目	変更前 (申請時)	変更後	評価項目
	国スに水位の低下	国スに水位の低下	燃料有効長頂部冠水
原子炉水位	原于炉水位の低下	原于炉水位の低下	遮蔽維持
		74 U	(目安:10mSv/h [*])
未臨界の維持	未臨界を維持	未臨界を維持	未臨界の維持

※ 必要な遮蔽が維持される原子炉水位は燃料有効長頂部の約1.7m上

第15表 評価結果(原子炉冷却材の流出)

評価項目	変更前 (申請時)	変更後	評価項目
原子炉水位	牌灯七劫日西如ふさ	としたなりです。	燃料有効長頂部冠水
	燃料有効支頂部から	燃料有効 支頂部から 約 15m 上	遮蔽維持
	ボリ 3.7 血 上	がり 15m 上	(目安:10mSv/h [*])
未臨界の維持	未臨界を維持	未臨界を維持	未臨界の維持

※ 必要な遮蔽が維持される原子炉水位は燃料有効長頂部の約2.6m上

8 SAFER における高圧炉心スプレイ系等の自動起動信号の模擬について

SAFER コードでは、高圧炉心スプレイ系等の自動起動信号(原子炉水位異常低下(レベル 2) など)について、蒸気ドーム部とシュラウド外との差圧を計算することで簡易的に原 子炉水位計装を模擬することにより発信している。第1図に SAFER における原子炉水位計 装の模擬の概略を示す。

•	原子炉水位異常低下	(レベル2)	設定差圧; $\Delta P_2 = \rho \times$	(L2-L)
•	原子炉水位異常低下	(レベル2)	信号発信; $\Delta P \leq \Delta P_2$	

第1図 SAFER における原子炉水位計装の模擬

9. 緊急用海水系を用いた残留熱除去系による格納容器除熱

残留熱除去系による格納容器除熱において,残留熱除去系海水系に 期待した場合と緊急用海水系に期待した場合の格納容器挙動の違いに ついて以下に述べる。

事象発生の約24時間後に残留熱除去系海水系を用いた残留熱除去系 による格納容器除熱を実施する「全交流動力電源喪失(長期TB)」と 事象発生の約13時間後に緊急用海水系を用いた残留熱除去系による格 納容器除熱を実施する「崩壊熱除去機能喪失(取水機能が喪失した場 合)」における格納容器圧力及び雰囲気温度の挙動の比較を第1図に示 す。

いずれの事故シーケンスにおいても,格納容器圧力及び雰囲気温度 は,残留熱除去系による格納容器除熱を開始してすぐに低下傾向に転 じている。このため、少なくとも事象発生の13時間後以降であれば、 緊急用海水系を用いた場合でも残留熱除去系海水系を用いた場合と同 様に十分な除熱性能を得ることができ,評価項目となるパラメータに 与える影響は軽微であると考えられる。

第1図 残留熱除去系海水系に期待した場合と緊急用海水系に期待し

た場合の解析挙動の比較

10 米国等の知見に照らした原子炉停止機能喪失事象の解析条件の妥 当性

原子炉停止機能喪失事象の解析条件について,米国のBWRプラントとの比較を第1表に示す。

米国では,一部の項目において,設計基準事故の条件に合わせた解 析値を使用しているが,東海第二発電所の解析条件では,ガイドに基 づき設計値を使用していること,米国では原子炉側と格納容器側を同 時に解析していないことに伴う高圧炉心スプレイ系の起動条件が異な ることが,主な相違点として挙げられる。

ただし、これらの相違は、対策の有効性を評価するという観点にお いて問題となるものではなく、東海第二発電所の原子炉停止機能喪失 における解析条件は妥当であると考える。

<参考資料>

- COLUMBIA GENERATING STATION SAFETY ANALYSIS REPORT, Chapter 4, December 2013
- COLUMBIA GENERATING STATION SAFETY ANALYSIS REPORT, Chapter 15, December 2013

第	1 表	解析条件の比較

No	項目	米国	東海第二	備考
1	原子炉出力	約 105%出力	定格値	定格運転状態
2	原子炉圧力	定格圧力	定格圧力	定格運転状態
3	炉心流量	100% 炉心流量	85%炉心流量	定格運転状態
4	蒸気流量	約 105% 蒸気流量	定格値	定格運転状態
5	給水温度	定格運転相当	定格運転相当	定格運転状態
C	ボイド係数		1 05 /#	
6	保守ファクタ	(枳 ニ フ マ カ カ ち り)	1.25 倍	
7	ドップラ係数	(体立ノアクタめり)		
1	保守ファクタ		0.9 倍	
8	MSIV 閉鎖	設計値	設計値下限	
9	SRV モード	逃がし弁モード	逃がし弁モード	
10	SRV 設定值/容量	逃がし弁解析値	逃がし弁設計値	注 1
11	炉圧高 ATWS-RPT	解析値	設計値	注 1
12	SLC ポンプ 容 量	325L/min(2台起動)	163L/min(1台起動)	米国は2台運転
13	SLC 濃度	設計値	設計値	
14	RCIC 起動	L 2	L 2	
15	RCIC 起動遅れ	(記載なし)	0 秒	注 2
16	RCIC 注水流量	設計値	設計値	注 2
17	HPCS 起動	L 2	格納容器圧力高	米国では,原子 炉側と格納容器 側同にいないた め,格納容器圧 力高をトリガー としていない。
18	HPCS 起動遅れ	(記載なし)	0 秒	注 2
19	HPCS 注水流量	設計値	実力ベースの注入特性	注 2
20	RCIC/HPCS 停止	L 8	水位低下維持操作に よる	
21	RHR 冷却容量	設計値	設計値	
22	初期 S/P 体積	設計値	設計値	
23	初期 S/P 水温度	約 32℃	32°C	
24	SLC 起動	手動(ATWS 炉圧高又 は S/P 水温度高の遅 い方から 2 分)	手動(事象発生から 6分)	
25	RHR 起動	手動(事象発生から 11分)	手動(事象発生から 17分)	
26	給水ランバック	手 動 (S / P 水 温 度 高)	なし	

(注1)米国はDBA評価に用いている解析値を使用。国内は設計値を使用している。

(注2)原子炉水位が高めに維持された方が反応度的に厳しい条件となることから、東海 第二では起動遅れを0秒とし注水流量は実力ベースの注水特性を用いている。但し、 RCICについては一定流量に制御されるため設計値の注水特性を用いている。 11 原子炉停止機能喪失時における給水流量低下操作の考え方と給水ランバックの自動化を今後の課題とする理由

今回の有効性評価では、給水ランバック操作を想定していない。このため、 復水器ホットウェル水位の低下により給水ポンプがトリップするまでの間、給 水・復水系により原子炉水位が維持されるため、原子炉出力は高い状態を維持 し、原子炉で発生した蒸気が逃がし安全弁を介してサプレッション・プールへ 流入する状態が継続する。

一方,本来の運転手順では原子炉停止機能喪失が発生した場合,運転員によって給水流量を低下させ,出力を抑制する(給水ランバック操作)ことから, 今回の有効性評価はこの点で保守的な評価となっている。

給水ランバック操作による出力抑制の考え方と米国の一部で導入されている 給水ランバックの自動化を今後の検討課題と位置付ける理由について以下に示 す。

1. 給水ランバック操作について

原子炉の停止機能が喪失した場合には、「非常時運転操作手順書(徴候ベース)」の「反応度制御(RC/Q)」に従い対応する。

「反応度制御(RC/Q)」では、「原子炉が隔離状態」又は「原子炉出力が 55%以上」である場合に、給水を手動で絞り原子炉水位低下の操作を行う ことを定めている。

これによって原子炉水位が低下することで原子炉出力が抑制されるととも に、サプレッション・プールへの蒸気流入も低減される。この場合、原子炉 水位は原子炉水位異常低下(レベル1)近傍に維持することとしている。

補足 11-1

2. 自動化を考慮した場合の対応時間とプラント挙動について

自動化(米国の例では中性子束と原子炉圧力高の and 条件)した場合のプ ラント挙動では,解析結果よりも早いタイミングで原子炉水位を低下させる ことで,原子炉出力の上昇が緩和され,また,給水加熱喪失による反応度投 入の影響がより小さくなることから,沸騰遷移による燃料被覆管温度の上昇 が抑制されると共に,サプレッション・プールへの蒸気の流入量が低下し, サプレッション・プール水温度上昇が抑制されるものと考えられる。

しかしながら,有効性評価解析では,事象発生から約131秒後に「復水器 ホットウェル水位低低」により給水・復水系が停止している。このように, 比較的短時間で給水・復水系の停止に至ることから,仮に給水ランバックを 自動化してもサプレッション・プール水温度上昇抑制に寄与する効果は限定 的と考える。

3. 給水ランバックの自動化を見込まない理由

有効性評価解析では、運転員による給水ランバック操作を考慮していない が、評価項目を満足し、炉心損傷を防止できる結果となっている。給水ラン バックについては、事象発生から数十秒後のサプレッション・プール水温度 の上昇を抑制する観点で有効と考えられるが、サプレッション・プール水温 度については、運転員による給水ランバック操作を考慮していない有効性評 価解析であっても最大約115℃であり、評価項目である200℃に対して十分な 余裕がある。この観点から、今回の評価条件を前提としても給水ランバック の自動化は原子炉停止機能喪失事象への必須の対策とはならないものと考え る。また、原子炉停止機能喪失事象への重大事故等防止対策としては今回の 評価では考慮していない出力抑制機能として代替制御棒挿入機能を備えてい る。

補足 11-2

給水ランバックは炉心への冷却材供給を抑制する操作であり,これを自動 化した場合,誤動作が生じた際には予期せぬ炉水位の低下につながる恐れが ある。原子炉水位の維持は原子炉安全上の重要な項目であり,これに外乱を 与えうるインターロックの導入は設計思想の観点からも十分な検討が必要と 考える。

給水ランバックの自動化は米国の一部のプラントにおいて採用されており, サプレッション・プール水温度の上昇を抑制する観点では一定の効果が見込 まれるものの,運転員による操作対応でも十分許容できる範囲で制御できる こと及び予期せぬ誤動作が生じた際には原子炉水位への外乱となることが懸 念されるため,既設プラントへの追設の要否については今後の検討課題とし て取り組みたいと考えている。

第1図 サプレッション・プールの水温,格納容器圧力の時間変化

12 全制御棒挿入失敗の想定が部分制御棒挿入失敗により出力に偏り が生じた場合を包絡しているかについて

部分的な制御棒挿入失敗の場合,プラント全体の挙動としては全制 御棒挿入失敗に比べて原子炉出力が低下するため,評価項目となるパ ラメータである原子炉圧力,格納容器圧力及びサプレッション・プー ル水温度に及ぼす影響は小さくなる。

ここでは部分的な制御棒挿入失敗により,径方向出力分布に偏りが 生じた場合の燃料被覆管最高温度(以下「PCT」という。)への影響 について,検討した結果を示す。

1. 部分制御棒挿入失敗の発生パターンについて

BWR-5の制御棒は水圧駆動系(以下「HCU」という。)により挿入される。部分的な制御棒挿入失敗としては,水圧駆動系の故障,電気的な故障のいずれかによる機能喪失が考えられる。

水圧駆動系の故障

水圧駆動系の故障の場合について考えると、1台のHCUに よって挿入される制御棒は1本であることから、同時に3台~ 4台のHCUが故障したことを想定しても、その他の制御棒は 挿入されるため、原子炉の出力はほぼゼロになる(第1表参 照)。

② 電気的な故障

電気的な故障の場合について考えると、水圧制御ユニットは 4 グループに分割されていて、それぞれのグループに属する制 御棒は炉心径方向に分散配置されているため、電磁弁作動回路 の接点固着等の共通原因故障により,部分的に制御棒挿入に失 敗しても径方向に対して制御棒挿入の偏りが生じることはない(第2表参照)。

2. 部分制御棒挿入失敗時の影響について

万が一,部分制御棒挿入失敗事象が発生し,径方向出力分布に偏 りが生じた場合には,燃料被覆管温度に関係する項目として,バン ドル出力及び核熱安定性の発振限界に対する余裕への影響が考えら れる。しかしながら,以下に示すとおり,部分制御棒挿入失敗時の PCTへの影響は,全制御棒の挿入失敗時の評価に包絡されている と考える。

(1) バンドル出力

部分制御棒挿入失敗の場合,1.に示すように原子炉出力は全制 御棒失敗の場合に比べ低く整定するため,給水・復水系による注 水量が全制御棒挿入失敗時に比べて少なく,給水加熱喪失による 出力上昇が抑えられる。これにより,制御棒未挿入領域のバンド ル出力上昇は,全制御棒挿入失敗に比べ低くなるため,PCTへ の影響は全制御棒挿入失敗時の評価に包絡されると考えられる。

(2) 核熱安定性の発振限界に対する余裕

部分制御棒挿入失敗の場合,全制御棒挿入失敗時に比べて制御 棒未挿入領域のバンドル出力上昇が低く,当該領域でのボイド率 の上昇も小さくなる。これより,ボイド反応度フィードバックが 小さくなり,給水加熱喪失状態における核熱安定性の発振限界に 対する余裕が大きくなるため, 炉心一体振動による出力振動は発 生し難くなると考えられる。したがって, 核熱不安定による出力 振動発生に伴う P C T への影響は, 全制御棒挿入失敗時の評価に 包絡されると考えられる。

なお、領域不安定事象に対しては、1.の想定される部分制御棒 挿入失敗の発生パターンの検討に示すように、スクラム時に数本 の制御棒だけが挿入され、原子炉出力が高めに整定し、かつ径方 向出力分布に偏りが生じることにより、領域不安定が発生し易く なるパターンとなることはないと考えられる。 第1表 制御棒の水圧制御ユニットの故障による部分制御棒挿入の

部分制御棒挿入失敗	時のパターン	仮定した失敗要因	原子炉出力
	隣接3本の	個々の制御棒の水圧制御ユニット	未臨界
	制御棒 未挿入	の機械的故障の同時発生	(未臨界)
	隣接 4 本の制 御棒 未挿入	同上	~ 0 % (~ 0 %)

パターン

第2表 電気系統故障による部分制御棒挿入のパターン

部分制御棒挿入失敗	時のパターン	仮定した失敗要因	原子炉出力
	時のハターシ 分散 1/4 炉心制御棒 未挿入	仮定した矢敗要因 電気系統の故障 水圧制御ユニットグループ (スクラムグループ)1系統の失敗	<u>原于炉田刀</u> 未臨界 (未臨界)
	分散 1/2 炉心制御棒 未挿入	電気系統の故障 水圧制御ユニットグループ (スクラムグループ)2系統の失敗	~ 0 % (~ 0 %)
	分散 3/4 炉心制御棒 未挿入	電気系統の故障 水圧制御ユニットグループ (スクラムグループ)3系統の失敗	~20%程度 (~10%程度)

■:未挿入制御棒

() 内は再循環系ポンプトリップ後の推定値

13 原子炉停止機能喪失の 300 秒以降の燃料被覆管温度挙動について

復水器ホットウェル水位の低下により給水ポンプが停止した後に中性子束及 び原子炉水位が静定する 600 秒までの燃料被覆管温度の推移を第1図(燃料被 覆管最高温度発生位置)及び第2図(沸騰遷移発生位置)に示す。

300 秒以降も沸騰遷移に伴う被覆管温度の上昇及びリウェットによる温度低 下を繰り返す挙動が見られるが,給水ポンプ停止に伴い原子炉出力が大幅に低 下していることから,ファーストピークを上回ることはない。また,600 秒以 降は,ほう酸水注入に伴い徐々に原子炉出力が低下することから,沸騰遷移発 生に伴う被覆管温度の上昇は徐々に抑制される。

補足 13-2

第4図 原子炉水位の推移(60分まで)

- 14 給水ポンプ・トリップ条件を復水器ホットウェル枯渇とした場合の評価結果への影響
- 1. はじめに

原子炉停止機能喪失の有効性評価では,主蒸気流量の遮断に伴う給水加熱 喪失により原子炉出力が上昇し,復水器ホットウェル水位の低下により電動 駆動給水ポンプがトリップするまで上昇を継続する。

一方,燃料被覆管温度の挙動は、ベースケースにおいては事象発生直後の ファーストピークが最も高くなるが、上記の給水加熱喪失に伴う原子炉出力 上昇の影響はセカンドピークに現れる。また、原子炉出力の上昇が継続する ことで、サプレッション・プール水温度及び格納容器圧力の評価にも影響す る。

このため、電動駆動給水ポンプのトリップ時刻が評価結果に与える影響を 確認するため、保守的に復水器ホットウェル水位の低下で電動駆動給水ポン プがトリップせずに復水器ホットウェルが枯渇するまで運転を継続するとし た場合の感度解析を実施した。

2. 評価条件

電動駆動給水ポンプのトリップ条件を復水器ホットウェル枯渇とした以外 はベースケースと同じ評価条件である。

3. 評価結果

感度解析の評価結果を第1図から第12図に示す。また,評価結果のまとめ を第1表に示す。 電動駆動給水ポンプがトリップするまでの時刻は,事象発生から約 319 秒後となり,ベースケースの約 131 秒後から約 188 秒遅れる結果となった。

燃料被覆管最高温度(以下「PCT」という。)は、流量と出力のミスマッ チが継続することで、約1,194℃とベースケースよりも高くなるが、評価項 目を満足する。また、サプレッション・プール水温度の最高値は約148℃、 格納容器圧力の最高値は約0.50MPa[gage]となり、いずれも評価項目を満足 する。

以上の結果より,電動駆動給水ポンプがトリップせずに,復水器ホットウ ェルが枯渇するまで運転が継続すると仮定した場合についても評価項目を満 足することを感度解析により確認した。

なお,原子炉停止機能喪失時の実際の運転操作においては,運転員は給水 流量を手動にて調整し,原子炉水位を低めに維持することで原子炉出力を低 下させるとともに,格納容器圧力上昇時には残留熱除去系による格納容器ス プレイを実施する。

第	1	表	電動	駆動	給水	ポン	ィプ	〕運転継	続に	よ	る	評値	面項	目、	$\sim O$	影	響
~											_						

項目	感度解析	ベースケース	評価項目
電 動 駆 動 給 水 ポ ン プ	復水器が枯渇する まで運転継続(約 319秒後)	復水器水位低でト リップ(約131秒後)	_
燃料被覆管最高温 度(℃)	約 1,194	約 872	1,200℃以下
燃料被覆管の酸化 量(%)	約 5%	1%以下	酸化反応が著しく なる前の被覆管厚 さの15%以下
原子炉冷却材圧力 バウンダリにかか る圧力(MPa[gage])	約 8.49	約 8.49	10.34MPa[gage](最 高使用圧力の 1.2 倍)を下回る
原子 炉 格 納 容 器 バ ウンダ リ に か かる 圧力 (MPa[gage])	約 0.50	約 0.20	0.62MPa[gage]を下 回る
原子炉格納容器バ ウンダリの温度(サ プレッション・プー ル水温(℃))	約 148	約 115	200℃を下回る

※ 熱伝達相関式(修正 Dougall-Rohsenow 式)の適用性について

SCAT コードの説明資料¹では,燃料被覆管温度 700℃~800℃程度の範囲について,5×5高温ポスト BT 試験と解析の結果を比較している。比較の結果,クォリティが 0.9程度となる位置で修正 Dougall-Rohsenow 式の評価の保守性が小さくなることを確認したことから,クォリティが大きくなることで保守性が小さく なる傾向を示すものと考えている。

これは、修正 Dougall-Rohsenow 式では燃料被覆管表面温度を保守側に評価するために燃料被覆管表面での液滴蒸発の効果を無視している特性が影響しているものと考えられる。

本評価における,燃料被覆管最高温度が発生する時間領域での燃料被覆管最高温度の発生位置(第4スペーサ位置)のクォリティは0.5~0.6程度である。この場合,修正 Dougall-Rohsenow式の評価の保守性は小さくなる傾向であると考えられるものの,修正 Dougall-Rohsenow式を適用することによって保守側の評価結果が得られると考えられる。このため,燃料被覆管最高温度が1,200℃以下であることを確認する観点で,修正 Dougall-Rohsenow式を適用することに問題はない。

¹重大事故等対策の有効性評価に係るシビアアクシデント解析コードについて 第4部 SCAT

第1図 中性子束及び炉心流量の推移(短期)

第2図 原子炉蒸気流量及び給水流量の推移(短期)

補足 14-4

第3図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移 (短期)

第4図 原子炉圧力,原子炉水位(シュラウド外水位)及び 逃がし安全弁の流量の推移(短期)

補足 14-5

第6図 中性子束の推移(長期)

第7図 給水流量及び平均表面熱流束の推移(長期)

第8図 原子炉蒸気流量及び給水流量の推移(長期)

第9図 原子炉隔離時冷却系及び高圧炉心スプレイ系の流量の推移

(長期)

第10図 原子炉圧力及び原子炉水位(シュラウド外水位)の推移 (長期)

第11図 原子炉水位(シュラウド外水位)の推移(長期)

第12図 サプレッション・プール水温度及び格納容器圧力の推移 (長期)

15 ADS自動起動阻止操作の失敗による評価結果への影響(参考評価)

1. はじめに

自動減圧系は、ドライウェル圧力高(13.7kPa [gage])信号及び原子炉水 位異常低下(レベル1)信号の発信から120秒の時間遅れの後、低圧炉心ス プレイ系又は残留熱除去系(低圧注水系)のポンプ吐出圧力が確立している 場合に作動し、逃がし安全弁7個を開放することで原子炉を急速減圧する。

自動減圧系の作動によって原子炉が急速減圧された場合,高圧炉心スプレ イ系,低圧炉心スプレイ系及び残留熱除去系(低圧注水系)により,炉心に 大量の低温水が注入される。これは,制御棒等による未臨界が確保されてい ない原子炉に対して,炉心のボイドの急激な潰れに伴う急激な出力上昇をも たらすこととなる。

この急激な出力上昇を防ぐために,原子炉スクラム失敗時には,自動減圧 系の自動起動を阻止するためのスイッチを設けるとともに,手順書を整備し, 継続的な訓練を実施している。これを考慮し,「原子炉停止機能喪失」の有効 性評価では,運転員による自動減圧系の自動起動を阻止する操作に期待して いる。

ここでは、自動減圧系の自動起動を阻止する操作に失敗した場合の影響を 確認するため、TRACG(REDYでは減圧挙動*を取り扱うことができ ないため)を用いて感度解析を実施した。なお、TRACGコードはRED Yコードで取り扱うことができない中性子束振動現象を評価し、評価結果を 参照するために用いたコードである。本評価はこの目的に照らして実施した ものではないため、本評価はあくまで参考評価の位置付けである。

※:低圧状態における修正Shumway相関式の適用性

TRACGに組み込まれているリウェット相関式である、修正 Shumway 相関式は、

補足 15-1

試験データベースの圧力範囲が 0.4MPa~9MPa とされている(TRACG Model Description(NEDO-32176)6.6.7章参照)。よって,修正Shumway相関式は,A DS自動起動阻止失敗時に原子炉圧力が減圧された低圧状態(0.5MPa~0.6MPa 程度) においても適用可能であり,かつ最小安定膜沸騰温度を保守側(低め)に予測する。

2. 評価条件

自動減圧系の自動起動を阻止する操作に失敗すること以外は、ベースケー スと同じ評価条件である。この場合、残留熱除去系は原子炉注水に使用する ことから、残留熱除去系(サプレッション・プール冷却系)には期待しない こととする。

3. 評価結果

評価結果を第1図から第7図に示す。評価結果のまとめを第1表に示す。 事象発生後約400秒で自動減圧系が作動することにより原子炉圧力が低下 し,高圧炉心スプレイ系の注水流量が増加するとともに約550秒から低圧炉 心スプレイ系,約590秒から残留熱除去系(低圧注水系)による注水が開始 される。これに伴い炉内のボイド率が低下することで,正の反応度が投入さ れ,約600秒,約1,000秒付近で原子炉出力が上昇する。その後,ボイド及 びドップラフィードバックによる負の反応度印加及び原子炉圧力の上昇に伴 う原子炉注水流量の減少により原子炉出力は低下する。

燃料被覆管最高温度は,約 660 秒後に約 590℃まで上昇する。また,全反応度が最大となるのは約 590 秒時点で約1\$ である。

以降は,低圧炉心スプレイ系等の注水に伴う原子炉出力の上昇及び原子炉 圧力上昇により原子炉注水流量が減少することに伴う原子炉出力の低下を繰 り返すが,ほう酸水注入系による炉心へのほう酸水注入により徐々に原子炉

補足 15-2

第1表	ADS自動起動阻止操作	Fの失敗を考慮	した場合の評価項目・	への影響
-----	-------------	---------	------------	------

評価項目	解析結果
	(TRACG参考解析)
燃料被覆管温度(℃)	約 590
燃料被覆管の酸化量(%)	- (評価せず)
原子炉冷却材バウンダリにかかる圧力 (MPa[gage])	約 8.09
原子炉格納容器バウンダリにかかる圧力 (MPa[gage])	約 0.37 ^{※1}
原子炉格納容器バウンダリの温度	約 197※1
(サプレッション・プール水温度(℃))	赤り 137

※1 1,500 秒時点での値

第1図 中性子束, 炉心流量の時間変化(事象発生から1,500秒後まで)

(事象発生から 1,500 秒後まで)

時間変化(事象発生から1,500秒後まで)

(事象発生から1,500秒後まで)

⁽事象発生から1,500秒後まで)

第7図 サプレッション・プールの水温,格納容器圧力の時間変化 (事象発生から1,500秒後まで)

16 TRACGコードのATWS解析への適用例(参考評価)

REDYコード(REDY Ver. 1 (ATWS用)及びSCATコード (SCAT Ver. 3)の有効性評価に対して、比較用の参考解析としてT RACGコードをATWS解析に適用した評価条件及び結果について例示する。

第1表に評価条件,第1図から第5図に従来型BWRの平衡炉心において主 蒸気隔離弁の誤閉止を想定した場合のATWS解析結果を示す。燃料被覆管温 度は最高で約500℃であり,評価項目に対して十分な余裕があることがわかる。

	条件
模擬燃料集合体体数	1/4 炉心
核データ	補正係数なし
MCPR	初期MCPR:OLMCPR
	沸騰遷移:1を下回った時点で判定

第1表 評価条件

第2図 原子炉蒸気流量,給水流量の時間変化

補足 16-2

第3図 原子炉圧力,原子炉水位(シュラウド外水位),逃がし安全弁

蒸気流量の時間変化

第4図 原子炉隔離時冷却系流量,高圧炉心スプレイ系流量の時間変化

補足 16-3

17 常設重大事故等対処設備を可搬型設備に置き換えた場合の成立性

(1) 炉心損傷防止対策

※常設設備を別の常設設備に変更することは想定しない

事故シーケンス	the last of the last sector and	炉心損傷防止設備					
グループ	事故と対応の概要	炉心冷却	格納容器除熱	電源・水源		常設重大事故等対処設備の可搬型設備での代替	
高圧・低圧注水機能喪失	【事象概要】 過渡事象(全給水喪失)発生とともに高圧 及び低圧の注水機能喪失が発生する。これ に対し低圧代替注水系(常設)を用いて原 子炉注水を実施し,代替格納容器スブレイ 冷却系(常設)を用いた格納容器の力及び 格納容器圧力逃がし装置等を用いた格納容 器除熱を実施する。 【機能喪失の前提】 ・高圧注水機能(HPCS ^{*1} , RCIC ^{*1})	【高圧注水】 - 【減圧】 <u>逃がし安全弁(自動減圧機能)</u> (7個) ・事象発生から25分後に <u>手動減圧</u> 【低圧注水】 <u>低圧代替注水系(常設)</u> ・残留熟除去系C系ライン経由で注入 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持	 【格納容器スプレイ】 代替格納容器スプレイ 冷却系(常設) ・残留熱除去系 B 系ライン経由で注入 ・格納容器圧力 0.279MPa[gage] 到達以降 130m³/hでスプレイ(原子炉注水と同時) 【海水除熱】 【格納容器に力込がし装置又は耐圧強化ペン 上系 ・格納容器圧力 0.31MPa [gage] で実施(約 28 時間) 	【電源】 非常用ディーゼル発電機等,常設代替高圧 電源装置 ・外部電源なし*2 ・ブラント状況判断の後,常設代替高圧電 源装置2台により給電(低圧代替注水系 (常設)に給電) 【水源(補給含む)】 代替淡水貯槽。西側淡水貯水設備,可搬型 代替注水中型ボンブ ・代替淡水貯槽を水源とした注水の開始時 点で水位が上昇する流量で補給	×	<炉心損傷防止> 炉心損傷回避のためには,事象発生の約1時間までに 注水する必要があるが,可搬型設備の使用開始は3 時間後を想定しているため,可搬型設備では炉心損傷 は防止できない。	
高圧注水・減圧機能喪失	【事象概要】 過渡事象(全給水喪失)発生とともに高圧 注水機能及び原子炉減圧機能の喪失が発生 する。これに対し過渡時自動減圧機能を用 いて原子炉を減圧した後に残留熱除去系 (低圧注水系)及び低圧炉心スプレイ系を 用いた原子炉注水,残留熱除去系を用いた 格納容器除熱を実施する。 【機能喪失の前提】 ・高圧注水機能(HPCS ^{±1} , RCIC ^{±1}) ・減圧機能	【高圧注水】 【滅圧】 <u> 遠がし安全弁(自動減圧機能)</u> (2個) ・原子炉水位異常低下(レベル1)到達か ら10分後に自動減圧 【低圧注水】 <u> 残留熱除去系(低圧注水系)</u> ,低圧炉心ス <u> ブレイ系</u> ・原子炉水位高(レベル8)到達後,低圧 炉心スプレイ系で原子炉水位低(レベル 3)から原子炉水位高(レベル8)にて 水位維持	【格納容器スプレイ】 - 【海水除熱】 透留熱除去系海水系. 残留熱除去系 (サブ <u>レッション・ブール冷却系)</u> ・原子炉水位高 (レベル8) 到達後に残留 熟除去系 1 系列を低圧注水系からサブレ ッション・ブール冷却系に移行 【格納容器ベント】	【電源】 <u>非常用ディーゼル発電機等</u> ・外部電源なし ^{※2} 【水源(補給含む)】 サプレッション・チェンバ	_	常設重大事故等対処設備に期待していない。	

※1 HPCS:高圧炉心スプレイ系,RCIC:原子炉隔離時冷却系,LPCS:低圧炉心スプレイ系,LPCI:残留熱除去系(低圧注水系) ※2 事故条件としては外部電源ありを設定しているが,運転員等操作や資源(水源,電源,燃料)の評価においては外部電源なしを考慮

事故シーケンス	炉心損傷防止設備					
グループ	事故と対応の概要	炉心冷却	格納容器除熱	電源・水源	常設重大事故等対処設備の可搬型設備での代替	
全交流動力電源喪失 (長期TB)	【事象概要】 全交流動力電源喪失が発生するとともに, 24時間は代替電源等による交流電源復旧も 不可となる。これに対し直流電源により 8 時間原子炉隔離時冷却系を用いた原子炉注 水を継続する。8時間後からは低圧代替注水 系(可搬型)を用いて原子炉注水を継続し, 代替格納容器スプレイ冷却系(可搬型)を 用いて格納容器冷却を実施する。24時間後 からは、常設代替高圧電源装置から給電し, 残留熱除去系を用いて原子炉注水及び格納 容器除熱の切替運転を実施する。 【機能喪失の前提】 ・全交流動力電源(外部電源,非常用ディ ーゼル発電機等)	【高圧注水】 原子炉隔離時冷却系 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【減圧】 述がし安全弁(自動減圧機能)(7個) ・事象発生から8時間1分後(可搬型代替 注水中型ポンプ接続後)に手動減圧 【低圧注水】 可搬型代替注水中型ポンプ ・手動減圧後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 浸留熟除去系(低圧注水系) ・事象発生24時間後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 見留熟除去系(低圧注水系) ・事象発生24時間後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・原子炉注水停止期間中は格納容器除熱に 使用	【格納容器スプレイ】 代替格納容器スプレイ 冷却系 (可嫌型) ・格納容器圧力 0.279MPa[gage]到達以降 130m ³ /hでスプレイ(原子炉注水と同時) 【海水除熱】 浅留熟除去系海水系, 残留熟除去系(格納 容器スプレイ冷却系), 残留熟除去系(サ プレッション・プール冷却系) ・原子炉注水との切換運転 【格納容器ベント】 -	【電源】 所内常設直流電源設備。常設代替高圧電源 装置 ・外部電源なし ・直流電源の負荷切離を実施し,事象発生8 時間の間原子炉隔離時冷却系に供給 ・事象発生24時間後に常設代替高圧電源装 置から給電 【水源(補給含む)】 サブレッション・チェンパ,西側淡水貯水 設備,可搬型代替注水中型ポンプ ・初期水量のみで対応可能。	<炉心損傷防止> 可搬型設備による重大事故等対処設備の有効性を確 認している。	
全交流動力電源喪失 (TBD)	【事象概要】 全交流動力電源喪失が発生するとともに, 直流電源の喪失が重畳する。これに対し緊 急用蓄電池により 8 時間高圧代替注水系を 用いた原子炉注水を継続する。8時間後から は低圧代替注水系(可搬型)を用いて原子 炉注水を継続し,代替格納容器スプレイ冷 却系(可搬型)を用いて格納容器スプレイ冷 却系(可搬型)を用いて格納容器な知を異た 施する。24 時間後からは,常設代替高圧電 源装置から給電し,残留熱除去系を用いて 原子炉注水及び格納容器除熱の切替運転を 実施する。 【機能喪失の前提】 ・全交流動力電源(外部電源,非常用ディ ーゼル発電機等) ・直流電源	 【高圧注水】 高圧代替注水系 ・原子炉木位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【減圧】 逃びし安全升(自動減圧機能)(7個) ・事象発生から8時間1分後(可搬型代替 注水中型ポンプ接続後)に手動減圧 【低圧注水】 可搬型代替注水中型ポンプ ・手動減圧後注水 「デ炉木位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・事象発生24時間後注水 ・原子炉木位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・事象発生24時間後注水 ・原子炉木位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 	【格納容器スプレイ】 (代替納容器 スプレイ 冷却系 (可敷型) ・格納容器圧力 0.279MPa[gage] 到達以降 130m ³ /hでスプレイ(原子炉注水と同時) 【海水除熱】 残留熟除去系海水系, 残留熟除去系 (格納 容器スプレイ冷却系), 残留熟除去系 (火 プレッション・プール冷却系) ・原子炉注水との切換運転 【格納容器ベント】-	【電源】 常設代替直流電源設備,常設代替高圧電源 装置 ・外部電源なし ・事象発生24時間後に常設代替高圧電源装 置から給電 【水源(補給含む)】 サプレッション・チェンパ,西側淡水貯水 設備,可換型代替注水中型ポンプ ・初期水量のみで対応可能。	<炉心損傷防止> 可搬型設備による重大事故等対処設備の有効性を確 認している。	

事故シーケンス			炉心損傷防止設備		
グループ	事故と対応の概要	炉心冷却	格納容器除熱	電源・水源	常設重大事故等対処設備の可搬型設備での代替
全交流動力電源喪失 (TBP)	【事象概要】 全交流動力電源喪失が発生するとともに, 逃がし安全弁1 弁の開固着が重畳する。こ れに対し常設代替高圧電源装置を起動し, 低圧代替注水系(常設)により原子炉注水 を実施する。その後,常設代替高圧電源装 置から給電し,残留熱除去系を用いた原子 炉注水及び格納容器除熱の切替運転を実施 する。 【機能喪失の前提】 ・全交流動力電源(外部電源,非常用ディ ーゼル発電機等)	 【高圧注水】 原子炉隔離時冷却系 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【減圧】 透がし安全弁(自動減圧機能)(7個) 事象発生から3時間1分後(可搬型代替 注水中型ボンブ接続後)に手動減圧 【低圧注水】 可激型代替注水中型ボンブ ・手動減圧後注水 原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 建留熱除去系(低圧注水系) 事象発生24時間後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 東子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 東子炉水位低(レベル3)から原子炉水 ビ高(レベル8)にて水位維持 ・原子炉注水停止期間中は格納容器除熱に 使用 	【格納容器スプレイ】 <u>代替格納容器スプレイ冷却系(可搬型)</u> ・格納容器圧力0.279MPa[gage]到達以降 130m ³ /hでスプレイ(原子炉注水と同時) 【海水除熟】 透留熟除去系海水系,残留熟除去系(格納 容器スプレイ冷却系),残留熟除去系(竹 ブレッション・プール冷却系) ・原子炉注水との切換運転 【格納容器ベント】-	【電源】 常設代替直流電源設備,常設代替高圧電源 装置 ・外部電源なし ・事象発生24時間後に常設代替高圧電源装 置から給電 【水源(補給含む)】 サプレッション・チェンパ, 西側淡水貯水 設備,可渡型代替注水中型ポンプ ・初期水量のみで対応可能。	<炉心損傷防止> の可搬型設備による重大事故等対処設備の有効性を確 認している。
崩壊熱除去機能喪失 (取水機能喪失)	【事象概要】 過渡事象(全給水喪失)発生とともに取水 機能喪失が発生する。これに対し,原子炉 隔離時冷却系,低圧代替注水系(常設)を 用いた原子炉注水を実施する。その後,緊 急用海水系及び残留熱除去系を用いた原子 炉注水及び格納容器除熱の切替運転を実施 する。 【機能喪失の想定】 ・取水機能(残留熱除去系海水系)	 【高圧注水】 <u>原子炉隔離時名却系</u> ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【減圧】 <u>述がし安全弁(自動減圧機能)</u>(7個) ・サブレッション・ブール熱容量制限到達時 【低圧注水】 (低圧注水】 (低圧注水】 (低圧注水】 (低圧注水】 (低圧注水】 (四ベル8)にて水位維持 (四系除去系(低圧注水系)) ・格納容器圧力0.279MPa[gage]到達以降注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 ・原子炉注水停止期間中は格納容器除熱に 使用 	【格納容器スプレイ】 - 【海水除熟】 繁急用海水系, 残留熱除去系(格納容器ス ブレイ冷却系), 残留熱除去系(サプレッ ション・プール冷却系) ・格納容器圧力 0.279MPa[gage]到達以降, 除熱開始 ・原子炉注水との切換運転 【格納容器ベント】 -	【電源】 常設代替高圧電源装置 ・外部電源なし ・2 時間後までに常設代替高圧電源装置 2 台(低圧代替注水系(常設)に給電), 低圧代替注水系(常設)による注水開始 後,常設代替高圧電源装置 5 台から給電 (残留熟除去系等に給電) 【水源(補給含む)】 <u>サブレッション・チェンパ</u> , 代替淡水貯権 ・初期水量のみで対応可能。	<炉心損傷防止> 事象発生3時間後までは,原子炉隔離時冷却系を用 いた原子炉注水を継続し,その後,低圧代替注水系 (可搬型)による原子炉注水を実施することで炉心 損傷を防止できる。

事故シーケンス		炉心損傷防止設備				光明 チレオル放出な 明佛 ホマ 絶到 明光 供え かいま	
グループ	事故と対応の慨要	炉心冷却	格納容器除熱	電源・水源		常設重大事故等対処設備の可搬型設備での代替	
崩壞熟除去機能喪失 (残留熱除去機能喪失)	【事象概要】 過渡事象(全給水喪失)発生とともに残留 熟除去機能喪失が発生する。これに対し, 原子炉隔離時冷却系,高圧炉心スプレイ系 及び低圧代替注水系(常設)を用いた原子 炉注水を実施し,代替格納容器スプレイ冷 却系(常設)を用いた格納容器冷却,格納 容器圧力逃がし装置等を用いた格納容器除 熟を実施する。 【機能喪失の想定】 ・残留熟除去系	【高圧注水】 原子炉隔離時冷却系,高圧炉心スプレイ系 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【減圧】 逃がし安全弁(自動減圧機能)(7個) ・サブレッション・ブール熱容量制限到達 時 【低圧注水】 低圧代替注水系(常設) ・残留熱除去系C系ライン経由で注入 ・手動減圧後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持	【格納容器スプレイ】 代替格納容器スプレイ治知系(常設) ・残留熱除去系B系ライン経由で注入 ・格納容器圧力 0.279MPa[gage]到達以降 130m ³ /hでスプレイ(炉注水と同時) 【海水除熟】 - 【格納容器ベント】 <u>格納容器圧力逃がし装置</u> 又は <u>耐圧強化ペン</u> <u>ト系</u> ・格納容器圧力 0.31MPa [gage]で実施(約 28 時間)	【電源】 非常用ディーゼル発電機等,常設代替高圧 電源装置 ・外部電源なし ^{巻2} ・2 時間後までに常設代替高圧電源装置 2 台(低圧代替注水系(常設)に給電) 【水源(補給含む)】 サブレッション・チェンパ,代替淡水貯槽。 回機淡水貯水設備,可搬型代替注水中型ポ ンプ ・代替淡水貯槽を水源とした注水の開始時 点で水位が上昇する流量で補給	0	<炉心損傷防止> 事象発生3時間後までは,原子炉隔離時冷却系又は 高圧炉心スプレイ系を用いた原子炉注水を継続し, その後,低圧代替注水系(可搬型)による原子炉注 水を実施することで炉心損傷を防止できる。	
原子炉停止機能喪失	【事象概要】 過渡事象(MSIV閉)発生とともに全制 御棒挿入失敗(ARI含む)が発生する。 これに対し,代替RPTで出力上昇を抑制 し,原子炉隔離時冷却系,高圧炉心スプレ イ系で冠水を維持し,ほう酸注入系により 未臨界を確保する。 【機能喪失の前提】 ・スクラム機能(RPS) ・代替制御棒挿入機能(ARI)	【原子炉停止】 (焼平PT, ほう酸注入系 ・ほう酸注入系の起動は事象発生の6分後 【高圧注水】 電動駆動給水ボンブ,原子炉隔離時冷却系, 高圧炉心スブレイ系 ・給復水系による原子炉注水はホットウェ ル水位低低による電動給水ボンプトリッ ブまで ・原子炉隔離時冷却系は原子炉水位異常低 下(レベル2)到達,高圧炉心スプレイ 系は格納容器圧力高で自動起動し,原子 炉水位異常低下(レベル1)近傍に水位 を維持 【減圧】 -	【格納容器スプレイ】 - 【海水除熱】 残留熱除去系海水系, 残留熱除去系 (サブ レッション・ブール冷却系) ×2 ・事象発生 17 分後以降除熱開始 【格納容器ベント】 -	【電源】 外部電源 【水源(補給含む)】 サプレッション・チェンパ	_	常設重大事故等対処設備に期待していない。	

※2 事故条件としては外部電源ありを設定しているが、運転員等操作や資源(水源、電源、燃料)の評価においては外部電源なしを考慮

事故シーケンス		炉心損傷防止設備				
グループ	事故と対応の概要	炉心冷却	格納容器除熱	電源・水源	常設重大事故等対処設備の可搬型設備での代替	
L O C A 時注水機能喪失	【事象概要】 中破断LOCA(再循環系配管 3.7cm ² の破 損想定)発生とともに高圧及び低圧の非常 用炉心冷却系注水機能喪失が発生する。こ れに対し低圧代替注水系(常設)を用いて 原子炉注水を実施し,代替格納容器スプレ イ冷却系(常設)を用いた格納容器冷却及 び格納容器圧力逃がし装置等を用いた格納 容器除熱を実施する。 【機能喪失の前提】 ・高圧注水機能(HPCS ^{*1} , RCIC ^{*1}) ・低圧注水機能(LPCS ^{*1} , LPCI ^{*1})	【高圧注水】 - 【減圧】 <u>逃がし安全弁(自動減圧機能)</u> (7個) ・事象発生から25分後に手動減圧 【低圧注水】 (低圧注水】 (低圧代替注水系(常設)) ・残留熱除去系C系ライン経由で注入 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持	 【格納容器スプレイ】 代替格納容器スプレイ 冷却系(常設) ・残留熱除去系 B 系ライン経由で注入 ・格納容器圧力 0.279MPa[gage] 到達以降 130m³/h でスプレイ(炉注水と同時) 【海水除熱】 【格納容器バント】 格納容器圧力逃がし装置又は耐圧強化ペン 上系 ・格納容器圧力 0.31MPa [gage] で実施(約 28 時間) 	【電源】 <u>非常用ディーゼル発電機、常設代替高圧電</u> <u>湯装置</u> ・外部電源なし ・ブラント状況判断の後,常設代替高圧電 源装置 2 台により給電(低圧代替注水系 (常設)に給電) 【水源(補給含む)】 <u>代替淡水貯槽、西側淡水貯水設備、可機型</u> <u>代替注水大型ポンプ</u> ・代替淡水貯槽を水源とした注水の開始時 点で水位が上昇する流量で補給	<炉心損傷防止> 炉心損傷回避のためには,約1時間までに注水する × 必要があるが,可搬型設備の使用開始は3時間を想 定しているため,可搬型設備では炉心損傷は防止で きない。	
格納容器バイパス (インターフェイス システムLOCA)	【事象概要】 ISLOCA(残留熱除去系熱交換器フラ ンジ部の漏えいを想定)が発生する。これ に対し,原子炉隔離時冷却系,低圧炉心ス プレイ系及び低圧代替注水系(常設)を用 いて原子炉注水を実施するとともに,破断 箇所を隔離する。 【機能喪失の想定】 ・HPCS ^{*1} ・残留熱除去系B系,C系	 【高圧注水】 原子炉隔難時冷却系 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)水位維持 【減圧】 逃びし安全弁(自動減圧機能)(7個) ・事象発生から15分後に手動減圧 【低圧注水】 低圧行込スプレイ系 ・原子炉水位異常低下(レベル1)到達時 に停止 低圧代替注水系(常設) ・残留熱除去系(スライン経由で注入 ・專発生17分後に注水 ・原子炉水位低(レベル3)近傍に水位維 持 	【格納容器スプレイ】 - 【海水除熱】 <u> 茂留熱除去系海水系</u>, <u>茂留熱除去系(格納</u> <u> 容器スプレイ冷却系), </u> 茂留熱除去系(サ <u> プレッション・プール冷却系)</u> ・事象発生 25 分後以降除熱開始 【格納容器ベント】 -	【電源】 非常用ディーゼル発電機,常設代替高圧電 源装置 ・外部電源なし 【水源(補給含む)】 代替淡水貯槽,サブレッション・チェンバ ・初期水量のみで対応可能。	<炉心損傷防止> 事象発生3時間後までは,原子炉隔離時冷却系及び ()低圧炉心スプレイ系を用いた原子炉注水を継続し, その後,低圧代替注水系(可搬型)による原子炉注 水を実施することで炉心損傷を防止できる。	

事故シーケンス		炉心損傷防止設備			
グループ	事故と対応の概要	炉心冷却	格納容器除熱	電源・水源	常設重大事故等対処設備の可搬型設備での代替
津波浸水による最終ヒー トシンク喪失	【事象概要】 津波により最終ヒートシンク喪失が発生す る。また、全交流動力電源喪失が発生する とともに、24時間は代替電源等による交流 電源復旧も不可となる。これに対し、浸水 防護対策を実施し内包する設備を防護する とともに、直流電源により8時間原子炉隔 雕時冷却系を用いた原子炉注水を継続す る。時間後からは低圧代替注水系(可搬型) を用いて原子炉注水を継続す、 (可搬型)を用いて格納容 器スプレイ冷却系(可搬型)を用いて格納 容器冷却を実施する。24時間後からは、常 設代替高圧電源装置から給電し、緊急用海 水系及び残留熱除去系を用いた原子炉注水 及び格納容器除熱の切替運転を実施する。 【機能喪失の想定】 ・取水機能(残留熱除去系海水系,非常用 ディーゼル発電機海水系)	【高圧注木】 <u>第子炉隔離時冷却系</u> ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 【滅圧】 <u>逃びし安全弁(自動減圧機能)</u> (7個) ・事象発生から8時間1分後(可撒型代替 注水中型ポンプ接続後)に <u>手動減圧</u> 【低圧注水】 可搬型代替注水中型ポンプ ・手動減圧後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持 残留熟除去系(低圧注水系) ・事象発生24時間後注水 ・原子炉水位低(レベル3)から原子炉水 位高(レベル8)にて水位維持	【格納容器スプレイ】 代替格約容器スプレイ 冷却系 (可搬型) ・格納容器圧力 0.279MPa[gage] 到達以降 130m ³ /hでスプレイ (原子炉注水と同時) 【海水除熱】 緊急用海水系,残留熱除去系 (格納容器ス ブレイ冷却系),残留熱除去系 (サブレッ ション・プール冷却系) ・原子炉注水との切換え運転 【格納容器ベント】 -	【電源】 所内常設直流電源設備、常設代替高圧電源 装置 ・外部電源なし ・直流電源の負荷切離を実施し,事象発生8 時間の間原子炉隔離時冷却系に供給 ・事象発生24時間後に常設代替高圧電源装 置から給電 【水源(補給含む)】 サブレッション・チェンパ,西側淡水貯水 設備,可搬型代替注水中型ポンプ ・初期水量のみで対応可能。	<炉心損傷防止> 可搬型設備による重大事故等対処設備の有効性を確 認している。

(2) 格納容器破損防止対策

救袖索思神場を、い	市在机学	格納容器破損防止設備			営設設備の可搬型での住 株	
117107142-00-10210	学 承以足	損傷炉心冷却	格納容器破損防止	電源・水源		
雰囲気圧力・温度による 静的負荷(格納容器過 圧・過温破損) (代替循環冷却系を使用 する場合)	【事象概要】 大LOCA(再循環系配管(出口ノズル)の 両端破断)発生とともに高圧及び低圧の注水 機能喪失及び全交流動力電源喪失が発生し、 炉心損傷に至る。これに対し、25分後に常設 代替高圧電源装置から給電した低圧代替注水 系(常設)により炉心へ注水し、代替格納容 哭みてレイ冷却系(営む)及び代禁循環冷却	【高圧注水】 一 【減圧】 (破断口からの減圧) 【低圧注水】	【格納容器スプレイ】 <u>第段低圧代替注水系ポンプ(2台)</u> ・残留熱除去系B系ライン経由で注入 ・事象発生から 25 分後に 130m ³ / h で実施 【ペデスタル (ドライウェル部) 注水】 - 【海水除熟】 医会用進水系 代数領費公利系	【電源】 常設代替高圧電源装置 ・外部電源なし ・プラントの状況判断の後,常設 代替高圧電源装置 2 台を起動 し,緊急用母線に給電 (低圧代替注水系(常設)及び代 替格納容器スプレイ冷却系(常 腔)しざ電) ※	<損傷炉心冷却> 作業開始から 170 分で可搬型設備による原子炉注水が可能 となるが、炉心損傷しており作業現場周辺の線量が高い場 合には作業着手が遅れる可能性がある。原子炉注水を実施 できない場合、事象発生から 3.3 時間後に原子炉圧力容器 が破損することから、可搬型設備では原子炉圧力容器破損 前の損傷炉心注水は行えない可能性がある。 <格納容器破損防止>	
水素燃焼	 ・	【窓辺伝正代替注水系ポンプ(2台) ・残留熟除去系C系ライン経由で注入 ・事象発生から25分後に230m ³ / hで実施 <u>緊急用海水系、代替循環冷却系</u> ・事象発生90分後から開始	 本品の店在入来、116日はまれロジェ ・事象発生 90 分後から開始 【格納容器ベント】 【窒素注入】 可搬型窒素供給装置 ・格納容器内酸素濃度 4.0vol% (ドライ条件) 到達で窒素注入開始 	 本) に相电// ・事象発生2時間後から,常設代 替高圧電源装置3台を追加起動 し,非常用母線に給電 【水源(補給含む)】 代替淡水貯積,サブレッション・ ブール ・初期水量のみで対応可能 	ペデスタル(ドライウェル部)には通常運転時から lm 水位 が確保されているため、原子炉圧力容器破損に伴い溶融炉 心が落下することで蒸気が発生し、格納容器の過圧・過温 に寄与する。作業着手が遅れた場合には、格納容器スプレ イによって原子炉圧力容器破損時の過圧・過温を加制でき ない可能性がある。また、ペデスタル(ドライウェル部) 注水も実施できないため、溶融炉心の露出やペデスタルの 侵食によって、格納容器の健全性に影響を与える可能性が ある。	
雰囲気圧力・温度による 静的負荷(格納容器過 圧・過温破損) (代替循環冷却系を使用 できない場合)	【事象概要】 大LOCA(再循環系配管(出口ノズル)の 両端破断)発生とともに高圧及び低圧の注水 機能喪失及び全交流動力電源喪失が発生し、 炉心損傷に至る。これに対し、25分後に常設 代替高圧電源装置から給電した低圧代替注水 系(常設)により炉心へ注水し、代替格納容 器スプレイ冷却系(常設)及び格納容器圧力 逃がし装置により格納容器を冷却・除熱する。 【機能喪失の前提】 ・高圧注水機能(HPCS, RCIC) ・低圧注水機能(LPCI, LPCS) ・全交流動力電源(外部電源,非常用ディー ゼル発電機等)	【高圧注水】 【減圧】 (破断口からの減圧) 【低圧注水】 常設低圧代替注水系ポンプ(2台) ・残留熱除去系C系ライン経由で注入 ・事象発生から25分後に230m ³ /hで実施 ・原子炉水位L0到達後,崩壊熱相当の注 水量に調整	【格納容器スプレイ】 常設促圧代替注水系ボンプ (2 台) ・残留熱除去系B系ライン経由で注入 ・事象発生から 25 分後に 130m ³ /h で実施 ・原子炉水位L 0 到達後, 130m ³ /h で圧力 制御 (0.400MPa[gage]~0.465MPa[gage]) 【ペデスタル (ドライウェル部) 注水】 - 【海水除熱】 - 【格納容器に力逃びし装置 ・サブレッション・ブール水位が通常水位 +6.5m 到達にて実施(約 19 時間後) 【窒素注入】	【電源】 常設代替高圧電源装置 ・外部電源なし ・ブラントの状況判断の後,常設 代替高圧電源装置 2 台を起動 し,緊急用母線に給電 (低圧代替注水系(常設)及び代 替格納容器スプレイ冷却系(常 設)に給電) ・事象発生2時間後から,常設代 × 替高圧電源装置3台を追加起動 し,非常用母線に給電 【水源(補給含む)】 代替淡水貯槽。互倒淡水貯水設備。 可變型代替注水中型ズンブ ・代替淡水貯槽を水源とした注水 の開始時点で水位が上昇する流 量で補給	<損傷炉心冷却> 作業開始から 170 分で可搬型設備による原子炉注水が可能 となるが、炉心損傷しており作業現場周辺の線量が高い場 合には作業着手が遅れる可能性がある。原子炉注水を実施 できない場合,事象発生から 3.3 時間後に原子炉圧力容器 が破損することから,可搬型設備では原子炉圧力容器 就破損することから,可搬型設備では原子炉圧力容器 就破損することから,可搬型設備では原子炉圧力容器 就破損することから,可搬型設備では原子炉圧力容器 就低いないるため,原子炉圧力容器破損に伴い溶融炉 心が落下することで蒸気が発生し,格納容器の過圧・過温 に寄与する。作業着手が遅れた場合には,格納容器スプレ イによって原子炉圧力容器破損時の過圧・過温を抑制でき ない可能性がある。また、ペデスタル(ドライウェル部) 注水も実施できないため,溶融炉心の露出やペデスタルの 侵食によって,格納容器の健全性に影響を与える可能性が ある。	

被纳密即神程不良。	古东凯宁	格納容器破損防止設備				告知礼曲の可拠刑での仕事	
格納谷益恢損モート	争家政止	損傷炉心冷却	格納容器破損防止	電源・水源		吊政政備の可搬空での代替	
高圧溶融物放出/格納容 器雰囲気直接加熱 (DCH)	【事象概要】 給水流量の全喪失の発生とともに高圧及び低 圧の注水機能喪失及び全交流動力電源喪失が 発生し、重大事故等対処設備による原子炉注 水を考慮しないため炉心損傷に至る。 手順に従い、原子炉水位が燃料有効長頃部か ら燃料有効長の20%上の位置に到達した時点 で、逃がし安全弁2弁を用いて原子炉を手動 減圧する。 原子炉圧力容器破損が破損し、溶融炉心がべ	【高圧注水】	【格納容器スプレイ】 常設低圧代替注系系ポンプ(2台) ・残留熱除去系 B 系ライン経由で注入 ・原子炉圧力容器破損(約4.5時間後)を 検知後、300m ³ /hでスプレイ ・格納容器圧力が低下傾向に転じた後,130 m ³ /hで圧力制御 (0.400MPa[gage]~0.465MPa[gage])	【電源】 <u>常設代替高圧電源装置</u> ・外部電源なし			
原子炉圧力容器外の溶融 燃料-冷却材相互作用 (FCI)	デスタル(ドライウェル部)に落下すること で,溶融炉心と水の相互作用による荷重が生 じるが,代替循環冷却系による格納容器除生 及び代替格納容器スプレイ冷却系(常設)に よる格納容器冷却により格納容器の健全性は 維持される。また,ペデスタル(ドライウェ ル部)のプール水及び溶融炉心落下後のペデ スタル(ドライウェル部)注水により溶融炉 心・コンクリート相互作用は抑制される。 その後は代替循環冷却系による格納容器除熱 を実施する。	【 滅圧】 逃がし安全弁(自動減圧機能)(2 弁) ・原子炉水位が燃料有効長頂部から燃料有 効長の 20%上の位置に到達した時点で手 動減圧(DCH防止) 【低圧注水】 <u>緊急用海水系,代替循葉冷却系</u> ・原子炉圧力容器破損(約4.5 時間後)後、	【ペデスタル(ドライウェル部)注水】 常胶低圧代替注水系ポンプ(2台) ・炉心損傷を確認後、ペデスタル(ドライ ウェル部)水位調整 ・原子炉圧力容器破損(約4.5 時間後)を 検知後、80m ³ /hで注水 ・ペデスタル(ドライウェル部)水位を2.25m ~2.75mに制御 【海水除熟】 緊急用淹水系、代替領費冷却系	 ・ブラントの状況判断の後,常設 代替高圧電源装置2台を起動し,緊急用母線に給電 (低圧代替注水系(常設)及び代 皆格納容器スプレイ冷却系(常 設)に給電) ・事象発生2時間後から,常設代 替高圧電源装置3台を追加起動し,非常用母線に給電 【水源(補給会む)】 	×	<格納容器破損防止> ペデスタル(ドライウェル部)には通常運転時から1m水位 が確保されているため,原子炉圧力容器破損に伴い溶融炉 心が落下することで蒸気が発生し,格納容器の過圧・過温 に寄与する。作業着手が遅れた場合には,格納容器スプレ イによって原子炉圧力容器破損時の過圧・過温を抑制でき ない可能性がある。また,ペデスタル(ドライウェル部) 注水も実施できないため,溶融炉心の露出やペデスタルの 侵食によって,格納容器の健全性に影響を与える可能性が ある。	
溶融炉心・コンクリート 相互作用 (MCCI)	【機能喪失の前提】 ・高圧注水機能(HPCS, RCIC) ・低圧注水機能(LPCS, LPCI) ・全交流動力電源(外部電源,非常用ディー ゼル発電機等) 【評価上の仮定】 ・原子炉圧力容器破損までの重大事故等対処 設備による原子炉注水を考慮しない	100m ³ /hで原子炉注水	 ・事象発生 90 分後から開始 【格納容器ベント】 【窒素注入】 可微型窒素供給装置 ・格納容器内酸素濃度 4.0vol% (ドライ条件) 到達で窒素注入開始 	代 替淡水貯槽, サブレッション・ <u>ブール</u> ・初期水量のみで対応可能。			

(3) 使用済燃料貯蔵槽における燃料損傷防止対策

相应事业	扫田市舟		燃料損傷防止対策			学乳香土市七葉共加乳農のゴ飯利乳農ペの体装		
想正爭改	起囚事家	漏えい・隔離	注水	除熱	電源・水源	Ī	常設重大事故等対処設備の可搬型設備での代替	
想定事故 1	使用済燃料プール冷却 機能及び注水機能喪失	なし	 可搬型代替注水中型ボンブ ・可搬型代替注水中型ボンブによる代 替燃料ブール注水系(注水ライン) を使用した注水 ・事象発生から8時間後に注水開始 	期待しない	【電源】 常設代替交流電源設備 ・外部電源なし ・ブラント状況判断の後,常設代替高圧電 源装置2台により給電(代替燃料ブール 注水系(注水ライン)に給電) 【水源(補給含む)】 <u>西側淡水貯設備</u> ・初期水量のみで対応可能	_	常設重大事故等対処設備に期待していない。	
想定事故 2	冷却材流出 (使用済燃料プール冷 却浄化系の配管破断)	【漏えい】使用汚燃料プー ル冷却浄化系ポンプの下 流側における配管破断 ・残留熱除去系に比べて耐 震性の低い使用済燃料プ ール冷却浄化系を想定 【漏えい停止】サイフォン ブレーク用配管 ・使用済燃料プール水位が 通常水位から約0.23m下 まで低下した時点で漏え いが停止する	 可搬型代替注水中型ボンブ ・可搬型代替注水中型ボンブによる代 替燃料ブール注水系(注水ライン) を使用した注水 ・事象発生から8時間後に注水開始 	期待しない	【電源】 常設代替交流電源設備 ・外部電源なし ・ブラント状況判断の後,常設代替高圧電 源装置2台により給電(代替燃料ブール 注水系(注水ライン)に給電) 【水源(補給含む)】 <u>西側淡水貯槽設備</u> ・初期水量のみで対応可能	_	常設重大事故等対処設備に期待していない。	

(4) 運転停止中原子炉における燃料損傷防止対策

事故シーケンス グループ	起因事象	燃料損傷防止対策				一些乳香上車も炊払い乳曲のゴ畑和乳魚曲ペの比率	
		原子炉停止	炉心冷却	除熱	電源・水源		常設重大事故寺対処設備の可搬型設備での代替
崩壊熱除去機能喪失(残 留熱除去系の故障による 停止時冷却機能喪失)	崩壞熱除去機能喪失	-	 込がし安全弁(1弁) ・注水前に炉圧上昇に伴い原子炉減圧操作を実施 特機中の残留熱除去系(低圧注水系) ・原子炉減圧操作の実施後,定格流量で注水することにより,水位を回復 ・事象発生から約2時間後に注水操作開始 	 待機中の残留熱除去系(原子炉停止時冷却 系),残留熱除去系海水系 ・注水による水位回復後に系統構成を行い,事象発生から3時間45分後に除熱 操作開始 	【電源】 <u>非常用ディーゼル発電機</u> ・外部電源なし 【水源(補給含む)】 <u>サプレッショ</u> ン・チェンバ	_	_
全交流動力電源喪失	全交流動力電源喪失	_	 逸がし安全弁(1弁) ・注水前に炉圧上昇に伴い原子炉減圧操作を実施 低圧代替注水系(常設) ・残留熟除去系C系ライン経由で注入 ・原子炉減圧操作の実施後,原子炉冷却材の蒸散を補うために必要な流量を注水することにより,通常運転水位を維持 ・事象発生から25分後に起動準備操作完了 	 茂留熱除去系(原子炉停止時冷却系),緊 金用海水系 ・注水による水位維持の間に系統構成を行い,事象発生から4時間10分後に除熱 操作開始	【電源】 <u>常設代替交流電源設備</u> ・外部電源なし ・事象発生から 21 分で常設代替高 圧電源装置 2 台により低圧代替注 水系(常設)に給電 ・事象発生から 1 時間 45 分で常設 代替高圧電源装置 5 台により残留 熟除去系等に給電 【水源(補給含む)] <u>代替淡水貯槽</u> ・初期水量のみで対応可能	0	<燃料有効長頂部の冠水,遮蔽維持水位の維持> 低圧代替注水系(可搬型)により,事象発生6.3時間後ま でに原子炉注水を実施することで,燃料有効長頂部の冠水 が可能。また,事象発生4.5時間後までに原子炉注水を実 施することで,遮蔽維持水位の維持が可能
原子炉冷却材の流出	残留熱除去系の系統切 替時の原子炉冷却材流 出	_	 特機中の残留熱除去系(低圧注水系) 定格流量で注水することにより,水位を回復 事象発生から約2時間後に注水操作開始 	 待機中の残留熱除去系(原子炉停止時冷却 系), 残留熱除去系神水系 ・注水による水位維持の間に漏えい箇所の 隔離及び残留熱除去系(原子炉停止時冷 却系)への系統構成を行い,準備完了後 に除熟開始 ・注水により水位を維持している間に漏えい 箇所の隔離を実施するため,残留熱除 去系(原子炉停止時冷却系)への系統構 成の時間余裕は十分長い 	【電源】 非常用ディーゼル発電機 ・外部電源なし 【水源(補給含む)】 <u>サプレッショ</u> ン・チェンパ	_	_
反応度の誤投入	運転停止中の原子炉に おいて、制御棒1本が 全引き抜きされている 状態から、他の1本の 制御棒が操作量の制限 を超える誤った操作に よって連続的に引き抜 かれる事象	安全保護系 ・原子炉出力ペリ オド短(10 秒)	-	_	_	_	-

18 原子炉冷却材浄化系吸込弁の閉止操作について

「2.6 LOCA時注水機能喪失」において破断を想定している再循 環系配管は,原子炉冷却材浄化系を介して原子炉圧力容器の底部ドレン 配管と接続している。このため,LOCAの発生を確認した場合*は, 原子炉冷却材浄化系吸込弁(F102)を閉止し,可能な限り系統間の隔 離状態を確保する手順としている。再循環系配管と底部ドレン配管の配 置図を第1図に示す。

※ ドライウェル圧力高(13.7kPa[gage]) 信号により確認

第1図 再循環系配管と底部ドレン配管の模式図

19 格納容器圧力挙動について

1. 格納容器圧力挙動の詳細

格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損)」の有効性評価における代替循環冷却系を使用できない場合の格納 容器圧力挙動を第1図及び第2図に示す。事象発生直後の格納容器圧力の推 移及び格納容器圧力逃がし装置による格納容器除熱(以下「格納容器ベント」 という。)後の格納容器圧力の推移を以下に考察する。

- 事象発生直後の挙動
- ① LOCA破断口からの蒸気流出により格納容器圧力が上昇する。
- ② その後、代替格納容器スプレイ冷却系(常設)による格納容器冷却及び 低圧代替注水系(常設)による原子炉注水を実施するが、原子炉水位が 回復する過程で過熱蒸気が発生し、破断口から流出することで格納容器 圧力が上昇する。
- ③ 原子炉水位LO到達により代替格納容器スプレイ冷却系(常設)による 格納容器冷却を停止することで格納容器圧力が上昇する。
- (2) 格納容器ベント後の挙動
- ① 格納容器ベントにより急激に格納容器圧力は低下する。
- ② 格納容器圧力の低下により、格納容器圧力逃がし装置からの排気流量は低下するが、サプレッション・プール水が飽和状態となり蒸気が発生する(第3図)。蒸気発生量が格納容器圧力逃がし装置からの排気流量を上回るため、格納容器圧力が上昇傾向となる。
- ③ 格納容器圧力の上昇により、格納容器圧力逃がし装置からの排気流量は 増加し、格納容器圧力逃がし装置からの排気流量と蒸気発生量が同じと なる時点で格納容器圧力は一定となる。

④ その後は崩壊熱の低下により蒸気発生量が低下することで、格納容器圧 力は徐々に低下する。格納容器ベント後のドライウェル圧力とサプレッ ション・チェンバ圧力に差が生じているが、これは、ドライウェルとサ プレッション・チェンバをつなぐベント管内の水頭差によるものである。 第4図に示すとおり、格納容器ベント実施基準はサプレッション・プー ルの通常水位+6.5m(サプレッション・プール底部から13.530m)であ り、ベント管底部はサプレッション・底部から3.608m位置であること から、水頭圧力は約9.922m相当(約0.1MPa)の圧力差が生じることと なる。

第2図 格納容器圧力の推移

第3図 サプレッション・プールのサブクール度の推移

第4図 サプレッション・プールとベント管高さの位置関係

2. 東海第二発電所と柏崎刈羽原子力発電所6・7号炉の格納容器圧力挙動の 違い

東海第二発電所及び柏崎刈羽原子力発電所 6•7 号炉における格納容器ベン ト後の格納容器圧力挙動を第5 図及び第6 図に示す。東海第二発電所と柏崎 刈羽原子力発電所 6•7 号炉の格納容器ベント後の格納容器圧力挙動の違いを 以下に考察する。

(1) 格納容器ベント直後の挙動

両プラントにおける格納容器ベント実施直後の格納容器圧力の推移を比 較すると、東海第二発電所の場合は急激な圧力低下後に一時的に圧力が上 昇し、その後、緩やかに圧力低下していく推移となるが、柏崎刈羽原子力 発電所 6・7 号炉の場合は急激な圧力低下後に一時的な圧力上昇がなく、そ の後緩やかに圧力低下する挙動となる。東海第二発電所及び柏崎刈羽原子 力発電所 6・7 号炉における格納容器ベント実施直後の格納容器圧力挙動の 違いは以下の理由によるものと考えられる。

- 東海第二発電所は、柏崎刈羽原子力発電所6・7号炉に比べて、格納 容器ベント実施時点でのサプレッション・プール水温度が低く(第 7図及び第8図)、サブクール度が高い(第9図及び第10図)*。
- ② 東海第二発電所は、①の違いから、より格納容器圧力が低下した時 点でサプレッション・プール水が飽和状態になる。
- ③ 格納容器圧力が低下すると格納容器圧力逃がし装置からの排気流量 も低下する一方で、東海第二発電所では②による発生蒸気量が格納 容器圧力逃がし装置からの排気流量を上回り、格納容器圧力が一時 的に上昇する。
- ④ 柏崎刈羽原子力発電所6・7号炉では、①の違いから、東海第二発電
 所に比べて、より格納容器圧力が高い段階でサプレッション・プー

ル水が飽和状態に至り,格納容器圧力に応じた格納容器圧力逃がし 装置からの排気流量が蒸気発生量を上回るため,一時的に圧力上昇 することなく,緩やかに圧力低下する。

- ※ 柏崎刈羽原子力発電所 6・7 号炉は東海第二発電所に比べて比較的高い 圧力(蒸気分圧が高い状態)で格納容器スプレイを実施しており、よ りスプレイ水が蒸気と接触することで、サプレッション・プールへ移 行するスプレイ水のサブクール度が低くなる。
- (2) 格納容器ベント実施後中長期の挙動

格納容器ベント後の格納容器圧力は,崩壊熱に伴う格納容器内での蒸気 発生量と格納容器ベント排気流量の相関で推移していくことになるが,比 較的崩壊熱の高い期間においては,柏崎刈羽原子力発電所6・7号炉に比べ 東海第二発電所の方が格納容器圧力は低めに推移し,事象発生960時間後 におけるサプレッション・チェンバ圧力は両プラントともに同程度となる。 東海第二発電所及び柏崎刈羽原子力発電所6・7号炉における格納容器ベン ト実施後中長期の格納容器圧力挙動の違いは以下の理由によるものと考え られる。

- 格納容器ベント直後から比較的崩壊熱の高い期間においては、以下の2つの理由により、東海第二発電所は柏崎刈羽原子力発電所6・7 号炉より格納容器圧力が低く推移すると考える。
 - ・格納容器ベントにより、格納容器からの蒸気排出に伴い格納容器
 圧力が低下するが、格納容器ベントによりサプレッション・プー
 ル水のサブクールが失われて以降、サプレッション・プール水の
 沸騰により飽和圧力に近づくよう蒸気が供給される。このため、
 サプレッション・プール水温が低く飽和圧力が低い東海第二発電
 所の方が、格納容器圧力が低く推移する。

- ・東海第二発電所では、ベント弁は全開とする運用としているが、
 柏崎刈羽原子力発電所6・7号炉では、ベント開度を調整する運用
 (有効性評価では50%開度)であり、東海第二発電所の方が排気
 流量は大きいものと考えられる。この排気流量は、特に格納容器
 ベント後の格納容器圧力の低下速度に影響を及ぼし、東海第二発
 電所の方が格納容器圧力が低く推移する。
- ② 長期的には崩壊熱の減少に伴い格納容器内での蒸気発生量が減少し、 両プラントとも格納容器圧力逃がし装置から排出可能な流量を下回 るため、①の弁開度の違いによる影響を受けにくく、同程度の圧力 で推移する。

第5図 東海第二発電所における

格納容器ベント後の格納容器圧力の推移(長期挙動)

第6図 柏崎刈羽原子力発電所6・7号炉における 格納容器ベント後の格納容器圧力の推移(長期挙動)

第7図 東海第二発電所における

サプレッション・プール水温度の推移

第8図 柏崎刈羽原子力発電所6・7号炉における サプレッション・チェンバ・プール水温の推移

第9図 東海第二発電所における

サプレッション・プールのサブクール度の推移

第10図 柏崎刈羽原子力発電所6・7号炉における サプレッション・プールのサブクール度の推移

20 再循環系のランバック機能について

再循環系ポンプは,以下のインターロックにより作動するランバッ ク機能を有している。

①発電機出力 30%以上時の「主蒸気止め弁閉」又は「蒸気加減弁急速閉」

スクラム機能と共に原子炉出力を抑制するため,発電機出力 30%以上時における主蒸気止め弁閉又は蒸気加減弁急速閉信号に より高速度運転から低速度運転へ移行する。

②原子炉水位低(レベル3)

原子炉水位異常低下(レベル2)による不要な非常用炉心冷却 系の自動起動を防止するため,原子炉水位低(レベル3)信号に より高速度運転から低速度運転へ移行する。

③給水流量低下かつ再循環流量許容値以下

再循環系ポンプ流量制御弁のキャビテーション防止のため,給 水流量低下(給水流量 20%以下)かつ再循環流量許容値以下(再 循環系ポンプ流量制御弁 18%以下)時に高速度運転から低速度運 転とする。

第1図 再循環系のランバック機能の概略図

補足 20-2

21 東海第二の有効性評価解析に対する解析コード適用性について

(1) 適用性の確認方法

東海第二の有効性評価解析で使用する解析コードについて、「重大事故等対策 の有効性評価に係るシビアアクシデント解析コードについて」(以下「解析コー ド審査資料」という。)にて先行審査プラントに対して確認された内容と比較す ることで東海第二への適用性について確認する。

(1.1) 事故シナリオの比較(重要現象抽出の適用性確認)

解析コード審査資料では,有効性評価の各事故シーケンスグループについ て,具体的な事故シナリオを踏まえ,評価指標の選定及び物理現象のランク 付けを行い,重要現象を抽出している。よって,ここでは,解析コード審査 資料における事故シナリオと東海第二の各重要事故シーケンスにおける事故 シナリオとを比較することで,重要現象の抽出に与える影響を確認する。

(1.2) プラント仕様の比較(妥当性確認の適用性確認)

解析コード審査資料では,重要現象に対する解析モデルについて実験解析 等により妥当性を確認した上で,実験装置等と実機との差異(スケーリング) を考慮しても妥当性確認の結果が適用可能であることを確認している。よっ て,ここでは,先行審査プラントと東海第二のプラント仕様の違いを比較す ることで,重要現象に対する解析モデルの妥当性確認のスケーリングに与え る影響について確認する。

- (2) 適用性の確認結果
- (2.1) 事故シナリオの比較の結果(別紙1)
- ① S A F E R

解析コード審査資料と東海第二の事故シナリオの違いを踏まえても、重要 現象の抽出に違いはないことを確認した。

(2) R E D Y / S C A T

解析コード審査資料と東海第二の事故シナリオは同じであり、重要現象の 抽出にも違いがないことを確認した。

③MAAP

解析コード審査資料と東海第二の事故シナリオの違いを踏まえても、重要 現象の抽出に違いはないことを確認した。

(4) A P E X

解析コード審査資料と東海第二の事故シナリオは同じであり、重要現象の 抽出にも違いがないことを確認した。

(2.2) プラント仕様の比較の結果(別紙2)

① S A F E R

解析コード審査資料において,妥当性確認に使用した実験装置と実機との 差異として着目すべきプラント仕様について,東海第二のプラント仕様は, 先行審査プラントに包含されることから,プラント仕様の違いによるスケー リングの違いはないことを確認した。

(2) - 1 R E D Y

反応度係数の保守因子の妥当性確認について,東海第二と先行審査プラン トとの炉心格子の違いが,保守因子の不確かさ評価に影響を与えることから, 東海第二の炉心格子を想定した保守因子の不確かさ評価を行い,この保守因 子を用いた感度解析により影響を確認する。これ以外については,妥当性確 認に使用したABWR実機試験について出力等が異なるプラントにおいて原 子炉停止機能喪失事象の評価に影響する設備の差異は,従来型BWRの先行

審査プラントと代表ABWRとの差異と同じであることから、プラント仕様の違いによるスケーリングの違いはないことを確認した。

2 - 2 S C A T

解析コード審査資料において,妥当性確認に使用した実験装置は実寸大の 9×9模擬燃料集合体を用いたものであり,東海第二でも先行審査プラント と同じ9×9燃料(A型)を解析条件として設定していることから,プラン ト仕様の違いによるスケーリングの違いはないことを確認した。

3MAAP

解析コード審査資料において, 妥当性確認に使用した実験装置と実機との 差異として着目すべきプラント仕様について, 東海第二のプラント仕様は, 先行審査プラントに包含されることから, プラント仕様の違いによるスケー リングの違いはないことを確認した。

(4) A P E X

解析コード審査資料において, 妥当性確認に使用した実験装置と実機との 差異として着目すべきプラント仕様について, 東海第二のプラント仕様は, 先行審査プラントと同様であることから, プラント仕様の違いによるスケー リングの違いはないことを確認した。なお, 解析コード審査資料において, 妥当性確認に使用した実験装置と実機との差異として着目しているのは「ド ップラー反応度フィードバック効果」及び「制御棒反応度効果」であり, 東 海第二を対象に不確かさ評価の感度解析を実施し影響を確認する。

(2.3) 感度解析等(別紙3)

REDYコードの反応度係数の保守因子の妥当性確認について,東海第二 の炉心格子(C格子)を想定した不確かさ評価を行い,この保守因子を用い た感度解析を実施した。この結果,解析コードの不確かさ等を考慮して設定 している保守因子の大きさは、事象進展に応じて変動し得るが、厳しい組合 せとした場合においても、プラント挙動への影響は小さく、燃料被覆管温度 も数℃の上昇にとどまり、評価項目となるパラメータに与える影響が小さい ことを確認している(付録 3 重大事故等対策の有効性評価に係るシビアア クシデント解析コードについて(第 3 部 REDY))。

APEXコードの妥当性確認に使用した実験装置と実機との差異として着 目した「ドップラー反応度フィードバック効果」及び「制御棒反応度効果」 について,東海第二を対象に不確かさ評価の感度解析を実施した。この結果,

「発電用軽水炉型原子炉施設の反応度投入事象評価指針」に示された燃料の 許容設計限界値等を超えることはなく,燃料の健全性は維持されることを確 認した。

事故シナリオの比較の結果

- ① S A F E R
- a)対象とする事故シーケンスグループ

SAFERコードで対象としている6つの事故シーケンスグループに加え, 東海第二では,全交流動力電源喪失(TBU,TBD),全交流動力電源喪失 (TBP)及び津波浸水による注水機能喪失を事故シーケンスグループとし て抽出している。

b)事故シナリオの比較

各事故シーケンスグループについて,解析コード審査資料の事故シナリオ と東海第二の事故シナリオとを比較することにより,重要現象の抽出に与え る影響を確認した結果を表1-1に示すとともに,以下に概要を示す。

全交流動力電源喪失(長期TB)は,解析コード審査資料と原子炉減圧の タイミングが異なるが,原子炉隔離時冷却系で注水した後に原子炉を減圧し て低圧注水に移行するという点では同様であり,重要現象も同じになる。

全交流動力電源喪失(TBU, TBD), 全交流動力電源喪失(TBP)及 び津波浸水による注水機能喪失は,期待する設備や操作タイミングが異なる ものの,事故シナリオとしては全交流動力電源喪失(長期TB)と同様であ り,重要現象も同じになる。

- (2) R E D Y / S C A T
- a)対象とする事故シーケンスグループ

対象とする事故シーケンスグループは,原子炉停止機能喪失のみであり, 解析コード審査資料と東海第二とでは違いはない。

b)事故シナリオの比較

解析コード審査資料の事故シナリオと東海第二の事故シナリオとを比較す

ることにより,重要現象の抽出に与える影響を確認した結果を表1-2に示 す。東海第二の事故シナリオは,解析コード審査資料の事故シナリオと同様 であり,重要現象も同じになる。

3MAAP

a)対象とする事故シーケンスグループ

(a-1) 炉心損傷防止対策

MAAPコードで対象としている6つの事故シーケンスグループに加 え、東海第二では、全交流動力電源喪失(TBU, TBD)、全交流動力 電源喪失(TBP)及び津波浸水による注水機能喪失を事故シーケンス グループとして抽出している。

(a-2) 格納容器破損防止対策

MAAPコードで対象としている5つの格納容器破損モードと同様で あり,解析コード審査資料と東海第二とでは違いはない。

b)事故シナリオの比較

(b-1) 炉心損傷防止対策

各事故シーケンスグループについて,解析コード審査資料の事故シナ リオと東海第二の事故シナリオとを比較することにより,重要現象の抽 出に与える影響を確認した結果を表1-3に示すとともに,以下に概要 を示す。

全交流動力電源喪失(長期TB)は,減圧するタイミングは異なるが, 原子炉隔離時冷却系で注水した後に原子炉を減圧して低圧注水に移行す るという点では同様であり,重要現象も同じになる。また,低圧代替注 水系(可搬型)による格納容器スプレイを実施するが,これに関連する 重要現象としてスプレイ冷却が抽出されている。このため,事故シナリ オの違いに起因する重要現象抽出の違いはない。

全交流動力電源喪失(TBU, TBD), 全交流動力電源喪失(TBP) 及び津波浸水による注水機能喪失は,期待する設備や操作タイミングが 異なるものの,事故シナリオとしては全交流動力電源喪失(長期TB) と同様であり,重要現象も同じになる。

(b-2) 格納容器破損防止対策

各格納容器破損モードについて,解析コード審査資料の事故シナリオ と東海第二の事故シナリオとを比較することにより,重要現象の抽出に 与える影響を確認した結果を表1-3に示すとともに,以下に概要を示 す。

雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)(代替循 環冷却系を使用する場合)は、最終ヒートシンクが異なるが、代替循環 冷却系は残留熱除去系と同等の設備であり、物理現象として「サプレッ ション・プール冷却」が抽出されていることから、影響はない。

水素燃焼は、PDSは異なるものの、水素燃焼の観点で抽出すべき物 理現象は両PDSで同じであり、影響はない。

溶融炉心・コンクリート相互作用は、PDSは異なるものの、溶融炉 心・コンクリート相互作用の観点で抽出すべき物理現象は両PDSで同 じであり、影響はない。

コリウムシールド敷設については、以下のとおり物理現象の抽出の観 点で影響はない(重大事故対策の有効性評価「3.5 溶融炉心・コンクリ ート相互作用 添付資料 3.5.1 コリウムシールドを考慮した溶融炉心・ コンクリート相互作用による侵食量評価について」参照)。

- ・コリウムシールドの温度は侵食開始温度を超えないため侵食が発生しない
- ・コリウムシールドは $Z r O_2$ 製であり,侵食した場合でもガス等の

発生はない

- ・コリウムシールドの侵食開始温度は化学反応等による温度低下を考 慮して設定している。
- また,コリウムシールドを介したコンクリートの温度上昇についても評価しており,コンクリートに対する物理現象も考慮していることから, 物理現象の抽出の観点では影響はない。

(4) A P E X

a)対象とする事故シーケンスグループ

対象とする事故シーケンスグループは,反応度の誤投入のみであり,解析 コード審査資料と東海第二とでは違いはない。

b)事故シナリオの比較

解析コード審査資料の事故シナリオと東海第二の事故シナリオとを比較す ることにより,重要現象の抽出に与える影響を確認した結果を表1-4に示 す。東海第二の事故シナリオは,解析コード審査資料の事故シナリオと同様 であり,重要現象も同じになる。

表1-1 事故シナリオの比較(SAFER)(1/3)

事故シートリフカ・ルーフ。	事故シナリオ		東投シナリオの造いの影響	
	解析コード審査資料	東海第二	争戦シノリオの遅いの影響	
高圧·低圧注水機	・給水流量の全喪失+RCIC 及び	・給水流量の全喪失+高圧炉心冷却失敗+低圧炉心	- (事故シナリオに違いはない)	
能喪失	ECCS(高圧注水系及び低圧注	冷却失敗		
	水系)起動失敗	・SRV(逃がし安全弁(自動減圧機能))により急速		
	・高圧代替注水設備又は SRV に	減圧後に低圧代替注水設備(低圧代替注水系(常		
	より急速減圧後に低圧代替注	設))により原子炉注水		
	水設備により原子炉注水			
高圧注水·減圧機	・給水流量の全喪失+RCIC 及び	・給水流量の全喪失+高圧炉心冷却失敗+原子炉減	- (事故シナリオに違いはない)	
能喪失	ECCS(高圧注水系)起動失敗+	圧失敗		
	原子炉の減圧失敗	・代替自動減圧ロジック(過渡時自動減圧機能)に		
	・代替自動減圧ロジックにより	より原子炉を減圧した後に ECCS(低圧炉心スプレ		
	原子炉を減圧した後に ECCS	イ系及び残留熱除去系(低圧注水系)3 台)によ		
	(低圧注水系) により原子炉	り原子炉注水		
	注水			
全交流動力電源	・外部電源喪失+非常用ディー	 外部電源喪失+DG失敗+HPCS失敗(蓄電池 	原子炉減圧を実施するタイミングは異なる	
喪失(長期 TB)	ゼル発電機の機能喪失	枯渇後RCIC停止)	が、原子炉隔離時冷却系により高圧注水を	
	・一定期間直流電源を確保し	・一定期間直流電源(所内常設直流電源設備)を確	実施した後に、原子炉を減圧して低圧注水	
	RCIC により原子炉水位を維持	保し RCIC により原子炉水位を維持しつつ,約8時	に移行するという点では同じであり、重要	
	しつつ、代替電源設備及び低	間後に原子炉を減圧し, 低圧代替注水系(可搬型)	現象も同じになる。	
	圧代替注水設備の準備が完了	による原子炉注水を実施		
	したところで,原子炉の減圧	・代替電源設備(常設代替交流電源設備)及び低圧		
	及び ECCS(低圧注水系)又は低	代替注水設備(残留熱除去系(低圧注水系))の		
	圧代替注水設備により原子炉	準備が完了したところで、残留熱除去系(低圧注		
	注水	水系)により原子炉注水		

表1-1 事故シナリオの比較(SAFER)(2/3)

事ないたけない。	事故シナリオ		車抜いナルナの造いの影響	
	解析コード審査資料	東海第二	争政シノリオの進いの影響	
全交流動力電源	-	 外部電源喪失+直流電源失敗+高圧炉心冷却失敗 	期待する設備は異なるが,事故シナリオ	
喪失(TBU, TBD)		・一定期間直流電源(常設代替直流電源設備)を確	としては全交流動力電源喪失(長期 TB)	
		保し高圧代替注水系により原子炉水位を維持しつ	と同様であり、重要現象も同じになる。	
		つ、約8時間後に原子炉を減圧し、低圧代替注水		
		系(可搬型)による原子炉注水を実施		
		・代替電源設備(常設代替交流電源設備)及び低圧		
		代替注水設備(残留熱除去系(低圧注水系))の		
		準備が完了したところで,残留熱除去系(低圧注		
		水系)により原子炉注水		
全交流動力電源	—	・外部電源喪失+DG失敗+逃がし安全弁再閉鎖失	期待する設備及び原子炉減圧のタイミ	
喪失(TBP)		敗+HPCS失敗	ングは異なるが, 事故シナリオとしては	
		・一定期間直流電源(所内常設直流電源設備)を確	全交流動力電源喪失(長期 TB)と同様で	
		保しRCICにより原子炉水位を維持しつつ,約3時	あり、重要現象も同じになる。	
		間後に原子炉を減圧し、低圧代替注水系(可搬型)		
		による原子炉注水を実施		
		・代替電源設備(常設代替交流電源設備)及び低圧		
		代替注水設備(残留熱除去系(低圧注水系))の		
		準備が完了したところで、残留熱除去糸(低圧注		
		水糸)により原子炉注水		
崩壞熱除去機能	・給水流量の全喪失+取水機能	・給水流量の全喪失+RHR失敗(取水機能喪失に	- (事故シナリオに違いはない)	
喪失	喪失	よるもの)		
(取水機能喪失)	・RCIC が自動起動して原子炉水	・RCIC が自動起動した後に RCIC にて原子炉水位を		
	位を維持			
	・その後、原子炉を減圧し、低	・サブレッション・ブール水温度 65℃ 到達にて原子		
	上代替注水設備等による原子 に、	炉を减止して低止代替注水糸(常設)による原子		
	炉汪水	炉汪水を実施		

表1-1 事故シナリオの比較(SAFER)(3/3)

ませいよいながれって	事故シナリオ		事状シナリナの書いの影響
爭败Ѵ″ワン∧ク №″ノ	解析コード審査資料	東海第二	争取シアリオの進いの影響
崩壊熱除去機能	・給水流量の全喪失+RHR 機能喪	 ・給水流量の全喪失+RHR失敗(残留熱除去系の) 	- (事故シナリオに違いはない)
喪失	失	故障によるもの)	
(RHR 機能喪失)	・RCIC が自動起動して原子炉水	・RCIC 及び高圧炉心スプレイ系が自動起動した後に	
	位を維持	RCIC にて原子炉水位を維持	
	・その後,原子炉を減圧し,高	・サプレッション・プール水温度 65℃到達にて原子	
	圧代替注水設備等による原子	炉を減圧して低圧代替注水系(常設)による原子炉	
	炉注水	注水を実施	
LOCA 時注水機能	・中小破断 LOCA+ECCS(高圧注水	 中破断LOCA+高圧炉心冷却失敗+低圧炉心冷 	- (事故シナリオに違いはない)
喪失	系,低圧注水系)起動失敗	却失敗	
	・高圧代替注水設備又は SRV に	・SRV(逃がし安全弁(自動減圧機能))により急速	
	より急速減圧後に低圧代替注	減圧後に低圧代替注水設備(低圧代替注水系(常	
	水設備により原子炉注水	設))により原子炉注水	
格納容器バイパ	・高圧炉心注水系の吸込配管等	・残留熱除去系の熱交換器フランジ部からの漏えい	- (事故シナリオに違いはない)
ス	の破損	を想定	
(インターフェイスシステム	・RCIC 及び ECCS (高圧注水系) に	・RCIC により原子炉注水をした後,漏えい抑制のた	
LOCA)	より原子炉注水	めに原子炉を減圧し,低圧炉心スプレイ系,低圧	
	・逃がし安全弁による原子炉減	代替注水系(常設)による原子炉注水を実施	
	圧及び破断箇所の隔離によっ	・破断箇所を隔離することで冷却材流出を防止	
	て冷却材流出を防止		
	・原子炉減圧後は、低圧注水設		
	備等により原子炉注水		
津波浸水による	-	事故シナリオは、「全交流動力電源喪失」と同じ	事故シナリオとしては全交流動力電源喪失
注水機能喪失			と同様であり、重要現象も同じになる。

表1-2 事故シナリオの比較(REDY/SC	CAT))
------------------------	------	---

事故シーケンス	事故シ	ナリオ	事故シナリオの違いの
ク゛ルーフ゜	解析コード審査資料	東海第二	影響
原子炉停止機能	・主蒸気隔離弁の誤閉止+原子炉停止機能喪失	・主蒸気隔離弁の誤閉止+原子炉停止失敗	—
喪失	・主蒸気隔離弁の誤閉止及び原子炉スクラム失敗	・主蒸気隔離弁の誤閉止及び原子炉スクラム失敗	(事故シナリオに違いは
	により原子炉出力及び原子炉圧力が上昇し, 沸	により原子炉出力及び原子炉圧力が上昇し, 沸	ない)
	騰遷移が発生することで燃料被覆管温度が上	騰遷移が発生することで燃料被覆管温度が上	
	昇	昇	
	・原子炉圧力高信号で再循環ポンプがトリップし	・原子炉圧力高信号で再循環系ポンプがトリップ	
	炉心流量が低下	し炉心流量が低下	
	・原子炉圧力高信号による代替制御棒挿入は失敗	・原子炉圧力高信号による代替制御棒挿入は失敗	
	を仮定	を仮定	
	・逃がし安全弁が断続して開動作し、原子炉で発	 ・逃がし安全弁が断続して開動作し、原子炉で発 	
	生した蒸気が格納容器内のプール水へ放出さ	生した蒸気がサプレッション・プールへ放出さ	
	れることでプール水温度及び格納容器圧力が	れることでサプレッション・プール水温度及び	
	上昇	格納容器圧力が上昇	
	・原子炉出力が厳しくなるようモータ駆動給水ポ	・原子炉出力が厳しくなるよう電動駆動給水ポン	
	ンプの運転を想定	プの運転を想定	
	・給水加熱喪失により原子炉出力は次第に上昇	・給水加熱喪失により原子炉出力は次第に上昇	
	し, 燃料が沸騰遷移状態となることで燃料被覆	し, 燃料が沸騰遷移状態となることで燃料被覆	
	管温度が上昇	管温度が上昇	
	・ほう酸水注入系により原子炉出力を低下	・ほう酸水注入系により原子炉出力を低下	
	・残留熱除去系によりサプレッション・プール冷	・残留熱除去系によりサプレッション・プール冷	
	却を実施	却を実施	

表 1 - 3	事故シナリオの	D比較(MAAP) (1/	´9))
---------	---------	----------	-------	-----	---

事故シーケンス	事故シ	ナリオ	事故シナリオの違いの影
ク゛ルーフ゜	解析コード審査資料	東海第二	響
高圧・低圧注水 機能喪失	 ・給水流量の全喪失+非常用炉心冷却系(高圧注水系及び低圧注水系)起動失敗 ・逃がし安全弁により原子炉を急速減圧した後に低圧代替注水設備により原子炉注水 ・格納容器代替スプレイ系による冷却及び格納容器圧力逃がし装置による除熱を実施 	 ・給水流量の全喪失+高圧炉心冷却失敗+低圧 炉心冷却失敗 ・逃がし安全弁(自動減圧機能)により原子炉 を急速減圧した後に低圧代替注水系(常設) により原子炉注水 ・代替格納容器スプレイ冷却系(常設)による 	 (事故シナリオに違いはない)
高圧注水・減圧 機能喪失	 ・給水流量の全喪失+非常用炉心冷却系(高圧注水系)起動失敗+原子炉の減圧失敗 ・原子炉代替減圧系により原子炉を減圧した後に非常用炉心冷却系(低圧注水系)により原子炉注水 ・残留熱除去系による除熱を実施 	格納容器冷却及び格納容器圧力逃がし装置等 による格納容器除熱を実施 ・給水流量の全喪失+高圧炉心冷却失敗+原子 炉減圧失敗 ・原子炉代替減圧系(過渡時自動減圧機能)に より原子炉を減圧した後に非常用炉心冷却系 (低圧炉心スプレイ系及び残留熱除去系(低 圧注水系)3台)により原子炉注水 ・残留熱除去系による格納容器除熱を実施	- (事故シナリオに違いは ない)

表1-3 事故シナリオの比較(MAAP)(2/9)

事状におけがしつ	事故シナリオ		す おいたり ナの告いの影響
●	解析コード審査資料	東海第二	事政シノリオの遅いの影響 (1)
全交流動力電源	・外部電源喪失+非常用ディーゼル発電	 ・外部電源喪失+DG失敗+HPCS失敗(蓄 	原子炉減圧を実施するタイミングは
喪失(長期 TB)	機等の機能喪失	電池枯渇後 R C I C 停止)	異なるが、原子炉隔離時冷却系によ
	・原子炉隔離時冷却系による原子炉注水	・原子炉隔離時冷却系の原子炉注水により原子	り高圧注水を実施した後に、原子炉
	によって原子炉水位を適切に維持し	炉水位を維持しつつ,約8時間後に原子炉を	を減圧して低圧注水に移行する点及
	つつ,代替交流動力電源設備及び低圧	減圧し,低圧代替注水系(可搬型)による原	び残留熱除去系による格納容器除熱
	代替注水系の準備が完了したところ	子炉注水を実施	を実施する点では同じであり、重要
	で,逃がし安全弁により原子炉を減圧	・低圧代替注水系(可搬型)と同じポンプを用	現象も同じになる。低圧代替注水系
	し,低圧代替注水系による原子炉注水	いて代替格納容器スプレイ系(可搬型)によ	(可搬型)による格納容器スプレイ
	を開始	る格納容器冷却を実施	を実施するが、これに関連する重要
	・残留熱除去系又は格納容器圧力逃がし	・代替電源設備(常設代替交流電源設備)及び	現象としてスプレイ冷却が抽出され
	装置による除熱を実施	低圧代替注水設備(残留熱除去系(低圧注水	ており、シナリオの違いを考慮して
		系))の準備が完了したところで,残留熱除	も重要現象は適切に抽出されてい
		去系(低圧注水系)により原子炉注水及び格	る。
		納容器除熱を実施	
全交流動力電源	—	 外部電源喪失+直流電源失敗+高圧炉心冷却 	期待する設備は異なるが、事故シナ
喪失(TBU, TBD)		失敗	リオとしては全交流動力電源喪失
		・高圧代替注水系の原子炉注水により原子炉水	(長期 TB)と同様であり,重要現象
		位を維持しつつ,約8時間後に原子炉を減圧	も同じになる。
		し,低圧代替注水系(可搬型)による原子炉	
		注水を実施	
		・低圧代替注水系(可搬型)と同じポンプを用	
		いて代替格納容器スプレイ系(可搬型)によ	
		る格納容器冷却を実施	
		・代替電源設備(常設代替交流電源設備)及び	
		低圧代替注水設備(残留熱除去系(低圧注水	
		系))の準備が完了したところで,残留熱除	
		去系(低圧注水系)により原子炉注水及び格	
		納容器除熱を実施	

表1-3 事故シナリオの比較(MAAP)(3/9)

事ないかれかいで	事故シ	ナリオ	東サンナリナの違いの影響
●02=12/1/1/1/1/1/1	解析コード審査資料	東海第二	事故シノリオの遅いの影響
全交流動力電源	_	・外部電源喪失+DG失敗+逃がし安全弁再閉鎖失敗+	原子炉減圧のタイミングは
喪失(TBP)		HPCS失敗	異なるが,事故シナリオとし
		・原子炉隔離時冷却系の原子炉注水により原子炉水位を	ては全交流動力電源喪失(長
		維持しつつ,約3時間後に原子炉を減圧し,低圧代替	期 TB) と同様であり, 重要
		注水系(可搬型)による原子炉注水を実施	現象も同じになる。
		・低圧代替注水系(可搬型)と同じポンプを用いて代替	
		格納容器スプレイ系(可搬型)による格納容器冷却を	
		実施	
		・代替電源設備(常設代替交流電源設備)及び低圧代替	
		注水設備(残留熱除去系(低圧注水系))の準備が完	
		了したところで、残留熱除去系(低圧注水系)により	
		原子炉注水及び格納容器除熱を実施	
崩壞熱除去機能	・給水流量の全喪失+取水機能喪失	 ・給水流量の全喪失+RHR失敗(取水機能喪失による) 	- (事故シナリオに違いはな
喪失	・原子炉隔離時冷却系が自動起動して原	もの)	(v)
(取水機能喪失)	子炉水位を適切に維持しつつ, 低圧又	・原子炉隔離時冷却系が自動起動して原子炉水位を維持	
	は高圧代替注水系による原子炉注水	し、サプレッション・プール水温度 65℃到達にて原子	
	を実施	炉を減圧して低圧代替注水系(常設)による原子炉注	
	・最終ヒートシンクへの代替熱移送系を	水を実施	
	用いた除熱を実施	・緊急用海水系を用いた格納容器除熱を実施	
崩壞熱除去機能	・給水流量の全喪失+取水機能喪失	・給水流量の全喪失+RHR失敗(残留熱除去系の故障	- (事故シナリオに違いはな
喪失	・原子炉隔離時冷却系が自動起動して原	によるもの)	(v)
(RHR 機能喪失)	子炉水位を適切に維持しつつ、低圧又	・原子炉隔離時冷却系及び高圧炉心スプレイ系が自動起	
	は高圧代替注水系による原子炉注水	動した後に原子炉隔離時冷却系にて原子炉水位を維持	
	を実施	し、サプレッション・プール水温度 65℃到達にて原子	
	・格納容器代替スプレイ系による冷却及	炉を減圧して低圧代替注水系(常設)による原子炉注	
	び格納容器圧力逃がし装置による除	水を実施	
	熱を実施	・代替格納容器スプレイ冷却系(常設)による格納容器	
		冷却及び格納容器圧力逃がし装置等による格納容器除 ***	
		熱を実施	

車おシートリフカシルーフ。	事故シナリオ		車歩シナルオの違いの影響	
争议////////////////////////////////////	解析コード審査資料	東海第二	事成シアリオの遅いの影響	
LOCA 時注水機能	・中小破断 LOCA+非常用炉心冷却系(高圧	 ・中破断LOCA+高圧炉心冷却失敗+低圧炉心 	- (事故シナリオに違いはない)	
喪失	注水系及び低圧注水系)起動失敗	冷却失敗		
	・逃がし安全弁により原子炉を急速減圧	・逃がし安全弁(自動減圧機能)により原子炉を		
	した後に低圧代替注水設備により原子	急速減圧した後に低圧代替注水系(常設)によ		
	炉注水	り原子炉注水		
	・格納容器代替スプレイ系による冷却及	・代替格納容器スプレイ冷却系による格納容器冷		
	び格納容器圧力逃がし装置による除熱	却及び格納容器圧力逃がし装置等による格納		
	を実施	容器除熱を実施		
津波浸水による	_	事故シナリオは,残留熱除去系海水系に代わり緊	事故シナリオとしては全交流動力電	
最終ヒートシン		急用海水系に期待している点を除き「全交流動力	源喪失と同様であり,重要現象も同じ	
ク喪失		電源喪失」と同じ	になる。	

表1-3 事故シナリオの比較(MAAP)(4/9)

表1-3 事故シナリオの比較(MAAP)(5/9)

格納容器破損	事故シー	ナリオ	ませいよりよのないの影響
モード	解析コード審査資料	東海第二	事故シブリオの遅いの影響
雰囲気圧力・温度 による静的負荷 (格納容器過 圧・過温破損)	 ●事故シナリオ ・大破断LOCA+注水機能喪失 ・炉心出力は直ちに崩壊熱レベルまで低下するが、非常用炉心冷却系の機能が喪失することを想定するため、原子炉水位が急速に低下して炉心が露出し、やがて炉心損傷に至る ・損傷炉心が溶融し、下部プレナムに落下 ・下部プレナム内の原子炉冷却材が蒸発し、溶融炉心が高温状態となり、原子炉圧力容器下部ヘッドの構造材温度も上昇、やがて下部ヘッド貫通部の逸出等により破損 ・落下した溶融炉心の保有熱により、格納容器下部注水系により原子炉圧力容器破損前の注 	【代替循環冷却系を使用する場合】 ・大破断LOCA+注水機能喪失 ・炉心出力は直ちに崩壊熱レベルまで低下する が,非常用炉心冷却系の機能が喪失すること を想定するため,原子炉水位が急速に低下し て炉心が露出し,やがて炉心損傷に至る ・低圧代替注水系(常設)による原子炉注水に より下部プレナムへの溶融炉心落下を防止 ・代替格納容器スプレイ冷却系(常設)による 格納容器圧力及び雰囲気温度の上昇緩和 ・代替循環冷却系による格納容器除熱	解析コード審査資料で考慮して いる格納容器破損防止対策と同 等であり、影響はない。 なお、最終ヒートシンクが異なる が、代替循環冷却系は残留熱除去 系と同等の設備であり、物理現象 として「サプレッション・プール 冷却」が抽出されていることか ら、影響はない。
	 水操作により溜まった冷却水の急激な蒸発 ・冷却水による溶融炉心からの除熱が十分でない場合には、コンクリートからの脱水及びコンクリートの溶融が起き、脱水により生じた水蒸気、溶融炉心内部の金属と水の反応による水素発生による加圧が発生 ・格納容器内の雰囲気圧力・温度が緩慢に上昇し、格納容器破損に至る ●格納容器破損防止対策 ・低圧代替注水系等による溶融炉心冷却 ・格納容器スプレイによる格納容器の圧力及び雰囲気温度の上昇抑制 ・格納容器圧力逃がし装置等による除熱 	【代替循環冷却系を使用できない場合】 ・大破断LOCA+注水機能喪失 ・炉心出力は直ちに崩壊熱レベルまで低下する が,非常用炉心冷却系の機能が喪失すること を想定するため,原子炉水位が急速に低下し て炉心が露出し,やがて炉心損傷に至る ・低圧代替注水系(常設)による原子炉注水に より下部プレナムへの溶融炉心落下を防止 ・代替格納容器スプレイ冷却系(常設)による 格納容器圧力及び雰囲気温度の上昇緩和 ・格納容器圧力逃がし装置による格納容器除熱	解析コード審査資料で考慮して いる格納容器破損防止対策と同 等であり,影響はない。

表 1 - 3	事故シナリ	オの比較	(MAAP)) (6/	′ 9)
---------	-------	------	--------	-------	-------------

格納容器破損	事故シナリオ		車サンナリナの声いの影響
モード	解析コード審査資料	東海第二	事故シノリオの遅いの影響
モード高圧溶融物放出 /格納容器雰囲 気直接加熱	 解析コード審査資料 事故シナリオ 高圧注水・減圧機能喪失+全交流動力電源の 喪失 炉心出力は直ちに崩壊熱レベルまで低下する が、高圧注水・減圧機能が喪失することを想 定するため、原子炉水位が徐々に低下して炉 心が露出し、やがて炉心損傷に至る 損傷炉心が溶融し、下部プレナムに落下 下部プレナム内の原子炉冷却材が蒸発し、溶 融炉心が高温状態となり、原子炉圧力容器下 部ペッドの構造材温度も上昇、やがて下部ペッド貫通部の逸出等により破損 原子炉圧力が高圧状態で原子炉圧力容器破損 に至るため、高圧の水蒸気及び水素が放出されるとともに、溶融炉心は液滴上に格納容器 今散放出された溶融炉心は液滴上に格納容器 季囲気へ飛散し、格納容器の圧力・温度が急 上昇して破損に至る 格納容器破損防止対策 原子炉圧力容器破損までに手動操作にて、原 	東海第二 ・高圧注水・減圧機能喪失+全交流動力電源の 喪失 ・炉心出力は直ちに崩壊熱レベルまで低下する が,高圧注水・減圧機能が喪失することを想 定するため,原子炉水位が徐々に低下して炉 心が露出し,やがて炉心損傷に至る ・原子炉水位が燃料有効長底部から燃料有効長 の20%上の位置に到達した時点で,逃がし安 全弁2個の手動開操作による原子炉減圧 ・損傷炉心が溶融し,下部プレナムに落下 ・下部プレナム内の原子炉冷却材が蒸発し,溶 融炉心が高温状態となり,原子炉圧力容器下 部ヘッドの構造材温度も上昇,やがて下部ヘ ッド貫通部の逸出等により破損 ・原子炉圧力容器破損までに原子炉圧力が 2.0MPa[gage]以下に低下	事故シナリオの違いの影響 - (事故シナリオに違いはない)
	子炉を速やかに減圧		

格納容器破損	事故シ	事サンナリナの凄いの影響	
モード	解析コード審査資料	東海第二	争政シリオの遅いの影響
原子炉圧力容器 外の溶融燃料- 冷却材相互作用	 事故シナリオ 高圧・低圧注水機能喪失+全交流動力電源の 喪失 炉心出力は直ちに崩壊熱レベルまで低下する が,高圧・低圧注水機能が喪失することを想 定するため,原子炉水位が徐々に低下して炉 心が露出し,やがて炉心損傷に至る 損傷炉心が溶融し,下部プレナムに落下 下部プレナム内の原子炉冷却材が蒸発し,溶 融炉心が高温状態となり,原子炉圧力容器下 部ヘッドの構造材温度も上昇,やがて下部ヘ ッド貫通部の逸出等により破損 落下した溶融炉心の保有熱により,格納容器 下部注水系により原子炉圧力容器破損前の注 水操作により溜まった冷却水の急激な蒸発 圧力スパイクにより格納容器破損に至る 格納容器破損防止対策 (圧力スパイクによって格納容器破損に至らな いことを確認する) 	 ・高圧・低圧注水機能喪失+全交流動力電源の 喪失 ・炉心出力は直ちに崩壊熱レベルまで低下する が,高圧・低圧注水機能が喪失することを想 定するため,原子炉水位が徐々に低下して炉 心が露出し,やがて炉心損傷に至る ・損傷炉心が溶融し,下部プレナムに落下 ・下部プレナム内の原子炉冷却材が蒸発し,溶 融炉心が高温状態となり,原子炉圧力容器下 部ヘッドの構造材温度も上昇,やがて下部ヘ ッド貫通部の逸出等により破損 ・落下した溶融炉心の保有熱により,ペデスタ ル(ドライウェル部)に溜まった冷却水の急 激な蒸発 ・圧力スパイクによって格納容器破損に至らな いことを確認 	- (事故シナリオに違いはない)

表1-3 事故シナリオの比較(MAAP)(7/9)

表1-3 - 3 - 3	事故シナリ	オの比較	(MAAP)) (8/	´9)	
--------------	-------	------	--------	-------	-----	--

格納容器破損	事故シナリオ		車サンナリナの書いの影響
モード	解析コード審査資料	東海第二	争政ンケリオの遅いの影響
水素燃焼	 事故シナリオ 高圧・低圧注水機能喪失+全交流動力電源の 喪失 炉心出力は直ちに崩壊熱レベルまで低下する が,高圧・低圧注水機能が喪失することを想 定するため,原子炉水位が徐々に低下して炉 心が露出し,やがて炉心損傷に至る 炉心露出部で燃料棒が加熱していくと燃料被 覆管のジルコニウムー水反応によって多量の 水素が発生 水の放射線分解によって水素及び酸素が発生 発生した水素及び酸素は原子炉内で発生する 蒸気と共に逃がし安全弁を通じてウェットウ ェルに流入し,サプレッション・プール水中 に取り込まれた核分裂生成物による水の放射 線分解に伴って発生する水素及び酸素と共に 空間に蓄積し,一部は真空破壊弁を通じてド ライウェルに流入する。 格納容器スプレイにより格納容器内での蒸気 凝縮が進むと,格納容器内の水素及び酸素濃 度は上昇する。 格納容器破損防止対策 格納容器正力逃がし装置による可燃性ガスの 排出 	 ・大破断LOCA+注水機能喪失 ・炉心出力は直ちに崩壊熱レベルまで低下するが、非常用炉心冷却系の機能が喪失することを想定するため、原子炉水位が急速に低下して炉心が露出し、やがて炉心損傷に至る ・炉心露出部で燃料棒が加熱していくと燃料被覆管のジルコニウム-水反応によって多量の水素が発生 ・水の放射線分解によって水素及び酸素が発生 ・発生した水素及び酸素は原子炉内で発生する蒸気と共に大破断LOCAの破断口を通じてドライウェルに流入する。一部はベント管を通じてサプレッション・プール水中に流入し、サプレッション・プール水中に流入し、サプレッション・プール水中に取り込まれた核分裂生成物による水の放射線分解に伴って発生する水素及び酸素と共に空間に蓄積する。 ・低圧代替注水系(常設)による原子炉注水により下部プレナムへの溶融炉心落下を防止 ・代替格納容器スプレイ冷却系(常設)による格納容器圧力及び雰囲気温度の上昇緩和 ・格納容器スプレイ及び代替循環冷却系により格納容器内での蒸気凝縮が進むと、格納容器内の水素及び酸素濃度は上昇する。 	PDSは異なるものの,水素燃焼 の観点で抽出すべき物理現象は 両PDSで同じであり,影響はな い。

表1-3 事故シナリオの比較(MAAP)(9/9)

格納容器破損	事故シ	ナリオ	市社、上川上の海いの影響
モード	解析コード審査資料	東海第二	争政ンプリオの遅いの影響
溶融炉心・コンクリート相互作用	 事故シナリオ 大破断LOCA+注水機能喪失 炉心出力は直ちに崩壊熱レベルまで低下する が,非常用炉心冷却系の機能が喪失すること を想定するため,原子炉水位が急速に低下し て炉心が露出し,やがて炉心損傷に至る 損傷炉心が溶融し,下部プレナムに落下 下部プレナム内の原子炉冷却材が蒸発し,溶 融炉心が高温状態となり,原子炉圧力容器下 部ヘッドの構造材温度も上昇,やがて下部ヘ ッド貫通部の逸出等により破損 落下した溶融炉心の保有熱により,格納容器 下部注水系により原子炉圧力容器破損前の注 水操作により溜まった冷却水の急激な蒸発 冷却水による溶融炉心からの除熱が十分でない場合には,コンクリートからの脱水及びコ ンクリートの溶融が発生 溶融炉心によるコンクリートの溶融侵食が継 続すると,格納容器の構造部材の支持機能が 喪失し,格納容器破損に至る 格納容器破損防止対策 原子炉圧力容器破損前の格納容器下部への冷 却水確保 溶融炉心落下後の原子炉注水及び格納容器下 部注水による溶融炉心冷却 	 高圧・低圧注水機能喪失+全交流動力電源の 喪失 ・低圧代替注水系(常設)による原子炉注水不 可を想定し,炉心損傷に至る ・損傷炉心が溶融し,下部プレナムに落下 ・原子炉圧力容器破損 ・落下した溶融炉心の保有熱により,ペデスタ ル(ドライウェル部)に溜まった冷却水の急 激な蒸発 ・ペデスタル(ドライウェル部)に溜まった冷 却水及びペデスタル(ドライウェル部)への 注水並びにペデスタル(ドライウェル部)への 注水並びにペデスタル(ドライウェル部)内 に敷設したコリウムシールドの効果により, コンクリート温度は融点に至らず溶融侵食は 発生しない 	PDSは異なるものの、溶融炉 心・コンクリート相互作用の観点 で抽出すべき物理現象は両PD Sで同じであり、影響はない コリウムシールド敷設について は、以下のとおり物理現象の抽出 の観点で影響はない。 ・コリウムシールドの温度は侵食 開始温度を超えないため侵食 が発生しない ・コリウムシールドはZrO ₂ 製 であり、侵食した場合でもガス 等の発生はない ・コリウムシールドの侵食開始温 度は化学反応による温度低下 等を考慮して設定している また、コリウムシールドを介した コンクリートの温度上昇につい ても評価しており、コンクリート に対する物理現象も考慮してい ることから、物理現象の抽出の観 点では影響はない

表1-4 事故シナリオの比較(APEX)

事故シーケンス	事故シ	事故シナリオの違いの	
ク゛ルーフ゜	解析コード審査資料	東海第二	影響
反応度の誤投入	 ・原子炉が運転停止中に、制御棒1本が全引き抜きされている状態から、他の1本の制御棒が操作量の上限を超える誤った操作によって引き抜かれ、臨界超過に至る事象 ・中性子束が上昇しスクラム設定点に至った場合 	 ・運転停止中の原子炉において、制御棒1本が全引き抜きされている状態から、他の1本の制御 棒が操作量の制限を超える誤った操作によっ て連続的に引き抜かれる事象 ・制御棒の誤操作による反応度の投入により、原 	- (事故シナリオに違い はない)
	に原子炉がスクラムする	子炉出力ペリオド短(10秒)信号による原子炉 スクラム信号が発生し,原子炉はスクラムす る。制御棒が全挿入し,原子炉は未臨界状態と なる	

プラント仕様の比較の結果

①SAFER (表 2-1)

解析コード審査資料において,妥当性確認に使用した実験装置と実機との 差異として着目しているのは「燃料集合体の体数」,「燃料集合体の軸方向長 さ」,「ECCS構成」及び「燃料集合体の型式」であり,東海第二のこれら のプラント仕様は,表2-5に示すとおり先行審査プラントの仕様に包含さ れることから,プラント仕様の違いによるスケーリングの違いはない。

2-1 REDY(表 2-2-1)

解析コード審査資料において,妥当性確認に使用したABWR実機試験に ついて,出力等が異なるプラントにおいて原子炉停止機能喪失事象の評価に 影響する設備の差異として着目しているのは,「再循環系」,「ほう酸水注入箇 所」及び「ECCS構成」であり,東海第二のこれらのプラント仕様は,表 2-5に示すとおり従来型BWRの先行審査プラントの仕様に包含されるこ とから、プラント仕様の違いによるスケーリングの違いはない。

反応度係数の保守因子設定の妥当性確認について,東海第二の炉心格子は C格子であり,解析コード審査資料の想定(N格子,S格子)と異なってい る。炉心格子の違いにより,妥当性確認に使用した保守因子の不確かさ評価 に影響を与える。このため,東海第二のC格子を想定した同様の不確かさ評 価及び感度解析を実施し,影響を確認する。

(2-2) SCAT ($(\overline{x} 2 - 2 - 2)$)

解析コード審査資料において,妥当性確認に使用した実験装置は実寸大の 9×9模擬燃料集合体を用いたものであり,東海第二でも先行審査プラント と同じ9×9燃料(A型)を解析条件として設定していることから,プラン ト仕様の違いによるスケーリングの違いはない。また,9×9燃料(A型) のATLAS試験の範囲以上の入口サブクーリングに対しては,第1から第 3スペーサの範囲ではGEXL相関式は適用可能であり,第4スペーサに対 しても保守的であることを確認おり,東海第二の有効性評価解析では第4ス ペーサ位置で燃料被覆管最高温度が発生している。

③-1 MAAP (炉心損傷防止対策) (表 2 - 3)

解析コード審査資料において、妥当性確認に使用した実験装置と実機との 差異として着目しているのは「燃料集合体の体数」、「燃料集合体の軸方向長 さ」、「ECCS構成」及び「燃料集合体の型式」であり、東海第二のこれら のプラント仕様は、表2-5に示すとおり従来型BWRの先行審査プラント の仕様に包含されることから、同様の適用性を有していると考えられる。
③-2 MAAP(格納容器破損防止対策)(表2-3)

解析コード審査資料において,妥当性確認に使用した実験装置と実機との 差異として着目しているのは「燃料集合体の型式」,「格納容器体積」及び「コ ンクリート物性」であり,東海第二のこれらのプラント仕様は,表2-5に 示すとおり従来型BWRの先行審査プラントの仕様に包含されることから, 同様の適用性を有していると考えられる。

④APEX(表 2-4)

解析コード審査資料において,妥当性確認に使用した実験装置と実機との 差異として着目しているのは「ドップラー反応度フィードバック効果」及び 「制御棒反応度効果」であり,設備としては「燃料集合体の型式」,「制御棒 引抜速度」及び「起動領域計装の状態」が該当し,東海第二のこれらのプラ ント仕様は,表2-5に示すとおり先行審査プラントの仕様に包含されるこ とから,プラント仕様の違いによるスケーリングの違いはない。

分類	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	崩壞熱	崩壊熱モデル	信頼性の高い評価モデルと現実的な評価条件を使用して評価した値を事象発生後の原子 炉出力変化として入力しており、妥当性確認は不要としている。	- (妥当性確認は不要としている)
	燃料棒表面熱伝達, 沸騰遷移,気液熱非 平衡	燃料棒表面熱伝達モデ ル	TBL, ROSA-Ⅲ及び FIST-ABWR の実験解析により重要現象の妥当性を確認している。	SAFER の解析コード審査資料において、妥当性確認に使用した実験装置と実機との差異と して着目しているのは「燃料集合体の体数」、「燃料集合体の軸方向長さ」、「ECCS 構成」及び「燃料集合体の型式」であり、東海第二のこれらのプラント仕様は、先行審査 プラントの仕様に包含されることから、プラント仕様の違いによるスケーリングの違いは ない。
炉心	燃料被覆管酸化	ジルコニウム-水反応 モデル	蒸気供給制限がなく,蒸気を反応温度まで上げるためのエネルギは必要としないものと仮 定し,反応量及び反応熱を過大に評価するよう選定した酸化反応速度式 (Baker-Just 式) を採用しており,妥当性確認は不要としている。	- (妥当性確認は不要としている)
	燃料被覆管変形	膨れ・破裂評価モデル	燃料被覆管の歪み量を計算し,燃料被覆管の破裂を判定する破裂限界曲線には,実験値と 良く一致するベストフィット曲線に基づき現実的な条件を適用していることから,妥当性 確認は不要としている。	 (妥当性確認は不要としている)
	 沸騰・ボイド率変化, 気液分離(水位変化)・対向流,三次 元効果 	二相流体の流動モデル	TBL, ROSA-Ⅲ及び FIST-ABWR の実験解析により重要現象の妥当性を確認している。	SAFER の解析コード審査資料において、妥当性確認に使用した実験装置と実機との差異と して着目しているのは「燃料集合体の体数」、「燃料集合体の軸方向長さ」、「ECCS 構成」及び「燃料集合体の型式」であり、東海第二のこれらのプラント仕様は、先行審査 プラントの仕様に包含されることから、プラント仕様の違いによるスケーリングの違いは ない。
原子	沸騰・ボイド率変化,気液分離(水位変化)・対向流	二相流体の流動モデル	FIST-ABWR の実験解析により重要現象の妥当性を確認している。	SAFER の解析コード審査資料において、妥当性確認に使用した実験装置と実機との差異と して着目しているのは「燃料集合体の体数」、「燃料集合体の軸方向長さ」、「ECCS 構成」及び「燃料集合体の型式」であり、東海第二のこれらのプラント仕様は、先行審査 プラントの仕様に包含されることからプラント仕様の違いによるスケーリングの違いは ない。
炉圧力容器	冷却材放出(臨界 流・差圧流)	臨界流モデル	TBL, ROSA-Ⅲ及びFIST-ABWRの実験解析により重要現象の妥当性を確認している。	SAFER の解析コード審査資料において、妥当性確認に使用した実験装置と実機との差異と して着目しているのは「燃料集合体の体数」、「燃料集合体の軸方向長さ」、「ECCS 構成」及び「燃料集合体の型式」であり、東海第二のこれらのプラント仕様は、先行審査 プラントの仕様に包含されることから、プラント仕様の違いによるスケーリングの違いは ない。
	ECCS 注水(給水系・ 代替注水系含む。)	原子炉注水系モデル	設計に基づく作動圧力や流量を境界条件として与えることから,妥当性確認は不要として いる。	- (妥当性確認は不要としている)

表2-1 妥当性確認の方法と東二有効性評価解析への適用性(SAFER)

分領	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	核分裂出力	核特性モデ ル	ABWR の実機試験解析により重要現象の妥当性を確認している。	REDY の解析コード審査資料において,妥当性確認に使用した ABWR の実機試験について,出力等が異なる プラントにおいて原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」,「ほう酸水注入箇所」及び「ECCS の構成」であり,東海第二のこれらのプラント仕様は、BWR5 の 先行審査プラントの仕様に包含されることから,プラント仕様の違いによるスケーリングの違いはない。
	反応度フィ ードバック 効果	反応度モデ ル (ボイ ド・ドップ ラ)	ABWR の実機試験解析により重要現象の妥当性を確認している。	REDY の解析コード審査資料において,妥当性確認に使用した ABWR の実機試験について,出力等が異なる プラントにおいて原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」,「ほう酸水注入箇所」及び「ECCS の構成」であり,東海第二のこれらのプラント仕様は、BWR5 の 先行審査プラントの仕様に包含されることから,プラント仕様の違いによるスケーリングの違いはない。
			反応度係数の保守因子として、単位燃料集合体核特性計算コードによる評価から求められた反 応度係数に不確かさ等を考慮し、全ての解析時間を通して同一値の保守因子として動的ボイド 係数1.25、動的ドップラ係数0.9を掛けて評価している。この保守因子設定の妥当性を確認す るため、3つのサブ時間領域に細分割し、それぞれの領域での保守因子の不確かさを評価し、 感度解析により影響を確認している。	保守因子設定の妥当性確認について,東海第二の炉心格子はC格子であり,解析コード審査資料の想定(N 格子,S格子)と異なっている。炉心格子の違いにより,妥当性確認に使用した保守因子の不確かさ評価 に影響を与える。 このため,東海第二のC格子を想定した同様の不確かさ評価及び感度解析を実施し,影響を確認する。
		反応度モデ ル (ボロン)	ボロン反応度については、ほう酸水拡散モデルの妥当性確認に含める。 高温停止に必要なボロン反応度は、三次元末臨界性評価における停止余裕基準(1.5%∠k)に 対して余裕を考慮して 3%∠k を不確かさとしている。	高温停止に必要なボロン反応度の妥当性確認について、東海第二においても三次元未臨界性評価における 停止余裕基準として同じ値を使用していることから、同様の適用性を有していると考えられる。
沪心	崩壊熱	崩壊熱モデ ル	軽水型動力炉の非常用炉心冷却系の性能評価指針にて使用することが妥当と認められている 崩壊熱曲線との比較により、1 秒の時点で最大+0.8%, -0.1%の不確かさを有していること を確認している。	崩壊熱モデルの妥当性確認は,非常用炉心冷却系の性能評価において使用が認められている崩壊熱曲線と の比較により実施していることから,東海第二に対しても同様の適用性を有していると考えられる。
	沸騰,ボイ ド率変化	炉心ボイド モデル	炉心ボイドマップ確認試験の実験解析,炉心熱水力解析コードで多数のボイドマップデータを 作成し炉心流量の違いによる影響を整理する手法及び ABWR の実機試験解析により重要現象の 妥当性を確認している。	炉心ボイドマップ確認試験の実験解析による妥当性確認について、有効性評価解析の高炉心入口サブクー リング側の炉心入口サブクーリングの変動範囲は、従来の高温高圧での実パンドル体系での試験範囲外で あるが、炉心入口サブクーリングの変動範囲は、従来の高温高圧での実パンドル体系での試験範囲外で あるが、炉心入口サブクーリングの変動範囲は、低来の高温高圧での実パンドル体系での試験範囲外で あるが、炉心入口サブクーリングのであ高くなりサブクール沸騰及び飽和沸騰開始点が下流側に移動した場合 でも、サブクール沸騰開始後の下流側の流動状態は通常の炉心入口サブクーリングでの不確かさへの影響 は小さいとしていることから、東海第二に対しても同様の適用性を有していると考えられる。 炉心熱水力解析コードで多数のボイドマップデータを作成し炉心流量の違いによる影響を整理する手法 による妥当性確認については、ABWR 代表プラントに対するものであり、東海第二では炉心格子形状が違 うことで主にインチャンネル流量/バイバス流量の比が異なるが、この影響は炉心格子形状の寸法の違い を踏まえると非常に小さいと考えられ、また、東海第二と代表 ABWR との違いはないを含えられ。また、東海第二と代表 ABWR との違いに包含されることから、ブラント仕様の違いによるスケーリングの違いはない。 ABWR の実機試験解析による妥当性確認について、REDY の解析コード審査資料において、出力等が異なる プラントに対する原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」、「ほう酸水注入箇所」及び「ECCS の構成」であり、東海第二のこれらのブラントと杜様に見容

表2-2-1 妥当性確認の方法と東二有効性評価解析への適用性(REDY)(1/2)

分類	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	冷却材流量変化(コーストダウン特性)	再循環モデ ル	ABWR の実機試験解析により重要現象の妥当性を確認している。	REDYの解析コード審査資料において、妥当性確認に使用したABWRの実機試験について、出力等が異なる プラントにおいて原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」、「ほう酸水注入箇所」及び「ECCSの構成」であり、東海第二のこれらのプラント仕様は、BWRSの 先行審査プラントの仕様に包含されることから、プラント仕様の違いによるスケーリングの違いはない。
原了	冷却材流量 変化(自然 循環流量)	再循環モデ ル	ABWR 及び従来型 BWR の実機試験解析により重要現象の妥当性を確認している。	ABWR 及び出力の異なる従来型 BWR (460MWe 及び 1,100MWe) に対する実機試験結果により妥当性を確認し ており、東海第二は 1,100MWe の従来型 BWR であることから、プラント仕様の違いによるスケーリングの 違いはない。
于炉圧力容哭	冷却材放出 (臨界流・ 差圧流)	逃がし安全 弁モデル	ABWR の実機試験解析により重要現象の妥当性を確認している。	REDYの解析コード審査資料において、妥当性確認に使用したABWRの実機試験について、出力等が異なる プラントにおいて原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」、「ほう酸水注入箇所」及び「ECCSの構成」であり、東海第二のこれらのプラント仕様は、BWRSの 先行審査プラントの仕様に包含されることから、プラント仕様の違いによるスケーリングの違いはない。
-0.0*	 E C C S 注 水 (給水 系・代替注 水含む) 	給水系モデ ル	ABWR の実機試験解析により重要現象の妥当性を確認している。	REDY の解析コード審査資料において,妥当性確認に使用した ABWR の実機試験について,出力等が異なる プラントにおいて原子炉停止機能喪失事象の評価に影響する設備の差異として着目しているのは「再循環 系」,「ほう酸水注入箇所」及び「ECCS の構成」であり,東海第二のこれらのプラント仕様は、BWR5 の 先行審査プラントの仕様に包含されることから,プラント仕様の違いによるスケーリングの違いはない。
	ほう酸水の 拡散	ほう酸水拡 散モデル	ほう酸水拡散モデルの入力データがボロンミキシング試験結果に基づき保守的に設定され、安 全側の評価となっていることを確認している。	東海第二のほう酸水注入箇所は、BWR5 の先行審査プラントと同じであり、プラント仕様の違いによるス ケーリングの違いはない。
格納容器	サプレッシ ョン・プー ル冷却	格納容器モ デル	放熱による熱損失を考慮せず、かつ空間部が飽和状態にある等、単純な計算で保守性を確保し ていることから、妥当性確認は不要	 (妥当性確認は不要としている)

表2-2-1 妥当性確認の方法と東二有効性評価解析への適用性(REDY)(2/2)

分類	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	出力分布変化	出力分布モデル	解析コードは保守的に中央ピークに基づく軸方向出力分布を設定するため、燃料被覆管温度を高 めに評価することから、妥当性確認は不要としている。	- (妥当性確認は不要としている)
	燃料棒内温度 変化	熱伝導モデル, 燃 料ペレット-被覆 管ギャップ熱伝 達モデル	解析コードは、燃料ペレットと燃料被覆管間のギャップ熱伝達係数を高めに設定することで、原 子炉出力が上昇する時の表面熱流束に対する熱伝達遅れが小さくなる。このため、主蒸気隔離弁 閉止によって原子炉出力が急増する状態では、燃料被覆管温度を高めに評価する。また、給水加 熟喪失によって原子炉出力が準静的に増加する状態では、表面熱流速に対する熟伝達遅れの燃料 被覆管温度への影響は大きくないと考えられることから、妥当性確認は不要としている。	- (妥当性確認は不要としている)
	燃料棒表面熱 伝達	熱伝達モデル リウェットモデ ル	NUPEC BWR 燃料集合体熱水力試験の実験解析により重要現象の妥当性を確認している。	NUPEC BWR 燃料集合体熱水力試験の実験解析では、実寸大の9×9燃料(A型) 模擬燃料集合体 を用いた実験により,修正 Dougal1-Rohsenow 式及び相関式2を適用することにより,燃料被覆管 温度を高めに評価する傾向を確認している。東海第二でも先行審査プラントと同じ9×9燃料(A 型) を解析条件として設定していることから,プラント仕様の違いによるスケーリングの違いは ない。
炉心	沸騰遷移	沸騰遷移評価モ デル	ATLAS 試験及び NUPEC BWR 燃料集合体熱水力試験の実験解析により重要現象の妥当性を確認して いる。	ATLAS 試験及び NUPEC BWR 燃料集合体熱水力試験の実験解析では、実寸大の9×9燃料(A型) 模擬燃料集合体を用い、BWR の通常運転時のバラメータ範囲を想定した実験により、SLMCPR を基 準に沸騰遷移の発生及び沸騰遷移位置を判定するよう設定することで、燃料被覆管温度をおおむ ね高めに評価する傾向を確認している。また、9×9燃料(A型)のATLAS 試験の範囲以上の入 ロサブクーリングに対しても、第1から第3スペーサの範囲ではGEXL 相関式は適用可能であり、 第4スペーサに対しても保守的であることを確認している。東海第二でも先行審査ブラントと同 じ9×9燃料(A型)を解析条件として設定していることから、プラント仕様の違いによるスケ ーリングの違いはない。また、東海第二の有効性評価解析では、第4スペーサ位置で燃料被覆管 最高温度が発生している。
	気液熱非平衡	熱伝達モデル リウェットモデ ル	NUPEC BWR 燃料集合体熱水力試験の実験解析により重要現象の妥当性を確認している。	NUPEC BWR 燃料集合体熱水力試験の実験解析では、実寸大の9×9燃料(A型) 模擬燃料集合体 を用いた実験により,修正 Dougall-Rohsenow 式及び相関式2を適用することにより,燃料被覆管 温度を高めに評価する傾向を確認している。東海第二でも先行審査プラントと同じ9×9燃料(A 型) を解析条件として設定していることから,プラント仕様の違いによるスケーリングの違いは ない。

表2-2-2 妥当性確認の方法と東二有効性評価解析への適用性(SCAT)

表	₹2-3	妥È	自性確認の方法と東二有効性評価解析への適用性	ŧ (MAAP)	(1/	3)

類 分	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	崩壞熱	炉心モデル(原子炉 出力及び崩壊熱)	入力値に含まれる。	崩壊熱の不確かさは、プラント固有の入力値に含まれることから、プラント仕様の 違いによる影響はない。
	燃料棒内温度変化		TMI 事故解析における炉心ヒートアップ時の水素発生、炉心領域での溶融進展状態 について、TMI 事故分析結果とよく一致することを確認した。 CORA 実験解析における、燃料被覆管、制御棒及びチャンネルボックスの温度変化に	燃料棒内温度変化,燃料棒表面熱伝達,燃料被覆管酸化及び燃料被覆管変形の不確 かさは,TMI 事故解析等による妥当性確認に基づき,適用性を有すると判断してい ることから,プラント仕様の違いによる影響はない。
	燃料棒表面熱伝達	炉心モデル(炉心熱 水力モデル)	ついて,測定データとよく一致することを確認した。 炉心ヒートアップ速度の増加(被覆管被酸化の促進)を想定し,仮想的な厳しい振 り幅ではあるが,ジルコニウムー水反応速度の係数を2倍とした感度解析により影	ジルコニウム-水反応速度に対する感度解析は、BWR5, S格子, Mark-I 改良型格納 容器プラントに対して実施したものであるが、その他の BWR プラントにおいても現 象のメカニズムは同じであり、同様の傾向が得られると考えられることから、プラ
炉心	燃料被覆管酸化	溶融炉心の挙動モデ ル (炉心ヒートアッ プ)	* TQUV, 大破断 LOCA シーケンスともに、炉心溶融の開始時刻への影響は小さい。 下部プレナムへのリロケーション開始時刻は、ほぼ変化しない。 	ンド山体の座いによる影響は小さい。
	燃料被覆管変形			
	沸騰・ボイド率変化	炉心モデル(炉心水	TQUX シーケンス及び中小破断 LOCA シーケンスに対して, MAAP コードと SAFER コー ドの比較を行い,以下の傾向を確認した。 ・MAAP コードでは SAFER コードで考慮している CCFL を取り扱っていないこと等か	沸騰・ボイド率変化及び気液分離(水位変化)・対向流の不確かさは、BWR5、S格子, Mark-I改良型格納容器プラントを例として、原子炉圧力容器内挙動をより精緻 に評価可能な SAFER コードとの比較を行い、適用性を有すると判断しているが、異
	気液分離(水位変化)・ 対向流	位計算モデル)	ら,水位変化に差異が生じたものの水位低下幅は MAAP コードの方が保守的であ り,その後の注水操作による有効燃料棒頂部までの水位回復時刻は両コードで同 等である。	なる炉心格子間の寸法の差異は数 mm 程度と小さく,解析挙動に有意な影響を与えな いと考えられることから, プラント仕様の違いによる影響は小さい。
Ææ	冷却材放出(臨界流・ 差圧流)	原子炉圧力容器モデ ル(破断流モデル)	逃がし安全弁からの流量は,設計値に基づいて計算される。	冷却材放出(臨界流・差圧流)の不確かさは,逃がし安全弁からの流量は設計値に 基づいて計算されることから,プラント仕様の違いによる影響はない。
力 容 炉 器	ECCS 注水(給水系・代 替注水設備含む)	安全系モデル(非常 用炉心沿却系) 安全系モデル(代替 注水設備)	入力値に含まれる。	ECCS 注水(給水系・代替注水設備含む)の不確かさは、プラント固有の入力値に含まれることから、プラント仕様の違いによる影響はない。
	格納容器各領域間の流 動		HDR 実験解析では、格納容器圧力及び雰囲気温度について、温度成層化を含めて傾向をよく再現できることを確認した。格納容器雰囲気温度を十数℃程度高めに、格納容器圧力を1割程度高めに評価する傾向が確認されたが、実験体系に起因するものと考えられ、実機体系においてはこの種の不確かさは小さくなるものと考えられる、また 非経路性ガス濃度の姿動について 解析結果が測定データとよく一致す	格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導及び気液界面の熱伝達 の不確かさは,HDR 実験等の BWR 実機とは異なる格納容器に対する実験により妥当 性を確認しているものの,重要現象に関する基本的な妥当性を確認しており,適用 性を有すると判断していることから,プラント仕様の違いによる影響はない。
格納容器	構造材との熱伝達及び 内部熱伝導	格納容器モデル(格 納容器の熱水力モデ ル)	ることを確認した。 格納容器各領域間の流動,構造材との熱伝達及び内部熱伝導の不確かさにおいては、 CSTF実験解析では,格納容器雰囲気温度及び非凝縮性ガス濃度の挙動について,解 析結果が測定データとよく一致することを確認した。	
	気液界面の熱伝達			

類 分	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
	スプレイ冷却	安全系モデル(格納 容器スプレイ) 安全系モデル(代替 注水設備)	入力値に含まれる。 スプレイの水滴温度は短時間で雰囲気温度と平衡に至ることから伝熱モデルの不確 かさはない。	スプレイ冷却の不確かさは、ブラント固有の入力値に含まれることから、プラント 仕様の違いによる影響はない。
格 納 容 器	サプレッション・プー ル冷却	安全系モデル(非常 用炉心冷却系)	入力値に含まれる。	サプレッション・プール冷却の不確かさは、ブラント固有の入力値に含まれること から、ブラント仕様の違いによる影響はない。
	格納容器ベント	格納容器モデル(格 納容器の熱水力モデ ル)	入力値に含まれる。 MAAPコードでは格納容器ベントについては,設計流量に基づいて流路面積を入力値 として与え,格納容器各領域間の流動と同様の計算方法が用いられている。	格納容器ベントの不確かさは、プラント固有の入力値に含まれることから、プラン ト仕様の違いによる影響はない。
	リロケーション	溶融炉心の挙動モデ	TMI 事故解析における炉心領域での溶融進展状態について,TMI 事故分析結果と一致 することを確認した。 リロケーションの進展が早まることを想定し,炉心ノード崩壊のパラメータを低下 させた感度解析により影響を確認した。 TQUV,大破断 LOCA シーケンスともに、炉心溶融時刻,原子炉圧力容器の破損時刻へ	リロケーション及び構造材との熟伝達の不確かさは、TMI 事故解析による妥当性確 認に基づいており、BWR 実機を想定したものではないが、基本的な現象に有意な差 はなく実機解析への適用性を有していると判断していることから、プラント仕様の 違いによる影響はない。 炉心ノード崩壊のパラメータを低下させた感度解析は、BWR5、S 格子、Mark-I 改良
	構造材との熱伝達	ル(リロケーション)	の影響が小さいことを確認した。	型格納容器プラントに対して実施したものであるが,異なる炉心格子間の寸法の差 異は数 mm 程度と小さく,解析挙動に有意な影響を与えないと考えられることから, プラント仕様の違いによる影響は小さい。
(炉心坍 炉	原子炉圧力容器内 FCI (溶融炉心細粒化)		原子炉圧力容器内 FCI に影響する項目として溶融ジェット径,エントレインメント 係数及びデブリ粒子径をパラメータとして感度解析を行い,いずれについても,原 子炉圧力容器破損時点での原子炉圧力に対する感度が小さいことを確認した。	原子炉圧力容器内 FCI(溶融炉心細粒化)及び原子炉圧力容器内 FCI(デブリ粒子熱 伝達)の不確かさは、BWR5、S 格子、Mark-I 改良型格納容器プラントを例として、 溶融ジェット径等の炉心格子や格納容器の違いの影響のないパラメータを対象とし た感度解析により、適用性を有すると判断していることから、プラント仕様の違い による影響けない。
損店 (店) (店) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	原子炉圧力容器内 FCI (デブリ粒子熱伝達)	滋融炬心の茶動モデ		
	下部プレナムでの溶融 炉心の熱伝達	か い (下部 プレナムで の溶融 炉心 挙動)	TMI 事故解析における下部プレナムの温度挙動について,TMI 事故分析結果とよく一 致することを確認した。 下部プレナム内の溶融炉心と上面水プールとの間の限界熟流束,下部プレナムギャ ップ除熟量に係る係数に対する感度解析を行い,原子炉圧力容器破損時刻等の事象 進展に対する影響が小さいことを確認した。	下部プレナムでの溶融炉心の熱伝達の不確かさは、TMI 事故解析による妥当性確認 に基づき,適用性を有すると判断していることから、プラント仕様の違いによる影響はない。 下部プレナム内の溶融炉心と上面水プールとの間の限界熱流束等に係る係数に対す る感度解析は,BWR5,S格子,Mark-I改良型格納容器プラントを代表としているが、 炉心格子や格納容器の違いの影響のないパラメータを対象としたものであり、プラ ント仕様の違いによる影響はない。

表2-3 妥当性確認の方法と東二有効性評価解析への適用性(MAAP)(2/3)

類 分	重要現象	解析モデル	解析コード審査資料における妥当性確認の方法	東海第二の有効性評価解析に対する適用性
(炉心堤	原子炉圧力容器破損	溶融炉心の挙動モデ ル(原子炉圧力容器 破損モデル)	原子炉圧力容器破損に影響する項目として制御棒駆動機構ハウジング溶接部の破損 判定に用いる最大ひずみ(しきい値)をパラメータとした感度解析を行い,原子炉 圧力容器破損時刻が約13分早まることを確認した。ただし,仮想的な厳しい条件に 基づく解析結果であり,実機における影響は十分小さいと判断される。	原子炉圧力容器破損の不確かさは、 BWR5, S 格子, Mark-I 改良型格納容器プラン トを代表としているが、炉心格子や格納容器の違いの影響のないパラメータである CRD ハウジング溶接部の破損判定に用いる最大ひずみを対象としたものであり、プ ラント仕様の違いによる影響はない。
損店 () () ()) ())))) ()))) ())) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ()) ())) ()) ()) ()))) ())) ())) ())) ()))) ())) ()))) ())) ()))) ()))) ()))) ()) ()))) ()) ()) ())) ()) ())) ()) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())) ())))) ())) ())) ()))) ())) ())) ())) ())) ()))) ()))) ()))) ()))) ()))) ()))) ())) ())) ()))) ()))) ()))) ()))) ())) ())) ())) ())) ()))) ()))) ()))) ())))) ())))))	原子炉圧力容器内 FP 挙動	核分裂生成物(FP) 挙動モデル	PHEBUS-FP 実験解析により,FP 放出の開始時刻をよく再現できているものの,燃料 被覆管温度を高めに評価することにより,急激なFP 放出を示す結果となった。 ただし,この原因は実験における小規模な炉心体系の模擬によるものであり,実機 の大規模な体系においてこの種の不確かさは小さくなると考えられる。	原子炉圧力容器内 FP 挙動の不確かさは、PHEBUS-FP 実験解析により確認しており、 BWR 実機を想定したものではないが、基本的な現象に有意な差はなく実機解析への 適用性を有していると判断していることから、プラント仕様の違いによる影響はな い。
	原子炉圧力容器外 FCI (溶融炉心細粒化)		原子炉圧力容器外 FCI 現象に関する項目としてエントレインメント係数及びデブリ 粒子径をパラメータとして感度解析を行い、原子炉圧力容器外 FCI によって生じる 圧力スパイクへの感度が小さいことを確認した。	原子炉圧力容器外FCI(溶融炉心細粒化)及び原子炉圧力容器外FCI(デブリ粒子熱 伝達)の不確かさは、BWR5, Mark-I改良型格納容器プラントを例として、BWR5,S 格子,Mark-I改良型格納容器プラントを代表としているが、炉心格子や格納容器の 違いの影響のたいごラメータであるエントレインメント医粉笑を対象としたもので
	原子炉圧力容器外 FCI (デブリ粒子熱伝達)			あり、プラント仕様の違いによる影響はない。
	格納容器下部床面での 溶融炉心の拡がり		MAAP コードでは溶融炉心の拡がり実験や評価に関する知見に基づき,落下した溶融 炉心は床上全体に均一に拡がると仮定し,それを入力で与えている。	格納容器下部床面での溶融炉心の拡がりの不確かさは、落下した溶融炉心は床上全体に均一に拡がると仮定し、それを入力で与えていることから、プラント仕様の違いによる影響はない。 なお、ZrO2を敷設する場合に格納容器下部床面での溶融炉心の拡がり挙動に影響を与える可能性があるが、溶融炉心の拡がりに影響する因子のうちデブリ落下流量が大きいことにより床面全体に均一に拡がると考えられることから影響はない。
(炉心損傷後格納容器	溶融炉心と格納容器下 部プール水の伝熱	溶融炉心挙動モデル (格納容器下部での 溶融炉心挙動)	溶融炉心・コンクリート相互作用への影響の観点で、エントレイメント係数,上面 熱流束及び溶融プールからクラストへの熱伝達係数をパラメータとした感度解析を 行った。評価の結果、コンクリート侵食量に対して上面熱流束の感度が支配的であ ることを確認した。また、上面熱流束を下限値とした場合でも、コンクリート侵食 量が 22.5cm 程度に収まることを確認した。 上記の感度解析は、想定される範囲で厳しい条件を与えるものであり、実機でのコ ンクリート侵食量は、感度解析よりも厳しくなることはないと考えられ、これを不 確かさとして設定する。	溶融炉心と格納容器下部プール水の伝熱の不確かさは、BWR5,Mark-1改良型格納容 器プラントを例として、BWR5,S格子,Mark-1改良型格納容器プラントを代表とし ているが、炉心格子や格納容器の違いの影響のないパラメータであるエントレイン メント係数等を対象としたものであり、プラント仕様の違いによる影響はない。
()	溶融炉心とコンクリー トの伝熱		ACE 実験解析及び SURC-4 実験解析より,溶融炉心堆積状態が既知である場合の溶融 炉心とコンクリートの伝熱及びそれに伴うコンクリート侵食挙動について妥当に評 価できることを確認した。 実験で確認されている侵食の不均一性については、実験における侵食のばらつきが	溶融炉心とコンクリートの伝熱及びコンクリート分解及び非凝縮性ガス発生の不確 かさは、ACE実験解析等により確認しており、BWR実機を想定したものではないが、 基本的な現象に有意な差はなく実機解析への適用性を有していると判断しているこ とから、プラント仕様の違いによる影響はない。
	コンクリート分解及び 非凝縮性ガス発生		MAAP コードの予測侵食量の20%の範囲内に収まっていることから,上面熱流束の感度に比べて影響が小さいことを確認した。	また、感度解析は、BWR5、Mark-I改良型格納容器プラントを例として、BWR5、S格 子、Mark-I改良型格納容器プラントを代表としているが、炉心格子や格納容器の違 いの影響のないパラメータであるエントレインメント係数等を対象としたものであ り、プラント仕様の違いによる影響はない。 なお、ZrO2との伝熱については、コンクリートのモデルを用いて、ZrO2相当 の入力値として熱伝導率や密度等のパラメータを設定しており、不確かさは入力値 に含まれることから、プラント仕様の違いによる影響はない。 また、非凝縮性ガス発生については、有効性評価ではZrO2侵食開始温度に到達し ていないことから影響はない。
	格納容器内 FP 挙動	核分裂生成物(FP) 挙動モデル	ABCOVE実験解析により,格納容器内のエアロゾル沈着挙動を適正に評価できること を確認した。	格納容器内 FP 挙動の不確かさは、ABCOVE 実験により重要現象に関するモデルの妥 当性を確認しており、重要現象が区画の大きさに依存しないことから、スケールの 観点においても適用性を有すると判断しているため、プラント仕様の違いによる影 響けない

表2-3 妥当性確認の方法と東二有効性評価解析への適用性(MAAP)(3/3)

類分	舌西泪鱼	解析モデル	解析コード審査資料における妥	東海第二の有効性評価解析に対する適用性
	里女仇豕	241 VI - 2 -	当性確認の方法	
	核分裂出力	 ・一点近似動特性モデル(炉出力) ・出力分布は二次元拡散モデル ・核定数は三次元体系の炉心を空間効果を考慮し二次元体系 に縮約 	考慮しない	核分裂出力の不確かさは解析コードの不確かさ要因としては考慮していないため、プラント仕 様の違いによる影響はない。
炉心	出力分布変化	 ・二次元(RZ) 拡散モデル ・エンタルピステップの進行に伴う相対出力分布変化を考慮 	考慮しない	出力分布変化の不確かさは解析コードの不確かさ要因としては考慮していないため, プラント 仕様の違いによる影響はない。
1 (核)	反応度フィードバック 効果	 ・ドップラ反応度フィードバック効果は出力分布依存で考慮 ・熱的現象は断熱、ボイド反応度フィードバック効果は考慮しない 	 ・ドップラ反応度フィードバッ ク効果:7~9% ・実効遅発中性子割合:約4% 	炉心格子の差異の影響として、ボイドフィードバック及びドップラフィードバックの影響が考 えられるが、反応度後投入事象ではボイドフィードバックは考慮していないため、プラント仕 様の違いによる影響はない。また、ドップラフィードバックの影響については、燃料エンタル ビに与える影響が小さいことを感度解析により確認している。
	制御棒反応度効果	 ・三次元拡散モデル ・動特性計算では外部入力 	 ・制御棒反応度:約9% ・実効遅発中性子割合:約4% 	制御棒反応度効果の不確かさは代表的な 110 万 kWe 級 BWR-5 の起動試験や炉物理試験における 制御棒価値の測定結果との比較により、制御棒価値の不確かさが約 9%以下であることを確認し ている。制御棒価値はプラント仕様の違いによる影響よりも評価対象炉心の制御棒パターンに よる影響が大きいと考えられるが,燃料エンタルビに与える影響が小さいことを感度解析によ り確認している。
炉	燃料棒内温度変化	・熱伝導モデル ・燃料ペレットー被覆管ギャップ熱伝達モデル	考慮しない	燃料棒内温度変化の不確かさは解析コードの不確かさ要因としては考慮していないため, プラ ント仕様の違いによる影響はない。
心(燃料)	燃料棒表面熱伝達	 ・単相強制対流:Dittus-Boelterの式 ・核沸騰状態:Jens-Lottesの式 ・膜沸騰状態(低温時):NSRRの実測データに基づいて導出 された熱伝達相関式 	考慮しない	燃料棒表面熱伝達の不確かさは解析コードの不確かさ要因としては考慮していないため, プラ ント仕様の違いによる影響はない。
	沸騰遷移	低温時:Rohsenow-Griffith の式及び Kutateladze の式	考慮しない	沸騰遷移の不確かさは考慮していないため、プラント仕様の違いによる影響はない。

表2-4 妥当性確認の方法と東二有効性評価解析への適用性(APEX)

表2-5 プラント仕様の比較

項目	東二	先行審査プラント	プラント仕様の違いの影響
燃料集合体の 型式	9×9燃料 (A)	9×9燃料 (A)	先行審査プラントと同じ
燃料集合体の 軸方向長さ	標準燃料棒; 約3.71m 部分長燃料棒; 約2.16m	標準燃料棒; 約3.71m 部分長燃料棒; 約2.16m	先行審査プラントと同じ
燃料集合体の体数	764 体	560 体~872 体	先行審査プラントの装荷体数に 包含される
ECCS構成	HPCS, LPCS(炉心 上部注水), LPCI (炉心バイパス部 注水)	HPCF, RCIC, LPFL (炉心上部注水)/ HPCS, LPCS (炉心上 部注水), LPCI (炉 心バイパス部注水)	先行審査プラントと同じ
百乙后五任粤文	外部ループ再循環	インターナルポン プ/外部ループ再 循環	東海第二の解析において,再循 環流量は初期の定常状態(手動 にて一定流量に制御)及びポン プトリップ後のコーストダウン 特性を入力しており,原子炉出 カ第に対応した自動流量制御け
原于炉丹循瑧术	流量調整弁制御	ポンプ回転速度 制御	り等に対応した自動流量制御は 模擬していない また,ポンプトリップ時のコー ストダウン特性(ポンプの慣性 時定数)の不確かさは,先行審 査プラントと同じである
ほう酸水注入系の 注入箇所	炉心下部注水	炉心上部注水/ 炉心下部注水	先行審査プラントと同じ
炉心格子	C 格子	N格子/S格子	炉心格子に違いにより, RED Yコードの反応度係数の保守因 子の妥当性確認に影響がある
熱出力	3,293MW	2,436 \sim 3,926MW	先行審査プラントの熱出力に包 含される
格納容器	Mark-II	RCCV/Mark-I改	実機と同等かより小さい格納容 器体積を有する実験体系により
・D/W 体積	5, 700m ³	7,350 \sim 8,830m ³	モデルの妥当性が確認されており、実機体系において格納容器
・S/C 空間体積	4, 100m ³	4,700 \sim 5,960m ³	空間体積等の差異か与える影響 確認は不要。
・S/P水量	3, 300m ³	$2,800\sim 3,800 \mathrm{m}^3$	
コンクリート物性	玄武岩系	玄武岩系	先行審査プラントと同じ
制御棒引抜速度	9.1cm/s	9.1cm/s	先行審査プラントと同じ
起動領域計装の 状態	A, Bチャンネルと もに引抜制御棒に 最も近い検出器を1 個ずつバイパス	A, Bチャンネルとも に引抜制御棒に最も 近い検出器を1個ず つバイパス	先行審査プラントと同じ

東海第二発電所を対象とした「ドップラー反応度フィードバック効果」 及び「制御棒反応度効果」の感度解析について

APEXコードの妥当性確認に使用した実験装置と実機との差異と して着目した「ドップラー反応度フィードバック効果」及び「制御棒 反応度効果」について,東海第二を対象に不確かさ評価の感度解析を 実施した。感度解析の結果を表1に示す。この結果より,妥当性確認 に使用した実験装置と実機との差異を考慮しても「発電用軽水炉型原 子炉施設の反応度投入事象評価指針」に示された燃料の許容設計限界 値等を超えることはなく,燃料の健全性は維持されることを確認した。

重要現象	解析モデル	妥当性確認	相対偏差(%) (偏差/実測値)	感度解析条件	感度解析結果
反応度フィード バック効果	・ドップラ反応度フィード バック効果は出力分布依 存で考慮 ・熱的現象は断熱,ボイド	実行共鳴積分測定に関わる Hellstrandの 実験式	ドップラ反応度 フィードバック : 7〜9%	ドップラ反応度 フィードバック : ±10%	 ・ドップラ反応度フィードバック+10%: 1.13 ドル ・ドップラ反応度フィードバック-10%: 1.13 ドル(燃料エンタルピ最大値:約92kJ /kgUO₂,増分の最大値:約83kJ/kgU O₂)
	反応度フィードバック効 果は考慮しない	MISTRAL 臨界実験	実行遅発中性子割合 :約4%	実行遅発中性子割合 :±10%	 ・実効遅発中性子割合+10%:1.11ドル ・実効遅発中性子割合-10%:1.16ドル(燃料エンタルピ最大値:約90kJ/kgUO₂, 増分の最大値:約82kJ/kgUO₂)
制御棒反応度 効果	・ 三次元拡散モデル ・動特性計算では外部入力	実機での制御棒価値 測定試験	制御棒反応度 :9%	制御棒反応度 : ±10%	 ・制御棒反応度+10%:1.15ドル(燃料エンタルピ最大値:約102kJ/kgUO₂,増分の最大値:約94kJ/kgUO₂) ・制御棒反応度-10%:1.12ドル

衣1 果供另二先电別を対象としたトツノノ―及応及ノイ―トハツク効未及い前岬倖及応及効未の感

許認可解析と重大事故等対策の有効性評価の比較について

本有効性評価解析における物理現象を踏まえ,原子炉,プラント挙動の評価を行う 解析コードとして,SAFER/CHASTE,REDY/SCAT,APEXを用 いるが,これらは従来の国内BWRの原子炉設置変更許可申請書の添付書類十の安全評 価において使用実績があるコードであることから,設計基準(運転時の異常な過渡変 化及び設計基準事故)と重大事故等対策の有効性評価の解析対象範囲について整理を 行った。

- 表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較
- 表2-1 REDY における従来許認可解析と重大事故等対策の有効性評価の比較
- 表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較
- 表3 APEX/SCAT(RIA用)における従来許認可解析と重大事故等対策の有効性評価の比較

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(1/12)

補足 21(参考)-2

表1 \$	SAFER/CHASTE におけ	る従来許認	可解析と重大事故等対策の	り有効性評価の比較	(2/12)
-------	------------------	-------	--------------	-----------	--------

	従来許認可解析	重大事故等対策の有効性評価	重大事故等対策	後の有効性評価
	(BWR5 原子炉冷却材喪失:中小破断)	(BWR5 LOCA 時注水機能喪失)	(東海第二; LOC	A 時注水機能喪失)
	原子炉圧力:PLR 配管破断及び原子炉スクラ	原子炉圧力:PLR 配管破断及び原子炉スクラ	原子炉圧力:PLR 配管破断及び原子炉スクラ	先行審査プラントと同じ
	ムにより低下し, MSIV 閉鎖後は上昇に転じ	ムにより低下し, MSIV 閉鎖後は上昇に転じ	ムにより低下し, MSIV 閉鎖後は上昇に転じ	
	SRV 開閉により圧力が制御され、ADS 作動	SRV 開閉により圧力が制御され, <u>SRV 手動操</u>	SRV 開閉により圧力が制御され, <u>SRV 手動操</u>	
	により強制減圧される。	<u>作</u> により強制減圧される。	作により強制減圧される。	
	原子炉水位:破断口からの冷却材流出及び	原子炉水位:破断口からの冷却材流出及び	原子炉水位:破断口からの冷却材流出及び	
+	SRV からの蒸気流出により低下し、ADS 作	SRV からの蒸気流出により低下し, <u>SRV 手動</u>	SRV からの蒸気流出により低下し, <u>SRV 手動</u>	
争	<u>動</u> による減圧沸騰により一時的に上昇する	<u>操作</u> による減圧沸騰により一時的に上昇する	<u>操作</u> による減圧沸騰により一時的に上昇する	
	が,その後,再び低下して炉心露出し,ECCS	が,その後,再び低下して炉心露出し, <u>代替</u>	が,その後,再び低下して炉心露出し, <u>代替</u>	
	の注水後、炉心再冠水する。	<u>注水系</u> の注水後,炉心再冠水する。	<u>注水系</u> の注水後,炉心再冠水する。	
免	燃料被覆管温度:炉心露出により上昇を開始	燃料被覆管温度:炉心露出により上昇を開始	燃料被覆管温度:炉心露出により上昇を開始	
×	し、除熱が発熱を上回ると低下する。	し、除熱が発熱を上回ると低下する。	し、除熱が発熱を上回ると低下する。	
	熱伝達係数:炉心冠水時は核沸騰冷却,炉心	熱伝達係数:炉心冠水時は核沸騰冷却,炉心	熱伝達係数:炉心冠水時は核沸騰冷却,炉心	
	露出時は蒸気冷却, <u>ECCS</u> の注水後は噴霧流	露出時は蒸気冷却, <u>代替注水系</u> の注水後は噴	露出時は蒸気冷却, <u>代替注水系</u> の注水後は噴	
谁	冷却を経て、炉心再冠水後は核沸騰冷却に復	霧流冷却を経て、炉心再冠水後は核沸騰冷却	霧流冷却を経て、炉心再冠水後は核沸騰冷却	
100	帰する。	に復帰する。	に復帰する。	
	原子炉スクラム:0秒	原子炉スクラム:0秒	原子炉スクラム : 約 10 秒(L-3)	先行審査プラントと同等
	MSIV 閉鎖:約 19 秒	MSIV 閉鎖:約2分	MSIV 閉鎖:約 22 秒	
展	原子炉水位低(レベル1):約2分	原子炉水位低(レベル1):約16分	原子炉水位異常低下(レベル1):約15分	
	原子炉减圧開始:約4分	原子炉減圧開始:約30分	原子炉減圧開始:約25分	
	炉心露出:約5分	炉心露出:約31分	炉心露出:約24分	
	低圧炉心スプレイ系作動:約6分	ECCS:機能喪失	ECCS:機能喪失	
	低圧注水系作動:約7分	低圧代替注水開始:約32分	低圧代替注水開始:約27分	
	PCT 発生:約7分(約589℃)	PCT 発生:約 38 分(約 805℃)	PCT 発生:約 37 分(約 616℃)	
	炉心再冠水:約8分	炉心再冠水:約52分	炉心再冠水:約42分	
	原子炉圧力:大気圧~SRV 吹出設定圧力	原子炉圧力:同左	原子炉圧力:同左	先行審査プラントと同等
変	原子炉水位:原子炉圧力容器底部~通常水位	原子炉水位:同左	原子炉水位:同左	
範	燃料被覆管温度:約152~約589℃	燃料被覆管温度:約 126~約 805℃	燃料被覆管温度:約 123℃~約 616℃	
囲	熱伝達係数 : 約 10~約 57000 W/(m²·K)	熱伝達係数 : 約 1~約 57000 W/(m²・K)	熱伝達係数 : 約 1~約 57000 W/(m²・K)	
	時間:0秒~約8分	時間:0秒~約55分	時間:0秒~約60分	
	原子炉圧力:大気圧~SRV 吹出設定圧力	原子炉圧力:同左	原子炉圧力:同左	先行審査プラントと同じ
適	原子炉水位:原子炉圧力容器底部~頂部	原子炉水位:同左	原子炉水位:同左	
用範	燃料被覆管温度:飽和温度~1200℃	燃料被覆管温度:同左	燃料被覆管温度:同左	
囲	熱伝達係数:0~約 57000 W/(m²・K)	熱伝達係数:同左	熱伝達係数:同左	
	時間:0秒~制限なし	時間:同左	時間:同左	

		従来許認可解析		従来許認可	差異による影響	重大事故等対策	の有効性評価
	項目	(原子炉冷却材喪失事故)	重大事故等対策の有効性評価	との差異		(東海貿	<u>等二</u>)
	初期運転条件	過出力条件	定格条件	有	従来許認可解析条件に対して重大	定格条件	先行審査プラントと同じ
	初期原子炉水位	通常水位(ABWR)	通常水位	有	事故等対策の有効性評価ではノミ	通常水位	先行審査プラントと同じ
		スクラム水位 (BWR)			ナル条件を前提に設定しており条		
					件に差があるが、事故後の炉心及		
AT7					び圧力容器内の基本的な挙動は,		
用牛					従来許認可解析と同様であり、差		
					異による影響はない。		
	事象	高圧炉心注水系配管両端破断	給水流量の全喪失	有	炉心冷却の観点からは, 原子炉隔	給水流量の全喪失	先行審査プラントと同じ
析		(ABWR)	全交流動力電源喪失		離後、減圧、注水に至る再循環配	全交流動力電源喪失	
		再循環配管両端破断~小破断	原子炉冷却材喪失(圧力容器底		管小破断事象と同等の事象であ	原子炉冷却材喪失(圧力容器底部ド	
		(BWR)	部ドレン配管破断,又は,再循		り、モデル適用範囲内であり、差	レン配管破断又は再循環配管小破	
			環配管小破断)		異による影響はない。	断)	
条			インターフェイスシステム LOCA			インターフェイスシステム LOCA	
	原子炉スクラム	炉心流量急減(ABWR)	原子炉水位低レベル3	有	条件の差はあるが、スクラムのタ	原子炉水位低(レベル3)	先行審査プラントと同じ
		原子炉水位低レベル3	タービン蒸気加減弁急閉		イミングの差は適切に核分裂出力		
14-		(BWR)	(ABWR)		変化に反映されることから、評価		
14-			炉心流量急減(ABWR)		手法としての差異はない。		
	核分裂出力変化	原子炉冷却材喪失事故用	各事故シーケンスに応じて設定	有	条件の差はあるが、核分裂出力変	各事故シーケンスに応じて設定	先行審査プラントと同じ
	崩壊熱	GE(平均)+3 σ	ANSI/ANS-5.1-1979	有	化と崩壊熱を事象ごとに設定して	ANSI/ANS-5.1-1979	先行審査プラントと同じ
					おり、評価手法としての差異はな		
					v.		

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(3/12)

	百日	従来許認可解析	香土市地営村竿の方动地河体	従来許認可	差異による影響	重大事故等対象	度の有効性評価
	項日	(原子炉冷却材喪失事故)	里人争似寺刈束の有効性評価	との差異		(東海	第二)
	燃料タイプ	9×9燃料(A型), 9×9燃料(B	9×9燃料(A型)単一炉心	有	燃料仕様の差はあるが,熱水力特性	9×9燃料(A型)単一炉心	先行審査プラントと同じ
		型), MOX 燃料の単一炉心,			はほぼ同等であること,及び,核的		
		又は、混在炉心			特性は混在炉心の場合には単一炉		
					心で構成された場合の中間的なも		
解					のになることから影響は小さい。		
	燃料棒最大線出力密	44.0 kW/m×1.02	44.0 kW/m×1.0	有	従来許認可解析条件に対して重大	44.0 kW/m×1.0	先行審査プラントと同じ
	度				事故等対策の有効性評価ではノミ		
					ナル条件を前提に設定しており条		
析					件に差があるが,事故後の炉心及び		
					圧力容器内の基本的な挙動は,従来		
					許認可解析と同様であり, 差異によ		
冬					る影響はない。		
×	局所出力ピーキング	PCT を厳しくする評価する平	同左	無	差異はない。	PCT を厳しくする評価する平坦分	先行審査プラントと同じ
	係数	坦分布を仮定				布を仮定	
	ギャップ熱伝達係数	燃焼期間中を通して PCT を厳	同左	無	差異はない。	燃焼期間中を通して PCT を厳しく	先行審査プラントと同じ
件		しくする値				する値	
	燃料棒破裂の判定	PCT 評価 : ベストフィット曲	ベストフィット曲線	無	従来許認可解析と同一のベストフ	ベストフィット曲線	先行審査プラントと同じ
		線			ィット曲線を用いているため, 差異		
		被ばく評価:平均値-2σ曲			はない。		
		線					

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(4/12)

	項目	従来許認可解析	金七市ななお竿の方が地辺体	従来許認可	差異による影響	重大事故等対策	휷の有効性評価
		(原子炉冷却材喪失事故)	単八争0(寺)0(年)0(年)0(年)1(1)	との差異		(東海	第二)
	逃がし安全弁	安全弁機能	逃がし弁機能	有	従来許認可解析条件に対して重大	安全弁機能	従来許認可解析と同じ安全弁機能
					事故等対策の有効性評価ではノミ		に期待
解	原子炉减圧	自動減圧系	冰がし弁手動操作	右	ナル条件を前提に設定しており, 期	冰がし弁手動操作	先行審査プラントと同じ
	1/1 1 / VA/L			п	待する減圧機能の違いによる差が		
					あるが,減圧に伴う基本的な挙動		
					は、従来許認可解析と同様である。		
析	外部電源	事故と同時に喪失	事故と同時に喪失、又は、健	有	外部電源が健全な場合は,再循環系	事故と同時に喪失又は健全	先行審査プラントと同じ
			全		ポンプトリップ動作タイミングに		
					差があるが,事故後の炉心及び圧力		
冬					容器内の基本的な挙動は,従来許認		
~					可解析と同様であり,差異による影		
					響はない。		
	ECCS, RCIC 及び代	安全要求仕様値	同左	無	差異はない。	安全要求仕様値	先行審査プラントと同じ
件	替注水系						
	破断口, SRV からの冷	平衡均質流モデル及び差圧流	同左	無	差異はない。	平衡均質流モデル及び差圧流モデ	先行審査プラントと同じ
	却材の流出	モデル				IL	

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(5/12)

	та н	従来許認可解析	香土東投営対策の方効料証研	従来許認可	差異による影響	重大事故等対策	策の有効性評価
	垣 日	(原子炉冷却材喪失事故)	里入爭 以 守对來仍有効性計恤	との差異		(東海	第二)
	燃料被覆管と冷却材	核沸騰	同左	無	差異はない。	核沸騰	先行審査プラントと同じ
	間の熱伝達係数	(ボイド率の関数とする相関			炉心冠水時の熱水力挙動は従来許	(ボイド率の関数とする相関式)	
		式)			認可解析と同様であり、ボイド率		
梅刀					依存の核沸騰熱伝達モデルは適用		
円牛					可能。		
		膜沸騰	同左	無	差異はない。	膜沸騰	先行審査プラントと同じ
析		(噴霧流冷却の相関式と修正			過渡事象発生直後の高流量/高圧	(噴霧流冷却の相関式と修正	
		Bromley の式をボイド率の関			条件から炉心再冠水後の低流量/	Bromley の式をボイド率の関数と	
		数として使用する相関式)			低圧条件まで適用可能。	して使用する相関式)	
モ		遷移沸騰	同左	無	差異はない。	遷移沸騰	先行審査プラントと同じ
		(核沸騰と膜沸騰の熱伝達係			核沸騰熱伝達係数と膜沸騰熱伝達	(核沸騰と膜沸騰の熱伝達係数を	
		数を燃料被覆管過熱度で内挿			係数の内挿値を適用するため、同	燃料被覆管過熱度で内挿した相関	
デ		した相関式)			じく適用可能。	式)	
		蒸気単相	同左	無	差異はない。	蒸気単相	先行審査プラントと同じ
л.,		(Dittus-Boelter の式)			炉心露出によるヒートアップ挙動	(Dittus-Boelter の式)	
					は,従来許認可解析と同様であり,		
					重大事故等対策の有効性評価にお		
					いて長時間持続する場合にも適用		
					可能。		

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(6/12)

	1 1 1	従来許認可解析	金上市状体対策の方対地評価	従来許認可	差異による影響	重大事故等対象	きの有効性評価
	項 日	(原子炉冷却材喪失事故)	単八争 敬 予 教 取 の 有 刻 1 2 計 1 1 1 1 1 1 1 1 1	との差異		(東海	第二)
	燃料被覆管と冷却材	噴霧流	同左	無	差異はない。	噴霧流	先行審査プラントと同じ
	間の熱伝達係数	(Sun-Saha の式)			炉心露出時に原子炉注水による再	(Sun-Saha の式)	
					冠水過程において炉心に液滴が混		
					入する状態は従来許認可解析と同		
4677					様であり,重大事故等対策の有効性		
丹 牛					評価において長時間持続する場合		
					にも適用可能。		
析		スプレイ (落下水)	同左	無	差異はない。	スプレイ (落下水)	先行審査プラントと同じ
		(スプレイ冷却実験データに			従来許認可解析でもスプレイ冷却	(スプレイ冷却実験データに基づ	
		基づく相関式)			の効果が小さいことから適用を除	く相関式)	
モ					外しており,重大事故等対策の有効		
					性評価でも適用を除外している。		
		濡れ	同左	無	差異はない。	濡れ	先行審査プラントと同じ
デ		(濡れた後の熱伝達係数は			濡れによる冷却効果小さく, 高出力	(濡れた後の熱伝達係数は	
		Andersen のモデルに基づく)			燃料集合体では保守的に落下水は	Andersen のモデルに基づく)	
					無視しているため,適用されない。		
<i>IL</i>		輻射	同左	無	差異はない。	輻射	先行審査プラントと同じ
		(燃料集合体幾何形状に依存			燃料集合体内幾何形状に依存し,幾	(燃料集合体幾何形状に依存する	
		する輻射形態係数, 輻射率, 灰			何形状は変更ないため適用可能。	輻射形態係数, 輻射率, 灰色体輻射	
		色体輻射係数に基づき導出し				係数に基づき導出した式)	
		た式)					

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(7/12)

	項目		従来許認可解析	重十重払竿対策の右効州証価	従来許認可	主思に上ス影郷	重大事故等対策	策の有効性評価
			(原子炉冷却材喪失事故)	里八爭以守 刈 來07月 2011年11回	との差異	左共による影音	(東海第二)	
		核分裂出力	事象発生後早期に原子炉がス	同左	無	差異はない。	事象発生後早期に原子炉がスクラ	先行審査プラントと同じ
物		出力分布変化	クラムし未臨界となるが, スク				ムし未臨界となるが, スクラムまで	
玴	炉心	反応度フィード	ラムまでは核分裂出力, スクラ				は核分裂出力,スクラム後は崩壊熱	
		バック効果	ム後は崩壊熱を考慮して適切				を考慮して適切に原子炉出力変化	
現	啓	制御棒反応度効	に原子炉出力変化を設定して				を設定している。	
象	象果		いる。					
		崩壊熱						

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(8/12)

		項目	従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	の有効性評価
			(原子炉冷却材喪失事故)		との差異		(東海	第二)
		燃料棒内温度変	沸騰遷移により燃料棒温度	沸騰遷移による燃料棒温度上昇	無	差異はない。	沸騰遷移による燃料棒温度上昇評	先行審査プラントと同じ
		化	上昇 (ABWR, BWR)	評価は,従来許認可解析の範囲			価は,従来許認可解析の範囲で評価	
		燃料棒表面熱伝		で評価されている。			されている。	
h i m		達	炉心露出により燃料棒温度	炉心露出により燃料棒温度上昇	有	炉心露出期間が長時間となるため	炉心露出により燃料棒温度上昇	先行審査プラントと同等
120		沸騰遷移	上昇 (BWR)			影響があるが, 炉心露出, 炉心再冠		
			炉心露出期間:約3分間	炉心露出期間:約 10~30 分間		水,除熱量が発熱量を上回ることに	炉心露出期間:約10~20分間	
			再冠水 :約 10 分以内	再冠水 :約1時間以内		よる温度低下という基本的な挙動	再冠水 :約1時間以内	
理	1. 					は、従来許認可解析と同様である。		
	炉心	燃料被覆管酸化	無視し得る程度	1%以下	有	燃料被覆管温度が高温になるため	1%以下	先行審査プラントと同じ
	(燃					影響があるが、評価式である		
	料)					Baker-Just の式は、燃料被覆管温		
現						度が高温になる場合にも実験によ		
						り妥当性が確認されている。		
		燃料被覆管変形	膨れ・破裂は発生しない	膨れは発生するが破裂は発生し	有	燃料被覆管温度が高温になるため	膨れは発生するが破裂は発生しな	先行審査プラントと同じ
缶				ない		影響がある。	<i>د</i> ۲	
涿		三次元効果	三次元的な輻射伝熱は, 最高	同左	無	差異はない。	三次元的な輻射伝熱は,最高温度位	先行審査プラントと同じ
			温度位置に対しては, 伝熱量				置に対しては,伝熱量が増加するた	
			が増加するため, 燃料被覆管				め,燃料被覆管温度は厳しくならな	
			温度は厳しくならない。				<i>د</i> ر.	

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(9/12)

		TE L	従来許認可解析	香土専业体社等の支持地設備	従来許認可	辛田にトス影響	重大事故等対策	その有効性評価
		垻 日	(原子炉冷却材喪失事故)	単人争议寺対束の有効性評価	との差異	定共による影響	(東海	第二)
		沸騰・ボイド率変	減圧沸騰により発生したボイ	同左	無	差異はない。	減圧沸騰により発生したボイドに	先行審査プラントと同じ
		化	ドにより形成された二相水位				より形成された二相水位変化によ	
			変化により炉心が露出し燃料				り炉心が露出し燃料被覆管温度が	
			被覆管温度が上昇する。				上昇する。	
		気液分離 (水位変	気液分離(水位変化):同上	気液分離(水位変化):	有	炉心露出期間が長時間となるため	気液分離(水位変化):	先行審査プラントと同じ
		化)・対向流	対向流:	露出する場合は露出期間が長		影響があるが, 炉心露出, 炉心再	露出する場合は露出期間が長時間	
物			炉心スプレイが作動する場合	時間になる。		冠水,除熱量が発熱量を上回るこ	になる。	
			に CCFL, CCFL ブレークダウ	対向流:同左		とによる温度低下という基本的な	対向流:	
			ンが発生する。			挙動は,従来許認可解析と同様で	炉心スプレイが作動する場合に	
						ある。	CCFL, CCFL ブレークダウンが発	
理	炉心						生する。	
	() , , , , ,	気液熱非平衡	炉心露出時に燃料棒のヒート	同左	無	差異はない。	炉心露出時に燃料棒のヒートアッ	先行審査プラントと同じ
	流		アップにより蒸気が過熱され				プにより蒸気が過熱される。	
現	動		る。					
20		圧力損失	事故と同時に再循環系ポンプ	事故直後に再循環系ポンプが	有	再循環系ポンプトリップのタイミ	事故直後に再循環系ポンプがトリ	先行審査プラントと同じ
			がトリップし炉心流量が早期	トリップし炉心流量が早期に		ングにわずかな差異があるが、炉	ップし炉心流量が早期に低下する	
			に低下するため, 炉心部の圧力	低下するため、炉心部の圧力		心流量が早期に低下するため影響	ため、炉心部の圧力損失は減少す	
象			損失は減少する。	損失は減少する。		は小さい。	る。	
		三次元効果	炉心再冠水過程では, 燃料集合	同左	無	差異はない。	炉心再冠水過程では,燃料集合体の	先行審査プラントと同じ
			体の内部には異なる流れの状				内部には異なる流れの状態が存在	
			態が存在する。炉心スプレイ注				する。 炉心スプレイ注水後, スパー	
			水後,スパージャが水没した場				ジャが水没した場合には,上部プレ	
			合には, 上部プレナムの周辺領				ナムの周辺領域がサブクール状態	
			域がサブクール状態となる。				となる。	

表1 SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較(10/12)

	項目		従来許認可解析	まナ東北位計準の方効性証体	従来許認可	辛田に上て影響	重大事故等対策	ぎの有効性評価
		項日	(原子炉冷却材喪失事故)	里八争议寺对束07月301生計11	との差異	定共による影響	(東海	第二)
		冷却材流量変化	事故と同時に再循環系ポンプ	事故直後に再循環系ポンプが	有	再循環系ポンプトリップのタイミ	事故直後に再循環系ポンプがトリ	先行審査プラントと同じ
			がトリップし炉心流量が早期	トリップし炉心流量が早期に		ングにわずかな差異があるが、影	ップし炉心流量が早期に低下する。	
th/m			に低下する。	低下する。		響は小さい。		
490	原		炉心露出時は原子炉水位が低	同左	無	差異はない。	炉心露出時は原子炉水位が低下し	先行審査プラントと同じ
	子炉		下して, 炉心シュラウド内外の				て, 炉心シュラウド内外の自然循環	
	圧力		自然循環が維持できない。				が維持できない。	
理	容器	冷却材放出(臨界	自動減圧系による原子炉の急	逃がし弁手動操作による原子	有	減圧手段の違いによる影響がある	逃がし弁手動操作による原子炉の	先行審査プラントと同じ
	奋	流・差圧流)	速減圧, あるいは, 破断口から	炉の急速減圧,あるいは,破		が、冷却材放出の基本的な挙動は、	急速減圧,あるいは破断口からの冷	
	が		の冷却材放出により炉心露出	断口からの冷却材放出により		従来許認可解析と同様である。	却材放出により炉心露出が発生す	
	しま		が発生する。	炉心露出が発生する。			る。	
現	全	沸騰・凝縮・ボイ	自動減圧系による原子炉の急	逃がし弁手動操作による原子	有	減圧手段の違いによる影響がある	逃がし弁手動操作による原子炉の	先行審査プラントと同じ
	开 を	ド率変化	速減圧, あるいは, LOCA 後の	炉の急速減圧,あるいは,		が、減圧開始時間と設備仕様が異	急速減圧,あるいは LOCA 後の冷	
	含む		冷却材放出による減圧沸騰に	LOCA 後の冷却材放出による		なる以外、減圧に伴う基本的な熱	却材放出による減圧沸騰により発	
毎	3		より発生したボイド量の変化	減圧沸騰により発生したボイ		水力挙動は,従来許認可解析と同	生したボイド量の変化に応じて二	
豕			に応じて二相水位が変化する。	ド量の変化に応じて二相水位		様である。	相水位が変化する。また, 原子炉注	
			また,原子炉注水により蒸気は	が変化する。また、原子炉注			水により蒸気は凝縮される。	
			凝縮される。	水により蒸気は凝縮される。				

表1 SAFER/CHASTEにおける従来許認可解析と重大事故等対策の有効性評価の比較(11/12)

		項目	従来許認可解析 (原子炉冷却材喪失事故)	重大事故等対策の有効性評価	従来許認可 との差異	差異による影響	重大事故等対策 (東海:	その有効性評価 第二)
		気液分離 (水位変	これらの物理現象は炉心以外	同左	無	差異はない。	これらの物理現象は炉心以外の領	先行審査プラントと同じ
		化)・対向流	の領域では直接的には影響し				域では直接的には影響しない。	
		圧力損失	ない。					
物	-							
	原子	構造材との熱伝	自動減圧系による原子炉減圧	逃がし弁手動操作による原子	有	減圧手段の違いによる影響がある	逃がし弁手動操作による原子炉減	先行審査プラントと同じ
	炉厅	達	過程において,構造材の保有熱	炉減圧過程において,構造材		が、減圧開始時間と設備が異なる	圧過程において,構造材の保有熱が	
	力		が冷却材へ移行する。	の保有熱が冷却材へ移行す		以外,減圧に伴う構造材との熱伝	冷却材へ移行する。	
理	谷器			る。		達の基本的な挙動は、従来許認可		
	巡					解析と同様である。		
	がし	ECCS 注水 (給水	ECCS による原子炉注水によ	ECCS, 又は, 代替注水設備	有	原子炉注水設備の差異による影響	ECCS 又は代替注水設備による原	先行審査プラントと同じ
玥	安会	系·代替注水設備	り炉心が冷却される。	による原子炉注水により炉心		はあるが注水特性が異なる以外,	子炉注水により炉心が冷却される。	
	弁	含む)		が冷却される。		炉心冷却の基本的な挙動は,従来		
	を含					許認可解析と同様である。		
	む	三次元効果	事故と同時に再循環系ポンプ	事故直後に再循環系ポンプが	有	再循環系ポンプトリップのタイミ	事故直後に再循環系ポンプがトリ	先行審査プラントと同じ
象			がトリップするため, 炉心流量	トリップするため, 炉心流量		ングにわずかな差異があるが,影	ップするため, 炉心流量急減過程に	
			急減過程において下部プレナ	急減過程において下部プレナ		響は小さい。	おいて下部プレナム内の流量配分	
			ム内の流量配分の不均等は発	ム内の流量配分の不均等は発			の不均等は発生しない。	
			生しない。	生しない。				

表1 \$	SAFER/CHASTE における従来許認可解析と重大事故等対策の有効性評価の比較	(12/	´12)
-------	---	------	------

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(1/11)

補足 21(参考)-14

	従来許認可解析	重大事故等対策の有効性評価	重大事故等対策	휷の有効性評価
	(ABWR 主蒸気隔離弁の誤閉止)	(ABWR 主蒸気隔離弁の誤閉止	(東海第二;主蒸	気隔離弁の誤閉止
		+原子炉停止機能喪失)	+原子炉停」	上機能喪失)
	原子炉出力(中性子束): MSIV 閉鎖による <u>原</u>	原子炉出力(中性子束): MSIV 閉鎖による <u>原</u>	原子炉出力(中性子束): MSIV 閉鎖による <u>原</u>	先行審査プラントと同じ
	子炉スクラムにより低下する。	子炉スクラムに失敗して,圧力上昇により上	子炉スクラムに失敗して,圧力上昇により上	
		昇した後,圧力高 RPT による炉心流量減少	昇した後,圧力高 RPT による炉心流量減少	
		により低下する。その後,給水加熱喪失によ	により低下する。その後,給水加熱喪失によ	
		る炉心入口サブクールの増加により緩やか	る炉心入口サブクールの増加により緩やか	
		に上昇する。	に上昇する。	
	原子炉圧力:MSIV 閉鎖により上昇するが,	原子炉圧力: MSIV 閉鎖により上昇し,逃が	原子炉圧力: MSIV 閉鎖により上昇し,逃が	
	逃がし弁開及び原子炉スクラムにより降下	し弁が作動するが, <u>原子炉スクラム失敗</u> によ	し弁が作動するが, <u>原子炉スクラム失敗</u> によ	
	に転じ、その後は逃がし弁により圧力制御	り原子炉出力が高めに維持されることから、	り原子炉出力が高めに維持されることから,	
	される。	原子炉圧力も高めを維持する。	原子炉圧力も高めを維持する。	
車	格納容器圧力/プール水温度:逃がし弁開	格納容器圧力/プール水温度:逃がし弁開に	格納容器圧力/プール水温度:逃がし弁開に	
象	により蒸気が格納容器プールへ放出される	より蒸気が格納容器プールへ放出されるた	より蒸気が格納容器プールへ放出されるた	
進展	が、その量は僅かであり、格納容器圧力及	め,格納容器圧力及びプール水温度が上昇す	め,格納容器圧力及びプール水温度が上昇す	
120	びプール水温度上昇は小さいと考えられ	る。ほう酸水の注入による原子炉出力低下と	<u>る。ほう酸水の注入による原子炉出力低下と</u>	
	る。なお、従来許認可では本パラメータは	RHR による除熱により,格納容器圧力/プ	RHRによる除熱により,格納容器圧力/プ	
	<u>評価対象外</u> である。	ール水温度は低下に転じる。	<u>ール水温度は低下に転じる</u> 。	
	運転特性図上の運転点は、原子炉スクラム	運転特性図上の運転点は,原子炉スクラム失	運転特性図上の運転点は,原子炉スクラム失	
	により,高出力低流量には至らない。	敗及び RPT により、高出力低流量に至る。	敗及びRPTにより、高出力低流量に至る。	
	原子炉スクラム:約0.3秒	原子炉スクラム:失敗	原子炉スクラム:失敗	先行審査プラントと同等
	逃がし弁開:約2秒	逃がし弁開:約2秒	逃がし弁開:約2秒	
	MSIV 閉鎖:約3秒	MSIV 閉鎖:約3秒	MSIV 閉鎖:約3秒	
		ECCS 起動:約34秒	ECCS 起動:約 57 秒	
		給水停止:約173秒	給水停止:約131秒	
		SLC 起動:約 11 分	SLC 起動:約 600 秒	
-	原子炉出力:初期值~0%	原子炉出力:0%~306%	原子炉出力:0%~560%	先行審査プラントと同等
发化	原子炉圧力:初期値~8.08MPa[gage]	原子炉圧力:初期值~約 8.92MPa[gage]	原子炉圧力:初期值~約 8.19MPalgage]	
範	格納谷器圧刀:(評価対象外)	格納谷器圧力: 初期値~約 0.19MPa[gage]	格納谷器圧力: 初期値~約 0.20MPa[gage]	
囲	ワール水温度:(評価対象外)	ワール水温度: 初期値~約 113℃	フール水温度: 初期値~約 115℃	
	時間:0秒~約20秒	時間:0秒~約2400秒(40分)	時間:0秒~約3600秒(60分)	
	原于炉出刀:0%以上	原于炉田刀:问左	原于炉出力:0%以上	先行審査プラントと同じ
滳	「「「「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」、「」	尿丁が 工力: 回左	「「「「「」」」、「「」」、「「」」、「」、「」、「」、「」、「」、「」、「」、	
用	~ 取同使用圧力の1.2 信 核納容罢圧力・(評価対象外)	ぬ納容器圧力・通営運転圧力	~取同区用圧力の1.2 倍 核納容器圧力・通営運転圧力	
範囲		~0 62MPa[σaσa]	~0.62MPa[σaσa]	
100	 プール水温度:(評価対象外)	プール水温度:通常運転温度~200℃	プール水温度:通常運転温度~200℃	
	時間:0秒~制限なし	時間:同左	時間:0秒~制限なし	

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(2/11)

	15 D	従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にとて影響	重大事故等対策	ぎの有効性評価
	項 日	(過渡解析)	(原子炉停止機能喪失)	との差異	定共による影響	(東海第二;原子	炉停止機能喪失)
	初期運転条件	原子炉出力:過出力条件	原子炉出力:定格出力条件	有	従来許認可解析が保守的評価条件	原子炉出力:定格出力条件	先行審査プラントと同じ
		炉心流量:運転特性図考慮	炉心流量:運転特性図考慮		を採用しているに対して,重大事故	炉心流量:運転特性図考慮	
		原子炉圧力:過出力条件	原子炉圧力:定格出力条件		等対策の有効性評価ではより実機	原子炉圧力:定格出力条件	
					に近い条件を設定。		
					解析結果はより現実的な結果とな		
					る。		
	初期原子炉水位	通常水位	同左	無	差異はない。	通常水位	先行審査プラントと同じ
	事象	主蒸気隔離弁の誤閉止	同左	無	差異はない。	主蒸気隔離弁の誤閉止	先行審査プラントと同じ
解	原子炉スクラム	主蒸気隔離弁閉スクラム	スクラム機能喪失	有	原子炉停止機能喪失事象の前提条	スクラム機能喪失	先行審査プラントと同じ
					件。		
	炉心条件	9×9 燃料(A 型)/(B 型)/	9×9(A 型)/MOX 単一炉心,又	有	従来許認可解析では炉内に存在す	9×9(A型)/単一炉心	先行審査プラントと同じ
+15		8×8 燃料/MOX 燃料の混	は 9×9(A 型)と MOX 混在炉心		る燃料タイプごとに保守的な混在		
仞		在炉心,又は単一炉心	(プラントにより異なる)		炉心を選定しているが, 重大事故等		
		(プラントにより異なる)			対策の有効性評価では,代表的な炉		
					心条件として単一炉心又はMOX混		
冬					在を選定している。燃料タイプは異		
\sim					なるものの, 熱水力特性は同等であ		
					り,プラント全体挙動に及ぼす影響		
					は小さい。		
件	ボイド反応度係	圧力上昇過渡用保守係数を	圧力上昇過渡用保守係数を代表	無	原子炉停止機能喪失事象では炉心	圧力上昇過渡用保守係数を代表値と	先行審査プラントと同じ
	数	使用	値として使用		流量が急減する挙動もあるが, 起因	して使用	
	ドップラ反応度				事象が従来許認可と同じであるこ		
	係数				とから保守係数の代表値として,出		
					力上昇を厳しくする圧力上昇過渡		
					と同じ値を使用する。		
	ギャップ熱伝達	燃焼期間中結果を厳しくす	同左	無	重大事故等対策の有効性評価にお	燃焼期間中結果を厳しくする値	先行審査プラントと同じ
	係数	る値			ける燃焼期間は従来許認可解析と		
					同じであり差異はない。		

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(3/11)

表 2 - 1	REDY における従来許認可解析と重大事故等対策の有効性評価の比較	(4/11)
---------	-----------------------------------	--------

	15 L	従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	策の有効性評価
	項日	(過渡解析)	(原子炉停止機能喪失)	との差異		(東海第二;原子	炉停止機能喪失)
	代替再循環トリッ プ機能	考慮しない	考慮する	有	原子炉停止機能喪失事象の前提条 件。	考慮する	先行審査プラントと同じ
	代替制御棒挿入機 能	考慮しない	同左	無	差異はない。	考慮しない	先行審査プラントと同じ
	ほう酸水注入機能	考慮しない	考慮する	有	原子炉停止機能喪失事象の前提条 件。	考慮する	先行審査プラントと同じ
解	予備給水ポンプ	考慮しない	考慮する	有	MSIV 閉による給水加熱喪失の効 果により出力が上昇するため結果 が厳しくなる条件を設定。	考慮する	先行審査プラントと同じ
析	崩壞熱	一次遅れ特性	4 群又は 11 群モデル (ANSI/ANS-5.1-1979 相当)	有	重大事故等対策の有効性評価では 長時間領域での崩壊熱による影響 を精度良く評価するために,より現 実的な崩壊熱変化を設定。	11 群モデル (ANSI/ANS-5.1-1979 相当)	先行審査プラントと同じ
	外部電源	健全	同左	無	差異はない。	健全	先行審査プラントと同じ
条 件	SRV 仕様	逃がし弁機能 (作動設定値は過出力条件 用)	逃がし弁機能 (作動設定値は設計値)	有	定格出力条件に従い,開設定圧力を 設計値に変更しているが,初期原子 炉圧力からの開設定値までの差は 同じであるため,減圧に伴う基本的 な挙動は,従来許認可解析と同様で ある。	逃がし弁機能 (作動設定値は設計値)	先行審査プラントと同じ
	再循環系ポンプ慣 性	設計値	同左	無	差異はない。	設計値	東海第二の従来許認可解析では 「設計値×1.1」の評価条件を 採用しているに対して,重大事故 等対策の有効性評価ではより実機 に近い条件を設定。 解析結果はより現実的な結果とな る。

	15 0	従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	の有効性評価
	項 日	(過渡解析)	(原子炉停止機能喪失)	との差異		(東海第二;原子)	炉停止機能喪失)
	RCIC	考慮しない	考慮する	有	従来許認可解析での評価指標上	考慮する	先行審査プラントと同じ
					RCIC の動作有無は考慮不要であっ		
					たが、重大事故等対策の有効性評価		
					では原子炉がスクラムしないため		
					RCIC 作動の影響を確認している。		
解	高圧 ECCS	考慮しない	考慮する	有	従来許認可解析での評価指標上,高	考慮する	先行審査プラントと同じ
					圧ECCSの動作有無は考慮不要であ		
					ったが、重大事故等対策の有効性評		
					価では原子炉がスクラムしていない		
析					ため, 高圧 ECCS 作動の影響を確認		
					している。		
	原子炉格納容器	考慮しない	考慮する	有	従来許認可解析では、早期にスクラ	考慮する	先行審査プラントと同じ
条					ムするため格納容器側評価は実施し		
					ないが、重大事故等対策の有効性評		
					価では格納容器側も評価指標である		
					ため設計値を使用してその影響を確		
件					認している。		
	RHR	考慮しない	考慮する	有	従来許認可解析では、格納容器側評	考慮する	先行審査プラントと同じ
					価は実施しないが、重大事故等対策		
					の有効性評価では格納容器側も評価		
					指標であるため設計値を使用してそ		
					の影響を確認している。		

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(5/11)

	項	目	従来許認可解析 (過渡解析)	重大事故等対策の有効性評価 (原子炉停止機能喪失)	従来許認可 との差異	差異による影響	重大事故等対策 (東海第二;原子	その有効性評価 炉停止機能喪失)
	炉心	核分裂出	圧力上昇過渡事象発生時に結果を	同左	有	圧力上昇過渡事象の評価であるた	圧力上昇過渡事象発生時に結果を厳	先行審査プラントと同じ
	(核)	力	厳しく評価するサイクル末期炉心			め,従来許認可と同じ保守係数を用	しく評価するサイクル末期炉心条件	
		出力分布	条件を選定して,ボイド/ドップ			いている。	を選定して、ボイド/ドップラ反応	
		変化	ラ反応度に保守係数を考慮した設			原子炉がスクラムしないため、ボ	度に保守係数を考慮した設定を実施	
物		反応度フ	定を実施している。			ロン注入による出力低下により事	している。	
		ィードバ	また、反応度効果としては、ボイ	また、反応度効果としては、		象が収束する。原子炉がスクラム	また、反応度効果としては、ボイド	
		ック効果	ド/ドップラ/スクラム/制御棒	ボイド/ドップラ/ボロン反		せず、原子炉出力の変化が従来許	/ドップラ/ボロン反応度を考慮し	
			の反応度を考慮している。	応度を考慮している。		認可解析に比べて大きくなり、燃	ている。	
理						料被覆管温度評価に影響を及ぼ		
						す。		
			崩壊熱については、比較的短時間	崩壊熱については、より現実	有	崩壊熱については、原子炉にて発	崩壊熱については、より現実的な崩	先行審査プラントと同じ
邗			でスクラム動作して事象は収束す	的な崩壊熱曲線を使用してい		生する蒸気量が格納容器側のパラ	壊熱曲線を使用している。	
-96		崩壊熱	るため、影響はほとんどなく、一	る。		メータ変化に影響する。なお、格		
			次遅れを仮定している。			納容器側評価は従来許認可解析で		
						は実施していない。		
象			事象発生後短時間で原子炉スクラ	原子炉がスクラムせず高出	有	中性子束振動現象が燃料被覆管温	原子炉がスクラムせず高出力・低流	先行審査プラントと同じ
			ムするため、中性子束振動現象は	力・低流量状態に至るため,		度に対して影響を与える可能性が	量状態に至るため、中性子束振動現	
		二次元効	生じない。	中性子束振動現象が生じる可		ある。よって、この現象を取り扱	象が生じる可能性がある。	
		米		能性がある。		うことが可能な異なる解析コード		
						による参考解析を参照する。		

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(6/11)

	та н	従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトス影響	重大事故等対策	の有効性評価	
	垻	Ħ	(過渡解析)	(原子炉停止機能喪失)	との差異	左共による影響	(東海第二;原子)	戶停止機能喪失)
	炉心	燃料棒内	原子炉内の平均的燃料棒を代	同左	無	従来許認可解析と同一であり, 差異	原子炉内の平均的燃料棒を代表と	先行審査プラントと同じ
	(燃料)	温度変化	表とし, 燃料棒を同心円状に分			はない。	し、燃料棒を同心円状に分割して燃	
			割して燃料ペレットの熱伝導			また,原子炉停止機能喪失事象では	料ペレットの熱伝導度, 燃料ギャッ	
			度, 燃料ギャップの熱伝達率を			炉心冠水状態を維持するため, 平均	プの熱伝達率を適用している。	
物			適用している。			的燃料棒の燃料棒内温度変化及び		
						燃料表面熱伝達については従来許		
		燃料棒表	燃料表面熱伝達は一定とし核	同左	無	認可解析と同様である。	燃料表面熱伝達は一定とし核沸騰の	先行審査プラントと同じ
		面熱伝達	沸騰の代表値を適用している。				代表値を適用している。	
理								
			熱的評価については,SCAT コ	熱的評価については, SCAT コ			熱的評価については, SCAT コード	
			ードにて実施(最小限界出力比	ードにて実施(燃料被覆管温度			にて実施(燃料被覆管温度評価を実	
現			(MCPR) が燃料の許容設計限	評価を実施して判断基準を上			施して判断基準を上回らないことを	
2			界を下回らないことを確認。)	回らないことを確認。)			確認。)	
		沸騰遷移	(SCAT コードによる評価)	(SCAT コードによる評価)	—	—	(SCAT コードによる評価)	—
象								
		燃料被覆	(SCAT コードによる評価)	(SCAT コードによる評価)	—	—	(SCAT コードによる評価)	—
		管酸化						
		燃料被覆	(SCAT コードによる評価)	(SCAT コードによる評価)	_		(SCAT コードによる評価)	_
		管変形						

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(7/11)

	百日		従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトエ影響	重大事故等対策	度の有効性評価
	坦	Ħ	(過渡解析)	(原子炉停止機能喪失)	との差異	左共による影響	(東海第二;原子	炉停止機能喪失)
	炉心 (熱	沸騰・ボ	原子炉出力の上昇並びに炉心	同左	無	差異はない。	原子炉出力の上昇並びに炉心流量	先行審査プラントと同じ
	流動)	イド率変	流量の低下により炉心平均ボ				の低下により炉心平均ボイド率が	
		化	イド率が増加するが, 炉心は冠				増加するが、炉心は冠水を維持して	
			水を維持しているため, 二相水				いるため、二相水位の影響はない。	
			位の影響はない。					
物		気液分離	炉心部の保有水量は十分保た	同左	無	差異はない。	炉心部の保有水量は十分保たれ、炉	先行審査プラントと同じ
		(水位変	れ, 炉心は冠水を維持している				心は冠水を維持していることから	
		化) · 対	ことから影響はない。				影響はない。	
珊		向流						
~T		気液熱非						
		平衡						
		圧力損失	事象発生時に再循環系ポンプ	原子炉圧力高により再循環系	無	圧力損失による影響に差異はない。	原子炉圧力高により再循環系ポン	先行審査プラントと同じ
現			がトリップした際の炉心流量	ポンプがトリップし炉心流量			プがトリップし炉心流量が早期に	
			変化の速さについて, 炉心部の	が早期に低下するため, 炉心部			低下するため、炉心部の圧力損失の	
			圧力損失の影響により炉心流	の圧力損失の影響により炉心			影響により炉心流量低下速度が大	
			量低下速度が大きくなる。	流量低下速度が大きくなる。			きくなる。	
象		三次元効	事象発生後短時間で原子炉ス	原子炉がスクラムせず高出	有	核熱水力不安定事象が燃料被覆管	原子炉がスクラムせず高出力・低流	先行審査プラントと同じ
		果	クラムするため, 核熱水力不安	力・低流量状態に至るため,核		温度に影響を与える可能性がある。	量状態に至るため,核熱水力不安定	
			定事象は生じない。なお, 流量	熱水力不安定事象が生じる可		よって、この現象を取り扱うことが	事象が生じる可能性がある。なお,	
			配分による冷却材流量変化へ	能性がある。なお、流量配分に		可能な異なる解析コードによる参	流量配分による冷却材流量変化へ	
			の影響は SCAT 側にて考慮す	よる冷却材流量変化への影響		考解析を参照する。	の影響は SCAT 側にて考慮する。	
1			る。	は SCAT 側にて考慮する。	1			

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(8/11)

	項目	従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトて影響	重大事故等対策の有効性評価		
	供	Ħ	(過渡解析)	(原子炉停止機能喪失)	との差異	定共による影響	(東海第二;原子	炉停止機能喪失)
	原子炉	冷却材流	原子炉水位低により再循環系	事象発生時に再循環系ポンプ	有	重大事故等対策の、有効性評価では	事象発生時に再循環系ポンプがトリ	先行審査プラントと同じ
	圧力容	量変化	ポンプがトリップするが, 実機	がトリップした際の炉心流量		再循環系ポンプのトリップを考慮し	ップした際の炉心流量変化の速さ	
	器(逃が		機能の反映であるため設計値	変化の速さが,解析結果に影響		ているため、設計値を使用した現実	が、解析結果に影響すると考えられ	
物	し安全		を使用している。	すると考えられる。より現実的		的な解析条件としている。	る。より現実的な評価を実施するた	
	弁を含			な評価を実施するため設計値			め設計値を使用している。	
	む)			を使用している。				
		冷却材放	原子炉圧力が逃がし弁設定値	同左	無	差異はない。	原子炉圧力が逃がし弁設定値に達す	先行審査プラントと同じ
理		出(臨界	に達すると蒸気を放出して原				ると蒸気を放出して原子炉圧力上昇	
		流・差圧	子炉圧力上昇を緩和する。				を緩和する。	
		流)						
珇								
-94		沸騰・凝	これらの物理現象は炉心以外	同左	無	差異はない。	これらの物理現象は炉心以外の領域	先行審査プラントと同じ
		縮・ボイ	の領域では直接的には影響し				では直接的には影響しない。	
		ド率変化	ない。					
象								
		圧力損失	考慮している	同左	無	差異はない。	考慮している	先行審査プラントと同じ

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(9/11)

	百日		従来許認可解析	重大事故等対策の有効性評価	従来許認可との	辛田にトス影響	重大事故等対策	意の有効性評価
	坦	Ħ	(過渡解析)	(原子炉停止機能喪失)	差異	左共による影響	(東海第二;原子	炉停止機能喪失)
	原子炉	ECCS 注	・ECCS 系は考慮しない。	・ECCS 系を考慮。	有	原子炉がスクラムせ	・ECCS 系を考慮。	先行審査プラントと同じ
	圧力容	水(給水	・給水ポンプ予備機は考慮しない。	・予備機を含めた給水系を考慮。		ず,また給水ポンプ予	・予備機を含めた給水系を考慮。	
	器(逃が	系・代替	・給水加熱喪失を考慮	・同左		備機が起動するため,	・給水加熱喪失を考慮	
	し安全	注水設備				給水加熱喪失による		
	弁を含	含む)				出力上昇が燃料被覆		
物	む)					管温度へ影響する可		
						能性がある。		
		ほう酸水	ほう酸水注入は考慮しない。	原子炉停止を達成するために、ほ	有	従来許認可解析では	原子炉停止を達成するために、ほう	先行審査プラントと同じ
		の拡散		う酸水の原子炉への注入を設定。		原子炉スクラムによ	酸水の原子炉への注入を設定。	
理						り原子炉停止となる		
						が,重大事故等対策の		
						有効性評価解析では,		
珇						ほう酸水注入による		
90						原子炉停止としてお		
						り,原子炉停止までの		
						時間が長く,格納容器		
象						プール水温度及び格		
						納容器圧力評価に影		
						響する。		
		三次元効	REDY コードでは、燃料集合体間	同左	無	差異はない。	REDY コードでは、燃料集合体間の	先行審査プラントと同じ
		果	の流量配分について考慮していな				流量配分について考慮していない。	
			<i>د</i> ن.					

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(10/11)

	項目		従来許認可解析 (過渡解析)	重大事故等対策の有効性評価 (原子炉停止機能喪失)	従来許認可 との差異	差異による影響	重大事故等対策の有効性評価 (東海第二;原子炉停止機能喪失)	
	原子炉	冷却材放	考慮しない	原子炉圧力が逃がし弁設定値	有	格納容器プール水温度及び格納容器	原子炉圧力が逃がし弁設定値に達す	先行審査プラントと同じ
	格納容	出		に達すると蒸気を放出するた		圧力評価に影響する。	ると蒸気を放出するため、格納容器	
	器			め,格納容器プール水温度が上			プール水温度が上昇する。	
物				昇する。				
		格納容器	考慮しない	格納容器を 1 ノードでモデル	有	格納容器プール水温度及び格納容器	格納容器を1ノードでモデル化し,	先行審査プラントと同じ
理		各領域間		化し,空間部温度は格納容器プ		圧力評価に影響する。	空間部温度は格納容器プール水温度	
		の流動		ール水温度と同じにすると仮			と同じにすると仮定している。	
				定している。				
現								
		サブレッ	考慮しない	RHR による除熱を考慮	有	格納容器ブール水温度及び格納容器	RHR による除熱を考慮	先行審査プラントと同じ
		ション・				圧力評価に影響する。		
		プール冷						
象		却						
		気液界面	考慮しない	(格納容器各領域間の流動に	有	格納容器プール水温度及び格納容器	(格納容器各領域間の流動に同じ)	先行審査プラントと同じ
		の熱伝達		同じ)		圧力評価に影響する。		

表2-1 REDYにおける従来許認可解析と重大事故等対策の有効性評価の比較(11/11)

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(1/11)

	従来許認可解析	重大事故等対策の有効性評価	重大事故等対策の	の有効性評価		
	(ABWR 主蒸気隔離弁の誤閉止)	(ABWR 主蒸気隔離弁の誤閉止	(東海第二;主蒸気隔離弁の誤閉止			
		+原子炉停止機能喪失)	+原子炉停止機能喪失)			
	MCPR:原子炉スクラムによる負の反応度効	MCPR: <u>原子炉スクラムしないため</u> , 過渡時	MCPR: <u>原子炉スクラムしないため</u> , 過渡時 タ	先行審査プラントと同じ		
事	果により, 過渡時の MCPR は初期値を下回ら	の MCPR は <u>沸騰遷移判定基準を下回る</u> 。	の MCPR は <u>沸騰遷移判定基準を下回る</u> 。			
	tav.					
象	燃料被覆管温度:沸騰遷移が <u>生じることは無</u> 燃料被覆管温度:沸騰遷移が <u>生じるため、</u> 温		燃料被覆管温度:沸騰遷移が <u>生じるため,</u> 温			
	く,温度は <u>ほとんど変化しない</u> 。	度は <u>上昇する。原子炉出力の低下に伴いリウ</u>	度は <u>上昇する。原子炉出力の低下に伴いリウ</u>			
進		<u>ェットが発生し温度は低下する。</u>	<u>ェットが発生し温度は低下する。</u>			
	原子炉スクラム:約0.3秒 原子炉スクラム:失敗		原子炉スクラム:失敗 ダ	先行審査プラントと同等		
展	MSIV 閉鎖:約3秒	MSIV 閉鎖:同左	MSIV 閉鎖:約3秒			
	沸騰遷移・リウェット:発生しない	沸騰遷移・リウェット:数秒~約 400 秒	沸騰遷移・リウェット:数秒~約 300 秒			
亦	MCPR:初期値を下回らない	MCPR:沸騰遷移判定基準を下回る	MCPR:沸騰遷移判定基準を下回る 先行審査プラントと同等			
化	燃料被覆管温度:初期値からほとんど変化し	燃料被覆管温度:初期値~約1000℃	燃料被覆管温度:初期値~約900℃			
範囲	ない	時間:0秒~約400秒	時間:0秒~約400秒			
	時間:0秒~数秒					
適	MCPR: 1.0 以上	MCPR:同左	MCPR:1.0以上 纾	先行審査プラントと同じ		
用	燃料被覆管温度:対象外 燃料被覆管温度:飽和温度~1200℃		燃料被覆管温度:飽和温度~1200℃			
範囲	時間:0秒~制限なし	時間:同左	時間:0秒~制限なし			

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(2/11)

	項日	従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	휷の有効性評価
	頃 日	(過渡解析)	(原子炉停止機能喪失)	との差異		(東海第二;原子	炉停止機能喪失)
	初期バンドル出	初期 MCPR が OLMCPR となる値	同左	無	従来許認可解析と同一の設定であ	初期 MCPR が OLMCPR となる値	先行審査プラントと同じ
	力				り,差異はない。		
解	事象	主蒸気隔離弁の誤閉止	同左	無	従来許認可解析と同一の事象であ	主蒸気隔離弁の誤閉止	先行審査プラントと同じ
					り,差異はない。		
	原子炉スクラム	主蒸気隔離弁閉スクラム	スクラム機能喪失	有	原子炉停止機能喪失事象の前提条	スクラム機能喪失	先行審査プラントと同じ
Les.					件であり、条件の差異が生じる。ス		
朷					クラム機能喪失時は沸騰遷移が生		
					じ,燃料被覆管温度が上昇する。沸		
					騰遷移後における燃料被覆管温度		
条					挙動は, SCAT コードが取扱う従来許		
					認可解析の範囲外である。そのた		
					め、原子炉停止機能喪失事象を適切		
					に評価するように,熱伝達係数,ボ		
件					イドモデル等を従来許認可解析か		
					ら変更している。		
	燃料タイプ	9×9(A型), 9×9(B型), MOX	9×9(A型), MOX	無	従来許認可解析と同一の設定であ	9×9(A型)	先行審査プラントと同じ
					り,差異はない。		

表2-2 SCATにおける従来許認可解析と重大事故等対策の有効性評価の比較(3/11)

				-			
16日		従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	の有効性評価
	垻 日	(過渡解析)	(原子炉停止機能喪失)	との差異		(東海第二;原子炉停止機能喪失)	
	初期 MCPR	OLMCPR	同左	無	従来許認可解析と同一の設定であ	OLMCPR	先行審査プラントと同じ
					り,差異はない。		
	BT 判定 MCPR	SLMCPR	同左	無	従来許認可解析と同一の設定であ	SLMCPR	先行審査プラントと同じ
					り,差異はない。		
	ホットチャンネルの軸	中央出力ピーク分布	同左	無	従来許認可解析と同一の分布であ	中央出力ピーク分布	先行審査プラントと同じ
解	方向出力分布				り、差異はない。		
	最大線出力密度	44.0kW/m×1.0	同左	無	従来許認可解析と同一の設定であ	44.0kW/m×1.0	先行審査プラントと同じ
					り、差異はない。		
-14	局所出力ピーキング係	上記の初期 MCPR とピーク	同左	無	従来許認可解析と同一の設定であ	上記の初期 MCPR とピーク位置での	先行審査プラントと同じ
朳	数	位置での線出力密度を満			り、差異はない。	線出力密度を満たすよう調整した	
		たすよう調整した値				値	
	ホットチャンネルのギ						先行審査プラントと同じ
条	ャップ熱伝達係数						
	平均出力ロッド	燃焼期間中のバンドル平	同左	無	従来許認可解析と同一の設定であ	燃焼期間中のバンドル平均の最大	
		均の最大値(軸方向一定			り,差異はない。	値 (軸方向一定値)	
	ホットロッド	値)	最大線出力密度 44kW/m 相当	有	原子炉停止機能喪失事象の解析で	最大線出力密度 44kW/m 相当	
件		平均出力ロッドに同じ	(軸方向分布考慮)		は,沸騰遷移後における燃料被覆管	(軸方向分布考慮)	
					温度挙動を評価するために, ホット		
					ロッドのギャップ熱伝達係数に差		
					異が生じる。軸方向分布を考慮した		
					ギャップ熱伝達係数を適用するこ		
					とで、適切に評価できる。		

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(4/11)

		従来許認可解析	重大事故等対策の有効性評	従来許認可	差異による影響	重大事故等対策	その有効性評価
	項目	(過渡解析)	価	との差異		(東海第二;原子)	炉停止機能喪失)
			(原子炉停止機能喪失)				
解析	燃料被覆管と冷却材間の 熱伝達係数 サブクール: ^{サブ*} クール沸騰,核沸騰: 膜沸騰: リウェット:	Dittus-Boelter の式 Jens-Lottes の式 使用しない 使用しない	同左 同左 修正 Dougall-Rohsenow 式 日本原子力学会標準「BWR における過渡的な沸騰遷 移後の燃料健全性評価基 準:2003」における相関式 2	無 無 有 有	原子炉停止機能喪失事象の解析で は、沸騰遷移後における燃料被覆 管温度挙動を評価するために、熱 伝達モデルに差異が生じる。日本 原子力学会標準で推奨される相関 式を適用することで、適切に評価 できる。 また、核沸騰までの挙動は従来許 認可解析と同等であり、サブクー ル、サブクール沸騰、及び核沸騰 で適用する相関式については従来 許認可解析コードの取り扱いの範	Dittus-Boelter の式 Jens-Lottes の式 修正 Dougall-Rohsenow 式 日本原子力学会標準「BWR におけ る過渡的な沸騰遷移後の燃料健 全性評価基準:2003」における相 関式 2	先行審査プラントと同じ
モ	沸騰遷移評価モデル	GEXL 相関式	同左	無	 <u>西内に収まる。</u> 従来許認可解析と同一の設定であり、差異はない。 	同左	先行審査プラントと同じ
デ	ボイドモデル						先行審査プラントと同じ
N	 サブクールボイドモデル 気泡離脱点: 蒸気生成: 圧損モデル 単相摩擦損失係数: 二相摩擦増倍係数: 局所二相増倍係数: 						先行審査プラントと同じ 先行審査プラントと同じ

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(5/11)

			従来許認可解析	重大事故等対策の有効性評	従来許認可		重大事故等対策の有効性評価
	16 D		(温油細石仁)	<u>二</u> (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(しの主用	羊用に上る影響	(東海第二,百乙后信止继纶兩生)
		「只 口	(迴波州初)	ТШ	この左共	左共による影響	(米西另二,)尽丁尸 停止 (战胜 天)
				(原子炉停止機能喪失)			
	炉心	核分裂出力	(REDY コードによる評価)	(REDY コードによる評価)	—	-	(REDY コードによる評価) ー
46-	(核)	出力分布変					
物		化					
理		反応度フィ					
現		ードバック					
~		効果					
家		崩壊熱	(REDY コードによる評価)	(REDY コードによる評価)	—	_	(REDY コードによる評価) ー
		三次元効果	(REDY コードによる評価)	(REDY コードによる評価)	-	—	(REDY コードによる評価) ー

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(6/11)

	百日		従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトて影響	重大事故等対策の有効性評価	
	坦	Ħ	(過渡解析)	(原子炉停止機能喪失)	との差異	定共による影響	(東海第二;原子炉停止機能喪失)	
	炉心	燃料棒内温	出力が上昇してMCPR	原子炉出力が急激に上昇する	有	原子炉停止機能喪失事象では、沸騰	原子炉出力が急激に上昇するため,	先行審査プラントと同じ
	(燃料)	度変化	が低下するが、沸騰遷移	ため,沸騰遷移が生じて膜沸騰		遷移が生じるため、燃料被覆管温度	沸騰遷移が生じて膜沸騰状態に移行	
		燃料棒表面	は生じず, 核沸騰状態で	状態に移行する。その後, 原子		の挙動に差異が生じる。沸騰遷移後	する。その後,原子炉出力の低下に	
the form		熱伝達	事象は推移する。	炉出力の低下によってリウェ		における燃料被覆管温度挙動は,	よってリウェットに至ることで核沸	
190		沸騰遷移		ットに至ることで核沸騰状態		SCAT コードが取扱う従来許認可解析	騰状態へ移行する。燃料被覆管温度	
				へ移行する。燃料被覆管温度		の範囲外である。そのため、原子炉	は、燃料ペレット内発熱により燃料	
				は、燃料ペレット内発熱により		停止機能喪失事象を適切に評価する	ペレット熱伝導とギャップ部の熱伝	
理				燃料ペレット熱伝導とギャッ		ように、熱伝達係数、ボイドモデル	達及び燃料被覆管熱伝導を通して上	
				プ部の熱伝達及び燃料被覆管		等を従来許認可解析から変更してい	昇する。	
				熱伝導を通して上昇する。		る。		
		燃料被覆管	燃料被覆管温度の上昇量	沸騰遷移発生によって燃料被	有	原子炉停止機能喪失事象の解析で	沸騰遷移発生によって燃料被覆管温	先行審査プラントと同じ
現		酸化	が小さく,水-ジルカロイ	覆管温度が高温となるため,水		は、燃料被覆管温度が高温となるた	度が高温となるため,水-ジルカロイ	
			反応が発生する程度には	-ジルカロイ反応が発生する。		め、取扱う燃料被覆管酸化量の評価	反応が発生する。	
			至らない。			に差異が生じる。そのため、燃料被		
#						覆管と冷却水又は水蒸気との化学反		
家						応に Baker-Just の式を適用して燃料		
						被覆管酸化量を計算する。		
		燃料被覆管	無し	同左	無	従来許認可解析との差異はない。	無し	先行審査プラントと同じ
		変形						

表2-2 SCATにおける従来許認可解析と重大事故等対策の有効性評価の比較(7/11)

та н		従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトス影響	重大事故等対策の有効性評価	
	垻 日	(過渡解析)	(原子炉停止機能喪失)	との差異	差異による影響	(東海第二;原子	炉停止機能喪失)
炉心 (熱	漁 沸騰・ボイ	ボイド率は低下してい	スクラムしないためボイド率	有	原子炉停止機能喪失事象の解析で	スクラムしないためボイド率は高い	先行審査プラントと同じ
流動)	ド率変化	<.	は高いまま維持される。		は、スクラム機能喪失を仮定してお	まま維持される。	
					り,ボイド率の挙動に差異が生じる。		
					しかし, 原子炉停止機能喪失でのボ		
					イド率は過渡解析のボイド率最大値		
					と同等であるため,差異による影響		
					はない。		
物	気液分離	炉心部に二相水位は形成	同左	無	従来許認可解析との差異はない。	炉心部に二相水位は形成されない。	先行審査プラントと同じ
	(水位変	されない。					
	化)・対向						
	流						
理	気液熱非平	無し	沸騰遷移発生によって過熱蒸	有	原子炉停止機能喪失事象の解析で	沸騰遷移発生によって過熱蒸気が発	先行審査プラントと同じ
	衡		気が発生する可能性がある。		は、沸騰遷移発生により、気液熱非	生する可能性がある。	
	D.d.				平衡に差異が生じる。そのため、原		
					子炉停止機能喪失事象を適切に評価		
現					するように,燃料被覆管-冷却材間		
					の熱伝達係数を従来許認可解析から		
					変更している。		
	圧力損失	流量に影響を与えない。	同左	無	従来許認可解析との差異はない。	流量に影響を与えない。	先行審査プラントと同じ
象	三次元効果	炉心径方向出力分布の変	炉心径方向出力分布の変化は	有	核熱水力不安定事象が燃料被覆管温	炉心径方向出力分布の変化は小さ	先行審査プラントと同じ
		化は小さく, 流量配分に	小さく,流量配分による冷却材		度に影響を与える可能性がある。よ	く、流量配分による冷却材流量変化	
		よる冷却材流量変化への	流量変化への影響は小さい。		って、この現象を取り扱うことが可	への影響は小さい。	
		影響は小さい。	一方, 原子炉がスクラムせず高		能な異なる解析コードによる参考解	一方, 原子炉がスクラムせず高出	
		また、事象発生後短時間	出力・低流量状態に至るため,		析を参照する。	力・低流量状態に至るため, 核熱水	
		で原子炉スクラムするた	核熱水力不安定事象が生じる			力不安定事象が生じる可能性があ	
		め,核熱水力不安定事象	可能性がある。			る。	
		は生じない。					

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(8/11)

	項目		従来許認可解析	重大事故等対策の有効性評価	従来許認可	羊用にトス影響	重大事故等対策	策の有効性評価
			(過渡解析)	(原子炉停止機能喪失)	との差異	定共による影響	(東海第二;原子炉停止機能喪失)	
	原子炉圧	冷却材流量	原子炉水位低によって再	ATWS 圧力高や原子炉水位低に	無	従来許認可解析との差異はない。	ATWS圧力高や原子炉水位低によって	先行審査プラントと同じ
	力容器	変化	循環系ポンプトリップし,	よって再循環系ポンプトリッ			再循環系ポンプトリップし、自然循	
	(逃がし		自然循環流量相当まで流	プし,自然循環流量相当まで			環流量相当まで低下する。	
htm	安全弁を		量が低下する。	低下する。				
1%)	含む)	冷却材放出	MSIV 誤閉止による原子炉	同左	無	従来許認可解析との差異はない。	MSIV誤閉止による原子炉圧力の上昇	先行審査プラントと同じ
理		(臨界流・	圧力の上昇によって逃が				によって逃がし安全弁が作動する。	
		差圧流)	し安全弁が作動する。					
現		沸騰・凝	炉心以外の領域における	同左	無	従来許認可解析との差異はない。	炉心以外の領域における本物理現象	先行審査プラントと同じ
		縮・ボイド	本物理現象が評価指標に				が評価指標に与える影響はない。	
象		率変化	与える影響はない。					
		圧力損失	炉心以外の領域における	同左	無	従来許認可解析との差異はない。	炉心以外の領域における本物理現象	先行審査プラントと同じ
			本物理現象が評価指標に				が評価指標に与える影響はない。	
			与える影響はない。					

表2-2 SCATにおける従来許認可解析と重大事故等対策の有効性評価の比較(9/11)

	百		従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトス影響	重大事故等対策	きの有効性評価
	<u>д</u> р		(過渡解析)	(原子炉停止機能喪失)	との差異	左共による影響	(東海第二;原子炉停止機能喪失)	
	原子炉圧	ECCS 注水	・T/D 給水ポンプトリップ	・T/D 給水ポンプトリップ	有	原子炉停止機能喪失事象の解析で	・T/D 給水ポンプトリップ	先行審査プラントと同じ
	力容器	(給水		 M/D 給水ポンプ起動 		は, M/D 給水ポンプ起動を仮定して	 M/D 給水ポンプ起動 	
	(逃がし	系·代替注		・HPCS, RCIC 起動		おり、入口サブクーリングが増加す	・HPCS, RCIC 起動	
物	安全弁を	水設備含				るため、入口サブクーリングに差異		
	含む)	む)				が生じる。入口サブクーリングの増		
						加は GEXL 相関式で適用可能と考え		
						られるため, 差異による影響はない。		
理		ほう酸水	ほう酸水注入系は起動しな	ほう酸水注入系の起動によっ	有	原子炉停止機能喪失事象の解析で	ほう酸水注入系の起動によって原子	先行審査プラントと同じ
		の拡散	ℓv₀	て原子力出力を抑制し、原子		は、ほう酸水注入系の起動を考慮す	力出力を抑制し,原子炉停止を達成	
				炉停止を達成する。 (REDY コ		るため、ほう酸水の効果に差異が生	する。 (REDY コードによる評価)	
珇				ードによる評価)		じる。燃料被覆管温度の上昇は事象		
-94						初期であり、ほう酸水注入系による		
						出力抑制の効果が現れる段階より早		
						いため影響はないと考えられる。そ		
象						のため差異による影響はない。		
		三次元効	(下部プレナムの流量配分)		無	従来許認可解析との差異はない。	(下部プレナムの流量配分)	先行審査プラントと同じ
		果	再循環系ポンプは対称にト	同左			再循環系ポンプは対称にトリップす	
			リップするため影響はない。				るため影響はない。	

票2-2 SCATにおける従来許認可解析と重大事故等対策の有効性評価の比較(10/11)

	項日	従来許認可解析	重大事故等対策の有効性評価	従来許認可	辛田にトス影響	重大事故等対策	の有効性評価	
	垻	Ħ	(過渡解析)	(原子炉停止機能喪失)	との差異	定共による影響	(東海第二;原子炉停止機能喪失)	
	原子炉格	冷却材放出	原子炉格納容器の挙動を	逃がし安全弁を介して原子炉	有	原子炉停止機能喪失事象の解析で	逃がし安全弁を介して原子炉格納容	先行審査プラントと同じ
	納容器		評価しないため本物理現	格納容器の圧力及びプール水		は、原子炉格納容器の挙動を評価す	器の圧力及びプール水温が上昇する	
			象は考慮しない。	温が上昇する(REDY コードによ		るため、物理現象の考慮有無に差異	(REDY コードによる評価)。	
theless			原子炉格納容器における	る評価)。		が生じる。いずれも REDY コードにて		
190			本物理現象が評価指標に			適切に評価でき, SCAT コードによる		
			与える影響はない。			評価において差異による影響はな		
						w.		
理		格納容器各	同上	原子炉格納容器の雰囲気温度	有	同上	原子炉格納容器の雰囲気温度及び圧	先行審査プラントと同じ
		領域間の流		及び圧力変化に影響する(REDY			力変化に影響する(REDY コードによ	
		動		コードによる評価)。			る評価)。	
		サプレッシ	同上	残留熱除去系によるサプレッ	有	同上	残留熱除去系によるサプレッショ	先行審査プラントと同じ
現		ョン・プー		ション・プール冷却を行うこと			ン・プール冷却を行うことによって	
		ル冷却		によって原子炉格納容器の圧			原子炉格納容器の圧力及びプール水	
				力及びプール水温の上昇を抑			温の上昇を抑制する(REDY コードに	
缶				制する (REDY コードによる評			よる評価)。	
承				価)。				
		気液界面の	同上	原子炉格納容器の雰囲気温度	有	同上	原子炉格納容器の雰囲気温度及び圧	先行審査プラントと同じ
		熱伝達		及び圧力変化へ影響する。			力変化へ影響する。 (REDY コードに	
				(REDY コードによる評価)			よる評価)	

表2-2 SCAT における従来許認可解析と重大事故等対策の有効性評価の比較(11/11)

表3 APEX/SCAT(RIA用)における従来許認可解析と重大事故等対策の有効性評価の比較(1/12)

※制御棒落下事象を比較対象として選定した理由は、起動時の制御棒引き抜き時の過渡変化の燃料エンタルピー は最大約 93kJ/kgUO2 であり、制御棒落下事象の方が厳しい事象(燃料エンタルピー:8~699kJ/kgUO2) であるため
表3 APEX/SCAT(RIA用)における従来許認可解析と重大事故等対策の有効性	性評価の比較(2/12)
---	--------------

	従来許認可解析	従来許認可解析 重大事故等対策の有効性評価		衆の有効性評価
	(BWR5 制御棒落下/低温時)	(BWR5 原子炉運転停止中の制御棒誤引抜)	(東海第二;反	「応度の誤投入)
	原子炉の起動時に制御棒がインシーケンス	原子炉の停止時に制御棒が1本引き抜かれた	原子炉の停止時に制御棒が1本引き抜かれた	先行審査プラントと同じ
	で引き抜かれた臨界状態から、制御棒1本	局所臨界状態から、隣接する1本の制御棒が	臨界状態から,隣接する1本の制御棒が引抜	
	が落下速度の上限値 0.95m/s で落下するこ	引抜速度の上限値 9.1cm/s で連続的に引き抜	速度の上限値9.1cm/sで連続的に引き抜かれ	
	とにより、原子炉出力が上昇する。	<u>かれる</u> ことにより原子炉出力が上昇する。	<u>る</u> ことにより原子炉出力が上昇する。	
車	急激な出力上昇は、ドップラ反応度の負のフ	原子炉出力が上昇し、起動領域モニタの原子	原子炉出力が上昇し,起動領域計装の原子炉	
象	ィードバックにより抑えられるとともに,平	<u>炉周期短信号が発生して、</u> 原子炉はスクラム	出力ペリオド短(10秒)信号が発生して、原	
進展	均出力領域モニタの中性子束高スクラム信	し、事象は収束する。	子炉はスクラムし、事象は収束する。	
	<u>号が発生して、</u> 原子炉はスクラムし、事象は			
	収束する。			
	原子炉スクラム:約1.1秒	原子炉スクラム:約6.8秒	原子炉スクラム:約9.6秒	先行審査プラントと同等
	 	 燃料エンタルピ・8k-J/kgIIOo~約	 	先行審査プラントと同等
	699kJ/kgUO2	144kJ/kgUO2	kallO ₂	
変	油 滕 北 能 · 単 相 核 沸 滕	油聯狀能· 前相 核沸聯	Ag002 沸躁状能・単相 核沸躁	
化	時間 · 0 秒~7 秒	時間 · 0 秒~20 秒	時間:0秒~20秒	
11日 一里				
	沸騰状態:単相,核沸騰,膜沸騰	沸騰状態:同左	沸騰状態:同左	先行審査プラントと同じ
	時間:0秒~制限なし	時間:同左	時間:同左	
適				
用範				
囲				

表 3 APEX/SUAT(RIA 用)における従来計認可解析と里大爭故等対束の有効性評価の比較(3/」	PEX/SCAT(RIA 用)における従来許認可解析と重大事故等対策の有効性評価の比較	(3/12)
--	---	--------

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	윤の有効性評価
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤引	न		(東海第二;反	応度の誤投入)
	項目	(過渡 :原子炉起動時における制	抜)	との差異			
		御棒の異常な引き抜き)					
	初期炉心	事故:低温臨界状態/高温待機臨界	低温停止状態	有	低温停止状態を初期炉心条件とし	低温停止状態	先行審査プラントと同じ
	条件	状態			ており, 差異が生じる。 ただし, 個々		
		過渡(BWR5):高温待機臨界状態			の炉心パラメータ自体は従来許認		
		過渡(ABWR):低温臨界状態			可解析の低温臨界条件と同一であ		
4.77					り、また、事故後の炉心の基本的な		
解					挙動は従来許認可解析と同様であ		
					ることから、差異による影響はな		
					ℓ`₀		
析	事象	事故:制御棒落下	制御棒の誤引抜	無	過渡解析と同一の事象であり、従来	制御棒の誤引き抜き	先行審査プラントと同じ
		過渡:制御棒の誤引抜			許認可解析のモデル適用範囲内で		
					ある。		
	初期実効	1.00 (通常の制御棒引抜操作で臨界	1.00(保守的に初期状態で臨界を	無	停止中の制御棒誤引抜解析では保	1.00(保守的に初期状態で臨界を想	先行審査プラントと同じ
条	増倍率	に達している)	想定)		守側に初期実効増倍率を 1.00 とし	定)	
					ており、初期実効増倍率条件の差異		
					はない。		
侳	初期制御	臨界状態に対応した制御棒パター	制御棒1本全引抜	有	停止中の制御棒誤引抜解析では制	制御棒1本全引き抜き	先行審査プラントと同じ
	棒パター	$\boldsymbol{\mathcal{V}}$			御棒1本全引抜状態を初期条件とし		
	\sim				ており、条件の差異が生じる。事故		
					後の炉心の基本的な挙動は従来許		
					認可解析と同様であり, 差異による		
					影響はない。		

表 3	APEX/SCAT(RIA	用)における従来許認可解析と重大事故等対策の有効性評価の比較	(4/	12)
-----	---------------	--------------------------------	-----	-----

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	の有効性評価
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤引	可との差		(東海第二;反応度の誤投入)	
	項目	(過渡 :原子炉起動時における制	抜)	異			
		御棒の異常な引き抜き)					
	初期出力	事故(低温臨界状態):定格の 10 ⁻⁸	定格の 10 ⁻⁸	無	停止中の制御棒誤引抜解析では低	定格の 10 ⁻⁸	先行審査プラントと同じ
		事故(高温待機臨界状態): 定格の			温臨界状態に対応した初期出力と		
		10.6			しており、事故・過渡解析(低温臨		
		過渡(低温臨界状態):定格の 10 ⁻⁸			界状態)との差異はない。		
解		過渡(高温待機臨界状態): 定格の					
		10-3					
	初期燃料	低温臨界状態:20℃	20°C	無	停止中の制御棒誤引抜解析では低	20°C	先行審査プラントと同じ
	被覆管表	高温待機臨界状態(BWR5):286℃			温臨界状態に対応した初期温度と		
析	面温度及	高温待機臨界状態(ABWR):287℃			しており、事故・過渡解析(低温臨		
	び原子炉				界状態)との差異はない。		
	冷却材の						
条	温度						
214	初期燃料	低温臨界状態:8kJ/kgUO2	8kJ/kgUO2	無	初期温度に対応した燃料エンタル	8kJ/kgUO ₂	先行審査プラントと同じ
	エンタル	高温待機臨界状態:75kJ/kgUO2			ピとしており,事故・過渡解析(低		
	۲°				温臨界状態)との差異はない。		
件	初期原子	低温臨界状態:0.0MPa[gage]	0.0MPa[gage]	無	原子炉低温停止状態に対応した初	0.0MPa[gage]	先行審査プラントと同じ
	炉圧力	高温待機臨界状態(BWR5):			期圧力としており、事故・過渡解析		
		7.03MPa[gage]			(低温臨界状態) との差異はない。		
		高温待機臨界状態(ABWR):					
		7.17MPa[gage]					

表 3 A	PEX/SCAT(RIA	用) における従来許認可解析と重大事故等対策の有効性評価の比較	(5/12)
-------	--------------	--	--------

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	きの有効性評価
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤	可との差		(東海第二;反	応度の誤投入)
	項目	(過渡):原子炉起動時における制	引抜)	異			
		御棒の異常な引き抜き)					
	初期炉心	定格の 20%	定格の 2%	有	停止中の制御棒誤引抜解析では残留	定格の 2%	先行審査プラントと同じ
	流量	(再循環系ポンプによる冷却材循	(崩壊熱除去系による冷却材循		熱除去系による冷却材循環を仮定し	(残留熱除去系による冷却材循環)	
		環)	環)		ており、初期流量に差異が生じる。		
备刀					事故後の炉心の基本的な挙動は従来		
丹牛					許認可解析と同様であり、差異によ		
析					る影響はない。		
条	局所出力	最大出力となる燃料集合体断面に	最大出力となる燃料集合体断面	無	従来許認可と同一の局所出力ピーキ	最大出力となる燃料集合体断面に対	先行審査プラントと同じ
仲	ピーキン	対応する値	に対応する値		ング係数を使用しており、差異はな	応する値	
177	グ係数	燃焼度条件	燃焼度条件		い。	燃焼度条件	
		サイクル初期:未燃焼	未燃焼			未燃焼	
		サイクル末期:当該燃料の燃焼度よ					
		り小さい燃焼度					

表 3 A	PEX/SCAT(RIA	用)における従来許認可解析と重大事故等対策(の有効性評価の比較	(6/12)
-------	--------------	------------------------	-----------	--------

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	ぎの有効性評価
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤	可との差		(東海第二;反)	応度の誤投入)
	項目	(過渡 :原子炉起動時における制御	引抜)	異			
		棒の異常な引き抜き)					
	ギャップ	Ross & Stoute の式	同左	無	従来許認可と同一の熱伝導方程式	Ross & Stoute の式	先行審査プラントと同じ
	熱伝達				を使用しており、差異はない。		
解	燃料棒表	単相強制対流:Dittus-Boelterの式	同左	無	従来許認可解析と同一の熱伝達相	単相強制対流:Dittus-Boelterの式	先行審査プラントと同じ
	面熱伝達	核沸騰状態:Jens-Lottes の式			関式を用いており、差異はない。ま	核沸騰状態:Jens-Lottes の式	
析		膜沸騰状態(低温時) : NSRR の実測			た,事故後の炉心の基本的な挙動は	膜沸騰状態(低温時) : NSRR の実測	
T		データに基づいて導出された熱伝達			従来許認可解析と同様であり、熱伝	データに基づいて導出された熱伝	
		相関式			達係数については従来許認可解析	達相関式	
デ		膜沸騰状態(高温待機時) :			コードの取り扱いの範囲内に収ま	膜沸騰状態(高温待機時) :	
		Dougall-Rohsenow の式			る。	Dougall-Rohsenow の式	
N	沸騰遷移	低温時:Rohsenow-Griffithの式及	同左	無	従来許認可解析と同一の沸騰遷移	低温時 : Rohsenow-Griffith の式及	先行審査プラントと同じ
		び Kutateladze の式			判定式を用いており、差異はない。	び Kutateladze の式	
		高温待機時:GEXL 相関式での				高温待機時:GEXL 相関式での	
		MCPR が限界値				MCPR が限界値	

表 3 APEX/SCAT(RIA 用)における従米計認可解析と重大事故等対策の有効性評価の比較(7/12

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	意の有効性評価
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤引	可との差		(東海第二;反	応度の誤投入)
	項目	(過渡 :原子炉起動時における制	抜)	異			
		御棒の異常な引き抜き)					
	引抜/落下	事故・インシーケンス制御棒引抜で	初期引抜制御棒に隣接する制御棒	有	停止中の制御棒誤引抜解析は引抜	初期引抜制御棒に隣接する制御棒 1	先行審査プラントと同じ
	制御棒	許可された制御棒1本	1本	13	制御棒に隣接する制御棒1本の引抜	本	
		過渡 (BWR5): インシーケンス制			を仮定しており、引抜制御棒に差異		
角星		御棒引抜で許可された制御棒1本			が生じる。事故後の炉心の基本的な		
,11		過渡(ABWR): インシーケンス制			挙動は従来許認可解析と同様であ		
		御棒引抜で許可された制御棒 26 本			り、差異による影響はない。		
析	引抜/落下	事故:1.3%Δk	誤引抜制御棒全引抜時の反応度価	有	停止中の制御棒誤引抜解析は誤引	誤引抜制御棒全引抜時の反応度価値	先行審査プラントと同じ
	制御棒価	過渡(BWR5): 1.3%∆k	値		抜制御棒全引抜時の反応度価値を		
	値	過渡(ABWR): 3.5%∆k			用いるため,制御棒価値に差異が生		
条					じる。事故後の炉心の基本的な挙動		
					は従来許認可解析と同様であり、差		
					異による影響はない。		
件	制御棒引	事故 (BWR5): 0.95m/s	BWR5 : 9.1cm/s	無	従来許認可(過渡)と同一の制御棒	9.1cm/s	先行審査プラントと同じ
	抜/落下速	事故(ABWR): 0.7m/s	ABWR : 3.3cm/s		引抜速度としており、差異はない。		
	度	過渡(BWR5): 9.1cm/s					
		過渡(ABWR): 3.3cm/s					

表 3	APEX/SCAT(RIA	用)における従来許	忍可解析と重大事故	汝等対策の有効性評価の比	較(8/12)
-----	---------------	-----------	-----------	--------------	---------

		従来許認可解析	重大事故等対策の有効性評価	従来許認	差異による影響	重大事故等対策	その有効性評価 しんてい しんしゅう しんしゅう しんしょう ひんしょう しんしょう しんしょ しんしょ
		(事故:制御棒落下)	(原子炉運転停止中の制御棒誤引	可との差		(東海第二;反	応度の誤投入)
	項目	(過渡 :原子炉起動時における制	抜)	異			
		御棒の異常な引き抜き)					
	マカラム	事故・由州子市真 (亚均出力領域チ	中間領域エータ採田プラント・中	毎	従本許認可(冯渡)と同一のスクラ	お動領域計准の原子に出力ペリオ	先行来本プラントと同じ
	ステノム	ず収, 十庄」 末向 (十均山乃頃域 し ータ)	十间 限級 レーク 休用 ノ クマー・ 十		人冬供としており、美見けない	に動 関 域 計 表 の 赤 「 デ ロ //・ / ス	
	木口	ーン	日本向		ATTCUCAS, EXAMIN	下盈 (10 秒) 百 5	
		□波(十间頃頃 □ − ク 床 ∩ ク ク ク ク ク ク ク ク ク ク ク ク ク ク ク ク ク	二の回転に一ク休用ノクシー・ホー				
解		一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一					
		していた し、 に し、 に し、 に に し、 に に し、 に に し、 、 、 、 、 、 、 、 、 、 、 、 、 、					
	檜出器バ	事故・平均出力領域チニタに単一故	BWR5・A B チャンネルともに	倕	従来許認可(過渡)と同一の検出器	A B チャンネルともに引抜制御棒	先行審査プラントと同じ
枟	イパス条	障を仮定する。	引抜制御棒に最も近い検出器を1		バイパス条件としており、差異はな	に最も近い検出器を1個ずつバイパ	
101	件		個ずつバイパス			、二次 0.2. · 八口 m C - 1 m	
		もに引抜制御棒に最も近い検出器	ABWR: A. B. $C \not / \nu - \gamma b h c$				
		を1個ずつバイパス	引抜制御棒に最も近い検出器を 1				
条		過渡 (ABWR) : A, B, C グループ	個ずつバイパス				
		ともに引抜制御棒に最も近い検出					
		器を1個ずつバイパス					
61	スクラム	事故:0.09秒	中間領域モニタ採用プラント:	無	従来許認可(過渡)とスクラム動作	0.2 秒	先行審査プラントと同じ
件	動作遅れ	過渡(中間領域モニタ採用プラン	0.09 秒		遅れとしており、差異はない。		
		ト):0.09秒	起動領域モニタ採用プラント: 0.2				
		過渡(起動領域モニタ採用プラン	秒				
		ト):0.2 秒					

表 3 APEX/SCAT(RIA 用)におけ	ける従来許認可解析と重大事故等対策の有効性評価の比較((9/12)
-------------------------	-----------------------------	--------

			従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策の	の有効性評価
			(事故:制御棒落下)	(原子炉運転停止中の	との差異		(東海第二;反応	度の誤投入)
		項目	(過渡 :原子炉起動時における制御	制御棒誤引抜)				
			棒の異常な引き抜き)					
		核分裂出	事故:制御棒落下により急激な反応度	制御棒が連続的に引き抜かれ、原子	有	停止中の制御棒誤引抜解析は炉心外周	制御棒が連続的に引き抜かれ,	先行審査プラントと同じ
		力	投入と出力分布変化が生じる。急激な	炉出力が上昇する。出力上昇後にス		部の制御棒が局所的に引き抜かれるこ	原子炉出力が上昇する。出力上	
物		出力分布	出力上昇はドップラ反応度の負のフ	クラム信号が発生して原子炉はス		とから,局所的に出力が上昇し,三次元	昇後にスクラム信号が発生し	
		変化	ィードバックにより抑えられるとと	クラムする。		的な出力分布変化の影響が生じる。ま	て原子炉はスクラムする。	
理	炉心	反応度フ	もに,平均出力領域モニタの中性子束			た、制御棒反応度効果は一般に三次元的		
		ィードバ	高スクラム信号が発生して,原子炉は			な位置に依存する影響を受けるが、事象		
現	毯	ック効果	スクラムする。			を通じての炉心挙動は従来許認可(事		
		制御棒反	過渡:制御棒が連続的に引き抜かれ,			故)の範囲を超えることはない。		
象		応度効果	原子炉出力が上昇する。出力上昇後に					
			スクラム信号が発生して原子炉はス					
			クラムする。					

表 3 A	PEX/SCAT(RIA	用)における従来許認	可解析と重大事故	等対策の有効性評価の比較	(10/12)
-------	--------------	------------	----------	--------------	---------

			従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対	策の有効性評価
			(事故:制御棒落下)	(原子炉運転停止中の	との差異		(東海第二;月	反応度の誤投入)
		項目	(過渡 :原子炉起動時における制御	制御棒誤引抜)				
			棒の異常な引き抜き)					
		燃料棒内	事故:炉心出力が急激に上昇するた	炉心出力の上昇は従来許認可の事	無	従来許認可解析からの差異はない。	炉心出力の上昇は従来許認	先行審査プラントと同じ
		温度変化	め,最高出力燃料棒は沸騰遷移し膜沸	故と比較して緩やかであることか			可の事故と比較して緩やか	
物		燃料棒表	騰状態に至る。膜沸騰状態では燃料の	ら,最高出力燃料棒は沸騰遷移には			であることから、最高出力	
		面熱伝達	除熱量が低下し、燃料温度は1000℃	至らない。			燃料棒は沸騰遷移には至ら	
тĦ	唇	沸騰遷移	を超える温度で推移する。				ない。	
垤	心		過渡:炉心出力の上昇は事故と比較し					
	黛		て緩やかであることから,最高出力燃					
珇	料)		料棒は沸騰遷移に至らない。					
-96		燃料被覆	事故:燃料被覆管の高温化に伴う水-	燃料被覆管温度の上昇量が小さく,	無	従来許認可解析からの差異はない。	燃料被覆管温度の上昇量が	先行審査プラントと同じ
		管酸化	ジルカロイ反応が発生する。	燃料被覆管温度は水・ジルカロイ反			小さく, 燃料被覆管温度は	
象			過渡:燃料被覆管温度の上昇量が小さ	応が発生する程度には至らない。			水-ジルカロイ反応が発生す	
-31			く, 燃料被覆管温度は水-ジルカロイ				る程度には至らない。	
			反応が発生する程度には至らない。					

表 3 A	APEX/SCAT(RIA	用)における従来許認	可解析と重大事故	等対策の有効性評価の比較	(11/12)
-------	---------------	------------	----------	--------------	---------

			従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策	の有効性評価
			(事故:制御棒落下)	(原子炉運転停止中の	との差異		(東海第二;反応	芯度の誤投入)
		項目	(過渡):原子炉起動時における制御	制御棒誤引抜)				
			棒の異常な引き抜き)					
		沸騰・ボ	事故:炉心出力が急激に上昇するた	サブクール度が大きく,また,事象	無	従来許認可解析からの差異はない。	サブクール度が大きく,また,	先行審査プラントと同じ
		イド率変	め、ボイドが発生する。	を通じての表面熱流束上昇量も小			事象を通じての表面熱流束上	
		化	過渡: サブクールのない高温待機状	さいことから, ボイドはほとんど発			昇量も小さいことから、ボイ	
			態の場合、ボイドが発生する。	生しない。			ドはほとんど発生しない。	
物			低温状態の場合,サブクール度が大き					
			く,また,事象を通じての表面熱流束					
799	炉		上昇量も小さいことから,ボイドはほ					
理	心		とんど発生しない。					
	(熱	三次元効	事故:ボイド発生に伴い,圧力損失に	サブクール度の大きい低温状態で	無	従来許認可解析(過渡)との差異はない。	サブクール度の大きい低温状	先行審査プラントと同じ
ŦĦ	動	果	よる流量配分への三次元効果が生じ	あり, ボイドがほとんど発生しない		また,事象を通じての燃料挙動は従来許	態であり,ボイドがほとんど	
-96	0		得る。	ことから, 圧力損失による流量配分		認可(事故)の範囲を超えることはない。	発生しないことから、圧力損	
			過渡:高温待機状態の場合,ボイド発	への三次元効果は生じない。			失による流量配分への三次元	
象			生に伴い,圧力損失による流量配分へ				効果は生じない。	
-50			の三次元効果が生じ得る。低温状態の					
			場合,ボイドがほとんど発生しないこ					
			とから,圧力損失による流量配分への					
			三次元効果は生じない。					

			従来許認可解析	重大事故等対策の有効性評価	従来許認可	差異による影響	重大事故等対策の有効性評価
			(事故:制御棒落下)	(原子炉運転停止中の	との差異		(東海第二;反応度の誤投入)
		項目	(過渡 :原子炉起動時における制御	制御棒誤引抜)			
			棒の異常な引き抜き)				
		圧力損失	事故:ボイド発生に伴い,圧力損失へ	サブクール度の大きい低温状態で	無	従来許認可解析(過渡)との差異はない。	サブクール度の大きい低温 先行審査プラントと同じ
	炉		の影響が生じる。	あり, ボイドがほとんど発生しない		また,事象を通じての燃料挙動は従来許	状態であり、ボイドがほと
物	心		過渡:高温待機状態の場合,ボイド発	ことから, 圧力損失への影響は生じ		認可(事故)の範囲を超えることはない。	んど発生しないことから,
理現	熱		生に伴い、圧力損失への影響が生じ	ない。			圧力損失への影響は生じな
象	流動		る。低温状態の場合,ボイドがほとん				<i>د</i> ر.
			ど発生しないことから,圧力損失への				
			影響は生じない。				

表3 APEX/SCAT(RIA用)における従来許認可解析と重大事故等対策の有効性評価の比較(12/12)

1. 評価目的

実機において,水蒸気爆発(以下「SE」という。)が発生する可能性は, これまでの知見からも極めて低いと考えられるが,東海第二発電所では,事 象の不確かさを踏まえ保守性を考慮した入力条件によるSE評価(以下「基 本ケース」という。)を実施し,万が一のSEの発生を想定した場合でも格 納容器の健全性が損なわれないことを確認している。

有効性評価のMAAP解析では、下部プレナムへ移行した溶融炉心(以下 「デブリ」という。)による過熱で原子炉圧力容器(以下「RPV」という。) 下部の中心部温度が最も高くなり、その位置の制御棒駆動機構(以下「CR D」という。)ハウジング溶接部に生じるひずみによってRPV破損に至る 結果となっている。このため、基本ケースの入力条件のうち、メルト放出位 置についてはRPV下部の中心としている。また、メルト放出口径について は、爆発規模が大きくなる条件としてCRDハウジングの逸出を想定した口 径を設定している。

しかしながら,実際に重大事故が発生した場合においては,有効性評価上 期待していない原子炉注水手段の復旧等,想定とは異なる対応や事故進展の 影響により,RPV下部の中心から外れた偏心位置での貫通部溶接破損によ って生じたわずかな間隙からデブリ流出する等,基本ケースでの想定と異な る落下様態となることも考えられる。また,偏心位置でSEが発生した場合, 爆発位置が基本ケースよりも側壁に近接するため,局部的に大きな動的荷重 が作用する可能性がある。

ここでは、偏心位置における現実的なデブリの落下様態を想定したSEの 影響を評価し、格納容器の健全性が損なわれないことを確認するとともに、

基本ケースの評価の代表性を確認する。

- 2. 評価方法
 - (1) 評価条件

解析コードは基本ケースと同様に、SE解析コードJASMINE及び 汎用有限要素解析コードLS-DYNAを用いて評価した。本評価におけ る各コードの入力条件及び評価モデルの取扱いを以下に示す。

a. JASMINE

第1表に主要入力条件を示す。本評価の入力条件及び評価モデルは基本ケースと同様とするが,以下については現実的な条件として適用する。

(a) メルト放出口径

第1図及び第2図にCRDハウジングサポート構造を示す。CRD ハウジングサポートは、ペデスタル内側の鋼板に固定された上部サポ ートビームにハンガーロッド等を介してグリッドプレートを接続した 構造によりCRDハウジングの逸出を防止する設計としている。基本 ケースでは、CRDハウジングの逸出を想定した口径 を考慮 しているが、上記のとおりCRDハウジングの外部サポートが設置さ れているため現実的には逸出は考えにくい。このため、本評価ではC RDハウジングが保持された状態を想定し、CRDハウジングとRP V下鏡板との間に生じる間隙からのメルト放出を考慮する。

CRDハウジングとRPV下鏡板との間に生じる間隙の幅は、サン ディア国立研究所のRPV下部ヘッド破損を模擬したLHF試験^[1]に おいて、貫通部溶接の破損によって約 4mm の間隙が生じたことを踏ま え、これと同じ間隙幅を本評価において仮定する。 以上より想定したCRDハウジングとRPV下鏡板との間に生じる 開口面積(約)と等価な口径である をメルト放出口径と して設定する。

(b) 粗混合時液滴径

既存のFCI試験ではザウター平均粒径として 0~3mm 程度と報告 されていることから,基本ケースでは保守的に を設定しているが, 本評価では現実的な条件として既往の実験から得られている平均粒径 の条件である を設定する。

(c) トリガリングタイミング

基本ケースでは、SEにより発生する運動エネルギが最も大きくな ると考えられる条件である粗混合融体質量ピーク時点としている。一 方、実機条件では、高圧ガスや爆薬を用いた大規模FCI実験のトリ ガ装置で発生させているような外部トリガが与えられる状況は考えに くく、また、東海第二発電所では重大事故時のペデスタル水位を 1m に制限する運用とすることから、現実的にはメルトジェットがペデス タル床面に接触する際の衝撃によりトリガリング発生する可能性が高 いと考えられる。このため、本評価ではメルトジェット先端が床面に 到達した時点を設定する。

以上のとおり、本評価では一部現実的な入力条件を適用するが、実機 でのSEに対して次の保守性が含まれているものと考える。

第3図にRPV下部構造物配置状況を示す。JASMINEではメルトが放出口から直線的に自由落下し直接水プールに侵入する理想的なメルトジェットを仮定した評価モデルとなっているが、実機のRPV下部にはCRDハウジング、炉内計装ハウジング、ケーブル等が設置されて

おり、更に下部には足場となるグレーチング等の構造物が存在する。こ のため、実機の重大事故においてRPV下部から流出したデブリはこれ らの構造物に接触し、分散するものと想定され、RPV下部から流出し たデブリが理想的なジェット形状を保ったまま直接水プールに侵入する ことはないと考えられる。したがって、実機の重大事故において爆発に 寄与する粗混合融体質量はJASMINEで考慮されている粗混合融体 質量よりも更に少なくなり、爆発規模は小さくなると考えられる。

b. LS - DYNA

第2表に爆発源仕様を,第4図に解析モデルを示す。本評価の入力条 件及び評価モデルは基本ケースと同様とするが,半径方向の爆発源位置 については,ペデスタル側壁に最も近接するRPV下部最外周のCRD ハウジング直下の位置とする。

(2) 判断基準

LS-DYNAによるペデスタル構造健全性評価の判断基準は基本ケース同様とする。

- 3. 評価結果
 - $(1) \quad J A S M I N E$

第3表にJASMINE評価結果を示す。流体の運動エネルギの最大値 は約1.1MJである。

(2) L S - D Y N A

第4表にLS-DYNAによるペデスタル構造健全性評価結果を,第5

図にペデスタル変位時刻歴,第6図にコンクリート最小主ひずみ分布,第 7 図に鉄筋軸ひずみ分布及び第8図にコンクリートせん断応力度を示す。 LS-DYNAの解析結果はすべての項目の判断基準を満足している。よ って,偏心位置でのSEによってもペデスタルに要求される機能は維持さ れ,格納容器の健全性は損なわれることはない。

なお,側壁及び床スラブの面外せん断応力度の検討範囲及び算定方法は 基本ケースと同じである。

(3) 基本ケース解析との比較

第5表に基本ケース解析との比較を示す。評価対象とする項目のうち, 側壁下部の面外せん断応力度及び側壁鉄筋の引張ひずみ以外は,基本ケー ス解析結果を下回るか,同様(変位,圧壊の範囲)である。

側壁下部の面外せん断応力度は基本ケースの解析結果を上回っているが, 判断基準である終局面外せん断応力度に対して十分な余裕がある。また, 上部側壁に発生する面外せん断応力度は基本ケースの6割程度にとどまっ ている。

側壁の鉄筋の引張ひずみも基本ケースの解析結果を上回っているが、判断基準の許容ひずみを十分に下回り、更に降伏応力 345N/mm²に対して発 生応力の最大値は約 52N/mm²にとどまり、弾性限界に対しても十分な余裕 がある。

以上より, 偏心位置における現実的なデブリの落下様態を想定した S E の影響は基本ケースに代表されるものと考えられる。

4. まとめ

偏心位置における現実的なデブリの落下様態を想定したSEの影響を評価

した。その結果、ペデスタル構造健全性評価のすべて判断基準を満足し、ペ デスタルに要求される機能が損なわれず、格納容器の健全性は維持されるこ とを確認した。

また,基本ケースとの解析結果の比較を行い,偏心位置での現実的なデブ リの落下様態を想定したSEに対しても,基本ケースの評価は代表性を有し ていることを確認した。

参考文献

- [1] T. Y. Chu, M. M. Pilch, J. H. Bentz, J. S. Ludwigsen, W-Y Lu and L. L. Humperies, "Lower Head Failure Experiment and Analyses," NUREG/CR-5582, SAND98-2047, 1999.
- [2] General Electric Systems Technology Manual Chapter 2. 1 Reactor Vessel System, USNRC HRTD, Rev 09/11

No.	入力	値 (定義)	備考
1	初期圧力		
2	プール水温		
3	メルトジェット温度		
4	メルト放出速度		
5	メルト放出口径		基本ケースから変更
6	プール水深	1 m	
7	粗混合時液滴径		基本ケースから変更
8	トリガリング位置	ペデスタル中心, 底から0.2m	
9	トリガリングタイミング	メルトジェット先端が 床面に到達した時点	基本ケースから変更

第1表 JASMINE解析主要入力条件

第2表 LS-DYNA爆発源仕様

項目	値	備考
流体の運動エネルギ		
最大圧力		

第3表 JASMINE評価結果

項目	評価結果	備考
流体の運動エネルギ	約 1.1MJ	基本ケース約 3.3MJ
最大圧力	約 18MPa	基本ケース約 40MPa

機能	評価部位		項目	判断基準	解析結果	評価**1
RPV支持機能	側壁	コンクリート	変位	変位が増大せず、SE後の構造物の進行性の崩壊がない	変位は増大しない	0
			圧縮ひずみ	機能に影響を及ぼす範囲の圧壊(3,000μ)が生じない	圧壊は 側壁に生じない	0
			面外せん断	終局面外せん断応力度(上部側壁:3.09N/mm ² ,下部側壁 2.65N/mm ²)を超えない	上部:約 0.52N/mm² 下部:約 0.95N/mm²	0
		鉄 筋	引張ひずみ	許容ひずみ(5,000μ)を超えない	約 249 µ	0
デブリ保持機能	床スラブ	コンクリート	変位	変位が増大せず、SE後の構造物の進行性の崩壊がない	変位は増大しない	0
			圧縮ひずみ	機能に影響を及ぼす範囲の圧壊(3,000μ)が生じない	圧壊は 床スラブに生じない	0
			面外せん断	終局面外せん断応力度(3.55N/mm ²) ^{*2} を超えない	約 2.13N/mm²	0
		鉄 筋	引張ひずみ	許容ひずみ(5,000μ)を超えない	約 101 µ	0

第4表 ペデスタル構造健全性評価の評価結果(偏心位置SE)

※1:「〇」解析結果が判断基準を満足する

※2: 圧縮強度動的増倍率 1.0 にて算定した終局面外せん断応力度

100 61-	評価部位		~ ~	解析	基本ケースに対すろ	
機能			項目	本評価 (偏心位置)	基本ケース (中心位置)	解析結果の比
RPV支持機能	側壁	コンクリート	変位	変位は増大しない	変位は増大しない	_
			圧縮ひずみ	圧壊は側壁に生じない	圧壊は側壁に生じない	_
			面外せん断	上部 : 約 0.52N/mm ² 下部 : 約 0.95N/mm ²	上部:約 0.93N/mm² 下部:約 0.77N/mm²	上部:約0.56 下部:約1.23
		鉄 筋	引張ひずみ	約 249 μ	約 184 μ	約 1.35
デブリ保持機能	床スラブ	コンクリー	変位	変位は増大しない	変位は増大しない	_
			圧縮ひずみ	圧壊は床スラブに生じない	圧壊は床スラブ上面の わずかな範囲にとどまる	(基本ケースに対して 影響範囲が軽微)
		- F	面外せん断	約 2.13N/mm²	約 3.70N/mm²	約 0.58
		鉄 筋	引張ひずみ	約 101 μ	約 364 µ	約 0.28

第5表 基本ケース解析との比較

第2図 CRDハウジングサポート構造俯瞰図(参考)^[2]

(1)ペデスタル内グレーチング上部より撮影

上部より撮影(側壁付近)

第3図 RPV下部構造物配置状況

第4図 LS-DYNA解析モデル

第5図 ペデスタル変位の時刻歴

補足 22-12

第6図 コンクリートの最小主ひずみ (圧縮ひずみ)分布

第7図 鉄筋の軸ひずみ分布

第8図 コンクリート面外せん断応力度

23 格納容器ベント時に使用するベントラインによるC s - 137の放出量の差の要因等について

「東海第二発電所 重大事故等対策の有効性評価」の添付資料3.1.3.4におい て、雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)時に代替循 環冷却系を使用できない場合における格納容器圧力逃がし装置からのCs-137の放出量について検討を行っており、サプレッション・チェンバのラインを 経由した場合の放出量は約1.2×10⁻⁴TBq(7日間)、ドライウェルのラインを経 由した場合の放出量は約3.7TBq(7日間)と評価している。また、評価に当たっ ては、格納容器圧力逃がし装置の除去効果(DF)を1,000としている。

ここでは,経由するベントラインによる放出量の差(約30,800倍=約3.7TBq /約1.2×10⁻⁴TBq)の要因及び格納容器圧力逃がし装置の除去効果(DF)とし て1,000を使用することについての妥当性について検討を行った。

1. 経由するベントラインによる放出量の差について

ドライウェルのラインを経由した場合(以下「D/Wベント時」という。) とサプレッション・チェンバのラインを経由した場合(以下「W/Wベント 時」という。)とでは、格納容器ベント実施後の原子炉圧力容器及び格納容 器内の温度,圧力等が異なるため、格納容器ベント後のCs-137の振る舞い も異なるものとなる。このため、Cs-137の環境中への放出量の差(約30,800 倍)はサプレッション・プールでのスクラビングによる除去効果の違いだけ に起因するものではなく、「約30,800」を直接サプレッション・プールでの 除去効果(DF)と見なすことはできないと考えられる。

Cs-137の環境中への放出量の差を生む要因として、サプレッション・プ ールでの除去効果の違い以外では、例えば原子炉圧力容器から格納容器への

補足 23-1

セシウムの放出量の違いが挙げられる。

D/Wベント時はW/Wベント時よりも水頭圧分だけ炉圧が低くなるため、 炉内ガスの比熱容量が小さくなり、炉内ガスが温度上昇しやすくなる^{*1}。炉 内ガス温度が高いと、構造材に沈着したセシウムが気相部に移行しやすくな るため、格納容器への放出が多くなる^{*2}。このことが、D/Wベント時のC s-137の放出量の評価結果を増加させている一因になっていると考えられ る。

- ※1 格納容器ベント実施後においては、原子炉圧力容器のトップヘッド フランジは、D/Wベント時の方がW/Wベント時に比べ最大で 30℃程度高くなっている。
- ※2 大破断LOCA時には、炉内内蔵量の約37%のCsが原子炉圧力容 器から格納容器に放出されると評価しているが、D/Wベント時の 方が炉内内蔵量の約0.7%多く放出されると評価している。
- 2. 使用する格納容器圧力逃がし装置の除去効果(DF)について

エアロゾル粒子に対する格納容器圧力逃がし装置の除去効果については, 性能検証試験(JAVA試験)により,格納容器ベント実施中に想定される運転 範囲において,DF1,000以上を満足することを確認している。

なお,格納容器圧力逃がし装置はベンチュリスクラバ及び金属フィルタの 組み合わせで DF1,000 を確保できる設計としている。(「東海第二発電所 重 大事故等対処設備について 3.7 原子炉格納容器の過圧破損を防止するた めの設備【50条】の補足 12 を参照) 24 ジルコニウム(Zr)-水反応時の炉心損傷状態について

「高圧溶融物放出/格納容器雰囲気直接加熱」における崩壊熱,Zr-水反応による発生熱,燃料温度及び炉心損傷状態の 概念図を示す。

25 残留熱除去系レグシールライン弁の閉止操作について

非常用炉心冷却系は、ポンプ起動時の水撃作用又は水撃力による配 管破損を防止することを目的としてレグシールポンプにより系統を加 圧した状態で待機している。

残留熱除去系を加圧している低圧炉心スプレイ系レグシールポンプ 及び残留熱除去系レグシールポンプはサプレッション・プールを水源 としているため,残留熱除去系ポンプ起動前の系統構成として残留熱 除去系停止時冷却注入弁(F053A/B)を開とした場合,サプレッショ ン・プール水がレグシールラインを介して原子炉へ流入し,原子炉水 位が上昇するおそれがある。

このため,残留熱除去系ポンプを残留熱除去系(原子炉停止時冷却 系)として起動する際は,残留熱除去系レグシールライン弁(F085A/ B)を閉状態,残留熱除去系停止時冷却注入弁(F053A/B)を開状態と し,その後残留熱除去系ポンプを起動する手順としている(第1図)。

なお,運転停止中の有効性評価(崩壊熱除去機能喪失)における残 留熱除去系(原子炉停止時冷却系)の起動操作時間には,残留熱除去 系レグシールライン弁の閉操作時間を考慮している。

第1図 残留熱除去系(原子炉停止時冷却系)の概略図