本資料のうち、枠囲みの内容は、 営業秘密又は防護上の観点から公 開できません。

東海第二発電所 工事計画審査資料						
資 料 番 号	大認-784 改3					
提出年月日	平成30年8月24日					

V-2-8-2-2 格納容器雰囲気放射線モニタ (D/W) の 耐震性についての計算書

目 次

1. 棋	既要	1
2	一般事項	1
2. 1	構造計画	1
2.2	評価方針 ·····	3
2.3	適用基準	4
2.4	記号の説明	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6
3. 膏	平価部位	7
4.	固有周期 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4. 1	固有值解析方法 ·····	7
4. 2	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
4.3	固有值解析結果	9
5. 柞	構造強度評価	10
5. 1	構造強度評価方法	10
5. 2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
5.3	設計用地震力	14
5. 4	計算方法 ·····	15
5. 5	計算条件	17
5.6	応力の評価	18
6. 核	幾能維持評価	19
6. 1	電気的機能維持評価方法	19
7. ∄	平価結果	20
7. 1	設計基準対象施設としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
7.2	重大事故等対処設備としての評価結果	20

1. 概要

本計算書は、添付書類「V-2-1-9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、格納容器雰囲気放射線モニタ (D/W) が設計用地震力に対して十分な構造強度及び電気的機能を有していることを説明するものである。

格納容器雰囲気放射線モニタ (D/W) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては、常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。以下、分類に応じた構造強度評価及び電気的機能維持評価を示す。

2. 一般事項

2.1 構造計画

格納容器雰囲気放射線モニタ (D/W) の構造計画を表 2-1 に示す。

表 2-1 構造計画

衣 2−1 併起計画						
計画の概要		概略構造図				
基礎・支持構造	主体構造	1910H 1137E EA				
検出器は、保持金具に 固定され取付ボルトで格 納容器貫通部のスリーブ に固定する。 保持金具のボルト固定 部分は格納容器貫通部の スリーブにより半径方向 は固定される。 スリーブは格納容器に 溶接される。		A				

2.2 評価方針

格納容器雰囲気放射線モニタ(D/W)の応力評価は、添付書類「V-2-1-9 機能維持の基本方針 3.1 構造強度上の制限」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.1 構造計画」にて示す格納容器雰囲気放射線モニタ(D/W)の部位を踏まえ「3. 評価部位」にて設定する箇所において、「4. 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「5. 構造強度評価」にて示す方法にて確認することで実施する。また、格納容器雰囲気放射線モニタ(D/W)の機能維持評価は、添付書類「V-2-1-9 機能維持の基本方針 4.2 電気的機能維持」にて設定した電気的機能維持の方針に基づき、地震時の応答加速度が電気的機能確認済加速度以下であることを、「6. 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「7. 評価結果」に示す。

格納容器雰囲気放射線モニタ (D/W) の耐震評価フローを図 2-1 に示す。

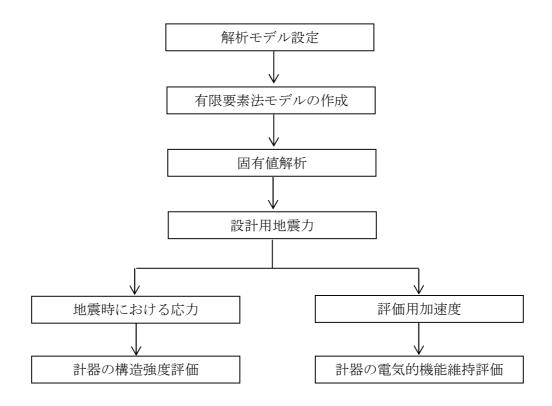


図 2-1 格納容器雰囲気放射線モニタ (D/W) の耐震評価フロー

2.3 適用基準

適用基準等を以下に示す。

- (1) 原子力発電所耐震設計技術指針(重要度分類・許容応力編 JEAG4601・補-1984, JEAG4601-1987及びJEAG4601-1991 追補版)(日本電気協会電気技術基準調査委員会 昭和59年9月,昭和62年8月及び平成3年6月)
- (2) 発電用原子力設備規格(設計・建設規格(2005年版(2007年追補版含む。))JSME S NC1-2005/2007)(日本機械学会 2007年9月)(以下「設計・建設規格」という。)

2.4 記号の説明

記号	記号の説明	単位
А	スリーブの断面積	mm^2
Аь	取付ボルトの軸断面積	mm^2
Сн	水平方向設計震度	_
C_{V}	鉛直方向設計震度	_
d	取付ボルトの呼び径	mm
E	縦弾性係数	MPa
F	設計・建設規格 SSB-3131に定める値	MPa
F*	設計・建設規格 SSB-3133に定める値	MPa
Fь	取付ボルトに作用する引張力(1本当たり)	N
$f_{ m to}$	引張力のみを受ける取付ボルトの許容引張応力	MPa
$f_{ m ts}$	引張力とせん断力を同時に受ける取付ボルトの許容引張応力	MPa
g	重力加速度(=9.80665)	m/s^2
Ιp	スリーブの断面二次極モーメント	mm^4
Ιy	スリーブの断面二次モーメント (y軸)	mm^4
Ιz	スリーブの断面二次モーメント (z軸)	mm^4
m	格納容器貫通部のスリーブ及び検出器の総質量	kg
m a	検出器及び保持金具の質量	kg
n	取付ボルトの本数	_
S _u	設計・建設規格 付録材料図表 Part5 表9に定める値	MPa
Sy	設計・建設規格 付録材料図表 Part5 表8に定める値	MPa
Z_p	スリーブのねじり断面係数	mm^3
Z_y	スリーブの断面係数 (y軸)	mm^3
Z_z	スリーブの断面係数 (z 軸)	mm^3
ν	ポアソン比	_
π	円周率	_
σь	取付ボルトに生じる引張応力	MPa

2.5 計算精度と数値の丸め方

精度は6桁以上を確保する。

表示する数値の丸め方は、表 2-2 に示すとおりとする。

表 2-2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
数 匹マノ1里規	十二	大学生们	だ生力伝	4×/1/111
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	_	小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}$	_	_	整数位
質量	kg	П	_	整数位
長さ*1	mm	ı	_	整数位
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
力	N	有効数字 5 桁目	四捨五入	有効数字4桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記*1:設計上定める値が小数点以下の場合は、小数点以下表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点 は比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

3. 評価部位

格納容器雰囲気放射線モニタ (D/W) の耐震評価は、「5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる取付ボルトについて実施する。

格納容器雰囲気放射線モニタ (D/W) の耐震評価部位については,表 2-1 の概略構造図に示す。

4. 固有周期

4.1 固有值解析方法

格納容器雰囲気放射線モニタ(D/W)の固有値解析方法を「4.2 解析モデル及び諸元」に示す。

4.2 解析モデル及び諸元

格納容器雰囲気放射線モニタ(D/W)の解析モデルを3次元はりモデルとして図4-1に、解析モデルの概要を以下に示す。スリーブは円筒で格納容器に溶接されることから、解析モデルにおいて、①の部材の直線とみなし、支持点(格納容器との溶接部)1点で固定されるものとする。また、解析モデルにおいて、検出器及び保護金具の質量は質点に集中するものとし、重心はスリーブの中心に位置することから、質点はスリーブの中心に設置する。

機器の諸元を表 4-1, 部材の機器要目を表 4-2 に示す。

- (1) 図 4-1 中の○内の数字は部材番号(要素番号)を示す。
- (2) 図 4-1 中の **◆** は検出器及び保持金具の質点を示し、m_aは 33 kg である。
- (3) 図 4-1 中の はスリーブを, は格納容器との溶接部を示す。
- (4) 拘束条件として、原子炉格納容器貫通部にてXYZ方向及び回転方向を固定する。
- (5) 解析コードは、「NSAFE」を使用し、固有値を求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、添付書類「V-5-4 計算機プログラム(解析コード)の概要・HISAP及びNSAFE」に示す。
- (6) 耐震計算に用いる寸法は、公称値を使用する。

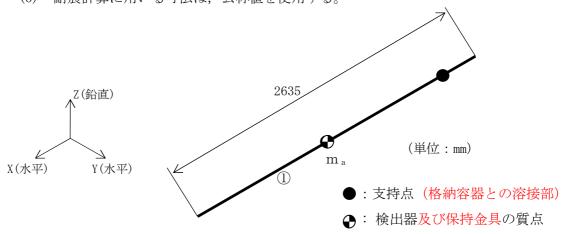
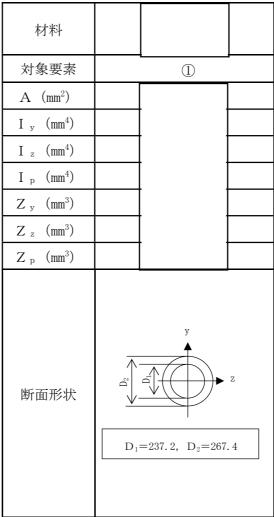



図 4-1 解析モデル

表 4-1 格納容器雰囲気放射線モニタ (D/W) 機器諸元

項目	記号	単位	入力値
材質	_	_	
質量	m a	kg	I [
温度条件 (雰囲気温度)	Т	$^{\circ}$	
縦弾性係数	E	MPa	
ポアソン比	ν	_	1 1
要素数		個	1 [
節点数	_	個	

表 4-2 部材の機器要目

4.3 固有值解析結果

格納容器雰囲気放射線モニタ (D/W) の固有値解析の結果を表 4-3 に、振動モード図を図 4-2、3 に示す。なお、水平 (X 方向) については剛であることを確認した。

表4-3 固有値解析結果

Ī	T. 18		固有周期	<u> </u>	刺激係数		
	モード		(s)	卓越方向	X方向	Y方向	Z方向
	1次			水平	0.00	0.44	0.00
ſ	2次			鉛直	0.00	0.00	0.44
Ĺ	3次			水平	_	_	_

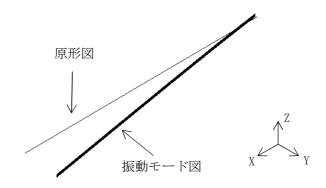


図4-2 振動モード(水平方向

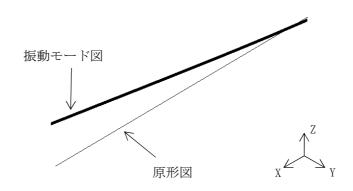


図4-3 振動モード(鉛直方向

5. 構造強度評価

5.1 構造強度評価方法

- 4.2項(1)~(6)のほか、次の条件で計算する。
- (1) 格納容器雰囲気放射線モニタ (D/W) は格納容器貫通部のスリーブにより固定されているため、鉛直方向の計算は行わない。格納容器貫通部スリーブの長手方向のみ計算を行う。

5.2 荷重の組合せ及び許容応力

5.2.1 荷重の組合せ及び許容応力状態

格納容器雰囲気放射線モニタ (D/W) の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 5-1 に, 重大事故等対処設備の評価に用いるものを表 5-2 に示す。

5.2.2 許容応力

格納容器雰囲気放射線モニタ (D/W) の許容応力を表 5-3 に示す。

5.2.3 使用材料の許容応力評価条件

格納容器雰囲気放射線モニタ(D/W)の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 5-4 に、重大事故等対処設備の評価に用いるものを表 5-5 に示す。

表 5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	战区分	機器名称	耐震設計上の重 要度分類	機器等の区分	荷重の組合せ	許容応力状態
					$D+P_D+M_D+S_d*$	III _A S
放射線管理施設	放射線管理用計測装置	格納容器雰囲気放射線 モニタ(D/W)	S	*	$D+P_D+M_D+S_s$	IV A S

注記*:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 5-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設	区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
					$D + P_D + M_D + S_s^{*3}$	IV _A S
放射線管理施設		常設耐震/防止常設/緩和	*2	$D + P_{SAD} + M_{SAD} + S_s$	V _A S (V _A S として	
						IV _A Sの許容限 界を用いる。)

注記*1:「常設耐震/防止」は常設耐震重要重大事故防止設備、「常設/緩和」は常設重大事故緩和設備を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $\lceil D + P_{SAD} + M_{SAD} + S_s \rfloor$ の評価に包絡されるため、評価結果の記載を省略する。

NT2 補② V-2-8-2-2 R1

表 5-3 許容応力 (その他の支持構造物及び重大事故等その他の支持構造物)

表も 3 計 各心力 (その他の文特権追物及の重八事政等での他の文特権追物)						
	許容限界* ^{1,*2} (ボルト等)					
許容応力状態	一次応力					
	引張り	せん断				
III _A S	1.5 · f t	1.5 · f s				
IV _A S						
V _A S (V _A SとしてIV _A Sの 許容限界を用いる。)	1.5 · f *	1.5 · f *				

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 5-4 使用材料の許容応力評価条件(設計基準対象施設)

Sec Political Higher Addition (Beth on 1942)								
評価部材	材料	温度条件		S y	S u	S y (R T)		
	12117	(°C)		(MPa)	(MPa)	(MPa)		
取付ボルト		周囲環境温度		192	373	_		

表 5-5 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	材料 温度条件 (℃)		S _y	S _u	$S_{y}(RT)$
		(C)		(MPa)	(MPa)	(MPa)
取付ボルト		周囲環境温度		185	373	_

5.3 設計用地震力

「弾性設計用地震動 S_d 又は静的震度」及び「基準地震動 S_s 」による地震力は、添付書類「 V_{-2-3-2} 炉心,原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に基づき設定する。評価に用いる設計用地震力を表 5-6,表 5-7 に示す。

据付場所 固有周期 弹性設計用地震動Sd 基準地震動S。 及び (s)又は静的震度 床面高さ 水平方向 鉛直方向 水平方向 鉛直方向 水平方向 | 鉛直方向 (m)設計震度 設計震度 設計震度 設計震度 原子炉建屋 C_{H} =0.88 C_{V} =0.66 $C_{H}=1.61$ C_{V} =1.25 原子炉建屋 C_V =0.64 C_{V} =1.21 C_{H} =0.88 $C_{H}=1.54$

表 5-6 設計用地震力(設計基準対象施設)

注記 *1:基準床レベルを示す。

表 5-7 設計用地震力 (重大事故等対処設備)

		., —,-		以 寸 N 及 III			
据付場所	固有周期		弾性設計用	弾性設計用地震動 S d		基準地震動S。	
及び	()	$_{\rm S})$	又は静	的震度	金平地	文到 O _S	
床面高さ	 水平方向	鉛直方向	水平方向	鉛直方向	水平方向	鉛直方向	
(m)	水十万间	如色刀門	設計震度	設計震度	設計震度	設計震度	
原子炉建屋			_	_	C _H =1.61	C _V =1. 25	
原子炉建屋			_	_	C _H =1.54	C _V =1.2	

注記 *1:基準床レベルを示す。

5.4 計算方法

5.4.1 応力の計算方法

5.4.1.1 取付ボルトの計算方法

取付ボルトの応力は、地震による震度によって生じる引張力について計算する。 なお、 せん断力は格納容器貫通部のスリーブと保持金具が固定されており、 取付ボルトに対するせん断力は生じないため、 計算しない。

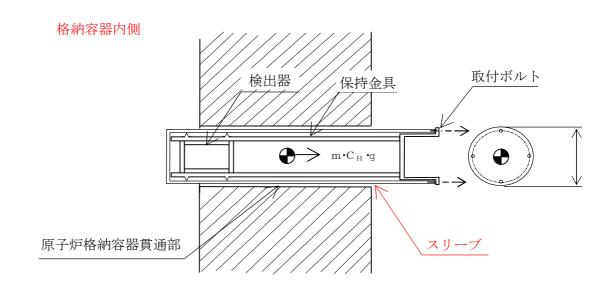


図5-1 計算モデル

(1) 引張応力

取付ボルトに対する引張力は、図5-1で示すように取付ボルト全本数で受けるものとして計算する。

引張力(F_b)

$$F_b = \frac{m \cdot C_H \cdot g}{n} \qquad (5.4.1.1.1)$$

引張応力 (σ ь)

$$\sigma_b = \frac{F_b}{A_b} \qquad \cdots \qquad (5.4.1.1.2)$$

ここで、取付ボルトの軸断面積Abは次式により求める。

$$A_b = \frac{\pi}{4} \cdot d^2$$
 (5. 4. 1. 1. 3)

5.5 計算条件

5.5.1 取付ボルトの応力計算条件

取付ボルトの応力計算に用いる計算条件は、本計算書の【格納容器雰囲気放射線モニタ (D/W) の耐震性についての計算結果】の設計条件及び機器要目に示す。

5.6 応力の評価

5.6.1 ボルトの応力評価

5.5.1項で求めたボルトの引張応力 $\sigma_{\rm b}$ は次式より求めた許容引張応力 $f_{\rm ts}$ 以下であること。ただし, $f_{\rm to}$ は下表による。

$$f_{\rm ts} = \min[1.4 \cdot f_{\rm to} - 1.6 \cdot \tau_{\rm b}, f_{\rm to}] \cdots (5.6.1.1)$$

	弾性設計用地震動 S a 又は静的震度による 荷重との組合せの場合	基準地震動S。による 荷重との組合せの場合
許容引張応力 $f_{ m to}$	$\frac{F}{2} \cdot 1.5$	$\frac{F^*}{2} \cdot 1.5$

6. 機能維持評価

6.1 電気的機能維持評価方法

格納容器雰囲気放射線モニタ(D/W)の電気的機能維持評価について以下に示す。

なお,評価用加速度は添付書類「V-2-1-7 設計用床応答曲線の作成方針」に基づき設定する。

格納容器雰囲気放射線モニタ (D/W) の機能確認済加速度は、添付書類「V-2-1-9 機能維持の基本方針」に基づき、同形式の検出器単体の正弦波加振試験において電気的機能の健全性を確認した評価部位の加速度を適用する。

機能確認済加速度を表 6-1 に示す。

表 6-1 機能確認済加速度

 $(\times 9.8 \text{ m/s}^2)$

評価部位	方向	機能確認済加速度
格納容器雰囲気放射線モニタ	水平	
(D/W)	鉛直	

7. 評価結果

7.1 設計基準対象施設としての評価結果

格納容器雰囲気放射線モニタ(D/W)の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

7.2 重大事故等対処設備としての評価結果

格納容器雰囲気放射線モニタ(D/W)の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び電気的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

電気的機能維持評価の結果を次頁以降の表に示す。

【格納容器雰囲気放射線モニタ (D/W) (D23-N003A) の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

W BB なる 高い電子ルシュトの		据付場所及び床面高さ		引期(s)	弾性設計用地震動	カS d 又は静的震度	基準地	震動S 。	周囲環境温度
機器名称	重要度分類	II 展設計上の / / / / / / / / / / / / / / / / / /	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(℃)
格納容器雰囲気		原子炉建屋							
放射線モニタ (D/W)	S				C_{H} =0.88	$C_{V} = 0.66$	$C_H = 1.61$	$C_{V} = 1.25$	

注記*:基準床レベルを示す。

1.2 機器要目

1.2.1 格納容器雰囲気放射線モニタ (D/W)

部材	m (kg)	A _b (mm ²)	n	S _y (MPa)	S u (MPa)	F (MPa)	F* (MPa)
取付ボルト				192	373	192	231

1.3 計算数値

1	. 3. 1	ボルトに	作用する力	(単位:N)	
			F		
į	部	材	弾性設計用地震動 S _d 又は静的震度	基準地震動S _s	
取	付ォ	ミルト			

1.4 結 論

1.4.1 固有周期

(単位:s)

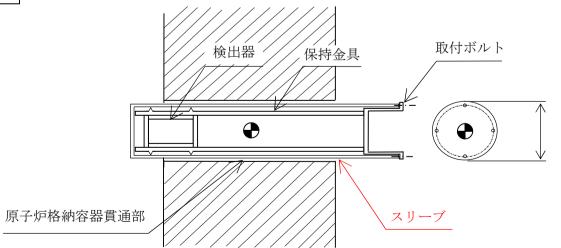
モード	固有周期			卓越方向
1 次				水平
2 次				鉛直

1.4.2 ボルトの応力

(単位:MPa)

部材	材料	応 力	弾性設計用地震調	動S _d 又は静的震度	基準地	震動S。
当 村	10 14) NG /J	算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	σ _b =2	$f_{\rm ts} = 144^*$	σ _b =4	$f_{\rm ts} = 173^*$

すべて許容応力以下である。


注記 *: f_{ts} = Min[1.4 · f_{to}-1.6 · τ_b, f_{to}]より算出

1.4.3 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

 搭納容器雰囲気 放射線モニタ (D/W)
 水平方向
 1.31

 鉛直方向
 4.42
 評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

2. 重大事故等対処設備

2.1 設計条件

	据付場所及び床面高さ		固有周	引期(s)	弾性設計用地震動	S d 又は静的震度	基準地質	震動S s	周囲環境温度		
機器名称	設備分類	設備分類	(m)		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(℃)
格納容器雰囲気 放射線モニタ (D/W)	常設耐震/防止常設/緩和	原子炉建屋			_	_	$C_H = 1.61$	$C_V = 1.25$			

注記*:基準床レベルを示す。

2.2 機器要目

2.2.1 格納容器雰囲気放射線モニタ (D/W)

部材	m (kg)	A _b (mm ²)	n	S _y (MPa)	S u (MPa)	F* (MPa)
取付ボルト				185	373	222

2.3 計算数値

2.3.1 ボルトに作用する力

(単位:N)

	F	Ъ
部材	弾性設計用地震動 S _d 又は静的震度	基準地震動S _s
取付ボルト	-	

2.4 結 論

2.4.1 固有周期

(単位:s)

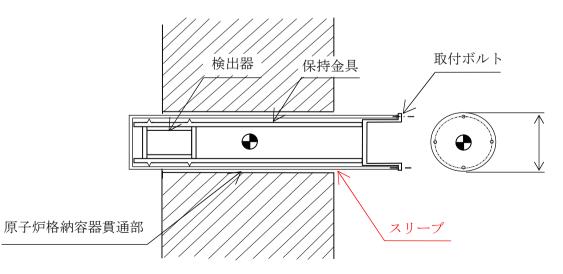
モード	固有周	期	卓越方向
1次			水平
2次			鉛直

2.4.2 ボルトの応力

(単位:MPa)

部材	材料	応力	弾性設計用地震	動S _d 又は静的震度	基準地震動S _s	
部材	19 14 		算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	_	_	σ _b =4	$f_{\rm ts} = 166^*$

すべて許容応力以下である。


注記 *: f_{ts} =Min[1.4 · f_{to}-1.6 · τ_b, f_{to}]より算出

2.4.3 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
格納容器雰囲気	水平方向	1.31	
放射線モニタ (D/W)	鉛直方向	4. 42	

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

【格納容器雰囲気放射線モニタ (D/W) (D23-N003B) の耐震性についての計算結果】

3. 設計基準対象施設

3.1 設計条件

W BB 6 CL	耐震設計上の	据付場所及び床面高さ	固有周	引期(s)	弾性設計用地震動	Sd又は静的震度	基準地	震動S s	周囲環境温度
機器名称	重要度分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(℃)
格納容器雰囲気		原子炉建屋							
放射線モニタ (D/W)	S				C_{H} =0.88	$C_{V} = 0.64$	C _H =1.54	$C_{v} = 1.21$	

注記*:基準床レベルを示す。

3.2 機器要目

3.2.1 格納容器雰囲気放射線モニタ (D/W)

0.	部	材	m (kg)	A_{b} (mm 2)	n	S _y (MPa)	S u (MPa)	F (MPa)	F* (MPa)
取	付力	ボルト				192	373	192	231

3.3 計算数値

3.3.1 ボルトに作用する力

(単位:N)

0. 0. 1	7171 I.(C)	(手匠・10)	
		F	ь
部	材	弾性設計用地震動 S d 又は静的震度	基準地震動S _s
取付力	ボルト		

3.4 結 論

3.4.1 固有周期

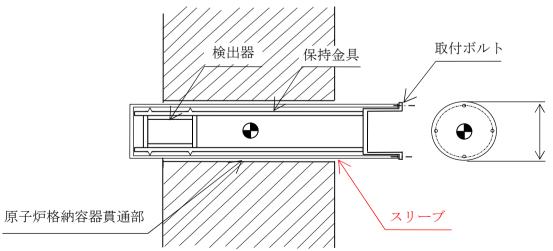
(単位:s)

モード	固有周期			卓越方向
1 次				水平
2次				鉛直

3.4.2 ボルトの応力 (単位: MPa)

	材料	r +	弾性設計用地震動	動S _d 又は静的震度	基準地	震動S。
	材料) /U /J	算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	$\sigma_b=2$	$f_{\rm ts} = 144^*$	σ _b =4	$f_{\rm ts} = 173^*$

すべて許容応力以下である。


注記 *:f_{ts}=Min[1.4·f_{to}-1.6·τ_b, f_{to}]より算出

3.4.3 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度
格納容器雰囲気	水平方向	1. 13	
放射線モニタ (D/W)	鉛直方向	4. 25	

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

4. 重大事故等対処設備

4.1 設計条件

III PP 6		据付場所及び床面高さ	固有周	引期(s)	弾性設計用地震動	S d 又は静的震度	基準地類	震動S s	周囲環境温度
機器名称	設備分類	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(℃)
格納容器雰囲気 放射線モニタ (D/W)	常設耐震/防止常設/緩和	原子炉建屋			_	_	C _H =1.54	$C_V = 1.21$	

注記*:基準床レベルを示す。

4.2 機器要目

4.2.1 格納容器雰囲気放射線モニタ (D/W) (D23-N003B)

部。	材	m (kg)	A_{b} (mm 2)	n	S _y (MPa)	S u (MPa)	F* (MPa)
取付ボノ	ルト				185	373	222

4.3 計算数値

431 ボルトに作用する力

(単位·N)

4. 3. 1	かり ト (こ)	F用する刀	(単位 · N)
		F	ь
部	材	弾性設計用地震動 S _d 又は静的震度	基準地震動S _s
取付力	ドルト		

4.4 結 論

4.4.1 固有周期

(単位:s)

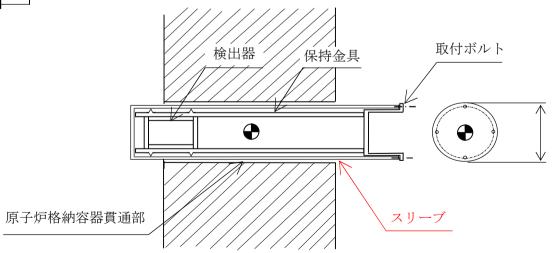
モード	固有周	期	卓越方向
1 次		7	水平
2次			鉛直

4.4.2 ボルトの応力

(単位:MPa)

部 材 材	材料	応 力	弾性設計用地震動Sd又は静的震度		基準地震動 S 。	
	111 114 		算出応力	許容応力	算出応力	許容応力
取付ボルト		引張り	_	_	σ _b =4	$f_{\rm ts} = 166*$

すべて許容応力以下である。


注記 *: f_{ts} =Min[1.4 · f_{to}-1.6 · τ_b, f_{to}]より算出

4.4.3 電気的機能維持の評価結果

 $(\times 9.8 \text{ m/s}^2)$

		評価用加速度	機能確認済加速度	
格納容器雰囲気 放射線モニタ (D/W)	水平方向	1. 13		
	鉛直方向	4. 25		

評価用加速度(1.0ZPA)はすべて機能確認済加速度以下である。

