本資料のうち,	枠囲みの内容は
営業秘密又は防	「護上の観点から
公開できません	þ

東海第二発電所	工事計画審査資料
資料番号	補足-340-8 改43
提出年月日	平成 30 年 8 月 30 日

工事計画に係る補足説明資料

耐震性に関する説明書のうち

補足-340-8

【屋外重要土木構造物の耐震安全性評価について】

【収録内容】

- 1.4 屋外重要土木構造部の耐震評価における断面選定の考え方
 - 1.4.3 屋外二重管の断面選定の考え方
 - 1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方
 - 1.4.7 常設代替高圧電源装置用カルバート(カルバート部)の断面選定の考え方
 - 1.4.10 常設低圧代替注水系配管カルバートの断面選定の考え方
- 1.11 屋外重要土木構造物の耐震評価における追加検討ケースの選定について(2.5章抜粋)
- 7. 常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価(参考2,3抜粋)

平成 30 年 8 月

日本原子力発電株式会社

改定日 改定 改定内容 (提出年月日) 補足-348 改0として提出 改0 H30.2.5 ・1.1章, 1.4.1章, 1.4.4~1.4.7章を提出 補足-348 改1として提出 改1 H30. 2. 15 1.5章を新規作成し、改0に追加 補足-348 改2として提出 改2 H30. 2. 19 ・改1のうち, 1.1章, 1.4.4~1.4.7章を修正 資料番号を修正 補足-340-8 改0 ・「1.4. 屋外重要土木構造物の耐震評価における断面選定 改 0 H30. 3. 7 の考え方」のうち、1.4.3章、1.4.8~1.4.10章、1.4.12 章を新規作成し、追加 ・P.3~5に補足説明資料と添付書類との関連を記載 改1 ・1.4.1章, 1.4.4章~1.4.7章を修正 H30. 3. 26 ・4章を新規作成し,追加 ・1.4.2章, 1.4.11章, 1.4.17章を新規作成し, 追加 改2 H30. 4. 6 4章を修正 12章を新規作成し、追加 1.3章,2章を新規作成し、追加 H30.4.9 改3 ・4.4 章を修正 1.2章,8章,11章を新規作成し、追加 改4 H30. 4. 9 ・10 章を新規作成し,追加 改5 H30. 4. 12 ・1.4.13 章, 1.4.14 章, 1.4.15 章, 1.4.16 章, 1.4.18 章を 新規作成し,追加 改6 H30. 4. 13 1.5章, 1.6章を新規作成し, 追加 ・5章,6章,7章,9章,14章,16章,17章を新規作成し、 追加 ・10章,11章,17章を修正 改7 H30. 4. 23 ・3章,13章,15章,18章を新規作成し,追加 ・既提出分を一式取り纏めて、再提出 改 8 H30. 4. 27 ・改6のうち、1.6章及び5章を改定 改9 H30. 5. 2 ・改3のうち、4章を改訂 1.7章,1.8章を新規作成し、追加 改10 H30. 5. 14 ・改0のうち, 1.4.10章を改定 改11 H30. 5. 23 ・改7のうち、10章を改定 ・ 改9 の うち, 1.6 章を 改定 ・ 改3のうち、1.4.2章を改定 改 12 H30. 5. 28 ・改3のうち,2章を改定 ・改0のうち, 1.4.3 章を改定 改 13 H30. 5. 31 ・1.9章を新規作成し、追加 改 14 H30.6.6 1.10章を新規作成し、追加 ・改7のうち、3章を改定 ・改7のうち,17章,18章を改定 改 15 H30.6.7 ・改14のうち,3章を改定 ・改14のうち,1.10章を改定 改16 H30. 6. 12 ・改13のうち、1.4.3章を改定 改17 H30. 6. 18 ・改3のうち, 1.4.11 章を改定

改定履歴

改定	改定日 (提出年月日)	改定内容
改 18	H30. 6. 20	・改6のうち,1.4.13章及び1.4.15章を改定 ・改7のうち,13章及び14章を改定
改 19	H30. 6. 25	・改7のうち,11章を改定 ・改15のうち,3章を改定
改 20	H30. 6. 28	・改6のうち,1.5章を改定 ・改14のうち,1.9章を改定 ・改19のうち,11章を改定
改 21	H30.7.5	 ・改9のうち、4章及び5章を改定
改 22	H30. 7. 5	・改 12 のうち,2章を改定 ・改 20 のうち,1.9章を改定
改 23	H30. 7. 6	・改6のうち,7章を改定
改 24	НЗО. 7. 9	 ・改6のうち,14章及び16章を改定 ・改11のうち,10章を改定 ・改15のうち,17章及び18章を改定 ・改18のうち,13章及び15章を改定 ・改19のうち,3章を改定 ・改20のうち,11章を改定
改 25	H30. 7. 9	 ・改4のうち、8章を改定
改 26	H30. 7. 26	・改 10 のうち, 1.7 章を改定 ・改 11 のうち, 1.6 章を改定
改 27	H30. 8. 1	 ・改6のうち、9章を改定
改 28	H30. 8. 2	・改 11 のうち, 1.4.10 章を改定 ・改 22 のうち, 1.9 章を改定
改 29	H30. 8. 6	・改 21 のうち,4章及び5章を改定 ・改 23 のうち,7章を改定
改 30	H30.8.6	・改 24 のうち, 16 章を改定
改 31	H30. 8. 13	 ・「1.11 屋外重要土木構造物の耐震評価における追加検討 ケースの選定について」新規作成し、追加 ・改 24 のうち、10 章及び 14 章を改定
改 32	H30. 8. 13	 ・改6のうち,6章を改定
改 33	H30. 8. 14	・改 18 のうち, 15 章を改定 ・改 24 のうち, 13 章を改定
改 34	H30. 8. 16	・改 24 のうち,18 章を改定 ・改 25 のうち,8 章を改定
改 35	H30. 8. 17	・改3のうち,12章を改定 ・改22のうち,2章を改定
改 36	H30. 8. 20	・改 24 のうち, 17 章を改定
改 37	H30. 8. 21	・改 24 のうち,3章を改定 ・改 30 のうち,16章を改定

改定	改定日 (提出年月日)	改定内容
改 38	H30. 8. 21	・改 24 のうち,11 章を改定 ・改 27 のうち,9 章を改定
改 39	H30. 8. 21	・3 章のうち,「屋外二重管本体の耐震安全性評価」を新規 作成し,追加
改 40	H30. 8. 23	・改4のうち, 1.2章を改定
改 41	H30. 8. 23	・改 31 のうち, 1.11 章を改定
改 42	H30. 8. 27	・改 41 のうち, 1.11 章を改定
改 43	H30. 8. 30	 ・改1のうち,1.4.5章,1.4.7章を改定 ・改17のうち,1.4.3章を改定 ・改29のうち,参考2,3を新規作成し,追加 ・改42のうち,1.11章を改定(一部抜粋)

H	<i>\/</i> ↓
	TX.

1. 共通事項

- 1.1 対象設備[改7 H30.4.23]
- 1.2 屋外重要土木構造物の要求性能と要求性能に対する耐震評価内容[改 40 H30.8.23]
- 1.3 安全係数[改3 H30.4.9]
- 1.4 屋外重要土木構造部の耐震評価における断面選定の考え方
- 1.4.1 方針[改 3 H30.4.9]
- 1.4.2 取水構造物の断面選定の考え方[改 12 H30.5.28]
- 1.4.3 屋外二重管の断面選定の考え方[改 43 H30.8.30]
- 1.4.4 常設代替高圧電源装置置場及び西側淡水貯水設備の断面選定の考え方[改1 H30.3.26]
- 1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方[改 43 H30.8.30]
- 1.4.6 常設代替高圧電源装置用カルバート(立坑部)の断面選定の考え方[改1 H30.3.26]
- 1.4.7 常設代替高圧電源装置用カルバート(カルバート部)の断面選定の考え方[改 43 H30.8.30]
- 1.4.8 代替淡水貯槽の断面選定の考え方[改0H30.3.8]
- 1.4.9 常設低圧代替注水系ポンプ室の断面選定の考え方[改 0 H30.3.8]
- 1.4.10 常設低圧代替注水系配管カルバートの断面選定の考え方[改 28 H30.8.2]
- 1.4.11 格納容器圧力逃がし装置用配管カルバートの断面選定の考え方[改 17 H30.6.18]
- 1.4.12 緊急用海水ポンプピットの断面選定の考え方[改0H30.3.8]
- 1.4.13 緊急用海水取水管の断面選定の考え方[改 18 H30.6.20]
- 1.4.14 SA用海水ピットの断面選定の考え方[改6H30.4.16]
- 1.4.15 海水引込み管の断面選定の考え方[改 18 H30.6.20]
- 1.4.16 SA用海水ピット取水塔の断面選定の考え方[改 6 H30.4.16]
- 1.4.17 緊急時対策所用発電機燃料油貯蔵タンク基礎の断面選定の考え方[改3 H30.4.9]
- 1.4.18 可搬型設備用軽油タンク基礎の断面選定の考え方[改 6 H30.4.16]
- 1.5 地盤物性のばらつきの考慮方法[改 20 H30.6.28]
- 1.6 許容応力度法における許容限界について[改 26 H30.7.26]
- 1.7 ジョイント要素のばね設定について[改 26 H30.7.26]
- 1.8 有効応力解析モデルへの入力地震動の算定方法について[改 10 H30.5.14]
- 1.9 地震応答解析における構造物の減衰定数について[改 28 H30.8.2]
- 1.10 屋外重要土木構造物の地震応答解析結果及び耐震評価結果の記載方針について[改 16 H30.6.15]
- 1.11 屋外重要土木構造物の耐震評価における追加検討ケースの選定について[改 42 H30.8.27]

[改 43 H30.8.30(2.5 章抜粋)]

[]内は,当該箇所を提出(最新)したときの改訂

を示す。

- 2. 取水構造物の耐震安全性評価[改 35 H30.8.17]
- 3. 屋外二重管の耐震安全性評価 [改 37 H30.8.21(屋外二重管基礎)]

[改 39 H30.8.21(屋外二重管本体)]

4. 常設代替高圧電源装置置場及び西側淡水貯水設備の耐震安全性評価[改 29 H30.8.6]

- 5. 常設代替高圧電源装置用カルバート(トンネル部)の耐震安全性評価[改 29 H30.8.6]
- 6. 常設代替高圧電源装置用カルバート(立坑部)の耐震安全性評価[改 32 H30.8.13]
- 7. 常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価[改 29 H30.8.6]

[改43 H30.8.30(参考2,3追加)]

- 8. 代替淡水貯槽の耐震安全性評価[改 34 H30.8.16]
- 9. 常設低圧代替注水系ポンプ室の耐震安全性評価[改 38 H30.8.21]
- 10. 常設低圧代替注水系配管カルバートの耐震安全性評価[改 31 H30.8.13]
- 11. 格納容器圧力逃がし装置用配管カルバートの耐震安全性評価[改 38 H30.8.21]
- 12. 緊急用海水ポンプピットの耐震安全性評価[改 35 H30.8.17]
- 13. 緊急用海水取水管の耐震安全性評価[改 33 H30.8.14]
- 14. SA用海水ピットの耐震安全性評価[改 31 H30.8.13]
- 15. 海水引込み管の耐震安全性評価[改 33 H30.8.14]
- 16. SA用海水ピット取水塔の耐震安全性評価[改 37 H30.8.21]
- 17. 緊急時対策所用発電機燃料油貯蔵タンク基礎の耐震安全性評価[改 36 H30.8.20]
- 18. 可搬型設備用軽油タンク基礎の耐震安全性評価[改 34 H30.8.16]

本補足説明資料は、耐震性に関する説明書のうち屋外重要土木構造物の耐震安全性評価についての内容を補足するものである。本補足説明資料と添付書類との関連を以下に示す。

		工車計画に依る補豆説明姿料	
上ず町回に応る間だ成の1頁14			
耐農性に関する説明書のうら		耐 晨 性 に 関す る 説 明 書 の う ら	該当添付書類
		補足-340-8	
【屋	外重要	土木構造物の耐震安全性評価について】	
1.	1.1	対象設備	共通事項
共	1.2	屋外重要土木構造物の要求性能と要求	共通事項
通		性能に対する耐震評価内容	
事	1.3	安全係数	共通事項
項	1.4	1.4.1 方針	共通事項
	屋外	1.4.2 取水構造物の断面選定の考え方	V-2-2-6 取水構造物の耐震性についての計算書
	重要	1.4.3 屋外二重管	V-2-2-8 屋外二重管の耐震性についての計算書
	土木	1.4.4 常設代替高圧電源装置置場及び	Ⅴ−2−2−23−1 常設代替高圧電源装置置場及び西側淡水貯水
	構造	西側淡水貯水設備	設備の耐震性についての計算書
	部 の	1.4.5 常設代替高圧電源装置用カルバ	V-2-2-23-3 常設代替高圧電源装置用カルバート(トンネ
	耐震	ート (トンネル部)	ル部)の耐震性についての計算書
	評価	1.4.6 常設代替高圧電源装置用カルバ	V-2-2-23-4 常設代替高圧電源装置用カルバート(立坑
	に お ート (立坑部) け る 1.4.7 常設代替高圧電源装置用カルバ 断 面 ート (カルバート部)		部)の耐震性についての計算書
			V-2-2-23-2 常設代替高圧電源装置用カルバート(カルバ
			ート部)の耐震性についての計算書
	選定	1.4.8 代替淡水貯槽	V-2-2-29 代替淡水貯槽の耐震性についての計算書
	の考	1.4.9 常設低圧代替注水系ポンプ室	V-2-2-27 常設低圧代替注水系ポンプ室の耐震性について
	え方		の計算書
		1.4.10 常設低圧代替注水系配管カル	V-2-2-31 常設低圧代替注水系配管カルバートの耐震性に
		バート	ついての計算書
		1.4.11 格納容器圧力逃がし装置用配	Ⅴ-2-2-21 格納容器圧力逃がし装置用配管カルバートの耐
		管カルバート	震性についての計算書
		1.4.12 緊急用海水ポンプピット	V-2-2-35 緊急用海水ポンプピットの耐震性についての計
			算書
		1.4.13 緊急用海水取水管	V-2-10-4-5 緊急用海水取水管の耐震性についての計算書
		1.4.14 SA用海水ピット	V-2-2-33 SA用海水ピットの耐震性についての計算書
		1.4.15 海水引込み管	V-2-10-4-3 海水引込み管の耐震性についての計算書
		1.4.16 SA用海水ピット取水塔	V-2-10-4-2 SA用海水ピット取水塔の耐震性についての
			計算書

補足説明資料と添付書類との関連

	1.4.17 緊急時対策所用発電機燃料油	V-2-2-13 緊急時対策所用発電機燃料油貯蔵タンク基礎の
	貯蔵タンク基礎	耐震性についての計算書
	1.4.18 可搬型設備用軽油タンク基礎	V-2-2-25 可搬型設備用軽油タンク基礎の耐震性について
		の計算書
	1.5 地盤物性・材料物性のばらつきの考慮	共通事項
	方法	
	1.6 許容応力度法における許容限界につい	共通事項
	τ	
	1.7 ジョイント要素のばね設定について	共通事項
	1.8 有効応力解析モデルへの入力地震動の	共通事項
	算定方法について	
	1.9 地震応答解析における構造物の減衰定	共通事項
	数について	
	1.10 屋外重要土木構造物の地震応答解析結	共通事項
	果及び耐震評価結果の記載方針について	
	1.11 屋外重要土木構造物の耐震評価におけ	共通事項
	る追加検討ケースの選定について	
2.	取水構造物の耐震安全性評価	Ⅴ-2-2-6 取水構造物の地震応答計算書
		V-2-2-7 取水構造物の耐震性についての計算書
3.	屋外二重管の耐震安全性評価	Ⅴ-2-2-8 屋外二重管の地震応答計算書
		V-2-2-9 屋外二重管の耐震性についての計算書
4.	常設代替高圧電源装置置場及び西側淡水貯水設	Ⅴ-2-2-22-1 常設代替高圧電源装置置場及び西側淡水貯水
	備の耐震安全性評価	設備の地震応答計算書
		Ⅴ-2-2-23-1 常設代替高圧電源装置置場及び西側淡水貯水
		設備の耐震性についての計算書
5.	常設代替高圧電源装置用カルバート(トンネル	Ⅴ-2-2-22-3 常設代替高圧電源装置用カルバート(トンネ
	部)の耐震安全性評価	ル部)の地震応答計算書
		V-2-2-23-3 常設代替高圧電源装置用カルバート(トンネ
		ル部)の耐震性についての計算書
6.	常設代替高圧電源装置用カルバート(立坑部)	V-2-2-22-4 常設代替高圧電源装置用カルバート(立坑
	の耐震安全性評価	部)の地震応答計算書
		V-2-2-23-4 常設代常設代替高圧電源装置用カルバート
		(立坑部)の耐震性についての計算書
7.	常設代替高圧電源装置用カルバート(カルバー	V-2-2-22-2 常設代替高圧電源装置用カルバート(カルバ
	ト部)の耐震安全性評価	ート部)の地震応答計算書
		V-2-2-23-2 常設代替高圧電源装置用カルバート(カルバ
		ート部)の耐震性についての計算書

8.	代替淡水貯槽の耐震安全性評価	∇-2-2-28 代替淡水貯槽の地震応答計算書
		V-2-2-29 代替淡水貯槽の耐震性についての計算書
9.	常設低圧代替注水系ポンプ室の耐震安全性評価	▼-2-2-26 常設低圧代替注水系ポンプ室の地震応答計算書
		∇-2-2-27 常設低圧代替注水系ポンプ室の耐震性について
		の計算書
10.	常設低圧代替注水系配管カルバートの耐震安	V-2-2-30 常設低圧代替注水系配管カルバートの地震応答
	全性評価	計算書
		V-2-2-31 常設低圧代替注水系配管カルバートの耐震性に
		ついての計算書
11.	格納容器圧力逃がし装置用配管カルバートの	▼-2-2-20 格納容器圧力逃がし装置用配管カルバートの地
	耐震安全性評価	震応答計算書
		▼-2-2-21 格納容器圧力逃がし装置用配管カルバートの耐
		震性についての計算書
12.	緊急用海水ポンプピットの耐震安全性評価	∇-2-2-34 緊急用海水ポンプピットの地震応答計算書
		V-2-2-35 緊急用海水ポンプピットの耐震性についての計
		算書
13.	緊急用海水取水管の耐震安全性評価	V-2-10-4-5 緊急用海水取水管の耐震性についての計算書
14.	SA用海水ピットの耐震安全性評価	V-2-2-32 SA用海水ピットの地震応答計算書
		V-2-2-33 SA用海水ピットの耐震性についての計算書
15.	海水引込み管の耐震安全性評価	V-2-10-4-3 海水引込み管の耐震性についての計算書
16.	SA用海水ピット取水塔の耐震安全性評価	V-2-10-4-2 SA用海水ピット取水塔の耐震性についての
		計算書
17.	緊急時対策所用発電機燃料油貯蔵タンク基礎	∇-2-2-12 緊急時対策所用発電機燃料油貯蔵タンク基礎の
	の耐震安全性評価	地震応答計算書
		∇-2-2-13 緊急時対策所用発電機燃料油貯蔵タンク基礎の
		耐震性についての計算書
18.	可搬型設備用軽油タンク基礎の耐震安全性評	▼-2-2-24 可搬型設備用軽油タンク基礎の地震応答計算書
	価	▼-2-2-25 可搬型設備用軽油タンク基礎の耐震性について
		の計算書

1. 共通事項

1.1 対象設備

耐震安全性評価の対象とする屋外重要土木構造物は、Sクラスの機器・配管の間接支持構造 物若しくは非常時における海水の通水機能・貯水機能を求められる取水構造物,屋外二重管, 貯留堰,常設代替高圧電源装置置場及び常設代替高圧電源装置用カルバートである。

また,同様に耐震安全性評価の対象とする「常設耐震重要重大事故防止設備又は常設重大事 故緩和設備」及び「常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重 大事故等対処施設」に該当する土木構造物である代替淡水貯槽,常設低圧代替注水系ポンプ室, 常設低圧代替注水系配管カルバート,格納容器圧力逃がし装置用配管カルバート,緊急用海水 ポンプピット,緊急用海水取水管,SA用海水ピット,海水引込み管,SA用海水ピット取水 塔,緊急時対策所用発電機燃料油貯蔵タンク基礎,可搬型設備用軽油タンク基礎についても記 載する。

なお,防潮堤及び貯留堰については,津波防護施設としての耐震安全性評価を別途実施する。 これらの屋外重要土木構造物等の位置図を図1.1-1に示す。

図 1.1-1 屋外重要土木構造物等位置図

1.4.3 屋外二重管の断面選定の考え方

屋外二重管は、Sクラス機器である残留熱除去系海水系配管,非常用ディーゼル発電機海 水系配管及び高圧炉心スプレイ系ディーゼル発電機海水系配管の間接支持機能を有する延長 約215 m,内径2.0 m 及び1.8 m の2本の鋼管の地中構造物であり,杭基礎,又は地盤改良体 を介して十分な支持性能を有する岩盤に設置する。排気筒付近に位置する可とう管から海水 ポンプ室までの区間は,水平方向の鋼製桁と鉛直方向の鋼管杭を結合したラーメン構造であ る杭基礎により支持する構造とする。一方,原子炉建屋から排気筒付近に位置する可とう管 までの区間は,他構造物(原子炉建屋,排気筒,主排気筒ダクト基礎など)と近接している ことから,杭基礎ではなく屋外二重管直下に造成した地盤改良体により支持する構造とする。 屋外二重管の平面図を図 1.4.3-1 に,縦断面図及び構造形式別の横断面図を図 1.4.3-2 に示す。

図 1.4.3-1 屋外二重管の平面図

<mark>図 1. 4. 3-2(1) 屋外二重管の縦断面図</mark>

6

(1) 耐震評価候補断面の整理

「1.4.1 方針①耐震評価候補断面の整理」に従い,耐震評価候補断面を整理する。 屋外二重管基礎設置区間における縦断方向は,全延長約 215 m 間における基礎構造形式と して,杭基礎構造部と地盤改良体基礎構造部からなる。地盤改良体基礎構造部は横断方向に 比べて縦断方向の幅が広く,縦断方向が強軸断面方向となっている。耐震評価候補断面の特 徴を表 1.4.3-1 に,評価候補断面を図 1.4.3-3 に示す。

屋外二重管基礎設置区間における横断方向の耐震評価候補断面は,地質縦断図における岩 盤上面の標高,液状化検討対象層と非液状化層の分布状況,屋外二重管基礎構造形式に着目 し,区間I(杭基礎構造部,岩盤上面の標高が変化し,液状化検討対象層と非液状化層の両 者が厚く分布している区間),区間II(杭基礎構造部,主に液状化検討対象層が分布し,非 液状化層が少ない区間),区間III(地盤改良体基礎構造部,岩盤上面の標高が高く,第四系 地盤を地盤改良している区間)に分類し,各区間における屋外二重管基礎の構造的特徴及び 周辺地質を考慮して7つの候補断面を選定する。

区間	候補断面	要求性能	構造的特徴	周辺地質	間接支持する設備
	1)		・横断方向断面である。 ・2本の鋼管杭頭部を結ぶ鋼製桁で 長め二季等大体な支持する	岩盤上面の標高が全区間で最も低く, 全区間で非液状化層の層厚が最も厚い。	 ・残留熱除去系海水系配管 ・非常用ディーゼル発電機 海水系配管 ・高圧炉心スプレイ系ディ
I	2) 間接支持		全区間で液状化検討対象層の層厚が最も 厚い。	
	3		産パー単青本体を文行する。 ・門型ラーメン構造である。	単官本体を又持する。 ーメン構造である。 全区間で液状化検討対象層の層厚が最も 薄い。	
	4			全区間で岩盤上面の標高が最も高い。	一ビル光电機伸水糸配官
	5		 ・横断方向断面である。 ・2本の鋼管杭頭部を結ぶ鋼制桁で 	区間Ⅱで岩盤上面の標高が最も高く、非	
	<u> </u>		 ・2本の到官机與部を結ぶ 列裂桁 (、 、 <td>液状化層がない。</td><td>•残留熱除去系海水系配管</td>	液状化層がない。	•残留熱除去系海水系配管
Ш	II 間接支持 電接支持 ・既設構造物と近接しているため, 南側の鋼管杭を屋外二重管本体の	区間Ⅱで岩盤上面の標高が最も低く, 液状化検討対象層の層厚が最も厚い。	 ・非常用ティーセル発電機 海水系配管 ・高圧炉心スプレイ系ディ ーゼル発電機海水系配管 		
ш	(6) - 2	間接支持	 ・横断方向断面である。 ・既設構造物と干渉するため、地盤 改良体で屋外二重管本体を支持す る。 	区間Ⅲは岩盤上面の標高が全区間の中で 比較的高くおおむね水平となっており, 地盤改良を実施する。	 ・残留熱除去系海水系配管 ・非常用ディーゼル発電機 海水系配管 ・高圧炉心スプレイ系ディ ーゼル発電機海水系配管
	A-A	間接支持	 ・縦断方向断面である。 ・地盤改良体は横断方向に比べて縦 断方向の基礎幅が広く,強軸断面 方向となる。 	岩盤上面の標高や地質構成が縦断方向に 変化する。	 ・残留熱除去系海水系配管 ・非常用ディーゼル発電機 海水系配管 ・高圧炉心スプレイ系ディ ーゼル発電機海水系配管

表1.4.3-1 耐震評価候補断面の特徴

図 1.4.3-3(1) 評価候補断面

注:寸法はmを示す。

注:寸法はmを示す。

1.4.3 - 7

注:寸法はmを示す。

(d) 区間 I : 断面③

注:寸法はmを示す。

(e) 区間 I : 断面④

注:寸法はmを示す。

(f) 区間Ⅰ,Ⅱ:断面⑤図1.4.3-3(3) 評価候補断面(横断図)

(g) 区間Ⅱ:断面⑥-1

図 1.4.3-3(4) 評価候補断面(横断図)

(2) 評価対象断面の選定

評価対象断面の選定は各区間において,基礎の構造成立性に影響が大きい水平変位及びせん断ひずみに着目し,1次元地震応答解析(FLIP)より求めた応答値を比較する。

1次元地震応答解析(FLIP)では、幅広い周期帯で比較的応答加速度が大きいS_s-D 1を地震動として用いる。断面⑥-2では、屋外二重管本体の支持構造として岩盤以浅に造成する地盤改良体を考慮する。

a. 区間 I

区間 I の評価対象断面選定結果を表 1.4.3-2 に,区間 I で選定した評価候補断面におけ る屋外二重管本体位置の最大水平変位発生時刻の変位分布を図 1.4.3-4 に,最大せん断ひ ずみ発生時刻のせん断ひずみ分布を図 1.4.3-5 に,最大せん断ひずみ発生時刻の変位分布 を図 1.4.3-6 に示す。なお,図 1.4.3-6 には,屋外二重管本体位置における最大水平変位 発生時刻の変位分布も示している。

屋外二重管本体位置における最大水平変位は断面①で最大値を示す一方,最大せん断ひず みは断面③が最大値を示し,断面①よりもわずかに大きくなっている。ただし,最大水平変 位発生時刻の変位分布と最大せん断ひずみ発生時刻の変位分布は同様であることを確認した。 さらに,断面①及び断面③で実施した1次元地震応答解析(FLIP)に基づき,断面①に ついては屋外二重管本体位置の最大水平変位が発生した時刻の地盤剛性を地盤ばねとして用 い,断面③については最大せん断ひずみが発生した時刻の地盤剛性を地盤ばねとして用いて, それぞれの時刻における地盤変位分布を鋼管杭に作用させた場合の最大曲げモーメントをフ レーム解析より算出した。算出結果を表 1.4.3-3 及び図 1.4.3-7 に示す。

表1.4.3-3及び図1.4.3-7に示すように、断面①及び断面③の鋼管杭に発生する最大曲 げモーメントを比較すると断面①の方が大きい。したがって、屋外二重管位置の最大水平変 位が最大値を示す断面①を評価対象断面に選定する。

候補断面	屋外二重管 本体位置 の変位*(m)	最大せん断 ひずみ(%)	評価 断面	選定結果
断面①	0. 35	6. 6	0	屋外二重管本体位置の水平変位が最大であ り,最大せん断ひずみが他候補断面と同様 である。また,杭の長さが最も長い位置で ある。さらに,断面①及び断面③において 発生する最大曲げモーメントを比較すると 断面①の方が大きいことから,評価対象断 面に選定する。
断面②	0. 33	6. 0	_	断面①と比較し屋外二重管本体位置の水平 変位及び最大せん断ひずみが小さいため, 評価対象断面としない。
断面③	0. 30	7. 1	_	断面①と比較し最大せん断ひずみはわずか に大きいが、屋外二重管本体位置の水平変 位が小さい。また、断面①及び断面③にお いて発生する最大曲げモーメントを比較す ると断面③の方が小さいことから、評価対 象断面としない。
断面④	0.33	6.5	_	断面①と比較し屋外二重管本体位置の水平 変位及び最大せん断ひずみが小さいため, 評価対象断面としない。

表 1.4.3-2 1 次元地震応答解析 (FLIP) 結果 (区間 I)

注記 *:各地震応答解析モデルにおける岩盤上面を基準とした値

図1.4.3-4 屋外二重管本体位置における最大水平変位発生時刻の変位分布(区間I)

図1.4.3-5 最大せん断ひずみ発生時刻のせん断ひずみ分布(区間I)

表 1.4.3-3	断面①及び断面③のフレ	ーム解析による鋼管杭の最大曲げモーメント
-----------	-------------	----------------------

候補断面	最大曲げモーメント (kN・m)
断面①	9. 31×10^3
断面③	9. 06×10^3

b. 区間Ⅱ

区間Ⅱの評価対象断面選定結果を表 1.4.3-4 に,区間Ⅱで選定した評価候補断面におけ る屋外二重管本体位置の最大水平変位発生時刻の変位分布を図 1.4.3-8 に,最大せん断ひ ずみ発生時刻のせん断ひずみ分布を図 1.4.3-9 に,最大せん断ひずみ発生時刻の変位分布 を図 1.4.3-10 に示す。なお,図 1.4.3-10 には,屋外二重管本体位置における最大水平変 位発生時刻の変位分布も示している。

区間Ⅱにおいては、屋外二重管本体位置における最大水平変位は断面⑥-1が最大値を示 し、最大せん断ひずみは断面⑤と断面⑥-1とで同様である。以上より、断面⑥-1を評価 対象断面に選定する。

なお,図1.4.3-10に示すように,区間Ⅱにおける最大せん断ひずみ発生時刻の変位分布 と最大水平変位発生時刻の変位分布の差は,図1.4.3-6に示す区間Ⅰにおける両者の変位 分布の差よりも大きくなっている。これは,次の理由による。すなわち,図1.4.3-4に示 す区間Ⅰにおける最大水平変位発生時刻において変位が大きく増加する(せん断ひずみが大 きい。)位置と図1.4.3-5に示す最大せん断ひずみ発生時刻における最大せん断ひずみが 生じる位置は,As層であり共通している。したがって,最大水平変位発生時刻の変位分布 と最大せん断ひずみ発生時刻の変位分布は,同様の分布形を呈している。一方,区間Ⅱにお いては,最大水平変位発生時刻において変位が大きく増加する(せん断ひずみが大きい。) 位置と最大せん断ひずみ発生時刻における最大せん断ひずみが生じる位置は,それぞれ, Ag2層の下側に位置するAg1層と上側に位置するdu層に分かれた箇所となっている。これに より,区間Ⅱにおける両者の変位分布の差は,区間Ⅰに比べて大きくなる。

候補断面	屋外二重管 本体位置 の変位* (m)	最大せん断 ひずみ(%)	評価 断面	選定結果
断面⑤	0. 32	3. 3	_	断面⑥-1と比較し最大せん断ひずみは同 様であり,屋外二重管本体位置の水平変位 が小さいため,評価対象断面としない。
断面 ⑥-1	0.34	3. 3	0	評価対象断面に選定する。

表 1.4.3-4 1 次元地震応答解析(FLIP)結果(区間Ⅱ)

注記 *:各地震応答解析モデルにおける岩盤上面を基準とした値

図 1.4.3-8 屋外二重管本体位置における最大水平変位発生時刻の変位分布(区間Ⅱ)

図1.4.3-9 最大せん断ひずみ発生時刻のせん断ひずみ分布(区間Ⅱ)

c. 区間Ⅲ

区間Ⅲの評価対象断面選定結果を表 1.4.3-5 に,区間Ⅲで選定した評価候補断面におけ る屋外二重管本体位置の最大水平変位発生時刻の変位分布を図 1.4.3-12 に,最大せん断ひ ずみ発生時刻のせん断ひずみ分布を図 1.4.3-13 に,最大せん断ひずみ発生時刻の変位分布 を図 1.4.3-14 に示す。なお,図 1.4.3-14 には,屋外二重管本体位置における最大水平変 位発生時刻の変位分布も示している。

区間Ⅲについては、岩盤上面の標高が EL. -15 m付近でおおむね水平となっている。断面 ⑥-2は基礎形式が異なる区間Ⅱとの境界部であることから、区間Ⅲは断面⑥-2を評価対 象断面に選定する。

候補断面	屋外二重管 本体位置 の変位*(m)	最大せん断 ひずみ(%)	評価 断面	選定結果
断面 ⑥-2	0.04	3. 5	0	評価対象断面に選定する。

表 1.4.3-5 1 次元地震応答解析 (FLIP) 結果 (区間Ⅲ)

注記 *:各地震応答解析モデルにおける岩盤上面を基準とした値

図 1.4.3-12 屋外二重管本体位置における最大水平変位発生時刻の変位分布(区間Ⅲ)

図1.4.3-13 最大せん断ひずみ発生時刻のせん断ひずみ分布(区間Ⅲ)

図 1.4.3-14 最大せん断ひずみ発生時刻の変位分布(区間Ⅲ)

(3) 断面選定結果

(2)より選定した屋外二重管における評価対象断面を表 1.4.3-6 に,評価対象断面図を<mark>図</mark> 1.4.3-15 に示す。

屋外二重管縦断方向については、<mark>杭基礎構造部</mark>において岩盤上面の標高や地質構成が変化 することから、縦断方向のA-A断面を選定する。

屋外二重管横断方向については、区間Iにおいては、水平変位が最も大きく、岩着させる 鋼管杭が最も長くなるB-B断面(候補断面①)を選定する。区間Ⅱにおいては、水平変位 が最も大きくなるC-C断面(候補断面⑥-1)を選定する。区間Ⅲにおいては、基礎形式 が異なる区間Ⅱとの境界部に位置するC-C断面(候補断面⑥-2)を選定する。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備	既工認 評価断面	今回工認 評価断面	選定結果
区間- A-A	間接支持	 ・縦断方向断面である。 ・連続する単杭構造及び 地盤改良を介して屋外 二重管本体を支持す る。 	・深さが変化す る岩盤に支持 する。	 ・残留熱 除去系 海水系 配管 	_	〇 【基準 地震動 S _s 】	岩盤上面の標高や地質構成が変化 することから選定する。
区間 I B-B (<mark>杭基礎</mark> <mark>構造部</mark>)	間接 支持	・横断方向断面である。 ・2 本の鋼管杭頭部を結 ぶ鋼製桁で支持する。	 ・岩盤に支持する。 ・岩盤が深い位置である。 	 ・非常用 ディー ゼル発 電機 浜 配 	_	〇 【基準 地震動 S。】	区間Iにおける候補断面で1次元 地震応答解析(FLIP)結果の 水平変位が最大となり,岩着させ る鋼管杭が最も長いことから選定 する。
区間Ⅱ C-C (<mark>杭基礎</mark> 構造部)	間接 支持	・横断方向断面である。 ・2 本の鋼管杭頭部を結 ぶ鋼製桁で支持する。	 ・岩盤に支持する。 ・岩盤が浅い位置である。 	管 高 心 レ デ ゼ 電 水 管 炉 プ 系 一 発 海 配	_	〇 基準 地震動 S _s	区間Ⅱにおける候補断面で1次元 地震応答解析(FLIP)結果の 水平変位が最大となるため選定す る。
区間Ⅲ C-C (<mark>地盤改</mark> 良体基礎 構造部)	間接 支持	 ・横断方向断面である。 ・地盤改良体で屋外二重 管本体を支持する。 	 ・地盤改良体を 介して岩盤に 支持する。 		_	〇 基準 地震動 S _s	基礎構造が異なる区間Ⅱと区間Ⅲ との境界部であるため選定する。

表1.4.3-6 屋外二重管における耐震評価対象断面の選定結果

図 1. 4. 3-15(4) 屋外二重管の横断面図(C-C断面・地盤改良体基礎構造部)(区間Ⅲ 候補断面⑥-2)

1.4.5 常設代替高圧電源装置用カルバート(トンネル部)の断面選定の考え方

図 1.4.5-1 及び図 1.4.5-2 に常設代替高圧電源装置用カルバート(トンネル部)(以下,「トンネル」という。)の平面配置図及び断面図を示す。

トンネルは、軽油移送配管、水配管及び電気ケーブルを間接支持する鉄筋コンクリート 構造物であり、延長約140 m である。トンネルの形状は全長にわたり内径4.6 m、覆工 1.2 mの円形断面となっており、延長方向に対して約5~10 m 間隔に分割して施工する。 構造物は十分な支持性能を有する岩盤内に設置する。

(1) 耐震評価候補断面の整理

「1.4.1 方針 ①耐震評価候補断面の整理」に従い,耐震評価候補断面を整理する。 トンネルは間接支持する設備が縦断方向に一様に設置されているため,機器・配管の設 置位置による影響は考慮する必要はない。また,横断断面形状及び配筋も縦断方向に一様 であるため,構造・配筋の変化による影響を考慮する必要はない。

耐震評価候補断面の特徴を表 1.4.5-1 に示す。

前述の通り、トンネルは全線にわたり一定間隔でブロック割されており、縦断方向の応 力は区画毎に解放される。また、縦断方向のブロック毎の相対変位に対しては、岩盤に設 置されているため小さい。したがって、評価対象断面としてはトンネル横断方向とする。

図 1.4.5-1(1) トンネル 平面配置図(全体平面図)

図 1.4.5-1 (2) トンネル 平面配置図 (拡大図)

図 1.4.5-2 トンネル 標準断面図 (①-①断面)

トンネルの構造及び機器配置は縦断方向に対して同一であるが,周辺地質状況は断面位 置によって異なる。地震時においては、トンネルの土被り深さ及び周辺の地質状況の影響 が支配的であると考えられることから、トンネル縦断断面の複数地点にて基準地震動S。 による1次元地震応答解析を実施し、その結果に基づいて評価断面を選定する。

トンネルの縦断断面及び耐震評価候補断面位置を図 1.4.5-3 に示す。トンネルの深さ は始点(L1 地点)が最も浅く,終点(L3 地点)位置が最も深くなっている。トンネルの 縦断勾配はL1 地点から止水壁位置(L2 地点)近傍まで4.1%であり, L2 地点近傍から L3 位置まで 0.4%である。周辺地盤は,水平成層に近い状態で分布しており,終点付近に は埋戻土が分布している。

以下に、耐震評価候補断面(1次元地震応答解析の実施位置)の特徴を述べる。

トンネル始点である L1 地点は、トンネル区間においてトンネルの深さが最も浅い位置 である。

止水壁位置である L2 地点は、トンネルの縦断勾配の変化点近傍である。L1 地点と比べ てトンネルの深さが深く、トンネル終点である L3 地点と比べて埋戻土の層厚が薄い位置 である。

トンネル終点であるL3地点は、トンネルの深さが最も深く、埋戻土の層厚が最も厚い 位置である。

図 1.4.5-3 トンネル 耐震評価候補断面位置

地点	要求性能	構造的特徴	周辺地質	間接支持	
), 1 , 2 , 2 , 2 , 2 , 4 , 1	する設備	
トンネル		・内径 4.6 m, 覆工厚	「日朝」など、今日公司を	・軽油移送配管	
始点	間接支持	1.2 mの円形トンネル	・石盛及い第四和層が	・水配管	
L1		・トンネル深さが浅い	はは小平成唐に万和	・電気ケーブル	
止水壁		・内径 4.6 m, 覆工厚	・岩盤及び第四紀層が		
位置	同上	1.2 mの円形トンネル	ほぼ水平成層に分布	同上	
L2		・トンネル深さが深い	・埋戻土の層厚が薄い		
トンタル		・内径 4.6 m, 覆工厚			
トン <i>ホル</i> 終点 L3		1.2 mの円形トンネル	・埋戻土の層厚が最も		
	미도	・トンネル深さが最も深	厚い	同上	
		$\langle v \rangle$			

表 1.4.5-1 トンネル 耐震評価候補断面の特徴

(2) 評価対象断面の選定

各耐震評価候補断面位置において1次元地震応答解析を実施し、トンネル覆工軸線の上端と下端の相対変位とトンネル中心位置の加速度を確認する。評価に使用する地震波は、 全周期帯にわたって加速度応答スペクトルが大きいS_s-D1を代表波として用いる。

表 1.4.5-2 に 1 次元地震応答解析結果を,図 1.4.5-4 に 1 次元地震応答解析モデルを示す。

L1 地点とL2 地点の結果を比較すると、トンネル深さが深いL2 地点の方が相対変位及 び加速度は大きくなる傾向にある。一方、L2 地点とL3 地点の結果を比較すると、埋戻土 の層厚が薄いL2 地点の方が相対変位及び加速度は大きくなる傾向にある。

これらのことから、トンネル位置が深くなるとトンネルの耐震評価が厳しくなる傾向に なることが考えられる。同様に、埋戻土の層厚が薄くなるとトンネルの耐震評価が厳しく なる傾向になることが考えられる。

そこで、L2 地点の地層構成において、トンネル位置を最も深い位置に設定した1次元 地震応答解析モデル(L2'モデル)と、L3 地点における埋戻土の層厚を最も薄くした1 次元地震応答解析モデル(L3'モデル)を作成して1次元地震応答解析を実施した結果、 L3'モデルにおける最大相対変位及び最大加速度が最大となった。

	トンネル	トンネル	トンネル	トンネル上端と下端	トンネル中心			
地点	上端標高*	中心標高	下端標高*	の最大相対変位	の最大加速度			
	EL. (m)	EL. (m)	EL. (m)	(mm)	(cm/s^2)			
トンネル始点 L1	-17.1	-20.0	-22.9	4.06	328			
止水壁位置 L2	-21.2	-24.1	-27.0	4.86	334			
トンネル終点 L3	-21.4	-24.3	-27.2	3. 56	314			
止水壁位置 L2'	-21.4	-24.3	-27.2	4.87	336			
トンネル終点 L3'	-21.4	-24.3	-27.2	5. 02	348			

表 1.4.5-2 1 次元地震応答解析結果(S_s-D1)

注記 *:トンネル覆工軸線における値

(3) 断面選定結果

(2)より,1次元地震応答解析結果の最大相対変位及び最大加速度が最も大きいL3'モデルを評価対象とする。評価対象断面の選定結果を表1.4.5-3に,評価対象断面図を図1.4.5-5に示す。

地点	要求性能	構造的特徴	周辺地質	間接支持する	既工認	今回工認	選定結果	
				<u></u> 	『半1四 外 1	■ 計1111 四月1111		
トンネル		・内径 4.6 m, 覆工厚 1.2 m	・ 単般及び 第四 幻 層が	・軽油移送配管			1次元地震応答解析	
始点	間接支持	の円形トンネル	「石盛及い第四礼層が	・水配管	—	—	結果により、評価対	
L1		・トンネル深さが浅い	はは小平成唐に分布	・電気ケーブル			象断面としない	
止水壁		・内径 4.6 m, 覆工厚 1.2 m	・岩盤及び第四紀層が					
位置	同上	の円形トンネル	ほぼ水平成層に分布	同上	—	—	同上	
L2		・トンネル深さが深い	・埋戻土の層厚が薄い					
トンネル		・内径 4.6 m, 覆工厚 1.2 m	田戸上の屋頂が具ま					
終点	同上	の円形トンネル	・ 埋 戻 工 の	同上	_	—	同上	
L3		・トンネル深さが最も深い	厚い					
止水壁		・内径 4.6 m, 覆工厚 1.2 m	・岩盤及び第四紀層が					
位置	同上	の円形トンネル	ほぼ水平成層に分布	同上	_	—	同上	
L2'		・トンネル深さが最も深い	・埋戻土の層厚が薄い					
トンネル		・内径 4.6 m, 覆工厚 1.2 m	山町五小谷田石之				1次元地震応答解析	
終点	同上	の円形トンネル	・石盛及い弗四花層か	同上	—	0	結果により,評価対	
L3'		・トンネル深さが最も深い	ほほ小半成層に分布				象断面とする	

表 1.4.5-3 トンネル 評価対象断面の選定結果

○:耐震評価を実施 -:耐震評価を省略

36

図 1.4.5-5 トンネルの評価対象断面図(L3')

1.4.7 常設代替高圧電源装置用カルバート(カルバート部)の断面選定の考え方
 図1.4.7-1に常設代替高圧電源装置用カルバート(カルバート部)(以下,「カルバート」という。)の平面配置図を示す。

カルバートは、軽油移送配管、水配管及び電気ケーブルの間接支持機能を有する。

カルバートは,軽油移送配管を支持するカルバート(以下,「軽油カルバート」という。)と水配管及び電気ケーブルを支持するカルバート(以下,「水電気カルバート」という。)の2つの構造物に大別される。軽油カルバートは1層2連カルバート状の鉄筋コンクリート構造物であり,延長5.0 m,幅5.5 m,高さ7.5 mである。構造物は,杭基礎を介して十分な支持性能を有する岩盤に設置する。

水電気カルバートは1層3連カルバート状の鉄筋コンクリート構造物であり,延長約 35 m,幅13.9 m,高さ6.7 mである。構造物は,杭基礎を介して十分な支持性能を有す る岩盤に設置する。

図 1.4.7-1(1) カルバートの平面配置図(全体平面図)

図 1.4.7-1(2) カルバートの平面配置図(拡大図)

図1.4.7-2図にカルバートの平面図を示す。

カルバートの東西方向については,東側に堅固な原子炉建屋が存在し地震時の変形が拘 束されることや,耐震評価上,変形抑制効果を考慮できる壁部材が多く存在することから 強軸断面方向と考えられる。よって,弱軸断面方向である南北方向について整理を行っ た。

図 1.4.7-3(1)にカルバートの断面図(①--①断面)を示す。

①一①断面は軽油移送配管及び水・電気配管を間接支持するカルバート2基が含まれる。 カルバートは 杭基礎を介して十分な支持性能を有する岩盤に支持されている。 安定性 を保つためカルバート下部及び周辺に地盤改良(セメント改良)を実施する。なお、軽油 カルバートの下部及び水電気カルバートの下部にはサブドレンが位置しており、その範囲 については地盤改良を実施しない。

図 1.4.7-3 (1) カルバートの断面図 (①--①断面)

図 1.4.7-3(2)にカルバートの断面図(2-2)断面)を示す。

②一②断面は3連のボックスカルバート構造である。水電気カルバートは杭基礎を介して十分な支持性能を有する岩盤に支持されている。安定性を保つため構造物の下部及び周辺に地盤改良(セメント改良)を実施する。

図 1.4.7-3 (2) カルバートの断面図 (2-2)断面)

図 1.4.7-3(3) にカルバートの断面図(③-③断面)を示す。

③一③断面は南北方向に位置する中壁付近の断面であり、耐震評価上、中壁の変形抑制 効果を考慮することができる断面である。水電気カルバートは杭基礎を介して十分な支持 性能を有する岩盤に支持されている。安定性を保つため構造物の下部及び周辺に地盤改良 (セメント改良)を実施する。

図 1.4.7-3 (3) カルバートの断面図 (③-③断面)

図 1.4.7-3(4)にカルバートの断面図(④-④断面)を示す。

④一④断面は南北方向に中壁が存在する断面であり、耐震評価上、側壁変形抑制する考慮することができる断面である。水電気カルバートは杭基礎を介して十分な支持性能を有する岩盤に支持されている。安定性を保つため構造物の下部及び周辺に地盤改良(セメント改良)を実施する。

図 1.4.7-3(4) カルバートの断面図(④-④断面)

図1.4.7-4にカルバートの地質断面図を示す。

(1) 耐震評価候補断面の整理

「1.4.1 方針 ①耐震評価候補断面の整理」に従い,耐震評価候補断面を整理する。 耐震評価候補断面の特徴を表 1.4.7-1 に示す。

方向	断面	要求性能	構造的特徴	間接支持 する設備
	1-1	間接支持	 ・杭基礎を介して十分な支持性能を有 する岩盤に設置する。 ・カルバート下部及び周辺に地盤改良 (セメント改良)を実施する。 ・軽油カルバートの下部及び水電気カ ルバートの下部に地盤改良を実施し ない範囲がある。(埋戻し層が分 布) 	 ・軽油移送配管 ・水配管 ・電気ケーブル
· 南北	2-2	同上	 ・杭基礎を介して十分な支持性能を有 する岩盤に設置する。 ・構造物の下部及び周辺に地盤改良 (セメント改良)を実施する。 ・立坑が隣接する。 	・水配管 ・電気ケーブル
	3-3	同上	 ・杭基礎を介して十分な支持性能を有 する岩盤に設置する。 ・構造物の下部及び周辺に地盤改良 (セメント改良)を実施する。 ・立坑が隣接する。 ・耐震評価上,中壁の変形抑制効果を 考慮できる。 	同上
	4-4	同上	 ・杭基礎を介して十分な支持性能を有 する岩盤に設置する。 ・構造物の下部及び周辺に地盤改良 (セメント改良)を実施する。 ・立坑が隣接する。 ・中壁位置の断面 	同上

表 1.4.7-1 カルバート 耐震評価候補断面の特徴

(2) 評価対象断面の選定

①-①断面は、カルバートについて耐震評価上、変形抑制効果を考慮することができる 壁部材から離れているため、①-①断面を評価対象断面とする。

また,この断面を選定することで,軽油カルバートの弱軸断面方向に対する耐震評価も 同時に行うことができる。

②-②断面は南側に堅固な立坑が隣接することから、①-①断面と比較しカルバート構造の変形抑制効果を考慮できる。よって①-①断面と比較して耐震裕度が見込めるため、 評価対象断面としない。

③一③断面及び④一④断面は南側に堅固な立坑が隣接すること,耐震評価上,カルバー ト構造の中壁及び側壁の変形抑制効果を考慮できることから,①一①断面と比較して耐震 裕度が見込めるため,評価対象断面としない。

(3) 断面選定結果

(2)より,南北方向の①-①断面を評価対象断面とする。評価対象断面の選定結果を表 1.4.7-2に,評価対象断面図を図1.4.7-5に示す。

なお、耐震評価における解析モデルでは、地盤改良体非着底部のうち、地盤改良体着底 部が奥に位置する箇所は、厚さを薄くした(剛性を低くした)平面要素を配置すること で、奥行き方向の地盤改良効果を考慮する。

方向	断面	要求性能	構造的特徴	間接支持する	既工認	今回工認	译定結果	
2010	ыц	又不正記		設備		評価断面		
			・杭基礎を介して十分な支持性能を有する岩盤に設置					
			・カルバート下部及び周辺に地盤改良(セメント改 自)を実施する	・軽油移送配管			変形抑制効果を考慮できる壁部材	
	1-1	間接支持	K) を大加する。	・水配管	-	0	から離れているため評価対象断面	
			・ 軽加スルン・ 下の + 部及の示電ススルン・ 下の + 部	・電気ケーブル			に選定	
			分布)					
	2-2		・杭基礎を介して十分な支持性能を有する岩盤に設置				弱軸断面方向であるが、①-①断	
		同上	・構造物の下部及び周辺に地盤改良(セメント改良)	・水配管			面と比較して, 隣接する立坑の変	
			<mark>を実施する。</mark>	・電気ケーブル			形抑制効果を考慮できるため評価	
あま			・立坑が隣接				対象断面としない	
17176		同上	・杭基礎を介して十分な支持性能を有する岩盤に設置				弱軸断面方向であるが、①-①断	
			・構造物の下部及び周辺に地盤改良(セメント改良)				面と比較して, 隣接する立坑の変	
	3-3		<mark>を実施する。</mark>	同上	_	_	形抑制効果を考慮できる。さら	
			・立坑が隣接				に, 耐震壁の変形抑制効果も考慮	
			・耐震評価上,中壁の変形抑制効果を考慮できる				できるため評価対象断面としない	
			・杭基礎を介して十分な支持性能を有する岩盤に設置					
			・構造物の下部及び周辺に地盤改良(セメント改良)					
	4-4	同上	<mark>を実施する。</mark>	同上	_	_	同上	
			・立坑が隣接					
			・中壁位置の断面					

表 1.4.7-2 カルバート 評価対象断面の選定結果

○:耐震評価を実施 -:耐震評価を省略

図 1.4.7-5(1) カルバートの評価対象断面(①-①断面)

1.4.10 常設低圧代替注水系配管カルバートの断面選定の考え方

図1.4.10-1に常設低圧代替注水系配管カルバート平面配置図及び地質断面図を示す。 常設低圧代替注水系配管カルバートは原子炉建屋の南側に設置し常設低圧代替注水ポンプ 室と原子炉建屋間をつなぐ常設低圧注水系配管の間接支持機能を有する。

常設低圧代替注水系配管カルバートは,延長20.1 m,内空及び内空高さ2.3 mの一連のボ ックスカルバート構造の鉄筋コンクリート造で,人工岩盤を介して十分な支持性能を有する 岩盤に設置する。

図 1.4.10-1(1) 常設代替注水配管カルバート 平面位置図(全体平面図)

図 1.4.10-1 (2) 常設代替注水配管カルバート 平面位置図(拡大図)

図1.4.10-1(3) 常設低圧代替注水系配管カルバート地質断面図(B-B断面)

図 1.4.10-1(4) 常設低圧代替注水系配管カルバート地質断面図(A-A断面)

C-C断面を図1.4.10−1(5)に示す。C-C断面は、原子炉建屋施工時の掘削形状により、岩盤上面に D2g-3 層が一部残っており、その上部に埋戻土が地表面まで分布している。

図1.4.10-1(5) 常設低圧代替注水系配管カルバート地質断面図(C-C断面)

図 1.4.10-2 及び図 1.4.10-3 に常設低圧代替注水系配管カルバートの平面図及び断面図を示 す。

図 1.4.10-2 常設代替注水配管カルバート 平面図

図1.4.10-3 常設低圧代替注水系配管カルバート断面図(東西方向断面)

(1) 耐震評価対象断面の整理

1.4.1 「方針①耐震評価断面候補の整理」に従い,耐震評価候補断面を整理する。 耐震評価断面の特徴を表 1.4.10-1 に示す。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備
東西方向 A-A 断面	間接支持	 ・ボックスカルバート 構造の鉄筋コンク リート構造物 ・人工岩盤を介して岩 盤に設置する 	岩盤上面に埋戻土が分布 する	常設低圧注水系配管
東西方向 C-C 断面	同上	同上	岩盤上面に D2g-3 層が分 布し,その上部に埋戻土 が分布する	

表1.4.10-1 常設低圧代替注水系配管カルバート耐震評価候補断面の特徴

常設低圧代替注水系配管カルバートは,鉄筋コンクリート造の単純な線状構造物であるため,軸方向(南北方向)が強軸断面方向,軸直角方向(東西方向)が弱軸断面方向になる。 A-A断面は岩盤上面に埋戻土が地表面まで分布する。 C-C断面は,原子炉建屋施工時の掘削形状により,岩盤上面に D2g-3 層が一部残ってお

り、その上部に埋戻土が地表面まで分布している。

(2) 耐震評価対象断面の選定

常設低圧代替注水系配管カルバートは,弱軸断面方向である東西方向の断面から評価対象 断面を選定する。

A−A断面は,岩盤上部に f1 層が広く分布している。C−C断面は, D2g-3 層がカルバー ト構造物底面より十分低い位置に分布し, D2g-3 層上部に f1 層が広く分布していることから, A−A断面及びC−C断面は,概ね類似の地盤構成である。

しかし、A-A断面は、液状化強度が D2g-3 層に比較してやや低い f1 層が地盤深度方向に C-C断面よりも広範囲に分布しており、地震時地盤変位が比較的大きい傾向にある f1 層に よる動土圧の受圧面積が大きいことから、構造全体の変形による影響が厳しくなると考えら れる。

よって、A-A断面を評価対象断面とする。

(3) 断面選定結果

常設低圧代替注水系配管カルバートの耐震評価対象断面位置の選定結果を表 1.4.10-2 に、評価対象断面を図 1.4.10-5 に示す。

断面	要求性能	構造的特徴	周辺地質	間接支持 する設備	既工認 評価断面	今回工認 評価断面	選定結果
東西方向 A-A 断面	間接支持 機能	 ・ボックスカルバート構 造の鉄筋コンクリート 構造物 ・人工岩盤を介して岩盤 に設置する 	岩盤上面に埋戻土 が分布する	常設低圧 注水系配 管	_	0	構造全体の変形による影 響が厳しくなると考えら れる A-A 断面を評価対象 断面として採用する。
<mark>東西方向</mark> <mark>C-C</mark> 断面	<mark>同上</mark>	<mark>同上</mark>	岩盤上面に D2g-3 層が分布*し,そ の上部に埋戻土が 分布する	<mark>常設低圧</mark> <mark>注水系配</mark> 管	-	—	_

表 1.4.10-2 常設低圧代替注水系配管カルバート 耐震評価対象断面の選定結果

*:施工時の開削範囲を考慮すると,D2g-3層は構造物周囲には分布しない。

1.11 屋外重要土木構造物の耐震評価における追加検討ケースの選定について

目 次

1.	評	価方針	2
2.	評	価結果	4
2	2.5	常設代替高圧電源装置用カルバート(立坑部)	4

1. 評価方針

耐震評価においては、全ての基準地震動Ssに対して実施する①の検討ケース(基本ケース)に おいて、せん断力照査及び曲げ軸力照査をはじめとした全ての評価項目について、各照査値が最も 厳しい(許容限界に対する余裕が最も小さい)地震動を用い、②~⑥より追加検討ケースを実施す る。最も厳しい地震動の選定は、照査値1.0に対して2倍の余裕となる照査値0.5以上を相対的に 厳しい地震動の選定の目安として実施する。

②~⑥より追加検討ケースを実施する地震動の選定フローを図1-1に、屋外重要土木構造物の 耐震評価及び波及的影響を及ぼすおそれのある下位クラスの土木構造物の耐震評価における検討 ケースを図1-2及び表1-1に示す。

図1-2 屋外重要土木構造物の耐震評価における検討ケース

検討ケース	 ① 原地盤に基づく液状化強度 特性を用いた 解析ケース (基本ケース) 	② 地盤物性のば らつきを考慮 (+1 σ)し た解析ケース	③ 地盤物性のば らつきを考慮 (-1 σ)し た解析ケース	④ 地盤を強制的 に液状化させ ることを仮定 した解析ケー ス	⑤原地盤において非液状化の条件を仮定した解析ケース	 ⑥ 地盤物性のば らつきを考慮 (+1σ)し て非液状化の 条件を仮定し た解析ケース
液状化強度 特性の設定	原 地 盤 に 基 づく 液 状 化 強度特性(標 準 偏 差 を 考 慮)	原 地 盤 に 基 づく 液 状 化 強度特性(標 準 偏 差 を 考 慮)	原 地 盤 に 基 づく 液 状 化 強度特性(標 準 偏 差 を 考 慮)	 敷地に存在 しない豊浦 標準砂に基 づく液状化 強度特性 	液状化パラ メータを非 適用	液 状 化 パ ラ メ ー タ を 非 適用

表 1-1 耐震評価における検討ケース

2. 評価結果

- 2.5 常設代替高圧電源装置用カルバート(立坑部)
 - 2.5.1 照査位置及び仕様

(立坑東西方向断面)

図 2.5-1 常設代替高圧電源装置用カルバート(立坑部)の照査位置図

図 2.5-2(2) 概略配筋図(主筋) 立坑東西方向断面

図 2.5-3(1) 概略配筋図(せん断補強筋)

	仕	様	材料	화	
部位	部材幅 (m)	部材高 (m)	コンクリート f 'ck (N/mm²)	鉄筋	
鉛直断面	16.500	12 500	40	SD490	
(南北方向 B1F)	10.000	10.000		50100	
鉛直断面	16 500	12 500	40	SD490	
(南北方向 B2F)	10.000	12.000	10	50490	
鉛直断面	16.500	12 500	40	SD490	
(南北方向 B3F)	10.000	12.000	10	00130	
鉛直断面	16 500	12 500	40	SD/190	
(南北方向 B4F)	10.000	12.000	UT UT	50430	
鉛直断面	16 500	12 500	40	SD/190	
(南北方向 B4F トンネル部)	10.300	12. 500	40	50450	
鉛直断面	16 500	12 500	40	SD/190	
(南北方向ピット部)	10.000	12.000	UT UT	50430	
鉛直断面	12 500	16 500	40	SD400	
(東西方向 B1F)	12.300	10.000	40	50450	
鉛直断面	12 500	16 500	40	SD/190	
(東西方向 B2F)	12.000	10.000	U U	50430	
鉛直断面	12 500	16 500	40	SD/190	
(東西方向 B3F)	12.000	10.000	U U	50430	
鉛直断面	12 500	16 500	40	SD/190	
(東西方向 B4F)	12.000	10.000	U U	50430	
鉛直断面	12 500	16 500	40	SD400	
(東西方向 B4F トンネル部)	12.300	10.000	40	50450	
鉛直断面	12 500	16 500	40	SD/190	
(東西方向ピット部)	12.000	10.000	40	50490	

表 2.5-1 構造仕様(鉄筋コンクリート)

2.5.2 評価結果

2.5.2-1 評価結果(鉛直断面の検討ケース選定)

図2.5-4に鉛直断面検討ケース選定フローを示す。

鉛直断面の照査結果については、検討ケース①(基本ケース)については基準地震動全ケース(12ケース)の結果を記載する。また、検討ケース②~⑥の照査結果については、検討ケース①(基本ケース)において鉛直断面の照査値(鉄筋曲げ引張)及びせん断力が最大となる基準地震動について鉛直断面照査を行い、検討ケース②~⑥で鉄筋の曲げ引張の照査値及びせん断力が最大となる解析ケースについて照査結果を記載する。

表 2.5-2 に基本検討ケース①鉛直鉄筋の曲げ引張に関する照査値及びせん断力を示す。

本立坑においては,鉛直断面を立坑高さ方向に6断面に分割して応力度照査を実施している。そのうち曲げ引張の照査値及びせん断力は東西方向 B4F が最大となり,他断面については曲げ引張の照査値及びせん断力が小さいことから,東西方向 B4F を代表断面として基準地震動の選定を行う。

表2.5-3及び表2.5-4に検討ケース①~⑥における立坑鉛直断面照査結果を示す。

検討ケース①においてS_s-D1 (H+, V+)のときに鉛直断面の照査値が最大となった。検討ケース②~⑥について、S_s-D1 (H+, V+)を入力地震動とした2次元有効応力解析を実施し、検討ケース②~⑥の照査結果を比較したところ、検討ケース④の曲げ引張の照査値及びせん断力が最大となることから、検討ケース②~⑥については検討ケース④の結果を代表として照査結果を記載する。

図 2.5-4 鉛直断面検討ケース選定フロー

表 2.5-2(1) 検討ケース①(基本ケース)における立坑鉛直断面照査値

					曲に	『軸力照査	(鉄筋曲	げ引張)						
	価位置			NSZ	方向			EW方向						
地震動		B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	最大
	++	0.01	0.02	0.04	0.04	0.00	0.00	0.01	0.02	0.05	0.15	0.06	0.02	0.15
() S D 1	+-	0.01	0.02	0.03	0.04	0.00	0.00	0.01	0.01	0.03	0.11	0.04	0.01	0.11
US _s -D1	-+	0.01	0.03	0.05	0.01	0.00	0.00	0.01	0.01	0.05	0.14	0.06	0.01	0.14
		0.01	0.02	0.04	0.01	0.00	0.00	0.00	0.01	0.05	0.13	0.06	0.01	0.13
① S _s - 1 1		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$(1) S_s - 1 2$		0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
① S _s - 1 3		0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
$(1) S_{s} - 1 4$		0.00	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
$(1) S_s - 2 1$		0.01	0.01	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02
$(1) S_{s} - 2 2$		0.01	0.01	0.03	0.03	0.00	0.00	0.00	0.00	0.01	0.01	0.00	0.00	0.03
0.8 21	++	0.00	0.01	0.02	0. 01	0.00	0.00	0.00	0.00	0.01	0.04	0.01	0.00	0.04
US _s -31	-+	0. 01	0.01	0.02	0. 02	0.00	0.00	0.00	0.00	0.01	0.03	0. 01	0.00	0.03
最大		0.01	0.03	0.05	0.04	0.00	0.00	0.01	0.02	0.05	0.15	0.06	0.02	0.15

	せん断照査(発生せん断力)													
	何年位署			NS7	方向		EW方向							
地震動		B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	B1F	B2F	B3F	B4F	B4F トンネル部	ピット部	最大
	++	1157	1088	1217	3744	3687	3386	1147	2647	4200	5763	2295	2457	5763
<u> </u>	+-	1155	1085	1224	3796	3680	3325	1139	2608	4152	5692	2299	2449	5692
US _s -D1	-+	1129	1644	1815	3441	3431	3284	1290	2763	4362	5524	2075	2302	5524
		1144	1643	1797	3432	3415	3270	1300	2816	4421	5495	2071	2312	5495
① S _s - 1 1		368	430	573	1808	1794	1637	515	723	1092	1662	1528	1546	1808
(]) S _s - 1 2		779	691	727	3194	3192	3015	750	1107	1757	2597	1834	1869	3194
① S _s - 1 3		750	657	788	3089	3086	2926	709	1023	1626	2579	1775	1809	3089
$(])$ S $_{s} - 1$ 4		579	414	470	2576	2583	2493	434	786	1279	1927	1864	1926	2583
$(])$ S $_{s} - 2 1$		888	1067	1199	3364	3350	3117	646	1237	1892	2426	1525	1663	3364
① S _s - 2 2		804	1036	1132	2976	2932	2656	783	1573	2489	3531	1902	1944	3531
0.0 2.1	++	1013	1493	1612	3765	3720	3456	1132	2269	3809	5175	2155	2225	5175
US _s -31	-+	1038	906	1216	3829	3795	3488	1027	2252	3631	5404	2455	2420	5404
最大		1157	1644	1815	3829	3795	3488	1300	2816	4421	5763	2455	2457	5763

表 2.5-2(2) 検討ケース①(基本ケース)における立坑鉛直断面せん断力

表 2.5-3 検討ケース①~⑥における立坑鉛直断面照査結果(東西方向 B4F)

		-					
検討	」 ケース		曲に	げ軸力照査((鉄筋曲げ引き	脹)	
地震動		1	2	3	(4)	5	6
	++	0.15	0.15	0.15	0.39	0.02	0.02
	+-	0.11					
S _s – D 1	-+	0.14					
		0.13					
S _s -11		0.00					
$S_{s} - 12$		0.00					
S _s -13		0.00					
$S_{s} - 14$		0.00					
$S_{s} - 21$		0.00					
S _s - 2 2		0.01					
S _s -31	++	0.04					
	-+	0.03					

表 2.5-4 検討ケース①~⑥における立坑鉛直断面せん断力(東西方向 B4F)

検討	ケース		せ	ん断照査(多	発生せん断力	1)	
地震動		1	2	3	4	5	6
	++	5763	5977	5635	8199	5121	5096
C D1	+-	5692					
S _s -DI	-+	5524					
		5495					
S _s - 1 1		1662					
S _s -12		2597					
S _s -13		2579					
S _s -14		1927					
S _s -21		2426					
S _s -22		3531					
++		5175					
S _s -31	-+	5404					

2.5.2-2 評価結果(各構造部材照査に着目した検討ケース選定)

(1) 立坑南北方向断面

2.5.2-1 で選定した,基準地震動全ケース(12 ケース)と検討ケース④S_s-D1(H+, V +)計13ケースについて、曲げ軸力、せん断力照査値を示す。

> (曲げ軸力照査(コンクリート曲げ圧縮),立坑南北方向断面) (南北方向 B1F) (南北方向 B2F)

検許	ケース		曲げ軸ナ	5照査(コン	クリート曲	げ圧縮)	
地震動		1	2	3	4	5	6
	++	0.02			0.02		
8 - D 1	+-	0.02					
5 _s - D 1	-+	0.02					
		0.02					
S _s - 1 1		0.01					
$S_s - 1.2$		0.02					
$S_{s} = 1.3$		0.02					
$S_{s} - 1.4$		0.02					
$S_s - 2.1$		0.02					
S _s - 2 2		0.02					
S _s - 3 1	++	0.02					
	-+	0.02					

曲げ軸力照査 (コンクリート曲げ圧縮) 検討ケース 地震動 (4) (2)6 ++0.05 0.05 + -0.05 $\rm S_s-D~1$ 0.06 0.06 S_s - 1 1 0.03 $S_{s} - 12$ 0.04 $S_{s} - 1 3$ $S_{s} - 1 4$ 0.04 0.03 S $_{\rm s}-2$ 1 0.05 S - 2.20.05 + +0.05 S $_{\rm s}-3$ 1 + 0.04

(南北方向 B4F)

(2)

曲げ軸力照査 (コンクリート曲げ圧縮)

4

0.08

(南北方向 B3F)

	ケース		曲げ軸フ	5照査(コン	クリート曲	げ圧縮)	
地震動		1	2	3	4	5	6
	+ +	0.05			0.05		
0 D.I	+ -	0.05					
S _s - D1	-+	0.06					
		0.06					
S _s - 1 1		0.03					
$S_s - 1.2$		0.03					
$S_s - 1.3$		0.04					
$S_{s} - 1.4$		0.03					
S _s -21		0.04					
S _s - 2 2		0.04					
S _s - 3 1	++	0.05					
	-+	0.04					

(南北方向 B4F トンネル部)

検許	†ケース		曲げ軸フ	5照査(コン	クリート曲	げ圧縮)	
地震動		1	2	3	4	5	6
	++	0.07			0.07		
C D1	+-	0.08					
3 s - D I	-+	0.08					
		0.08					
S _s - 1 1		0.07					
$S_s - 1.2$		0.07					
$S_s - 1.3$		0.07					
$S_{s} - 1.4$		0.07					
$S_s - 2.1$		0.07					
$S_s - 2.2$		0.08					
C 0.1	++	0.07					
$S_{s} - 31$	-+	0.07					

(南北方向ピット部)

-+ 0.07

④:地盤を強制的に液状化させることを仮定した解析ケース

1

0.08

0.08

0.08 0.08

0.06 0.07

0.06

0.06

0.07 0.08

0.07

検討ケース

++

地震動

 $S_s - D1$

 $S_{s} - 1 1$

S $_{\rm s}-1$ 2

 $\rm S_s-1~3$ $S_{s} - 1.4$

S_s - 2 1

 $S_{s} - 2.2$

 $S_{s} - 31$

検許	ケース		曲げ軸フ	b照査(コン	クリート曲	げ圧縮)	
地震動		1	2	3	4	5	6
	++	0.07			0.06		
C D1	+-	0.07					
S _s -D1	-+	0.07					
		0.07					
S _s -11		0.06					
$S_s - 1.2$		0.06					
$S_s - 1.3$		0.06					
$S_s - 1.4$		0.06					
$S_s - 2.1$		0.06					
$S_s - 2.2$		0.07					
0 2 1	++	0.06					
5 5 - 3 1	-+	0.06					

※検討ケース

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース) ②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

③: 地盤物性のばらつきを考慮(-1σ)した解析ケース
 ⑤: 原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

(曲げ軸力照査(鉄筋曲げ引張),立坑南北方向断面)

(南北方向 B1F)

(南北方向 B2F)

検許	サケース		曲に	げ軸力照査((鉄筋曲げ引き	脹)	
地震動		1	2	3	4	5	6
	++	0.01			0.01		
S - D 1	+-	0.01					
3 _s -D1	-+	0.01					
		0.01					
S _s - 1 1		0.00					
$S_s - 1.2$		0.00					
$S_{s} - 1.3$		0.00					
$S_{s} - 1.4$		0.00					
$S_s - 2.1$		0.01					
S _s - 2 2		0.01					
	++	0.00					
5,-31	-+	0.01					

曲げ軸力照査(鉄筋曲げ引張) 検討ケース 地震動 3 4 ++0.02 0.02 + 0.02 $S_s - D1$ 0.03 0.02 $S_{s} - 1.1$ 0.00 $S_s - 1.2$ 0.01 $\frac{S_{s} - 13}{S_{s} - 14}$ 0.01 0.00 S $_{\rm s}-2$ 1 0.01 $S_{-} - 2.2$ 0.01 0.01 S $_{\rm s} = 3.1$ 0.01

(南北方向 B3F)

検診	iケース		曲に	げ軸力照査(鉄筋曲げ引き	脹)	
地震動		1	2	3	4	5	6
	++	0.04			0.04		
8 -D1	+-	0.03					
3 s - D 1	-+	0.05					
		0.04					
S _s -11		0.00					
$S_{s} - 12$		0.01					
$S_{s} - 13$		0.01					
$S_{s} - 1.4$		0.01					
S _s -21		0.02					
S _s - 2 2		0.03					
0.01	++	0.02					
3,-31	-+	0.02					

(南北方向 B4F トンネル部)

検診	サケース		曲に	げ軸力照査((鉄筋曲げ引き	脹)	
地震動		1	2	3	4	5	6
	++	0.00			0.00		
6 D1	+-	0.00					
3 _s -D1	-+	0.00					
		0.00					
S _s - 1 1		0.00					
$S_s - 1.2$		0.00					
$S_{s} - 1.3$		0.00					
$S_{s} - 1.4$		0.00					
$S_s - 2.1$		0.00					
S _s - 2 2		0.00					
S _s - 3 1	++	0.00					
	-+	0 00					

(南北方向 B4F)

\sim							
検許	ケース		曲に	げ軸 力照査 ((鉄筋曲げ引き	脹)	
地震動		1	2	3	4	5	6
	++	0.04			0.04		
8 - D 1	+-	0.04					
S _s -DI	-+	0.01					
		0.01					
S _s -11		0.00					
$S_{s} - 1.2$		0.01					
$S_{s} - 1.3$		0.01					
$S_{s} - 1.4$		0.01					
$S_{s} - 2.1$		0.02					
S s - 2 2		0.03					
6 9 1	++	0.01					
5 - 31	-+	0.02					

(南北方向ピット部)

検許	ケース	曲げ軸力照査(鉄筋曲げ引張)						
地震動		0	2	3	4	5	6	
	++	0.00			0.00			
6 D.I	+ -	0.00						
5 _s – D 1	-+	0.00						
		0.00						
$S_{s} - 1 1$		0.00						
$S_{s} - 12$		0.00						
$S_{s} - 1.3$		0.00						
S _s -14		0.00						
$S_s - 2.1$		0.00						
$S_{s} - 2.2$		0.00						
0.01	+ +	0.00						
S _s -31	-+	0.00						

※検討ケース

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)
 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース
 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ④:地盤を強制的に液状化させることを仮定した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

曲げ軸力照査(鉄筋曲げ引張)結果は、検討ケース①(基本ケース)の全ての照査値が0.50以下 である(最大照査値は、南北方向 B3F, S_s-D1 (-+) で 0.05)。

(せん断力照査, 立坑南北方向断面)

(南北方向 B1F)

(南北方向 B2F)

検許	ケース			せん断	力照査		
地震動		1	2	3	4	5	6
	++	0.14			0.15		
8 - D 1	+-	0.14					
S _s -D1	-+	0.14					
		0.14					
$S_{s} - 1.1$		0.05					
$S_s - 1.2$		0.10					
$S_{s} - 1.3$		0.09					
$S_{s} - 1.4$		0.07					
$S_s - 2.1$		0.11					
$S_{s} - 2.2$		0.10					
6 9 1	++	0.12					
5,-31	-+	0.13					

せん断力照査 検討ケーフ 地震動 4 0.12 0.14 ++0.12 + $S_s - D1$ 0.18 0.18 $S_{s} = 1.1$ 0.05 $S_s - 1.2$ 0.08 $S_{s} = 1.3$ 0.07 $S_{s} - 1.4$ 0.05 S $_{\rm s}-2$ 1 0.12 S - 2.20.11 0.16 $S_{s} - 31$ 0.10

(南北方向 B3F)

検許	オケース		せん断力照査							
地震動		1	2	3	4	5	6			
	++	0.12			0.15					
8 -D1	+-	0.13								
5 s - D 1	-+	0.18								
		0.18								
S _s -11		0.06								
$S_s - 1.2$		0.08								
$S_{s} = 1.3$		0.08								
$S_{s} - 1.4$		0.05								
$S_s - 2.1$		0.12								
S _s - 2 2		0.12								
C 0.1	++	0.16								
3,-31	-+	0.12								

(南北方向 B4F トンネル部)

検許	ケース			せん断	7力照査		
地震動		1	2	3	4	5	6
	++	0.34			0.35		
C DI	+-	0.34					
5 _s – D 1	-+	0.32					
		0.32					
$S_{s} - 1 1$		0.17					
$S_s - 12$		0.30					
$S_{s} - 1 3$		0.29					
$S_{s} - 14$		0.24					
$S_s - 2.1$		0.31					
$S_s - 2.2$		0.27					
6 9 1	++	0.35					
$S_{s} = 3.1$	-+	0.35					

検許	すケース			せん断	力照査		
地震動		0	2	3	4	5	6
	++	0.23			0.24		
8 - D 1	+-	0.23					
S _s -D1	-+	0.21					
		0.21					
S _s - 1 1		0.11					
$S_s - 1.2$		0.19					
$S_{s} - 1.3$		0.19					
$S_{s} - 1.4$		0.16					
$S_{s} - 2.1$		0.20					
S _s - 2 2		0.18					
0 0 1	+ +	0.23					
5 - 31	-+	0.23					

(南北方向 B4F)

(南北方向ピット部)

検許	サケース			せん断	力照査		
地震動		0	2	3	4	5	6
	++	0.27			0.27		
0 D.	+ -	0.27					
S _s -D1	-+	0.26					
		0.26					
$S_{s} - 1 1$		0.13					
$S_{s} - 1.2$		0.24					
$S_s - 1.3$		0.24					
$S_{s} - 14$		0.20					
$S_s - 2.1$		0.25					
S _s - 2 2		0.21					
0 0 1	+ +	0.28					
$S_{s} = 3.1$	-+	0.28					

※検討ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

せん断力照査結果は、検討ケース①(基本ケース)の全ての照査値が 0.50 以下である(最大照査値は、南北方向 B4F トンネル部、S_s-31(++)及びS_s-31(-+)で 0.35)。

以上より、検討ケース①(基本ケース)において、曲げ軸力、せん断力照査に対する全ての照査 値が 0.50以下であり、かつ、曲げ軸力及びせん断力照査対象の全部材のうち最も厳しい照査値とな った地震動は $S_s - 31(++)$ 及び $S_s - 31(-+)$ である。

検討ケース①(基本ケース)において、曲げ軸力、せん断力照査に対する全ての照査値が 0.50 以下であること、また表 2.5-3、表 2.5-4 より④ケースが卓越することから、構造部材に着目した追加検討ケースは不要である。

1.11 - 14

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)
 ②:地盤物性のばらつきを考慮(+1σ)した解析ケース
 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ④:地盤を強制的に液状化させることを仮定した解析ケース

(2) 立坑東西方向断面(鉄筋コンクリート)

2.5.2-1 で選定した,基準地震動全ケース(12 ケース)と検討ケース④S。-D1(H+, V +)計13ケースについて、曲げ軸力、せん断力照査値を示す。

> (曲げ軸力照査(コンクリート曲げ圧縮),立坑東西方向断面) (東西方向 B1F) (東西方向 B2F)

検討ケース		曲げ軸力照査(コンクリート曲げ圧縮)						
	1	2	3	4	5	6		
++	0.02			0.02				
+-	0.02							
-+	0.02							
	0.02							
	0.02							
	0.02							
	0.02							
	0.01							
	0.02							
	0.02							
++	0.02							
-+	0.02							
	++ ++ -+ ++ ++ ++	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & ++ & 0.02 \\ & +- & 0.02 \\ & -+ & 0.02 \\ & & & \\ & &$	曲げ軸ガ ① ② ++ 0.02 ② +- 0.02 □ -+ 0.02 □ 0.02 □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ ++ 0.02 □ ++ 0.02 □ ++ 0.02 □	曲げ軸力照査(コン ① ② ③ ++ 0.02 ③ +- 0.02 □ -+ 0.02 □ 0.02 □ 0.02 □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ 0.02 □ □ ++ 0.02 □ ++ 0.02 □ ++ 0.02 □	曲げ軸力照査(コンクリート曲) ① ② ③ ④ ++ 0.02 ③ ④ -+ 0.02 ○ ○ -+ 0.02 ○ ○ 0.02 ○ ○ 0.02 ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ 0.02 ○ ○ ○ ++ 0.02 ○ ○ ++ 0.02 ○ ○ -+ 0.02 ○ ○	曲げ軸力照査(コンクリート曲げ圧縮) ① ② ③ ⑤ ++ 0.02 ③ ④ ⑤ +- 0.02 0.02 – -+ 0.02 6 0.02 0.02 0.02		

(東西方向 B3F)

検詐	 ケース		曲げ軸フ	5照査(コン	クリート曲	げ圧縮)	
地震動		1	2	3	4	5	6
	++	0.07			0.11		
6 D1	+-	0.07					
5 s - D I	-+	0.07					
		0.07					
$S_{s} - 11$		0.03					
$S_s - 1.2$		0.04					
$S_s - 1.3$		0.04					
S _s - 1 4		0.03					
$S_s - 2.1$		0.04					
$S_{s} - 2.2$		0.05					
6 9 1	++	0.05					
5 5 - 3 1	-+	0.05					

(東西方向 B4F トンネル部)

検許	サケース	曲げ軸力照査(コンクリート曲げ圧縮)							
地震動		1	2	3	4	5	6		
	++	0.12			0.18				
C D1	+-	0.12							
5 _s - D 1	-+	0.12							
		0.12							
$S_s - 1 1$		0.06							
$S_s - 1.2$		0.07							
$S_s = 1.3$		0.07							
$S_{s} - 1.4$		0.07							
S _s - 2 1		0.07							
$S_s - 2.2$		0.08							
	++	0.09							
S _s - 3 1	-+	0.09							
$\frac{S_{s} - 13}{S_{s} - 21}$ $\frac{S_{s} - 21}{S_{s} - 22}$ $\frac{S_{s} - 31}{S_{s} - 31}$	++	0.07 0.07 0.08 0.09 0.09							

※検討ケース

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース) ②:地盤物性のばらつきを考慮(+1 σ)した解析ケース

③:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

検詐	†ケース		曲げ軸ナ	5照査(コン	クリート曲の	ず圧縮)	
地震動		1	2	3	4	5	6
	++	0.04			0.05		
8 - D I	+-	0.04					
3 _s -D1	-+	0.04					
		0.04					
$S_{s} = 1.1$		0.02					
$S_s - 1.2$		0.03					
$S_{s} - 1.3$		0.03					
$S_{s} - 14$		0.02					
$S_s - 2.1$		0.03					
$S_{s} - 2.2$		0.03					
6 9 1	++	0.03					
5 _s - 31	-+	0.03					

(東西方向 B4F)

検許	サケース	曲げ軸力照査(コンクリート曲げ圧縮)							
地震動		1	2	3	4	5	6		
	++	0.13			0.21				
6 D1	+-	0.13							
5 s - D 1	-+	0.14							
		0.14							
$S_{s} - 1.1$		0.05							
$S_s - 1.2$		0.06							
$S_{s} - 1.3$		0.06							
S _s -14		0.06							
$S_s - 2.1$		0.07							
$S_{s} - 2.2$		0.08							
8 - 21	++	0.09							
5,-31	-+	0.09							

(東西方向ピット部)

-									
検許	[†] ケース	曲げ軸力照査(コンクリート曲げ圧縮)							
地震動		1	2	3	4	5	6		
	++	0.10			0.14				
6 D1	+-	0.10							
S _s -D1 -	-+	0.09							
		0.10							
$S_{s} - 1.1$	-	0.06							
$S_s - 1.2$		0.07							
S _s - 1 3		0.07							
$S_{s} - 1.4$		0.07							
$S_s - 2.1$		0.07							
S s - 2 2		0.08							
6 9 1	++	0.09							
5 5 - 3 1	-+	0.09							

④:地盤を強制的に液状化させることを仮定した解析ケース

(曲げ軸力照査(鉄筋曲げ引張),立坑東西方向断面)

(東西方向 B1F)

(東西方向 B2F)

$k\bar{k}\bar{j}b\bar{b}c-\chi$ $\bar{k}\bar{k}\bar{j}b\bar{b}c-\chi$ $\bar{k}\bar{k}\bar{j}b\bar{b}c-\chi$ $\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}\bar{k}$			曲げ軸力照査(鉄筋曲げ引張)						
地震動		1	2	3	4	5	6		
	++	0.01			0.01				
S - D 1	+-	0.01							
3 s - D 1	-+	0.01							
		0.00							
$S_s - 1 1$	-	0.00							
$S_s - 1.2$		0.00							
$S_{s} - 1.3$		0.00							
$S_{s} - 1.4$		0.00							
$S_s - 2.1$		0.00							
$S_s - 2.2$		0.00							
8 - 2 1	++	0.00							
5,-31	-+	0.00							

曲げ軸力照査(鉄筋曲げ引張) 検討ケース 地震動 3 4 ++0.02 0.04 + -0.01 $S_s - D1$ 0.01 0.01 $S_{s} - 1.1$ 0.00 $S_s - 1.2$ 0.00 $S_{s} - 13$ $S_{s} - 14$ 0.00 0.00 S $_{\rm s}-2$ 1 0.00 $S_{-} - 2.2$ 0.00 0.00 S $_{\rm s} = 3.1$ 0.00

(東西方向 B3F)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
地震動		1	2	3	4	5	6
	++	0.05			0.16		
8 - D 1	+-	0.03					
S _s -D1	-+	0.05					
		0.05					
$S_{s} - 1 1$		0.00					
$S_s - 1.2$		0.00					
$S_{s} - 1.3$		0.00					
$S_{s} - 1.4$		0.00					
$S_s - 2.1$		0.00					
S _s - 2 2		0.01					
C 0.1	++	0.01					
5,-31	-+	0.01					

(東西方向 B4F トンネル部)

検診	ケース		曲に	げ軸力照査 (鉄筋曲げ引き	脹)	
地震動		0	2	3	4	5	6
	++	0.06			0.25		
6 D I	+-	0.04					
5 _s – D 1	-+	0.06					
		0.06					
$S_{s} = 1.1$		0.00					
$S_{s} - 12$		0.00					
$S_{s} = 1.3$		0.00					
$S_{s} - 1.4$		0.00					
$S_s - 2.1$		0.00					
$S_{s} - 2.2$		0.00					
C 2.1	++	0.01					
$5_{s} - 31$	-+	0.01					

(東西方向 B4F) 曲げ軸力昭本(鉄箆曲げ引進)

- 1

検許	サケース		曲に	『軸力照査((鉄筋曲げ引引	脹)	
地震動		0	2	3	4	5	6
	++	0.15			0.39		
8 - D 1	+-	0.11					
S _s -D1	-+	0.14					
		0.13					
S _s - 1 1		0.00					
$S_{s} - 12$		0.00					
$S_{s} - 1.3$		0.00					
S _s -14		0.00					
$S_s - 2.1$		0.00					
S _s - 2 2		0.01					
8 - 2 1	++	0.04					
3,-31	-+	0.03					

(東西方向ピット部)

検許	ケース		曲に	『軸力照査(鉄筋曲げ引き	脹)	
地震動		0	2	3	4	5	6
	++	0.02			0.10		
C D1	+ -	0.01					
5 _s - D 1	-+	0.01					
		0.01					
$S_{s} - 1 1$		0.00					
$S_{s} - 12$		0.00					
$S_{s} - 1.3$		0.00					
$S_{s} - 14$		0.00					
$S_s - 2.1$		0.00					
$S_{s} - 2.2$		0.00					
0 01	+ +	0.00					
$S_{s} = 3.1$	-+	0.00					

※検討ケース

(1):原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)
 (2):地盤物性のばらつきを考慮(+1 σ)した解析ケース
 (3):地盤物性のばらつきを考慮(-1 σ)した解析ケース
 (4):地盤を強制的に液状化させることを仮定した解析ケース
 (5):原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

曲げ軸力照査(鉄筋曲げ引張)結果は、検討ケース①(基本ケース)の全ての照査値が0.50以下 である(最大照査値は,東西方向 B4F, S_s-D1 (++)で 0.15)。

(せん断力照査, 立坑東西方向断面)

(東西方向 B1F)

(東西方向 B2F)

検許	ケース			せん断	力照査		
地震動		1	2	3	4	5	6
	++	0.09			0.11		
8 - D 1	+-	0.09					
S _s -D1	-+	0.10					
		0.10					
$S_{s} - 1.1$		0.04					
$S_s - 1.2$		0.06					
$S_{s} - 1.3$		0.06					
$S_{s} - 1.4$		0.04					
$S_s - 2.1$		0.05					
S s - 2 2		0.06					
6 9 1	++	0.09					
5,-31	-+	0.08					

せん断力照査 検討ケース 地震動 4 0.21 0.29 ++0.21 + $S_s - D1$ 0.22 0.23 $S_{s} = 1.1$ 0.06 $S_s - 1.2$ 0.09 $S_{s} = 1.3$ 0.09 $S_{s} - 1.4$ 0.07 S $_{\rm s}-2$ 1 0.10 S - 2.20.13 0.18 S $_{\rm s} = 3.1$ 0.18

(東西方向 B3F)

	すケース			せん断	力照査		
地震動		1	2	3	4	5	6
	++	0.25			0.36		
8 - D 1	+-	0.25					
S _s -D1	-+	0.26					
		0.27					
$S_{s} - 1 1$		0.07					
$S_{s} - 12$		0.11					
$S_{s} - 1.3$		0.10					
$S_{s} - 14$		0.08					
$S_s - 2.1$		0.12					
$S_{s} - 2.2$		0.15					
6 9 1	++	0.23					
5,-31	-+	0.22					

(東西方向 B4F トンネル部)

検許	すケース			せん助	7刀照査		
地震動		1	2	3	4	5	6
	++	0.15			0.15		
C DI	+-	0.15					
5 _s -D1	-+	0.14					
		0.14					
$S_{s} - 1 1$		0.10					
$S_s - 1.2$		0.12					
$S_{s} - 1.3$		0.12					
$S_{s} - 1.4$		0.12					
$S_s - 2.1$		0.10					
$S_{s} - 2.2$		0.13					
0 0 1	++	0.14					
5,-31	-+	0.16					

検許	†ケース			せん断	力照査		
地震動		0	2	3	4	5	6
	++	0.21			0.30		
8 - D 1	+-	0.21					
S _s -D1	-+	0.20					
		0.20					
$S_{s} - 1.1$		0.06					
$S_s - 1.2$		0.10					
$S_{s} - 1.3$		0.10					
$S_{s} - 1.4$		0.07					
$S_{s} - 2.1$		0.09					
$S_{s} - 2.2$		0.13					
8 - 2 1	++	0.19					
3,-31	-+	0.20					

(東西方向 B4F)

(東西方向ピット部)

検許	ケース			せん断	力照査		
地震動		0	2	3	4	5	6
	++	0.13			0.15		
C D1	+ -	0.13					
$S_s = DT$	-+	0.12					
		0.12					
$S_{s} - 1 1$		0.08					
$S_{s} - 12$		0.10					
$S_{s} - 1.3$		0.10					
$S_{s} - 14$		0.10					
$S_{s} - 2.1$		0.09					
$S_{s} - 2.2$		0.10					
0 01	+ +	0.12					
$5_{s} = 31$	-+	0.13					

※検討ケース

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース) ②:地盤物性のばらつきを考慮(+1の)した解析ケース

③:地盤物性のばらつきを考慮(-1 σ)した解析ケース ⑤:原地盤において非液状化の条件を仮定した解析ケース

⑤:尿地盤において非液状化の条件を仮定した解析ケース
⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

せん断力照査結果は,検討ケース①(基本ケース)の全ての照査値が 0.50 以下である(最大照査値は,東西方向 B3F, S_s-D1 (--)で 0.27)。

以上より、検討ケース①(基本ケース)において、曲げ軸力、せん断力照査に対する全ての照査 値が 0.50以下であり、かつ、曲げ軸力及びせん断力照査対象の全部材のうち最も厳しい照査値とな った地震動は<u>S</u>。-D1(--)である。

検討ケース①(基本ケース)において、曲げ軸力、せん断力照査に対する全ての照査値が 0.50 以下であること、また表 2.5-3、表 2.5-4 より④ケースが卓越することから、構造部材に着目した追加検討ケースは不要である。

1.11 - 17

2.5.3-1 評価結果(水平断面の検討ケース選定)

図2.5-6に水平断面検討ケース選定フローを示す。

水平断面の設計に用いる地震時地盤反力の抽出については、検討ケース①(基本ケース)に ついては基準地震動全ケース(12ケース)の抽出結果を記載する。また、検討ケース②~⑥ の抽出結果については、検討ケース①(基本ケース)において地震時地盤反力が最大となる基 準地震動について抽出(5ケース)及び2.5.2-1で示した鉛直断面の照査値及びせん断力が最 大となる解析ケース④S_s-D1(H+,V+)について抽出(1ケース)を行う。

上記により抽出した検討ケース①~⑥の地震時地盤反力の最大値を用いて水平断面の静的フ レーム解析を実施する。

表 2.5-5(1) 地盤反力抽出結果

(南北方向 B1F)

(東西方向 B1F)

水平断面NS方向 B1F 地盤反力度 (kN/m²) 検討ケース 地震動 Œ (2)3 4 +++- $S_s - D_1$ _ + 139 $S_{s} = 1.1$ S $_{\rm s}-1$ 2 159 S $_{\rm s}-1$ 3 149 $S_s - 1 4$ $S_s - 2 1$ 124 135 S $_{\rm s}-2$ 2 145 + + $S_{s} = 3.1$ 171 146

(南北方向 B2F)

水平断面NS方向	B2F								
検許	ケース	地盤反力度 (kN/m ²)							
地震動		1	2	3	4	5	6		
	++	634			581				
C D1	+-	623							
3,-D1	-+	478							
		463							
$S_{s} = 1.1$		325							
$S_s - 1.2$		536							
$S_{s} = 1.3$		511							
$S_{s} - 1.4$		418							
$S_s - 2.1$		580							
S _s - 2 2		532							
6 9 1	++	468							
5 5 - 3 1	-+	666	676	654	557	637	642		

(南北方向 B3F)

水平断面NS方向	B3F								
検許	サケース	地盤反力度 (kN/m ²)							
地震動		0	2	3	4	5	6		
	++	697			770				
S _s – D 1	+-	674							
	-+	941							
		942							
S _s -11		502							
S _s -12		604							
S _s - 1 3		566							
S _s -14		515							
S s - 2 1		814							
S s - 2 2		744							
6 9 1	++	945	944	946	990	941	939		
S ₅ -31	-+	659							

(南北方向 B4F)

水平断面NS方向 B4F

検許	サケース	ス 地盤反力度 (kN/m ²)					
地震動		1	2	3	4	5	6
	++	769			833		
S _s – D 1	+-	780					
	-+	820					
		766					
S _s - 1 1		449					
$S_s = 1.2$		674					
S _s - 1 3		633					
S _s - 1 4		489					
$S_{s} = 2.1$		845					
$S_{s} - 2.2$		841					
8 21	++	886	896	873	777	871	878
3,-31	-+	712					

※検討ケース

①:原地盤に基づく液状化強度特性を用いた解析ケース(基本ケース)
 ②:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ③:地盤物性のばらつきを考慮(-1σ)した解析ケース
 ④:地盤を強制的に液状化させることを仮定した解析ケース
 ⑤:原地盤において非液状化の条件を仮定した解析ケース
 ④:地盤を強制的に液状化させることを仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 g)して非液状化の条件を仮定した解析ケース

水平断面B₩方向B1F									
検診	サケース	地盤反力度 (kN/m ²)							
地震動	地震動		2	3	4	5	6		
S _s – D 1	++	117			141				
	+-	118							
	-+	132							
		173	151	144	170	152	149		
S s - 1 1		79							
S _s - 1 2		93							
S _s - 1 3		91							
S 5 - 1 4		76							
S s - 2 1		101							
S 5 - 2 2		124							
0.01	++	138							
S _s -31	-+	92							

(東西方向 B2F)

	水平断面B₩方向	B2F									
	検許	寸ケース	地盤反力度 (kN/m ²)								
	地震動		1	2	3	4	5	6			
		++	316			438					
	S _s – D 1	+-	318								
		-+	241								
			424	252	258	360	348	308			
	S _s - 1 1		179								
	$S_{s} = 1.2$		201								
	S _s - 1 3		211								
	S _s -14		168								
	S _s - 2 1		217								
	S s - 2 2		219								
		++	176								
	S _s -31	-+	275								

(東西方向 B3F)

水平断面EW方向	B3F									
検許	すケース	地盤反力度 (kN/m ²)								
地震動		0	2	3	4	5	6			
	++	449	447	450	455	413	410			
S _s – D 1	+-	426								
	-+	371								
		391								
S s - 1 1		258								
S _s -12		372								
S _s - 1 3		367								
S _s -14		274								
S _s - 2 1		358								
S s - 2 2		387								
0.01	++	310								
5,-31		491								

(東西方向 B4F)

水平断面EW方向 B4F										
検討ケース		地盤反力度 (kN/m ²)								
地震動		1	2	3	4	5	6			
	++	859			1136					
S _s – D 1	+-	904								
	-+	1032	1029	1024	1198	610	611			
		1031								
S _s - 1 1		385								
S _s - 1 2		514								
S _s -13		504								
S _s - 1 4		374								
S _s - 2 1		508								
S s - 2 2		719								
6 9 1	++	800								
S , - 3 1	-+	610								

表 2.5-5(2) 地盤反力抽出結果

地震動

 $S_s - D_1$

 $S_{s} = 1.1$

S $_{\rm s}-1$ 2

S_s - 1 3

 $S_s - 1 4$ $S_s - 2 1$

 $S_{s} = 2.2$

 $S_{s} = 3.1$

(南北方向 B4F トンネル部)

(東西方向 B4F トンネル部)

2

413

地盤反力度 (kN/m²)

4 418

338

342

3

405

水平断面NS方向 B4Fトンネル部

検許	ナケース			地盤反力」	雯(kN/m ²)						
地震動		1	2	3	4	5	6				
	++	323			329						
S _s – D 1	+-	358									
	-+	355									
		337									
S _s - 1 1		250									
S _s -12		285									
S _s -13		298									
S _s -14		252									
S _s - 2 1		400	407	394	358	365	370				
S s - 2 2		343									
6 9 1	++	329									
S _s - 3 1	-+	299									

(南北方向ピット部)

水平断面NS方向 ピット部

検許	サケース			地盤反力	雯(kN/m ²)		
地震動		0	2	3	4	5	6
	++	389			366		
S _s – D 1	+-	434					
	-+	415					
		393					
S _s - 1 1		289					
S _s - 1 2		336					
S _s - 1 3		353					
S _s - 1 4		297					
$S_s - 2.1$		<u>453</u>	462	446	375	421	441
S _s -22		424					
8 21	++	385					
S _s -31	-+	355					

(東西方向ピット部)

水平断面BW方向 ピット部

水平断面EW方向 B4Fトンネル部

検討ケース

++

+-

-+

1

308

326

359

<u>407</u>

267

268

268

233 279

338 297

検討ケース		地盤反力度 (kN/m ²)							
地震動		0	2	3	4	5	6		
	++	340			380				
S _s – D 1	+-	376							
	-+	381							
		417	429	414	415	403	373		
S _s - 1 1		290							
S _s - 1 2		329							
S _s - 1 3		319							
S _s - 1 4		272							
$S_s - 2.1$		293							
S _s - 2 2		351							
S 21	++	243							
S _s -31	1	944							

※検討ケース ①:原地盤に基づく液状化

③:地盤物性のばらつきを考慮(-1 σ)した解析ケース

⑤:原地盤において非液状化の条件を仮定した解析ケース

⑥:地盤物性のばらつきを考慮(+1 σ)して非液状化の条件を仮定した解析ケース

	南北方向	東西方向				
B1F	178 (5) Ss-31 (-+)	173 ① Ss-D1 ()				
B2F	676 ② Ss-31 (-+)	438 ④ Ss-D1 (++)				
B3F	990 ④ Ss-31 (++)	455 ④ Ss-D1 (++)				
B4F	896 ② Ss-31 (++)	1198 ④ Ss-D1 (-+)				
B4Fトンネル部	407 ② Ss-21 (++)	505 ④ Ss-D1 ()				
ピット部	462 ② Ss-21 (++)	429 ② Ss-D1 ()				

表 2.5-5(3) 各階層の最大地盤反力及び解析ケースまとめ

した解析ケース

強度特性を用いた解析ケース(基本ケース)	 2:地盤物性のばらつきを考慮((+1σ) l	_

④:地盤を強制的に液状化させることを仮定した解析ケース

78

常設代替高圧電源装置用カルバート(カルバート部)の耐震安全性評価に関する参考資料

(2章,3章抜粋)

2. 杭頭部の照査

杭頭結合部の結合方法は、「道路橋示方書(I共通編・IV下部構造編)・同解説」に示される方法Bにより底版と剛結合する。

参考表7-1に杭頭結合部の評価項目を,参考表7-2及び参考表7-3に杭頭結合部の照査結果を示 す。

杭頭結合部における許容応力度法による照査を行った結果,評価位置において参考表7-1に示す 評価項目における発生応力度が短期許容応力度以下であることを確認した。なお,発生応力は各地 震動において最大となる値を示している。

以上より、杭頭結合部の発生応力は、許容限界以下であることを確認した。

参考図 7-3 に杭頭補強鉄筋の概略配筋図を,参考表 7-4 に仮想鉄筋コンクリートの断面計算に 用いた断面諸元の一覧を示す。

	評価項目
鉛直力(押込み力)	杭頭部のフーチングコンクリートの押抜きせん断抵抗
	補強鉄筋を含む仮想鉄筋コンクリート柱の曲げ抵抗
モーメント	(仮想鉄筋コンクリート断面の曲げ圧縮応力度及び補強鉄筋の引張
	応力度)

参考表 7-1 杭頭結合部の評価項目

<mark>検討</mark> ケース	評価項目			発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照査 <mark>値</mark>
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.12	1.65	0.08
(I) S s - D 1 (II+,V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	6.29	21. 0	0.30
	モーメント	仮想RC断面鉄筋の引張応力度	2	307	435	0.71
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0. <mark>1</mark> 3	1.65	0.08
(]S s - D 1 (]I + V -)		仮想RC断面コンクリートの曲げ圧縮応力度	2	6. <mark>3</mark> 8	21.0	0.31
	モーメント	仮想RC断面鉄筋の引張応力度	2	304	435	0. 70
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.16	1.65	0.10
(I) S s - D 1 (H - V +)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>4</mark> . 57	21. <mark>0</mark>	0.22
, , <i>,</i>		仮想RC断面鉄筋の引張応力度	1	<mark>2</mark> 49	435	0, 58
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.17	1.65	0.11
(I) S s - D 1 (H - V -)		仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>4</mark> . 67	21.0	0.23
un , , , ,	モーメント	仮想RC断面鉄筋の引張応力度	1	248	435	0.58
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.06	1.65	0.04
①S s = 1 1		仮想RC断面コンクリートの曲げ圧縮応力度	2	1.86	21.0	0.09
	モーメント	仮想RC断面鉄筋の引張応力度	2	71	435	0.17
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.08	1.65	0, 05
①S s - 1 2	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	3.63	21. <mark>0</mark>	0.18
		仮想RC断面鉄筋の引張応力度	2	164	435	0.38

参考表 7-2(1) 杭頭結合部の照査結果(軽油カルバート)

検討ケース		評価項目	評価位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0. <mark>0</mark> 8	1,65	0, 05
①S s - 1 3		仮想RC断面コンクリートの曲げ圧縮応力度	2	3. 28	2 <mark>1. 0</mark>	0, 16
	モーメント	仮想RC断面鉄筋の引張応力度	2	148	435	0.35
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.06	1.65	0.04
①S s -1 4		仮想RC断面コンクリートの曲げ圧縮応力度	2	2. 42	21.0	<mark>0</mark> . 12
	モーメント	仮想RC断面鉄筋の引張応力度	2	102	435	0.24
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.13	1. <mark>6</mark> 5	0. 08
①Ss-21	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	4.46	21. 0	0, 22
		仮想RC断面鉄筋の引張応力度	2	195	<mark>43</mark> 5	0. 45
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0. 11	1,65	0.07
①S s - 2 2		仮想RC断面コンクリートの曲げ圧縮応力度	2	4.20	21.0	0.20
	モーメント	仮想RC断面鉄筋の引張応力度	2	188	435	0. <mark>4</mark> 4
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0, 15	1.65	0.10
(I) S s - 3 1 (II + V + V)		仮想RC断面コンクリートの曲げ圧縮応力度	1	3 . 5 5	21.0	0.17
Mary 117	モーメント	仮想RC断面鉄筋の引張応力度	1	202	435	0.47
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.12	1. <mark>65</mark>	0.08
$\bigcirc S \ s - 3 \ 1 \ (H - V +)$		仮想RC断面コンクリートの曲げ圧縮応力度	2	5.42	21.0	0.26
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	モーメント	仮想RC断面鉄筋の引張応力度	2	258	435	0.60

参考表 7-2(2) 杭頭結合部の照査結果(軽油カルバート)

(参考) 7-11

検討ケース		評価項目	評 <mark>価</mark> 位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.12	1.65	0. 08
(2) S s $-$ D 1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	6, 29	21.0	0 <mark>. 3</mark> 0
	モーメント	仮想RC断面鉄筋の引張応力度	2	308	435	0, 71
20	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0, 13	1.65	0 <mark>. 0</mark> 8
$2S_{s-D_{1}}$	1	仮想RC断面コンクリートの曲げ圧縮応力度	2	6. 39	21. 0	0.31
	モーメント	仮想RC断面鉄筋の引張応力度	2	305	435	0.71
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.16	<mark>1.</mark> 65	0.10
2S s - D 1 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	4.56	21. 0	0.22
		仮想RC断面鉄筋の引張応力度	1	254	435	0 <mark>.</mark> 59
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.17	1.65	0, 11
(2) S s $-$ D 1 (H-, V-)	1980 - 1980 - 1980	仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>4. 6</mark> 6	21.0	0, 23
, , ,	モーメント	仮想RC断面鉄筋の引張応力度	1	252	435	0. 58
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.15	1, 65	0.10
(2) S s $- 3$ 1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	3, <mark>4</mark> 8	21.0	0.17
	モーメント	仮想RC断面鉄筋の引張応力度	1	198	435	0, 46
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.11	1. <mark>65</mark>	0.07
2S s - 31 (H-, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	5.37	21.0	0, 26
	モーメント	仮想RC断面鉄筋の引張応力度	2	255	<mark>4</mark> 35	0.59

参考表 7-2(3) 杭頭結合部の照査結果(軽油カルバート)

(参考) 7-12

検討ケース		評価項目	評価位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.12	1. <mark>65</mark>	0. <mark>0</mark> 8
(3)Ss $-$ D1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	6.24	21.0	0.30
		仮想RC断面鉄筋の引張応力度	2	<mark>3</mark> 05	435	0.71
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	<mark>0.</mark> 13	1. <mark>6</mark> 5	0.08
(3) S s $-$ D 1 (1+, V-)		仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>6,</mark> 32	21. 0	0.31
	モーメント	仮想RC断面鉄筋の引張応力度	2	303	435	0. 70
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	<mark>0.</mark> 16	1. 65	0.10
(3)S s - D 1 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>4.</mark> 59	21.0	0.22
,,		仮想RC断面鉄筋の引張応力度	1	247	435	0.57
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.17	1. 65	<mark>0.</mark> 11
(3)S s $-$ D 1 (H-V-)	5 No. 1973	仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>4.</mark> 67	21.0	0.23
	モーメント	仮想RC断面鉄筋の引張応力度	1	246	435	0.57
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0, 15	1.65	0.10
(3)Ss - 31 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	3.64	21.0	0.18
	モーメント	仮想RC断面鉄筋の引張応力度	1	205	435	0. 48
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.12	1 <mark>. 6</mark> 5	0.08
(3)Ss - 31 (H-V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	5.47	21.0	0.27
	モーメント	仮想RC断面鉄筋の引張応力度	2	262	435	0.61

参考表 7-2(4) 杭頭結合部の照査結果(軽油カルバート)

検討ケース		評価項目	評価 位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.13	<mark>1. 6</mark> 5	0 <mark>.</mark> 08
(I) S s - D 1 (I) + V + V + V		仮想RC断面コンクリートの曲げ圧縮応力度	2	5, 85	21.0	0.28
	モーメント	仮想RC 断面鉄筋の引張応力度	2	294	435	0.68
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.14	<mark>1</mark> . 65	0. 09
$(\underline{A} S s - D 1)$ $(\underline{H} +, \underline{V} -)$		仮想RC断面コンクリートの曲げ圧縮応力度	2	6. <mark>00</mark>	21. 0	0, 29
	モーメント	仮想RC 断面鉄筋の引張応力度	2	291	435	0, 67
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.16	<mark>1.</mark> 65	0.10
(I) S s - D 1 (I) - , V +)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	4. 57	21.0	0.22
		仮想RC断面鉄筋の引張応力度	1	244	435	0.57
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.17	1.65	0.11
(4) S s $-$ D 1 (H - V -)		仮想RC断面コンクリートの曲げ圧縮応力度	2	4.64	21.0	0, 23
	モーメント	仮想RC断面鉄筋の引張応力度	1	242	435	0.56
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.15	1. <mark>65</mark>	0.10
(4)Ss - 31 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	4.13	21.0	0.20
	モーメント	仮想RC断面鉄筋の引張応力度	1	222	435	0.52
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.13	1.65	0.08
(4) S s - 3 1 (H - V +)		仮想RC断面コンクリートの曲げ圧縮応力度	2	5. 48	21.0	0.27
	モーメント	仮想RC断面鉄筋の引張応力度	2	266	435	0.62

参考表 7-2(5) 杭頭結合部の照査結果(軽油カルバート)

検討ケース		評価項目	評価位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查値
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.11	1.65	0, 07
(5) S s $-$ D 1 (H+, V-)	to any state of the second state	仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>5,</mark> 05	21.0	0.25
		仮想RC断面鉄筋の引張応力度	2	242	435	0. 56
21	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	<mark>0</mark> . 13	1.65	0 <mark>.</mark> 08
(5 s - 3 1) (1 + 1)		仮想RC断面コンクリートの曲げ圧縮応力度	1	<mark>3</mark> , 53	21.0	0, 17
	モーメント	仮想RC断面鉄筋の引張応力度	1	185	435	0. <mark>4</mark> 3
i i i	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	<mark>0.</mark> 11	1,65	0.07
(5)Ss - 31 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	2	4.62	21.0	0. 22
(,		仮想RC断面鉄筋の引張応力度	2	222	435	0.52
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	<mark>0</mark> , 11	1.65	0.07
(6)Ss - D1 (H+V-)		仮想RC断面コンクリートの曲げ圧縮応力度	2	<mark>5. 04</mark>	21.0	0. 24
	モーメント	仮想RC断面鉄筋の引張応力度	2	240	435	0, 56
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	2	0.13	1.65	0.08
(6) S s - 3 1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	3. <mark>45</mark>	21.0	0.17
(11), (1)	モーメント	仮想RC断面鉄筋の引張応力度	1	182	435	0, 42
1	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	1	0.10	1.65	0,07
(6)Ss - 31 (H-V+)		仮想RC断面コンクリートの曲げ圧縮応力度	2	4.57	21.0	0.22
	モーメント	仮想RC断面鉄筋の引張応力度	2	218	435	0.51

参考表 7-2(6) 杭頭結合部の照査結果(軽油カルバート)

検討ケース	評価項目			発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照査値
10140	鉛直力 (押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0.03
(1) S s $-$ D 1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1.06	21. 0	0.06
	モーメント	仮想RC断面鉄筋の引張応力度	1	47	435	0, 11
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0.</mark> 05	1.65	0.04
(I) S s - D 1 (II + V - V)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1.07	21.0	<mark>0. 06</mark>
	モーメント	仮想RC断面鉄筋の引張応力度	1	46	435	0.11
	鉛直力 (押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0. 0</mark> 5	1.65	0.04
(]S s - D 1 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	<mark>0.</mark> 80	21.0	0.04
		仮想RC断面鉄筋の引張応力度	1	30	435	0. 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0.</mark> 05	1.65	0.04
(I) S s - D 1 (H - V -)		仮想RC断面コンクリートの曲げ圧縮応力度	1	<mark>0. 85</mark>	21.0	0.05
	モーメント	仮想RC断面鉄筋の引張応力度	1	30	435	0.07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 3	1.65	0.02
(1) S s - 1 1		仮想RC断面コンクリートの曲げ圧縮応力度	3	0. <mark>2</mark> 7	21.0	0.02
	モーメント	仮想RC断面鉄筋の引張応力度	1	3	435	0.01
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 3	1.65	0.02
①S s - 1 2		仮想RC断面コンクリートの曲げ圧縮応力度	1	0.58	21.0	0.03
	モーメント	仮想RC断面鉄筋の引張応力度	1	19	435	0.05

参考表 7-3(1) 杭頭結合部の照査結果(水電気カルバート)

検討ケース		評価項目	評価位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.03	1.65	0. 02
①Ss-13		仮想RC断面コンクリートの曲げ圧縮応力度	1	0. 57	21.0	0. 03
	モーメント	仮想RC断面鉄筋の引張応力度	1	18	435	0.05
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.03	1,65	0.02
①Ss-14		仮想RC断面コンクリートの曲げ圧縮応力度	1	0. 33	21.0	0. 02
	モーメント	仮想RC断面鉄筋の引張応力度	1	7	435	0. 02
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0. 04</mark>	1.65	0. 03
①Ss-21	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	0.60	21.0	0. 03
		仮想RC断面鉄筋の引張応力度	1	20	435	0.05
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0. 0</mark> 5	1.65	<mark>0. 0</mark> 4
① S s - 2 2		仮想RC断面コンクリートの曲げ圧縮応力度	1	0.59	21.0	0. 03
	モーメント	仮想RC断面鉄筋の引張応力度	1	27	435	0, 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 5	1,65	0.04
(I) S s - 3 1 (H+, V+)	2	仮想RC断面コンクリートの曲げ圧縮応力度	3	<mark>0. 5</mark> 3	21.0	0.03
	モーメント	仮想RC断面鉄筋の引張応力度	1	8	435	0.02
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0, 03	1.65	0.02
(I) S s - 3 1 (II - V +)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.09	21.0	0.06
		仮想RC断面鉄筋の引張応力度	1	36	435	0.09

参考表 7-3(2) 杭頭結合部の照査結果(水電気カルバート)

検討ケース		評価項目	評価 位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(<mark>押</mark> 込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0. <mark>0</mark> 3
$(2)S_s - D_1$ (H+,V+)	and the second	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.12	21.0	0. <mark>0</mark> 6
	モーメント	仮想RC断面鉄筋の引張応力度	1	50	435	0. <mark>1</mark> 2
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 5	<mark>1.</mark> 65	0. 04
(2)S s - D 1 (H+, V-)	······································	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.14	2 <mark>1.</mark> 0	0.06
	モーメント	仮想RC断面鉄筋の引張応力度	1	48	435	0.12
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.05	1.65	0.04
$2S_{s-D_{1}}$	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	0. <mark>81</mark>	21, 0	0. 04
		仮想RC断面鉄筋の引張応力度	1	30	435	0. <mark>0</mark> 7
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. 05	1.65	0.04
$2S_{s} = D_{1}$ (H-, V-)		仮想RC断面コンクリートの曲げ圧縮応力度	1	0. 86	21.0	0.05
	モーメント	仮想RC断面鉄筋の引張応力度	1	30	435	<mark>0. 0</mark> 7
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0.03
$(2)S_s = 31$ (H+,V+)	to we will be a first out of a	仮想RC断面コンクリートの曲げ圧縮応力度	3	0. 53	21, 0	0, 03
and the second s	+->>>	仮想RC断面鉄筋の引張応力度	1	7	435	0.02
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. 03	1.65	0.02
2S s - 31 (H-, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1.06	21.0	<mark>0. 0</mark> 6
(II , V T)	モーメント	仮想RC断面鉄筋の引張応力度	1	35	435	0.09

参考表 7-3 (3) 杭頭結合部の照査結果(水電気カルバート)

検討ケース	評価項目			発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查 <mark>値</mark>
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. 04	1.65	0, <mark>0</mark> 3
(3)S s $-$ D 1 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1. 10	21.0	0. <mark>0</mark> 6
	+-×>	仮想RC断面鉄筋の引張応力度	1	48	435	0. 12
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.05	1.65	0. <mark>0</mark> 4
(3)S s $-$ D 1 (H+, V-)	w 35.1	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.13	21.0	0. <mark>0</mark> 6
	モーメント	仮想RC断面鉄筋の引張応力度	1	48	435	0. 12
C	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 4	1, 65	0. <mark>0</mark> 3
(3)Ss $-$ D1 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	0. <mark>80</mark>	21.0	0.04
		仮想RC断面鉄筋の引張応力度	1	30	435	0. 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. <mark>0</mark> 5	1.65	0. 04
(3)Ss $-$ D1 (H-, V-)	10 Nov 24	仮想RC断面コンクリートの曲げ圧縮応力度	1	0. <mark>8</mark> 4	21. 0	0. <mark>0</mark> 4
	モーメント	仮想RC断面鉄筋の引張応力度	1	30	435	0, 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0</mark> . 05	1.65	0.04
(3)Ss - 31 (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	3	<mark>0</mark> . 53	21.0	0. 03
	モーメント	仮想RC断面鉄筋の引張応力度	1	8	435	0.02
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.03	1,65	0. 02
3Ss - 31 (H-, V+)	tiller og som	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.13	21.0	0.06
(n-, v+)	モーメント	仮想RC断面鉄筋の引張応力度	1	37	435	0. 09

参考表 7-3(4) 杭頭結合部の照査結果(水電気カルバート)

検討ケース	評価項目			発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0, 04	1.65	0. 03
(I) = (I)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1.36	21.0	0. 07
	モーメント	仮想RC断面鉄筋の引張応力度	1	63	435	0, 15
orta di	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0. 0</mark> 5	1.65	0.04
(I) = (I)	1	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.40	21.0	0. 07
	モーメント	仮想RC断面鉄筋の引張応力度	1	61	435	0.15
2	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. 04	1.65	0. 03
(4) S s - D 1 (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.05	21.0	0. 05
		仮想RC断面鉄筋の引張応力度	1	43	<mark>43</mark> 5	0, 10
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.05	1.65	0. 04
(4)S s - D 1 (H-, V-)	0 10 10	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.08	21.0	0.06
	モーメント	仮想RC断面鉄筋の引張応力度	1	43	435	0.10
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0.03
(4) S s - 3 1 (4) + , y +)		仮想RC断面コンクリートの曲げ圧縮応力度	1	0. 53	21.0	0.03
	モーメント	仮想RC断面鉄筋の引張応力度	1	16	435	0.04
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0.03
(4)Ss - 31 (H-, V+)	82. 1982.04	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.34	2 <mark>1</mark> . 0	0.07
	モーメント	仮想RC断面鉄筋の引張応力度	1	50	435	0.12

参考表 7-3 (5) 杭頭結合部の照査結果(水電気カルバート)

検討ケース	評価項目		評 <mark>価</mark> 位置	発生 応力度 (N/mm ²)	短期許容 応力度 (N/mm ²)	照查值
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0.</mark> 04	1.65	<mark>0.</mark> 03
(5 s - D 1) (H+, V-)		仮想RC断面コンクリートの曲げ圧縮応力度	1	1.00	21.0	0, 05
-	モーメント	仮想RC断面鉄筋の引張応力度	1	30	435	0. 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0.</mark> 04	1.65	0. 03
(5 s - 3 1) (H+, V+)		仮想RC断面コンクリートの曲げ圧縮応力度	3	0. 1 5	21.0	0. 03
Carrie 1947 (COLUM	モーメント	仮想RC断面鉄筋の引張応力度	1	8	435	0. 02
t	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	<mark>0.</mark> 03	1.65	<mark>0.</mark> 02
(5 s - 3 1) (H-, V+)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	<mark>1. 0</mark> 9	21.0	0. 06
		仮想RC 断面鉄筋の引張応力度	1	36	4 3 5	0, 09
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1.65	0. 03
(B = (B + V)	10 NOV 18	仮想RC断面コンクリートの曲げ圧縮応力度	1	0.99	21.0	0.05
273.12.5	モーメント	仮想RC斷面鉄筋の引張応力度	1	30	435	0, 07
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0.04	1,65	0. 03
$(B \ s \ -3 \ 1)$ (H+,V+)	the state of the state of the	仮想RC断面コンクリートの曲げ圧縮応力度	3	0. <mark>4</mark> 5	21.0	0. 03
	モーメント	仮想RC断面鉄筋の引張応力度	1	8	435	0.02
	鉛直力(押込み力)	フーチングコンクリートの押抜きせん断応力度	3	0. 03	1.65	0.02
(0.5 s - 3 1) (H - V +)	モーメント	仮想RC断面コンクリートの曲げ圧縮応力度	1	1.06	21.0	0.06
		仮想RC断面鉄筋の引張応力度	1	35	435	0.09

参考表 7-3(6) 杭頭結合部の照査結果(水電気カルバート)

参考図 7-3 概略配筋図(杭頭補強鉄筋)

部位	杭外径	仮想RC断面 外径	補強鉄筋						
			鉄筋種別	径	外側鉄筋 本数	内側鉄筋 本数	鉄筋量	外側鉄筋 半径位置	内側鉄筋 半径位置
	(mm)	(mm)	(-)	(mm)	(本)		(mm^2)	(mm)	(mm)
軽油 カルバート 杭頭部	1198	1598	SD490	D35	14	10	22958.4	489	349
水電気 カルバート 杭頭部	1498	1898	SD490	D51	22	-	44594.0	639	-

参考表 7-4 断面諸元一覧表(仮想 RC 断面に対する評価)

3. 浮き上がりに係る評価結果について

3.1 評価方針

地盤中の構造物の浮き上がりに係る評価は、「共同溝設計指針(日本道路協会,昭和61年3 月)」に準拠し、以下の式により算定した安全率が所要安全率1.1以上であることを確認する。参 考図7-4に地盤中の構造物に作用する力を示す。ここで、「検討ケース④:敷地に存在しない豊浦 標準砂の液状化強度特性により地盤を強制的に液状化させることを仮定したケース」の有効応力解 析において、上載土のせん断抵抗面及び構造物側面の過剰間隙水圧比が0.95以上となる要素は、以 下の式における上載土のせん断抵抗面における各要素のせん断抵抗Qsi及び構造物側面における各 要素の摩擦抵抗QBiを考慮しない。また、「検討ケース④:敷地に存在しない豊浦標準砂の液状化 強度特性により地盤を強制的に液状化させることを仮定したケース」の有効応力解析において、構 造物底版側面の過剰間隙水圧比が0.95以上である場合は、次式におけるUpを考慮する。

本構造物は杭基礎構造であり,かつ杭周面地盤は地盤改良を実施することから,杭周面摩擦力を 浮き上がりに対する抵抗力として考慮できるが,保守的な配慮として,非液状化層である地盤改良 体による杭周面摩擦力を考慮せず評価を実施する。

なお、共同溝設計指針の適用及び有効応力解析における地下水位の設定は、地表面とする。

- $F_{S} = (W_{S} + W_{B} + Q_{S} + Q_{B}) / (U_{S} + U_{D})$
 - ここに,
 - F_s:安全率(所要安全率:1.1)
 - Ws:上載土の荷重(水の重量含む)(kN/m)
 - W_B:構造物の自重(kN/m)
 - Q_s:上載土のせん断抵抗(k N/m)
 - Q_B:構造物側面の摩擦抵抗(kN/m)
 - Us:構造物底面に作用する静水圧による揚圧力(kN/m)
 - U_D:構造物底面に作用する過剰間隙水圧による揚圧力(kN/m)

上載土のせん断抵抗及び構造物側面の摩擦抵抗は、次式を用いて算出する。

- $Q_{S} = \sum Q_{S i}$
- $\mathbf{Q}_{B}\!=\!\boldsymbol{\Sigma}\,\mathbf{Q}_{B~i}$
 - ここに,
 - Qsi:上載土のせん断抵抗面における各要素のせん断抵抗(kN/m)
 - Q_{Bi}: 構造物側面における各要素の摩擦抵抗(k N/m)
 - i:安全率を算定する上載土のせん断抵抗面及び構造物側面の各 FEM 要素

「共同溝設計指針(日本道路協会,昭和61年3月)に一部加筆」

参考図 7-4 地盤中の構造物に作用する力

3.2 評価断面

図 7.2-2 及び図 7.2-4 に常設代替高圧電源装置用カルバート(カルバート部)の平面配置図及 び断面図を,図 7.2-12 に解析モデル図を示す。

3.3 評価結果

検討ケースは、「検討ケース①:原地盤に基づく液状化強度特性を用いた解析ケース」において 最も過剰間隙水圧比が高くなる地震動を用いて「検討ケース④:敷地に存在しない豊浦砂の液状 化強度特性により強制的に液状化させることを仮定した解析ケース」にて評価した。

「検討ケース④:敷地に存在しない豊浦砂の液状化強度特性により強制的に液状化させることを 仮定した解析ケース」では、構造物底版側面の過剰間隙水圧比が 0.95 未満であることから、構造物 底面に作用する過剰間隙水圧による揚圧力U_Dは考慮しない。

安全率の算定結果を参考表 7-5 に,過剰間隙水圧比分布を参考図 7-5 に示す。

Fs	$\frac{W_{\rm S} + W_{\rm B} + W_{\rm p} + Q_{\rm S} + Q_{\rm B}}{U_{\rm S} + U_{\rm D}} = \frac{0.0 + 694.5 + 5.8 + 0.0 + 1053.2}{393.5 + 0.0}$	=	4.45 > 1.1				
Ws	$\gamma_s \times H_s \times B$						
	上載土は存在しない	=	0.0kN/m				
WB	$\gamma_{c} \times (B \times H_{B} - H_{1} \times (B_{1} + B_{2}))$						
	24.5kN/m ³ × (5.5 m × 7.5 m – 4.3 m × (1.35 m + 1.65 m))	=	694.5kN/m				
Wp	wp ^{*1}						
	(200 + 200 + 100 + 100)kg/m × 9.80665 ÷ 1000	=	5.8kN/m				
$Q_{\rm S}$	$K_0 \times \sigma_v'^{*2} \times H_S \times tan \phi_s^{*3}$						
	上載土は存在しない	=	0.0 kN/m				
Q _B	$Q_{B \ \# \ p \ \pm} + Q_{B \ t \ p \ t}$						
	53.2kN/m + 1000kN/m	=	1053.2kN/m				
Q _{B 埋戻土}	$K_{0} \times \left(\sigma_{v \ \exists \not \in \pm}'^{*4} \times H_{B \ \exists \not \in \not \in \pm} + \sigma_{v \ \exists \not \in \pm}'^{*5} \times H_{B \ \exists \not \in \not \in \pm}\right)$						
	$\times \tan {\phi_{B}}^{*6}$						
	$0.5 \times (49.3 \text{kN/m}^2 \times 2.325 \text{m} + 49.3 \text{kN/m}^2 \times 2.325 \text{m}) \times \tan 24$		53. 2kN/m				
$Q_{B \eth \varrho}$	$c \times H_{B \oplus e} \times 2$						
	500kN/m ² × 1.0m × 2	=	1000kN/m				
Us	$\gamma_{\rm w} \times ({\rm H}_{\rm s} - {\rm H}_{\rm B}) \times {\rm B}$						
	9.8kN/m ³ × (EL + 8.0m - (EL + 0.7m)) × 5.5m	=	393.5kN/m				
*1 wp:機器配管重量(kN/m)							
*2 σ_v ':上載土層中間深度での有効上載圧(kN/m^2)							

参考表 7-5(1) 安全率の算定結果(軽油カルバート部)

*3 øs:上載土の内部摩擦角(°)

*4 σ_{ν 埋戻土}':構造物左側面の非液状化層(埋戻土)の中間深度での有効上載圧(kN/m²)

$$\sigma_{\nu \not\equiv \not\equiv \not\perp}' = (19.4 \text{kN/m}^3 - 9.8 \text{kN/m}^3) \times (\text{EL} + 8.0 \text{m} - (\text{EL} + 4.025 \text{m} + (\text{EL} + 1.70 \text{m})) \div 2)$$

= 49.3 kN/m²

*5 σ_{v 埋戻土}':構造物右側面の非液状化層(埋戻土)の中間深度での有効上載圧(kN/m²)

 $\sigma_{\nu \# \not\equiv \pm}' = (19.4 \text{kN/m}^3 - 9.8 \text{kN/m}^3) \times (\text{EL} + 8.0 \text{m} - (\text{EL} + 4.025 \text{m} + (\text{EL} + 1.70 \text{m})) \div 2)$

$$= 49.3 \text{kN}/\text{m}^2$$

*6 ØB:構造物側面の壁面摩擦角の 2/3(°)

		-	
F _S	$\frac{W_{\rm S} + W_{\rm B} + W_{\rm p} + Q_{\rm S} + Q_{\rm B}}{U_{\rm S} + U_{\rm D}} = \frac{1698.8 + 1466.3 + 16.6 + 0.0 + 3415.4}{1770.9 + 0.0}$	=	3.72> 1.1
Ws	$\gamma_s \times H_s \times B$		
	19.4kN/m ³ × (EL + 8.0m – (EL + 1.7m)) × 13.9m	=	1698.8kN/m
WB	$\gamma_{c} \times \left(B \times H_{B} - H_{1} \times (B_{1} + B_{2} + B_{3}) \right)$		
	24.5kN/m ³ × (13.9 m × 6.7 m – 3.2 m × (5.3 m + 3.3 m + 1.8 m))	=	1466.3kN/m
Wp	w _p *1		
	(700 + 800 + 100 + 100)kg/m × 9.80665 ÷ 1000	=	16.6kN/m
$Q_{\rm S}$	$K_0 \times \sigma_v'^{*2} \times H_S \times tan \phi_s^{*3}$		
	上載土の過剰間隙水圧比が 0.95 以上であり,非液状化層は存在し	_	0.0.1 m
	ない	_	0.0 KN/III
\mathbf{Q}_{B}	Q _{B 埋戻土} +Q _{B 改良}		
	65.4 + 3350.0	=	3415.4kN/m
$Q_{B \# \not \in \pm}$	$K_0 imes \sigma_{v \ \pm E \pm 1}'^{*4} imes H_{B \ \pm E \pm \pm \pi} imes tan \phi_B^{*5}$		
	0.5×112.8 kN/m ² × 2.5m × tan24.9°	=	65.4kN/m
$Q_{B\eth\varrho}$	$c \times H_{B \text{ dd}bc}$		
	500kN/m ² × 6.7m	=	3350.0kN/m
Us	$\gamma_{\rm W} \times ({\rm H}_{\rm s} - {\rm H}_{\rm B}) \times {\rm B}$		
	9.8kN/m ³ × (EL + 8.0m - (EL - 5.0m)) × 13.9m	=	1770.9kN/m
*1 w:楼			

参考表7-5(2) 安全率の算定結果(水電気カルバ	(ート部)	
---------------------------	-------	--

*1 *wp*:機器配管重量(kN/m)

*2 σ_v':上載土層中間深度での有効上載圧(kN/m²)

*3 ø_s:上載土の内部摩擦角(°)

*4 σ_{v 埋戻土}':構造物右側面の非液状化層(埋戻土)の中間深度での有効上載圧(kN/m²) $\sigma_{v \neq \neq \neq \pm}' = (19.4 \text{kN/m}^3 - 9.8 \text{kN/m}^3) \times (\text{EL} + 8.0 \text{m} - (\text{EL} - 2.50 \text{m} + (\text{EL} - 5.00 \text{m})) \div 2)$

$$= 112.8$$
kN/m²

*5 *ϕ_B*:構造物側面の壁面摩擦角の 2/3(°)

参考図 7-5 過剰間隙水圧比分布(S_s-D1 (H-, V+)) (検討ケース④:敷地に存在しない豊浦砂の液状化強度特性により強制的に液状化させることを仮 定した解析ケース)
上記の結果より,安全率 Fs は軽油カルバート部において 4.45, 水電気カルバート部において 3.72 であり,所要安全率 1.1 以上であることを確認した。